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Abstract

Background: Platelets are anuclear cell fragments derived from bone marrow

megakaryocytes that safeguard vascular integrity by forming thrombi at sites of

vascular injury. Although the early events of thrombus formation—platelet adhesion

and aggregation—have been intensively studied, less is known about the

mechanisms and receptors that stabilize platelet-platelet interactions once a

thrombus has formed. One receptor that has been implicated in this process is the

signaling lymphocyte activation molecule (SLAM) family member CD84, which can

undergo homophilic interactions and becomes phosphorylated upon platelet

aggregation.

Objective: The role of CD84 in platelet physiology and thrombus formation was

investigated in CD84-deficient mice.

Methods and Results: We generated CD84-deficient mice and analyzed their

platelets in vitro and in vivo. Cd842/2 platelets exhibited normal activation and

aggregation responses to classical platelet agonists. Furthermore, CD84 deficiency

did not affect integrin-mediated clot retraction and spreading of activated platelets

on fibrinogen. Notably, also the formation of stable three-dimensional thrombi on

collagen-coated surfaces under flow ex vivo was unaltered in the blood of Cd842/2

mice. In vivo, Cd842/2 mice exhibited unaltered hemostatic function and arterial

thrombus formation.

Conclusion: These results show that CD84 is dispensable for thrombus formation

and stabilization, indicating that its deficiency may be functionally compensated by

other receptors or that it may be important for platelet functions different from

platelet-platelet interactions.
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Introduction

Platelets are essential players in thrombosis and hemostasis and ‘‘survey’’ the

integrity of the vascular system by discriminating between intact or injured vessel

walls [1]. Upon damage of the endothelial cell lining, platelets rapidly adhere to

components of the newly exposed subendothelial extracellular matrix (ECM), e.g.

collagen. Subsequently, they become activated and initiate a self-amplifying

feedback-loop, resulting in enhanced platelet activation and recruitment of

additional platelets from the circulation. Finally, the complex interaction between

platelets, the ECM and blood components leads to the formation of a stable

thrombus that seals the wound. Under pathological conditions, however, excessive

thrombus formation may result in vessel occlusion and subsequently lead to

myocardial infarction or ischemic stroke [2, 3].

A key event in the process of thrombus formation is the activation of integrin

aIIbb3, which bridges adjacent platelets and mediates stable platelet adhesion to

the ECM by binding to fibrinogen, fibronectin, von Willebrand factor (vWF) and

multiple ECM proteins [3, 4]. Outside-in signaling through the integrin further

enhances aggregation [5], but also additional receptors on the platelet surface, as

well as soluble mediators, are required for stable aggregation [6]. Among these

molecules is CD40L which, upon release from the platelet surface, supports stable

formation of arterial thrombi by binding to integrin aIIbb3 [7]. The close

proximity of platelets within the aggregates allows contact-dependent signaling via

interactions of receptors with their ligands on adjacent plasma membranes, like

junctional adhesion molecules (JAMs) [8] and ephrins/Eph kinases [9].

CD84, a member of the signaling lymphocyte activation molecule (SLAM)

family, is expressed on the surface of platelets and is also implicated to stabilize

thrombi via homophilic interactions, but experimental evidence to support this

hypothesis has not been provided so far [10, 11]. Members of the SLAM family are

well recognized as important immunomodulatory receptors and are expressed on

the surface of a wide variety of hematopoietic cells [12]. CD84 is a type I

transmembrane glycoprotein with an N-terminal ectodomain that comprises a

membrane-proximal Ig constant domain and a membrane-distal Ig variable

domain [13], which mediates the homophilic interaction between CD84 proteins

[14, 15]. The C-terminal intracellular portion of CD84 bears two immunoreceptor

tyrosine-based switch motifs (ITSM), which can bind the intracellular adapters

SLAM-associated protein (SAP also termed SH2D1A) and Ewing’s sarcoma

activated transcript 2 (EAT-2) [10, 16, 17].

Ligation of CD84 with a monoclonal antibody results in phosphorylation of the

ITSMs and subsequent SAP recruitment [10, 16], resulting in enhanced IFNc

production and proliferation in T cells stimulated with low doses of anti-CD3

antibody [14, 16]. A study in CD84-deficient mice established CD84 as a

functional co-receptor in lymphocytes that facilitates prolonged B cell:T cell

interaction required for optimal germinal center formation [18].

