Loewner equations in multiply connected domains

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades
der Bayerischen Julius-Maximilians-Universität Würzburg

vorgelegt von
Christoph Böhm
aus
Regensburg, Deutschland

Würzburg 2015

Eingereicht am 05.08.2015
Erster Gutachter: Prof. Dr. Oliver Roth
Zweiter Gutachter: Prof. Dr. Wolfgang Lauf
Tag der mündlichen Prüfung: 26.02.2016

Für meine Eltern und für Laura

Contents

Contents V
Nomenclature VII
1 Introduction to Loewner theory 1
1.1 Radial Loewner equation and Bieberbach's conjecture 1
1.2 Chordal Loewner equation and SLE 3
1.3 Multiple slit Loewner equations 4
1.4 Loewner equations in multiply connected domains 6
1.5 Outline of the thesis 8
2 Komatu-Loewner equations for canonical domains 11
2.1 Some important tools and notations 11
2.2 The kernel function Phi 20
2.3 Radial case 25
2.3.1 Single slit Komatu-Loewner equation 25
2.3.2 Multiple slit Komatu-Loewner equation 30
2.4 Bilateral case 31
2.5 Chordal case 35
2.6 A universal proof for multiple slit Komatu-Loewner equations 39
2.6.1 Some preliminary lemmas 40
2.6.2 Proof of Theorem 2.30, 2.31 and 2.36: (i) \Rightarrow (iii) 45
2.6.3 Proof of Theorem 2.30, 2.31 and 2.36: (ii) \Rightarrow (i) 50
2.7 Almost everywhere differentiability 52
2.8 A subadditivity property in simply connected domains 56
3 Constant Coefficients 59
3.1 Disjoint slits 60
3.1.1 Some preliminary lemmas 61
3.1.2 Proof of Theorem 3.2, 3.3 and 3.4 65
3.2 Slits having branch points 73
3.2.1 Some preliminary lemmas 74
3.2.2 Proof of Theorem 3.7 and 3.8 78
4 Komatu-Loewner equations vs. Loewner equations 83
4.1 Disjoint slits 83
4.2 Slits having branch points 89
5 Generalization to hulls with local growth 95
5.1 Some preliminary lemmas 97
5.2 Proof of Theorem 5.1 and 5.2 104
List of Figures 109
Bibliography 111
Acknowledgment 115
Index 117

Nomenclature

$\mathbb{A}_{r} \quad:=\mathbb{A}_{r, 1}=\{z \in \mathbb{C}|r<|z|<1\}$, annulus with radius $r \in(0,1)$
$\mathbb{A}_{r, R} \quad:=\{z \in \mathbb{C}|r<|z|<R\}$, annulus with radii $0<r<R<\infty$
\mathbb{C} complex plane
$\mathbb{C}_{\infty} \quad:=\mathbb{C} \cup\{\infty\}$, the Riemann sphere
$\mathfrak{c}(g) \quad$ appropriate capacity of g, i.e. $\mathfrak{c}(g)=\operatorname{lmr}(g)$ (radial case), $\mathfrak{c}(g)=\operatorname{lcm}(g)$ (bilateral case), $\mathfrak{c}(g)=\operatorname{hcap}(g)$ (chordal case), page 40
$\mathfrak{c}_{\Omega}(\mathfrak{H}) \quad:=\mathfrak{c}(g)$, where g denotes the normalised appropriate mapping function on $\Omega \backslash \mathfrak{H}$, page 40
χ
chordal metric
$\operatorname{cl}(A) \quad$ closure of a set $A \subseteq \mathbb{C}$ with respect to the standard topology in \mathbb{C}
$\mathrm{cl}_{\infty}(A) \quad$ closure of a set $A \subseteq \mathbb{C}_{\infty}$ with respect to the standard topology in \mathbb{C}_{∞}
$\operatorname{con}(\Omega) \quad$ connectivity of a domain Ω
$\mathbb{D} \quad:=\{z \in \mathbb{C}| | z \mid<1\}$, the unit disk
$\mathbb{D}_{r} \quad:=\{z \in \mathbb{C}| | z \mid<r\}, r \in(0, \infty)$
$\operatorname{diam}(A) \quad:=\sup \{|a-b| \mid a, b \in A\}$, diameter of a set $A \subseteq \mathbb{C}$
$\operatorname{dist}(A, B) \quad:=\inf \{|a-b| \mid a \in A, b \in B\}$, distance of two sets $A, B \subseteq \mathbb{C}$
$\operatorname{ext}(\Gamma) \quad$ exterior of the Jordan curve Γ
hcap $(g) \quad$ half-plane capacity of g, page 35
$\operatorname{hcap}_{\Omega}(\mathfrak{H}) \quad:=\operatorname{hcap}(g)$, where g is the normalised chordal mapping function on $\Omega \backslash \mathfrak{H}$, page 35
$\operatorname{int}(\Gamma) \quad$ interior of the Jordan curve Γ
$\operatorname{lcm}(g) \quad$ logarithmic conformal modulus, page 32
$\operatorname{lcm}_{\Omega}(\mathfrak{H}) \quad:=\operatorname{lcm}(g)$, where g denotes the bilateral mapping function on $\Omega \backslash \mathfrak{H}$, page 32
$\operatorname{lmr}(g) \quad:=\ln g^{\prime}(0)$, logarithmic mapping radius of g, page 25
$\operatorname{lmr}_{\Omega}(\mathfrak{H}) \quad:=\operatorname{lmr}(g)$, where g is the normalised radial mapping function on $\Omega \backslash \mathfrak{H}$, page 25
$\mathcal{C}(I) \quad$ set of continuous functions $f: I \rightarrow \mathbb{C}, I \subseteq \mathbb{R}$
$\mathcal{C}^{k}(I) \quad$ set of k times continuously differentiable functions $f: I \rightarrow \mathbb{C}, I \subseteq \mathbb{R}, k \in \mathbb{N}$
$\Omega_{n} \xrightarrow{\mathrm{k}} \Omega \quad \Omega$ is the kernel of each subsequence of $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$, page 15
$\partial \Omega \quad:=\operatorname{cl}(\Omega) \backslash \Omega$, the boundary of a domain Ω
$\partial_{\infty} \Omega \quad:=\operatorname{cl}_{\infty}(\Omega) \backslash \Omega$, the boundary of a domain Ω on the Riemann sphere
$\mathbb{R} \quad$ real numbers
$\mathbb{T} \quad:=\{z \in \mathbb{C}| | z \mid=1\}=\partial \mathbb{D}$, the unit circle
$\mathbb{T}_{r} \quad:=\{z \in \mathbb{C}| | z \mid=r\}=\partial \mathbb{D}, r \in(0, \infty)$
$\mathbb{H} \quad:=\{z \in \mathbb{C} \mid \Im(z)>0\}$, the upper half-plane
$A \subseteq B \quad A$ is a subset of B
$A \subsetneq B \quad: \Leftrightarrow A \subseteq B \wedge A \neq B, A$ is a strict subset of B
$B_{r}(\infty) \quad:=\left\{z \in \mathbb{C}_{\infty} \mid \chi(z, \infty)<r\right\}$, ball around ∞ with radius $r>0$ with respect to the chordal metric
$B_{r}(w) \quad:=\left\{z \in \mathbb{C}_{\infty}| | z-w \mid<r\right\}$, ball around $w \in \mathbb{C}$ with radius $r>0$
$f_{n} \xrightarrow{\text { l.u. }} f \quad\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to f, page 16

Chapter 1

Introduction to Loewner theory

In 1923, Charles Loewner (born as Karel Löwner) laid the foundation of a theory, nowadays known as Loewner theory, see [Löw23]. In this context, Loewner considered conformal mappings from the unit disk $\mathbb{D}:=\{z \in \mathbb{C}| | z \mid<1\}$ onto \mathbb{D} minus a single slit, also known as single slit mappings. For any domain Ω, we will call a function $g: \Omega \rightarrow D$ conformal ${ }^{1}$ (or conformal mapping from Ω onto D) if g is analytic and one-to-one and $g(\Omega)=D$. Moreover, Loewner proved that the class of single slit mappings is dense in the class of all conformal maps on \mathbb{D}. Loewner found out how to parametrise the slit in order to describe the conformal single slit mappings by a differential equation known as the Loewner differential equation. The long-term goal of his approach was to use the differential equation in order to attack Bieberbach's conjecture.

1.1 Radial Loewner equation and Bieberbach's conjecture

First of all, let $\gamma:[0, T] \rightarrow \operatorname{cl}(\mathbb{D})$ be a simple and continuous curve having $\gamma(0) \in \mathbb{T}:=\partial \mathbb{D}$ and $\gamma(0, T] \subseteq \mathbb{D} \backslash\{0\}$. Using Riemann's well-known mapping theorem, we find for each $t \in[0, T]$, a unique conformal mapping g_{t} from $\mathbb{D} \backslash \gamma(0, t]$ onto \mathbb{D} such that $g_{t}(0)=0$ and $g_{t}^{\prime}(0)>0$. Then it is an easy consequence of Schwarz lemma to see that $t \mapsto g_{t}^{\prime}(0)$ is strictly increasing and $g_{0}^{\prime}(0)=1$. Moreover, $t \mapsto g_{t}^{\prime}(0)$ is continuous on $[0, T]$. Note that this follows immediately from the kernel theorem due to Carathéodory (see Section 2.1). Summarising, it is not a great constraint to assume that γ is parametrised in such a way that $g_{t}^{\prime}(0)=e^{t}$ for all $t \in[0, T]$. Obviously, for all $t \in[0, T], h_{t}:=g_{T-t}^{-1}$ satisfies $h_{t}^{\prime}(0)=e^{t-T}$ and h_{t} is the unique conformal mapping from \mathbb{D} onto $\Omega_{T-t}=\mathbb{D} \backslash \gamma(0, T-t]$ having the same normalisation as g_{t}. In 1923, Loewner proved the following theorem.

Theorem A. Let $\gamma:[0, T] \rightarrow \mathbb{D} \cup \mathbb{T}$ be a simple and continuous curve satisfying $\gamma(0) \in \mathbb{T}$ and $\gamma(0, T] \subseteq \mathbb{D} \backslash\{0\}$. For each $t \in[0, T], h_{t}$ denotes the unique conformal mapping that maps \mathbb{D} onto $\Omega_{T-t}:=\mathbb{D} \backslash \gamma(0, T-t]$ with the normalisation $h_{t}(0)>0$ and $h_{t}(0)=0$. Assume $h_{t}^{\prime}(0)=e^{t-T}$ for all $t \in[0, T]$. Then, for each $z \in \mathbb{D}, t \mapsto h_{t}(z)$ is differentiable ${ }^{2}$

[^0]on $[0, T]$ and satisfies
$$
\dot{h}_{t}(z)=h_{t}^{\prime}(z) \cdot z \cdot \frac{\kappa_{t}+z}{\kappa_{t}-z} \quad \text { for all } t \in[0, T] \text { and all } z \in \mathbb{D}
$$
with a continuous function $t \mapsto \kappa_{t} \in \mathbb{T}$ on $[0, T]$.
The differential equation in Theorem A is called (single-slit) radial Loewner partial differential equation. It is a straightforward calculation to find the following corollary.

Corollary B. Let $\gamma:[0, T] \rightarrow \mathbb{D} \cup \mathbb{T}$ be a simple and continuous curve satisfying $\gamma(0) \in \mathbb{T}$ and $\gamma(0, T] \subseteq \mathbb{D}$. For each $t \in[0, T]$, g_{t} denotes the unique conformal mapping that maps $\Omega_{t}:=\mathbb{D} \backslash \gamma(0, t]$ onto \mathbb{D} with the normalisation $g_{t}(0)=0$ and $g_{t}^{\prime}(0)>0$. Assume $g_{t}^{\prime}(0)=e^{t}$ for all $t \in[0, T]$. Then $t \mapsto g_{t}(z)$ is differentiable on $[0, T]$ for each $z \in \mathbb{D}$ and satisfies

$$
\begin{equation*}
\dot{g}_{t}(z)=g_{t}(z) \cdot \frac{U_{t}+g_{t}(z)}{U_{t}-g_{t}(z)} \quad \text { for all } t \in[0, T] \text { and all } z \in \Omega_{T}, \tag{1.1}
\end{equation*}
$$

with a continuous function $t \mapsto U_{t} \in \mathbb{T}$ on $[0, T]$.
The previous differential equation is called (single-slit) radial Loewner ordinary differential equation. $\kappa:[0, T] \rightarrow \mathbb{T}$ from Theorem A and $U:[0, T] \rightarrow \mathbb{T}$ from Corollary B are called driving functions or driving terms. It is not hard to show that $\kappa_{t}=U_{T-t}$ for all $t \in[0, T]$ in the previous context.

As mentioned before, Loewner's work was heavily motivated by the so called Bieberbach conjecture. Therefore, let us consider the following famous class:

$$
\mathcal{S}:=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \mid f \text { univalent, } f^{\prime}(0)=1\right\}
$$

If $f \in \mathcal{S}$, we have $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ around 0 . In 1916, see [Bie16], L. Bieberbach conjectured $\left|a_{k}\right| \leq k$ for all $k \in \mathbb{N}$, while equality holds for some $k \geq 2$ if and only if f is a rotation of the Koebe function. Using the previous differential equations, Loewner was able to prove $\left|a_{3}\right| \leq 3$, see [Löw23]. Although this was a great breakthrough, Loewner was a little bit disappointed that he was not able to solve Bieberbach's conjecture completely. Maybe this is the reason that the paper [Löw23] was Loewner's first and only paper concerning this field ${ }^{3}$. Finally, almost seven decades later, the problem was solved by L. de Branges, see [DB85]. While de Branges did not use Loewner's differential equation directly, C. FitzGerald and C. Pommerenke found an easier proof based on Loewner's results, see [FP85].

After Loewner published his paper in 1923, his ideas were developed and generalised a lot. Herein, important contributions are due to C. Pommerenke, see [Pom65], and P. Kufarev, see [Kuf43], leading to 'general Loewner equations'. The difference between Loewner original equation, see Equation (1.1), and more general Loewner type equations is the kernel on the right-hand side. Nevertheless, most recent applications are based on Loewner's original equation, so we continue with that.

[^1]One might ask the natural question if there are other families of domains $\left(\Omega_{t}\right)_{t \in[0, T]}$ having $\Omega_{t} \subsetneq \Omega_{s}$, whenever $t<s$, with corresponding functions $g_{t}: \Omega_{t} \rightarrow \mathbb{D}$ normalised by $g_{t}(0)=0$ and $g_{t}^{\prime}(0)=e^{t}$ such that $t \mapsto g_{t}$ fulfils a single-slit Loewner differential equation with a continuous function $t \mapsto U_{t}$. By 'other families of domains' we mean domains such that Ω_{T} is not a slit domain. This question goes back to Loewner (see [Löw23], page 117):
'Es sei hier noch bemerkt, daß dieser Satz nicht umgekehrt werden kann, d.h. es gibt stetige Funktionen $t \mapsto U_{t}$, wo die Lösung von (1.1) keine Schlitzabbildungen liefert. Es ist mir jedoch nicht bekannt, welche Bereiche außer den Schlitzbereichen auf diese Art noch entstehen können.'
The first example of a non-slit mapping is due to P.P. Kufarev, see [Kuf47].
In 1966, Pommerenke gave an answer to Loewner's previous question, see [Pom66], where he proved the following theorem (even for unbounded Ω_{t}).

Theorem C (Theorem 1 in [Pom66]). Let $\left(\Omega_{t}\right)_{t \in[0, T]}$ be a family of simply connected domains such that $0 \in \Omega_{T}, \Omega_{0}=\mathbb{D}$ and $\Omega_{s} \subsetneq \Omega_{t}$ whenever $0 \leq t<s \leq T$. Assume, for all $t \in[0, T], g_{t}: \Omega_{t} \rightarrow \mathbb{D}$ is the unique conformal mapping with the normalisation $g_{t}^{\prime}(0)=e^{t}$ and $g_{t}(0)=0$. Then the following two statements are equivalent:
(a) For each $z \in \Omega_{t}, t \mapsto g_{t}(z)$ is differentiable on $[0, T]$ and fulfils differential equation (1.1) with a continuous function $t \mapsto U_{t} \in \mathbb{T}$.
(b) For every $\varepsilon>0$, there exists a $\delta>0$ such that whenever $s, t \in[0, T]$ and $0<s-t<\delta$, some cross-cut E of Ω_{t} with $\operatorname{diam}(E)<\varepsilon$ separates 0 from $\Omega_{t} \backslash \Omega_{s}$.
See Section 2.4 in [Pom92] or Chapter 5 for the definition of a cross-cut. Theorem C is helpful to understand how domains coming from a Loewner equation have to look like. Moreover, it leads easily to non-slit mappings satisfying a Loewner equation.

In particular, it is possible to find families of domains $\left(\Omega_{t}\right)_{t \in[0, T]}$ such that the corresponding family $\left(g_{t}\right)_{t \in[0, T]}$ satisfies Equation (1.1), while $\partial \Omega_{t}$ is not even locally connected for some $t \in[0, T]$. This case was studied intensively by J. Lind, D. Marshall and S. Rohde, see [LMR10] where several examples are given.

1.2 Chordal Loewner equation and SLE

Recently, Loewner's equation was used with great success in probability theory, as we will see later. In this context, instead of Loewner's original setting a different setting, introduced originally by Kufarev considering slits growing in the upper half-plane, is used mostly.

Therefore, let $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im(z)>0\}$ denote the upper half-plane and denote by $\gamma:[0, T] \rightarrow \mathbb{H} \cup \mathbb{R}$ a simple and continuous curve such that $\gamma(0) \in \mathbb{R}$ and $\gamma(0, T] \subseteq \mathbb{H}$. Analogously to Section 1.1, Riemann's mapping theorem gives us a conformal mapping g_{t} from $\Omega_{t}:=\mathbb{H} \backslash \gamma(0, t]$ onto \mathbb{H} for each $t \in[0, T]$. This mapping is unique if we consider the normalisation

$$
\begin{equation*}
g_{t}(z)=z+\frac{a_{t}}{z}+\mathcal{O}\left(|z|^{-2}\right) \quad \text { around } \infty, \tag{1.2}
\end{equation*}
$$

known as the hydrodynamic normalisation. It is easy to see that $a_{t} \geq 0$, while a_{t} is called the half-plane capacity. Unsurprisingly, the half-plane capacity a_{t} plays a similar role as $g_{t}^{\prime}(0)$ in the radial case. Indeed, $t \mapsto a_{t}$ is strictly increasing and continuous, so we may assume that γ is parametrised in such a way that $a_{t}=2 t$ for all $t \in[0, T]^{4}$. Then P. Kufarev, V. Sobolev and L. Sporyševa proved the following result, see [KSS68].
Theorem D. Let $\gamma:[0, T] \rightarrow \mathbb{H} \cup \mathbb{R}$ denote a simple and continuous curve such that $\gamma(0) \in \mathbb{R}$ and $\gamma(0, T] \in \mathbb{H}$. For each $t \in[0, T], g_{t}$ denotes the unique conformal mapping from $\Omega_{t}:=\mathbb{H} \backslash \gamma(0, T]$ onto \mathbb{H} having the hydrodynamic normalisation, see Equation (1.2). Moreover, for each $t \in[0, T]$, assume $a_{t}=2 t$ where a_{t} denotes the half-plane capacity. Then $t \mapsto g_{t}$ is differentiable on $[0, T]$ and fulfils

$$
\dot{g}_{t}(z)=\frac{2}{g_{t}(z)-U_{t}} \quad \text { for all } t \in[0, T] \text { and all } z \in \Omega_{T}
$$

with a continuous function $t \mapsto U_{t} \in \mathbb{R}$ on $[0, T]$.
Note this theorem was published in Russian and it got studied a lot from the Soviet school. As a result of the cold war, the radial case on the one hand and the chordal case on the other case were often developed further independently from each other.

As indicated already before, Loewner's differential equation, in particular Theorem D, became of big interest once again in 2000. Before going into detail, it is important to notice that for each fixed $z \in \mathbb{H}$, the initial value problem

$$
\dot{g}_{t}(z)=\frac{2}{g_{t}(z)-U_{t}} \quad g_{0}(z)=z,
$$

with a given continuous function $U_{t}: \mathbb{R} \rightarrow \mathbb{R}$, does has a unique solution $g_{t}(z)$ up to a time T_{z}. Then g_{t} is the unique conformal mapping from $\Omega_{t}:=\left\{z \in \mathbb{H} \mid T_{z}>t\right\}$ onto \mathbb{H} satisfying the hydrodynamic normalisation, see Theorem 4.6 in [Law05] for a detailed proof. Notice that same inverse result holds in the radial case as well, see Theorem 4.14 in [Law05].

In 2000, O. Schramm had the fruitful idea to replace the driving term U_{t} by a Brownian motion $\sqrt{\kappa} B_{t}$, i.e. B_{t} is a standard Brownian motion and $\kappa \geq 0$. This leads to the definition of chordal Schramm-Loewner evolution (SLE) with parameter κ, see [Sch00] for more details. Schramm realised that the (random) domains Ω_{t} differ heavily from the choice of κ. If $\kappa \in[0,4]$, with probability $1 \Omega_{t}$ is given by \mathbb{H} minus a simple curve. In the case $\kappa \in(4,8)$, w.p. $1 \Omega_{t}$ comes from \mathbb{H} minus a random curve hitting itself and the real axis infinitely often. Finally, if $\kappa \geq 8$, w.p. $1 \Omega_{t}$ is generated by a space-filling curve. In probability theory, Schramm-Loewner evolution was used with great success, e.g. to prove the Mandelbrot conjecture, see [LSW01], or to find scaling limits of discrete random processes.

1.3 Multiple slit Loewner equations

As we have seen in the previous sections, single slit mappings play a huge role in complex analysis. Nevertheless, there are many models involving several of slits. Therefore, let

[^2]$\gamma_{1}, \ldots, \gamma_{m}:[0, T] \rightarrow \mathbb{D} \cup \mathbb{T}, m \in \mathbb{N}$, denote disjoint simple and continuous curves such that $\gamma_{k}(0, T] \subseteq \mathbb{D} \backslash\{0\}$ and $\gamma_{k}(0) \in \mathbb{T}$ for each $k \in\{1, \ldots, m\}$. Analogously to Section 1.1, we define for each $t \in[0, T], g_{t}$ as the unique conformal mapping from $\Omega_{t}:=\mathbb{D} \backslash \bigcup_{k=1}^{m} \gamma_{k}(0, t]$ onto \mathbb{D} having the normalisation $g_{t}(0)=0$ and $g_{t}^{\prime}(0)>0$. Moreover, we set $\Gamma_{k}:=\gamma_{k}[0, T]$, $k \in\{1, \ldots, m\}$ and we call $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right)$ tuple of disjoint radial unparametrised slit in \mathbb{D}. Then one might ask the question if there are parametrisations $\gamma_{k}:[0, T] \rightarrow \Gamma_{k}$ with $k \in\{1, \ldots, m\}$ such that the corresponding $t \mapsto g_{t}$ are differentiable on $[0, T]$. Moreover, it would be nice to find a characterisation of the parametrisations leading to differentiable $t \mapsto g_{t}$.

The first person who studied this case was E. Peschl, see [Pes36]. He proposed the following theorem (see Theorem 12 in [Pes36]).

Theorem E. Let $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right), m \in \mathbb{N}$, denote a tuple of disjoint radial unparametrised slits in \mathbb{D}.

Then there are parametrisations $\gamma_{k}:[0, T] \rightarrow \Gamma_{k}$ with $k \in\{1, \ldots, m\}$ and $T>0$ such that for each $z \in \mathbb{D} \backslash \bigcup_{k=1}^{m} \Gamma_{k}$, the corresponding $g_{t}(z)$ is differentiable w.r.t t on $[0, T]$ and fulfils

$$
\dot{g}_{t}(z)=g_{t}(z) \sum_{k=1}^{m} \lambda_{k}(t) \frac{U_{k}(t)+g_{t}(z)}{U_{k}(t)-g_{t}(z)} \quad \text { for all } z \in \Omega \backslash \bigcup_{k=1}^{m} \Gamma_{k} \text { and all } t \in[0, T],
$$

where for each $k \in\{1, \ldots, m\}, t \mapsto U_{k}(t) \in \mathbb{T}$ and $t \mapsto \lambda_{k}(t) \geq 0$ are continuous on $[0, T]$.

Here, for all $t \in[0, T]$, g_{t} denotes the unique conformal mapping from $\Omega_{t}:=\mathbb{D} \backslash$ $\bigcup_{k=1}^{m} \gamma(0, t]$ onto \mathbb{D} having the normalisation $g_{t}(0)=0$ and $g_{t}^{\prime}(0)>0$.

The previous differential equation is called multiple slit radial Loewner ODE. Analogously to Section 1.1, it is easy to see that the inverse function $h_{t}:=g_{t}^{-1}$ satisfies a partial different equation, called multiple slit radial Loewner PDE. Obviously, it is possible to consider multiple slits in the chordal setting as well. Moreover, it is important to note that Peschl considered already slits having branch points, for example two slits have a branch point on \mathbb{T} if $\gamma_{1}(0)=\gamma_{2}(0)$ but $\gamma_{1}(0, T]$ and $\gamma_{2}(0, T]$ are still disjoint.

Nowadays multiple slit Loewner equations have several applications. First let us have a rough look at Mathematical Physics. Herein, multiple slit Loewner equations are used to describe Laplacian growth models. For example, see [Sel99] or [CM02] where it is assumed that $\gamma_{k}(t)$ expands in terms relative to the Laplacian field. Moreover, the considered slits can have branch points as well. One can see that the functions $\lambda_{k}(t)$, $k \in\{1, \ldots, m\}$, represent growth factors indicating 'how fast a slit grows'. Models where the growth of multiple slits is restricted to a channel were studied in [GS08].

Another application of multiple slit Loewner equations is due to D. Prokhorov. Herein, Prokhorov used multiple slit Loewner equations from an control-theoretical point of view to study coefficient extremal problems for univalent functions, see [Pro93]. An important theorem for his approach is the following.

Theorem \mathbf{F}. Let $\left(\Gamma_{1}, \Gamma_{2}\right)$ denote a tuple of disjoint radial unparametrised slits in \mathbb{D}. Moreover, assume Γ_{1}, Γ_{2} are piecewise analytic.

Then there is a unique $T>0$, unique parametrisations $\gamma_{1}, \gamma_{2}:[0, T] \rightarrow \Gamma_{k}$ and unique constants $\lambda_{1}, \lambda_{2} \in(0,1)$ with $\lambda_{1}+\lambda_{2}=1$ such that for each $z \in \mathbb{D} \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)$, $t \mapsto g_{t}(z)$ is differentiable on $[0, T]$ and fulfils the following differential equation

$$
\dot{g}_{t}(z)=g_{t}(z) \sum_{k=1}^{2} \lambda_{k} \frac{U_{k}(t)+g_{t}(z)}{U_{k}(t)-g_{t}(z)} \quad \text { for all } z \in \mathbb{D} \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right) \text { and all } t \in[0, T]
$$

where, for each $k \in\{1,2\}, t \mapsto U_{k}(t) \in \mathbb{T}$ is continuous on $[0, T]$. Herein, for each $t \in[0, T], g_{t}$ denotes the unique conformal mapping from $\Omega_{t}:=\mathbb{D} \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$ onto \mathbb{D} having the normalisation $g_{t}(0)=0$ and $g_{t}^{\prime}(0)>0$.

Under the conditions of Theorem F , the differential equation gives us easily $g_{t}^{\prime}(0)=e^{t}$ for all $t \in[0, T]$.

Note that the unique parametrisations from the previous theorem can be seen as a canonical parametrisation of the two unparametrised slits Γ_{1} and Γ_{2}. In the single slit case, there is a unique parametrisation satisfying $g_{t}^{\prime}(0)=e^{t}$ for all $t \in[0, T]$ as well. Thus Theorem F represents the natural generalization of Loewner's original theorem to multiple slits, see also the introduction of Chapter 3. Recently, O. Roth and S. Schleißinger found a proof of Theorem F in the chordal case. Herein, they were able to drop the assumption of Γ_{1} and Γ_{2} to be piecewise analytic, see [RS14].

Finally, the multiple slit equation was used to define Schramm-Loewner evolution for multiple slits, see [KL07] for more details. There are a lot of papers concerning SLE for multiple slits, see [dMS15] for a recent reference.

1.4 Loewner equations in multiply connected domains

Nowadays, there are several generalizations of Loewner's differential equation to multiply connected domains. The first person who considered multiply connected domains was Yûsaku Komatu (2 January 1914 - 30 July 2004), see his doctoral thesis [Kom43], which was supervised by M. Tsuji. Detailed informations concerning Komatu's life and mathematical work can be found in [Tak05]. In [Kom43], Komatu established a Loewner equation in a doubly connected annulus and he used this result to study distortion properties (see $\S 4, \S 5$ and $\S 6$ in [Kom43]). Later Komatu considered a general \mathfrak{n}-connected slit annulus case, $\mathfrak{n} \in \mathbb{N}$, as well, see [Kom50].

In this context, let Ω denote a circular slit annulus, i.e. an annulus $\mathbb{A}_{Q}:=\{z \in$ $\mathbb{C}|Q<|z|<1\}$ minus $\mathfrak{n}-2$ disjoint proper concentric circular arcs (centred at 0). Moreover, let $\gamma:[0, T] \rightarrow \Omega \cup \mathbb{T}$ be a simple continuous curve such that $\gamma(0) \in \mathbb{T}$ and $\gamma(0, T] \subseteq \Omega$. Note that there are mapping theorems for multiply connected domains analogously to Riemann's mapping theorem for simply connected domains, see Section 2.1 for more details. Using a suitable normalisation (see the next theorem), there is a unique conformal mapping from $\Omega_{t}:=\Omega \backslash \gamma(0, t]$ onto a circular slit annulus D_{t} with inner radius $q_{t}>0$ for each $t \in[0, T]$. Komatu found out that it is important to parametrise $\Gamma:=\gamma[0, T]$ in such a way that $t \mapsto q_{t}$ is differentiable. In particular, it is possible to find a unique parametrisation such that $q_{t}=Q e^{t}$. Then Komatu proposed the following theorem, see page 30 in [Kom50].

Theorem G. Let Ω denote a circular slit annulus with inner radius Q and $\gamma:[0, T] \rightarrow$ $\Omega \cup \mathbb{T}$ is a continuous and simply curve such that $\gamma(0) \in \mathbb{T}$ and $\gamma(0, T] \subseteq \Omega$. Moreover, for each $t \in[0, T]$, we denote by g_{t} the unique conformal mapping from $\Omega_{t}:=\Omega \backslash \gamma(0, t]$ onto the circular slit annulus D_{t} such that g_{t} associates \mathbb{T}_{Q} with $\mathbb{T}_{q t}, g_{t}$ associates the outer boundary of Ω_{t} with \mathbb{T}, and $g_{t}(Q)=q_{t}$. Assume γ is parametrised in such a way that $q_{t}=Q \cdot e^{t}$ for all $t \in[0, T]$.

Then, for each $t \in[0, T)$ and each $z \in \Omega_{t}, t \mapsto g_{t}(z)$ is differentiable from the left and satisfies the following differential equation

$$
\begin{equation*}
\partial_{t}^{-} g_{t}(z)=-g_{t}(z)\left(\frac{\partial F_{D_{t}}\left(U_{t}, g_{t}(z)\right)}{\partial n_{1}}-\frac{\partial F_{D_{t}}\left(U_{t}, q_{t}\right)}{\partial n_{1}}+\sum_{k=1}^{\mathfrak{n}-1} R_{D_{t} ; k}\left(g_{t}(z)\right) \frac{\partial_{t}^{-} m_{k}(t)}{m_{k}(t)}\right) \tag{1.3}
\end{equation*}
$$

for all $z \in \Omega_{T}$ and $t \in[0, T]$. Herein, for each $t \in[0, T], F_{D_{t}}(\cdot, w)$ is a multivalent function such that the real part denotes Green's function of D_{t} with pole at w. For each $k \in\{1, \ldots, \mathfrak{n}\}$ and $t \in[0, T], R_{D_{t} ; k}$ is a multivalent function such that the real part is the harmonic measure of D_{t} where $\Re R_{D_{t} ; k} \equiv 1$ on $C_{k}(t)$ and 0 otherwise. $C_{k}(t)$, $k \in\{1, \ldots, \mathfrak{n}\}$, describes the boundary components of D_{t} where $C_{1}(t)=\mathbb{T}_{q_{t}}$ and $C_{\mathfrak{n}}(t)=$ \mathbb{T}. $m_{k}(t)$ denotes the radius of $C_{k}(t)$, i.e. $m_{k}(t)=\operatorname{dist}\left(0, C_{k}(t)\right)$ and $t \mapsto m_{k}(t)$ is differentiable from the left. Finally, $\frac{\partial}{\partial n_{1}}$ denotes the derivative along the unit inner normal of the first variable.

The previous differential equation is called bilateral (single-slit) Komatu-Loewner $O D E^{5}$.

In 2005, R. Bauer and R. Friedrich found similar results in the radial and chordal case, see [BF06] and [BF08]. In the radial case the canonical class is the unit disk minus disjoint proper concentric circular arcs, while in the chordal case one takes the upper half-plane minus disjoint proper closed line segments slits parallel to the real axis, see also Figure 2.1 in Section 2.1. The annulus case (see Theorem G), is also called bilateral case. Moreover, in [BF08], Bauer and Friedrich gave the first rigorous proof of Theorem G. Following Komatu's ideas they only proved differentiability in the left sense.

On top of this Bauer and Friedrich used their results to define candidates for SLE in multiply connected domains. In this context, they considered all the three different cases (radial, bilateral and chordal). Recently, there are several papers concerning SLE in multiply connected domains, see for example [Law11] and [Dre11].

Simultaneously to the authors research, Z. Chen, M. Fukushima and S. Rhode found a way to establish (left and right) differentiability of g_{t} in the chordal setting, see [CFR13]. Note that their proof is based on probabilistic arguments. A new proof of the doubly connected bilateral case, i.e. the annulus without interior slits, using methods related to Komatu's original ideas was given recently by M. Fukushima and H. Kaneko, see [FK14]. In the general \mathfrak{n}-connected bilateral case they proved differentiability analogously to the approach of Bauer and Friedrich, only in the left sense. This problem led them to the following question, see Section 6 in [FK14]:

[^3]'In the case where $\mathfrak{n}>2$ so that the degree of the multiplicity of the circular slit annulus Ω is equal or greater than 3, the problem of proving the equation (1.3) to be a genuine ODE remains open, although Komatu [Kom50] tried to do so by an induction in $\mathfrak{n} \geq 2$ not quite successfully.'
Beside the previously mentioned works, there were many other contributions to Loewner's differential equation in multiply connected domains. For example, in 1951, G. Goluzin found a way how to prove Komatu's results in the doubly connected case without using the theory of elliptic functions, see [Gol51]. A completely different setting was considered by Kufarev in terms of covering maps of the unit disk, see [KK55].

In the annulus case, M. Contreras, S. Díaz-Madrigal and P. Gumenyuk established recently a general Loewner theory, see [CDMG13] and [CDMG11].

Finally, let us mention a survey paper about the evolution of Loewner theory, see [ABCDM10].

1.5 Outline of the thesis

The main object of this thesis is to generalise all previously mentioned theorems to multiply connected domains and multiple slits. Concerning this matter, our approach is purely function-theoretic. As far as possible, we will prove the theorems in all three cases (radial, bilateral and chordal) simultaneously. Moreover, we are going to separate between disjoint and branched slits and surprisingly, we will see that some statements are not valid in the branch point case any more.

In Chapter 2 we are going to generalise Theorem A, G and D to multiply connected domains and multiple slits. First of all, we summarise some important tools and notations, see Section 2.1. Herein, we discuss the concept of kernel convergence for multiply connected domains. This method will be key for our approach. In Section 2.2 we will study the kernel function $\Phi_{a, \zeta, \Omega}$ in all three cases, which appeared in the bilateral case already on the right-hand side of the differential equation in Theorem G. Beside an analytic representation in terms of relatives to Green's function we will mainly use a geometric characterisation of $\Phi_{a, \zeta, \Omega}$, see Proposition 2.17. Together with the extended kernel theorem, this representation will give us more flexibility, in particular for proving the right differentiability.

Next, we are going to prove Theorem G, see Section 2.6. In this context, we will prove left and right differentiability, so this will solve the previous question by Fukushima and Kaneko. Note that we will give a universal proof, i.e. we prove the radial, bilateral and chordal case simultaneously. On top of this, in the context of this proof we will consider already multiple slits. Finally, we obtain Theorem 2.30, 2.31 and 2.36 generalizing Theorem A, G and D to multiply connected domains and multiple slits, see also Remark 2.6. Preliminary to Section 2.6 , we prepare all the important facts regarding the radial case in Section 2.3, the bilateral case in Section 2.4 and the chordal case in Section 2.5. In order to prove Theorem 2.30, 2.31 and 2.36 simultaneously, we summarise these facts in the beginning of Section 2.6, see Subsection 2.6.1.

Subsequently, we are going to consider arbitrary parametrisation of multiple slit. In this regard, we will show that differentiability still holds almost everywhere, see Theorem
2.52, 2.53 and 2.54 in Section 2.7. Finally, we will discuss an important subadditivity property known to be true in the simply connected cases, see Section 2.8 . This property will be an important tool for our further approach. Unfortunately, we do not know if this is also true in case of multiply connected domains, see Question 1.

The goal of Chapter 3 is to generalise Theorem F to the radial, bilateral and chordal case for multiply connected domains. We will be able to drop the assumption of piecewise analytic slits in here as well. In Section 3.1 we are going to discuss the disjoint case, see Theorem 3.2, 3.3 and 3.4. Note that the given proof will be universal, i.e. we will prove the radial, bilateral and chordal case simultaneously.

Subsequently, see Section 3.2, we consider the branch point case. Herein, we study all three cases simultaneously as well and we are going to prove the existence of constant coefficients in case of multiply connected domains. Unfortunately, we were not able to prove the uniqueness of these constant coefficients and their corresponding parametrisations in the multiply connected setting. However, we will give a uniqueness proof in the simply connected case. The reason for this is that we have the subadditivity property of the appropriate capacity available for simply connected domains only, see Section 2.8.

The major goal of Chapter 4 is to generalise Theorem E to the radial, bilateral and chordal case in multiply connected domains. In Section 4.1 we will consider the disjoint case where we will describe all parametrisations in the multiply connected multiple slit case leading to (continuously) differentiable mapping functions. In this context, we will obtain a characterisation of the differentiability set in the multiply connected multiple slit case by differentiability sets in simplified single slit cases, see Theorem 4.1 and Corollary 4.2. In the following, we will use this Theorem to construct parametrisations leading to continuously differentiable mapping functions, see Proposition 4.4 and Theorem 4.6.

Next, we are going to discuss the branch point case, see Section 4.2. We will see that the previous characterisation is not true in general, see Theorem 4.8. The given counterexamples are based on self-similarity.

Note that the previous chapters considered slit mappings only, so in the final Chapter 5 we will study the growth of general hulls in multiply connected domains. As a reason of technical difficulties, we will restrict this to the radial case. Nevertheless, it is possible to establish analogous results in the bilateral and chordal case, in a similar way, as well. In Section 5.2 we are going to generalise Theorem C to multiply connected domains, see Theorem 5.1. Unfortunately, we need to restrict this theorem to hulls that do not swallow interior boundary components, see Example 5.1 pointing out a reason why this is necessary. Finally, it is possible to sharpen one direction of Theorem 5.1 to general hulls, allowing them to swallow interior boundary components, see Theorem 5.2.

Chapter 2

Komatu-Loewner equations for canonical domains

First of all, let us define the following classes of domains:
(a) A circular slit disk is the unit disk \mathbb{D} minus a finite number of disjoint proper concentric circular arcs centred at 0 with radii in $(r, 1)$.
(b) A circular slit annulus is an annulus $\mathbb{A}_{r}:=\{z \in \mathbb{C}|r<|z|<1\}$, with $r \in(0,1)$, minus a finite number of disjoint proper concentric circular arcs centred at 0 with radii in $(r, 1)$.
(c) An upper (or right) parallel slit half-plane is the upper (right) half-plane minus a finite number of disjoint proper closed line segments parallel to the real (imaginary) axis.

A domain Ω is called canonical if it is a circular slit disk, a circular slit annulus or an upper parallel slit half-plane, see Figure 2.1.

(c)

Figure 2.1: Triply connected canonical domains: circular slit disk, circular slit annulus and upper parallel slit half-plane

2.1 Some important tools and notations

We denote by $\mathbb{C}_{\infty}:=\mathbb{C} \cup\{\infty\}$ the Riemann sphere. Let $\Omega \subseteq \mathbb{C}_{\infty}$ be a finitely connected domain. Then Ω is called nondegenerate if each boundary component of Ω with
respect to \mathbb{C}_{∞} consists of more than a single point ${ }^{6}$. Obviously, each canonical domain is nondegenerate. In the following we denote by $\operatorname{con}(\Omega)$ the connectivity of the domain Ω. Moreover, we use the abbreviations $\operatorname{cl}(\Omega)$ and $\operatorname{cl}_{\infty}(\Omega)$ to indicate the closure of the domain Ω with respect to the standard topology on \mathbb{C} and \mathbb{C}_{∞}, respectively. Note that $\operatorname{cl}(\Omega)=\operatorname{cl}_{\infty}(\Omega)$ if $\Omega \subseteq \mathbb{C}$ is bounded and $\operatorname{cl}(\Omega) \cup\{\infty\}=\operatorname{cl}_{\infty}(\Omega)$ if $\Omega \subseteq \mathbb{C}$ is unbounded. A (parametrised) Jordan curve (in $\Omega \subseteq \mathbb{C}$) is a continuous $\gamma:[a, b] \rightarrow \Omega, a<b$, such that $\gamma(t)=\gamma(s)$ if and only if $s=t$ or $|s-t|=b-a$. Moreover, $\gamma:[a, b] \rightarrow \mathbb{C}_{\infty}$ is a (parametrised) Jordan curve (in \mathbb{C}_{∞}) if there is a $c \in \mathbb{C}$ such that $t \mapsto 1 /(\gamma(t)-c)$ is a parametrised Jordan curve in \mathbb{C}. Sometimes we call the trace $\gamma[a, b]$ a Jordan curve as well. The Jordan curve theorem shows that every Jordan curve Γ in \mathbb{C} divides the plane \mathbb{C} into two domains: the interior $\operatorname{int}(\Gamma)$ and the exterior $\operatorname{ext}(\Gamma)$. Finally, a bounded domain $\Omega \subseteq \mathbb{C}$ is called analytic Jordan domain if each boundary component is an analytic Jordan curve in \mathbb{C}.

Riemann mapping theorems and extremal properties

The well-known Riemann mapping theorem shows that each simply connected domain $\Omega \neq \mathbb{C}$ can be mapped by a conformal mapping g onto the unit disk. Moreover, this mapping is unique if we claim $a \mapsto g(a)=0$ and $g^{\prime}(a)>0$ with some arbitrary $a \in \Omega$. An iteratively application of this theorem gives us the following lemma.

Lemma 2.1 ([Con95], Theorem 15.2.1). Let Ω be a nondegenerate \mathfrak{n}-connected domain with $\mathfrak{n} \in \mathbb{N}$. Then there is a conformal mapping $g: \Omega \rightarrow D$ such that D is an analytic Jordan domain where \mathbb{T} is the outer boundary component of D.

Obviously, the mapping from Lemma 2.1 mapping is not unique. For instance, we find for every boundary component A of Ω a conformal mapping g such that g associates A with \mathbb{T}. Nevertheless, in case of multiply connected domains, there are analogous theorems to Riemann's mapping theorem for simply connected domains.

Proposition 2.2 ([Con95], Theorem 15.6.2). Let Ω be a nondegenerate \mathfrak{n}-connected domain with $\mathfrak{n} \in \mathbb{N}, a \in \Omega$ and E is a connected component of $\partial_{\infty} \Omega$. Then there is a unique circular slit disk D and a unique conformal mapping $g: \Omega \rightarrow D$ such that g associates E with $\mathbb{T}, g(a)=0$ and $g^{\prime}(a)>0$.

Proposition 2.3 ([Con95], Theorem 15.5.1). Let Ω be a nondegenerate \mathfrak{n}-connected domain with $\mathfrak{n} \geq 2, a \in \Omega$ and E and F are two different connected components of $\partial_{\infty} \Omega$. Then there is a unique $r>0$, a unique circular slit annulus D with inner radius r and a unique conformal mapping $g: \Omega \rightarrow D$ such that g associates E with \mathbb{T}, g associates F with \mathbb{T}_{r} and $g^{\prime}(a)>0$.

Proposition 2.4. Let $\Omega \subseteq \mathbb{H}$ be a nondegenerate \mathfrak{n}-connected domain with $\mathfrak{n} \in \mathbb{N}$ and assume $\mathbb{H} \backslash \Omega$ is bounded. Then there is a unique upper parallel slit half-plane D, a unique $a \in \mathbb{C}$ and a unique conformal mapping $g: \Omega \rightarrow D$ with

$$
g(z)=z+\frac{a}{z}+\mathcal{O}\left(|z|^{-2}\right) \quad \text { around } \infty
$$

[^4]Proof. This theorem follows easily from Theorem 3.5.2 in [Gru78]. First let $\Omega^{*} \subseteq \mathbb{C}_{\infty}$ be the domain that arise from Ω by a reflection along the real axis. Consequently, $\infty \in \Omega^{*}$ and $\operatorname{con}\left(\Omega^{*}\right)=2 \mathfrak{n}-1$ where $\mathfrak{n}:=\operatorname{con}(\Omega)$. Using Theorem 3.5.2 in [Gru78], we find a unique conformal mapping $g^{*}: \Omega^{*} \rightarrow D^{*}$ where D^{*} is the Riemann sphere minus $2 \mathfrak{n}-1$ bounded disjoint proper closed line segments parallel to real axis and $g^{*}(\underline{z})-z \rightarrow 0$ as $z \rightarrow \infty$. Note that $g^{*}(z)=\overline{g^{*}(\bar{z})}$ for all $z \in \Omega^{*}$. Otherwise, $h(z):=\overline{g^{*}(\bar{z})}$ would contradict the uniqueness of g^{*}. Finally, $g:=\left.g^{*}\right|_{\Omega}$ is the unique mapping function we were looking for.

Remark 2.1. Note that the previous proof showed that the function g in Proposition 2.4 is well defined in a neighbourhood around ∞ by the Schwarz reflection principle. Moreover, $a \geq 0$ as real values around ∞ are mapped by $g(z)=z+\frac{a}{z}+\mathcal{O}\left(|z|^{-2}\right)$ to real values around ∞ and the orientation is preserved. The previous normalisation is called hydrodynamic normalisation.

These three mapping theorems will build our foundation for studying expanding families of multiply connected domains:
(a) Proposition 2.2 will be used in Section 2.3 in order to establish a radial KomatuLoewner equation.
(b) Proposition 2.3 will be used in Section 2.4 in order to establish a bilateral KomatuLoewner equation.
(c) Proposition 2.4 will be used in Section 2.5 in order to establish a chordal KomatuLoewner equation.

Beside these theorems we need one further canonical mapping that will represent the kernel in Komatu-Loewner equations.

Proposition 2.5 (Theorem 2.3 in [Cou77]). Let Ω be a nondegenerate \mathfrak{n}-connected domain with $\mathfrak{n} \in \mathbb{N}$ such that $\partial \Omega$ is locally connected, and the outer or unbounded boundary component $C_{\mathfrak{n}}$ is an analytic Jordan curve in \mathbb{C}_{∞}. Assume $\zeta \in C_{\mathfrak{n}} \backslash\{\infty\}$ and $a \in \operatorname{cl}_{\infty}(\Omega) \backslash\{\zeta\}$.

Then there is a unique conformal mapping $w \mapsto \Phi_{a, \zeta, \Omega}(w)$ that maps Ω onto a right parallel slit half-plane with the normalisation $\Phi_{a, \zeta, \Omega}(a) \geq 0$ and $\left|\Phi_{a, \zeta, \Omega}(w)(w-\zeta)\right| \rightarrow 2$ as $w \rightarrow \zeta$.

It is easy to see that $\Phi_{a, \zeta, \Omega}-\Phi_{b, \zeta, \Omega} \equiv$ ic with $c \in \mathbb{R}$ whenever $a, b \in \mathrm{cl}_{\infty}(\Omega)$ and $\zeta \in C_{\mathfrak{n}} \backslash\{a, b, \infty\}$. Note that $\Phi_{a, \zeta, \Omega}(a)$ is well defined since $\partial_{\infty} \Omega$ is locally connected, see Theorem 2.1 in [Pom92]. Moreover, the $\operatorname{limit}^{\lim }{ }_{w \rightarrow \zeta}\left|\Phi_{a, \zeta, \Omega}(w)(w-\zeta)\right|$ is well-defined as well. To see this let us have a look at the function $h(w):=1 / \Phi_{a, \zeta, \Omega}(w), w \in \Omega$. Since $C_{\mathfrak{n}}$ is an analytic Jordan curve, we are able to reflect h along $C_{\mathfrak{n}}$, so h has an analytic extension to an open neighbourhood of ζ. Finally, an easy calculation shows $\lim _{w \rightarrow \zeta} \Phi_{a, \zeta, \Omega}(w)(w-\zeta)=1 / h^{\prime}(\zeta)$ where $h^{\prime}(\zeta) \neq 0$ as a consequence of the univalence.

From now on and for the rest of this thesis, we will use the notation $\Phi_{a, \zeta, \Omega}(w)$ in order to represent the conformal map from the previous proposition.

Remark 2.2. In case of $\Omega=\mathbb{D}$ and $\zeta \in \mathbb{T}$ we get

$$
\Phi_{0, \zeta, \mathbb{D}}(w)=\frac{\zeta+w}{\zeta-w} \quad \text { for all } w \in \mathbb{D}
$$

Analogously, with $\Omega=\mathbb{H}$ and $\zeta \in \mathbb{R}$, we find

$$
\Phi_{\infty, \zeta, \mathbb{H}(}(w)=\frac{2 \mathrm{i}}{w-\zeta} \quad \text { for all } w \in \mathbb{H} .
$$

Finally, we are going to discuss some extremal properties related to the conformal mappings from Proposition 2.2, 2.3 and 2.4.
Lemma 2.6 (Theorem IX. 26 in [Tsu75]). Let Ω be a nondegenerate \mathfrak{n}-connected bounded domain, $\mathfrak{n} \in \mathbb{N}$ and $a \in \Omega$. Assume $E \subseteq \partial \Omega$ denotes the outer boundary component of Ω and

$$
\mathcal{F}:=\left\{f: \Omega \rightarrow \mathbb{D} \mid f \text { univalent, } f(a)=0, f^{\prime}(a)>0, f \text { associates } E \text { with } \mathbb{T}\right\} .
$$

Then the unique mapping $g \in \mathcal{F}$ from Proposition 2.2 fulfils the extremal property $g^{\prime}(a)=$ $\max _{f \in \mathcal{F}} f^{\prime}(a)$.

Alternatively see Chapter VII. 2 in [Neh52].
Remark 2.3. In the previous definition of \mathcal{F} we require f to be univalent. What if we drop the univalence? Let us consider the following class

$$
\mathcal{F}:=\left\{f: \Omega \rightarrow \mathbb{D} \mid f \text { analytic, } f(a)=0, f^{\prime}(a)>0\right\}
$$

and consider the extremal problem $\sup _{f \in \mathcal{F}} f^{\prime}(a)$. Using Montel's theorem, it is easy to see that there is an analytic extremal function f^{*}. If $\Omega \neq \mathbb{C}$ is simply connected, f^{*} coincides with g, but if $\mathfrak{n}=\operatorname{con}(\Omega)>1$ this is not the case. In particular, f^{*} is the so called Ahlfors function that maps Ω onto the \mathfrak{n}-sheeted unit disk, see Theorem XI.3.1 in [Gol69]. Consequently, f^{*} is not univalent if $\mathfrak{n}>1$.

Lemma 2.7 (Theorem IX. 29 in [Tsu75]). Let Ω be a nondegenerate \mathfrak{n}-connected bounded domain with $\mathfrak{n} \geq 2$ and E and F are two different boundary components of Ω. Moreover, we set

$$
\mathcal{F}:=\bigcup_{r \in(0,1)} \mathcal{F}_{r}, \quad \mathcal{F}_{r}:=\left\{f: \Omega \rightarrow \mathbb{D} \mid f \text { univalent, } \quad f \text { associates } E \text { with } \mathbb{T} \text { and } F \text { with } \mathbb{T}_{r}\right\} .
$$

Then the unique mapping $g \in \mathcal{F}$ from Proposition 2.3 fulfils the extremal property $g \in \mathcal{F}_{r_{0}}$ with $\mathcal{F}=\bigcup_{r \in\left(0, r_{0}\right]} \mathcal{F}_{r}$ and $r_{0} \in(0,1)$.
Lemma 2.8. Let $\Omega \subseteq \mathbb{H}$ be a nondegenerate \mathfrak{n}-connected domain with $\mathfrak{n} \in \mathbb{N}$ such that $\mathbb{H} \backslash \Omega$ is bounded. Moreover, we set

$$
\begin{array}{r}
\mathcal{F}:=\{f: \Omega \rightarrow \mathbb{H} \mid f \text { univalent, } \mathbb{R} \text { is the unbounded connected component of } \partial f(\Omega), \\
\left.\qquad f(z)=z+\frac{a_{f}}{z}+\mathcal{O}\left(|z|^{-2}\right) \text { around } \infty\right\} .
\end{array}
$$

Then the unique mapping $g \in \mathcal{F}$ from Proposition 2.4 fulfils the extremal property $a_{g}=$ $\max _{f \in \mathcal{F}} a_{f}$.

Proof. Obviously, each $f \in \mathcal{F}$ can be extended to a function $f: \Omega^{*} \rightarrow \mathbb{C}_{\infty}$ such that Ω^{*} arise from the reflection of Ω along the real axis. Thus ∞ is an inner point of Ω^{*}. Note that the extended mapping g from Proposition 2.4 maps Ω^{*} onto \mathbb{C}_{∞} minus disjoint proper closed line segments parallel to the real axis. Finally, we get the asserted extremal property by applying Theorem 3.5.2 in [Gru78] to the class $\mathcal{F}^{*}:=\left\{f: \Omega^{*} \rightarrow \mathbb{C}|f|_{\Omega} \in\right.$ $\mathcal{F}\}$ and the extended function $g: \Omega^{*} \rightarrow \mathbb{C}_{\infty}$.

Kernel convergence

Kernel convergence due to Carathèodory is a very powerful and important tool in geometric function theory, see Section 1.4 in [Pom75] or Section 3.1 in [Dur83] where the concept is explained in case of simply connected domains.

In case of multiply connected domains we refer to Section 15.4. in [Con95]. Let $\left(\Omega_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{C}$ be a sequence of domains such that $0 \in \Omega_{n}$ for almost all $n \in \mathbb{N}$. The kernel (with respect to 0) of the sequence $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ is the connected component of the set

$$
\begin{equation*}
K:=\left\{z \in \mathbb{C} \mid \exists_{r>0} \exists_{N \in \mathbb{N}} \forall_{n \geq N}: B_{r}(z) \subseteq \Omega_{n}\right\} \tag{2.1}
\end{equation*}
$$

that contains 0 if there is a connected component that contains 0 . Otherwise the sequence does not have a kernel. We say that the sequence $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ converges to Ω in terms of $\Omega_{n} \xrightarrow{\mathrm{k}} \Omega$ if Ω is the kernel of each subsequence of $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$. Moreover, let $\left(\Omega_{t}\right)_{t \in[0, T]}$ be a family of domains. Then $t \mapsto \Omega_{t}$ is continuous at t_{0} (with respect to kernel convergence) if $\Omega_{t_{n}} \xrightarrow{\mathrm{k}} \Omega_{t_{0}}$ for each sequence $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ with $t_{n} \rightarrow t_{0}$. In this case we write $\Omega_{t} \xrightarrow{\mathrm{k}} \Omega_{t_{0}}$ as well. On top of this we call the family $\left(\Omega_{t}\right)_{t \in[0, T]}$ continuous (with respect to kernel convergence) if $t \mapsto \Omega_{t}$ is continuous at each $t \in[0, T]$.

According to this definition it is not surprising that monotone sequences converge to their kernels.

Lemma 2.9. Let $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ satisfy $0 \in \Omega_{n} \subseteq \Omega_{n+1}$ for all $n \in \mathbb{N}$ or $\mathbb{D}_{\varepsilon} \subseteq \Omega_{n+1} \subseteq \Omega_{n}$ for all $n \in \mathbb{N}$ with an arbitrary $\varepsilon>0$. Then the sequence $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ does have a kernel Ω and $\Omega_{n} \xrightarrow{k} \Omega$.

Proof. First of all, it is clear that $K=\bigcup_{n \in \mathbb{N}} \Omega_{n}$ if $\Omega_{n} \subseteq \Omega_{n+1}$ for all $n \in \mathbb{N}$ and $K=\bigcap_{n \in \mathbb{N}} \Omega_{n}$ if $\Omega_{n+1} \subseteq \Omega_{n}$ where K is defined as in Equation (2.1). Moreover, we obtain the same set K if we consider subsequences of $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$.

Consequently, there is an $\varepsilon>0$ such that $\mathbb{D}_{\varepsilon} \subseteq \Omega_{n}$ for all $n \in \mathbb{N}$ in either case. Thus $\mathbb{D}_{\varepsilon} \subseteq K$ as well. Summarising, $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ converges to the connected component of K that contains 0 , which we denote by Ω.

A very important property of kernel convergence is the following.
Lemma 2.10. Let $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ be a sequence of domains such that $\Omega_{n} \xrightarrow{k} \Omega$. Assume $a \in \partial \Omega$ is fixed. Then we find a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $a_{n} \in \partial \Omega_{n}$ such that $a_{n} \rightarrow a$ as $n \rightarrow \infty$.

Proof. This follows immediately from Exercise 15.4.5 from [Con95].

Next, we are going to combine the concept of kernel convergence with sequences of analytic functions. Therefore, let us assume that $f_{n}: \Omega_{n} \rightarrow D_{n}$ is a conformal mapping for each $n \in \mathbb{N}$ and $\Omega_{n} \xrightarrow{\mathrm{k}} \Omega$. Then we say that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly on Ω to $f: \Omega \rightarrow \mathbb{C}$ or uniformly on compact sets of Ω to $f: \Omega \rightarrow \mathbb{C}$ if for every compact subset $K \subseteq \Omega$ and for every $\varepsilon>0$, there is an $N \in \mathbb{N}$ such that $\left|f_{n}(z)-f(z)\right|<\varepsilon$ for all $z \in K$ and all $n \geq N$. When this happens $f: \Omega \rightarrow D$ is either conformal or constant and we write $f_{n} \xrightarrow{\text { l.u. }} f$ on Ω.

On top of this, let $\left(\Omega_{t}\right)_{t \in[0, T]}$ be a continuous family with respect to kernel convergence and $\left(f_{t}\right)_{t \in[0, T]}$ with $f_{t}: \Omega_{t} \rightarrow \mathbb{C}$ analytic. Then $t \mapsto f_{t}$ is called continuous at t_{0} (with respect to compact convergence) if $f_{t} \xrightarrow{\text { l.u. }} f_{t_{0}}$ on $\Omega_{t_{0}}$, i.e. if we have $f_{t_{n}} \xrightarrow{\text { l.u. }} f_{t_{0}}$ on $\Omega_{t_{0}}$ for each sequence $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ with $t_{n} \rightarrow t_{0}$. Furthermore, $t \mapsto f_{t}$ with $t \in[0, T]$ is called continuous (with respect to compact convergence) if $t \mapsto f_{t}$ is continuous at each $t \in[0, T]$.

