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We present Version 8 of the Feynman-diagram calculator FormCalc.
New features include, in particular, significantly improved algebraic sim-
plification as well as vectorization of the generated code. The Cuba Library,
used in FormCalc, features checkpointing to disk for all integration algo-
rithms.
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1. Introduction

The Mathematica package FormCalc [1] simplifies Feynman diagrams
generated with FeynArts [2] up to one-loop order. It provides the analytical
results and can generate Fortran code for the numerical evaluation of the
squared matrix element. Cuba is a library for multidimensional numerical
integration which is included in FormCalc but can also be used indepen-
dently. This note presents the following features new in FormCalc 8 and
Cuba 3.2:

— Better algebraic simplification using FORM 4 features.

— Vectorization of the helicity loop.

— Automated C-code generation.

— Optimizations for unitarity methods.

— Checkpointing for all Cuba algorithms.
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2. Improvements in the algebraic simplification

The algebraic simplification of Feynman amplitudes is split between
Mathematica and FORM. In a preprocessing stage, Mathematica translates
the elements of a FeynArts amplitude into FORM syntax and writes them
to an input file for FORM. (Note that none of the FeynArts symbols are
directly redefined, such that processing does not start immediately when
the amplitude is generated.) FORM then does the major part of the sym-
bolic simplification. In a postprocessing step, the FORM output is read and
returned to Mathematica by FormCalc’s ReadForm MathLink utility.

Many new and useful features were introduced in FORM 4 [3], most no-
tably abbreviationing and factorization. The FORM part of FormCalc 8 has
been rewritten to take advantage of these facilities, resulting in significantly
improved algebraic simplification.

2.1. Abbreviationing

Once a partial expression is considered final at a particular point in the
FORM program it is abbreviated, i.e. substituted by a symbol. This not
only shortens the active expressions but makes the abbreviated parts inert,
such that subsequent id-statements do not spend time on matching these,
thus making the FORM code run faster.

A similar technique has been used since Version 6 [5], where the FORM
expressions were sent on a round-trip to Mathematica halfway through the
evaluation for introducing abbreviations. Since this involved quite some
transmission overhead, it was performed only once during each FORM run.
With abbreviationing built into FORM now, abbreviations are introduced
whenever possible, thereby obviating the extra pass to Mathematica.

Abbreviationing also serves to prevent FORM’s automatic expansion of
expressions, i.e. it preserves a (pre)factorized structure, which is particularly
useful in combination with the new factorization available in FORM (see
Sect. 2.2 below).

What is more, since Mathematica receives an expression in many small
pieces rather than one large chunk, more aggressive simplification functions
can be applied upon return to Mathematica at a reasonable efficiency. To
this end, FormCalc wraps a zoo of simplification functions around various
parts of the amplitude. All of these are ‘transparent’ in the sense that they
can be replaced by Identity without affecting the numerical result. The
three most important ones are listed below, a complete inventory is given in
the FormCalc manual.

FormSub is applied to subexpressions of an amplitude.
FormDot is applied to combinations of dot products in an amplitude.
FormMat is applied to the coefficients of matrix elements (‘Mat’).
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On the technical side, since the abbreviations are also transmitted to
Mathematica as such (i.e. not back-substituted into the expressions), the
volume of data transferred is significantly reduced and the final expression
is stored efficiently as multiple instances of a subexpression are taken care
of by reference count (same as with Share[]).

At the moment, FormCalc does not use FORM 4’s “format On ” output
optimization, as it is not yet clear how to combine it with the postprocessing
in ReadForm and Mathematica.

2.2. Factorization

FORM’s new ‘full’ factorization (over the rationals) makes it possible to
simplify expressions much better already inside of FORM. The old ‘simple’
factorization (pulling out common symbols from an expression) is still used
in instances where full factorization is too expensive.

Potentially time-consuming instances of the factarg command in the
FORM code can be suppressed by setting the NoCostly→ True option of
CalcFeynAmp. This is occasionally necessary in models with more complex
couplings such as the MSSM.

