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1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) is an attractive extension [1, 2] of

the very successful Standard Model (SM) of particle physics. One property of the MSSM

is its rich spectrum of heavy particles which might be discovered at the LHC if they are

lighter than ≈ 2 TeV. Hadron colliders are especially appropriate to study color-charged

particles. In the MSSM, the superpartners of the gluon and the quarks are the gluino,

which is a Majorana fermion, and the scalar quarks (squarks), respectively. The associated

superpartners of the SM particles have the same weak isospin, hypercharge and color

charge.

Searches for supersymmetry have been performed at the Tevatron and the LHC with

center-of-mass (cms) energies of 7 and 8 TeV. Due to its larger energy the best bounds on

the masses of these hypothetical particles come now from the LHC. The production cross

section for gluino pairs at the LHC is sizable. It is driven by the large gluon luminosity

and it is further enhanced due to the large color charge of gluons and gluinos. However,

no superpartners of the SM particles have been discovered so far.

A special feature of particle spectra in the constrained MSSM (CMSSM) are the large

mass differences between squarks, gauginos, and sleptons, allowing cascading decays of the

SUSY particles. At the Atlas experiment, searches for squarks and gluinos in a CMSSM

framework are performed by looking for final states with a large number of jets and missing

transverse momentum [3], additional same sign leptons [4] or b-jets [5]. Gluino masses

smaller than 840 GeV [3], 550 − 700 GeV [4], and 600 − 900 GeV [5] are excluded and

similar results [6–10] are reported by the CMS experiment. The LHC bounds discussed

above do not apply if the particle spectrum is compressed. In such scenarios, if the gluino is

mass degenerate with the lightest supersymmetric particle and the squarks are decoupled, a
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lower mass bound of the gluino mass of 500 GeV holds (see ref. [11] for a detailed discussion

on how the LHC bounds change).

Theoretical predictions for gluino pair production up to next-to-leading-order (NLO)

in QCD have been obtained in ref. [12]. The hadronic leading order (LO) and NLO cross

sections can be evaluated numerically using the program Prospino [13]. As an improvement

beyond NLO, the threshold enhanced logarithms have been resummed to next-to-leading-

logarithmic (NLL) accuracy [14–16], implying corrections of about 2−35% in comparison to

the NLO cross section which depend on the gluino mass and the chosen parton distributions

(PDFs). In ref. [17], threshold effects at NLO in QCD due to remnants of the 1S resonance

of gluino bound states are discussed leading to an enhancement of the complete NLO

threshold cross section of 7 − 9% compared to the fixed order predictions. Recently, the

combined NLL resummation of threshold logarithms and the Coulomb corrections for gluino

pair production has been studied in ref. [18] and phenomenological predictions for cross

sections at the LHC have been summarized in ref. [19]. The inclusive cross section for

squark-antisquark pair production has been subject to similar improvements in the past [15,

20] and presently, the corresponding predictions beyond NLO are exact to next-to-next-

to-leading-logarithmic (NNLL) accuracy [21]. In contrast, the available results for gluino

pair production are still limited to NLL accuracy, only.

In this article, we improve the available QCD predictions for gluino pair production

to NNLL accuracy, putting it on par with the case of squark-antisquark pair production.

To that end, we compute the missing hard matching coefficients at NLO near threshold.

With our new results, we are able to provide QCD predictions for the total hadronic cross

sections at approximately next-to-next-to-leading order (NNLO). These corrections lead

to a further increase of the cross section of the order of 10% in comparison to the NLO

results. As all searches for SUSY particles so far have resulted in exclusion limits only, a

precise knowledge of the gluino pair production cross section in the threshold region is of

special interest, because the size of the expected rates has a direct impact on the excluded

mass range for gluinos.

The article is organized as follows. In section 2, we recall the basic ingredients of the

hadronic and partonic production cross sections. In section 3, we review the formalism of

threshold resummation in Mellin space and then proceed to extract the color-decomposed

NLO cross section at the threshold from known results for gluino-bound state produc-

tion given in ref. [17]. Verifying a general result of ref. [22], we then calculate the color-

decomposed NNLO cross section in the threshold limit. Finally, we resum the cross section

to NNLL accuracy, matched onto the approximated NNLO result. We check our analytic

formulas by extracting the color-summed one-loop matching constants from Prospino via

an appropriate fit in the threshold region. The hadronic production cross section is dis-

cussed in section 4. The appendices contain useful analytical expressions for certain scalar

n-point integrals and the expansion coefficients of the general resummation formula.
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Figure 1. Feynman diagrams for the production of a gluino pair g̃ g̃ via qq̄ annihilation (diagrams

(a)–(c)) and gg annihilation (diagrams (d)–(f)) at LO.

2 Theoretical setup

We study the hadro-production of gluino pairs at the LHC (i.e. the reaction pp→ g̃ g̃) with

its partonic sub processes

gg → g̃g̃ , (2.1)

qq̄ → g̃g̃, q = d, u, s, c, b , (2.2)

with the relevant LO Feynman diagrams shown in figure 1.

We focus on the inclusive hadronic cross section of hadro-production of gluino pairs,

σpp→g̃ g̃X , which is a function of the hadronic cms energy
√
s, the gluino mass mg̃, the squark

mass mq̃ (assuming mass degeneracy among the squark flavors), and the renormalization

and factorization scales, µr and µf , respectively. In the standard factorization approach of

perturbative QCD, it reads

σpp/pp̄→g̃ g̃X(s,m2
g̃,m

2
q̃ , µ

2
f , µ

2
r) =

∑
i,j=q,q̄,g

s∫
4m2

g̃

dŝ Lij(ŝ, s, µ
2
f ) σ̂ij→g̃ g̃(ŝ,m

2
g̃,m

2
q̃ , µ

2
f , µ

2
r) ,

(2.3)

where the parton luminosities Lij are given as convolutions of the PDFs fi/p defined through

Lij(ŝ, s, µ
2
f ) =

1

s

s∫
ŝ

dz

z
fi/p

(
µ2
f ,
z

s

)
fj/p

(
µ2
f ,
ŝ

z

)
. (2.4)

Here, ŝ denotes the partonic cms energy. As will be discussed below, the treatment of soft-

gluon exchange in the final-state gluino pair requires the knowledge of the color-decomposed

partonic cross sections σ̂ij, I. Setting µf = µr = µ, the latter is commonly expressed by

– 3 –



J
H
E
P
1
1
(
2
0
1
2
)
0
7
0

dimensionless scaling functions f
(kl)
ij I in a power series in the strong coupling constant

αs = αs(µ),

σ̂ij, I =
α2
s

m2
g̃

[
f

(00)
ij, I +4παs

(
f

(10)
ij, I +f

(11)
ij, I Lµ

)
+(4παs)

2
(
f

(20)
ij, I +f

(21)
ij, I Lµ+f

(22)
ij, I L

2
µ

)
+O

(
α3
s

)]
,

(2.5)

with Lµ = ln(µ2/m2
g̃). We use the capital index I to label the admissible SU(3)color repre-

sentations of the scattering reactions (2.1) and (2.2). The decomposition of the gluon-fusion

channel (2.1) into irreducible color representations is given by

8× 8 = 1s + 8s + 8a + 10 + 10 + 27s , (2.6)

and a suitable basis in terms of the generators of the adjoint representation of the SU(3)color

can be found in [23] (see also [15]). Likewise, for the quark-antiquark channel (2.2), we use

the color basis

3× 3̄ = 1s + 8s + 8a . (2.7)

The partonic cross sections in eq. (2.3) are recovered after summation over all color struc-

tures,

σ̂ij→g̃ g̃ =
∑
I

σ̂ij, I , (2.8)

and, similarly, for the scaling functions in eq. (2.5). The (color-summed) scaling functions

at LO are given by [12]

f (00)
gg =

π

4
ρ

[
−3β

(
1 +

17

16
ρ

)
+

9

4

(
−1− ρ+

1

4
ρ2

)
L1

]
=

27

64
πβ +O(β3) , (2.9)

f
(00)
qq̄ =

π

9
βρ
(
2 + ρ

)
+
π

6
ρ
[
− β

(
2 + qρ

)
+
(
1 + 1

4q
2ρ
)
ρL2

]
(2.10)

+
π

27
ρ

[
16β

(
2− 2q + q2ρ

4− 4q + q2ρ

)
−

(
1 + 8q − 4q2ρ

2− qρ

)
ρL2

]

=
π

3

(
1− r
1 + r

)2

β − 4π

81

(4 + 9r − 77r2 + 27r3 + 9r4)

(1 + r)4
β3 +O(β5) .

with the abbreviations

r=
m2
q̃

m2
g̃

, q=1− r, ρ =
4m2

g̃

ŝ
, β =

√
1−ρ, L1 =ln

(
1−β
1+β

)
, L2 =ln

(
2−qρ−2β

2−qρ+2β

)
.

