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Johann Böhm1,2,3,4,5, Nasim Vasli1,2,3,4,5, Marie Maurer6,7, Belinda Cowling1,2,3,4,5, G. Diane Shelton8,

Wolfram Kress9, Anne Toussaint1,2,3,4,5, Ivana Prokic1,2,3,4,5, Ulrike Schara10, Thomas James Anderson11,

Joachim Weis12, Laurent Tiret6,7, Jocelyn Laporte1,2,3,4,5*
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Abstract

Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous
BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a
mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation
of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function
of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and
characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with
rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1
exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA
from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to
promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses
of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in
membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the
muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy,
and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model
available for preclinical trials of potential therapies.
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Introduction

Amphiphysin 2 is one of the key factors in muscular membrane

remodeling. The gene, BIN1, has recently been associated with

two different muscle disorders: centronuclear myopathy (CNM,

MIM #255200) [1] and myotonic dystrophy (DM, MIM

#160900 and #602668) [2]. However, the muscle-specific role

of the ubiquitous protein amphiphysin 2 and the pathological

mechanisms underlying the muscle disorders are not well under-

stood. This is mainly due to the lack of faithful animal models.

Centronuclear myopathies are characterized by a generalized

muscle weakness, atrophy, predominance of type I fibers, and

aberrant positioning of nuclei and mitochondria [3]. The different

genetic forms are not or are only moderately progressive. The X-

linked and dominant CNM forms result from mutations in the

phosphoinositide phosphatase myotubularin (MTM1) and the

large GTPase dynamin 2 (DNM2), respectively [4,5]. The

autosomal recessive form (ARCNM) is caused by mutations in

BIN1, probably involving a partial loss-of-function as the protein

level was found to be normal in previously described patients [1].

Amphiphysin 2, encoded by BIN1, contains a N-terminal

amphipathic helix, a BAR (Bin/Amphiphysin/Rvs) domain, able

to sense and maintain membrane curvature, a Myc-binding

domain and a SH3 domain, both implicated in protein-protein

interactions [6,7,8]. There are at least 12 different isoforms,

mainly differing by the presence or absence of a phosphoinositide-

binding domain and a clathrin-binding domain encoded by exon

11 and exons 13–16, respectively [9,10]. The clathrin-binding
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domain is present in the brain isoforms, while the phosphoino-

sitide-binding (PI) domain is found almost exclusively in skeletal

muscle isoforms [10,11,12]. Sequencing of cDNA demonstrated

that all BIN1 skeletal muscle isoforms contain exon 11 [12]. All

ARCNM mutations described to date are in ubiquitously

expressed exons [1,13,14,15], raising the question about the

molecular basis of the muscle-specificity of the disease. The BAR

domain mutations strongly decreased the amphiphysin 2 mem-

brane tubulating properties when expressed in cultured cells, while

SH3 truncating mutations were shown to impair the binding and

recruitment of dynamin 2 [1].

Mis-splicing of the BIN1 muscle-specific exon 11 was reported

in different forms of myotonic dystrophy (DM) [2]. DM is one of

the most common muscular dystrophies in neonates and adults,

and results from the expression of mutant RNAs with expanded

CUG or CCUG repeats leading to the sequestration of splicing

factors and subsequent defects in RNA splicing. Splicing

alterations of the muscle chloride channel CLCN1 are suggested

to be responsible for the myotonia, whereas aberrant splicing of

the insulin receptor INSR gene is thought to cause insulin

resistance in DM patients. Complete or partial skipping of BIN1

exon 11 in congenital and adult DM was shown to involve

structural T-tubule abnormalities and subsequently muscle weak-

ness [2]. However, there are numerous splicing defects in DM. It is

therefore challenging to assess the exact contribution of BIN1 exon

11 skipping to the DM phenotype, even though severe hypotonia,

respiratory failure and histopathological features such as fiber

hypotrophy and centrally located nuclei in the congenital forms of

DM show intriguing similarities to CNM.

Amphiphysins are key regulators of membrane curvature and

trafficking [16]. They can sense membrane curvature and

presumably promote the curvature and fission of membranes

[17]. Membrane binding occurs via BAR domain dimers,

presenting a positively charged concave site that interacts with

the negative membrane charges [17]. Amphiphysins also bind and

recruit other regulators of endocytosis to sites of plasma membrane

inward budding [18]. Amphiphysin 1 expression is restricted to

neuronal tissues and the protein regulates synaptic vesicle recycling

in the brain [19]. Amphiphysin 2 is highly expressed in adult

striated muscle and its expression increases during muscle cell

maturation [10,11,20,21]. The polybasic residues encoded by

BIN1 exon 11 are required for amphiphysin 2-induced membrane

tubulation when exogenously expressed in cultured cells [1,22]. In

skeletal muscle, amphiphysin 2 is localized at the T-tubules, which

are deep sarcolemmal invaginations enabling excitation-contrac-

tion coupling [11], i.e. the process converting an electrical stimulus

into mechanical muscle work. This specific localization, together

with the membrane tubulation properties of the muscle-specific

isoform containing the PI domain, called iso8 or M-amphiphysin,

has led to the suggestion that amphiphysin 2 is implicated in T-

tubule biogenesis [22]. This is sustained by defects in the

localization of nascent T-tubule markers such as caveolin 3

following BIN1 downregulation in cultured cells [23], and by the

abnormal T-tubule structure seen in drosophila with null mutations

in amph, the unique ortholog of mammalian amphiphysins 1 and 2

[24]. While faithful animal models were previously characterized

for the MTM1 and DNM2 related CNM forms [25], the perinatal

lethality of Bin1-null mice precludes the analysis of the role of

amphiphysin 2 in skeletal muscle [26]. Therefore, critical questions

concerning the muscle-specific function of amphiphysin 2 in

mammals and the pathological mechanism of BIN1-related CNM

remain unanswered. The lack of a faithful animal model for

autosomal recessive centronuclear myopathy is a hurdle for a

better comprehension of the pathological mechanisms and for the

development of therapeutic approaches.

