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The adiabatic insertion of a � flux into a quantum spin Hall insulator gives rise to localized spin and

charge fluxon states. We demonstrate that � fluxes can be used in exact quantum Monte Carlo simulations

to identify a correlated Z2 topological insulator using the example of the Kane-Mele-Hubbard model.

In the presence of repulsive interactions, a � flux gives rise to a Kramers doublet of spin-fluxon states with

a Curie-law signature in the magnetic susceptibility. Electronic correlations also provide a bosonic mode

of magnetic excitons with tunable energy that act as exchange particles and mediate a dynamical

interaction of adjustable range and strength between spin fluxons. � fluxes can therefore be used to

build models of interacting spins. This idea is applied to a three-spin ring and to one-dimensional spin

chains. Because of the freedom to create almost arbitrary spin lattices, correlated topological insulators

with � fluxes represent a novel kind of quantum simulator, potentially useful for numerical simulations

and experiments.
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I. INTRODUCTION

A topological insulator represents a novel state of matter
characterized by a special band structure that can result,
e.g., from strong spin-orbit interaction [1,2]. In two dimen-
sions, this state is called a quantum spin Hall insulator and
has deep connections with the quantum Hall effect, includ-
ing the coexistence of a bulk band gap and metallic edge
states, the absence of symmetry breaking, and the possi-
bility of a mathematical classification [3,4]. Importantly,
because of the absence of a magnetic field, the quantum
spin Hall insulator preserves time-reversal symmetry,
which provides protection against interactions and disorder
[5–7]. The quantum spin Hall insulator has been realized in
HgTe quantum wells [8,9].

Correlated topological insulators with strong electron-
electron interactions are the focus of current research [10].
Intriguing concepts include electron fractionalization in
the presence of time-reversal symmetry, [11–14] spin
liquids [14–16], and topological Mott insulators [17,18].
Remarkably, some of the theoretical models can be studied
using exact numerical methods. A central problem in this
context is the question of how to detect a topological
state directly from bulk properties, for example, in cases
where the bulk-boundary correspondence breaks down.
Experimentally, this issue also arises in the absence of
sharp edges in proposed cold-atom realizations as a result
of the trapping potential [19,20]. The classification in
terms of a Z2 Chern-Simons index relies on Bloch wave

functions and is therefore only valid for noninteracting
systems. Generalizations involve twisted boundary condi-
tions [21] or Green functions [22–27] and are challenging
to use in experiments or exact simulations. Indirect signa-
tures such as the closing of gaps [16] or the crossing of
energy levels [28] require, among other difficulties, experi-
mental tuning of microscopic parameters.
Topological insulators show a unique response to

topological defects such as dislocations [29,30] or � fluxes
[12,30,31]. Upon adiabatic insertion of a � flux, Faraday’s
law, together with the quantized transverse conductivity,
gives rise to midgap charge and spin-fluxon states [12,31].
These states are exponentially localized around the flux
[12,31]. The existence of these states is ensured, even in the
presence of interactions or disorder, by time-reversal sym-
metry, and has been suggested as a bulk probe of the Z2

index [12,31]. The concept of fluxons can also be general-
ized to situations where spin is not conserved, such as in
the presence of Rashba coupling. In three dimensions, a
magnetic flux gives rise to the wormhole effect [32].
Electron-electron repulsion lifts the degeneracy of charge
and spin fluxons, but the two degenerate spin-fluxon
states constitute a localized spin with Sz ¼ �1=2 [12].
Dynamical� fluxes emerge in the context of fractionalized
topological insulators [12,13].
Previous work on � fluxes in noninteracting quantum

spin Hall insulators [12,30,31] was based on square-lattice
models such as that for HgTe quantum wells [8]. Here, we
consider the half-filled Kane-Mele model on the honey-
comb lattice [3] (historically the first model with a Z2

topological phase), which has close connections to gra-
phene [3], the integer quantum Hall effect [33], and, when
including interactions, to correlated Dirac fermions [15].
Topological phases of interacting fermions on honeycomb
lattices may be realized in transition metal oxides [34],
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semiconductor structures [35], graphene [36], or cold
atoms [37] (see also Ref. [10]).

Here, we use � fluxes in combination with exact quan-
tum Monte Carlo simulations and show that they can be
used efficiently to probe the topological invariant of corre-
lated topological insulators. In particular, this method does
not rely on an adiabatic connection to a noninteracting
state, and it may also be used for fractional states. In
addition, we demonstrate that� fluxes permit the construc-
tion of quantum spin models of almost arbitrary geometry
and with tunable, dynamical interactions. The spins corre-
spond to the spin fluxons created by inserting � fluxes, and
the interaction is mediated by magnetic excitons corre-
sponding to collective magnetic fluctuations of the topo-
logical insulator. These spin models can be studied
theoretically with the quantum Monte Carlo method, or
experimentally. As examples, we show that a ring of three
spins has a ground state with magnetization 1=2 and that a
one-dimensional chain of fluxons undergoes a Mott tran-
sition and is described at low energies by an XXZ model.

The article is organized as follows. In Sec. II, we in-
troduce the Kane-Mele and Kane-Mele-Hubbard models.
Section III provides details about the methods. The use of
� fluxes as a probe for topological states is discussed in
Sec. IV, whereas the construction of quantum spin models
is the topic of Sec. V. Conclusions are given in Sec. VI, and
we provide three appendixes.

