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Nomenclature

Ar := Ar,1 = {z ∈ C | r < |z| < 1}, annulus with radius r ∈ (0, 1)

Ar,R := {z ∈ C | r < |z| < R}, annulus with radii 0 < r < R <∞

C complex plane

C∞ := C ∪ {∞}, the Riemann sphere

c(g) appropriate capacity of g, i.e. c(g) = lmr(g) (radial case), c(g) = lcm(g)
(bilateral case), c(g) = hcap(g) (chordal case), page 40

cΩ(H) := c(g), where g denotes the normalised appropriate mapping function on
Ω \ H, page 40

χ chordal metric

cl(A) closure of a set A ⊆ C with respect to the standard topology in C

cl∞(A) closure of a set A ⊆ C∞ with respect to the standard topology in C∞

con(Ω) connectivity of a domain Ω

D := {z ∈ C | |z| < 1}, the unit disk

Dr := {z ∈ C | |z| < r}, r ∈ (0,∞)

diam(A) := sup{|a− b| | a, b ∈ A}, diameter of a set A ⊆ C

dist(A,B) := inf{|a− b| | a ∈ A, b ∈ B}, distance of two sets A,B ⊆ C

ext(Γ) exterior of the Jordan curve Γ

hcap(g) half-plane capacity of g, page 35

hcapΩ(H) := hcap(g), where g is the normalised chordal mapping function on Ω \ H,
page 35

int(Γ) interior of the Jordan curve Γ

lcm(g) logarithmic conformal modulus, page 32
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NOMENCLATURE

lcmΩ(H) :=lcm(g), where g denotes the bilateral mapping function on Ω \ H, page
32

lmr(g) := ln g′(0), logarithmic mapping radius of g, page 25

lmrΩ(H) := lmr(g), where g is the normalised radial mapping function on Ω \ H,
page 25

C(I) set of continuous functions f : I → C, I ⊆ R

Ck(I) set of k times continuously differentiable functions f : I → C, I ⊆ R, k ∈ N

Ωn
k−→ Ω Ω is the kernel of each subsequence of (Ωn)n∈N, page 15

∂Ω := cl(Ω) \ Ω, the boundary of a domain Ω

∂∞Ω := cl∞(Ω) \ Ω, the boundary of a domain Ω on the Riemann sphere

R real numbers

T := {z ∈ C | |z| = 1} = ∂D, the unit circle

Tr := {z ∈ C | |z| = r} = ∂D, r ∈ (0,∞)

H := {z ∈ C | =(z) > 0}, the upper half-plane

A ⊆ B A is a subset of B

A ( B :⇔ A ⊆ B ∧A 6= B, A is a strict subset of B

Br(∞) := {z ∈ C∞ | χ(z,∞) < r}, ball around ∞ with radius r > 0 with respect
to the chordal metric

Br(w) := {z ∈ C∞ | |z − w| < r}, ball around w ∈ C with radius r > 0

fn
l.u.−−−→ f (fn)n∈N converges locally uniformly to f , page 16
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Chapter 1

Introduction to Loewner theory

In 1923, Charles Loewner (born as Karel Löwner) laid the foundation of a theory, nowa-
days known as Loewner theory , see [Löw23]. In this context, Loewner considered con-
formal mappings from the unit disk D := {z ∈ C | |z| < 1} onto D minus a single slit,
also known as single slit mappings. For any domain Ω, we will call a function g : Ω→ D
conformal1 (or conformal mapping from Ω onto D) if g is analytic and one-to-one and
g(Ω) = D. Moreover, Loewner proved that the class of single slit mappings is dense in
the class of all conformal maps on D. Loewner found out how to parametrise the slit
in order to describe the conformal single slit mappings by a differential equation known
as the Loewner differential equation. The long-term goal of his approach was to use the
differential equation in order to attack Bieberbach’s conjecture.

1.1 Radial Loewner equation and Bieberbach’s conjecture

First of all, let γ : [0, T ]→ cl(D) be a simple and continuous curve having γ(0) ∈ T := ∂D
and γ(0, T ] ⊆ D \ {0}. Using Riemann’s well-known mapping theorem, we find for each
t ∈ [0, T ], a unique conformal mapping gt from D \ γ(0, t] onto D such that gt(0) = 0
and g′t(0) > 0. Then it is an easy consequence of Schwarz lemma to see that t 7→ g′t(0)
is strictly increasing and g′0(0) = 1. Moreover, t 7→ g′t(0) is continuous on [0, T ]. Note
that this follows immediately from the kernel theorem due to Carathéodory (see Section
2.1). Summarising, it is not a great constraint to assume that γ is parametrised in such
a way that g′t(0) = et for all t ∈ [0, T ]. Obviously, for all t ∈ [0, T ], ht := g−1

T−t satisfies

h′t(0) = et−T and ht is the unique conformal mapping from D onto ΩT−t = D\γ(0, T − t]
having the same normalisation as gt. In 1923, Loewner proved the following theorem.

Theorem A. Let γ : [0, T ]→ D∪T be a simple and continuous curve satisfying γ(0) ∈ T
and γ(0, T ] ⊆ D\{0}. For each t ∈ [0, T ], ht denotes the unique conformal mapping that
maps D onto ΩT−t := D \ γ(0, T − t] with the normalisation ht(0) > 0 and ht(0) = 0.
Assume h′t(0) = et−T for all t ∈ [0, T ]. Then, for each z ∈ D, t 7→ ht(z) is differentiable2

1If f : Ω → D is analytic and one-to-one but not necessarily onto, we call f univalent . Thus an
univalent function f : Ω→ D is conformal if and only if f(Ω) = D.

2We will always indicate the derivative w.r.t. t by ḣt(z), while we write h′t(z) to denote the derivative
w.r.t. z.
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CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

on [0, T ] and satisfies

ḣt(z) = h′t(z) · z ·
κt + z

κt − z
for all t ∈ [0, T ] and all z ∈ D,

with a continuous function t 7→ κt ∈ T on [0, T ].

The differential equation in Theorem A is called (single-slit) radial Loewner partial
differential equation. It is a straightforward calculation to find the following corollary.

Corollary B. Let γ : [0, T ] → D ∪ T be a simple and continuous curve satisfying
γ(0) ∈ T and γ(0, T ] ⊆ D. For each t ∈ [0, T ], gt denotes the unique conformal mapping
that maps Ωt := D \ γ(0, t] onto D with the normalisation gt(0) = 0 and g′t(0) > 0.
Assume g′t(0) = et for all t ∈ [0, T ]. Then t 7→ gt(z) is differentiable on [0, T ] for each
z ∈ D and satisfies

ġt(z) = gt(z) ·
Ut + gt(z)

Ut − gt(z)
for all t ∈ [0, T ] and all z ∈ ΩT , (1.1)

with a continuous function t 7→ Ut ∈ T on [0, T ].

The previous differential equation is called (single-slit) radial Loewner ordinary dif-
ferential equation. κ : [0, T ]→ T from Theorem A and U : [0, T ]→ T from Corollary B
are called driving functions or driving terms. It is not hard to show that κt = UT−t for
all t ∈ [0, T ] in the previous context.

As mentioned before, Loewner’s work was heavily motivated by the so called Bieber-
bach conjecture. Therefore, let us consider the following famous class:

S := {f : D→ C | f univalent, f ′(0) = 1}.

If f ∈ S, we have f(z) = z + a2z
2 + a3z

3 + . . . around 0. In 1916, see [Bie16], L.
Bieberbach conjectured |ak| ≤ k for all k ∈ N, while equality holds for some k ≥ 2
if and only if f is a rotation of the Koebe function. Using the previous differential
equations, Loewner was able to prove |a3| ≤ 3, see [Löw23]. Although this was a
great breakthrough, Loewner was a little bit disappointed that he was not able to solve
Bieberbach’s conjecture completely. Maybe this is the reason that the paper [Löw23]
was Loewner’s first and only paper concerning this field3. Finally, almost seven decades
later, the problem was solved by L. de Branges, see [DB85]. While de Branges did not
use Loewner’s differential equation directly, C. FitzGerald and C. Pommerenke found
an easier proof based on Loewner’s results, see [FP85].

After Loewner published his paper in 1923, his ideas were developed and generalised
a lot. Herein, important contributions are due to C. Pommerenke, see [Pom65], and P.
Kufarev, see [Kuf43], leading to ‘general Loewner equations’. The difference between
Loewner original equation, see Equation (1.1), and more general Loewner type equations
is the kernel on the right-hand side. Nevertheless, most recent applications are based on
Loewner’s original equation, so we continue with that.

3This was mentioned by P. Duren during some lectures at Würzburg university in May 2014, see
[Dur14].
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CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

One might ask the natural question if there are other families of domains (Ωt)t∈[0,T ]

having Ωt ( Ωs, whenever t < s, with corresponding functions gt : Ωt → D normalised
by gt(0) = 0 and g′t(0) = et such that t 7→ gt fulfils a single-slit Loewner differential
equation with a continuous function t 7→ Ut. By ‘other families of domains’ we mean
domains such that ΩT is not a slit domain. This question goes back to Loewner (see
[Löw23], page 117):

‘Es sei hier noch bemerkt, daß dieser Satz nicht umgekehrt werden kann, d.h.
es gibt stetige Funktionen t 7→ Ut, wo die Lösung von (1.1) keine Schlitzab-
bildungen liefert. Es ist mir jedoch nicht bekannt, welche Bereiche außer den
Schlitzbereichen auf diese Art noch entstehen können.’

The first example of a non-slit mapping is due to P.P. Kufarev, see [Kuf47].
In 1966, Pommerenke gave an answer to Loewner’s previous question, see [Pom66],

where he proved the following theorem (even for unbounded Ωt).

Theorem C (Theorem 1 in [Pom66]). Let (Ωt)t∈[0,T ] be a family of simply connected
domains such that 0 ∈ ΩT , Ω0 = D and Ωs ( Ωt whenever 0 ≤ t < s ≤ T . Assume,
for all t ∈ [0, T ], gt : Ωt → D is the unique conformal mapping with the normalisation
g′t(0) = et and gt(0) = 0. Then the following two statements are equivalent:

(a) For each z ∈ Ωt, t 7→ gt(z) is differentiable on [0, T ] and fulfils differential equation
(1.1) with a continuous function t 7→ Ut ∈ T.

(b) For every ε > 0, there exists a δ > 0 such that whenever s, t ∈ [0, T ] and 0 < s−t < δ,
some cross-cut E of Ωt with diam(E) < ε separates 0 from Ωt \ Ωs.

See Section 2.4 in [Pom92] or Chapter 5 for the definition of a cross-cut. Theorem
C is helpful to understand how domains coming from a Loewner equation have to look
like. Moreover, it leads easily to non-slit mappings satisfying a Loewner equation.

In particular, it is possible to find families of domains (Ωt)t∈[0,T ] such that the corre-
sponding family (gt)t∈[0,T ] satisfies Equation (1.1), while ∂Ωt is not even locally connected
for some t ∈ [0, T ]. This case was studied intensively by J. Lind, D. Marshall and S.
Rohde, see [LMR10] where several examples are given.

1.2 Chordal Loewner equation and SLE

Recently, Loewner’s equation was used with great success in probability theory, as we
will see later. In this context, instead of Loewner’s original setting a different setting,
introduced originally by Kufarev considering slits growing in the upper half-plane, is
used mostly.

Therefore, let H := {z ∈ C | =(z) > 0} denote the upper half-plane and denote by
γ : [0, T ] → H ∪ R a simple and continuous curve such that γ(0) ∈ R and γ(0, T ] ⊆ H.
Analogously to Section 1.1, Riemann’s mapping theorem gives us a conformal mapping
gt from Ωt := H\γ(0, t] onto H for each t ∈ [0, T ]. This mapping is unique if we consider
the normalisation

gt(z) = z +
at
z

+O(|z|−2) around ∞, (1.2)

3



CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

known as the hydrodynamic normalisation. It is easy to see that at ≥ 0, while at is
called the half-plane capacity . Unsurprisingly, the half-plane capacity at plays a similar
role as g′t(0) in the radial case. Indeed, t 7→ at is strictly increasing and continuous, so
we may assume that γ is parametrised in such a way that at = 2t for all t ∈ [0, T ]4.
Then P. Kufarev, V. Sobolev and L. Sporyševa proved the following result, see [KSS68].

Theorem D. Let γ : [0, T ] → H ∪ R denote a simple and continuous curve such that
γ(0) ∈ R and γ(0, T ] ∈ H. For each t ∈ [0, T ], gt denotes the unique conformal mapping
from Ωt := H \ γ(0, T ] onto H having the hydrodynamic normalisation, see Equation
(1.2). Moreover, for each t ∈ [0, T ], assume at = 2t where at denotes the half-plane
capacity. Then t 7→ gt is differentiable on [0, T ] and fulfils

ġt(z) =
2

gt(z)− Ut
for all t ∈ [0, T ] and all z ∈ ΩT ,

with a continuous function t 7→ Ut ∈ R on [0, T ].

Note this theorem was published in Russian and it got studied a lot from the Soviet
school. As a result of the cold war, the radial case on the one hand and the chordal case
on the other case were often developed further independently from each other.

As indicated already before, Loewner’s differential equation, in particular Theorem
D, became of big interest once again in 2000. Before going into detail, it is important to
notice that for each fixed z ∈ H, the initial value problem

ġt(z) =
2

gt(z)− Ut
g0(z) = z,

with a given continuous function Ut : R → R, does has a unique solution gt(z) up to a
time Tz. Then gt is the unique conformal mapping from Ωt := {z ∈ H | Tz > t} onto
H satisfying the hydrodynamic normalisation, see Theorem 4.6 in [Law05] for a detailed
proof. Notice that same inverse result holds in the radial case as well, see Theorem 4.14
in [Law05].

In 2000, O. Schramm had the fruitful idea to replace the driving term Ut by a
Brownian motion

√
κBt, i.e. Bt is a standard Brownian motion and κ ≥ 0. This leads

to the definition of chordal Schramm–Loewner evolution (SLE) with parameter κ, see
[Sch00] for more details. Schramm realised that the (random) domains Ωt differ heavily
from the choice of κ. If κ ∈ [0, 4], with probability 1 Ωt is given by H minus a simple
curve. In the case κ ∈ (4, 8), w.p.1 Ωt comes from H minus a random curve hitting
itself and the real axis infinitely often. Finally, if κ ≥ 8, w.p.1 Ωt is generated by a
space-filling curve. In probability theory, Schramm–Loewner evolution was used with
great success, e.g. to prove the Mandelbrot conjecture, see [LSW01], or to find scaling
limits of discrete random processes.

1.3 Multiple slit Loewner equations

As we have seen in the previous sections, single slit mappings play a huge role in complex
analysis. Nevertheless, there are many models involving several of slits. Therefore, let

4For historical reasons, γ is most often parametrised in such a way that at = 2t. Moreover the value
2 plays a (hidden) role in the radial case as well, see for example Proposition 2.5 and Remark 2.2.
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CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

γ1, . . . , γm : [0, T ]→ D∪T, m ∈ N, denote disjoint simple and continuous curves such that
γk(0, T ] ⊆ D\{0} and γk(0) ∈ T for each k ∈ {1, . . . ,m}. Analogously to Section 1.1, we
define for each t ∈ [0, T ], gt as the unique conformal mapping from Ωt := D\

⋃m
k=1 γk(0, t]

onto D having the normalisation gt(0) = 0 and g′t(0) > 0. Moreover, we set Γk := γk[0, T ],
k ∈ {1, . . . ,m} and we call (Γ1, . . . ,Γm) tuple of disjoint radial unparametrised slit in
D. Then one might ask the question if there are parametrisations γk : [0, T ] → Γk
with k ∈ {1, . . . ,m} such that the corresponding t 7→ gt are differentiable on [0, T ].
Moreover, it would be nice to find a characterisation of the parametrisations leading to
differentiable t 7→ gt.

The first person who studied this case was E. Peschl, see [Pes36]. He proposed the
following theorem (see Theorem 12 in [Pes36]).

Theorem E. Let (Γ1, . . . ,Γm), m ∈ N, denote a tuple of disjoint radial unparametrised
slits in D.

Then there are parametrisations γk : [0, T ]→ Γk with k ∈ {1, . . . ,m} and T > 0 such
that for each z ∈ D \

⋃m
k=1 Γk, the corresponding gt(z) is differentiable w.r.t t on [0, T ]

and fulfils

ġt(z) = gt(z)

m∑
k=1

λk(t)
Uk(t) + gt(z)

Uk(t)− gt(z)
for all z ∈ Ω \

m⋃
k=1

Γk and all t ∈ [0, T ],

where for each k ∈ {1, . . . ,m}, t 7→ Uk(t) ∈ T and t 7→ λk(t) ≥ 0 are continuous on
[0, T ].

Here, for all t ∈ [0, T ], gt denotes the unique conformal mapping from Ωt := D \⋃m
k=1 γ(0, t] onto D having the normalisation gt(0) = 0 and g′t(0) > 0.

The previous differential equation is called multiple slit radial Loewner ODE . Anal-
ogously to Section 1.1, it is easy to see that the inverse function ht := g−1

t satisfies a
partial different equation, called multiple slit radial Loewner PDE . Obviously, it is pos-
sible to consider multiple slits in the chordal setting as well. Moreover, it is important
to note that Peschl considered already slits having branch points, for example two slits
have a branch point on T if γ1(0) = γ2(0) but γ1(0, T ] and γ2(0, T ] are still disjoint.

Nowadays multiple slit Loewner equations have several applications. First let us
have a rough look at Mathematical Physics. Herein, multiple slit Loewner equations are
used to describe Laplacian growth models. For example, see [Sel99] or [CM02] where it
is assumed that γk(t) expands in terms relative to the Laplacian field. Moreover, the
considered slits can have branch points as well. One can see that the functions λk(t),
k ∈ {1, . . . ,m}, represent growth factors indicating ‘how fast a slit grows’. Models where
the growth of multiple slits is restricted to a channel were studied in [GS08].

Another application of multiple slit Loewner equations is due to D. Prokhorov.
Herein, Prokhorov used multiple slit Loewner equations from an control-theoretical point
of view to study coefficient extremal problems for univalent functions, see [Pro93]. An
important theorem for his approach is the following.

Theorem F. Let (Γ1,Γ2) denote a tuple of disjoint radial unparametrised slits in D.
Moreover, assume Γ1,Γ2 are piecewise analytic.

5



CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

Then there is a unique T > 0, unique parametrisations γ1, γ2 : [0, T ] → Γk and
unique constants λ1, λ2 ∈ (0, 1) with λ1 + λ2 = 1 such that for each z ∈ D \ (Γ1 ∪ Γ2),
t 7→ gt(z) is differentiable on [0, T ] and fulfils the following differential equation

ġt(z) = gt(z)
2∑

k=1

λk
Uk(t) + gt(z)

Uk(t)− gt(z)
for all z ∈ D \ (Γ1 ∪ Γ2) and all t ∈ [0, T ],

where, for each k ∈ {1, 2}, t 7→ Uk(t) ∈ T is continuous on [0, T ]. Herein, for each
t ∈ [0, T ], gt denotes the unique conformal mapping from Ωt := D \ (γ1(0, t] ∪ γ2(0, t])
onto D having the normalisation gt(0) = 0 and g′t(0) > 0.

Under the conditions of Theorem F, the differential equation gives us easily g′t(0) = et

for all t ∈ [0, T ].

Note that the unique parametrisations from the previous theorem can be seen as a
canonical parametrisation of the two unparametrised slits Γ1 and Γ2. In the single slit
case, there is a unique parametrisation satisfying g′t(0) = et for all t ∈ [0, T ] as well.
Thus Theorem F represents the natural generalization of Loewner’s original theorem
to multiple slits, see also the introduction of Chapter 3. Recently, O. Roth and S.
Schleißinger found a proof of Theorem F in the chordal case. Herein, they were able to
drop the assumption of Γ1 and Γ2 to be piecewise analytic, see [RS14].

Finally, the multiple slit equation was used to define Schramm–Loewner evolution
for multiple slits, see [KL07] for more details. There are a lot of papers concerning SLE
for multiple slits, see [dMS15] for a recent reference.

1.4 Loewner equations in multiply connected domains

Nowadays, there are several generalizations of Loewner’s differential equation to multiply
connected domains. The first person who considered multiply connected domains was
Yûsaku Komatu (2 January 1914 – 30 July 2004), see his doctoral thesis [Kom43],
which was supervised by M. Tsuji. Detailed informations concerning Komatu’s life
and mathematical work can be found in [Tak05]. In [Kom43], Komatu established
a Loewner equation in a doubly connected annulus and he used this result to study
distortion properties (see §4, §5 and §6 in [Kom43]). Later Komatu considered a general
n-connected slit annulus case, n ∈ N, as well, see [Kom50].

In this context, let Ω denote a circular slit annulus, i.e. an annulus AQ := {z ∈
C | Q < |z| < 1} minus n − 2 disjoint proper concentric circular arcs (centred at 0).
Moreover, let γ : [0, T ] → Ω ∪ T be a simple continuous curve such that γ(0) ∈ T and
γ(0, T ] ⊆ Ω. Note that there are mapping theorems for multiply connected domains
analogously to Riemann’s mapping theorem for simply connected domains, see Section
2.1 for more details. Using a suitable normalisation (see the next theorem), there is a
unique conformal mapping from Ωt := Ω\γ(0, t] onto a circular slit annulus Dt with inner
radius qt > 0 for each t ∈ [0, T ]. Komatu found out that it is important to parametrise
Γ := γ[0, T ] in such a way that t 7→ qt is differentiable. In particular, it is possible to
find a unique parametrisation such that qt = Qet. Then Komatu proposed the following
theorem, see page 30 in [Kom50].
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CHAPTER 1. INTRODUCTION TO LOEWNER THEORY

Theorem G. Let Ω denote a circular slit annulus with inner radius Q and γ : [0, T ]→
Ω ∪ T is a continuous and simply curve such that γ(0) ∈ T and γ(0, T ] ⊆ Ω. Moreover,
for each t ∈ [0, T ], we denote by gt the unique conformal mapping from Ωt := Ω \ γ(0, t]
onto the circular slit annulus Dt such that gt associates TQ with Tqt, gt associates the
outer boundary of Ωt with T, and gt(Q) = qt. Assume γ is parametrised in such a way
that qt = Q · et for all t ∈ [0, T ] .

Then, for each t ∈ [0, T ) and each z ∈ Ωt, t 7→ gt(z) is differentiable from the left
and satisfies the following differential equation

∂−t gt(z) = −gt(z)
(
∂FDt(Ut, gt(z))

∂n1
− ∂FDt(Ut, qt)

∂n1
+

n−1∑
k=1

RDt;k(gt(z))
∂−t mk(t)

mk(t)

)
(1.3)

for all z ∈ ΩT and t ∈ [0, T ]. Herein, for each t ∈ [0, T ], FDt(·, w) is a multivalent
function such that the real part denotes Green’s function of Dt with pole at w. For each
k ∈ {1, . . . , n} and t ∈ [0, T ], RDt;k is a multivalent function such that the real part
is the harmonic measure of Dt where <RDt;k ≡ 1 on Ck(t) and 0 otherwise. Ck(t),
k ∈ {1, . . . , n}, describes the boundary components of Dt where C1(t) = Tqt and Cn(t) =
T. mk(t) denotes the radius of Ck(t), i.e. mk(t) = dist(0, Ck(t)) and t 7→ mk(t) is
differentiable from the left. Finally, ∂

∂n1
denotes the derivative along the unit inner

normal of the first variable.

The previous differential equation is called bilateral (single-slit) Komatu-Loewner
ODE 5.

In 2005, R. Bauer and R. Friedrich found similar results in the radial and chordal
case, see [BF06] and [BF08]. In the radial case the canonical class is the unit disk minus
disjoint proper concentric circular arcs, while in the chordal case one takes the upper
half-plane minus disjoint proper closed line segments slits parallel to the real axis, see
also Figure 2.1 in Section 2.1. The annulus case (see Theorem G), is also called bilateral
case. Moreover, in [BF08], Bauer and Friedrich gave the first rigorous proof of Theorem
G. Following Komatu’s ideas they only proved differentiability in the left sense.

On top of this Bauer and Friedrich used their results to define candidates for SLE
in multiply connected domains. In this context, they considered all the three different
cases (radial, bilateral and chordal). Recently, there are several papers concerning SLE
in multiply connected domains, see for example [Law11] and [Dre11].

Simultaneously to the authors research, Z. Chen, M. Fukushima and S. Rhode found a
way to establish (left and right) differentiability of gt in the chordal setting, see [CFR13].
Note that their proof is based on probabilistic arguments. A new proof of the doubly
connected bilateral case, i.e. the annulus without interior slits, using methods related to
Komatu’s original ideas was given recently by M. Fukushima and H. Kaneko, see [FK14].
In the general n-connected bilateral case they proved differentiability analogously to the
approach of Bauer and Friedrich, only in the left sense. This problem led them to the
following question, see Section 6 in [FK14]:

5Throughout in this thesis, Komatu-Loewner equations represent the multiply connected case, while
Loewner equations represent the simply connected case.
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‘In the case where n > 2 so that the degree of the multiplicity of the circular slit
annulus Ω is equal or greater than 3, the problem of proving the equation (1.3)
to be a genuine ODE remains open, although Komatu [Kom50] tried to do so
by an induction in n ≥ 2 not quite successfully.’

Beside the previously mentioned works, there were many other contributions to Loewner’s
differential equation in multiply connected domains. For example, in 1951, G. Goluzin
found a way how to prove Komatu’s results in the doubly connected case without using
the theory of elliptic functions, see [Gol51]. A completely different setting was considered
by Kufarev in terms of covering maps of the unit disk, see [KK55].

In the annulus case, M. Contreras, S. Dı́az-Madrigal and P. Gumenyuk established
recently a general Loewner theory, see [CDMG13] and [CDMG11].

Finally, let us mention a survey paper about the evolution of Loewner theory, see
[ABCDM10].

1.5 Outline of the thesis

The main object of this thesis is to generalise all previously mentioned theorems to
multiply connected domains and multiple slits. Concerning this matter, our approach
is purely function-theoretic. As far as possible, we will prove the theorems in all three
cases (radial, bilateral and chordal) simultaneously. Moreover, we are going to separate
between disjoint and branched slits and surprisingly, we will see that some statements
are not valid in the branch point case any more.

In Chapter 2 we are going to generalise Theorem A, G and D to multiply con-
nected domains and multiple slits. First of all, we summarise some important tools and
notations, see Section 2.1. Herein, we discuss the concept of kernel convergence for mul-
tiply connected domains. This method will be key for our approach. In Section 2.2 we
will study the kernel function Φa,ζ,Ω in all three cases, which appeared in the bilateral
case already on the right-hand side of the differential equation in Theorem G. Beside
an analytic representation in terms of relatives to Green’s function we will mainly use a
geometric characterisation of Φa,ζ,Ω, see Proposition 2.17. Together with the extended
kernel theorem, this representation will give us more flexibility, in particular for proving
the right differentiability.

Next, we are going to prove Theorem G, see Section 2.6. In this context, we will prove
left and right differentiability, so this will solve the previous question by Fukushima and
Kaneko. Note that we will give a universal proof, i.e. we prove the radial, bilateral and
chordal case simultaneously. On top of this, in the context of this proof we will consider
already multiple slits. Finally, we obtain Theorem 2.30, 2.31 and 2.36 generalizing
Theorem A, G and D to multiply connected domains and multiple slits, see also Remark
2.6. Preliminary to Section 2.6, we prepare all the important facts regarding the radial
case in Section 2.3, the bilateral case in Section 2.4 and the chordal case in Section 2.5.
In order to prove Theorem 2.30, 2.31 and 2.36 simultaneously, we summarise these facts
in the beginning of Section 2.6, see Subsection 2.6.1.

Subsequently, we are going to consider arbitrary parametrisation of multiple slit. In
this regard, we will show that differentiability still holds almost everywhere, see Theorem
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2.52, 2.53 and 2.54 in Section 2.7. Finally, we will discuss an important subadditivity
property known to be true in the simply connected cases, see Section 2.8. This property
will be an important tool for our further approach. Unfortunately, we do not know if
this is also true in case of multiply connected domains, see Question 1.

The goal of Chapter 3 is to generalise Theorem F to the radial, bilateral and chordal
case for multiply connected domains. We will be able to drop the assumption of piecewise
analytic slits in here as well. In Section 3.1 we are going to discuss the disjoint case, see
Theorem 3.2, 3.3 and 3.4. Note that the given proof will be universal, i.e. we will prove
the radial, bilateral and chordal case simultaneously.

Subsequently, see Section 3.2, we consider the branch point case. Herein, we study
all three cases simultaneously as well and we are going to prove the existence of constant
coefficients in case of multiply connected domains. Unfortunately, we were not able to
prove the uniqueness of these constant coefficients and their corresponding parametrisa-
tions in the multiply connected setting. However, we will give a uniqueness proof in the
simply connected case. The reason for this is that we have the subadditivity property of
the appropriate capacity available for simply connected domains only, see Section 2.8.

The major goal of Chapter 4 is to generalise Theorem E to the radial, bilateral and
chordal case in multiply connected domains. In Section 4.1 we will consider the disjoint
case where we will describe all parametrisations in the multiply connected multiple slit
case leading to (continuously) differentiable mapping functions. In this context, we will
obtain a characterisation of the differentiability set in the multiply connected multiple slit
case by differentiability sets in simplified single slit cases, see Theorem 4.1 and Corollary
4.2. In the following, we will use this Theorem to construct parametrisations leading to
continuously differentiable mapping functions, see Proposition 4.4 and Theorem 4.6.

Next, we are going to discuss the branch point case, see Section 4.2. We will see
that the previous characterisation is not true in general, see Theorem 4.8. The given
counterexamples are based on self-similarity.

Note that the previous chapters considered slit mappings only, so in the final Chap-
ter 5 we will study the growth of general hulls in multiply connected domains. As a
reason of technical difficulties, we will restrict this to the radial case. Nevertheless, it
is possible to establish analogous results in the bilateral and chordal case, in a similar
way, as well. In Section 5.2 we are going to generalise Theorem C to multiply connected
domains, see Theorem 5.1. Unfortunately, we need to restrict this theorem to hulls that
do not swallow interior boundary components, see Example 5.1 pointing out a reason
why this is necessary. Finally, it is possible to sharpen one direction of Theorem 5.1
to general hulls, allowing them to swallow interior boundary components, see Theorem
5.2.
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Chapter 2

Komatu–Loewner equations for
canonical domains

First of all, let us define the following classes of domains:

(a) A circular slit disk is the unit disk D minus a finite number of disjoint proper
concentric circular arcs centred at 0 with radii in (r, 1).

(b) A circular slit annulus is an annulus Ar := {z ∈ C | r < |z| < 1}, with r ∈ (0, 1),
minus a finite number of disjoint proper concentric circular arcs centred at 0 with
radii in (r, 1).

(c) An upper (or right) parallel slit half-plane is the upper (right) half-plane minus a
finite number of disjoint proper closed line segments parallel to the real (imaginary)
axis.

A domain Ω is called canonical if it is a circular slit disk, a circular slit annulus or an
upper parallel slit half-plane, see Figure 2.1.

⊕ b b

b

(a) (b) (c)

1 1

0

0

Figure 2.1: Triply connected canonical domains: circular slit disk, circular slit annulus
and upper parallel slit half-plane

2.1 Some important tools and notations

We denote by C∞ := C ∪ {∞} the Riemann sphere. Let Ω ⊆ C∞ be a finitely con-
nected domain. Then Ω is called nondegenerate if each boundary component of Ω with
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respect to C∞ consists of more than a single point6. Obviously, each canonical domain
is nondegenerate. In the following we denote by con(Ω) the connectivity of the domain
Ω. Moreover, we use the abbreviations cl(Ω) and cl∞(Ω) to indicate the closure of the
domain Ω with respect to the standard topology on C and C∞, respectively. Note that
cl(Ω) = cl∞(Ω) if Ω ⊆ C is bounded and cl(Ω) ∪ {∞} = cl∞(Ω) if Ω ⊆ C is unbounded.
A (parametrised) Jordan curve (in Ω ⊆ C) is a continuous γ : [a, b] → Ω, a < b, such
that γ(t) = γ(s) if and only if s = t or |s − t| = b − a. Moreover, γ : [a, b] → C∞ is a
(parametrised) Jordan curve (in C∞) if there is a c ∈ C such that t 7→ 1/(γ(t)− c) is a
parametrised Jordan curve in C. Sometimes we call the trace γ[a, b] a Jordan curve as
well. The Jordan curve theorem shows that every Jordan curve Γ in C divides the plane
C into two domains: the interior int(Γ) and the exterior ext(Γ). Finally, a bounded do-
main Ω ⊆ C is called analytic Jordan domain if each boundary component is an analytic
Jordan curve in C.

Riemann mapping theorems and extremal properties

The well-known Riemann mapping theorem shows that each simply connected domain
Ω 6= C can be mapped by a conformal mapping g onto the unit disk. Moreover, this
mapping is unique if we claim a 7→ g(a) = 0 and g′(a) > 0 with some arbitrary a ∈ Ω.
An iteratively application of this theorem gives us the following lemma.

Lemma 2.1 ([Con95], Theorem 15.2.1). Let Ω be a nondegenerate n-connected domain
with n ∈ N. Then there is a conformal mapping g : Ω → D such that D is an analytic
Jordan domain where T is the outer boundary component of D.

Obviously, the mapping from Lemma 2.1 mapping is not unique. For instance, we
find for every boundary component A of Ω a conformal mapping g such that g associates
A with T. Nevertheless, in case of multiply connected domains, there are analogous
theorems to Riemann’s mapping theorem for simply connected domains.

Proposition 2.2 ([Con95], Theorem 15.6.2). Let Ω be a nondegenerate n-connected
domain with n ∈ N, a ∈ Ω and E is a connected component of ∂∞Ω. Then there is
a unique circular slit disk D and a unique conformal mapping g : Ω → D such that g
associates E with T, g(a) = 0 and g′(a) > 0.

Proposition 2.3 ([Con95], Theorem 15.5.1). Let Ω be a nondegenerate n-connected
domain with n ≥ 2, a ∈ Ω and E and F are two different connected components of ∂∞Ω.
Then there is a unique r > 0, a unique circular slit annulus D with inner radius r and
a unique conformal mapping g : Ω→ D such that g associates E with T, g associates F
with Tr and g′(a) > 0.

Proposition 2.4. Let Ω ⊆ H be a nondegenerate n-connected domain with n ∈ N and
assume H \ Ω is bounded. Then there is a unique upper parallel slit half-plane D, a
unique a ∈ C and a unique conformal mapping g : Ω→ D with

g(z) = z +
a

z
+O(|z|−2) around ∞.

6For example C is not nondegenerate.
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Proof. This theorem follows easily from Theorem 3.5.2 in [Gru78]. First let Ω∗ ⊆ C∞ be
the domain that arise from Ω by a reflection along the real axis. Consequently, ∞ ∈ Ω∗

and con(Ω∗) = 2n − 1 where n := con(Ω). Using Theorem 3.5.2 in [Gru78], we find a
unique conformal mapping g∗ : Ω∗ → D∗ where D∗ is the Riemann sphere minus 2n− 1
bounded disjoint proper closed line segments parallel to real axis and g∗(z) − z → 0
as z → ∞. Note that g∗(z) = g∗(z̄) for all z ∈ Ω∗. Otherwise, h(z) := g∗(z̄) would
contradict the uniqueness of g∗. Finally, g := g∗|Ω is the unique mapping function we
were looking for.

Remark 2.1. Note that the previous proof showed that the function g in Proposition
2.4 is well defined in a neighbourhood around ∞ by the Schwarz reflection principle.
Moreover, a ≥ 0 as real values around ∞ are mapped by g(z) = z+ a

z +O(|z|−2) to real
values around ∞ and the orientation is preserved. The previous normalisation is called
hydrodynamic normalisation.

These three mapping theorems will build our foundation for studying expanding
families of multiply connected domains:

(a) Proposition 2.2 will be used in Section 2.3 in order to establish a radial Komatu–
Loewner equation.

(b) Proposition 2.3 will be used in Section 2.4 in order to establish a bilateral Komatu–
Loewner equation.

(c) Proposition 2.4 will be used in Section 2.5 in order to establish a chordal Komatu–
Loewner equation.

Beside these theorems we need one further canonical mapping that will represent the
kernel in Komatu–Loewner equations.

Proposition 2.5 (Theorem 2.3 in [Cou77]). Let Ω be a nondegenerate n-connected do-
main with n ∈ N such that ∂Ω is locally connected, and the outer or unbounded bound-
ary component Cn is an analytic Jordan curve in C∞. Assume ζ ∈ Cn \ {∞} and
a ∈ cl∞(Ω) \ {ζ}.

Then there is a unique conformal mapping w 7→ Φa,ζ,Ω(w) that maps Ω onto a right
parallel slit half-plane with the normalisation Φa,ζ,Ω(a) ≥ 0 and |Φa,ζ,Ω(w)(w − ζ)| → 2
as w → ζ.

It is easy to see that Φa,ζ,Ω − Φb,ζ,Ω ≡ ic with c ∈ R whenever a, b ∈ cl∞(Ω) and
ζ ∈ Cn \{a, b,∞}. Note that Φa,ζ,Ω(a) is well defined since ∂∞Ω is locally connected, see
Theorem 2.1 in [Pom92]. Moreover, the limit limw→ζ |Φa,ζ,Ω(w)(w − ζ)| is well-defined
as well. To see this let us have a look at the function h(w) := 1/Φa,ζ,Ω(w), w ∈ Ω.
Since Cn is an analytic Jordan curve, we are able to reflect h along Cn, so h has an
analytic extension to an open neighbourhood of ζ. Finally, an easy calculation shows
limw→ζ Φa,ζ,Ω(w)(w − ζ) = 1/h′(ζ) where h′(ζ) 6= 0 as a consequence of the univalence.

From now on and for the rest of this thesis, we will use the notation Φa,ζ,Ω(w) in
order to represent the conformal map from the previous proposition.
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Remark 2.2. In case of Ω = D and ζ ∈ T we get

Φ0,ζ,D(w) =
ζ + w

ζ − w
for all w ∈ D.

Analogously, with Ω = H and ζ ∈ R, we find

Φ∞,ζ,H(w) =
2i

w − ζ
for all w ∈ H.

Finally, we are going to discuss some extremal properties related to the conformal
mappings from Proposition 2.2, 2.3 and 2.4.

Lemma 2.6 (Theorem IX.26 in [Tsu75]). Let Ω be a nondegenerate n-connected bounded
domain, n ∈ N and a ∈ Ω. Assume E ⊆ ∂Ω denotes the outer boundary component of
Ω and

F := {f : Ω→ D | f univalent, f(a) = 0, f ′(a) > 0, f associates E with T}.

Then the unique mapping g ∈ F from Proposition 2.2 fulfils the extremal property g′(a) =
maxf∈F f

′(a).

Alternatively see Chapter VII.2 in [Neh52].

Remark 2.3. In the previous definition of F we require f to be univalent. What if we
drop the univalence? Let us consider the following class

F := {f : Ω→ D |f analytic, f(a) = 0, f ′(a) > 0}

and consider the extremal problem supf∈F f
′(a). Using Montel’s theorem, it is easy to

see that there is an analytic extremal function f∗. If Ω 6= C is simply connected, f∗

coincides with g, but if n = con(Ω) > 1 this is not the case. In particular, f∗ is the so
called Ahlfors function that maps Ω onto the n-sheeted unit disk, see Theorem XI.3.1 in
[Gol69]. Consequently, f∗ is not univalent if n > 1.

Lemma 2.7 (Theorem IX.29 in [Tsu75]). Let Ω be a nondegenerate n-connected bounded
domain with n ≥ 2 and E and F are two different boundary components of Ω. Moreover,
we set

F :=
⋃

r∈(0,1)

Fr, Fr := {f : Ω→ D | f univalent,
f associates E with T and F with Tr}.

Then the unique mapping g ∈ F from Proposition 2.3 fulfils the extremal property g ∈ Fr0
with F =

⋃
r∈(0,r0]Fr and r0 ∈ (0, 1) .

Lemma 2.8. Let Ω ⊆ H be a nondegenerate n-connected domain with n ∈ N such that
H \ Ω is bounded. Moreover, we set

F := {f : Ω→ H | f univalent, R is the unbounded connected component of ∂f(Ω),
f(z) = z +

af
z +O(|z|−2) around ∞}.

Then the unique mapping g ∈ F from Proposition 2.4 fulfils the extremal property ag =
maxf∈F af .
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Proof. Obviously, each f ∈ F can be extended to a function f : Ω∗ → C∞ such that
Ω∗ arise from the reflection of Ω along the real axis. Thus ∞ is an inner point of Ω∗.
Note that the extended mapping g from Proposition 2.4 maps Ω∗ onto C∞ minus disjoint
proper closed line segments parallel to the real axis. Finally, we get the asserted extremal
property by applying Theorem 3.5.2 in [Gru78] to the class F∗ := {f : Ω∗ → C | f |Ω ∈
F} and the extended function g : Ω∗ → C∞.

Kernel convergence

Kernel convergence due to Carathèodory is a very powerful and important tool in geo-
metric function theory, see Section 1.4 in [Pom75] or Section 3.1 in [Dur83] where the
concept is explained in case of simply connected domains.

In case of multiply connected domains we refer to Section 15.4. in [Con95]. Let
(Ωn)n∈N ⊆ C be a sequence of domains such that 0 ∈ Ωn for almost all n ∈ N. The
kernel (with respect to 0) of the sequence (Ωn)n∈N is the connected component of the set

K := {z ∈ C | ∃r>0 ∃N∈N ∀n≥N : Br(z) ⊆ Ωn} (2.1)

that contains 0 if there is a connected component that contains 0. Otherwise the sequence
does not have a kernel. We say that the sequence (Ωn)n∈N converges to Ω in terms of
Ωn

k−→ Ω if Ω is the kernel of each subsequence of (Ωn)n∈N. Moreover, let (Ωt)t∈[0,T ] be a
family of domains. Then t 7→ Ωt is continuous at t0 (with respect to kernel convergence)
if Ωtn

k−→ Ωt0 for each sequence (tn)n∈N ⊆ [0, T ] with tn → t0. In this case we write
Ωt

k−→ Ωt0 as well. On top of this we call the family (Ωt)t∈[0,T ] continuous (with respect
to kernel convergence) if t 7→ Ωt is continuous at each t ∈ [0, T ].

According to this definition it is not surprising that monotone sequences converge to
their kernels.

Lemma 2.9. Let (Ωn)n∈N satisfy 0 ∈ Ωn ⊆ Ωn+1 for all n ∈ N or Dε ⊆ Ωn+1 ⊆ Ωn for
all n ∈ N with an arbitrary ε > 0. Then the sequence (Ωn)n∈N does have a kernel Ω and
Ωn

k−→ Ω.

Proof. First of all, it is clear that K =
⋃
n∈N Ωn if Ωn ⊆ Ωn+1 for all n ∈ N and

K =
⋂
n∈N Ωn if Ωn+1 ⊆ Ωn where K is defined as in Equation (2.1). Moreover, we

obtain the same set K if we consider subsequences of (Ωn)n∈N.

