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1 Introduction

One fine day, in a company, a software engineer is told to participate in a process for specify-
ing and implementing an object-oriented software system. The engineer knows that these days,
specifying software is one of the most convenient tasks one could be assigned to do. Different
kinds of tools are available to support that work to create a product of high quality. One of these
tools is a unified, visual specification language introduced by an international standard. That
visual language simplifies the communication with other software engineers presumably work-
ing in different companies located in several countries by providing highly intuitive diagrams
which lead to a precise description of the software system. That visual language is furthermore
supported by various software tools, all interacting with each other without any problem. Using
these tools, all engineers involved could change all specification documents in parallel. Consid-
ering static and dynamic information from the model nearly perfect code is generated. When
requirements change, modifications in the diagrams are registered by the tool and the layout of
the diagrams is perfectly adjusted with minimum number of changes to maintain the mental map
of the engineer. Even if the engineer had been assigned to a maintenance project for documenting
and maintaining ancient code, which was produced neither with standardized specification nor
documentation, this would have been also a convenient task. The same tools mentioned above
are able to analyze the old sources, to automatically recognize design patterns according to a
pattern catalog and to produce perfect diagrams and documentation. Software engineers have
created for themselves the perfect world to work in.
Wouldn’t it be nice if that was true? The present situation however, is far from that perfect situa-
tion. In the future, this software engineering fairy tale may become reality, the current situation,
however, looks more like a horror story: The international standard language mentioned above,
the Unified Modeling Language (UML) exists, but it is far away from reaching that state of preci-
sion. Most of the tools supporting UML are not compliant to the current version of the standard,
and even ancient versions are not completely supported. Most of these Computer Aided Soft-
ware Engineering (CASE) tools implement a distributed repository, so that every developer of a
company can read and modify all specification documents according to certain access rules. A
history is kept on all changes, source code for different programming languages as well as doc-
umentation in different formats can be generated, maintained and analyzed, etc. But tasks like
generating code respecting the responsibilities of the elements, analyzing code and retrieving and
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displaying design specific issues like design patterns are far away from perfection. Complex but
required features like a distributed repository or various generators make such tools enormously
expensive. At a first glance, automatic layout of diagrams does not seem to be a key feature
for CASE tools. But taking unpredictable and unanticipated changes into account, like new or
modified requirements or synchronization of design documents against code changed while im-
plementation, manual modifications to the diagrams to ensure consistency and readability is a
tedious, time-consuming task. Most tools provide such automatic layout facilities, and the result
of applying these features usually lead to a crowded layout, and sometimes it seems that the
elements were simply randomly shuffled. Furthermore, a tool usually presents different layout
methods for a concrete diagram and each method provides a large set of options. Mostly, neither
the names of the methods, nor the descriptions of the options, nor the concepts behind these
topics are known by the engineer, because these technical terms relate to another completely dif-
ferent discipline of computer science, namely graph drawing. Do these problems with automatic
layout occur due to bugs in the implementation of the CASE tools or is it extremely difficult to
solve the problem of calculating the layout of software engineering diagrams?
Different disciplines are involved in the problem of automatic layout of software engineering
diagrams, and it seems that basic common knowledge spread over these disciplines is present.
Because of computational as well as a communicational problems no appropriate layout algo-
rithms exist for most complex types of diagrams. From the viewpoint of a software engineer,
UML provides a large degree of freedom to specify software on different levels of abstraction
providing different modeling and presentational options. Most of the tool vendors select parts
of the standard to be implemented in their tools, despite the fact that such selections are not
allowed from the viewpoint of UML. Furthermore, after reading some basic literature about
drawing general graphs, tool vendors try to implement automatic layout features which do not
take the structural and semantical information of software engineering diagrams into account.
Researchers working in the field of graph drawing then tend to tailor their layout algorithms
for UML class diagrams based on their experiences in drawing general graphs, but oftentimes
without taking the underlying semantics and software engineering philosphy into account. These
algorithms then support abstract aesthetic features designed for general graphs but also without
considering the application domain specific structural and semantical requirements. On the one
hand, from the viewpoint of human perception and cognitive psychology, neither the software
engineering standards nor the layout algorithms from graph drawing are sufficient to provide
intuitive, readable and error-minimizing representations. But on the other hand, the designers of
software specification languages tend to ignore the results from Human Computer Interaction
(HCI) and cognitive psychology. Oftentimes, the researches from general graph drawing try to
capture these fundamental issues on human perception by some non-application domain specific
aspects. And finally, the results from user studies and experiences in Software Visualization are
often not respected in other disciplines that are involved in the area of automatically drawing
software engineering diagrams.
This work will present basic results as well as practical solutions for the problem of automat-
ically calculating the layout of UML class diagrams. We will unify common results from the
four disciplines graph drawing, software engineering, software visualization and HCI to derive
aesthetic criteria as well as a layout algorithm supporting these criteria for UML class diagrams.
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Furthermore, an implementation of the algorithm and an automatic testing approach for layout
results will be given.
To introduce the kind of diagrams, the diagram elements and the relations to be drawn, at the be-
ginning of the second chapter we will first describe UML in general and more specifically UML
class diagrams. A further section will then highlight the necessity of drawing software engineer-
ing diagrams automatically and introduce graph drawing, the discipline responsible for theoret-
ical and practical results on drawing general and application domain specific graphs. Thereby,
basic approaches will be listed and work done for UML class diagrams so far will be described.
In the third chapter we will collect a functional specification to be fulfilled by a concrete im-
plementation. Therefore, we will first enumerate basic requirements for drawing UML class di-
agrams and select appropriate data formats for input and output. Afterwards, the problem of
readability of UML class diagrams will be discussed intensively. From the four basic disciplines
graph drawing, software engineering, software visualization and HCI arguments will be collected
and compiled to form one set of structural and semantic rules.
Then, in the next chapter, based on a general graph drawing method, a layout approach for re-
alizing the functional specification will be introduced. Thereby we specify the underlying graph
model and present the basic architecture of SugiBib, a framework which realizes the layout algo-
rithm.
In the fifth chapter, the formal notation for the graph model will be given and the individual steps
of the algorithm will be discussed in detail.
The next chapter contains a practical comparison of existing layout implementations for UML
class diagrams, deals with measuring aesthetics according to the aesthetic rules of the third chap-
ter as well as problems in manual and automatic testing, specific applications of the framework
and future optimizations of the implementation. Finally, hints for anticipated modifications of
the implementation and approaches to other types of UML diagrams will be considered as well.
In the last chapter issues deferred to future work and an overall conclusion will be given.

Some technical and notational details should be mentioned here. As it is usual in computer sci-
ence, the author of this thesis will refer to himself by using plural form. Persons will always be
referred as females. Items in the text meant to be emphasized will be displayed in italics. As
regards to lists bold font face will be used. Names in algorithms, source code or in diagrams
mentioned in the text will be given in teletype style.
Statements taken from literature will be indicated by reference in the bibliography, direct cita-
tions might turn up in text or in individual paragraphs.
UML diagrams, used to explain the relevant parts of UML or details of the implementation, will
be drawn as such. In diagrams, which explain general issues of a layout algorithm, nodes will
be drawn as circles, usually containing an identification, connected by solid lines. In diagrams,
used to explain UML specific parts of a layout algorithm, visible edges will be drawn UML-
like, invisible edges are drawn in other, appropriate styles, nodes will be depicted as rectangular
boxes, visible nodes may be marked by simplified names, and invisible elements will be marked
by diagonal lines in the node box.
Diagrams, relevant for explaining issues of UML class diagrams or the architecture of the imple-
mentation have been drawn manually. We made this decision to partly emphasize certain layout
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requirements, some of them are currently not realized in the implementation, and partly to pro-
vide a comparison between automatic drawing and manual capabilities. In several sections as
well as in the appendix some diagrams drawn by our algorithm will be presented.
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2 Diagram Basics

In this chapter we will outline an overview on the basic aspects related to UML class diagrams.
In Section 2.1, we will start with an introduction to UML in general and to UML class diagrams
in particular. While giving a brief overview on criticism on UML as well as on alternative visual-
izations of class diagrams, we will prepare arguments, which will help restricting the potentially
broad range of functionality an implementation.
In Section 2.2, we will discuss the necessity of automatic layout in software engineering as well
as the basic techniques for calculating the layout of graphs, abstract structures consisting of
nodes connected by edges. Based on this knowledge, an evaluation of the current state-of-the-art
in automatically drawing UML class diagrams will be given.

2.1 The Unified Modeling Language

Every tool carries with it the spirit by
which it has been created.

Werner Karl Heisenberg (1901 – 1976)

The Unified Modeling Language (UML) has become the standard language for specifying and
visualizing aspects of object-oriented software. Therefore, diagrams used in software engineering
ought to be compliant to that visual language to reduce the costs of communication.
In this section, we will first give an overview of the different types of diagrams introduced by
UML. Also, elements and relations of UML class diagrams, which are the main topic of our work,
will be described. Having discussed the visual complexity and variability of these diagrams,
we will briefly summarize some of the criticism on UML, alternative display approaches and
relations of these issues to our work. At a first glance, parts of this section may appear to be
a discussion on UML related details only, but going into some UML and software engineering
details, natural boundaries of our work related to (aesthetic) layout issues, UML and CASE tool
technology will become clear.
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2.1.1 Diagrams of UML
Concern for man himself and his fate
must always form the chief interest of all
technical endeavor. Never forget this in
the midst of your diagrams and equations.

Albert Einstein (1879 – 1955)

To simplify the user’s understanding of the complex relationships of classes or objects in object-
oriented software engineering, even the first object-oriented methodologies provided a graphical
notation of the static and dynamic aspects of the software. Important features of UML include
the unification of these diagrammatic notations, the specification of a standard instead of hav-
ing several incompatible notations and an approach to support the entire software development
process. UML [OMG 2003c] therefore provides:

• Use case diagrams, which collect and visualize the situations in which the software to be
developed may be used. These diagrams are intended as a foundation for discussions with
customers and stakeholders especially while capturing requirements. The diagrams show
the global relations between individual use cases, but usually textual scenarios have to be
provided for each use case to specify and to clarify the use cases and to describe different
alternatives for realization.

• Activity diagrams, object-oriented extensions to flow charts, are intended to visualize a
use case and its alternatives. A use case is separated into several more finely grained ac-
tivities, which might then be partitioned according to their responsibilities. Finally, object-
flows showing the migration of data between activities can be depicted.

• Class diagrams, showing the static structural relationships among classes, interfaces,
packages or class instances. Depending on the development process, class diagrams might
be derived iteratively from use case and activity diagrams but also from sequence or col-
laboration diagrams.

• Sequence diagrams, which visualize message passing between class instances according
to the flow of time.

• Collaboration diagrams, which are semantically equivalent to sequence diagrams but
show spatially arranged groups of instance collaborations.

• Statechart diagrams, which model the interactions within a single class as a state ma-
chine.

• Package diagrams, showing relations among modules, groups of classes semantically be-
longing together. Some software engineers and tool vendors strictly distinguish between
class diagrams (containing classes and their relations only) and package diagrams (simi-
larly containing packages only). UML itself makes no such separation because some model
elements combine module notation and class notations [OMG 2003c, p. 3-34].
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• Component diagrams, describing (nested) components, their interfaces and the depen-
dencies between different components.

• Deployment diagrams, which show the distribution of components on different physical
nodes.

The unified specification of the elements and relations, which might be used in a diagram, and
the semantics, which arise from those elements and relations, is the foundation of a standardized
communication among software engineers. On machine level, the communication can be done
in terms of XML Metadata Interchange (XMI) which is specified along with UML.
On diagram level, UML specifies rules regarding the contents of the diagrams and some
minor presentation options. These options can be seen as a kind of basic style guide defining
stylistic issues like font faces and alignments. Changes to these default options may be given in
individual profiles, a common extension mechanism. Unfortunately, further layout rules which
can also help standardizing and simplifying the communication, are not discussed in UML.
Therefore, apart from software engineering and software process issues, a concrete layout is one
degree of freedom in creating UML diagrams.
Even if the specification diagrams in UML itself suggest a certain style of drawing and even if
these diagrams are kept in mind by all software engineers who ever read the UML specification,
every individual engineer might draw her diagrams according to her individual aesthetic
principles. A company might, of course, introduce a style guide, as it is used for source code or
administrative documents in the sense of quality engineering, e.g., according to ISO 9001 or a
corporate identity of the company. But, in fact, the more different style guides exist (diagrams
might be drawn that have no stylistic rules in mind, either) the more difficult the communication
among different engineers will become, especially when they work in different companies or
in different countries. In this work, we therefore will also extensively discuss the problem of
aesthetic issues and propose our set of layout rules.

Furthermore, UML version 2.0 [OMG 2003d] combines component diagrams and class dia-
grams by introducing compound classifiers, provides revised activity diagrams, and introduces
new diagrams like timing diagrams.
There are different reasons why we will use the older UML version 1.5 instead of the new
version 2.0 in this thesis: Most tools dealing with UML are not yet able to support the complete
specification of version 1.5 (in fact, some are far away from prior versions). Even if UML 2.0
is partly a simplification and partly an extension which, with regard to diagram layout, can
be implemented on top of UML 1.5, a preview of version 2.0 was published in June 2003 is
therefore too new to be considered in this thesis. Therefore, in the following, the term “UML
specification” will refer to the specification documents of UML version 1.5.
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2.1.2 UML Class Diagrams
Class diagrams show the static structure of the model, in particular, the things
that exist (such as classes and types), their internal structure, and their rela-
tionships to other things.

[OMG 2003c]

In this section, we introduce the UML notation for class diagrams and their basic features by
example. Even if we aim to be complete, an exhaustive listing of all features and restrictions is
far beyond the scope of this thesis. Readers interested in further details should turn to the UML
specification [OMG 2003c] where a full description will be given.
The class diagram example to be constructed incrementally in this section will express that an
usual graph from graph theory can be processed by a graph algorithm. We will assume that
a graph consists of nodes which can be interrelated by edges. Furthermore, the “Sugiyama”
algorithm will be an example of a specialized graph algorithm. Even if this example can also be
seen as the core part of our graph model also showing the layout algorithm to be developed in
this thesis, in this section it should be understood as a structural example only.

Classes

Class diagrams are used to model the structure of classes and the relations connecting classes
(and sometimes instances of classes) from a static viewpoint. Figure 2.1 gives an example of such
a class in UML notation. Classes are displayed as rectangles, possibly partitioned into several
subrectangles, the compartments. The top compartment, which contains the name of the class,
must always be present. According to the standard UML style guide, the name of the class should
be centered and printed in bold font face. If a class is abstract1, the name should be written in
italics. Without going too far into details, the name compartment of a class might also contain

• Constraints, which represent conditions to be fulfilled by every implementation that real-
izes the diagram.

• Tag-values, lists of name–value pairs to directly change properties of the element, e.g.,
each class has internally an attribute isAbstract which might be switched on by
{abstract=true} or simply {abstract}.

• Stereotypes, names enclosed in guillemets used as classification for the stereotyped model
element and as well as a lightweight extension mechanism to the UML. A stereotype def-
inition may also introduce an icon, constraints or tag-values which are automatically ap-
plied to the stereotyped model element. More details on different types of stereotypes were
discussed in [Berner et al. 1999]. Stereotypes are usually shown centered above the name
of the class.

As illustrated in Figure 2.1, a class has a name compartment, usually one for attributes and one
for operation2 signatures. Attribute and operation signatures must conform to the syntactical

1An abstract class cannot be instantiated.
2UML distinguishes between signatures of a service (operation) and its implementation (method).
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GraphAlgorithm
−g:Graph
+execute(g:Graph)

Figure 2.1: An abstract class named GraphAlgorithm having a private attribute g of type Graph
and a public, abstract operation signature receiving a Graph as parameter.

rules defined in the UML, e.g., a signature starts with the visibility specifier. Abstract operations
can be displayed in italics, static attributes or operations should be underlined. An exception
are so called ellipses (...), which are used to indicate that not all attributes or operations are
displayed or specified, respectively. The attribute as well as the operation compartment may
be omitted, in particular, because it is obvious what signature3 belongs to which kind of com-
partment. Additionally, further compartments for requirements, signals, etc., can be introduced.
Every compartment can have a title, the entries might be furthermore partitioned according to
their stereotypes.
A basic rule in UML is that elements or features which are not displayed are interpreted as un-
specified, i.e., if attributes are missing in a class, especially in the early stages of a project, this
means that they are currently not specified and might be added in future.
Interfaces4 in UML are shown as usual classes flagged with the stereotype «interface».

Basic Relations

In object-oriented programming, two basic types of relations are common: is-a and has-one/has-
many relations. Is-a relations express inheritance. In Figure 2.2, the class SugiyamaAlgorithm
extends GraphAlgorithm, i.e., SugiyamaAlgorithm inherits all visible features (e.g., attributes
and operation signatures) form GraphAlgorithm and may override or overload them. In Fig-
ure 2.2 the operation execute is overridden in SugiyamaAlgorithm to depict that the abstract
operation of the superclass is implemented.
If a class implements an interface, a similar relation as in Figure 2.2 is drawn except that the line
itself has dashed style. Inheritance edges can be labeled by a so called discriminator, which then
shows to which sub-category of inheritance relations that specific one belongs to. For example, a
graph can be derived to rooted or free trees but also to fully connected graphs and lattices. In this
case trees and nets could be discriminators which label the individual inheritance relations.
Additionally, constraints might be attached to several inheritance edges by visually connecting
them with dashed connection lines. As mentioned for attributes or operations, an ellipse might
be used instead of a class to emphasize that parts of the inheritance hierarchy have been left out.
So far, the class Graph, mentioned as type in both classes in Figure 2.3, is missing in our example.
Of course, it might be specified in any other diagram which relates to Figure 2.1 or Figure 2.2.

3Operations always have at least an empty parameter list.
4Collections of operation signatures to be implemented by the classes which are marked to be compliant to the

interface.
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SugiyamaAlgorithm

GraphAlgorithm

+execute(g:Graph)

−g:Graph

+execute(g:Graph)

Figure 2.2: An is-a inheritance relation. SugiyamaAlgorithm inherits all visible features from
its superclass GraphAlgorithm and specifies that execute implements the abstract signature of
the superclass.

In Figure 2.3, we introduce that class using an association to show that a graph algorithm (tem-
porarily) owns and works on a graph instance. Therefore, the attribute g, which played that role
so far, is removed from GraphAlgorithm. Like a class, an association may have a name, stereo-

SugiyamaAlgorithm

Graph
1handlesGraphAlgorithm

+execute(g:Graph)

+execute(g:Graph)

Figure 2.3: A has-one/many relation. At the right of the association name a reading direction
indicator is shown.

types, constraints or tag-values. Both association ends of a binary association can furthermore
be specified by a role name including a visibility, a multiplicity (the range(s) of numbers of oc-
currences), a qualifier (a kind of unique key) and a navigational indicator. In our example, an
algorithm handles exactly one graph but a graph might be handled by different algorithms, the
algorithm may navigate to the graph and access visible features but the graph does not know
the algorithm instance which handles the graph. A directional identifier might be attached to the
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name of the association to make the reading direction more obvious. An association is identified
by its name or, if the name is missing, by its roles. If multiple associations occur between two
classes, each of these associations must be named uniquely. As a special case, an association
might connect a class with itself as a reflective association. In this case, the role names must be
present.
Special types of associations are aggregations and compositions, dependent on the behavior of
the collection and the contained elements when creating or disposing the instances. In Figure 2.4
nodes and edges, as usual in graph theoretic models, are attached by a composition to a graph,
or, a graph is a composition consisting of nodes and edges. In this case, next to the side of the
collection, a filled diamond (for aggregations a hollow diamond is used) is attached. The valid
number of nodes and edges is specified but unbounded (a star symbol is used in this case as
multiplicity).
It might happen that the algorithm somehow changes its behavior depending on additional infor-

Graph

SugiyamaAlgorithm

1GraphAlgorithm

+execute(g:Graph)

Node 2
end Edgeconnects

*edgesnodes
parent

child

*

handles

+execute(g:Graph)

Figure 2.4: A graph, as usual in graph theory, consists of an arbitrary number of nodes and edges.
Furthermore, a reflective association is used to express that the nodes may contain further nodes
in a parent-child-relationship.

mation like the type of input the graph was created from. This information might be specified in
the Graph class but not in the algorithm, because the algorithm is not that closely related to the
graph: Semantically, the information is used by the algorithm but belongs to the graph (or the
relation itself). Thereby, an algorithm instance may work reusable in sequence on several graph
instances and it is not required that the lifetime of the algorithm is the same or longer than the
lifetime of the graph. Hence, if that additional information relates more closely to the association
between algorithm and graph, it can be attached to the association itself using a so called associ-
ation class as shown in Figure 2.5.
For an association class, UML requires that the name of the class and the name of the connected
association are equal. Mapping mechanisms, e.g., in OCL allow that the name of the class starts
with a capital letter while the name of the association begins with a lower case letter. Both names
may appear, at least one is required to be present.
Beside the dashed association class connecting line, further relations may be connected to an as-
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GraphGraphAlgorithm

+execute(g:Graph)

handles

Handles
fileType

SugiyamaAlgorithm

1

Node 2
end Edgeconnects

*edgesnodes
parent

child

*

+execute(g:Graph)

Figure 2.5: Specifying additional information at an association-like relation by attaching an as-
sociation class.

sociation class. We like to refer to such association classes as association classifiers. In the early
stages of the development process, when no attributes or operations are specified for classes,
empty association classes might occur. If an empty association class inherits from another asso-
ciation class and no further relations are present as in Figure 2.6 (a), a short cut notation can be
used. As shown in Figure 2.6 (b) an inheritance relation can then be drawn between both associ-
ations. As a special case an association class may also occur on a reflective association.

C D

A B

A B

AC1

AC2

C D

A

B

C

{xor} A B

C

(a) (b) (c) (d)

Figure 2.6: A structural example only: (a) inherited association classes, (b) equivalent shortcut
to (a), (c) xor-constrained associations and (d) n-ary associations.

Associations can be constrained by an xor condition as depicted in Figure 2.6 (c) to specify that
either the association between A and B or A and C may be realized.
In [Purchase et al. 2003], it is partly suggested to denote the name of the association in an as-
sociation class without attributes or operations. We agree to that notation as long as it can be
expected that the association class will receive further structural or behavioral features. Other-
wise, especially considering certain consistency mechanisms of UML tools, the association class
should be transformed to the equivalent association name. This also fulfills the rule in the UML
specification that in this case the class symbol may be seen as subordinate detail which can be
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suppressed [OMG 2003c, p. 3-78].
From one of the historic predecessors, Entity-Relationship (ER) diagrams, the higher or n-ary as-
sociation has been taken over into object-oriented modeling and UML. In Figure 2.7 (d) a ternary
association is shown.

Model Management

Even if our example does not contain a large number of classes it makes sense to group elements
together which have a close semantical relation. The partitioning of elements of a software sys-
tem depends on the rules of modularization in software engineering. UML provides packages,
which define an unique namespace for the contained elements, models, which are package cap-
turing the physical view of a system, and subsystems, which provide detailed information on the
access signatures to the contained elements. Figure 2.7 shows the usage of a package containing
all directly graph-related elements. Therefore the fully qualified name of the class Graph accord-

GraphAlgorithm

+execute(g:Graph)
Graph

SugiyamaAlgorithm

handles

Handles
fileType

graphs

1

Node 2
end Edgeconnects

*edgesnodes
parent

child

*

+execute(g:Graph)

Figure 2.7: Modularization by packages.

ing to UML is now graphs::Graph (similar to the scope operator in C++).
From the geometrical point of view, sometimes it would be desirable that the rectangular area of
a model management element could be drawn as a polygonal line according to the convex hull
of the contained elements. This option is not provided by UML because packages are explicitly
characterized as a large rectangle with a small rectangle at the top, the “tab” [OMG 2003c, p.
3-16].
A subsystem may consist of three partitions, one for the interface of the subsystem, a second
for the specification elements realizing the interface signatures and a third for the realization
elements. As shown in Figure 2.8, use cases (the solid ovals in the specification elements com-
partment of graphs) might occur in conjunction with subsystems.
Generally, model management elements can participate in relations too, e.g., a package can be
derived from another package.
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Graph GraphAlgorithm

+execute(g:Graph)

graphs

Handles
fileType

transform graphs Node 2
end Edgeconnects

*edgesnodes
parent

child

*

1

SugiyamaAlgorithm

+execute(g:Graph)

Realization Elements

Specification Elements

handles
Executable

getNodes():Node [*]

...
getEdges():Edge [*]

GraphServer

Figure 2.8: Figure 2.7 redrawn as a subsystem with explicit signature also containing a use case.
A “lolly”, a shortcut to depict implemented interfaces, is shown at GraphAlgorithm which then
is referenced by the class GraphServer.

Comments (Annotations)

On the one hand, a comment, displayed as a kind of notepad as the one shown in Figure 2.9, may
be attached to every element in a class diagram, i.e., classes, signatures within classes, relations,
packages, etc. On the other hand, a comment might be attached to no element at all and may
therefore provide additional information on a diagram as a stand-alone comment. Comments
attached to a model element are connected by a dashed line to the target model element, which

encapsulates graph−
related structures

Graph

SugiyamaAlgorithm

handles

Handles
fileType

+execute(g:Graph)

GraphAlgorithm

+execute(g:Graph)

graphs

1

Node 2
end Edgeconnects

*edgesnodes*
parent

child

Figure 2.9: Comments can be attached to every model element, in this example to a package.

is similar to the connecting line of association classes. It is mentioned in the UML specification
that, as with constraints, a comment may also be attached to multiple graph elements.
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Dependencies

When an element depends upon another element, a dependency relation emphasizing the (usu-
ally invisible) connection can be shown. A dependency is usually categorized by attaching a
predefined stereotype, e.g. «import» for granting import access between packages. Especially,
if template parameters on classes are specified, «bind» dependencies that show the mapping of
template parameters can be used. Template parameters are displayed in a dashed rectangle at the
upper right corner of the class.
Until version 1.5 of the UML, templates are a tricky issue: Templates are defined at the meta-
model level of model elements and can therefore be specified for every model element including
relations or packages. In fact, to avoid model level confusions, dummy classes holding the name
of the parameters have to be declared and because of their nature, these classes then may violate
the well-formedness rules of the UML. Consequently the use of templates is restricted in UML
as follows:

A template is not a directly usable class because it has unbound parameters. Its
parameters must be bound to actual values to create a bound form that is a class. Only
a class can be a superclass or the target of an association (a one-way association from
the template to another class is permissible, however). A template may be a subclass
of an ordinary class. This implies that all classes formed by binding it are subclasses
of the given superclass.

[OMG 2003c, p. 3-52]

Fortunately, version 2.0 of UML introduces a completely redesigned template mechanism that is
more appropriate to real world applications or programming languages like C++. For a detailed
discussion of an extension of UML 1.x towards templates like those in C++ see [Eichelberger
and v. Gudenberg 2000].
A dependency is drawn as a dashed line having an opened arrowhead from the client towards the
supplier, the element on which the client depends on. A dependency is depicted in Figure 2.8 be-
tween the “lolly” at GraphAlgorithm and the class GraphServer. The interfaces implemented
by a class can visually be emphasized by depicting the interfaces as an individual symbol, the so
called “lolly”, and to connect it to the implementing class. The name of the interface is drawn
next to the lolly. Dependencies may be attached to the lolly to show coupling or usage, e.g.,
message interaction via the signatures of the interfaces.
Multiple dependencies from or to a model element may be joined. If desired, a small dot can
be shown as a junction point. In this case it, is recommended in the UML specification that an
additionally clarifying comment is attached to the junction point.

Display Alternatives

The composition in the graphs package in Figure 2.9 might alternatively be drawn in the rectan-
gle of the class Graph as shown in Figure 2.10. The role names are then part of the class names
of the classes in composition relations and the multiplicities are displayed within the names com-
partments.
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Optionally, elements defined within a package can be depicted using the anchor notation.
Because drawing classes within classes must be interpreted as a composition, a nested (inner)

GraphAlgorithm

+execute(g:Graph)

SugiyamaAlgorithm

handles

Handles
fileType

1

parent

child
connects edges:Edgenodes:Node*

2
end

*

Graph

graphs

the class now contains

the anchor notation
replaces the containment
in the package

its components

+execute(g:Graph)

Figure 2.10: Alternative notations for composition, packages and nested package elements.

class must not be drawn in that way but the nesting can be denoted by applying the anchor nota-
tion [OMG 2003c, p. 3-82]. Furthermore, in Figure 2.10 the name of the package is drawn within

encapsulates graph−
related structures

Graph

SugiyamaAlgorithm

handles

Handles
fileType

+execute(g:Graph)

GraphAlgorithm

+execute(g:Graph)

graphs

1

Node 2
end Edgeconnects

*edgesnodes*
parent

child

Figure 2.11: Figure 2.9 redrawn in shared target style.

the package rather than in the tab of the package.
The UML mentions explicitly that groups of edges (dependencies, inheritance arcs, aggregations
or compositions) connected to the same class might be drawn as joined arcs (shared target style)
as depicted in Figure 2.11 instead of drawing straight lines for each individual edge (separate
target style) as shown in the figures before.
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Other Elements

To emphasize instances of classes, dependencies to instantiated objects may be shown in class
diagrams. An object is drawn like a class, usually without operations but with concrete values
for attributes, the class name is underlined and a unique name for the instance (similar to the
composition notation in Figure 2.10) might be given. Active objects which own control over
their own thread are drawn with a thick border line, multi-objects, specified with collaboration
diagrams, representing collections are shown as a stack of two rectangles [OMG 2003c, p. 3-
127]. In analogy to the class based composition notation, objects realizing such a collaboration
might be drawn within the box of the collaboration. Beside dependencies, only instances of
associations, links, can be specified as relations between objects.
In collaboration diagrams, objects interacting with each other in parallel or sequential flow of
control are visualized. Since at least class based collaborations might be interesting in class
diagrams, e.g., for emphasizing design patterns [Gamma et al. 2000], collaborations are shown
as dashed ovals containing the name of the collaboration. The collaborating classes are connected
by dashed lines, possibly adorned with role names. Additionally, because templates are available
at model element level, generic collaborations in the sense of design patterns may have template
parameters and the connected classes then play the role of a template argument.

UML Default Layout

As mentioned in Section 2.1.1, the UML specification implicitly introduces a default layout by
drawing certain elements in a common fashion. By comparing the class diagrams shown in the
specification document [OMG 2003c] we have found the following conventions:

• Inheritance and realization relations appear most times in vertical direction, the arrow was
directed to the top of the diagram. Most times shared target style, which induces joined
relations, was applied and a hierarchy was emphasized.

• Anchors occur in hierarchical, horizontal style, the cross symbol was directed to the top of
the diagram.

• Dependencies often also form a hierarchy directed to the bottom of the diagram while
bidirectional dependencies were frequently drawn in horizontal fashion.

• Aggregations, compositions and directed associations were oftentimes drawn vertically,
but appear also in horizontal direction like undirected associations.

• Relations were connected to all sides of classes whereby vertical directed relations most
times connect to the horizontal sizes of a class box.

• Class rectangles were drawn often larger than the minimum area requirement of the interior
elements to provide sufficient space for the connected relations.

• Edges are drawn as straight lines and, dependent on shared or separate target style, paths
are drawn in orthogonal or directly connecting fashion, respectively.
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• Association classes appear in close vicinity and (at horizontal associations) below the con-
nected association.

We will keep this set of conventions in mind when comparing other diagram and layout ap-
proaches as well as when defining our own set of layout criteria in the next sections.

2.1.3 Criticism on UML
It has long been recognized that UML 1.x
is too large and complex, making it un-
wieldy to learn, apply and implement.

[Kobryn 2002]

Beside many positive aspects of a unified and standardized modeling language, over the years
different criticism on UML has been published. Some of this criticism directly affects how UML
is implemented in tools: Many tools are not fully compliant to the UML specification, realize
selected parts only or provide various mechanisms to (automatically) reduce the visual complex-
ity of the diagrams. The main question in this section is, if we are allowed to follow that main
stream, too, and if the result can then be called a UML tool or if we somehow have to indicate
the differences. This section prepares some arguments to be applied when we will collect a basic
set of requirements to our work in Section 3.1.
Multiple ways to display the same situation and the number of different types of elements in a di-
agram increase the cognitive load to read and to understand a diagram. Beside personal opinions,
most of the currently implemented CASE tools seem to enforce a certain sub standard and do not
fully implement one of the UML 1.x specifications but claim to be fully compliant according to
their web sites and promotional materials.
In [Eichelberger 2002b], we considered 60 tools for an evaluation of the layout features of UML
tools. For 18 tools we were not able to complete the installation procedure or we found out that
no appropriate UML facilities were provided. For the other 42 tools, we applied the test diagram
shown in Figure 2.12 consisting of a package, two association classes, two notes, two reflective
associations and a ternary association. Even if the focus was more on layout, we found out that
only 7 tools were able to take the complete diagram as input. This situation has remained the
same since at least 2000:

As for modeling tools, the author knows of none that fully implements the UML 1.1
semantics and notation (adopted three years ago), let alone one that completely or
correctly implements the current UML 1.3 specification (which was adopted a year
ago).

[Kobryn 2000]

Some reasons for this discrepancy may be that the UML is too big for implementers to be realized
as well as too big for developers to be remembered as a whole as mentioned in [Mellor et al. 1999;
Egyed 2002]. Furthermore, UML appears to be unclear and ambiguous due to contradictory
definitions, to be not precise and therefore leads to many conflicting interpretations. And finally,
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Note

Note

class 1

class 2

class 3 class 4

class 5

class 6 class 7

class 8 class 9 class 10

class 11

testsub

Figure 2.12: The test class diagram used in [Eichelberger 2002b]. To test an individual UML
tool, the spatial distribution of the elements had to be reproduced by the tool’s editor and had to
be laid out by the built-in layout mechanisms.

it provides a high degree of freedom due to presentation options and the variability of model
elements in the diagrams.
Furthermore, Color is one of the features implemented by most UML tools and suggested by
different research to improve UML diagrams in certain situations. On the one hand, color, a so
called secondary attribute, does not change the semantics of the diagram itself. On the other
hand, the interpretation of colors is dependent on various cultural aspects. This might be a reason
why UML version 1.x does not specify any use of color while version 2.0 proposes shading (no
concrete colors) for different visibilities of model elements within a package.
Of course, these facts are known to the OMG, too, and some ambiguities seem to be intended:

Dynamic tools need the freedom to present information in various ways and the
authors do not want to restrict this excessively. In some sense, we are defining the
“canonical notation” that printed documents show, rather than the “screen notation.”
The ability to extend the notation can lead to unintelligible dialects, so we hope this
freedom will be used in intuitive ways. The authors have not sought to eliminate all
the ambiguity that some of these presentation options may introduce, because the
presence of the underlying model in a dynamic tool serves to easily disambiguate
things.

[OMG 2003c, p. 3-5]

“UML is not only a de facto modeling language standard; it is fast becoming a de jure standard.”
[Kobryn 1999] Therefore, as far and as fast as possible, implementations should be compliant to
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the complete specification or it should be clearly described what parts of the specification are not
realized.

Sub-Languages of UML

Even if the last section concluded with the need for a full compliance of an implementation
to the UML, sometimes only parts of the UML are realized. For example, package notation
might be replaced by anchor relations or less used elements (dependent on the perspective of
the implementer) might be left out. But from the viewpoint of a modeler who learned to use the
UML as a tool, these elements might be important in specifying the design of a system. Starting
with an initial, possibly incomplete set of diagrams, UML elements like association classes,
bidirectional associations, subsystems or higher associations might be used, even if they are not
directly represented in the target programming language. But all these elements can somehow be
implemented, e.g., using additional libraries, so that an abstract element like a higher association
can be realized. When models are then transformed from an abstract target-independent to a more
concrete (finally platform specific) model, these abstract elements can be substituted by a set of
model elements in a top-down fashion. UML elements are then replacing other more abstract
UML elements towards an implementation model, and target language elements are then be
combined to realize the less abstract UML elements from the implementation model.
Therefore, if the implementation of an UML tool restricts the UML towards a sub-language of
the UML because of the mentioned reasons, the degree of freedom and abstraction of software
engineers is illegally restricted. The same is true for the other direction as described in [Koschke
2003].
Of course, from our perspective, a possible exception would arise, if the tool clearly mentions
that it implements a sub-language of UML and specifies which parts are left out. But UML itself
clearly states:

Note that a tool is not supposed to pick just one of the presentation options and
implement it. Tools should offer users the options of selecting among various pre-
sentation options, including some that are not described in this document.

[OMG 2003c, p. 3-5]

Obviously, the same is meant for the non-optional model elements.
The set of presentation options should be seen as a style guide like rules for indentations in Java
or C++ source code. An organization might specify its own style guide like for source code, but
it should always be kept in mind that UML itself is a kind of primary style guide, too, and that to
minimize the costs of communication, a tailored style guide or notation guide should not differ
too much from the standard. Also, aesthetic conventions like those to be discussed in this work
rather than font shapes or other basic graphical features should be part of such a style guide.

As a conclusion we can state that the UML provides many different ways to express individual
software artifacts to allow different kinds of abstraction levels for various purposes. Even if
highly abstract elements might thereby be used, these elements can be realized by transformation.
Furthermore, this freedom in modeling is enriched by multiple styles for individual elements,
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which might be modified by extension mechanisms even if this may increase the complexity of
communication. Hence, while implementing a UML tool, there is no justification for implicitly
restricting the standard. This is the reason why we focus more on the support of hopefully all
model elements and variations of the UML dealing with class diagrams, than on a fast and more
graph-drawing theoretical sufficient algorithm and implementation which ignores parts of the
UML.

Reduction of Visual Complexity

Another approach to get a much simpler diagram would be a transformation of the a diagram
into a semantically equivalent but visually less complex diagram. A simple idea would be to
collapse model elements containing other model elements to the containing model element only.
Packages, subsystems or classes might be collapsed but the relations to the contained elements
are kept or transformed as described in [Köth 2001; Köth and Minas 2002]. Alternatively the
complete diagram might be transformed into an abstraction of itself applying a complex set of
rules as proposed in [Egyed 2002].
The UML clearly distinguishes between diagrams as a graphic view and the underlying model
of the entire software system which is described by all user diagrams. That underlying model
is a consistent collection of all model element instances, possibly with history relations as in a
Concurrent Versions System (CVS) repository and flagged according to the state of modeling,
e.g., requirements capturing, analysis, design, implementation, etc. to which an individual model
element belongs. A diagram as a view is a graphical description of a set of model elements
collaborating to describe (visually) a certain static or dynamic situation of the software system
being modeled. The decision about which subset of the elements and relations of the underlying
model should be shown is made by the modeler dependent on the level of abstraction to be
displayed. Therefore, a tool should transform a diagram only as part of a model or diagram
transformation, e.g., as described for the Model Driven Architecture (MDA) [OMG 2003a]. On
a single diagram, such a transformation should be initiated by the user or, according to a set of
predefined transformation rules, by an automatic mechanism. But such a mechanisms is rather a
part of a CASE tool than a layout tool or plug-in. A layout tool or plug-in is required to calculate
the layout of whatever information is given as input.
Zooming and transforming mechanisms are far beyond the scope of this thesis, because our
research project focuses on the aspects of aesthetic layout, even if we need a kind of browser to
demonstrate our implementation. Of course, that browser is not intended as a UML or CASE tool,
such as current UML or CASE tools often do not appear to be layout applications. That browser
is therefore a viewer with demonstration purpose including file transformation and repository
access facilities, but neither a diagram editor nor a code generator, an engineering tool, a CASE
or a MDA tool.
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2.1.4 Alternative Visualizations

The more alternatives, the more difficult
the choice.

Abbe’ D’Allanival

UML itself notes that most of its diagrams and some complex symbols should be described as
graphs in two dimensions [OMG 2003c, p. 3-6]. Yet, from different perspectives, the diagrams
of UML do not apply well to all situations in software engineering. In this section, we discuss
some other approaches to the layout of (UML) class diagrams, in particular those relevant to
automatic drawing of software engineering diagrams and visualizations. However, we keep in
mind that UML is our main focus, because it is a standard, and we attempt to find a method for
automatically laying out UML class diagrams that respect all features and options defined by the
standard.
In [Diskin et al. 1999; Diskin et al. 2000; Diskin 2002a; Diskin 2002b], the universal arrow di-
agram logic was proposed as a more intuitive and precise description than the class diagrams of
the UML. Visual models were seen as sketches (the specification format of the arrow diagram
logic) in the language of generalized sketches from category theory. Even if this approach seems
to be more formally founded from the viewpoint of HCI, reading of diagrams always depends on
the personal skills at a certain graphical notation. From our viewpoint, diagrams dependent on
the universal arrow diagram logic might be more precise but not more readable.
In [Teoh and Ma 2002] the ringed circular layout for trees, in which children are placed in equal
sized circles around the center of the ring denoting the parent node, was presented. A similar
technique is the radial layout, e.g., described in [Ellson et al. 2003], in which the levels of a
hierarchy are placed on concentrical circles around the root. Because class diagrams may con-
tain large hierarchies, the ringed circular layout or a radial layout could be considered instead of
the more traditional default UML layout. In [Gil et al. 2002] various other diagram types were
suggested: “Spider diagrams” as extensions of Venn-diagrams, “Constraint diagrams”, which ex-
tend the arrow notation to describe static system invariants, and “3D-diagrams” for conceptual
modeling of dynamic system behavior, e.g., contract conditions, sequences or collaborations in
the third dimension.
Different reverse engineering tools rely on a more proprietary notation in three dimensions.
[Dwyer 2001] advocates the use of 3D layout for UML based on the results of a user study
and general reasons for introducing 3D into graph drawing like coping with complexity [Eades
and Feng 1997] or prevention of cluttering due to the quantity of information [Ware et al. 1993].
Hence, three dimensional drawings can be used to provide multiple abstraction levels and this
may then simplify the orientation of the user in large information structures. An alternative no-
tation optimized according to criteria of diagram perception is shown in Figure 2.13.
In two dimensions, due to the complexity of the diagrams, a class diagram often cannot be drawn
without edge crossings. Because another dimension is added in 3D, edge crossings disappear
automatically, even if, according to [Ware et al. 1993], also multiple views introduced by 3D,
motion or stereopsis might be responsible for the reduction of recognition errors in 3D .
Especially in combination with color, 3D is advocated in [Ware et al. 1993] because it seems
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to be effective for human perception to distinguish multidimensional discrete data. But, as dis-
cussed in Section 2.1.3, color as well as 3D are proprietary features with respect to the UML
specification documents.
WilmaScope [Dwyer and Eckersley 2003] and CrocoCosmos [Lewerentz and Noack 2003] cal-

Figure 2.13: The structure of object-oriented software code in a 3D class diagram notation (from
[Ware 2000]). The large boxes represent modules containing classes, variables and methods.
The 3D spars interrelating the entities represent various kinds of relationships like inheritance,
function calls and variable usage.

culate their layout based on different force functions applied to the relations between the entities,
some rely on the simulation of different magnetic fields to influence the layout. For example, in
CrocoCosmos, vertices represent general program entities, colored edges relations of different
types, edge directions are visualized by color transitions, vertex properties are encoded by geo-
metric shapes and the positions in 3D space encode the relational structure.
Even if pictures produced by tools like WilmaScope or CrocoCosmos might be appropriate for
different specific software engineering situations like optimizing an existing program with re-
spect to coupling and understandability, there is a large difference between the proprietary nota-
tion of these tools and the UML notation to be used when designing software. UML diagrams
and such proprietary diagrams may coexist at the same time, when diagrams are used to under-
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stand or optimize the source code, e.g., by reverse engineering existing code. Then, comparing
and processing individual diagrams from both approaches obviously increases the complexity of
mental operations.

2.2 Automatic Diagram Layout
Geometric representations of graphs have been investigated by mathemati-
cians for centuries, for visualization and intuition, as well as for the pure
beauty of the interplay between graph theory and geometry.

[Battista et al. 1999]

After introducing UML class diagrams in the last section, we will now describe basic aspects of
automatically drawing diagrams. First, we will discuss different reasons, why it is desirable to
draw UML class diagrams automatically. Then we will have a closer look at graph drawing, the
discipline which is the foundation for calculating the layout of a general graph using computers.
We will finally describe existing approaches to the automatic layout algorithms for UML class
diagrams published so far.

2.2.1 Why to Draw a Class Diagram Automatically?
In our work we placed much more em-
phasis on manual layout.

[Ware et al. 1993]

Using tools in software engineering is common but even nowadays basic tools rather than sophis-
ticated process enabling technologies are in use. According to the classification of CASE tools
in [Fuggetta 1993], even editing tools (textual and graphical editors) are called CASE tools.
When implementing a project, programming tools (editors, compilers, profilers, test tools, de-
buggers), verification, validation and configuration management tools are in use. These tools are
then combined into workbenches to provide a unique user interface. Various plug-ins, which an-
alyze source code and produce UML diagrams for integrated development environments (which
are classified as workbenches in [Fuggetta 1993]) exist. In [Eichelberger 2002b], we considered
60 different tools which are intended to support analysis and design in the development process
prior to implementation.
Due to changed requirements and more precise knowledge on the system to be created, de-
sign decisions in implementation have to be revised, and diagrams from the early phases, which
might be a good documentation of the system, run out of date. To avoid these inconsistencies,
the round-trip engineering cycle was invented: Source code is (partly) generated from diagrams
which then are kept consistent by reverse engineering the source code after modifications. If this
cycle would work perfectly in current tools, implementation, documentation and maintenance
would be simplified [Ohst et al. 2003]. Even in visualization tools working on general data,
roundtrip visualization is currently a one-way trip as noted in [Charters et al. 2003].
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Still, due to the non-engineering practices of the early days of computer science, large systems
are not well documented and as part of maintenance and changes to old software, first docu-
mentation has to be created from information gained by reverse-engineering methods. Even this
information is transformed into diagrams.
Therefore, automatic layout of software engineering diagrams appears to be an important feature
to CASE tools:

• Standardization: Automatically drawing diagrams simplifies the conformance to a certain
style guide [Batini et al. 1985; Protsko et al. 1991; Eichelberger 2002a; Eichelberger 2003]
even if this can be reached by manual editing, too. Furthermore, the expressive power of
diagrams can be increased (automatically) [Batini et al. 1985].

• Costs: The use of diagrams increases the communication between designers, stakeholders,
managers and (intended) users [Batini et al. 1985] but also, in collaboration with a stan-
dardized style guide, automatic drawing helps to reduce costs of communication [Eichel-
berger 2002a; Eichelberger 2003]. Also, generally, production and maintenance costs can
be reduced [Batini et al. 1985].

• Errors: Nowadays, CASE tools relying on diagrams usually provide automatic diagram
checks which are independent from layout and layout algorithms. But as described in
[Eichelberger 2003] (and as discussed later when addressing class diagram aesthetics) the
layout of a class diagram might provide information about the design so that a nice layout
might arise from a good design. If a diagram is drawn according to a certain set of aesthetic
rules, some visual indicators can help reducing design errors.

• Incremental editing: Small diagrams appear to be manually drawn faster than larger dia-
grams, but as requirements change and diagrams have to be adjusted, especially if elements
in the center have to be inserted or deleted, layout algorithms help saving time. Of course,
manual editing does not scale with the size of the diagram [Protsko et al. 1991; Sugiyama
2002; Eiglsperger 2003; Spinellis 2003].

• Reverse engineering: As long as diagrams are changed in an incremental process, the
current editing step as well as some of the expected steps in the near future are known to
the user. Therefore, even if manual editing of a diagram is tedious, it is a stepwise process.
If data is initially gained from reverse engineering, complete diagrams are build from the
information without any layout data. Especially on such diagrams but even on a large
number of changes to a diagram after a round-trip code analysis, editing does not scale
with the size of a project and its diagrams [Eiglsperger 2003].

• Automatic documentation: With data from a repository but also with information gained
from source code analysis, documentation of a software engineering project can be kept
synchronized with the development diagrams and the source code [Protsko et al. 1991;
Eiglsperger 2003].
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2.2.2 Graph Drawing – an Overview
In this way, for the visualization of graphs
to function as a useful method for the
communication of concepts, it is neces-
sary to produce good diagrams; however,
the generation of good diagrams is not so
easy.

[Sugiyama 2002]

Interrelating abstract items to a complex structure is the basic idea of a graph, the fundamental
construct in graph theory. Depending on the definition of the features of the items (nodes, ver-
tices), the interrelations (edges, arcs) and the entire structure, different types of graphs can be
identified. Graphs, usually consisting of a finite set of nodes or edges, respectively, can then be
applied to various application domains, and, with an appropriate definition, a class diagram, as
stated in the UML, can also be represented as a graph.5

A graph is often drawn on the plane to illustrate the problem or to sketch a proof of a certain
feature. The tedious task of drawing a (larger) graph seems to be an appropriate problem to be
processed by a computer. Sometimes prehistoric cave drawings are mentioned as the first (graph)
drawings [Sugiyama 2002]. From the first work that dealt with the question of how to draw a
graph in 1963 [Tutte 1963], graph drawing has emerged as a discipline with its own practical and
theoretical results. We only introduce briefly the discipline which acts as a foundation for our
work. Different books on graph drawing and applications [Battista et al. 1999; Kaufmann and
Wagner 2001; Sugiyama 2002; Jünger and Mutzel 2003a], the graph drawing bibliography [Di
Battista et al. 1994] and the proceedings of annual graph drawing conferences provide a wide
range of literature for a more detailed overview on individual results of current work.
In this section, we focus on the graph drawing discipline itself but always keep our application
domain in mind.
Graphs can be drawn according to various conventions using different algorithms. Therefore, for
a given graph, usually plenty different drawings can be created. In [Feng 1997, p. 1] the graph
drawing problem was defined as the activity of designing an algorithm which automatically as-
signs a position for each node and a route for each edge of the input graph. Some drawings of
a graph might be perceived as nice diagrams if a “correct” algorithm was used to calculate the
placement of nodes and edges.
Dependent on the structure of the nodes and edges, various types of graphs can be identified.
Some of the basic types will be introduced in the following. An edge, usually connecting exactly
two nodes, which occurs more than once is called a multiple edge. An edge having the same
node as start and endpoint is called a self-loop. A graph, without self-loops and multiple edges is
called a simple graph.
A drawing of a graph is called planar, if no two distinct edges intersect. Two planar drawings
of the same graph are called equivalent if the drawings determine the same circular orderings of

5A definition of the type of graphs to be used in this work as well as a mapping of UML class diagrams to graphs
will be given in Section 4.2.
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the neighbor sets. A planar embedding is then defined as an equivalence class of planar draw-
ings described by the circular order of the neighbors of each vertex. Unfortunately, due to the
complexity of UML class diagrams, the structure of most class diagrams do not admit a planar
drawing6.
A directed graph (or digraph) requires an orientation on each of its edges, therefore the set of
edges incident to a node can be partitioned in a set of incoming and in a set of outgoing edges,
respectively. A (directed) path of edges is defined as a sequence of distinct nodes each intercon-

Figure 2.14: Basic and composite diagram languages: (a) matrix, (b) net, (c) region, (d) coordi-
nate and (e) a composite of net and region (from [Sugiyama 2002, p. 2]).

nected by at least an edge of the graph. If a path ends at the same node where it started, the path
is called a cycle, and, hence, a graph which does not contain cycles or self-loops is called an
acyclic graph.
As described in Section 2.1.2, class diagrams may have reflective associations (as well as aggre-
gations or compositions) which obviously map to self-loops and multiple associations (as well
as aggregations or compositions) interrelating two classes which map to multiple edges. There-
fore, a class diagram is not always a simple graph. Unfortunately, most non-application domain
specific algorithms, e.g. those described in [Battista et al. 1999], deal with simple graphs. Fur-
thermore, lot of the algorithms interpret nodes as pixel points and therefore have to be extended
and tailored to fit the application on UML class diagrams. Before discussing these basic graph

6We will see examples of such diagrams when discussing the architecture or details of the implementation, e.g.,
in Figure 6.1 on page 286.
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drawing algorithms, we will, however, have a look at different taxonomies and conventions for
drawing graphs.
According to [Sugiyama 2002, p. 2], the combination of individual elements of diagrams and
the rules of arrangements, the syntactic grammar, is called diagram language. Four basic types
of diagram languages, matrix, net, region and coordinate type, are shown in figure Figure 2.14.
Obviously, UML class diagrams appear as a combination of net and region type due to the oppor-
tunity of nesting elements, e.g., classes in packages. Unfortunately, it is mentioned in [Sugiyama
2002, p. 3] that realizing an algorithm for diagrams combining both types involves much work,
because appropriate drawing methods are relatively underdeveloped, despite the fact that they
are commonly used in everyday life.
For the edges of a graph, different drawing conventions [Tamassia 1998; Battista et al. 1999] or
graphical standards [Tamassia et al. 1988; Nummenmaa and Tuomi 1990] can be found in the
literature:

• GS_STRAIGHTLINE: Each edge is drawn as a straight-line segment [Tamassia et al. 1988;
Nummenmaa and Tuomi 1990; Tamassia 1998; Battista et al. 1999].

• GS_POLYLINE: Edges are drawn as sequences of segments, called polygonal chains
[Tamassia et al. 1988; Nummenmaa and Tuomi 1990; Battista et al. 1999].

• GS_CURVES: Edges are depicted as curves, e.g., Bézier arcs as in [Gansner et al. 1993].

• GS_ORTHOGONAL: The edges are routed as polygonal chains of alternating horizontal
and vertical segments [Tamassia et al. 1988; Nummenmaa and Tuomi 1990; Battista et al.
1999].

• GS_GRID: Vertices, edge crossings, and edge bends have integer coordinates [Tamassia
et al. 1988; Nummenmaa and Tuomi 1990; Tamassia 1998; Battista et al. 1999]. The basic
coordinates system of a graphics context of an usual computer implies a (1,1)-grid. There-
fore, a predefined lower grained (x,y)-grid might be given so that the elements somehow
snap onto that grid.

• GS_UPWARD/GS_DOWNWARD: For directed acyclic graphs each edge is drawn monoton-
ically increasing/decreasing in the vertical direction [Tamassia et al. 1988; Nummenmaa
and Tuomi 1990; Battista et al. 1999]. Other directions more appropriate to the application
domain might be defined similarly.

Even if the following conventions appear to be qualitatively different, they are also mentioned as
graphical standards in the literature:

• GS_PLANAR: No two edges cross [Battista et al. 1999].

• GS_LAYERED: The drawing area is partitioned into several layers and each node is as-
signed to such a layer [Sugiyama et al. 1981].
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The drawing conventions mentioned above should not be regarded as a set of orthogonal features,
because mixtures of e.g. GS_STRAIGHTLINE and GS_GRID are in use, e.g., as mentioned in
[Tamassia et al. 1988; Nummenmaa and Tuomi 1990]. Some of the drawing conventions like
GS_GRID directly depend on the underlying coordinates system, some like GS_PLANAR do not.
Furthermore, besides an usual graph, different types of graphs have been defined in the literature.
The following list is not exhaustive and enumerates just a few types that are relevant to our work:

• General graph: As informally described above, a structure consisting of a set of nodes
and a set of edges interrelating exactly two nodes is called a general graph. For example
simple graphs, directed graphs or trees appear as more specialized types of general graphs.

• Clustered graph: As defined in [Feng 1997; Brockenauer and Cornelsen 2001], in a clus-
tered graph the set of nodes is (recursively) partitioned so that each node is part of a cluster.
Edges may connect two nodes, but clusters must not be involved.

• Compound (directed) graph: In [Sugiyama and Misue 1991; Sander 1996b; Brockenauer
and Cornelsen 2001] a (directed) graph defining the adjacency relations and a second di-
rected graph defining inclusion relations were used to introduced compound graphs. In this
construction, a node in at least one inclusion relation defines a compound. Compounds may
also be involved in adjacency relations. Therefore, edges between compounds or edges
crossing the borders of nested subgraphs are allowed, in particular because a compound
graph is not recursively defined as noted in [Sander 1996b]. Furthermore, compounds may
intersect other compounds, similar to the region type in Figure 2.14 (c).
A refined set of conventions as the following from [Brockenauer and Cornelsen 2001] is
then used to determine the basic features of the final drawing of such a graph:

– A vertex is drawn as a rectangle with horizontal and vertical sides.

– An inclusion edge between the nodes u and v is drawn so that the rectangle corre-
sponding to u geometrically includes the rectangle corresponding to v.

– Vertices are laid out hierarchically in terms of both inclusive and adjacent relations
on parallel-nested horizontal bends, called compound levels.

– An adjacency edge between u and v is drawn as a downward arrow with possible
bends, originating from the bottom side of the rectangle corresponding to u and ter-
minating on the top side of the rectangle corresponding to v.

• Higraph: As defined in [Harel 1988], a higraph allows relations between more than two
nodes (hyperedges) and multilevel blobs similar to clusters which may include or intersect
each other.

Dependent on the type of a graph, specialized algorithms are known, which ensure certain
features in the drawing. For example, a tree admits a hierarchy and such a feature might be that
all edges are pointing in the same direction or algorithms working on general graphs only are
not able to handle the special requirements for compound graphs.
Furthermore, each drawing algorithm conforms to a set of aesthetic criteria, some of them
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arising from the drawing conventions, some to improve the readability of the results. A large
set of those rules has been identified in graph drawing and will be discussed along with other
aspects to be respected for UML class diagrams in Section 3.3.
It is known that in the last years, no new graph drawing algorithms have been developed. All
work on general graphs or on application specific domains select one of the classical algorithms
according to their features, their advantages and disadvantages, and combine these algorithms
with several additional processing steps to tailor the algorithms towards the desired field of
application.
To provide an overview of the work done in graph drawing so far, we will now point out some
of the well-known basic algorithms relevant to our application domain. A more exhaustive
overview on basic algorithms can be found in [Battista et al. 1999; Kaufmann and Wagner 2001;
Sugiyama 2002]. Further details on extended algorithms and implementations for UML class
diagrams will be given in Section 2.2.3.
We distinguish the several graph drawing methods into algorithmic and declarative approaches.
A more detailed taxonomy was given in [Sugiyama 2002] by considering hybrid approaches and
influences from artificial intelligence.

Algorithmic approach

The layout is calculated according to a well specified set of aesthetic criteria and other require-
ments directly embodied in the implementation of the algorithm. Typically the algorithm is spe-
cific to the type of graph and graphical standards to be respected, because algorithm and im-
plementation are hard-wired. These algorithms are well studied, usually computational efficient
and tailored towards specific problems. When user-defined constraints are possible, they are re-
stricted to the specific graph-theoretic class of graphs they are designed for and, like most graph
drawing algorithms, it might be extremely difficult to test a concrete implementation.

• The topology-shape-metrics approach [Tamassia 1985; Tamassia et al. 1988] was tai-
lored for the layout of UML class diagrams in GoVisual [Gutwenger et al. 2003b] and
jarInspector/yWorksUML [Eiglsperger 2003].
An orthogonal drawing is characterized by three fundamental properties, defined in terms
of the equivalence classes they establish among orthogonal drawings of the same graph:

– Topology: Two orthogonal drawings have the same topology if one can be obtained
from the other by applying a continuous deformation that does not alter the sequence
of edges surrounding the faces7 of the drawing.

– Shape: Two orthogonal drawings have the same shape if they have the same topol-
ogy, and one can be obtained by modifying only the lengths of the segments of the
orthogonal edge chains, without altering the angles formed by them.

7A face is a topologically connected region bounded by edges. The unbounded face surrounding the graph is
called external or outer face.
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– Metrics: Two orthogonal drawings have the same metrics if they are congruent, up to
a translation or rotation.

Usually, a stepwise implementation realizes the hierarchical relationships between topol-
ogy, shape and metrics: A planarization step determines the topology of the drawing and re-
duces the number of edge crossings, then the crossings are eliminated by inserting dummy
nodes at the crossing points, then an orthogonalization step determines the shape of the
drawing and finally a compaction step calculates the final coordinates of the nodes and the
edge bends. This approach is intended to construct orthogonal grid drawings and allows
a homogeneous treatment of a wide range of aesthetics and constraints even if the step-
wise strategy implicitly determines an order of importance among the aesthetic rules to be
respected.

• The hierarchical approach, Sugiyama approach or STT method was invented by
[Warfield 1977; Carpano 1980; Sugiyama et al. 1981] and reused for the layout of UML
class diagrams in [Seemann 1997; Eichelberger 1999].
A digraph is processed by applying the following three steps in sequence:

– Rank or layer assignment: Each node is assigned to a distinct level according to the
directed relations of the graph. Depending on the directional convention to be ap-
plied for the hierarchy, this step implicitly determines a part of the coordinates to
be assigned, e.g., if the hierarchy should be displayed top-downwards, this step im-
plicitly determines the vertical coordinates of the nodes. Edge chains are created by
inserting dummy nodes into each layer such an edge spans across, because an edge
can span over several layers and a proper layered digraph is required to reserve a
corridor for each of these edges to prevent node-edge crossings.

– Crossing reduction: The rank assignment does not consider if the horizontal position
of the nodes are chosen to reduce the number of edge crossings (which may influence
the readability). Therefore, the nodes per layer are reordered according to a certain
strategy to keep the number of edge crossings as small as possible. The output is a
proper layered digraph but now the topology of the graph is fixed.

– Assignment of coordinates: According to an appropriate strategy, the coordinates of
the nodes and the individual positions of the edges are determined. Equal distances
for adjacent layers may occur in abstract graphs but are not appropriate to all appli-
cation domains.

As described for the topology-shape-metrics approach, the stepwise processing of this ap-
proach determines also an ordering among the aesthetic rules to be applied by the algo-
rithm. Furthermore, the approach described above requires the input graph to be acyclic.
For a general digraph, an additional processing step which temporarily eliminates the cy-
cles, e.g., by reversing several edges, can be prepended. The original direction of the edges
can be respected in the result.
Different modifications and variants of this approach have been described in literature, e.g.,
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in [Sander 1996b; Schreiber 2002], this approach was extended to compound digraphs and
in [Baburin 2002], a modification towards the maximum number of edge bends, the mini-
mum number of orthogonal edge crossings between any pair of adjacent levels of hierarchy
and an initial coordinates assignment before crossing reduction was described. Alterna-
tively, layers must not always be horizontal or vertical lines; concentric circle drawings
[Sugiyama 2002] or ringed circular drawings [Teoh and Ma 2002] might also properly
reflect hierarchies.

• The visibility approach [Di Battista and Tamassia 1988]: is a general purpose three-step
methodology for drawing graphs with the polyline drawing convention (GS_POLYLINE)
and was applied to ER diagrams, one of the historical predecessors of UML class diagrams,
e.g., in [Tamassia 1985].

– Planarization: A planar graph is calculated by applying a similar processing step as
in the topology-shape-metrics approach.

– Visibility: A visibility representation is constructed, so that each node is mapped to
a horizontal segment, each edge to a vertical segment in the representation and a
vertical segment between two nodes lies in between the horizontal segments of the
connected nodes and does not intersect any other vertical segment. This step produces
a skeleton or a sketch of the final drawing.

– Replacement: The final polyline drawing is then created by replacing the segments of
the visibility representations by nodes and polyline edge representation, respectively,
according to a replacement strategy.

This approach appears as a variant of the topology-shape-metrics approach.

• Divide and conquer approach [Reingold and Tilford 1981]: Considering inheritance
forests or packages in UML class diagrams, an approach might be to split the diagram
into several subgraphs, to recursively draw the subgraphs and to construct the entire draw-
ing by assembling together the drawings of the subgraphs. Obviously, the later the edges
between the subgraphs are considered, the less readable the entire drawing might become:
the subgraphs are not ordered according to the edges between the subgraphs and the lay-
out of the subgraphs is calculated without respecting these edges. With decreasing size of
the subgraphs, the complexity of the composition of the result graph increases [Sugiyama
2002, p. 32].

• Force-directed approach [Eades 1984]: The input graph is virtually transformed into a
mechanical system consisting of steel rings (vertices) and springs (edges). Starting with an
initial layout, the spring forces move the system to a minimal energy state and determine
the result layout.
An adaption of this physical analogy to OMT (Object Modeling Technique)8 class dia-
grams was described in [Noguchi and Tanaka 1998].

8OMT is an object-oriented methodology introduced by James Rumbaugh in 1992 prior to the UML. Rumbaugh
is one of the “three amigos”, the core developers of the UML.
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Some variations of the basic model are known from literature: Gravity may be considered
to keep nodes close together or underlying magnetic fields may be appropriate to enforce
the direction of (certain) edges. Combining randomly chosen nodes with an appropriate
cooling function is called simulated sintering or annealing .
For example, partial differential equations [Kamada and Kawai 1989], iterative evaluation
of attractive and repulsive forces [Fruchterman and Reingold 1991] as well as simulated
annealing and simulated sintering [Davidson and Harel 1996] were applied as basic tech-
niques to calculate the layout of general graphs.
But the use of this approach with real-world applications seems to introduce different fur-
ther problems, in particular when non-point nodes have to be processed. Then, as remarked
in [Gansner and North 1998], the results tend to be cluttered, nodes overlap and clear routes
for edges are lost.

• Genetic or evolutionary algorithms [Kosak et al. 1994; Mäkinen and Sieranta 1994;
Utech et al. 1998]: Genetic algorithms (simulations of the biological genetic reproduction
mechanism) can be used to calculate graph layouts, in particular the layout of UML class
diagram as shown by an inofficial prototype known to us. As a stochastic global search
method, an evolutionary algorithm works on a population of candidate solutions (individ-
uals) and tries to optimize these by applying three basic principles: selection, recombina-
tion and mutation. Usually, the initial population is chosen randomly. In every following
generation a probabilistic selection function determines individuals to be recombined and
mutated. Then the resulting individuals become the current population for the next itera-
tion.
As mentioned in [Utech et al. 1998], the most important aspect is to choose an appropriate
representation for the individuals and suitable genetic operators. In [Mäkinen and Sieranta
1994], genes were encoded as integer strings, a gene evaluation function based on metrics
was suggested and usual genetic operations like crossover and mutation were described.
For directed acyclic graphs, which have point-sized nodes, the edge length representation
for genes was introduced in [Utech et al. 1998] and a distributed island model was applied.
The example drawings show relatively good results respecting crossings and layering but
the algorithm seems to require a long runtime.

Due to the alignment with the default UML layout style, other techniques like the augmentation
approach [Battista et al. 1999], which produces triangulated drawings, are not considered here.

Declarative approach

A completely other methodology is used by declarative approaches. The properties of a drawing
are specified by a user-defined set of requirements. These layout constraints are then considered
by constraint solvers or operation research techniques, like graph grammars or visual languages.
On the one hand, such non-fixed-wired approaches have a large expressive power, because the
layout is described by its desired properties which gives much control to the user. Thus, it pro-
vides a wide range of applications due to the inherent flexibility of the approach. On the other
hand, it is difficult to formalize some constraints like planarity, the implementations are often
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computationally inefficient due to the high flexibility, the interfering effects of constraints are
difficult to express and, generally, a powerful constraint language for graphs is still missing.

As noted in [Sugiyama 2002, p. 4] we also can conclude that in many cases of optimization of
layout criteria efficient algorithms may not exist. Therefore, often effective heuristics are applied
instead, and, despite great advancement in graph drawing, there are still many research questions
remaining.
We will select one of the basic approaches mentioned above for adaption to UML class diagrams
in Section 4.1.

2.2.3 State-of-the-Art in Drawing UML Class Diagrams
Algorithms that draw graphs well may be
poorly suited to diagrams.

[Protsko et al. 1991]

We will now present an overview on the use of graph drawing algorithms in commercial UML
tools and will describe algorithms tailored towards UML class diagrams and similar diagrams.

UML Tools

As mentioned above, we conducted in [Eichelberger 2002b] an evaluation on the layout facilities
of 42 UML tools and summarized the conclusions in [Eichelberger and von Gudenberg 2003b].
Even if the evaluation was done in 2002, we reevaluated some of the tools at the end of 2003 and
found out that the main facts did not change. In the meantime, some of the tool vendors decided
to disable their own layout algorithm and to delegate the layout calculation to external plug-ins.
The examples of professional tools shown in Figure 2.15 to 2.18 were all laid out automatically
using Figure 2.12 as input.
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Figure 2.15: TNI OpenTool version 3.2.15 (horrible layout award): Class nodes are positioned
with fixed distances, edges and adornments are not respected thereby. The diagram was cut be-
cause the lengths of some edges stretched the vertical extension and the diagram got too large.

Figure 2.16: Popkin SystemArchitect version 8.5.16: A kind of orthogonal layout neither respect-
ing different types of edges nor package containment.
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Figure 2.17: IBM/Rational Rose AnalystStudio version 2002.05.20: A kind of hierarchical layout
where packages are not respected at all, some edges overlay other edges and connecting edges
cross nodes.

Figure 2.18: NoMagic MagicDrawUML version 7.0 (best layout award): A kind of hierarchical
layout where package containment is respected, some edges overlap other edges and nodes.
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Research Tools on Similar Diagrams

Some work was done on one of the historical predecessors of UML class diagrams, ER diagrams:
In [Batini et al. 1985; Tamassia 1985] some basic aesthetics were described and the topology-
shape-metrics approach was applied. In [Nummenmaa and Tuomi 1990] visibility representa-
tions were used to handle planar ER diagrams only. A polynomial time algorithm based on the
topology-shape-metrics approach with a constrained planarization and compaction for relational
database schemas was presented in [Di Battista et al. 2002; Di Battista et al. 2003].
For network diagrams in [Kosak et al. 1994] two algorithms respecting certain visual-
organization features are considered. The first algorithm incrementally augments a drawing by
selecting and applying a layout rule until each node has been positioned. The second is a parallel
genetic algorithm. As for all declarative approaches, it is not guaranteed that an algorithm is able
to find a feasible layout compliant to the specified features, occasionally an unacceptable runtime
due to the resolution-based search strategy may limit the overall performance and interferences
between local and global user specified features as well as multiple features interacting at one
node may lead to a mutually inconsistent layout.
Statecharts as well as bio-chemical pathways admit a hierarchical nesting of nodes and edges
depicting transitions between states or pathways of the reactions, respectively. For statecharts,
ViSta [Castelló et al. 2001; Castelló et al. 2002; Castelló et al. 2003] applies a variant of the hier-
archical Sugiyama algorithm which was extended to handle compound graphs. A decomposition
tree with three child node types acts as skeleton for the drawing. The drawings are oriented from
left to right and Very Large Scale Integration (VLSI) techniques are taken into account for the
floorplanning of the edges. The results show a low number of arc crossings, a natural hierarchi-
cal decomposition of states and a good aspect ratio. In [Brandenburg et al. 2003] the automatic
layout of bio-chemical pathways based on a hierarchical approach respecting compound nodes,
constraints in layer assignment and incremental drawing was described.
Regarding D-ABDUCTOR [Misue et al. 1995; Sugiyama and Misue 1996], it seems that this
tool would have the power to be modified or extended towards UML class diagrams. Especially
with all the browsing and scaling facilities implemented to preserve the mental map of the user,
the tool seems to be reasonable for that task. Unfortunately, there is no attempt known to us to
adapt the compound graph layout algorithm to UML class diagrams or state charts9.

Research Tools on Class Diagrams

In 1997, Nakashima wrote a master’s thesis on the automatic layout of OMT class diagrams.
The inheritance subtrees of a class diagrams were treated as subgraphs, the metagraph consisting
of the subgraphs was then processed by Walker’s algorithm [Walker II 1990] and Eades’ spring
algorithm [Eades 1984]. In [Noguchi and Tanaka 1998; Noguchi and Tanaka 1999], an improve-
ment of Nakashima’s algorithm due to inefficient area usage and to missing relations between
the subgraphs was proposed. It was recommended that associations be drawn from left to right
and superclasses are placed above the subclasses in a top-down direction. The drawing algorithm

9When we started working on our project, we worried at least about the platform independence and made the
decision for an own implementation.
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itself was a modification of the magnetic spring model for multiple magnetic fields: Associations
were modeled as bi-directional magnetic springs in a horizontal magnetic field, inheritance edges
as uni-directional magnetic springs in a vertical top-down magnetic field and aggregations in a
top-left to down-right diagonal magnetic field. The size of nodes was respected by adjusting the
natural length of springs and the repulsive forces.
In the same year, Seemann proposed in [Seemann 1997] an extension of the hierarchical
Sugiyama algorithm for the layout of UML class diagrams. The STT algorithm can be applied to
the inheritance subgraph, because inheritance edges build a directed acyclic graph. Therefore, as
preprocessing before executing the STT algorithm, all non-inheritance edges were temporarily
removed from the graph and reflective associations were transformed to attributes. After calcu-
lating the rank assignment and the edge crossing reduction, the edges removed temporarily were
reinserted in a step called incremental extension. Then, coordinates were assigned and in addi-
tional postprocessing steps the non-inheritance edges were routed. Thereby, inheritance edges
were drawn according to GS_STRAIGHTLINE while on the other edges GS_ORTHOGONAL was
applied. Inheritance edges were always connected to the horizontal sides, the other edges to the
vertical sides of the nodes. The algorithm did not take the sophisticated model elements like
model management mechanisms, association classes, n-ary associations or comments into ac-
count. A Java implementation of the “Seemann algorithm” called SugiBib10 was then described
in [Eichelberger 1999].
Diagen11, described in [Köth and Minas 2002], is an editor-generator toolkit which simplifies
the implementation of language specific diagram editors. It works on a hypergraph model, con-
sists of a reducer, a parser, a hypergraph transformer and an incremental layout mechanism. In
the UML mode it respects most of the sophisticated UML elements described in Section 2.1.2,
provides some features for semantical zooming [Köth 2001] and applies a force-directed lay-
out algorithm which handles compound graphs and constraint propagation. Unfortunately, in our
test, the incremental layout algorithm proposed unpleasing positions for several nodes.
GoVisual12 [Gutwenger et al. 2002; Gutwenger et al. 2003a; Gutwenger et al. 2003b] relies on
the topology-shape-metrics approach with hierarchical constraints calculated from the inheri-
tance subgraph. It facilitates a mixed-upward and cluster planarization, where a cluster contains
a separate hierarchy to avoid nesting of hierarchies. GoVisual is a C++ class library providing
an API for C++, .NET or Java. Unfortunately, this approach does not fully consider the UML
specification: Model management elements, association classes, dependencies, comments etc.
are missing and the directions of edges are only locally consistent [Eiglsperger 2003, p. 33].
jarInspector/yWorksUML [Eiglsperger et al. 2003; Eiglsperger 2003; Wiese et al. 2002], built on
top of the Java graph drawing library yFiles13, also applies the topology-shape-metrics approach
with optimizations towards edge crossing minimization and hierarchical constraints calculated

10The term SugiBib was chosen as a combination of the name “Sugiyama” and the German word “Bibliothek”
for library, because SugiBib was initially planned as class library rather than a framework. Furthermore the term
denotes the bibliography of Kozo Sugiyama. Therefore the logo (by Peter Eades) represents the name Sugiyama in
Japanese signs.

11http://www2-data.informatik.unibw-muenchen.de/DiaGen/
12http://www.oreas.com/libraries.php
13http://www.yworks.com/
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from the inheritance subgraph. Unfortunately, this approach also lacks an algorithm compliant to
the UML specification because advanced elements like clusters and hyperedges are not consid-
ered:

We have chosen to not consider clustering since it is not supported by most modeling
tools and is therefore used rarely in the context of class diagrams. Most tools do only
allow to manipulate a flat diagram

[Eiglsperger 2003, p. 153]

In our UML tool evaluation [Eichelberger 2002b], exactly 50% of the tools allows classes to be
placed in packages of arbitrary size even if most of the tools were not able to respect packages
in the layout. Yet, we did not evaluate the code generation facilities of the tools.
One problem, selecting inheritance edges for the hierarchy exclusively is that there may be fur-
ther hierarchical aspects relevant from the software engineering perspective, e.g., aggregation
or composition hierarchies. Unfortunately, these mixed hierarchies are of less interest to the re-
searches:

It is even possible to visualize all hierarchical dimensions within one diagram. How-
ever, such an approach does not reveal enough analytical information, since in this
case the graph is usually fully directed, including directed cycles. Thus a layout
based on such a directed graph does not emphasize any hierarchical dimensions.

[Gutwenger et al. 2003a]

As we will evaluate later in Section 5.2, GoVisual and yFiles follow a philosophy, which is more
influenced by graph drawing issues than structural and semantical aspects of the underlying soft-
ware development diagrams.
Other approaches simply use the implementations of the graph drawing community and integrate
the drawing tools into their one ones. In [Keller et al. 1999], the SPOOL (Spreading Desirable
Properties into the Design of Object-Oriented, Large-Scale Software Systems) environment is
presented. SPOOL delegates the layout calculation to Dot [Gansner et al. 1993] for hierarchical
and Neato14 for force directed layouts. UMLGraph mentioned in [Spinellis 2003] tries to lay out
diagrams using a mixed edges hierarchical approach also on top of Dot [Gansner et al. 1993] and
has therefore to cope with overlapping nodes and edges.
We can conclude that there are different powerful extensions to traditional graph drawing al-
gorithms, not only as theoretical results but also as implementations, but none of them was
tailored towards the need of the software engineering community: The full compliance to the
UML standard and readability with respect to the semantics of the diagram. This seems to be
the state-of-the-art since 1998, because in [Markwitz 1998], appropriate layout algorithms were
demanded, but only basic traditional graph drawing algorithms were proposed as solutions. From
Section 2.2.2 we know that UML class diagrams are a combination of net and region, and now
we can agree to the statement that, in particular for UML class diagrams, drawing methods are
relatively underdeveloped [Sugiyama 2002, p. 2].

14Both tools belong to the same project at AT&T: http://www.research.att.com/sw/tools/graphviz/
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3 Functional Specification

In this chapter, we will outline the functional specification of our layout algorithm for UML
class diagrams. Therefore, we will collect and compile arguments from the four main disciplines
involved in that topic: graph drawing, HCI, software engineering and software visualization.
First, we will compile a set of 12 basic requirements for a realization of a layout algorithm for
UML class diagrams. In Section 3.2, input formats for UML class diagrams will be described
and appropriate formats will be added to the set of requirements.
The next section will be on aesthetics for diagrams in general and UML class diagrams in
particular. Therefore, first 26 structural and 11 semantic rules known from graph drawing
literature will be listed. Then 11 general principles for diagram recognition from HCI, 9
semantical criteria related to good software design from software engineering and 3 require-
ments from the viewpoint of software visualization will be collected. All this interdisciplinary
information will then be compiled to our unique set of aesthetic criteria for drawing UML
class diagrams. It consists of 16 mandatory, 5 optional and 2 facultative user related criteria
which are responsible for different aspects of readability of UML class diagrams. Finally, as a
conclusion from our layout rules, in this section a comparison with other approaches to rules
for aesthetic layout of UML class diagrams, 10 visual quality indicators to retrieve software de-
sign problems in UML class diagrams as well as issues of validating aesthetic rules will be given.

3.1 Requirements for UML Class Diagram Layout
There is no doubt that the first require-
ment for a composer is to be dead.

Arthur Honegger (1892 – 1955)

According to our roadmap for retrieving a functional specification for a layout algorithm for
UML class diagrams, at this point of time we are able to collect a basic set of requirements
taking into account the UML specification as well as the reasons for automatic layout and the
foundations of graph drawing. The list of requirements will then be completed by a discussion
on input formats and our set of aesthetic principles specific to UML class diagrams in the next
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sections.

• REQ_COMPLETE_UML: According to the UML specification and the discussion in Sec-
tion 2.1.3 our top-level goal is to develop an algorithm which respects all model elements
which can be used in a UML class diagram. As stated in Section 2.1.1 and 2.1.3 we restrict
ourselves to UML version 1.5.

• REQ_COMPLETE_DIAGRAM: Operations to reduce the visual complexity of a diagram
to reduce also the complexity of the layout algorithm are seen as a part of the tool which
invokes the layout mechanism. As pointed out in Section 2.1.3, such operations might be
model-to-model transformations implemented as user commands as pre- or postprocessing
operations before or after calling the layout algorithm.

• REQ_GRAPH_TYPE: The syntactic features of UML class diagrams influence the type
of graph to be handled by the layout algorithm. As mentioned in Section 2.2.2, reflective
associations induce self-loops and multiple edges may occur, so that graphs representing
UML class diagrams may not be simple graphs. Some edges like generalizations are di-
rected by definition, but e.g. associations are not always required to be directed. Therefore,
we will operate on directed graphs, and as far as specified in the input, we try to use the
semantic direction for the directions of the underlying edges. Hence, a direction is im-
plicitly assigned to an undirected association but a directional indicator, like an arrow, will
finally not be drawn. A graph that specifies model management elements like packages and
contained classes or composite classes using the nested notation, is obviously a compound
graph, because also relations between compounds like generalizations or dependencies are
allowed by UML. If association classes or constraints are used, hyperedges connecting
three nodes or, dependent on the implementation of the algorithm, simulated hyperedges
may be part of the input graph. As depicted in Figure 2.9, elements outside any compound
may occur also. Dependent on the implementation, the global namespace might be seen
as the top level compound or mixed compound graphs can be considered. We will realize
the latter alternative in this thesis, because handling compounds is usually time-consuming
and a mixed processing might improve the runtime.
In the following text, we will we use the term “cluster” as a synonym for “compound”
because intersections of compounds are not required for UML class diagrams and com-
pounds therefore behave like clusters which then may act as start or end node of edges.

• REQ_HIERARCHY: The default layout style in the UML specification suggests a kind
of hierarchical layout where some edges are seen as hierarchical and other edges as non-
hierarchical edges. Furthermore, this reflects the way of thinking of programmers and soft-
ware engineers, because they are used to think in hierarchies to give their projects a certain
structure like class, package, module or containment hierarchies. Therefore, we will rely
on hierarchies to give the drawings of UML class diagrams a basic skeleton. A detailed
discussion on various types of hierarchies will be given in Section 3.3.

• REQ_USER_OPTIONS: A layout algorithm should be as flexible as possible to be tailored
to the user’s needs. Therefore, it should provide as many options as possible to give control
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over the layout process to the user. But on the other side, the more options are provided
to the user when invoking the layout mechanism of a CASE tool, the more time the user,
who is usually not familiar with graph drawing issues and the concrete layout algorithm
of the CASE tool, might need when searching for the correct layout options satisfying
her needs respecting the concrete diagram. Consequently, an algorithm, which is capable
of self configuration depending on the type of input, would be appreciated by real world
users as noted in [Koschke 2003].
The basic idea seems to be understood in GoVisual, a layout tool for UML class diagrams,
in which the algorithmic parameters are hidden behind an easy-access interface. Unfortu-
nately this idea is then circumvented by providing five different layout styles and a variant
of parameters that can be manipulated within each style [Gutwenger et al. 2003c].
Hence, the less layout decisions are left to the user, the better the integration into the CASE
tool will be. Alternatively, the integration implementation might analyze the graph to be
passed to the layout algorithm and select the appropriate layout options, or the layout al-
gorithm itself is capable of sophisticated self-configuration features on a concrete input
graph.
Of course, the opposite opinion is also known from literature: In [Henry and Hudson 1991]
it is disbelieved that a single canonical layout algorithm will always produce the best re-
sults without interaction and customization by the user.
Two different types of options are relevant to UML class diagrams: Diagram specific op-
tions, like the type of hierarchy or even the individual edges to be considered and general
options, like font faces, default distances or minimum extents.
On the one side, an interactive layout algorithm as well as a lot of options local to a certain
diagram, have negative impact on the (automated) repeatability of the results in industrial
applications and quality engineering of design documents. On the other side, there might
be aspects improving the readability which cannot be specified in terms of a UML class
diagram, like a certain sequence of nodes or the vicinity of nodes which cannot automati-
cally be detected from looking on the specification of a diagram only. In some cases, e.g.
to reflect dynamic aspects like the main execution sequence in the ordering of the elements
of a class diagram, these facts might be deduced from other diagrams of different types.
But any kind of such automatic deduction based on facts which might be changed indepen-
dently from the diagram to be drawn, also may have a certain drawback on the stability of
the mental map of the user. If such user defined options or constraints are stored along with
the diagram, the repeatability of the layout result is not in danger. Therefore, we will also
provide some user options towards interactive layout for features, where basic decisions
may not always be left to the layout algorithm. A self-configuration dependent on the input
will be deferred to future work.