II. MODEL

The half-filled Kane-Mele model with additional
electron-electron interactions can be studied with powerful
quantum Monte Carlo methods [16,18]. Using the spinor

notation ĉyi ¼ ðĉyi"; ĉyi#Þ, where ĉyi� is a creation operator for

an electron in a Wannier state at site i with spin �, the
Hamiltonian reads

HKM ¼ �t
X
hi;ji

�ijĉ
y
i ĉj þ i�

X
hhi;jii

�ijĉ
y
i ð�ij � �Þĉj

þ i�
X
hi;ji

�ijĉ
y
i ðs� d̂ijÞ � ẑĉj: (1)

The notations hi; ji and hhi; jii indicate that the sites i and j
are nearest neighbors and next-nearest neighbors, respec-
tively, and implicitly include the Hermitian conjugate
terms.

The first term describes the hopping of electrons be-
tween neighboring lattice sites. The second term represents
the spin-orbit coupling which reduces the SUð2Þ spin
rotation symmetry to a Uð1Þ symmetry. The third term is
an additional Rashba spin-orbit coupling [38]. The addi-
tional factors �ij ¼ �1 take into account any � fluxes

present, whereas the original Kane-Mele model (without
� fluxes) is recovered from Eq. (1) by setting �ij ¼ 1.

The spin-orbit term corresponds to a next-nearest-
neighbor hopping with a complex amplitude i� and has

been derived from the spin-orbit coupling in graphene [3].
This hopping acquires a sign �1, depending on its direc-
tion, the sublattice, and the electron spin. This sign is
encoded in (�ij � �), where

� ij ¼
dik � dkj
jdik � dkjj : (2)

dik is the vector connecting sites i and k, and k is the
intermediate lattice site involved in the hopping process
from i to j. For a coordinate-independent representation,
the vectors d�� are defined in three-dimensional space,

although the z component vanishes. The vector � is de-
fined by � ¼ ð�x; �y; �zÞ, with the Pauli matrices ��.
The last term in Eq. (1) is the Rashba spin-orbit inter-

action [3,5]. It is defined in terms of the spin vector

s ¼ �=2 and the unit vector d̂ij, which can be expressed

in terms of the nearest-neighbor vectors �1, �2, �3 [39].
The Rashba coupling breaks the z � �z inversion
symmetry and has to be taken into account, for example,
in the presence of a substrate. Because this term includes
spin-flip terms, spin is no longer conserved. The Rashba
term has been included in the results for the noninteracting
model (1), but cannot be included in quantum Monte Carlo
simulations of the interacting model (3) due to a minus-
sign problem.
The model (1) can be solved exactly [3,5,40]. In the

absence of Rashba coupling, � ¼ 0, the Kane-Mele model
describes a Z2 quantum spin Hall insulator for any � > 0.

This state is characterized by a bulk band gap�sp ¼ 3
ffiffiffi
3

p
�,

a spin gap �s ¼ 2�sp, and a quantized spin Hall conduc-

tivity �s
xy ¼ e2

2� . The topological state survives for Rashba

interactions �< 2
ffiffiffi
3

p
� (for chemical potential� ¼ 0) and

has protected, helical edge states for geometries with open
boundaries [3,5,40]. We use t as the unit of energy (@ ¼ 1),
take �=t ¼ 0:2, and consider periodic lattices with L� L0
unit cells.
To investigate the effect of electron-electron repulsion,

we consider the paradigmatic Hubbard interaction [41] and
arrive at the Kane-Mele-Hubbard model [42],

HKMH ¼ HKM þHU; HU ¼ 1

2
U
X
i

ðĉyi ĉi � 1Þ2: (3)

Hamiltonian (3) without Rashba coupling has been studied
intensely [16,42–48]. In particular, its symmetries permit
the application of exact quantum Monte Carlo methods
without a sign problem [16,43,48].
On a lattice with periodic boundaries, � fluxes can only

be inserted in pairs, as illustrated for the minimal number
of two fluxes in Fig. 1. The flux pair is connected by a
branch cut (or string), and every hopping process crossing
the cut acquires a phase ei� ¼ �1, as encoded by �ij in

Eq. (1). Different choices of the branch cut for fixed flux
positions are related by a gauge transformation.
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III. METHOD

We have used the auxiliary-field quantum Monte
Carlo method [49], which was previously applied to the
Hubbard model on the honeycomb lattice [15], and the
Kane-Mele-Hubbard model [16,43,48]. The central idea of
this stochastic method is to use a path integral representation
of the interacting model (3). By means of a Hubbard-
Stratonovich transformation, the Hubbard term is decoupled,
leading to a problem of noninteracting fermions in an
external, space-dependent and imaginary-time-dependent
field. The sampling is over different configurations of these
auxiliary fields in terms of local updates. For a given
configuration of fields, Wick’s theorem can be used to
calculate arbitrary correlation functions from the single-
particle Green function. We refer to a review [50] and
previous work [15,16,48] for technical details such as the
calculation of energy gaps.

Here, we have used a projective formulation (with
projection parameter �t ¼ 40) to obtain ground-state
results, starting from a trial wave function (the ground state
of the U ¼ 0 case) [48] and a finite-temperature formula-
tion to calculate thermodynamic properties. Both variants
rely on a Trotter discretization of imaginary time (we used
�� ¼ �=L ¼ �=L ¼ 0:1), but the associated systematic
error is smaller than the statistical errors. At half filling,
time-reversal invariance ensures that simulations can be
carried out without a minus-sign problem, even in the
presence of � fluxes.