(2.11)

The threshold expansion of the LO hard function for gluon fusion depends only on the

dimensionless variable β, which is zero at the threshold ŝ = 4m2
g̃. The expanded LO

function for quark-antiquark annihilation depends on β and on the ratio r of the squared
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squark to gluino masses. For r = 1, the linear term vanishes. Therefore, small mass

differences between the gluino and the squark mass lead to a suppression of the qq̄ channel.

The gq channel on the other hand is absent at tree level. Its NLO contribution at threshold

is of the order β3 ln(β) and thus strongly suppressed compared to the gg and qq̄ channels.

We will therefore ignore its contribution to gluino production in the following discussion.

However, we include its NLO contribution to the total hadronic cross section.

For the color decomposition of eq. (2.6) we find in agreement with ref. [15] the following

Born scaling functions for the reaction (2.1),

f
(00)
gg, Is

= −NI
9π

128
ρ

[
β
(
1 + ρ

)
+

1

2

(
2 + 2ρ− ρ2

)
L1

]
= NI

9π

128
β +O(β3) , (2.12)

f
(00)
gg,8a

= − 3π

128
ρ

[
2β
(
7 + 8ρ

)
+ 3
(
2 + 2ρ+ ρ2

)
L1

]
= O(β3), (2.13)

f
(00)

gg,10+10
= 0 , (2.14)

with L1 given in eq. (2.11). Note, that in the threshold limit, only symmetric color repre-

sentations in eq. (2.12) contribute, for which we define the normalization factor,

NI = {1, 2, 3} for I = {1,8,27} . (2.15)

For qq̄ annihilation in eq. (2.2), we obtain the LO scaling functions in the color de-

composition of eq. (2.7) as

f
(00)
qq̄,1S

=
π

27
ρ
(
2− 2q + q2ρ

)[ 2β

4− 4q + q2ρ
+

1

2

1

2− qρ
ρL2

]
=

16

81
π

(1 + r2)

(1 + r)4
β3 +O(β5) ,

(2.16)

f
(00)
qq̄,8S

=
π

27
ρ
(
2− 2q + q2ρ

)[ 5β

4− 4q + q2ρ
+

5

4

1

2− qρ
ρL2

]
=

40

81
π

(1 + r2)

(1 + r)4
β3 +O(β5) ,

(2.17)

f
(00)
qq̄,8A

=
π

9
βρ
(
2 + ρ

)
+
π

6
ρ
[
−β
(
2 + qρ

)
+
(
1 + 1

4q
2ρ
)
ρL2

]
(2.18)

+
π

27
ρ

[
9β(2− 2q + q2ρ)

4− 4q + q2ρ
− 9

4

2 + 2q − q2ρ

2− qρ
ρL2

]

=
π

3

(
1− r
1 + r

)2

β − 4

9
π

(1− r)2(2 + 5r + r2)

(1 + r)4
β3 +O(β5) ,

with L2 given in eq. (2.11). Note that at threshold, only the antisymmetric octet represen-

tation of the qq̄ channel contributes if the gluino and the squark masses are different. If

the gluino and the squarks have equal masses, the antisymmetric octet scaling function is

vanishing up to O(β4), see eq. (2.18), and the symmetric singlet and octet scaling function

contribute with the ratio 2 : 5 at the production threshold. If r 6= 1, the gluino pairs are

produced in an S-wave, otherwise in a P -wave in that channel.
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3 Higher order partonic cross sections at the threshold

At higher orders in QCD, the cross sections develop large threshold logarithms of the type

ln(β) in the region ŝ ≈ 4m2
g̃, which can be resummed systematically to all orders in per-

turbation theory. Here, we make use of techniques described in [24–30]. The resummation

is performed in Mellin space after introducing moments N with respect to the variable

ρ = 4m2
g̃/ŝ of momentum space,

σ̂(N,m2
g̃) =

1∫
0

dρ ρN−1 σ̂(ŝ,m2
g̃) . (3.1)

As the threshold limit β → 0 corresponds to N →∞, all terms proportional to powers of

1/N will be discarded. The general resummation formula reads

σ̂ij, I(N,m
2
g̃) = σ̂Bij, I(N,m

2
g̃) g

0
ij, I(N + 1,m2

g̃) exp
[
Gij, I(N + 1)

]
+O(N−1 lnnN) ,(3.2)

where we have suppressed all dependence on the renormalization and factorization scale,

µr and µf . The subscripts ij denote the production channel, where we consider ij = gg, qq̄.

The exponent Gij, I contains all large threshold logarithms lnkN in Mellin-N space, and

the resummed cross section, as indicated in eq. (3.2), is accurate up to terms which vanish

as a power for large Mellin-N . To NNLL accuracy, Gij, I is commonly expanded as

Gij, I(N) = ln(N) · g1
ij(λ) + g2

ij, I(λ) + as g
3
ij, I(λ) + . . . , (3.3)

where λ = as β0 lnN and we abbreviate as = αs/(4π). The functions gkij, I are derived from

the double integral over a set of anomalous dimensions (see e.g., [30–32]),

Gij, I(N) =

∫ 1

0
dz

zN−1 − 1

1− z

{∫ 4m2
g̃(1−z)2

µ2f

dq2

q2

(
Ai
(
αs(q

2)
)

+Aj
(
αs(q

2)
))

(3.4)

+Dij, I

(
αs(4m

2
g̃(1− z)

2)
)}

.

Here, the cusp anomalous-dimension Ai refers to initial-state collinear gluon radiation,

while any large-angle soft gluon radiation is contained in the function Dij, I, which splits

into the functions

Dij, I(αs) =
1

2

(
Di(αs) + Dj(αs)

)
+ Dg̃g̃, I(αs) , (3.5)

for initial- and final-state radiation, where Di can be taken from threshold resummation for

the Drell-Yan process or for Higgs production in gluon fusion. The perturbative expansion

for the anomalous dimensions reads

Ai(αs) =
∑
l

(αs
4π

)l
A

(l)
i ≡

∑
l

alsA
(l)
i , (3.6)

(same for Di(αs) etc.) and the expansion coefficients A
(l)
i and D

(l)
i are both known to third

order in as from refs. [33, 34] and [35, 36], respectively. The function D
(l)
g̃g̃, I due to soft

– 6 –



J
H
E
P
1
1
(
2
0
1
2
)
0
7
0

gluon emission in the final state depends on the SU(3)color representation of the final-state

gluino pair and results up to second order in as are given in ref. [32] for heavy final states

in arbitrary color representations1 (see also [37]). This suffices to compute the functions

g
(l)
ii,I in eq. (3.3) to NNLL accuracy, even with the dependence on the µr and µf separated

(for the computation see, e.g., refs. [30, 38]). The explicit expression for g
(1)
ii can be read off

from eq. (A.5) of ref. [31], for g
(2)
ii from eq. (A.7) and for g3

ii,I from eq. (A.9) of that reference

with the replacements A
(l)
q → A

(l)
i /β

(l)
0 , D

(l)
q → D

(l)
i /β

(l)
0 , DQQ̄ → −D

(l)
gg, I/β

(l)
0 (note the

sign convention for DQQ̄ in [31]), and βl → βl/β
(l+1)
0 , where βl denote the well-known QCD

beta-function coefficients in the normalization (3.6).

As a last remaining step in achieving resummed predictions to NNLL accuracy in QCD,

one has to extract the process-dependent matching constants g0
ij, I in eq. (3.2). These

consist of the hard coefficients g0
ij, I(αs) multiplied by Coulomb coefficients g0, C

ij, I (αs, N),

which also account for the interference of Coulomb exchange with hard contributions and

soft radiation. A perturbative expansion in analogy to eq. (3.6) yields

g
(0)
ij, I(N,m

2
g̃) = g

(0)
ij, I(αs) g

(0), C
ij, I (αs, N) (3.7)

= 1 + as

(
g

(0) (1)
ij, I + g

(0), C (1)
ij, I (N)

)
+a2

s

(
g

(0) (2)
ij, I + g

(0), C (2)
ij, I (N) + g

(0) (1)
ij, I g

(0), C (1)
ij, I (N)

)
+O

(
α3
s

)
.

