"Bruchpilot"- Molecular And Functional Characterization Of A Novel Active Zone Protein At The *Drosophila* Synapse

Dissertation zur Erlangung des Naturwissenschaftlichen Doktorgrades der Bayerischen Julias-Maximilians-Universitäte Würzburg

vorgelegt von

Dhananjay Anil Wagh

aus Nashik

Würzburg, 2005

Eingereicht am:

Mitglieder der Promotionskommission:

Vorsitzender: Prof. Dr. U. Scheer

Gutachter : Prof. Dr. E. Buchner

Gutachter: PD Dr. Stephan Wiese

Tag des Promotionskolloquiums:

Doktorurkunde ausgehändigt am:

INDEX

Titel	Page		
Zussamenfassung	III		
Summary			
Chapter 1- Introduction			
1.1 The concept of neurotransmission			
1.2 The synaptic vesicle cycle			
1.2.1 Synaptic Vesicle Pools			
1.3 The molecular architecture of synaptic vesicles	10		
1.3.1 Synaptic Vesicles	10		
1.3.2 Membrane fusion during exocytosis	12		
1.3.3 Ca ²⁺ sensors at the synapse	13		
1.3.4 The Rab3 Cycle	13		
1.3.5 Rab3 Effectors			
1.4 The presynaptic active zone	15		
1.4.1 The structure of Active Zones			
1.4.2 The plasma membrane of the Active Zones	15		
1.4.3 The Cytomatrix Underlying the Plasma Membrane of the Active Zone	16		
1.4.4 The Electron-Dense Projections Extending from the Cytomatrix of			
the Active Zone: Synaptic Ribbons	18		
1.4.5 Active Zone Assembly and the Regulation of Active Zone Density and	20		
spacing	20		
1.4.6 Genetic analysis of invertebrate active zones	21		
1.5 Motivation for investigating the nc82 antigen and identifying novel candidates at			
the invertebrate CAZ	28		
Chapter 2 – Materials and Methods			
2.1. Nucleic acid isolation			
2.1.1 DNA isolation			
2.1.2 RNA isolation			
2.2 Nucleic acid amplification			
2.2.1 PCR			
2.2.2 RT-PCR	36		

2.3 Nucleic acid detection	37		
2.3.1 Agarose gel electrophoresis	37		
2.3.2 Southern blots	38		
2.3.3 Northern blot	40		
2.3.4 Radiolabelling			
2.3.5 Reprobing			
2.4 Cloning	42		
2.4.1 Blunt/cohesive end ligation	42		
2.4.2 TA cloning using TOPO cloning kit	42		
2.5. Protein analysis	44		
2.5.1 SDS-PAGE	44		
2.5.2 Protein staining in the gel	44		
2.5.3 2D-PAGE for the isolation of the nc82 antigen from fly head homogenate	46		
2.6. Protein detection, purification and localization	48		
2.6.1 Western blots	48		
2.6.2 ECL detection	49		
2.6.3. Protein Staining on nitrocellulose membrane	50		
2.6.4 Immunoprecipitation	51		
2.6.5 Immunohistochemistry	52		
2.6.6 Fixes for electron microscopy	53		
2.7 Electro Retinogram (ERG)	54		
2.8 Microinjections and transgenics	55		
2.9 Behavioral assays	56		
2.9.1 Negative geotaxis	56		
2.9.2 Walking behavior	56		
2.9.3 Flight tester (Benzer assay)	57		
2.10 Fly genetics			
Chapter 3- Results			
3.1 Identification of the protein recognized by MAB nc82	60		
3.1.1 MAB nc82 specifically labels pre-synaptic active zones			
3.1.2 MAB nc82 identifies a protein of about 200 kDa on western blots			
3.1.3 MAB nc82 identifies 2 spots at about 200 kDa on a 2D (NEPHGE-PAGE)	64		
western blot			

3.1.4 The nc 82 antigen solubilizes in high salt buffers and can be immunoprecipitated from <i>Drosophila</i> brain using MAB nc82	65			
3.1.5 The nc82 antigen is a protein encoded by a large genetic locus on chromosome2R				
3.2 Characterization of the gene coding for the nc82 antigen				
3.2.1 RT-PCR analysis of the nc82 antigen coding locus				
3.2.2 CG12933, CG30336 and CG30337 (but not CG12932) belong to the same				
genetic locus that codes for the Drosophila homologue of vertebrate active zone	72			
protein CAST/ERC				
3.2.3. Drosophila BRP contains a large C-terminal part not present in mammalian				
CAST/ERC proteins but highly conserved within dipteran insects	/4			
3.2.4 The <i>Drosophila brp</i> locus codes for a single 11 kb transcript and a smaller 2	70			
kb transcript	/6			
3.3 Functional investigation of the Bruchpilot protein	78			
3.3.1 Generation of RNAi constructs and transgenic animals for the UAS-RNAi	70			
knockdown studies	19			
3.3.2 Generation of classical null mutants by P element mobilization mutagenesis				
3.3.3 Pan-neuronal expression of UAS-RNAi results in BRP specific				
downregulation in the brain				
3.3.4 Downregulation of <i>brp</i> adversely affects synaptic function	88			
3.3.5 BRP downregulation results in various behavioral deficits	90			
3.3.6. BRP downregulation results in loss of synaptic ribbons	93			
Chapter 4- Discussion				
4.1 Identification and subcellular localization of the MAB nc82 antigen				
4.1.1 Limitations to the subcellular localization of BRP by immunoelectron				
microscopy and possible alternatives				
4.1.2 Recognition of another CAZ protein by MAB nc82 due to a possible cross				
reaction				
4.1.3 BRP isoforms and possibility of a post translational modification				
4.1.4 BRP immunoprecipitation and methods to identify interaction partners				
4.1.5 High degree of conservation for BRP amongst insects				
4.1.6 Localization of the nc82 antigen in the C-terminal part of the BRP protein				
4.2 Characterization of the gene coding for the nc82 antigen				

121 Search for connectivity between neighbouring annotated OREs using			
4.2.1 Search for connectivity between neighbouring annotated OKI's using			
bioinformatics and RT-PCR analysis	101		
4.2.2 Presence of coiled-coil domains and primary indications regarding the	1.00		
function of PPD at the CAZ			
4.2.3 Indications of large untranslated regions for the larger brp transcript and			
possibility of a smaller BRP isoform not detectable by MAB nc82	103		
4.3 Functional investigation of the Bruchpilot protein	105		
4.3.1 Tissue specific RNAi as an alternative to classical mutagenesis	105		
4.3.2 Unresolved aspects of P element mobilization and screening due to			
1.5.2 Chieborrou aspects of i crement moonization and servering due to	106		
complexity of the brp locus and multiple P insertions in the original P element stock			
4.3.3 The role of BRP in normal synaptic function	109		
5 1	107		
4.3.5 BRP and formation of sub-synaptic structures	111		
4.3.6 Comparative molecular architecture of active zones and future experiements			
to investigate DDD function	112		
to investigate DKF function			
Bibliography	116		
Appendix 1 – Primer sequences			
Appendix 2 – cDNA, RT-PCR & Protein sequences for BRP			
Appendix 3 – Reagents			
Explanation of terms used			
Acknowledgments			
List of publications			
Besume			
N.Sunt			
Declaration			

FIGURES

Figure title	Page			
Fig.1.1a- A general structure of a synaptic terminal.				
Fig.1.1b Sequence of events at the presynapse upon arrival of an action potential.				
Fig. 1.2.1a- Synaptic vesicle pools.				
Fig.1.3.1a- Synaptic vesicle and associated trafficking proteins.				
Fig.1.4.1 a- Schematic of CAZ arrangement at the frog NMJ.				
Fig.1.4.1b- A comparative analysis of active zone structures in different synapses.	21			
Fig. 1.4.1c. Synaptic vesicle cycle and cytomatrix at the active zone.	27			
Fig. 2.3.2a –Basic principle of a southern blot.	38			
Fig. 2.3.2b-Southern transfer by capillary action.	39			
Fig.2.4.2a - TA cloning.	43			
Fig. 2.5.3a- 2-D PAGE set up and its working principle.	46			
Fig. 2.6.2a – Enhanced chemiluminescence.	49			
Fig.2.7a- ERG – origin of the receptor potential and ON/OFF transients.	54			
Fig. 2.9.1a – Experimental set up for negative geotaxis.	56			
Fig. 2.9.2a – Experimental set for the walking behavior.5				
Fig. 2.9.3a- Experimental set up for the flight tester. :				
Fig. 3.1.1a- MAB nc82 label as a scaffolding marker.				
Fig. 3.1.1b- Active zone localization of the nc82 antigen.				
Fig. 3.1.2a – The nc82 immunoblot from wild-type animals.	63			
Fig. 3.1.3a – A silver stained 2-D PAGE.	64			
Fig. 3.4.1a – A flowchart showing the homogenization and subsequent				
centrifugation of the fly head extracts in buffer A or B to confirm the true	66			
solubilization in either of the buffers.				
Fig. 3.1.4b - Immunoprecipitation of the nc82 antigen.				
Fig. 3.1.5a- Bacterial expression of cDNA AT09405.				
Fig. 3.2.1a- R-T PCR analysis of the genomic region encoding the nc82 antigen.				
Fig. 3.2.2a – The brp locus as determined by RT PCR analysis, northern blots and	72			
homology searches.	15			
Fig. 3.2.3a – Coiled-coil motifs.	75			
Fig. 3.2.3b- MAB nc82 recognizes Anopheles protein at an identical molecular	75			

weight position.			
Fig. 3.2.4a- Northern blot analysis of <i>brp</i> transcripts RNA from fly heads.			
Fig. 3.3.1a- RNAi target regions mapped on <i>brp</i> genomic region and cDNA.			
Fig. 3.3.1b- RNAi constructs using DWa, DWc and DWb target regions.			
Fig. 3.3.2a – P element insertions flanking the <i>brp</i> locus.			
Fig. 3.3.2b- P element mobilization strategy for the "14101" insertion line.	84		
Fig. 3.3.2c – Southern blot screening strategy.	85		
Fig. 3.3.2d- A representative southern blot.			
Fig. 3.3.3a- Pan-neuronal expression of UAS- <i>brp</i> RNAi.			
Fig. 3.3.4a –Functional analysis of the BRP protein.	89		
Fig. 3.3.5a – Optomotor response.	91		
Fig. 3.3.5b- Locomotor activity and flying ability of the UAS- <i>brp</i> RNAi X <i>elav</i> Gal4 offspring.			
Fig. 3.3.6a- Ultrastructural analysis of the brp RNAi animals.			
Fig. 4.1.1a - Effect of GA concentration on the antigenicity of the GFP antigen.			
Fig.4.3.5a Comparison of the known molecular components of a vertebrate photoreceptor ribbon complex and CAZ with a <i>Drosophila</i> T-bar.			

TABLES

Table 1.4. List of known vertebrate and invertebrate (Drosophila and C. elegance)			
proteins involved in synaptic transmission as well as proteins present at the active			
zone.			
Table 2.4.2 a- Protocol for TA cloning.	43		
Table 2.10 – List of fly stocks.	58		
Table 3.3.2a- Description of the P element insertion around the <i>brp</i> locus.	82		
Table 3.3.2b – Statistics of the P element mobilization experiment.	84		

ZUSAMMENFASSUNG

Die chemische Signalübertragung an Synapsen ist ein komplexer Prozess mit zentraler Bedeutung für die Funktion von Nervensystemen. Man nimmt an, dass er auf einem Zusammenspiel hunderter verschiedener Proteine beruht. Diverse Synopsenproteine haben sich für die Neurotransmission als relevant erwiesen und viele davon sind in der Evolution hoch konserviert, was einen universalen Mechanismus der Neurotransmission wahrscheinlich macht.

Dieser Prozess ist in zahlreiche aufeinander folgende Schritte unterteilt, wie die Neurotransmitteraufnahme in Vesikel, den Transport von Vesikeln in die Nähe von Calciumkanälen, die Ausbildung einer Fusionspore zur Transmitterausschüttung und schließlich die Wiederaufnahme von Vesikeln durch Endozytose. Jeder dieser Teilschritte wird momentan gezielt erforscht und spielt für sich genommen eine zentrale Rolle für das Verständnis des gesamten Prozesses.

Die Calcium-induzierte Transmitterausschüttung findet an spezialisierten Membranstrukturen der Synapsen statt, den aktiven Zonen. Diese sind hoch organisierte, elektronendichte Gitterstrukturen und bestehen aus verschiedenen Proteinen, die den synaptischen Vesikeln bei der Verlagerung in die Nähe von Calciumkanälen behilflich sind. Alle Proteinmodule, die für diese Prozesse nötig sind, scheinen eng aneinandergereiht an den aktiven Zonen vorzuliegen. Nur von wenigen konnte bisher bei Vertebraten die Funktion an der aktiven Zone charakterisiert werden.

Ein Fokus der Arbeitsgruppe, an der diese Doktorarbeit durchgeführt wurde, besteht in der Charakterisierung des molekularen Aufbaus der Synapse von *Drosophila*. Die Taufliege ist aufgrund eines reichen Angebots höchsteffektiver genetischer Methoden und vielfältiger Verhaltensparadigmen ein exzellentes Modellsystem, um die neuronale Signalübertragung zu untersuchen. Monoklonale Antikörper (MAKs) aus einer Hybridomabank gegen das *Drosophila* Gehirn werden standardmäßig verwendet, um neue Gehirnproteine mittels der "reverse genetics"- Methode zu identifizieren. Dazu wird der entsprechende genetische Lokus charakterisiert und eine detaillierte Untersuchung der Proteinfunktion initiiert. Diese Vorgehensweise war besonders hilfreich bei der Identifizierung von Synapsenproteinen, die bei der "forward genetics"-Methode aufgrund des Fehlens eines beobachtbaren Phänotyps übersehen würden. Proteine wie CSP, Synapsin und Sap47 wurden so gefunden und charakterisiert.

MAK nc82 stammt aus dieser Hybridomabank und wird in vielen Labors als allgemeiner Neuropilmarker aufgrund seiner hervorragenden Färbungseigenschaften in Gehirnpräparaten verwendet. Doppelfärbungen der larvalen neuromuskulären Synapse mit dem Antikörper nc82 in Kombination mit anderen prä- und postsynaptischen Markern deuteten stark auf eine Lokalisierung des Antigens an der aktiven Zone hin.

Die Synapsenarchitektur von *Drosophila* ist auf der ultrastrukturellen Ebene gut verstanden. Jedoch sind die molekularen Details vieler Synapsenkomponenten, besonders die der aktiven Zone, nicht bekannt. Die vermutete Lokalisierung des nc82 Antigens an der aktiven Zone war daher der Ansatzpunkt, eine biochemische Charakterisierung zu initiieren und das entsprechende Gen zu identifizieren.

In der vorliegenden Arbeit wird durch 2-D Gelelektrophorese und Massenspektrometrie gezeigt, das das nc82 Antigen ein neues Protein der aktiven Zone ist, welches von einem komplexen Genlokus auf Chromosom 2R kodiert wird. Durch RT-PCR wurde gezeigt, dass die Exons von drei offenen Leserastern, die bisher als getrennte Gene annotiert wurden, ein Transkript von mindestens 5,5 kb Länge kodieren. Northern Blots ergaben ein deutliches Signal bei 11 kb und ein schwächeres bei 2 kb. Das von dem 5,5 kb Transkript resultierende Protein ist hoch konserviert in der Gruppe der Insekten und weist an seiner N-terminalen Domäne eine signifikante Homologie zu den bisher beschriebenen Vertebratenproteinen der aktiven Zone ELKS/ERC/CAST auf. Bioinformatische Analysen sagen "coiled-coil" Domänen vorher, die über die gesamte Sequenz verteilt sind. Dies deutet stark auf eine Funktion bei der Organisation oder der Aufrechterhaltung der präsynaptischen Struktur hin. Die große C-terminale Region ist zwar bei Insekten hoch konserviert, zeigt aber keine eindeutige Homologie zu Proteinen von Vertebraten.

Für die Funktionsanalyse dieses Proteins wurden transgene Fliegen, die UAS-RNAi Konstrukte in ihrem Genom tragen und durch entsprechende GAL4-Linien getrieben werden können, freundlicherweise von der kollaborierenden Arbeitsgruppe von S. Sigrist (Göttingen) zur Verfügung gestellt.

Der pan-neuronale "knock-down" des nc82 Antigens durch transgene RNAi-Expression führt zu embryonaler Letalität. Eine schwächere RNAi-Expression führt bei adulten Fliegen zu Verhaltensdefekten, wie instabilem Flug und beeinträchtigtem Laufverhalten. Aufgrund dieser Phänotypen, die in den ersten "knock-down" Studien beobachtet wurden, wurde das Gen *"bruchpilot" (brp)* und das zugehörige Protein *"Bruchpilot" (BRP)* genannt. Die pan-neuronale, sowie die retinaspezifische Reduktion des Proteins führt zu einem Verlust der ON und OFF Transienten des Elektroretinogramms, was auf nichtfunktionelle Synapsen hindeutet. Die retinaspezifische Reduktion des Proteins hat eine Beeinträchtigung der optomotorischen Reaktion zur Folge. Außerdem scheint auf der ultrastrukturellen Ebene die Bildung der charakteristischen T-förmigen "ribbons" der aktiven Zonen beeinträchtigt zu sein, jedoch ohne signifikante Veränderungen der Gesamtarchitektur der Synapse (in Kollaboration mit E. Asan).

Von Basson, einem Protein der aktiven Zone bei Vertebraten, ist bekannt, dass es an der Anheftung der synaptischen "ribbons" an den aktiven Zonen beteiligt ist. Es fungiert als Adapter zwischen RIBEYE und ELKS/ERC/CAST, zwei weiteren Proteinen der aktiven Zone. Die Mutation von Bassoon hat zur Folge, dass die synaptischen "ribbons" frei im Zytoplasma treiben. Für Bassoon ist kein homologes Drosophila-Protein bekannt. Die Reduktion von BRP bedingt ebenfalls ein Fehlen befestigter "ribbons" an der aktiven Zone. Dies könnte auf eine Art Adapterfunktion von BRP hindeuten. Jedoch hat das von Fehlen BRP zusätzlich zum strukturellen Phänotyp auch deutliche Verhaltensabnormalitäten und starke physiologische Beeinträchtigungen zur Folge. Eine noch stärkere Reduktion bedingt außerdem embryonale Lethalität, wohingegen Mausmutanten ohne Bassoon lebensfähig sind. Daraus ergibt sich, dass BRP eine weitere, wichtige Rolle während der Entwicklung und für die Funktion von Synapsen bei Drosophila und möglicherweise auch bei anderen Insekten einnimmt. Es muss aber noch geklärt werden, auf welche Weise BRP die synaptische Signalübertragung reguliert und welche anderen Proteine in diesem BRP-abhängigen Pfad involviert sind. Derartige Studien werden mit Sicherheit in der Zukunft eine bedeutende Rolle spielen.

SUMMARY

Chemical neurotransmission is a complex process of central importance for nervous system function. It is thought to be mediated by the orchestration of hundreds of proteins for its successful execution. Several synaptic proteins have been shown to be relevant for neurotransmission and many of them are highly conserved during evolution- suggesting a universal mechanism for neurotransmission.

This process has checkpoints at various places like, neurotransmitter uptake into the vesicles, relocation of the vesicles to the vicinity of calcium channels in order to facilitate Ca^{2+} induced release thereby modulating the fusion probability, formation of a fusion pore to release the neurotransmitter and finally reuptake of the vesicles by endocytosis. Each of these checkpoints has now become a special area of study and maintains its own importance for the understanding of the overall process.

 Ca^{2+} induced release occurs at specialized membrane structures at the synapse known as the active zones. These are highly ordered electron dense grids and are composed of several proteins which assist the synaptic vesicles in relocating in the vicinity of Ca^{2+} channels thereby increasing their fusion probability and then bringing about the vesicular fusion itself. All the protein modules needed for these processes are thought to be held in tight arrays at the active zones, and the functions of a few have been characterized so far at the vertebrate active zones.

Our group is primarily interested in characterizing the molecular architecture of the *Drosophila* synapse. Due to its powerful genetics and well-established behavioural assays *Drosophila* is an excellent system to investigate neuronal functioning. Monoclonal antibodies (MABs) from a hybridoma library against *Drosophila* brain are routinely used to detect novel proteins in the brain in a reverse genetic approach. Upon identification of the protein its encoding genetic locus is characterized and a detailed investigation of its function is initiated. This approach has been particularly useful to detect synaptic proteins, which may go undetected in a forward genetic approach due to lack of an observable phenotype. Proteins like CSP, Synapsin and Sap47 have been identified and characterized using this approach so far.

MAB nc82 has been one of the shortlisted antibodies from the same library and is widely used as a general neuropil marker due to the relative transparency of immunohistochemical whole mount staining obtained with this antibody. A careful observation of double stainings at the larval neuromuscular junctions with MAB nc82 and other pre and post-synaptic markers strongly suggested an active zone localization of the nc82 antigen.

Synaptic architecture is well characterized in *Drosophila* at the ultrastructural level. However, molecular details for many synaptic components and especially for the active zone are almost entirely unknown. A possible localization at the active zone for the nc82 antigen served as the motivation to initiate its biochemical characterization and the identification of the encoding gene.

In the present thesis it is shown by 2-D gel analysis and mass spectrometry that the nc82 antigen is a novel active zone protein encoded by a complex genetic locus on chromosome 2R. By RT-PCR exons from three open reading frames previously annotated as separate genes are demonstrated to give rise to a transcript of at least 5.5 kb. Northern blots produce a prominent signal of 11 kb and a weak signal of 2 kb. The protein encoded by the 5.5 kb transcript is highly conserved amongst insects and has at its N-terminus significant homology to the previously described vertebrate active zone protein ELKS/ERC/CAST. Bioinformatic analysis predicts coiled-coil domains spread all over the sequence and strongly suggest a function involved in organizing or maintaining the structure of the active zone. The large C-terminal region is highly conserved amongst the insects but has no clear homologues in veretebrates.

For a functional analysis of this protein transgenic flies expressing RNAi constructs under the control of the Gal4 regulated enhancer UAS were kindly provided by the collaborating group of S.Sigrist (Göttingen).

A strong pan-neuronal knockdown of the nc82 antigen by transgenic RNAi expression leads to embryonic lethality. A relatively weaker RNAi expression results in behavioural deficits in adult flies including unstable flight and impaired walking behavior. Due to this peculiar phenotype as observed in the first knockdown studies the gene was named *"bruchpilot"* (*brp*) encoding the protein "Bruchpilot (BRP)" (German for crash pilot). A pan-neuronal as well as retina specific downregulation of this protein results in loss of ON and OFF transients in ERG recordings indicating dysfunctional synapses. Retina specific downregulation also shows severely impaired optomotor behaviour. Finally, at an ultrastructural level BRP downregulation seems to impair the formation of the characteristic T-shaped synaptic ribbons at the active zones without significantly altering the overall synaptic architecture (in collaboration with E.Asan).

Vertebrate active zone protein Bassoon is known to be involved in attaching the synaptic ribbons to the active zones as an adapter between active zone proteins RIBEYE and

ERC/CAST. A mutation in Bassoon results in a floating synaptic ribbon phenotype. No protein homologous to Bassoon has been observed in *Drosophila*. BRP downregulation also results in absence of attached synaptic ribbons at the active zones. This invites the speculation of an adapter like function for BRP in *Drosophila*. However, while Bassoon mutant mice are viable, BRP deficit in addition to the structural phenotype also results in severe behavioural and physiological anomalies and even stronger downregulation causes embryonic lethality. This therefore suggests an additional and even more important role for BRP in development and normal functioning of synapses in *Drosophila* and also in other insects. However, how BRP regulates synaptic transmission and which other proteins are involved in this BRP dependant pathway remains to be investigated. Such studies certainly will attract prominent attention in the future.

Chapter1:INTRODUCTION

1.1 The Concept Of Neurotransmission

Fundamental concepts for learning, memory, cognition and behavior are based on the primary function of neurotransmission in particular at chemical synapses. Upon arrival of an action potential, synaptic vesicles release their content to the extracellular matrix of the synaptic cleft. Binding of the neurotransmitter molecules to receptors on the postsynaptic membrane represents an essential step in this form of communication. Chemical neurotransmission is a complex process and involves hundreds of proteins for its successful execution. With the aid of molecular biology, technical advances in electrophysiology and functional imaging significant progress has been made in our understanding of this process in detail.

Drosophila has attracted scientific enquiry for nearly a century due to valuable genetic tools and robust assays to probe deeper into the formation and functioning of this organism. The completion of genome sequencing and the availability of bioinformatics software have eased the search for genes of interest.

In the following few introductory chapters, an outline of the knowledge accumulated on the process of neurotransmission, on the synaptic vesicle cycle, and on presynaptic active zones will be given.

The functional point of contact between a nerve terminal and its target cell (this could be another nerve cell, an endocrinal organ or a muscle) is defined as a synapse (Sherrington, 1897). Hence, the part of the synaptic membrane where synaptic vesicles dock, fuse and release their content is the presynaptic membrane and the membrane that receives the vesicular content by means of receptors is the post- synaptic membrane. Both membranes are separated by the specialized extracellular matrix (fig.1.1a).

Fig.1.1a- General structure of a synaptic terminal.

Specifically at the "active zone" of a presynaptic terminal synaptic vesicle fuse and release their neurotransmitter (NT) content (Katz, 1969). When the presynaptic membrane is depolarized e.g. by an action potential, Ca^{2+} channels open and allow Ca^{2+} to flow into the terminal which triggers this fusion (fig. 1.1b).

A constant pool of synaptic vesicles (SVs) is required to facilitate sustained release of neurotransmitter. To serve that purpose, after they release their content synaptic vesicles are endocytosed for a new round of exocytosis.

Fig.1.1b- Sequence of events at the presynapse upon arrival of an action potential.

Thus, nerve terminals are secretory machines dedicated to repeated rounds of release. Most neurons form > 500 presynaptic nerve terminals that are often widely separated from the neuronal cell bodies. Nerve terminals do not convert reliably every action potential into a secretory signal but are "reliably unreliable" (Goda & Südhof, 1997). In most terminals, only 10%–20% of action potentials trigger release. The relationship between action potentials and release in a nerve terminal is regulated by intracellular messengers and extracellular modulators and is dramatically altered by repeated use of a synapse.

Thus, in addition to secretory machines, nerve terminals are computational units where the relation of input (action potential) to output (neurotransmitter release) continuously

changes in response to extra- and intracellular signals. All presynaptic functions, directly or indirectly, involve synaptic vesicles.

1.2 The Synaptic Vesicle Cycle

Briefly, a typical SV cycle comprises following steps (fig.1.1b):

- 1. Active transportation of neurotransmitters into the synaptic vesicles.
- 2. Clustering of synaptic vesicles at the active zone.
- 3. Docking of SVs at the active zone.
- Priming of SVs, i.e. conversion into a state of competence for Ca²⁺ triggered fusion pore opening.
- 5. Fusion and transmitter release into the synaptic cleft.
- 6. Endocytosis and recycling.

The process of endocytosis has become a specialized area of research within neurotransmission and has been studied extensively. This process can occur by various modes (e.g. kiss and run, kiss and stay and Clathrin mediated endocytosis (Südhof, 2004))

Along with understanding the higher neuronal functions like learning, memory and cognition, understanding the molecular machinery of neurotransmission has turned out to be a major goal of modern neurobiology. More than 1000 proteins have been thought to participate in the process of exocytosis (Südhof, 2004). This makes it necessary to understand the process in detail in order to be able to tell actual players from bystanders.

1.2.1 Synaptic Vesicle Pools

For a sustained, reliable release a continuous supply of SVs is essential. Based on their proximity to the release site as well as quantitative analysis of stimulus dependent depletion and the ability to take up fluorescent dye during endocytosis, definitive pools of synaptic vesicles have been characterized.

After repeated stimulation of the nerve terminal at a high rate vesicular release shows a dramatic drop and assumes a lower steady state level. This use dependent synaptic depression seen in the beginning seems to be the result of depletion of SVs in the readily releasable pool (RRP).

The steady-state level of release corresponds to the rate with which vesicles are replenished into the readily releasable pool by recycling or by recruitment from a reserve pool.

The concept of equating release rates with vesicle pools has been useful, and different pools of synaptic vesicles were defined on the basis of the rates of release under various stimulation conditions. The size of the readily releasable pool that can be exocytosed by high-frequency stimulation generally agrees well with the amount of release obtained upon application of hypertonic sucrose as a mechanical stimulus (Rosenmund & Stevens, 1996) or with the number of vesicles that can be measured "docked" by electron microscopy (Schikorski & Stevens, 2001; Sätzler et al., 2002). The total number of vesicles that participate in exo- and endocytosis during mild prolonged stimulation are referred to as the recycling pool. The large reserve pool finally serves to replenish the recycling pool upon its depletion during excessive or unphysiological stimulation (Rizzoli and Betz, 2005).

Quantification of the available number of vesicles in each pool suggests that the pool size varies from synapse to synapse depending on its type. (e.g. the neuromuscular junction (NMJ) has a different pool size from that of cultured hippocampal neurons). Along with these pools sometimes a larger "resting pool" of vesicles is also observed (Südhof, 2000).

Variations observed in the number of vesicles in each pool as well as comparative sizes of different pools indicate that these definitions are operational. Probably, the vicinity of the vesicle to a Ca^{2+} channel and thus the transient ambience of Ca^{2+} concentration would be the true deciding factors over release probability of a vesicle and may in turn allocate the vesicle to an appropriate pool (fig.1.2.1a).

Fig. 1.2.1a- Synaptic vesicle pools (Based on Rizzoli and Betz, 2005).

1.3 The Molecular Architecture Of Synaptic Vesicles

The presynapse is specialized for neurotransmitter release. Hence, all the characteristic cellular functions at the presynapse are directed towards neurotransmission. As a result, all processes in a nerve terminal influence, directly or indirectly, the interaction of synaptic vesicles with the presynaptic active zone. Understanding the composition of synaptic vesicles and of the active zone is a first step towards insight into the molecular mechanisms of release.

1.3.1 Synaptic Vesicles

These are uniformly small organelles (~20-nm radius), and are responsible for the neurotransmitter traffic across the cell membrane. Purified vesicles have a protein: phospholipid ratio of 1:3 with an unremarkable lipid composition. (40% phosphatidylcholine, 32% phosphatidylethanolamine, 12% phosphatidylserine, 5% phosphatidylinositol, 10% cholesterol, wt/wt; (Benfenati et al., 1989).

Two classes of proteins are present on the synaptic vesicles. 1. Transport proteins involved in neurotransmitter uptake and 2. trafficking proteins that participate in vesicular exo-endocytosis and the over all synaptic vesicle cycle (figure 1.3.1a).

Neurotransmitter uptake is initiated by an electrochemical gradient, which is generated by a vacuolar type proton pump. Several neurotransmitter transporter proteins have so far been identified that mediate actual neurotransmitter uptake. The type of neurotransmitter transporter present on the vesicles defines the nature of the synapse (e.g. glutamatergic, GABAergic, cholinergic etc.) and depending on the type of neurotransmitter synapses could be made excitatory or inhibitory (Südhof, 2004).

As compared to the transport proteins the trafficking proteome of synaptic vesicles is complex. It contains proteins, which have transmembrane domains, others are linked to the membrane by post-translational modification, and proteins of a third group are peripherally bound (Figure 1.3.1a). Neither do SV proteins have a comman characteristic that describes them as a class of synaptic vesicle associated proteins nor is their mode of deposition specifically onto the synaptic vesicles known. As summarized in figure 1.3.1a, many but not all of the known synaptic vesicle proteins interact with nonvesicular proteins and are linked to specific functions.

Fig.1.3.1a- Synaptic vesicle and associated trafficking proteins (modified from Südhof, 2004).

1.3.2 Membrane Fusion During Exocytosis

Intracellular membrane fusion is usually mediated by the family of SNARE proteins (Soluble N-ethylmaleimide sensitive factor attachment protein receptor). These proteins are present on both fusing membranes (V-SNAREs and T-SNAREs) and form a tight core complex prior to fusion (Chen & Scheller, 2001; Jahn et al., 2003). SNARE proteins are characterized by a homologous 70-residue sequence called the SNARE motif. The core complex is formed when four SNARE motifs (present in three or four separate SNARE proteins because some SNAREs contain two SNARE motifs) assemble into a parallel four-helical bundle, with the transmembrane regions of the SNAREs emerging on the C-terminus. Core-complex formation may force the membranes on which the SNAREs reside into close proximity, thereby initiating membrane fusion. Synaptic exocytosis is

mediated by three SNARE proteins: Synaptobrevin (also called vesicle-associated membrane protein-VAMP) on synaptic vesicles, and Syntaxin 1 and SNAP-25 on the presynaptic plasma membrane (Söllner et al., 1993).

SNARE complex formation at the synapse and in other intracellular fusion reactions is probably controlled by a class of essential fusion proteins called SM proteins for Sec1/Munc18-like proteins (Jahn et al., 2003). SM proteins often interact with Syntaxin-like SNAREs. Munc18-1, the SM protein that controls synaptic fusion, binds to a conformation of Syntaxin that is closed (Dulubova et al., 1999) and blocks its SNARE motif from participating in SNARE complexes. Thus Munc18-1 must dissociate from Syntaxin for SNARE complexes to form.

Another class of proteins that may regulate SNARE function at the synapse is Synaptophysins, abundant synaptic vesicle proteins that bind directly to Synaptobrevin (Johnston & Südhof, 1990, Calakos & Scheller, 1994, Edelmann et al., 1995, Washbourne et al., 1995).

1.3.3 Ca²⁺ Sensors At The Synapse

 Ca^{2+} entry upon arrival of the action potential to the nerve terminal triggers the exocytosis. It has been demonstrated that Ca^{2+} binding sites of vesicular proteins Synaptotagmin 1 and Synaptotagmin 2 have 5 Ca^{2+} binding sites with affinity to Ca^{2+} at micromolar concentration and can mediate this trigger for fast exocytosis (Meinrenken et al., 2003).

1.3.4 The Rab3 Cycle

Rab proteins are a family of GTPases, which are associated with the vesicles in a GTPbound form but dissociated, in a GDP-bound form. These proteins have a key role to play in different stages of SV release and reuptake.

Rab3 undergoes a cycle of synaptic vesicle association and dissociation in parallel with synaptic vesicle exo- and endocytosis (Fischer von Mollard et al., 1991). Rab3 is attached

to synaptic vesicles in the GTP-bound state via covalently linked geranylgeranyl moieties (Johnston et al., 1991). During or after synaptic vesicle fusion, GTP on Rab3 is hydrolyzed to GDP, and the resulting GDP-bound Rab3 is dissociated from synaptic vesicles by GDI (named GDP dissociation inhibitor, although its general function is to dissociate Rab proteins from membranes; Araki et al., 1990). The soluble GDI/GDP-Rab3 complex is then reattached to synaptic vesicles by a poorly understood process that involves GDP to GTP exchange. Rab3 dissociation from vesicles depends on Ca²⁺-triggered exocytosis of synaptic vesicles (Fischer von Mollard et al., 1991), which suggests that the Rab3 cycle ensures directional interactions of Rab3 with effector proteins during exocytosis.

1.3.5 Rab3 Effectors

Two classes of Rab3 effectors that bind only to GTP-Rab3 but not to GDP-Rab3 have been identified, Rabphilin (Shirataki et al. 1993; Li et al., 1994) and RIM $1\alpha/2\alpha$ (Wang et al. 1997a, 2000; Wang & Südhof, 2003). Both effectors have a similar Nterminal zinc-finger domain that interacts with all Rab3 isoforms, include central phosphorylation sites for PKA, and contain two C-terminal C2 domains. Otherwise, however, Rabphilin and RIM1 $\alpha/2\alpha$ are very different (Wang et al., 1997a). Rabphilin is a soluble protein that requires Rab3 for binding to synaptic vesicles (Geppert et al., 1994b, Li et al., 1994) and binds Ca^{2+} via its C2 domains (Ubach et al., 1998). RIM1 $\alpha/2\alpha$, in contrast, are larger, biochemically insoluble active-zone proteins whose C-terminal C2 domains lack predicted Ca²⁺-binding sites. Rabphilin exhibits biologically interesting properties (Ca^{2+} binding, cycling on and off-synaptic vesicles in a manner dependent on Rab3, stimulation-dependent phosphorylation by multiple kinases; see Shirataki et al. 1993; Li et al. 1994). The binding of Rab3A on synaptic vesicles to RIM1 α in the active zone suggests a docking function (figure 1.3.1a), but RIM1 α knockout (KO) mice did not exhibit a change in the number of docked vesicles (Schoch et al., 2002), consistent with a lack of change in docking in the Rab3A KO mice (Geppert et al., 1997). Viewed together, these data suggest that RIM1 α (and probably RIM2 α) regulates neurotransmitter release via interactions of its N-terminal domain with Rab3 and Munc13-1, and possibly via interactions of its PDZ domains with ERCs and its C-terminal C2 domain with α -Liprins and Synaptotagmin-1 (Betz et al., 2001; Ohtsuka et al. 2002; Schoch et al. 2002; Wang et al. 2002).

1.4 The Presynaptic Active Zone: A Comparative Analysis Of The Structural-Molecular And Functional Architecture

The conversion of the electric impulse to a chemical signal described above occurs at the special vesicle fusion sites of the presynapse called active zones (AZ). The term "active zone" was coined in 1970 by Couteaux and Pecot-Dechavassine. Ultrastructural studies of synapses in different organisms have revealed a few conserved morphological features among active zones, regardless of their size, location, or types of neurons and their targets:

1. An electron-dense plasma membrane, suggesting a proteinaceous nature of the AZs.

2. Observation that SVs cluster, tether and fuse at the active zones (Couteaux et al., 1970; Heuser et al., 1973).

3. The active zone is in close and precise alignment with the post-synaptic density (PSD) area, spanning the same width as the PSD. AZ and PSD are separated by a synaptic cleft, which could be as narrow as 30 nm (Lagnado et al., 2003).

1.4.1 The Structure Of Active Zones

Active zones could be dissected in three functionally distinct components. A. The plasma membrane juxtaposed to the PSD where synaptic vesicle fusion occurs. B. The cytomatrix immediately internal to the plasma membrane where synaptic vesicles dock. C. The electron-dense projections extending from the cytomatrix into the cytoplasm. Synaptic vesicles are tethered to these projections (figure 1.4.1b).