An interesting question is if there is any connection between the convergence of $\left(f_{n}\right)_{n \in \mathbb{N}}$ and the convergence of the image domains $\left(D_{n}\right)_{n \in \mathbb{N}}=\left(f_{n}\left(\Omega_{n}\right)\right)_{n \in \mathbb{N}}$. The following proposition gives an answer.

Proposition 2.11 (Theorem 15.4.10 in [Con95]). Assume $f_{n}: \Omega_{n} \rightarrow D_{n}$ is conformal for each $n \in \mathbb{N}, \Omega_{n} \xrightarrow{k} \Omega \neq \mathbb{C}$, and $f_{n}(0)=0$ and $f_{n}^{\prime}(0)>0$ for almost all $n \in \mathbb{N}$. Then there is a conformal mapping $f: \Omega \rightarrow D$ such that $f_{n} \xrightarrow{\text { l.u. }} f$ on Ω if and only if $D_{n} \xrightarrow{k} D$.

What if the sequence Ω_{n} does not have a kernel or does not satisfy $0 \in \Omega_{n}$? Let $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ be a sequence of domains (not necessarily having $0 \in \Omega_{n}$ for all or at least almost all $n \in \mathbb{N}$). Then we can not define the kernel of $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ as we did previously. Nevertheless, we can still define the set K from Equation (2.1) what we call the weak kernel of $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ if K is non-empty.

Let Ω be the weak kernel of $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ and denote by A an arbitrary connected component of Ω. Then we find easily, $\Omega_{n}-a \xrightarrow{\mathrm{k}} A-a$ for each $a \in A$. Herein, $A-a:=\{z \in \mathbb{C} \mid z+a \in A\}$. Moreover, let $f_{n}: \Omega_{n} \rightarrow D_{n}$ be a conformal mapping for each $n \in \mathbb{N}$. Then we say $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly on A to $f: A \rightarrow \mathbb{C}$ if there is an $a \in A$ such that $h_{n} \xrightarrow{\text { l.... }} h$ on $A-a$ with $h_{n}: \Omega_{n}-a \rightarrow D_{n}, h_{n}(z):=f_{n}(z+a)$ and $h: \Omega-a \rightarrow \mathbb{C}, h(z):=f(z+a)$. If this happens, we write $f_{n} \xrightarrow{\text { l.u. }} f$ on A as well.

Consequently, Proposition 2.11 gives us the following corollary.
Corollary 2.12. Let $A \neq \mathbb{C}$ and $\Omega_{n}, n \in \mathbb{N}$, be domains such that $\Omega_{n}-a \xrightarrow{k} A-a$ for some $a \in A$. For each $n \in \mathbb{N}$, we denote by $f_{n}: \Omega_{n} \rightarrow D_{n}$ a conformal mapping. Moreover, assume $f_{n} \xrightarrow{\text { l.u. }} f$ on A with a conformal mapping $f: A \rightarrow D$. Then $D_{n}-b \xrightarrow{k} D-b$ for all $b \in D$.

Proof. Let $a \in A$ and $\Omega_{n}^{\prime}:=\Omega_{n}-a$. Then $\Omega_{n}^{\prime} \xrightarrow{\mathrm{k}} A^{\prime}:=A-a$. Note that $f_{n}(a) \rightarrow f(a)$ and $f_{n}^{\prime}(a) \rightarrow f^{\prime}(a) \neq 0$. This gives us $h_{n} \xrightarrow{\text { lu. }} h$ on A^{\prime} where $h_{n}(z):=\left(f_{n}(z+a)-\right.$ $\left.f_{n}(a)\right) / f_{n}^{\prime}(a)$ for all $z \in \Omega_{n}^{\prime}$ and $h(z):=(f(z+a)-f(a)) / f^{\prime}(a)$ for all $z \in A^{\prime}$. It is necessary to choose $n \in \mathbb{N}$ large enough in order to guarantee $a \in \Omega_{n}$. Then $h_{n}(0)=0$ and $h_{n}^{\prime}(0)=1>0$, so we find together with Proposition $2.11\left(D_{n}-f_{n}(a)\right) / f_{n}^{\prime}(a) \xrightarrow{\mathrm{k}}$ $(D-f(a)) / f^{\prime}(a)$. This shows $D_{n}-b \xrightarrow{\mathrm{k}} D-b$ for all $b \in \mathbb{D}$ as well.

Finally, a convergent sequence of canonical domains converges to a canonical domain:
Lemma 2.13. Let $\left(D_{n}\right)_{n \in \mathbb{N}}$ be a sequence of circular slit disks with $D_{n} \xrightarrow{k} D$ and $\operatorname{con}\left(D_{n}\right)=\operatorname{con}(D)$ for all $n \in \mathbb{N}$. Assume D is nondegenerate. Then D is a circular slit disk.

Proof. Note that D is bounded by 1 as all D_{n} are bounded by 1 . We denote by $E_{1}, \ldots E_{\mathrm{n}}$ the connected components of $\mathbb{C} \backslash D$ where $E_{\mathfrak{n}}$ is the unbounded connected component. For each $E_{k}, k \in\{1, \ldots, \mathfrak{n}\}$, we find a Jordan curve $\Delta_{k} \subseteq D$ such that Δ_{k} separates E_{k} from E_{j} with $j \in\{1, \ldots, \mathfrak{n}\} \backslash\{k\}$. Moreover, we can choose Δ_{k} in such a way that $\operatorname{dist}\left(\Delta_{k}, \Delta_{j}\right)>\delta$ whenever $j \neq k$. We set $E_{k}^{\Delta}:=\Delta_{k} \cup \operatorname{int}\left(\Delta_{k}\right), k \in\{1, \ldots, \mathfrak{n}-1\}$ and $E_{\mathfrak{n}}^{\Delta}:=\Delta_{\mathfrak{n}} \cup \operatorname{ext}\left(\Delta_{\mathfrak{n}}\right)$. Consequently, $\operatorname{dist}\left(E_{k}^{\Delta}, E_{j}^{\Delta}\right)>\delta$ for all $k \neq j$ as well. Note that $D^{\Delta}:=D \backslash \bigcup_{k=1}^{\mathfrak{n}} E_{k}^{\Delta}$ is an \mathfrak{n}-connected domain. D is the kernel of the sequence $\left(D_{n}\right)_{n \in \mathbb{N}}$ and $\operatorname{cl}\left(D^{\Delta}\right)$ is a compact set in D, so we find $\operatorname{cl}\left(D^{\Delta}\right) \subseteq D_{n}$ for all $n \geq N$ with $N \in \mathbb{N}$ large.

Next, let be $a \in \partial E_{k}$ with $k \in\{1, \ldots, \mathfrak{n}\}$. Using Lemma 2.10, we find a sequence $a_{n} \in \partial D_{n}$ such that $a_{n} \rightarrow a$. Since $D^{\Delta} \subseteq D_{n}$ and $\operatorname{con}\left(D_{n}\right)=\operatorname{con}(D)$, it is necessary that for all large $n \geq N$, the $\mathfrak{n}-1$ bounded connected components of ∂D_{n} are distributed one-to-one to the bounded connected components of $\mathbb{C} \backslash D$, i.e. if $F_{1}, \ldots, F_{\mathfrak{n}-1}$ denote the bounded connected components of $\mathbb{C} \backslash D_{n}$, then $F_{k} \subseteq E_{I(k)}^{\Delta}$ for all $k \in\{1, \ldots, \mathfrak{n}-1\}$ where $I:\{1, \ldots, \mathfrak{n}-1\} \rightarrow\{1, \ldots, \mathfrak{n}-1\}$ is one-to-one. This gives us

$$
\mathbb{D} \backslash\left(\bigcup_{k=1}^{\mathfrak{n}-1} E_{k}^{\Delta}\right) \subseteq D_{n} \quad \text { for all largen } \geq N .
$$

Consequently, we get $E_{\mathfrak{n}}=\mathbb{C} \backslash \mathbb{D}$, i.e. \mathbb{T} is the outer boundary of D.
On top of this, let $E_{k}, k \in\{1, \ldots, \mathfrak{n}-1\}$ be an arbitrary bounded connected component of $\mathbb{C} \backslash D$. Thus we proved already that for each large $n \in \mathbb{N}$ exactly one (bounded) connected component of $\mathbb{C} \backslash D_{n}$ is a subset of E_{k}^{Δ}. Note that all the bounded connected components of $\mathbb{C} \backslash D_{n}$ are disjoint proper concentric circular arcs. As mentioned before, for each $a \in \partial E_{k}$, we find a sequence $a_{n} \in \partial D_{n}$ such that $a_{n} \rightarrow a$. Finally, all sequences $\left|a_{n}\right|$ are independent of a, so $|a|$ is constant for each $a \in E_{k}$, i.e. E_{k} is a concentric circular arc.

Lemma 2.14. Let $\left(D_{n}\right)_{n \in \mathbb{N}}$ be a sequence of circular slit annuli, D is a nondegenerate domain with $\operatorname{con}\left(D_{n}\right)=\operatorname{con}(D)$ for all $n \in \mathbb{N}$, and $D_{n}-a \xrightarrow{k} D-a$ for some $a \in D$. Then D is a circular slit annulus.

Lemma 2.15. Let $\left(D_{n}\right)_{n \in \mathbb{N}}$ be a sequence of upper (or right) parallel slit half-planes, D is a nondegenerate domain with $\operatorname{con}\left(D_{n}\right)=\operatorname{con}(D)$ for all $n \in \mathbb{N}$, and $D_{n}-a \xrightarrow{k} D-a$ for some $a \in D$. Then D is an upper (or right) parallel slit half-plane.

Proof of Lemma 2.14 and 2.15. This works in the same way as the proof of Lemma 2.13

Normal families

Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of conformal maps $f_{n}: \Omega_{n} \rightarrow D_{n}$ and $\Omega_{n} \xrightarrow{\mathrm{k}} \Omega$. In order to find locally uniformly convergent sequences or at least subsequences, a great tool is the concept of normal families, see [Sch93] as a useful reference.

By $\mathcal{F} \subseteq\{f: \Omega \rightarrow \mathbb{C} \mid f$ analytic $\}$ we denote a locally bounded family, i.e. for each compact set $K \subseteq \Omega$ we find an $M>0$ such that $\|f\|_{K} \leq M$ for all $f \in \mathcal{F}$. Herein, $\|f\|_{K}:=\max _{z \in K}|f(z)|$. Then Montel's famous theorem states that \mathcal{F} is a normal family, i.e. we find for each sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq F$ a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $f_{n_{k}} \xrightarrow{\text { l.u. }} f$ on Ω where $f: \Omega \rightarrow \mathbb{C}$ is an analytic function or $f_{n_{k}}$ tends uniformly on compacts of Ω to infinity. If $\left(f_{n}\right)_{n \in \mathbb{N}}$ is locally bounded, the second case can not occur, so $f_{n_{k}} \xrightarrow{\text { l.u. }} f$ on Ω where $f: \Omega \rightarrow \mathbb{C}$ is analytic.

In our case we have to deal very often with functions $f_{n}: \Omega_{n} \rightarrow D_{n}$, so we can not apply Montel's theorem directly. Nevertheless, it is not hard to adapt the fundamental concept to our case. Therefore, let $f_{n}: \Omega_{n} \rightarrow \mathbb{C}$ be a sequence of analytic functions with $\Omega_{n} \xrightarrow{\mathrm{k}} \Omega$. Then the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is called locally bounded if for every compact set $K \subseteq \Omega$, we find an $N \in \mathbb{N}$ and $M>0$ such that $\left\|f_{n}\right\|_{K} \leq M$ for all $n \geq N$.

When this happens it is not hard to see that there is a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $f_{n_{k}} \xrightarrow{\text { l.u. }} f$ on Ω with an analytic function $f: \Omega \rightarrow \mathbb{C}$. To prove this, it is enough to study an increasing sequence of compact sets $\left(K_{l}\right)_{l \in \mathbb{N}}$ such that $K_{l} \subseteq K_{l+1}$ for all $l \in \mathbb{N}$ and $\Omega=\bigcup_{l=1}^{\infty} K_{l}$. Finally, we obtain the stated subsequence by using a diagonal argument combined with Montel's theorem applied to each K_{l}.

Some useful harmonic functions

Let $\Omega \subseteq \mathbb{C}$ be a domain and $z_{0} \in \Omega$. Then $G: \Omega \times \Omega \rightarrow \mathrm{cl}_{\infty}(\mathbb{R})$ is called Green's function of Ω if the following three conditions are satisfied.
(i) For each $z \in \Omega, \zeta \mapsto G(\zeta, z)$ is harmonic on $\Omega \backslash\{z\}$.
(ii) For each $z \in \Omega, \zeta \mapsto G(\zeta, z)+\ln |\zeta-z|$ is harmonic on Ω.
(iii) For each $z \in \Omega, \lim _{\zeta \rightarrow \partial_{\infty} \Omega} G(\zeta, z)=0$.

Note that there is at least one Green function corresponding to a domain $\Omega \subseteq \mathbb{C}$. Moreover, it is not hard to show that each nondegenerate finitely connected domain does have a Green function. This is mainly based on the fact that $(\zeta, z) \mapsto G(f(\zeta), f(z))$ represents Green's function of the domain Ω^{\prime} where $f: \Omega^{\prime} \rightarrow \Omega$ is a conformal mapping and G is Green's function of Ω. An important property of Green's function is it's symmetry property, i.e. $G(\zeta, z)=G(z, \zeta)$ for all $(\zeta, z) \in \Omega \times \Omega$, see [GM05], Chapter II. 2 for more details. On top of this, Green's function can be used to generalise Poisson's formula for \mathbb{D} as follows.

Proposition 2.16 (Generalised Poisson formula, see Theorem II.2.5 in [GM05]). Let Ω be an \mathfrak{n}-connected analytic Jordan domain with $\mathfrak{n} \in \mathbb{N}$. Moreover, the function u : $\operatorname{cl}(\Omega) \rightarrow \mathbb{R}$ is continuous on $\operatorname{cl}(\Omega)$ and harmonic on Ω. Then

$$
u(z)=-\frac{1}{2 \pi} \int_{\partial \Omega} \frac{\partial G(\zeta, z)}{\partial n_{\zeta}} u(\zeta)|\mathrm{d} \zeta| \quad \text { for all } z \in \Omega
$$

where n_{ζ} denotes the unit outer normal at $\zeta \in \partial \Omega$.
Note that $\partial G(\zeta, z) / \partial n_{\zeta}$ is well-defined for each $\zeta \in \partial \Omega$, as $\zeta \mapsto G(\zeta, z)$ has a harmonic extension to $\operatorname{cl}(\Omega)$.

Let Ω be an \mathfrak{n}-connected analytic Jordan domain with the boundary components $C_{1}, \ldots, C_{\mathfrak{n}}, \mathfrak{n} \in \mathbb{N}$. Here, $C_{\mathfrak{n}}$ denotes the outer boundary component. In general, Green's function of a finitely connected domain Ω does not have a (single-valued) conjugate harmonic function. A reason for this is a nonvanishing period of $G(\cdot, z)$ around z. To be more precise, the period is 2π, i.e.

$$
\begin{equation*}
\int_{\partial B_{\varepsilon}(z)} \frac{\partial G(\zeta, z)}{\partial n_{\zeta}}|\mathrm{d} \zeta|=2 \pi \tag{2.2}
\end{equation*}
$$

with a small $\varepsilon>0$ and n_{ζ} pointing towards z. On top of this, there are additional nonvanishing periods if $\mathfrak{n} \geq 2$:

$$
-2 \pi \omega_{k}(z):=\int_{\gamma_{k}} \frac{\partial G(\zeta, z)}{\partial n_{\zeta}}|\mathrm{d} \zeta|, \quad k \in\{1, \ldots, \mathfrak{n}-1\}
$$

Here, γ_{k} is a circuit around C_{k} and n_{ζ} denotes the unit outer normal, i.e. n_{ζ} points towards C_{k}. Next, we are going to remove these additional periods. Note that this is only necessary in the case $\mathfrak{n} \geq 2$.

For each $k \in\{1, \ldots, \mathfrak{n}-1\}$, the function $z \mapsto \omega_{k}(z)$ is harmonic on Ω and is called harmonic measure of Ω with respect to C_{k}. Using Proposition 2.16, $\omega_{k}(z)$ tends to 1 if z approaches C_{k} and $\omega_{k}(z)$ tends to 0 if z approaches $\partial \Omega \backslash C_{k}$. The vector $\vec{\omega}(z):=$ $\left(\omega_{1}(z), \ldots, \omega_{\mathfrak{n}-1}(z)\right)^{T}$ is called harmonic measure vector of Ω.

Next, we denote the periods of ω_{k} around C_{j} by $2 \pi P_{j, k}$, i.e.

$$
2 \pi P_{j, k}=\int_{\gamma_{j}} \frac{\partial \omega_{k}(z)}{\partial n}|\mathrm{~d} z| .
$$

Using the symmetry property of Green's function, it is a straightforward calculation to see that the matrix $P:=\left(p_{j, k}\right)_{j, k=1, \ldots, n-1}$ is symmetric and positive definite. This matrix is called period matrix of Ω.

Finally, assume $\zeta \in \Omega$ and let us have a deeper look at the function

$$
z \mapsto-G(\zeta, z)-\vec{\omega}(z)^{T} P^{-1} \vec{\omega}(\zeta), \quad z \in \Omega
$$

It is not hard to show that this function is harmonic and has vanishing periods around each C_{j} with $j \in\{1, \ldots, \mathfrak{n}-1\}$. The only remaining nonvanishing period (like in the case $\mathfrak{n}=1$) appears on circuits around ζ. Using the symmetry property of Green's function and Equation (2.2), we can see that this period is precisely 2π. In the case $\mathfrak{n}=1$ it is not necessary to add additional functions to Green's function, so we may define $\vec{\omega} \equiv 0$ and $P \equiv 1$ in this case.

Nevertheless, the harmonic conjugate of $z \mapsto-G(\zeta, z)-\vec{\omega}(z)^{T} P^{-1} \vec{\omega}(\zeta)$ is multiplevalued in either case. As we have seen before, the conjugate function changes by 2π if z
describes a small circle around ζ. Thus by applying the exponential function we get a (single-valued) analytic function $g: \Omega \rightarrow \mathbb{C}$ with

$$
\begin{equation*}
|g(z)|=\exp \left(-G(\zeta, z)-\vec{\omega}(z)^{T} P^{-1} \vec{\omega}(\zeta)\right) \quad \text { for all } z \in \Omega . \tag{2.3}
\end{equation*}
$$

It is not hard to prove that the function $g: \Omega \rightarrow \mathbb{C}$ is univalent, so $g: \Omega \rightarrow g(\Omega)$ is conformal. Moreover, $|g(z)|$ is constant with values $c_{j} \leq 1$ if z approaches an arbitrary point on C_{j} with $j \in\{1, \ldots, \mathfrak{n}\}$. In particular $|g(z)|=1$ if z approaches $C_{\mathfrak{n}}$, so \mathbb{T} is the outer boundary component of D. On top of this, $g(\zeta)=0$ and the conjugate function can be chosen in such a way that $g^{\prime}(\zeta)>0$ holds. Summarising, g coincides with the unique Riemann mapping function form Proposition 2.2. This construction goes back to M. Schiffer, see Chapter 1 of the Appendix of [Cou77] for more details.

Obviously, the representation $|g(z)|=\exp \left(-G(\zeta, z)-\vec{\omega}(z)^{T} P^{-1} \vec{\omega}(\zeta)\right)$ holds for arbitrary nondegenerate \mathfrak{n}-connected domains Ω^{\prime} as well. For this, Lemma 2.1 shows that there is a conformal mapping $f: \Omega^{\prime} \rightarrow \Omega$ such that Ω is an analytic Jordan domain. Then it is easy to see that $G(f(\zeta), f(z))$ represents Green's function of $\Omega^{\prime}, \omega_{k}(f(z))$ is the harmonic measure of Ω^{\prime} with respect to the k-th boundary component of Ω^{\prime} and the period matrix P is invariant under conformal mappings.

2.2 The kernel function $\Phi_{a, \zeta, \Omega}$

The goal of this section is to describe $\Phi_{a, \zeta, \Omega}$ in terms of relatives to Green's function.
Proposition 2.17. Let Ω be a nondegenerate \mathfrak{n}-connected domain with $\mathfrak{n} \in \mathbb{N}$ such that $\partial \Omega$ is locally connected and the outer or unbounded boundary component $C_{\mathfrak{n}}$ is an analytic Jordan curve in \mathbb{C}_{∞}. Assume $\zeta \in C_{\mathfrak{n}} \backslash\{\infty\}$ and $a \in \mathrm{cl}_{\infty}(\Omega) \backslash \zeta$. Then we have

$$
\Re\left(\Phi_{a, \zeta, \Omega}(w)\right)=-\frac{\partial G(\zeta, w)}{\partial n_{\zeta}}-\vec{\omega}(w)^{T} P^{-1} \frac{\partial \vec{\omega}(\zeta)}{\partial n_{\zeta}} \quad \text { for all } w \in \Omega .
$$

Note that the right-hand side does not depend on a, as $\Phi_{a, \zeta, \Omega}(a) \geq 0$ determines the additive imaginary constant in a unique way.

Proof. 1) First of all, we assume that Ω is an analytic Jordan domain having \mathbb{T} as it outer boundary component.
Let us denote by $G(\zeta, z)$ Green's function, $\vec{\omega}(z)$ is the harmonic measure vector and P stands for the period matrix of Ω. Moreover, we set

$$
H(\zeta, z):=-\ln \left|\frac{\zeta-z}{1-\zeta \bar{z}}\right| \quad \text { with } \zeta, z \in \mathbb{D} \text {. }
$$

Thus the function $\zeta \mapsto F(\zeta, z):=H(\zeta, z)-G(\zeta, z)$ is harmonic and positive on D for each $z \in D$, as $F(\zeta, z)=0$ for all $\zeta \in \mathbb{T}$ and $F(\zeta, z)>0$ if $\zeta \in \partial D \backslash \mathbb{T}$. Moreover, $F(\zeta, z)=F(z, \zeta)$ for all $\zeta, z \in D$, as G and H are Green functions, so $z \mapsto F(\zeta, z)$ is harmonic and positive on D for each $\zeta \in D$ as well.

Let be $\zeta_{0} \in \mathbb{T}$. We extend $z \mapsto F(\zeta, z)$ to a harmonic function on $B_{\varepsilon}\left(\zeta_{0}\right)$ for all $\zeta \in D$ by using the Schwarz reflection principle if $\varepsilon>0$ is small enough. To be more precise,

$$
z \mapsto F(\zeta, z):= \begin{cases}-F(\zeta, 1 / \bar{z}) & \text { for all } z \in B_{\varepsilon}\left(\zeta_{0}\right) \cap\{\zeta \in \mathbb{C}| | \zeta \mid>1\} \\ 0 & \text { for all } z \in B_{\varepsilon}\left(\zeta_{0}\right) \cap \mathbb{T} .\end{cases}
$$

Analogously, we reflect the function $\zeta \mapsto F(\zeta, z)$ to $B_{\varepsilon}\left(\zeta_{0}\right) \cap\{\zeta \in \mathbb{C}| | \zeta \mid>1\}$ by $\zeta \mapsto F(\zeta, z):=-F(1 / \bar{\zeta}, z)$ for all $z \in B_{\varepsilon}\left(\zeta_{0}\right)$. Consequently, the function $z \mapsto F(\zeta, z)$ is harmonic on $B_{\varepsilon}\left(\zeta_{0}\right)$ for all $\zeta \in B_{\varepsilon}\left(\zeta_{0}\right) \backslash \mathbb{T}$. Moreover, $z \mapsto F\left(\zeta_{0}, z\right) \equiv 0$ if $\zeta_{0} \in B_{\varepsilon}\left(\zeta_{0}\right) \cap \mathbb{T}$, so $z \mapsto F(\zeta, z)$ is harmonic on $B_{\varepsilon}\left(\zeta_{0}\right)$ for all $\zeta \in B_{\varepsilon}\left(\zeta_{0}\right)$. Conversely, $\zeta \mapsto F(\zeta, z)$ is harmonic on $B_{\varepsilon}\left(\zeta_{0}\right)$ for all $z \in B_{\varepsilon}\left(\zeta_{0}\right)$ as well.
Let be $\zeta_{0} \in \mathbb{T}$ and denote by h_{n} a positive sequence converging to 0 . Then

$$
z \mapsto-\frac{F\left(\zeta_{0}+h_{n} \zeta_{0}, z\right)-F\left(\zeta_{0}, z\right)}{h_{n}}=-\frac{F\left(\zeta_{0}\left(1+h_{n}\right), z\right)}{h_{n}}
$$

is a sequence of positive harmonic functions, which is normal by Montel's theorem. See [Sch93], Theorem 5.4.3 for further details. Thus we find a locally uniformly convergent subsequence converging to the function $z \mapsto-\partial / \partial n_{\zeta_{0}} F\left(\zeta_{0}, z\right)$, which needs to be harmonic in $B_{\varepsilon}\left(\zeta_{0}\right)$ as well. Herein, $\partial / \partial n_{\zeta_{0}}$ stands for the outward pointing derivative with respect to the unit circle. Moreover, $-\partial / \partial n_{\zeta_{0}} F\left(\zeta_{0}, z\right)=0$ if $z \in \mathbb{T}$. Note that an easy calculation yields $\partial / \partial n_{\zeta_{0}} H\left(\zeta_{0}, z\right)=-\Re\left(\frac{\zeta_{0}+z}{\zeta_{0}-z}\right)$ for all $z \in \mathbb{D}$. Consequently, we find

$$
\begin{aligned}
& z \mapsto V\left(\zeta_{0}, z\right):=-\frac{\partial G\left(\zeta_{0}, z\right)}{\partial n_{\zeta_{0}}}-\vec{\omega}(z)^{T} P^{-1} \frac{\partial \vec{\omega}\left(\zeta_{0}\right)}{\partial n_{\zeta_{0}}} \\
&=\Re\left(\frac{\zeta_{0}+z}{\zeta_{0}-z}\right)+\frac{\partial F\left(\zeta_{0}, z\right)}{\partial n_{\zeta_{0}}}-\vec{\omega}(z)^{T} P^{-1} \frac{\partial \vec{\omega}\left(\zeta_{0}\right)}{\partial n_{\zeta_{0}}}
\end{aligned}
$$

with $z \in \Omega$. It is important to mention that $\vec{\omega}$ can be continued along \mathbb{T}, so the derivative of the harmonic measure vector is well-defined.
A straightforward calculation shows that $z \mapsto V\left(\zeta_{0}, z\right)$ has vanishing periods, so there exists a harmonic conjugate. Summarising, we have an analytic function $\Psi: \Omega \rightarrow \mathbb{C}$ with $\Re(\Psi(z))=V\left(\zeta_{0}, z\right)$ for all $z \in \Omega$.
On top of this $z \mapsto V\left(\zeta_{0}, z\right)$ is constant on each boundary component of Ω. This can be seen by using the definition of V in case of the inner boundary components of Ω and the alternative representation of V (involving F) in case of the outer boundary component \mathbb{T}. Herein, $z \mapsto V\left(\zeta_{0}, z\right)$ has the constant value 0 on $C_{\mathfrak{n}}$. Finally, by using the argument principle together with the previous results it is not hard to see that $z \mapsto \Psi(z)$ maps Ω conformal onto a right parallel slit half-plane with $\left|\Psi(z)\left(z-\zeta_{0}\right)\right| \rightarrow 2$ if z tends to ζ_{0}.
2) Next, let us assume that Ω is an \mathfrak{n}-connected domain such that the outer boundary component $C_{\mathfrak{n}}$ is an analytic Jordan curve in \mathbb{C}_{∞} and $\xi \in C_{\mathfrak{n}} \backslash\{\infty\}$. By Lemma 2.1, there is a conformal map $T: \Omega \rightarrow \Omega^{\prime}$ such that Ω^{\prime} is an \mathfrak{n}-connected analytic Jordan domain with \mathbb{T} as the outer boundary component. Without loss of generality we may assume $T(\xi)=1 \in \mathbb{T}$. In particular T associates $C_{\mathfrak{n}}$ with \mathbb{T}. Note that T can be extended to an analytic function on $\Omega \cup C_{\mathfrak{n}}$ by the Schwarz reflection principle.

By $G_{\Omega^{\prime}}(\zeta, z)$ we denote Green's function of Ω^{\prime} and $G_{\Omega}(\xi, w)$ is the Green function of Ω. Obviously, we have $G_{\Omega}(\xi, w)=G_{\Omega^{\prime}}(T(\xi), T(w))=G_{\Omega^{\prime}}(\zeta, z)$. We have similar relations for the harmonic measure and the period matrix, i.e. $\omega_{\Omega}(w)=\omega_{\Omega^{\prime}}(T(w))=\omega_{\Omega^{\prime}}(z)$ and $P_{\Omega}=P_{\Omega^{\prime}}$. Consequently, we get

$$
\begin{aligned}
& V_{\Omega}(\xi, w):=-\frac{\partial G_{\Omega}(\xi, w)}{\partial n_{\xi}}-\vec{\omega}_{\Omega}(w)^{T} P_{\Omega}^{-1} \frac{\partial \vec{\omega}_{\Omega}(\xi)}{\partial n_{\xi}} \\
& \quad=-\frac{\partial G_{\Omega^{\prime}}(T(\xi), T(w))}{\partial n_{\xi}}-\vec{\omega}_{\Omega^{\prime}}(T(w))^{T} P_{\Omega^{\prime}}^{-1} \frac{\partial \vec{\omega}_{\Omega^{\prime}}(T(\xi))}{\partial n_{\xi}} \\
& \quad=\left(-\frac{\partial G_{\Omega^{\prime}}(1, T(w))}{\partial n_{\zeta}}-\vec{\omega}_{\Omega^{\prime}}(T(w))^{T} P_{\Omega^{\prime}}^{-1} \frac{\partial \vec{\omega}_{\Omega^{\prime}}(1)}{\partial n_{\zeta}}\right)\left|T^{\prime}(\xi)\right|=:\left|T^{\prime}(\xi)\right| \cdot V_{\Omega^{\prime}}(1, T(w)) .
\end{aligned}
$$

Using the first part, $w \mapsto V_{\Omega}(\xi, w)$ is the real part of a conformal mapping Ψ from Ω onto a right parallel slit half-plane. Moreover, we have

$$
\begin{aligned}
V_{\Omega^{\prime}}(1, T(w)) & =\Re\left(\frac{1+T(w)}{1-T(w)}+\sum_{k=0}^{\infty} a_{k}(w-\xi)^{k}\right) \\
& =\Re\left(\frac{2}{T^{\prime}(\xi)} \frac{1}{w-\xi}+\sum_{k=0}^{\infty} b_{k}(w-\xi)^{k}\right),
\end{aligned}
$$

for all $w \in B_{\varepsilon}(\xi)$ with a small $\varepsilon>0$ and $\left(a_{k}\right)_{k \in \mathbb{N}},\left(b_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{C}$. Combining this with the previous equation we get

$$
V_{\Omega}(\xi, w)=\Re\left(\frac{2\left|T^{\prime}(\xi)\right|}{T^{\prime}(\xi)} \frac{1}{w-\xi}+\sum_{k=0}^{\infty} b_{k}(w-\xi)^{k}\right)
$$

Consequently, we get $\lim _{w \rightarrow \xi} \Psi(w)(w-\xi)=2 \frac{\left|T^{\prime}(\xi)\right|}{T^{\prime}(\xi)}=2 e^{i \phi}$ with $\xi=r e^{i \phi}$. Summarising, $\Re \Psi \equiv \Re \Phi_{a, \xi, \Omega}$.

Lemma 2.18. Let $\left(D_{n}\right)_{n \in \mathbb{N}}$ be a sequence of circular slit disks with $D_{n} \xrightarrow{k} D$ and $\operatorname{con}\left(D_{n}\right)=\operatorname{con}(D)$ for all $n \in \mathbb{N}$. Moreover, assume D is nondegenerate and $\left(\zeta_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{T}$ with $\zeta_{n} \rightarrow \zeta_{0}$. Then $\Phi_{0, \zeta_{n}, D_{n}} \xrightarrow{\text { l.u. }} \Phi_{0, \zeta_{0}, D}$ on the circular slit disk D as $n \rightarrow \infty$.

Lemma 2.19. Let $\left(D_{n}\right)_{n \in \mathbb{N}}$ be a sequence of circular slit annuli, for each $n \in \mathbb{N}, q_{n}$ is the inner radius of D_{n}, and D is a nondegenerate domain having $\operatorname{con}\left(D_{n}\right)=\operatorname{con}(D)$ for all $n \in \mathbb{N}$. Moreover, $D_{n}-a \xrightarrow{k} D-a$ for some $a \in D$. Assume $\zeta_{n} \rightarrow \zeta_{0}$ with $\left(\zeta_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{T}$. Then $q_{n} \rightarrow q \in(0,1)$ and $\Phi_{q_{n}, \zeta_{n}, D_{n}} \xrightarrow{\text { l.u. }} \Phi_{q, \zeta_{0}, D}$ on the circular slit annulus D as $n \rightarrow \infty$.

Lemma 2.20. Let $\left(D_{n}\right)_{n \in \mathbb{N}}$ be a sequence of upper parallel slit half-planes and D is a nondegenerate domain having $\operatorname{con}\left(D_{n}\right)=\operatorname{con}(D)$ for all $n \in \mathbb{N}$. Moreover, $D_{n}-a \xrightarrow{k}$ $D-a$ for some $a \in D$ and assume $\zeta_{n} \rightarrow \zeta_{0} \in \mathbb{R}$ with $\left(\zeta_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$. Then $\Phi_{\infty, \zeta_{n}, D_{n}} \xrightarrow{\text { l.u. }}$ $\Phi_{\infty, \zeta_{0}, D}$ on the upper parallel slit half-plane D as $n \rightarrow \infty$.

Proof of Lemma 2.18, 2.19 and 2.20. We denote by Φ_{n} the corresponding mapping function, i.e. $\Phi_{n}=\Phi_{0, \zeta_{n}, D_{n}}, \Phi_{n}=\Phi_{q_{n}, \zeta_{n}, D_{n}}$ or $\Phi_{n}=\Phi_{\infty, \zeta_{n}, D_{n}}$ for all $n \in \mathbb{N}$. Using Lemma 2.13, 2.14 or $2.15, D$ is a circular slit disk, a circular slit annulus or an upper parallel slit half-plane. $h_{n}:=1 /\left(\Phi_{n}+1\right)$ is a bounded sequence, so we find with Montel's theorem a subsequence $\left(h_{n_{k}}\right)_{k \in \mathbb{N}}$ converging locally uniformly to the analytic function $h: D \rightarrow \mathbb{C}$. Note that h is either univalent or constant.

Using the proof of Lemma 2.13, each $z \mapsto h_{n_{k}}(z)$ can be extended by the Schwarz reflection principle to a univalent function on $B_{\varepsilon}\left(\zeta_{0}\right)$ with a small $\varepsilon>0$. We calculate $\left|h_{n_{k}}^{\prime}\left(\zeta_{n_{k}}\right)\right|=\frac{1}{2}$ for all $k \in \mathbb{N}$. Note that $h_{n_{k}}$ converges locally uniformly on the reflection as well. This is based on the fact, that $h_{n_{k}}$ is bounded on $B_{\varepsilon}\left(\zeta_{0}\right)$ by Koebe's distortion theorem for univalent functions. Consequently, h fulfils $\left|h^{\prime}\left(\zeta_{0}\right)\right|=\frac{1}{2}$, so h can not be constant. We have $\Phi_{n_{k}} \xrightarrow{\text { l.u. }} \Phi$ on D as well where $\Phi:=1 / h-1$, so $\Phi: D \rightarrow R$ is conformal as well. Consequently, we find

$$
\Phi(w)=\frac{2 e^{i \phi}}{w-\zeta_{0}}+\mathcal{O}(1) \quad \text { around } \zeta_{0}
$$

so $\left|\Phi(w)\left(w-\zeta_{0}\right)\right| \rightarrow 2$ as $w \rightarrow \zeta$. Since $\Phi: D \rightarrow R$ is a conformal mapping, R is necessarily a nondegenerate domain having $\operatorname{con}(R)=\operatorname{con}(D)=\operatorname{con}\left(D_{n}\right)=\operatorname{con}\left(R_{n}\right)$ with $R_{n}:=\Phi_{n}\left(D_{n}\right)$ for all $n \in \mathbb{N}$.

Using Corollary 2.12, we find $R_{n_{k}}-a \xrightarrow{\mathrm{k}} R-a$ for all $a \in R$ as $k \rightarrow \infty$. On top of this Lemma 2.15 yields that R is a right parallel slit half-plane. It is easy to see that $\Phi(a) \geq 0$ if $a=0, a=q$ or $a=\infty$. Summarising, $\Phi \equiv \Phi_{a, \zeta_{0}, D}$.

As all convergent subsequences $\left(\Phi_{n_{k}}\right)_{k \in \mathbb{N}}$ converge to the same function $\Phi_{a, \zeta_{0}, D}$ also the whole sequence $\left(\Phi_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to $\Phi_{a, \zeta_{0}, D}$ on D.

Finally, we are going to prove an extension of Schwarz integral formula to multiply connected domains.
Proposition 2.21. Let Ω be a nondegenerate \mathfrak{n}-connected bounded domain with $\mathfrak{n} \in$ \mathbb{N} and $C_{1}, \ldots, C_{\mathfrak{n}}$ representing the boundary components of Ω. Assume $\partial \Omega$ is locally connected and the outer boundary component $C_{\mathfrak{n}}$ is an analytic Jordan curve. Moreover, $F: \Omega \rightarrow \mathbb{C}$ is analytic, $\Re(F)$ is continuous on $\operatorname{cl}(\Omega)$ and $\Re(F)$ is constant on each C_{k} with $k \in\{1, \ldots, \mathfrak{n}-1\}$.

Then the following representation holds for each $a \in \operatorname{cl}(\Omega) \backslash C_{\mathfrak{n}}$:

$$
F(z)=\frac{1}{2 \pi} \int_{C_{\mathfrak{n}}} \Re(F(\zeta)) \cdot \Phi_{a, \zeta, \Omega}(z)|\mathrm{d} \zeta|+\mathrm{i} c \quad \text { for all } z \in \Omega
$$

In this context, the constant $c \in \mathbb{R}$ depends only on the choice of a.
Note that for each $z \in \Omega, \zeta \mapsto \Phi_{a, \zeta, \Omega}(z)$ is continuous on $C_{\mathfrak{n}}$. To see this let $a \in \operatorname{cl}(\Omega) \backslash C_{\mathfrak{n}}$ and $T: \Omega \rightarrow \Omega^{\prime}$ be a conformal mapping such that Ω^{\prime} is a circular slit disk. We find T in such a way that T associates $C_{\mathfrak{n}}$ with \mathbb{T}. Moreover we set $R:=T^{-1}: \Omega^{\prime} \rightarrow \Omega$. An easy calculation gives us $\Phi_{a, \zeta, \Omega}(z)=T^{\prime}(\zeta) \Phi_{T(a), T(\zeta), \Omega^{\prime}}(z)$. By a reflection, $\zeta \mapsto T(\zeta)$ is analytic on $C_{\mathfrak{n}}$, so $\zeta \mapsto T^{\prime}(\zeta)$ as well as $\zeta \mapsto T(\zeta)$ are continuous on $C_{\mathfrak{n}}$. Thus $\zeta \mapsto \Phi_{a, \zeta, \Omega}(z)$ is continuous on $C_{\mathfrak{n}}$ by Lemma 2.18.

The proof of Proposition 2.21 follows the ideas of [Kom50] and the proof of Theorem 5.1 in [BF06]

Proof. 1) First of all, we going to assume that Ω is an analytic Jordan domain where the outer boundary component of Ω is $C_{\mathfrak{n}}=\mathbb{T}$. The other boundary components are denoted by $C_{1}, \ldots, C_{\mathfrak{n}-1}$.
Then $z \mapsto \Re F(z)$ is harmonic on Ω and continuous on $\operatorname{cl}(\Omega)$, so Poisson's formula (see Proposition 2.16) gives us

$$
\Re(F(z))=-\frac{1}{2 \pi} \int_{\partial \Omega} \Re(F(\zeta)) \frac{\partial G(\zeta, z)}{\partial n_{\zeta}}|\mathrm{d} \zeta| \quad \text { for all } z \in \Omega,
$$

where $G(\zeta, z)$ denotes the Green function of Ω with pole at z. Since F is an analytic function, the periods with respect to $C_{k}, k \in\{1, \ldots, \mathfrak{n}-1\}$, vanish. Thus, for all $k \in\{1, \ldots, \mathfrak{n}-1\}$, we get

$$
0=\int_{C_{k}} \frac{\partial \Re F}{\partial n_{\zeta}}(\zeta)|\mathrm{d} \zeta|=\int_{\partial \Omega} \omega_{k}(\zeta) \frac{\partial \Re F}{\partial n_{\zeta}}(\zeta)|\mathrm{d} \zeta|=\int_{\partial \Omega} \Re F(\zeta) \frac{\partial \omega_{k}(\zeta)}{\partial n_{\zeta}}|\mathrm{d} \zeta|,
$$

where $\omega_{k}(\zeta)$ denotes the harmonic measure of Ω w.r.t. C_{k}. Note that the last equation is an application of Green's theorem. By combining these two equations we find

$$
\Re(F(z))=-\frac{1}{2 \pi} \int_{\partial \Omega} \Re(F(\zeta))\left(\frac{\partial G(\zeta, z)}{\partial n_{\zeta}}+\vec{\omega}(z)^{T} P^{-1} \frac{\partial \vec{\omega}(\zeta)}{\partial n_{\zeta}}\right)|\mathrm{d} \zeta| \quad \text { for all } z \in \Omega,
$$

where $\vec{\omega}$ denotes the harmonic measure vector. The matrix P is the period matrix. Using Proposition 2.17, we find

$$
-\frac{\partial G(\zeta, z)}{\partial n_{\zeta}}-\vec{\omega}(z)^{T} P^{-1} \frac{\partial \vec{\omega}(\zeta)}{\partial n_{\zeta}}=\Re\left(\Phi_{a, \zeta, \Omega}(z)\right) \quad \text { for each } z \in \Omega
$$

Herein, $\Phi_{a, \zeta, \Omega}(z)$ denotes the unique mapping from Proposition 2.5 with some $a \in \operatorname{cl}(\Omega) \backslash$ $C_{\mathfrak{n}}$. Obviously, $\zeta \mapsto \Re(F(\zeta))$ is constant on each C_{k} and $\zeta \mapsto G(\zeta, z)+\vec{\omega}(z) P^{-1} \omega(\zeta)$ has vanishing periods on circuits around each C_{k} with $k \in\{1, \ldots, \mathfrak{n}-1\}$. Consequently, we get

$$
\Re(F(z))=\frac{1}{2 \pi} \int_{\mathbb{T}} \Re(F(\zeta)) \Re\left(\Phi_{a, \zeta, \Omega}(z)\right)|\mathrm{d} \zeta| \quad \text { for all } z \in \Omega .
$$

Using the open mapping theorem, we find

$$
F(z)=\frac{1}{2 \pi} \int_{\mathbb{T}} \Re(F(\zeta)) \Phi_{a, \zeta, \Omega}(z)|\mathrm{d} \zeta|+\mathrm{i} c \quad \text { for all } z \in \Omega
$$

where $c \in \mathbb{R}$ (depends on the choice of a).
2) Next let Ω be an \mathfrak{n}-connected bounded domain such that the outer boundary component C_{n} is an analytic Jordan curve and $\partial \Omega$ is locally connected. Using Lemma 2.1, we find a conformal mapping $T: \Omega \rightarrow \Omega^{\prime}$ where Ω^{\prime} is an analytic Jordan domain having \mathbb{T} as the outer boundary component. Moreover, we can find T in such a way that T associates $C_{\mathfrak{n}}$ with \mathbb{T}. We denote the inverse function by R, i.e. $R:=T^{-1}: \Omega^{\prime} \rightarrow \Omega$.

Using the first part, we find with some $a \in \operatorname{cl}(\Omega) \backslash C_{\mathrm{n}}$:

$$
(F \circ R)(z)=\frac{1}{2 \pi} \int_{\mathbb{T}} \Re((F \circ R)(\zeta)) \Phi_{T(a), \zeta, \Omega^{\prime}}(z)|\mathrm{d} \zeta|+\mathrm{i} c \quad \text { for all } z \in \Omega^{\prime} .
$$

Note that T can be extended to an analytic function on $C_{\mathfrak{n}}$. Proposition 2.17 yields $\Phi_{T(a), \zeta, \Omega^{\prime}}(z)=\left|R^{\prime}(\zeta)\right| \Phi_{a, R(\zeta), \Omega}(R(z))$ for each $\zeta \in \mathbb{T}$. Consequently, we get with $z=$ $T(w)$ and a simple substitution

$$
F(w)=\frac{1}{2 \pi} \int_{C_{\mathrm{n}}} \Re(F(\zeta)) \Phi_{a, \zeta, \Omega}(w)|\mathrm{d} \zeta|+\mathrm{i} c \quad \text { for all } z \in \Omega,
$$

so the proof is complete.

2.3 Radial case

In order to study radial Komatu-Loewner equations we take an arbitrary circular slit disk Ω as our initial domain. A subset $\mathfrak{H} \subseteq \Omega \backslash\{0\}$ is called (compact) radial hull in Ω or (compact) radial Ω-hull if $\Omega \cap \operatorname{cl}(\mathfrak{H})=\mathfrak{H}, \Omega \backslash \mathfrak{H}$ is a domain and $\mathbb{T} \cup \operatorname{cl}(\mathfrak{H})$ is connected ${ }^{7}$. By $g_{\mathfrak{H}}$ we denote the unique conformal mapping that maps $\Omega \backslash \mathfrak{H}$ onto a circular slit disk $D_{\mathfrak{H}}$ normalised in such a way that $g_{\mathfrak{H}}(0)=0, g_{\mathfrak{5}}^{\prime}(0)>0$ and $g_{\mathfrak{H}}$ associates the outer boundary component of $\Omega \backslash \mathfrak{H}$ with \mathbb{T}, see Proposition 2.2. We will call this function normalised radial mapping function on $\Omega \backslash \mathfrak{H}$. On top of this we define the so called logarithmic mapping radius by $\operatorname{lmr}(g):=\ln g^{\prime}(0)$ for each function g that is analytic at 0 with $g^{\prime}(0)>0$. Sometimes we also write $\operatorname{lmr}_{\Omega}(\mathfrak{H}):=\operatorname{lmr}\left(g_{\mathfrak{H}}\right)$ where $g_{\mathfrak{H}}$ is the normalised radial mapping function on $\Omega \backslash \mathfrak{H}$.

Next, let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]} \subseteq \Omega$ be a family of radial Ω-hulls, i.e. \mathfrak{H}_{t} is a radial Ω-hull for each $t \in[0, T]$. Then we say $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is an increasing family of radial Ω-hulls if $\mathfrak{H}_{t} \subsetneq \mathfrak{H}_{s}$ whenever $0 \leq t<s \leq T$ and $\mathfrak{H}_{0}=\emptyset$. Moreover, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is called continuous family of radial Ω-hulls if $\left(\Omega_{t}\right)_{t \in[0, T]}$, with $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$, is continuous with respect to kernel convergence on $[0, T]$.

2.3.1 Single slit Komatu-Loewner equation

For now let us restrict ourself to slits, i.e. we do not treat general hulls (which we will study in Chapter 5). Let $\gamma:[0, T] \rightarrow \operatorname{cl}(\Omega) \backslash\{0\}$ be simple and continuous with $\gamma(0, T] \subseteq \Omega$ and $\gamma(0) \in \mathbb{T}$. Obviously, $(\gamma(0, t])_{t \in[0, T]}$ is an increasing continuous family of radial Ω-hulls. For each $t \in[0, T]$, we set $\Omega_{t}:=\Omega \backslash \gamma(0, t]$ and denote by g_{t} the normalised radial mapping function from Ω_{t} onto the circular slit disk D_{t}.

Later (see Lemma 2.24 and 2.25) we will see that the function $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is strictly increasing and continuous on $[0, \mathrm{~T}]$. Since $g_{0} \equiv \mathrm{id}$, i.e $\operatorname{lmr}\left(g_{0}\right)=0$, it is not a great restriction to assume $t \mapsto \operatorname{lmr}\left(g_{t}\right)=t$ for all $t \in[0, T]$. Otherwise we can reparametrise

[^5]γ. Moreover, we are going to show later that $t \mapsto U_{t}:=g_{t}(\gamma(t))$ is continuous on $[0, T]$, see Lemma 2.29. Note that $g_{t}(\gamma(t))$ is well-defined. Finally, by $w \mapsto \Phi_{0, U_{t}, D_{t}}(w)$ we denote the mapping function from Proposition 2.5 that maps the circular slit disk D_{t} onto a right parallel slit half-plane with $a=0$, see Figure 2.2.

Figure 2.2: Mapping behaviour of $z \mapsto g_{t}(z)$ and $w \mapsto \Phi_{0, U_{t}, D_{t}}(w)$ in the radial single slit case

Then we have the following theorem.
Theorem 2.22. Let Ω be a circular slit disk and $\gamma:[0, T] \rightarrow \operatorname{cl}(\Omega) \backslash\{0\}$ be simple and continuous with $\gamma(0, T] \subseteq \Omega$ and $\gamma(0) \in \mathbb{T}$. Moreover, we set $\Omega_{t}:=\Omega \backslash \gamma(0, t]$. Assume $g_{t}: \Omega_{t} \rightarrow D_{t}$ is the normalised radial mapping function from Ω_{t} onto D_{t} with $\operatorname{lmr}\left(g_{t}\right)=t$ for each $t \in[0, T]$.

Then $t \mapsto g_{t}(z)$ is continuously differentiable on $[0, T]$ for each $z \in \Omega_{T}$, and we get

$$
\begin{equation*}
\dot{g}_{t}(z)=g_{t}(z) \cdot \Phi_{0, U_{t}, D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, T] \text { and all } z \in \Omega_{T}, \tag{2.4}
\end{equation*}
$$

where $t \mapsto U_{t}:=g_{t}(\gamma(t)) \in \mathbb{T}$ is continuous on $[0, T]$.
Equation (2.4) is called radial (single slit) Komatu-Loewner ordinary differential equation, whereas $t \mapsto U_{t}$ is called driving term.
Remark 2.4. As mentioned in the introduction, see Section 1.4, Bauer and Friedrich proved the differential equation (2.4) in the left sense, see Theorem 5.1 in [BF06]. Moreover, they used the different representation of the kernel, in terms of relatives to Green's function, on the right-hand side of Equation (2.4) to work with, see Proposition 2.17.

If we do not assume $\operatorname{lmr}\left(g_{t}\right)=t$ for all $t \in[0, T]$, we get the following theorem, which can be seen as a pointwise version of the previous theorem.
Theorem 2.23. Let Ω be a circular slit disk and $\gamma:[0, T] \rightarrow \operatorname{cl}(\Omega) \backslash\{0\}$ be simple and continuous with $\gamma(0, T] \subseteq \Omega$ and $\gamma(0) \in \mathbb{T}$. Moreover, for each $t \in[0, T]$, we set $\Omega_{t}:=\Omega \backslash \gamma(0, t] . g_{t}: \Omega_{t} \rightarrow D_{t}$ is the normalised radial mapping function from Ω_{t} onto D_{t} for all $t \in[0, T]$ and assume $t \mapsto c(t):=\operatorname{lmr}\left(g_{t}\right)$ is differentiable at t_{0}.

Then the function $t \mapsto g_{t}(z)$ is differentiable at t_{0} for each $z \in \Omega_{t_{0}}$ and satisfies

$$
\dot{g}_{t_{0}}(z)=\dot{c}\left(t_{0}\right) \cdot g_{t_{0}}(z) \cdot \Phi_{0, U_{t_{0}}, D_{t_{0}}}\left(g_{t_{0}}(w)\right) \quad \text { for all } z \in \Omega_{t_{0}}
$$

with a continuous function $t \mapsto U_{t}=: g_{t}(\gamma(t)) \in \mathbb{T}$ for all $t \in[0, T]$.
Obviously, Theorem 2.22 follows immediately from Theorem 2.23. Here, the continuity of $t \mapsto \dot{g}_{t}(z)$ comes from Lemma 2.18. Before we are able to prove Theorem 2.23 we need some preliminary lemmas.

Lemma 2.24. Let Ω be a circular slit disk and $\mathfrak{A}, \mathfrak{B} \subseteq \Omega \backslash\{0\}$ be radial Ω-hulls with $\mathfrak{A} \subsetneq \mathfrak{B}$. Then $\operatorname{lmr}\left(g_{\mathfrak{A}}\right)<\operatorname{lmr}\left(g_{\mathfrak{B}}\right)$ where $g_{\mathfrak{A}}$ and $g_{\mathfrak{A}}$ denote the normalised radial mapping functions on $\Omega \backslash \mathfrak{A}$ and $\Omega \backslash \mathfrak{B}$, respectively.

Proof. First of all, we denote the unbounded connected component of $\mathbb{C} \backslash g_{\mathfrak{2}}(\Omega \backslash \mathfrak{B})$ by F. Note that $\mathbb{C} \backslash F \subsetneq \mathbb{D}$ is a simply connected domain, so there is a unique conformal mapping $h: \mathbb{C} \backslash F \rightarrow \mathbb{D}$ with $h(0)=0$ and $h^{\prime}(0)>0$. Since h^{-1} fulfils the condition of Schwarz lemma, we necessarily get $h^{\prime}(0)>1$. Thus we have $h \circ g_{\mathfrak{A}} \in \mathcal{F}$ where

$$
\mathcal{F}:=\left\{f: \Omega \backslash \mathfrak{B} \rightarrow \mathbb{D} \mid f \text { univalent, } f(0)=0, f^{\prime}(0)>0, f \text { associates } \partial F \text { with } \mathbb{T}\right\} .
$$

Using the extremal property corresponding to \mathcal{F}, see Lemma 2.6 , we find

$$
h^{\prime}(0) \cdot g_{\mathfrak{A}}^{\prime}(0)=\left(h \circ g_{\mathfrak{A}}\right)^{\prime}(0) \leq g_{\mathfrak{B}}^{\prime}(0),
$$

i.e. $\operatorname{lmr}(h)+\operatorname{lmr}\left(g_{\mathfrak{R}}\right) \leq \operatorname{lmr}\left(g_{\mathfrak{B}}\right)$ with $\operatorname{lmr}(h)>0$.

Lemma 2.25. Let Ω be a circular slit disk, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of radial Ω-hulls and g_{t} denotes the normalised radial mapping function from $\Omega \backslash \mathfrak{H}_{t}$ onto the circular slit disk D_{t} for each $t \in[0, T]$. Let $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ with $t_{n} \rightarrow t_{0} \in[0, T]$ and let $\Omega_{t_{n}} \xrightarrow{k} \Omega_{t_{0}}$. Moreover, assume $\operatorname{con}\left(\Omega_{t_{n}}\right)=\operatorname{con}\left(\Omega_{t_{0}}\right)$ for all $n \in \mathbb{N}$. Then $g_{t_{n}} \xrightarrow{l . u_{l}} g_{t_{0}}$ on $\Omega_{t_{0}}$ as $n \rightarrow \infty$. Moreover, $\operatorname{lmr}\left(g_{t_{n}}\right) \rightarrow \operatorname{lmr}\left(g_{t_{0}}\right)$ as $n \rightarrow \infty$.

Corollary 2.26. Let Ω be a circular slit disk, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing and continuous family of radial Ω-hulls and g_{t} denotes the normalised radial mapping function on $\Omega \backslash \mathfrak{H}_{t}$ for each $t \in[0, T]$. Furthermore, we assume $\operatorname{con}\left(\Omega_{t}\right)=\operatorname{con}(\Omega)$ for all $t \in[0, T]$. Then $t \mapsto g_{t}$ is continuous on $[0, T]$. Moreover, $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is continuous on $[0, T]$ as well.

Remark 2.5. Later we will see that the assumption

$$
\operatorname{con}\left(\Omega_{t_{n}}\right)=\operatorname{con}\left(\Omega_{t_{0}}\right) \text { for all } n \in \mathbb{N}
$$

in Lemma 2.25 can be dropped without substitution, see Proposition 5.6. In order to do so, we will need a stronger version of Lemma 2.13 as well, see Lemma 5.5.

Proof of Lemma 2.25. By Montel's theorem $h_{n}:=g_{t_{n}}$ is normal in $\Omega_{t_{0}}$, so we find a locally uniformly convergent subsequence $\left(h_{n_{k}}\right)_{k \in \mathbb{N}}$ on $\Omega_{t_{0}}$. The limit function $h: \Omega_{t_{0}} \rightarrow$ \mathbb{C} is either univalent or constant. Using Lemma $2.24, h_{n}^{\prime}(0) \geq 1$ for all $n \in \mathbb{N}$, so h can not be constant, i.e. $h: \Omega_{t_{0}} \rightarrow D=: h\left(\Omega_{t_{0}}\right)$ is conformal. This shows that D is nondegenerate. Next, Proposition 2.11 yields $D_{t_{n_{k}}} \xrightarrow{\mathrm{k}} D$ where $D_{t_{n_{k}}}:=h_{n_{k}}\left(\Omega_{t_{n_{k}}}\right)$. Using Lemma 2.13, D needs to be a circular slit disk, as $\operatorname{con}\left(D_{t_{n_{k}}}\right)=\operatorname{con}(D)$ for all $k \in \mathbb{N}$.

Summarising, h is a conformal mapping from $\Omega_{t_{0}}$ onto the circular slit disk D with $h(0)=0$ and $h^{\prime}(0)>0$. Moreover, h associates the outer boundary component of $\Omega_{t_{0}}$ with \mathbb{T}. To see this let us consider a circuit K around an inner boundary component of $\Omega_{t_{0}}$, say $K=\{z \in \mathbb{D} \mid \operatorname{dist}(C, z)=\delta\}$ where $\delta>0$ is small. Herein, we choose δ small enough such that K is a Jordan curve in $\Omega_{t_{0}}$ and the winding number of K around 0 is 0 . Then the compact set K is mapped by h to $h(K)$, which surrounds an inner boundary component of D, as the winding number of $h(K)$ is 0 as well. Using the pigeonhole
principle, h associates the inner boundary component of $\Omega_{t_{0}}$ with the inner boundary components of D.

Finally, $h \equiv g_{t_{0}}$. As all convergent subsequences $\left(h_{n_{k}}\right)_{k \in \mathbb{N}}$ converge to the same function $g_{t_{0}}$, also the whole sequence $\left(g_{t_{n}}\right)_{n \in \mathbb{N}}$ converges locally uniformly on $\Omega_{t_{0}}$ to $g_{t_{0}}$.
Lemma 2.27. Let Ω be a circular slit disk and \mathfrak{H} is a radial Ω-hull such that $\partial \Omega_{\mathfrak{H}}$ is locally connected with $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$. Then

$$
\operatorname{lmr}\left(g_{\mathfrak{H}}\right)=-\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|g_{\mathfrak{H}}^{-1}(\zeta)\right||\mathrm{d} \zeta|,
$$

where $g_{\mathfrak{H}}$ is the normalised radial mapping function from $\Omega_{\mathfrak{H}}$ onto the circular slit disk $D_{\mathfrak{j}}$.