Consequently, there is an ε > 0 such that Dε ⊆ Ωn for all n ∈ N in either case. Thus
Dε ⊆ K as well. Summarising, (Ωn)n∈N converges to the connected component of K
that contains 0, which we denote by Ω.

A very important property of kernel convergence is the following.

Lemma 2.10. Let (Ωn)n∈N be a sequence of domains such that Ωn
k−→ Ω. Assume

a ∈ ∂Ω is fixed. Then we find a sequence (an)n∈N with an ∈ ∂Ωn such that an → a as
n→∞.

Proof. This follows immediately from Exercise 15.4.5 from [Con95].
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Next, we are going to combine the concept of kernel convergence with sequences of
analytic functions. Therefore, let us assume that fn : Ωn → Dn is a conformal mapping
for each n ∈ N and Ωn

k−→ Ω. Then we say that (fn)n∈N converges locally uniformly on
Ω to f : Ω → C or uniformly on compact sets of Ω to f : Ω → C if for every compact
subset K ⊆ Ω and for every ε > 0, there is an N ∈ N such that |fn(z) − f(z)| < ε for
all z ∈ K and all n ≥ N . When this happens f : Ω→ D is either conformal or constant
and we write fn

l.u.−−−→ f on Ω.

On top of this, let (Ωt)t∈[0,T ] be a continuous family with respect to kernel conver-
gence and (ft)t∈[0,T ] with ft : Ωt → C analytic. Then t 7→ ft is called continuous at t0
(with respect to compact convergence) if ft

l.u.−−−→ ft0 on Ωt0 , i.e. if we have ftn
l.u.−−−→ ft0 on

Ωt0 for each sequence (tn)n∈N ⊆ [0, T ] with tn → t0. Furthermore, t 7→ ft with t ∈ [0, T ]
is called continuous (with respect to compact convergence) if t 7→ ft is continuous at each
t ∈ [0, T ].

An interesting question is if there is any connection between the convergence of
(fn)n∈N and the convergence of the image domains (Dn)n∈N = (fn(Ωn))n∈N. The follow-
ing proposition gives an answer.

Proposition 2.11 (Theorem 15.4.10 in [Con95]). Assume fn : Ωn → Dn is conformal
for each n ∈ N, Ωn

k−→ Ω 6= C, and fn(0) = 0 and f ′n(0) > 0 for almost all n ∈ N.
Then there is a conformal mapping f : Ω → D such that fn

l.u.−−−→ f on Ω if and only if
Dn

k−→ D.

What if the sequence Ωn does not have a kernel or does not satisfy 0 ∈ Ωn? Let
(Ωn)n∈N be a sequence of domains (not necessarily having 0 ∈ Ωn for all or at least
almost all n ∈ N). Then we can not define the kernel of (Ωn)n∈N as we did previously.
Nevertheless, we can still define the set K from Equation (2.1) what we call the weak
kernel of (Ωn)n∈N if K is non-empty.

Let Ω be the weak kernel of (Ωn)n∈N and denote by A an arbitrary connected
component of Ω. Then we find easily, Ωn−a k−→ A−a for each a ∈ A. Herein,
A−a := {z ∈ C | z + a ∈ A}. Moreover, let fn : Ωn → Dn be a conformal mapping for
each n ∈ N. Then we say (fn)n∈N converges locally uniformly on A to f : A→ C if there
is an a ∈ A such that hn

l.u.−−−→ h on A−a with hn : Ωn−a→ Dn, hn(z) := fn(z + a) and
h : Ω−a→ C, h(z) := f(z + a). If this happens, we write fn

l.u.−−−→ f on A as well.

Consequently, Proposition 2.11 gives us the following corollary.

Corollary 2.12. Let A 6= C and Ωn, n ∈ N, be domains such that Ωn−a k−→ A−a
for some a ∈ A. For each n ∈ N, we denote by fn : Ωn → Dn a conformal mapping.
Moreover, assume fn

l.u.−−−→ f on A with a conformal mapping f : A → D. Then
Dn−b k−→ D−b for all b ∈ D.

Proof. Let a ∈ A and Ω′n := Ωn − a. Then Ω′n
k−→ A′ := A− a. Note that fn(a)→ f(a)

and f ′n(a) → f ′(a) 6= 0. This gives us hn
l.u.−−−→ h on A′ where hn(z) := (fn(z + a) −

fn(a))/f ′n(a) for all z ∈ Ω′n and h(z) := (f(z + a) − f(a))/f ′(a) for all z ∈ A′. It is
necessary to choose n ∈ N large enough in order to guarantee a ∈ Ωn. Then hn(0) = 0
and h′n(0) = 1 > 0, so we find together with Proposition 2.11 (Dn − fn(a))/f ′n(a) k−→
(D − f(a))/f ′(a). This shows Dn−b k−→ D−b for all b ∈ D as well.
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Finally, a convergent sequence of canonical domains converges to a canonical domain:

Lemma 2.13. Let (Dn)n∈N be a sequence of circular slit disks with Dn
k−→ D and

con(Dn) = con(D) for all n ∈ N. Assume D is nondegenerate. Then D is a circular slit
disk.

Proof. Note that D is bounded by 1 as all Dn are bounded by 1. We denote by E1, . . . En

the connected components of C \D where En is the unbounded connected component.
For each Ek, k ∈ {1, . . . , n}, we find a Jordan curve ∆k ⊆ D such that ∆k separates
Ek from Ej with j ∈ {1, . . . , n} \ {k}. Moreover, we can choose ∆k in such a way that
dist(∆k,∆j) > δ whenever j 6= k. We set E∆

k := ∆k ∪ int(∆k), k ∈ {1, . . . , n − 1} and
E∆

n := ∆n ∪ ext(∆n). Consequently, dist(E∆
k , E

∆
j ) > δ for all k 6= j as well. Note that

D∆ := D \
⋃n
k=1E

∆
k is an n-connected domain. D is the kernel of the sequence (Dn)n∈N

and cl(D∆) is a compact set in D, so we find cl(D∆) ⊆ Dn for all n ≥ N with N ∈ N
large.

Next, let be a ∈ ∂Ek with k ∈ {1, . . . , n}. Using Lemma 2.10, we find a sequence
an ∈ ∂Dn such that an → a. Since D∆ ⊆ Dn and con(Dn) = con(D), it is necessary that
for all large n ≥ N , the n − 1 bounded connected components of ∂Dn are distributed
one-to-one to the bounded connected components of C \ D, i.e. if F1, . . . , Fn−1 denote
the bounded connected components of C \Dn, then Fk ⊆ E∆

I(k) for all k ∈ {1, . . . , n− 1}
where I : {1, . . . , n− 1} → {1, . . . , n− 1} is one-to-one. This gives us

D \

(
n−1⋃
k=1

E∆
k

)
⊆ Dn for all largen ≥ N.

Consequently, we get En = C \ D, i.e. T is the outer boundary of D.

On top of this, let Ek, k ∈ {1, . . . , n− 1} be an arbitrary bounded connected compo-
nent of C \D. Thus we proved already that for each large n ∈ N exactly one (bounded)
connected component of C \Dn is a subset of E∆

k . Note that all the bounded connected
components of C \Dn are disjoint proper concentric circular arcs. As mentioned before,
for each a ∈ ∂Ek, we find a sequence an ∈ ∂Dn such that an → a. Finally, all sequences
|an| are independent of a, so |a| is constant for each a ∈ Ek, i.e. Ek is a concentric
circular arc.

Lemma 2.14. Let (Dn)n∈N be a sequence of circular slit annuli, D is a nondegenerate
domain with con(Dn) = con(D) for all n ∈ N, and Dn−a k−→ D−a for some a ∈ D.
Then D is a circular slit annulus.

Lemma 2.15. Let (Dn)n∈N be a sequence of upper (or right) parallel slit half-planes, D
is a nondegenerate domain with con(Dn) = con(D) for all n ∈ N, and Dn−a k−→ D−a
for some a ∈ D. Then D is an upper (or right) parallel slit half-plane.

Proof of Lemma 2.14 and 2.15. This works in the same way as the proof of Lemma
2.13
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Normal families

Let (fn)n∈N be a sequence of conformal maps fn : Ωn → Dn and Ωn
k−→ Ω. In order to

find locally uniformly convergent sequences or at least subsequences, a great tool is the
concept of normal families, see [Sch93] as a useful reference.

By F ⊆ {f : Ω → C | f analytic} we denote a locally bounded family, i.e. for each
compact set K ⊆ Ω we find an M > 0 such that ‖f‖K ≤ M for all f ∈ F . Herein,
‖f‖K := maxz∈K |f(z)|. Then Montel’s famous theorem states that F is a normal family,
i.e. we find for each sequence (fn)n∈N ⊆ F a subsequence (fnk)k∈N such that fnk

l.u.−−−→ f
on Ω where f : Ω→ C is an analytic function or fnk tends uniformly on compacts of Ω
to infinity. If (fn)n∈N is locally bounded, the second case can not occur, so fnk

l.u.−−−→ f
on Ω where f : Ω→ C is analytic.

In our case we have to deal very often with functions fn : Ωn → Dn, so we can not
apply Montel’s theorem directly. Nevertheless, it is not hard to adapt the fundamental
concept to our case. Therefore, let fn : Ωn → C be a sequence of analytic functions with
Ωn

k−→ Ω. Then the sequence (fn)n∈N is called locally bounded if for every compact set
K ⊆ Ω, we find an N ∈ N and M > 0 such that ‖fn‖K ≤M for all n ≥ N .

When this happens it is not hard to see that there is a subsequence (fnk)k∈N such
that fnk

l.u.−−−→ f on Ω with an analytic function f : Ω → C. To prove this, it is enough
to study an increasing sequence of compact sets (Kl)l∈N such that Kl ⊆ Kl+1 for all
l ∈ N and Ω =

⋃∞
l=1Kl. Finally, we obtain the stated subsequence by using a diagonal

argument combined with Montel’s theorem applied to each Kl.

Some useful harmonic functions

Let Ω ⊆ C be a domain and z0 ∈ Ω. Then G : Ω×Ω→ cl∞(R) is called Green’s function
of Ω if the following three conditions are satisfied.

(i) For each z ∈ Ω, ζ 7→ G(ζ, z) is harmonic on Ω \ {z}.

(ii) For each z ∈ Ω, ζ 7→ G(ζ, z) + ln |ζ − z| is harmonic on Ω.

(iii) For each z ∈ Ω, limζ→∂∞ΩG(ζ, z) = 0.

Note that there is at least one Green function corresponding to a domain Ω ⊆ C.
Moreover, it is not hard to show that each nondegenerate finitely connected domain
does have a Green function. This is mainly based on the fact that (ζ, z) 7→ G(f(ζ), f(z))
represents Green’s function of the domain Ω′ where f : Ω′ → Ω is a conformal mapping
and G is Green’s function of Ω. An important property of Green’s function is it’s
symmetry property, i.e. G(ζ, z) = G(z, ζ) for all (ζ, z) ∈ Ω × Ω, see [GM05], Chapter
II.2 for more details. On top of this, Green’s function can be used to generalise Poisson’s
formula for D as follows.

Proposition 2.16 (Generalised Poisson formula, see Theorem II.2.5 in [GM05]). Let
Ω be an n-connected analytic Jordan domain with n ∈ N. Moreover, the function u :
cl(Ω)→ R is continuous on cl(Ω) and harmonic on Ω. Then

u(z) = − 1

2π

∫
∂Ω

∂G(ζ, z)

∂nζ
u(ζ)|dζ| for all z ∈ Ω

18
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where nζ denotes the unit outer normal at ζ ∈ ∂Ω.

Note that ∂G(ζ, z)/∂nζ is well-defined for each ζ ∈ ∂Ω, as ζ 7→ G(ζ, z) has a harmonic
extension to cl(Ω).

Let Ω be an n-connected analytic Jordan domain with the boundary components
C1, . . . , Cn, n ∈ N. Here, Cn denotes the outer boundary component. In general, Green’s
function of a finitely connected domain Ω does not have a (single-valued) conjugate
harmonic function. A reason for this is a nonvanishing period of G(·, z) around z. To
be more precise, the period is 2π, i.e.∫

∂Bε(z)

∂G(ζ, z)

∂nζ
|dζ| = 2π, (2.2)

with a small ε > 0 and nζ pointing towards z. On top of this, there are additional
nonvanishing periods if n ≥ 2:

−2πωk(z) :=

∫
γk

∂G(ζ, z)

∂nζ
|dζ|, k ∈ {1, . . . , n− 1}.

Here, γk is a circuit around Ck and nζ denotes the unit outer normal, i.e. nζ points
towards Ck. Next, we are going to remove these additional periods. Note that this is
only necessary in the case n ≥ 2.

For each k ∈ {1, . . . , n − 1}, the function z 7→ ωk(z) is harmonic on Ω and is called
harmonic measure of Ω with respect to Ck. Using Proposition 2.16, ωk(z) tends to 1
if z approaches Ck and ωk(z) tends to 0 if z approaches ∂Ω \ Ck. The vector ~ω(z) :=
(ω1(z), . . . , ωn−1(z))T is called harmonic measure vector of Ω.

Next, we denote the periods of ωk around Cj by 2πPj,k, i.e.

2πPj,k =

∫
γj

∂ωk(z)

∂n
|dz|.

Using the symmetry property of Green’s function, it is a straightforward calculation to
see that the matrix P := (pj,k)j,k=1,...,n−1 is symmetric and positive definite. This matrix
is called period matrix of Ω.

Finally, assume ζ ∈ Ω and let us have a deeper look at the function

z 7→ −G(ζ, z)− ~ω(z)TP−1~ω(ζ), z ∈ Ω.

It is not hard to show that this function is harmonic and has vanishing periods around
each Cj with j ∈ {1, . . . , n−1}. The only remaining nonvanishing period (like in the case
n = 1) appears on circuits around ζ. Using the symmetry property of Green’s function
and Equation (2.2), we can see that this period is precisely 2π. In the case n = 1 it is
not necessary to add additional functions to Green’s function, so we may define ~ω ≡ 0
and P ≡ 1 in this case.

Nevertheless, the harmonic conjugate of z 7→ −G(ζ, z)− ~ω(z)TP−1~ω(ζ) is multiple-
valued in either case. As we have seen before, the conjugate function changes by 2π if z
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describes a small circle around ζ. Thus by applying the exponential function we get a
(single-valued) analytic function g : Ω→ C with∣∣g(z)

∣∣ = exp
(
−G(ζ, z)− ~ω(z)TP−1~ω(ζ)

)
for all z ∈ Ω. (2.3)

It is not hard to prove that the function g : Ω → C is univalent, so g : Ω → g(Ω) is
conformal. Moreover, |g(z)| is constant with values cj ≤ 1 if z approaches an arbitrary
point on Cj with j ∈ {1, . . . , n}. In particular |g(z)| = 1 if z approaches Cn, so T is the
outer boundary component of D. On top of this, g(ζ) = 0 and the conjugate function
can be chosen in such a way that g′(ζ) > 0 holds. Summarising, g coincides with the
unique Riemann mapping function form Proposition 2.2. This construction goes back
to M. Schiffer, see Chapter 1 of the Appendix of [Cou77] for more details.

Obviously, the representation |g(z)| = exp
(
−G(ζ, z)− ~ω(z)TP−1~ω(ζ)

)
holds for ar-

bitrary nondegenerate n-connected domains Ω′ as well. For this, Lemma 2.1 shows that
there is a conformal mapping f : Ω′ → Ω such that Ω is an analytic Jordan domain.
Then it is easy to see that G(f(ζ), f(z)) represents Green’s function of Ω′, ωk(f(z)) is
the harmonic measure of Ω′ with respect to the k-th boundary component of Ω′ and the
period matrix P is invariant under conformal mappings.

2.2 The kernel function Φa,ζ,Ω

The goal of this section is to describe Φa,ζ,Ω in terms of relatives to Green’s function.

Proposition 2.17. Let Ω be a nondegenerate n-connected domain with n ∈ N such
that ∂Ω is locally connected and the outer or unbounded boundary component Cn is an
analytic Jordan curve in C∞. Assume ζ ∈ Cn \ {∞} and a ∈ cl∞(Ω) \ ζ. Then we have

<
(
Φa,ζ,Ω(w)

)
= −∂G(ζ, w)

∂nζ
− ~ω(w)TP−1∂~ω(ζ)

∂nζ
for all w ∈ Ω.

Note that the right-hand side does not depend on a, as Φa,ζ,Ω(a) ≥ 0 determines the
additive imaginary constant in a unique way.

Proof. 1) First of all, we assume that Ω is an analytic Jordan domain having T as it
outer boundary component.

Let us denote by G(ζ, z) Green’s function, ~ω(z) is the harmonic measure vector and P
stands for the period matrix of Ω. Moreover, we set

H(ζ, z) := − ln

∣∣∣∣ ζ − z1− ζz̄

∣∣∣∣ with ζ, z ∈ D.

Thus the function ζ 7→ F (ζ, z) := H(ζ, z) − G(ζ, z) is harmonic and positive on D for
each z ∈ D, as F (ζ, z) = 0 for all ζ ∈ T and F (ζ, z) > 0 if ζ ∈ ∂D \ T. Moreover,
F (ζ, z) = F (z, ζ) for all ζ, z ∈ D, as G and H are Green functions, so z 7→ F (ζ, z) is
harmonic and positive on D for each ζ ∈ D as well.
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Let be ζ0 ∈ T. We extend z 7→ F (ζ, z) to a harmonic function on Bε(ζ0) for all ζ ∈ D
by using the Schwarz reflection principle if ε > 0 is small enough. To be more precise,

z 7→ F (ζ, z) :=

{
−F (ζ, 1/z̄) for all z ∈ Bε(ζ0) ∩ {ζ ∈ C | |ζ| > 1},
0 for all z ∈ Bε(ζ0) ∩ T.

Analogously, we reflect the function ζ 7→ F (ζ, z) to Bε(ζ0) ∩ {ζ ∈ C | |ζ| > 1} by
ζ 7→ F (ζ, z) := −F (1/ζ̄, z) for all z ∈ Bε(ζ0). Consequently, the function z 7→ F (ζ, z) is
harmonic on Bε(ζ0) for all ζ ∈ Bε(ζ0)\T. Moreover, z 7→ F (ζ0, z) ≡ 0 if ζ0 ∈ Bε(ζ0)∩T,
so z 7→ F (ζ, z) is harmonic on Bε(ζ0) for all ζ ∈ Bε(ζ0). Conversely, ζ 7→ F (ζ, z) is
harmonic on Bε(ζ0) for all z ∈ Bε(ζ0) as well.

Let be ζ0 ∈ T and denote by hn a positive sequence converging to 0. Then

z 7→ −F (ζ0 + hnζ0, z)− F (ζ0, z)

hn
= −

F
(
ζ0(1 + hn), z

)
hn

is a sequence of positive harmonic functions, which is normal by Montel’s theorem. See
[Sch93], Theorem 5.4.3 for further details. Thus we find a locally uniformly convergent
subsequence converging to the function z 7→ −∂/∂nζ0F (ζ0, z), which needs to be har-
monic in Bε(ζ0) as well. Herein, ∂/∂nζ0 stands for the outward pointing derivative with
respect to the unit circle. Moreover, −∂/∂nζ0F (ζ0, z) = 0 if z ∈ T. Note that an easy

calculation yields ∂/∂nζ0H(ζ0, z) = −<( ζ0+z
ζ0−z ) for all z ∈ D. Consequently, we find

z 7→ V (ζ0, z) := −∂G(ζ0, z)

∂nζ0
− ~ω(z)TP−1∂~ω(ζ0)

∂nζ0

= <
(
ζ0 + z

ζ0 − z

)
+
∂F (ζ0, z)

∂nζ0
− ~ω(z)TP−1∂~ω(ζ0)

∂nζ0

with z ∈ Ω. It is important to mention that ~ω can be continued along T, so the derivative
of the harmonic measure vector is well-defined.

A straightforward calculation shows that z 7→ V (ζ0, z) has vanishing periods, so there
exists a harmonic conjugate. Summarising, we have an analytic function Ψ : Ω → C
with <(Ψ(z)) = V (ζ0, z) for all z ∈ Ω.

On top of this z 7→ V (ζ0, z) is constant on each boundary component of Ω. This can be
seen by using the definition of V in case of the inner boundary components of Ω and the
alternative representation of V (involving F ) in case of the outer boundary component
T. Herein, z 7→ V (ζ0, z) has the constant value 0 on Cn. Finally, by using the argument
principle together with the previous results it is not hard to see that z 7→ Ψ(z) maps Ω
conformal onto a right parallel slit half-plane with |Ψ(z)(z − ζ0)| → 2 if z tends to ζ0.

2) Next, let us assume that Ω is an n-connected domain such that the outer boundary
component Cn is an analytic Jordan curve in C∞ and ξ ∈ Cn\{∞}. By Lemma 2.1, there
is a conformal map T : Ω → Ω′ such that Ω′ is an n-connected analytic Jordan domain
with T as the outer boundary component. Without loss of generality we may assume
T (ξ) = 1 ∈ T. In particular T associates Cn with T. Note that T can be extended to an
analytic function on Ω ∪ Cn by the Schwarz reflection principle.
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By GΩ′(ζ, z) we denote Green’s function of Ω′ and GΩ(ξ, w) is the Green function of Ω.
Obviously, we have GΩ(ξ, w) = GΩ′(T (ξ), T (w)) = GΩ′(ζ, z). We have similar relations
for the harmonic measure and the period matrix, i.e. ωΩ(w) = ωΩ′(T (w)) = ωΩ′(z) and
PΩ = PΩ′ . Consequently, we get

VΩ(ξ, w) := −∂GΩ(ξ, w)

∂nξ
− ~ωΩ(w)TP−1

Ω

∂~ωΩ(ξ)

∂nξ

= −∂GΩ′(T (ξ), T (w))

∂nξ
− ~ωΩ′(T (w))TP−1

Ω′
∂~ωΩ′(T (ξ))

∂nξ

=

(
−∂GΩ′(1, T (w))

∂nζ
− ~ωΩ′(T (w))TP−1

Ω′
∂~ωΩ′(1)

∂nζ

)
|T ′(ξ)| =: |T ′(ξ)| · VΩ′(1, T (w)).

Using the first part, w 7→ VΩ(ξ, w) is the real part of a conformal mapping Ψ from Ω
onto a right parallel slit half-plane. Moreover, we have

VΩ′(1, T (w)) = <

(
1 + T (w)

1− T (w)
+

∞∑
k=0

ak(w − ξ)k
)

= <

(
2

T ′(ξ)

1

w − ξ
+

∞∑
k=0

bk(w − ξ)k
)
,

for all w ∈ Bε(ξ) with a small ε > 0 and (ak)k∈N, (bk)k∈N ⊆ C. Combining this with the
previous equation we get

VΩ(ξ, w) = <

(
2|T ′(ξ)|
T ′(ξ)

1

w − ξ
+

∞∑
k=0

bk(w − ξ)k
)
.

Consequently, we get limw→ξ Ψ(w)(w− ξ) = 2 |T
′(ξ)|

T ′(ξ) = 2eiφ with ξ = reiφ. Summarising,
<Ψ ≡ <Φa,ξ,Ω.

Lemma 2.18. Let (Dn)n∈N be a sequence of circular slit disks with Dn
k−→ D and

con(Dn) = con(D) for all n ∈ N. Moreover, assume D is nondegenerate and (ζn)n∈N ⊆ T
with ζn → ζ0. Then Φ0,ζn,Dn

l.u.−−−→ Φ0,ζ0,D on the circular slit disk D as n→∞.

Lemma 2.19. Let (Dn)n∈N be a sequence of circular slit annuli, for each n ∈ N, qn is
the inner radius of Dn, and D is a nondegenerate domain having con(Dn) = con(D)
for all n ∈ N. Moreover, Dn−a k−→ D−a for some a ∈ D. Assume ζn → ζ0 with
(ζn)n∈N ⊆ T. Then qn → q ∈ (0, 1) and Φqn,ζn,Dn

l.u.−−−→ Φq,ζ0,D on the circular slit
annulus D as n→∞.

Lemma 2.20. Let (Dn)n∈N be a sequence of upper parallel slit half-planes and D is a
nondegenerate domain having con(Dn) = con(D) for all n ∈ N. Moreover, Dn−a k−→
D−a for some a ∈ D and assume ζn → ζ0 ∈ R with (ζn)n∈N ⊆ R. Then Φ∞,ζn,Dn

l.u.−−−→
Φ∞,ζ0,D on the upper parallel slit half-plane D as n→∞.
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Proof of Lemma 2.18, 2.19 and 2.20. We denote by Φn the corresponding mapping func-
tion, i.e. Φn = Φ0,ζn,Dn , Φn = Φqn,ζn,Dn or Φn = Φ∞,ζn,Dn for all n ∈ N. Using Lemma
2.13, 2.14 or 2.15, D is a circular slit disk, a circular slit annulus or an upper parallel slit
half-plane. hn := 1/(Φn + 1) is a bounded sequence, so we find with Montel’s theorem a
subsequence (hnk)k∈N converging locally uniformly to the analytic function h : D → C.
Note that h is either univalent or constant.

Using the proof of Lemma 2.13, each z 7→ hnk(z) can be extended by the Schwarz
reflection principle to a univalent function on Bε(ζ0) with a small ε > 0. We calculate
|h′nk(ζnk)| = 1

2 for all k ∈ N. Note that hnk converges locally uniformly on the reflection
as well. This is based on the fact, that hnk is bounded on Bε(ζ0) by Koebe’s distortion
theorem for univalent functions. Consequently, h fulfils |h′(ζ0)| = 1

2 , so h can not be
constant. We have Φnk

l.u.−−−→ Φ on D as well where Φ := 1/h − 1, so Φ : D → R is
conformal as well. Consequently, we find

Φ(w) =
2eiφ

w − ζ0
+O(1) around ζ0,

so |Φ(w)(w − ζ0)| → 2 as w → ζ. Since Φ : D → R is a conformal mapping, R is
necessarily a nondegenerate domain having con(R) = con(D) = con(Dn) = con(Rn)
with Rn := Φn(Dn) for all n ∈ N.

Using Corollary 2.12, we find Rnk−a
k−→ R−a for all a ∈ R as k → ∞. On top of

this Lemma 2.15 yields that R is a right parallel slit half-plane. It is easy to see that
Φ(a) ≥ 0 if a = 0, a = q or a =∞. Summarising, Φ ≡ Φa,ζ0,D.

As all convergent subsequences (Φnk)k∈N converge to the same function Φa,ζ0,D also
the whole sequence (Φn)n∈N converges locally uniformly to Φa,ζ0,D on D.

Finally, we are going to prove an extension of Schwarz integral formula to multiply
connected domains.

Proposition 2.21. Let Ω be a nondegenerate n-connected bounded domain with n ∈
N and C1, . . . , Cn representing the boundary components of Ω. Assume ∂Ω is locally
connected and the outer boundary component Cn is an analytic Jordan curve. Moreover,
F : Ω → C is analytic, <(F ) is continuous on cl(Ω) and <(F ) is constant on each Ck
with k ∈ {1, . . . , n− 1}.

Then the following representation holds for each a ∈ cl(Ω) \ Cn:

F (z) =
1

2π

∫
Cn

<
(
F (ζ)

)
· Φa,ζ,Ω(z)|dζ|+ ic for all z ∈ Ω.

In this context, the constant c ∈ R depends only on the choice of a.

Note that for each z ∈ Ω, ζ 7→ Φa,ζ,Ω(z) is continuous on Cn. To see this let
a ∈ cl(Ω) \ Cn and T : Ω → Ω′ be a conformal mapping such that Ω′ is a circular
slit disk. We find T in such a way that T associates Cn with T. Moreover we set
R := T−1 : Ω′ → Ω. An easy calculation gives us Φa,ζ,Ω(z) = T ′(ζ)ΦT (a),T (ζ),Ω′(z). By a
reflection, ζ 7→ T (ζ) is analytic on Cn, so ζ 7→ T ′(ζ) as well as ζ 7→ T (ζ) are continuous
on Cn. Thus ζ 7→ Φa,ζ,Ω(z) is continuous on Cn by Lemma 2.18.

The proof of Proposition 2.21 follows the ideas of [Kom50] and the proof of Theorem
5.1 in [BF06]
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Proof. 1) First of all, we going to assume that Ω is an analytic Jordan domain where
the outer boundary component of Ω is Cn = T. The other boundary components are
denoted by C1, . . . , Cn−1.

Then z 7→ <F (z) is harmonic on Ω and continuous on cl(Ω), so Poisson’s formula (see
Proposition 2.16) gives us

<
(
F (z)

)
= − 1

2π

∫
∂Ω

<
(
F (ζ)

)∂G(ζ, z)

∂nζ
|dζ| for all z ∈ Ω,

where G(ζ, z) denotes the Green function of Ω with pole at z. Since F is an analytic
function, the periods with respect to Ck, k ∈ {1, . . . , n − 1}, vanish. Thus, for all
k ∈ {1, . . . , n− 1}, we get

0 =

∫
Ck

∂<F
∂nζ

(ζ)|dζ| =
∫
∂Ω

ωk(ζ)
∂<F
∂nζ

(ζ)|dζ| =
∫
∂Ω

<F (ζ)
∂ωk(ζ)

∂nζ
|dζ|,

where ωk(ζ) denotes the harmonic measure of Ω w.r.t. Ck. Note that the last equation
is an application of Green’s theorem. By combining these two equations we find

<
(
F (z)

)
= − 1

2π

∫
∂Ω

<
(
F (ζ)

)(∂G(ζ, z)

∂nζ
+ ~ω(z)TP−1∂~ω(ζ)

∂nζ

)
|dζ| for all z ∈ Ω,

where ~ω denotes the harmonic measure vector. The matrix P is the period matrix.
Using Proposition 2.17, we find

−∂G(ζ, z)

∂nζ
− ~ω(z)TP−1∂~ω(ζ)

∂nζ
= <

(
Φa,ζ,Ω(z)

)
for each z ∈ Ω.

Herein, Φa,ζ,Ω(z) denotes the unique mapping from Proposition 2.5 with some a ∈ cl(Ω)\
Cn. Obviously, ζ 7→ <(F (ζ)) is constant on each Ck and ζ 7→ G(ζ, z) + ~ω(z)P−1ω(ζ) has
vanishing periods on circuits around each Ck with k ∈ {1, . . . , n− 1}. Consequently, we
get

<
(
F (z)

)
=

1

2π

∫
T

<
(
F (ζ)

)
<
(
Φa,ζ,Ω(z)

)
|dζ| for all z ∈ Ω.

Using the open mapping theorem, we find

F (z) =
1

2π

∫
T

<
(
F (ζ)

)
Φa,ζ,Ω(z)|dζ|+ ic for all z ∈ Ω,

where c ∈ R (depends on the choice of a).

2) Next let Ω be an n-connected bounded domain such that the outer boundary
component Cn is an analytic Jordan curve and ∂Ω is locally connected. Using Lemma
2.1, we find a conformal mapping T : Ω → Ω′ where Ω′ is an analytic Jordan domain
having T as the outer boundary component. Moreover, we can find T in such a way that
T associates Cn with T. We denote the inverse function by R, i.e. R := T−1 : Ω′ → Ω.
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Using the first part, we find with some a ∈ cl(Ω) \ Cn:

(F ◦R)(z) =
1

2π

∫
T

<
(
(F ◦R)(ζ)

)
ΦT (a),ζ,Ω′(z)|dζ|+ ic for all z ∈ Ω′.

Note that T can be extended to an analytic function on Cn. Proposition 2.17 yields
ΦT (a),ζ,Ω′(z) = |R′(ζ)|Φa,R(ζ),Ω(R(z)) for each ζ ∈ T. Consequently, we get with z =
T (w) and a simple substitution

F (w) =
1

2π

∫
Cn

<
(
F (ζ)

)
Φa,ζ,Ω(w)|dζ|+ ic for all z ∈ Ω,

so the proof is complete.

2.3 Radial case

In order to study radial Komatu–Loewner equations we take an arbitrary circular slit
disk Ω as our initial domain. A subset H ⊆ Ω\{0} is called (compact) radial hull in Ω or
(compact) radial Ω-hull if Ω∩ cl(H) = H, Ω \H is a domain and T∪ cl(H) is connected7.
By gH we denote the unique conformal mapping that maps Ω \ H onto a circular slit
disk DH normalised in such a way that gH(0) = 0, g′H(0) > 0 and gH associates the outer
boundary component of Ω \ H with T, see Proposition 2.2. We will call this function
normalised radial mapping function on Ω \ H . On top of this we define the so called
logarithmic mapping radius by lmr(g) := ln g′(0) for each function g that is analytic at 0
with g′(0) > 0. Sometimes we also write lmrΩ(H) := lmr(gH) where gH is the normalised
radial mapping function on Ω \ H.

Next, let (Ht)t∈[0,T ] ⊆ Ω be a family of radial Ω-hulls, i.e. Ht is a radial Ω-hull
for each t ∈ [0, T ]. Then we say (Ht)t∈[0,T ] is an increasing family of radial Ω-hulls if
Ht ( Hs whenever 0 ≤ t < s ≤ T and H0 = ∅. Moreover, (Ht)t∈[0,T ] is called continuous
family of radial Ω-hulls if (Ωt)t∈[0,T ], with Ωt := Ω \ Ht, is continuous with respect to
kernel convergence on [0, T ].

2.3.1 Single slit Komatu–Loewner equation

For now let us restrict ourself to slits, i.e. we do not treat general hulls (which we
will study in Chapter 5). Let γ : [0, T ] → cl(Ω) \ {0} be simple and continuous with
γ(0, T ] ⊆ Ω and γ(0) ∈ T. Obviously, (γ(0, t])t∈[0,T ] is an increasing continuous family
of radial Ω-hulls. For each t ∈ [0, T ], we set Ωt := Ω \ γ(0, t] and denote by gt the
normalised radial mapping function from Ωt onto the circular slit disk Dt.

Later (see Lemma 2.24 and 2.25) we will see that the function t 7→ lmr(gt) is strictly
increasing and continuous on [0,T]. Since g0 ≡ id, i.e lmr(g0) = 0, it is not a great
restriction to assume t 7→ lmr(gt) = t for all t ∈ [0, T ]. Otherwise we can reparametrise

7In the simply connected case this definition is equivalent to the usual definition of a radial D-hull,
see [Law05], Section 3.5.
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γ. Moreover, we are going to show later that t 7→ Ut := gt(γ(t)) is continuous on [0, T ],
see Lemma 2.29. Note that gt(γ(t)) is well-defined. Finally, by w 7→ Φ0,Ut,Dt(w) we
denote the mapping function from Proposition 2.5 that maps the circular slit disk Dt

onto a right parallel slit half-plane with a = 0, see Figure 2.2.

⊕
b

b

⊕

×

⊕γ(t)
0 0

T T

Ut
gt Φ0,Ut,Dt

DtΩt

Figure 2.2: Mapping behaviour of z 7→ gt(z) and w 7→ Φ0,Ut,Dt(w) in the radial single
slit case

Then we have the following theorem.

Theorem 2.22. Let Ω be a circular slit disk and γ : [0, T ]→ cl(Ω) \ {0} be simple and
continuous with γ(0, T ] ⊆ Ω and γ(0) ∈ T. Moreover, we set Ωt := Ω \ γ(0, t]. Assume
gt : Ωt → Dt is the normalised radial mapping function from Ωt onto Dt with lmr(gt) = t
for each t ∈ [0, T ].

Then t 7→ gt(z) is continuously differentiable on [0, T ] for each z ∈ ΩT , and we get

ġt(z) = gt(z) · Φ0,Ut,Dt

(
gt(z)

)
for all t ∈ [0, T ] and all z ∈ ΩT , (2.4)

where t 7→ Ut := gt(γ(t)) ∈ T is continuous on [0, T ].

Equation (2.4) is called radial (single slit) Komatu–Loewner ordinary differential
equation, whereas t 7→ Ut is called driving term.

Remark 2.4. As mentioned in the introduction, see Section 1.4, Bauer and Friedrich
proved the differential equation (2.4) in the left sense, see Theorem 5.1 in [BF06]. More-
over, they used the different representation of the kernel, in terms of relatives to Green’s
function, on the right-hand side of Equation (2.4) to work with, see Proposition 2.17.

If we do not assume lmr(gt) = t for all t ∈ [0, T ], we get the following theorem, which
can be seen as a pointwise version of the previous theorem.

Theorem 2.23. Let Ω be a circular slit disk and γ : [0, T ] → cl(Ω) \ {0} be simple
and continuous with γ(0, T ] ⊆ Ω and γ(0) ∈ T. Moreover, for each t ∈ [0, T ], we set
Ωt := Ω \ γ(0, t]. gt : Ωt → Dt is the normalised radial mapping function from Ωt onto
Dt for all t ∈ [0, T ] and assume t 7→ c(t) := lmr(gt) is differentiable at t0.

Then the function t 7→ gt(z) is differentiable at t0 for each z ∈ Ωt0 and satisfies

ġt0(z) = ċ(t0) · gt0(z) · Φ0,Ut0 ,Dt0

(
gt0(w)

)
for all z ∈ Ωt0 ,

with a continuous function t 7→ Ut =: gt(γ(t)) ∈ T for all t ∈ [0, T ].

Obviously, Theorem 2.22 follows immediately from Theorem 2.23. Here, the conti-
nuity of t 7→ ġt(z) comes from Lemma 2.18. Before we are able to prove Theorem 2.23
we need some preliminary lemmas.
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Lemma 2.24. Let Ω be a circular slit disk and A,B ⊆ Ω \ {0} be radial Ω-hulls with
A ( B. Then lmr(gA) < lmr(gB) where gA and gA denote the normalised radial mapping
functions on Ω \ A and Ω \B, respectively.

Proof. First of all, we denote the unbounded connected component of C \ gA(Ω \B) by
F . Note that C \ F ( D is a simply connected domain, so there is a unique conformal
mapping h : C \ F → D with h(0) = 0 and h′(0) > 0. Since h−1 fulfils the condition of
Schwarz lemma, we necessarily get h′(0) > 1. Thus we have h ◦ gA ∈ F where

F := {f : Ω \B→ D | f univalent, f(0) = 0, f ′(0) > 0, f associates ∂F with T}.

Using the extremal property corresponding to F , see Lemma 2.6, we find

h′(0) · g′A(0) = (h ◦ gA)′(0) ≤ g′B(0),

i.e. lmr(h) + lmr(gA) ≤ lmr(gB) with lmr(h) > 0.

Lemma 2.25. Let Ω be a circular slit disk, (Ht)t∈[0,T ] be an increasing family of radial
Ω-hulls and gt denotes the normalised radial mapping function from Ω \ Ht onto the
circular slit disk Dt for each t ∈ [0, T ]. Let (tn)n∈N ⊆ [0, T ] with tn → t0 ∈ [0, T ] and let
Ωtn

k−→ Ωt0. Moreover, assume con(Ωtn) = con(Ωt0) for all n ∈ N. Then gtn
l.u.−−−→ gt0

on Ωt0 as n→∞. Moreover, lmr(gtn)→ lmr(gt0) as n→∞.

Corollary 2.26. Let Ω be a circular slit disk, (Ht)t∈[0,T ] be an increasing and continuous
family of radial Ω-hulls and gt denotes the normalised radial mapping function on Ω\Ht
for each t ∈ [0, T ]. Furthermore, we assume con(Ωt) = con(Ω) for all t ∈ [0, T ]. Then
t 7→ gt is continuous on [0, T ]. Moreover, t 7→ lmr(gt) is continuous on [0, T ] as well.

Remark 2.5. Later we will see that the assumption

con(Ωtn) = con(Ωt0) for all n ∈ N

in Lemma 2.25 can be dropped without substitution, see Proposition 5.6. In order to do
so, we will need a stronger version of Lemma 2.13 as well, see Lemma 5.5.

Proof of Lemma 2.25. By Montel’s theorem hn := gtn is normal in Ωt0 , so we find a
locally uniformly convergent subsequence (hnk)k∈N on Ωt0 . The limit function h : Ωt0 →
C is either univalent or constant. Using Lemma 2.24, h′n(0) ≥ 1 for all n ∈ N, so h
can not be constant, i.e. h : Ωt0 → D =: h(Ωt0) is conformal. This shows that D
is nondegenerate. Next, Proposition 2.11 yields Dtnk

k−→ D where Dtnk
:= hnk(Ωtnk

).
Using Lemma 2.13, D needs to be a circular slit disk, as con(Dtnk

) = con(D) for all
k ∈ N.

Summarising, h is a conformal mapping from Ωt0 onto the circular slit disk D with
h(0) = 0 and h′(0) > 0. Moreover, h associates the outer boundary component of Ωt0

with T. To see this let us consider a circuit K around an inner boundary component of
Ωt0 , say K = {z ∈ D | dist(C, z) = δ} where δ > 0 is small. Herein, we choose δ small
enough such that K is a Jordan curve in Ωt0 and the winding number of K around 0 is 0.
Then the compact set K is mapped by h to h(K), which surrounds an inner boundary
component of D, as the winding number of h(K) is 0 as well. Using the pigeonhole
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principle, h associates the inner boundary component of Ωt0 with the inner boundary
components of D.

Finally, h ≡ gt0 . As all convergent subsequences (hnk)k∈N converge to the same
function gt0 , also the whole sequence (gtn)n∈N converges locally uniformly on Ωt0 to
gt0 .

Lemma 2.27. Let Ω be a circular slit disk and H is a radial Ω-hull such that ∂ΩH is
locally connected with ΩH := Ω \ H. Then

lmr(gH) = − 1

2π

∫
T

ln |g−1
H (ζ)||dζ|,

where gH is the normalised radial mapping function from ΩH onto the circular slit disk
DH.

Note that the integral is well defined as gH has a continuous extension to the bound-
ary. This is a consequence of the local connectedness of ∂(Ω \ H), see Theorem 2.1 in
[Pom92].

Proof. Let n := con(ΩH). Note that there is an analytic branch of the logarithm such
that z 7→ log(g−1

H (z)/z) is an analytic function. This follows immediately from the
mapping behaviour of gH together with simple calculations of winding numbers. By
Cauchy’s integral formula, we find

− lmr(gH) = log

(
d

dz
g−1
H (z)

∣∣∣
z=0

)
= log

(
g−1
H (z)

z

)∣∣∣
z=0

=
1

2πi

∫
∂DH

log

(
g−1
H (ζ)

ζ

)
dζ

ζ
=

1

2π

∫
∂DH

log

(
g−1
H (ζ)

ζ

)
d arg ζ

=
1

2π

∫
∂DH

ln

∣∣∣∣g−1
H (ζ)

ζ

∣∣∣∣d arg ζ.