The effect of CD84-deficiency on platelet function has not been analyzed to

date. However, several findings implicate that CD84 and its downstream signaling
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pathway may be of relevance in platelets. First, the cytoplasmic tail of CD84 is

phosphorylated in response to platelet aggregation or upon antibody-mediated

receptor crosslinking. Second, wild-type platelets, but not SAP-deficient platelets,

are able to spread on immobilized CD84 [10]. Therefore, CD84 has been

proposed to mediate contact-dependent signaling and contribute to thrombus

stabilization [10]. Third, a recent study from our laboratory demonstrated that

CD84 receptor levels on platelets are tightly regulated by two distinct and

independent proteolytic mechanisms upon platelet activation: shedding of the

extracellular part by a disintegrin and metalloproteinase (ADAM) 10 and cleavage

of the intracellular C-terminus by the protease calpain [19].

Material and Methods

Mice

Generation of CD84-deficient mice: A targeting vector was designed to replace a

genomic region comprising the splice donor site of Cd84 exon 1, the complete

intron 1, and a critical part of exon 2 (comprising parts of the 59UTR, the

translation initiation site and the coding sequence of the CD84 signal peptide) by

a cassette containing a neomycin resistance gene. The homologous arms flanking

this cassette facilitate site specific recombination. The targeting vector was

purified and electroporated into R1 embryonic stem (ES) cells derived from the

129/Sv mouse strain [20]. After Geneticin (G418) selection, targeted stem cell

clones were screened by Southern blot analysis with a gene-specific external probe.

Cd84+/2 ES cells were injected into C57BL/6 blastocysts to generate chimeric mice.

Male chimeras were backcrossed with C57BL/6 mice (Harlan Laboratories) and

subsequent progeny were intercrossed to obtain Cd842/2 mice. Genotypes were

determined by Southern blot analysis and PCR. Animal studies were approved by

the district government of Lower Franconia (Bezirksregierung Unterfranken).

Chemicals and reagents

Collagen (Kollagenreagent Horm; Nycomed), convulxin (Enzo Lifesciences) a-

thrombin (Roche Diagnostics), adenosine diphosphate (ADP), sodium heparin,

human fibrinogen, apyrase type III, prostacyclin (PGI2), Igepal CA-630 (all from

Sigma-Aldrich), U46619 (Alexis Biochemicals) and ECL solution (PerkinElmer)

were purchased, collagen-related peptide (CRP) was generated as described [21].

Rhodocytin was a generous gift from Prof. Dr. J. Eble (Münster University

Hospital, Germany). The anesthetic drugs medetomidine (Pfizer), midazolam

(Roche Pharma AG), and fentanyl (Janssen-Cilag GmbH) and the antagonists

atipamezol (Pfizer), flumazenil, and naloxon (both from Delta Select GmbH)

were used according to the regulation of the local authorities. The antibody

against the activated form of integrin aIIbb3 (JON/A-PE) was from Emfret

Analytics. Anti-murine CD84 monoclonal antibody JER1 [19] and other

antibodies were generated and modified in our laboratories as described [22].
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Platelet preparation

Mice were bled under isoflurane anesthesia from the retro-orbital plexus. Blood

was collected in a tube containing heparin in tris-buffered saline (TBS) (20 U/mL

pH 7.3), and platelet-rich plasma (prp) was obtained by two cycles of

centrifugation at 300 g for 5 minutes at room temperature (RT). For preparation

of washed platelets, prp was washed twice at 800 g for 5 minutes at RT by

resuspending the pellet in modified Tyrode’s-HEPES buffer (137 mM NaCl,

0.43 mM Na2HPO4, 12 mM NaHCO3, 2.7 mM KCl, 1 mM MgCl2, 20 mM

HEPES, 0.1% glucose, 0.35% bovine serum albumin, pH 7.3) in the presence of

PGI2 (0.1 mg/mL) and apyrase (0.02 U/mL). Platelets were then resuspended in

Tyrode’s-HEPES buffer containing 0.02 U/mL apyrase and 0 mM or 2 mM CaCl2,

depending on the experiment.