• REQ_INCREMENTAL_ALGORITHM: A user working with a diagramming tool builds a
so called mental map [Misue et al. 1995] of the diagram in mind. An automatic layout
algorithm should respect that mental map and provide features for smoothly adapting a
layout result, e.g., with respect to positional information in the input graph. Currently, this
special layout feature called incremental layout is subject to different research projects. We
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will provide basic support but we will defer a concrete mechanism for incremental layout
to future work. Some ideas on the algorithmic issues to be considered when realizing this
feature will be discussed at the end of this work in Section 7.1.

• REQ_GRID: To support editing of class diagrams in a CASE tool, a snap-to-grid option
which works on a user defined grid-size may be appropriate. In this case, the positions of
all elements in the result graph are then fixed to positions (ix ·gx, iy ·gy) with ix, iy ∈ N0 and
gx,gy ∈ N as grid sizes.

• REQ_SPEED: Usually, an algorithm for automatic layout of UML class diagrams should
support interactive application. On the one side, for incremental and interactive layout, a
fast processing by the implementation of the algorithm and its integration is required. On
the other side, the visual complexity of UML class diagrams induces a tradeoff with the
speed of the algorithm. The more types of model elements and presentation options are
supported by the algorithm, the more complex the algorithm is and the slower it reacts.
In general, algorithms for the visualization of diagrams or graphs imply at least high com-
plexity or belong to the sets of NP-hard or NP-complete problems. In particular, to draw
a UML class diagram, several basic problems like proper hierarchization or crossing min-
imization allocate exponential runtime to obtain exact solutions. Therefore, heuristics will
be investigated to reduce the complexity and to calculate amenable results. Hence, we are
interested in algorithms of low theoretic complexity but high quality.
Also on a prototypical implementation of our layout algorithm we are interested in fast exe-
cution and tuning of the implementation. Due to the prototypical character of the program,
execution speed appears as an interesting goal of lower priority.

For a concrete implementation, the following requirements should be considered:

• REQ_DETERMINISTIC_ALGORITHM: As described in Section 2.2.2, some layout algo-
rithms rely on random initial configurations or randomly select nodes to be processed at a
time. Imagine such an algorithm which, each time the algorithm is invoked, produces for
the same input graph a different result. In other words, a kind of layout animation would
be produced, when the layout button of the CASE tool is pressed in sequence. Real-world
examples were shown in [Eichelberger 2002b]. We are of the opinion that, to prevent the
described behavior, a layout calculation used within our application domain, should rely
on deterministic and repeatable decisions within the algorithm only.

• REQ_ARCHITECTURE: Parts of the implementation should be reusable, exchangeable
and across different stages of the algorithm as few as possible dependencies should exist.
This seems to induce a component-like plug-in based implementation. We will discuss the
architecture of the implementation in Section 6.1.

• REQ_IO: The algorithm itself should receive input from standard formats as well as from
easy-to-debug formats. The output produced, should be compliant to standard formats as
well. CASE tools usually do not rely on files stored in the file system but on database-like
repositories capturing more data on the design than shown in UML diagrams. A direct
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access to the repository of a CASE tool would reduce the integration effort into individual
tools, especially, if a common repository access interface is supported by the CASE tool
vendors. Further issues on formats for UML class diagrams will be given in Section 3.2.

• REQ_PLATFORM: The implementation of the algorithm should be executable on as much
computing platforms as possible with as less effort for platform specific modifications as
necessary. This will influence the programming language and the libraries to be used for
an implementation and will be addressed in Section 6.1.

We can conclude that none of the graph drawing approaches mentioned in Section 2.2.2 directly
meets the basic set of requirements and therefore none of these algorithms can directly be applied
to UML class diagrams. Beside the fact that most of these approaches are not able to handle non-
simple compound graphs with different types of edges, none of them considers the semantics of
the input when calculating the layout [Fleischer and Hirsch 2001; Purchase et al. 2001b].

3.2 Input and Output
It is a capital mistake to theorize before
one has data.

Sherlock Holmes

In the last section, we have mentioned REQ_IO as one of our basic requirements. In this section,
data formats, which may be used to describe UML class diagrams, will be listed. Thereby, we
will discuss the advantages and disadvantages of the individual formats and select appropriate
ones to be realized by a concrete implementation to meet REQ_IO.

• CDIF (CASE Data Interchange Format) is a vendor-independent, method independent
family of languages designed for the exchange between modeling tools. It was published in
1991, revised in 1994 and finally standardized by ISO/IEC. It was one of the archetypes for
specifying the UML and there are still some mappings between CDIF and ancient versions
of UML. The latest news on the CDIF homepage1 were published in January 1998 and to
our knowledge, most of the UML tool vendors decided to support different formats, but,
according to the publication dates of the last specification documents at ISO/IEC and some
research work like [Schauer and Keller 1998], it seems that CDIF is still in use.

• GXL (Graph eXchange Language) described in [Winter 2002] is a sublanguage of XML
(Extensible Markup Language), a simple and flexible text format specified by the W3C
(World Wide Web Consortium)2. Designed as a standard exchange format for graphs,
GXL provides so called schemas to tailor GXL towards specific application domains. Fur-
thermore, GTXL (Graph Transformation Exchange Language) was specified as a separate
project along with GXL. For example, as mentioned in [Koschke 2003], the reverse en-
gineering and re-engineering community adopted GXL as a standard interchange format.

1http://www.eigroup.org/cdif/index.html, http://www.cdif.org is not available anymore
2http://www.w3.org
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Even if the specification of GXL uses UML class diagrams to describe GXL itself and its
schemas, no official schema, which supports UML class diagrams especially on semantical
level, was specified so far as regretted in [Reiniger 2003].

• GraphML [Brandes et al. 2002], also a XML dialect, is an extendible format for specifying
graph structures tailored towards the needs of the graph drawing community. GraphML
might also be used for specifying the structure of UML class diagrams, because it is a
common graph format, but it is not designed to also provide semantical information as
noted in [Reiniger 2003].

• XMI [OMG 2002] (XML Metadata Interchange), first specified in 1999, is the common
metadata and metamodel interchange format specified by OMG. Basically, XMI is defined
along with MOF and, because UML is, dependent on the version of UML, an alignment or
an instance of MOF, respectively, XMI can be used to represent UML modeling informa-
tion. As shown in Table 3.1, MOF, placed at the top of the model level stack, defines the

M3 meta-meta-model MOF XMI
M2 meta-model UML UML-XMI in terms of XMI
M1 model UML diagrams user diagrams in terms of UML-XMI
M0 instance level realworld user objects —

Table 3.1: Model levels of UML and XMI.

basic constructs of a modeling language.
MOF can then be used to describe the elements and relations of a concrete modeling lan-
guage, in our case the UML. Basically, XMI is a XML based description of a meta-model
in XML. More specific, XMI can be used to store the XML serialization of the MOF in-
stances needed to describe the UML. Based on this meta-model, UML diagrams are then
seen as instances of the M2 model. Hence, UML diagrams can also be represented in XMI
in terms of the XMI description of the UML metamodel.
On the one side, UML-XMI provides detailed information on the diagram elements.
Usually, due to the alignment with the metamodel, more information, like stereotype or
datatype definitions, than to be displayed is available. On the other side, also because of
the alignment to the UML meta model, the relational structures and the additional infor-
mation across the model levels lead to a high verbosity of UML-XMI.

• UMLscript is a programming language for object-oriented design. Similar to the declar-
ative modeling approach described in [Spinellis 2003], in which a Java-like notation was
advocated, UMLscript is designed as a programming language for class diagrams. For
handicapped users, especially blind users, a textual notation provides different advantages
over graphical notations and editors, where complex combinations on different input de-
vices are required to specify a diagram.
UMLscript was first presented in [Seemann and von Gudenberg 1998], an adaption to
more recent UML versions was given in [Eichelberger and von Gudenberg 2001]. It was
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never intended that UMLscript should be used to describe other diagrams than class di-
agrams. More specialized versions like UMLscript-rt, the real-time version for sequence
diagrams, ought to be used instead. Furthermore, from the viewpoint of compiler construc-
tion, UMLscript is a simple language (LL1) but it requires some effort to be implemented,
because it admits a non-linear description (no fixed sequence of elements, opportunity of
forward references and nested elements).
UMLscript can automatically be created from source code using JTransform3 [Eichel-
berger and von Gudenberg 2004] or Ptidej4 [Guéhéneuc 2003].

• To be more up to date, XUMLscript was developed as another XML dialect for UML
class diagrams. In fact, it can be described as a XML version of UMLscript without being
such verbose than UML-XMI. The structure of XUMLscript as well as a description of a
transformation from class diagrams in UML-XMI to XUMLscript using XSLT and XPath
were given in [Reiniger 2003]. Dependent on the content, the size of a XUMLscript file
is less then 10% of the size of the corresponding UML-XMI file, and using UMLscript
the size of the XUMLscript code can furthermore be reduced by 50%, because in both
non-XMI formats only structural information relevant to the diagram is recorded.

• As long only structural, non-layout specific information is stored in an input file, the ex-
change of layout related data is left to proprietary formats and protocols. After the first
version of UML-XMI has been specified, most tool vendors tried to be compliant to UML-
XMI. But to retrieve the entire diagram information from exported and reimported data
of the same tool, most times the XMI format was extended in a vendor specific way to
store layout data, font sizes, etc. It was time to specify a format for also supporting the di-
agram interchange, because the additional proprietary information increased significantly
the complexity of the interchange of diagram data between tools of different vendors. The
logical consequence was XMI[DI] [OMG 2003b], a diagramming extension of the UML-
XMI format which is currently being specified by the OMG. To the model data in XMI, an
additional diagram section is attached. Each diagram element, specified in terms of graph
elements and coordinates relative to the enclosing element, is backwards related by a so
called model bridge into the XMI data.

By now we have to decide, which formats should be considered for input or output in a concrete
implementation. Realizing an input or output filter if the format is not directly supported by the
programming language or a library, requires a lot of time for implementation and testing as well
as for maintaining it with respect to future versions of UML.
Because CDIF is rarely supported by current tools, GXL does not come along with a commonly
accepted schema for UML class diagrams and GraphML is a graph structure format without
semantical support for our application domain, we will not take these three formats into account.
UMLscript was proposed in 1998 and the first version of XMI was published in 1999, the
year when the first version of SugiBib was implemented. We deferred an implementation into

3http://jtransform.sourceforge.net/
4http://www.yann-gael.gueheneuc.net/Work/Research/Ptidej/Download/
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future and made a decision for UMLscript, because in 1999 it was expected that UML and
XMI, will change significantly in the next years. As (for us) it is much easier to specify class
diagrams in UMLscript as in any of the languages mentioned above, UMLscript is still today
the main debugging input format for SugiBib. With the decision to test an XML based variant of
UMLscript, XUMLscript was implemented in 2003. Unfortunately, due to the vendor specific
problems with XMI, the import of XMI usually still needs vendor dependent preprocessing. We
are convinced that, with the advent of a commonly agreed diagram interchange format based on
XMI, like XMI[DI], future UML tool implementations will provide a better compliance to the
standard.
Even if we sometimes were in need to directly support XMI, we are convinced that deferring
the implementation was a good decision, because in the last years, different approaches to
generically bridging the gap between XMI and programming languages have been undertaken.
One approach is JMI (Java Metadata Interface) [SUN JCP 2003]: A set of interfaces basi-
cally define the MOF structures (M3) in Java and a plug-in mechanism allows to attach the
implementation of a concrete metamodel. At a first glance, JMI is only capable of defining a
meta-model (M2) in terms of MOF, to maintain it using Java, to load and to store it via a XMI
reader or writer, respectively. A concrete meta-model description for JMI, given in XMI, may
contain references to concrete implementation classes attached as a plug-in to JMI (reflection
classes). In other words, after loading the UML meta-model description into JMI and obtaining
a repository extent, in which user models (M1) can be maintained, plug-in specific classes can
be used to create, explore and modify user models. But also data exchange via XMI[DI] can
simply be realized using this mechanism. Instead of a UML meta-model, a DI enhanced UML
meta-model is loaded and a DI specific implementation of the JMI reflection classes is used
as plug-in. Now, UML diagrams can be specified in terms of UML meta-model elements and
DI graph elements, while JMI automatically handles XMI as well as JMI-compliant repository
access. In fact, deferring the implementation was a good decision, because, using a general
metadata repository with an appropriate plug-in, we are able to handle XMI, XMI[DI] and we
can get direct access to compliant repositories using an external library. This also will support
and simplify the interaction and integration with other tools.
Dependent on the programming language and available libraries, image and printing formats
like PNG (Portable Network Graphics), JPEG (Joint Pictures Expert Group), TIFF (Tagged
Image File Format) or EPS (Encapsulated Postscript) can be considered for output, too.
As a conclusion, an architecture implementing our work, requires, according to
REQ_ARCHITECTURE, a plug-in mechanism for input as well as for output formats. We
will provide plug-ins for UMLscript, XUMLscript, XMI via XSLT and XUMLscript, XMI
and XMI[DI] as files via a metadata repository and direct metadata repository access as input
features. Beside the image and printing formats mentioned above, we will consider XMI[DI]
as an output format. XUMLscript was designed to support extensions for layout data but we
will not implement that feature, neither as input nor as output option. XMI as output format
is implied in the export of XMI[DI] simply by preventing the creation of DI specific elements
while interacting with the metadata repository.
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3.3 Aesthetics

When diagrams are used to represent a
piece of reality, the main quality desired
for them is readability, where we say that
a diagram is readable if its meaning is
easily captured by the way it is drawn.

[Tamassia et al. 1988]

It is known that a picture is able to convey some thousand words. Therefore, it is necessary to
gain readability of a picture or a drawing to understand the information depicted. This obvi-
ous rule is known throughout the disciplines dealing with diagrams. Especially when graphs are
drawn automatically, clear rules should restrict the degrees of freedom in placing the nodes and
edges. Thereby, the main problem is to characterize the quality of a diagram: A good diagram is
often identified as a diagram which supports readability, the capability of clearly communicating
information about the conceptual structure, as stated in [Tamassia 1985; Sugiyama 2002].
For drawing abstract graphs, various rules have been published in the literature. Unfortunately,
for UML class diagrams there are currently no commonly agreed criteria to describe the fea-
tures necessary for readability. Some formulae to objectively measure criteria known from graph
drawing have been published in [Ware et al. 2002; Purchase 2004] after conducting perceptional
experiments. Within the different communities dealing with diagrams, several individual features
or aesthetic rules are known and accepted, but in our case there is few interaction across the in-
volved communities.
In [Batini et al. 1985; Fleischer and Hirsch 2001] it was observed that automatic layout tools
often adopt fixed weights in solving tradeoffs between aesthetic rules, while human beings with
intimate knowledge on the semantics of the diagrams adapt their perception dependent on the
application domain. The problem is to find a set of rules describing as close as possible the be-
havior of a human engineer while drawing manually a readable UML class diagram. As a course
of action, the following two steps were proposed in [Batini et al. 1985]: Enumerate as many lay-
out criteria as possible and then determine the preferences of designers for solving the conflicts
between such criteria.
To derive the most important aesthetic principles for our target application domain, we will fol-
low that procedure. Therefore, we will first clarify the terminology in Section 3.3.1 and will then
summarize well-known criteria from several disciplines in Section 3.3.2 up to 3.3.5: We will
look at rules from graph drawing which are in use for several years, we will consider HCI (Hu-
man Computer Interaction) for information on human perception, we will give an overview on
common principles of good software design to find design indicators that map into diagrams and
we will take software visualization into account. Combining this with the specification of UML
class diagrams, we will then compose the knowledge accumulated so far to UML specific rules
in Section 3.3.6.
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3.3.1 Terminology
The term aesthetics is used for criteria
that concern a diagram’s readability from
the graphical point of view.

[Nummenmaa and Tuomi 1990]

According to [Batini et al. 1985], the readability of a diagram is closely related to the ability of
a layout of a graph to convey clear information about the structure of the associated conceptual
graph. Two different types of readability can be considered:

• Conceptual readability that concerns the structural properties of the schema, independently
of its graphic description.
The associated example in [Batini et al. 1985] shows that the structure in combination with
the semantics of the elements may admit a (vertical) hierarchy, while from the graphical
viewpoint, e.g. area usage, horizontal flows are a better choice.

• Graphics readability that concerns the layout of the diagram.

Activities to generate readable diagrams can similarly be partitioned into

• Decomposition, how realworld knowledge is decomposed into graphical primitives.

• Layout, the positioning of the graphical primitives on the presentation space.

These two activities or similarly the two different types of readability have been evaluated in
[Hahn and Kim 1999] considering sequence diagrams, activity diagrams and collaboration di-
agrams according to UML version 1.1 [OMG 1997]. Thereby, decomposition as well as layout
organization decreased the average number of analysis and design errors.
Therefore, aesthetic criteria should capture these different types or activities and should provide
clear rules to be respected by a layout algorithm. In our case, conceptual readability relies on the
contents to be displayed, i.e., on the UML specification and on the design of the software artifact.
For graphic readability, we are convinced that rules primarily designed to describe the beauty of
a diagram independently from the semantics of the diagram and its individual elements can be
combined with further knowledge on the underlying semantics to build a basic set of common
aesthetic criteria.
More specifically, in [Tamassia et al. 1988], aesthetics are described as common layout rules that
are not specific to an application, while layout constraints denote application specific rules to be
fulfilled. Common layout rules, as described in the next section, as well as general constraints
may conflict and selecting the most relevant one to gain a readable layout is a difficult task.
Especially for terms of graph drawing, we adhere to the following taxonomy composed from
literature:

• Static rules: When a graph is laid out once without respecting a history of changes
[Sugiyama 2002] the following types of rules may be respected.



3.3 AESTHETICS 53

– Syntactic rules [Coleman and Parker 1996], structural rules [Sugiyama 2002], aes-
thetic features [Batini et al. 1985] or general layout rules [Tamassia 1985] only rely
on the basic visual principles and the structure of the graph

– Graphical standards [Tamassia 1985] as listed in Section 2.2.2, e.g.
GS_STRAIGHTLINE.

– Semantic constraints [Batini et al. 1985] or semantic rules [Coleman and Parker 1996]
are related to the meaning of the elements of the graph. According to [Sugiyama
2002, p. 12] semantic rules, like the importance of a node or the strength of the
relationship of an edge, can be automatically derived or be given by the user. In
[Tamassia 1985], these rules are simply described as rules specific to the particular
class of diagrams.
In our case, semantic rules may also be given by the application domain and can
partly be deduced from the information attached to the elements of the graph.

• Dynamic rules: Rules to be respected, when a graph is modified over the time [Coleman
and Parker 1996]. Therefore an algorithm is applied to a sequence of drawings [Sugiyama
2002]. These rules are useful for the restructuring of diagrams in the case of local changes
[Tamassia 1985] or to ensure the relative positional relationship between diagram elements
to preserve the human mental map and the continuity of cognition [Sugiyama 2002, p. 11].
Rules for incremental layout are difficult to integrate into basic graph layout algorithms
and are currently topic of further research.

In this work, we will mainly focus on drawing a class diagram once without taking dynamic
rules into account. Therefore, we will discuss exclusively syntactic and semantic rules as well as
graphical standards in the following.
Dependent on the implementation of the layout algorithm, common layout rules and constraints
might be implemented implicitly, e.g., as force formulae in force-directed algorithms or in a
2-layered implementation: A basic layout algorithm considering or ensuring some rules and a
constraint solving mechanism dealing with dynamic or user defined constraints. While the term
“constraint”, e.g., in UML, is a rule which always has to be fulfilled, a “constraint” in conjunction
with a constraint solving mechanism suggests that if a constraint conflicts with other constraints,
some are ignored and one is selected, e.g., based on some priority mechanism.
For UML layout aesthetics, which are semantically essential for the readability and the quality of
the layout, we will refer to aesthetic rules, criteria or principles, which always have to be fulfilled
and we will not consider the term “constraint” for these essential issues.
Furthermore, aesthetic rules can be classified according to their impact on the layout algorithm
[Batini et al. 1985]. A layout rule may:

• Be local when it refers only to a part of the diagram or global otherwise.

• Be hierarchical when it concerns the relative position of a set of symbols, flat otherwise.

• Influence the topology, shape or metric of the diagram.
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In [Sugiyama 2002], conventions and rules for graph drawing algorithms were related by pri-
orities. Surprisingly, compared with most work in graph drawing, below placement conditions,
routing conventions and drawing conventions, semantic rules were given a higher priority than
structural rules.

3.3.2 Traditional Graph Drawing Aesthetics
In the development of graph drawing al-
gorithms it is necessary to set priorities
between convention and rules.

[Sugiyama 2002]

When developing a layout algorithm for UML class diagrams, basic approaches and experi-
ences from graph drawing should be taken into account instead of designing new algorithms
from scratch. Various advantages and disadvantages described in literature help avoiding inap-
propriate ideas and disappointing trials. Beside algorithmic descriptions, information on runtime
complexity and memory usage, algorithms are often characterized enumerating the aesthetic cri-
teria fulfilled or partially considered by an algorithm, respectively.
The set of traditional graph drawing aesthetics has emerged over a lot of years. Unfortunately, in
the most recent publications, aesthetic criteria are often listed only without reasoning about the
concrete impact on the readability.

Structural Rules

First we list the groups of rules which rely on the structural aspects of a graph only. Additionally,
we give references to the literature, but we will mention only the first publication known to us.
The listing is ordered according to the number of occurrences in the literature.

• GDR_EDGE_CROSS: Minimize or at least avoid edge crossings. The more edge crossings
are present in a diagram, the harder is the task of the human eye to find out which nodes are
connected. Unfortunately, only planar graphs or graphs in 3D can be laid out without edge
crossings5. If hierarchical structures are present, minimize the crossings between them
[Batini et al. 1985].

• GDR_OVERLAP: Nodes should not overlap edges [Sander 1996a], other nodes [Sander
1996a] or other base nodes of clusters [Sander 1996b]. Additionally, edges should not
overlap other edges.

• GDR_MIN_BENDS: Minimize or at least avoid bends (sharp corners) in edges [Sugiyama
et al. 1981]. It is much easier to follow straight lines or orthogonal edge chains than chains
wildly alternating the direction of the individual edges. This criterion relies on the under-
lying graphics standard. In GS_ORTHOGONAL, bends are implicitly present but the more
bends the harder edges between widespread nodes can be followed and the harder it is to

5This criterion was mentioned most times (24 occurrences) in literature
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read the entire diagram. Alternatively, the variance of the number of bends can be mini-
mized [Battista et al. 1999].

• GDR_UNIFORM_LENGTHS: Keep edge lengths uniform [Fruchterman and Reingold
1991].

• GDR_MIN_EDGES: Minimize

– The average length of connections [Sugiyama 2002] to ensure that the edge lengths
are short [Gansner et al. 1988] but not too short [Sugiyama et al. 1981].

– The maximum length of an edge or the longest edge [Batini et al. 1985].

– The global length of the edges [Tamassia 1985].

– The difference in edge lengths [Sugiyama 2002]. This criterion relates to
GDR_UNIFORM_LENGTHS.

Short edges prevent associated names to be properly positioned on an edge and may lead
to excessive clustering, while long edges, in particular such with excessive turns, can com-
plicate the perception of the flow as remarked in [Protsko et al. 1991].

• GDR_DENSITY: As mentioned in [Batini et al. 1985], disomogeneous density leads to
double observation, a discontinuity in the visual perception process. Therefore,

– Place vertices on the boundary with uniform density [Sugiyama 2002].

– Support uniform density of the placement and the routing [Batini et al. 1985].

– Ensure uniform density of symbols along the boundary of the form [Batini et al.
1985].

• GDR_NODE_DISTRIBUTION:

– Distribute vertices uniformly [Henry and Hudson 1991].

– Nodes should be within a bounding box [Fruchterman and Reingold 1991] and more
specifically, nodes should be distributed evenly within a bounding box, the page or
the drawing area [Eades and Sugiyama 1990].

– Nodes should not be laid out too close together and not too far apart [Coleman and
Parker 1996] especially nodes connected to each other should be laid out as close as
possible [Fruchterman and Reingold 1991].

• GDR_FLOW: Support a consistent direction of edge flow [Eades and Sugiyama 1990].

• GDR_EDGE_DIRECTIONS: Different types of edges should be drawn with different spec-
ified directions [Sugiyama and Misue 1995]. If the different directions are chosen consis-
tently, this might not conflict with GDR_FLOW. However, this criterion seems not always
to be appropriate as a structural rule, because specified directions may relate to the seman-
tics of the diagram or at least to user preferences.
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• GDR_ORTHOGONALITY: Fix nodes and edges to an orthogonal grid [Tamas-
sia 1987]. Obviously this criterion might be responsible for creating lengthy
edges and therefore it might conflict with GDR_MIN_EDGES, GDR_DENSITY and
GDR_NODE_DISTRIBUTION.

• GDR_SYMMETRY: Where possible, a symmetrical view of the graph should be displayed
to simplify the recognition of similar or identical subgraphs [Eades and Sugiyama 1990],
but most times the term symmetry is not further specified. In [Bachl and Brandenburg
2002], geometric symmetry is described as a drawing with a rotational or a reflectional
invariant while the graph theoretic symmetry requires a non-trivial automorphism in the
graph. The graph theoretic symmetry provides more flexibility and should be considered
for subgraphs, because most graphs only have a trivial automorphism. Different types of
rules considering symmetries are mentioned in literature:

– Inherent symmetry should be reflected by a layout [Sugiyama et al. 1981].

– Maximize local (subgraph) isomorphisms, axial and rotational symmetries [Tamassia
1998].

– Balance the diagram with respect to the vertical or horizontal axis [Tamassia et al.
1988].

– For trees and a left-to-right layout: Parent nodes should be placed to the left of their
children [Coleman and Parker 1996].

– For trees and a top-to-bottom layout: Parent nodes should be centered over children
[Wetherell and Shannon 1979] or, more generally, the layout of children should be
symmetrical [Batini et al. 1985].

• GDR_DRAWING_SIZE: The less large a drawing is and the more homogenous the nodes
and edges are distributed, the better a drawing looks. This rule relates to GDR_DENSITY.

– The physical width of the drawing should be minimized [Coleman and Parker 1996].

– The area of the drawing should be minimized [Batini et al. 1985].

– Minimize the aspect ratio of the drawing, which is defined as the ratio of the length
of the longest side to the length of the shortest side of the smallest rectangle with
horizontal and vertical sides covering the drawing [Tamassia 1998].

– The aspect ratio should be balanced [Sugiyama 2002].

– The area of a geometric figure with given shape covering the diagram should be
minimized [Batini et al. 1985].

• GDR_LABELS_DIRECTION: All text labels should be horizontal, rather than a mixture of
horizontal and vertical [Purchase et al. 2001a].

• GDR_FONTS: All text fonts should be the same rather than using different fonts for differ-
ent types of labels [Purchase et al. 2001a]. Of course, the application of this rule depends



3.3 AESTHETICS 57

on the kind of diagram to be drawn. The UML describes font faces as a basic style guide,
e.g., the font face for a class name should be bold, italics should be used for abstract classes
or operations.

• GDR_ANGLE: Maximize the smallest angle between two edges incident on the same ver-
tex. This aesthetic is especially relevant for GS_STRAIGHTLINE [Battista et al. 1999]. The
less the physical resolution of a screen, the more it is important that edges are as far apart as
possible. The angle between incident edges should not be too small [Coleman and Parker
1996].

• GDR_HIERARCHY: If a hierarchical structure is present, the layout should expose hierar-
chical structure in some way [Sugiyama et al. 1981].

– Hierarchical structures should be drawn vertically [Batini et al. 1985]. For example,
on trees parents must be placed above their sons [Tamassia 1985].

– Hierarchical structures should be drawn horizontally [Sugiyama 2002]. For example,
on trees nodes on the same level should have the same vertical position [Wetherell
and Shannon 1979].

– Node positions are restricted to distinct layers [Fleischer and Hirsch 2001].

• GDR_NODES_EDGES: Nodes should not be placed too close to edges [Coleman and
Parker 1996].

• GDR_ORDEREDTREE: For ordered trees, the layouts should preserve the node ordering
[Wetherell and Shannon 1979] and the layout for a tree and its reverse should be mirror
images [Reingold and Tilford 1981].

• GDR_DIMENSIONS_SYMBOL: Minimize the difference between symbol dimensions
[Batini et al. 1985].

• GDR_DIAGRAM_CENTER: Nodes should be placed near the center of a bounding box
[Coleman and Parker 1996], objects with maximum or high degree should be placed in or
near the center of the diagram [Batini et al. 1985].

• GDR_CLUSTERING: Depending on the contents and the application domain of the graph,
the graph’s structure can be exposed if clusters are introduced [Fleischer and Hirsch 2001].

– Clusters should be drawn as convex regions [Feng 1997], a border rectangle of a
subgraph contains exactly the base nodes and the rectangles of subgraphs and border
rectangles of two nonnested subgraphs should not overlap [Sander 1996b].

– Connectivity edges may cross border lines of clusters but such crossings should be
avoided [Sander 1996b].

• GDR_FACES: The number of faces drawn as convex polygons is maximized [Tamassia
et al. 1988].
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• GDR_NODE_SIZE: Minimize differences among vertex dimensions [Tamassia et al.
1988].

• GDR_BALANCE_EDGES: Edges terminating on and originating from a vertex should be
laid out in a balanced form [Sugiyama and Misue 1991].

• GDR_MANHATTAN: Enforce the orthogonal layout of edges [Sander 1996a]:A horizontal
segment of one edge and a vertical segment of another edge may share a point (legal kind
of edge crossing), two horizontal segments of different edges never share a point, but they
may share a subsegment, if they also share the vertical segment adjacent to the subsegment.
Vertical segments of different edges may share subsegments, if and only if the segments
are adjacent to a node, horizontal segments should have a minimal vertical distance.

• GDR_CONTOUR_DIFFERENCE: Maximize the difference between distances of lines
which are contours of symbols and connections [Batini et al. 1985]. Minimize the length
of contours of vertices and the length of edges in between [Sugiyama 2002].

Semantic Constraints

As identified in Section 3.3.1, constraints in graph drawing are related to the meaning of the
elements, while structural rules are defined without considering the semantics. In the following
we will present some popular layout constraints. Some of them will be used as basic ideas for
the deduction of UML specific rules in Section 3.3.6. As for structural rules, we will give only
the first occurrences in literature known to us as references.

• GDC_NODE_SYMBOLS: Assign the dimensions of the symbols representing specified
vertices [Tamassia et al. 1988]. This constraint might conflict with GDR_NODE_SIZE.

• GDC_IMPORTANCE: The dimension of the objects should be chosen according to the
importance of the objects, or more specifically, the greatest dimension is appropriate
for the most important objects [Batini et al. 1985]. This constraint might conflict with
GDR_NODE_SIZE and GDC_NODE_SYMBOLS.

• GDC_GROUP_CURVE: A group of objects is displayed on a straight line [Batini et al.
1985] or more generally on a specified curve [Sugiyama 2002] or on a stream established
by an external semantic feature (e.g. flow of time) [Batini et al. 1985]. These objects might
additionally be ordered as a sequence [Sugiyama 2002].

• GDC_GROUP: Place close together a group of vertices according to some specified prop-
erty [Tamassia et al. 1988].

• GDC_GROUP_CENTER: A given group of objects/symbols should be placed in the center
of the diagram [Batini et al. 1985]. Some papers mention this constraint as a structural rule
similar to GDR_DIAGRAM_CENTER.
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• GDC_BALANCE_DIAGRAM: Balance the whole diagram with respect to a vertical or
horizontal axis [Batini et al. 1985]. In some papers this constraint is given as a structural
rule similar to GDR_SYMMETRY.

• GDC_BOUNDARY: A selected group of symbols should be placed in the external bound-
ary of the diagram [Batini et al. 1985].

• GDC_SHAPE: Draw a subgraph with a predetermined shape [Tamassia 1985].

• GDC_LIMIT_CROSSINGS: An upper limit to the number of edge crossings is specified
[Sugiyama 2002].

• GDC_LIMIT_BENDS: An upper limit to the number of edge bends is specified [Sugiyama
2002].

• GDC_LIMIT_LENGTH: The lengths of specified edges have a given upper limit
[Sugiyama 2002].

As a conclusion of this large set of 26 structural rules and 11 semantic constraints from graph
drawing we can state that some rules are not applicable to all graphs, some rules exclude others
and some interfere with others. Furthermore, the more rules should be fulfilled in one drawing,
the higher is the probability that contradictions occur, e.g., GDR_HIERARCHY can not fully be
realized on a cyclic graph. By specifying the situations in which certain rules may be relaxed
or precededed by other rules, conflicts can deterministically be avoided. For a concrete class of
graphs, priorities and exceptions for certain situations on the aesthetic rules may be introduced.
This can be implemented by the processing sequence of the layout algorithm, either by a fixed
sequence or by a dynamic mechanism like a constraint solver.
In fact, except for the rules mentioned in [Batini et al. 1985], most of the rules listed above have
been taken as axiomatic and have not been empirically tested as criticized in [Ware et al. 2002].
Unfortunately, most of the aesthetic criteria published in graph drawing so far relate to general
graphs and most authors have in mind that edges are simply lines and nodes have point size.
Therefore, usually these rules cannot directly be adopted to domain-specific applications and
further rules to be identified, evaluated and validated [Purchase et al. 2001b]. In literature on
empirical studies on layout aesthetics for UML class diagrams it was regretted that no domain-
specific semantical rules and layout algorithms exist:

We believe that there are additional semantic issues that need to be considered when
a layout algorithm is used in a domain-specific tool.
Automatic graph layout algorithms typically do not take the semantics of the diagram
into account. As we wished our results to relate to the design of such algorithms, we
did not consider the semantics of the diagrams when we created them according to
the layout aesthetics.

[Purchase et al. 2001b]

Hence, it makes sense to collect the knowledge published so far, to combine it with ideas from
other disciplines and to adapt, configure and aggregate them to more specific semantic criteria
more appropriate for UML class diagrams.
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Figure 3.1: The visual grammar of diagram elements in node-link diagrams (from [Ware 2000,
p.226]).
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3.3.3 Human Computer Interaction and Cognitive Psychology

We have only borrowed a small part from the large pool of literature on graph
layout since we feel that much of this literature is irrelevant to the most crucial
issue in graph layout, namely the problem of semantic clustering. The most
important criterion for information layout will usually be the meaning of the
nodes and arcs and since most work on layout largely ignores this factor, we
do not find it useful.

[Ware et al. 1993]

A lot of diagrams like data flow diagrams, organization charts, software structure and modeling
diagrams consist of various kinds of entities and links, representing relationships between the
entities. In [Ware 2000], this very large class of diagrams, which can be described by a visual
grammar, was called node-link diagrams. The entity-relationship model, a precursor of the UML,
is the most general data model that is expressed by node-link diagrams.
A visual grammar or the grammar of a visual language for diagrammatic representations is a set
of rules translating relevant information into a diagrammatic representation. These rules restrict
the (complex) decisions to be made to construct a valid diagrammatic representation [Hahn and
Kim 1999]. Such a diagram convention tells the reader, e.g., how contours (lines) have to be
interpreted.
Concluding from the visual grammar of diagram elements for node-link diagrams shown in Fig-
ure 3.1, the UML notation lacks in different common graphical codes. Neither the use of colors,
which refers to the entity type, nor the size of the elements, which refers to the magnitude of the
entity are specified in UML.
As mentioned in [Eichelberger 2003], partitions within enclosed regions, which obviously refer
to entity partitions, e.g., in packages, are present at subsystems only. Shapes enclosed by contour
introduce multiple confusingly meanings: packages in packages or classes in packages are con-
tained, classes in classes are composed and inner or nested classes which are usually structurally
enclosed are attached by the so called anchor notation (which is defined for packages as well).
Furthermore, the thickness of links usually describes the strength of connections and neither the
meaning of proximity nor spatial ordering of model elements are defined in UML.
In Section 2.1.4, we discussed some alternative notations which are more appropriate than the
UML for some applications. A more pragmatic but also proprietary approach is to apply the
Geon Theory developed by Biederman and Hummel to UML class diagrams. The Geon Theory
aggregates a diagram throughout different layers: Edges from an input image are extracted, these
edges are interrelated by vertices, axes and blobs, geon attributes (aspect ratio, horizontal and
vertical position, size) are attached to the elements, relations like relative orientation or relative
size are then assigned and the individual geons are assembled by respecting external intercon-
nection information. The geon diagram in Figure 3.3 is the direct transformation of the class
diagram shown in Figure 3.2 into geon space. Geon diagrams tend to enforce proximity, simi-
larity and closure among their graphical elements and therefore combine Gestalt theory with the
principles of the grammar of node-link diagrams shown in Figure 3.1. In a comparison between
UML diagrams and the geon equivalent, participants performed faster and better in identification



62 3 FUNCTIONAL SPECIFICATION

Figure 3.2: A UML class diagram to be represented as a geon diagram in Figure 3.3 (from [Ware
2000, p. 256]).

of substructures in geon diagrams and geon diagrams were easier to remember [Ware 2000, p.
255].
The framework of cognitive dimensions [Green and Blackwell 1998] intended to be applied to
graphical user interface artifacts, can also be applied to tools for UML and to the UML itself as
described in [Eichelberger 2003]. In the following, the mapping between cognitive dimensions
printed as italicized terms and UML or tool issues, respectively, will be enumerated: Viscosity
(resistance to local change) and premature commitment (based on early decisions in hand-crafted
layouts) directly map to CASE tools and can be improved by good automatic layout algorithms.
The abstraction level (grouping of elements), consistency and role-expresiveness map to UML
itself, error-proneness and hard mental operations in interpreting diagrams can be reduced by
further standardization also of layout rules and improved versions of UML. The experience of the
software engineer in using UML and the viewpoint to be described by the diagrams affect hidden
dependencies which also should be managed by tools, especially because some of these depen-
dencies might be expressed as invisible hyperlinks specified in UML. Closeness of mapping and
diffuseness/terseness are subject to the individual design as well as subject of discussions about
the notation itself.
As mentioned earlier, our main goal is to improve the diagrammatic notation of UML class dia-
grams, but we do neither want to introduce another modeling framework nor a different kind of
notation. Beside that the UML is fast becoming an international de-jure standard [Kobryn 1999],
introducing changed notations into a standardized and widely accepted method increases error-
proneness, the number of mental operations and influences consistency. Therefore secondary
notation and escape from formalism like introducing colors or respecting extensions to realize
the common graphical codes for node-link-diagrams may lead to confusion. Additionally colors
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Figure 3.3: A geon diagram constructed using a subset of Biederman’s geon primitives to repre-
sent the diagram in Figure 3.2 (from [Ware 2000, p. 256]). Major components of complex data
objects were drawn as geons, architectural links were given as limbs consisting of elongated
geons, minor subcomponents were attached as geon appendices and component attributes were
given as color, texture and symbology mapped onto the geons.

introduce further problems in the case of color-blind users6 or due to different cultural interpre-
tation, e.g., red and green have contradictory meanings in European and Asian cultures. More
generally, in [Schauer and Keller 1998], knowledge about the environment and the culture are
mentioned as required information to find the correct interpretation of an artifact.
From the work in HCI described above and other publications we will now conclude several
rules which are relevant for UML class diagrams from the HCI viewpoint. At a first glance, some
of the HCI rules might repeat items or overlap with rules from graph drawing discussed in Sec-
tion 3.3.2. In fact, this is not surprising, because some rules in graph drawing have been derived
from the perceptional viewpoint and, of course, some aspects from graph drawing might have
influenced HCI as well. Our overall goal in this section is to find a set of principles for UML
class diagrams, which can be deduced from the other disciplines. Therefore, for each discipline,
relevant rules are listed and assembled later in Section 3.3.6 regardless if they seem to overlap
with criteria mentioned in sections before.

• HCI_HIERARCHY: Nodes should be laid out in a top-down fashion in horizontal layers
[Ware et al. 1993]. More generally, this relates to the logical flow in [Petre 1995].

• HCI_EDGES_DIRECTIONS: Arcs should point downward or horizontally on each layer.
Obviously this interrelates with HCI_HIERARCHY. There should be a minimum of up-
ward pointing arcs [Ware et al. 1993]. More generally, this also relates to the logical flow
mentioned in [Petre 1995].

6Obviously, many graphical representations, in particular UML class diagrams, induce problems for blind users.
Textual alternatives were discussed along with input formats in Section 3.2.
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• HCI_LAYER_GRID: Nodes in a layer should be laid out in a regular grid pattern [Ware
et al. 1993]. This also supports grouping or alignment mentioned in [Petre 1995].

• HCI_SPATIAL: Visibility and juxtaposability [Green and Blackwell 1998] can be real-
ized by regarding and enforcing spatial relationships as shown for UML class diagrams
in [Eichelberger 2003]. This was also mentioned as grouping or the use of white space in
[Petre 1995], adjacency or the use of white space in [Noguchi and Tanaka 1998; Purchase
et al. 2001a].

• HCI_CLUSTER: Nesting nodes within nodes should be supported [Ware et al. 1993; Pur-
chase et al. 2001a]. Nested nodes should be laid out within the parent nodes accepting the
same criteria that are used for the parents [Ware et al. 1993].

• HCI_GROUP: Model elements that belong together should be visually grouped [Pe-
tre 1995; Noguchi and Tanaka 1998; Purchase et al. 2001a]. This also relates to
HCI_CLUSTER but groups are distinguished visually by mechanisms for HCI_SPATIAL

while cluster are nodes having a certain shape.

• HCI_PATH_CONTINUITY: Based on the results of Gestalt psychologists, in [Ware 2000,
p. 206] it was remarked that it is more easy to follow and understand smooth continuous
contours instead of jagged ones. This has two direct consequences for graph drawing:
Polyline paths with frequent changes of the direction are hard to follow and curved lines
may simplify the perception of certain paths. Hence, GS_CURVES is preferred over all
kind of straightline drawings and GDR_MIN_BENDS appears to be important.

• HCI_NODES_SYMMETRY: Nodes should be positioned symmetrically, if they have prop-
erties in common or being equal in status [Dengler and Cowan 1998]. More generally, this
relates to the alignment aspect in [Petre 1995] and adjacency in [Purchase et al. 2001a].

• HCI_NODES_CENTER_OR_TOP: Nodes should be placed centrally or nearer to the top of
the layout, if they have special properties or are higher in status [Dengler and Cowan 1998].
More generally, this also relates to the alignment aspect in [Petre 1995] and adjacency in
[Purchase et al. 2001a].

• HCI_NODES_SEQUENCE: Nodes should be positioned linearly, if (it should be assumed
that) the sequence is significant [Dengler and Cowan 1998]. More generally, this relates to
the alignment aspect in [Petre 1995] and adjacency in [Purchase et al. 2001a].

• HCI_MAGNITUDE: The size of elements [Ware 2000] can be used to reflect the magnitude
of the entity as shown for UML class diagrams in [Eichelberger 2003].

Another item in this list could be the replication of parts of the drawing: The lengths of edges
can be shortened, the spacing between edges can be increased, the number of edge crossings
can be reduced and the amount of edges with excessive turns and detours can also be narrowed
when duplicating parts of the diagram. According to [Protsko et al. 1991], replication can help
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achieving clarity but its overuse can lead to tedious complicated searches in the diagram. Ac-
cording to the UML specification, in a class diagram each named element may occur only once
in a diagram due to the uniqueness of the fully qualified name. Hence, relations between those
elements may also occur only once. Therefore, even if replication might be an interesting idea
for adding clarity, it is not allowed in our application domain.
Beside HCI_PATH_CONTINUITY in [Ware et al. 2002] further issues for estimating the percep-
tual and cognitive costs of a diagram to refine usual graph drawing aesthetics were analyzed. The
measurements were collected in the context of the shortest path ps between two given nodes:

• The continuity, also called path bendiness, measured as the sum of angular deviations at
all nodes of ps from the straight line connecting the start and the end node of ps.

• The number of crossings on ps.

• The angle of each crossing on ps to derive the average cosine crossing angle. It is expected
that acute angles are more disruptive than more perpendicular angles.

• The number of branches so that if the total number of branches on ps increases, the reading
of the diagram becomes more difficult.

• The length of ps as the size of the measurement context.

• The total geometric line length of ps.

These values were compared, e.g., to the total number of crossings of the entire drawing. As
a result, HCI_PATH_CONTINUITY was identified as an important factor in perceiving shortest
paths. The total number of edge crossings was not a significant indicator of response time and
the local number of crossings on the shortest path appears to be more interesting. Furthermore,
another important factor seems to be the number of branches emanating from nodes on a path.

3.3.4 Software Engineering
There are two ways of constructing a software design; one way is to make it so
simple that there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies. The first method is
far more difficult.

C. A. R. Hoare

As introduced in Section 3.3.1, decomposition or conceptual readability determine main aspects
of readability. Taking both aspect into account for UML class diagrams, we have to respect
further aspects of object-oriented software engineering. Is therefore the beauty of a diagram,
measured in dimensions of aesthetic criteria, somehow related to the quality the object-oriented
design modeled by that diagram?
One direction of that question is obvious: If a well designed model is laid out by one of the tools
compared in [Eichelberger 2002b] the result is probably a horrible layout. Therefore a horrible
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layout usually does not always imply a poor quality of the design model.
We investigated literature from the software engineering community to find out what criteria
have influence on the quality of an object-oriented model and how these criteria can be mea-
sured. Many publications, e.g., development processes [Jacobson et al. 1999], common software
engineering [Summerville 1996], analysis and design patterns [Gamma et al. 2000] dealing with
object-oriented design, describe commonly agreed methods on how to find classes and relations
and especially how to focus on the relevant aspects of the software system to be modeled.
In [Genero et al. 2000], an overview of current measurements on design aspects was given. Most
of these aspects are closely related to source code used to implement the target system. Source
code related measurements will not be taken into account here, because in the early stages or it-
erations of most software process (at least informal) design documents are produced and source
code is not available.
On the other side, coding-style independent source code metrics [Lorenz and Kidd 1994; Zuse
1998] might be interesting, when diagrams are produced in round-trip engineering and when
synchronizing code with diagrams and v.v.
The following list enumerates criteria which may influence the layout of class diagrams respect-
ing issues from the viewpoint of object-oriented system modeling:

• SE_FORESTS: The depth of inheritance trees introduced in [Chidamber and Kemerer
1994] partially limits the physical dimensions of the drawing. It is known that well-
designed OO systems are those structured as forests of classes, rather than as one very
large inheritance lattice [Basili et al. 1996; Marchesi 1998]. Therefore these trees should
be clearly visible and spatially separated from each other according to HCI_SPATIAL.

• SE_INHERITANCE: The in-degree restricted to inheritance relations should be minimized
as described in [Lorenz and Kidd 1994], e.g., to restrict the use of multiple inheritance.
Hence, the inheritance trees/implementation hierarchies are simplified.

• SE_NUMBER_OF_CHILDREN: The limitation on the number of children introduced in
[Chidamber and Kemerer 1994] relates to the difficulty to modify, maintain and test the
implementation. Usually more testing is required because such classes potentially affect all
of their children. Furthermore, a class with a large number of children may have to provide
services in a larger number of contexts and must be more flexible [Basili et al. 1996].
Therefore the out-degree restricted to inheritance relations should be limited. Hence, the
inheritance trees/implementation hierarchies are simplified.

• SE_CLASS: Despite of obvious countings of class members, different other approaches
have been proposed in [Lorenz and Kidd 1994; Brito e Abreu and Melo 1996; Marchesi
1998; Zuse 1998] to formalize the complexity of classes.
One obvious point is that empty classes that do neither implement any methods nor define
any attributes, are a lack in design quality [Lorenz and Kidd 1994]. They do not add any
functionality except for usually inheriting from superclasses. This is not always that sim-
ple: While design takes progress there might be some classes which have not been fully
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specified so far. This could be marked by ellipses instead of method or attribute signa-
tures to show that these classes will not remain empty. Furthermore, empty interfaces are
widely used as marker interfaces (e.g., Serializable in Java) and should not be treated
like empty classes.
In [Genero et al. 2000], further measurements on class complexity were mentioned: Num-
ber of associations, height of a class within the aggregation hierarchy, number of multiple
aggregations, number of in/out-dependencies and the number of (direct) parts/wholes re-
specting compositions. Furthermore, in [Marchesi 1998], the weighted number of respon-
sibilities as well as the weighted number of dependencies were introduced.
Based on a combined measurement reflecting the different approaches, additional tool-
specific tag-values or a magnitude-related decorative stereotype (see Figure 3.4) can be

class A

i: int

...

...

...

...

...

...

...

...

...

Figure 3.4: A class scaled to the magnitude of its coupling and a magnitude-related decorative
stereotype.

displayed within the class rectangle. The area occupied by classes (HCI_MAGNITUDE)
might be adjusted according to a weighted combination of the metrics, because changes of
the model by a layout algorithm are usually not tolerable.
On the one side, this does not introduce conflicts with the UML, because the area require-
ments of individual classes are not specified. On the other side, this may introduce certain
problems: The layout result appears as an unusual drawing due to the scaling of the nodes.
Furthermore, in early analysis and design phases, classes are not always fully specified and
class size metrics may lead to misinterpretations. Even if also alternative line styles would
be appropriate to reflect the (hidden) complexity, error-proneness (e.g., visual conflicts
with active objects), hard mental operations (by increasing the number of different line
styles) and multiple substandards of the UML would be the consequence of introducing
new line styles or even the stereotype shown in Figure 3.4 as a proprietary extension of the
UML.

• SE_PACKAGE: In [Marchesi 1998], package coupling, in [Genero et al. 2000], the number
of intra/inter-package associations, aggregations and in/out-dependencies were used to de-
fine the complexity of packages and therefore in principle of UML model management ele-
ments. In [Marchesi 1998], the weighted number of responsibilities as well as the weighted
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number of dependencies were mentioned. Similar to SE_CLASS tag-values, stereotypes
(see Figure 3.4) or the magnitude of the package according to HCI_MAGNITUDE might
be used to reflect the complexity. Like SE_CLASS, scaling packages does not induce con-
flicts with the UML, but may also introduce similar problems.

• SE_COUPLING: Measuring coupling of classes and packages is a difficult task due to dif-
ferent viewpoints and definitions [Chidamber and Kemerer 1994; Li et al. 1995; Bansiya
et al. 1999]. An overview of coupling measurements was given in [Briand et al. 1999].
Inheritance coupling is implicitly respected in SE_FORESTS, SE_INHERITANCE,
SE_NUMBER_OF_CHILDREN and obviously present in UML class diagrams by general-
ization edges. Component coupling can be visualized by SE_CLASS and SE_PACKAGE.
Interaction coupling is usually calculated from code (hidden method calls and scattered
coupling) by static type analysis, but by introducing (hidden) dependencies from meth-
ods or attributes to the parameter, return or attribute types, respectively, class-attribute-
interaction and class-method-interaction can be respected in a diagram. This information
also increases the class and package complexity (see SE_CLASS and SE_PACKAGE).
Within packages, intra- and inter-package coupled classes can be visualized by spatial
distribution of classes (HCI_SPATIAL7). Shading or coloring of inter-package or intra-
package coupling seems to be appropriate but this collides with the UML specification and
the results in Section 3.3.3.

• SE_DESIGN_PATTERNS: The use of design patterns [Gamma et al. 2000] might be taken
into account to measure the design quality. Thereby, the design pattern symbol and the
related classes should be positioned in a close vicinity, other connected classes should be
spatially separated from the design pattern collaboration according to HCI_SPATIAL. The
size of the collaboration can be related to HCI_MAGNITUDE.

• SE_RELATIONS: Complexity of associations [Zuse 1998] and other relations could easily
be displayed by applying the node-link-diagram grammar rules in [Ware 2000] but requires
changes to the standardized UML notation. Therefore, HCI_MAGNITUDE does not seem
to be an appropriate representation in UML class diagrams.

• SE_DISCONNECTED: On the one side, classes which are not interrelated to other classes
are sometimes identified as a problem. On the other side, a software engineer might include
e.g., a utility class having static accessors only into a diagram to emphasize that this class
should be used when implementing the software. To reduce the visual complexity of the
diagram, the designer may decide to draw this class without edges rather than showing all
reasonable dependencies.
In the underlying model, which captures all elements and relations of the entire software
project, relations to the disconnected element, which are not displayed in the current dia-
gram, may exist. If such relations are present, they can be seen as invisible dependencies
inducing reasons for a vicinity to other model elements. If no invisible relations to ele-
ments of the current diagram exist, the disconnected model elements should be clearly

7Will be demonstrated along with the UML specific criteria in Figure 3.7
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visible, e.g., at the boundary of the diagram, to emphasize their global meaning and to
avoid misleading interpretations due to a vicinity to other model elements.
In fact, on the one side, this may also lead to misinterpretations considering
HCI_HIERARCHY, because these elements appear on hierarchical levels they do not be-
long to. On the other side, these elements are disconnected and the hierarchy is clearly
induced by connected elements. From this viewpoint, we are convinced that exposing dis-
connected elements on the boundary is a valid layout style.

Even if the whole complexity and history of a project is accessible to a layout tool through the use
of repositories, project metrics [Lorenz and Kidd 1994; Zuse 1998] like application size, staffing
size and scheduling do not have influence on the relation between layout and design quality.
Global class diagram complexity mentioned in [Marchesi 1998] could be taken into account, if
the layout algorithm can be influenced by these measurements.
Of course, many of the effects described by the criteria listed in this section can simply be visual-
ized by introducing alternative notations like mentioned above and in Section 3.3.3. According to
our top-level goal, using the current version of UML without modification, we have to calculate
visualizations with restricted instruments.
The combination of these metrics (see [Zuse 1998] for the mathematical background) leads to
a formalized judgment of UML class diagrams with respect to object-oriented aspects. When
properly incorporating the knowledge of the 9 rules from software engineering into a set of aes-
thetic criteria for the layout of UML class diagrams, a design, which reaches a high judgment in
design metrics, should also have a high judgment respecting UML class diagram layout metrics
on diagrams laid out according to our rules.

3.3.5 Software Visualization (SV)

Nevertheless, a big gap between desired
aspects and the features of current SV
tools was identified.

[Bassil and Keller 2001]

Few studies on engineer, developer and programmer preferences have been conducted so far in
conjunction with issues on the display of diagrams in software engineering. In the last years two
user studies [Bassil and Keller 2001; Koschke 2003] were published which will be taken into
account here. As for the disciplines discussed in the last sections, we will collect some rules to
be considered when our set of aesthetic principles for UML class diagrams will be assembled in
the next section.

• SV_HIERARCHY: Emphasize the inheritance hierarchy as the main structure of the visual-
ization. Of 24 tools surveyed in [Bassil and Keller 2001], the following aspects were men-
tioned in decreasing order of priority: function calls showing complex recursion chains,
inheritance graphs depicting deep inheritance braces, subsystem architecture graphs, in-
heritance graphs for detecting occurrences of multiple inheritance and further aspects of
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function call graphs. The aspects related to visualization of function calls and of inheri-
tance graphs were identified as the most wanted.
Because function calls are less (e.g., as invisible hyperlinks or dependencies) or not rel-
evant to UML class diagrams, hierarchy and a proper display of subsystem architecture
appear as the most interesting aspects. This was suggested in the second study, too.
Furthermore, in [Koschke 2003] trees were identified as a popular layout in software engi-
neering tools. Due to the hierarchical nature of the underlying data it was suggested, that
layout algorithms should be able to distinguish edges: Tree edges, which form the structure
of the hierarchy, and further secondary edges. According to [Koschke 2003] this naturally
applies to UML class diagrams with inheritance relationships as tree edges.

• SV_SUBSYSTEMS: Show subsystem architectures as a separate diagram or, at least, em-
phasize subsystem architectures in a diagram. This directly relates to the results in [Bassil
and Keller 2001] and SV_HIERARCHY.

• SV_POLYMETRIC: Nodes, when drawing graphs for software engineering, can be en-
riched with further semantical features, known as polymetric views of nodes [Lanza 2003].
As shown in Figure 3.5 up to 5 metrics can be visualized at a single node:

Position Metrics (x,y)

Width Metric

Height metric

Relationship

Entity

Figure 3.5: The principle of a polymetric view. (from [Lanza 2003])

– NodeSize: The width and height of a node can render two measurements, whereby
the size of the extent relates to the value of the measurements.

– NodeColor: The color interval between white and black can display a measurement,
whereby the darkness of the color relates to the measurement value. Thus light gray
represents a smaller metric measurement than dark gray (not displayed in Figure 3.5
due to the principle nature of the illustration). Like discussed earlier, color is currently
a proprietary feature in UML and will therefore be considered as an optional feature
only.

– NodePosition: The horizontal and vertical coordinates of the position of a node can
reflect two other measurements. This requires the presence of an absolute origin
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within a fixed coordinate system. Therefore, not all layouts can exploit this dimen-
sion.

Obviously this is a more general approach than our proposition SE_CLASS which there-
fore not only relates to the issues of software engineering but also to known techniques in
software visualization.

Finally, from the viewpoint of software engineers and software visualizers, drawing graphs re-
quires different important features, which are often hard to realize:

The respondents of this research survey raise several issues specific to graph draw-
ing, such as the need for scalable, incremental, and semantic layouts (i.e. layouts that
take the semantics of nodes and edges into account).

[Koschke 2003]

Due to our basic set of requirements, we will try to realize issues of semantic layouts, but scalable
(REQ_SPEED) and incremental layout (REQ_INCREMENTAL_ALGORITHM) will be part of
future work.

3.3.6 Semantic Aesthetic Principles for UML Class Diagrams
These aesthetics and efficiency criteria
stand in contrast to more intuitive crite-
ria concerning the semantics and intended
meanings of graphs.

[Fleischer and Hirsch 2001]

After discussing various influences on the readability of (UML class) diagrams and identifying
60 basic rules from graph drawing in Section 3.3.2, HCI in Section 3.3.3, software engineering
in Section 3.3.4 and software visualization in Section 3.3.5, we are now ready to combine the
knowledge with the structural specifications for class diagrams described in Section 2.1.2. The
result of this section will be a set of 23 criteria assigned to three categories. The principles within
a category will be ordered according to priorities due to our experience. To present these rules,
we will list each individual rule, even if similar basic rules might have been enumerated in the
sections before, we will describe and explain it using a class diagram example and we will give
references to the basic rules from which the more specific UML rule is deduced.
To gain the set of criteria, we will first determine the three categories to be handled differently
by a concrete implementation. Then, for each category, all assigned rules will be listed. Due to
the degree of freedom of elements in UML class diagrams, we can expect that the set of rules
will not be free of conflicts for a certain input graph. Therefore, priorities will be assigned and
the reasons for assigning priorities to individual criteria will be given. After this, a conclusion
on all the rules to be realized by the current version of our implementation, a comparison to
previous work on layout rules for UML class diagrams, visual quality indicators to relate layout
and underlying design as well as issues on validating our set of criteria will be given.
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Aesthetic criteria for UML class diagrams are either mandatory for readability, optional, e.g., due
to variants specified in the UML, or additional user defined features, which might be interesting
to be enforced in certain situations. Mandatory and optional criteria, which, if enabled, have to
be treated like mandatory criteria, should be realized according to the assigned priorities. As
discussed for REQ_USER_OPTIONS, user defined layout constraints outside the UML might be
relevant to additionally improve the readability and understandability of a diagram. These hints
may, like graph drawing constraints, induce conflicts with the basic aesthetic criteria. The user
should be informed about such problems, the conflicting constraints of lower priority should be
ignored and optionally removed from the specification of the diagram.
Of course, all principles should be consistent to the style guidelines or the presentation options
defined in UML like font faces, text alignment or underlining. On some (experimental) optional
criteria, which may introduce conflicts with the UML, this will clearly be indicated.
The foundation of our work is therefore the UML specification itself [OMG 2003c, p. 3-6],
which defines three important kinds of visual relationships: Connection, containment and visual
attachment, where one symbol has to be placed near another one.

Note2

Note1

Note3

subC13

C4

C2

C1

C51..10

b

C3

C6 C7

C8

main()
C9 C10

C12

C11

<<bind>>(int)

T1
<<S1>>

C6

T

Figure 3.6: An example class diagram containing classes in a package, a template, a ternary
association, comments, two association classes and two reflective associations.

Mandatory Aesthetic Criteria

We will now list the UML specific criteria mandatory for the readability of UML class diagrams.

• UML_HIERARCHY: In Figure 3.6 inheritance edges, composition relations, bind
dependencies and the package containment were chosen as (pseudo) hierarchy. This
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admits a clear structure of the drawing, conforms to the default UML layout style and
realizes the basic UML rules for visual relationships as well as SE_INHERITANCE and
SV_HIERARCHY.
The relations in a class diagram can be partitioned according to different rules. Because
programmers and software engineers are used to think in hierarchies (SV_HIERARCHY,
SE_FORESTS, SE_INHERITANCE) to give their projects a certain structure like class,
package, module or containment hierarchies, we recommend to partition the edges into
a set of hierarchical and non-hierarchical edges. Containment relations, denoting the
nesting of elements in other elements, are required to be hierarchical due to the UML
specification. Furthermore, an usual partition would be to regard the inheritance and
realization relations as hierarchical and the other relations as non-hierarchical relations.
Class nesting (by the anchor notation), partly aggregations, compositions, directed
associations and some dependencies may be considered as members of the (pseudo)
hierarchy as well.
According to different viewpoints, a user defined hierarchy may also be appropriate for
individual diagrams.
Beside the basic rules mentioned above, UML_HIERARCHY can be deduced from
GDR_FLOW, GDR_HIERARCHY, HCI_HIERARCHY and HCI_SPATIAL to ensure that
the hierarchy is clearly visible. This rule also partly supports GDR_EDGE_DIRECTIONS,
HCI_EDGES_DIRECTIONS and HCI_NODES_CENTER_OR_TOP (roots of several
hierarchies at the top of the drawing). Dependent on the layout mechanism for individual
layers, HCI_LAYER_GRID might also be supported.
To distinguish visually between hierarchical and non-hierarchical edges,
GDR_MANHATTAN may be applied to the set of non-hierarchical edges opposite
to GS_STRAIGHTLINE for hierarchical edges [Seemann 1997; Noguchi and Tanaka
1998]. We do not incorporate HCI_PATH_CONTINUITY, because of the suggestive nature
of the default UML layout style.

• UML_SPATIAL: In the example drawing in Figure 3.6, the two inheritance trees rooted at
C1, C3 as well as T1/C8 are spatially separated from each other. Furthermore, the elements
of the ternary association C10 up to C12 all elements belonging to the package sub are
grouped together, respectively.
According to HCI_SPATIAL and most of the criteria identified from software engineer-
ing, spatial relations and a two-dimensional node distribution should be respected. El-
ements contained in other elements or collaborations (pattern notation) can be empha-
sized by respecting spatial relations and vicinity. Different hierarchy trees defined ac-
cording to UML_HIERARCHY should be laid out spatially separated (HCI_SPATIAL,
SE_FORESTS). UML_SPATIAL interrelates with GDR_NODES_EDGES and partly with
GDR_DIAGRAM_CENTER.

• UML_SEMANTIC_CLUSTERS: In Figure 3.6, C1 up to C8 are members of the package
sub, C10 up to C12 and the rhomb are members of a ternary association. These classes
are members of separate clusters, the latter ones can be seen as members of an invisible
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cluster.
Package membership, composition notation and invisible clusters like n-ary associations
or patterns lead to an obvious clustering. Classes, in the case of the composition notation
and UML model management elements (packages, subsystems and models) act as visible
bordered clusters. According to the UML, both types of visible clusters induce rectangular
regions, packages additional own a tab. Invisible clusters can be used as mechanisms to
enforce semantical grouping.
Members of a cluster should be located in a close vicinity. UML_SPATIAL and
therefore HCI_SPATIAL have to be respected. This rule arises from GDC_GROUP,
GDR_CLUSTERING, SE_PACKAGE, SV_SUBSYSTEMS, HCI_CLUSTER and
HCI_GROUP.

• UML_MEDIAN: In Figure 3.6, for example C1 is centered above C2 which itself is cen-
tered above C9. This highlights the hierarchical relations.
Especially in hierarchical relations, a parent node should be arranged as close as possi-
ble to the median position of its children. A child node should be located as close as
possible to the median position of its parents. Of course, this may apply to neighbors in
non-hierarchical relations as well.
This rule can be deduced from SE_FORESTS, SE_NUMBER_OF_CHILDREN,
SE_INHERITANCE, SV_HIERARCHY, UML_SPATIAL, HCI_NODES_SYMMETRY and
GDR_SYMMETRY. It partly supports HCI_NODES_CENTER_OR_TOP but not
HCI_NODES_SEQUENCE because UML does not impose an ordering on (child) nodes.

• UML_NODES: To support readability, several issues on the size, the interior and the place-
ment of individual nodes have to be respected. We will start with this general rule for all
nodes and refine it rule for more specialized types like classes or packages.
Except for nested nodes like compositions or nested packages which are not connected by
anchor relations, nodes should not overlap other nodes or edges (GDR_OVERLAP). Fur-
thermore, interior elements of a node should neither overlap other interior elements of the
same node nor the borders of the node. In Figure 3.6 all nodes are laid out properly with
respect to a minimum node size which was chosen arbitrarily for that example.
In principle, the area required by an individual node should be minimized
(GDR_NODE_SIZE, GDC_NODE_SYMBOLS and GDR_CONTOUR_DIFFERENCE)
with respect to the area required by the connected edges and the area occupied by the
interior elements. Templates at classes (e.g., T1 in Figure 3.6) or at patterns should neither
overlap (GDR_OVERLAP) with the class interior (e.g., the contents of the name compart-
ment) nor with edges connected to a class, but some edges might cross the border of a
node, e.g., dependencies to operations.
Nodes on the same hierarchy level should have related (e.g., a similar vertical or hori-
zontal) positions (GDR_HIERARCHY, GDR_SYMMETRY and GDC_GROUP_CURVE),
according to the graphical standard (e.g., top-down, left-right) with which the hierarchy
is drawn. If hyperbolic or radial layout is applied, even if the result then does not fit to
the current default UML layout style, the hierarchy levels are represented by circular-like
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shapes (GDC_GROUP_CURVE).
On the one side, nodes should not be laid out too close to one another. For example,
this can be realized by taking minimum distances between nodes into account. On the
other side, nodes should not be drawn too far apart (GDR_DIMENSIONS_SYMBOL,
GDR_NODE_DISTRIBUTION and GDR_MIN_EDGES) with respect to spatial relations
according to the software engineering rules SE_FORESTS up to SE_RELATIONS. This
aim can be obtained by compacting a drawing or by compressing unused areas.
A common font size similar to GDR_FONTS should be used for interior elements to visu-
ally emphasize elements which belong together.

• UML_CONTAINER (extends UML_NODES): The borders of UML model management
elements (packages, subsystems or models) as well as classes in composite notation (as
shown in Figure 2.10) might be crossed by edges as depicted in Figure 3.6 but not by
visible nodes. A tab of a model management element should neither be crossed by edges
nor be overlaid by nodes (GDR_OVERLAP). Furthermore, edges to a model management
element should not connect to the tab even if this might globally require more drawing
area. The border of a package should enframe the contained elements as close as possible.
For subsystems, minimum sizes to ensure that compartments can properly be displayed,
have to be respected (GDR_NODE_SIZE and GDC_NODE_SYMBOLS). The spatial ar-
rangement of compartments in subsystems is not specified by UML and therefore the shape
of a subsystem can dynamically and polymorphically be selected to improve the readabil-
ity.

• UML_CLASS (extends UML_NODES): Font attributes for classes should be used accord-
ing to the UML notation guide. A general font size should be used for class interior ele-
ments belonging to the same group (e.g., class names, stereotypes) or compartment type
(e.g., operations, attributes, user-defined). The text labels used within a node should be
directed towards the same direction (GDR_LABELS_DIRECTION). Furthermore, the inte-
rior elements should be aligned at least according to the basic UML styleguide, i.e., the el-
ements in the names compartment should be centered, the attribute or operation signatures
should be aligned to the left side, etc. To adjust the aspect ratio of the class rectangles, line
breaks may (automatically) be inserted and the alignment of the subsequent lines should
be adjusted to emphasize grouping.
Similar or equal rules apply to class instances.

• UML_CENTER: The rhomb of the ternary association in Figure 3.6 is centered upon its
attached classes to also emphasize the relation between these elements as suggested by the
default UML layout style.
Centering of individual diagram should also be applied to the ellipse in the col-
laboration notation (SE_DESIGN_PATTERNS) or the junction point of multiple de-
pendencies. This maps to HCI_SPATIAL, HCI_GROUP, GDC_GROUP but not
HCI_NODES_CENTER_OR_TOP.
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• UML_EDGES: As shown in Section 2.2.3, some layout mechanisms do not consider that
all edges, in particular multiple edges between two nodes, should be visible as individuals.
This was maintained in Figure 3.6. To attain readability, different edges should not overlap
(GDR_OVERLAP), this means that every edge should be visible and readable as an indi-
vidual. Of course edges should not overlap nodes (GDR_OVERLAP).
In principle, also GDR_MIN_EDGES belongs to this rule, but optimizing a complex dia-
gram, which contains association classes, hyper edges, comments and ordinary edges with
respect to GDR_MIN_EDGES may lead to conflicts. Therefore, we will introduce this gen-
eral and several specific rules which all map to GDR_MIN_EDGES but induce different
priorities.

• UML_ASSOCIATIONCLASSES (extends UML_NODES and UML_EDGES): An associ-
ation class, specifying features of an association using a class-like notation, is attached
by a dashed line to the association. In Figure 3.6, C2 is connected to the composition re-
lationship between C3 and C5. C6 is attached to the reflective edge from C5 to itself. To
simplify the perception of the relation and an associated class, both should appear in a
close vicinity but not be located too near to either end of the relation [OMG 2003c, p.
3-78]. A location below a non-hierarchial association is preferred due to the default UML
layout style (UML_SPATIAL,UML_SEMANTIC_CLUSTERS).
This rule supports HCI_SPATIAL, HCI_GROUP and GDC_GROUP.

• UML_HYPEREDGES (extends UML_EDGES): Hyperedges, like xor-constraints, as intro-
duced by Figure 2.6 (c), are not shown in Figure 3.6. But it is obvious that the length of
hyperedges should be as short as possible.The connected model elements should be located
in a close vicinity because of semantic reasons and improved readability (HCI_SPATIAL,
HCI_GROUP and GDC_GROUP).

• UML_REFLECTIVE (extends UML_EDGES): In Figure 3.6, two reflective associations
are connected to C5. When reflective relations are handled like other edges by the drawing
mechanism, e.g., it may occur, that a reflective relation is drawn from the left vertical to
the right vertical side of a class and thereby it may cause crossings with other relations
connected to the class as shown in [Eichelberger 2002b]. Depending on the size of the
adornments of a reflective relation, it might be appropriate to draw it at a corner of the
class or somewhere between two different relations adjacent to the class.
Therefore, reflective edges must not overlap other elements and, in particular, it must not
occur that reflective edges overlap each other as in Figure 2.17. Relations between reflec-
tive associations and other model elements like comments or association classes should
not cross other model elements (especially reflective associations, GDR_OVERLAP).

• UML_ADORNMENTS: In Figure 3.6, a directed association to C6 and an aggregation at
C3 are shown. The graphical symbols used to indicate the type of the relation as well as
multiplicities like the one at the aggregation or the names of the reflective associations in
Figure 3.6 are used to specify details on individual relations.
The UML specification refers to all textual and graphical elements, which can be attached
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to a model element, in particual to associations, as “adornments”. Examples are graphical
adornments, like the hollow diamond at aggregations, role adornments or groups of
adornments like end adornments of associations.
Generally, stereotypes, constraints and tagged values may be attached to every model
element. These additional specifications as well as discriminators at inheritance edges
should be clearly assigned to their model elements and should neither overlap other
adornments nor other model elements (GDR_OVERLAP). This, of course, depends on
the strategy which determines the size of nodes, because, if a node is minimized in size
without respecting the requirements of the connected edges, it might be necessary to scale
down the edges and their adornments.
It is desirable that the text labels are oriented to one general direction
(GDR_LABELS_DIRECTION). A general font size (similar to GDR_FONTS) should be
used for edge adornments belonging to the same group (e.g., constraints). Further font
attributes should be used according to the UML notation guide.
The same holds for adornments optionally placed outside the model element, e.g., a
constraint might be given outside the class rectangle. Thereby, these constraints should be
located in a clear vicinity to the invisibly related model element.
Lollies, used to visualize interfaces realized by individual classes, appear as an adornment
to be kept close to the connected class by considering a given minimum distance and the
name of the interface.
To simplify reading, adornments should be compliant to basic relative positioning rules,
e.g., multiplicities may always be placed above an association, the rolename below. Fur-
ther examples are the following rules: The stereotype of an association, if present, should
be placed at top, above the association name, both above the association. Constraints, if
present, should be placed below the association, tag-values below the constraints. If the
association is not drawn horizontally, the multiplicities should be on the left, roles on the
right side. The stereotype, the association name, the constraints and the tag values should
be arranged as described above, but should then be placed at one of the vertical sides of
the association depending on the available space.

• UML_COMMENTS (extends UML_NODES and UML_EDGES): The comments Note1
and Note2 in Figure 3.6 are located in a close vicinity to the connected model elements.
In particular, if comments are connected to multiple model elements, like Note1, the com-
ment should be centered between the connected model elements if possible. Comment
nodes should be respected in package containment as well.
As written in the UML specification, comments should be placed with some vertical or
horizontal offset to emphasize the distinct type of the comment. Therefore, based on
HCI_SPATIAL, alignment to ranks is not always appropriate for comments.
In some tools, like Innovator by MID, information on the editor and the relevant mod-
ification dates of a diagram are displayed in non-UML style at the top left corner as
it is usual for other technical diagrams. Therefore, comments attached to the diagram,
not to any model element, like Note3, should occur at the boundary of the drawing,
(GDC_BOUNDARY) preferable at a position defined in a style guide to avoid mislead-
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ing interpretation based on a vicinity to other model elements.
This rule supports HCI_SPATIAL, HCI_GROUP, GDC_GROUP. In fact, this rule relates
to UML_SPATIAL and UML_SEMANTIC_CLUSTERS.

• UML_DISCONNECTED: According to the UML specific rules discussed above, elements
are placed in the vicinity of their connected model elements. C13 in Figure 3.6, a discon-
nected class, is placed at the border of the diagram and not, e.g., next to C4 or below C9 to
avoid erroneous perception due to nesting or vicinity to other model elements.
Considering SE_DISCONNECTED, disconnected elements (except for comments handled
by UML_COMMENTS), which have invisible relations to other model elements, can be
treated like usual model elements.
According to SE_DISCONNECTED, we prefer the boundary of the graph instead of placing
disconnected elements between related elements in the interior area of the drawing.

• UML_GRAPHDRAWING: As mentioned along with UML_EDGES, GDR_MIN_EDGES

has to be respected for all ordinary edges and paths, also to keep the size of the drawing
small and to simplify the perception of relations.
Fortunately, the diagram in Figure 3.6 can be laid out without edge crossings, but, due to
the complexity of relations, class diagrams usually admit a non-planar drawing. Therefore,
edge crossings cannot always be avoided but they should be circumvented whenever pos-
sible (GDR_EDGE_CROSS).
It is difficult to find a set of graph drawing principles which does not introduce con-
flicts with our UML specific rules, but some can obviously be enumerated: Edges
should not have too much bends (GDR_MIN_BENDS) and especially superfluous bends
should be avoided. The angle between (horizontal) incident edges should not be too
small (GDR_ANGLE). As much as possible, edge lengths should be uniform, in par-
ticular for hierarchical relations (GDR_UNIFORM_LENGTHS). Due to SE_FORESTS, a
generally compact drawing (with respect to UML_HIERARCHY and UML_SPATIAL)
is more interesting than a balanced aspect-ratio (GDR_DRAWING_SIZE) or density
(GDR_DENSITY).

Table 3.2 explicitly shows the priority levels and the dependency relations between individual
UML specific rules introduced above. Five groups of rules can be identified: Criteria for
emphasizing hierarchy and nesting, border and interior specific rules for nodes and visible
clusters, rules for edges and proximity, properties of disconnected elements and rules which
influence the compactness of the drawing as well as the number of edge crossings.
At a first glance, classifying UML_CENTER as a node-related criterion may appear unusual,
but UML_CENTER is intended to enforce a node related placement rather than a relation based
coordinates assignment of the connected nodes, i.e., in this case, the positions of nodes is more
important than optimizing e.g. GDR_MIN_EDGES. Also UML_CENTER is the only rule,
which interferes with other criteria when virtually swapping the priorities of all node related
criteria with those of hierarchy and nesting related criteria. Now, central positioning would
receive a higher priority than structural relevant criteria ensuring the correctness of nesting. This
would conflict with the structural rules of UML.
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Beside the UML default layout, the typical requirements of software engineers lead to
the highest priority for UML_HIERARCHY as the main principle. UML_SPATIAL,
UML_SEMANTIC_CLUSTERS and UML_MEDIAN (on the same priority level as
UML_SEMANTIC_CLUSTERS) enforce hierarchical relations in UML class diagrams and
are assigned to the same group.
From the practical viewpoint of software engineers, the textual information represented in nodes
seems to be of a high importance:

Another respondent complains that aesthetics are underrelated in software visualiza-
tion and he would hope for visualization tools that present good-looking views as
opposed to ones with minimum edge crossings. For instance, he would be happier
if he could read the names of all nodes in a graph rather than have a better layout
according to some abstract criterion.

[Koschke 2003]

This maps to our own experience with UML tools. Furthermore, it was shown in [Purchase et al.
2001a] that the exclusive application of traditional graph drawing criteria is not sufficient for
UML class diagrams. Therefore, we prefer UML criteria over syntactical graph drawing rules
and assigned the group of criteria directly influencing the proper display of the nodes to the next
level of priority.
Considering GDR_MIN_EDGES helps reaching a compact drawing and enforces proximity be-
tween the connected elements. When GDR_MIN_EDGES is realized by a layout algorithm with-
out distinguishing the type of an edge, the proximity of association classes, connected comments
or start and end points of hyperedges cannot be ensured. Therefore, we defined a basic crite-
rion for edges (UML_EDGES) and introduced local levels of priorities for model elements to
be kept in a close vicinity to the connected elements because of semantical reasons. Thereby,
to us, the structural relevance of association classes and reflective edges to a concrete imple-
mentation appear to be more important than the constraints introduced by role names, associa-
tion names, multiplicities or graphical adornments. Because comments are intended to document
parts of a diagram for understandability, we assigned UML_COMMENTS a lower priority than
UML_ADORNMENTS.
Due to the same reason for preferring node criteria over edge criteria, we placed
UML_DISCONNECTED on a higher priority level than UML_GRAPHDRAWING.

Regarding the low priority of graph drawing constraints in our set of aesthetic criteria, we do
not want to express that, e.g., the number of edge crossings is not important for the perception
of the result. Imagine two diagrams, DA and DG showing the same UML class diagrams in two
distinct layouts. If both diagrams are laid out according to all UML specific rules but in DA
more edge crossings or longer edge routes occur, we would prefer DG over DA. Let us now as-
sume that the basic UML diagram contains an association classifier and laying it out according
to our set of rules in a close vicinity to the connected association would induce several edge
crossings in DA. Furthermore, let DG be optimized for edge crossings but without considering
UML_ASSOCIATIONCLASSES at that high level of priority so that, however, the dashed line
to the association class appears as a long non-hierarchical path in the diagram. Then we would
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priority name depends on
5.2 UML_HIERARCHY

5.1 UML_SPATIAL UML_HIERARCHY

5.0 UML_SEMANTIC_CLUSTERS UML_HIERARCHY, UML_SPATIAL

5.0 UML_MEDIAN UML_HIERARCHY, UML_SPATIAL

4.3 UML_NODES

4.2 UML_CONTAINER UML_SEMANTIC_CLUSTERS, UML_NODES

4.1 UML_CLASS UML_NODES

4.0 UML_CENTER UML_NODES

3.5 UML_EDGES UML_NODES

3.4 UML_ASSOCIATIONCLASSES UML_NODES, UML_EDGES

3.3 UML_HYPEREDGES UML_EDGES

3.2 UML_REFLECTIVE UML_EDGES

3.1 UML_ADORNMENTS UML_NODES, UML_EDGES

3.0 UML_COMMENTS UML_NODES, UML_EDGES

2 UML_DISCONNECTED UML_NODES

1 UML_GRAPHDRAWING UML_HIERARCHY, UML_SPATIAL,
UML_COMMENTS

Table 3.2: Priority levels and dependencies among the mandatory UML criteria.
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clearly prefer DA over DG, because DA fulfills the rules described in UML regardless the higher
number of edge crossings. This is compliant to the assignment of priorities to the set of manda-
tory rules.

Optional Aesthetic Criteria

Beside the mandatory criteria introduced above, several optional criteria according to some of
the presentation options in the UML specification might be respected for certain diagrams. The
optional features should be understood as a defined set of features to the layout algorithm which
can be selected, enabled or disabled, preferably as a kind of style guide independent of concrete
diagrams (REQ_USER_OPTIONS).

Note2

Note1

Note3

C8

C2

C13

main()
C9 C10

C12

C11

sub <<bind>>(int)

T1
<<S1>>

C4

C1

C51..10

b

C3

C6 C7
C6

T

Figure 3.7: Figure 3.6 redrawn to emphasize spatial distribution. C2 and C8, the only classes
which are inter-package related, have been moved towards a separate area, which is re-
served for inter-package coupled classes. Subsequent displacements were required to fulfill
UML_MEDIAN and GDR_MIN_EDGES.

• UML_COUPLING: In Figure 3.7 ideas from HCI and software engineering were combined
to focus on coupling of package memberships. C2 and C8 are connected to elements out-
side the package sub and were therefore spatially separated in the drawing. An optional
extension to the default UML layout style, coupling and inter/intra-package class relations
can be pointed out by spatial relationships and vicinity.
To emphasize SE_COUPLING and SE_PACKAGE, the rules for UML_SPATIAL,
UML_NODES and UML_CONTAINER must be relaxed.
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Even if UML_COUPLING does not conform to the default UML layout style, it influences
the display of hierarchies and therefore receives a priority directly below UML_SPATIAL

but more than UML_SEMANTIC_CLUSTERS or UML_MEDIAN.

• UML_JOIN: Inheritance relations, aggregations and compositions should be joined as de-
scribed in [OMG 2003c] wherever possible. This admits a kind of orthogonal layout for
hierarchical relations: All children are connected to a horizontal bar which then is linked
to the parent class. The adornments at the parent side of the relations are shown only once.
On the one side, if, as suggested above, GS_ORTHOGONAL is used for non-hierarchical
edges and GS_STRAIGHTLINE for hierarchical edges, this criterion does not support the
visual separation anymore. On the other side, if this criterion is applied, possibly depen-
dent on the hade of the edges, it may have a positive impact on the readability and on the
aspect-ratio (UML_GRAPHDRAWING via GDR_DRAWING_SIZE).
If this criterion is enabled, the sequence of edges reaching the same side of the nodes
connected to the same join bar may be considered as illustrated in Figure 3.8 to increase

(b)(a)

Figure 3.8: As illustration only: (a) arbitrary sequences (b) ordered sequences at joins.

regularity and therefore readability.
If enabled, the priority of UML_JOIN is the lowest in the group of hierarchy criteria, be-
cause UML_JOIN has influence on the display of hierarchies.
The question remains, if all hierarchical edges (of one kind, e.g., inheritance, aggrega-
tions, etc.) should either be drawn in shared or separate target style to gain uniformity, or,
if, similar to UML_HIERARCHY, certain edges should be selected to appear in shared or
separate target style. This might also be answered by an appropriate user study.

• UML_SIZE_NODES: Because rules to determine the size of nodes are not explicitly given
in the UML, we also can take scaling according to some reasons into account. Thereby, the
visible size of a node is used to reflect the magnitude, the importance or the complexity
of the node via HCI_MAGNITUDE, SE_CLASS and SE_PACKAGE. This is a realization
of GDC_IMPORTANCE or GDC_NODE_SYMBOLS with respect to software engineering
and a partial implementation of SV_POLYMETRIC.
This criterion receives the lowest priority in the group of node criteria because it is an
optional rule from outside UML but influences the display of nodes.
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• UML_SIZE_EDGES: In HCI, the line thickness is used to express the magnitude or the im-
portance of an edge (HCI_MAGNITUDE). A similar principle to SV_POLYMETRIC might
be applied to implement SE_RELATIONS. Like the size of nodes, the thickness of edges
is not explicitly specified in the UML, but, as mentioned along with SE_RELATIONS this
might require changes to the UML itself.
This criterion receives the lowest priority in the group of edge criteria because it is an
optional rule from outside UML but influences the display of edges.