IV. USING � FLUXES TO PROBE CORRELATED
TOPOLOGICAL STATES

A. Thermodynamic signature of � fluxes

In the topological phase of the model (1), each � flux
gives rise to four fluxon states which are exponentially
localized (due to the bulk energy gap �sp) near the corre-

sponding flux-threaded hexagons [12,31] (see Fig. 1). The
states correspond to the spin fluxons j "i, j #i (with energy
E"#), forming a Kramers pair related by time reversal, and
the charge fluxons jþi, j�i (with energies Eþ, E�), related
by particle-hole symmetry. As we show in Fig. 2, the
fluxon states lie inside the bulk band gap, and for non-
interacting electrons, E"# ¼ Eþ ¼ E�.

The fluxons leave a characteristic signature in the static
spin and charge susceptibilities,

	s ¼ �ðhM̂2
zi � hM̂zi2Þ; 	c ¼ �ðhN̂2i � hN̂i2Þ; (4)

which are defined in terms of the operators of total spin

in the z direction (M̂z ¼
P

iĉ
y
i �

zĉi) and of the total

charge (N̂ ¼ P
iĉ

y
i ĉi); the inverse temperature is given by

� ¼ 1
kBT

. At low temperatures, kBT � �sp, we can restrict

the Hilbert space to fj "i; j #i; jþi; j�ig. If the spin fluxons
are independent, and for � ¼ 0, we expect a Curie law
	s ¼ 	c ¼ 1

2kBT
per � flux, and hence 	s ¼ 	c ¼ 1

kBT
for

two independent � fluxes (see Appendix A). The prefactor
of the Curie law follows from the quantized spin Hall
conductance in the absence of Rashba coupling [3].
Similarly, a Curie law was also predicted for topological
excitations in polyacetylene [51].

FIG. 1. For a lattice with periodic boundaries, � fluxes can be
inserted in pairs. Each flux threads a hexagon (highlighted in
blue) of the honeycomb lattice, and the pair is connected by a
branch cut (blue line). Hopping processes crossing the branch
cut acquire a phase ei� ¼ �1.
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FIG. 3. Spin susceptibility of the Kane-Mele model
(�=t ¼ 0:2) with two � fluxes at the maximal distance on an
18� 18 lattice, for different Rashba couplings �. At tempera-
tures kBT & 0:1t, each � flux contributes 1

2kBT
to the suscepti-

bility, leading to 	s � 1
kBT

. Also shown is the spin-gap energy

scale 0:2�s for T ¼ 0, � ¼ 0. For �> 0, the chemical potential
is adjusted to retain a half-filled band.

FIG. 2. In a quantum spin Hall insulator, a � flux gives rise
to four states (with charge q and spin Sz) localized near the
flux, which lie inside the bulk energy gap between the valence
and conduction bands (labeled ‘‘VB’’ and ‘‘CB’’ in the figure,
respectively) [12,31]. The states correspond to a Kramers dou-
blet of spin fluxons j "i, j #i with energy E"# and a doublet of
charge fluxons jþi, j�i with energies Eþ, E�.
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Figure 3 shows results for 	s as a function of tempera-
ture for the Kane-Mele model with two � fluxes located at
the largest possible distance. At temperatures kBT � �s,
	s is dominated by bulk effects. For kBT & 0:1t, we ob-
serve the expected Curie law. The latter is robust with
respect to Rashba coupling, which is crucial for possible
experimental realizations.

B. Probing correlated topological insulators

Figure 3 establishes the existence and thermodynamic
signature of degenerate spin and charge fluxons in a quan-
tum spin Hall insulator threaded by a pair of � fluxes. We
now consider the effect of electron-electron interactions in
the framework of the Kane-Mele-Hubbard model (3). For
� > 0, the phase diagram of the latter includes a correlated
quantum spin Hall insulating phase that is adiabatically
connected to that of the Kane-Mele model (i.e., U ¼ 0),
and a Mott insulating phase with long-range antiferromag-
netic order [42,48]. Figure 4(a) shows the quantum phase
transition between these two phases as a function of U=t at
�=t ¼ 0:2. At the transition, the spin gap �s—as obtained
from finite-size scaling (see Ref. [48] for details)—closes,
corresponding to the condensation of magnetic excitons
[47,48]. The magnetic order is of the easy-plane type, and
the transition has 3D XY universality corresponding to
the ordering of local moments [47,48]. For U � Uc,

time-reversal symmetry is spontaneously broken, and the
single-particle gap �sp remains open across the transition

[48] [see Fig. 4(a)].
The location of the critical point can be estimated from

the scaling behavior of the real-space spin-spin correlation
function

SxxðrÞ ¼ hSxAðrÞSxAð0Þi (5)

at the largest distance r ¼ L=2. Here, we consider corre-
lations between spins on the A sublattice, but results are the
same for the B sublattice. The limit limL!1SxxðL=2Þ is
identical to m2, with m being the magnetization per site.
This critical value can be obtained by considering the 3D
XY scaling behavior at the transition. Following Ref. [48],

we plot L2�=
SxxðL=2Þ as a function of U for different
system sizes by using the critical exponents z ¼ 1, 
 ¼
0:6717ð1Þ, and � ¼ 0:3486ð1Þ [52]. Figure 4(b) reveals the
expected intersection of curves at the critical point and
gives Uc=t ¼ 5:70ð3Þ.
The well-understood magnetic transition of the model