Platelet aggregometry

Washed platelets were prepared as described above. 50 mL platelet suspension

(0.56106 platelets/mL) was mixed with 110 mL Tyrode’s-HEPES buffer contain-

ing 2 mM CaCl2 and 100 mg/mL fibrinogen. Aggregation was triggered by the

indicated platelet agonists and changes in light transmission were recorded on a

Fibrintimer 4 channel aggregometer (APACT Laborgeräte und Analysensysteme).

Buffer represents 100% transmission. Aggregation curves for thrombin were

obtained in the absence of fibrinogen, measurements with ADP were performed in

prp.

Clot retraction

For clot retraction studies, 250 mL prp, adjusted to a concentration of

0.36106 platelets/mL, were mixed with 1 mL erythrocyte suspension and

supplemented with CaCl2 to a final concentration of 20 mM. Clotting was

induced by addition of high thrombin concentrations (5 U/mL). Subsequent clot

retraction was monitored at 37 C̊ under non-stirring conditions and documented

with a digital camera at different time points.

Platelet spreading assay

Coverslips were coated with 200 mg/mL human fibrinogen overnight and blocked

with PBS containing 1% BSA. After rinsing with Tyrode’s-HEPES buffer, washed

platelets prestimulated with 0.01 U/mL thrombin were added and incubated at

RT for the indicated time periods. Bound platelets were fixed with 4% PFA, the

coverslips were rinsed again and platelets were visualized with a Zeiss Axiovert 200

inverted microscope (x100).

Western blot

Platelets were washed twice in Tyrode’s-HEPES buffer and lysed with

immunoprecipitation buffer containing 1% Igepal CA-630. After 10 min
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centrifugation at 14000 rpm for 10 min at 4 C̊ the supernatant was obtained,

mixed with the respective amount of 4x SDS sample buffer and boiled for 5 min

at 95 C̊.

Proteins were separated by sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) and blotted onto polyvinylidene difluoride mem-

branes. After blocking with 5% fat-free milk in TBS-T, the membrane was

incubated with peroxidase-conjugated monoclonal antibody JER1 at 4 C̊ over-

night. Bound antibody was visualized by ECL.

Flow cytometry

Whole blood was diluted 1:20 in Tyrode’s-HEPES buffer, incubated with

appropriate fluorophore-conjugated monoclonal antibodies for 15 min at RT and

analyzed on a FACSCalibur instrument (Becton Dickinson, Heidelberg, Germany)

to determine glycoprotein expression. Parallel analyses on platelet count and size

were performed with an automated cell analyzer (Sysmex, Norderstedt,

Germany).

To analyze platelet activation responses, washed blood was activated with

agonists at the indicated concentrations and stained with fluorophore-conjugated

monoclonal antibodies at saturating concentrations for 14 minutes at 37 C̊ and

analyzed.

Platelet life span

Circulating platelets were labeled in vivo by intravenous injection of 5 mg Dylight-

488-anti-GPIX Ig derivative in 200 mL PBS in the retro-orbital plexus. 30 min

after antibody injection (and every 24 h for 5 days) 50 mL blood were taken from

the retro-orbital plexus of treated mice and the percentage of the Dylight-488-

positive population was determined by flow cytometry.

Adhesion under flow

Heparinized whole blood was perfused over collagen-coated cover slips as

described [23] at shear rates of 1000 s21, 1700 s21 and 3000 s21. Before

perfusion, anti-coagulated blood was incubated with DyLight-488–conjugated

anti-GPIX Ig derivative (0.2 mg/mL) at 37 C̊ for 5 minutes. Aggregate formation

was visualized with a Zeiss Axiovert 200 inverted microscope (40x/0.60 objective).