1.4.2 The Plasma Membrane Of The Active Zones

The plasma membrane of AZs harbors two ports. One for the entry of Ca^{2+} upon arrival of an action potential and the other one for vesicular fusion which is triggered by Ca^{2+} entry and in turn results in neurotransmitter release. As the time delay between Ca^{2+} entry and vesicular fusion is very short (0.2 ms, Parsegian, 1977; Stanley, 1997) and probabilistic analysis estimates that for a decent release probability the distance of a fusion competent vesicle to the presynaptic membrane should be <50 nm (Atwood et al., 2002; Bennett et al., 2000; Stanley, 1997), these two ports are thought be present in very close proximity to each other. Localization of Ca^{2+} channels in proximity to active zones has been demonstrated by various immunohistochemical studies (Kawasaki et al., 2004; Robitaille et al. 1990; Zhang et al., 2000). Studies on the frog, lizard and mammalian NMJs by freeze fracture techniques elegantly demonstrate the arrangement of Ca^{2+} channels at the AZs (fig1.4.1a. Ellisman et al., 1976; Heuser et al., 1974; Walrond et al., 1985).

Other important components of the plasma membrane are the adhesion molecules by which the precise alignment of the active zone with the PSD is most likely mediated. Several classes of adhesion molecules have been shown to be present at the active zone: Cadherins (Shapiro et al., 1995; Yagi et. al, 2000), Protocadherins (Frank et al., 2002), Nectins (Mizoguchi et al., 2002; Takai et al., 2003), Neural cell adhesion molecule (Rougon et al., 2003)/Fasciclin II (Davis et al., 1997)/aplysia cell adhesion molecule (Mayford et al., 1992), Down syndrome adhesion molecule (Schmucker et al., 2000), Syndecans (Hsueh et al., 1998), L1/Neuroglian (Walsh et al., 1997), Integrins (Chavis et al., 2001), Neurexins (Missler et al., 1998), and Sidekicks (Yamagata et al., 2003; Yamagata et al., 2002). All adhesion molecules share common protein motifs: an extracellular domain that mediates binding with the postsynaptic counterparts or extracellular matrix, a single-pass transmembrane domain or membrane anchor, and often an intracellular domain that binds to the cytoskeleton or the intracellular scaffolding proteins (Gottardi et al., 2001, Sheng and Sala, 2001). All of these adhesion molecules except Neurexin, which is expressed presynaptically and binds its postsynaptic receptor Neuroligin (Yamagata et al., 2003), are expressed in both pre- and postsynaptic terminals, and adhesion is formed through homophilic interactions. In short, the plasma membrane at the active zone mediates fusion of SVs upon Ca²⁺ entry during neurotransmission. An array like organization of the Ca^{2+} channels and the adjacent localization of the fusion machinery facilitates the process.

1.4.3 The Cytomatrix Underlying The Plasma Membrane Of The Active Zone

The <u>cytomatrix at the active zone (CAZ) is an electron dense structure and displays a web</u> like pattern (Bloom et al., 1968; Pfenninger et al., 1972). By electron microscope tomography of the CAZ at frog NMJs an array-like structure has been observed (Harlow

et al., 2001). It consists of "beams" and "ribs" that connect docked synaptic vesicles with putative Ca^{2+} channels at the plasma membrane (figure 1.4.1a).

Fig.1.4.1 a- Schematic of CAZ arrangement at the frog NMJ. The "pegs" are assumed to be the Ca²⁺ channels (Zhai and Bellen, 2005).

The beams run along the midline of the presynaptic ridge parallel to the ridge's long axis, and the ribs extend from the beams and connect the synaptic vesicles near the vesicleplasma membrane interface. In addition, the ribs are connected to the intramembrane macromolecules resembling the putative Ca^{2+} channels seen in freeze-fracture studies. This organization allows alignment of each docked vesicle with at least one Ca²⁺ channel which could provide release with high probability.

On the basis of their function or putative function, the proteins identified in the active zone cytomatrix can be classified into three categories (also summarized in fig. 1.4.1c).

1. The classical cytoskeletal proteins corresponding to Actin, Tubulin, Myosin, Spectrin α -chain and β -chain, and β -Catenin (Burns et al., 1995; Hirokawa et al., 1989; Phillips et al., 2001) are the fundamental elements of the framework of active zone cytomatrix.

2. The known scaffolding proteins include SAP90/PSD95/Dlg, SAP97, and CASK/LIN-2 (Hata et al., 1996; Kistner et al., 1993; Koulen et al., 1998; Muller et al., 1995). These proteins are not restricted to active zones because they also participate in clustering of postsynaptic receptors and are involved in the organization of a variety of cell junctions (Fanning et al., 1999; Garner et al., 2000; O'Brien et al., 1998). If the cytoskeleton

proteins form a grid-like structure at the active zone, these scaffolding proteins probably link the ion channels and the fusion machinery onto the grid to ensure proper active zone function. For example, CASK interacts with α -Neurexin, Syndecan 2, Ca²⁺ channels, the cytosolic protein Veli/LIN- 7, and the Munc18/n-Sec1-interacting protein Mint1 (Butz et al., 1998; Hata et al., 1996; Hsueh et al., 1998; Maximov et al., 1999).

3. The active zone-specific proteins including RIM1, Munc13/unc13, Bassoon, Piccolo/Aczonin, and ELKS/CAST/ERCs (Brose et al., 1995; Dieck et al, 1998; Fenster et al., 2000, Ohtsuka et al., 2002; Wang et al., 1999; Wang et al., 2002; Wang et al., 1997). Their active zone-specific localization and their multidomain structure allow them to participate in modulating synaptic vesicle docking, priming, and fusion, as well as the initiation of the assembly of the active zone structure. In short, CAZ is a protein dense complex made up of cytoskeletal and scaffolding proteins that are responsible for the formation of a web like structure which has slots for synaptic vesicle docking, and CAZ also consists of proteins that mediate vesicular priming and fusion.

1.4.4 The Electron-Dense Projections Extending From The Cytomatrix Of The Active Zone: Synaptic Ribbons

At certain active zones thin, electron dense projections can be seen extending 0.5 to 1 μ m from CAZ into the cytoplasm (Lagnado et al., 2003; Lenzi et al., 2002; Von Gersdorff, 2001). Their shape, appearance and even visibility varies greatly across species and sometimes the type of synapse. These are known as the synaptic ribbons. Apart from their characteristic appearance, ribbons have always synaptic vesicles tethered to their surface (figure 1.4.1b).

Morphologically, dense projections have been observed in various types of synapses in different species. At *Caenorhabditis elegans* NMJs, dense projections in the shape of a plaque have been described (figure 1.4.1b). In *Drosophila*, T-shaped dense projections can be seen in NMJs, the tetrad synapses of the visual system in CNS synapses (Meinertzhagen, 1996; Yasuyama et al., 2002). In crustacean NMJs, dense projections appear to be cylindrical (figure 1.4.1b) (Govind et al., 1979). In vertebrate NMJs, dense projections have been described in frog, lizard, and mammals (figure 1.4.1b) (Ellisman et al., 1976; Heuser et al., 1974; Walrond et al., 1985). In mammalian CNS synapses, dense projections were also noticed in electron microscopic studies as early as the 1960s and

recently have been visualized in great detail (figure 1.4.1b)(Bloom et al., 1968; Phillips et al., 2001). Although synaptic ribbons vary greatly and although it is conventionally believed that they are specific to only certain synapses that require a constant, tonic release, a modern view is emerging which suggests the universality of these structures (Lenzi et al., 1999; Von Gersdorff, 2001). Synaptic ribbons could be an evolutionarily conserved structure whose primary function might be tethering of synaptic vesicles at the active zones.

Analysis of vertebrate synaptic ribbons has shown that they are composed of several components which may have functional distinction. RIBEYE, a protein with homology to the C-terminal Binding Protein 2 (CtBP2) at its B domain and which also has an ability to assemble into large structures mediated by its A domain has been shown to be a major componant of the photoreceptor synaptic ribbons in vertebrates (Schmitz et al., 2000; tom Dieck et al., 2005). Motor protein KIF3A also has been shown to be a component of the ribbons (tom Dieck et al., 2005) and is likely to mediate the tethering of vesicles. A detailed model sketch will be described in the discussion (figure 4.3.5a) including the localization of its components. Most of the information about the composition of active zones is obtained from vertebrates. The molecular composition of the invertebrate active zone is largely unknown. In *Drosophila* and crayfish, synaptic vesicles cluster around T-bars, although the mechanism of tethering is not known (figure 1.4.1b).

Recently the dense projections of mammalian CNS active zones have been biochemically purified and molecularly characterized (Phillips et al., 2001). These dense projections are \sim 50 nm in size, are pyramid like and contain synaptic vesicle binding proteins such as synapsin and RIM (Hilfiker et al., 1999; Phillips et al., 2001; Wang et al., 1997).

It seems possible that because of their peculiar structure(s) and ability to tether vesicles synaptic ribbons could bind a large number of vesicles, thereby increasing the readily releasable pool, without increasing the area occupied by CAZ and PSD at the synapse (figure 1.4.1b). This feature is particularly important in sensory synapses, because sustained release upon continuous stimulation requires a large readily releasable pool and a capacity for efficient synaptic vesicle replenishment, while the defined portion of an individual sensory neuron e.g. in the vertebrate retina or along the cartridge of an insect lamina restricts the size of each terminal. In contrast, at many NMJs, where stimulations

are not continuous, the size of nerve terminals is not restricted and the active zone must expand as the muscle grows, so dense projections are relatively small. Interestingly, in *Drosophila* and crustacean NMJs, active zones with prominent T-bars can be seen adjacent to those without T-bars within the same presynaptic nerve terminal. It has been proposed that the active zones with prominent T-bars have a stronger output, possibly because more synaptic vesicles are released upon stimulation. Supporting evidence comes from crustacean studies showing that high-output NMJ terminals have a threefold higher density of dense projections than the low-output terminals arising from the same excitatory motor axon, although no difference was observed in total synaptic area (Govind et al., 1979; 2001). In summary, although the morphology of dense projections varies greatly among different types of synapses, the primary function of dense projections is to tether synaptic vesicles at the active zone. Larger dense projections tether more synaptic vesicles and therefore increase the size of the readily releasable pool.

1.4.5 Active Zone Assembly And The Regulation Of Active Zone Density And Spacing

Active zone assembly begins after initial axon target recognition and contact takes place and commences as the neurotransmitter release sites are established. In cultured hippocampal neurons it has been shown to require ~30 min (Ahmari et al., 2000, Friedman et al., 2000). According to the unitary assembly model active zone precursors are packaged into the transport vesicles and delivered to the nascent synaptic contact site. Fusion of these vesicles with the plasma membrane establishes deposition and localization of active zone proteins. 2-3 transport vesicles have been shown to be sufficient for the formation of one active zone (Shapira et al., 2003, Zhai et al., 2001). According to this model the average active zone has 10-15 vesicle release sites or "grid units" thus each active zone transport vesicle (PTV (Shapira et al. 2003)) should carry building material for 4-5 release sites.

Fig.1.4.1b- A comparative analysis of active zone structures in different synapses (based on Zhai and Bellen, 2005).

1.4.6 Genetic Analysis Of Invertebrate Active Zones

Although much information about the molecular architecture of the invertebrate active zones is still fragmentary, recent genetic analysis has helped identifying a few molecular players at the invertebrate CAZ.

Loss of function mutants for *syd-2* gene in *C. elegans* have lengthened NMJ terminals which are less electron dense as well (Zhen et al., 1999). The Syd-2 protein is localized to active zones and is a member of the Liprin protein family, which contains coiled coil and sterile α -motif domains (Serra-Pages et al., 1998). Liprins interact with the Lar family of receptor protein tyrosine phosphatases (RPTPs) and cluster RPTPs to focal adhesions (Serra-Pages et al., 1998). *Drosophila* Liprin- α is also localized to active zones at NMJs, and in flies mutant for Liprin-*Dlar*, the size of active zones are ~2.5-fold bigger than

normal and the morphology is more irregular (Kaufmann et al., 2002). In *Drosophila*, loss of *wishful thinking (wit)* causes a reduced number of boutons, an increased number of active zones per bouton, and freely floating T-bar structures in the cytoplasm (Aberle et al., 2002). Wit is a BMP type II receptor that is expressed in a subset of neurons, including motor neurons. However, the mechanism as to how Wit regulates active zone assembly is not understood (Aberle et al., 2002; Marques et al., 2002).

Active zones are plastic structures and their number varies during development as well as in adult nervous system. In tetrad synapses of the *Drosophila* visual system, the number of presynaptic ribbons/ T-bars changes with alterations in light stimulation (Brandstatter et al., 1999; Rybak et al., 1997).

In crustacean NMJs, high-frequency stimulation-induced long-term facilitation also correlates with an increase in the number of active zones and dense projections (Wojtowicz et al., 1994). In mammalian hippocampal neurons, long-term potentiation also correlates with the expansion or "division" of active zones (Harris et al., 2003; Weeks et al., 2000).

Synaptic molecules that are known in vertebrates and invertebrates are summarized in table 1.4 along with their possible functions wherever applicable.

Vertebrates	Function/Proposed function		
Exocytosis			
Synaptobrevin/VAMP/SNAP25,	Components of SNARE complex involved in synaptic		
Syntaxin	vesicle docking and fusion		
NSF, α and β SNAPs	Dissociation of SNAREs		
Synaptotagmins	Calcium sensors; interact with syntaxin and RIM		
N and P/Q type Ca ²⁺ channels	Calcium influx		
Mune 18	Binds and negatively regulates syntaxin and synaptic		
	vesicle fusion		
Muno 12	Involved in synaptic vesicle priming; interacts with RIM;		
	displaces Munc18		
	Involved in synaptic vesicle priming; interacts with Munc		
KIIVII a	13, RIM BPs and Synaptotagmin		
Dahah	Regulates synaptic vesicle cycle; interacts with Rabphilin,		
Kausa	DOC2, PRA 1 and RIM		
Complexin	Binds and regulates SNARE complex		
Endocytosis			
Clathrin	Involved in synaptic vesicle endocytosis; interacts with		
Clathin	dynamin, AP2, amphiphysin and other molecules		
Dynamin	GTPase involved in pinching off synaptic vesicles during		
Dynamin	endocytosis		
Amphinhysin	Binds dynamin and is involved in synaptic vesicle		
Ampinpinysin	endocytosis		
Active zone proteins			
	CAMKII domain containing MAGUK; forms a complex		
CASK	with MINTs, Veli and calcium channels, neurexin and		
	SynCAM		
MINTs	Munc18-interacting molecules; found in complex with		
	CASK and Veli		
Veli	Found in complex with CASK and MINTS		
Ressoon and Piccolo	Large structural proteins of the CAZ that interact with		
Dassoon and Piccolo	PRA 1, Profilin, Abp1 and ERC/CAST		
Synancing	Anchoring of synaptic vesicles to actin; regulation of		
бупарына	reserve pool of synaptic vesicles		

α-Liprin	Scaffold proteins that bind RIM, ERC/CAST and LAR		
Spectrin	Cortical cytoskeletal protein; interacts with actin; cell- adhesion molecules and receptors		
ERC/CAST	CAZ proteins that interact with Piccolo, Bassoon, RIM and Liprin		
RIMBP	RIM binding protein; component of CAZ		
RIBEYE/CtBP2	C-terminal binding protein, component of synaptic ribbons		
KIF3A	Motor protein; component of the ribbon; aids tethering of vesicles		

Invertebrates	Fly	Worm	Proposed function
Exocytosis			•
CAPS	dcaps	unc-31	Role in late stage of DCV fusion
Unc-13	dUnc- 13	unc-13	Required for SV priming via control of syntaxin conformational state
	CG7301,		Involved in SV priming: coordination of
RIM	CG7305,	unc -10	Rah-3 and Linc-13 dependent functions
	CG7321		Rab-5 and One-15 dependant functions
SNAD 25/t SNAPE			Component of core SV fusion machinery
membrane associated	~ ~ ~ ~		and calcium channel inhibitor ATPase
protein	Snap25ts	ric4	required for SNARE complex
protein			disassembly following vesicle fusion
Syntaxin	syx	Unc-64	Essential component of core SV fusion
Syntaxin			machinery and calcium-channel inhibitor
NSE	comatose	?	ATPase required for SNARE complex
NSF			disassembly following vesicle fusion
Synantotagmin	syt-1	ant 1	Ca ²⁺ sensor for SV fusion and
Synaptotagmin		5111-1	facillitatory role in endocytosis
	slow poke	do 1	Ca^{2+} activated K ⁺ channel regulating SV
		510-1	release duration
Synansin	Syn		Required for normal learning and
Synapsin			memory
SAP47	Sap 47		?
----------------------	-----------------------	--------	--
CSP	Csp		SV associated co-chaperone.
Endocytosis			
Clathrin heavy chain	chc	?	Clathrin mediated endocytosis
			Required for Clathrin mediated SV
Endophilin	Dendo-A	?	endocytosis but not for the "kiss and run"
			mode.
Eps-15	CG16932	ehs-1	Facillitatory SV endocytosis role,
			possibly through a dynamin interaction
	at an ad	Unc-41	Endocytosis; sorting and recycling of
Stolled A/B	sionea		synaptotagmin
Dynamin	Shibire ^{ts}	?	Endocytosis
α- ADAPTIN	dada	?	Endocytosis
Lon (Like AD190)	,		May regulate clathrin coat assembly and
Lap (Like AP180)	lap	Unc-11	the SV size
Abnormal wing disc	awd	?	Endocytosis
	amphiphysin	?	Role in muscle organization, excitation-
Amphiphysin			contraction coupling, but not SV
			endocytosis
Dynamin associated		?	Stabilizing scaffold required for synaptic
protein 160	Dap160		development and endocytosis (Koh et.
			al., 2004).
Liquid facets	lqf	?	Clatherin mediated endocytosis
Stoned	stoned	?	SV recycling
Synaptojanin	CG6562-PB	Unc-26	Clathrin mediated endocytosis

Active zone proteins			
Ca ²⁺ channel	Cacophony	?	Calcium influx
Liprin	Dlar	Syd-2	Regulation of the bouton size, formation
			of active zones?
Bruchpilot	brp	Cecast	Normal synaptic functioning, adapter for
			synaptic ribbons?

Table 1.4. List of known vertebrate and invertebrate (*Drosophila* and *C. elegance*) proteins involved in synaptic transmission as well as proteins present at the active zone. (Adapted from Ziv and Garner, 2005; Richmond and Broadie, 2002; Koh et al., 2004 and Zhang et al., 2003).

Fig. 1.4.1c. Synaptic vesicle cycle and cytomatrix at the active zone (Based on Ziv and Garner, 2004).

1.5 Motivation For Investigating The nc82 Antigen And Identifying Novel Candidates At The Invertebrate CAZ

In the past decades *Drosophila* has emerged as an excellent model system to study the nervous system with respect to its genesis, assembly and function. However, molecular analysis of its components is not complete. Synaptic structures are difficult to analyze biochemically. Yet, over the years a large amount of valuable data about the synaptic vesicular cycle, processes of neurotransmission and some aspects of exo- and endocytosis have been accumulated.

Several molecules which are components of the synaptic machinery have been characterized and mutants for their respective genetic loci have been obtained to aid in functional studies (summarized in table 1.4).

However, numerous unanswered questions remain and many important components as well as their functions need to be characterized. Presynaptic active zones of invertebrates are one such structure that is poorly understood at the molecular level.

According to recent reviews (Zhai and Bellen, 2005; Ziv and Garner, 2005) conflicts still persist with respect to the problem if there exists a common minimal synapse and if active zone assembly takes place by a generalized mechanism. Such questions require a comparative study of different organisms at an ultrastructural as well as molecular level. So far valuable ultra-structural data have been obtained from several organisms which highlight the diversity and complexity present at the active zone structures.

In vertebrates, although sufficient material could be obtained to study *in vitro* proteinprotein interactions, *in vivo* validation of these interactions could take very long due to cumbersome genetics. In invertebrate model systems, although their powerful genetics has been extremely beneficial for such studies, molecular analysis is far from trivial. The availability of the whole genome sequence for *Drosophila* has greatly helped overcoming this problem. Homologues for already known proteins could be searched and simultaneous forward and reverse genetic approaches can be taken to address relevant questions. Primary focus of the research group where the present study was carried out has been to understand the molecular architecture of the synapse. To address this problem an efficient reverse genetic approach has been developed in the pre-genomic era. A hybridoma library was obtained after *Drosophila* brain homogenates were injected into mice (Hofbauer, 1991). Monoclonal antibodies were selected by an immunohistochemical screen on adult brain sections for interesting/unusual staining patterns. Out of these, the antibodies that could reliably recognize their respective antigens on immunoblots were further shortlisted. An identification of the antigen by various genetic and/or biochemical methods, followed by characterization of its genetic locus was launched. Perturbation of the genetic locus by classical mutagenesis, identification was carried out. This, so far has proved to be a valuable and economical approach supplementary to forward genetic screens which would identify only genes that lead to a strong phenotype when mutated. The group has so far described CSP (Zinsmaier et al., 1991, 1994), Synapsins (Godenschwege et al., 2003) and SAP47 (Funk et al., 2004) using these approaches.

The Monoclonal antibody MAB nc82 is one such antibody shortlisted in the screen described above. The nc82 antigen seems to be pan-neuronally expressed and staining quality is crisp.

At the NMJs unlike other synaptic markers nc82 has sharp puncta of staining. This property presumably makes the staining on adult brains also crisp. Optical sections of such stainings are transparent and hence nc82 has been a very popular synaptic marker amongst *Drosophila* neuroanatomists, as it serves as an excellent scaffolding marker.

Because of the primary indications about its subcellular localization at the active zones, lack of knowledge of the AZ proteins in invertebrates and our interest in studying synaptic architecture at the molecular level, we decided to investigate the molecular nature and function of this candidate active zone protein in detail.

Our investigation identified the nc82 antigen as one of the first invertebrate active zone protein. It has conserved domains similar to the vertebrate active zone protein ERC/CAST. Functional analysis by RNAi knockdown lead us to name the protein Bruchpilot (German for "crash pilot"). The present study suggests that Bruchpilot

expression at the presynapse is essential for normal structure and function of chemical synapses.

Chapter 2: MATERIALS AND METHODS

2.1. Nucleic Acid Isolation

2.1.1 DNA Isolation

DNA isolation was primarily carried out for the following purposes.

A. Isolation and purification of plasmid DNA as an empty vector or with insert by doing plasmid miniprep for smaller amounts (100ng/ul) and midipreps for larger amounts of DNA (1000ng/ul).

B. Purification of DNA digestion, PCR and RT PCR products which might serve as cloning fragments, templates for Southern and northern blot probes or templates for sequencing.

C. Isolation and purification of genomic DNA which may serve as a template for genomic PCRs or for blotting in order to make Southern blots.

A. Plasmid Purification

Minipreps: Up to 1 ug of DNA was prepared using the miniprep method. Bacterial colonies were grown in LB medium supplemented with appropriate antibiotic at 37 or 30^{0} C at recommended time periods. Routine alkaline lysis method (Sambrook et al., 1989) was used for plasmid purification.

QIAprep Spin Miniprep Kit (QIAGEN) was used alternatively. Manufacturer's instructions were follwed without significant alteration (refer to QIAGEN[®] Plasmid Purification Handbook(s) available with the commercial plasmid purification kits from Qiagen limited).

Larger amounts of plasmid DNA were made using the midiprep method. QIAGEN Plasmid Midi Kits (QIAGEN) were used for the same (refer to QIAGEN[®] Plasmid Purification Handbook(s)). DNA was eluted in the given amount of TE buffer or dH_2O and stored at

 -20° C for future use. DNA content was estimated photometrically with appropriate dilutions or visualized on a gel along with standard molecular weight markers (2 log ladder, NEB).

The elution procedure for miprpeps was modified slightly in order to obtain higher yields of the DNA. Elution columns were incubated with smaller amounts of dH_2O or elution buffer (10 mM Tris, pH 8.5) and columns were incubated at $68^{\circ}C$ for 5 minutes. Columns were centrifuged for 2 minutes. The elution procedure was repeated in a similar fashion if desired using fresh dH_2O or elution buffer and combining the eluates at the end.

B. PCR Product Purification And Gel Extraction

PCR and RT-PCR products were purified using commercially available silica gel based QIAquick PCR Purification Kit (QIAGEN). Purification procedure as recommended by the manufacturer was followed with slight modifications at the elution step. DNA was eluted in small amounts of dH₂O or elution buffer (10 mM Tris pH 8.5), columns were incubated at 68^oC for 5 minutes and centrifuged for 2 minutes in a tabletop centrifuge at maximum speed. For gel extraction the DNA was fractionated on an agarose gel (using lowest possible concentration of agarose in the gel for the given species of DNA), visualized under UV light, excised with a clean blade and subjected to gel extraction using the QIAquick Gel Extraction Kit from QIAGEN. Manufacturers' instructions were generally followed except for the elution step, which was modified as described for the miniprep and PCR purification methods.

C. Isolation And Purification Of Genomic DNA

Genomic DNA was primarily isolated to serve as a template for the genomic PCRs, as a template for preparing radiolabelled probes and mostly for making southern blots in order to screen the jump out locus. Flies were collected and frozen at -80° C. 50 flies/preparation were homogenized in 1 ml of homogenization buffer (100 mM NaCl, 100 mM Tris 50 mM, EDTA (pH 8.0), 0.5% SDS). Homogenate was incubated at 68° C for 30 minutes. Homogenate was incubated on ice for 30 minutes after the addition of 125 ul of 8M calcium acetate. A centrifugation for 10 minutes at 14,000 rpm followed this step and was repeated once after transferring the supernatant to a fresh tube. DNA was precipitated with 2.5 volumes of 100% ethanol for 10 minutes at RT. The pellet was washed with 70%

ethanol, dried and dissolved in the appropriate amount of 10mM Tris pH- 8.0 or dH_2O . This procedure typically yields 15 ug DNA/100 ul. DNA was usually stored at $-20^{\circ}C$ in elution buffer or under 100% ethanol for longer duration.

2.1.2 RNA Isolation

RNA was isolated for following purposes:

- A. To serve as a template for reverese transcription.
- B. To serve as a raw material for poly A^+ selection.
- C. For Northern blot analysis of transcripts.

RNA was isolated from flash frozen WT *Drosophila* heads using RNeasy Midi Kit (QIAGEN). 250 mg of flyheads per midi column were obtained by passing the frozen heads over sieves placed in liquid nitrogen. Heads were powdered in a prechilled mortor to make a fine powder and then subjected to homogenization with 10 strokes in buffer RLT supplemented with 10ul/ml of 2-mercaptoethanol. Homogenate was centrifuged at 35000 rpm for 1 hour in order to remove all insoluble particles which would clog the silica membrane during purification. The rest of the protocol was carried out as recommended by the manifacturer. RNA was extracted in water and stored at -80° C for long term storage. RNA content was photometrically estimated. Usually 800ng/ul of total RNA was obtained. For poly A⁺ selection of the RNA Oligotex mRNA Mini Kit available from QIAGEN was used. Manifacturer's instructions were followed without any modification. RNA was eluted in elution buffer (10mM Tris pH -7.5). RNA content was photometrically and visually estimated (1% agarose gel, run for 15 minutes, stained with EtBr). RNA was stored at -20° C under 100 % EtOH after precipitating with 4 M LiCl.

2.2. Nucleic Acid Amplification

2.2.1 PCR

PCR was primerily used for following purposes

A. To amplify a certain region from genomic DNA which would subsequently be used for cloning or as a template for labelling reaction.

- B. To amplify a single stranded DNA reversely transcribed from mRNA in order to make cDNA
- C. To amplify products that would be used for sequencing.

A few variations on the following aspects of polymerase chain reaction were routinely applied in order to increase the specificity and good yield of the PCR product.

Primers

Primers were designed using commericially available primer design programs (e.g. primer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi)).

%CG concentration was usually kept around 50. Melting tempratures of the primer pairs were adjusted to be similar within an interval of 1-2 ⁰C and primer length was usually restricted to 20–22 bases. Melting tempratures were kept between 55-62 ⁰C.

For linker PCR restriction sites were added to the primers. Restriction sites were flanked by the recommended number of bases in order to facilitate direct digestion of the PCR product without subcloning (NEB catalogue, MBI catalogue).

Primer stocks were appropriately diluted and kept frozen. Frequent subjection to freezethaw cycles of the master stocks was avoided as much as possible.

Template

Depending on the length of the expected PCR product the amount of template DNA was adjusted. For 0.1 to 10 kb genomic DNA targets 50 –100 ng of template gDNA was used. For 0.2 to 10 kb plasmid DNA targets 0.01 to 10 ng of template DNA was used (adopted from a support protocol from Eppendorf).

dNTPs

A 10 mM stock of dNTPs was prepared and always stored as 20 ul aliquotes at -20° C as dNTPs are prone to degradation upon frequent freeze-thawing.

PCR Conditions

Denaturation: Usually template DNA was denatured for 4 minutes at 95° C initially followed by 20 – 30 sec denaturation at each cycle.

Annealing : Annealing temprature was kept approx. 5^{0} C lower than the melting temperature of primers and this step was usually allowed to take place for 20 –30 sec. A range of temperatures were almost always tested using the gradient option for annealing temperatures.

Extension: This step was usually carried out at 72° C. However, for long range PCRs the temperature was reduced to 68° C in order to decrease the damage to the template. Elongation time was set for each reaction assuming that each 1000 base amplification requires 1 minute.

Number of cycles : Typically of 25 to 35 cycles were found to yield a good amount of product for most of the reactions.

Reamplification : In case a very weak product was obtained, the PCR was repeated using $1/20^{\text{th}}$ to $1/50^{\text{th}}$ of the weak product as a template.

Extension at the end of the last cycle: In order to ensure the completion of amplified product an 8 minutes elongation step at the end of the last cycle was added to the program. For TA cloning its necessary for the amplicon to have an A overhang which is ensured by this step (see TA cloning in method 2.4.2).

Salt concentration: For most of the reaction 1.5 mM $MgCl_2$ turned out to be sufficient. However, for certain reaction increasing the salt concentration to up to 3-4.5 mM produced better results.

Visualization, estimation, purification and storage : $1/20^{th}$ of the PCR product was visualized on an agarose gel after EtBr staining, purified by QIAquick PCR Purification Kit (QIAGEN) and stored at -20° C until further use.

2.2.2 RT-PCR

Reverse transcription was carried out using either oligo dT or a specially designed gene specific internal primer. Superscript II (Invitrogen) or MMLV H⁻ RT (Fermentas) reverse transcriptases were used with comparable results. 0.5 to 2.5 ug of Total RNA or 0.1 to 1 ug of poly A^+ RNA was used. DTT was incorporated whenever instructed by the manufacturer. Reaction was carried out at 42^oC for 1 hr and the enzyme was inactivated by heating the reaction for 15 minutes at 70^oC. 1/4th of the RT pcr product was directly used as a template for the PCR reaction. Primer nested to the primer used for RT was sometimes used as a reverse primer for second starnd synthesis and subsequent amplification of the cDNA (see method 2.2.1 for PCR).

Products were used for sequencing, for labelling templates or cloning fragments after PCR purification. A list of primers used for PCR, RT-PCR and linker PCR for various purposes is given in Appendix 1.

2.3. Nucleic Acid Detection

2.3.1 Agarose Gel Electrophoresis

DNA was fractionated on 0.8%, 1% or 2% agarose gels. Ethidium bromide (EtBr) was incorporated (0.1 ul of 10 mg/ml stock) in the gel prior to casting or the gel was stained with EtBr in 1X TBE for 1 hr before visualization.

2.3.2 Southern Blots

The P element mobilization screen was carried out using the southern transfer and detection method (fig. 2.3.2a & b).

Fig. 2.3.2a – Basic principle of a southern blot.

(Based on : http://www.bio.davidson.edu/courses/genomics/method/Southernblot.html)

0.8 % agarose gel was used to fractionate ca. 4 ug appropriately digested and phenol purified genomic DNA from entire flies. Amersham Hybond NX was used as a membrane for the southern transfer. DNA was electrophoratically fractionated overnight along with the DNA marker (2 log ladder, NEB), lightely stained with EtBr, documented along with a scale, depurinated, denatured, neutralized and subjected to overnight blotting by cappilary action. DNA was crosslinked (auto cross-link mode, Stratalinker, Stratagene) and hybridized with an appropriate radiolabelled probe (see method 2.3.4 for radiolabelling) in Church buffer at 65^oC for 24 hours. Excess of probe was washed off with 2X, 30' low stringency (2X SSC, 0.2%SDS, RT) and 2 X, 30' high stringency (0.2X SSC, 0.2% SDS, 68^oC) washes and exposed for 2-4 days at -80° C. Blots were kept moist until reprobing or stripping and stored under SARAN wrap at -20° C. (see method 2.3.5 for stripping the Southern/Northern probes).

Fig- 2.3.2b- Southern transfer by capillary action.

(Based on : http://fugu.hgmp.mrc.ac.uk/Protocols/Biology/southern_blot.gif)

2.3.3 Northern Blot

A protocol as described in the Unit 4.9 of current protocols in molecular biology was followed for northern blots. All the solutions except for Tris were DEPC treated and the glassware was baked at 180°C overnight in order to remove any RNAse contamination. Tris was made into DEPC treated water. Gel chamber and gel cast were treated with 3% hydrogen peroxide for 10 minutes and then washed thoroughly with DEPC treated Mili-Q water. RNA was isolated from wild type fly heads as decribed in method 2.1.2. Bulk quantities were stored at -80° C for longer storage. Alternatively small aliquotes were pelleted down and stored under 100% ethanol at -20° C. 3 – 10 ug of poly A⁺ RNA was fractionated using formaldehyde gel elecrtophoresis in 1X MOPS buffer. Only the fractionated RNA marker was cut out from the gel stained with EtBr and photographed along with a scale for future comparison with the blot. Amersham Hybond NX was used as a blotting membrane. Northern transfer was carried out overnight (refer to figure 2.3.2b), RNA was crosslinked to the membrane (autocroslink mode, Stratalinker, Stratagene). Church buffer was used as a prehybridization and hybridization buffer. 2000 - 5700 bp DNA probes were used. Probe DNA was excised from the plasmid, gel purified, roughly visually quantified on an agarsose gel and then subjected to radiolabelling (see method 2.3.4 for labelling). Hybridization was carried out at 65^oC for 24 hours following 1 hour prehybridization at the same temperature in hyridization tubes. Excess of label was washed off 2X, 30' each with 2X SSC, 0.2% SDS and 2X, 30' each with 0.2 X SSC, 0.2% SDS at 65^oC in hybridization tubes. Moist membrane was covered with a transperency cut to the size of the support film and the blot was exposed to an X-Ray film for a duration of 24 hours to up to 21 days at -80° C. For their reuse either the blots were left at -80° C for longer duration in order to allow the label to disintegrate or alternatively the blots were stripped prior to reprobing (refer to method 2.3.5).

2.3.4 Radiolabelling

Hexalabel nucleotide labelling kit (Fermentas) was used for radioactive labelling of the probes for southern and northern blots. Manufacturer's protocol was followed without any significant modification. 100 ng of DNA (visually estimated on an agarose gel) was used as a template. The reaction mixture was denatured by boiling for 10 minutes prior to setting-up the hybridization. γ^{32} P dCTP (Amersham and Hartmann analytic) was used as the radioactive dNTP.

To test the extent of incorporation of the label 1ul of the final reaction volume of the labelling reaction was added to 950 ul of 3.5 % perchloric acid, 100 mM NaPPi and 50 ul of carrier DNA. A GF/C paper (Schleicher & Schuell Bioscience GmBH) was wet with 1N HCl, 10mM NaPPi and 1ml of the above mentioned mixture + 50 ul of carrier DNA (Sheared Salmon Sperm DNA, Eppendorf) was applied to it. The paper was washed throughly with 1N HCl, 10mM NaPPi and the radioactivity determined with a Geiger counter.

2.3.5 Reprobing

Southern blots

Blots were boiled in 0.1 X SSC, 1% SDS in a microwave oven for 10 minutes. The extent of stripping was estimated by exposing the blots overnight.

Northern blots

Blots were incubated at 65° C for one hour. Often the blots were just stored at -80° C in a moist condition until the label had disintigrated.

2.4 Cloning

Cloning procedures were used in order to achieve the follwing purposes.

A. To use the cDNA for subsequent bacterial expression.

B. To incorporate fragments of cDNA in oppposite orientations with a spacer and fragments of genomic DNA and cDNA in opposite orientations in a pUAST vector for the RNAi studies.

C. To incorporate southern blot probes in bluescript vector to facilitate easy storage and amplification.

Cloning Procedures

2.4.1 Blunt/Cohesive End Ligation

Both insert and vector were digested with appropriate enzymes for not more than 2-3 hours at recommended tempratures. DNA samples were fractionated by agarose gel electrophoresis, visualized briefly under UV light (preferably the low power UV torch), cut out with a clean blade and gel purified. DNA was usually estimated by visualization in the gel (preferred) and/or by photometric measurement.

For cohesive/blunt end ligations 1:5 or 1:3 was used as a vector:insert ratio. In extreme cases the ratio 1:10 was also used. For blunt end ligations 4% PEG was incorporated in the ligation mixture as recommended by the manufactureres. The amount of vector and insert needed was calculated using the formula: P moles of DNA = (ug of vector x 1500) / bp of the DNA. Typically 20-50 ng of vector was used for the ligation reactions. Ligations were performed for 1 hr at RT or overnight at 18 $^{\circ}$ C followed by transformation. DNA was isolated from the colonies (blue-white selection whenever possible) and after minipreps digested with appropriate enzymes.

2.4.2 TA Cloning Using TOPO Cloning Kit

Concept of TA cloning is illustrated in figure 2.4.2a. Manufacturer's instructions were followed while using the TA cloning. The insert and vector mixture was incubated together for up to half an hour whenever bigger inserts (> 2 KB) were used. Similar yield of positive clones was obtained when the amount of vector used was reduced to half the value than recommended in the standard protocol. Transformants were always subjected to blue/white selection prior to screening.

Fig.2.4.2a- TA cloning.

In order to ensure that the insert contains A overhangs, the PCR program was modified allowing an extra 8 minute elongation step at 72° C. In cases where Taq polymerase was not used for the PCR, the product was incubated with taq and dNTPs (or dATPs) for 10-15 minutes at 72° C in a water bath or heating block prior to cloning.

Protocol for TOPO – TA cloning: (Modified from invitrogen).

PCR product	0.25-2 ul
Salt solution	0.5 ul
TOPO vector	0.5 ul
dH ₂ O	add to 3 ul
Final volume	3 ul

2.5. Protein Analysis

2.5.1 SDS PAGE

The Laemmli buffer system was used for SDS-PAGE. Depending on the size of the protein to be fractionated 5%, 7.5% and 12.5% running gels were used. 2X or 5X sample buffer was used for loading protein samples onto the gel.