(3) provides a test case for the use of � fluxes to probe
a correlated quantum spin Hall state, as well as to track
the interaction-driven transition to a topologically trivial
state. We solve the interacting model with two � fluxes by
using exact quantum Monte Carlo simulations. Spin flux-
ons can be detected by calculating the lattice-site-resolved,
dynamical spin-structure factor at T ¼ 0, defined as

Sði; !Þ ¼ �
X
n

jhnjĉyi �zĉij0ij2�ðEn � E0 �!Þ: (6)

Here, HKMHjni ¼ Enjni, and j0i denotes the ground state.
Sði; !Þ corresponds to the spectrum of spin excitations at
lattice site i. A real-space map of the spin-fluxon states j "i,
j #i is obtained by integrating Sði; !Þ up to an energy scale
�=t ¼ 0:2, well within the charge gap �c � 2�sp, giving

S�ðiÞ ¼
R
�
0 d!Sði; !Þ. For U=t ¼ 4, corresponding to the

quantum spin Hall phase [see Fig. 4(a)], we see in Fig. 5(a)
very sharply defined spin fluxons localized at the two flux-
threaded hexagons. The value of S�ðiÞ is about 3 orders of
magnitude smaller at lattice sites that are further away
from a flux so that the spin fluxons can easily be detected
numerically. In Fig. 5(b), we show results for the magnetic
insulating phase at U=t ¼ 6. As expected for this topologi-
cally trivial state, no well-defined spin fluxons exist.
The dependence of S�ðiÞ on U=t across the magnetic

quantum phase transition is shown in Fig. 5(c). A clear
signal is found deep in the topological-insulator phase,
whereas a strong drop is observed on approaching the
critical point at Uc=t ¼ 5:70ð3Þ. Hence, the spin-fluxon
signal can be used in quantum Monte Carlo simulations
to distinguish topological and nontopological phases.
As for the noninteracting case (Fig. 3), the spin fluxons

created by the fluxes give rise to a characteristic Curie law
in the spin susceptibility. Figure 6(a) shows quantum
Monte Carlo results for the spin and charge susceptibilities
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FIG. 4. (a) Spin gap �sðq ¼ 0Þ and single-particle gap
�spðq ¼ KÞ in the thermodynamic limit as a function of the

Hubbard repulsion U, at T ¼ 0 (�=t ¼ 0:2, � ¼ 0). (b) Scaling
of SxxðL=2Þ using the critical exponents of the 3D XY model,
z ¼ 1, 
 ¼ 0:6717ð1Þ, and � ¼ 0:3486ð1Þ [52]. The intersection
gives the critical point Uc=t ¼ 5:70ð3Þ. The lattice size is L� L.
Error bars are smaller than the symbols.
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defined in Eq. (4) in the topological phase (U=t ¼ 4).
We again consider two fluxes at the maximal separation.
At low temperatures, kBT � �s, 	s is well described by
	s ¼ 2

kBT
, or 1

kBT
per � flux. The additional factor of 2

compared to the case U ¼ 0 comes from the splitting of
spin and charge states, which only leaves the Kramers

doublet fj "i; j #ig at low energies (see Appendix A). The
Curie law holds down to the lowest temperatures consid-
ered in Fig. 6(a). Finally, the charge susceptibility is
strongly suppressed at low temperatures and reveals the
absence of low-energy charge fluxons as a result of the
Hubbard repulsion.

C. Interaction between spin fluxons

So far, we have exploited the thermodynamic and
spectral signatures of independent spin-fluxon excitations
(i.e., free spins). On periodic lattices, spin fluxons can only
be created in pairs, and it is therefore interesting to con-
sider their mutual interactions. Such interactions will play
a key role in Sec. V, where we consider quantum spin Hall
insulators with multiple � fluxes to create and simulate
systems of interacting spins.
Interaction effects due to a coupling between two spin

fluxons in a lattice with one pair of� fluxes become visible
for larger U=t, i.e., closer to the magnetic transition.
Figures 6(b) and 6(c) show a deviation from the Curie
law below a temperature scale determined by the interac-
tion between spin fluxons. In the model (3), this interaction
is mediated by the exchange of collective spin excitations
(magnetic excitons), which are the lowest-lying excitations
of the correlated topological insulator, and they evolve into
the gapless Goldstone mode of the magnetic state. Since
magnetic order is of the easy-plane type, the dominant
contribution of the resulting interaction is expected to
have the general form

Sint ¼ �g2
X
r�r0

ZZ �

0
d�d�0½Sþ

r ð�ÞDðr� r0; �� �0Þ

� S�
r0 ð�0Þ þ H:c:�; (7)

where S�
r ð�Þ are spin-flip operators acting on a spin fluxon

at position r at time �, Dðr� r0; �� �0Þ is the Fourier

(a) Topological insulator

(b) Antiferromagnet
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3 4 5 6 7 8

(c)
Topological
insulator

Antiferromagnetic
Mott insulator

FIG. 5. Integrated dynamical spin-structure factor S�ðiÞ at
T ¼ 0 on a 9� 9 lattice. (a) Localized spin fluxons created in
the topological-insulator phase at U=t ¼ 4. (b) Absence of
spin fluxons in the magnetic phase at U=t ¼ 6. (c) Maximum
of S�ðiÞ, as a function of U=t. Here �=t ¼ 0:2, � ¼ 0, and
�=t ¼ 0:2.