Note that the last equality is a consequence of lmr(gH) ≥ 0. The boundary ∂DH consists
of T = Cn and disjoint proper concentric circular arcs C1, . . . Cn−1. Herein, the function
ζ 7→ ln |g−1

H (ζ)/ζ| is constant on each Ck with k ∈ {1, . . . , n− 1}. Thus we find

1

2π

∫
Ck

ln

∣∣∣∣g−1
H (ζ)

ζ

∣∣∣∣d arg ζ =
1

2π
ln

∣∣∣∣g−1
H (ζ0)

ζ0

∣∣∣∣ ∫
Ck

d arg ζ = 0

for each k ∈ {1, . . . , n − 1}, as we integrate on both sides of the arc Ck. Here, ζ0 is
arbitrarily chosen from Ck. Summarising we find

− lmr(gH) =
1

2π

∫
T

ln

∣∣∣∣g−1
H (ζ)

ζ

∣∣∣∣ d arg ζ =
1

2π

∫
T

ln
∣∣g−1

H (ζ)
∣∣ |dζ|.
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Lemma 2.28. Let Ω be a circular slit disk and H is a radial Ω-hull such that ∂ΩH is
locally connected with ΩH := Ω \ H. Then we have

log
g−1
H (z)

z
=

1

2π

∫
T

ln |g−1
H (ζ)|Φ0,ζ,DH

(z) |dζ| for each z ∈ DH,

where gH is the normalised radial mapping function from ΩH onto DH.

Like in the proof of previous lemma there is an analytic branch of the logarithm on
the left-hand side.

Proof. DH is a circular slit disk with boundary components C1, . . . , Cn = T and we
consider the function

z 7→ F (z) := log
g−1
H (z)

z
, z ∈ DH,

which is analytic in DH. Moreover, there is a continuous extension of F to ∂Ω, as ∂Ω is
locally connected. Then <(F ) is constant on Ck for each k ∈ {1, . . . , n − 1}, so we can
apply Proposition 2.21 with a = 0 to get

log
g−1
H (z)

z
=

1

2π

∫
T

ln

∣∣∣∣g−1
H (ζ)

ζ

∣∣∣∣Φ0,ζ,DH
(z) |dζ|+ ic for each z ∈ DH

with c ∈ R. Finally, we set z = 0 to get c = 0, as Φ0,ζ,DH
(0) > 0 for all ζ ∈ T and

log(g−1
H (z)/z)|z=0 = − lmr(gH) < 0.

Lemma 2.29. Let γ : [0, T ]→ cl(Ω)\{0} be simple and continuous with γ(0, T ] ⊆ Ω and
γ(0) ∈ T, and for each t ∈ [0, T ], gt : Ωt → Dt denotes the normalised radial mapping
function on Ωt := Ω \ γ(0, t]. Moreover, we set

Ut := gt(γ(t)), st,t := gt(γ[t, t]), 0 ≤ t < t ≤ T.

Then st,t → Ut0 as t→ t0 ← t. On top of this t 7→ Ut is continuous on [0, T ].

The image gt(γ[t, t]) represents the image of both sides of the slit, i.e. st,t = {a ∈ T |
g−1
t

(a) ∈ γ[t, t]}, see also Remark 2.9.

Proof of Lemma 2.29. This is a special case of Lemma 2.43, which we are going to prove
later.

Proof of Theorem 2.23. Using Proposition 2.11 and Corollary 2.26, (Dt)t∈[0,T ] is a con-
tinuous family, since (Ωt)t∈[0,T ] is a continuous family with con(Ωt) = con(Ω) for all

t ∈ [0, T ]. Let us define gt,t := gt ◦ g
−1
t with 0 ≤ t < t ≤ T . Thus gt,t maps Dt \St,t onto

the circular slit disk Dt where St,t := gt(γ(t, t]) is a slit starting in Ut. Obviously, St,t is
a locally connected radial Dt-hull, so we are able to apply Lemma 2.28 to get

log
g−1
t,t

(z)

z
=

1

2π

∫
T

ln |g−1
t,t

(ζ)|Φ0,ζ,Dt
(z) |dζ| for all z ∈ Dt.
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Next, we set st,t := gt(γ[t, t]) = {a ∈ T | g−1
t
∈ γk[t, t]}, so st,t is a compact connected

subset of T. Applying z = gt(w) gives us

log
gt(w)

gt(w)
=

1

2π

∫
st,t

ln |g−1
t,t

(ζ)|Φ0,ζ,Dt

(
gt(w)

)
|dζ| for each w ∈ Ωt.

Note that ζ 7→ Φ0,ζ,Dt

(
gt(w)

)
is continuous by Lemma 2.18 and ζ 7→ ln |g−1

t,t
(ζ)| ≤ 0 for

all ζ ∈ st,t, so we find with the mean value theorem

log
gt(w)

gt(w)
=
(
<Φ0,ζ1,Dt

(
gt(w)

)
+ i=Φ0,ζ2,Dt

(
gt(w)

)) 1

2π

∫
st,t

ln |g−1
t,t

(ζ)| |dζ|

for all w ∈ Ωt where ζ1, ζ2 ∈ st,t. Using Lemma 2.27, we see that the remaining integral
on the right-hand side coincides with − lmr(gt,t) = − ln g′

t,t
(0) = lmr(gt) − lmr(gt). Let

w ∈ Ωt0 be fix. If we choose t and t close to t0, we get w ∈ Ωt, and using Lemma 2.25
we find a branch of the logarithm in order to get

log gt(w)− log gt(w)

t− t
=
(
<Φ0,ζ1,Dt

(
gt(w)

)
+ i=Φ0,ζ2,Dt

(
gt(w)

)) lmr(gt)− lmr(gt)

t− t
.

Using Lemma 2.29, we see st,t → Ut0 =: gt0(γ(t0)) as t ↗ t0 = t or t ↘ t0 = t.
Consequently, ζj → Ut0 (j ∈ {1, 2}). Finally, we find with Lemma 2.25 and 2.18 and
Dt

k−→ Dt0 as t↘ t0:

ġt0(w) = gt0(w) · Φ0,Ut0 ,Dt0

(
gt0(w)

)
· ċ(t0) for all w ∈ Ωt0

and c(t) := lmr(gt). Note that the continuity of t 7→ Ut follows immediately from Lemma
2.29.

2.3.2 Multiple slit Komatu–Loewner equation

Next, we are going to extend the previous theorems to multiple slits. Let Ω be an
arbitrary circular slit disk and T > 0. For each k ∈ {1, . . . ,m} with m ∈ N, let γk :
[0, T ]→ cl(Ω)\{0} be simple and continuous with γk(0, T ] ⊆ Ω and γk(0) ∈ T. Moreover,
assume γj [0, T ]∩ γk[0, T ] = ∅ whenever k 6= j. Then we call (γ1, . . . , γm)t∈[0,T ] a tuple of
disjoint radial (parametrised) slits in Ω. Obviously, (Ht)t∈[0,T ], with Ht :=

⋃m
k=1 γk(0, t],

is an increasing and continuous family of radial Ω-hulls.
We denote by gt : Ωt := Ω \ Ht → Dt the normalised radial mapping function on

Ωt for all t ∈ [0, T ]. Using Corollary 2.26 and Lemma 2.24, the function t 7→ lmr(gt)
is continuous and strictly increasing. Later we will see that in this case t 7→ gt is not
necessarily differentiable at a point t0 if t 7→ lmr(gt) is differentiable at t0, see Example
4.1.

In order to give a necessary condition we need some further abbreviation. Therefore,
for each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, we set Hk(t, τ) :=

⋃m
j=1,j 6=k γj(0, τ ] ∪ γk(0, t].

Since Hk(t, τ) is a radial Ω-hull, we may define

fk;t,τ : Ωk(t, τ) := Ω \ Hk(t, τ)→ Dk(t, τ),
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as the normalised radial mapping function from Ωk(t, τ) := Ω\Hk(t, τ) onto the circular
slit disk Dk(t, τ), see Figure 2.3. Note that in this case gt ≡ fk;t,t, Ωt = Ωk(t, t) and
Dt = Dk(t, t) (independent of k).

⊕ ⊕

b

b

b

×

×

×

b

b

b

τ

t
γk

Dk(t, τ)
Ωk(t, τ)

fk;t,τ

Figure 2.3: Normalised radial mapping function fk;t,τ : Ωk(t, τ)→ Dk(t, τ)

Theorem 2.30. Let Ω be a circular slit disk, (γ1, . . . , γm)t∈[0,T ] be a tuple of disjoint
radial slits in Ω with m ∈ N, and let t0 ∈ [0, T ]. For each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m},
fk;t,τ : Ωk(t, τ) → Dk(t, τ) and gt : Ωt → Dt denote the normalised radial mapping
functions on Ωk(t, τ) := Ω \ (γk(0, t] ∪

⋃
j 6=k γj(0, τ ]) and Ωt := Ωk(t, t), respectively.

Then the following three statements are equivalent.

(i) The limit λk(t0) := limt→t0
lmr(fk;t,t0 )−lmr(fk;t0,t0 )

t−t0 exists for each k ∈ {1, . . . ,m}.

(ii) The function t 7→ gt(z) is differentiable at t0 for every z ∈ Ωt0.

(iii) The function t 7→ gt(z) is differentiable at t0 for each z ∈ Ωt0 and fulfils

ġt0(z) = gt0(z)
m∑
k=1

λk(t0)Φ0,Uk(t0),Dt0

(
gt0(z)

)
for all z ∈ Ωt0 ,

where for all k ∈ {1, . . . ,m}, λk(t0) ≥ 0 and the driving term Uk(t) := gt(γk(t)) is
continuous on [0, T ].

When this happens, t 7→ lmr(gt) is differentiable at t0 with derivative
∑m

k=1 λk(t0).

Remark 2.6. In case of one slit, i.e. m = 1, this theorem is more or less equivalent
to Theorem 2.23. To be more precise, Theorem 2.30 generalises Theorem 2.23 in the
case m = 1 slightly, as it shows that t 7→ gt is differentiable at t0 if and only if t 7→
lmr(gt) is differentiable at t0. Obviously, Theorem 2.30 contains Theorem 2.22 as well.
Consequently, we will discuss only the multiple slit version in the upcoming bilateral
and chordal case.

The proof of Theorem 2.30 can be found in Section 2.6.

2.4 Bilateral case

Next, let us switch to the bilateral case where we take a circular slit annulus Ω as our
initial domain. Let Q ∈ (0, 1) denote the inner radius of Ω. A subset H ⊆ Ω is called
(compact) bilateral hull in Ω or (compact) bilateral Ω-hull if Ω ∩ cl(H) = H, Ω \ H is
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a domain, T ∪ cl(H) is connected and dist(H,TQ) > 0. By gH we denote the unique
conformal mapping that maps ΩH := Ω \ H onto a circular slit annulus DH with inner
radius qH ∈ (0, 1) such that gH associates the outer boundary of ΩH := Ω \ H with T
and gH(Q) = qH, see Proposition 2.3. Then we call gH the normalised bilateral mapping
function on Ω \ H.

Next, let (Ht)t∈[0,T ] ⊆ Ω be a family of bilateral Ω-hulls, i.e. Ht is a bilateral Ω-hull
for each t ∈ [0, T ]. Then we say (Ht)t∈[0,T ] is an increasing family of bilateral Ω-hulls if
Ht ( Hs whenever 0 ≤ t < s ≤ T and H0 = ∅. Moreover, (Ht)t∈[0,T ] is called continuous
family of bilateral Ω-hulls if (Ωt−a)t∈[0,T ], with Ωt := Ω \ Ht and some a ∈ ΩT , is
continuous on [0, T ] with respect to kernel convergence. This definition ensures that
we consider the connected component of the weak kernel that has TQ as a boundary
component.

Let A,B ⊆ D be domains where the inner boundary component is a circle (with radii
qA and qB) and f is a conformal mapping from A onto B that associates TqA with TqB .
Then we set lcm(f) := ln qB − ln qA, what we call the logarithmic conformal modulus.
Let Ω be a circular slit annulus and H be a bilateral Ω-hull. Then we use the abbreviation
lcmΩ(H) := lcm(gH) as well where gH denotes the normalised bilateral mapping function
on Ω \ H.

As mentioned in Subsection 2.3.2, see Remark 2.6, Theorem 2.23 follows from Theo-
rem 2.30, so we will skip the single slit case in the bilateral setting. Consequently, will go
directly to the multiple slit case. Let Ω be an arbitrary circular slit annulus and for each
k ∈ {1, . . . ,m} with m ∈ N, γk : [0, T ] → C is continuous and simple with γk(0, T ] ⊆ Ω
and γk(0) ∈ T. Moreover, assume γj [0, T ] ∩ γk[0, T ] = ∅ whenever k 6= j. Then we
call (γ1, . . . , γm)t∈[0,T ] a tuple of disjoint bilateral (parametrised) slits in Ω. Obviously,
(Ht)t∈[0,T ], with Ht :=

⋃m
k=1 γk(0, t], is a family of increasing and continuous bilateral

hulls in Ω.
Next, let (γ1, . . . , γm)t∈[0,T ] be a tuple of disjoint bilateral slits in a circular slit

annulus Ω. Then we set Hk(t, τ) :=
⋃m
j=1,j 6=k γj(0, τ ] ∪ γk(0, t] with t, τ ∈ [0, T ] and

k ∈ {1, . . . ,m}. Since Hk(t, τ) is a bilateral Ω-hull as well, we may define

fk;t,τ : Ωk(t, τ) := Ω \ Hk(t, τ)→ Dk(t, τ)

as the normalised bilateral mapping function from Ωk(t, τ) := Ω \ Hk(t, τ) onto the
circular slit annulus Dk(t, τ) with t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}. Herein, the inner
radius of Dk(t, τ) is denoted by qk(t, τ). Moreover, we set gt := fk;t,t, Ωt := Ωk(t, t),
Dt := Dk(t, t) and qt := qk(t, t) (independent of k) for each t ∈ [0, T ].

Then we have the following theorem

Theorem 2.31. Let Ω be a circular slit annulus, (γ1, . . . , γm)t∈[0,T ] be a tuple of dis-
joint bilateral slits in Ω with m ∈ N, and let t0 ∈ [0, T ]. For each t, τ ∈ [0, T ] and
k ∈ {1, . . . ,m}, fk;t,τ : Ωk(t, τ) → Dk(t, τ) and gt : Ωt → Dt denote the normalised bi-
lateral mapping functions on Ωk(t, τ) := Ω \ (γk(0, t] ∪

⋃
j 6=k γj(0, τ ]) and Ωt := Ωk(t, t),

respectively. Then the following three statements are equivalent.

(i) The limit λk(t0) := limt→t0
lcm(fk;t,t0 )−lcm(fk;t0,t0 )

t−t0 exists for each k ∈ {1, . . . ,m}.

(ii) The function t 7→ gt(z) is differentiable at t0 for each z ∈ Ωt0.
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(iii) The function t 7→ gt(z) is differentiable at t0 for each z ∈ Ωt0 and fulfils

ġt0(z) = gt0(z)
m∑
k=1

λk(t0)Φqt0 ,Uk(t0),Dt0

(
gt0(z)

)
for all z ∈ Ωt0 , (2.5)

where for all k ∈ {1, . . . ,m}, λk(t0) ≥ 0 and the driving term Uk(t) := gt(γk(t)) is
continuous on [0, T ]. Here qt denotes the inner radius of Dt, t ∈ [0, T ].

When this happens, t 7→ lcm(gt) is differentiable at t0 with derivative
∑m

k=1 λk(t0).

As in the previous section, w 7→ Φqt0 ,Uk(t0),Dt0
(w) denotes the unique mapping from

Proposition 2.5, see also Figure 2.4.
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Q qt
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Φqt,Uk(t),Dt

γk

Figure 2.4: Mapping behaviour of z 7→ gt(z) and w 7→ Φqt,Uk(t),Dt(w) in the bilateral
multiple slit case

The proof of Theorem 2.31 can be found in Section 2.6. In order to do so, we need
some preliminary lemmas.

Lemma 2.32. Let Ω be a circular slit annulus and A,B ⊆ Ω be bilateral Ω-hulls with
A ( B. Then lcm(gA) < lcm(gB) where gA and gB denote the normalised bilateral
mapping function on Ω \ A and Ω \B, respectively.

Proof. First of all, we note that the functions gA and gB are related to an extremal
property, see Lemma 2.7. Moreover, we denote by Q the inner radius of Ω

Note that C := gA(B \ A) is a compact bilateral hull in DA = gA(Ω \ A). Herein,
qA is the inner radius of the circular slit annulus DA. Next, we find a unique conformal
mapping h : AqA \ C → Aq∗ having h(qA) = q∗ > 0, see also Proposition 2.3. Then
qA < q∗ by Theorem 3, Chapter V.1. of [Gol69].

Using the notation from Lemma 2.7 with Ω \B as the initial domain, E as the outer
boundary component of Ω \B and F := TQ we find h ◦ gA, gB ∈ F . Consequently, we
find q∗ ≤ qB where qB is the inner radius of DB = gB(Ω \ B). Summarising, we get
qA < qB.

Lemma 2.33. Let Ω be a circular slit annulus, (Ht)t∈[0,T ] be an increasing family of
bilateral Ω-hulls and gt denotes the normalised bilateral mapping function on Ω \Ht for
each t ∈ [0, T ]. Let (tn)n∈N ⊆ [0, T ] with tn → t0, assume con(Ωtn) = con(Ωt0) for all
n ∈ N and Ωtn−a

k−→ Ωt0−a for some a ∈ ΩT .

Then gtn
l.u.−−−→ gt0 on Ωt0 as n→∞. Moreover, lcm(gtn)→ lcm(gt0) as well.
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Proof. Let Q denote the inner radius of Ω. By definition Ωtn−a
k−→ Ωt0−a if tn → t0

for some a ∈ ΩT .
By Montel’s theorem hn := gtn is normal, so we find a locally uniform convergent

subsequence (hnk)k∈N on Ωt0 . The limit function h : Ωt0 → C is either univalent or
constant.

Note that dist(Ht,TQ) ≥ dist(HT ,TQ) > 0 for all t ∈ [0, T ]. Using the Schwarz
reflection principle, we can extend each hn analytically to AQ−δ,Q with some δ > 0
small. Moreover, gtn(TQ) = Tqtn where qtn ∈ [Q, 1) by Lemma 2.32. Herein, qtn denotes
the inner radius of Dtn = gtn(Ω \Htn). Consequently, hnk converges uniformly on TQ to
Tq∗ with q∗ ≥ Q, so the limit function h can not be constant. Since h : Ωt0 → D is a
conformal mapping, Corollary 2.12 yields Dtnk

−a k−→ D−a for some a ∈ D. Note that
con(D) = con(Ωt0) = con Ωtn = con(Dtn) for all n ∈ N, so D is a circular slit annulus
by Lemma 2.14. Since hnk converges uniformly on TQ to Tq∗ , h associates TQ with the
inner boundary component Tq∗ of D and h(Q) = q∗ > 0.

On top of this each (interior) proper concentric circular arc of Ωt0 is mapped by
h to an (interior) proper concentric circular arc of D. This can be seen by using the
argument principle, see for instance the proof of Lemma 2.25. Hence, h associates the
outer boundary of Ωt0 with T. Summarising, h ≡ gt0 . As all convergent subsequences
(hnk)k∈N converge to the same function gt0 , also the whole sequence (gtn)n∈N converges
locally uniformly to gt0 on Ωt0 . Obviously, qn → q∗ = exp(lcm(gt0)) as well.

Lemma 2.34. Let Ω be a circular slit annulus and H be a bilateral Ω-hull such that ∂ΩH

is locally connected with ΩH := Ω \ H. Then

lcm(gH) = − 1

2π

∫
T

ln
∣∣g−1

H (ζ)
∣∣|dζ|,

where gH is the normalised bilateral mapping function from ΩH onto the circular slit
annulus DH.

Proof. Herein, we denote by q ∈ (0, 1) the inner radius of DH. In particular we have
q ∈ (Q, 1) by Lemma 2.32. Cauchy’s theorem yields

0 =
1

2πi

∫
∂DH

log

(
g−1
H (ζ)

ζ

)
dζ

ζ
=

1

2π

∫
∂DH

ln

∣∣∣∣∣g−1
H (ζ)

ζ

∣∣∣∣∣ d arg ζ.

Like in the radial case, the logarithm is well-defined. The last equality is an immediate
consequence of the fact that each connected component of ∂DH is a concentric circular
arc centred at 0. Note that log |g−1

H (ζ)/ζ| is constant on each connected component of
∂DH, so we find

0 =
1

2π

∫
T

ln

∣∣∣∣∣h−1
H (ζ)

ζ

∣∣∣∣∣d arg ζ − 1

2π

∫
Tq

ln

∣∣∣∣∣h−1
H (ζ)

ζ

∣∣∣∣∣ d arg ζ.

Finally, we get − 1
2π

∫
Tq ln

∣∣∣h−1
H (ζ)

ζ

∣∣∣d arg ζ = − ln Q
q = lcm(gH).
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Lemma 2.35. Let Ω be a circular slit annulus and H be a bilateral Ω-hull such that ∂ΩH

is locally connected with ΩH := Ω \ H. Then we have

log
g−1
H (z)

z
=

1

2π

∫
T

ln |g−1
H (ζ)|ΦqH,ζ,DH

(z) |dζ| for all z ∈ DH,

where gH denotes the normalised bilateral mapping function from ΩH onto DH. Herein,
qH denotes the inner radius of DH.

Proof. Let us consider the function

F (z) := log
g−1
H (z)

z
, z ∈ DH,

which is analytic on DH. We denote by C1, . . . , Cn = T the boundary components of
DH. Note that F can be extended continuously to ∂DH and <(F ) is constant on each
Ck, k ∈ {1, . . . , n− 1}. Hence we find with Proposition 2.21 and a = qH

log
g−1
H (z)

z
=

1

2π

∫
T

ln

∣∣∣∣g−1
H (ζ)

ζ

∣∣∣∣ΦqH,ζ,DH
(z) |dζ|+ ic

where c ∈ R. Finally, let us apply z = qH to get c = 0, as ΦqH,ζ,DH
(qH) ≥ 0 and

log(g−1
H (z)/z)|z=qH = − lcm(gH) < 0.

2.5 Chordal case

Finally, we are going to discuss the chordal case. In this context we take an upper parallel
slit half-plane Ω as our initial domain. A bounded subset H ⊆ Ω is called (compact)
chordal hull in Ω or (compact) chordal Ω-hull if Ω ∩ cl(H) = H, Ω \ H is a domain and
R ∪ cl(H) is connected. By gH we denote the unique conformal mapping that maps
ΩH := Ω \ H onto an upper parallel slit half-plane DH such that

gH(z) = z +
agH
z

+O(|z|−2), around ∞.

We call this function normalised chordal mapping function on Ω \ H. Herein, the
value hcap(gH) := aH := agH is called half-plane capacity of gH. Sometimes we write
hcapΩ(H) := hcap(gH) as well if gH is the normalised chordal mapping function on Ω\H.
Moreover, let g be a function that is analytic on Bε(∞), with some ε > 0, having an ex-
pansion g(z) = z+

ag
z +O(|z|−2) around ∞. Then we call hcap(g) := |ag| the half-plane

capacity of g as well. On top of this, ag ≥ 0 if there are constants δ1, δ2 > 0 such that
Bδ1(∞) ∩H ⊆ g(Bε(∞) ∩H) ⊆ Bδ2(∞) ∩H.

Next, let (Ht)t∈[0,T ] ⊆ Ω be a family of chordal Ω-hulls, i.e. Ht is a chordal Ω-
hull for each t ∈ [0, T ]. Then (Ht)t∈[0,T ] is called increasing family of chordal Ω-hulls
if Ht ( Hs whenever 0 ≤ t < s ≤ T and H0 = ∅. Moreover, (Ht)t∈[0,T ] ⊆ Ω is called
continuous family of chordal Ω-hulls if (Ωt−a)t∈[0,T ], with Ωt := Ω\Ht and some a ∈ ΩT ,
is continuous with respect to kernel convergence.
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As in the bilateral setting, we will go directly to the multiple slit case. Let Ω be an
upper parallel slit half-plane and for each k ∈ {1, . . . ,m} with m ∈ N, γk : [0, T ]→ C is
continuous and simple with γk(0, T ] ⊆ Ω and γk(0) ∈ R. Moreover, γj [0, T ]∩γk[0, T ] = ∅
whenever k 6= j. Then we call (γ1, . . . , γm)t∈[0,T ] a tuple of disjoint chordal (parametrised)
slits in Ω. Obviously, (Ht)t∈[0,T ], with Ht :=

⋃m
k=1 γk(0, t] is a family of increasing

continuous chordal Ω-hulls.
Let (γ1, . . . , γm)t∈[0,T ] be a tuple of disjoint chordal slits in an upper parallel slit half-

plane Ω. For each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, we set Hk(t, τ) :=
⋃m
j=1,j 6=k γj(0, τ ] ∪

γk(0, t]. Since Hk(t, τ) is a chordal Ω-hull as well, we may define

fk;t,τ : Ωk(t, τ) := Ω \ Hk(t, τ)→ Dk(t, τ),

as the normalised chordal mapping function from Ω\Hk(t, τ) onto the upper parallel slit
half-plane Dk(t, τ) with t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}. Moreover, for each t ∈ [0, T ],
we set independently of k ∈ {1, . . . ,m}, gt := fk;t,t, Ωt := Ωk(t, t) and Dt := Dk(t, t).

b

b

b

b b b× × ×⊕ ⊕

⊕

t

t

t
Ωt

gt
Uk(t) Φ∞,Uk(t),Dt

Dt
γk

0∞ ∞
0

Figure 2.5: Mapping behaviour of z 7→ gt(z) and w 7→ Φ∞,Uk(t),Dt(w) in the chordal
multiple slit case

Then we have the following theorem

Theorem 2.36. Let Ω be an upper parallel slit half-plane, (γ1, . . . , γm)t∈[0,T ] be a tuple
of disjoint chordal slits in Ω with m ∈ N, and let t0 ∈ [0, T ]. For each t, τ ∈ [0, T ] and
k ∈ {1, . . . ,m}, fk;t,τ : Ωk(t, τ) → Dk(t, τ) and gt : Ωt → Dt denote the normalised
chordal mapping functions on Ωk(t, τ) := Ω \ (γk(0, t]∪

⋃
j 6=k γj(0, τ ]) and Ωt := Ωk(t, t),

respectively. Then the following three statements are equivalent.

(i) The limit λk(t0) := limt→t0
hcap(fk;t,t0 )−hcap(fk;t0,t0 )

t−t0 exists for each k ∈ {1, . . . ,m}.

(ii) The function t 7→ gt(z) is differentiable at t0 for each z ∈ Ωt0.

(iii) The function t 7→ gt(z) is differentiable at t0 for each z ∈ Ωt0 and fulfils

ġt0(z) = − i

2

m∑
k=1

λk(t0)Φ∞,Uk(t0),Dt0

(
gt0(z)

)
for all z ∈ Ωt0 ,

where for each k ∈ {1, . . . ,m}, λk(t0) ≥ 0 and the driving term Uk(t) := gt(γk(t))
is continuous on [0, T ].

When this happens, t 7→ hcap(gt) is differentiable at t0 with derivative
∑m

k=1 λk(t0).

As before, w 7→ Φ∞,Uk(t0),Dt0
(w) denotes the unique mapping function from Propo-

sition 2.5, see also Figure 2.5.
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Remark 2.7. Let Ω = H and (γ)t∈[0,T ] be a chordal slit in H parametrised in such a way
that hcap(gt) = 2t for all t ∈ [0, T ] where, for each t ∈ [0, T ], gt denotes the normalised

chordal mapping function on Ω \ γ(0, t]. Then λ(t0) := limt→t0
hcap(gt)−hcap(gt0 )

t−t0 = 2 for
all t0 ∈ [0, T ], so Theorem 2.36 and Remark 2.2 give us Theorem D.

The proof of Theorem 2.36 can be found in Section 2.6. In order to do so, we need
some preliminary lemmas.

Lemma 2.37. Let Ω be an upper parallel slit half-plane and A,B ⊆ Ω be chordal Ω-hulls
with A ( B. Then hcap(gA) < hcap(gB) where gA and gB denote the normalised chordal
mapping function on Ω \ A and Ω \B, respectively.

Proof. First of all, we note that the functions gA and gB are related to an extremal
property, see Lemma 2.8.

C := gA(B \ A) is a compact chordal hull in DA = gA(Ω \ A). Using Riemann’s
mapping theorem (for simply connected domains), we find a unique conformal mapping
h : H \C→ H having h(z)− z → 0 as z →∞. Hence h(z) = z+ ah

z +O(|z|2) around ∞
with ah > 0, see [Law05], Section 3.4. Consequently, (h ◦ gA)(z) = z + ah+aA

z +O(|z|2)
around ∞ where aA = hcap(gA).

Next, let us use the notation from Lemma 2.8 with Ω\B as the initial domain. Then
gB, h ◦ gA ∈ F and we find hcap(gA) + ah ≤ hcap(gB), so hcap(gA) < hcap(gB).

Lemma 2.38. Let Ω be an upper parallel slit half-plane, (Ht)t∈[0,T ] be an increasing
family of chordal Ω-hulls and for each t ∈ [0, T ], gt denotes the normalised chordal
mapping function on Ω \ Ht. Let (tn)n∈N ⊆ [0, T ] with tn → t0, assume con(Ωtn) =
con(Ωt0) for all n ∈ N and Ωtn−a

k−→ Ωt0−a for some a ∈ ΩT .

Then gtn
l.u.−−−→ gt0 on Ωt0 as n→∞. Moreover, hcap(gtn)→ hcap(gt0) as well.

Proof. First of all, by definition Ωtn−a
k−→ Ωt0−a if tn → t0 for some a ∈ ΩT . Next, we

set gn := gtn and note that each gn has an analytic continuation to Bε(∞) with ε > 0
small. Thus we find with hn(z) := 1/(gn(1/z) + i):

hn(z) = z − iz2 − (hcap(gn) + 1)z3 +O(|z|4) around z = 0.

Using Koebe’s distortion theorem, (hn)n∈N is a bounded sequence on 1/Ωt0 ∪ U where
1/Ωt0 := {z ∈ C | 1/z ∈ Ωt0} and U is a small neighbourhood of 0. Consequently, we find
a locally uniform convergent subsequence (hnk)k∈N where hnk

l.u.−−−→ h on 1/Ωt0∪U . h can
not be constant as we have h(z) = z−iz2+O(|z3|) around 0. Thus gnk(z) = 1/hnk(1/z)−i
converges locally uniformly on Ωt0 to the univalent function g(z) = 1/h(1/z) − i. An
easy calculation yields g(z)− z → 0 as z →∞.

Next, we set Dn := gn(Ω \ Htn), i.e. Dn is an upper parallel slit half-plane. Since
g : Ωt0 → D := g(Ωt0) is conformal we find, by Corollary 2.12, Dnk−a

k−→ D−a for some
a ∈ D. Note that con(D) = con(Ω) = con(Ωtn) = con(Dtn), so D is an upper parallel
slit half-plane, by Lemma 2.15. Together with the previous calculation, we find g ≡ gt0 .

As all convergent subsequences (gnk)k∈N converge to the same function gt0 , also
the whole sequence (gn)n∈N converges locally uniformly to gt0 on Ωt0 . In this case
hcap(gn)→ hcap(gt0) as well, as gt0(z) = 1/h(1/z)− i.
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Lemma 2.39. Let Ω be an upper parallel slit half-plane and H be a chordal Ω-hull such
that ∂ΩH is locally connected with ΩH := Ω \ H. Then we have

hcap(gH) =
1

π

∫
∂H

=
(
g−1
H (ζ)

)
|dζ|,

where gH denotes the normalised chordal mapping function on ΩH.

Note that there is an R0 > 0 such that =(g−1
H (ζ)) = 0 for all ζ ∈ ∂H with |ζ| > R0,

so the previous integral is well-defined.

Proof. First of all, we note that gH : Ω\H→ DH can be reflected along the real line to a
function g∗ : Ω∗ \H∗ → D∗. Herein, Ω∗, D∗ and H∗ come out of reflecting Ω, DH and H
on the real line, respectively . Thus con(Ω∗) = 2n− 1 where n = con(Ω). Consequently,
∞ is an inner point of Ω∗ \ H∗ and D∗.

Together with Cauchy’s formula we find

z ·
(
g−1
∗ (z)− z

)
= z

1

2πi

∫
∂D∗

g−1
∗ (ζ)− ζ
ζ − z

dζ =
1

2πi

∫
∂D∗

g−1
∗ (ζ)− ζ
ζ
z − 1

dζ

for each z ∈ D∗. Next, we apply z = ∞. Alternatively we could substitute z = 1
w and

apply w = 0. In either way we find

hcap(g−1
∗ ) = − 1

2πi

∫
∂D∗

g−1
∗ (ζ)− ζ dζ =

1

2π

∫
∂D∗

i(g−1
∗ (ζ)− ζ) dζ.

Moreover, we denote the connected components of ∂D∗ by C0, . . . , C2n−1 where =(C0) =
0. Since hcap(g−1

∗ ) > 0 we find

hcap(g−1
∗ ) = − 1

2π

∫
∂D∗

=(g−1
∗ (ζ)− ζ)dζ = − 1

2π

2n−1∑
k=0

∫
Ck

=(g−1
∗ (ζ)− ζ)dζ.

Moreover, for each k 6= 0, ζ 7→ =(g−1
∗ (ζ)− ζ) is constant on Ck, so the integrals over Ck

vanish, as we have to consider both sides of the line segments Ck. Consequently, we find
by symmetry

hcap(gH) = −hcap(g−1
∗ ) =

1

2π

∫
C0

=(g−1
H (ζ)− ζ)|dζ| = 1

π

∫
∂H

=(g−1
H (ζ))|dζ|.

Lemma 2.40. Let Ω be an upper parallel slit half-plane and H be a chordal Ω-hull such
that ∂ΩH is locally connected with ΩH := Ω \ H. Then we have

g−1
H (z)− z =

i

2π

∫
∂H

=
(
g−1
H (ζ)

)
Φ∞,ζ,DH

(z) |dζ| for all z ∈ DH,

where gH denotes the normalised chordal mapping function from ΩH onto DH.
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Like in the previous lemma, there is an R0 > 0 such that =(g−1
H (ζ)) = 0 for all

ζ ∈ ∂H with |ζ| > R0, so the previous integral is well-defined.

Proof. Let T (z) := 1
z − i, F (z) := −i

(
g−1
H (T (z)) − T (z)

)
and R(w) := T−1(w) = 1

w+i
mapping DH onto D′ ⊆ B1/2(−i/2). Then Proposition 2.21 gives us with some a ∈ D′:

F (z) =
1

2π

∫
∂B1/2(−i/2)

<
(
F (ζ)

)
· Φa,ζ,D′(z)|dζ|+ ic for all z ∈ D′.

Note that we find a connected subset s ⊆ ∂B1/2(−i/2) such that

<
(
F (ζ)

)
= =

(
g−1
H (T (ζ))− T (ζ)

)
= =

(
g−1
H (T (ζ))

)
= 0 for all ζ ∈ B1/2(−i/2) \ s.

As T maps ∂B1/2(−i/2) \ {0} onto R and 0 to ∞, we choose s in such a way that
dist(s, 0) > 0. Consequently, we find

F (z) =
1

2π

∫
s

=
(
g−1
H (T (ζ))

)
· Φ0,ζ,D′(z)|dζ|+ id for all z ∈ D′

where d ∈ R. Note that Φ0,ζ,D′ and Φa,ζ,D′ differ only in an imaginary constant and
0 6∈ s. It is easy to see that Φ0,ζ,D′(z) = |T ′(ζ)| · Φ∞,T (ζ),DH

(T (z)). Hence an easy
substitution yields for all z ∈ D′

F (z) =
1

2π

∫
s

=
(
g−1
H (T (ζ))

)
· Φ∞,T (ζ),DH

(T (z))|T ′(ζ)||dζ|+ id

=
1

2π

∫
T (s)

=
(
g−1
H (ζ)

)
· Φ∞,ζ,DH

(T (z))|dζ|+ id.

We apply z = 0 to get d = 0. Finally, a substitution w = T (z) completes the proof.

2.6 A universal proof for multiple slit Komatu–Loewner
equations

As mentioned previously we are going to prove Theorem 2.30, 2.31 and 2.36 simultane-
ously. Herein, let Ω be a canonical domain, i.e. Ω is a circular slit disk, a circular slit
annulus or an upper parallel slit half-plane. We say H is an appropriate hull in Ω if H is
a radial Ω-hull when Ω is a circular slit disk, H is a bilateral Ω-hull if Ω is a circular slit
annulus and H is a chordal Ω-hull if Ω is an upper parallel slit half-plane. In particular,
(γ1, . . . , γm)t∈[0,T ] is called tuple of disjoint appropriate slits in Ω if (γ1, . . . , γm)t∈[0,T ]

is a tuple of disjoint radial slits in a circular slit disk Ω, (γ1, . . . , γm)t∈[0,T ] is a tuple
of disjoint bilateral slits whenever Ω is a circular slit annulus, or (γ1, . . . , γm)t∈[0,T ] is
a tuple of disjoint chordal slits if Ω is an upper parallel slit half-plane. Obviously,
H :=

⋃m
k=1 γk(0, tk], with tk ∈ [0, T ], is an appropriate Ω-hull if (γ1, . . . , γm)t∈[0,T ] is a

tuple of disjoint appropriate slits in Ω.
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A family (Ht)t∈[0,T ] of appropriate Ω-hulls is called increasing if Ht ( Hs whenever
t < s and H0 = ∅. (Ht)t∈[0,T ] is called continuous if (Ωt−a)t∈[0,T ], with Ωt := Ω \Ht and
some a ∈ ΩT , is continuous. If (γ1, . . . , γm)t∈[0,T ] is a tuple of disjoint appropriate slit in
Ω, then (

⋃m
k=1 γk(0, t])t∈[0,T ] is clearly a family of increasing continuous Ω-hulls.

Let H be an appropriate hull in Ω. We call gH : Ω\H→ DH the normalised appropri-
ate mapping function on Ω \H if gH is the normalised radial mapping function on Ω \H
when Ω is a circular slit disk, gH is the normalised bilateral mapping function on Ω\H if
Ω is a circular slit annulus, and gH is the normalised chordal mapping function on Ω \H
if Ω is an upper parallel slit half-plane. Consequently, DH := gH(Ω \H) and Ω do always
have the same canonical type. Next, let gH be the normalised appropriate mapping
function on Ω \ H. Analogously, we denote by c(gH) the logarithmic mapping radius of
gH if underlying we have the radial case, the logarithmic conformal modulus of gH in the
bilateral case, and the half-plane capacity of gH if underlying we have the chordal case,
respectively. In this context, we call c(gH) appropriate capacity of gH. Moreover, we use
the abbreviation cΩ(H) := c(gH) as well where gH denotes the normalised appropriate
mapping function on Ω \ H.

Note that the implication (iii)⇒(ii) of Theorem 2.30, 2.31 and 2.36 is trivial. We are
going to prove the implication (i)⇒(iii) in Subsection 2.6.2 and the implication (ii)⇒(i)
in Subsection 2.6.3.

Before we can do so we need some preliminary lemmas.

2.6.1 Some preliminary lemmas

Summarising Lemma 2.24, 2.32 and 2.37 we find the following lemma.

Lemma 2.41. Let Ω be a canonical domain, A,B be appropriate hulls in Ω satisfying
A ( B, and gA and gB denote the normalised appropriate mapping function on Ω \ A
and Ω \B, respectively. Then c(gA) < c(gB).

In the same way we find with Lemma 2.25, 2.33 and 2.38 the following.

Lemma 2.42. Let Ω be a canonical domain, (Ht)t∈[0,T ] be an increasing family of appro-
priate Ω-hulls, and for each t ∈ [0, T ], gt denotes the normalised appropriate mapping
function from Ωt := Ω \ Ht onto the canonical domain Dt. Let (tn)n∈N ⊆ [0, T ] with
tn → t0, assume con(Ωtn) = con(Ωt0) for all n ∈ N, and Ωtn−a

k−→ Ωt0−a for some
a ∈ ΩT .

Then gtn
l.u.−−−→ gt0 on Ωt0 and Dtn−a

k−→ Dt0−a for all a ∈ Dt0 as n → ∞. More-
over, c(gtn) → c(gt0) as well. Additionally, assume t 7→ Ht is continuous on [0, T ] and
con(Ωt) = con(Ω) for all t ∈ [0, T ]. Then t 7→ gt is continuous on [0, T ] and there is
a δ > 0 such that for each t ∈ [0, T ], dist(Cj(t), Ck(t)) > δ whenever j 6= k. Here,
C1(t), . . . Cn(t) denote the boundary components of Dt.

Proof. Note that Dtn−a
k−→ Dt0−a for all a ∈ Dt0 follows immediately from Corollary

2.12, so it only remains to prove the second part. This can be done by using the same
idea as in the proof of Lemma 2.25 where we proved that the inner boundary components
are mapped to the inner boundary components.
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In order to do so let C1, . . . , Cn−1 denote the inner boundary components of Ω. For
each small ρ > 0, we set Cρk := {z ∈ C | dist(z, Ck) = ρ}. Since dist(HT , Ck) > 0 for
each k ∈ {1, . . . , n − 1}, we find a small ρ > 0 such that Cρj ∩ C

ρ
k = ∅ and each Cρk is a

Jordan curve in Ω separating Ck from Cj , j 6= k.

Suppose there is a sequence (tn)n∈N such that minj 6=k dist(Cj(tn), Ck(tn)) → 0.
Without loss of generality we can assume that tn → t0 ∈ [0, T ]. Since Cρk is a com-
pact set, we get gtn(Cρk) → gt0(Cρk), so there is an N ∈ N such that for each k ∈
{1, . . . n− 1} and all n ≥ N , Ck(tn) is surrounded by gt0(CρI(k)). Herein, I : {1, . . . , n−
1} → {1, . . . , n − 1} is one-to-one. Consequently, minj 6=k dist(Cj(tn), Ck(tn)) > δ =:
minj 6=k dist(gt0(Cρj ), gt0(Cρk)) > 0, so this yields a contradiction.

Lemma 2.43. Let Ω be a canonical domain and (γ1, . . . , γm)t∈[0,T ] be a tuple of disjoint
appropriate slits in Ω. Assume fk;t,τ , with k ∈ {1, . . . ,m} and t, τ ∈ [0, T ], is the
normalised appropriate mapping function from Ωk(t, τ) := Ω\(

⋃m
j=1,j 6=k γj(0, τ ]∪γk(0, t])

onto the canonical domain Dk(t, τ). Next, we set Uk(t, τ) := fk;t,τ (γk(t)) and

Sk;t,t,τ := fk;t,τ

(
γk(t, t]

)
, sk;t,t,τ := fk;t,τ

(
γk[t, t]

)
for all k ∈ {1, . . . ,m}, 0 ≤ t < t ≤ T and τ ∈ [0, T ]. Then the function (t, τ) 7→ Uk(t, τ)
is continuous on [0, T ]2 and

Sk;t,t0,τ → Uk(t0, τ0) as (t, τ)→ (t0, τ0) (where t↗ t0),

sk;t0,t,τ → Uk(t0, τ0) as (t, τ)→ (t0, τ0) (where t↘ t0).