2.5.2 Protein Staining In The Gel

Coomassie Staining

Gels were stained with Coomassie stain (1%BPB, 40% methanol, 20% acetic acid) for two hours under shaking. 40% methanol + 20% acetic acid was used to destain the gel. Usually a ball of tissue paper was included with the gel in the destaining jar to accelerate the process.

Silver Staining

For visualizing weaker bands silver staining was used. A standard procedure was applied and care was taken not to touch the gel with bare hands. The gel was soaked in distaining solution (40% methanol, 20% acetic acid) for 30 minutes, washed in Mili-Q water, followed by soaking the gel in solution 1 (0.3% sodium thiosulphate, 0.15% potassium ferricynide and 0.05% sodium carbonate) for 90 seconds under shaking. A wash with MiliQ water was included to remove the colour. The gel was incubated in solution 2 (0.1% AgNO₃) for 30 minutes in the dark. The gel was washed 2X, 5 minutes each with solution 3 (2.5% sodium carbonate) with constant shaking. The gel was left in solution 4 (2.5% sodium carbonate, 100ul/100ml formaldehyde) until bands appeared. The reaction was terminated with 1% acetic acid.

Chloroform Staining

As a quick staining method gels were immersed in chloroform and the fractionated proteins were visualized under UV as faint white bands.

Gel Drying

Gels were left in the gel drying solution (3% glycerol, 20% methanol) overnight, followed by covering them in a cellophane paper (with sufficient water to exclude air bubbles), sandwiched between two sheets of blotting paper and vacuum dried overnight.

2.5.3 2D-PAGE For The Isolation Of The nc82 Antigen From Fly Head Homogenate

Drosophila head homogenate was fractionated it two dimensions based on charge and mass properties of the proteins. <u>Non Equilibrium PH G</u>radient <u>Electrophoresis (NEPHGE)</u> was used as the 1st dimension and 12% SDS PAGE was used as the 2nd dimension. Basic working principle of the method is shown in figure 2.5.3a.

Fig. 2.5.3a- 2-D PAGE set up and its working principle.

500 fly heads were homogenized in 200 ul 2X modified Laemmli sample buffer (without bromophenol blue and glycerine) with 10 strokes in a glass homogenizer, centrifuged at 10,000 rpm for 10 minutes at 4^oC follwed by ultracentrifugation at 35,000 for 1 hour at 4^oC. Protein in the supernatant was precipitated overnight by adding 9 volumes of chilled acetone at

 -20° C. The pellet was washed 2X with 90% chilled acetone and dried under vaccum for 5-10 minutes. The pellet was redissolved in minimum amount (200 ul for 500 heads) of Lysis buffer (I1, see Appendix 3) an equal amount of Lysis buffer 2 (I2, see Appendix 3) was added to the redissolved pellet. The homogenate was loaded onto already prepared rod gels (see Appendix 3). Prior to rod gel preparation, glass tibes were rinsed with

isopropanol, rinsed with Na-Silicate and baked in an oven at 110^{9} C for 1 hr. The tubes were marked from the bottom to 12 cm and the bottom was sealed with parafilm. After rod gel casting 100-200 ul of sample was loaded on top of the gel rods alongwith Cytochrome C as a marker in one of the rods. Samples were overlayed with 20-40 ul of overlay solution/buffer (J, see Appendix 3). 10mM H₃PO₄ (running buffer, M, see Appendix 3) and 20mM NaOH (N, see Appendix 3) were the electrolytes at the two poles as anode and cathode respectively. Electrophoresis was carried out at 200V for 15 minutes follwed by 300V for 30 minutes and finally at 400V for 90-120 minutes. Gels were removed from the glass rods and processed for the second dimension prior to sealing them on top of 12.5% SDS-PAGE (view SDS-PAGE for details). SDS–PAGE was immunoblotted and the blots were probed with anti-nc82 to detect the spots (refer to method 2.6.1 for western blots).

2.6 Protein Detection, Purification And Localization

2.6.1 Western Blots

For high molecular weight proteins routine western blotting protocol was modified as follows.

The western blot buffer was stored at 4^{0} C. The nitrocellulose membrane (0.45 um, Schleicher & Schuell Bioscience GmBH) sandwitched between the filter papers was soaked into the western blot buffer for at least 15 minutes prior to blotting. The stacking gel was separated and discarded from the running gel. The running gel was briefly washed in the western blot buffer to remove the foam created by SDS in the running buffer. Blotting was typically carried out for 2 hours at room temprature. Efficiency of the western transfer was qualitatively determined by immersing the membrane for 1 minute in Ponsue – S solution (Sigma) and washing it thoroughly under distilled water afterwards.

The blot was marked for lanes with a ball point pen or pencil. Blocking was carried out by immersing the the membrane in warm (Ca. 50° C) blocking solution (5% milk powder in 1X TBST) and incubation at 4° C overnight or for 1 hour at RT.

Excess blocking solution was washed off by 3X washes of 10 minutes each with 1X TBST. Primary antibody was approprietly diluted in 1X TBST. Staining was carried out in glass/plastic dishes or sealed plastic bags for 1 hour at room temperature. Blots were washed 3X for 10 minutes each with 1X TBST follwed by 2^{nd} antibody incubation (diluted in 1X TBST) for 1 hr at RT or overnight at 4° C. Blots were washed 3X, 10 minutes each with 1X TBST and subjected to ECL detection. ECL solutions (Amersham Biosciences) were mixed following the manufacturer's instruction, blots were covered with the mixture for 1 minute, excess of the solution was drained and the blots were exposed to X ray films for 5 - 10 minutes. Films were submerged in developing solution (2min.) – flowing water – fixing solution (2 min) – flowing water and dried at 37° C.

Marker proteins from the blot were traced on the blots along with the borders of the nitrocellulose membrane after orienting the developed film with the original blot.

2.6.2 ECL Detection

When the blot membrane is incubated with peroxide and luminol local generation of light takes place wherever the peroxidase coupled 2^{nd} antibody is bound. This luminescence is trapped on an x-ray film for visualization and permanent record.

Membranes were kept moist between reprobings. ECL detection kit available from Amersham biosciences was used for western blots.

Fig. 2.6.2a – Enhanced chemiluminescence.

2.6.3 Protein Staining On Nitrocellulose Membrane

Ponsue-S Staining

To ensure the extent and quality of protein transfer blots were immersed in commercially available Ponsue-S stain (0.1% Ponsue -S w/v in 0.5% acetic acid, Sigma) for a few minutes and then washed under distilled water prior to blocking in order to remove excess stain. Bands could be marked with a pencil at this stage.

Amido Black/India Ink Staining

0.15% India Ink (Pelican GMBH) in 1X TBST (with 0.5% Tween 20) was applied to the blots overnight prior to washing the excess stain away with TBST. Blots could be stored as permanent records after drying.

Coomassie Staining

Coomassie stain (see staining gels) was alternatively used to stain the blots by applying the staining solution to the blot for a few seconds prior to washing with distaining solution/water. Blots could be stores as permanent records after drying.

2.6.4 Immunoprecipitation

An immunoprecipitation protocol using high salt buffers (Burridge and Bray, 1975) was standerdized and used to immunoprecipitate BRP protein from *Drosophila* brains (developed in colaboration with Roland Jeblick, F2 laboratory course, Oct-Dec 2003). 1000 heads were homogenized in 2 ml of buffer A or buffer B (see Appendix 3) freshly supplimented with 0.5mM final concentration of PMSF and CompleteTM protease inhibitor tablet (Roche)(1 per 50 ml of buffer) in a glass homogenizer with 10 strokes after powdering in a prechilled mortar. Homogenate was centrifuged for 10 minutes at 14,000 rpm at 4° C. 100-500 ul of the MAB nc82 (monoclonal hybridoma supernatant) was added to the supernatant and incubated for 30 minutes to 1 hour at 37° C. 20 ul of protein-A agarose beads (Invitrogen) were added to the mixture and incubated at RT for 30 min to 1 hour or 4° C overnight. Beads were washed with buffer A or B (with 0.2% Triton-X 100) and eluted in 2-5X lammli sample buffer. Samples were fractionated by 7.5% PAGE and immunoblotted. Blots were probed with 1:100 MAB nc82 and subjected to ECL detection.

2.6.5 Immunohistochemistry

Flies were cooled down on ice and were glued to a plastic stick with their wings and abdomen prior to dipping them in prechilled 4% freshly prepared paraformaldehyde (USB) in phosphate buffer (pH: 7.4, Ashburner, Protocol 115). Proboscis and air sacs were removed with the help of a tweezer and sharp blade. Flies were fixed at 4^oC for 3-4 hours and the fixing solution was replaced with 25% sucrose in *Drosophila* ringer, overnight. Fly heads were immersed in carboxymethylcellulose gel on a peg and frozen in melting LiN₂ after orienting as desired and marking the position with a marker pen. Frozen carboxymethylcellulose was cut into a rectangular manner to adjust the spacing between serial sections. Cryosections were collected on pre-chilled SuperFrostTM Plus (Menzel-Glaser GmBH) slides and left at -20^oC for a minimum of 20 minutes prior to drying them at RT for another 20 minutes. Slides were marked with a grease pen around the sections. Sections were blocked with normal serum (VectastatinTM ABC kit, Vector laboratories) at RT. 1st antibody was applied for overnight incubation at 4^oC. After washing in PBST 2X, 10 minutes each, appropriately diluted 2nd antibody (VectastatinTM ABC kit, Vector laboratories) was added to the sections for 1 hour at 37^oC.

ABC complex (VectastatinTM ABC kit, Vector laboratories) was added to the sections for 1 hour at 37^{0} C after washing the 2^{nd} antibody away with PBST, 2X, 10 minutes. A 1X, 5 minutes wash with PBST followed prior to the DAB reaction (DAB substrate kit, LINARIS ltd). After monitoring the colour development, and obtaining the desired staining, sections were washed with 1X PBST and dH₂O to stop the reaction and were mounted in the vectashield mounting medium.

2.6.6 Fixes For Electron Microscopy

Mouthparts were removed as mentioned in method immunohistochemistry. Fly heads were bisected from midline and transferred to modified Karnovsky's fixative (see Appendix 3) (Fröhlich and Meinertzhagen, 1982) for 2 hours at 4^oC. Fixative was later replaced with 4.5% Sucrose in 0.1M Na-cacodylate, 7mM CaCl₂ at 4^oC, overnight.

2.7 Electro Retinogram (ERG)

An experimental set up as recommended (Heisenberg, 1971) was used without much alteration. Flies were glued to the stand with nail-polish. Electrodes were filled with *Drosophila* ringer. The ground electrode was inserted into the thorax. The recording electrode was placed as described in figure 2.7a. Oscilloscope traces were photographed with a digital camera and processed in photoshop.

Fig.2.7a- ERG – origin of the receptor potential and ON/OFF transients (Heisenberg, 1971).

2.8 Microinjections And Transgenics

Flies were allowed to lay eggs on apple agar plates at 25^oC for 25 minutes. Embryos were dechorionated with 7% sodium hypochlorite solution for 45 seconds, washed and arranged on a grid in a row of ca.70-100 embryos. Embryos were transferred onto a glas slide precoated with heptane and allowed to stay in a dessicator for 25 minutes. Embroys were covered with injection oil. Plasmid carrying the DNA of interest and the helper plasmid (3:1) were dissolved in the injection buffer, centrifuged in order to remove the suspended material which might clog the injection needle and filled into the injection needle with an ultrathin pasteur pipette. The needle was broken close to the tip thereby adjusting the volume of DNA released per injection. Embroys were allowed to stay at 18^oC for 48 hours. Larvae were collected in a drop of injection oil after 2 days and left at the bottom of a fresh cornmeal medium vial. Larvae were allowed to develop at 25^oC. Emerged flies were back-crossed to the source strain w¹¹¹⁸ and the F1 was screened for the presence of red eye colour. Transformants were crossed to balancer stocks in order to obtain homozygous transgenic stocks.

2.9 Behavioral Assays

Animals were investigated for their locomotor and flying abilities by using different behavioral assays.

2.9.1 Negative geotaxis

Prior to the assay animals were cooled down on ice and their wings were clipped. An empty food vial was caliberated from the bottom. A single fly was kept in the vial and allowed to walk up the wall within the time period of 30 seconds. Assay was repeated thrice for each animal.

Fig. 2.9.1a – Experimental set up for negative geotaxis.

2.9.2 Walking Behavior

Prior to the assay animals were cooled down on ice and their wings were clipped. A grid of 2 cm unit square was marked on the outer surface of a large petri plate (145 mm). A single fly was released roughly in the center of the plate and allowed to walk for a period of 30 seconds. Sometimes walking was induced by gentle tapping. Everytime the animal crossed a line on the grid a mark was made. Each fly was tested thrice. The number of crossings by each fly was averaged afterwards. Experiment was carried out in red light.

Fig. 2.9.2a – Experimental set-up for the walking behavior.

2.9.3 Flight Tester

A 500 ml calibrated glass cylinder was coated with praffin oil on the inner walls (Benzer, 1973, figure 2.9.3a). Flies were tapped into the cylinder using a funnel. The number of flies sticking to wall at each 50 ml interval as well as those fallen to the bottom were counted. The data was normalized by calculating percentage of animals for each group.

Fig. 2.9.3a- Experimental set-up for the flight tester (not drawn to scale).

2.10 Fly Genetics

Throughout the project wild type as well as mutants of the fruit fly *Drosophila melanogaster* were used for genetic and biochemical analysis. Flies were grown on standard corn meal medium (Appendix 3) and were maintained at 25^oC, 18^oC and 29^oC wherever mentioned.

For bulk isolation of proteins and RNA, stocks of wild type flies were expanded at 25° C, flies were collected in LiN₂ filled falcon tubes (50 ml) and stored at -80° C till further use (flash freezing).

Table 2.10- The following stocks were used for different experiments.

Nr.	Stock
1	WT-B
2	Cs
3	\mathbf{w}^{1118}
4	w ⁻ ; Sp/CyO; Δ2-3 TM2-UBX/TM3 Tb-Sb
5	w ⁻ ; Sp/CyO; TM2-UBX/TM3 Tb-Sb
	y[1]; P{y[+mDint2] w[BR.E.BR]=SUPor-P}KG04653a P{SUPor-
6	P}KG04653b/CyO; ry[506]
7	Df (BSC29)
8	<i>brp⁶⁹</i> /Cyo-gfp (S. Sigrist)
9	UAS – <i>brp</i> - <i>gfp</i> 2 nd chromosome (S. Sigrist)
10	UAS- <i>brp</i> - <i>gfp</i> on 3 rd chromosome (S. Sigrist)
11	UAS – <i>brp</i> on X chromosome (S. Sigrist)
12	UAS – brp on 3 rd chromosome (S. Sigrist)
13	UAS – <i>brp</i> RNAi (B12) on X chromosome (S. Sigrist)
14	UAS – <i>brp</i> RNAi (C8) on 3 rd chromosome (S. Sigrist)
15	UAS – <i>brp</i> RNAi (DW1)
16	UAS – <i>brp</i> RNAi (DW2)
17	elav Gal4 on X chromosome
18	Nina E-gmr Gal4/CyO

Most of the comman lab chemicals were obtained from USB chemicals, Sigma, MERCK and Roth. Enzymes for molecular biology were obtained from MBI-Fermentas, New England Biolabs and Invitrogen. Commericial sequencing was performed at MWG biotech. Mass spectroscopic analysis of the BRP protein was carried out at Toplabs (Munich). Primers were obtained from MWG biotech and Metabion internatonal ltd.. Some special reagents were obtained from companies wherever mentioned. 2-D gel electrophoresis was carried out at the department of cell biology and zoology at the biocenter in Prof. Dabauvalle's lab. Radioactivity was obtained from Amersham Biosciences and Hartmann analytic ltd. Flystocks were obtained from the Bloomington stock center.

Chapter 3: RESULTS

3.1 Identification Of The Protein Recognized By MAB nc82

3.1.1 MAB nc82 Specifically Labels Pre-Synaptic Active Zones

MAB nc82 is widely used as a neuropil marker in confocal images of *Drosophila* brain, providing a structural framework for the "standard brain" and in conjunction with cell-specific stainings (Laissue et al., 1999; Rein et al., 1999; Jefferis et al., 2004; Wilson et al., 2004). For adult brain the staining seems to be uniform, labeling all neuropil. Due to its property to allow a high transparency in immunofluorescent wholemount stainings, this antibody is an ideal tool for 3-D reconstructions and optical sections deep below the brain's surface using confocal microscopy. Fig.3.1.1a shows a confocal section of the adult brain of a transgenic fly expressing the GFP- based sensor cameleon in dopaminergic neurons. The preparation was double stained with nc82 (red) and GFP antiserum (green).

In larval neuromuscular junctions the antigen seems to be primarily present at the presynaptic boutons. In stainings of larval body wall muscles nc82 selectively labels discrete small spots (fig.3.1.1b) surrounded by Dynamin, a GTPase of the peri-active zone known to be involved in synaptic vesicle endocytosis. Distribution of MAB nc82 appears complementary to Dynamin. This suggests that MAB nc82 localizes at the presynaptic active zones.

In order to investigate this finding further, postsynaptic molecules viz. glutamate receptor subunit DGluRIIC (Marrus et al., 2004) and DPAK (Harden et al., 1996) were stained to label the postsynaptic density region (PSDs) at individual synaptic sites (fig. 3.1.1b B and C). The MAB nc82 label always directly faces the center of the postsynaptic densities from the inside and is aligned with the center of PSDs.

These observations strongly suggested that MAB nc82 labelled spots represent the area of presynaptic active zones, the regions of presynaptic plasma membrane, where synaptic vesicles dock, fuse and release their contents into the synaptic cleft upon arrival of an action potential.
Based on its pan-neuronal expression as well as its subcellular localization it was concluded that nc82 antigen could be a potential candidate for an active zone protein. A detailed investigation into the biochemical characterization of the antigen was therefore initiated.

Fig. 3.1.1a- MAB nc82 label as a scaffolding marker (Green- *TH* Gal 4 X UAS-*Cameleon GFP*, kindly provided by A. Fiala).

Fig. 3.1.1b- Active zone localization of the nc82 antigen. A: nc82 (red) and antidynamin (green) double labelling at the NMJ bouton. (Kindly provided by S. Buchner, E. Buchner and V. Rodrigues) B: nc82 (red) and anti-DGluRII (green) labelling. C: nc82 (red) and anti-DPAK (green) labelling. Third figure in each panel is a merge of both markers used. (C- kindly provided by S. Sigrist).

3.1.2 MAB nc82 Identifies A Protein Of About 200 Kda On Western Blots

The nc82 antibody labeled two prominent bands at 190 and 180 kDa, respectively, a weak irregular band at about 60 kDa, and a few very low molecular weight bands.

Thorough washing of the blot often resulted in the disappearance of the weak bands without affecting the two high molecular weight bands (see Discussion).

Protein extracted from 4-8 wild type heads (males and females) was sufficient to obtain the characteristic nc82 signals. Chilled western blot transfer buffer and prolonged transfer time at RT (2 hours) resulted in consistent results. Heating samples prior to loading did not seem to enhance the western blot signals significantly (fig. 3.2.1a).

Fig. 3.1.2a – The nc82 Immunoblot from wild-type animals. Fly head homogenate from 8 heads (lane 1) and 4 heads (lane 2) was fractionated on a 5% PAGE and stained with 1:100 MAB nc82 (5 minutes exposure).

3.1.3 MAB nc82 Identifies 2 Spots At About 200 kDa On A 2D (NEPHGE-PAGE) Western Blot

In order to investigate the nc82 antigen further, it was necessary to isolate the antigen from the mixture of brain proteins after head homogenization. Due to the lack of knowledge about its biochemical properties, initial attempts to purify the protein by immunoprecipitation failed. The relatively unconventional approach of 2D-gel electrophoresis was taken in order to achieve this goal. Mass scale isolation of fly heads, homogenization and sample preparation was carried out as described in Materials and Methods (2.5.3). Proteins fractionated on the basis of charge were refractionated based on their molecular weights by SDS-PAGE prior to western blotting. Blots were stained with 1:100 nc82 antibody and the gel was silver/Coomassie stained in parallel. Due to shrinkage during drying scanned pictures of gels had to be resized to match the blots in order to locate the spots on the gel. Two spots at 190 and 180 kDa were observed by Coomassie and Silver staining (fig. 3.1.3a). The experiment was repeated twice. Spots were excised from a Coomassie stained gel and were analyzed by mass spectrometry (Top Labs GMBH, Munich).

Fig. 3.1.3a – A silver stained 2-D (NEPHGE –SDS PAGE (10%)) of fly head homogenate and subsequent western blot probed with 1:100 MAB nc82.

3.1.4 The nc82 Antigen Solubilizes In High Salt Buffers And Can Be Immunoprecipitated From *Drosophila* Brain Using MAB nc82

Comparison of the peptide masses of the trypsin digested nc82 antigen with expected trypsin fragments of open reading frames (ORFs) of the Drosophila genome revealed that the computed gene CG30337 encodes a protein contained in both isolated spots. However, since CG30337 codes for a protein of only 127.4 kDa molecular weight (see Result-3.1.5), it was assumed that the locus has annotation errors and the expected start codon would be upstream to the annotated one. In order to identify the full length mRNA sequence different approaches were taken (RT-PCR, please refer to Results-3.2.1 & 3.2.2). Alternatively, if available in sufficient amounts, pure protein could also be subjected to Edman degradation in order to sequence the N-terminus of the protein. Information about the first 5-10 amino acids of the antigen could have helped to identify the start codon of the gene. To obtain 20-30 pmoles (clearly visible bands on a Coomassie stained gel) standardization of a large scale protein purification method was required. Bioinformatic analysis of the amino acid sequence revealed the presence of several coiled-coil motifs throughout the sequence (see 3.2.3 for more details) and similarity to the myosin heavy chain domain. Solubilization of myosin like proteins is well characterized and documented (Burridge and Bray, 1975). The solubilization protocol for myosin like proteins using high salt buffers as described by (Burridge and Bray, 1975) was followed in order to solubilize the antigen in the absence of ionic detergents like SDS. 600 mM KCl or NaCl was incorporated in the homogenization buffer (see 2.6.4). To confirm the true solubilization of the antigen in the high salt buffers homogenates were ultra centrifuged (35,000 rpm) for 1 hr in order to remove cell debris and membranes as shown in the flowchart below (figure 3.1.4a). After confirming the solubilization of the antigen immunoprecipitation was attempted. Protein-A coated agarose beads were incubated with the antibody at RT for 1hr or extended time periods and head homogenate supernatant was incubated with the antibody bead complex at RT for 1 hour or more or at 4 ^oC overnight. Beads were washed with homogenization buffer + 0.1% Triton-X100. Protein was eluted by incubating the beads with Laemmli sample buffer (see 2.6.4). Samples were subjected to western blotting and stained with MAB nc82 after fractionating on a SDS-PAGE (fig. 3.1.4b).

Two bands characteristic of the nc82 antigen were observed at 190 and 180 kDa respectively. Most of the antigen was retained by the antibody adsorbed beads as very little signal was observed in the washes. Coomassie/silver staining of the gel (not shown) also demonstrated the presence of two prominent bands at the expected molecular weight. However, staining of the gel also revealed the presence of several other weak bands near the nc82 bands (see Discussion).

Fig. 3.1.4a – A flowchart showing the homogenization and subsequent centrifugation of the fly head extracts in buffer A or B to confirm the true solubilization in either of the buffers.

Fig. 3.1.4b - Immunoprecipitation of the nc82 antigen (in buffer A (see Material and Methods 2.6.4)). C – fly heads directly homogenized in the Laemmli buffer, Sup – Post incubation supernatant, W1, W2 and W3 – consecutive washes with buffer A + 0.3% Triton X 100 prior to elution, P – Elution fraction stained with MAB nc82 (1:100), M – Molecular weight marker (in kDa), Pc – Elution fraction stained with only second antibody (goat anti-mouse HRP). (In collaboration with R. Jeblick, F2-student).

3.1.5 The nc82 Antigen Is A Protein Encoded By A Large Genetic Locus On Chromosome 2R

Initial homology searches in the protein database revealed that the ORF encoded by CG30337 has a high homology with the *Anopheles gambiae* annotated protein ENSANGP0000004221 and with the *Apis mellifera* annotated protein XP_392541. CG30337 was also found to be highly conserved in *D. pseudoobscura* (relevant sequences in Appendix 2).

The CG30337 ORF did not show any significant homology to any known vertebrate active zone proteins. In order to verify that the epitope recognized by MAB nc82 was indeed contained in the CG30337 ORF it was decided to express a cDNA of CG30337 in *E. coli*. A cDNA clone (AT09405) corresponding to the exons of CG30337 was available from the Berkley Drosophila Genome Project (BDGP) and was obtained from Resgen. Experiments by I. Schwenkert demonstrated that induction of the expression of this cDNA in *E. coli* produced a protein of about 120 kDa that is recognized by MAB nc82 (fig. 3.1.5a). The translated protein displays similarity to certain conserved domains (Smc ATPase, Myosin heavy chain and ERM (refer to fig. 3.2.2a for gene structure and fig.3.2.3a for domain structure comparison). Biochemically the protein has a pI between 5.9 to 6.4. No transmembrane domains or known nuclear localization signals were detected.

Fig. 3.1.5a- Bacterial expression of cDNA AT09405. Lane 1- Wild type nc82 from fly heads. (Kindly provided by H. Dürrbeck). Lanes- 2, 3 and 4 – 0 minutes, 30 minutes and 60 minutes induction respectively of cDNA AT09405 in *E. coli* (kindly provided by I. Schwenkert).

Upon comparing the AT09405 translated protein (1133 aa) to its mosquito homologue ENSANGP0000004221 it was observed that though both proteins are highly similar, about 300 amino acids at the N-terminal of the *Anopheles* protein were missing in the *Drosophila* homologue. Mosquito protein was larger in size (1227 aa).

When ENSANGP0000004221 was compared (BLAST) to *Drosophila* proteins it was observed that this protein shows homology with 2 proteins coded by 2 adjacent computed genes on Drosophila chromosome 2R, viz. CG30336 and CG30337 which are apart from each other by about 3 kb. It was also observed that the mosquito protein contains a non-homologous stretch of 34 amino acids that falls between its CG30336 and CG30337 homology regions.

This led to a detailed *in silico* investigation of the intronic region between the CG30336 and CG30337. A 6 frame translation followed by a BLAST search with the "non-homologous" 34 aa stretch from mosquito located a stretch within this intronic region that coded for an almost identical sequence. This stretch was also found to be present in *D. pseudoobscura* (relevant sequences in Appendix 2).

These observations further supported the speculation that the annotation is erratic and would require a detailed experimental analysis of the genetic locus to determine the complete coding region and to identify possible splice variants. An RT-PCR analysis with CG30337 and its neighbouring annotated genes to complete the coding region (see 3.2.1a) and a northern blot analysis (see 3.2.4) to determine the spilce variants were carried out subsequently.

3.2 Characterization Of The Gene Coding For The nc82 Antigen

3.2.1 RT-PCR Analysis Of The nc82 Antigen Coding Locus

Based on conclusions drawn from the discrepancies between observed (127.4 kDa) and expected (180-190 kDa) molecular weights of the protein and from the homology searches with mosquito protein it was thought that CG30336 and CG30337 could indeed be a single gene with a small additional exon present within the large intronic region between the two annotated genes. This hypothesis was tested experimentally by RT –PCR.

Several primer pairs including oligo-dT and as well as gene specific primers were designed in order to investigate the connectivity of the transcripts by RT-PCR (see Appendix 1 for RT- PCR primer sequences).

Total head RNA or poly A^+ selected head RNA served as the template for reverse transcription. Gene specific primers or oligo-dT primers were used for the reverse transcription reaction. RT-PCR products were sequenced and sequences were combined afterwards (figure 3.2.1a summarizes the RT-PCR analysis).

It was concluded that the speculations about CG30336 and CG30337 being part of the same genetic locus and also the presence of the small exon in the annotated intronic region were supported by experimental evidence (fig. 3.2.2a).

Fig. 3.2.1a- RT-PCR analysis of the genomic region encoding the nc82 antigen. Primer names are indicated next to the arrows.

3.2.2 CG12933, CG30336 And CG30337 (But Not CG12932) Belong To The Same Genetic Locus That Codes For The *Drosophila* Homologue Of Vertebrate Active Zone Protein CAST/ERC

BLAST comparison of CG30337 ORF with the protein database did not reveal any significant homology with known synaptic/active zone proteins of vertebrates. In a reverse approach known vertebrate active zone proteins were compared with the *Drosophila* proteome. A previously described vertebrate active zone protein CAST/ERC (Cytomatrix at the Active zone STructural protein, Ohtsuka et al., 2002; Wang et al., 2002) showed small but significant homology to the ORF of another annotated gene (CG12933) and surprisingly, to the CG30336 ORF.

CG12933 is approximately 22 kb upstream to CG30337 on chromosome 2R. Another annotated gene CG12932 is situated 12 kb downstream to CG12933 between CG12933 and CG30336.

CG30336 and CG30337 are homologous to the predicted *Anopheles* protein ENSANGP00000014221 while CG12933 corresponds to the neighbouring protein ENSANGP0000002918. CG12933 locus is highly conserved in *D. pseudoobscura* also.

In order to determine if CG12933 and CG12932 belong to the same genetic locus that codes for the nc82 antigen, further RT-PCR experiments were carried out.

A gene specific primer (36 E 37.3) designed for the 2nd annotated exon of CG30337 was used to make the 1st strand cDNA, compatible primer pairs designed for the 1st annotated exon of CG12933 (forward primer LiEx1.5) and for the last annotated exon of CG30336 (reverse primer 36.3) were used for the subsequent PCR. The PCR product was sequenced (Appendix 2). Experimental data showed a connection between CG12933, CG30336 and CG30337 in that sequence (fig. 3.2.2a). Attempts to connect CG12932 to CG12933 and CG30336 did not succeed (refer to the northern blot data, 3.2.4).

Also, no splice variants were observed when above mentioned primer combinations were used.

It was concluded that the nc82 antigen is significantly homologous to the vertebrate active zone protein ERC/CAST. It is encoded by a complex genetic locus which comprises the ORFs of CG12933, CG30336 and CG30337. After sequencing the RT-PCR products a composite sketch of the revised coding region was obtained. Fragments were pasted into the AT09405 BDGP cDNA and a new complete-composite cDNA was constructed from cDNA fragments (in collaboration with S. Sigrist). Based on the peculiar instable flight behavior of the RNAi knockdown transgenic animals the nc82 antigen was renamed as "Bruchpilot (BRP)" and its coding region was named as the "*bruchpilot* (*brp*)" locus.

Fig. 3.2.2a – The *brp* locus as determined by RT-PCR analysis, northern blots and homology searches. CG12932 (black box) is situated within the same locus but does not appear to be a part of it.

3.2.3. *Drosophila* BRP Contains A Large C-Terminal Part Not Present In Mammalian CAST/ERC Proteins But Highly Conserved Within Dipteran Insects

The N-terminal part of the BRP protein reveals high homology with all mammalian ELKS/CAST/ERC proteins and the *Anopheles* homolog. The conservation is highest in regions corresponding to the first 5 coiled-coil domains of CAST/ERC (Fig. 3.2.3a, for the domain structure of CAST see Ohtsuka et al., 2002). In *Drosophila* as well as *Anopheles* and *Apis mellifera* the *brp* gene and its homologues encode a large C-terminal region (fig. 3.2.3) which is not present in mammalian CAST/ERCs and for which no homologous proteins apart from insect BRPs are found. The high level of conservation between *Drosophila* and *Anopheles* within this domain, however, indicates that this part is likely to be important for insect BRP function.

MAB nc82 identifies proteins at 190 and 180 kDa from mosquito head homogenates similar to that of the fly (fig. 3.2.3b).

Bioinformatic analysis of the amino acid sequence of BRP predicts a possible nuclear localization (not supported by immunohistochemistry), numerous possible phosphorylation sites, no transmembrane domains, two leucine zipper domains, and a glutamine-rich C-terminus. However, no PDZ interaction motif for RIM interaction as found in several mammalian ELKS/CAST/ERC forms seems to be present in the insect BRP protein family. In addition, significant sequence similarities to Myosin heavy chain, Plectin, and Restin are found, mainly due to coiled-coil regions and leucine zipper domains of the proteins. In the Drosophila proteome similarities to LVA (larval lamp), an actin-, spectrin- and microtubule binding protein, to CLIP-190, MTOR (Megator), ZIP (zipper), and MHC (myosin heavy chain) are detected.

Fig. 3.2.3a – Coiled-coil motifs (white boxes)- as predicted by "Coilscan" (Husar) for *C. elegance* CAST, Human ELKS a and BRP. Red, yellow, green and blue stripes indicate highly similar amino acid stretches respectively (Note: Drawn to scale).

Fig. 3.2.3b- MAB nc82 recognizes an *Anopheles* protein at an identical molecular weight position.

3.2.4 The *Drosophila brp* Locus Codes For A Single 11 kb Transcript And A Smaller 2 kb Transcript

On western blots nc82 antibody recognizes two bands. Mass spectrometric data suggests them to be isoforms of the same protein. It was interesting to have some information about these isoforms. In order to know if they are originating due to splice variants of the *brp* transcripts or whether they are generated by differential post-translational modifications affecting their size and thereby mobility on an SDS-PAGE, northern blot analysis of the gene transcript(s) was carried out.

10 ug of poly A^+ selected wild-type head RNA was blotted on a nitrocellulose after fractionation on a MOPS-formaldehyde gel. Blots were probed with complete cDNA (excised complete *brp* cDNA composed up of CG12933, CG30336 and CG30337 from pUAST vector). A 7 days exposure followed by developing the X-Ray film revealed that the most prominent signal is located at about 11 kb. An additional weak signal was also obtained at 2 kb (see fig.3.2.4a).

Failure to amplify cDNAs of different sizes in any of the RT PCR experiments as well as the detection of only one prominent band on the northern blot indicates the presence of a single major transcript for the *brp* gene and that the two bands obtained on western blots could be due to differential post translational modifications.

In order to further investigate whether CG12932 is also a part of the *brp* locus, a 500 bp genomic PCR product obtained from CG12932 was used for reprobing the blot. A very weak signal at about 4.9 kb was obtained after 21 days of exposure which did not match with the *brp* signal (refer to Appendix 1 for the primer sequences used to make the CG12932 probe).

The *Anopheles* CG12932 homologue lies at a very similar relative genomic position (3R: 52 788 996 : 52 789 985, (Holt et al., 2002)) when compared to the genomic organization of *Drosophila melanogaster*. However, since attempts to connect CG12932 to the *brp* gene by RT-PCR (see 3.2.2) as well as northern blots hybridization failed consistently, it seems unlikely that the CG12932 open reading frame might represent or contain alternatively spliced *brp* exons (fig. 3.2.4a).

Fig. 3.2.4a- Northern blot analysis of *brp* transcripts from fly heads. 10 ug poly A⁺ RNA blotted and probed with *brp* cDNA (7 days exposure, lane 2 top), *rp49* (1 hour exposure, lane 2 bottom) and CG12932 (genomic probe, 21 days exposure lane 1). Molecular weights (lane M) are in kb.

3.3 Functional Investigation Of The Bruchpilot Protein

First hints on the function of a novel protein can be obtained by reducing the expression levels or by the complete elimination of the protein and by studying the phenotypes under these conditions. Genetic manipulations in *Drosophila* facilitate the elimination of a protein by means of destruction of the gene. Usually a transposable element present in the vicinity of the genetic locus can be mobilized in order to create desired deletions in the genetic locus. This may result in a functional null mutation for the protein encoded by that gene. However, finding a transposable element in the vicinity of the gene under study is not always possible. Use of RNA interference (RNAi) to reduce the protein levels has emerged as a powerful technique in modern days (Kalidas and Smith, 2002, Piccin et al, 2001).

A combination of RNAi with the well established Gal4-UAS system (Brand and Perrimon, 1993) has provided a faster alternative when null mutants are not available for a particular gene. This facilitates tissue specific suppression of the protein. After its initial gene structure and protein homology had been clarified, the functional significance of the BRP protein was investigated in detail. Since no P element insertions in proximity to exons of the *brp* locus were available, the above mentioned UAS-RNAi approach was initially used. As the P element insertions in the more distant vicinity of *brp* exons were available, generation of classical null mutants was subsequently initiated. Generation of the transgenic flies expressing UAS-*brp* RNAi, generation of *brp* null mutants, and preliminary functional data obtained from the brain specific RNAi expression will be discussed in next few sections.

3.3.1 Generation Of RNAi Constructs And Transgenic Animals For The UAS-RNAi Knockdown Studies

In order to suppress the expression levels of BRP protein RNAi constructs were generated as described by Kalidas and Smith, 2002 and Piccin et al, 2001. Some reports suggested that the usage of a genomic DNA-cDNA hybrid construct has a stronger effect than cDNA-cDNA hybrids (Kalidas and Smith, 2002) while others show comparable results with cDNA-cDNA hybrids. It was decided to use both methodologies in parallel.

An 862 bp region (DWa) (highlightened in Appendix 2, see fig.3.3.1a) from the AT09405 cDNA (obtained from BDGP) was chosen for the cDNA-cDNA constructs. The selected region was amplified by linker PCR (see Appendix 1 for primer sequences). A 199 bp fragment from an unrelated DNA (coding for GFP) was amplified by linker PCR to serve as a spacer between the inverted cDNA fragments (fig. 3.3.1b).

For the gDNA-cDNA constructs the exon-intron region of CG30337 as depicted in fig. 3.3.1a (DWc) was selected and amplified by linker PCR (Primer sequences in the Appendix 1). The corresponding region of the AT09405 cDNA (DWb) was also amplified as above. Regions were selected in such a way that in reverse orientation there are no GTNNNGT splice donor sites.

Fragments were sub-cloned in pBluescript and constructed step by step. Once cDNAspacer-inverted cDNA and gDNA-intron-inverted cDNA fragments were ready they were excised from the pBluescript and cloned directionally into pUAST. Inserts were confirmed by restriction digestion analysis and sequencing.

Transgenic animals were generated as described in Method 2.8. The cDNA-gfp-cDNA construct incorporated successfully into the germline. No transformants were obtained with gDNA-cDNA construct. 2 flies with orange-red eye colour were obtained. These flies were used to establish individual lines DWT1 and DWT2. When crossed to *elav*-Gal4 both DWT1 and DWT2 did not show any obvious phenotype. Since a collaborating group (S. Sigrist) had obtained RNAi lines (C8 and B12, figure 3.3.1a) with drastic phenotypes when crossed to *elav*-Gal4, our lines were not analyzed further.

