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Abstract

Background: Suture pretension during tendon repair is supposed to increase the resistance to gap formation.
However, its effects on the Bunnell suture technique are unknown. The purpose of this study was to determine the
biomechanical effects of suture pretension on the Bunnell and cross-lock Bunnell techniques for tendon repair.

Methods: Fighty porcine hindlimb tendons were randomly assigned to four different tendon repair groups: those
repaired with or without suture pretension using either a simple Bunnell or cross-lock Bunnell technique. Pretension
was applied as a 10 % shortening of the sutured tendon. After measuring the cross-sectional diameter at the repair
site, static and cyclic biomechanical tests were conducted to evaluate the initial and 5-mm gap formation forces,
elongation during cyclic loading, maximum tensile strength, and mode of failure. The suture failure mechanism was
also separately assessed fluoroscopically in two tendons that were repaired with steel wire.

Results: Suture pretension was accompanied by a 10 to 15 % increase in the tendon diameter at the repair site.
Therefore, suture pretension with the Bunnell and cross-lock Bunnell repair techniques noticeably increased the
resistance to initial gap formation and 5-mm gap formation. The tension-free cross-lock Bunnell repair demonstrated
more resistance to initial and 5-mm gap formation, less elongation, and higher maximum tensile strength than the
tension-free Bunnell repair technique. The only difference between the tensioned cross-lock Bunnell and tensioned
Bunnell techniques was a larger resistance to 5-mm gap formation with the cross-lock Bunnell technique. Use of the
simple instead of cross-lock suture configuration led to failure by suture cut out, as demonstrated fluoroscopically.

Conclusion: Based on these results, suture pretension decreases gapping and elongation after tendon repair, and
those effects are stronger when using a cross-lock, rather than a regular Bunnell suture. However, pretension causes
an unfavorable increase in the tendon diameter at the repair site, which may adversely affect wound healing.
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Background

Achilles, patellar, and quadriceps tendon ruptures are
common orthopedic injuries. Although surgical tendon re-
pair is often indicated, the ideal suture technique remains
unclear [1-6]. The most frequently described techniques
are the Bunnell [7], Kessler [8], and Krackow sutures [9].
Regardless of the technique selected, the repaired tendon
must be able to provide appropriate strength to resist load-
ing during postoperative mobilization caused by physical
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therapy. This mobilization after tendon repair is important
for preventing adhesions [10], which is one of the main
causes of diminished range of motion after therapy. How-
ever, there is a significant risk of gap formation at the re-
pair site during mobilization [11], which is a severe
problem because gapping inhibits the development of
strength and stiffness in the injured tendon that normally
occurs during healing. Large gaps can even cause re-
rupture during early rehabilitation [12].

Many different suture modifications have been de-
scribed to improve the tendon repair strength and de-
crease gap formation. Increasing the number of suture
strands crossing the repair site increases the resistance
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to failure [13], as expected. Including an epitendinous
suture running circumferentially around the repair site
not only adapts the frayed ends but also improves the
biomechanical repair strength [14]. In addition, the su-
ture diameter and material clearly affect the repair
strength [15]. How the suture is anchored inside the par-
allel tendon filaments is known as the “locking configur-
ation,” which is another major determinant of the repair
strength and resistance to gap formation [16]. Increasing
tendon purchase, that is the tendon area which is con-
tained by the suture, also increases stability [17, 18].
However, limited attention was paid to suture pretension
until recently [19, 20]. Tightening a suture should increase
the resistance to gap formation, but that effect remains
controversial [17, 20]. The effects of suture pretension on
Bunnell sutures have not yet been reported, even though
it is one of the most common techniques for tendon
repair.

We hypothesized that pretensioning improves tendon
repair strength and assessed both simple and a modified
cross-lock Bunnell sutures because those repairs can be
pretensioned. We biomechanically determined the initial
gap force, 5-mm gap force, elongation, maximum tensile
strength, and mode of failure to elucidate the benefits of
suture pretension.

Methods

Specimens

We harvested 80 porcine hindlimb tendons. The ten-
dons had a mean length of 122+ 6.2 mm and a mean
cross-sectional diameter of 46 + 4.2 mm?, which is simi-
lar to the average size of a human Achilles tendon [21].
The cross-sectional diameter of each tendon was manu-
ally measured with calipers (area = mab, where a is one
half the tendon height and b is one half the tendon
width). Tendons with obvious defects were excluded.
After harvest and measurement, all of the tendons were
wrapped in saline-soaked gauze and frozen at —-20 °C.
Prior to testing, the tendons were thawed for 12 h at
23 °C room temperature. The tendons were kept hy-
drated by a continuous saline spray to avoid desicca-
tion. The reported testings were performed with
approval of the local ethics committee.