In this study, we identified and characterized the first human

BIN1 mutation affecting the muscle-specific PI domain. We also

identified a novel spontaneous canine model reproducing the

human pathology and allowing investigations on the physiological

role of amphiphysin 2 in skeletal muscle after birth. Characteriza-

tion of the dog model revealed an important role for amphiphysin 2

in triad structure, and we provide the evidence for a physiological

function of the membrane-deforming properties of amphiphysin 2

and its alternative splicing-dependent activity. Our data support

the hypothesis that the alteration of the muscle-specific function of

amphiphysin 2 on membrane remodeling is a common patho-

mechanism underlying several canine and human myopathies.

Results

BIN1 exon 11 splice mutation in patients with rapidly
progressive centronuclear myopathy

To identify BIN1 mutations affecting its function in skeletal

muscle, we sequenced the muscle-specific exon 11 and the

adjacent splice-relevant intronic regions in a cohort of 84 patients

with various forms of centronuclear myopathy and without

mutations in MTM1, DNM2, or in the other BIN1 exons. We

identified a homozygous BIN1 exon 11 splice acceptor mutation

(IVS10-1G.A) in two affected members from a consanguineous

family from Turkey (Figure 1A and 1B). DNA was not available

for the third affected member, who is expected to carry the same

homozygous BIN1 mutation as her monozygotic twin sister. The

parents are healthy and do not present clinical signs of a muscle

disorder. They are first-degree cousins and were found to be

heterozygous for the BIN1 exon 11 splice acceptor mutation,

confirming autosomal recessive inheritance of the disease. The

mutation was not found in unaffected individuals from different

origins, including 37 DNAs from an ethnically matched control

population, and is not listed in the SNP databases as dbSNP, 1000

genomes, or the NHLBI exome variant server.

Patients 1 and 2 are dizygotic twins. Pregnancy and birth, as

well as motor and speech development were normal. General

muscle weakness was diagnosed at 3.5 years. Hypotonia, muscle

weakness (predominantly of the lower limbs), respiratory distress

Author Summary

The intracellular organization of muscle fibers relies on a
complex membrane system important for muscle struc-
tural organization, maintenance, contraction, and resis-
tance to stress. Amphiphysin 2, encoded by BIN1, plays a
central role in membrane sensing and remodelling and is
involved in intracellular membrane trafficking in different
cell types. The ubiquitously expressed BIN1, altered in
centronuclear myopathy (CNM) and myotonic dystrophy
(DM), possesses a muscle-specific exon coding for a
phosphoinositide binding domain. We identified splice
mutations affecting the muscle-specific BIN1 isoform in
humans and dogs presenting a clinically and histopatho-
logically comparable highly progressive centronuclear
myopathy. Our functional and ultrastructural data empha-
size the importance of amphiphysin 2 in membrane remo-
deling and suggest that the defective maintenance of the
triad structure is a primary cause for the muscle weakness.
The canine Inherited Myopathy of Great Danes is the first
faithful mammalian model for investigating other potential
pathological mechanisms underlying centronuclear myop-
athy and for testing therapeutic approaches.

BIN1 Muscle-Specific Defects in Myopathies
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(VC 50%) and loss of motor skills were rapidly progressive and the

twins died from acute pneumonia involving cardiac failure at age 5

and 7, respectively. Patient 3 is the younger brother, and as for his

sisters, pregnancy, birth, motor and speech development were

normal. Age of onset was 3.5 years and the myopathy was highly

progressive, contrasting the slow progression of muscle weakness in

the reported CNM cases with BIN1 mutations in ubiquitous exons

[1,13,14,15]. Patient 3 presented with predominant proximal

muscle weakness of the lower limbs requiring a wheelchair since

the age of 5 years, facial weakness, but no respiratory distress. Eye

movement defects, as seen in the majority of the MTM1, DNM2

and BIN1 patients, were not noted. Deep tendon reflexes were absent

and the patient had progressive contractures in knees and ankles.

Electrophysiological evaluation was normal or showed only unspe-

cific myopathic changes, with normal nerve conduction velocity.

Cardiac defects were not noted and CK levels were normal. Patient

3 is now 9 years old and presented at his last medical exam in

April 2012 with low MRC grades for both upper and lower limbs.

Impact of the human BIN1 mutation on splicing
The BIN1 IVS10-1G.A variation changes the AG acceptor

