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SUMMARY 

Opioids have been, since centuries, the gold standard for pain treatment and relief. They exert 

their effects after binding to opioid receptors (OP) that are expressed and functional in the central 

(CNS) and peripheral nervous system (PNS). As their systemic application has many side effects, 

including sedation and respiratory depression, a peripheral application of opioids and selective 

targeting of µ-OP (MOP) in nociceptive axons would be extremely beneficial. MOP presence and 

function has been conclusively demonstrated at nerve terminals; however it is still controversial 

whether functional MOPs are available on the membrane of peripheral nociceptive axons to mediate 

opioid-induced antinociception. While under pathologic conditions (i.e. nerve injury) exogenous as 

well as endogenous MOP agonists applied at the damaged nerve can elicit potent antinociception or 

anti-allodynia, under physiological conditions no antinociception was seen in rats. This could be 

caused by either a lack of functional opioid receptors in the axonal membranes or by the inability of 

injected opioids to cross the intact perineurial barrier and to reach nociceptors. Previous behavioral 

test results showed an antinociceptive effect (up to 5h) following perisciatic application of the 

hydrophilic DAMGO (MOP agonist) if coinjected with hypertonic saline solution (HTS; 10% NaCl), a 

treatment suited to open the perineural barrier. The effect was inhibited by naloxone, a MOP 

antagonist, documenting its specific action via MOP. Fentanyl, a lipophilic opioid, elicited an effect, 

which was enhanced by HTS treatment, indicating that HTS may act not only on the barrier but also 

directly on axonal MOP presence and/or functionality. To provide a basis for testing this hypothesis, 

the present work was designed to study the axonal localization of MOP in experimental animals 

under different conditions using molecular and morphological methods.  

Initially four different commercial antibodies were tested for MOP detection. Immunoreactions 

with these antibodies specifically detected MOP in the hippocampus and in amygdala, while in the 

peripheral nervous system the reactions showed varying labeling patterns pointing towards less 

specificity with low signal-to-noise ratio. Double labelling with calcitonin gene related peptide 

(CGRP), a neuropeptide expressed in sensory fibers, with the non-compacted myelin marker S100 or 

with the neuronal marker PGP9.5 documented significant immunoreaction signals outside sensory 

nerve fibers. Therefore, none of these antibodies appeared suitable. Taking advantage of a new 

commercial monoclonal rabbit antibody (RabMAb) and of genetically modified mice in which the 

fluorescent protein mcherry was inserted in the C-tail of MOP (MOP-mcherry knock-in mice), MOP 

fusion protein expression in rat and mouse CGRP+ sciatic nerve fibers and fiber bundles was 

confirmed by immunofluorescence labeling. Immunoelectron microscopic analysis indicated 

MOP/MOP-mcherry-localization in the cytoplasm and the membranes of unmyelinated axons 

organized in Remak bundles. Both antibodies detected bands of appropriate size in Western Blot in 

the CNS and additional larger bands in the PNS. Quantitative analyses 60 min after HTS-treatment 
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revealed no change in MOP mRNA in the sciatic nerve and DRG as well as no change in MOP 

immunoreactivity in the sciatic nerve. Thus, the opioid-induced long lasting antinociception 

enhanced by perisciatic injection of HTS were not due to a sustained increased MOP expression or 

content in sensory, putative nociceptive axons.  

In summary, the current study succeeded to unequivocally document the presence of MOP 

protein in intact sensory axons of rat and mouse sciatic nerve. Thus, axonal MOPs may indeed 

mediate antinociceptive opioid effects observed in behavioral studies in naive animals possibly via 

activation of potassium or calcium channels. As HTS treatment does not lead to a sustained increase 

in axonal MOP protein or MOP mRNA expression, other mechanisms might enhance MOP function, 

including inhibition of MOP recycling or changes in functional coupling. Future studies should further 

explore the axonal mechanisms of antinociception by opioids and enhancing treatments. 

 

 

ZUSAMMENFASSUNG 

Opioide sind seit Jahrhunderten der Goldstandard für die Schmerzbehandlung. Sie entfalten ihre 

Wirkung nach der Bindung mit Opioidrezeptoren (OP), die im zentralen (ZNS) und peripheren (PNS) 

Nervensystem exprimiert und funktionell sind. Da die systemische Anwendung viele 

Nebenwirkungen hat, wie die Beruhigung und Atemdepression, wäre eine  Anwendung von Opioiden 

und die gezielte Targeting von µ-OP (MOP) in nozizeptiven Axone in Rahmen einer Regionalanalgesie 

besser. Die Anwesenheit und die Funktionalität der MOP wurden zwar schon in Nervenendungen 

gezeigt, aber es ist noch strittig, ob funktionelle MOP in der Membran von peripheren nozizeptiven 

Axonen sind, um opioid-induzierte Antinozizeption zu vermitteln. Während bei Erkrankungen der 

Nerven (z.B. traumatische Nervenbeschädigung) exogene und endogene MOP-Agonisten 

Antinozizeption und Antiallodynie bewirken, konnte in gesunden Ratten kein Effekt bei perineuraler 

Injektion am Nerven beobachtet werden. Dies könnte entweder durch einen Mangel an funktionellen 

OP in axonalen Membranen verursacht sein. Alternativ könnte die mangelde Penetration  der 

injizierten Opioide durch die Barriere des Perineuriums verantwortlich sein, die es verhindert, dass 

die Opioide die Nozizeptoren erreichen. Vorherige Ergebnisse aus Schmerzverhaltenstests zeigten 

eine Anhebung von mechanischen nozizeptiven Schwellen (bis 5 h) nach perineuraler Anwendung 

des hydrophilen MOP-Agonisten DAMGO, wenn dieser mit einer hypertonen Lösung (HTS; 10% NaCl) 

ko-injiziert war. Denn dies ist eine geeignete Behandlung, die die Barriere des Perineuriums öffnet. 

Der Effekt wurde von Naloxon, einem MOP-Antagonist, gehemmt, was  eine spezifische Wirkung via 

MOP unterstützt. Die Wirkung von Fentanyl, einem lipophilen Opioid, wurde ebenfalls durch die HTS-

Behandlung verbessert. Das führt zu unserer Hypothese, dass HTS nicht nur die Schranke öffnet, 

sondern auch direkt Expression und/oder Funktionalität von axonalen MOP verbessert. Um eine 
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Grundlage für die Untersuchung dieser Hypothese zu schaffen, war das Ziel dieser Arbeit, die axonale 

MOP bei Versuchstieren unter verschiedenen Bedingungen mit molekularen und morphologischen 

Methoden zu charaktiersieren. 

Am Anfang wurden vier verschiedene kommerzielle Antikörper für die Erkennung der MOP getestet. 

Immunreaktionen mit diesen Antikörpern wiesen spezifisch MOP in dem Hippocampus und in der 

Amygdala nach, während im peripheren Nervensystem die Immunreaktion veränderliche 

Markierungsmuster und weniger Spezifität mit einem ungünstigeren Signal-zu-Hintergund Verhältnis 

zeigte. Die Doppelmarkierung mit calcitonin gene-related peptide (CGRP), einem Neuropeptid, das in 

sensorischen Fasern exprimiert ist, mit dem Marker für non-compacted Myelin S100 oder mit dem 

neuronalen Marker PGP9.5, bestätigte ein reproduzierbares Färbemuster außerhalb sensorischer 

Nervenfasern. Deshalb war keiner dieser Antikörper geeignet.  

Mit der Anwendung eines neuen kommerziell erhältlichen monoklonalen Kaninchen Antikörpers 

(RabMAb) gegen MOP sowie gentechnisch veränderten Mäusen, bei denen das fluoreszierende 

Protein mCherry in das C-terminale Ende von MOP eingefügt wurde (MOP-mcherry knock-in 

Mäusen), wurden MOP und das MOP-Fusionprotein im CGRP+ im Ischiasnerv und Fasernbündeln 

durch Immunfluoreszenzmarkierung von Ratten und Mäuse bestätigt. Die immunelectron-

mikroscopische Analyse zeigte MOP/MOP-mcherry im Zytoplasma und der Membran 

unmyelinizierter Axone, die in Remak Bündlen organisiert sind. Beide Antikörper erkannten Banden 

in richtige Größe in Western Blot in ZNS und mehrere größere Banden in PNS. Quantitative Analysen 

60 min nach HTS-Behandlung zeigten keine Veränderung in MOP mRNA in dem Ischiasnerv und 

Hinterwurzelganglion sowie keine Veränderung in der MOP-Immunreaktivität in dem Ischiasnerv. 

Daher müssen noch weitere Ursachen für die verbesserte Wirkung von Opioiden am Nerven nach 

HTS in Betracht gezogen werden.  

Zusammenfassend konnte diese Studie die MOP-Proteins in intakten sensorischen Axonen des N. 

ischiadicus der Ratte und Maus eindeutig nachweisen. Axonale MOPs könnten über Kaliumkanäle 

oder Calciumkanäle in den Verhaltenstests bei naiven Tiere antinozizeptiv wirken. Da die HTS 

Behandlung zu keiner deutlichen Steigerung von axonalem MOP-Protein führen kann, sollten 

anderen Mechanismen wie MOP-Recycling oder Veränderung der intrazellulären Singaltransduktion 

untersucht werden, die die Funktionalität von MOP erhöhen. Zukünftige Studien ferner den genauen 

Mechanismus klären, wie axonal Opioide antinozizeptiv wirken, um so die Behandlung von 

Schmerzen mit Regionalanalgesie weiter zu verbessert.  
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1. INTRODUCTION 

 

1.1 Opioids and opioid receptors 

In their very long history across centuries and cultures, opioids have always played – and still are 

playing – an important role in human life and society. Evidence of opioid use and cultivation date 

back to Sumerians (4000 b.C.), that employed “Hul gill” – the “joy plant” – for its euphoria-inducing 

effect. From Mesopotamia the use of opium spread throughout the ancient world and the major 

European and Asian civilizations that knew it with the name opium, from the Greek word “opos” that 

means “juice”[1, 2]. 

The first records of the use of opioids as an analgesic are ascribed to Paracelsus in the XVI century. 

He prescribed laudanum, a mixture of opium and other drugs, as pain relief after surgery [3]. From 

that moment on physicians started to  overestimate the opium potency and started to prescribe it, at 

time indiscriminately, to cure any disease [3], leading to an increased number of addicted people [2]. 

However, Sertürner isolated the active ingredient in opium only at the beginning of the 19th century 

and named it morphine. This discovery led to the commercial production of morphine both in 

England and in Germany and an increased use of morphine in clinical practice. The invention of the 

hypodermic syringe by Wood in 1855 promoted the use of morphine also for small surgery, post-

operative and chronic pain [2]. Due to a lack of regulation on opioid use until the first decades of the 

20th century, the use of natural morphine-like opioids, such as the newly discovered codeine and the 

synthetized heroin, increased exponentially. To combat this development, certain states introduced 

laws to regulate the production and distribution of opioids [3]. In the middle of the ´50, the 

heightened awareness of surgeons to opioid addictive effects led to the introduction of several 

morphine derivatives and encouraged researchers to the discovery of opioid antagonists (i.e., 

substances able to inhibit opioid effects). In parallel, in the early 1950s the observation of opioid side 

effects, such as nausea, respiratory depression, constipation, dependence and tolerance, led to 

hypothesized presence of different opioid receptors [2, 3]. 

 

1.1.1 Opioid receptors 

The existence of receptors for opioids (OPs) and opiate compounds – substances derived from 

Papaver somniferum - were first postulated in 1973 from three independent teams in an attempt to 

explain the binding of opioid to the brain membrane. Only a few years later the opioid binding sites 

were identified and named by Martin, Kosterlitz and Lord as mu, delta and kappa, depending on their 

pharmacological properties [4-6]. The first receptor gene, corresponding to the delta receptor, was 

isolated, characterized and cloned only in 1992 by Evans and colleagues [7]. Within ten years, the 
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other two receptors - mu and kappa - and the endogenous opioid system were completely 

characterized on a molecular level [4]. 

 

1.1.1.1  Opioid receptor structure  

Thanks to the cloning and the subsequent molecular studies, opioid receptors are now clearly 

classified as 7-transmembrane domain receptors (Fig. 1A) belonging to the rhodopsin-G-protein 

coupled receptor (GPCR) family (Fig. 1B). 

 

 

Fig. 1: Structure of MOP and scheme of the GPCR family. (A)Seven-transmembrane structure of MOP. 
The extracellular N-terminal tail is responsible for receptor selectivity while the intracellular C-terminal tail 
determines the interaction between the receptor and the GPCR. Colours indicate putative and established 
agonist-induced phosphorylation site and relative kinases. Image from Williams et al, 2013. (B) Opioid 
receptors belong to the rhodopsin-like receptor family (Class A) and represent only a small part of the 
large GPCR family. Modified basing on Tadevosyan et al, 2010 and www.gpcr.org 

 

Mu, delta and kappa opioid receptors, recently named by IUPHAR (International Union of Basic and 

Clinical Pharmacology) as MOP, DOP and KOP [8], are encoded by three different genes: Oprm1, 

Oprd1 and Oprk1, respectively. They share a high grade of homology, with up to 60% of identity in 

the amino acid sequences: the highest similarities can be found in the opioid binding pocket, 

localized in the transmembrane domains TM3, TM6 and TM7 [9].  
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In contrast, extracellular domains are highly divergent among different OPs: the three extracellular 

loops and the N-tail are responsible for receptor selectivity, while the intracellular C-tail is important 

for determining the interaction between the receptor and a specific GPCR [4, 10]. The three 

receptors demonstrate different affinity to the three endogenous opioid peptides – endorphins, 

enkephalins and dynorphin – synthetized via cleavage of the precursor proteins. MOP exhibits a high 

affinity for endorphin and a moderate affinity to enkephalin. DOP is characterized by the highest 

affinity to enkephalin and a high affinity for endorphin. Dynorphin presents preferable binding to 

KOP but possesses also a moderate MOP and DOP specificity [11]. 

Other structural and affinity differences between MOP, DOP and KOP and within the same OP-type 

are due to alternative splicing, dimerization and post-translational modification, as phosphorylation, 

glycosylation and methylation. Gene polymorphisms are also frequently occurring [11-13].  

 

1.1.1.2 Opioid receptor expression 

During the last decades, several studies using immunofluorescence staining, electron 

microscopy, in situ hybridization and behavioral tests revealed localization of OPs and expression in 

the central and peripheral nervous system as well as in non-neural tissues (e.g., vascular 

endothelium, cardiac muscle, immune cells) of mice and rats (Table 1). While the localization of 

opioid receptors in the central and sensory peripheral nervous system has been widely studied and 

confirmed in experimental animals, the functional role of opioid receptor in sympathetic fibers and 

immune cells still needs clarification [11, 14, 15]. A similar localization pattern was also seen by 

autoradiography, immunohistochemistry and electron microscopy on human tissues as well as by 

clinical research activities [16-18]. However, it is worthwhile to remember that OP expression and 

distribution varies significantly among different organs and species [19]. 
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Central nervous system 
(CNS) 

Peripheral nervous system 
(PNS) 

Non-neural tissue 

MOP 

neocortex, caudate-
putamen, 
nucleus accumbens, 
thalamus, 
hippocampus, amygdala, 
brain stem, spinal cord 

peripheral sensory neuron, 
dorsal root ganglia (DRG), 
peripheral nerve 

vascular endothelium, cardiac 
epithelium, keratinocytes, vas 
deferens, Sertoli cells, spiral 
ganglia, oocyte, immune cells, 
kidney, lung, spleen, stomach, 
duodenum, jejunum, proximal 
and distal colon 

DOP 

olfactory-related areas, 
neocortex, caudate – 
putamen, 
nucleus accumbens, 
amygdala 

peripheral sensory neuron, DRG Stomach 

KOP 

caudate – putamen, nucleus 
accumbens, amygdala, 
neural 
lobe of the pituitary gland 

peripheral sensory neuron, DRG  
stomach, duodenum, jejunum, 
proximal and distal colon 

 

Table 1: Area with significant localization and expression of OPs. Expression of MOP, DOP and KOP is 
comparable both in different areas of the brain and in peripheral nervous system. In non-neuronal tissue 
the localization of MOP has widely been studied, little is known about DOP and KOP [14-16]. 

 

OPs have a preferential subcellular localization. MOPs are mostly localized on the plasma 

membrane of neurons (dendrites, soma, axon terminals) while DOPs have a prevalent intracellular 

distribution both in dendrites and soma. KOPs are mainly localized in the cytoplasm but can also be 

present at the plasma membrane or in vesicles [10]. The differential subcellular localization suggests 

that the regulation of their trafficking is likely to be different [10].   

A different intracellular localization – i.e. in the soma, dendrites or terminals – of OP also has a 

different functional action. For example, the activation of MOP when localized in the 

somatodendritic compartment decreases neuron excitability, whereas the engagement of MOP 

when localized in the axon terminal inhibits the release of neurotransmitters [20]. Moreover, MOP-

mediated effects can be very different depending on the neuraxis compartment involved. 

Supraspinally, several structures play a role in morphine analgesia, including the locus coeruleus, 

nucleus raphe magnus, periaqueductal gray, medial thalamus, and limbic structures. At the spinal 

level, opioid action involves the dorsal horn where the receptors are both pre- and postsynaptic. The 

presynaptic ones are associated with the axons entering the dorsal horn from the DRG and from 

descending pathways. The DRG neurons also extend into the periphery where the presynaptic 

receptors on the axon terminals modulate peripheral opioid analgesia [21].  

This widespread localization indicates the pivotal role played by opioids and OPs in pain management 

and modulation. Among the three opioid receptors, MOP is the most important for pain treatment 

and analgesia since it binds to morphine and all other clinically used opioids. Several selective drugs 
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have also been generated and extensively tested for DOP and KOP, but none of them have entered 

clinical practice so far [21]. 

 

1.1.1.3 Opioid receptor activation and mechanism of action 

Opioid receptors mediate many of their cellular and physiological effects by coupling to G-

proteins both in the soma, on the plasma membrane and at the terminals of nociceptive neurons.  

G-Proteins are heterotrimeric complexes consisting of α, β and γ- subunits; after activation the G-

protein dissociates in α monomer and βγ dimer. Based on the characteristics of their α-subunits, G-

proteins have been classified into four families: Gi (also known as Gi/o), Gq, Gs and G12 [22, 23]. Each of 

them shows differences in its patterns of expression [23].  

OPs bind to different inhibitory-type Gα (Gi) subunits [24]. Binding to a specific Gαi subunit and 

the downstream pathway highly depends on the specific MOP agonist. Thereby different agonists can 

selectively activate one or more of these pathways giving rise to multiple agonist-selective signaling 

pathways through a single receptor subtype. This phenomenon is known as “biased agonism” or 

“functional selectivity” and refers to the ability of different agonist to either differentially activate 

signaling cascade or regulatory events, including differences in receptor trafficking [20, 24]. 

Furthermore, the cellular environment, the different proteins expressed in close proximity to the 

GPCRs, the variable combination of G-proteins subtypes across cell types as well as the capacity of 

OPs to form homo or heterodimers greatly increases the number of possible G protein-associated 

signaling pathways [4, 20, 24, 25].  

OP activation results 1. in a short-term inhibition of neuronal activity that are G-protein-dependent 

and 2. In a long-term alteration of gene expression, which are G-protein- independent [4]. The 

majority of players involved in MOP-dependent signaling are summarized in Fig. 2 [20]. 
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Fig. 2: Pathways activated by agonist binding to OP. G-protein dependent and independent signaling lead 
to the activation of different mechanisms involved in the inhibition of pain propagation, receptor 
endocytosis or transcriptional mechanisms [20]. 