Remark 2.8. Obviously, the same is true if we consider the image of γj under fk;t,τ

with j 6= k, i.e. fk;t,τ (γj(τ, τ0]) → fk;t0,τ0(γj(τ0)) if (t, τ) → (t0, τ0) with τ ↗ τ0, and
fk;t,τ (γj [τ0, τ ])→ fk;t0,τ0(γj(τ0)) if (t, τ)→ (t0, τ0) with τ ↘ τ0. Analogously, we receive
the continuity of (t, τ) 7→ fk;t,τ (γj(τ)), with j 6= k, as well.

Proof. Since there is no risk of confusion, we omit the index k. We will only show
St,t0,τ → U(t0, τ0) as (t, τ) → (t0, τ0) where t ↗ t0. The other case st0,t,τ → U(t0, τ0)
as (t, τ) → (t0, τ0) where t ↘ t0 follows in the same way. Since U(t, τ) ∈ St,t0,τ and
U(t, τ) ∈ st0,t,τ , the continuity of U follows immediately.

Let t0 ∈ (0, T ]. As mentioned before, we will show that for every ε > 0, there is a
δ > 0 with St,t0,τ ⊆ Bε(U(t0, τ0)) for all t ∈ [t0 − δ, t0] and τ ∈ [τ0 − δ, τ0 + δ] ∩ [0, T ].
Note that z 7→ ft0,τ0(z) has a continuous extension to the boundary with respect to
the two sides of the slit, see also Remark 2.9. Thus for each small ε > 0, we find a
δ1 > 0 such that st,t0,τ0 ⊆ Bε(U(t0, τ0)) for all t ∈ [t0 − δ1, t0]. Moreover, the function
ft,τ ◦ f−1

t0,τ0
converges by Lemma 2.42 locally uniformly to the identity if (t, τ) tends

to (t0, τ0). Using the Schwarz reflection principle and Lemma 2.42, we see that these
functions can be extended analytically to B2ε(U(t0, τ0))\st,t0,τ0 if ε and |t0− t| are small
enough, see also Figure 2.6. Considering the uniform convergence on ∂Bε(U(t0, τ0)), we
find a δ ∈ (0, δ1) such that St,t0,τ ⊆ Bε(U(t0, τ0)) for all τ ∈ [τ0 − δ, τ0 + δ] ∪ [0, T ] and
all t ∈ [t0 − δ, t0].

The proof of the remark works in the same way.
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Figure 2.6: Mapping behaviour of ft,τ , ft0,τ ft0,τ0 and ft,τ0 in the proof of Lemma 2.43
in the radial case.

The previous lemma shows that the image of each tip fk;t,τ (γk(t)) is continuous w.r.t
t. This is true also for every other boundary point a on the outer or unbounded boundary
component of Ωt. Consequently, we have the following lemma

Lemma 2.44. Let Ω be a canonical domain and (γ1, . . . , γm)t∈[0,T ] be a tuple of disjoint
appropriate slits in Ω. For each k ∈ {1, . . . ,m} and t, τ ∈ [0, T ], fk;t,τ is the normalised
appropriate mapping function from Ωk(t, τ) := Ω \ (

⋃m
j=1,j 6=k γj(0, τ ] ∪ γk(0, t]) onto the

canonical domain Dk(t, τ). Moreover, (tn)n∈N and (τn)n∈N are convergent sequences
with limits t0 and τ0, respectively. Assume a ∈ C (with respect to prime ends) where C
denotes the outer or unbounded boundary component of Ωk(t0, τ0).

Then fk;tn,τn(a)→ fk;t0,τ0(a) when n→∞.

Remark 2.9. If a ∈ γk[0, t0) or a ∈ γj [0, τ0) with j 6= k, then a is either on the one or
on the other side of the slit, so fk;tn,τn(a) and fk;t0,τ0(a) are well-defined. An extensive
discussion of the boundary behaviour of slit mappings can be found in Section 2.3 in
[dMG13].

Proof. Note that the case a = γk(t0) or a = γj(t0) with j 6= k follows immediately from
Lemma 2.43 and Remark 2.8.

For the rest let us consider the function hn := fk;tn,τn ◦ f−1
k;t0,τ0

, which tends locally
uniformly on Dk(t0, τ0) to the identity, see Lemma 2.42. Moreover Lemma 2.43 gives us

fk;t0,τ0(γk[min(tn, t0),max(tn, t0)])→ fk;t0,τ0(γk(t0)) = Uk(t0, τ0)

fk;t0,τ0(γj [min(τn, τ0),max(τn, τ0)])→ fk;t0,τ0(γj(τ0)), j 6= k.

Note that we find an N ∈ N and an ε > 0 such that there is an analytic continuation of
hn to Bε(fk;t0,τ0(a)). Herein, hn converges locally uniformly on Bε(a) to the identity as
well. Consequently, fk;tn,τn(a) = hn(fk;t0,τ0(a))→ fk;t0,τ0(a).

Summarising Lemma 2.27, 2.34 and 2.39 we get the following result.
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Lemma 2.45. Let Ω be a canonical domain and H is an appropriate hull in Ω such that
∂ΩH, with ΩH := Ω\H, is locally connected. By gH we denote the normalised appropriate
mapping function from ΩH onto the canonical domain DH. Then we have

c(gH) = − 1

2π

∫
C

<F
(
g−1
H (ζ)

)
|dζ|.

Herein, C denotes the outer or unbounded boundary component of DH, and F (w) := 2iw
with w ∈ C in the chordal case and F (w) := log(w) with w ∈ C \ {0} in the radial or
bilateral case.

Note that, w 7→ < log(w) = log |w| does not depend of the branch of the logarithm.
Finally, we get with Lemma 2.28, 2.35 and 2.40

Lemma 2.46. Let Ω be a canonical domain and H is an appropriate hull in Ω such that
∂ΩH, with ΩH := Ω\H, is locally connected. By gH : ΩH → DH we denote the normalised
appropriate mapping function from ΩH onto the canonical domain DH. Then we have

F (g−1
H (z))− F (z) =

1

2π

∫
C

<F
(
g−1
H (ζ)

)
· Φa,ζ,DH

(z)|dζ| for all z ∈ DH.

Herein, C denotes the outer or unbounded boundary component of DH, and F (w) := 2iw
with w ∈ C in the chordal case and F (w) := log(w) with w ∈ C \ {0} in the radial or
bilateral case. Moreover, a := 0 in the radial case, a := q in the bilateral case where q is
the inner radius of the circular slit annulus DH and a :=∞ in the chordal case.

Note that there is always a branch of the logarithm in order to get, independently
of the branch of the logarithm, an analytic function on the left side.

Lemma 2.47. Let A,B ⊆ D be bounded domains. Assume there exists an R > 0 such
that A ∩ BR(1) = D ∩ BR(1) and B ∩ BR(1) = D ∩ BR(1). Moreover, let T : A→ B be
a conformal mapping from A onto B satisfying T (1) = 1 and∣∣∣∣ d

dz

(
log
(
T (z)

)
− c log z

)∣∣∣∣ < δ for all z ∈ Bε(1) ∩A,

with some small ε > 0, δ > 0 and c := T ′(1). Then c = T ′(1) > 0 and the inequality

|z|c+δ ≤ |T (z)| ≤ |z|c−δ

holds for all z ∈ A ∩Bε(1).

If ε > 0 is small enough we do always find a branch of the logarithm in order to get an
analytic function z 7→ log(T (z)) − c log z. Moreover, the derivative does not depend on
a particular branch, so we can see z 7→ log(T (z))− c log(z) as a multiple-valued function
as well.
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Proof. First of all, we extend the function T to an analytic map on Bε(1) for a small
ε > 0, by using the Schwarz reflection principle. The small arc T∩Bε(1) is mapped into
T with T (1) = 1, so the property c := T ′(1) > 0 is obviously true.

Next, we set γθ(r) := r · eiθ for all r ∈ [r0, 1] and all |θ| < φ. In this context we can
choose r0 < 1 close enough to 1 and φ > 0 small enough to get γθ(r) ∈ Bε(1) for all
r ∈ [r0, 1] and all θ ∈ (−φ, φ). Moreover, for each θ ∈ (−φ, φ), we define

hθ(r) := <
(

log
T (γθ(r))

(γθ(r))c

)
= ln

∣∣∣∣T (γθ(r))

(γθ(r))c

∣∣∣∣ , r ∈ [r0, 1].

Some simple calculations give us for all θ ∈ (−φ, φ) and all r ∈ [r0, 1]:∣∣∣∣ ∂∂rhθ(r)
∣∣∣∣ =

∣∣∣∣∣<
(

d

dz
log

(
T (z)

zc

)∣∣∣∣
z=γθ(r)

· γ̇θ(r)

)∣∣∣∣∣
=

∣∣∣∣∣<
((

T ′(z)

T (z)
− c

z

)∣∣∣∣
z=γθ(r)

· eiθ

)∣∣∣∣∣
≤

∣∣∣∣∣ T ′(z)T (z)
− c

z

∣∣∣∣
z=γθ(r)

∣∣∣∣∣ ≤ δ.
We have hθ(1) = 0, so we find

ln(rδ) = δ ln(r) ≤ hθ(r) ≤ −δ ln(r) = ln(r−δ) for all θ ∈ (−φ, φ), r ∈ [r0, 1].

Finally, we get ln(|z|δ) ≤
∣∣T (z)
zc

∣∣ ≤ ln(|z|−δ) for all z ∈ {r · eiθ | r ∈ [r0, 1], θ ∈ (−φ, φ)},
so the proof is complete.

Lemma 2.48. Let A,B ⊆ H be domains and assume there exists an R > 0 such that
A∩DR = H∩DR, B ∩DR = H∩DR. Moreover, let T : A→ B be a conformal mapping
from A onto B with T (0) = 0 and∣∣∣∣ d

dz

(
T (z)− cz

)∣∣∣∣ < δ, for all z ∈ Dε ∩A,

where ε > 0 is small, δ > 0 and c := T ′(1). Then c = T ′(0) > 0 and the inequality

(c− δ)=(z) < =T (z) < (c+ δ)=(z)

holds for all z ∈ A ∩Bε(0).

Proof. First of all, we can extend T along DR to an analytic function. Herein, it is easy
to see that c = T ′(0) > 0 holds. Let γa(t) := a + it and ha(t) := =

(
T (γa(t)) − cγa(t)

)
for all a ∈ [−a0, a0] and t ∈ [0, t0] with a0, t0 > 0. We choose a0 and t0 in such a way
that γa(t) ∈ Dε ∩A for all t ∈ [0, t0] and all a ∈ [−a0, a0]. Consequently, we find∣∣∣ ∂

∂t
ha(t)

∣∣∣ =
∣∣∣=((T ′(γa(t))− c) · i

)∣∣∣ ≤ |T ′(γa(t))− c| < δ.

Hence, −δt ≤ ha(t) ≤ δt. Finally, the proof is complete by substituting z = γa(t).
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Summarising Lemma 2.47 and 2.48 we find the following lemma.

Lemma 2.49. Let G := D or G := H and ζ1, ζ2 ∈ ∂G. A,B ⊆ G are domains and
assume there is an R > 0 such that A∩BR(ζ1) = G∩BR(ζ1) and B∩BR(ζ2) = G∩BR(ζ2).
Moreover, let T : A→ B be a conformal mapping where T (ζ1) = ζ2 and∣∣∣∣ d

dz

(
F
(
T (z)

)
− |c|F (z)

)∣∣∣∣ < δ for all z ∈ Bε(ζ1) ∩G, (2.6)

where ε > 0 is small, δ > 0 and c := T ′(ζ1). Herein, F (w) := 2iw with w ∈ C if G = H
and F (w) := log(w) with w ∈ C \ {0} if G = D

Then the inequality

(|c|+ δ)<F (z) ≤ <F
(
T (z)

)
≤ (|c| − δ)<F (z)

holds for all z ∈ Bε(ζ1) ∩G.

Remark 2.10. In the chordal case Equation (2.6) is equivalent to

2
∣∣T ′(z)− |c|∣∣ = 2|T ′(z)− c| = 2|T ′(z)− T ′(ζ1)| < δ for all z ∈ Bε(ζ1) ∩H,

as c := T ′(ζ1) > 0.
In the radial case Equation (2.6) is equivalent to∣∣∣∣T ′(ζ1z)

T (ζ1z)
− |c|
ζ1z

∣∣∣∣ =

∣∣∣∣∣ T̂ ′(z)T̂ (z)
− |c|

z

∣∣∣∣∣ =

∣∣∣∣∣ T̂ ′(z)T̂ (z)
− T̂ ′(1)

z

∣∣∣∣∣ < δ for all z ∈ Bε(1) ∩ D,

with T̂ (z) := T (ζ1z)
ζ2

, i.e. T̂ (1) = 1.

2.6.2 Proof of Theorem 2.30, 2.31 and 2.36: (i)⇒(iii)

Proof for t↘ t0. Let be t0 < t and for each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, fk;t,τ denotes
the normalised appropriate mapping function from Ωk(t, τ) := Ω \ (

⋃m
j=1,j 6=k γj(0, τ ] ∪

γk(0, t]) onto the canonical domain Dk(t, τ). Moreover, we write gt := fk;t,t, Ωt :=
Ωk(t, t), Dt := Dk(t, t) and

Sk;t0,t,τ := fk;t0,τ

(
γk(t0, t]

)
, sk;t0,t,τ := fk;t,τ

(
γk[t0, t]

)
.

On top of this we define sk(t0, t) := sk;t0,t,t and Sk(t0, t) := Sk;t0,t,t0 . Finally, we set
gt0,t := gt ◦ g−1

t0
, so this is the normalised appropriate mapping function from Dt0 \⋃m

k=1 Sk(t0, t) onto Dt. Using Lemma 2.46, we find

F (g−1
t0,t

(z))− F (z) =
1

2π

m∑
k=1

∫
sk(t,t0)

<F
(
g−1
t0,t

(ζ)
)
· Φat,ζ,Dt(z)|dζ| for all z ∈ Dt,

with F (w) := log(w), w ∈ C \ {0}, in the radial and bilateral case and F (w) := 2iw,
w ∈ C, in the chordal case. at := 0 in the radial case, at := qt in the bilateral case
where qt is the inner radius of the circular slit annulus Dt, and at := ∞ in the chordal
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case. Note that ζ 7→ Φat,ζ,Dt(z) is continuous on sk(t0, t) by Lemma 2.18, 2.19 or 2.20.
ζ 7→ <F (g−1

t0,t
(ζ)) is continuous on sk(t0, t) as well and <F (g−1

t0,t
(ζ)) ≤ 0, so the mean

value theorem gives us

F (g−1
t0,t

(z))− F (z) =
m∑
k=1

(
<
(
Φat,ζ1k ,Dt

(z)
)

+ i=
(
Φat,ζ2k ,Dt

(z)
)) 1

2π

∫
sk(t0,t)

<F (g−1
t0,t

(ζ))|dζ| (2.7)

for all z ∈ Dt and some ζjk ∈ sk(t0, t), j ∈ {1, 2}. For each k ∈ {1, . . . ,m}, we denote
the remaining integral by 2πck(t0, t).

For now let us fix k ∈ {1, . . . ,m} and t > t0, and consider the function z 7→ h−1
t :=

fk;t,t0 ◦g
−1
t , which can be extended analytically to Bε(Uk(t0)), with ε > 0 small, by using

the Schwarz reflection principle and Lemma 2.42 and 2.43. In this context, Lemma 2.42
ensures that the interior boundary components of Dt come not to close to T. Moreover,

b

×

b

⊕ ⊕

⊕

b

b

b

×

×

×

×

b

b

×

×

⊕

×

b

b

×

b

⊕× b

b

gt0

gt
gt0,t

fk;t,t0

Uk(t0)

γk(t0)

γk(t)

sk(t0, t)

sk;t0,t,t0

Bε(Uk(t0))

Dt

Ωt

h−1
t

Figure 2.7: Radial mappings gt0, gt, ht and fk;t,t0 in the proof of Theorem 2.30, 2.31,
2.36 (i)⇒(iii) in the case t > t0

Lemma 2.42 shows that h−1
t (as well as ht) tends to the identity locally uniformly on

Dt0 as t↘ t0. On top of this the local uniform convergence holds on Bε(Uk(t0)) as well.
If t is close to t0, we get by substitution

ck(t0, t) =
1

2π

∫
sk(t0,t)

<F
(
g−1
t0,t

(ζ)
)
|dζ| = 1

2π

∫
sk;t0,t,t0

<F
(
g−1
t0,t

(ht(ζ))
)
· |h′t(ζ)| |dζ|

=
1

2π

∫
sk;t0,t,t0

<F
(
gt0 ◦ f−1

k;t,t0
(ζ)
)
· |h′t(ζ)| |dζ|.

Moreover, ζ 7→ <F (gt0◦f−1
k;t,t0

(ζ)) and ζ 7→ |h′t(ζ)| are continuous on sk;t0,t,t0 and <F (gt0◦

46



CHAPTER 2. KOMATU–LOEWNER EQUATIONS FOR CANONICAL DOMAINS

f−1
k;t,t0

(ζ)) ≤ 0 so the mean value theorem yields

ck(t0, t) = |h′t(ζ∗)|
1

2π

∫
sk;t0,t,t0

<F
(
gt0 ◦ f−1

k;t,t0
(ζ)
)
|dζ|

where ζ∗ ∈ sk;t0,t,t0 . Note that fk;t,t0◦g
−1
t0

is the normalised appropriate mapping function
from Dt0 \ Sk(t0, t) onto Dk(t, t0), so we find with Lemma 2.45

ck(t0, t) = |h′t(ζ∗)|
(
−c(fk;t,t0 ◦ g

−1
t0

)
)

= −|h′t(ζ∗)|
(
c(fk;t,t0)− c(fk;t0,t0)

)
. (2.8)

We have ζ∗ ∈ sk;t0,t,t0 ⊆ Bε(ζk(t0)) if t is close to t0, so we find h′t(ζ
∗) → 1 as t ↘ t0.

Summarising, we get

lim
t↘t0

ck(t0, t)

t− t0
= lim

t↘t0
−
c(fk;t,t0)− c(fk;t0,t0)

t− t0
= −λk(t0). (2.9)

Obviously, we can do this for each k ∈ {1, . . . ,m}.
Next, Equation (2.7) with z := gt(w) and w ∈ Ωt yields

F (gt0(w))− F (gt(w))

t− t0
=

m∑
k=1

(
<
(
Φat,ζ1k ,Dt

(gt(w))
)

+ i=
(
Φat,ζ2k ,Dt

(gt(w))
))ck(t0, t)

t− t0
.

for all t > t0. As mentioned before, for each j ∈ {1, 2}, ζjk ∈ sk(t0, t) and sk(t0, t) →
Uk(t0), see Lemma 2.43. Consequently, ζjk → Uk(t0) as t ↘ t0. Using Lemma 2.42, we
get Dt−b k−→ Dt0−b for each b ∈ Dt0 . Thus we find with Lemma 2.18, 2.19 or 2.20 in
either case

Φ
at,ζ

j
k,Dt

l.u.−−−→ Φat0 ,Uk(t0),Dt0
on Dt0 .

As mentioned already, Lemma 2.42 gives us gt
l.u.−−−→ gt0 on Ωt0 as t↘ t0, so we find

lim
t↘t0

F (gt(w))− F (gt0(w))

t− t0
=

m∑
k=1

λk(t0) · Φat0 ,Ut0 ,Dt0

(
gt0(w)

)
for all w ∈ Ωt0 .

Finally, note that gt0,t = gt ◦ g−1
t0

is the normalised appropriate mapping function from
Dt0 \

⋃m
k=1 Sk(t0, t) onto Dt, so we can apply Lemma 2.45 to get

c(gt)− c(gt0) = c(gt0,t) = − 1

2π

∫
T

<F
(
g−1
t0,t

(ζ)
)
|dζ| =

− 1

2π

m∑
k=1

∫
sk(t0,t)

<F
(
g−1
t0,t

(ζ)
)
|dζ| =

m∑
k=1

−ck(t0, t)

for all t > t0. Using Equation (2.9), we find

lim
t↘t0

c(gt)− c(gt0)

t− t0
=

m∑
k=1

λk(t0),

so the proof is complete.
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As a nice side effect, Equation (2.8) immediately yields the following lemma.

Lemma 2.50. Let Ω be a canonical domain and denote by (γ1, . . . , γm)t∈[0,T ] a tuple
of disjoint appropriate slits in Ω. For each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, denote
by fk;t,τ the normalised appropriate mapping function on Ω \ (γk(0, t] ∪

⋃
j 6=k γj(0, τ ]).

Moreover, we set gt := fk;t,t for all t ∈ [0, T ] and sk(t0, t) := gt(γk[t0, t]) for all t > t0
and k ∈ {1, . . . ,m}. Then for all k ∈ {1, . . . ,m}, we find

−ck(t0, t)
c(fk;t,t0)− c(fk;t0,t0)

t↘t0−−−→ 1 with ck(t0, t) :=
1

2π

∫
sk(t0,t)

<F
(
(gt0 ◦ g−1

t )(ζ)
)
|dζ|,

where F (w) := 2iw for all w ∈ C in the chordal case and F (w) := log(w) for all
w ∈ C \ {0} in the radial and bilateral case.

Proof for t↗ t0. Assume t < t0 and k ∈ {1, . . . ,m}. We use the same abbreviation
as in the previous case t ↘ t0, so for each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, fk;t,τ is the
normalised appropriate mapping function from Ωk(t, τ) := Ω\(

⋃m
j=1,j 6=k γj(0, τ ]∪γk(0, t])

onto the canonical domain Dk(t, τ) and gt := fk;t,t, Ωt := Ωk(t, t), Dt := Dk(t, t).
Moreover, we write

Sk;t,t0,τ := fk;t,τ

(
γk(t, t0]

)
, sk;t,t0,τ := fk;t0,τ

(
γk[t, t0]

)
, τ ∈ [0, T ].

On top of this we set sk(t, t0) := sk;t,t0,t0 and Sk(t, t0) := Sk;t,t0,t. Finally, we set gt,t0 :=
gt0 ◦g−1

t , so this is the normalised appropriate mapping function from Dt \
⋃m
k=1 Sk(t, t0)

onto Dt0 . Like the previous case we find by using Lemma 2.46 and the mean value
theorem

F (g−1
t,t0

(z))− F (z) =
m∑
k=1

(
<
(
Φat0 ,ζ

1
k ,Dt0

(z)
)

+ i=
(
Φat0 ,ζ

2
k ,Dt0

(z)
)) 1

2π

∫
sk(t,t0)

<F (g−1
t,t0

(ζ))|dζ| (2.10)

with ζjk ∈ sk(t, t0), j ∈ {1, 2}. Herein, at0 := 0 in the radial case, at0 := q in the
bilateral case where q is the inner radius of the circular slit annulus Dt0 and at0 :=∞ in
the chordal case. We denote the remaining integral on the right-hand side in Equation
(2.10) by 2πck(t, t0).

Next, let us consider the function h−1
t := fk;t,t0 ◦ g

−1
t , which is the normalised appro-

priate mapping function from Dt \
⋃
j 6=k Sj(t, t0) onto Dk(t, t0). Using Lemma 2.43 and

2.42, we find a small ε > 0 such that there is an analytic continuation of ht to Bε(Uk(t0))
for all t < t0 close enough to t0. Moreover, ht tends locally uniformly on Dt0 (as well as
on the extension Bε(Uk(t0))) to the identity if t↗ t0. Obviously, we have

ck(t, t0) =
1

2π

∫
sk(t,t0)

<F
(
g−1
t,t0

(ζ)
)
|dζ| = 1

2π

∫
sk(t,t0)

<F (ht ◦ fk;t,t0 ◦ g
−1
t0

)(ζ)(dζ).

Note that (fk;t,t0 ◦ g
−1
t0

)(ζ) ∈ cl(Sk;t,t0,t) if ζ ∈ sk(t, t0). On top of this Sk;t,t0,t →
Uk(t0) =: ζ0 if t ↗ t0 by Lemma 2.43. Hence we find a compact set K ⊆ Bε(ζ0) such
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Figure 2.8: Radial mappings gt0, gt, ht and fk;t,t0 in the proof of Theorem 2.30, 2.31,
2.36 (i)⇒(iii) in the case t < t0

that Sk;t,t0,t ⊆ K for all t close enough to t0. ht converges uniformly on K to the
identity as t ↗ t0, so using Remark 2.10, we find for each δ > 0 a t∗ < t0 such that∣∣ d

dz

(
F
(
ht(z)

)
− |h′t(ζ0)|F (z)

)∣∣ < δ for all t ∈ [t∗, t0] and all z ∈ K. Using Lemma 2.49,
we find

(|h′t(ζ0)|+ δ)<F (z) ≤ <F (ht(z)) ≤ (|h′t(ζ0)| − δ)<F (z)

for all z ∈ K and all t ∈ [t∗, t0]. Note that |h′t(ζ0)| → 1 as t↗ t0. Summarising, we get

(
|h′t(ζ0)|+ δ

) 1

2π

∫
sk(t,t0)

<F (fk;t,t0 ◦ g
−1
t0

)(ζ)(dζ)

≤ ck(t, t0) ≤
(
|h′t(ζ0)| − δ

) 1

2π

∫
sk(t,t0)

<F (fk;t,t0 ◦ g
−1
t0

)(ζ)(dζ) (2.11)

for all t ∈ [t∗, t0]. Like in the previous case, gt0 ◦ f−1
k;t,t0

is the normalised appropriate
mapping function from Dk(t, t0) \ Sk;t,t0,t onto Dt0 , so we get with Lemma 2.45

1

2π

∫
sk(t,t0)

<F (fk;t,t0 ◦ g
−1
t0

)(ζ)(dζ) = −c(gt0 ◦ f−1
k;t,t0

) = −
(
c(fk;t0,t0)− c(fk;t,t0)

)
.

Hence, limt↗t0
ck(t,t0)
t0−t = −λk(t0). Obviously, we can do this for each k ∈ {1, . . . ,m}.

Next, Equation (2.10) with z := gt0(w) and w ∈ Ωt0 gives us

F (gt(w))− F (gt0(w))

t− t0
=

m∑
k=1

(
<
(
Φat0 ,ζ

1
k ,Dt0

(gt0(w))
)

+ i=
(
Φat0 ,ζ

2
k ,Dt0

(gt0(w))
))ck(t0, t)

t− t0
.

As mentioned before ζjk ∈ sk(t, t0), j ∈ {1, 2} and sk(t, t0) → Uk(t0), see Lemma 2.43.

Consequently, ζjk → Uk(t0) as t↘ t0. Using Lemma 2.18, 2.19 or 2.20, we find in either
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case Φ
at0 ,ζ

j
k,Dt0

l.u.−−−→ Φat0 ,Uk(t0),Dt0
on Dt0 as t↗ t0. Finally, we find

lim
t↗t0

F (gt(w))− F (gt0(w))

t− t0
=

m∑
k=1

λk(t0) · Φat0 ,Uk(t0),Dt0
(gt0(w))

for all w ∈ Ωt0 .

As a nice side effect, Equation (2.11) immediately yields the following lemma.

Lemma 2.51. Let Ω be a canonical domain and denote by (γ1, . . . , γm)t∈[0,T ] a tuple of
disjoints appropriate slits in Ω. For each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, fk;t,τ denotes
the normalised appropriate mapping function on Ω \ (γk(0, t]∪

⋃
j 6=k γj(0, τ ]). gt := fk;t,t

for all t ∈ [0, T ] and sk(t0, t) := gt0(γk[t, t0]) for all t < t0 and k ∈ {1, . . . ,m}. Then we
find

−ck(t, t0)

c(fk;t0,t0)− c(fk;t,t0)

t↗t0−−−→ 1 with ck(t, t0) :=
1

2π

∫
sk(t,t0)

<F
(
(gt ◦ g−1

t0
)(ζ)

)
|dζ|,

where F (w) := 2iw for all w ∈ C in the chordal case and F (w) := log(w) for all
w ∈ C \ {0} in the radial and bilateral case.

2.6.3 Proof of Theorem 2.30, 2.31 and 2.36: (ii)⇒(i)

Proof for t↘ t0. We use the same notations as in the proof of (i)⇒(iii), i.e. for each
t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, fk;t,τ denotes the normalised appropriate mapping
function on Ω \ (γk(0, t] ∪

⋃
j 6=k γj(0, τ ]). Moreover, gt := fk;t,t, sk(t0, t) := gt(γk[t0, t])

and Uk(t) := gt(γk(t)) for all t ∈ [0, T ] and all k ∈ {1, . . . ,m}.
Let t0 < t. Applying the real part on Equation (2.7) with z = gt(w), for each

k ∈ {1, . . . ,m} and all w ∈ Ωt, we get

<F (gt(w))−<F (gt0(w)) = − 1

2π

m∑
k=1

<Φat,ζk,Dt(gt(w))

∫
sk(t0,t)

<F (gt0 ◦ g−1
t )(ζ) |dζ|

≥ − 1

2π
<Φat,ζk,Dt(gt(w))

∫
sk(t0,t)

<F (gt0 ◦ g−1
t )(ζ) |dζ| ≥ 0.

Here ζk ∈ sk(t0, t), and F (w) := 2iw for all w ∈ C in the chordal case and F (w) := log(w)
for all w ∈ C \ {0} in the radial and bilateral case. at := 0 in the radial case, at := qt in
the bilateral case where qt is the inner radius of the circular slit annulus Dt and at :=∞
in the chordal case. Next, let us denote the remaining integral on the right-hand side
by 2πck(t0, t), so we find with t > t0

<F (gt(z))−<F (gt0(z))

t− t0
≥ −<Φat,ζk,Dt(gt(z))

ck(t0, t)

t− t0
≥ 0.

Analogously to the proof of (i)⇒(iii), for all k ∈ {1, . . . ,m}, we have

Φat,ζk,Dt ◦ gt
l.u.−−−→ Φat0 ,Uk(t0),Dt0

◦ gt0 on Ωt0
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when t↘ t0, as ζk ∈ sk(t0, t)→ Uk(t0). Since t 7→ <F (gt(z)) is differentiable at t0, each

t 7→ ck(t0,t)
t−t0 , k ∈ {1, . . . ,m}, is bounded on (t0, T ]. Summarising, for each w ∈ Ωt, we

find

<F (gt(w))−<F (gt0(w)) = −
m∑
k=1

<Φat0 ,Uk(t0),Dt0

(
gt0(w)

)
ck(t0, t) + o(|t− t0|).

Using Lemma 2.50, we see that

lim
t↘t0

c(fk;t,t0)− c(fk;t0,t0)

t− t0
exists if and only if lim

t↘t0

ck(t0, t)

t− t0
exists.

Consequently, we are going to prove the existence of the limits limt↘t0
ck(t,t0)
t−t0 , k ∈

{1, . . . ,m}.
For this purpose, we show that we can find w1, . . . , wm ∈ Ωt0 such that each ck(t, t0)

can be represented as a linear combination of the functions

<F (gt(w1))−<F (gt0(w1)), . . . , <F (gt(wm))−<F (gt0(wm)).

This is equivalent to the question whether it is possible to find w1, . . . , wm ∈ Ωt0 such
that the vectors v1, . . . , vm ∈ Rm are linear independently where

vk :=
(
<Φat0 ,U1(t0),Dt0

(
gt0(wk)

)
, . . . ,<Φat0 ,Um(t0),Dt0

(
gt0(wk)

))
.

Since Φat0 ,Uk(t0),Dt0

(
gt0(γk(t0))

)
= ∞ and <Φat0 ,Uk(t0),Dt0

(
gt0(γj(t0))

)
= 0 if j 6= k, we

find wk ∈ Ω(t0) close enough to γk(t0) in order to get

<Φat0 ,Uk(t0),Dt0

(
gt0(wk)

)
= 1, <Φat0 ,Uj(t0),Dt0

(
gt0(wk)

)
< 1

m for all j 6= k.

This is based on the fact that we may consider the preimage of the curve δ(x) := 1 + ix,
x > 0 under the mapping z 7→ Φat0 ,Uk(t0),Dt0

(
gt0(z)

)
and choose x large enough in order

to find a suitable wk ∈ Ωt0 , see Figure 2.9. Consequently, the matrix (vT1 , . . . , v
T
m) is a

×

×

×

⊕

b

b

b

b

⊕

b

b

b

b

⊕

b

j

k

Φat0 ,Uk(t0),Dt0
◦ gt0 Φat0 ,Uj(t0),Dt0

◦ gt0

Figure 2.9: The preimages of δ(x) := 1 + x under the mapping z 7→
Φat0 ,Uk(t0),Dt0

(
gt0(z)

)
in the radial case

diagonally dominant matrix, so it is invertible as well.

Proof for t↗ t0. This works in the same way as in the case t ↘ t0 with Lemma 2.51
instead of Lemma 2.50.
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2.7 Almost everywhere differentiability

In this section we are going to show that a family gt : Ωt → Dt, with Ωt := Ω \⋃m
k=1 γk(0, t] and disjoint appropriate slits (γ1, . . . , γm)t∈[0,T ] in Ω, is least for almost

every t ∈ [0, T ] differentiable.

Theorem 2.52. Let Ω be a circular slit disk and (γ1, . . . , γm)t∈[0,T ] is a tuple of disjoint
radial slits in Ω with m ∈ N. For each t ∈ [0, T ], gt : Ωt → Dt denotes the normalised
radial mapping function from Ωt := Ω \

⋃m
k=1 γk(0, t] onto the circular slit disk Dt.

Then there is a null set N of [0, T ] such that t 7→ gt(z) is differentiable on [0, T ] \N
for each z ∈ ΩT and satisfies

ġt(z) = gt(z)

m∑
k=1

λk(t)Φ0,Uk(t),Dt

(
gt(z)

)
for all t ∈ [0, T ] \ N and all z ∈ ΩT ,

where, for each k ∈ {1, . . . ,m}, the driving term t 7→ Uk(t) := gt(γk(t)) is continuous on
[0, T ] and λk(t) ≥ 0 for each t ∈ [0, T ] \ N . Moreover, t 7→ lmr(gt) is differentiable on
[0, T ] \ N with derivative

∑m
k=1 λk(t).

We have the same in the bilateral case.

Theorem 2.53. Let Ω be a circular slit annulus and (γ1, . . . , γm)t∈[0,T ] is a tuple of
disjoint bilateral slits in Ω with m ∈ N. For each t ∈ [0, T ], gt : Ωt → Dt denotes the
normalised radial mapping function from Ωt := Ω \

⋃m
k=1 γk(0, t] onto the circular slit

annulus Dt with inner radius qt.
Then there is a null set N of [0, T ] such that t 7→ gt(z) is differentiable on [0, T ] \N

for each z ∈ ΩT and satisfies

ġt(z) = gt(z)

m∑
k=1

λk(t)Φqt,Uk(t),Dt

(
gt(z)

)
for all t ∈ [0, T ] \ N and all z ∈ ΩT ,

where, for each k ∈ {1, . . . ,m}, the driving term t 7→ Uk(t) := gt(γk(t)) is continuous on
[0, T ] and λk(t) ≥ 0 for each t ∈ [0, T ] \ N . Moreover, t 7→ lcm(gt) is differentiable on
[0, T ] \ N with derivative

∑m
k=1 λk(t).

Finally, we have the following theorem in the chordal case.

Theorem 2.54. Let Ω be an upper parallel slit half-plane and (γ1, . . . , γm)t∈[0,T ] is a
tuple of disjoint chordal slits in Ω with m ∈ N. For each t ∈ [0, T ], gt : Ωt → Dt denotes
the normalised chordal mapping function from Ωt := Ω \

⋃m
k=1 γk(0, t] onto the upper

parallel slit half-plane Dt.
Then there is a null set N of [0, T ] such that t 7→ gt(z) is differentiable on [0, T ] \N

for each z ∈ ΩT and satisfies

ġt(z) = − i

2

m∑
k=1

λk(t)Φ∞,Uk(t),Dt

(
gt(z)

)
, for all t ∈ [0, T ] \ N and all z ∈ ΩT ,

where, for each k ∈ {1, . . . ,m}, the driving term t 7→ Uk(t) := gt(γk(t)) is continuous on
[0, T ] and λk(t) ≥ 0 for each t ∈ [0, T ] \ N . Moreover, t 7→ hcap(gt) is differentiable on
[0, T ] \ N with derivative

∑m
k=1 λk(t).
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Before we are able to prove this theorems, we need a preliminary proposition. There-
fore, we introduce some notation as follows.

Let Ω be a canonical domain. Then we set ΩS := D if Ω is a circular slit disk,
ΩS := AQ if Ω is a circular slit annulus with inner radius Q ∈ (0, 1) and ΩS := H if Ω
is an upper parallel slit half-plane. We call ΩS the simplification of Ω. Note that ΩS

comes out of Ω by erasing all concentric circular arcs of Ω in the radial and bilateral
case or by erasing all bounded parallel arcs of Ω in the chordal case. Consequently, ΩS

is a canonical domain as well whereas con(ΩS) ≤ con(Ω).
Let (γ1, . . . , γm)t∈[0,T ] be a tuple of disjoint appropriate slits in Ω. (γ1, . . . , γm)t∈[0,T ]

is a tuple of disjoint appropriate slits in ΩS as well. For each t ∈ [0, T ] and k ∈ {1, . . . ,m},
we denote by hk;t the normalised appropriate mapping function on ΩS \ γk(0, t]. Hence,
hk;t : D \ γk(0, t] → D in the radial case, hk;t : AQ \ γk(0, t] → Ark in the bilateral case
and hk;t : H \ γk(0, t]→ H in the chordal case.

Proposition 2.55. Let Ω be canonical domain and (γ1, . . . , γm)t∈[0,T ] be a tuple of dis-
joint appropriate slits in Ω with m ∈ N. For each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, fk;t,τ

is the normalised appropriate mapping function from Ωk(t, τ) := Ω\
(⋃m

j=1,j 6=k γj(0, τ ]∪
γk(0, t]

)
onto Dk(t, τ). Moreover, for each t ∈ [0, T ] and k ∈ {1, . . . ,m}, hk;t denotes

the normalised appropriate mapping function on ΩS \ γk(0, t]. Assume (tn)n∈N, (tn)n∈N
and (τn)n∈N are convergent sequences in [0, T ] with τn → τ0, tn → t0 ← tn and tn < tn
for all n ∈ N. Then

c(fk;tn,τn)− c(fk;tn,τn)

c(hk;tn)− c(hk;tn)

n→∞−−−→ |α2
k(t0, τ0)| for all k ∈ {1, . . . ,m}.

For each k ∈ {1, . . . ,m}, (t, τ) 7→ |αk(t, τ)| := |(fk;t,τ ◦ h−1
k;t )
′(Υk(t))|, with Υk(t) :=

hk;t(γk(t)), is continuous and positive on [0, T ]2.

Note that αk(t, τ) := (fk;t,τ ◦ h−1
k;t )
′(Υk(t)) is well-defined, as fk;t,τ ◦ h−1

k;t can be
extended analytically to Bε(Υk(t)) with ε > 0 small, see Lemma 2.42. Moreover, see
Figure 4.2 illustrating αk(t, t).

Remark 2.11. In the chordal single slit case a similar result was established by S. Dren-
ning, see Proposition 6.25 in [Dre11], where the proof is based on probabilistic arguments.

Proof of Proposition 2.55. Let k ∈ {1, . . . ,m} be fix. First of all, fk;tn,τn ◦ f
−1
k;tn,τn

is the

normalised appropriate mapping function from Dk(tn, τn) \Sk;tn,tn,τn onto Dk(tn, τn), so
we find by Lemma 2.45

c(fk;tn,τn)− c(fk;tn,τn) = c(fk;tn,τn ◦ f
−1
k;tn,τn

) =

− 1

2π

∫
sk;tn,tn,τn

<F (fk;tn,τn ◦ f−1
k;tn,τn

)(ζ)|dζ|.

Herein, for each t, t, τ ∈ [0, T ] with t < t, sk;t,t,τ := fk;t,τ (γk[t, t]) and Sk;t,t,τ :=

fk;t,τ (γk(t, t]) are defined like in Lemma 2.43.
Next, we consider the function Rn := fk;tn,τn ◦ h

−1
k;tn

and for each t, t ∈ [0, T ] with

t < t, we set σk;t,t := hk;t(γk[t, t]) and Σk;t,t := hk;t(γk(t, t]). Note that Lemma 2.43 is
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Figure 2.10: Radial mappings fk;tn,τn, hk;tn, hk;tn and fk;tn,τn in the proof of Proposi-
tion 2.55

applicable to Υk(t), σk;t,t and Σk;t,t as well. Lemma 2.42 and 2.44 show that each Rn can
be extended analytically to Bε(Υk(t0)) if ε > 0 is small and n is large enough. σk;tn,tn →
Υk(t0), so we can assume σk;tn,tn ⊆ Bε(Υk(t0)) for all large n as well. Consequently, we
find with an easily substitution and the mean value theorem

c(fk;tn,τn)− c(fk;tn,τn) = − 1

2π

∫
σk;tn,tn

<F (fk;tn,τn ◦ f−1
k;tn,τn

◦Rn)(ζ)|R′n(ζ)||dζ|

= − 1

2π
|R′n(ζn)|

∫
σk;tn,tn

<F (fk;tn,τn ◦ h−1
k;tn

)(ζ)|dζ|

with ζn ∈ σk;tn,tn . Thus ζn → Υk(t0), i.e. and |R′n(ζn)| → |αk(t0, τ0)| as Rn tends to

fk;t0,τ0 ◦ h
−1
k;t0

locally uniformly on Bε(Υk(t0)), see Lemma 2.42.

Next, let us define Tn := fk;tn,τn ◦ h−1
k;tn

. Analogously, we are able to extend Tn
analytically to Bε(Υt0) with a small ε > 0 for all large n ∈ N. Using Lemma 2.42,
Tn converges locally uniformly on Bε(Υk(t0)) to fk;t0,τ0 ◦ h

−1
k;t0

as well. On top of this,
we find εn > 0 with εn → 0 such that Σk;tn,tn ⊆ Bεn(Υk(t0)) for all large n ∈ N, as
Lemma 2.43 yields Σk;tn,tn → Υk(t0). Using Remark 2.10, we find for each δ > 0 an

N ∈ N such that for all z ∈ Bεn(Υk(t0)) and all n ≥ N ,
∣∣ d

dz

(
F (Tn(z)) − |c|F (z)

)∣∣ < δ
with c := T ′n(Υk(t0)). This is based on the fact that z 7→ (fk;t0,τ0 ◦ h

−1
k;t0

)(z) as well

as z 7→ (fk;t0,τ0 ◦ h
−1
k;t0

)′(z) are continuous on Bε(Υk(t0)) and Tn
l.u.−−−→ fk;t0,τ0 ◦ h

−1
k;t0

on
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Bε(Υk(t0)). Hence, Lemma 2.49 yields

− 1

2π
|R′n(ζn)|

(∣∣T ′n(Υk(t0))
∣∣− δ) ∫

σk;tn,tn

<F (hk;tn ◦ h−1
k;tn

)(ζ)|dζ|

≤ c(fk;tn,τn)− c(fk;tn,τn) = − 1

2π
|R′n(ζn)|

∫
σk;tn,tn

<F (Tn ◦ hk;tn ◦ h−1
k;tn

)(ζ)|dζ|

≤ − 1

2π
|R′n(ζn)|

(∣∣T ′n(Υk(t0))
∣∣+ δ

) ∫
σk;tn,tn

<F (hk;tn ◦ h−1
k;tn

)(ζ)|dζ|.