splice site into AA, and is predicted to impair exon 11 splicing by

various algorithms. The wild-type acceptor site was recognized by

NNSPLICE (score 0.84) and Human Splice Finder (88.5), while no

acceptor splice site was predicted in the mutated sequence. To

confirm an impact on exon 11 splicing, we performed RT-PCR

after RNA isolation from a muscle biopsy of patient 1, amplified a

fragment encompassing exons 10 to 12, and obtained a shorter

product compared to the control (Figure 1C). To analyze the

transcript(s), we cloned the PCR-products and sequenced the

resulting clones. As we and others previously reported, the skeletal

muscle BIN1 isoforms contain exon 11, but lack exons 7 and 13 to

16. Exon 17 can be either present or absent, corresponding to

isoform 8 or M-amphiphysin [10,11,12]. Among the 30 analyzed

clones, only a single clone contained exon 11. Twenty-nine clones

did not contain exon 11 and directly combined exon 10 with exon

12, demonstrating a major skipping of the in-frame exon 11 in the

patient muscle (Figure 1D). The impact of the mutation on the

amphiphysin 2 protein level in skeletal muscle was investigated by

Western blot (Figure 1E). Using an anti-PI domain antibody, we

detected several bands in the control as previously reported [1],

most probably reflecting post-translational modifications of the

different isoforms containing exon 11. In the patient muscle, we

found a significant decrease of the level of the amphiphysin 2

Figure 1. Human BIN1 mutation of the exon 11 acceptor splice site and impact on splicing. (A) Pedigree and (B) Chromatopherogram.
Patients 1 and 3 are homozygous for the IVS10-1G.A mutation, while both parents are heterozygous carriers. DNA from patient 2 was not available.
(C) RT-PCR on mRNA isolated from muscle using primers encompassing BIN1 exons 10–12 demonstrated amplification of a shorter product in patient
1 compared to a healthy control. For the negative control (Ctrl-) PCR was performed without cDNA. (D) Sequencing of the BIN1 cDNA from muscle
demonstrated skipping of BIN1 exon 11 in patient 1. (E) Western blot analysis of patient muscle extracts detected a strong reduction of the
amphiphysin 2 isoforms containing the exon 11 encoded PI-binding domain. The level of amphiphysin 2 detected with an anti-SH3 antibody was
comparable between patient 1 and control.
doi:10.1371/journal.pgen.1003430.g001

BIN1 Muscle-Specific Defects in Myopathies
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isoform containing the PI domain, confirming exon 11 skipping in

most BIN1 muscle transcripts. The amphiphysin levels detected

with the anti-SH3 domain antibody were similar in patient 1 and

control. Together with the genetic data, we conclude that the

rapidly progressive CNM form results from a splice mutation

involving the skipping of the muscle-specific exon 11.

BIN1 exon 11 is required for membrane tubulation in
muscle cells

Previous publications demonstrated the importance of the

amphiphysin 2 PI domain in PtdIns(4,5)P2 binding and membrane

tubulation [1,2,22]. We transfected C2C12 cells with BIN1 constructs

including or excluding exon 11, and we induced the differentiation

of the murine myoblasts into myotubes. Myotubes expressing the

exon 11 containing isoform showed tubulation [22,27], whereas

the isoform without exon 11 did not induce this effect (Figure 2).

Quantification revealed statistical significance. Immunolabelling

of actin, caveolin-3 and RYR1 did not reveal obvious differences

between the differentially transfected myotubes (data not shown),

suggesting that the amphiphysin 2 PI domain is important for

late muscle development or maintenance, rather than for early

muscle development. This hypothesis is supported by the fact that

the patients were unaffected at birth and during early childhood.

BIN1 exon 11 splice mutation causes the canine Inherited
Myopathy of Great Danes (IMGD)

The perinatal lethality of Bin1-null mice precludes investigations

on the role of amphiphysin 2 in skeletal muscle maintenance [26].

To identify and characterize an animal model for BIN1-related

CNM, we analyzed canine pedigrees with molecularly unsolved

myopathies. The canine Inherited Myopathy of Great Danes

(IMGD) is characterized by rapidly progressive muscle atrophy

and exercise intolerance with an age of onset of about 6 months.

Histological examinations of muscle biopsies from autosomal

recessive cases from the UK, Canada and Australia revealed

increased nuclear internalization and centralization [28,29,30],

consistent with centronuclear myopathy. We excluded mutations

in MTM1 [31] and PTPLA [32] before sequencing the coding

regions and intron/exon boundaries of the canine BIN1 gene

(XM_540990.3). We identified a homozygous AG to GG substitu-

tion of the BIN1 exon 11 acceptor splice site in five dogs from

Canada, US and UK (IVS10-2A.G; Figures 3A and 3B). CK

values for the dogs were normal or slightly elevated. Pedigree

reconstruction revealed a distant relationship between the US and

one UK dog (Figure 3C) and a previous publication reported a

common ancestor for all IMGD dogs in the UK [29]. The BIN1

IVS10-2A.G mutation was not found in 112 healthy Great

Danes and in 35 dogs from 12 other breeds, strongly suggesting its

pathogenicity.

Impact of the canine BIN1 mutation on exon 11 splicing
Like the human BIN1 IVS10-1G.A mutation, the canine BIN1

IVS10-2A.G variation affects the exon 11 acceptor splice site. To

assess its impact on splicing, we performed RT-PCR on RNA

isolated from skeletal muscle biopsies and found a strong reduction

of the BIN1 RNA level compared to healthy controls and

compared to a control gene (MTM1, Figure 3D). We however

detected a faint signal of expected size and cloned the amplicon.

All three clones contained exon 11 with 27 additional upstream

nucleotides, encoding the amino acid sequence ASASRPFPQ

(Figure 3E). This in-frame extension results from the disposition of

a weak cryptic 59 acceptor site. The intronic sequence upstream of

exon 11 slightly differs between human and dog, possibly

explaining the cryptic splicing in dogs versus exon skipping in

human patients (Figure 3F). To confirm the impact of the splice

mutation on the amphiphysin 2 protein level, canine muscle

extracts were probed with an anti-PI domain antibody on Western

blot. Compared to the healthy control, amphiphysin 2 was

significantly reduced in the affected dog (Figure 3G). Using an

anti-SH3 antibody we detected a strong reduction of all skeletal

muscle amphiphysin isoforms (Figure S1) in accordance with the

RT-PCR data. We conclude that the canine Inherited Myopathy

of Great Danes results from a BIN1 exon 11 splice mutation,

provoking a strong reduction of the exon 11/PI domain-

containing RNA and protein.

