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Zusammenfassung

Die vorliegende Masterarbeit beschäftigt sich mit der mathematischen Model-
lierung komplexer Flüssigkeiten.
Nach einer Einführung in das Thema der komplexen Flüssigkeiten werden grundle-
gende mechanische Prinzipien im zweiten Kapitel vorgestellt. Im Anschluss steht
eine Einführung in die Modellierung mit Hilfe von Energien und eines varia-
tionellen Ansatzes.
Dieser wird im vierten Kapitel auf konkrete Beispiele komplexer Flüssigkeiten
angewendet. Dabei werden zunächst viskoelastische Materialien (z.B. Muskel-
masse) angeführt und ein Modell für solche beschrieben, bei dem Eigenschaften
von Festkörpern und Flüssigkeiten miteinander kombiniert werden.
Anschließend untersuchen wir den Ursprung solcher Eigenschaften und die Aus-
wirkungen von bestimmten Molekülstrukturen auf das Verhalten der umgeben-
den Flüssigkeit. Dabei betrachten wir zunächst ein Mehrskalen-Modell für Poly-
merflüssigkeiten und damit eine Kopplung mikroskopischer und makroskopischer
Größen. In einem dritten Beispiel beschäftigen wir uns dann mit einem Model
für nematische Flüssigkristalle, die in technischen Bereichen, wie beispielsweise
der Displaytechnik, Anwendung finden.
Geschlossen wird mit einem Ausblick auf weitere Anwendungsgebiete und mathe-
matische Probleme.

Wir folgen einer Vorlesung von Professor Dr. Chun Liu von der Penn State Uni-
versity, USA, die er im Sommer 2012 im Rahmen einer Giovanni-Prodi Gast-
professur an der Universität Würzburg über komplexe Flüssigkeiten gehalten
hat. Bei der Ausarbeitung werden ebenfalls Teile seiner Veröffentlichungen aufge-
griffen und die Vorlesung durch eigene Rechnungen und Argumentationsschritte
deutlich erweitert.





1 Introduction

This thesis gives an overview over mathematical modeling of complex fluids with
the discussion of underlying mechanical principles, the introduction of the ener-
getic variational framework, and examples and applications.
The purpose is to present a formal energetic variational treatment of energies
corresponding to the models of physical phenomena and to derive PDEs for the
complex fluid systems.
The advantages of this approach over force-based modeling are, e.g., that for
complex systems energy terms can be established in a relatively easy way, that
force components within a system are not counted twice, and that this approach
can naturally combine effects on different scales.

We follow a lecture of Professor Dr. Chun Liu from Penn State University, USA,
on complex fluids which he gave at the University of Würzburg during his Gio-
vanni Prodi professorship in summer 2012. We elaborate on this lecture and con-
sider also parts of his work and publications, and substantially extend the lecture
by own calculations and arguments (for papers including an overview over the
energetic variational treatment see [HKL10], [Liu11] and references therein).

It is, of course, vital to understand what the term “complex fluids” is about,
and what are, in contrast, “simple fluids”. When we talk about fluids we think
of a certain state of matter. Usually, from our daily experience, everyone knows
three states of matter. These are, in particular, the solid, the liquid, and the gas
phase. In order to illustrate the three phases in a certain way, we come up with
a simple line which stands for an increase of temperature in the direction of the
arrow: Figure 1.1 shows what we have learned from our day to day life: If one

temperature

solid liquid gas

Figure 1.1: States of matter changing with temperature

takes, for example, a pot of water and heats it up, the water becomes steam, i.e.,
liquid becomes gas.
If, on the other hand, one takes the pot of water and puts it into the freezer, the
water becomes ice, i.e., liquid becomes solid while the temperature is decreasing.
So far we talked about three distinct phases. However, temperature varies con-
tinuously. So the question arises if there can be certain intermediate states of
matter between liquid and solid or between liquid and gas.
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First, we need to consider what a (simple) state of matter is actually about. For
this, we have a closer look at the materials, that means we look at the particles
inside the material. If one takes a rigid piece of iron, a piece of ice or a grain of
salt and studies the structure with the help of a microscope, it can be observed
that the atoms are quite close together and form certain lattice structures.
In the gas phase, however, the atoms have greater distances between each other
and are free to move around. The atoms that form a liquid phase are somehow
in between: They are closer together but do not form rigid lattices, so they can
move quite freely around, i.e., the degree of freedom in motion is higher than
within rigid solid lattices but lower than within gas phases.

Next we specify in more detail what is meant by “degree of freedom to move”
within the phases. Here we talk about order and interactions.

In terms of order we can distinguish between different sorts: Orientational and
positional order.

In the lattice structures of solid materials – we stick to the example of water, ice
and steam for the moment – there is a high degree of positional order: The atoms
are not free to move within the lattice which is due to strong interactions among
the atoms. The atoms only vibrate on their fixed position within the structure.
If we let the temperature increase, the vibrations of the atoms also increase and
the interactions are “weakened”, thus ice becomes water. In this phase, there is
also no positional order compared to the rigid lattice.
Letting the temperature increase even more, liquid water reaches the gas phase,
where interactions and order are even lower.

A material which exhibits orientational order is called liquid crystalline material.
A basic yet interesting material of this kind are nematic liquid crystals: It is like
a bunch of rod shaped molecules which are free to move but tend to align in one
common direction. Liquid crystals are widely seen in technical applications, such
as displays or self-shading windows. The nematics, e.g., give name to the display
technology “TN” which stands for “twisted nematic”. In fact, liquid crystals are
an example for complex fluids: They can flow like a fluid but exhibit certain
order or microstructures. We discuss liquid crystals later in Section 4.3.

Complex fluids can exhibit fluid properties (flow) as well as properties usually
found in solid materials (order/structure). They form intermediate phases be-
tween solids and fluids. Further examples are gels or volcanic lava: They flow
but if one looks closer, certain solid structures can be found. These materials are
called viscoelastic materials. Certain examples are discussed in Section 4.1.

The theory of complex fluids has also applications in biological and biochemical
settings. Ionic solutions that run through our body are complex fluids, so the
models can be used to understand chemical processes within our body or special
organs.

The main part of this work is organized in three chapters with an additional
appendix. The purpose of Chapter 2 is an introduction into basic mechanics. The
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notation we use for the forthcoming analysis as well as the setting we consider
are defined there. This chapter also deals with several mechanical properties of
matter.

Chapter 3 introduces the Energetic Variational Framework for the analysis of
mechanical systems, kinematics and transport theory, and principles for Hamil-
tonian and dissipative systems. We also give basic examples of simple solid and
fluid systems and discuss what characterizes solid and fluid materials.

Models for complex fluids are then discussed in Chapter 4 with the use of formal
energetic variational treatments. The first topic is a model for incompressible
viscoelasticity to combine solid and fluid properties. We continue with a model
for micro-macro-interactions in polymeric fluids and consider the coupling of
microscopic and macroscopic variables. Afterwards we discuss (nematic) liquid
crystalline material. Both the polymeric fluids and the nematics are considered
in order to study the effect of embedded structures onto fluid flow properties.
This chapter in particular contains elaborate calculations to derive the systems of
partial differential equations from the energy laws of the different models. These
calculations were left out for brevity in publications and the lecture.

Moreover, several fundamental technical details, which are necessary to under-
stand the calculations, are exhibited in the appendix.
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2 Basic Mechanics

In this chapter we present the general setting we consider when studying complex
fluids (c.f. [HKL10]). Moreover, we define several objects that help us to model,
understand, and study these materials.

2.1 Coordinate Systems and Deformation

First, we define the deformation and talk about the different coordinate systems.

x(X, t)

Ωx
tΩX

0

xX

Figure 2.1: Deformation mapping between reference configuration ΩX

0
and de-

formed configuration Ωx

t

Definition 1. Let ΩX
0 , Ωx

t ⊂ R
n, n ∈ N, be domains with smooth boundaries,

t ∈ R
+
0 be time and let u = (u1, . . . , un) be a smooth vector field in R

n depending
smoothly on time t. The deformation or flow map x(X, t) : ΩX

0 → Ωx
t is defined

as a solution map of
{

d
dt
x(X, t) = u(x(X, t), t), t > 0,

x(X, 0) = X,
(2.1)

where X = (X1, . . . ,Xn) ∈ ΩX
0 and x = (x1, . . . , xn) ∈ Ωx

t .
The coordinate system X is called the Lagrangian coordinate system and refers
to ΩX

0 which we call the reference configuration; the coordinate system x is called
the Eulerian coordinate system and refers to Ωx

t which we call the deformed con-
figuration.

In other words, we start from a domain ΩX
0 , the reference configuration which

changes over time. At any given time t the deformed configuration is Ωx
t . The
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superscripts x and X just indicate the different coordinate systems. Later we
consider integrals over the reference or deformed configuration. Then we also use
x and X as integration variables.

The special term flow map is due to the dependency on two variables: If t

is fixed, X 7→ x(X, t) maps the reference configuration ΩX
0 onto the deformed

configuration Ωx
t . We assume that this map is bijective since we map each particle

in the reference configuration to its new position in the deformed configuration,
this should be one-to-one and onto.
On the other hand, if X is fixed, i.e., we look at one special point or particle in
the reference configuration, the map t 7→ x(X, t) denotes the changing position
or the flow or trajectory of this particle over time.
These two ways of interpreting the deformation x(X, t) lead to the term flow
map.

The vector field u is the velocity, i.e., the derivative of the flow map with respect
to time. The flow map is actually defined using the velocity vector field.

The Lagrangian coordinate system is usually used to describe the elastic behavior
of solid materials where one looks at each particle X. However, the Eulerian
coordinate system is used to model fluid materials where one looks at special
positions x instead of single particles. Equation (2.1) links the two coordinate
systems: Both sides describe the velocity of a particle labeled with X at position
x and time t.

In the following we always assume that the flow map is smooth in both time and
spatial variables, so all the calculations are well-defined. In particular, partial
derivatives can be interchanged.

2.2 Deformation Gradient

In this section we take a look at the derivative of the flow map with respect to
X and the properties of this important entity.

Definition 2. Let F̃ be the Jacobian matrix of the map X 7→ x(X, t) defined by

F̃ (X, t) :=
∂x(X, t)

∂X
:=∇Xx(X, t) (2.2)

=

(
∂xi

∂Xj

)

1≤i,j≤n

=




∂x1

∂X1 · · · ∂x1

∂Xn

...
...

∂xn

∂X1 · · · ∂xn

∂Xn


 .

F̃ is called the deformation gradient.

Remark 3. We denote the partial derivative of the flow map with respect to time
by xt(X, t) := ∂

∂t
x(X, t).
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The deformation gradient, by definition, carries the information about how the
configuration is deformed with respect to the reference configuration. That
means, F̃ carries all the information about structures and patterns.

We assume that det F̃ > 0, so that the deformation gradient is an invertible
matrix.

The following proposition gives an important result for the deformation gradient.
We use it as a natural kinematic equation if the deformation gradient is involved
in the model of a physical system. At first, we do a push forward for F̃ , i.e., we
express the deformation gradient by the Eulerian coordinate system. Therefore,
set

F̃ (X, t) = F (x(X, t), t).

Proposition 4. F satisfies the equation

∂F

∂t
+ (u · ∇x)F = ∇xu · F. (2.3)

Proof. By the chain rule, we obtain from the push forward

d

dt
F (x(X, t), t) =

∂

∂t
F (x(X, t), t) + (u(x(X, t), t) · ∇x)F (x(X, t), t).

Furthermore, by using Definition 2 and the chain rule, we get

d

dt
F̃ (X, t) =

d

dt

(
∂xi(X, t)

∂Xj

)

1≤i,j≤n

=

(
∂xit(X, t)

∂Xj

)

1≤i,j≤n

=

(
∂ui(x(X, t), t)

∂Xj

)

1≤i,j≤n

=

(
n∑

k=1

∂ui(x(X, t), t)

∂xk
∂xk(X, t)

∂Xj

)

1≤i,j≤n

= ∇xu(x(X, t), t) · F̃ (X, t).

Since F is defined by F̃ (X, t) = F (x(X, t), t), both equations are equal. Thus

∂

∂t
F (x(X, t), t) + (u(x(X, t), t) · ∇x)F (x(X, t), t) = ∇xu(x(X, t), t) · F̃ (X, t),

and with the push forward applied once again, we obtain

∂

∂t
F (x(X, t), t) + (u(x(X, t), t) · ∇x)F (x(X, t), t) = ∇xu(x(X, t), t) · F (x(X, t), t),

which can be written in the Eulerian coordinate system as

∂

∂t
F (x, t) + (u(x, t) · ∇x)F (x, t) = ∇xu(x, t) · F (x, t).

This concludes the proof.

For the forthcoming analysis we also need the notion of a matrix divergence.
Therefore, we give the definition here.
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Definition 5. Let M : Rn → R
n×n be a differentiable matrix field. The diver-

gence of M , denoted by ∇ ·M , is defined by

(∇ ·M)i =

n∑

j=1

∂

∂xj
Mij = ∇jMij

for i = 1, . . . , n. In the second equation the Einstein summation convention is
applied with the simplified notation ∇j :=

∂
∂xj .

By definition, the divergence of a matrix field is a vector field.

2.3 Incompressibility

In this section we turn to a very important property of materials. From a phys-
ical point of view, incompressible flows are flows where the material density is
constant in an infinitesimal volume element which moves along with the velocity
of the fluid. We now give a mathematical definition.

Definition 6. Let x(X, t) be the deformation of a material. The material is said
to be incompressible if det F̃ ≡ 1.

The formulation above is in the Lagrangian coordinate system, but by using
the push forward F̃ (X, t) = F (x(X, t), t) the same equation holds for F in the
Eulerian coordinate system.
However, there is another characterization of incompressibility in the Eulerian
coordinate system, given by the following proposition.

Proposition 7. Let x(X, t) be the deformation of a material, F̃ (X, t) the defor-
mation gradient and u(x(X, t), t) the velocity. It holds

det F̃ ≡ 1 ∀X ∈ ΩX
0 , t ≥ 0 =⇒ ∇x · u = 0 ∀X ∈ ΩX

0 , t ≥ 0.