Note that hk;tn ◦ h
−1
k;tn

is the normalised appropriate mapping function on ΩS \ Σk;tn,tn ,
so Lemma 2.45 gives us

|R′n(ζn)|
(∣∣T ′n(Υk(t0))

∣∣− δ)(c(hk;tn ◦ h
−1
k;tn

)
)
≤ c(fk;tn,τn)− c(fk;tn,τn)

≤ R′n(ζn)|
(∣∣T ′n(Υk(t0))

∣∣+ δ
)(
c(hk;tn ◦ h

−1
k;tn

)
)
.

Summarising, c(hk;tn ◦ h
−1
k;tn

) = c(hk;tn)− c(hk;tn) > 0 yields

|R′n(ζn)|
(∣∣T ′n(Υk(t0))

∣∣− δ) ≤ c(fk;tn,τn)− c(fk;tn,τn)

c(hk;tn)− c(hk;tn)
≤ |R′n(ζn)|

(∣∣T ′n(Υk(t0))
∣∣+ δ

)
.

Note that R′n(ζn)→ αk(t0, τ0) as well as T ′n(Υk(t0))→ αk(t0, τ0).
Finally, as a consequence of the univalence on the continuation, αk(t, τ) 6= 0 for all

t, τ ∈ [0, T ]. On top of this, (t, τ) 7→ αk(t, τ) is continuous on [0, T ]2. This follows
immediately from Lemma 2.42 and 2.43.

Now it is very easy to prove the three theorems.

Proof of Theorem 2.52, 2.53 and 2.54. First of all, note that the continuity of t 7→ Uk(t)
follows immediately from Lemma 2.43.

Let Ω be a canonical domain and (γ1, . . . , γm)t∈[0,T ] be a tuple of disjoint appropriate

slits in Ω. Obviously, (γ1, . . . , γm) is a tuple of disjoint appropriate slits in ΩS as well
where ΩS is the simplification of Ω.

As before, for each k ∈ {1, . . . ,m} and t ∈ [0, T ], we denote by hk;t the normalised
appropriate mapping function on ΩS \ γk(0, t]. Moreover, for each k ∈ {1, . . . ,m} and
t, τ ∈ [0, T ], fk;t,τ is the normalised appropriate mapping function on Ω\ (

⋃
j 6=k γj(0, τ ]∪

γk(0, t]).
For now let us fix k ∈ {1, . . . ,m}. Using Lemma 2.41, the function t 7→ c(hk;t) is

strictly increasing. Thus we find a null set Nk such that t 7→ c(hk;t) is differentiable on
[0, T ] \ Nk. Let be t0 ∈ [0, T ] \ Nk and denote by µk(t0) the derivative of t 7→ c(hk;t) at
t0. Note that µk(t0) ≥ 0. Assume (tn)n∈N ⊆ [0, T ] is a sequence with tn → t0. Using
Proposition 2.55 with τn := t0, tn := t0 and tn := tn, we find

c(fk;tn,t0)− c(fk;t0,t0)

tn − t0
=

c(fk;tn,t0)− c(fk;t0,t0)

c(hk;tn)− c(hk;t0)
·
c(hk;tn)− c(hk;t0)

tn − t0
n→∞−−−→ |α2

k(t0, t0)| · µk(t0) ≥ 0.
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Consequently, the limit λk(t0) := limt→t0
c(fk;tn,t0 )−c(fk;t0,t0 )

tn−t0 exists for all t0 ∈ [0, T ] \Nk.
We can do this for each k ∈ {1, . . . ,m}, so the limit λk(t0) exists for each k ∈

{1, . . . ,m} and all t0 ∈ [0, T ]\N where N :=
⋃m
k=1Nk. Finally, we apply Theorem 2.30,

2.31 or 2.36 what completes the proof.

2.8 A subadditivity property in simply connected domains

The following lemma is well-known, see [Law05], Proposition 3.42.

Lemma 2.56 (Proposition 3.42 in [Law05]). Let Ω := H and denote by A and B two
chordal hulls in H such that A ∪ B is a chordal H-hull as well. Assume gA, gB and
gA∪B denote the normalised chordal mapping functions on H\A, H\B and H\ (A∪B),
respectively. Then

hcap(gA∪B) ≤ hcap(gA) + hcap(gB).

We have an analogous subadditivity property in the radial case as well.

Lemma 2.57. Let Ω := D and denote by A and B two radial hulls in D such that
A∪B is a radial D-hull as well. Assume gA, gB and gA∪B denote the normalised radial
mapping functions on D \ A, D \B and D \ (A ∪B), respectively. Then

lmr(gA∪B) ≤ lmr(gA) + lmr(gB).

Proof. Let A := D∪T∪{z ∈ C | 1/z ∈ A} and B := D∪T∪{z ∈ C | 1/z ∈ B}, so A,B
are bounded connected compact sets. Using Renggli’s theorem in [Ren61], we find

cap(A ∩B) · cap(A ∪B) ≤ cap(A) · cap(B), (2.12)

whereas cap denotes the logarithmic capacity, see Chapter 9.3 in [Pom92] for a definition.
Note that

z 7→ 1

g−1
A

(
1
z

) = g′A(0)z +O(1) around ∞

maps {|z| > 1} ∪ {∞} conformally onto C∞ \A. Using Corollary 9.9. from [Pom92], we
find cap(A) = g′A(0). Analogously, we find cap(B) = g′B(0) and cap(A ∪ B) = g′A∪B(0).
Moreover, using the monotonicity of the logarithmic capacity, see Equation (9) from
Chapter 9.3 in [Pom92], cap(A ∩ B) ≥ cap(T ∪ D) = 1 , so by applying the logarithm
the proof is complete.

Remark 2.12. As we have seen in the previous proof, Lemma 2.57 is an easy consequence
of the strong submultiplicativity of the logarithmic capacity, see Equation (2.12). To the
best of our knowledge, the first proof of this property goes back to Renggli, see [Ren61].

Unfortunately, we have the connection (Corollary 9.9, from [Pom92]) between the
logarithmic mapping radius lmr and the logarithmic capacity cap only in the case of
simply connected domains.

Quite recently O. Roth and D. Kraus found a new proof of the strong submultipli-
cativity of the Poincaré metric, see [KR14]. This leads to a definition of the so-called
Poincaré capacity pcap that coincides with the logarithmic capacity cap in the case of
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simply connected domains and has a strong submultiplicativity property as well, see
Remark 1.4 and Corollary 1.2 in [KR14]. Moreover, the Poincaré capacity has a connec-
tion with conformal maps (even in multiply connected domains). Unfortunately (for our
purpose), an equivalent way to define pcap is related to the universal covering map, so
we can not use this result to find a formulation of Lemma 2.57 for multiply connected
domains.

Right now we do not know if there is a generalization of Lemma 2.56 and 2.57 to
multiply connected domains as well:

Question 1. Do we have a subadditivity property in multiply connected domains as well?
This leads to the following three cases:

(i) Let Ω be a circular slit disk, A and B be radial Ω-hulls such that A∪B is a radial
Ω-hull as well, and denote by gA, gB and gA∪B the normalised radial mapping
functions on Ω \ A, Ω \B and Ω \ (A ∪B), respectively. Do we have

lmr(gA∪B) ≤ lmr(gA) + lmr(gB)?

(ii) Let Ω be a circular slit annulus, A and B be bilateral Ω-hulls such that A ∪B is
a bilateral Ω-hull as well, and denote by gA, gB and gA∪B the normalised bilateral
mapping functions on Ω \ A, Ω \B and Ω \ (A ∪B), respectively. Do we have

lcm(gA∪B) ≤ lcm(gA) + lcm(gB)?

(iii) Let Ω be an upper parallel slit half-plane, A and B be chordal Ω-hulls such that
A ∪B is a chordal Ω-hull as well, and denote by gA, gB and gA∪B the normalised
chordal mapping functions on Ω \ A, Ω \B and Ω \ (A ∪B), respectively. Do we
have

hcap(gA∪B) ≤ hcap(gA) + hcap(gB)?
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Chapter 3

Constant Coefficients

Let Ω be a canonical domain. A tuple (Γ1, . . . ,Γm), with m ∈ N, is called tuple of disjoint
appropriate unparametrised slits in Ω if there is a T > 0 and a tuple (γ1, . . . , γm)[0,T ] of
disjoint appropriate slits in Ω such that γk[0, T ] = Γk for each k ∈ {1, . . . ,m}. In this
case, each (γ1, . . . , γm)[0,T ] is called admissible parametrisation of (Γ1, . . . ,Γm).

Let m = 1, i.e. Γ is an appropriate unparametrised slit in the canonical domain
Ω. First of all, let γ : [0, T ] → Γ denote an arbitrary admissible parametrisation of
Γ. Moreover, for each t ∈ [0, T ], we denote by gt : Ω \ γ(0, t] → Dt the normalised
appropriate mapping function from Ωt := Ω \ γ(0, t] onto the canonical domain Dt.

Using Theorem 2.52, 2.53 or 2.54, we find a null set N such that t 7→ gt(z) is
differentiable on [0, T ] \ N for each z ∈ ΩT and satisfies

ġt(z) = E
(
gt(z)

)
· λ(t) · Φat,Ut,Dt

(
gt(z)

)
for all t ∈ [0, T ] \ N and all z ∈ ΩT ,

with values λ(t) ≥ 0 for each t ∈ [0, T ] \ N and Ut := gt(γ(t)). Herein, at := 0 in the
radial case, at is the inner radius of Dt in the bilateral case and at :=∞ in the chordal
case. Moreover, for all w ∈ C, we set E(w) := w in the radial and bilateral case and
E(w) := 1

2i in the chordal case.

One might ask the natural question if there is a reparametrisation v(s) : [0, L] →
[0, T ] with L > 0 such that s 7→ gv(s) is (everywhere) differentiable on [0, L] with ’nice’
values λ(t). In the single slit case we may argue as follows: Using Lemma 2.42 and 2.41,
we see that t 7→ c(gt) is strictly increasing and continuous with c(g0) = 0 and c(gT ) =: L.
Let v−1(t) := c(gt) for all t ∈ [0, T ], so c(gv(s)) = s for all s ∈ [0, L]. Then Theorem 2.22
yields that s 7→ gv(s)(z) is differentiable on [0, L] for each z ∈ Ω \ Γ with

d

ds
gv(s)(z) = E

(
gv(s)(z)

)
· Φ0,Uv(s),Dv(s)

(
gv(s)(z)

)
for all s ∈ [0, L] and all z ∈ Ω \ Γ,

where s 7→ Uv(s) = gv(s)(γ(v(s))) is continuous on [0, L]. Note that the reparametrisation
v(s) is unique with respect of getting λ ≡ 1.

Summarising, we have the following corollary.

Corollary 3.1. Let Ω be a canonical domain and denote by Γ an appropriate unparam-
etrised slit in Ω. Then there is a unique L > 0 and a unique admissible parametrisation

59



CHAPTER 3. CONSTANT COEFFICIENTS

γ : [0, L]→ Γ of Γ such that for each z ∈ Ω \ Γ, t 7→ gt(z) is continuously differentiable
on [0, L] and satisfies

ġt(z) = E
(
gt(z)

)
· Φat,Ut,Dt

(
gt(z)

)
for all t ∈ [0, L] and all z ∈ Ω \ Γ

where, for each t ∈ [0, L], gt is the normalised appropriate mapping function from Ω \
γ(0, t] onto Dt and Ut := gt(γ(t)) is the continuous driving term. Herein, at := 0 in the
radial case, at is the inner radius of Dt in the bilateral case and at :=∞ in the chordal
case. Moreover, for all w ∈ C, we set E(w) := w in the radial and bilateral case and
E(w) := 1

2i in the chordal case.

Sometimes this parametrisation is called Loewner parametrisation of Γ.

The follow-up question is: what if we do have more than one slit, i.e. m > 1? Do we
have parametrisations like the Loewner parametrisation in the single slit case? We will
give an answer to this question in the following section.

3.1 Disjoint slits

Theorem 3.2. Let Ω be a circular slit disk and (Γ1,Γ2) be a tuple of disjoint radial
unparametrised slits in Ω. Then there is a unique L > 0, unique (constants) λ1, λ2 > 0
with λ1 +λ2 = 1, and a unique admissible parametrisation (γ1, γ2)t∈[0,L] of (Γ1,Γ2) such
that for each z ∈ ΩL, t 7→ gt(z) is continuously differentiable on [0, L] and satisfies

ġt(z) = gt(z)

2∑
k=1

λkΦ0,Uk(t),Dt

(
gt(z)

)
for all t ∈ [0, L] and all z ∈ ΩL.

Herein, for each t ∈ [0, L], gt is the normalised radial mapping function from Ωt :=
Ω\
⋃2
k=1 γk(0, t] onto the circular slit disk Dt. Moreover, for each k ∈ {1, 2}, the driving

function t 7→ Uk(t) := gt(γk(t)) is continuous on [0, L].

Remark 3.1. As mentioned already in the introduction, this theorem goes back to
Prokhorov, see Theorem F. He considered the simply connected case, i.e. Ω = D and
piecewise analytic slits Γ1,Γ2, see Theorem 1 and 2 in [Pro93].

Theorem 3.3. Let Ω be a circular slit annulus with inner radius Q ∈ (0, 1) and (Γ1,Γ2)
be a tuple of disjoint bilateral unparametrised slits in Ω. Then there is a unique L > 0,
unique (constants) λ1, λ2 > 0 with λ1 + λ2 = 1, and a unique admissible parametri-
sation (γ1, γ2)t∈[0,L] of (Γ1,Γ2) such that, for each z ∈ ΩL, t 7→ gt(z) is continuously
differentiable on [0, L] and satisfies

ġt(z) = gt(z)
2∑

k=1

λkΦqt,Uk(t),Dt

(
gt(z)

)
for all t ∈ [0, L] and all z ∈ ΩL.

Herein, for each t ∈ [0, L], gt is the normalised bilateral mapping function from Ωt :=
Ω\
⋃2
k=1 γk(0, t] onto the circular slit annulus Dt. qt is the inner radius of Dt, t ∈ [0, L],

and for each k ∈ {1, 2}, the driving function t 7→ Uk(t) := gt(γk(t)) is continuous on
[0, L].
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Theorem 3.4. Let Ω be an upper parallel slit half-plane and (Γ1,Γ2) be a tuple of disjoint
chordal unparametrised slits in Ω. Then there is a unique L > 0, unique (constants)
λ1, λ2 > 0 with λ1 + λ2 = 1, and a unique admissible parametrisation (γ1, γ2)t∈[0,L] of
(Γ1,Γ2) such that for each z ∈ ΩL, t 7→ gt(z) is continuously differentiable on [0, L] and
satisfies

ġt(z) = − i

2

2∑
k=1

λkΦ∞,Uk(t),Dt

(
gt(z)

)
for all t ∈ [0, L] and all z ∈ ΩL.

Herein, for each t ∈ [0, L], gt is the normalised chordal mapping function from Ωt :=
Ω\
⋃2
k=1 γk(0, t] onto the upper parallel slit half-plane Dt. Moreover, for each k ∈ {1, 2},

the driving function t 7→ Uk(t) := gt(γk(t)) is continuous on [0, L].

Remark 3.2. O. Roth and S. Schleißinger found the first proof of Theorem 3.4 in case of
simply connected domains without assuming piecewise analytic slits, see [RS14]. During
a summer school in Sevilla (‘Complex Analysis and Related Areas’, February 2013)
Sebastian Schleißinger presented their proof. This was the beginning of a collaboration
of S. Schleißinger and the author of this thesis, see [BS15a]. In this context, ideas from
[RS14] were combined with methods from [BL14] resulting in a proof of Theorem 3.2.
The advantage of this approach is that the proof is universal, in the sense that the proof
in the radial, bilateral and chordal case differs not really. See Subsection 3.1.2 where we
prove Theorem 3.2, 3.3 and 3.4 simultaneously.

Remark 3.3. Note that Theorem 3.2, 3.3 and 3.4 prove the existence and uniqueness of
constant coefficients for two disjoint unparametrised slits (Γ1,Γ2). One might ask the
question if the same is true for more than two disjoint unparametrised slits (Γ1, . . . ,Γm)
with m > 2. Following the steps of the existence proof (see Subsection 3.1.2) we can see
that the existence of constant coefficients can be received in the same way as in the two
slit case. Unfortunately, the uniqueness of constant coefficients in the case m > 2 can
not be reasoned in the same way as in two slit case. Moreover, we do not know how to
prove the uniqueness otherwise, so there is still the following open problem.

Question 2. Is there a similar result of Theorem 3.2, 3.3 and 3.4 in the case of more
than two slits?

Finally, let us mention [Sch15], Subsection 3.6.5 with a lot of useful remarks about
constant coefficients in the simply connected chordal case. Most of these remarks hold
in the multiply connected cases as well.

3.1.1 Some preliminary lemmas

Lemma 3.5. Let Ω be a canonical domain and (γ1, . . . , γm)t∈[0,T ] denotes a tuple of
disjoint appropriate slits in Ω. For each k ∈ {1, . . . ,m} and t, τ ∈ [0, T ], fk;t,τ denotes
the normalised appropriate mapping function on Ω \ (γk(0, t]

⋃
j 6=k γj(0, τ ]).

Then for each ε > 0, we find a δ > 0 such that

1− ε ≤
c(fk;t,τ )− c(fk;t,τ )

c(fk;t,τ )− c(fk;t,τ )
≤ 1 + ε

for all t, t, τ , τ ∈ [0, T ] with 0 < t− t < δ and 0 ≤ τ − τ < δ and all k ∈ {1, . . . ,m}.
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Proof. Suppose the opposite is true, so there is a k ∈ {1, . . . ,m} and sequences (tn)n∈N,
(tn)n∈N, (τn)n∈N and (τn)n∈N with tn < tn and τn ≤ τn such that∣∣∣∣∣c(fk;tn,τn)− c(fk;tn,τn)

c(fk;tn,τn)− c(fk;tn,τn)
− 1

∣∣∣∣∣ > ε

for all n ∈ N. Obviously, we can assume without loss of generality that each sequence
is convergent, i.e. tn → t0 ← tn and τn → τ0 ← τn. For all k ∈ {1, . . . ,m} and
all t ∈ [0, T ], let us denote by hk;t the normalised appropriate mapping functions on
Ω \ γk(0, t]. Using Proposition 2.55, we find

c(fk;tn,τn)− c(fk;tn,τn)

c(hk;tn)− c(hk;tn)

n→∞−−−→ |α2
k(t0, τ0)| n→∞←−−−

c(fk;tn,τn)− c(fk;tn,τn)

c(hk;tn)− c(hk;tn)
.

Consequently, we get

c(fk;tn,τn)− c(fk;tn,τn)

c(fk;tn,τn)− c(fk;tn,τn)
=

c(fk;tn,τn)− c(fk;tn,τn)

c(hk;tn)− c(hk;tn)
·

c(hk;tn)− c(hk;tn)

c(fk;tn,τn)− c(fk;tn,τn)

n→∞−−−→ 1.

This is a contradiction, so the proof is complete.

Lemma 3.6. Let Ω be a canonical domain and (γ1, . . . , γm)t∈[0,T ] denotes a tuple of
disjoint appropriate slits in Ω. For each k ∈ {1, . . . ,m} and t, τ ∈ [0, T ], fk;t,τ is the
normalised appropriate mapping function on Ω\(γk(0, t]

⋃
j 6=k γj(0, τ ]). Moreover, we set

gt := fk;t,t for each t ∈ [0, T ] independently of k ∈ {1, . . . ,m}. Assume Z = {t0, . . . , tn},
with t0 = 0 and tn = t, is a partition of the interval [0, t], i.e. t0 < t1 < . . . < tn and

S(fk, t, Z) :=

n−1∑
l=0

c(fk;tl+1,tl)− c(fk;tl,tl).

Then for each t ∈ [0, T ] and k ∈ {1, . . . ,m}, S(fk, t, Z)→ ck(t) ≥ 0 as |Z| → 0, whereas
|Z| denotes the norm of the partition Z, i.e. |Z| := maxl=0,...,n−1 tl+1 − tl. Moreover,
each t 7→ ck(t), k ∈ {1, . . . ,m}, is continuous and strictly increasing on [0, T ], and for
each t0 ∈ [0, T ],

ck(t)− ck(t0)

c(fk;t,t0)− c(fk;t0,t0)
→ 1 as t→ t0.

Finally, assume c(gt) = t for all t ∈ [0, T ]. Then each t 7→ ck(t), k ∈ {1, . . . ,m}, is
Lipschitz continuous on [0, T ] and

∑m
k=1 ck(t) = t for all t ∈ [0, T ].

Proof. 1) First of all, we are going to show S(fk, t, Z)→ ck(t) as |Z| → 0. Therefore,
let k ∈ {1, . . . ,m} and t ∈ [0, T ] be fix. Let us consider two partitions Z1 = {t∗0, . . . , t∗n1

}
and Z2 of the interval [0, t] with |Z1|, |Z2| < δ where δ > 0. Denote by Z = {t0, . . . , tn}
the union of Z1 and Z2. By adding zeros we achieve

|S(fk, t, Z)− S(fk, t, Z1)| ≤
n−1∑
l=0

∣∣[c(fk;tl+1,tl)− c(fk;tl,tl)]− [c(fk;tl+1,φ(tl))− c(fk;tl,φ(tl))]
∣∣,
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where φ(tl) := t∗p if tl ∈ [t∗p, t
∗
p+1) with l ∈ {0, . . . , n − 1} and p ∈ {0, . . . , n1 − 1}.

Consequently, |φ(tl)− tl| ≤ |Z1| ≤ δ. Thus we get

|S(fk, t, Z)− S(fk, t, Z1)| ≤
n−1∑
l=0

|c(fk;tl+1,tl)− c(fk;tl,tl)| ·
∣∣∣∣1− c(fk;tl+1,φ(tl))− c(fk;tl,φ(tl))

c(fk;tl+1,tl)− c(fk;tl,tl)

∣∣∣∣ .
For any given ε > 0, we can choose δ > 0 (by using Lemma 3.5) in such a way that

1− ε <
c(fk;tl+1,φ(tl))− c(fk;tl,φ(tl))

c(fk;tl+1,tl)− c(fk;tl,tl)
< 1 + ε

holds for all l ∈ {0, . . . , n−1}. Lemma 2.41 gives us c(fk;tl+1,tl+1
) > c(fk;tl+1,tl) > c(fk;tl,tl)

for all l ∈ {1, . . . , n− 1}. Thus we have

|S(fk, t, Z)− S(fk, t, Z1)| ≤ ε
n−1∑
l=0

(
c(fk;tl+1,tl)− c(fk;tl,tl)

)
< ε

n−1∑
l=0

(
c(fk;tl+1,tl+1

)− c(fk;tl,tl)
)

= ε ·
(
c(fk;tn,tn)− c(fk;t0,t0)

)
= ε ·

(
c(gt)− c(g0)

)
.

Replacing Z1 with Z2 we get |S(fk, t, Z)−S(fk, t, Z2)| ≤ ε
(
c(gt)− c(g0)

)
as well. Conse-

quently, we have |S(fk, t, Z1)− S(fk, t, Z2)| ≤ 2ε
(
c(gt)− c(g0)

)
, so S(fk, t, Z) converges

to a value ck(t) ∈ [0,∞) if |Z| → 0.

2) Next, we are going to prove that t 7→ ck(t) is strictly increasing. Therefore, we
fix k ∈ {1, . . . ,m}. Let ε > 0, t0 ∈ [0, T ] and choose t ∈ [0, T ] in such a way that
0 < |t− t0| < δ where δ > 0 is chosen according to Lemma 3.5 with respect to ε. Assume
Z = {tk := t0 + k

n(t− t0) | k ∈ {0, . . . n}}. Thus we get∣∣∣∣∣c(fk;t,t0)− c(fk;t0,t0)−
n−1∑
l=0

c(fk;tl+1,tl)− c(fk;tl,tl)

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
l=0

(
[c(fk;tl+1,t0)− c(fk;tl,t0)]− [c(fk;tl+1,tl)− c(fk;tl,tl)]

)∣∣∣∣∣ = ∗

where the first equality follows by adding zeros. Using Lemma 3.5, we find

∗ ≤
n−1∑
l=0

|c(fk;tl+1,t0)− c(fk;tl,t0)| ·
∣∣∣∣1− c(fk;tl+1,tl)− c(fk;tl,tl)

c(fk;tl+1,t0)− c(fk;tl,t0)

∣∣∣∣
< ε

n−1∑
l=0

∣∣c(fk;tl+1,t0)− c(fk;tl,t0)
∣∣.

Letting n→∞ gives us∣∣ck(t)− ck(t0)−
(
c(fk;t,t0)− c(fk;t0,t0)

)∣∣ < ε|c(fk;t,t0)− c(fk;t0,t0)|.
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Consequently, we find ∣∣∣∣1− ck(t)− ck(t0)

c(fk;t,t0)− c(fk;t0,t0)

∣∣∣∣→ 0 (3.1)

as t → t0 and ε → 0 simultaneously such that |t − t0| < δ(ε) with δ(ε) > 0 depending
on ε, see Lemma 3.5. Moreover, this shows that t 7→ ck(t) can not be constant on a
small interval [t, t0] or [t0, t], as t 7→ c(fk;t,t0) is strictly increasing on [0, T ]. Otherwise
the previous limit would not be zero.

3) Now we will show that the function t 7→ ck(t) is continuous. Let k ∈ {1, . . . ,m},
0 < t1 < t2 ≤ T , Z1(n) := {0, t1n ,

2t1
n , . . . , t1}, Z2(n) := {t1, t1+ t2−t1

n , t1+2 t2−t1n , . . . , t2} =:
{t∗0, . . . , t∗n} with t1 = t∗0 < t∗1 < . . . < t∗n = t2, and Z(n) := Z1(n)∪Z2(n). Thus we have

ck(t2)− ck(t1) = lim
n→∞

S
(
fk, t1, Z(n)

)
− S

(
fk, t2, Z1(n)

)
= lim

n→∞

n−1∑
l=0

c(fk;t∗l+1,t
∗
l
)− c(fk;t∗l ,t

∗
l
) <

n−1∑
l=0

c(fk;t∗l+1,t
∗
l+1

)− c(fk;t∗l ,t
∗
l
) = c(gt2)− c(gt1).

Note that t 7→ c(gt) is continuous on [0, T ], see Lemma 2.42. Consequently, t 7→ ck(t) is
a continuous real-valued function.

Next, let us assume c(gt) = t for all t ∈ [0, T ]. Using the previous estimation, c(gt2) −
c(gt1) = t2 − t1, so t 7→ ck(t) is Lipschitz continuous on [0, T ]. Consequently, t 7→ ck(t)
is almost everywhere differentiable, i.e. there is a null set Nk such that t 7→ ck(t) is
differentiable on [0, T ] \ Nk. Moreover, Equation (3.1) gives us

λk(t0) := lim
t→t0

c(fk;t,t0)− c(fk;t0,t0)

t− t0
= ċk(t0) for all t0 ∈ [0, T ] \ Nk.

Obviously, we get this for each k ∈ {1, . . . ,m}, so each limit λk(t0), k ∈ {1, . . . ,m},
exits for all t0 ∈ [0, T ] \ N with N :=

⋃m
k=1Nk. Using Theorem 2.30, 2.31 or 2.36,

we find
∑m

k=1 λk(t0) = 1 for all t ∈ [0, T ] \ N . Summarising,
∑m

k=1 ċk(t0) ≡ 1 for all
t0 ∈ [0, T ] \ N , so

∑m
k=1 ck(t) = t for all t ∈ [0, T ].

Remark 3.4. Note that Lemma 3.6 leads to an alternative proof of Theorem 2.52, 2.53
and 2.54:

Let Ω be a canonical domain and (γ1, . . . , γm)t∈[0,T ] denotes a tuple of disjoint ap-
propriate slits in Ω. Using the same notation as in Lemma 3.6, for each k ∈ {1, . . . ,m},
we get an increasing functions t 7→ ck(t) on [0, T ]. Consequently, each t 7→ ck(t),
k ∈ {1, . . . ,m}, is differentiable on [0, T ]\Nk where Nk is a null set of [0, T ]. Summaris-
ing, t 7→ ck(t) is differentiable on [0, T ]\N for each k ∈ {1, . . . ,m} where N :=

⋃m
k=1Nk.

Using Lemma 3.6, each limit

lim
t→t0

c(fk;t,t0)− c(fk;t0,t0)

t− t0
, k ∈ {1, . . . ,m}, t0 ∈ [0, T ] \ N

exists. Finally, Theorem 2.30, 2.31 or 2.36 completes the proof.
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3.1.2 Proof of Theorem 3.2, 3.3 and 3.4

Let Ω be a canonical domain and (γ1, γ2)t∈[0,T ] be an admissible parametrisation of
(Γ1,Γ2). Moreover, for each t, τ ∈ [0, T ], we denote by ft,τ the normalised appropriate
mapping function on Ω \ (γ1(0, t] ∪ γ2(0, τ ]) and we define gt := ft,t for all t ∈ [0, T ].
On top of this we set c(t, τ) := c(ft,τ ), so (t, τ) 7→ c(t, τ) is strictly increasing in each
variable and continuous on [0, T ]2, see Lemma 2.41 and 2.42.

Note that all functions t 7→ gt that satisfy a multiple slit Komatu–Loewner equation
with normalised weights, i.e. for each t ∈ [0, T ], λ1(t) + λ2(t) ≡ 1, fulfil c(gt) = t for all
t ∈ [0, T ], see Theorem 2.30, 2.31 or 2.36.

With the notation from Theorem 3.2, 3.3 and 3.4, we find L = c(T, T ) independently
of T .

Let u, v : [0, L] → [0, T ] be increasing homeomorphisms, t, t ∈ [0, L], t < t, and Z
denotes an arbitrary partition of the interval [t, t]. During this subsection we will use
the following abbreviations

S1(u, v, [t, t], Z) :=
n−1∑
l=0

c
(
u(tl+1), v(tl)

)
− c
(
u(tl), v(tl)

)
,

S2(u, v, [t, t], Z) :=
n−1∑
l=0

c
(
u(tl), v(tl+1)

)
− c
(
u(tl), v(tl)

)
.

(3.2)

Moreover, we set Sk(u, v, t, Z) := Sk(u, v, [0, t], Z) with k ∈ {1, 2} and a partition Z of
the interval [0, t]. Note that for each k ∈ {1, 2}, t 7→ Sk(u, v, t, Z) tends pointwise to an
increasing and continuous function on [0, L] if |Z| → 0, see Lemma 3.6.

In order to proof Theorem 3.2, 3.3 and 3.4, we split the proof into the existence
part and the uniqueness part. We will discuss both parts separately. First, we will
prove the existence part. In this context, we are going to show that we find increasing
homeomorphisms u, v : [0, L] → [0, T ] such that the admissible parametrisation (γ1 ◦
u, γ2 ◦ v)t∈[0,L] satisfies a Komatu–Loewner equation with λ1(t) = λ0 and λ2(t) = 1− λ0

for all t ∈ [0, L]. The proceeding of this proof is as follows.

1) First of all, we will use a Bang-Bang method introduced in [RS14] to construct two
sequences (un)n∈N and (vn)n∈N of increasing homeomorphisms of un, vn : [0, L]→
[0, T ].

2) By using a diagonal argument on un and vn, we will find two subsequences (u∗n)n∈N
and (v∗n)n∈N which converge pointwise on a dense set S ⊆ [0, L] to increasing func-
tions u and v respectively. The functions u and v can be extended to continuous
functions defined on [0, L] with u(L) = T = v(L). Furthermore, we will get
λ0 ∈ [0, 1] by the construction of u and v.

3) On top of this we show λ0 ∈ (0, 1) and the strict monotonicity of t 7→ u(t) and
t 7→ v(t) on [0, L] .

4) Next, we will derive a connection between the sum S1(u∗n, v
∗
n, t, Z) and the sum

S1(u, v, t, Z) for a given partition Z of the interval [0, t].
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5) Moreover, we will find a connection between S1(u∗n, v
∗
n, t, Z) and λ0.

6) By combining these results, we will find S1(u, v, t, Z)→ λ0t if |Z| → 0.

7) Finally, we will obtain a Komatu-Loewner equation with constant coefficients λ0

and 1− λ0 for the admissible parametrisations u and v.

Proof (Existence). 1) Let (γ1, γ2)t∈[0,T ] be an arbitrary admissible parametrisation of
(Γ1,Γ2). Moreover, for each t, τ ∈ [0, T ], we denote by ft,τ the normalised appropriate
mapping function on Ω \ (γ1(0, t] ∪ γ2(0, τ ]). On top of this we write c(t, τ) := c(ft,τ ).
Assume u, v : [0, L]→ [0, T ] are increasing homeomorphisms and Z denotes an arbitrary
partition of the interval [t, t] ⊆ [0, T ]. Then for each k ∈ {1, 2}, we define Sk(u, v, [t, t], Z)
in the same way as in Equation (3.2) and we set Sk(u, v, t, Z) := Sk(u, v, [0, t], Z) for any
partition Z of the interval [0, t] ⊆ [0, T ]. To construct un and vn, we first extend γ1 and
γ2 to an interval [0, T ∗], T ∗ > T, such that γ1[0, T ∗] and γ2[0, T ∗] are still disjoint slits
and c(T ∗, 0) ≥ L, c(0, T ∗) ≥ L. Let n ∈ N and λ ∈ [0, 1]. We let t0,n = τ0,n = 0, and for
k ∈ {1, . . . , n}, we define tk,n > 0 and τk,n > 0 recursively as the unique values with

c(tk,n, τk−1,n)− c(tk−1,n, τk−1,n) = L
λ

n
, c(tk,n, τk,n)− c(tk,n, τk−1,n) = L

1− λ
n

.

Since (t, τ) 7→ c(t, τ) is strictly increasing in both variables, see Lemma 2.41, we get

c(tn,n, τn,n) = L ≤ c(T ∗, 0) < c(T ∗, τn,n),

c(tn,n, τn,n) = L ≤ c(0, T ∗) < c(tn,n, T
∗).

Consequently, tn,n, τn,n ≤ T ∗.
Furthermore, note that the values tk,n = tk,n(λ) and τk,n = τk,n(λ) depend continuously
on λ: This follows easily by induction and the continuity and strict monotonicity of the
function (t, τ) 7→ c(t, τ), see Lemma 2.42 and 2.41. Consequently, for every n ∈ N, we
find a value λn ∈ (0, 1) with tn,n(λn) = T . Now we define functions un : [0, L]→ [0, tn,n]
and vn : [0, L]→ [0, τn,n]. For each n ∈ N, we set

un

(
L
k

2n

)
:= tk,2n(λ2n), vn

(
L
k

2n

)
:= τk,2n(λ2n)

for all k ∈ {0, . . . , 2n}. The values of un and vn between the supporting points are
defined by linear interpolation. An immediate consequence of this construction is

c

(
un

(
L
k

2n

)
, vn

(
L
k

2n

))
= c
(
tk,2n(λ2n), τk,2n(λ2n)

)
= L

k

2n
. (3.3)

for all k ∈ {0, . . . , 2n}.
2) λ2n is bounded, so we find a subsequence (mk,0)k∈N of (n)n∈N such that (λ2

mk,0 )k∈N
is convergent with the limit λ0 ∈ [0, 1]. Next, we set

S :=

∞⋃
n=1

Sn, Sn :=
{
L
k

2n
∣∣ k ∈ {0, . . . , 2n}}.
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S is a dense and countable subset of [0, L]. Denote by a : N → S a bijective mapping.
Since the sequences (umk,0(a1))k∈N and (vmk,0(a1))k∈N are bounded (by T ∗), we find
a subsequence (mk,1)k∈N of (mk,0)k∈N such that (umk,1(a1))k∈N and (vmk,1(a1))k∈N are
convergent.

Inductively, we define (mk,l)k∈N, l ∈ N, to be a subsequence of (mk,l−1)k∈N such that
(umk,l(al))k∈N and (vmk,l(al))k∈N are convergent.

Consequently, we define sequences u∗n := umn,n and v∗n := vmn,n , which are (pointwise)
convergent on S. We denote by u and v the limit functions, i.e.

u(t) := lim
n→∞

u∗n(t), v(t) := lim
n→∞

v∗n(t) for all t ∈ S.

Moreover, we set λ∗n := λ2mn,n and S∗n := Smn,n . By using Equation (3.3), we get
c
(
u∗n(t), v∗n(t)

)
= t for t ∈ S if n is big enough. Consequently, Lemma 2.42 yields

c
(
u(t), v(t)

)
= lim

n→∞
c
(
u∗n(t), v∗n(t)

)
= t for all t ∈ S. (3.4)

Furthermore, since t 7→ u∗n(t) and t 7→ v∗n(t) are strictly increasing, the functions t 7→ u(t)
and t 7→ v(t) are increasing too. Moreover, u and v can be extended in a continuous and
unique way to [0, L]. To see this, let t0 ∈ (0, L) and define

t1 := lim
t↗t0
t∈S

u(t), t2 := lim
t↘t0
t∈S

u(t), τ1 := lim
t↗t0
t∈S

v(t), τ2 := lim
t↘t0
t∈S

v(t).

Thus we find by Lemma 2.42 and Equation (3.4)

c(t1, τ1) = lim
t↗t0
t∈S

c(u(t), v(t)) = t0 = lim
t↘t0
t∈S

c(u(t), v(t)) = c(t2, τ2).

Since (t, τ) 7→ c(t, τ) is strictly increasing in both variables and t1 ≤ t2 and τ1 ≤ τ2, we
find t1 = t2 and τ1 = τ2. If t0 ∈ {0, L} we can argue in the same way, so t 7→ u(t) and
t 7→ v(t) are continuous on [0, L]. Summarising, u and v are continuous and increasing

on [0, L] with u(L) = T and v(L) = T . For later use, we define h
[n]
t,τ := fu∗n(t),v∗n(τ) and

ht,τ := fu(t),v(τ) for all t, τ ∈ [0, L].

3) Next, we are going to show that t 7→ u(t) and t 7→ v(t) are strictly increasing on
[0, L] and λ0 ∈ (0, 1).

Using Lemma 3.5, we find a δ > 0 corresponding to ε = 1
2 . The functions t 7→ u(t) and

t 7→ v(t) are (uniformly) continuous on [0, L], so we have:

∃µ > 0 : |t− t| < µ⇒ |u(t)− u(t)|, |v(t)− v(t)| < δ
2 .

Assume t, t ∈ S with 0 < t− t < µ. Consequently, |u(t)−u(t)| < δ
2 and |v(t)−v(t)| < δ

2 ,
so we get:

∃n0 ∈ N ∀n ≥ n0 : |u∗n(t)− u∗n(t)|, |v∗n(t)− v∗n(t)| < δ,

as u∗n(t) and v∗n(t) are pointwise convergent on S. Moreover, we choose n0 large enough
to satisfy t, t ∈ S∗n0

. Then for any n ≥ n0 we get

1

2
= 1− ε ≤ c(u∗n(tl+1), v∗n(t))− c(u∗n(tl), v

∗
n(t))

c(u∗n(tl+1), v∗n(tl))− c(u∗n(tl), v∗n(tl))
≤ 1 + ε =

3

2
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for all l ∈ {0, . . . , s − 1} where S∗n([t, t]) := {t1, . . . , ts} := [t, t] ∩ S∗n. Consequently, we
get by summing over all l ∈ {0, . . . , s− 1}

1
2λ
∗
n(t− t) = 1

2S1(u∗n, v
∗
n, [t, t], S

∗
n([t, t])) ≤

c(u∗n(t), v∗n(t))− c(u∗n(t), v∗n(t)) ≤ 3
2S1(u∗n, v

∗
n, [t, t], S

∗
n([t, t])) = 3

2λ
∗
n(t− t).

Letting n→∞ we find with Lemma 2.42

1
2λ0(t− t) ≤ c(u(t), v(t))− c(u(t), v(t)) ≤ 3

2λ0(t− t). (3.5)

Note that t 7→ u(t) is continuous and increasing with u(0) = 0 and u(L) = T so we
find t, t ∈ S with 0 < t − t < µ and u(t) < u(t). Using Lemma 2.41, c(u(t), v(t)) −
c(u(t), v(t)) > 0, so (3.5) yields λ0 6= 0. On top of this Equation (3.5) gives us
c(u(t), v(t)) − c(u(t), v(t)) > 0 whenever 0 < t − t < µ, i.e. t 7→ u(t) is strictly in-
creasing on [0, L]. Analogously, we find

1
2(1− λ0)(t− t) ≤ c(u(t), v(t))− c(u(t), v(t)) ≤ 3

2(1− λ0)(t− t),

for all t, t ∈ S with 0 ≤ t− t ≤ µ so t 7→ v(t) is strictly increasing on [0, L] and 1−λ0 6= 0
as well. Summarising, t 7→ u(t), t 7→ v(t) are strictly increasing and λ0 ∈ (0, 1).

4) Next, we show that for every fixed ε > 0, fixed t ∈ S and fixed partition Z ⊆ S of
the interval [0, t], there exists an n0 ∈ N such that

|S1(u∗n, v
∗
n, t, Z)− S1(u, v, t, Z)| < ε

holds for all n ≥ n0.

Fix ε > 0 and Z = {t0, t1, . . . , ts}. As the function (t, τ) 7→ c(t, τ) is (uniformly)
continuous on [0, T ∗]2 by Lemma 2.42, there exists δ > 0 such that

|c(t, τ)− c(t, τ)| < ε

2s
whenever |t− t|, |τ − τ | < δ.

Since Z ⊆ S is finite, we find an n0 ∈ N such that |u∗n(tl) − u(tl)|, |v∗n(tl) − v(tl)| < δ
holds for all l ∈ {0, . . . , s} and all n ≥ n0. Consequently, for all n ≥ n0, we find

|S1(u∗n, v
∗
n, t, Z)− S1(u, v, t, Z)|

=
∣∣∣ s−1∑
l=0

c(h
[n]
tl+1,tl

)− c(h
[n]
tl,tl

)−
s−1∑
l=0

c(htl+1,tl)− c(htl,tl)
∣∣∣

≤
s−1∑
l=0

∣∣c(h[n]
tl+1,tl

)− c(htl+1,tl)
∣∣+

s−1∑
l=0

∣∣c(h[n]
tl,tl

)− c(htl,tl)
∣∣ ≤ 2s

ε

2s
= ε.