Note that the integral is well defined as $g_{\mathfrak{5}}$ has a continuous extension to the boundary. This is a consequence of the local connectedness of $\partial(\Omega \backslash \mathfrak{H})$, see Theorem 2.1 in [Pom92].

Proof. Let $\mathfrak{n}:=\operatorname{con}\left(\Omega_{\mathfrak{H}}\right)$. Note that there is an analytic branch of the logarithm such that $z \mapsto \log \left(g_{\mathfrak{H}}^{-1}(z) / z\right)$ is an analytic function. This follows immediately from the mapping behaviour of $g_{\mathfrak{H}}$ together with simple calculations of winding numbers. By Cauchy's integral formula, we find

$$
\begin{aligned}
-\operatorname{lmr}\left(g_{\mathfrak{H}}\right) & =\log \left(\left.\frac{\mathrm{d}}{\mathrm{~d} z} g_{\mathfrak{H}}^{-1}(z)\right|_{z=0}\right)=\left.\log \left(\frac{g_{\mathfrak{H}}^{-1}(z)}{z}\right)\right|_{z=0} \\
& =\frac{1}{2 \pi \mathrm{i}} \int_{\partial D_{\mathfrak{5}}} \log \left(\frac{g_{\mathfrak{H}}^{-1}(\zeta)}{\zeta}\right) \frac{\mathrm{d} \zeta}{\zeta}=\frac{1}{2 \pi} \int_{\partial D_{\mathfrak{F}}} \log \left(\frac{g_{\mathfrak{H}}^{-1}(\zeta)}{\zeta}\right) \operatorname{darg} \zeta \\
& =\frac{1}{2 \pi} \int_{\partial D_{\mathfrak{F}}} \ln \left|\frac{g_{\mathfrak{H}}^{-1}(\zeta)}{\zeta}\right| \operatorname{darg} \zeta .
\end{aligned}
$$

Note that the last equality is a consequence of $\operatorname{lmr}\left(g_{\mathfrak{H}}\right) \geq 0$. The boundary $\partial D_{\mathfrak{H}}$ consists of $\mathbb{T}=C_{\mathfrak{n}}$ and disjoint proper concentric circular arcs $C_{1}, \ldots C_{\mathfrak{n}-1}$. Herein, the function $\zeta \mapsto \ln \left|g_{\mathfrak{H}}^{-1}(\zeta) / \zeta\right|$ is constant on each C_{k} with $k \in\{1, \ldots, \mathfrak{n}-1\}$. Thus we find

$$
\frac{1}{2 \pi} \int_{C_{k}} \ln \left|\frac{g_{\mathfrak{H}}^{-1}(\zeta)}{\zeta}\right| \operatorname{darg} \zeta=\frac{1}{2 \pi} \ln \left|\frac{g_{\mathfrak{H}}^{-1}\left(\zeta_{0}\right)}{\zeta_{0}}\right| \int_{C_{k}} \mathrm{~d} \arg \zeta=0
$$

for each $k \in\{1, \ldots, \mathfrak{n}-1\}$, as we integrate on both sides of the arc C_{k}. Here, ζ_{0} is arbitrarily chosen from C_{k}. Summarising we find

$$
-\operatorname{lmr}\left(g_{\mathfrak{H}}\right)=\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|\frac{g_{\mathfrak{H}}^{-1}(\zeta)}{\zeta}\right| \mathrm{d} \arg \zeta=\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|g_{\mathfrak{H}}^{-1}(\zeta)\right||\mathrm{d} \zeta| .
$$

Lemma 2.28. Let Ω be a circular slit disk and \mathfrak{H} is a radial Ω-hull such that $\partial \Omega_{\mathfrak{H}}$ is locally connected with $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$. Then we have

$$
\log \frac{g_{\mathfrak{H}}^{-1}(z)}{z}=\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|g_{\mathfrak{H}}^{-1}(\zeta)\right| \Phi_{0, \zeta, D_{\mathfrak{H}}}(z)|\mathrm{d} \zeta| \quad \text { for each } z \in D_{\mathfrak{H}}
$$

where $g_{\mathfrak{H}}$ is the normalised radial mapping function from $\Omega_{\mathfrak{H}}$ onto $D_{\mathfrak{H}}$.
Like in the proof of previous lemma there is an analytic branch of the logarithm on the left-hand side.

Proof. $D_{\mathfrak{H}}$ is a circular slit disk with boundary components $C_{1}, \ldots, C_{\mathfrak{n}}=\mathbb{T}$ and we consider the function

$$
z \mapsto F(z):=\log \frac{g_{\mathfrak{H}}^{-1}(z)}{z}, \quad z \in D_{\mathfrak{H}}
$$

which is analytic in $D_{\mathfrak{j}}$. Moreover, there is a continuous extension of F to $\partial \Omega$, as $\partial \Omega$ is locally connected. Then $\Re(F)$ is constant on C_{k} for each $k \in\{1, \ldots, \mathfrak{n}-1\}$, so we can apply Proposition 2.21 with $a=0$ to get

$$
\log \frac{g_{\mathfrak{H}}^{-1}(z)}{z}=\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|\frac{g_{\mathfrak{H}}^{-1}(\zeta)}{\zeta}\right| \Phi_{0, \zeta, D_{\mathfrak{H}}}(z)|\mathrm{d} \zeta|+\mathrm{i} c \quad \text { for each } z \in D_{\mathfrak{H}}
$$

with $c \in \mathbb{R}$. Finally, we set $z=0$ to get $c=0$, as $\Phi_{0, \zeta, D_{55}}(0)>0$ for all $\zeta \in \mathbb{T}$ and $\left.\log \left(g_{\mathfrak{H}}^{-1}(z) / z\right)\right|_{z=0}=-\operatorname{lmr}\left(g_{\mathfrak{H}}\right)<0$.

Lemma 2.29. Let $\gamma:[0, T] \rightarrow \mathrm{cl}(\Omega) \backslash\{0\}$ be simple and continuous with $\gamma(0, T] \subseteq \Omega$ and $\gamma(0) \in \mathbb{T}$, and for each $t \in[0, T], g_{t}: \Omega_{t} \rightarrow D_{t}$ denotes the normalised radial mapping function on $\Omega_{t}:=\Omega \backslash \gamma(0, t]$. Moreover, we set

$$
U_{t}:=g_{t}(\gamma(t)), \quad s_{\underline{t}, \bar{t}}:=g_{\bar{t}}(\gamma[\underline{t}, \bar{t}]), \quad 0 \leq \underline{t}<\bar{t} \leq T .
$$

Then $s_{t, \bar{t}} \rightarrow U_{t_{0}}$ as $\bar{t} \rightarrow t_{0} \leftarrow \underline{t}$. On top of this $t \mapsto U_{t}$ is continuous on $[0, T]$.
The image $g_{\bar{t}}(\gamma[\underline{\underline{t}}, \bar{t}])$ represents the image of both sides of the slit, i.e. $s_{t, \bar{t}}=\{a \in \mathbb{T} \mid$ $\left.g_{\bar{t}}^{-1}(a) \in \gamma[\underline{t}, \bar{t}]\right\}$, see also Remark 2.9.

Proof of Lemma 2.29. This is a special case of Lemma 2.43, which we are going to prove later.

Proof of Theorem 2.23. Using Proposition 2.11 and Corollary 2.26, $\left(D_{t}\right)_{t \in[0, T]}$ is a continuous family, since $\left(\Omega_{t}\right)_{t \in[0, T]}$ is a continuous family with $\operatorname{con}\left(\Omega_{t}\right)=\operatorname{con}(\Omega)$ for all $t \in[0, T]$. Let us define $g_{t, \bar{t}}:=g_{\bar{t}} \circ g_{\underline{t}}^{-1}$ with $0 \leq \underline{t}<\bar{t} \leq T$. Thus $g_{\underline{t}, \bar{t}}$ maps $D_{\underline{t}} \backslash S_{\underline{t}, \bar{t}}$ onto the circular slit disk $D_{\bar{t}}$ where $S_{t, \bar{t}}:=g_{\underline{t}}(\gamma(\underline{t}, \bar{t}])$ is a slit starting in $U_{\underline{t}}$. Obviously, $S_{t, \bar{t}}$ is a locally connected radial $D_{\underline{t}}$-hull, so we are able to apply Lemma 2.28 to get

$$
\log \frac{g_{t, \bar{t}}^{-1}(z)}{z}=\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|g_{t, \bar{t}}^{-1}(\zeta)\right| \Phi_{0, \zeta, D_{\bar{t}}}(z)|\mathrm{d} \zeta| \quad \text { for all } z \in D_{\bar{t}} .
$$

Next, we set $s_{\underline{t}, \bar{t}}:=g_{\bar{t}}(\gamma[\underline{t}, \bar{t}])=\left\{a \in \mathbb{T} \mid g_{\bar{t}}^{-1} \in \gamma_{k}[\underline{t}, \bar{t}]\right\}$, so $s_{\underline{t}, \bar{t}}$ is a compact connected subset of \mathbb{T}. Applying $z=g_{\bar{t}}(w)$ gives us

$$
\log \frac{g_{t}(w)}{g_{\bar{t}}(w)}=\frac{1}{2 \pi} \int_{s_{t, \bar{t}}} \ln \left|g_{t, t}^{-1}(\zeta)\right| \Phi_{0, \zeta, D_{\bar{t}}}\left(g_{\bar{t}}(w)\right)|\mathrm{d} \zeta| \quad \text { for each } w \in \Omega_{\bar{t}} .
$$

Note that $\zeta \mapsto \Phi_{0, \zeta, D_{\bar{t}}}\left(g_{\underline{t}}(w)\right)$ is continuous by Lemma 2.18 and $\zeta \mapsto \ln \left|g_{\underline{t}, \bar{t}}^{-1}(\zeta)\right| \leq 0$ for all $\zeta \in s_{t, t}$, so we find with the mean value theorem

$$
\log \frac{g_{\underline{t}}(w)}{g_{\bar{t}}(w)}=\left(\Re \Phi_{0, \zeta_{1}, D_{\bar{t}}}\left(g_{\bar{t}}(w)\right)+\mathrm{i} \Im \Phi_{0, \zeta_{2}, D_{\bar{t}}}\left(g_{\bar{t}}(w)\right)\right) \frac{1}{2 \pi} \int_{s_{t, \bar{t}}} \ln \left|g_{t, \bar{t}}^{-1}(\zeta)\right||\mathrm{d} \zeta|
$$

for all $w \in \Omega_{t}$ where $\zeta_{1}, \zeta_{2} \in s_{t, \bar{\tau}}$. Using Lemma 2.27, we see that the remaining integral on the right-hand side coincides with $-\operatorname{lmr}\left(g_{\underline{t}, \bar{t}}\right)=-\ln g_{\underline{t}, \bar{t}}^{\prime}(0)=\operatorname{lmr}\left(g_{\underline{t}}\right)-\operatorname{lmr}\left(g_{\bar{t}}\right)$. Let $w \in \Omega_{t_{0}}$ be fix. If we choose \underline{t} and \bar{t} close to t_{0}, we get $w \in \Omega_{\bar{t}}$, and using Lemma 2.25 we find a branch of the logarithm in order to get

$$
\frac{\log g_{\bar{t}}(w)-\log g_{\underline{t}}(w)}{\bar{t}-\underline{t}}=\left(\Re \Phi_{0, \zeta_{1}, D_{\bar{t}}}\left(g_{\bar{t}}(w)\right)+\mathrm{i} \Im \Phi_{0, \zeta_{2}, D_{\bar{t}}}\left(g_{\bar{t}}(w)\right)\right) \frac{\operatorname{lmr}\left(g_{\bar{t}}\right)-\operatorname{lmr}\left(g_{\underline{t}}\right)}{\bar{t}-\underline{t}} .
$$

Using Lemma 2.29, we see $s_{\underline{t}, \bar{t}} \rightarrow U_{t_{0}}=: g_{t_{0}}\left(\gamma\left(t_{0}\right)\right)$ as $\underline{t} \nearrow t_{0}=\bar{t}$ or $\bar{t} \searrow t_{0}=\underline{t}$. Consequently, $\zeta_{j} \rightarrow U_{t_{0}}(j \in\{1,2\})$. Finally, we find with Lemma 2.25 and 2.18 and $D_{\bar{t}} \xrightarrow{\mathrm{k}} D_{t_{0}}$ as $\bar{t} \searrow t_{0}:$

$$
\dot{g}_{t_{0}}(w)=g_{t_{0}}(w) \cdot \Phi_{0, U_{t_{0}}, D_{t_{0}}}\left(g_{t_{0}}(w)\right) \cdot \dot{c}\left(t_{0}\right) \quad \text { for all } w \in \Omega_{t_{0}}
$$

and $c(t):=\operatorname{lmr}\left(g_{t}\right)$. Note that the continuity of $t \mapsto U_{t}$ follows immediately from Lemma 2.29 .

2.3.2 Multiple slit Komatu-Loewner equation

Next, we are going to extend the previous theorems to multiple slits. Let Ω be an arbitrary circular slit disk and $T>0$. For each $k \in\{1, \ldots, m\}$ with $m \in \mathbb{N}$, let γ_{k} : $[0, T] \rightarrow \operatorname{cl}(\Omega) \backslash\{0\}$ be simple and continuous with $\gamma_{k}(0, T] \subseteq \Omega$ and $\gamma_{k}(0) \in \mathbb{T}$. Moreover, assume $\gamma_{j}[0, T] \cap \gamma_{k}[0, T]=\emptyset$ whenever $k \neq j$. Then we call $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ a tuple of disjoint radial (parametrised) slits in Ω. Obviously, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$, with $\mathfrak{H}_{t}:=\bigcup_{k=1}^{m} \gamma_{k}(0, t]$, is an increasing and continuous family of radial Ω-hulls.

We denote by $g_{t}: \Omega_{t}:=\Omega \backslash \mathfrak{H}_{t} \rightarrow D_{t}$ the normalised radial mapping function on Ω_{t} for all $t \in[0, T]$. Using Corollary 2.26 and Lemma 2.24, the function $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is continuous and strictly increasing. Later we will see that in this case $t \mapsto g_{t}$ is not necessarily differentiable at a point t_{0} if $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is differentiable at t_{0}, see Example 4.1.

In order to give a necessary condition we need some further abbreviation. Therefore, for each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$, we set $\mathfrak{H}_{k}(t, \tau):=\bigcup_{j=1, j \neq k}^{m} \gamma_{j}(0, \tau] \cup \gamma_{k}(0, t]$. Since $\mathfrak{H}_{k}(t, \tau)$ is a radial Ω-hull, we may define

$$
f_{k ; t, \tau}: \Omega_{k}(t, \tau):=\Omega \backslash \mathfrak{H}_{k}(t, \tau) \rightarrow D_{k}(t, \tau),
$$

as the normalised radial mapping function from $\Omega_{k}(t, \tau):=\Omega \backslash \mathfrak{H}_{k}(t, \tau)$ onto the circular slit disk $D_{k}(t, \tau)$, see Figure 2.3. Note that in this case $g_{t} \equiv f_{k ; t, t}, \Omega_{t}=\Omega_{k}(t, t)$ and $D_{t}=D_{k}(t, t)$ (independent of k).

Figure 2.3: Normalised radial mapping function $f_{k ; t, \tau}: \Omega_{k}(t, \tau) \rightarrow D_{k}(t, \tau)$

Theorem 2.30. Let Ω be a circular slit disk, $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint radial slits in Ω with $m \in \mathbb{N}$, and let $t_{0} \in[0, T]$. For each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$, $f_{k ; t, \tau}: \Omega_{k}(t, \tau) \rightarrow D_{k}(t, \tau)$ and $g_{t}: \Omega_{t} \rightarrow D_{t}$ denote the normalised radial mapping functions on $\Omega_{k}(t, \tau):=\Omega \backslash\left(\gamma_{k}(0, t] \cup \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$ and $\Omega_{t}:=\Omega_{k}(t, t)$, respectively. Then the following three statements are equivalent.
(i) The limit $\lambda_{k}\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{\operatorname{lmr}\left(f_{k ;: t, t_{0}}\right)-\operatorname{lmr}\left(f_{\left.k ; t_{0}, t_{0}\right)}\right)}{t-t_{0}}$ exists for each $k \in\{1, \ldots, m\}$.
(ii) The function $t \mapsto g_{t}(z)$ is differentiable at t_{0} for every $z \in \Omega_{t_{0}}$.
(iii) The function $t \mapsto g_{t}(z)$ is differentiable at t_{0} for each $z \in \Omega_{t_{0}}$ and fulfils

$$
\dot{g}_{t_{0}}(z)=g_{t_{0}}(z) \sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right) \Phi_{0, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(z)\right) \quad \text { for all } z \in \Omega_{t_{0}}
$$

where for all $k \in\{1, \ldots, m\}, \lambda_{k}\left(t_{0}\right) \geq 0$ and the driving term $U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, T]$.

When this happens, $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is differentiable at t_{0} with derivative $\sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right)$.
Remark 2.6. In case of one slit, i.e. $m=1$, this theorem is more or less equivalent to Theorem 2.23. To be more precise, Theorem 2.30 generalises Theorem 2.23 in the case $m=1$ slightly, as it shows that $t \mapsto g_{t}$ is differentiable at t_{0} if and only if $t \mapsto$ $\operatorname{lmr}\left(g_{t}\right)$ is differentiable at t_{0}. Obviously, Theorem 2.30 contains Theorem 2.22 as well. Consequently, we will discuss only the multiple slit version in the upcoming bilateral and chordal case.

The proof of Theorem 2.30 can be found in Section 2.6.

2.4 Bilateral case

Next, let us switch to the bilateral case where we take a circular slit annulus Ω as our initial domain. Let $Q \in(0,1)$ denote the inner radius of Ω. A subset $\mathfrak{H} \subseteq \Omega$ is called (compact) bilateral hull in Ω or (compact) bilateral Ω-hull if $\Omega \cap \operatorname{cl}(\mathfrak{H})=\mathfrak{H}, \Omega \backslash \mathfrak{H}$ is
a domain, $\mathbb{T} \cup \operatorname{cl}(\mathfrak{H})$ is connected and $\operatorname{dist}\left(\mathfrak{H}, \mathbb{T}_{Q}\right)>0$. By $g_{\mathfrak{H}}$ we denote the unique conformal mapping that maps $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$ onto a circular slit annulus $D_{\mathfrak{H}}$ with inner radius $q_{\mathfrak{H}} \in(0,1)$ such that $g_{\mathfrak{H}}$ associates the outer boundary of $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$ with \mathbb{T} and $g_{\mathfrak{H}}(Q)=q_{\mathfrak{H}}$, see Proposition 2.3. Then we call $g_{\mathfrak{H}}$ the normalised bilateral mapping function on $\Omega \backslash \mathfrak{H}$.

Next, let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]} \subseteq \Omega$ be a family of bilateral Ω-hulls, i.e. \mathfrak{H}_{t} is a bilateral Ω-hull for each $t \in[0, T]$. Then we say $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is an increasing family of bilateral Ω-hulls if $\mathfrak{H}_{t} \subsetneq \mathfrak{H}_{s}$ whenever $0 \leq t<s \leq T$ and $\mathfrak{H}_{0}=\emptyset$. Moreover, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is called continuous family of bilateral Ω-hulls if $\left(\Omega_{t}-a\right)_{t \in[0, T]}$, with $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ and some $a \in \Omega_{T}$, is continuous on $[0, T]$ with respect to kernel convergence. This definition ensures that we consider the connected component of the weak kernel that has \mathbb{T}_{Q} as a boundary component.

Let $A, B \subseteq \mathbb{D}$ be domains where the inner boundary component is a circle (with radii q_{A} and $\left.q_{B}\right)$ and f is a conformal mapping from A onto B that associates $\mathbb{T}_{q_{A}}$ with $\mathbb{T}_{q_{B}}$. Then we set $\operatorname{lcm}(f):=\ln q_{B}-\ln q_{A}$, what we call the logarithmic conformal modulus.
Let Ω be a circular slit annulus and \mathfrak{H} be a bilateral Ω-hull. Then we use the abbreviation $\operatorname{lcm}_{\Omega}(\mathfrak{H}):=\operatorname{lcm}\left(g_{\mathfrak{H}}\right)$ as well where $g_{\mathfrak{H}}$ denotes the normalised bilateral mapping function on $\Omega \backslash \mathfrak{H}$.

As mentioned in Subsection 2.3.2, see Remark 2.6, Theorem 2.23 follows from Theorem 2.30 , so we will skip the single slit case in the bilateral setting. Consequently, will go directly to the multiple slit case. Let Ω be an arbitrary circular slit annulus and for each $k \in\{1, \ldots, m\}$ with $m \in \mathbb{N}, \gamma_{k}:[0, T] \rightarrow \mathbb{C}$ is continuous and simple with $\gamma_{k}(0, T] \subseteq \Omega$ and $\gamma_{k}(0) \in \mathbb{T}$. Moreover, assume $\gamma_{j}[0, T] \cap \gamma_{k}[0, T]=\emptyset$ whenever $k \neq j$. Then we call $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ a tuple of disjoint bilateral (parametrised) slits in Ω. Obviously, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$, with $\mathfrak{H}_{t}:=\bigcup_{k=1}^{m} \gamma_{k}(0, t]$, is a family of increasing and continuous bilateral hulls in Ω.

Next, let $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint bilateral slits in a circular slit annulus Ω. Then we set $\mathfrak{H}_{k}(t, \tau):=\bigcup_{j=1, j \neq k}^{m} \gamma_{j}(0, \tau] \cup \gamma_{k}(0, t]$ with $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$. Since $\mathfrak{H}_{k}(t, \tau)$ is a bilateral Ω-hull as well, we may define

$$
f_{k ; t, \tau}: \Omega_{k}(t, \tau):=\Omega \backslash \mathfrak{H}_{k}(t, \tau) \rightarrow D_{k}(t, \tau)
$$

as the normalised bilateral mapping function from $\Omega_{k}(t, \tau):=\Omega \backslash \mathfrak{H}_{k}(t, \tau)$ onto the circular slit annulus $D_{k}(t, \tau)$ with $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$. Herein, the inner radius of $D_{k}(t, \tau)$ is denoted by $q_{k}(t, \tau)$. Moreover, we set $g_{t}:=f_{k ; t, t}, \Omega_{t}:=\Omega_{k}(t, t)$, $D_{t}:=D_{k}(t, t)$ and $q_{t}:=q_{k}(t, t)$ (independent of k) for each $t \in[0, T]$.

Then we have the following theorem
Theorem 2.31. Let Ω be a circular slit annulus, $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint bilateral slits in Ω with $m \in \mathbb{N}$, and let $t_{0} \in[0, T]$. For each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}, f_{k ; t, \tau}: \Omega_{k}(t, \tau) \rightarrow D_{k}(t, \tau)$ and $g_{t}: \Omega_{t} \rightarrow D_{t}$ denote the normalised bilateral mapping functions on $\Omega_{k}(t, \tau):=\Omega \backslash\left(\gamma_{k}(0, t] \cup \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$ and $\Omega_{t}:=\Omega_{k}(t, t)$, respectively. Then the following three statements are equivalent.
(i) The limit $\lambda_{k}\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{\operatorname{lcm}\left(f_{k ;, t}, t_{0}\right)-\operatorname{lcm}\left(f_{k ; t_{0}, t_{0}}\right)}{t-t_{0}}$ exists for each $k \in\{1, \ldots, m\}$.
(ii) The function $t \mapsto g_{t}(z)$ is differentiable at t_{0} for each $z \in \Omega_{t_{0}}$.
(iii) The function $t \mapsto g_{t}(z)$ is differentiable at t_{0} for each $z \in \Omega_{t_{0}}$ and fulfils

$$
\begin{equation*}
\dot{g}_{t_{0}}(z)=g_{t_{0}}(z) \sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right) \Phi_{q_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(z)\right) \quad \text { for all } z \in \Omega_{t_{0}}, \tag{2.5}
\end{equation*}
$$

where for all $k \in\{1, \ldots, m\}, \lambda_{k}\left(t_{0}\right) \geq 0$ and the driving term $U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, T]$. Here q_{t} denotes the inner radius of $D_{t}, t \in[0, T]$.

When this happens, $t \mapsto \operatorname{lcm}\left(g_{t}\right)$ is differentiable at t_{0} with derivative $\sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right)$.
As in the previous section, $w \mapsto \Phi_{q_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}(w)$ denotes the unique mapping from Proposition 2.5, see also Figure 2.4.

Figure 2.4: Mapping behaviour of $z \mapsto g_{t}(z)$ and $w \mapsto \Phi_{q_{t}, U_{k}(t), D_{t}}(w)$ in the bilateral multiple slit case

The proof of Theorem 2.31 can be found in Section 2.6. In order to do so, we need some preliminary lemmas.

Lemma 2.32. Let Ω be a circular slit annulus and $\mathfrak{A}, \mathfrak{B} \subseteq \Omega$ be bilateral Ω-hulls with $\mathfrak{A} \subsetneq \mathfrak{B}$. Then $\operatorname{lcm}\left(g_{\mathfrak{R}}\right)<\operatorname{lcm}\left(g_{\mathfrak{B}}\right)$ where $g_{\mathfrak{A}}$ and $g_{\mathfrak{B}}$ denote the normalised bilateral mapping function on $\Omega \backslash \mathfrak{A}$ and $\Omega \backslash \mathfrak{B}$, respectively.

Proof. First of all, we note that the functions $g_{\mathfrak{A}}$ and $g_{\mathfrak{B}}$ are related to an extremal property, see Lemma 2.7. Moreover, we denote by Q the inner radius of Ω

Note that $\mathfrak{C}:=g_{\mathfrak{A}}(\mathfrak{B} \backslash \mathfrak{A})$ is a compact bilateral hull in $D_{\mathfrak{A}}=g_{\mathfrak{A}}(\Omega \backslash \mathfrak{A})$. Herein, $q_{\mathfrak{A}}$ is the inner radius of the circular slit annulus $D_{\mathfrak{A}}$. Next, we find a unique conformal mapping $h: \mathbb{A}_{q_{\mathfrak{A}}} \backslash \mathfrak{C} \rightarrow \mathbb{A}_{q^{*}}$ having $h\left(q_{\mathfrak{A}}\right)=q^{*}>0$, see also Proposition 2.3. Then $q_{\mathfrak{2}}<q^{*}$ by Theorem 3, Chapter V.1. of [Gol69].

Using the notation from Lemma 2.7 with $\Omega \backslash \mathfrak{B}$ as the initial domain, E as the outer boundary component of $\Omega \backslash \mathfrak{B}$ and $F:=\mathbb{T}_{Q}$ we find $h \circ g_{\mathfrak{R}}, g_{\mathfrak{B}} \in \mathcal{F}$. Consequently, we find $q^{*} \leq q_{\mathfrak{B}}$ where $q_{\mathfrak{B}}$ is the inner radius of $D_{\mathfrak{B}}=g_{\mathfrak{B}}(\Omega \backslash \mathfrak{B})$. Summarising, we get $q_{\mathfrak{A}}<q_{\mathfrak{B}}$.

Lemma 2.33. Let Ω be a circular slit annulus, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of bilateral Ω-hulls and g_{t} denotes the normalised bilateral mapping function on $\Omega \backslash \mathfrak{H}_{t}$ for each $t \in[0, T]$. Let $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ with $t_{n} \rightarrow t_{0}$, assume $\operatorname{con}\left(\Omega_{t_{n}}\right)=\operatorname{con}\left(\Omega_{t_{0}}\right)$ for all $n \in \mathbb{N}$ and $\Omega_{t_{n}}-a \xrightarrow{k} \Omega_{t_{0}}-a$ for some $a \in \Omega_{T}$.

Then $g_{t_{n}} \xrightarrow{l . u u^{\prime}} g_{t_{0}}$ on $\Omega_{t_{0}}$ as $n \rightarrow \infty$. Moreover, $\operatorname{lcm}\left(g_{t_{n}}\right) \rightarrow \operatorname{lcm}\left(g_{t_{0}}\right)$ as well.

Proof. Let Q denote the inner radius of Ω. By definition $\Omega_{t_{n}}-a \xrightarrow{\mathrm{k}} \Omega_{t_{0}}-a$ if $t_{n} \rightarrow t_{0}$ for some $a \in \Omega_{T}$.

By Montel's theorem $h_{n}:=g_{t_{n}}$ is normal, so we find a locally uniform convergent subsequence $\left(h_{n_{k}}\right)_{k \in \mathbb{N}}$ on $\Omega_{t_{0}}$. The limit function $h: \Omega_{t_{0}} \rightarrow \mathbb{C}$ is either univalent or constant.

Note that $\operatorname{dist}\left(\mathfrak{H}_{t}, \mathbb{T}_{Q}\right) \geq \operatorname{dist}\left(\mathfrak{H}_{T}, \mathbb{T}_{Q}\right)>0$ for all $t \in[0, T]$. Using the Schwarz reflection principle, we can extend each h_{n} analytically to $\mathbb{A}_{Q-\delta, Q}$ with some $\delta>0$ small. Moreover, $g_{t_{n}}\left(\mathbb{T}_{Q}\right)=\mathbb{T}_{q_{t_{n}}}$ where $q_{t_{n}} \in[Q, 1)$ by Lemma 2.32. Herein, $q_{t_{n}}$ denotes the inner radius of $D_{t_{n}}=g_{t_{n}}\left(\Omega \backslash \mathfrak{H}_{t_{n}}\right)$. Consequently, $h_{n_{k}}$ converges uniformly on \mathbb{T}_{Q} to $\mathbb{T}_{q^{*}}$ with $q^{*} \geq Q$, so the limit function h can not be constant. Since $h: \Omega_{t_{0}} \rightarrow D$ is a conformal mapping, Corollary 2.12 yields $D_{t_{n_{k}}}-a \xrightarrow{\mathrm{k}} D-a$ for some $a \in D$. Note that $\operatorname{con}(D)=\operatorname{con}\left(\Omega_{t_{0}}\right)=\operatorname{con} \Omega_{t_{n}}=\operatorname{con}\left(D_{t_{n}}\right)$ for all $n \in \mathbb{N}$, so D is a circular slit annulus by Lemma 2.14. Since $h_{n_{k}}$ converges uniformly on \mathbb{T}_{Q} to $\mathbb{T}_{q^{*}}, h$ associates \mathbb{T}_{Q} with the inner boundary component $\mathbb{T}_{q^{*}}$ of D and $h(Q)=q^{*}>0$.

On top of this each (interior) proper concentric circular arc of $\Omega_{t_{0}}$ is mapped by h to an (interior) proper concentric circular arc of D. This can be seen by using the argument principle, see for instance the proof of Lemma 2.25. Hence, h associates the outer boundary of $\Omega_{t_{0}}$ with \mathbb{T}. Summarising, $h \equiv g_{t_{0}}$. As all convergent subsequences $\left(h_{n_{k}}\right)_{k \in \mathbb{N}}$ converge to the same function $g_{t_{0}}$, also the whole sequence $\left(g_{t_{n}}\right)_{n \in \mathbb{N}}$ converges locally uniformly to $g_{t_{0}}$ on $\Omega_{t_{0}}$. Obviously, $q_{n} \rightarrow q^{*}=\exp \left(\operatorname{lcm}\left(g_{t_{0}}\right)\right)$ as well.

Lemma 2.34. Let Ω be a circular slit annulus and \mathfrak{H} be a bilateral Ω-hull such that $\partial \Omega_{\mathfrak{H}}$ is locally connected with $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$. Then

$$
\operatorname{lcm}\left(g_{\mathfrak{H}}\right)=-\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|g_{\mathfrak{H}}^{-1}(\zeta)\right||\mathrm{d} \zeta|
$$

where $g_{\mathfrak{H}}$ is the normalised bilateral mapping function from $\Omega_{\mathfrak{H}}$ onto the circular slit annulus $D_{\mathfrak{j}}$.

Proof. Herein, we denote by $q \in(0,1)$ the inner radius of $D_{\mathfrak{j}}$. In particular we have $q \in(Q, 1)$ by Lemma 2.32. Cauchy's theorem yields

$$
0=\frac{1}{2 \pi \mathrm{i}} \int_{\partial D_{\mathfrak{F}}} \log \left(\frac{g_{\mathfrak{j}}^{-1}(\zeta)}{\zeta}\right) \frac{\mathrm{d} \zeta}{\zeta}=\frac{1}{2 \pi} \int_{\partial D_{\mathfrak{F}}} \ln \left|\frac{g_{\mathfrak{j}}^{-1}(\zeta)}{\zeta}\right| \mathrm{d} \arg \zeta .
$$

Like in the radial case, the logarithm is well-defined. The last equality is an immediate consequence of the fact that each connected component of $\partial D_{\mathfrak{H}}$ is a concentric circular arc centred at 0 . Note that $\log \left|g_{\mathfrak{H}}^{-1}(\zeta) / \zeta\right|$ is constant on each connected component of $\partial D_{\mathfrak{h}}$, so we find

$$
0=\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|\frac{h_{\mathfrak{H}}^{-1}(\zeta)}{\zeta}\right| \operatorname{darg} \zeta-\frac{1}{2 \pi} \int_{\mathbb{T}_{q}} \ln \left|\frac{h_{\mathfrak{H}}^{-1}(\zeta)}{\zeta}\right| \operatorname{darg} \zeta
$$

Finally, we get $-\frac{1}{2 \pi} \int_{\mathbb{T}_{q}} \ln \left|\frac{h_{\mathfrak{5}}^{-1}(\zeta)}{\zeta}\right| \operatorname{darg} \zeta=-\ln \frac{Q}{q}=\operatorname{lcm}\left(g_{\mathfrak{F}}\right)$.

Lemma 2.35. Let Ω be a circular slit annulus and \mathfrak{H} be a bilateral Ω-hull such that $\partial \Omega_{\mathfrak{H}}$ is locally connected with $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$. Then we have

$$
\log \frac{g_{\mathfrak{H}}^{-1}(z)}{z}=\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|g_{\mathfrak{H}}^{-1}(\zeta)\right| \Phi_{q_{\mathfrak{j}}, \zeta, D_{\mathfrak{F j}}}(z)|\mathrm{d} \zeta| \quad \text { for all } z \in D_{\mathfrak{H}}
$$

where $g_{\mathfrak{H}}$ denotes the normalised bilateral mapping function from $\Omega_{\mathfrak{H}}$ onto $D_{\mathfrak{H}}$. Herein, $q_{\mathfrak{H}}$ denotes the inner radius of $D_{\mathfrak{H}}$.

Proof. Let us consider the function

$$
F(z):=\log \frac{g_{\mathfrak{H}}^{-1}(z)}{z}, \quad z \in D_{\mathfrak{H}}
$$

which is analytic on $D_{\mathfrak{j}}$. We denote by $C_{1}, \ldots, C_{\mathfrak{n}}=\mathbb{T}$ the boundary components of $D_{\mathfrak{j}}$. Note that F can be extended continuously to $\partial D_{\mathfrak{j}}$ and $\Re(F)$ is constant on each $C_{k}, k \in\{1, \ldots, \mathfrak{n}-1\}$. Hence we find with Proposition 2.21 and $a=q_{\mathfrak{H}}$

$$
\log \frac{g_{\mathfrak{H}}^{-1}(z)}{z}=\frac{1}{2 \pi} \int_{\mathbb{T}} \ln \left|\frac{g_{\mathfrak{j}}^{-1}(\zeta)}{\zeta}\right| \Phi_{q_{\mathfrak{5}}, \zeta, D_{\mathfrak{j}}}(z)|\mathrm{d} \zeta|+\mathrm{i} c
$$

where $c \in \mathbb{R}$. Finally, let us apply $z=q_{\mathfrak{H}}$ to get $c=0$, as $\Phi_{q_{\mathfrak{j}}, \zeta, D_{\mathfrak{j}}}\left(q_{\mathfrak{H}}\right) \geq 0$ and $\left.\log \left(g_{\mathfrak{H}}^{-1}(z) / z\right)\right|_{z=q_{\mathfrak{H}}}=-\operatorname{lcm}\left(g_{\mathfrak{H}}\right)<0$.

2.5 Chordal case

Finally, we are going to discuss the chordal case. In this context we take an upper parallel slit half-plane Ω as our initial domain. A bounded subset $\mathfrak{H} \subseteq \Omega$ is called (compact) chordal hull in Ω or (compact) chordal Ω-hull if $\Omega \cap \operatorname{cl}(\mathfrak{H})=\mathfrak{H}, \Omega \backslash \mathfrak{H}$ is a domain and $\mathbb{R} \cup \operatorname{cl}(\mathfrak{H})$ is connected. By $g_{\mathfrak{H}}$ we denote the unique conformal mapping that maps $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$ onto an upper parallel slit half-plane $D_{\mathfrak{H}}$ such that

$$
g_{\mathfrak{H}}(z)=z+\frac{a_{g_{\mathfrak{5}}}}{z}+\mathcal{O}\left(|z|^{-2}\right), \quad \text { around } \infty
$$

We call this function normalised chordal mapping function on $\Omega \backslash \mathfrak{H}$. Herein, the value hcap $\left(g_{\mathfrak{H}}\right):=a_{\mathfrak{H}}:=a_{g_{\mathfrak{5}}}$ is called half-plane capacity of $g_{\mathfrak{5}}$. Sometimes we write $\operatorname{hcap}_{\Omega}(\mathfrak{H}):=\operatorname{hcap}\left(g_{\mathfrak{H}}\right)$ as well if $g_{\mathfrak{H}}$ is the normalised chordal mapping function on $\Omega \backslash \mathfrak{H}$. Moreover, let g be a function that is analytic on $B_{\varepsilon}(\infty)$, with some $\varepsilon>0$, having an expansion $g(z)=z+\frac{a_{g}}{z}+\mathcal{O}\left(|z|^{-2}\right)$ around ∞. Then we call hcap $(g):=\left|a_{g}\right|$ the half-plane capacity of g as well. On top of this, $a_{g} \geq 0$ if there are constants $\delta_{1}, \delta_{2}>0$ such that $B_{\delta_{1}}(\infty) \cap \mathbb{H} \subseteq g\left(B_{\varepsilon}(\infty) \cap \mathbb{H}\right) \subseteq B_{\delta_{2}}(\infty) \cap \mathbb{H}$.

Next, let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]} \subseteq \Omega$ be a family of chordal Ω-hulls, i.e. \mathfrak{H}_{t} is a chordal Ω hull for each $t \in[0, T]$. Then $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is called increasing family of chordal Ω-hulls if $\mathfrak{H}_{t} \subsetneq \mathfrak{H}_{s}$ whenever $0 \leq t<s \leq T$ and $\mathfrak{H}_{0}=\emptyset$. Moreover, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]} \subseteq \Omega$ is called continuous family of chordal Ω-hulls if $\left(\Omega_{t}-a\right)_{t \in[0, T]}$, with $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ and some $a \in \Omega_{T}$, is continuous with respect to kernel convergence.

As in the bilateral setting, we will go directly to the multiple slit case. Let Ω be an upper parallel slit half-plane and for each $k \in\{1, \ldots, m\}$ with $m \in \mathbb{N}, \gamma_{k}:[0, T] \rightarrow \mathbb{C}$ is continuous and simple with $\gamma_{k}(0, T] \subseteq \Omega$ and $\gamma_{k}(0) \in \mathbb{R}$. Moreover, $\gamma_{j}[0, T] \cap \gamma_{k}[0, T]=\emptyset$ whenever $k \neq j$. Then we call $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ a tuple of disjoint chordal (parametrised) slits in Ω. Obviously, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$, with $\mathfrak{H}_{t}:=\bigcup_{k=1}^{m} \gamma_{k}(0, t]$ is a family of increasing continuous chordal Ω-hulls.

Let $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint chordal slits in an upper parallel slit halfplane Ω. For each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$, we set $\mathfrak{H}_{k}(t, \tau):=\bigcup_{j=1, j \neq k}^{m} \gamma_{j}(0, \tau] \cup$ $\gamma_{k}(0, t]$. Since $\mathfrak{H}_{k}(t, \tau)$ is a chordal Ω-hull as well, we may define

$$
f_{k ; t, \tau}: \Omega_{k}(t, \tau):=\Omega \backslash \mathfrak{H}_{k}(t, \tau) \rightarrow D_{k}(t, \tau),
$$

as the normalised chordal mapping function from $\Omega \backslash \mathfrak{H}_{k}(t, \tau)$ onto the upper parallel slit half-plane $D_{k}(t, \tau)$ with $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$. Moreover, for each $t \in[0, T]$, we set independently of $k \in\{1, \ldots, m\}, g_{t}:=f_{k ; t, t}, \Omega_{t}:=\Omega_{k}(t, t)$ and $D_{t}:=D_{k}(t, t)$.

Figure 2.5: Mapping behaviour of $z \mapsto g_{t}(z)$ and $w \mapsto \Phi_{\infty, U_{k}(t), D_{t}}(w)$ in the chordal multiple slit case

Then we have the following theorem
Theorem 2.36. Let Ω be an upper parallel slit half-plane, $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint chordal slits in Ω with $m \in \mathbb{N}$, and let $t_{0} \in[0, T]$. For each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}, f_{k ; t, \tau}: \Omega_{k}(t, \tau) \rightarrow D_{k}(t, \tau)$ and $g_{t}: \Omega_{t} \rightarrow D_{t}$ denote the normalised chordal mapping functions on $\Omega_{k}(t, \tau):=\Omega \backslash\left(\gamma_{k}(0, t] \cup \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$ and $\Omega_{t}:=\Omega_{k}(t, t)$, respectively. Then the following three statements are equivalent.
(i) The limit $\lambda_{k}\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{\operatorname{hcap}\left(f_{k ;, t t_{0}}\right)-\operatorname{hcap}\left(f_{\left.k ; t_{0}, t_{0}\right)}\right)}{t-t_{0}}$ exists for each $k \in\{1, \ldots, m\}$.
(ii) The function $t \mapsto g_{t}(z)$ is differentiable at t_{0} for each $z \in \Omega_{t_{0}}$.
(iii) The function $t \mapsto g_{t}(z)$ is differentiable at t_{0} for each $z \in \Omega_{t_{0}}$ and fulfils

$$
\dot{g}_{t_{0}}(z)=-\frac{\mathrm{i}}{2} \sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right) \Phi_{\infty, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(z)\right) \quad \text { for all } z \in \Omega_{t_{0}}
$$

where for each $k \in\{1, \ldots, m\}, \lambda_{k}\left(t_{0}\right) \geq 0$ and the driving term $U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, T]$.

When this happens, $t \mapsto \operatorname{hcap}\left(g_{t}\right)$ is differentiable at t_{0} with derivative $\sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right)$.
As before, $w \mapsto \Phi_{\infty, U_{k}\left(t_{0}\right), D_{t_{0}}}(w)$ denotes the unique mapping function from Proposition 2.5, see also Figure 2.5.

Remark 2.7. Let $\Omega=\mathbb{H}$ and $(\gamma)_{t \in[0, T]}$ be a chordal slit in \mathbb{H} parametrised in such a way that $\operatorname{hcap}\left(g_{t}\right)=2 t$ for all $t \in[0, T]$ where, for each $t \in[0, T], g_{t}$ denotes the normalised chordal mapping function on $\Omega \backslash \gamma(0, t]$. Then $\lambda\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{\operatorname{hcap}\left(g_{t}\right)-\text { hcap }\left(g_{t_{0}}\right)}{t-t_{0}}=2$ for all $t_{0} \in[0, T]$, so Theorem 2.36 and Remark 2.2 give us Theorem D.

The proof of Theorem 2.36 can be found in Section 2.6. In order to do so, we need some preliminary lemmas.

Lemma 2.37. Let Ω be an upper parallel slit half-plane and $\mathfrak{A}, \mathfrak{B} \subseteq \Omega$ be chordal Ω-hulls with $\mathfrak{A} \subsetneq \mathfrak{B}$. Then hcap $\left(g_{\mathfrak{A}}\right)<\operatorname{hcap}\left(g_{\mathfrak{B}}\right)$ where $g_{\mathfrak{A}}$ and $g_{\mathfrak{B}}$ denote the normalised chordal mapping function on $\Omega \backslash \mathfrak{A}$ and $\Omega \backslash \mathfrak{B}$, respectively.

Proof. First of all, we note that the functions $g_{\mathfrak{A}}$ and $g_{\mathfrak{B}}$ are related to an extremal property, see Lemma 2.8.
$\mathfrak{C}:=g_{\mathfrak{A}}(\mathfrak{B} \backslash \mathfrak{A})$ is a compact chordal hull in $D_{\mathfrak{A}}=g_{\mathfrak{A}}(\Omega \backslash \mathfrak{A})$. Using Riemann's mapping theorem (for simply connected domains), we find a unique conformal mapping $h: \mathbb{H} \backslash \mathfrak{C} \rightarrow \mathbb{H}$ having $h(z)-z \rightarrow 0$ as $z \rightarrow \infty$. Hence $h(z)=z+\frac{a_{h}}{z}+\mathcal{O}\left(|z|^{2}\right)$ around ∞ with $a_{h}>0$, see [Law05], Section 3.4. Consequently, $\left(h \circ g_{\mathfrak{R}}\right)(z) \stackrel{z}{=}+\frac{a_{h}+a_{\mathfrak{2}}}{z}+\mathcal{O}\left(|z|^{2}\right)$ around ∞ where $a_{\mathfrak{A}}=\operatorname{hcap}\left(g_{\mathfrak{A}}\right)$.

Next, let us use the notation from Lemma 2.8 with $\Omega \backslash \mathfrak{B}$ as the initial domain. Then $g_{\mathfrak{B}}, h \circ g_{\mathfrak{A}} \in \mathcal{F}$ and we find $\operatorname{hcap}\left(g_{\mathfrak{A}}\right)+a_{h} \leq \operatorname{hcap}\left(g_{\mathfrak{B}}\right)$, so hcap $\left(g_{\mathfrak{R}}\right)<\operatorname{hcap}\left(g_{\mathfrak{B}}\right)$.

Lemma 2.38. Let Ω be an upper parallel slit half-plane, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of chordal Ω-hulls and for each $t \in[0, T], g_{t}$ denotes the normalised chordal mapping function on $\Omega \backslash \mathfrak{H}_{t}$. Let $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ with $t_{n} \rightarrow t_{0}$, assume $\operatorname{con}\left(\Omega_{t_{n}}\right)=$ $\operatorname{con}\left(\Omega_{t_{0}}\right)$ for all $n \in \mathbb{N}$ and $\Omega_{t_{n}}-a \xrightarrow{k} \Omega_{t_{0}}-a$ for some $a \in \Omega_{T}$.

Then $g_{t_{n}} \xrightarrow{\text { l.u. }} g_{t_{0}}$ on $\Omega_{t_{0}}$ as $n \rightarrow \infty$. Moreover, $\operatorname{hcap}\left(g_{t_{n}}\right) \rightarrow \operatorname{hcap}\left(g_{t_{0}}\right)$ as well.
Proof. First of all, by definition $\Omega_{t_{n}}-a \xrightarrow{\mathrm{k}} \Omega_{t_{0}}-a$ if $t_{n} \rightarrow t_{0}$ for some $a \in \Omega_{T}$. Next, we set $g_{n}:=g_{t_{n}}$ and note that each g_{n} has an analytic continuation to $B_{\varepsilon}(\infty)$ with $\varepsilon>0$ small. Thus we find with $h_{n}(z):=1 /\left(g_{n}(1 / z)+\mathrm{i}\right)$:

$$
h_{n}(z)=z-i z^{2}-\left(\operatorname{hcap}\left(g_{n}\right)+1\right) z^{3}+\mathcal{O}\left(|z|^{4}\right) \text { around } z=0 .
$$

Using Koebe's distortion theorem, $\left(h_{n}\right)_{n \in \mathbb{N}}$ is a bounded sequence on $1 / \Omega_{t_{0}} \cup U$ where $1 / \Omega_{t_{0}}:=\left\{z \in \mathbb{C} \mid 1 / z \in \Omega_{t_{0}}\right\}$ and U is a small neighbourhood of 0 . Consequently, we find a locally uniform convergent subsequence $\left(h_{n_{k}}\right)_{k \in \mathbb{N}}$ where $h_{n_{k}} \xrightarrow{\text { l.u. }} h$ on $1 / \Omega_{t_{0}} \cup U . h$ can not be constant as we have $h(z)=z-\mathrm{i} z^{2}+\mathcal{O}\left(\left|z^{3}\right|\right)$ around 0 . Thus $g_{n_{k}}(z)=1 / h_{n_{k}}(1 / z)-\mathrm{i}$ converges locally uniformly on $\Omega_{t_{0}}$ to the univalent function $g(z)=1 / h(1 / z)-\mathrm{i}$. An easy calculation yields $g(z)-z \rightarrow 0$ as $z \rightarrow \infty$.

Next, we set $D_{n}:=g_{n}\left(\Omega \backslash \mathfrak{H}_{t_{n}}\right)$, i.e. D_{n} is an upper parallel slit half-plane. Since $g: \Omega_{t_{0}} \rightarrow D:=g\left(\Omega_{t_{0}}\right)$ is conformal we find, by Corollary $2.12, D_{n_{k}}-a \xrightarrow{\mathrm{k}} D-a$ for some $a \in D$. Note that $\operatorname{con}(D)=\operatorname{con}(\Omega)=\operatorname{con}\left(\Omega_{t_{n}}\right)=\operatorname{con}\left(D_{t_{n}}\right)$, so D is an upper parallel slit half-plane, by Lemma 2.15. Together with the previous calculation, we find $g \equiv g_{t_{0}}$.

As all convergent subsequences $\left(g_{n_{k}}\right)_{k \in \mathbb{N}}$ converge to the same function $g_{t_{0}}$, also the whole sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to $g_{t_{0}}$ on $\Omega_{t_{0}}$. In this case $\operatorname{hcap}\left(g_{n}\right) \rightarrow \operatorname{hcap}\left(g_{t_{0}}\right)$ as well, as $g_{t_{0}}(z)=1 / h(1 / z)-\mathrm{i}$.

Lemma 2.39. Let Ω be an upper parallel slit half-plane and \mathfrak{H} be a chordal Ω-hull such that $\partial \Omega_{\mathfrak{H}}$ is locally connected with $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$. Then we have

$$
\operatorname{hcap}\left(g_{\mathfrak{H}}\right)=\frac{1}{\pi} \int_{\partial \mathbb{H}} \Im\left(g_{\mathfrak{H}}^{-1}(\zeta)\right)|\mathrm{d} \zeta|,
$$

where $g_{\mathfrak{H}}$ denotes the normalised chordal mapping function on $\Omega_{\mathfrak{H}}$.
Note that there is an $R_{0}>0$ such that $\Im\left(g_{\mathfrak{\mathfrak { h }}}^{-1}(\zeta)\right)=0$ for all $\zeta \in \partial \mathbb{H}$ with $|\zeta|>R_{0}$, so the previous integral is well-defined.

Proof. First of all, we note that $g_{\mathfrak{H}}: \Omega \backslash \mathfrak{H} \rightarrow D_{\mathfrak{H}}$ can be reflected along the real line to a function $g_{*}: \Omega^{*} \backslash \mathfrak{H}^{*} \rightarrow D^{*}$. Herein, Ω^{*}, D^{*} and \mathfrak{H}^{*} come out of reflecting $\Omega, D_{\mathfrak{H}}$ and \mathfrak{H} on the real line, respectively. Thus $\operatorname{con}\left(\Omega^{*}\right)=2 \mathfrak{n}-1$ where $\mathfrak{n}=\operatorname{con}(\Omega)$. Consequently, ∞ is an inner point of $\Omega^{*} \backslash \mathfrak{H}^{*}$ and D^{*}.

Together with Cauchy's formula we find

$$
z \cdot\left(g_{*}^{-1}(z)-z\right)=z \frac{1}{2 \pi \mathrm{i}} \int_{\partial D^{*}} \frac{g_{*}^{-1}(\zeta)-\zeta}{\zeta-z} \mathrm{~d} \zeta=\frac{1}{2 \pi \mathrm{i}} \int_{\partial D^{*}} \frac{g_{*}^{-1}(\zeta)-\zeta}{\frac{\zeta}{z}-1} \mathrm{~d} \zeta
$$

for each $z \in D^{*}$. Next, we apply $z=\infty$. Alternatively we could substitute $z=\frac{1}{w}$ and apply $w=0$. In either way we find

$$
\operatorname{hcap}\left(g_{*}^{-1}\right)=-\frac{1}{2 \pi \mathrm{i}} \int_{\partial D^{*}} g_{*}^{-1}(\zeta)-\zeta \mathrm{d} \zeta=\frac{1}{2 \pi} \int_{\partial D^{*}} \mathrm{i}\left(g_{*}^{-1}(\zeta)-\zeta\right) \mathrm{d} \zeta .
$$

Moreover, we denote the connected components of ∂D^{*} by $C_{0}, \ldots, C_{2 \mathfrak{n}-1}$ where $\Im\left(C_{0}\right)=$ 0 . Since hcap $\left(g_{*}^{-1}\right)>0$ we find

$$
\operatorname{hcap}\left(g_{*}^{-1}\right)=-\frac{1}{2 \pi} \int_{\partial D^{*}} \Im\left(g_{*}^{-1}(\zeta)-\zeta\right) \mathrm{d} \zeta=-\frac{1}{2 \pi} \sum_{k=0}^{2 \mathfrak{n}-1} \int_{C_{k}} \Im\left(g_{*}^{-1}(\zeta)-\zeta\right) \mathrm{d} \zeta .
$$

Moreover, for each $k \neq 0, \zeta \mapsto \Im\left(g_{*}^{-1}(\zeta)-\zeta\right)$ is constant on C_{k}, so the integrals over C_{k} vanish, as we have to consider both sides of the line segments C_{k}. Consequently, we find by symmetry

$$
\operatorname{hcap}\left(g_{\mathfrak{H}}\right)=-\operatorname{hcap}\left(g_{*}^{-1}\right)=\frac{1}{2 \pi} \int_{C_{0}} \Im\left(g_{\mathfrak{H}}^{-1}(\zeta)-\zeta\right)|\mathrm{d} \zeta|=\frac{1}{\pi} \int_{\partial \mathbb{H}} \Im\left(g_{\mathfrak{H}}^{-1}(\zeta)\right)|\mathrm{d} \zeta| .
$$

Lemma 2.40. Let Ω be an upper parallel slit half-plane and \mathfrak{H} be a chordal Ω-hull such that $\partial \Omega_{\mathfrak{H}}$ is locally connected with $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$. Then we have

$$
g_{\mathfrak{H}}^{-1}(z)-z=\frac{\mathrm{i}}{2 \pi} \int_{\partial \mathbb{H}} \Im\left(g_{\mathfrak{H}}^{-1}(\zeta)\right) \Phi_{\infty, \zeta, D_{\mathfrak{H}}}(z)|\mathrm{d} \zeta| \quad \text { for all } z \in D_{\mathfrak{H}},
$$

where $g_{\mathfrak{H}}$ denotes the normalised chordal mapping function from $\Omega_{\mathfrak{H}}$ onto $D_{\mathfrak{H}}$.

Like in the previous lemma, there is an $R_{0}>0$ such that $\Im\left(g_{\mathfrak{H}}^{-1}(\zeta)\right)=0$ for all $\zeta \in \partial \mathbb{H}$ with $|\zeta|>R_{0}$, so the previous integral is well-defined.

Proof. Let $T(z):=\frac{1}{z}-\mathrm{i}, F(z):=-\mathrm{i}\left(g_{\mathfrak{H}}^{-1}(T(z))-T(z)\right)$ and $R(w):=T^{-1}(w)=\frac{1}{w+\mathrm{i}}$ mapping $D_{\mathfrak{H}}$ onto $D^{\prime} \subseteq B_{1 / 2}(-\mathrm{i} / 2)$. Then Proposition 2.21 gives us with some $a \in D^{\prime}$:

$$
F(z)=\frac{1}{2 \pi} \int_{\partial B_{1 / 2}(-\mathrm{i} / 2)} \Re(F(\zeta)) \cdot \Phi_{a, \zeta, D^{\prime}}(z)|\mathrm{d} \zeta|+\mathrm{i} c \quad \text { for all } z \in D^{\prime} .
$$

Note that we find a connected subset $s \subseteq \partial B_{1 / 2}(-\mathrm{i} / 2)$ such that

$$
\Re(F(\zeta))=\Im\left(g_{\mathfrak{H}}^{-1}(T(\zeta))-T(\zeta)\right)=\Im\left(g_{\mathfrak{H}}^{-1}(T(\zeta))\right)=0 \quad \text { for all } \zeta \in B_{1 / 2}(-\mathrm{i} / 2) \backslash s
$$

As T maps $\partial B_{1 / 2}(-\mathrm{i} / 2) \backslash\{0\}$ onto \mathbb{R} and 0 to ∞, we choose s in such a way that $\operatorname{dist}(s, 0)>0$. Consequently, we find

$$
F(z)=\frac{1}{2 \pi} \int_{s} \Im\left(g_{\mathfrak{H}}^{-1}(T(\zeta))\right) \cdot \Phi_{0, \zeta, D^{\prime}}(z)|\mathrm{d} \zeta|+\mathrm{i} d \quad \text { for all } z \in D^{\prime}
$$

where $d \in \mathbb{R}$. Note that $\Phi_{0, \zeta, D^{\prime}}$ and $\Phi_{a, \zeta, D^{\prime}}$ differ only in an imaginary constant and $0 \notin s$. It is easy to see that $\Phi_{0, \zeta, D^{\prime}}(z)=\left|T^{\prime}(\zeta)\right| \cdot \Phi_{\infty, T(\zeta), D_{\mathfrak{S}}}(T(z))$. Hence an easy substitution yields for all $z \in D^{\prime}$

$$
\begin{aligned}
F(z) & =\frac{1}{2 \pi} \int_{s} \Im\left(g_{\mathfrak{H}}^{-1}(T(\zeta))\right) \cdot \Phi_{\infty, T(\zeta), D_{\mathfrak{j}}}(T(z))\left|T^{\prime}(\zeta)\right||\mathrm{d} \zeta|+\mathrm{i} d \\
& =\frac{1}{2 \pi} \int_{T(s)} \Im\left(g_{\mathfrak{H}}^{-1}(\zeta)\right) \cdot \Phi_{\infty, \zeta, D_{\mathfrak{j}}}(T(z))|\mathrm{d} \zeta|+\mathrm{i} d
\end{aligned}
$$

We apply $z=0$ to get $d=0$. Finally, a substitution $w=T(z)$ completes the proof.

2.6 A universal proof for multiple slit Komatu-Loewner equations

As mentioned previously we are going to prove Theorem 2.30, 2.31 and 2.36 simultaneously. Herein, let Ω be a canonical domain, i.e. Ω is a circular slit disk, a circular slit annulus or an upper parallel slit half-plane. We say \mathfrak{H} is an appropriate hull in Ω if \mathfrak{H} is a radial Ω-hull when Ω is a circular slit disk, \mathfrak{H} is a bilateral Ω-hull if Ω is a circular slit annulus and \mathfrak{H} is a chordal Ω-hull if Ω is an upper parallel slit half-plane. In particular, $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is called tuple of disjoint appropriate slits in Ω if $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint radial slits in a circular slit disk $\Omega,\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint bilateral slits whenever Ω is a circular slit annulus, or $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint chordal slits if Ω is an upper parallel slit half-plane. Obviously, $\mathfrak{H}:=\bigcup_{k=1}^{m} \gamma_{k}\left(0, t_{k}\right]$, with $t_{k} \in[0, T]$, is an appropriate Ω-hull if $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint appropriate slits in Ω.