• UML_EDGECROSSING_SYMBOL: Mark edge crossings by a small semicircular jog as it
is usual in electrical circuit diagrams [OMG 2003c, p. 3-69]. This indicates that the paths
do intersect.
UML_EDGECROSSING_SYMBOL does not change the arrangement but is a cri-
terion based on the UML specification. Therefore, its priority is greater than
UML_GRAPHDRAWING but it acts as the UML criterion with lowest priority.

Both UML based criteria, UML_JOIN and UML_EDGECROSSING_SYMBOL, appear in the
UML specification as presentation options. Therefore, we have made a decision for separate
target style and no crossing symbol in our mandatory UML specific criteria. From the personal
point of view, one might see a higher relevance, e.g., in UML_JOIN and prefer shared target
style over separate target style as the default. This is left to user decision to be expressed by
selecting appropriate options of the layout algorithms according to personal preferences.
Obviously, applying UML_COUPLING, UML_SIZE_NODES or UML_SIZE_EDGES

has a negative impact on GDR_DRAWING_SIZE, GDR_NODE_DISTRIBUTION,
GDR_NODES_EDGES, GDR_BALANCE_EDGES and GDR_CONTOUR_DIFFERENCE.

User Defined Aesthetic Constraints

In the description of REQ_USER_OPTIONS it was mentioned that certain user defined con-
straints might be appropriate to represent hints to the layout algorithm based on facts which
cannot or should not be resolved from software engineering diagrams. In contradiction to the
mandatory and optional UML specific criteria introduced above, user defined constraints are
intended as hints which might be respected if no conflicts arise from their application.

• UML_CONSTRAINT_SEQUENCE: UML does not impose sequences on the display of
nodes or edges in a diagram. In certain situations, e.g., if elements on the same level can
emphasize an important sequence in the execution, it might be appropriate to display them
in a given sequence. Thereby, aspects of the dynamic model might be reflected. Yet, to
enable this feature, somehow additional information on sequences has to be provided.
This rule is related to HCI_NODES_SEQUENCE.

• UML_CONSTRAINT_VICINITY: Beside specifying visible edges according to the UML
specification, hidden relations can be used also to enforce the position or the vicinity of
several nodes, e.g., of comments or disconnected classes.
This rule is an aspect of UML_SPATIAL.
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Both optional constraints may help in generating a drawing which carries more but also unstan-
dardized information. Therefore, to not disturb the requirements induced by the UML specifica-
tion, we have to assign them to the lowest priority level. UML_CONSTRAINT_SEQUENCE and
GDR_EDGE_CROSS as well as UML_CONSTRAINT_VICINITY and UML_HIERARCHY, if
hierarchical relations are used to realize aspects of UML_CONSTRAINT_VICINITY, can induce
conflicts. Therefore, UML_CONSTRAINT_SEQUENCE and UML_CONSTRAINT_VICINITY

are assigned to the same priority leven than UML_GRAPHDRAWING and concrete precedences
are left to the preferences of the user.

priority rule restrictions for realization
6.4 UML_HIERARCHY

6.3 UML_SPATIAL not enforced on (sub)trees
6.2 UML_COUPLING

6.1 UML_SEMANTIC_CLUSTERS

6.1 UML_MEDIAN

6.0 UML_JOIN deferred to future work
5.4 UML_NODES

5.3 UML_CONTAINER tab conditions not guaranteed
5.2 UML_CLASS

5.1 UML_CENTER

5.0 UML_SIZE_NODES

4.6 UML_EDGES not guaranteed
4.5 UML_ASSOCIATIONCLASSES

4.4 UML_HYPEREDGES

4.3 UML_REFLECTIVE at corners of classes only
4.2 UML_ADORNMENTS predefined relative text positions
4.1 UML_COMMENTS not complete
4.0 UML_SIZE_EDGES via plug-in mechanism, no default plug-in
3 UML_DISCONNECTED

2 UML_EDGECROSSING_SYMBOL

1 UML_CONSTRAINT_SEQUENCE deferred to future work
1 UML_CONSTRAINT_VICINITY deferred to future work
1 UML_GRAPHDRAWING GDR_EDGE_CROSS, GDR_MIN_BENDS

GDR_MIN_EDGES are considered

Table 3.3: Priority levels of all UML specific criteria and restrictions for our concrete realization.
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Figure 3.9: Figure 3.6 drawn by SugiBib: Containment, inheritance edges and dependencies were
considered as pseudo-hierarchy. Comments are currently not fully supported. In this figure, T1
was not placed at a median position over C8 due to several area restrictions at clusters.

3.3.7 Aesthetic Conclusions
Essential to algorithmic graph layout is a set of rules that encode layout ob-
jectives. How these rules are related to inferences drawn from the graph by
human observers is a largely unexplored issue. Thus, success or failure by al-
gorithmic standards is only uncertainly related to perceptual effectiveness of
the resulting layout.

[Dengler and Cowan 1998]

In this section we made an exhaustive study on aesthetics for general diagrams and UML class
diagrams. We have collected 26 structural and 11 semantic rules from graph drawing literature,
11 principles from HCI, 9 issues on software design and 3 requirements from software visual-
ization. This information was then compiled into a unique set of 16 mandatory, 5 optional and 2
facultative user related rules for UML class diagrams.
In this section we will first enumerate, which criteria will be realized by our concrete implemen-
tation. Then we will review other approaches to UML specific layout rules, highlight relations
between software design and diagrams and finally discuss issues on validating UML specific
layout criteria.

A Concrete Realization

The complete list of our UML specific rules sorted according to individual priorities is shown
in Table 3.3. REQ_COMPLETE_UML as well as the priorities assigned to the individual rules
can act as a primary guideline for a realization. Unfortunately, due to time restrictions, it was not
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possible to consider all UML specific rules for our prototype. Therefore, we will limit ourselves
to the rules and their individual restrictions mentioned in Table 3.3.
As an exception to the guideline on priorities, the optional rules UML_SEMANTIC_CLUSTERS

and UML_SIZE_NODES (and thereby the basic mechanisms of UML_SIZE_EDGES) were
realized as an experiment for [Eichelberger 2002a; Eichelberger 2003]. According to
REQ_COMPLETE_UML we focused on proximity of model elements instead of UML_EDGES.
Furthermore, we deferred the presentation option UML_JOIN as well as the user constraints
UML_CONSTRAINT_SEQUENCE and UML_CONSTRAINT_VICINITY to future work.
Even if our implementation is currently evolving and several aspects have not implemented or
the implementation was not finished so far, the automatic drawing of Figure 3.6 displayed in
Figure 3.9 appears to be promising.
As introduced in Section 2.2.2 and discussed in Section 2.2.3, several basic algorithms can be
tailored for UML class diagrams. Due to the high priority of UML_HIERARCHY, currently the
hierarchical Sugiyama algorithm appears to be the best choice. By extending the basic Sugiyama
algorithm, e.g., also nesting of nodes (UML_SEMANTIC_CLUSTERS) can be considered. Other
basic graph drawing algorithms may be configured by constraints to produce hierarchical draw-
ings as well. But in an application domain, in which further drawing rules like our aesthetic
principles define the readability of the result drawing, a basic algorithm ensuring the most rele-
vant aesthetic principles seems to be more appropriate.

Related Work

In [Andersson 1998], the layout features of the CASE tool Rational Rose8 were dis-
cussed but unfortunately that paper is more an overview on the application of gen-
eral graph drawing algorithms to the problem of drawing class diagrams than an
analysis of tool specific issues. The following aesthetic criteria were listed, but nei-
ther related to the algorithms nor to the layout mechanism implemented in Rational
Rose: GDR_EDGE_CROSS, GDR_SYMMETRY, GDR_NODE_DISTRIBUTION, GDR_FLOW

(on generalizations), GDR_MIN_BENDS, GDR_DRAWING_SIZE, GDR_MIN_EDGES and
GDR_OVERLAP.
Three studies on user preferences for UML class diagrams have been described in [Purchase et al.
2001a; Purchase et al. 2001b; Purchase et al. 2002]. The subjects to be investigated in all stud-
ies were undergraduate students. The following general graph drawing rules have been taken
into account in [Purchase et al. 2001b]: GDR_MIN_BENDS, GDR_NODE_DISTRIBUTION,
GDR_UNIFORM_LENGTHS, GDR_FLOW, GDR_ORTHOGONALITY, GDR_MIN_EDGES

and GDR_SYMMETRY. A different set has been analyzed in [Purchase et al. 2001a]:
GDR_MIN_BENDS, GDR_MIN_EDGES, GDR_ORTHOGONALITY, GDR_DRAWING_SIZE,
GDR_LABELS_DIRECTION and GDR_FONTS.
Referred as secondary notation features, two additional rules have been investigated in [Purchase
et al. 2001a]:

8http://www.ibm.com/software/rational/
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• OTHER_JOIN_INHERITANCE: Apply shared target style for inheritance relations9 only
as a partly realization of the presentation option specified in the UML.

• OTHER_DIRECTIONAL: Arcs should be labeled with two relationship labels and direc-
tion indicators, rather than one. This might be an improvement to the UML notation, espe-
cially if associations span over a long distance or over different levels, if present.

The summarized results of that work show that the common traditional graph drawing criteria
are neither sufficient nor appropriate to be applied without considering further semantical issues
to diagrams, in which readability highly relates to the semantic of the diagram rather than to syn-
tactical features only. In [Purchase et al. 2001b] the evaluation produced no significant results or
they were difficult to interpret reasonably and consistently.
For most algorithms tailored to UML class diagrams, aesthetic issues are neither described nor
analyzed. But in both topology-shape-metrics approaches from the graph drawing community
described in Section 2.2.3 the aesthetic features of the algorithm were mentioned and relations to
the individual algorithmic steps were given. Despite the result of user studies, both highly relate
to traditional graph drawing rules and realize only parts of the UML specification.
GoVisual [Gutwenger et al. 2003a] was implemented with respect to the following aes-
thetic principles: GDR_EDGE_CROSS, GDR_MIN_BENDS, GDR_LABELS_DIRECTION,
GDR_HIERARCHY (on generalizations) and OTHER_JOIN_INHERITANCE. Furthermore, two
new rules were defined:

• OTHER_HIERARCHY_NESTING: Avoid the nesting of class hierarchies, i.e., a class hi-
erarchy is not enclosed by a circle in the undirected sense of arcs of a different hierarchy

• OTHER_COLORS: The various class hierarchies are marked by different colors and the
generalizations also highlighted by color.

As argued in Section 2.1.3, the use of colors in UML is not specified prior to UML version 2.0.
Therefore, the use of colors to highlight hierarchies, package containment (a non-standard option
in our implementation) or other semantical groups of model elements depends on the features of
the tool and on the preferences of the user. In general, the use of colors is currently a proprietary
option for drawing UML diagrams.
In jarInspector/yWorksUML [Eiglsperger 2003], the class diagram layout problem was de-
fined as an embedding according to the following aesthetic criteria: GDR_OVERLAP,
GDR_FLOW, OTHER_JOIN_INHERITANCE, GDR_EDGE_CROSS, GDR_MIN_BENDS,
GDR_MIN_EDGES and GDR_DRAWING_SIZE.
Beside user studies and concrete layout algorithms, mostly reusing traditional aesthetic rules, to
our knowledge so far only little work has been done on a complete set of aesthetic criteria for
UML class diagrams. The following rules for UML class diagrams have been listed in [Bernhart
2001]:

9At a first glance, this criterion seems to repeat UML_JOIN. In fact, OTHER_JOIN_INHERITANCE is a partial
realization of the presentation options defined by UML. This restricted version is often mentioned in literature.
Therefore, an own name for that criterion was introduced here.
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• Clusters should have an ideal size of 7.5× 7.5cm, the number of the cluster members is
restricted to 4 (where it does not becomes clear if the author means members or types of
members) and non-cluster diagram elements are mapped to clusters having no contained
elements to be treated equally. The clusters should be positioned according to the number
of contained elements, where the cluster having the highest number of members should be
positioned in the upper left corner while the cluster having the largest degree should be
positioned in the center of the drawing.

• The number of elements in user-defined clusters should be inversely proportional to the
relevance of the contents of the clusters.

• Cluster relations should be drawn in orthogonal style (GS_STRAIGHTLINE).

• Compositions, aggregations and generalizations should be drawn hierarchically
(GDR_HIERARCHY). Additionally, they should be drawn in joined orthogonal style but
they might be drawn directly when the angle of the edge respecting the horizon is between
25-30 degrees depending on the preference of the user.

• The number of edge crossings should be minimized (GDR_EDGE_CROSS).

• The lengths of edges should be short (GDR_MIN_EDGES).

• The aspect ratio of the drawing (GDR_DRAWING_SIZE) is required to be 3:2, because
it relates to the size of DIN A4. Furthermore, the drawing space should be partitioned
into 6 horizontal and 4 vertical ranks. Obviously, this does not take into account other
international paper sizes like legal, letter, DIN A3 or larger sizes, which also might be
handled by a printer.

Compared with Section 2.1.2 and the UML specification, many elements like subsystems, asso-
ciation classes, comments, higher associations, constraint-hyperedges are not neither discussed
in [Bernhart 2001] nor in the other work mentioned above. Furthermore, some rules obviously
introduce illegal restrictions, some rules cannot be applied due to missing precision and some
rules introduce contradictions.
To our knowledge, no other work on UML class diagram aesthetics compiled an exhaustive set
of rules, which is founded on other disciplines involved in drawing diagrams and captures syn-
tactical as well as semantical aspects defined by the UML. Therefore, as done before, it is valid
to call our set of rules unique.

Layout and Design

If a layout algorithm respects at least all of our mandatory UML specific criteria listed in Sec-
tion 3.3.6, it should produce a readable diagram. According to Section 3.3.4 the following (in-
complete) list of indicators can be seen as warnings to highlight design problems:

1. Huge inheritance/aggregation hierarchies (SE_FORESTS and UML_HIERARCHY) can
simply be identified in a class diagram. As an example, the Java library (version 1.4.2)
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consists of more than 4000 classes and the maximum height of the inheritance tree is 9
according to the rules in [Chidamber and Kemerer 1994].

2. Many classes at the borders of a package, few classes in the center, when
UML_COUPLING is enabled, imply coupling problems (UML_SPATIAL).

3. Many children in hierarchy relations signal a lack in the class structure, but when refac-
toring these classes the inheritance hierarchy may grow (UML_HIERARCHY).

4. A high percentage of the classes occupying relatively large areas, especially when
UML_SIZE_NODES is enabled: There might be a problem with the assignment of
responsibilities to that classes and a problem of class complexity. This also affects
GDR_DRAWING_SIZE in UML_GRAPHDRAWING.

5. Many inter-package-relations, fewer intra-package-relations: The classes of such a
package provide more services to classes outside that package than to the members
of that package. This is a problem of coupling and can be identified in a class dia-
gram, due to UML_SEMANTIC_CLUSTERS, but especially via UML_SPATIAL when
UML_COUPLING is activated.

6. A class with a high number of outgoing relations indicates that it depends too much on
other classes. This again is a problem of assigning responsibilities to a set of classes. It
is partially visible via UML_HIERARCHY, especially if container relations like aggrega-
tions, compositions or associations are member of the pseudo-hierarchy.

7. Cross-relations between independent trees of the pseudo-hierarchy indicate a low
use of common services or attributes in top level classes (UML_HIERARCHY and
UML_SPATIAL).

8. Relations of a class cross the same package border(s) in direction of two different
hierarchical layers indicate an inappropriate modularization. Such a class might be refac-
tored to act as a member of the connected package.

9. Missing or inappropriate hierarchies appear in hierarchical layout style as a one-layer
layout. Figure 3.10 depicts two variants of the same class diagram, drawn in hierarchical
fashion as one single layer in (a) and in a non-hierarchical style in (b). On the one side,
Figure 3.10 (b) appears to be more appropriate according to traditional graph drawing aes-
thetics. By placing C1 below C2, a not intended (connected) hierarchical level is introduced
in contradiction to HCI_HIERARCHY. In a larger diagram, this may lead to a number of
hard mental operations when the user searches for a non-existing hierarchy. On the other
side, the hierarchical style, as depicted in Figure 3.10 (a), can indicate a missing or inap-
proriate hierarchy. This also reflects the priority of the UML criteria related to hierarchy
over those of UML_GRAPHDRAWING.

10. Empty classes are usually a design problem and should not occur except for marker
interfaces, utility classes or empty classes in incremental design, which can be marked
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C1 C2 C3 C1 C2

C3

(a) (b)

Figure 3.10: Layout of a class diagram, which does not admit a hierarchy, (a) applying the hi-
erarchical layout approach, (b) using a non-hierarchical layout approach like the toplogy-shape-
metrics method.

for example by ellipses. These exceptions were discussed along with SE_CLASS and
SE_DISCONNECTED in Section 3.3.4.

If only layout issues like those mentioned in Section 3.3.6 are respected to measure the quality of
a diagram, the design influences the layout, but a bad design does not automatically admit a bad
drawing. Hence, a bad design does not automatically lead to lower metric values in the layout
metrics. If there would be commonly agreed limits (always dependent on concrete project sizes
like the overall number of classes, modules, etc.) for the design metrics listed in Section 3.3.4,
the indicators discussed in this section might be used to judge the design quality of a diagram.
Implicitly, all these indicators also affect the area occupied by the whole drawing or its aspect
ratio Therefore a better design would probably result in a smaller drawing area and in a better
layout metric value [Eichelberger 2003]. Hence, there is a relation between quality and layout
which is expressed in certain layout situations: The size of the drawing compared with alternative
designs and the values of a composed design metric or a combined layout-design metric appear as
an appropriate measurement technique. Applying a non-UML marking technique, like shading or
coloring to highlight parts of the drawing according to the design indicators, would spot model
elements and relations to be redesigned. Alternatively, classes could be flagged by additional
(decorative) stereotypes like the one described for SE_CLASS.

Validation

So far only little work has been done on validating aesthetics in graph drawing and related dis-
ciplines. To our knowledge, [Batini et al. 1985] was the first work which related graph drawing
with aesthetic principles based on issues of cognitive psychology. In the following time there
was little work in that field. On general graphs, Purchase started in 1996 with different user stud-
ies [Purchase et al. 1996; Purchase 1997; Purchase et al. 1997; Purchase 1998; Purchase 2000].
Specific to UML class diagrams only the studies described in [Purchase et al. 2001a; Purchase
et al. 2001b; Purchase et al. 2002] were published. As regretted in [Ware et al. 2002], much more
experimental work in this area could be done: More controlled experiments and a greater range
of aesthetics were suggested.
Unfortunately, our set of UML specific rules is not validated by a user study. Respecting the large
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degree of freedom in drawing a class diagram and the number of rules presented in Section 3.3.6,
a user study and its evaluation would be a much harder task than the studies mentioned so far.
Furthermore, we are of the opinion that a user study should not rely on students only. Seventy
student volunteers, which were not generally proficient with UML, participated in the study de-
scribed in [Purchase et al. 2001a]. To make the study subjects familiar with UML, in [Purchase
et al. 2001b] a tutorial on UML class diagrams and notation was made available to the students
as an introduction.
Even when teaching students more than the basic issues of the different diagrams in UML, usu-
ally much knowledge and experience in general software engineering is missing. Drawing a
UML class diagram requires more than producing a fancy figure. It requires to be able to under-
stand the problem to be specified, to select the elements appropriate to the specific solution and
to distinguish between (abstract) design and (concrete) implementation. Similar experiences on
other kinds of diagrams were described in [Petre 1995].
Therefore, we believe that if it is possible to design a user study and to be ready to evaluate the re-
sults respecting the syntactical and semantical issues of UML class diagrams, software engineers
and practitioners should be invited to act as subjects of the study. This can be seen as the real
world task mentioned as a future tendency in [Purchase 2004]. From personal communication,
we know that many colleagues would be interested in participating in such a study. Of course,
as a control group, students after a beginners course and/or after a course for advanced students
ought to be considered, too.
Additionally, for analyzing user preferences of UML class diagrams with respect to the differ-
ent features and our aesthetic criteria, at least tool support based on CASE tool file formats or
repositories is desirable. We will discuss the foundations of such a program replacing rulers and
manual tools as an application of our framework in Section 5.1.
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4 The Layout Algorithm

After introducing UML class diagrams, basic techniques from graph drawing and a general func-
tional specification for drawing UML class diagrams in the last chapters, we will now outline
basic algorithmic and architectural issues of our layout algorithm and its implementation. This
will prepare the description of details on the algorithm in the remaining chapter.
We will first introduce the process flow of our layout algorithm in Section 4.1 and the graph
model, a mapping of UML class diagrams to graphs, in Section 4.2. Then the graph model is
translated into appropriate definitions to be used by the pseudo-code algorithms, which will be
used to explain the algorithmic details. In the 7 following sections, the macro steps and the as-
signed algorithmic steps will be described in detail. At the end of each section, a short conclusion
will be given, in which also briefly the theoretical complexity of the macro step will be approxi-
mated. A final section will review the algorithmic issues of this chapter.

4.1 SugiBib – Just Another Hierarchical Algorithm?
I do not repeat my tactics but rearrange
them to circumstances in an infinite vari-
ety of ways.

Sun Tzu

From our discussion in Section 3.3.6 we know that, respecting different viewpoints, a hierar-
chy determined according to the user’s needs, induces the basic structure of the layout result.
Combining this fact with the basic requirements from Section 3.1, it is suggested to tailor an
algorithmic graph drawing approach instead of a declarative approach. More precisely, because
it is the only basic algorithm which directly supports hierarchical edges, we will concentrate
on the hierarchical approach. Instead of starting with a completely new algorithm, we will take
the Sugiyama algorithm as foundation and consider further experience from the “Seemann algo-
rithm” outlined in [Seemann 1997]. But we have to extensively modify the known algorithms to
meet our requirements.
The basic algorithm in [Seemann 1997] consists of the following steps:

1. Remove reflective edges and insert them as attributes into the connected classes.
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2. Compute the inheritance/realization subgraph and guarantee a virtual root in the case of a
forest.

3. Remove association edges and nodes which are connected by association edges only.

4. Calculate the rank assignment.

5. Reduce the number of edge crossings.

6. Perform the “incremental extension” by successively reinserting the nodes and edges re-
moved in step 3 and assigning these nodes to ranks.

7. Compute the sizes of the nodes, calculate the positions of the nodes due to inheritance
edges as described in [Sugiyama et al. 1981; Gansner et al. 1993], prepare the orthogonal
drawing of the associations and calculate the positions of the edges.

By temporarily removing the parts of the graph which cannot be used as input of an usual hierar-
chical layout algorithm and by reinserting these elements at that point of time when the algorithm
is able to work on that information, the hierarchical drawing idea of Sugiyama can be reused and
applied to UML class diagrams. This algorithm invented the technique of incrementally extend-
ing the graph in step 6 by reinserting removed nodes and edges.
As mentioned in [Eiglsperger 2003, p. 1], the force directed and the hierarchical approach are
extremely successful in practice, because they produce fairly good results, are extensible and it
seems that both are easy to implement. Therefore, the choice of a hierarchical algorithm seems
to be valid. Beside the fact that different sophisticated model elements, which might be used in a
class diagrams, are missing1, there is some criticism on that approach.

• A hierarchical algorithm runs into problems if the input graph does not provide an appro-
priate set of hierarchical edges. In the worst case no hierarchical edges are present, because
the extensive use of inheritance is discouraged in software engineering. Furthermore, as
noted in [Eiglsperger 2003, p. 31], drawing inheritance hierarchies as main skeleton of a
UML class diagrams requires that the user prefers GDR_FLOW over all other criteria.
This is true for the basic algorithm as described above, but as discussed in Section 3.3.6,
inheritance relations are not the only kind of relations which can be taken into account
when deducing an appropriate hierarchy. In particular, aggregations or compositions can
be respected when determining the members of a pseudo-hierarchy, because these edges
should be preferred over inheritance relations from the software engineering viewpoint.
Furthermore, we may have to remove cycles by applying an appropriate algorithm, be-
cause such a pseudo-hierarchy, retrieved from semantic principles only, is not guaranteed
to be an acyclic graph required as input by the rank assignment.

• Most traditional edge crossing minimization techniques described in [Sugiyama et al.
1981; Gansner et al. 1993] work on two adjacent layers. For n-layer drawings, often a

1Please remember that the algorithm was presented in 1997 and UML version 1.1 was released as an OMG
standard in November 1997.
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2-layer algorithm is applied by successively sweeping up and down the ranks of the hierar-
chy. This may lead to edge crossings which are avoidable from the perspective of the user.
Usually, edge crossing minimization algorithms consider one type of edges only and there-
fore, the non-hierarchical edges are not considered. This may lead to additional avoidable
edge crossings and further long-span edges will occur in the drawing. Hence, an extended
crossing number calculation or more appropriate crossing reduction heuristics are needed.
Then, the rank assignment can be extended by a simplified “incremental extension” to cal-
culate the layer assignment of all nodes at once. Determining individual positions for the
nodes to be reinserted as in the original “incremental extension” is not required anymore,
because this is done implicitly by the edge crossing reduction.

• Reflective edges in [Seemann 1997] are handled by transforming them to attributes in the
connected classes. This transformation changes the underlying model of the class diagram,
but, as discussed in Section 2.1.3, this is not allowed to be done by a layout algorithm.
Either we have to respect loops and cycles in the whole implementation or we have to hide
these edges somehow from the main algorithm.

The first implementation of [Seemann 1997] was described in [Eichelberger 1999] as an instanti-
ation of a generic graph drawing framework called SugiBib. Our extensions and the implementa-
tion of our algorithm will also rely on the basic of that work but on a completely revised version
of the framework.
To illustrate the individual steps of our algorithm, a concrete example and the individual mod-
ifications performed by the algorithm will be displayed as incremental changes applied to Fig-
ure 4.1. Figure 4.1 shows the input graph created by an arbitrary mechanism from Figure 2.9.
The figures derived from Figure 4.1 should be seen as an instructive help, not as a complete in-
troduction into the graph model. Details on the graph model will be given in Section 4.2.

g::G g::Eg::NgGAlgSAlg enc. H

Figure 4.1: The input graph created by an arbitrary reading mechanism taking only the structural
and semantical information in Figure 2.9 into account. Initially given coordinates for incremental
layout are ignored.

In Figure 4.1 all names are shortened to obvious abbreviations due to space limitations2, the
package is reduced to its base node and the containment is implicitly given by fully qualified
names. According to an input convention of SugiBib to be described in Section 4.2, the associ-
ation class is represented by an usual class splitting the connected association into two distinct
edges. The association class H is internally flagged as an association class and the connecting line
is not specified.

2Due to space limitations, hyperedges and disconnected nodes are not illustrated by the example.
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5

4 4

2 31321

Figure 4.2: Transforming a set of nodes into a composite node and back to individual nodes.

Until layers and coordinates are not assigned by the algorithm, we will assume a simple 1-layer
left-to-right drawing algorithm which produces the example drawings.
To guarantee the close vicinity of selected nodes, a set of nodes can be transformed into a com-
posite node by mapping the edges of the individual nodes to the composite node and v.v. as
depicted in Figure 4.2. Hence, association classes or comments, which have to be kept in a close
vicinity with other nodes, can be treated by the implementation as usual nodes and expanded
when neither the vicinity nor the following layout steps will be disturbed.

S1: Prepare the input graph and ensure consistency. The containment of nodes, given by
fully qualified names, is additionally represented as invisible edges. Natural clusters like
n-ary associations are retrieved and, as an optional operation, a relative scaling value can
be attached to nodes and edges to prepare UML_SIZE_NODES or UML_SIZE_EDGES.

S2: Order the nodes and edges according to semantical issues based on fully qual-
ified names. This step releases implicit dependencies on the sequence of def-
initions of the model elements between the input and the layout result. Fur-
thermore, this step provides a simple structural and topological alignment to the
mental map [Misue et al. 1995] of the user due to a deterministic normaliza-
tion. Therefore, it basically supports REQ_INCREMENTAL_ALGORITHM and prepares
REQ_DETERMINISTIC_ALGORITHM.

S3: Identify a pseudo-hierarchy by basic user preferences, heuristics or by considering a user
defined hierarchy. This can simply be done by incorporating all edges belonging to a certain
preselected group, e.g. inheritance edges, anchor relations, aggregations, etc. Identifying
certain rules for heuristics, which automatically select edges for the pseudo-hierarchy ac-
cording to the structure of the input graph, would require a detailed user study. Therefore,
we mention this idea here only and will defer it to future work. Respecting a user spec-
ified hierarchy is then a tribute to interactive, diagram specific layout. Step S3 prepares
UML_HIERARCHY and partly implements REQ_USER_OPTIONS.
In the example in Figure 4.3, two different pseudo-hierarchies are assumed. The diagrams
marked by (a) are laid out using containment and inheritance edges as pseudo-hierarchy.
The pseudo-hierarchy of the diagrams marked by (b) consist of containment, inheritance
and composition edges. As illustration, visible hierarchical edges are marked by “h”.
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Figure 4.3: Step S1 to step S6 of the layout algorithm.



98 4 THE LAYOUT ALGORITHM

S4: Insert containment relations of model elements as hierarchical edges. To respect the
containment hierarchy when calculating the rank assignment, we temporarily create hier-
archical edges for containment relations whose nodes are not already connected by hierar-
chical edges. This step prepares UML_SEMANTIC_CLUSTERS.

S5: Compress hyperedge connection nodes to composite nodes. Hyperedges are simulated
by connecting the hyperedge to two invisible nodes, which split the connected edges into
pairs of edges. Two cases have to be considered: Hyperedges at hierarchical edges will be
routed horizontally and by compressing the hyperedge connection nodes into composite
nodes at either the start or the end, both connection nodes will appear somewhere between
two ranks. Hyperedges at non-hierarchical nodes will be treated similar to hierarchical
edges. When the hyperedge connects edges originating at the same node, a composite node
will keep these three nodes in close vicinity. Thereby, optional semantical information to
which node a hyperedge should be kept in vicinity can be considered.
This step supports UML_HYPEREDGES and is not illustrated in Figure 4.3, because no
hyperedges are present in the example.

S6: Remove reflective associations to simplify the implementation. The information of the re-
flective edges is stored in the connected node to be drawn later on. By now, the connected
node is responsible for the size required by the reflective association, for further connec-
tions on that association and for the display of the edge in the final drawing. Because reflec-
tive associations may also be connected to association classes and the reflective association
is physically removed from the graph in this step, these association classes are also han-
dled in this step. In this case, the association class is encapsulated together with the node
connected to the reflective association into a composite node. Existing composite nodes
are reused. This step prepares UML_REFLECTIVE and UML_ASSOCIATIONCLASSES.

S7: Compress association classes by putting the association class and its connecting dashed
edge into a composite node. Due to the input conventions, this step first explicitly inserts
the dashed edge and a connecting node and encapsulates them then into a (existing) com-
posite node. The connecting edge is not defined as hierarchical edge because this would
force the association class into an other rank than the connecting node and the distance
would accidentally be increased. Step S7 prepares UML_ASSOCIATIONCLASSES.

S8: Compress annotations and connected model elements. Similar to S7, certain composite
nodes containing the annotation, the connected node and the dashed edge are created.
An existing composite node, which contains the connected node, is reused. Even if our
example might suggest that the composite node receives the size of all contained nodes
that is not always true. Depending on the situation, member nodes acting as proxies for
the required size can be specified. Currently, comments do not contribute their size to the
extent of the composite node. This step prepares UML_COMMENTS.
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Figure 4.4: Step S7 to step S11 of the layout algorithm.
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Figure 4.5: Step S12 to step S16 of the layout algorithm.
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S9: Remove disconnected nodes not contained in packages. Usually, disconnected nodes can
simply be reinserted after calculating the coordinates of all other nodes by respecting the
shape of the result graph. If a disconnected node is member of a package, it must not
be removed from the graph, because the rank assignment requires the node to compose
the layered contents of all packages and the coordinates calculation needs the node to
determine the extends of the package. This step prepares UML_DISCONNECTED.
Step S9 does not change the example graph, because no disconnected are present.

S10: Transform the hierarchically connected nodes into an acyclic subgraph and insert a virtual
root, if required. Otherwise, this step and some of the following steps would not be
able to handle a forest even if the subtrees are interconnected by non-hierarchical edges.
Therefore it is required that, if the graph itself does not impose a unique root node, a
dummy root node is inserted and connected by hierarchical edges to the roots of the
subtrees. Then calculate the rank assignment for these nodes in one step. Calculate the
layer positions of only non-hierarchically connected nodes in a second step (simplified
“incremental extension”).
Correct and optimize the layered structure of the graph for UML class diagram layout,
e.g., by ensuring several cluster specific rules. Then, replace long span edges by edge
segments which connect nodes in adjacent ranks to prepare the routing of these edges
in the coordinates assignment. Thereby, dummy nodes (also called virtual or hidden
nodes) to connect the individual edge segments are inserted. The result of this step is a
cluster-valid hierarchy, i.e. no overlapping clusters per rank must be present and similar
cluster sequences in adjacent ranks are required.
This step realizes UML_HIERARCHY via GS_LAYERED and sup-
ports UML_SEMANTIC_CLUSTERS, UML_CENTER, UML_SPATIAL and
UML_COUPLING.

S11: Reduce the number of edge crossings respecting hierarchical as well as non-hierarchical
edges, cluster and containment relations. Different heuristic approaches, each with its
specific advantages and disadvantages can be taken into account.
By now the sequence of nodes in the individual ranks is kept stable. Depending on the
concrete coordinates assignment, dummy nodes may be allowed to change their rank
position even in coordinates assignment.
Step S11 respects UML_SEMANTIC_CLUSTERS, UML_SPATIAL and
UML_GRAPHDRAWING. Furthermore it supports UML_CENTER and it might partially
ensure UML_CONSTRAINT_SEQUENCE.

S12: Expand composite nodes for association classes. The absolute position of the composite
nodes association classes are contained in was determined by S10 and S11. The posi-
tion of the association class relative to the connected association can be determined later.
Hence, composite nodes for association classes are not required anymore. We have chosen
to perform the expansion at this point of time, because the composite nodes for associ-
ation classes must be expanded to individual nodes before concrete edge positions for
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non-hierarchical edges are assigned and until then the individual nodes will not disturb the
algorithm. UML_ASSOCIATIONCLASSES is supported by this step.

S13: Expand composite nodes for hyperedges. Similar to step S12 the composite nodes con-
taining hyperedges are expanded. This step supports UML_HYPEREDGES.
Step S13 does not change the example diagram in Figure 4.5, because no hyperedges are
present.

S14: Remove containment information inserted as edges in step S4, because the information
is not needed to be represented as edges anymore.

S15: Determine the sizes of nodes and edges and calculate the coordinates. To respect adorn-
ments at edges, the area of the nodes is extended by an invisible outer node area. Contained
model elements are treated in one step with the other nodes to respect non-hierarchical
edges interrelating clusters and individual nodes. As mentioned in [Sander 1996b], most
recursive bottom-up layout methods ignore that global connectivity.
An initial cluster-valid coordinates assignment is calculated. Then, with a priority to hier-
archical and cluster relations, iteratively feasible coordinates for the nodes are determined.
Afterwards, the result is augmented by adding dummy nodes for non-hierarchical edges to
support GS_POLYLINE on these edges. Thereby, hierarchical edges are always connected
to the horizontal sides of the nodes, non-hierarchical edges to the vertical sides. Then the
calculations for hierarchical and cluster relations are repeated to respect non-hierarchical
edge chains spanning over multiple ranks. Finally, the non-hierarchical edges are orthogo-
nalized.
The coordinates assignment is responsible for the realization of a lot of aes-
thetic principles: UML_SEMANTIC_CLUSTERS, UML_MEDIAN, UML_SPATIAL,
UML_CENTER, UML_NODES, UML_EDGES, UML_ADORNMENTS, UML_CLASS,
UML_CONTAINER and UML_REFLECTIVE. Optionally it might realize UML_JOIN,
UML_COUPLING, UML_SIZE_NODES and UML_SIZE_EDGES. As discussed above,
dependent on UML_JOIN it respects GS_STRAIGHTLINE or GS_ORTHOGONAL.

S16: Augment the layout for association classes. The dummy node, which simulates the hy-
peredge, has to be placed according to the positions of the edge. The association class is
also positioned and the distances between adjacent layers may be adapted in this step. S16
finally realizes UML_ASSOCIATIONCLASSES.

S17: Calculate the layout of hyperedges by considering all possible positions per hyperedge
and by selecting the most appropriate one.
This is not shown in the example, because no hyperedges are present. S17 completes
UML_HYPEREDGES.

S18: Expand annotations and augment the layout. The size of the comments was not re-
spected so far. Therefore, the connected nodes are analyzed for sufficient area in their
vicinity with a preference to the border of the graph. Only if a comment cannot be placed
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Figure 4.6: Step S18 to step S21 of the layout algorithm.

close to its connected node, the distances between adjacent layers are adjusted. This step
finalizes the implementation of UML_COMMENTS.

S19: Re-integrate disconnected nodes by searching for appropriate empty areas, preferably at
the boundary of the drawing. This step completes UML_DISCONNECTED.
In the example, the graph is not changed, because no disconnected nodes have to be pro-
cessed.

S20: Optionally snap all nodes and edges to a specified grid. The step partially respects
GS_GRID and optionally fulfills REQ_GRID.
For the example we assume that this option was not activated.

S21: Create the result graph. Further dummy nodes are inserted at logical bends, e.g. for
reflective edges. Additionally, the coordinates and sizes of the elements are fixed to provide
detailed information for communication with external tools (REQ_IO). Optionally, the
concrete position of edge crossings can be detected and additional information to realize
UML_EDGECROSSING_SYMBOL can be attached to the edges.
In Figure 4.6 the hidden nodes are omitted in the drawing.
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To realize UML_CONSTRAINT_VICINITY another dedicated preparation step might be intro-
duced before rank assignment.
According to our application domain, to automatically calculate the layout of UML class
diagrams, we have extended a classical hierarchical algorithm, which consists of three steps, to
an algorithm, which performs 21 steps. Dependent on the implementation, certain steps might
be combined into a macro phase. In Table 4.1, several macro phases are introduced which will
be used as underlying structure for the detailed description of the individual layout steps in
Chapter 4. Hence, from this perspective, our layout algorithm comprises 6 steps and appears as
a structural relative to the classical Sugiyama algorithm.

macro phase aggregated steps realized priority levels (Table 3.3)
preprocessing S1-S9 4.5, 4.4, 4.3, 4.1
rank assignment S10 6.4, 6.3, 6.2, 6.1, 5.1, 4.1
edge crossing reduction S11 6.1, 5.1, 4.6, 4.5, 4.4, 4.1
intermediary processing S12-S14 4.5, 4.4
coordinates assignment S15 6.1, 6.0, 5.4, 5.3, 5,2, 5.1, 5.0, 4.6, 4.3, 4.2, 4.0
postprocessing S16-S21 4.5, 4.4, 3, 2

Table 4.1: Macro steps of the SugiBib algorithm and aesthetics (as classified by priorities in
Table 3.3) realized by the individual macro steps.

So far in this section, we have enumerated the individual steps of our layout algorithm for UML
class diagrams. For each algorithmic step relations to our set of aesthetic criteria introduced in
Section 3.3.6 were given. By comparing the criteria mentioned above with the complete list in
Table 3.3, it can be shown that all rules selected for implementation will somehow be respected
or realized by individual algorithmic steps. The general question remains, if our algorithm is
capable of ensuring the priorities assigned to the UML specific rules.
We can point out that in the preprocessing macro phase, before executing the rank assignment in
S10, various criteria which relate to hierarchy, containment and vicinity as well as basic issues
of REQ_INCREMENTAL_ALGORITHM are prepared but no concrete positions are assigned.
The sequence of these steps partly depends on dependencies arising from the valid encapsulation
of nodes in composite nodes.
S10 determines the skeleton of the drawing by assigning abstract vertical positions and ensures
criteria related to hierarchy and containment as well as to UML_CENTER. In S11, relative
horizontal positions with respect to GDR_EDGE_CROSS are determined. Due to additional
mechanisms, which, e.g., ensure cluster validity, basic edge crossing reduction algorithms
are restricted. Hence, the higher priority of criteria related to hierarchy and containment as
well as UML_CENTER over GDR_EDGE_CROSS can be realized. This is also true for the
vicinity-related rules like UML_ASSOCIATIONCLASSES, because composite nodes avoid the
cluttering of their members in S11. This may then lead to long association edges due to the
restrictions introduced by composite nodes. Therefore, enhanced crossing reduction mechanisms
considering containment and non-hierarchical relations are required.
In the intermediary processing macro phase, only technical transformations of the graph are
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performed. The realization of the coordinates assignment S15 is then responsible for considering
plenty rules and their individual priorities. Most of the rules specific to node interior can be
ensured by a proper calculation of the node extents, overlappings of nodes can be avoided by a
cluster-valid initialization of the node positions and by some basic node moving mechanisms.
As mentioned in the description of S15, first coordinates are assigned considering hierarchical
relations. Then non-hierarchical edges are processed and, finally, the graph is compacted by
removing unused area.
Except of dummy nodes, the sequence of nodes determined by S11 is kept in all following steps.
Hence, the priority sequence of our set of UML related criteria is ensured. The concrete realiza-
tion of node-related criteria with a higher priority over edge-related criteria as well as individual
priorities within one group of rules mainly depends on the (state of the) implementation and
personal preferences.
Furthermore, the algorithm is designed to realize all basic requirements defined in Section 3.1,
even if the realization of REQ_USER_OPTIONS, REQ_DETERMINISTIC_ALGORITHM,
REQ_PLATFORM, REQ_INCREMENTAL_ALGORITHM, REQ_ARCHITECTURE, and
REQ_SPEED mainly depend on the concrete implementation.
Therefore, we can conclude, that the algorithm introduced in this section is able to realize all of
our requirements collected in Chapter 3.

4.2 Structural Conventions for Graphs
Conventionality is not morality. Self-
righteousness is not religion. To attack the
first is not to assail the last.

Charlotte Bronte (1816 – 1855)

To go more into detail, in this section we will describe the underlying diagram or graph model.
As described in Section 4.1, the layout algorithm takes a UML class diagram given as a non-
simple directed graph compliant to several rules as input, transforms that input graph to a non-
simple directed composite graph to which coordinates are assigned and finally returns a graph
which is able to draw itself onto a given graphics context. These three basic types of graph
instances, input graph, intermediary graphs and output graph, will be described first. From the
structural requirements drawn by these graph types, we will finally compose an object-oriented
graph model which represents the core of the layout framework SugiBib. Therefore, some class
or method names will occur in the description of the three graph instance types before the class
diagram of the graph model realization will introduce them.

Input Graphs

An input graph, representing an UML class diagram, is given in terms of visible nodes and edges.
According to UML_DISCONNECTED, also invisible edges influencing the layout of the graph
may occur. Specialized node types for classes, packages, n-ary associations, etc. as well as spe-
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cialized edge types for generalizations, aggregations, dependencies, etc. are required.
As mentioned above and in the description of S1, we will take a directed non-simple graph as in-
put, which also has to reflect nesting of nodes, if present. In general graphs, these relations might
be given as additional edges of a certain type, as second graph containing the nesting tree or as
external relations. In UML class diagrams this information is implicitly present via fully quali-
fied names. To simplify arbitrary input mechanisms, we decided to calculate the nesting relations
from the fully qualified names in S1. Hence, a concrete input mechanism specifies the input as
a non-compound graph and simply assigns the available UML names to nodes. The compound
itself, e.g. a package, is represented as a single node called the base or parent node of a cluster.
Relations to compounds, should be connected to the base node of the compound.
According to the description of our layout algorithm, the rank assignment in S10 is the only part
which may change the direction of some edges to gain an acyclic subgraph as input. Furthermore,
S10 is (currently) the only part of the algorithm, in which the direction of the edges has major
influence on the structure of the result. Hence, due to the requirements of the rank assignment,
the main rule for specifying edge directions is that hierarchical edges must be directed from the
root to the leaves, i.e. generalizations have to be specified in opposite direction as drawn in UML
class diagrams. The other edges should be given according to their navigational direction. In the
case of undirected or bidirected relations, the direction in the input graph is arbitrary, because it
will be normalized in S1.
As another convention, we tried to avoid the use of too many different types of nodes and edges
in the input graph. Therefore, only in the case of hyperedges, nodes occupying no area for the
simulation of the hyper edge will be required. We will call these type of node NullNode. Con-
crete examples are shown in Figure 4.7. Due to successive conversion while executing the layout
algorithm, the UML notation will appear instead of the input structures in the layout result.

A

A

+value

+value
C

C
D1 D2

D3 D4

D1 D2

D3 D4

SugiBib:

UML:

addNextTo addNextTo
setHyperEdge(true) setHyperEdge(true)setAssociationClass(true)

(a) (b) (c)

Figure 4.7: Structural rules on input graphs for (a) association classes and classifiers, (b) edges
to a compartment entry and (c) hyper edges for xor-constrains or generalizations have to be
specified by two instances of NullNode. The appropriate UML structures will appear in the
result graph due to successive conversion while executing the layout algorithm.
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Figure 4.7 (a) depicts that an association class is represented as an usual class, but the association
class flag has to be set. The edge, to which the association class is attached to, is separated by
the association class, i.e. one part of the original edge is an incoming edge to A, the other is an
outgoing edge. The same holds for comments.
If a compartment entry should be referenced from outside as shown in Figure 4.7 (b), the edge is
connected to the node containing the compartment entry, but the compartment entry is specified
as original target using the method addNextTo. Additionally, the hyper edge flag has to be acti-
vated. In the case of an hyperedge, as shown in Figure 4.7 (c), both connected edges are separated
by a NullNode, the hyperedge connects both NullNodes and the hyperedge flag should be acti-
vated. Additionally, if semantical reasons require the vicinity to D1, D2, D3 or D3, the appropriate
nodes can be specified by addNextTo.
Collaborations, e.g. used for the UML design pattern notation, and n-ary nodes are specified by
creating an appropriate node for the central element and by linking this node with individual
edges to the connected model elements. Currently “lollies” are represented by an own edge type.
Multiple edges to the same logical lolly will be unified by the algorithm.

Intermediary Graphs

As shown in Section 4.1, the input graph is successively transformed towards the result graph.
Thereby, temporarily deletable edges and nodes might occur and several dummy nodes may be
inserted. Furthermore, in the preprocessing phase, composite nodes are created, existing nodes
are transferred into composite nodes and input structures as shown in Figure 4.7 (a) are replaced.
In S1 the nesting relationships, additional information which is not represented as individual
edges, are initialized. This nesting information is internally used as a secondary access path to
cluster containment data.
While executing the layout algorithm, nodes and edges may receive temporary data as well as
information required to draw the result. Furthermore, the representation of clusters changes: In
the rank assignment S10, hierarchical relations connecting to a cluster from hierarchical children
have to be reconnected. A cluster border node is created and nested into the cluster, the external
relations of that cluster are reconnected to the border node and the cluster border node is assigned
to the bottom rank of the cluster. At the beginning of the coordinates assignment, clusters are
bounded by cluster border nodes as depicted in Figure 4.8. An existing cluster border node from
the rank assignment step is reused. The cluster border nodes are interconnected by cluster edges
and nested into the cluster by appropriate relations to the cluster base node. To enforce spatial
distribution of the contained elements, e.g., to emphasize coupling (UML_SPATIAL) or to realize
subsystems, a cluster can be partitioned by cluster separator nodes.

Output Graphs

After all layout operations have been completed, the result graph is generated. To provide as
much layout data as possible to mechanisms external to the layout algorithm like data exporters,
even internally handled edges like reflective associations are explicitly transformed into graph
elements. Furthermore, the layout method of all information instances is called to fix the posi-
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Figure 4.8: (a) simple cluster bounded by cluster border nodes, (b) partitioned cluster divided
into two parts by cluster separator nodes.

tions of all attached elements, e.g. the position of association names or other textual adornments
not enclosed in nodes. Cluster border nodes and cluster separator nodes are removed from the
graph. Finally, the output graph is locked to prevent (accidental) writing access to the graph el-
ements and their individual data, e.g. the type of a node should not be changed after the result
graph was created.

Graph Model

Figure 4.9 shows a simplified view of the graph model implemented in SugiBib. Packages and
therefore different layers of implementation are omitted, class and interface names are shortened
and some signatures are located not at the same place than in the implementation. Therefore,
Figure 4.9 is to be seen rather as an illustrative introduction than as an exhaustive specification
diagram.
A graph consists of its nodes and edges. A node knows its edges, i.e. its incoming and its outgoing
edges. An edge knows its start and its end node. This allows multiple navigation paths through
a given graph and requires different consistency issues to be respected. These issues are handled
automatically by the graph, therefore, modifying accessors for nodes and edges should be used
carefully.
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Obviously, only one type of nodes or edges is specified in Figure 4.9, respectively, but to each
node or edge an individual information object (Information) can be attached3. To allow the
reuse of the basic classes like nodes and edges in other application domains, domain specific
information is intended to be implemented in concrete information classes. In particular, the dis-
play of an individual node or edge is delegated to these information instances. As shown in the
lower part of Figure 4.9, specific information classes represent the elements to be used in a UML
class diagram.

Beside application domain specific types, nodes and edges may also be deletable, mark distinct
parts of a cluster or may appear as dummy nodes. These (internal) algorithm specific types are
directly stored in the nodes or edges, respectively.
To realize the composite nodes introduced by Figure 4.2 in Section 4.1, a storage strat-
egy is assigned to each node. In contradiction to the usual NodeStorage strategy, the
CompositeNodeStorage strategy automatically handles packing and unpacking nodes and the
consistency of the connected edges.
Intended for incremental layout but also to inject graph element specific user preferences
into the layout algorithm, graphs, nodes and edges may have attached instances (e.g.,

3In input graphs, which specify situations as shown in Figure 4.7 (a), both edges must have reference-identical
information objects.
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IncrementalNodeData) storing external sizes, coordinates, change information, etc.
As a secondary access path to nesting information, in intermediary graphs the nesting of nodes
is also represented by node-node relations as denoted by the reflective association at Node.
Furthermore, nodes and edges are intended to store temporary data to be used within an indi-
vidual algorithmic step and to transfer temporary but also permanent layout information across
several algorithmic steps. Therefore, each algorithmic step is allowed to define its own special-
ized node, edge and graph classes, whose instances are created according to the input graph of
the algorithmic step by a graph copy mechanism. Beside additional runtime and memory re-
quired by this mechanism, it allows a result graph to be independent from the input as well as
the delegation of specific responsibilities to nodes and edges. This causes, that the instances of
nodes and edges change while running the layout algorithm. Therefore, it may be difficult for an
external application to find semantically equal elements of the input graph in the result graph.
To solve this problem generically, all nodes and edges can be tagged by arbitrary identification
information (Identification).
To hide the an arbitrary input mechanism from internal mechanisms, a dedicated input layer (not
shown in Figure 4.9) restricts several accessors by defining subclasses of the basic Graph, Node
and Edge class. On these classes it is not allowed, e.g., to change the internal type of a node. The
classes of the input layer are then refined to support the creation of UML class diagram specific
input graphs. Furthermore, the information objects to be attached by an input mechanism must
be created by a factory which does not provide factory methods for internally used information
objects.

SugiBib works on different types of graphs depending on the state of the layout process. It re-
ceives an input graph from an arbitrary graph reading mechanism, transforms it into intermediary
graphs providing several additional facilities due to the individual layout step and finally creates
a result graph. Starting with the creation of an information instance and finishing with its cleanup
phase, information objects adhere to a certain life cycle which is depicted in Figure 4.10. After
being created by a factory method in the application domain specific implementation, an infor-
mation object (usually) receives its data from a graph reading mechanism. In the first processing
step of the layout algorithm the information instance is copied to make the input independent
from the result graph to be created. Then it enters an inactive state where it waits for queries
to be answered. SugiBib provides a general querying mechanism represented by the method
queryInfo. The information object reacts on an arbitrary object and returns a boolean value.
Application domain independent queries can be defined and used by common code of the core
implementation, while the query object and the implementation of queryInfo is located in ap-
plication domain specific code. Furthermore, in most cases this mechanism is much faster than
considering inflexible runtime type information.
Dependent on the general layout mode, the minimum size requirements for each graph element
determined by individual information objects are calculated. If this information is provided from
outside, e.g. by considering XMI[DI] layout information, it must not be calculated by the layout
algorithm. While creating the result graph in S21 the positions of nodes, edges and adornments
are fixed to provide the information for arbitrary output mechanisms, e.g. a XMI[DI] writer. In
most cases, the graph is, however, considered for output, e.g. drawn on a graphical device by
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visiting each graph element. Finally, due to memory reuse techniques, an information object is
cleaned up and might be pooled.
In principle, a simplified and specialized version of this life cycle, dependent on the current
layout step being executed, also applies to graph, node and edge instances.

4.3 Basic Definitions
If you have built castles in the air, your
work need not be lost; that is where they
should be. Now put the foundations under
them.

Henry David Thoreau (1817 – 1862)

Before discussing the individual algorithmic steps of the layout algorithm for UML class dia-
grams introduced in Section 4.1 in detail, in this section notational conventions for algorithmic
descriptions, helpful primitive functions, the formal definition of a graph, its nodes and edges
and operations on these elements will be given. Then, a hierarchical node naming function, used
to translate between node names and node nesting relations will be described.

4.3.1 Notational Conventions
We will occasionally use this arrow no-
tation unless there is danger of no confu-
sion.
Ronald Graham, "Rudiments of Ramsey

Theory"

The Roman letters i, j,k and the Greek letters α,β will be used as index counters, the letters
u,v,w,x,y,z will denote nodes of a graph and e, f ,g will be used for edges. Uppercase letters will
be used for sets or tuples, e.g., G will denote a graph, E usually will be the set of edges and V
the set of nodes (vertices) of a given graph. After determining the layered structure of an input
graph, n will denote the number of levels (the height of the hierarchy) of a graph.
As usual in graph drawing, we will denote the theoretical complexity of some algorithm using
the Oh-notation on formulae considering the number of nodes or edges, respectively. Further im-
pacts, which also may influence the effective runtime, are assumed to be constant. A comparison
between the theoretical complexity and the effective runtime, which can be retrieved by mea-
surements, will be discussed in Chapter 5.
Furthermore, N will denote the set of positive natural numbers without 0, while N0 = N ∪ {0}.
Z will be the set of positive and negative integer numbers. As usual, we will denote R as the set
of real numbers. The set of boolean constants will be given by bool := {true, f alse} and ⊥ will
denote a pointer to nothing like null in Java. As common in computer science and programming
languages, we will assume a short cut logic evaluated from left to right on boolean expressions
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so that in an or-expression the evaluation is stopped when a subexpression evaluates to true. Sim-
ilarly in an and-expression the evaluation is finished when a subexpression evaluates to f alse.
We will make a clear distinction between assignments (:=) and comparison for equality (=).
Furthermore, assignments will be used to also indicate that an object o probably has changed
after performing an operation on o, which is usually specified by the first parameter4. Therefore,
most operations will return at least o.
Similar to functors, sometimes functions instead of their return values will be used as param-
eters. If the type of an expression should be emphasized, the name of the function will occur
without its parameter list. Furthermore, in some algorithms generic functions will be used. Let f
be a generic function, then we will denote f (.) in absence of relevant parameters or, e.g., f (., p)
if parameters are relevant to the context. If such a function itself will be used as a parameter,
the relevant parameters may be given to “instantiate” the generic function similar to a template
functor in C++, e.g. g( f (., true)). Furthermore, we assume for g(., f (., true)) that all arbitrary
parameters to g will automatically be passed to f .

4.3.2 Primitives
I am the primitive of the method I have
invented.

Paul Cezanne (1839 – 1906)

To have some common constructs as well as some shortcuts at hand, in this section some spe-
cialized minimization and maximization notations and basic operations for lists and dictionaries
will be introduced.
In some algorithms, explicitly lists or dictionaries (e.g., hashtables) will be used. We will assume
the semantics known from Java for these datastructures, e.g., ⊥ is returned for keys, which do
not have an assigned element in a dictionary or −1 is returned as position of elements, which are
not members of a list. Only some basic issues will be discussed here. A formal definition will be
given in the appendix.
Let L,M be lists on arbitrary objects. Then L[i] returns the i-th element of L and L(l) returns the
index position of l in L. Furthermore, the usual set operations like union, intersection or pow-
ersets will be available. L = M denotes that all elements of L are member in M and vv., while
L *= M also requires equal sequences of elements. To make obvious, which kind of data structure
and operation is referenced, the remaining list operations will be prefixed by list and operations
on hashtables by hash.
We will implicitly assume that the sets used in this chapter are lists even if most times the prop-
erty of index based access is not required.

4In object-oriented languages this is automatically done by the language implementation.
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Definition 1 (initialized minimization and maximization)
Let range be a set of arbitrary elements and a 6∈ range. Then

a
min

r ∈ range
b(r) :=

{
a : if 6 ∃ r ∈ range b(r)

min{r : r ∈ range, b(r)} : otherwise

and
a

max
r ∈ range

b(r) :=
{

a : if 6 ∃ r ∈ range b(r)
max{r : r ∈ range, b(r)} : otherwise

denote the minimization or maximization, respectively, which are initialized by a if the condi-
tion represented by b(r) cannot be fulfilled at all. Analogously let

a
min S :=

{
a : if |S|= 0

min S : otherwise

and
a

max S :=
{

a : if |S|= 0
max S : otherwise

be the minimization or maximization of sets, respectively, which are initialized by a if the set is
empty.

4.3.3 Graphs, Nodes, Edges and Operations
Most UML diagrams and some complex symbols are graphs containing nodes
connected by paths. The information is mostly in the topology, not in the size
or placement of the symbols (there are some exceptions, such as a sequence
diagram with a metric time axis).

[OMG 2003c]

In literature, different kinds of definitions for graphs have been proposed. Usually, a graph is a
tuple G = (V,E), which consists of V , the set of nodes of G and E ⊂ V ×V the set of edges [Valls
et al. 1996; Battista et al. 1999]. Such definitions are not capable to model non-simple graphs,
which, according to REQ_GRAPH_TYPE, represent UML class diagrams. A more appropriate
definition as the one in [Jünger and Mutzel 2003b] uses multisets to declare the set of edges.
A pragmatic way is a graph definition like that in [Noltemeier 1988], where a graph is a tuple,
which consists of a set of nodes, a set of edges and individual functions returning the start or
the end node of an edge, respectively. The elements, which represent nodes or edges, are seen
as unique objects. This models implicitly the process of building an input graph. To model com-
pound graphs (REQ_GRAPH_TYPE), we have to adapt that definition to introduce the nesting
of nodes in nodes.
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Definition 2 (compound digraph)
A compound (directed) graph is a 5-tuple G = (V,E,αG,ωG,nestG), in which V is the set of
nodes and E is the set of edges with V ∩ E = /0. Let e ∈ E, then αG(e) returns the start node of
e and ωG(e) the end node of e. Furthermore, let

nestG ⊆ V ×V

be a partial order defining the nesting of nodes in nodes. For (u,v) ∈ nestG v is nested in u.

Due to our application domain, a partition of the set of edges into hierarchical and non-
hierarchical edges (UML_HIERARCHY) is required. Algorithmic steps like S9 may hide ele-
ments of a graph temporarily by removing them. A concrete implementation may hold the re-
moved elements as well as other runtime related information in the graph data structure. We will
not model this here.
Furthermore, a distinct node is declared as the “root”, which is intended to be used as an initial
start position by some algorithms rather than to be a root in the sense of an usual hierarchical
graph.
To be more compliant to the notation in graph drawing, αG and ωG from definition 2 will be
assumed to be present implicitly. Due to notational convenience and a close relationship to the
implementation, the compound relations defined by nestG will be visible as operations on nodes
only.

Definition 3 (application domain specific digraph)
Let G′ = (V,E,αG,ωG,nestG) be a compound graph according to definition 2. The 4-tuple

G = (V,r,EH ,EN)

is called a hierarchical partitioned graph , if E can be partitioned into a set of hierarchical edges
EH and a set of non-hierarchical edges EN so that E = EH ∪ EN and EH ∩ EN = /0 holds.

Often, the root is not relevant and therefore writing G = (V,EH ,EN) is an appropriate shortcut.
As long as a hierarchy is not determined, we simply write G = (V,E) and assume G = (V,E) =
(V, /0,E).
The partition of hierarchical and non-hierarchical edges is given by the application domain. For
UML class diagrams, this is the pseudo-hierarchy selected according to user preferences as de-
scribed for UML_HIERARCHY.
For the definitions in this section mathematical sets are sufficient. In an algorithm, when select-
ing an element from a set of elements all having a set of properties in common, this is usually
left to chance.Therefore, due to REQ_DETERMINISTIC_ALGORITHM, we will assume that all
sets are realized by lists, on which the element to be considered must explicitly be specified, e.g.,
the first element.
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Definition 4 (notation of edges)
Let G = (V,EH ,EN) be a graph and E := EH ∪ EN the set of all edges of G. As usual, an edge
e ∈ E is written as a pair which contains the nodes connected by e. All edges in G are directed
by default, because G is a directed graph. We denote ~e = (u,v) ∈ E as a declaration of the edge
e, which connects its start node u to its end node v so that u = αG(~e) and u = ωG(~e). Due to
the graph model described in Section 4.2, we may navigate along the direction of ~e as well
as in opposite direction. Therefore, it is convenient to have the declaration e = {u,v} ∈ E for
undirected edges at hands, e.g., to denote all edges connected to u ∈ V as {e = {u,v} : v ∈ V}.

In the following definitions we will introduce some basic operations on the elements of a graph.
To avoid starting each of the following sections with a definition on new operations for nodes,
edges or graphs, we will compile most of the operations into this section as a kind of global
dictionary. Coordinates related operations on nodes and edges will be given as basic definitions
in the description of the coordinates assignment.
For the pseudocode notation of algorithms it is convenient to assume that we do not have dif-
ferent types of nodes, edges or graphs and all operations defined below are available at once. It
is also convenient to use these operations as reading as well as writing accessors, i.e., if a value
is assigned to an operation, this means that the corresponding value is changed in memory. Fur-
thermore, we will define required operations only, not the entire set of operations which may be
available in a concrete implementation.

Definition 5 (operations on nodes)
Let G = (V,EH ,EN) be a graph according to definition definition 3. Let v ∈ V be a node of G
and E := EH ∪ EN the set of edges of G. Then the following operations are defined on v:

• Let type(v) → nodeTypes return the type of v with

nodeTypes := {USUAL,CLUSTERBORDER,HYPEREDGE,ASSOCCLASS,

COMMENT}

• out(v) := {~e : ~e = (v,u) ∈ E, u ∈ V} is the set of outgoing edges of v, also called the
out-star of v.

• in(v) := {~e : ~e = (u,v) ∈ E, u ∈ V} is the set of incoming edges of v, also called the
in-star of v.

• edges(v) := in(v) ∪ out(v) is the set of edges connected to v, also called the star of v.

• d+(v) := |out(v)| is the number of outgoing edges called out-degree of v.

• d−(v) := |in(v)| is the number of incoming edges called in-degree of v.
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• d(v) := d−(v)+d+(v) is the number of edges adjacent to v, also called the degree of v.

• V +(v) := {u : ~e = (v,u) ∈ E,u ∈ V} is the set of nodes connected by outgoing edges of
v.

• V−(v) := {u : ~e = (u,v) ∈ E,u ∈ V} is the set of nodes connected by incoming edges of
v.

• compoundParents(v) := {u : (u,v) ∈ nestG} is the set of nodes v is nested in. Usually,
|compoundParents(v)| ≤ 1 for non-intersecting compounds can be assumed due to our
application domain.

• compoundChildren(v) := {u : (v,u) ∈ nestG} is the set of nodes nested in v.

• llc(v) := {v} ∪ compoundChildren(v) ∪ ⋃
w∈ compoundChildren(v)

llc(w) is the lower level

compound closure of v.

• ulc(v) := {v} ∪ compoundParents(v) ∪ ⋃
w∈ compoundParents(v)

ulc(w) is the upper level com-

pound closure of v.

• r(v) → Z is the level (rank) v is assigned to. We do not use N or N0 here, because the rank
number might temporarily be negative. Hierarchies and ranks will be introduced formally
in Section 4.5.

Definition 6 (operations on graphs)
Let G = (V,EH ,EN) be a graph according to definition 3. Then the following operations are
defined on G:

• Let v ∈ V then remove(G,v) → G changes G via V := V\{v}, EH := EH\edges(v) and
EN := EN\edges(v).

• Let e ∈ EH ∪ EN then remove(G,e) := G(V,EH\{e},EN\{e}).
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4.3.4 The Node Naming Function
We do what we must, and call it by the
best names.

Ralph Waldo Emerson (1803 – 1882)

In graph drawing, partitioning a given graph to gain appropriate clusters and compounds is one
of the generally unsolved key problems. As discussed in Section 3.3.6, two basic types of clus-
ters are relevant for UML class diagrams. Visible clusters, like model management elements
or classes containing other classes, as well as invisible clusters, e.g., the elements involved in
a n-ary association, can be used to realize UML_SPATIAL or UML_SEMANTIC_CLUSTERS.
According to our graph model described in Section 4.2, a visible cluster is initially specified by
fully qualified names. Invisible clusters are intended to be detected by the layout algorithm and
appear therefore as an implementation technique.
Obviously, two approaches for a concrete realization can be considered: Composite nodes as il-
lustrated in Figure 4.2 as well as clusters, in which neither the cluster border nor the cluster base
node are displayed.
According to our graph model, a visible cluster consists of the contained elements and a cluster
base node, which will always be placed vertically above the contained elements. Even if the clus-
ter base node might occupy no area to appear invisible, it will allocate a part of the top rank the
cluster is assigned to and prevent other nodes from being placed there. Hence, the mechanisms
for visible clusters cannot easily be reused for invisible clusters.
Applying a composite node to realize an invisible cluster implies a temporary substitution of the
involved nodes. If these composite nodes are expanded before reducing edge crossings in S11,
the vicinity according to UML_SPATIAL and UML_SEMANTIC_CLUSTERS cannot be ensured
without further mechanisms. If the composite nodes are expanded somewhen after S11, graph
drawing rules like GDR_EDGE_CROSS or GDR_MIN_EDGES have to be considered while in-
serting the contained nodes by additional effort. This also leads to a tricky implementation.
As mentioned above, we need a rank assignment (S10) and an edge crossing reduction (S11),
which generically consider the presence of clusters. This can be realized by taking the fully
qualified names of the classes as a criterion for clusters into account on which certain cluster
consistency issues have to be respected. As a side effect, invisible clusters can be realized by
virtual qualified names.
A node naming function assigns every node in a graph a name, i.e.,

f : u → c with u ∈ V,c ∈ C ∗

where C 6= /0 is an alphabet and C ∗ denotes all words that can be generated for the alphabet C.
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To layout hierarchically nested nodes we need a node naming function which imposes hierarchi-
cal properties:

Definition 7 (hierarchical node naming)
A hierarchical node naming of graph G is a 3-tuple (C,crit, � ) where C 6= /0 is an alphabet, C ∗
the set of all words which can be created for C, and denotes the set of valid node names. Let
G = (V,EH ,EN) be a graph.

crit : V → C ∗

is the node naming function which assigns a name (a cluster criterion) to each node. Let
c1,c2,c3 ∈ C ∗ be node names, then a concrete hierarchical node naming defines the contain-
ment of names

c1 � c2

so that c1 ≺ c2 = c1 � c2 ∧ ¬(c1 =N c2) holds, where c1 =N c2 denotes the equality5 of the two
cluster names c1 and c2.
The unique largest element g ∈ C ∗ with ∀ c∈ C ∗ , c6=g c ≺ g denotes the (default) global name. The
following conditions also have to be valid on a hierarchical node naming function:

• reflexivity: c1 � c1

• antisymmetry: if c1 � c2 ∧ c2 � c1 ⇒ c1 =N c2

• transitivity: c1 � c2 ∧ c2 � c3 ⇒ c1 � c3

• parent relation: c1 � c2 ∧ c1 � c3 ⇒ c2 � c3 ∨ c3 � c2

Therefore, a hierarchical node naming function induces a monotone, partial order.

Definition 7 is given in terms of node names and can be used to represent hierarchical nesting
on nodes as cluster containment relations. Therefore, the node names represent cluster names
and the global name g is the global (default) cluster, which contains all nodes not assigned to
any other clusterInvisible cluster can be modeled by defining a subset of C ∗ to be dedicated to
invisible clusters.

Example:
A hierarchical node naming for UML can be defined as follows: Let

C = {A . . .Z} ∪ {a . . .z} ∪ {0 . . .9} ∪ {::} ∪ {∗ }

be the simplified alphabet for fully qualified names in UML without respecting localized
versions of UML e.g. for Japanese. The equality function c1 =N c2 is defined similarly to

5We use =N instead of = to make a clear distinction between equality of node names and equality of objects. =N
can be extended for nodes, sets, lists, etc. by considering the node naming function instead of the objects themselves.
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the string equality function. The containment function c1 ≺ c2 is given via the string prefix
comparison so that c1 is contained in c2 if c2:: is a string prefix of c1. The global cluster name g
is the empty string.
The fully qualified name of a model management element is equal to its cluster criterion. For a
class, the name of the containing namespace (fully qualified name without the name of the class)
is appropriate.
As described above, the vicinity of certain nodes according to UML_SEMANTIC_CLUSTERS

can be realized by invisible clusters. This can be done by defining a set of cluster names, which
are dedicated to invisible clusters. For UML, the character ∗ , which is not part of the usual UML
naming system, can be used as prefix for virtual cluster names.

Definition 8 (operations on a hierarchical node naming function)
The following functions are directly induced by definition 7. Let (C,crit, � ) be a hierarchical
node naming function and c1,c2 ∈ C ∗ node names, then

• c1 � c2 := c2 ≺ c1

• c1 � c2 := c2 � c1

• c1 ./ c2 := c1 � c2 ∨ c2 � c1

• c1 6./ c2 := ¬(c1 ./ c2)

• global(c1) := (c1 =N g)

are introduced for notational convenience. Furthermore, the following operations are defined

• ↑ (c1) :=
{

c : if ∃ c∈ C ∗ c1 ≺ c ∧ ∀ c1 ≺ c2 c ≺ c2
g : otherwise as the least upper bound of c1 and

↑ 0 (c1) := c1, ↑ 1 (c1) :=↑ (c1) and ↑ n (c1) :=↑ (↑ n−1 (c1)) if n > 2

• the least common cluster

LCC(c1,c2) :=
{

c : if ∃ c∈ C ∗ (c1 ≺ c ∧ c2 ≺ c) ∧ ∀ c1 ≺ c3,c2 ≺ c3 c ≺ c3
g : otherwise

We also define a new equivalence relation =N ⊂ V ×V via

u =N v ⇔ crit(u) =N crit(v) for u,v ∈ V

and extend =N for sets and lists. Let L be a list (or a set), then c ∈ S ⇔ ∃ s∈ S c =N s to simplify
the notation.

On the one hand, using fully qualified names appears to be an obvious implementation of a
hierarchical node naming for UML. On the other hand, in particular for long fully qualified
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names, determining the containment and equality of cluster names via string operations is an
inefficiencient realization. This can be circumvented by abstract node namings inducing the same
structure, e.g., by

• a hierarchical huffman encoding [Heise and Quattrocchi 1995] of the cluster names.

• a preorder-size numbering [Li and Moon 2001; Pankowski 2004] as known for trees.

The hierarchical node naming for UML as described above is useful when debugging the im-
plementation, because the abstract namings would require a remapping to the original names for
readability. Even for UML class diagrams it is not required that each graphs owns a hierarchical
node naming. If no node naming function is present, S1 will not construct nesting relations and
the input graph will be treated as an usual graph but not as a compound graph. If a node naming
function is present, the rank assignment S10 as well as S11 will produce a sorted layering con-
sidering the specified node naming function.
Enabling and disabling a given node naming function can be used to realize further constraints in
the layout. When considering the node naming in rank assignment and edge crossing reduction,
but not in the coordinates assignment S15, an usual graph layout can be obtained, which admits
a sorting of the nodes in layers according to clusters. Furthermore, (certain) invisible clusters can
also be enabled or disabled, e.g., for experiments on aesthetic principles.
As a conclusion, the node naming function implies a generic, flexible mechanism to tailor the
nesting but also the sorting of the nodes in layers.

Corollary 1 (properties of stepping up node names)
Let (C,crit, � ) be a hierarchical node naming function and c1,c2 ∈ C ∗ node names.

• ↑ i (c1) is convergent to g

• Let
stepU pSet(c1) = {c : i ∈ N ∧ c =↑ i (c1)}

and
stepU pSetg(c1) = {c : i ∈ N ∧ c =↑ i (c1) ∧ ¬global(c)}

be the set of parent cluster names of c1. Then

c1 ≺ c2 ⇔ c2 ∈ stepU pSet(c1)

and if c2 6=N g
c1 ≺ c2 ⇔ c2 ∈ stepU pSetg(c1)

hold.

Furthermore, if global(LCC(c1,c2)) then c1 and c2 are not contained in a (named) common
cluster (except for the global cluster). Hence,

notClusterRelated(c1,c2) := (c1 6=N c2 ∧ global(LCC(c1,c2)))

returns if two arbitrary node names are not related by nesting relations.
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Proof:
According to definition 7 ∀ c∈ C ∗ \{g} c ≺ g and therefore with definition 8

↑ (c1) =
{

c : if c1 ≺ c ≺ g ∧ 6 ∃ c2 ∈ C ∗ c1 ≺ c2 ≺ c ≺ g
g : otherwise

hence ∃ n∈ N0 ∀ l ≥ n ↑ l (c1) = g.
If k0 ≺ k then there might exist a c so that k0 ≺ c ≺ k because of the transitivity in def-
inition 7. Let k1, . . . ,kn ∈ C ∗ ,n ∈ N so that k0 ≺ k1 ≺ . . . ≺ kn−1 ≺ kn ≺ g and therefore
stepU pSet(k0) =

⋃
0<i≤ n ki ∪ g and stepU pSetg(k0) =

⋃
0<i≤ n ki. Then ∃ i∈ N k =N ki and

k ∈ stepU pSet(k0), especially if k 6=N g k ∈ stepU pSetg(k0).
On the other side, let n := |stepU pSet(k0)|, k ∈ stepU pSet(k0) and k j =↑ j (k0) 0 < j < n.
Then ∃ 0<i≤ nk =N ki. Because of the definition of stepU pSet ↑ (k j−1) = k j. Because of the
definition of ↑ follows k j−1 ≺ k j for all 0 < j ≤ n and because of the transitivity in definition 7
k0 ≺ k1 ≺ . . . ≺ ki ≺ . . .kn−1 ≺ kn. Finally, because of the transitivity k0 ≺ ki and hence k0 ≺ k.
Especially if k 6=N g and k ∈ stepU pSetg(k0) k0 ≺ k follows similarly.

�
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4.4 Preprocessing Steps
The future belongs to those who prepare
for it today.

Malcolm X (1925 – 1965)

In this section, the preprocessing steps S1 up to S9 of our layout algorithm for UML class dia-
grams, introduced in Section 4.1, will be described. We will also discuss some of the algorithms,
which will be available as general implementation to be reused in various contexts, e.g. in the
rank assignment step.

4.4.1 Adjust Semantical Issues
The UML notation is an essential element of the UML to enable communi-
cation between team members. Compliance to the notation is optional, but
the semantics are not very meaningful without a consistent way of expressing
them.

[OMG 2003c]

In the first step (S1) of our layout algorithm, some basic adjustments and modifications to the
input graph are processed. As mentioned along with the graph model in Section 4.2, the input
graph does not specify some main structural issues and relations, to keep arbitrary input mech-
anisms simple: Nesting relations are given as fully qualified names only and invisible clusters,
like all elements involved in a n-ary association, should be detected by the layout algorithm.

Algorithm 4.1 adjustSemanticalIssues
input: G = (V,E) possibly with node naming
output: G

G := initializeCompoundHierarchy(G)
G := ad justVirtualClusters(G)
G := ad justNesting(G)
G := calculateComplexities(G)
return G

According to the graph model in Section 4.2, the (visible) nesting relations of nodes should ad-
ditionally be represented as node-node relationships, because it is easier to realize some of the
following algorithms using these relationships rather than cluster names issued by the node nam-
ing function. Therefore, as denoted in algorithm 4.1, first the nesting relations, are initialized. All
cluster parents, e.g., packages, subsystems, models but also classes containing other classes, are
identified. Thereby, the relations between the cluster names, issued by the node naming function,
and the node instances are stored in a dictionary for fast access. By iterating over all nodes, to
each individual node the bidirectional relationships between a nested node and its cluster parent
are assigned.
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As discussed in Section 4.3.4, virtual cluster names are used in SugiBib to realize invisible clus-
ters, which ensure the vicinity of nodes belonging together in rank assignment S10 as well as
in the edge crossing reduction S11. Each node being involved in, e.g., a n-ary association or a
collaboration, is defined to be member of a virtual cluster.
As an issue of consistency, adjustNesting ensures that association classes or comments are
assigned to the correct package, i.e. to the most common package of the connected elements.
Finally, the individual design complexities of classes and relations are calculated to prepare the
realization of the optional magnitude-related criteria. Due to the discussion in Section 3.3.4, a
generic implementation of various complexity calculations is suggested .
S1 changes the structure of the input graph and represents thereby semantical issues,
which are not explicitly present in the input graph. By initializing various nesting rela-
tions, UML_SEMANTIC_CLUSTERS and UML_SPATIAL as hierarchical aspects of our set
of aesthetic criteria are prepared. Furthermore, information on the magnitude of diagram el-
ements, which also may rely on external data, is collected to prepare the optional criteria
UML_SIZE_EDGES and UML_SIZE_NODES.
Obviously, this step appears to be a preparation specific to the layout of UML class diagrams.
When reusing SugiBib for other types of graphs, it may occur that the input graph contains
proper nesting relations but no information to realize the hierarchical node naming. In this case,
the node naming function can be constructed by assigning artificial hierarchical names to nested
elements.

4.4.2 Semantic Ordering
A graph whose layout does not change
much when it is newly layed out is called
stable.[sic]

[Böhringer and Paulish 1990]

Deterministic algorithms, which work on lists of elements, heavily rely on the sequence of the
elements in the lists. Changing the position of e.g. a node in an input file and assuming a strongly
deterministic input mechanism, the position of the node in the set of nodes of the input graph also
changes. Therefore, in the layout algorithm, the nodes are processed in a different order which
will probably produce a different result. Obviously this is an unpleasing dependency on the input
and, especially for UML diagrams, this can be circumvented by applying some ordering opera-
tions (S2) before proceeding with the layout algorithm.
In fact, reducing sequence dependencies is an issue of layout stability. Structural stability is
usually concerned with user-specified layout constraints, while dynamic stability requires mini-
mizing the differences between successive layouts of one graph [Tamassia et al. 1988; Böhringer
and Paulish 1990]. Sorting the elements of a graph addresses dynamic stability and therefore, as
mentioned in Section 3.3.1, can be classified as a dynamic aesthetic rule. Therefore, S2 closely
relates to REQ_INCREMENTAL_ALGORITHM, but, of course, it does not provide a solution to
the problem of incremental layout.
First, the ascending order of the nodes according to their fully qualified names is determined. In
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the case of a node without a name, a normalized combination of the names of the connected nodes
can be taken into account. According to REQ_GRAPH_TYPE, we work on directed graphs. As
mentioned in Section 4.2, the concrete direction of the edges representing bidirectional or undi-
rected UML relations, is arbitrary. The direction of these edges can be normalized by considering
the order of nodes determined in this step. Thereby, when reversing the direction of edges, the
position of the edge adornments may be exchanged. Then, the set of all edges is normalized by
taking into account the positions of the start and the end node in the set of nodes, e.g., by sorting
the edges according to

numberEdge(e = {u,v}) := |E| ·V (u)+V (v)

Similarly, the set of in and out edges of the individual nodes are normalized.
The result of S2 is a graph, in which the sequences of graph elements in all relevant set instances
is normalized. Therefore, S2 prepares REQ_DETERMINISTIC_ALGORITHM for different se-
quences of graph element declarations in the input.
S2, as described above, does not consider previously determined positions of graph elements
in incremental layout. This can induce problems maintaining the mental map, if the previous
layouts were not created by SugiBib. In the case of incremental layout with SugiBib, obviously
a problem ensuring stability occurs, if the name of a class is changed between two successive
layout calculations. Then, the position of the node may change in the sorted sequence and the
result graph might look completely different. This issue of stability can also be handled in this
step considering difference information on graphs to be laid out in sequence. For example, proxy
objects representing an old node but having a reference to the changed node can be processed
instead of the nodes and replaced after sorting. We did not implement this proxy technique, be-
cause we decided in REQ_INCREMENTAL_ALGORITHM that deep issues of incremental layout
should not be addressed in this work. We can conclude that this step helps

• producing the same result for input graphs, which are equal in contents disregarding the
sequence of elements in the input. In particular, for different input mechanisms working on
the same data (possibly in various file formats) from the viewpoint of the layout algorithm
the same output is produced.

• maintaining the mental map when new elements are added or existing elements are re-
moved, because the sets of nodes and edges differ only due to inserted or removed elements
but not in their sequence.
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4.4.3 Deduce Hierarchy
Hierarchical institutions are like giant
bulldozers – obedient to the whim of any
fool who takes the controls.

Edward Abbey (1927 – 1989)

In step S3, the pseudo hierarchy (UML_HIERARCHY), which represents the main skeleton of
the final drawing, is initialized. In a loop, each edge of the input graph is considered and tested
for compliance to one of the following alternatives. An edge e is assigned to EH , if e

• belongs to a combination of predefined groups of edges like

– inheritance and realization edges

– anchor edges

– aggregations

– compositions

– directed associations

– dependencies

and is therefore included into the pseudo-hierarchy.

• should be part of the hierarchy due to an user selection. This might optionally be combined
with some of the predefined groups of edges.

• is assigned to the hierarchy due to automatic selection by delegation to a hierarchy detec-
tion plug-in.

• was defined as an hierarchical edge by external mechanisms, e.g. because of incremental
layout.

Otherwise, e is assigned to EN .
Because of interferences between hierarchical edges, assigned to the pseudo-hierarchy, and hy-
peredges, which rely on EH initialized in the first loop, a second loop determines the hyperedges,
e.g., used for xor-constraints, which should also be regarded as hierarchical edges. As discussed
in Section 4.1, the layout algorithm distinguishes between hyperedges at hierarchical edges and
hyperedges at non-hierarchical edges. In fact, it is important, that hyperedges at non-hierarchical
edges are not specified as hierarchical edges. Therefore, a hyperedge is classified as hierarchical
edge, if start and end node have only hierarchical edges except for the hyperedge itself.
S3 realizes main (dynamic) aspects of UML_HIERARCHY. The next step (S4) will ensure that
the nesting relations are present as part of the pseudo-hierarchy.
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4.4.4 Insert Nesting Relations as Edges
If you choose not to live in a cluster, uh,
dorm...

Jim Zelenka

The basic Sugiyama algorithm does not distinguish between different kinds of edges and is there-
fore neither able to handle compounds or clusters nor non-hierarchical edges. To also consider
clusters, we can design a new rank assignment as in [Sander 1996b] or we can reuse a well-known
rank assignment algorithm and ensure that the nesting relations will have major influence on the
structure of the layout result. We made a decision for the second alternative, because we want to
realize a layout algorithm for mixed compound graphs according to REQ_GRAPH_TYPE.
Therefore, in this step (S4), we have to create hierarchical edges to express the nesting relations
as edges to be considered by the rank assignment in S10. Let u and v be connected by a nesting
relation so that v is intended to be nested in u. If no hierarchical edge from u to v exists, a new
(hidden) hierarchical edge is inserted into the graph. Thereby, cycles in the pseudo-hierarchy
subgraph may be introduced, which then will be considered by a cycle breaking technique in
S10 so that hierarchical edges denoting nesting are kept with a higher priority.
This step prepares the realization of UML_SEMANTIC_CLUSTERS and ensures that nesting re-
lations are present in the pseudo-hierarchy according to UML_HIERARCHY.