Phase-contrast and fluorescence pictures were recorded with a CoolSNAP-EZ

camera, and analyzed off-line using MetaVue software. Thrombus formation was

analyzed as the mean percentage of the total area covered by platelets/thrombi in

phase contrast images. Mean integrated fluorescence intensity per mm2

represented a measure of thrombus volume.
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Tail bleeding time assay

Mice were anesthetized with a triple anesthesia (medetomidine 0.5 mg/g,

midazolam 5 mg/g and fentanyl 0.05 mg/g body weight) and a 1 mm segment of

the tail tip was removed with a scalpel. Tail bleeding was monitored by gently

absorbing the drop of blood with a filter paper in 20 s intervals without directly

contacting the wound site. When no blood was observed on the paper, bleeding

was determined to have ceased. The experiment was manually stopped after

20 min by cauterization [24].

Intravital microscopy of FeCl3-injured mesenteric arterioles

Mice (4–5 weeks of age, weight 15–18 g) were anesthetized and the mesentery was

exteriorized through a midline abdominal incision. Arterioles were visualized with

a Zeiss Axiovert 200 inverted microscope (10x objective) equipped with a 100-W

HBO fluorescent lamp source and a CoolSNAP-EZ camera (Visitron, Munich,

Germany). Digital images were recorded and analyzed off-line using MetaVue

software. Injury was induced by topical application of a 3 mm2 filter paper

saturated with FeCl3 (20%). Adhesion and aggregation of fluorescently labeled

platelets (Dylight-488-conjugated anti-GPIX Ig derivative) in arterioles was

monitored for 40 min or until complete occlusion occurred (blood flow stopped

for .1 min).

Mechanical injury of the abdominal aorta

The abdominal cavity of anesthetized mice (,6 weeks of age) was opened by a

longitudinal incision and the abdominal aorta was exposed. A Doppler ultrasonic

flow probe (Transonic Systems, New York, USA) was placed around the aorta and

a mechanical injury was induced by a single firm compression with forceps

upstream of the flow probe. Blood flow was monitored until complete thrombotic

occlusion of the aorta occurred, or up to 30 min [25].

Statistics

Results from at least three independent experiments per group are presented as

mean ¡ standard deviation (SD). Differences between two groups were

statistically analyzed using a modified t-test (Welch’s test). p-values ,0.05

compared to control were considered statistically significant (p-value ,0.055*;

,0.015**; ,0.0015***).

Results

Generation and phenotype of CD84-deficient mice

Since CD84 expression is known to be restricted mainly to the hematopoietic

system, we generated constitutive knockout mice (Fig. 1A). To this end, we

designed a vector to replace parts of exon 1, the complete intron 1 and a critical
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part exon 2 by a cassette containing a neomycin resistance gene allowing for

selection of recombinant clones. Homologous arms facilitate site specific

recombination. By means of this strategy, the 59 UTR of the mRNAs and the

coding sequence of the signal peptide are deleted. Deletion of the 59 UTR of the

mRNA causes inhibition of ribosome binding and therefore protein synthesis is

abolished. If still alternatively spliced CD84 isoforms would be translated from

mRNAs, these isoforms without signal peptide would not be transported to the

plasma membrane in the cells. The targeting vector was electroporated into 129/

Sv-derived ES cells, and ES cells with successful homologous recombination were

injected into C57BL/6 blastocysts. Germ line transmission of the targeted allele

was obtained by crossing the resulting chimeric mice with C57BL/6 mice to

generate Cd84+/2 mice, which were then intercrossed to produce Cd842/2 mice.

The expression of CD84 in wild-type (Cd84+/+) platelets and its absence in

platelets from Cd842/2 mice was confirmed by Western blot analysis (Fig. 1B)

and flow cytometry (data not shown). Cd842/2 mice were born at Mendelian

ratios, developed normally and were grossly indistinguishable from wild-type

mice (data not shown), in line with a previous study [18]. Analysis of basic blood

Fig. 1. CD84-deficient mice display normal platelet count and size. (A) CD84 targeting strategy: This scheme illustrates the detection of wild-type and
Cd842/2 (targeted) alleles. Upon homologous recombination, the pWH9 cassette containing a neomycin resistance gene disrupts the Cd84 gene. An
external probe (EP) recognizes a sequence downstream of 39 arm in intron 2. With the pWH9 cassette, a new BamHI restriction site is introduced, enabling
the determination of a wild-type and Cd842/2 band by Southern blot analysis. (B) Analysis of CD84 expression in wild-type (Cd84+/+) and Cd842/2 platelets
by Western blot. Expression of GPIIIa was used as loading control. (C) Peripheral platelet counts and (D) platelet volume of wild-type and Cd842/2 mice
measured with a blood cell counter. (E) Determination of the platelet life span in wild-type and Cd842/2 mice. Mice were injected with a DyLight 488-
conjugated anti-GPIX Ig derivate to label platelets in vivo. Results are % of fluorescently labeled platelets at the indicated days after injection as determined
by flow cytometry. Values are mean ¡ SD of 5 mice per group.