 
G protein-dependent processes are characterized, after ligand engagement, by a GDP/GTP 

exchange inducing the dissociation of the trimeric GPCR in two subunits – Gα and Gβγ. The receptor 

turns back to the inactive state when the intrinsic GTPase activity of α subunit hydrolyses GTP to GDP 

and drives the trimeric structure reconstitution. This activation mechanism is shared by all G-protein 

and it is independent of the α-subtype family. However, most agonists with antinociceptive effects – 

i.e. opioids, cannabinoids, baclofen and acetylcholine – acting on class A or C of GPCRs, are coupled 

to inhibitory Gi/o proteins [20, 23].  

After agonist binding to GPCR, the Gα subunit inhibits the enzyme adenylate cyclase (AC), leading to 

a reduction of intracellular cyclic-adenosine monophosphate (cAMP). cAMP levels regulate the 

activity of ion channels, mainly potassium and calcium channels, and of protein kinase A (PKA). Ion 

channels and AC are also regulated by the Gβγ subunit; moreover, the Gβγ subunit determines the 

activation of phospholipase C (PLC), with the subsequent production of inositol-triphosphate (IP3) 

and diacylglycerol (DAG) [20]. G protein-independent processes include signalling through many 

proteins, such as mitogen activated protein kinase (MAPK, e.g. ERK and JNK), that drive gene 

regulation and transcription [20]. 

Overall, OPs engagement by opioids leads to a GPCR- mediated increase of K+ and a decrease of 

Ca2+ channel flux, with a decrease of nociceptive propagation. Activation of inward rectifying K+ 

channels (GIRK channels) plays a critical role in maintaining resting neuronal membrane potential 

and reduces hyper-excitability, while the inhibition of voltage-dependent Ca2+ results in a decrease in 

presynaptic Ca2+ entry and inhibition of neurotransmitter release [25, 26].  
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After agonist activation, the receptor is phosphorylated by GPCR kinases (GRKs); the sites and the 

grade of phosphorylation depend on the agonists and their ability to promote interactions between 

the receptor and different intracellular kinases [24]. Phosphorylation induces the uncoupling of the 

receptor from the G protein, leading to the association between the receptor and β-arrestin. β-

arrestin, in turn, interacts with clathrin to drive receptor endocytosis. After internalization into 

endosome, the receptor could be recycled or degraded, but both mechanisms lead to desensitization 

of receptor signaling [26, 27].  

 

1.1.1.4 Opioid receptor visualization 

In order to visualize OP localization and expression, different approaches can be used. 

Autoradiography, largely employed in the 1980s and 1990s [10], demonstrated the presence of MOP 

in CNS: Moyse and colleague showed MOP in the locus coeruleus [28] and recent ultrastructural 

immunolabeling studies supported MOP localization in spinal cord [29] and amygdala [30, 31].  MOP 

expression in nociceptors was also confirmed: using electron microscopy Coggeshall and colleagues 

[32] demonstrated the localization of MOP in unmyelinated cutaneous sensory axons, while 

Sanderson [33] indirectly provided evidence for the presence of MOP in DRG and primary afferent 

nociceptors showing co-localization of substance P and endomorphine, a tetrapeptide with high 

affinity for MOP. Immunohistochemistry studies using immunoenzyme reaction [34] and 

immunofluorescence also demonstrated MOPs localization in the brain, spinal cord [35], DRG [36] 

and in injured sciatic nerve [37].  

In all immunohistochemical techniques, the validity of the results largely depends on the specificity 

and affinity of the antibodies [10]. A recent paper by Michel [38] highlighted the lack of sensitivity for 

many antibodies against GPCRs. One possible explanation for this lack is the high degree of homology 

of the conserved region of GPCRs, which allows the antibodies to recognize different subtypes within 

the same or between different GPCR families. However, the antibody directed against a less 

conserved region (i.e. N- or C-tail), could also lack specificity. Therefore, he pointed out the necessity 

to define new criteria to test antibody specificity and selectivity, such as using knock-out mice. 

Several commercial specific antibodies recognizing each type of opioid receptor are available and 

have been characterized by different groups [10]. Some of them, however, demonstrated a tissue-

dependent specificity [39], showing reliable labeling in the spinal cord but not in DRG. Fluorescent 

epitope-tagged receptors artificially introduced into animals using the knock-in technique or viral 

vector represent an advantageous approach to study opioid localization and avoid problems related 

to antibodies. Scherrer and colleagues [40] created a knock-in DOP-EGFP mouse to study the 

localization of DOP in the brain, spinal cord and DRG. A similar approach was recently developed to 

study MOP localization and MOP-DOP co-localization in central and peripheral nervous system in a 
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single or double knock-in mouse, respectively [41]. MOP was fused to the mcherry protein and 

visualized as a red fluorescence. 

 

1.2 Opioids and pain 

Pain is defined by the International Association for the Study of Pain (IASP) as an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, or described in 

terms of such damage.  

It is therefore clear that the process of pain is not a simple naturally-occurring protective mechanism, 

but rather a more complex phenomenon, characterized by multidimensional aspects linked to the 

presence of real damage as well as to an individual and personal perception. 

 

1.2.1 Pain classification 

Distinguishing between different types of pain is critical for proper treatment. A first distinction, 

based on the duration of the pain, identifies acute and chronic pain. Pain due to injuries and post-

operative flares is classified as acute pain. Chronic pain can be wider and last for several months. Pain 

can also be classified – according to the source of pain generation – as nociceptive, inflammatory and 

pathological pain.  

Nociceptive pain is a physiological protective system, essential to detect and minimize contact with 

damaging or noxious stimuli. It is mediated by nociceptors activated at the site of injury or tissue 

damage. Inflammatory pain also has a protective role and it is caused by the activation of the 

immune system in response to tissue injury or infections. Pathological pain, instead, is not protective. 

It is due to an abnormal functioning of the nervous system and it is therefore named as maladaptive 

pain. Two types of pathological pain can be identified: neuropathic and dysfunctional or chronic. 

Neuropathic pain is defined by IASP as a pain caused by a lesion or disease of the somatosensory 

nervous system. It can be provoked by an infectious agent, a metabolic disease or a lesion that 

directly involves central or peripheral nervous system, i.e. spinal cord injury, stroke, diabetes, cancer-

induced nerve compression or chemotherapy. Dysfunctional pain is characterized by a 

hypersensitivity in the absence of nerve injury or inflammation.  

Changes in the expression of neuronal ion channels, neurotransmitters, peptides and their receptors 

are common in all type of pain [42, 43]. 

 

1.2.2 Pain pathways and transmission  

Pain arises from multiple pathophysiological processes in the nervous system at the peripheral, 

spinal and supraspinal level starting from the primary afferent (or sensory) neurons. Indeed, if the 

depolarization driven by a mechanical, thermal or chemical stimuli reaches a critical threshold, an 
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action potential is propagated from the free ending of nociceptors along the length of the sensory 

fiber toward the dorsal horn of the spinal cord, where the primary synapse occurs and the signal is 

modulated – either enhanced or decreased - and then propagated to the thalamus (spinothalamic 

tract) [44]. From here different areas, as somatosensory cortex, anterior cingulate, prefrontal cortex 

and amygdala, are activated [45]. The pain information is then processed. The descending inhibitory 

pathway independently projects to the dorsal horn of the spinal cord where the release of inhibitory 

neurotransmitters like glycine, γ-amino butyric acid (GABA) and endorphins inhibits pain signals. A 

graphical representation of the ascending pain pathway is shown in Fig. 3. 

 

 

Fig. 3: Ascending pain pathway. The image modified from Krysky Biomedia shows the pain transmission 
pathway. From the peripheral site of injury (1), the pain is transmitted through afferent nerve fibers to 
the DRG and the spinal cord (2). The stimuli propagation continues along the brain stem (3) till the 
cerebrum (4), where the thalamus is located. Here a second synapse occurs and the stimulus is 
propagated in the somatosensory cortex and in the limbic system.  

 

As mentioned above, the first component of the sensory pathway is the nociceptors. They are all 

pseudo-unipolar neurons: the cell bodies (somata) of all nociceptors are found in the dorsal root 

ganglion (DRG) located within the intervertebral foramen (Fig. 4A) and the two branches of their 

single process – called primary afferent fibers – project into the periphery and to the spinal cord, 

relaying sensory information coming from the periphery to the CNS [46-48]. The soma of all neurons 

synthesizes and transports the substances needed for neuronal function to the axon terminals, 

including receptors, ion channels, as well as molecules essential for synaptic transmission [49]. 

Opioid receptors and MOP mRNA are also synthesized in the DRG and transported to peripheral 

terminals of peripheral afferent neurons [50]. 

Afferent fibers have been classified in four general fiber types – C, Aδ, Aβ, and Aα or 

proprioceptors. They can be differentiated by soma size, degree of myelination, types of afferent 
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endings and the laminar targets of their efferent terminals in the spinal cord. Although this 

classification is reductive – as it disregards the molecular and functional diversity of somatosensory 

neuron subtypes [51] – it is still largely used. 

Sensory neurons giving rise to Aα and Aβ fibers, also called primary afferent neurons, are 

characterized by a large cell body (>50 µm). The thick myelin around the axon allows for a rapid 

conduction of muscle contraction stimulus (Aα) and of mechanical stimuli such as touch and 

vibration (Aβ). Noxious stimuli of mechanical, thermal, chemical origin are transmitted by Aδ- and C-

fibers, which are identified as nociceptors. Aδ are small-myelinated fibers issued from medium size 

cell bodies deputed to transmit noxious or innocuous stimuli (temperature, force and irritants) and 

to mediate the “first” pain perceived as rapid and sharp. C-fibers are, instead, small unmyelinated 

fibers comprising afferent and visceroefferent (sympathetic) fibers. Afferent C fibers are issued from 

small cell bodies (10-25 µm), which are the most abundant type of sensory neurons. Nociceptive C-

fibers mediate the so called “second” pain: delayed, diffuse and dull [26, 49, 52] (Fig. 4B). 

 

 

Fig. 4: DRG and pain mediation. (A) Representative image of DRG structure indicating the localization of 
neuron soma and axon projection into the spinal cord and to the periphery; (B) Aδ- and C-fiber pain 
mediation (modified from: NIH Pain Consortium).   

 

The DRG neurons that give rise to sensory C-fibers can be divided into two groups: peptidergic 

neurons release neuropeptides like substance P (SP) and calcitonin gene-related peptide (CGRP). 

They are responsive to nerve growth factors (NGF) through the expression of trkA (tropomyosin-
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receptor-kinase) receptors. In the second group, neurons are non-neuropeptide-releasing (defined as 

non-peptidergic neurons) but are characterized by isolectin B4 (IB4) binding sites  [51, 52]. They are 

responsive to glial cell line-derived neurotrophic factor (GDNF). This classification is commonly 

accepted but in the last years there is evidence of colocalization between CGRP and IB4 in the same 

fiber. Price and Flores findings [53] illustrated a substantial overlap (45%) between peptidergic and 

non-peptidergic neurons in adult rat DRG. Partial overlap (10-20%) was also observed in the 

superficial dorsal horn of the spinal cord [54] where both peptidergic and non-peptidergic fiber 

terminate. It is also important to further note that the expression of CGRP is not restricted to 

nociceptive C fibers [52, 53, 55], but can be present also in other fiber types [53] like small 

myelinated nociceptive Aδ fibers [56] and mechanoreceptors (Aα and Aβ fibers) localized in the hair-

follicle unit or in the muscle-spindle afferent unit [57]. 

 

1.2.3 Pain treatment 

The World Health Organization (WHO) classified three grades of pain: mild, mild to moderate 

and moderate to severe. This results in a step-wise treatment algorithm (ladder for analgesics). 

Opioids are suggested to treat moderate to severe pain, like intraoperative, postoperative pain and 

cancer pain. The treatment of chronic non-cancer pain with opioids is only recommended in certain 

situation for specific diseases like diabetic polyneuropathy [58]. Due to their effectiveness in inducing 

analgesia in inflammatory pain, opioids are largely used in clinical practice even though they can lead 

to serious CNS-mediated side effects, as respiratory depression, sedation nausea, addiction and 

tolerance after systemic. Those side effects can be avoided by spinal administration of opioids [13]. 

However, a peripheral and local application of opioids would be even more advantageous. Regional 

anesthesia, the injection of local anesthetics in subcutaneous tissues, is clinically used to treat intra- 

or post-operative pain. Despite the great efficacy in pain inhibition due to block of sensory fibers by 

local anesthetics, it has the main disadvantage of blocking also motor fibers, hampering patient´s 

active movements e.g. active physiotherapy postoperatively. Therefore, specific targeting of sensory 

nociceptive fibers would be advantageous.  

The local application of opioids appears even more relevant if we consider that many syndromes 

depend, on a different degree, on the peripheral activation of nociceptive neurons [13]. Moreover, 

the conclusions of recent studies suggests that systemically (intravenously and orally) and centrally 

injected opioid agonists may act through peripheral OPs [58, 59], which opens new perspectives and 

indirectly supports the local use of opioids. In contrast, Khalefa and colleagues [60] argued against 

efficacy of local application of opioid in inflammatory condition and showed a higher antinociceptive 

effects after systemic administration of fentanyl or morphine.  
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Other studies showed that peripheral opioid application is particularly efficient in treating pain 

associated with inflammation or neuropathic pain induced by nerve injury [37, 61]. In neuropathy or 

inflammation different mechanisms might account for the increased peripheral opioid efficacy: 

opioid receptor levels along the nerve are upregulated  [62] and the transport of OPs from DRG to 

the nerve is accelerated [63]. Better coupling of receptors to signaling pathways was also discussed 

by Zöllner and colleagues [34] in the presence of sciatic nerve ligation and inflammation induced by 

an injection of Freund´s complete adjuvant in the paw. Under these particular conditions, an increase 

in MOP-specific binding sites in the DRG and the sciatic nerve was observed both for full and partial 

agonists of MOP. The disruption of the perineurium [64] also facilitates the access of MOP agonists to 

their receptors [65, 66]. 

On the contrary, the perineurial application of opioids in non-inflammatory conditions and on 

uninjured nerves does not reliably induce analgesia [67]. This may be due to two reasons: 1. MOPs 

may not be present and/or functional in intact afferent fibers if the mechanisms activated by 

inflammation (i.e. up-regulation of MOP, enhanced efficacy of MOP agonist [34]) are not present, 

and/or 2. the integrity of perineurium may limit the access of opioids in the nerve.  

 

1.2.4 Opioid receptor agonists and antagonists 

OPs agonists represent a large class of natural, semi synthetic and synthetic opioids. They are 

mostly used for clinical application, namely analgesia, relief of gasping or cough depression [68], but 

are also employed in research to study pain and pain treatment. Among the opioids, morphine is the 

best known natural opioid. In 1937 meperidine, the first synthetic opioid, was produced from its 

central chemical structure. In the following years the synthesis of new compounds increased, leading 

to a wide range of synthetic OPs agonists and antagonists [69, 70].   

Based on their nature opioids are classified as natural, semi synthetic and synthetic opioid. 

Morphine and thebaine represent natural opioids. Codeine, oxycodone and hydrocodone are 

classified as semi-synthetic opioids while methadone, tramadol, fentanyl and its derivates – 

sufentanyl and remifentanil – belong to the synthetic class. Further important synthetic compounds 

are DAMGO, naloxone and naltrexone. DAMGO is a strong agonist of MOP and used only in research; 

naloxone and naltrexone are two potent antagonists of MOP and are used in the clinic to contrast 

serious side effects of opioids as well as in research. 

A second classification, based on the opioid analgesic efficacy, is used in the clinic. Tramadol, 

codeine and hydrocodone are classified as “weak opioids”; morphine, methadone and oxycodone are 

considered median analgesic properties while fentanyl and derivates are considered the strong 

opioids [69]. 
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1.3 Sciatic nerve 

The sciatic nerve is the longest and thickest nerve both in humans and rodents. Due to both its 

size and the ease in locating and handling it, the sciatic nerve is the most widely used peripheral 

nerve for nerve injury and regenerative experimental studies [71]. The sciatic nerve is also relevant 

for behavioral studies and functional test, since it innervates the posterior paw, more easily tested 

compared to the frontal paw. 

 

1.3.1 Sciatic nerve structure and perineurial barrier 

The sciatic nerve is a mixed nerve containing somatomotor axons projecting from the ventral 

horn motoneurons to leg muscles, sensory axons with their cell bodies in DRGs (see section 1.2.2) 

and postganglionic visceroefferent axons arising in the sympathetic ganglia [72, 73]. In the rat, 

somatomotor and somatosensory fibers originate from motoneurons and DRG neurons of segments 

L4-L6. The nerve branches distally into two portions which give rise to the common peroneal, the 

tibial and sural nerve, respectively (Fig. 5).  

 

 

Fig. 5: Sciatic nerve of rat. The three spinal nerves coming from lumbar DRG L4, L5 and L6 first join to 
form the sciatic nerve, which after 7-10 mm splits again into tibial, sural and common peroneal nerve. 
Image modified from [74]. 

 
 

1.3.1.1 Fiber type composition  

As a mixed peripheral nerve, the sciatic nerve contains all fiber types described above. Each 

sciatic axon, irrespective of its function, possesses a glial sheath made by Schwann cells, the typical 

glia of the peripheral nerve, which are essential in maintaining normal axonal function [75]. Two 

types of Schwann cells can be distinguished: myelinating or non-myelinating. Schwann cells that form 

myelin are very large cells and ensheath single motor fibers or large sensory fibers (i.e., Aδ) forming 

several concentric layers of compact myelin. The thickness of this layer is directly related to the 

dimension of the fibers: the larger the fibers, the more layers of myelin are formed by the Schwann 
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cell. The non-myelinating Schwann cells (“Remak cells”) do not form myelin, but rather ensheath a 

group of small sensory (unmyelinated) axons (C-fibers), each one usually surrounded and separated 

from the other axons of the bundle by narrow cytoplasmic extensions of the non-myelinating 

Schwann cell, creating the Remak bundle [76].  

An early study on the sciatic nerve fiber composition in the rat reported approximately 27000 axons, 

of which 6% were myelinated motor axons, 23% and 48% were myelinated and unmyelinated 

sensory axons, respectively, and 23% were unmyelinated sympathetic axons [73].  A differential 

analysis of the presumably nociceptive Aδ myelinated afferent fibers was not carried out.  

In the sciatic nerve trunk, Remak bundles were shown to contain a mean of 5-7 unmyelinated axons.  

Individual Remak bundles in rat sciatic nerve were shown to contain different types of C-axons, 

including CGRP- and/or IB4-positive sensory, presumably nociceptive, and sympathetic efferent 

axons [77, 78]. Based on immunoelectron microscopic evidence, the contribution of CGRP-

immunoreactive (ir) axons to the total population of unmyelinated fibers was estimated to be near 

40% (36,46±9.01%), and there were 2.1 ± 0.5 CGRP-ir axons found per C-fiber bundle [78], indicating 

that Remak bundles transporting nociceptive information can be quite reliably identified by CGRP-

immunolabeling.  

 

1.3.1.2 Nerve sheaths 

Each peripheral nerve is ensheathed by three connective tissue sheaths, named epineurium, 

perineurium and endoneurium. The epineurium forms the external sheath and wraps the entire 

nerve. It is composed of connective tissue containing elastic fibers protecting the nerve from 

damages due to strong tractions while having no barrier function. Within the connective tissue, 

vessels run parallel to nerve fibers and create a capillary net that branches to the inner layer of the 

nerve fasciculus [79]. 

The middle layer, which forms the fiber fascicles, is represented by the perineurium. It is thinner 

than the epineurium in some tissues and is mainly composed of 10-15 concentric layers of flat 

perineurial cells. They are connected with each other through tight junctions and are enclosed by a 

collagen- and laminin-containing basal lamina. The extracellular matrix, composed of microfibrillar 

collagen and fibronectin, is present between the perineurial cell layers, providing the ability to 

modulate external stretching forces. The inner and thinnest layer, called endoneurium, is composed 

of connective tissue branching from the perineurium towards the axons. Every single nervous fiber 

consisting of the axon, its glial sheath formed by Schwann cells, and the Schwann cell basement 

membrane covering the entire outer surface of the fiber, is wrapped in a net of reticular fibers 

immersed in a glycoprotein matrix and thin collagen fibrils. All nerve sheath layers become gradually 
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thinner in the proximodistal course of the nerve and its branches until they disappear at the nerve 

endings [79-81]. 