4.4.5 Compress Hyperedge Connection Nodes
MacDonald has the gift of compress-
ing the largest amount of words into the
smallest amount of thoughts.

Sir Winston Churchill (1874 – 1965)

Before calculating the rank assignment or reducing the number of edge crossings, putting hyper-
edge connection nodes together with their connected nodes into composite nodes is one of the
preparation steps for keeping selected nodes in a close vicinity (UML_HYPEREDGES). This step
(S5) should be performed before transforming reflective edges, because reflective edges might
also be involved in hyperedge relations.
As described in Section 4.1, depending on the type of the hyperedge, the hyperedge connection
nodes are encapsulated into two composite nodes. Figure 4.11 (a) depicts the input structure of
a hyperedge at non-hierarchical edges, to which a comment is attached. In this case, the hyper-
edge will be visible as an individual edge between two of the four visible nodes as illustrated
in Figure 4.11 (b). Which of the four visible nodes are selected to be encapsulated in composite
nodes depends on additional information, which was specified using addNextTo, and on the nor-
malized sequence of nodes determined by S2. The comment node v (as well as further comment
nodes which might appear at a hyperedge) is packed into the first composite node.
In Figure 4.11 (c) the result for a hyperedge at hierarchical edges is shown. In this case, both
hyperedge connection nodes are encapsulated either with the visible start or end nodes. It would
also be possible to pack the two hyperedge connection nodes into a single composite node, but



128 4 THE LAYOUT ALGORITHM

v

(b)(a)

u1

2

1

2u w

w u1

2

1

2u w

w 1 1

w22u

u w

v

Figure 4.11: (a) input graph structure, which specifies that the annotation v is attached to a hi-
erarchical hyperedge at non-hierarchical edges, (b) both hyperedge connection nodes and the
comment are compiled into two composite nodes, (c) the composite nodes for a hyperedge at
hierarchical edges.

this would induce an individual rank for the composite node in the rank assignment S10.

4.4.6 Remove Direct Cycles

I’m out of the loop, and that’s the way I
like it.

Unknown, Graffiti

In most graph algorithms, handling cycles induces additional complexity in the implementation.
As mentioned in Section 4.1, step S6 circumvents direct loops, which arise from reflective asso-
ciations in the input graph. Thereby, the reflective information is transferred into the connected
node and the edge representing the reflective association is removed. The connected node is then
responsible for handling area and drawing specific issues of these edges.
Unfortunately, association classes introduce an additional dependency between S6 and S7, be-
cause association classes may be attached to reflective associations as well. In S7 association
classes will be transformed to composite nodes. After executing S6, the reflective edge itself
would be not visible anymore outside the composite node and an association class would struc-
turally appear disconnected. Therefore, in the case of an association class connected to a reflec-
tive edge, this step connects the association class by an internal edge type to the class and puts
the three elements into a composite node. As an obvious alternative, we might have decided to
process association classes before reflective edges, but this would transform the graph structures
forth and back by temporarily inserting several nodes and edges. In principle, comments can be
handled similarly. A further discussion on comments will be given in Section 4.4.8.
This step prepares UML_REFLECTIVE as well as certain aspects of UML_COMMENTS and
UML_ASSOCIATIONCLASSES and prevents non-hierarchical cycles, which occur at reflective
associations.
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4.4.7 Compress Association Classes

An idea is a feat of association.
Robert Frost (1874 – 1963)

To keep association classes in a close vicinity with their connected association, in this step (S7)
we will change the structure of the graph by inserting composite nodes.
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Figure 4.12: (a) input graph structure, which specifies that the association class v is attached to
“an” edge, (b) node y and edge g which simulates the hyperedge are inserted, (c) v, y and g are
packed into the composite node z and all connections to elements outside are mapped.

So far, according to the graph model described in Section 4.2, the remaining association classes
are at least connected by two edges (having identical information objects) which represent the
underlying association. This situation is illustrated in Figure 4.12 (a). A hidden node is created
and the edges formerly connected to the association class are reconnected to the hidden node.
The dashed edge representing the connection between the association class and the association is
then inserted as shown in Figure 4.12 (b). Finally, as depicted in Figure 4.12 (c), the association
class and the hidden node is encapsulated into a composite node. Even if not mentioned above
or shown in Figure 4.12, further connections to an association class are handled implicitly when
creating the composite node.
If comments are attached to the association class, they are also encapsulated into the composite
node. This is not shown in Figure 4.12. A further discussion on comments will be given in Sec-
tion 4.4.8.
S7 prepares the realization of UML_ASSOCIATIONCLASSES and certain aspects of
UML_COMMENTS.
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4.4.8 Compress Comments
Comments are free but facts are sacred.

Charles Prestwich Scott

Comments in UML introduce a high degree of syntactical variation, because they might be at-
tached to every model element. In Figure 4.13 some situations, in which comments are involved,
are depicted.

Note

Note

Note

Note

Note

Note

Note

Note
Note Note

Note

A AA B

A

A B

AC

A

A

B

A

A

p

B

B

A {xor}

B

B

C

e)

B

C

(a) (c)(b)

(f)(d) (g)

(h) (i) (k)

Figure 4.13: Various situations for a comment at (a) an usual class, (b) a non-hierarchical relation,
(c) (d) multiple elements, (e) a reflective association, (f) an association class, (g) a n-ary node,
(h) a hierarchical relation, (i) a hyperedge and (k) a model management element.

Except of the last one, the following items directly relate to Figure 4.13:
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a) To keep the close vicinity between a comment and its connected class, both elements are
encapsulated into a composite node.

b) In this case, simply all elements are compressed into a composite node.

c) A comment at two other elements may be

• encapsulated together with one connected node into a composite node.

• packed together with both connected nodes into a composite node. This requires fur-
ther knowledge on the rank assignment and should therefore not be processed here,
but, e.g., in a postprocessing step of S10.

• ignored in this step. It will then be treated as an usual node and hopefully will occur
between both nodes depending on the edge crossing reduction.

It seems that the second alternative, postprocessing the rank assignment, is the most ap-
propriate way.

d) If the connected nodes are not involved in further visible hierarchical relations, a prepro-
cessing step of the rank assignment can change the edges partition of the graph to rede-
fine the dashed lines as hierarchical edges. After the rank assignment, multiple connected
comments can be retrieved and the rank assignment as well as the edges partition can be
adjusted.

e) As discussed in Section 4.4.6, some of the preprocessing steps have to handle complex situ-
ations directly instead of deferring them to the dedicated layout step. Therefore, a comment
attached to a reflective association, was processed in S6.

f) Similar to e) this situation was handled in S7.

g) A n-ary relation and a comment do not require further handling here. The comment was
assigned to the invisible cluster in S1 and the connecting edge may be defined as hierar-
chical or non-hierarchical in the postprocessing of the rank assignment depending on the
number of nodes involved in this situation.

h) A hierarchical edge with a comment must not exist while executing the rank assignment.
Therefore, the comment and its connecting node is compressed into a composite node with
the start or the end node.

i) A comment attached to a constraint edge should be encapsulated with either one of the
hidden nodes which simulate the hyperedge, the attached start or end node. Therefore, this
case was handled in S5.

k) As mentioned along with S1, the correct nesting relations for association classes as well as
for comments were determined in S1. Hopefully, the comment will be kept in vicinity to
the package by the edge crossing reduction.
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l) Standalone comments, which relate to the diagram itself, are treated as usual nodes and
because they are not connected, they will temporarily be removed in S9.

By combining the situations in Figure 4.13 further, more complex situations can be constructed,
e.g. at reflective associations. Therefore, comments at a reflective association, which is further-
more described by an association class, comments at an association classes connected to a reflec-
tive associations or combinations of these situations have to be handled by an implementation.
As a conclusion, in this step (S8) we have to handle the cases a), b) and h) by finding
the appropriate subgraph and encapsulating the elements into a composite node to prepare
UML_COMMENTS.

4.4.9 Remove Disconnected Nodes
Disconnected graphs occur rather fre-
quently in real life applications either dur-
ing the construction of a graph interac-
tively or because of the nature of the ap-
plication [...]

[Freivalds et al. 2002]

Nodes, which are not connected to any other node may disturb an iterative coordinate assignment
algorithm, which places nodes according to priorities calculated according to the number of con-
nected edges. Depending on the concrete implementation, such nodes, e.g., might be moved with
their neighbors, but they may also remain at the border of the drawing somewhere far away from
the other nodes. Therefore, in this step (S9), disconnected nodes are temporarily removed from
the graph.
This step does not take nested nodes into account, because in S4 it has been ensured that nesting
relations are present as hierarchical edges and therefore these nodes do not appear as discon-
nected nodes. Furthermore, this step prepares UML_DISCONNECTED and disconnected com-
ments according to UML_COMMENTS.

4.4.10 Virtual Root and Leaf
As the poet said, ’Only God can make a
tree’ – probably because it’s so hard to
figure out how to get the bark on.

Woody Allen

The rank assignment S10 requires the hierarchical subgraph to be connected and to be acyclic.
The first requirement can be ensured by inserting a virtual root in the case of a disconnected for-
est. The virtual root will also act as starting point for some of the algorithms in S10. The second
requirement will be treated in the next section.
If more than one node of the hierarchical subgraph has no incoming edges, a new hidden node is
created and connected to these nodes by hidden hierarchical edges.
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If an iterative coordinates assignment, which places nodes according to priorities calculated from
their connected edges, is applied, a unique virtual leaf might be used to restrict the area required
by the intermediary layouts. Therfore, nodes having no hierarchical outgoing relations are con-
nected by hidden edges to a newly created hidden leaf. Creating a virtual leaf may also be applied
after calculating the rank assignment in S10. In this case, it will be necessary to assign the virtual
leaf to an own rank below the maximum rank of the graph.

4.4.11 Breaking Cycles
For general directed graphs, one should
compute a minimum size set of feed-
back edges; the direction of these is re-
versed, so changing it into a acyclic di-
rected graph.

[Sugiyama 2002]

To realize UML_HIERARCHY, we have built in S3 a pseudo hierarchy, which may contain cy-
cles. As a precondition to the rank assignment S10, the hierarchical subgraph must be acyclic.
The usual approach is to internally reverse certain edges and thereby to break the cycles in the
graph [Rowe et al. 1987; Sugiyama 2002]. Furthermore, all the nodes in a cycle can simply be
collapsed into one node, one of the nodes in the cycle can be duplicated to break the cycle or
all nodes in a cycle might be placed in the same rank [Carpano 1980; Sugiyama et al. 1981;
Sugiyama and Misue 1991]. While encapsulation using composite nodes might be an approach,
the latter two ideas do not meet the requirements of our application domain considering the UML
specification and UML_HIERARCHY.
More formally, the feedback arc set F of a directed (cyclic) graph G = (V,E) F ⊂ E contains at
least every edge which is a part of a cycle in G. When F is removed from G or all edges in F are
reversed, the resulting graph will be acyclic. Finding the minimal set of feedback arcs is called
the minimum feedback arc set problem and, unfortunately, it was proven to be NP-complete in
[Garey and Johnson 1983].
Different methods for calculating an appropriate feedback arc set or solving the problem of the
minimal set on special types of graphs have been described in literature. The first discussion oc-
curred in 1957 in a study of asynchronous logical feedback networks.
Different researchers tried to find an exact solution. In [Hackbusch 1997] the feedback arc set
problem for planar digraphs was attacked by transforming the graph into a flow-problem. The
flow-problem was then described as systems of linear equations which can be solved in linear
time. A genetic method was given in [Jingwei and Zhuo 1994] and in [Saab 2001] an approach
based on boolean expressions, which unfortunately requires exponential runtime, was mentioned.
More practical and graph drawing related approaches are based on heuristics. From different ex-
periments it is known that reversing the minimum set of feedback arcs does not necessarily lead
to a better drawing. Therefore, simply reversing the edges, which participate in many cycles,
appears to be a reasonable heuristic.
The basic idea is to traverse the graph in a depth-first search and to label thereby each node with
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a unique integer value. Let l(v) be the label of v, then an edge~e = (v,w) with l(w) > l(v) is called
upward edge. Upward edges may be reversed. An improvement to the simple approach from the
perspective of graph drawing is to greedily move nodes having a large outdegree to the top of
the drawing. The lowest label is assigned to the node having (locally) the largest outdegree. This
step is then repeated recursively on the rest of the nodes [Eades and Sugiyama 1990]. Both ideas
run in O(|V |+ |E|), because both directly rely on a depth-first traversal.
As noted in [Eades and Sugiyama 1990], the complexity can be reduced to O(|V |) by applying
a divide & conquer approach, which also reduces the number of upward edges. According to
[Eades and Sugiyama 1990], a topological sorting, which ignores backarcs, appears as a simple,
fast but not very effective method. In [Saab 2001], a recursive algorithm based on a bisection
function, which partitions a graph in two subsets of nearly equal size, was used to attack the
problem. That bisection function was then determined by stochastic evolution or dynamic clus-
tering. Reversing edges based on a set of rules to meet the down-arrow convention was presented
in [Sugiyama and Misue 1991]. Finally, a greedy cycle removal algorithm by Eades, Lin and
Smyth was described in [Battista et al. 1999].
Another interesting approach relies on the fact that an edge can be part of a cycle only if its
start and end point are located in the same strongly connected component. Hence, according to
[Sugiyama and Misue 1991; Gansner et al. 1993; Saab 2001] it is sufficient to reverse the edges
which occur most in a cycle found by a depth-first traversal of a strongly connected component.
It is known that reversing inappropriate edges disturbs the final drawing but from the perspective
of stability, the depth-first cycle-breaking heuristic seems to be preferable [Gansner et al. 1993].
We will facilitate the depth-first cycle-breaking heuristic with a minor modification: In S3 various
kinds of edges may be included into the pseudo-hierarchy. When breaking cycles, nesting edges
should not be reversed at all to ensure UML_HIERARCHY and UML_SEMANTIC_CLUSTERS.
Therefore, the individual edge types can introduce an individual priority so that the candidates
for reversal are selected according to that priority and the length of the cycle.

4.4.12 Conclusions
Statistics: The only science that enables
different experts using the same figures to
draw different conclusions.

Evan Esar (1899 – 1995)

In this section, we have discussed the algorithmic steps S1 up to S9 of the preprocessing macro
phase of our layout algorithm for UML class diagrams. Furthermore, two common preprocessing
tasks, ensuring a virtual root/leaf and breaking cycles, useful for other layout steps, like the rank
assignment, or layout algorithms have been described.
The preparation steps collect additional information, e.g., the nesting relations, the membership
of edges in the pseudo-hierarchy, the design complexity, etc. and adjust selected subgraphs by
changing the structure or encapsulating graph elements into composite nodes. The sequence of
the preprocessing steps is determined by procedural and data dependencies rather than by the
priorities of the aesthetic rules introduced in Section 3.3.6. Therefore, various aesthetic rules are
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prepared, but neither criteria themselves nor their priorities are realized in this macro processing
step. Furthermore, the result is a restructured graph, which currently does not impose a layout.
This will be successively be introduced by the following macro phases.
Table 4.2 shows the complexities of the individual preprocessing steps. Several steps, like S1, S4,
S5, S6, S7 and S8, change the structure of the graph by considering nodes and edges. All steps
can be implemented so that each node is and each edge is regarded at most twice. S2 sorts the
set of nodes, the set of edges and the partitions of in and out edges of each node. According to
the description in Section 4.4.2, we can assume average runtime, e.g., of a quicksort algorithm.
Currently, S3 does not provide sophisticated hierarchy detection mechanisms. Therefore, the
pseudo-hierarchy can be deduced by taking the type of each individual edge into account. S9
simply searches for nodes without relations.

algorithmic step runtime complexity
S1 O(|V |+ |E|)
S2 O(|V | · log |V |+ |E| · log |E|)
S3 O(|E|)
S4 O(|V |+ |EH |)
S5 O(|V |+ |EH ∪ EN |)
S6 O(|V |+ |EH ∪ EN |)
S7 O(|V |+ |EH ∪ EN |)
S8 O(|V |+ |EN |)
S9 O(|V |)

preprocessing macro phase O(|V | · log |V |+ |EH ∪ EN | · log |EH ∪ EN |)
Table 4.2: Runtime complexities of the preprocessing macro phase. E denotes the initial set of
edges of the input graph, which was not partitioned by S3 so far.
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4.5 Rank Assignment
You can be a rank insider as well as a rank
outsider.

Robert Frost (1874 – 1963)

The first step of the classical hierarchical layout algorithm is the rank assignment (S10 in our
approach), i.e. partitioning the set of nodes into several (horizontal) layers and therefore a kind
of basic (vertical) coordinates calculation. In this chapter we will adapt the basic definitions for
n-level hierarchies from literature, we will introduce certain validity rules for node sequences
and ranks respecting clusters and we will describe extensions to the classical algorithms to gain
a specialized version for the layout of UML class diagrams.

4.5.1 Previous Work
The first pass finds an optimal rank as-
signment using a network simplex algo-
rithm.

[Gansner et al. 1993]

In [Warfield 1977] a graph containing a hierarchy was represented as a reachability matrix. Fur-
thermore, an algorithm to calculate a proper reachability matrix was given. That algorithm inserts
dummy vertices to restrict every edge to a span6 of 1.
To choose the minimum number of dummy nodes in [Gansner et al. 1988; Sugiyama 2002] a y
coordinate and therefore the rank of a node satisfies the following properties:

1. r(u) is an integer for each node

2. r(u) ≥ 1 for each node

3. r(v)− r(u) ≥ 1 for each ~e = (u,v) ∈ EH

Then the rank assignment was calculated by

min ∑
~e=(u,v)∈ EH

(r(v)− r(u)) ·w(~e) subject to: r(v) ≥ r(u)+1 for all ~e ∈ EH

where w(~e) ≥ 1 denotes the weight or the importance of the edge ~e. Finally, the rank assignment
should minimize the number of dummy nodes given by

f (y) = ∑
~e=(u,v)∈ EH

(r(v)− r(u)−1)

This can also be achieved by the integer program described above with the guarantee that the rank
values are integer values. Minimizing the number of dummy nodes directly affects the runtime,

6The number of ranks spanned by an edge.
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the area required by the drawing and prevents from additional effort in minimizing the number
of bends. In [Gansner et al. 1988; Gansner et al. 1993] it was shown that the rank assignment
problem can be solved in polynomial time by linear programming as well as transforming the
problem into an equivalent min-cost flow or circulation problem [Goldberg and Tarjan 1986;
Goldberg and Tarjan 1990]. Another technique, even if it does not necessarily run in polynomial
time, is to apply the simplex method due to fact that the constraint matrix is totally unimodular
[Cunningham 1976; Gansner et al. 1993].
A method respecting the extents of a page by applying the longest path layering was introduced
in [Eades and Sugiyama 1990]: All sinks are placed in the top layer, each remaining node is
placed in the layer where the node forms the longest path. On the one side, this method produces
a layering of minimum height and it can be used to calculate a shortest-path layering in linear
time. On the other side, it induces problems on the width of the drawing:

However, the longest-path layering may be very wide, especially near the bottom
of the drawing [...] We need a tool for assigning each node to a layer such that the
space used is neither too wide nor too high; this would avoid overcrowding in both
directions.

[Eades and Sugiyama 1990]

Unfortunately, the problem of finding such a layering is NP-hard due to the multiprocessor
scheduling problem [Garey and Johnson 1983; Eades and Sugiyama 1990].
In [Healy and Nikolov 2002a; Healy and Nikolov 2002b], a branch-and-cut approach to the
directed acyclic graph layering problem was described. An integer linear programming formula-
tion was given which combines the positive aspects of Coffman-Graham [Coffman and Graham
1972], longest path layering [Eades and Sugiyama 1990] and the Gansner method [Gansner et al.
1988; Gansner et al. 1993] with respect to given width and height bounds.
While the classical Sugiyama algorithm [Sugiyama et al. 1981] relies on [Warfield 1977] re-
specting hierarchization, in [Sugiyama and Misue 1991; Brockenauer and Cornelsen 2001] the
hierarchization for compound graphs was performed by creating a so called derived graph. The
adjacency edges were replaced by two types of edges representing less-than and less-then-equal
relations arising from the down-arrow convention for compound graphs. After the substitution of
certain edge combinations and cycles, the derived graph was then used for assigning compound
levels to all the vertices. Finally, as in most approaches, the hierarchy had to be normalized by
introducing an appropriate number of dummy nodes and edges.
Another rank assignment algorithm specific to compound graphs was presented in [Sander
1996b]. The nesting graph (similar to the derived graph in [Sugiyama and Misue 1991]) of a
compound graph was created. Cycles were removed by applying certain rules and finally the
nesting graph was traversed in topological order to produce a legal rank assignment.
Further and more sophisticated approaches addresses the problem of local layering [Schreiber
2002]. Hereby a node with a large height is spread over several (sub)layers and therefore reduces
the overall height of the drawing. This appears interesting, in particular for UML class diagrams,
in which the variance of node sizes might be relatively high, due to the individual number of
attributes and operations of the classes. On the one side, this may be a future improvement to
reduce the height of a drawing (UML_GRAPHDRAWING via GDR_DRAWING_SIZE) and to
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improve compaction. On the other side, the clarity of the hierarchy (UML_HIERARCHY) might
be disturbed.

4.5.2 Basic Definitions
To freely bloom - that is my definition of
success.

Gerry Spence

In [Sugiyama et al. 1981], the term n-level hierarchy was introduced as a partition of the nodes
of a graph according to levels, whereby a level (or rank) was defined as a sequence of nodes
belonging to the same hierarchical layer. Furthermore, the edges were also partitioned so that
each edge connects adjacent ranks only. Edges, which span over more than one layer, were split
by dummy nodes into edge chains to gain a proper n-level hierarchy.
We have to adapt that basic definition to our application domain, because non-hierarchical edges
are not considered by the Sugiyama algorithm and therefore not treated by the usual definition
of a n-level hierarchy.

Definition 9 (n-level hierarchy)
A n-level (n ≥ 1) hierarchy Ḡ = (V,EH ,EN ,n,σ) is a directed graph G = (V,EH ,EN) which
satisfies the following conditions:

1. V can be partitioned into n subsets7 that is V = V0 ∪ V1 ∪ · · · ∪ Vn−1 (Vi ∩ Vj = /0, i 6= j). n
is called the length of the hierarchy.

2. For edge ~e = (vi,v j) ∈ EH ∪ EN with vi ∈ Vi and v j ∈ Vj, i < j ≤ i + 1 if e ∈ EH or
i ≤ j ≤ i + 1 if e ∈ EN holds, respectively. Long span edges are assumed to be split by
invisible nodes to fulfill this condition.

3. The set of edges E = EH ∪ EN can be partitioned as follows:

E = EH ∪ ENH ∪ ENF

= (EH0 ∪ . . . ∪ EHn−2) ∪ (ENH0 ∪ . . .ENHn−2) ∪ (ENF0 ∪ . . . ∪ ENFn−1)

with

EHi := {~e : ~e = (v,w) ∈ EH , v ∈ Vi, w ∈ Vi+1}
ENHi := {~e : ~e = (v,w) ∈ EN , v ∈ Vi, w ∈ Vi+1}
ENFi := {e : e = {v,w} ∈ EN , v ∈ Vi, w ∈ Vi}

4. An order σi = v0v1 . . .v|Vi|−1 of Vi with 0 ≤ i ≤ n−1 and v j ∈ Vi, 0 ≤ j < |Vi| is given for
each i, where the term ”order” means a sequence of all vertices of Vi, e.g., after permutat-
ing Vi. σi is called the i-th rank (or level) of graph G.
For node v ∈ Vi and therefore v ∈ σi we denote r(v) = i as the rank number of v. For the
sequence σi = v0v1 . . .vk . . .v|Vi|−1 with vk = v we denote σi(v) = k as the 0-based index
of v in σi and as the counterpart σi[k] = v as an index access to σi.
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We allow n = 1 in definition 9, because graphs having non-hierarchical relations only or exactly
one node should be processed, too.
As mentioned above, edges, which span over multiple ranks, have to be split up to meet
definition 9 and to be handled by the following parts of the layout algorithm. An edge reaching
from rank i to j, i < j ∧ j− i > 1 is split up into j− i edges by j− i−1 hidden nodes positioned
in each Vk i+1 < k < j−1.
Example:
Figure 4.14 (a) shows a simple digraph a n-level hierarchy should be calculated for. In Fig-

V0

V1

V2 N2

N1 N1

N2

rank

N1 N2

N N N0 0 0

(c)(b)(a)

Figure 4.14: Building a 3-level hierarchy from the graph in (a) by (b) rank assignment and (c)
insertion of dummy nodes to be compliant to definition 9.

ure 4.14 (b) the nodes are partitioned into 3 ranks but yet the graph is not an n-level hierarchy
as introduced by definition 9. In Figure 4.14 (c) the hidden node, which is necessary to meet
definition 9, is inserted.

Definition 10 (length, minimum length and weight of an edge)
Let ~e = (v,w) be a directed edge of graph G = (V,EH ,EN), ~e ∈ EH ∪ EN , v,w ∈ V . The length
lr(~e) is defined as lr(~e) := r(w)− r(v). Let the (externally given) minimum length constraint
be δr(~e) ≥ 1. Furthermore, let w(~e) ≥ 1 be the (externally specified) weight of an edge, which
describes the edge’s importance. Usually w(~e) = 1.
The minimum length constraint and the weight of an undirected edge e are introduced similarly.
The length of an undirected edge lr(e) is defined by lr(e) := |r(w)− r(v)|.

7In this work, indices run over 0 . . .n−1 on a set of n elements according to the implementation.
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4.5.3 Validity Rules
The rule is perfect: in all matters of opin-
ion our adversaries are insane.

Mark Twain (1835 – 1910)

The nodes can be partitioned into hierarchically nested clusters by a hierarchical node naming

A A::A B

A A::BA::A B

A::A

0

0

Rank:

(a)

(b)

Figure 4.15: Cluster sequence within one rank: (a) is valid, (b) is invalid

function, which was introduced in Section 4.3.4. According to UML_SEMANTIC_CLUSTERS,
UML_NODES and UML_EDGES the clusters of a graph should

• be clearly visible as individuals.

• not overlap other edges, other nodes and clusters except for nested clusters/nodes.

• not be split up into different subsets within one rank if the cluster does not contain further
subclusters.

These intuitive aesthetic rules have to be specified as validity rules on the ranks of a graph to be
respected by all parts of the layout algorithm.
In [Sander 1996b; Forster 2002] the following common rules to ensure validity are suggested:

1. The nodes on a layer that belong to the same compound node must be placed next to each
other with no other nodes between them.

2. The relative position of two compound nodes must be the same on all layers, i.e., com-
pound nodes must not “cross” each other.

In this section, we will formalize these rules by specifying them in terms of the node naming
function.
Figure 4.15 (a)8 depicts a valid sequence of clusters within a rank. Members of the global cluster

8In this section, nodes are drawn as filled circles and clusters as rectangles, because individual names for nodes
are not required here.
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B A::AA::B

A A::A A::B B C C::A

A D

A A::A A::B B C C::A

A A::A A::B BD

0
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Rank:

0
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Figure 4.16: Cluster sequences considering adjacent ranks: (a) is valid, (b) is invalid, because the
sequence of the common clusters are not equal.

may appear between two different clusters but not inside a cluster. The nesting of A::A and A::B
inside of A is valid. Figure 4.15 (b) shows an invalid cluster sequence, because A::A must not
be separated by a node of A. This kind of rule takes only one rank at a time into account and is
therefore called intra-rank validity in the following.
Cluster may span over adjacent ranks and so far the intra-rank validity respects the cluster se-
quence in one rank only. At least the sequences of the clusters common to both ranks have to be
equal. Clusters which are not mentioned in both ranks may occur at positions according to the
intra-rank validity rules. Figure 4.16 (a) shows two adjacent ranks having equal sequences of the
common clusters. We assume that the upper rank is the reference rank the lower rank has to be
aligned to or to be tested on. Figure 4.16 (b) is invalid because B occurs at the left side of A and
A::B at the left side of A::A in contradiction to the sequence of the upper rank. This kind of rule
takes cluster-relations between adjacent ranks into account and is be called inter-rank validity in
the following.
Obviously, a graph is valid if all of its ranks are intra-rank and inter-rank valid.
Next, formal definitions, which specify the intra-rank, inter-rank and graph validity, will be given.
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Definition 11 (intra-rank validity)
Let Ḡ = (V,EH ,EN ,n,σ) be a n-level hierarchy of G and (C,crit, � ) a hierarchical node naming
function on G according to definition 7. Let

pairs(r) := {(v,u) : v,u ∈ σr, v 6= u ∧ v ./ u ∧ σr(v) < σr(u)} (4.1)

be the set of cluster-related nodes in rank r. Without loss of generality it is required that v occurs
before u in σr. The sequence of nodes in σr is intra-rank-valid if

rankFit(r) := ∀ (v,u)∈ pairs(r) ∀ σr(v)<i<σr(u) ¬notClusterRelated(crit(σr[i]),crit(v)) ∧
σr[i] � LCC(v,u) (4.2)

holds so that for each pair of cluster-related nodes there is no node in between which is not
comparable or assigned to a parent cluster. Finally, the entire hierarchy is intra-rank-valid if

∀ 0≤ r<n rankFit(r) (4.3)

Example:
In Figure 4.15 (a)

pairs(0) = {(A,A :: A),(A,A),(A,A :: B),(A,A),(A :: A,A),(A :: A,A :: B),(A :: A,A),
(A,A :: B),(A,A),(A :: B,A)}

Even if multiple occurrences of the same pair seem to be returned, each node (here represented
by its cluster name) is an individual and therefore different parts of the rank are considered for
each pair in rankFit. Neither parent cluster names of a A nor not comparable cluster names occur
between the nodes of the subranks marked by the individual pairs. Therefore, rankFit(0) holds.
In Figure 4.15 (b)

pairs(0) = {(A,A :: A),(A,A),(A,A :: A),(A,A),(A :: A,A),(A :: A,A :: A),(A :: A,A),
(A,A :: A),(A,A),(A :: A,A)}

is returned. Between (A :: A,A :: A) the parent cluster name A occurs, which prevents the validity.

Definition 12 (inter-rank validity)
Let Ḡ = (V,EH ,EN ,n,σ) be a n-level hierarchy of G and (C,crit, � ) a hierarchical node nam-
ing function on G according to definition 7. Let d ∈ {−1,1} be the direction of the reference
rank σr+d rank σr should be tested on and 0 ≤ r < n, 0 ≤ r+d < n. Let augmented(r) be the se-
quence of first-occurrences of all containing cluster names of each node in σr. The global cluster
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must not be considered in augmented(r), because members of the global cluster may occur ev-
erywhere at intra-rank valid positions. Then σr+d and σr are inter-rank valid if augmented(r)
and augmented(r +d) are equal regarding elements which occur in both ranks only.

Augmenting a given sequence of node names simulates the presence of cluster border nodes,
which are not required to be member of the ranks until coordinates assignment in SugiBib.

Example:
In Figure 4.16 (a), augmented(0) = A A::A A::B B C C::A and augmented(1) = A A::A
A::B D B. Let augmented(r1,r2)R be the sequence of first-occurrences of all containing
cluster names of each node in σr1 restricted to elements, which occur in σr1 and in σr2 .
augmented(0,1)R = A A::A A::B B =N A A::A A::B B = augmented(1,0)R. Hence, the
depicted ranks are inter-rank valid.
In Figure 4.16 (b) augmented(0) = A A::A A::B B C C::A, augmented(1) = B A A::B
A::A D and augmented(0,1)R = A A::A A::B B 6=N B A A::B A::A = augmented(1,0)R

Therefore, these ranks are not inter-rank valid.

Definition 13 (graph validity)
Let Ḡ = (V,EH ,EN ,n,σ) be a n-level hierarchy of G and nodeNamingTupelCN a hierarchical
node naming function on G according to definition 7. Ḡ is valid respecting the given naming
function, if all ranks are intra-rank valid according to definition 11 and the hierarchy is inter-
rank valid according to definition 12.

4.5.4 The Core Algorithm
At the innermost core of all loneliness is
a deep and powerful yearning for union
with one’s lost self.

Brendan Francis

In [Gansner et al. 1993], the rank assignment problem for graph G = (V,EH ,EN) was formulated
as

min ∑
~e=(v,w)∈ EH

w(~e) · lr(~e)

subject to: ∀ ~e=(v,w)∈ EH lr(~e) ≥ δr(~e)

Since the first version of SugiBib [Eichelberger 1999] we apply the network simplex method
and due to our experience we can agree to the statement that “Although its time complexity has
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not been proven polynomial, in practice it takes few iterations and runs quickly” [Gansner et al.
1993].

Algorithm 4.2 rankAssignment
input: G = (V,r,EH ,EN)
output: (G, Ḡ = (V,EH ,EN ,n,σ))

G′ := select(G)
G′ := preprocess(G′ )
G′ := hierarchicalRankAssignment(G′ ,0, true)
G := nonHierarchicalRankAssignment(G)
G := post process(G)
G := createEdgeChains(G)
return (G,createRankStructure(G))

Algorithm 4.2 selects the subgraph, which represents the pseudo-hierarchy to be processed by
the hierarchical rank assignment algorithm, and performs some application domain preprocess-
ing. Due to the nature of the graph, the preprocessing step may ensure an acyclic graph as input.
Additional rank assignment transformations for UML class diagrams will be discussed later in
Section 4.5.5. Then the hierarchical and the non-hierarchical rank assignment are calculated. In
an application-domain specific postprocessing step, corrections to the basic rank assignment are
carried out. createEdgeChains inserts dummy nodes to fulfill definition 9 as depicted in Fig-
ure 4.14.
Finally, createRankStructure determines the vertex sequences for each σi r(v) on a node
v ∈ V was introduced in definition 9 via the membership of v in a Vi or σi, respectively. In the
description of the rank assignment algorithms, we will use r(v) to also denote the desired target
rank assignment of individual nodes, even if a concrete partition was not created physically so
far. As long as createRankStructure is not called, we assume, because of notational conve-
nience that the individual r(v) values are, however, stored in G.
If no node naming function is given, the node partitions Vi can simply be obtained by iterating
through all nodes in V and considering r(v). In this case, the sequences in σi are determined
indirectly by the sequence of V initially calculated in step S2 of the main layout algorithm.
If a node naming function is given, an ordering on the node names is implied by definition 7.
Therefore, the properties of the node naming function can be used to sort each σi to be compliant
to definition 13. In the case of the hierarchical naming system defined by UML, representing
cluster names as strings and applying an ascending sorting function with respect to the general
cluster name is appropriate. Obviously the intra-rank validity from definition 13 holds, because
all nodes, which are member of the same cluster, are in sequence and different clusters are or-
dered according to the ascending string sorting. Members of the general cluster are then located
to either the left or the right side of a rank. Nodes within the same cluster might be ordered sim-
ilar to step S2 or according to UML_CONSTRAINT_SEQUENCE. The inter-rank validity from
definition 13 holds, because the order of adjacent ranks restricted to cluster names occurring in
both ranks are the same due to the ordering properties of the node naming function.
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Algorithm 4.3 hierarchicalRankAssignment
input: G = (V,r,EH ,EN),min,bal
output: G

T := f easibleTree(G)
while e := leaveEdge(G,T ) 6= ⊥ do

f := enterEdge(G,T,e)
G := exchange(G,T,e, f )

end while
G := normalize(G,min)
if bal = true then

G := balance(G)
end if
return G

Algorithm 4.3 shows the rank assignment algorithm which was described in [Gansner et al.
1993] based on the network simplex method. A graph is called feasible, if ∀ e∈ EH lr(e) ≥ δr(e).
feasibleTree constructs an initial, feasible spanning tree. The simplex method starts with a
feasible solution and maintains the feasible constraint as an invariant. leaveEdge returns an
edge of the spanning tree which should be replaced by a tight edge having lr(e) = δr(e) to prob-
ably reduce the weighted edge length sum of all edges towards an optimal rank assignment.
enterEdge selects an appropriate edge to replace e and to keep the graph feasible. exchange
swaps e and f and updates internal structures for an efficient computation.normalize ensures
that the minimum rank number is zero and that all integer numbers between zero and the maxi-
mum normalized rank number are used. balance is a standard postprocessing function described
in [Gansner et al. 1993]: It performs an aspect-ratio optimization by moving nodes having equal
in- and out-edge weights and multiple feasible ranks to the feasible rank with the fewest mem-
bers.

4.5.5 UML and Cluster Specific Adjustments

The art of life lies in a constant readjust-
ment to our surroundings.

Okakura Kakuzo

In this section, adjustments of the basic rank assignment due to clusters and UML class diagrams
will be given. In the description of algorithm 4.2, some methods were left out so that they can act
as hot spots to plug in application domain specific algorithms. In the first part, preprocessing steps
will be discussed. Then the rank assignment for non-hierarchically connected nodes based on the
“incremental extension” from [Seemann 1997] is presented. Finally, various postprocessing tasks
due to the compound nature of the graph will be pointed out.
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Preprocessing

Algorithm 4.4 preprocess
input: G = (V,EH ,EN)
output: G

G := trans f ormToAcyclicGraph(G)
G := ensureVirtualRoot(G)
G := en f orceHierarchicalClusterDependencies(G)
G := respectHierarchicalClusterRelations(G)
return G

Algorithm 4.4 shows the steps to be executed on the subgraph representing the pseudo hierarchy.
Therefore, select in algorithm 4.2 is redefined to deliver the members of the pseudo hierarchy
only. G is transformed into an acyclic graph as described in Section 4.4.11. Then the presence of
a virtual root in the case of hierarchically disconnected forests is ensured.
In Section 4.2 we pointed out that a cluster consists of a cluster base node, contained nodes and,
dependent on the state of the layout process, cluster border and cluster separator nodes. The
nesting relations have been temporarily represented by inserting hierarchical edges in step S4,
and therefore clusters and their contained nodes can be considered in the rank assignment as
usual nodes.

Because of hierarchical relations it may occur that contained nodes across clusters are connected
but not the clusters themselves. This would lead to a side-by-side placement of the clusters

N0 P2

N2

N0

P2

N2

N0 P2

N2

P1 P1 P1

(a) (b) (c)

Figure 4.17: (a) unpleasing situation after default rank assignment considering nesting relations,
(b) the compound dependency graph admits a leaf to be moved, (c) rank assignment with tempo-
rary hierarchical relation due to invisible compound dependencies.

as depicted in Figure 4.17 (a) and UML_HIERARCHY on the semantically implicit relations
between clusters would not be emphasized. To prevent this situation, the cluster dependency
graph illustrated in Figure 4.17 (b) can be calculated by also considering implicit relations which
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arise from edges between members of the clusters. Considering the structure of the dependency
graph, additional hierarchical edges can be temporarily inserted into the original graph. This has
to be done carefully, because no cycles must be introduced by new edges. Therefore, for each
leaf in the dependency graph, appropriate connections are inserted and the leaf is removed from
the dependency graph. This is repeated until no leaves are contained in the dependency graph.
Then, after calculating the rank assignment, these additional hierarchical edges will be removed.

Algorithm 4.5 enforceHierarchicalClusterDependencies
input: G = (V,EH ,EN)
output: G

Vd := {}
Ed := {}
Gd = (V,Ed)
for all ~e = (v,w) ∈ EH do

c := LCC(v,w)
vc := listGet({x : x ∈ ulc(v), crit(x) =N c},0) {at maximum one by construction}
wc := listGet({x : x ∈ ulc(w), crit(x) =N c},0)
if vc 6= ⊥ ∧ wc 6= ⊥ ∧ |{ f : f = {vc,wc} ∈ Ed}| = 0 then

Vd := Vd ∪ {vc,wc}
~f := new Edge (vc,wc)
Ed := Ed ∪ {~f}

end if
end for
D = {}
repeat

for all v ∈ {w : w ∈ Vd, |out(w)| = 0} do
for all w ∈ V−(v) do

if |{ f : f = {v,w} ∈ EH}| = 0 then
D := D ∪ {(v,w)}

end if
end for
remove(Gd,v)

end for
until |{w : w ∈ Vd, |out(w)| = 0}| = 0
sort(D,decendingLCC(.))
for all (v,w) ∈ D do

EH := EH ∪ {~f := new Edge (deepestContained(G,v),w)}
end for
return G

Algorithm 4.5 shows the construction of the dependency graph Gd in the first loop. In the second
loop the leaves are processed successively. Thereby, a leaf is connected to the “deepest” node
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in the depending cluster: Let w be a cluster dependent on cluster v as shown for P2 and P1 in
Figure 4.17. To ensure that w will occur below v if w is a leaf in the dependency graph, w has to
be connected to the “deepest” node in v. By sucessively inserting cluster dependencies, also the
currently deepest node changes. Therefore, the dependencies are inserted in sequence of the most
specific edges given by a descending sort on the least common cluster criteria. The deepest node
can than be retrieved by a depth-first traversal also considering cluster dependencies inserted so
far.
Similar to the preprocessing of invisibly connected clusters, also nodes considered for
UML_CENTER or UML_COMMENTS can be handled. Several nodes, like the central node of
n-ary associations, collaborations or comments should be centered upon their connected nodes.
A node which is exclusively connected to its central node can later easily be assigned to adjacent
ranks. If too few of the exclusively connected nodes are present, also nodes in further relation-
ships have to be taken into account. These nodes can be forced into a lower or an upper rank by
connecting them by invisible hierarchical edges to the desired centered node. Thereby, as men-
tioned above, cycles have to be avoided. According to the different priorities of aesthetic prin-
ciples, as visualized in Table 3.3, first hidden edges due to nesting, then due to UML_CENTER

and finally due to UML_COMMENTS are considered for insertion.

Without preprocessing, the class diagram in Figure 4.18 (a) would lead to the result in Fig-
ure 4.18 (b), which does not emphasize hierarchical aspects according to UML_HIERARCHY

and UML_SEMANTIC_CLUSTERS. In this preparation step, we add a cluster border node to the
cluster and reconnect the hierarchical edges (especially those inserted by algorithm 4.5) from
the cluster parent to the newly inserted cluster border node. This is illustrated in Figure 4.18 (c).
Accidentally, the rank assignment algorithm then might place the cluster border node in one of
the ranks together with other contained nodes. Therefore another postprocessing step will have
to ensure that the cluster border node is assigned to the maximum rank of the cluster.

Another cluster situation has to be considered if UML_COUPLING is enabled. In this case, it has
to be ensured that nodes contained in a cluster, which have no incoming edges, are connected
to a newly created hidden node. Otherwise, the separation of outside coupled and not-outside
coupled nodes in the top rank of a cluster cannot be guaranteed9.

Rank Assignment for non-hierarchically Connected Nodes

In [Seemann 1997], an extension of the Sugiyama algorithm was proposed, which partitions the
set of edges into the inheritance subgraph and the subset of association edges. As described in
Section 4.1 and also mentioned above, there are two basic variants to perform that algorithm:
The Sugiyama-Seemann combination, in which non-hierarchical edges and non-hierarchically
connected nodes are removed before calculating the rank assignment and the edge crossing re-
duction, and the integrated version, which performs the ranking on the hierarchical subset of the
edges and does the edge crossing minimization on the entire graph. In both variants, the nodes
only connected by non-hierarchical edges have to be assigned to the n-level hierarchy some-

9This will be illustrated with a cluster specific postprocessing of the rank assignment in Figure 4.20.
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Figure 4.18: (a) derived packages as UML class diagram (b) erroneous rank assignment with-
out cluster border nodes (c) graph with compound hierarchy and the mapped inheritance edge
connected to a cluster border node (d) explicit cluster borders ready for coordinates calculation.

when. In [Seemann 1997], this is done by the “incremental extension” step, which reinserts the
removed edges and nodes into the graph at appropriate rank and index positions directly before
coordinates calculation. As a drawback, in this variant non-hierarchical edges are not consid-
ered by the edge crossing reduction. To realize the integrated version, the rank assignment of
the non-hierarchically connected nodes has to be calculated immediately before executing the
UML specific rank assignment. Concrete positions of nodes in ranks are initialized at the end of
the basic rank assignment algorithm 4.2 and final positions are determined by the edge crossing
reduction (S11). Therefore, in the integrated version, positions of nodes in ranks are not relevant.
The following algorithm is an adaption of the “incremental extension” algorithm proposed in
[Seemann 1997] for the integrated version.

1. Partition the set of nodes V into VH , the set of nodes which are hierarchically connected by
edges in EH , and VN , the set of nodes connected by non-hierarchical edges to nodes in VH .

2. Assign the nodes in VN to the nodes in VH by constructing sets S(v), v ∈ VH in two steps:
w ∈ VN is inserted into S(v) if

(a) edges(w) ∩ EN = {e = {v,w}}, i.e. w is connected to v only

(b) |edges(w) ∩ EN | > 1 ∧ e = {v,w} ∈ edges(w) ∩ EN ∧
S(v) = listGet({S(x) : |S(x)| = min

f ={y,w}∈ edges(w)∩ EN
|S(y)|},0), i.e., w is connected

to multiple nodes in VN and S(v) is one of the sets having the minimum number of
elements. As denoted above, S(v) is selected deterministically from a candidate list,
which was calculated according to the implicit sequence of nodes in VH .
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3. Determine if the nodes in S(v) can be inserted into rank r(v) or if further sub ranks have to
be introduced.

(a) Let VC
H := {w : w ∈ VH , x ∈ S(v), e = {x,w} ∈ EN , r(w) = r(v)} be the set of nodes

in VH connected by non-hierarchical edges to the nodes in S(v). Temporarily build a
composite node vc as shown in Figure 4.2 from the nodes in VC

H to keep these nodes
in the same rank. Let VC := S(v) ∪ {vc} and EC := {e : e = {w,x} ∈ EN , w,x ∈ VC}.
Then the subgraph

GC = (VC,vc,EC, /0)

consists of S(v) and all nodes in VN connected to the nodes in S(v) and all edges
between these nodes.

(b) Transform GC to an acyclic graph by applying the algorithm described in Sec-
tion 4.4.11.

(c) Compute a rank assignment e.g., by algorithm 4.3, without balancing and UML opti-
mizations.

(d) Because all edges in GC are non-hierarchical edges in G, nodes connected to at least
two different nodes would require extra space. Process the nodes ordered according
to the currently assigned rank numbers and move the node w to rank

• r(x) if w is connected to x only.
• min{r(y),r(x)} if w is connected to x and y,x 6= y and r(x) ≤ r(w) ∧ r(y) ≤ r(w).

(e) Release the constraints on the nodes of VN by breaking the temporarily inserted com-
posite node vc and restoring the reversed flags according to G.

(f) Shift the existing ranks of VC\VC
H downwards, thereby reuse existing subranks and

mark new ranks as subranks.

This algorithm realizes the edge partition aspect of UML_HIERARCHY. The hierarchical edges
and some aspects of UML_SEMANTIC_CLUSTERS have been prepared by UML specific steps
as described above and induced the main skeleton of the graph while processing a usual
rank assignment method. Now, also the non-hierarchical edges as the second partition have
been considered and all nodes are assigned to ranks, even if further corrections to ensure
UML_SEMANTIC_CLUSTERS and UML_SPATIAL, which will be described below, have to be
executed.
As discussed in Section 4.1 and Section 4.4.8, selected edges can be defined as hierarchical edges
to realize certain aspects of UML_CENTER and UML_COMMENTS. With respect to the current
rank assignment, nodes exclusively connected to a n-ary association, a collaboration or a com-
ment can easily be assigned to adjacent ranks. In the case that no such exclusively connected
nodes exist, hidden hierarchical edges have been inserted in the UML specific preprocessing.

Postprocessing

Due to the nature of UML class diagrams, some edges, which are connected to the virtual root,
can be elongated to improve the layout of the graph. Then, depending on the presence of a
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hierarchical node naming function, certain transformations of the rank assignment are carried
out to reflect a correct nesting. Finally, the rank assignment is compacted and normalized. The
individual steps, shown in algorithm 4.6, will be described in detail below.

Algorithm 4.6 postprocess
input: G = (V,EH ,EN)
output: G

G := stretchEdges2VirtualRoot(G)
G := ad justClusterBorderNodes(G)
G := ad justCoupledClusterMembers(G)
G := redistributeDisconnected(G,V )
G := removeEmptyRanks(G)
G := normalize(G,0)
G := removeClusterDependencyRelations(G)
G := insertClusterBorderNodes(G)
return G

The basic rank assignment algorithm usually shortens the edges, in particular those connected
to the root of the graph. In the case of a virtual root, the edges between the virtual root and
the connected edges will not be drawn. Therefore shortening these edges is not required. The
separate sub roots of the subgraphs in the initial forest can be emphasized (UML_HIERARCHY

via SE_FORESTS) and the lengths of the visible edges can be shortened by moving the sub
roots down towards their visible children. In Figure 4.19, v and y are sub roots below the virtual
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Figure 4.19: (a) result produced by the basic rank assignment (b) more appropriate rank assign-
ment for UML class diagrams

root, the edges between the virtual root and v or y, respectively, are dashed because they will
finally not be drawn. Even if in Figure 4.19 (b) the edge from the virtual root to y is longer than
in the theoretical optimal situation, it is more appropriate because the edge between y and its
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descendants (x in this case) is shortened.

As described as UML specific preprocessing of the rank assignment, cluster border nodes are
inserted into a cluster if the cluster acts as start node of hierarchical relations. Unfortunately,
there is no constraint in the basic rank assignment algorithm, which keeps the cluster border at
the bottom of the cluster as depicted in Figure 4.18. The externally specified minimum edge
length introduced by definition 10 cannot be used, because the number of ranks allocated by a
compound would only be available after a kind of pre-rank assignment.
adjustClusterBorderNodes searches for a cluster border node in each cluster of the graph,
finds thereby the maximum rank of each cluster and moves a present cluster node into this rank.
Thereby, adjustClusterBorderNodes realizes UML_HIERARCHY for clusters. To realize
UML_SPATIAL, in particular UML_COUPLING, cluster members connected to elements
outside the cluster should be placed at the boundary of the containing cluster. Similarly, cluster
members not connected to any elements outside should be located near to the center of the
cluster. Additionally, an optional invisible border area between coupled and non-coupled cluster
members can be introduced. As discussed in Section 3.3, from the viewpoint of the UML
specification, such a semantic based spatial distribution is permitted, because the UML does not
specify advanced layout issues.
To realize coupling induced spatial distribution, we may have to adjust the rank assignment of
the cluster members, which have no incoming or no outgoing edges. Figure 4.20 (a) shows a
drawing based on the basic rank assignment algorithm without preparing the spatial distribution.
Figure 4.20 (b) depicts the situation after correcting several nodes when spatial distribution is
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Figure 4.20: (a) result produced by the basic rank assignment algorithm (b) more appropriate
rank assignment if coupling of nodes should be emphasized. Outside coupled nodes are marked
by a shaded region here, Furthermore, the hidden node required to allow the separation in the top
rank is shown.



4.5 RANK ASSIGNMENT 153

activated.
For each cluster, the minimum and maximum rank is determined and nodes connected to outside
the cluster are reassigned to the appropriate rank.

So far, nodes connected by invisible hierarchical relations arising from S14 may not be dis-
tributed evenly over the ranks of a cluster. By considering each cluster, the number of connected
nodes in each rank of a cluster can be determined and the ranks containing a low number of
nodes can be filled up. On the one side, the sizes of nodes and therefore the area required by a
rank is currently not accessible to the rank assignment implementation but having access to the
extents here would probably improve the result. On the other side, in particular scaling of nodes,
like due to UML_SIZE_NODES, which will be performed in S15, would introduce uncertainty
relying on that information here.
As described above, globally empty ranks might occur because of the extensive postprocessing
operations. Therefore an algorithm, which successively fills empty ranks by shifting higher
levels downward is required. A similar algorithm was also mentioned in [Sander 1996b].
In the preprocessing or the UML specific rank assignment, various edges and some hidden nodes
may have been inserted to enforce a hierarchical layout of implicitly connected clusters and to
prepare UML_COUPLING. These edges have been considered by the basic rank assignment
algorithm and are not required anymore.
Obviously, invisible cluster dependencies play an important role. Especially when calculating
the coordinates in S15, these invisible relations between clusters will be considered again.
Therefore, in a concrete implementation, it makes sense, to store the relations as additional
information (but not as edges).
Cluster border nodes were mentioned above to handle hierarchical relations to clusters.
Now, similar to the artificial dummy nodes inserted at each vertical side of compounds in
[Sander 1996b], these dummy nodes are inserted to effectively ensure the cluster validity rules
(UML_SEMANTIC_CLUSTERS) in the following processing steps. Cluster border nodes were
illustrated in Figure 4.8 and Figure 4.18 (c). The additional edges and nodes introduced by this
step may slow down the edge crossing reduction on large graphs. Therefore, as an option for
lower quality layout calculation, this step can be deferred to the preparation of the coordinates
assignment.
Cluster separator nodes are handled similarly except that these nodes are located inside a
cluster, i.e., somewhere between two cluster border nodes of a cluster. Separator nodes can be
used to spatially partition a cluster for the use as a UML subsystem and, therefore, to realize
specific aspects of UML_CONTAINER, or to implement aspects of UML_SPATIAL, e.g.,
UML_COUPLING.
For a cluster, first an existing cluster border node x is identified. Then, the cluster border nodes
and the edges for the cluster border chains are inserted at both sides of the cluster at appropriate
positions into the affected ranks. x was kept in the bottom rank of its cluster by the algorithms
described above and can therefore be reused in that rank on either the left or the right side.
The insertion of cluster separator nodes is delegated to a plug-in, because it relies on application-
domain specific information. Depending on the concrete shape of a UML subsystem, a vertical
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separation line is represented by cluster separator nodes. The extents of these nodes will
be adjusted in the coordinates assignment to reserve space for the interface compartment.
Furthermore, cluster separator nodes can be inserted to realize the horizontal partitions, if
UML_COUPLING is enabled.
Even if creating edge chains by calling createEdgeChains seems to be a trivial task, this
processing step is responsible for assigning the newly created hidden nodes to the appropriate
clusters. Some of the predictions made by createEdgeChains might be corrected later, but the
less this step is able to ensure a proper nesting, the more complex the postprocessing will be.
The initial start and end node of the edge to be split are taken into account and while stepping
up both cluster names, the greatest common cluster criterion limits the search for the appropriate
containing cluster for each individual hidden node.

4.5.6 Conclusions
A conclusion is the place where you got
tired of thinking.

Harold Fricklestein

In this section, we discussed details on the rank assignment S10, which is responsible for re-
trieving and ensuring the main structure of the layout result according to UML_HIERARCHY.
Furthermore, as described in Section 4.5.5, cluster structures as well as cluster relations
(UML_SEMANTIC_CLUSTERS), UML_CENTER for selected nodes and UML_SPATIAL, if
UML_COUPLING is enabled, are prepared. Due to the order properties of the node naming
function, the result of this layout step is a n-level hierarchy, which also is required to be cluster-
valid if nested elements should be displayed.
Table 4.3 shows the complexities of the individual subalgorithms involved in the rank assign-
ment. Breaking cycles and ensuring a virtual root were discussed along with the preprocessing
macro phase in Section 4.4. Inserting additional hidden edges between clusters can be imple-
mented in linear time due to certain precalculations. Correcting edges to realize hierarchical
relations to clusters considers all nodes and edges and performs a sorting of the cluster depen-
dences for at most all nodes.
The runtime of the network simplex algorithm, which realizes the core hierarchical rank assign-
ment, was not proved to be linear so far. As mentioned in [Gansner et al. 1988], the network
simplex algorithm runs in O(I · |V | · |E|) time. The value I represents some number of simplex
iterations, which might be exponential in the size of the graph. However, also in our application
domain, I is usually O(|E|) in practice.
The non-hierarchical rank assignment mainly depends on the local rank assignment of some sub-
graphs. Here, we will we assume that also a network simplex algorithm does this task.
Most postprocessing operations exclusively consider nodes and createEdgeChains as
well as adjustCoupledClusterMembers may change the structure of the entire graph.
createRankStructure initializes the rank structures. Concrete sequences are required for dia-
grams, which should display nested elements, because then the resulting n-level hierarchy must
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algorithmic step runtime complexity
transformToAcyclicGraph O(|V |+ |EH |)

ensureVirtualRoot O(|V |)
enforceHierarchicalClusterDependencies O(|V | · log |V |+ |EH |)

respectHierarchicalClusterRelations O(|V |+ |EH |)
network simplex O(|V | · |EH |2)

normalize O(|V |)
balance O(|V |)

non-hierarchical rank assignment O(|V | · |EH ∪ EN |2)
stretchEdges2VirtualRoot O(|V |)
adjustClusterBorderNodes O(|V |)

adjustCoupledClusterMembers O(|V |+ |EH ∪ EN |)
redistributeDisconnected O(|V |)

removeEmptyRanks O(|V |)
createEdgeChains O(|V |+ |EH ∪ EN |)

createRankStructure O(|V | · log |V |)
rank assignment macro phase O(|V | · log |V |+ |V | · |EH ∪ EN |2)
Table 4.3: Runtime complexities of the rank assignment phase.

be cluster valid. Final sequences for visible elements will be determined in the next layout step,
the edge crossing reduction S11.
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4.6 Edge Crossings

When you build bridges you can keep
crossing them.

Rick Pitino

The second step of the classical hierarchical layout algorithm is the reduction of the number of
edge crossings. Thereby, the nodes in a layered graph are repositioned to get as close as possible
to the theoretical minimum number of edge crossings.

Definition 14 (bipartite graph)
A graph G = (V,E) is called bipartite if the set of nodes can be partitioned into two sets U and
L with U ∪ L = V , U ∩ L = /0 and ∀ e={u,l}∈ E u ∈ U ⇒ l ∈ L ∨ u ∈ L ⇒ l ∈ U holds.

Minimizing the number of crossings of a bipartite graph is called the bipartite drawing problem
(BDP). It was proved to be NP-complete [Johnson 1982; Garey and Johnson 1983; Eades et al.
1986]. Therefore, various heuristical approaches have been proposed in literature. Most of the
algorithms for graphs, which admit a k-level hierarchy, iteratively apply a crossing reduction al-
gorithm designed for the 2-level crossing problem.
Definition 14 does not permit flat edges with (u ∈ U ∧ l ∈ U) ∨ (u ∈ L ∧ l ∈ L) while our defini-
tion 9 for n-level hierarchies includes that case. Therefore, algorithms, which should be applied
to UML class diagrams, may have to be redesigned. So far only few work was published which
took crossing minimization for compound graphs into account [Sander 1996b; Forster 2002].
Furthermore, crossings, which arise from non-hierarchical edges, are seldom considered [Wad-
dle 2001].
After an overview on previous work, some aspects of hierarchical and flat-edge crossing theory
will be discussed. Then algorithms to guarantee cluster relations when minimizing the number
of edge crossings will be described. After that, adaptions to well-known edge crossing strate-
gies as well as methods specific to our application domain will be given. The question, which
concrete algorithm is most appropriate to our application domain, will be left unanswered until
measurements on the implementation are presented in Section 5.3.

4.6.1 Previous Work
A pessimist is a man who looks both ways
before crossing a one way street.

Laurence J. Peter (1919 – 1988)

In [Warfield 1977], matrices were used to represent the interconnections between nodes on ad-
jacent levels. Furthermore, basic crossing formulae were defined and an algorithm on reducing
crossings by permutation was given. This work can be seen as the foundation for the research on
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edge crossing reduction.
Concrete implementations can be categorized as

• 2-layer algorithms which assume one layer as fixed while reordering the second layer (one
sided crossing minimization problem). According to [Eades et al. 1986], even this reduced
problem is NP-hard. The problem of determining the minimum set of edges whose removal
allows the graph to be drawn with no crossings is also NP-hard, whether or not the order
on one of the layers is fixed [Eades and Whitesides 1994]. Other algorithms work on both
layers, e.g. by reordering all vertices in one step in parallel.

• layer-by-layer sweep methods, which iteratively apply a 2-layer algorithm on two adja-
cent ranks. The other layers not processed by the BPD algorithm at a time are kept fixed
[Eades and Sugiyama 1990; Battista et al. 1999; Matuszewski et al. 2000].

• n-layer algorithms natively working on all ranks of a hierarchy. A generic approach to the
n-level BDP was given in [Sugiyama et al. 1981].

Furthermore various hybrid approaches, combining different algorithms into one, seem to be
popular. Orthogonal to the treatment of layers, algorithms can be classified according to the
handling of context-dependent information as mentioned in [Mäkinen and Sieranta 1994]:

• Context-free heuristics assign the same approximate value to each vertex independent
from other vertices. The solution is then obtained by ordering the vertices according to
these values.

• Context-sensitive heuristics determine the exact numbers of edge crossings connected to
the relative orders of vertex. Then, the algorithm tries to find a linear order which mini-
mizes the number of edge crossings.

In our application domain a context-sensitive algorithm may also partly respect
UML_CONSTRAINT_SEQUENCE: In the case that the main ordering criterion admits the
same value for multiple vertices in one rank, a secondary criterion might be used to realize
UML_CONSTRAINT_SEQUENCE. According to the discussion in Section 3.3, also a predefined
sequence of nodes may supersede the sequence determined by an edge crossing reduction
method.
Furthermore, edge crossing reduction strategies can be distinguished into

• incremental heuristics, which successively change the position of individual nodes. Start-
ing with a cluster-valid input, individual node positions can be excluded to guarantee va-
lidity.

• non-incremental heuristics, which may modify the positions of multiple nodes at a time.
If clusters should be considered, complete ranks or the entire hierarchy have to be postpro-
cessed to ensure cluster validity.
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In [Carpano 1980] and [Sugiyama et al. 1981], similar algorithms, based on ordering the nodes
according to barycenter weights, were given. The position of a vertex was calculated as the
arithmetic mean of the positions of its adjacent vertices. This follows the basic principle that
crossings are likely to be minimized by increasing the number of horizontal arcs. A similar ap-
proach was also mentioned as averaging or relative degree method in [Eades and Kelly 1986].
Different variants of the basic idea have been proposed, as the refinement in [Gansner et al.
1988], left-barycenter (average position of the immediate predecessors in the previous layer) or
right-barycenter (average position of the immediate successors in the next layer) as described in
[Rowe et al. 1987]. According to [Rowe et al. 1987], sweeping from left-to-right and backwards
in succeeding iterations may cause vertexes to move forth and back if different barycenter values
are calculated. Therefore, in the third sweep, the average of the barycenters may be considered.
Instead of the barycenter calculation, the average (median) can be employed similarly. The so-
called median method was refined in [Eades and Wormald 1994] and both techniques, barycen-
ter and median, have been analyzed for their crossing performance. It was proved for the median
method that the number of edge crossings is never more than three times larger than in the optimal
drawing. Furthermore, the median method can be implemented more efficiently as mentioned in
[Stallmann et al. 2001]. Similar to the barycenter method, different variants have been published,
like considering a median value based on a weight function, the average median relying on the
arithmetic mean of the positions occupied by the two middle adjacent vertices or different relative
degree algorithms considering the degree of the nodes. Another variant is to apply the transpose
heuristic as a postprocessing step: It exchanges nodes as long as it finds direct neighbored nodes
for which an exchange of the position improves the number of crossings as described in [Gansner
et al. 1988; Gansner et al. 1993].
The semimedian heuristic, a hybrid combination of median and barycenter method, was dis-
cussed in [Mäkinen 1990]. Another hybrid approach is the dot heuristic [Gansner et al. 1993;
Stallmann et al. 2001] which combines an initial depth first ordering and a fixed-layer median
implementation.
Median and barycentric method appear to be the most popular heuristics in concrete implemen-
tations. Therefore, we will mention the other approaches only briefly here. The greedy insertion
[Eades and Kelly 1986] successively removes the node u, which minimizes the local crossings
between edges adjacent to u with edges adjacent to vertices below u, and appends u to the result.
In the greedy switching method [Eades and Kelly 1986], the switch or the adjacent exchange
[Eades and Sugiyama 1990; Battista et al. 1999], consecutive vertices in one rank are exchanged
if the number of crossings can locally be improved. A pivot element is selected in the splitting
approach [Eades and Kelly 1986], then every other vertex is (recursively) placed above or below
the pivot element with respect to the number of crossings. All vertices of one layer are positioned
simultaneously in the assignment method [Catarci 1995] by considering the BDP as assignment
problem, which was originally defined for computing the best assignment of tasks to workers
under certain conditions. The branch and bound algorithm [Valls et al. 1996] operates on a struc-
tured search tree, which allows in some cases to directly obtain the optimal solution associated
with a node. In [Mutzel 1997; Jünger and Mutzel 1996; Jünger and Mutzel 1997; Mutzel and
Weiskircher 1998] a (minimal) number of edges in the input graph was removed to gain a k-level
planar graph and in the final drawing these edges were reinserted. Unfortunately, the extraction
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of a 2-level planar subgraph is NP-hard and even if this approach ensures the optimum solu-
tion, there is no guarantee that it can be found in polynomial time. Tabu search and the greedy
randomized adaptive search procedure (GRASP) approach have been proposed in [Laguna et al.
1997; Laguna and Martí 1999; Martí and Laguna 2003]: A meta-heuristic tries to hold the bal-
ance between two phases, one searching a near-optimal solution in one layer, the other selecting
layers for intensification and switching of randomly selected vertices to escape from optimality.
The vertex-exchange method [Healy and Kuusik 2000] is a linear programming method, which
operates on the vertex-exchange graph. That graph represents all distinct pairs of same-level
vertices of the original graph as nodes, which are connected by edges, if the vertices of the cor-
responding graph are connected by non-adjacent edges. The sifting method [Günther et al. 2001]
exclusively exchanges neighbor vertices in alternating directions. Global sifting was considered
in [Matuszewski et al. 2000] for the k-layer straightline crossing minimization. In contradiction
to sifting, adaptive insertion [Stallmann et al. 2001] does not allow a node to stay in its current
position and nodes are considered in their current right-to-left order rather than based on their
degrees.
Some of the approaches mentioned above were furthermore combined to hybrid methods: Sifting
and barycenter [Günther et al. 2001], adaptive insertion and barycenter [Stallmann et al. 2001]
or Guided breadth-first search and adaptive insertion in [Stallmann et al. 1999].
As a postprocessing step, windows optimization [Eschbach et al. 2002] can be applied to the
other crossing reduction algorithms. Thereby, a series of subsets of nodes with constant size typ-
ically spreading over several layers are considered and optimized with respect to their adjacent
nodes. A study showed that this additional processing may enhance the quality by more than
10%.
Detailed overviews on reducing edge crossings in graph drawing especially on the BDP can be
found in [Di Battista et al. 1994; Catarci 1995; Laguna et al. 1997; Bastert and Matuszewski
2001; Martí and Laguna 2003], runtime complexities of the algorithms were mentioned in [Stall-
mann et al. 2001].

The question remains, what edge crossing reduction approach should be considered when design-
ing an own layout algorithm. In [Jünger and Mutzel 1997], iterated application of the barycenter
method for large graphs was recommended. In [Battista et al. 1999], a hybrid approach using the
median method for initial and then adjacent exchange/switch for the final reduction was advised.
A combination of the barycenter heuristic followed by a weighted variant of subsequent sifting
was advocated in [Brandes and Wagner 2003], because appeared to be fast and good at separat-
ing biconnected components. In [Protsko et al. 1991] replication of parts of the graph to achieve
clarity, low edge crossings and short edges was suggested. As discussed in Section 3.3.3 this idea
does not fit to our application domain.
Unfortunately, the most algorithms deal with solving the BDP. Except of the obvious layer-
by-layer sweep method, only few approaches directly attack the multilevel BDP. Furthermore,
the methods mentioned so far do neither respect clusters, non-hierarchical edges nor multiple
edges between the same nodes. In [Sander 1996b], the results of a barycenter method were post-
processed to force the the individual layers to be cluster-valid. An extension to the barycenter
approach to consider same level edges was given in [Waddle 2001]: Constraints restrict the
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edge crossing minimization and the reversal of edges due to cycles, further constraints can
impose a total ordering on the node level assignment, which would be helpful when realizing
UML_CONSTRAINT_SEQUENCE. In [Forster 2002], an in-order justification according to the
compound nodes was suggested. Thereby, each possible edge crossing is associated with a unique
compound node. To ensure intra-rank validity, a crossing reduction graph is computed and a con-
ventional algorithm for weighted crossing reduction to the crossing reduction graph is applied.
To ensure the inter-rank validity, a constrained 2-layer crossing minimization is needed.
We can conclude that currently no optimal edge crossing reduction algorithm for our applica-
tion domain exists. Additionally, some of the approaches mentioned above can not be applied
according to REQ_DETERMINISTIC_ALGORITHM, because they rely on random processing,
e.g., selection of nodes to escape local optimal situations. Therefore, we will modify the stan-
dard barycenter and median to be forced to be cluster-valid. Algorithms which are useful imple-
menting this task will be presented in Section 4.6.4. Furthermore, an own idea, the hierarchical
crossing minimization, will be described.

4.6.2 Basic Definitions
A perpetual holiday is a good working
definition of hell.

George Bernard Shaw (1856 – 1950)

The definitions in this section are adapted from [Sugiyama et al. 1981]:

Definition 15 (matrix realization of a n-level hierarchy)
For a n-level hierarchy Ḡ = (V,EH ,EN ,n,σ), the matrix realization of Ḡ is defined as follows:

1. A matrix M(i) = M(σi,σi+1) is a |Vi|×|Vi+1| matrix whose rows and columns are ordered
according to σi and σi+1, respectively10.

2. Let σi = u0 . . .uk . . .u|Vi|−1 and σi+1 = v0 . . .vk . . .v|Vi+1|−1. Then the (uk,vl) element of

M(i), denoted by m(i)
kl , is given by

m(i)
kl :=

{
w(e) : if e = {uk,vl} ∈ EHi

0 : otherwise (4.4)

where w(e) > 0 is the externally defined weight of the edge. M(i) is called an intercon-
nection matrix.

3. A matrix realization ḡ of Ḡ is given by the formula

ḡ(V,EH ,EN ,n,σ) := ḡ(σ0, . . . ,σn−1) := M(0), . . . ,M(n−2) (4.5)
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We define the contents of the interconnect matrix as the weights of the edges instead of binary
values

m(i)
kl :=

{
1 : if e = {uk,vl} ∈ EHi

0 : otherwise

as in [Warfield 1977; Sugiyama et al. 1981], because external weights might be permitted to gain
influence on the result of the computation. The implementation may provide a configuration flag
to initialize the matrices in the binary version.

Example:
Let G = (V,EH ,EN) be a graph, V = {N1,N2,N3,N4,N5,N6,N7}, EH =
{{N1,N6},{N2,N6},{N3,N5},{N3,N7},{N4,N7}} and EN = /0. Let V0 = {N1,N2,N3,N4},
V1 = {N5,N6,N7}, σ0 = N1,N2,N3,N4 and σ1 = N5,N6,N7 be the representation of

N1

N7N6N5

N2 N4N3V0 M(0)

V1

rank
N7N6N5

N1

N2

N3

N4

1 00

1 0

0 11

0

0 0 1

(a) (b)

Figure 4.21: (a) a 2-level drawing with 2 crossings, (b) matrix realization of (a). In (b), matrix
entries corresponding to edge crossings are marked by arrows.

Ḡ = (V,EH ,EN ,2,σ), the 2-level hierarchy of G according to definition 9. Figure 4.21 (a)
shows a 2-level drawing of G according to the sequences given for σ0 and σ1. Figure 4.21 (b) is
the interconnect matrix M(0) of σ0 and σ1 assuming that all edges have weight 1. In this case the
matrix realization according to definition 15 of Ḡ is ḡ(V,EH ,EN ,n,σ) = M(0). In Figure 4.21 (b)
the matrix entries, which correspond to the edge crossings in (a), are marked by arrows.
The next definition formalizes the fact that edge crossings induced by an individual edge e can
be encountered by multiplying the matrix entry of e to all entries of its lower left sub matrix. In
Figure 4.21 (b) the lower left sub matrix of e = {N1,N6} at m(0)

0,1 is shaded.

From [Warfield 1977; Sugiyama et al. 1981] the following formalization of the number of edge
crossings is known:

Theorem 1 (number of hierarchical crossings in a n-level hierarchy)
Let Ḡ = (V,EH ,EN ,n,σ) be a n-level hierarchy and ḡ be the matrix realization of Ḡ, in which
edge weights have maximum value 1. Let σi = v0 . . .v j . . .vk . . .v|Vi|−1 be the i− th rank in

10Matrix indices run on 0 . . . |Vi|−1 or 0 . . . |Vi+1|−1, respectively, according to the implementation.
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interconnection matrix M(i) = M(σi,σi+1) of ḡ. Furthermore, let the row vector of M(i) corre-
sponding to a vertex v ∈ Vi be denoted by ρ(v). Then the number of crossings k(ρ(v j),ρ(vk))
produced by the ordered pair of row vectors (ρ(v j),ρ(vk)) is given by the formula

k(ρ(v j),ρ(vk)) :=
|Vi+1|−2

∑
α=0

|Vi+1|−1

∑
β=α+1

m(i)
jβ ·m

(i)
kα . (4.6)

Consequently the formula

Kh(M(i)) :=
|Vi|−2

∑
j=0

|Vi|−1

∑
k= j+1

k(ρ(v j),ρ(vk)) =
|Vi|−2

∑
j=0

|Vi|−1

∑
k= j+1

(|Vi+1|−2

∑
α=0

|Vi+1|−1

∑
β=α+1

m(i)
jβ ·m

(i)
kα

)
(4.7)

determines the number of crossings of M(i), i.e., the number of crossings induced by adjacent
ranks σi and σi+1. The total number K(ḡ) of crossings of ḡ is given by

Kh(ḡ) := Kh(M(0))+ . . .+Kh(M(n−2)) (4.8)

As defined above, the edge weights may have values larger than 1. In this case the number of
edge crossings will differ from theorem 1. Therefore, we will implicitly work on the number of
pseudo edge crossings and we will also refer to that pseudo number by the term “number of edge
crossings”.

4.6.3 Crossing Theory
In theory, there is no difference between
theory and practice. In practice, there is.

Chuck Reid

Because self-loops are removed from the graph in S6, we do not treat self loops in the following
part of this section. First we will look on different properties of hierarchical crossing theory,
in particular for slightly improving runtime performance, then issues needed to calculate the
number of crossings on non-hierarchical edges will be discussed.

Hierarchical Edges

As mentioned above, a naive implementation calculating the number of edge crossings according
to theorem 1 would take O(|V |4). Using a second matrix, which stores the sub matrix sums of
the second part of (4.7) duplicates the memory usage, but reduces the computational complexity
to O(|V |2). The sub matrix sums always run over the lower left sub matrix of the element which
is currently regarded, i.e., for m jβ the sums run over j + 1 . . . |Vi|−1 and 0 . . .β −1. Below, the
relation between the matrix element m jβ and the area of the submatrix sums, displayed as a
boxed sum sign, is depicted:  m jβ

∑
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Incremental approaches like successive node insertions or node sifting require insertion and up-
date operations, which, in principle, also run in O(|V |2). The effective runtime is significantly
faster as we will show in this section.
To our knowledge, even if work like [Sugiyama et al. 1981; Catarci 1995] suggested this idea, it
was not explicitly formulated so far. A non-matrix based approach was described in [Valls et al.
1996] but on an entire graph it also takes O(|V |4).
In [Eades and Kelly 1986] a crossing matrix for the BDP was defined as a triangular matrix con-
taining the crossings caused by the sequence of nodes of one rank only (not of two adjacent ranks
as in definition 15 and theorem 1). That approach required n matrices on a n-level matrix (instead
of n−1 in our approach), but it might save memory using triangular matrices depending on the
input hierarchy. It was mentioned that building the matrix lies in O(|V |2 · |E|) and calculating
updates in O(|V |2).
In [Grohe 2001] it was shown “[...] that for every fixed k ≥ 0 there is a quadratic time algo-
rithm that decides whether a given graph has crossing number at most k and, if this is the case,
computes a drawing of the graph in the plane with at most k crossings.” Unfortunately, there is
a hidden constant in the quadratic upper bound which heavily depends on k so that the running
time is O( f (k) ·n2) where f is a doubly exponential function which limits the given algorithm to
theoretical interests only.
Calculating the entire number of crossings can also be attacked from the geometrical point of
view. An obvious algorithm can be given in O(|E|2). Let C be the set of pairwise crossings, then
the algorithm proposed in [Chazelle 1986] runs in O(|E| · log |E|+ |C|) time and O(|E|+ |C|)
space. An interesting fact for UML_EDGECROSSING_SYMBOL is that reporting all k inter-
secting pairs among n arbitrary segments lies in O(|E| · (log2 |E|/ loglog |E|)+ |C|) time using
O(|E|+ |C|) space [Chazelle 1986]. A faster but more complicated algorithm calculating the
number of crossings in O(|E|1.695) and O(|E|) space was given in [Chazelle and Edelsbrunner
1992]. Sander suggested 1996 an algorithm in O(|E|+ |V |) time and O(|E|) space. In [Waddle
and Malhotra 2000] the problem was solved in O(|E| · log |U ∪ L|) time (see definition 14) and
O(|E|) space and in [Barth et al. 2002] an improved algorithm in O(|E| · log(min{|U |, |L|})) time
was given.
Despite the theoretical improvements on bipartite crossing numbers, we still rely on simple im-
provements of the matrix based crossing number calculation. Most of the theoretically more
sophisticated ideas do not discuss the problem of incrementally inserting, deleting or moving
individual nodes which is more interesting to our approach. Similar experience with crossing
matrices and fast results for incremental changes to the vertice sequence were also mentioned in
[Eades and Kelly 1986] and [Günther et al. 2001].
In fact, in the implementation, the crossing number calculation is realized as a plug-in to the edge
crossing reduction algorithm so that probably better approaches can easily be integrated.

Lemma 1
Let M(n,o) be a n x o matrix with 0-based indices. Then

o−1

∑
d=1

d−1

∑
e=0

m jdmke =
o−2

∑
e=0

o−1

∑
d=e+1

m jdmke (4.9)
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with 0 ≤ j ≤ n and 0 ≤ k ≤ n.

Proof:
Complete induction over o with fixed j and k:

• o = 1:
0
∑

d=1

d−1
∑

e=0
m jdmke = 0 =

−1
∑

e=0

0
∑

d=e+1
m jdmke via the definition of the empty sum.

• o = 2:
1
∑

d=1

d−1
∑

e=0
m jdmke = m j1 ·mk0 =

0
∑

e=0

1
∑

d=e+1
m jdmke

• o = 3:
2
∑

d=1

d−1
∑

e=0
m jdmke = m j1 ·mk0 +m j2 ·mk0 +m j2 ·mk1 =

1
∑

e=0

2
∑

d=e+1
m jdmke

• o → o+1:
o
∑

d=1

d−1
∑

e=0
m jdmke =

o−1
∑

d=1

d−1
∑

e=0
m jdmke +

o−1
∑

e=0
m jomke

IA=

o−2
∑

e=0

o−1
∑

d=e+1
m jdmke +

o−1
∑

e=0
m jomke =

o−2
∑

e=0

o−1
∑

d=e+1
m jdmke +

o−2
∑

e=0
m jomke +m jomk,o−1 =

o−2
∑

e=0

o
∑

d=e+1
m jdmke +

o
∑

d=(o−1)+1
m jdmk,o−1 =

o−1
∑

e=0

o
∑

d=e+1
m jdmke �

Corollary 2 (alternative edge crossing formula)
(4.6) and (4.11) can alternatively be written as

k(ρ(v j),ρ(vk)) =
|Vi+1|−1

∑
β=1

β−1

∑
α=0

m(i)
jβ ·m

(i)
kα . (4.10)

Kh(M(i)) =
|Vi|−2

∑
j=0

|Vi+1|−1

∑
β=1

m(i)
jβ ·
( |Vi|−1

∑
k= j+1

β−1

∑
α=0

m(i)
kα

)
(4.11)

Proof:
Formula 4.10 can simply be obtained from (4.6) by applying the result of lemma 1.

Kh(M(i)) (4.7)=
|Vi|−2

∑
j=0

|Vi|−1
∑

k= j+1

(
|Vi+1|−2

∑
α=0

|Vi+1|−1
∑

β=α+1
m(i)

jβ ·m
(i)
kα

)
lemma 1=

|Vi|−2
∑
j=0

|Vi|−1
∑

k= j+1

(
|Vi+1|−1

∑
β=1

β−1
∑

α=0
m(i)

jβ ·m
(i)
kα

)
=

|Vi|−2
∑
j=0

|Vi+1|−1
∑

β=1

|Vi|−1
∑

k= j+1

β−1
∑

α=0
m(i)

jβ ·m
(i)
kα =

|Vi|−2
∑
j=0

|Vi+1|−1
∑

β=1
m(i)

jβ ·
(

|Vi|−1
∑

k= j+1

β−1
∑

α=0
m(i)

kα

)
�
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Definition 16 (condensed interconnection matrix)
Let M∑(i), the condensed interconnection matrix, be a |Vi| × |Vi+1| matrix induced by M(i) as
follows:

m∑(i)
kl :=

|Vi|−1

∑
β=k+1

l−1

∑
α=0

m(i)
βα

Corollary 3 (type of M∑(i))
M∑(i) is always of type  0 ∗

...
0 · · · 0


Proof:

m∑(i)
k0 =

|Vi|−1
∑

β=k+1

−1
∑

α=0
m(i)

βα = 0 and m∑(i)
|Vi|−1,l =

|Vi|−1
∑

β=|Vi|

l−1
∑

α=0
m(i)

βα = 0

via the definition of the empty sum.
�

Corollary 4 (recursive calculation of M∑(i))
M∑(i) can be calculated recursively by

m∑(i)
kl =


0 : if k = |Vi|−1
0 : if l = 0

m∑(i)
k+1,l +

l−1
∑

α=1
m(i)

k+1,α : otherwise

Proof:
m∑(i)

kl = 0 if k = |Vi|−1 ∨ l = 0 directly follows from corollary 3. For all other matrix entries:

m∑(i)
kl

def. 16=
|Vi|−1

∑
β=k+1

l−1
∑

α=0
m(i)

βα =
|Vi|−1

∑
β=k+2

l−1
∑

α=0
m(i)

βα +
l−1
∑

α=0
m(i)

k+1,α
def. 16= m∑(i)

k+1,l +
l−1
∑

α=0
m(i)

k+1,α
cor. 3=

m∑(i)
k+1,l +

l−1
∑

α=1
m(i)

k+1,α �

Corollary 5 (crossing calculation with M∑(i))

Kh(M(i)) = M(i) � M∑(i) (4.12)

where M(i) � M∑(i) =
|Vi|−1

∑
j=0

|Vi+1|−1
∑

β=0
m(i)

jβ ·m∑(i)
jβ .
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Proof:

Kh(M(i)) (4.11)=
|Vi|−2

∑
j=0

|Vi+1|−1
∑

β=1
m(i)

jβ ·
(

|Vi|−1
∑

k= j+1

β−1
∑

α=0
m(i)

kα

)
def. 16=

|Vi|−2
∑
j=0

|Vi+1|−1
∑

β=1
m(i)

jβ ·m∑(i)
jβ

cor. 3=
|Vi|−1

∑
j=0

|Vi+1|−1
∑

β=0
m(i)

jβ ·

m∑(i)
jβ

cor. 5= M(i) � M∑(i)

�
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Figure 4.22: Realization of crossing matrices: (a) traditional integer array implementation, (b)
2-level hash map implementation.

Even if it is now obvious that calculation of the number of crossings can be done in O(|V |2), some
algorithms like node sifting or incrementally building up the hierarchy run sightly faster, when
the underlying data structures are changed incrementally. Traditionally, an integer array imple-
mentation might be selected for realizing the crossing implementation. It requires copying and
moving row and columns as well as for incremental ordering strategies physical arrays, which
are larger than the matrix itself. Alternatively, a 2-level hash table implementation as shown in
Figure 4.22 can be considered. It supports sparse matrices and O(1) row or column exchange
operations of adjacent rows and columns. Due to administrative overhead of the hashtables itself
we use a combined data structure as shown in Figure 4.22 to store the entries of the interconnect
matrix and the induced condensed interconnect matrix. Entries with value 0 in both matrices are
not stored at all. Somehow, the sequences represented by the rank structure shown in Figure 4.22
have to be present in both variants as well as for following steps of the layout algorithm.
Properties for calculating the contents of the condensed matrices incrementally will be discussed
in the following.
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Corollary 6 (edge crossings after appending a node)
Let us assume that node v, assigned to rank i, is inserted and v is appended at the end of σi. This
causes appending a column to M(i−1) and a row to M(i).