The converse is true if the initial data det F̃ (X, 0) = 1 is given.

To be able to prove the proposition, we need two lemmas first.

Lemma 8. The inverse of the deformation gradient is F̃−1 = ∂X
∂x

.

Proof. Since the flow map is assumed to be smooth, the bijective map X 7→
x(X, t) is a diffeomorphism from the reference configuration onto the deformed
configuration. By the Inverse Function Theorem (c.f. [Kna05, Theorem 3.17]),
the inverse mapping x 7→ X is also smooth and the Jacobian is exactly the inverse
of the deformation gradient, so ∂X

∂x
= F̃−1.
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Lemma 9. Let A : R+
0 → GL(n,R) ⊂ R

n×n be a time dependent differentiable
field of invertible matrices and let det : Rn×n → R be the determinant. Then the
derivative of t 7→ detA(t) with respect to time t is given by

d

dt
detA(t) = (detA) tr

(
A−1 d

dt
A

)
,

where tr(·) denotes the trace of a matrix.

Proof. The derivative of the determinant detA with respect to the argument A
(for a calculation see Appendix A.3) is

∂(detA)

∂A
= A−T detA.

Now, since detA(t) = det ◦A(t), where A : R+
0 → R

n×n and det : Rn×n → R, we
use the chain rule from Appendix A.2 and the product defined in Appendix A.1.
We obtain

d

dt
detA(t) =

∂(detA)

∂A
:

(
d

dt
A

)
= (detA)A−T :

(
d

dt
A

)

= (detA) tr

(
A−1 d

dt
A

)
.

This concludes the proof.

Now we give a proof of Proposition 7:

Proof. (Prop.7) With the lemmas above and (2.1) we get for any X ∈ ΩX
0 , t ≥ 0

det F̃ = 1
∗

=⇒
d

dt
det F̃ = 0 ⇐⇒

(
det F̃

)
tr

(
F̃−1 d

dt
F̃

)
= 0

⇐⇒ tr

(
n∑

k=1

∂Xk

∂xi
∂x

j
t (X, t)

∂Xk

)
= 0 ⇐⇒ tr

(
∂uj(x(X, t), t)

∂xi

)
= 0

⇐⇒ tr

(
∂uj(x, t)

∂xi

)
= 0 ⇐⇒

n∑

i=1

∂ui(x, t)

∂xi
= 0 ⇐⇒ ∇x · u = 0.

The converse of ∗ is true if det F̃ (X, 0) = 1, otherwise it just gives that det F̃ is
a constant.

2.4 Conservation of Mass

In this section we phrase some mathematical formulations and consequences from
the law of conservation of mass. This is a basic principle of classical mechan-
ics. It states that mass is a fixed quantity that can only be deformed, but not
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created or destroyed (c.f. [TME12, Section 4.1], [Gur81, Chapter IV]). Here we
consider configurations where the mass is distributed continuously. To this end,
let ρ(x, t) ≥ 0 be the mass density in the Eulerian coordinate system depend-
ing on time. Moreover, we assume that ρ(x, t) is continuously differentiable and
bounded on R

n × R
+
0 . Then the mass contained in a subdomain Ex

t of Ωx
t ⊂ R

n

is given by

m(t) =

∫

Ex
t

ρ(x, t) dx. (2.4)

The subdomain Ex
t ⊂ Ωx

t is the deformed configuration of a certain subdomain
EX

0 ⊂ ΩX
0 of the reference configuration.

The mass m(t) depends on time. However, if mass is conserved within the do-
main, then m(t) is constant over time. Thus, d

dt
m(t) = 0 holds. Since not only

the integrand but also the domain is time-dependent, the derivative of m(t) with
respect to time is quite delicate. In order to make the calculation simpler, we
pull everything back to write the integral over the reference configuration in the
Lagrangian coordinate system. We obtain

m(t) =

∫

Ex
t

ρ(x, t) dx =

∫

EX
0

ρ(x(X, t), t) det F̃ dX.

Here the domain of integration does not depend on time and we can take the
derivative of m(t) with respect to time. By the assumptions on the mass density,
we can interchange differentiation and integration ([Els11, Proposition/Satz 5.7]).
Using the product rule and the chain rule, we get

0 =
d

dt
m(t) =

d

dt

∫

EX
0

ρ(x(X, t), t) det F̃ dX

=

∫

EX
0

(
ρt(x(X, t), t) + (u(x(X, t), t) · ∇x) ρ(x(X, t), t)

)
det F̃

+

(
det F̃ tr

(
F̃−1 d

dt
F̃

)
ρ(x(X, t), t)

)
dX

=

∫

EX
0

(ρt + (u · ∇x) ρ+ ρ∇x · u) det F̃ dX.

Now, we write everything in the Eulerian coordinate system again and obtain
that for every Ex

t

∫

Ex
t

(ρt + (u · ∇x) ρ+ ρ∇x · u) dx = 0,

and thus

ρt + (u · ∇x) ρ+ ρ∇x · u = 0.

or equivalently

ρt +∇x · (uρ) = 0. (2.5)
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Remark 10. The last step holds since the integral is identically zero for every
subdomain Ex

t ⊂ Ωx
t and therefore equation (2.5) must be satisfied pointwise, c.f.

Lebesgue-Besicovitch differentiation theorem [EG92, Section 1.7.1].

The following results connect incompressibility with conservation of mass and
the properties of the mass density.

Proposition 11. 1. If ρ 6= 0 is constant in time and space, then ∇x ·u = 0, i.e.,
the incompressibility condition holds.
2. If the incompressibility condition holds, then ρ(x(X, t), t) = ρ0(X), i.e., the
density is constant with respect to time. In particular, equation (2.5) becomes
ρt + u · ∇xρ = 0.

Proof. The proposition can be easily derived from equation (2.5).
1. If ρ = const., then ρt = 0 and ∇xρ = 0. By plugging this into equation (2.5)
we obtain ρ∇x · u = 0 or equivalently ∇x · u = 0.
2. If ∇x · u = 0 then ρt + u · ∇xρ = 0. This is equivalent to d

dt
ρ(x(X, t), t) = 0

which implies that the density is the same as the initial data at time t = 0. Thus,
ρ(x(X, t), t) = ρ0(X).

Now we derive a similar relation between the mass densities as in Proposition 11
but for the general case when there is no incompressibility condition.

Proposition 12. A system satisfies the conservation of mass if and only if

ρ(x(X, t), t) =
ρ0(X)

det F̃
(2.6)

for all X ∈ ΩX
0 and t ≥ 0.

Proof. To prove this we consider the mass density ρ0(X) of the reference config-
uration and the mass contained within a subdomain EX

0 ⊂ ΩX
0 given by

m0 = m(0) =

∫

EX
0

ρ0(X) dX.

Since the mass is conserved, the mass of any deformed configuration Ex
t ⊂ Ωx

t ⊂ R
n

must be equal to m0. Thus, we connect this with formula (2.4) which yields

∫

EX
0

ρ0(X) dX =

∫

Ex
t

ρ(x, t) dx.

As before, we change variables on the right-hand side and get

∫

EX
0

ρ0(X) dX =

∫

EX
0

ρ(x(X, t), t) det F̃ dX

13



which is equivalent to

∫

EX
0

(
ρ0(X)− ρ(x(X, t), t) det F̃

)
dX = 0.

Since this is true for all subbodies EX
0 of ΩX

0 , it must be satisfied pointwise, thus

ρ(x(X, t), t) =
ρ0(X)

det F̃
.

Equations (2.5) and (2.6) are needed as kinematic assumptions in the following
energetic variational analysis. We then use (2.6) for integral transformations and
(2.5) to complete systems of differential equations for material models.
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3 Energetic Variational Approach

When we look at physical or biological phenomena and try to build up a math-
ematical model for them, i.e., a mathematical description, we can do this in
different ways.
At first, we could try to analyze the forces of the system and directly write down
differential equations describing the given phenomenon.
Secondly, we could look at the energies that are present within the given system.
The differential equations then need to be derived from these energies.

Let us consider a Hookean spring as an easy physical system (c.f., e.g., [LL81],
[Bra79, Section 2.6]) and let us look at the forces occurring within this system.
This example is also important for further discussions later in this thesis (see
page 19 for the energetic approach to the spring; see Section 4.2 for application
within the micro-macro model). Figure 3.1 shows a spring, of which one end is

m mg

Fk

Figure 3.1: Mass attached to a Hookean spring

attached to the ceiling and the other end to a mass m. By empirical observation
through experiments, one can check that the force F that the spring exerts on
the mass is in constant proportion to the displacement x of (the lower end of)
the spring from its equilibrium position, i.e., when no mass is attached to the
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spring. This means that

F = −kx

for some material parameter k > 0. The negative sign is due to the fact that the
exerted force is in opposite direction to the displacement1.
When the system moves up and down, the force F is described by Newton’s law
F = ma, where the acceleration is a = xtt. Plugging force and acceleration into
the equation above yields

mxtt + kx = 0.

Now, one can solve this ordinary differential equation (with suitable initial con-
ditions) to obtain the trajectories for the movement of the spring.

Moreover, we can add a term representing damping (due to friction; assumed to
be linear in the velocity) within the system, so we end up with the differential
equation

mxtt + γxt + kx = 0,

where γ > 0 is the damping coefficient and xt is the velocity of the lower end of
the spring.

Now we consider the energetic approach. This leads to the same equation for the
Hookean spring. To this end, we introduce the framework and the underlying
principles first and come back to the spring at the end of Section 3.1.

3.1 General Approach

In 1873 and 1931, Lord Rayleigh (John William Strutt) and Lars Onsager, re-
spectively, published works ([Str73], [Ons31a, Ons31b]) where they developed the
general energetic variational framework (c.f. [Liu11], [HKL10]). This approach
is based on the following concepts that are outlined below: energy dissipation
law, least action principle, maximum dissipation principle, and Newton’s force
balance law.

3.1.1 Energy Dissipation Law

The starting point for the energetic variational framework is the energy dissipa-
tion law (c.f. [HKL10]),

d

dt
Etotal +∆ = 0 ⇐⇒

d

dt
Etotal = −∆, (3.1)

1If one pulls the spring and makes it longer, so the direction of the displacement is outward,

the spring “wants” to shrink, so the force is introverted.
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where the total energy Etotal includes both kinetic and free internal energy, and
∆ is the dissipation functional (here this is equal to the entropy production,
see (3.3), which is modeled as a quadratic function of certain rates such as the
velocity xt).
The energy dissipation law (3.1) states that (in isothermal situations) the total
energy is conserved over time (this is when ∆ = 0), unless the energy is dissipated
into ∆.

Equation (3.1) can be derived from the first and second law of thermodynamics.
The first law states that the rate of change of the kinetic energy K plus the
internal energy U is due to the rates of change of work W and heat Q, so

d(K + U)

dt
=

dW

dt
+

dQ

dt
. (3.2)

In other words, the first law of thermodynamics states that energy can only be
changed by applied work and heat, so this is the conservation of energy. The
second law is given in the isothermal case, i.e., when temperature is not time-
dependent, by

T
dS

dt
=

dQ

dt
+∆, (3.3)

where T is the temperature, S is the entropy and ∆ ≥ 0 is the entropy production
equal to the dissipation in (3.1) which is always nonnegative.
Now, we subtract (3.3) from (3.2) and find that (in the isothermal case)

d

dt
(K + U − TS) =

dW

dt
−∆, (3.4)

where F := U − TS is the Helmholtz free energy and K+F is equal to the total
energy Etotal. Thus, if no external forces are applied, i.e., if dW

dt
= 0, the above

expression yields the energy dissipation law (3.1).

Next we describe the energies of a system and make use of the energy dissipation
law. Therefore, it is necessary to set up corresponding energy and dissipation
functionals for the system. Then we derive differential equations of motion for
the system. How this is done is described in the following sections.

3.1.2 Least Action Principle

We distinguish two different types of systems, on the one hand, Hamiltonian sys-
tems, also referred to as conservative systems, and, on the other hand, dissipative
systems.
As the name implies, energy is dissipated within the latter systems, while energy
is conserved within Hamiltonian systems. Thus, the energy dissipation functional
for such a system is identically zero.

Let us consider a (conservative) physical system where we want to derive the
trajectories of particles X occurring within this system, i.e., the paths on which
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the particles are moving from position x(X, 0) at time t = 0 to position x(X, t∗)
at time t = t∗. In particular, these trajectories of particles X are those which
minimize the action functional defined below. Since we look only at one particle
X, we write x(t) instead of x(X, t) here.

Definition 13. Let L = K − F be the Lagrangian function of a conservative
system, where K is the kinetic and F is the free energy, depending on x(t) and
the velocity xt(t). Then the action functional for this system is defined by

A(x(t)) :=

∫ t∗

0
L(x(t), xt(t)) dt. (3.5)

The least action principle states that one can obtain the equation of motion for a
Hamiltonian system by taking the variation of the action functional with respect
to the flow maps x(t) = x(X, t). To this end, we consider a variation x(t)+ εy(t)
of the minimizing trajectory x(t) for ε ∈ (−ε0, ε0), ε0 > 0, and y(t) an arbitrary
smooth and compactly supported test function.
Since x(t) is a minimizer of A(x(t)), the function ε 7→ A(x(t) + εy(t)) must have
a minimum point in ε = 0. Hence, we calculate (assuming L of class C2)

0 =
d

dε

∣∣∣∣
ε=0

A(x+ εy)

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0
L(x+ εy, xt + εyt) dt

=

∫ t∗

0

(
∂L

∂x
(x, xt)

)
· y +

(
∂L

∂(xt)
(x, xt)

)
· yt dt

=

∫ t∗

0

(
∂L

∂x
(x, xt)−

d

dt

(
∂L

∂(xt)
(x, xt)

))
· y dt.

The last step is an integration by parts with respect to t. Since this is true for
any y, by the fundamental lemma of the calculus of variations (see, e.g., [JLJ08,
Lemma 1.1.1]) the following equation holds:

∂L

∂x
(x, xt)−

d

dt

(
∂L

∂ (xt)
(x, xt)

)
= 0. (3.6)

This is the so-called Euler-Lagrange equation or equation of motion and a nec-
essary condition for the minimizing trajectories.