Among the three layers, the perineurium is essential for protecting axons and the associated 

Schwann cells. It is, indeed, a tight and selective barrier that acts as a metabolically active diffusion 

barrier, which regulates and maintains the homeostasis of the endoneurium [80-82]. It also acts as an 

ionic barrier [80] hampering the access of proteins, toxins and pathogen agents to the nerve. 

However, the presence of the perineurial barrier is not always advantageous: if on one side the 

perineurial barrier serves as protection, on the other hand it simultaneously inhibits the delivery of 

analgesic drugs to the peripheral nerve, preventing local or regional analgesia [66]. This is strongly 

supported by several experimental studies in which opioids, injected in inflamed and non-inflamed 

tissue showed a different efficacy. In inflammation opioids are more effective [83]. In contrast, in 

non-injured tissues, lipophilic opioids like fentanyl have moderate access to opioid receptors, while 

hydrophilic opioids like DAMGO hardly have an effect [65, 66, 84, 85]. This reduced efficacy of 

opioids applied in the vicinity to the nerve has been ascribed to tight junctions hampering their 

access. The opening of the tight junction or the decreased expression of tight junction proteins 

during inflammation has been correlated with a higher permeability of the perineurium, thus 

increasing the fraction of opioids reaching receptors and inducing analgesia [86, 87]. It is therefore 

clear that opening the perineurial barrier is key to extending analgesic opioid effects. A promising 

strategy is to open the perineurium using a hypertonic solution [86, 88].  

 

1.4 Hypertonic solution  

Several studies reported hypertonic solutions, NaCl or mannitol, as a methods to reversibly open 

barriers to enhance the diffusion of water-soluble drugs (i.e. hydrophilic opioids), peptides and 

antibodies both into the brain [89] and into peripheral nerves [65, 66]. The enhanced diffusion 

through the perineurial barrier could target MOP in axons, which are constitutively localized on the 

axonal membrane of peripheral sensory-nociceptive neurons. Hypertonic solution would not only 

allow lipophilic drugs as fentanyl, but also with the synthetic hydrophilic agonist [D-Ala2,N-Me-

Phe4,Gly5-ol]-enkephalin (DAMGO) to elicit antinociception. This will open new possibilities for 

regional pain treatment, avoiding the side effects related to the systemically administration of 

opioid, as well as selectively targeting nociceptive neurons, avoiding motor impairment. 

Previous results from our lab [90] demonstrated an HTS-mediated enhancement of opioid analgesia: 

while treatment with DAMGO alone was ineffective, perisciatic co-injection of HTS enhanced 

analgesia (Fig. 6A). Further results were reported using fentanyl (Mambretti EM et al, 2015, 

accepted). Even if this drug is able to cross the perineurial barrier due to its lipophilic nature, a high 

concentration is needed to obtain analgesic effects. Co-injection of fentanyl with HTS (Fig. 6C) 
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allowed for a tenfold dose reduction to achieve the same grade of antinociception. Opioid 

antinociception enhanced by HTS was prevented through treatment with naloxone, a MOP 

antagonist (Fig. 6B, D, respectively). These finding thus not only suggest an increased permeability of 

the perineurium, but also  a possible role of HTS in increasing MOP activation or availability [90]. 

 

Fig. 6: Co-injection of HTS enhances DAMGO and fentanyl-mediated analgesia. Perisciatic co-injection of 
HTS and MOP agonists leaded to an increased paw pressure threshold, indicating an enhanced 
antinocicpetion. The dose dependent inhibitory effect of naloxone supports a specific involvement of 
MOP. n=6; Time point 10 min (Mambretti EM et al, 2015, accepted).  

 

 

1.5 Aim of the study 

The present work aimed to study the axonal localization of MOP using morphological, 

biochemical and molecular biological methods, in order to provide further knowledge on the 

mechanism of opioid action on axonal MOP under different conditions for a possible use in clinical 

regional anesthesia. Particular attention was directed to specifically localize and quantify MOP in rat 

and mouse sciatic nerve under basal condition and after the injection of HTS, due to the 

hypothesized effect of hypertonicity on the availability and/or functionality of axonal MOP.  

Indeed, previous studies from our lab have shown that hydrophilic opioids elicit antinociception only 

if applied together with HTS, indicating that the opening of the barrier is essential for an access of 

opioids to OPs in the axonal membranes. Injections of the lipophilic opioid fentanyl, which should be 
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able to pass comparatively freely through the barrier, elicit antinociception even without HTS, 

indicating the previously disputed presence of functional MOP in nociceptive axons under 

physiological conditions. The effective fentanyl dose can be significantly lowered by HTS coinjection, 

suggesting an additional effect of hypertonicity on axonal MOP. Therefore, the main goals of this 

study were: 1. to develop a protocol suitable for reliably specific and sensitive detection of MOP in 

the intact sciatic nerve, 2. to apply these methods to study MOP localization on a light and electron 

microscopic level, 3. to assess the effect of HTS on the availability and functionality of axonal MOPs. 
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2. MATERIAL and METHODS 

 

2.1 Materials 

2.1.1 Animals 

Animal protocols were approved by the local animal care committees (Regierung von 

Unterfranken, Wuerzburg, Germany; protocol number: REG 03/13) and are in accordance with the 

International Association for the Study of Pain [91]. 

Animals were kept at 22°C with a light-dark cycle of 12 h. Animals had access to food and water ad 

libitum. 

Male Wistar rats (Janvier, France) weighing 200-250 g and male and female homozygous knock-

in mice aged 6–12 weeks were used. MOP-mcherry knock-in mice were a kind gift of Dr. Dominique 

Masotte and Dr. Brigitte L. Kieffer, University of Strasbourg, France. Knock-in mice, expressing the C-

terminus of µ-opioid receptor fused to the red protein mcherry, were generated by homologous 

recombination (HR) [41]. A mcherry cDNA tail was introduced in frame at the C-terminus of the MOP 

gene (i.e., exon 4). The Oprm1 stop codon has been replaced by a Gly-Ser-Ile-Ala-Thr-mcherry 

encoding cDNA followed by a neomycin resistance gene flanked by a FRT site. The whole construct 

was transfected in embryonic stem (ES) cells of a C57B16/J blastocyst. The knock-in construct and 

targeting strategy is shown in Fig. 7. 

 

 
Fig. 7: Scheme of knock-in construct and the targeting strategy. The fusion between the wild type (WT) 
oprm1 gene and the red fluorescent protein mcherry was obtained by homologous recombination (HR) 
followed by FLP recombinase treatment (FLP). Positions of the oligonucleotides (BAZ 43, BAZ 44) used for 
genotyping are indicated. 

 

This C-terminal construct was designed to allow correct native-like MOP expression at sub-cellular 

level to visualize the MOP protein expressing neuronal population. The genetic background of all 
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mice was C57/BL6J;129svPas (50:50%). Functional properties of MOP are maintained in MOP-

mcherry mice both in vitro and in vivo [41].    

                        

2.1.2 Buffers 

 

 Composition (final concentration) Application 

EDTA 0.5 M EDTA (2H2O)  0.5 M 
d water 

Genotyping 

Lysis buffer Tris Base 0.1 M 
EDTA 0.5 M 
SDS 0.2% 
NaCl 0.2 M 
d water 

Genotyping 

TAE, pH 8.5, 50X Tris Base 2 M 
Acetic acid glacial 6% 
EDTA 0.5 M 
d water 

Genotyping 

Blocking incubation buffer TritonX-100 0.5% 
Normal goat serum (NGS) 5% 
Phosphate Buffered Saline (PBS) 0.01M  or  
Phosphate buffer (PB) 0.1M 

IFL 

Incubation buffer Triton X-100 0.5% 
NGS 1% 
PBS 0.01M / PB 0.1M 

IFL 

Phosphate buffered saline (PBS), pH 7.4, 
0.01 M 

HNa2O4P 7.7 mM 
H2NaO4P 2.7 mM 
NaCl 0.15 M 
bd water 

IFL/ Immunogold  / DAB 

Citrate buffer, pH 7.4, 0.2 M C6H5Na3O7  0.2M 
bd water 

Immunogold 

Phosphate buffer (PB), pH 7.35, 0.2 M HNa2O4P 1.5 M 
H2NaO4P 0.5 mM 
bd water 

Immunogold  

Washing incubation buffer, pH 7.4 Gelatin CWFS 40% 
BSA 0.8% 
PBS 0.01 M 

Immunogold 

Blocking buffer BSA 0.5% 
 TBS 0.1 M 

Immunogold / DAB  

Incubation buffer BSA 0. 1% 
TSB 0.1M 

Immunogold / DAB 

Tris saline buffer (TSB), pH 7.6, 0.1 M Tris base 0.1 M 
NaCl 0.15 M 
bd water 

Immunogold / DAB 

RIPA buffer HEPES 25 mM, 
EDTA 2 mM 
NaF 25 mM 
SDS 1% 
d water 

Protein quantification 

RIPA with protease inhibitor cocktail RIPA buffer 
Complete Protease inhibitor 

Tissue lysis 

Blocking incubation buffer Non-fat milk 5% 
TBST 1X 

WB 

Incubation buffer (for secondary Abs) Non-fat milk 2.5% 
BSA 2.5% 
Tris Saline Buffer Tween (TBST) 1X 

WB 
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 Composition (final concentration) Application 

Laemmli, 5X TrisBase 500 mM 
SDS 0.1 M 
Glycerol 16% 
β-mercaptoethanol 1.6% 
EGTA 3 mM 
Phenylmethanesulfonyl fluoride (PMSF) 
0.01 M 
Bromophenol blue 5 mM 

WB 

SDS running buffer, 10X Tris Base 0.25 M 
Glycine 2.5 M 
SDS 35 mM 
Sterile water 

WB 

Semi-Dry transfer buffer Tris Base 25 mM 
Glycine 0.2 M 
Methanol 5% 
Sterile water 

WB 

Tris saline buffer Tween (TBST), 10X Tris Base 0.1 M 
NaCl 1.5 M 
Tween 20 0.05% 
Sterile water 

WB 

Tris, pH 6.8, 0.5 M Tris Base 0.5 M 
Sterile water 

WB 

Tris, pH 8.8, 3 M Tris Base 3M 
Sterile water 

WB 

Table 2: List of buffers. IFL: immunofluorescence; DAB: 3´-3´-Diaminobenzidine reaction; WB: Western blot 

 

2.1.3 Reagent kits 

 Code Company Application 

ABC kit, Peroxidase Standard  PK4000 Vector DAB development 

Absolute QPCR ROX mix 1138 Applied Biosystems  

BCA Protein assay kit 23225 Thermo Scientific Protein quantification 

cDNA Reverse Transcription Kit 4368814 Applied Biosystems cDNA transcription 

EMBed-812 Embedding Kit (EPON) 14120 Electron Microscope Science Electron microscopy 

Enhanced Chemioluminescent solution 

(ECL_Lumi Light Kit) 

12015218001 Roche WB band detection 

Silver enhancement kit 22708 Polysciences Immunogold reaction 

enhancement 

GoTaq G2 DNA Polimerase M7845 Promega Genotyping 

Table 3: List of reagent kits. DAB: 3´-3´- Diaminobenzidine reaction; WB: Western blot 

 

2.1.4 Primers and probes 

 Sequence Company Application 

BAZ43 5' TGA CGT GAC ATG CAG TTG AGA TTT 3' Eurofins Genotyping 

BAZ44  5' TCC CAC AAA CCC TGA CAG CAA C 3' Eurofins Genotyping 

MOR Rn01430371_m1 Invitrogen QT PCR 

ActB Rn00667869_m1 Invitrogen QT PCR 

Table 4: List of primers 
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2.1.5 Antibodies 

Table 5: List of primary and secondary antibodies and relative dilution 

 

2.1.6 Additional reagents and chemicals 

Antibodies Host Dilution Code  Company 

Primary MOP Rabbit 1:500-1:800 ab10275 Abcam 

 Rabbit 1:500-1:800 RA10104 Neuromics 

 Rabbit 1:500 ab134054 Abcam (RabMAb) 

 Guinea 

pig 

1:50-1:250 ab128013 Abcam 

 Guinea 

pig 

1:200-1:500 GP10106 Neuromics 

CGRP Mouse 1:400-1:600 ab81887 Abcam 

 Rabbit 1:400-1:600 24112 Diasorin 

PGP9.5 Chicken 1:500-1:700 ab72910 Abcam 

S100 Mouse 1:250 S2532 Sigma-Aldrich 

DsRed (Mcherry) Rabbit 1:1000 632496 Clontech 

β-actin  Mouse 1:20000 A3854 Sigma 

Secondary Anti-mouse IgG Cy2 Goat 1:400-1:700 115-547-003 Jackson Immuno Research 

Anti-mouse IgG+IgM Cy3 Goat 1:400-1:700 115-165-068 Jackson Immuno Research 

Anti-rabbit IgG Cy2 Goat  1:400-1:700 111-225-144 Jackson Immuno Research 

Anti-rabbit IgG Cy3 Goat 1:400-1:700 111-165-144 Jackson Immuno Research 

Anti-guinea pig IgG Cy3 Goat 1:250 106-165-003 Dianova 

Anti chicken IgY Alexa Fluor 488 Goat 1:400-1:700 ab150169 Abcam 

Anti rabbit  IgG Alexa Fluor 594 Goat 1:2000 A11012 Molecular probes 

Anti rabbit IgG gold US Goat 1:50 800.011 Aurion 

Anti rabbit IgG biotinylated  Goat 1:500 BA-1000 Vector 

Anti rabbit POD Sheep 1:3000 12015218001 Roche 

 Company, code 

Acetic acid glacial Sigma-Aldrich, #33209 

Aclarfoil Electron Microscopy Sciences, #50426-25 

Acrylamide/Bis (30:2) Carl Roth GmbH, #3029.2 

Agarose Sigma Aldrich, #A9539 

Ammonium chloride  Sigma-Aldrich, #A9434 

Ammonium nickel sulfate Sigma-Aldrich, #09885 

Ammonium persulphate (APS) Sigma-Aldrich, #A3678 

Beta-Mercaptoethanol Carl Roth GmbH, #4227.3 

Bovine Serum Albumin (BSA) Sigma-Aldrich , #A9647 
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 Company, code 

Bromophenol blue Sigma-Aldrich, #114391 

Chloroform Sigma-Aldrich, #32211 

Complete ULTRA tablets protease inhibitor Roche, #05892970001 

Coomassie Brilliant blue Biorad, #161-0400 

DAB solution Fluka, #32748 

DAPI Roche, # 236276 

Depex Serva, #18243.02 

D-Glucose Applichem, #A3666 

DMSO Sigma-Aldrich, #D2650 

dNTPs Sigma-Aldrich, #D7295 

Ethanol Sigma-Aldrich, #32205 

Ethylene diamine tetraacetic acid (EDTA)  Serva, #11280 

Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich, #E4378 

Fluoro-gel Electron Microscopy Sciences, #17985-11 

Gelatin (CWFS 40%) Aurion, #900.033 

Glucose oxidase (GOD) Sigma-Aldrich, #G6766 

Glutardialdehyde  Roth, #4157.2 

Glycerol Serva, #23175 

Heparin-Natrium -25000 Ratiopharm, #5394.02.00 

HEPES Applichem, #A1069 

Isoflurane Cp-pharma, #B97D14A 

Lead nitrate Agar scientific, #R1217 

Magnesium chloride  Thermo Scientific, #AB-0359 

Methanol Sigma-Aldrich, #32213 

Non-fat Dried Milk powder Applichem, #A0830 

Normal goat serum Sigma-Aldrich, #G6767 

Nuclease free water Ambion, #AM9937 

O.C.T Tissue tek compound Sakura, #4583 

Osmium Electron Microscopy Sciences, #19110 

Paraformaldehyde (PFA) Applichem, #A3813 

peqGOLD 100bp DNA-Leiter plus Peqlab, #25-2020 

peqGOLD Protein marker V Peqlab, #27-2210 

Phenylmethanesulfonyl fluoride (PMSF) FlikaFluka, #78830 

Propyilene oxide Electron Microscopy Sciences, #20401 

Proteinase K 37U/mg Roche, #0311580100137 

Sodium chloride  Sigma-Aldrich, #31434 

Sodium citrate Agar scientific, #R1107 

Sodium dodecyl sulphate (SDS) Applichem, #A1112,0500 

Sodium fluoride (NaF) Sigma-Aldrich, #S1504 

Sucrose Sigma, #S0389 
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Table 6: Additional reagents and chemicals in alphabetical order 
 

 

2.1.7 Experimental instruments and software 

 

 Company, code Application 

Instruments   

7300 System Sequence Detection  Applied Biosystems RtPCR amplification 

Analgesia meter Ugo Basile, #37215 Behavioural test 

Anesthesia Pump  Anesthesia 

Biozym MSMIDI Biozym Agarose electrophoresis 

Centrifuge Eppendorf, #5418R  

Cryostat Leica, #CM3050 S Tissue cryosection preparation 

DriBlock DB2A Techne, #FDB02AD WB sample denaturation 

Eppendorf Thermomixer comfort Eppendorf AG, # Tissue lysis 

RNA isolation 

Fastblot  Biometra, #015-200 Gel transfer 

Fluorescence microscope Zeiss, Axioskop 2 mot plus IFL Image acquisition 

Fluorescence microscope Biorevo, BZ-9000 IFL Image acquisition 

FluoroChem FC2 Multi Image II Alpha-InnoTech WB acquisition and densitometric 

analysis 

GeneAmp ® PCR System 9600 

thermal cycler 

Applied Biosystems Genotyping PCR 

cDNA transcription 

Mini PROTEAN tetra cell Biorad, # 165-8027 Gel electrophoresis 

Monitoring electrode 3M, #2228 Sciatic nerve stimulation 

Nikon confocal Nikon,  IFL Image acquisition 

PowerPac Basic Power Supply Biorad, #164-5050 Gel electrophoresis 

Sharp:eye CCD camera controller und 

TEM-kamera 

TRS Tröndle Immunogold labeling image acquisition 

Stimuplex A nerve stimulator Braun, #4894502 Sciatic nerve stimulation 

Stimuplex HSN12 Braun Sciatic nerve stimulation 

 Company, code 

SYBR® safe DNA gel stain Invitrogen, #S33102 

T61 MSD, #A206A01 

Tetramethylethylendiamine (TEMED) Sigma-Aldrich, #T9281 

Tris hydroxymethyl aminomethane (Tris) Roth, #5429.3 

Triton X-100 Sigma-Aldrich , #T8787 

TRIzol® Invitrogen, #15596-026 

Tween20 Sigma-Aldrich, #97949 

Uranyl acetate Serva, #77870.01 

Xylol Roth, #9713.3 
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 Company, code Application 

Sunrise ® Tecan Tecan BCA protein quantification assay 

Thermoblock Eppendorf Tissue incubation 

Tissue lyser Qiagen, #85220 Tissue homogenization 

Transmission Electron Microscope Zeiss, #Leo912AB Ultrastructural analysis  

Vibratome Leica, #VT1000S Tissue vibratome section preparation 

   

Software   

FluoroChem FC2 Multi Image II Alpha-InnoTech WB acquisition and densitometric 

analysis 

Magellan software Tecan BCA protein quantification assay 

NIS (Nikon) Nikon Image acquisition 

EndNoteX5 Thomson Reuters GmbH Reference management 

7300 System Sequence Detection 

software v1.4.0 

Applied Biosystem PCR amplification 

ImageJ 1.47 V National Institutes of Health, USA Immunofluorescence quantification 

Spot Advanced, version 2.0 Diagnostic Instrument, Inc Image acquisition 

Adobe Photoshop Elements 8.0 Adobe System, Inc. Images processing 

Sigma Plot 11.0 Systat Software GmbH Statistical analysis and graphics 

Table 7: List of instruments and softwares 

 

2.2 Methods 
 

2.2.1      Treatment of rats and mice 
Under deep isoflurane anesthesia, the right sciatic nerve was located using a 22-gauge needle 

connected to a nerve stimulator (Stimuplex Dig RC; Braun) as previously described [90]. A maximum 

of 300 μl of 10% NaCl in rats and 80 µl in mice were injected. Control nerves were not injected. Sixty 

min after the injection, animals were anesthetized and sacrificed using an intracardial injection of a 

solution of T61 (embutramide), cervical dislocation or intracardial perfusion with 4% PFA according 

to national animal care guidelines. 