Similar histopathology in affected humans and dogs
Vastus lateralis muscle biopsies were performed for patient 1

as well as for patient 3 at the age of 3.5 years. H&E staining

revealed prominent nuclear centralization (.60%, arrow), fiber

atrophy and endomysial fibrosis (Figure 4), consistent with centro-

nuclear myopathy. Similarly, H&E staining of biceps femoris

muscle biopsies from affected dogs revealed nuclear internalization

(.40%) and fiber atrophy. The central areas devoid of staining

reflect perinuclear regions lacking myofibrils. Of note, the trans-

verse muscle sections of patients and affected dogs showed an

unusual lobulated appearance with indentations of the sarcolemma

(arrowheads). NADH staining of human and canine sections

revealed dense central areas in most fibers and ‘‘spoke of wheel’’

appearance in 5% of the fibers. ATPase staining showed no or

only a slight predominance of type I muscle fibers as compared to

the age matched controls. Gomori trichrome staining did not

reveal any further abnormalities (data not shown). Taken together,

human and canine histopathologies were comparable.

Common ultrastructural and membrane defects in
affected patients and dogs

To uncover the pathological defects underlying this highly

progressive form of centronuclear myopathy and to validate the

canine model, we analyzed human and dog muscle biopsies by

electron microscopy. Ultrastructural analysis of the human muscle

biopsy revealed centralized nuclei surrounded by an area devoid of

myofibrils and containing glycogen granules and other organelles

(Figure 5A, Figure S2), as commonly seen in MTM1, DNM2 and

BIN1-related CNM. Myofibrillar disintegration with occasional Z-

band streaming (arrow, Figure 5A) was seen in the adjacent

sarcomeres. Triad structures were found to be aberrant and we

observed frequent enlarged structures, most probably originating

from the sarcoplasmic reticulum (arrow, Figure 5D). We also

noted other membrane alterations, including accumulations of

membranes and tubules, vacuoles containing whorled membranes

(arrow, Figure 5B), as well as a high number of myelin-like

membranous structures suggestive of autophagosomes (arrow,

Figure 5C). Likewise, ultrastructural analysis of muscle biopsies

from an affected Great Dane dog showed nuclear internalization,

mitochondrial accumulations around the internalized nuclei and

myofibrillar disarray (Figure 5E, Figure S3). We furthermore

found membranous whorls (arrow, Figure 5F) as reported for the

X-linked CNM Labrador retriever model with MTM1 mutation

[31], deep membrane invaginations (arrowhead, Figure 5F),

lipofuscin granules (arrow, Figure 5G), and abnormal triads in

almost all fibers (arrow, Figure 5H). Sarcolemmal invaginations

contained basement membranes and often pointed towards

centralized nuclei. Taken together and considering the histological

analysis described above, histopathology of IMGD dogs and

human patients appear strikingly similar, emphasizing common

alterations of membrane structures.

BIN1 Muscle-Specific Defects in Myopathies
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Amphiphysin 2 is present but altered in affected human
and dog muscles

To further characterize the pathophysiology of the rapidly

progressive human CNM and canine IMGD, we performed

immunolocalization experiments on muscle biopsies. Using the

R3062 antibody recognizing most amphiphysin isoforms or the PI-

domain specific R2405 antibody, signals were detected as an

intracellular network in transverse sections of human and canine

Figure 2. Essential role of BIN1 exon 11 in membrane tubulation in myotubes. C2C12 myotubes overexpressing BIN1 isoform 8 (including
exon 11) showed strong tubulation, whereas BIN1 isoform 9 (without exon 11) does not induce membrane tubulation 5 days post differentiation.
Below: quantification of three independent experiments (.30 myotubes each) demonstrated that these findings were significant (p,0.01).
doi:10.1371/journal.pgen.1003430.g002

BIN1 Muscle-Specific Defects in Myopathies
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Figure 3. The canine Inherited Myopathy of Great Danes results from a BIN1 mutation in the exon 11 acceptor splice site. (A) Picture
of an affected 3-year-old Great Dane dog. (B) Chromatopherograms and sequence alignment showing the BIN1 IVS10-2A.G mutation in 5 affected
dogs. (C) Pedigree showing the distant relationship of two affected Great Dane dogs from the UK and US. (D) RT-PCR on skeletal muscle RNA showed
a strong reduction of the BIN1 RNA level in the IMGD dog compared to the healthy canine control. Amplification of a control gene (MTM1) was
normal. M = Marker (E) Sequencing of the residual cDNA revealed the presence of 27 additional nucleotides due to the use of a weak cryptic 59 splice
acceptor site. (F) Sequence alignment of human and canine BIN1 intron/exon boundary of exon 11. (G) Western blot using an anti-PI domain antibody
showed a strong decrease of the amphiphysin 2 protein level.
doi:10.1371/journal.pgen.1003430.g003

BIN1 Muscle-Specific Defects in Myopathies
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controls (Figure 6). Signals were also detected in sections of

muscles from patient and affected dog, reflecting the presence of

different amphiphysin 2 isoforms as shown by Western blot.

Despite the decrease of BIN1 RNA in affected dogs, the remaining

mis-spliced in-frame transcripts can explain the detection of

amphiphysin 2 on muscle sections, especially because immuno-

histochemistry is not quantitative. The amphiphysin 2 network

appeared however abnormal in patient and IMGD sections. In

some fibers we noted central areas without any signal, while in

other fibers accumulations around centralized nuclei were

observed (arrows). To determine whether these anomalies were

specific for the BIN1 exon 11 splice mutation or rather a general

BIN1-related CNM feature, we analyzed a muscle biopsy from a

patient with the previously reported BIN1 p.Asp151Asn mutation

and a classical ARCNM phenotype [1]. We observed similar

accumulations of amphiphysin 2 (Figure 6A), suggesting that

different BIN1 mutations in humans and dogs lead to similar

amphiphysin 2 mis-localization in muscle.