Plain factorization is not a cure-all for arbitrary expressions, however.
For example, while the following expression is not factorizable as a whole

-2*e2.k5*S35 + 2*e2.k5*T24 + 2*e2.k5*T14 - 2*e2.k5*MT2 +
2*e2.k5*S - 3*e2.k6*S35 - e2.k6*S45 - e2.k6*T25 - e2.k6*T15 +
4*e2.k6*T24 + 4*e2.k6*T14 - 4*e2.k6*MT2 + 4*e2.k6*S

it easily admits further compactification by collecting with respect to the
dot products first:

-2*(MT2 - S + S35 - T14 - T24)*e2.k5 -
(4*MT2 - 4*S + 3*S35 + S45 - 4*T14 + T15 - 4*T24 + T25)*e2.k6

FormCalc takes typical objects such as dot products into account, of course.
Still, for a general expression, it is not straightforward to find a suitable
simplification procedure, which is why it is useful to have functions like
FormDot through which one can apply more sophisticated functions such as
Mathematica’s Simplify.

3. Vectorization of the helicity loop

The assembly of the squared matrix element in FormCalc can be sketched
as in the following figure, where the helicity loop sits at the center of the
calculation
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The helicity loop is not only strategically the most desirable but also the
most obvious candidate for concurrent execution, as FormCalc does not in-
sert explicit helicity states during the algebraic simplification [4]. That is,
the amplitude is a numerical function of the helicities λi and not a bunch of
(different) functions for each helicity combination

M =M(λ1, λ2, . . . ) 6= {M−−···, M+−···, M−+···, M++···} .

Such a design is known as the Single Instruction Multiple Data (SIMD) in
computer science since a single code (M) is independently run for multiple
data (λi), and is conceptually easy to parallelize or vectorize.

Parallelization on the CPU’s cores using fork/wait has been available
from Version 7.5 on [7]. The drawback of this method is that it competes
for compute cores in particular with Cuba. For better efficiency, the cores
should be assigned to Cuba since it computes entire phase-space points in
parallel, not just the helicity loop.

GPU parallelization was attempted using OpenCL but we found that it
was not too efficient. Since the transfer of data between the CPU and the
GPU is relatively time-consuming, we believe that the distribution of the
helicity-independent variables from the CPU to the GPU outweighed the
parallelization gains.

Eventually, the best speedup we could achieve was with vectorization.
With Intel’s x86 vector instructions, there is essentially no overhead.

3.1. Vectorization in C

Our implementation in C is based on the vector data type extensions
offered by gcc and Intel’s icc. Unfortunately, these are restricted to real
algebra, even in C99.

Complex addition is obviously not a problem and complex multiplica-
tion might have been solved through C++’s operator overloading. Since we
wanted to stick to C to avoid linking hassles with Fortran object files, we
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adjusted the C-code generation in Mathematica to insert explicit macros for
the multiplication of complex vectors: SxH stands for “scalar times helicity
vector” and HxH for “helicity vector times helicity vector”. Helicity vectors
are declared with HelType. (To avoid confusion with the Minkowski four-
vectors, we use prefixes ‘Hel’ or ‘H’ to denote helicity vectors in the SIMD
sense.)

Depending on the hardware features indicated by preprocessor flags,
these macros emit explicit SSE3 or AVX instructions. For SSE3, the max-
imum vector length is 1 (2 doubles per operation) which may at first not
seem very useful, but besides performing addition twice as fast there ex-
ists an efficient complex multiplication routine with 2.5 instructions instead
of 6. For AVX (requires i7 ‘Sandy Bridge’ or higher), the maximum vector
length is 2 (4 doubles per operation). Again, the complex multiplication can
be formulated fairly efficiently using Intel’s vector instructions. Overall, we
found a speedup of 3.7 out of theoretical 4 with AVX for the helicity loop.

Currently the configure script does not automatically add flags to switch
on SSE3 or AVX instructions, e.g. gcc needs the extra flag -march=native
to enable all features of the CPU used for compilation. This may change
in the future. A related question is which default to choose for executables
that could potentially be run on a cluster of computers with differing SIMD
capabilities.