Fig. 3.3.1a- RNAi target regions mapped on *brp* genomic region and cDNA. Regions B and C were targeted to create RNAi lines B12 and C8 respectively (S. Sigrist). Region DWa was used to create cDNA-cDNA RNAi constructs and region DWc and DWb were used in combination to create genomic DNA-cDNA RNAi constructs.

Fig. 3.3.1b- RNAi constructs using DWa, DWc and DWb target regions. The upper sketch depicts the cDNA-cDNA construct while the lower sketch depicts genomic DNA-cDNA construct. Black blocks represent the intronic region of the genomic fragment DWc.

3.3.2 Generation Of Classical Null Mutants By P Element Mobilization Mutagenesis

Since suppression of a protein by RNAi is never complete and useful P insertions were available it was decided to attempt the generation of deletions in the *brp* gene that would eliminate the protein. P element stock 14101 available from Bloomington stock center was used for this P element mobilization experiment. This line was described having 2 P insertions about 100 kb apart from each other on the 2nd chromosome. The genotype of the line is as follows (henceforth referred to as P1P2/CyO).

y[1]; P{y[+mDint2] w[BR.E.BR]=SUPor-P}KG04653a P{SUPor-P}KG04653b/CyO; ry[506] (refer to Materials and Methods 2.10 for a detailed listing of all the fly stocks used for this experiment).

Insertion P1 is described as being in chromosomal segment 45D4-5, proximal to an unrelated gene *wun2* inserted in one of the exons. Insertion P2 is in 45E4, 5kb downstream to the last annotated exon of CG12933 (fig. 3.3.2a).

Other lines that could have been considered for this mobilization experiments (stock numbers and description of all available stocks in table 3.3.2a) had the insertions at least 3-9 kb downstream to the last annotated exon of CG30337.

Bloomington	$C_{\text{opotype}}(1; 2; 2)$	Distance from the	Break point or
stock No.	$Genotype\left(1,2,3\right)$	brp locus	insertion site
15570	y[1] w[67c23]; P{w[+mC] y[+mDint2]=EPgy2} CG1888[EY02539]; +	9 kb downstream to annotated last exon of CG 30337	045F01
14960	y[1] w[67c23]; P{y[+mDint2] w[BR.E.BR]=SUPor-P} KG08588; +	9 kb downstream to annotated last exon of CG30337	045F01
13948	y[1] w[67c23]; P{y[+mDint2] w[BR.E.BR]=SUPor-P} KG03268; +	3 kb downstream to annotated last exon of CG30337	045F01
14101 2 nd insertion	y[1]; P{y[+mDint2] w[BR.E.BR]=SUPor-P} KG04653a P{SUPor-P} KG04653b/CyO; ry[506]	5 kb downstream to last annotated exon of CG12933	045E04
14101 1 st insertion	y[1]; P{y[+mDint2] w[BR.E.BR]=SUPor-P} KG04653a P{SUPor-P} KG04653b/CyO; ry[506]	Near the last annotated exon of <i>wun2</i> on 2R, 100 kb from 1 st exon of CG12933	045D04

 Table 3.3.2a- Description of the P element insertions around the brp locus.

Fig. 3.3.2a – P element insertions flanking the *brp* locus. The first insertion for "14101"-P1 exists about 100 kb upstream on the same chromosome (table 3.3.2a). The insertion "14101" P2 is shown here in red.

Small deletions at the 3' end of the gene usually result in a truncated product which may or may not produce a null mutant. On the other hand, deletions at the 5' end tend to result in functional null mutants more frequently. Therefore, in order to obtain a 5' deletion in the CG12933 locus stock 14101 was used for P element mobilization.

In the F2 generation, vials were screened for flies with white eyes and single lines were set with each scored jump out event.

The genetic crossing strategy was designed as depicted in the following flow chart (fig. 3.3.2b). Jump out lines were set up on the basis of loss of eye colour to white. Flies were balanced on CyO. About 420 individual jump out lines were set up. Due to the usage of a weak double balancer stock a large number of weak lines did not survive and the final number of surviving lines was reduced to about 300 (table 3.3.2b). Lines which were homozygous lethal were considered candidates for null mutation and were selected for further analysis. About 20% of the lines were homozygous viable. The rest were subjected to screening by southern blots.

Fig. 3.3.2b- P element mobilization strategy for the "14101" insertion line.

1.	Total lines set up	420
2.	Lines survived as balanced stocks	300
3.	Total homozygous viable lines	60
4.	Lines with altered eye colour	5
5.	Lines that had altered	5
	band pattern in	
	southern screening	

Table 3.3.2b – Statistics of the P element mobilization experiment.

Flies were subjected to screening for deletions at the P2 insertion locus as well as the CG12933 locus by southern blotting (see Materials and Methods 2.3.2). Lines that showed any alterations in band patterns as compared to the wild type were selected. Initially 6 lines (8 flies each) were pooled together in one group prior to DNA isolation and the DNA

was blotted in a single lane. However, due to the probes that encompassed 10 kb from the 5' flanking region to the original insertion site, each group showed extra bands which might have arisen by small uninteresting deletions in the intron and hence this strategy was not very efficient in this case.

Since, the most interesting deletions would be expected to affect the exonic region of CG12933, the screening strategy was revised accordingly. An EcoNI/HindIII fragment that covered almost the entire CG12933 genomic region and about 6 kb region upstream to the annotated 1st exon of CG12933 was hybridized with 2 probes amplified by genomic PCR. Both probes recognized the same 8 kb EcoNI/HindIII region. Probe 1 was 1.9 kb probe that covered CG12933. Probe 2 was 1.5 kb probe and covered a region 5.4 kb upstream to CG12933.

Fig. 3.3.2c – Southern blot screening strategy. Unrelated genes *wnt2* (CG1916) and CG12932 are shown in gray. The genomic region between *wnt2* and *brp* is marked by a dotted line.

These probes were chosen because the vital gene wnt2 is in the 5' neighborhood of CG12933 and it was important to make sure that the deletions do not extend into this gene. In this strategy the blot was first probed with Probe 1 and then reprobed with probe 2 without the need to strip off the old label. If the deletion had exceeded the region covered by probe 1 but not by probe 2, extra bands would be expected on the blot when

probed with probe 2 (fig.3.3.2c). Based on the alteration in band patterns 5 lines were short listed for further analysis (fig. 3.3.2d).

Fig. 3.3.2d- A representative southern blot (probed with probe 1 and 2) showing wild type and altered band patterns.

3.3.3 Pan-Neuronal Expression Of UAS-RNAi Results In BRP Specific Downregulation In The Brain

To determine if pan-neuronal expression of UAS-*brp* RNAi has effects specific to BRP expression levels brain sections were stained with CSP (MAB ab49), Synapsin (MAB 3C 11) and BRP (MAB nc82). As shown in figure 3.3.3a CSP and Synapsin levels appear to be normal in both wild type as well as UAS-*brp* RNAi X *elav* Gal4 offspring. While there is drastic reduction in BRP levels in UAS-*brp* RNAi X *elav* Gal4 offspring as seen with the MAB nc82 staining. It was also concluded that the overall brain structure looks normal as visualized by CSP and Synapsin stainings.

Fig. 3.3.3a- Pan-neuronal expression of UAS-*brp* RNAi. A, C & E- UAS-*brp* RNAi (C8) X w¹¹¹⁸ offspring. B, D & F- UAS-*brp* RNAi (C8) X *elav* Gal4 offspring. A & B- MAB ab49 (1:100), C & D- MAB 3C11 (1:100), E & F – MAB nc82 (1:50) (La-Lamina, Me- Medula, Lo- Lobula, LP- Lobular plate).

3.3.4 Downregulation Of brp Adversely Affects Synaptic Function

Finally, a functional investigation of the BRP protein was undertaken.

Although the knockout of the *brp* gene was not yet completed it seemed important to gain first results on BRP function by characterizing the effects of pan-neuronal knockdown of the gene. As described above, 2 lines (B12 and C8) with effective RNAi transgenes under UAS control were generated by the collaborating group (S. Sigrist) and were kindly provided for structural and functional analysis.

UAS-RNAi *brp* (B12) is inserted on the X chromosome and UAS-RNAi *brp* (C8) is inserted on the 3rd chromosome. Pan-neuronal expression of B12 with *elav*-Gal4 results in late embryonic lethality. Pan neuronal expression of RNAi C8 with *elav* Gal4 does not give a lethal phenotype. However, the synaptic vesicle release at the NMJs of 3rd instar larvae is reduced by 50% (S. Sigrist, Wagh et al., submitted) while bouton morphology as well as number of active zones per bouton are not significantly affected. These flies survive to adulthood although protein levels are very low as verified by immunohistochemistry and western blot (fig. 3.3.4a). Adults show a peculiar phenotype. Flies lack any motivation to fly or walk. When thrown into the air flight is often short and unstable. Based on this phenotype the gene was named "bruchpilot" (German for crash pilot).

In order to investigate if the observed behavioral phenotype as well as the reduced BRP levels on western blot and immunostainings are significant physiologically also in adult synaptic transmission, ERG (Electroretinogram, Heisenberg, 1971) analysis was carried out.

Offspring of the cross RNAi C8 X *elav* Gal4 showed unaffected receptor potential but absence of ON and OFF transients. (Figure 3.3.4a F). An even stronger effect can be expected when only photoreceptor synapses are targeted using *gmr* Gal4 and the RNAi B12 line. This was verified by immunohistochemistry which showed a strong reduction of staining in the lamina (fig. 3.3.4a H). Similar to pan neuronally expressed RNAi C8 animals, *gmr* Gal4 X B12 offspring also showed the presence of normal receptor potential and absence of ON and OFF transients (fig. 3.3.4a J), indicating loss of function at the

regular structure of the eye is disturbed in these flies (see Discussion). 6.7 Α В La kDa Me Lo 190 180 143 LP С

targeted synapses. The interpretation of this result is difficult, however, because the

Fig. 3.3.4a –Functional analysis of the BRP protein. Western blot from offspring of w¹¹¹⁸ X UAS-*brp* RNAi (C8) (lane A) and UAS-*brp* RNAi (C8) X *elav* Gal4 and (lane B) stained with MAB nc82 (arrows) and MAB 3C11 (Triangles). Pan neuronal (D) as well photoreceptor specific (H) down- regulation of BRP using *elav*-Gal4 (C8, D) and gmr Gal4 (B12, H) lines. Sections were stained with MAB nc82. C and G are respective controls for both experiments. E & F- Representative ERG profiles from the offspring of w¹¹¹⁸ X UAS-brp RNAi (C8) and UAS-brp RNAi (C8) X elav Gal4 animals, respectively. I & J - Representative ERG profiles for the offspring of w¹¹¹⁸X gmr Gal4 and UAS-brp RNAi (B12) X gmr Gal4, respectively. Arrows mark the ON and OFF transients flanking the receptor potential. Scale 50 mV/200 ms for E,F & I and 10 mV/200ms for J. (La- Lamina, Me- Medula, Lo- Lobula, LP – Lobular plate).

3.3.5 BRP Downregulation Results In Various Behavioral Deficits

The ERG profile of F1 flies from the crosses gmr Gal4 X UAS-brp RNAi (B12) and elav Gal4 X UAS-brp RNAi (C8) strongly suggested a synaptic dysfunction at the lamina. Photoreceptor neurons R1-R6 which are known to be involved in visual motion detection (Heisenberg and Buchner, 1977) make their synaptic connections in the lamina. A strong downregulation of BRP in the photoreceptors using gmr Gal4 X UAS-brp RNAi (B12) offspring (fig. 3.3.4a G & H) as well as the defective ERG (fig. 3.3.4a I & J) of the same animals suggested that these flies might also show a defect in visual behavior. An optomotor behavior paradigm (Buchner, 1976) was used to test this speculation. Animals were fixed in the center of a rotating striped drum and subjected to a movement detection task at various light intensities. They could walk on a small styrofoam sphere whose rotations were monitored electronically. In this way the turning tendency of the animal can be assessed. At higher intensities the gmr Gal4 X UAS- brp RNAi (B12) offspring showed drastically diminished responses at all light intensities as compared to the controls. The elav Gal4 X UAS-brp RNAi (C8) offspring failed to walk (see below) and hence could not be tested in this assay. A representative comparison of a single gmr Gal4 X UAS-brp RNAi (B12) offspring and a control fly is shown in fig. 3.3.5a. The average response at the highest light intensity of 5 flies in each group (inset) demonstrate a constant phenotype. It is concluded that at high light intensities animals with retina specific brp knockdown are not absolutely blind but show severely reduced visual motion detection ability.

Initial qualitative observations of the offspring of *elav* Gal4 X UAS-*brp* RNA*i* (C8) animals had indicated that these animals lacked almost all walking activity. They also exhibited very unstable flight. In order to be able to quantify these peculiar observations a few more behavioral assays were carried out on these animals.

When tapped to the bottom of a vial wild type flies have the tendency to climb vertically up the walls which is termed the negative geotaxis. When tested for this ability (see Method 2.9 for the details of all behavioral assays) *elav* Gal4 X UAS-*brp* RNAi (C8) animals showed lack of any motivation to climb up (fig. 3.3.5b-A). These animals barely showed any movement when tested for walking ability (performed in red light, fig. 3.3.5b-B). Finally, the animals were also tested for their ability to fly using the flight tester assay

as described by Benzer (1973). About 45% of the mutant animals sank to the bottom of the paraffin coated cylinder indicating a severely affected ability to fly normally (fig. 3.3.5b-C & D).

Interestingly, a careful investigation also revealed that the flies do not seem to have a mechanistic problem with respect to the ability to move or fly. If left outside on the table they would stay motionless but if pushed continuously or dropped from a distance they would exhibit a normal ability to walk (though with a little limp at times) and fly. Preliminary observations in this respect suggest a motivational deficit in these animals (see Discussion).

Fig. 3.3.5a – Optomotor response. The graph shows mean rotatory responses plotted against increasing light intensity. Inset- A bar diagram comparing the mean rotatory responses at the highest light intensity for offspring of *gmr* Gal4 X UAS brp RNAi (B12) (left column), w¹¹¹⁸ X UAS-*brp* RNAi (B12) (middle column) and *gmr* Gal4 X w¹¹¹⁸ (right column)(n = 5, kindly provided by E. Buchner).

Fig. 3.3.5b- Locomotor activity and flying ability of the UAS-*brp* RNAi X *elav* Gal4 offspring. A- Negative geotaxis (n=5), B- Walking behavior (n= 8), C- Flight tester – total number of flies at the bottom of the cylinder (n= 3) and D- Flight tester curve-entire distribution (n= 3) (note: B was performed in red light).

3.3.6. BRP Downregulation Results In Loss Of Synaptic Ribbons

After observing the functional defects at the photoreceptor synapses, an ultrastructural study was undertaken in order to investigate whether there are structural changes associated with the dysfunctional synapses. The gmr Gal4 X UAS-brp RNAi (B12) as well as the elav Gal4 X UAS-brp RNAi (C8) offspring were fixed in modified Karnovsky's fixative and processed for EM (see the Method 2.8). Photoreceptor synapses were identified with the help of capitate projections (Stark and Carlson, 1986). In the gmr Gal4 X UAS brp RNAi (B12) offspring cartridge assembly did not appear very well preserved as compared to their wild type counterparts. T-bars were very rare and sometimes structures similar to T-bars were observed floating in the presynapses (fig. 3.3.6a). In the *elav* Gal4 X UAS-*brp* RNAi (C8) offspring cartridge assembly appeared well preserved, however T-bars were totally absent. A quantitation of T-bars from a total of 15 cartridges evaluated in 3 individual sections of the RNAi expressing animals showed no recognizable T-bars as opposed to 11 clear T-bars in 15 cartridges of 3 wild type sections. In many instances cartridges with homogeneous distribution of synaptic vesicles were observed in the sections from the RNAi animals. It was concluded that normal BRP expression is crucial for the formation and or maintainance of the synaptic ribbons.

Fig. 3.3.6a- Ultrastructural analysis of the *brp* RNAi animals. A comparison of the synapses in the lamina of F1 offspring of crosses UAS-*brp* RNAi (C8) X *elav* Gal4 (A-C), UAS-*brp* RNAi (C8) X w¹¹¹⁸ (D-F), UAS-*brp* RNAi (B12) X *gmr* Gal4 (G-I) and *gmr* Gal4 X w¹¹¹⁸ (J-L). T-bars are indicated by arrows and the capitate projections of the presynaptic photoreceptor terminals are indicated by triangles. The T-bar containing profile in panel I does not have capitate projections and thus presumably belongs to a lamina or medulla interneuron which does not express *gmr* Gal4 and hence lacks RNAi expression (in collaboration with E. Asan).

Chapter 4: DISCUSSION

4.1 Identification And Subcellular Localization Of The MAB nc82 Antigen

4.1.1 Limitations To The Subcellular Localization Of BRP By Immunoelectron Microscopy And Possible Alternatives

The distinctive feature of MAB nc82 stainings first recognized at larval neuromuscular junctions was that the synaptic boutons were not filled with label as observed with other synaptic antibodies (e.g. against CSP, Synaptotagmin, Syntaxin) but displayed discrete spots apparently associated with their plasma membrane (figure 3.1.1b). Active zone molecules show a punctuate staining complementing peri-active zone markers such as Dynamin and also exhibit a tight association with the post-synaptic density which contains Glutamate receptors and P21 activated kinase (PAK). Both these localization patterns are observed in double stainings with MAB nc82 and antisera against Dynamin, Glutamate receptor and PAK. These experiments identified the spots labelled by MAB nc82 as active zones. Small spots at high density are also observed in high resolution confocal images of adult neuropil (not shown), while synaptic vesicle proteins such as Synaptotagmin or CSP show a rather homogeneous distribution under these conditions. This suggests that active zone binding is a general feature of MAB nc82 not restricted to the larval neuromuscular junction. So far the sub-cellular localization of the nc82 antigen at the presynaptic active zones has essentially been determined by light microscopic analysis. First attempts to localize the nc82 antigen at the CAZ by immunoelectron microscopy did not succeed. Glutaraldehyde (GA) is required for EM fixation in order to preserve the ultrastructure. GA cross links proteins and already 0.03% GA in the fixative destroys the nc82 epitope during the process (data not shown). The use of tags like GFP for subcellular localization of various proteins by immunoelectron microscopy is well established (Wucherpfennig et al., 2003). Animals with a photoreceptor-specific expression of BRP-GFP (offspring of the cross UAS-brp-gfp (S. Sigrist) X rh1-Gal4) were used to standardize fixation conditions for immunoelectron microscopy using anti-GFP antibody on frozen 10 µm sections (fig. 4.1.1a). Incorporation of 0.05% GA resulted in highly reduced but still visible GFP staining. However, whether ultrastructure of the retina is sufficiently preserved with these

fixation conditions for the identification of active zones and T-bars remains to be seen. GFP label disappeared in these experiments when higher GA concentrations (0.2%) were employed. The use of a different GFP antiserum that may recognize GFP after fixation at higher GA concentrations also remains to be explored.

Fig. 4.1.1a- Effect of GA concentration on the antigenicity of the GFP antigen. Anti-GFP stained frozen sections of flies expressing BRP exclusively in photoreceptor cells (left and middle panels) and a control fly (no GFP expression, right panel). The flies were fixed in 4% PFA + 0%, 0.05% or 0.2% gluteraldehyde added as indicated.
4.1.2 Recognition Of Another CAZ Protein By MAB nc82 Due To A Possible Cross Reaction

Apart from the two high molecular weight bands a weaker band at about 60 kDa had been observed transiently on nc82 immunoblots (see figure 3.1.2a). Resent work by the Bellen group (personal communication), has shown that recombinantly expressed protein dNMNAT (nicotinamide mononucleotide adenyltransferase, coded by CG13645; 96B11) can also be recognized by MAB nc82 at about 60 kDa. This molecule has a putative nucleotidyltransferase activity (EC:2.7.7.-) possibly involved in coenzyme metabolism, catalyzing the last step of NAD biosynthesis, and recently it is also thought to be a structural component of the T-bars. RNAi knockdown experiments as well as ectopic expression of BRP in non-neuronal tissue have convincingly shown the antigen specificity of MAB nc82. MAB nc82 staining persists in dNMNAT null mutants further supporting its antigenic specificity. It might be possible that BRP and dNMNAT share epitopes and hence MAB nc82 is able to cross react with both.

4.1.3 BRP Isoforms And Possibility Of A Post-Translational Modification

Mass spectrometry analysis determined the two spots detected by MAB nc82 in 2D gels as proteins encoded by the same genetic locus thus identifying them as isoforms. These spots have the same isoelectric point but a difference of at least 10 kDa corresponding to about 100 amino acids. However, while there is no indication of possible splice variants that may code for these two proteins, a 300 bp difference could escape detection in an 11 kb signal (see northern blots 3.2.4). A possibility of massive post-translational modification like glycosylation or palmitoylation cannot be excluded but proteolytic cleavage seems more likely to be responsible for this difference in molecular weight.

4.1.4 BRP Immunoprecipitation And Methods To Identify Interaction Partners

Bioinformatic structure analysis and BLAST searches strongly predict the presence of coiled-coil domains for the BRP primary sequence. A middle portion of the protein has a significant homology to a myosin heavy chain domain, indicating its similarity to a large family of structural proteins. This information was particularly useful while standardizing the solubilization conditions for the native protein.

Initial attempts to solubilize BRP in the absence of ionic detergents like SDS did not succeed. Antigen-antibody reactions may be inhibited in the presence of ionic detergents and hence it was difficult to immunoprecipitate the nc82 antigen. Structural proteins like myosin can be easily solubilized in the presence of high salt concentrations. Since BRP shares significant homology with myosin heavy chain, similar buffer conditions were used for its solubilization.

However, these conditions are far more drastic than usual physiological conditions in the *milieu interior* of a neuron. High ionic strength may promote strong hydrophobic interactions amongst proteins which may not interact under physiological conditions otherwise. This would increase the difficulty in the identification of true interaction partners of BRP. One possibility would be to achieve maximum separation amongst the co-precipitated proteins by using a 2D PAGE followed by identification of each visible spot and further validation of the interaction *in vivo*. An attempt to restore the physiological conditions during

consecutive washing steps may also help to reduce the false/forced protein-protein interactions.

4.1.5 High Degree Of Conservation For BRP Amongst Dipteran Insects

A remarkable degree of conservation is observed at the amino acid level between *Drosophila* BRP and its mosquito homologue even though both species have diverged millions of years ago. Between more related species like *Drosophila melanogaster and Drosophila pseudoobscura* even intronic sequences seem well preserved. A recent analysis shows a high level of conservation of this protein in honeybee *Apis melifera* (Order: hymenoptera). The nc82 antibody clearly identifies the protein from *Anopheles gambie* (fig.3.2.3b) and *Musca domestica* (data not shown). These data are in agreement with the bioinformatic analysis. Its high degree of conservation suggests an important function for BRP at the insect synapses. BRP is not conserved to the same extent amongst other invertebrates (e.g. *C. elegance* see discussion below).

4.1.6 Localization Of The nc82 Antigen In The C-Terminal Part Of The BRP Protein

Identification by MAB nc82 of the protein recombinantly expressed in *E. coli* from cDNA (AT09405) leads to two conclusions

- 1. The cDNA obtained from BDGP (AT09405) is a part of the locus that encodes BRP.
- 2. The nc82 epitope has not yet been mapped but since the polypeptide encoded by the AT09405 cDNA is recognized by MAB nc82 the epitope is localized on the amino acid sequence encoded by CG30337 (AT09405 essentially represents this ORF). Later analysis of the *brp* gene structure revealed that the ORF CG30337 is responsible for encoding the C-terminal part of the BRP protein and hence the nc82 epitope is present in the C-terminal region.

4.2 Characterization Of The Gene Coding For The nc82 Antigen

4.2.1 Search For Connectivity Between Neighbouring Annotated ORFs Using Bioinformatics And RT-PCR Analysis

Prior to the present experimental analysis only bioinformatic searches were used for determining the genetic structure of the region containing the *brp* gene. However, annotations of ORFs by gene prediction programs vary for different organisms. Sometimes, two ORFs annotated as two separate genes in one organism could be indicated as exonic stretches separated by a large intron, representing a single ORF in another species. Initially it was thought that BRP could be encoded by a single large locus in *Anopheles* (ENSANGP000004221) which during evolution split into CG30337 and CG30336 as two independent genes in *Drosophila*. However, MAB nc82 recognizes 2 proteins at 180 and 190 kDa in head homogenate from *Anopheles* identical to what has been observed in *Drosophila*. This made the speculation about a split of the *brp* gene during evolution unlikely.

Addition of CG30336 as part of the *brp* locus significantly increased the molecular weight of the computed protein (173.86 kDa). However, the actual observed molecular weights (190 and 180 kDa respectively) indicated a possibility of other neighbouring ORFs being a part of the *brp* locus. The cDNA AT09405 contains a poly A sequence at its 3' end which suggested that this end of the cDNA is likely to be complete. Therefore ORFs annotated in the region upstream of CG30336 were investigated further. Gene structure analysis using RT-PCR was carried out using adult as well as larval (S. Sigrist) RNA. RT-PCR products obtained using both RNA pools did not show any significant difference in the sequences (see Appendix 2). This may indicate that there is no temporal change in the splicing of the *brp* mRNA with respect to at least the most abundant isoforms. Attempts to obtain clear nc82 signals from larval brains on immunoblots have not been successful so far. Therefore, precise information on the biochemical nature of the larval BRP and its isoforms remains elusive. In situ hybridization (S. Sigrist, Wagh et al., submitted) clearly shows that the onset of embryonic neuronal differentiation and expression of *brp* mRNA occur simultaneously.

Attempts to connect CG12932 to the other annotated exons of the region by RT-PCR did not succeed. The protein encoded by CG12932 is conserved in *Anopheles*. Interestingly, the corresponding ORF in mosquito is also situated within the *Anopheles brp* locus at a position similar to that in the fly. The CG12932 ORF seems to have no conserved domains and the standard protein analysis software tools could not predict any information about its subcellular localization, homology with vertebrate proteins and putative function. Nonetheless, for the clarification of the gene structure and the functional analysis of the *brp* gene it was important to obtain additional evidence whether CG12932 could be included as a part of the *brp* locus (see northern blots below).

Conceptual translation of the composite cDNA sequence extended from CG30337 in 5' direction by RT-PCR revealed a single ORF limited 5' by a TGA stop codon four triplets upstream of the 1st ATG start codon as annotated for the CG12933 ORF. By linking cDNA AT09405 and appropriate RT-PCR fragments, the composite cDNA containing the exons of CG12933, CG30336, CG30337 and two new exons was synthesized by the Sigrist group. After adding a GFP tag this composite cDNA was inserted into the pUAST vector and transformed into w¹¹¹⁸ Drosophila germline. Comparison of anti-GFP and anti-BRP (MAB nc82) staining verified the correct targeting of the transgene for synaptic active zones and, by ectopic expression once more the identity of BRP and the nc82 antigen (see Wagh et al, submitted).

4.2.2 Presence Of Coiled-Coil Domains And Primary Indications Regarding The Function Of BRP At The CAZ

Bioinformatic programs specially designed to detect coiled-coil (CC) motifs in the BRP protein sequence predict 11 CC motifs with probability 1 (Coilscan, Husar). These domains are spread out all over the protein sequence. The largest of the predicted domains are present in the middle of the sequence. Coiled-coil motifs are characterized by a heptad repeat pattern in which 1st and 4th residues are hydrophobic while residues in the 5th and 7th position are predominantly charged or polar. The CC motif has been identified in a variety of proteins associated with the cytoskeleton, the Golgi, the centromeres, the nuclear matrix and the chromatin (Rose et al., 2004). These motifs play a crucial role in attaching functional proteins to the solid scaffold of the cell. This may confer an adapter like function upon BRP.

Interestingly, *C. elegance* CAST (CeCAST) shows more structural similarity to vertebrate CAST/ERC with respect to chain length, distribution of CC domains and conservation of the PDZ domain binding domain IWA at the C-terminus than BRP.

Amino acid identity amongst insect BRP and vertebrate ERC family proteins is limited to the first five CC domains (figure 3.2.3a).

4.2.3 Indications Of Large Untranslated Regions For The Larger brp Transcript And Possibility Of A Smaller BRP Isoform Not Detectable By MAB nc82

The northern blot was repeated twice (data not shown). The 11 kb band was highly reproducible and generated the strongest signal on the x-ray film. The cDNA which was obtained by combining RT PCR products (comprising of CG12933, CG30336 and CG30337) is 5.5 kb long. The discrepancy between the transcript size observed on the blot and the size of the cDNA can be explained by certain assumptions. All mRNAs have leader and trailer sequences that are not translated (5' or 3' UTR). An untranslated region of 5.5 kb may be unusual but is not impossible. In the case of the *brp* gene the assumption of a long 3' UTR would mean that the poly A tail of the cDNA ATO9405 was artificially generated by internal priming during reverse transcription, a speculation not supported by the sequence surrounding the polyadenylation site. Genes like *elav* and *fne* (found in neurons) have been reported to have 3' UTRs of upto 6 kb (Brody et al., 2002). A role of the 6 kb 3' UTR for *elav* has been demonstrated in normal *elav* functioning. In general, 3' UTRs act in cis to regulate mRNA translation, stability, and localization through association with regulatory proteins or with antisense RNA. 3' UTRs also play a role in trans in myoblast growth and differentiation (Samson, 2003). Little is known about the regulation of BRP expression, however the presence of a possibly long UTR may point towards a similar mode as postulated for other neuronal proteins like ELAV and FNE. Alternative assumptions like long 5' UTRs (van der Velden and Thomas, 1999) or incomplete splicing may also help to explain the large northern signal.

Reprobing of the blot with a probe specific for CG12932 did not give a signal with similarity to the *brp* transcripts. An exposure time of 21 days was required to obtain a faint but visible signal using this probe. Like the RT-PCR data this again suggests that CG12932 is an unrelated but conserved locus. The faint signal suggests that the encoded protein probably is not abundantly expressed in the adult brain.

The approximate molecular weight of at least one of the isoforms as seen in western blots matches with the computed molecular mass of the protein encoded by the ORF of the composite *brp* cDNA. Hence, it is unlikely that the cDNA is still lacking a significant additional coding region.

The smaller 2 kb band obtained in the northern blots with *brp* full length cDNA would be expected to code for a protein of upto about 66 kDa molecular weight (assuming it does not have large UTRs). However, no such protein seems is reproducibly detectable on an nc82 immunoblot. (The transient 60 kDa band has been regarded as a possible cross reaction with dNMNAT, as discussed above. From the bacterial expression of a partial cDNA it is clear that the nc82 epitope is present in the C-terminal region of the BRP protein. Failure to detect a smaller product with MAB nc82 may indicate that the 2 kb splice variant is transcribed from the 5' region of the *brp* gene. The weakness of the corresponding signal on the northern blot may reflect its lesser abundance as compared to its larger variant.

4.3 Functional Investigation Of The Bruchpilot Protein

4.3.1 Tissue Specific RNAi As An Alternative To Classical Mutagenesis

A spatio-temporally controlled downregulation of BRP in the brain could be achieved by creating UAS-brp RNAi animals. The exact mechanism of RNA interference is not completely understood. However, the extent of downregulation of the protein seems to vary depending upon which domain is targeted. Also, expression of a transgene is regulated to a considerable extent by its point of insertion in the genome. Only two independent insertions were obtained with our own RNAi constructs. Both produced no obvious phenotype when expressed pan-neuronally and were not further characterized since the collaborating group had already obtained highly effective RNAi lines. Thus no information is available on the reason why the DW1 and DW2 RNAi lines were ineffective. Two constructs were generated by the Sigrist group. Series B of RNAi construct targeted the 5th CC domain of the BRP protein encoded by CG30336 while series C construct targeted the 6th CC domain encoded by CG30337. Both these RNAi lines effect a severe, specific downregulation of BRP when Gal4 is present in the cell. Pan-neuronal expression of RNAi B12 with *elav* Gal4 causes lethality at a late embryonic stage. Pan neuronal expression of RNAi C8 with elav Gal4 does not cause lethality. However, adults have severe phenotypes and show drastic downregulation of BRP on the immunoblot as well as on MAB nc82 stained brain sections. RNAi B12 can be effectively used to study BRP function at retinal synapses by expressing Gal4 in the retina only. With the gmr Gal4 driver both lines show downregulation of BRP to a similar degree.

4.3.2 Unresolved Aspects Of P Element Mobilization And Screening Due To Complexity Of The *brp* locus And Multiple P Insertions In The Original P Element Stock

Several P element lines were available that could have been used to create deletions in the *brp* gene (refer to table 3.3.2a in the results). Deletions in the 3' regions usually result in truncated products which may or may not be functional and hence could not guarantee a null mutation. Deletions in the 5' region are more likely to result in functionally null phenotypes. Amongst available stocks line 14101 is the only one where a P element is situated within the *brp* locus near the 5' region and therefore it was used for the mobilization experiment.

The brp locus spans more than 22 kb of the genomic region. The presence of the presumably unrelated gene CG12932 within the large 4th intron of the *brp* gene imposes constrains on creating deletions affecting only the *brp* gene. A larger deletion extending far upstream to the first exon of the *brp* locus could result in a deletion of some part of the Wnt2 gene, making interpretation of a possible phenotype difficult. Line 14101 has 2 insertions on the same chromosome separated by 100 kb (not shown in the sketch). Insertion P1 is in a genomic region containing the genes wunen and wunen 2 (abbreviated as wun and wun2 respectively). These genes are very similar and encode products with phosphatidate phosphatase activity (EC: 3.1.3.4). The proteins are integral to the membrane and are expressed in the embryo (ectoderm, embryonic central nervous system, hindgut primordium and posterior midgut primordium). Loss-of-function mutations for both these genes have been isolated which seem to affect the germ cells and are female sterile. In studies on *wun* function, *wun* and *wun2* appear to act redundantly (flybase). The P1 insertion has not been characterised well. Work done in parallel with our experiments in the collaborating group (S. Sigrist, personal communication) suggests that in the 14101 line in fact part of the P element itself and several kb between wun and wun2 exons are deleted. This will make a remobilization of P1 impossible. Interestingly, the 14101 P insertion line is lethal at a late pupal stage in homozygous condition. Due to the deletion in the wun gene region it becomes essential to determine if this deletion or P2 alone or both in co-operation could cause this lethal phenotype. Since *wun* phenotypes are well studied and the functional redundancy of both genes is established (Flybase), it is unlikely that the deletion in the *wun* region would result in lethality. Because further

mobilization and excision of P1 is not possible, the fact that the jump out mutagenesis produced 60 homozygous viable lines means that the P2 insertion in line 14101 causes the lethality which can be reversed by a precise jump-out. P2 is inserted in the large 16 kb 4^{th} intron of the *brp* locus, 5 kb downstream to the 4^{th} *brp* exon and 7 kb upstream to the CG12932 locus. Both P elements of the 14101 line are quoted as being the P (SUPorP) transposable elements (Roseman et al, 1995). P element P (SUPorP) is a transposon created by cloning a suppressor of hairy wing *Su (Hw)* binding region of the *gypsy* retrotransposon between the P element inverted repeats.

Su (Hw) naturally accumulates in all cells during development and is capable of binding to the *gypsy* element. If inserted between an enhancer and a promoter of a certain gene the P (SUPorP) element can inactivate the enhancer (Roseman et al, 1995). This may result in a drastic downregulation of the expression of the affected gene and could mimic a null phenotype. Attempts to verify a downregulation of BRP by gene dosage immunoblots on heterozygous flies from the line 14101 using MAB nc82 were inconclusive however (data not shown).

Also, no protein with an altered molecular weight was observed on MAB nc82 stained immunoblots from these animals which could have indicated formation of a possibly dominant negative BRP protein due to the interference of this insertion.

This of course, does not rule out the possibility of a product that does not incorporate the epitope for MAB nc82. An immunoblot from homozygous late pupae or larval brains might have been a definitive approach to this problem. However, larval western blots with MAB nc82 have been unsuccessful (Jeblic, R., F2 laboratory course, 2003; Erbguth, K., F2 laboratory course, 2004) and pupal blots were not attempted. A real time PCR analysis of CG12933, CG30336 and CG30337 from homozygous larvae from line 14101 (S. Sigrist) indicated that CG12933 transcription is upregulated by 400% indicating a compensatory upregulation in response to the defective transcription of the entire gene. Whether these transcripts are translated is not known.

An analysis of the total jump out lines shows that about 80% of the total lines are homozygous lethal. Imprecise jump out events occur with a very low probability. If the information available about the P1 insertion is correct then all of the jump out events scored so far for white eye colour must be due to P2 mobilization. It has also been observed that imprecise excision could be of two kinds. 1. Either the P element mobilizes completely excising in addition some part of the adjacent genomic region or 2. Excising partially including the w⁺ gene leaving some part of the P element still inserted in the

original insertion site. The second type of excision is experimentally supported in the current study. A fraction of the homozygous lethal lines were analysed by PCR for the presence of the P2 insertion at its original locus. About 26% of the total lines analysed tested positive for the presence of P2 element fragments (data not shown). This may suggest that in these lines the *brp* gene structure is not restored which could cause lethality similar to that of the original P insertion in line 14101. Homozygous viable lines were not analysed. They are assumed to represent precise jump-out events or small inconsequential deletions.

So far the available facts for the P2 insertion are confusing. The data suggest that the P2 insertion in the original line 14101 represents already a lethal mutation for the *brp* locus. However, since the upstream regulatory region and the CG12933 ORF are not affected, a small BRP fragment could still be made that might have some function during development.

To create BRP null mutants has been attempted by our collaborating group (S. Sigrist) using trans-mobilization of the P-elements present in lines 14101 and 13948 thereby deleting the entire region between these two insertions (refer to the table 3.3.2a and figure 3.3.2a indicating relative positions of the different P element lines flanking *brp* locus). This approach has been particularly useful in creating a large C-terminal deletion in the *brp* gene. This line is denoted as *brp*⁶⁹. However, CG12932 has also been deleted in these mutants. These animals have been found to be homozygous lethal at late larval stages, similar to the line 14101 and the upstream regulatory region and ORF CG12933 again remain unaffected.