FIG. 6. (a) Spin (	s) and charge (	c) susceptibilities of the Kane-Mele-Hubbard model (�=t ¼ 0:2, � ¼ 0) at U=t ¼ 4. We consider
L� L lattices with one pair of � fluxes placed at the maximal distance. At low temperatures, the spin susceptibility reveals a Curie law
	s ¼ 2

kBT
, whereas the charge susceptibility is suppressed by the charge gap. (b), (c) Spin susceptibility as a function of temperature for

different values of U=t (�=t ¼ 0:2, � ¼ 0). (a)–(c) show that with increasing U=t, the range of the interaction between spin fluxons
increases, leading to deviations from the Curie law 	s ¼ 2

kBT
at low temperatures. (d) For U >Uc ¼ 5:70ð3Þt, 	s reflects the presence

of long-range magnetic order in the bulk. Error bars are smaller than the symbol size. The arrows indicate the energy scale associated
with the spin gap.
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transform of the exciton propagator Dðq; i�mÞ(q: momen-
tum; �m ¼ 2n�=�: bosonic Matsubara frequency), and g
is a coupling constant. At long wavelengths, the dispersion
relation of the collective spin mode can be written as

!ðqÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2jq�Qj2 þ�2

s

p
, where v is the spin velocity,

�s is the spin gap, and Q is the magnetic-ordering
wave vector. The minimal exciton energy is given by
!ðq ¼ QÞ ¼ �s. Fourier transformation of the propagator
(see Appendix C) gives, in the limit of low energies and
long wavelengths,

Dðr; �Þ 	 expðiQ � rÞ expð��s�Þ exp
�
�jrj2�s

2v2�

�
: (8)

The first term determines the sign of the interaction. The
decay at large imaginary time � is governed by the spin gap
�s. The fast decay as a function of jrj underlies the clear
Curie law seen, e.g., in Fig. 6. The interaction range
and strength can be tuned via the spin gap and hence
[cf. Fig. 4(a)] by varying U=t.

From Eq. (8), we expect the interaction range to in-
crease with increasing U=t due to the decrease of �s

[see Fig. 4(a)]. Indeed, Figs. 6(b) and 6(c) reveal an
enhanced effect of the spin-fluxon separation at low tem-
peratures with increasing U=t. In particular, for U=t ¼ 5:5
(close to the magnetic transition), Fig. 6(c) shows a Curie
law corresponding to two free spin fluxons, only for the
largest system sizes (L ¼ 18). As U ! Uc, the interaction
range diverges, and free spin fluxons can no longer exist.
For U >Uc, time-reversal invariance is broken, and �
fluxes do not create spin fluxons. Instead, the spin suscep-
tibility in Fig. 6(d) is that of an antiferromagnet; the finite
value of 	s=L

2 at T ¼ 0 reflects the density of spin-wave
excitations.

To illustrate the dependence of the interaction strength
on �s, we consider two fluxes at a fixed, small distance, as
illustrated in the inset of Fig. 7. We show the spin suscep-
tibility for different values of U=t in Fig. 7. For U=t ¼ 3, a
Curie law 	s � 2

kBT
may be inferred at temperatures kBT �

0:1t. Increasing U=t, the interaction between the spin
fluxons becomes too large to observe free spin fluxons
below the temperature range set by the bulk spin gap �s.
The downturn of 	s occurs at higher and higher tempera-
tures with increasing U=t, and it reflects a tunable,
correlation-induced energy scale for the interaction
between spin fluxons that is absent in Fig. 3.

V. �-FLUX QUANTUM SPIN MODELS

The possibility of inserting � fluxes to create localized
spin fluxons with a tunable interaction mediated by mag-
netic excitons provides a toolbox to engineer interacting
spin models in correlated topological insulators. The com-
putational effort for quantum Monte Carlo simulations
does not depend on the number of � fluxes, and the latter
can be arranged in almost arbitrary geometries on the
honeycomb lattice.

A. Three-spin system

As a first extension of the two-spin cases considered so
far, we consider four spin fluxons emerging from two pairs
of � fluxes. The fluxes are arranged so that three spin
fluxons form a ring, and the fourth spin fluxon is located
at the largest distance from the center of the ring. For large
enough lattices, the separated spin fluxon will not couple to
the other three, and the physical problem is similar to
experiments on coupled quantum dots [53] or flux qubits
[54] in the context of quantum computation. The three spin
fluxons experience a transverse interaction of the form (7)
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FIG. 7. Spin susceptibility as a function of temperature for two
� fluxes arranged as shown in the inset (�=t ¼ 0:2, � ¼ 0, 9� 9
lattice). With increasing U=t, the strength of the interaction
between spin fluxons increases, as revealed by the shift of the
temperature below which deviations from a 2

kBT
Curie law occur.

Statistical errors are smaller than the symbol size. Inset: S�ðiÞ
for U=t ¼ 4, using the same color coding as in Fig. 5(a).
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FIG. 8. Spin susceptibility as a function of temperature for four
� fluxes arranged as shown in the inset (�=t ¼ 0:2, � ¼ 0,
U=t ¼ 4) on L� L lattices. The data reveal a Curie law 4

kBT
at

intermediate temperatures and 2
kBT

at low temperatures.