3.2. Vectorization in Fortran

Vector data types are standard fare in Fortran 90 and so not only com-
plex vectors are allowed but one can, in principle, choose arbitrary vector
lengths. On the downside, the actual deployment of vector instructions is
at the discretion of the compiler and may not be chosen for vector lengths
incommensurable with the hardware.

Even though Fortran 90 is an effective requirement for vectorized compu-
tation, the code is still generated in fixed format and can be made compatible
with Fortran 77 through preprocessor definitions, e.g. for inclusion in legacy
packages.

4. Automated C-code generation

C-code generation has been available from FormCalc 7 on [6] but now its
use is mostly automatic, i.e. also drivers and utility files are available in C.
In fact, only the declarations needed to be translated as the initialization
still takes place in Fortran and the C object files are simply linked in. For
this to work, the layout of C’s structs must match Fortran’s common blocks,
of course. Private declarations, e.g. for new models, are not automatically
translated, but this is fairly straightforward as can be seen by comparing
the C and Fortran versions of e.g. the Standard Model declarations.
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To switch from Fortran to C output, the following statement needs to
precede the output commands (e.g. WriteSquaredME, WriteRenConst):

SetLanguage["C"]

The output is by default in C99, because of complex numbers, but can
easily be made to work with C++ by redefining the abstract data type
ComplexType. Even without SIMD vectorization, and perhaps remarkably
so for Fortran aficionados, C and Fortran versions of the same amplitude
show very similar performance figures, i.e. there is no penalty for using C.

5. Optimizations for unitarity methods

FormCalc can generate amplitudes for evaluation with the OPP (Os-
sola, Papadopoulos, Pittau [10]) unitarity method as implemented in the
two libraries CutTools [11] and Samurai [12]. Instead of introducing tensor
coefficients [9], the whole numerator is placed in a subroutine, as in:

εµ1ε
ν
2Bµν

(
p,m2

1,m
2
2

)
= (ε1 · ε2)B00 + (ε1 · p)(ε2 · p)B11 (tensor coeff.)

= Bcut

(
2, N, p,m2

1,m
2
2

)
, (OPP)

where N(qµ) = (ε1 · q) (ε2 · q) .

The numerator subroutine N will be sampled by the OPP function (Bcut in
this example). The first argument of Bcut, 2, refers to the maximum power
of the integration momentum q in N .

The OPP procedure indeed generates significantly fewer terms than the
traditional Passarino–Veltman decomposition, nevertheless a naive imple-
mentation runs quite a bit slower than its counterpart with tensor coeffi-
cients. This section describes our attempts to optimize the OPP perfor-
mance. We were able to bring the slowdown from originally a factor 10 to
about a factor 3 for multiplicities such as 2→ 3 and hope to improve mat-
ters further. To be fair, OPP was in the first place designed to increase the
reach of one-loop calculations to higher-leg multiplicities and not so much
to speed up the ones with not so many legs.

The major part of the slowdown (at least half of that factor 10) comes
from the fact that the OPP master integrals (the scalar integrals A0, B0,
C0, D0) are naively computed over and over again. This is because the OPP
functions must be evaluated inside the helicity loop since the numerator
subroutine depends on the helicities. The scalar integrals contain only the
denominators and thus could simply be moved outside the helicity loop.

In FormCalc, we generate code that foresees a split between the compu-
tation of the masters and their use in assembling the tensor integrals, for
example:
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ComplexType mas145(Mcc)
...
call Cmas(mas145, (C0 args))
...
call Ccut(mas145, num, (C0 args))

The complex array mas145 stores the master integrals computed by Cmas
(outside the helicity loop) and used by Ccut (inside the helicity loop). Un-
fortunately, so far, none of the available OPP libraries allows this decom-
position even though the two tasks ‘Cmas’ and ‘Ccut’ must be completed
internally in some way or another already now. LoopTools alleviates the
situation by retrieving recurring masters from its cache, though even here
the lookup time could be eliminated with the above construction.