This factorized form is already known from studies of the QCD hadro-production of heavy

quarks (see also ref. [39]) and allows for a separate treatment of the resummation of

threshold logarithms αns lnm β (hard, m ≤ 2n) and the terms proportional to αnsβ
−m lnl β

(Coulomb, m ≤ n). Note, that the matching constant g
(0)
ij, I(αs) in the first case does not

depend on the Mellin moment N , whereas in the second case g
(0), C
ij, I (αs, N) does. In the

following, we will focus on the computation of the one-loop hard matching coefficients

which is the main new result of the present paper and which allows for the extraction of

the expansion coefficients of g
(0)
ij, I in eq. (3.7) to NNLL accuracy. All explicit expressions

are given in appendix B.

Before doing so, we briefly like to comment on the resummation of Coulomb corrections,

which accounts for the bound-state effects in the gluino pair [40] and which exploits an

effective description of QCD in the non-relativistic regime. To leading power, it is long

known that the so-called Sommerfeld factor ∆C sums the pure Coulomb corrections in

momentum space (β) corresponding to ladder diagrams [41]. One has [15],

∆C = ∆C

(
π αs
β

DI

)
, ∆C(x) =

x

exp(x)− 1
, (3.8)

where we have introduced the quantity DI = CI/2 − CA as a function of CA = 3 and the

quadratic Casimir operators CI of the final-state SU(3)color representation. For initial-state

gluons these take the numerical values

CI = {0, 3, 8} for I = {1,8,27} , (3.9)

DI = {−3,−3/2, 1} for I = {1,8,27} , (3.10)

1Ref. [32] uses a different notation: The coefficients are denoted by D
(n)Rα

HH′ , where n = l − 1.
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depending on the gluino pair being in the I = {1,8,27}-representation. In the qq̄ channel,

only the anti-symmetric octet contributes at first order in the threshold expansion and we

always set CI = CA = 3, thus it follows DI = −3/2 from eq. (3.10).2

A formal expansion of eq. (3.8) in αs reproduces the NLO and NNLO pure Coulomb

terms to leading power. However, the expansion does not converge due to the high in-

verse powers of β close to the threshold and those singular terms even cause a fixed-order

expansion of eq. (3.1) beyond NNLO to be ill-defined. In the context of hadronic heavy-

quark production this has motivated detailed studies of the phenomenological effects of

Coulomb resummation [42]. Methods and results for the combined resummation of thresh-

old logarithms and the Coulomb corrections for heavy quarks have also been presented

in [18, 32, 43]. The effect of Coulomb resummation for the total cross section is small, e.g.

O(1%) for the related case of heavy-quark hadro production.

Let us now turn to the calculation of the necessary one-loop hard matching coefficients.

To that end, recall that the NLO scaling functions f
(10)
gg and f

(10)
qq̄ near threshold can be

written in a factorized form with respect to the Born contributions as [12]

f (10)
gg =

f
(00)
gg

4π2

(
6 ln2

(
8β2
)
− 29 ln

(
8β2
)

+
π2

4β
+ Cgg1

)
, (3.11)

f
(10)
qq̄ =

f
(00)
qq̄

4π2

(
8

3
ln2
(
8β2
)
− 41

3
ln
(
8β2
)

+
3π2

4β
+ Cqq̄1

)
, (3.12)

where Cgg1 and Cqq̄1 define the hard one-loop constants to be determined from matching

to a fixed order NLO calculation near the threshold. For the former quantity, we actually

need the individual components Cgg1, I with respect to the final-state color configuration.

Therefore, we decompose eq. (3.11) as

f
(10)
gg, I =

f
(00)
gg, I

4π2

(
6 ln2

(
8β2
)
− (24 + CI) ln

(
8β2
)
− π2

2β
DI + Cgg1, I

)
, (3.13)

where DI and CI are defined in eqs. (3.9) and (3.10). Note, that only the color-symmetric

states 1,8,27 contribute to the gluon-fusion channel, cf. eq. (2.6), whereas the anti-

symmetric octet scaling function is suppressed in the threshold limit and, therefore, ne-

glected. For quark-antiquark annihilation, only the anti-symmetric octet channel is con-

sidered, see eq. (2.7). Summation over all color configurations defines Cgg1 in eq. (3.11) as

Cgg1 =

∑
INIC

gg
1, I∑

INI
, (3.14)

with NI given in eq. (2.15).

The analytic expressions for the one-loop matching constants Cgg1, I and Cqq̄1 = Cqq̄1,8a

can be extracted from ref. [17], where the authors studied the QCD effects for a gluino

2The notations for DI vary in the literature: κij→g̃g̃ in ref. [15], C [R] in ref. [17] and DRα in ref. [22]

(where it is explicitly given for top-quark production, which differs from the color configurations of gluino

production).
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bound state T with an invariant mass M . At the production threshold for gluino pairs,

the differential cross section reads (cf. eq. (5) in [17])

M
dσij→T, I
dM

(ŝ,M2, µ2
f , µ

2
r) = Fij→T, I(ŝ,M2, µ2

f , µ
2
r)

1

m2
g̃

Im{GI(0,M − 2mg̃ + iΓg̃} ,(3.15)

where Fij→T, I denotes the hard scattering kernel, GI the Green’s function of a non-

relativistic Schrödinger equation, which accounts for the binding effects, and Γg̃ the gluino

decay width. Suppressing higher powers of β, the hard function can be factorized as (cf.

eq. (19) in [17])

Fij→T, I = FBorn
ij→T, I

(
1 +

αDR
s (µr)

π
V ij, I

)[
δ(1− z) +

αDR
s (µr)

π
Rij, I(z)

]
, (3.16)

where z = M2/ŝ. V ij, I denotes the infrared-finite parts of the ultraviolet-regularized virtual

corrections and Rij, I the real corrections. In the threshold limit, these quantities are

unaffected by the dynamics of the bound state formation. Thus, the explicit expressions

can be taken over for the calculation of the gluino pair production cross section in the

threshold region, where the (imaginary part of the) Green’s function in eq. (3.15) is set to

one. The difference between the 2→ 1 and 2→ 2 kinematics is encoded in the Born term

FBorn
ij→T, I . In order to obtain the NLO hard kernels for gluino pair production, we simply

have to replace the latter by our LO functions (2.12) and (2.18). Setting the binding energy

to zero, we further replace M by 2mg̃, and thus z by ρ in eq. (3.16).

In the related case of the QCD corrections to hadronic top-quark pair production,

this procedure has been discussed in ref. [44], showing that the required NLO matching of

the inclusive cross section to NNLL accuracy near threshold including the decomposition

for color-singlet and color-octet states can be performed with the help of the NLO QCD

corrections to hadro-production of quarkonium [45] (see also refs. [46, 47]).

In the full MSSM, the number of both the quark and squark flavors, that enter the

virtual NLO contributions, is given by nf = 6 and we set all squark masses equal. The

one-loop matching coefficients Cij1, I depend on the chosen regularization scheme and we

find in dimensional reduction DR adopted in ref. [17],

CggDR
1, I = CI

(
4 + ln(2)− π2

8

)
+

71

2
− 6 ln2(2)− π2 +

1

3
Ltg̃ +

nf
6

ln(r) +
nf
18

AggI (r) ,

(3.17)

Cqq̄DR
1,8a

= nf

(
ln(2)− 5

9

)
+

89

3
− 8

3
ln2(2)− 43

36
π2 +Aqq̄8a

(r) , (3.18)

where we have defined Ltg̃ = ln(m2
t /m

2
g̃), as well as

AggI (r) = −9
(
b1(r)− b4(r) + 2 b′1(r)

)
(1− r) + 2

(
9r − (CI + 1)

)
c5(r) , (3.19)

while Aqq̄8a
(r) is given in eq. (31) of ref. [17]. The results involve functions a1(r), bi(r), b

′
i(r)

and ci(r) which have been defined as certain limits of scalar one-, two-, and three-point
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integrals in the appendix of ref. [17]. For the convenience of the reader, we give the explicit

analytic expressions in appendix A.