Alteration of triad and membrane trafficking regulators
Amphiphysin 2 has been proposed to be implicated in T-tubule

biogenesis, but the exact link has barely been documented in

mammalian skeletal muscle [22]. We therefore examined the

skeletal muscle triad using antibodies against the junctional

sarcoplasmic calcium channel RYR1 and the T-tubule marker

DHPR in human and dog (Figure 7). Both proteins were profoundly

altered, showing focal accumulations or central areas without signal

in the fibers. Compared to the control longitudinal sections, the

transversal orientation of RYR1-labeled triads was lost in patient

and canine muscle. Similarly, the longitudinal sarcoplasmic calcium

pump SERCA1 was mislocalized in sections from affected dogs.

We next wanted to know whether the aberrant triad structure

was concurrent with more generalized membrane defects. Dysferlin

and caveolin 3, key regulators of membrane repair and traffick-

ing [33,34], were found to be mainly located at the sarcolemma

in control muscle sections. In contrast, transverse sections of

patient 1 and of an affected Great Dane dog revealed striking

intracellular accumulations of dysferlin, mainly around central

nuclei (Figure 7). Labeling of the sarcolemmal markers dysferlin,

caveolin 3 and dystrophin confirmed the presence of numerous

fibers with unusual lobulated and indented sarcolemma,

representing deep sarcolemmal invaginations pointing towards

the center of the fibers (arrows, Figure 7). Taken together, our

data correlate the highly progressive human CNM and canine

IMGD with general membrane alterations at the triad, the

sarcolemma and within the fibers. However, these defects did

not reflect a general disorganization of the sarcomere, as alpha-

actinin labeling appeared largely normal (not shown). Staining

of developmental myosin revealed no difference between

affected and control dogs, indicating that there is no excessive

fiber regeneration in IMGD dogs (Figure S3).

Altered myotubularin localization in BIN1-mutated
canine muscles

As MTM1 is mutated in X-linked human and canine CNM, we

investigated the localization of myotubularin in muscle sections of

IMGD dogs. Myotubularin formed an intracellular network in

control sections and the signal was stronger in type II fibers labeled

with the SERCA1 antibody (Figure 8). In both analyzed IMGD

muscles, myotubularin was mainly located as concentric strands

pointing to the center in both type I and type II fibers. We

conclude that altered splicing of BIN1 has a strong impact on

Figure 4. Histopathological comparison of muscles from human patient and IMGD dog. Human and canine muscle biopsy sections
revealed nuclear centralization (arrows), fiber atrophy and lobulation as well as sarcolemmal invaginations (arrowheads) on H&E staining. NADH-TR
staining demonstrated central dense areas in many fibers and ‘‘spoke of wheel’’ appearance in a few fibers (white arrow). ATPase staining (pH 4.3)
revealed no or only a slight predominance of type I fibers compared to the age-matched controls.
doi:10.1371/journal.pgen.1003430.g004

BIN1 Muscle-Specific Defects in Myopathies
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myotubularin localization in muscle, revealing a potential link

between IMGD and X-linked CNM.

Discussion

In this study we identified and characterized BIN1 mutations

affecting the splicing of the muscle-specific exon 11, resulting in a

rapidly progressing myopathy in humans and dogs. The IMGD

dog is the first faithful mammalian model for BIN1-related

centronuclear myopathy and particularly for the highly progres-

sive form, and is the only characterized mammalian model

available for preclinical trials of potential therapies for this severe

congenital myopathy. Our data provide strong evidence for

muscle-specific functions of amphiphysin 2 in membrane struc-

Figure 5. Common ultrastructural and membrane defects in affected human and dog. (A–D) Electron microscopic analysis of a patient
biopsy showing a centralized nucleus surrounded by organelles and mild sarcomeric disarray (arrow, A), accumulations of membranes and vacuoles
containing whorled membranes (arrow, B), autophagic vacuoles containing myelin-like material (arrow, C), and widened tubules at the triads (arrow,
D). The inset shows normal triads in an age-matched biopsy. (E–H) Ultrastructural analysis of a IMGD dog biopsy revealed central nuclei surrounded
by mitochondrial accumulations (E), membranous whorls (arrow, F), deep membrane invaginations (arrowhead, F), lipofuscin granules (arrow, G), and
abnormal triads (arrow, H). The inserted picture shows a normal triad in an age-matched canine control.
doi:10.1371/journal.pgen.1003430.g005
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Figure 6. Amphiphysin 2 is present but altered in muscles from affected humans and dogs. (A) Amphiphysin 2 localization in control
(left), patient 1 (middle) and a CNM patient with the p.Asp151Asn mutation (right). Arrows indicate abnormal accumulations of amphiphysin 2
around centralized nuclei in both patient muscles. (B) Abnormal localization of amphiphysin 2 on transversal and longitudinal muscle sections from
an IMGD dog compared to a control. The secondary without the primary antibody was applied on control canine sections to withdraw non-specific
background staining.
doi:10.1371/journal.pgen.1003430.g006
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Figure 7. Alteration of triad components and proteins regulating membrane trafficking. Immunolocalization on longitudinal and
transversal sections from patients and affected dogs revealed an abnormal pattern of the junctional sarcoplasmic calcium channel RYR1, the T-tubule
marker DHPR and the longitudinal sarcoplasmic calcium pump SERCA1. Especially RYR1 was found to accumulate around internalized nuclei.
Intracellular dysferlin signals were detected in patients and affected dogs, but not in the age-matched controls. Labeling of the sarcolemmal markers
caveolin 3 and dystrophin demonstrated prominent lobulation and deep indentations of the plasma membrane in patients and affected dogs on
transversal and longitudinal sections (arrows).
doi:10.1371/journal.pgen.1003430.g007
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tural organization and remodelling and allow novel insights into

the overlapping pathogenesis of centronuclear myopathy and

myotonic dystrophy. A schematic representation of the amphi-

physin 2 protein domains and of the position of the mutations and

splicing alterations causing classical autosomal recessive centro-

nuclear myopathy, rapidly progressive human CNM and canine

IMGD as well as myotonic dystrophy is shown in Figure 9.