Statistical errors are smaller than the symbol size. Inset: S�ðiÞ
for L ¼ 15, using the same color coding as in Fig. 5(a).
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and behave as an effective spin with Sz ¼ �1=2 at
low temperatures (see Appendix B). The spin susceptibility
for U=t ¼ 4 shown in Fig. 8 reveals that, at low tempera-
tures, the two independent spins indeed give rise to the
expected Curie law 	s ¼ 2

kBT
. At higher temperatures

kBT � 0:1t, we find 	s ¼ 4
kBT

, corresponding to four in-

dependent spin fluxons. In the regime where 	s ¼ 2
kBT

, the

sign of the interaction between the spin fluxons determines
the ground-state degeneracy of the three-spin cluster. A net
ferromagnetic interaction results in a spin-1=2 doublet,
whereas an antiferromagnetic coupling gives rise to a four-
fold degenerate, chiral ground state (see Appendix B). In
principle, the sign of the exchange coupling can be deter-
mined from entropy measurements. Since Q ¼ 0 for the
model (3), Eq. (8) suggests that the interaction is
ferromagnetic.

B. Simulation of one-dimensional fluxon chains

Whereas the study of systems with a small number of
spins is relevant for applications such as quantum comput-
ing, many questions in condensed matter physics are re-
lated to periodic spin lattices. In this section, we therefore
consider one-dimensional chains of � fluxes in the honey-
comb lattice with periodic boundary conditions.

We begin with the noninteracting Kane-Mele model
with a periodic flux chain. The fluxon excitations are
visible in Fig. 9, which shows the integrated local density
of states, A�ðiÞ ¼

R
�
0 d!Aði; !Þ; the single-particle spec-

tral function Aði; !Þ is defined as usual in terms of the
single-particle Green function, Aði; !Þ ¼ �ImGði; !Þ.
Whereas the fluxons are well localized in the direction
normal to the chain, the overlap of neighboring fluxons in
the chain gives rise to a tight-binding band inside the
topological band gap, which can be seen in the spectrum
shown in Fig. 10. The specific form of the band structure
can be attributed to the fact that the smallest unit cell for
the fluxon chain contains two flux-threaded hexagons

(and is four hexagons wide) (see Fig. 9). Exploiting
the fact that the four possible fluxon states per hexagon,
fj "i; j #i; jþi; j�ig, can formally be written in terms of the
fermion Fock states fj "i; j #i; j0i; j "#ig, and assuming
nearest-neighbor hopping, a suitable Hamiltonian is
given by

H ¼ �~t
X
i�

ð�y
i�c i� � c y

i��iþa�� þ H:c:Þ; (9)

where �, c refer to the two flux-threaded hexagons
in the unit cell, and i numbers the unit cells. The resulting
band dispersion ðkÞ ¼ �2~t sinð2kaÞ matches the low-
energy bands in the spectrum (Fig. 10). The form of the
effective low-energy Hamiltonian, and especially the
gapless nature of the spectrum, stems from the fact that
the unit cell is a gauge choice; a translation by half
a lattice vector, a�=2, corresponds to a gauge transfor-
mation. This symmetry allows the intercell and intracell
hopping integrals to differ only by a phase ei�. Imposing
time-reversal symmetry pins the phase factor to � ¼ 0
and � ¼ �, thus leading to the dispersion relations
�2~t cos½ðkþ �=a�Þa�=2�. The choice � ¼ � produces
the above-mentioned dispersion relation, and the choice
� ¼ 0 merely corresponds to translating the reciprocal
lattice by half a reciprocal lattice unit vector.
In contrast to the helical edge states of a quantum spin

Hall insulator, each of the two fluxon bands is spin degen-
erate. As a result, and because the system is half filled, we
expect a Mott transition of charge fluxons for any nonzero
electron-electron repulsion. Figure 11 shows the spin and
charge susceptibilities of the Kane-Mele-Hubbard model
on L� 12 lattices with L=2 � fluxes and U=t ¼ 4. The
Hubbard U causes an exponential suppression of the
charge susceptibility at low temperatures [see Fig. 11(b)
and inset], whereas low-energy spin-fluxon excitations

FIG. 9. Integrated local density of states A�ðiÞ (� ¼ 0:2t; see
text) at T ¼ 0 for the Kane-Mele model (�=t ¼ 0:2, � ¼ 0) with
a periodic chain of � fluxes. We show a part of the 72� 12
lattice used and the size of the magnetic unit cell containing two
� fluxes. The latter has width a� ¼ 4a, where a 
 1 corre-
sponds to the norm of the lattice vectors of the underlying
honeycomb lattice.

FIG. 10. Spectrum of eigenvalues of the Kane-Mele model
with a periodic chain of � fluxes (cf. Fig. 9). Here, �=t ¼ 0:2,
� ¼ 0, and the honeycomb lattice has dimensions 72� 12.
Points correspond to eigenvalues and lines to the band structure
ðkÞ ¼ �2~t sinð2kaÞ, with ~t � 0:126t and a 
 1.
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remain [Fig. 11(a)]. Hence, similar to the one-dimensional
Hubbard model, the fluxon chain undergoes a Mott
transition to a state with a nonzero charge gap but gapless
spin excitations.