4.3.3 The Role Of BRP In Normal Synaptic Function

The ERG is one of the few robust physiological assays available to test functionality of identified synapses in adult flies. The ERG monitors the extracellular electrical activity at the compound eye and lamina in response to light. It consists of two superimposed components: a negative-going sustained component corresponding to photoreceptor depolarization, and a positive light on- and negative light off-component resulting from neurotransmission-dependent hyper- polarization and depolarization, respectively, of second order neurons in the lamina that are postsynaptic to the photoreceptor cells. These so called ON and OFF transients (fig 2.8a in Material and Methods) depend on the synaptic release of histamine from the photoreceptor terminals in response to light (Burg et al., 1993). Thus, mutants that in the ERG show the light-induced depolarization of the photoreceptor cells but specifically lack the ON/OFF transients, likely have a specific defect in synaptic transmission. Exactly this is the case for *brp* RNAi (C8) X *elav*-Gal4 and *brp* RNAi (B12) x *gmr*-Gal4 offspring. Thus, it can be concluded that BRP is needed within the presynaptic photoreceptor synapses in the lamina.

Photoreceptors R1 to R6 are responsible for motion detection. A defect in their synaptic contacts would therefore be expected to result in motion-blind flies. However, the optomotor behavior (figure-3.3.5a) clearly indicates that flies with photoreceptor-specific *brp* knockdown are able to detect motion although with a strongly diminished efficiency.

Even though the ERG represents a robust assay to study synaptic function, it is a relatively crude test. It accounts for extracellular electrical activity and the trace represents a cumulative potential between the different electrode (in contact with the ommatidia) and the ground electrode (in the thorax or in the head capsule). Loss of ON and OFF transients clearly indicates a loss or disturbance of synaptic function at the lamina. However, an asynchronous transmitter release from defective synapses could desynchronize the ON and OFF currents thereby eliminating them from the cumulative trace. An assumption that residual levels of BRP at the synapses are able to keep them functional at least partially is supported by the observed residual optomotor behavior. Similar studies could not be conducted with *elav* Gal4 X UAS *brp* RNAi (C8) offspring as the animals are unmotivated to move even in the presence of normal light and hence are unsuitable for this paradigm.

Finally, *elav* Gal4 X UAS-*brp* RNAi (C8) offspring were tested for their ability to walk and fly using simple behavioral assays (see method 2.9 for the assays). It was observed that the RNAi expressing animals initiate very little movement on their own. The name "Bruchpilot" was given the protein expressed in these animals on the basis of preliminary observations that they exhibit instable flight. This observation was quantitatively verified using the flight tester as described by Benzer (1973). About 45% of the RNAi expressing animals sank to the bottom of the cylinder and the rest were distributed unevenly mainly in the lower half of the cylinder indicating a severely impaired flying ability (fig.3.3.5b-C & D).

However, these animals have a normal appearance with respect to the body size, wings and leg structure and position. Interestingly, it was observed that if these animals are pushed continuously they exhibit normal walking. If dropped from a distance several times they also exhibit normal flying ability. This may point towards a motivational deficit in these animals rather than to a mechanical inability imposed by defective synapses. Further investigation is necessary in order to clarify this point.

In parallel to these experiments investigation of BRP function in larvae was carried out by the collaborating group (S. Sigrist). Larval offspring of the UAS-brp RNAi (C8) X elav Gal4 were analyzed in two-electrode voltage clamp (TEVC) recordings (S. Sigrist, Wagh et al., Submitted). Amplitudes of spontaneous miniature currents (mEJCs) were indistinguishable between RNAi larvae and wild-type controls. Thus, consistent with normal receptor field size and shape, BRP reduction does not affect the response of individual postsynaptic glutamate receptor fields, nor does it seem to influence glutamate content of synaptic vesicles. However, amplitudes of evoked junctional currents (EJCs) were reduced by 40% with very high statistical significance. Since miniature current amplitudes are unaffected, quantal content - the number of vesicles that fuse per stimulus - must be decreased. Because the number of postsynaptic receptor fields is not altered in brp RNAi larvae, the number of vesicles that fuse per synapse is obviously decreased after reducing BRP. This drop could be caused by a decreased release probability per vesicle, or a decrease in the number of vesicles available for release per synapse or both. We thus can conclude that wild-type BRP levels are necessary for normal evoked release at the glutamatergic synapse of the NMJ, while spontaneous release, postsynaptic sensitivity or basic neuronal morphology apparently are not affected by inhibition of BRP expression.

4.3.5 BRP And Formation Of Sub-Synaptic Structures

Interestingly, the gmr Gal4 X UAS brp RNAi (B12) offspring showed a strong lamina specific *brp* downregulation as documented by immunohistochemistry on adult brain sections, exhibited a loss of ON and OFF transients in ERG traces and also showed significant ultrastructural defects as well as major loss of synaptic ribbons (T-bars). Rh1 Gal4 (Rhodopsin 1) is another strong photoreceptor specific Gal4 driver. Neither UASbrp RNAi (B12) X Rh1 Gal4 nor UAS-brp RNAi (C8) X Rh1 Gal4 offspring showed significant reduction in the *brp* levels at the photoreceptor synapses (data not shown). The experiment was performed also at higher temperature $(29^{\circ}C)$ in order to boost the driver expression. However, this modification too had little effect on *brp* expression levels. The gmr Gal4 X UAS-brp RNAi (B12) offspring, on the other hand, even showed a rough eye phenotype which results from a general structural defect. Expression of gmr Gal4 starts early in development while *Rhodopsin 1* Gal4 expression begins in the late pupal stage. An important point could be conceived from this set of experiments. Brp expression may be crucial in the developing nervous system for the formation and/or maintainance of newly formed synaptic connections. An inducible expression system (e.g. Gal 80) may be used to probe this speculation further. A careful analysis of the involvement of normal brp expression in the different developmental stages may throw some light on the developmental significance of this protein.

Notably, these ultra-structural abnormalities were not observed in RNAi (C8) X *elav* Gal4 offspring. *Elav* Gal4 expression also begins early during the development but the adult animals do not show a rough eye phenotype. At an ultra-structural level the cartridge assembly appears to be well preserved. However, similar to the *gmr* Gal4 driven RNAi offspring these flies also show absence of the T-bars.

Expression of the gmr-Gal4 on its own exhibits a rough eye phenotype in homozygous condition at 25^oC and even in heterozygous condition at 29^oC. Hence, the general structural deficits observed in the RNAi flies driven by the gmr-Gal4 driver could be regarded as the property of the driver itself.

4.3.6 Comparative Molecular Architecture Of Active Zones And Future Experiments To Investigate BRP Function

The current study raises many important questions which will need prominent attention in the future. The N-terminal sequence of BRP is homologus to the vertebrate ERC/CAST. BRP is twice as large in size and almost completely composed of coil-coil motifs. Proteins of the ERC family show a conserved PDZ binding domain IWA at the Cterminus (Deguchi-Tawarada et al., 2004). This domain is necessary for interaction with RIM. An IWA domain does not exist in BRP. An extensive search for this domain in the intronic/genomic regions surrounding *brp* locus was negative. No other protein in the flybase showed homology to the C-terminus of vertebrate ERC/CAST. Drosophila has a single locus coding for the fly homologue of RIM. The characteristic C2 and PDZ domains of Drosophila (dm) RIM are highly conserved suggesting a similar function for this molecule at the fly CAZ. It remains to be seen if BRP and dm RIM can physically interact in the absence of a canonical PDZ binding motif. Since BRP can be effectively immunoprecipitated, such a study may be possible. Antibodies against dmRIM have not been published to date. However, according to the annotation (Flybase) dm RIM appears to be a very large protein (2469 aa). One strategy to investigate such an interaction would be to carry out a mass-spectrometric analysis of high molecular weight bands that coprecipitate with BRP.

It might be worthwhile to obtain double knockouts for the *Rim* and *brp* genes and observe the phenotype by various methods. The publicly available *Rim* mutant *Rim*^{EY05246} has been reported to be viable and fertile while a strong *brp* knockdown (as in the RNAi (B12) X *elav* Gal4 offspring) shows embryonic lethality (S. Sigrist, Personal communication). It might be interesting to look at the CAZ structure assembly and possible physiological phenotype in homozygous embryos of such double mutants.

The multidomain CAZ organizers Bassoon and Piccolo do not have sequence homology to any known or computed fly (or invertebrate) proteins. These are very large proteins (400 and 550 kDa respectively) with CC motifs, C2 domains and Piccolo-Bassoon homology domains (Ziv and Garner, 2004). Bassoon has been shown to interact with ERC/CAST in mammals. Whether at all some other proteins which could be functional homologues of these two proteins are present in the fly is not known. Nor has the ability

of BRP to interact with other proteins been determined. Immunoprecipitation studies would probably answer the question of interaction partners very effectively.

At least in vertebrates proteins of the ERC family seem to link several active zone molecules together. A recent study at the photoreceptor ribbon synapse has shown that Bassoon mutants have a floating ribbon phenotype (Dick et al, 2003). A major component of the synaptic ribbons is a protein called RIBEYE (Schmitz et al., 2000). Evolutionarily, RIBEYE belongs to the C-terminal binding proteins (CtBP) which act as transcriptional repressors in bacteria. They have assumed different functions during evolution (Schmitz et al., 2000). These proteins have two domains. The B domain has a strong affinity for NAD⁺ and the A domain is responsible for oligomerization. RIBEYE probably constitutes the central building block of the electron dense photoreceptor synaptic ribbon complex. Bassoon has been shown to physically interact with RIBEYE on one hand and to ERC on the other (see fig. 4.3.5a for a model). The floating ribbon phenotype clearly suggests an adapter function for Bassoon. Motor protein KIF3A, Piccolo, RIM1 and synapsins are also shown to be present at the synaptic ribbons (tom Dieck et al., 2005), while immunolocalization suggests that the neuronal isoform of ERC is present at the base of the ribbon as a component of the CAZ.

Drosophila active zones are well characterized at the ultrastructural level. However, their molecular architecture is almost completely unknown (see Introduction). The only active zone molecule so far described in the fly is the N-type calcium channel cacophony. A recent review by Zhai and Bellen (2005) nicely points out the similarities in active zone architecture at different synapses across species. In that light it seems possible that *Drosophila* active zones are very similar with respect to structure and function to the vertebrate active zones. However, molecular details for the fly active zone are scarce. Although a CtBP homologous protein exists in the fly (encoded by a gene in 87D8-9) its presence at the T-bars has not been investigated. This may be another interesting question to address while studying the components of *Drosophila* CAZ. The presence of motor proteins at the T-shaped ribbons of insect synapses also has not been investigated so far. Synaptic ribbons seem to have an accessory function of tethering synaptic vesicles which thus are added to the RRP. Synapses of retinal or auditory receptor cells show a sustained, tonic release of vesicles upon stimulation and probably require a constant supply of SVs to the readily releasable pool. Such synapses also have prominent synaptic

ribbons (see Introduction). Interestingly, T-bars seem to be present in most of the synapses as seen in adult brain including the giant fiber giant fiber system (Blagburn et al., 1999) as well as larval NMJs. Similar to the Bassoon knock-out phenotype, where floating synaptic ribbons are observed, the *Drosophila wit* mutants show a floating T-bar phenotype and impairment of sustained release (Aberle et al., 2002, Marques et al., 2002). *Wit* codes for a bone morphogenic protein and may have a function in the formation and assembly of active zones. At any rate, it underscores the accessory function of synaptic ribbons across different species.

With the limited information that has been accumulated so far it appears that BRP certainly plays an important role in the maintainance of structure and function of the synapses. The Sigrist group has shown that downregulation of BRP results in a significant reduction of evoked release at the larval NMJs. Dysfunctional retinal synapses in the adult brain of BRP knockdown flies as seen by ERG and ultrastructural analysis also support this conclusion. At the ultrastructural level these flies show the absence of well formed T-bars and sometimes the presence of floating structure that could be remnants of T-bars at the presynapses. These observations suggest that BRP might have a Bassoonlike adapter function at the active zone. However, while mice mutant for Bassoon are viable with a propensity to develop spontaneous epileptic seizures, a drastic reduction in BRP level by strong RNAi effects as well as initial data obtained from *brp* hypomorphic mutants such as *brp*⁶⁹ or *brp*^{P14101} show that partial absence of BRP results in lethality during larval developmental stages. This could mean that BRP has more than one role to play in normal functioning of synapses. Knock down studies at the photoreceptor synapses using gmr and Rhodopsin Gal4 drivers also highlight an interesting developmental aspect for BRP. Downregulation of BRP after synapse formation is completed does not show any dramatic decrease or abnormality at the photoreceptor synapses. This could mean that BRP expression is necessary throughout synaptic development. The fact that *brp* mRNA expression is temporally correlated with neuronal differentiation early in the development (S. Sigrist, Wagh et al., submitted) supports this possibility even further.

If at all BRP is able to function as an adapter, it remains to be seen which components of the CAZ and synaptic ribbons interact with it. What signals confer upon CAZ proteins the property to localize at the active zones is an open question. Specialized vesicles that carry

pre-assembled active zone components to the CAZ (Piccolo-Bassoon transport vesicles, PTVs) have been shown to be present in vertebrates (Zhai et al., 2001). Whether this also holds true for invertebrate CAZ remains to be seen. GFP linked to BRP may be used to mark these vesicles such that their biogenesis and transport could be studied further with live imaging. BRP is an excellent presynaptic AZ marker and probably can be used to trace nascent synaptic contacts marked by CAZ assembly and hence can be effectively used to study the process of synaptogenesis and synaptic plasticity.

Finally, the targeting of BRP to active zones may be exploited to improve functional calcium imaging (Fiala et al., 2002). The CAZ is shown to be in direct contact with calcium channels. If it is possible to identify the domain that is responsible for targeting of BRP to the CAZ, a fusion of this domain with DNA-encoded calcium sensors could allow calcium sensing specifically at the active zone. This would be a valuable enhancement of a novel physiological tool to study the process of evoked release in detail and to analyse real neuronal networks in intact brains.

Fig. 4.3.5a Comparison of the known molecular components of a vertebrate photoreceptor synaptic ribbon complex (tom Dieck et al., 2005) with a *Drosophila* T-bar (not drawn to scale).

BIBLIOGRAPHY

Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR, Goodman CS: *Wishful thinking* encodes a BMP type II receptor that regulates synaptic growth in *Drosophila*. Neuron 2002, 33(4): 545–558.

Ahmari SE, Buchanan J, Smith SJ: Assembly of presynaptic active zones from cytoplasmic transport packets. Nat Neurosci 2000, 3(5) 3: 445–451.

Araki S, Kikuchi A, Hata Y, Isomura M, TakaiY: Regulation of reversible binding of smg p25A to synaptic plasma membranes and vesicles by GDP dissociation inhibitor. J Biol Chem. 1990, 265(22): 13007–15.

Ashburner M: Drosophila a laboratory manual. 1989, 271-273.

Atwood HL, Karunanithi S: Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 2002, 3(7): 497–516.

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl, K: Current protocols in molecular biology. 1998, Vol. 1, 2 & 3.

Benfenati F, Greengard P, Brunner J, Bahler M: Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J. Cell Biol 1989, 108(5): 1851–62.

Bennett MR, Farnell L, Gibson WG: The probability of quantal secretion near a single calcium channel of an active zone. Biophys J 2000, 78(5): 2201–2221.

Benzer, S: Genetic dissection of behavior. Sci Am 1973, 229(6): 24-37.

Betz A, Thakur P, Junge HJ, Ashery U, Rhee JS, Scheuss V, Rosenmund C, Rettig J, Brose N: Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 2001, 30(1): 183–96.

Blagburn JM, Alexopoulos H, Davies JA, Bacon JP: Null mutation in shaking-B eliminates electrical, but not chemical, synapses in the Drosophila giant fiber system: a structural study. J Comp Neurol 1999, 404(4):449-58.

Bloom FE, Aghajanian GK: Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid. J Ultrastruct Res 1968, 22(5): 361–375.

Brand AH, Perrimon N: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118(2): 401-15.

Brandstatter JH, Fletcher EL, Garner CC, Gundelfinger ED, Wassle H: Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. Eur J Neurosci 1999, 11(10): 3683–3693.

Brody T, Stivers C, Nagle J, Odenwald WF: Identification of novel Drosophila neural precursor genes using a differential embryonic head cDNA screen. Mech Dev 2002, 113(1): 41-59.

Brose N, Hofmann K, Hata Y, Sudhof TC: Mammalian homologues of *Caenorhabditis elegans* unc-13 gene define novel family of C2-domain proteins. J Biol Chem 1995, 270(42): 25273–25280.

Buchner, E: Elementary movement detectors in an insect visual system. Biol Cybernetics 1976, 24: 85–101.

Burg MG, Sarthy PV, Koliantz G, Pak WL: Genetic and molecular identification of a Drosophila histidine decarboxylase gene required in photoreceptor transmitter synthesis. EMBO J 1993, 12(3): 911-9.

Burns ME, Augustine GJ: Synaptic structure and function: dynamic organization yields architectural precision. Cell 1995, 83(2): 187–194.

Burridge K, Bray D: Purification and structural analysis of myosins from brain and other non-neuronal muscle tissues. J Mol Biol 1975, 99(1): 1-14.

Butz S, Okamoto M, Sudhof TC: A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 1998, 94(6): 773–782.

Calakos N, Scheller R: Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J Biol Chem 1994, 269(40): 24534–37

Chavis P, Westbrook G: Integrins mediate functional pre and postsynaptic maturation at a hippocampal synapse. Nature 2001, 411(6835): 317–321.

Chen YA, Scheller RH: SNARE mediated membrane fusion. Nat Rev Mol Cell Biol 2001, 2(2): 98–106

Couteaux R, Pecot-Dechavassine M: Synaptic vesicles and pouches at the level of "active zones" of the neuromuscular junction. C R Acad Sci Hebd Seances Acad Sci D 1970, 271(25): 2346–2349.

Cowan WM, Südhof TC, Steven CF: Synapses 2001, The Johns Hopkins University press.

Davis GW, Schuster CM, Goodman CS: Genetic analysis of the mechanisms controlling target selection: target derived Fasciclin II regulates the pattern of synapse formation. Neuron 1997, 19(3): 561–573.

Deguchi-Tawarada M, Inoue E, Takao-Rikitsu E, Inoue M, Ohtsuka T, Takai Y: CAST2: identification and characterization of a protein structurally related to the presynaptic cytomatrix protein CAST. Genes Cells 2004, 9(1): 15-23.

Dick O, tom Dieck S, Altrock WD, Ammermuller J, Weiler R, Garner CC, Gundelfinger ED, Brandstatter JH: The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 2003, 37(5):775-86.

tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtova A, Bracko O, Gundelfinger ED, Brandstatter JH: Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 2005, 168(5): 825-36.

tomDieck S, Sanmart-Vila L, Langnaese K, Richter K, Kindler S, Soyke A, Wex H, Smalla KH, Kampf U, Franzer JT, Stumm M, Garner CC, Gundelfinger ED: Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 1998, 142(2): 499–509.

Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Sudhof TC, Rizo J: A conformational switch in syntaxin during exocytosis. EMBO J 1999, 18(16):4372–82.

Edelmann L, Hanson PI, Chapman ER, Jahn R: Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J 1995 14(2): 224–31.

Ellisman MH, Rash JE, Staehelin LA, Porter KR: Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers. J Cell Biol 1976, 68(3): 752–774.

Fanning AS and Anderson JM: PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 1999, 103(6): 767–772.

Fenster SD, Chung WJ, Zhai R, Cases-Langhoff C, Voss B, Garner AM, Kaempf U, Kindler S, Gundelfinger ED, and Garner CC: Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 2000, 25(1): 203–214.

Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG: Genetically expressed cameleon in *Drosophila melanogaster* is used to visualize olfactory information in projection neurons. Curr Biol 2002, 12(21): 1877-84.

Fischer von Mollard G, Südhof TC, Jahn R: A small GTP-binding protein (rab3A) dissociates from synaptic vesicles during exocytosis. Nature 1991, 349(6304):79–81.

Flybase Consortium: The FlyBase database of the *Drosophila* genome projects and community literature. Nucleic Acids Res 2003, 31(1):172-175. http://flybase.org/.

Frank M, Kemler R: Protocadherins. Curr Opin Cell Biol 2002, 14(5): 557–562.

Friedman HV, Bresler T, Garner CC, Ziv NE: Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 2000, 27(1): 57–69.

Fröhlich A, Meinertzhagen IA: Synaptogenesis in the first optic neuropil of the fly's visual system. J Neurocytol 1982,11(1): 159-80.

Funk N, Becker S, Huber S, Brunner M, Buchner E: Targeted mutagenesis of the Sap47 gene of Drosophila: flies lacking the synapse associated protein of 47 kDa are viable and fertile. BMC Neurosci 2004, 5(1): 16

Garner CC, Kindler S, and Gundelfinger ED: Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 2000, 10(3): 321–327.

Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE, Südhof TC: The role of Rab3A in neurotransmitter release. Nature 1994b, 369(6480): 493–97.

Geppert M, Goda Y, Stevens CF, Südhof TC: The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 1997, 387(6635): 810–14.

Goda Y, Südhof TC: Calcium regulation of neurotransmitter release: reliably unreliable. Curr Opin Cell Biol 1997, 9(4): 513–18

Godenschwege TA, Reisch D, Diegelmann S, Eberle K, Funk N, Heisenberg M, Hoppe V, Hoppe J, Klagges BR, Martin JR, Nikitina EA, Putz G, Reifegerste R, Reisch N, Rister J, Schaupp M, Scholz H, Schwarzel M, Werner U, Zars TD, Buchner S, Buchner E: Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur J Neurosci 2004, 20(3): 611-22.

Gottardi CJ, Gumbiner BM: Adhesion signaling: how β -catenin interacts with its partners. Curr Biol 2001, 11(19): R792–R794. Govind CK, Meiss DE: Quantitative comparison of low- and high-output neuromuscular synapses from a motoneuron of the lobster (*Homarus americanus*). Cell Tissue Res 1979, 198(3): 455–463, 1979.

Govind CK, Quigley PA, and Pearce J: Synaptic differentiation between two phasic motoneurons to a crayfish fast muscle. Invert Neurosci 2001, 4(2): 77–84.

Harden N, Lee J, Loh HY, Ong YM, Tan I, Leung T, Manser E, Lim L: A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures. Mol Cell Biol 1996, 16(5): 1896-908.

Harlow ML, Ress D, Stoschek A, Marshall RM, and McMahan UJ: The architecture of active zone material at the frog's neuromuscular junction. Nature, 2001 409(6819): 479–484.

Harris KM, Fiala JC, and Ostroff L: Structural changes at dendritic spine synapses during longterm potentiation. Philos Trans R Soc Lond B Biol Sci 2003, 358(1432): 745–748.

Hata Y, Butz S, Sudhof TC: CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin- dependent protein kinase domain identified by interaction with neurexins. J Neurosci 1996, 16(8): 2488–2494.

Heisenberg M: Separation and lamina potentials in the electroretinogram of normal and mutant *Drosophila*. J Exp Biol 1971, (1): 85-100.

Heisenberg M, Buchner, E: The role of retinula cell types in visual behavior of *Drosophila melanogaster*. J comp Physiol 1977, A 117, 127–162.

Heuser JE, Reese TS: Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol, 1973 57(2): 315–344.

Heuser JE, Reese TS, Landis DM: Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol 1974, 3(1): 109–131, 1974.

Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P: Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 1999, 354(1381): 269–279.

Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H: The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol 1989, 108(1): 111–126.

Hofbauer A: Eine Bibliothek monoklonaler Antikörper gegen das Gehirn von Drosophila melanogaster. Habilitation thesis. Würzburg: University of Würzburg; 1991.

Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL: The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002, 298(5591):129-49.

Hsueh YP, Yang FC, Kharazia V, Naisbitt S, Cohen AR, Weinberg RJ, Sheng M: Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol 1998, 142(1): 139–151.

Jahn R, Lang T, and Südhof TC: Membrane fusion. Cell 2003, 112(4): 519–533.

Jefferis GS, Vyas RM, Berdnik D, Ramaekers A, Stocker RF, Tanaka NK, Ito K, Luo L: Developmental origin of wiring specificity in the olfactory system of *Drosophila*. Development 2004, 131(1): 117-30.

Johnston PA, Südhof TC: The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homooligomerization. J Biol Chem 1990, 265(15): 8869–73.

Johnston PA, ArcherBTIII, Robinson K, Mignery GA, Jahn R, S[•]udhof TC: Rab3A attachment to the synaptic vesicle membrane mediated by a conserved polyisoprenylated carboxy-terminal sequence. Neuron 1991, 7(1): 101–9

Kalidas S, Smith DP: Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 2002, 33(2): 177-84.

Katz B: The Release of Neural Transmitter Substances. Liverpool: Liverpool Univ. Press, 1969.

Kaufmann N, DeProto J, Ranjan R, Wan H, Van Vactor D: *Drosophila* liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 2002, 34(1): 27–38.

Kawasaki F, Zou B, Xu X, Ordway RW: Active zone localization of presynaptic calcium channels encoded by the cacophony locus of *Drosophila*. J Neurosci 2004, 24(1): 282–285.

Kistner U, Wenzel BM, Veh RW, Cases-Langhoff C, Garner AM, Appeltauer U, Voss B, Gundelfinger ED, Garner CC: SAP90, a rat presynaptic protein related to the product of the *Drosophila* tumor suppressor gene dlg-A. J Biol Chem 1993, 268(7): 4580–4583.

Koh TW, Verstreken P, Bellen HJ: Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 2004, 43(2):193-205.

Koulen P, Fletcher EL, Craven SE, Bredt DS, Wassle H: Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. J Neurosci 1998, 18(23): 10136–10149.

Lagnado L: Ribbon synapses. Curr Biol 2003, 13(16): R631

Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF: Threedimensional reconstruction of the antennal lobe in *Drosophila melanogaster*. J Comp Neurol 1999, 405(4): 543-52

Lenzi D, Runyeon JW, Crum J, Ellisman MH, Roberts WM: Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci 1999, 19(1): 119–132.

Lenzi D, Crum J, Ellisman MH, Roberts WM: Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 2002, 36(4): 649–659.

Li C, Takei K, Geppert M, Daniell L, Stenius K, Chapman ER, Jahn R, De Camilli P, Südhof TC: Synaptic targeting of rabphilin- 3A, a synaptic vesicle Ca²⁺/phospholipid binding protein, depends on rab3A/3C. Neuron 1994, 13(4): 85–98.

Marrus SB, DiAntonio A. Preferential localization of glutamate receptors opposite sites of high presynaptic release. Curr Biol 2004, 14(11): 924-31.

Marques G, Bao H, Haerry TE, Shimell MJ, Duchek P, Zhang B, O'Connor MB: The *Drosophila* BMP type II receptor *wishful thinking* regulates neuromuscular synapse morphology and function. Neuron 2002, 33(4): 529–543.

Maximov A, Südhof TC, Bezprozvanny I: Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem 1999, 274(35): 24453–24456.

Mayford M, Barzilai A, Keller F, Schacher S, Kandel ER: Modulation of an NCAMrelated adhesion molecule with long-term synaptic plasticity in Aplysia. Science 1992, *256*(5057): 638–644.

Meinertzhagen IA: Ultrastructure and quantification of synapses in the insect nervous system. J Neurosci Methods 1996, 69(1): 59–73.

Meinrenken CJ, Borst JG, Sakmann B: Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol 2003, 547(Pt 3): 665–89.

Missler M, Südhof TC: Neurexins: three genes and 1001 products. Trends Genet 1998, 14(1): 20–26.

Mizoguchi A, Nakanishi H, Kimura K, Matsubara K, Ozaki-Kuroda K, Katata T, Honda T, Kiyohara Y, Heo K, Higashi M, Tsutsumi T, Sonoda S, Ide C, Takai Y: Nectin: an adhesion molecule involved in formation of synapses. J Cell Biol 2002, 156(3): 555–565.

Muller BM, Kistner U, Veh RW, Cases-Langhoff C, Becker B, Gundelfinger ED, Garner CC: Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the *Drosophila* discslarge tumor suppressor protein. J Neurosci 1995, 15(3 Pt 2): 2354–2366.

O'Brien RJ, Lau LF, Huganir RL: Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr Opin Neurobiol 1998, 8(3): 364–369.

Ohtsuka T, Takao-Rikitsu E, Inoue E, Inoue M, Takeuchi M, Matsubara K, Deguchi-Tawarada M, Satoh K, Morimoto K, Nakanishi H, Takai Y: Cast, a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1. J Cell Biol 2002, 158(3): 577–90

Parsegian VA: Approaches to the Cell Biology of Neurons. Bethesda, MD: Soc. Neurosci, 1977.

Pfenninger K, Akert K, Moor H, Sandri C: The fine structure of freeze-fractured presynaptic membranes. J Neurocytol 1972, 1(2): 129–149.

Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W, Shan WS, Arndt K, Frank M, Gordon RE, Gawinowicz MA, Zhao Y, Colman DR: The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 2001, 32(1): 63–77.

Piccin A, Salameh A, Benna C, Sandrelli F, Mazzotta G, Zordan M, Rosato E, Kyriacou CP, Costa R: Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res 2001, 29(12): E55-5.

Rein K, Zockler M, Heisenberg M: A quantitative three-dimensional model of the *Drosophila* optic lobes. Curr Biol 1999, 9(2): 93-6.

Richmond JE, Broadie KS: The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans. Curr Opin Neurobiol 2002, 12(5): 499–507

Rizzoli SO, Betz WJ: Synaptic vesicle pools. Nat Rev Neurosci 2005, 6(1): 57-69.

Robitaille R, Adler EM, Charlton MP: Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 1990, 5(6): 773–779.

Rose A, Meier I: Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins. Cell Mol Life Sci 2004, 61(16): 1996-2009.

Roseman RR, Johnson EA, Rodesch CK, Bjerke M, Nagoshi RN, Geyer PK: A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in *Drosophila melanogaster*. Genetics 1995, 141(3):1061-74.

Rosenmund C, Stevens CF: Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 1996, 16(6): 1197–201.

Rougon G, Hobert O: New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu Rev Neurosci 2003, 26: 207–238.

Rybak J and Meinertzhagen IA. The effects of light reversals on photoreceptor synaptogenesis in the fly *Musca domestica*. Eur J Neurosci 1997, 9(2): 319–333.

Sambrook, J., Fritsch, E.F., and Maniatis, T: Molecular Cloning: A Laboratory Manual. 1989, Cold Spring Harbor Laboratory Press, NY, Vol. 1, 2, 3.

Samson ML, Chalvet F: found in neurons, a third member of the Drosophila elav gene family, encodes a neuronal protein and interacts with elav. Mech Dev 2003, 120(3):373-83.

Sätzler K, Söhl LF, Bollmann JH, Borst JGG, Frotscher M, Sakmann B, Lubke JH: Threedimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neurosci 2002, 22(24): 10567–79.

Schikorski T, Stevens CF: Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 2001, 4(4): 391–95.

Schmitz F, Konigstorfer A, Sudhof TC: RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron 2000, 28(3):857-72.

Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL: *Drosophila* Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 2000, 101(6): 671–684.

Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Südhof TC: RIM1 alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 2002, 415(6869): 321–326,

Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M: Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 1998, 273(25): 15611–15620.

Shapira M, Zhai RG, Dresbach T, Bresler T, Torres VI, Gundelfinger ED, Ziv NE, Garner CC: Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 2003, 38(2): 237–252.

Shapiro L, Kwong PD, Fannon AM, Colman DR, Hendrickson WA: Considerations on the folding topology and evolutionary origin of cadherin domains. Proc Natl Acad Sci U S A 1995, 92(15): 6793-7.

Shapiro L, Colman DR: The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 1999, 23(3): 427–430.

Sheng M, Sala C: PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001, 24: 1–29.

Sherrington C. S: The central nervous system. In *A Texbook of physiology* 1897, 7th ed., Part III, Foster M., ed. London: Macmillan

Shirataki H, Kaibuchi K, Sakoda T, Kishida S, Yamaguchi T, Wada K, Miyazaki M, Takai Y: Rabphilin-3A, a putative target protein for smg p25A/rab3A small GTP-binding protein related to synaptotagmin. Mol Cell Biol 1993, 13(4): 2061–68.

Söllner T, Whiteheart SW, Brunner M, Erdjument- Bromage H, Geromanos S, Tempst P, Rothman JE: SNAP receptors implicated in vesicle targeting and fusion. Nature 1993, 362(6418): 318–24.

Stanley EF: The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci 1997, 20(9): 404–409.

Stark WS, Carlson SD: Ultrastructure of capitate projections in the optic neuropil of Diptera. Cell Tissue Res 1986, 246(3): 481-6.

Südhof TC: The synaptic vesicle cycle revisited. Neuron 2000, 28(2): 317–20.

Südhof TC: The synaptic vesicle cycle. Annu Rev Neurosci 2004, 27:509-47.

Takai Y, Shimizu K, Ohtsuka T: The roles of cadherins and nectins in interneuronal synapse formation. Curr Opin Neurobiol 2003, 13(5): 520–526.

Ubach J, Zhang X, Shao X, Südhof TC, Rizo J. 1998. Ca^{2+} binding to synaptotagmin: How many Ca^{2+} ions bind to the tip of a C2- domain? EMBO J, 1998 17(14): 3921–30.

Van der Velden AW, Thomas AA: The role of the 5' untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 1999, 31(1): 87-106.

Von Gersdorff H: Synaptic ribbons: versatile signal transducers. Neuron 2001, 29(1): 7–10.

Walrond JP, Reese TS: Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers. J Neurosci 1985, 5(5): 1118–1131.

Walsh FS, Doherty P: Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Dev Biol 1997, 13: 425–456.

Wang Y, Südhof TC: Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. Genomics 2003, 81(2): 126–37.

Wang Y, Okamoto M, Schmitz F, Hofman K, Südhof TC: RIM: a putative Rab3effector in regulating synaptic vesicle fusion. Nature 1997a, 388:593–98.

Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW: Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with rim and bassoon and binds profilin. J Cell Biol 1999, 147(1): 151–162.

Wang Y, Liu X, Biederer T, and Südhof TC: A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones. Proc Natl Acad Sci USA 2002, 99(22): 14464–14469.

Wang Y, Sugita S, Südhof TC: The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J Biol Chem 2000, 275(26): 20033–44.

Washbourne P, Schiavo G, Montecucco C: Vesicle-associated membrane protein-2 (synaptobrevin-2) forms a complex with synaptophysin. Biochem. J 1995, 305(Pt 3): 721–24.

Weeks AC, Ivanco TL, Leboutillier JC, Racine RJ, Petit TL: Sequential changes in the synaptic structural profile following long-term potentiation in the rat dentate gyrus. II. Induction/early maintenance phase. Synapse 2000, 36(4): 286–296.

Wilson RI, Turner GC, Laurent G: Transformation of olfactory representations in the Drosophila antennal lobe. Science 2004, 303(5656): 366-70.

Wojtowicz JM, Marin L, Atwood HL: Activity induced changes in synaptic release sites at the crayfish neuromuscular junction. J Neurosci 1994, 14(6): 3688–3703.

Wucherpfennig T, Wilsch-Brauninger M, Gonzalez-Gaitan M: Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol 2003, 161(3): 609-24.

Yagi T, Takeichi M: Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 2000, 14(10): 1169–1180.

Yamagata M, Weiner JA, Sanes JR: Sidekicks: synaptic adhesion molecules that promote lamina- specific connectivity in the retina. Cell 2002, 110(5): 649–660.

Yamagata M, Sanes JR, Weiner JA: Synaptic adhesion molecules. Curr Opin Cell Biol 2003, 15(5): 621–632.

Yasuyama K, Meinertzhagen IA, Schurmann FW: Synaptic organization of the mushroom body calyx in *Drosophila melanogaster*. J Comp Neurol 2002, 445(3): 211–226.

Zhai RG, Bellen HJ: The architecture of the active zone in the presynaptic nerve terminal Physiology (Bethesda). 2004, 19:262-70.

Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC: Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 2001, 29(1): 131–143.

Zhang B: Genetic and molecular analysis of synaptic vesicle recycling in Drosophila. J Neurocytol 2003, 32(5-8):567-89.

Zhang L, Volknandt W, Gundelfinger ED, Zimmermann H: A comparison of synaptic protein localization in hippocampal mossy fiber terminals and neurosecretory endings of the neurohypophysis using the cryo-immunogold technique. J Neurocytol 2000, 29(1): 19–30.

Zhen M, Jin Y: The liprin protein SYD-2 regulates the differentiation of presynaptic termini in *C. elegans*. Nature 1999, 401(6751): 371–375.

Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S: Paralysis and early death in cysteine string protein mutants of *Drosophila*. Science 1994, 263(5149): 977-80.

Zinsmaier KE, Hofbauer A, Heimbeck G, Pflugfelder GO, Buchner S, Buchner E: A cysteine-string protein is expressed in retina and brain of *Drosophila*. J Neurogenet 1990, 7(1): 15-29.

Ziv NE, Garner CC: Cellular and molecular mechanisms of presynaptic assembly Nat Rev Neurosci 2004, 5(5): 385-99.

APPENDIX1

Primer Sequences. (Note: Restriction Sites Are Indicated By Red Underlined Letters).