 

2.2.2 MOP-mcherry PCR genotyping  

Mice genotyping was performed by standard PCR technique using a forward primer recognizing a 

sequence on the fourth exon of the Oprm1 gene (BAZ 43) and a reverse primer for the 3’ UTR 

untranslated region (BAZ 44). Introduction of the coding sequence for mcherry increased the size of 

the amplified fragment by about 800bp enabling identification of wild type Oprm1 -/- (440 bp), 

heterozygous Oprm1 -/mch (440bp and 1270bp) and homozygous Oprm1 mch/mch (1270 bp) animals by 

PCR.  
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Ear punch samples were lysed overnight at 55°C in 500 µl lysis buffer + 100 µg Proteinase K to extract 

DNA (see table 1 for lysis buffer composition). After lysis the samples were stored at -20°C or 

immediately used for genotyping PCR. In table 8 PCR reagent volumes and thermal cycling conditions 

are reported. 

 

Genotyping PCR reaction mix (1 sample, final volume 50µl) PCR thermal cycle condition 

DNA 2 µl 5’ at 94°C 

Taq Polymerase 1 µl 1’ at 94°C 

1’ at 63°C 

1’ at 72°c 

30 cycles Colorless Buffer 5X 10 µl 

dNTPs 10 mM 2 µl 

BAZ43 10 µM 2.5 µl 10’ at 72°C 

∞ at 4°C BAZ44 10 µM 2.5 µl 

DMSO 2.5 µl  

MgCl2 100 mM 1.75 µl 

H2O 25.75 µl 

Table 8: Genotyping PCR reaction mix and thermal cycle conditions  

PCR products (50 µl) were mixed with loading buffer 6X (4 µl); 20 µl of mix were loaded on 1% 

agarose gel (1 g agarose in 100 ml TAE 1X) containing SYBR® Safe DNA gel stain (10%) and run at 100 

V for 90 min. Five µl of peqDNA were loaded as marker. Bands were visualized under UV light and 

acquired with FluoroChem FC2 Multi Image II (Alpha InnoTech). PCR products from wild type (WT) 

and homozygous mice display a single band at 440 bp and 1270 bp, respectively; heterozygous mice 

are characterized by the presence of both bands. 

 

2.2.3 Tissue preparation for immunohistochemistry staining 

Rat samples: Under deep isoflurane anesthesia, rats were perfused via the left ventricle. A brief 

pre-rinse with PBS (0.1 M, pH 7.4) containing heparin (3300 UI diluted in 100 ml PBS, 20 ml/rat) to 

prevent coagulation was followed by fixation in 4% paraformaldehyde in 0.1 M phosphate buffer (PB, 

pH 7.4, 300 ml/rat). Perfused tissues were post-fixed overnight at 4 °C in the same fixative. Samples 

from HTS-treated rat were harvested 60 min after perisciatic injection. 

Samples for electron microscopy were abundantly washed in 0.01 M PBS to remove PFA and 

were stored in the cryoprotectant buffer at -20°C. For a better conservation, brains were cut in 40-50 

µm slices using a vibratome. Sciatic nerves were conserved in their entirety. 

Samples dedicated to immunofluorescence were washed in PBS, cryoprotected with 10% and 

20% sucrose in PBS overnight at 4°C, embedded in O.C.T., frozen in liquid nitrogen-cooled 2-

methylbutane and stored at −80 °C until use. Frozen tissues were sectioned in 10 µm cryosections 

using a cryostat (CM 3050 S, Leica) set at -20°C. Cryosections were then collected on glass slides 
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(SuperfrostTM Plus Microscope Slides, code J1800AMNZ, Thermo Scientific). Alternatively, frozen 

tissues were cut at 30 µm and collected in a multi well in 0.01 M PBS (free floating sections). Free 

floating sections were used immediately after cutting; cryostat sections on glass slides were 

immediately used or stored at -80°C 

Mouse samples: Mouse tissues were perfused and harvested as described above for rat with 

minor modification, in order to maintain the same conditions described in Erbs et al. [41] In 

particular, no pre-rinse with heparin was used and PFA was dissolved in 0.1 M PB. For each mouse, 

60 ml of fixative were used.  

All solutions were freshly prepared and cooled down to RT prior to experiments. 

 

2.2.4 Immunofluorescence  

Immunostaining was performed on brain, spinal cord, DRG and sciatic nerve. Cryostat sections 

from rat tissue were washed in PBS (6x10 min) and blocked for 2h in blocking incubation buffer to 

prevent unspecific binding. Subsequently, primary antibody incubation was carried out overnight at 

4°C in 0.01M PBS+0.5% Triton X-100+1% NGS using the appropriate concentration of one or, for dual 

labelling, two antibodies from different species (rabbit-anti MOP, monoclonal, 1:250-500; rabbit-anti 

MOP, polyclonal, 1:500-1:800; guinea pig-anti MOP, polyclonal, 1:50-1:500; mouse-anti-CGRP, 1:400; 

chicken-anti PGP9.5, 1:500-1:700; anti S100, 1:250). Free floating sections were kept in slight 

movement. Then, after washing steps in PBS (6x10 min), samples were incubated for 2h at RT with 

appropriate secondary antibody or combination of antibodies (Cy3-labeled anti-rabbit IgG, 1:400-

800; Cy2-labeled anti-mouse IgG, 1:400; Cy3-labeled anti-guinea pig IgG, 1:250), treated for nuclear 

counterstain with 4',6-diamidino-2-phenylindole (DAPI) and mounted with mounting medium 

(Fluorogel). Negative controls (omission of one or both primary antibodies) were carried along for 

each immunolabeling experiment. In dual labeling, cross controls treated with only one of the two 

primary antibodies but both secondary antibodies were also used. 

Immunofluorescence on mouse tissue was carried out as described [41], with overnight 

incubation at 4°C using rabbit-anti-mcherry antibody (anti-DsRed; 1:1000) alone or in combination 

with anti-CGRP (see above); free floating sections were kept in slight movement.  

 

2.2.5 DAB reaction 

Sciatic nerve cryosection (10 µm) and brain 40 µm free floating vibratome sections were rinsed 

in 0.1M TBS, pH 7.6 (2x5 min) and incubated 30 min at RT in blocking solution (0.5% BSA in 0.1 M 

TBS). After washing 2 times for 5 min, sections were incubated overnight at RT with RabMAb 1:250 or 

DsRed 1:1000 in 0.1% BSA in 0.1 M TBS. The following day samples were rinsed in 0.1 M TBS (3x10 

min), incubated 30 min at RT with a biotinylated goat anti-rabbit antibody (1:500) in 0.1% BSA in 0.1 
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M TBS, rinsed as before and incubated 30 min in ABcomplex (in 5ml 0.1M TBS add 1 drop component 

A + 1 drop component B, Vector kit). ABcomplex was prepared 30 min before the reaction and kept 

at 4°C in dark. Before developing the DAB reaction, cryo- or vibratome sections were rinsed briefly in 

TBS and then in 0.01 M PBS. Cryosections were directly incubated in 200µl of DAB development 

solution without pre-incubation, while free floating vibratome sections were first pre-incubated 5 

min in 20 µl of ammonium nickel sulfate diluted in 1 ml DAB reaction mix (DAB, PBS, NH4Cl, GOD), 

then were incubated 15-20 min in the dark after the addition of 20 µl of D-Glucose. Development of 

reaction was checked under a light microscope. The reaction was blocked by washing sections for 

3x10 min in 0.01 M PBS followed by a short wash in distilled water. Vibratome sections were 

mounted on glass slides. All sections were dried at RT overnight, followed by dehydration in ethanol 

(3 min in 70% + 3 min in 96% + 2x3 min in 100%) and in xylol and mounted with DEPEX. 

 

 

   

 

 

 

Table 9: doses of DAB solution  

 

2.2.6 Pre-embedding immunogold  

Immunogold labeling was chosen as the best method to detect subcellular localization of MOP. 

For EM only brain and sciatic nerve samples were used. After perfusion, overnight post-fixation and 

washing steps as described above, brains were freshly cut in 40µm vibratome sections while sciatic 

nerves were coronally cut by hand in order to obtain small pieces (2-3mm). All specimens (sections 

and nerve pieces) were immediately used or stored at -20°C in cryoprotectant medium. For 

immunoreactions, specimen were rinsed in 0.1 M Tris-saline buffer (TSB, pH 7.6, 2×10 min), 

incubated 30 min in TSB + 0.5% BSA and briefly rinsed in TSB again. Then, they were incubated for 

12-16 h at RT in polyclonal anti-MOP, RabMAb or anti-mcherryMOP antibody diluted in TSB 

containing 0.1% BSA. For each reaction, control specimens were incubated without primary antibody. 

After washing in 0,1 M TSB 3x5 min, all specimens were briefly rinsed in 0.01 M PBS and blocked in 

washing incubation buffer (0.01 M PBS pH 7.4, 0.1% gelatin and 0.8% BSA) for 10 min. The washing 

incubation buffer was used for the gold-conjugated secondary antibody incubation 2 h at RT. After a 

short washing step in washing incubation buffer and 0.01 M PBS, sections were incubated 10 min in 

2% glutaraldehyde in 0.01 M PBS, washed briefly in 0.2 M citrate buffer, followed by silver 

DAB development solution  

DAB 333.5 µl 

1000 µl 
PBS 166.5 µl 

NH4Cl 496 µl 

GOD 4 µl 

Ammonium nickel sulfate 20µl 

D-Glucose 20 µl 
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intensification of gold particles using a silver enhancement kit: for each slide enhancer: initiator 1:1 

were used. The reaction was developed in a dark chamber for 15-20 min. After double short wash in 

0.2 M citrate buffer and 5 min wash in 0.1 M PB, the sections were incubated 1 h at RT in 2% osmium 

tetroxide in 0.1 M PB, washed in 0.1 M PB (3x10 min), dehydrated first in ethanol (30%x5 min, 50%x 

5 min, 70%x 5 min, 96%x5 min, 100% 2x10 min) then in propylen oxide (2x10 min). After overnight 

incubation in propylene oxide:Epon (1:1), samples were transferred to pure Epon for 2 h and then 

flat or block embedded. The resin was cured for 48 h at 60°C. Small areas of hippocampus and 

amygdala were cut from the flat embedded sections and re-embedded onto empty Epon blocks. 

Ultrathin sections (70 nm) of hippocampus, amygdala and coronal sciatic nerve  were cut from the 

first micrometers below the surface of the specimen, placed onto formvar-coated nickel grids, 

contrasted with uranyl acetate (2% uranyl acetate in 70% ethanol) and lead citrate (Reynolds 1963) 

and examined with an electron microscope. 

 

2.2.7 Image acquisition 

Observation and image acquisition of immunofluorescence or DAB light microscopy staining was 

done with the BZ-9000 BIOREVO (Keyence), an Olympus BHS epifluorescence microscope or a Nikon 

confocal microscope equipped with the appropriate filter systems. 10X, 20X, 40X and 63X objectives 

were used. The settings of the microscope and the camera were chosen so that signal-to-noise ratio 

was optimal for the different immunolabelings, and was kept identical for all images taken from the 

respective tissues. 

Reacted specimen were acquired with a transmission electron microscope from Zeiss (LEO912 AB) 

equipped with a Sharp:eye CCD camera controller und TEM-kamera, (TRS Tröndle, Germany). A range 

between 5000X and 10000X magnification was used. 

 

2.2.8 Analysis of images and quantification of staining 

Immunofluorescence quantification was performed on micrographs of immunolabeled sections 

taken from sciatic nerve trunks of naïve rats and MOP-mcherry knock-in mice and of rats and MOP-

mcherry knock-in mice 60 min after HTS treatment (n=3 in each group). For each rat and mouse 

nerve, 3 longitudinal cryostat sections with an intersectional distance of at least 40 μm were 

collected on microscopic slides, and immunolabeled for MOP or MOP-mcherry as described above. 

Digital images (2 non-overlapping images for each rat and mouse nerve section) were acquired with 

BZ-9000 BIOREVO (Keyence) using a 40X objective. Immunofluorescence images were converted to 

grey scale and fluorescence intensity measurements were carried out using Image J 1.46r (National 

Institutes of Health, USA) in 5 frames of a defined area (Region Of Interest, ROI), which were 

randomly positioned within the images. Fluorescence intensity/area was averaged for each image, 
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mean intensity values were calculated for each nerve and group comparisons carried out using 

Student’s t-test. 

Assessment of MOP-immunogold labeling specificity: Two different methods were used: the first 

was adopted at the beginning, to assess the specificity of labeling using polyclonal MOP antibodies 

on rat sciatic nerve, the second to assess specificity of MOP-mcherry detection in mouse sciatic 

nerve. 

First method: Individual Remak bundles were identified in micrographs of serial ultrathin 

sections from rat sciatic nerves incubated with and without polyclonal MOP antibody. For each 

identified Remak bundle, micrographs of 3 to 5 serial sections were analyzed. The area of the entire 

Remak bundle (non myelinating Schwann cell cytoplasm + unmyelinated axons) was measured. To 

calculate the Schwann cell cytoplasm area, the area of all unmyelinated axons was subtracted from 

the entire area. If Schwann cell nucleus was present, the area of the nucleus was measured and 

subtracted, too. 

IGS in unmyelinated axons and Schwann cell cytoplasm were counted and divided by the relative 

area, in order to obtain the following ratio: n°IGS/area (µm2). By directly comparing micrographs of 

serial sections it was ensured that gold dots were not counted twice. 

Second method: Individual Remak bundles and the myelinated axons in their vicinity were 

identified in micrographs of serial ultrathin sections of the following preparations: MOP-mcherry 

knock-in mouse sciatic nerve reacted with/without mcherry antibody (MOP-mcherry pos/neg); 

wildtype mouse sciatic nerve reacted with/without mcherry antibody (WT pos/neg). For each 

identified Remak bundle, micrographs of 3 to 5 serial sections were analyzed. The number of IGS and 

the Remak bundle area (comprising unmyelinated axons and the surrounding Schwann cell 

cytoplasm, excluding the Schwann cell nucleus) were determined. By directly comparing micrographs 

of serial sections it was ensured that gold dots were not counted twice. Dot density was calculated as 

n°dots /area for each individual Remak bundle. Since most of the myelinated fibers surrounding the 

Remak bundles were thickly myelinated (presumably MOP-negative motor, Aα and Aβ fibers), overall 

dot density over myelinated fibers in the analyzed micrographs (including axon, myelin sheath and 

Schwann cell cytoplasm, excluding Schwann cell nucleus) was determined as intra-sectional 

background labeling. Thereafter, a labeling enrichment for each Remak bundle was calculated by 

dividing its individual dot density value by the background density value determined in the same 

preparation, and a mean labeling enrichment was calculated for all Remak bundles analyzed in each  

preparation (between 10 and 15). 
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2.2.9 Western blot  

Sample preparation. Rat and mouse tissues were cryopreserved in liquid nitrogen and 

subsequently homogenized in 200 µl (DRG and sciatic nerve) or 500 µl (brain and spinal cord) of RIPA 

buffer (25 mM HEPES pH 7.6, 2 mM EDTA, 25 mM NaF, 1% (v/v) SDS) containing protease inhibitors 

cocktail (1 tablet/10 ml RIPA Complete) using sterilized stainless steel beads (5 mm) by Tissuelyser (4 

min at 25 Hz). Samples were then centrifuged at 8600 g for 10 min at 4°C.  

Protein quantification. The supernatant was collected and protein concentration was quantified 

using the bicinchoninic acid (BCA) protein assay kit. Standards controls were prepared according to 

manufacturer´s protocol: albumin standard dilutions were prepared in the range from 20 to 2000 

μg/ml in RIPA buffer (without complete protease inhibitor) and measured in triplicate (25μl/well). 

Rat and mouse samples were measured in triplicate as well. Brain and spinal cord were diluted 1:10 

before quantification due to the high protein content. Two hundred microliter of working solution 

(reagent A:reagent B, 50:1) was added in each well. After a brief shake, the 96-well plate was 

incubated 30 min at 37°C. The plate was then cooled down to RT and the absorption at 540nm was 

measured using an UV/Vis spectrophotometry (Sunrise® Tecan). The concentration of each sample 

was calculated referring to the absorption values that were interpolated with the values on a linear 

standard curve. 

Protein separation. The amount of protein used for Western blot differed depending on the 

antibody used for detection: 25 µg of protein from rat samples were used for detection with MOP 

Neuromics antibody; 50 µg (brain and spinal cord) or 100 μg (DRG and sciatic nerve) of protein were 

used for detection with RabMAb or mcherry antibody.  The calculated amount of protein was added 

to RIPA (without complete protease inhibitor) and Laemmli buffer, denatured at 95°C for 5 min, 

briefly spinned, then cooled on ice. Samples were then separated on a 10% sodium dodecyl sulfate 

polyacrylamide gels (SDS-page, see table 10) at 80 V for 30 min then 110 V for 90 min and 

subsequently transferred on a nitrocellulose membrane (15 V for 90 min) using a semi-dry transfer 

buffer and Fastblot. The membrane was blocked in 5% nonfat milk in TBST for 1 h at RT. Primary 

antibody incubation (rabbit anti-MOP, 1:500; rabbit-anti MOP (RabMAb), 1:250; rabbit-anti mcherry, 

1:1000) was carried out overnight at 4°C on a shaking plate. The following day the membrane was 

washed in TBST (3x10 min) and incubated 2 h at RT with a secondary anti-rabbit antibody (1:3000) 

conjugated to horseradish peroxidase diluted in 2.5% non-fat milk + 2.5% BSA in TBST. The 

membrane was kept under slight shake. To remove unspecific binding, the blot was abundantly 

washed in TBST before ECL detection. β-actin was used as loading control. After ECL detection of the 

abovementioned antibody bands, the blot was washed in TBST and incubated 2 h at RT in -actin 

(1:20000) diluted in 5% non-fat milk + TBST. As the antibody is HRP-conjugated, no secondary 

antibody incubation was needed. Loading control bands were also detected with ECL. 



Material and methods 

43 

 

Negative controls (omission of primary antibody) of RabMAb and mcherry were also carried out. 

 

Acrylamide stacking gel  Acyrlamide 10% separating gel 

H2O 2.85 ml H2O 4 ml 

Tris 0.5 M, pH6.8 1.25 ml Tris 3 M, pH8.8 2.5 ml 

SDS 20% 50 µl SDS 20% 100 µl 

Acrylamide/Bis 30:2 850 µl Acrylamide/Bis 30:2 3.33 ml 

APS 10% 50 µl APS 10% 100 µl 

TEMED 5 µl TEMED 5 µl 

Table 10: doses for one stacking and one separating acrylamide gel 

 
Band detection. To detect protein band signals, the membrane was incubated 4 min in 1ml of ECL. 

Chemiluminescent signal was acquired with Imager.  