In the Mott phase of the fluxon chain, the low-energy
physics is expected to be described by spin fluctuations
and hence by an effective spin model with spins corre-
sponding to Kramers doublets of localized spin fluxons.
Because the interaction range depends exponentially on
the spin gap, we expect nearest-neighbor interactions
Jxy, Jzz between spin fluxons to dominate, except for the
close vicinity of the magnetic transition. As argued be-
fore, the magnetic exciton is of predominantly easy-plane
type, and we therefore expect anisotropic interactions,
jJxyj � jJzzj. The minimal model for the spin chain is
the one-dimensional XXZ Hamiltonian,

H ¼ Jzz
X
i

Szi S
z
iþ1 þ Jxy

X
i

ðSþi S�iþ1 þ S�i Sþiþ1Þ: (10)

Using the ALPS 1.3 implementation [55], we can simulate
this model in the stochastic-series-expansion representa-
tion to calculate the spin susceptibility as a function of
temperature. There is one free parameter, Jxy=Jzz, which

is varied to obtain the best fit to the low-temperature
susceptibility (at high temperatures, bulk states of the
topological insulator begin to play a role) of the Kane-
Mele-Hubbard model. For example, considering six
spins, a rather good match between the spin-fluxon data
and the XXZ model is obtained for Jzz=jJxyj ¼ �0:1
(the sign of Jxy is irrelevant) (see Fig. 12). Importantly,
taking the same parameters, and simulating ten spins with
both spin fluxons and the XXZ model, equally good
agreement is found in Fig. 12. These results demonstrate
that the spin fluxons form a one-dimensional spin system
with well-defined interactions and that a quantum spin
Hall insulator with � fluxes can indeed be used as a
quantum simulator.

VI. CONCLUSIONS

In this work, we have presented quantum Monte Carlo
results for a correlated quantum spin Hall insulator with
topological defects in the form of � fluxes. Such fluxes
represent a universal probe for the topological index that
can be used in the presence of electronic correlations and
does not rely on spin conservation or an adiabatic connec-
tion to a noninteracting topological insulator. Our results
demonstrate that � fluxes can be combined with exact
numerical simulations and lead to clear signatures of
nontrivial topological properties in spectral and thermody-
namic properties. As a concrete example, we have studied
the magnetic quantum phase transition of the Kane-Mele-
Hubbard model at which time-reversal symmetry is spon-
taneously broken. In principle, � fluxes can also be used in
connection with fractional quantum spin Hall states.
More generally, � fluxes in correlated topological

insulators allow one to construct and simulate quantum
spin models and hence lead to a novel class of quantum
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FIG. 11. (a) Spin and (b) charge susceptibility of the
Kane-Mele-Hubbard model (�=t ¼ 0:2, � ¼ 0) at U=t ¼ 4.
We consider L� 12 lattices with L=2 � fluxes arranged in a
periodic one-dimensional chain. The inset in (b) shows the
charge susceptibility as a function of inverse temperature on a
logarithmic scale. The key in (a) applies to all panels.
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FIG. 12. Spin susceptibility as a function of temperature.
Symbols correspond to quantum Monte Carlo results for the
Kane-Mele-Hubbard model (�=t ¼ 0:2, � ¼ 0, U=t ¼ 4) on
L� 12 lattices with L=2 � fluxes arranged in a periodic one-
dimensional chain. Lines are quantum Monte Carlo results for
the one-dimensional XXZ model with Jzz=jJxyj ¼ �0:1 and L=2
lattice sites (spins).
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simulators. This finding is not restricted to the Kane-Mele-
Hubbard model considered here. In particular, magnetism
driven by electronic correlations—the origin of the
interaction between spin fluxons—is a common phenome-
non. The physics described here relies on the coexistence
of magnetic correlations and time-reversal symmetry and
cannot be captured by static mean-field descriptions. The
spin models share the topological protection of their host
against, for example, disorder. In general, they are charac-
terized by a dynamical, time-dependent interaction remi-
niscent of spin-boson problems. The detailed form and sign
of the interaction, whose strength and range can be tuned
via the electronic interactions, depend on the electronic
Hamiltonian and the lattice geometry of the underlying
topological insulator. Because of the spin-orbit interaction,
the spin symmetry is Uð1Þ, and—similar to cold-atom
realizations of the quantum Ising model [56]—the spin-
spin interaction is generically anisotropic. We have pro-
vided explicit evidence for the feasibility of our idea in
terms of simulations of two and four spins, as well as of
one-dimensional spin chains. Additional Rashba terms
lead to spin models with a discrete Z2 Ising symmetry.
Although spin-fluxon states are still well defined [12,31], it
is a priori not clear which operators have to be measured in
the numerical simulations. Finally, the concept of fluxons
originating from � fluxes carries over to three-dimensional
topological insulators [12,32].

An open question of central importance is whether the
use of � fluxes will enable us to study quantum spin
systems that are currently not accessible to numerical
methods, for example, due to a sign problem in the pres-
ence of frustrated interactions. Whereas we have provided
evidence for the possibility to simulate arrays and chains of
quantum spins, and to tune the interaction strength and
range, entropy measurements are required to determine the
sign of the interactions. However, the latter are extremely
demanding to carry out using discrete-time quantum
Monte Carlo methods. A systematic effort to study spin
fluxon chain and ladder geometries is currently in progress.