Moreover, the equation of motion of the conservative system gives the conserva-
tive force. So, the principle of least action can be interpreted as the manifestation
of the general rule ([Liu11], [HKL10])

δEtotal = forceconservative · δx,

where δ refers to the variation of the respective quantity (principle of virtual
work). In other words, work is equal to force times the distance.
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3.1.3 Maximum Dissipation Principle and Force Balance

The maximum dissipation principle, however, leads to the dissipative force for a
(dissipative) system. This is done by variation of the dissipation functional (in
fact, 1

2∆ is used here, since ∆ is said to be quadratic in the rates, so the force is
linear in the respective rates) with respect to the rate such as the velocity:

δ

(
1

2
∆

)
= forcedissipative · δxt.

So, by the least action principle and the maximum dissipation principle we obtain
all the forces for the system we consider.
The final step is to combine these forces with Netwon’s force balance law. The
law states that all forces, both conservative and dissipative in kind, added up is
equal to zero, or alternatively, “actio” is equal to “reactio”:

forceconservative = forcedissipative.

After we obtained the conservative and dissipative forces, the force balance yields
the differential equation of motion for the entire system.

3.1.4 Hookean Spring Revisited

We now come back to the example from the beginning of this chapter, the
Hookean spring. Again, x denotes the displacement of the lower end of the
spring from its equilibrium position. Firstly, we have a look at the energies of
the system. The kinetic energy is given by

K =
1

2
mx2t ,

and the free energy is given by the elastic energy

F =
1

2
kx2.

Secondly, we give a dissipation term which is due to the damping / friction and
depends on the velocity:

∆ = γx2t .

Note that if the system would be frictionless, thus a conservative system, this
function would be zero.
Equation (3.1) gives the following energy dissipation law for the Hookean spring:

d

dt

(
1

2
mx2t +

1

2
kx2
)

= −γx2t .
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From here we can now derive the force balance law we found at the beginning of
this chapter using energy variation. Therefore, we set up the action functional
A(x) and take the variation with respect to x. The action is given by

A(x) =

∫ t∗

0

(
1

2
mx2t −

1

2
kx2
)

dt.

We can use the Euler-Lagrange equation (3.6) from above, so with the Lagrangian
function L = 1

2mx2t −
1
2kx

2 we get immediately

−mxtt − kx = 0. (3.7)

This is exactly the conservative force for the Hookean spring.

Next we treat the dissipative part, hence, we calculate the variation of 1
2∆ with

respect to the velocity. To this end, let yt be a smooth test function:

0 =
d

dε

∣∣∣∣
ε=0

1

2
∆ (xt + εyt) =

d

dε

∣∣∣∣
ε=0

(
1

2
γ(xt + εyt)

2

)
= (γxt · yt) .

Since this equation must hold for any yt, this yields the dissipative force and the
equation

γxt = 0. (3.8)

Now we have both the dissipative part (3.8) and the Hamiltonian part (3.7) of
the system. The equation for the entire system then comes from Newton’s force
balance law forceconservative = forcedissipative:

−mxtt − kx = γxt

or equivalently

mxtt + kx+ γxt = 0. (3.9)

This is exactly the equation we obtained earlier by looking directly at the forces
exerted on the spring. For this example, however, the energetic approach seems
to be quite complicated. As already pointed out in the introduction, the fact
that for more complex systems energy terms are relatively easy to establish,
that force components within systems are not counted twice and, one of the
most important ones, that it is a natural way of combining effects on different
scales, are advantages of the energetic variational approach over the force-based
approach (c.f. [EHL10]). This gets more important for systems which are not as
easy as the Hookean spring.

Remark 14. Equation (3.9) gives a good insight into how the dynamics of the
system behave either near initial data, i.e., the short time behavior, or near equi-
librium, i.e., the long time behavior.
In Figure 3.2 one particular solution of the damped spring equation (3.9),

x(t) = a exp(bt) cos(ct),
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with a > 0, b := − γ
2m , c :=

√
k
m

− γ2

4m2 , x(0) = a, and the damping terms

±a exp(bt)

are sketched.
The long time behavior, this is when t is very large, is governed by the dissipative
part: It is obvious that

lim
t→∞

|x(t)− a exp(bt)| = 0,

so the solution x(t) behaves almost like a exp(bt) for large t, which is the damping
from the dissipative part γxt = 0 (c.f. (3.8)), and the oscillations are approxi-
mately negligible.
On the other hand, the short time is reflected by the Hamiltonian part, when the
damping is negligible: For t > 0 small, we have that exp(bt) ≈ 1 and thus

x(t) ≈ a cos(c̃t),

with c̃ :=
√

k
m
, which is a solution of the Hamiltonian part −mxtt − kx = 0 (c.f.

(3.7)). So the damping is negligible near initial data in an approximation.
This concept is again relevant later on when we talk about the micro-macro model
in Section 4.2.

Figure 3.2: Near initial data vs. near equilibrium dynamics

3.2 Simple Solid Elasticity and Fluid Mechanics

In this section we derive the equation of motion for systems describing simple
solid or fluid materials by a given energy law. Here simple refers to a system
which is either a solid or a liquid.
The first example is a Hamiltonian system modeling an elastic solid material.
We derive the equation of motion for the system.
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Example 15. Consider the energy law

d

dt

(∫

ΩX
0

1

2
ρ0(X)|xt(X, t)|2 +

1

2
H

∣∣∣∣
∂x(X, t)

∂X

∣∣∣∣
2

dX

)
= 0, (3.10)

where ρ0(X) is the mass density in the Lagrangian coordinate system (note that
the integral is taken over the reference configuration ΩX

0 ) and H is a constant.
The notion |A|2 for A ∈ R

n×n is defined as |A|2 := A : A with the double-dot
product defined in Appendix A.1

Clearly, the first term is the kinetic energy, the second is the internal energy due
to elastic effects where the deformation gradient is used.
Since the system is conservative (because the time-derivative of the total energy
is zero, so energy is conserved), we only need to look at the least action principle.
Therefore, we obtain the action for the system:

A(x(X, t)) =

∫ t∗

0

∫

ΩX
0

1

2
ρ0(X)|xt(X, t)|2 −

1

2
H

∣∣∣∣
∂x(X, t)

∂X

∣∣∣∣
2

dX dt.

Now we take the variation of the action with respect to x. Here, the energy has
an integral form and the internal energy depends on the deformation gradient,
too. The calculus of variations tells us that this leads to the Euler-Lagrange
equation for the integrand of the action, L(x, xt,

∂x
∂X

) (assuming L of class C2,
and bounded).
In addition to the dependence of the Lagrangian function on x and xt, which
leads to the Euler-Lagrange equation (3.6), we also consider the dependence on
the deformation gradient ∂x

∂X
. The Euler-Lagrange equation is then given by

∂L(x, xt,
∂x
∂X

)

∂x
−

d

dt

(
∂L(x, xt,

∂x
∂X

)

∂ (xt)

)
−∇X ·

(
∂L(x, xt,

∂x
∂X

)

∂
(
∂x
∂X

)
)

= 0. (3.11)

Since L does not depend on x itself in this particular example but only on the
spatial and time derivatives of the flow map, the following equation is obtained:

−ρ0(X)xtt(X, t) +H∇X ·
∂x(X, t)

∂X
= 0

⇐⇒ ρ0(X)xtt(X, t) = H∇X · ∇Xx(X, t).

If we embrace a shorter notation and use the Laplacian of x as ∆Xx = ∇X ·∇Xx,
we obtain the wave equation

ρ0(X)xtt = H∆Xx. (3.12)

Remark 16. In the example we looked at a special case of elasticity,

W (F̃ ) =
1

2
H

∣∣∣∣
∂x(X, t)

∂X

∣∣∣∣
2

,
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which is called the case of linear elasticity. If we consider the general case,
equation (3.12) changes to a nonlinear wave equation

ρ0(X)xtt = ∇X ·W
F̃
(F̃ ). (3.13)

This equation is similar to (3.16) where we consider a fluid material in the La-
grangian coordinate system.

The second example is again a Hamiltonian system. This time, however, a fluid
is described and the Eulerian description is used.

Example 17. Consider the energy law

d

dt

(∫

Ωx
t

1

2
ρ(x, t)|u(x, t)|2 + w(ρ(x, t)) dx

)
= 0, (3.14)

where ρ(x, t) is the mass density in the Eulerian coordinate system (note that the
integral here is taken over the deformed configuration Ωx

t ), u is the velocity and
w is an internal energy density depending on the mass density.

Again, this system is conservative, so we only need to use the least action prin-
ciple. However, the action functional incorporates an integral over the reference
configuration

∫
ΩX

0

· · · dX since the variation is taken with respect to x.

Therefore, we need to write the energy law (3.14) in terms of the Lagrangian
coordinate system first.
But, in addition to the simple coordinate change in the energy law, we also need
information about how the mass density ρ(x, t) changes under the transformation
of the coordinate system. Thus, we have to consider Proposition 12.
Since we do not have any incompressibility condition, the general kinematic as-
sumption of mass transport holds, this is

ρt +∇x · (uρ) = 0

in the Eulerian coordinate system (as stated in equation (2.5)) or

ρ(x(X, t), t) =
ρ0(X)

det F̃

in the Lagrangian coordinate system (as stated in equation (2.6)). With this
additional assumption we are able to transform the integral and set up the cor-
responding action functional (for brevity, we use J = det F̃ ):

A(x(X, t)) =

∫ t∗

0

∫

ΩX
0

(
1

2

ρ0(X)

J
|xt(X, t)|2 − w

(
ρ0(X)

J

))
J dX dt

=

∫ t∗

0

∫

ΩX
0

1

2
ρ0(X)|xt(X, t)|2 − w

(
ρ0(X)

J

)
J dX dt.
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Thus, taking the variation (for any y(X, t) = ỹ(x(X, t), t) smooth with compact
support) with respect to x yields

0 =
d

dε

∣∣∣∣
ε=0

A(x(X, t) + εy(X, t)) =
d

dε

∣∣∣∣
ε=0

A(x+ εy)

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

ΩX
0

1

2
ρ0(X)|xt + εyt|

2

− w

(
ρ0(X)

det ∂(x+εy)
∂X

)(
det

∂(x+ εy)

∂X

)
dX dt

=

∫ t∗

0

∫

ΩX
0

ρ0(X)xt · yt −

(
d

dε

∣∣∣∣
ε=0

w

(
ρ0(X)

det ∂(x+εy)
∂X

))
·

(
det

∂x

∂X

)

− w

(
ρ0(X)

det ∂x
∂X

)
·
d

dε

∣∣∣∣
ε=0

(
det

∂(x+ εy)

∂X

)
dX dt

(∗)
=

∫ t∗

0

∫

ΩX
0

ρ0(X)xt · yt − wρ

(
ρ0(X)

J

)
·

(
−
ρ0(X)

J2

)
· J · tr

(
∂X

∂x

∂y

∂X

)
· J

− w

(
ρ0(X)

J

)
· J · tr

(
∂X

∂x

∂y

∂X

)
dX dt,

where the formula for the derivative of the determinant from Lemma 9 is used
at (∗). Next, we integrate by parts with respect to time which then yields

0 =

∫ t∗

0

∫

ΩX
0

−
ρ0(X)

J
xtt · y · J

+

(
wρ

(
ρ0(X)

J

)
·
ρ0(X)

J
− w

(
ρ0(X)

J

))
· tr

(
∂X

∂x

∂y

∂X

)
· J dX dt

=

∫ t∗

0

∫

Ωx
t

−ρ(x, t)

(
d

dt
u(x, t)

)
· ỹ

+ (wρ(ρ(x, t)) · ρ(x, t)− w(ρ(x, t))) · (∇x · ỹ) dx dt

=

∫ t∗

0

∫

Ωx
t

−

(
ρ(x, t)

d

dt
u(x, t) +∇x

(
wρ(ρ(x, t)) · ρ(x, t)− w(ρ(x, t))

))
· ỹ dx dt

=

∫ t∗

0

∫

Ωx
t

−

(
ρ(x, t)(ut + (u · ∇x)u) +∇xp(x, t)

)
· ỹ dx dt,

where we integrate by parts with respect to x in the second to last step.
Furthermore, the definition p(x, t) := wρ(ρ(x, t)) · ρ(x, t) − w(ρ(x, t)) for the
pressure is used in the last step (equation of state). From the above calculation
we get the equation of motion as ρ(ut+(u ·∇x)u)+∇xp = 0 and thus we obtain
the following system of equations:





ρt +∇x · (uρ) = 0

ρ(ut + (u · ∇x) u) +∇xp = 0

p = wρ(ρ) · ρ− w(ρ),

(3.15)
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where the first equation is the Euler equation from the conservation of mass, the
second equation is the equation of motion, and the last is the equation of state.
System (3.15) describes an isentropic fluid, i.e., a fluid with constant entropy, if
we assume, that there is no heat applied (dQ

dt
= 0). Since the dissipation ∆ is

equal to zero in (3.14), from the second law of thermodynamics (3.3) follows that
(assuming T 6= 0)

dS

dt
= 0,

so the entropy is constant.

Remark 18. The kinetic energy has the same form in both Lagrangian and
Eulerian description, in the sense that it is linear in the density and quadratic
in the velocity. This can be easily seen from a straightforward calculation using
Proposition 12:

∫

ΩX
0

1

2
ρ0(X)|xt(X, t)|2 dX =

∫

ΩX
0

1

2

ρ0(X)

det F̃
|xt(X, t)|2 · det F̃ dX

=

∫

Ωx
t

1

2

ρ0(X)

detF
|u(x, t)|2 dx

=

∫

Ωx
t

1

2
ρ(x, t)|u(x, t)|2 dx,

where we see that the determinants of the deformation gradient vanish when
changing coordinates. However, this is not the case for the free energy in Example
17:

∫

Ωx
t

w(ρ(x, t)) dx =

∫

ΩX
0

w

(
ρ0(X)

det F̃

)
det F̃ dX.