Primer	Sequence 5'-3'
RT PCR	
36.5 RTP	GGA CAA CCA GGT GGA TAT GG
36.3 RTP	ATC TTG TAG TCG GCC ACC TC
E-37.5	CCA AAC CGA AAC CCG AAA ACA GTC
E-37.3	GGT GCG CTC CAT CTC CTC CTT
36-Е-37.5	CTA TGA ACC CAT ATG CAT AAA ACA CAT AC
36-Е-37.3	AGT CTC GCG CTC CTT CTG C
Missing E- 37.5	ACA ACC TTT GGC AGG ACC AC
Missing E-37. 3	CGA CTG CAG GTT GTC GTA GT
36 – Missing E. 5	GGC CGA CTA CAA GAT CAA GC
36 – Missing E. 3	GGG CTC GAT CCA GTT CCT
36 – nstd X1-550.5	CTG TAC CTT GTT CCT TTC CAA CCA
36 – nstd X3-550.3	CTC GGA GCT GCT GTG GTG
36 X1- 591. 5	GCA TTA CCA TGC GTG GCA AC
36 ? ME – 204. 5	CGC CAT AGA AGC CCA AAT AAA ATG
36 ? ME – 204. 3	GTT GCG AAT ACG GGT GAC TTG
GSP1. 3	TGT CCG TTT GTA GCT TGT CG
GSP2(Bgl II). 3	G <mark>GC GAT A</mark> GA TCT CGT TCT GG
GSP3.3	GTC GGG GAA ACT GGT CAT AAT G
GSP4.3	AAC GCT CCA GAT CGT GTT TCA GCC G
Ex. 1 (Eco RV). 5	CT <u>A AGA TA</u> T CGC ATT ACC ATG CGT GGC AAC
Bgl II E1. 5	GA <mark>A GAT CT</mark> G CAT TAC CAT GCG TGG CAA
Mlu I E3. 3	TCC AG <mark>A CGC GT</mark> C TGT AGC TTC TCC A
Li Ex1. 5	ATG GGC AGT CCA TAC TAC CG
Li Ex2. 3	TCC CGA ATG GGT ATG AAC TCG
932.3	GTC TGC AGG TGA TTC TGA TGC
932.5	CGA GTG GTG TCC AGT TAC CC
Kpn I LieX1. 5	TT <mark>G GTA CC</mark> A TGG GCA GTC CAT ACT AC
-------------------------	---
Oligo dT Kpn I	CGG CGC <u>GGT ACC</u> TTT TTT TTT TTT TTT TTT TTT TTT
	TTT
FW1951.5	CGT CCA GAA GCT GGA GTC A
REV3049.3	GCT GCG TAT CCA TGA GCT TC
W462. 5	ATC AAT TCT CCG ACG AGC TG
Rev2178.3	CTG GAT CTC CTT TTG CAT GG
FW4.5	ACT CAA GGC CAA GCT GGA G
Rev1558.3	AAA CGA TCG ACC TCC TTC AGT
RNAi	
gDNA-cDNA construct	
RNAi gDNA. 5	GG <mark>G GTA CC</mark> C ATC TGG CCA AGC A
RNAi gDNA. 3	CG <mark>G GAT CC</mark> A TCT GGC CGG GAT AAA TG
RNAi cDNA. 5	GC <u>T CTA GA</u> C ATC TGG CCA AGC AGC A
RNAi cDNA. 3	CG <mark>G GAT CC</mark> C CTG GTT GGA CAT CTT G
cDNA-cDNA construct	
RNAi cDNA. 5a	CG <mark>G AAT TC</mark> A CTC AAG GCC AAG CTG GA
RNAi cDNA. 5b	GC <u>T CTA GA</u> A CTC AAG GCC AAG CTG GA
RNAi cDNA. 3ab	CG <mark>G GAT CC</mark> C TGC AGC TTA CGC AGA T
GFP.5	CG <mark>G GAT CC</mark> T GAC CCT GAA GTT CAT CT
GFP.3	CG <mark>G GAT CC</mark> G TCT TGT AGT TGC CGT C
RNAi B12 (S. Sigrist)	
TR961Bs	GAC T <u>GA ATT C</u> CA GGA GCG TAA TCG CCT CAC CAG
TR996Bas	CTG A <u>TC TAG A</u> GC CCG CAG CTT GAT CTT GTA GTC GG
RNAi C8 (S. Sigrist)	
TR963Cs	GAC T <u>GA ATT C</u> AG CTA CAG ACG GAC ATT CGG CGT GC
TR997Cas	CAC T <u>TC TAG A</u> CG GAT CGC TGC TTT TCC TGA TTG GC
Bacterial expression of	
the AT09405 cDNA	
pET 9405.5	GGA TTC ATG CGA CTC AAG GCC AAG
pET 9405.3	AAG CTT ATC CTG CTG TTG CTG TTG CTG
рЕТ 9405.3а	AAG CTT TCG CAT TGC ATT TAC ATG GTG TCA T
pET 9405.5b	AAT T <mark>GG ATC C</mark> AT GCG ACT CAA GGC CAA G

pET 9405.3b	ACA T <u>AA GCT T</u> TC GCA TTG CAT TTA CAT GGT GTC AT
Northern blot	
CG12932 probe	
932p.5	TTG AAC GAG GCA CAC AAG TC
932p.3	CGG CAG TTT CGG GTA ATC TA
Southern blot	
P1 probe	
P1, 5' FWD99668.5	CGC TGA CAA GGT GTT ATG GA
p1, 5' rev 104462.3	GAC GGA GCA GTA AAG GCT TG
P1, 3' FWD99668.5	AAG CCT TTA CTG CTC CGT CA
p1, 3' rev 104462.3	TTT TGT GGG GAG TGT CCT TC
P2 probe	
P2, 5' FWD203061.5	GAC AGT GGA GGC AGT CAA CA
p2, 5' rev 207760.3	TGC CAT TAG ACT GTG CCA AAA C
P2, 3' FWD207189.5	ATT CGA GTT TGA AGG CAA GCG
p2, 3' rev 211849.3	GTT ATT GCT TTC CCT TTG GTC CT
Probe 1 (P2)	
201011.5	CGT TCC GTC ATC CTC ATT TGG
202963.3	GAA AAG TGT CAG GCT CTG TGG
Probe 2 (P2)	
194228.5	CGG GAG CAT ATC GCT AGA AC
195777.3	CCC ACC TTC CGT CAC TTC ATT
Other primers for P	
element insertion	
analysis	
Flanking P1.5	GAA TGA ACG AGC GAC ACA GA
Flanking p1.3	TGA ATA ATC CTC GGG AGT GC
Flanking P2.5	CAC CCG CAC ACA TAA AGT TG
Flanking p2.3	TGC CAT TAG ACT GTG CCA AAA
A 12933 4KB.5	GTT GCA TCC GGT AGA CCA GT
A 12933 4KB.3	AAT TAA GCG ACA ACG GCA AC
A 12933 2KB.3	TAC CCG CTA CCC TGT TTG TC
A 12933 2KB.5	ACA AAC AGG GTA GCG GGT AG

3' 14101- 207760.3	TGC CAT TAG ACT GTG CCA AA
5' 14101- 206218.5	ATG GAG CAC GGA AGA TAT GG

APPENDIX2

The brp cDNA Sequence (RNAi Target Domains Are Highlighted)

1 GAATTCGGCT TGTCATCCTC ATGAATTCTG TGTGTGTGTG AATTTCAGCA 51 ATGGGCAGTC CATACTACCG CGACATGGAT GAGCCAACCA GTCCGGCCGG 101 AGCGGGTCAC CATCGCAGCC GGAGCGCCAG CAGACCACCG ATGGCCCATG 151 CCATGGACTA TCCAAGAACC CGCTACCAAT CGCTGGATCG CGGTGGACTC 201 GTGGATCCCC ACGATCGCGA GTTCATACCC ATTCGGGAGC CCCGCGACCG 251 CTCCAGGGAC AGATCCCTCG AACGGGGCCT GTACCTAGAG GACGAGCTCT 301 ATGGCAGATC AGCGCGTCAG AGCCCCCAGCG CCATGGGTGG ATACAATACG 351 GGCATGGGCC CCACATCGGA TCGAGCTTAT TTGGGCGACC TGCAGCATCA 401 GAACACCGAC CTGCAGCGGG AGCTGGGGGGA CCTGAAGCGG GAACTGGAGC 451 TGACTAACCA GAAGCTGGGC AGCTCGATGC ACAGCATCAA GACATTCTGG 501 TCGCCGGAGC TCAAGAAGGA GCGAGCACTG CGCAAGGAGG AGAGCGCCAA 551 GTACAGTCTG ATCAACGATC AGTTGAAGCT GCTCAGCACG GAGAACCAGA 601 AACAAGCCAT GTTGGTGCGC CAGCTGGAGG AGGAGCTGCG CCTGCGAATG 651 CGACAGCCCA ACCTGGAGAT GCAGCAGCAG ATGGAGGCGA TCTACGCGGA 701 GAACGACCAC TTGCAGCGGG AGATCAGCAT CCTGCGCGAG ACGATCAAGG 751 ATCTAGAGTG CCGGGTGGAG ACCCAGAAGC AAACACTGAT TGCCCGCGAC 801 GAGAGTATCA AGAAGCTGCT GGAAATGCTG CAGGCCAAGG GAATGGGCAA 851 AGAGGAGGAG CGTCAGATGT TCCAGCAGAT GCAGGCCATG GCCCAGAAGC 901 AGCTGGACGA ATTCCGTCTT GAAATACAGA GAAGGGATCA AGAGATCCTG 951 GCGATGGCGG CCAAAATGAA AACGCTCGAG GAGCAGCACC AGGACTACCA 1001 GCGGCACATA GCGGTGCTCA AGGAATCGCT ATGTGCCAAA GAGGAGCACT 1051 ACAACATGCT GCAGACGGAC GTCGAGGAGA TGCGCGCCCG CCTCGAGGAG 1101 AAGAACCGCC TCATCGAGAA GAAGACCCAG GGCACCCTGC AGACGGTCCA B 1151 GGAGCGTAAT CGCCTCACCA GCGAGCTTAC CGAGCTCAAG GACCACATGG 1201 ACATCAAGGA CCGCAAGATC AGCGTGCTGC AGCGCAAGAT CGAAAACCTG 1251 GAGGATCTGC TGAAGGAGAA GGACAACCAG GTGGATATGG CGCGGGCCCG 1301 TTTGTCGGCC ATGCAGGCGC ACCACAGCAG CTCCGAGGGC GCCTTGACCA

1351	GCCTGGAGGA	GGCCATCGGC	GACAAGGAGA	AGCAGATGGC	CCAGCTGCGT	
1401	GATCAGCGGG	ATCGCGCCGA	GCACGAGAAG	CAGGAGGAGC	GGGATCTCCA	
1451	CGAACGCGAG	GTGGCCGACT	ACAAGATCAA	<mark>GCTGCGGGC</mark> C	GCCGAGAGTG	
1501	AGGTGGAGAA	GCTGCAGACG	CGCCTGGAGC	GGGCGGTCAC	CGAGCGGGAG	
1551	CGGCTGGAGA	TCAAGCTGGA	GGCCTCGCAG	AGCGAACTGG	GCAAGTCGAA	
1601	GGCCGAGCTG	GAGAAGGCCA	CCTGCGAAAT	GGGCAGGAGC	AGCGCCGACT	
1651	GGGAGTCCAC	CAAGCAGAGG	ATCGCCCGCC	TGGAGCTGGA	GAACGAGCGG	
1701	CTGAAACACG	ATCTGGAGCG	TTCGCAGAAT	GTACAAAAGT	TAATGTTCGA	
1751	AACGGGCAAG	ATATCGACAA	CCTTTGGCAG	GACCACGATG	ACCACGTCCC	
1801	AGGAACTGGA	TCGAGCCCAG	GAGCGGGCCG	ACAAGGCCTC	AGCCGAGCTG	
1851	CGACGCACCC	AGGCCGAGCT	GAGAGTCACA	CAGTCGGATG	CGGAAAGAGC	
1901	ACGCGAGGAG	GCGGCCGCCC	TGCAGGAGAA	GCTGGAGAAG	AGCCAGGGCG	
1951	AGGTGTACCG	ACTCAAGGCC	AAGCTGGAGA	ACGCCCAGGG	CGAGCAGGAG	<mark>DWa</mark>
2001	AGTCTGCGCC	AGGAGCTGGA	GAAGGCGCAG	AGCGGTGTCT	CTCGCATCCA	
2051	CGCCGACCGT	GATCGGGCCT	TCTCCGAGGT	GGAAAAGATC	AAGGAGGAGA	
2101	TGGAGCGCAC	CCAGGCCACG	TTGGGCAAGT	CGCAGCTGCA	GCACGAGAAG	
2151	CTGCAGAACT	CGCTGGACAA	GGCCCAGAAC	GAAGTCGATC	ATCTGCAGGA	
2201	TAAGCTGGAC	AAGGCCTGCA	CGGAGAACCG	CCGTCTGGTG	CTCGAGAAGG	
2251	AGAAGCTCAC	CTACGACTAC	GACAACCTGC	AGTCGCAGCT	GGACAAGGCC	
2301	TTGGGCCAGG	CGGCCAGGAT	GCAGAAGGAG	CGCGAGACTC	TCTCTTTGGA	
2351	CACGGATCGC	ATTCGCGAGA	AGCTGGAGAA	GACGCAGGTG	CAACTGGGTC	
2401	GCATCCAGAA	GGAGCGGGAT	CAATTCTCCG	ACGAGCTGGA	GACGCTCAAG	
2451	GAGCGGTCGG	AATCGGCGCA	GACCCTTCTC	ATGAAGGCCG	CCCGCGACCG	
2501	GGAGGCGATG	CAAACGGATC	TGGAAGTTCT	CAAGGAGCGC	TACGAGAAAT	
2551	CGCACGCCAT	TCAGCAGAAA	CTCCAGATGG	AGCGCGACGA	TGCGGTCACC	
2601	GAAGTCGAGA	TCCTCAAGGA	GAAACTGGAC	AAGGCGCTGT	ACGCCAGCCA	
2651	AAAGCTGATC	GACGAGAAGG	ACACCTCCAA	CAAGGAGTTC	GAAAAGATGC	
2701	TGGAGAAGTA	CGATCGGGCC	CAGAACGAGA	TCTATCGCCT	TCAGTCCCGT	
2751	TGCGATACGG	CAGAAGCGGA	TAGAGCCCGC	TTGGAGGTGG	AGGCGGAGCG	
2801	ATCTGGCCTA	GCTGCCAGCA	AGGCTCGCGA	GGATCTGCGT	<mark>AAGCTGCAG</mark> G	
2851	ACGAGAGCAC	TCGGCTGCAG	GAGGCCTGCG	ATCGGGCGGC	GCTCCAGTTG	
2901	AGCCGCGCCA	AGGAGTGCGA	GGACAATGCG	CGCAGCGAAC	TGGAGCACAG	

2951	TCGCGATCGC	TTCGACA <mark>AGC</mark>	TACAGACGGA	CATTCGGCGT	GCCCAGGGCG	C
3001	AGAAGGAGCA	CTTCCAGTCC	GAGCTGGAGA	GGGTCACCTA	CGAACTGGAG	
3051	CGCGCACATG	CCGCCCAGAC	CAAGGCGAGC	GCCAGCGTGG	AGGCGGCCAA	
3101	GGAGGAGGCG	GCACACTATG	CCGTAGAGCT	TGAGAAGATG	CGCGACCGCT	
3151	ACGAGAAGAG	CCAGGTGGAG	CTGCGCAAGC	TGCAGGACAC	GGACACCTTC	
3201	GGGCGGGAGA	CGCGACGCCT	CAAGGAGGAG	AACGAGCGGC	TGCGCGAGAA	
3251	GCTGGACAAG	ACGCTCATGG	AACTGGAGAC	CATACGCGGC	AAATCGCAGT	
3301	ACGAGTCGGA	GTCATTCGAG	AAGTACAAGG	ACAAGTACGA	GAAGATCGAG	
3351	ATGGAAGTGC	AGAACATGGA	GTCGAAACTG	CACGAGACCA	GCCTGCAGCT	
3401	GGAGCTGTCG	AAGGGCGAGG	TGGCCAAAAT	GCTGGCCAAT	CAGGAAAAGC	
3451	<mark>AGCGATCCG</mark> A	GCTGGAACGG	GCGCACATCG	AGCGGGAGAA	GGCACGCGAC	
3501	AAGCATGAGA	AGCTACTGAA	GGAGGTCGAT	CGTTTGCGCC	TGCAACAGTC	
3551	CTCGGTGAGC	CCCGGCGATC	CGGTCCGAGC	GTCGACGTCC	TCCTCTTCCG	
3601	CTCTGTCCGC	TGGCGAGCGG	CAGGAGATCG	ACCGCCTGCG	GGATCGCCTT	
3651	GAAAAGGCGC	TGCAGTCGCG	TGACGCCACC	GAGCTGGAGG	CCGGTCGCTT	
3701	GGCCAAGGAA	CTGGAGAAGG	CGCAAATG <mark>CA</mark>	TCTGGCCAAG	CAGCAGGAGA	DWb
3751	ACACCGAGTC	CACGCGCATC	GAGTTCGAGC	GCATGGGCGC	TGAGCTCGGT	
3801	CGCCTGCACG	ATCGCCTCGA	GAAGGCCGAG	GCCGAACGGG	AAGCGCTGCG	
3851	TCAAGCGAAC	CGGAGCGGCG	GAGCTGGCGC	TGCCCCCCAT	CCGCAACTGG	
3901	AGAAGCACGT	CCAGAAGCTG	GAGTCAGATG	TCAAGCAGCT	GGCCATGGAG	
3951	CGGGAGCAGC	TGGTCCTGCA	ACTGGAGAAG	AGCCAGGAGA	TCCTTATGAA	
4001	CTTCCAGAAG	GAACTCCAGA	ACGCAGAGGC	GGAATTGCAG	AAGACGCGCG	
4051	AGGAGAACCG	CAAGCTGCGC	AACGGTCACC	AAGTGCCGCC	AGTCGCCGCT	
4101	CCACCCGCCG	GACCCTCTCC	CGCCGAATTC	CAGGCCATGC	AAAAGGAGAT	
4151	CCAGACCCTC	CAGCAGAAGC	TCCAAGAGTC	GGAGCGCGCC	CTGCAAGCCG	
4201	CCGGTCCCCA	ACAGGCCCAG	GCTGCAGCGG	CGGCAGGAGC	GAGTCGCGAG	
4251	GAGATCGAGC	AATGGCGCAA	GGTCATCGAG	CAGGAGAAGA	GTCGCGCCGA	
4301	CATGGCCGAC	AAGGCCGCCC	AGGAGATGCA	CAAGCGCATT	CAGCTTATGG	
4351	ACCAACACAT	CAAGGATCAG	CACGCCCAGA	TGCAGAAGAT	GCAGCAGCAG	
4401	ATGCAACAGC	AGCAGCAGGC	GGCGCAGCAG	GCGGTGCAGC	AGGCGGCGCA	
4451	GCAGCAGCAA	TCCGCAGCAG	GTGCCGGCGG	AGCGGACCCC	AAAGAGTTGG	

4501 AGAAGGTCAG GGGCGAACTC CAGGCGGCGT GCACCGAGCG GGATCGCTTC 4551 CAGCAGCAGC TGGAGCTCCT GGTCACAGAG TTGGAGAAGA GCAAGATGTC 4601 CAACCAGGAG CAGGCAAAAC AGCTCCAAAC GGCGCAGCAG CAAGTGCAGC 4651 AACTGCAACA GCAGGTGCAA CAGCTGCAGC AGCAGATGCA ACAACTGCAG 4701 CAGGCTGCCA GTGCGGGAGC AGGCGCCACC GACGTGCAGC GCCAGCAGCT 4751 GGAACAGCAG CAGAAGCAAC TGGAGGAGGT GCGCAAGCAG ATCGACAACC 4801 AGGCCAAGGC CACCGAGGGC GAGCGCAAGA TCATCGACGA GCAGCGCAAG 4851 CAGATCGACG CCAAGCGCAA GGACATCGAG GAAAAGGAGA AGAAGATGGC 4901 CGAGTTCGAC GTACAGCTGC GCAAGCGCAA GGAGCAGATG GACCAGCTGG 4951 AGAAGTCCCT ACAGACGCAG GGAGGCGGAG CGGCGGCCGC CGGCGAGCTG 5001 AACAAGAAGC TCATGGATAC GCAGCGGCAG CTGGAAGCAT GCGTCAAGGA 5051 GCTGCAAAAT ACAAAGGAGG AGCACAAGAA GGCGGCAACC GAAACGGAGC 5101 GTTTGCTGCA ATTGGTACAA ATGTCGCAGG AGGAGCAGAA CGCCAAGGAG 5151 AAGACCATCA TGGATTTGCA ACAAGCCTTA AAGATCGCTC AAGCCAAAGT 5201 CAAACAAGCA CAAACGCAGC AACAGCAACA GCAGGATGCT GGACCAGCTG 5251 GCTTCTTGAA GAGCTTTTTC TAAACAGTGC CCTCGCAAAG CCACAGATAC 5301 ACACATCTTG GGATGCAGAT GAGGCAAAAG GATTTTACAC GTACTACTTA 5351 CCCAAAGCGA TAATGGAAAA CCAACCAACA GCAAGATGTT ACCAAAAGCA 5401 CTGTCTACTA TTTTGTATAC TACCGATGCC GATACCAATA CCAACTATGC 5451 AGTATTTCTA CGACTCTCAC ACACACTATG TACACTCTTT ACACACAGA 5501 ATAAACACAG GGACACACAC ACACATTTGT AAATGACACC ATGTAAATGC

RT- PCR Sequences And The DWc RNAi Domain.

RT-PCR sequences mapped on the genomic DNA (Primer sequences are

marked in **bold** *italics*, sequences that are annotated as cDNA (Flybase) but not confirmed by sequencing in our group are marked in **bold** magenta. Sequences that are a part of the cDNA are highlighted in yellow and sequences that are confirmed by sequencing but are not part of the cDNA are highlitened in gray. The DWc RNAi target domain is highlitened in teal.

200000		t	gcgcatggta	cataaatttg	atttcatttc	atttcacttg	
200041	attcgatttt	catttatttc	gtattccgtt	tcgcttcact	catcctgcga	atctcaaccg	
200101	attttcattt	caattaacca	acacaaacgg	cactcgacac	actccacaac	cgacacacac	
200161	ttcaaacaca	tgcaaattga	attccacgcg	gggattggat	gggtattttc	cgtgaagcag	
200221	ctgccgctgc	cgggaaattg	cattagaacc	ggtgaaccga	ccgggacaac	aggactagaa	
200281	aatggcccac	agctgagccg	ttggacgcta	gaaaaagcca	ctgcggaaag	gtgcaccttg	
200341	gaaaatatca	ccatcaacta	tagtaacact	gcaaccgaaa	ctgaactgaa	tctgtatctg	
200401	aatctgaaac	tttgcccgga	gccgtgcgtt	tgatatcaaa	gcctcaaact	ggattacaat	
200461	tatggttagc	taaactgttt	tgcacttgaa	cggggtcagc	acttgattac	gccagctaat	
200521	tagcatttgg	ccgccattgc	gggggggctt	gaataaacca	tttatgagtc	gaataccgga	
200581	acactgagta	gtagtgagta	gtgaacagtg	gcggacaagg	acgttggcgg	aaccgcaaat	
200641	ttagtttcgt	gctctgacgt	gcaaaatgat	ttcgtgccgg	gcaaaactta	gtttatgacc	
200701	ctcgacggtg	ggctgagata	tgaaatatga	acgaggcgcc	aggacaaaca	gggtagcggg	
200761	tagcgaacga	gcggcttgtg	tgggtgagag	ggggttggtg	aggaggaggg	aaaaaaaaac	
200821	ggtgagcaaa	gccagaacac	gaccaacact	ccttcctctc	cttcgtttgt	tgacttttcc	
200881	ttttgcattt	cctttttagt	tacctgcatt	ccttgccact	aacctaacct	aacccaacaa	
200941	aaccaaacca	aacccaactg	aaaaattaga	aaaaagcaaa	ggaaatgagg	cagagactcc	
201001	actgcactag	ttgccacctc	tagaaaaaaa	tcactctgta	tacttttctt	tggttgcgtt	
201061	ccttttgttc	tggtggccga	aacgaaaaca	cgaaacaacc	acctgaacca	ccacccgttc	
201121	cgcccgttcc	gtcatcctca	tttg gtcatc	ctcatgaatt	ctgtgtgtgt	gtgaatttca	
201181	gca <mark>atgggca</mark>	gtccatacta	<u>ccg</u> cgacatg	gatgagccaa	ccag <mark>t</mark> c <mark>cgg</mark> c	<mark>cgga<mark>g</mark>cgggt</mark>	LiEx.5
201241	<mark>caccatcgca</mark>	gccggag <mark>cgc</mark>	cagcagacca	ccgatggccc	atgccatgga	ctatccaa gt	
201301	aataaccgac	acagcattct	aatgaggcac	agatcaaggt	ttatatcttc	gaggtccatt	
201361	tgaaaggata	taaagacagg	atacaatgaa	cagaagatat	aaatatcaaa	ttgacctcga	
201421	agtattaacg	ttttatccta	aatgtgaaga	taccctaaca	tatgtaaaaa	cacataactg	
201481	ggactcaagc	attcttcgaa	ctaatcccac	ttag <mark>gaaccc</mark>	<mark>gctaccaatc</mark>	<mark>gctggatcgc</mark>	
201541	<mark>ggtggactcg</mark>	<mark>tggatcccca</mark>	<mark>tgatcgcgag</mark>	<mark>ttcataccca</mark>	<mark>ttcgggagcc</mark>	<mark>ccgcgaccgc</mark>	
201601	<mark>tccagggaca</mark>	<mark>gatccctcga</mark>	<mark>acgggggcctg</mark>	<mark>tacctagagg</mark>	<mark>acgagctcta</mark>	<mark>tggcagatca</mark>	
201661	<mark>gcgcgtcaga</mark>	<mark>gccccagcgc</mark>	<mark>catgggtgga</mark>	<mark>tacaatacgg</mark>	<mark>gcatgggccc</mark>	<mark>cacatcggat</mark>	
201721	<mark>cgagcttatt</mark>	<mark>tgggcgacct</mark>	<mark>gcagcatcag</mark>	<mark>aacaccgacc</mark>	<mark>tgcagcggga</mark>	<mark>gctggggaac</mark>	
201781	<mark>ctgaagcggg</mark>	<mark>aactggagct</mark>	<mark>gactaaccag</mark>	<mark>aagctgggca</mark>	<mark>gctcgatgca</mark>	<mark>cagcatcaag</mark>	
201841	<mark>accttctggt</mark>	<mark>cgccggagct</mark>	<mark>caagaaggag</mark>	<mark>cgagcactgc</mark>	<mark>gcaaggagga</mark>	gagcgccaag	
201901	<mark>tacagtctga</mark>	<mark>tcaacgatca</mark>	<mark>gttgaagctg</mark>	<mark>ctcagcacgg</mark>	<mark>agaaccag</mark> gt	gagtgcgaag	
201961	attgtgtgcc	agaagtattt	actcttcgat	tggttaattt	gtcatgttgc	acagtgttta	
202021	acgaatattc	aatgaaccag	caaacgaact	taatatacca	ctgaagcata	aacaaaatgt	
202081	atataactat	gtttggttaa	taacttaaac	gatatccccc	accag <mark>aaaca</mark>	<mark>agc</mark> tatgctg	
202141	<mark>gtgcgccagc</mark>	tggaggagga	gctgcgcctg	<mark>cgaatgcgac</mark>	<mark>agcccaacct</mark>	<mark>ggagatgcag</mark>	
202201	<mark>cagcagatgg</mark>	aggcgatcta	<mark>cgcggagaac</mark>	<mark>gaccacttgc</mark>	<mark>agcgggagat</mark>	cagcatcctg	
202261	<mark>cgcgagacga</mark>	tcaaggatct	agagtgccgg	gtggagaccc	agaagcaaac	actgattgcc	
202321	<mark>cgcgacgaga</mark>	<mark>gtatcaagaa</mark>	<mark>gctgctggaa</mark>	<mark>atgctgcagg</mark>	<mark>ccaagg</mark> gaat	<mark>gg</mark> gtgagtcg	
202381	ttgaatggat	taagcataaa	gcattgtcat	acttatgata	tcattctttg	ttgaca <mark>ggca</mark>	
~ ~ ~ · · ·							
202441	<mark>aagaggagga</mark>	<mark>gcgtcagatg</mark>	<mark>ttccagcaga</mark>	tgcaggccat	ggcccagaag	caggtaagcc	
202441 202501	<mark>aagaggagga</mark> acgatcatat	gcgtcagatg gctttggagc	ttccagcaga cccttgccaa	tgcaggccat tcttcaccgg	ggcccagaag aaaagaggga	cgaggtcgag	

CG12933

202621	tctaattttc	tttcgttcgg	caaacaatgc	tctagagaat	gatttcgtaa	cacgggcagc
202681	tggggagaaa	gggggaactt	tcccctcttc	ctttctcccc	gcctgacctt	tctctcgaaa
202741	cacgaaaaac	actttttatg	catcttgagt	tcgatacatt	tgatgcaaca	tcagaacttt
202801	taccactttt	tgtttaaccc	aagacacaca	cacgcagacc	ttaagcctta	tatactcgat
202861	atatctacac	ttatactaca	tcttatatat	acaaaccact	ttataactgt	tacaatatag
202921	ttaaaacatg	gaaaagtaga	gcctagaaaa	tgttcgcttt	tatgtcaact	aaagcttgag
202981	ttqttcqtaq	tqttttcaca	cttttttcca	cacactqttq	atttttcatt	tcccacatqq
203041	acacacagac	acacqcccac	agageetgae	acttttcatt	cagtttgcta	catgttttgc
203101	atatttgta	ctatttatt	cttattacca	ttgtcgctta	attaatttgc	aactttgtgc
203161	caacaccaaa	tgaggagagt	ggagggagtc	aacatcaatq	aacgtcgttc	aaattaacat
203221	taaqtqcaqt	gractaccca	tacaaqtacc	acgcgcactt	acaccttcac	acatacactt
203281	acacttocac	tracaccacc	tttcatacac	aatcacgcac	actacgacag	cagettagte
203201	atttettet	traccacce	ataaaatctc	aattttatta	cacacttttc	adadadada
203311	tagagggata	ttcacatacc	ccatttatot	atacaacaat	aatacattaa	canttocan
202161		ttagagagag	attattaat	tagettett	atagaagaa	agetagaga
203401	aaaaytycat	actacada	acconstant	teterate	atcggcgggg	geetgggegg
203521	ayacytaaty	ecteaceeeg	gggaaalcaa	lelyadalad	greegaagre	gelgelgeat
203501	ltgcagetta	actiliciace	tacegacete	ttoattaget	cyycaaacaa	ccaactyctt
203641	allacigate	cgaalleleg	Lacacccccl	llaallaCal	gillgeeeeg	agclaaacle
203701	ccacacaaac	acacacggcg	tatgcgtaat	attaagcgca	aacggaacaa	aaggcaacca
203/61	agcacagaga	aaatgtaaag	tgggggaaag	ggaaaacaag	ggagtgaagg	aaaataggaa
203821	aaaccatttc	cagageetgg	tcagacagtt	gggcatattc	ccagtgggca	gcataaataa
203881	ccttgatgca	gaaacaaaat	ctatttaagg	acaacagacg	ccgcacagag	aagaggccaa
203941	agggaatacc	ctgggcaaat	ggaaaatgtt	ctcgttgtcc	gattggcatt	caagtatacg
204001	agaaaacaga	actggattct	cattgtgaag	tcatcgaatt	acaaacactt	taaacccttc
204061	agctgtccgt	gctaatagat	atcgaaaatg	ttgttacagc	tagccaaaag	tcaaaaaagg
204121	ccaagagagc	tgcaagttca	aatttgcata	ttttccaagt	gctttgtaca	ccaatgaatg
204181	gccataaaaa	tgacagatat	tagcgaagaa	tggccactac	tcttgactga	attctgaact
204241	tcatattta	tctaagctct	gcaccgagtc	cccgtggcgt	ttaagccatt	tgcatgagct
204301	cagcatcctt	ttcgggccac	catttctatg	gcattccctg	cacaataagt	attcaaatgg
204361	cgttttttct	gccattgcct	ttttggctca	tcgcccactg	gcatttttg	ggaaacgcat
204421	ttcatttttg	cgtagagctt	tgtacatttt	ttccccagca	aagtgattgt	aggtctttgg
204481	tatattatat	tataccaatt	gaatggaagc	gcagaacaga	acaacaatcg	ccttgaccgg
204541	cgattttgcg	aggctcgaaa	ttaatttgtc	actgataaag	caaacaaatg	gtgggcggaa
204601	atgcggcata	gttacacggc	cggacaggag	taattaaaaa	tcggcccaga	aaaccggtct
204661	aaagaaaaaa	gccagccgcc	cacatgagca	tataaaagaa	aacaactttc	gcccgccgct
204721	tcggttttcc	atttttgtt	ttgttttgtt	tttgtttgta	ctttctgacg	ggcgagcaat
204781	taaaagttgt	tgcgtattcg	ccacgttaac	agggccggaa	aagagagcaa	tcggctggcg
204841	caqttctttc	qaqqccactq	cqttttacat	ttcctatttt	cqqtqqcqca	gattctattt
204901	attqcaaact	qcaqctqcca	qctqccaccc	ctcqqccctc	tcaqacccca	ctqtcccctt
204961	taaccctcqt	tcqqqtqaaa	aactttcaat	aattcatctt	qtttaqcaaq	ttqqcccaaq
205021	ttqaqccqca	ttqaatcqac	tttttccac	tctqqccqcc	ctqacttttq	qcactcttat
205081	qtaaqccqqa	qqcccaqqqc	qqccccacqc	atattaaaac	acatctcqqc	tqqaatatqc
205141	gaatatatgt	acttagttga	aqqaaqqqtq	qqqqcaacac	tcctcttggt	tttattqtct
205201	gcttcttatg	gccatttaac	cgacgccact	ttatctactt	gatgeteaaa	ctttcggctt
205261	acatttgacc	ccaaaccaaq	cactctggca	cocttataca	tatataatat	qtacacaaat
205321	ctaacaaact	tatgcgatac	tcaaccttct	cacttcqtct	gaaccccaca	acaacaacca
205381	caacaacaac	aacaacgaga	cagettgatt	tagaacataa	aatcaagaaa	tacactcaga
205441	aggaggaggagg	aataaaaata	aatatatatt	tactactcat	aaaaqaaaaa	caaaaaaaaaa
205501	taccaaagac	gatataaaaa	aaatagaaac	acttetaaac	taaagacctt	cttagggcca
205561	atccaacccq	tettaacee	caactaccaa	taaccaacac	ttagcatgct	actcagtata
205501	acceaacceg	agataata	ttappotott	atattatt	castagaat	taatagaatt
205021	tatatatat	agattaga	tagagagag	atatatttaa	aggettegettet	atagaaaatt
205001	acgreectge	accellacte	agaatagata		acgcaacgcc	atagagaga
205/41 205001	agaaactaty	Cadaacyaty	ceaalggelg	adllladll	aycaacctaa	gregggeeea
205001 205061	aaacgggggta	aacygygeta	acgggcatgt	citacyyyya	attactata	ccycalcayy
100CU2	aycyyactia	ayuyualuyg	yyccyaycca	tagaagugaa	citygiciga	allyayycaa
205921	LCCLggaaag	yalacttaga	acaytetgaa	Lagigatta	aalagcaact	lelleatat
205981	allittatga	yacataaaga	calaagacac	yııycaattg	accaatttca	yyayaataat
206041	tcataaattt	ggctgtaagt	gagggtatga	actaaataac	cccagggaac	aatgaaaatt
206101	tcgccgtgtc	gtaaatttac	gggctaaaaa	tgcagggctt	taattcatga	cagaaaaacc
206161	ataaaatact	gcccgcttcg	tattaaattt	ccacccagca	gcaccaaccg	attgcggcag
206221	gcatttcact	cgcaggtcac	taaataaaac	tcacacgaca	cccgcacaca	taaagttgcc
206281	ggctaaagaa	ccagccctga	gtcctatgca	tacgcataaa	taataatggg	catggagcac
206341	ggaagatatg	gggattacca	tggcgctacc	aqqqaaqqqa	qqqqaqactq	tqtqctqqqc