Our idea may potentially also be used in experiments.
A strongly correlated topological insulator on the honey-
comb lattice may be realized with Na2IrO3 [34] or with
molecular graphene [57]. It has been suggested that �
fluxes can be created in a quantum spin Hall insulator by
means of an adjacent superconductor and a magnetic field
[31]. This idea can be generalized to arrays of � fluxes
using Abrikosov lattices. Alternatively, � fluxes may be
realized using SQUIDs. A potential problem is that the
diameter of the � fluxes will not be of the order of the
lattice constant. Other exciting recent proposals that are
relevant for the realization of our idea include artificial
semiconductor honeycomb structures [35], cold atoms in
optical lattices [19], and cold atoms on chips [58]. In solid-
state setups, � fluxes can also be created by dislocations
[29,30] or wedge disclinations [59].
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APPENDIX A: SPIN SUSCEPTIBILITY
FOR TWO � FLUXES

A single � flux in a topological insulator gives rise to
four states, j "i, j #i, jþi, j�i. In the absence of correla-
tions, these states are degenerate. At low temperatures, the
spin susceptibility, defined in Eq. (4), can be calculated
using the Hilbert space formed by only these states.
Defining an effective Hamiltonian H� ¼ P

cE
c jc ihc j

with c 2 fþ;�; "; #g and Eþ ¼ E� ¼ E" ¼ E# ¼ E"#, we
obtain

	s¼�ðhM̂2
zi�hM̂zi2Þ¼ 1

kBT

P
c hc jM̂2

ze
��H� jc iP

c hc je��H� jc i ¼ 1

2kBT
:

(A1)

For U � kBT, the spin fluxons j "i, j #i are the only low-
energy excitations, and 	s can be calculated by restricting
c to f"; #g. Since E" ¼ E# ¼ E"# due to time-reversal sym-
metry, we get

	s ¼ 1

kBT
: (A2)

For the case of two independent � fluxes, the above
results imply 	s ¼ 1

kBT
at U ¼ 0 and 	s ¼ 2

kBT
for U > 0.

These results agree with the numerical results shown in
Fig. 3 for U ¼ 0 and in Figs. 6 and 7 for U > 0.
Our derivation is only valid in the absence of the Rashba

spin-orbit coupling �. However, the numerical results in
Fig. 3 show that the low-temperature Curie law in 	s is the
same also for � � 0.

APPENDIX B: SPIN SUSCEPTIBILITY
AND GROUND-STATE DEGENERACY

FOR FOUR � FLUXES

The results for the Kane-Mele-Hubbard model with four
� fluxes shown in Fig. 8 reveal a 2

kBT
Curie law at low

temperatures and a 4
kBT

Curie law at higher temperatures.

This finding can be understood as corresponding to either
two or four noninteracting spins. The latter case corre-
sponds to the spatially separate spin fluxon and an effective
spin-1=2Kramers doublet (formed by the three nearby spin
fluxons) in the regime where 	s � 2

kBT
and to four non-

interacting spin fluxons in the regime where 	s � 4
kBT

.

The cluster formed by the three nearby spin fluxons has
the possible configurations
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jMzj ¼ 3

2
: fj """i; j ###ig;

jMzj ¼ 1

2
: fj "##i; j #"#i; j ##"i; j #""i; j "#"i; j ""#ig;

(B1)

whereMz denotes the total spin in the z direction. Since the
exciton-mediated interaction in the Kane-Mele-Hubbard
model has the form given in Eq. (7), and hence promotes
spin flips, the ground state can be expected to have jMzj ¼
1=2. The above-mentioned effective spin-1=2 doublet then
corresponds to the two possible values Mz ¼ �1=2.

The degeneracy of the ground state depends on the sign of
the interaction. ConsideringMz¼1=2, we have the allowed
states j #""i, j "#"i, and j""#i. The spin-flip terms that con-
nect these states are of the form JðSþiþ1S

�
i þSþi S�iþ1Þ, with

periodic boundary conditions. An equivalent representa-
tion is given by the Hamiltonian

H ¼ J
X
j

ðjjþ 1ihjj þ jjihjþ 1jÞ; (B2)

which describes the hopping of a particle (the spin-down)
on a three-site ring, with j1i ¼ j #""i, etc. The eigenstates
are obtained by Fourier transformation and have the form

jki ¼ 1ffiffiffi
3

p X3
j¼1

eikjjji; k ¼ 0;� 2�

3
: (B3)

The eigenvalues are given by

EðkÞ ¼ 2J cosk: (B4)

For J < 0, the ground state has k ¼ 0 and energy equal to
2J. For J > 0, the ground state is chiral, with k ¼ �2�=3
and energy equal to �J. Taking into account the sector
Mz ¼ �1=2, we find a total ground-state degeneracy of
two in the ferromagnetic case (J < 0) and four in the
antiferromagnetic case (J > 0).

APPENDIX C: FOURIER TRANSFORM OF THE
EXCITON PROPAGATOR

The exciton propagator in Eq. (7) takes the form

Dðq; �Þ ¼ e�!ðqÞ

e�!ðqÞ � 1
� e��!ðqÞ

e��!ðqÞ � 1
; (C1)

with the exciton energy

!ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2jq�Qj2 þ �2

s

q
: (C2)

In the low-temperature limit � ! 1, the propagator be-

comes Dðq; �Þ ¼ e��!ðqÞ. Setting q0 ¼ q�Q, the Fourier
transform is given by

Dðr; �Þ ¼ eiQ�r Z d2q0eiq0�re�!ðq0þQÞ�: (C3)

Assuming �s � v, we can expand to obtain

!ðq0 þQÞ � �s

�
1þ v2jq0j2

2�2
s

�
: (C4)

Taking the continuum limit, the Fourier transform involves
the product of two Gaussian integrals, and the result is
given by Eq. (8).
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