 

2.2.10 RNA isolation 

Sciatic nerves and DRG of control and HTS treated rats were harvested and immediately frozen 

in liquid nitrogen and stored at -80°C till RNA extraction. Before starting the extraction protocol, all 

instruments were washed with RNase Zap to remove all RNase that could destroy the RNA. Working 

on ice, tissue samples were cut in small pieces and collected in a new tube containing 500 µl of 

TRIzol® and a 5 mm sterilized stainless steel bead. Tissue samples were subsequently homogenized 

with Tissuelyser for 4 min at 20 Hz and then kept on ice for 6min. After addition of 100 µl of 

chloroform samples were vortexed for 15 s and then kept at 4°C for 15 min, when two detached 

phases appeared. After centrifugation at 145000  g for 15 min at 4°C, the upper phase containing the 

RNA was collected and transferred into a fresh tube containing 250 µl isopropanol (100%). Following 

complete vortexing, RNA was kept in isopropanol at -20°C overnight (maximal 4 days). On the second 

day, RNA was centrifuged (15900 g, 5 min, 4°C) and the obtained RNA-enriched supernatant was 

washed with 75% ethanol. It was subsequently spun down and centrifuged (2300 g, 5 min, 4°C) in 

order to get a RNA pellet, which was further dried at 37°C for 10 min and resuspended in 100 µl 

nuclease free water. The final suspension was incubated in Eppendorf Thermomixer® (1400 g, 57°C) 

for 10 min, and then aliquoted and stored at -80°C before cDNA transcription. 

 

2.2.11 cDNA synthesis and qPCR 

cDNA synthesis. cDNA synthesis was performed in 20 µl volumes in 96 well plates. After 

calculating the extracted RNA concentration, 1 µg purified RNA was brought to 10µl with nuclease 

free water. 10 µl of components from High-Capacity cDNA Reverse Transcription Kit were then added 

as described in Table 11. cDNA synthesis was performed according to a well-established program 
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with the Thermal cycler (25°C for 10 min, 37°C for 120 min, 85°C for 5 min) and was held at 4°C. 

cDNA products were aliquoted and kept at -80°C before qPCR amplification. 

qPCR. Reagents, volumes and thermal cycling conditions for quantitative real time PCR (qPCR) 

reaction mixture are shown in Table 12. cDNA samples were amplified by qPCR with Taqman gene 

expression assays for rat MOP and β-actin as a reference  gene (see table 3 for relative probes). FAM 

or VIC refers to specific compatible fluorescein-based 5’ end reporter dye. Sequences of FAM/VIC 

labeled primers were kept confidential from Invitrogen/Life Technologies. Thermal cycling conditions 

were established according to the manufacturer’s instructions: 50 cycles of melting for 15 s at 95°C 

and 1 min at 60°C for annealing and extension. Two different qPCR-negative controls were 

conducted: all the reagents were added with either 1) replacement of cDNA by nuclease free water 

or 2) replacement of enzyme mix “Absolute QPCR ROX Mix” (Thermo Fisher Scientific, Ulm, Germany) 

with nuclease free water in order to evaluate the contamination from genomic DNA or other sources 

which would lead to artificial positive amplification in the qPCR reaction. As a result of the relatively 

uniform expression in injected and non-injected nerve compared to GAPDH and 18S mRNA in 

preliminary trials (data not shown), β-actin was chosen as an optimal reference gene control. 

 
cDNA synthesis reaction mix (1 sample, final volume 20 µl) 

Reverse Transcription buffer 10X 2 µl 

Deoxynucleoside triphosphates (dNTPmix 25X (100 mM) 0.8 µl 

Random primer 10X 2 µl 

MultiScripeTM Reverse Transcriptase 1 µl 

Ribonuclease (RNase) Inhibitor 1 ml 

Nuclease-free H2O Up to 20 µl 

RNA template (1 µg)  

Table 11: Pipetting scheme for cDNA synthesis 

qPCR mastermix (1 sample, final volume 25 µl) qPCR thermal cycle condition 

Absolute QPCR ROX mix 12.5 µl 15’ at 95°C 

Taqman gene expression assay probes (20) 1.25 µl 15’’ at 95°C x 50 times 
50 cycles 

HPLC nuclease free water 6.25 µl 1’ at 60°C 

cDNA (1:10 dilution) 5 µl  

Table 12: Pipetting scheme and thermal cycling condition for rtPCR 

Data analysis. During qPCR the cDNA of the gene of interest and the reference gene  are 

amplified as happens in a traditional PCR. In every PCR the increase of DNA amount follows a linear 

pattern before reaching a saturation point. In traditional PCRs, DNA amount is calculated at the end 

of the run and is thus inaccurate. qPCR, instead, allows to monitor DNA levels in real time, thanks to 

fluorescent probes (e.g., TaqMan).  
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According to the Ct method [92] it is possible to set a threshold intersecting the linear phase of 

the amplification at a value defined “Ct” (i.e. threshold cycle). Ct values for both the gene of interest 

and the reference gene of every samples are thus determined to calculate Ct values according to 

the formula:   

Ct = Ct (gene of interest) - Ct (reference gene) 

Secondly, Ct values of controls are subtracted to Ct values of treated samples, in order to obtain 

ΔΔCt values:   

ΔΔCt values = Ct (treated) - Ct (control) 

Then ΔCt values of injected and contralateral sciatic nerve were normalized by subtraction of ΔCTt 

non-injected nerve, thus obtaining the ΔΔCt values. Finally, relative quantitation (RQ) values are 

calculated as 2- ΔΔCt.  

In our experiments the reference gene of choice was -actin.  

 

2.2.12 Statistics 

Statistical analyses were performed with SigmaPlot 11.0, Systat Software Inc. Two groups were 

compared with t-test or by Mann-Whitney rank sum test, if not normally distributed. Data of 

immunogold quantification are displayed as mean ± SEM (first method) or raw value (median, second 

method). The 4 groups (MOP-mcherry_pos, MOP-mcherry_neg, WT_pos and WT_neg) were 

compared with Dunn´s rank sum test, if not normally distributed; *P <0.05 **P<0.01. 
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3. RESULTS 

 

3.1  MOP-detection using polyclonal MOP antibodies  

Specificity and high signal-to-noise ratio of MOP staining is crucial for localization analysis, 

particularly for immunoelectron microscopic purposes. Therefore, four different polyclonal 

commercially available MOP antibodies (listed in table 5 in paragraph 2.1.5) were tested in tissues of 

central and peripheral nervous system. For the central nervous system, the results of labeling in the 

pyramidal cell layer of hippocampus CA regions and in the intercalated nuclei of amygdala were 

compared with published data. In the periphery, comparison was carried out for immunoreactions 

on DRG neurons and sciatic nerve.  

 

3.1.1 MOP-immunolabeling in the brain 

All tested antibodies revealed immunoreactivity primarily in fibers and occasional cell bodies in 

and surrounding the CA pyramidal cell layers of hippocampus (Fig. 8A-D) and particularly strong, 

mostly diffuse-appearing labelling in the paracapsular intercalated nuclei of amygdala (Ic) with less 

labelling in the basolateral complex of the amygdala (BLa; Fig. 8E-H). This staining pattern was 

comparable to previously published data on MOP localization in these brain areas [93, 94]. 

Antibodies raised in rabbit (produced by Abcam and Neuromics) yielded a strong immunolabeling 

(Fig. 8B, arrow) and a relative good signal-to-noise ratio. Labeling using guinea pig antibodies showed 

a strong granular immunofluorescence and the signals appeared, at a first observation with 

microscope, more specific than rabbit. However, a more careful examination revealed a lower signal-

to noise ratio due to a diffuse staining (e.g. in the stratum radiatum of CA1; Fig. 8C, arrow) suggesting 

additional, possibly unspecific labeling. Presumably unspecific binding using guinea pig antibodies 

was also more evident in amygdala, in which relative high labelling was seen in the BLa compared to 

the Ic (Fig. 8G, H, arrows). Signals surrounding the Ics were less intense in samples reacted with the 

Abcam (C) than with Neuromics (D) guinea pig antibodies. MOP-immunoreactivity using rabbit 

antibodies was very intense in Ics, with significantly less intense labeling in the adjacent areas (E, F). 

Negative controls (omission of primary antibody; inserts in the right upper corner of Fig. 8B, D, F, H) 

showed no staining in hippocampus as well as in amygdala. The comparability of the results with 

previous reports and the consistent labelling of the same structures using all four antibodies 

confirmed specificity of MOP detection, with varying levels of additional, presumably unspecific 

binding. The rabbit polyclonal antibodies provided a higher signal-to-noise ratio than the guinea-pig 

antibodies.  
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Fig. 8: Detection of MOP using polyclonal antibodies in the pyramidal cell layer of the hippocampus and 
intercalated nuclei/basolateral complex of the amygdala. Brain cryosections (10 µm) of Wistar rats were 
incubated overnight with four different MOP primary antibodies raised in rabbit (rbMOR Abcam, A, E; 
rbMOR Neuromics, B, F) or guinea pig (gpMOR Abcam, C, G; gpMOR Neuromics, D, H) followed by 2 h 
incubation with a goat-anti rabbit or goat-anti guinea pig Cy3-coniugated secondary antibody.  
Immunoreactivity of MOP is observed in the pyramidal cell layer (Py) of the hippocampus (A-D). Intense 
immunoreactivity in paracapsular intercalated nuclei of amygdala (Ic) is detected (E-H). Negative controls 
(omission of primary antibody) testing for unspecific binding are inserted in the right upper corner in B, D, 
F and H. Scale bar 100 µm. 

 

3.1.2 MOP-immunolabeling in the peripheral nervous system 

To prove the presence of MOP in the axons, all antibodies were further tested in peripheral 

nervous system, in particular in L4-L6 DRG (Fig. 9) and in the sciatic nerve (Fig. 10). The following 

results describe the majority of the immunolabeling experiments. However, it is appropriate to 

remark that the labeling was extremely variable between sections and experiments. DRG 

immunoreactions with MOP rabbit antibodies exhibited a homogeneous labeling with no remarkable 

difference in immunofluorescence intensity between small, medium and large neurons (Fig. 9A, B). 

Thus, the staining pattern did not reflect previous studies immunolabeling MOP, possibly indicating 

lack of specificity of these antibodies [39]. MOP guinea pig antibody-immunoreactivity was localized 

in the cytoplasm of small and medium neurons of DRG and revealed again a granular distribution 
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pattern. Very strong immunofluorescence intensity apparently providing a higher signal-to-noise 

ratio compared to rabbit antibodies was observed. Small neurons were intensely stained (arrows), 

suggesting a specific staining, but immunoreactive medium-large neurons, supposed to be MOP 

negative, were also visible (arrowheads) (Fig. 9C, D). Immunolabeling with omission of primary 

antibody (inserts in B and D) was negative in all samples.   

 

  

Fig. 9: Guinea pig antibodies yielded stronger staining of small neurons than rabbit antibodies in DRG. 
Immunoreactivity for MOP in DRG cryosections (10 µm) of Wistar rats. Homogeneous immunoreaction 
signals after incubation with rabbit antibodies is observed in A and B (Abcam and Neuromics, 
respectively). Arrows in C and D point to small neurons intensely stained (gpMOR Abcam, C; gpMOR 
Neuromics, D) while arrowheads indicate staining in medium-large neurons. Granular immunolabeling is 
detected in C and D.  Negative control (omission of primary antibody) is shown in the insert. Scale bar 50 
µm. 

 
The next step was to test the specificity of antibodies in the sciatic nerve. To exclude a 

dependence of the results on immunodetection methods, different immunohistochemical 

procedures, namely diaminobenzidine (DAB), immunofluorescence and immunogold staining were 

employed. Results were always comparable. Immunoenzyme labeling with DAB as a chromogen was 

performed on coronal and longitudinal cryosections of sciatic nerve (Fig. 10A-D) using rabbit (A, C) 

and guinea pig (B, D) antibodies from Abcam. MOP-Immunoreactivity was detected between 

presumably myelinated fibers (arrowheads in Fig. 10 A,B) and could be due to specific staining of C-

fibers that are organized in Remak bundles and run parallel to myelinated fibers. However, the 
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staining in presumable Schwann cells (arrows in Fig. 10 A,B) of myelinated axons, as well as near to 

the node of Ranvier (RN; Fig. 10 C), typical structures of myelinating Schwann cells, suggests the 

presence of unspecific binding. In the negative control sections some background, maybe due to an 

excessive development of immunoperoxidase reaction, was observable (Insets in Fig. 10 C, D). The 

relative labeling intensity compared to background in controls was considerably higher using the 

rabbit than the guinea pig antibodies.  

Immunofluorescence labeling on longitudinal sciatic nerve cryosections using rabbit Abcam and 

Neuromics antibodies (Fig. 10E, F respectively) yielded signals in fiber or fiber-bundle likes structures 

(arrowheads in Fig. 10E, F), which could represent axons of sensory and putative nociceptive 

neurons. However, fluorescence signals were also present in elements resembling Schwann cell 

cytoplasm (arrows in Fig. 10 E, F), and occasionally fluorescence near to a Ranvier’s node was also 

noticed.  

Considering the low labeling intensity in the DAB reaction (Fig. 10B, D), the high background in the 

brain immunofluorescence (Fig. 8C, D, F, G) and, additionally, lack of detectable  

immunofluorescence staining above background in sciatic nerve (not shown), it was decided not to 

use the guinea pig antibodies in further experiments. 
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Fig. 10: Detection of Schwann cells in sciatic nerve using MOP antibodies. Immunoreactivity for MOP 
was seen in coronal (A, B) and longitudinal 10 µm cryosections (C, F) of the sciatic nerve of Wistar rats. For 
DAB staining (A-D), rabbit (A, C) and guinea pig (B, D) antibodies from Abcam were used. For 
immunofluorescence (E, F) rabbit antibodies from Abcam and Neuromics, respectively, were used. Arrows 
point to possible Schwann cells. Arrowheads indicate fiber-like, possibly specific staining. DAPI stains 
nuclei in immunofluorescence. Negative controls are in the right corner. Scale bar 20 µm. 

 
 

3.2 Double staining using polyclonal MOP antibodies with CGRP, PGP9.5  

and S100-antibodies  

In order to obtain additional evidences that could confirm or reject the specificity of rabbit MOP 

antibodies, sciatic nerve preparations were co-stained with MOP antibodies and CGRP, PGP9.5 or 
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S100. Rabbit MOP Abcam and Neuromics antibodies showed similar staining along the sciatic nerve. 

For this reason double staining for MOP and other markers were done using alternatively rabbit MOP 

antibodies. The following pictures are representative images of double staining on longitudinal and 

coronal samples of sciatic nerve. 

 

3.2.1 MOP and CGRP 

Double staining on longitudinal sciatic nerve fibers revealed a partial co-localization of MOP- 

(Fig. 11A, Abcam) and CGRP-immunolabeling (B). However, some red fluorescent structures were 

completely negative for CGRP (arrows in Fig. 11 A, B, D).  

 

       

Fig. 11: MOP and CGRP staining on longitudinal sciatic nerve cryosections. Fibers/fiber bundles 
colocalizing MOP- (A) and CGRP -immunoreactivity (B) are indicated with open arrowheads (Fig A, B, D). 
Closed arrowheads point to fibers/fiber bundles with high expression of MOP and low amount of CGRP. 
Fluorescence is also present outside CGRP

- 
ir

 
fibers or fiber bundles (arrow). Nuclei are stained with DAPI 

(C, D). rbMOP Abcam and mCGRP were used. Scale bar 50 µm. 

 
The proximity of red fluorescent signals to the nuclei (blue) and the shape of the labeled 

structures may indicate a Schwann cell, cells that presumably do not express MOP. It was also 

possible to observe a differential content of MOP in CGRP-ir fibers and fiber bundles, the latter most 
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probably representing Remak bundles. The closed arrowheads in Fig. 11 point to fibers/fiber bundles 

with strong MOP- and weak CGRP -immunolabeling intensity. In the fiber bundles indicated by open 

arrowheads the intensity of staining was similar for MOP and CGRP (Fig. 11A, B, D). CGRP showed a 

dotted staining that could reflect the localization of the neuropeptide in vesicles.  

 

3.2.2 MOP and PGP9.5 

Longitudinal nerve sections were immunoreacted for MOP and the neuronal marker PGP9.5. 

(green). There was little overlap of MOP-antibody binding in fiber bundles as indicated by red 

fluorescence, and very light PGP9.5-immunofluorescence (arrow in Fig. 12). In many lightly red-

fluorescent structures, which often appeared to run close to and in parallel to PGP9.5-ir fibers, green 

PRGP9.5-immunofluorescence was not detectable. The negative control (upper corner in Fig. 12D) 

did not show fluorescence confirming the absence of background and of unspecific binding of 

secondary antibodies. 

 

 

Fig. 12: MOP- and PGP9.5- immunoreactions show little co-localization. Free floating cryosections (30 
µm) of longitudinal section of rat sciatic nerve were stained for rbMOP Neuromics (A) and neuronal 
marker chPGP9.5 (B). Arrows indicate fiber bundle immunoreactive for MOP with light PGP9.5-labeling (in 
A, B, D); arrowheads point to PGP9.5-ir fibers that are negative for MOP. Asterisk points to presumable 
MOP-ir Schwann cell. Absence of co-localization between red and green fluorescence is observable in 
many structures. Nuclei of Schwann cells are stained with DAPI (C, D). Negative control: insert in D. Scale 
bar 20 µm. 

 
3.2.3 MOP and S100 

To further test the specificity of antibodies, double staining with MOP and S100 was carried out. 

S100 is a marker of the non-compacted cytoplasm of myelinating Schwann cells, localized for 

instance near the node of Ranvier and in the Cajal bands, longitudinal bands of cytoplasm along the 

internodal myelin. Coronal sections of sciatic nerve showed low level of MOP staining. However, it 
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was possible to detect a co-localization of green fluorescence (detecting MOP-antibody binding) and 

S100 (in red) (Fig. 13A). The co-localization is more evident in the enlarged particular of Fig. 13A, 

pointed out by arrows in Fig. 13B, C, E.  

 

 

Fig. 13: MOP antibody binding colocalizes with S100. The entire coronal section of the nerve (A) shows 
immunoreactive fibers for MOR (green) and S100 (red). Selected area of A is enlarged in B-E; arrows 
point to MOR and S100 co-localization (B, C, E). Nuclei of Schwann cells are stained with DAPI. rbMOP 
Abcam and mS100 were used. Scale bar 20 µm. 

 

3.3      Pre-embedding immunogold labeling using polyclonal MOP antibodies 

in rat sciatic nerve 

In hippocampus (Fig. 14A, B) and amygdala (Fig. 14C, D), used as positive control tissues, 

immunogold-silver dots (IGS) were present only in specific structures, mostly dendrites and neurons 

and usually several IGS could be found in the same structure; in the surrounding areas, IGS were 

extremely rare. Rabbit MOP Abcam (A, C) showed lower staining intensity compared to rabbit MOP 

Neuromics (B, D) both in hippocampus and amygdala. IGS were absent or extremely rare in negative 

control sections (omission of primary antibodies; upper corner in B and D).  
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Fig. 14: MOP-pre-embedding immunogold reaction on hippocampus and amygdala indicates labeling 
specificity. rbMOR Abcam (A, C) and rbMOR Neuromics (B, D) immunogold-silver dots (IGS) are mainly 
localized in specific elements resembling dendrites (d) of hippocampus (A, B) and amygdala (C, D); often 
more than one to one structure with little labeling in surrounding structures; no immunogold staining in 
negative control (in upper corner of B and D). m = myelin; s = synapse; M =  mitochondria. Scale bar 500 
nm. 