doi:10.1371/journal.pone.0115306.g001

Function of CD84 in Murine Platelets

PLOS ONE | DOI:10.1371/journal.pone.0115306 December 31, 2014 7 / 16



parameters with a Sysmex cell counter revealed unaltered white and red blood cell

counts in Cd842/2 mice compared to wild-type controls (Table 1). Platelet count,

life span and the expression of prominent platelet surface proteins were unaltered

in Cd842/2 mice compared to wild-type controls (Fig. 1C,E and Table 1).

However, Cd842/2 platelets showed a modest increase in size (Fig. 1D). Taken

together, these data indicate that CD84 is dispensable for the development of the

hematopoietic system.

Unaltered function of Cd842/2
platelets in vitro

To determine whether the lack of CD84 had functional consequences on platelet

activation, platelets of wild-type and CD84-deficient animals were stimulated with

different agonists and analyzed by flow cytometry. Activation of integrin aIIbb3,

as assessed by binding of the JON/A-PE antibody, and degranulation-dependent

P-selectin surface exposure were used as markers for platelet activation. Cd842/2

platelets showed an unaltered response towards the G protein-coupled receptor

(GPCR) agonists thrombin, ADP and the stable thromboxane A2 (TxA2) analogue

U46619 (Fig. 2A). Similarly, platelet activation via the immunoreceptor tyrosine-

based activation motif (ITAM)-coupled receptor glycoprotein (GP) VI [26] by

collagen or CRP and via the (hem)ITAM receptor C-type lectin-like receptor 2

Table 1. Cd842/2 mice display normal hematologic parameters and unaltered levels of platelet surface glycoproteins.

A

Cd84+/+ Cd842/2 p

WBC6103/mL 6.30¡2.66 6.58¡3.05 n.s.

RBC6103/mL 8.33¡0.85 7.90¡1.56 n.s.

HGB [g/dL] 13.93¡1.30 12.74¡2.21 n.s.

HCT [%] 44.03¡3.78 41.37¡6.83 n.s.

B

MFI ¡ SD Cd84+/+ MFI ¡ SD Cd842/2 p

GPIb 326¡29 328¡20 n.s.

GPIX 439¡17 459¡19 n.s.

GPV 292¡10 299¡15 n.s.

CD9 1334¡43 1305¡64 n.s.

GPVI 32¡5 41¡+7 n.s.

aIIbb3 462¡49 469¡24 n.s.

a2 54¡3 55¡3 n.s.

b1 152¡16 154¡6 n.s.

CLEC-2 112¡6 114¡7 n.s

(A) White blood cell (WBC) count, red blood cell (RBC) count, hemoglobin (HGB) and hematocrit (HCT) were determined with a hematologic analyzer
(Sysmex) (n55, two independent experiments, n.s. 5 not significant). (B) Expression of glycoproteins on the platelet surface was determined by flow
cytometry. Diluted whole blood from the indicated mice was incubated with FITC-labeled antibodies at saturating conditions for 15 minutes at RT, and
platelets were analyzed directly. Data are expressed as mean fluorescence intensity ¡ SD (n54) and are representative of 3 individual experiments.

doi:10.1371/journal.pone.0115306.t001
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(CLEC-2) [27] by the snake venom toxin rhodocytin (RC) was not affected by the

loss of CD84 (Fig. 2A).

CD84 has been shown to become tyrosine phosphorylated upon platelet

aggregation, and therefore may act as an aggregation-induced co-receptor

supporting stable aggregate formation [10]. To test this directly, we performed in

vitro aggregation studies with washed platelets from wild-type and Cd842/2 mice.