The quantity Aqq̄8a
(r) in eq. (3.18) diverges in the limit r → 1, but multiplication with

the Born cross section gives a finite result for the NLO scaling function in the threshold

approximation (which is actually zero). This is due to the factor (1−r)2, which shows up in

the expansion of eq. (2.18). However, starting from O(β5) (or O(β3) in the color-summed

result of eq. (2.10)), there is no such factor and one would create an artificial divergence,

if one inserts the full LO scaling function into eq. (3.12). On the other hand, it is clear

that in the exact NLO result, the function Aqq̄8a
(r) should also possess terms depending

on β. These cancel the problematic higher order terms when multiplied with the Born

function. Moreover, they give additional contributions to the NLO cross section, which are

not treated by the ansatz (3.16). Note, that in the gluon-fusion channel, eq. (3.17) is free

of artificial divergences and the function AggI (r) is well defined for all r > 0.

Within the regularization scheme DR underlying eqs. (3.17) and (3.18), the strong

coupling constant is understood to be evaluated at a hard scale where all squark flavors as

well as the gluino contribute within the virtual corrections. Conventional QCD computa-

tions on the other hand employ the MS-scheme, and so does the program Prospino [13].

In order to compare to the numerical output of Prospino in the MS-scheme, we have to

perform a scheme transformation and decouple the SUSY particles as well as the top-quark

from the spectrum. The necessary change of the renormalization scheme for αs and the

decoupling can easily be done with the help of formulae given in ref. [48]. Assuming that

the top-quark is lighter than all sparticles, we have to add the following shift to the NLO

scaling functions in eq. (2.5)

∆
(
f

(10)
ij, I + f

(11)
ij, I Lµ

)∣∣∣
DR(MSSM)→MS(nl=5)

=
f

(00)
ij, I

4π2

(
1

2
− 1

3
Ltg̃ −

nf
6

ln(r) +
4

3
Lµ +

nf
6
Lµ

)
,

(3.20)

where nl denotes the number of light (massless) quark flavors. This leads to the one-loop

matching constants in the MS-scheme with a total of nf quark flavors (nf = nl + 1),

CggMS
1, I = CI

(
4 + ln(2)− π2

8

)
+ 36− 6 ln2(2)− π2 +

nf
18

AggI (r) , (3.21)

Cqq̄MS
1,8a

= nf

(
ln(2)− 5

9

)
+

181

6
− 8

3
ln2(2)− 43

36
π2 − 1

3
Ltg̃ −

nf
6

ln(r) +Aqq̄8a
(r) . (3.22)

We remark here, that the gluino bound state computation of ref. [17] has been per-

formed in the limit mt → 0 wherever possible. Thus, the dependence on mt in eq. (3.17)

for CggDR
1, I in the DR-scheme and in eq. (3.22) for Cqq̄MS

1,8a
in the MS-scheme is only logarith-

mic. The NLO QCD corrections to the inclusive cross section [12] coded in the program

Prospino [13], on the other hand, account for the complete dependence on mt.

In order to cross check our analytic results in eqs. (3.21) and (3.22), we numerically

extract the one-loop hard matching coefficients of the color-summed NLO scaling functions

at their threshold from Prospino, cf. eq. (3.14). For our numerical analysis, we set the

– 10 –



J
H
E
P
1
1
(
2
0
1
2
)
0
7
0

squark masses to 600 GeV and vary the gluino mass between 100 GeV and 2 TeV in steps

of 100 GeV. The top-quark mass is set to 175 GeV in the on-shell scheme. According to

eq. (2.9), the LO scaling function of the gluon-fusion channel does not depend on any of

the SUSY masses and the top-quark mass dependence of CggMS
1, I has canceled in eq. (3.21).

Thus, for the case of gluon-fusion, we find agreement with our analytic result within a few

per mill over the whole range of input values. For qq̄-annihilation on the other hand, we

encounter a dependence on the mass ratio r in eq. (2.11) for equal squark masses and we

expect deviations due to finite contributions proportional to the top-quark mass. We find

differences between the expression for Cqq̄MS
1,8a

based on ref. [17] in eq. (3.22) and the result

extracted from Prospino, which amount to the order of a few per cent especially for mass

ratios r > 1. Altogether, this constitutes an important cross check, both of our derivation

and of the original computation of the NLO corrections in ref. [13]. Moreover, as already

noted, the gluon channel is dominant for collider physics predictions at the LHC. Therefore,

we are able to provide extremely accurate predictions for the gluino pair production cross

section in the threshold region.

We are now in the position to present the NNLO cross section in the threshold limit

exact to NNLL accuracy. All coefficients of the threshold logarithms lnn(β) at NNLO can

be calculated from the resummation formula (3.2) with the exponent (3.3) after an inverse

Mellin transformation and with the knowledge of the one-loop matching coefficients Cij1, I
in eqs. (3.21) and (3.22). Note, that at O(α2

s) we only keep logarithmically enhanced

terms proportional to powers of ln(β) as well as Coulomb corrections in the following.

The two-loop matching coefficients Cij2, I defined in analogy to eqs. (3.11) and (3.12) are

presently unknown and we set them to zero in the results for the NNLO cross section in

the threshold limit below. The determination of the two-loop hard constants Cij2, I would

require a complete NNLO calculation, which is beyond the scope of the present study.

For the gluon-fusion channel we obtain in this way the NNLO scaling functions in the

threshold approximation as,

f
(20)
gg, I =

f
(00)
gg, I

(16π2)2

[
4D2

Iπ
4

3β2
+
DIπ

2

β

{
−192 ln2(β) +

(
44 + 16CI −

8

3
nl − 192 ln(2)

)
ln(β)

−8Cgg1, I +
1090

3
+ 16CI +

4

3
nl

(
5

3
− 2 ln(2)

)
+ 44 ln(2) + 8CI ln(2)− 48 ln2(2)

−16π2

}
+ 4608 ln4(β) +

{
−19840− 768CI +

256

3
nl + 27648 ln(2)

}
ln3(β)

+

{
384Cgg1, I + 43232 + 1712CI + 32C2

I + nl

(
− 1088

3
− 32CI

3
+ 384 ln(2)

)
−89280 ln(2)− 3456CI ln(2) + 62208 ln2(2)− 2400π2

}
ln2(β)

+

{
−262624

3
− 6584

3
CI +

(
− 768− 32CI + 1152 ln(2)

)
Cgg1, I

+nl

(
6976

9
+

368

9
CI − 1088 ln(2)− 32CI ln(2) + 576 ln2(2)− 32π2

)
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+129696 ln(2) + 5136CI ln(2) + 96C2
I ln(2)− 133920 ln2(2)− 5184CI ln2(2)

+62208 ln3(2) + 5328π2 + 200CIπ
2 − 7200 ln(2)π2 + 33264ζ3 − 48CIζ3

+16π2DI

(
3− 2DI(1 + vspin)

)}
ln(β) + Cgg2, I

]
, (3.23)

with DI and CI given in eqs. (3.9), (3.10) and Cgg1, I in eq. (3.21) for MS(nl = 5). ζi denote

the values of the Riemann zeta function. Likewise, for quark-antiquark annihilation, we

find

f
(20)
qq̄,8a

=
f

(00)
qq̄

(16π2)2

[
3π4

β2
+
π2

β

{
128 ln2(β) + (−138 + 4nl + 128 ln(2)) ln(β) + 12Cqq̄1,8a

−297 + nl

(
− 10

3
+ 4 ln(2)

)
− 102 ln(2) + 32 ln2(2) +

32π2

3

}
+

8192

9
ln4(β) +

512

27

{
−279 + 288 ln(2) + 2nl

}
ln3(β) +

{
12976 +

512

3
Cqq̄1,8a

+nl

(
− 5216

27
+

512

3
ln(2)

)
− 23808 ln(2) + 12288 ln2(2)− 4480

9
π2

}
ln2(β)

+

{(
−1312

3
+ 512 ln(2)

)
Cqq̄1,8a

− 667624

27
+ nl

( 37840

81
− 5216

9
ln(2)

+256 ln2(2)− 128

9
π2
)

+ 38928 ln(2)− 35712 ln2(2) + 12288 ln3(2)

+
13592

9
π2 − 4480

3
ln(2)π2 +

60080

9
ζ3 + 16π2DI

(
3− 2DI(1 + vspin)

)}
ln(β)

+Cqq̄2,8a

]
, (3.24)

with the MS-scheme result for Cqq̄MS
1,8a

from eq. (3.22). The results in eqs. (3.23) and (3.24)

agree with ref. [22] where the approximate NNLO cross section at threshold has been com-

puted for massive colored particle production in an arbitrary SU(3)color representation of

the final state. In particular, they also contain subleading NNLO Coulomb terms and the

non-relativistic kinetic-energy corrections, which do not follow directly from the resummed

cross section (3.2), but have to be determined from matching to explicit NNLO computa-

tions [49–52]. The latter ones are given by terms proportional to DI(3−2DI(1+vspin)) ln(β)

in eqs. (3.23) and (3.24) and depend on spin configuration of the g̃ g̃ final state through the

quantity vspin . For the gluino pair in a spin-singlet configuration as realized for the S-wave

in the {1,8,27} symmetric color representations of the gluon-fusion channel it takes the

value vspin = 0. For a spin-triplet as in the antisymmetric octet representation of the qq̄

channel we have vspin = −2/3.