 
Electron microscopy images of coronal section of sciatic nerve stained for rabbit MOP Abcam 

and Neuromics antibodies (Fig. 15A, B respectively) were characterized by similar staining. In both 

samples a localization of IGS in unmyelinated axons (ua) of Remak was detectable (closed 

arrowheads); however, staining in non-myelinating Schwann cell cytoplasm (SC) was visible as well 

(open arrowheads). Some IGS were also localized on myelinated fibers and in endoneurial tissue 

between fibers (arrows). Negative controls (omission of primary antibody, upper right corner in B) 

also contained IGS both on Remak bundles, myelinated fibers and in the endoneurium even if cut at 

some distance from the surface of the specimen, indicating that secondary antibodies might have 

diffused into the specimen further than in brain sections, possibly via endoneurial tissue.  

Consequently, in contrast to labeling in brain sections, it is essential that an in-section internal 
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control for unspecific labeling due to detection sequence has to be used to assess antibody specificity 

in sciatic nerve staining.  

According to previous studies, a high proportion of unmyelinated fibers in Remak bundles are 

sensory, presumably nociceptive C-axons, and about 40% of unmyelinated axons contain CRGP [73, 

78]. MOP localization has been shown in small and medium sized neurons from which these axons 

originate, and our fluorescence immunolabeling made presence of specific MOP-reactivity in fiber 

bundles (possibly Remak-bundles) likely (see section 3.2.1). On the other hand, MOP expression in 

Schwann cells has not been reported. Therefore, it was attempted to assess MOP-detection 

specificity using MOP Abcam antibody in immunogold-reacted sciatic nerve sections by comparing 

the labeling intensity over Remak axons with that over Remak cell cytoplasm. In particular, IGS inside 

unmyelinated axons (ua) and in the surrounding Schwann cell cytoplasm (SC) were counted in MOP-

antibody reacted and in control sections, and the obtained number was divided by the corresponding 

area (µm2) (Fig. 16). IGS localized between the fibers or in myelinated axon (m) were not considered. 

The large variability in IGS counts in unmyelinated axons in some Remak bundles in MOP antibody 

reacted sections indicates a possible specificity of labeling in some fibers. However, there was no 

difference in median IGS density noted between unmyelinated axons and non-myelinating Schwann 

cell cytoplasm. Surprisingly, there was statistically significant difference found in the negative control 

(omission of primary antibody).  

 

 

Fig. 15: Immunogold reaction on coronal section of sciatic nerve using polyclonal rabbit MOP 
antibodies. Closed arrowheads point to immunogold-silver dots localized in unmyelinated axons (a) 
stained with rbMOP Abcam (A) and rbMOP Neuromics (B); open arrowheads indicate localization of 
immunogold-silver precipitates in Schwann cell cytoplasm (c); staining in endoneurial tissue is indicated by 
arrows. Insert in B shows the negative control. ua = unmyelinated axon; SC =Schwann cell cytoplasm; m = 
myelin. Scale bar 500 nm. 
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Fig. 16: Quantification of IGS density in unmyelinated axons  and Schwann cell cytoplasm (Remak). Data 
are expressed as a ratio of IGS/area (µm

2
). IGS were counted in five different structures identified in three 

to five serial ultrathin sections of sciatic nerve.  Positive: MOP Abcam-reacted, negative: without primary 
antibody reacted sections. Data are expressed as median. Man-Withney test *P<0.05 

 

3.4       Western blot on neuronal tissues detected possible unspecific signal of  

MOP antibodies 

In addition to immunofluorescence staining, MOP protein was to be quantified in sciatic nerve 

of treated and untreated rats. The polyclonal rabbit Abcam antibody used for immunohistochemistry 

appeared not suitable for Western blot analysis , since no bands were detected on blots incubated 

with this antibody. Instead, rabbit Neuromics detected the presence of MOP in brain, spinal cord, 

DRG and sciatic nerve. A band of 55 kDa was visible in all samples (Fig. 17). However in all samples 

more than one band was detected.  

 

 

Fig. 17: Western blot using polyclonal MOP antibody. Brain (B), spinal cord (SC), DRG and sciatic nerve 
(SN) samples were loaded on 10% SDS gel and MOP was detected with rbMOP Neuromics antibody. 
Presence of several bands is observable. Twenty-five µg of protein was loaded. Representative image of 3 
experiments. 
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3.5      MOP detection using a monoclonal MOP antibody and  fusion protein 

detection in MOP-mcherry knock-in mice  

To circumvent difficulties with possible unspecific staining in sciatic nerve we 1. used a new 

commercial monoclonal rabbit antibody (RabMAb) to detect MOP in rat tissues and 2. employed 

MOP-mcherry knock-in mice, in which the fluorescent protein mcherry was inserted at the terminal 

part of intracellular C-tail of MOP. Insertion of mcherry is supposed not to interfere with MOP 

function and expression [41]. To further improve detection, the fluorescent signal of mcherry was 

enhanced by immunodetection of the fluorescent protein with a rabbit polyclonal antibody against 

mcherry (DsRed Living color).  

3.5.1 MOP-RabMAB 

3.5.1.1 Immunofluorescence labeling on central and peripheral nervous system 

Immunoreactions using MOP-RabMAb antibody specifically labeled the intercalated nuclei of 

amygdala (Ic), the neurons of lamina I and II in the dorsal horn of the spinal cord and small neurons 

of DRG (arrows) (Fig. 11). Labeling patterns were consistent with previous localization studies and 

documented superior specificity of the antibody [93, 94]. Negative control (omission of primary 

antibody; inserts in Fig. 11) revealed no background staining in all tested tissues. 

 

 

Fig. 18: MOP-immunodetection in neuronal tissue of Wistar rats. Cryosections of amygdala, spinal cord 
and DRG were incubated with a commercial monoclonal rabbit antibody (RabMAb) for MOP. 
Immunoreactivity of MOP was seen in the paracapsular intercalated nuclei (Ic) of the amygdala (arrows, 
left panel), in superficial laminae I/II of spinal dorsal horn (middle panel) and in small/medium DRG 
neurons (arrow in right panel). Scale bars 100 μm. Negative controls (omission of the primary Ab) are 
displayed in the upper left corner (nuclei of the amygdala: CEA, central nucleus; La, lateral nucleus; BLa, 
basolateral nucleus). Scale bar 100 µm.  
 

 

In contrast to polyclonal antibodies, RabMAb yielded a highly reproducible immunolabeling in 

the sciatic nerve. Longitudinal sections of sciatic nerve (Fig. 19) showed clearly recognizable but faint 

MOP-immunoreactivity localized to narrow fibers and fibers bundles. In phase contrast, MOP positive 

fiber bundles were seen to be localized between myelinated fibers, suggesting MOP localization in 

axons of Remak bundles. This was also confirmed by dual labeling, which documented the co-

localization of MOP and CGRP in fibers and fiber bundles. Moreover, it was possible to appreciate a 
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differential expression of MOP and CGRP along the fibers. In particular, there were fibers and fiber 

bundles with high (arrowheads) and low (open arrows) content of MOP, often granular in 

appearance, as well as fibers that were virtually exclusively CGRP immunoreactive (closed arrows). 

Close inspection at higher magnification (insets in Fig. 19) documented the differential labeling 

intensities and indicated that MOP-reactivity was not completely colocalized with CGRP-

immunoreactivity within the fibers and fiber bundles.  

 

    

Fig. 19: Specific immunoreactivity of MOP in sciatic nerve of Wistar rats. Longitudinal sciatic nerve 
sections (10 µm) were stained with RabMAb MOP (red) and the sensory fiber marker CGRP (green). 
Arrowheads and open arrows point to fibers/fiber bundles with comparatively high and low MOP-ir, 
respectively. Closed arrows point to fibers containing only CGRP immunoreactivity. Higher magnification is 
shown in inserts. Scale bar 20 μm. 

 
 
3.5.1.2 Immunoenzyme labeling  

Diaminobenzidine reaction on brain vibratome sections revealed staining in pyramidal cell layer 

of hippocampus (Py) and in the medial habenula (MH) (Fig. 20A). Intense staining was also visible in 

the intercalated nuclei of amygdala (Ic) (Fig. 20B). Consistency of results with those of previous 

localization studies [93, 94] confirmed MOP-RabMAb’s immunofluorescence results, again indicating 

superior specificity of MOP-RabMAb. Absence of background in negative control of hippocampus and 

amygdala (upper right corner in A and B, respectively) documented quality of detection sequence 

specificity. 
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Fig. 20: Detection of MOP in rat brain using RabMAb in diaminobenzidine reaction. Vibratome sections 
(40 µm) of hippocampus (A) and amygdala (B) were labeled with RabMAb and a goat anti-rabbit 
biotinylated antibody. MOP-immunoreactivity is visible in pyramidal cell layer of hippocampus (Py) and 
medial habenula (MH). Strong reaction is also present in the paracapsular intercalated nuclei (Ic) of the 
amygdala. Negative controls are displayed in the upper right corner. DG=Dentate gyrus; nuclei of the 
amygdala: CEA = central nucleus; La = lateral nucleus; BLa = basolateral nucleus. Scale bars 100 μm.  

 
 

3.5.1.3 Immunoelectron microscopic labeling 

Ultra-structural analysis on rat amygdala (Fig. 21A, B) and coronal section of sciatic nerve (Fig. 

21C, D) provided evidence for specificity of MOP-RabMAb antibody also in immunogold labeling. In 

the amygdala, IGS present in the section reacted with MOP-RabMAb (A) were specifically clustered in 

dendrites (d) with almost no labeling in surrounding structures, e.g. myelin (m). Very few IGS and no 

clustering within specific structures ware observed in the negative control (omission of primary 

antibody, B). The findings supported, on one side, the specificity of the antibody, and on the other 

side indicated low background.  
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In MOP-immunogold-reacted rat sciatic nerve sections, IGS were mostly restricted to 

unmyelinated axons (ua; Fig. 21C). However, their number was very low, and occasionally IGS were 

observed in non-myelinating Schwann cell cytoplasm (asterisk), on myelinated axons, and in the 

endoneurium. As observed in immunogold labeling of sciatic nerve using polyclonal MOP antibodies, 

negative controls also showed significant numbers of IGS, although close inspection of control 

reactions showed that the number of IGS outside unmyelinated axons was higher than in MOP-

RabMAb-reacted sections. Inserts in C and D clearly show the difference. Therefore, the staining 

using this antibody appears specific also in the sciatic nerve, but with a low signal-to –noise ratio and 

high background.  

 

 
Fig. 21: Ultrastructural immunolocalization of MOP using RabMAb in rat amygdala and sciatic nerve. 
Image A of amygdala and image C of sciatic nerve show localization of IGS in presumable dendrites (d) and 
unmyelinated axon (ua) of Remak bundle (R), respectively. Negative controls (omission of primary 
antibody) show very few IGS in amygdala (B), somewhat more in sciatic nerve (D). Asterisks in C and D 
indicate unspecific immunoreaction in Schwann cell cytoplasm (SC). Inserts in C and D clearly show 
different localization of IGS in positive and negative control. Negative controls in B and D. a=myelinated axon; 

m=myelin sheet; M=mitochondria; s=synapse; #= dirty. Scale bars 1 μm. 
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3.5.1.4 Protein size verification  

MOP-RabMAb detected a signal in Western blot at 70 kDa (as predicted by company datasheet) 

in brain (B), spinal cord (SC), DRG and sciatic nerve (SN) sample from Wistar rats (Fig. 22). 

Substantially less MOP protein was observed in the DRG and the sciatic nerve. In addition, in 

peripheral nervous system tissues other smaller and larger bands were seen, which could be due to 

posttranslational modification or to different isoforms present in the periphery. No bands were 

visible in the control blot (omission of primary antibody), confirming the specificity of the primary 

and the absence of unspecific binding of secondary antibody.  

 

Fig. 22: SDS-page and immunoblot using MOP-RabMAb shows specific band. Tissue lysates from rat 
brain (B), spinal cord (SC), DRG and sciatic nerve (SN) were separated by electrophoresis. The two blots 
were incubated with (left) or without (right) MOP-RabMAb. MOP-RabMab detected a band at the 
predicted size (70 kDa) in brain and spinal cord. -actin (42kDa) was used as loading control. Protein 
loaded: 5 µg of brain and spinal cord lysate; 10 µg for DRG and sciatic nerve (all representative images, n = 
3). 

 

3.5.2 Fusion protein detection in MOP-mcherry knock-in mice 

3.5.2.1 Immunofluorescence on central and peripheral nervous tissue 

MOP-mcherry-staining (Fig. 23) was localized in intercalated nuclei of amygdala (Ic), in laminae I 

and II of the dorsal horn of the spinal cord and in small/medium DRG neurons (arrows) of knock-in 

mice. The negative controls (omission of primary antibody) in the upper left corner of each image 

revealed no background staining of the detection sequence in all tested tissues. 

Moreover, the complete lack of staining in the brain, e.g. the CA2 and CA3 region of the 

hippocampus (Fig. 24) of wild type mice, in the antibody reacted (A) as well as in negative control 

sections (B), further supported and strengthened the anti-mcherry detection specificity. 
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Fig. 23: MOP-mcherry specifically detects MOP in neuronal tissues of knock-in mice. Cryosections of 
amygdala (left panel), superficial laminae I/II of spinal dorsal horn (middle panel) and small/medium DRG 
neurons (right panel) of MOP-mcherry+/+ were obtained. Staining was enhanced with mcherry antibody. 
Negative controls testing for unspecific antibody binding are inserted in the upper left corner. Nuclei of 
the amygdala: CEA = central nucleus; La = lateral nucleus; BLa = basolateral nucleus; Ic = intercalated 
nuclei. Scale bar 100 µm. 
 
 

 
Fig. 24: Absence of MOP-mcherry staining on WT mouse brain. Cryosections of hippocampus were 
stained with anti-mcherry antibody. Lack of staining in CA2 and CA3 area both in positive (A) and negative 
(B) control confirm specificity of anti-mcherry antibody. Nuclei (upper right corner in A and B) are stained 
with DAPI. Scale bar 20 µm. 
 
 
 

Specificity of MOP-mcherry immunolabeling was also confirmed in sciatic nerve fibers by 

studying the co-localization of MOP and CGRP. As for RabMAb stainng in the rat tissue, the results of 

immunolabeling in different specimen were very consistent. Double labeling of the mouse sciatic 

nerve (Fig. 25) revealed the presence of differential relative immunofluorescence intensities for MOP 

and CGRP in fibers and fiber bundles very similar to the labeling patterns shown for MOP detection 

using RabMAb in rat sciatic nerve. In particular, arrowheads indicate fibers and fiber bundles 

containing CGRP-reactivity with high content of MOP; open arrows point to fibers with low content 

of MOP while closed arrows point to fibers that are immunoreactive only to CGRP. MOP-mcherry-

immunofluorescence appeared more evenly distributed and less granular than MOP-

immunofluorescence in the rat samples. Bleaching of fluorescence by prolonged exposition to UV 

light, however, revealed granular structure of MOP-mcherry-reactivity also in the mouse sciatic nerve 

samples.  
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Fig. 25: MOP-mcherry co-localization with CGRP in sciatic nerve of knock-in mice. Longitudinal sections 
of sciatic nerve (10 µm) were labeled for co-localization of MOP-mcherry (red) with CGRP (green) in 
putative nociceptive fibers (arrowheads: high MOP-mcherry-ir; open arrow: low MOP-mcherry-ir; closed 
arrows: CGRP-ir only. Higher magnification is shown in inserts. Scale bar 20 μm. 

 
 

3.5.2.2 Immunoenzyme labeling 

In mcherry knock-in mouse brain, DAB-detection of mcherry-immunoreactions resulted in 

labeling of the pyramidal cell layer (Py) and scattered cells in hippocampal CA regions. The medial 

habenula (MH) was intensely stained (Fig. 26A). Specific staining was also visible in the intercalated 

nuclei of amygdala (Ic) and in the endopiriform area (EP) (Fig. 26B). Negative controls of 

hippocampus and amygdala (upper right corner in A and B, respectively) showed absence of staining 

and background. These results were equivalent to previous detections of MOP-mcherry in MOP-

mcherry knock-in mice [41] and validated the results of the immunofluorescence staining and the 

specific detection of fusion protein in MOP-mcherry knock-in mice. 
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Fig. 26: MOP-mcherry immunoreactivity in diaminobenzidine reaction on MOP-mcherry knock-in mouse 
brain. Vibratome sections (40 µm) of hippocampus (A) and amygdala (B) were labeled with MOP-mcherry 
and a goat anti-rabbit biotinylated antibody. Immunoreactivity of MOP is visible hippocampus (Py) and 
the medial habenula (MH). Strong reaction is also present in the paracapsular intercalated nuclei (Ic) of 
the amygdala. Endopiriform area (EP) is also stained. Negative controls are displayed in the upper right 
corner. Nuclei of the amygdala: CEA = central nucleus; La = lateral nucleus; BLa = basolateral nucleus. 
Scale bars 100 μm.  

 
 

3.5.2.3 Immunoelectron microscopic labeling 

Ultra-structural images of anti-mcherry-immunogold-reacted amygdala sections (Fig. 27A, B) 

supported the specificity of MOP-mcherry immunoreactivity showing IGS clustered in individual 

elements, mainly  dendrites (d, in A). In sciatic nerve specimen (Fig. 27C, D), IGS were localized on 

Remak bundles containing tightly clustered axonal profiles surrounded by thin Schwann cell 

processes. Close inspection documented IGS localization in the cytoplasm as well as near the 

membrane of unmyelinated axons. IGS were also occasionally seen on presumably non-nociceptive 

large myelinated axons, Schwann cell cytoplasm, and endoneurial tissue indicating some unspecific 
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labeling. Negative controls (omission of primary antibody) showed almost complete absence of IG in 

brain sections. However, in sciatic nerve sections, a few IGS were present on Remak bundles and 

surrounding tissue.   

 

 
Fig. 27: Ultrastructural immunolocalization of MOP-mcherry in amygdala and sciatic nerve of MOP-
mcherry knock-in mouse. Image A of amygdala and image C of sciatic nerve show localization of IGS in 
dendrites (d) and unmyelinated axon (ua) of Remak bundle (R), respectively. Asterisk in C indicates 
unspecific immunoreaction in Schwann cell cytoplasm (SC). Insert in C clearly show MOP localization near 
membrane (black arrowheads) and in the cytoplasm (white arrowhead) of unmyelinated putative 
nociceptive axon. Negative control in B and D. a=myelinated axon; m=myelin; M=mitochondria; 
s=synapsis; #= dirty. Scale bars 1 μm.  

 
 

Wild type mouse samples (Fig. 28) reacted with anti-mcherry antibody and processed for 

ultrastructural analysis further corroborated the specificity of the antibody. Indeed, amygdala 

sections showed virtually no IGS both in mcherry-antibody-reacted and in control sections. WT sciatic 

nerve samples, reacted both with and without mcherry antibody, looked comparable to the negative 

control of MOP-mcherry knock-in mice.  
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Fig. 28: Immunoreactions using MOP-mcherry antibody on amygdala and sciatic nerve of wild type 
mice. Amygdala (A),sciatic nerve (C),and the negative controls (B,D) are characterized by the presence of 
very few IGS (*)in amygdala as well as in sciatic nerve. a=myelinated axon; m=myelin sheet; 
M=mitochondria; s=synapsis; #= dirty. Scale bars 1 μm. 

 

To validate the specificity of ultrastructural MOP-mcherry localization in sciatic nerve, a 

comparative quantitative analysis on preparations of mcherry knock-in and wild type mice treated 

both with and without mcherry antibody was performed. Those preparations are designated, in the 

following paragraph, as MOP-mcherry-pos, MOP-mcherry-neg, WT-pos, WT-neg. In contrast to the 

quantifications done on rat sciatic nerve sections (see section 3.3), quantification on mouse sections 

was done by comparing the enrichment of IGS over entire Remak bundles (containing, presumably, a 

large proportion of nociceptive unmyelinated axons [73, 78]) relative to that over myelinated fibers 

(consisting of a vast majority of non-nociceptive axons; internal background control) between the 

different genotypes and reactions. This different approach was adopted since Schwann cell 

cytoplasmic extensions between unmyelinated fibers in mouse sciatic nerve were comparatively thin, 

preventing unequivocally valid recognition of IGS localization in Schwann cell processes versus axons. 
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Also, the number of IGS both on Remak bundles in surrounding tissue was comparatively low.  