Cd842/2 platelets showed unaltered shape change and the aggregometry light

transmission traces showed similar maximal aggregation rates as for wild-type

platelets in response to all tested agonists (collagen, CRP, thrombin, U46619,

ADP, RC). Also at intermediate and low agonist concentrations no significant

alteration of aggregation was detectable (Fig. 2B). Thus, in vitro aggregation

results indicated that the loss of CD84 does not affect aggregate formation or

stability, at least under the experimental conditions used.

Aggregation of platelets requires inside-out as well as outside-in signaling of

integrins. Another process requiring integrin aIIbb3-mediated adhesion, outside-

Fig. 2. Normal aIIbb3 activation, a-granule release and aggregation response of Cd842/2 platelets. (A) Flow cytometric analysis of integrin aIIbb3
activation (upper panel) and degranulation-dependent P-selectin exposure (lower panel) in response to the indicated agonists in wild-type and Cd842/2

platelets. Results are mean fluorescence intensities (MFI) ¡ SD of 4 mice per group and are representative of 4 individual experiments. CRP: collagen-
related peptide, CVX: convulxin, and RC: rhodocytin. (B) Washed platelets from wild-type (black line) and Cd842/2 (gray line) mice were activated with the
indicated agonist concentrations and light transmission was recorded on a Fibrintimer 4-channel aggregometer. ADP measurements were performed in prp.
Representative aggregation traces of at least 3 individual experiments are depicted (for RC: n54 mice per group).

doi:10.1371/journal.pone.0115306.g002
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in signaling and subsequent rearrangements of the cytoskeleton is spreading of

platelets on fibrinogen [28]. To study the role of CD84 in this process, washed

platelets were pre-stimulated with 0.01 U/mL thrombin and allowed to spread on

a fibrinogen-coated surface. Cd842/2 platelets formed filopodia and lamellipodia

to the same extent and with similar kinetics as wild-type platelets resulting in

,50% fully spread platelets after 30 min in both groups (Fig. 3A). Integrin

aIIbb3 outside-in signaling also regulates clot retraction [29]. In the process of

clot retraction, platelets generate force to contract the fibrin mesh, decrease the

clot size, and pull together the edges of damaged tissue to form a mechanically

stable clot [30]. To study whether the loss of CD84 alters clot retraction, clot

formation was induced in prp of Cd842/2 and wild-type mice by addition of a

high dose of thrombin (5 U/mL) in the presence of 20 mM Ca2+ and clot

retraction was monitored over time. No differences between wild-type and Cd842/2

platelets were observed and the excess fluid extruded after clot retraction was similar

in both groups (Fig. 3B). Hence, absence of CD84 does not significantly influence

the ability of platelets to undergo integrin aIIbb3-mediated adhesion and to

perform the reorganization of the actin cytoskeleton to mediate shape change,

spreading and clot retraction.

Unaltered aggregate formation under flow ex vivo in Cd842/2

blood

In contrast to the in vitro situation, the prevailing shear forces as well as the rapid

dilution of second wave mediators in flowing blood critically influence platelet

aggregation and thrombus formation at sites of vascular injury. Under such

conditions, the lack of receptors that potentially modify platelet aggregate stability

could become functionally evident. To test the consequence of CD84-deficiency

on aggregate formation under flow, anti-coagulated whole blood was perfused

over a collagen-coated surface in an ex vivo flow chamber system, at high

(1700 s21) and intermediate (1000 s21) shear rates (Fig. 4 and data not shown).

Similar to wild-type controls, platelets from CD84-deficient mice rapidly adhered

to collagen and formed three-dimensional aggregates at both tested shear rates.

Evaluation of surface coverage (Fig. 4A) and relative thrombus volume (Fig. 4B)

at the end of the 4-minute observation period did not reveal statistically

significant differences between Cd842/2 and wild-type mice. At very high shear

rates (3000 s21), wild-type and CD84-deficient mice only formed very small

thrombi but showed similar surface coverage (data not shown). These findings

indicate that CD84 is not essential for growth and stabilization of platelet-rich

thrombi under intermediate and high shear ex vivo.