Suture technique

The tendons were randomly divided into four groups
(Table 1, Fig. 1) and transected along their middle, leaving
at least 50 mm on either side of the transection. Tendons
in the Bunnell group (1 =20) were repaired using a two-
strand Bunnell suture (PDS 1; Z631; Ethicon; Somerville;
NJ, USA) and an additional epitendinous suture (PDS
5—0; Z3030; Ethicon). Tendons in the tensioned Bunnell
group (1 = 20) were repaired as in the Bunnell group, ex-
cept here sufficient pretension to cause a 10 % shortening

Page 2 of 8

Table 1 Sample sizes and groups tested

Group Technique Specimens  Biomechanical testing

1 Bunnell 20 static (n = 10); cyclic (n=10)
2 Tensioned Bunnell 20 static (n = 10); cyclic (n=10)
3 Cross-lock Bunnell 20 static (n = 10); cyclic (n=10)
4 Tensioned Cross-lock 20 static (n = 10); cyclic (n=10)

Bunnell

of the tendon segment encompassed by the core suture
was applied at each side of the repair. The 10 % shortening
was measured by marking the tendon purchase of 30 mm
at the tendon stump before placing the suture. After pla-
cing the suture, pretension was applied by pulling the core
suture in the longitudinal direction, thus shortening the
tendon purchase down to 27 mm at each side of the tran-
section (Fig. 2). Tendons in the cross-lock Bunnell group
(n=20) were repaired using a two-strand cross-lock
Bunnell suture (PDS 1) and an additional epitendinous su-
ture (PDS 5-0). Finally, tendons in the tensioned cross-lock
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Fig. 1 lllustration of the different groups tested. The tendon area
encompassed by the core suture was shortened by 10 % on each
side of the repair in groups 2 and 4 to perform suture tensioning

.
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27 mm

A

Fig. 2 Additional steps for suture pretensioning. a Tendon purchase of 30 mm on each side of the defect. b Placing the distal part of the suture,
including a cross-lock configuration. ¢ The proximal part has a Bunnell configuration. Pretension was applied by pulling the suture in the longitudinal
direction. d The tendon area encompassed by the core suture was shortened by 10 %

27 mm

Bunnell group (n=20) were repaired with the cross-lock
Bunnell suture, and pretension was applied as described
above. The cross-sectional diameter of the tendon was
measured before and after suture placement in each
group to determine the increase in tendon diameter at
the repair site. An epitendinous suture was included on
all test specimens.

Biomechanical testing

Testing was conducted on a mechanical testing machine
(2020, Zwick/Roell GmbH; Ulm, Germany) using test
Xpert II software (Version 3.3; Zwick/Roell). Uniaxial test-
ing was performed with a 20-kN load cell and two stainless
steel clamps. The distance between the two clamps was set
as 80 mm and both ends of the tendon were clamped onto
the machine. The tendon ends were rapidly frozen with li-
quid nitrogen for 60 s before being fixed into the clamps.
Static (10 tendons per group) and cyclic testing (10 tendons

per group) were performed (Table 1). The static, load to
failure test included a preload of 3 N and a tendon distrac-
tion rate of 20 mm/min. The initial gap formation (loss of
contact between the tendon ends) and 5-mm gap for-
mation forces, ultimate tensile strength, and mode of fail-
ure were measured. The cyclic testing included a preload
of 3 N and a preconditioning loading to 10 N for 10 cycles.
Subsequently, cyclic loading between 20 and 100 N was
applied for 100 cycles at a distraction rate of 20 mm/min.
The load and displacement were continuously recorded to
generate a load-displacement curve. The displacement
curve for the 100 cycles was analyzed to determine the
amount of elongation. We further evaluated the mechan-
ism of suture failure on two other tendons. These tendons
were repaired using a 1 mm stainless steel wire with the
Bunnell or cross-lock Bunnell suture techniques. While
under axial load, the mode of failure was determined by
fluoroscopy (Fig. 3).
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Bunnell repair

Cross-lock Bunnell

Fig. 3 Fluoroscopic examination of the suture failure mechanism.
Different tension loads were applied to the Bunnell and cross-lock
techniques. Suture cut out occurred at lower tension levels in the
Bunnell technique, which may explain the lower resistance to
gap formation

Statistics

The results are shown as means with standard devia-
tions. A power analysis was performed to show that the
sample size was sufficient. Shapiro-Wilk tests were per-
formed to assess the variable distributions. Thereafter,
ANOVAs were calculated, and for significant effects,
post hoc Tukey tests were used to compare group means
(SPSS Inc.; Chicago; IL; USA). P values less than 0.05
were considered statistically significant.