Results of the quantification, expressed as IGS density over Remak bundles divided by IGS density 

over myelinated fibers, are shown in Fig. 29. 

 

 
 

Fig. 29: Significant difference in immunogold quantification on mcherry knock-in and wild type mouse 
sciatic nerve. Quantification of IGS comparing the four experimental conditions is displayed as median dot 
density enrichment in Remak bundles over background (x fold) (n = 10-15; oneway ANOVA and Dunn´s 
test on rank; *P < 0.05, **P < 0.01). 

 
 

In the MOP-mcherry-pos preparation, the IGS density over Remak bundles was significantly 

higher than background with median labeling enrichment (IGS density over Remak bundles divided 

by IGS density over myelinated fibers) of 10.6 fold. To avoid bias due to differential unspecific binding 

properties of various tissue components, IGS density in Remak bundles over background was also 

determined in controls (MOP-mcherry-neg, WT-pos, WT-neg). The results indeed indicated a higher 

IGS density in Remak bundles compared to myelinated fibers also in these preparations (possibly 

caused by lower unspecific binding affinity of myelin). However, the medians of labeling enrichment 

in Remak bundles were only between 2.1 and 3.2 fold and were significantly lower than those in 

MOP mcherry-pos for all controls. This suggests that the localization of IGS in unmyelinated axons 

(membrane and cytoplasm) in the MOP-mcherry-pos preparation specifically represents the 

subcellular localization of the fusion protein. Thus, the ultra-structural analysis indicates a membrane 

localization of MOP in unmyelinated (presumably nociceptive) axons of intact sciatic nerve.  

 
3.5.2.4 Protein size verification  

MOP-mcherry detected specific bands in brain, spinal cord, DRG and sciatic nerve samples (Fig. 

30). An 80 kDa band was observed in mouse brain and spinal cord. Again, less protein and smaller 

and larger bands were present in the DRG and the sciatic nerve. The blot incubated with omission of 
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primary antibody showed no bands, corroborating the specificity both of the primary and the 

secondary antibody. 

 

Fig. 30: MOP-mcherry yielded specific detection of MOP in Western blot. Western Blots on tissues from 
MOP-mcherry mice confirm MOP (80 kDa) localization in brain (B), spinal cord (SC), DRG and sciatic nerve 
(SN) relative to ß-actin (42 kDa). 50 µg of brain and spinal cord lysate and 100 µg for DRG and sciatic nerve 
were loaded (all representative images, n = 3). 

 

 

3.6 No change in MOP mRNA expression 60 min after perisciatic HTS  

application 

To answer the question whether increased antinociception is due to an increased expression or 

axonal protein level of MOP after HTS perisciatic injection, measurement of MOP mRNA in DRG (site 

of protein production of sensory neurons) and MOP protein in the nerve 60 min after treatment was 

performed. β-actin was used as reference gene in the qPCR and as loading control in the western 

blot. No differences were observed in MOP mRNA expression in DRGs measured by qPCR levels 

between treated and untreated rats. No differences were present also between untreated and 

contralateral as well as between contralateral and treated nerve, demonstrating no systemic effect 

of HTS injection. 
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Fig. 31: HTS does not increase MOP mRNA expression in DRG. mRNA levels of MOP, detected with qPCR 
are not augmented 60 min after perisciatic injection of HTS (HTS60); RQ = relative quantitation; n=6-9; 
data are represented as mean± SEM;  One-way ANOVA; p <0.05. 
 
 

Similar results were obtained on sciatic nerve MOP mRNA (Fig. 32) measured for axonal protein 

translation: no differences between untreated and contralateral as well as between contralateral and 

treated nerves were observed. Compared to DRG, in which the amplification signal appeared at Ct 

24, MOP mRNA amplification was detected at Ct 32, a value that is indicating very low expression.  

 

Fig. 32: MOP expression in nerve is not altered by HTS. qPCR on untreated, contralateral and HTS treated 
sciatic nerve shows no differences; each sample was loaded in triplicate; RQ = relative quantitation; n=6-9; 
data are represented as mean± SEM;  One-way ANOVA; p <0.05. 

 

  

3.7 No change in MOP immunoreactivity 60 min after perisciatic injection  

of HTS 

Representative images of immunofluorescence qualitatively showed no increase of MOP-

immunolabeled fibers/fiber bundles in rat sciatic nerves 60 min after HTS treatment (Fig. 34A) The 

same was observed in mcherry-immunolabelings in MOP-mcherry knockin mouse sciatic nerve after 

treatment (Fig. 34B). Quantification of immunofluorescence staining supported the qualitative 

analysis revealing no significant differences between untreated and HTS-treated nerves.  
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Fig. 34: No increase in axonal MOP immunoreactivity after treatment with HTS. Representative images 
of MOP- and mcherry-immunoreactions, respectively, of sciatic nerve of rats (A) and MOP-mcherry knock-
in mice (B) under control conditions (ctrl) or 60 min after perisciatic injection of 10% NaCl (HTS) were 
recorded and quantified subsequently (C). MOP expression was calculated as ratio=staining 
intensity/stained area (ROI) as described in the methods (n=3, scale bars 50 μm; P > 0.05 Student’s t-test).  
 

 
To further validate immunofluorescence results, pre-embedding immunogold reactions were 

carried out for MOP-mcherry detection on HTS treated mcherry knock-in sciatic nerve and compared 

with the results on untreated nerve . Quantification of IGS in electron microscopy images (Fig. 35) 

again showed a statistically significant difference between positive and control reaction, confirming 

the specificity of the MOP-mcherry detection in Remak bundles. The results .validated the 

immunofluorescence data showing no increase in MOP content after HTS treatment compared to the 

naïve situation. The results indicate that HTS does not lead to sustained increases in MOP levels in 

sensory axons. 
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Fig. 35: No increase in enrichment of MOP-mcherry immunolabeling in Remak bundles of  HTS treated 
compared to  untreated MOP-mcherry knock-in sciatic nerve. Quantification of IGS comparing the four 
experimental conditions (untreated pos, untreated neg, HTS pos and HTS neg) is displayed as median dot 
density enrichment in Remak bundles over background (x fold) (n = 10-15; one way ANOVA and Dunn´s 
test on rank; *P < 0.05, **P < 0.01). 
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4. DISCUSSION 

  The present study documents several polyclonal MOP antibodies, which yield specific labeling 

of the receptor in the rodent CNS and have been used in previous studies, are less suitable to provide 

reliable and sensitive MOP detection in the PNS, particularly in the sciatic nerve, and thus cannot be 

used for quantitative assessment of receptor localization and content at the light- and electron 

microscopic level. However, a newly available commercial monoclonal rabbit antibody (RabMAb) and 

immunolabeling analyses of genetically modified mice – in which the fluorescent protein mcherry 

was inserted in the C-tail of MOP – could be shown to yield specific labeling of MOP in the sciatic 

nerve. Using these MOP detection techniques, it was possible to confirm the presence of the 

receptor in intact rat and mouse sciatic nerve sensory fibers and fiber bundles and to document 

receptor localization in the membrane and cytoplasm of unmyelinated sensory and putative 

nociceptive axons organized in Remak bundles. Additionally, quantitative analyses in rats and mice 

showed that the antinociception observed 60 min after perisciatic application of opioids coinjected 

with a hypertonic saline (HTS, 10% NaCl) is not due to an HTS-induced sustained increase in axonal 

MOP content.  

 

4.1   Advantages and disadvantages of all the methods employed 

To fulfill the aim to study MOP levels and expression under basal conditions as well as after 

perisciatic HTS injection, both morphological, biochemical, and molecular biological approaches were 

used. Each of these methods is, indeed, insufficient if applied alone.  

Western blot is advantageous, compared to the other techniques, to detect and to compare 

protein levels of different samples. This is of key importance because protein rather than mRNA 

eventually carry out the biological function. Thus, data coming from Western blot should be 

considered more than qPCR data. Nevertheless, it has several main disadvantages: first, specific 

primary and secondary antibodies are required; second, the quantification of protein level is based 

on chemiluminescence detection that is highly sensitive and relies on enzymatic reaction that 

produces light. This enzymatic reaction is dynamic and could change over time making it necessary to 

optimize reaction times and imaging. Third, western blotting does not distinguish cell types in 

peripheral tissue, so it is not possible to unequivocally determine the localization of the protein of 

interest [61]. Furthermore, small differences in protein levels are barely detectable. Finally, 

separation of the membrane and cytosolic fraction is complicated: it requests a higher amount of 

protein and a specific fractionation protocol not well-established in nerve tissue. These technical 

problems are related to the sample nature and its content of specific protein could be only partially 

circumvented (i.e. by using the entire sciatic nerve).  
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qPCR provides relative quantification of gene expression and it is particularly advantageous to 

detect small changes in mRNA levels. However, in order to obtain reliable data, a high quality of RNA 

is necessary: indeed, the accuracy of gene expression evaluation is influenced by the quality and the 

quantity of starting RNA [95]. Therefore, the handling of the mRNA is particularly relevant since any 

problem during the mRNA extraction, purification and storage can affect the reproducibility. In order 

to preserve the mRNA quality, some precaution during samples harvesting, mRNA isolation and 

amplification should be used (i.e.  immediately freeze the sample in liquid nitrogen, clean the 

instruments with RNAse inhibitor, use RNAse-free water to dilute the sample and work on ice). 

Specificity of primers and probes is necessary too, in order to avoid unspecific product amplification 

[96]. Finally, the mRNA does not necessarily reflect the final protein content, since lack of translation, 

or modification during or after translation process can occur. qPCR has also some disadvantages 

regarding the quantification. First of all, most quantitative data are not absolute but relative, since 

the value of the target gene is 1. normalized to the value of a reference gene (also known as 

endogenous gene or  housekeeping gene) and 2. normalized in relation to a control e.g. untreated 

sample. This procedure is applied in the Ct method. It is one of the most popular means of 

determining differences in concentrations between samples and is based on normalization with a 

single reference gene. The difference in Ct values (Ct) between the target gene and the reference 

gene is calculated, and the Cts of the different samples (e.g. treated and untreated) are compared 

directly [96]. For this reason, the appropriateness of the reference gene should be considered and 

validated for each experiment [92]. Moreover, to ensure the accuracy of the reaction, a non-

template control is also requested to check absence of contaminations in the qPCR reagents. 

Immunohistochemistry is a powerful method for identifying anatomical structure and offers the 

advantage of enabling the analysis of distribution patterns and subcellular localization of a given 

protein [97, 98]. Among immunohistochemical techniques, immunofluorescence is a well-

established, less-time consuming and relative cheap method. Immunofluorescent labeling is also 

easily detectable and observable with a fluorescent microscope. However, several aspects could 

interfere with the quality of the results: the sample fixation, the specificity of the antibody and the 

fluorescent dye auto-fluorescence. All these aspects could lead to unspecific fluorescence resulting in 

a low signal-to-noise ratio hampering the detection of the specific signal. Moreover, fluorescent 

immunoreactivity is highly variable and this variability prevents a complete reliable comparison and 

immunofluorescence quantification within the same section and also between different sections. 

Finally, the intensity of fluorescence bleaches during the time with a progressive loss of signal; the 

process is enhanced by a prolonged exposure to microscope light; it is sometime necessary to detect 

and investigate the localization of the target of interest. Bleaching is avoided in the 3,3’-

Diaminobenzidine-tetrahydrochloride-dihydrate (DAB) reaction: after DAB oxidation by peroxidase 
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the signal of antigen-antibody binding is detectable as a diffuse brown-black providing stable labeling 

both in light and electron microscopy. Despite those advantages, the DAB reaction presents four 

main disadvantages: the possibility to have only a brown-black labeling impedes a double staining 

used to analyze co-localization. The development of labeling is time-dependent; therefore time 

optimization is requested in order to obtain a good detectable signal avoiding background. Signals of 

low expressed protein are difficult to detect. Lastly, the chromogen is toxic; therefore, special 

precautions should be taken.  

The pre-embedding immunogold reaction for electron microscopy is also characterized by 

disadvantages related to fixation and antibody specificity. However, the combination of immunogold 

labeling with transmission electron microscopy provides a high-resolution technique for the study of 

the subcellular distribution and the localization of antigens, e.g. OPs [10], identifying each single 

antigen:antibody binding as a black dot. However, for unequivocal identification of antigen 

localization, in particular for analysis of subcellular distribution, e.g. membrane vs. cytoplasmic 

localization of individual antigen molecules, superior specificity with low interference of unspecific 

signal is required. Since labeling efficiency may vary with section depth from the surface of the 

specimen – especially in the sciatic nerve, where unspecific silver precipitates may diffuse into the 

nerve via endoneurial spaces – and with detection protocol between experiments and specimen, 

specificity of labeling and signal-to-noise ratio has to be controlled for individual ultrathin sections by 

analyzing in-section background signal intensity [99, 100].  

In the present study, for rat sciatic nerve sections reacted with polyclonal MOP antibodies, 

enrichment of immunogold-silver precipitates over axons in Remak bundles was analysed, with 

Remak Schwann cell cytoplasm as in-section control. Surprisingly, analyses showed no axonal 

enrichment in antibody-treated sections, while significant enrichment was found in controls 

(omission of primary antibody). Furthermore, since in immunofluorescence experiments using these 

antibodies specificity could not be ascertained (see below), this approach was abandoned. RabMAb 

immunoreactions provided qualitative evidence of higher labeling in Remak axons than in 

surrounding tissue, but there was still considerable unspecific signal detected between axons in the 

endoneurium and in large myelinated fibers. Nevertheless, since immunofluorescence had provided 

evidence of detection specificity, the labeling of Remak bundles indicated that the antibody 

recognized MOP specifically in sensory axons. However, an unequivocal recognition of the specific 

subcellular localization of MOP molecules using this detection method appeared questionable, since 

the background labeling was still rather high. Qualitatively, the signal-to-noise ratio of MOP-mcherry-

immunolabeling in the sciatic nerve of MOP-mcherry knock-in mouse appeared considerably higher 

than in RabMAb reactions on rat nerve, with immunogold-silver precipitates more frequently found 

on Remak bundles than on other components of the nerve. Indeed, quantitative analysis showed 
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significant enrichment of labeling in Remak bundles over background compared to immunoreactions 

on wildtype nerve, providing conclusive evidence of MOP detection specificity. Additionally, the fact 

that background levels were very low in the analyzed sections and IGS density over Remak bundles 

was more than 10 times higher than background indicated that precipitate localization could be 

taken to actually represent specific MOP-mcherry antigen detection. Thus, a cytoplasmic and 

(peri)membraneous localization of the receptor fusion protein in Remak fiber axons could be 

ascertained using this method.  

 

4.2   Unspecific labeling of rabbit and guinea pig polyclonal MOP-antibodies 

in peripheral nervous system 

Specificity of antibodies against MOP has long been discussed especially for their use in 

immunohistochemistry [101] and in western blot [102]. Among the four tested antibodies, the 

polyclonal rabbit antibodies from Abcam (#ab10275) and Neuromics (#RA10104) yielded specific 

staining in the pyramidal cell layer of the hippocampus and in the intercalated nuclei of the amygdala 

with high signal-to-noise ratio, but did not deliver a reliable detection of MOP in the DRG and the 

sciatic nerve.  

Those results agree with a recent study of Schmidt and colleagues [103], who described a MOP 

Abcam antibody tissue-dependent specificity. In immunofluorescence on wild type and MOP knock-

out mouse tissues, they observed specific staining in the brain and spinal cord but not in the DRG. 

Indeed, wild type and MOP knock-out DRG immunoreacted for MOP were characterized by a diffuse 

and intense background that was comparable to our results.  In the sciatic nerve, however, Schmidt 

noticed a co-localization of MOP and PGP9.5 that we could not reproduce: in our immunofluorescent 

staining, co-localization was relatively scarce. On the other hand, we did occasionally observe co-

localization of MOP-immunoreactivity with CGRP-immunoreactivity in fibers and fiber bundles. 

However, our results corroborated high unspecific binding levels of polyclonal MOP antibodies in 

immunohistochemistry. Thus, fluorescence signals were always observed in non-CGRP-ir structures 

resembling Schwann cells and in double labelings, a strong MOP-immunoreactivity was observed in 

S100-ir Schwann cells. Finally, the IGS quantification on Remak bundles and Schwann cells showed no 

statistically significant difference in the positive labeling and an unexpected statistically significant 

difference in the negative control. 

To date, MOP expression in Schwann cells has not been reported. Furthermore, the expression of 

MOP mRNA in the qPCR experiments of the present study was detectable at Ct 32, normally 

considered a non-reliable value associated with low expressed mRNA or unspecific annealing. If MOP 

would be constitutively expressed in Schwann cells, one would expect a Ct between 23 and 27 similar 

to the DRG. Lack of MOP mRNA detection in sciatic nerve qPCR, performed to measure mRNA in 
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treated and untreated rats, is thus an additional indirect prove of polyclonal antibody unspecificityIt 

is also known that MOP-immunoreactivity is very low if at all seen in intact sciatic nerve [60, 103], 

rendering it extremely difficult to achieve a high signal-to-noise ratio that is required both for good 

detection and reliable and reproducible data.  

Considering all these aspects, one could speculate and ascribe high unspecific staining in sciatic nerve 

and low signal-to-noise ratio to the low levels of MOP in the peripheral nervous system and/or to the 

presence of proteins causing antibody binding in glial cells, as Schwann cells, that can compete or 

interfere with specific antigen:antibody binding leading to a high background. Schwann cells express 

GPR7 [104], a 7-transmembrane receptor that shares the same amino acid sequence of the 

immunizing peptide with MOP. However, in GPR7 the sequence is divided in the middle by other 

amino acids: it is not clear if the two parts are connected in the 3D conformation, leading to 

reconstruction and detectability of the sequence, or not. Whether polyclonal antibodies might detect 

GPR7 has to be analysed in further studies. In any case, lack of labeling in Schwann cells using 

RabMAb antibody (see also 4.3.1) indicates that the binding of the polyclonal antibodies to Schwann 

cells and other tissue components of the sciatic nerve is not due to the presence of MOP in these 

compartments: thus, hampering specificity of the receptor detection. 

   

Problems of unspecific binding were also present in Western blot. Using rabbit Neuromics 

antibody different bands at different molecular weight and also a band at the size of 55 kDa were 

detected. Similar results were obtained, using the same antibody used in the present study, by Niwa 

et al [102]: their western blot showed numerous bands and one at the predicted size, of 70 kDa. This 

difference in expected molecular weight is probably a result of the glycosylated form or of the 

posttranscriptional modification necessary for a functional receptor. Considering the pure amino 

acids sequence (398aa in rat and mouse) and considering also all the possible isoforms, the 

molecular weight should be between 43 and 50 kDa. Unfortunately all those characteristics, linked to 

the structure of the nerve or to the receptor, are intrinsic and could not be avoided. The only 

possibility to obtain reliable data is to use more specific antibodies or genetically modified mice. 

 

4.3   Specific labeling of MOP using MOP-RabMAb antibody and mcherry-

detection in knock-in mice in peripheral nociceptive axons   

Light microscopic immunolabeling patterns, ultra-structural analysis and Western blot showed 

very similar results using the monoclonal rabbit MOP-antibody on rat tissue and the detection of the 

fusion protein in MOP-mcherry knock-in mice confirmed the constitutive presence of MOP along 

sensory, putative nociceptive axons and the similarity of the localization of MOP in rats and in 

genetically modified mice. Nevertheless, detection of MOP using mcherry was overall better than 
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using RabMAb antibody since it yielded stronger staining and higher signal-to-noise ratio both in light 

and electron microscopy.  