Normal hemostasis and arterial thrombus formation in Cd842/2

mice

To study the effect of CD84 deficiency on arterial thrombus formation in vivo, we

subjected mice to a thrombosis model in which the abdominal aorta is
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mechanically injured and blood flow is monitored with an ultrasonic perivascular

Doppler flow probe. Female and male Cd842/2 mice were tested separately to

explore whether sex-specific factors may lead to divergent results, as described for

SLAM (CD150)-deficient mice [10]. In line with our in vitro results, wild-type and

Cd842/2 mice of both gender formed occlusive thrombi with comparable kinetics

(mean occlusion time: male Cd84+/+: 325¡99 s vs. male Cd842/2: 271¡72 s;

female Cd84+/+: 392¡217 s vs. female Cd842/2: 345¡148 s, Fig. 5A). Similarly,

the mean time to occlusion in a model of FeCl3-induced injury of mesenteric

arterioles was comparable between wild-type and Cd842/2 mice for males and

females (mean time to occlusion: male Cd84+/+: 15.73¡3.32 min vs. male Cd842/2:

15.19¡3.69 min; female Cd84+/+: 17.03¡3.15 min vs. female Cd842/2:

18.46¡4.78 min, Fig. 5B). Representative images of thrombus formation in this

model are shown in Fig. 5C.

To test whether CD84 deficiency affects hemostasis, tail bleeding times were

determined (Fig. 5D). Time until arrest of bleeding was not significantly altered in

CD84-deficient mice (Cd84+/+: 418¡206 s; Cd842/2: 347¡201 s). When data for

female and male mice were analyzed separately, there was neither a significant

difference between wild-type and Cd842/2 males nor between wild-type and

Fig. 3. Normal integrin outside-in signaling in Cd842/2 platelets. (A) Washed platelets of wild-type and Cd842/2 mice were allowed to spread on
fibrinogen (100 mg/mL) for 30 min after stimulation with 0.01 U/mL thrombin. Statistical evaluation of the percentage of spread platelets at different
spreading stages and representative differential interference contrast (DIC) images of 2 individual experiments. Spreading stages: 1: roundish, 2: only
filopodia, 3: filopodia and lamellipodia, 4: fully spread (scale bar 5 mm). (B) Clot retraction of Cd84+/+ and Cd842/2 platelets in prp upon activation with 5 U/
mL thrombin in the presence of 20 mM CaCl2 at the indicated time points (n56, left) and extruded serum after clot formation (right). Values are mean ¡ SD.

doi:10.1371/journal.pone.0115306.g003
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Cd842/2 females (data not shown). Taken together, these results indicate that

CD84 is not required for hemostatic and thrombotic function of platelets in vivo.

Discussion

In this study we used CD84-deficient mice to assess the role of this SLAM family

member for platelet function in vitro and in vivo. We show that the lack of CD84

in platelets does not affect classical platelet functions such as integrin activation,

granule release and aggregation in response to major agonists or spreading in

vitro. Cd842/2 mice showed unaltered bleeding times and normal arterial

thrombus formation in vivo after experimental injuries indicating that CD84 does

not serve an essential function in hemostatic/thrombotic processes.

Fig. 4. Normal adhesion and aggregate formation of Cd842/2 platelets on collagen under flow. (A)
Whole blood from Cd84+/+ or Cd842/2 mice was perfused over a collagen-coated surface (0.2 mg/mL) at a
shear rate of 1700 s21. Representative phase contrast images of aggregate formation on collagen after
4 minutes of perfusion time (scale bar 50 mm) (left) and mean surface coverage (right). (B) Representative
fluorescence images on aggregate formation on collagen after 4 minutes of perfusion time (left) and relative
thrombus volume expressed as integrated fluorescence intensity (IFI) ¡ SD of n55 mice per group (right).

doi:10.1371/journal.pone.0115306.g004
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CD84 expression in platelets has been reported in earlier studies [10, 31], but its

role in platelet activation and thrombus formation has been elusive. A previous

study revealed that CD84 undergoes tyrosine phosphorylation upon platelet

activation and aggregation [10]. One of the two phosphorylated cytoplasmic

tyrosines was found in an ITSM, which is a putative recognition motif for the

adapter proteins SAP and EAT-2. The requirement of SAP for platelet spreading

on immobilized CD84 implicates a functional relevance of this signaling pathway.