Some packages address this problem by moving the helicity sum into the
numerator. This works if only the interference term is sought since then the
amplitude contains at most one loop integration in each term∑

λ

2ReM∗0
∫
d4q

N

D · · ·︸ ︷︷ ︸
∼M1

=

∫
d4q

∑
λ 2ReM∗0N
D · · ·

.

In FormCalc, we do not pursue this strategy, firstly because it is not ap-
plicable if the tree-level contribution is zero (or so small that including the
loop-squared part becomes necessary) and secondly because it is not obvious
how this evaluation fits into the present abbreviation concept.

Subexpressions of the numerator function (coefficients, summands, etc.),
independent of q, are pulled out and computed once, ahead of invoking
the OPP function, using FormCalc’s abbreviationing machinery [13]. In
particular in BSM theories, these coefficients can be lengthy such that pulling
them out significantly increases performance.

Our implementation admits mixing the Passarino–Veltman decomposi-
tion with OPP in the sense that one chooses an integer n starting from
which an n-point function is treated with OPP methods. For example, OPP
→ 4 means that A, B, C functions are treated with the Passarino–Veltman
and D and up with OPP.

We optimize OPP calls to reduce sampling effort, e.g. by collecting de-
nominators, as in

N4

D0D1D2D3
+

N3

D0D1D2
→ N4 +D3N3

D0D1D2D3
.

Depending on the number of denominators and the rank, joining integrals
is not universally better. Rather, we tabulated the sampling behavior of
Samurai and CutTools such that the algorithm can determine the optimal
splitting.
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The Ninja library implements the D-dimensional integrand reduction
via Laurent expansion [14], which constructs the tensor integral from fewer
samples in a numerically more stable way. Ninja requires a slightly modified
numerator subroutine which is currently being implemented in FormCalc.

The profiler pointed us to a bottleneck in fermion chains: Before, we
were using elementary operations to build up the fermion chain, which we
have now merged into a single inlined function call

〈u|σµσνσρ |v〉 kµ1k
ν
2k

ρ
3 = 〈u| k1k2k3 |v〉

(old) = SxS(u, VxS(k1, BxS(k2, VxS(k3, v))))
(new) = ChainV3(u, k1, k2, k3, v) .

The elementary operations could not be inlined in Fortran because they
returned a 2-component spinor, not a scalar value.

The helicity information of an OPP integral’s prefactor is taken into ac-
count in an extra argument. That is, if a term in the amplitude is known
to become zero for a particular helicity combination due to its prefactor
(because of massless external particles, say), the evaluation of the loop inte-
gral therein is cut short. For example, Dcut(3, N, 1 − Hel1, . . . ) is actually
computed only if Hel1 6= 1.

6. Checkpointing in Cuba

Cuba’s current Version 3.2 allows checkpointing for all routines. Check-
pointing means writing out the integrator’s complete state to disk to be able
to recover from the last state after a crash. In a long-running calculation,
this may mean losing one hour instead of one day.

Checkpointing is enabled by specifying a name for the state file. Note
that, since only Vegas had this functionality in Version 3.0, the invocation of
the other routines has changed to incorporate the extra state file argument.
We always write the state to a new file and remove the former state file only
when the new one is successfully stored. This makes checkpointing fail-safe
since even a crash during saving is recoverable. If the integration finishes
successfully, the state file is removed.

The checkpoints have been implemented in the serial regions of the code
which ensures reliable behavior regardless of parallelization.

Version 3.2 furthermore relaxes several restrictions on the compiler, it is
now fully C99-compliant and uses no gcc extensions.
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7. Summary

FormCalc 8 (http://feynarts.de/formcalc) has many new and im-
proved features, most notably better algebra, a vectorized helicity loop, and
OPP improvements. The Cuba library (http://feynarts.de/cuba), also
included in FormCalc, adds checkpointing for all four integration algorithms,
which is useful for resuming interrupted long-running integrations.
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