Proof:
M(i−1) and M(i) are affected according to definition 15.
The update of M∑(i−1) can be done similarly to the calculation of a condensed matrix in corol-

lary 4 by respecting the new row exclusively: m∑(i)
k,|Vi|−1 = m∑(i)

k+1,|Vi|−1 +
|Vi|−2

∑
α=1

m(i)
k+1,α 0 ≤ k < |Vi|.

After adding the row to M(i), all entries in M∑(i) are affected according to m∑(i)
kl = m∑(i)

k+1,l +
l−1
∑

α=1
m(i)

k+1,α 0 ≤ k < |Vi| from corollary 4. Propagating this change to the other matrix entries or

recalculating the entire condensed matrix can be done as shown in corollary 4.
�

Removing a node v assigned to rank i from σi or Vi, respectively, affects the same matrices as
described in corollary 6. In general both matrices have to be recalculated in O(|V |2) according
to corollary 4, because at least in one matrix other entries depend on the entries to be removed.

Lemma 2 (hierarchical crossings after an exchange with the preceding neighbor)
Let v = σi[p] be the node at index 1 ≤ p < |σi| to be exchanged with its immediate left neighbor
at index p− 1 in σi. Let M ∗ (i−1) and M ∗ (i) be the interconnect matrices, M ∗ ∑(i−1) and M ∗ ∑(i)

the condensed interconnect matrices after the exchange. The following properties hold:

1. Column p−1 and p are the only columns in M ∗ (i−1), rows p−1 and p the only rows in
M ∗ (i) affected by the exchange .

2. Column p is the only column in M ∗ ∑(i−1), row p− 1 is the only row in M ∗ ∑(i) affected
by the exchange and can be calculated by:

m∗ ∑(i−1)
kp = m∑(i−1)

k,p−1 +
|Vi−1|−1

∑
β=k+1

m(i−1)
β p

m∗ ∑(i)
p−1,l =

l−1

∑
α=0

m(i)
p−1,α +m∑(i)

pl

3. The difference in edge crossings before the exchange and without calculating M ∗ (i−1),
M ∗ (i), M ∗ ∑(i−1) or M ∗ ∑(i) can be written as

δ (i−1)
l =

|Vi−1|−1

∑
k=0

(
m(i−1)

k,p−1 ·
(

m∑(i−1)
kp −m∑(i−1)

k,p−1

)
+m(i−1)

kp ·
|Vi−1|−1

∑
β=k+1

m(i−1)
β p

)
(4.13)

δ (i)
l =

|Vi+1|−1

∑
l=0

(
m(i)

p−1,l ·
(

m∑(i)
pl −m∑(i)

p−1,l

)
+m(i)

pl ·
l−1

∑
α=0

m(i)
p−1,α

)
(4.14)
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With
δ ∗ (i)(k, l) = m∗ (i)

kl ·m ∗ ∑(i)
kl −m(i)

kl ·m∑(i)
kl (4.15)

defined on all matrices the difference in edge crossings after the exchange can be ex-
pressed by

δ ∗ (i−1)
l =

|Vi−1|−1

∑
k=0

(
δ ∗ (i−1)(k, p−1)+δ ∗ (i−1)(k, p)

)
(4.16)

δ ∗ (i)
l =

|Vi+1|−1

∑
l=0

(
δ ∗ (i)(p−1, l)+δ ∗ (i)(p, l)

)
(4.17)

with δ ∗ (i−1)
l = δ (i−1)

l and δ ∗ (i)
l = δ (i)

l .

4. The number of crossings after the exchange is now

Kh(ḡ∗ ) = Kh(ḡ)+δ ∗ (i−1)
l +δ ∗ (i)

l = Kh(ḡ)+δ (i−1)
l +δ (i)

l (4.18)

Proof:

1. The exchange operation and the resulting interconnect matrices can be described by

m∗ (i−1)
kl =


m(i−1)

k,p−1 : if l = p

m(i−1)
kp : if l = p−1

m(i−1)
kl : otherwise

(4.19)

and

m∗ (i)
kl =


m(i)

p−1,l : if k = p

m(i)
pl : if k = p−1

m(i)
kl : otherwise

(4.20)

Therefore p−1 and p are the only columns in M ∗ (i−1), rows p−1 and p the only rows in
M ∗ (i) that are affected by the exchange.

2. on M ∗ ∑(i−1):

• column l < p: m ∗ ∑(i−1)
kl

def. 16=
|Vi−1|−1

∑
β=k+1

l−1
∑

α=0
m∗ (i−1)

βα
(4.19)=

|Vi−1|−1
∑

β=k+1

l−1
∑

α=0
m(i−1)

βα
def. 16= m∑(i−1)

kl

• column l = p: m ∗ ∑(i−1)
kp

def. 16=
|Vi−1|−1

∑
β=k+1

p−1
∑

α=0
m∗ (i−1)

βα =
|Vi−1|−1

∑
β=k+1

p−2
∑

α=0
m∗ (i−1)

βα +

|Vi|−1
∑

β=k+1
m∗ (i−1)

β ,p−1
(4.19)=

|Vi−1|−1
∑

β=k+1

p−2
∑

α=0
m(i−1)

βα +
|Vi−1|−1

∑
β=k+1

m(i−1)
β p

def. 16= m∑(i−1)
k,p−1 +

|Vi−1|−1
∑

β=k+1
m(i−1)

β p
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• column l > p: m ∗ ∑(i−1)
kl

def. 16=
|Vi−1|−1

∑
β=k+1

l−1
∑

α=0
m∗ (i−1)

βα =
|Vi−1|−1

∑
β=k+1

p−2
∑

α=0
m ∗ (i−1)

βα +
|Vi|−1

∑
β=k+1

m∗ (i−1)
β ,p−1 +

|Vi−1|−1
∑

β=k+1
m ∗ (i−1)

β p +
|Vi−1|−1

∑
β=k+1

l−1
∑

α=p+1
m ∗ (i−1)

βα
(4.19)=

|Vi−1|−1
∑

β=k+1

p−2
∑

α=0
m(i−1)

βα +

|Vi−1|−1
∑

β=k+1
m(i−1)

β p +
|Vi−1|−1

∑
β=k+1

m(i−1)
β ,p−1 +

|Vi−1|−1
∑

β=k+1

l−1
∑

α=p+1
m(i−1)

βα =

|Vi−1|−1
∑

β=k+1

l−1
∑

α=0
m(i−1)

βα
def. 16= m∑(i−1)

kl

on M ∗ ∑(i):

• row k ≥ p: m∗ ∑(i)
kl

def. 16=
|Vi|−1

∑
β=k+1

l−1
∑

α=0
m∗ (i)

βα
(4.20)=

|Vi|−1
∑

β=k+1

l−1
∑

α=0
m(i)

βα
def. 16= m∑(i)

kl

• row k = p−1: m ∗ ∑(i)
p−1,l

def. 16=
|Vi|−1

∑
β=p

l−1
∑

α=0
m∗ (i)

βα =
l−1
∑

α=0
m∗ (i)

pα +
|Vi|−1

∑
β=p+1

l−1
∑

α=0
m∗ (i)

βα
(4.20)=

l−1
∑

α=0
m(i)

p−1,α +
|Vi|−1

∑
β=p+1

l−1
∑

α=0
m(i)

βα
def. 16=

l−1
∑

α=0
m(i)

p−1,α +m∑(i)
pl

• row k < p−1: m ∗ ∑(i)
kl

def. 16=
|Vi|−1

∑
β=k+1

l−1
∑

α=0
m∗ (i)

βα =
p−2
∑

β=k+1

l−1
∑

α=0
m∗ (i)

βα +
l−1
∑

α=0
m∗ (i)

p−1,α +
l−1
∑

α=0
m ∗ (i)

p,α +

|Vi|−1
∑

β=p+1

l−1
∑

α=0
m∗ (i)

βα
(4.20)=

p−2
∑

β=k+1

l−1
∑

α=0
m(i)

βα +
l−1
∑

α=0
m(i)

p,α +
l−1
∑

α=0
m(i)

p−1,α +

|Vi|−1
∑

β=p+1

l−1
∑

α=0
m(i)

βα =
|Vi|−1

∑
β=k+1

l−1
∑

α=0
m(i)

βα
def. 16= m∑(i)

kl

3. In both interconnect matrices only columns p−1 and p or rows p−1 and p, respectively,
and in both condensed interconnect matrix only column p or p − 1, respectively, are
affected by exchanging adjacent nodes. Therefore (4.16) as well as (4.17) contain the
sums over the differences between before and after exchange (in (4.15)).

δ ∗ (i−1)
l

(4.16)=
|Vi−1|−1

∑
k=0

(
δ ∗ (i−1)

l (k, p−1)+δ ∗ (i−1)
l (k, p)

)
(4.15)=

|Vi−1|−1
∑

k=0

(
m∗ (i−1)

k,p−1 ·m ∗ ∑(i−1)
k,p−1 −m(i−1)

k,p−1 ·m∑(i−1)
k,p−1 +m∗ (i−1)

kp ·m∗ ∑(i−1)
kp −m(i−1)

kp ·m∑(i−1)
kp

)
(4.19)=

|Vi−1|−1
∑

k=0

(
m(i−1)

kp ·m∗ ∑(i−1)
k,p−1 −m(i−1)

k,p−1 ·m∑(i−1)
k,p−1 +m(i−1)

k,p−1 ·m∗ ∑(i−1)
kp −m(i−1)

kp ·m∑(i−1)
kp

)
lemma 2 2=

|Vi−1|−1
∑

k=0

(
m(i−1)

kp ·m∗ ∑(i−1)
k,p−1 −m(i−1)

k,p−1 ·m∑(i−1)
k,p−1 +(m(i−1)

k,p−1−m(i−1)
kp ) ·m∑(i−1)

kp

)
lemma 2 2)=

|Vi−1|−1
∑

k=0

(
m(i−1)

kp · (m∑(i−1)
k,p−1 +

|Vi−1|−1
∑

β=k+1
m(i−1)

β p )−m(i−1)
k,p−1 ·m∑(i−1)

k,p−1 +(m(i−1)
k,p−1−m(i−1)

kp ) ·m∑(i−1)
kp

)
=
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|Vi−1|−1
∑

k=0

(
m(i−1)

kp ·
|Vi−1|−1

∑
β=k+1

m(i−1)
β p −m(i−1)

k,p−1 ·m∑(i−1)
k,p−1 +m(i−1)

k,p−1 ·m∑(i−1)
kp

)
=

|Vi−1|−1
∑

k=0

(
m(i−1)

k,p−1 · (m∑(i−1)
kp −m∑(i−1)

k,p−1 )+m(i−1)
kp ·

|Vi−1|−1
∑

β=k+1
m(i−1)

β p

)

δ ∗ (i)
l

(4.17)=
|Vi+1|−1

∑
l=0

(
δ ∗ (i)

l (p−1, l)+δ ∗ (i)
l (p, l)

)
(4.15)=

|Vi+1|−1
∑

l=0

(
m∗ (i)

p−1,l ·m ∗ ∑(i)
p−1,l −m(i)

p−1,l ·m∑(i)
p−1,l +m∗ (i)

pl ·m ∗ ∑(i)
pl −m(i)

pl ·m∑(i)
pl

)
(4.20)=

|Vi+1|−1
∑

l=0

(
m(i)

p,l ·m ∗ ∑(i)
p−1,l −m(i)

p−1,l ·m∑(i)
p−1,l +m(i)

p−1,l ·m∗ ∑(i)
pl −m(i)

pl ·m∑(i)
pl

)
lemma 2 2)=

|Vi+1|−1
∑

l=0

(
m(i)

p,l ·m ∗ ∑(i)
p−1,l −m(i)

p−1,l ·m∑(i)
p−1,l +(m(i)

p−1,l −m(i)
pl ) ·m∑(i)

pl

)
lemma 2 2)=

|Vi+1|−1
∑

l=0

(
m(i)

p,l · (
l−1
∑

α=0
m(i)

p−1,α +m∑(i)
pl )−m(i)

p−1,l ·m∑(i)
p−1,l +(m(i)

p−1,l −m(i)
pl ) ·m∑(i)

pl

)
=

|Vi+1|−1
∑

l=0

(
m(i)

p,l ·
l−1
∑

α=0
m(i)

p−1,α −m(i)
p−1,l ·m∑(i)

p−1,l +m(i)
p−1,l ·m∑(i)

pl

)
=

|Vi+1|−1
∑

l=0

(
m(i)

p−1,l · (m∑(i)
pl −m∑(i)

p−1,l)+m(i)
p,l ·

l−1
∑

α=0
m(i)

p−1,α

)
4. With lemma 2 2), (4.18) follows immediately.

�

Lemma 3 (hierarchical crossings after an exchange with the succeeding neighbor)
Let v = σi[p] be the node at index p = σi[v] with 0 ≤ p < |σi|−1 to be exchanged with its im-
mediate right neighbor at index p+1 in σi. Let M ∗ (i−1) and M ∗ (i) be the interconnect matrices,
M ∗ ∑(i−1) and M ∗ ∑(i) the condensed interconnect matrices after the exchange. The following
properties hold:

1. Column p and p + 1 are the only columns in M ∗ (i−1), rows p and p + 1 the only rows in
M ∗ (i) affected by the exchange.

2. Column p + 1 is the only column in M ∗ ∑(i−1), row p is the only row in M ∗ ∑(i) affected
by the exchange and can be calculated by:

m ∗ ∑(i−1)
k,p+1 = m∑(i−1)

kp +
|Vi−1|−1

∑
β=k+1

m(i−1)
β ,p+1

m∗ ∑(i)
pl =

l−1

∑
α=0

m(i)
pα +m∑(i)

p+1,l
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3. The difference in edge crossings before the exchange and without calculating M ∗ (i−1),
M ∗ (i), M ∗ ∑(i−1) or M ∗ ∑(i) can be written as

δ (i−1)
r =

|Vi−1|−1

∑
k=0

(
m(i−1)

k,p+1 ·
(

m∑(i−1)
kp −m∑(i−1)

k,p+1

)
+m(i−1)

kp ·
|Vi−1|−1

∑
β=k+1

m(i−1)
β ,p+1

)

δ (i)
r =

|Vi+1|−1

∑
l=0

(
m(i)

pl ·
(

m∑(i)
p+1,l −m∑(i)

pl

)
+m(i)

p+1,l ·
l−1

∑
α=0

m(i)
pα

)
The difference in edge crossings after the exchange can be expressed as

δ ∗ (i−1)
r =

|Vi−1|−1

∑
k=0

(
δ ∗ (i−1)(k, p)+δ ∗ (i−1)(k, p+1)

)

δ ∗ (i)
r =

|Vi+1|−1

∑
l=0

(
δ ∗ (i)(p, l)+δ ∗ (i)(p+1, l)

)
with δ ∗ (i−1)

r = δ (i−1)
r and δ ∗ (i)

r = δ (i)
r .

4. The number of crossings after the exchange

Kh(ḡ∗ ) = Kh(ḡ)+δ ∗ (i−1)
r +δ ∗ (i)

r = Kh(ḡ)+δ (i−1)
r +δ (i)

r

Proof:
The proof can be conducted similarly to the proof of lemma 2 except for modified exchange
operations in part 1 and p + 1 or p, respectively, as splitting points in the distinction of cases in
part 2. �

Hence, the number of edge crossings in bipartite graphs (hierarchical edges in our problem) can
be calculated in O(|V |2) using crossing matrices. Additional speed improvements can be gained
by alternative implementations or by considering incremental changes to the graph, the hierarchy
and the interconnect matrices.
In principle some memory can be saved if the type of the matrix according to corollary 3 is
respected: M∑(i) can be stored as a (|Vi|−1)× (|Vi+1|−1) matrix omitting the first column and
the last row and adding appropriate conditions to the algorithms11.

Non-Hierarchical Edges

So far non-hierarchical edges are not respected at all when calculating the number of crossings
in a graph. Two general types of non-hierarchical edges have to be respected:

11Because of historical reasons the implementation uses transposed matrices. Starting with an alternative version
of definition 15 which results in transposed matrices, all the results can be shown similarly.
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Definition 17 (non-hierarchical edges)
Let Ḡ = (V,EH ,EN ,n,σ) be a n-level hierarchy according to definition 9. Then Vi is the partition
of nodes representing rank i and σi the order of Vi. An edge e = {u,v} ∈ EN ,u ∈ Vi,v ∈ Vj and
therefore r(u) = i and r(v) = j is called a

1. multi-level non-hierarchical edge if i 6= j. Regarding e from the viewpoint u, e is a top
multi-level non-hierarchical edge if j < i. Otherwise, if i < j, e is a bottom multi-level
non-hierarchical edge.12

2. flat edge if i = j. If e crosses multiple nodes, e (regarding e from the viewpoint u) might
be supposed to be drawn towards Vk k < i (top flat edge) or Vk k > i (bottom flat edge),
respectively, to gain the minimum number of crossings. A flat flat edge connects neigh-
bored nodes.

Example:
Edge e in Figure 4.23 is a top multi-level non-hierarchical edge seen from node w but a bottom

h 2

h1

e f

g

vu

xw y

Figure 4.23: Different types of non-hierarchical edges and a hierarchical edge f .

multi-level non-hierarchical edge seen from node u. Edge g is a flat flat edge, because it connects
direct neighbors within the same rank. Edge h1 is a top flat edge while edge h2 is a bottom flat
edge. While edge crossing reduction at least pseudo coordinates arising from the rank assign-
ment and the sequence of nodes within the individual ranks are present. Therefore Figure 4.23)
is a drawing induced by the decisions of the edge crossing minimization. Edge h1 and edge h2
are alternative ways of routing edge d = {w,y}, which is not shown in Figure 4.23. Because h2
minimizes the number of edge crossings, edge h should be drawn as a bottom flat edge instead of
a top flat edge. Edge g and edge h, drawn as one of the two possibilities h1 and h2, are flat edges.
As a convention introduced in [Seemann 1997; Noguchi and Tanaka 1998; Noguchi and Tanaka
1999] and manifested in UML_HIERARCHY, flat edges are connected to the vertical sides of the
nodes, hierarchical edges like f to the horizontal sides.

12Top/bottom arise from the direction to the (virtual) root of the graph in rank 0.
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When calculating the number of edge crossings, a multi-level non-hierarchical edge can be
treated as a hierarchical edge. One exception has to be considered for non-hierarchical edges
connecting adjacent ranks: These edges have to be split temporarily by a dummy node located
in the upper rank because otherwise crossings between hierarchical and such non-hierarchical
edges cannot be detected. Therefore edge e in Figure 4.23 can be treated similar to edge f after
splitting it by a dummy node located at the left or right side of u. This is also consistent with
definition 9 and definition 15.
Flat edges are not covered by definition 15 because the interconnect matrix takes edges between
different levels into account only.
To simplify the notation, in the remaining part of this section we will assume that Ḡ =
(V,EH ,EN ,σ) is a n-level hierarchy and due to inserting, moving or removing a node Ḡ∗ =
(V ∗ ,E ∗

H ,E ∗
N ,σ ∗ ) is the modified n-level hierarchy.

Definition 18 (upper and lower multi-level edges)
Let mle↓ (u) := {e : e = {u,v} ∈ EH ∪ EN , r(u) < r(v)} and
mle↑ (u) := {e : e = {u,v} ∈ EH ∪ EN , r(u) > r(v)}. For a node u

K ↑
f (Ḡ,u) :=

{
0 : if r(u) ≤ 0

|mle↑ (u)| : otherwise

K ↓
f (Ḡ,u) :=

{
0 : if r(u) ≥ n−1

|mle↓ (u)| : otherwise

denote the number of upper (lower) multi-level edges..

A dummy root would need a more detailed condition in K ↑
f (Ḡ,u) to consider the first rank, which

contains visible nodes.
Corollary 7 (upper and lower multi-level edges crossed by a flat edge)
For a flat edge e = {u,v} with r(u) = r(v) let

s f (u,v) := min{σr(u)[u],σr(v)[v]}+1

and
e f (u,v) := max{σr(u)[u],σr(v)[v]}−1

be the exclusive start (end) 0-based index position of e in rank r(u). As a conclusion from
definition 18

K ↑
f (Ḡ,e) := K ↑

f (Ḡ,u,v) :=
e f (u,v)

∑
α=s f (u,v)

K ↑
f (Ḡ,σr(u)[α]) (4.21)

K ↓
f (Ḡ,e) := K ↓

f (Ḡ,u,v) :=
e f (u,v)

∑
α=s f (u,v)

K ↓
f (Ḡ,σr(u)[α])

denote the number of upper (lower) multi-level edges touched by e.
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Proof:
Definition 18 defines the number of visible upper and lower level edges of a given node. A flat
edge is intended to be drawn according to GS_POLYLINE and the shortest route between the
connected nodes is assumed. Hence, s f and e f denote the index positions between the connected
nodes excluding them and therefore K ↑

f as well as K ↓
f denote the number of upper (lower)

multi-level edges touched by a specified edge. �

Definition 19 (length of a flat edge)
For a flat edge e = {u,v} with r(u) = r(v)

δ f (Ḡ,u,v) := |σr(u)(u)−σr(v)(v)|−1

denotes the length of the flat edge e.

v1 v2 v3 v4

e
f

e’

Figure 4.24: Example for the calculation of the number of flat crossings in theorem 2. The alter-
native route of e is drawn in dotted line style.

Calculating the exact number of flat crossings is illustrated in Figure 4.24. If e is drawn above
the nodes, it obviously induces K ↑

f (Ḡ,v1,v4) = K ↑
f (Ḡ,v2)+ K ↑

f (Ḡ,v3) = 4 crossings with upper

multi-level edges. If e is drawn below K ↓
f (Ḡ,v1,v4) = K ↓

f (Ḡ,v2)+K ↑
f (Ḡ,v3) = 3 crossings occur.

min
{

K ↑
f (Ḡ,v1,v4),K

↓
f (Ḡ,v1,v4)

}
= 3 denotes the expected number of crossings with multi-level

edges, because we can assume that a routing mechanism in the coordinates assignment will
consider this information, too.
The current number of crossings between flat edges and e can be calculated by considering the
number of edges from v2 and v3 to nodes at the left of v1 or at the right of v4.

K ↔ (Ḡ,v,s f ,e f ) := |{e : e = {v,w} ∈ EN , r(v) = r(w) ∧ (σw(w) < s f ∨ σw(w) > e f )}| (4.22)

Both possible routes of e have to be taken into account. Thereby, the concrete number of flat
edge crossings depends on the final route (top or bottom) of each involved edge. In fact, the
static situation can be calculated in O(|EN |) per node if a flag denoting the vertical direction of
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the route is maintained for each edge. To influence the edge crossing reduction correctly, we are
interested in the optimal configuration for all edges. Hence, (virtually) changing the route of one
edge may require (virtual) changes to the flags for the edges inducing flat crossings to reduce the
total number of crossings. To be more precise, the subgraph Go, which consists of the nodes of a
rank and all their flat edges, admits a drawing according to GS_ORTHOGONAL, should be (vir-
tually) laid out with a minimum number of crossings. Furthermore, the number of crossings with
hierarchical edges depending on the route of an individual edge, have to be taken into account,
e.g., by route-dependent weights.
Minimizing the number of edge crossings is in general NP-hard [Garey and Johnson 1983].
Unfortunately, the calculation of the (minimum) rectilinear crossing number appears to be expo-
nential in runtime13.
As a basic approximation, we can denote the current number of crossings with hierarchical edges
as

Kf (Ḡ,e) := Kf (Ḡ,{u,v})

:= w({u,v}) ·
{

min
{

K ↑
f (Ḡ,u,v),K ↓

f (Ḡ,u,v)
}

: if r(u) = r(v)
0 : otherwise

(4.23)

A more precise but also not exact value can be obtained by considering (4.22) or a similar for-
mula, which also takes the direction of the route of a flat edge into account. Let

K ↑↑
f (Ḡ,e) := K ↑↑

f (Ḡ,u,v) :=
e f (u,v)

∑
α=s f (u,v)

K ↑
f (Ḡ,σr(u)[α])+K ↔ (Ḡ,σr(u)[α],s f (u,v),e f (u,v))

and K ↓↓
f be defined similarly. Now K ↑↑

f (Ḡ,v1,v4) = 5 and K ↓↓
f (Ḡ,v1,v4) = 3 are valid crossing

numbers for Figure 4.24. Let

K ↔
f (Ḡ,e) := K ↔

f (Ḡ,{u,v})

:= w({u,v}) ·
{

min
{

K ↑↑
f (Ḡ,u,v),K ↓↓

f (Ḡ,u,v)
}

: if r(u) = r(v)
0 : otherwise

(4.24)

Obviously, ∑
e∈ EN

Kf (Ḡ,e) ≤ ∑
e∈ EN

K ↔
f (Ḡ,e) holds. Let K ∗

f (Ḡ) be the minimum number of edge

crossings induced by flat edges on a fixed sequence of nodes. In the case that no crossings be-
tween flat edges occur, K ∗

f (Ḡ) = ∑
e∈ EN

Kf (Ḡ,e) holds. K ∗
f (Ḡ) = ∑

e∈ EN

K ↔
f (Ḡ,e) may occur when

no subsequent changes of edge routes for flat-flat edges are required to obtain the minimum num-
ber of crossings. Otherwise, K ∗

f (Ḡ) lies somewhere between the basic approximation via (4.23)
and the approximation in (4.24), which also takes the static flat-flat crossings into account.
K ∗

f (Ḡ) can be obtained by solving the combinatorial problem of subsequent changes to flat edge

13Currently, the bipartite crossing number [Garey and Johnson 1983] and the odd-crossing number [Pach and
Tóth 2000] were proven to be NP-complete, but not the rectilinear crossing number [Pach 1998].
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routes or by counting the crossings in the (virtual) drawing of Go calculated by a layout algorithm
for rectilinear drawings on fixed visible node sequences, which also considers the alternating
edge weights arising from the crossings with hierarchical edges.
Due to the computational complexity for calculating K ↔ (Ḡ,σr(u)[α],s f (u,v),e f (u,v)) or K ∗

f (Ḡ),
we will consider the basic approximation via (4.23) only. To avoid that longer edges are chosen
as best configuration in situations of equal number of flat crossings, we also consider the length
of flat edges in the following theorem:

Theorem 2 (pseudo number of flat crossings)
Let G = (V,EH ,EN) be a graph, Ḡ = (V,EH ,EN ,n,σ) the n-level hierarchy of G according to
definition 9. Then

Kf (Ḡ,e) := Kf (Ḡ,{u,v})

:= w({u,v}) ·
{

min
{

K ↑
f (Ḡ,u,v),K ↓

f (Ḡ,u,v)
}

+δ f (Ḡ,u,v) : if r(u) = r(v)
0 : otherwise

with w(e) = w({u,v}) > 0 as the (externally given) weight of the edge e is the number of edge
crossings induced by e.

Kf (Ḡ,v) := ∑
e∈{ e1 : e1={v,w}∈ EN , r(v)=r(w)}

Kf (Ḡ,e)

denotes the number of flat crossings respecting all flat edges connected to n and

Kf (Ḡ) := ∑
e∈ EH ∪ EN

Kf (Ḡ,e) := ∑
e∈ EN

Kf (Ḡ,e)

the number of flat crossings of the graph G.

Similar to the binary version of the crossing matrix in definition definition 15, a variant of theo-
rem 2 without respecting w(e) might be used in the implementation for example according to a
certain configuration flag.
Theorem 2 is more appropriate for implementation purpose, (4.25) when reasoning about
changes to the number of flat edge crossings after incremental changes, like exchanging neigh-
bors or inserting nodes.

Corollary 8 (alternative form of Kf (Ḡ,e))
Kf (Ḡ,e) can also be written as

Kf (Ḡ,{u,v}) =

w({u,v}) ·
{

min
{

K ↑
f (Ḡ,u,v)+δ f (Ḡ,u,v),K ↓

f (Ḡ,u,v)+δ f (Ḡ,u,v)
}

: if r(u) = r(v)
0 : otherwise

(4.25)
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Proof:
In preparation step S6 of the layout algorithm, self loops have been removed. Hence, with
u 6= v |σr(u)(u)− σr(v)(v)| ≥ 1 and therefore δ f (Ḡ,u,v) = |σr(u)(u)− σr(v)(v)| − 1 ≥ 0 and

min
{

K ↑
f (Ḡ,u,v)+δ f (Ḡ,u,v),K ↓

f (Ḡ,u,v)+δ f (Ḡ,u,v)
}

= min
{

K ↑
f (Ḡ,u,v),K ↓

f (Ḡ,u,v)
}

+

δ f (Ḡ,u,v).
�

Corollary 9 (K ↑
f (Ḡ,u,v), K ↓

f (Ḡ,u,v) and exchanging neighbors)
When u ∈ σi in G is exchanged with its immediate left neighbor l at σi(l) = σi(u)− 1, the
following properties hold:

1. K ↑
f (Ḡ

∗ ,u, l) = K ↑
f (Ḡ,u, l)

2. K ↑
f (Ḡ

∗ ,u,v) =

{
K ↑

f (Ḡ,u,v)−K ↑
f (Ḡ, l) : σi(v) < σi(l)

K ↑
f (Ḡ,u,v)+K ↑

f (Ḡ, l) : σi(v) > σi(l)
if {u,v} ∈ EN ∧ v 6= l ∧ r(v) = i

3. K ↑
f (Ḡ

∗ , l,v) =

{
K ↑

f (Ḡ, l,v)+K ↑
f (Ḡ,u) : σi(v) < σi(u)

K ↑
f (Ḡ, l,v)−K ↑

f (Ḡ,u) : σi(v) > σi(u)
if {l,v} ∈ EN ∧ v 6= u ∧ r(v) = i

4. K ↑
f (Ḡ

∗ ,v,w) = K ↑
f (Ḡ,v,w) if {v,w} ∈ EN ∧ v,w 6∈ {l,u}

Similar properties hold, when u is exchanged with its immediate right neighbor r or if K ↓
f is

used instead of K ↑
f .

Proof:
K ↑

f (Ḡ
∗ ,n) = K ↑

f (Ḡ,n) and K ↓
f (Ḡ

∗ ,n) = K ↓
f (Ḡ,n), because definition 18 is independent from node

positions within ranks and no nodes are inserted or removed.
u is exchanged with l. Let E1 = {e : e = {u,v} ∈ EN , r(u) = r(v)}. Let i = r(u) define a shortcut.
Then for all e ∈ E1 the following equations are implicitly given by exchanging u and l:

σ ∗
i (l) = σ ∗

i (u)+1 = σi(u) = σi(l)+1 (4.26)

and
σ ∗

i (u) = σ ∗
i (l)−1 = σi(l) = σi(u)−1 (4.27)

Let x ∈ σr(x) x 6∈ {u, l}, then
σ ∗

r(x)(x) = σr(x)(x) (4.28)

because x is not affected by the exchange operation. Let v,w ∈ σi v,w 6∈ {u, l}
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1. K ↑
f (Ḡ

∗ ,u, l) (4.21)=
σ ∗

i (u)−1
∑

α=σ ∗
i (l)+1

K ↑
f (Ḡ

∗ ,σ ∗
i [α]) (4.26)=

σ ∗
i (u)−1

∑
α=σ ∗

i (u)+2
K ↑

f (Ḡ
∗ ,σ ∗

i [α]) = 0 =

σi(l)
∑

α=σi(l)+1
K ↑

f (Ḡ,σi[α]) (4.26)=
σi(u)−1

∑
α=σi(l)+1

K ↑
f (Ḡ,σi[α]) (4.21)= K ↑

f (Ḡ,u, l)

via the definition of the empty sum.

2. σ ∗
i (v) < σ ∗

i (u) ↔ σi(v) < σi(l):

K ↑
f (Ḡ

∗ ,u,v) (4.21)=
σ ∗

i (u)−1
∑

α=σ ∗
i (v)+1

K ↑
f (Ḡ

∗ ,σ ∗
i [α]) (4.27),(4.28)=

σi(l)−1
∑

α=σi(v)+1
K ↑

f (Ḡ,σi[α]) =

σi(u)−1
∑

α=σi(v)+1
K ↑

f (Ḡ,σi[α])−K ↑
f (Ḡ, l) (4.21)= K ↑

f (Ḡ,u,v)−K ↑
f (Ḡ, l)

σ ∗
i (v) > σ ∗

i (u) ↔ σi(v) > σi(l) :

K ↑
f (Ḡ

∗ ,u,v) (4.21)=
σ ∗

i (v)−1
∑

α=σ ∗
i (u)+1

K ↑
f (Ḡ

∗ ,σ ∗
i [α]) (4.27),(4.28)=

σ ∗
i (v)−1

∑
α=σ ∗

i (l)+1
K ↑

f (Ḡ
∗ ,σ ∗

i [α]) + K ↑
f (Ḡ

∗ , l) =

σi(v)−1
∑

α=σi(u)+1
K ↑

f (Ḡ,σi[α])+K ↑
f (Ḡ, l) (4.21)= K ↑

f (Ḡ,u,v)+K ↑
f (Ḡ, l)

3. σ ∗
i (v) < σ ∗

i (l) ↔ σi(v) < σi(u):

K ↑
f (Ḡ

∗ , l,v) (4.21)=
σ ∗

i (l)−1
∑

α=σ ∗
i (v)+1

K ↑
f (Ḡ

∗ ,σ ∗
i [α]) (4.26),(4.28)=

σ ∗
i (u)−1

∑
α=σ ∗

i (v)+1
K ↑

f (Ḡ
∗ ,σ ∗

i [α]) + K ↑
f (Ḡ

∗ ,u) =

σi(l)−1
∑

α=σi(v)+1
K ↑

f (Ḡ,σi(α))+K ↑
f (Ḡ,u) (4.21)= K ↑

f (Ḡ, l,v)+K ↑
f (Ḡ,u)

σ ∗
i (v) > σ ∗

i (l) ↔ σi(v) > σi(u):

K ↑
f (Ḡ

∗ , l,v) (4.21)=
σ ∗

i (v)−1
∑

α=σ ∗
i (l)+1

K ↑
f (Ḡ

∗ ,σ ∗
i [α]) (4.26),(4.28)=

σi(v)−1
∑

α=σi(u)+1
K ↑

f (Ḡ,σi[α]) =

σi(v)−1
∑

α=σi(l)+1
K ↑

f (Ḡ,σi[α])−K ↑
f (Ḡ,u) (4.21)= K ↑

f (Ḡ, l,v)−K ↑
f (Ḡ,u)

4. σ ∗
i (w) < σ ∗

i (u) < σ ∗
i (l) < σ ∗

i (v) ↔ σi(w) < σi(l) < σi(u) < σi(v):

K ↑
f (Ḡ

∗ ,w,v) (4.21)=
σ ∗

i (v)−1
∑

α=σ ∗
i (w)+1

K ↑
f (Ḡ

∗ ,σ ∗
i [α]) =

σ ∗
i (u)−1

∑
α=σ ∗

i (w)+1
K ↑

f (Ḡ
∗ ,σ ∗

i [α]) + K ↑
f (Ḡ

∗ ,u) +

K ↑
f (Ḡ

∗ , l) +
σ ∗

i (v)−1
∑

α=σ ∗
i (l)+1

K ↑
f (Ḡ

∗ ,σ ∗
i [α]) (4.27),(4.26),(4.28)=

σi(u)−1
∑

α=σi(w)+1
K ↑

f (Ḡ,σi[α]) + K ↑
f (Ḡ, l) +

K ↑
f (Ḡ,u)+

σi(v)−1
∑

α=σi(l)+1
K ↑

f (Ḡ,σi[α]) =
σi(v)−1

∑
α=σi(w)+1

K ↑
f (Ḡ,σi[α]) (4.21)= K ↑

f (Ḡ,w,v)

similarly for K ↑
f (Ḡ

∗ ,v,w) = . . . = K ↑
f (Ḡ,w,v)

σ ∗
i (w) < σ ∗

i (v) < σ ∗
i (u) ∨ σ ∗

i (l) < σ ∗
i (w) < σ ∗

i (v) ↔ σi(w) < σi(v) < σi(l) ∨ σi(u) <
σi(w) < σi(v):
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K ↑
f (Ḡ

∗ ,w,v) (4.21)=
σ ∗

i (v)−1
∑

α=σ ∗
i (w)+1

K ↑
f (Ḡ

∗ ,σ ∗
i [α]) (4.28)=

σi(v)−1
∑

α=σi(w)+1
K ↑

f (Ḡ,σi[α]) (4.21)= K ↑
f (Ḡ,w,v)

similarly for K ↑
f (Ḡ

∗ ,v,w) = . . . = K ↑
f (Ḡ,w,v)

Now let E2 = {e : e = {w,v} ∈ EN , r(u) 6= r(w) ∧ r(w) = r(v)}. Then for all e ∈ E2:

K ↑
f (Ḡ

∗ ,w,v) (4.21)=
σ ∗

r(w)(v)−1

∑
α=σ ∗

r(w)(w)+1
K ↑

f (Ḡ
∗ ,σ ∗

r(w)[α]) =
σr(w)(v)−1

∑
α=σr(w)(w)+1

K ↑
f (Ḡ

∗ ,σ ∗
r(w)[α]) (4.21)= K ↑

f (Ḡ,w,v)

because the exchange between u and v did not affect any other node in any other rank. The case
when u is exchanged with r or for K ↓

f can be handled similarly. �

Corollary 10 (δ f (Ḡ,u,v) and exchanging neighbors)
When u ∈ σi in G is exchanged with its immediate left neighbor l at σi(l) = σi(u)− 1, the
following properties hold:

1. δ f (Ḡ∗ ,u, l) = δ f (Ḡ,u, l)

2. δ f (Ḡ∗ ,u,v) =
{

δ f (Ḡ,u,v)−1 : σi(v) < σi(l)
δ f (Ḡ,u,v)+1 : σi(v) > σi(l)

if {u,v} ∈ EN ∧ v 6= l ∧ r(v) = i

3. δ f (Ḡ∗ , l,v) =
{

δ f (Ḡ, l,v)+1 : σi(v) < σi(u)
δ f (Ḡ, l,v)−1 : σi(v) > σi(u) if {l,v} ∈ EN ∧ v 6= u ∧ r(v) = i

4. δ f (Ḡ∗ ,v,w) = δ f (Ḡ,v,w) if {v,w} ∈ EN ∧ v,w 6∈ {l,u}
Similar properties hold, when u is exchanged with its immediate right neighbor r.

Proof:
Using the conventions defined in the proof of corollary 9:

1. δ f (Ḡ∗ ,u, l) = |σ ∗
i (u)−σ ∗

i (l)|− 1 (4.27),(4.26)= |σi(u)− 1− (σi(l)+ 1)|− 1 = |σi(u)−σi(l)|−
1 = δ f (Ḡ,u, l) Because u and l are neighbors, |σ ∗

i (u)−σ ∗
i (v)| = |σi(u)−σi(v)| = 1 and

δ f (Ḡ∗ ,u, l) = 0 = δ f (Ḡ,u, l)

2. σ ∗
i (v) < σ ∗

i (u) ↔ σi(v) < σi(l):
δ f (Ḡ∗ ,u,v) = |σ ∗

i (u)− σ ∗
i (v)| − 1 = σ ∗

i (u)− σ ∗
i (v)− 1 (4.27),(4.28)= σi(u)− 1− σi(v)− 1 =

|σi(u)−σi(v)|−2 = δ f (Ḡ,u,v)−1
σ ∗

i (v) > σ ∗
i (u) ↔ σi(v) > σi(l):

δ f (Ḡ∗ ,u,v) = |σ ∗
i (u)−σ ∗

i (v)| − 1 = σ ∗
i (v)−σ ∗

i (u)− 1 (4.27),(4.28)= σi(v)− (σi(u)+ 1)− 1 =
|σi(u)−σi(v)| = δ f (Ḡ,u,v)+1

3. σ ∗
i (v) < σ ∗

i (l) ↔ σi(v) < σi(u):
δ f (Ḡ∗ , l,v) = |σ ∗

i (l)− σ ∗
i (v)| − 1 = σ ∗

i (l)− σ ∗
i (v)− 1 (4.26),(4.28)= σi(l) + 1 − σi(v)− 1 =

|σi(l)−σi(v)| = δ f (Ḡ, l,v)+1
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σ ∗
i (v) > σ ∗

i (l) ↔ σi(v) > σi(u):
δ f (Ḡ∗ , l,v) = |σ ∗

i (l)− σ ∗
i (v)| − 1 = σ ∗

i (v)− σ ∗
i (l)− 1 (4.26),(4.28)= σi(v)− (σi(l) + 1)− 1 =

|σi(l)−σi(v)|−2 = δ f (Ḡ, l,v)−1

4. let {e : e = {v,w} ∈ EN , r(v) = r(w)} σ ∗
r(v)(v) < σ ∗

r(w)(w) ↔ σr(v)(v) < σr(w)(w):

δ f (Ḡ∗ ,w,v) = |σ ∗
r(w)(w)−σ ∗

r(v)(v)|−1 = σ ∗
r(w)(w)−σ ∗

r(v)(v)−1 (4.28)= σr(w)(w)−σr(v)(v)−
1 = |σr(w)(w)−σr(v)(v)|−1 = δ f (Ḡ,w,v)

The case when u is exchanged with r can be handled similarly.
�

Lemma 4 (number of flat crossings when exchanging a node and its neighbor)
If u ∈ σi in G is exchanged with its immediate left neighbor l at σi(l) = σi(u)−1 or its imme-
diate right neighbor r at σi(r) = σi(u)+1, the number of crossings change as follows:

Kf (Ḡ∗ ) = Kf (Ḡ)−Kf (Ḡ,u)−Kf (Ḡ, l)+Kf (Ḡ∗ ,u)+Kf (Ḡ∗ , l)

Kf (Ḡ ∗ ) = Kf (Ḡ)−Kf (Ḡ,u)−Kf (Ḡ,r)+Kf (Ḡ∗ ,u)+Kf (Ḡ∗ ,r)

Proof:
Let E1 = {e : e = {v,w} ∈ EN , r(v) = r(w)} be the set of flat edges,
E2 = {e : e = {v,w} ∈ E1, v,w 6∈ {l,u}} the set of flat edges which do neither connect to l nor
to u and E3 = {e : e = {v,w} ∈ E1, v ∈ {l,u} ∨ w ∈ {l,u}} the set of flat edges which connect
to l or u. E1 = E2 ∪ E3 and E2 ∩ E3 = /0.
Let E4 = {e : e = {l,w} ∈ E3, w 6= u}, E5 = {e : e = {l,u} ∈ E3} and E6 = {e : e = {u,w} ∈
E3, w 6= l} so that E3 = E4 ∪ E5 ∪ E6 and Ei ∩ E j = /0, i 6= j, i, j ∈ {4,5,6}. Because E5 only
contains the edges connecting the neighbors u and l, ∑

e∈ E5

Kf (Ḡ∗ ,e) = 0 according to corollary 9

and corollary 10. E4 ∪ E5 is the set of flat edges connected to l and E5 ∪ E6 the set of flat edges
connected to u. Therefore

∑
e∈ E3

Kf (Ḡ∗ ,e) = ∑
e∈ E4

Kf (Ḡ∗ ,e)+ ∑
e∈ E5

Kf (Ḡ ∗ ,e)+ ∑
e∈ E6

Kf (Ḡ∗ ,e)

=

(
∑

e∈ E4

Kf (Ḡ∗ ,e)+ ∑
e∈ E5

Kf (Ḡ∗ ,e)

)
+

(
∑

e∈ E5

Kf (Ḡ∗ ,e)+ ∑
e∈ E6

Kf (Ḡ∗ ,e)

)
th. 2= Kf (Ḡ ∗ ,u)+Kf (Ḡ∗ , l) (4.29)

and similarly for Ḡ.
Kf (Ḡ ∗ ) − (

Kf (Ḡ∗ ,u)+Kf (Ḡ∗ , l)
) (4.29)= Kf (Ḡ∗ ) − ∑

e∈ E3

Kf (Ḡ∗ ,e) th. 2= ∑
e∈ E

Kf (Ḡ ∗ ,e) −

∑
e∈ E3

Kf (Ḡ∗ ,e) th. 2= ∑
e∈ EN

Kf (Ḡ∗ ,e) − ∑
e∈ E3

Kf (Ḡ∗ ,e) th. 2= ∑
e∈ E1

Kf (Ḡ∗ ,e) − ∑
e∈ E3

Kf (Ḡ ∗ ,e) =

∑
e∈ E2

Kf (Ḡ∗ ,e) + ∑
e∈ E3

Kf (Ḡ∗ ,e) − ∑
e∈ E3

Kf (Ḡ ∗ ,e) = ∑
e∈ E2

Kf (Ḡ ∗ ,e) = ∑
e∈ E2

Kf (Ḡ,e) =
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∑
e∈ E2

Kf (Ḡ,e) + ∑
e∈ E3

Kf (Ḡ,e)− ∑
e∈ E3

Kf (Ḡ,e) = ∑
e∈ E1

Kf (Ḡ,e)− ∑
e∈ E3

Kf (Ḡ,e) th. 2= ∑
e∈ EN

Kf (Ḡ,e)−

∑
e∈ E3

Kf (Ḡ,e) th. 2= ∑
e∈ E

Kf (Ḡ,e) − ∑
e∈ E3

Kf (Ḡ,e) th. 2= Kf (Ḡ) − ∑
e∈ E3

Kf (Ḡ,e) (4.29)= Kf (Ḡ) −(
Kf (Ḡ,u)+Kf (Ḡ, l)

)
As discussed above, for a node u ∈ V , K ↑

f (Ḡ,u) and K ↓
f (Ḡ,u) change only, if nodes are added or

removed.
�

Lemma 5 (number of flat crossings when inserting or removing a node)
When node u is added to graph G , u is assigned to rank i so that i = r(u), then u and the edges
connected to u are inserted into σi at an arbitrary position.
Let G∗ be the graph after inserting (removing) u. Then the number of flat crossings changes
according to

Kf (Ḡ∗ ) = Kf (Ḡ)+Kf (Ḡ∗ ,u)

if u is (temporarily) inserted into G and

Kf (Ḡ∗ ) = Kf (Ḡ)−Kf (Ḡ∗ ,u)

if u is (temporarily) removed from G.

It makes sense to store the the flat edge direction as a rendering hint for the coordinates as-
signment. Furthermore, it implicitly considers that all flat edges in the first visible rank can be
directed towards the root, in the rank at the bottom of the drawing towards the bottom due to the
absence of hierarchical edges.

Proof:
When u is inserted, u and the edges connected to u are inserted into G ∗ :
Kf (Ḡ ∗ ) th. 2= ∑

e∈ E
Kf (Ḡ∗ ,e) = ∑

e∈ E\(E,u)
Kf (Ḡ∗ ,e) + ∑

e∈ E(E,u)
Kf (Ḡ∗ ,e) cor. 9,cor. 10= ∑

e∈ E\(E,u)
Kf (Ḡ,e) +

∑
e∈ E(E,u)

Kf (Ḡ∗ ,e) th. 2= Kf (Ḡ ∗ )+Kf (Ḡ∗ ,u)

It can be shown similarly that Kf (Ḡ∗ ) = Kf (Ḡ)−Kf (Ḡ∗ ,u) holds when u is (temporarily) re-
moved.

�

As conclusion, the number of crossings respecting flat edges only can be calculated in O(|E|2 ·
|V |) or, if K ↑ and K ↓ are precalculated and cached, O(|E| · |V |). Incrementally calculating flat
edge crossings reduces the runtime but not the complexity.
On highly connected graphs with a large number of flat edges, the calculation of flat edge cross-
ings runs too slow. Therefore we discuss now an algorithm which runs in O(|V |2) but partly
allows incremental updates in O(|V |).
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Definition 20 (flat edges connection matrices)
Let F(i) be a |Vi| × |Vi| matrix representing the number of flat edges between nodes in rank i
defined by

f (i)
kl := |e = {σi[k],σi[l]}|

Let F∑(i) be a |Vi| × |Vi| matrix containing the aggregated number of upper and lower level
multi-edges given by

f ∑(i)
kl := ∑

l< j<k
K ↑

f (Ḡ,σi[ j])+ ∑
k< j<l

K ↓
f (Ḡ,σi[ j]) (4.30)

via definition 18.

Corollary 11 (pseudo number of flat crossings by flat edges connection matrices)
The pseudo number of flat crossings in a rank specified by theorem 2 can be expressed as

Kf (Ḡ, i) := ∑
0≤ k<l<|σi|

w({σi[k],σi[l]}) · f (i)
kl · (min{ f ∑(i)

kl , f ∑(i)
lk }+ |k− l|−1) (4.31)

and the number of flat crossings in G is

Kf (Ḡ) := ∑
0≤ i<n

Kf (Ḡ, i)

Proof:
Because self loops were eliminated in S6, F(i) is a matrix as shown below 0 ∗

. . .
∗ 0


F∑(i) is a matrix of the following form

0 0 K ↑
. . .
0 0 0

. . .

K ↓ 0 0


because of the exclusive ranges and the mutual exclusive addenda in (4.30).
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Algorithm 4.7 calculate flat matrices
input: Ḡ = (V,EH ,EN ,n,σ), i
output: (F(i),F∑(i))

σ := σi
F(i) := new |Vi|× |Vi|
for all {e : e = {u,v} ∈ EN , r(u) = r(v)} do

F(i)
σ(u), σ(v) = F(i)

σi(u), σi(v)
+1

F(i)
σ(v), σ(u) = F(i)

σi(v), σi(u) +1
end for
F∑(i) := new |Vi|× |Vi|
if |σi| > 2 then

for k := 0 to |σi| do
v := ⊥
s↑ := 0
s↓ := 0
for l := k +1 to |σi| do

if l < k−1 ∧ v 6= ⊥ then
s ↑ := s ↑ +K ↑

f (Ḡ,v)

F(i)
kl := F(i)

kl + s↑
else if l > k +1 ∧ v 6= ⊥ then

s ↓ := s ↓ +K ↓
f (Ḡ,v)

F(i)
kl := F(i)

kl + s↓
end if
v := σi[l];

end for
end for

end if
return (F(i),F∑(i))

Let Kf (Ḡ,u,v) be the number of flat crossings induced by all flat edges which connect u and
v. Kf (Ḡ,e) from theorem 2 denotes the number of flat crossings induced by e. Let f (i,k, l) =
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w({σi[k],σi[l]}) · f (i)
kl · (min{ f ∑(i)

kl , f ∑(i)
lk }+ |k− l|−1) as a part of (4.31). Hence,

Kf (Ḡ,u,v) = |{e : e = {u,v}, r(u) = r(v)}| ·Kf (Ḡ,{u,v})
cor. 11= f (r(u))

σr(u)(u), σr(v)(v)
·Kf (Ḡ,{u,v})

th. 2= f (r(u))
σr(u)(u), σr(v)(v)

·w({u,v}) · (min{K ↑
f (Ḡ,u,v),K ↓

f (Ḡ,u,v)}+δ f (Ḡ,u,v))

cor. 7= f (r(u))
σr(u)(u), σr(v)(v)

·w({u,v}) · (min{
e f (u,v)

∑
α=s f (u,v)

K ↑
f (Ḡ,σr(u)[α]),

e f (u,v)

∑
α=s f (u,v)

K ↓
f (Ḡ,σr(u)[α])}+δ f (Ḡ,u,v)))

cor. 11= f (r(u))
σr(u)(u), σr(v)(v)

·w({u,v}) · (min{ f ∑(r(u))
σr(u)(u),σr(v)(v)

, f ∑(r(u))
σr(v)(v),σr(u)(u)}+δ f (Ḡ,u,v)))

def. 19= f (r(u))
σr(u)(u), σr(v)(v)

·w({u,v}) · (min{ f ∑(r(u))
σr(u)(u),σr(v)(v)

, f ∑(r(u))
σr(v)(v),σr(u)(u)}+ |σr(u)(u)−σr(v)(v)|−1))

= f (r(u),σr(u)(u),σr(v)(v))

Then (4.31) denotes the number of flat crossings in rank i and Kf (Ḡ) follows obviously.
Algorithm 4.7 shows the calculation of both flat matrices. �

For F(i) and F(i) we assume a matrix implemented according to the technique depicted in Fig-
ure 4.22.

Corollary 12 (incremental operations on flat matrices when adding or exchanging a node)
Let σi be a rank and v a node to be

• added at the end of σi. All entries in F(i) concerning edge connections with v have to be
adjusted. In F∑(i) the last column has to be adjusted only.

• exchanged with its immediate left or right neighbor in σi. In F(i) the affected columns
have to be exchanged. In F∑(i) the entries of the adjacent columns have to be adjusted by
adding or subtracting the number of connected multi-level edges.

Proof:

• According to the definition of F(i) in corollary 11 it is obvious that when adding v to σi
all matrix entries connected to v have to be adjusted. None of the edges considered for
F(i) and F∑(i) is affected by inserting v. All edges connected from v to other nodes in σi
would receive the correct crossing number if K ↑ (Ḡ,v) and K ↓ (Ḡ,v) would be present in
F∑(i). Due to the exclusive ranges in the definition of F∑(i), the last existing column is not
considered in F∑(i). Hence, algorithm 4.8 shows the required changes to existing matrices.
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Algorithm 4.8 update flat matrices after adding v

input: Ḡ = (V,EH ,EN ,n,σ),v,F(r(v)),F∑(r(v))

output: (F(r(v)),F∑(r(v)))
σ := σr(v)
for all {e : e = {v,w} ∈ EN , r(v) = r(w)} do

if notAdded(e) then
F(r(v))

σ(v), σ(w) := F(r(v))
σ(v), σ(w) +1

F(r(v))
σ(w), σ(v) := F(r(v))

σ(w), σ(v) +1
end if

end for
for i := |σ |−3 downto 0 do

if i > |σ | ∨ i < |σ |−2 then
F∑(r(v))
|σ |−1, i := F∑(r(v))

|σ |−2, i +K ↑
f (Ḡ,v)

F∑(r(v))
i, |σ |−1 := F∑(r(v))

i, |σ |−2 +K ↓
f (Ḡ,v)

end if
end for
return (F(r(v)),F∑(r(v)))

• Exchanging nodes does not affect the number of edges which connect two nodes. There-
fore, in F(i) the appropriate columns have to be exchanged only. Nothing remains to
be done for F(i), because we assume the implementation suggested in Figure 4.22. Let
j := σi(v) and without loss of generality w := σi[ j−1] be the node to be exchanged with
v. After the exchange and the automatic update of F∑(i) due to the implementation in Fig-
ure 4.22 the values in all rows except for j and j−1 are correct, because the sequence of
the addenda in (4.31) does not change the result. The values of v in row j− 1 have to be
decremented by K ↑ (Ḡ,w) or K ↓ (Ḡ,w), respectively, and symmetrically values of w in row
j have to be incremented by K ↑ (Ḡ,v) or K ↓ (Ḡ,v), respectively.

�

When implementing the calculation of the number of flat crossings, for non-iterative crossing re-
duction algorithms we now have two alternatives at hands. the non-matrix based algorithm runs
in O(|E| · |V |) and the matrix based in O(|V |2). Obviously there is a break even point when we
may switch between the algorithms. If |E| ≤ |V | we may use the direct implementation without
matrices, if |E| ≤ |V | the matrix variant seems to be appropriate. Of course this decision also
depends on the type of the crossing reduction algorithm, which may be incremental, partly in-
cremental or always requires a full recalculation. Furthermore, the concrete implementation also
affects the practical break even point as well as the effective runtime.
As a summary we can conclude:
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Theorem 3 (total pseudo number of crossings)
The total pseudo number of crossings on a given graph G, its n-level hierarchy Ḡ =
(V,EH ,EN ,n,σ) and its induced matrix realization ḡ is

K(G) = Kh(ḡ)+Kf (Ḡ)

An incremental edge crossing reduction algorithm can also be implemented in O(min{|V |2, |V | ·
|E|}), too, but effectively the runtime performance is better. Even if we have improved the ef-
fective runtime of the calculation of the number of edge crossings, this does neither touch the
complexity of a concrete edge crossing reduction algorithm in Section 4.6.5 nor the fact that the
minimization problem is NP-complete.

Forbidden Edges – A Tribute to UML

In usual graphs an edge can be connected to every side of a node. Application-domain specific
graphs may restrict edges to be connected to only a subset of the available areas at the sides of a
node. For example, in UML this restriction occurs when subsystems are used. Some basic shapes
of subsystems are given in Figure 4.25.
The area of a subsystem can be partitioned into different compartments depending on the situ-
ation being modeled. In Figure 4.25 (a), the unnamed compartment usually contains the textual
interface specification which allows the subsystem to be accessed from outside.

subsystem

Specification Elements

Realization Elements

subsystem

Specification Elements Realization Elements

subsystem

Specification Elements

(a) (b) (c)

Figure 4.25: Different possibilities to specify a subsystem.
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Figure 4.26: A UML sequence diagram depicting the basic mechanism for dynamically deriving
the concrete polymorphic shape of a graph element representing a UML subsystem.
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Often the “Specification Elements” compartment contains use cases, but also classes (interfaces)
are possible. “Realization Elements” specify the relevant parts of the realization of the subsystem
by use cases or nested class diagrams. Graphical model elements in both named compartments
may be connected to elements outside the subsystem. Therefore, edges connecting nodes out-
side the subsystem with nodes inside a compartment should not cross the other compartments.
Figure 4.25 shows that the decision, which side of the node is forbidden for particular edges,
depends on the shape of the subsystem. Additionally, the decision on the concrete shape to be
used can be made dynamically while performing the edge crossing reduction depending on the
connectivity of the subsystem. This dynamic mechanism is depicted in in Figure 4.26: While
calculating the current number of crossings, the port14 penalty of the affected edges is calculated
in the information object of the connected nodes. An example for the use of port penalties is
depicted in Figure 4.27. A layout is applicable, if it is provided by the application as a possible

executable(o: Object):boolean
readable(o: Object):boolean
writable(o: Object):boolean

printable(o: Object):boolean

permissions

executable(o: Object):boolean
readable(o: Object):boolean
writable(o: Object):boolean

printable(o: Object):boolean

permissions

Realization Elements

MainImpl

executable(o: Object):boolean
readable(o: Object):boolean
writable(o: Object):boolean

printable(o: Object):boolean

permissions

MainImpl

MainImpl

Utility

Utility

Utility

(a)

(b)

(c)

Realization Elements

Realization Elements

Figure 4.27: (a) Illegal result due to the dependency overlapping the interface compartment, (b)
result after the dependency received an appropriate port penalty, (c) result after choosing another
polymorphic shape.

layout and in the concrete case of subsystems, if the number of required compartments matches
the number of provided compartments of the layout instance. As a side effect, the information
object might select the most appropriate one. After the edge crossing reduction is done, all in-

14A port specifies the connection point of an edge to the connected node.
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formation objects are informed to store their layout as an immutable reference. In coordinates
calculation, after inserting all cluster border nodes, the information object and, in particular, the
layout object is requested to format the extents of the connected cluster border nodes. Thereby,
additional hidden nodes may be inserted to ensure the area for the interface specification and the
contained nodes in the ”Specification Elements” compartment as shown in Figure 4.25 (a). The
layout plug-in object is also considered when calculating the size of the node or the information
object, respectively. Finally, the layout plug-in is considered when drawing the node by delega-
tion to its information object.
To keep the discussion on hierarchical and flat edge crossings in Section 4.6.3 simple, we delayed
the handling of forbidden edges and extend now the edge crossing formulae.

Definition 21 (port penalty function)
Let

φ : EH ∪ EN ×V → {0,1}
be the port penalty function which returns, if a given edge illegally overlays a part of the speci-
fied node.

Example:
Let v be the class MainImpl, u the class Utility, ~e = (v,u) and p be the subsystem
permissions in Figure 4.27. According to the rank sequences in Figure 4.27 (a), φ(e, p) = 1
but in Figure 4.27 (b) φ(e, p) = 0.

Corollary 13 (aggregated penalty functions)
Let φ : EH ∪ EN ×V ×V → {0,1} be a penalty function as given in definition 21. With

φ ∑ : EH ∪ EN ×V → N0

φ ∑(e = {v,w},x) := (|EH ∪ EN |−1) · ∑
p∈ ulc(x)

φ(e, p)

the aggregated penalty function on all cluster parents of a specified edge can be written as

φ : EH ∪ EN → N0

φ(e) := φ ∑(e = {v,w},v)+φ ∑(e = {v,w},w)

The aggregated penalty function in corollary 13 multiplies the sum of all parent clusters of the
specified with the maximum number of edges. If only node position configurations with forbid-
den edges exist, the algorithm selects one of the better ones.
Now we can extend the crossing formulae from Section 4.6.3 to respect the edge penalty func-
tion:

K p
h (M(i))=

|Vi|−2

∑
j=0

|Vi|−1

∑
k= j+1

(|Vi+1|−2

∑
α=0

|Vi+1|−1

∑
β=α+1

{
(φ(e = {v j,wβ})+1) ·m(i)

jβ ·m
(i)
kα : if m(i)

jβ ·m
(i)
kα > 0

φ(e = {v j,wβ}) : otherwise

)
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from (4.7) or

K p
h (M(i)) =

|Vi|−2

∑
j=0

|Vi+1|−1

∑
β=1

{
(φ(e = {v j,wβ})+1) ·m(i)

jβ ·m∑(i)
jβ : if m(i)

jβ ·m∑(i)
jβ > 0

φ(e = {v j,wβ}) : otherwise

from corollary 5 with v j ∈ σi and wβ ∈ σi+1. Similarly, Kf (Ḡ) given in theorem 2 can be written
as

K p
f (Ḡ) = ∑

e∈ EN

{
(φ(e)+1) ·Kf (Ḡ,e) : if Kf (Ḡ,e) > 0

φ(e) : otherwise

Finally, as in theorem 3:

Theorem 4 (total number of crossings respecting penalties)
Let

φ : EH ∪ EN ×V → {0,1}
be an edge penalty function, G a graph, Ḡ = (V,EH ,EN ,n,σ) its n-level hierarchy and ḡ its
induced matrix realization. The total number of crossings of G respecting edge penalties is

K p(G) = K p
h (ḡ)+K p

f (Ḡ)

Currently, port penalties are used for subsystems only. Thereby overlays of edges according to
the current sequences of nodes in ranks are considered as illustrated in Figure 4.27. Port penalty
functions may also be helpful for comments or in conjunction with alternative UML notations
like compositions as depicted in Figure 2.10.

4.6.4 Cluster Handling
For clustered graphs, we only ensure that
clusters are drawn as convex polygons,
while it is desirable to represent clusters
as more regular bodies such as circles and
rectangles.

[Eades et al. 1997]

Most of the edge crossing reduction techniques briefly described in Section 4.6.1 do not respect
clusters at all. As a global invariant, all steps to be executed after S10 have to produce a cluster-
valid output graph as defined in Section 4.3.4. Hence, the edge crossing reduction is responsible
for reordering the sequences of nodes to reduce the number of crossings (GDR_EDGE_CROSS)
with respect to cluster-validity (UML_SEMANTIC_CLUSTERS) according to definition 13.
In the first step, we are interested how to calculate individual positions for a node v to be placed
in σr(v)\{v}. Minimization techniques, like barycentric ordering, which are able to assign new
positions to all nodes of one rank in one step, need a mechanism to ensure that the result is also
cluster-valid. The algorithms designed to determine valid positions for individual nodes can be
reused to force an arbitrary n-level hierarchy to be cluster valid.
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Cluster-Valid Positions for Individual Nodes

Let G be a graph having a cluster-valid n-level hierarchy, i.e. it is inter-rank-valid and intra-rank-
valid according to definition 13 and v be a node (temporarily removed from) G. Let

insertPosResult := {NO,GLOBAL,EQUAL,CLUSTER, INBETWEEN,EOR,

BETWEENRELATED}

be the set of result states of algorithm 4.9. The additional information, which arise from
insertPosResult, may be used by the caller to realize certain insertion priorities.

Algorithm 4.9 calculateInsertPosCluster
input: Ḡ = (V,EH ,EN ,n,σ),r,v,d ∈ {−1,1}
output: valid cluster positions {0 . . . |σr|} → insertPosResult

if |σr| = 0 then
result : {0} → insertPosResult
result0 → EQUAL
return result

else
if global(v) then

return ip_handleGlobal(Ḡ,r)
else

return ip_handleNonGlobal(Ḡ,r,v,d)
end if

end if

Algorithm 4.9 handles the case of an empty rank by returning a result other than NO and del-
egates further calculation to sub algorithms depending on the membership of v in the global
cluster.
Algorithm 4.10 is called, if v is member of the global cluster. Obviously, v can then be positioned
at both ends of the rank, next to a node being also member of the global cluster or between two
nodes, which are not member of a common cluster.
Algorithm 4.11 handles the case that v is not member of the global cluster. First the augmented
cluster sequence of the reference rank σr+d and the positions, which probably restrict the candi-
date positions, are calculated. Minimum (minSpec) and maximum (maxSpec) positions denoting
the most specific rank members containing v as well as the minimum (minAlign) and maximum
(maxAlign) positions pointing to the allowed inter-rank area in σr are calculated before deter-
mining valid positions for v.
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Algorithm 4.10 ip_handleGlobal
input: Ḡ = (V,EH ,EN ,n,σ),r
output: cluster-valid positions if global(v) {0 . . . |σr|} → insertPosResult

σ := σr
result : {0 . . . |σ |} → insertPosResult
for i := 0 to |σ | do

if i−1 < 0 ∨ i ≥ |σ | ∨ global(σ [i−1]) ∨ global(σ [i]) ∨ global(LCC(σ [i−1],σ [i])) then
listPos(result, i) := GLOBAL;

else
listPos(result, i) := NO;

end if
end for
return result

Algorithm 4.11 ip_handleNonGlobal
input: Ḡ = (V,EH ,EN ,n,σ),r,v,d ∈ {−1,1}
output: cluster-valid positions if ¬global(v) {0 . . . |σr|} → insertPosResult

sAlign := augmentClusters(σr+d)
result : {0 . . . |σr|} → insertPosResult
S := {i : 0 ≤ i < |σr|, v � σr(i)∧ 6 ∃ w∈ σrv ≺ w � σr[i]}
minSpec :=

−1
min S

maxSpec :=
−1

max S

for i := 0 to |σr| do
if insideClusterBorderNodes(σr,v, i) then

listPos(result, i) := ip_intraRankPosition(σr, i,v,minSpec,maxSpec)
else

listPos(result, i) := NO
end if
if listPos(result, i) 6= NO ∧ listPos(result, i) 6= EQUAL ∧ listPos(result, i) 6= GLOBAL then

if ¬interRankValidityTest(sAlign,augmentClusters(σr,v, i)) then
listPos(result, i) := NO

end if
end if

end for
return result

Then all positions in σr are regarded. If i is within the cluster border nodes of the containing
cluster if present and i is considered to be intra-rank valid, the inter-rank validity is ensured by
calculating the augmented cluster sequence of σr with v virtually inserted at i and finally testing
the augmented cluster sequences for equality.
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The method ip_intraRankPosition classifies a candidate insertion position according to the
intra-rank validity. If v is inserted at i

• at least in the direct vicinity of a node of the same cluster, EQUAL

• at least in the direct vicinity of a node of a containing cluster, CLUST ER

• between two not-related clusters, INBETWEEN

• between two related but not equal clusters, BETWEENRELATED

• at the left or the right end of the rank, EOR (end of rank)

is returned.

Corollary 14 (runtime and correctness of algorithm 4.9)
Algorithm 4.9 runs in O(|V |2)15 and returns (intra-rank and) inter-rank valid positions only.

Proof:
Algorithm 4.9 directly applies definition 11 and definition 12. Therefore we have to prove that
the insertion positions for v suggested by algorithm 4.9 do not taint the validity at the graph when
v is inserted at one of these positions.

• if |σr| = 0: if |σr| < 2, (4.1) always returns an empty list and, hence, σr is still intra-rank
valid when inserting v at i = 0. If v is not related to σr+d , both augmented cluster sequences
are empty. If v is related to σr+d , both augmented cluster sequences are stepU pSetg(v) ∪
{v} and, therefore, σr is still inter-rank valid. In this case Algorithm 4.10 and algorithm 4.9
run in O(1).

• if |σr| > 0:

– If global(v), algorithm 4.10 is called. v can be inserted at either the ends of the
rank (EQUAL) or between two not related clusters (INBETWEEN). Hence, these
positions are intra-rank valid. The positions are valid, because members of the global
cluster do not taint the inter-rank validity.

– According to definition 11, the following exhaustive enumeration of cases has to be
considered to avoid that existing clusters are illegally split:

∗ 6 ∃ 0≤ j<|σr|v � σr[ j] ⇒ minSpec,maxSpec < 0
If no related clusters exist in σr, v can be inserted at either the ends of the rank
or between two not related clusters. Hence, these positions are intra-rank valid
but may be not inter-rank valid, because there is no related cluster in σr, which
restricts the insertion position. If minAlign,maxAlign ≥ 0, a related surrounding
cluster in σr+d and σr exists. In this case, inter-rank validity has to be ensured.

∗ ∃ 0≤ j<|σr|v � σr[ j] ⇒ 0 ≤ minSpec ≤ maxSpec < |σr|
15Refer to Chapter A3 for a linear time algorithm, which has been discovered shortly before publishing the final

version of this thesis.
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· If ∃ 0≤ j<|σr|v =N σr[ j], then minSpec and maxSpec denote exactly the area of
cluster-equal nodes. By inserting v next to a cluster-equal node (EQUAL),
the cluster sequence is not changed significantly: No existing clusters are
split and therefore σr is still intra-rank valid as well as inter-rank valid re-
garding σr+d .

· Otherwise minSpec and maxSpec point to the most specific cluster. The
intra-rank valid positions can now be determined by testing for (4.2) on each
minSpec < i ≤ maxSpec (BETWEENRELATED). As long as the cluster of
v was not inserted so far, v may also be added at the outer border of minSpec
or maxSpec, respectively (CLUST ER).
Because intra-rank validity was defined on pairs of cluster-related nodes in
definition 11, we have to ensure, that inserting v does not change the va-
lidity of all pairs. Let vl be a node at the left side of v in σr. If vl =N v
and no node of a non-contained cluster lies between vl and vr, then (4.2)
holds. If a non-contained cluster would occur between vl and v, then σr was
not intra-rank valid as a contradiction. The restriction to the most specific
cluster does not allow that other members in the cluster of v occur outside
minSpec < i ≤ maxSpec. Hence, σr remains valid if v ≺ vl or vl ≺ v. If
vl 6./ v, no further node to the left of vl must be regarded, because these pairs
do not taint the intra-rank validity and, therefore, are not considered by def-
inition 11. The right nodes vr of v can be handled similarly.
Inter-rank validity has to be ensured by an additional test for definition 12.

ip_intraRankPosition, as implicitly described in this proof, runs in O(1) and, therefore, the
for-loop in Algorithm 4.11 in O(|V 2|). The calculation of minSpec, maxSpec as well as aug-
menting clusters or comparing two augmented cluster sequences for equality can be realized in
O(|V |). Therefore Algorithm 4.11 is in O(|V 2|). Algorithm 4.10 lies in O(|V |). Hence, algo-
rithm 4.9 runs in O(|V 2|).

�

A similar mechanism can be applied in non-compound or mixed-compound graphs, when hier-
archical and non-hierarchical relations are taken into account. Thereby, the hierarchical subtree
or, if not present, the subgraph of non-hierarchical relations may be used to restrict the available
positions and to improve the runtime of the crossing reduction algorithms.

Enforcing Cluster Alignment

Traditional edge crossing reduction strategies do not respect cluster validity rules. To simply
reuse and experiment with edge crossing reduction algorithms, which rely on a certain kind of
node sorting, a combination of sorting the nodes of a rank and aligning the nodes to the adjacent
upper or lower rank, respectively, is required. Therefore, let

sortValue : V → R
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be a function, which returns the value according to which the nodes within a rank should be
ordered. For example, in the barycentric edge crossing minimization algorithm, this value would
be the barycenter of the connected nodes. The sorting values determined by the edge crossing
reduction algorithm may be adjusted by algorithm 4.12, because the validity of ranks according
to definition 13 has a higher priority than the sorting value.
In [Sander 1996b], a barycenter implementation was used for basic edge crossing reduction and
then the nodes were carefully repositioned to gain cluster validity. In [Forster 2002], a sorting
mechanism, which respects cluster rules, is suggested.
To describe such an algorithm we need the following functions:

allSubNodes(v,σ) = {w : w ∈ σ , w � v}
is the set of all nodes in rank σ , which are somehow contained in v and

directSubNodes(v,σ) = {w : w ∈ σ , ↑ (w) =N v}
is the set of all nodes in rank σ which are directly contained in v.

sortValueAsc(v1,v2) := sortValue(v1) < sortValue(v2)

directSubNodes_sorted(v,σ) = sort(directSubNodes(crit(v,σ)),sortValueAsc(.))

returns all nodes directly contained in v ordered by their current sortValue and

topNodes(σ) = {v : v ∈ σ , global(↑ (v))}
is the set of nodes, which are not contained in a cluster and, therefore, member of the global
cluster.

Algorithm 4.12 sortAndAlignRank
input: Ḡ = (V,EH ,EN ,n,σ),r ∈ {0 . . .n},d ∈ {−1,1}
output: Ḡ

σr := sort(σr,sortValueAsc(.))
for all v ∈ topNodes(σr) do

updateSortValues(v)
end for
σ := σr
σr := /0
for all v ∈ σr+d do

σr := unrollAlongAlign(σ ,σr,v)
end for
σr := unrollNodes(σ , Ḡ,r,d)
en f orceClusterBorderPositions(σr)
calculateCondensedMatrix(σr)
return Ḡ
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First, in Algorithm 4.12 σr is sorted according to the individual sortValue as required by the
calling edge crossing reduction algorithm. Then, the sort values are adjusted recursively. σr
is cleared and the clusters, which can directly be identified from the alignment rank σr+d , are
inserted into σr as a basic sequence. Then, all nodes which were not inserted so far, are now
inserted with respect to cluster-valid positions and sortValue. Thereby, for each node in the
rank the cluster valid positions are calculated and the best is selected considering the individual
types of positions returned by algorithm 4.9. Finally, the positions of the left or right cluster
border nodes of the clusters in σr must be guaranteed and the condensed interconnect matrix is
recalculated as described in Section 4.6.3.

Algorithm 4.13 updateSortValues
input: v
output: the sort value of v after the update

sortValue(v) :=
sortValue(v)+ ∑

w ∈ allSubNodes(w)
updateSortValues(w)

1+|allSubNodes(w)|
return sortValue(v)

Algorithm 4.13 adjusts recursively the individual sortValue to keep the nodes of the clusters in
a close vicinity.

Corollary 15 (runtime of algorithm 4.12)
Algorithm 4.12 runs in O(|V |3).

Proof:
A concrete implementation may precalculate the sets defined by directSubNodes and may
adjust sortValue according to algorithm 4.13 in O(|V |). Sorting the sets as defined in
directSubNodes_sorted for example can be done by one call of quicksort and takes
O(|V | log |V |). Only one call is necessary, because sortValue can be used to implicitly parti-
tion the rank and keep the subsets in one flat set. The individual subsets may be stored in a hash
table to gain fast access.
unrollAlongAlign runs at most over all nodes in a rank and therefore works in O(|V |).
unrollNodes also runs at most over all nodes but needs to calculate the valid insertion positions
in O(|V |2) as shown in Algorithm 4.9 and the best position which runs over the all nodes in σr
and lies in O(|V |). Therefore, unrollNodes lies in O(|V |3).
In algorithm 4.12 the initial sorting takes O(|V | · log |V |) and updating the condensed matrix
O(|V |2) as shown in corollary 4. Therefore algorithm 4.12 runs in O(|V |3). �

In principle, a traditional edge crossing reduction algorithm can be forced to cluster-valid rank
sequences

• directly after modifying a rank by calling algorithm 4.12. We will call this type of algo-
rithms intertwined edge crossing reduction.
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• at the end of the crossing reduction algorithm by executing algorithm 4.12 on adjacent
ranks in a top-down loop. We will call this type of algorithms postprocessing edge crossing
reduction.

4.6.5 Extended Crossing Algorithms
A critic is a gong at a railroad crossing
clanging loudly and vainly as the train
goes by.

Christopher Morley (1890 – 1957)

In this section, the results of Section 4.6.3 on calculating the number of crossings and Sec-
tion 4.6.4 on handling clusters will be combined to concrete crossing reduction algorithms. First,
we will modify and extend the barycentric and the median method. Both algorithms were part
of the first version of SugiBib, but at that time the implementation did not respect clusters at all.
Then we will discuss the hierarchical method, an algorithm which was specifically designed for
our application domain.
Main requirement to all edge crossing reduction algorithms is to improve
UML_GRAPHDRAWING GDR_EDGE_CROSS on all edges of a UML class diagram
with respect to UML_SEMANTIC_CLUSTERS. This also taints aspects of GDR_MIN_EDGES,
because the sequence of nodes which form the skeleton of the final drawing, is determined in
this step.
So far, we did not discuss the problem of edges crossing a cluster. Edges connected to nodes
inside a cluster are allowed to cross the cluster borders, but also edges, which are not connected
to nodes inside a cluster, may accidentally cross a cluster. Several mechanisms can be considered
to avoid these unpleasing situations, which violate UML_EDGES (GDR_OVERLAP), influence
the perception of clusters described by UML_SEMANTIC_CLUSTERS and usually imply long
edge chains:

• The weight of the hidden edges, which were inserted in Section 4.5.5 to ensure the inner
connectivity of clusters, can be increased so that implicit penalties are introduced on other
edges crossing these edges. Unfortunately, crossings with hidden edges may lead to other
avoidable visible edge crossings, which appear as erroneous visual artifacts to a user, who
is not familiar with this mechanism.

• The number of edges, which illegally cross a cluster can be calculated with similar tech-
niques as described in Section 4.6.3. The condensed matrices for the hierarchical cluster
crossing number are calculated on edge partitions, one for each cluster of the graph. The
crossing number can then be considered with a higher priority than the number of hierar-
chical and non-hierarchical edge crossings. Even if this approach implies the extendibility
to arbitrary partitions, e.g., for new types of edges introduced by future versions of UML
or other application domains, calculating the condensed matrices of the partitions is ex-
tremely time consuming.
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• As described in Section 4.5.5, cluster border nodes have been inserted at the end of the
rank assignment. Hence, two edge chains surround each cluster. To reduce cluster cross-
ings, also cluster border nodes in the rank of the cluster base node are required. By assign-
ing appropriate weights dependent on the edges of the surrounding clusters and applying
the weighted variant of the edge crossing calculation introduced in Section 4.6.3, a fast
mechanism to avoid cluster crossings can be realized.

We decided to implement the latter version based on cluster border nodes. As an alternative to
improve the execution speed for larger graphs (more than 200 nodes initially), the first alternative,
which implies lower layout quality was also realized.
Depending on the method and sequence of improvements to the number of edge crossings, there
is no guarantee that cluster crossings will not occur in the final drawing. Therefore, individual
edge crossing methods may apply a postprocessing, e.g., a variant of the transpose heuristic,
which will be mentioned along with the median and our hierarchical heuristic.

Barycentric Method

We took the description of the barycentric method in [Sugiyama et al. 1981] as a prototype and
modified it using the algorithms in Section 4.6.4. In principle, the barycentric method is a one
sided fixed 2-level algorithm, which is applied to n-level hierarchies according to the layer-by-
layer sweep paradigm.
In [Sugiyama et al. 1981] the algorithm was described in three phases: Phase 1, sorts adjacent
ranks until there is no improvement or a maximum number of iterations is reached. Thereby,
sorting is done by calling algorithm 4.12 on

sortValue(v) :=
1

|edgesb(v)| · ∑
e={v,w}∈ edgesb(v)

σr(w)(w)

with edgesb(v) := {e : e = {v,w} ∈ EH ∪ EN , r(v) 6= r(w)}. Phase 2 executes phase
1 and reverses the order of nodes having equal barycenter values in the given rank. In
[Sugiyama et al. 1981] it was mentioned that modifying the position of certain nodes by
Phase 2 has been empirically found to be effective. In [Fröhlich and Werner 1994], a the
nodes were randomly distributed, but this is not appropriate to our application domain due to
REQ_DETERMINISTIC_ALGORITHM. Phase 2 runs until a maximum number of iterations is
exceeded or the graph remains unchanged. Phase 3 realizes the layer-by-layer sweep in alternat-
ing directions as long as node positions are changed or a maximum number of iterations was
carried out. Finally, cluster validity may be enforced as a postprocessing step.
In phase 1 the node sequences determined by the sorting and the previous node sequences have
to be compared. Using theorem 4 or theorem 3, we found the following criterion to be effective:

isBetter(Ḡold, Ḡ) :=

 true : if KP(G) < KP(Gold)
true : if KP(G) = KP(Gold) ∧ Kh(ḡ) < Kh(ḡold)

f alse : otherwise
(4.32)
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To realize UML_CONSTRAINT_SEQUENCE, e.g., as a secondary ordering criterion, it makes
sense to hide the comparison within a function or a criterion class, which is responsible for
efficient comparison of changes induced by successive iterations and for additional secondary
ordering criteria.

Median Method

For the median method, the description in [Gansner et al. 1993] was taken as prototype. In prin-
ciple, the median method is another one sided fixed 2-level algorithm, which is applied to n-level
hierarchies according to the layer-by-layer sweep paradigm.
In phase 1, all ranks are considered. For each rank, the median values are calculated as follows:

The median value of a vertex is defined as the median position of the adjacent ver-
tices if that is uniquely defined. Otherwise, it is interpolated between the two median
positions using a measure of tightness. Generally, the weighted median is biased to-
ward the side where vertices are more closely packed.

[Gansner et al. 1993]

Each rank is sorted by algorithm 4.12, which implicitly handles enforcing cluster validity accord-
ing to the intertwined fashion. Then, the transpose heuristic, which was described in [Gansner
et al. 1993], is applied: It exchanges neighbored nodes if the number of crossings can be reduced.
If clusters are present, only nodes of the same cluster may be swapped. Depending on isBetter,
the more appropriate graph is considered for further processing. Phase 2 realizes the layer-by-
layer sweep by executing phase 1 in alternating direction of rank traversal. Finally, cluster validity
may be enforced as a postprocessing step.