Interestingly, activation-induced tyrosine phosphorylation of CD84 was abolished

when platelet aggregation was blocked with an aIIbb3 inhibitor [10]. This

aggregation-dependent phosphorylation was also observed for the other

prominent SLAM family member on platelets, CD150. The subsequent analysis of

CD150-deficient female mice further revealed a delay in thrombus formation in a

Fig. 5. Unaltered thrombotic and hemostatic function in Cd84-deficient mice. (A) The abdominal aorta was injured by firm compression with a forceps
and blood flow was monitored for 30 min. Each symbol represents one animal. (B) Small mesenteric arterioles were injured by topical application of FeCl3
and occlusive thrombus formation was monitored using intravital microscopy. Each symbol represents one mesenteric arteriole. The horizontal dotted line
indicates the mean time to vessel occlusion. (C) Representative images of the FeCl3-induced injury model of mesenteric arterioles in Cd84+/+ and Cd842/2

mice, asterisk indicates stable occlusion of the vessel. (D) 1 mm tail tip was amputated and tail bleeding times of Cd84+/+ and Cd842/2 mice were
monitored. Each symbol represents one animal. The horizontal dotted line indicates the mean time to vessel occlusion.

doi:10.1371/journal.pone.0115306.g005
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FeCl3-induced thrombosis model in mesenteric arteries and weaker aggregation in

response to collagen and a thrombin receptor activating peptide [10]. Due to

these results CD150 and CD84 were proposed as thrombus stabilizing receptors in

response to platelet aggregation but CD84-deficient mice were not available at

that time to confirm this. However, a potential thrombus-stabilizing function of

SLAM family members in platelets was further supported by the cooperation of

CD84 and Ly108 in the stabilization of T cell:B cell contacts [18]. In contrast,

homophilic interaction of CD84 has been shown to negatively regulate FceRI-

ITAM signaling in mast cells [32], which was found to be independent of SAP and

EAT-2, but dependent on the inhibitory kinase Fes [33]. Hence, also a negative

regulatory role for CD84 in thrombus formation would have been conceivable.

The current study provides the first analysis of CD84-deficient platelets. Besides

a slightly elevated platelet size, Cd842/2 mice display normal platelet count

(Fig. 1), glycoprotein expression (Table 1) and platelet life span (Fig. 1), showing

that CD84 is to a great extent dispensable for platelet production. Lack of CD84 in

platelets also did not result in any aggregation or degranulation defect upon

stimulation with different agonists (Fig. 2) or a defect in thrombus formation

under shear flow conditions (Fig. 4). Further, hemostatic and thrombotic

function in vivo was unaffected in Cd842/2 mice (Fig. 5), indicating that loss of

CD84 does not affect thrombus stabilization. Similarly, platelet spreading and clot

retraction were unaltered (Fig. 3), demonstrating that CD84 is not essential for

actin rearrangements in murine platelets. It is conceivable that there is a potential

redundancy between platelet adhesion receptors and that the lack of CD84 may be

fully compensated. Indeed, a wide range of other receptors have been reported or

implicated to modulate platelet-platelet interactions such as ehrins/Eph-kinases

[9], JAMs [8], CD150 [10], or SEM4-D [34]. Additionally, soluble mediators are

involved in the stabilization of thrombi [6]. On the other hand, our previous

finding that CD84 is cleaved from the platelet surface upon platelet activation and

aggregation suggests that CD84 may have a different function than stabilizing

platelet-platelet contacts. Since besides platelets also many immune cell types

abundantly express CD84 and because the receptor undergoes homophilic

interactions, it appears possible that the receptor is of functional importance in

platelet-immune cell rather than in platelet-platelet interactions. Shedding of

CD84 [19] would then provide a potential mechanism to regulate such

interactions. However, this potential function of CD84 will be subject of future

studies.

Taken together, our results demonstrate that CD84 is not required for proper

platelet production and function in hemostasis and thrombosis in mice, strongly

suggesting that the receptor is not required to maintain platelet-platelet

interactions. Further studies on platelet and immune cell function in Cd842/2

mice will be an important model to better understand the role of this receptor in

thrombotic, inflammatory and/or immunologic processes.
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