A family $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ of appropriate Ω-hulls is called increasing if $\mathfrak{H}_{t} \subsetneq \mathfrak{H}_{s}$ whenever $t<s$ and $\mathfrak{H}_{0}=\emptyset .\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is called continuous if $\left(\Omega_{t}-a\right)_{t \in[0, T]}$, with $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ and some $a \in \Omega_{T}$, is continuous. If $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint appropriate slit in Ω, then $\left(\bigcup_{k=1}^{m} \gamma_{k}(0, t]\right)_{t \in[0, T]}$ is clearly a family of increasing continuous Ω-hulls.

Let \mathfrak{H} be an appropriate hull in Ω. We call $g_{\mathfrak{H}}: \Omega \backslash \mathfrak{H} \rightarrow D_{\mathfrak{H}}$ the normalised appropriate mapping function on $\Omega \backslash \mathfrak{H}$ if $g_{\mathfrak{H}}$ is the normalised radial mapping function on $\Omega \backslash \mathfrak{H}$ when Ω is a circular slit disk, $g_{\mathfrak{H}}$ is the normalised bilateral mapping function on $\Omega \backslash \mathfrak{H}$ if Ω is a circular slit annulus, and $g_{\mathfrak{H}}$ is the normalised chordal mapping function on $\Omega \backslash \mathfrak{H}$ if Ω is an upper parallel slit half-plane. Consequently, $D_{\mathfrak{H}}:=g_{\mathfrak{H}}(\Omega \backslash \mathfrak{H})$ and Ω do always have the same canonical type. Next, let $g_{\mathfrak{H}}$ be the normalised appropriate mapping function on $\Omega \backslash \mathfrak{H}$. Analogously, we denote by $\mathfrak{c}\left(g_{\mathfrak{H}}\right)$ the logarithmic mapping radius of $g_{\mathfrak{H}}$ if underlying we have the radial case, the logarithmic conformal modulus of $g_{\mathfrak{H}}$ in the bilateral case, and the half-plane capacity of $g_{\mathfrak{j}}$ if underlying we have the chordal case, respectively. In this context, we call $\mathfrak{c}\left(g_{\mathfrak{j}}\right)$ appropriate capacity of $g_{\mathfrak{j}}$. Moreover, we use the abbreviation $\mathfrak{c}_{\Omega}(\mathfrak{H}):=\mathfrak{c}\left(g_{\mathfrak{H}}\right)$ as well where $g_{\mathfrak{H}}$ denotes the normalised appropriate mapping function on $\Omega \backslash \mathfrak{H}$.

Note that the implication $(\mathrm{iii}) \Rightarrow$ (ii) of Theorem 2.30, 2.31 and 2.36 is trivial. We are going to prove the implication $(\mathrm{i}) \Rightarrow$ (iii) in Subsection 2.6.2 and the implication (ii) \Rightarrow (i) in Subsection 2.6.3.

Before we can do so we need some preliminary lemmas.

2.6.1 Some preliminary lemmas

Summarising Lemma 2.24, 2.32 and 2.37 we find the following lemma.
Lemma 2.41. Let Ω be a canonical domain, $\mathfrak{A}, \mathfrak{B}$ be appropriate hulls in Ω satisfying $\mathfrak{A} \subsetneq \mathfrak{B}$, and $g_{\mathfrak{A}}$ and $g_{\mathfrak{B}}$ denote the normalised appropriate mapping function on $\Omega \backslash \mathfrak{A}$ and $\Omega \backslash \mathfrak{B}$, respectively. Then $\mathfrak{c}\left(g_{\mathfrak{R}}\right)<\mathfrak{c}\left(g_{\mathfrak{B}}\right)$.

In the same way we find with Lemma 2.25, 2.33 and 2.38 the following.
Lemma 2.42. Let Ω be a canonical domain, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of appropriate Ω-hulls, and for each $t \in[0, T], g_{t}$ denotes the normalised appropriate mapping function from $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ onto the canonical domain D_{t}. Let $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ with $t_{n} \rightarrow t_{0}$, assume $\operatorname{con}\left(\Omega_{t_{n}}\right)=\operatorname{con}\left(\Omega_{t_{0}}\right)$ for all $n \in \mathbb{N}$, and $\Omega_{t_{n}}-a \xrightarrow{k} \Omega_{t_{0}}-a$ for some $a \in \Omega_{T}$.

Then $g_{t_{n}} \xrightarrow{\text { l.u. }} g_{t_{0}}$ on $\Omega_{t_{0}}$ and $D_{t_{n}}-a \xrightarrow{k} D_{t_{0}}-a$ for all $a \in D_{t_{0}}$ as $n \rightarrow \infty$. Moreover, $\mathfrak{c}\left(g_{t_{n}}\right) \rightarrow \mathfrak{c}\left(g_{t_{0}}\right)$ as well. Additionally, assume $t \mapsto \mathfrak{H}_{t}$ is continuous on $[0, T]$ and $\operatorname{con}\left(\Omega_{t}\right)=\operatorname{con}(\Omega)$ for all $t \in[0, T]$. Then $t \mapsto g_{t}$ is continuous on $[0, T]$ and there is $a \delta>0$ such that for each $t \in[0, T]$, $\operatorname{dist}\left(C_{j}(t), C_{k}(t)\right)>\delta$ whenever $j \neq k$. Here, $C_{1}(t), \ldots C_{\mathfrak{n}}(t)$ denote the boundary components of D_{t}.

Proof. Note that $D_{t_{n}}-a \xrightarrow{\mathrm{k}} D_{t_{0}}-a$ for all $a \in D_{t_{0}}$ follows immediately from Corollary 2.12 , so it only remains to prove the second part. This can be done by using the same idea as in the proof of Lemma 2.25 where we proved that the inner boundary components are mapped to the inner boundary components.

In order to do so let $C_{1}, \ldots, C_{\mathfrak{n}-1}$ denote the inner boundary components of Ω. For each small $\rho>0$, we set $C_{k}^{\rho}:=\left\{z \in \mathbb{C} \mid \operatorname{dist}\left(z, C_{k}\right)=\rho\right\}$. Since $\operatorname{dist}\left(\mathfrak{H}_{T}, C_{k}\right)>0$ for each $k \in\{1, \ldots, \mathfrak{n}-1\}$, we find a small $\rho>0$ such that $C_{j}^{\rho} \cap C_{k}^{\rho}=\emptyset$ and each C_{k}^{ρ} is a Jordan curve in Ω separating C_{k} from $C_{j}, j \neq k$.

Suppose there is a sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ such that $\min _{j \neq k} \operatorname{dist}\left(C_{j}\left(t_{n}\right), C_{k}\left(t_{n}\right)\right) \rightarrow 0$. Without loss of generality we can assume that $t_{n} \rightarrow t_{0} \in[0, T]$. Since C_{k}^{ρ} is a compact set, we get $g_{t_{n}}\left(C_{k}^{\rho}\right) \rightarrow g_{t_{0}}\left(C_{k}^{\rho}\right)$, so there is an $N \in \mathbb{N}$ such that for each $k \in$ $\{1, \ldots \mathfrak{n}-1\}$ and all $n \geq N, C_{k}\left(t_{n}\right)$ is surrounded by $g_{t_{0}}\left(C_{I(k)}^{\rho}\right)$. Herein, $I:\{1, \ldots, \mathfrak{n}-$ $1\} \rightarrow\{1, \ldots, \mathfrak{n}-1\}$ is one-to-one. Consequently, $\min _{j \neq k} \operatorname{dist}\left(C_{j}\left(t_{n}\right), C_{k}\left(t_{n}\right)\right)>\delta=:$ $\min _{j \neq k} \operatorname{dist}\left(g_{t_{0}}\left(C_{j}^{\rho}\right), g_{t_{0}}\left(C_{k}^{\rho}\right)\right)>0$, so this yields a contradiction.

Lemma 2.43. Let Ω be a canonical domain and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint appropriate slits in Ω. Assume $f_{k ; t, \tau}$, with $k \in\{1, \ldots, m\}$ and $t, \tau \in[0, T]$, is the normalised appropriate mapping function from $\Omega_{k}(t, \tau):=\Omega \backslash\left(\bigcup_{j=1, j \neq k}^{m} \gamma_{j}(0, \tau] \cup \gamma_{k}(0, t]\right)$ onto the canonical domain $D_{k}(t, \tau)$. Next, we set $U_{k}(t, \tau):=f_{k ; t, \tau}\left(\gamma_{k}(t)\right)$ and

$$
S_{k ; t, \bar{t}, \tau}:=f_{k ; t, \tau}\left(\gamma_{k}(\underline{t}, \bar{t}]\right), \quad s_{k ; t, \bar{t}, \tau}:=f_{k ; \bar{t}, \tau}\left(\gamma_{k}[\underline{t}, \bar{t}]\right)
$$

for all $k \in\{1, \ldots, m\}, 0 \leq \underline{t}<\bar{t} \leq T$ and $\tau \in[0, T]$. Then the function $(t, \tau) \mapsto U_{k}(t, \tau)$ is continuous on $[0, T]^{2}$ and

$$
\begin{array}{ll}
S_{k ; t, t_{0}, \tau} \rightarrow U_{k}\left(t_{0}, \tau_{0}\right) \text { as }(t, \tau) \rightarrow\left(t_{0}, \tau_{0}\right) & \left(\text { where } t \nearrow t_{0}\right), \\
s_{k ; t_{0}, t, \tau} \rightarrow U_{k}\left(t_{0}, \tau_{0}\right) \text { as }(t, \tau) \rightarrow\left(t_{0}, \tau_{0}\right) & \left(\text { where } t \searrow t_{0}\right) .
\end{array}
$$

Remark 2.8. Obviously, the same is true if we consider the image of γ_{j} under $f_{k ; t, \tau}$ with $j \neq k$, i.e. $\quad f_{k ; t, \tau}\left(\gamma_{j}\left(\tau, \tau_{0}\right]\right) \rightarrow f_{k ; t_{0}, \tau_{0}}\left(\gamma_{j}\left(\tau_{0}\right)\right)$ if $(t, \tau) \rightarrow\left(t_{0}, \tau_{0}\right)$ with $\tau \nearrow \tau_{0}$, and $f_{k ; t, \tau}\left(\gamma_{j}\left[\tau_{0}, \tau\right]\right) \rightarrow f_{k ; t_{0}, \tau_{0}}\left(\gamma_{j}\left(\tau_{0}\right)\right)$ if $(t, \tau) \rightarrow\left(t_{0}, \tau_{0}\right)$ with $\tau \searrow \tau_{0}$. Analogously, we receive the continuity of $(t, \tau) \mapsto f_{k ; t, \tau}\left(\gamma_{j}(\tau)\right)$, with $j \neq k$, as well.

Proof. Since there is no risk of confusion, we omit the index k. We will only show $S_{t, t_{0}, \tau} \rightarrow U\left(t_{0}, \tau_{0}\right)$ as $(t, \tau) \rightarrow\left(t_{0}, \tau_{0}\right)$ where $t \nearrow t_{0}$. The other case $s_{t_{0}, t, \tau} \rightarrow U\left(t_{0}, \tau_{0}\right)$ as $(t, \tau) \rightarrow\left(t_{0}, \tau_{0}\right)$ where $t \searrow t_{0}$ follows in the same way. Since $U(t, \tau) \in S_{t, t_{0}, \tau}$ and $U(t, \tau) \in s_{t_{0}, t, \tau}$, the continuity of U follows immediately.

Let $t_{0} \in(0, T]$. As mentioned before, we will show that for every $\varepsilon>0$, there is a $\delta>0$ with $S_{t, t_{0}, \tau} \subseteq B_{\varepsilon}\left(U\left(t_{0}, \tau_{0}\right)\right)$ for all $t \in\left[t_{0}-\delta, t_{0}\right]$ and $\tau \in\left[\tau_{0}-\delta, \tau_{0}+\delta\right] \cap[0, T]$. Note that $z \mapsto f_{t_{0}, \tau_{0}}(z)$ has a continuous extension to the boundary with respect to the two sides of the slit, see also Remark 2.9. Thus for each small $\varepsilon>0$, we find a $\delta_{1}>0$ such that $s_{t, t_{0}, \tau_{0}} \subseteq B_{\varepsilon}\left(U\left(t_{0}, \tau_{0}\right)\right)$ for all $t \in\left[t_{0}-\delta_{1}, t_{0}\right]$. Moreover, the function $f_{t, \tau} \circ f_{t_{0}, \tau_{0}}^{-1}$ converges by Lemma 2.42 locally uniformly to the identity if (t, τ) tends to (t_{0}, τ_{0}). Using the Schwarz reflection principle and Lemma 2.42, we see that these functions can be extended analytically to $B_{2 \varepsilon}\left(U\left(t_{0}, \tau_{0}\right)\right) \backslash s_{t, t_{0}, \tau_{0}}$ if ε and $\left|t_{0}-t\right|$ are small enough, see also Figure 2.6. Considering the uniform convergence on $\partial B_{\varepsilon}\left(U\left(t_{0}, \tau_{0}\right)\right)$, we find a $\delta \in\left(0, \delta_{1}\right)$ such that $S_{t, t_{0}, \tau} \subseteq B_{\varepsilon}\left(U\left(t_{0}, \tau_{0}\right)\right)$ for all $\tau \in\left[\tau_{0}-\delta, \tau_{0}+\delta\right] \cup[0, T]$ and all $t \in\left[t_{0}-\delta, t_{0}\right]$.

The proof of the remark works in the same way.

Figure 2.6: Mapping behaviour of $f_{t, \tau}, f_{t_{0}, \tau} f_{t_{0}, \tau_{0}}$ and $f_{t, \tau_{0}}$ in the proof of Lemma 2.43 in the radial case.

The previous lemma shows that the image of each tip $f_{k ; t, \tau}\left(\gamma_{k}(t)\right)$ is continuous w.r.t t. This is true also for every other boundary point a on the outer or unbounded boundary component of Ω_{t}. Consequently, we have the following lemma

Lemma 2.44. Let Ω be a canonical domain and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint appropriate slits in Ω. For each $k \in\{1, \ldots, m\}$ and $t, \tau \in[0, T], f_{k ; t, \tau}$ is the normalised appropriate mapping function from $\Omega_{k}(t, \tau):=\Omega \backslash\left(\bigcup_{j=1, j \neq k}^{m} \gamma_{j}(0, \tau] \cup \gamma_{k}(0, t]\right)$ onto the canonical domain $D_{k}(t, \tau)$. Moreover, $\left(t_{n}\right)_{n \in \mathbb{N}}$ and $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ are convergent sequences with limits t_{0} and τ_{0}, respectively. Assume $a \in C$ (with respect to prime ends) where C denotes the outer or unbounded boundary component of $\Omega_{k}\left(t_{0}, \tau_{0}\right)$.

Then $f_{k ; t_{n}, \tau_{n}}(a) \rightarrow f_{k ; t_{0}, \tau_{0}}(a)$ when $n \rightarrow \infty$.
Remark 2.9. If $a \in \gamma_{k}\left[0, t_{0}\right)$ or $a \in \gamma_{j}\left[0, \tau_{0}\right)$ with $j \neq k$, then a is either on the one or on the other side of the slit, so $f_{k ; t_{n}, \tau_{n}}(a)$ and $f_{k ; t_{0}, \tau_{0}}(a)$ are well-defined. An extensive discussion of the boundary behaviour of slit mappings can be found in Section 2.3 in [dMG13].

Proof. Note that the case $a=\gamma_{k}\left(t_{0}\right)$ or $a=\gamma_{j}\left(t_{0}\right)$ with $j \neq k$ follows immediately from Lemma 2.43 and Remark 2.8 .

For the rest let us consider the function $h_{n}:=f_{k ; t_{n}, \tau_{n}} \circ f_{k ; t_{0}, \tau_{0}}^{-1}$, which tends locally uniformly on $D_{k}\left(t_{0}, \tau_{0}\right)$ to the identity, see Lemma 2.42. Moreover Lemma 2.43 gives us

$$
\begin{aligned}
f_{k ; t_{0}, \tau_{0}}\left(\gamma_{k}\left[\min \left(t_{n}, t_{0}\right), \max \left(t_{n}, t_{0}\right)\right]\right) \rightarrow f_{k ; t_{0}, \tau_{0}}\left(\gamma_{k}\left(t_{0}\right)\right)=U_{k}\left(t_{0}, \tau_{0}\right) \\
f_{k ; t_{0}, \tau_{0}}\left(\gamma_{j}\left[\min \left(\tau_{n}, \tau_{0}\right), \max \left(\tau_{n}, \tau_{0}\right)\right]\right) \rightarrow f_{k ; t_{0}, \tau_{0}}\left(\gamma_{j}\left(\tau_{0}\right)\right), \quad j \neq k .
\end{aligned}
$$

Note that we find an $N \in \mathbb{N}$ and an $\varepsilon>0$ such that there is an analytic continuation of h_{n} to $B_{\varepsilon}\left(f_{k ; t_{0}, \tau_{0}}(a)\right)$. Herein, h_{n} converges locally uniformly on $B_{\varepsilon}(a)$ to the identity as well. Consequently, $f_{k ; t_{n}, \tau_{n}}(a)=h_{n}\left(f_{k ; t_{0}, \tau_{0}}(a)\right) \rightarrow f_{k ; t_{0}, \tau_{0}}(a)$.

Summarising Lemma 2.27, 2.34 and 2.39 we get the following result.

Lemma 2.45. Let Ω be a canonical domain and \mathfrak{H} is an appropriate hull in Ω such that $\partial \Omega_{\mathfrak{H}}$, with $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$, is locally connected. By $g_{\mathfrak{H}}$ we denote the normalised appropriate mapping function from $\Omega_{\mathfrak{H}}$ onto the canonical domain $D_{\mathfrak{j}}$. Then we have

$$
\mathfrak{c}\left(g_{\mathfrak{H}}\right)=-\frac{1}{2 \pi} \int_{C} \Re F\left(g_{\mathfrak{H}}^{-1}(\zeta)\right)|\mathrm{d} \zeta| .
$$

Herein, C denotes the outer or unbounded boundary component of $D_{\mathfrak{F}}$, and $F(w):=2 \mathrm{i} w$ with $w \in \mathbb{C}$ in the chordal case and $F(w):=\log (w)$ with $w \in \mathbb{C} \backslash\{0\}$ in the radial or bilateral case.

Note that, $w \mapsto \Re \log (w)=\log |w|$ does not depend of the branch of the logarithm. Finally, we get with Lemma 2.28, 2.35 and 2.40

Lemma 2.46. Let Ω be a canonical domain and \mathfrak{H} is an appropriate hull in Ω such that $\partial \Omega_{\mathfrak{H}}$, with $\Omega_{\mathfrak{H}}:=\Omega \backslash \mathfrak{H}$, is locally connected. By $g_{\mathfrak{H}}: \Omega_{\mathfrak{H}} \rightarrow D_{\mathfrak{H}}$ we denote the normalised appropriate mapping function from $\Omega_{\mathfrak{j}}$ onto the canonical domain $D_{\mathfrak{j}}$. Then we have

$$
F\left(g_{\mathfrak{H}}^{-1}(z)\right)-F(z)=\frac{1}{2 \pi} \int_{C} \Re F\left(g_{\mathfrak{H}}^{-1}(\zeta)\right) \cdot \Phi_{a, \zeta, D_{\mathfrak{j}}}(z)|\mathrm{d} \zeta| \quad \text { for all } z \in D_{\mathfrak{H}} .
$$

Herein, C denotes the outer or unbounded boundary component of $D_{\mathfrak{H}}$, and $F(w):=2 \mathrm{i} w$ with $w \in \mathbb{C}$ in the chordal case and $F(w):=\log (w)$ with $w \in \mathbb{C} \backslash\{0\}$ in the radial or bilateral case. Moreover, $a:=0$ in the radial case, $a:=q$ in the bilateral case where q is the inner radius of the circular slit annulus $D_{\mathfrak{H}}$ and $a:=\infty$ in the chordal case.

Note that there is always a branch of the logarithm in order to get, independently of the branch of the logarithm, an analytic function on the left side.

Lemma 2.47. Let $A, B \subseteq \mathbb{D}$ be bounded domains. Assume there exists an $R>0$ such that $A \cap B_{R}(1)=\mathbb{D} \cap B_{R}(1)$ and $B \cap B_{R}(1)=\mathbb{D} \cap B_{R}(1)$. Moreover, let $T: A \rightarrow B$ be a conformal mapping from A onto B satisfying $T(1)=1$ and

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} z}(\log (T(z))-c \log z)\right|<\delta \quad \text { for all } z \in B_{\varepsilon}(1) \cap A
$$

with some small $\varepsilon>0, \delta>0$ and $c:=T^{\prime}(1)$. Then $c=T^{\prime}(1)>0$ and the inequality

$$
|z|^{c+\delta} \leq|T(z)| \leq|z|^{c-\delta}
$$

holds for all $z \in A \cap B_{\varepsilon}(1)$.
If $\varepsilon>0$ is small enough we do always find a branch of the logarithm in order to get an analytic function $z \mapsto \log (T(z))-c \log z$. Moreover, the derivative does not depend on a particular branch, so we can see $z \mapsto \log (T(z))-c \log (z)$ as a multiple-valued function as well.

Proof. First of all, we extend the function T to an analytic map on $B_{\varepsilon}(1)$ for a small $\varepsilon>0$, by using the Schwarz reflection principle. The small arc $\mathbb{T} \cap B_{\varepsilon}(1)$ is mapped into \mathbb{T} with $T(1)=1$, so the property $c:=T^{\prime}(1)>0$ is obviously true.

Next, we set $\gamma_{\theta}(r):=r \cdot e^{\mathrm{i} \theta}$ for all $r \in\left[r_{0}, 1\right]$ and all $|\theta|<\phi$. In this context we can choose $r_{0}<1$ close enough to 1 and $\phi>0$ small enough to get $\gamma_{\theta}(r) \in B_{\varepsilon}(1)$ for all $r \in\left[r_{0}, 1\right]$ and all $\theta \in(-\phi, \phi)$. Moreover, for each $\theta \in(-\phi, \phi)$, we define

$$
h_{\theta}(r):=\Re\left(\log \frac{T\left(\gamma_{\theta}(r)\right)}{\left(\gamma_{\theta}(r)\right)^{c}}\right)=\ln \left|\frac{T\left(\gamma_{\theta}(r)\right)}{\left(\gamma_{\theta}(r)\right)^{c}}\right|, \quad r \in\left[r_{0}, 1\right] .
$$

Some simple calculations give us for all $\theta \in(-\phi, \phi)$ and all $r \in\left[r_{0}, 1\right]$:

$$
\begin{aligned}
\left|\frac{\partial}{\partial r} h_{\theta}(r)\right| & =\left|\Re\left(\left.\frac{\mathrm{d}}{\mathrm{~d} z} \log \left(\frac{T(z)}{z^{c}}\right)\right|_{z=\gamma_{\theta}(r)} \cdot \dot{\gamma}_{\theta}(r)\right)\right| \\
& =\left|\Re\left(\left.\left(\frac{T^{\prime}(z)}{T(z)}-\frac{c}{z}\right)\right|_{z=\gamma_{\theta}(r)} \cdot e^{\mathrm{i} \theta}\right)\right| \\
& \left.\leq\left|\frac{T^{\prime}(z)}{T(z)}-\frac{c}{z}\right|_{z=\gamma_{\theta}(r)} \right\rvert\, \leq \delta .
\end{aligned}
$$

We have $h_{\theta}(1)=0$, so we find

$$
\ln \left(r^{\delta}\right)=\delta \ln (r) \leq h_{\theta}(r) \leq-\delta \ln (r)=\ln \left(r^{-\delta}\right) \quad \text { for all } \theta \in(-\phi, \phi), r \in\left[r_{0}, 1\right] .
$$

Finally, we get $\ln \left(|z|^{\delta}\right) \leq\left|\frac{T(z)}{z^{c}}\right| \leq \ln \left(|z|^{-\delta}\right)$ for all $z \in\left\{r \cdot e^{\mathrm{i} \theta} \mid r \in\left[r_{0}, 1\right], \theta \in(-\phi, \phi)\right\}$, so the proof is complete.

Lemma 2.48. Let $A, B \subseteq \mathbb{H}$ be domains and assume there exists an $R>0$ such that $A \cap \mathbb{D}_{R}=\mathbb{H} \cap \mathbb{D}_{R}, B \cap \mathbb{D}_{R}=\mathbb{H} \cap \mathbb{D}_{R}$. Moreover, let $T: A \rightarrow B$ be a conformal mapping from A onto B with $T(0)=0$ and

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} z}(T(z)-c z)\right|<\delta, \quad \text { for all } z \in \mathbb{D}_{\varepsilon} \cap A
$$

where $\varepsilon>0$ is small, $\delta>0$ and $c:=T^{\prime}(1)$. Then $c=T^{\prime}(0)>0$ and the inequality

$$
(c-\delta) \Im(z)<\Im T(z)<(c+\delta) \Im(z)
$$

holds for all $z \in A \cap B_{\varepsilon}(0)$.
Proof. First of all, we can extend T along \mathbb{D}_{R} to an analytic function. Herein, it is easy to see that $c=T^{\prime}(0)>0$ holds. Let $\gamma_{a}(t):=a+\mathrm{i} t$ and $h_{a}(t):=\Im\left(T\left(\gamma_{a}(t)\right)-c \gamma_{a}(t)\right)$ for all $a \in\left[-a_{0}, a_{0}\right]$ and $t \in\left[0, t_{0}\right]$ with $a_{0}, t_{0}>0$. We choose a_{0} and t_{0} in such a way that $\gamma_{a}(t) \in \mathbb{D}_{\varepsilon} \cap A$ for all $t \in\left[0, t_{0}\right]$ and all $a \in\left[-a_{0}, a_{0}\right]$. Consequently, we find

$$
\left|\frac{\partial}{\partial t} h_{a}(t)\right|=\left|\Im\left(\left(T^{\prime}\left(\gamma_{a}(t)\right)-c\right) \cdot \mathrm{i}\right)\right| \leq\left|T^{\prime}\left(\gamma_{a}(t)\right)-c\right|<\delta .
$$

Hence, $-\delta t \leq h_{a}(t) \leq \delta t$. Finally, the proof is complete by substituting $z=\gamma_{a}(t)$.

Summarising Lemma 2.47 and 2.48 we find the following lemma.
Lemma 2.49. Let $G:=\mathbb{D}$ or $G:=\mathbb{H}$ and $\zeta_{1}, \zeta_{2} \in \partial G$. $A, B \subseteq G$ are domains and assume there is an $R>0$ such that $A \cap B_{R}\left(\zeta_{1}\right)=G \cap B_{R}\left(\zeta_{1}\right)$ and $B \cap B_{R}\left(\zeta_{2}\right)=G \cap B_{R}\left(\zeta_{2}\right)$. Moreover, let $T: A \rightarrow B$ be a conformal mapping where $T\left(\zeta_{1}\right)=\zeta_{2}$ and

$$
\begin{equation*}
\left|\frac{\mathrm{d}}{\mathrm{~d} z}(F(T(z))-|c| F(z))\right|<\delta \quad \text { for all } z \in B_{\varepsilon}\left(\zeta_{1}\right) \cap G, \tag{2.6}
\end{equation*}
$$

where $\varepsilon>0$ is small, $\delta>0$ and $c:=T^{\prime}\left(\zeta_{1}\right)$. Herein, $F(w):=2 \mathrm{i} w$ with $w \in \mathbb{C}$ if $G=\mathbb{H}$ and $F(w):=\log (w)$ with $w \in \mathbb{C} \backslash\{0\}$ if $G=\mathbb{D}$

Then the inequality

$$
(|c|+\delta) \Re F(z) \leq \Re F(T(z)) \leq(|c|-\delta) \Re F(z)
$$

holds for all $z \in B_{\varepsilon}\left(\zeta_{1}\right) \cap G$.
Remark 2.10. In the chordal case Equation (2.6) is equivalent to

$$
2\left|T^{\prime}(z)-|c|\right|=2\left|T^{\prime}(z)-c\right|=2\left|T^{\prime}(z)-T^{\prime}\left(\zeta_{1}\right)\right|<\delta \quad \text { for all } z \in B_{\varepsilon}\left(\zeta_{1}\right) \cap \mathbb{H}
$$

as $c:=T^{\prime}\left(\zeta_{1}\right)>0$.
In the radial case Equation (2.6) is equivalent to

$$
\left|\frac{T^{\prime}\left(\zeta_{1} z\right)}{T\left(\zeta_{1} z\right)}-\frac{|c|}{\zeta_{1} z}\right|=\left|\frac{\hat{T}^{\prime}(z)}{\hat{T}(z)}-\frac{|c|}{z}\right|=\left|\frac{\hat{T}^{\prime}(z)}{\hat{T}(z)}-\frac{\hat{T}^{\prime}(1)}{z}\right|<\delta \quad \text { for all } z \in B_{\varepsilon}(1) \cap \mathbb{D},
$$

with $\hat{T}(z):=\frac{T\left(\zeta_{1} z\right)}{\zeta_{2}}$, i.e. $\hat{T}(1)=1$.

2.6.2 Proof of Theorem 2.30, 2.31 and 2.36: (i) \Rightarrow (iii)

Proof for $t \searrow t_{0}$. Let be $t_{0}<t$ and for each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}, f_{k ; t, \tau}$ denotes the normalised appropriate mapping function from $\Omega_{k}(t, \tau):=\Omega \backslash\left(\bigcup_{j=1, j \neq k}^{m} \gamma_{j}(0, \tau] \cup\right.$ $\left.\gamma_{k}(0, t]\right)$ onto the canonical domain $D_{k}(t, \tau)$. Moreover, we write $g_{t}:=f_{k ; t, t}, \Omega_{t}:=$ $\Omega_{k}(t, t), D_{t}:=D_{k}(t, t)$ and

$$
S_{k ; t_{0}, t, \tau}:=f_{k ; t_{0}, \tau}\left(\gamma_{k}\left(t_{0}, t\right]\right), \quad s_{k ; t_{0}, t, \tau}:=f_{k ; t, \tau}\left(\gamma_{k}\left[t_{0}, t\right]\right) .
$$

On top of this we define $s_{k}\left(t_{0}, t\right):=s_{k ; t_{0}, t, t}$ and $S_{k}\left(t_{0}, t\right):=S_{k ; t_{0}, t, t_{0}}$. Finally, we set $g_{t_{0}, t}:=g_{t} \circ g_{t_{0}}^{-1}$, so this is the normalised appropriate mapping function from $D_{t_{0}} \backslash$ $\bigcup_{k=1}^{m} S_{k}\left(t_{0}, t\right)$ onto D_{t}. Using Lemma 2.46, we find

$$
F\left(g_{t_{0}, t}^{-1}(z)\right)-F(z)=\frac{1}{2 \pi} \sum_{k=1}^{m} \int_{s_{k}\left(t, t_{0}\right)} \Re F\left(g_{t_{0}, t}^{-1}(\zeta)\right) \cdot \Phi_{a_{t}, \zeta, D_{t}}(z)|\mathrm{d} \zeta| \quad \text { for all } z \in D_{t}
$$

with $F(w):=\log (w), w \in \mathbb{C} \backslash\{0\}$, in the radial and bilateral case and $F(w):=2 \mathrm{i} w$, $w \in \mathbb{C}$, in the chordal case. $a_{t}:=0$ in the radial case, $a_{t}:=q_{t}$ in the bilateral case where q_{t} is the inner radius of the circular slit annulus D_{t}, and $a_{t}:=\infty$ in the chordal
case. Note that $\zeta \mapsto \Phi_{a_{t}, \zeta, D_{t}}(z)$ is continuous on $s_{k}\left(t_{0}, t\right)$ by Lemma 2.18, 2.19 or 2.20. $\zeta \mapsto \Re F\left(g_{t_{0}, t}^{-1}(\zeta)\right)$ is continuous on $s_{k}\left(t_{0}, t\right)$ as well and $\Re F\left(g_{t_{0}, t}^{-1}(\zeta)\right) \leq 0$, so the mean value theorem gives us

$$
\begin{align*}
F\left(g_{t_{0}, t}^{-1}(z)\right)- & F(z)= \\
& \sum_{k=1}^{m}\left(\Re\left(\Phi_{a_{t}, \zeta_{k}, D_{t}}(z)\right)+\mathrm{i} \Im\left(\Phi_{a_{t}, \zeta_{k}^{2}, D_{t}}(z)\right)\right) \frac{1}{2 \pi} \int_{s_{k}\left(t_{0}, t\right)} \Re F\left(g_{t_{0}, t}^{-1}(\zeta)\right)|\mathrm{d} \zeta| \tag{2.7}
\end{align*}
$$

for all $z \in D_{t}$ and some $\zeta_{k}^{j} \in s_{k}\left(t_{0}, t\right), j \in\{1,2\}$. For each $k \in\{1, \ldots, m\}$, we denote the remaining integral by $2 \pi c_{k}\left(t_{0}, t\right)$.

For now let us fix $k \in\{1, \ldots, m\}$ and $t>t_{0}$, and consider the function $z \mapsto h_{t}^{-1}:=$ $f_{k ; t, t_{0}} \circ g_{t}^{-1}$, which can be extended analytically to $B_{\varepsilon}\left(U_{k}\left(t_{0}\right)\right)$, with $\varepsilon>0$ small, by using the Schwarz reflection principle and Lemma 2.42 and 2.43. In this context, Lemma 2.42 ensures that the interior boundary components of D_{t} come not to close to \mathbb{T}. Moreover,

Figure 2.7: Radial mappings $g_{t_{0}}, g_{t}, h_{t}$ and $f_{k ; t, t_{0}}$ in the proof of Theorem 2.30, 2.31, 2.36 (i) \Rightarrow (iii) in the case $t>t_{0}$

Lemma 2.42 shows that h_{t}^{-1} (as well as h_{t}) tends to the identity locally uniformly on $D_{t_{0}}$ as $t \searrow t_{0}$. On top of this the local uniform convergence holds on $B_{\varepsilon}\left(U_{k}\left(t_{0}\right)\right)$ as well. If t is close to t_{0}, we get by substitution

$$
\begin{aligned}
c_{k}\left(t_{0}, t\right) & =\frac{1}{2 \pi} \int_{s_{k}\left(t_{0}, t\right)} \Re F\left(g_{t_{0}, t}^{-1}(\zeta)\right)|\mathrm{d} \zeta|=\frac{1}{2 \pi} \int_{s_{k ; t_{0}, t, t_{0}}} \Re F\left(g_{t_{0}, t}^{-1}\left(h_{t}(\zeta)\right)\right) \cdot\left|h_{t}^{\prime}(\zeta)\right||\mathrm{d} \zeta| \\
& =\frac{1}{2 \pi} \int_{s_{k ; t_{0}, t, t_{0}}} \Re F\left(g_{t_{0}} \circ f_{k ; t, t_{0}}^{-1}(\zeta)\right) \cdot\left|h_{t}^{\prime}(\zeta)\right||\mathrm{d} \zeta| .
\end{aligned}
$$

Moreover, $\zeta \mapsto \Re F\left(g_{t_{0}} \circ f_{k ; t, t_{0}}^{-1}(\zeta)\right)$ and $\zeta \mapsto\left|h_{t}^{\prime}(\zeta)\right|$ are continuous on $s_{k ; t_{0}, t, t_{0}}$ and $\Re F\left(g_{t_{0}} \circ\right.$
$\left.f_{k ; t, t_{0}}^{-1}(\zeta)\right) \leq 0$ so the mean value theorem yields

$$
c_{k}\left(t_{0}, t\right)=\left|h_{t}^{\prime}\left(\zeta^{*}\right)\right| \frac{1}{2 \pi} \int_{s_{k ; t_{0}, t, t_{0}}} \Re F\left(g_{t_{0}} \circ f_{k ; t, t t_{0}}^{-1}(\zeta)\right)|\mathrm{d} \zeta|
$$

where $\zeta^{*} \in s_{k ; t_{0}, t, t_{0}}$. Note that $f_{k ; t, t_{0}} \circ g_{t_{0}}^{-1}$ is the normalised appropriate mapping function from $D_{t_{0}} \backslash S_{k}\left(t_{0}, t\right)$ onto $D_{k}\left(t, t_{0}\right)$, so we find with Lemma 2.45

$$
\begin{equation*}
c_{k}\left(t_{0}, t\right)=\left|h_{t}^{\prime}\left(\zeta^{*}\right)\right|\left(-\mathfrak{c}\left(f_{k ; t, t_{0}} \circ g_{t_{0}}^{-1}\right)\right)=-\left|h_{t}^{\prime}\left(\zeta^{*}\right)\right|\left(\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)\right) . \tag{2.8}
\end{equation*}
$$

We have $\zeta^{*} \in s_{k ; t_{0}, t, t_{0}} \subseteq B_{\varepsilon}\left(\zeta_{k}\left(t_{0}\right)\right)$ if t is close to t_{0}, so we find $h_{t}^{\prime}\left(\zeta^{*}\right) \rightarrow 1$ as $t \searrow t_{0}$. Summarising, we get

$$
\begin{equation*}
\lim _{t \backslash t_{0}} \frac{c_{k}\left(t_{0}, t\right)}{t-t_{0}}=\lim _{t \backslash t_{0}}-\frac{\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)}{t-t_{0}}=-\lambda_{k}\left(t_{0}\right) . \tag{2.9}
\end{equation*}
$$

Obviously, we can do this for each $k \in\{1, \ldots, m\}$.
Next, Equation (2.7) with $z:=g_{t}(w)$ and $w \in \Omega_{t}$ yields

$$
\frac{F\left(g_{t_{0}}(w)\right)-F\left(g_{t}(w)\right)}{t-t_{0}}=\sum_{k=1}^{m}\left(\Re\left(\Phi_{a_{t}, \zeta_{k}^{1}, D_{t}}\left(g_{t}(w)\right)\right)+\mathrm{i} \Im\left(\Phi_{a_{t}, \zeta_{k}^{2}, D_{t}}\left(g_{t}(w)\right)\right) \frac{c_{k}\left(t_{0}, t\right)}{t-t_{0}}\right.
$$

for all $t>t_{0}$. As mentioned before, for each $j \in\{1,2\}, \zeta_{k}^{j} \in s_{k}\left(t_{0}, t\right)$ and $s_{k}\left(t_{0}, t\right) \rightarrow$ $U_{k}\left(t_{0}\right)$, see Lemma 2.43. Consequently, $\zeta_{k}^{j} \rightarrow U_{k}\left(t_{0}\right)$ as $t \searrow t_{0}$. Using Lemma 2.42, we get $D_{t}-b \xrightarrow{\mathrm{k}} D_{t_{0}}-b$ for each $b \in D_{t_{0}}$. Thus we find with Lemma 2.18, 2.19 or 2.20 in either case

$$
\Phi_{a_{t}, \zeta_{k}^{j}, D_{t}} \xrightarrow{\text { l.u. }} \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}} \quad \text { on } D_{t_{0}} .
$$

As mentioned already, Lemma 2.42 gives us $g_{t} \xrightarrow{\text { l.u. }} g_{t_{0}}$ on $\Omega_{t_{0}}$ as $t \searrow t_{0}$, so we find

$$
\lim _{t \searrow t_{0}} \frac{F\left(g_{t}(w)\right)-F\left(g_{t_{0}}(w)\right)}{t-t_{0}}=\sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right) \cdot \Phi_{a_{t_{0}}, U_{t_{0}}, D_{t_{0}}}\left(g_{t_{0}}(w)\right) \quad \text { for all } w \in \Omega_{t_{0}} .
$$

Finally, note that $g_{t_{0}, t}=g_{t} \circ g_{t_{0}}^{-1}$ is the normalised appropriate mapping function from $D_{t_{0}} \backslash \bigcup_{k=1}^{m} S_{k}\left(t_{0}, t\right)$ onto D_{t}, so we can apply Lemma 2.45 to get

$$
\begin{aligned}
\mathfrak{c}\left(g_{t}\right)-\mathfrak{c}\left(g_{t_{0}}\right)=\mathfrak{c}\left(g_{t_{0}, t}\right)=-\frac{1}{2 \pi} \int_{\mathbb{T}} \Re F(& \left.g_{t_{0}, t}^{-1}(\zeta)\right)|\mathrm{d} \zeta|= \\
& -\frac{1}{2 \pi} \sum_{k=1}^{m} \int_{s_{k}\left(t_{0}, t\right)} \Re F\left(g_{t_{0}, t}^{-1}(\zeta)\right)|\mathrm{d} \zeta|=\sum_{k=1}^{m}-c_{k}\left(t_{0}, t\right)
\end{aligned}
$$

for all $t>t_{0}$. Using Equation (2.9), we find

$$
\lim _{t \searrow t_{0}} \frac{\mathfrak{c}\left(g_{t}\right)-\mathfrak{c}\left(g_{t_{0}}\right)}{t-t_{0}}=\sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right),
$$

so the proof is complete.

As a nice side effect, Equation (2.8) immediately yields the following lemma.
Lemma 2.50. Let Ω be a canonical domain and denote by $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ a tuple of disjoint appropriate slits in Ω. For each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$, denote by $f_{k ; t, \tau}$ the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{k}(0, t] \cup \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$. Moreover, we set $g_{t}:=f_{k ; t, t}$ for all $t \in[0, T]$ and $s_{k}\left(t_{0}, t\right):=g_{t}\left(\gamma_{k}\left[t_{0}, t\right]\right)$ for all $t>t_{0}$ and $k \in\{1, \ldots, m\}$. Then for all $k \in\{1, \ldots, m\}$, we find

$$
\frac{-c_{k}\left(t_{0}, t\right)}{\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{\left.k ; t_{0}, t_{0}\right)}\right.} \xrightarrow{t \backslash t_{0}} 1 \quad \text { with } c_{k}\left(t_{0}, t\right):=\frac{1}{2 \pi} \int_{s_{k}\left(t_{0}, t\right)} \Re F\left(\left(g_{t_{0}} \circ g_{t}^{-1}\right)(\zeta)\right)|\mathrm{d} \zeta|,
$$

where $F(w):=2 \mathrm{i} w$ for all $w \in \mathbb{C}$ in the chordal case and $F(w):=\log (w)$ for all $w \in \mathbb{C} \backslash\{0\}$ in the radial and bilateral case.
Proof for $t \nearrow t_{0}$. Assume $t<t_{0}$ and $k \in\{1, \ldots, m\}$. We use the same abbreviation as in the previous case $t \searrow t_{0}$, so for each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}, f_{k ; t, \tau}$ is the normalised appropriate mapping function from $\Omega_{k}(t, \tau):=\Omega \backslash\left(\bigcup_{j=1, j \neq k}^{m} \gamma_{j}(0, \tau] \cup \gamma_{k}(0, t]\right)$ onto the canonical domain $D_{k}(t, \tau)$ and $g_{t}:=f_{k ; t, t}, \Omega_{t}:=\Omega_{k}(t, t), D_{t}:=D_{k}(t, t)$. Moreover, we write

$$
S_{k ; t, t_{0}, \tau}:=f_{k ; t, \tau}\left(\gamma_{k}\left(t, t_{0}\right]\right), \quad s_{k ; t, t_{0}, \tau}:=f_{k ; t_{0}, \tau}\left(\gamma_{k}\left[t, t_{0}\right]\right), \quad \tau \in[0, T] .
$$

On top of this we set $s_{k}\left(t, t_{0}\right):=s_{k ; t, t_{0}, t_{0}}$ and $S_{k}\left(t, t_{0}\right):=S_{k ; t, t_{0}, t}$. Finally, we set $g_{t, t_{0}}:=$ $g_{t_{0}} \circ g_{t}^{-1}$, so this is the normalised appropriate mapping function from $D_{t} \backslash \bigcup_{k=1}^{m} S_{k}\left(t, t_{0}\right)$ onto $D_{t_{0}}$. Like the previous case we find by using Lemma 2.46 and the mean value theorem

$$
\begin{align*}
& F\left(g_{t, t_{0}}^{-1}(z)\right)-F(z)= \\
& \quad \sum_{k=1}^{m}\left(\Re\left(\Phi_{a_{t_{0}}, \zeta_{k}^{1}, D_{t_{0}}}(z)\right)+\mathrm{i} \Im\left(\Phi_{a_{t_{0}}, \zeta_{k}^{2}, D_{t_{0}}}(z)\right)\right) \frac{1}{2 \pi} \int_{s_{k}\left(t, t_{0}\right)} \Re F\left(g_{t, t_{0}}^{-1}(\zeta)\right)|\mathrm{d} \zeta| \tag{2.10}
\end{align*}
$$

with $\zeta_{k}^{j} \in s_{k}\left(t, t_{0}\right), j \in\{1,2\}$. Herein, $a_{t_{0}}:=0$ in the radial case, $a_{t_{0}}:=q$ in the bilateral case where q is the inner radius of the circular slit annulus $D_{t_{0}}$ and $a_{t_{0}}:=\infty$ in the chordal case. We denote the remaining integral on the right-hand side in Equation (2.10) by $2 \pi c_{k}\left(t, t_{0}\right)$.

Next, let us consider the function $h_{t}^{-1}:=f_{k ; t, t_{0}} \circ g_{t}^{-1}$, which is the normalised appropriate mapping function from $D_{t} \backslash \bigcup_{j \neq k} S_{j}\left(t, t_{0}\right)$ onto $D_{k}\left(t, t_{0}\right)$. Using Lemma 2.43 and 2.42, we find a small $\varepsilon>0$ such that there is an analytic continuation of h_{t} to $B_{\varepsilon}\left(U_{k}\left(t_{0}\right)\right)$ for all $t<t_{0}$ close enough to t_{0}. Moreover, h_{t} tends locally uniformly on $D_{t_{0}}$ (as well as on the extension $\left.B_{\varepsilon}\left(U_{k}\left(t_{0}\right)\right)\right)$ to the identity if $t \nearrow t_{0}$. Obviously, we have

$$
c_{k}\left(t, t_{0}\right)=\frac{1}{2 \pi} \int_{s_{k}\left(t, t_{0}\right)} \Re F\left(g_{t, t_{0}}^{-1}(\zeta)\right)|\mathrm{d} \zeta|=\frac{1}{2 \pi} \int_{s_{k}\left(t, t_{0}\right)} \Re F\left(h_{t} \circ f_{k ; t, t_{0}} \circ g_{t_{0}}^{-1}\right)(\zeta)(\mathrm{d} \zeta) .
$$

Note that $\left(f_{k ; t, t_{0}} \circ g_{t_{0}}^{-1}\right)(\zeta) \in \operatorname{cl}\left(S_{k ; t, t_{0}, t}\right)$ if $\zeta \in s_{k}\left(t, t_{0}\right)$. On top of this $S_{k ; t, t_{0}, t} \rightarrow$ $U_{k}\left(t_{0}\right)=: \zeta_{0}$ if $t \nearrow t_{0}$ by Lemma 2.43. Hence we find a compact set $K \subseteq B_{\varepsilon}\left(\zeta_{0}\right)$ such

Figure 2.8: Radial mappings $g_{t_{0}}, g_{t}, h_{t}$ and $f_{k ; t, t_{0}}$ in the proof of Theorem 2.30, 2.31, 2.36 (i) \Rightarrow (iii) in the case $t<t_{0}$
that $S_{k ; t, t_{0}, t} \subseteq K$ for all t close enough to t_{0}. h_{t} converges uniformly on K to the identity as $t \nearrow t_{0}$, so using Remark 2.10, we find for each $\delta>0$ a $t^{*}<t_{0}$ such that $\left|\frac{\mathrm{d}}{\mathrm{d} z}\left(F\left(h_{t}(z)\right)-\left|h_{t}^{\prime}\left(\zeta_{0}\right)\right| F(z)\right)\right|<\delta$ for all $t \in\left[t^{*}, t_{0}\right]$ and all $z \in K$. Using Lemma 2.49, we find

$$
\left(\left|h_{t}^{\prime}\left(\zeta_{0}\right)\right|+\delta\right) \Re F(z) \leq \Re F\left(h_{t}(z)\right) \leq\left(\left|h_{t}^{\prime}\left(\zeta_{0}\right)\right|-\delta\right) \Re F(z)
$$

for all $z \in K$ and all $t \in\left[t^{*}, t_{0}\right]$. Note that $\left|h_{t}^{\prime}\left(\zeta_{0}\right)\right| \rightarrow 1$ as $t \nearrow t_{0}$. Summarising, we get

$$
\begin{align*}
& \left(\left|h_{t}^{\prime}\left(\zeta_{0}\right)\right|+\delta\right) \frac{1}{2 \pi} \int_{s_{k}\left(t, t_{0}\right)} \Re F\left(f_{k ; t, t_{0}} \circ g_{t_{0}}^{-1}\right)(\zeta)(\mathrm{d} \zeta) \\
& \quad \leq c_{k}\left(t, t_{0}\right) \leq\left(\left|h_{t}^{\prime}\left(\zeta_{0}\right)\right|-\delta\right) \frac{1}{2 \pi} \int_{s_{k}\left(t, t_{0}\right)} \Re F\left(f_{k ; t, t_{0}} \circ g_{t_{0}}^{-1}\right)(\zeta)(\mathrm{d} \zeta) \tag{2.11}
\end{align*}
$$

for all $t \in\left[t^{*}, t_{0}\right]$. Like in the previous case, $g_{t_{0}} \circ f_{k ; t, t_{0}}^{-1}$ is the normalised appropriate mapping function from $D_{k}\left(t, t_{0}\right) \backslash S_{k ;, t, t, t}$ onto $D_{t_{0}}$, so we get with Lemma 2.45

$$
\frac{1}{2 \pi} \int_{s_{k}\left(t, t_{0}\right)} \Re F\left(f_{k ; t, t_{0}} \circ g_{t_{0}}^{-1}\right)(\zeta)(\mathrm{d} \zeta)=-\mathfrak{c}\left(g_{t_{0}} \circ f_{k ; t, t t_{0}}^{-1}\right)=-\left(\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t, t_{0}}\right)\right)
$$

Hence, $\lim _{t} / t_{0} \frac{c_{k}\left(t, t_{0}\right)}{t_{0}-t}=-\lambda_{k}\left(t_{0}\right)$. Obviously, we can do this for each $k \in\{1, \ldots, m\}$.
Next, Equation (2.10) with $z:=g_{t_{0}}(w)$ and $w \in \Omega_{t_{0}}$ gives us

$$
\frac{F\left(g_{t}(w)\right)-F\left(g_{t_{0}}(w)\right)}{t-t_{0}}=\sum_{k=1}^{m}\left(\Re\left(\Phi_{a_{t_{0}}, \zeta_{k}^{1}, D_{t_{0}}}\left(g_{t_{0}}(w)\right)\right)+\mathrm{i} \Im\left(\Phi_{a_{t_{0}}, \zeta_{k}^{2}, D_{t_{0}}}\left(g_{t_{0}}(w)\right)\right)\right) \frac{c_{k}\left(t_{0}, t\right)}{t-t_{0}} .
$$

As mentioned before $\zeta_{k}^{j} \in s_{k}\left(t, t_{0}\right), j \in\{1,2\}$ and $s_{k}\left(t, t_{0}\right) \rightarrow U_{k}\left(t_{0}\right)$, see Lemma 2.43. Consequently, $\zeta_{k}^{j} \rightarrow U_{k}\left(t_{0}\right)$ as $t \searrow t_{0}$. Using Lemma 2.18, 2.19 or 2.20 , we find in either
case $\Phi_{a_{t_{0}}, \zeta_{k}^{j}, D_{t_{0}}} \xrightarrow{\text { l.u. }} \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}$ on $D_{t_{0}}$ as $t \nearrow t_{0}$. Finally, we find

$$
\lim _{t \nearrow t_{0}} \frac{F\left(g_{t}(w)\right)-F\left(g_{t_{0}}(w)\right)}{t-t_{0}}=\sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right) \cdot \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(w)\right)
$$

for all $w \in \Omega_{t_{0}}$.
As a nice side effect, Equation (2.11) immediately yields the following lemma.
Lemma 2.51. Let Ω be a canonical domain and denote by $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ a tuple of disjoints appropriate slits in Ω. For each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$, $f_{k ; t, \tau}$ denotes the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{k}(0, t] \cup \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$. $g_{t}:=f_{k ; t, t}$ for all $t \in[0, T]$ and $s_{k}\left(t_{0}, t\right):=g_{t_{0}}\left(\gamma_{k}\left[t, t_{0}\right]\right)$ for all $t<t_{0}$ and $k \in\{1, \ldots, m\}$. Then we find

$$
\frac{-c_{k}\left(t, t_{0}\right)}{\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)-\mathfrak{c}\left(f_{\left.k ; t, t_{0}\right)}\right) \xrightarrow{t \nearrow t_{0}} 1 \quad \text { with } c_{k}\left(t, t_{0}\right):=\frac{1}{2 \pi} \int_{s_{k}\left(t, t_{0}\right)} \Re F\left(\left(g_{t} \circ g_{t_{0}}^{-1}\right)(\zeta)\right)|\mathrm{d} \zeta|, ~, ~, ~}
$$

where $F(w):=2 \mathrm{i} w$ for all $w \in \mathbb{C}$ in the chordal case and $F(w):=\log (w)$ for all $w \in \mathbb{C} \backslash\{0\}$ in the radial and bilateral case.

2.6.3 Proof of Theorem 2.30, 2.31 and 2.36: (ii) \Rightarrow (i)

Proof for $t \searrow t_{0}$. We use the same notations as in the proof of (i) \Rightarrow (iii), i.e. for each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}, f_{k ; t, \tau}$ denotes the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{k}(0, t] \cup \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$. Moreover, $g_{t}:=f_{k ;, t, t}, s_{k}\left(t_{0}, t\right):=g_{t}\left(\gamma_{k}\left[t_{0}, t\right]\right)$ and $U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ for all $t \in[0, T]$ and all $k \in\{1, \ldots, m\}$.

Let $t_{0}<t$. Applying the real part on Equation (2.7) with $z=g_{t}(w)$, for each $k \in\{1, \ldots, m\}$ and all $w \in \Omega_{t}$, we get

$$
\begin{aligned}
\Re F\left(g_{t}(w)\right)-\Re F\left(g_{t_{0}}(w)\right) & =-\frac{1}{2 \pi} \sum_{k=1}^{m} \Re \Phi_{a_{t}, \zeta_{k}, D_{t}}\left(g_{t}(w)\right) \int_{s_{k}\left(t_{0}, t\right)} \Re F\left(g_{t_{0}} \circ g_{t}^{-1}\right)(\zeta)|\mathrm{d} \zeta| \\
& \geq-\frac{1}{2 \pi} \Re \Phi_{a_{t}, \zeta_{k}, D_{t}}\left(g_{t}(w)\right) \int_{s_{k}\left(t_{0}, t\right)} \Re F\left(g_{t_{0}} \circ g_{t}^{-1}\right)(\zeta)|\mathrm{d} \zeta| \geq 0 .
\end{aligned}
$$

Here $\zeta_{k} \in s_{k}\left(t_{0}, t\right)$, and $F(w):=2 \mathrm{i} w$ for all $w \in \mathbb{C}$ in the chordal case and $F(w):=\log (w)$ for all $w \in \mathbb{C} \backslash\{0\}$ in the radial and bilateral case. $a_{t}:=0$ in the radial case, $a_{t}:=q_{t}$ in the bilateral case where q_{t} is the inner radius of the circular slit annulus D_{t} and $a_{t}:=\infty$ in the chordal case. Next, let us denote the remaining integral on the right-hand side by $2 \pi c_{k}\left(t_{0}, t\right)$, so we find with $t>t_{0}$

$$
\frac{\Re F\left(g_{t}(z)\right)-\Re F\left(g_{t_{0}}(z)\right)}{t-t_{0}} \geq-\Re \Phi_{a_{t}, \zeta_{k}, D_{t}}\left(g_{t}(z)\right) \frac{c_{k}\left(t_{0}, t\right)}{t-t_{0}} \geq 0 .
$$

Analogously to the proof of $(\mathrm{i}) \Rightarrow$ (iii), for all $k \in\{1, \ldots, m\}$, we have

$$
\Phi_{a_{t}, \zeta_{k}, D_{t}} \circ g_{t} \xrightarrow{\text { l.u. }} \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}} \circ g_{t_{0}} \quad \text { on } \Omega_{t_{0}}
$$

when $t \searrow t_{0}$, as $\zeta_{k} \in s_{k}\left(t_{0}, t\right) \rightarrow U_{k}\left(t_{0}\right)$. Since $t \mapsto \Re F\left(g_{t}(z)\right)$ is differentiable at t_{0}, each $t \mapsto \frac{c_{k}\left(t_{0}, t\right)}{t-t_{0}}, k \in\{1, \ldots, m\}$, is bounded on $\left(t_{0}, T\right]$. Summarising, for each $w \in \Omega_{t}$, we find

$$
\Re F\left(g_{t}(w)\right)-\Re F\left(g_{t_{0}}(w)\right)=-\sum_{k=1}^{m} \Re \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(w)\right) c_{k}\left(t_{0}, t\right)+o\left(\left|t-t_{0}\right|\right) .
$$

Using Lemma 2.50, we see that

$$
\lim _{t \searrow t_{0}} \frac{\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)}{t-t_{0}} \text { exists if and only if } \lim _{t \backslash t_{0}} \frac{c_{k}\left(t_{0}, t\right)}{t-t_{0}} \text { exists. }
$$

Consequently, we are going to prove the existence of the limits $\lim _{t \backslash t_{0}} \frac{c_{k}\left(t, t_{0}\right)}{t-t_{0}}, k \in$ $\{1, \ldots, m\}$.

For this purpose, we show that we can find $w_{1}, \ldots, w_{m} \in \Omega_{t_{0}}$ such that each $c_{k}\left(t, t_{0}\right)$ can be represented as a linear combination of the functions

$$
\Re F\left(g_{t}\left(w_{1}\right)\right)-\Re F\left(g_{t_{0}}\left(w_{1}\right)\right), \quad \ldots, \quad \Re F\left(g_{t}\left(w_{m}\right)\right)-\Re F\left(g_{t_{0}}\left(w_{m}\right)\right) .
$$

This is equivalent to the question whether it is possible to find $w_{1}, \ldots, w_{m} \in \Omega_{t_{0}}$ such that the vectors $v_{1}, \ldots, v_{m} \in \mathbb{R}^{m}$ are linear independently where

$$
v_{k}:=\left(\Re \Phi_{a_{t_{0}}, U_{1}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}\left(w_{k}\right)\right), \ldots, \Re \Phi_{a_{t_{0}}, U_{m}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}\left(w_{k}\right)\right)\right) .
$$

Since $\Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}\left(\gamma_{k}\left(t_{0}\right)\right)\right)=\infty$ and $\Re \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}\left(\gamma_{j}\left(t_{0}\right)\right)\right)=0$ if $j \neq k$, we find $w_{k} \in \Omega\left(t_{0}\right)$ close enough to $\gamma_{k}\left(t_{0}\right)$ in order to get

$$
\Re \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}\left(w_{k}\right)\right)=1, \quad \Re \Phi_{a_{t_{0}}, U_{j}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}\left(w_{k}\right)\right)<\frac{1}{m} \text { for all } j \neq k .
$$

This is based on the fact that we may consider the preimage of the curve $\delta(x):=1+\mathrm{i} x$, $x>0$ under the mapping $z \mapsto \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(z)\right)$ and choose x large enough in order to find a suitable $w_{k} \in \Omega_{t_{0}}$, see Figure 2.9. Consequently, the matrix $\left(v_{1}^{T}, \ldots, v_{m}^{T}\right)$ is a

Figure 2.9: The preimages of $\delta(x):=1+x$ under the mapping $z \mapsto$ $\Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(z)\right)$ in the radial case
diagonally dominant matrix, so it is invertible as well.
Proof for $t \nearrow t_{0}$. This works in the same way as in the case $t \searrow t_{0}$ with Lemma 2.51 instead of Lemma 2.50.