206401	gctgggtgct	gggagctcgt	tatggttgcc	agtgggccac	gctcaacgct	tgatatatta	
206461	tgctgctggt	tgccgtggct	ctttgttttt	gcgggggcat	aaaataatta	cgcggcctac	
206521	cgcaaaattc	attttccagt	cgctgaaaaa	aaaacccctg	cgagttaagt	gtgttaagga	
206581	gatacaaatg	catttaagag	acaggtgccg	gggcggagtt	ttcactccgg	actatcgatt	
206641	agcctggcgc	agaggaattc	aatttgtgct	ggcatatccg	aaaacaaatg	actgcctaat	
206701	gagttgccca	cttagcataa	taattgaatg	gaagctgcct	taatatgcaa	agtgttgcct	
206761	acttttgcgg	gccagtgcgc	ccggaatgcc	atttgttggg	gccatttggc	atggcgttgg	
206821	aggcttatcc	ggataggggg	cgtggcaggt	ggcagaggtg	ggaccgcccg	ctagtcagct	
206881	gctcgagaag	tgcagtccgt	gtcgtgcgca	ggccttcagt	tacaggaaag	gccgtttcaa	
206941	ccagccgcag	ccagtgcagg	gttaagctca	cagcgagtag	ctgcagagcg	agttcgccca	
207001	ctccctccca	ccaccgcccg	ccttaacccc	actccactgc	cctttggcaa	gcaatcaata	
207061	ttgccgccag	cttttgagcg	taaatgaacg	taaaagctct	cgctcggcct	gggaagcttt	
207121	tctcgtgcca	cagaccacat	gactggacct	gagagtgcaa	atggggaata	cgactcaatc	
207181	gggacgagag	ccgaatccca	aaagctgcga	ggatgagttg	aga <mark>g*c</mark> ttagt	: gccgaaagcc * P <mark>1</mark>	4
207241	gattgactgc	taactaaata	ctcaaagcta	aacgcatcat	gatttatgat	gttctcgcct	
207301	agattcgagt	ttgaaggcaa	gcggaggcaa	gtgccgatcg	caaatgttca	agggcaaaag	
207361	tcgaagagat	atataaatag	tacattgtac	tatataagct	gaagtcttat	aaatccttag	
207421	ttaaattttt	atagatttta	tagattatag	atggattaac	gttgcatcta	aagctaaatg	
207481	tcaacataag	ataaaaactg	aattgctaaa	cattagttta	atattatttg	aaattaacat	
207541	ataatctact	gcaaggagca	ttgattcaaa	tgagtgccaa	aagttgagcc	cacaaattgc	
207601	cgaaatctac	gctgctcaaa	tccccaagaa	cgagcgacga	gtgaaagctg	agcaaacgag	
207661	tgtcgagtgg	ccgagcaacg	gtgcggatga	gcgatatgcc	atgctgctga	gtggcctcgt	
207721	ggtcgcaaaa	gctccgcagg	cgcgaacagt	tgtacacgca	acgctccagc	cgtcgagccg	
207781	agatacggaa	ttaaaaaaqq	aactgatttt	qaatcqaaca	qaqcqcqtcq	cgagtcgcat	
207841	aqaaqaaata	aaqttttqqc	acaqtctaat	qqcaaaaaaaa	attqqqctqt	qqqcaqcqaq	
207901	ccaaaqccaa	qtqaattaqq	attqtqctaq	qatacqaaaa	atccacacqa	acaccaatat	
207961	catccqtata	qaaacqcqaa	aqaaqatccc	actcqtqqcq	cqaacqcqtq	tgctgtgcag	
208021	aaqqqaaaaa	aaaqaqaata	ttcaaatqaa	aattccattc	cttqaccqca	aaaqqatqta	
208081	qataaaqaqq	aatqtcqaqc	atttcattat	tqtqccttta	cctqtaaatq	tcaqtqtctq	
208141	tataaaata	ataqcttaaa	tcgagagtgc	caqtqcaatt	tttcaaatcc	tgcatcccca	
208201	tcqttcaqca	qctqaaqqaa	aaqcaqtaqq	aaaatcaqca	qqaaaaqcaq	caqccqcaqc	
208261	aqaqaaqcaq	aqcaqcaqta	qcaqcataaa	atcaataatt	tttqcttaaq	caqccqcaqc	
208321	agccaaaaaa	atctttcgca	gcaaacatta	actagcaaca	acatcgaaag	gacagcgaga	
208381	aaaacaacaa	caatttcttt	ttatagetee	tcatcctatc	tatatacaa	tatacatata	
208441	catatacata	tacqtqtccc	ttctcctggt	gagaatgtgt	acatacatat	agtagaccag	
208501	aaggttacac	tcacactcac	attcgcgttt	gcattaagca	gacagcgcta	agaatcagga	
208561	aacagcgcca	agaaaataca	agttttccca	gaacagcgga	acaaaaaaaa	agtgaagagt	
208621	aqaaaqtaaa	aagtaacggg	gaagcagcag	tctattattq	tattacaata	acacacacct	
208681	acacacaaca	acggcagcca	getcaaatta	cataaatago	agetaggeag	cactaagccc	
208741	aagtacaacg	aactgcaata	ctgcaaccct	graacactgr	aacattgcga	ttgcagcaac	
208801	attagcactt	aaagacccag	acdadadacc	cagaaaccta	tggacaatgc	ctatotctac	
208861	tacaaggtat	tataccaccc	actocttoca	ccggaaacag	tracccatc	cagtcagtca	
208921	atcagagaac	tacaacaact	gaaatccacq	aaaatcaaca	acquatcatc	atccagtcat	
200921	caaatcaact	carctoraaa	tatcattact	catcattcad	aacacaacaa	caataacaad	
200901	aacaacaaca	gaacagaacc	ttcgactcca	ttcaaaatc	aatcagggaa	aagggaggtg	
209101	grataaraaa	ccaaccaaac	caacaaata	catctaacca	aaatatctat	aaggeageee	
209161	tccaaqqtq	acastaataa	acaggatata	atataaataa	aaacgatge	taacccatca	
209101	atagagagat	gcgatggtac	atagggtgta	grgraaarca	aaacgacggc	taattatat	
209221	atcaaggeget	aacatgaggg	actocatoao	caaaqqqqqq	gaaageeatt	attaaaaat	
209201	geegaggege	addaaddada	taccaacco	raddaaaadd	acacaaaaaa	ttoctocada	
200011	gggcggcaga	tttatttta	caeguaggga caattttcac	catataaatt	caggatatat	caacaattaa	
209401	ggalgaacga	atapagaga	gaalligat	ottoogatt	tttttt	atagataaaa	
209401	aggagggggtt	atapagapa	attggttggt	attaaayatt	taggaaatga	ataaataat	
209521	tttatttta	tagaaagtaa	gatyattygt	tagattaga	attgaatta	alaaaalyet	
209301	accesance	ttaatataaa	aagaatgtataa	aatattataa	tagagagagat	aaaaataaat	
209041 200701	yccaayaaad	agaataagta	tagttgagt	tttttatata	tagttagaa	tagaagaaa	
209/01 2007/1	aaallaaydy	atcottoo	attette		atttata	atagaattag	
209/01	aacaaacaaa	tanana	actorectagt	LLAYCOLGEC		and and a set t	
2020Z⊥ 200001	aaalladdlt		ayuyyuacat	accaycycac	ccacacacac	taggadadtt	
2020011 200011	ttataatta	acayacacac	taggaagaa	gaaaaatyg	yyaaaycyca		
209941 210001	LLCLYCYLAA	LLAYLYAAAL	ccygcaacag	yycyaactig	cayaaaagug	taagaataaa	
ZIUUUI	alactoggta	cacagecaag	caacettaac	accectttg	cellaaceet	Leggeateca	
ZIUU61	cgctcattaa	cagaaaagcc	Lagtccaccg	aaattetaaa	aaacgagagc	cyacagggat	
STOTZT	ycacttcata	aatgtcactt	yaaatacatt	lccatcgggc	acgtgcgtgg	aygcaagaga	

210181	tgggacagca	actgacaatg	ggttaaggtg	ggggactctg	agggacgatg	ggtagtgaat
210241	ggcagacagg	acacaatagg	gaaagggact	ctgtctggcc	ttgctcacaa	aaaacacggg
210301	cacaaacgaa	acgaaacgtg	aacgtgatga	tttgtcatga	ttaacgcgag	gaaaagggga
210361	tccccattga	aaagcgggac	ttccccttcg	accgctttaa	tgttttgcat	tccctttgtt
210421	tgtcctgcgt	gatgtgatgt	gcccacatgt	caatgtcgtg	ggggtacagt	ctctcttc
210481	cccttcctct	ctctctctct	ctctctctat	ttctctccct	ttttctggct	ttatccttct
210541	gcctcacgaa	gtcataaaat	tgaaattgtt	ccccttagct	ttcttttcag	tttgcaagac
210601	tccgttttac	gggtttgttt	ttaattttgt	gatttttgct	gggcacgcaa	caaacgaaaa
210661	tagcaacgaa	atggttgaat	agccacaaaa	tatacactct	gctacatgta	ttcggcactt
210721	tacacactta	cacccacaca	caaccacaca	tcccacccac	tcggcttttg	atttcgcttc
210781	ttactttagc	tttgttctct	cactctctct	ccctctttct	ctttgtatcc	acctctcttt
210841	ccgtctttgt	agcccactct	ctttcctttg	tagtcccaca	caaacacacg	tgacgtatac
210901	gtaaccttgt	aaccaaaatg	ttgttatttc	ggtccgccat	ttccatgtgt	ttgtgtgtct
210961	gtgtgcgtgg	gtgagcaaaa	gttcttggca	ttattttaag	tgttctgctc	acctgcgctc
211021	tctttctcgt	attccttctc	tgcctcgctc	tctctctctc	tctctcattc	tctcttggca
211081	ttatttttca	aatttatact	aatctttgtt	ttactacaag	ccttaaaata	tgtaaatgta
211141	tgttttgtgt	cttaatgttg	tttgtgtaat	cgttcaatta	tagtatatag	tatagttttc
211201	tacactcgct	ttgtacttcc	gttttacttt	gtgaccccac	atacacaccc	acatacacac
211261	acactcacac	aatgtttgtt	aaactttaaa	cttagcattt	tgaacggaac	gctgatttt
211321	gaactccttt	ttcttactgt	tcttacataa	tcaaaaagta	atatataaca	tttaaccaac
211381	acaccaaaga	gcaaacctta	gatatcaaag	taaaacattt	atcgcaaatc	agaaagtaaa
211441	acctcaactg	aattgatcag	atacgaatta	acaaaccatt	agtgaactgt	gatctattta
211501	gcatacaaga	ataattcttt	tgtcatttta	ttgccaaaag	atgcagatga	ttttttcacg
211561	aaacctatcg	attgtaatgg	ctccaataat	tggcttaatg	aaccaaaatt	aaatccacac
211621	aaaaacgtct	aaaaacgtag	gcaagcagtc	ttgaataata	aattaccaaa	atcaagcgac
211681	tcaattaatg	aattcaaagt	atatatttgt	ttccagaatt	gatcttttt	aattacatca
211741	aaaacatata	ttttgttgtt	gttctaaaag	cgatcaccaa	aaaaaaaca	aaaacgattg
211801	aagaaatgct	atgacaaata	tgaaaacaaa	tttgtttacc	aagaatcgaa	aaaaaacgt
211861	atgcaactat	ttacaatatg	cttttgtaat	attttcgcac	gataccaaaa	aaataatatc
211921	aacataaata	taaataacaa	aaaaggacca	aagggaaagc	aataaccaat	tgatttaaac
211981	ttcgagtaga	cggaagaaag	gaagaaaaga	tgaagaaagc	aaatctttca	tttactgaca
212041	actttttgac	gataaaatga	taaaacaatt	atgacgtgta	tatatatcca	caatatggct
212101	atcaaacata	tgaatatata	ctcctacctc	tctgtttctg	tctctcttc	tcccactcac
212161	tctcttcctc	tctctctctc	tgtctctctg	tcgctcttta	tatatattcg	aatatcagca
212221	tattcagtca	tatatata	tataaatatg	ttactcttca	gtatgttgtt	tttgatattg
212281	attgcgttat	tccgcttacg	acagaccgag	acccaaaaac	ccccgatctt	ctgacccgcc
212341	acccatcgcc	caccaaaaaa	aaaacccaga	ttccaagccc	atctcgaggc	cgaaaaatag
212401	gcaacaattg	ttgtcgtgtc	gttgcacctg	tctcacacac	attcacatgt	gtccgtgtgc
212461	gctcatgttt	gtgtatgata	tattactttt	tggtttttgt	aaatatcgaa	cgtaccaact
212521	aatcttacga	acgttgaccg	tatccactcg	aaatcgaaat	caaaatcgaa	ctcgaactct
212581	cacacaacac	gcaatgcaac	aactataaca	ctctcttcat	gatgggttcc	actcgcacac
212641	acacacaaag	aacacacaca	gttccgaccc	tctctcacca	acactccaac	actggaagaa
212701	atactctcta	tatgaaaaga	attaagaaaa	gaagtgatat	tctgctctgt	ctgacacgac
212761	acacacaact	tgcgttcttt	tcatctctct	ctataagtct	ctttgtaacc	gtctctctct
212821	ctctaactca	atctcaatct	ctgactgtct	ctttcacaca	cacactctct	ctctctttca
212881	ctgtctgtct	aaacaactat	atgaatatat	attttgtttg	tttctccaac	acaccgaacc
212941	aaattattta	acaaatatac	ttttgcacgt	tatttctata	atgcatctga	actatatatt
213001	gttatacgaa	tatttatgtt	tcttttctgc	gtacaaacaa	aataccgaaa	gcaaattgta
213061	caaaacaaaa	aaaaaaacct	aaatactaaa	gtactcaatt	acccaaaaat	atacctgaga
213121	aatacgaaat	cagaatccaa	gttgcatttg	tatgccgcgt	cgatcacacg	aaccaagtcc
213181	aacacagcaa	caaaagagaa	gcatcgacac	acagatacat	tcacagatat	attcacccag
213241	acacagacac	acttacagga	ccacccatac	acgttcagtt	acaaagatac	aggcatccac
213301	acataaatag	atacaaaaac	cagcgacatc	ctcgtggctg	tcaaccaagt	gacacacatt
213361	tcatgttgcg	cctcctctcc	gccccccaaa	aaccgaaacc	acaccccctt	tttcgcagac
213421	acacagtatc	acaccgctca	tacacacaca	caaacaaaca	ctcacactca	cacctaagcc
213481	caaccccccg	cccttgttga	acttttttg	ggtgcctaca	agagccgttg	aaagcgcctc
213541	agaactaact	atataactaa	ccatataaag	ccaaacgaaa	gttaaccaat	ggaaaaacga
213601	aaagagaacc	aaaccaaacc	aaacagtacc	gaaaaatcat	aactcataat	caaccaatct
213661	cattctatta	caaaacccta	ttgtaaatta	agcgcaaaag	tgtaaaaaag	tcgaataaaa
213721	acgaaactga	tgaacttgta	gaaaaacaac	aaaaataatg	ataacaagaa	ctaagcaaat
213781	aaatcacgtt	tcaaatttgg	ggccagaata	gtccgtaagt	gtttcgggct	aaaatcgcat
213841	tcgttatgtt	aaatgtaagc	caattctact	actatacata	tatgtgcaaa	accaactcaa
213901	tacataaatt	tatatatgta	tgtatataga	tagatagcta	atgtttgtta	agccacgatc

	213961	atgatcaaga	aatcaagagc	aaaagctgcc	agaagctgtg	tgagcgatac	cgcatcgaag
	214021	ccqqaaaatc	qaaacaqata	acaqataaca	ccaqacccaa	caacaqaccc	aaaaaaqaqa
	214081	qtqctctcta	atattgacac	cacaqaatca	qaaaccaqat	aacaqatacc	aqaaaccaqa
	214141	aaaaccaacc	aaccaaccaa	aacccaacta	ccaqtcaqtc	agtcagtcac	agcagttaca
	214201	gcaaccaacc	attigaaatc	accattca		aactacacgg	acaccaacaa
	214261					aaaccaaaaa	atctaaatcc
CG12932	214321	aaacccccta	tcctacggtt	cgggcaatgg	ttacggcccg	cccqqqtacq	atctgtacgg
	214381	cccatcgacc	tcgacggcag	ctggtggata	cggactgtat	gatecgeaga	tctacqqacc
	214441	gtgccagcaa		teeggaggaaa	acactataat	attaccaacc	tacctcaac
	214501	caccatgtac	aatgatgtgt	acggetatec	ggcacctccg	ctccagcaga	
	214561	gaacattgtg	aatttattaa	acgaggcacaca	caagtcgata	tcacacaact	
	214621	gaatctaacg	aatcaggeegu	atcaattaga	tcagetgata		tagaagacaa
	214681	aggagttggg	atgggcctgg	atcaaataat	atccaattac		
	214741	cacctcacca		accataacct	catacadata	tccaccact	teteeteea
	214801	accesecta	tacttocado	acgacaacaca	antacaacaa	atactacaa	
	214861	geeeacaeg	atacaga		agegeageag	grgergeetatt	
	214021	tataatataa	agtgeegeeg			agatagaaat	
	214981		taccacacc			atagagagat	
	2150/1		caccagageg	acctgggcta			
	215041	ceagergarg	geeeaceage	cyclycacyc	atagagaga	gecattrege	aglaciacca
	215101	gaaccayyya	geegeaaeeg	gaacggggage	agaggatag	geeerggeer	acaaceegea
	215201	gtagtagttt	gegggaaege	tagaggagga	cygcggatte	cagggaccgc	
	215221			rgcagcagca	gatgcatccg	atagaaaaaa	accalgigida
	215201	attaggaggag	addaddigd	agacycatte	gelggeggeg	ctyyctaata	
	215/01	geeeggaggg	acgetggeta	attaggatag	ggactatgtg	tagatatt	
	215461	ccactogcac		accegeater	gcaccactee		
	215501	ggcatacetg			gcagcagcag		
	215521	ccaccacctg	agttttaaat	ttanagtaan	agartator	ataccyccyc	aayaytataa
	215641	gegacaagea	agtilladal				togaaatato
	215701	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	atcastcacc	ctcattaatc	gaaateegae	taggatat	atatatatat
	215761	atataacaat	cagagaggag	acqaacccaa	ttagaagga	taaccatcta	taatcoocta
	215821	tataccoata	aagatataga	caactaacca	atttacattt	aacgetttee	totocaticaa
	215881	ccadttata	acataaaaa	aagataagag	accaactatt	atatatacaa	tatacaacat
	215941	atatoataat	aaadtagata	ttettagaag	atctageta	agetaagaaa	attracata
	216001	atgatgtgaa	tataaaattt	acaggaggaac	tattottca	tataccattt	taatgtagaa
	216061	acagtgaage	gaaagatgaa	gctaccaaat	tccaatotta	ttcccaatat	tagttataga
	216121	tttggattta	cattettac	atagaggagt	caggggatta	agaaaaccga	aagccgagtt
	216181	caactacaaa	tattcgtatt	attatagatc	+++++++++	tttttggaaa	ttatagaacc
	216241	ttactcttaa	ctctcaaaaq	taaaagactg	tatataaaac	taaatgagat	ttactcacac
	216301	gtaacaacaa	tttatatata	tacacaaaaq	gagaaatgcg	aaatgaaata	acgtttactt
	216361	taaacttgtc	tcacctataa	aaqtaqcaaq	ttttgcgagc	tgacagaaaa	aaaaaaacaa
	216421	aaatcqaaat	cataaataa	aacaaaaacq	aagettgaaa	tttattaaat	caaaacctat
	216481	agagtaactc	qtacttaqta	tgatgattcg	acaactttaq	tcaattqtta	qtqcaqcaca
	216541	qacacaccac	tctatctaat	ctaaqcttaa	qcqaqtaaqt	aacqaaccct	tgcatggaca
	216601	taqtatttcc	qcqccatcaa	qqacctcttt	atacccaacc	tactaccaac	tacctaqcct
	216661	aactaaccaq	gacttaccta	atccaattat	aactttctct	ctcgcattaq	tgggcataat
	216721	gtgcattqct	aaattattta	ccttactcqa	ctttcttccq	cctcctccqt	gcaacactac
	216781	gttttaagtg	cccccaaaqc	cttccccaqc	aaaaqcaaat	gcaatgcagt	tatgaacaaa
	216841	ctagcgtgtg	attagcaatg	aaqqtcaatt	atgaacgaaa	acattgaaat	ttqtatqtqc
	216901	aatctataac	cgaataggtg	atggggtgga	tcgaatcgct	ttagatcgcc	tggttgaatt
	216961	agtttttgtg	tgtctgagac	aacaagcaaa	gtgaaacgaa	gaagcattca	aaatgtgtct
	217021	atgcgaatac	tatacactgt	actgtattag	tatgtattcg	actcaactag	tgtttgtatt
	217081	tcgtattcga	agaagcgctt	taaacactta	taaatcggta	gacatcgata	agtatacaaa
	217141	actatatata	gagtgccatt	accccagatc	tctggccgac	attttgttca	gttttgtgcc
	217201	ccaatgaaaa	cgaaactata	ttatcgaaat	tcacagtgaa	tgcatgttag	actacttact
	217261	actgattact	tttgaatata	gaaacctttt	agtcggacat	gtttctttgt	gcttaaaaaa
	217321	atcgaaatta	cgcatagata	tttctcaaaq	aaagtaaaaa	ttcttgttaa	agtagtgttt
	217381	aaatatatac	tagatgaatt	gatacggtga	tgtgagtctq	gagttatttt	aattttgcct
	217441	agtcgtagtt	cgtagttcga	gaacccctaa	aatatgcagc	aatcgtaaaa	gaaaaacaga
	217501	aattgtgttc	atagataaac	ttttttcaat	tgtttatata	cgtatatata	caaatatatg
	217561	tacattaaag	aatgtgagcg	taaccgaaag	ataaaagctt	atcactagcc	aattcgaaag
	217621	atagcacaat	gtgcgagcgt	gtgaatagat	aaatagatac	aaagatacaa	agatactatc
	217681	cacttgcttt	tcctacttct	gttcttgttg	ctcagccaaa	cttgattctc	ctcttcgact

	217741	cagattgatt	tgtaaccctt	ttctacaaqa	cqacqaacaq	aacaaqaaac	gaggcatttg	
	217801	aatattgata	taaqatatac	acattataca	taactctcta	tatacttqta	ttgtatttaa	
	217861	ataattatqq	ttaatattct	attatacqca	tatacattta	tgatcccacg	qqatqtacta	
	217921	tttatacaat	gatttaactg	taaacctaat	taagattgca	ttcagactta	attccgacaa	
	217981	gcaagaatat	tctcgaaatc	tattaaacat	aacctaact	gtaagcatta	taaatqqaa	
	218041	acttttccaa	accaaacaat	aaaattacat	tcgaaaaccg	aacatcaaac	atcatacada	
	210041	actititigaa	agcaaacaac	aataataatt	aggaagaagga	taatagaat	accycacyya	
	210101	aaaycaycca	agicaccica	colactagit	cagaacacca	adticegat	tataggaag	
	210101	aaaacaccag	acatacacac		agaccatece	actacacyat	Lalaccyaac	
	210221	aggatacgca	acyayyycyy	llaggllaag	gllaagladd	adaCCadaCC	Caalaactyy	
	218281	gattgggggc	ccaagacatt	acccatatcc	accaactete	attetataea	aagegtaage	
	218341	tcgctgtacg	caccttcaaa	tcgctcatat	tcacactcag	ttgcaacagc	aaatgatact	
	218401	ttgagacaac	aagcagacca	agaacaccaa	ccaccaagta	attgtagtcc	tggctaagga	
	218461	tcagtccccg	gcccaggcat	taccatgcgt	ggcaacactc	tctgatctaa	tgttatctgt	
	218521	acttgttcct	ttccaaccaa	cccataacca	ccacccaaac	cccatccgaa	tcgaaattca	
6	218581	<mark>g</mark> ctggacgaa	ttccgtcttg	<mark>aaatacagag</mark>	aagggatcaa	gagatcctgg	<mark>cgatggcggc</mark>	
	218641	<mark>caaaatgaaa</mark>	<mark>acgctcgagg</mark>	<mark>agcagcacca</mark>	<mark>g</mark> gtaaattga	aaagctagcg	cccaagtttt	
	218701	ccgtttgcac	agtaaagtaa	tttccgtcag	<mark>gactaccagc</mark>	<mark>ggcacatagc</mark>	<mark>ggtgctcaag</mark>	
	218761	<mark>gaatcgctat</mark>	<mark>gtgccaaaga</mark>	<mark>ggagcactac</mark>	<mark>aacatgctgc</mark>	<mark>agacggacgt</mark>	<mark>cgaggagatg</mark>	
	218821	<mark>cgcgcccgcc</mark>	<mark>tcgaggagaa</mark>	<mark>gaaccgcctc</mark>	<mark>atcgagaaga</mark>	<mark>agacccaggg</mark>	<mark>caccctgcag</mark>	
	218881	<mark>acggtccagg</mark>	<mark>agcgtaatcg</mark>	<mark>cctcaccagc</mark>	<mark>gagcttaccg</mark>	<mark>agctcaagga</mark>	<mark>ccacatggac</mark>	
	218941	<mark>atcaaggacc</mark>	<mark>gcaagatcag</mark>	<mark>cgtgctgcag</mark>	<mark>cgcaag</mark> gtta	gacattctat	tgtatatccc	
	219001	catccttcgg	caacaatttg	ttactaatct	atttctattg	gggtactatg	actagaaaga	
	219061	tcattattat	gcttagatat	taatcttgac	ccgccataaa	aggggaattt	caaatgcttt	
	219121	caagtgatct	ctggaaataa	actataaaat	tataaatagt	tagtgaactc	tacatatgaa	
	219181	tcttccattt	aaaatatctt	aataaagttc	tcgataacta	aggtattctt	tcaacaacaa	
	219241	caacaatctt	gtaaaaggtg	gtctaaacag	catttattaa	tacctttaga	aacattttaa	
	219301	agaattcttt	aaaggtgata	gaacatatct	ttgctcacca	aagttttcta	gatcaaaaaa	
	219361	acagcatagg	tcattacggg	gttaccattc	tttccctgtt	cgctcctcaa	tcctcccgat	
	219421	ctctttcgat	ag <mark>atcgaaaa</mark>	cctggaggat	<mark>ctgctgaagg</mark>	agaa ggacaa	ccaggtggat	RTP36.5
	219481	atggcgcggg	cccgtttgtc	ggccatgcag	gcgcaccaca	gcagctccga	gggcgccttg	
	219541	accagectgg	aggaggccat	cqqcqacaaq	qaqaaqcaqa	tggcccagct	gcgtgatcag	
	219601		ccqaqcacqa	qaaqcaqqaq	qaqcqqqatc	tccacqaacq	cgaggtggcc	RTP36.3
	219661	gactacaaga	t caaqctqcq	aaccaccaaa	aqtqaqqtqq	aqaaqctaca	qacqcqtctq	
	219721	aaacaaacaa		ggaacgactg		tggaggcctc	acagagegaa	
	219781		cassaaccas		accacctaca	aaatggggggg	aadaadada	
	219841	gactgggagt	ccaccaagca			tggagaacga	gcggctgaaa	
	219901		agcgttcgca	ggtactcgtg	cattatgacc	agtttccccg	acattaccct	
	219961	aataacttat			tatttacact	atatacatat	aat.cgagaga	
	220021	cttgcataca	tactoctate	gataatctat	gaacccatat	gcataaaaca	catacatatc	
	220081	tatgtgctat	ctgtatctac	atctatatct	atatatctqt	atctgaatat	gtatttacat	
	220141	gtacacatta	cgcat.cccaa	ctaccaacta	ccaactacta	cccaactaca	acaactacaa	
	220201	ttataataac	tacaacaacc	aatcaacctq	aattataaac	tcacccgaca	taaaccaaat	
	220261	atagatgcag	ctagaagaac	agaccacact	acacaaagta	ageccaaaaa	tccgaattcc	
	220321	aaacttccac	ttaccaacta	gattgcataa	tatcgagtat	cttagttttc	gaataacgta	
	220381	atttaaatc	ctttcactca	ccataagtca	acccaaatta	ttcagettat	ttaaactttt	
	220441	aaaqttaaat	cgaacaaagt	aatatattaa	taatottata	aagtaacttg	atttattca	
	220501	aagatcaaac	taaaattoot	attortaatt	agtttcatcg	aaaacqaata	tagaatatca	
	220501	ctattatoca	aaatacacc	tttggtddtt	caccacaca	tatatadtat	tatataacat	
	220501	ctaattaca	adagtgeace	tatcactcat	cacccaaaaa	ctcatagtac	tattttta	
	220021	ctacctaga	cccactatca	ctccccattt	agagggagga	gagtagata	gaadtagt	
	220001		appaggagga	agagagagag	agageeagea	atttaagata	gaataaaga	
	220741	atoogatott	caaccaccac	ataattaaaa	agattaga	accelagate	cyataaaycc	
	220801	atttacatatt	gegeacted	acaccaccac	aggattagta	geactegeet	tagaagaaaa	
	220001	gilligalli	atoogettoo	cyyacayayy	yayyıyıada	caagilyaal	ryeegeegaa	
	22U921 220001	arycaracc	tagaaaaaaa	yalaladala	ataataaa	gradityda	gaacycacaa	
	22UYO1	aayılaatgt	ccyaaacggg	caayalateg	yladylCggC	caaayceget	gauceageet	
	221041	aacccactta	ycyccgccat	ayaagcccaa	alaaaatgca	aaccgaattt	ayayaaccaa	
	221101	ycgtcaaatg	cacccaaata	Lgagagaatc	ytgtgtcgaa	atccaaaatg	LCaaaacgct	
	221161	cattgaatca	LTCACAGCTT	catggattgg	attggtatcc	attgtaaaca	ycttgcctgc	
	221221	tggactcatc	atcacgtcaa	gtcacccgta	ttcgcaacca	tatctgtaaa	cacatttgct	
	221281	aatgccttga	actgcttttg	attgttgtct	tgcacttgtt	atccatatcg	ccccaaccgt	
	221341	ggccaaccaa	ctaatttgaa	tgtttcccgt	ttcccgccca	aag <mark>acaacct</mark>	ttggcaggac	
	221401	cacgatgacc	acgtcccagg	aactggatcg	agcccaggag	<mark>cgggccgaca</mark>	<mark>aggcctcagc</mark>	
	221461	cgagctgcga	cgcacccagg	<mark>ccgagct</mark> gag	agtcacacag	gtatggtcca	aatgctcccc	

221521	cacttgcctg	cgaatccgag	acagccatat	actcgtacat	atatcgatat	gcatatctga	
221581	atgetettt	agttagettt	acatatatta	tttacqtata	ctttatgtat	aaatctcgaa	
221641	caccasacta	acaattacaa	atacaattet	cacatacaac	tatatata	tatatatata	
221011	Cyccyaacte	gcaattgcaa	gigcaactee	cacacacaac	lglllglglg	lycacacacy	
221/01	tatatgtgga	tgtatgctgt	acatgtacat	atctcggtgt	gcgtgtgctt	tgttgttgat	
221761	ggaccgaaaa	ctttcgcccg	gcattgagga	gattctacac	acacccactc	agaacaccaa	
221821	tacaaataca	aaaqtcqaaq	qqacttcqac	cacccacccq	cctqtctata	actttctctq	
221881	ctocaacato	ccaccccaac	cacacacaca	caaacacaaa	tacocacaca	ccccaccact	
221001	testates					teeestet	
221941	lgelalggea	aaacacgcug	agicclill	geggggalaa	aggalaggga	Laaagiigii	
222001	caactcgatt	taaactcctt	ttatgtttgc	ttctttcgta	actttaacac	taacgtaacc	
222061	gtaaatgtat	tagtaaattg	taaatgtaat	cgtaattgta	aagattttat	tgcaaatacc	
222121	gccgttgaga	ccatgtatac	taaaaccaaa	ctctatctaa	accattatac	ttacattcat	
222181	tototaaata	tadadaaaa	atassasaaa	ttttataaat	aaaccoctto	caaccaatca	
222101		Lagggegaaa	ctgaaaaacg	tereverses	aaaccycttt	taagtaatta	
222241	atcaatcaaa	caagttttta	gtaacgcaac	taaccgtaat	tgaattegat	tgcaaacttg	
222301	aactgcatct	gactatgcca	aagtaatcca	aagaaaccca	acaaaaaaaa	gataaccaaa	
222361	gctagttgca	atctgtcact	tgttcaattt	aatgtaattt	acattgcctg	atgtactaac	
222421	attoccatac	cagcatatac	atacgcacat	acccatacac	acacacctat	ctatacatat	
222481	aucuaacaca	tactaccet	acatcattca	cattatacaa	tataggetca	aggtgatgtg	
222401	agegaacaca		acattattya	ccccgtacga	catageetta	ageleaters	
222541	tcactcttcc	ggtttgtttg	gaaaagagag	caacctgccc	cgaaaaccgg	atgcaagcaa	
222601	agtatgacaa	agtatcctta	gagcagctca	gctcctggag	cgcttttcct	tggactttcc	
222661	acccacacac	atacacgcac	tcacgtacac	acgtacgagg	actaaaggaa	gcggaaggcc	
222721	gctgatatcc	ccaqctaatt	gacttaacgt	atgetetete	acqcccacaa	atacatacat	
222781	tgacacccac	acatecore	gcatttetta	cacacacttt	accttacttt	acteterese	
222/01 2220/1	tttagaaaat	tttaaataat	tttaatatta	agatastast	gastatatat	tagtatata	
444041		LLLCCCLAAL	LILCOLOLLG	cacialyag		luyluaalC	
222901	catcgcgaac	tcatgcgaac	aaatgcccgc	catgtgtccc	ataacaagtt	ggtcctgtgt	
222961	ccgttaatgt	ccgtctgttc	caacccatta	cccagctaca	tcctttcttc	ttatcccatt	
223021	gaacttcttt	acattttgtt	taaacttcqt	atttgtttgg	caaactttta	caaactttat	
223081	ttatccattt	atttccaata	cattttacct	aagatatett	tatccatttc	ttcctcaaaa	
222001	atttaata	gtottaggag	tattatttaa	attagata	attatata	atttatatt	
223141	gullucalg			guicacatac	gettetatge	acticitytt	
223201	aagcttttct	tggccaaatc	ttttctaagc	tcgcaccaag	ccctcttctg	ttctcctatc	
223261	tattttcctt	cttaaatttt	gattcctgct	ctttatctac	ctcaaagtca	gtcgctcgct	
223321	cgcagcataa	atcqctctaa	atcgctcgct	agaagttgtg	atcqtqttcq	taatcqttat	
223381	cgtaatttaa	gtacttttg	togttatatt	tatcattat	caccttaacc	tetetatte	
223301	atatatata	stasstass	asttasatas	ataoataoat	agostasata		
223441	gigiciacia	allayllaya	CallCaylCa	gleagleagl		alllaayaac	
223501	ctttgtccca	cataattgcc	tgtaaataat	atccgttatc	caacatccac	tctacccccc	
223561	cgacaacaac	atgacaaacc	cttcgattcc	caacgatcga	ttgataatga	aatccgacca	
223621	aaccgaaacc	cgaaaacag <mark>t</mark>	<mark>cggatgcgga</mark>	aagagcacgc	<mark>gaggaggcgg</mark>	<mark>ccgccctgca</mark>	
223681	ggagaagetg	gagaagagcc	agggggaggt	gtaccgactc	aaggccaagc	tggagaacgc	
223741		caggagagatg		actacacaca	acaceaeaca	atatatata	
223741	ccayyycyay	cayyayaytt	Lycyccayya	geeggagaag	gcgcagagcg	grarer	
223801	calceaegee	gaccgcgatc	<mark>gg</mark> glaggcaa	aaccgcllag	caalagelea	gcacccaaaa	
223861	ccgaaataaa	acccccaatg	aaccccatga	atgacccaac	caaccaacca	accaaccatc	
223921	ctcactcact	cacccaaaac	caccatccgt	tgcacag <mark>gcc</mark>	<mark>ttctccgagg</mark>	<mark>tggaaaagat</mark>	
223981	caaqqaqqaq	atqqaqcqca	cccaqqccac	gttgggcaag	tcqcaqctqc	aqcacqaqaa	
224041		tractagara	aggeccagaa		catctgcagg	ataagetgga	м·
221011	googeagaataa	aggaagaaga	aggetetgat	agtageegae	aacaacat ca	actageegga	
224101	caayyeerye	acyyayaacc	geegrerggr	geregagaag	gagaagetta	CCLacy acta	<u>Б</u> .
224161	<u>cgacaacctg</u>	cagtcg cagc	tggacaaggc	cttgggccag	gcggccagga	t gcagaagga	3
224221	<u>gcgcgagact</u>	ctctctttgg	acacggatcg	cattcgcgag	aagctggaga	agacgcaggt	
224281	atgcccgggt	cccagtccca	gcccccagaa	ccactacacc	aacaccacac	acgctctgaa	
224341	ccacacaccc	atcttcgaag	agactageta	accgaaaatg	tataactata	accotaacto	
224401	tattatacta	accordadad	ataaactatt	accoraceto	ccactaaaac	atcacttaca	
224401	tyrryryrta	acceccagag		aaccyacacy		cugutaga	
224461	tcgatgtgat	tgetattget	taatccagaa	caccettaac	ccctaacctc	ccgccttgta	
224521	cataactaaa	actatttatc	cctaacatat	atctctacgt	atgcgtaact	atctttcgac	
224581	tgtcacaccc	cacaacacac	acacacaact	aaaacacaca	cacaacttcg	aaataccagg	
224641	tgcaactggg	tcgcatccag	aaqqaqcqqq	atcaattctc	cgacgagetg	gagacgetca	
224701	aggagggtg	ggaatoggog	cagaccette	tcatgaaggg	Caccacasa	COOGAGOGGA	
221/UL	tagaaaa	tataaaatt	atacasa	ante ante ante	atacacac	atterre	
	Lycaaacgga	lelygaagtt	cicaaggagC	yccacgagaa	alcycacgcc	allcagcaga	
224821	aactccag gt	aattgacacc	caactcccca	ccagcgaagg	caattgcttc	aggtatcctc	
224881	ttcgaaaaac	gaaacccaaa	accattggct	atcaacccta	ctaaactcta	tactaaaata	
224941	cqttqtctqt	actgcatatt	gtttgaaaaa	ccqcatqaqa	actgaactaa	gatatcaaaa	
225001	caattoocto	restutate	troataarta	catoccanto	caaaccccaa	ttoccadaco	
222001 222001	taaccetee	atattacat	ataaattaat	ttacater	gagagagaga	agatast	
	LAACCCCTAA	ylcllcccct	alcaclCCC	uucayacgga	gegegaegat	ycygtcacdg	
225121	aagtcgagat	cctcaaggag	aaactggaca	aggcgctgta	cgccagccag	aagctgatcg	
225181	acgagaagga	cacctccaac	aaggagttcg	aaaagatgct	ggagaagtac	gatcgggccc	
225241	agaacgagat	ctatcgcctt	cagtcccgtt	gcgatacggc	agaagcggat	agagcccgct	
		-	_				