BIN1 mutations in classical and highly progressive
centronuclear myopathies

Classical BIN1-related ARCNM has been described with

neonatal or childhood onset, hypotonia and ptosis and all

mutations were found in ubiquitously expressed exons

[1,13,14,15]. The muscle weakness was mildly to moderately

progressive, and some patients could still walk at older age. In

contrast, our patients with a splice mutation affecting the muscle-

specific exon 11 showed a rapid disease progression involving

strong care-dependence and leading to death within a few years,

despite normal motor development and disease-onset not before

3.5 years. The histopathological findings of our patients and of the

previously reported ARCNM cases partially overlap, including

atrophy, prominent nuclear internalization and central dense

areas upon NADH-TR staining of muscle sections. However,

there is no evidence for type I fiber predominance in the muscle

biopsies of our patients. Previous RT-PCR experiments demon-

strated a progressive integration of exon 11 in BIN1 mRNA during

human skeletal muscle development [2]. We therefore hypothesize

that the muscle-specific exon 11 plays a major role in muscle

maintenance, rather than in early muscle development. This is in

accordance with the highly progressive phenotype of humans and

dogs with a disease onset several months or years after birth.

Consistently, we detected amphiphysin 2 in muscle tissue, but

RNA analysis revealed major skipping of BIN1 exon 11. This

suggests that the patients mainly express an embryonic BIN1

isoform, which might not be able to assume the function of the

adult BIN1 isoform, possibly explaining the more progressive

phenotype compared to patients with BIN1 mutations in the

ubiquitously expressed exons.

The canine Inherited Myopathy of Great Danes is a
faithful model for BIN1-related centronuclear myopathy

The characterization of the pathological mechanisms leading to

BIN1-related CNM and the development of potential therapeutic

approaches is obviated by the lack of a faithful animal model. Bin1-

Figure 8. Myotubularin is mis-localized in IMGD muscle. In muscle sections from control dogs, myotubularin is predominantly expressed in
type II fibers expressing SERCA1. In affected IMGD dogs, massive myotubularin accumulations formed a concentric network around the fiber center.
doi:10.1371/journal.pgen.1003430.g008

Figure 9. Schematic representation of the amphiphysin 2 domains and BIN1 alterations in different myopathies. Schematic
representation of the amphiphysin 2 protein domains and position of the known mutations causing autosomal recessive centronuclear myopathy,
the new splice mutations resulting in rapidly progressive centronuclear myopathy and canine Inherited Myopathy of Great Danes. Myotonic
dystrophy induces mis-splicing of BIN1 exon 11. Nomenclature is based on isoform 1 (NM_139343).
doi:10.1371/journal.pgen.1003430.g009
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null mice are perinatally lethal [26], so that a comprehensive

analysis of skeletal muscle alterations during disease development

is not possible. We sought for dog breeds with molecularly

unsolved congenital myopathies and we identified the canine

Inherited Myopathy of Great Danes as a disease model repro-

ducing the histological and physiological defects observed in BIN1-

related CNM patients. IMGD has been reported for cases in

Canada, Australia and UK and is characterized by generalized

muscle atrophy, exercise intolerance, exercise-induced tremor and

muscle wasting [29]. The disease typically starts before 10 months

of age, is highly progressive, and most of the affected dogs are

euthanized before 18 months of age due to severe debilitating

muscle weakness. Histological examinations revealed internalized

or central nuclei without evidence of inflammation, disruption of

the sarcomeric architecture with central fiber areas devoid of

myofibrils, and central accumulations of mitochondria and

glycogen granules ([28,29,30] and our data). In addition, type I

fiber predominance in combination with an increased expression

of genes implicated in the slow-oxidative metabolism was described

[35]. In this study we demonstrate that IMGD and progressive

CNM have a comparable etiopathology and both conditions result

from mutations of the AG acceptor splice site of the BIN1 muscle-

specific exon 11. The histopathology and the cellular organization

defects of the human and canine muscle disorders are almost

identical, we therefore consider IMGD as a faithful mammalian

model for BIN1-related centronuclear myopathy.

Veterinary implications
Some dogs of our IMGD cohort were found to be negative for

BIN1 mutations, suggesting that IMGD encompasses several

disorders with similar clinical and overlapping histopathological

features. The proven relationship of two affected Great Dane dogs

demonstrates a common origin of the BIN1 exon 11 splice

mutation, and it is likely that all five affected dogs described here

can be traced back to a common ancestor. As the muscle disorder

is inherited as a recessive trait, and as canine pedigrees are

generally highly inbred, it is likely that the mutation can be found

in Great Dane dog populations from all over the world, as recently

demonstrated for another autosomal recessive CNM form in

Labrador retrievers [36]. It is therefore of veterinary medical

interest to sequence BIN1 exon 11 in Great Dane dogs. Also,

veterinarians and veterinary pathologists should consider BIN1

mutations as a possible cause of any unexplained progressive

myopathy in dogs, especially when the biopsy displays internal

nuclei and lobulated or indented sarcolemma.

Insights into amphiphysin 2 muscle-specific functions
and pathological mechanisms of centronuclear
myopathy

Detailed immunohistochemical and ultrastructural analyses of

muscles from patients and affected Great Dane dogs revealed

common membrane alterations and abnormal accumulations of

proteins regulating membrane trafficking. Similar findings were

observed on biopsies from patients with DNM2 or MTM1

mutations [12], suggesting that mislocalization of triad proteins

reflects common aberrations in CNM and that the amphiphysin 2

muscle-specific isoform plays an important role in triad formation

and/or maintenance. This is in accordance with the known

biochemical function of amphiphysin 2 and other N-BAR domain

proteins to sense membrane curvature and to potentially induce

curvature through the insertion of an amphipathic helix into the

membrane bilayer. In vitro and cell culture experiments have led

to the suggestion that the exon 11 encoded PI-binding motif is

essential for membrane tubulation in cultured muscle cells [22].