For direct comparison, we also present here the one-loop matching coefficients Cgg1, I

and Cqq̄1,8a
in the notation of ref. [22] (cf. C

(1)
X in eq. (A.2) of that reference). Using
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eqs. (3.11), (3.12), (3.21) and (3.22), we find for µf = µr = µ

Re[C
(1)
gg→g̃ g̃] = 2Cgg1, I − 6CI − CA

(
32− 11

6
π2 − 4 ln(2)Lµ + L2

µ

)
− CI Lµ , (3.25)

Re[C
(1)
qq̄→g̃ g̃] = 2Cqq̄1,8a

− 6CA − CF
(

32− 11

6
π2 − 4 ln(2)Lµ + L2

µ

)
+

(
14

3
− 2

3
nf

)
Lµ ,

(3.26)

which displays an additional dependence on the renormalization scale due to the particular

normalization of ref. [22]. Also note, that our choice nf = 6 corresponds to nl + 1 in the

notation of ref. [22].

For completeness we briefly list all functions governing the scale dependence up to

NNLO in the gluino pair production cross section. These can be computed by standard

renormalization group methods (see e.g., [44]) in terms of coefficients βl of the QCD beta-

function and the splitting functions Pij which govern the PDF evolution. For the hard

functions f
(11)
ij in the MS-scheme we have

f
(11)
ij, I =

1

16π2

(
2β0f

(00)
ij, I − f

(00)
kj, I ⊗ P

(0)
ki − f

(00)
ik, I ⊗ P

(0)
kj

)
, (3.27)

where ⊗ denotes the standard Mellin convolution, and repeated indices imply summation

over admissible partons. The coefficients βl and P
(k)
ij are taken in an expansion in powers

of αs/(4π) as in the normalization (3.6) (see refs. [33, 34]). The explicit expressions near

threshold read

f
(11)
gg, I = −

f
(00)
gg, I

16π2

(
24 ln(8β2)− 48− 24 ln(2)

)
, (3.28)

f
(11)
qq̄,8a

= −
f

(00)
qq̄,8a

16π2

(
32

3
ln(8β2)− 106

3
− 32

3
ln(2) +

4

3
nl

)
. (3.29)

Recall, that nl denotes the number of light quark flavors. Likewise, at NNLO, the scale

dependent part can be calculated by evaluating

f
(21)
ij =

1

(16π2)2

(
2β1f

(00)
ij − f (00)

kj ⊗ P
(1)
ki − f

(00)
ik ⊗ P (1)

kj

)
(3.30)

+
1

16π2

(
3β0f

(10)
ij − f (10)

kj ⊗ P
(0)
ki − f

(10)
ik ⊗ P (0)

kj

)
,

f
(22)
ij =

1

(16π2)2

(
f

(00)
kl ⊗ P

(0)
ki ⊗ P

(0)
lj +

1

2
f

(00)
in ⊗ P (0)

nl ⊗ P
(0)
lj +

1

2
f

(00)
nj ⊗ P

(0)
nk ⊗ P

(0)
ki (3.31)

+3β2
0f

(00)
ij − 5

2
β0f

(00)
ik ⊗ P (0)

kj −
5

2
β0f

(00)
kj ⊗ P

(0)
ki

)
,

where we have suppressed the color indices I. Inserting the threshold approximations of

the splitting functions and the NLO scaling functions, we obtain the desired results for
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ij = gg, qq̄ near threshold, which explicitly read

f
(21)
gg, I =

f
(00)
gg, I

(16π2)2

[
−4608 ln3 (β) +

(
14880 + 384CI − 18432 ln(2)− 64nl

)
ln2 (β) (3.32)

+

(
96π2

β
DI − 21616− 472CI + 960CI ln(2)− 192Cgg1, I

+nl
4

3

(
136 + 4CI − 144 ln(2)

)
+ 40032 ln(2)− 24192 ln2(2) + 1200π2

)
ln(β)

−22π2

β
DI + 19516 + 12CI

(
32− 59 ln(2) + 48 ln2(2)− 4π2

)
+ 236Cgg1, I

+nl
4

3

(
π2

β
DI − 43 + 6CI ln(2)− 2Cgg1, I + 184 ln(2)− 108 ln2(2)

)
− 192Cgg1, I ln(2)

−31888 ln(2) + 26568 ln2(2)− 10368 ln3(2) + 1776 ln(2)π2 − 1200π2 − 8280ζ3

]
,

f
(22)
gg, I =

f
(00)
gg, I

(16π2)2

[
1152 ln2 (β) +

(
−2568 + 16nl + 2304 ln(2)

)
ln(β) (3.33)

+16nl

(
− 1 + ln(2)

)
+ 2568− 2568 ln(2) + 1152 ln2(2)− 144π2

]
,

f
(21)
qq̄,8a =

f
(00)
qq̄

(16π2)2

[
−8192

9
ln3 (β) +

128

9

(
303− 256 ln(2)− 6nl

)
ln2 (β) (3.34)

−
(

64π2

β
+

8

27

(
288Cqq̄1 + 24849 + nl

(
− 818 + 864 ln(2)

)
− 39696 ln(2)

+16128 ln2(2)− 840π2
))

ln(β) +
75π2

β
+

4

3
Cqq̄1 (139− 64 ln(2)) +

14416

3

−nl
(

6π2

β
+ 8Cqq̄1 +

4

27

(
325− 2374 ln(2) + 1296 ln2(2)− 8π2

))
−4

9

(
24313 ln(2)− 17880 ln2(2) + 4608 ln3(2)− 816 ln(2)π2 + 732π2 + 3560ζ3

)]
,

f
(22)
qq̄,8a =

f
(00)
qq̄

(16π2)2

[
2048

9
ln2(β) +

4

9

(
80nl − 1960 + 1024 ln(2)

)
ln(β) +

4

3
n2
l (3.35)

+nl
4

9

(
− 149 + 80 ln(2)

)
+

1

9

(
9415− 7840 ln(2) + 2048 ln2(2)− 256π2

)]
.

In figure 2, we plot the color-summed NLO and NNLO scaling functions. For compar-

ison we also show the exact LO results given in eqs. (2.9) and (2.10). We use a gluino mass

mg̃ = 750 GeV and squark masses mq̃ = 600 GeV which correspond to r = 0.64. In the

gluon-fusion channel, the dependence on r starts at NLO and is rather weak in the thresh-

old region. For qq̄-annihilation however, one has a stronger dependence already starting

at LO. The NLO results f
(10)
ij and f

(11)
ij in figure 2 are exact. Similarly, as the results for

NNLO scale dependent functions f
(21)
ij and f

(22)
ij are based on eqs. (3.30) and (3.31), they

– 14 –



J
H
E
P
1
1
(
2
0
1
2
)
0
7
0

fgg
H00L

fgg
H10L

fgg
H11L

fgg,th
H10L

fgg,B
H10L

10-4 10-3 10-2 10-1 100 101 102 103 104

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Η = s`�H4mg�
2L-1

fq q��
H00L

fq q��
H10L

fq q��
H11L

fqq,th
H10L

fqq,B
H10L

10-4 10-3 10-2 10-1 100 101 102 103 104

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Η = s`�H4mg�
2L-1

fgg
H20L

fgg
H21L

fgg
H22L

10-4 10-3 10-2 10-1 100 101 102 103 104

-1

0

1

2

3

4

Η = s`�H4mg�
2L-1

fq q��
H20L

fq q��
H21L

fq q��
H22L

10-4 10-3 10-2 10-1 100 101 102 103 104

-0.05

0

0.05

0.1

0.15

Η = s`�H4mg�
2L-1

fgg
H00L

fgg
H10L

fgg
H20L

10-4 10-3 10-2 10-1 100 101 102 103 104

-1

0

1

2

3

4

Η = s`�H4mg�
2L-1

fq q��
H00L

fq q��
H10L

fq q��
H20L

10-4 10-3 10-2 10-1 100 101 102 103 104

-0.05

0

0.05

0.1

0.15

Η = s`�H4mg�
2L-1

Figure 2. The scaling functions f
(ij)
gg and f

(ij)
qq̄ with i = 0, 1, 2 and j ≤ i in the MS-scheme. The

masses are mg̃ = 750 GeV and mq̃ = 600 GeV.

are also exact at all energies even away from threshold. For the genuine NNLO contri-

butions f
(20)
ij we plot our new results (3.23) and (3.24). The threshold approximation for

the latter functions could, in principle, be improved by adding constraints imposed by the

high-energy factorization, see [53] for related studies in top-quark hadro-production. How-

ever, given the large gluino masses currently considered, this is not immediately relevant

for phenomenology at current and foreseeable LHC energies.