Hierarchical Method

After experiments with the approaches described above, we searched for an edge crossing method
which takes the hierarchical structure required by UML_HIERARCHY into account. Barycenter
and median method usually have problems avoiding edge crossings at edge chains in dependent
layers due to the layer-by-layer sweep paradigm.
The implementation of our first trial, the n-level backtracking method, which was briefly de-
scribed in [Eichelberger and von Gudenberg 2003a], appeared to be exponential in runtime.
When comparing the measured runtimes and numbers of edge crossings in Section 5.3 we will
have a closer look on the backtracking method.
Instead of sorting ranks according to some heuristics, we will start with an empty rank structure
and incrementally reinsert the nodes according to a certain sequence. When reinserting an in-
dividual node, the cluster-valid positions are determined, for each position the crossing number
KP(G) is incrementally calculated and the best position is selected. Thereby the connected edge
chains can be considered.
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Algorithm 4.14 hierarchical
input: Ḡ = (V,EH ,EN ,n,σ)
output: Ḡ∗

Ḡ∗ = ({},EH ,EN ,n,σ ∗ )
done := {}
cluster := {}
while |done| < |V | do

M := {w : w ∈ V, hashGet(done,w) = ⊥ ∧ cH(w) = max
x ∈ V

cH(x)}
v := listGet(M,0)
Ḡ ∗ := h_insertNodeOrCluster(Ḡ, Ḡ∗ ,v,done,cluster, true)

end while
Ḡ∗ := transpose(Ḡ ∗ )
return Ḡ∗

Algorithm 4.15 h_insertNodeOrCluster
input: Ḡ = (V,EH ,EN ,n,σ), Ḡ∗ = (V ∗ ,E ∗

H ,E ∗
N ,n,σ ∗ ),v ∈ V,done,cluster,alignToRoot ∈ bool

output: Ḡ∗

C := compoundChildren(v) ∪ compoundParents(v)
h_insertChains(Ḡ, Ḡ∗ ,done,cluster,v)
clusterInsert := |C|> 0 ∧ hashGet(cluster,crit(v)) 6= ⊥
V ∗ := V ∗ ∪ {v}
σ ∗

r(v) := σ ∗
r(v) ∪ {v}

h_orderLoop(Ḡ, Ḡ∗ ,v,done)
hashPut(done,v,v)
if clusterInsert then

hashPut(cluster,crit(v),v)
h_insertCluster(Ḡ, Ḡ∗ ,done,cluster,v, true)
h_insertCluster(Ḡ, Ḡ∗ ,done,cluster,v, f alse)

end if
return Ḡ∗

To each node v an individual complexity cH(v) is assigned. Basically, it is sufficient to multiply
the number of the currently connected hierarchical edges by two and to add the number of the
currently connected non-hierarchical edges. This emphasizes the edges partitions required by
UML_HIERARCHY. When reinserting the first node, all edges are regarded as connected, then
only edges to nodes reinserted so far are considered. Dummy nodes in edge chains should receive
a complexity of maximum 2.
If no node naming function is present, the nodes can be inserted according to decreasing com-
plexities. Otherwise, when a cluster member is inserted, the basic structure of that cluster and the
containing clusters has to be ensured. For each node, the cluster-valid positions are determined
and it is inserted at the position which locally admits the best position.
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Algorithm 4.16 h_insertCluster
input: Ḡ = (V,EH ,EN ,n,σ), Ḡ∗ = (V ∗ ,E ∗

H ,E ∗
N ,n,σ ∗ ),done,cluster,v ∈ V,rootDir ∈ bool

output: Ḡ∗

if rootDir then
r := r(v)−1
r2 := 0
δ := −1

else
r := r(v)+1
r2 := n
δ := 1

end if
c := crit(v)
while ((rootDir ∧ r ≥ r2) ∨ (¬rootDir ∧ r ≤ r2)) do

if ¬clusterBorderNodeInserted(v) then
insertClusterBorderNodes(v,r)

else
if rootDir then

c := checkStepU p(c,r,v) {adjust current criterion to parent if necessary}
end if
v := mostSpeci f icAndComplexNode(done,r,rootDir)
h_insertNodeOrCluster(Ḡ, Ḡ∗ ,v,done,cluster,¬rootDir)
hashPut(cluster,crit(w),w)

end if
r := r +δ

end while
considerChainsO f LatestInserted(Ḡ, Ḡ∗ )
return Ḡ∗

Algorithm 4.14 shows the main steps of the hierarchical edge crossing reduction algorithm.
As long as not all nodes have been processed, the locally most complex node is selected and
inserted. In the case of a cluster member, for which the surrounding cluster skeleton was not
inserted so far, algorithm 4.16 is called for both vertical directions. Finally, after all nodes of
the graph have been processed, an implementation of the transpose heuristic similar to the one
described in [Gansner et al. 1993] is executed. As an extension, our transpose heuristic is able
to eliminate certain crossings at edge chains. transpose may reduce the number of hierarchical
edge crossings but also introduce some flat edge crossings or lengthy flat edges, because flat
crossings are considered with a lower priority in (4.32). Further experiments adjusting the
judgment of the edge crossings in (4.32) are left for future work.
Algorithm 4.16 sweeps over the specified range of ranks and determines the most cluster specific
and complex node per rank respecting the containing cluster. With a preference, nodes which are
directly member of the surrounding cluster are inserted (not shown in Algorithm 4.16). When
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handling a node, also edge chains to nodes processed so far are considered. Processing chains
while inserting the nodes of the cluster skeleton has a negative impact on the result. Therefore,
while building up the skeleton, chains are not considered but the chains of all nodes of the
skeleton are handled afterwards by considerChainsOfLatestInserted. This is not explicitly
shown here.
For each node, the ordering loop in h_orderLoop, which determines a hopefully pleasing
position depending on cluster-valid insertion positions and incremental edge crossing number
calculation, is called.

Problems

Unfortunately, some problems arise, which are not sufficiently handled by the described edge
crossing mechanisms. In principle, the situations shown in Figure 4.28 can be addressed by also
respecting the length of edges in edge crossing calculation. Currently, only pseudo-coordinates
induced by the position of the nodes in their rank can be taken into account, because no coor-
dinates are available. Furthermore, these pseudo-coordinates are not always cluster-valid even
if the graph is cluster-valid, because a concrete alignment of the coordinates to clusters is not
performed at this point of time. Additionally, in SugiBib, the extents of the elements of a graph
are not available before entering the coordinates assignment phase. Therefore, Figure 4.28 (a)
might be handled by considering edge lengths as a secondary criterion in isBetter defined by
(4.32). The situation in Figure 4.28 (b), which cannot be handled here due to conventions of
the implementation, might be algorithmically solved, when the required data and alignment is
present. In particular, for flat edges, the edge length criterion can help to reduce lengthy edges
in the first and last visible rank, because no crossings at flat flat edges can occur due to missing
visible hierarchical edges.
Then, if a coordinates assignment feature, which we will call “node hopping”, is applied, selected
nodes like dummy nodes may be moved inside the cluster. In this case, the separation of tasks
between edge crossing reduction and coordinates assignment, as usual in hierarchical drawing
algorithms, is not kept anymore, but a better drawing may be produced.
Composite nodes, which are not connected by hierarchical edges and which contain comments
or association classes , might be placed anywhere in a rank as depicted in Figure 4.28 (c). This
problem does not occur at other non-hierarchical edges, because these edges were not split be-
fore. In particular, it occurs when applying the median and the barycenter method, because flat
flat edges are not considered at all. An appropriate postprocessing method can prevent this this
structural inconsistency.

A discussion, which concrete edge crossing reduction algorithm should be applied on which type
of graph will be given in Section 5.3, where various measurements on the concrete implementa-
tion will be presented.
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(a) (b) (c)

Figure 4.28: Structural problems after edge crossing induced by lengthy edges which might be
shortened (a) at usual nodes (b) at UML compounds. Better routes are drawn in dashed style, (c)
lengthy non-hierarchical edges due to composite nodes.

edge crossing reduction algorithm usual graph (mixed) compound graph
barycentric method O(|EH |+ |V | · log |V |) O(|EH |+ |V |3)

median method O(|V |) O(|V |3)
hierarchical method O(|V |4) O(|V |4)

Table 4.4: Runtime complexities of the edge crossing reduction macro phase.

4.6.6 Conclusions
If all economists were laid end to end,
they would not reach a conclusion.

George Bernard Shaw (1856 – 1950)

In this section, we have discussed details on hierarchical and non-hierarchical crossing the-
ory, methods to ensure cluster-validity for incremental and non-incremental edge cross-
ing reduction strategies and three different edge crossing reduction approaches to be con-
sided in this thesis. Even if the main aspect in crossing reduction is GDR_EDGE_CROSS,
UML_SEMANTIC_CLUSTERS is handled with a higher priority, because each individual node
position in incremental edge crossing strategies as well as entire rank sequences in non-
incremental crossing strategies are restricted or reordered to admit cluster validity. Furthermore,
these mechanisms can transparently be used to (partly) realize UML_CONSTRAINT_SEQUENCE

if no conflicts with clusters occur. Thereby, also UML_CONSTRAINT_SEQUENCE gains a
higher priority than GDR_EDGE_CROSS but a lower than UML_SEMANTIC_CLUSTERS.
Table 4.4 summarizes the expected runtime complexities of the three edge crossing reduction
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methods described in this section. As discussed in [Stallmann et al. 2001], the barycentric as
well as the median method admit fast implementations on non-clustered graphs. Due to corol-
lary 15, the runtimes increase by considering validity for individual node positions in intertwined
or postprocessing fashion.
The hierarchical method relies on searching positions for individual nodes. Thereby, in the inner
loop, first the valid positions are calculated and then for each existing positions the number of
edge crossings is calculated. The outer loop determines the hierarchical sequence for inserting
the nodes into an initial empty rank structure. This leads to a higher complexity on compound as
well as on non-compound graphs16 .

4.7 Intermediary Processing
Human history becomes more and more a
race between education and catastrophe.

H. G. Wells (1866 – 1946)

As described in Section 4.1, the intermediary processing steps S12-S14 have to be executed,
before executing the coordinates assignment. In this section, we will discuss these steps and the
individual actions to be processed.

4.7.1 Expand Composite Nodes for Association Classes or Hyper-
edges

Life shrinks or expands in proportion to
one’s courage.

Anais Nin (1903 – 1977)

Association classes have been compiled into (existing) composite nodes in S7. In principle, the
composite nodes might be kept while coordinates assignment and could be expanded later in S16.
This may require that several nodes in the same rank as the association class have to be reposi-
tioned. The positions of edges, which have been arranged as horizontal or vertical segments, as
well as nodes, which have been positioned next to their children by the coordinates assignment,
might thereby be disturbed.
Therefore and from personal experience, we have found the following rule:

Solve a layout problem at the point of time when it occurs and try to avoid postprocessing.

This sounds like one of several basic programming rules, e.g., as in [Maguire 1993], but it helps
to prevent detours and problems while implementing parts of the layout algorithm.
Due to algorithmic and programming concerns like complexity, small classes, coupling, locality

16Refer to Chapter A3 for improved versions of the hierarchical sorting algorithm running in quadratic time,
which have been discovered shortly before publishing the final version of this thesis.
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and separation of general and application domain specific processing we can not avoid postpro-
cessing at different levels at all.
Especially in the case of association classifiers, these classes could better be positioned in the
same step with all the other nodes instead of implementing a complex repositioning algorithm.
Therefore, we have to ensure at least the space required for the association class and the hidden
node simulating the hyperedge.
The same arguments apply to the connection nodes for hyperedges, in particular to avoid over-
lapping with adornments (UML_ADORNMENTS).

4.7.2 Remove Nesting Edges
The bird a nest, the spider a web, man
friendship.

William Blake (1757 – 1827)

In S4, nesting relations were represented as hidden edges to influence the rank assignment algo-
rithm S10 and the edge crossing reduction S11. In the coordinates calculation S15, these hidden
edges will not be required anymore and would have a negative impact on the port assignment.
We will not discuss the influence of these edges on the coordinates assignment here in detail, be-
cause the concrete impact arises from the applied coordinates assignment technique. In our case,
median positioning of nodes (UML_MEDIAN) will be a part of the coordinates assignment and
therefore the nesting edges would help to align the cluster parent above its children and v.v. This
can also be done by considering the positions of the cluster borders. A more important influence
arises from invisible cluster dependencies to properly align not connected clusters. As discussed
along with algorithm 4.5, this information will also be present implicitly. Therefore, the nesting
edges will not be required for coordinates assignment in our case and are removed in this step.

4.7.3 Conclusions
When I examine myself and my methods
of thought, I come to the conclusion that
the gift of fantasy has meant more to me
than any talent for abstract, positive think-
ing.

Albert Einstein (1879 – 1955)

The intermediary processing steps S12, S13 and S14 do neither realize aesthetic criteria nor di-
rectly contribute to the layout result. As described above, these steps change the structure of
the graph to ensure the presence of certain graph elements and to prevent negative impacts.
Therefore, the intermediary processing steps help realizing UML_ASSOCIATIONCLASSES,
UML_HYPEREDGES and implicitly induce information to prevent various kinds of overlappings
according to UML_NODES, UML_EDGES and UML_ADORNMENTS.
Table 4.5 shows the runtime complexities of the intermediary processing steps. Both parts deal-
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algorithmic step runtime complexity
S12 O(|V |+ |EH ∪ EN |)
S13 O(|V |+ |EH ∪ EN |)
S14 O(|EH |)

intermediary processing macro phase O(|V |+ |EH ∪ EN |)
Table 4.5: Runtime complexities of the intermediary processing macro phase.

ing with unpacking from composite node have to consider the contained nodes as well as the
connected edges. The position of the composite node thereby acts as anchor when reinserting the
contained elements. When removing the hidden hierarchical edges in S14, simply all edges are
considered.

4.8 Coordinates Assignment

A metrical layout consists of vertex po-
sitioning (ie., determining horizontal and
vertical positions, widths and heights of
rectangles), and edge routing (ie., de-
termining metrical layouts of adjacency
edges).

[Sugiyama and Misue 1991]

The final step of the classical hierarchical graph layout algorithm assigns coordinates to a lay-
ered graph, which was optimized with respect to edge crossings. At a first glance, this step might
appear to be an easy task. In principle, the vertical positions are given by the rank assignment.
While sweeping from top to bottom and from left to right over all ranks, the nodes can be posi-
tioned successively via accumulating their size in rank. The ranks can be placed by considering
the maximum height of the nodes in their rank.
Without further consideration of virtual roots or leafs, edge chains, area requirements of edges or
advanced vertical formatting, the simple assignment is illustrated in algorithm 4.17. nodeSep(Ḡ)
denotes the minimum distance between two adjacent nodes in the same rank and rankSep(Ḡ) the
minimum distance between two adjacent ranks.
Some algorithms, as the one which produced Figure 2.15, seem to apply this simple, initial co-
ordinates assignment only.
Handling clusters, area requirements at nodes and edges like non-overlapping adornments, rout-
ing hierarchical and non-hierarchical edges and, however, keeping the drawing small and pro-
ducing a pleasing and readable layout requires much more effort. Unfortunately, this critical task
of the layout algorithm is seldom described in detail for hierarchical algorithms or not available
for various reasons. Often only point-size nodes and edges without adornments are discussed in
the literature.
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Algorithm 4.17 basicInitializeXYCoordinates
input: Ḡ = (V,EH ,EN ,n,σ)
output: Ḡ

y := 0
for r := 0 to n−1 do

x := 0
for i := 0 to |σr|−1 do

le f t(σr[i]) := x
top(σr[i]) := y
x := x+width(σr[i])+nodeSep(Ḡ)

end for
y := y+ rankSep(Ḡ)+max

v∈ σr
height(v)

end for
return c_post processing(Ḡ)

In this section, we will discuss the basic coordinates assignment, which can also be applied to
general graphs. For certain parts, adaptions for UML class diagrams will also be discussed in this
section. UML specific postprocessing algorithms will be described in Section 4.9.
First, we will briefly mention other work on assigning coordinates for layered graphs. Then, basic
issues, e.g., area requirements for nodes and edges, will be discussed and the overall coordinates
assignment algorithm will be introduced. Details on that algorithm will be given in the following
sections.

4.8.1 Previous Work
A well cultivated mind is made up of all
the minds of preceding ages; it is only the
one single mind educated by all previous
time.

Bernard de Fontenelle (1657 – 1757)

Two different coordinates assignment methods for hierarchical graphs have been proposed in
[Sugiyama et al. 1981]: Quadratic programming and the priority layout method. For the first one,
formulae to consider close and balanced layout as well as fixed orders and straightness of the
edges were given. An objective function was constructed which leads to horizontal positions.
As mentioned above, the vertical positions can simply be obtained from the rank assignment
and the maximum height of the individual nodes in their rank. The priority layout method starts
with an initial coordinates assignment, e.g., as that shown in algorithm 4.17 and sweeps then in
alternating direction up and down over the ranks. Thereby, the nodes are processed in sequence
of priorities and moved as close as possible to barycenter positions of their parents or children,
respectively. Even if the nodes are seldom processed in the sequence determined by the edge
crossing reduction, that sequence must not be changed while calculating coordinates.
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Both methods, quadratic programming as well as priority layout can be reused for the layout
of compound graphs [Sugiyama and Misue 1991]. Thereby, a local layout procedure processes
the compounds inside-out applying the priority layout method and the global layout recursively
moves parent nodes to a median position. An improved variant requires the insertion of artificial
sequences of dummy nodes to the left and right of each compound was mentioned but not de-
scribed in [Sander 1996b].
According to [Gansner et al. 1993; Ellson et al. 2003], the coordinates assignment can be de-
scribed as the following integer optimization problem, which respects GDR_MIN_EDGES by
preferring straight lines:

min ∑
e={u,v}∈ EH

Ω(e) ·w(e) · |x(u)− x(v)|

subject to: x(zl)− x(zr) ≥ ρ(zl,zr)

where zl is the left neighbor of zr on the same rank and

ρ(zl,zr) =
width(zl)+width(zr)

2
+nodeSep(G)

is the minimum horizontal separation of zl and zr. Furthermore, Ω is an additional weight func-
tion favoring the straightness of long edges and w(~e) denotes the edge weight function in-
troduced in definition 10. As mentioned in [Gansner et al. 1993], this optimization problem
can be solved by the simplex method. Beside the fact that compounds and further properties
like UML_MEDIAN are not considered, applying the simplex method leads to a matrix of
|V | · |EH |+ |EH |2 entries and runtime does not seem to be satisfactory.
Therefore, as a heuristical approach, the following algorithm was proposed for non-compound
graphs in [Gansner et al. 1993]:

Algorithm 4.18 xcoordinate
xcoord := init_xcoord()
xbest := xcoord
for i := 0 to max_iterations do

medianpos(i,xcoord)
minedge(i,xcoord)
minnode(i,xcoord)
minpath(i,xcoord)
packcut(i,xcoord)
if xlength(xcoord) < xlength(xbest) then

xbest := xcoord
end if

end for
return xbest

The coordinates are basically initialized by init_xcoord, e.g. by calling algorithm 4.17. Similar
to the priority method in [Sugiyama et al. 1981], medianpos assigns coordinates with respect
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to the median position of the parents or children. minedge works similar to medianpos, but
considers only edges between two real nodes. minnode performs local optimizations to reach
the median position of all parents and children. minpath straightens chains of virtual nodes and
packcut searches for blocks that can be compacted. Obviously, this algorithm directly supports
UML_HIERARCHY and UML_MEDIAN.
While the simplex method mentioned appears to be realized easily, the heuristic approach implies
its own difficulties:

These heuristics make good layouts quickly, but they are complicated to program
and the results are sometimes noticeably imperfect. Further fine tuning is difficult
because the heuristics begin to interfere with each other.

[Gansner et al. 1993]

Despite that warning, we have implemented algorithm 4.18 in the first version of SugiBib and
it is still an important part of the coordinates assignment phase. We tried to change the imple-
mentation of appropriate algorithms as few as possible, because we are aware of disturbing the
results produced so far, and we have extended the algorithm over the time to handle compound
graphs, mixed compound graphs as well as non-compound graphs Furthermore, we handle all
nodes and edges at once instead of realizing a separation of local and global layout, which was
mentioned above and criticized in [Sander 1996b].
Assignment of coordinates to hierarchical edges, flat edges and self edges was also discussed in
[Gansner et al. 1993]: Polygonal regions for the edges were identified and the edges were routed
within these regions as splines. A discussion for using funnels [Hershberger and Snoeyink 1994]
as edge regions was given in [Dobkin et al. 1997].
To meet GDR_MANHATTAN, in [Sander 1996a] a segment ordering graph was constructed, a
topological sort of that graph was performed and coordinates were assigned by choosing the
locally leftmost position. Balance was reached by applying a variant of the pendulum method.
Edge chain segments were simulated as balls and strings of a pendulum and coordinates were
assigned by a gravity-driven algorithm. Furthermore, adjustments to fit a horizontal grid were
given. Multi-layered lines were drawn by introducing line rows between ranks.
A fast non-iterative heuristic was explained in [Buchheim et al. 2001]: The dummy nodes of each
long edge were grouped and leftmost and rightmost top-to-bottom placements were considered
to gain a kind of funnel. The dummy vertices were assigned to the mean of the left and right
positions obtained from the grouping. Without changing the positions of the dummy vertices, the
other vertices were placed to minimize the length of some edges. A similar method can be used
to implement minEdge in algorithm 4.18.
For hierarchical graphs, in [Eades and Sugiyama 1990] another algorithm based on [Tutte 1963]
was given. After initial coordinates for each nonboundary node were chosen, coordinates were
assigned according to the following formula

x(u) =
1

2 ·d−(u) ∑
v∈ V−(u)

x(v)+
1

2 ·d+(u) ∑
w∈ V+(u)

x(w)

and the assignment was repeated until the horizontal positions converge. Variants to consider
GDR_SYMMETRY were also discussed.
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A fast and simple horizontal coordinates assignment algorithm, which runs in O(|V | log2 |V |),
was given in [Brandes and Köpf 2002]. In a vertical alignment step, all vertices were positioned
next to the median of either the upper or lower neighbors. Thereby, certain conflicts arising from
edge crossings or sharing vertices were detected and solved. Then, the horizontal compaction
placed all vertices as close as possible to the next vertex in preferred direction. Each of both
steps was carried out four times. Finally, a balancing step tried to compensate horizontal and
vertical tendencies induced by the preceding steps.
An extension to the Sugiyama algorithm to handle compounds for the visualization of biochem-
ical pathways was given in [Schreiber 2002; Brandenburg et al. 2003]. Further discussions on
hierarchical node positioning algorithms can be found in [Battista et al. 1999; Bastert and Ma-
tuszewski 2001; Brandes and Köpf 2002].

4.8.2 Basics
Basic research is what I am doing when I
don’t know what I am doing.

Wernher von Braun (1912 – 1977)

For UML class diagrams, nodes and edges cannot be simplified to points or lines as usual in
abstract graph drawing. Different types of nodes require various shapes, edges may have graph-
ical and textual adornments. Therefore, in general, nodes and edges must be able to express the
minimum required area. On the one side, as discussed in Section 4.2, in our graph model nodes
and edges do not know this application domain specific information. Specialized information
objects determine the shape, and, therefore, the minimum area requirements. On the other side,
these information objects do not know the edges attached to the node and therefore are not able
to handle additional area to place graphical adornments.
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Figure 4.29: Area requirements for nodes and edges. Edge extents are reinterpreted according to
the side at which the edge connects to the node.

Figure 4.29 shows the basic areas for nodes and edges. A node consists of an inner area, which
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is primarily determined by the information object. For example, the area of UML classes is
calculated from the information on compartments and the basic extents of an n-ary rhomb are
calculated from default values and default font sizes (UML_NODES and UML_CLASS).
The simple separation of a node into an inner node area, the information object is exclusively
responsible for, and an outer node area, the node is responsible for, becomes complicated, when
non-rectangular shapes are required. In Figure 4.29, a template is shown which partly belongs
to both areas. A concrete handling depends on the implementation of the information object, but
it becomes obvious that further information has to be provided for the general case. Restrictions
and hints, where edges may be attached to, are required. As reflective edges are handled inter-
nally by their connected nodes as a kind of “private” edges, they are not part of the area which is
reserved for “public” edges.
On the one side, the area of a node might be minimized to save drawing space
(GDR_DRAWING_SIZE). On the other side, also nodes with less area might be highly con-
nected and the adornments to the edges might not be clearly visible in that case. There-
fore, the nodes or edges may be internally scaled to meet either UML_GRAPHDRAWING via
GDR_DRAWING_SIZE or UML_ADORNMENTS and UML_REFLECTIVE. Another mecha-
nism may also gain influence on the inner node area: When the implementation of the layout
algorithm should be used as a layout plug-in to other (graphical) tools providing their own ed-
itors, the sizes and relative positions may be externally predefined. This was also mentioned in
Section 4.2 when the information object life cycle was introduced.
Similar arguments have to be considered for edges as well. The basic area requirement, sep-
arated for start and end node, can be calculated from the attached adornments. This informa-
tion can directly be taken into account when calculating the outer area of the nodes. By in-
corporating this information and ensuring that nodes do not overlap, we implicitly can realize
UML_ADORNMENTS. Other adornments neither attached to start nor to end node but directly
to the edge itself like a discriminator, an association name, stereotypes, constraints or tag-value
lists also have to be taken into account when determining the minimum distance between two
nodes. The first implementation of SugiBib only provided the global minimum distance between
two adjacent nodes via nodeSep(G). Thereby, the area of the edge label was simply merged into
the outer node area of the start or the end node to ensure its area requirements. The current im-
plementation provides a node-individual distance mechanism which can take this edge specific
area into account.

As described in [Gansner et al. 1993], the algorithm will respect a minimum rank separation value
as well as a minimum node distance for adjacent ranks or nodes, respectively. But to be more
general, we will operate on node-individual distance function nodeSep(Ḡ,σr[i],σr[i+1]) for ad-
jacent nodes σr[i] and σr[i + 1]. This function will also be used to provide a cluster-individual
distance between the cluster border and the contained nodes. Implicitly, individual distances
for cluster separator nodes can be realized using that function. Similarly, a rank-individual dis-
tance function rankSep(Ḡ,σr,σr+1) can be defined. As initialization we can assume the func-
tions from [Gansner et al. 1993] as default values, so that initially nodeSep(Ḡ,σr[i],σr[i+1]) :=
nodeSep(Ḡ) and rankSep(Ḡ,σr,σr+1) := rankSep(Ḡ) for all adjacent nodes or ranks, respec-
tively.
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As input to the coordinates assignment, a layered, cluster-valid graph G according to definition 9
and definition 13 is required. The sequence of nodes in the individual ranks is maintained while
coordinates assignment except for hidden nodes, which might be repositioned to obtain a better
drawing.
Depending on the presence of clusters in the input graph, the algorithm will produce a coordi-
nates or a cluster and coordinates valid graph. To describe these properties, we will introduce
basic operations on nodes, cluster border chains and cluster as well as coordinates validity in the
next definitions.

Definition 22 (coordinates operations on nodes and edges)
Let Ḡ = (V,EH ,EN ,n,σ) be a graph and u,v ∈ V be nodes of G. The following operations are
defined:

• x(v) → Z and y(v) → Z denote the central position of the node v, width(v) → N0 and
height(v) → N0 the extents. Let le f t(v) := b x(v)− 1

2 ·width(v)c be the left position of v.
right(v), top(v) and bottom(v) are defined similarly.

• topPorts(v) := in(v) ∩ EH is the set of edges (ports) at the upper horizontal side of
v and bottomPorts(v) := out(v) ∩ EH is the set of ports at the lower horizontal side.
le f tPorts(v) → edges(v) ∩ EH and rightPorts(v) → edges(v) ∩ EH with le f tPorts(v) ∩
rightPorts() = /0 denote the ports at the vertical sides of v.

• Let ~e = (u,v) ∈ EH ∪ EN be an edge of G. Then startX(~e) → Z is the horizontal position
of ~e at u. startY (~e = (u,v)),endX(~e = (u,v)),endY (~e = (u,v)) are defined similarly.

We did not use N or N0 in definition 22, because some operations may temporarily produce
negative coordinates. According to definition 4, an edge can be seen as directed or undirected
dependent on the context the edge is used in. Because all underlying edges are directed, we can
assume that the coordinates operations on edges are similarly defined on undirected edges, too.

Definition 23 (coordinates-valid graph)
Let Ḡ = (V,EH ,EN ,n,σ) be a n-level hierarchy. Ḡ is called coordinates-valid, if

• ∀ 1≤ r<n ∀ 0≤ i<|σr| le f t(σr[i])− right(σr[i−1]) ≥ nodeSep(Ḡ,σr[i−1],σr[i])

• ∀ 1≤ r<n min
v∈ σr

y(v)− max
v∈ σr−1

y(v) ≥ rankSep(Ḡ,σr−1,σr) for global rank assignment

• ∀ ~e=(u,v)∈ EH hValid(u,~e,startX(~e),startY (~e)) ∧ hValid(v,~e,endX(~e),endY (~e))
with

hValid(u,~e,xe,ye) := le f t(u) ≤ xe ≤ right(u)∧
((~e ∈ in(u) ∧ ye = top(u)) ∨ (~e ∈ out(u) ∧ ye = bottom(u)))
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• ∀ ~e=(u,v)∈ EN nValid(u,startX(~e),startY (~e)) ∧ nValid(v,endX(~e),endY (~e))
with

nValid(u,xe,ye) := top(u) ≤ ye ≤ bottom(u) ∧ (xe = le f t(u) ∨ xe = right(u))
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Figure 4.30: The four rules of coordinates validity in definition 23: (a) minimum distance be-
tween nodes in one rank, (b) minimum distance between two ranks and restricted positions for
hierarchical (c) and non-hierarchical (d) edges.

The rules of coordinates-validity given by definition 23 are illustrated in Figure 4.30.
We do not go into more details here, because we did not define the inner and outer positions of a
node. The formulae in definition 23 can easily be adapted to also respect valid edge areas, etc.
If G is a compound graph, the coordinates assignment will produce a (temporarily) cluster-
augmented graph by inserting cluster separator nodes. Hence, further restrictions have to be
fulfilled to produce a coordinates and cluster-valid graph.
As described in Section 4.2, each cluster is bounded vertically by a chain of cluster border nodes.
These chains have the following properties:
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Definition 24 (anchored cluster border nodes and cluster border chain)
Let Ḡ = (V,EH ,EN ,n,σ) be a graph. The upper endpoint of the left chain attached to v will
be denoted by topLe f tBorder(v) ∈ V\{v} ∪ {⊥ }. bottomLe f tBorder(v), topRightBorder(v),
bottomRightBorder(v) are defined similarly.
Let v ∈ V be a cluster parent so that |compoundChildren(v)| > 0. chainC(v,vs,ve) := v0 . . .vk
with k ∈ N0,v0 = vs,vk = ve is called a cluster border chain if

∀ 0≤ i≤ k type(vi) = CLUSTERBORDER ∧ compoundParents(vi) = {v} ∧
∀ 0≤ i≤ k−1 type(e = {vi,vi+1}) = CLUSTERBORDER

A similar definition can be used to introduce chains of cluster separators. We omit a definition,
because we do not deal with cluster separators in detail in this thesis.

Definition 25 (cluster- and coordinates valid hierarchy)
Let Ḡ = (V,EH ,EN ,n,σ) be a n-level hierarchy. Ḡ is called coordinates and cluster-valid, if

• Ḡ is coordinates-valid according to definition 23.

• Ḡ is cluster-valid according to definition 13.

• for all cluster base nodes {v : v ∈ V, |compoundChildren(v)|> 0} the encapsulating clus-
ter border chains chainC(v, topLe f tBorder(v),bottomLe f tBorder(v)) = u0, . . . ,uk and
chainC(v, topRightBorder(v),bottomRightBorder(v)) = w0, . . . ,wk exist and

– ∀ 0≤ i≤ k−1 x(ui) = x(ui+1)

– ∀ 0≤ i≤ k−1 x(wi) = x(wi+1)

– x(v) = b 1
2 · (x(u0)+ x(w0))c as a convention

– ∀ w∈ llc(v)\{u0,...,uk,w0,...,wk} x(ui)+δl(v) < x(w) < x(ui)−δr(v), where δl(v) and δr(v)
denote the left or right inner distance between the cluster border and the contained
nodes, respectively.

Similar constraints must hold when cluster separators are used.

The rules of coordinates-validity given by definition 25 are illustrated in Figure 4.31.
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Figure 4.31: Additional rules for cluster validity introduced by definition 25.

4.8.3 The Coordinates Assignment Algorithm

There is no procedure for learning to
write. What you must do, is learn to think.

S. Leonard Rubenstein

As mentioned in Section 4.8.1, we decided to adapt algorithm 4.18 which was implemented
in the first version of SugiBib. In this section, the core iteration of the coordinates assignment
algorithm will be discussed. Tasks to be executed before, while or after the main loop will be
described in the next sections.
Regarding the types of graphs acting as input to the coordinates assignment, it is not required
that every input graph is a compound graph. Class diagrams as that in Figure 4.9 belong to the
class of graphs, which, as discussed in Section 2.2.3, is currently handled by most of the layout
algorithms for UML class diagrams. On the one side, such a graph might be mapped into a
compound graph containing the global package as invisible cluster. Therefore, only a coordinates
algorithm which is able to handle clusters is required. On the other side, such graphs as well as
mixed compound graphs, which also have classes in the (invisible) global cluster, can be handled
by an integrated approach. Hence, we prefer a coordinates algorithm which implicitly is capable
of taking non-compound, compound and mixed compound graphs as input.
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Algorithm 4.19 coordinatesAssignment
input: Ḡ = (V,EH ,EN ,n,σ)
output: Ḡ

Ḡ := c_preprocessing(Ḡ)
Ḡbest := Ḡ
for i := 0 to max_iterations do

Ḡ := c_iteration(Ḡ, i)
if isBetter(Ḡ, Ḡbest) then

Ḡbest := Ḡ
end if

end for
return c_post processing(Ḡbest)

In principle, Algorithm 4.19 is a simple transcription of algorithm 4.18 providing generic hot
spots for preprocessing, iteration and postprocessing. While all steps deal with the concrete po-
sitions of nodes, only the latter one will determine the coordinates of individual edges.
As in [Gansner et al. 1993], we define

isBetter(Ḡ, Ḡbest) := xLength(Ḡ) < xLength(Ḡbest)

and
xLength(Ḡ) := ∑

e={u,v}∈ xEdges(Ḡ)

Ω(e) ·w(e) · |x(u)− x(v)|

with

xEdges(Ḡ) :={e : e = {u,v} ∈ EH , u 6= virtualRoot(Ḡ)} ∪
{e : e = {u,v} ∈ EN , r(u) 6= r(v)}

to consider GDR_MIN_EDGES in general and to prevent negative impacts of a virtual root. Flat
flat edges are excluded because certain specialized functions will keep them close to their con-
nected nodes. Ω was chosen as follows: 8 is returned for chain segments, 1 for edges connecting
visible nodes and 2 for all other edges.
In the next sections, we will describe the most important algorithms for preprocessing, iterating
and postprocessing the coordinates assignment in detail. Algorithmic descriptions will be given
for the most relevant parts but not for steps introduced for some speed improvement or pure
technical parts.
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4.8.4 Coordinates Preprocessing
Life is just one damned thing after an-
other.

Elbert Hubbard (1856 – 1915)

Before assigning coordinates to nodes and edges, various preprocessing steps must be executed:

Algorithm 4.20 c_preprocessing
input: Ḡ = (V,EH ,EN ,n,σ)
output: Ḡ

Ḡ := initializeGraphDistances(Ḡ)
Ḡ := insertClusterBorderNodes(Ḡ)
Ḡ := calculateSizes(Ḡ)
Ḡ := initializeXYCoordinates(Ḡ)
Ḡ := sortPorts(Ḡ)
Ḡ := determineStretchingFactor(Ḡ)
Ḡ := initializeNodePriorities(Ḡ)
return f ixGraphDistances(Ḡ)

Initialize Graph Distances

initializeGraphDistances prepares the node and rank individual distance functions as de-
scribed in Section 4.8.2. More specialized values for certain nodes, e.g., cluster separators are
implicitly specified while executing algorithm 4.20.

Cluster Border and Cluster Separator Nodes

If not done at the end of the rank assignment due to the lower quality option for larger graphs,
chains of border nodes are inserted at each side of a compound (UML_SEMANTIC_CLUSTERS).
Furthermore, chains of cluster separator nodes to realize aspects of UML_SPATIAL or
UML_COUPLING can also be inserted. This step was described in Section 4.5.5.

Calculate Sizes of Nodes and Edges

This step calculates the minimum area required required by the individual nodes and edges of
the graph. This is done by sending an appropriate request to the individual information objects.
For nodes, the information object determines the inner node area as depicted in Section 4.8.2.
The outer node area is calculated by considering the edges connected to a node. The sizes of all
nodes or a subset of the nodes might be initialized taking external information into account, e.g.,
when the algorithm is used as a layout plug-in or for incremental layout.
This step is directly responsible for UML_NODES, UML_CLASS, UML_CONTAINER (the tab
or the signatures in the interface compartment of UML subsystems) and UML_ADORNMENTS.
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Calculate the Initial Cluster-Valid Coordinates Assignment

The following part of the coordinates assignment will move individual nodes based on initial
coordinates always considering the minimum distance restrictions represented by the graph
distances. Therefore, an initial coordinates assignment must admit non-overlapping nodes
(UML_NODES) with proper distances between the nodes and the ranks. Furthermore, in the
case of a compound or mixed compound graph, the assignment must also be cluster valid to re-
alize UML_SEMANTIC_CLUSTERS.
The basic coordinates initialization for non-cluster graphs was given in algorithm 4.17. Accord-
ing to the examples in [Seemann 1997], the nodes in the first rank can be aligned to the bottom
side, the others to the top side. Furthermore, to respect the outer node area, the nodes should
always be aligned to the top or bottom inner area, which marks the visible part of the nodes.
The initialization might be done similarly to the segment ordering graph mentioned in [Sander
1996a]. We have implemented a scanline algorithm for the coordinates initialization of com-
pound and mixed compound graphs, because we also want to directly process mixed compound
graphs.
First, we run the coordinates initialization for non-compound graphs to obtain the vertical coor-
dinates assignment as described above. Algorithm 4.21 exclusively modifies the horizontal po-
sitions to determine cluster-valid positions. Thereby, InitXYConstraint represents a (nested)
cluster and realizes a simple finite automaton for arbitrary partitioned clusters. An usual cluster
has at least three states: border nodes, cluster contents and cluster completed. Further states for
representing partitions, e.g., for UML subsystems, can be added dynamically depending on the
type of the node. While assigning basic cluster-valid coordinates, aspects of UML_SPATIAL can
be considered by adjusting the node and rank individual distance functions.
First a stack, that stores the currently nested clusters, is initialized with the global cluster from
the node naming function as top element. Then, the scanline and the concrete leftmost positions
are initialized. As long as not all nodes are processed, the ranks are considered from bottom
to top searching for nodes which match the (nested) cluster top(stack) and the current state of
the cluster automata at the top of the nesting stack. If the current node v is the cluster parent of
top(stack) and all nodes contained in top(stack) have been processed, v is moved to the median
position above all contained nodes according to the convention in definition 25. Otherwise, if v
is an usual node, it is placed in the current leftmost position. Then, the leftmost position of the
current rank is set to the right position of v and the scanline array is adjusted.
After considering all ranks, the next cluster is identified. Therefore, all ranks are processed start-
ing at σn−1 and searching for the next appropriate cluster with respect to the scanline. If currently
a cluster is processed and a new contained cluster was found, the leftmost positions are set to the
maximum and the new one is pushed onto the stack. If no further nested cluster was found and
the current cluster automata is in its final state, the rightmost cluster border nodes are placed to
fulfill definition 25. Additional steps for cluster separator nodes are not shown in algorithm 4.21.
The algorithm does not necessarily produce an area efficient assignment, but this the task of the
iterative part of the coordinates assignment.
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Algorithm 4.21 initializeClusterX (as a part of initializeXYCoordinates)
input: ḠC = (V,EH ,EN ,n,σ)
output: ḠC

stack := new Stack
push(stack,new InitXYConstraint(g)) {global cluster}
∀ 0≤ r<nscanpos[r] = xpos[r] = 0
repeat

for r := n−1 downto 0 do
if scanpos[r] < 0 then

continue
end if
for i := scanpos[r] to |σr|−1 do

v := σr[scanpos[r]]
if top(stack) =N v then

if matchesState(top(stack),v) then
break

end if
if v = topNode(top(stack)) ∧ ∀ w∈ llc(v) processed(w) then

x ∗ := max
w∈ llc(v)

x(w)

x(v) := b 1
2 · (xr + min

w∈ llc(v)
x(w))c {according to definition 25}

else
le f t(v) := xpos[r]+nodeSep(ḠC,σr[scanpos[r]−1],v)
x ∗ := right(v)

end if
xpos[r] := x ∗
if i < |σr| then

scanpos[r] := i
else

scanpos[r] := −1
end if

end if
end for

end for
v := nextCluster(Ḡ,stack,scanpos)
if |stack|> 1 then

if v 6= ⊥ then
maximize(xpos); push(stack,new InitXYConstraint(v))

else
if ¬advanceState(top(stack)) then

placeClusterBorders(Ḡ,scanpos)
pop(stack)

end if
end if

end if
until |stack|= 0 ∨ ∀ 0≤ i<nscanpos[i] < 0
return ḠC
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Sort Ports

In addition to the initial sorting of the incoming and outgoing edges of a node, now the port sets
are ordered. As denoted in algorithm 4.22, the vertical port sequence can simply be obtained by
sorting the ports according to the coordinates(or rank positions) of the connected nodes.

Algorithm 4.22 sortPorts
input: Ḡ = (V,EH ,EN ,n,σ)
output: ḠC

for r := 0 to n−1 do
for all v ∈ σr do

horizontalSort(e = {v,u}, f = {v,w}) := x(u) < x(w)
topPorts(w) := sort(topPorts(w),horizontalSort(.))
bottomPorts(w) := sort(bottomPorts(w),horizontalSort(.))
le f tPorts(w) := sortVerticalPorts(le f tPorts(w), true)
rightPorts(w) := sortVerticalPorts(rightPorts(w), f alse)

end for
end for
return ḠC

sortVerticalPorts partitions the given vertical port set of node v and sorts each individual
partition:

• Direct connections to a rank with r < r(v) and at most 2 dummy nodes (Pt)

• Connections to a rank with r < r(v) and more than 2 dummy nodes which requires a flat
connection in a row between two ranks (Ptm)

• Hyperedge connections to a rank with r < r(v) (Pth)

• Top flat edges according to definition 17 (Pt f )

• Flat flat edges according to definition 17 (Pf )

• Flat hyperedge connections (Pf h)

and similar sets at the bottom side. Figure 4.32 depicts examples for most of these sets and shows
the intended ordering at the centered node. Finally, the partitions are merged back into the port
set.
Sorting ports is responsible for aspects of GDR_EDGE_CROSS, GDR_MIN_EDGES and
UML_ADORNMENTS on flat edges. The quality of the port sequences depends on the informa-
tion provided to the sort algorithm. Obviously, stable coordinates positions are preferable over
initial coordinates. Therefore, this step will be executed again later in the postprocessing phase
of the coordinates assignment algorithm.
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Figure 4.32: The vertical ports of a node are partitioned while port sorting into 10 subsets which
are sorted as individual sets according to different criteria and finally merged.

Determine Stretching Factor

Depending on global preferences, the contents of the graph may be scaled to emphasize certain
information. As mentioned in Section 4.8.2, some basic scalings of the entire graph may be
considered:

• Rescale the nodes to provide a clear visibility of all edge adornments according to
UML_ADORNMENTS and UML_REFLECTIVE.

• Rescale the edges to keep minimum node sizes respecting the contents represented by
the individual node information objects. It is not required to rescale each graph, because
in many cases highly connected nodes also allocate a larger area due to the number of
their compartment entries (SE_COUPLING). In contradiction to rescaling the nodes this
method supports UML_GRAPHDRAWING via GDR_DRAWING_SIZE, but not always
UML_ADORNMENTS or UML_REFLECTIVE.
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• Scale individual elements, like font sizes for edges or individual nodes. This would
introduce contradictions with UML_NODES, UML_CLASS, UML_ADORNMENTS and
UML_REFLECTIVE, because we prefer to use general font preferences instead of locally
changing ones (similar to GDR_FONTS).

• No scaling, if external sizes for the nodes are present, e.g., if the implementation is used as
a layout plug-in or for incremental layout. In this mode, the framework is not responsible
for the sizes.

Depending on the scaling factor, visually unpleasing artifacts may occur, especially when re-
ducing the size of fonts. Below a certain scaling factor, the underlying operating system may
not be able to display the fonts properly and even if the sizes have been calculated correctly,
overlappings of text labels with other elements of a diagram may occur accidentally.

Initialize Node Priorities

In initializeNodePriorities, the sequence of the nodes to be considered in the iterative po-
sitioning according to UML_MEDIAN is determined. Priorities are calculated and assigned for
medianpos and minedge mentioned along with algorithm 4.18. Two kinds of priorities, upward
and downward priorities, are considered in medianpos or minedge, dependent on the sweep
direction, in which the individual ranks are processed. For medianpos, the number of visible
edges not connected to the virtual root is relevant. For minedge, only edges between visible
(not dummy) nodes is considered. Hidden nodes may receive the maximum priority to support
straightness of edge chains as mentioned in [Sugiyama et al. 1981].
Along with algorithm 4.5, the invisible cluster dependencies were discussed. The lengths of the
incoming/outgoing cluster dependencies can simply be added to the upward/downward priori-
ties. Without considering cluster dependencies, visibly disconnected clusters would be arranged
according to lowest priority, probably somewhere far away from the other nodes. Disconnected
clusters without (invisible) dependencies can be handled by considering artificial dependencies
to their cluster parent or the virtual root.

Fix Graph Distances

Finally, the individual distance values are fixed in fixGraphDistances. In fact, initializing and
fixing the graph distances has major impact on UML_GRAPHDRAWING (via GDR_DENSITY

and GDR_DRAWING_SIZE) as well as on overlappings of UML_NODES, UML_SPATIAL and
the realization of UML_SEMANTIC_CLUSTERS.
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4.8.5 Iterative Coordinates Assignment
You don’t just luck into things as much as
you’d like to think you do. You build step
by step, whether it’s friendships or oppor-
tunities.

Barbara Bush

According to the experience described in [Gansner et al. 1993], some iterations of mutually con-
tradictory heuristics lead to an appropriate coordinates assignment. Some heuristics may alternate
the direction of processing the ranks per iteration. Therefore, Algorithm 4.23 also receives the
current number of iteration.

Algorithm 4.23 c_iteration
input: Ḡ = (V,EH ,EN ,n,σ), i ∈ N0
output: Ḡ

Ḡ := medianPos(Ḡ, i)
Ḡ := minEdge(Ḡ, i)
Ḡ := minNode(Ḡ, i)
Ḡ := minPath(Ḡ, i)
Ḡ := packcut(Ḡ, i)
return restrictVirtualRoot(Ḡ)

The heuristics medianpos, minedge, minNode, minPath and packcut are based on the descrip-
tion given in [Gansner et al. 1993]. All heuristics were modified to support cluster validity. Un-
fortunately, a virtual root, inserted in the preprocessing of the rank assignment S10, may appear
as a dangling node, which has to be restricted to avoid unnecessary stretching of the width of the
graph.

Moving Nodes

An important operation of the coordinates assignment is to move an individual node. In principle,
a node v can simply be repositioned by x(v) := x(v) + δ , but this does neither consider the
coordinates validity given in definition 23 nor the cluster validity in definition 25. When moving
a node, the extents and the type of the neighbor in direction of the move have to be respected.
Figure 4.33 depicts the four basic situations for leftwards moves. The opposite direction can be
handled similarly.
If a neighbor in Figure 4.33 (a) exists,

le f t(w) ≥ right(v)+nodeSep(Ḡ,v,w)

must hold according to definition 23. When moving a cluster base node, as depicted in Fig-
ure 4.33 (b), the entire cluster is moved, if no cluster border node collides with its neighbor.
When a cluster border node should be moved, the connected border nodes must not collide with
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Figure 4.33: Situations to be respected when moving a node: (a) an usual node v is moved with
respect to neighbor w, (b) the cluster parent as well as the entire cluster is moved, (c) a cluster
border node is moved and the cluster is enlarged or (d) a contained node is moved and optionally
the cluster may be enlarged.

any of their neighbors. Thereby, the cluster will be enlarged and, according to definition 25, the
cluster base node has to be kept at the median position above the contained nodes. Finally, if a
node inside a cluster should be moved and the neighbor is not a cluster border node, the situation
is similar to Figure 4.33 (a). Otherwise, if the node would collide with a cluster border node, the
cluster might optionally be enlarged by also considering the appropriate cluster border nodes
and the cluster base for a move.
We will call this operation shi f tRelXPos(Ḡ,v,δ ), which returns, it the move was executed
successfully.
As an alternative, if moving a node is not possible due to a collision with neighbors, the node
may be moved as close as possible to its neighbor. Considering similar cases as discussed for
shiftRelXPos above, shi f tCloseToNeighbor(Ḡ,v,δ ) accomplishes this task, whereby δ is
relevant for the direction only.
Both node positioning function are responsible for ensuring the basic proper-
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ties of UML_NODES. If clusters are present, the cluster validity invariant realizes
UML_SEMANTIC_CLUSTERS. Furthermore, aspects of UML_SPATIAL, which can be
specified via the node individual distance function and UML_COUPLING are guaranteed.

Hidden Nodes Hopping

As discussed in Section 4.6.5, the edge crossing reduction may place dummy nodes in visually
unpleasing positions next to a cluster parent node. Furthermore, dependent on the concrete shape
of a cluster, several restrictions for positions of visible nodes may exist. One of these restrictions
is that the cluster base node appears to have the same width than the area occupied by its con-
tained node to prevent visible nodes from running into the cluster. In the case of dummy nodes,
this is the reason for unpleasing edge bends as shown in Figure 4.34 (a).
According to the definition of clusters and nested relations, these dummy nodes cannot be mem-
ber of the cluster, because they are located in the same rank as the cluster parent. In particular for
this situation, but also for other dummy nodes, the node naming function is not able to automat-
ically detect that these hidden nodes might be “member” of the cluster. Also the edge crossing
reduction in S11 cannot be made responsible for this problem, because both drawings imply the
same number of crossings and even edge length calculations, as discussed in Section 4.6.5, might
not always solve the problem.
Therefore, the coordinates assignment may be allowed to support hidden nodes hopping. To get
rid of the left sided nodes, the sequence of nodes in their ranks can be changed dynamically. The
nodes at the right side may then be allowed to move into the area of the cluster. Therefore, the
basic functionality of shiftRelXPos and shiftCloseToNeighbor can be extended to adjust
the node sequences dependent on the desired positions of hidden nodes. More generally, to also
support other application domains, hidden nodes hopping must consider the visual shape of the
cluster. Nodes hopping may also be applied to selected visible nodes.
Node hopping helps reducing the length of certain edges (GDR_MIN_EDGES) and, therefore,
may help emphasizing UML_HIERARCHY via UML_MEDIAN.

MedianPos and MinEdge

As mentioned in Section 4.8.1, two heuristics called medianpos and minedge are executed at
the beginning of the iterative assignment. Both heuristics support UML_MEDIAN. To respect
influences arising from parent levels and child levels to an individual node and to prevent an ex-
tremely widespread layout, the direction of processing the levels of the input graph is alternated
per iteration. The basic heuristics as described in [Gansner et al. 1993] differ only in the han-
dling of dummy nodes: minedge does not consider edge chains. When processing a rank, the
nodes are sorted according to the priorities calculated by initializeNodePriorities in the
coordinates preprocessing. The nodes are processed according to decreasing priorities. For each
node v, the horizontal distance to the desired median position is calculated. In the case of upward
processing V−(v), while downward processing V +(v) are considered. Thereby, the distance to
the connected (visible) node is considered to prevent a widespread layout, which might occur,
if these nodes are not moved at all or accidentally moved in the wrong direction. Furthermore,
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(a) (b)

Figure 4.34: (a) conventional coordinates assignment, which respects strict borders of clusters
even in the rank of the cluster base node. In (b), hidden nodes hopping was enabled.

invisible cluster dependencies are respected.
As mentioned above, in minedge, edge chains are ignored. Furthermore, the concrete implemen-
tation in SugiBib provides template methods to exclude certain edges depending on minedge. For
example, nNon-hierarchical edges, edges to the virtual root and hidden edges are also excluded
for UML class diagrams. If at least one node is not excluded by the filtering, the symmetrical
median determines the desired horizontal distance v. Otherwise v is regarded as disconnected
and aligned with respect to maximum number of flat connected neighbors.

Local corrections at nodes: minNode

Unfortunately, not all situations to reach UML_MEDIAN are considered by the simple but ef-
fective combination of medianpos and minedge. Therefore, in [Gansner et al. 1993], local opti-
mizations at nodes were used to perform additional corrections.
minNode also processes all ranks in alternating directions . On each node, which is not consid-
ered as a hidden node, i.e., it is not a dummy node and in UML class diagrams it is no hyperedge
connection point, the following heuristics have found to be effective:

• Correct parent nodes: If the current node v has more than one bottom port, v should be
replaced to the median position of its children. If v is part of a cluster, the cluster is con-
sidered for a movement by calling shiftRelXPos or shiftCloseToNeighbor on the top
level cluster parent.
If v has exactly one bottom port to w and w also has this connection as top port, we sim-
ply align the nodes according to their central position. In fact, we consider the estimated
position of the edge instead of the central position, because the edge position depends on
application domain specific information and might not always be the central position of the
node. If w has multiple top ports we consider an alignment only, if w has no top ports to
hidden nodes. This condition is required to prevent accidental repositioning of edge chains.
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• Move to center: To partly realize UML_CENTER, certain nodes like an n-ary rhomb can
be centered upon its connected children.

• Correct children: In this heuristic, the children are considered for a move. The minimum
horizontal area for the children is calculated and then the child nodes are repositioned.
Instead of terminating the loop when a collision is detected by shiftRelXPos, also all
nodes might be requested to be moved instead.

• Correct leaves: Here a leaf is a node having exactly one top connection and no bottom
edges. The optimal position of the leaf below its parent is calculated and a replacement is
requested by shiftRelXPos or shiftCloseToNeighbor.

Emphasizing vertical segments: minPath

As a side effect, gaining straight edges improves UML_GRAPHDRAWING, in par-
ticular GDR_MIN_EDGES, GDR_MIN_BENDS, GDR_UNIFORM_LENGTHS and
GDR_DRAWING_SIZE. Also in this heuristic, the ranks of the graph are processed in al-
ternating directions. In principle, an edge chain is traversed and a corridor of the neighbored
nodes is recorded. Depending on the type of the corridor (bounded at both sides, at one side
or unbounded), the nodes of the chain are moved to reach the maximum number of correctly
aligned subchains.
Furthermore, two different types of edge chains have to be considered. On the one side, chains
arising from hierarchical connections and therefore starting and ending with a visible node
may occur. For the corridor of such a chain, the available port positions at start and end node
have also to be respected. On the other side, multilevel, non-hierarchical edges induce chains
starting and ending with hidden nodes. At a first glance, considering this type of chains seems
to be superfluous, because non-hierarchical edges have not been processed in coordinates
assignment so far. As most of the heuristics for iterative assignment, minPath will be reused
for recalculating coordinates after orthogonalizing non-hierarchical edges. The algorithm treats
chains arising from hierarchical edges with a higher priority.
The shape of the chain, described by the corridors, can be considered to prepare the compaction
of the drawing in the next step. If the wrong side (left) is chosen in Figure 4.35 (a), the length of
the edge and probably the size of the drawing is increased successively.

Packcut

Due to the iterative assignment and the alternating alignment to parents and children in the heuris-
tics discussed in this section so far, larger unused or non-compact areas in the graph may occur.
Additionally to the technique mentioned in [Gansner et al. 1993], also flat edges and edge chains
induced by non-hierarchical edges have to be considered.
First, as long as flat edges can be shortened without increasing the lengths of other flat edges,
nodes which are not connected by hierarchical edges are repositioned. For the general com-
paction we use a secondary data structure, which captures visually connected areas. To receive a
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(a)

(b)

Figure 4.35: (a) U-turn shape which can be shortened, (b) S-turn shape at which one side has to
be preferred. Similar situations may occur at hierarchical edge chains, too.

coordinates and cluster valid result, algorithm 4.24 processes each cluster by a depth first traver-
sal of the nesting relations. Thereby, the area required by each cluster is minimized, because
clusters may be enlarged, e.g., by moving certain nodes as described along with Figure 4.33.
The cluster border nodes are adjusted inside-out and all cluster parents and cluster separators are
processed once by shiftRelXPos.
Then, all nodes are considered and, thereby, no cluster is distributed to more than one area. For
each node v to be considered by the current call of packcutAreas, all existing areas are investi-
gated. The decision, if v belongs to an area, is made upon the minimum node distance function
nodeSep. If no area is found, a new area containing only v is created. If exactly one area is found,
v is added to that area. In the case of more areas, v induces a visual connection and therefore these
areas are merged into one. Finally, the individual areas are sorted by their minimum left position
and the distances between the areas are eliminated by moving all nodes contained in an area. .

Restrict the Virtual Root

If a virtual root vr exists, it is most times treated like other dummy nodes: edges connected to vr
are considered as (hidden) edges and therefore vr often appears as a dangling node. On the one
side, this situation cannot be perceived directly by a user, because vr is not drawn and therefore
does not occur in the result. On the other side, vr influences the positioning of child nodes while
executing the parts of the priority assignment method. Therefore, this processing step repositions
vr towards the median position of its children.



4.8 COORDINATES ASSIGNMENT 229

Algorithm 4.24 packcutAreas
input: Ḡ = (V,EH ,EN ,n,σ),W ⊆ V
output: (Ḡ,A)

A := ⊥
for all v ∈ {w : w ∈ W, |compoundChildren(w)|} > 0 do

(Ḡ,A) := packcutAreas(Ḡ,compoundChildren(w))
Ḡ := ad justClusterWidthToMinimum(Ḡ,v)

end for
if A = ⊥ then

A := {}
end if
for all v ∈ W do

if unmarked(v) then
mark(v)
for all a ∈ A do

if belongsTo(v,a,W = V ) then
Av := Av ∪ {a}

end if
end for
if |Av| = 0 then

A := A ∪ {new PackcutArea(v)}
else if |Av| = 1 then

add(listGet(Av,0),v)
else

a1 := listGet(Av,0)
for i := 1 to |Av| do

a2 := listGet(Av, i)
merge(a1,a2)
A := A\{a2}

end for
end if

end if
end for
sort(A, le f tPositions(.))
for i := 1 to |A| do

move(listGet(A, i), le f t(listGet(A, i))− right(listGet(A, i−1)))
end for
return (Ḡ,A)
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4.8.6 Postprocessing
For graphs, we seek paths that are easy to
follow and add meaning to the layout.

[Dobkin et al. 1997]

So far, we have calculated the coordinates of the nodes considering to hierarchi-
cal edges and clusters only and to realize the high priorities of UML_HIERARCHY,
UML_SPATIAL, UML_SEMANTIC_CLUSTERS, UML_MEDIAN, UML_NODES and, if en-
abled, UML_COUPLING. As discussed for the iterative coordinates assignment in Section 4.8.5,
some heuristics are yet prepared for the layout of flat edges. But at this point of time in the ex-
ecution of the coordinates assignment, no positions have been assigned to edges at all and flat
edges still exist as relations but they have not been routed. Therefore, we have to postprocess the
coordinates assignment to derive the missing data.
First, the ports of flat edges are prepared towards orthogonalization by successively inserting
dummy nodes. Unfortunately, inserting these dummy nodes induces shifting several nodes in-
cluding entire clusters and therefore produces an widespread and unbalanced layout which is
not compliant to UML_GRAPHDRAWING (GDR_MIN_EDGES, GDR_DRAWING_SIZE and
GDR_DENSITY). To circumvent this, we repeat the first two iterations by calling algorithm 4.23
again. Now, the routes of the edges can be determined by assigning individual port positions for
each edge. On hierarchical edges, this is a simple task, because they can linearly be arranged at
the horizontal sides of the connected nodes (UML_HIERARCHY). For non-hierarchical edges,
rows between ranks and additional dummy nodes may be required. Certain bends may be su-
perfluous, other bends especially at hierarchical edges have to be inserted to avoid node-edge
overlappings (UML_NODES and UML_EDGES). Due to the iterative assignment, several coor-
dinates may be negative. Therefore, correctCoordinates normalizes the graph to the origin of
the coordinate system.

Algorithm 4.25 c_postprocessing
input: Ḡ = (V,EH ,EN ,n,σ)
output: Ḡ

Ḡ := prepareEdgePorts(Ḡ)
Ḡ := c_iteration(Ḡ,0)
Ḡ := c_iteration(Ḡ,1)
Ḡ := routeEdges(Ḡ)
Ḡ := correctBends(Ḡ)
return correctCoordinates(Ḡ)

Prepare Edge Ports

At this point, the algorithm has calculated stable coordinates respecting hierarchical relations
only. According to UML_HIERARCHY, non-hierarchical edges should be drawn in orthogonal
fashion. While preprocessing in algorithm 4.20, the sizes of nodes and edges have been calcu-
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lated. Algorithm 4.26 is responsible for inserting dummy nodes for the orthogonalization of the
non-hierarchical edges. Due to additional information arising from the coordinates assigned so
far, the assignment of edges to the left or right side of connected nodes may change. Therefore,
we first have to resize the outer area of the nodes, to initialize and sort the ports again. Then, for
each non-hidden node an appropriate number of dummy nodes for the connected non-hierarchical
is inserted. insertFlatDummyNodes splits all non-hierarchical edges which do not connect di-
rectly neighbored visible nodes by inserting two dummy nodes. Thereby, all nodes, which have
a larger horizontal position, are moved to the right side to ensure space for the connections to
the dummy node. This is illustrated in Figure 4.36 (b). To support rows between ranks, further
dummy nodes are inserted at multi-level edges as depicted in Figure 4.36 (c). The second multi-
level edge in Figure 4.36 (c) may be handled in the same way, because superfluous bends will be
removed in correctBends. A similar approach of first successively inserting more bends then
necessary and then removing superfluous ones in a postprocessing step was mentioned in [Di
Battista et al. 2002]. As long as no stable coordinates are assigned to the newly inserted dummy
nodes, they are simply kept in the appropriate ranks and not in line rows. Even these interme-
diary graphs are coordinates and cluster valid, because the nesting relations are adjusted while
inserting the dummy nodes and the coordinates validity in definition 23 includes equal horizontal
positions for neighbored nodes.
In a final step, flat flat edges, which cross visible nodes are routed according to the directional
information collected while reducing edge crossings.
For UML class diagrams, hyper edge connection points, association classes and comments have
to be treated by additional conditions to avoid that these nodes are handled like visible nodes and
edges are wrapped around them.

Algorithm 4.26 prepareEdgePorts
input: Ḡ = (V,EH ,EN ,n,σ)
output: Ḡ

for all v ∈ V do
Θ := getRelevantValues(v) {outer positions, external area size}
calculateSize(v)
setRelevantValues(v,Θ)

end for
Ḡ := initializeNodePorts(Ḡ, f alse)
Ḡ := sortPorts(Ḡ)
Ḡ := insertFlatDummyNodes(Ḡ)
Ḡ := cutEdgesBetweenVirtuals(Ḡ)
return wrapFlatCrossingEdges(Ḡ)

Route Edges

After executing 2 iterations of algorithm 4.23, which now also consider non-hierarchical edges
and the connected dummy nodes, the coordinates of all graph elements have been adjusted to the
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Figure 4.36: Preparation of the orthogonalization of non-hierarchical edges: The initial situation
is shown in (a). In (b), the graph after adding two dummy nodes at each non-hierarchical edge is
depicted. (c) shows the preparation of rows between ranks and in (d) a bottom flat edge is routed
to avoid node-edge overlappings. Non-orthogonal edge segments will be considered by repeated
iterations and the non-hierarchical edge routing algorithm.

presence of non-hierarchical edges.
This step assigns positions to each edge in two phases. First, coordinates are assigned to hierar-
chical edges and flat edges, which are directly connected to visible nodes. Secondly, additional
rows between ranks are inserted and positions of the the multi-level non-hierarchical edges as
well as the top flat and bottom flat edges are determined.
As mentioned above, the positions of the hierarchical edges can simply be calculated from
the inner area of a node with additional consideration to allowed and forbidden edge ar-
eas. For UML class diagrams, the sizes of the various adornments must also be considered
(UML_ADORNMENTS). As far as possible, equal distances between ports at one side of a node
are desired. Similarly, according to the separation of the flat edges in top, flat and bottom flat
edges, the vertical sides can be partitioned per rank. Together with the grouping of edges of the
same type in sortPorts this spatial separation supports the visual perception of edges of the
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same type or (routing) direction, respectively. An illustration of the result produced by the grid
line layout approach is depicted Figure 4.32 or Figure 4.37.
To layout the edges, which occur between two adjacent ranks σr and σr+1, the area between
the ranks is separated for bottom flat edges of σr, middle rank edges and top flat edges of σr+1.
This is depicted in Figure 4.37. If a middle rank edge connects σr1 and σr2 with r2 − r1 > 1, we
currently choose the most simple way: the edge is routed through the middle rank area above σr2 ,
crosses σr1+1 to σr2−1 and occupies area in the middle rank area below σr1+1. Thereby, row lines
are shared if possible. A floorplanning algorithm similar to those in VLSI or [Messinger et al.
1991; Hershberger and Snoeyink 1994; Sander 1996a] may be considered for a future optimiza-
tion of the results.

middle rank area
top flat area

bottom flat area

Figure 4.37: Separate areas for edges to be routed between two ranks.

As an extension for UML class diagrams, the offset values to move the ranks can be enlarged to
ensure space for edge labels like discriminators, association names, stereotypes, constraints and
tag-value lists.

Correct Bends

Superfluous bends may arise from prepareEdgePorts or from erroneous implementation of
some heuristics. Some dummy nodes, which connect edge segments of the same gradient, can be
deleted from the graph. Furthermore, by comparing the coordinates assigned to the edges, some
of the S-turn shapes in hidden chains can also be removed.

Correct Coordinates

Due to the iterative positioning in Section 4.8.5, graph elements are moved in both horizontal
directions and positions may become negative. To properly draw the result on an usual computer
display or a printer, negative coordinates should be avoided. Therefore, the minimum left outer
horizontal position xl is determined and all nodes are moved so that xl = 0 is valid. If a virtual
root or a virtual leaf was inserted , these nodes are not considered when calculating the distances
of the nodes to xl and are repositioned to the median position of all other nodes. Thereby, also
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the central position of certain nodes like an n-ary rhomb according to UML_CENTER can be
realized.

4.8.7 Conclusions
I have come to the conclusion that politics
are too serious a matter to be left to the
politicians.

Charles De Gaulle (1890 – 1970)

In this section, the processing steps of the coordinates assignment have been described. A pre-
processing phase initializes the node distance function, determines the minimum extents of
nodes and edges respecting a certain scaling of the graph, calculates initial cluster valid coor-
dinates and basically assigns ports. The iterative phase is responsible for realizing the high prior-
ities of the hierarchical aesthetic rules like UML_HIERARCHY, UML_SEMANTIC_CLUSTERS

and UML_MEDIAN. Via the node distance function, which provides individual minimum
distances for adjacent nodes, UML_SPATIAL can be ensured. UML_COUPLING, as an as-
pect of UML_SPATIAL, is implemented by cluster separator nodes. While assigning co-
ordinates to nodes, the basic functions also ensure UML_NODES to avoid overlappings
and cluster invalidity. Via the packcut heuristic, GDR_DRAWING_SIZE is taken into ac-
count. UML_CENTER is considered while incremental assignment as well as in the last step
of the postprocessing phase. In that last phase, non-hierarchical edges are orthogonalized.
Thereby, UML_EDGES and UML_ADORNMENTS are considered by the routing mechanism.
In particular, UML_ADORNMENTS may influence the extents of the nodes when (re)scaling
due to the minimum area requirements of individual edges and adornments. While rout-
ing edges, also GDR_MIN_BENDS, GDR_UNIFORM_LENGTHS, GDR_EDGE_CROSS and
GDR_DRAWING_SIZE can partially be respected. Hence, the coordinates assignment fulfills
the priorities assigned to a subset of our aesthetic rules as claimed in Section 3.3.6.
Table 4.6 shows the runtime complexities of the individual phases of the coordinates assignment.
The preprocessing of usual graphs and (mixed) compound graphs appear to be equal in complex-
ity. Even if the calculation of the sizes of nodes and edges is highly dependent on the application
domain, because this is done by the information objects, we can assume without loss of gener-
ality that it runs in O(1) per node or edge. Furthermore, the additional complexity introduced
by moving compounds or realizing hidden nodes hopping does not influence the preprocessing,
because even when determining the initial coordinates, the valid positions are derived from the
scanline positions and not by regarding cluster border or cluster separator nodes.
The differences between usual graphs and (mixed) compound graphs in the iterative phase
arise from ensuring cluster validity while moving individual nodes. The logarithmic factor in
medianPos and minEdge arises from sorting the nodes according to their upward or downward
priorities, respectively. The other heuristics run over nodes and edges and usually move individ-
ual graph elements, probably after calculating edge funnels or corridors.
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Table 4.6: Runtime complexities of the coordinates assignment macro phase.
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The postprocessing phase heavily relies on sorting of ports or non-hierarchical edges for rows
between ranks as well as repositioning all nodes after inserting of dummy nodes. By right-to-left
processing of the ranks and caching offsets for individual nodes, the linear parts for nodes (in
usual graphs) can be realized.

4.9 Postprocessing

After all is said and done, a lot more will
be said than done.

Unknown

The result provided by the coordinates assignment S15 is a coordinates and cluster valid graph,
in which certain aspects of UML class diagrams like association classes, constraint hyperedges,
comments or disconnected nodes may not be respected properly. The processing steps presented
in the last section are primarily dedicated to general (compound) graphs with hot spots, which
allow an adaption to application domain specific graphs. As shown in Figure 6.5, a specializa-
tion of the coordinates assignment was provided, which specifies additional rules for UML class
diagrams. Therefore, the UML specific handling of the aspects mentioned above are missing and
will be handled by the postprocessing macro phase.
In this section, the layout of association classes (S16), hyperedges (S17), annotations (S18), dis-
connected nodes (S19), the optional snap-to-grid step (S20) for graph elements and the creation
of the result instances (S21) are described.

4.9.1 Association Classes
Man associates ideas not according to
logic or verifiable exactitude, but accord-
ing to his pleasure and interests. It is for
this reason that most truths are nothing
but prejudices.

Remy de Gourmont (1858 – 1915)

Two main situations for association classes have to be handled here:

• At non-hierarchical edges: At a flat flat edge, the association class can simply be shifted
below the rank and the distances of multiple association classes between the related vis-
ible nodes may also be adjusted. This works, because the association classes have been
unpacked from composite nodes in S12 and space was reserved in coordinates assignment.
At a top or bottom flat edge the association class is moved into the top/bottom flat middle
rank area, which then might have to be enlarged.
Placing an association class below the association maps to the default UML layout style
and to UML_ASSOCIATIONCLASSES.
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• At hierarchical edges: In this case, the association class should be placed at the left
or right side of a hierarchical association respecting the presence of textual adornments
(UML_ADORNMENTS). Formally, the association class might be assigned to a row line
(middle rank area) between the adjacent ranks and placed next to the association to be
compliant to UML_ASSOCIATIONCLASSES.

Association classifiers, association classes with further relations, were considered implicitly by
the coordinates assignment. These graph elements have to be repositioned with respect to the
further relations.

4.9.2 Hyperedges and Constraints
The more constraints one imposes, the
more one frees one’s self. And the arbi-
trariness of the constraint serves only to
obtain precision of execution.

Igor Stravinsky (1882 – 1971)

In S5, we have compressed hyperedges to composite nodes and in S13 these composite nodes
have been expanded to ensure space for the hyperedge connection nodes in their ranks. Fig-
ure 4.38 shows a typical situation which may occur for hyperedges after coordinates assignment.
Due to S5, dummy nodes in hierarchical edges are packed together with either the visible start
or end node of the hierarchical edge and therefore are assigned to one of both ranks. Hence,
these dummy nodes remain in the assigned ranks and must be postprocessed now. Furthermore,
hyperedges between non-hierarchical edges may be assigned in rectilinear style in the iterative

(a) (b)

Figure 4.38: (a) typical situation for hyperedges after coordinates assignment, (b) after postpro-
cessing the hyperedges.

coordinates process discussed in Section 4.8.5. Therefore, neither hyperedges at hierarchical
edges nor the involved hierarchical edges themselves will probably not be drawn as straight
lines according to UML_HIERARCHY or in a proper placement for UML_JOIN, because the
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dummy nodes of these hyperedges are also positioned by the coordinates postprocessing for flat
edges (Section 4.8.6). To fulfill UML_HYPEREDGES, certain changes to the node an edge po-
sitions have to be done. The space wasted for hyperedges at non-hierarchical edges as depicted
in Figure 4.38 (a) can be avoided by appropriate rules for the dummy nodes in the coordinates
assignment macro phase.
Algorithm 4.27 shows the principle steps for postprocessing hyperedges in UML class diagrams.

Algorithm 4.27 postprocess_hyperedges
input: Ḡ = (V,EH ,EN ,n,σ)
output: ḠC

∀ 0≤ r<nδ [r] := 0
for r := 0 to n−1 do

H := {e : e = {v,w} ∈ EH ∪ EN , r(v) = r(w) ∧ type(e) = HY PEREDGE}
sort(H,edgeLengthSort(., .))
δ := f ormatAsMiddleRankEdges(H)
alignPositions(H)
for r1 := r to n−1 do

δ [r] := δ [r]+δ
end for

end for
for r := 0 to n−1 do

moveY (σr,δ [r])
repositionDiscriminators(σr)

end for
return ḠC

4.9.3 Annotations
Don’t get suckered in by the comments
– they can be terribly misleading. Debug
only code.

Dave Storer

In the current state of the layout algorithm, comment nodes are still members of composite nodes
or removed from the graph in the case of disconnected comments. As described in Section 4.4.8,
some comment, which are involved in “hierarchical” relations, have been processed implicitly
by the coordinates assignment macro phase.
According to UML_COMMENTS, disconnected comments are positioned at the corners of the
drawing. The allowed corners or the priority of the target positions can be given by global user
preferences.
Other comments must first be unpacked from their containing composite nodes. Even if the
results may not be optimal, we try to avoid moving nodes placed so far. The remaining comments
are processed in decreasing size. With priority, areas at the boundary of the graph with respect to



4.9 POSTPROCESSING 239

a short connection are searched. Especially, conformance to the layered structure is not required
for comments due to UML_COMMENTS. For comments, which have to be placed at nodes apart
from the boundary of the graph, the area around the target node is scanned for an appropriate
placement. Then the space between ranks may be enlarged and, in the worst case, space has to
be ensured by enlarging the area between nodes and thereby moving all nodes at the right of the
target node to the right direction.

4.9.4 Disconnected Nodes
Most graph layout algorithms assume that the graph is connected. Given a dis-
connected graph, one can either apply the basic algorithm to each connected
component and then arrange the components, or make the graph connected.

[Ellson et al. 2003]

Disconnected nodes have been removed in S9, because these nodes would disturb the iterative
coordinates assignment. In particular, in medianPos and minEdge, disconnected nodes would
appear as dangling nodes which have to be considered by additional heuristics.
In general graph drawing it is appropriate to place disconnected nodes at positions, where mini-
mum distance constraints are not violated. Therefore, an adaption of the both coordinates heuris-
tics mentioned above may be appropriate. As a postprocessing step, data on unused space in the
graph can be collected and the disconnected nodes can be reinserted greedily in decreasing size
of extents or, like GraphViz [Ellson et al. 2003], the polyomino packing algorithm could be ap-
plied.
According to UML_DISCONNECTED, we are not in need of a complicated methods. Depending
on the desired emphasize on disconnected nodes, the positions on the external boundary can be
calculated from the minimum and maximum outer positions of all nodes and the extends of the
ranks. Thereby, nodes are inserted in a way that the existing rank heights can be kept stable as
far as possible.

4.9.5 Alignment to a Specified Grid

New York... is a city of geometric heights, a petrified desert of grids and lat-
tices, an inferno of greenish abstraction under a flat sky, a real Metropolis
from which man is absent by his very accumulation.

Roland Barthes (1915 – 1980)

To realize REQ_GRID, we could have changed the basic functions in the coordinates assignment
so that only coordinates, which are restricted to a specified grid, are used. The other alternative
is to postprocess the layout result (S20) to meet REQ_GRID.
In algorithm 4.28 we apply a scanline algorithm. Vertical segments of edge chains are preserved,
because global data is used while repositioning.



240 4 THE LAYOUT ALGORITHM

Algorithm 4.28 snapToGrid
input: Ḡ = (V,EH ,EN ,n,σ),gx,gy
output: Ḡ

δy := 0
∀ 0≤ r<n scanpos[r] := δx[r] := 0

xpos(r) :=
{

0 : if scanpos[r] < 0
le f t(σr[scanpos[r]]) : otherwise

repeat
maxx := max

0≤ r<n
xpos(r)

for r := 0 to n−1 do
if scanpos[r] ≥ 0 then

for i := scanpos[r] to |σr|−1 do
v := σr[i]
if le f t(v) ≥ maxx then

break
end if
le f t(v) := δx[r]
if right(v) mod gx 6= 0 then

δx := right(v)
else

δx := ((right(v) mod gx)+1) ·gx
end if
if i < |σr| then

scanpos[r] := i
else

scanpos[r] := −1
end if

end for
end if

end for
p := max

0≤ r<n
δx[r]

∀ 0≤ r<n δx[r] := p
until ∀ 0≤ r<n pos[r] < 0
{similarly for vertical positions but adjust node sizes}
return Ḡ
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4.9.6 Create the Result Graph
Results! Why, man, I have gotten a lot
of results. I know several thousand things
that won’t work.

Thomas A. Edison (1847 – 1931)

The last step of the entire layout algorithm is to create distinct instances which represent the
result. In an application, temporary data of the layout algorithm, like the rank assignment or
ports should not be accessible. .
Algorithm 4.29 shows the creation of the result graph instances. The first step destroys that
additional data. This can implicitly be realized by the graph copy mechanism. For persistent
storage of the layout results or further analysis, like calculation of metrics, implicit data has to
be made explicit. In replaceImplicitEdges, e.g., reflective edges are transformed to nodes
and edges. Finally, all nodes and edges are requested to place their compartments or adornments
properly according to the coordinates calculated so far. Due to extensions for writable repository
access or diagram interchange formats, also this data has to be made accessible from outside.
Furthermore, all nodes and edges are locked to avoid accidental changes by applications working
on the layout algorithm.
Algorithm 4.29 does not show further steps, which are important for a concrete application. The
result may be rendered to a graphics context or a buffer to speed up scrolling the result. Thereby,
debugging information, like the outer node area, the edge extents, the area of the graph or the
closure of individual ranks, may be mapped into the result to appear when drawing the result.

Algorithm 4.29 createResult
input: Ḡ = (V,EH ,EN ,n,σ)
output: G

G := removeInternalData(Ḡ)
G := replaceImplicitEdges(G)
for all o ∈ V ∪ EH ∪ EN do

o := layout(o)
o := lock(o)

end for
return G

4.9.7 Conclusions
Finally, in conclusion, let me say just this.

Peter Sellers (1925 – 1980)

As discussed in this section, the postprocessing macro phase is responsible for the
realization of UML_HYPEREDGES and UML_ASSOCIATIONCLASSES, both with re-
spect to UML_HIERARCHY. Furthermore, UML_COMMENTS, UML_DISCONNECTED and
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REQ_GRID are provided by own algorithmic steps. The concrete compliance to the priorities
for the aesthetic principles introduced in Section 3.3.6 cannot be determined here, because this
heavily depends on the implementation. Obviously, an aggressive algorithm may easily destroy
the results achieved by the preceeding processing steps.
Table 4.7 shows the complexities of the individual steps of the postprocessing macro phase. De-
pending on the type of the graph, the nodes involved in association class, hyperedge or annota-
tions structures must be repositioned with respect to cluster validity. Postprocessing hyperedges
involves sorting the hyperedges for priorities to normalize the processing sequence. Disconnected
nodes no not taint clusters and can be reinserted in linear time. Enforcing a grid placement of
nodes and edges simply repositions all nodes according to a scanline. Replacing the internal
structures, like reflective edges, to make them visible for external applications can be done in
linear time.

4.10 Summary

Don’t fear failure so much that you refuse
to try new things. The saddest summary
of a life contains three descriptions: could
have, might have, and should have.

Louis E. Boone

In this chapter we have intensively discussed the issues of a standard implementation of the
Sugiyama algorithm as well as extensions to apply that algorithm to UML class diagrams. We
also have collected several information on the theoretical complexity of the individual (macro)
steps. The aggregated formulae are summarized in Table 4.8. We can expect that the effective
runtime will differ from the theoretical issues, because we did not take several impacts into ac-
count, which arise in an concrete (prototypical) implementation. Furthermore, not all conditions
and application domain specific tests in the application have been discussed due to space limita-
tions and readability.

coordinates assignment step usual graph
S16 O(|V |+ |EH ∪ EN |)
S17 O(|V |+ |EH ∪ EN | · log |EH ∪ EN |)
S18 O(|V |+ |EH ∪ EN |)
S19 O(|V |)
S20 O(|V |+ |EH ∪ EN |)
S21 O(|V |+ |EH ∪ EN |)

postprocessing macro phase O(|V |+ |EH ∪ EN | · log |EH ∪ EN |)
Table 4.7: Runtime complexities of the postprocessing macro phase. On (mixed) compound
graphs we can expect O(|V |2 + |EH ∪ EN | · log |EH ∪ EN |).
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To gain an overview of the real world runtime behavior of the prototypical implementation

preprocessing S1-S9 O(|V | · log |V |+ |EH ∪ EN | · log |EH ∪ EN |)
rank assignment S10 O(|V | · log |V |+ |V | · |EH ∪ EN |2)

edge crossing reduction S11
barycenter: O(|EH |+ |V |3)

median: O(|V |3)
hierarchical: O(|V |4)

intermediary processing S12-S14 O(|V |+ |EH ∪ EN |)
coordinates assignment S15 O(|V |2 + |EH ∪ EN | · log |EH ∪ EN |)

postprocessing S16-S21 O(|V |2 + |EH ∪ EN | · log |EH ∪ EN |)
Table 4.8: Individual complexities of the macro steps of the SugiBib algorithm introduced in
Section 4.1 on compound graphs.

SugiBib, we will discuss issues on optimizing Java programs in general and specific performance
tuning for SugiBib as well as measurement various runtime issues in Chapter 5.
We can conclude that drawing application domain specific graphs increases the complexity of
the applied algorithms compared with basic techniques known from graph drawing as mentioned
in Section 2.2.2. Simple graphs with point-sized nodes denote one of the favorite types in graph
drawing, on which most theoretical results have been proved. Obviously, the complexity of the
algorithms will increase when areas for nodes are introduced, because node-node and node-edge
overlappings have to be avoided. Changing the graph type from simple to non-simple, the storage
mechanisms, the access paths within the graph and the algorithms working on the graph have to
be adjusted. Introducing partitions of edges or nodes to be handled differently or considering
clusters, compounds or mixed-compound contents also significantly increases the complexity.
Due to our application domain, we are forced to work on structural complex graphs to be pro-
cessed by runtime-intensive algorithms. Features like (different types of) edge labels, forbidden
sides of nodes, as described along with port penalties in Section 4.6.3, fixed-wired or dynamic
(external specified) constraints can be seen as orthogonal issues, which furthermore increase the
complexity.
At a first glance, handling non-compound graphs, compound graphs as well as mixed-compound
graphs by one algorithm seems to be a superfluous implementation effort. As shown in Sec-
tion 4.8.5, the runtime complexity of the node movement algorithms, which are responsible
for ensuring basic coordinates consistency, run in O(|V |) on non-compound graphs instead of
O(|V |2) on compound graphs. Hence, the execution speed will also implicitly increase for mixed-
compound graphs compared with a compound graph in which the global cluster was mapped to
an (invisible) package.
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5 Measurements

In Chapter 3, we have introduced a functional specification for a layout algorithm for UML
class diagrams. In particular, we have enumerated several general requirements and presented
our unique set of layout criteria for UML class diagrams. In Chapter 4, a detailed discussion on
our layout approach was given. In this chapter, we will complete our discussion on layout algo-
rithms by methods to measure and compare the results produced by concrete layout algorithms.
First, we will introduce formulae to realize the measurement of selected aesthetic criteria from
Section 3.3.6. Layout metrics are capable of reflecting the priorities of aesthetic criteria and,
therefore, consider UML specific as well as graph drawing relevant issues. Then, we will com-
pare our layout algorithm to some of the other layout algorithms for UML class diagrams, which
were briefly introduced in Section 2.2.3. Finally, we will review the theoretic runtime complexi-
ties collected in the last chapter in the context of results retrieved from running SugiBib on a set
of test diagrams. Thereby, measurements more relevant from the viewpoint of algorithm theory
and graph drawing will be collected.
As mentioned earlier, SugiBib is the realization of our layout algorithm as a graph drawing frame-
work, which was specialized for the layout of UML class diagrams. An introduction to the archi-
tecture and the implementation of the framework will be given in the next chapter.