2.7 Almost everywhere differentiability

In this section we are going to show that a family $g_{t}: \Omega_{t} \rightarrow D_{t}$, with $\Omega_{t}:=\Omega \backslash$ $\bigcup_{k=1}^{m} \gamma_{k}(0, t]$ and disjoint appropriate slits $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ in Ω, is least for almost every $t \in[0, T]$ differentiable.
Theorem 2.52. Let Ω be a circular slit disk and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint radial slits in Ω with $m \in \mathbb{N}$. For each $t \in[0, T], g_{t}: \Omega_{t} \rightarrow D_{t}$ denotes the normalised radial mapping function from $\Omega_{t}:=\Omega \backslash \bigcup_{k=1}^{m} \gamma_{k}(0, t]$ onto the circular slit disk D_{t}.

Then there is a null set \mathcal{N} of $[0, T]$ such that $t \mapsto g_{t}(z)$ is differentiable on $[0, T] \backslash \mathcal{N}$ for each $z \in \Omega_{T}$ and satisfies

$$
\dot{g}_{t}(z)=g_{t}(z) \sum_{k=1}^{m} \lambda_{k}(t) \Phi_{0, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, T] \backslash \mathcal{N} \text { and all } z \in \Omega_{T},
$$

where, for each $k \in\{1, \ldots, m\}$, the driving term $t \mapsto U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, T]$ and $\lambda_{k}(t) \geq 0$ for each $t \in[0, T] \backslash \mathcal{N}$. Moreover, $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is differentiable on $[0, T] \backslash \mathcal{N}$ with derivative $\sum_{k=1}^{m} \lambda_{k}(t)$.

We have the same in the bilateral case.
Theorem 2.53. Let Ω be a circular slit annulus and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint bilateral slits in Ω with $m \in \mathbb{N}$. For each $t \in[0, T], g_{t}: \Omega_{t} \rightarrow D_{t}$ denotes the normalised radial mapping function from $\Omega_{t}:=\Omega \backslash \bigcup_{k=1}^{m} \gamma_{k}(0, t]$ onto the circular slit annulus D_{t} with inner radius q_{t}.

Then there is a null set \mathcal{N} of $[0, T]$ such that $t \mapsto g_{t}(z)$ is differentiable on $[0, T] \backslash \mathcal{N}$ for each $z \in \Omega_{T}$ and satisfies

$$
\dot{g}_{t}(z)=g_{t}(z) \sum_{k=1}^{m} \lambda_{k}(t) \Phi_{q t, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, T] \backslash \mathcal{N} \text { and all } z \in \Omega_{T},
$$

where, for each $k \in\{1, \ldots, m\}$, the driving term $t \mapsto U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, T]$ and $\lambda_{k}(t) \geq 0$ for each $t \in[0, T] \backslash \mathcal{N}$. Moreover, $t \mapsto \operatorname{lcm}\left(g_{t}\right)$ is differentiable on $[0, T] \backslash \mathcal{N}$ with derivative $\sum_{k=1}^{m} \lambda_{k}(t)$.

Finally, we have the following theorem in the chordal case.
Theorem 2.54. Let Ω be an upper parallel slit half-plane and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint chordal slits in Ω with $m \in \mathbb{N}$. For each $t \in[0, T], g_{t}: \Omega_{t} \rightarrow D_{t}$ denotes the normalised chordal mapping function from $\Omega_{t}:=\Omega \backslash \bigcup_{k=1}^{m} \gamma_{k}(0, t]$ onto the upper parallel slit half-plane D_{t}.

Then there is a null set \mathcal{N} of $[0, T]$ such that $t \mapsto g_{t}(z)$ is differentiable on $[0, T] \backslash \mathcal{N}$ for each $z \in \Omega_{T}$ and satisfies

$$
\dot{g}_{t}(z)=-\frac{\mathrm{i}}{2} \sum_{k=1}^{m} \lambda_{k}(t) \Phi_{\infty, U_{k}(t), D_{t}}\left(g_{t}(z)\right), \quad \text { for all } t \in[0, T] \backslash \mathcal{N} \text { and all } z \in \Omega_{T},
$$

where, for each $k \in\{1, \ldots, m\}$, the driving term $t \mapsto U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, T]$ and $\lambda_{k}(t) \geq 0$ for each $t \in[0, T] \backslash \mathcal{N}$. Moreover, $t \mapsto \operatorname{hcap}\left(g_{t}\right)$ is differentiable on $[0, T] \backslash \mathcal{N}$ with derivative $\sum_{k=1}^{m} \lambda_{k}(t)$.

Before we are able to prove this theorems, we need a preliminary proposition. Therefore, we introduce some notation as follows.

Let Ω be a canonical domain. Then we set $\Omega^{\mathcal{S}}:=\mathbb{D}$ if Ω is a circular slit disk, $\Omega^{\mathcal{S}}:=\mathbb{A}_{Q}$ if Ω is a circular slit annulus with inner radius $Q \in(0,1)$ and $\Omega^{\mathcal{S}}:=\mathbb{H}$ if Ω is an upper parallel slit half-plane. We call $\Omega^{\mathcal{S}}$ the simplification of Ω. Note that $\Omega^{\mathcal{S}}$ comes out of Ω by erasing all concentric circular arcs of Ω in the radial and bilateral case or by erasing all bounded parallel arcs of Ω in the chordal case. Consequently, $\Omega^{\mathcal{S}}$ is a canonical domain as well whereas $\operatorname{con}\left(\Omega^{\mathcal{S}}\right) \leq \operatorname{con}(\Omega)$.

Let $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint appropriate slits in $\Omega .\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ is a tuple of disjoint appropriate slits in $\Omega^{\mathcal{S}}$ as well. For each $t \in[0, T]$ and $k \in\{1, \ldots, m\}$, we denote by $h_{k ; t}$ the normalised appropriate mapping function on $\Omega^{\mathcal{S}} \backslash \gamma_{k}(0, t]$. Hence, $h_{k ; t}: \mathbb{D} \backslash \gamma_{k}(0, t] \rightarrow \mathbb{D}$ in the radial case, $h_{k ; t}: \mathbb{A}_{Q} \backslash \gamma_{k}(0, t] \rightarrow \mathbb{A}_{r_{k}}$ in the bilateral case and $h_{k ; t}: \mathbb{H} \backslash \gamma_{k}(0, t] \rightarrow \mathbb{H}$ in the chordal case.

Proposition 2.55. Let Ω be canonical domain and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint appropriate slits in Ω with $m \in \mathbb{N}$. For each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}, f_{k ; t, \tau}$ is the normalised appropriate mapping function from $\Omega_{k}(t, \tau):=\Omega \backslash\left(\bigcup_{j=1, j \neq k}^{m} \gamma_{j}(0, \tau] \cup\right.$ $\left.\gamma_{k}(0, t]\right)$ onto $D_{k}(t, \tau)$. Moreover, for each $t \in[0, T]$ and $k \in\{1, \ldots, m\}$, $h_{k ; t}$ denotes the normalised appropriate mapping function on $\Omega^{\mathcal{S}} \backslash \gamma_{k}(0, t]$. Assume $\left(\bar{t}_{n}\right)_{n \in \mathbb{N}},\left(\underline{t}_{n}\right)_{n \in \mathbb{N}}$ and $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ are convergent sequences in $[0, T]$ with $\tau_{n} \rightarrow \tau_{0}, \underline{t}_{n} \rightarrow t_{0} \leftarrow \bar{t}_{n}$ and $\underline{t}_{n}<\bar{t}_{n}$ for all $n \in \mathbb{N}$. Then

$$
\frac{\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \tau_{n}}\right)}{\mathfrak{c}\left(h_{k ; \tilde{t}_{n}}\right)-\mathfrak{c}\left(h_{k ; t_{n}}\right)} \xrightarrow{n \rightarrow \infty}\left|\alpha_{k}^{2}\left(t_{0}, \tau_{0}\right)\right| \quad \text { for all } k \in\{1, \ldots, m\} .
$$

For each $k \in\{1, \ldots, m\},(t, \tau) \mapsto\left|\alpha_{k}(t, \tau)\right|:=\left|\left(f_{k ; t, \tau} \circ h_{k ; t}^{-1}\right)^{\prime}\left(\Upsilon_{k}(t)\right)\right|$, with $\Upsilon_{k}(t):=$ $h_{k ; t}\left(\gamma_{k}(t)\right)$, is continuous and positive on $[0, T]^{2}$.

Note that $\alpha_{k}(t, \tau):=\left(f_{k ; t, \tau} \circ h_{k ; t}^{-1}\right)^{\prime}\left(\Upsilon_{k}(t)\right)$ is well-defined, as $f_{k ; t, \tau} \circ h_{k ; t}^{-1}$ can be extended analytically to $B_{\varepsilon}\left(\Upsilon_{k}(t)\right)$ with $\varepsilon>0$ small, see Lemma 2.42. Moreover, see Figure 4.2 illustrating $\alpha_{k}(t, t)$.
Remark 2.11. In the chordal single slit case a similar result was established by S. Drenning, see Proposition 6.25 in [Dre11], where the proof is based on probabilistic arguments.

Proof of Proposition 2.55. Let $k \in\{1, \ldots, m\}$ be fix. First of all, $f_{k ; \bar{t}_{n}, \tau_{n}} \circ f_{k ; t_{n}, \tau_{n}}^{-1}$ is the normalised appropriate mapping function from $D_{k}\left(\underline{t}_{n}, \tau_{n}\right) \backslash S_{k ; \underline{t}_{n}, \bar{t}_{n}, \tau_{n}}$ onto $D_{k}\left(\bar{t}_{n}, \tau_{n}\right)$, so we find by Lemma 2.45

$$
\begin{aligned}
\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \tau_{n}}\right)=\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}} \circ f_{k ; t_{n}, \tau_{n}}^{-1}\right) & = \\
& -\frac{1}{2 \pi} \int_{s_{k ; t_{n}, \bar{t}_{n}, \tau_{n}}} \Re F\left(f_{k ; t_{n}, \tau_{n}} \circ f_{k ; \bar{t}_{n}, \tau_{n}}^{-1}\right)(\zeta)|\mathrm{d} \zeta| .
\end{aligned}
$$

Herein, for each $\underline{t}, \bar{t}, \tau \in[0, T]$ with $\underline{t}<\bar{t}, s_{k ; t, t, t, \tau}:=f_{k ; \bar{z}, \tau}\left(\gamma_{k}[\underline{t}, \bar{t}]\right)$ and $S_{k ; t, t, \tau, \tau}:=$ $f_{k ; t, \tau}\left(\gamma_{k}(\underline{t}, \bar{t}]\right)$ are defined like in Lemma 2.43.

Next, we consider the function $R_{n}:=f_{k ; \bar{t}_{n}, \tau_{n}} \circ h_{k ; \bar{t}_{n}}^{-1}$ and for each $\underline{t}, \bar{t} \in[0, T]$ with $\underline{t}<\bar{t}$, we set $\sigma_{k ; t, \bar{t}}:=h_{k ; \bar{t}}\left(\gamma_{k}[\underline{t}, \bar{t}]\right)$ and $\Sigma_{k ; t, \bar{t}}:=h_{k ; \underline{\underline{t}}}\left(\gamma_{k}(\underline{t}, \bar{t}]\right)$. Note that Lemma 2.43 is

Figure 2.10: Radial mappings $f_{k ; t_{n}, \tau_{n}}, h_{k ; t_{n}}, h_{k ; \bar{t}_{n}}$ and $f_{k ; \bar{t}_{n}, \tau_{n}}$ in the proof of Proposition 2.55
applicable to $\Upsilon_{k}(t), \sigma_{k ; t, \bar{t}}$ and $\Sigma_{k ; t, \bar{t}}$ as well. Lemma 2.42 and 2.44 show that each R_{n} can be extended analytically to $B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right)$ if $\varepsilon>0$ is small and n is large enough. $\sigma_{k ; t_{n}, \bar{t}_{n}} \rightarrow$ $\Upsilon_{k}\left(t_{0}\right)$, so we can assume $\sigma_{k ; t_{n}, \bar{t}_{n}} \subseteq B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right)$ for all large n as well. Consequently, we find with an easily substitution and the mean value theorem

$$
\begin{aligned}
\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \tau_{n}}\right) & =-\frac{1}{2 \pi} \int_{\sigma_{k ; t_{n}, \bar{t}_{n}}} \Re F\left(f_{k ; t_{n}, \tau_{n}} \circ f_{k ; \bar{t}_{n}, \tau_{n}}^{-1} \circ R_{n}\right)(\zeta)\left|R_{n}^{\prime}(\zeta)\right||\mathrm{d} \zeta| \\
& =-\frac{1}{2 \pi}\left|R_{n}^{\prime}\left(\zeta_{n}\right)\right| \int_{\sigma_{k ; t_{n}, \bar{t}_{n}}} \Re F\left(f_{k ; t_{n}, \tau_{n}} \circ h_{k ; \bar{t}_{n}}^{-1}\right)(\zeta)|\mathrm{d} \zeta|
\end{aligned}
$$

with $\zeta_{n} \in \sigma_{k ; \underline{t}_{n}, \bar{t}_{n}}$. Thus $\zeta_{n} \rightarrow \Upsilon_{k}\left(t_{0}\right)$, i.e. and $\left|R_{n}^{\prime}\left(\zeta_{n}\right)\right| \rightarrow\left|\alpha_{k}\left(t_{0}, \tau_{0}\right)\right|$ as R_{n} tends to $f_{k ; t_{0}, \tau_{0}} \circ h_{k ; t_{0}}^{-1}$ locally uniformly on $B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right)$, see Lemma 2.42.

Next, let us define $T_{n}:=f_{k ; t_{n}, \tau_{n}} \circ h_{k ; t_{n}}^{-1}$. Analogously, we are able to extend T_{n} analytically to $B_{\varepsilon}\left(\Upsilon_{t_{0}}\right)$ with a small $\varepsilon>0$ for all large $n \in \mathbb{N}$. Using Lemma 2.42, T_{n} converges locally uniformly on $B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right)$ to $f_{k ; t_{0}, \tau_{0}} \circ h_{k ; t_{0}}^{-1}$ as well. On top of this, we find $\varepsilon_{n}>0$ with $\varepsilon_{n} \rightarrow 0$ such that $\Sigma_{k ; t_{n}, \bar{t}_{n}} \subseteq B_{\varepsilon_{n}}\left(\Upsilon_{k}\left(t_{0}\right)\right)$ for all large $n \in \mathbb{N}$, as Lemma 2.43 yields $\Sigma_{k ; t_{n}, \bar{t}_{n}} \rightarrow \Upsilon_{k}\left(t_{0}\right)$. Using Remark 2.10, we find for each $\delta>0$ an $N \in \mathbb{N}$ such that for all $z \in B_{\varepsilon_{n}}\left(\Upsilon_{k}\left(t_{0}\right)\right)$ and all $n \geq N$, $\left|\frac{\mathrm{d}}{\mathrm{d} z}\left(F\left(T_{n}(z)\right)-|c| F(z)\right)\right|<\delta$ with $c:=T_{n}^{\prime}\left(\Upsilon_{k}\left(t_{0}\right)\right)$. This is based on the fact that $z \mapsto\left(f_{k ; t_{0}, \tau_{0}} \circ h_{k ; t_{0}}^{-1}\right)(z)$ as well as $z \mapsto\left(f_{k ; t_{0}, \tau_{0}}^{\prime} \circ h_{k ; t_{0}}^{-1}\right)^{\prime}(z)$ are continuous on $B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right)$ and $T_{n} \xrightarrow{\text { 1.u. }} f_{k ; t_{0}, \tau_{0}} \circ h_{k ; t_{0}}^{-1}$ on
$B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right)$. Hence, Lemma 2.49 yields

$$
\begin{aligned}
& -\frac{1}{2 \pi}\left|R_{n}^{\prime}\left(\zeta_{n}\right)\right|\left(\left|T_{n}^{\prime}\left(\Upsilon_{k}\left(t_{0}\right)\right)\right|-\delta\right) \int_{\sigma_{k ; \underline{t}_{n}, \bar{t}_{n}}} \Re F\left(h_{k ; \underline{t}_{n}} \circ h_{k ; \bar{t}_{n}}^{-1}\right)(\zeta)|\mathrm{d} \zeta| \\
& \leq \mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; \underline{t}_{n}, \tau_{n}}\right)=-\frac{1}{2 \pi}\left|R_{n}^{\prime}\left(\zeta_{n}\right)\right| \int_{\sigma_{k ; \underline{t}_{n}, \bar{t}_{n}}} \Re F\left(T_{n} \circ h_{k ; \underline{t}_{n}} \circ h_{k ; \bar{t}_{n}}^{-1}\right)(\zeta)|\mathrm{d} \zeta| \\
& \quad \leq-\frac{1}{2 \pi}\left|R_{n}^{\prime}\left(\zeta_{n}\right)\right|\left(\left|T_{n}^{\prime}\left(\Upsilon_{k}\left(t_{0}\right)\right)\right|+\delta\right) \int_{\sigma_{k ; \underline{\underline{n}}_{n}, \bar{t}_{n}}} \Re F\left(h_{k ; \underline{t}_{n}} \circ h_{k ; \bar{t}_{n}}^{-1}\right)(\zeta)|\mathrm{d} \zeta| .
\end{aligned}
$$

Note that $h_{k ; \bar{t}_{n}} \circ h_{k ; \underline{t}_{n}}^{-1}$ is the normalised appropriate mapping function on $\Omega^{\mathcal{S}} \backslash \Sigma_{k ; \underline{t}_{n}, \bar{t}_{n}}$, so Lemma 2.45 gives us

$$
\begin{aligned}
&\left|R_{n}^{\prime}\left(\zeta_{n}\right)\right|\left(\left|T_{n}^{\prime}\left(\Upsilon_{k}\left(t_{0}\right)\right)\right|-\delta\right)\left(\mathfrak{c}\left(h_{k ; \bar{t}_{n}} \circ h_{k ; t_{n}}^{-1}\right)\right) \leq \mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; \underline{t}_{n}, \tau_{n}}\right) \\
& \leq R_{n}^{\prime}\left(\zeta_{n}\right) \mid\left(\left|T_{n}^{\prime}\left(\Upsilon_{k}\left(t_{0}\right)\right)\right|+\delta\right)\left(\mathfrak{c}\left(h_{k ; \bar{t}_{n}} \circ h_{k ; t_{n}}^{-1}\right)\right)
\end{aligned}
$$

Summarising, $\mathfrak{c}\left(h_{k ; \bar{t}_{n}} \circ h_{k ; \underline{t}_{n}}^{-1}\right)=\mathfrak{c}\left(h_{k ; \bar{t}_{n}}\right)-\mathfrak{c}\left(h_{k ; \underline{t}_{n}}\right)>0$ yields

$$
\left|R_{n}^{\prime}\left(\zeta_{n}\right)\right|\left(\left|T_{n}^{\prime}\left(\Upsilon_{k}\left(t_{0}\right)\right)\right|-\delta\right) \leq \frac{\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \tau_{n}}\right)}{\mathfrak{c}\left(h_{k ; \bar{t}_{n}}\right)-\mathfrak{c}\left(h_{k ; t_{n}}\right)} \leq\left|R_{n}^{\prime}\left(\zeta_{n}\right)\right|\left(\left|T_{n}^{\prime}\left(\Upsilon_{k}\left(t_{0}\right)\right)\right|+\delta\right)
$$

Note that $R_{n}^{\prime}\left(\zeta_{n}\right) \rightarrow \alpha_{k}\left(t_{0}, \tau_{0}\right)$ as well as $T_{n}^{\prime}\left(\Upsilon_{k}\left(t_{0}\right)\right) \rightarrow \alpha_{k}\left(t_{0}, \tau_{0}\right)$.
Finally, as a consequence of the univalence on the continuation, $\alpha_{k}(t, \tau) \neq 0$ for all $t, \tau \in[0, T]$. On top of this, $(t, \tau) \mapsto \alpha_{k}(t, \tau)$ is continuous on $[0, T]^{2}$. This follows immediately from Lemma 2.42 and 2.43.

Now it is very easy to prove the three theorems.
Proof of Theorem 2.52, 2.53 and 2.54. First of all, note that the continuity of $t \mapsto U_{k}(t)$ follows immediately from Lemma 2.43.

Let Ω be a canonical domain and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be a tuple of disjoint appropriate slits in Ω. Obviously, $\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ is a tuple of disjoint appropriate slits in $\Omega^{\mathcal{S}}$ as well where $\Omega^{\mathcal{S}}$ is the simplification of Ω.

As before, for each $k \in\{1, \ldots, m\}$ and $t \in[0, T]$, we denote by $h_{k ; t}$ the normalised appropriate mapping function on $\Omega^{\mathcal{S}} \backslash \gamma_{k}(0, t]$. Moreover, for each $k \in\{1, \ldots, m\}$ and $t, \tau \in[0, T], f_{k ; t, \tau}$ is the normalised appropriate mapping function on $\Omega \backslash\left(\bigcup_{j \neq k} \gamma_{j}(0, \tau] \cup\right.$ $\left.\gamma_{k}(0, t]\right)$.

For now let us fix $k \in\{1, \ldots, m\}$. Using Lemma 2.41, the function $t \mapsto \mathfrak{c}\left(h_{k ; t}\right)$ is strictly increasing. Thus we find a null set \mathcal{N}_{k} such that $t \mapsto \mathfrak{c}\left(h_{k ; t}\right)$ is differentiable on $[0, T] \backslash \mathcal{N}_{k}$. Let be $t_{0} \in[0, T] \backslash \mathcal{N}_{k}$ and denote by $\mu_{k}\left(t_{0}\right)$ the derivative of $t \mapsto \mathfrak{c}\left(h_{k ; t}\right)$ at t_{0}. Note that $\mu_{k}\left(t_{0}\right) \geq 0$. Assume $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ is a sequence with $t_{n} \rightarrow t_{0}$. Using Proposition 2.55 with $\tau_{n}:=t_{0}, \underline{t}_{n}:=t_{0}$ and $\bar{t}_{n}:=t_{n}$, we find

$$
\begin{aligned}
\frac{\mathfrak{c}\left(f_{k ; t_{n}, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)}{t_{n}-t_{0}}=\frac{\mathfrak{c}\left(f_{k ; t_{n}, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)}{\mathfrak{c}\left(h_{k ; t_{n}}\right)-\mathfrak{c}\left(h_{k ; t_{0}}\right)} \cdot \frac{\mathfrak{c}\left(h_{k ; t_{n}}\right)-\mathfrak{c}\left(h_{k ; t_{0}}\right)}{t_{n}-t_{0}} \\
\xrightarrow{n \rightarrow \infty}\left|\alpha_{k}^{2}\left(t_{0}, t_{0}\right)\right| \cdot \mu_{k}\left(t_{0}\right) \geq 0 .
\end{aligned}
$$

Consequently, the limit $\lambda_{k}\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(f_{k ; t_{n}, t_{0}}\right)-\mathbf{c}\left(f_{\left.k ; t_{0}, t_{0}\right)}\right)}{t_{n}-t_{0}}$ exists for all $t_{0} \in[0, T] \backslash \mathcal{N}_{k}$.
We can do this for each $k \in\{1, \ldots, m\}$, so the limit $\lambda_{k}\left(t_{0}\right)$ exists for each $k \in$ $\{1, \ldots, m\}$ and all $t_{0} \in[0, T] \backslash \mathcal{N}$ where $\mathcal{N}:=\bigcup_{k=1}^{m} \mathcal{N}_{k}$. Finally, we apply Theorem 2.30, 2.31 or 2.36 what completes the proof.

2.8 A subadditivity property in simply connected domains

The following lemma is well-known, see [Law05], Proposition 3.42.
Lemma 2.56 (Proposition 3.42 in [Law05]). Let $\Omega:=\mathbb{H}$ and denote by \mathfrak{A} and \mathfrak{B} two chordal hulls in \mathbb{H} such that $\mathfrak{A} \cup \mathfrak{B}$ is a chordal \mathbb{H}-hull as well. Assume $g_{\mathfrak{A}}, g_{\mathfrak{B}}$ and $g_{\mathfrak{R} \cup \mathfrak{B}}$ denote the normalised chordal mapping functions on $\mathbb{H} \backslash \mathfrak{A}, \mathbb{H} \backslash \mathfrak{B}$ and $\mathbb{H} \backslash(\mathfrak{A} \cup \mathfrak{B})$, respectively. Then

$$
\operatorname{hcap}\left(g_{\mathfrak{R} \cup \mathfrak{B}}\right) \leq \operatorname{hcap}\left(g_{\mathfrak{R}}\right)+\operatorname{hcap}\left(g_{\mathfrak{B}}\right) .
$$

We have an analogous subadditivity property in the radial case as well.
Lemma 2.57. Let $\Omega:=\mathbb{D}$ and denote by \mathfrak{A} and \mathfrak{B} two radial hulls in \mathbb{D} such that $\mathfrak{A} \cup \mathfrak{B}$ is a radial \mathbb{D}-hull as well. Assume $g_{\mathfrak{A}}, g_{\mathfrak{B}}$ and $g_{\mathfrak{R} \cup \mathfrak{B}}$ denote the normalised radial mapping functions on $\mathbb{D} \backslash \mathfrak{A}, \mathbb{D} \backslash \mathfrak{B}$ and $\mathbb{D} \backslash(\mathfrak{A} \cup \mathfrak{B})$, respectively. Then

$$
\operatorname{lmr}\left(g_{\mathfrak{R} \cup \mathfrak{B}}\right) \leq \operatorname{lmr}\left(g_{\mathfrak{R}}\right)+\operatorname{lmr}\left(g_{\mathfrak{B}}\right)
$$

Proof. Let $A:=\mathbb{D} \cup \mathbb{T} \cup\{z \in \mathbb{C} \mid 1 / z \in \mathfrak{A}\}$ and $B:=\mathbb{D} \cup \mathbb{T} \cup\{z \in \mathbb{C} \mid 1 / z \in \mathfrak{B}\}$, so A, B are bounded connected compact sets. Using Renggli's theorem in [Ren61], we find

$$
\begin{equation*}
\operatorname{cap}(A \cap B) \cdot \operatorname{cap}(A \cup B) \leq \operatorname{cap}(A) \cdot \operatorname{cap}(B), \tag{2.12}
\end{equation*}
$$

whereas cap denotes the logarithmic capacity, see Chapter 9.3 in [Pom92] for a definition. Note that

$$
z \mapsto \frac{1}{g_{\mathfrak{A}}^{-1}\left(\frac{1}{z}\right)}=g_{\mathfrak{A}}^{\prime}(0) z+\mathcal{O}(1) \quad \text { around } \infty
$$

maps $\{|z|>1\} \cup\{\infty\}$ conformally onto $\mathbb{C}_{\infty} \backslash A$. Using Corollary 9.9. from [Pom92], we find $\operatorname{cap}(A)=g_{\mathfrak{A}}^{\prime}(0)$. Analogously, we find $\operatorname{cap}(B)=g_{\mathfrak{B}}^{\prime}(0)$ and $\operatorname{cap}(A \cup B)=g_{\mathfrak{R} \cup \mathfrak{B}}^{\prime}(0)$. Moreover, using the monotonicity of the logarithmic capacity, see Equation (9) from Chapter 9.3 in [Pom92], $\operatorname{cap}(A \cap B) \geq \operatorname{cap}(\mathbb{T} \cup \mathbb{D})=1$, so by applying the logarithm the proof is complete.

Remark 2.12. As we have seen in the previous proof, Lemma 2.57 is an easy consequence of the strong submultiplicativity of the logarithmic capacity, see Equation (2.12). To the best of our knowledge, the first proof of this property goes back to Renggli, see [Ren61].

Unfortunately, we have the connection (Corollary 9.9, from [Pom92]) between the logarithmic mapping radius lmr and the logarithmic capacity cap only in the case of simply connected domains.

Quite recently O. Roth and D. Kraus found a new proof of the strong submultiplicativity of the Poincaré metric, see [KR14]. This leads to a definition of the so-called Poincaré capacity pcap that coincides with the logarithmic capacity cap in the case of
simply connected domains and has a strong submultiplicativity property as well, see Remark 1.4 and Corollary 1.2 in [KR14]. Moreover, the Poincaré capacity has a connection with conformal maps (even in multiply connected domains). Unfortunately (for our purpose), an equivalent way to define pcap is related to the universal covering map, so we can not use this result to find a formulation of Lemma 2.57 for multiply connected domains.

Right now we do not know if there is a generalization of Lemma 2.56 and 2.57 to multiply connected domains as well:
Question 1. Do we have a subadditivity property in multiply connected domains as well? This leads to the following three cases:
(i) Let Ω be a circular slit disk, \mathfrak{A} and \mathfrak{B} be radial Ω-hulls such that $\mathfrak{A} \cup \mathfrak{B}$ is a radial Ω-hull as well, and denote by $g_{\mathfrak{R}}, g_{\mathfrak{B}}$ and $g_{\mathfrak{R} \cup \mathfrak{B}}$ the normalised radial mapping functions on $\Omega \backslash \mathfrak{A}, \Omega \backslash \mathfrak{B}$ and $\Omega \backslash(\mathfrak{A} \cup \mathfrak{B})$, respectively. Do we have

$$
\operatorname{lmr}\left(g_{\mathfrak{R} \cup \mathfrak{B}}\right) \leq \operatorname{lmr}\left(g_{\mathfrak{A}}\right)+\operatorname{lmr}\left(g_{\mathfrak{B}}\right) ?
$$

(ii) Let Ω be a circular slit annulus, \mathfrak{A} and \mathfrak{B} be bilateral Ω-hulls such that $\mathfrak{A} \cup \mathfrak{B}$ is a bilateral Ω-hull as well, and denote by $g_{\mathfrak{R}}, g_{\mathfrak{B}}$ and $g_{\mathfrak{R} \cup \mathfrak{B}}$ the normalised bilateral mapping functions on $\Omega \backslash \mathfrak{A}, \Omega \backslash \mathfrak{B}$ and $\Omega \backslash(\mathfrak{A} \cup \mathfrak{B})$, respectively. Do we have

$$
\operatorname{lcm}\left(g_{\mathfrak{R} \cup \mathfrak{B}}\right) \leq \operatorname{lcm}\left(g_{\mathfrak{A l}}\right)+\operatorname{lcm}\left(g_{\mathfrak{B}}\right) ?
$$

(iii) Let Ω be an upper parallel slit half-plane, \mathfrak{A} and \mathfrak{B} be chordal Ω-hulls such that $\mathfrak{A} \cup \mathfrak{B}$ is a chordal Ω-hull as well, and denote by $g_{\mathfrak{A}}, g_{\mathfrak{B}}$ and $g_{\mathfrak{R} \cup \mathfrak{B}}$ the normalised chordal mapping functions on $\Omega \backslash \mathfrak{A}, \Omega \backslash \mathfrak{B}$ and $\Omega \backslash(\mathfrak{A} \cup \mathfrak{B})$, respectively. Do we have

$$
\operatorname{hcap}\left(g_{\mathfrak{Z} \cup \mathfrak{B}}\right) \leq \operatorname{hcap}\left(g_{\mathfrak{Z}}\right)+\operatorname{hcap}\left(g_{\mathfrak{B}}\right) ?
$$

Chapter 3

Constant Coefficients

Let Ω be a canonical domain. A tuple $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right)$, with $m \in \mathbb{N}$, is called tuple of disjoint appropriate unparametrised slits in Ω if there is a $T>0$ and a tuple $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{[0, T]}$ of disjoint appropriate slits in Ω such that $\gamma_{k}[0, T]=\Gamma_{k}$ for each $k \in\{1, \ldots, m\}$. In this case, each $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{[0, T]}$ is called admissible parametrisation of $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right)$.

Let $m=1$, i.e. Γ is an appropriate unparametrised slit in the canonical domain Ω. First of all, let $\gamma:[0, T] \rightarrow \Gamma$ denote an arbitrary admissible parametrisation of Γ. Moreover, for each $t \in[0, T]$, we denote by $g_{t}: \Omega \backslash \gamma(0, t] \rightarrow D_{t}$ the normalised appropriate mapping function from $\Omega_{t}:=\Omega \backslash \gamma(0, t]$ onto the canonical domain D_{t}.

Using Theorem 2.52, 2.53 or 2.54 , we find a null set \mathcal{N} such that $t \mapsto g_{t}(z)$ is differentiable on $[0, T] \backslash \mathcal{N}$ for each $z \in \Omega_{T}$ and satisfies

$$
\dot{g}_{t}(z)=E\left(g_{t}(z)\right) \cdot \lambda(t) \cdot \Phi_{a_{t}, U_{t}, D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, T] \backslash \mathcal{N} \text { and all } z \in \Omega_{T},
$$

with values $\lambda(t) \geq 0$ for each $t \in[0, T] \backslash \mathcal{N}$ and $U_{t}:=g_{t}(\gamma(t))$. Herein, $a_{t}:=0$ in the radial case, a_{t} is the inner radius of D_{t} in the bilateral case and $a_{t}:=\infty$ in the chordal case. Moreover, for all $w \in \mathbb{C}$, we set $E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 i}$ in the chordal case.

One might ask the natural question if there is a reparametrisation $v(s):[0, L] \rightarrow$ $[0, T]$ with $L>0$ such that $s \mapsto g_{v(s)}$ is (everywhere) differentiable on $[0, L]$ with 'nice' values $\lambda(t)$. In the single slit case we may argue as follows: Using Lemma 2.42 and 2.41, we see that $t \mapsto \mathfrak{c}\left(g_{t}\right)$ is strictly increasing and continuous with $\mathfrak{c}\left(g_{0}\right)=0$ and $\mathfrak{c}\left(g_{T}\right)=: L$. Let $v^{-1}(t):=\mathfrak{c}\left(g_{t}\right)$ for all $t \in[0, T]$, so $\mathfrak{c}\left(g_{v(s)}\right)=s$ for all $s \in[0, L]$. Then Theorem 2.22 yields that $s \mapsto g_{v(s)}(z)$ is differentiable on $[0, L]$ for each $z \in \Omega \backslash \Gamma$ with

$$
\frac{\mathrm{d}}{\mathrm{~d} s} g_{v(s)}(z)=E\left(g_{v(s)}(z)\right) \cdot \Phi_{0, U_{v(s)}, D_{v(s)}}\left(g_{v(s)}(z)\right) \quad \text { for all } s \in[0, L] \text { and all } z \in \Omega \backslash \Gamma,
$$

where $s \mapsto U_{v(s)}=g_{v(s)}(\gamma(v(s)))$ is continuous on $[0, L]$. Note that the reparametrisation $v(s)$ is unique with respect of getting $\lambda \equiv 1$.

Summarising, we have the following corollary.
Corollary 3.1. Let Ω be a canonical domain and denote by Γ an appropriate unparametrised slit in Ω. Then there is a unique $L>0$ and a unique admissible parametrisation
$\gamma:[0, L] \rightarrow \Gamma$ of Γ such that for each $z \in \Omega \backslash \Gamma, t \mapsto g_{t}(z)$ is continuously differentiable on $[0, L]$ and satisfies

$$
\dot{g}_{t}(z)=E\left(g_{t}(z)\right) \cdot \Phi_{a_{t}, U_{t}, D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, L] \text { and all } z \in \Omega \backslash \Gamma
$$

where, for each $t \in[0, L], g_{t}$ is the normalised appropriate mapping function from $\Omega \backslash$ $\gamma(0, t]$ onto D_{t} and $U_{t}:=g_{t}(\gamma(t))$ is the continuous driving term. Herein, $a_{t}:=0$ in the radial case, a_{t} is the inner radius of D_{t} in the bilateral case and $a_{t}:=\infty$ in the chordal case. Moreover, for all $w \in \mathbb{C}$, we set $E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 \mathrm{i}}$ in the chordal case.

Sometimes this parametrisation is called Loewner parametrisation of Γ.
The follow-up question is: what if we do have more than one slit, i.e. $m>1$? Do we have parametrisations like the Loewner parametrisation in the single slit case? We will give an answer to this question in the following section.

3.1 Disjoint slits

Theorem 3.2. Let Ω be a circular slit disk and $\left(\Gamma_{1}, \Gamma_{2}\right)$ be a tuple of disjoint radial unparametrised slits in Ω. Then there is a unique $L>0$, unique (constants) $\lambda_{1}, \lambda_{2}>0$ with $\lambda_{1}+\lambda_{2}=1$, and a unique admissible parametrisation $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, L]}$ of $\left(\Gamma_{1}, \Gamma_{2}\right)$ such that for each $z \in \Omega_{L}, t \mapsto g_{t}(z)$ is continuously differentiable on $[0, L]$ and satisfies

$$
\dot{g}_{t}(z)=g_{t}(z) \sum_{k=1}^{2} \lambda_{k} \Phi_{0, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, L] \text { and all } z \in \Omega_{L} .
$$

Herein, for each $t \in[0, L], g_{t}$ is the normalised radial mapping function from $\Omega_{t}:=$ $\Omega \backslash \bigcup_{k=1}^{2} \gamma_{k}(0, t]$ onto the circular slit disk D_{t}. Moreover, for each $k \in\{1,2\}$, the driving function $t \mapsto U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, L]$.
Remark 3.1. As mentioned already in the introduction, this theorem goes back to Prokhorov, see Theorem F. He considered the simply connected case, i.e. $\Omega=\mathbb{D}$ and piecewise analytic slits Γ_{1}, Γ_{2}, see Theorem 1 and 2 in [Pro93].
Theorem 3.3. Let Ω be a circular slit annulus with inner radius $Q \in(0,1)$ and $\left(\Gamma_{1}, \Gamma_{2}\right)$ be a tuple of disjoint bilateral unparametrised slits in Ω. Then there is a unique $L>0$, unique (constants) $\lambda_{1}, \lambda_{2}>0$ with $\lambda_{1}+\lambda_{2}=1$, and a unique admissible parametrisation $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, L]}$ of $\left(\Gamma_{1}, \Gamma_{2}\right)$ such that, for each $z \in \Omega_{L}, t \mapsto g_{t}(z)$ is continuously differentiable on $[0, L]$ and satisfies

$$
\dot{g}_{t}(z)=g_{t}(z) \sum_{k=1}^{2} \lambda_{k} \Phi_{q_{t}, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, L] \text { and all } z \in \Omega_{L} .
$$

Herein, for each $t \in[0, L], g_{t}$ is the normalised bilateral mapping function from $\Omega_{t}:=$ $\Omega \backslash \bigcup_{k=1}^{2} \gamma_{k}(0, t]$ onto the circular slit annulus $D_{t} . q_{t}$ is the inner radius of $D_{t}, t \in[0, L]$, and for each $k \in\{1,2\}$, the driving function $t \mapsto U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, L]$.

Theorem 3.4. Let Ω be an upper parallel slit half-plane and $\left(\Gamma_{1}, \Gamma_{2}\right)$ be a tuple of disjoint chordal unparametrised slits in Ω. Then there is a unique $L>0$, unique (constants) $\lambda_{1}, \lambda_{2}>0$ with $\lambda_{1}+\lambda_{2}=1$, and a unique admissible parametrisation $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, L]}$ of $\left(\Gamma_{1}, \Gamma_{2}\right)$ such that for each $z \in \Omega_{L}, t \mapsto g_{t}(z)$ is continuously differentiable on $[0, L]$ and satisfies

$$
\dot{g}_{t}(z)=-\frac{\mathrm{i}}{2} \sum_{k=1}^{2} \lambda_{k} \Phi_{\infty, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, L] \text { and all } z \in \Omega_{L}
$$

Herein, for each $t \in[0, L], g_{t}$ is the normalised chordal mapping function from $\Omega_{t}:=$ $\Omega \backslash \bigcup_{k=1}^{2} \gamma_{k}(0, t]$ onto the upper parallel slit half-plane D_{t}. Moreover, for each $k \in\{1,2\}$, the driving function $t \mapsto U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ is continuous on $[0, L]$.
Remark 3.2. O. Roth and S. Schleißinger found the first proof of Theorem 3.4 in case of simply connected domains without assuming piecewise analytic slits, see [RS14]. During a summer school in Sevilla ('Complex Analysis and Related Areas', February 2013) Sebastian Schleißinger presented their proof. This was the beginning of a collaboration of S. Schleißinger and the author of this thesis, see [BS15a]. In this context, ideas from [RS14] were combined with methods from [BL14] resulting in a proof of Theorem 3.2. The advantage of this approach is that the proof is universal, in the sense that the proof in the radial, bilateral and chordal case differs not really. See Subsection 3.1.2 where we prove Theorem 3.2, 3.3 and 3.4 simultaneously.
Remark 3.3. Note that Theorem 3.2, 3.3 and 3.4 prove the existence and uniqueness of constant coefficients for two disjoint unparametrised slits $\left(\Gamma_{1}, \Gamma_{2}\right)$. One might ask the question if the same is true for more than two disjoint unparametrised slits $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right)$ with $m>2$. Following the steps of the existence proof (see Subsection 3.1.2) we can see that the existence of constant coefficients can be received in the same way as in the two slit case. Unfortunately, the uniqueness of constant coefficients in the case $m>2$ can not be reasoned in the same way as in two slit case. Moreover, we do not know how to prove the uniqueness otherwise, so there is still the following open problem.
Question 2. Is there a similar result of Theorem 3.2, 3.3 and 3.4 in the case of more than two slits?

Finally, let us mention [Sch15], Subsection 3.6.5 with a lot of useful remarks about constant coefficients in the simply connected chordal case. Most of these remarks hold in the multiply connected cases as well.

3.1.1 Some preliminary lemmas

Lemma 3.5. Let Ω be a canonical domain and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ denotes a tuple of disjoint appropriate slits in Ω. For each $k \in\{1, \ldots, m\}$ and $t, \tau \in[0, T], f_{k ; t, \tau}$ denotes the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{k}(0, t] \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$.

Then for each $\varepsilon>0$, we find $a \delta>0$ such that

$$
1-\varepsilon \leq \frac{\mathfrak{c}\left(f_{k ; \bar{t}, \bar{\tau}}\right)-\mathfrak{c}\left(f_{k ; t, \bar{\tau}}\right)}{\mathfrak{c}\left(f_{k ; \bar{t}, \underline{\tau}}\right)-\mathfrak{c}\left(f_{k ; t, \underline{\tau}}\right)} \leq 1+\varepsilon
$$

for all $\underline{t}, \bar{t}, \underline{\tau}, \bar{\tau} \in[0, T]$ with $0<\bar{t}-\underline{t}<\delta$ and $0 \leq \bar{\tau}-\underline{\tau}<\delta$ and all $k \in\{1, \ldots, m\}$.

Proof. Suppose the opposite is true, so there is a $k \in\{1, \ldots, m\}$ and sequences $\left(\underline{t}_{n}\right)_{n \in \mathbb{N}}$, $\left(\bar{t}_{n}\right)_{n \in \mathbb{N}},\left(\underline{\tau}_{n}\right)_{n \in \mathbb{N}}$ and $\left(\bar{\tau}_{n}\right)_{n \in \mathbb{N}}$ with $\underline{t}_{n}<\bar{t}_{n}$ and $\underline{\tau}_{n} \leq \bar{\tau}_{n}$ such that

$$
\left|\frac{\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \bar{\tau}_{n}}\right)-\mathfrak{c}\left(f_{k ; \underline{t}_{n}, \bar{\tau}_{n}}\right)}{\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \tau_{n}}\right)}-1\right|>\varepsilon
$$

for all $n \in \mathbb{N}$. Obviously, we can assume without loss of generality that each sequence is convergent, i.e. $\underline{t}_{n} \rightarrow t_{0} \leftarrow \bar{t}_{n}$ and $\underline{\tau}_{n} \rightarrow \tau_{0} \leftarrow \bar{\tau}_{n}$. For all $k \in\{1, \ldots, m\}$ and all $t \in[0, T]$, let us denote by $h_{k ; t}$ the normalised appropriate mapping functions on $\Omega \backslash \gamma_{k}(0, t]$. Using Proposition 2.55, we find

$$
\frac{\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \bar{\tau}_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \bar{\tau}_{n}}\right)}{\mathfrak{c}\left(h_{k ; \bar{t}_{n}}\right)-\mathfrak{c}\left(h_{k ; t_{n}}\right)} \xrightarrow{n \rightarrow \infty}\left|\alpha_{k}^{2}\left(t_{0}, \tau_{0}\right)\right| \stackrel{n \rightarrow \infty}{\stackrel{c}{n}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \tau_{n}}\right)} \underset{\mathfrak{c}\left(h_{k ; \bar{t}_{n}}\right)-\mathfrak{c}\left(h_{k ; t_{n}}\right)}{ } .
$$

Consequently, we get

$$
\frac{\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \bar{\tau}_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \bar{\tau}_{n}}\right)}{\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \bar{\tau}_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \bar{\tau}_{n}}\right)}=\frac{\mathfrak{c}\left(f_{k ; \bar{\tau}_{n}, \bar{\tau}_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{n}, \bar{\tau}_{n}}\right)}{\mathfrak{c}\left(h_{k ; \bar{t}_{n}}\right)-\mathfrak{c}\left(h_{k ; \underline{t}_{n}}\right)} \cdot \frac{\mathfrak{c}\left(h_{k ; \bar{\tau}_{n}}\right)-\mathfrak{c}\left(h_{k ; t_{n}}\right)}{\mathfrak{c}\left(f_{k ; \bar{t}_{n}, \tau_{n}}\right)-\mathfrak{c}\left(f_{k ; \underline{t}_{n}, \bar{\tau}_{n}}\right)} \xrightarrow{ } 1 .
$$

This is a contradiction, so the proof is complete.
Lemma 3.6. Let Ω be a canonical domain and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ denotes a tuple of disjoint appropriate slits in Ω. For each $k \in\{1, \ldots, m\}$ and $t, \tau \in[0, T], f_{k ; t, \tau}$ is the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{k}(0, t] \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$. Moreover, we set $g_{t}:=f_{k ; t, t}$ for each $t \in[0, T]$ independently of $k \in\{1, \ldots, m\}$. Assume $Z=\left\{t_{0}, \ldots, t_{n}\right\}$, with $t_{0}=0$ and $t_{n}=t$, is a partition of the interval $[0, t]$, i.e. $t_{0}<t_{1}<\ldots<t_{n}$ and

$$
\mathcal{S}\left(f_{k}, t, Z\right):=\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right) .
$$

Then for each $t \in[0, T]$ and $k \in\{1, \ldots, m\}, \mathcal{S}\left(f_{k}, t, Z\right) \rightarrow c_{k}(t) \geq 0$ as $|Z| \rightarrow 0$, whereas $|Z|$ denotes the norm of the partition Z, i.e. $|Z|:=\max _{l=0, \ldots, n-1} t_{l+1}-t_{l}$. Moreover, each $t \mapsto c_{k}(t), k \in\{1, \ldots, m\}$, is continuous and strictly increasing on $[0, T]$, and for each $t_{0} \in[0, T]$,

$$
\frac{c_{k}(t)-c_{k}\left(t_{0}\right)}{\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{\left.k ; t_{0}, t_{0}\right)}\right)} \rightarrow 1 \quad \text { as } t \rightarrow t_{0} .
$$

Finally, assume $\mathfrak{c}\left(g_{t}\right)=t$ for all $t \in[0, T]$. Then each $t \mapsto c_{k}(t), k \in\{1, \ldots, m\}$, is Lipschitz continuous on $[0, T]$ and $\sum_{k=1}^{m} c_{k}(t)=t$ for all $t \in[0, T]$.
Proof. 1) First of all, we are going to show $\mathcal{S}\left(f_{k}, t, Z\right) \rightarrow c_{k}(t)$ as $|Z| \rightarrow 0$. Therefore, let $k \in\{1, \ldots, m\}$ and $t \in[0, T]$ be fix. Let us consider two partitions $Z_{1}=\left\{t_{0}^{*}, \ldots, t_{n_{1}}^{*}\right\}$ and Z_{2} of the interval $[0, t]$ with $\left|Z_{1}\right|,\left|Z_{2}\right|<\delta$ where $\delta>0$. Denote by $Z=\left\{t_{0}, \ldots, t_{n}\right\}$ the union of Z_{1} and Z_{2}. By adding zeros we achieve

$$
\begin{aligned}
&\left|\mathcal{S}\left(f_{k}, t, Z\right)-\mathcal{S}\left(f_{k}, t, Z_{1}\right)\right| \leq \\
& \sum_{l=0}^{n-1}\left|\left[\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)\right]-\left[\mathfrak{c}\left(f_{k ; t_{l+1}, \phi\left(t_{l}\right)}\right)-\mathfrak{c}\left(f_{k ; t_{l}, \phi\left(t_{l}\right)}\right)\right]\right|,
\end{aligned}
$$

where $\phi\left(t_{l}\right):=t_{p}^{*}$ if $t_{l} \in\left[t_{p}^{*}, t_{p+1}^{*}\right)$ with $l \in\{0, \ldots, n-1\}$ and $p \in\left\{0, \ldots, n_{1}-1\right\}$. Consequently, $\left|\phi\left(t_{l}\right)-t_{l}\right| \leq\left|Z_{1}\right| \leq \delta$. Thus we get

$$
\begin{aligned}
& \left|\mathcal{S}\left(f_{k}, t, Z\right)-\mathcal{S}\left(f_{k}, t, Z_{1}\right)\right| \leq \\
& \quad \sum_{l=0}^{n-1}\left|\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)\right| \cdot\left|1-\frac{\mathfrak{c}\left(f_{k ; t_{l+1}, \phi\left(t_{l}\right)}\right)-\mathfrak{c}\left(f_{k ; t_{l}, \phi\left(t_{l}\right)}\right)}{\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)}\right| .
\end{aligned}
$$

For any given $\varepsilon>0$, we can choose $\delta>0$ (by using Lemma 3.5) in such a way that

$$
1-\varepsilon<\frac{\mathfrak{c}\left(f_{k ; t_{l+1}, \phi\left(t_{l}\right)}\right)-\mathfrak{c}\left(f_{k ; t_{l}, \phi\left(t_{l}\right)}\right)}{\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)}<1+\varepsilon
$$

holds for all $l \in\{0, \ldots, n-1\}$. Lemma 2.41 gives us $\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l+1}}\right)>\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)>\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)$ for all $l \in\{1, \ldots, n-1\}$. Thus we have

$$
\begin{aligned}
\mid \mathcal{S}\left(f_{k}, t, Z\right)-\mathcal{S}\left(f_{k},\right. & \left., Z_{1}\right) \mid \leq \varepsilon \sum_{l=0}^{n-1}\left(\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)\right) \\
& <\varepsilon \sum_{l=0}^{n-1}\left(\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l+1}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)\right) \\
& =\varepsilon \cdot\left(\mathfrak{c}\left(f_{k ; t_{n}, t_{n}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)\right)=\varepsilon \cdot\left(\mathfrak{c}\left(g_{t}\right)-\mathfrak{c}\left(g_{0}\right)\right) .
\end{aligned}
$$

Replacing Z_{1} with Z_{2} we get $\left|\mathcal{S}\left(f_{k}, t, Z\right)-\mathcal{S}\left(f_{k}, t, Z_{2}\right)\right| \leq \varepsilon\left(\mathfrak{c}\left(g_{t}\right)-\mathfrak{c}\left(g_{0}\right)\right)$ as well. Consequently, we have $\left|\mathcal{S}\left(f_{k}, t, Z_{1}\right)-\mathcal{S}\left(f_{k}, t, Z_{2}\right)\right| \leq 2 \varepsilon\left(\mathfrak{c}\left(g_{t}\right)-\mathfrak{c}\left(g_{0}\right)\right)$, so $\mathcal{S}\left(f_{k}, t, Z\right)$ converges to a value $c_{k}(t) \in[0, \infty)$ if $|Z| \rightarrow 0$.
2) Next, we are going to prove that $t \mapsto c_{k}(t)$ is strictly increasing. Therefore, we fix $k \in\{1, \ldots, m\}$. Let $\varepsilon>0, t_{0} \in[0, T]$ and choose $t \in[0, T]$ in such a way that $0<\left|t-t_{0}\right|<\delta$ where $\delta>0$ is chosen according to Lemma 3.5 with respect to ε. Assume $Z=\left\{t_{k}: \left.=t_{0}+\frac{k}{n}\left(t-t_{0}\right) \right\rvert\, k \in\{0, \ldots n\}\right\}$. Thus we get

$$
\begin{aligned}
& \left|\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)-\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)\right| \\
& =\left|\sum_{l=0}^{n-1}\left(\left[\mathfrak{c}\left(f_{k ; t_{l+1}, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{0}}\right)\right]-\left[\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{l}}\right)\right]\right)\right|=*
\end{aligned}
$$

where the first equality follows by adding zeros. Using Lemma 3.5, we find

$$
\begin{aligned}
& * \leq \sum_{l=0}^{n-1}\left|\mathfrak{c}\left(f_{k ; t_{l+1}, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{0}}\right)\right| \cdot\left|1-\frac{\mathfrak{c}\left(f_{k ; t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{t}}\right)}{\mathfrak{c}\left(f_{k ; t_{l+1}, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{0}}\right)}\right| \\
& \quad<\varepsilon \sum_{l=0}^{n-1}\left|\mathfrak{c}\left(f_{k ; t_{l+1}, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{l}, t_{0}}\right)\right| .
\end{aligned}
$$

Letting $n \rightarrow \infty$ gives us

$$
\left|c_{k}(t)-c_{k}\left(t_{0}\right)-\left(\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)\right)\right|<\varepsilon\left|\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)\right| .
$$

Consequently, we find

$$
\begin{equation*}
\left|1-\frac{c_{k}(t)-c_{k}\left(t_{0}\right)}{\mathfrak{c}\left(f_{k ; t, t t_{0}}\right)-\mathfrak{c}\left(f_{\left.k ; t_{0}, t_{0}\right)}\right)}\right| \rightarrow 0 \tag{3.1}
\end{equation*}
$$

as $t \rightarrow t_{0}$ and $\varepsilon \rightarrow 0$ simultaneously such that $\left|t-t_{0}\right|<\delta(\varepsilon)$ with $\delta(\varepsilon)>0$ depending on ε, see Lemma 3.5. Moreover, this shows that $t \mapsto c_{k}(t)$ can not be constant on a small interval $\left[t, t_{0}\right]$ or $\left[t_{0}, t\right]$, as $t \mapsto \mathfrak{c}\left(f_{k ; t, t_{0}}\right)$ is strictly increasing on $[0, T]$. Otherwise the previous limit would not be zero.
3) Now we will show that the function $t \mapsto c_{k}(t)$ is continuous. Let $k \in\{1, \ldots, m\}$, $0<t_{1}<t_{2} \leq T, Z_{1}(n):=\left\{0, \frac{t_{1}}{n}, \frac{2 t_{1}}{n}, \ldots, t_{1}\right\}, Z_{2}(n):=\left\{t_{1}, t_{1}+\frac{t_{2}-t_{1}}{n}, t_{1}+2 \frac{t_{2}-t_{1}}{n}, \ldots, t_{2}\right\}=:$ $\left\{t_{0}^{*}, \ldots, t_{n}^{*}\right\}$ with $t_{1}=t_{0}^{*}<t_{1}^{*}<\ldots<t_{n}^{*}=t_{2}$, and $Z(n):=Z_{1}(n) \cup Z_{2}(n)$. Thus we have

$$
\begin{aligned}
& c_{k}\left(t_{2}\right)-c_{k}\left(t_{1}\right)=\lim _{n \rightarrow \infty} \mathcal{S}\left(f_{k}, t_{1}, Z(n)\right)-\mathcal{S}\left(f_{k}, t_{2}, Z_{1}(n)\right) \\
& \quad=\lim _{n \rightarrow \infty} \sum_{l=0}^{n-1} \mathfrak{c}\left(f_{k ; t_{l+1}^{*}, t_{l}^{*}}\right)-\mathfrak{c}\left(f_{k ; ;_{l}^{*}, t_{l}^{*}}\right)<\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{k ; t_{l+1}^{*}, t_{l+1}^{*}}\right)-\mathfrak{c}\left(f_{k ; t_{l}^{*}, t_{l}^{*}}\right)=\mathfrak{c}\left(g_{t_{2}}\right)-\mathfrak{c}\left(g_{t_{1}}\right) .
\end{aligned}
$$

Note that $t \mapsto \mathfrak{c}\left(g_{t}\right)$ is continuous on $[0, T]$, see Lemma 2.42. Consequently, $t \mapsto c_{k}(t)$ is a continuous real-valued function.
Next, let us assume $\mathfrak{c}\left(g_{t}\right)=t$ for all $t \in[0, T]$. Using the previous estimation, $\mathfrak{c}\left(g_{t_{2}}\right)-$ $\mathfrak{c}\left(g_{t_{1}}\right)=t_{2}-t_{1}$, so $t \mapsto c_{k}(t)$ is Lipschitz continuous on $[0, T]$. Consequently, $t \mapsto c_{k}(t)$ is almost everywhere differentiable, i.e. there is a null set \mathcal{N}_{k} such that $t \mapsto c_{k}(t)$ is differentiable on $[0, T] \backslash \mathcal{N}_{k}$. Moreover, Equation (3.1) gives us

$$
\lambda_{k}\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)}{t-t_{0}}=\dot{c}_{k}\left(t_{0}\right) \quad \text { for all } t_{0} \in[0, T] \backslash \mathcal{N}_{k} .
$$

Obviously, we get this for each $k \in\{1, \ldots, m\}$, so each limit $\lambda_{k}\left(t_{0}\right), k \in\{1, \ldots, m\}$, exits for all $t_{0} \in[0, T] \backslash \mathcal{N}$ with $\mathcal{N}:=\bigcup_{k=1}^{m} \mathcal{N}_{k}$. Using Theorem 2.30, 2.31 or 2.36, we find $\sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right)=1$ for all $t \in[0, T] \backslash \mathcal{N}$. Summarising, $\sum_{k=1}^{m} \dot{c}_{k}\left(t_{0}\right) \equiv 1$ for all $t_{0} \in[0, T] \backslash \mathcal{N}$, so $\sum_{k=1}^{m} c_{k}(t)=t$ for all $t \in[0, T]$.