Remark 19. In general, the free energy describing fluids only depends on the
determinant of the deformation gradient det F̃ .
On the other hand, the free energy for solid materials can depend on the defor-
mation gradient F̃ itself as seen in Example 15.
One could say, the dependence on the deformation gradient F̃ itself reflects the
fact that the atoms have less freedom to move within solid materials. On the
other hand, the dependence only on det F̃ of a fluid’s free energy corresponds to
a higher degree of freedom to move.
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3.3 Change of Coordinate Systems

We considered solid materials and used the Lagrangian coordinate system, for
fluid materials we used the Eulerian description. Now we take a look at how
the formulae change when we use the description the other way round, i.e., Eu-
lerian coordinates for solids and Lagrangian coordinates for fluids. This gives
us the possibility to choose the best description for certain models which is use-
ful, e.g., to combine frameworks that are a priori defined for different coordinate
systems.

Since the kinetic energy takes the same form in both Lagrangian and Eulerian
coordinate system (see Remark 18), we only consider the free energy density for
a fluid material. We have

∫

Ωx
t

w(ρ(x, t)) dx =

∫

ΩX
0

Φ(F̃ ) dX,

where we define Φ(F̃ ) :=
(
w
(
ρ0(X)

det F̃

)
det F̃

)
, and the least action principle (where

we include the kinetic energy again, of course) yields the equation

ρ0(X)xtt = ∇X · Φ
F̃
(F̃ ), (3.16)

which is actually a nonlinear wave equation as in the solid case (also Lagrangian
coordinate system) considered above where (3.13) is obtained.

To consider solid elastic materials in the Eulerian coordinate system, we first
look at the variation of the action corresponding to

d

dt

(∫

ΩX
0

1

2
ρ0(X)|xt(X, t)|2 +W (F̃ ) dX

)
= 0, (3.17)

which is the generalized version of the energy law (3.10) in Example 15. See
Remark 16 for the Lagrangian description of the equation of motion of the gen-
eralized solid model. Now we calculate the variation of the action (for any
y(X, t) = ỹ(x(X, t), t) smooth with compact support; for detailed calculations
review Example 17) and, as within the fluid example, we transform into the
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Eulerian coordinate system at a certain step:

0 =
d

dε

∣∣∣∣
ε=0

A(x+ εy)

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

ΩX
0

1

2
ρ0(X)|xt + εyt|

2 −W

(
∂(x+ εy)

∂X

)
dX dt

=

∫ t∗

0

∫

ΩX
0

ρ0(X)xt · yt −W
F̃
(F̃ ) :

(
∂y

∂X

)
dX dt

=

∫ t∗

0

∫

ΩX
0

−
ρ0(X)

J
(xtt · y)J −W

F̃
(F̃ ) : (∇Xy) dX dt

=

∫ t∗

0

∫

Ωx
t

−ρ(x, t)(ut + (u · ∇x)u) · ỹ −

(
1

J
·WF (F )

)
: (∇xỹ · F ) dx dt

=

∫ t∗

0

∫

Ωx
t

−ρ(x, t)(ut + (u · ∇x)u) · ỹ −

(
1

J
·WF (F ) · F T

)
: (∇xỹ) dx dt

=

∫ t∗

0

∫

Ωx
t

−ρ(x, t)(ut + (u · ∇x)u) · ỹ +∇x ·

(
1

J
·WF (F ) · F T

)
· ỹ dx dt

=

∫ t∗

0

∫

Ωx
t

−

(
ρ(x, t)(ut + (u · ∇x)u)−∇x ·

(
1

J
·WF (F ) · F T

))
· ỹ dx dt.

Here we use the product A : B from Appendix A.1 for n × n-matrices and the
fact that the derivative of the scalar-valued function W (F̃ ) with respect to its
argument F̃ is again a matrix of dimension n × n. For details concerning the

derivative d
dε
W
(
∂(x+εy)

∂X

)
from above, see Appendix A.2.

The integration by parts in the second to last step is explained in detail in
Appendix A.4.

Thus, we obtain the equation of motion for a solid material in the Eulerian
description ρ(x, t)(ut+(u · ∇x)u) = ∇x·

(
1
J
·WF (F ) · F T

)
. We add the kinematic

assumptions and obtain the entire system





ρt +∇x · (uρ) = 0
∂F
∂t

+ (u · ∇x)F = ∇xu · F

ρ(ut + (u · ∇x)u) = ∇x ·
(
1
J
·WF (F ) · F T

)
,

(3.18)

where the first equation is the general conservation of mass (c.f. (2.5)) and the
second is the chain rule (2.3). The last equation is the wave equation in the
Eulerian coordinate system.

Remark 20. The quantity W
F̃
(F̃ ) that comes up in Remark 16 is called the

Piola-Kirchhoff stress (c.f. [TM11, Section 8.1.2]). The corresponding quantity
in the Eulerian description is the so-called Cauchy-Green stress 1

J
·WF (F ) · F T

from (3.18) (c.f. [TM11, Section 2.3.4]).
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3.4 Addition of Dissipation

In Sections 3.2 and 3.3 we considered only Hamiltonian systems of fluid and solid
materials. Now we add dissipation terms to the fluid and solid models from above
(c.f. energy dissipation law (3.1)). At first, we look at the energy law describing
a solid material:

d

dt

(∫

ΩX
0

1

2
ρ0(X)|xt(X, t)|2 +W (F̃ ) dX

)
= −

∫

ΩX
0

η(x(X, t), t)|xt(X, t)|2 dX,

where

∆ =

∫

ΩX
0

η(x(X, t), t)|xt(X, t)|2 dX (3.19)

is the dissipation with a chosen dissipation coefficient η that depends on spatial
and time variables.

This is one ansatz in modeling the dissipation functional. However, after the
discussion of this particular dissipation in the Eulerian coordinate system for a
fluid, we see another ansatz involving the spatial gradient and the divergence of
the velocity u.

The dissipation is chosen to be quadratic in the rates, so the dissipative force
that is derived from the dissipation by taking the variation of 1

2∆ with respect
to the velocity is linear in the rates. For the chosen dissipation ∆ this yields

forcedissipative = η(x(X, t), t)xt(X, t) = ηxt.

So, by Newton’s force balance law, we can extend the equation of motion for the
system (c.f. Remark 16) by a dissipative term, thus

ρ0(X)xtt = ∇X ·W
F̃
(F̃ )− ηxt.

This is a damped wave equation. If we look at the same system in the Eulerian
coordinate system, we obtain by extending (3.18)





ρt +∇x · (uρ) = 0
∂F
∂t

+ (u · ∇x)F = ∇xu · F

ρ(ut + (u · ∇x)u) = ∇x ·
(
1
J
·WF (F ) · F T

)
− 1

J
ηu,

since we take the variation with respect to u of

1

2
∆ =

1

2

∫

ΩX
0

η(x(X, t), t)|xt(X, t)|2 dX =
1

2

∫

Ωx
t

η(x, t)

J
|u(x, t)|2 dx.

This can be done easily because we do not take the variation with respect to
the flow map x (otherwise we would need to transform the integral into the
Lagrangian coordinate system).
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Remark 21. The damping considered in (3.19) is called Darcy’s damping.

Concerning Example 17 for a fluid system, we can also add dissipation like
Darcy’s damping. This leads to the Euler-Darcy system





ρt +∇x · (uρ) = 0

ρ(ut + (u · ∇x) u) +∇xp = −ηu

p = wρ(ρ) · ρ−w(ρ),

which is extended from (3.15) using the dissipation ∆1 =
∫
Ωx

t
η(x, t)|u(x, t)|2 dx,

where we choose the dissipation coefficient η(x, t) directly in the Eulerian coor-
dinate system.

Moreover, we could also choose dissipation terms involving the spatial gradient
and the divergence of u. This is used in modeling viscosity. We consider

∆2 =

∫

Ωx
t

µ1(x, t)|∇xu|
2 + µ2(x, t)|∇x · u|

2 dx, (3.20)

where µ1, µ2 are viscosity constants. The name “constants” is due to the fact
that they are constant for a particular material. However, they can depend on x

and t (and are assumed to do so for now).
If we incorporate dissipation ∆2, we can calculate the dissipative force through

0 =
d

dε

∣∣∣∣
ε=0

1

2
∆2 (u+ εv)

=
d

dε

∣∣∣∣
ε=0

∫

Ωx
t

1

2
µ1(x, t)|∇xu+ ε∇xv|

2 +
1

2
µ2(x, t)|∇x · u+ ε∇x · v|

2 dx

=

∫

Ωx
t

µ1(x, t)∇xu : ∇xv + µ2(x, t)(∇x · u)(∇x · v) dx

=

∫

Ωx
t

(
−∇x · (µ1(x, t)∇xu)−∇x(µ2(x, t)∇x · u)

)
· v dx,

where v is any test function with compact support, and the system (3.15) be-
comes





ρt +∇x · (uρ) = 0

ρ(ut + (u · ∇x) u) +∇xp = ∇x · (µ1∇xu) +∇x (µ2∇x · u)

p = wρ(ρ) · ρ− w(ρ),

which describes a viscous fluid.

Now we have a look at the first viscosity term and transform the integral into
the Lagrangian coordinate system. We get

∫

Ωx
t

µ1(x, t)|∇xu|
2 dx =

∫

ΩX
0

(J · µ1(x(X, t), t)) |∇Xxt(X, t)F̃−1|2 dX.

29



The transformation of the gradient can be easily seen by going a bit more into
detail. For 1 ≤ i, j ≤ n we have that

(∇Xxt(X, t))ij =
∂xit(X, t)

∂Xj
=

∂ui(x(X, t), t)

∂Xj

=
∂ui(x(X, t), t)

∂xk
∂xk

∂Xj
=
(
(∇xu) F̃

)
ij
, (3.21)

where we use the Einstein summation convention and the chain rule. Hence

∇xu = ∇Xxt(X, t)F̃−1. (3.22)

From here we see that the expression gets much more complicated, since the
deformation gradient comes into play, too, which yields the following remark.

Remark 22. Viscosity is convenient to use with the Eulerian coordinate system.

3.5 Consideration of Incompressibility Condition

From Definition 6 and Proposition 7 we recall the mathematical description of
incompressibility. In the Lagrangian coordinate system it is

det F̃ ≡ 1, (3.23)

in the Eulerian coordinate system it is

∇x · u = 0. (3.24)

Note that (3.23) is a nonlinear constraint for the flow map, while (3.24) is linear,
so, if we do a variation with respect to the velocity u in the Eulerian coordinate
system under incompressibility conditions, we can use functions u + εv which
satisfy ∇x · (u+ εv) = 0.
On the other hand, if we do a variation with respect to x, which is the case when

applying the least action principle, the difficulty is that det
(

∂x
∂X

+ ε ∂y
∂X

)
≡ 1

does not hold if det ∂x
∂X

≡ 1 holds.
In this case, we use volume preserving diffeomorphisms to perform the variation,
i.e., functions xε such that

x0 = x and
dxε

dε

∣∣∣∣
ε=0

:= y and ∀ε : det F̃ ε = det
∂xε

∂X
≡ 1. (3.25)

The nonlinear constraint, however, leads to a divergence condition for y(X, t) =
ỹ(x(X, t), t) similar to (3.24) in the Eulerian coordinate system. Indeed, from
(3.25) we get

0 =
d

dε

∣∣∣∣
ε=0

det
∂xε

∂X

= det F̃ · tr

(
F̃−1 d

dε

∣∣∣∣
ε=0

∂xε

∂X

)
= tr

(
n∑

k=1

∂Xk

∂xi
∂yj

∂Xk

)
= ∇x · ỹ. (3.26)
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Equation (3.26) provides us with a necessary condition which is crucial for cal-
culating, e.g., first variations if incompressibility holds.

Now we look at a problem under incompressibility condition. We consider the
energy law

d

dt

(∫

Ωx
t

1

2
ρ(x, t)|u(x, t)|2 dx

)
= −

∫

Ωx
t

µ(x, t)|∇xu|
2 dx, (3.27)

which is a simple viscous fluid.
To put the simple part first, we start with the variation of the right-hand side.
Here, we use u+ εv since we are in the Eulerian coordinate system and ∇x · (u+
εv) = 0 holds for any compactly supported and smooth test function v satisfying
∇x ·v = 0. The calculation is similar to the one using ∆2 in the previous section;
we obtain:

0 =
d

dε

∣∣∣∣
ε=0

1

2
∆ (u+ εv) =

∫

Ωx
t

(
−∇x · (µ(x, t)∇xu)

)
· v dx. (3.28)

This is a crucial point: In the compressible case, the equation of motion is
−∇x · (µ(x, t)∇xu) = 0 since the field v is arbitrary.
Now the field v is divergence free, hence we useWeyl’s decomposition or Helmholtz’
decomposition of a vector field (c.f. [DL00, Chapter IX, Section 1, Propostion 1];
we omit the proof for brevity):

Proposition 23. If a vector field w ∈ L2(Ω,Rn) is orthogonal to all smooth
divergence free vector fields with compact support, then w has gradient form, i.e.,
w = ∇p for some p ∈ W 1,2(Ω,Rn).