The range of validity of the threshold expansion is demonstrated for the NLO scaling
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Figure 3. Scaling function f
(10)
gg,B (threshold approximation with exact Born function) for

0.3 < r < 2.

functions in the upper two figures. Here, we plot in addition the approximated results

which contain only threshold enhanced terms and constants (subscript th), and the im-

proved threshold approximations, where the exact Born terms are inserted into eqs. (3.11)

and (3.12) (subscript B). In the latter case, the curves follow the behavior of the Born

terms at high velocities, which tend to zero for β → 1. In the former case, an offset arises

which, for qq̄-annihilation, depends on r. In the gluon-fusion channel, the formulae work

very well up to η ≈ 0.4, which corresponds to β =
√
η/(1 + η) ≈ 0.53. For quark-antiquark

annihilation, high accuracy is guaranteed up to η ≈ 10−2 (β ≈ 0.1).

It should be stressed further that the scaling functions in the gg channel exceed those

of the qq̄ channel by about one order of magnitude as shown in figure 2. Keeping in mind

that also the parton luminosity at a proton-proton collider such as the LHC favors the

channel with initial state gluons over the one with quarks in the TeV-regime, we conclude

that gluon-fusion is by far the dominant source for g̃ g̃-production at the LHC. Thus, the

theory predictions of the inclusive g̃ g̃ hadro-production cross section are mainly governed

by the gluino mass and are rather insensitive to the squark masses. For illustration, we

also plot the NLO scaling function (3.11) for different values of r in figure 3. Its weak

dependence on r is minimized for equal squark and gluino masses (r = 1). Recall that the

LO cross section in the gluon-fusion channel does not depend on r.

4 Hadronic cross section

Here we discuss the total hadronic cross section, which is obtained by convoluting the

partonic scaling functions with the PDFs, see eq. (2.3). For the numerical results we keep

the threshold enhanced channels gg and qq̄ at all orders up to NNLO, while we consider

only the NLO contributions for gq, which are the leading contributions of this channel. As

already discussed in section 3, at the hadronic level, the gg-channel accounts for the largest

part, whereas the contribution of the qq̄-channel is a few percent of the gg-channel, only.

For reasons of convenience, the computation of the hadronic cross sections employs a

grid in the mg̃ - mq̃ -plane for the scale independent scaling functions f
(10)
ij , ij = gg, qq̄, gq,
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which has been extracted from Prospino. This grid has already been applied in the numer-

ical check of the one-loop matching constant C
(gg)
1 and C

(qq̄)
1 (see the previous section 3).

For the hadronic cross section computation considered here, these scaling functions are

used to calculate the exact scale dependent scaling functions f
(11)
ij , f

(21)
ij and f

(22)
ij from

the renormalization group eqs. (3.27), (3.30) and (3.31). Using these results together with

the threshold approximation for f
(20)
ij from eqs. (3.23) and (3.24) defines the theory pre-

dictions at approximate NNLO (dubbed NNLOapprox in the sequel) to be used in our

phenomenological studies. Further improvements based on the evaluation of the resumma-

tion formula (3.2) to account for threshold logarithms at all orders to NNLL accuracy are

postponed to future work.

We work in the MS-scheme, which is implemented in Prospino with nl = 5 light quarks

and an on-shell top quark with mass mt = 175 GeV [13]. The masses of squarks and stops

are set equal to the value mq̃ = 4/5mg̃ so that the gluino is always the heavier particle.

We use the PDF sets ABM11 NNLO [55] and MSTW2008 NNLO PDFs [54] irrespective

of the order of perturbation theory. In figure 4, we present total hadronic cross sections for

gluino pair production at the LHC for the cms energies 7 TeV, 8 TeV and 14 TeV at LO,

NLO and NNLO. The width of the bands indicates the theoretical uncertainty due to a

variation of the scale µ in the range 1
2mg̃ ≤ µ ≤ 2mg̃. The increase in the predicted rates

due to the approximate NNLO corrections of the order of O(15−20)% at nominal scales is

clearly visible and cross section numbers for selected gluino masses are given in tables 1–3.

Over the plotted range of mg̃, the cross sections in figure 4 are decreasing over more than

four orders of magnitude.

In figure 5, we show as an example the scale dependence of the hadronic cross section

for mg̃ = 750 GeV, mq̃ = mt̃1
= mt̃2

= 600 GeV for the LO, NLO, and approximated

NNLO cross section. The cross section with its uncertainty at the LHC with 14 TeV cms is

1.43+0.53
−0.37 pb, 2.16+0.25

−0.29 pb, and 2.56+0.04
−0.07 pb at LO, NLO, and NNLO, respectively, where we

only quote the errors due to scale variation here. One observes a strong decrease of the scale

uncertainty. The K factors are KNLO = σNLO/σLO = 1.46 and KNNLO = σNNLO/σNLO =

1.13 and the point of minimal sensitivity, where the cross section adopts similar values for

all orders is at about µ = 0.35mg̃.

In judging these results and the numbers in tables 1–3 it should be kept in mind,

though, that on top of the scale dependence at NNLO there is a residual uncertainty due

to using approximate corrections at NNLO, only. Depending on the kinematics, i.e., the

ratio of gluino mass mg̃ to the hadronic cms energy which defines the range for the parton

luminosity, this residual uncertainty amounts to a few percent O(2− 4%), see e.g., [44, 53]

for estimates obtained in the case of top-quark hadro-production. We also mention without

discussion that there are additional uncertainties, e.g., due to the assumption that the

squark spectrum is mass degenerate, which seems unlikely for a realistic model of nature.

Finally, we compare the total cross section for the two PDF sets MSTW2008 NNLO [54]

and ABM11 NNLO [55] in figure 6. These PDF sets obtained in global fits differ signif-

icantly in the value of the strong coupling constant αs and the shape of the gluon PDF

at large parton momentum fraction x, e.g., αs(MZ) = 0.1134 ± 0.0011 for ABM11 and

αs(MZ) = 0.1171 ± 0.0014 for MSTW. The differences are marginally compatible, even
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Figure 4. Total hadronic cross section and its theoretical uncertainty at the LHC for three

different center of mass energies (7 TeV(upper figure), 8 TeV(central figure), and 14 TeV(lower

figure)) at LO (blue bands), NLO (green bands), and NNLOapprox (purple lines) as a function of

the gluino mass. The masses of the squarks and the stop are set to mq̃ = 4/5mg̃. At NNLOapprox,

the theoretical uncertainty has shrunk to a small band.
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Figure 5. Scale dependence of the total hadronic cross section at the LHC with 14 TeV for

mg̃ = 750 GeV and mq̃ = 600 GeV. The vertical bars indicate the total scale variation in the range

[mg̃/2, 2mg̃], the vertical dashed gray line in the middle of the figure indicates the cross section at

the nominal scale µ = mg̃.
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Figure 6. Comparison of the MSTW2008 NNLO [54] and ABM11 NNLO [55] PDF sets.

if PDF errors are taken into account. These are plotted in figure 7 for the cms energies

7, 8, and 14 TeV. Setting µ = mg̃, and choosing our default values mg̃ = 750 GeV and
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Figure 7. PDF errors of the MSTW2008 NNLO [54] and ABM11 NNLO [55] PDF sets.