Remark 3.4. Note that Lemma 3.6 leads to an alternative proof of Theorem 2.52, 2.53 and 2.54:

Let Ω be a canonical domain and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ denotes a tuple of disjoint appropriate slits in Ω. Using the same notation as in Lemma 3.6, for each $k \in\{1, \ldots, m\}$, we get an increasing functions $t \mapsto c_{k}(t)$ on $[0, T]$. Consequently, each $t \mapsto c_{k}(t)$, $k \in\{1, \ldots, m\}$, is differentiable on $[0, T] \backslash \mathcal{N}_{k}$ where \mathcal{N}_{k} is a null set of $[0, T]$. Summarising, $t \mapsto c_{k}(t)$ is differentiable on $[0, T] \backslash \mathcal{N}$ for each $k \in\{1, \ldots, m\}$ where $\mathcal{N}:=\bigcup_{k=1}^{m} \mathcal{N}_{k}$. Using Lemma 3.6, each limit

$$
\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)}{t-t_{0}}, \quad k \in\{1, \ldots, m\}, t_{0} \in[0, T] \backslash \mathcal{N}
$$

exists. Finally, Theorem $2.30,2.31$ or 2.36 completes the proof.

3.1.2 Proof of Theorem 3.2, 3.3 and 3.4

Let Ω be a canonical domain and $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ be an admissible parametrisation of $\left(\Gamma_{1}, \Gamma_{2}\right)$. Moreover, for each $t, \tau \in[0, T]$, we denote by $f_{t, \tau}$ the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$ and we define $g_{t}:=f_{t, t}$ for all $t \in[0, T]$. On top of this we set $\mathfrak{c}(t, \tau):=\mathfrak{c}\left(f_{t, \tau}\right)$, so $(t, \tau) \mapsto \mathfrak{c}(t, \tau)$ is strictly increasing in each variable and continuous on $[0, T]^{2}$, see Lemma 2.41 and 2.42.

Note that all functions $t \mapsto g_{t}$ that satisfy a multiple slit Komatu-Loewner equation with normalised weights, i.e. for each $t \in[0, T], \lambda_{1}(t)+\lambda_{2}(t) \equiv 1$, fulfil $\mathfrak{c}\left(g_{t}\right)=t$ for all $t \in[0, T]$, see Theorem $2.30,2.31$ or 2.36 .

With the notation from Theorem 3.2, 3.3 and 3.4 , we find $L=\mathfrak{c}(T, T)$ independently of T.

Let $u, v:[0, L] \rightarrow[0, T]$ be increasing homeomorphisms, $\underline{t}, \bar{t} \in[0, L], \underline{t}<\bar{t}$, and Z denotes an arbitrary partition of the interval $[\underline{t}, \bar{t}]$. During this subsection we will use the following abbreviations

$$
\begin{align*}
& \mathcal{S}_{1}(u, v,[\underline{t}, \bar{t}], Z):=\sum_{l=0}^{n-1} \mathfrak{c}\left(u\left(t_{l+1}\right), v\left(t_{l}\right)\right)-\mathfrak{c}\left(u\left(t_{l}\right), v\left(t_{l}\right)\right) \\
& \mathcal{S}_{2}(u, v,[\underline{t}, \bar{t}], Z):=\sum_{l=0}^{n-1} \mathfrak{c}\left(u\left(t_{l}\right), v\left(t_{l+1}\right)\right)-\mathfrak{c}\left(u\left(t_{l}\right), v\left(t_{l}\right)\right) \tag{3.2}
\end{align*}
$$

Moreover, we set $\mathcal{S}_{k}(u, v, t, Z):=\mathcal{S}_{k}(u, v,[0, t], Z)$ with $k \in\{1,2\}$ and a partition Z of the interval $[0, t]$. Note that for each $k \in\{1,2\}, t \mapsto \mathcal{S}_{k}(u, v, t, Z)$ tends pointwise to an increasing and continuous function on $[0, L]$ if $|Z| \rightarrow 0$, see Lemma 3.6.

In order to proof Theorem 3.2, 3.3 and 3.4 , we split the proof into the existence part and the uniqueness part. We will discuss both parts separately. First, we will prove the existence part. In this context, we are going to show that we find increasing homeomorphisms $u, v:[0, L] \rightarrow[0, T]$ such that the admissible parametrisation $\left(\gamma_{1} \circ\right.$ $\left.u, \gamma_{2} \circ v\right)_{t \in[0, L]}$ satisfies a Komatu-Loewner equation with $\lambda_{1}(t)=\lambda_{0}$ and $\lambda_{2}(t)=1-\lambda_{0}$ for all $t \in[0, L]$. The proceeding of this proof is as follows.

1) First of all, we will use a Bang-Bang method introduced in [RS14] to construct two sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ of increasing homeomorphisms of $u_{n}, v_{n}:[0, L] \rightarrow$ $[0, T]$.
2) By using a diagonal argument on u_{n} and v_{n}, we will find two subsequences $\left(u_{n}^{*}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}^{*}\right)_{n \in \mathbb{N}}$ which converge pointwise on a dense set $S \subseteq[0, L]$ to increasing functions u and v respectively. The functions u and v can be extended to continuous functions defined on $[0, L]$ with $u(L)=T=v(L)$. Furthermore, we will get $\lambda_{0} \in[0,1]$ by the construction of u and v.
3) On top of this we show $\lambda_{0} \in(0,1)$ and the strict monotonicity of $t \mapsto u(t)$ and $t \mapsto v(t)$ on $[0, L]$.
4) Next, we will derive a connection between the $\operatorname{sum} \mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)$ and the sum $\mathcal{S}_{1}(u, v, t, Z)$ for a given partition Z of the interval $[0, t]$.
5) Moreover, we will find a connection between $\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)$ and λ_{0}.
6) By combining these results, we will find $\mathcal{S}_{1}(u, v, t, Z) \rightarrow \lambda_{0} t$ if $|Z| \rightarrow 0$.
7) Finally, we will obtain a Komatu-Loewner equation with constant coefficients λ_{0} and $1-\lambda_{0}$ for the admissible parametrisations u and v.

Proof (Existence). 1) Let $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ be an arbitrary admissible parametrisation of $\left(\Gamma_{1}, \Gamma_{2}\right)$. Moreover, for each $t, \tau \in[0, T]$, we denote by $f_{t, \tau}$ the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$. On top of this we write $\mathfrak{c}(t, \tau):=\mathfrak{c}\left(f_{t, \tau}\right)$. Assume $u, v:[0, L] \rightarrow[0, T]$ are increasing homeomorphisms and Z denotes an arbitrary partition of the interval $[\underline{t}, \bar{t}] \subseteq[0, T]$. Then for each $k \in\{1,2\}$, we define $\mathcal{S}_{k}(u, v,[\underline{t}, \bar{t}], Z)$ in the same way as in Equation (3.2) and we set $\mathcal{S}_{k}(u, v, t, Z):=\mathcal{S}_{k}(u, v,[0, t], Z)$ for any partition Z of the interval $[0, t] \subseteq[0, T]$. To construct u_{n} and v_{n}, we first extend γ_{1} and γ_{2} to an interval $\left[0, T^{*}\right], T^{*}>T$, such that $\gamma_{1}\left[0, T^{*}\right]$ and $\gamma_{2}\left[0, T^{*}\right]$ are still disjoint slits and $\mathfrak{c}\left(T^{*}, 0\right) \geq L, \mathfrak{c}\left(0, T^{*}\right) \geq L$. Let $n \in \mathbb{N}$ and $\lambda \in[0,1]$. We let $t_{0, n}=\tau_{0, n}=0$, and for $k \in\{1, \ldots, n\}$, we define $t_{k, n}>0$ and $\tau_{k, n}>0$ recursively as the unique values with

$$
\mathfrak{c}\left(t_{k, n}, \tau_{k-1, n}\right)-\mathfrak{c}\left(t_{k-1, n}, \tau_{k-1, n}\right)=L \frac{\lambda}{n}, \quad \mathfrak{c}\left(t_{k, n}, \tau_{k, n}\right)-\mathfrak{c}\left(t_{k, n}, \tau_{k-1, n}\right)=L \frac{1-\lambda}{n}
$$

Since $(t, \tau) \mapsto \mathfrak{c}(t, \tau)$ is strictly increasing in both variables, see Lemma 2.41, we get

$$
\begin{aligned}
\mathfrak{c}\left(t_{n, n}, \tau_{n, n}\right) & =L \leq \mathfrak{c}\left(T^{*}, 0\right)<\mathfrak{c}\left(T^{*}, \tau_{n, n}\right) \\
\mathfrak{c}\left(t_{n, n}, \tau_{n, n}\right) & =L \leq \mathfrak{c}\left(0, T^{*}\right)<\mathfrak{c}\left(t_{n, n}, T^{*}\right)
\end{aligned}
$$

Consequently, $t_{n, n}, \tau_{n, n} \leq T^{*}$.
Furthermore, note that the values $t_{k, n}=t_{k, n}(\lambda)$ and $\tau_{k, n}=\tau_{k, n}(\lambda)$ depend continuously on λ : This follows easily by induction and the continuity and strict monotonicity of the function $(t, \tau) \mapsto \mathfrak{c}(t, \tau)$, see Lemma 2.42 and 2.41. Consequently, for every $n \in \mathbb{N}$, we find a value $\lambda_{n} \in(0,1)$ with $t_{n, n}\left(\lambda_{n}\right)=T$. Now we define functions $u_{n}:[0, L] \rightarrow\left[0, t_{n, n}\right]$ and $v_{n}:[0, L] \rightarrow\left[0, \tau_{n, n}\right]$. For each $n \in \mathbb{N}$, we set

$$
u_{n}\left(L \frac{k}{2^{n}}\right):=t_{k, 2^{n}}\left(\lambda_{2^{n}}\right), \quad v_{n}\left(L \frac{k}{2^{n}}\right):=\tau_{k, 2^{n}}\left(\lambda_{2^{n}}\right)
$$

for all $k \in\left\{0, \ldots, 2^{n}\right\}$. The values of u_{n} and v_{n} between the supporting points are defined by linear interpolation. An immediate consequence of this construction is

$$
\begin{equation*}
\mathfrak{c}\left(u_{n}\left(L \frac{k}{2^{n}}\right), v_{n}\left(L \frac{k}{2^{n}}\right)\right)=\mathfrak{c}\left(t_{k, 2^{n}}\left(\lambda_{2^{n}}\right), \tau_{k, 2^{n}}\left(\lambda_{2^{n}}\right)\right)=L \frac{k}{2^{n}} \tag{3.3}
\end{equation*}
$$

for all $k \in\left\{0, \ldots, 2^{n}\right\}$.
2) $\lambda_{2^{n}}$ is bounded, so we find a subsequence $\left(m_{k, 0}\right)_{k \in \mathbb{N}}$ of $(n)_{n \in \mathbb{N}}$ such that $\left(\lambda_{2^{m} k, 0}\right)_{k \in \mathbb{N}}$ is convergent with the limit $\lambda_{0} \in[0,1]$. Next, we set

$$
S:=\bigcup_{n=1}^{\infty} S_{n}, \quad S_{n}:=\left\{\left.L \frac{k}{2^{n}} \right\rvert\, k \in\left\{0, \ldots, 2^{n}\right\}\right\}
$$

S is a dense and countable subset of $[0, L]$. Denote by $a: \mathbb{N} \rightarrow S$ a bijective mapping. Since the sequences $\left(u_{m_{k, 0}}\left(a_{1}\right)\right)_{k \in \mathbb{N}}$ and $\left(v_{m_{k, 0}}\left(a_{1}\right)\right)_{k \in \mathbb{N}}$ are bounded (by T^{*}), we find a subsequence $\left(m_{k, 1}\right)_{k \in \mathbb{N}}$ of $\left(m_{k, 0}\right)_{k \in \mathbb{N}}$ such that $\left(u_{m_{k, 1}}\left(a_{1}\right)\right)_{k \in \mathbb{N}}$ and $\left(v_{m_{k, 1}}\left(a_{1}\right)\right)_{k \in \mathbb{N}}$ are convergent.
Inductively, we define $\left(m_{k, l}\right)_{k \in \mathbb{N}}, l \in \mathbb{N}$, to be a subsequence of $\left(m_{k, l-1}\right)_{k \in \mathbb{N}}$ such that $\left(u_{m_{k, l}}\left(a_{l}\right)\right)_{k \in \mathbb{N}}$ and $\left(v_{m_{k, l}}\left(a_{l}\right)\right)_{k \in \mathbb{N}}$ are convergent.
Consequently, we define sequences $u_{n}^{*}:=u_{m_{n, n}}$ and $v_{n}^{*}:=v_{m_{n, n}}$, which are (pointwise) convergent on S. We denote by u and v the limit functions, i.e.

$$
u(t):=\lim _{n \rightarrow \infty} u_{n}^{*}(t), \quad v(t):=\lim _{n \rightarrow \infty} v_{n}^{*}(t) \quad \text { for all } t \in S
$$

Moreover, we set $\lambda_{n}^{*}:=\lambda_{2^{m_{n, n}}}$ and $S_{n}^{*}:=S_{m_{n, n}}$. By using Equation (3.3), we get $\mathfrak{c}\left(u_{n}^{*}(t), v_{n}^{*}(t)\right)=t$ for $t \in S$ if n is big enough. Consequently, Lemma 2.42 yields

$$
\begin{equation*}
\mathfrak{c}(u(t), v(t))=\lim _{n \rightarrow \infty} \mathfrak{c}\left(u_{n}^{*}(t), v_{n}^{*}(t)\right)=t \quad \text { for all } t \in S \tag{3.4}
\end{equation*}
$$

Furthermore, since $t \mapsto u_{n}^{*}(t)$ and $t \mapsto v_{n}^{*}(t)$ are strictly increasing, the functions $t \mapsto u(t)$ and $t \mapsto v(t)$ are increasing too. Moreover, u and v can be extended in a continuous and unique way to $[0, L]$. To see this, let $t_{0} \in(0, L)$ and define

$$
t_{1}:=\lim _{\substack{t>t_{0} \\ t \in S}} u(t), \quad t_{2}:=\lim _{\substack{t \rightarrow t_{0} \\ t \in S}} u(t), \quad \tau_{1}:=\lim _{\substack{t>t_{0} \\ t \in S}} v(t), \quad \tau_{2}:=\lim _{\substack{t \rightarrow t_{0} \\ t \in S}} v(t) .
$$

Thus we find by Lemma 2.42 and Equation (3.4)

$$
\mathfrak{c}\left(t_{1}, \tau_{1}\right)=\lim _{\substack{t>t_{0} \\ t \in S}} \mathfrak{c}(u(t), v(t))=t_{0}=\lim _{\substack{t \backslash t_{0} \\ t \in S}} \mathfrak{c}(u(t), v(t))=\mathfrak{c}\left(t_{2}, \tau_{2}\right) .
$$

Since $(t, \tau) \mapsto \mathfrak{c}(t, \tau)$ is strictly increasing in both variables and $t_{1} \leq t_{2}$ and $\tau_{1} \leq \tau_{2}$, we find $t_{1}=t_{2}$ and $\tau_{1}=\tau_{2}$. If $t_{0} \in\{0, L\}$ we can argue in the same way, so $t \mapsto u(t)$ and $t \mapsto v(t)$ are continuous on $[0, L]$. Summarising, u and v are continuous and increasing on $[0, L]$ with $u(L)=T$ and $v(L)=T$. For later use, we define $h_{t, \tau}^{[n]}:=f_{u_{n}^{*}(t), v_{n}^{*}(\tau)}$ and $h_{t, \tau}:=f_{u(t), v(\tau)}$ for all $t, \tau \in[0, L]$.
3) Next, we are going to show that $t \mapsto u(t)$ and $t \mapsto v(t)$ are strictly increasing on $[0, L]$ and $\lambda_{0} \in(0,1)$.
Using Lemma 3.5, we find a $\delta>0$ corresponding to $\varepsilon=\frac{1}{2}$. The functions $t \mapsto u(t)$ and $t \mapsto v(t)$ are (uniformly) continuous on $[0, L]$, so we have:

$$
\exists \mu>0:|\bar{t}-\underline{t}|<\mu \Rightarrow|u(\bar{t})-u(\underline{t})|,|v(\bar{t})-v(\underline{t})|<\frac{\delta}{2} .
$$

Assume $\underline{t}, \bar{t} \in S$ with $0<\bar{t}-\underline{t}<\mu$. Consequently, $|u(\bar{t})-u(\underline{t})|<\frac{\delta}{2}$ and $|v(\bar{t})-v(\underline{t})|<\frac{\delta}{2}$, so we get:

$$
\exists n_{0} \in \mathbb{N} \forall n \geq n_{0}:\left|u_{n}^{*}(\bar{t})-u_{n}^{*}(\underline{t})\right|,\left|v_{n}^{*}(\bar{t})-v_{n}^{*}(\underline{t})\right|<\delta,
$$

as $u_{n}^{*}(t)$ and $v_{n}^{*}(t)$ are pointwise convergent on S. Moreover, we choose n_{0} large enough to satisfy $\underline{t}, \bar{t} \in S_{n_{0}}^{*}$. Then for any $n \geq n_{0}$ we get

$$
\frac{1}{2}=1-\varepsilon \leq \frac{\mathfrak{c}\left(u_{n}^{*}\left(t_{l+1}\right), v_{n}^{*}(\underline{t})\right)-\mathfrak{c}\left(u_{n}^{*}\left(t_{l}\right), v_{n}^{*}(\underline{t})\right)}{\mathfrak{c}\left(u_{n}^{*}\left(t_{l+1}\right), v_{n}^{*}\left(t_{l}\right)\right)-\mathfrak{c}\left(u_{n}^{*}\left(t_{l}\right), v_{n}^{*}\left(t_{l}\right)\right)} \leq 1+\varepsilon=\frac{3}{2}
$$

for all $l \in\{0, \ldots, s-1\}$ where $S_{n}^{*}([\underline{t}, \bar{t}]):=\left\{t_{1}, \ldots, t_{s}\right\}:=[\underline{t}, \bar{t}] \cap S_{n}^{*}$. Consequently, we get by summing over all $l \in\{0, \ldots, s-1\}$

$$
\begin{aligned}
& \left.\left.\frac{1}{2} \lambda_{n}^{*}(\bar{t}-\underline{t})=\frac{1}{2} \mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, \underline{t}, \bar{t}\right], S_{n}^{*}(\underline{t}, \bar{t}]\right)\right) \leq \\
& \quad \mathfrak{c}\left(u_{n}^{*}(\bar{t}), v_{n}^{*}(\underline{t})\right)-\mathfrak{c}\left(u_{n}^{*}(\underline{t}), v_{n}^{*}(\underline{t})\right) \leq \frac{3}{2} \mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*},[\underline{t}, \bar{t}], S_{n}^{*}([\underline{t}, \bar{t}])\right)=\frac{3}{2} \lambda_{n}^{*}(\bar{t}-\underline{t}) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ we find with Lemma 2.42

$$
\begin{equation*}
\frac{1}{2} \lambda_{0}(\bar{t}-\underline{t}) \leq \mathfrak{c}(u(\bar{t}), v(\underline{t}))-\mathfrak{c}(u(\underline{t}), v(\underline{t})) \leq \frac{3}{2} \lambda_{0}(\bar{t}-\underline{t}) . \tag{3.5}
\end{equation*}
$$

Note that $t \mapsto u(t)$ is continuous and increasing with $u(0)=0$ and $u(L)=T$ so we find $\underline{t}, \bar{t} \in S$ with $0<\bar{t}-\underline{t}<\mu$ and $u(\underline{t})<u(\bar{t})$. Using Lemma 2.41, $\mathfrak{c}(u(\bar{t}), v(\underline{t}))-$ $\mathfrak{c}(u(\underline{t}), v(\underline{t}))>0$, so (3.5) yields $\lambda_{0} \neq 0$. On top of this Equation (3.5) gives us $\mathfrak{c}(u(\bar{t}), v(\underline{t}))-\mathfrak{c}(u(\underline{t}), v(\underline{t}))>0$ whenever $0<\bar{t}-\underline{t}<\mu$, i.e. $t \mapsto u(t)$ is strictly increasing on $[0, L]$. Analogously, we find

$$
\frac{1}{2}\left(1-\lambda_{0}\right)(\bar{t}-\underline{t}) \leq \mathfrak{c}(u(\underline{t}), v(\bar{t}))-\mathfrak{c}(u(\underline{t}), v(\underline{t})) \leq \frac{3}{2}\left(1-\lambda_{0}\right)(\bar{t}-\underline{t}),
$$

for all $\underline{t}, \bar{t} \in S$ with $0 \leq \bar{t}-\underline{t} \leq \mu$ so $t \mapsto v(t)$ is strictly increasing on $[0, L]$ and $1-\lambda_{0} \neq 0$ as well. Summarising, $t \mapsto u(t), t \mapsto v(t)$ are strictly increasing and $\lambda_{0} \in(0,1)$.
4) Next, we show that for every fixed $\varepsilon>0$, fixed $t \in S$ and fixed partition $Z \subseteq S$ of the interval $[0, t]$, there exists an $n_{0} \in \mathbb{N}$ such that

$$
\left|\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)-\mathcal{S}_{1}(u, v, t, Z)\right|<\varepsilon
$$

holds for all $n \geq n_{0}$.
Fix $\varepsilon>0$ and $Z=\left\{t_{0}, t_{1}, \ldots, t_{s}\right\}$. As the function $(t, \tau) \mapsto \mathfrak{c}(t, \tau)$ is (uniformly) continuous on $\left[0, T^{*}\right]^{2}$ by Lemma 2.42, there exists $\delta>0$ such that

$$
|\mathfrak{c}(\underline{t}, \underline{\tau})-\mathfrak{c}(\bar{t}, \bar{\tau})|<\frac{\varepsilon}{2 s} \quad \text { whenever } \quad|\underline{t}-\bar{t}|,|\underline{\tau}-\bar{\tau}|<\delta
$$

Since $Z \subseteq S$ is finite, we find an $n_{0} \in \mathbb{N}$ such that $\left|u_{n}^{*}\left(t_{l}\right)-u\left(t_{l}\right)\right|,\left|v_{n}^{*}\left(t_{l}\right)-v\left(t_{l}\right)\right|<\delta$ holds for all $l \in\{0, \ldots, s\}$ and all $n \geq n_{0}$. Consequently, for all $n \geq n_{0}$, we find

$$
\begin{aligned}
& \left|\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)-\mathcal{S}_{1}(u, v, t, Z)\right| \\
& \quad=\left|\sum_{l=0}^{s-1} \mathfrak{c}\left(h_{t_{l+1}, t_{l}}^{[n]}\right)-\mathfrak{c}\left(h_{t_{l}, t_{l}}^{[n]}\right)-\sum_{l=0}^{s-1} \mathfrak{c}\left(h_{t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(h_{t_{l}, t_{l}}\right)\right| \\
& \quad \leq \sum_{l=0}^{s-1}\left|\mathfrak{c}\left(h_{t_{l+1}, t_{l}}^{[n]}\right)-\mathfrak{c}\left(h_{t_{l+1}, t_{l}}\right)\right|+\sum_{l=0}^{s-1}\left|\mathfrak{c}\left(h_{t_{l}, t_{l}}^{[n]}\right)-\mathfrak{c}\left(h_{t_{l}, t_{l}}\right)\right| \leq 2 s \frac{\varepsilon}{2 s}=\varepsilon .
\end{aligned}
$$

5) For now we fix $t \in S, t>0$. We show that for all $\varepsilon>0$, we find a $\mu>0$ such that for all partitions $Z \subseteq S$ of $[0, t]$ with $|Z|<\mu$, there exists an $m_{0} \in \mathbb{N}$ such that for all $n \geq m_{0}$, we have

$$
\left|\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)-\lambda_{0} t\right|<\varepsilon .
$$

Let $t \in S$ and $\varepsilon>0$. Then there exists $\delta>0$ such that the inequality from Lemma 3.5 holds. Since the functions $t \mapsto u(t)$ and $t \mapsto v(t)$ are (uniformly) continuous on $[0, t]$, we get:

$$
\exists \mu>0:|\underline{t}-\bar{t}|<\mu \Rightarrow|u(\underline{t})-u(\bar{t})|,|v(\underline{t})-v(\bar{t})|<\frac{\delta}{2} .
$$

Denote by $Z=\left\{t_{0}, \ldots, t_{s}\right\}$ a partition of $[0, t]$ with $|Z|<\mu$ and $Z \subseteq S$. Then we find an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$, we get $Z \subseteq S_{n}^{*}$ and

$$
\left|u_{n}^{*}\left(t_{l}\right)-u\left(t_{l}\right)\right|,\left|v_{n}^{*}\left(t_{l}\right)-v\left(t_{l}\right)\right|<\frac{\delta}{4} \quad \text { for all } l \in\{0, \ldots, s\} \text { and all } n \geq n_{0} .
$$

As a consequence we get

$$
\begin{aligned}
\mid u_{n}^{*}\left(t_{l+1}\right) & -u_{n}^{*}\left(t_{l}\right) \mid \\
& \leq\left|u_{n}^{*}\left(t_{l+1}\right)-u\left(t_{l+1}\right)\right|+\left|u\left(t_{l+1}\right)-u\left(t_{l}\right)\right|+\left|u\left(t_{l}\right)-u_{n}^{*}\left(t_{l}\right)\right|<\frac{\delta}{4}+\frac{\delta}{2}+\frac{\delta}{4}=\delta
\end{aligned}
$$

for all $n \geq n_{0}$ and all $l \in\{0, \ldots, s\}$. In the same way we find $\left|v_{n}^{*}\left(t_{l+1}\right)-v_{n}^{*}\left(t_{l}\right)\right|<\delta$ for all $n \geq n_{0}$ and all $l \in\{0, \ldots, s\}$. Next, for each $n \in \mathbb{N}$, we set $S_{n}^{*}(t):=S_{n}^{*} \cap[0, t] . S_{n}^{*}(t)$ is a partition of the interval $[0, t]$ and we write $S_{n}^{*}(t)=\left\{t_{0}^{*}, \ldots, t_{s^{*}}^{*}\right\}$. For each $n \geq n_{0}$, we find

$$
\begin{aligned}
& \left|\lambda_{n}^{*} t-\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)\right|=\left|\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, S_{n}^{*}(t)\right)-\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)\right| \\
& \quad=\sum_{p=0}^{s^{*}-1} \mid\left[\mathfrak{c}\left(h_{t_{p+1}^{*}, t_{p}^{*}}^{[n]}-\mathfrak{c}\left(h_{t_{p}^{*}, t_{p}^{*}}^{[n]}\right)\right]-\left[\mathfrak{c}\left(h_{t_{p+1}^{*}, \phi\left(t_{p}^{*}\right.}^{[n]}\right)-\mathfrak{c}\left(h_{t_{p}^{*}, \phi\left(t_{p}^{*}\right)}^{[n]}\right)\right] \mid,\right.
\end{aligned}
$$

where $\phi\left(t_{p}^{*}\right):=t_{l}$ if $t_{p}^{*} \in\left[t_{l}, t_{l+1}\right)$ with $p \in\left\{0, \ldots, s^{*}-1\right\}$ and $l \in\{0, \ldots, s-1\}$. Thus we get

$$
\begin{aligned}
& \left|\lambda_{n}^{*} t-\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)\right| \\
& \quad=\sum_{p=0}^{s^{*}-1}\left|\mathfrak{c}\left(h_{t_{p+1}^{*}, t_{p}^{*}}^{[n]}\right)-\mathfrak{c}\left(h_{t_{p}^{*}, t_{p}^{*}}^{[n]}\right)\right| \cdot\left|1-\frac{\mathfrak{c}\left(h_{t_{p}^{*}, 1, \phi\left(t_{p}^{*}\right)}^{[n]}\right)-\mathfrak{c}\left(h_{t_{p}^{*}, \phi\left(t_{p}^{*}\right.}^{[n]}\right)}{\mathfrak{c}\left(h_{t_{p+1}, t_{p}^{[t]}}^{n]}\right)-\mathfrak{c}\left(h_{t_{p}^{*}, t_{p}^{*}}^{[n]}\right)}\right| .
\end{aligned}
$$

Since $\left|u_{n}^{*}\left(t_{p+1}^{*}\right)-u_{n}^{*}\left(t_{p}^{*}\right)\right|<\delta$ and $\left|v_{n}^{*}\left(\phi\left(t_{p}^{*}\right)\right)-v_{n}^{*}\left(t_{p}^{*}\right)\right|<\delta$ for all $n \geq n_{0}$ and all $p \in$ $\left\{0, \ldots, s^{*}\right\}$, Lemma 3.5 gives us

$$
\left|\lambda_{n}^{*} t-\mathcal{S}_{1}\left(u_{n}^{*}, v_{n}^{*}, t, Z\right)\right| \leq \varepsilon \sum_{p=0}^{s^{*}-1}\left(\mathfrak{c}\left(h_{t_{p+1}^{*}, t_{p}^{*}}^{[n]}\right)-\mathfrak{c}\left(h_{t_{p}^{\prime}, t_{p}^{*}}^{[n]}\right)\right) \leq L \varepsilon
$$

for all $n \geq n_{0}$. The last inequality is a consequence of the monotonicity of $(t, \tau) \mapsto \mathfrak{c}(t, \tau)$:

$$
\sum_{p=0}^{s^{*}-1}\left(\mathfrak{c}\left(h_{t_{p+1}^{*}, t_{p}^{*}}^{[n]}\right)-\mathfrak{c}\left(h_{t_{p}^{*}, t_{p}^{*}}^{[n]}\right)\right) \leq \sum_{p=0}^{s^{*}-1}\left(\mathfrak{c}\left(h_{t_{p+1}^{*}, t_{p+1}^{*}}^{[n]}\right)-\mathfrak{c}\left(h_{t_{p}^{*}, t_{p}^{*}}^{[n]}\right)\right)=t \leq L .
$$

The assertion follows now, since λ_{n}^{*} converges to λ_{0}.
6) If we put 4) and 5) together, we find for every $t \in[0, T]$ and $\varepsilon>0$, a $\mu>0$ such that for all partitions $Z \subseteq S$ of the interval $[0, t]$ with $|Z|<\mu$, the inequality

$$
\begin{equation*}
\left|\mathcal{S}_{1}(u, v, t, Z)-\lambda_{0} t\right|<\varepsilon \tag{3.6}
\end{equation*}
$$

holds.
7) Since u and v are strictly increasing homeomorphisms of $[0, L]$ to $[0, T]$, we can apply Lemma 3.6 to the admissible parametrisation $\left(\gamma_{1} \circ u, \gamma_{2} \circ v\right)_{t \in[0, L]}$ to get Lipschitz continuous and increasing functions c_{1} and c_{2} with $c_{1}+c_{2} \equiv \mathrm{id}$, as $\mathfrak{c}(u(t), v(t))=t$ for all $t \in[0, L]$. Equation (3.6) gives us

$$
c_{1}(t)=\lambda_{0} t, \quad c_{2}(t)=t-c_{1}(t)=\left(1-\lambda_{0}\right) t
$$

for all $t \in S$. Since S is dense on $[0, L]$, this relation holds for all $t \in[0, L]$. On top of this we find with Lemma 3.6

$$
\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(h_{t, t_{0}}\right)-\mathfrak{c}\left(h_{t_{0}, t_{0}}\right)}{t-t_{0}}=\lambda_{0}, \quad \lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(h_{t_{0}, t}\right)-\mathfrak{c}\left(h_{t_{0}, t_{0}}\right)}{t-t_{0}}=1-\lambda_{0}
$$

for all $t_{0} \in[0, L]$. For each $t \in[0, L]$, we set $g_{t}:=h_{t, t}, D_{t}:=g_{t}\left(\Omega \backslash\left(\gamma_{1}(0, u(t)] \cup\right.\right.$ $\left.\gamma_{2}(0, v(t)]\right)$, and $U_{1}(t)=g_{t}\left(\gamma_{1}(u(t))\right)$ and $U_{2}(t):=g_{t}\left(\gamma_{2}(v(t))\right)$. Finally, we can apply Theorem 2.30, 2.31 or 2.36 to find

$$
\dot{g}_{t}(z)=E\left(g_{t}(z)\right)\left(\lambda_{0} \Phi_{a_{t}, U_{1}(t), D_{t}}\left(g_{t}(z)\right)+\left(1-\lambda_{0}\right) \Phi_{a_{t}, U_{2}(t), D_{t}}\left(g_{t}(z)\right)\right), \quad t \in[0, L]
$$

with continuous driving terms $t \mapsto U_{k}(t), k \in\{1,2\}$, see Lemma 2.43. Herein, for all $w \in \mathbb{C}, E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 \mathrm{i}}$ in the chordal case. Moreover, for all $t \in[0, T], a_{t}:=0$ in the radial case, $a_{t}:=q_{t}$ in the bilateral case where q_{t} is the inner radius of the circular slit annulus D_{t} and $a_{t}:=\infty$ in the chordal case.

Proof (Uniqueness). Let $\left(\gamma_{1}, \gamma_{2}\right)_{[0, T]}$ be a tuple of disjoint appropriate slits in Ω. For each $t, \tau \in[0, T], f_{t, \tau}: \Omega(t, \tau) \rightarrow D(t, \tau)$ denotes the normalised appropriate mapping function from $\Omega(t, \tau):=\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$ onto the canonical domain $D(t, \tau)$ and $\mathfrak{c}(t, \tau):=\mathfrak{c}\left(f_{t, \tau}\right)$. Moreover, we set $U_{1}(t, \tau):=f_{t, \tau}\left(\gamma_{1}(t)\right)$ and $U_{2}(t, \tau):=f_{t, \tau}\left(\gamma_{2}(\tau)\right)$ for all $t, \tau \in[0, T]$. Let $u, v:[0, L] \rightarrow[0, T]$ be increasing homeomorphisms and Z denotes an arbitrary partition of the interval $[\underline{t}, \bar{t}] \subseteq[0, T]$. Then for each $k \in\{1,2\}$, we define $\mathcal{S}_{k}(u, v,[\underline{t}, \bar{t}], Z)$ in the same way as in Equation (3.2) and we write $\mathcal{S}_{k}(u, v, t, Z):=$ $\mathcal{S}_{k}(u, v,[0, t], Z)$ for any partition Z of the interval $[0, t] \subseteq[0, T]$. Moreover, for all $w \in \mathbb{C}$, $E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 \mathrm{i}}$ in the chordal case.

Assume u_{1}, v_{1} and u_{2}, v_{2} are increasing homeomorphisms from $[0, L]$ onto $[0, T]$ such that the functions $g_{t}:=f_{u_{1}(t), v_{1}(t)}$ and $h_{t}:=f_{u_{2}(t), v_{2}(t)}$ satisfy the differential equations

$$
\begin{aligned}
& \dot{g}_{t}(z)=E\left(g_{t}(z)\right)\left(\lambda_{1} \Phi_{a_{t}, \xi_{1}(t), G_{t}}\left(g_{t}(z)\right)+\left(1-\lambda_{1}\right) \Phi_{a_{t}, \xi_{2}(t), G_{t}}\left(g_{t}(z)\right)\right) \\
& \dot{h}_{t}(z)=E\left(h_{t}(z)\right)\left(\lambda_{2} \Phi_{b_{t}, \zeta_{1}(t), H_{t}}\left(h_{t}(z)\right)+\left(1-\lambda_{2}\right) \Phi_{b_{t}, \zeta_{2}(t), H_{t}}\left(h_{t}(z)\right)\right)
\end{aligned}
$$

for all $t \in[0, L]$ with coefficients $\lambda_{1}, \lambda_{2} \in(0,1)$, continuous driving functions $\xi_{k}(t):=$ $U_{k}\left(u_{1}(t), v_{1}(t)\right), \zeta_{k}(t):=U_{k}\left(u_{2}(t), v_{2}(t)\right), k \in\{1,2\}$, and $G_{t}:=g_{t}\left(\Omega\left(u_{1}(t), v_{1}(t)\right)\right)=$ $D\left(u_{1}(t), v_{1}(t)\right), H_{t}:=g_{t}\left(\Omega\left(u_{2}(t), v_{2}(t)\right)\right)=D\left(u_{2}(t), v_{2}(t)\right)$ for all $t \in[0, T]$. Moreover, for each $t \in[0, T], a_{t}:=0$ in the radial case, a_{t} is the inner radius of G_{t} in the bilateral case and $a_{t}=: \infty$ in the chordal case. Analogously, $b_{t}:=0$ in the radial case, b_{t} is the inner radius of H_{t} in the bilateral case and $b_{t}:=\infty$ in the chordal case for all $t \in[0, L]$.

Using Theorem 2.30, 2.31 or 2.36, we find $\mathfrak{c}\left(g_{t}\right)=\mathfrak{c}\left(h_{t}\right)=t$ for all $t \in[0, L]$ and

$$
\begin{align*}
& \lambda_{1}=\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(u_{1}(t), v_{1}\left(t_{0}\right)\right)-\mathfrak{c}\left(u_{1}\left(t_{0}\right), v_{1}\left(t_{0}\right)\right)}{t-t_{0}}, \\
& \lambda_{2}=\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(u_{2}(t), v_{2}\left(t_{0}\right)\right)-\mathfrak{c}\left(u_{2}\left(t_{0}\right), v_{2}\left(t_{0}\right)\right)}{t-t_{0}} \tag{3.7}
\end{align*}
$$

for all $t_{0} \in[0, L]$.

1) First of all we will show $\lambda_{1}=\lambda_{2}$, so suppose $\lambda_{1}>\lambda_{2}$. Therefore, we set

$$
x_{k}(t):=\mathfrak{c}\left(u_{k}(t), v_{k}(0)\right)=\mathfrak{c}\left(u_{k}(t), 0\right), \quad k \in\{1,2\} .
$$

Denote by $0<t_{0} \leq L$ the first positive time when $u_{1}\left(t_{0}\right)=u_{2}\left(t_{0}\right)$. Consequently, $v_{1}\left(t_{0}\right)=v_{2}\left(t_{0}\right)$ and $x_{1}\left(t_{0}\right)=x_{2}\left(t_{0}\right)$ by normalisation and the monotonicity of $(t, \tau) \mapsto$ $\mathfrak{c}(t, \tau)$ in each variable. Equation (3.7) gives us

$$
\dot{x}_{1}(0)=\lambda_{1}>\lambda_{2}=\dot{x}_{2}(0),
$$

so we have $x_{1}(t)>x_{2}(t)$ and $u_{1}(t)>u_{2}(t)$ for all $t \in\left(0, t_{0}\right)$. Consequently, we have also $\mathfrak{c}\left(u_{1}(t), v_{1}\left(t_{0}\right)\right)>\mathfrak{c}\left(u_{2}(t), v_{2}\left(t_{0}\right)\right)$ for all $t \in\left(0, t_{0}\right)$. Thus we get

$$
\mathfrak{c}\left(u_{2}(t), v_{2}\left(t_{0}\right)\right)<\mathfrak{c}\left(u_{1}(t), v_{1}\left(t_{0}\right)\right)<\mathfrak{c}\left(u_{1}\left(t_{0}\right), v_{1}\left(t_{0}\right)\right)=t_{0}=\mathfrak{c}\left(u_{2}\left(t_{0}\right), v_{2}\left(t_{0}\right)\right)
$$

if $t<t_{0}$. This implies

$$
\frac{\mathfrak{c}\left(u_{1}\left(t_{0}\right), v_{1}\left(t_{0}\right)\right)-\mathfrak{c}\left(u_{1}(t), v_{1}\left(t_{0}\right)\right)}{t_{0}-t}<\frac{\mathfrak{c}\left(u_{2}\left(t_{0}\right), v_{2}\left(t_{0}\right)\right)-\mathfrak{c}\left(u_{2}(t), v_{2}\left(t_{0}\right)\right)}{t_{0}-t}
$$

for all $t<t_{0}$. If t tends to t_{0}, we get $\lambda_{1} \leq \lambda_{2}$ by Equation (3.7). This is a contradiction, so $\lambda_{1}=\lambda_{2}=: \lambda$.
2) Next, we are going to prove the uniqueness of the parametrisation. The following idea goes back to a work of O. Roth and S. Schleißinger, see [RS14]
Let $(u, v)(t):=\left(u_{1}, v_{1}\right)(t)$ for all $t \in[0, L]$, or $(u, v)(t):=\left(u_{2}, v_{2}\right)(t)$ for all $t \in[0, L]$. We are going to derive a differential equation for $x(t):=\mathfrak{c}(u(t), 0)$ on $[0, L]$. Note that $v(t)$ is uniquely determined by $x(t)$ and t, as $\mathfrak{c}(u(t), v(t))=t$ for all $t \in[0, L]$. Consequently, we write $\tilde{u}(x)$ and $\tilde{v}(x, t)$ such that $\mathfrak{c}(\tilde{u}(x), \tilde{v}(x, t))=t$ and $\mathfrak{c} \tilde{u}(x), 0)=x$ for all $x, t \in[0, L]$ with $x \leq t .{ }^{8}$ Obviously, \tilde{u} and \tilde{v} are continuous.

[^6]Using Proposition 2.55, we find immediately

$$
\frac{\dot{x}(t)}{\lambda}=\lim _{\tau \rightarrow t} \frac{\mathfrak{c}\left(f_{u(\tau), 0}\right)-\mathfrak{c}\left(f_{u(t), 0}\right)}{\mathfrak{c}\left(f_{u(\tau), v(t)}\right)-\mathfrak{c}\left(f_{u(t), v(t)}\right)}=\frac{\left|\alpha_{1}(u(t), 0)\right|^{2}}{\left|\alpha_{1}(u(t), v(t))\right|^{2}}=\frac{1}{\left|\left(f_{u(t), v(t)} \circ f_{u(t), 0}^{-1}\right)^{\prime}(z)\right|^{2}}
$$

with $z=U_{1}(u(t), 0)$. Note that we can interpret the right-hand side as a function of (x, t), so we write

$$
C(x, t):=\left|\left(f_{u(t), v(t)} \circ f_{u(t), 0}^{-1}\right)^{\prime}(z)\right|=\left|\left(f_{\tilde{u}(x), \tilde{v}(x, t)} \circ f_{\tilde{u}(x), 0}^{-1}\right)^{\prime}\left(z_{x}\right)\right|
$$

with $x \leq t$.

Figure 3.1: Radial mapping functions $f_{\tilde{u}(x), \tilde{v}(x, t)}$ and $f_{\tilde{u}(x), 0}$ in the uniqueness proof of Theorem 3.2, 3.3 and 3.4

It is easy to see that $(x, t) \mapsto C(x, t)$ is continuous and positive on $\left\{(x, t) \in[0, L]^{2} \mid x \leq\right.$ $t\}$.
For now let us fix $x \in[0, L)$ and we set $h_{t}:=f_{\tilde{u}(x), \tilde{v}(x, t)} \circ f_{\tilde{u}(x), 0}^{-1}$. Consequently, for each $t \in[x, L], h_{t}$ is the normalised appropriate mapping function on $D(\tilde{u}(x), 0) \backslash \Gamma_{t}$ with $\Gamma_{t}:=f_{\tilde{u}(x), 0}\left(\gamma_{2}[0, \tilde{v}(x, t)]\right)$ for all $t \geq x$. Moreover, $\mathfrak{c}\left(h_{t}\right)=\mathfrak{c}\left(f_{\tilde{u}(x), \tilde{v}(x, t)}\right)-\mathfrak{c}\left(f_{\tilde{u}(x), 0}\right)=$ $t-x$. Using Theorem 2.30, 2.31 or 2.36, $t \mapsto h_{t}(z)$ is differentiable for all $t \in[x, L]$ and all $z \in D(\tilde{u}(x), 0) \backslash \Gamma_{L}$ and satisfies

$$
\begin{equation*}
\dot{h}_{t}(z)=E\left(h_{t}(z)\right) \Phi_{c_{t}, \tilde{U}(x, t), \tilde{D}(x, t)}\left(h_{t}(z)\right) \quad \text { for all } t \in[x, L] \text { and all } z \in D(\tilde{u}(x), 0) \backslash \Gamma_{L}, \tag{3.8}
\end{equation*}
$$

where $\tilde{U}(x, t):=U_{2}(\tilde{u}(x), \tilde{v}(x, t))$ and $\tilde{D}(x, t):=D(\tilde{u}(x), \tilde{v}(x, t))$. Herein, for all $w \in \mathbb{C}$, $E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 \mathrm{i}}$ in the chordal case. Moreover, $c_{t}:=0$ in the radial case, c_{t} is the inner radius of $\tilde{D}(x, t)$ in the bilateral case and $c_{t}:=\infty$ in the chordal case. Using Schwarz reflection principle, Equation (3.8) holds for all $z \in B_{\varepsilon}\left(z_{x}\right)$ as well with a small $\varepsilon>0$. This gives us

$$
\dot{h}_{t}(z)=E\left(h_{t}(z)\right) \Phi_{c_{t}, \tilde{U}(x, t), \tilde{D}(x, t)}\left(h_{t}(z)\right) \quad \text { for all } z \in B_{\varepsilon}\left(z_{x}\right)
$$

Note that the right-hand side is continuous: assume $x_{n} \rightarrow x_{0}$ and $t_{n} \rightarrow t_{0}$, so we get

$$
\Phi_{c_{t_{n}}, \tilde{U}\left(x_{n}, t_{n}\right), \tilde{D}\left(x_{n}, t_{n}\right)} \circ h_{t_{n}} \xrightarrow{\text { l.u. }} \Phi_{c_{t_{0}}, \tilde{U}\left(x_{0}, t_{0}\right), \tilde{D}\left(x_{0}, t_{0}\right)} \circ h_{t_{0}} \quad \text { on } B_{\varepsilon}\left(z_{x_{0}}\right),
$$

see Lemma 2.18, 2.19 or 2.20. Obviously, the same is true for the derivative w.r.t. z, and by Lemma 2.43, $x \mapsto z_{x}$ is continuous as well. Summarising, $(x, t) \mapsto \frac{\mathrm{d}}{\mathrm{d} t} h_{t}^{\prime}\left(z_{x}\right)$ is
continuous on $\Delta:=\left\{(x, t) \in[0, L]^{2} \mid x \leq t\right\}$. Consequently, $(x, t) \mapsto C(x, t)=\left|h_{t}^{\prime}\left(z_{x}\right)\right|$ is continuously differentiable on Δ w.r.t. t (uniformly in x), as $(x, t) \mapsto h_{t}^{\prime}\left(z_{x}\right)$ is continuous and positive on Δ.
Finally, x_{1} and x_{2} satisfy the differential equation $\dot{x}(t)=\lambda / C^{2}(x, t)$. Using Theorem 2.7 from [CP03], the solution needs to be unique, i.e. $x_{1} \equiv x_{2}$. Obviously, $u_{1} \equiv u_{2}$ and $v_{1} \equiv v_{2}$.

Remark 3.5. In the simply connected case it is possible to give an 'easier' proof of the uniqueness of constant coefficients. The reason for this is an additional tool (see Lemma 2.57 and 2.56) available in simply connected domains only. We refer to the proof of Theorem 3.8 where we will prove the uniqueness in the simply connected case for slits having branch points. Note that this proof holds in the disjoint case word by word as well.

3.2 Slits having branch points

Next, let us consider slits that may have a branch point. In particular, we are going to study the case where two slits start at a common point. Let Ω be a canonical domain and denote by C the outer or unbounded boundary component of Ω. Moreover, each $\gamma_{k}:[0, T] \rightarrow \operatorname{cl}(\Omega), k \in\{1,2\}$, is continuous and simple, $\gamma_{1}(0, T] \cup \gamma_{2}(0, T]$ is an appropriate Ω-hull, $\gamma_{1}(0)=\gamma_{2}(0)=U_{0} \in C$ and $\gamma_{1}(0, T] \cap \gamma_{2}(0, T]=\emptyset$. Then we call $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ a tuple of branched appropriate slits in Ω. Obviously, $\left(\gamma_{1}(0, t] \cup\right.$ $\left.\gamma_{2}(0, t]\right)_{t \in[0, T]}$ is an increasing and continuous family of appropriate Ω-hulls. Moreover, (Γ_{1}, Γ_{2}) (with $\Gamma_{1}, \Gamma_{2} \subseteq \operatorname{cl}(\Omega)$) is called tuple of branched appropriate unparametrised slits in Ω if there is a $T>0$ and a tuple $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ of branched appropriate slits in Ω such that $\Gamma_{k}=\gamma_{k}[0, T]$ with $k \in\{1,2\}$. In this case $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ is called admissible parametrisation of $\left(\Gamma_{1}, \Gamma_{2}\right)$.

Figure 3.2: Tuple of branched unparametrised slits in canonical domains

Theorem 3.7. Let Ω be a canonical domain and $\left(\Gamma_{1}, \Gamma_{2}\right)$ be a tuple of branched appropriate unparametrised slits in Ω. Then there is a unique $L>0$, constants $\lambda_{1}, \lambda_{2}>0$ with $\lambda_{1}+\lambda_{2}=1$, and an admissible parametrisation $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, L]}$ of $\left(\Gamma_{1}, \Gamma_{2}\right)$ such that for each $z \in \Omega_{L}, t \mapsto g_{t}(z)$ is continuously differentiable on $[0, L]$ and satisfies

$$
\dot{g}_{t}(z)=E\left(g_{t}(z)\right) \sum_{k=1}^{2} \lambda_{k} \Phi_{a_{t}, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, L] \text { and all } z \in \Omega_{L} .
$$

Herein, for each $t \in[0, L], g_{t}: \Omega_{t} \rightarrow D_{t}$ is the normalised radial mapping function on $\Omega_{t}:=\Omega \backslash \bigcup_{k=1}^{2} \gamma_{k}(0, t]$ and for each $k \in\{1,2\}, U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ denotes a continuous driving function on $[0, L]$. Moreover, for all $w \in \mathbb{C}, E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 \mathrm{i}}$ in the chordal case. For each $t \in[0, T], a_{t}:=0$ in the radial case, $a_{t}:=q_{t}$ where q_{t} denotes the inner radius of D_{t} in the bilateral case and $a_{t}:=\infty$ in the chordal case.

Note that Theorem 3.7 gives an existence statement only. Unfortunately, we are able to prove uniqueness only for simply connected domains.

Theorem 3.8. Let Ω be a simply connected canonical domain and $\left(\Gamma_{1}, \Gamma_{2}\right)$ be a tuple of branched appropriate unparametrised slits in Ω. Assume $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, L]}$ is an admissible parametrisation of $\left(\Gamma_{1}, \Gamma_{2}\right)$ from Theorem 3.7 with constant coefficients λ and $1-\lambda$, $\lambda \in(0,1)$. Then the weight λ and the admissible parametrisation $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, L]}$ is unique.

In order to prove these theorems we need some preliminary lemmas.

3.2.1 Some preliminary lemmas

Lemma 3.9. Let Ω be a canonical domain and denote by $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ a tuple of branched appropriate slits in Ω. For each $t, \tau \in[0, T], f_{t, \tau}$ denotes the normalised appropriate mapping function from $\Omega(t, \tau):=\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$ onto the canonical domain $D(t, \tau)$. Moreover, for each $t \in[0, T]$, we set $g_{t}:=f_{t, t}, \Omega_{t}:=\Omega(t, t)$ and $D_{t}:=D(t, t)$. Assume $t_{0} \in(0, T]$.

Then the following two statements are equivalent.
(i) For each $z \in \Omega_{t_{0}}, t \mapsto g_{t}(z)$ is differentiable at t_{0} and fulfils

$$
\dot{g}_{t_{0}}(z)=E\left(g_{t_{0}}(z)\right) \sum_{k=1}^{2} \lambda_{k}\left(t_{0}\right) \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(z)\right) \quad \text { for all } z \in \Omega_{t_{0}}
$$

where each $U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right), k \in\{1,2\}$, is continuous on $[0, T]$ and $\lambda_{k}\left(t_{0}\right) \geq 0$, $k \in\{1,2\}$.

When this happens, $t \mapsto \mathfrak{c}\left(g_{t}\right)$ is differentiable at t_{0} with derivative $\lambda_{1}\left(t_{0}\right)+\lambda_{2}\left(t_{0}\right)$.
Herein, for all $w \in \mathbb{C}, E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 \mathrm{i}}$ in the chordal case. Moreover, for each $t \in[0, T], a_{t}:=0$ in the radial case, a_{t} is the inner radius of D_{t} in the bilateral case and $a_{t}:=\infty$ in the chordal case.

Proof. This proof is quite easy. First of all, we choose $\varepsilon>0$ in such a way that $\varepsilon<t_{0}$. Next, we set $h:=g_{\varepsilon}, G:=h\left(\Omega_{\varepsilon}\right)$ and $\Delta_{k}:=h\left(\gamma_{k}[\varepsilon, T]\right)$ with $k \in\{1,2\}$. Consequently, $\left(\Delta_{1}, \Delta_{2}\right)$ is a tuple of unparametrised disjoint slits in the canonical domain G and $\left(\delta_{1}, \delta_{2}\right)_{s \in[0, T-\varepsilon]}$ is an admissible parametrisation of $\left(\Delta_{1}, \Delta_{2}\right)$ where $\delta_{k}(s):=h\left(\gamma_{k}(s+\varepsilon)\right)$ for all $s \in[0, T-\varepsilon]$ and $k \in\{1,2\}$. For each $s, \sigma \in[0, T-\varepsilon]$, we denote by $h_{s, \sigma}$ the normalised appropriate mapping function on $G_{s, \sigma}:=G \backslash\left(\delta_{1}(0, s] \cup \delta_{2}(0, \sigma]\right)$, and for each
$s \in[0, T-\varepsilon], h_{s}$ is the normalised appropriate mapping function from $G_{s}:=G_{s, s}$ onto the canonical domain H_{s}. Obviously, we have

$$
\mathfrak{c}\left(f_{t_{0}+s-s_{0}, t_{0}}\right)-\mathfrak{c}\left(f_{t_{0}, t_{0}}\right)=\mathfrak{c}\left(h_{s, s_{0}}\right)-\mathfrak{c}\left(h_{s_{0}, s_{0}}\right) \quad \text { for all } s \in[0, T-\varepsilon],
$$

with $s_{0}:=t_{0}-\varepsilon$, as $f_{s+\varepsilon, \sigma+\varepsilon}=h_{s, \sigma} \circ h$ for all $s, \sigma \in[0, T-\varepsilon]$. Note that $U_{k}\left(t_{0}\right)=$ $h_{s_{0}}\left(\delta_{k}\left(s_{0}\right)\right), D_{t_{0}}=H_{s_{0}}$. Using Theorem 2.30, 2.31 or 2.36, the function $s \mapsto h_{s}(w)$ is differentiable at $s_{0}=t_{0}-\varepsilon$ for all $w \in G_{s_{0}}$ with

$$
\begin{equation*}
\dot{h}_{s_{0}}(w)=E\left(h_{s_{0}}(w)\right) \sum_{k=1}^{2} \mu_{k}\left(s_{0}\right) \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(h_{s_{0}}(w)\right) \quad \text { for all } w \in G_{s_{0}} \tag{3.9}
\end{equation*}
$$

and $\mu_{1}\left(s_{0}\right), \mu_{2}\left(s_{0}\right) \geq 0$ if and only if the following two limits exist:

$$
\mu_{1}\left(s_{0}\right):=\lim _{s \rightarrow s_{0}} \frac{\mathfrak{c}\left(h_{s, s_{0}}\right)-\mathfrak{c}\left(h_{s_{0}, s_{0}}\right)}{s-s_{0}}, \quad \mu_{2}\left(s_{0}\right):=\lim _{s \rightarrow s_{0}} \frac{\mathfrak{c}\left(h_{s_{0}, s}\right)-\mathfrak{c}\left(h_{s_{0}, s_{0}}\right)}{s-s_{0}} .
$$

Finally, by substituting $w=h(z)$ in Equation (3.9) we get the stated equivalence.
At $t_{0}=0$ we have the following lemma.
Lemma 3.10. Let Ω be a canonical domain, $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ be a tuple of branched appropriate slits in Ω and denote by $g_{t}, t \in[0, T]$, the normalised appropriate mapping function from $\Omega_{t}:=\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$ onto the canonical domain D_{t}.

Then the following two statements are equivalent.
(i) For each $z \in \Omega, t \mapsto g_{t}(z)$ is differentiable at 0 and fulfils

$$
\dot{g}_{0}(z)=\lambda E(z) \Phi_{a, \gamma_{1}(0), \Omega}(z) \quad \text { for all } z \in \Omega
$$

with some $\lambda \geq 0$
(ii) $t \mapsto \mathfrak{c}\left(g_{t}\right)$ is differentiable at 0 with derivative λ.

Herein, for all $w \in \mathbb{C}, E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 i}$ in the chordal case. Moreover, $a:=0$ in the radial case, $a:=Q$ where Q is the inner radius of Ω in the bilateral case and $a:=\infty$ in the chordal case.

Proof. First of all, using Lemma 2.46 we find

$$
F\left(g_{t}^{-1}(w)\right)-F(w)=\frac{1}{2 \pi} \int_{C} \Re F\left(g_{t}^{-1}(\zeta)\right) \cdot \Phi_{a_{t}, \zeta, D_{t}}(w)|\mathrm{d} \zeta| \quad t>0, w \in D_{t}
$$

Here, C denotes the outer or unbounded boundary component of $D_{t} . F(w):=\log (w)$, $w \in \mathbb{C} \backslash\{0\}$, in the radial and bilateral case, and $F(w):=2 \mathrm{i} w, w \in \mathbb{C}$, in the chordal case. Moreover, $a_{t}:=0$ in the radial case, a_{t} denotes the inner radius of D_{t} in the bilateral case and $a_{t}:=\infty$ in the chordal case.

Let $\varepsilon>0$ be small. We can choose $t_{0}>0$ small enough in order to have $S_{t}:=$ $\gamma_{1}(0, t] \cap \gamma_{2}(0, t] \subseteq B_{\varepsilon}\left(U_{0}\right)$ for all $t \in\left[0, t_{0}\right]$ with $U_{0}:=\gamma_{1}(0)=\gamma_{2}(0)$. Using the

Schwarz reflection principle, for each $t \leq t_{0}$, we extend g_{t} analytically to a neighbourhood $\partial B_{\varepsilon}\left(U_{0}\right)$. Using Lemma 2.42, we find $g_{t} \xrightarrow{\text { l.u. }}$ id on Ω. We have uniform convergence on $\partial B_{\varepsilon}\left(U_{0}\right)$ as well, so we find $s_{t}:=g_{t}\left(S_{t}\right) \subseteq B_{\varepsilon}\left(U_{0}\right)$ for all t small enough. This gives us $s_{t} \rightarrow U_{0}$ if $t \searrow 0$.

Let $t>0$. Together with the mean value theorem and Lemma 2.45, we get

$$
\begin{aligned}
F\left(g_{t}^{-1}(w)\right)-F(w) & =\left(\Re \Phi_{a_{t}, \zeta_{1}, D_{t}}(w)+\Im \Phi_{a_{t}, \zeta_{2}, D_{t}}(w)\right) \frac{1}{2 \pi} \int_{s_{t}} \Re F\left(g_{t}^{-1}(\zeta)\right)|\mathrm{d} \zeta| \\
& =-\left(\Re \Phi_{a_{t}, \zeta_{1}, D_{t}}(w)+\Im \Phi_{a_{t}, \zeta_{2}, D_{t}}(w)\right) \mathfrak{c}\left(g_{t}\right)
\end{aligned}
$$

for all $w \in D_{t}$ and some $\zeta_{1}, \zeta_{2} \in s_{t}$. Next, let us substitute $w=g_{t}(z)$ so we get for each $z \in \Omega_{t}$

$$
\begin{equation*}
F\left(g_{t}(z)\right)-F\left(g_{0}(z)\right)=\left(\Re \Phi_{a_{t}, \zeta_{1}, D_{t}}\left(g_{t}(z)\right)+\Im \Phi_{a_{t}, \zeta_{2}, D_{t}}\left(g_{t}(z)\right)\right) \cdot\left(\mathfrak{c}\left(g_{t}\right)-\mathfrak{c}\left(g_{0}\right)\right) \tag{3.10}
\end{equation*}
$$

Using Lemma $2.18,2.19$ or 2.20 , for each $k \in\{1,2\}$, we find $\Phi_{a_{t}, \zeta_{k}, D_{t}} \xrightarrow{\text { l.u. }} \Phi_{a, U_{0}, \Omega}$ on Ω. Summarising, as $\zeta_{1}, \zeta_{2} \in s_{t} \rightarrow U_{0}$, the proof is complete.