Thus, we obtain the following equation of motion for the dissipative part:

−∇x · (µ∇xu) = ∇xp2 (3.29)

with p2 ∈ W 1,2(Ω,Rn).
Now we turn to the Hamiltonian part. For the least action principle we use
variations xε of x as described in (3.25) and (3.26) with y satisfying y(X, 0) =
y(X, t∗) = 0 for any X ∈ ΩX

0 . Due to incompressibility, the mass density is

constant, i.e., ρ(x(X, t), t) = ρ0(X), c.f. Proposition 11, and J = det F̃ ≡ 1. So
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we can calculate the variation of the action functional:

0 =
d

dε

∣∣∣∣
ε=0

A(xε) =
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

ΩX
0

1

2
ρ0(X)|xεt |

2 dX dt

=

∫ t∗

0

∫

ΩX
0

ρ0(X)

(
xεt

∣∣∣∣
ε=0

)
·

(
d

dε

∣∣∣∣
ε=0

xεt

)
dX dt

=

∫ t∗

0

∫

ΩX
0

ρ0(X)xt · yt dX dt

=

∫ t∗

0

∫

ΩX
0

−ρ0(X)xtt · y dX dt

=

∫ t∗

0

∫

Ωx
t

−ρ(x, t)(ut + (u · ∇x)u) · ỹ dx dt,

where the equality y(X, t) = ỹ(x(X, t), t) is used in the transformation of the in-
tegral in the last step. We can apply Proposition 23 again because ỹ is divergence
free due to (3.26), hence, for some p1 ∈ W 1,2(Ω,Rn) we have

−ρ(x, t)(ut + (u · ∇x) u) = ∇xp1. (3.30)

Putting both results (3.29) and (3.30) together (where we make use of the force
balance law: forceconservative = forcedissipative) and adding also the kinematic
assumptions of incompressibility (c.f. (3.24)) and conservation of mass (2.5), we
obtain the following system





∇x · u = 0

ρt + (u · ∇x) ρ = 0

ρ(ut + (u · ∇x) u) +∇xp = ∇x · (µ∇xu) ,

(3.31)

where we set p = p1−p2. This is the Lagrange multiplier for the incompressibility
constraint, reflecting both the Hamiltonian and the dissipative part of the system.
This is a Navier-Stokes system for incompressible viscous fluids.

Now we can step into more complex examples in the next chapter and put the
pieces together we learned so far.
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4 Modeling of Complex Fluids

In this chapter we discuss exemplary models for complex fluids. We use the en-
ergetic variational approach and the mechanical tools explained in the previous
chapters to derive differential equations from energy laws describing the phenom-
ena within the materials.
Throughout this chapter we assume that the considered functions have enough
regularity and the integrands are bounded, so the calculations are well-defined.
We start with a rather general model of incompressible viscoelastic materials such
as biological materials (e.g. muscles) or rubbers. Here we put several concepts
together in order to generate one modeling framework to incorporate solid and
fluid properties. After that we go down on a smaller scale to see where these
properties come from: We study polymeric fluids through a micro-macro analysis
in Section 4.2 to analyze the effect of polymers, which are surrounded by a fluid,
onto the (macroscopic) fluid flow. In Section 4.3 we consider liquid crystals and
study coupling effects with a fluid.

4.1 Incompressible Viscoelasticity

As the title “Incompressible Viscoelasticity” implies, we have incompressibility
first (c.f. (3.24)):

∇x · u = 0.

Secondly, there is some visco part, so we have viscosity (c.f. (3.20)), a property
of fluid material, and something like

∫

Ωx
t

µ|∇xu|
2 dx,

where µ > 0 is a viscosity constant which is assumed to be constant in x and t.
Moreover, there is a third part, elasticity, so we need

∫

Ωx
t

λW (F ) dx,

with an elasticity density W (F ) (c.f. (3.17)), incorporated with a relaxation pa-
rameter λ > 0.
As noted in Remark 22, viscosity is conveniently modeled in the Eulerian coor-
dinate system, so we use the Eulerian description in this context.
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In contrast to the previous chapter where we considered models for solid and
fluid materials separately, we now take both fluid and solid properties together
and create a unified viscoelastic framework.
This is also an approach to simplify the way we look at solid and fluid materials
which is the idea of the viscoelastic model. However, special cases in terms of
the choice of µ and λ lead to the model of (incompressible) solid elasticity and
the model of (incompressible) viscous fluids, respectively.

We establish the energy law for this model of incompressible viscoelasticity as
follows:

d

dt

∫

Ωx
t

1

2
ρ|u|2 + λW (F ) dx = −

∫

Ωx
t

µ|∇xu|
2 dx, (4.1)

incorporating both solid (elasticity) and fluid (viscosity) properties. The action
is given by

A(x) =

∫ t∗

0

∫

ΩX
0

1

2
ρ0(X)|xt(X, t)|2 − λW (F̃ ) dX dt, (4.2)

which is transformed into the Lagrangian coordinate system. Notice that J =
det F̃ ≡ 1 due to incompressibility.

Now we calculate the variation of the action (4.2), where we use volume preserv-
ing diffeomorphisms xε as characterized in (3.25) and (3.26) with y satisfying
y(X, 0) = y(X, t∗) = 0 for any X ∈ ΩX

0 , since we work under incompressibility
conditions (compare also the variation of (3.17), where is, however, neither any
relaxation nor incompressibility):

0 =
d

dε

∣∣∣∣
ε=0

A(x+ εy)

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

ΩX
0

1

2
ρ0(X)|xt + εyt|

2 − λW

(
∂(x+ εy)

∂X

)
dX dt

=

∫ t∗

0

∫

ΩX
0

ρ0(X)xt · yt − λW
F̃
(F̃ ) :

(
∂y

∂X

)
dX dt

=

∫ t∗

0

∫

ΩX
0

−ρ0(X)xtt · y − λW
F̃
(F̃ ) : (∇Xy) dX dt

=

∫ t∗

0

∫

Ωx
t

−ρ(x, t)(ut + (u · ∇x)u) · ỹ − λ (WF (F )) : (∇xỹ · F ) dx dt

=

∫ t∗

0

∫

Ωx
t

−ρ(x, t)(ut + (u · ∇x)u) · ỹ − λ
(
WF (F ) · F T

)
: (∇xỹ) dx dt

=

∫ t∗

0

∫

Ωx
t

−ρ(x, t)(ut + (u · ∇x)u) · ỹ + λ∇x ·
(
WF (F ) · F T

)
· ỹ dx dt

=

∫ t∗

0

∫

Ωx
t

−

(
ρ(x, t)(ut + (u · ∇x)u)− λ∇x ·

(
WF (F ) · F T

))
· ỹ dx dt,
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where the product A : B from Appendix A.1 is used. For details concerning the

derivative d
dε
W
(
∂(x+εy)

∂X

)
from the calculation above, see Appendix A.2.

The integration by parts in the second to last step is explained in detail in
Appendix A.4.

At this stage we apply Helmholtz’ decomposition as in Proposition 23 and obtain
for some p1 ∈ W 1,2(Ω,Rn)

ρ(ut + (u · ∇x)u)− λ∇x ·
(
WF (F ) · F T

)
= −∇xp1, (4.3)

which yields the Hamiltonian part. For the dissipative part we look at the dissi-
pation in the energy law (4.1):

∆ =

∫

Ωx
t

(
µ|∇xu|

2
)
dx,

where we perform the variation with respect to the velocity u. This variation,
however, is the same as in (3.28). Again by Proposition 23, the calculations lead
to the following equation of motion for the dissipative part (3.29):

−∇x · (µ∇xu) = ∇xp2,

for p2 ∈ W 1,2(Ω,Rn), or equivalently, since µ is assumed to be constant in this
model,

−µ∆xu = ∇xp2. (4.4)

Equations (4.3) and (4.4) are brought together by the force balance law
forceconservative = forcedissipative which yields the entire equation of motion for
the macroscopic scale

ρ(ut + (u · ∇x) u) +∇xp = µ∆xu+ λ∇x ·
(
WF (F ) · F T

)
. (4.5)

where p = p1 − p2.

We now put the system’s equations together. To this end, we state the kinematic
assumptions of incompressibility (c.f. (3.24)), the chain rule for the deformation
gradient (2.3) and conservation of mass (c.f. (2.5) and part 2 of Proposition 11),
and the equation of motion (4.5). We obtain the following system:





∇x · u = 0
∂F
∂t

+ (u · ∇x)F = ∇xu · F

ρt + (u · ∇x) ρ = 0

ρ(ut + (u · ∇x)u) +∇xp = µ∆xu+ λ∇x ·
(
WF (F ) · F T

)
.

(4.6)

Notice that equation (4.5) consists of (3.18)3 and (3.31)3 with the viscosity and
the elasticity part (notice the additional relaxation parameter λ > 0 here).
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What can be easily seen in system (4.6) and in the corresponding energy law (4.1)
is that we can use the parameters λ and µ to choose the influence of elasticity
and viscosity, respectively, within the model.
If we set µ = 0 and λ > 0, we get a model for incompressible solid elasticity
as in (3.18). On the other hand, if we set λ = 0 and µ > 0, the model is for
incompressible viscous fluids. We obtained this earlier in (3.31). Basically, we
tear the fluid and solid properties apart again.

Now it is interesting to ask where solid and fluid properties come from and where
these properties have their seeds in. For a particular example of fluids, this is
discussed in the following section.

4.2 Micro-Macro Models for Polymeric Fluids

This section deals with physical phenomena that happen on an atomistic scale.
The question that came up in the last section, where do solid and fluid properties
come from, shall be discussed to some extent.
What we do here, is the so-called multiscale modeling. This means, we look at
phenomena occurring at different length and/or time scales [TM11, Chapter 10].
To make clear what is meant by different scales, we take a look at different length
scales in some copper material like a coin (c.f. [TM11, Section 1.1]).
On the largest scale, i.e., what is visible to the naked eye at a 1mm scale, we see
a solid coin made from hard material.
When we go down to finer scales at micrometers and nanometers, we can observe
certain structures and patterns.
Down at the Ångstrom length scale, we see the individual positions of the atoms.
Concerning time scales, we see that for the coin as a whole piece of copper at the
largest scale, motion and deformation processes like creep and fatigue may take
years. On the other hand, down at the finest scale, the vibration of atoms takes
place on a femtosecond scale ( 1fs = 0.000 000 000 000 001s = 10−15s).

In our modeling, however, we only use two scales: a macroscopic or “coarse” scale
(largest) and a microscopic or “fine” scale. We assume that these scales commu-
nicate through averaging from micro to macro and through interpolation from
macro to micro. Moreover, we assume separation of scales, i.e., if we know what
happens on both the microscopic and the macroscopic scale, we know everything
that happens in between.

We consider a domain Ωx
t ⊂ R

3 in the Eulerian coordinate system on the macro-
scopic scale. On the fine scale we consider the configuration space R

3, i.e., we
look at the polymer molecules as end-to-end vectors Q ∈ R

3. These polymers
are modeled as small springs, see Figure 4.1. Additionally, we need a distri-
bution function f(Q, t) for the polymers satisfying

∫
R3 f(Q, t) dQ = const, and

lim|Q|→∞ f(Q, t) = 0 and lim|Q|→∞∇Qf(Q, t) = 0 for all t ≥ 0. Then we perform
some averaging over the fine scale which leads to the effect onto the macroscopic
scale. So, a point x ∈ Ωx

t represents the properties of a bunch of polymers in the
surroundings of x.
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Q ∈ R
3

Ωx
t

x

Figure 4.1: Microscopic vectors acting as springs in the fine scale, averaged to the
macroscopic scale

4.2.1 Microscopic Scale

We start with the microscopic scale, where we look at the polymer end-to-end
vectors Q ∈ R

3 as springs. From previous chapters we know the equation of
motion governing the spring (3.9). We use a general elastic potential U(Q) (c.f.
[LLZ07, Section 2]) and obtain

Qtt + γQt = −∇QU,

where γ > 0 is a damping constant. We consider situations where the motion on
the fine scale is much faster than on the macroscopic scale. So for the microscopic
behavior, we can say that we are only interested in the long time dynamics (c.f.
Remark 14). Thus, we neglect the oscillation part Qtt which yields

γQt = −∇QU (4.7)

as a governing equation. This dynamical behavior is called gradient flow or near
equilibrium dynamics.

We consider now the distribution function f(Q, t) from above. Like for the mass
density or mass distribution function ρ(x, t) considered in Section 2.4, we can
establish the transport equation ft +∇Q · (Qt f) = 0 (c.f. equation (2.5)) since
the number of particles is conserved over time.
With the gradient flow equation (4.7) the transport equation for f becomes

ft −∇Q ·

(
1

γ
∇QU f

)
= 0.

Now we add thermal fluctuations to the gradient flow (4.7) by adding an isotropic
Brownian motion and obtain

dQ = −
1

γ
∇QU dt+ σdWt. (4.8)
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Here, Wt is a regular Wiener process representing the Brownian motion and
σ = kT , where k is the Boltzmann constant and T is the temperature (c.f.
[LLZ07]). When Itō’s lemma from stochastic differential calculus is applied, we
see that the distribution function f(Q, t) satisfies

ft = ∇Q ·

(
1

γ
∇QU f

)
+

σ2

2
∆Qf, (4.9)

which is the Fokker-Planck equation [PB99, Section 3.5]. Furthermore, it holds

that f ≥ 0 and the equilibrium distribution is given by f = C exp
(
− 2

γσ2U
)

[LLZ07, Section 2].

We define the free energy
∫
R3 A(f) dQ with the free energy density (c.f. [EHL10])

A(f) =
σ2

2
f ln f +

1

γ
U f.

The term σ2

2 f ln f is called Gibbs entropy and corresponds to the transport of
the molecules through Brownian motion. The second term represents the elastic
energy density due to the spring model of the polymers.
Now we can use (4.9) (in the third step) to derive the following dissipative energy
law (we assume that f and U are chosen in the way that the boundary terms (as
|Q| → ∞) vanish in the integration by parts):

d

dt

∫

R3

(
σ2

2
f ln f +

1

γ
U f

)
dQ

=

∫

R3

(
σ2

2
(ft ln f + ft) +

1

γ
U ft

)
dQ

=

∫

R3

(
σ2

2
(ln f + 1) +

1

γ
U

)
ft dQ

=

∫

R3

(
σ2

2
(ln f + 1) +

1

γ
U

) (
∇Q ·

(
1

γ
∇QU f

)
+

σ2

2
∆Qf

)
dQ

=

∫

R3

(
σ2

2
(ln f + 1) +

1

γ
U

)
∇Q ·

(
1

γ
∇QU f +

σ2

2
∇Qf

)
dQ

= −

∫

R3

∇Q

(
σ2

2
(ln f + 1) +

1

γ
U

)
·

(
1

γ
∇QU f +

σ2

2
∇Qf

)
dQ

= −

∫

R3

∇Q

(
σ2

2
(ln f + 1) +

1

γ
U

)
·

(
1

γ
∇QU +

σ2

2

1

f
∇Qf

)
f dQ

= −

∫

R3

f∇Q

(
σ2

2
(ln f + 1) +

1

γ
U

)
· ∇Q

(
σ2

2
(ln f + 1) +

1

γ
U

)
dQ

= −

∫

R3

f

∣∣∣∣∇Q

(
σ2

2
(ln f + 1) +

1

γ
U

) ∣∣∣∣
2

dQ,
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so we obtain

d

dt

∫

R3

(
σ2

2
f ln f +

1

γ
U f

)

︸ ︷︷ ︸
A(f)

dQ = −

∫

R3

f

∣∣∣∣∇Q

(
σ2

2
(ln f + 1) +

1

γ
U

)

︸ ︷︷ ︸
µ̄

∣∣∣∣
2

dQ,

(4.10)

where it is obvious that Af (f) =
∂
∂f

A(f) = µ̄, which is called chemical poten-
tial.