mq̃ = 600 GeV, we obtain 1.55±0.11 pb, 0.077±0.007 pb, and 0.032±0.003 pb for ABM11,

and 2.56+0.14
−0.15 pb, 0.168+0.026

−0.016 pb, and 0.075+0.008
−0.008 pb for MSTW. The origin of these PDF

differences has been discussed for instance in ref. [55]. As a result, the cross sections calcu-

lated with the ABM11 set are of the order of O(30− 60)% smaller over the whole range of
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mg̃ σ(LO)[ pb] σ(NLO)[ pb] σ(NNLO)[ pb]

[ GeV] x = 1
2 x = 1 x = 2 x = 1

2 x = 1 x = 2 x = 1
2 x = 1 x = 2

MSTW 2008 NNLO

300 46.839 33.335 24.383 57.703 51.178 43.701 62.941 61.264 58.908

400 7.230 5.080 3.673 8.986 7.919 6.707 9.814 9.591 9.207

500 1.475 1.026 0.735 1.855 1.624 1.365 2.029 1.990 1.906

600 0.359 0.247 0.176 0.457 0.398 0.332 0.501 0.493 0.471

700 0.098 0.067 0.047 0.127 0.110 0.091 0.140 0.138 0.131

800 0.029 0.020 0.014 0.038 0.033 0.027 0.042 0.042 0.040

ABM11 NNLO

300 29.433 21.365 15.930 36.863 32.778 28.213 40.176 39.540 38.548

400 4.012 2.916 2.176 5.053 4.493 3.869 5.507 5.485 5.388

500 0.739 0.539 0.403 0.933 0.831 0.717 1.017 1.025 1.015

600 0.165 0.121 0.090 0.209 0.187 0.161 0.228 0.233 0.232

700 0.042 0.031 0.023 0.054 0.048 0.041 0.058 0.060 0.060

800 0.012 0.009 0.007 0.015 0.014 0.012 0.017 0.017 0.017

Table 1. Numerical values for the gluino pair-production cross section at LHC with
√
s = 7 TeV

and the PDF sets MSTW 2008 NNLO [54], ABM11 NNLO [55]. The QCD predictions are given at

LO, NLO, and NNLO accuracy and for different gluino masses and scales x = µ/mg̃.

mg̃ σ(LO)[ pb] σ(NLO)[ pb] σ(NNLO)[ pb]

[ GeV] x = 1
2 x = 1 x = 2 x = 1

2 x = 1 x = 2 x = 1
2 x = 1 x = 2

MSTW 2008 NNLO

300 75.431 54.300 40.118 92.498 82.484 70.931 100.577 97.919 94.424

400 12.576 8.941 6.532 15.511 13.760 11.745 16.887 16.503 15.894

500 2.768 1.949 1.411 3.445 3.039 2.577 3.755 3.682 3.541

600 0.727 0.508 0.365 0.915 0.802 0.676 0.999 0.982 0.943

700 0.216 0.149 0.107 0.275 0.239 0.200 0.300 0.296 0.283

800 0.070 0.048 0.034 0.090 0.078 0.065 0.099 0.097 0.093

900 0.024 0.016 0.012 0.031 0.027 0.022 0.035 0.034 0.033

ABM11 NNLO

300 50.103 36.595 27.433 62.375 55.683 48.137 67.796 66.555 64.864

400 7.444 5.435 4.071 9.320 8.313 7.182 10.132 10.047 9.853

500 1.486 1.087 0.815 1.868 1.667 1.441 2.030 2.034 2.008

600 0.360 0.264 0.198 0.453 0.405 0.351 0.493 0.499 0.495

700 0.100 0.073 0.055 0.126 0.113 0.098 0.137 0.140 0.140

800 0.030 0.022 0.017 0.038 0.034 0.030 0.042 0.043 0.043

900 0.010 0.007 0.006 0.013 0.011 0.010 0.014 0.014 0.014

Table 2. Same as table 1 for the LHC with
√
s = 8 TeV.

gluino masses, see also tables 2 and 3. As it stands, the differences in these non-perturbative
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mg̃ σ(LO)[ pb] σ(NLO)[ pb] σ(NNLO)[ pb]

[ GeV] x = 1
2 x = 1 x = 2 x = 1

2 x = 1 x = 2 x = 1
2 x = 1 x = 2

MSTW 2008 NNLO

500 25.197 18.566 13.995 30.549 27.593 24.090 32.894 32.225 31.340

650 5.027 3.665 2.736 6.121 5.506 4.778 6.599 6.485 6.303

800 1.270 0.918 0.680 1.557 1.395 1.204 1.681 1.656 1.609

950 0.375 0.269 0.198 0.464 0.414 0.355 0.501 0.495 0.480

1100 0.124 0.088 0.065 0.154 0.137 0.117 0.167 0.165 0.160

1250 0.044 0.031 0.023 0.056 0.049 0.042 0.060 0.060 0.058

1400 0.017 0.012 0.009 0.021 0.019 0.016 0.023 0.023 0.022

ABM11 NNLO

500 17.216 12.852 9.815 21.146 19.120 16.772 22.759 22.453 22.042

650 3.127 2.332 1.778 3.860 3.486 3.055 4.155 4.131 4.075

800 0.729 0.544 0.415 0.903 0.816 0.715 0.972 0.974 0.966

950 0.201 0.150 0.115 0.250 0.226 0.198 0.269 0.272 0.271

1100 0.063 0.047 0.036 0.078 0.070 0.062 0.084 0.085 0.085

1250 0.021 0.016 0.012 0.027 0.024 0.021 0.029 0.029 0.029

1400 0.008 0.006 0.004 0.010 0.009 0.008 0.010 0.011 0.011

Table 3. Same as table 1 for the LHC with
√
s = 14 TeV.

parameter are the largest residual uncertainty in g̃ g̃-cross section predictions with direct

implications also for exclusion limits on mg̃ and mq̃ reported by the LHC experiments.

5 Conclusion and summary

We have studied the QCD corrections for gluino pair production at hadron colliders at

NNLO in QCD. With the computation of the hard matching coefficients at NLO based on

recent results for the production of gluino-bound states [17], we were able to derive all log-

arithmically enhanced terms near threshold at NNLO. Our results allow for the evaluation

of the resummed g̃ g̃ cross section to NNLL accuracy or, alternatively, for predictions at

approximate NNLO accuracy at fixed order in perturbation theory. We have chosen the

latter approach to illustrate the impact of our new results on the apparent convergence

and the scale stability of the hadronic cross sections at the LHC. In summary, we were able

to promote the predictions for the gluino pair production cross section in the threshold

region to the next level of accuracy, now putting it on par with squark-antisquark pair

production.

In advancing from NLO to approximate NNLO QCD predictions, we have found a

significant increase in the rates, with K-factors of the order of O(15 − 20)% depending,

of course, on the chosen squark and gluino masses. The residual scale uncertainty on the

other hand is generally small, of the order of a few percent only, showing good perturbative

stability of the result. The largest uncertainty in the current predictions for g̃ g̃ hadro-

production is due to the necessary non-perturbative input, i.e., the value of αs(MZ) and
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the shape of the gluon PDF, where differences between the PDF sets ABM11 and MSTW

amount to the order of O(30 − 60)%. The impact of the latter differences on squark and

gluino searches at the LHC is dramatic and the implications for any exclusion limits on

squark and gluino masses has not been addressed so far in experimental analysis.

Acknowledgments

We thank P. Marquard for discussions. U.L. acknowledges partial support by the Helmholtz

Alliance “Physics at the Terascale” (HA-101) and by the Deutsche Forschungsgemein-

schaft in Graduiertenkolleg GRK 1147. S.M. and T.P. have been supported in part by

the Deutsche Forschungsgemeinschaft in Sonderforschungsbereich/Transregio 9 and by the

European Commission through contract PITN-GA-2010-264564 (LHCPhenoNet).