Indeed, Drosophila mutated for amphiphysin, the ortholog of both

amphiphysin 1 and amphiphysin 2, display an abnormal T-tubule

system [24]. T-tubule alterations and muscle weakness were

reproduced in murine Tibialis anterior injected with a U7 small

nuclear RNA construct harboring an antisense sequence promot-

ing BIN1 exon 11 skipping [2]. However, nuclear centralization

and atrophy were not observed, contrasting with the IMGD

model. This difference might be species-related, is possibly due to

a low efficacy of the AAV-U7 method or alternatively to the

examination time point 4 months post injection. As the triad is the

membrane structure controlling excitation-contraction coupling,

this suggests that impaired excitation-contraction coupling and

subsequent calcium homeostasis defects are a primary cause of the

myopathy. Of note, abnormal intracellular calcium release was

observed in isolated murine muscle fibers after BIN1 shRNA-

mediated knock-down [37]. Together with the present character-

ization of the IMGD model, these data indicate that amphiphysin

2 has an important muscle-specific role in triad structural

maintenance, and provide additional evidence that triad modifi-

cations are a common defect in centronuclear myopathies, IMGD

and myotonic dystrophies [2,12].

Triads are not the only membrane compartment affected in

patients and dogs harboring BIN1 exon 11 mutations. We also

noted central accumulations of caveolin 3 and dysferlin, two key

regulators of membrane trafficking in skeletal muscle, numerous

membranous whorls, and a peculiar remodeling of the sarcolem-

ma, manifesting an indented fiber perimeter and invaginations

towards the center of the fibers. Caveolin 3 regulates membrane

tension at the sarcolemma and dysferlin controls membrane

exocytosis in sarcolemmal membrane repair [33,34]. As both

proteins are also present on regenerating T-tubules [38], their

mislocalization resulting from a BIN1 mutation would be in

accordance with defective T-tubule regeneration. Moreover, data

mainly obtained in cultured cells support a key role of

amphiphysins in the formation of endocytic vesicles [16], and a

study in Caenorhabditis elegans suggested a role of amphiphysin in

vesicle recycling [39]. Defects in intracellular signaling resulting

from calcium defects and impaired transport of ion channels and

growth factor might explain the muscle weakness and atrophy in

BIN1-related CNM.

Amphiphysin 2 links several forms of centronuclear
myopathies and myotonic dystrophy

Our findings on the IMGD model uncovered possible links

between BIN1-related and other forms of CNM. Altered triads and

the presence of membranous whorls were reported for MTM1

dog, mouse and zebrafish models as well as for patients with

MTM1 mutations involving protein loss [12,31,40,41,42]. Abnor-

mal triad markers were also reported for MTM1-related and

DNM2-related CNM [12,43]. Dysferlin localization was not

extensively studied in MTM1-CNM but was increased in the

cytoplasm of a mouse model and in patients with DNM2-CNM

[44]. Moreover, we found myotubularin localization was strongly

impaired in IMGD muscles. These findings suggest that

myotubularin and amphiphysin 2 are in the same pathway

regulating membrane remodeling in skeletal muscle and strength-

en the hypothesis of a common pathological mechanism of the X-

linked and the autosomal recessive CNM forms.

Alternative splicing of BIN1 exon 11 is mis-regulated in patients

with myotonic dystrophy [2]. The parallel inclusion of exon 7 was

noted, but its impact has not been assessed yet. Here we report the

first mutation affecting the muscle-specific exon 11 of BIN1 and

having an impact on splicing. The major clinical and histological
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aspects of the patients and IMGD dogs include general muscle

weakness, atrophy and nuclear centralization, consistent with the

muscle phenotype in DM patients. Our data therefore support the

hypothesis that mis-splicing of BIN1 exon 11 partially accounts for

the muscle-specific signs in myotonic dystrophy.

Materials and Methods

Ethics statement
Human sample collection was performed with informed consent

from the patients according to the declaration of Helsinki and

experimentation was performed as part of routine diagnosis. All

dogs were examined with the consent of their owners. Blood and

biopsies were obtained as part of routine clinical procedures for

diagnostic purposes. Cheek cells were collected by owners or

veterinarians using non-invasive swabs. As the data were from

client-owned dogs undergoing normal veterinary exams, there was

no ‘‘animal experiment’’ according to the legal definitions in

Europe and the US. All local regulations related to clinical

procedures were observed. Cryopreserved muscle specimens were

processed and stored at the University of California, San Diego,

under a tissue transfer approval from the institutional Animal Care

and Use Committee.

Molecular genetics
Human Genomic DNA was prepared from peripheral blood by

routine procedures and sequenced for all coding exons and

intron/exon boundaries of MTM1, DNM2, and BIN1 as described

elsewhere [1,4,5]. Patient 1 had a normal CTG repeat length at

the DMPK locus (7 and 13 repeats) and was therefore excluded for

myotonic dystrophy. Control DNAs were from healthy individuals

of Turkish origin.

Dog DNA samples were extracted from cheek cells, venous

blood or muscle biopsy specimens (cryosections or paraffin

embedded tissue) by routine procedures and sequenced for all

coding exons and intron/exon boundaries of canine MTM1 [31],

PTPLA [32] and BIN1 (primer sequences in Table S1). Control

samples were from a world-wide collection of healthy Great Danes

as well as from healthy individuals of 13 other breeds.