5) For now we fix t ∈ S, t > 0. We show that for all ε > 0, we find a µ > 0 such that
for all partitions Z ⊆ S of [0, t] with |Z| < µ, there exists an m0 ∈ N such that for all
n ≥ m0, we have

|S1(u∗n, v
∗
n, t, Z)− λ0t| < ε.
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Let t ∈ S and ε > 0. Then there exists δ > 0 such that the inequality from Lemma 3.5
holds. Since the functions t 7→ u(t) and t 7→ v(t) are (uniformly) continuous on [0, t], we
get:

∃µ > 0 : |t− t| < µ⇒ |u(t)− u(t)|, |v(t)− v(t)| < δ
2 .

Denote by Z = {t0, . . . , ts} a partition of [0, t] with |Z| < µ and Z ⊆ S. Then we find
an n0 ∈ N such that for all n ≥ n0, we get Z ⊆ S∗n and

|u∗n(tl)− u(tl)|, |v∗n(tl)− v(tl)| < δ
4 for all l ∈ {0, . . . , s} and all n ≥ n0.

As a consequence we get

|u∗n(tl+1)− u∗n(tl)|
≤ |u∗n(tl+1)− u(tl+1)|+ |u(tl+1)− u(tl)|+ |u(tl)− u∗n(tl)| < δ

4 + δ
2 + δ

4 = δ

for all n ≥ n0 and all l ∈ {0, . . . , s}. In the same way we find |v∗n(tl+1)− v∗n(tl)| < δ for
all n ≥ n0 and all l ∈ {0, . . . , s}. Next, for each n ∈ N, we set S∗n(t) := S∗n ∩ [0, t]. S∗n(t)
is a partition of the interval [0, t] and we write S∗n(t) = {t∗0, . . . , t∗s∗}. For each n ≥ n0,
we find

|λ∗nt−S1(u∗n, v
∗
n, t, Z)| = |S1(u∗n, v

∗
n, t, S

∗
n(t))− S1(u∗n, v

∗
n, t, Z)|

=
s∗−1∑
p=0

∣∣[c(h[n]
t∗p+1,t

∗
p
)− c(h

[n]
t∗p,t
∗
p
)]− [c(h

[n]
t∗p+1,φ(t∗p))− c(h

[n]
t∗p,φ(t∗p))]

∣∣,
where φ(t∗p) := tl if t∗p ∈ [tl, tl+1) with p ∈ {0, . . . , s∗ − 1} and l ∈ {0, . . . , s − 1}. Thus
we get

|λ∗nt−S1(u∗n, v
∗
n, t, Z)|

=

s∗−1∑
p=0

∣∣c(h[n]
t∗p+1,t

∗
p
)− c(h

[n]
t∗p,t
∗
p
)
∣∣ ·
∣∣∣∣∣∣1−

c(h
[n]
t∗p+1,φ(t∗p))− c(h

[n]
t∗p,φ(t∗p))

c(h
[n]
t∗p+1,t

∗
p
)− c(h

[n]
t∗p,t
∗
p
)

∣∣∣∣∣∣ .
Since |u∗n(t∗p+1) − u∗n(t∗p)| < δ and |v∗n(φ(t∗p)) − v∗n(t∗p)| < δ for all n ≥ n0 and all p ∈
{0, . . . , s∗}, Lemma 3.5 gives us

|λ∗nt− S1(u∗n, v
∗
n, t, Z)| ≤ ε

s∗−1∑
p=0

(
c(h

[n]
t∗p+1,t

∗
p
)− c(h

[n]
t∗p,t
∗
p
)
)
≤ Lε

for all n ≥ n0. The last inequality is a consequence of the monotonicity of (t, τ) 7→ c(t, τ):

s∗−1∑
p=0

(
c(h

[n]
t∗p+1,t

∗
p
)− c(h

[n]
t∗p,t
∗
p
)
)
≤

s∗−1∑
p=0

(
c(h

[n]
t∗p+1,t

∗
p+1

)− c(h
[n]
t∗p,t
∗
p
)
)

= t ≤ L.

The assertion follows now, since λ∗n converges to λ0.
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6) If we put 4) and 5) together, we find for every t ∈ [0, T ] and ε > 0, a µ > 0 such
that for all partitions Z ⊆ S of the interval [0, t] with |Z| < µ, the inequality

|S1(u, v, t, Z)− λ0t| < ε (3.6)

holds.

7) Since u and v are strictly increasing homeomorphisms of [0, L] to [0, T ], we can
apply Lemma 3.6 to the admissible parametrisation (γ1 ◦ u, γ2 ◦ v)t∈[0,L] to get Lipschitz
continuous and increasing functions c1 and c2 with c1 + c2 ≡ id, as c(u(t), v(t)) = t for
all t ∈ [0, L]. Equation (3.6) gives us

c1(t) = λ0t, c2(t) = t− c1(t) = (1− λ0)t

for all t ∈ S. Since S is dense on [0, L], this relation holds for all t ∈ [0, L]. On top of
this we find with Lemma 3.6

lim
t→t0

c(ht,t0)− c(ht0,t0)

t− t0
= λ0, lim

t→t0

c(ht0,t)− c(ht0,t0)

t− t0
= 1− λ0

for all t0 ∈ [0, L]. For each t ∈ [0, L], we set gt := ht,t, Dt := gt
(
Ω \ (γ1(0, u(t)] ∪

γ2(0, v(t)])
)
, and U1(t) = gt(γ1(u(t))) and U2(t) := gt(γ2(v(t))). Finally, we can apply

Theorem 2.30, 2.31 or 2.36 to find

ġt(z) = E
(
gt(z)

)(
λ0Φat,U1(t),Dt

(
gt(z)

)
+ (1− λ0)Φat,U2(t),Dt

(
gt(z)

))
, t ∈ [0, L].

with continuous driving terms t 7→ Uk(t), k ∈ {1, 2}, see Lemma 2.43. Herein, for all
w ∈ C, E(w) := w in the radial and bilateral case and E(w) := 1

2i in the chordal case.
Moreover, for all t ∈ [0, T ], at := 0 in the radial case, at := qt in the bilateral case where
qt is the inner radius of the circular slit annulus Dt and at :=∞ in the chordal case.

Proof (Uniqueness). Let (γ1, γ2)[0,T ] be a tuple of disjoint appropriate slits in Ω. For
each t, τ ∈ [0, T ], ft,τ : Ω(t, τ)→ D(t, τ) denotes the normalised appropriate mapping
function from Ω(t, τ) := Ω \ (γ1(0, t] ∪ γ2(0, τ ]) onto the canonical domain D(t, τ) and
c(t, τ) := c(ft,τ ). Moreover, we set U1(t, τ) := ft,τ (γ1(t)) and U2(t, τ) := ft,τ (γ2(τ))
for all t, τ ∈ [0, T ]. Let u, v : [0, L] → [0, T ] be increasing homeomorphisms and Z
denotes an arbitrary partition of the interval [t, t] ⊆ [0, T ]. Then for each k ∈ {1, 2}, we
define Sk(u, v, [t, t], Z) in the same way as in Equation (3.2) and we write Sk(u, v, t, Z) :=
Sk(u, v, [0, t], Z) for any partition Z of the interval [0, t] ⊆ [0, T ]. Moreover, for all w ∈ C,
E(w) := w in the radial and bilateral case and E(w) := 1

2i in the chordal case.

Assume u1, v1 and u2, v2 are increasing homeomorphisms from [0, L] onto [0, T ] such
that the functions gt := fu1(t),v1(t) and ht := fu2(t),v2(t) satisfy the differential equations

ġt(z) = E
(
gt(z)

)(
λ1Φat,ξ1(t),Gt

(
gt(z)

)
+ (1− λ1)Φat,ξ2(t),Gt

(
gt(z)

))
,

ḣt(z) = E
(
ht(z)

)(
λ2Φbt,ζ1(t),Ht

(
ht(z)

)
+ (1− λ2)Φbt,ζ2(t),Ht

(
ht(z)

))
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for all t ∈ [0, L] with coefficients λ1, λ2 ∈ (0, 1), continuous driving functions ξk(t) :=
Uk(u1(t), v1(t)), ζk(t) := Uk(u2(t), v2(t)), k ∈ {1, 2}, and Gt := gt(Ω(u1(t), v1(t))) =
D(u1(t), v1(t)), Ht := gt(Ω(u2(t), v2(t))) = D(u2(t), v2(t)) for all t ∈ [0, T ]. Moreover,
for each t ∈ [0, T ], at := 0 in the radial case, at is the inner radius of Gt in the bilateral
case and at =: ∞ in the chordal case. Analogously, bt := 0 in the radial case, bt is the
inner radius of Ht in the bilateral case and bt :=∞ in the chordal case for all t ∈ [0, L].

Using Theorem 2.30, 2.31 or 2.36, we find c(gt) = c(ht) = t for all t ∈ [0, L] and

λ1 = lim
t→t0

c(u1(t), v1(t0))− c(u1(t0), v1(t0))

t− t0
,

λ2 = lim
t→t0

c(u2(t), v2(t0))− c(u2(t0), v2(t0))

t− t0

(3.7)

for all t0 ∈ [0, L].

1) First of all we will show λ1 = λ2, so suppose λ1 > λ2. Therefore, we set

xk(t) := c
(
uk(t), vk(0)

)
= c
(
uk(t), 0

)
, k ∈ {1, 2}.

Denote by 0 < t0 ≤ L the first positive time when u1(t0) = u2(t0). Consequently,
v1(t0) = v2(t0) and x1(t0) = x2(t0) by normalisation and the monotonicity of (t, τ) 7→
c(t, τ) in each variable. Equation (3.7) gives us

ẋ1(0) = λ1 > λ2 = ẋ2(0),

so we have x1(t) > x2(t) and u1(t) > u2(t) for all t ∈ (0, t0). Consequently, we have also
c
(
u1(t), v1(t0)

)
> c
(
u2(t), v2(t0)

)
for all t ∈ (0, t0). Thus we get

c
(
u2(t), v2(t0)

)
< c
(
u1(t), v1(t0)

)
< c
(
u1(t0), v1(t0)

)
= t0 = c

(
u2(t0), v2(t0)

)
if t < t0. This implies

c
(
u1(t0), v1(t0)

)
− c
(
u1(t), v1(t0)

)
t0 − t

<
c
(
u2(t0), v2(t0)

)
− c
(
u2(t), v2(t0)

)
t0 − t

for all t < t0. If t tends to t0, we get λ1 ≤ λ2 by Equation (3.7). This is a contradiction,
so λ1 = λ2 =: λ.

2) Next, we are going to prove the uniqueness of the parametrisation. The following
idea goes back to a work of O. Roth and S. Schleißinger, see [RS14]

Let (u, v)(t) := (u1, v1)(t) for all t ∈ [0, L], or (u, v)(t) := (u2, v2)(t) for all t ∈ [0, L]. We
are going to derive a differential equation for x(t) := c(u(t), 0) on [0, L]. Note that v(t) is
uniquely determined by x(t) and t, as c(u(t), v(t)) = t for all t ∈ [0, L]. Consequently, we
write ũ(x) and ṽ(x, t) such that c(ũ(x), ṽ(x, t)) = t and c(ũ(x), 0) = x for all x, t ∈ [0, L]
with x ≤ t.8 Obviously, ũ and ṽ are continuous.

8In order to get ũ and ṽ well-defined for each x, t ∈ [0, L] with x ≤ t, we extend γ1 and γ2 to an
interval [0, L∗] such that c(L∗, 0) > L and c(0, L∗) > L.
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Using Proposition 2.55, we find immediately

ẋ(t)

λ
= lim

τ→t

c(fu(τ),0)− c(fu(t),0)

c(fu(τ),v(t))− c(fu(t),v(t))
=
|α1(u(t), 0)|2

|α1(u(t), v(t))|2
=

1∣∣(fu(t),v(t) ◦ f−1
u(t),0)′(z)

∣∣2
with z = U1(u(t), 0). Note that we can interpret the right-hand side as a function of
(x, t), so we write

C(x, t) :=
∣∣(fu(t),v(t) ◦ f−1

u(t),0)′(z)
∣∣ =

∣∣(fũ(x),ṽ(x,t) ◦ f−1
ũ(x),0)′(zx)

∣∣
with x ≤ t.

b

⊕ ⊕

×b

×
b ⊕

b

×

b

b fũ(x),ṽ(x,t) fũ(x),0

zx

Γt

Ũ(x, t)
D̃(x, t)

Figure 3.1: Radial mapping functions fũ(x),ṽ(x,t) and fũ(x),0 in the uniqueness proof of
Theorem 3.2, 3.3 and 3.4

It is easy to see that (x, t) 7→ C(x, t) is continuous and positive on {(x, t) ∈ [0, L]2 | x ≤
t}.
For now let us fix x ∈ [0, L) and we set ht := fũ(x),ṽ(x,t) ◦ f−1

ũ(x),0. Consequently, for each

t ∈ [x, L], ht is the normalised appropriate mapping function on D(ũ(x), 0) \ Γt with
Γt := fũ(x),0(γ2[0, ṽ(x, t)]) for all t ≥ x. Moreover, c(ht) = c(fũ(x),ṽ(x,t)) − c(fũ(x),0) =
t− x. Using Theorem 2.30, 2.31 or 2.36, t 7→ ht(z) is differentiable for all t ∈ [x, L] and
all z ∈ D(ũ(x), 0) \ ΓL and satisfies

ḣt(z) = E
(
ht(z)

)
Φct,Ũ(x,t),D̃(x,t)

(
ht(z)

)
for all t ∈ [x, L] and all z ∈ D(ũ(x), 0) \ ΓL,

(3.8)

where Ũ(x, t) := U2(ũ(x), ṽ(x, t)) and D̃(x, t) := D(ũ(x), ṽ(x, t)). Herein, for all w ∈ C,
E(w) := w in the radial and bilateral case and E(w) := 1

2i in the chordal case. Moreover,

ct := 0 in the radial case, ct is the inner radius of D̃(x, t) in the bilateral case and
ct :=∞ in the chordal case. Using Schwarz reflection principle, Equation (3.8) holds for
all z ∈ Bε(zx) as well with a small ε > 0. This gives us

ḣt(z) = E
(
ht(z)

)
Φct,Ũ(x,t),D̃(x,t)

(
ht(z)

)
for all z ∈ Bε(zx).

Note that the right-hand side is continuous: assume xn → x0 and tn → t0, so we get

Φctn ,Ũ(xn,tn),D̃(xn,tn) ◦ htn
l.u.−−−→ Φct0 ,Ũ(x0,t0),D̃(x0,t0) ◦ ht0 on Bε(zx0),

see Lemma 2.18, 2.19 or 2.20. Obviously, the same is true for the derivative w.r.t. z,
and by Lemma 2.43, x 7→ zx is continuous as well. Summarising, (x, t) 7→ d

dth
′
t(zx) is
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continuous on ∆ := {(x, t) ∈ [0, L]2 | x ≤ t}. Consequently, (x, t) 7→ C(x, t) = |h′t(zx)| is
continuously differentiable on ∆ w.r.t. t (uniformly in x), as (x, t) 7→ h′t(zx) is continuous
and positive on ∆.

Finally, x1 and x2 satisfy the differential equation ẋ(t) = λ/C2(x, t). Using Theorem
2.7 from [CP03], the solution needs to be unique, i.e. x1 ≡ x2. Obviously, u1 ≡ u2 and
v1 ≡ v2.

Remark 3.5. In the simply connected case it is possible to give an ’easier ’ proof of the
uniqueness of constant coefficients. The reason for this is an additional tool (see Lemma
2.57 and 2.56) available in simply connected domains only. We refer to the proof of
Theorem 3.8 where we will prove the uniqueness in the simply connected case for slits
having branch points. Note that this proof holds in the disjoint case word by word as
well.

3.2 Slits having branch points

Next, let us consider slits that may have a branch point. In particular, we are going
to study the case where two slits start at a common point. Let Ω be a canonical
domain and denote by C the outer or unbounded boundary component of Ω. Moreover,
each γk : [0, T ] → cl(Ω), k ∈ {1, 2}, is continuous and simple, γ1(0, T ] ∪ γ2(0, T ] is
an appropriate Ω-hull, γ1(0) = γ2(0) = U0 ∈ C and γ1(0, T ] ∩ γ2(0, T ] = ∅. Then
we call (γ1, γ2)t∈[0,T ] a tuple of branched appropriate slits in Ω. Obviously, (γ1(0, t] ∪
γ2(0, t])t∈[0,T ] is an increasing and continuous family of appropriate Ω-hulls. Moreover,
(Γ1,Γ2) (with Γ1,Γ2 ⊆ cl(Ω)) is called tuple of branched appropriate unparametrised
slits in Ω if there is a T > 0 and a tuple (γ1, γ2)t∈[0,T ] of branched appropriate slits in
Ω such that Γk = γk[0, T ] with k ∈ {1, 2}. In this case (γ1, γ2)t∈[0,T ] is called admissible
parametrisation of (Γ1,Γ2).

⊕

×

b
b

×b

b

×

b

b

Γ2
Γ1

Γ1 Γ2

Γ1
Γ2

Figure 3.2: Tuple of branched unparametrised slits in canonical domains

Theorem 3.7. Let Ω be a canonical domain and (Γ1,Γ2) be a tuple of branched appro-
priate unparametrised slits in Ω. Then there is a unique L > 0, constants λ1, λ2 > 0
with λ1 + λ2 = 1, and an admissible parametrisation (γ1, γ2)t∈[0,L] of (Γ1,Γ2) such that
for each z ∈ ΩL, t 7→ gt(z) is continuously differentiable on [0, L] and satisfies

ġt(z) = E
(
gt(z)

) 2∑
k=1

λkΦat,Uk(t),Dt

(
gt(z)

)
for all t ∈ [0, L] and all z ∈ ΩL.
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Herein, for each t ∈ [0, L], gt : Ωt → Dt is the normalised radial mapping function on
Ωt := Ω \

⋃2
k=1 γk(0, t] and for each k ∈ {1, 2}, Uk(t) := gt(γk(t)) denotes a continuous

driving function on [0, L]. Moreover, for all w ∈ C, E(w) := w in the radial and bilateral
case and E(w) := 1

2i in the chordal case. For each t ∈ [0, T ], at := 0 in the radial case,
at := qt where qt denotes the inner radius of Dt in the bilateral case and at :=∞ in the
chordal case.

Note that Theorem 3.7 gives an existence statement only. Unfortunately, we are able
to prove uniqueness only for simply connected domains.

Theorem 3.8. Let Ω be a simply connected canonical domain and (Γ1,Γ2) be a tuple of
branched appropriate unparametrised slits in Ω. Assume (γ1, γ2)t∈[0,L] is an admissible
parametrisation of (Γ1,Γ2) from Theorem 3.7 with constant coefficients λ and 1 − λ,
λ ∈ (0, 1). Then the weight λ and the admissible parametrisation (γ1, γ2)t∈[0,L] is unique.

In order to prove these theorems we need some preliminary lemmas.

3.2.1 Some preliminary lemmas

Lemma 3.9. Let Ω be a canonical domain and denote by (γ1, γ2)t∈[0,T ] a tuple of
branched appropriate slits in Ω. For each t, τ ∈ [0, T ], ft,τ denotes the normalised appro-
priate mapping function from Ω(t, τ) := Ω\(γ1(0, t]∪γ2(0, τ ]) onto the canonical domain
D(t, τ). Moreover, for each t ∈ [0, T ], we set gt := ft,t, Ωt := Ω(t, t) and Dt := D(t, t).
Assume t0 ∈ (0, T ].

Then the following two statements are equivalent.

(i) For each z ∈ Ωt0, t 7→ gt(z) is differentiable at t0 and fulfils

ġt0(z) = E
(
gt0(z)

) 2∑
k=1

λk(t0)Φat0 ,Uk(t0),Dt0

(
gt0(z)

)
for all z ∈ Ωt0 ,

where each Uk(t) := gt(γk(t)), k ∈ {1, 2}, is continuous on [0, T ] and λk(t0) ≥ 0,
k ∈ {1, 2}.

(ii) λ1(t0) := limt→t0
c(ft,t0 )−c(ft0,t0 )

t−t0 and λ2(t0) := limt→t0
c(ft0,t)−c(ft0,t0 )

t−t0 exist.

When this happens, t 7→ c(gt) is differentiable at t0 with derivative λ1(t0) + λ2(t0).

Herein, for all w ∈ C, E(w) := w in the radial and bilateral case and E(w) := 1
2i in

the chordal case. Moreover, for each t ∈ [0, T ], at := 0 in the radial case, at is the inner
radius of Dt in the bilateral case and at :=∞ in the chordal case.

Proof. This proof is quite easy. First of all, we choose ε > 0 in such a way that ε < t0.
Next, we set h := gε, G := h(Ωε) and ∆k := h(γk[ε, T ]) with k ∈ {1, 2}. Conse-
quently, (∆1,∆2) is a tuple of unparametrised disjoint slits in the canonical domainG and
(δ1, δ2)s∈[0,T−ε] is an admissible parametrisation of (∆1,∆2) where δk(s) := h(γk(s+ ε))
for all s ∈ [0, T − ε] and k ∈ {1, 2}. For each s, σ ∈ [0, T − ε], we denote by hs,σ the
normalised appropriate mapping function on Gs,σ := G\(δ1(0, s]∪δ2(0, σ]), and for each
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s ∈ [0, T − ε], hs is the normalised appropriate mapping function from Gs := Gs,s onto
the canonical domain Hs. Obviously, we have

c(ft0+s−s0,t0)− c(ft0,t0) = c(hs,s0)− c(hs0,s0) for all s ∈ [0, T − ε],

with s0 := t0 − ε, as fs+ε,σ+ε = hs,σ ◦ h for all s, σ ∈ [0, T − ε]. Note that Uk(t0) =
hs0(δk(s0)), Dt0 = Hs0 . Using Theorem 2.30, 2.31 or 2.36, the function s 7→ hs(w) is
differentiable at s0 = t0 − ε for all w ∈ Gs0 with

ḣs0(w) = E
(
hs0(w)

) 2∑
k=1

µk(s0)Φat0 ,Uk(t0),Dt0

(
hs0(w)

)
for all w ∈ Gs0 (3.9)

and µ1(s0), µ2(s0) ≥ 0 if and only if the following two limits exist:

µ1(s0) := lim
s→s0

c(hs,s0)− c(hs0,s0)

s− s0
, µ2(s0) := lim

s→s0

c(hs0,s)− c(hs0,s0)

s− s0
.

Finally, by substituting w = h(z) in Equation (3.9) we get the stated equivalence.

At t0 = 0 we have the following lemma.

Lemma 3.10. Let Ω be a canonical domain, (γ1, γ2)t∈[0,T ] be a tuple of branched ap-
propriate slits in Ω and denote by gt, t ∈ [0, T ], the normalised appropriate mapping
function from Ωt := Ω \ (γ1(0, t] ∪ γ2(0, t]) onto the canonical domain Dt.

Then the following two statements are equivalent.

(i) For each z ∈ Ω, t 7→ gt(z) is differentiable at 0 and fulfils

ġ0(z) = λE(z) Φa,γ1(0),Ω

(
z
)

for all z ∈ Ω

with some λ ≥ 0

(ii) t 7→ c(gt) is differentiable at 0 with derivative λ.

Herein, for all w ∈ C, E(w) := w in the radial and bilateral case and E(w) := 1
2i in the

chordal case. Moreover, a := 0 in the radial case, a := Q where Q is the inner radius of
Ω in the bilateral case and a :=∞ in the chordal case.

Proof. First of all, using Lemma 2.46 we find

F (g−1
t (w))− F (w) =

1

2π

∫
C

<F
(
g−1
t (ζ)

)
· Φat,ζ,Dt(w)|dζ| t > 0, w ∈ Dt.

Here, C denotes the outer or unbounded boundary component of Dt. F (w) := log(w),
w ∈ C \ {0}, in the radial and bilateral case, and F (w) := 2iw, w ∈ C, in the chordal
case. Moreover, at := 0 in the radial case, at denotes the inner radius of Dt in the
bilateral case and at :=∞ in the chordal case.

Let ε > 0 be small. We can choose t0 > 0 small enough in order to have St :=
γ1(0, t] ∩ γ2(0, t] ⊆ Bε(U0) for all t ∈ [0, t0] with U0 := γ1(0) = γ2(0). Using the
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Schwarz reflection principle, for each t ≤ t0, we extend gt analytically to a neighbourhood
∂Bε(U0). Using Lemma 2.42, we find gt

l.u.−−−→ id on Ω. We have uniform convergence on
∂Bε(U0) as well, so we find st := gt(St) ⊆ Bε(U0) for all t small enough. This gives us
st → U0 if t↘ 0.

Let t > 0. Together with the mean value theorem and Lemma 2.45, we get

F (g−1
t (w))− F (w) =

(
<Φat,ζ1,Dt(w) + =Φat,ζ2,Dt(w)

) 1

2π

∫
st

<F
(
g−1
t (ζ)

)
|dζ|

= −
(
<Φat,ζ1,Dt(w) + =Φat,ζ2,Dt(w)

)
c(gt)

for all w ∈ Dt and some ζ1, ζ2 ∈ st. Next, let us substitute w = gt(z) so we get for each
z ∈ Ωt

F (gt(z))− F (g0(z)) =
(
<Φat,ζ1,Dt(gt(z)) + =Φat,ζ2,Dt(gt(z))

)
· (c(gt)− c(g0)). (3.10)

Using Lemma 2.18, 2.19 or 2.20, for each k ∈ {1, 2}, we find Φat,ζk,Dt
l.u.−−−→ Φa,U0,Ω on

Ω. Summarising, as ζ1, ζ2 ∈ st → U0, the proof is complete.

Remark 3.6. Using Equation (3.10), we easily see that the following statement is equiv-
alent to (i) and (ii) of Lemma 3.10.

(iii) There is a z0 ∈ Ω \ {0} such that t 7→ gt(z0) is differentiable at t = 0.

Note that in the chordal and bilateral case we can write z0 ∈ Ω instead of z0 ∈ Ω \ {0}.
Moreover, the proof of Lemma 3.10 shows that st := gt(γ1[0, t] ∪ γ2[0, t]) → U0 :=

γ1(0) = γ2(0) as t↘ 0.

Lemma 3.11. Let Ω be a canonical domain and (γ1, γ2)t∈[0,T ] denote a tuple of branched
appropriate slits in Ω. For each t, τ ∈ [0, T ], ft,τ is the normalised appropriate mapping
function on Ω \ (γ1(0, t]∪ γ2(0, τ ]). Moreover, we set gt := ft,t for all t ∈ [0, T ]. Assume
Z = {t0, . . . , tn} with t0 = 0 and tn = t is a partition of the interval [0, t] ⊆ [0, T ], i.e.
t0 < t1 < . . . < tn, and

S1(f, t, Z) :=

n−1∑
l=0

c(ftl+1,tl)− c(ftl,tl), S2(f, t, Z) :=

n−1∑
l=0

c(ftl,tl+1
)− c(ftl,tl).

Then for each t ∈ [0, T ] and k ∈ {1, 2}, Sk(f, t, Z) → ck(t) ≥ 0 as |Z| → 0 whereas
|Z| denotes the norm of the partition Z, i.e. |Z| := maxl=0,...,n−1 tl+1 − tl. Moreover,
each t 7→ ck(t) is continuous and strictly increasing on [0, T ], ck(0) = 0, and for each
t0 ∈ (0, T ] and k ∈ {1, 2},

c1(t)− c1(t0)

c(ft,t0)− c(ft0,t0)
→ 1 as t→ t0 and

c2(t)− c2(t0)

c(ft0,t)− c(ft0,t0)
→ 1 as t→ t0.

Finally, assume c(gt) = t for all t ∈ [0, T ]. Then each t 7→ ck(t), k ∈ {1, 2}, is Lipschitz
continuous on [0, T ] and

∑2
k=1 ck(t) = t for all t ∈ [0, T ].
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Proof. 1) First of all, we will prove the existence of the functions ck, k ∈ {1, 2}. In
order to do so, we set

S1(f, [t, t], Z) :=
n−1∑
l=0

c(ftl+1,tl)− c(ftl,tl), S2(f, [t, t], Z) :=
n−1∑
l=0

c(ftl,tl+1
)− c(ftl,tl),

with 0 ≤ t < t ≤ T and a partition Z := {t0, . . . , tn} of the interval [t, t]. Let ρ > 0.
By Lemma 2.42, the function t 7→ c(gt) is continuous on [0, T ], so we find an ε > 0 such
that c(gt) <

ρ
4 holds for all t ∈ [0, ε]. Next, we set h := gε. Consequently, ∆1,∆2 with

∆k := h(γk[ε, T ]) are disjoint appropriate unparametrised slits in the canonical domain
G := h(Ω\(γ1(ε, T ]∪γ2(ε, T ])). On top of this (δ1, δ2)s∈[0,T−ε], with δk(s) := h(γk(s+ε))
for all s ∈ [0, T − ε], is an admissible parametrisation of (∆1,∆2). Moreover, for each
s, σ ∈ [0, T − ε], we denote by hs,σ the normalised appropriate mapping function on
G \ (δ1(0, s] ∪ δ2(0, σ]).

Let t ∈ (ε, T ] be fix. Obviously, this allows us to apply Lemma 3.6, so we find a µ > 0
such that

|S1(f, [ε, t], Z1)− S1(f, [ε, t], Z2)| = |S1(h, t− ε, Zε1)− S1(h, t− ε, Zε2)| < ρ
2

for all partitions Z1, Z2 of the interval [ε, t] with |Z1|, |Z2| < µ and Zεk := Zk−ε. Finally,
let Z1, Z2 be partitions of the interval [0, t] ⊆ [0, T ] with |Z1|, |Z2| < µ, so we get

|S1(f, [0, t], Z1)− S1(f, [0, t], Z2)| ≤
|S1(f, [0, ε], Z1 ∩ [0, ε])|+ |S1(f, [0, ε], Z2 ∩ [0, ε])|

+ |S1(f, [ε, t], Z1 ∩ [ε, T ])− S1(f, [ε, t], Z2 ∩ [ε, T ])| < ρ
4 + ρ

4 + ρ
2 = ρ,

as we can assume without loss of generality ε ∈ Z1 ∩ Z2. We can do the same for S2

instead of S1 to get the existence of c2.

2) Next, let us fix t0 ∈ (0, T ] and 0 < ε < t0. We use the same notations as in the
first part, i.e. h := gε, and for all s, σ ∈ [0, T − ε], hs,σ is the normalised appropriate
mapping function on G \ (δ1[0, s] ∪ δ2[0, σ]) with G := h(Ω \ (γ1(0, ε] ∪ γ2(0, ε])) and
δk(s) := h(γk(ε + s)). On top of this we set cεk(s) := lim|Z|→0 Sk(h, s, Z) for all s ∈
[0, T − ε] and ck(t) = lim|Z|→0 Sk(f, t, Z) for all t ∈ [0, T ] with k ∈ {1, 2}. Obviously,
ck(s+ ε) = cεk(s) + ck(ε) for all s ∈ [0, T − ε]. Thus we find with Lemma 3.6

c1(t)− c1(t0)

c(ft,t0)− c(ft0,t0)
=

cε1(t− ε)− cε1(t0 − ε)
c(ht−ε,t0−ε)− c(ft0−ε,t0−ε)

=
cε1(s)− cε1(s0)

c(hs,s0)− c(fs0,s0)

s→s0−−−→ 1

with s0 := t0−ε and s := t−ε. Moreover Lemma 3.6 shows that for each fixed ε > 0 and
k ∈ {1, 2}, s 7→ cεk(s) is continuous on [0, T − ε]. Together with ck(s+ ε) = cεk(s) + ck(ε)
for all s ∈ [0, T − ε] and k ∈ {1, 2}, we easily see that each t 7→ ck(t) is continuous and
strictly increasing on [0, T ]. Finally, assume c(gt) = t for all t ∈ [0, T ]. Then c(hs) = s
for all s ∈ [0, T − ε], so Lemma 3.6 gives us

∑2
k=1 ck(s + ε) =

∑2
k=1(cεk(s) + ck(ε)) =

s+
∑2

k=1 ck(ε) for all s ∈ [0, T − ε]. Letting ε→ 0 and by using the continuity, we find∑2
k=1 ck(t) = t for all t ∈ [0, T ]. Obviously, t 7→ ck(t), k ∈ {1, 2}, is Lipschitz continuous

on [0, T ] in this case as well, as ck(t) ≥ 0 for all t ∈ [0, T ].
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3.2.2 Proof of Theorem 3.7 and 3.8

In order to prove Theorem 3.7, we are going to use the disjoint case (and the correspond-
ing proof) in a major way.

Note that we can apply step 1) and 2) of the existence proof of Theorem 3.2, 3.3
and 3.4 on branched slits as well. We call (u∗n, v

∗
n, u, v)t∈[0,L] bang–bang functions cor-

responding to (γ1, γ2)t∈[0,T ]. Using the notation of Theorem 3.7, step 1) and 2) give us
L = cΩ(Γ1 ∪ Γ2) like in the disjoint case.

Unfortunately, we can not apply step 3), 4) and 5) (directly) in the branch point
case. The reason for this is that we proved Proposition 2.55 in the disjoint case only.
Consequently, one might ask the question if Proposition 2.55 is true in the branch point
case as well. In general, this is not the case, so there are counterexamples, see Section
4.2. Nevertheless, we can use step 3), 4) and 5) in order to find the following lemma.

Lemma 3.12. Let Ω be a canonical domain, (γ1, γ2)t∈[0,T ] be a tuple of branched ap-
propriate slits in Ω and for each t, τ ∈ [0, T ], ft,τ denotes the normalised appropriate
mapping function on Ω \ (γ1(0, t] ∪ γ2(0, τ ]). Assume (u∗n, v

∗
n, u, v)t∈[0,L] are bang–bang

functions corresponding to (γ1, γ2)t∈[0,T ].

Then u, v : [0, L] → [0, T ] are continuous and strictly increasing, c(fu(t),v(t)) = t for
all t ∈ [0, L] and S1(u, v, [t, t], Z) → (t − t)λ and S2(u, v, [t, t], Z) → (t − t)(1 − λ) with
t, t ∈ S :=

⋃
n∈N{

k
2nL | k ∈ {0, . . . , 2

n}}, 0 < t < t, λ ∈ (0, 1) and L = c(fT,T ).

Herein, for the definition of Sk(u, v, [t, t], Z) see Equation (3.2).

Proof. Summarising, step 1) and 2) yield that t 7→ u(t) and t 7→ v(t) are continuous and
increasing on [0, L] and c(fu(t),v(t)) = t for all t ∈ [0, L]. As mentioned before, this gives
us L = c(fT,T ).

Let t, t ∈ S with 0 < t < t. Then either u(t) 6= 0 or v(t) 6= 0. Thus we find an
ε > 0 such that ε < u(t) or ε < v(t). Without loss of generality we assume ε < u(t).
Then we set h := fε,0, G := h(Ω \ γ1[0, ε]), ∆1 := h(γ1[ε, T ]) and ∆2 := h(γ2[0, T ]).
Obviously, ∆1,∆2 are disjoint appropriate unparametrised slits in the canonical domain
G. Moreover, we find an n0 ∈ N in order to get u∗n(t) > ε for all n ≥ n0. Since ∆1

and ∆2 are disjoint we can apply step 3), 4) and 5), so t 7→ u(t) and t 7→ v(t) are
strictly increasing on [t, L], S1(u, v, [t, t], Z) → (t − t)λ as |Z| → 0 with λ ∈ (0, 1) and
S2(u, v, [t, t], Z) → (t − t)(1 − λ) as |Z| → 0. Note that t > 0 is arbitrary, so t 7→ u(t)
and t 7→ v(t) are strictly increasing on [0, L].

Now we are able to prove Theorem 3.7.

Proof of Theorem 3.7. Let Ω be a canonical domain and (γ1, γ2)t∈[0,T ] be appropriate
branched slits in Ω. For each t, τ ∈ [0, T ] we denote by ft,τ the normalised appropriate
mapping function on Ω(t, τ) := Ω \ (γ1(0, t] ∪ γ2(0, τ ]). Assume (u∗n, v

∗
n, u, v)t∈[0,L] are

bang–bang functions corresponding to (γ1, γ2)t∈[0,T ] with L = c(fT,T ). We set ht,τ :=
fu(t),v(τ) for all t, τ ∈ [0, L]. Using Lemma 3.11, we find strictly increasing and continuous
functions

ck(t) := lim
|Z|→0

Sk(h, t, Z) := lim
|Z|→0

Sk(u, v, t, Z) for all t ∈ [0, L] and k ∈ {1, 2}.
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Next, Lemma 3.12 gives us c1(t)− c1(ε) = (t− ε)λ and c2(t)− c2(ε) = (t− ε)(1− λ) for
all ε, t ∈ S with 0 < ε < t, and some λ ∈ (0, 1). Letting ε ↘ 0 we get c1(t) = λt and
c2(t) = (1− λ)t for all t ∈ S. t 7→ ck(t) is continuous on [0, L], so we find c1(t) = λt and
c2(t) = (1− λ)t for all t ∈ [0, L]. Using Lemma 3.11, for each t0 ∈ (0, L], we find

lim
t→t0

c(ht,t0)− c(ht0,t0)

t− t0
= λ, lim

t→t0

c(ht0,t)− c(ht0,t0)

t− t0
= 1− λ.

For all t ∈ [0, L], we set gt := ht,t and Dt := gt(Ω(t, t)). Consequently, Lemma 3.9 yields

ġt(z) = E
(
ht(z)

) 2∑
k=1

λkΦat,Uk(t),Dt

(
gt(z)

)
, for all t ∈ (0, L] and all z ∈ ΩL,

with λ1 := λ and λ2 = 1 − λ. Herein, for all t ∈ [0, L], at := 0 in the radial case, at
denotes the inner radius of Dt in the bilateral case and at := ∞ in the chordal case.
Herein, for all w ∈ C, E(w) := w in the radial and bilateral case and E(w) := 1

2i in the
chordal case. Moreover, U1(t) := gt(γ1(u(t))) and U2(t) := gt(γ2(v(t))) for all t ∈ [0, L].
Note that c(ht) = t, so Lemma 3.10 gives us

ġ0(z) = E(z)Φa0,γ1(0),Ω

(
z
)

for all z ∈ Ω.

γ1(0) = γ2(0) = U1(0) = U2(0), D0 = Ω, so we find

ġ0(z) = E
(
g0(z)

) 2∑
k=1

λkΦa0,Uk(0),D0

(
g0(z)

)
for all z ∈ Ω.

Summarising, gt(z) satisfies a Komatu–Loewner equation with constant coefficients.

Lemma 3.13. Let Ω be a canonical simply connected domain and denote by (γ1, γ2)t∈[0,T ]

a tuple of disjoint or branched slits in Ω. For each t, τ ∈ [0, T ], we denote by ft,τ the
normalised appropriate mapping function on Ω \ (γ1(0, t]∪ γ2(0, τ ]) and we set c(t, τ) :=
c(ft,τ ). Assume 0 ≤ t ≤ t ≤ T and 0 ≤ τ ≤ τ ≤ T . Then

c(t, τ)− c(t, τ) ≤ c(t, τ)− c(t, τ).

Proof. Assume 0 ≤ t < t ≤ T and 0 ≤ τ < τ ≤ T . Let h := ft,τ , G := h(Ω \ (γ1(0, t] ∪
γ2(0, τ ])) and ∆1 := h(γ1(t, t]) and ∆2 := h(γ2(τ , τ ]). Note that ∆1,∆2 and ∆1 ∪ ∆2

are appropriate hulls in the canonical domain G and we denote by h∆1 , h∆2 and h∆1∪∆2

the normalised appropriate mapping functions on G \ ∆1, G \ ∆2 and G \ (∆1 ∪ ∆2),
respectively.

Consequently, we can apply Lemma 2.56 and 2.57 to get

c(h∆1∪∆2) ≤ c(h∆1) + c(h∆2).

Note that c(h∆1∪∆2) = c(t, τ) − c(t, τ), c(h∆1) = c(t, τ) − c(t, τ) and c(h∆2) = c(t, τ) −
c(t, τ), so the proof is complete.
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Proof of Theorem 3.8. 1) First of all, let Ω be a simply connected canonical domain,
(γ1, γ2)t∈[0,T ] be appropriate branched slits in Ω and let L := cΩ(Γ1 ∪ Γ2). For each
t, τ ∈ [0, T ], we denote by ft,τ the normalised appropriate mapping function on Ω \
(γ1(0, t]∪γ2(0, t]). Assume u1, v1 : [0, L]→ [0, T ] and u2, v2 : [0, L]→ [0, T ] are increasing
homeomorphisms having c(u1(t), v1(t)) = t = c(u2(t), v2(t)) for all t ∈ [0, L], and for each
t0 ∈ [0, L] and k ∈ {1, 2}, t 7→ c(uk(t), vk(t0)) and t 7→ c(uk(t0), vk(t)) are differentiable
at t0 with constant derivatives λk and 1− λk, respectively. Using Lemma 3.9 and 3.10,
this is equivalent to claim that each t 7→ fuk(t),vk(t) fulfils a multiple slit Loewner equation
with constant coefficients λk and 1− λk, k ∈ {1, 2}.

2) Next, suppose λ1 > λ2. Note that t 7→ c(uk(t), T ) is differentiable at t = L
with derivative λk, k ∈ {1, 2}. Moreover, c(u1(L), T ) = L = c(u2(L), T ), so we find
c(u1(t), T ) < c(u2(t), T ) for all t ∈ (L − ε, L) with a small ε > 0, as λ1 > λ2. Using
Lemma 2.41, we find u1(t) < u2(t) for all t ∈ (L − ε, L) as well. Let us denote by
t0 ∈ [0, L) the unique time such that t0 := sup{t ∈ [0, L) | u1(t) = u2(t)}. Using
u1(t) < u2(t) for all t ∈ (L − ε, L), we find t0 < L. Consequently, u1(t) < u2(t) for all
t ∈ (t0, L).

Next, let Z2 := {t0, . . . , tn} be a partition of the interval [t0, L], say tl = t0 + l
n(L− t0)

for all l ∈ {0, . . . , n}. Moreover, we find unique values τ0, . . . , τn ∈ [t0, L] such that
u1(τl) = u2(tl) for all l ∈ {1, . . . , n}. Thus Z1 := {τ0, . . . τn} is a partition of the interval
[t0, L]. Using u1(t) < u2(t) for all t ∈ (t0, L), we find τl ≥ tl for all l ∈ {0, . . . , n}. Since
c(u2(tl), v2(tl)) = tl ≤ τl = c(u1(τl), v1(τl)), Lemma 2.41 gives us v1(τl) ≥ v2(tl) for all
l ∈ {0, . . . , n}. Using Lemma 3.13, we find

c
(
u2(tl+1), v2(tl)

)
− c
(
u2(tl), v2(tl)

)
≥ c
(
u2(tl+1), v1(τl)

)
− c
(
u2(tl), v1(τl)

)
= c
(
u1(τl+1), v1(τl)

)
− c
(
u1(τl), v1(τl)

)
for all l ∈ {0, . . . , n− 1}. Consequently, we get

n−1∑
l=0

c
(
u2(tl+1), v2(tl)

)
− c
(
u2(tl), v2(tl)

)
≥

n−1∑
l=0

c
(
u1(τl+1), v1(τl)

)
− c(u1(τl), v1(τl)

)
.