Remark 3.6. Using Equation (3.10), we easily see that the following statement is equivalent to (i) and (ii) of Lemma 3.10.
(iii) There is a $z_{0} \in \Omega \backslash\{0\}$ such that $t \mapsto g_{t}\left(z_{0}\right)$ is differentiable at $t=0$.

Note that in the chordal and bilateral case we can write $z_{0} \in \Omega$ instead of $z_{0} \in \Omega \backslash\{0\}$.
Moreover, the proof of Lemma 3.10 shows that $s_{t}:=g_{t}\left(\gamma_{1}[0, t] \cup \gamma_{2}[0, t]\right) \rightarrow U_{0}:=$ $\gamma_{1}(0)=\gamma_{2}(0)$ as $t \searrow 0$.

Lemma 3.11. Let Ω be a canonical domain and $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ denote a tuple of branched appropriate slits in Ω. For each $t, \tau \in[0, T], f_{t, \tau}$ is the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$. Moreover, we set $g_{t}:=f_{t, t}$ for all $t \in[0, T]$. Assume $Z=\left\{t_{0}, \ldots, t_{n}\right\}$ with $t_{0}=0$ and $t_{n}=t$ is a partition of the interval $[0, t] \subseteq[0, T]$, i.e. $t_{0}<t_{1}<\ldots<t_{n}$, and

$$
\mathcal{S}_{1}(f, t, Z):=\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{t_{l}, t_{l}}\right), \quad \mathcal{S}_{2}(f, t, Z):=\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{t_{l}, t_{l+1}}\right)-\mathfrak{c}\left(f_{t_{l}, t_{l}}\right)
$$

Then for each $t \in[0, T]$ and $k \in\{1,2\}, \mathcal{S}_{k}(f, t, Z) \rightarrow c_{k}(t) \geq 0$ as $|Z| \rightarrow 0$ whereas $|Z|$ denotes the norm of the partition Z, i.e. $|Z|:=\max _{l=0, \ldots, n-1} t_{l+1}-t_{l}$. Moreover, each $t \mapsto c_{k}(t)$ is continuous and strictly increasing on $[0, T], c_{k}(0)=0$, and for each $t_{0} \in(0, T]$ and $k \in\{1,2\}$,

$$
\frac{c_{1}(t)-c_{1}\left(t_{0}\right)}{\mathfrak{c}\left(f_{t, t_{0}}\right)-\mathfrak{c}\left(f_{t_{0}, t_{0}}\right)} \rightarrow 1 \text { as } t \rightarrow t_{0} \quad \text { and } \quad \frac{c_{2}(t)-c_{2}\left(t_{0}\right)}{\mathfrak{c}\left(f_{t_{0}, t}\right)-\mathfrak{c}\left(f_{t_{0}, t_{0}}\right)} \rightarrow 1 \text { as } t \rightarrow t_{0}
$$

Finally, assume $\mathfrak{c}\left(g_{t}\right)=t$ for all $t \in[0, T]$. Then each $t \mapsto c_{k}(t), k \in\{1,2\}$, is Lipschitz continuous on $[0, T]$ and $\sum_{k=1}^{2} c_{k}(t)=t$ for all $t \in[0, T]$.

Proof. 1) First of all, we will prove the existence of the functions $c_{k}, k \in\{1,2\}$. In order to do so, we set

$$
\mathcal{S}_{1}(f,[\underline{t}, \bar{t}], Z):=\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{t_{l+1}, t_{l}}\right)-\mathfrak{c}\left(f_{t_{l}, t_{l}}\right), \quad \mathcal{S}_{2}(f,[\underline{t}, \bar{t}], Z):=\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{t_{l}, t_{l+1}}\right)-\mathfrak{c}\left(f_{t_{l}, t_{l}}\right),
$$

with $0 \leq \underline{t}<\bar{t} \leq T$ and a partition $Z:=\left\{t_{0}, \ldots, t_{n}\right\}$ of the interval $[\underline{t}, \bar{t}]$. Let $\rho>0$. By Lemma 2.42, the function $t \mapsto \mathfrak{c}\left(g_{t}\right)$ is continuous on $[0, T]$, so we find an $\varepsilon>0$ such that $\mathfrak{c}\left(g_{t}\right)<\frac{\rho}{4}$ holds for all $t \in[0, \varepsilon]$. Next, we set $h:=g_{\varepsilon}$. Consequently, Δ_{1}, Δ_{2} with $\Delta_{k}:=h\left(\gamma_{k}[\varepsilon, T]\right)$ are disjoint appropriate unparametrised slits in the canonical domain $G:=h\left(\Omega \backslash\left(\gamma_{1}(\varepsilon, T] \cup \gamma_{2}(\varepsilon, T]\right)\right)$. On top of this $\left(\delta_{1}, \delta_{2}\right)_{s \in[0, T-\varepsilon]}$, with $\delta_{k}(s):=h\left(\gamma_{k}(s+\varepsilon)\right)$ for all $s \in[0, T-\varepsilon]$, is an admissible parametrisation of $\left(\Delta_{1}, \Delta_{2}\right)$. Moreover, for each $s, \sigma \in[0, T-\varepsilon]$, we denote by $h_{s, \sigma}$ the normalised appropriate mapping function on $G \backslash\left(\delta_{1}(0, s] \cup \delta_{2}(0, \sigma]\right)$.
Let $t \in(\varepsilon, T]$ be fix. Obviously, this allows us to apply Lemma 3.6, so we find a $\mu>0$ such that

$$
\left|\mathcal{S}_{1}\left(f,[\varepsilon, t], Z_{1}\right)-\mathcal{S}_{1}\left(f,[\varepsilon, t], Z_{2}\right)\right|=\left|\mathcal{S}_{1}\left(h, t-\varepsilon, Z_{1}^{\varepsilon}\right)-\mathcal{S}_{1}\left(h, t-\varepsilon, Z_{2}^{\varepsilon}\right)\right|<\frac{\rho}{2}
$$

for all partitions Z_{1}, Z_{2} of the interval $[\varepsilon, t]$ with $\left|Z_{1}\right|,\left|Z_{2}\right|<\mu$ and $Z_{k}^{\varepsilon}:=Z_{k}-\varepsilon$. Finally, let Z_{1}, Z_{2} be partitions of the interval $[0, t] \subseteq[0, T]$ with $\left|Z_{1}\right|,\left|Z_{2}\right|<\mu$, so we get

$$
\begin{aligned}
\mid \mathcal{S}_{1}\left(f,[0, t], Z_{1}\right)- & \mathcal{S}_{1}\left(f,[0, t], Z_{2}\right) \mid \leq \\
& \left|\mathcal{S}_{1}\left(f,[0, \varepsilon], Z_{1} \cap[0, \varepsilon]\right)\right|+\left|\mathcal{S}_{1}\left(f,[0, \varepsilon], Z_{2} \cap[0, \varepsilon]\right)\right| \\
+ & \left|\mathcal{S}_{1}\left(f,[\varepsilon, t], Z_{1} \cap[\varepsilon, T]\right)-\mathcal{S}_{1}\left(f,[\varepsilon, t], Z_{2} \cap[\varepsilon, T]\right)\right|<\frac{\rho}{4}+\frac{\rho}{4}+\frac{\rho}{2}=\rho,
\end{aligned}
$$

as we can assume without loss of generality $\varepsilon \in Z_{1} \cap Z_{2}$. We can do the same for \mathcal{S}_{2} instead of \mathcal{S}_{1} to get the existence of c_{2}.
2) Next, let us fix $t_{0} \in(0, T]$ and $0<\varepsilon<t_{0}$. We use the same notations as in the first part, i.e. $h:=g_{\varepsilon}$, and for all $s, \sigma \in[0, T-\varepsilon], h_{s, \sigma}$ is the normalised appropriate mapping function on $G \backslash\left(\delta_{1}[0, s] \cup \delta_{2}[0, \sigma]\right)$ with $G:=h\left(\Omega \backslash\left(\gamma_{1}(0, \varepsilon] \cup \gamma_{2}(0, \varepsilon]\right)\right)$ and $\delta_{k}(s):=h\left(\gamma_{k}(\varepsilon+s)\right)$. On top of this we set $c_{k}^{\varepsilon}(s):=\lim _{|Z| \rightarrow 0} \mathcal{S}_{k}(h, s, Z)$ for all $s \in$ $[0, T-\varepsilon]$ and $c_{k}(t)=\lim _{|Z| \rightarrow 0} \mathcal{S}_{k}(f, t, Z)$ for all $t \in[0, T]$ with $k \in\{1,2\}$. Obviously, $c_{k}(s+\varepsilon)=c_{k}^{\varepsilon}(s)+c_{k}(\varepsilon)$ for all $s \in[0, T-\varepsilon]$. Thus we find with Lemma 3.6

$$
\frac{c_{1}(t)-c_{1}\left(t_{0}\right)}{\mathfrak{c}\left(f_{t, t_{0}}\right)-\mathfrak{c}\left(f_{\left.t_{0}, t_{0}\right)}\right)}=\frac{c_{1}^{\varepsilon}(t-\varepsilon)-c_{1}^{\varepsilon}\left(t_{0}-\varepsilon\right)}{\mathfrak{c}\left(h_{t-\varepsilon, t_{0}-\varepsilon}\right)-\mathfrak{c}\left(f_{t_{0}-\varepsilon, t_{0}-\varepsilon}\right)}=\frac{c_{1}^{\varepsilon}(s)-c_{1}^{\varepsilon}\left(s_{0}\right)}{\mathfrak{c}\left(h_{s, s_{0}}\right)-\mathfrak{c}\left(f_{s_{0}, s_{0}}\right)} \xrightarrow{s \rightarrow s_{0}} 1
$$

with $s_{0}:=t_{0}-\varepsilon$ and $s:=t-\varepsilon$. Moreover Lemma 3.6 shows that for each fixed $\varepsilon>0$ and $k \in\{1,2\}, s \mapsto c_{k}^{\varepsilon}(s)$ is continuous on $[0, T-\varepsilon]$. Together with $c_{k}(s+\varepsilon)=c_{k}^{\varepsilon}(s)+c_{k}(\varepsilon)$ for all $s \in[0, T-\varepsilon]$ and $k \in\{1,2\}$, we easily see that each $t \mapsto c_{k}(t)$ is continuous and strictly increasing on $[0, T]$. Finally, assume $\mathfrak{c}\left(g_{t}\right)=t$ for all $t \in[0, T]$. Then $\mathfrak{c}\left(h_{s}\right)=s$ for all $s \in[0, T-\varepsilon]$, so Lemma 3.6 gives us $\sum_{k=1}^{2} c_{k}(s+\varepsilon)=\sum_{k=1}^{2}\left(c_{k}^{\varepsilon}(s)+c_{k}(\varepsilon)\right)=$ $s+\sum_{k=1}^{2} c_{k}(\varepsilon)$ for all $s \in[0, T-\varepsilon]$. Letting $\varepsilon \rightarrow 0$ and by using the continuity, we find $\sum_{k=1}^{2} c_{k}(t)=t$ for all $t \in[0, T]$. Obviously, $t \mapsto c_{k}(t), k \in\{1,2\}$, is Lipschitz continuous on $[0, T]$ in this case as well, as $c_{k}(t) \geq 0$ for all $t \in[0, T]$.

3.2.2 Proof of Theorem 3.7 and 3.8

In order to prove Theorem 3.7, we are going to use the disjoint case (and the corresponding proof) in a major way.

Note that we can apply step 1) and 2) of the existence proof of Theorem 3.2, 3.3 and 3.4 on branched slits as well. We call $\left(u_{n}^{*}, v_{n}^{*}, u, v\right)_{t \in[0, L]}$ bang-bang functions corresponding to $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$. Using the notation of Theorem 3.7, step 1) and 2) give us $L=\mathfrak{c}_{\Omega}\left(\Gamma_{1} \cup \Gamma_{2}\right)$ like in the disjoint case.

Unfortunately, we can not apply step 3), 4) and 5) (directly) in the branch point case. The reason for this is that we proved Proposition 2.55 in the disjoint case only. Consequently, one might ask the question if Proposition 2.55 is true in the branch point case as well. In general, this is not the case, so there are counterexamples, see Section 4.2. Nevertheless, we can use step 3), 4) and 5) in order to find the following lemma.

Lemma 3.12. Let Ω be a canonical domain, $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ be a tuple of branched appropriate slits in Ω and for each $t, \tau \in[0, T], f_{t, \tau}$ denotes the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$. Assume $\left(u_{n}^{*}, v_{n}^{*}, u, v\right)_{t \in[0, L]}$ are bang-bang functions corresponding to $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$.

Then $u, v:[0, L] \rightarrow[0, T]$ are continuous and strictly increasing, $\mathfrak{c}\left(f_{u(t), v(t)}\right)=t$ for all $t \in[0, L]$ and $\mathcal{S}_{1}(u, v,[\underline{t}, \bar{t}], Z) \rightarrow(\bar{t}-\underline{t}) \lambda$ and $\mathcal{S}_{2}(u, v,[\underline{t}, \bar{t}], Z) \rightarrow(\bar{t}-\underline{t})(1-\lambda)$ with $\underline{t}, \bar{t} \in S:=\bigcup_{n \in \mathbb{N}}\left\{\left.\frac{k}{2^{n}} L \right\rvert\, k \in\left\{0, \ldots, 2^{n}\right\}\right\}, 0<\underline{t}<\bar{t}, \lambda \in(0,1)$ and $L=\mathfrak{c}\left(f_{T, T}\right)$.

Herein, for the definition of $\mathcal{S}_{k}(u, v,[\underline{t}, \bar{t}], Z)$ see Equation (3.2).
Proof. Summarising, step 1) and 2) yield that $t \mapsto u(t)$ and $t \mapsto v(t)$ are continuous and increasing on $[0, L]$ and $\mathfrak{c}\left(f_{u(t), v(t)}\right)=t$ for all $t \in[0, L]$. As mentioned before, this gives us $L=\mathfrak{c}\left(f_{T, T}\right)$.

Let $\underline{t}, \bar{t} \in S$ with $0<\underline{t}<\bar{t}$. Then either $u(\underline{t}) \neq 0$ or $v(\underline{t}) \neq 0$. Thus we find an $\varepsilon>0$ such that $\varepsilon<u(\underline{t})$ or $\varepsilon<v(\underline{t})$. Without loss of generality we assume $\varepsilon<u(\underline{t})$. Then we set $h:=f_{\varepsilon, 0}, G:=h\left(\Omega \backslash \gamma_{1}[0, \varepsilon]\right), \Delta_{1}:=h\left(\gamma_{1}[\varepsilon, T]\right)$ and $\Delta_{2}:=h\left(\gamma_{2}[0, T]\right)$. Obviously, Δ_{1}, Δ_{2} are disjoint appropriate unparametrised slits in the canonical domain G. Moreover, we find an $n_{0} \in \mathbb{N}$ in order to get $u_{n}^{*}(\underline{t})>\varepsilon$ for all $n \geq n_{0}$. Since Δ_{1} and Δ_{2} are disjoint we can apply step 3), 4) and 5), so $t \mapsto u(t)$ and $t \mapsto v(t)$ are strictly increasing on $[\underline{t}, L], \mathcal{S}_{1}(u, v,[\underline{t}, \bar{t}], Z) \rightarrow(\bar{t}-\underline{t}) \lambda$ as $|Z| \rightarrow 0$ with $\lambda \in(0,1)$ and $\mathcal{S}_{2}(u, v,[\underline{t}, \bar{t}], Z) \rightarrow(\bar{t}-\underline{t})(1-\lambda)$ as $|Z| \rightarrow 0$. Note that $\underline{t}>0$ is arbitrary, so $t \mapsto u(t)$ and $t \mapsto v(t)$ are strictly increasing on $[0, L]$.

Now we are able to prove Theorem 3.7.
Proof of Theorem 3.7. Let Ω be a canonical domain and $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ be appropriate branched slits in Ω. For each $t, \tau \in[0, T]$ we denote by $f_{t, \tau}$ the normalised appropriate mapping function on $\Omega(t, \tau):=\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$. Assume $\left(u_{n}^{*}, v_{n}^{*}, u, v\right)_{t \in[0, L]}$ are bang-bang functions corresponding to $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ with $L=\mathfrak{c}\left(f_{T, T}\right)$. We set $h_{t, \tau}:=$ $f_{u(t), v(\tau)}$ for all $t, \tau \in[0, L]$. Using Lemma 3.11, we find strictly increasing and continuous functions

$$
c_{k}(t):=\lim _{|Z| \rightarrow 0} \mathcal{S}_{k}(h, t, Z):=\lim _{|Z| \rightarrow 0} \mathcal{S}_{k}(u, v, t, Z) \quad \text { for all } t \in[0, L] \text { and } k \in\{1,2\} .
$$

Next, Lemma 3.12 gives us $c_{1}(t)-c_{1}(\varepsilon)=(t-\varepsilon) \lambda$ and $c_{2}(t)-c_{2}(\varepsilon)=(t-\varepsilon)(1-\lambda)$ for all $\varepsilon, t \in S$ with $0<\varepsilon<t$, and some $\lambda \in(0,1)$. Letting $\varepsilon \searrow 0$ we get $c_{1}(t)=\lambda t$ and $c_{2}(t)=(1-\lambda) t$ for all $t \in S . t \mapsto c_{k}(t)$ is continuous on $[0, L]$, so we find $c_{1}(t)=\lambda t$ and $c_{2}(t)=(1-\lambda) t$ for all $t \in[0, L]$. Using Lemma 3.11, for each $t_{0} \in(0, L]$, we find

$$
\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(h_{t, t_{0}}\right)-\mathfrak{c}\left(h_{t_{0}, t_{0}}\right)}{t-t_{0}}=\lambda, \quad \lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(h_{t_{0}, t}\right)-\mathfrak{c}\left(h_{t_{0}, t_{0}}\right)}{t-t_{0}}=1-\lambda .
$$

For all $t \in[0, L]$, we set $g_{t}:=h_{t, t}$ and $D_{t}:=g_{t}(\Omega(t, t))$. Consequently, Lemma 3.9 yields

$$
\dot{g}_{t}(z)=E\left(h_{t}(z)\right) \sum_{k=1}^{2} \lambda_{k} \Phi_{a_{t}, U_{k}(t), D_{t}}\left(g_{t}(z)\right), \quad \text { for all } t \in(0, L] \text { and all } z \in \Omega_{L},
$$

with $\lambda_{1}:=\lambda$ and $\lambda_{2}=1-\lambda$. Herein, for all $t \in[0, L], a_{t}:=0$ in the radial case, a_{t} denotes the inner radius of D_{t} in the bilateral case and $a_{t}:=\infty$ in the chordal case. Herein, for all $w \in \mathbb{C}, E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 \mathrm{i}}$ in the chordal case. Moreover, $U_{1}(t):=g_{t}\left(\gamma_{1}(u(t))\right)$ and $U_{2}(t):=g_{t}\left(\gamma_{2}(v(t))\right)$ for all $t \in[0, L]$. Note that $\mathfrak{c}\left(h_{t}\right)=t$, so Lemma 3.10 gives us

$$
\dot{g}_{0}(z)=E(z) \Phi_{a_{0}, \gamma_{1}(0), \Omega}(z) \quad \text { for all } z \in \Omega .
$$

$\gamma_{1}(0)=\gamma_{2}(0)=U_{1}(0)=U_{2}(0), D_{0}=\Omega$, so we find

$$
\dot{g}_{0}(z)=E\left(g_{0}(z)\right) \sum_{k=1}^{2} \lambda_{k} \Phi_{a_{0}, U_{k}(0), D_{0}}\left(g_{0}(z)\right) \quad \text { for all } z \in \Omega .
$$

Summarising, $g_{t}(z)$ satisfies a Komatu-Loewner equation with constant coefficients.
Lemma 3.13. Let Ω be a canonical simply connected domain and denote by $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ a tuple of disjoint or branched slits in Ω. For each $t, \tau \in[0, T]$, we denote by $f_{t, \tau}$ the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$ and we set $\mathfrak{c}(t, \tau):=$ $\mathfrak{c}\left(f_{t, \tau}\right)$. Assume $0 \leq \underline{t} \leq \bar{t} \leq T$ and $0 \leq \underline{\tau} \leq \bar{\tau} \leq T$. Then

$$
\mathfrak{c}(\bar{t}, \bar{\tau})-\mathfrak{c}(\underline{t}, \bar{\tau}) \leq \mathfrak{c}(\bar{t}, \underline{\tau})-\mathfrak{c}(\underline{t}, \underline{\tau}) .
$$

Proof. Assume $0 \leq \underline{t}<\bar{t} \leq T$ and $0 \leq \underline{\tau}<\bar{\tau} \leq T$. Let $h:=f_{t, \tau}, G:=h\left(\Omega \backslash\left(\gamma_{1}(0, \underline{t}] \cup\right.\right.$ $\left.\gamma_{2}(0, \underline{\tau})\right)$ and $\Delta_{1}:=h\left(\gamma_{1}(\underline{t}, \bar{t}]\right)$ and $\Delta_{2}:=h\left(\gamma_{2}(\underline{\tau}, \bar{\tau}]\right)$. Note that Δ_{1}, Δ_{2} and $\Delta_{1} \cup \Delta_{2}$ are appropriate hulls in the canonical domain G and we denote by $h_{\Delta_{1}}, h_{\Delta_{2}}$ and $h_{\Delta_{1} \cup \Delta_{2}}$ the normalised appropriate mapping functions on $G \backslash \Delta_{1}, G \backslash \Delta_{2}$ and $G \backslash\left(\Delta_{1} \cup \Delta_{2}\right)$, respectively.

Consequently, we can apply Lemma 2.56 and 2.57 to get

$$
\mathfrak{c}\left(h_{\Delta_{1} \cup \Delta_{2}}\right) \leq \mathfrak{c}\left(h_{\Delta_{1}}\right)+\mathfrak{c}\left(h_{\Delta_{2}}\right) .
$$

Note that $\mathfrak{c}\left(h_{\Delta_{1} \cup \Delta_{2}}\right)=\mathfrak{c}(\bar{t}, \bar{\tau})-\mathfrak{c}(\underline{t}, \underline{\tau}), \mathfrak{c}\left(h_{\Delta_{1}}\right)=\mathfrak{c}(\bar{t}, \underline{\tau})-\mathfrak{c}(\underline{t}, \underline{\tau})$ and $\mathfrak{c}\left(h_{\Delta_{2}}\right)=\mathfrak{c}(\underline{t}, \bar{\tau})-$ $\mathfrak{c}(\underline{t}, \underline{\tau})$, so the proof is complete.

Proof of Theorem 3.8. 1) First of all, let Ω be a simply connected canonical domain, $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ be appropriate branched slits in Ω and let $L:=\mathfrak{c}_{\Omega}\left(\Gamma_{1} \cup \Gamma_{2}\right)$. For each $t, \tau \in[0, T]$, we denote by $f_{t, \tau}$ the normalised appropriate mapping function on $\Omega \backslash$ $\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$. Assume $u_{1}, v_{1}:[0, L] \rightarrow[0, T]$ and $u_{2}, v_{2}:[0, L] \rightarrow[0, T]$ are increasing homeomorphisms having $\mathfrak{c}\left(u_{1}(t), v_{1}(t)\right)=t=\mathfrak{c}\left(u_{2}(t), v_{2}(t)\right)$ for all $t \in[0, L]$, and for each $t_{0} \in[0, L]$ and $k \in\{1,2\}, t \mapsto \mathfrak{c}\left(u_{k}(t), v_{k}\left(t_{0}\right)\right)$ and $t \mapsto \mathfrak{c}\left(u_{k}\left(t_{0}\right), v_{k}(t)\right)$ are differentiable at t_{0} with constant derivatives λ_{k} and $1-\lambda_{k}$, respectively. Using Lemma 3.9 and 3.10, this is equivalent to claim that each $t \mapsto f_{u_{k}(t), v_{k}(t)}$ fulfils a multiple slit Loewner equation with constant coefficients λ_{k} and $1-\lambda_{k}, k \in\{1,2\}$.
2) Next, suppose $\lambda_{1}>\lambda_{2}$. Note that $t \mapsto \mathfrak{c}\left(u_{k}(t), T\right)$ is differentiable at $t=L$ with derivative $\lambda_{k}, k \in\{1,2\}$. Moreover, $\mathfrak{c}\left(u_{1}(L), T\right)=L=\mathfrak{c}\left(u_{2}(L), T\right)$, so we find $\mathfrak{c}\left(u_{1}(t), T\right)<\mathfrak{c}\left(u_{2}(t), T\right)$ for all $t \in(L-\varepsilon, L)$ with a small $\varepsilon>0$, as $\lambda_{1}>\lambda_{2}$. Using Lemma 2.41, we find $u_{1}(t)<u_{2}(t)$ for all $t \in(L-\varepsilon, L)$ as well. Let us denote by $t_{0} \in[0, L)$ the unique time such that $t_{0}:=\sup \left\{t \in[0, L) \mid u_{1}(t)=u_{2}(t)\right\}$. Using $u_{1}(t)<u_{2}(t)$ for all $t \in(L-\varepsilon, L)$, we find $t_{0}<L$. Consequently, $u_{1}(t)<u_{2}(t)$ for all $t \in\left(t_{0}, L\right)$.
Next, let $Z_{2}:=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of the interval $\left[t_{0}, L\right]$, say $t_{l}=t_{0}+\frac{l}{n}\left(L-t_{0}\right)$ for all $l \in\{0, \ldots, n\}$. Moreover, we find unique values $\tau_{0}, \ldots, \tau_{n} \in\left[t_{0}, L\right]$ such that $u_{1}\left(\tau_{l}\right)=u_{2}\left(t_{l}\right)$ for all $l \in\{1, \ldots, n\}$. Thus $Z_{1}:=\left\{\tau_{0}, \ldots \tau_{n}\right\}$ is a partition of the interval $\left[t_{0}, L\right]$. Using $u_{1}(t)<u_{2}(t)$ for all $t \in\left(t_{0}, L\right)$, we find $\tau_{l} \geq t_{l}$ for all $l \in\{0, \ldots, n\}$. Since $\mathfrak{c}\left(u_{2}\left(t_{l}\right), v_{2}\left(t_{l}\right)\right)=t_{l} \leq \tau_{l}=\mathfrak{c}\left(u_{1}\left(\tau_{l}\right), v_{1}\left(\tau_{l}\right)\right)$, Lemma 2.41 gives us $v_{1}\left(\tau_{l}\right) \geq v_{2}\left(t_{l}\right)$ for all $l \in\{0, \ldots, n\}$. Using Lemma 3.13, we find

$$
\begin{aligned}
\mathfrak{c}\left(u_{2}\left(t_{l+1}\right), v_{2}\left(t_{l}\right)\right)-\mathfrak{c}\left(u_{2}\left(t_{l}\right), v_{2}\left(t_{l}\right)\right) \geq \mathfrak{c}\left(u_{2}\left(t_{l+1}\right)\right. & \left., v_{1}\left(\tau_{l}\right)\right)-\mathfrak{c}\left(u_{2}\left(t_{l}\right), v_{1}\left(\tau_{l}\right)\right) \\
& =\mathfrak{c}\left(u_{1}\left(\tau_{l+1}\right), v_{1}\left(\tau_{l}\right)\right)-\mathfrak{c}\left(u_{1}\left(\tau_{l}\right), v_{1}\left(\tau_{l}\right)\right)
\end{aligned}
$$

for all $l \in\{0, \ldots, n-1\}$. Consequently, we get

$$
\sum_{l=0}^{n-1} \mathfrak{c}\left(u_{2}\left(t_{l+1}\right), v_{2}\left(t_{l}\right)\right)-\mathfrak{c}\left(u_{2}\left(t_{l}\right), v_{2}\left(t_{l}\right)\right) \geq \sum_{l=0}^{n-1} \mathfrak{c}\left(u_{1}\left(\tau_{l+1}\right), v_{1}\left(\tau_{l}\right)\right)-\mathfrak{c}\left(u_{1}\left(\tau_{l}\right), v_{1}\left(\tau_{l}\right)\right) .
$$

Using Lemma 3.11, we see that the term on the left-hand side tends to $\lambda_{2}\left(L-t_{0}\right)$, while the right-hand side tends to $\lambda_{1}\left(L-t_{0}\right)$, so we find $\lambda_{2} \geq \lambda_{1}$. This is a contradiction, as $\lambda_{2}<\lambda_{1}$, so $\lambda_{1}=\lambda_{2}=: \lambda$.
3) Finally, we are going to show $u_{1}(t)=u_{2}(t)$ for all $t \in[0, L]$. Let $t \in[0, L]$ be fix and suppose $u_{1}(t)<u_{2}(t)$. As before we find a unique $t_{0}:=\sup \left\{\tau \in[0, t) \mid u_{1}(\tau)=u_{2}(\tau)\right\}$. Using the continuity of u_{1} and u_{2}, we find $t_{0}<t$. Consequently, $u_{1}(\tau)<u_{2}(\tau)$ for all $\tau \in\left(t_{0}, t\right]$.
Next, let $\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of the interval $\left[t_{0}, t\right]$, say $t_{l}=t_{0}+\frac{l}{n}\left(t-t_{0}\right)$ with $l \in\{0, \ldots, n\}$ and some $n \in \mathbb{N}$. Moreover, we find unique values $\tau_{0}, \ldots, \tau_{n} \in\left[t_{0}, L\right]$ such that $u_{2}\left(t_{l}\right)=u_{1}\left(\tau_{l}\right)$ for all $l \in\{0, \ldots, n\}$. Note that $Z_{1}:=\left\{\tau_{0}, \ldots, \tau_{n}\right\}$ is a partition of the interval $\left[t_{0}, \tau\right]$ where $\tau \in\left(t_{0}, L\right]$ satisfies $u_{1}(\tau)=u_{2}(t)$. Consequently, $\tau>t$ as well as $\tau_{l} \geq t_{l}$ for all $l \in\{0, \ldots, n\}$. Like in the previous part, we get $v_{2}\left(t_{l}\right) \leq v_{1}\left(\tau_{l}\right)$ for all
$l=\{0, \ldots, n\}$, so, together with Lemma 3.13, we find

$$
\sum_{l=0}^{n-1} \mathfrak{c}\left(u_{2}\left(t_{l+1}\right), v_{2}\left(t_{l}\right)\right)-\mathfrak{c}\left(u_{2}\left(t_{l}\right), v_{2}\left(t_{l}\right)\right) \geq \sum_{l=0}^{n-1} \mathfrak{c}\left(u_{1}\left(\tau_{l+1}\right), v_{1}\left(\tau_{l}\right)\right)-\mathfrak{c}\left(u_{1}\left(\tau_{l}\right), v_{1}\left(\tau_{l}\right)\right)
$$

Using Lemma 3.11, the left-hand side tends to $\lambda\left(t-t_{0}\right)$, while the right-hand side tends to $\lambda\left(\tau-t_{0}\right)$, so we get $t \geq \tau$. This is a contradiction as $t<\tau$, so the proof is complete.

Chapter 4

Komatu-Loewner equations vs. Loewner equations

Let Ω be a canonical domain and denote by $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ a tuple of disjoint appropriate slits in Ω. For each $t \in[0, T]$, we denote by g_{t} the normalised appropriate mapping function on $\Omega_{t}:=\Omega \backslash \bigcup_{k=1}^{m} \gamma_{k}(0, t]$. Moreover, for each $k \in\{1, \ldots, m\}$ and $t \in[0, T]$, we set $h_{k ; t}$ as the normalised appropriate mapping function on $\Omega^{S} \backslash \gamma_{k}(0, t]$. In this context Ω^{S} is the simplification of Ω, i.e. $\Omega^{S}:=\mathbb{D}$ if Ω is a circular slit disk, $\Omega^{S}:=\mathbb{H}$ if Ω is an upper parallel slit half-plane, and $\Omega^{S}:=\mathbb{A}_{Q}=\{z \in \mathbb{C}|Q<|z|<1\}$ if Ω is a circular slit annulus with inner radius $Q \in(0,1)$, see also Section 2.7.

Then one might ask whether there is a connection between differentiability of $t \mapsto g_{t}$ and differentiability $t \mapsto h_{k ; t}$ with $k \in\{1, \ldots, m\}$? See also Figure 4.1 where we put g_{t} side by side to $h_{k ; t}$.

We will discuss this question in the disjoint case and in the branch point case separately.

4.1 Disjoint slits

Theorem 4.1. Let Ω be a canonical domain and denote by $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ a tuple of disjoint appropriate slits in Ω. For each $t \in[0, T]$, we denote by g_{t} the normalised appropriate mapping function on $\Omega_{t}:=\Omega \backslash \bigcup_{k=1}^{m} \gamma_{k}(0, t]$. Moreover, for each $k \in\{1, \ldots, m\}$ and $t \in[0, T]$, we set $h_{k ; t}$ as the normalised appropriate mapping function on $\Omega^{S} \backslash \gamma_{k}(0, t]$. Let $t_{0} \in[0, T]$. Then the following two statements are equivalent.
(i) $t \mapsto g_{t}(z)$ is differentiable at $t=t_{0}$ for each $z \in \Omega_{t_{0}}$.
(ii) Each $t \mapsto h_{k ; t}(z), k \in\{1, \ldots, m\}$, is differentiable at $t=t_{0}$ for each $z \in \Omega^{S} \backslash$ $\gamma_{k}\left(0, t_{0}\right]$.

Proof. Basically, this follows immediately from Proposition 2.55 and Theorem 2.30, 2.31 and 2.36. Therefore, for each $t, \tau \in[0, T], f_{k ; t, \tau}$ denotes the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{k}(0, t] \cup \bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$. Let $t_{0} \in[0, T]$. Using Proposition
2.55, we get for each $k \in\{1, \ldots, m\}$:

$$
\lambda_{k}\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(f_{k ; t, t_{0}}\right)-\mathfrak{c}\left(f_{k ; t_{0}, t_{0}}\right)}{t-t_{0}} \text { exists } \Leftrightarrow \mu_{k}\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{\mathfrak{c}\left(h_{k ; t}\right)-\mathfrak{c}\left(h_{k ; t_{0}}\right)}{t-t_{0}} \text { exists. }
$$

Using (i) $\Leftrightarrow\left(\right.$ ii) from Theorem 2.30, 2.31 or 2.36 , we find: $t \mapsto g_{t}(z)$ is differentiable at t_{0} for each $z \in \Omega_{t_{0}}$ if and only if each limit $\lambda_{k}\left(t_{0}\right), k \in\{1, \ldots m\}$, exists. In the same way, for each $k \in\{1, \ldots, m\}, t \mapsto h_{k ; t}(z)$ is differentiable at t_{0} for all $z \in \Omega^{S} \backslash \gamma_{k}\left(0, t_{0}\right]$ if and only if the limit $\mu_{k}\left(t_{0}\right)$ exists.

Figure 4.1: The mapping functions g_{t} and $h_{k ; t}$ in the radial case; note that $\Omega^{S}=\mathbb{D}$ and $\Phi_{b_{t}, \Upsilon_{k}(t), \Delta_{k}(t)}(w)=\left(\Upsilon_{k}(t)+w\right) /\left(\Upsilon_{k}(t)-w\right)$

We find easily with (ii) \Leftrightarrow (iii) from Theorem 2.30, 2.31 or 2.36:
Corollary 4.2. Let Ω be a canonical domain and denote by $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ a tuple of disjoint appropriate slits in Ω. For each $t, \tau \in[0, T]$ and $k \in\{1, \ldots, m\}$, we denote by $f_{k ; t, \tau}$ the normalised appropriate mapping function from $\Omega_{k}(t, \tau):=\Omega \backslash\left(\gamma_{k}(0, t] \cup\right.$ $\left.\bigcup_{j \neq k} \gamma_{j}(0, \tau]\right)$ onto the canonical domain $D_{k}(t, \tau)$. Independently of $k \in\{1, \ldots, m\}$, we set $g_{t}:=f_{k ; t, t}, \Omega_{t}:=\Omega_{k}(t, t)$ and $D_{t}:=D_{k}(t, t)$ for all $t \in[0, T]$. Moreover, for each $k \in\{1, \ldots, m\}$, we set $h_{k ; t}$ as the normalised appropriate mapping function from $\Omega^{S} \backslash \gamma_{k}(0, t]$ onto $\Delta_{k}(t)$ with $t \in[0, T]$. Finally, let $E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 i}$ in the chordal case. Let $t_{0} \in[0, T]$. Then the following two statements are equivalent.
(i) $t \mapsto g_{t}(z)$ is differentiable at $t=t_{0}$ for each $z \in \Omega_{t_{0}}$ and satisfies

$$
\dot{g}_{t_{0}}(z)=E\left(g_{t_{0}}(z)\right) \sum_{k=1}^{m} \lambda_{k}\left(t_{0}\right) \Phi_{a_{t_{0}}, U_{k}\left(t_{0}\right), D_{t_{0}}}\left(g_{t_{0}}(z)\right) \quad \text { for all } z \in \Omega_{t_{0}},
$$

with $\lambda_{k}\left(t_{0}\right) \geq 0$ and $U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ continuous on $[0, T]$. Herein, $a_{t}:=0$ in the radial case, a_{t} is the inner radius of D_{t} in the bilateral case and $a_{t}:=\infty$ in the chordal case.
(ii) Each $t \mapsto h_{k ; t}(z), k \in\{1, \ldots, m\}$, is differentiable at $t=t_{0}$ for all $z \in \Omega^{S} \backslash \gamma_{k}\left(0, t_{0}\right]$, and satisfies

$$
\dot{h}_{k ; t_{0}}(z)=E\left(h_{k ; t_{0}}(z)\right) \mu_{k}\left(t_{0}\right) \Phi_{b_{t_{0}}, \Upsilon_{k}\left(t_{0}\right), \Delta_{k}\left(t_{0}\right)}\left(h_{k ; t_{0}}(z)\right) \quad \text { for all } z \in \Omega^{S} \backslash \gamma_{k}\left(0, t_{0}\right],
$$

with $\mu_{k}\left(t_{0}\right) \geq 0$ and $\Upsilon_{k}(t):=h_{k ; t}\left(\gamma_{k}(t)\right)$ continuous on $[0, T]$. Herein, $b_{t}:=0$ in the radial case, b_{t} is the inner radius of $\Delta_{k}(t)$ in the bilateral case and $b_{t}:=\infty$ in the chordal case.

When this happens, $\lambda_{k}\left(t_{0}\right)=\left|\alpha_{k}^{2}\left(t_{0}\right)\right| \mu_{k}\left(t_{0}\right)$ for all $k \in\{1, \ldots, m\}$ where each $t \mapsto$ $\left|\alpha_{k}(t)\right|:=\left|\left(g_{t} \circ h_{k ; t}^{-1}\right)^{\prime}\left(\Upsilon_{k}(t)\right)\right|$ is a positive continuous function on $[0, T]$.

In this context, each $t \mapsto\left|\alpha_{k}^{2}(t)\right|$ represents a distortion factor. Note that positivity and continuity of $t \mapsto\left|\alpha_{k}(t)\right|$ is an immediate consequence of Proposition 2.55.

Figure 4.2: The mapping $g_{t} \circ h_{k ; t}^{-1}$ involved in the distortion factor $t \mapsto\left|\alpha_{k}(t)\right|$
Next, we will use the previous results to give an idea how to find admissible parametrisations of unparametrised slits, in order to get Komatu-Loewner equations with differentiability everywhere.

Corollary 4.3. Let Ω be a canonical domain and denote by $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right)$ a tuple of disjoint unparametrised appropriate slits in Ω. Then we find an admissible parametrisation $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, L]}$ such that for each $z \in \Omega_{t}, t \mapsto g_{t}(z)$ is (continuously) differentiable on $[0, L]$ and satisfies

$$
\dot{g}_{t}(z)=E\left(g_{t}(z)\right) \cdot \sum_{k=1}^{m} \lambda_{k}(t) \Phi_{a_{t}, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } z \in \Omega_{T} \text { and all } t \in[0, L] \text {, }
$$

where $t \mapsto U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ and $t \mapsto \lambda_{k}(t)>0$ are continuous on $[0, L]$ for each $k \in$ $\{1, \ldots, m\}$. Moreover, $\lambda_{1}, \ldots, \lambda_{m}$ are normalised in the following sense: $\sum_{k=1}^{m} \lambda_{k}(t)=1$ for all $t \in[0, L]$.

For each $t \in[0, L], g_{t}$ denotes the normalised appropriate mapping function from $\Omega_{t}:=\Omega \backslash \bigcup_{k=1}^{m} \gamma_{k}(0, t]$ onto the canonical domain D_{t}. Moreover, for all $w \in \mathbb{C}$, we set $E(w):=w$ in the radial and bilateral case and $E(w):=\frac{1}{2 i}$ in the chordal case. $a_{t}:=0$ in the radial case, a_{t} is the inner radius of D_{t} in the bilateral case, and $a_{t}:=\infty$ in the chordal case for all $t \in[0, L]$.
Proof. First of all, let us fix $k \in\{1, \ldots, m\}$ and $T>0$. Note that we find an admissible parametrisation $\delta_{k}:[0, T] \rightarrow \Gamma_{k}$ such that $t \mapsto \mathfrak{c}\left(h_{k ; t}\right)=L_{k} \frac{t}{T}$ with $L_{k}=\mathfrak{c}_{\Omega}\left(\Gamma_{k}\right)>0$
for all $t \in[0, T]$. For each $t \in[0, T], h_{k ; t}$ denotes the normalised appropriate mapping function on $\Omega^{S} \backslash \delta_{k}(0, t]$. To see this, let $\tilde{\delta}_{k}$ be an arbitrary parametrisation of Γ_{k}, so $\tilde{\delta}_{k}:\left[0, T_{k}\right] \rightarrow \Gamma_{k}$ with $T_{k}>0$. Let $\tilde{h}_{k ; t}$ be the normalised appropriate mapping function on $\Omega^{S} \backslash \tilde{\delta}_{k}(0, t]$. Then $t \mapsto c_{k}(t):=\mathfrak{c}\left(\tilde{h}_{k ; t}\right)$ is an increasing homeomorphism from $\left[0, T_{k}\right]$ onto $\left[0, L_{k}\right]$. Next, let $\delta_{k}(t):=\left(\tilde{\delta}_{k} \circ c_{k}^{-1}\right)\left(L_{k} \frac{t}{T}\right)$, so $\mathfrak{c}\left(h_{k ; t}\right)=L_{k} \frac{t}{T}$ for all $t \in[0, T]$.

Note that we can do this for each $k \in\{1, \ldots, m\}$, so $\left(\delta_{1}, \ldots, \delta_{m}\right)_{[0, T]}$ is an admissible parametrisation of the tuple $\left(\Gamma_{1}, \ldots, \Gamma_{m}\right)$. Using Theorem 2.30, 2.31 or 2.36 applied to the single slit case, $h_{1 ; t}, \ldots, h_{m ; t}$ satisfy condition (ii) of Corollary 4.2 for each $t_{0} \in$ $[0, T]$. For each $t \in[0, T], \tilde{g}_{t}$ denotes the normalised appropriate mapping function on $\Omega \backslash \bigcup_{k=1}^{m} \delta_{k}(0, t]$ and we set $c_{t}:=\mathfrak{c}\left(\tilde{g}_{t}\right)$. Using Corollary $4.2, t \mapsto \tilde{g}_{t}(z)$ is differentiable on $[0, T]$ for all $z \in \Omega \backslash \bigcup_{k=1}^{m} \Gamma_{k}$. Moreover, $t \mapsto c_{t}$ is an increasing homeomorphism of $[0, T]$ onto $[0, L]$ with $L>0$ and $t \mapsto c_{t}$ is continuously differentiable with positive derivative on $[0, T]$. Note that the positivity and continuity is a consequence of the positivity and continuity of the distortion factor together with Theorem $2.30,2.31$ or 2.36 . We set $d_{t}:=c_{t}^{-1}$ for all $t \in[0, L]$.

Finally, let us define $\gamma_{k}(t):=\delta_{k}\left(d_{t}\right)$ for all $t \in[0, L]$ and $k \in\{1, \ldots, m\}$. Note that, for each $k \in\{1, \ldots, m\}, t \mapsto \mathfrak{c}\left(h_{k ; d_{t}}\right)=\frac{L_{k}}{T} d_{t}$ is continuously differentiable on [0,L]. Again $h_{1 ; d_{t}}, \ldots, h_{m ; d_{t}}$ satisfy condition (ii) of Corollary 4.2, so using Corollary $4.2, g_{t}:=\tilde{g}_{d_{t}}$ satisfies condition (i). Using the same notations as in Corollary 4.2, each $t \mapsto \mu_{k}(t)$ is continuous on $[0, T]$, as $\mu_{k}(t):=\frac{\mathrm{d}}{\mathrm{d} t} \mathfrak{c}\left(h_{k ; d_{t}}\right)=\frac{L_{k}}{T} \dot{d}_{t}>0$. Hence, $t \mapsto \lambda_{k}(t)$ is continuous and positive on $[0, L]$ as well. Moreover, $\mathfrak{c}\left(g_{t}\right)=\mathfrak{c}\left(\tilde{g}_{d_{t}}\right)=(c \circ d)(t)=t$ for all $t \in[0, T]$, so $\sum_{k=1}^{m} \lambda_{k} \equiv 1$.

The previous corollary gives a construction how to find tuples of multiple slits that lead to continuous normalised Komatu-Loewner equations, i.e. the mapping function g_{t} fulfils a differential equation everywhere (and not only almost everywhere) with normalised λ_{k}. The idea was to start with $m \in \mathbb{N}$ single slit Loewner equations that are everywhere differentiable. Using Corollary 4.2, we get differentiability in the multiple slit setting as well. Finally, a normalisation afterwards gives us normalised weights λ_{k}.

Next, we are going to construct tuples of multiple slits leading to continuous KomatuLoewner equations that are already normalised. Again, this is based on single slit Loewner equations. Unfortunately, we can do this in simply connected domains only. The reason for this is that we need the subadditivity of \mathfrak{c}, see Lemma 2.57 and 2.56.

Proposition 4.4. Let Ω be a simply connected canonical domain and denote by $\left(\Gamma_{1}, \Gamma_{2}\right)$ a tuple of branched or disjoint unparametrised appropriate slits in Ω. Moreover, $L:=$ $\mathfrak{c}_{\Omega}\left(\Gamma_{1} \cup \Gamma_{2}\right)$. Assume $\left(\gamma_{1}\right)_{t \in[0, L]}$ is an admissible parametrisation of Γ_{1} such that $t \mapsto$ $\mathfrak{c}\left(h_{1 ; t}\right)$ is Lipschitz continuous on $[0, L]$ with a Lipschitz constant $K<1$. Herein, for each $t \in[0, L], h_{1 ; t}$ denotes the normalised appropriate mapping function on $\Omega \backslash \gamma_{1}(0, t]$.

Then we find a unique admissible parametrisation $\left(\gamma_{2}\right)_{t \in[0, L]}$ of Γ_{2} such that $\mathfrak{c}\left(g_{t}\right)=$ t for all $t \in[0, L]$ where g_{t} denotes the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$ for all $t \in[0, L]$.

Moreover, assume $\Gamma_{1} \cap \Gamma_{2}=\emptyset$, i.e. $\left(\Gamma_{1}, \Gamma_{2}\right)$ is a tuple of disjoint unparametrised appropriate slits in Ω. For each $t \in[0, L], h_{2 ; t}$ denotes the normalised appropriate mapping function on $\Omega \backslash \gamma_{2}(0, t]$. Then $t \mapsto h_{1 ; t}$ is differentiable at t_{0} if and only if
$t \mapsto h_{2 ; t}$ or $t \mapsto g_{t}$ is differentiable ${ }^{9}$ at t_{0}.
Proof. 1) First of all, let $\left(\delta_{2}\right)_{t \in[0, L]}$ be an arbitrary admissible parametrisation of Γ_{2}. Moreover, we denote by $\tilde{f}_{t, \tau}$ the normalised mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \delta_{2}(0, \tau]\right)$ with $t, \tau \in[0, L]$. Note that $\mathfrak{c}\left(h_{1 ; t}\right)<t$ for all $t \in[0, L]$. Consequently, for each $t \in[0, L]$, we find a unique $\tau_{t} \in[0, L]$ such that $\mathfrak{c}\left(\tilde{f}_{t, \tau_{t}}\right)=t$. Hence, we get a unique continuous function $\tau:[0, L] \rightarrow[0, L]$ such that $\mathfrak{c}\left(\tilde{f}_{t, \tau_{t}}\right)=t$ for all $t \in[0, L]$, and $\tau_{0}=0$ and $\tau_{L}=L$. Note that the continuity is an immediate consequence Lemma 2.42.
Next, we set $\gamma_{2}(t):=\delta_{2}\left(\tau_{t}\right)$ for all $t \in[0, L]$. Consequently, it remains to prove that $\gamma_{2}:[0, L] \rightarrow \Gamma_{2}$ is bijective. In order to prove the bijective correspondence let $0 \leq$ $t_{1}<t_{2} \leq L$ and assume $\gamma_{2}\left(t_{1}\right)=\gamma_{2}\left(t_{2}\right)$. For each $t, \tau \in[0, T]$, we denote by $f_{t, \tau}$ the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, \tau]\right)$. Lemma 3.13 gives us

$$
\begin{aligned}
t_{2}-t_{1} & =\mathfrak{c}\left(f_{t_{2}, t_{2}}\right)-\mathfrak{c}\left(f_{t_{1}, t_{1}}\right)=\mathfrak{c}\left(f_{t_{2}, t_{1}}\right)-\mathfrak{c}\left(f_{t_{1}, t_{1}}\right. \\
& \leq \mathfrak{c}\left(f_{t_{2}, 0}\right)-\mathfrak{c}\left(f_{t_{1}, 0}\right)=\mathfrak{c}\left(h_{1 ; t_{2}}\right)-\mathfrak{c}\left(h_{1 ; t_{1}}\right)<t_{2}-t_{1} .
\end{aligned}
$$

This is a contradiction, so γ_{2} needs to be bijective.
2) Additionally, assume (Γ_{1}, Γ_{2}) is a tuple of disjoint unparametrised appropriate slits in Ω.
Let be $Z=\left\{s_{0}, \ldots, s_{n}\right\}$ be a partition of the interval $[0, t] \subseteq[0, L]$ and we set:

$$
\mathcal{S}_{1}(f, t, Z):=\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{s_{l+1}, s_{l}}\right)-\mathfrak{c}\left(f_{s_{l}, s_{l}}\right), \quad \mathcal{S}_{2}(f, t, Z):=\sum_{l=0}^{n-1} \mathfrak{c}\left(f_{s_{l}, s_{l+1}}\right)-\mathfrak{c}\left(f_{s_{l}, s_{l}}\right) .
$$

By Lemma 3.6, each limit $c_{k}(t):=\lim _{|Z| \rightarrow 0} \mathcal{S}_{k}(f, t, Z), k \in\{1,2\}$, exists and forms an increasing and Lipschitz continuous function $t \mapsto c_{k}(t)$. Moreover, Lemma 3.6 gives us $c_{1}(t)+c_{2}(t)=t$ for all $t \in[0, L]$ as $\mathfrak{c}\left(g_{t}\right)=t$ for all $t \in[0, L]$. Using Proposition 2.55 and Lemma 3.6, for each $k \in\{1,2\}, t \mapsto c_{k}(t)$ is differentiable at t_{0} if and only if $t \mapsto h_{k ; t}$ is differentiable at t_{0}. For each $t \in[0, T]$, we have $c_{2}(t)=t-c_{1}(t)$, so $t \mapsto c_{2}(t)$ is differentiable at t_{0} if and only if $t \mapsto c_{1}(t)$ is differentiable at t_{0}. Summarising, $t \mapsto h_{2 ; t}$ is differentiable at t_{0} if and only if $t \mapsto h_{1 ; t}$ is differentiable at t_{0}. Using Theorem 4.1, $t \mapsto g_{t}$ is differentiable if and only if $t \mapsto h_{1 ; t}$ and $t \mapsto h_{2 ; t}$ are differentiable at t_{0}

Example 4.1. Let Ω be a simply connected canonical domain and denote by $\left(\Gamma_{1}, \Gamma_{2}\right)$ a tuple of disjoint unparametrised slits in Ω with $\mathfrak{c}_{\Omega}\left(\Gamma_{1} \cup \Gamma_{2}\right)=1$. Using Lemma 2.41, $L_{1}:=\mathfrak{c}_{\Omega}\left(\Gamma_{1}\right)<1$ as well as $L_{2}:=\mathfrak{c}_{\Omega}\left(\Gamma_{2}\right)<1$. Consequently, we find an $\varepsilon>0$ such that $L_{1}+\varepsilon<1$ as well. Then we define

$$
u_{1}:[0,1] \rightarrow\left[0, L_{1}\right], \quad t \mapsto u_{1}(t):= \begin{cases}\left(L_{1}+\varepsilon\right) t & \text { if } t \in\left[0, \frac{1}{2}\right], \\ \left(L_{1}-\varepsilon\right) t+\varepsilon & \text { if } t \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$

[^7]Obviously, we find a unique admissible parametrisation $\left(\gamma_{1}\right)_{t \in[0,1]}$ of Γ_{1} such that $\mathfrak{c}\left(h_{1 ; t}\right)=$ $u_{1}(t)$ for all $t \in[0,1]$. Again, for each $t \in[0,1], h_{1 ; t}$ denotes the normalised appropriate mapping function on $\mathbb{D} \backslash \gamma_{1}(0, t]$. Obviously, $\mathfrak{c}\left(h_{1 ; t}\right)=u_{1}(t)$ is Lipschitz continuous with Lipschitz constant $L_{1}+\varepsilon<1$. Using Proposition 4.4, we find a unique admissible parametrisation $\left(\gamma_{2}\right)_{t \in[0,1]}$ of Γ_{2} such that $\mathfrak{c}\left(g_{t}\right)=t$ for all $t \in[0,1]$. Herein, g_{t} is the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right), t \in[0,1]$.

Then the function $t \mapsto h_{1 ; t}$ is not differentiable at $t=\frac{1}{2}$, see Theorem 2.30, 2.31 and 2.36. Using Proposition 4.4, $t \mapsto h_{2 ; t}$ and $t \mapsto g_{t}$ are not differentiable at t_{0} as well. Nevertheless, $\mathfrak{c}\left(g_{t}\right)=t$ is differentiable at t_{0}, so this example shows that differentiability of $t \mapsto \mathfrak{c}\left(g_{t}\right)$ at a point t_{0} is not sufficient to get differentiability of $t \mapsto g_{t}$ at t_{0}.

Next, we will have a deeper look at 'nice' slits, i.e. slits that are two times continuously differentiable and regular. In this context, regular means that the first derivative does not vanish. In the radial simply connected single slit case the following result, due to C. Earle and A. Epstein, see [EE01], is already known.

Lemma 4.5 (Theorem 3, see [EE01]). Let $(\gamma)_{t \in[0, T]}$ be a radial slit in \mathbb{D} with $\gamma \in$ $\mathcal{C}^{2}([0, T])$ and γ regular, i.e. $t \mapsto \gamma(t)$ is two times continuously differentiable on $[0, T]$ with $\dot{\gamma}(t) \neq 0$ for all $t \in[0, T]$. For each $t \in[0, T]$, we denote by h_{t} the normalised radial mapping function on $\mathbb{D} \backslash \gamma(0, t]$.

Then $t \mapsto h_{t}$ is (continuously) differentiable on $[0, T]$ and satisfies

$$
\dot{h}_{t}(z)=h_{t}(z) \mu(t) \Phi_{0, \Upsilon_{t}, \mathbb{D}}\left(h_{t}(z)\right)=h_{t}(z) \mu(t) \frac{\Upsilon_{t}+h_{t}(z)}{\Upsilon_{t}-h_{t}(z)}, \quad z \in \mathbb{D} \backslash \gamma(0, T], t \in[0, T]
$$

where, for all $t \in[0, T], \Upsilon_{t}:=h_{t}(\gamma(t)) \in \mathbb{T}$ and $\mu(t)>0$. On top of this $\Upsilon \in \mathcal{C}^{1}([0, T])$ and $\mu \in \mathcal{C}([0, T])$.

Next, we are going to generalise this result to multiply connected domains and several slits.

Theorem 4.6. Let Ω be a circular slit disk and $\left(\gamma_{1}, \ldots, \gamma_{m}\right)_{t \in[0, T]}$ be radial slits in Ω. For each $k \in\{1, \ldots, m\}$, assume $\gamma_{k} \in \mathcal{C}^{2}([0, T])$ and γ_{k} is regular. Moreover, we denote by g_{t} the normalised radial mapping function on $\Omega_{t}:=\Omega \backslash \bigcup_{k=1}^{m} \gamma_{k}(0, t]$ for all $t \in[0, T]$.

Then for each $z \in \Omega_{T}, t \mapsto g_{t}(z)$ is continuously differentiable on $[0, T]$ and satisfies

$$
\dot{g}_{t}(z)=g_{t}(z) \sum_{k=1}^{m} \lambda_{k}(t) \Phi_{0, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } z \in \Omega_{T} \text { and all } t \in[0, T],
$$

where, for each $k \in\{1, \ldots, m\}$ and $t \in[0, T], U_{k}(t):=g_{t}\left(\gamma_{k}(t)\right)$ and $\lambda_{k}(t)>0$. On top of this, for each $k \in\{1, \ldots, m\}, U_{k} \in \mathcal{C}^{1}([0, T])$ and $\lambda_{k} \in \mathcal{C}([0, T])$.

Proof. For each $t \in[0, T]$, we denote by $h_{k ; t}$ the normalised radial mapping function on $\mathbb{D} \backslash \gamma_{k}(0, t]$ onto \mathbb{D}. Using Lemma 4.5, for each $k \in\{1, \ldots, m\}$ and $z \in \Omega_{T}, t \mapsto h_{k ; t}(z)$ is continuous differentiable on $[0, T]$ and satisfies

$$
\begin{equation*}
\dot{h}_{k ; t}(z)=h_{k ; t}(z) \mu_{k}(t) \Phi_{0, \Upsilon_{k}(t), \mathbb{D}}\left(h_{k ; t}(z)\right) \quad \text { for all } z \in \Omega_{T} \text { and } t \in[0, T], \tag{4.1}
\end{equation*}
$$

with $\Upsilon_{k}(t):=h_{k ; t}\left(\gamma_{k}(t)\right)$ and $\mu_{k}(t)>0$. Moreover, $\Upsilon_{k} \in \mathcal{C}^{1}([0, T])$ and $\mu_{k} \in \mathcal{C}([0, T])$ for each $k \in\{1, \ldots, m\}$. Then Corollary 4.2 shows that for each $z \in \Omega_{T}, t \mapsto g_{t}(z)$ is differentiable on $[0, T]$ as well and satisfies

$$
\begin{equation*}
\dot{g}_{t}(z)=g_{t}(z) \sum_{k=1}^{m} \lambda_{k}(t) \Phi_{0, U_{k}(t), D_{t}}\left(g_{t}(z)\right) \quad \text { for all } z \in \Omega_{T} \text { and } t \in[0, T], \tag{4.2}
\end{equation*}
$$

where $\lambda_{k}(t)=\left|\alpha_{k}(t)\right|^{2} \mu_{k}(t)$ and $\left|\alpha_{k}\right|$ is positive and continuous on $[0, T]$. Consequently, each $t \mapsto \lambda_{k}(t), k \in\{1, \ldots, m\}$, is continuous and positive on $[0, T]$.