RNA studies
RNA was extracted from muscle biopsies by routine proce-

dures and reverse transcribed using the SuperScript III kit

(Invitrogen, Carlsbad, USA). Human and dog amplicons were

cloned into the pGEM-T Easy vector (Promega, Madison, USA)

and transfected into E.coli DH5a cells. Blue/white selection,

repeated twice, resulted in 30 clones for the human cDNA and 3

clones for the canine cDNA. Control dog was an unaffected

Drahthaar (German Wirehaired Pointer). Primer sequences are

listed in Table S1.

Protein studies
Western blot and immunofluorescence were performed using

routine protocols. Biceps femoris and tibialis anterior biopsies from

two affected dogs (14 months and 22 months, respectively) and

from healthy age-matched Golden Retrievers or Belgian Shep-

herds as controls have been used for the analysis. Following

antibodies were used for the study: R2406 (home-made rabbit

anti-BIN1 PI binding domain), R2444 (home-made rabbit anti-

BIN1 SH3 domain), R3062 (home-made rabbit anti-BIN1 exon

12 epitope), R2867 and R2868 (home-made rabbit anti-MTM1),

mouse anti-GAPDH (Merck Millipore, Darmstadt, Germany),

mouse anti-ryanodine receptor 1 (Affinity BioReagents, Golden,

USA), mouse anti-SERCA 1 (Affinity BioReagents, Golden, USA),

rabbit anti-dysferlin (Euromedex, Souffelweyersheim, France),

goat anti-caveolin-3 (Tebu-BIO, Le-Perray-en-Yvelines, France),

rabbit anti-caveolin-3 (Affinity BioReagents, Golden, USA), mouse

anti-DHPR (Affinity BioReagents, Golden, USA), and mouse anti-

dystrophin (Leica Microsystems, Germany). For immunohisto-

fluorescence, transverse cryosections were prepared, fixed and

stained by routine methods. Nuclei were stained with Hoechst or

DAPI (Sigma-Aldrich, St. Louis, USA). Sections were mounted

with slowfade antifade reagent (Invitrogen, Carlsbad, USA) and

viewed using a laser scanning confocal microscope (TCS SP2;

Leica Microsystems, Wetzlar, Germany) or a a Zeiss Axio

Observer Z.1 microscope equipped with a 206, 406or 636 lens

and Axioplan imaging with structured illumination (Carl Zeiss,

Jena, Germany).

Muscle histology
For histochemical analyses, transverse sections of muscle

cryosections (8 mm) of vastus lateralis and biceps femoris muscle

biopsies were stained with hematoxylin-eosin, modified Gomori

trichrome, NADH-TR and myofibrillar ATPase and then assessed

for centralized nuclei, fiber morphology, fiber type distribution,

cores, protein accumulation and cellular infiltrations.

Electron microscopy
Muscle biopsies were processed for electron microscopy as

described previously [45]. Briefly, the tissue was fixed either in 6%

phosphate-buffered glutaraldehyde (human patient) or in 2.5%

paraformaldehyde, 2.5% glutaraldehyde, and 50 mM CaCl2 in

0.1 M cacodylate buffer at pH 7.4 (dog), and post-fixed with 2%

OsO4, 0.8% K3Fe(CN)6 in 0.1 M cacodylate buffer (pH 7.4) for

2 h at 4uC and incubated with 5% uranyl acetate for 2 h at 4uC.

Samples were dehydrated in graded series of ethanol and

embedded in epoxy resin 812. Ultrathin sections (70 nm) were

contrasted with uranyl acetate and lead citrate.

Membrane tubulation assay
Murine C2C12 myoblasts were seeded on coverslips and

transfected at 50–60% confluency using Lipofectamine 2000

(Invitrogen, Carlsbad, USA) either with GFP-BIN1 isoform 8

(including exon 11) or isoform 9 (excluding exon 11, both were a

kind gift from Pietro de Camilli, Howard Hughes Medical

Institute, USA). Cells were differentiated after 24 h by changing

to medium containing 2% horse serum instead of FCS and fixed

and stained after 5 days of differentiation by routine methods.

Nuclei were stained with Hoechst/DAPI (Sigma-Aldrich, St.

Louis, USA) and sections were mounted with slowfade antifade

reagent and viewed using a laser scanning confocal microscope

(TCS SP2; Leica Microsystems, Wetzlar, Germany).

Web resources
1000 genomes - A Deep Catalog of Human Genetic Variation

(URL: http://www.1000genomes.org/)

Database of Single Nucleotide Polymorphisms (dbSNP).

Bethesda (MD): National Center for Biotechnology Information,

National Library of Medicine. (dbSNP Build ID: 134).

(URL: http://www.ncbi.nlm.nih.gov/SNP/)

Exome Variant Server, NHLBI Exome Sequencing Project

(ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/)

Online Mendelian Inheritance in Man (OMIM) (URL: http://

www.omim.org/)

NNsplice: prediction of splice mutations (URL: http://www.

fruitfly.org/seq_tools/splice.html)

Human Splicing finder (URL: http://www.umd.be/HSF/)
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Supporting Information

Figure S1 Western blot of canine muscle extracts using the anti-

SH3 domain antibody. Compared to the control, the main skeletal

muscle amphiphysin 2 isoform is strongly reduced in the IMGD

dog. The protein levels of the other isoforms are also reduced, but

still detectable.

(TIF)

Figure S2 Low-magnitude electron microscopy pictures of

muscles from patient 1 and an affected dog demonstrate moderate

Z-band streaming, mitochondrondrial accumulations and myofi-

brillar disarray.

(TIF)

Figure S3 Dog muscle sections labeled for developmental

myosin. Signals were comparable in affected dog and control,

suggesting that there is no excessive fiber regeneration.

(TIF)

Table S1 Primer sequences.

(XLSX)
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