5.1 Measuring Aesthetics
Measure what is measurable, and what is
not measurable, make it measurable.

Galileo Galilei (1564 – 1642)

In Section 3.3, we discussed general aesthetics for different types of diagrams and combined
them to one set of rules for UML class diagrams in Section 3.3.6. Then we designed and imple-
mented a layout algorithm to realize our set of rules. According to our set of rules, the results
of the survey on layout facilities of UML tools in [Eichelberger 2002b] can be reinterpreted and
refined. All results for that evaluation had been collected manually by looking on the result di-
agrams and estimating the values for different basic aesthetics. A more objective result can be
obtained, if the values, e.g. as one metric for each aesthetic rule, are calculated by a program.
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In this section, selected mandatory aesthetic principles from Section 3.3.6 will be introduced to
gain a basic set of layout metrics for UML class diagrams. On the one side, these metrics will
help comparing concrete results of other layout algorithm to those produced by SugiBib in the
next section. On the other side, the obtained values can be used to realize a metric based testing
approach for a layout algorithm. This aspect will be discussed in Section 6.4.
In [Purchase 2002], several metric formulae for general graphs have been described to formally
analyze the result of a graph layout algorithm or to guide iterative methods like genetic algo-
rithms or simulated annealing. Based on assumptions like point-sized nodes and connected, sim-
ple graphs, metrics for crossings, bends, symmetry, minimum angular resolution as well as edge
and node orthogonality were defined. Some details of that work may also be reusable in our con-
text.
Beside the distinction of aesthetic criteria in mandatory, optional and user defined issues as it was
done in Section 3.3.6, we can distinguish the layout rules as well as the resulting metrics into

• structural rules, which reflect the validity of the diagram according to the underlying UML
specification, e.g. ,UML_SEMANTIC_CLUSTERS or aspects of overlapping of classes,
class interiors, relations or adornments. These rules summarize the UML requirements
as a modification and extension of the general grammar of node-link diagrams and must
hold on a valid diagram. Due to the layout results shown in Section 2.2.3 or [Eichelberger
2002b; Eichelberger and von Gudenberg 2003b], it is also important to capture these issues
by layout metrics.
For these metrics, a binary output, e.g., in {0,1} is sufficient, whereby 1 signals that the
measured aspect is valid in a concrete diagram. We will call these metrics decision metrics.

• reading issues. A large number of aesthetic principles like UML_HIERARCHY,
UML_MEDIAN or UML_ASSOCIATIONCLASSES are intended to support the percep-
tion of a UML class diagram by human beings. As shown in Section 3.3.6, some arise
from the default UML layout style, others from several disciplines involved in the task of
drawing and recognizing diagrammatic structures. Due to the conflicts between structural
complexity and perceptional simplicity, expressed by several priority levels, oftentimes the
rules are realized in a concrete diagram as far as possible.
For these metrics, a continuous measurement is appropriated. We will call these metrics
quality metrics.

The discussion above can be summarized as follows:

Definition 26 (layout metric)
A layout decision metric reflects the conformance of GR to the structural rules of a UML class
diagram. To reflect the severity of a basic diagramming rules p,

metricp : GR → {0,1}
must hold.
A layout quality metric is a function

metricp : GR → [0 . . .1] ⊂ R
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that returns a value representing the conformance of a layout result to a certain aesthetic prin-
ciple p or a combination of different principles in the case of a combined metric. The better p
is realized by GR, the higher metricp(GR) is required to be. If p considers a subset S of graph
elements and |S|= 0, metricp(GR) = 1 must hold.

aesthetic sub issue measured by
UML_GRAPHDRAWING GDR_EDGE_CROSS number of edge crossings
UML_GRAPHDRAWING GS_ORTHOGONAL number of non-rectilinear edges
UML_GRAPHDRAWING GDR_MIN_BENDS illegal bend situations
UML_GRAPHDRAWING GDR_MIN_EDGES superfluous edge length

UML_MEDIAN distance to median position
UML_ASSOCIATIONCLASSES distance of an association class

UML_COMMENTS distance of comments
UML_HIERARCHY conformance to vertical flow

UML_SPATIAL common shape of hierarchical layers
UML_NODES GDR_OVERLAP overlapping area

UML_SEMANTIC_CLUSTERS not entirely contained elements

Table 5.1: Layout metrics currently realized in SugiBib described by relations between UML
specific aesthetic principles and individual issues to be considered for a realization as metric.
The upper part of the table contains quality metrics, the lower part decision metrics.

Table 5.1 shows the set of aesthetic criteria, which were considered to be discussed as metrics
here. Furthermore, Table 5.1 displays basic ideas how to realize the individual metrics in the
sequence they will be discussed in this section.
We will assume a result graph to be measured, i.e., the graph contains all relevant information to
be drawn on a graphical context in terms of nodes and edges. Therefore, in this section, bends
will be represented as dummy nodes and edge paths as edge segments. Without loss of generality
we will assume normalized coordinates x ∈ N0.
For notational convenience, we introduce the following functions: Let

len(e) :=
√

(startX(e)− endX(e))2 +(startY (e)− endY (e))2

be the euclidian length of the edge e and A(v) := width(v) ·height(v) be the area of the bounding
box of node v. Let T be an arbitrary set of elements denoting types of nodes or edges. Similar
to the type of a node as introduced in definition 5, we will assume that an edge also provides
a function returning its type, i.e., when an edge e acts as the association class connecting line,
type(e) = ASSOCCLASS holds. Then

f ilter(V,T ) := {v : v ∈ V, type(v) 6∈ T}
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Figure 5.1: (a) an edge crossing situation, (b) an UML specific crossing situation.

f ilter(E,T ) := {e : e = {v,w} ∈ E, type(e) 6∈ T}
be filter functions which return nodes or edges not being of a type specified in T , respectively.
When giving the notation of the metric formulae, some external parameters on how to consider
separate aspects of an individual measurement will implicitly be defined. These parameters will
be given by Greek letters and must be defined before measuring concrete diagrams. At the end
of this section, an example will demonstrate the usage of our formulae. In the context of that
example, concrete values for the metric parameter will be specified.

Edge Crossings

Using theorem 3 we have

m(GR) = 1−
{

K(GR)
|E|2 : if |E|> 0
0 : otherwise

as an obvious proposal of a measurement for GDR_EDGE_CROSS in which the number of cross-
ing K(GR) is scaled against the maximum number of crossings. In [Purchase 2002] a more sen-
sitive scaling was suggested in which |E|·(|E|−1)

2 was decreased by the number of impossible
crossings in straight-line drawings of connected graphs.
Due to our convention of considering a result graph, which contains edge segments and
dummy nodes, we propose a scaling based on the number of edge chains instead of individ-
ual edges. In Figure 5.1 (a) m(GR) = 1− 4

49 = 45
49 ≈ 0.92 and the Purchase scaling would lead

to 1− 4
21 = 17

21 ≈ 0.82. A scaling based on the square number of edge chains would return
1−min{1, 4

9} = 5
9 ≈ 0.56. Without application domain specific corrections to the number of
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edge crossings, e.g., to consider the default UML layout style so that vertically connected asso-
ciation classes appear below the related association, Figure 5.1 (b) would be judged as follows:
m(GR) = 1− 1

9 = 8
9 ≈ 0.89 and according to the Purchase scaling 1− 1

3 = 2
3 ≈ 0.67. When the

default UML layout style is considered, 1 would be the result.
Also because of practical experience in testing the implementation, we prefer the scaling accord-
ing to edge chains with respect to UML specific corrections. Let

chains(GR) := |{(v,w) : ¬isHidden(v) ∧ ¬isHidden(w) ∧ ∃ k ≥ 0, ~e0=(v,v1),... ~ek=(vk,w) ∀ vi isHidden(vi)}|

be the number of edge chains in GR, whereby an edge chain is a path, which connects two visible
nodes via an arbitrary number of dummy nodes. Let Ka(GR) ≤ K(GR) be the number of allowed
crossings in GR due to the application domain, e.g., at association classes. Then, from a practical
viewpoint, the more appropriate metric is defined by

mcross(GR) := 1−
{

min
{

1, K(GR)−Ka(GR)
chains(GR)2

}
: if |chains(GR)| > 0

0 : otherwise

The less edge crossings (per edge chain) occur, the more close to 1 is the value of mcross(GR).
Hence, the less edge crossings the better the aspect of layout quality measured by mcross(GR).

Rectilinear Edges

For non-hierarchical edges, which are drawn orthogonally in SugiBib according to
UML_HIERARCHY, this metric simply counts the number of non-conforming edges. Let

f ail(E) := {e : e ∈ E, startX(e) 6= endX(e) ∧ startY (e) 6= endY (e)}
be the subset of edges of E which are not rectilinear and joined(E) ⊂ E the subset of edges of E
which are joined according to UML_JOIN. We will not take the connecting lines of comments
and association classes into account here, because individual minimum length constraints will be
considered by specialized metrics. With

f ilter(E) := f ilter(E,{COMMENT ,ASSOCCLASS})

notRectilin(E) :=

{ | f ail( f ilter(E))|
| f ilter(E)| : if | f ilter(E)| > 0

0 : otherwise

is the judgment on rectilinear edges for a given set of edges. Then

mrectilin(GR) := 1− α ·notRectilin( joined(EH))+β ·notRectilin(EN)
α +β

is the appropriate metric with α,β ≥ 0 and α +β 6= 0 as given scaling values, e.g., to emphasize
failures on non-hierarchical edges. The more non-rectilinear edges for a given set of edges occur,
the higher notRectilin(E) and the lower mrectilin(GR) is.
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Bends

From the viewpoint of graph drawing, the number of bends is an indicator of quality to compare
different graph drawing algorithms. In [Purchase 2002], two views on a graph are used to define
a metric which judges the number of bends (GDR_MIN_BENDS). Beside the polyline drawing
of a graph, an auxiliary straightline graph is derived by bends promotion. The number of bends,
the difference between the numbers of edges of the two graphs, is then normalized against the
number of edges in the straightline drawing.
We analyze the graph for avoidable bend situations as follows: Figure 5.2 shows the situations

(a) (b) (c) (d)

Figure 5.2: Avoidable bend situations: (a) hierarchical edge chain, (b) flat flat edge chain between
neighbors, (c) top flat edge chain, (d) Z-shaped edge chain

which lead to avoidable, probably visually unpleasing layout situations. While in (b) and (c) a
bend must not occur, because straight lines can be used instead, the bend in (a) and (d) can be
avoided, if no other node is overlapped by using an alternative route depicted as dotted lines.
Let #bendsH the number of hierarchical bends, #avoidableH the number of avoidable situations
at hierarchical relations according to Figure 5.2 (a), then bendsH(GR)

bendsH(GR) :=
{

0 : if #bendsH = 0
#avoidableH

#bendsH
: otherwise

is the ratio between avoidable situations and number of bends at hierarchical edges. The higher
the number of avoidable bends is, the more close to 1 bendsH(GR) is. Let #bendsN , #avoidableN
and bendsN(GR) be defined similarly according to Figure 5.2 (b) to (d).
Finally, with α,β ≥ 0 and α +β 6= 0 as given scaling values, e.g., to emphasize failures on bends
at non-hierarchical edges,

mbends(GR) := 1− α ·bendsN(GR)+β ·bendsH(GR)
α +β

judges the bends situation in GR.

Edge Lengths

Let reqLen(e) be the required edge length of e, which is defined as the space allocated by the
textual and graphical adornments, the nodes next to the edge segment and the minimum node dis-
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Figure 5.3: Calculating the required size of a horizontal edge.

tance between neighbored nodes, if present. Figure 5.3 illustrates the influences of adornments
and neighbored nodes for a non-hierarchical edge. Similar considerations can be made for hier-
archical edges.
Let min(e) := min{reqLen(e), len(e)} and max(e) := max{reqLen(e), len(e)} . min(e)

max(e) = 1 will
occur only, if the length of an edge conforms to the required (minimum) length. If an edge is
shorter than the minimum length, reqLen(e) < len(e) and min(e)

max(e) < 1 holds. Similarly, if an edge

is longer than the minimum length, len(e) < reqLen(e) and min(e)
max(e) < 1 is true.

Furthermore, let f ilter(E) := f ilter(E,{COMMENT ,ASSOCCLASS}) because comment and
association class connecting edges will be considered by individual metrics. Then

edgeLengths(E) :=


∑

e∈ f ilter(E)

min{reqLen(e),len(e)}
max{reqLen(e),len(e)}

| f ilter(E)| : if | f ilter(E)| > 0
1 : otherwise

measures the conformance of the edges in E to their individual required size. Finally, with α,β ≥
0 and α + β 6= 0 as given scaling values, e.g., to emphasize non-conformance at hierarchical
edges,

medgeLengths(GR) :=
α · edgeLengths(EH)+β · edgeLengths(EN)

α +β
is a metric for GDR_MIN_EDGES.

Positions of Parents and Children

According to UML_MEDIAN, this metric takes the individual positions of hierarchical edges
into account and calculates the sum of the differences to a median balanced layout. For vertical
ports let Ex(v) := topPorts(v) ∪ bottomPorts(v) be the set of edges to be considered on node
v. Let furthermore x(e,v) be the horizontal position where e is attached to v given by either
startX(e) or endX(e). Then

mx(v) :=


∑

e={v,w}∈ Ex(v)
x(e,v)−x(e,w)

∑
e={v,w}∈ Ex(v)

|x(e,v)−x(e,w)| : if |Ex(v)| > 0

0 : otherwise

calculates the differences of the edges in Ex(v) compared to a (theoretical) straightline layout. Let
mx(GR) := ∑

v∈ V
mx(v) be the aggregated distances for all nodes in GR. Furthermore, let my(GR)
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be similarly defined on the vertical ports of all nodes.
To compose a metric of these two measurements, we have to consider that mx(GR),my(GR) ∈
[−1,1]. Therefore, with α,β ≥ 0 and α + β 6= 0 as scaling values, e.g., to disable influences of
vertical ports,

mmedian(GR) :=
α · (1+mx(GR))+β · (1+my(GR))

2 · (α +β )

calculates a metric, which expresses the conformance to UML_MEDIAN.

Association Classes

For UML_ASSOCIATIONCLASSES we simply consider the distance of association classes, be-
cause most illegal situations like overlappings or edge crossings are described by other aesthetic
criteria and are therefore handled by other metrics. Similar to the positioning of association
classes described in Section 4.9.1, the minimum distance of individual association classes can be
calculated. We omit a detailed discussion on that here.
Let δmin(v) be the minimum distance between an association class v and the dummy node sim-
ulating the hyperedge connection point. Furthermore, let δ (v) be the euclidian length of the
(dashed) edge connected to v and let

AC(GR) := {w : w ∈ V, type(w) = ASSOCCLASS}

be the set of association classes in GR. Similar to the description of edgeLengths(E), a part of
the edge lengths metric,

massocClass(GR) :=


1

|AC(GR)| · ∑
v∈ AC(GR)

min{δmin(v),δ (v)}
max{δmin(v),δ (v)} : if |AC(GR)| > 0

1 : otherwise

defines a metric for association class distances. If massocClass(GR) = 1, no association classes are
present or all association classes are positioned in a proper distance. The less massocClass(GR) is,
the larger the differences between the minimum distance and the visible distance of association
classes appear.

Comments

As defined for UML_COMMENTS, connected comments can be treated akin to association
classes. Let

CS(GR) := {w : w ∈ V, type(w) = COMMENT ∧ d(w) > 0}

be the set of connected comments. As for association classes, let δmin(v,w) be the minimum
distance between a comment v and the connected node w, which also may be the dummy node
simulating a hyperedge connection point at an edge. Furthermore, let δ (v,w) be the euclidian
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length of the (dashed) edge, which connects the comment v to w. Then, connected comments can
be handled by

mcc(GR) :=


1

|CS(GR)| · ∑
v∈ CS(GR)

1
|V−(v)∪ V+(v)| · ∑

w∈ V−(v)∪ V +(v)

min{δmin(v,w),δ (v,w)}
max{δmin(v,w),δ (v,w)} : if |CS(GR)| > 0

1 : otherwise

mcs(GR) = 1, if all connected comments are close to their connected elements. Thereby,
δmin(v,w) considers cases like all connected elements are be placed in a line aside from the
comment or all connected elements surround the comment.
For disconnected comments, the closeness to the border of the drawing can be taken into account.
Let

CD(GR) := {w : w ∈ V, type(w) = COMMENT ∧ d(w) = 0}
be the set of disconnected comments and

CB(GR) := {w : w ∈ V, type(w) = COMMENT ∧ ¬∃ v∈ V type(v) 6= COMMENT ∧
(le f t(v) < right(w) ∨ right(v) > le f t(w))}

be the set of comments which are not placed at the border of the graph. Then

mcd(GR) :=

{ |CB(GR)|
|CD(GR)| : if |CD(GR)| > 0

1 : otherwise

considers disconnected comments. mcd(GR) = 1, if no other nodes are located between a discon-
nected comment and the border and mcd(GR) = 0 if all disconnected comments are surrounded
by other model elements.
Finally,

mcomment(GR) :=
mcc(GR)+mcd(GR)

2
is the combined metric for measuring the positions of comments.

Conformance of Hierarchical Edges

Hierarchical edges should be compliant to the default UML layout style and should emphasize
the (pseudo) hierarchy according to UML_HIERARCHY. We will assume that the start node of a
hierarchical edge is always assigned to a lower rank number than the end node and the (virtual)
root of the hierarchy is assigned to rank 0. This induces a standard flow, which, due to the default
layout style, might not always be appropriate, i.e., when inheritance relations and dependencies
are considered as hierarchy, on dependencies it may be sufficient, that the participants are located
below each other in different ranks but the direction of the edge may not be relevant.
Therefore, let dir(e) → [−1,1] be a function, which returns the valid direction for the hierarchical
edge e, i.e., in certain cases it might also allow reversed hierarchical edges. Hence, if dir(e) ·
(r(w)− r(v)) > 0 the edge connecting w and v is compliant to UML_HIERARCHY.
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Because non-hierarchical edges may be flat or multi-level edges as introduced by definition 17,
we do not take them into account here. Therefore, the straightness of hierarchical edges as an
aspect of UML_HIERARCHY can be measured by

mrankAssign(GR) :=

 1
2 +

∑
~e=(v,w)∈ EH (GR)

dir(~e)·(r(w)−r(v))

2·|EH(GR)| : if |EH(GR)| > 0
1 : otherwise

The closer mrankAssign(GR) is to 1, the more the hierarchical edges emphasize the (pseudo-)
hierarchy due to different ranks and an overall flow influenced by dir(e).

Common Layout for all Hierarchy Levels

Nodes in a rank should be laid out according to a common principle as an aspect of
UML_HIERARCHY and UML_SPATIAL. The “ranks” required by the aesthetic principle should
have a similar shape and should be oriented to the same geometrical direction. Applying this to
arbitrary tools, the metric might be confronted with various shapes like concentrical ring layouts,
hyperbolic trees, stars, horizontal or vertical lines. We will avoid a preselection to a certain shape,
because detailed layout issues and, therefore, the spacial distribution of nodes is not specified by
UML. Due to our experience, the default UML layout style of horizontal lines is preferred.
Figure 5.4 shows some of the shapes to be considered by our metric. Figure 5.4 (a) depicts ranks
according to the default UML layout style. Vertical levels may occur when the default direction
of the hierarchy is changed. A combination of horizontal and vertical shapes, as shown in Fig-
ure 5.4 (c), may occur when the tip-over convention [Sugiyama 2002; OMG 2003d] is applied to
UML class diagrams. Figure 5.4 (e) is dedicated to concentrical ring layout or hyperbolic layout.
In [Gröhling 2003] the development of this metric and some disappointing trials have been de-
scribed.
The metric consists of two parts. The first considers the direction of the ranks, the second the
overlapping areas of the ranks.
According to experience, the direction ϕ(σr) of σr in degrees was defined as the angle of the line
which maximizes the distance of the central coordinates of all nodes in σr. Then

ϕ(GR) := max
0≤ r1 6=r2<n

|ϕ(r1)−ϕ(r2)|

is the maximum angle of all ranks in GR.
Taking only the direction of ranks into account, circular ranks might receive an appropriate value
but this depends on the concrete positions of the nodes admitting the maximum distance. This is
illustrated in Figure 5.4 (e). Furthermore more exotic shapes (like a “V” or similar more theoretic
ideas) might be considered by average directions only. To provide an appropriate value in these
cases, also the shapes of the ranks based on the individual convex hulls are considered. Because
even similar rank shapes may have various sizes as depicted in Figure 5.4 (a), comparing the
areas of the convex hulls would be misleading.
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Figure 5.4: Various rank shapes to be considered by mrankShape. The largest rank in the first row
was assumed as the size of the entire graph.
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len(e(C1,C3),C2)>0
len(e(C1,C3),C1)=0

A(p,C3)=0
A(p,C1)>0
len(e(C3,C4),p)=0
len(e(C2,C1),p)>0

C1

C2 C1 C2 C3

(a) (b)

A(C1,C2)>0

p

C2 C3 C4

C1

(c)

Figure 5.5: Overlapping situations, which are implicitly handled by the overlapping area A(v,w)
and the overlapping length function len(e,v).

Therefore, the hulls are smoothed, to avoid variances because of different node sizes, and are
scaled with respect to the maximum area induced by the entire graph. Then, the common area of
all scaled hulls of all ranks is compared with the area of the graph. This improves the measure-
ment in Figure 5.4 (e) and decreases the values in the case of various rank shapes in the same
graph as desired.
Let CH(σr) ⊂ N2

0 be the convex hull of rank r considering visible nodes only, let A : N2
0 → R be

the area occupied by a specified set of points and let A(GR) be the area of the bounding box of
GR. Furthermore, let s : GR×N2

0 → N2 be a scaling which resizes the bounding box of the input
area to the bounding box of GR to normalize it.

mrankShape(GR) :=

 (1− ϕ
90o ) ·

A(
n−1⋂
r=0

s(GR,CH(σr)))

A(GR) : if |V | > 0
1 : otherwise

Even if the absolute values in some cases like circular layout might be less then expected,
mrankShape admits correct tendencies among similar ranks.

Overlapping Elements

Due to UML_NODES and UML_EDGES, neither nodes nor edges should overlap except for
edges, which are allowed to connect inside a node. Even if node overlapping can be avoided using
appropriate basic functions for node movement and placement, overlappings between nodes and
edges may occur due to layout situations which are not (completely) handled by heuristics.
Let len(e,v) ≤ len(e) be the length of the overlapping part of edge e with node v, len(e, f ) ≤
min{len(e), len( f )} be the length of the overlapping part of the edges e and f , and A(v,w) the
overlapping area of the nodes v and w. As depicted in Figure 5.5, it is assumed that len(e,v) as
well as A(v,w) handle non-overlapping situations at nested elements correctly.
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Consequently,

moverlap(GR) :=

 0 : ∃ e∈ EH ∪ EN len(e,v) > 0 ∨ ∃ e, f ∈ EH ∪ EN , e6= f len(e, f ) > 0 ∨
∃ v,w∈ V, v6=w A(v,w) > 0

1 : otherwise

denotes the binary overlapping elements decision metric. moverlap(GR) = 1 if no overlappings
occur in GR and moverlap(GR) = 0 in the case of erroneous overlappings.

Cluster Containment

A node which is contained in another node by nesting relations must neither overlap the
boundary of its cluster parent nor be placed completely outside the area of its cluster parent
(UML_SEMANTIC_CLUSTERS). For this metric we simply count the overlapping nodes. Alter-
natively, the erroneous overlapping area might be calculated instead but overlappings at clusters
are erroneous situations regardless the overlapping area.

overlap(v) := {w : w ∈ compoundParents(v), le f t(w)+δl(w) > le f t(v) ∨
right(v) > right(w)−δr(w) ∨ top(w)+δt(w) > top(v) ∨
bottom(v) > bottom(w)−δb(w)}

is the set of cluster parents which are overlapped by v. Cluster specific distances to inner nodes
are denoted here by δx(w),x ∈ {t, l,r,b}. Then

mcluster(GR) :=
{

0 : ∃ v∈ V overlap(v) > 0
1 : otherwise

denotes the binary cluster containment decision metric. mcluster(GR) = 1 if all nested nodes are
properly contained in all their cluster parent nodes and mcluster(GR) = 0 in the case of erroneous
overlappings.

Combining Metrics

The metrics defined in this section appear as individual measurements. A single value, which
characterizes the layout quality of an UML class diagram would also be appreciated. Let Md be
the set of decision metrics and Mq be the set of layout quality metrics so that M = Md ∪ Mq. To
gain a single value reflecting the layout quality of a diagram, we can simply multiply the decision
metrics and combine the quality metrics according to the arithmetic mean over the individual
metric values:

maggregated(GR) := ∏
i∈ Md

mi(GR) ·
∑

i∈ Mq

mi(GR)

|Mq|
maggregated(GR) treats all quality metric values the same and, except of the decision metrics, does
not consider the priorities of our aesthetic principles. Therefore, with respect to priorities, we can
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combine the individual metrics as follows:

mweighted(GR) := ∏
i∈ Md

mi(GR) ·
∑

i∈ Mq

αi ·mi(GR)

∑i∈ Mq αi

where ∀ i∈ Mαi ≥ 0 and ∑
i∈ M

·αi 6= 0 reflect the priorities, e.g., as displayed in Table 3.3. More

emphasize on the priorities can be achieved by

msqWeighted(GR) := ∏
i∈ Md

mi(GR) ·
∑

i∈ Mq

γi ·mi(GR)

∑i∈ Mq γi
with γi :=

 αi

max
j ∈ Mq

α j

2

When presenting metric values below, we will mention concrete values for these three combina-
tion formulae, even if we prefer msqWeighted .
More issues on combining metrics and software measurements can be found in [Zuse 1998].

Example

To demonstrate the application of our basic metrics set, we consider the following two diagrams.
Figure 5.6 shows an UML class diagram laid out by an arbitrary mechanism. Figure 5.7 depicts
a readable version of Figure 5.6.
For each individual metric, Table 5.2 shows the parameter values left open above and the individ-
ual metric weights αi to reflect the priorities according to Table 3.3. Furthermore, the individual
metric values as calculated from both diagrams and the aggregated or combined metric value are
displayed. In Figure 5.6, an edge crossing (association class connecting line with generalization
between C1 and C3), different overlays of two nodes (C4 with I1) or edges with edges (C5 to
C2) and a problem at the reflective edge at C5 are shown. It is obvious, that some measurements
will not receive the maximum value 1 and the entire judgment of the diagram will be 0, because
overlappings are considered as a binary decision metric. Figure 5.7 looks much better, in partic-
ular, our aesthetic principles were kept in mind while drawing the diagram. mmedian cannot be 1,
because C5 is not at median position below C2 and some edges could be drawn shorter.
The concrete values in Table 5.2 emphasize the basic validity of our formulae. More examples
will be given in terms of a comparison of three layout algorithms for UML class diagrams in the
next section.
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C1C2

C3

<< interface >>
I1

 

C4
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AC1

Figure 5.6: An arbitrary UML class diagram for the demonstration of the layout metrics.

C1

C2 C3

<< interface >>
I1

 

C4

C5

AC1

Figure 5.7: More appropriate drawing of Figure 5.6.
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metric parameter αi Figure 5.6 Figure 5.7
mcross - 1 0.98 1.0
mrectilin α = 0,β = 1 1 0.88 1.0
mbends α = 1,β = 1 1 0.5 1.0
medgeLengths α = 0,β = 1 1 1.0 0.71
mmedian - 6.1 0.91 0.95
massocClass - 4.5 0.8 1.0
mcomment - 4.1 1.0 1.0
mrankAssign α = 1,β = 0 6.4 1.0 1.0
mrankShape - 6.3 0.67 1.0
moverlap - 5.4 0.0 1.0
mcluster - 6.1 1.0 1.0
maggregated 0.0 0.96
mweighted 0.0 0.98
msqWeighted 0.0 0.99

Table 5.2: Metric values of the diagrams shown in this section.

Conclusions

In this section, we have discussed the definitions of selected layout metrics intended to measure
the validity as well as the quality of the layout of UML class diagrams according to our set of
aesthetic principles introduced in Section 3.3.6.
Implementing the definitions of the layout metrics, our dream of automatically and objectively
comparing the layout results of existing UML tools briefly mentioned in Section 3.3.7 can be-
come reality. Therefore, we need a tool which is able to process the layout results of all UML
tools to be analyzed. To get the data, the analyzing tool may

• be directly integrated into the tool to be measured. Most tools provide an Application Pro-
gramming Interface (API) for plug-ins, e.g. layout engines or code generators. Because no
common API for UML tools was specified so far, most tool vendors provide an own, pro-
prietary interface. Hence, it would take an enormous effort to make a small measurement
tool compatible to more than 40 different UML tools.

• access the data storage system of the UML tool instead of interacting with the program.
Most of the UML tools rely on their own implementation of a repository mechanism and
because most tools, as pointed out in Section 2.2.3, are not fully compliant to current
versions of the UML, we can expect that these repository mechanisms will also differ
in various features. Access interfaces like JMI [SUN JCP 2003] may provide a common
API to the storage mechanism of UML tools somewhen in future. Even if JMI seems to
be a general mechanism, because it generically relies on XMI, it is closely related to the
Java programming language. Furthermore, other metadata interfaces like EMF/UML21

1http://www.eclipse.org/uml2/
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might be taken into account by individual tool vendors. As long as no industrial standard is
released (e.g. by OMG), there will be no guarantee of convergence of the tools considering
that aspect.

• rely on XMI[DI] [OMG 2003b] which was accepted as a final adopted specification of
OMG in September 2003. According to the experience on the compliance of UML tools
discussed in Section 2.1.3, it will take further years to align the individual metamodel
interpretations to XMI and the individual graphical implementations to XMI[DI].

Diagrams provided from outside, in particular if they are given in XMI[DI], carry UML related
structural and semantical information and layout specific information, like positions or sizes, to
draw the diagram. Some metrics, like mrankAssign or mrankShape, require additional information
on the edges partitions EH and EN as well as on the rank assignment σ . This can be achieved
by reusing some steps of the preprocessing and rank assignment macro phases of the SugiBib
algorithm as follows:

1. Create a UML specific input graph GI from the external information. As mentioned in
Section 4.2, layout information cannot directly be assigned to node and edge instances.
Therefore, assign appropriate incremental layout information objects to nodes and edges.
Determine the extents of adornments and other textual information and fix the data accord-
ing to the information object life cycle shown in Figure 4.10.

2. Transform GI directly to a result graph GR. Thereby, the positions of the graph elements is
determined from the information in the incremental layout objects.

3. Store the given identifiers of nodes and attach unique identifiers to all nodes of GR.

4. Detect EH by considering the type of edges and their positions only.

5. Let V ′ = {v : v,w ∈ V, v 6= w, e = {v,w} ∈ EH} be the set of nodes connected by edges in
EH . Create the hierarchical subgraph G′ = (V ′ ,EH) of GR.

6. Break cycles of G ′ by reversing appropriate edges (Section 4.4.11) and perform a basic
rank assignment, e.g., by executing the network simplex algorithm as described in Sec-
tion 4.5.4.

7. Transfer the rank information back into GR by considering the unique identifiers on nodes.

8. Assign the remaining nodes of V\V ′ to ranks by selecting the most appropriate rank con-
sidering positional information only. Additional ranks may be introduced in this step.

9. Restore the initial identifiers on nodes.

Via the metrics implementation, JMI and XMI[DI], SugiBib itself becomes its own measuring
tool and represents the advent of the realization of our measurement dreams depending on the
adaption of the standards and proposals by industry. Furthermore, the layout results of SugiBib
can be analyzed by the metrics tool and recorded for a metrics based testing approach, which
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will be described in Section 6.4.
Compared with more theoretic work from HCI, our approach might appear trivial: Different lay-
outs influence, how many artifacts users have to compare and calculate. Combined with further
measurements arising from reading and writing artifacts, the measurement of the visual com-
plexity (ViCo) of diagrams was attacked in [Gärtner et al. 2002]. Even if it would be interesting
to validate, if our measurements emphasize similar tendencies, the measurements of the visual
complexity requires real user groups or at least a user simulation.

5.2 Layout Comparison
The wise man does not permit himself to
set up even in his own mind any com-
parisons of his friends. His friendship is
capable of going to extremes with many
people, evoked as it is by many qualities.

Charles Dudley Warner (1829 – 1900)

In this section, we will compare implementations of other layout algorithms dedicated to UML
class diagrams to the features of SugiBib. We decided to focus on GoVisual and yFiles (jarIn-
spector/yWorksUML), which were briefly introduced in Section 2.2.3. Due to the disappoint-
ing results in [Eichelberger and von Gudenberg 2003b], we will not take layout mechanisms of
CASE tools into account.
A comparison between SugiBib and jarInspector/yFiles was presented in [Eiglsperger 2003].
Both algorithms seemed to support the typical graph drawing properties discussed in multiple
publications, e.g. [Battista et al. 1999; Waddle 2001]. The topology-shape-metrics approach sup-
ports a balanced aspect-ratio but increases the number of edge crossings, the hierarchical ap-
proach produces a lower height but a larger width of the drawing and usually admits less edge
crossings. Aspects specific to UML class diagrams were not discussed in [Eiglsperger 2003].
For our evaluation, we tried to get implementations of these two layout tools, but both did neither
provide an editor for UML class diagrams nor an appropriate input mechanism, e.g., for XMI.
Therefore, we decided to use a CASE tool, for which layout plug-ins realized by GoVisual and
yFiles are available. We considered Gentleware Poseidon as CASE tool, because it also provides
input and output of the UML model in XMI[DI] as a common format, which is also supported
by SugiBib2.
To do a fair comparison between the three layout algorithms, we first have to identify common
features. This will be done by analyzing the compliance to those of our aesthetic principles from
Section 3.3.6, which are closely related to the UML specification, i.e., the mandatory criteria
and two optional criteria. Therefore, several diagrams, each reflecting the specific aspects of an
individual aesthetic criterion, were specified in Poseidon and laid out by both plug-ins, always
taking the manual drawing as input for a layout plug-in. These diagrams can also be laid out by

2Many thanks to Per Pascal Grube and Dian Dochev for the tricky XMI[DI] implementation, which was realized
even if specification and documentation of the used components admitted reverse engineering tasks.
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SugiBib, due to the support of XMI[DI]. Then, the layout results of diagrams, which share these
common features, can be compared.
We used Poseidon 2.5 Professional Edition with GoVisual 1.3 and yWorksUML 1.1 as lay-
out plug-ins3. In contradiction to the online information on the plug-ins, GoVisual 1.4 and
yWorksUML 1.3 did not run on Poseidon 2.5. Furthermore, we tried Poseidon 3.0 Profes-
sional Edition with an evaluation license to also consider the newer versions GoVisual 1.5 and
yWorksUML 1.4. Unfortunately, we were not able to run GoVisual 1.4 on Poseidon 3.0 due to
a Java exception. yWorksUML 1.4 produced the same results as yWorksUML 1.1 on Poseidon
2.5.

package_1

Class_1

Class_2

Class_4

Figure 5.8: Layout of contained elements in yWorksUML. Two associations are hidden below
the generalization between Class_1 and Class_4. A similar result was produced by GoVisual.

Figure 5.9: Layout of Figure 5.8 by SugiBib.

3Many thanks to the Gentleware Company for providing the appropriate licenses for the test.
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Table 5.3: Feature matrix of current UML layout tools. Most optional aesthetic criteria were not
considered in this test. ◦ signals that the CASE tool does not support the UML feature, ∇ denotes
that the plug-in accidentally shuts down the CASE tool.
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The GoVisual plug-in provides several layout methods like an UML specific one, orthogonal
layout, incremental layout, hierarchical layout, symmetric layout and tree layout. Due to the
structure of a UML class diagram, oftentimes only the UML specific one and the incremental
layout can be applied. Furthermore, the plug-in provides various user options like component
distance, class coloring, preferred orientations or several importance preferences.
yWorksUML provides a method for entirely or incrementally laying out a UML class diagram.

Class_1

Class_2

Association_Class_1

Class_3

Figure 5.10: Layout of an association class in further relations. GoVisual produced an accidental
shutdown of Poseidon.

Figure 5.11: Layout of Figure 5.10 by SugiBib. A perfect drawing according to the default UML
layout style.

Furthermore, options like overlap-free label placement, preferred directions and shared or
individual target style on some kinds of edges can be specified by the user.
Table 5.3 shows the summary of the results of the compliance analysis for the layout algo-
rithms. In general, the UML features of GoVisual and yWorksUML are directly aligned to
the capabilities of the CASE tool. Unfortunately, Poseidon does not provide a complete UML
implementation, e.g., n-ary associations, anchors, hyperedges or the edge crossing symbol are
missing in both versions. Poseidon 2.5, which is dedicated to UML 1.x, solely provides packages
but not models or subsystems as model management elements. Contained elements can visually
be specified in Poseidon.
In particular, the differences shown in Table 5.3 arise from realizing different philosophies:
Both approaches from the graph drawing community lay strong emphasize on a more graph
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layout specific viewpoint, e.g., by introducing software related hierarchies as constraint into
a non-hierarchical layout algorithm. As a different viewpoint, our approach is based on the
default layout style implicitly suggested by UML and derived aesthetic criteria discussed in
Section 3.3.6.
Both layout plug-ins strongly emphasize a hierarchical orientation for certain edges. In
GoVisual, only inheritance edges are considered for a hierarchical layout, the other edges are
drawn in orthogonal, non-hierarchical fashion. In yWorksUML, inheritance and realization
relations can be laid out in hierarchical style, the other edges are then drawn in rectilinear grid
fashion with vertical direction.
In GoVisual as well as in yWorksUML, packages are treated as top-level nodes, e.g., like usual
classes. Contained elements are not considered as individuals by the layout algorithms and in
the layout result, nodes appear to be unbalanced and edges overlay each other as depicted in
Figure 5.8.
We have also tested association classes. It seems that yWorksUML treats an association class
like an usual class and produces overlappings as shown in Figure 5.10. GoVisual accidentally
produced a shutdown of Poseidon so that the user was not able to store the current work.
Surprisingly, GoVisual was able to handle a comment at an association. In other situations,
GoVisual as well as yWorksUML treated comments as usual nodes.
On GoVisual as well as on yWorksUML we found that the size of nodes are kept as specified.
Instead of scaling individual elements, bends and additional layers are introduced. In particular,
yWorksUML partly produces larger diagrams than necessary. In fact, yWorksUML provides
more options on the treatment of the semantics of edges than GoVisual, e.g., which kinds of
edges to be considered for hierarchical aspects, while GoVisual considers inheritance but no
realization edges for hierarchy only. Both programs provide an incremental layout method,
which oftentimes produces unpleasing artifacts like overlays or non-orthogonal edges on
prerouted edges, e.g., after importing a XMI[DI] file written by SugiBib. In yWorksUML,
oftentimes also the non-incremental layout mechanism produced unpleasing drawings due to
prerouted edges, e.g., to obtain Figure 5.13 all bends were removed from the diagram before
executing the layout algorithm.
Hence, the set of common features with respect to Poseidon as underlying CASE tool are simple
class diagrams containing classes, various types of edges but no packages, n-ary associations,
hyperedges, etc.
As a summary, Table 5.4 shows the judgment of the layout results according to the layout
metrics defined in Section 5.1. The values show that the metric formulae are able cap-
ture the layout situation of the shown diagrams. For GoVisual and yWorksUML, moverlap
forced 0 as result on the package diagram, because the associations were overlaid by
an inheritance edge. The same is true for the association class test on yWorksUML.
On that diagram, the hierarchy detection of the metrics calculation considers associ-
ation edges as hierarchy. Therefore, mrankAssign also returns a perfect measurement.
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Attribute

initialValue :Expression

Element

Constraint

body :BooleanExpression

GeneralizableElement

isRoot :Boolean
isLeaf :Boolean
isAbstract :Boolean

Operation

concurrency :CallConcurrencyKind
isRoot :Boolean
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isAbstract :Boolean
specification :String

Method
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StructuralFeature
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+type?

 

+constraint? *
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behavioralFeature? 0..1
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Figure 5.12: Layout of a simple class Figure 5.13: Layout of Figure 5.12
diagram by GoVisual. diagram by yWorksUML.

Figure 5.14: Layout of Figure 5.12 or Figure 5.13 by SugiBib.
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Table 5.4: Metric values of the diagrams shown in this section. Parameters and priority weights
were chosen to be the same as in Table 5.2. No values for the GoVisual version of Figure 5.11,
because the layout plug-in accidentally caused Poseidon to terminate.
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For the simple class diagram, the values of GoVisual are low due to the long association routes
and the inheritance edge from Namespace to ModelElement, which was laid out against the
general bottom-up flow for hierarchical edges. The values of SugiBib are sightly lower than the
values of yWorksUML, because of the node scaling feature: medgeLengths and mrankShape return
better values for smaller, equal sized nodes.
Figure 5.12 up to 5.14 show the drawing of a simple class diagram by GoVisual, yWorksUML
or SugiBib, respectively. The drawing by yWorksUML and SugiBib reveal a clear hierarchical
structure of inheritance edges, while the drawing by GoVisual produces a rectangular drawing
with without consequently considering the semantics of the edges.
One-layer layouts, which were discussed as design quality indicators in Section 3.3.7, were not
considered in this comparison.
In conjunction with Section 2.2.3, we can conclude that GoVisual and yWorksUML pay more
attention to graph drawing aspects of UML class diagrams than to specific structural and seman-
tical issues of UML class diagrams. Even if our aesthetic criteria in Section 3.3.6 might appear
as artificial at a first glance, some main aspects are also considered by graph drawing tools like
yWorksUML. Hence, we can conclude that our layout algorithm realized by SugiBib provides a
unique set of aesthetic principles deduced from UML, graph drawing, HCI, software engineering
and software visualization.
In comparisons of layout algorithms, e.g., in [Eiglsperger 2003], often the runtime allocated by
the individual implementation is measured. In the next section, various results for SugiBib will
be given. To also provide an impression of the runtime allocation of the three implementations
considered in this section, we have laid out a diagram with initial 67 classes and 105 relations:
SugiBib (Java) took 2080 ms, yFiles (Java) 19887 ms and GoVisual (native) 71196 ms, whereby
the general features of the drawings reveal similar properties as in Figure 5.12 up to 5.14.

5.3 Runtime Measurements
Effort moves toward whatever is mea-
sured.

DeMarco’s Principle

In Chapter 4, we have intensively discussed practical and theoretical aspects of our layout ap-
proach for UML class diagrams. In this section, runtime values for each macro phase of the
algorithm will be presented. From Section 4.6.5, the question, which concrete crossing reduction
algorithm is appropriate for which kind of graph, was left open. Therefore, in this section, we
will make a decision on finding the most appropriate edge crossing reduction strategy for UML
class diagrams depending on the runtime of the implementation and the number of edge cross-
ings produced by individual strategies.
While the other measurements in this chapter were application domain specific metrics, in this
section we will focus on usual measurements from algorithm theory and graph drawing, namely
the runtime of parts of the implementation as well as the number of edge crossings both related
to the number of nodes or the density (the number of edges related to the number of nodes.
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On finding the most appropriate edge crossing reduction strategy, we might rely on general state-
ments in literature like:

On graphs that are more random and/or have several nodes of high degree, barycenter
does better than median (high-degree nodes need to be centrally located with respect
to their neighbors). Jünger and Mutzel [Jünger and Mutzel 1997] observed that the
barycenter heuristic does better than the median on random graphs of various sizes
and densities.

[Stallmann et al. 2001]

Such statements may apply to general graphs, but on application domain specific graphs like
UML class diagrams, other results might be obtained. Therefore, on a set of test class diagrams,
most of the edge crossing reduction algorithms realized in SugiBib will be taken into account for
a runtime and crossing number evaluation on UML class diagrams.
Even if SugiBib still provides the implementation of the barycenter and the median method from
the first version, both cannot be taken into account in general, because both do neither ensure
cluster-validity nor consider the node naming function. Therefore, we can select from the ex-
tended barycenter approach (with intertwined or postprocessing enforcement of the cluster va-
lidity), the extended intertwined or postprocessing median method with transpose heuristics and
our hierarchical approach.
The measurements have been collected running SugiBib on the standard JVM included in the
SUN JDK 1.5.0 and a Pentium 4, 3.0 GHz with 2 GByte main memory on SuSE Linux 9.1. 175
diagrams have been considered for runtime measurement. One of the diagrams is displayed in
Figure 5.15, further drawings will be presented in the appendix.
Figure 5.16-5.19 show the number of visible edge crossings in the layout results. We have also
registered the results of the backtracking approaches, which were briefly mentioned in Sec-
tion 4.6.5. The n-level backtracking algorithm [Eichelberger and von Gudenberg 2003a] visits
all nodes of a graph in a depth-first traversal on the hierarchical edges and permutes only nodes
in the current subtree. Unfortunately, this strategy is not able to change the initial sequence of
clusters due to issues of consistency. The deep n-level backtracking algorithm exchanges sub-
trees instead of individual nodes and is able to revisit all hierarchical children after a positional
change of a node.
From Figure 5.16-5.19 we can conclude that on most graphs in the test set the hierarchical method
calculates the lowest number of crossings, but also the extended median method (with postpro-
cessing cluster enforcement) and the deep n-level backtracking method deliver noteworthy re-
sults.
In Figure 5.20-5.23, the runtime allocated by the edge crossing algorithms is depicted. On small
graphs the n-level backtracking is faster than the other strategies, but on larger graphs it takes
an enormous time to compute a result. As predicted in Section 4.6.5, the median method outper-
forms the other methods in runtime.
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Figure 5.15: SugiBib drawing of a compound diagram with 90 visible nodes used for runtime
measurements. Edge crossing reduction was done by the hierarchical method, hopping of hidden
and visible nodes was activated.
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Figure 5.16: Various edge crossing reduction algorithms on
non-compound graphs by nodes.
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Figure 5.17: Various edge crossing reduction algorithms on
non-compound graphs by density.
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Figure 5.18: Various edge crossing reduction algorithms on
compound graphs by nodes.
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Figure 5.19: Various edge crossing reduction algorithms on
compound graphs by density.



274 5 MEASUREMENTS

 10

 100

 1000

 10000

 100000

 1  10  100  1000

tim
e 

[m
s]

nodes

HIERARCHICAL
EXBARYCENTER

EXBARYCENTER_POST
EXMEDIAN

EXMEDIAN_POST
NLEVELBACK

DEEPNLEVELBACK

Figure 5.20: Runtime of various edge crossing reduction algorithms on
non-compound graphs by nodes.

 1

 10

 100

 1000

 10000

 100000

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

tim
e 

[m
s]

density

HIERARCHICAL
EXBARYCENTER

EXBARYCENTER_POST
EXMEDIAN

EXMEDIAN_POST
NLEVELBACK

DEEPNLEVELBACK

Figure 5.21: Runtime of various edge crossing reduction algorithms on
non-compound graphs by density.



5.3 RUNTIME MEASUREMENTS 275

 10

 100

 1000

 10000

 1  10  100  1000

tim
e 

[m
s]

nodes

HIERARCHICAL
EXBARYCENTER

EXBARYCENTER_POST
EXMEDIAN

EXMEDIAN_POST
NLEVELBACK

DEEPNLEVELBACK

Figure 5.22: Runtime of various edge crossing reduction algorithms on
compound graphs by nodes.
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Figure 5.23: Runtime of various edge crossing reduction algorithms on
compound graphs by density.
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Considering runtime and crossing results from the test diagrams, we recommend to suggest two
strategies to the user: A fast crossing reduction with a probably higher edge crossing number by
the extended median method with postprocessed cluster alignment and the hierarchical method
for higher quality and longer runtime.
The theoretical runtime complexities have been summarized in Table 4.8. As mentioned in
Section 4.10, the theoretical results may differ from the effective runtime, which can be retrieved
from a concrete implementation. Therefore, in Figure 5.24-5.37, the results of the runtime
measurements for each individual macro phase related to the number of nodes or to the density,
respectively, are depicted.
The predicted runtime complexities fit to the measurements, even if the values for S11 and
S15 seem to have an exponential component. In particular, Figure 5.28 and Figure 5.32 appear
to be critical. Currently, not the entire source code of SugiBib has been revised according to
optimization issues. Only parts have been tuned, and we believe, that inefficient code from
ancient versions is responsible for these effects. In the initial measurements, all macro steps
required a certain setup time, which was consumed on each individual processing step by the
graph copy mechanism and by at least one main loop searching for the nodes or edges to be
processed.
In the current version of SugiBib, the graph copy mechanism as well as certain processing steps
are executed only, if they are required to process the concrete input graph. For example, S7, S12
and S16 are not executed, if no association classes are given in the input graph. Therefore, the
preprocessing macro phase (Figure 5.24-5.25), the intermediary macro phase (Figure 5.30-5.31)
and the postprocessing macro phase (Figure 5.34-5.35) show a high variation in the runtime
measurements compared with the other macro phases. Furthermore, the entire runtime of the
algorithm was reduced. Further source code and runtime optimizations will be discussed in
Section 6.5.
A significant runtime improvement without modifications to source code or the algorithms of
the framework can be obtained, by processing the Java byte code with a native compiler. A
native compiler produces an executable specific to a certain platform. Thereby, the platform
independence of the Java byte code is stripped off, various additional optimizations for native
code can be applied and security issues like different class loaders or runtime checks on the
integrity of the byte code can be removed or tuned. The program itself remains platform
independent, because the byte code can still be executed on a JVM, but on certain platforms, a
significant speedup can be obtained easily by running the native code. In [Eichelberger and von
Gudenberg 2004], we have shown that the runtime of a native compiled version of JTransform,
our object oriented Java source code processing framework, can be improved by more than 50%.
We conducted the native measurements on a Pentium 4, 3 GHz, 2 GByte main memory under Mi-
crosoft Windows XP Professional, because the current version of the native compiler JET4 is un-
fortunately not able to generate native code for SugiBib under Linux. JET 3.60 professional was
prepared for a SUN JDK 1.4.2, because JET is currently not able to process byte code for Java 5.

4http://www.excelsior-usa.com
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Figure 5.24: Preprocessing by nodes. Figure 5.25: Preprocessing by density.
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Figure 5.26: Rank assignment by nodes. Figure 5.27: Rank assignment by density.
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Figure 5.28: Edge crossing reduction Figure 5.29: Edge crossing reduction
by nodes (mean values). by density (mean values).
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Figure 5.30: Intermediary processing Figure 5.31: Intermediary processing
by nodes. by density.
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Figure 5.32: Coordinates assignment Figure 5.33: Coordinates assignment
by nodes. by density.
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Figure 5.34: Postprocessing by nodes. Figure 5.35: Postprocessing by density.
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Figure 5.36: Entire algorithm by nodes. Figure 5.37: Entire algorithm by density.

To run the same measurement scripts as on Linux, cygwin5, which provides
a Linux bash environment for Windows, was also installed. Figure 5.38 and

5http://www.cygwin.com
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5.39 show similar results as in Figure 5.36 and 5.37, but the concrete run-
time is approximately 10% of running SugiBib as an interpreted Java program.
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Figure 5.38: Entire algorithm by Figure 5.39: Entire algorithm by
nodes (native). density (native).

So far, only measurement results on graphs with maximum 1923 nodes and 2396 edges (initially
142 nodes and 601 edges) were presented. To also show scaling effects for large graphs, we
will now discuss the measurement results on a class diagram of SugiBib itself. The input
file in UMLscript format was produced by the reverse engineering application of JTransform
[Eichelberger and von Gudenberg 2004].
Table 5.5 shows the results of the measurement. Unfortunately, we were not able to collect
runtime results of the native executable due to errors in the memory management mechanism of
JET.
After running the layout algorithm, the number of nodes in the non-compound graph grows by
factor 4.2 and in the compound graph by factor 11. Comparing the numbers of edge crossings
and edge-compound crossings in the layout result, on that large non-compound graph, the
hierarchical crossing reduction performs better than the barycentric and the median method (in
the given sequence). The runtime of the algorithm increases by factor 13.6 using the hierarchical
method instead of the median method or by factor 3.3 using the barycentric method instead
of the median method. On the compound graph, also the hierarchical method performs better
than the postprocessed barycentric, intertwined barycentric and both median variants (in that
sequence). The runtime of the algorithm increases by factor 5.1 using the hierarchical method
instead of the median method or by factor 6.6 using the barycentric method instead of the
median method.
We can conclude that the choice of the appropriate edge crossing reduction mechanism heavily
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macro phase SugiBib version 1.33 SugiBib version 1.33 (cluster)
863 nodes, 1318 edges 1063 nodes, 2380 edges

preprocessing 1227 1643
rank assignment 675 10590

hierarchical method 2775806 5180007
intertwined barycenter 657445 7105939

postprocessed barycenter 660683 7061713
intertwined median 182739 3911368

postprocessed median 183357 3927547
intermediary processing 1170 7022
coordinates assignment 17653 1057978

postprocessing 2296 15211
complete: hierarchical method 2799741 6322691

complete: intermediary barycenter 680561 8193137
complete: postprocessed barycenter 683503 8119320

complete: intermediary median 205764 1294759
complete: postprocessed median 205589 1246766
crossings: hierarchical method 19669 59987 (4849)

crossings: intertwined barycenter 90524 180853 (20074)
crossings: postprocessed barycenter 90524 155542 (13729)

crossings: intertwined median 117368 152417 (20433)
crossings: postprocessed median 117368 152417 (20433)

Table 5.5: Runtime values of UML class diagrams visualizing SugiBib itself with and without
packages. The crossing numbers are collected immediately after executing the individual cross-
ing reduction algorithms. Compound crossing numbers are denoted in braces.

depends on the structure and the properties of the input graph. With a test set, which also
contains several large graphs like the one used to obtain the results in Table 5.5, a break-even
point between the individual crossing methods might become obvious. Also the runtime of the
hierarchical method might be improved by further incremental algorithms, in particular those
for the cluster consistency.



6 Implementation

In this chapter, we will discuss several aspects of the realization of our layout algorithm by the
framework SugiBib. Beside knowledge on the layout algorithm, details on the concrete imple-
mentation are required to maintain, modify and extend the framework.
First, we will introduce the basic architecture of the framework. A general core framework will
realize more common, reusable parts of the layout algorithm. A specialized extension will con-
figure the core framework for UML class diagrams. Details on the general and the specialized
parts of the 7 macro steps of the layout algorithm, which were introduced in Table 4.1, will be
outlined in Section 6.2. In the next section, further details on concrete applications, which can
be realized by configuring a basic application library, as well as the implementation of the layout
metrics introduced in Section 5.1 will be given. Finally, issues on testing, runtime optimization
and anticipated extensions to the framework and the layout algorithm will be described.
The layout results of some of the diagrams in this chapter automatically drawn by SugiBib will
be presented in the appendix.

6.1 Architecture of SugiBib
Good architecture is where the whole is
greater than the parts.

Mies van der Rohe (1886 – 1969)

So far we have discussed diagrams, disciplines and algorithmic principles for drawing UML
class diagrams automatically, but, except for the basic introduction into our algorithm and its
graph model, we did not describe main design aspects of an implementation. In this section, will
introduce basically the main design aspects of the implementing framework, because the next
chapter will discusses intensively the individual algorithmic steps and, as an overview, issues of
the implementation will be given.
Fortunately, the basic design aspects of SugiBib [Eichelberger 1999] meet most of our basic
requirements listed in Section 3.1. To easily fulfill REQ_PLATFORM, we decided in 1999 to
implement the framework in Java, an object-oriented, platform independent programming lan-
guage. Even if in the late 1990th the advent of Java as a popular programming language was at
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the beginning, we strongly believed that additional libraries for generic printing, image formats,
database or repository access, which were not available in these days, will appear soon.

name language KLOC1 references2

AGD C++ [Jünger et al. 2003]
Boost Graph Library 1.31.0 C++ 570 [Siek et al. 2002]
GGCL C++, STL [Lee et al. 1999]
GTL C++ [Forster et al. n. d.]
HGV 1.1.0 C++ 5 [Raitner 2002]
LEDA 4.5 C++ 230 [Mehlhorn and Näher n. d.]
Netlib http://www.netlib.org
Stanford GraphBase C, TEX 37 [Knuth 1993]
yFiles Java [Wiese et al. 2003]

Table 6.1: Graph drawing libraries.

In other programming languages, like C++, some of the required libraries existed, but the usage
on different platforms requires a strong discipline of the programmer. In Java many features for
platform independent programming are basically provided by the language itself, unless certain
rules have to be respected to meet REQ_PLATFORM. Similar languages like .NET did not exist
at that time.
Before designing a completely new graph drawing library or framework from scratch, existing
work should be taken into account. In Table 6.1 and 6.2 some of the known graph drawing li-
braries and systems are listed. A more detailed overview was given in [Willhalm 2001]. Even if
nowadays some systems are implemented in Java, in 1999 only few of them existed and some of
those systems are not maintained anymore today. Furthermore, some of these systems are (now)
commercial and at least academic licenses are required. Despite of the fact that we could have
based our work on one of these systems, we decided to design a new one. Considering some of
the non-graph-drawing features, which will be mentioned below and will also be discussed in
Section 6.1, we are convinced that it was an adequate decision.
In Figure 6.1 the most relevant modules (packages) of SugiBib are depicted. Some classes are
given as examples to show important relations. Parts of the graph model described in Section 4.2
can be found in the upper left corner, in the package sugi::admin3. Graph as a representant of
the basic graph, its nodes and edges, the storage mechanisms for nodes and all the basic interfaces
implemented by these classes are located in sugi::admin. The interfaces of the information to
be attached to realize different kinds of nodes, edges and the external options on a graph are
member of sugi::admin::elementInformation, the information due to incremental layout
can be found in sugi::admin::incrementalLayout.

1Kilo Lines Of Code; taken from literature/WWW or calculated from source if available
2The most recent references are shown only.
3We use the fully qualified UML notation for design issues instead of the dot notation known from Java.
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The package also provides interfaces introducing the classes of the basic algorithmic steps ac-
cording to the Sugiyama algorithm. Furthermore, the implementation of the algorithms respon-
sible for cluster validity, common constants, basic matrices for the realization of some edge
crossing reduction algorithms, resource handling according to I18N4, a common plug-in mecha-
nism and utilities like object pools and formatting helpers are part of sugi::admin.

name language KLOC5 references6

aiSee http://www.aisee.com
CABRI [Carbonneaux et al. 1996]
DAG, DynaDag [Gansner et al. 1988]
da Vinci ASpecT → 7C [Fröhlich and Werner 1995]
DBE C [Nummenmaa and Tuomi 1990]
EDGE C, C++, Tcl/Tk 30 [Paulisch 1993]
G-ABDUCTOR [Sugiyama and Misue 1996]
GDS Java, plug-ins [Bridgeman and Tamassia 2003]
GDToolkit C++ [Willhalm 2001]
GD-Workbench [Buti et al. 1996]
GEM Borland C [Frick et al. 1995]
GIOTTO Pascal [Tamassia et al. 1988]
GMB C, C++ [Jablonowski and Guarna, Jr. 1989]
GoVisual Java, C++, .NET [Gutwenger et al. 2003a]
GRAB [Rowe et al. 1987]
GraphEd C, C++ 240 [Himsolt 1995]
Graph Editor Toolkit [Madden et al. 1996]
Graph Layout Toolkit Java, MFC, .NET [Doğrusöz et al. 1998]
Graphlet Tcl/Tk,C++ [Himsolt 1997]
GraphViz, DOT C, C++, Java 76 [Ellson et al. 2003]
Henry [Henry and Hudson 1991]
JViews [Diguglielmo et al. 2002]
STATEMATE [Harel 1988]
VCG C++ 73 [Sander 1995]
VGJ8 Java 17 [McCreary and Barowski 1998]
WilmaScope Java [Dwyer and Eckersley 2003]

Table 6.2: Some graph drawing systems.

4Internationalization denotes human language independent programming and the opportunity to switch the dis-
play/output language externally without the necessity of recompiling the program.

5Kilo Lines Of Code; taken from literature/WWW or calculated from source if available
6The most recent references are shown only.
7converted by an intermediary compiler
8The current version is 1.03 released on 4/20/98.
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Obviously, these packages require different graph types to be implemented.
sugi::admin::input as well as sugi::admin::work provide own graph realizations to
be used as base classes for more specific packages. to prevent defining data specific to individual
algorithmic aspects or application domain specific graph transformations in basic graph, node
or edge instances, we decided that using the graph copy mechanism each algorithmic step
creates its own graph, which is allowed to subsequently create its own node and edge instances.
Therefore, each graph implements its own factory methods to be called while executing the
graph copy mechanism. While copying the local input graph and creating appropriate instances,
data from the preceding steps is taken over by the concrete step as far as required. On the one
side, this reduces the speed of the implementation (REQ_SPEED), on the other side, common
data or dynamic data structures are not required and responsibilities can be spread over the
concrete graph, its nodes and edges instead of collecting all that in an external algorithm class
(REQ_ARCHITECTURE).
Furthermore, we decided to bundle the term “graph algorithm” with the term “graph”, so
that usually no external algorithm transforms a graph but the graph does that itself. Hence,
a specialized graph represents itself as a graph, a specific algorithm and, after calling its
constructor, it represents the result after executing the algorithm realized by the graph.
As described in Section 4.2, different access paths through a graph are provided. A graph has
access to its nodes and edges, a node to its attached edges and an edge to its start and end
node. This allows easy navigation in a concrete implementation but defining and traversing a
subgraph is not possible without further mechanisms. A subgraph can be created by copying
the appropriate instances, or a graph mapping proxy/decorator can be used instead. A graph
mapper, which also may represent augmented graphs, retrieves its data (e.g. the elements of the
subgraph) from a graph elements filter. The subgraph mechanism is generically implemented in
sugi::admin::work.
Because Graph itself, its node and edge class serve for multiple purposes, e.g. as foundation
for manipulating and transforming an graph in algorithms, to specify an input graph as well as
for the result of the layout process, a lot of signatures are present and implemented because of
consistency reasons, but should not be usable everywhere. For example, changing the nesting
relations might be appropriate to a general input mechanism or the implementation of the
layout algorithm, but the usage on result instances is discouraged. Therefore, the classes in
sugi::admin::input restrict certain signatures like specifying internal basic node and edge
types from being applied to input instances. Similarly, MutableGraph, which can explicitly be
locked to prevent (accidental) changes, is used as superclass for the result graph, which then is
locked by default. As an option, result instances may be unlocked in certain situations.
Beside sugi::admin, three further packages are located on the same level.
sugi::applicationLibrary implements the basic facilities to define different, consistent
applications for SugiBib. It provides message handling through the framework, a generic com-
mand line interpreter and a Java-independent graphics subframework, which also encapsulates
the GUI (Graphical User Interface). Further issues on that package and its concrete instantiation
for UML class diagrams will be discussed in Section 6.3. To provide input and output plug-ins
to the application library, sugi::io defines the basic interfaces for file in- and output as well
as general repository access. This package is not located in sugi::applicationLibrary,
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because these facilities might be used outside the application library. Furthermore, even if not
explicitly shown in Figure 6.1, both packages use the interfaces in sugi::admin but cannot be
seen as part of the core layout package.
On the same level, the implementation of the basic steps of the Sugiyama algorithm
sugi::ranking, sugi::ordering and sugi::coordinates are located. Basic pre- and
postprocessing classes are defined in sugi::preprocessing and sugi::postprocessing.
All these classes can be tailored to a specific application domain via factory, strategy and configu-
ration methods. These graph, node and edge classes extend the classes in sugi::admin::work.
Individual general algorithms from graph drawing and computational geometry, which are
intended for reuse in the other packages, are members of sugi::algorithms. Even if not
explicitly shown in Figure 6.1, also this package imports sugi::admin.
On top of the graph layout core, the application library and the basic implementation of the
individual steps of the Sugiyama algorithm as well as the extension for UML class diagrams is
defined. sugi::uml basically introduces some general UML classes, e.g., adornments or basic
classes holding stereotypes, constraints and tag-value lists each with individual coordinates and
fonts due to the information object life cycle. Furthermore, a generic algorithm for enumerating
and drawing edge crossings of a laid out graphs according to UML_EDGECROSSING_SYMBOL

is provided.
These basic facilities are then extended for UML class diagrams in
sugi::uml::classDiagrams. To comfortably specify UML class diagrams as input, the graph,
node and edge class from sugi::admin::input are extended. Further constants and resources
as well as a specialized implementation of the mechanism for UML_EDGECROSSING_SYMBOL

are defined. As described in Section 4.2 and above in this section, nodes and edges are not able
to draw themselves. More specialized information instances have to be attached. In basics
the extended interfaces and basic implementations of these information classes are located.
A factory for information instances in basics supports that user specific implementations of
these interfaces can be simply be introduced. One of these realizations is the set of default
implementations in standard. The information on incremental layout is handled similarly.
The preprocessing package uses a hierarchy detection plug-in to realize UML_HIERARCHY

and a metrics plug-in to calculate the scaling of nodes (UML_SIZE_NODES) and edges
(UML_SIZE_EDGES) according to issues of object-oriented software engineering.
A more specialized version of the application library defines the common facilities of the
different applications of SugiBib for UML class diagrams. In principle, an application interprets
command line options, loads one or more diagrams from different sources, calculates the layout
according to several user specified options and writes the result in a given format. Some appli-
cations provide a single or multiple document GUI, others work as command line applications
only. Using the basic application library in sugi::applicationLibrary, such a common basic
application is defined in sugi::uml::classDiagrams::applicationLibrary. As discussed
in Section 3.2, the storage format specific handling for UMLscript (in UMLscript), XUMLscript
and XMI via XSLT ([Reiniger 2003], both in XUMLscript) and XMI as well as XMI[DI] via
JMI (both in xmi) are realized as input/output plug-ins.
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Figure 6.1: Overview on the main structures of SugiBib.
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Additionally, the application library references metrics, the implementation of the UML class
diagram specific aesthetics as layout metrics. These metrics are used to objectively judge the
concrete result of the layout algorithm and can be used for regression testing. Furthermore, these
metrics can also be used as a tool for evaluating the results of user studies on aesthetics of UML
class diagrams.
Beside compositions, the graph drawing framework SugiBib has different factories (e.g. for
UML information objects), provides strategy and factory methods (described along with the
individual methods in the source code documentation), decorators (e.g. the subgraph handling
mechanism), plug-ins (e.g. graph input/output), singletons (e.g. repository access), visitors (e.g.
generic graph output), delegates (e.g. information instances for nodes and edges) and strategy
classes (e.g. parts of the rank assignment algorithm). Because of efficiency reasons, iterators
are used rarely in SugiBib. This is discussed in detail in Section 6.5, because it is an issue of
implementation and optimization rather than a design topic.

Class Diagram Aesthetics Revisited

On Figure 6.1, which was drawn manually, some aspects of class diagram aesthetics should be
discussed again.
The main purpose of Figure 6.1 is to give an overview on the architecture and the main
structures. Beside delegation (configuration by plug-ins, template methods and strategies)
and composition of the graph data structures, realization of interfaces, inheritance and nest-
ing of elements are the most relevant criteria for structuring the diagram on the given level
of granularity. Therefore, we decided to compose the hierarchy out of nesting, realization
and inheritance edges (UML_HIERARCHY). Obviously, nesting of elements into packages
is respected even if most packages occur as individual elements without contained elements
(UML_SEMANTIC_CLUSTERS). Due to space limitations, we also included dependencies in the
hierarchy, applied UML_JOIN for inheritance edges (horizontal joins) and a vertical join for de-
pendency edges. The sequence of edges at joined elements is respected as mentioned along with
Figure 3.8. To emphasize the top-down direction of the hierarchical edges, UML_MEDIAN is
supported. A typical strict layering is not applied for IGraphicsData, IncrementalGraphData
and Graph because of space limitations and to prevent edge crossings.
To prevent overlays of package tabs (UML_CONTAINER) and edges, the inheritance edge be-
tween sugi::admin::elementInformation and sugi::uml::classDiagrams::basics is
routed with a low number of bends outside the packages sugi::admin and sugi::uml. Also
due to space limitations, we connected most of the packages at their tabs instead of the package
region below and therefore violated UML_CONTAINER. Implicitly, the packages are ordered
(UML_CONSTRAINT_SEQUENCE) in sequence of the layout algorithm, in sugi::admin ac-
cording to the basic STT algorithm, in sugi as well as in sugi::uml::classDiagrams subject
to the sequence of the macro phases in Section 4.1. Generally we did not draw edge crossing
symbols (UML_EDGECROSSING_SYMBOL) in this diagram.
From viewpoint of graph drawing (UML_GRAPHDRAWING) at least the usage of the
drawing area might not be efficient, but it fulfills the criteria with higher priority, espe-
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cially regarding UML_SPATIAL and UML_CONSTRAINT_VICINITY and rectangular clusters
(UML_SEMANTIC_CLUSTERS).

6.2 Layout Algorithm
For every thousand hacking at the leaves
of evil, there is one striking at the root.

Henry David Thoreau (1817 – 1862)

In this section, details on the implementation of the algorithmic steps introduced in Section 4.1
and explained in Chapter 4 will be given. Each of the 7 macro steps of our layout algorithm will
be discussed in an own section.
This section should be understood as a brief introduction to basic structural information re-
quired as a foundation when maintaining or extending SugiBib. It will also become obvi-
ous that applying the layout algorithm requires a valid input graph and access to the class
sugi::uml::classDiagrams::InfoIIAlgorithm, which realizes the main process flow of
our layout algorithm and returns a result graph.

6.2.1 Preprocessing
Good teaching is one-fourth preparation
and three-fourths theater.

Gail Godwin

Figure 6.2 depicts the relevant classes realizing the preprocessing macro phase of the layout algo-
rithm. InfoIIAlgorithm implements the process flow of our layout algorithm as introduced in
Section 4.1. The individual algorithmic steps are executed by instantiating the appropriate graph
classes as described in Section 4.2.
In SugiBib, step S1, which adjusts basic semantical issues of the input graph, is implemented
in the class AdjustSemanticalGraph in sugi::uml::classDiagrams::preprocessing.
The graph copy mechanism, which creates the first internal copy of the input graph, is
basically implemented in the top-level graph class sugi::admin::Graph and refined in
sugi::admin::work::WorkGraph to also handle global internal temporary data. The plug-
ins for the calculation of the complexity of model elements, which are considered in S1 as a
preparation of the scaling of model elements according to their magnitude, can be found in
sugi::uml::classDiagrams::oopMetrics. Both, the node complexity and the edge com-
plexity metric are currently implemented as a proof of concept only: The node complexity metric
simply calculates a weighted sum of the number of attributes, methods, aggregations, composi-
tions and associations of a class. The edge complexity metric always returns a constant value.
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Figure 6.2: Simplified view on the classes and relations of the preprocessing steps in SugiBib.
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The implementation of the semantic ordering of graph elements (S2) is separated into a
common and a UML specific implementation, because other layout algorithms may reuse
this step for a similar normalization. As extension of the classes in sugi::admin::work,
a basic implementation is given in sugi::preprocessing and a UML specific one in
sugi::uml::classDiagrams::preprocessing.
In S3 the pseudo hierarchy, which represents the main skeleton of the result drawing according
to UML_HIERARCHY, is assembled. This is implemented in the class DeduceHierarchyGraph
as a subclass of sugi::admin::work::WorkGraph. To simplify further development, various
hierarchy detectors can be provided, registered and selected. Currently, edges can be considered
as hierarchical edges only, if all edges of the same kind, e.g., anchors, aggregations, dependen-
cies or inheritance edges are selected. This basic behaviour is implemented as a default hierarchy
detector (not shown in Figure 6.2), which can be refined for own implementations, e.g., if a user
study admits certain rules according to which an automatic grouping can be performed.
At a first glance, inserting edges to represent the containment relations in S4 looks quite simple,
but the basic implementation in sugi::preprocessing::Insert2ndLevelEdgesGraph
provides different filtering mechanisms to generically select the nodes and edges to be
processed. Therefore, it uses the graph element query mechanism introduced by the basic
interfaces. As described in Section 4.2, a node, an edge or an attached information object
receives thereby an arbitrary object and returns a positive or negative response. A version
specialized to create information instances appropriate for UML class diagrams is provided in
sugi::uml::classDiagrams::preprocessing.
Some of the following steps, like preparing hyperedges (S5) or association clas-
sifiers (S7) are specific to UML class diagrams so that only specific graphs like
CreateHyperEdgeCompositeGraph or CreateAssociationClassCompositeGraph in
sugi::uml::classDiagrams::preprocessing are provided. Others, like removing reflective
edges (S6) or disconnected nodes (S9) can reuse common algorithms, which can be configured
via the graph element query mechanism.
Furthermore, the preparation steps, which ensure a root of the hierarchy as well as an acyclic
graph, required for implementing the rank assignment, are provided as common static implemen-
tations in sugi::algorithms. These steps can directly be referenced from the rank assignment
without inducing the necessity of probably copying the input graph. Common, self-transforming
graphs, as usual in SugiBib, are provided in sugi::preprocessing and simply delegate their
work to the static algorithms. As discussed in Section 4.4.11, some edges may be reversed with
a higher priority than others when breaking cycles in a graph. This is realized as an optional
filter to, which must implement the interface IBreakCyclesFilter.
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6.2.2 Rank Assignment
The only limit to our realization of tomor-
row will be our doubts of today.

Franklin D. Roosevelt (1882 – 1945)

Figure 6.3 depicts the implementation of the rank assignment step in SugiBib. Nodes and edges

0..1NodeNamingFunction

admin

strategy1

NetworkSimplexRankingStrategy

RankingGraph

nonHierarchicalPlugin
NonHierarchicalRankingPlugin

RankingStrategy

1

RankingGraphMapper

UMLNodeNamingFunction RankingGraph IncrementalExtensionPlugin

InfoIIAlgorithm

<<instantiate>>

basics ranking

classDiagrams

uml

Graph/namingFunction

ranking

ranking

1

sugi

work

GraphMapperWorkGraph 1
IRankingGraph
<<interface>> RankDescriptor 1..* RankSet maps

Figure 6.3: Simplified class diagram on the implementation of the rank assignment in SugiBib

are omitted, because their inheritance relations are handled similarly to graphs.
The implementation of the node naming function is separated as suggested in Sec-
tion 4.3.4. The abstract class sugi::admin::NodeNamingFunction ensures some basic
consistency issues between node based and criterion based methods and specifies the ab-
stract hierarchical node naming function. The concrete UML specific implementation, which
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realizes the hierarchical naming system defined on fully qualified names, is given in
sugi::uml::classDiagrams::basics::UMLNodeNamingFunction.
sugi::admin:ranking provides RankSet, the data structure which holds the hierarchy levels.
It consists of instances of RankDescriptor which, like the RankSet itself, may be reconfigured
by subclassing and overriding factory methods in the graph class. To avoid replicated code, the
WorkGraph owns the rank set and considers the instances of the graph copying mechanism.
In the package sugi::ranking the basic rank assignment algorithm applicable to gen-
eral graphs is implemented by delegating the hierarchical and the non-hierarchical task to
two different plug-ins. Only the default network simplex algorithm as described in Sec-
tion 4.5.4 is given as default in this package. If another implementation of the rank as-
signment algorithm, e.g. based on longest path layering or linear programming as men-
tioned in Section 4.5.1, should be realized, an appropriate strategy class, which implements
sugi::uml::classDiagrams::ranking::RankingStrategy, has to be provided and has to
be passed as a constructor parameter to the RankingGraph.
The non-hierarchical rank assignment is then implemented along with UML specific adaptions
to the basic rank assignment in sugi::uml::classDiagrams::ranking.

6.2.3 Edge Crossings
Strategy is a style of thinking, a conscious
and deliberate process, an intensive im-
plementation system, the science of insur-
ing future success.

Pete Johnson

The foundation of the implementation of the edge crossing reduction is defined in
sugi::admin::ordering by specifying some common interfaces. An IOrderingGraph
is intended to delegate the work specific for a crossing reduction method to a certain
IOrderingStrategy. Obviously, the RankSet, displayed in Figure 6.3, which represents the
n-level hierarchy is important for the implementation of the edge crossing reduction mechanism.
Due to space limitations and to avoid lengthy edges we did not depict it in Figure 6.4.
In sugi::ordering, the implementation of IOrderingGraph and the basic implementations of
the ordering strategy are located. BasicOrderingStrategy relates the graph with the strategy
to define the data to work on. BasicMatrixOrderingStrategy uses the matrix implementa-
tions in sugi::admin::matrix and does not respect cluster-validity. The implementation of
that abstract class, BarycentricOrderingStrategy and MedianOrderingStrategy are im-
plementations from the first version of SugiBib and were refactored to fit into this strategy con-
cept. BasicCrossingOrderingStrategy attaches a crossing number calculation plug-in to the
ordering strategies. It is assumed that strategies, which are derived from that class, directly use
the cluster valid position implementation in sugi::admin::clusterValidity (the relation is
not shown in Figure 6.4).



6.2 LAYOUT ALGORITHM 293

1
w

or
k

W
or

kG
ra

ph

ad
m

in

B
ar

yc
en

tr
ic

O
rd

er
in

gS
tr

at
eg

y

hi
er

ar
ch

ic
al

E
xM

ed
ia

nO
rd

er
in

gS
tr

at
eg

y

M
ed

ia
nO

rd
er

in
gS

tr
at

eg
y

m
ed

ia
n

cl
as

sD
ia

gr
am

s

or
de

ri
ng

IO
rd

er
in

gS
tr

at
eg

y
<<

in
te

rf
ac

e>
>

ba
ry

ce
nt

ri
c

B
as

ic
O

rd
er

in
gS

tr
at

eg
y

B
as

ic
M

at
ri

xO
rd

er
in

gS
tr

at
eg

y
B

as
ic

C
ro

ss
in

gO
rd

er
in

gS
tr

at
eg

y

Pe
rm

ut
at

io
nO

rd
er

in
gS

tr
at

eg
y

w
or

kO
n

1

or
de

ri
ng

IO
rd

er
in

gG
ra

ph
<<

in
te

rf
ac

e>
>

em
pl

oy
s

cl
us

te
rV

al
id

ity

IC
lu

st
er

V
al

id
In

se
rt

io
nP

os
iti

on
s

<<
in

te
rf

ac
e>

>

cr
os

si
ng

C
al

cu
la

tio
n

<<
in

te
rf

ac
e>

>
IC

ro
ss

in
gC

al
cu

la
tio

n

In
cr

em
en

ta
lC

ro
ss

in
gC

al
cu

la
tio

n

E
xB

ar
yc

en
tr

ic
O

rd
er

in
gS

tr
at

eg
y

O
rd

er
in

gG
ra

ph

um
l

or
de

ri
ng

su
gi

1
ba

si
cs

<<
in

st
an

tia
te

>>

<<
in

st
an

tia
te

>>

In
fo

II
A

lg
or

ith
m

H
ie

ra
rc

hi
ca

lO
rd

er
in

gS
tr

at
eg

y

O
rd

er
in

gG
ra

ph
H

ie
ra

rc
hi

ca
lO

rd
er

in
gS

tr
at

eg
y

<<
in

st
an

tia
te

>>

<<
in

st
an

tia
te

>>

Figure 6.4: Simplified class diagram of the classes involved in edge crossing reduction.
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PermutationOrderingStrategy realizes algorithm 4.12 and therefore ensures cluster-
validity by intertwined or postprocessing execution for non-incremental edge cross-
ing reduction strategies. As opposite, the hierarchical strategy directly inherits from
BasicCrossingOrderingStrategy and facilitates the incremental validity mechanism.
The implementation of the hierarchical crossing reduction algorithm and the
OrderingGraph have to be configured for the use with UML class diagrams.
Due to code reuse and consistency issues, the most configuration work is done in
sugi::uml::classDiagrams::ordering::OrderingGraph. Dependent on the prese-
lected ordering strategy and the concrete type of the input graph, InfoIIAlgorithm instantiates
one of the strategies and passes it to an instance of OrderingGraph which then reorders the
nodes in their individual ranks according to the concrete strategy.
As mentioned in Section 4.6, comparing two orderings should also be delegated to a sep-
arate strategy, e.g. to experiment with secondary ordering criteria. Such a criterion is also
capable of preventing from superfluous crossing number calculations or representing different
orderings: the best one found so far and the working one while executing the edge crossing
reduction. Due to space limitations, in Figure 6.4 it is not shown that a basic ordering criteria
is defined in sugi::admin::ordering, basically implemented along with the basic strategies
in sugi::ordering::basics and partly specialized for individual edge crossing reduction
strategies.

6.2.4 Intermediary Processing

There’s a fine line between genius and in-
sanity. I have erased this line.

Oscar Levant (1906 – 1972)

The three algorithms from the intermediary macro processing step can be realized by two
dedicated classes in sugi::uml::classDiagrams::intermediary9. Expanding association
classes (S12) as well as expanding hyperedges (S13) are processing steps, which can generi-
cally be realized in the same class (ReIntegrateCompositeNodesGraph). InfoIIAlgorithm
provides both graph instances with the correct parameters for the graph element query mecha-
nism.
Similar to the 2-level implementation of S4, which provides a common and a specific ver-
sion for inserting containment relations as edges, the complementary step (S14) is real-
ized. A basic version is provided in sugi::intermediary and a specialized version in
sugi::uml::classDiagrams::intermediary.

9We do not display the five involved classes in an own diagram.
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6.2.5 Coordinates Assignment
Love is the difficult realization that some-
thing other than oneself is real.

Iris Murdoch (1919 – 1999)

As usual in SugiBib, also the implementation of the coordinates assignment is spread over
several packages. The basic interfaces are located in sugi::admin::coordinates. An

RankDescriptor 1..* RankSet

work

WorkGraph <<interface>><<interface>> 1
ICoordinatesStrategyICoordinatesGraph

uml

coordinates

classDiagrams

UMLClusterSeparator

InitXYConstraintCoordinatesGraph

InfoIIAlgorithm
<<instantiate>>

1
ranking

admin

sugi

coordinates

CoordinatesBaseGraph

CoordinatesFlatGraph

CoordinatesBaseRankSet

CoordinatesBaseRankDescriptor
ClusterSeparator

GraphDistances

<<instantiate>>

<<instantiate>>

coordinates

CoordinatesFlatRankDescriptor

CoordinatesBaseStrategy

gansner

GansnerBaseStrategy

GansnerFlatStrategy

<<instantiate>>

Figure 6.5: Simplified view on the classes and relations of the coordinates assignment implemen-
tation in SugiBib.

ICoordinatesGraph specifies all top-level features and functions of the coordinates assign-
ment. The graph itself delegates the control over the execution to an ICoordinatesStrategy.
This ensures that top-level functions like the insertion of cluster border nodes can be reused for
different coordinates assignment strategies.
The basic implementation is located in sugi::coordinates. In the first version of SugiBib a
spring embedder based as well as a deterministic coordinates assignment implementation were
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provided. Both strategies as well as all coordinates methods were located in one graph class
with attached node and edge classes. In further versions this implementation was refactored
towards the structure displayed in Figure 6.5. CoordinatesBaseGraph implements a set of
basic methods for graphs without non-hierarchical edges. The attached node and edge classes
are not shown in Figure 6.5. The methods which work on non-hierarchical edges were moved
into the class CoordinatesFlatGraph. The deterministic (gansner) and the currently unused
springEmbedder assignment strategies have been encapsulated in subpackages. Depending on
the presence of non-hierarchical edges, further assignment steps have to be executed. Therefore,
the two packages contain specialized strategies for both types of graphs. Algorithm 4.19 is di-
rectly implemented in GansnerFlatStrategy.
The graph distance functions for adjacent nodes or ranks are represented by GraphDistance.
The abstract class ClusterSeparator provides a plug-in into the basic coordinates graph to
insert cluster separator nodes dependent on the application domain.
To maintain rank specific information, like the number of flat edges or the maximum height of a
node, the basic RankDescriptor has been subclassed to more specific versions required by the
coordinates implementation.
The concrete specialization, which adds UML specific conditions and rules to the implemen-
tation, is located in uml::classDiagrams::coordinates. A concrete mechanism specialized
for packages and subsystems realizes the cluster separator plug-in mentioned above. Further-
more, a CoordinatesGraph internally maintains a set of InitXYConstraints. These instances
represent the data structure used to initialize the coordinates of the nodes to obtain a cluster-valid
graph10.
Finally InfoIIAlgorithm creates the UML specific CoordinatesGraph and passes an instance
of GansnerFlatStrategy as parameter. Subsequent instances like the cluster separator plug-in
are automatically created by specialized factory methods in CoordinatesGraph.

6.2.6 Postprocessing
[The superior man] acts before he speaks,
and afterwards speaks according to his ac-
tions.

Confucius (551 BC – 479 BC)

Figure 6.6 depicts the individual classes involved in the postprocessing macro step. Similar to
some of the other algorithmic steps described in this section so far, the implementation of the
postprocessing is distinguished in a common and a UML specific implementation.
Because laying out association classes (S16), hyper edges (S17), annotations (S18) and discon-
nected elements (S19) share a common basic behaviour, namely the reintegration and layout
of individual graph elements, several basic classes are successively refined and specialized in
sugi::uml::classDiagrams::postprocessing.