Results

Initial gap force

The initial gapping appeared at the lowest tensile force in
the simple Bunnell repair group. The cross-lock Bunnell
repair without pretension showed a higher resistance to
initial gap formation compared with the simple Bunnell
repair (p < 0.001). Pretension increased the gap formation
force by 146 % in the simple Bunnell (p < 0.001) and 61 %
in the cross-lock Bunnell (p<0.001) repairs (Table 2,
Fig. 4).
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Five-millimeter gap force

The tension-free Bunnell suture showed the least resist-
ance to 5-mm gap formation. Pretensioning increased
the resistance by 60 % (p <0.001) in the Bunnell and by
56 % in the cross-lock Bunnell (p < 0.001) repairs. In the
tensioned Bunnell suture, the 5-mm gap force was lower
than the initial gap force because the epitendinous su-
ture ruptured before the 5-mm threshold. This caused a
sudden decrease in the tensile force (Fig. 4).

Maximum tensile strength

The tension-free Bunnell suture had the lowest max-
imum tensile strength. However, it was significantly in-
creased with pretensioning (p <0.001). The maximum
tensile strength was higher in the cross-lock Bunnell re-
pair than in the simple Bunnell repair (p <0.019) but
was not significantly increased by tensioning (Fig. 5).

Elongation

Elongation during cyclic testing indicates the lengthen-
ing of the repaired tendon. The Bunnell suture without
pretensioning showed the highest elongation. Signifi-
cantly less elongation was found in the tensioned Bunnell
(p<0.002) and tensioned cross-lock Bunnell (p < 0.007)
repair (Fig. 6).

Mode of failure

The mode of failure was determined under static condi-
tions (n=10). In the Bunnell and pretensioned Bunnell
groups, failure occurred in 60 % of the tendons by suture
pullout and in 40 % by suture rupture. The cross-lock
Bunnell and tensioned cross-lock Bunnell repairs all failed
by suture rupture. The mechanism of failure was observed
under fluoroscopy in additional specimens (n=2). Axial
tension on a Bunnell type suture results in stringing
followed by suture cut out, which promotes gap forma-
tion. No stringing or cut out was observed under similar
loads in the cross-lock configuration (Fig. 3).

Diameter increase

The average cross-sectional diameters after suture
placement were 81.2+6.1 mm® in the Bunnell and
80.2+12.9 mm? in the cross-lock Bunnell groups.
After shortening, the diameters were 89.2 + 13.1 mm?
in the tensioned Bunnell and 92.9 +11.1 mm? in the
tensioned cross-lock Bunnell groups. Thus, pretension-
ing caused an increase in diameter at the repair site.
The cross-sectional diameter increased by 10 % in the
Bunnell and 15 % in the cross-lock Bunnell groups.

Discussion

Gapping and lengthening of the tendon stumps are
reported to impair proper healing of repaired tendons
[12, 22—-24]. Suturing of the tendon should ensure that the
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Table 2 Biomechanical results for the different groups
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Technique Initial gap force (N) ~ 5-mm gap force (N) Maximum tensile strength (N) Elongation during cyclic load (mm)
Bunnell 61.3+10.2 7994123 1455+279 79+34
Tensioned Bunnell 151 £ 205 1285+30.3 194£118 4+£05
Cross-lock Bunnell 93.1+154 11694133 1791 +23.7 56+25
Tensioned Cross-lock Bunnell 1499+13.7 1822 +22.7 1928 +29.5 44+£15

tendon ends remain attached and avoid the development
of a gap at the repair site or lengthening, thereby allowing
safe postoperative mobilization. The results reported here
confirm that the application of suture pretension increases
the resistance against gap formation and lengthening in
the simple and cross-lock Bunnell sutures.