Using Lemma 3.11, we see that the term on the left-hand side tends to λ2(L− t0), while
the right-hand side tends to λ1(L − t0), so we find λ2 ≥ λ1. This is a contradiction, as
λ2 < λ1, so λ1 = λ2 =: λ.

3) Finally, we are going to show u1(t) = u2(t) for all t ∈ [0, L]. Let t ∈ [0, L] be fix and
suppose u1(t) < u2(t). As before we find a unique t0 := sup{τ ∈ [0, t) | u1(τ) = u2(τ)}.
Using the continuity of u1 and u2, we find t0 < t. Consequently, u1(τ) < u2(τ) for all
τ ∈ (t0, t].

Next, let {t0, . . . , tn} be a partition of the interval [t0, t], say tl = t0 + l
n(t − t0) with

l ∈ {0, . . . , n} and some n ∈ N. Moreover, we find unique values τ0, . . . , τn ∈ [t0, L] such
that u2(tl) = u1(τl) for all l ∈ {0, . . . , n}. Note that Z1 := {τ0, . . . , τn} is a partition of
the interval [t0, τ ] where τ ∈ (t0, L] satisfies u1(τ) = u2(t). Consequently, τ > t as well
as τl ≥ tl for all l ∈ {0, . . . , n}. Like in the previous part, we get v2(tl) ≤ v1(τl) for all
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l = {0, . . . , n}, so, together with Lemma 3.13, we find

n−1∑
l=0

c(u2(tl+1), v2(tl))− c(u2(tl), v2(tl)) ≥
n−1∑
l=0

c(u1(τl+1), v1(τl))− c(u1(τl), v1(τl)).

Using Lemma 3.11, the left-hand side tends to λ(t− t0), while the right-hand side tends
to λ(τ − t0), so we get t ≥ τ . This is a contradiction as t < τ , so the proof is complete.
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Chapter 4

Komatu–Loewner equations vs.
Loewner equations

Let Ω be a canonical domain and denote by (γ1, . . . , γm)t∈[0,T ] a tuple of disjoint ap-
propriate slits in Ω. For each t ∈ [0, T ], we denote by gt the normalised appropriate
mapping function on Ωt := Ω \

⋃m
k=1 γk(0, t]. Moreover, for each k ∈ {1, . . . ,m} and

t ∈ [0, T ], we set hk;t as the normalised appropriate mapping function on ΩS \ γk(0, t].
In this context ΩS is the simplification of Ω, i.e. ΩS := D if Ω is a circular slit disk,
ΩS := H if Ω is an upper parallel slit half-plane, and ΩS := AQ = {z ∈ C | Q < |z| < 1}
if Ω is a circular slit annulus with inner radius Q ∈ (0, 1), see also Section 2.7.

Then one might ask whether there is a connection between differentiability of t 7→ gt
and differentiability t 7→ hk;t with k ∈ {1, . . . ,m}? See also Figure 4.1 where we put gt
side by side to hk;t.

We will discuss this question in the disjoint case and in the branch point case sepa-
rately.

4.1 Disjoint slits

Theorem 4.1. Let Ω be a canonical domain and denote by (γ1, . . . , γm)t∈[0,T ] a tuple of
disjoint appropriate slits in Ω. For each t ∈ [0, T ], we denote by gt the normalised appro-
priate mapping function on Ωt := Ω \

⋃m
k=1 γk(0, t]. Moreover, for each k ∈ {1, . . . ,m}

and t ∈ [0, T ], we set hk;t as the normalised appropriate mapping function on ΩS\γk(0, t].
Let t0 ∈ [0, T ]. Then the following two statements are equivalent.

(i) t 7→ gt(z) is differentiable at t = t0 for each z ∈ Ωt0.

(ii) Each t 7→ hk;t(z), k ∈ {1, . . . ,m}, is differentiable at t = t0 for each z ∈ ΩS \
γk(0, t0].

Proof. Basically, this follows immediately from Proposition 2.55 and Theorem 2.30, 2.31
and 2.36. Therefore, for each t, τ ∈ [0, T ], fk;t,τ denotes the normalised appropriate
mapping function on Ω \ (γk(0, t] ∪

⋃
j 6=k γj(0, τ ]). Let t0 ∈ [0, T ]. Using Proposition
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2.55, we get for each k ∈ {1, . . . ,m}:

λk(t0) := lim
t→t0

c(fk;t,t0)− c(fk;t0,t0)

t− t0
exists ⇔ µk(t0) := lim

t→t0

c(hk;t)− c(hk;t0)

t− t0
exists.

Using (i)⇔(ii) from Theorem 2.30, 2.31 or 2.36, we find: t 7→ gt(z) is differentiable at t0
for each z ∈ Ωt0 if and only if each limit λk(t0), k ∈ {1, . . .m}, exists. In the same way,
for each k ∈ {1, . . . ,m}, t 7→ hk;t(z) is differentiable at t0 for all z ∈ ΩS \ γk(0, t0] if and
only if the limit µk(t0) exists.
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Υk(t)
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gt

Ωt

D \ γk(0, t] D

Dt

Figure 4.1: The mapping functions gt and hk;t in the radial case; note that ΩS = D
and Φbt,Υk(t),∆k(t)(w) = (Υk(t) + w)/(Υk(t)− w)

We find easily with (ii)⇔(iii) from Theorem 2.30, 2.31 or 2.36:

Corollary 4.2. Let Ω be a canonical domain and denote by (γ1, . . . , γm)t∈[0,T ] a tuple
of disjoint appropriate slits in Ω. For each t, τ ∈ [0, T ] and k ∈ {1, . . . ,m}, we denote
by fk;t,τ the normalised appropriate mapping function from Ωk(t, τ) := Ω \ (γk(0, t] ∪⋃
j 6=k γj(0, τ ]) onto the canonical domain Dk(t, τ). Independently of k ∈ {1, . . . ,m},

we set gt := fk;t,t, Ωt := Ωk(t, t) and Dt := Dk(t, t) for all t ∈ [0, T ]. Moreover, for
each k ∈ {1, . . . ,m}, we set hk;t as the normalised appropriate mapping function from
ΩS \ γk(0, t] onto ∆k(t) with t ∈ [0, T ]. Finally, let E(w) := w in the radial and bilateral
case and E(w) := 1

2i in the chordal case. Let t0 ∈ [0, T ]. Then the following two
statements are equivalent.

(i) t 7→ gt(z) is differentiable at t = t0 for each z ∈ Ωt0 and satisfies

ġt0(z) = E
(
gt0(z)

) m∑
k=1

λk(t0)Φat0 ,Uk(t0),Dt0

(
gt0(z)

)
for all z ∈ Ωt0 ,

with λk(t0) ≥ 0 and Uk(t) := gt(γk(t)) continuous on [0, T ]. Herein, at := 0 in the
radial case, at is the inner radius of Dt in the bilateral case and at := ∞ in the
chordal case.
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(ii) Each t 7→ hk;t(z), k ∈ {1, . . . ,m}, is differentiable at t = t0 for all z ∈ ΩS \γk(0, t0],
and satisfies

ḣk;t0(z) = E
(
hk;t0(z)

)
µk(t0)Φbt0 ,Υk(t0),∆k(t0)

(
hk;t0(z)

)
for all z ∈ ΩS \ γk(0, t0],

with µk(t0) ≥ 0 and Υk(t) := hk;t(γk(t)) continuous on [0, T ]. Herein, bt := 0 in
the radial case, bt is the inner radius of ∆k(t) in the bilateral case and bt :=∞ in
the chordal case.

When this happens, λk(t0) = |α2
k(t0)|µk(t0) for all k ∈ {1, . . . ,m} where each t 7→

|αk(t)| := |(gt ◦ h−1
k;t )
′(Υk(t))| is a positive continuous function on [0, T ].

In this context, each t 7→ |α2
k(t)| represents a distortion factor. Note that positivity

and continuity of t 7→ |αk(t)| is an immediate consequence of Proposition 2.55.

⊕
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⊕
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t
t

k

gt Dt

Uk(t)

Figure 4.2: The mapping gt ◦ h−1
k;t involved in the distortion factor t 7→ |αk(t)|

Next, we will use the previous results to give an idea how to find admissible parametri-
sations of unparametrised slits, in order to get Komatu–Loewner equations with differ-
entiability everywhere.

Corollary 4.3. Let Ω be a canonical domain and denote by (Γ1, . . . ,Γm) a tuple of dis-
joint unparametrised appropriate slits in Ω. Then we find an admissible parametrisation
(γ1, . . . , γm)t∈[0,L] such that for each z ∈ Ωt, t 7→ gt(z) is (continuously) differentiable
on [0, L] and satisfies

ġt(z) = E
(
gt(z)

)
·
m∑
k=1

λk(t)Φat,Uk(t),Dt

(
gt(z)

)
for all z ∈ ΩT and all t ∈ [0, L],

where t 7→ Uk(t) := gt(γk(t)) and t 7→ λk(t) > 0 are continuous on [0, L] for each k ∈
{1, . . . ,m}. Moreover, λ1, . . . , λm are normalised in the following sense:

∑m
k=1 λk(t) = 1

for all t ∈ [0, L].
For each t ∈ [0, L], gt denotes the normalised appropriate mapping function from

Ωt := Ω \
⋃m
k=1 γk(0, t] onto the canonical domain Dt. Moreover, for all w ∈ C, we set

E(w) := w in the radial and bilateral case and E(w) := 1
2i in the chordal case. at := 0

in the radial case, at is the inner radius of Dt in the bilateral case, and at :=∞ in the
chordal case for all t ∈ [0, L].

Proof. First of all, let us fix k ∈ {1, . . . ,m} and T > 0. Note that we find an admissible
parametrisation δk : [0, T ] → Γk such that t 7→ c(hk;t) = Lk

t
T with Lk = cΩ(Γk) > 0
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for all t ∈ [0, T ]. For each t ∈ [0, T ], hk;t denotes the normalised appropriate mapping
function on ΩS \ δk(0, t]. To see this, let δ̃k be an arbitrary parametrisation of Γk, so
δ̃k : [0, Tk]→ Γk with Tk > 0. Let h̃k;t be the normalised appropriate mapping function
on ΩS \ δ̃k(0, t]. Then t 7→ ck(t) := c(h̃k;t) is an increasing homeomorphism from [0, Tk]
onto [0, Lk]. Next, let δk(t) := (δ̃k ◦ c−1

k )(Lk
t
T ), so c(hk;t) = Lk

t
T for all t ∈ [0, T ].

Note that we can do this for each k ∈ {1, . . . ,m}, so (δ1, . . . , δm)[0,T ] is an admissible
parametrisation of the tuple (Γ1, . . . ,Γm). Using Theorem 2.30, 2.31 or 2.36 applied
to the single slit case, h1;t, . . . , hm;t satisfy condition (ii) of Corollary 4.2 for each t0 ∈
[0, T ]. For each t ∈ [0, T ], g̃t denotes the normalised appropriate mapping function on
Ω\
⋃m
k=1 δk(0, t] and we set ct := c(g̃t). Using Corollary 4.2, t 7→ g̃t(z) is differentiable on

[0, T ] for all z ∈ Ω\
⋃m
k=1 Γk. Moreover, t 7→ ct is an increasing homeomorphism of [0, T ]

onto [0, L] with L > 0 and t 7→ ct is continuously differentiable with positive derivative
on [0, T ]. Note that the positivity and continuity is a consequence of the positivity and
continuity of the distortion factor together with Theorem 2.30, 2.31 or 2.36. We set
dt := c−1

t for all t ∈ [0, L].

Finally, let us define γk(t) := δk(dt) for all t ∈ [0, L] and k ∈ {1, . . . ,m}. Note
that, for each k ∈ {1, . . . ,m}, t 7→ c(hk;dt) = Lk

T dt is continuously differentiable on
[0, L]. Again h1;dt , . . . , hm;dt satisfy condition (ii) of Corollary 4.2, so using Corollary
4.2, gt := g̃dt satisfies condition (i). Using the same notations as in Corollary 4.2, each
t 7→ µk(t) is continuous on [0, T ], as µk(t) := d

dtc(hk;dt) = Lk
T ḋt > 0. Hence, t 7→ λk(t) is

continuous and positive on [0, L] as well. Moreover, c(gt) = c(g̃dt) = (c ◦ d)(t) = t for all
t ∈ [0, T ], so

∑m
k=1 λk ≡ 1.

The previous corollary gives a construction how to find tuples of multiple slits that
lead to continuous normalised Komatu–Loewner equations, i.e. the mapping function
gt fulfils a differential equation everywhere (and not only almost everywhere) with nor-
malised λk. The idea was to start with m ∈ N single slit Loewner equations that are
everywhere differentiable. Using Corollary 4.2, we get differentiability in the multiple
slit setting as well. Finally, a normalisation afterwards gives us normalised weights λk.

Next, we are going to construct tuples of multiple slits leading to continuous Komatu–
Loewner equations that are already normalised. Again, this is based on single slit
Loewner equations. Unfortunately, we can do this in simply connected domains only.
The reason for this is that we need the subadditivity of c, see Lemma 2.57 and 2.56.

Proposition 4.4. Let Ω be a simply connected canonical domain and denote by (Γ1,Γ2)
a tuple of branched or disjoint unparametrised appropriate slits in Ω. Moreover, L :=
cΩ(Γ1 ∪ Γ2). Assume (γ1)t∈[0,L] is an admissible parametrisation of Γ1 such that t 7→
c(h1;t) is Lipschitz continuous on [0, L] with a Lipschitz constant K < 1. Herein, for
each t ∈ [0, L], h1;t denotes the normalised appropriate mapping function on Ω \ γ1(0, t].

Then we find a unique admissible parametrisation (γ2)t∈[0,L] of Γ2 such that c(gt) =
t for all t ∈ [0, L] where gt denotes the normalised appropriate mapping function on
Ω \ (γ1(0, t] ∪ γ2(0, t]) for all t ∈ [0, L].

Moreover, assume Γ1 ∩ Γ2 = ∅, i.e. (Γ1,Γ2) is a tuple of disjoint unparametrised
appropriate slits in Ω. For each t ∈ [0, L], h2;t denotes the normalised appropriate
mapping function on Ω \ γ2(0, t]. Then t 7→ h1;t is differentiable at t0 if and only if
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t 7→ h2;t or t 7→ gt is differentiable9 at t0.

Proof. 1) First of all, let (δ2)t∈[0,L] be an arbitrary admissible parametrisation of Γ2.

Moreover, we denote by f̃t,τ the normalised mapping function on Ω \ (γ1(0, t] ∪ δ2(0, τ ])
with t, τ ∈ [0, L]. Note that c(h1;t) < t for all t ∈ [0, L]. Consequently, for each t ∈ [0, L],
we find a unique τt ∈ [0, L] such that c(f̃t,τt) = t. Hence, we get a unique continuous
function τ : [0, L]→ [0, L] such that c(f̃t,τt) = t for all t ∈ [0, L], and τ0 = 0 and τL = L.
Note that the continuity is an immediate consequence Lemma 2.42.

Next, we set γ2(t) := δ2(τt) for all t ∈ [0, L]. Consequently, it remains to prove that
γ2 : [0, L] → Γ2 is bijective. In order to prove the bijective correspondence let 0 ≤
t1 < t2 ≤ L and assume γ2(t1) = γ2(t2). For each t, τ ∈ [0, T ], we denote by ft,τ the
normalised appropriate mapping function on Ω \ (γ1(0, t] ∪ γ2(0, τ ]). Lemma 3.13 gives
us

t2 − t1 = c(ft2,t2)− c(ft1,t1) = c(ft2,t1)− c(ft1,t1)

≤ c(ft2,0)− c(ft1,0) = c(h1;t2)− c(h1;t1) < t2 − t1.

This is a contradiction, so γ2 needs to be bijective.

2) Additionally, assume (Γ1,Γ2) is a tuple of disjoint unparametrised appropriate slits
in Ω.

Let be Z = {s0, . . . , sn} be a partition of the interval [0, t] ⊆ [0, L] and we set:

S1(f, t, Z) :=
n−1∑
l=0

c(fsl+1,sl)− c(fsl,sl), S2(f, t, Z) :=
n−1∑
l=0

c(fsl,sl+1
)− c(fsl,sl).

By Lemma 3.6, each limit ck(t) := lim|Z|→0 Sk(f, t, Z), k ∈ {1, 2}, exists and forms an
increasing and Lipschitz continuous function t 7→ ck(t). Moreover, Lemma 3.6 gives us
c1(t) + c2(t) = t for all t ∈ [0, L] as c(gt) = t for all t ∈ [0, L]. Using Proposition 2.55 and
Lemma 3.6, for each k ∈ {1, 2}, t 7→ ck(t) is differentiable at t0 if and only if t 7→ hk;t

is differentiable at t0. For each t ∈ [0, T ], we have c2(t) = t − c1(t), so t 7→ c2(t) is
differentiable at t0 if and only if t 7→ c1(t) is differentiable at t0. Summarising, t 7→ h2;t

is differentiable at t0 if and only if t 7→ h1;t is differentiable at t0. Using Theorem 4.1,
t 7→ gt is differentiable if and only if t 7→ h1;t and t 7→ h2;t are differentiable at t0

Example 4.1. Let Ω be a simply connected canonical domain and denote by (Γ1,Γ2) a
tuple of disjoint unparametrised slits in Ω with cΩ(Γ1 ∪ Γ2) = 1. Using Lemma 2.41,
L1 := cΩ(Γ1) < 1 as well as L2 := cΩ(Γ2) < 1. Consequently, we find an ε > 0 such that
L1 + ε < 1 as well. Then we define

u1 : [0, 1]→ [0, L1], t 7→ u1(t) :=

{
(L1 + ε)t if t ∈ [0, 1

2 ],

(L1 − ε)t+ ε if t ∈ (1
2 , 1].

9For each t ∈ [0, T ], let ft be analytic on Ωt, and assume (Ωt)t∈[0,T ] is continuous. We say t 7→ ft is
differential at t0 if for every z ∈ Ωt0 , t 7→ ft(z) is differentiable at t0.
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Obviously, we find a unique admissible parametrisation (γ1)t∈[0,1] of Γ1 such that c(h1;t) =
u1(t) for all t ∈ [0, 1]. Again, for each t ∈ [0, 1], h1;t denotes the normalised appropri-
ate mapping function on D \ γ1(0, t]. Obviously, c(h1;t) = u1(t) is Lipschitz continuous
with Lipschitz constant L1 + ε < 1. Using Proposition 4.4, we find a unique admissible
parametrisation (γ2)t∈[0,1] of Γ2 such that c(gt) = t for all t ∈ [0, 1]. Herein, gt is the
normalised appropriate mapping function on Ω \ (γ1(0, t] ∪ γ2(0, t]), t ∈ [0, 1].

Then the function t 7→ h1;t is not differentiable at t = 1
2 , see Theorem 2.30, 2.31 and

2.36. Using Proposition 4.4, t 7→ h2;t and t 7→ gt are not differentiable at t0 as well.
Nevertheless, c(gt) = t is differentiable at t0, so this example shows that differentiability
of t 7→ c(gt) at a point t0 is not sufficient to get differentiability of t 7→ gt at t0.

Next, we will have a deeper look at ’nice’ slits, i.e. slits that are two times continu-
ously differentiable and regular. In this context, regular means that the first derivative
does not vanish. In the radial simply connected single slit case the following result, due
to C. Earle and A. Epstein, see [EE01], is already known.

Lemma 4.5 (Theorem 3, see [EE01]). Let (γ)t∈[0,T ] be a radial slit in D with γ ∈
C2([0, T ]) and γ regular, i.e. t 7→ γ(t) is two times continuously differentiable on [0, T ]
with γ̇(t) 6= 0 for all t ∈ [0, T ]. For each t ∈ [0, T ], we denote by ht the normalised radial
mapping function on D \ γ(0, t].

Then t 7→ ht is (continuously) differentiable on [0, T ] and satisfies

ḣt(z) = ht(z)µ(t)Φ0,Υt,D
(
ht(z)

)
= ht(z)µ(t)

Υt + ht(z)

Υt − ht(z)
, z ∈ D \ γ(0, T ], t ∈ [0, T ]

where, for all t ∈ [0, T ], Υt := ht(γ(t)) ∈ T and µ(t) > 0. On top of this Υ ∈ C1([0, T ])
and µ ∈ C([0, T ]).

Next, we are going to generalise this result to multiply connected domains and several
slits.

Theorem 4.6. Let Ω be a circular slit disk and (γ1, . . . , γm)t∈[0,T ] be radial slits in Ω.
For each k ∈ {1, . . . ,m}, assume γk ∈ C2([0, T ]) and γk is regular. Moreover, we denote
by gt the normalised radial mapping function on Ωt := Ω \

⋃m
k=1 γk(0, t] for all t ∈ [0, T ].

Then for each z ∈ ΩT , t 7→ gt(z) is continuously differentiable on [0, T ] and satisfies

ġt(z) = gt(z)
m∑
k=1

λk(t)Φ0,Uk(t),Dt

(
gt(z)

)
for all z ∈ ΩT and all t ∈ [0, T ],

where, for each k ∈ {1, . . . ,m} and t ∈ [0, T ], Uk(t) := gt(γk(t)) and λk(t) > 0. On top
of this, for each k ∈ {1, . . . ,m}, Uk ∈ C1([0, T ]) and λk ∈ C([0, T ]).

Proof. For each t ∈ [0, T ], we denote by hk;t the normalised radial mapping function on
D \ γk(0, t] onto D. Using Lemma 4.5, for each k ∈ {1, . . . ,m} and z ∈ ΩT , t 7→ hk;t(z)
is continuous differentiable on [0, T ] and satisfies

ḣk;t(z) = hk;t(z)µk(t)Φ0,Υk(t),D
(
hk;t(z)

)
for all z ∈ ΩT and t ∈ [0, T ], (4.1)
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with Υk(t) := hk;t(γk(t)) and µk(t) > 0. Moreover, Υk ∈ C1([0, T ]) and µk ∈ C([0, T ])
for each k ∈ {1, . . . ,m}. Then Corollary 4.2 shows that for each z ∈ ΩT , t 7→ gt(z) is
differentiable on [0, T ] as well and satisfies

ġt(z) = gt(z)
m∑
k=1

λk(t)Φ0,Uk(t),Dt

(
gt(z)

)
for all z ∈ ΩT and t ∈ [0, T ], (4.2)

where λk(t) = |αk(t)|2µk(t) and |αk| is positive and continuous on [0, T ]. Consequently,
each t 7→ λk(t), k ∈ {1, . . . ,m}, is continuous and positive on [0, T ].

Finally, for each k ∈ {1, . . . ,m}, we are going to prove Uk ∈ C1([0, T ]). Therefore,
we fix k ∈ {1, . . . ,m}. Note that Uk(t) = gt(h

−1
k;t (Υk(t))) holds for all t ∈ [0, L], and

Υk ∈ C1([0, T ]). Let t0 ∈ [0, T ]. Using Lemma 2.42 and 2.44, there is an ε > 0 and
a δ > 0 such that z 7→ (gt ◦ h−1

k;t )(z) has an analytic continuation to Bε(Υk(t0)) for all

t ∈ (t0− δ, t0 + δ)∩ [0, T ]. For each z ∈ Bε(Υk(t0))∩D, t 7→ (gt ◦h−1
k;t )(z) is continuously

differentiable on (t0−δ, t0 +δ)∩ [0, T ]. An easy calculation together with Equation (4.1)
and (4.2) shows that t 7→ (gt ◦h−1

k;t )(z) is continuous differentiable on Bε(Υk(t0)) as well.
Thus t 7→ Uk(t) needs to be continuously differentiable on (t0− δ, t0 + δ)∩ [0, T ] as well.
Summarising, Uk ∈ C1([0, T ])

4.2 Slits having branch points

Next, let us consider the branch point case. Is there a theorem like Theorem 4.1 as well?
In order to simplify the notations we take into consideration two branched slits only.

Let (Γ1,Γ2) be a tuple of branched unparametrised appropriate slits in Ω. Here, Ω
is a canonical domain and ΩS denotes the simplification of Ω. Assume (γ1, γ2)t∈[0,T ] is
an admissible parametrisation, and for each t ∈ [0, T ], denote by h1;t, h2;t and gt the
normalised appropriate mapping functions on ΩS \γ1(0, t], ΩS \γ2(0, t] and Ω\ (γ1(0, t]∪
γ2(0, t]), respectively. Let t0 > 0. Then it is easy to see that t 7→ gt is differentiable at
t0 if and only if t 7→ h1;t and t 7→ h2;t are differentiable at t0. Note that we can trace
this problem back to the disjoint case. In particular, we apply gε with ε < t0 to get two
disjoint slits δk(t) := gε(γk(t + ε)), k ∈ {1, 2} and t ∈ [0, T − ε]. Then we use Theorem
4.1 to get the desired statement. We used this method already in Section 3.2. Hence,
we have the following corollary.

Corollary 4.7. Let Ω be a canonical domain and denote by (γ1, γ2)t∈[0,T ] a tuple of
branched appropriate slits in Ω. For each t ∈ [0, T ], we denote by gt the normalised
appropriate mapping function on Ωt := Ω \ (γ1(0, t] ∪ γ2(0, t]). Moreover, for each k ∈
{1, 2} and t ∈ [0, T ], we set hk;t as the normalised appropriate mapping function on
ΩS \ γk(0, t]. Let t0 ∈ (0, T ]. Then the following two statements are equivalent.

(i) t 7→ gt(z) is differentiable at t = t0 for each z ∈ Ωt0.

(ii) For each k ∈ {1, 2}, t 7→ hk;t(z) is differentiable at t = t0 for all z ∈ ΩS \ γk(0, t0].

It remains to have a look at the case t0 = 0. In this case Theorem 4.1 is not true in
general, as we have the following result.
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Theorem 4.8. Let Ω = H. Then we find a tuple (γ1, γ2)t∈[0,T ] of branched chordal slits
in H such that for each z ∈ H \ γk(0, T ] and k ∈ {1, 2}, t 7→ hk;t(z) is continuously
differentiable on [0, T ], while, for each z ∈ H, t 7→ gt(z) is not differentiable at t = 0.
Herein, for each t ∈ [0, T ], h1;t, h2;t and gt denote the normalised chordal mapping
functions on H \ γ1(0, t], H \ γ2(0, t] and H \ (γ1(0, t] ∪ γ2(0, t]), respectively.

Proof. Let Ω = H, 0 ≤ ε < 1
2 and let A be the closed set that connects the points

ε

2
+

1

2
i,

ε

2
+

3

4
i,

1

4
+

3

4
i,

1

4
+ i, ε+ i

by straight line segments, so A is the union of four closed straight line segments. Then we
set Γ1 := {0}∪

⋃∞
n=0

1
2nA. Note that 1

2A∩A = { i2 + ε
2}, so Γ1 is a chordal unparametrised

slit in Ω, see Figure 4.3. Then we find an admissible parametrisation of γ1 : [0, T ]→ Γ1

such that hcap(h1;t) = t for all t ∈ [0, T ]. In this context, for each t ∈ [0, T ], h1;t denotes
the normalised chordal mapping function on H \ γ1(0, t]. Obviously, T = hcapH(Γ1) in
this case.

b
b
b

A

Γ1

Figure 4.3: A and Γ1 for ε = 0

Next, we reflect Γ1 along the imaginary axis, so Γ2 := {z ∈ C | −z̄ ∈ Γ1}. We
parametrise γ2 : [0, T ] → Γ2 in the same way as Γ1, i.e. hcap(h2;t) = t for all t ∈ [0, T ].
Analogously, h2;t denotes the normalised chordal mapping function on H \ γ2(0, t]. For
reasons of symmetry, γ2(t), with t ∈ [0, T ], is the reflection of γ1(t) along the imaginary
axis. Thus, for each k ∈ {1, 2} and z ∈ Ω \ Γk, t 7→ hk;t(z) is continuously differentiable
on [0, T ], see Theorem 2.36 applied to the single slit case.

On top of this, Γ1 and Γ2 are self-similar, i.e. 1
2Γk ⊆ Γk with k ∈ {1, 2}. Let

k ∈ {1, 2}. For each t ∈ [0, T ], there is a t∗ ∈ [0, T ] such that γk(0, t
∗] = 1

2γk(0, t]. Note
that

hcapH(dH) = d2 hcapH(H) for all d > 0 and all chordal hulls H in H. (4.3)

Consequently, t∗ = hcap(hk;t∗) = 1
4 hcap(hk;t) = 1

4 t. Thus we have γk(
t
4) = 1

2γk(t) for
all t ∈ [0, T ]. Inductively, we get γk(

t
4n ) = 1

2nγk(t) for all t ∈ [0, T ] and all n ∈ N.
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Next, for each t ∈ [0, T ], let us denote by gt the normalised chordal mapping function
on Ω \ H(t) where H(t) is the smallest chordal H-hull containing γ1(0, t] ∪ γ2(0, t]. Note
that H(t) = γ1(0, t]∪γ2(0, t] whenever ε > 0. On the other hand, the complement of the
union has bounded connected components if ε = 0. In either case, for each t ∈ [0, T ],
H(t) is self-similar in the sense that 1

2H(t) ⊆ H(t). To be more precise, H( t
4n ) = 1

2nH(t)
for all t ∈ [0, T ] and all n ∈ N, as γk(

t
4n ) = 1

2nγk(t), k ∈ {1, 2}. Next, let us define
c(t) := hcap(gt) for all t ∈ [0, T ]. Again Equation (4.3) gives us c( t

4n ) = 1
4n c(t) for all

t ∈ [0, T ] and all n ∈ N. Thus we may write

c( t
4n )
t

4n
= c(t)

t for all n ∈ N and t ∈ (0, T ]. (4.4)

Suppose t 7→ c(t) is differentiable at t = 0. Then Equation (4.4) gives us c(t) = ċ(0) · t
for all t ∈ [0, T ], i.e. c is linear. As T = hcap(h1;T ) < hcap(gT ) = c(T ) = ċ(0) · T we
have ċ(0) > 1.

Let t2 and t1 be defined by γ1(t1) = 1
2 i + ε

2 and γ1(t2) = 3
4 i + ε

2 . From [LMR10],
Lemma 4.10, it follows that t2, t1, c(t2), c(t1) depend continuously on ε. For ε = 0 we
have Ht2 \Ht1 = γ1(t1, t2] and we set A := h1;t1(Ht1 \ γ1(0, t1]) and B := h1;t1(γ1(0, t2] \
γ1(0, t1]) = h1;t1(γ1(t1, t2]). Note that A, B and A ∪B are chordal hulls in H. Using
Lemma 2.56, we get hcapH(A ∪ B) ≤ hcapH(A) + hcapH(B). Moreover, hcapH(A) =
hcap(gt1) − hcap(h1;t1), hcapH(B) = hcap(h1;t2) − hcap(h1;t1) and hcapH(A ∪ B) =
hcap(gt2)− hcap(h1;t1). Summarising, we find

c(t2)− c(t1) = hcap(gt2)− hcap(gt1) ≤ hcap(h1;t2)− hcap(h1;t1) = t2 − t1.

Now choose ε > 0 small enough sucht that we still have

c(t2)− c(t1)

t2 − t1
< ċ(0) ∈ (1,∞).

This is a contradiction as c(t) = ċ(0)t for all t ∈ [0, T ]. Thus t 7→ c(t) := c(gt) can not
be differentiable at t0. Finally, Lemma 3.10 and Remark 3.6 show that for each z ∈ H,
t 7→ gt(z) is not differentiable at t = 0.

Note that Theorem 4.8 is restricted to the chordal case. One reason for this is that
Equation (4.3), which is known as scaling property of hcap, is available only in the chordal
case. Another reason is Lemma 2.56 that is only available in the simply connected case.
Summarising, the previous counterexample is restricted to H. Nevertheless, we will use
this counterexample to find counterexamples in all other (even multiply connected) cases
as well. In order to to so let us have a look at the next lemma.

Lemma 4.9. Let (δ1, δ2)t∈[0,T ] be a tuple of branched chordal slit in H with δ1(0) =
0 = δ2(0). Assume Ω is a canonical domain. For each k ∈ {1, 2}, we set γk(t) :=
exp

(√
2iδk(t)

)
in the radial and bilateral case and γk(t) := δk(t) in the chordal case.

Then we find a t0 ∈ (0, T ] such that (γ1, γ2)t∈[0,t0] is a tuple of branched appropriate
slits in Ω. Moreover, let us consider one of the following two cases.

(i) Ht := γk(0, t] and H̃t := δk(0, t] for all t ≤ t0 and some k ∈ {1, 2}.
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(ii) Ht := γ1(0, t] ∪ γ2(0, t] and H̃t := δ1(0, t] ∪ δ2(0, t] for all t ≤ t0.

In either case, t 7→ c(t) := cΩ(Ht) is differentiable at t = 0 if and only if t 7→ d(t) :=
hcapH(H̃t) is differentiable at t = 0. When this happens ċ(0) = ḋ(0).

Proof. Obviously, we find a t0 ∈ (0, T ] such that γk(0, t0]∩∂Ω = ∅ for all k ∈ {1, 2}. For
each t ∈ [0, t0], we denote by gt the normalised appropriate mapping function on Ω \Ht.
Moreover, g̃t is the normalised chordal mapping function on H \ H̃t with t ∈ [0, t0]. On
top of this we set st := gt(Ht) and s̃t := g̃t(H̃t) with t ∈ [0, t0]. Using Remark 3.6,
st → γ1(0) = γ2(0) and s̃t → δ1(0) = δ2(0) = 0 as t↘ 0.

Let ε > 0 be small and let us consider the function

Tt(ζ) :=

{
gt

(
exp

(√
2i · g̃−1

t (ζ)
))

in the radial or bilateral case,

gt
(
g̃−1
t (ζ)

)
in the chordal case,

which is, by reflection and Lemma 2.42, univalent on Dε for all t ∈ [0, t∗] with a small
t∗ < t0 and small ε > 0. In the radial and bilateral case we are able to write g̃−1

t (ζ) =
−i 1√

2
log
(
g−1
t (Tt(ζ))

)
with a suitable branch of the logarithm and small t. Using Lemma

2.39, we find with a substitution and the mean value theorem

d(t) =
1

π

∫
s̃t

=
(
g̃−1
t (ζ)

)
|dζ| = 1

π

∫
s̃t

=
(
− i√

2
log
(
g−1
t (Tt(ζ))

))
|dζ|

= − 1√
2π

∫
s̃t

ln
∣∣g−1
t (Tt(ζ))

∣∣|dζ| = − 1√
2π

∫
st

ln
∣∣g−1
t (ξ)

∣∣ 1

|T ′t(T
−1
t (ξ))|

|dξ|

= −
√

2

|T ′t(ζt)|
1

2π

∫
st

ln
∣∣g−1
t (ξ)

∣∣|dξ| = √
2

|T ′t(ζt)|
c(t)

for all small t < t∗ where ζt ∈ s̃t. Note that the last equality follow immediately from
Lemma 2.27 and 2.34. Analogously, we have in the chordal case together with Lemma
2.39

d(t) =
1

π

∫
s̃t

=
(
g̃−1
t (ζ)

)
|dζ| = 1

π

∫
s̃t

=
(
g−1
t

(
Tt(ζ)

))
|dζ| = 1

|T ′t(ζt)|
c(t)

and ζt ∈ s̃t. Note that gt
l.u.−−−→ id on Ω and g̃t

l.u.−−−→ id on H as t↘ 0, so it is easy to see
that |T ′t(ζt)| →

√
2 as t ↘ 0 in the radial and bilateral case, and |T ′t(ζt)| → 1 as t ↘ 0

in the chordal case.

Combining Lemma 4.9, Theorem 4.8 and Lemma 3.10, we find the following corollary.

Corollary 4.10. Let Ω be a canonical domain and denote by ΩS the simplification of
Ω. Then we find a tuple (γ1, γ2)t∈[0,T ] of branched appropriate slits in Ω such that each

t 7→ hk;t(z), k ∈ {1, 2}, is differentiable at 0 for all z ∈ ΩS, while, for each z ∈ Ω \ {0},
t 7→ gt is not differentiable at t = 0. Herein, for each t ∈ [0, T ], h1;t, h2;t and gt
denote the normalised appropriate mapping functions on ΩS \ γ1(0, t], ΩS \ γ2(0, t] and
Ω \ (γ1(0, t] ∪ γ2(0, t]), respectively.
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On the other hand we also give a condition that ensures differentiability of t 7→ gt at
t = 0 whenever t 7→ h1;t and t 7→ h2;t are differentiable at t = 0. In order to do so, we
need the following definition. Therefore, let φ ∈ (0, π). Assume (γ)t∈[0,T ] is a chordal
slit in the upper parallel slit half-plane Ω. Then we say γ approaches R at x ∈ R in
φ-direction if for every ε > 0, there is a t0 > 0 such that

γ(0, t0] ⊆ {z ∈ H | φ− ε < arg(z − x) < φ+ ε}.

Analogously, let Ω be a circular slit disk or circular slit annulus and let (γ)t∈[0,T ] be an
appropriate silt in Ω. Then we say γ approaches T at ξ ∈ T in φ-direction if for every
ε > 0, there is a t0 > 0 such that

γ(0, t0] ⊆ {z ∈ D | φ− ε < arg(γ(0)− z) + arg(γ(0))− π
2 < φ+ ε}.

Theorem 4.11. Let (γ1, γ2)t∈[0,T ] be branched chordal slits in H. Assume γ1 and γ2

approach R at γ1(0) = γ2(0) in αk-direction with αk ∈ (0, π), k ∈ {1, 2}. For each
k ∈ {1, 2}, we denote by hk;t the normalised chordal mapping function on H \ γk(0, t]
with t ∈ [0, T ], and assume that each t 7→ hk;t(z), k ∈ {1, 2}, is differentiable at t = 0
for all z ∈ H. Then for each z ∈ H, t 7→ gt(z) is differentiable at t = 0 where gt denotes
the normalised chordal mapping function on Ω \ (γ1(0, t] ∪ γ2(0, t]) with t ∈ [0, T ].

Proof. See Theorem 3 in [BS15b]

Obviously, using Lemma 4.9 and 3.10 we find the following corollary.

Corollary 4.12. Let Ω be a canonical domain and let (γ1, γ2)t∈[0,T ] be branched appro-
priate slits in Ω. Assume γ1 and γ2 approach the outer or unbounded boundary of Ω
at γ1(0) = γ2(0) in αk-direction with αk ∈ (0, π), k ∈ {1, 2}. For each k ∈ {1, 2}, we
denote by hk;t the normalised appropriate mapping function on Ω\γk(0, t] with t ∈ [0, T ],
and assume that each t 7→ hk;t(z), k ∈ {1, 2}, is differentiable at t = 0 for all z ∈ Ω.
Then for each z ∈ Ω, t 7→ gt(z) is differentiable at t = 0 where gt denotes the normalised
appropriate mapping function on Ω \ (γ1(0, t] ∪ γ2(0, t]) with t ∈ [0, T ].

Finally, it is worth to mention that the inverse of Theorem 4.11 or Corollary 4.12 is
not true.

Example 4.2. Let (Γ1,Γ2) be a tuple of branched chordal unparametrised slits in H,
and assume there is an admissible parametrisation (δ1, δ2)t∈[0,T ] such that for each k ∈
{1, 2}, δk approaches R at δ1(0) = δ2(0) in αk-direction with αk ∈ (0, π). By definition
γk approaches R at γ1(0) = γ2(0) in αk-direction as well if (γ1, γ2)t∈[0,L] is another
admissible parametrisation of (Γ1,Γ2).

Without loss of generality we may assume L := hcapH(Γ1 ∪ Γ2) = 1. Moreover, let
Lk := hcapH(Γk) with k ∈ {1, 2}. Then Lk < 1, so we find an ε > 0 such that L1 +ε < 1.
Next, we define:

ũ : [0, 1]→ [0, L1], t 7→ ũ(t) :=

{
(L1 + ε)t if t ∈ [0, 1

2 ],

(L1 − ε)t+ ε if t ∈ (1
2 , 1].
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We will use ũ to construct another increasing homeomorphism u : [0, 1]→ [0, L1]:

u(t) :=

{
1

2n ũ(2nt− 1) + L1
2n if t ∈ ( 1

2n ,
2

2n ] with n ∈ N,
0 if t = 0,

see Figure 4.4. We have |u(t2) − u(t1)| ≤ (L1 + ε)(t2 − t1) for all 0 ≤ t1 ≤ t2 ≤ 1,
so u is strictly increasing and Lipschitz continuous on [0, 1] with Lipschitz constant
L1 + ε < 1. Then we find a unique admissible parametrisation (γ1)t∈[0,1] of Γ1 such that
hcap(h1;t) = u(t) for all t ∈ [0, 1]. In this context, for each t ∈ [0, T ], h1;t denotes the
normalised chordal mapping function on Ω \ γ1(0, t]. Using Proposition 4.4, we find a
unique admissible parametrisation (γ2)t∈[0,1] of Γ2 such that hcap(gt) = t for all t ∈ [0, 1].
Analogously, gt denotes the normalised chordal mapping function on Ω\(γ1(0, t]∪γ2(0, t])
with t ∈ [0, 1]. Note that c(gt) = t is differentiable at t = 0, so using Lemma 3.10, for
each z ∈ H, t 7→ gt(z) is differentiable at t = 0. However, using Remark 3.6, t 7→ h1;t(z)
is not differentiable at t0 for any z ∈ H, as t 7→ hcap(h1;t) = u(t) is not differentiable at
t = 0.
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Figure 4.4: The function u from Example 4.2
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Chapter 5

Generalization to hulls with local
growth

Theorem 5.1. Let Ω be a circular slit disk and denote by (Ht)t∈[0,T ] a family of increas-
ing radial Ω-hulls such that con(Ω \ Ht) = con(Ω) for all t ∈ [0, T ]. For each t ∈ [0, T ],
gt denotes the normalised radial mapping function from Ωt := Ω \ Ht onto the circular
slit disk Dt. Moreover, assume lmr(gt) = t for all t ∈ [0, T ]. Then the following two
statements are equivalent:

(i) For each t ∈ [0, T ], t 7→ gt is (continuously) differentiable and fulfils the differential
equation

ġt(z) = gt(z) · Φ0,Ut,Dt

(
gt(z)

)
for all t ∈ [0, T ] and all z ∈ ΩT ,

with a continuous function t 7→ Ut ∈ T.

(ii) For every ε > 0, there exists a δ > 0 such that whenever t ∈ [0, T − δ], some
cross-cut E of Ωt with diam(E) < ε separates 0 from Ht+δ \ Ht.

In this context, a cross-cut E of the domain Ω is an open Jordan arc in Ω10 such
that cl(E) = E ∪ {a, b} with a, b ∈ ∂Ω. Let Ω be a circular slit disk and let (Ht)t∈[0,T ]

be a family of increasing radial Ω-hulls. Then we say (Ht)t∈[0,T ] satisfies the local growth
property if condition (ii) from Theorem 5.1 is fulfilled. If ε > 0 in condition (ii) is
sufficiently small11, the two endpoints a, b of the cross-cut E need to be part of the outer
boundary component of Ωt, see Theorem V.11.7 and Exercise V.11.4 in [New52].