 

4.3.1 Specificity of MOP-RabMAb in the sciatic nerve 

The MOP-RabMAb antibody specifically detected MOP in the amygdala, the spinal cord, the DRG 

and the sciatic nerve. However, while the immunofluorescent staining was very sharp and strong in 

the first three samples, the intensity of the immunoreaction was low in the sciatic nerve, leading to a 

very low signal-to-noise ratio. This made the identification of MOP in sciatic nerve quite difficult. 

Nevertheless, it was possible to detect a dotted staining, localized within fibers and fiber bundles also 

containing the neuropeptide CGRP. The dotted pattern could be explained by localization of MOP in 

vesicles, responsible for the transport of MOP from the DRG, where the receptor is synthetized, 

along the axoplasm. It was also interesting to observe a difference in relative immunolabeling 

intensity for MOP and CGRP between individual axon and axon bundles: this could be an indication of 

a variable level of MOP in different sensory axon types in naïve rats.  MOP reactivity in fiber bundles 

which was not strictly co-localized with CGRP-reactivity could indicate MOP presence in IB4-positive 

C-fibers in the same Remak bundle [77] . It was demonstrated that a partial localization of MOP was 

also possible in IB4-positive DRG neurons [105]. Lack of staining in Schwann cells using MOP-RabMAb 

confirmed the unspecificity of commercial polyclonal antibodies.  

Ultra-structural data obtained with electron microscopy also confirmed the specificity of MOP-

RabMAb. This was particularly evident in the brain, in which a difference between the positive 

reaction and negative control (omission of primary antibody) was appreciable. Contrarily, significant 

unspecific labeling due to the detection sequence was found in the negative control of the rat sciatic 

nerve, and also in presumably non-MOP-expressing tissue compartments in the antibody-reacted 

sections (see also above). This led again to a comparatively low signal-to-noise ratio. Nevertheless, 

IGS in Remak bundles of antibody-reacted sections were almost exclusively localized on the 

membrane and in the cytoplasm of unmyelinated axons. Few IGS were localized in myelinated fibers, 

confirming the results of immunofluorescence and specificity of the MOP detection.  

The blot incubated with MOP-RabMAb showed, according to the manufacturing datasheet, 

bands at the right molecular weight (70 kDa) in all samples tested. This molecular weight was also 

observed by Lupp [101] and Grecksch [106] in a rat brain homogenate.  In a recent paper [107] MOP 

was detected in western blot using an affinity purified polyclonal antibody as a diffuse band between 

58 and 84kDa, depending on the brain region and species. After deglycosylation, the band was seen 

at 43kDa, the expected size considering the amino acid sequence of the receptor. However, in 

different rodent species, MOP are differentially glycosylated, so different results are possible. 
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In DRG and sciatic nerve lysate the intensity of the bands were reduced compared to the brain and 

spinal cord. Moreover, other bands at higher molecular weight were present. This reflects the results 

already observed using the Neuromics antibody, but since bands were absent in the brain and spinal 

cord, they are now probably attributable to post-transcriptional modification than to unspecific 

binding. The negative control showed no bands, confirming the absence of unspecific binding of 

secondary antibody.  

 

4.3.2 Specific and intense immunoreactivity of MOP-mcherry in the sciatic nerve 

MOP-mcherry mice were created by homologous recombination after the insertion of the red 

fluorescent protein mcherry sequence in the exon 4 at the C-tail of the µ-opioid receptor. 

Introduction of the coding sequence for mcherry increased the size of the amplified fragment by 

about 800bp. The sequence insertion and the consequent increased dimension could have caused 

changes in the receptor conformation, properties and localization. However, several tests confirmed 

that the genomic modification did not disrupt the transcription of Oprm1 (i.e., MOP murine gene), 

and changed neither DAMGO ligand affinity nor the opioid’s ability to activate the receptor after 

binding. Localization and internalization studies also proved the complete functionality of MOP-

mcherry. Finally, the behavioral test results were comparable between wild type and MOP-mcherry 

mice [41]. The validity of this model and test’s results are further confirmed by a previous study of 

Scherrer and colleagues [40]. Using the same approach they created a DOP-EGFP construct. The 

functionality and the expression of the modified receptor were first investigated in HEK transfected 

cells and later in knock-in mice. In both experiments DOP-EGFP fusion protein showed unchanged 

binding, signaling and internalization.  Western blot, qPCR and distribution results were comparable 

between the wild type and the knock-in mice.    

The red fluorescent mcherry protein, inserted at the MOP C-tail, was visible also without 

staining. However, to increase the signal, the fluorescence was enhanced with an anti-DsRed 

antibody. It specifically recognized only the tag, without unspecific binding, as confirmed by the clear 

and bright immunoreactivity localized in the intercalated nuclei of amygdala, in lamina I and II of 

spinal cord and DRG of knock-in mice as well as by the lack of staining in the brain of wild type mice 

reacted with the mcherry antibody. Those results were comparable with results obtained by Erbs and 

colleagues [41], which investigated mcherry expression in different areas of the brain and in DRG. In 

addition to brain, in the present study sciatic nerve samples were analysed. In fibers and fibers 

bundles, mcherry staining was less intense than in other neuronal tissues, but the signal-to-noise 

ratio was quite high and better than in the rat. Double staining on longitudinal nerve showed a co-

localization of MOP-mcherry and CGRP in fibers and fiber bundles, indicating an opioid receptor 

presence solely in sensory, putative nociceptive fibers.  Interestingly, also in mice, a relative MOP 
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intensity difference between fibers was appreciable: this implicates that different type of fibers 

contain different levels of MOP both in mice and rats and are maybe differently involved in pain 

perception and relief. In the context with current literature, CGRP-positive and CGRP-negative (IB4-

positive) nociceptors express MOP. So far, these subtypes cannot be attributed to specialized 

functions in pain perception [108]. 

In ultrastructural images, IGS of mcherry were specifically localized in neuronal profiles of the 

amygdala and in unmyelinated fibers of the sciatic nerve. Some unspecific IGS were visible in both 

samples, but their amount was scarce in non-MOP-expressing tissue components both in antibody-

reacted sections and in the negative controls. Those results are even more reliable since in the 

immunogold reactions in the amygdala and the sciatic nerve of wild type mice IGS were almost 

absent.  

Specific binding and lack of background led to a very high signal-to-noise ratio that permitted to 

specifically quantify and localize dots. For this reason the use of mice was preferred to rat samples to 

perform IGS quantification analysis on electron microscopy images.  

The comparative quantification analysis effectively confirmed the specificity of MOP-mcherry 

detection, showing a higher labeling enrichment (>10 fold) in the positive reaction (mcherry-antibody 

reaction on MOP-mcherry sciatic nerve) compared to the mcherry-antibody reaction on wildtype 

sciatic nerve and the respective negative controls (around 2.5 fold).   

The high amount of proteins that had to be loaded in western blot to obtain visible bands (50 µg 

for brain and spinal cord; 100 µg for DRG and sciatic nerve) is an indication of the low quantity of 

MOP along the nerves, and further support the immunofluorescence results, showing low staining in 

fibers or fibers bundles. It was however possible to detect a specific strong single band in the brain 

and the spinal cord at 80 kDa. The increase in the molecular weight from 50 kDa, the expected 

molecular weight considering the amino acid sequence,  to 80 kDa is due to the insertion of mcherry 

in the C-tail [41]. Presence of multiple bands in DRG and sciatic nerve, already observed in rat, could 

be due to posttranscriptional modification.  The discrepancy in band numbers observed in the brain, 

spinal cord, DRG and sciatic nerve is maybe due to a different MOP conformation or synthesis in the 

central and peripheral nervous system [58], or to the presence, in the periphery, of glial cells and 

connective tissue that interfere with antibody binding [98] and leads to background.  

Moreover, the low detection of MOP in western blot hampers the possibility to compare expression 

of the receptor under different conditions, in particular to compare the expression of MOP in 

untreated and HTS treated sciatic nerve.  

 

Considering all data from immunofluorescence labeling, pre-embedding immunogold electron 

microscopic qualitative and quantitative analyses, and Western blots it can be concluded that 
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RabMAb and mcherry antibodies specifically detect MOP and MOP-mcherry in the rat and mouse 

sciatic nerve. Secondly, the results conclusively document the constitutive presence of MOP not only 

at the nerve terminals but also in cytoplasmic and perimembraneous localization in non-myelinated, 

presumably nociceptive, axons of sciatic nerves. The results support functional studies showing that 

perisciatic injections of the lipophilic opioid fentanyl induce antinociception in the naïve nerve, 

indicating the presence of functional MOP in nociceptor membranes along the sciatic nerve trunk 

(Mambretti et al., 2015, accepted). This opens the possibility to specifically targeting sensory, 

putative nociceptive axons to induce local analgesia without impairing motor fibers.  

  

4.4  No sustained influence of HTS on MOP levels 

Several studies [86, 90, 109, 110] have demonstrated the effect of hypertonic solutions (sucrose 

or saline) in opening the perineurial barrier, leading to a higher penetration of substances into the 

nerve. Osmotic gradients have the capability to increase the permeability of epithelial and 

endothelial cells [110] inducing structural changes and the disruption of the tight junction proteins 

deputed to regulate the perineurial permeability [86].  

This interaction with HTS and perineurium is particularly interesting for substances as hydrophilic 

opioids: as they normally can´t cross the barrier due to the tight junctions of the perineurium, 

injection of hypertonic solution could be an alternative to let opioid drugs reach their receptors, 

expressed on the nociceptive axons membrane and to bind and to activate them inducing 

antinociception. Previous behavioral results [90] showed an augmented mechanical nociceptive 

threshold after 10 min HTS injection. The enhancing effect of HTS started after 10 min and lasted for 

up to 5 h. The effect was specifically and dose-dependently inhibited in presence of naloxone, a MOP 

antagonist. This excluded a MOP-mediated inhibition of voltage gated-sodium channels, known to be 

activated by nociceptive stimuli and blocked opioid [90]. HTS also augmented the effect of the 

lipophilic opioid fentanyl on nociception: considerably lower doses of the drug were required to 

induce antinociception if it was perisciatically coinjected together with HTS (Mambretti et al., 2015, 

accepted). Since fentanyl can presumably reach the axons without barrier opening, it was 

hypothesized that the HTS-induced effect was not only due to an increased perineurial permeability 

but also to an HTS-mediated enhanced receptor availability/function which could be due to increased 

synthesis and/or membrane localization of MOP. However, the results obtained by qPCR and with 

immunofluorescence and immunogold quantification indicated that 60 min after injection of HTS, a 

time point at which augmented antinociceptive effect is still present,  MOP mRNA and protein levels 

were not increased in DRG and sciatic nerve sensory axons, respectively.  Thus, even if an increased 

MOP expression and/or a transport block with increased membrane insertion should be caused by 

HTS injections acutely, the treatment does not lead to a sustained MOP level increase in sensory 
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axons, indicating that 1. HTS does not induce prolonged axonal dysfunction and transport deficits and 

2. the sustained HTS-induced increase in antinociception of opioids is likely due to alterations in MOP 

availability and function in axonal membranes. 

Beyond HTS modulation of the perineurium, other mechanisms can be considered to explain this 

effect. According to Livingstone [111] and Shang [112], sodium ions can allosterically modulate 

opioid receptors inducing two different answers. On one side they decrease the ligand binding 

affinity of agonist to the MOP, blocking the recognition site for ligand binding. Moreover, sodium 

ions – hampering the activation- related conformational changes that normally occur after ligand-

receptor binding – give preference to the inactive state of the receptor. This mechanism, however, 

cannot explain our results, since after HTS injection the analgesia induced by MOP agonist was 

increased, suggesting an activation of receptor rather than an inactivation. 

On the other side, sodium ions can promote agonist-induced activation of MOP while inhibiting the 

spontaneous Gi/Go-coupled receptor activity, as also reported by Yuan [113]. Sodium ions can 

facilitate the activation of MOP by inducing the movement of water molecules towards the allosteric 

site, which influences an action of the orthosteric agonist. 

Another possible explanation is a reduced or blocked internalization of MOP. Heuser and 

Anderson demonstrated that, in fibroblasts, hypertonic solution inhibits LDL (low density lipoprotein) 

receptor endocytosis by blocking clathrin-coated pit formation [114]. Studies on HEK cells using 

hypertonic sucrose solution (0.35M) [115] confirmed inhibition of MOP and DOP endocytosis.    

Recent studies using HTS solution support those results. In particular, Hoffmann and colleagues 

demonstrated, in HEK cell transfected with human MOP, that a pre-treatment with 10% NaCl (1.7 M 

solution) reduced the internalization of the opioid agonist/β-arrestin/MOP complex. (Mambretti E.M. 

et al, 2015, accepted). The receptor was therefore not internalized and could have been permanently 

exposed on the axonal membrane. The reduced internalization could, on one side, increase the 

number of receptors on the membrane that can bind the agonist, activate GPCR and start the 

pathway involved in antinociception. Secondly, if receptors are not internalized upon agonist binding, 

the time requested for the turnover is abolished, implying a faster reactivation of the receptor. The 

reduced internalization of the receptor can be then considered a good explanation for our results. 

The fact that immunolabeling did not show enhanced membrane localization of MOP after 60 min 

might be explained by the fact that membrane localization of the receptor is very dilute and thus not 

detectable with immunolabeling methods. Alternatively, it could be that HTS injections induce an 

acute and transient axonal transport block with subsequently increased spontaneous insertion of 

MOP-bearing vesicles into the axonal membrane (see also below), and that binding of coinjected 

opioids  is required to induce membrane retention of the receptors for prolonged time periods. Since 

coinjections were not carried out in the present study, this effect might have been missed.   
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In conclusion, it is well accepted that HTS can interfere with opioid receptors and the analgesic 

properties they mediate. However, there are still quite controversial results on HTS effects and the 

mechanisms of action are still not completely understood.  

One potential weakness of this study is that we looked at only one time interval between the 

injection and the tissue harvesting. The time (60 min) and the volume of NaCl injected (300 µl) were 

based on previous pilot and behavioral studies. Since the volume of NaCl injected is diluted within 15 

min and Na concentration in the tissue return to normal [86], it is possible that after 60 min a direct 

effect on the nerve is completely lost, as suggested above. In in vitro experiment, HTS effect was 

observed for 780 seconds (13 min): in this short time HTS, blocking the internalization, leads to MOP 

localization and expression on the cell surface. However, no increase in the total amount of MOP 

within the cell was observed. This could be interpreted as further validation of our experiment and 

confirms the absence of correlation between HTS and MOP increased expression.  

 

4.5 Regulation of axonal transport and membrane-cytoplasm shuttling 

Inside the neuron, a highly specialized cell, the axonal transport is directed from the soma to the 

terminal. To ensure this flow and accommodate the diverse need for function and survival, neurons 

rely on cellular polarization and sub-cellular compartmentalization [116]. OPs are synthetized in the 

DRG and further carried to the nerve terminals along intraaxonal microtubules [48]. In particular, 

nerve ligation experiments clearly demonstrated the presence of anterograde [63, 117] and 

retrograde [118] transport of OP showing their accumulation at both side of ligature. The directed 

transport of OP to the periphery is increased during inflammation: under those conditions an 

upregulation of OP synthesis occurs in the DRG and it is followed by increased axonal transport [48, 

62]. A local translation of mRNA in subcellular compartment of the axon could also be possible [119].   

To be transported from the DRG to the axon, OPs need to be stored in vesicles. In 

immunofluorescence and electron microscopy analysis, DOPs were seen to be localized in large 

dense-core vesicles (LDCV) [120, 121] associated with the Golgi of small-medium neurons. Vesicles 

are then transported along the axon. Here, LDCV-associated DOPs are recruited to the cell surface by 

potassium-induced depolarization [121]; the increased concentration of calcium induces the fusion of 

the LDCV with the membrane and OP release can rapidly modulate the neuronal activity. Even if no 

localization of MOP in LDCV is described, it is known that newly synthetized receptors are processed 

in the Golgi and then assembled in vesicles of the constitutive secretory pathway (most often 

together with proteins required for trafficking and signal transduction [121, 122]) to be transported 

and inserted spontaneously in the plasma/axonal membrane [123]. This concept supports our 

immunofluorescence data on sciatic nerve, in which we observed a granular appearance of MOP 
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staining, both in rat and mouse samples. Punctuate MOP labeling were also observed by Baillie, in 

nociceptive fibers arising from the trigeminal ganglion [124].  

 

4.6 Potential mechanisms of opioid action on nociceptive axons  

Understanding how pain stimuli are encoded and how they could be inhibited is of fundamental 

importance to the study of pain and pain treatment. Particularly interesting, in the context of this 

work, is to understand how opioid receptors could reduce mechanical nociceptive threshold in 

peripheral nerve axons. Some opioids, e.g., buprenorphine, are used in the clinic as local anesthetic 

since they are able to non-specifically block voltage-gated sodium channel (NaV) [125], known to 

mediate pain sensation. However, considering previous results of our lab [90], it is unlikely that NaVs 

are involved in MOP agonist-mediated antinociception, since naloxone, a MOP antagonist, 

completely reversed the opioid effect. Other mechanism should then be considered. We suggest that 

the electrical excitability is reduced, e.g. by hyperpolarization via potassium channels, which may 

filter out the shrinking action potentials that occur during bursts of high-frequency discharge. Two 

types of potassium channels have been implicated in pain and are expressed in nociceptors: the G 

protein-coupled inwardly rectifying K+ channels (GIRKs, e.g. Kir3) and TREK-1, a member of the two-

pore domain K+ (K2P) channel family. GIRKs contribute to the adjustment of the neuronal resting 

potential and excitability, and are the major type of potassium channel activated by GPCRs. GIRK 

channels are major effectors of opioid signaling in the CNS as well as the PNS in rats [126]. The TREK-

1 K(+) channel is highly expressed in both peptidergic and non-peptidergic small sensory neurons, 

and extensively co-localized with TRPV1, the capsaicin-activated non selective ion channel [127]. It is 

also widely distributed in the central nervous system. TREK-1 is a crucial contributor to morphine-

induced analgesia in mice. Using electrophysiological techniques it was shown that a functional 

coupling exists between MOP and the TREK-1 channel [128]. However, other channels can be 

involved in MOP agonist mediated analgesia. Recently Baillie and colleagues [124] proposed two 

mechanisms for pain inhibition in trigeminal ganglion, one involving calcium channel (Ca++) and one 

involving calcium-activated potassium channel (KCa). MOP activation by peripherally acting MOP 

agonists causes inhibition of Ca++ signaling, mostly attributable to the inhibition of N-typa Ca++ 

channels, that control the release of CGRP. This confirms our in vitro results in which KCl-induced 

CGRP-release was blocked by opioid in desheated sciatic nerve (Mambretti E.M. et al., 2015, 

accepted). KCa channel, activated in response to both membrane depolarization and elevated 

cytosolic  Ca++ , are involved in presynaptic transmission and neuronal excitability, since they control 

the action potential duration and firing frequency. If activated, they can suppress the firing inducing 

an antinociceptive effect that is increased in presence of MOP agonists. 
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4.7 Conclusion  

In conclusion opioid receptors are present and functional in the sciatic nerve, not only at the 

nerve ending but also along sensory putative nociceptive axon of the sciatic nerve. Therefore the 

opioid receptor could be a target for local pain treatment. Moreover, the difficulties in targeting 

them, mostly due to the perineurial barrier, could be overcome by using hypertonic saline. It is now 

clear that a HTS-mediated increased of antinociception is not related with a sustained increase of the 

synthesis or intra-axonal levels of MOP; however, it is not clear which mechanism, either 

allosterically modification or inhibited internalization, is involved, or whether these mechanisms are 

mutually exclusive or whether they cooperate. Other investigations and more detailed research need 

to be performed to clarify these questions.  
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