Now we couple (4.9) with the macroscopic variable x: We assume that the
distribution function f also depends on the flow map x(X, t), hence we write
f = f(x(X, t), Q, t). Moreover, we assume that the microscopic vector Q is also
a deformed vector by the macroscopic motion. This is the Cauchy-Born relation
(c.f. [TM11, Section 11.2.2])

Q = Fq, (4.11)

where q is in the microscopic configuration of the reference configuration.
To establish the coupling with the macroscopic entities x and F , we exchange
the partial derivative ft in (4.9) by the total derivative

d

dt
f(x(X, t), F q, t).

To this end, we calculate

d

dt
f(x(X, t), F q, t) = ft + (∇xf) · u+ (∇Qf) ·

((
d

dt
F

)
q

)

= ft + (u · ∇x) f + (∇Qf) · ((∇xu F ) q)

= ft + (u · ∇x) f + (∇xu Fq) · ∇Qf

= ft + (u · ∇x) f +∇xuQ · ∇Qf,

where we use Propostion 4 in the second and the Cauchy-Born relation (4.11)
in the last step. Inserting this result into (4.9), we obtain the microscopic force
balance with coupling :

ft + (u · ∇x) f +∇xuQ · ∇Qf = ∇Q ·

(
1

γ
∇QU f

)
+

σ2

2
∆Qf, (4.12)

where ((u · ∇x) f +∇xuQ · ∇Qf) on the left-hand side is called cross-scale inter-
action term.

4.2.2 Macroscopic Scale

Now we turn to the macroscopic scale of the system. Here we consider an incom-
pressible viscous fluid with constant mass density ρ = 1 (c.f. (3.27)).
However, we couple the fluid with the polymers by adding the averaged free
energy of the microscopic scale into the total energy of the macroscopic part.
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Moreover, we add the dissipative part for the microscopic part into the dissipa-
tive part of the macroscopic scale.
To this end, we use a relaxation parameter λ > 0 to incorporate the free energy
and dissipation terms from (4.10). We obtain the following dissipative energy
law:

d

dt

∫

Ωx
t

(
1

2
|u|2 + λ

∫

R3

(
σ2

2
f ln f +

1

γ
U f

)
dQ

)
dx

= −

∫

Ωx
t

(
µ|∇xu|

2 + λ

∫

R3

f

∣∣∣∣∇Q

(
σ2

2
(ln f + 1) +

1

γ
U

) ∣∣∣∣
2

dQ

)
dx, (4.13)

where µ > 0 is a viscosity constant and the distribution function takes the form
f = f(x(X, t), F q, t), where we also assume that f = 0 on ∂Ωx

t .

We start with the least action principle and the variation of the action functional
A(x) with respect to x. The action is given by

A(x) =

∫ t∗

0

∫

ΩX
0

(
1

2
|xt|

2 − λ

∫

R3

(
σ2

2
f(x(X, t), F q, t) ln f(x(X, t), F q, t)

+
1

γ
U(Q) f(x(X, t), F q, t)

)
dQ

)
dX dt.

Notice that there will be no variation in the elastic potential U(Q) and in the
volume element dQ.

In order to actually calculate the variation, we use volume preserving diffeo-
morphisms xε as characterized in (3.25) and (3.26) with y satisfying y(X, 0) =
y(X, t∗) = 0 for anyX ∈ ΩX

0 , since we work under incompressibility conditions:

0 =
d

dε

∣∣∣∣
ε=0

A(xε)

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

ΩX
0

(
1

2
|xεt |

2 − λ

∫

R3

(
σ2

2
f(xε, (∇Xxε)q, t) ln f(xε, (∇Xxε)q, t)

+
1

γ
U(Q) f(xε, (∇Xxε)q, t)

)
dQ

)
dX dt

=

∫ t∗

0

∫

ΩX
0

(
xt · yt − λ

∫

R3

(
σ2

2
(∇xf · y +∇Qf · (∇Xy)q) ln f

+
σ2

2
f

1

f
(∇xf · y +∇Qf · (∇Xy)q)

+
1

γ
U(Q) (∇xf · y +∇Qf · (∇Xy)q)

)
dQ

)
dX dt

=

∫ t∗

0

∫

ΩX
0

(
−xtt · y − λ

∫

R3

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇Qf · (∇Xy)q)

+

(
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇xf · y

)
dQ

)
dX dt.
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At this stage, we take care of the expression (∇Xy)q. It satisfies the following
identity:

(∇Xy)q = (∇Xy(X, t))q = (∇X ỹ(x(X, t), t))q

= (∇xỹ(x, t)∇Xx(X, t))q = (∇xỹ(x, t))Fq = (∇xỹ(x, t))Q = (∇xỹ)Q,

where Q = Fq is the Cauchy-Born relation. We plug this into the last result and
continue the calculations:

0 =
d

dε

∣∣∣∣
ε=0

A(xε)

=

∫ t∗

0

∫

Ωx
t

(
−(ut + (u · ∇x)u) · ỹ

− λ

∫

R3

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇Qf · (∇xỹ)Q

+

(
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇xf · ỹ

)
dQ

)
dx dt,

where we split this into three separate expressions:

0 =

∫ t∗

0

∫

Ωx
t

(
−(ut + (u · ∇x)u) · ỹ

)
dx dt (4.14)

− λ

∫ t∗

0

∫

Ωx
t

∫

R3

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇Qf · (∇xỹ)Q

)
dQ dx dt

(4.15)

− λ

∫ t∗

0

∫

Ωx
t

∫

R3

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇xf · ỹ

)
dQ dx dt. (4.16)

In order to make the calculations a bit more well-arranged, we deal with each
integral term (4.14)–(4.16) separately.

For (4.16) we obtain

− λ

∫ t∗

0

∫

Ωx
t

∫

R3

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇xf · ỹ

)
dQ dx dt

= −λ

∫ t∗

0

∫

Ωx
t

∫

R3

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
ỹ

)
· ∇xf dQ dx dt

= +λ

∫ t∗

0

∫

Ωx
t

∫

R3

∇x ·

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
ỹ

)
f dQ dx dt

= +λ

∫ t∗

0

∫

Ωx
t

∫

R3

(
∇x

(
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
· ỹ

+

(
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇x · ỹ

)
f dQ dx dt.
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Here the incompressibility assumption ∇x · ỹ = 0 comes into play, so the second
summand vanishes. We get

+ λ

∫ t∗

0

∫

Ωx
t

∫

R3

f ∇x

(
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
· ỹ dQ dx dt

= +λ

∫ t∗

0

∫

Ωx
t

∫

R3

(
σ2

2
∇xf

)
· ỹ dQ dx dt

= −λ

∫ t∗

0

∫

Ωx
t

∫

R3

σ2

2
f ∇x · ỹ dQ dx dt = 0. (4.17)

Next, we turn to (4.15).

− λ

∫ t∗

0

∫

Ωx
t

∫

R3

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇Qf · (∇xỹ)Q

)
dQ dx dt

= +λ

∫ t∗

0

∫

Ωx
t

∫

R3

∇Q ·

((
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
(∇xỹ)Q

)
f dQ dx dt

= +λ

∫ t∗

0

∫

Ωx
t

∫

R3

(
∇Q

(
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
· (∇xỹ)Q

+

(
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
∇Q · ((∇xỹ)Q)

)
f dQ dx dt.

The second summand vanishes, since, by the following calculation, the expression
∇Q ·((∇xỹ)Q) is equal to zero (remember the Einstein summation convention):

∇Q · ((∇xỹ)Q) = ∇Qi
((∇xỹ)Q)i = ∇Qi

((∇xỹ)ijQj)

= ∇Qi
(∇xj

ỹiQj) = δij∇xj
ỹi = ∇xi

ỹi = ∇x · ỹ = 0, (4.18)

where δij is the Kronecker delta. We continue the treatment of (4.15):

+ λ

∫ t∗

0

∫

Ωx
t

∫

R3

f ∇Q

(
σ2

2
(ln f + 1) +

1

γ
U(Q)

)
· (∇xỹ)Q dQ dx dt

= +λ

∫ t∗

0

∫

Ωx
t

∫

R3

(
σ2

2
∇Qf +

1

γ
f ∇QU(Q)

)
· (∇xỹ)Q dQ dx dt

= +λ

∫ t∗

0

∫

Ωx
t

∫

R3

σ2

2
∇Qf · (∇xỹ)Q+

1

γ
f ∇QU(Q) · (∇xỹ)Q dQ dx dt

= +λ

∫ t∗

0

∫

Ωx
t

∫

R3

−
σ2

2
f ∇Q · ((∇xỹ)Q) +

1

γ
f ∇QU(Q) · (∇xỹ)Q dQ dx dt.

After integration by parts in the last step, we see that the first summand vanishes
due to (4.18), so we go on with (4.15) and obtain using the Einstein summation

42



convention

+ λ

∫ t∗

0

∫

Ωx
t

∫

R3

1

γ
f ∇QU(Q) · (∇xỹ)Q dQ dx dt

= +
λ

γ

∫ t∗

0

∫

Ωx
t

∫

R3

f ∇Qi
U(Q)(∇xj

ỹi)Qj dQ dx dt

= +
λ

γ

∫ t∗

0

∫

Ωx
t

∇xj
ỹi

(∫

R3

f ∇Qi
U(Q)Qj dQ

)
dx dt

= −
λ

γ

∫ t∗

0

∫

Ωx
t

∇xj

(∫

R3

f ∇Qi
U(Q)Qj dQ

)
ỹi dx dt

= −
λ

γ

∫ t∗

0

∫

Ωx
t

∇x ·

(∫

R3

f ∇QU(Q)⊗Q dQ

)
· ỹ dx dt

= −

∫ t∗

0

∫

Ωx
t

(∇x · τind) · ỹ dx dt. (4.19)

Here, we use the Kronecker product (∇QU(Q)⊗Q)ij = ∇Qi
U(Q)Qj , i, j = 1, 2, 3,

and define

τind =
λ

γ

∫

R3

f ∇QU(Q)⊗Q dQ,

which is called the induced stress from micro to macro. This is also a cross-scale
interaction quantity.
Now we can bring (4.14), (4.17) and (4.19) together, which leads to

0 =
d

dε

∣∣∣∣
ε=0

A(xε) =

∫ t∗

0

∫

Ωx
t

(
−(ut + (u · ∇x)u)−∇x · τind

)
· ỹ dx dt,

where we can apply Helmholtz’ decomposition as in Proposition 23 and obtain
for some p1 ∈ W 1,2(Ω,R3)

−(ut + (u · ∇x)u)−∇x · τind = ∇xp1. (4.20)

So far we considered the Hamiltonian part. For the dissipative part we look at
the dissipation

∆ =

∫

Ωx
t

(
µ|∇xu|

2 + λ

∫

R3

f

∣∣∣∣∇Q

(
σ2

2
(ln f + 1) +

1

γ
U

) ∣∣∣∣
2

dQ

)
dx

from (4.13) and perform the variation with respect to the velocity u. Since the
microscopic part (which is the relaxed integral over the microscopic variable Q)
does not contain the velocity u, this variation reduces to one as in (3.28). Again
by Proposition 23, this leads to the equation of motion for the dissipative part
(3.29):

−∇x · (µ∇xu) = ∇xp2,
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for p2 ∈ W 1,2(Ω,R3), or equivalently, since µ is constant in this case,

−µ∆xu = ∇xp2. (4.21)

Equations (4.20) and (4.21) are brought together by the force balance law
forceconservative = forcedissipative which yields the entire equation of motion for
the macroscopic scale

ut + (u · ∇x)u+∇xp = µ∆xu−∇x · τind.

where p = p1 − p2. Together with the incompressibility, the macroscopic scale
system and force balance reads:





∇x · u = 0

ut + (u · ∇x)u+∇xp = µ∆xu−∇x · τind

τind =
λ

γ

∫

R3

f ∇QU(Q)⊗Q dQ.

(4.22)

4.2.3 Micro-Macro System

Now we summarize the calculations from the previous sections.
The first is the microscopic force balance (4.12). There we considered the influ-
ence from the macroscopic scale onto the microscopic scale through the Cauchy-
Born relation and the additional dependence of the distribution function f on the
macroscopic space variable x which lead to an extended Fokker-Planck equation.
Secondly, we looked at the macroscopic scale. The influence of the microscopic
scale onto the macroscopic is established by the incorporation of the microscopic
energy and dissipation into the macroscopic energy law using a relaxation pa-
rameter. Again, Cauchy-Born and the dependence of f on both microscopic
and macroscopic variables play important roles in the calculations to obtain the
macroscopic system (4.22).
Finally, we obtain the entire coupled system from (4.12) and (4.22) as follows:





∇x · u = 0

ut + (u · ∇x)u+∇xp = µ∆xu−∇x · τind

τind =
λ

γ

∫

R3

f ∇QU(Q)⊗Q dQ

ft + (u · ∇x)f +∇xuQ · ∇Qf = ∇Q ·
(

1
γ
∇QU f

)
+ σ2

2 ∆Qf.

(4.23)
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4.3 Liquid Crystalline Material

This section is dedicated to liquid crystals or liquid crystalline material (see,
e.g., [dG79], [Col02], [JS10] for general theory, physical properties, and applica-
tions).