10Because of historical reasons this function is still located in the UML specific part. A future implementation
may be refactored towards a more general version in sugi::coordinates and a specialized version for UML class
diagrams
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Figure 6.6: Simplified view on the classes and relations of the postprocessing steps in SugiBib.

Also the implementation of the optional snap-to-grid feature (S20), which relies on the basic
node positioning rules, e.g., for nested nodes, too, provides a general and a more specialized
version.
As a final processing step, the result graph is generated (S21). The general ResultGraph is
subclassed, because various implicit UML related information, like the positions of reflective
edges, has to be made accessible to arbitrary output formats. Unlike the graphs realizing the
other processing steps of our layout algorithm, a result graph is not subclass of WorkGraph, be-
cause internal, temporary information should be disposed and not be available to an application
presenting or processing a result graph.
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6.3 Applications for UML class diagrams
A manager is responsible for the applica-
tion and performance of knowledge.

Peter F. Drucker

Designing and implementing a layout algorithm is one task, providing applications for different
contexts and testing the algorithm another task. In this section we will discuss some applica-
tions delivered with SugiBib. Concrete applications integrate the basic facilities provided by the
SugiBib framework with the UML specific extensions. Thereby, information classes specific to
UML class diagrams as well as input and output mechanisms appropriate to the application play
an important role. Beside these reusable functionality, many concrete applications basically real-
ize the same flow of information:

• External options, e.g. obtained from the command line, are interpreted.

• One or more class diagrams in probably different formats are read in and transformed to
SugiBib compliant input graphs according to Section 4.2.

• The diagrams are processed by the layout algorithm respecting external, global and dia-
gram specific options.

• Finally, the result is, however, presented, e.g. on a screen, as a file, on a printer, etc.

In SugiBib this basic flow was implemented as an application library which, furthermore, is
independent from the underlying GUI. In this section, architectural features going more into
detail than the general overview given in Section 6.1 will be discussed.

6.3.1 Information Classes for UML Class Diagrams
I find that a great part of the information
I have was acquired by looking up some-
thing and finding something else on the
way.

Franklin P. Adams (1881 – 1960)

As described in Section 4.2, in SugiBib application domain specific information classes can be
attached to nodes and edges. In Figure 6.7 basic relations between the core framework and the
UML extension in sugi::uml are depicted. Due to space restrictions and issues of understand-
ability, only few classes and relations are shown.
The basic graph classes Node, Edge and Graph are extended to provide UML class diagram
specific signatures to simplify creating the input graph. As described in the preceding sections,
the instances of UMLGraph are transformed by the graph copy mechanism and therefore only the
structural relations and the information objects are accessible to the layout algorithm.
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Figure 6.7: Simplified view on the classes and relations of the UML information infrastructure.
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Furthermore, the graph information class was extended over two layers. In
sugi::uml::UMLGraphicsData, basic support to draw UML-like lines was added, in
sugi::uml::classDiagrams::UMLGraphicsData further UML class diagram specific con-
figuration options like fonts were integrated.
The implementation of the information classes was split into several packages on different layers.
This information must not be stored as implicit data in the information classes, because an output
filter should be able to store detailed information of the layout result, like coordinates, directions
or sizes of adornments. Furthermore, to support REQ_INCREMENTAL_ALGORITHM in future
releases, detailed positional information, which can probably be obtained from the input format
has also to be stored as partly immutable information. Therefore, in sugi::uml::basics,
common data storage classes were defined, for example various adornments or basic classes
which hold stereotypes, constraints and tag-value lists (each with individual positions and
fonts). In sugi::uml::classDiagrams these classes were aggregated to information classes
specific to UML class diagrams. The package basics contains more specific interfaces and
basic implementations. In standard, concrete information classes to be used primarily with the
standard applications of SugiBib were defined.
When SugiBib is used as a plug-in by another application, shapes for connected elements instead
of detailed structures might be sufficient. Then, other implementations than those in standard
may be provided to simplify the exchange of modeling and layout data. Information classes for
edges follow the same structural principles.
To support different concrete implementations of information classes, facto-
ries have been defined. The factory and the underlying constant classes in
sugi::uml::classDiagrams::constants were split physically into an internal and an
external part, because SugiBib also creates instances of information classes which should be
used internally only. The UML class diagram specific implementation is encouraged to create
information objects via these factories only. This was furthermore supported by specifying
appropriate visibility modifiers, e.g. package local visibility, for the concrete information
classes.
Because of historical reasons, the structure of the information classes for nodes is more
fine-grained than that part for edges. Each node type, e.g. classes, n-ary associations, comments,
etc. is implemented by an own class. For edges only two different classes were provided. The
first version of SugiBib supported inheritance edges, realizations, associations, compositions
and aggregations only. Even if all novices are told to avoid subclassing for code reuse, this
mistake was made in the past and we disliked a refactoring so far. Therefore, one class realizes
inheritance-like edges and another the remaining (association-like) edges.

Usually an input graph is not created manually. This task is done by input graph filters, so called
contents interpreters. The layout result may be transformed into a (standardized) persistent
format by various contents exporters. Such a data filter can easily be selected from the set of
available filters, because each filter is able to return, if it is applicable to an input graph, a result
graph or a certain format.
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Figure 6.8: Simplified view on the Input/Output subframework.
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Dependent on the underlying mechanism, temporary data might be present even after finishing
input or output operations. For example, an input graph could be loaded using a repository mech-
anism and it might be appropriate to export the result by accessing the original information used
for creating the input graph. Therefore, at least when terminating the application, such mecha-
nisms have to be informed that temporary data should be disposed. To notify a filter mechanism,
an application calls registered contents disposer instances in certain situations, e.g., when the ap-
plication is shutting down. The classes in sugi::io discussed so far are not given as interfaces,
because each of these classes define static signatures to realize type specific parts of the dynamic
registration mechanism. Interpreters, exporters as well as disposers are automatically registered
via a plug-in mechanism. In Figure 6.8 the basic classes provided by sugi::io are depicted.
A concrete contents exporter needs to traverse the result produced by SugiBib and may store in-
formation on each element of the graph. An object-oriented approach would be to send a request
to each graph element, which then generates the appropriate output of itself. This can be realized
by deriving the information classes and defining a new information factory. As described above,
further implementations of the information classes might be provided and even these classes
would have to be subclassed to be applicable to the export mechanism. To circumvent this struc-
tural problem, the classes in basic could be modified directly. In this case, the code size would
grow with the number of export mechanisms and basic object-oriented principles would be vi-
olated. Hence, traversing the graph and accessing the information via public signatures is the
remaining approach. This is supported by SugiBib via the IWriter interface. In combination
with the core graph implementation, a simplified visitor mechanism is provided. An instance of
that interface is passed to the write method of a graph, which then traverses itself according to
a sequence specified by the concrete writer. On each graph element, the write method of the
IWriter interface is called with the individual graph element.
Furthermore, to introduce generic readable and writable access to repositories, sugi::io real-
izes a general repository browsing mechanism.
According to the different formats discussed in Section 3.2, several packages have been imple-
mented to realize

• an UMLscript importer based on a parser generated by the LL(k) parser generator
Coco/R11.

• a XUMLscript importer [Reiniger 2003]. It creates a secondary data structure which is tra-
versed twice to generate a SugiBib compliant input graph. Furthermore, by preprocessing
XMI data via XSLT, the implementation can be used to directly read XMI.

• an importer and exporter based on an underlying XMI[DI] repository12. It relies on general
JMI mechanisms, the Netbeans metadata repository13 and an XMI[DI] enhanced meta-
model.

11http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/
12Unfortunately that part of the implementation is currently not complete.
13http://www.netbeans.org
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6.3.2 Application Library
When I step into this library, I cannot un-
derstand why I ever step out of it.

Marie de Sevigne

As mentioned in the introduction of this section, the basic information flow, which is similar
for a lot of applications using the SugiBib layout algorithm, can generally be implemented and
reused. In the first version of SugiBib, we started with a simple browsing application for the Ab-
stract Window Toolkit (AWT), which is part of the core Java library. From the beginning, this
browser provided various features to be manipulated by a user. The user options of this applica-
tion (UMLAWT) do not collide with REQ_USER_OPTIONS, because it is intended for testing and
exploring the layout features of SugiBib.
With the advent of Swing, the lightweight platform independent GUI implementation in the ex-
tended Java library, a similar application (UMLSwing) was realized. Furthermore, two command
line applications were provided: UMLBatch processes multiple diagrams in batch mode, UMLNet
supports online rendering by appending the result as an attachment of an email.
When realizing new global options of the layout algorithm, all dependent applications had to be
adjusted to keep them in a consistent state. Because this was a tedious, time-consuming job, we
started to implement all applications on top of one library and to perform changes only once.
Therefore, an intermediary layer providing an additional abstraction between the representation
of the options and their concrete GUI presentation was introduced. By applying the bridge design
pattern, for each (required) element of the GUI, a delegate interface and appropriate implemen-
tations for AWT, Swing and commandline applications were realized. Then the common parts of
the implementations were compiled into one library.
Furthermore, a generally configurable command line parser was implemented, so that the appli-
cation library can provide common command line arguments and the individual applications may
redefine that set. A general purpose command line interpreter was not used, because we wanted
to implicitly distinguish between different groups of arguments. For example, static arguments
have to be processed before the application object is created, while other arguments are allowed
to influence the state of the application object.
Due to the discussion between SUN and IBM on the Standard Widget Toolkit (SWT), the propri-
etary GUI library of the Eclipse Integrated Development Environment (IDE)14, we also consid-
ered the mapping of the graphical elements in Java. Beside a native access to the GTK libraries,
SWT provides an own mechanism for drawing graphics with Java. Unfortunately, no classes or
interfaces common to the AWT are supported. As an experiment, we also included delegates for
(required) features like the graphical context, colors, fonts and dialogs. Thereby, another browser
which natively relies on SWT (UMLSWT) was realized. This graphical independence can help in-
tegrating SugiBib into tools which rely on non-Java mechanisms.

14http://www.eclipse.org
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Figure 6.9: Simplified view on the application subframework.
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Figure 6.9 illustrates the architecture of the application library discussed above. All GUI del-
egates are created through a factory. A concrete application creates the appropriate factory
instance, registers it in the application library, and all subsequent GUI operations are au-
tomatically delegated to the corresponding GUI implementation. Hence, all classes outside
sugi::applicationLibrary realize their tasks independent from the underlying GUI.
A concrete application library realizing the basic flow for UML class diagrams was provided in
sugi::uml::classDiagrams::applicationLibrary. Here concrete command line options,
menu options (in the case of a GUI application) and input/output facilities are compiled into one
implementation. Furthermore, plug-ins for automatic features, e.g. coloring classes according
to certain criteria, and interactive features, activated by mouse actions, were defined. Dialogs,
specific to the application, e.g. for browsing a given repository, were implemented on top of the
application library using GUI delegates only. The basic initial options, e.g. what crossing reduc-
tion algorithm should be applied, are injected into the library by an initializer plug-in. Concrete
plug-ins may return static defaults, read basic options from a configuration file or initialize the
application library for certain purposes like testing or debugging.
In all diagrams so far we have omitted direct relations to the resource management basically
implemented in sugi::resource. These classes realize a hierarchical resource message bundle
facility according to localization and I18N, i.e. if appropriate message bundles exist, the appli-
cation can be run in any language without recompiling the source code. The application library
relies on one of the most specific message bundles so that the language of each dialog, each menu
entry and most of the internal error messages for exceptions can be determined from outside the
application.
Further subclasses of the basic application library for UML class diagrams provide facilities like
multiple document interfaces or default code for command line applications. Finally, the five
concrete implementations briefly described above, were implemented as subclasses of the same
application library.

6.3.3 Layout Metrics
You have all the reason in the world to
achieve your grandest dreams. Imagina-
tion plus innovation equals realization.

Denis Waitley

The result of the layout process was copied into a usually immutable graph in S21. This infor-
mation has to be reconstructed from coordinates, because additional information like individual
layers have been removed by creating the result graph. In fact, MetricsGraph, MetricsNode
and MetricsEdge reimplement parts of the classes related with WorkGraph to simplify naviga-
tion and hierarchical access.
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Figure 6.10: Implementation of the layout metrics in SugiBib.
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At a first glance, this seems to be a superfluous effort, but because this subframework may be
reused to also analyze graphs created by external tools without executing the SugiBib algorithm,
a unified approach was realized even for results delivered by SugiBib.
The individual metrics were implemented as subclasses of AbstractMetric and are organized
in several packages. Individual metrics are registered in Metric, the class which implements the
main flow of control for metrics calculation. Metric is the only class accessible from outside.
This information has to be passed by the ApplicationLibrary to the Metric class, because
program options like UML_COUPLING do not only influence the layout result but may be con-
sidered in some metrics to calculate a objective judgment.

6.4 Testing & Debugging SugiBib
Never stop testing, and your advertising
will never stop improving.

David Ogilvy (1911 – 1999)

Over the years of development, SugiBib has grown to a size of 278 KLOC containing approxi-
mately 40% comments (about 900 classes in 110 packages). At a first glance, this might appear
as a large, probably oversized project for only drawing UML class diagrams. Even if it is well
known that code sizes do not automatically lead to an objective judgment of a program, we have
displayed the sizes of other, graph drawing related software in Table 6.1 and 6.2. According to
that information, SugiBib seems to be comparable with the sizes of LEDA or GraphEd . In Fig-
ure 6.11 the individual sizes of the logical parts of SugiBib are displayed. Excluding parts of the

18%
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2% 5% 6% 4%
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Figure 6.11: Distribution of sizes of the main parts in SugiBib. “core” as prefix denotes the
core layout implementation excluding applications, UML (prefix “UML”) and application library
(“AL”).

application library and the input mechanisms, we can conclude that the general graph drawing
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part takes 35% (97.3 KLOC) and the code for drawing UML class diagrams takes 71%-88%
(197.4-244.6 KLOC) of the entire framework. Hence, the general framework compares in size to
VCG or GraphViz and size of the part specific to UML class diagrams appears to be reasonable.

When modifying the source code of a program, usually various kinds of tests are required to
ensure consistency across more or less invasive changes. Typical test methodologies known in
literature are blackbox and whitebox tests. A blackbox test considers a module to be tested as a
closed part, which is accessible through defined signatures only. Such tests pass different types of
input to the module and analyze the output by comparing it against expected data. A whitebox test
is allowed to make certain assumptions on the implementation and even to test individual parts
of the unit, which are not required to be visible or accessible from outside. Furthermore, differ-
ent kinds of stress tests should be applied to analyze the behavior in unexpected or exceptional
situations. Hence, beside valid input, invalid data, borderline situations as well as manipulations
of temporary data, memory or certain (online) attacks to a program might be considered. Even
if the latter testing issues are appropriate to our online rendering application UMLNet, we will
discuss tests for local applications here only.
For blackbox testing we need a set of representative class diagram input files in different formats.
These diagrams should capture a variety of situations, which may occur in UML class diagrams.
A lot of diagrams arise from programming when thereby certain situations are (re)produced, e.g.,
to validate new parts of the implementation. Unfortunately, only few users, who obtained a ver-
sion of SugiBib from our homepage, responded in the case of successful evaluation or problems.
For example Yann-Gaël Guéhéneuc extended his reverse engineering tool Ptidej15 by an output
implementation for UMLscript and contributed some files which currently produce the largest
diagrams in test. Jorge Gomez Sanz described the diagrams of the INGENIAS development pro-
cess metamodel16 in UMLscript and used SugiBib to automatically generate diagrams17. Florian
Grupp created a set of input files in UMLscript and XUMLscript, which describe class diagram
examples in the UML specification.
The more tests are provided, the easier negative impacts, which may arise from modified code,
can be detected. Therefore, the example files have been compiled to a black box test suite which
currently consists of 175 files. Unfortunately, looking at some diagrams after changing code does
not really help ensuring consistency. Hence, an automated regression test mechanism would be
appreciated. In contradiction to usual black box tests, comparing the output of a layout mecha-
nism with expected data appears to be more complex than implementing a layout algorithm. For
that reason we decided to use the implementation for measuring compliance to aesthetic criteria
by metrics for automated testing.
A general test recorder was implemented in the package regressionTesting within the UML
class diagram specific application library. Various concrete implementations, e.g. storing the test
results in a database, can be realized. Currently a XML based recording is provided. A shell script
iterates over all available input files, provides UMLBatch with appropriate options for activating
the test recorder and ensures that the program is killed in the case of an endless loop.

15http://www.yann-gael.gueheneuc.net/Work/Research/Ptidej/Download/
16http://ingenias.sourceforge.net/
17http://grasia.fdi.ucm.es/ingenias/metamodel/
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Figure 6.12: Screenshot of the HTML output created from the regression test results.
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To automatically test various options, e.g. considering all implemented edge crossing reduction
algorithms, on each input file, another script is provided with SugiBib. Combined with the run-
time measurement facilities, the diagrams in Section 5.3 have been produced as a side effect
on a complete regression test run. To visualize the test results, the XML data is postprocessed
by an XSLT sheet to generate HTML. In Figure 6.12 an excerpt of the test protocol is shown.
Metric values are encoded by colors and change tendencies within one metric for an individual
file can be highlighted by symbols. Furthermore, changes in runtime behavior are collected and
displayed.
As an experience, regression tests on graphs are a helpful tool to ensure stability and consistency,
but they may also lead to disappointing results. As quoted in Section 4.8.1, due to interferences,
some values may improve, others may show a tendency in the other direction. Thereby, it is not
always easy to make the correct decision, if the last changes should be committed or rejected.
Unfortunately, regression tests do not help when searching for concrete errors in the source code.
When a failure, e.g. an exception, is spotted by the automated test, even when the stack trace is
available, it might be difficult to find the source of the error, because often a preceding piece of
code in another class causes the error.
Hence, whitebox tests are required to provide a mechanism to help the programmer. Even if this
thesis provides several definitions, which can be implemented as local checks for certain units,
we did not apply a unit test framework like JUnit18 to realize this task so far. Similar to the hier-
archy of graph classes, a set of attached consistency test classes have been realized. A global flag
in sugi::GlobalFlags statically activates certain calls to these test classes. For example, con-
sistency checks are then activated directly after edge crossing minimization or after moving an
individual node in the coordinates assignment. Thereby the graph is analyzed for conformance
to definition 13, 23 or 25, respectively. If appropriate checks have been implemented and the
consistency mechanism is called frequently while debugging, the location where the error is pro-
duced can easily be spotted. Unfortunately, activating these consistency checks, slows down the
runtime by at least factor 10.
On simple or small graphs, the Java debugger can be used to step through certain parts of code
when searching an error. The larger the graph, the more complicated it is to find out the cor-
rect conditions for a breakpoint next to the erroneous code. Therefore, SugiBib also provides a
simple logging mechanism to write data onto the standard streams. When appropriate messages
are emitted, it is most times much simpler to trace an error due to information of the context.
Simply placing print statements in the code increases the time to get rid of these statements after
the error is found. Therefore, the logging mechanism also emits information on the source of the
logging call. Thereby, not all direct sources should be mentioned, e.g. if the logging is encapsu-
lated in a convenience method like printRanks. Then the source of the call to printRanks is
more appropriate. Therefore, the logging mechanism provides a general feature to register cer-
tain methods/classes to be excluded as source.
Even if a specialized runtime consistency test for the input graph is provided, it is a complicated
task to find certain structural errors in a new input format reader. Especially if structurally equal
files in different formats are present, debugging such errors is simplified, when the internal data
structure of an existing implementation can be compared to that of the new one. For this reason,
SugiBib provides a graph output filter, which produces a normalized, proprietary format that can

18http://junit.sourceforge.net



6.4 TESTING & DEBUGGING SugiBib 311

be compared by tools like diff19. Because memory addresses or Java hashcodes for objects will
probably differ between various input format filters or implementations, a contents dependent
mechanism is more appropriate. By considering UML specific information, to each graph ele-
ment a unique identifier can be assigned: For each class UML requires a unique name and edges
as well as unnamed nodes like n-ary nodes can be named according to the connected nodes. By
sorting the output according to these unique identifiers the output is normalized. Furthermore,
for each graph element and information object, the contents of the attributes can generically be
retrieved via Java reflection. For normalization, a type specific handling of object references was
implemented. Unfortunately, the generic dynamic data access in Java induces additional mainte-
nance effort: Generic dynamic data access can only be realized via the reflection API and thereby
class members can only be referenced as strings, which then are not always correctly handled by
automatic refactoring tools.
A fragment of an output produced by that filter is shown below:

<?xml version="1.0" encoding="iso-8859-1"?>
<sugiBibGraph>
<object description="graph" type="sugi.uml.classDiagrams.UMLGraph"
id="graph:10918860222">
<field name="activeCluster" value="0"/>
<field name="autoInsert" value="false"/>
<field name="clusters" value="[[]]"/>
<list name="edges">
<object description="edges entry" type="sugi.uml.classDiagrams.UMLEdge"
id="edge:node:BehavioralFeature|node:Method|UMLInheritanceInfo[|null|null]">

<field name="minLength" value="1"/>
<field name="type" value="USUALEDGE"/>
<field name="weight" value="1"/>
<object description="edgeinfo"
type="sugi.uml.classDiagrams.standard.UMLInheritanceInfo"
id="edgeInfo:edge:node:BehavioralFeature|node:Method|

UMLInheritanceInfo[|null|null]">
<field name="hierarchyEdge" value="false"/>
<field name="visibility" value="UNDEFINED"/>
<field name="color" value="BLACK"/>
<list name="constraints">
</list>
<field name="inheritanceKind" value="INHERITANCEEDGE"/>
<list name="stereotypes">
</list>

<object/>
<objectRef name="from" reference="node:BehavioralFeature"/>
<objectRef name="to" reference="node:Method"/>
<object/>

...

19http://www.gnu.org/software/diffutils/diffutils.html
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6.5 Runtime Optimizations

To improve is to change; to be perfect is
to change often.

Winston Churchill (1874 – 1965)

Even if we decided by REQ_SPEED that runtime speed is not the main aspect when implement-
ing our layout algorithm, generally, various influences to the code can be identified which then
may lead to speed improvements. On the one side, improved and more sophisticated algorithms
obviously can influence the time required for calculating the layout of a given graph. For
example, in Section 4.6.3 we discussed different aspects of realizing the crossing calculation.
On the other side, depending on the underlying programming language, structural changes
and opportunities to refactor the code for speed improvements without modifying individual
algorithms can be taken into account.
In [Shirazi 2000] useful hints on performance tuning for the Java programming language were
described. In the last years the implementation of the Java compilers and the Java Virtual
Machine (JVM) have been improved a lot. But even if experts believe that these days changes to
the source code do not significantly influence the compiled program, the basic rules in [Shirazi
2000] are still valid. Furthermore, were presented in [Eichelberger and von Gudenberg 2004]
an extended set of rules, which has been applied successfully to JTransform, an object-oriented
source code transformation framework for Java.
In this section we will first discuss structural changes based on the results in [Shirazi 2000;
Eichelberger and von Gudenberg 2004] which can be applied to the source code of SugiBib.
Then we will list the effects of applying some of the rules and deeper algorithmic changes to
SugiBib. In this section we will exclusively refer to the current Sun HotSpot JVM 1.4.2.

O1: Avoid excessive instance creation [Shirazi 2000]: Every instance creation requires mem-
ory allocation for the object itself and its internal structures. It takes time to initialize an
object, especially if it points to deeper data structures or it is member of a larger hierarchy,
because the constructors of all superclasses have to be called. That is a problem, in partic-
ular if constructors frequently delegate the implementation by this(...) calls. In special
cases of flat initialization a call of the clone method might be appropriate and faster than
the usual initialization calling a constructor. Furthermore, the fewer (temporary) instances
are created, the less time the automatic garbage collector requires.

O2: Avoid iterators [Shirazi 2000]: The iterator design pattern [Gamma et al. 2000] is ex-
tremely useful when generically traversing data structures in a defined sequence without
internal knowledge of a data structure. Unfortunately, the current compiler optimizations
do not respect iterators to be compiled without instance creation and method invocations.
In [Trapp 2001] techniques and results for optimizing compilers by implementing such
techniques were described. On own, container-like data structures, methods, which return
the number of elements and the i-th element, usually provide a better performance. Beside
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the effect of tuning a program for performance, typed signatures help avoiding errors at
compile time and may lead to an increased understandability of code and design.

O3: Use pooling [Shirazi 2000]: Sometimes it is beneficial to ”recycle”, or pool, certain, oth-
erwise short-living, objects while executing a program. Preserving and reusing a single
object is often better than repeated creation and garbage collection of multiple objects if
the cost of repeating the above operations outweighs the inconvenience of introducing ad-
ditional object pool management code. This might be the case for collections, maps and
frequently used own data structures. Pooling implies collections which store the temporary
objects while they are not in use. These temporary instances are then received (“created”)
from and released by special methods. Hence, the scope of objects has to be respected and
code looks more like C code with explicit memory management. As a drawback, as in pro-
gramming languages without automatic memory management, accidentally releasing the
same object multiple times may cause unpredictable behavior of the program. Not releas-
ing a poolable object does not result in memory leaks because of the automatic garbage
collecting mechanism. Unfortunately, Java and the JVM itself do not provide appropriate
standard mechanisms for pooling.

O4: Use caching [Shirazi 2000]: Results, which are requested frequently may be cached and
the time for recalculation can be saved. Note, however, naive caching may lead to inef-
ficient memory usage. Caching is usually implemented using hash tables from the Java
collection framework, which are based on an array of internally created map entries. These
entries should (optionally) be treated according to O1 and O3. Unfortunately, changes to
these internal structures by reusing the original implementation is not permitted due to
visibility modifiers and missing signatures. Hence, an overhead in memory usage arises,
because for each stored object a new corresponding map entry has to be created. Further-
more, usually own implementations are executed with a lower priority by the JVM, because
they are not loaded via the bootstrap class path and not treated as trustable libraries. Usu-
ally, tricks like replacing library classes as advocated in [Shirazi 2000] are inappropriate
techniques due to incompatibilities.

O5: Avoid excessive exception throwing [Shirazi 2000]: Exceptions are the default technique
to signal problems or errors in Java programs, especially in public interfaces. While run-
time, an exception itself is an object, which has to be created (see O1). The catch-throw
mechanism is time consuming, e.g., if exceptions are thrown repeatedly from inside loop
bodies. Until version 1.4 of the JDK, the stack trace stored in an exception was not acces-
sible and therefore an instance of an exception usually was not reusable. In newer versions
of the JDK, access to the stack trace of an exception is provided and can be manipulated
to realize pooling of exception instances [Zukowski 2003a].
In SugiBib a more defensive programming style was applied. Errors, if possible, are caught
and exceptions are thrown only for methods to be called from outside the framework or
when the execution should be terminated immediately.
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O6: Avoid excessive local variable declaration [Shirazi 2000]: Local variable declarations
should be avoided in loops, because there are JVMs that repeatedly execute these declara-
tions and create the appropriate stack structures. Optimizing Java compilers automatically
move the variable declaration outside the most appropriate inner loop, but this is not true
for the default compiler by SUN20.

O7: Avoid long parameter lists [Shirazi 2000]: The JVM is optimized for a maximum method
parameter number of 4. If this number is exceeded, the remaining parameters have to be
handled explicitly on the call stack and these method calls become time consuming. This
can be circumvented by (temporary) objects containing the method parameters (respect
O3).

O8: Avoid irrelevant or convenient method calls: Sometimes overloaded methods with de-
fault parameter settings ultimately result in a call to the same base method. Especially if
these methods are called frequently, irrelevant method calls are executed. Due to the single
source principle some method implementations are shared, but if these methods are called
repeatedly, a refactoring of the interface and a merge towards one method should be per-
formed. Even if the Java compiler by SUN now supports ”aggressive method inlining”,
calls over chains of (static) methods are much slower than a direct call. Simple code might
be replicated to gain performance, in particular, if methods which originally contained the
code will never be overridden. Especially classes providing a basic implementation like
adaptors for convenience introduce another drawback because of additional effort due to
dynamic linking.
In particular, this applies to template methods in SugiBib. Because of the framework ar-
chitecture often template methods are used to make certain algorithms configurable. These
methods are called frequently and often they also refer to the basic implementation to en-
sure consistency. Hence, a certain trade-off is induced by REQ_ARCHITECTURE, because
not every superfluous or convenient method may be removed due to the extendibility as-
pect of the framework.
Modern JVM implementations such as SUN’s HotSpot JVM, contain a just-in-time or dy-
namic compiler. Even if the bytecode produced by the compiler does not show inlining,
the adaptive compiler technology by SUN does this at runtime and eliminates guesswork
in determining which optimizations will yield the largest performance benefit in the Java
compiler. Therefore, introducing additional abstraction layers heavily relying on the del-
egates design pattern usually does not significantly slow down the execution speed. But
even when such transparent techniques were applied, we gained improvements in certain
situations by eliminating convenient method calls.

O9: Use object comparisons carefully: Comparing objects in Java is usually done by calling
the equals method. As defined in Section 4.2, the elements of a graph are required to
represent unique objects and hence the much faster reference equality can be used instead

20Newer versions of the JDK seem to implement internal optimizations and in extreme runtime tests, variables
outside a loop body cause performance penalties.
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of calling the equals method. Especially when loops are combined with methods, which
cannot be inlined, this significantly reduces the speed of execution.
Without further consideration of internal mechanisms of Java, that optimization cannot
be applied to strings, because most string operations return unique objects, which may
hold the same contents than other string objects but are accessed by different object ref-
erences. This can be circumvented by the intern method, which maps equal string con-
tents to unique object references. A discussion on comparisons for strings was given in
[Eichelberger and von Gudenberg 2004]. We do not go into details here, but an equality
comparison of strings, which starts at the end instead of the beginning, implemented in
java.lang.String may also speed up the implementation of SugiBib.

O10: Avoid type casts [Shirazi 2000]: For security reasons the JVM has to check each type
cast and throws an exception in the case of erroneous usage [Gosling et al. 2000]. Unfortu-
nately, the layered architecture of SugiBib requires an enormous effort in type casts. More
specific implementations which use the immediate type of the nodes or edges in a graph
implementation instead of the top level interfaces would be desirable. As a side effect,
reading the source code could be simplified and hidden errors due to runtime type conflicts
could be avoided.
On the one side, this implies that standard collections, which are implemented for the top-
level class Object, have to be avoided and, on the other side, code for more specialized
classes is replicated. By applying class templates as introduced with Java generics [Bracha
2004], plenty type casts could be eliminated.

O11: Avoid unnecessary use of standard collection classes: Wherever the number of elements
is fixed or a maximum number is known, arrays should be used. The classes of the Java
collections framework using Object as entity type should be avoided or replaced by spe-
cialized versions (see O10). If dynamically resizing collections are required, the new col-
lection classes should be used instead of the legacy collections [McCluskey 1999; Shirazi
2000; Zukowski 2003b; Zukowski 2003c] such as java.lang.Vector because they are
not synchronized by default. Executing each synchronized code section when synchroniza-
tion is not really needed carries a performance penalty.

O12: Estimate the initial size of dynamic data structures [Shirazi 2000]: The initial size of
most dynamic data structures can be estimated via the maximum number of elements to
be stored. By presizing e.g. collections, time consuming resize operations (O4) can be
avoided.

O13: Consider short-circuit operators [Shirazi 2000]: Put costly operations at the end in a
short-circuit (short cut) logic expressions to avoid the evaluation of these operations in the
case that the evaluation of the expression terminates before considering the costly opera-
tions.

O14: Avoid instanceof for equality checks: instanceof T returns, if a given object is in-
stance of the type T or of one of T’s superclasses or superinterfaces. If instanceof is
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frequently called, it might be replaced by equality checking of dedicated constants or the
object query mechanism.

O15: Avoid recursive implementations: As far as possible, recursive implementations should
be replaced by iterative implementations (see O8).

O16: Check the sequence in switch-statements and if-chains [Shirazi 2000]: According to
the expected number of executions, the sequence of individual cases in switch-statements
or chained if-statements should be modified to avoid unnecessary evaluation of conditions.

O17: Use Java-style listeners: If user defined code should be called in certain situations, hooks
or listeners can be used. In the case of a hook, a method in the same class is defined empty
and called when the event occurs. To implement the hook, the class has to be subclassed.
The hook method is called every time the event occurs. This is a disadvantage (see O8),
especially if a specific event is not of interest. If a listener interface and a corresponding
registration method can be provided, the default case, when no listeners are registered, can
be considered by a simple if-statement. Then the listener method is executed only if at least
one listener was registered.
The same applies to plug-ins: In the case of optional plug-ins the technique described
above should be considered. If the presence of a plug-in is required and a default one is
provided, checks for the presence can be avoided.

O18: Avoid reflection for class information retrieval: On the one side, for factory methods
it would be extremely comfortable to retrieve the instances to be created automatically.
This would unburden the programmer, e.g., in the case of the graph copy mechanism
in SugiBib, from deep internal mechanisms. On the other side, except for the standard
constructor, dynamically compiling the parameters of a method or constructor call is time
consuming due to O1 especially for array and wrapper instances. Furthermore, dynamic
method calls are much slower than usual method calls and exception handling (O5) is
required when using the Java reflection mechanism. Obviously the overhead grows when
such code fragments are called repeatedly in loops.

O19: Restrict the reuse of class signatures: In a framework, the programmer is tempted to
make a large number of signatures visible, accessible or overridable. Therefore, at least
time critical sections should be analyzed, if the corresponding methods could be defined
static, private or at least final to avoid dynamic linking.

The following concrete changes have been carried out during the development of the current ver-
sion of SugiBib. Most of the speed improvements can be validated by the runtime data collected
while running automatic tests which will be described in Section 6.4. Some changes have been
done before the automatic testing mechanisms were introduced. The speedup in these cases has
been estimated according to layout samples of some individual diagrams. The percentage data
should be interpreted as successive improvements relative to the speed of the implementation
before an individual optimization was carried out.
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• Global object pools (O3) in sugi::admin::utilities::ObjectPools have been pro-
vided for most of the temporary data structures like collections, maps, some arrays, points,
minimizing and maximizing helpers, object pairs etc. Also standard Integer wrapper in-
stances have been considered for pooling (11% speedup).

• When introducing rank descriptors as a dedicated data structure to represent a rank. First
this was done by a simple wrapper of a standard collection. Then, to each rank a map,
which relates the nodes to their index positions, was associated (O4), because position
based access is used frequently in SugiBib. Thereby, we accept a possible slowdown in the
case that extensive modifications like moving nodes induce costly changes to the position
map, because usually the rank structures are not changed frequently (12% speedup). Fur-
ther 5% speed improvement was gained after replacing the map, an instance of the standard
collections framework, by a specialized map similar to that in [Laux 2004], which relates
objects and the basic type int.

• Iterators (O2), except for those to be used with maps and in code pieces implemented by
students, have been substituted by equivalent code for position based access (8% speedup).

• After replacing the simple calculation of flat edge crossings by the matrix method de-
scribed in Section 4.6.3, 31% speedup was gained. Thereby, a frequently called method
with 6 parameters was replaced by successive calls to two methods, each with not more
than 4 parameters (O7) and an appropriate initial size for container data structures was cho-
sen (O12). Furthermore, the calls to the layout plug-in for subsystems have been refactored
(O17).

• In ancient versions, the graph copy mechanism was executed at the beginning of each algo-
rithmic step. By copying a graph only if new elements are not assignable from the existing
ones (O1), the runtime was decreased by 8%. Testing for reference equality instead of call-
ing equals (O9) in the implementation of the copy mechanism, improved the runtime by
further 4% – 16.5% depending on the input graph.

• The initial implementation of the coordinates assignment for compound graphs did not
augment the graph by inserting cluster border nodes. It considered the contained nodes
as node or rectangular coordinates closures and all node movement operations had to ex-
plicitly take these closures into account. Cluster parent nodes were allowed to adjust their
position automatically when contained nodes were moved, similar to the rules described
in Section 4.8.5. Even if the containment data was excessively cached, update operations
were (probably due to some bugs) time consuming. After replacing that realization, which
contained different inefficient algorithms, by the one based on cluster border nodes, the
runtime decreased by 45%.

Even if different runtime bottlenecks have been eliminated so far, plenty more can still be found
in the current version. Most of the equals calls (O9) could be substituted, even in specialized
versions of the standard hash maps (O9,O11), various methods especially in the coordinates
assignment implementation receive more than 4 parameters (O7), using relative positions
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for edges instead of absolute would speedup moving nodes a lot, retrieving information on
information classes via the internal query mechanism is much faster then checking the attached
information class by instanceof (O14), etc.

WorkNode

Node

CoordinatesNode

...

...

CoordinatesEdge

#start:Node
#end:Node
+getStartNode():Node
+getEndNode():Node

Edge

WorkEdge
...
...

Figure 6.13: The current architecture, which leads to a large number of type casts.

A lot of superfluous type casts in SugiBib could be eliminated to meet O10. An appropriate
programming tool, which automatically detects superfluous casts, would be appreciated. But
getting rid of one of the main bottlenecks, which arise from ubiquitous type casts due to the
architecture, would require new mechanisms like templates in the programming language itself
or a change of the architecture.
Figure 6.13 depicts a part of the class hierarchy of SugiBib. As usual in object oriented
programming, attributes are defined in the most common base class Edge as types of other base
classes, e.g., Node. When an instance of a more specific class, e.g. WorkNode, is stored in an
attribute of Edge, no type casts are required. The same is true, when methods defined in Node
are accessed. By defining abstract, empty or default methods as callbacks in the base class,
which are then implemented or overridden in subclasses, the template method pattern is often
applied in SugiBib. Negative impacts occur, when methods, which are introduced in subclasses,
are called from outside, because then time consuming type casts are required.
One alternative to get rid of type casts is to rethink the location of the definitions of attributes
in larger class hierarchies. If reading access outweighs writing access to object references, it
may be an option to declare the attributes using the most specific type in the leaf classes and
to define appropriate typed accessors. Figure 6.14 (a) illustrates this idea, which will be called
lazy attributes. The basic idea is to provide accessors, which return the most specific instance
as appropriate types on each level of the class hierarchy and to structurally avoid type casts.
Thereby, the declaration of attributes is defererred into the most specific (leaf) class.
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Figure 6.14: Four methods to eliminate superfluous casts: (a) depicts the lazy attributes pattern,
(b) a combination of lazy attributes and covariant return types, (c) the application of templates
(Java generics) and (d) the combination of templates and covariant return types.
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alternative figure reading only [ms] reading & writing [ms]
current architecture 6.13 9632 16502
lazy attributes 6.14 (a) 9276 15462
covariant lazy attributes 6.14 (b) 9444 15237
Java generics 6.14 (c) 5662 11936
covariant Java generics 6.14 (d) 1235 3637

Table 6.3: Runtime measurements of alternatives to eliminate type casts. 10000000 node and
edge instances were created and 100000000 times the start node was accessed by two different
reading methods.

In Figure 6.14 (a), the method names include the name of the return type as suffix, because in the
type system of Java 2, an overridden method must specify the same return type as the method in
the superclass.
A covariant type system allows that an overridden method in a subclass may return an object,
whose type is a subtype of that returned by the method it overrides [McCluskey 2004; McCluskey
2005]. This feature was introduced in Java 5 along with Java generics [Bracha 2004], the tem-
plate mechanism of Java. Figure 6.14 (b) depicts lazy attributes realized by covariant reading
accessors.
Figure 6.14 (c) shows the modifications of the architecture, which arise from defining template
parameters for the type of nodes in edges. Furthermore, as provided by Java generics, the type of
the individual template parameters is restricted by appropriate node types. Similarly, the nodes
can be parametrized by the types of edges. In fact, this alternative can be obtained from Fig-
ure 6.13 by inserting template parameters and replacing the node types. By applying templates,
most type casts can be removed from the source code. In the generic byte code, the concrete type
in the base class is represented by the minimum restriction of the template parameters, i.e., in
our case by Node. The type conformance is kept by the compiler by automatically inserting type
casts.
In Figure 6.14 (d), Java generics as described for Figure 6.14 (c) are combined with covariant
return types. Thereby, the accessors are redefined in each class and via the type restrictions of
the template parameter, covariant return types are introduced.
To optimize SugiBib for speed by removing type casts, the minimum invasive but maximum
effective method should be applied. Therefore, we simulated the five alternatives depicted in
Figure 6.13 and 6.14 as follows: For each alternative, 10000000 times an edge and a node ob-
ject was created and the node object was set as start node of the edge. Then, the node object
was accessed 10 times by the appropriate getter for Node and WorkNode. The runtime results are
summarized in Table 6.3.
On the one side, lazy attributes require minor changes to the existing classes by introducing ad-
ditional abstract typed or covariant reading accessors but also a large number of new leaf classes.
On the other side, we can assume that the runtime will not significantly change, because the real
number of accessors called on usual graphs in SugiBib is lower than the number of simulated test
runs. In fact, the same is true for simply applying Java generics, but refactoring SugiBib towards
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covariant Java generics will help getting rid of the type cast bottleneck. This suggestion also
depends on the choice of the version of the underlying programming language. If Java 2 must be
kept because of compatibility issues, the lazy attributes pattern helps simplyfing the source code
by eliminating type casts. But if the source code is not restricted to Java 2 style or the restrictions
will be released in the next future, the covariant Java generics architecture is suggested as target
for refactoring.

When comparing a pure Java implementation with the runtime of natively compiled programs
written in other programming languages, it should always be considered that the JVM interprets
the resulting bytecode which, beside various security issues, is one of the reasons of negative run-
time performance. Hence, a comparison should also always include timing results gained from
a native compiled version. The results of applying a native compiler to SugiBib were shown in
Section 5.3.
Performance tuning may improve the runtime but also may cause runtime errors due to hidden
dependencies, which have not been considered accidentally. Therefore, without excessive testing,
as discussed in Section 6.4, no performance tuning should be done.

6.6 Extensions & Modifications to SugiBib

Every extension of knowledge arises from
making the conscious the unconscious.

Friedrich Nietzsche (1844 – 1900)

So far in this thesis, we have discussed various aspects of aesthetics and automatic layout for
UML class diagrams. Furthermore, we introduced a prototypical implementation. For practical
use, several questions on how to use the implementation were left open. In this section a brief
guide on using or extending the implementation will be given.
A native compiled executable of the latest stable version can be obtained from
http://www.sugibib.de. Currently only native versions for windows, which include an in-
staller and some examples, are available. Also the related documentation generated by JavaDoc
is available online for browsing.
The source code of SugiBib can be obtained via CVS access only21. The source code is prepared
for development with the eclipse22 IDE. Scripts for generating the hypertext documentation, gen-
erating the JAR archive or running SugiBib under Linux and Windows are included. For example
the script to run the AWT browser application for Linux is located in bin/linux/startAWT.sh.
Without parameters, the GUI is started and an input file can be selected. When calling the script
with the parameter --help the command line argument help is displayed.
Before considering changes to the framework, always the hypertext documentation should be
consulted. Beside a description of all accessible methods and signatures, it provides additional
important details related to the release and the implementation.

21The information required for the access is available from the author on justified request.
22http://www.eclipse.org
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• How to add a certain plug-in, e.g. an input format reader? Beside choosing the ap-
propriate interface, abstract class or basic implementation, a new plug-in needs to register
itself, usually by calling a static method in one of the parent classes. But how can a plug-in
register itself, it no class outside executed in the framework holds a reference to the plug-
in?
This is done by the plug-in mechanism, which searches for plug-ins while starting an ap-
plication. The basic classes involved in that mechanism are depicted in Figure 6.15. A
PluginManager uses specialized resource locating implementations by considering the
current classpath and the bootstrap classpath of the JVM. To avoid searching the entire
framework for plug-ins, certain packages can be specified to be considered. Optionally,

ApplicationLibrary

admin

plugins

PackageSpecification PluginManager1..* 1..*

FileResourceLocator JarResourceLocator

ResourceLocator
<<interface>>

<<interface>>
StablePlugin

+locatePlugins()

applicationLibrary

uml

classDiagrams

UMLscript

sugi

Figure 6.15: The basic relations of the plug-in mechanism in SugiBib.

these packages can be traversed recursively for finding plug-ins. Some standard pack-
ages like the one containing the parser for UMLscript are referenced by default. To re-
alize a quick mechanism not implying slow type checking or reflection mechanisms, the
PluginManager simply loads and initializes each class in the specified package. Hence, a
plug-in simply has to provide a static initializer which registers itself as mentioned above.
As long as own plug-ins represent non-standard extensions, certain runtime switches at
JVM level can be used to add packages to be searched. For native or obfuscated versions
ASCII tables which contain the classes to be loaded by the plug-in mechanism have to be
provided. These tables are located in the resources directory, which can transparently be
accessed by sugi::admin::resources::FileResources even if SugiBib is loaded as a
library into the JVM or provided via network mechanisms.
SugiBib distinguishes between a development and a snapshot mode, which is activated for
a public release. For example, the snapshot mode disables runtime consistency checks as
well as plug-ins currently being developed. Therefore, stable plug-ins have to be marked
by the interface StablePlugin to be visible in a snapshot version.
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• How can the basic applications be modified, e.g., to provide more specialized menu
items or mouse operations? Mouse operations and general postprocessing actions, like
coloring the entire graph according to certain rules, can simply be added as interactive or
automatic plug-ins, respectively. The menus in the browsing applications and partly the
command line options will automatically be adjusted to handle the new features. Deeper
modifications in the application library should only be considered, if changes to all ap-
plications should be performed, which cannot be handled by plug-ins. In the case of GUI
and platform specific changes, the applications itself can be modified (or, less preferable,
subclassed). For example, the Swing browser application extends the standard menus by
adding a menu item, which allows switching the look & feel of the GUI.

• How to reuse the SugiBib algorithm in another project? First, the application library
can be reused by writing a new frontend class and passing the appropriate data through
that class into the library. It might not be appropriate, to reuse the application library in a
completely different application, because it handles lots of internal details for providing
the user with various options. Hence, parts of the basic mechanisms of that library may
have to be rebuild. Basic examples on directly calling the algorithm can be found in the
Examples package.
As shown in most of the illustrating class diagrams in this thesis,
the main flow of control for the layout algorithm is implemented in
sugi::uml::classDiagrams::InfoIIAlgorithm. The method execute of that
class receives two parameters, an InputGraph and a GraphicsDelegate.
The graphics delegate can simply be obtained by instantiating the appropriate graphics
delegate factory from one of the subpackages in sugi::applicationLibrary and call-
ing createGraphicsDelegate on that. A valid input graph can simply be obtained by
facilitating one of the input format readers for UMLscript, XUMLscript XMI or XMI[DI].
Usually, the readers are automatically registered in sugi::io::ContentsImporter
and the most appropriate one is selected by the application library. Therefore, sim-
ilar to the application library, the loading of plug-ins has to be initiated by calling
PluginManager.loadPlugins(). By iterating over all registered contents importers, the
correct one can easily be retrieved. When calling such an input reader, the source and
an application instance implementing sugi::applicationLibrary::IApplication
has to be specified. From the viewpoint of an algorithm, an application is an object,
which which may receive messages from the input and the rendering process, provides
information on the state of processing and returns the current graphics delegate instance.
Hence, this interface provides signatures to directly cooperate with the calling application
and can easily be implemented by an outstanding class.

• How can the sequence in the layout algorithm be changed? As discussed in this the-
sis, the sequence of the steps in the main layout algorithm was chosen carefully to meet
the priorities of the aesthetic criteria. Therefore, usually changes to the sequence of steps
are discouraged. The processing sequence of certain steps within a macro phase like pre-
processing (S1-S9), rank assignment (S10), edge crossing reduction (S11), intermediary
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processing (S12-S14), coordinates assignment (S15) and postprocessing (S16-S21) might
be changed. Steps like creating the result graph (S21) or determining the pseudo-hierarchy
(S3) should be kept in their absolute or relative position, respectively.

• How can individual facilities of the display of elements in UML class diagrams
be changed or extended? The individual elements of UML class diagrams are real-
ized via information classes attached to nodes and edges. The basic interfaces can be
found in sugi::uml::classDiagrams::basics and the concrete implementations in
sugi::uml::classDiagrams::standard. By implementing the basic interfaces, new
classes can be provided. By subclassing, existing ones can be modified according to the
principles of object-oriented programming. Finally the new implementation has to be made
accessible through an appropriate modification of the information object factory. A discus-
sion on using inheritance for reconfiguration was given in Section 6.3.1.

• How can a new layout step, like one of those in the main algorithm, be integrated?
Can parts of the implementation be replaced by other, alternative or faster realiza-
tions? As long as new steps fulfill certain consistency conditions, new or alternative steps
can be integrated into the layout process. As defined in the preceeding chapters, individ-
ual steps require various definitions to be respected. Furthermore, information, required by
following steps through the graph copy mechanism has to be provided by the new or al-
ternative implementation. Therefore, some of the basic interfaces have to be implemented
depending on the macro phase the new step should be used in.
As a first task it should always be investigated, if existing classes can be used to realize the
desired modification, because these classes meet most of the basic mentioned described
above. Furthermore, modifications to the source code of the class InfoIIAlgorithm are
required to respect the new implementation, because the current layout algorithm does not
allow dynamic changes of the sequence of algorithmic steps.
Each graph class provides various factory methods required to realize the graph copy
mechanism. If new node or edge classes, extended rank descriptors or another rank set
implementation should be used by the new graph, appropriate instances have to be created
by the factory methods. Even the graph itself has to follow this principle. An important
part of the copy mechanism is implemented in the constructors of the basic classes. There-
fore, own constructors should be declared similar to the existing ones of the superclasses
and the new one must call the appropriate constructor of the superclass. The rules, which
have to be respected for the graph copy mechanism, might also have been realized by dy-
namic mechanisms like runtime reflection. We still rely on the static handling which was
introduced in the first version of SugiBib, because a reflection based implementation is
time consuming (O18), in particular, when methods are called dynamically or instances
are created frequently. Introducing new node and edge classes should be avoided, because
copying the graph slows down the execution. In future releases, inner classes might be used
to make factory methods and template methods more obvious.
Some tips: If unexpected class cast errors or null pointer exceptions occur after inserting a
new step in code, which belongs to the framework itself, it should be ensured that the new
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instances meet the requirements of the following algorithmic steps. Furthermore, the new
factory methods should be investigated, if the appropriate instances are created. Similarly,
the copy constructors or clone-like methods should be reviewed for the appropriate super
class constructor invocations and if all (relevant) attributes have been considered. To im-
prove the speed of the implementation, SugiBib heavily relies on pooling instances (O3).
If totally unexpected results or runtime errors occur, some of the explicit memory manage-
ment calls defined in sugi::admin::utilities::ObjectPools might have been mixed
up. In each of these mysterious situations, we recommend to activate the runtime consis-
tency checks while can be enabled by the appropriate flag in sugi::GlobalFlags. This
will also enable runtime checks which terminate the execution in the case that instances
are released twice to the global pools.

• Can SugiBib also be applied to other types of diagrams? Due to the alignment to the
Sugiyama algorithm, SugiBib primarily is intended to apply a hierarchical layout algo-
rithm. But this is no restriction, because other layout algorithms (in individual classes) or
new layout steps can be introduced as described above. Similarly, by combining parts of
the existing algorithms, a general hierarchical layout algorithm can easily be obtained. Ac-
cording to the desired application domain, the information classes for UML class diagrams
might not be appropriate. Therefore, if non-UML diagrams should be drawn, the packages
located in sugi::uml can be ignored completely. An example for drawing a general graph
by the Sugiyama algorithm implemented in SugiBib is given in the package Examples.
Thereby, nodes are displayed as circles and edges are shown as simple straight lines.
When considering an implementation of other diagrams relevant for software engineering,
the following ideas can be taken into account:

– UML statecharts can be laid out by ViSta [Davidson and Harel 1996; Castelló et al.
2001; Castelló et al. 2002; Castelló et al. 2003], another, specialized hierarchical
layout algorithm. Also Statemate or higraphs [Harel 1988] seem to be an appropriate
approach.

– Aesthetic principles and a layout algorithm for UML sequence diagrams were dis-
cussed in [Rhode 2003].

– In [Six and Tollis 2002] a linear time algorithm for processing flowcharts with top-left
to bottom-right direction was discussed. A flowchart algorithm, which also respects
swimlines and object flows, might be appropriate, because in the current version of
UML, activity diagrams are closely related to flowcharts. A grid based algorithm for
data flow diagrams as discussed in [Protsko et al. 1991] might also be a starting point.

– Outside the UML, non-standard approaches like [Davis et al. 2003] for layout of
UML diagrams in three dimensions or Crococosmos [Lewerentz et al. 1995; Lewer-
entz and Noack 2003] might be interesting.

As a final hint to own modifications of SugiBib, we repeat the programming rule discussed in
Section 4.7:

Solve a layout problem at the point of time when it occurs and try to avoid postprocessing.
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7 Drawing Class Diagrams – an Ongoing
History

7.1 Future Work

Work is a necessary evil to be avoided.
Mark Twain (1835 – 1910)

A lot of research has been invested to explore algorithms for drawing UML class diagrams au-
tomatically. We have designed an algorithm, which is capable of realizing the complex relation-
ships between diagram elements in UML class diagrams and the aesthetic criteria defined in
Section 3.3.6. As shown in Section 6.4, plenty of code has been produced for realizing the algo-
rithm by a concrete program. Does future work simply consist of maintenance, optimization and
improvement?
Even if all elements of UML class diagrams have been considered in our approach, not all al-
ternatives have been realized. In the first version of SugiBib, a naive postprocessing in the result
graph supported UML_JOIN. This implementation was disabled, because it was able to con-
sider generalizations only, did not work in all cases and was not compliant to the requirements
of XMI[DI]. Joining dependencies, aggregations, compositions or generalizations while coordi-
nates assignment would be a desirable feature.
In Section 2.1, when UML and more specifically class diagrams have been described, it was
mentioned that the future issues of the next version of UML [OMG 2003d] have not been con-
sidered in this work. Fortunately, for class diagrams only few changes are required to meet
[OMG 2003d]. Subsystems have been removed and therefore the complexity of the layout al-
gorithm considering illegal edge crossings will be reduced. To support the specification of com-
ponent architectures, so called compound classifiers as well as a refined “lolly” notation have
been introduced. Furthermore, wiring of components including explicit ports at the border of
the components and directed connectors in the sense of a secondary flow from the ports to the
contained components can be specified. As described, the layout algorithm of SugiBib is able
to handle compounds and the secondary flow can be considered by adjusting the various edge
crossing reduction plug-ins. Stacked layout of classes, i.e. like the tip-over convention known
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in graph drawing, was also introduced [OMG 2003d]. In the first version of SugiBib, a simple
postprocessing feature was already present to realize a similar feature, but a more specific rank
assignment for tip-over layout would be a more appropriate realization.
So far, in most algorithms only the elements, which directly participate in a class diagram are
considered. Further information may be used as hints for the layout algorithm to place even
disconnected or loosely connected elements in a more pleasing and semantical sufficient way.
We mentioned invisible relations to accomplish this task. The data can be deduced from input
information, which explicitly has been marked as invisible, or which can be retrieved from a
repository by taking relations of the underlying model outside the diagram into account. Also
constraints from graph drawing could be interesting for a realization. In [Waddle 2001], dynamic
constraints were realized by proxy nodes (similar to our composite nodes) and a postprocess-
ing step of the rank assignment. Further work on constraints, like [Böhringer and Paulish 1990;
Protsko et al. 1991; Kamps et al. 1996; Tamassia 1998; Brockenauer and Cornelsen 2001; Bran-
denburg et al. 2003] can be considered, but complications on introducing conflicting constraints
are also known: It is easy to accidentally define conflicting constraints [Hansen et al. 2002].
Currently, the set of metrics discussed in Section 5.1 used to measure the aesthetic criteria intro-
duced in Section 3.3.6 is not complete. Further metrics have to be formalized and implemented.
The more metrics are available, the more the results of other UML specific layout algorithms
and UML tools will become comparable. Using a UML tool as input mechanism, a user study
on validating the aesthetic criteria as proposed in Section 3.3.7 can be conducted. In such a
study, our focus would be on UML experts and system analysts similar to the study mentioned
in [Dwyer 2001]. The data collected by conducting the study can be stored in a standard ex-
change format like XMI[DI] and analyzed by a metrics implementation, e.g. , the one provided
with SugiBib. As a side effect, hypotheses on finding rules for automatic deduction of hierar-
chies might thereby be examined. Furthermore, having a validated set of aesthetics and metrics
at hands, non-deterministic layout algorithms can be driven and controlled by them.
Various improvements on the drawing mechanisms can be considered for integration with
SugiBib. So far, we did not consider sophisticated mechanisms for edge labels. For text adorn-
ments, which are not closely related to nodes, mechanisms like those mentioned in [Kakoulis and
Tollis 1997a; Kakoulis and Tollis 1997b; Kakoulis and Tollis 1998; Binucci et al. 2002] might
improve the results. Furthermore, fast crossing calculation [Chazelle 1986; Chazelle and Edels-
brunner 1992; Barth et al. 2002] as well as layer-independent crossing number calculation or
floorplanning techniques as in VLSI or [Messinger et al. 1991; Hershberger and Snoeyink 1994;
Sander 1996a; Dobkin et al. 1997] can be taken into account. Decomposition of a graph into
trivial or disconnected subgraphs and replacement into multiple macro-layers [Messinger et al.
1991] as well as local layering [Schreiber 2002; Brandenburg et al. 2003] may also improve the
results but might also collide with UML_HIERARCHY.
Beside the theoretical and algorithmic improvements, which may arise from realizing the features
mentioned above, various runtime optimizations as discussed in Section 6.5 can help tuning the
execution speed. But also structural changes to the source code may improve the readability and
understandability. For example, the method and class names can be checked for conformance
to an internal naming convention and configuration as well as template methods might be made
more obvious by refactoring them into dedicated inner classes.
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As discussed in Section 2.1 and 3.1, navigation techniques, in particular for CASE tools, are
currently out of scope for this work. Basic semantical zooming, like class or package folding, as
well as edge type changes as discussed in [Köth 2001] can easily be realized. Thereby, the men-
tal map would basically be kept by SugiBib due to the normalization in S2. A technique, which
is often used for navigation, can be realized by coordinates transformations, like fisheye-views
[Formella and Keller 1996; Storey and Mueller 1996; Köth 2001]. Unfortunately, these tech-
niques introduce hard mental operations due to implicitly comparing the resulting diagrams with
the default UML layout. Automated abstractions as described in [Egyed 2002], which support
physical, logical and goal-driven refinement, seem to be more appropriate from the viewpoint
of software engineering. Also a semantic and context sensitive navigation technique, based on
dynamically generated diagrams and information paths retrieved from the information stored in
the repository of a CASE tool, might be interesting for future work.
One major future research interest will be the realization of an appropriate mechanism for incre-
mental layout (REQ_INCREMENTAL_ALGORITHM). Due to our application domain, structural
and semantical information on changes between two diagrams can be collected and supplied in a
(currently not) standardized format. Similar to taxonomies for program changes as discussed in
[Gustavsson and Assmann 2002; Gustavsson 2003], changes for UML diagrams can be catego-
rized and collected [Briand et al. 2003]. The following types of changes may be considered:

• Modifications of elements in a node (change of a name, adding, deleting or modifying
attributes or operation signatures) or at an edge (adornments, name, stereotype, qualifiers,
etc.)

• Adding or removing nodes or edges.

• Changing the containment of classes in packages, models or subsystems.

• Collapsing/expanding subgraphs or compound nodes.

Due to the normalization in the preprocessing of the SugiBib algorithm, simple changes are han-
dled implicitly. To minimize changes induced by the other categories, the algorithm has to be
extended at various points: Detection of the pseudo-hierarchy and the rank assignment on the
input, mechanisms for keeping unchanged nodes in predefined vicinity, etc. The difference be-
tween two UML diagrams in sequence can be retrieved as follows: On the one side, the UML
tool, in particular, the editor of the tool and the history of the repository, can directly provide the
change information. On the other side, the information can be deduced from structured formats
like XMI [Ohst et al. 2003]. In graph drawing, usually constraints are used to implement incre-
mental layout features as described in [Böhringer and Paulish 1990; Misue et al. 1995; North
1996; Storey and Mueller 1996; Köth 2001; Waddle 2001]. But it seems to be a hard task to
integrate constraints into the Sugiyama and therefore also into our approach as mentioned in
[Waddle 2001]. Hence, we believe that smaller changes can be handled by encapsulating un-
changed structures in composite nodes and running the algorithm as usual. When the differences
between two inputs get too large, iteratively smaller parts of the changes might be processed
instead of handling all in one step. Additional metrics for incremental features could be based on
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[Diehl and Görg 2002]. Also the cluster model and the measures of distribution and differences
on proximity graphs described in [Lyons et al. 1998] can thereby be taken into account.

7.2 Conclusions
None of the drawing methods so far pre-
sented in the literature produces pleasing
drawings for all applications and for all
input graphs. It is presumable that such an
algorithms will never be presented.

[Mäkinen 1990]

In this thesis, we have given a description of a complete layout algorithm for UML class diagrams
according to the UML 1.x specifications. That layout algorithm was developed with respect to
a set of requirements (Chapter 3), which take the viewpoints of graph drawing, HCI, software
engineering and software visualization into account. To enumerate these requirements, we have
presented an intensive discussion on aesthetic principles for diagrams in general and UML class
diagrams as our target application domain. Our unique set of aesthetic principles was derived
from the disciplines mentioned above and the UML specification as the only source, which de-
scribes the validity of UML class diagrams.
The general process flow of the layout algorithm for (mixed) compound graph was given in 7
macro steps and 21 individual processing steps as an extensive modification of the well known
Sugiyama algorithm. In Chapter 4, we have also described extended algorithms from graph draw-
ing for rank assignment, edge crossing reduction and coordinates assignment. Furthermore, we
have introduced a penalty mechanism for invalid edge crossings, techniques for producing clus-
ter valid graphs, the hierarchical edge crossing reduction technique and several detail algorithms
in coordinates assignment. To realize the priorities of our aesthetic principles, further process-
ing steps dedicated to elements specific to UML class diagrams were introduced: A grouping
mechanism for nodes, namely composite nodes, which is responsible for the implementation of
association classes, comments and hyper edges. Furthermore, scaling techniques and spatial dis-
tribution of nested elements to emphasize important issues of software engineering like coupling
were invented.
To objectively compare layout results of layout algorithms, a basic set of application domain spe-
cific metrics for the aesthetic principles was introduced. Furthermore, the algorithmic framework
SugiBib, which realizes the layout algorithm, was extended by mechanisms to communicate with
other UML tools, e.g., by direct JMI-repository access or the standardized data format XMI[DI].
An example of applying these metrics was given in Section 5.2, where to two graph drawing
approaches for UML class diagrams, which both do not fully implement the UML specifica-
tion, were compared with our approach. Having the implementation of layout metrics at hands,
a new testing mechanism, the metrics based regression testing for (UML class diagram) layout
algorithms was invented and applied to SugiBib. That mechanism produced detailed information,
which was visualized in Section 5.3, to describe runtime and scaling issues of the layout frame-
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work. As a conclusion of the runtime measurements, we have presented a list of performance
tuning opportunities for Java programs while describing the architecture of GUI-independent
framework SugiBib in Chapter 6.

In fact, drawing UML class diagrams automatically appears to be not only a world of its own as
a kind of overlapping between different disciplines, but more a universe of various worlds with
complex interactions. In the introduction of this thesis, a software engineering fairy tale was
given, in which software engineers had built themselves a perfect world to work in. Obviously,
this world is not reality now, because neither the (visual) languages for specifying software nor
most of the tools and their concepts nor the disciplines reasoning on perception and layout of
diagrams are currently able to realize the entire dream world.
One of the reasons why this software engineering fairy tale is currently not realized, is the prob-
lem of interpreting and realizing standards. Instead of simply realizing the UML specifications
and the related standards, most of the tools introduce their own habitat in the world of UML.
As shown in Section 2.2.3, most of the CASE tools have been identified to be not fully com-
pliant even to ancient versions of UML, rely on own interpretations of the standards, hence
do not properly support the migration between tools and usually provide a low quality layout
mechanism. Most of the tool vendors prefer picking popular parts from UML and thereby re-
alizing own sublanguages of UML in contradiction to our approach (REQ_COMPLETE_UML,
REQ_COMPLETE_DIAGRAM). As also described in Section 2.2.3 and Section 5.2, vendors of
layout algorithms and plug-ins for UML class diagrams apply the same simplifications to fit into
the world of UML tools.

Is the SugiBib algorithm (one of) the final solutions for drawing UML class diagrams?

Different approaches each with its own advantages and disadvantages may exist. In fact, tradeoffs
occur between the diagrammatic, the computational and the heuristical complexity. Reducing the
diagrammatic complexity to gain a more handy and maintainable algorithm or implementation
is generally not acceptable due to the nature of UML as an international standard. Hence, com-
putational and heuristical complexity increase.
It is a natural approach to select a layout algorithm, which supports by its construction impor-
tant structural and semantic aspects of the diagrams to be drawn. Hence, the selection of these
aspects, which can be seen in our case as a philosophy of drawing UML class diagrams, has
major influence on the choice of the layout algorithm. GoVisual and yFiles, the proposals from
the graph drawing community, rely on a modified topology-shape-metrics approach. Additional
constraints were used to produce drawings, in which inheritance (and realization) edges form a
hierarchy. Both algorithms support aesthetic criteria common to general graphs and well-known
to the graph drawing community. Taking into account the default layout rules implicitly intro-
duced by UML, a set of application domain specific layout rules can be deduced. From our point
of view, an approach, which is based on a hierarchical algorithm and, therefore, naturally sup-
ports hierarchy and nesting as the most important aesthetic principles for UML class diagrams,
is more appropriate. Finally, the decision on the best layout algorithm for UML class diagrams
will be deferred into future, depending on the acceptance of UML, CASE tools and automatic
layout mechanisms by the users.
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The application domain specific aesthetic principles, the layout algorithm, which is capable of
realizing these principles, the basic set of metrics for measuring the aesthetic principles on a
concrete diagram and the prototypical implementation of the layout algorithm discussed in this
thesis represent a contribution to various disciplines of computer science.
The set of aesthetic principles represent the foundation for work on a standardization of the lay-
out of UML diagrams to simplify the communication between human beings involved in the
software development process (software engineers, stakeholders, etc.) This might introduce a
techique like ”quality engineering by layout”, an improvement of the quality of the development
process and the produced software by the layout of software engineering diagrams.
For software engineers as well as software visualizers, this work shows that also the complex
and more exotic elements of class diagrams, which are responsible for large degree of freedom
as well as their own requirements can be considered by an automatic layout algorithm.
This also may influence the graph drawing community. We have contributed some ideas and
algorithms in rank assignment, edge crossing reduction and coordinates assignment for draw-
ing application domain specific hierarchical (mixed) compound digraphs. Furthermore, we have
shown that, by combining the knowledge of four computer science discipline, the basic aesthetic
principles from graph drawing can be extended to characterize the requirements and aesthetics of
UML class diagrams. A step to also consider more application domain specific rules in drawing
diagrams, analyzing them by metrics and automatically testing an implementation by regression
tests.



A1 Example Drawings by SugiBib

So far in this thesis, plenty details on algorithms for drawing UML class diagrams automatically
have been discussed, but most class diagrams were produced manually using xfig1. To emphasize
certain aspects in the drawings, we did not use one of the (probably non-compliant) CASE tools
for this task. In this section, some diagrams drawn by SugiBib, the prototypical implementation
of our layout algorithm for UML class diagrams, will be presented. The nodes in the diagrams
are scaled to minimum area occupied by their contents and comments are currently disabled.
Color or shading is assigned to individual nodes due to package containment as a non-standard
UML feature. Visual artifacts in some drawings arise from bugs in the implementation, which
have not been fixed so far.

1http://www.xfig.org
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Figure A1.1: SugiBib drawing of some hyperedges (hierarchical edge crossing reduction).

Figure A1.2: SugiBib drawing of Figure 2.9 using the hierarchical edge crossing reduction
without optimization for association classes. Some additional rank assignment heuristics

considering hierarchical subtrees of an initial forest may help to produce a drawing as
shown in Figure 2.9.

Figure A1.3: SugiBib drawing of Figure 2.9 using the hierarchical edge crossing
reduction without optimization for association classes. Aggregations are included

in the pseudo-hierarchy by user selection.
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UMLscript source code of Figure A1.2 and A1.3:

UMLscript VERSION 1 MINOR 14 { *ApplyPackages, *reflectiveAssociations }
DIAGRAM

CLASS {abstract} GraphAlgorithm
OPERATIONS
{abstract}+execute(g:Graph)

RELATIONS
GENERALIZE ’SugiyamaAlgorithm’
ASSOC handles >

ASSOC-CLASS
CLASS Handles

ATTRIBUTES
fileType

TO [1] ’graphs::Graph’
END

CLASS {abstract} SugiyamaAlgorithm
OPERATIONS
+execute(g:Graph)

PACKAGE
// COMMENTS ’encapsulates graph-related structures’ END COMMENTS

graphs
SUB DIAGRAM
CLASS Graph
RELATIONS

ASSOC composite TO [*] ROLE edges ’graphs::Edge’
ASSOC composite TO [*] ROLE edges ’graphs::Node’

END
CLASS Node
RELATIONS

ASSOC ROLE parent TO ROLE child ’graphs::Node’
ASSOC [2] ROLE end TO ROLE connects ’graphs::Edge’

END
CLASS Edge

END DIAGRAM
END DIAGRAM
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Figure A1.4: SugiBib drawing of Figure 3.6 using the hierarchical edge crossing reduction. Com-
ments are currently not displayed.
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Figure A1.5: SugiBib drawing of some reflective edges and an association class at a reflective
edge. Scaling of nodes and overlays of reflective association should be improved.
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Figure A1.6: SugiBib drawing of Figure 6.1: hierarchical edge crossing reduction and nodes
hopping are activated.
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Figure A1.8: SugiBib drawing of Figure 6.6: hierarchical edge crossing reduction and nodes
hopping are activated.
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Figure A1.11: SugiBib drawing of the class structure of a students’ project (hierarchical edge
crossing and hidden nodes hopping). The UMLscript input file was generated by JTransform.



A2 Lists and Hashtables

In this section, the formal definition for lists and hashtables, which are used in this thesis are
given. At a first glance, for these data structures, a hint that the operations will behave as known
from Java, would be sufficient. But then implicit behavior like returning ⊥ (null in Java) in
certain situations would not become obvious. Therefore, directly implementing the pseudocode
algorithms in another programming language or using other collection implementations would
lead to several errors and tedious debugging.

Definition 27 (lists)
A list L is defined as

L : {0 . . .(n−1)} → O,n ∈ N0

where o ∈ O denotes an arbitrary object. We assume an empty list for n = 0. Furthermore, we
will internally denote in this and subsequent definitions Ll as the l-th element in the sequence
and Ll → o for element assignments.

• a new list is created by L := {}
• |L| := listSize(L) := n

• Let M : {0 . . .(nM −1)} → O,nM ∈ N be a list. Then

listAddAll(L,M) : {0 . . .(n+nM −1)} → O

listAddAll(L,M)l →
{

Ll : if l < n
Ml−n : if n ≤ l < n+nM

• listPos(L,o) :=
{

i : if {i → o} ∈ L
−1 : otherwise

• o ∈ L ⇔ listPos(L,o) ≥ 0
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• listAdd(L, i,o) : {0 . . .n} → O, listAdd(L, i,o)l →


Ll : if i < 0 ∨ i > n
Ll : if l < i ≤ n
o : if l = i

Ll−1 : if i < l ≤ n

• listAdd(L,o) := listAdd(L,n,o), listAddFront(L,o) := listAdd(L,0,o)

• listGet(L, i) :=
{

o : if {i → o} ∈ L
⊥ : otherwise

• {o : o ∈ L, property(v)} constructs a new list in which the element sequence from
the source L is (partly) present in the result set. property denotes an arbitrary selector
function on o. The element before the colon in specifies the elements to be part of the
target list.

• {o, . . .} is a list constructed according to the given sequence of elements.

• let M be a list, then L ∪ M := listAddAll(L,M) is defined as a shortcut.

• L\M := {o : o ∈ L, o 6∈ M}
• L ∩ M := {o : o ∈ L, o ∈ M}
• L = M ⇔ ∀ o∈ L o ∈ M ∧ ∀ o∈ M o ∈ L.

L *= M ⇔ L = M ∧ ∀ o∈ L listPos(L,o) = listPos(M,o) also requires equal sequences.

• Similar to sets, ℘ L denotes the powerset of lists of L.

Definition 28 (hashtables)
Let K ∗ := K0\{⊥ } be the set of keys to be used with a hashtable where K0 denotes an arbitrary
set of keys.

H : K ⊂ K ∗ → O

is a hashtable H probably mapping from a certain key set keys(H) := K to an element o, which
is member of an arbitrary set O. Let k ∈ K ∗ .

• a new hashtable is constructed by H := {}
• hashPut(H,k,v) : K ∪ {k} → O via

hashPut(H,k,v)l →
{

w : if l 6= k ∧ {l → w} ∈ H
v : if l = k

• hashGet(H,k) =
{

v : if {k → v} ∈ H
⊥ : otherwise



346 A2 LISTS AND HASHTABLES

• hashRemove(H,k) : K\{k} → O

hashRemove(H,k)l → w if l 6= k ∧ {l → w} ∈ H

• hashContainsKey(H,k) =
{

true : if ∃ v{k → v} ∈ H
f alse : otherwise



A3 Improved Algorithms

While revising the realization of the framework, shortly before publishing this thesis, we were
able to improve some of the algorithms discussed in this work. These improvements are described
in this section.

A3.1 Cluster Validity

Similar to algorithm 4.11, in which the basic positions for determining the intra-rank validity
were precalculated, the basic data required to make the decision on inter-rank validity can be
handled. By calculating the rank-local inter-rank valid region for the node to be inserted, the
validity test in algorithm 4.11, which takes O(|V |) in the naive version, can be realized in constant
time. Algorithm A3.1 depicts the call of the preprocessing algorithm and the simplified test.
prepareInterRankTest determines the subrank of σr, which contains inter-rank valid positions
for the insertion of v. This can be done by the following steps:

1. If no alignment rank σr+d is given, e.g. for the first rank in the hierarchy, or if global(v)
holds, set irValidl = 0 and irValidr = |σr|.

2. Retrieve the most specific cluster criterion c, which is member of σr+d or σr.

3. If c is not member of σr+d , irValidl = 0 and irValidr = |σr| is the result. If global(c) holds
or c is member of either σr+d or σr, i.e., c was not aligned to σr+d before, positions of σr+d
are projected to σr. The projection is visualized in Figure A3.1. Therefore, the area of c in
σr+d is searched, clusters not aligned so far are ignored and within the neighbored clusters
the most specific aligned ones are determined. Then the corresponding positions of these
clusters are retrieved in σr. The valid area in σr is returned dependent on the existence of
the projected clusters.

4. Otherwise, let C(r,c) := {i : 0 ≤ i < |σr|, σr[i] � c} be the index positions of the nodes
of σr contained in c. The valid area is determined by irValidl = minC(r,c) and irValidr =
maxC(r,c)+1
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cnot aligned
... ...

not aligned

most specific most specific

σ

σ r+d

r

Figure A3.1: Projecting the positions from the align rank σr+d to the target rank σr.

Algorithm A3.1 ip_handleNonGlobal_improved
input: Ḡ = (V,EH ,EN ,n,σ),r,v,d ∈ {−1,1}
output: cluster-valid positions if ¬global(v) {0 . . . |σr|} → insertPosResult

sAlign := augmentClusters(σr+d)
sRank := augmentClusters(σr)
(irValidl, irValidr) := prepareInterRankTest(σr+d,σr)
result : {0 . . . |σr|} → insertPosResult
S := {i : 0 ≤ i < |σr|, v � σr(i)∧ 6 ∃ w∈ σrv ≺ w � σr[i]}
minSpec :=

−1
min S

maxSpec :=
−1

max S

for i := 0 to |σr| do
if insideClusterBorderNodes(σr,v, i) then

listPos(result, i) := ip_intraRankPosition(σr, i,v,minSpec,maxSpec)
else

listPos(result, i) := NO
end if
if listPos(result, i) 6= NO ∧ listPos(result, i) 6= EQUAL ∧ listPos(result, i) 6= GLOBAL then

if irValidl ≤ i ≤ irValidr then
listPos(result, i) := NO

end if
end if

end for
return result

The precalculation can obviously be done in O(|V |). Hence, algorithm A3.1 runs in O(|V |).
The algorithm described above can also be transformed into an incremental version, which keeps
some data on the clusters of all ranks. If at least the left and the right position of a cluster, the
next position of a direct cluster member to the right of the node to be inserted and the most
specific left and right clusters, which have been aligned so far, are stored in that data structure,
prepareInterRankTest can be implemented in constant time with linear time complexity for
the incremental updates when inserting (or deleting) a node.
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A3.2 Edge Crossing Reduction

With the improvements on cluster validity, corollary 15 can be rewritten so that Algorithm 4.12
runs now in O(|V |2) due to the improved complexity of the inter-rank validity test. Consequently,
the extended median and barycentric edge crossing reduction algorithms run now in O(|V |2) or
O(|EH |+ |V |2), respectively.
Basically, the runtime complexity of the hierarchical edge crossing reduction algorithm is not
tainted by the results described above. As described in Section 4.6.5, the complexity heavily de-
pends on the operations carried out in the order loop, which determines the position of the nodes
to be inserted successively. As a variant of the basic algorithm, which determines the position
of an individual node by calculating the incrementally changing number of edge crossings of all
valid positions in the target rank, simply the barycenter or median position, which was forced
to the closest cluster-valid position, can be used instead. Now, the order loop takes O(|V |) to
calculate the cluster-valid positions and O(|V |) to force the single node to a cluster-valid position
by applying the methods described in Section 4.6.4. Hence, the median and barycenter variants
of the hierarchical crossing reduction run both in O(|V |2).
Measurements have shown that on compound graphs, the improved hierarchical method often-
times outperforms the other crossing reduction methods considering the number of edge and
edge-region crossings. Oftentimes, the variants of the hierarchical method lead to a better num-
ber of edge crossings and compound-region crossings than median and barycenter. Considering
the runtime, the median method is faster than the variants of the hierarchical edge crossing re-
duction, the hierarchical edge crossing reduction and the barycentric method. Unfortunately, the
median method produces a lot of edge-region crossings. Applying the improved transpose heuris-
tic of the hierarchical crossing reduction, may crossings can be reduced but the runtime increases
significantly.
Multiple edge crossing reduction strategies provide the choice of a compromise considering run-
time and quality of the layout result as discussed in Section 5.3. Even if the basic hierarchical
edge crossing reduction implies a high complexity, it also has advantages like the influence of
edge lengths on the result, which usually lead to a better and more intuitive layout in particular
on small diagrams (less then approx. 200 nodes). Therefore, we propose to suggest the basic hi-
erarchical algorithm for small diagrams, the heuristic hierarchical algorithms for larger diagrams
and the median edge crossing reduction if speed is more important than quality.
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integrated development environment, see

IDE
inter-rank validity, 141
interaction coupling, 68
interconnect matrix, 160
internationalization, see I18N
intra-package coupling, 68
intra-rank validity, 141
iterator, 287, 312, 317

jarInspector, 32, 40, 87, 262
Java, 243, 281
Java compiler, 312
Java generics, 315
java metadata interface, see JMI
Java virtual machine, see JVM
JET, 276
JMI, 50, 260, 302
JTransform, 49, 276, 279, 312
JVM, 270, 312, 322

layout stability, 124
lazy attributes, 318
LCC, 120
length of the hierarchy, 138
line row, 209, 231
Linux, 270, 276
list, 344
local layering, 137
locked graph, 284
longest path layering, 137

macro phase, 104
magnetic fields, 35, 40
mandatory aesthetic criteria, 72
matrix realization, 160
MDA, 23
MDI, see multiple document interface
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mental map, 45
meta-model levels, 48
metadata repository, 50
Microsoft Windows, 276
middle rank area, 233
minimum feedback arc set problem, 133
mixed compound graph, 44, 127, 215, 218
model driven architecture, see MDA
MOF, 48
moving nodes, 223
multi-level non-hierarchical edge, 172
multiple document interface, 285
mutable graph, 284

name compartment, 10
native compiler, 276
native version, 322
navigation, 23
navigation path, 108
nesting relation, 106
network simplex method, 143, 145
node complexity metric, 288
node hopping, 202
node naming function, 119, 144

abstract, 121
huffman encoding, 121
preorder-size numbering, 121

node storage strategy, 110
node-link diagrams, 61
not intended hierarchical level, 89
null, 112

obfuscated version, 322
Object Modeling Technique, 34
object pools, 317, see pooling
object-oriented metrics plug-in, 285
OCL, 13
Oh-notation, 112
OMG, 21, 48, 94, 261
OMT, 34
one sided crossing minimization problem,

157
one-layer layout, 89, 269

optional aesthetic criteria, 72
ordering strategy, 292
outer node area, 211

path, 29
planar embedding, 29
plug-in manager, 322
polymetric view, 70
polyomino packing algorithm, 239
pooling, 313, 325
port, 188, 205, 212, 231
port penalty, 188
postprocessing programming rule, 204, 325
preorder-size numbering, 121
private edge, 211
pseudo-coordinates, 202
Ptide, 49
public edge, 211

query mechanism, 290, 316

rank number, 138
reference equality, 314
reverse engineering, 24, 27
reversed edges, 133
ringed layout, 24
round-trip engineering, 26
running SugiBib, 321
runtime consistency checks, 325
runtime consistency test, 310

SCC, 134
SDI, see single document interface
Seemann algorithm, 40, 93, 148
self-loop, 28, 177
semantic constraints, 53
simple graph, 28
simplex method, 137, 143
simulated annealing, 35
simulated sintering, 35
single document interface, 285
single-layer layout, see one-layer layout
span, 136
standard widget toolkit, see SWT
standardization, 27
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static layout rules, 52
stress test, 308
strongly connected component, 134
structural stability, 124
STT algorithm, 33
SugiBib, 40
Sugiyama algorithm, 33, 148, 242
Swing, 303
SWT, 303

theoretical complexity, 112, 242
three amigos, 34
top flat area, 233
top flat edge, 172

UML
abstract, 11
active object, 19
activity diagram, 8
aggregation, 13
anchor notation, 18
annotation, 16
association, 12
association class, 14
association classifier, 14
attributes, 10
basic style guide, 9
class, 10
class diagram, 8, 10
class instance, 19
collaboration, 19
collaboration diagram, 8, 19
comment, 16
component diagram, 9
composition, 13, 17
constraint, 10
default layout, 19
dependency relation, 17
deployment diagram, 9
discriminator, 11
ellipses, 11
higher association, 15
inheritance relation, 11

inner class, 18
interface, 11
joined arcs, 18
lolly, 17
model, 15
multi-object, 19
multiple dependencies, 17
multiplicity, 12, 17
n-ary association, 15
namespace, 15
navigational indicator, 12
nested class, 18
node naming function, 119
object, 19
operations, 10
package, 15
package diagram, 8
qualifier, 12
realize relation, 11
role, 12
separate target style, 18
sequence diagram, 8
shared target style, 18
statechart diagram, 8
stereotype, 10
style guide, 10
subsystem, 15
tag-value list, 10
templates, 17
ternary association, 15
use case, 15
use case diagram, 8
visibility, 11, 12
xor-constraint, 14, 76

UML 2.0, 9, 327
UML-XMI, 48
UMLscript, 48, 279, 302
universal arrow diagram logic, 24
upward edge, 134
user defined layout constraints, 72

Very Large Scale Integration, see VLSI
virtual leaf, 133, 206, 233
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virtual node, see dummy node
virtual root, 132, 151, 206, 228, 233
VLSI, 39, 233, 328

W3C, 47
whitebox test, 308

XMI, 9, 48, 260, 302
XMI[DI], 49, 261, 302

XML, 47, 310
XML debugging format, 311
XML Metadata Interchange, see XMI
XSLT, 302, 310
XUMLscript, 49, 302

yFiles, 40, 87, 262
yWorksUML, 32, 40, 87, 262