A Scalar n-point functions

Here, we give explicit expressions for the one-, two-, and three-point integrals defined in

ref. [17]:

a1(r) = r(1 + 2 ln(2)− ln(r)) , (A.1)

b1(r) = 2 + 2 ln(2)− r ln(r)− (1− r) ln |1− r| , (A.2)

b2(r) = 2 + 2 ln(2)− ln(r) + Re[
√

1− r ln(−(1−
√

1− r)(1 +
√

1− r)−1) ] , (A.3)

b3(r) = 1 + 2 ln(2) + r(1− r)−1 ln(r) , (A.4)

b4(r) = 2 + 2 ln(2) + r ln(r)− (1 + r) ln(1 + r) , (A.5)

b5(r) = 2 + 2 ln(2)− ln(r) , (A.6)

b6(r) = 2 + 2 ln(2) + (r−1 − 1) ln |1− r| , (A.7)

b′1(r) = −1− r ln |(1− r)/r| , (A.8)

b′2(r) =
1

2
(1− r)−1 + r ln(r)(1− r)−2(1 + r)−1 , (A.9)

c1(r) =
1

4
Re[−Li2((5− r)(3 + 2

√
1− r− r)−1) + Li2((1− r)(3 + 2

√
1− r− r)−1)

−Li2((5− r)(3− 2
√

1− r− r)−1) + Li2((1− r)(3− 2
√

1− r− r)−1)

+ Li2(4 (5 + (−2 + r)r)−1)− Li2(4r (5 + (−2 + r)r)−1)

+ ln(1 + (1− r)2/4)(ln(−5 + r)− ln(−1 + r))

− ln(1− 4r(5 + (−2 + r)r)−1) ln(r) ] , (A.10)

c2(r) =
1

2
Re[−Li2((3− r)(1 + r)−1) + Li2((1− r)(1 + r)−1) (A.11)

+ Li2((−3 + r)(1 + r)−1)− Li2((−1 + r)(1 + r)−1) ] ,

c3(r) = −1

8
π2 +

1

2
(Li2((−1 + r)(1 + r)−1)− Li2((1− r)(1 + r)−1)) , (A.12)

c4(r) = −(1 + r)−1(1− ln(2) + ln(1 + r)− (1 + r)−1r ln(r)) , (A.13)

c5(r) =
1

2
Re[ Li2(−1/r)− Li2(1/r) ] . (A.14)

Note that in the limit r → 1, all ci(r) apart from c4(r) simplify to −π2/8.
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B Explicit expressions for the resummation formula

Here we give the process-dependent matching constants of the general resummation for-

mula (3.2) in the MS(nl = 5)-scheme at NNLL accuracy. To that end, we find it convenient

to introduce the parameter Ñ = N exp(γE) and rearrange the terms in eq. (3.3) accord-

ing to

Gij, I(N) = ln(Ñ) · g1
ij(λ̃) + g2

ij, I(λ̃) + as g
3
ij, I(λ̃) + . . . , (B.1)

with λ̃ = as β0 ln Ñ , so that there are no terms proportional to Euler’s constant γE con-

tained in the final results of the coefficients gkij, I(λ̃). With these conventions, we find for

the hard constant

g0
gg, I = 1 + as

{
4Cgg1, I − 192 + CI (−8− 4 ln(2)) + 24 ln2(2) + 12π2

}
(B.2)

+a2
s

{
16Cgg1, I

(
−48 + 2CI (−1 + ln(2)) + 72 ln(2)− 48 ln2(2) + 3π2

)
+CI

(
8

3
(−823 + 1465 ln(2))− 4000 ln2(2) + 2496 ln3(2) + 126π2

−344 ln(2)π2 + (1296 + 48 ln(2)) ζ3

)
+ C2

I

(
32 ln(2)− 64 ln2(2) + 4π2

)
+

4

9
nl

(
CI

(
92− 116 ln(2) + 48 ln2(2)− 3π2

)
+ 1744− 2560 ln(2)

+1776 ln2(2)− 624 ln3(2)− 102π2 + 108 ln(2)π2 − 336ζ3

)
+

32

3
(−8207 + 12260 ln(2))− 101344 ln2(2) + 66784 ln3(2)− 23040 ln4(2)

+3292π2 − 7992 ln(2)π2 + 5664 ln2(2)π2 + 204π4 + (35728− 49392 ln(2)) ζ3

+Lµ

(
192Cgg1, I (−1 + ln(2)) + CI

(
−472 + 664 ln(2)− 576 ln2(2) + 48π2

)
−8

3
nl
(
−68 + 2CI (−1 + ln(2)) + 92 ln(2)− 48 ln2(2) + 3π2

)
− 21616

+31888 ln(2)− 26304 ln2(2) + 10368 ln3(2) + 1332π2 − 1776 ln(2)π2 + 8064ζ3

)
+L2

µ

(
−16 (−1 + ln(2))nl − 2568 + 2568 ln(2)− 1152 ln2(2) + 144π2

)}
,

in the case of gluon fusion. For the qq̄ channel, we obtain

g0
qq̄,8a

= 1 + as

{
4Cqq̄1,8a

+
4

3

(
−82− 9 ln(2) + 8 ln2(2) + 4π2

)
+ Lµ

(
14− 4

3
nl

)}
(B.3)

+a2
s

{
− 32

3
Cqq̄1,8a

(
41− 57 ln(2) + 32 ln2(2)− 2π2

)
+

4

81
nl

(
9460− 13372 ln(2)

+8400 ln2(2)− 2496 ln3(2)− 489π2 + 432 ln(2)π2 − 1344ζ3

)
− 29920 ln2(2)
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+
8

27
(−83453 + 127247 ln(2)) +

2

9

(
79424 ln3(2)− 20480 ln4(2) + 5167π2

−10428 ln(2)π2 + 5248 ln2(2)π2 + 168π4

)
+

16

3
(1793− 1849 ln(2)) ζ3

+Lµ

(
256

3
Cqq̄1,8a

(−1 + ln(2)) +
16

27
nl
(
409− 553 ln(2) + 288 ln2(2)− 18π2

)
+

8

9

(
−8283 + 11819 ln(2)− 8640 ln2(2) + 2304 ln3(2) + 502π2 − 408 ln(2)π2

+1792ζ3

))
− L2

µ

32

9

(
10nl (−1 + ln(2)) + 245 + 64 ln2(2)− 245 ln(2)− 8π2

)}
.

The one-loop matching constants CggMS
1, I and Cqq̄MS

1,8a
are given in eqs. (3.21) and (3.22)

and the variables CI and DI in eqs. (3.9) and (3.10). Note that the presently unknown

two-loop matching coefficients Cij2, I have been set to zero in eqs. (B.2) and (B.3).

The Coulomb corrections depend on the color configuration of the gluino pair, but are

independent of the initial state. The matching constant depends on the Mellin moment N .

So does the constant for the non-relativistic kinetic energy correction, which is not related

to the resummation of threshold logarithms. For brevity, we also include this non-Coulomb

spin-dependent interaction into g0, C
ij, I . According to eq. (3.7), we find

g0, C
ij, I (N) = 1− as 4DIπ

2

√
N

π
+ a2

s

{
8

3
D2

Iπ
4N +DIπ

2

√
N

π

(
ln(Ñ)

(
−44 +

8

3
nl

)
(B.4)

−124

3
+ 88 ln(2) +

8

9
nl

(
5− 6 ln(2)

)
− Lµ

(
44− 8

3
nl

))
+16π2DI

(
3− 2DI(1 + vspin)

)(
1− ln(2)− 1

2
ln(Ñ)

)}
.

For completeness, we also give the coefficients gkij, I(λ̃) in the convention of eq. (B.1).

Introducing the abbreviations Lfr = ln(µ2
f/µ

2
r) and Lg̃r = ln(4m2

g̃/µ
2
r), we obtain

g1
ii = A

(1)
i β−1

0

(
2− 2 ln(1− 2λ̃) + ln(1− 2λ̃)λ̃−1

)
, (B.5)

g2
ii, I = A

(1)
i β−3

0 β1

(
2λ̃+ ln(1− 2λ̃) +

1

2
ln2(1− 2λ̃)

)
(B.6)

+A
(1)
i β−1

0

(
2λ̃ Lfr + ln(1− 2λ̃)Lg̃r

)
+A

(2)
i β−2

0

(
−2λ̃− ln(1− 2λ̃)

)
+ β−1

0

1

2
ln(1− 2λ̃)

(
D

(1)
i +D

(1)
gg, I

)
,

g3
ii, I = A

(1)
i β−4

0 β2
1

(
−1

2
− λ̃−

(
1− 1

1− 2λ̃

)
ln(1− 2λ̃) +

1

2(1− 2λ̃)

(
1 + ln2(1− 2λ̃)

))
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