First of all, we explain what we understand by the term liquid crystals. As
outlined in the introduction to this thesis, nematics are an example for liquid
crystals which we consider in this section.

Nematics are like a bunch of molecules which are shaped like rods. They can
move around but tend to align in one common direction. Nematic liquid crystals
exhibit no positional, but orientational order. There are also liquid crystals which
show partial positional order, they are called smectics. In fact they form layers
where they exhibit nematic behavior inside these layers (c.f. [dG79, Section 1.4],
[Col02, Chapter 1]).

4.3.1 Nematics Averaged from the Microscopic Scale

We are interested in a macroscopic description of the material coupled with an
incompressible fluid. The molecules’ structure is down on a microscopic scale.
Figure 4.2 shows an exemplary configuration of rod shaped nematics. In order

n

Figure 4.2: Nematic liquid crystals align along the director: microscopic scale

to describe liquid crystals on the macroscopic scale, we use a unit vector field

n : x 7→ n(x, t), such that |n| = n · n = 1,

assigned to any point x ∈ Ωx
t ⊂ R

3 at time t. This is the macroscopic description
and it is understood as an average direction of the molecules in the surroundings
of x. We call this vector field the director field.
In addition to this, we introduce a scalar field

s : x 7→ s(x, t),

which we call the degree of orientation or order parameter to describe the quality
of the alignment along the director (c.f. [CL00, Section 1], [CGLL02]). Together
with the director field, we obtain the orientation field

d : x 7→ d(x, t) := s(x, t)n(x, t), with |n| = n · n = 1.
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In the following description we use d as the description of the liquid crystals
instead of a more detailed analysis with the separate fields n and s.

It can be shown that the degree of orientation takes values in the interval
(−1

2 , 1), where s = 0 represents an isotropic configuration, i.e., randomly ori-
ented molecules, s = −1

2 stands for perfect alignment perpendicular to the direc-
tor n, and s = 1 for perfect orientation along n, so perfect nematic configuration
([CGLL02]).

For this macroscopic vectorial description, which arises from coarse graining on
the fine scale, we define a free energy which penalizes the states that are “less
nematic” than a perfect nematic configuration, since through the variation of the
energy we want to obtain equations that are necessary conditions for orientation
fields which form a nematic state. We define

W (d) :=

∫

Ωx
t

k

2
|∇xd|

2 +
1

4η
(|d|2 − 1)2 dx, (4.24)

where k > 0 is a material constant and η is a parameter assumed to depend on
temperature.
The first summand accounts for the alignment. The smaller the gradient ∇xd,
i.e., the better the alignment of the molecules, the smaller this first summand.
The second term describes the tendency to be away from isotropic. It gets smaller
the closer s is to the value 1, which represents the perfect nematic phase. The
higher the temperature, the less likely the system takes a nematic state, and the
more likely the system is isotropic, thus, η increases with a temperature increase
and the penalization of an isotropic configuration is lower.

Remark 24. One could also include a term describing the response to an external
electric field E. Such a term could look like +λ|n×E|2, so alignment that is not
parallel to the electric field gets penalized. Modeling the response to an electric
field is of particular interest in technical applications, to study the behavior within
liquid crystal displays, for instance.

Corresponding to the free energy we consider a dissipation term

∆

(
d

dt
d

)
=

∫

Ωx
t

1

γ

∣∣∣∣
d

dt
d

∣∣∣∣
2

dx, (4.25)

which incorporates the rate d
dt
d.

The free energy (4.24) and the corresponding dissipation (4.25) together yield
an energy dissipation law (c.f. (3.1)) for the nematic configuration on the micro-
scopic scale (remember that we use a macroscopic description for the microscopic
scale!):

d

dt
W (d) = −∆

(
d

dt
d

)
. (4.26)
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We can easily derive the microscopic force balance from this energy law. The
Hamiltonian part follows from the Euler-Lagrange equation (3.11). Since we cal-
culate the variation of the action A(d) = −W (d) with respect to the orientation
field d and the spatial integration variable is x (notice that in (3.11) the spatial
integration variable is X and the variation is taken with respect to x) we obtain

k∆xd−
1

η
(|d|2 − 1)2d = 0. (4.27)

Concerning the dissipative part, we calculate the variation of 1
2∆
(
d
dt
d
)
with

respect to d
dt
d and obtain

1

γ

d

dt
d = 0. (4.28)

The Hamiltonian equation (4.27) and the dissipative equation (4.29) are related
by the force balance law forceconservative = forcedissipative, which results in the
microscopic force balance equation

k∆xd−
1

η
(|d|2 − 1)2d =

1

γ

d

dt
d. (4.29)

We now replace the rate d
dt
d in (4.29) by the explicit formula for the total time-

derivative of the orientation field and obtain as microscopic force balance:

k∆xd−
1

η
(|d|2 − 1)2d =

1

γ
(dt + (u · ∇x)d). (4.30)

Remark 25. Rewriting (4.29) using a variational gradient notation

δW (d)

δd
= k∆xd−

1

η
(|d|2 − 1)2d

which is the Euler-Lagrange equation, we obtain a gradient flow form

d

dt
d = γ

δW (d)

δd
.

This reflects the long time behavior of liquid crystals on the microscopic scale.

4.3.2 Macroscopic Scale and Kinematic Transport

Now we couple the nematics with a surrounding incompressible viscous fluid
with constant density ρ = 1 (remember that detF = 1 due to the incompress-
ibility condition). Thus we get a combined dissipative energy law as follows from
equations (3.27), (4.24), and (4.25):

d

dt

∫

Ωx
t

(
1

2
|u|2 + λ

(
k

2
|∇xd|

2 +
1

4η
(|d|2 − 1)2

))
dx

= −

∫

Ωx
t

(
µ|∇xu|

2 +
λ

γ

∣∣∣∣
d

dt
d

∣∣∣∣
2
)

dx, (4.31)
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where µ > 0 is a viscosity constant and λ > 0 is a relaxation parameter. Note
that the energy law does not include an integration over Q as in (4.13) since it is
phrased using the orientation field d which is already a macroscopic description.
We also replace the rate d

dt
d in (4.31) by the explicit formula for the total time-

derivative of the orientation field and obtain

d

dt

∫

Ωx
t

(
1

2
|u|2 + λ

(
k

2
|∇xd|

2 +
1

4η
(|d|2 − 1)2

))
dx

= −

∫

Ωx
t

(
µ|∇xu|

2 +
λ

γ
|dt + (u · ∇x)d|

2

)
dx. (4.32)

In order to establish the equation of motion on the macroscopic scale, we need
certain kinematic assumptions, in particular, how the orientation field d is trans-
ported. Since we consider rod-shaped molecules, the following assumption is
reasonable (c.f. [SL09, WXL12])

d(x(X, t), t) = Fd0(X), (4.33)

where d0(X) represents the initial condition at time t = 0. This transport
includes the transport of the center of mass and the stretching of the director.
We take the (total) derivative with respect to time on both sides of (4.33) which
yields

dt + (u · ∇x)d =
d

dt
Fd0

= (∇xu)Fd0 = (∇xu)d = (d · ∇x)u,

or equivalently

dt + (u · ∇x)d− (d · ∇x)u = 0. (4.34)

Remark 26. For different shapes of molecules one can find different transport
equations. In the case of general ellipsoidal shapes we can define

d(x(X, t), t) = Ed0(X), (4.35)

where E = E(x(X, t), t) satisfies the differential equation

Ė = ΩuE + (2α − 1)AuE

with Au = ∇xu+(∇xu)T

2 the symmetric part and Ωu = ∇xu−(∇xu)T

2 the skew sym-

metric part of ∇xu. Here 2α−1 = r2−1
r2+1 and r is the aspect ratio of the ellipsoids

([SL09, WXL12]). The general transport equation then becomes

dt + (u · ∇x)d− Ωud− (2α − 1)Aud = 0

which is established in the same way as (4.34) by taking the derivative with respect
to time on both sides of (4.35).
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Next we look at the least action principle applied to the total energy in (4.32).

Notice that the orientation field d transforms into the Lagrangian coordinate
system according to the considered transport rule (4.33). However, for the trans-
formation of ∇xd we do the same calculation as in (3.21) and (3.22), respectively,
so we get in total

∇xd = ∇X(Fd0(X))F−1

as the transformation rule for the gradient of d.

The action is then given by

A(x) =

∫ t∗

0

∫

ΩX
0

(
1

2
|xt|

2 − λ

(
k

2
|∇X(Fd0(X))F−1|2

+
1

4η
(|(Fd0(X))|2 − 1)2

))
dX dt. (4.36)

To perform the variation with respect to the flow map, we consider volume pre-
serving diffeomorphisms xε as characterized in (3.25) and (3.26) with ỹ and its
gradient satisfying zero boundary condition. We use these volume preserving
diffeomorphisms due to the incompressibility condition. Notice that the defor-
mation gradient F = ∂x

∂X
depends on x and thus on the variation.

0 =
d

dε

∣∣∣∣
ε=0

A(xε)

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

ΩX
0

(
1

2
|xεt |

2 − λ

(
k

2
|∇X((∇Xxε)d0(X))(∇Xxε)−1|2

+
1

4η
(|((∇Xxε)d0(X))|2 − 1)2

))
dX dt

=

∫ t∗

0

∫

ΩX
0

(
xt · yt

− λk

((
∇X(Fd0(X))F−1

)
:

(
∇X(Fd0(X))

(
d

dε

∣∣∣∣
ε=0

(∇Xxε)−1

)

︸ ︷︷ ︸
=−F−1(∇Xy)F−1

+∇X

(
d

dε

∣∣∣∣
ε=0

(∇Xxε)d0(X)

)

︸ ︷︷ ︸
=(∇Xy)d0(X)

F−1

))

+
λ

η
(|Fd0(X)|2 − 1)(Fd0(X)) ·

(
d

dε

∣∣∣∣
ε=0

((∇Xxε)d0(X))

))
dX dt.

For the identity d
dε

∣∣
ε=0

(∇Xxε)−1 = −F−1(∇Xy)F−1 more detailed calculations
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are carried out in Appendix A.5. We continue the calculation:

0 =

∫ t∗

0

∫

ΩX
0

(
xt · yt

− λk

((
∇X(Fd0(X))F−1

)
:

(
−∇X(Fd0(X))F−1(∇Xy)F−1

+∇X( (∇Xy)d0(X)︸ ︷︷ ︸
=(∇Xy)F−1Fd0(X)

)F−1

))

+
λ

η
(|Fd0(X)|2 − 1)(Fd0(X)) ·

(
(∇Xy)d0(X)︸ ︷︷ ︸

=(∇Xy)F−1Fd0(X)

))
dX dt.

Now we transform the integral back into the Eulerian coordinate system:

0 =

∫ t∗

0

∫

Ωx
t

(
−

d

dt
u · ỹ

− λk

(
(∇xd(x, t)) :

(
−∇xd(x, t)(∇xỹ)

+∇x((∇xỹ)d(x, t))

))

+
λ

η
(|d(x, t)|2 − 1)d(x, t) · (∇xỹ)d(x, t)

)
dx dt.

We rewrite this expression and obtain

0 =

∫ t∗

0

∫

Ωx
t

(
−(ut + (u · ∇x)u) · ỹ

)
dx dt (4.37)

− λk

∫ t∗

0

∫

Ωx
t

(
(∇xd(x, t)) :

(
−∇xd(x, t)(∇xỹ)

))
dx dt (4.38)

− λk

∫ t∗

0

∫

Ωx
t

(
(∇xd(x, t)) :

(
∇x((∇xỹ)d(x, t))

))
dx dt (4.39)

+
λ

η

∫ t∗

0

∫

Ωx
t

(
(|d(x, t)|2 − 1)d(x, t) · (∇xỹ)d(x, t)

)
dx dt. (4.40)

For the following calculations we make use of the simplified notation ∇j :=
∂

∂xj

and the Einstein summation convention.

For (4.38) we get

− λk

∫ t∗

0

∫

Ωx
t

(
(∇xd) :

(
−∇xd(∇xỹ)

))
dx dt

=+ λk

∫ t∗

0

∫

Ωx
t

(
∇jdi∇ldi∇j ỹl

)
dx dt

=− λk

∫ t∗

0

∫

Ωx
t

(
∇j(∇jdi∇ldi)ỹl

)
dx dt,
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where integration by parts is used. We define the product (∇xd ⊙ ∇xd)lj :=
∇jdi∇ldi, l, j = 1, 2, 3 (since we consider liquid crystals in R

3), which is obviously
a symmetric 3× 3-matrix (at least in this case, where the factors are the same,
namely ∇xd). Then we obtain the following expression for (4.38):

−λk

∫ t∗

0

∫

Ωx
t

(
∇x · (∇xd⊙∇xd)

)
· ỹ dx dt. (4.41)

Next we consider equation (4.39):

− λk

∫ t∗

0

∫

Ωx
t

(
(∇xd) :

(
∇x((∇xỹ)d)

))
dx dt

=− λk

∫ t∗

0

∫

Ωx
t

(
∇jdi∇j(∇lỹidl)

)
dx dt

=+ λk

∫ t∗

0

∫

Ωx
t

(
∇j(∇jdi)︸ ︷︷ ︸

=(∆d)i

dl∇lỹi

)
dx dt

=− λk

∫ t∗

0

∫

Ωx
t

(
∇l(∇j(∇jdi)︸ ︷︷ ︸

=(∆d)i

dl)ỹi

)
dx dt,

where integration by parts is used twice in the last steps. Now we use the
Kronecker product (∆d⊗d)il = ∇j(∇jdi)dl, i, l = 1, 2, 3, and obtain for (4.39):

−λk

∫ t∗

0

∫

Ωx
t

(
∇x · (∆d⊗ d)

)
· ỹ dx dt. (4.42)

Now we turn to equation (4.40):

+
λ

η

∫ t∗

0

∫

Ωx
t

(
(|d|2 − 1)d · (∇xỹ)d

)
dx dt

=+
λ

η

∫ t∗

0

∫

Ωx
t

(
(dldl − 1)di∇j ỹidj

)
dx dt

=−
λ

η

∫ t∗

0

∫

Ωx
t

(
∇j((dldl − 1)didj)ỹi

)
dx dt,

where integration by parts is used in the last step. We use again a Kronecker
product ((|d|2−1)d⊗d)ij = (dldl−1)didj , i, j = 1, 2, 3, and obtain for (4.40):

−
λ

η

∫ t∗

0

∫

Ωx
t

(
∇x · ((|d|

2 − 1)d⊗ d)

)
· ỹ dx dt. (4.43)

Equations (4.37) and (4.41)–(4.43) are put together in the following result for
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the variation of the action functional (4.36):

0 =
d

dε

∣∣∣∣
ε=0

A(xε)

=

∫ t∗

0

∫

Ωx
t

(
−(ut + (u · ∇x)u)

)
· ỹ − λk

(
∇x · (∇xd⊙∇xd)

)
· ỹ

− λk

(
∇x · (∆d⊗ d)

)
· ỹ −

λ

η

(
∇x · ((|d|

2 − 1)d⊗ d)

)
· ỹ dx dt

=

∫ t∗

0

∫

Ωx
t

−

(
(ut + (u · ∇x)u) + λk

(
∇x · (∇xd⊙∇xd)

)

+ λk

(
∇x · (∆d⊗ d)

)
+

λ

η

(
∇x · ((|d|

2 − 1)d⊗ d)

))
· ỹ dx dt

=

∫ t∗

0

∫

Ωx
t

−

(
ut + (u · ∇x)u

+ λ∇x ·

(
k(∇xd⊙∇xd) + k(∆d⊗ d)

+
1

η
((|d|2 − 1)d ⊗ d)

))
· ỹ dx dt.