Unfortunately, Theorem 5.1, in particular the direction (i)⇒(ii), does only hold for
hulls satisfying con(Ω\Ht) = con(Ω) for all t ∈ [0, T ]. We will give an example of a family
(Ht)t∈[0,T ] of increasing hulls such that t 7→ gt is differentiable, while (Ht)t∈[0,T ] does not
satisfy the local growth property. See Example 5.1 for more details. Nevertheless, the
direction (ii)⇒(i) is true in general, see the next theorem.

10An open Jordan arc in Ω is the trace of a simple and continuous γ : (a, b)→ Ω, a < b.
11Let C1, . . . , Cn denote the connected components of Ω where Cn = T. For each j ∈ {1, . . . , n −

1}, we denote by zj , wj the two tips of Cj . Moreover, we set m1 := minn−1
j=1 |zj − wj | and m2 :=

minn−1
j=1 dist(Cj , 0). Then ε > 0 is sufficiently small if ε < min(m1,m2).
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⊕⊕ ⊕

Ht0 Ht
Ht

Ωt Ωt0 Ωt

C1

C2

Figure 5.1: The concentric circular arc C1 gets swallowed by the hull Ht0

Theorem 5.2. Let Ω be a circular slit disk and denote by (Ht)t∈[0,T ] a family of increas-
ing radial Ω-hulls satisfying the local growth property. For each t ∈ [0, T ], gt denotes the
normalised radial mapping function from Ωt := Ω \Ht onto the circular slit disk Dt, and
assume lmr(gt) = t.

Then, for each z ∈ ΩT , t 7→ gt(z) is (continuously) differentiable on [0, T ] and
satisfies the differential equation

ġt(z) = gt(z) · Φ0,Ut,Dt

(
gt(z)

)
for all t ∈ [0, T ] and all z ∈ ΩT ,

with a continuous driving function t 7→ Ut ∈ T, t ∈ [0, T ].

Example 5.1. Let Ω := D \ C with C := {(1 − r)eiφ | φ ∈ [−α, α]}, and α ∈ (0, π) and
r ∈ (0, 1). Thus Ω is a (doubly connected) circular slit disk. Moreover, we define an
increasing family of radial D-hulls (Ht)t∈[0,r] as follows. We set Ht := {1− τ | τ ∈ (0, t]}
if t ∈ [0, r) and Hr := (r, 1). Note that Ωt := Ω \ Ht is doubly connected whenever
t ∈ [0, r), while Ωr := Ω \ (r, 1) is simply connected. As usual, for each t ∈ [0, r], we
denote by gt the normalised radial mapping function from Ωt onto the circular slit disk
Dt. Obviously, (Ht)t∈[0,r] is continuous, so using Proposition 5.6, t 7→ gt and t 7→ lmr(gt)
are continuous on [0, r] as well. On top of this t 7→ lmr(gt) is strictly increasing on [0, r],
see Lemma 2.24. Without loss of generality, we may assume lmr(gt) = ct for all t ∈ [0, r]
with c := cΩ(Hr)/r > 0. Otherwise we reparametrise Ht. Using Theorem 2.30 (applied
to the single slit case) or Theorem 2.23, we find

ġt(z) = cgt(z)Φ0,Ut,Dt

(
gt(z)

)
for all z ∈ Ωr and all t ∈ [0, r). (5.1)

For symmetry reasons, we get Ut = gt(Ht) = 1 for each t ∈ [0, r). Moreover, using
Proposition 5.6 together with Proposition 2.11, we find Dt

k−→ D as t↗ r.
Let (tn)n∈N ⊆ [0, r) be a sequence with tn → r and we set hn := Φ0,1,Dtn for all n ∈ N.

Montel’s theorem gives us a subsequence (hnk)k∈N of (hn)n∈N such that hnk
l.u.−−−→ h on

D. The limit function h is either univalent or constant. Suppose h is constant. For each
w ∈ C \ {−1}, we write T (w) := w−1

w+1 , so each T ◦hnk maps Dtnk
univalent into D where

T is associated with T. Using Equation (5.1), we find Φ0,1,Dt(0) = 1 for all t ∈ [0, r).
This gives us h ≡ 1, and T ◦ h ≡ 0 as well. This is a contradiction to Wolff’s lemma12.
To see this let ζ0 ∈ T be fix and define Ek(ε) := hnk(∂Bε(ζ0)∩Dtnk

) for all k ∈ N. Then

Wolff’s lemma gives us infr∈(ε,
√
ε) diam

(
Ek(r)

)
< 2π/

√
log 1/ε for each ε ∈ (0, 1) and

k ∈ N. We choose ε ∈ (0, 1) small enough in order to get 2π
√

log 1/ε < 1
2 . On the other

12See [Pom92], Proposition 2.2.
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hand hnk(K) tends uniformly to 0 for any compact set in K ⊆ D. In particular there is
a k ∈ N such that dist

(
hnk(T1−ε), 0

)
< 1/2, contradicting infr∈(ε,

√
ε) diam(Ek(r)) <

1
2 .

Summarising, h can not be constant, so h is univalent.
Next, we will show that h(D) = {z ∈ C | <(z) > 0}. Therefore, let Rn := hn(Dtn)

for all n ∈ N, so Rn is doubly connected. In particular it is easy to see that Rn = {z ∈
C | <(z) > 0} \ En where En = {xn + iy | |y| ≤ yn} and xn, yn > 0, i.e. En is a proper
closed line segments parallel to the imaginary axis. Thus it is enough to prove xn →∞.
Dtn = D\Cn is a circular slit disk where rn := dist(Cn, 0)→ 1 if n→∞. Note that this
follows immediately from Dt

k−→ D if t↗ r. Thus T (xn) = (T ◦ hn)(rn)→ 1 by Wolff’s
lemma used in the same way as before.

Summarising, h maps D conformal onto H with h(0) = 1, so h(w) = (1 +w)/(1−w)
for all w ∈ D. Note that we can do this for each locally uniformly convergent subsequence
of (hn)n∈N, so the whole sequence hn tends to h, i.e. hn

l.u.−−−→ h on D. Thus

cgt(z)Φ0,Ut,Dt

(
gt(z)

) l.u.−−−→ cgr(z)
1 + gr(z)

1− gr(z)
, on D as t↗ r.

Finally, we find together with the mean value theorem

ġr(z) = cgr(z)
1 + gr(z)

1− gr(z)
for all z ∈ Ω \ Hr.

Consequently, t 7→ gt is continuously differentiable on [0, r], while the corresponding
family of radial D-hulls (Ht)t∈[0,r] does not satisfy the local growth property.

5.1 Some preliminary lemmas

Lemma 5.3. Let Ω be a circular slit disk and let (Ht)t∈[0,T ] be an increasing family of
radial Ω-hulls satisfying the local growth property. Then the family (Ht)t∈[0,T ] is contin-
uous.

Proof. First of all, let us define Ωt := Ω \Ht with t ∈ [0, T ]. Using the monotonicity, see
Lemma 2.24, we need to study only the following two cases: tn ↗ t0 and tn ↘ t0.

1) tn ↘ t0: Using Lemma 2.9, the increasing sequence (Ωtn)n∈N has a kernel K.
Obviously, Ωtn ⊆ K ⊆ Ωt0 for all n ∈ N.

Let ε > 0. Then the local growth property gives us an N ∈ N such that whenever
n ≥ N , some cross-cut E of Ωt0 with diam(E) < ε separates Ωt0 \ Ωtn = Htn \ Ht0 from
0. Note that Ωt0 \K ⊆ Ωt0 \ Ωtn for all n ∈ N, so E separates Ωt0 \K from 0 as well.
Letting ε→ 0 we find K = Ωt0 .

2) tn ↗ t0: Again using Lemma 2.9, the decreasing sequence (Ωtn)n∈N has a kernel
K. Obviously, Ωt0 ⊆ K ⊆ Ωtn for all n ∈ N.

Let ε > 0. Using the local growth property, we find an N ∈ N such that whenever
n ≥ N , some cross-cut E of Ωtn with diam(E) < ε separates Ωtn \Ωt0 from 0. Note that
K \ Ωt0 ⊆ Ωtn \ Ωt0 for all n ∈ N, so E separates K \ Ωt0 from 0 as well. Letting ε→ 0
we find K = Ωt0 .
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Summarising, Ωt0 is the kernel of (Ωtn)n∈N.

Let Ω be a circular slit disk and let (Ht)t∈[0,T ] be an increasing family of radial
hulls in Ω. Moreover, we denote by C1, . . . , Cn−1, with n = con(Ω) ∈ N, the interior
boundary components of Ω. Let C ∈ {C1, . . . , Cn−1} and let t0 ∈ (0, T ]. Then we say C
is swallowed by Ht0 if dist(Ht0 , C) = 0, see also Figure 5.1

Lemma 5.4. Let Ω be a circular slit disk, (Ht)t∈[0,T ] be a family of continuous and
increasing radial Ω-hulls, and we set Ωt := Ω \ Ht for all t ∈ [0, T ]. Then the step
function t 7→ con(Ωt), t ∈ [0, T ], is decreasing, continuous from the right and of finite
range.

Proof. First of all, the monotonicity is an immediate consequence of the property Ht ⊆
Hs for all 0 ≤ t ≤ s ≤ T . The fact that t 7→ con(Ωt) is a step function of finite range is
trivial.

Next, let be t0 ∈ [0, T ) and denote by C ∈ {C1, . . . , Cn} an arbitrary boundary com-
ponent satisfying dist(Ht0 , C) > 0, i.e. C is not swallowed by the hull Ht0 . Consequently,
we find a small δ > 0 such that Cδ := {z ∈ D | dist(z, C) ≤ δ} is not swallowed by Ht0
as well, i.e. dist(Ht0 , C

δ) > 0. Consequently, ∂Cδ ⊆ Ωt0 if δ is small enough. Assume
(tn)n∈N ⊆ [0, T ] with tn ↘ t0. Since Ωt0 is the kernel of the sequence Ωtn , we find
∂Cδ ⊆ Ωtn for all n ≥ N ∈ N. Thus we have 0 < dist(Htn , C

δ) < dist(Htn , C) for all
n ≥ N . Using the monotonicity of the family (Ht)t∈[0,T ], we get dist(Ht, C) > 0 for all
t ∈ [t0, tN ]. Finally, since we are able to do this for each C that is not swallowed by Ht0 ,
we find con(Ωt) = con(Ωt0) for all t ∈ [t0, t

∗] with t∗ > t0, so t 7→ con(Ωt) is continuous
from the right.

Lemma 5.5. Let Ω be a circular slit disk and (Ht)t∈[0,T ] is an increasing family of
radial Ω-hulls. For each t ∈ [0, T ], gt denotes the normalised radial mapping function
from Ωt := Ω \ Ht onto the circular slit disk Dt. Let (tn)n∈N ⊆ [0, T ] be a sequence
converging to t0 ∈ [0, T ] and assume Ωtn

k−→ Ωt0 and Dtn
k−→ D. Then D is a circular

slit disk.

Proof. First of all, we set m := con(Ωt0) and s := limn→∞ con(Ωtn). Using Lemma 5.4,
we get s ≥ m. We will separate the following two cases:

1) s = m: In this case con(Ωtn) = con(Ωt0) for all n large enough. By assumption
Ωtn

k−→ Ωt0 , so gtn
l.u.−−−→ gt0 on Ωt0 , see Lemma 2.25. Using Proposition 2.11, we find

gtn(Ωtn) = Dtn
k−→ Dt0 = gt0(Ωt0), so Dt0 = D is a circular slit disk.

2) s > m: In this context we use the same abbreviation as in the proof of Lemma
2.13. Since t 7→ con(Ωt) is a step function, we are able to find an N ∈ N such that
con(Ωtn) = s for all n ≥ N . Again, Lemma 5.4 gives us tn < t0 for all n ≥ N .

First of all, we are going to show that there is an r ∈ (0, 1] such that 1
rD is a circular

slit disk. We denote by E1, . . . Em the connected components of C \ D where Em is
the unbounded connected component. Analogously to the proof of Lemma 2.13, we
find for each Ek, k ∈ {1, . . . ,m}, a Jordan curve ∆k ⊆ D such that ∆k separates Ek
from Ej with j ∈ {1, . . . ,m} \ {k}. Moreover, we can choose ∆k in such a way that
dist(∆k,∆j) > δ whenever j 6= k. We set E∆

k := ∆k ∪ int(∆k), k ∈ {1, . . . ,m − 1} and
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E∆
m := ∆m ∪ ext(∆m). Then D∆ := D \

⋃m
k=1E

∆
k is an m-connected domain. Note that

D is the kernel of the sequence (Dtn)n∈N and cl(D∆) is a compact set in D, so we find
cl(D∆) ⊆ Dtn for all n ≥ N with some N ∈ N.

Next, we denote by F1, . . . , Fs the connected components of C \ Dtn where Fs = {z ∈
C | |z| ≥ 1} is the unbounded connected component. Consequently, F1, . . . , Fs−1 are
concentric circular arcs. Obviously, we find Fk ⊆ E∆

I(k) for all k ∈ {1, . . . , s} where

I : {1, . . . , s} → {1, . . . ,m} is onto. Let E be an arbitrary connected component of
C \D. Then for each a ∈ ∂E we find a sequence an ∈ ∂Dtn with an → a, see Lemma
2.10. Suppose a, b ∈ ∂E with |a| 6= |b|. Lemma 2.10 gives us sequences (an), (bn) ⊆ ∂Dtn

such that an → a and bn → b. Consequently, |an| 6= |bn| for all n ≥ M with M ∈ N.
Since F1, . . . , Fs are circular arcs, there are at most s different sequences (|an|)n≥M , so
the set {|a| | a ∈ ∂E} is finite. This proves that |a| is constant for each a ∈ ∂E. Since
D ⊆ D, E1 . . . Em−1 are circular arcs, while ∂Em = Tr with r ∈ (0, 1].

Finally, we are going to show r = 1, so D is a circular slit disk. Suppose r < 1. We set
hn := g−1

tn for all n ∈ N. Using Proposition 2.11, we find hn
l.u.−−−→ h on D. Moreover,

h : D → Ωt0 is conformal, as g′t(0) ∈ [1, g′T (0)] for all t ∈ [0, T ], see Lemma 2.24. Then
we are able to find a subsequence (Dtnk

)k∈N of (Dtn)n∈N such that for some r1, r2 ∈ (r, 1)
with r1 < r2, Ar1,r2 := {z ∈ D | r1 < |z| < r2} ⊆ Dtnk

for all k ∈ N. Using Montel’s
theorem, we find a subsequence (hmk)k∈N of (hnk)k∈N such that (hmk)k∈N converges
locally uniformly on Ar1,r2 to the function h∗ : Ar1,r2 → C, which is either univalent
or constant. In order to show that h∗ can not be constant, we set γ(τ) := r0e

iτ for all
τ ∈ [0, 2π] and some r0 ∈ (r1, r2), so Γ := γ[0, 2π] is a compact set in Ar1,r2 . Moreover,
γ has winding number 1 around 0. Suppose h∗ is constant. Then (hmk)k∈N converges
uniformly on Γ to 0. This is a contradiction to the fact that hn is conformal. On the
other hand, suppose h∗ is univalent. Then Γ is mapped to the Jordan curve h∗(Γ).
Note that hmk(Γ) separates T ∪ Hmk from 0 and Hmk(Γ) converges uniformly to h∗(Γ),
so h∗(Γ) ⊆ Ωt0 . On the other hand gtmk (h∗(Γ)) converges uniformly to a compact set
K ⊆ D. This is a contradiction, since Γ ⊆ Ar1,r2 and gtmk is univalent.

Proposition 5.6. Let Ω be a circular slit disk, (Ht)t∈[0,T ] be an increasing family of
radial Ω-hulls and let t0 ∈ [0, T ]. For each t ∈ [0, T ], gt denotes the normalised radial
mapping function from Ωt := Ω \ Ht onto the circular slit disk Dt. Then the following
three statements are equivalent.

(i) t 7→ Ωt is continuous at t0.

(ii) The real-valued function t 7→ lmr(gt) is continuous at t0.

(iii) t 7→ gt is continuous at t0.

Proof. First of all, note that (iii)⇒(ii) is trivial.
In order to prove (i)⇒(iii) let us assume Ωtn

k−→ Ωt0 for some sequence tn → t0. By
Montel’s theorem we find a subsequence (Ωtnk

)k∈N of (Ωtn)n∈N such that gtnk
l.u.−−−→ h

on Ωt0 . Herein, h : Ωt0 → D is a conformal map, as g′tn(0) ≥ 1 for all n ∈ N. Using
Proposition 2.11, Dtnk

k−→ D as k →∞. Thus Lemma 5.5 shows that D is a circular slit
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disk. Analogously to the proof of Lemma 2.25 we easily see h ≡ gt0 . Thus gtn
l.u.−−−→ gt0

on Ωt0 as well.

Finally, let us have a look at (ii)⇒(i). Let us assume t 7→ lmr(gt) is continuous at
t0. Denote by (tn)n∈N ⊆ [0, T ] a sequence converging to t0 ∈ [0, T ]. Without loss
of generality we may assume tn ↗ t0 or tn ↘ t0. In either case, (Ωtn)n∈N has a
kernel K, see Lemma 2.9. As a consequence of Montel’s theorem we find a subsequence
(Ωtnk

)k∈N of (Ωtn)n∈N such that gtnk convergences locally uniformly to g : K → D. Since
lmr(gtm) → lmr(gt0), we find lmr(gt0) = lmr(g). Moreover, K ⊆ Ωt0 or Ωt0 ⊆ K, so we
find K = Ωt0 together with Lemma 2.24.

Lemma 5.7. Let Ω be a circular slit disk and denote by C1, . . . , Cn−1, n ∈ N, the interior
boundary components of Ω. Moreover, let (Ht)t∈[0,T ] be an increasing and continuous
family of radial Ω-hulls, and for each t ∈ [0, T ], we denote by gt the normalised radial
mapping function on Ωt := Ω \ Ht. Assume C ∈ {C1, . . . , Cn−1} with cl(Ht) ∩ C = ∅ for
all t < t0. Then t 7→ dist(0, gt(C)) is continuous on [0, t0).

Proof. Let t∗ < t0. Thus we find a Jordan curve Γ ⊆ Ωt∗ around C with Γ close enough
to C such that dist(gt∗(z), gt∗(C)) < ε/2 for all z ∈ Γ with some small ε > 0. Using
Proposition 5.6, we get gt

l.u.−−−→ gt∗ on Ωt∗ as t → t∗. In particular, we find gt → gt∗

uniformly on Γ. So there is a δ > 0 such that |gt(z)−gt∗(z)| < ε/2 for all t ∈ (t∗−δ, t∗+δ)
and all z ∈ Γ. Consequently, dist(gt(z), gt∗(C)) < ε for all t ∈ (t∗ − δ, t∗ + δ) and all
z ∈ Γ. Since gt(C) is part of the interior of gt(Γ), we find dist(gt(C), gt∗(C)) < ε for all
t ∈ (t∗ − δ, t∗ + δ) as well. Both sets gt(C) and gt∗(C) are circular arcs, so the proof is
complete.

Lemma 5.8. Let Ω be a circular slit disk. Assume (Ht)t∈[0,T ] is an increasing family
of radial Ω-hulls. Moreover, for each t ∈ [0, T ], gt is the normalised radial mapping
function from Ωt := Ω \ Ht onto the circular slit disk Dt.

Then the following two statements are equivalent.

(i) (Ht)t∈[0,T ] satisfies the local growth property.

(ii) For each ε > 0, there exists a δ > 0 such that whenever t ∈ [0, T−δ], some cross-cut
F of Dt with diam(F ) < ε separates 0 from gt(Ht+δ \ Ht).

Proof. 1) (i)⇒(ii): Let (Ht)t∈[0,T ] be a family of increasing Ω-hulls satisfying the local
growth property. Let ε > 0 be small. We find a δ > 0 such that whenever t ∈ [0, T − δ],
some cross-cut E of Ωt with diam(E) < ε separates 0 from Ht+δ \Ht. Assume a ∈ E. For
each r ∈ [ε,

√
ε], Cr := ∂Br(a) ∩ Ωt separates E in Ωt from 0. Obviously, Cr separates

Kt+δ \Kt in Ωt from 0 as well. Using Wolff’s lemma, we find infr∈(ε,
√
ε) diam(gt(Cr)) <

4π/
√

log 1/ε. Let F := ht(E), so we get diam(F ) < 4π/
√

log 1/ε as well.

2) (ii)⇒(i): This works in the same way by Wolff’s lemma.

Remark 5.1. In the simply connected case, (i) and (ii) from Lemma 5.8 are equivalent
to the statement
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(iii) For each ε > 0, there exists a δ > 0 such that whenever t ∈ [0, T−δ], diam(gt(Ht+δ\
Ht)) < ε.

Unfortunately, this is not the case if we consider multiply connected domains, see Ex-
ample 5.1 where condition (iii) is satisfied, while (i) or (ii) are not.

Obviously, the implication (ii)⇒(iii) is true. When this happens, we are able to
define Ut :=

⋂
δ>0 cl

(
gt(Ht+δ \ Ht)

)
for all t ∈ [0, T ). Analogously to the previous

chapters t 7→ Ut is called driving term or driving function.

Lemma 5.9. Let Ω be a circular slit disk and let (Ht)t∈[0,T ] be an increasing family of
radial Ω-hulls satisfying the local growth property. Then for each t ∈ [0, T ], cl(Ht) is
connected.

Proof. First of all keep in mind that H0 = ∅ as (Ht)t∈[0,T ] is an increasing family of radial
Ω-hulls. Suppose there is a t0 ∈ (0, T ] such that cl(Ht0) is not connected. Then there
are proper compact sets A and B such that A ∩ B = ∅ and A ∪ B = cl(Ht0). We set
tA := inf{t ∈ [0, t0] | A∩ cl(Ht) 6= ∅} and tB := inf{t ∈ [0, t0] | B ∩ cl(Ht) = ∅}. Without
restricting generality we may assume tA ≥ tB. Note that tA < t0. Otherwise t 7→ Ωt,
with Ωt := Ω \Ht, is not continuous at t = t0 contradicting Lemma 5.3. Using the same
argument, A ∩ HtA = ∅.

If tA = 0, we immediately find g0(Hε) ∩ A 6= ∅ and g0(Hε) ∩ B 6= ∅. Consequently,
diam(Hε) > dist(A,B) for all ε > 0. This yields a contradiction to the local growth
property, see also Remark 5.1.

Next, assume tA > 0. Obviously, we find an open set E ⊆ ΩtA such that cl(A ∩
HtA+ε′) ⊆ E ∪ T and dist(∂E \ T, A ∩ HtA+ε′) > 0 with some small ε′ > 0. For each
t ∈ [0, tA], we reflect gt on TE := T∩ cl(E), so gt is analytic on ΩtA ∪ Ē with Ē := {w ∈
C | 1/w̄ ∈ E}. Then Proposition 5.6 gives us gtA−ε

l.u.−−−→ gtA on ΩtA ∪ Ē ∪ TE as ε↘ 0.
Let E′ := gtA(E). This shows diam(gtA−ε(HtA+ε \ HtA−ε)) ≥ dist(gtA(HtA+ε′ ∩ A), ∂E′)
for all small ε < ε′ yielding a contradiction to the local growth property, see Remark
5.1.

Lemma 5.10. Let Ω be a circular slit disk and (Ht)t∈[0,T ] be an increasing family of
radial Ω-hulls satisfying the local growth property. For each t ∈ [0, T ], gt denotes the
normalised radial mapping function on Ωt := Ω\Ht. Assume Ut :=

⋂
δ>0 cl

(
gt(Ht+δ\Ht)

)
with t ∈ [0, T ).

Then t 7→ Ut is uniformly continuous on [0, T ). Furthermore, the limit limt↗T Ut =:
UT exists.

Proof. We are going to prove the following statement:

∀ε > 0 ∃δ > 0 ∀0 ≤ t < s < T with s− t < δ : |Ut − Us| < ε.

For each 0 ≤ t < s < T , we set St,s := gt(Hs \ Ht).
Let us assume the opposite, so there are sequences (tn)n∈N and (sn)n∈N with tn < sn

and |tn−sn| → 0 such that |Usn−Utn | > ε for all n ∈ N and some ε > 0. Without loss of
generality we assume that the sequences (tn)n∈N, (sn)n∈N and (Utn)n∈N are convergent
with limits t0 = s0 and U∗, respectively.
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Next, we denote by C1, . . . , Cn−1 the interior concentric circular arcs of ∂Ω. Each Ck
that gets not swallowed by Ht0 fulfils dist(gtn(Ck), 0) > ρ for all large n ∈ N and some
ρ > 0 with ρ < ε. If Ck gets swallowed by Ht0 such that dist(Ck,Htn) > 0 for at least
infinite n ∈ N, we get dist(Stn,t0 , gtn(C)) = 0 and tn < t0 for almost all n ∈ N. Thus any
small cross-cut F that separates Stn,t0 from 0 separates gtn(C) from 0 as well.

Using Lemma 5.8, we choose N ∈ N large enough such that whenever n ≥ N , some
cross-cut Fn of Dtn separates Stn,max(sn,t0) from 0 with diam(Fn) < ρ

4 . Moreover, we
enlarge N in such a way to get |Utn − U∗| <

ρ
4 for all n ≥ N .

⊕⊕ ⊕

bb

sn
tn

Dsn

gtngsn

U∗
∂B ρ

2
(U∗)

Figure 5.2: Mapping behaviour of gsn and gtn

As mentioned before, for any k ∈ {1, . . . , n−1} and large n ≥ N , dist(gtn(Ck),T) = 0
(i.e. Ck was already swallowed by the hull), dist(gtn(Ck),T) > ρ, or Fn separates gtn(Ck)
from 0

In either case, hn := gsn◦g−1
tn can be continued in an analytic way to a neighbourhood

V of ∂Bρ/2(U∗) for all n ≥ N , as |U∗ − Utn | <
ρ
4 , Utn ∈ cl(Stn,sn) and diam(Stn,sn) <

diam(Fn) < ρ
4 for all large n ≥ N . Using Proposition 5.6, hn convergences uniformly

on ∂Bρ/2(U∗) to the identity. Thus we find hn(∂Bρ/2(U∗)) ⊆ B3ρ/4(U∗) for all large n.
Moreover, we set

stn,sn := cl
{
z ∈ T

∣∣ ∃r > 0 ∃(zk)k∈N ⊆ Dsn : zk → z and |h−1
n (zk)| < 1− r

}
,

so we have stn,sn ⊆ B3ρ/4(U∗) and Usn ∈ stn,sn for all large n. Consequently, we find

|Usn − Utn | ≤ |Usn − U∗|+ |U∗ − Utn | <
3ρ
4 + ρ

4 = ρ < ε. This is a contradiction, so the
proof is complete.

Remark 5.2. As another consequence, we have seen in the previous proof that stn,sn →
Ut0 whenever tn → t0 ← sn. Herein, stn,sn is defined in the same way as before.

Let Ω be a circular slit disk and let H be a radial Ω-hull. Note that we can not apply
Lemma 2.27 or 2.28, as Ω \ H is not necessarily locally connected. In the following we
will deduce a way to circumvent this problem. Therefore, we denote by g the normalised
radial mapping function from Ω\H onto the circular slit disk D. Moreover, let us assume
cl(H) is connected. Using Lemma 5.9, this is always the case if the hull H comes from a
family that satisfies the local growth property. Next we set

sH := cl
{
z ∈ T

∣∣ ∃r > 0 ∃(zk)k∈N ⊆ D : zk → z and |g−1(zk)| < 1− r
}
. (5.2)

sH is a connected and compact subset of T. On top of this we define

Hε := H ∪ {g−1(z) | z ∈ D, dist(z, sH) ≤ ε},
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⊕ ⊕

H

Ω \ Hε

sH

g

Figure 5.3: The ε-extension of a hull H

what we call the ε-extension of H in Ω, see Figure 5.3. Note that Hε is a radial Ω-hull
as well if ε > 0 is small enough.

In contrast to H, Hε is locally connected. This allows us to apply Lemma 2.27 and
2.28 followed by the limit process ε→ 0. See the following three lemmas for more details

Lemma 5.11. Let Ω be a circular slit disk, H be a radial Ω-hull such that cl(H) is con-
nected, and for each small ε > 0, Hε denotes the ε-extension of H. Moreover, we denote
by g and gε the normalised radial mapping function on Ω \ H and Ω \ Hε, respectively.

Then gε l.u.−−−→ g on Ω as ε→ 0. Moreover, sHε → sH as ε→ 0 where sH and sHε are
defined by Equation (5.2).

Proof. Obviously, Ω \ Hε k−→ Ω \ H as ε → 0, so Proposition 5.6 gives us gε l.u.−−−→ g on
Ω \H as ε→ 0. Consequently, hε := g ◦ (gε)−1 tends to the identity, so sHε → sH follows
immediately with an reflection of hε on T.

Lemma 5.12. Let Ω be a circular slit disk and let H be a radial Ω-hull such that cl(H)
is connected. Moreover, g denotes the normalised radial mapping function from Ω \ H
onto the circular slit disk D. Then

log
g−1(z)

z
= lim

ε→0

1

2π

∫
sHε

ln
∣∣(gε)−1(ζ)

∣∣ · Φ0,ζ,Dε(z) |dζ| for all z ∈ D,

where Hε denotes the ε-extension of H, gε is the normalised radial mapping function
from Ω \ Hε onto the circular slit disk Dε, and sHε is defined by Equation (5.2).

Proof. This follows immediately from Lemma 2.28 and 5.11.

Lemma 5.13. Let Ω be a circular slit disk and let H be a radial hull in Ω such that
cl(H) is connected. Moreover, g denotes the normalised radial mapping function from
Ω \ H onto the circular slit disk D. Then

lmr(g) = − lim
ε→0

1

2π

∫
sHε

ln
∣∣(gε)−1(ζ)

∣∣ |dζ|,
where Hε denotes the ε-extension of H, gε is the normalised radial mapping function on
Ω \ Hε, and sHε is defined by Equation (5.2).

Proof. This follows immediately from Lemma 2.27 and Lemma 5.11.
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5.2 Proof of Theorem 5.1 and 5.2

Proof of Theorem 5.2. First of all, for each t ∈ [0, T ], cl(Ht) is connected, as (Ht)t∈[0,T ]

satisfies the local growth property, see Lemma 5.9. Moreover, Ut is defined as in Lemma
5.10 for each t ∈ [0, T ]. Let 0 ≤ t < t ≤ T be fixed, so gt,t := gA := gt ◦ g

−1
t is the

normalised radial mapping function on Dt \ A, with A := gt(Ht \ Ht), onto the circular
slit disk Dt. Obviously, A is a radial Dt-hull, so the mapping function is well-defined.
Using Lemma 5.12, we find

log
g−1
t,t

(z)

z
= log

g−1
A (z)

z
= lim

ε→0

1

2π

∫
sAε

ln
∣∣g−1

Aε (ζ)
∣∣ · Φ0,ζ,Dε(z) |dζ| for all z ∈ Dt,

where Aε denotes the ε-extension extension of A, gAε denotes the normalised radial
mapping function from Dt \ Aε onto the circular slit disk Dε and sHε is defined by
Equation (5.2). As a consequence of Lemma 2.18, ζ 7→ Φ0,ζ,Dε(z) is continuous on sAε ,
so the mean value theorem yields

log
g−1
t,t

(z)

z
= lim

ε→0

(
<
(
Φ0,ζε1 ,D

ε(z)
)

+ i=
(
Φ0,ζε2 ,D

ε(z)
)) 1

2π

∫
sAε

ln
∣∣g−1

Aε (ζ)
∣∣ |dζ|, z ∈ Dt

where ζε1 , ζ
ε
2 ∈ sAε . Note that ζε1 , ζ

ε
2 are bounded, so we find a sequence (εn)n∈N with

εn → 0 and ζεnj → ζj , j ∈ {1, 2}, as n → ∞. Moreover, Lemma 5.11 yields ζj ∈ sA,

j ∈ {1, 2}. Using Lemma 5.11, we find Dεn k−→ Dt with con(Dεn) = con(Dt) if n is large
enough. Letting n→∞, Lemma 2.18 and 5.13 give us

log
g−1
t,t

(z)

z
= −

(
<
(
Φ0,ζ1,Dt

(z)
)

+ i=
(
Φ0,ζ2,Dt

(z)
))

lmr(gA) for all z ∈ Dt.

Using lmr(gA) = lmr(gt,t) = lmr(gt)− lmr(gt) = t− t and by applying z = gt(w), we find

− log
gt(w)
gt(w)

t− t
= <

(
Φ0,ζ1,Dt

(
gt(w)

))
+ i=

(
Φ0,ζ2,Dt

(
gt(w)

))
for all w ∈ Ωt.

For each j ∈ {1, 2}, ζj ∈ sA, so ζj → Ut if t ↘ t and ζj → Ut if t ↗ t, see Remark 5.2.
Letting t↗ t, Lemma 2.18 shows

Φ0,ζj ,Dt
◦ gt

l.u.−−−→ Φ0,Ut,Dt
◦ gt on Ωt as t↗ t.

On the other hand let t ↘ t. Then Lemma 5.4 yields con(Dt) = con(Dt) if t is close
enough to t. Consequently, we can use Lemma 2.18 once again together with Proposition
5.6 to obtain

Φ0,ζj ,Dt
◦ gt

l.u.−−−→ Φ0,Ut,Dt ◦ gt on Ωt as t↘ t.

Note that the continuity of t 7→ Φ0,Ut,Dt follows analogously to the proof of Lemma
2.18 combined with Wolff’s lemma (applied in the same way as in Example 5.1). Sum-
marising, the proof is complete as t 7→ Ut is continuous by Lemma 5.10.
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Proof of Theorem 5.1. Note that the previous proof showed already (ii)⇒ (i), so we need
to prove (i)⇒(ii) only.

1) First of all, t 7→ Ωt and t 7→ gt are continuous on [0, T ] by (ii)⇒(i),(iii) from
Proposition 5.6. Let us denote by C1(t), . . . , Cn(t) the boundary components of Dt

where Cn(t) = T. As con(Ωt) = con(Ω) for all t ∈ [0, T ], Lemma 2.42 gives us a ρ > 0
such that dist(Ck(t),T) > ρ for all t ∈ [0, T ] and all k ∈ {1, . . . , n− 1}.

2) Next, we are going to prove |Φ0,Ut,Dt(w)| ≤ K
|Ut−w| for all w ∈ Dt and all t ∈ [0, T ]

with some K > 0. Using the definition of Φ0,Ut,Dt , we find Rt(w) := Φ0,Ut,Dt(w)·(w−Ut)
is bounded on Dt. Suppose there is no K > 0 fulfilling the previous condition. Thus
there is a sequence (tn)n∈N ⊆ [0, T ] and a sequence (wn)n∈N with wn ∈ Dtn such that
Rtn(wn) → ∞. By boundedness, we may assume tn → t0 ∈ [0, T ]. Using Proposition
2.11, Dtn

k−→ Dt0 , so together with con(Dtn) = con(Dt0) and Lemma 2.18 we find
Φ0,Ut,Dt

l.u.−−−→ Φ0,Ut0 ,Dt0
on Dt0 . Thus Rt

l.u.−−−→ Rt0 on Dt0 as well. Since dist(Ck(t),T) >
ρ for all t ∈ [0, T ], we are able to reflect each Φ0,Ut,Dt , t ∈ [0, T ], along T, so we are able
to continue each Rt analytically to A1,1+ρ with ρ > 0 defined in Part 1.

Let r ∈ (1, 1 + ρ), so Rtn converges uniformly on Tr to Rt0(Tr). Obviously, Rt0(Tr) is
bounded and we have |Rtn(wn)| ≤ maxz∈cl(Dr) |Rtn(z)| = maxζ∈Tr |Rtn(ζ)|. This is a
contradiction.

3) In order to continue the proof, we follow the first part of Pommerenke’s proof,
see proof of Theorem 1 in [Pom66]. Therefore, we set St,s := gt(Hs \ Ht), whenever
0 ≤ t < s ≤ T , and let ε > 0. t 7→ Ut is uniformly continuous on [0, T ], so we find a

δ < ε2

8K such that |Ut − Us| < ε
4 for all 0 ≤ t ≤ s ≤ T with s − t ≤ δ. Here K > 0 is

defined like in Part 2

We are going to show ν(s) := |Ut−(gs◦g−1
t )(w)| > ε

2 whenever w ∈ Dt\St,s, |w−Ut| > ε
and 0 ≤ s− t ≤ δ. Suppose this is false, i.e. we find t, s ∈ [0, T ] with 0 < s− t < δ and
w ∈ Dt \St,s, |w−Ut| > ε such that ν(s) ≤ ε

2 . Note that ν(t) = |Ut−w| > ε, so we find
a first time t1 ∈ (t, s] such that ν(t1) = ε

2 . This follows immediately from the fact that
τ 7→ ν(τ) is continuous on [t, s]. Consequently, we get∣∣Uτ − (gτ ◦ g−1

t )(w)
∣∣ ≥ ∣∣Ut − (gτ ◦ g−1

t )(w)
∣∣− ∣∣Uτ − Ut∣∣

= ν(τ)− |Uτ − Ut| ≥ ε
2 −

ε
4 = ε

4

for all τ ∈ [t, t1]. Using the differential equation, we find together with the previous part∣∣ d
dτ ν(τ)

∣∣ ≤ ∣∣(gτ ◦ g−1
t )(w)

∣∣ · ∣∣Φ0,Uτ ,Dτ

(
gτ ◦ g−1

t (w)
)∣∣ ≤ 1 · 4K

ε

for all τ ∈ [t, t1]. Summarising, we find the following contradiction

ε
2 = ε− ε

2 ≤ ν(t)− ν(t1) =

∣∣∣∣ ∫ t

t1

d
dτ ν(τ)dτ

∣∣∣∣ ≤ (t1 − t)4K
ε ≤ δ

4K
ε < ε2

8K ·
4K
ε = ε

2 .

Unfortunately, we can not apply further parts of Pommerenke’s proof, so we need to
argue in an another way.
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4) Next, we are going to show that for each ε > 0, there is a µ > 0 such that
diam(St,s) < 3ε, whenever t, s ∈ [0, T ] with 0 < s − t < µ. In order to prove this,
suppose there are sequences (tn)n∈N, (sn)n∈N ⊆ [0, T ] and an ε > 0 such that tn−sn → 0
and diam(Stn,sn) ≥ 3ε for all n ∈ N. By boundedness, we may assume that (tn) and (sn)
are convergent with limit t0 ∈ [0, T ]. Thus we find wn ∈ Dtn \ Stn,sn (close enough to
Stn,sn) such that |wn − Utn | > ε and |(gsn ◦ g−1

tn )(wn)| ≥
√
|wn| for all n ∈ N. Moreover,

we write gtn(zn) = wn, so we have |gsn(zn)| ≥
√
|gtn(zn)|. Using Part 3, we are able to

choose n large enough in order to get 0 < sn− tn < δ where δ < ε2

8K is defined as in Part
3. Thus we find

ν(s) = |Utn − (gs ◦ gtn)−1(wn)| = |Utn − gs(zn)| > ε
2 for all s ∈ [tn, sn].

Moreover, using |Ut − Us| < ε
4 whenever |t − s| < δ, we find |Us − gs(zn)| ≥ ε

4 for all
s ∈ [tn, sn]. For each n ∈ N, we get

1
4

(
1

|gtn (zn)| − 1
)
≤ 1

2
1
2 ln

∣∣∣ 1
gtn (zn)

∣∣∣ ≤ ln
∣∣∣gsn (zn)
gtn (zn)

∣∣∣ =

ln |gsn(zn)| − ln |gtn(zn)| = (sn − tn)<Φ0,Uξn ,Dξn

(
gξn(zn)

)
(5.3)

with ξn ∈ [tn, sn]. Here, the last equality is a consequence of the differential equation.
In particular we used the mean value theorem applied to the real part of the logarithmic
derivative. Notice, Equation (5.3) together with Part 2 show that |gtn(zn)| → 1 if
n → ∞, as Uξn − gξn(zn) ≥ ε

4 . Moreover, |gtn(zn)| ≤ |gξn(zn)| for all n ∈ N. This
follows from the fact that t 7→ ln |gt(z)| is increasing, as gt satisfies the given differential
equation while <Φ0,Ut,Dt(z) ≥ 0. Consequently |gξn(zn)| → 1 if n→∞.

Obviously, we have ξn → t0, and we may assume without loss of generality gξn(zn) →
ζ0 ∈ T. Consequently, |ζ0 − Ut0 | > ε

4 . Once again the mean value theorem yields∣∣∣∣∣∣
<Φ0,Uξn ,Dξn

(
gξn(zn)

)
−<Φ0,Uξn ,Dξn

(
gξn (zn)
|gξn (zn)|

)
gξn(zn)− gξn (zn)

|gξn (zn)|

∣∣∣∣∣∣ ≤ ∣∣Φ′0,Uξn ,Dξn(ζn)∣∣ (5.4)

with ζn ∈
{(
gξn(zn)/|gξn(zn)| − gξn(zn)

)
t+ gξn(zn)

∣∣ t ∈ [0, 1]
}

and n ∈ N large. Herein,
ζn → ζ0 as well. Using Lemma 2.18, we find Φ0,Uξn ,Dξn

l.u.−−−→ Φ0,Ut0 ,Dt0
on Dt0 . Using

the fact |Ut0 − ζ0| > 0, each w 7→ Φ0,Uξn ,Dξn
(w) can be extended analytically to a small

neighbourhood around ζ0 if n is large enough. Thus Φ′0,Uξn ,Dξn
(ζn)→ Φ′0,Ut0 ,Dt0

(ζ0), so

we get
∣∣Φ′0,Uξn ,Dξn(ζn)∣∣ ≤ L for all n ∈ N large enough with L > 0.

Combined with Equation (5.3) and (5.4), we find

1
4

(
1

|gtn (zn)| − 1
)
≤ (sn − tn)L|gξn(zn)|

(
1

|gξn (zn)| − 1
)
≤ (sn − tn)L

(
1

|gtn (zn)| − 1
)
.

(5.5)

Finally, Equation (5.5) yields a contradiction, as sn − tn → 0 when n tends to infinity.

5) Using the previous part, we find a µ > 0 such that diam(St,s) < ε, whenever
0 ≤ t ≤ s ≤ T with 0 ≤ s−t ≤ µ. Here, we can choose ε < ρ where ρ is defined according
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to Part 1. Let a ∈ T∪ cl(St,s). Consequently, St,s ⊆ Bε(a) and Bε(a)∩Dt = Bε(a)∩D.
Thus ∂Bε(a)∩D is a cross-cut in Dt separating St,s from 0. Using Lemma 5.8, the proof
is complete.
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[BL14] Christoph Böhm and Wolfgang Lauf, A Komatu–Loewner Equation for
Multiple Slits, Computational Methods and Function Theory 14 (2014),
no. 4, 639–663.
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