CG30337

Missing E-37.3 36-E-37.3

225301	tggaggtgga	ggcggagcga	tctggcctgg	ctgccagcaa	ggcccgcgag	gatctgcgta	
225361	agctgcagga	cgagagcact	cggctgcagg	aggcctgcga	tcgggcggcg	ctccagttga	
225421	gccgcgccaa	ggagtgcgag	gacaatgcgc	gcagcgaact	ggaggagagt	cgcgatcgct	
225481	tagagaagat	3923030323	attaggagta	aaaaaaaaaa	gaaggaggag	ttagagtaga	
225401	Legacaaget	acaaacyyac	acceggegeg	cccayyycya	gaaggagcac	LLCCayLCCy	
225541	agetggagag	ggtcacctac	gaactggagc	gcgcacatgc	cgcccagacc	aaggcgagcg	
225601	ccagcgtgga	ggcggccaag	gaggaggcgg	cccactatgc	cgtagagctt	gagaagatgc	
225661	gcgaccgcta	cgagaagagc	caggtggagc	tgcgcaagct	gcaggacacg	gacaccttcg	
225721	ggcgggagac	gcgacgcctc	aaggaggaga	acgagcggct	gcgcgagaag	ctggacaaga	
225781	cgctcatgga	actggagacc	atacgcggca	aatcgcaata	cgagtcggag	tcattcgaga	
225841	agtacaagga	caagtacgag	aagatcgaga	tagaggtaga	gaacatggag	tcgaagetge	
225901	acgagaccag	cctgcagctg	gagetgtega	agggggggggg	gaccaaaatg	ctooccaate	
225901	acgagaccag	aaataaaaa	gageegeega	agggegagge	ggeeddddeg	aaaaaaaaaa	
225901	aggaaaagca	gegaceegag	cuggaacggg	cycacatcya	gegggagaag	geacycyaca	
226021	agcatgagaa	getaetgaag	gaggtegate	gtttgcgcct	gcaacagtcc	tcgglgagee	
226081	ccggcgatcc	ggtccgagcg	tcgacgtcct	cctcttccgc	tctgtccgct	ggcgaacggc	
226141	aggagatcga	ccgcctgcgg	gatcgccttg	aaaaggcgct	gcagtcgcgt	gacgccaccg	
226201	agctggaggc	cggtcgcttg	gccaaggaac	tggagaaggc	gcaaatg <mark>cat</mark>	ctggccaagc	DWC
226261	agcaggagaa	caccgagtcc	acgcgcatcg	agttcgagcg	catgggcgct	gagctcggtc	
226321	gcctgcacga	tcgcctcgag	aaggccgagg	ccgaacggga	agcgctgcgt	caagcgaacc	
226381	atagcagcag	agetggeget	gcccccatc	cqcaqctqqa	qaaqcacqtc	cagaagetgg	
226441	agtcagacgt	caagcagctg	gccatggagg	gggaggaggt	ggtcctgcaa	ctggagaaga	
226501	agceagaege	tettatgaac	ttccagaagg	aactccacaa	cacagagaga	gaattggaaga	
220501	geeaggagae	ceccacgaac	ccccagaagg	aactccagaa	cgcagaggcg	gaactgeaga	
220501	agacgcgcga	ggagaaccgc	aagetgegea	acggtcacca	agtgeegeea	gtegeegete	
226621	cacccgccgg	accetetece	gccgaattcc	aggccatgca	aaaggagatc	cagaccctcc	
226681	agcagaagct	ccaagagtcg	gagcgcgccc	tgcaagccgc	cggtccccaa	caggcacagg	
226741	ctgcagcggc	ggcaggagcg	agtcgcgagg	agatcgagca	atggcgcaag	gtcatcgagc	
226801	aggagaagag	tcgcgccgac	atggccgaca	aggccgccca	ggagatgcac	aagcgcattc	
226861	ag gtgaggat	cgacgtggac	acaatgagca	caaggagttt	gtccttaaca	caactaaaca	
226921	tactgatact	ttctaacaca	ttaaatcact	tatttccaca	- catttttat	gtcaatatgt	
226981	aagtacttaa	tattatcatt	taattettae	atttaaaatt	acgttacttt	gaatgggcgt	
227041	tgaaacaatg	tttattgaag	ttccatotta	cacttatota	tatattccca	ataaactaaa	
227041	taaataatt	ttattat	tttoootaat	ttogattatg	gaggaggagg	tapagataa	
227101	Laadladd	llelalyea	lllaalyyl	claycelacy	gaccaacaca	leadygalea	
22/161	gcacgcccag	atgcagaaga	tgcagcagca	gatgcaacag	cagcagcagg	cggcgcaaca	
227221	ggcggtgcaa	caggcggcgc	agcagcagca	atccgcagca	ggtgccggcg	gtgcggaccc	
227281	caaagagttg	gagaaggtca	ggggcgaact	ccaggcggcg	tgcaccgagc	gggatcgctt	
227341	ccagcagcag	ctggagctcc	tggtcacaga	gttggagaag	agcaag gtga	cttatccatg	
227401	gaaccaaaca	aatatataac	cattaatcgc	atttatcccg	gccag atgtc	caaccaggag	
227461	caggcaaaac	agctccaaac	ggcgcagcag	caaqtqcaqc	aactgcaaca	gcaggtgcaa	
227521							
	cagetgeage	agcagatgca	acaactgcag	caggetgeca	gtgcgggagc	aggcgccacc	
227581	cagetgeage	agcagatgca	acaactgcag ggaacagcag	caggetgeca	gtgcgggagc tggaggaggt	aggcgccacc	
227581	cagctgcagc gacgtgcagc	agcagatgca gccagcagct	acaactgcag ggaacagcag	caggctgcca cagaagcaac	gtgcgggagc tggaggaggt	aggcgccacc gcgcaagcag	
227581 227641	cagctgcagc gacgtgcagc atcgacaacc	agcagatgca gccagcagct aggccaaggc	acaactgcag ggaacagcag caccgagggc	caggctgcca cagaagcaac gagcgcaaga	gtgcgggagc tggaggaggt tcatcgacga	aggcgccacc gcgcaagcag gcagcgcaag	
227581 227641 227701	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa	acaactgcag ggaacagcag caccgagggc ggacatcgag	caggctgcca cagaagcaac gagcgcaaga gaaaaggaga	gtgcgggagc tggaggaggt tcatcgacga agaagatggc	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac	
227581 227641 227701 227761	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa	acaactgcag ggaacagcag caccgagggc ggacatcgag ggagcagatg	caggctgcca cagaagcaac gagcgcaaga gaaaaggaga gaccagctgg	gtgcgggagc tggaggaggt tcatcgacga agaagatggc agaagtccct	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag	
227581 227641 227701 227761 227821	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc	acaactgcag ggaacagcag caccgagggc ggacatcgag ggagcagatg cggcgagctg	caggctgcca cagaagcaac gagcgcaaga gaaaaggaga gaccagctgg aacaagaagc	gtgcgggagc tggaggaggt tcatcgacga agaagatggc agaagtccct tcatggatac	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag	
227581 227641 227701 227761 227821 227881	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca	acaactgcag ggaacagcag caccgagggc ggacatcgag ggagcagatg cggcgagctg taaacaacca	caggctgcca cagaagcaac gagcgcaaga gaaaaggaga gaccagctgg aacaagaagc atattttagt	gtgcgggagc tggaggaggt tcatcgacga agaagatggc agaagtccct tcatggatac attacgaaaa	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag caaatgagag	
227581 227641 227701 227761 227821 227881 227941	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg	caggctgcca cagaagcaac gagcgcaaga gaaaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac	gtgcgggagc tggaggaggt tcatcgacga agaagatggc agaagtccct tcatggatac attacgaaaa atggaaagat	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag caaatgagag gccatcggcg	
227581 227641 227701 227761 227821 227881 227941 228001	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat	caggctgcca cagaagcaac gagcgcaaga gaaaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca	gtgcgggagc tggaggaggt tcatcgacga agaagatggc agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag caaatgagag gccatcggcg tataacaatg	
227581 227641 227701 227761 227821 227881 227941 228001 228061	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct	caggctgcca cagaagcaac gagcgcaaga gacaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagt	gtgcgggagc tggaggaggt tcatcgacga agaagatggc agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag caaatgagag gccatcggcg tataacaatg gctgcaaaat	
227581 227641 227701 227761 227821 227881 227941 228001 228061 228121	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaagqagq	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct	caggctgcca cagaagcaac gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc	gtgcgggagc tggaggaggt tcatcgacga agaagatggc agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag caaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa	
227581 227641 227701 227761 227821 227881 227941 228001 228061 228121 228181	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa aggagcagaa	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc	caggctgcca cagaagcaac gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca	gtgcgggagc tggaggaggt tcatcgacga agaagatggc agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa	
227581 227641 227701 227761 227821 227881 227941 228001 228061 228121 228181 228181	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa aggagcagaa	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag	caggctgcca cagaagcaac gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg	
227581 227641 227701 227761 227821 227881 227941 228001 228061 228121 228181 228181	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg atgtcgcagg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa aggagcagaa tatcctatcg	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacac	caggctgcca cagaagcaac gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca aaccagtgaa	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta	
227581 227641 227701 227761 227821 227881 227941 228001 228061 228121 228181 228181 228241 228241	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg atgtcgcagg tctcattggt	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa aggagcagaa tatcctatcg ttaaagtg	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacac	caggctgcca cagaagcaac gagcgcaaga gacaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca aaccagtgaa agtcaaacaa	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc	aggcgccacc gcgcaagcag gcagcgcaag cgagttcgac acagacgcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatccta agcaacagca	
227581 227641 227701 227761 227821 227881 227941 228001 228061 228121 228181 228181 228241 228301 228361	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa aggagcagaa tatcctatcg ttaaagatcg gtaagttaga	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacac atcaagccaa atcaagtaa	caggctgcca gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca aaccagtgaa aggtaaccaa	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcag gcagcggcag gcaacggcag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaacagca cgatccttat	
227581 227641 227701 227761 227821 227881 227941 228001 228061 228121 228181 228181 228241 228301 228361 228361 228421	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat ccctttttt	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa aggagcagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacac atcaagtaa atcaagttaa	caggctgcca gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaacggagc aagaccatca aaccagtgaa agtcaaacaa aggtaaccaa	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcag gcagcggcag gcagcggcag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatccta agcaacagca cgatccttat agtgccctcg	
227581 227641 227701 227761 227821 227881 227941 228001 228061 228121 228181 228241 228301 228361 228361 228421 228481	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat ccctttttt caaagccaca	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa aggagcagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaa	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacac atcaagtaa atcaagttaa agctggcttc tcttgggatg	caggctgcca gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaacggagc aagaccatca aagtcaaacaa aggtaaccaa ttgaagagct cagatgaggc	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcag gcagcggcag gcagcggcag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaacagca cgatccttat agtgccctcg tacacgtact	
227581 227641 227761 227761 227821 227881 227941 228001 228061 228121 228181 228241 228301 228361 228421 228481 228481	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat cccttttttt caaagccaca acttacccaa	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa aggagcagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaca agcgataatg	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacac atcaagttaa agctggcttc tcttgggatg gaaaaccaac	caggctgcca gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca aagtcaaacaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgttacca	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcag gcagcggcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaacagca cgatccttat agtgccctcg tacacgtact	
227581 227641 227761 227761 227821 227881 227941 228001 228061 228121 228181 228241 228301 228361 228421 228481 228481 228541 228601	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat cccttttttt caaagccaca acttacccaa tactatttg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaca agcgataatg tatactacg	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacac atcaagttaa agctggcttc tcttgggatg gaaaaccaac atgccgatac	caggctgcca cagaagcaac gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaacggagc aagaccatca agtcaaacaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag caataccaac	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgttaccaa tagttaccaa	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcag gcagcggcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaacagca cgatccttat agtgccctcg tacacgtact aagcactgtc ttctacgact	
227581 227641 227761 227761 227821 227881 227941 228001 228061 228121 228181 228241 228301 228361 228421 228481 228541 228541 228601 228661	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat cccttttttt caaagccaca acttacccaa tactatttg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaca agcgataatg tatactaccg ctatgtacac	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacaa atcaagttaa agctggcttc tcttgggatg gaaaaccaac atgccgatac	caggctgcca gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaacggagc aagaccatca aggtcaacaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag caataccaac	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgttaccaa taggtagtat	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcag gcagcggcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaacagca cgatccttat agtgccctcg tacacgtact aagcactgtc ttctacgact	
227581 227641 227761 227761 227821 227881 227941 228001 228061 228121 228181 228241 228301 228361 228421 228481 228481 228541 228601 228661 228621	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat cccttttttt caaagccaca acttacccaa tactatttg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaca agcgataatg tatactaccg ctatgtacac	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacaa atcaagttaa agctggcttc tcttgggatg gaaaaccaac atgccgatac	caggctgcca cagaagcaac gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca aggtaaccaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag caataccaac	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgttaccaa tagttaccaa tatgcagtat	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcag gcagcggcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaacagca cgatccttat agtgccctcg tacacgtact aagcactgtc ttctacgact	
227581 227641 227761 227761 227821 227881 227941 228001 228061 228121 228181 228241 228301 228361 228421 228481 228541 228541 228601 228661 228721 228781	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat cccttttttt caaagccaca acttacccaa tactatttg ttgtaaatg	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaca agcgataatg tatactaccg ctatgtacac	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacaa atcaagttaa agctggcttc tcttgggatg gaaaaccaac atgccgatac tctttacaca	caggctgcca cagaagcaac gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca aggtaaccaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag caataccaac gaaatgcata gaaatgcata	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgttaccaa tatgcagtat cacagggaca ttatttgata atttaaaagt	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcag gcagcggcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaacagca cgatccttat agtgccctcg tacacgtact aagcactgtc ttctacgact ttctacgact	
227581 227641 227761 227761 227821 227881 227941 228001 228061 228121 228181 228241 228301 228361 228421 228481 228541 228601 228661 228721 228781 228781	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat cccttttttt caaagccaca acttacccaa tactatttg ttgtgtaatt	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaca agcgataatg tatactaccg ctatgtacac acaccatgta aggttgccgc	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacaa atcaagttaa agctggcttc tcttgggatg gaaaaccaac atgccgatac tctttacaca aatgcaatgc	caggctgcca gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaacggagc aagaccatca aggtaaccaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag caataccaac gaaatgcata gaaatgcata	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgctacca tatgcagtat cacagggaca ttatttgata atttaaagt	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcaag gcagcggcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaccagca cgatccttat agtgccctcg tacacgtact aagcactgtc ttctacgact cacacacaca tttatgtgta	
227581 227641 227761 227761 227821 227821 228001 228061 228121 228121 228121 228301 228361 228421 228421 228421 228421 228601 228661 228721 228781 228781	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat cccttttttt caaagccaca acttacccaa tactatttg ttgtgtaatt agcgtacttt	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaca agcgataatg tatactaccg ctatgtacac aggttgccgc gtaaactctc	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacaa atcaagttaa agctggcttc tcttgggatg gaaaaccaac atgccgatac tctttacaca aatgcaatgc	caggctgcca gagcgcaaga gacaggaga gacaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaacggagc aagaccatca aggtaaccaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag caataccaac gaaatgcata ttgtggatgc	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgctaccaa tatgcagtat cacagggaca ttatttgata atttaaagt	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcaag gcagcgcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaccagca cgatccttat agtgccctcg tacacgtact tctacgact ttctacgact ccacacacaa attattggta	
227581 227641 227761 227761 227821 227821 228001 228061 228121 228121 228121 228121 228301 228361 228421 228421 228421 228601 228661 228721 228661 228721 228781 228781	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat ccctttttt caaagccaca acttacccaa tactatttg ttgtgtaatt agcgtactt	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa cggcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa tatcctatcg ttaaagatcg gtaagttaga aggctggacc gatacacaca agcgataatg tatactaccg ctatgtacac aaggtgccgc gtaactacaca	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacaa atcaagttaa agctggcttc tcttgggatg gaaaaccaac atgccgatac tctttacaca atgccgatac tctttacaca atgccgatac	caggctgcca gagcgcaaga gacaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagat gaaacggagc aagaccatca aggtaaccaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag caataccaac gaaatgcata ttgtggatgc ctctaactca gttagccaaa	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgctaccaa tatgcagtat cacagggaca ttatttgata atttaaagt ctaactcaat	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcaag gcagcgcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaccagca cgatccttat agtgccctcg tacacgtact tctacgact ttctacgact ccaccacaa cttattggta	
227581 227641 227761 227761 227821 227821 228001 228061 228121 228121 228121 228301 228361 228421 228421 228421 228421 228601 228661 228721 228661 228721 228781 228841 228901	cagctgcagc gacgtgcagc atcgacaacc cagatcgacg gtacagctgc ggaggcggag ctggaagcgt aaaagataag acaaagcttt atattgattg acaaaggagg tctcattggt tttcagagcc acagcaggat cccttttttt caaagccaca acttacccaa tactatttg ttgtgtaatt agcgtacttt ccaattaccc	agcagatgca gccagcagct aggccaaggc ccaagcgcaa gcaagcgcaa gcagcggccgc aagtgttgca ttgcgaatct ttcaaatctg atatattgtt agcacaagaa tatcctatcg gtaagttaga aggctggacc gatacacaca agcgataatg tatactaccg ctatgtacac aggttgccgc gtaaactctc aactcaactt aactcgagag	acaactgcag ggaacagcag ggacatcgag ggagcagatg cggcgagctg taaacaacca ctaaatacgg aatgacttat gtaactctct ggcggcaacc cgccaaggag ctgaaaacaa atcaagttaa agctggcttc tcttgggatg gaaaaccaac atgccgatac tcttacaaa tcaattcaaa tcattcaaa atgccgatac	caggctgcca gagcgcaaga gacaaggaga gaccagctgg aacaagaagc atattttagt acacctcgac ttttatttca atttttagt gaacggagc aagaccatca aggtcaacaa aggtaaccaa ttgaagagct cagatgaggc caacagcaag caataccaac gaaatgcata ttgtggatgc ctctaactca gttagccaaa catcactttc	gtgcgggagc tggaggaggt tcatcgacga agaagtccct tcatggatac attacgaaaa atggaaagat acgcatacca gcgtcaagga gtttgctgca tggatttgca ttcgttccgt gcacaaacgc ggataataac ttttctaaac aaaggattt atgctaccaa tatgcagtat cacagggaca ttatttgata atttaaagt ctaactcaat acaccaagtc ttctctgt	aggcgccacc gcgcaagcag gcagcgcaag gcagcgcaag gcagcgcag gcagcggcag gcaatgagag gccatcggcg tataacaatg gctgcaaaat attggtacaa acagtgagtg attatcccta agcaccagca cgatccttat agtgccctcg tacacgtact ttctacgact ttctacgact tttatgtgta cagctcgtat cctattcgaa cttcttagcc	

Amino Acid Sequence Of The BRP Protein (C-C Domains As Determined By Coilscan (HUSAR) Are Highlightened)

	RYQSLDRGGL	MAHAMDYPRT	HRSRSASRPP	EPTSPAGAGH	MGSPYYRDMD	1
	SPSAMGGYNT	DELYGRSARQ	RSLERGLYLE	IREPRDRSRD	VDPHDREFIP	51
1	SSMHSIKTFW	ELELTNQKLG	LQRELGDLKR	LGDLQHQNTD	GMGPT <mark>SDRAY</mark>	101
2	QLEEELRLRM	ENQKQAMLVR	INDQLKLLST	RKEESA <mark>KYSL</mark>	SPELKKERAP	151
3	TQKQTLIARD	TVKDLECRVE	LQREISILRE	MEAIYAENDH	RQP <mark>NLEMRQQ</mark>	201
<mark>4</mark>	EIQRRDQEIL	AQKQLDEFRL	RQMFQQMQAM	QAKG <mark>MGKEEE</mark>	<mark>ESIKKL</mark> LEML	251
5	VEEMRARLEE	EEHYNMLQTD	AVLKESLCAK	EQHQDYQRHI	AMAAKMKTLE	301
	SVLQRKIENL	DHMDIKDRKI	RLTSELTELK	GTLQTVQERN	KNRLIEKKTQ	351
	DKEKQMAQLR	ALTSLEEAIG	MQAHHSSSEG	VDMARARLSA	EDLLKEKDNQ	401
	RPERAVTERE	AESEVEKLQT	VADYKIKLRA	QEERDLHERE	DQRDRAEHEK	451
	IARLELENER	SADWESTKQR	EKATCEMGRS	SELGKSKAEL	RLEIKLEASQ	501
6	ERADKASAEL	TTSQELDRAQ	ISTTFG <mark>RTTM</mark>	VQKLMFET GK	LKHDLERSQN	551
	KLENAQGEQE	SQGEVYRLKA	AAALQEKLEK	QSDAERAREE	RRTQAELRVT	601
	LGKSQLQHEK	KEEMERTQAT	DRAFSEVEKI	SGVSRIHADR	SLRQELEKAQ	651
	DNLQSQLDKA	LEKEKLTYDY	KACTENRRLV	EVDHLQDKLD	LQNSLDKAQN	701
	QFSDELETLK	QLGRIQKERD	IREKLEKTQV	RETLSLDTDR	LGQAARMQKE	751
	LQMERDDAVT	YEKSHAIQQK	QTDLEVLKER	MKAARDREAM	ERSESAQTLL	801
	QNEIYRLQSR	EKMLEKYDRA	DEKDTSNKEF	KALYASQKLI	EVEILKEKLD	851
	EACDRAALQL	KLQDESTRLQ	AASKAREDLR	LEVEAERSGL	CDTAEADRAR	901
	ELERVTYELE	AQGEKEHFQS	FDKLQTDIRR	RSELEHSRDR	SRAKECEDNA	951
	LRKLQDTDTF	RDRYEKSQVE	AHYAVELEKM	ASVEAAKEEA	RAHAAQTKAS	1001
	KYKDKYEKIE	KSQYESESFE	TLMELETIRG	NERLREKLDK	GRETRRLKEE	1051
	AHIEREKARD	QEKQRSELER	KGEVAKMLAN	HETSLQLELS	MEVQNMESKL	1101
7	QEIDRLRDRL	SS <mark>SALSAGER</mark>	PGDPVRASTS	RLRLQQSSVS	KHEKLLKEVD	1151
	EFERMGAELG	QQENTESTRI	LEKAQMHLAK	ELEAGRLAKE	EKALQSRDAT	1201
8	ESDVKQLAME	PQLEKHVQKL	RSGGAGAAP <mark>H</mark>	AEREALRQAN	RLHDRLEKAE	1251
	NGHQVP PVAA	KTREENRKLR	ELQNAEAELO	SQEILMNFQK	REQLVLQLEK	1301

- 1351 PPAGPSPAEF QAMQKEIQTL QQKLQESERA LQAAGPQQAQ AAAAAGASRE 9
- 1401 EIEQWRKVIE QEKSRADMAD KAAQEMHKRI QLMDQHIKDQ HAQMQKMQQQ
- 1451 MQQQQQAAQQ AVQQAAQQQQ SAAGAGGADP KELEKVRGEL QAACTERDRF **10**
- 1501 QQQLELLVTE LEKSKMSNQE QAKQLQTAQQ QVQQLQQQVQ QLQQQMQQLQ
- 1551 QAASAGAGAT DVQRQQLEQQ QKQLEEVRKQ IDNQAKATEG ERKIIDEQRK
- 1601 QIDAKRKDIE EKEKKMAEFD VQLRKRKEQM DQLEKSLQTQ GGGAAAAGEL **11**
- 1651 NKKLMDTQRQ LEACVKELQN TKEEHKKAAT ETERLLQLVQ MSQEEQNAKE
- 1701 KTIMDLQQAL KIAQAKVKQA QTQQQQQDA GPAGFLKSFF *

APPENDIX 3

Reagents

Nr.	Method	Reagents
1.	3. Nucleic acid detection	TBE (10 X)
	3A. Agarose gel electrophoresis	890 mM Tris
		890 mM Borate
		0.5 M EDTA
		pH: 8.0
		Ethidium bromide Solution
		1 g of EtBr dissolved in 10 ml dH ₂ O or NH ₄ Ac
		Stored at 4 ^o C.
		6X loading dye/Stop buffer
		10mM Tris HCl (pH 7.6)
		0.03% Bromophenol Blue
		0.03% Xylene Cyanol FF
		60% Glycerol
		60mM EDTA
2.	3B. Southern blots	Depurination solution
		0.25 M HCL
		Denaturation solution
		1.5 M NaCl
		0.5 M NaOH
		Neutralization solution
		1M NaCl
		0.5 M Tris.Cl
		pH:7.0
		20X SSC
		3 M NaCl
		0.3 M Na ₃ Citrate.2H ₂ O
		pH: 7.0

3.	3C. Northern blot	10X and 1X MOPS
		0.4 M MOPS, pH -7.00
		0.1 M NaAc
		10 mM EDTA
		12.3 M (37%) Formaldehyde, pH – 4.0
		Deionized formamide
		Formaldehyde loading buffer
		1mM EDTA, pH - 8.0
		0.25% (w/v) Bromophenolbleu
		0.25% (w/v) Xylenecyanol
		50% (v/v) Glycine
		0.5 M NH4Ac (For EtBr staining and
		destaining)
		20 X SSC (See reagents in southern blot).
		Churchbuffer
		15% deionized Formamide
		200 mM NaPO ₄ , pH – 7.2
		1 mM EDTA
		7% SDS and 1% (w/v) BSA

4.	4. Cloning	S. O. C medium:
	TA cloning using TOPO cloning kit	2% Tryptone
		0.5% Yeast extract
		10 mM NaCl
		2.5 mM KCl
		10 mM MgCl ₂
		10 mM MgSO ₄
		20 mM Glucose (dextrose)
		NZY ⁺ Medium
		10% NZ amine (Caesin hydrolysate)
		5% Yeast extract
		5% NaCl
		pH: 7.5
		Autoclaved and freshly supplimented with
		12.5 mM MgCl ₂
		12.5 mM MgSO ₄
		10 mM Glucose
		Filter sterilized
		X gal
		2% X Gal in DMF.
		Stored at -20 ^o C protected from light
		IPTG
		20% Stock in dH ₂ O. Filter sterilzed.
		10 g Tryptone
		10 g NaCl
		5 g Yeast extract
		pH : 7.5
		dH ₂ O to 1L
		Autoclaved and store at $+ 4$ ^o C after opening.

		LB + Agar + Antibio	otic (1	L)					
		10 g Tryptone							
		10 g NaCl							
		5 g Yeast extract							
		pH: 7.5							
		15 g Agar							
		dH ₂ O to 1L							
		Aprropriate antibiotic	was a	.dd	ed to the	plates			
		after allowing then to	after allowing then to cool down sufficiently,						
		prior to pouring	prior to pouring						
5.	5. Protein analysis	SDS PAGE Running	10%	6	7.5%	5%			
	5A. SDS PAGE	gel							
		30% acrylamide/bis	5 m	1	3.75	2.5			
		acrylamide (29:1)			ml	ml			
		1.88 M Tris/HCl	s/HCl 3.0		3.0	3.0			
		(pH:8.8)	ml		ml	ml			
		dH2O	4 m	1	5.25	6.5			
					ml	ml			
		0.5% SDS-solution	3.0		3.0	3.0			
			ml		ml	ml			
		10% APS	150		150 ul	150			
			ul			ul			
		TEMED	25 u	ıl	25 ul	25 ul			
		SDS PAGE Stacking	gel	2					
		30% Acrylamide/bis		2.	.0 ml				
		acrylamide (29:1)							
		0.635 M Tris/HCl (pH 6.8)							
		dH2O		5.	.2 ml				
		0.5% SDS - Solution		2.	.4 ml				
		10% APS 140 ul							
		TEMED		24	4 ul				

		SDS running buffer (5x)
		30 g Tris
		144 g Glycine
		5 g SDS
		adjust pH to 8.3 . Volume 1 liter
		Laemmli Sample buffer (2x)
		125 mM Tris (pH: 6.8)
		6% Glycerin (86%)
		2% SDS
		0.025% Bromophenol bleu
		5% 2- Mercaptoethanol
		Make up volume with dH2O
6.	5B. Protein staining and processing	Coomassie stain
	in gel	1% Coomassie brialliant blue
		40% methanol
		20% acetic acid
		Silver staining
		Solution 1
		0.3% Sodium thiosulphate
		0.15% Potasium ferricyanide
		0.05% Sodium carbonate
		Solution 2
		0.1% AgNO ₃
		Solution 3
		2.5% Sodium carbonate
		Solution 4
		2.5% Sodium carbonate
		100ul/100ml Formaldehyde

7.	5C. 2D PAGE for separation of the	I1 (Lysis buffer 1)
	nc82 antigen from fly head	9.5 M Urea
	homogenate	0.5% SDS
		5% Beta mercaptoethanol
		2% Ampholines pH 2-11
		I2 (Lysis buffer 2)
		9.5 M Urea
		5% NP40 (w/w)
		5% Beta mercaptoethanol
		2% Ampholines pH 2-11
		J (Overlay solution)
		6M Urea
		5% (w/w) NP40
		1% Ampholine pH 2-11
		(Solutions I1, I2 and J were stored at -20 ^o C).
		K (30% Acrylamide –BAA solution)
		28.38 g Acrylamide
		1.62 g Bis-acrylamide
		100 ml dH ₂ O
		L 10% Nonindet P40
		10 g NP40 in 100 ml dH ₂ O
		M (Anode electrophoresis buffer)
		10 mM H ₃ PO ₄
		N (Kathode elctrophoresis buffer)
		20 mM NaOH

		O (SDS sample buffer for 2nd dimention)		
		60 mM Tris-Cl pH: 6.8		
		60 mM Tris-Cl pH: 6.8		
		2%SDS		
		5% Betamercaptoethanol		
		10% Glycerin		
		Rod gels		
		5.5 g Urea,		
		1.33 ml Acrylamide solution (K)		
		2 ml 10% NP40 solution (L)		
		2 ml H ₂ O, 0.5 ml Ampholine(s) pH 2-11		
		(Serva, Heidelberg)		
		30 ul 10% APS		
		20 ul TEMED		
		Solution was heated to dissolve urea,		
		Ampholines, APS and TEMED were added		
		after the soltuion was allowed to cool down,		
		allowed to polymerise overnight and overlayed		
		with water prior to loading.		
8.	6. Protein detection, purification	Western blot transfer buffer		
	and localization	20 mM Tris pH- 8.0		
	6A. Western blots	150 mM Glycine		
		10% Methanol		
		pH: 8.3		
9.	6C. Immunoprecipitation	Buffer A		
		0.6 M NaCl		
		15 mM Tris.HCl (pH 7.4)		
		15 mM Beta mercapto ethanol		

		Buffer B
		0.6 M KCl
		15 mM Tris.HCl (pH 7.4)
		1 mM Dithiothretol (DTT)
10.	6D. Immunohistochemistry	PBST
		137 mM NaCl
		2.7 mM KCl
		1/15 M Na ₂ HPO ₄ - 20 ml
		1/15 M KH ₂ PO ₄ - 5 ml
		0.3% Triton X 100
		рН: 7.3
		Sodium phosphate buffer
		1/15 M Na ₂ HPO ₄ - 20 ml
		1/15 M KH ₂ PO ₄ - 5 ml
		рН: 7.3
11.	6E. Fixes for electron microscopy	Karnovsky's fixative
		2.5% formaldehyde (USB?, Sigma)
		2.5% gluteraldehyde (Roth)
		0.1M Na-cacodylate (Sigma)
		7 mM CaCl ₂ (MERCK)
12.	8. Microinjections and transgenic	Injection oil
	flies	
		Injection buffer
		5 mM KCl

		0.1 mM Na-phosphate pH: 6.8						
		0.2						
		7% Sodium Hypochlorite						
13.	9. Fly genetics	Composition of the fly	y medium					
		Water	39	Liters				
		Yeast	675	Grams				
		Soy flour	390	Grams				
		Yellow cornmeal	2,850	Grams				
		Light malt extract	1,800	Grams				
		(dehydrated)						
		Agar	225	Grams				
		Light corn syrup	3	Liters				
		Propionic acid	188	Milliliters				

EXPLAINATION OF TERMS

Acronym	Explanation of the term
2-D	2 dimensional
3-D	3 dimensional
А	Adenosine
awd	Abnormal wing disc
AZ	Active zone
BDGP	Berkley Drosophila Genome Project
BMP	Bone morphogen protein
BPB	Bromo-phenol blue
BRP	Bruchpilot
Ca ²⁺	Calcium ²⁺
CAPS	Ca ²⁺ -dependent activator protein
CASK	CAMKII domain containing MAGU Kinase
CAST	Cytomatrix associated structural protein
CAZ	Cytomatrix at the active zone
CC	Coiled-coil
cDNA	Copy DNA
CG	Celera Genomics
CLIP-190	Cytoplasmic linker protein 190
CNS	Central nervous system
Cs	Canton-S
CSP	Cysteine String Protein
CtBP	C-terminal binding protein
C-terminus	Carboxyl terminus
СуО	Curly of Oyster
DAB	Diaminobenzidine
Dap 160	Dynamin associated protein 160
dCTP	Deoxycytidine tri-phosphate
DEPC	Diethyl pyrocarbonate
DGluRIIC	Drosophila Glutamate receptor Subunit IIC
Dlar	Drosophila leucocyte antigen related like

Dlg	Disk Large
DNA	Deoxyribonucleic acid
dNMNAT	Drosophila nicotinamide mononucleotide adenyltransferase
dNTP	Deoxyribonuncleotide tri-phosphate
DPAK	Drosophila P21 associated kinase
DTT	Di-thio thretol
ECL	Enhanced chemiluminescence
EJC	Excitatory junction currents
ELKS	ELKS epsilon like
Eps-15	Epidermal growth factor receptor substrate 15
ERC	ELKS-Rab6 interacting protein-CAST
ERG	Electroretinogram
ERM	Ezrin/Radixin/Moesin
EtBr	Ethidium bromide
EtOH	Ethanol
fne	Found in neurons
GA	Glutaraldehyde
GABA	Gamma-aminobutyric acid
GDI	GDP-dissociation inhibitor
GDP	Guanosine di-phosphate
GFP	Green Fluorescent Protein
GTP	Guanosine tri-phosphate
HCl	Hydrochloric acid
IWA	Isoluecine-Tryptophan-Alanine
kb	Kilobase
kDa	Kilodalton
KIF3A	Kinase like protein KiF3A
КО	Knockout
LIN ₂	Liquid Nitrogen
LVA	Larval lamp
MAB	Monoclonal antibody
mEJCs	Mean excitatory junction currents
МНС	Myosin heavy chain

MINT	Munc-18 interacting molecule
mRNA	Messenger RNA
MTOR	Megator
Munc	Mouse uncoordinated
NAD ⁺	Nicotine adenosine dinucleotide
NaPPi	Sodium pyrophosphate
NEPHGE	Non equilibrium pH gradient electrophoresis
NMJ	Neuromuscular junction
NSF	<u>N</u> -ethylmaleimide sensitive factor
NT	Neurotransmitter
N-terminus	Amino terminus
ORF	Open reading frame
РАК	P21 associated kinase
PDZ	PSD-95-Dlg-ZO-1
РКА	Protein Kinase A
PMSF	Phenyl methyl sufonyl fluoride
PSD	Post-synaptic density
PSD95	Post-synaptic density-95
PTV	Piccolo-Bassoon transport vesicle
Rh1	Rhodopsin1
RIM	Rab Interacting Molecule
RIMBP	RIM binding protein
RNA	Ribonucleic acid
RNAi	RNA interference
RPTP	Receptor protein tyrosine phosphatases
RRP	Readily releasable pool
RT	Reverse transcription/Room temperature
RT-PCR	Reverse transcription (followed by) polymerise chain reaction
Sap47	Synapse-associated protein 47
SAP90	Synapse-associated protein 90
SAP97	Synapse-associated protein 97
SDS	Sodium dodesyl sulphate
SDS-PAGE	SDS- Polyacrylamide gel electrophoresis

SLO-1	Slow poke
SM	Sec1/Munc18 like proteins
SNAP-25	Synaptosomal associated protein-25
SNARE	Soluble <u>N</u> -ethylmaleimide sensitive factor <u>attachment protein re</u> ceptor
SSC	Sodium chloride – Sodium isocitrate buffer
SV	Synaptic vesicle
TEVC	Two electrode voltage clamp
T-SNARE	Target- SNARE
UAS	Upstream activating sequence
ug	Microgram
um	micrometer
UTR	Untranslated region
UV	Ultra violate
VAMP	Vesicle associated membrane protein
V-SNARE	Vesicle- SNARE
Wit	Wishful thinking
WT	Wild type
wun	Wunen
ZIP	Zipper

Acknowledgements

I wish to thank my supervisor Prof. Erich Buchner for giving me the opportunity to work with him and for his excellent guidance.

I thank Dr. Stephan Sigrist, Dr. Tobias Rasse, Dr. Carolin Wichman and members of the Sigrist lab for their collaboration and co-operation on the Bruchpilot project.

I thank Prof. Dabauvalle and members of her lab for the excellent help they have provided for the 2-D PAGE experiments.

I also thank Prof. Esther Asan and her group for their collaboration on the electron microscopy.

I thank Dr. Burkhard Poeck and Dr. Matthias Porsch for providing useful guidance for molecular biological experiments. I thank Prof. Heisenberg, Prof. Gert Pflugfelder, Dr. Roland Strauss, Dr. Henrike Scholz, Dr. Andre' Fiala, Dr. Andrea Wizenmann, Isabell Schwenkert, Jens Rister and Pavel Masek for their insightful discussions and all the help from time to time.

I also thank the F2 students Roland Jeblick and Karen Erbguth and Diplom student Jittiporn Chaisaingmongkol for their excellent work and enthusiasm.

I am grateful to all my colleagues in the Buchner group for their constant help, assistance and also for providing a cheerful working environment.

I am also thankful to Franco Bertolucci, Dr. Marcus Mronz, Dr. Simon Pick, Johannes Schindelin, Arnim Jennet and the rest of the crew from the Heisenberg group for their invaluable help and interesting discussions.

I also thank all the technical staff for their assistance.

I am grateful to Sigi for her affection and help. I wish to thank my parents and sister for providing me with an opportunity to pursue my goals and my wife Saloni for her constant inspiration, support and troubleshooting.

Dhananjay Anil Wagh

Wuerzburg, 22.07.2005

Publikationen

Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle MC, Gang Q, Wichmann C, Kittel R, Sigrist SJ, Buchner E. (2005, submitted) *Bruchpilot*, a protein with homology to ELKS/CAST/ERC, is required for structural integrity and function of synaptic active zones in *Drosophila*.

Wagh D, Rasse TM, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle MC, Sigrist SJ, Buchner E, et al. (2004) nc82 antigen : Analysis of Gene structure, subsynaptic localization and developmental expression in *Drosophila*. (Abstract and oral presentation, Neurofly 2004, Neuchatel, Switzerland).

Wagh, DA, Jatzke S, Huber S, Dürrbeck H, Dabauvalle MC, Asan E, Leibold C, Hofbauer A, Buchner S, Buchner E (2003) Identification and characterization of the nc82 antigen, an active zone protein at the presynaptic terminal of dipteran insects. (Abstract and poster, 29th Goettingen neurobiology confernce, Goettingen, Germany, pp. 982).

Lebenslauf

Name: Dhananjay Wagh

- Address: Hessenstraße, 161 97078, Wuerzburg
- Date of birth: 09.11.1977 in Nashik (India)

Education

2002 – Present	University of Wuerzburg, Germany Ph.D. Program in Molecular
	Neurogenetics.
2000 - 2002	Tata Institute of fundamental Research, India Department of Biological
	Sciences, Junior Research Fellow.
1998 -2000	Department of Zoology, University of Pune, India Master of Science
	(Zoology)
1995 – 1998	MES Garware College of Science and Arts, India
	Bachelor of Science (Microbiology)

Research

08/2000 – 04/2002 Junior research student with Prof. Veronica Rodrigues, Tata Institute of fundamental reaserch, India and Prof. Gaiti Hasan, National Center for Biological Sciences, Bangalore, India

> Project title: "Genetic Dissection of Olfactory Physiology In Drosophila melanogaster"

06/1998 - 06/2000 Masters in Science at department of Zoology, University of Pune, India. Thesis project with Dr. Saroj Ghaskadbi

> Project title: "Pre-Treatment of MMS Does Not Protect Islet Cells from Streptozotocin Induced DNA Damage *in vitro*"

05/1999 – 06/1999 Summer training student National Institute of Immunology, New Delhi, India. Project with Dr. R.A. Vishwakarma

> Project title: "1.Isolation and Partial Purification of Protein Kinase C from Rat Brain"

> "2. Maintainance of L929 Cell Line and Culture of Mouse Bone Marrow Macrophage"

Würzburg, den 22.07.05

Dhananjay Wagh

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbständig verfasst habe und keine anderen Hilfsmittel als die angegebenen angewandt wurden. Alle aus der Literatur entnommenen Stellen und Abbildungen sind als solche kenntlich gemacht.

Die Dissertation wurde weder vollständig noch teilweise einer anderen Fakultät vorgelegt.

Ich habe außer dem durch die beigefügte Urkunde belegten Universitätsdiplom keine anderen akademischen Grade erworben oder zu erwerben versucht.

Würzburg, den 22.07.05

Dhananjay Anil Wagh