We can rearrange this in a convenient way as follows:

0 =

∫ t∗

0

∫

Ωx
t

−

(
ut + (u · ∇x)u

+ λ∇x ·

(
k∇xd⊙∇xd+

(
k∆d+

1

η
(|d|2 − 1)d

)
⊗ d

))
· ỹ dx dt.

Next we apply Helmholtz’ decomposition as in Proposition 23 and obtain for
some p1 ∈ W 1,2(Ω,R3):

ut + (u · ∇x)u+ λ∇x ·

(
k∇xd⊙∇xd+

(
k∆d+

1

η
(|d|2 − 1)d

)
⊗ d

)
= −∇xp1,

(4.44)

which is the Hamiltonian force balance on the macroscopic scale.

Now we turn to the dissipative part of the energy law (4.32):

∫

Ωx
t

(
µ|∇xu|

2 +
λ

γ
|dt + (u · ∇x)d|

2

)
dx.

However, due to the microscopic force balance (4.30) we can rewrite this expres-
sion and obtain:

∫

Ωx
t

(
µ|∇xu|

2 +
λ

γ

∣∣∣∣k∆xd−
1

η
(|d|2 − 1)2d

∣∣∣∣
2
)

dx,
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where the second part does not depend on the macroscopic velocity u. So
the variation of the dissipative part yields just a viscosity term as in (4.21).
Since the macroscopic fluid is assumed to be incompressible, we obtain for p2 ∈
W 1,2(Ω,R3):

−µ∆xu = ∇xp2. (4.45)

Equations (4.44) and (4.45) are connected by the force balance law
forceconservative = forcedissipative which yields the entire equation of motion for
the macroscopic scale

ut + (u · ∇x)u+∇xp

= µ∆xu− λ∇x ·

(
k∇xd⊙∇xd+

(
k∆d+

1

η
(|d|2 − 1)d

)
⊗ d

)
, (4.46)

where p = p1 − p2.

4.3.3 Micro-Macro System for Nematic Liquid Crystals

Finally, we can bring all the equations from the two scales together to obtain
the entire system for the considered model of nematic liquid crystals. With
the incompressibility (3.24), the microscopic force balance (4.30), the transport
equation for the orientation field (4.34), and the macroscopic force balance (4.46),
we obtain the entire system as follows:





∇x · u = 0

k∆xd− 1
η
(|d|2 − 1)2d = 1

γ
dt + (u · ∇x)d

dt + (u · ∇x)d− (d · ∇x)u = 0

ut + (u · ∇x)u+∇xp

= µ∆xu− λ∇x ·

(
k∇xd⊙∇xd+

(
k∆d+ 1

η
(|d|2 − 1)d

)
⊗ d

)
.

(4.47)

The cross-scale coupling, which is the effect from the microscopic scale onto the
macroscopic scale and vice versa, is represented by the transport equation and a
coupling term in the macroscopic force balance.
The transport equation (4.47)3 reflects one way of coupling, which is the effect
from macro onto micro: The equation states how the molecules move along with
the macroscopic fluid.
On the other hand, the coupling term

k∇xd⊙∇xd+

(
k∆d+

1

η
(|d|2 − 1)d

)
⊗ d

in the macroscopic force balance (4.47)4 reflects the other way of coupling, this is
the effect from micro onto macro: The included liquid crystal molecules directly
influence the macroscopic flow behavior.
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This model is a good example to highlight the convenience of the energetic varia-
tional approach. It is relatively easy to establish the energy terms, even to couple
different scales. However, to use a force-based approach could be frustrating since
especially the coupling-term is not an entity that is easy to set up.
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5 Conclusion

In the preceding work we saw that the energetic variational approach gives us
the opportunity to study relatively complex physical systems and to set up cor-
responding partial differential equations in a convenient way. Several examples
of complex fluids which are diverse and important for many technological fields
were treated, namely the incompressible viscoelasticity, the polymeric fluids and
the nematic liquid crystals.

Considering liquid crystals, smectic liquid crystals, for instance, which addition-
ally exhibit partial positional order can also be treated through an energetic vari-
ational approach using a distance function to model their layering order structure
(see, e.g., [CLV98], [Liu00], [CLV01]).

Further areas of research, where these methods can be applied, are in cell biology:
Cell membranes consist of layer forming lipids with amphiphilic structure, similar
to liquid crystals (see, e.g., [JS10]). As already mentioned in the introduction,
ionic solutions which run through our body can be treated as complex fluids since
they consist of charged particles within a surrounding fluid (see, e.g., [EHL10]).
Thus the treatment of transport and osmosis through the membranes in the
energetic variational approach leads to a system of partial differential equations
that allow to model, for instance, a safe prediction of chemicals’ impact onto the
human body.

Other examples are interface models which are employed to study, e.g., the mo-
tion of droplets of fluid A within fluid B (see, e.g., [Ryh06], [RLZ07]), and the
motion of interfaces in two-phase fluid materials (see, e.g., [YFLS04], [HKL10]),
and to analyze mixtures with charged particles or magnetic fluids (see, e.g.,
[EHL10], [RLZ07]).

The models considered throughout this work raise further mathematical consid-
erations and problems. We derived systems of partial differential equations under
the assumptions that we have enough regularity. A next step would be to weaken
these regularity assumptions and to study existence and uniqueness of solutions.
We remark that if we consider systems that contain the Navier-Stokes system
(3.31), we cannot expect better results than from the Navier-Stokes system it-
self (c.f., [LL95, Section 1], [LL00, Section 4]). In fact, this is the case for all
the models considered in Chapter 4, since these complex fluids are coupled with
an incompressible viscous fluid (which results in the Navier-Stokes system as a
subsystem).

Finally, the established models can be used to simulate the behavior of the phys-
ical phenomena numerically (see, e.g., [Ryh06], [EHL10]) with the help of certain
discretization methods such as finite element or finite volume methods.
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A Remarks on Matrix Calculus

A.1 Matrix Double-Dot Product

The double-dot product for matrices is important for calculations in this thesis.
For A,B ∈ R

n×n we define

A : B := tr(ATB) =
n∑

i=1

n∑

j=1

AijBij ∈ R.

Due to the properties of the trace of a matrix, the following identities hold for
any A,B,C ∈ R

n×n:

A : B = tr(ABT ) = tr(BTA) = tr(BAT ) = B : A

and

A : (BC) = tr(ACTBT ) = (ACT ) : B.

A.2 Chain Rule

For ε0 > 0 let F : (−ε0, ε0) → R
n×n, ε 7→ F (ε) be a differentiable matrix-valued

function defined on an interval in the reals, let W : Rn×n → R, E 7→ W (E) be a
differentiable real-valued function defined on n× n-matrices.
We calculate the derivative of W ◦F : (−ε0, ε0) → R, ε 7→ W (F (ε)) with respect
to ε. To this end, we use the chain rule from multi-variable real calculus [Kna05,
Theorem 3.10]. But since this rule is only defined for vector-valued functions and
functions defined on vectors, we use a little trick.
Define the following diffeomorphism with its inverse

Φ : Rn×n → R
nn, F 7→ f := (F T

1 , . . . , F T
n )T ,

Φ−1 : Rnn → R
n×n, f = (f1, . . . , fnn) 7→ F =




f1 fn+1 · · · fn2−n+1

f2 fn+2 · · · fn2−n+2
...

...
. . .

...
fn f2n · · · fn2


 ,

where F1, . . . , Fn are the columns of F . So, Φ takes the columns of F and writes
them into a vector with n2 lines. Φ−1 easily does the inverse process.

Notice that Φ and Φ−1 is nothing but a different labeling: Fij in the matrix is
equal to fk = f(j−1)n+i in the vector (this is what Φ does). The reverse (i.e.,
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what Φ−1 does) is done by setting Fij = fk with j = k−k mod n
n

+ 1 and i = k

mod n which is the remainder after division by n.

From here, we can define new functions:

F ∗ := Φ ◦ F : R → R
nn, ε 7→ F ∗(ε) = Φ(F (ε)) = f(ε),

W ∗ := W ◦Φ−1 : Rnn → R, f 7→ W ∗(f) = W (Φ−1(f)).

Consequently, we have that

W ∗ ◦ F ∗ = W ◦Φ−1 ◦Φ ◦ F = W ◦ F,

so we calculate

d

dε

(
W ◦ F

)
(ε) =

d

dε

(
W ∗ ◦ F ∗

)
(ε) = D(W ∗)(f(ε)) ·

(
d

dε
F ∗(ε)

)

=

n2∑

k=1

∂W ∗

∂fk
(f(ε))

dfk(ε)

dε
=

n∑

i=1

n∑

j=1

∂W

∂Fij
(F (ε))

dFij(ε)

dε

= WF (F (ε)) :

(
d

dε
F (ε)

)
.

The second to last step is clear with Φ described as a labeling. So the derivative
of
(
W ◦ F

)
(ε) with respect to ε is given by the formula

d

dε

(
W ◦ F

)
(ε) = WF (F (ε)) :

(
d

dε
F (ε)

)
.

A.3 Derivative of the Determinant

Let det : R
n×n → R be the determinant defined on invertible matrices A ∈

GL(n,R) ⊂ R
n×n. We calculate the derivative of the determinant detA with

respect to the matrix A. This we denote by ∂(detA)
∂A

.
At first, we use the Laplace expansion for the determinant along the j-th column
[Brö04, Chapter III, (2.6)]:

detA =

n∑

i=1

(−1)i+jaij detAij ,

where aij is the matrix element at position ij and Aij is the (n − 1) × (n − 1)-
matrix which results from A by removing the i-th row and j-th column.
From here we take the derivative of the determinant with respect to the element
akj. Since detAij does not depend on akj for all k = 1, . . . , n (since the j-th
column is removed), we obtain

∂

∂akj
detA =

∂

∂akj

n∑

i=1

(−1)i+jaij detAij

=

n∑

i=1

(−1)i+jδik detAij = (−1)k+j detAkj,

58



where δik is the Kronecker delta. By definition of the adjugate matrix adj(A)
corresponding to A [Brö04, Chapter III, (3.3)], we have that

∂

∂akj
detA = (−1)k+j detAkj =: adj(A)jk,

hence,

∂(detA)

∂A
=

(
∂

∂akj
detA

)

kj

= (adj(A)jk)kj = adj(A)T .

Finally, by Cramer’s rule [Brö04, Chapter III, (3.4)], we obtain

∂(detA)

∂A
= adj(A)T = A−T detA.

A.4 Integration by Parts for the Matrix Double-Dot

Product

Let b(x) ∈ R
n on Ω ⊂ R

n be a continuously differentiable vector field with b = 0
on ∂Ω and let A(x) ∈ R

n×n be a continuously differentiable matrix field on Ω.
We consider the scalar field A : ∇xb involving the double-dot product defined in
Appendix A.1 and the integral

∫

Ω
A : ∇xb dx.

For this we derive a formula for integration by parts as follows:
∫

Ω
A : ∇xb dx =

∫

Ω

∑

i,j

Aij(∇xb)ij dx

=
∑

i,j

∫

Ω
Aij∇jbi dx

=
∑

i,j

(
−

∫

Ω
(∇jAij)bi dx

)
= −

∫

Ω
(∇x ·A) · b dx,

which follows by integration by parts for real valued functions [Eva10] and Defi-
nition 5 on the divergence of a matrix field.

A.5 Derivative of an Inverse Matrix Field

For ε0 > 0 let F : (−ε0, ε0) → GL(n,R) ⊂ R
n×n, ε 7→ F (ε) be a differentiable

function with values in the invertible matrices and defined on an interval in the
reals. We calculate the derivative

d

dε

∣∣∣∣
ε=0

F (ε)−1.
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To this end, we use that for any ε the identity I = F (ε)F (ε)−1 holds. Conse-
quently, by the chain rule

0 =
d

dε

∣∣∣∣
ε=0

I =
d

dε

∣∣∣∣
ε=0

(
F (ε)F (ε)−1

)

=

(
d

dε

∣∣∣∣
ε=0

F (ε)

)
F (0)−1 + F (0)

(
d

dε

∣∣∣∣
ε=0

F (ε)−1

)
.

Thus, we obtain for the derivative of the inverse

d

dε

∣∣∣∣
ε=0

F (ε)−1 = −F (0)−1

(
d

dε

∣∣∣∣
ε=0

F (ε)

)
F (0)−1.
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aus dem Englischen von T. Tremmel, Hochschultext. Berlin-
Heidelberg-New York: Springer-Verlag, 1979.
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