The application of suture pretension causes overlap-
ping and stringing of the torn ends of the tendon, and
more tensile strength will be required to pull the stumps
apart. However, pretension can also cause several prob-
lems that have not yet been reported. First, suture ten-
sioning increases the tendon diameter at the repair site,
here by 10 to 15 % compared with the tension-free

repairs. Even if this diameter increase does not affect the
sliding properties, it is unclear what magnitude of in-
crease is tolerable and what will increase the friction.
Whenever possible, the peritendineum should be closed
over the repair to encourage sliding, and the increase in
tendon bulk should not compromise this coverage. Most
importantly, the skin must be securely closed and any
diameter increase should not put pressure on the overly-
ing skin to ensure appropriate wound healing. This point
applies to all anatomic locations, especially those with a
limited amount of surrounding soft tissue. Second, ten-
sioning shortens the overall tendon length, which could
limit the final range of motion. Third, the use of

# |nitial Gap Force
*

=5-mm Gap Force

Bunnell

Bunnell

Tensioned

Cross-lock Tensioned
Bunnell Cross-lock
Bunnell

Fig. 4 Gap formation. a Initial gap formation. b 5-mm gap formation. ¢ Bunnell suture without pretension had less resistance to initial gap formation
than all of the other repairs (p < 0.001). Also, significantly more load was needed to produce a 5-mm gap in the tensioned Bunnell (p < 0.001),
cross-lock Bunnell (p < 0.002), and tensioned cross-lock Bunnell (p < 0.001) groups than in the simple Bunnell suture group. Pretension significantly
increased the resistance to gap formation in the Bunnell (p < 0.001) and cross-lock Bunnell (p < 0.001) repairs
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Maximum tensile strength

) - i,

Bunnell Tensioned
C Bunnell Bunnell Cross-lock
Bunnell

Cross-lock Tensioned

.

Fig. 5 Maximum tensile strength. a Failure by suture rupture. b Failure by suture pullout. € Tension-free Bunnell repair showed a significantly
lower maximum tensile strength than the tensioned Bunnell (p < 0.001), cross-lock Bunnell (p < 0.019), and tensioned Bunnell (p < 0.001)

pretension in high-strength locking repairs may be diffi-
cult. For example, the well-known Krackow repair [9]
seems less suitable for the use of pretension because after
the first locking loops are placed, no additional tension
can be applied because the loops are closed and the repair
is secured. Thus, it could be problematic to implement
pretension in full locking repairs. This might also explain
why Krushinski et al. did not find a decrease in gapping
when tightening a Krackow stitch [20]. For these reasons,
we investigated the simple and cross-lock Bunnell repairs
because the suture design is more suitable for pretension,
even though the use of a simple, rather than locking, con-
figuration of the Bunnell repair is itself a risk factor for
gapping [25].

The biomechanical properties of our porcine tendon
tension-free Bunnell repair are similar to the results of
other biomechanical studies on human test specimens
[5, 13]. For example, Gebauer et al. reported a maximum
tensile strength of 139+29.8 N after Bunnell repair
using a size 1 PDS, which is close to our measurement
of 145+279N [5]. While the tensioned cross-lock

Bunnell assessed here showed a maximum force of
192.8 £29.5 N, other repair techniques can reach sig-
nificantly higher repair strengths. Ortiz et al. examined
multiple strand repairs and the use of FibreWire™ for
Achilles tendon repair, reporting a maximum strength
of up to 675 N [4]. Nevertheless, compared with other
two-strand repair techniques, the cross-lock Bunnell re-
pair showed an improved tensile strength [5]. Accord-
ing to Orishimo et al., sutured Achilles tendons have to
bear tension loads between 20 and 100 N under passive
ankle motion without forced dorsiflexion [26]. The pre-
tensioned suture techniques investigated here would
probably allow such a postoperative treatment protocol,
but early walking in a walking boot cannot be recom-
mended because the repair in that situation has to bear
loads of 190 to 369 N [27, 28].

One clear limitation of this ex vivo porcine model
should be acknowledged, which is the tendon was
transected by a clear cut, whereas in a typical tendon
rupture, the ends are frayed and gap formation may
be different.
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Fig. 6 Elongation. a Amount of Elongation during cyclic load marked by red arrows. b During cyclic loading, the largest elongation occurred in
the Bunnell repair without pretension, and it was significantly larger than that in the tensioned Bunnell (p < 0.002) and tensioned cross-lock Bun-

Conclusion

Suture pretension may prevent gapping and lengthening
after surgical tendon repair. The simple and cross-lock
Bunnell sutures are both suitable for tensioning, but the
cross-lock Bunnell demonstrates better repair strength.
Therefore, the tensioned cross-lock Bunnell may be an
effective suture technique for clinical use.
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