Finally, for each $k \in\{1, \ldots, m\}$, we are going to prove $U_{k} \in \mathcal{C}^{1}([0, T])$. Therefore, we fix $k \in\{1, \ldots, m\}$. Note that $U_{k}(t)=g_{t}\left(h_{k ; t}^{-1}\left(\Upsilon_{k}(t)\right)\right)$ holds for all $t \in[0, L]$, and $\Upsilon_{k} \in \mathcal{C}^{1}([0, T])$. Let $t_{0} \in[0, T]$. Using Lemma 2.42 and 2.44, there is an $\varepsilon>0$ and a $\delta>0$ such that $z \mapsto\left(g_{t} \circ h_{k ; t}^{-1}\right)(z)$ has an analytic continuation to $B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right)$ for all $t \in\left(t_{0}-\delta, t_{0}+\delta\right) \cap[0, T]$. For each $z \in B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right) \cap \mathbb{D}, t \mapsto\left(g_{t} \circ h_{k ; t}^{-1}\right)(z)$ is continuously differentiable on $\left(t_{0}-\delta, t_{0}+\delta\right) \cap[0, T]$. An easy calculation together with Equation (4.1) and (4.2) shows that $t \mapsto\left(g_{t} \circ h_{k ; t}^{-1}\right)(z)$ is continuous differentiable on $B_{\varepsilon}\left(\Upsilon_{k}\left(t_{0}\right)\right)$ as well. Thus $t \mapsto U_{k}(t)$ needs to be continuously differentiable on $\left(t_{0}-\delta, t_{0}+\delta\right) \cap[0, T]$ as well. Summarising, $U_{k} \in \mathcal{C}^{1}([0, T])$

4.2 Slits having branch points

Next, let us consider the branch point case. Is there a theorem like Theorem 4.1 as well? In order to simplify the notations we take into consideration two branched slits only.

Let (Γ_{1}, Γ_{2}) be a tuple of branched unparametrised appropriate slits in Ω. Here, Ω is a canonical domain and Ω^{S} denotes the simplification of Ω. Assume $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ is an admissible parametrisation, and for each $t \in[0, T]$, denote by $h_{1 ; t}, h_{2 ; t}$ and g_{t} the normalised appropriate mapping functions on $\Omega^{S} \backslash \gamma_{1}(0, t], \Omega^{S} \backslash \gamma_{2}(0, t]$ and $\Omega \backslash\left(\gamma_{1}(0, t] \cup\right.$ $\left.\gamma_{2}(0, t]\right)$, respectively. Let $t_{0}>0$. Then it is easy to see that $t \mapsto g_{t}$ is differentiable at t_{0} if and only if $t \mapsto h_{1 ; t}$ and $t \mapsto h_{2 ; t}$ are differentiable at t_{0}. Note that we can trace this problem back to the disjoint case. In particular, we apply g_{ε} with $\varepsilon<t_{0}$ to get two disjoint slits $\delta_{k}(t):=g_{\varepsilon}\left(\gamma_{k}(t+\varepsilon)\right), k \in\{1,2\}$ and $t \in[0, T-\varepsilon]$. Then we use Theorem 4.1 to get the desired statement. We used this method already in Section 3.2. Hence, we have the following corollary.

Corollary 4.7. Let Ω be a canonical domain and denote by $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ a tuple of branched appropriate slits in Ω. For each $t \in[0, T]$, we denote by g_{t} the normalised appropriate mapping function on $\Omega_{t}:=\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$. Moreover, for each $k \in$ $\{1,2\}$ and $t \in[0, T]$, we set $h_{k ; t}$ as the normalised appropriate mapping function on $\Omega^{S} \backslash \gamma_{k}(0, t]$. Let $t_{0} \in(0, T]$. Then the following two statements are equivalent.
(i) $t \mapsto g_{t}(z)$ is differentiable at $t=t_{0}$ for each $z \in \Omega_{t_{0}}$.
(ii) For each $k \in\{1,2\}, t \mapsto h_{k ; t}(z)$ is differentiable at $t=t_{0}$ for all $z \in \Omega^{S} \backslash \gamma_{k}\left(0, t_{0}\right]$.

It remains to have a look at the case $t_{0}=0$. In this case Theorem 4.1 is not true in general, as we have the following result.

Theorem 4.8. Let $\Omega=\mathbb{H}$. Then we find a tuple $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ of branched chordal slits in \mathbb{H} such that for each $z \in \mathbb{H} \backslash \gamma_{k}(0, T]$ and $k \in\{1,2\}, t \mapsto h_{k ; t}(z)$ is continuously differentiable on $[0, T]$, while, for each $z \in \mathbb{H}, t \mapsto g_{t}(z)$ is not differentiable at $t=0$. Herein, for each $t \in[0, T], h_{1 ; t}, h_{2 ; t}$ and g_{t} denote the normalised chordal mapping functions on $\mathbb{H} \backslash \gamma_{1}(0, t], \mathbb{H} \backslash \gamma_{2}(0, t]$ and $\mathbb{H} \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$, respectively.
Proof. Let $\Omega=\mathbb{H}, 0 \leq \varepsilon<\frac{1}{2}$ and let A be the closed set that connects the points

$$
\frac{\varepsilon}{2}+\frac{1}{2} \mathrm{i}, \quad \frac{\varepsilon}{2}+\frac{3}{4} \mathrm{i}, \quad \frac{1}{4}+\frac{3}{4} \mathrm{i}, \quad \frac{1}{4}+\mathrm{i}, \quad \varepsilon+\mathrm{i}
$$

by straight line segments, so A is the union of four closed straight line segments. Then we set $\Gamma_{1}:=\{0\} \cup \bigcup_{n=0}^{\infty} \frac{1}{2^{n}} A$. Note that $\frac{1}{2} A \cap A=\left\{\frac{i}{2}+\frac{\varepsilon}{2}\right\}$, so Γ_{1} is a chordal unparametrised slit in Ω, see Figure 4.3. Then we find an admissible parametrisation of $\gamma_{1}:[0, T] \rightarrow \Gamma_{1}$ such that $\operatorname{hcap}\left(h_{1 ; t}\right)=t$ for all $t \in[0, T]$. In this context, for each $t \in[0, T], h_{1 ; t}$ denotes the normalised chordal mapping function on $\mathbb{H} \backslash \gamma_{1}(0, t]$. Obviously, $T=\operatorname{hcap}_{\mathbb{H}}\left(\Gamma_{1}\right)$ in this case.

Figure 4.3: A and Γ_{1} for $\varepsilon=0$
Next, we reflect Γ_{1} along the imaginary axis, so $\Gamma_{2}:=\left\{z \in \mathbb{C} \mid-\bar{z} \in \Gamma_{1}\right\}$. We parametrise $\gamma_{2}:[0, T] \rightarrow \Gamma_{2}$ in the same way as Γ_{1}, i.e. hcap $\left(h_{2 ; t}\right)=t$ for all $t \in[0, T]$. Analogously, $h_{2 ; t}$ denotes the normalised chordal mapping function on $\mathbb{H} \backslash \gamma_{2}(0, t]$. For reasons of symmetry, $\gamma_{2}(t)$, with $t \in[0, T]$, is the reflection of $\gamma_{1}(t)$ along the imaginary axis. Thus, for each $k \in\{1,2\}$ and $z \in \Omega \backslash \Gamma_{k}, t \mapsto h_{k ; t}(z)$ is continuously differentiable on $[0, T]$, see Theorem 2.36 applied to the single slit case.

On top of this, Γ_{1} and Γ_{2} are self-similar, i.e. $\frac{1}{2} \Gamma_{k} \subseteq \Gamma_{k}$ with $k \in\{1,2\}$. Let $k \in\{1,2\}$. For each $t \in[0, T]$, there is a $t^{*} \in[0, T]$ such that $\gamma_{k}\left(0, t^{*}\right]=\frac{1}{2} \gamma_{k}(0, t]$. Note that

$$
\begin{equation*}
\operatorname{hcap}_{\mathbb{H}}(d \mathfrak{H})=d^{2} \operatorname{hcap}_{\mathbb{H}}(\mathfrak{H}) \quad \text { for all } d>0 \text { and all chordal hulls } \mathfrak{H} \text { in } \mathbb{H} . \tag{4.3}
\end{equation*}
$$

Consequently, $t^{*}=\operatorname{hcap}\left(h_{k ; t^{*}}\right)=\frac{1}{4} \operatorname{hcap}\left(h_{k ; t}\right)=\frac{1}{4} t$. Thus we have $\gamma_{k}\left(\frac{t}{4}\right)=\frac{1}{2} \gamma_{k}(t)$ for all $t \in[0, T]$. Inductively, we get $\gamma_{k}\left(\frac{t}{4^{n}}\right)=\frac{1}{2^{n}} \gamma_{k}(t)$ for all $t \in[0, T]$ and all $n \in \mathbb{N}$.

Next, for each $t \in[0, T]$, let us denote by g_{t} the normalised chordal mapping function on $\Omega \backslash \mathfrak{H}(t)$ where $\mathfrak{H}(t)$ is the smallest chordal \mathbb{H}-hull containing $\gamma_{1}(0, t] \cup \gamma_{2}(0, t]$. Note that $\mathfrak{H}(t)=\gamma_{1}(0, t] \cup \gamma_{2}(0, t]$ whenever $\varepsilon>0$. On the other hand, the complement of the union has bounded connected components if $\varepsilon=0$. In either case, for each $t \in[0, T]$, $\mathfrak{H}(t)$ is self-similar in the sense that $\frac{1}{2} \mathfrak{H}(t) \subseteq \mathfrak{H}(t)$. To be more precise, $\mathfrak{H}\left(\frac{t}{4^{n}}\right)=\frac{1}{2^{n}} \mathfrak{H}(t)$ for all $t \in[0, T]$ and all $n \in \mathbb{N}$, as $\gamma_{k}\left(\frac{t}{4^{n}}\right)=\frac{1}{2^{n}} \gamma_{k}(t), k \in\{1,2\}$. Next, let us define $c(t):=\operatorname{hcap}\left(g_{t}\right)$ for all $t \in[0, T]$. Again Equation (4.3) gives us $c\left(\frac{t}{4^{n}}\right)=\frac{1}{4^{n}} c(t)$ for all $t \in[0, T]$ and all $n \in \mathbb{N}$. Thus we may write

$$
\begin{equation*}
\frac{c\left(\frac{t}{4^{n}}\right)}{\frac{t}{4^{n}}}=\frac{c(t)}{t} \quad \text { for all } n \in \mathbb{N} \text { and } t \in(0, T] . \tag{4.4}
\end{equation*}
$$

Suppose $t \mapsto c(t)$ is differentiable at $t=0$. Then Equation (4.4) gives us $c(t)=\dot{c}(0) \cdot t$ for all $t \in[0, T]$, i.e. c is linear. As $T=\operatorname{hcap}\left(h_{1 ; T}\right)<\operatorname{hcap}\left(g_{T}\right)=c(T)=\dot{c}(0) \cdot T$ we have $\dot{c}(0)>1$.

Let t_{2} and t_{1} be defined by $\gamma_{1}\left(t_{1}\right)=\frac{1}{2} i+\frac{\varepsilon}{2}$ and $\gamma_{1}\left(t_{2}\right)=\frac{3}{4} i+\frac{\varepsilon}{2}$. From [LMR10], Lemma 4.10, it follows that $t_{2}, t_{1}, c\left(t_{2}\right), c\left(t_{1}\right)$ depend continuously on ε. For $\varepsilon=0$ we have $\mathfrak{H}_{t_{2}} \backslash \mathfrak{H}_{t_{1}}=\gamma_{1}\left(t_{1}, t_{2}\right]$ and we set $\mathfrak{A}:=h_{1 ; t_{1}}\left(\mathfrak{H}_{t_{1}} \backslash \gamma_{1}\left(0, t_{1}\right]\right)$ and $\mathfrak{B}:=h_{1 ; t_{1}}\left(\gamma_{1}\left(0, t_{2}\right] \backslash\right.$ $\left.\gamma_{1}\left(0, t_{1}\right]\right)=h_{1 ; t_{1}}\left(\gamma_{1}\left(t_{1}, t_{2}\right]\right)$. Note that $\mathfrak{A}, \mathfrak{B}$ and $\mathfrak{A} \cup \mathfrak{B}$ are chordal hulls in \mathbb{H}. Using Lemma 2.56, we get hcap $\operatorname{p}_{\mathbb{H}}(\mathfrak{A} \cup \mathfrak{B}) \leq \operatorname{hcap}_{\mathbb{H}}(\mathfrak{A})+\operatorname{hcap}_{\mathbb{H}}(\mathfrak{B})$. Moreover, hcap $\operatorname{pit}_{\mathcal{H}}(\mathfrak{A})=$ $\operatorname{hcap}\left(g_{t_{1}}\right)-\operatorname{hcap}\left(h_{1 ; t_{1}}\right), \operatorname{hcap}_{\mathbb{H}}(\mathfrak{B})=\operatorname{hcap}\left(h_{1 ; t_{2}}\right)-\operatorname{hcap}\left(h_{1 ; t_{1}}\right)$ and $\operatorname{hcap} \mathcal{H}_{\mathbb{H}}(\mathfrak{A} \cup \mathfrak{B})=$ $\operatorname{hcap}\left(g_{t_{2}}\right)-\operatorname{hcap}\left(h_{1 ; t_{1}}\right)$. Summarising, we find

$$
c\left(t_{2}\right)-c\left(t_{1}\right)=\operatorname{hcap}\left(g_{t_{2}}\right)-\operatorname{hcap}\left(g_{t_{1}}\right) \leq \operatorname{hcap}\left(h_{1 ; t_{2}}\right)-\operatorname{hcap}\left(h_{1 ; t_{1}}\right)=t_{2}-t_{1} .
$$

Now choose $\varepsilon>0$ small enough sucht that we still have

$$
\frac{c\left(t_{2}\right)-c\left(t_{1}\right)}{t_{2}-t_{1}}<\dot{c}(0) \in(1, \infty) .
$$

This is a contradiction as $c(t)=\dot{c}(0) t$ for all $t \in[0, T]$. Thus $t \mapsto c(t):=\mathfrak{c}\left(g_{t}\right)$ can not be differentiable at t_{0}. Finally, Lemma 3.10 and Remark 3.6 show that for each $z \in \mathbb{H}$, $t \mapsto g_{t}(z)$ is not differentiable at $t=0$.

Note that Theorem 4.8 is restricted to the chordal case. One reason for this is that Equation (4.3), which is known as scaling property of hcap, is available only in the chordal case. Another reason is Lemma 2.56 that is only available in the simply connected case. Summarising, the previous counterexample is restricted to \mathbb{H}. Nevertheless, we will use this counterexample to find counterexamples in all other (even multiply connected) cases as well. In order to to so let us have a look at the next lemma.

Lemma 4.9. Let $\left(\delta_{1}, \delta_{2}\right)_{t \in[0, T]}$ be a tuple of branched chordal slit in \mathbb{H} with $\delta_{1}(0)=$ $0=\delta_{2}(0)$. Assume Ω is a canonical domain. For each $k \in\{1,2\}$, we set $\gamma_{k}(t):=$ $\exp \left(\sqrt{2} \delta_{k}(t)\right)$ in the radial and bilateral case and $\gamma_{k}(t):=\delta_{k}(t)$ in the chordal case.

Then we find a $t_{0} \in(0, T]$ such that $\left(\gamma_{1}, \gamma_{2}\right)_{t \in\left[0, t_{0}\right]}$ is a tuple of branched appropriate slits in Ω. Moreover, let us consider one of the following two cases.
(i) $\mathfrak{H}_{t}:=\gamma_{k}(0, t]$ and $\tilde{\mathfrak{H}}_{t}:=\delta_{k}(0, t]$ for all $t \leq t_{0}$ and some $k \in\{1,2\}$.
(ii) $\mathfrak{H}_{t}:=\gamma_{1}(0, t] \cup \gamma_{2}(0, t]$ and $\tilde{\mathfrak{H}}_{t}:=\delta_{1}(0, t] \cup \delta_{2}(0, t]$ for all $t \leq t_{0}$.

In either case, $t \mapsto c(t):=\mathfrak{c}_{\Omega}\left(\mathfrak{H}_{t}\right)$ is differentiable at $t=0$ if and only if $t \mapsto d(t):=$ hcap $_{\mathbb{H}}\left(\tilde{\mathfrak{H}}_{t}\right)$ is differentiable at $t=0$. When this happens $\dot{c}(0)=\dot{d}(0)$.

Proof. Obviously, we find a $t_{0} \in(0, T]$ such that $\gamma_{k}\left(0, t_{0}\right] \cap \partial \Omega=\emptyset$ for all $k \in\{1,2\}$. For each $t \in\left[0, t_{0}\right]$, we denote by g_{t} the normalised appropriate mapping function on $\Omega \backslash \mathfrak{H}_{t}$. Moreover, \tilde{g}_{t} is the normalised chordal mapping function on $\mathbb{H} \backslash \tilde{\mathfrak{H}}_{t}$ with $t \in\left[0, t_{0}\right]$. On top of this we set $s_{t}:=g_{t}\left(\mathfrak{H}_{t}\right)$ and $\tilde{s}_{t}:=\tilde{g}_{t}\left(\tilde{\mathfrak{H}}_{t}\right)$ with $t \in\left[0, t_{0}\right]$. Using Remark 3.6, $s_{t} \rightarrow \gamma_{1}(0)=\gamma_{2}(0)$ and $\tilde{s}_{t} \rightarrow \delta_{1}(0)=\delta_{2}(0)=0$ as $t \searrow 0$.

Let $\varepsilon>0$ be small and let us consider the function

$$
T_{t}(\zeta):= \begin{cases}g_{t}\left(\exp \left(\sqrt{2} \mathbf{i} \cdot \tilde{g}_{t}^{-1}(\zeta)\right)\right) & \text { in the radial or bilateral case } \\ g_{t}\left(\tilde{g}_{t}^{-1}(\zeta)\right) & \text { in the chordal case }\end{cases}
$$

which is, by reflection and Lemma 2.42 , univalent on \mathbb{D}_{ε} for all $t \in\left[0, t^{*}\right]$ with a small $t^{*}<t_{0}$ and small $\varepsilon>0$. In the radial and bilateral case we are able to write $\tilde{g}_{t}^{-1}(\zeta)=$ $-\mathrm{i} \frac{1}{\sqrt{2}} \log \left(g_{t}^{-1}\left(T_{t}(\zeta)\right)\right)$ with a suitable branch of the logarithm and small t. Using Lemma 2.39, we find with a substitution and the mean value theorem

$$
\begin{aligned}
d(t) & =\frac{1}{\pi} \int_{\tilde{s}_{t}} \Im\left(\tilde{g}_{t}^{-1}(\zeta)\right)|\mathrm{d} \zeta|=\frac{1}{\pi} \int_{\tilde{s}_{t}} \Im\left(-\frac{\mathrm{i}}{\sqrt{2}} \log \left(g_{t}^{-1}\left(T_{t}(\zeta)\right)\right)\right)|\mathrm{d} \zeta| \\
& =-\frac{1}{\sqrt{2} \pi} \int_{\tilde{s}_{t}} \ln \left|g_{t}^{-1}\left(T_{t}(\zeta)\right)\right||\mathrm{d} \zeta|=-\frac{1}{\sqrt{2} \pi} \int_{s_{t}} \ln \left|g_{t}^{-1}(\xi)\right| \frac{1}{\left|T_{t}^{\prime}\left(T_{t}^{-1}(\xi)\right)\right|}|\mathrm{d} \xi| \\
& \left.=-\frac{\sqrt{2}}{\left|T_{t}^{\prime}\left(\zeta_{t}\right)\right|} \frac{1}{2 \pi} \int_{s_{t}} \ln \left|g_{t}^{-1}(\xi)\right| \mathrm{d} \xi \right\rvert\,=\frac{\sqrt{2}}{\left|T_{t}^{\prime}\left(\zeta_{t}\right)\right|} c(t)
\end{aligned}
$$

for all small $t<t^{*}$ where $\zeta_{t} \in \tilde{s}_{t}$. Note that the last equality follow immediately from Lemma 2.27 and 2.34. Analogously, we have in the chordal case together with Lemma 2.39

$$
d(t)=\frac{1}{\pi} \int_{\tilde{s}_{t}} \Im\left(\tilde{g}_{t}^{-1}(\zeta)\right)|\mathrm{d} \zeta|=\frac{1}{\pi} \int_{\tilde{S}_{t}} \Im\left(g_{t}^{-1}\left(T_{t}(\zeta)\right)\right)|\mathrm{d} \zeta|=\frac{1}{\left|T_{t}^{\prime}\left(\zeta_{t}\right)\right|} c(t)
$$

and $\zeta_{t} \in \tilde{s}_{t}$. Note that $g_{t} \xrightarrow{\text { l.u. }}$ id on Ω and $\tilde{g}_{t} \xrightarrow{\text { l.u. }}$ id on \mathbb{H} as $t \searrow 0$, so it is easy to see that $\left|T_{t}^{\prime}\left(\zeta_{t}\right)\right| \rightarrow \sqrt{2}$ as $t \searrow 0$ in the radial and bilateral case, and $\left|T_{t}^{\prime}\left(\zeta_{t}\right)\right| \rightarrow 1$ as $t \searrow 0$ in the chordal case.

Combining Lemma 4.9, Theorem 4.8 and Lemma 3.10, we find the following corollary.
Corollary 4.10. Let Ω be a canonical domain and denote by Ω^{S} the simplification of Ω. Then we find a tuple $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ of branched appropriate slits in Ω such that each $t \mapsto h_{k ; t}(z), k \in\{1,2\}$, is differentiable at 0 for all $z \in \Omega^{S}$, while, for each $z \in \Omega \backslash\{0\}$, $t \mapsto g_{t}$ is not differentiable at $t=0$. Herein, for each $t \in[0, T], h_{1 ; t}, h_{2 ; t}$ and g_{t} denote the normalised appropriate mapping functions on $\Omega^{S} \backslash \gamma_{1}(0, t], \Omega^{S} \backslash \gamma_{2}(0, t]$ and $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$, respectively.

On the other hand we also give a condition that ensures differentiability of $t \mapsto g_{t}$ at $t=0$ whenever $t \mapsto h_{1 ; t}$ and $t \mapsto h_{2 ; t}$ are differentiable at $t=0$. In order to do so, we need the following definition. Therefore, let $\phi \in(0, \pi)$. Assume $(\gamma)_{t \in[0, T]}$ is a chordal slit in the upper parallel slit half-plane Ω. Then we say γ approaches \mathbb{R} at $x \in \mathbb{R}$ in ϕ-direction if for every $\varepsilon>0$, there is a $t_{0}>0$ such that

$$
\gamma\left(0, t_{0}\right] \subseteq\{z \in \mathbb{H} \mid \phi-\varepsilon<\arg (z-x)<\phi+\varepsilon\} .
$$

Analogously, let Ω be a circular slit disk or circular slit annulus and let $(\gamma)_{t \in[0, T]}$ be an appropriate silt in Ω. Then we say γ approaches \mathbb{T} at $\xi \in \mathbb{T}$ in ϕ-direction if for every $\varepsilon>0$, there is a $t_{0}>0$ such that

$$
\gamma\left(0, t_{0}\right] \subseteq\left\{z \in \mathbb{D} \left\lvert\, \phi-\varepsilon<\arg (\gamma(0)-z)+\arg (\gamma(0))-\frac{\pi}{2}<\phi+\varepsilon\right.\right\} .
$$

Theorem 4.11. Let $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ be branched chordal slits in \mathbb{H}. Assume γ_{1} and γ_{2} approach \mathbb{R} at $\gamma_{1}(0)=\gamma_{2}(0)$ in α_{k}-direction with $\alpha_{k} \in(0, \pi), k \in\{1,2\}$. For each $k \in\{1,2\}$, we denote by $h_{k ; t}$ the normalised chordal mapping function on $\mathbb{H} \backslash \gamma_{k}(0, t]$ with $t \in[0, T]$, and assume that each $t \mapsto h_{k ; t}(z), k \in\{1,2\}$, is differentiable at $t=0$ for all $z \in \mathbb{H}$. Then for each $z \in \mathbb{H}, t \mapsto g_{t}(z)$ is differentiable at $t=0$ where g_{t} denotes the normalised chordal mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$ with $t \in[0, T]$.

Proof. See Theorem 3 in [BS15b]
Obviously, using Lemma 4.9 and 3.10 we find the following corollary.
Corollary 4.12. Let Ω be a canonical domain and let $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, T]}$ be branched appropriate slits in Ω. Assume γ_{1} and γ_{2} approach the outer or unbounded boundary of Ω at $\gamma_{1}(0)=\gamma_{2}(0)$ in α_{k}-direction with $\alpha_{k} \in(0, \pi), k \in\{1,2\}$. For each $k \in\{1,2\}$, we denote by $h_{k ; t}$ the normalised appropriate mapping function on $\Omega \backslash \gamma_{k}(0, t]$ with $t \in[0, T]$, and assume that each $t \mapsto h_{k ; t}(z), k \in\{1,2\}$, is differentiable at $t=0$ for all $z \in \Omega$. Then for each $z \in \Omega, t \mapsto g_{t}(z)$ is differentiable at $t=0$ where g_{t} denotes the normalised appropriate mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$ with $t \in[0, T]$.

Finally, it is worth to mention that the inverse of Theorem 4.11 or Corollary 4.12 is not true.

Example 4.2. Let $\left(\Gamma_{1}, \Gamma_{2}\right)$ be a tuple of branched chordal unparametrised slits in \mathbb{H}, and assume there is an admissible parametrisation $\left(\delta_{1}, \delta_{2}\right)_{t \in[0, T]}$ such that for each $k \in$ $\{1,2\}, \delta_{k}$ approaches \mathbb{R} at $\delta_{1}(0)=\delta_{2}(0)$ in α_{k}-direction with $\alpha_{k} \in(0, \pi)$. By definition γ_{k} approaches \mathbb{R} at $\gamma_{1}(0)=\gamma_{2}(0)$ in α_{k}-direction as well if $\left(\gamma_{1}, \gamma_{2}\right)_{t \in[0, L]}$ is another admissible parametrisation of $\left(\Gamma_{1}, \Gamma_{2}\right)$.

Without loss of generality we may assume $L:=\operatorname{hcap}_{\mathbb{H}}\left(\Gamma_{1} \cup \Gamma_{2}\right)=1$. Moreover, let $L_{k}:=\operatorname{hcap}_{\mathbb{H}}\left(\Gamma_{k}\right)$ with $k \in\{1,2\}$. Then $L_{k}<1$, so we find an $\varepsilon>0$ such that $L_{1}+\varepsilon<1$. Next, we define:

$$
\tilde{u}:[0,1] \rightarrow\left[0, L_{1}\right], \quad t \mapsto \tilde{u}(t):= \begin{cases}\left(L_{1}+\varepsilon\right) t & \text { if } t \in\left[0, \frac{1}{2}\right], \\ \left(L_{1}-\varepsilon\right) t+\varepsilon & \text { if } t \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$

We will use \tilde{u} to construct another increasing homeomorphism $u:[0,1] \rightarrow\left[0, L_{1}\right]$:

$$
u(t):=\left\{\begin{array}{cl}
\frac{1}{2^{n}} \tilde{u}\left(2^{n} t-1\right)+\frac{L_{1}}{2^{n}} & \text { if } t \in\left(\frac{1}{2^{n}}, \frac{2}{2^{n}}\right] \text { with } n \in \mathbb{N}, \\
0 & \text { if } t=0,
\end{array}\right.
$$

see Figure 4.4. We have $\left|u\left(t_{2}\right)-u\left(t_{1}\right)\right| \leq\left(L_{1}+\varepsilon\right)\left(t_{2}-t_{1}\right)$ for all $0 \leq t_{1} \leq t_{2} \leq 1$, so u is strictly increasing and Lipschitz continuous on $[0,1]$ with Lipschitz constant $L_{1}+\varepsilon<1$. Then we find a unique admissible parametrisation $\left(\gamma_{1}\right)_{t \in[0,1]}$ of Γ_{1} such that hcap $\left(h_{1 ; t}\right)=u(t)$ for all $t \in[0,1]$. In this context, for each $t \in[0, T], h_{1 ; t}$ denotes the normalised chordal mapping function on $\Omega \backslash \gamma_{1}(0, t]$. Using Proposition 4.4, we find a unique admissible parametrisation $\left(\gamma_{2}\right)_{t \in[0,1]}$ of Γ_{2} such that hcap $\left(g_{t}\right)=t$ for all $t \in[0,1]$. Analogously, g_{t} denotes the normalised chordal mapping function on $\Omega \backslash\left(\gamma_{1}(0, t] \cup \gamma_{2}(0, t]\right)$ with $t \in[0,1]$. Note that $\mathfrak{c}\left(g_{t}\right)=t$ is differentiable at $t=0$, so using Lemma 3.10, for each $z \in \mathbb{H}, t \mapsto g_{t}(z)$ is differentiable at $t=0$. However, using Remark 3.6, $t \mapsto h_{1 ; t}(z)$ is not differentiable at t_{0} for any $z \in \mathbb{H}$, as $t \mapsto \operatorname{hcap}\left(h_{1 ; t}\right)=u(t)$ is not differentiable at $t=0$.

Figure 4.4: The function u from Example 4.2

Chapter 5

Generalization to hulls with local growth

Theorem 5.1. Let Ω be a circular slit disk and denote by $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ a family of increasing radial Ω-hulls such that $\operatorname{con}\left(\Omega \backslash \mathfrak{H}_{t}\right)=\operatorname{con}(\Omega)$ for all $t \in[0, T]$. For each $t \in[0, T]$, g_{t} denotes the normalised radial mapping function from $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ onto the circular slit disk D_{t}. Moreover, assume $\operatorname{lmr}\left(g_{t}\right)=t$ for all $t \in[0, T]$. Then the following two statements are equivalent:
(i) For each $t \in[0, T], t \mapsto g_{t}$ is (continuously) differentiable and fulfils the differential equation

$$
\dot{g}_{t}(z)=g_{t}(z) \cdot \Phi_{0, U_{t}, D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, T] \text { and all } z \in \Omega_{T},
$$

with a continuous function $t \mapsto U_{t} \in \mathbb{T}$.
(ii) For every $\varepsilon>0$, there exists $a \delta>0$ such that whenever $t \in[0, T-\delta]$, some cross-cut E of Ω_{t} with $\operatorname{diam}(E)<\varepsilon$ separates 0 from $\mathfrak{H}_{t+\delta} \backslash \mathfrak{H}_{t}$.

In this context, a cross-cut E of the domain Ω is an open Jordan arc in Ω^{10} such that $\operatorname{cl}(E)=E \cup\{a, b\}$ with $a, b \in \partial \Omega$. Let Ω be a circular slit disk and let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be a family of increasing radial Ω-hulls. Then we say $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ satisfies the local growth property if condition (ii) from Theorem 5.1 is fulfilled. If $\varepsilon>0$ in condition (ii) is sufficiently small ${ }^{11}$, the two endpoints a, b of the cross-cut E need to be part of the outer boundary component of Ω_{t}, see Theorem V.11.7 and Exercise V.11.4 in [New52].

Unfortunately, Theorem 5.1, in particular the direction (i) \Rightarrow (ii), does only hold for hulls satisfying $\operatorname{con}\left(\Omega \backslash \mathfrak{H}_{t}\right)=\operatorname{con}(\Omega)$ for all $t \in[0, T]$. We will give an example of a family $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ of increasing hulls such that $t \mapsto g_{t}$ is differentiable, while $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ does not satisfy the local growth property. See Example 5.1 for more details. Nevertheless, the direction $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ is true in general, see the next theorem.

[^8]

Figure 5.1: The concentric circular arc C_{1} gets swallowed by the hull $\mathfrak{H}_{t_{0}}$

Theorem 5.2. Let Ω be a circular slit disk and denote by $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ a family of increasing radial Ω-hulls satisfying the local growth property. For each $t \in[0, T], g_{t}$ denotes the normalised radial mapping function from $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ onto the circular slit disk D_{t}, and assume $\operatorname{lmr}\left(g_{t}\right)=t$.

Then, for each $z \in \Omega_{T}, t \mapsto g_{t}(z)$ is (continuously) differentiable on $[0, T]$ and satisfies the differential equation

$$
\dot{g}_{t}(z)=g_{t}(z) \cdot \Phi_{0, U_{t}, D_{t}}\left(g_{t}(z)\right) \quad \text { for all } t \in[0, T] \text { and all } z \in \Omega_{T},
$$

with a continuous driving function $t \mapsto U_{t} \in \mathbb{T}, t \in[0, T]$.
Example 5.1. Let $\Omega:=\mathbb{D} \backslash C$ with $C:=\left\{(1-r) e^{i \phi} \mid \phi \in[-\alpha, \alpha]\right\}$, and $\alpha \in(0, \pi)$ and $r \in(0,1)$. Thus Ω is a (doubly connected) circular slit disk. Moreover, we define an increasing family of radial \mathbb{D}-hulls $\left(\mathfrak{H}_{t}\right)_{t \in[0, r]}$ as follows. We set $\mathfrak{H}_{t}:=\{1-\tau \mid \tau \in(0, t]\}$ if $t \in[0, r)$ and $\mathfrak{H}_{r}:=(r, 1)$. Note that $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ is doubly connected whenever $t \in[0, r)$, while $\Omega_{r}:=\Omega \backslash(r, 1)$ is simply connected. As usual, for each $t \in[0, r]$, we denote by g_{t} the normalised radial mapping function from Ω_{t} onto the circular slit disk D_{t}. Obviously, $\left(\mathfrak{H}_{t}\right)_{t \in[0, r]}$ is continuous, so using Proposition 5.6, $t \mapsto g_{t}$ and $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ are continuous on $[0, r]$ as well. On top of this $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is strictly increasing on $[0, r]$, see Lemma 2.24. Without loss of generality, we may assume $\operatorname{lmr}\left(g_{t}\right)=c t$ for all $t \in[0, r]$ with $c:=\mathfrak{c}_{\Omega}\left(\mathfrak{H}_{r}\right) / r>0$. Otherwise we reparametrise \mathfrak{H}_{t}. Using Theorem 2.30 (applied to the single slit case) or Theorem 2.23, we find

$$
\begin{equation*}
\dot{g}_{t}(z)=c g_{t}(z) \Phi_{0, U_{t}, D_{t}}\left(g_{t}(z)\right) \quad \text { for all } z \in \Omega_{r} \text { and all } t \in[0, r) . \tag{5.1}
\end{equation*}
$$

For symmetry reasons, we get $U_{t}=g_{t}\left(\mathfrak{H}_{t}\right)=1$ for each $t \in[0, r)$. Moreover, using Proposition 5.6 together with Proposition 2.11, we find $D_{t} \xrightarrow{\mathrm{k}} \mathbb{D}$ as $t \nearrow r$.

Let $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, r)$ be a sequence with $t_{n} \rightarrow r$ and we set $h_{n}:=\Phi_{0,1, D_{t_{n}}}$ for all $n \in \mathbb{N}$. Montel's theorem gives us a subsequence $\left(h_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(h_{n}\right)_{n \in \mathbb{N}}$ such that $h_{n_{k}} \xrightarrow{\text { l.u. }} h$ on \mathbb{D}. The limit function h is either univalent or constant. Suppose h is constant. For each $w \in \mathbb{C} \backslash\{-1\}$, we write $T(w):=\frac{w-1}{w+1}$, so each $T \circ h_{n_{k}}$ maps $D_{t_{n_{k}}}$ univalent into \mathbb{D} where \mathbb{T} is associated with \mathbb{T}. Using Equation (5.1), we find $\Phi_{0,1, D_{t}}(0)=1$ for all $t \in[0, r)$. This gives us $h \equiv 1$, and $T \circ h \equiv 0$ as well. This is a contradiction to Wolff's lemma ${ }^{12}$. To see this let $\zeta_{0} \in \mathbb{T}$ be fix and define $E_{k}(\varepsilon):=h_{n_{k}}\left(\partial B_{\varepsilon}\left(\zeta_{0}\right) \cap D_{t_{n_{k}}}\right)$ for all $k \in \mathbb{N}$. Then Wolff's lemma gives us $\inf _{r \in(\varepsilon, \sqrt{\varepsilon})} \operatorname{diam}\left(E_{k}(r)\right)<2 \pi / \sqrt{\log 1 / \varepsilon}$ for each $\varepsilon \in(0,1)$ and $k \in \mathbb{N}$. We choose $\varepsilon \in(0,1)$ small enough in order to get $2 \pi \sqrt{\log 1 / \varepsilon}<\frac{1}{2}$. On the other

[^9]hand $h_{n_{k}}(K)$ tends uniformly to 0 for any compact set in $K \subseteq \mathbb{D}$. In particular there is a $k \in \mathbb{N}$ such that $\operatorname{dist}\left(h_{n_{k}}\left(\mathbb{T}_{1-\varepsilon}\right), 0\right)<1 / 2$, contradicting $\inf _{r \in(\varepsilon, \sqrt{\varepsilon})} \operatorname{diam}\left(E_{k}(r)\right)<\frac{1}{2}$. Summarising, h can not be constant, so h is univalent.

Next, we will show that $h(\mathbb{D})=\{z \in \mathbb{C} \mid \Re(z)>0\}$. Therefore, let $R_{n}:=h_{n}\left(D_{t_{n}}\right)$ for all $n \in \mathbb{N}$, so R_{n} is doubly connected. In particular it is easy to see that $R_{n}=\{z \in$ $\mathbb{C} \mid \Re(z)>0\} \backslash E_{n}$ where $E_{n}=\left\{x_{n}+\mathrm{i} y| | y \mid \leq y_{n}\right\}$ and $x_{n}, y_{n}>0$, i.e. E_{n} is a proper closed line segments parallel to the imaginary axis. Thus it is enough to prove $x_{n} \rightarrow \infty$. $D_{t_{n}}=\mathbb{D} \backslash C_{n}$ is a circular slit disk where $r_{n}:=\operatorname{dist}\left(C_{n}, 0\right) \rightarrow 1$ if $n \rightarrow \infty$. Note that this follows immediately from $D_{t} \xrightarrow{\mathrm{k}} \mathbb{D}$ if $t \nearrow r$. Thus $T\left(x_{n}\right)=\left(T \circ h_{n}\right)\left(r_{n}\right) \rightarrow 1$ by Wolff's lemma used in the same way as before.

Summarising, h maps \mathbb{D} conformal onto \mathbb{H} with $h(0)=1$, so $h(w)=(1+w) /(1-w)$ for all $w \in \mathbb{D}$. Note that we can do this for each locally uniformly convergent subsequence of $\left(h_{n}\right)_{n \in \mathbb{N}}$, so the whole sequence h_{n} tends to h, i.e. $h_{n} \xrightarrow{\text { l.u. }} h$ on \mathbb{D}. Thus

$$
c g_{t}(z) \Phi_{0, U_{t}, D_{t}}\left(g_{t}(z)\right) \xrightarrow{\text { l.u. }} c g_{r}(z) \frac{1+g_{r}(z)}{1-g_{r}(z)}, \quad \text { on } \mathbb{D} \text { as } t \nearrow r \text {. }
$$

Finally, we find together with the mean value theorem

$$
\dot{g}_{r}(z)=c g_{r}(z) \frac{1+g_{r}(z)}{1-g_{r}(z)} \quad \text { for all } z \in \Omega \backslash \mathfrak{H}_{r} .
$$

Consequently, $t \mapsto g_{t}$ is continuously differentiable on $[0, r]$, while the corresponding family of radial \mathbb{D}-hulls $\left(\mathfrak{H}_{t}\right)_{t \in[0, r]}$ does not satisfy the local growth property.

5.1 Some preliminary lemmas

Lemma 5.3. Let Ω be a circular slit disk and let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of radial Ω-hulls satisfying the local growth property. Then the family $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is continuous.

Proof. First of all, let us define $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ with $t \in[0, T]$. Using the monotonicity, see Lemma 2.24, we need to study only the following two cases: $t_{n} \nearrow t_{0}$ and $t_{n} \searrow t_{0}$.

1) $t_{n} \searrow t_{0}$: Using Lemma 2.9, the increasing sequence $\left(\Omega_{t_{n}}\right)_{n \in \mathbb{N}}$ has a kernel K. Obviously, $\Omega_{t_{n}} \subseteq K \subseteq \Omega_{t_{0}}$ for all $n \in \mathbb{N}$.
Let $\varepsilon>0$. Then the local growth property gives us an $N \in \mathbb{N}$ such that whenever $n \geq N$, some cross-cut E of $\Omega_{t_{0}}$ with $\operatorname{diam}(E)<\varepsilon$ separates $\Omega_{t_{0}} \backslash \Omega_{t_{n}}=\mathfrak{H}_{t_{n}} \backslash \mathfrak{H}_{t_{0}}$ from 0 . Note that $\Omega_{t_{0}} \backslash K \subseteq \Omega_{t_{0}} \backslash \Omega_{t_{n}}$ for all $n \in \mathbb{N}$, so E separates $\Omega_{t_{0}} \backslash K$ from 0 as well. Letting $\varepsilon \rightarrow 0$ we find $K=\Omega_{t_{0}}$.
2) $t_{n} \nearrow t_{0}$: Again using Lemma 2.9, the decreasing sequence $\left(\Omega_{t_{n}}\right)_{n \in \mathbb{N}}$ has a kernel K. Obviously, $\Omega_{t_{0}} \subseteq K \subseteq \Omega_{t_{n}}$ for all $n \in \mathbb{N}$.
Let $\varepsilon>0$. Using the local growth property, we find an $N \in \mathbb{N}$ such that whenever $n \geq N$, some cross-cut E of $\Omega_{t_{n}}$ with $\operatorname{diam}(E)<\varepsilon$ separates $\Omega_{t_{n}} \backslash \Omega_{t_{0}}$ from 0 . Note that $K \backslash \Omega_{t_{0}} \subseteq \Omega_{t_{n}} \backslash \Omega_{t_{0}}$ for all $n \in \mathbb{N}$, so E separates $K \backslash \Omega_{t_{0}}$ from 0 as well. Letting $\varepsilon \rightarrow 0$ we find $K=\Omega_{t_{0}}$.

Summarising, $\Omega_{t_{0}}$ is the kernel of $\left(\Omega_{t_{n}}\right)_{n \in \mathbb{N}}$.
Let Ω be a circular slit disk and let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of radial hulls in Ω. Moreover, we denote by $C_{1}, \ldots, C_{\mathfrak{n}-1}$, with $\mathfrak{n}=\operatorname{con}(\Omega) \in \mathbb{N}$, the interior boundary components of Ω. Let $C \in\left\{C_{1}, \ldots, C_{\mathfrak{n}-1}\right\}$ and let $t_{0} \in(0, T]$. Then we say C is swallowed by $\mathfrak{H}_{t_{0}}$ if $\operatorname{dist}\left(\mathfrak{H}_{t_{0}}, C\right)=0$, see also Figure 5.1

Lemma 5.4. Let Ω be a circular slit disk, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be a family of continuous and increasing radial Ω-hulls, and we set $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ for all $t \in[0, T]$. Then the step function $t \mapsto \operatorname{con}\left(\Omega_{t}\right), t \in[0, T]$, is decreasing, continuous from the right and of finite range.

Proof. First of all, the monotonicity is an immediate consequence of the property $\mathfrak{H}_{t} \subseteq$ \mathfrak{H}_{s} for all $0 \leq t \leq s \leq T$. The fact that $t \mapsto \operatorname{con}\left(\Omega_{t}\right)$ is a step function of finite range is trivial.

Next, let be $t_{0} \in[0, T)$ and denote by $C \in\left\{C_{1}, \ldots, C_{\mathfrak{n}}\right\}$ an arbitrary boundary component satisfying $\operatorname{dist}\left(\mathfrak{H}_{t_{0}}, C\right)>0$, i.e. C is not swallowed by the hull $\mathfrak{H}_{t_{0}}$. Consequently, we find a small $\delta>0$ such that $C^{\delta}:=\{z \in \mathbb{D} \mid \operatorname{dist}(z, C) \leq \delta\}$ is not swallowed by $\mathfrak{H}_{t_{0}}$ as well, i.e. $\operatorname{dist}\left(\mathfrak{H}_{t_{0}}, C^{\delta}\right)>0$. Consequently, $\partial C^{\delta} \subseteq \Omega_{t_{0}}$ if δ is small enough. Assume $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ with $t_{n} \searrow t_{0}$. Since $\Omega_{t_{0}}$ is the kernel of the sequence $\Omega_{t_{n}}$, we find $\partial C^{\delta} \subseteq \Omega_{t_{n}}$ for all $n \geq N \in \mathbb{N}$. Thus we have $0<\operatorname{dist}\left(\mathfrak{H}_{t_{n}}, C^{\delta}\right)<\operatorname{dist}\left(\mathfrak{H}_{t_{n}}, C\right)$ for all $n \geq N$. Using the monotonicity of the family $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$, we get $\operatorname{dist}\left(\mathfrak{H}_{t}, C\right)>0$ for all $t \in\left[t_{0}, t_{N}\right]$. Finally, since we are able to do this for each C that is not swallowed by $\mathfrak{H}_{t_{0}}$, we find $\operatorname{con}\left(\Omega_{t}\right)=\operatorname{con}\left(\Omega_{t_{0}}\right)$ for all $t \in\left[t_{0}, t^{*}\right]$ with $t^{*}>t_{0}$, so $t \mapsto \operatorname{con}\left(\Omega_{t}\right)$ is continuous from the right.

Lemma 5.5. Let Ω be a circular slit disk and $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is an increasing family of radial Ω-hulls. For each $t \in[0, T], g_{t}$ denotes the normalised radial mapping function from $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ onto the circular slit disk D_{t}. Let $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ be a sequence converging to $t_{0} \in[0, T]$ and assume $\Omega_{t_{n}} \xrightarrow{k} \Omega_{t_{0}}$ and $D_{t_{n}} \xrightarrow{k} D$. Then D is a circular slit disk.

Proof. First of all, we set $m:=\operatorname{con}\left(\Omega_{t_{0}}\right)$ and $s:=\lim _{n \rightarrow \infty} \operatorname{con}\left(\Omega_{t_{n}}\right)$. Using Lemma 5.4, we get $s \geq m$. We will separate the following two cases:

1) $s=m$: In this case $\operatorname{con}\left(\Omega_{t_{n}}\right)=\operatorname{con}\left(\Omega_{t_{0}}\right)$ for all n large enough. By assumption $\Omega_{t_{n}} \xrightarrow{\mathrm{k}} \Omega_{t_{0}}$, so $g_{t_{n}} \xrightarrow{\text { l.u. }} g_{t_{0}}$ on $\Omega_{t_{0}}$, see Lemma 2.25. Using Proposition 2.11, we find $g_{t_{n}}\left(\Omega_{t_{n}}\right)=D_{t_{n}} \xrightarrow{\mathrm{k}} D_{t_{0}}=g_{t_{0}}\left(\Omega_{t_{0}}\right)$, so $D_{t_{0}}=D$ is a circular slit disk.
2) $s>m$: In this context we use the same abbreviation as in the proof of Lemma 2.13. Since $t \mapsto \operatorname{con}\left(\Omega_{t}\right)$ is a step function, we are able to find an $N \in \mathbb{N}$ such that $\operatorname{con}\left(\Omega_{t_{n}}\right)=s$ for all $n \geq N$. Again, Lemma 5.4 gives us $t_{n}<t_{0}$ for all $n \geq N$.
First of all, we are going to show that there is an $r \in(0,1]$ such that $\frac{1}{r} D$ is a circular slit disk. We denote by $E_{1}, \ldots E_{m}$ the connected components of $\mathbb{C} \backslash D$ where E_{m} is the unbounded connected component. Analogously to the proof of Lemma 2.13, we find for each $E_{k}, k \in\{1, \ldots, m\}$, a Jordan curve $\Delta_{k} \subseteq D$ such that Δ_{k} separates E_{k} from E_{j} with $j \in\{1, \ldots, m\} \backslash\{k\}$. Moreover, we can choose Δ_{k} in such a way that $\operatorname{dist}\left(\Delta_{k}, \Delta_{j}\right)>\delta$ whenever $j \neq k$. We set $E_{k}^{\Delta}:=\Delta_{k} \cup \operatorname{int}\left(\Delta_{k}\right), k \in\{1, \ldots, m-1\}$ and
$E_{m}^{\Delta}:=\Delta_{m} \cup \operatorname{ext}\left(\Delta_{m}\right)$. Then $D^{\Delta}:=D \backslash \bigcup_{k=1}^{m} E_{k}^{\Delta}$ is an m-connected domain. Note that D is the kernel of the sequence $\left(D_{t_{n}}\right)_{n \in \mathbb{N}}$ and $\operatorname{cl}\left(D^{\Delta}\right)$ is a compact set in D, so we find $\operatorname{cl}\left(D^{\Delta}\right) \subseteq D_{t_{n}}$ for all $n \geq N$ with some $N \in \mathbb{N}$.
Next, we denote by F_{1}, \ldots, F_{s} the connected components of $\mathbb{C} \backslash D_{t_{n}}$ where $F_{s}=\{z \in$ $\mathbb{C}||z| \geq 1\}$ is the unbounded connected component. Consequently, F_{1}, \ldots, F_{s-1} are concentric circular arcs. Obviously, we find $F_{k} \subseteq E_{I(k)}^{\Delta}$ for all $k \in\{1, \ldots, s\}$ where $I:\{1, \ldots, s\} \rightarrow\{1, \ldots, m\}$ is onto. Let E be an arbitrary connected component of $\mathbb{C} \backslash D$. Then for each $a \in \partial E$ we find a sequence $a_{n} \in \partial D_{t_{n}}$ with $a_{n} \rightarrow a$, see Lemma 2.10. Suppose $a, b \in \partial E$ with $|a| \neq|b|$. Lemma 2.10 gives us sequences $\left(a_{n}\right),\left(b_{n}\right) \subseteq \partial D_{t_{n}}$ such that $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$. Consequently, $\left|a_{n}\right| \neq\left|b_{n}\right|$ for all $n \geq M$ with $M \in \mathbb{N}$. Since F_{1}, \ldots, F_{s} are circular arcs, there are at most s different sequences $\left(\left|a_{n}\right|\right)_{n \geq M}$, so the set $\{|a| \mid a \in \partial E\}$ is finite. This proves that $|a|$ is constant for each $a \in \partial E$. Since $D \subseteq \mathbb{D}, E_{1} \ldots E_{m-1}$ are circular arcs, while $\partial E_{m}=\mathbb{T}_{r}$ with $r \in(0,1]$.
Finally, we are going to show $r=1$, so D is a circular slit disk. Suppose $r<1$. We set $h_{n}:=g_{t_{n}}^{-1}$ for all $n \in \mathbb{N}$. Using Proposition 2.11, we find $h_{n} \xrightarrow{\text { l.u. }} h$ on D. Moreover, $h: D \rightarrow \Omega_{t_{0}}$ is conformal, as $g_{t}^{\prime}(0) \in\left[1, g_{T}^{\prime}(0)\right]$ for all $t \in[0, T]$, see Lemma 2.24. Then we are able to find a subsequence $\left(D_{t_{n_{k}}}\right)_{k \in \mathbb{N}}$ of $\left(D_{t_{n}}\right)_{n \in \mathbb{N}}$ such that for some $r_{1}, r_{2} \in(r, 1)$ with $r_{1}<r_{2}, \mathbb{A}_{r_{1}, r_{2}}:=\left\{z \in \mathbb{D}\left|r_{1}<|z|<r_{2}\right\} \subseteq D_{t_{n_{k}}}\right.$ for all $k \in \mathbb{N}$. Using Montel's theorem, we find a subsequence $\left(h_{m_{k}}\right)_{k \in \mathbb{N}}$ of $\left(h_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $\left(h_{m_{k}}\right)_{k \in \mathbb{N}}$ converges locally uniformly on $\mathbb{A}_{r_{1}, r_{2}}$ to the function $h^{*}: \mathbb{A}_{r_{1}, r_{2}} \rightarrow \mathbb{C}$, which is either univalent or constant. In order to show that h^{*} can not be constant, we set $\gamma(\tau):=r_{0} e^{\mathrm{i} \tau}$ for all $\tau \in[0,2 \pi]$ and some $r_{0} \in\left(r_{1}, r_{2}\right)$, so $\Gamma:=\gamma[0,2 \pi]$ is a compact set in $\mathbb{A}_{r_{1}, r_{2}}$. Moreover, γ has winding number 1 around 0 . Suppose h^{*} is constant. Then $\left(h_{m_{k}}\right)_{k \in \mathbb{N}}$ converges uniformly on Γ to 0 . This is a contradiction to the fact that h_{n} is conformal. On the other hand, suppose h^{*} is univalent. Then Γ is mapped to the Jordan curve $h^{*}(\Gamma)$. Note that $h_{m_{k}}(\Gamma)$ separates $\mathbb{T} \cup \mathfrak{H}_{m_{k}}$ from 0 and $\mathfrak{H}_{m_{k}}(\Gamma)$ converges uniformly to $h^{*}(\Gamma)$, so $h^{*}(\Gamma) \subseteq \Omega_{t_{0}}$. On the other hand $g_{t_{m_{k}}}\left(h^{*}(\Gamma)\right)$ converges uniformly to a compact set $K \subseteq D$. This is a contradiction, since $\Gamma \subseteq \mathbb{A}_{r_{1}, r_{2}}$ and $g_{t_{m_{k}}}$ is univalent.

Proposition 5.6. Let Ω be a circular slit disk, $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of radial Ω-hulls and let $t_{0} \in[0, T]$. For each $t \in[0, T]$, g_{t} denotes the normalised radial mapping function from $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ onto the circular slit disk D_{t}. Then the following three statements are equivalent.
(i) $t \mapsto \Omega_{t}$ is continuous at t_{0}.
(ii) The real-valued function $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is continuous at t_{0}.
(iii) $t \mapsto g_{t}$ is continuous at t_{0}.

Proof. First of all, note that (iii) \Rightarrow (ii) is trivial.
In order to prove (i) \Rightarrow (iii) let us assume $\Omega_{t_{n}} \xrightarrow{\mathrm{k}} \Omega_{t_{0}}$ for some sequence $t_{n} \rightarrow t_{0}$. By Montel's theorem we find a subsequence $\left(\Omega_{t_{n_{k}}}\right)_{k \in \mathbb{N}}$ of $\left(\Omega_{t_{n}}\right)_{n \in \mathbb{N}}$ such that $g_{t_{n_{k}}} \xrightarrow{\text { l.u. }} h$ on $\Omega_{t_{0}}$. Herein, $h: \Omega_{t_{0}} \rightarrow D$ is a conformal map, as $g_{t_{n}}^{\prime}(0) \geq 1$ for all $n \in \mathbb{N}$. Using Proposition 2.11, $D_{t_{n_{k}}} \xrightarrow{\mathrm{k}} D$ as $k \rightarrow \infty$. Thus Lemma 5.5 shows that D is a circular slit
disk. Analogously to the proof of Lemma 2.25 we easily see $h \equiv g_{t_{0}}$. Thus $g_{t_{n}} \xrightarrow{\text { l.u. }} g_{t_{0}}$ on $\Omega_{t_{0}}$ as well.

Finally, let us have a look at (ii) \Rightarrow (i). Let us assume $t \mapsto \operatorname{lmr}\left(g_{t}\right)$ is continuous at t_{0}. Denote by $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ a sequence converging to $t_{0} \in[0, T]$. Without loss of generality we may assume $t_{n} \nearrow t_{0}$ or $t_{n} \searrow t_{0}$. In either case, $\left(\Omega_{t_{n}}\right)_{n \in \mathbb{N}}$ has a kernel K, see Lemma 2.9. As a consequence of Montel's theorem we find a subsequence $\left(\Omega_{t_{n_{k}}}\right)_{k \in \mathbb{N}}$ of $\left(\Omega_{t_{n}}\right)_{n \in \mathbb{N}}$ such that $g_{t_{n_{k}}}$ convergences locally uniformly to $g: K \rightarrow D$. Since $\operatorname{lmr}\left(g_{t_{m}}\right) \rightarrow \operatorname{lmr}\left(g_{t_{0}}\right)$, we find $\operatorname{lmr}\left(g_{t_{0}}\right)=\operatorname{lmr}(g)$. Moreover, $K \subseteq \Omega_{t_{0}}$ or $\Omega_{t_{0}} \subseteq K$, so we find $K=\Omega_{t_{0}}$ together with Lemma 2.24.

Lemma 5.7. Let Ω be a circular slit disk and denote by $C_{1}, \ldots, C_{\mathfrak{n}-1}, \mathfrak{n} \in \mathbb{N}$, the interior boundary components of Ω. Moreover, let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing and continuous family of radial Ω-hulls, and for each $t \in[0, T]$, we denote by g_{t} the normalised radial mapping function on $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$. Assume $C \in\left\{C_{1}, \ldots, C_{\mathfrak{n}-1}\right\}$ with $\operatorname{cl}\left(\mathfrak{H}_{t}\right) \cap C=\emptyset$ for all $t<t_{0}$. Then $t \mapsto \operatorname{dist}\left(0, g_{t}(C)\right)$ is continuous on $\left[0, t_{0}\right)$.

Proof. Let $t^{*}<t_{0}$. Thus we find a Jordan curve $\Gamma \subseteq \Omega_{t^{*}}$ around C with Γ close enough to C such that $\operatorname{dist}\left(g_{t^{*}}(z), g_{t^{*}}(C)\right)<\varepsilon / 2$ for all $z \in \Gamma$ with some small $\varepsilon>0$. Using Proposition 5.6, we get $g_{t} \xrightarrow{\text { l.u. }} g_{t^{*}}$ on $\Omega_{t^{*}}$ as $t \rightarrow t^{*}$. In particular, we find $g_{t} \rightarrow g_{t^{*}}$ uniformly on Γ. So there is a $\delta>0$ such that $\left|g_{t}(z)-g_{t^{*}}(z)\right|<\varepsilon / 2$ for all $t \in\left(t^{*}-\delta, t^{*}+\delta\right)$ and all $z \in \Gamma$. Consequently, $\operatorname{dist}\left(g_{t}(z), g_{t^{*}}(C)\right)<\varepsilon$ for all $t \in\left(t^{*}-\delta, t^{*}+\delta\right)$ and all $z \in \Gamma$. Since $g_{t}(C)$ is part of the interior of $g_{t}(\Gamma)$, we find $\operatorname{dist}\left(g_{t}(C), g_{t^{*}}(C)\right)<\varepsilon$ for all $t \in\left(t^{*}-\delta, t^{*}+\delta\right)$ as well. Both sets $g_{t}(C)$ and $g_{t^{*}}(C)$ are circular arcs, so the proof is complete.

Lemma 5.8. Let Ω be a circular slit disk. Assume $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is an increasing family of radial Ω-hulls. Moreover, for each $t \in[0, T], g_{t}$ is the normalised radial mapping function from $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$ onto the circular slit disk D_{t}.

Then the following two statements are equivalent.
(i) $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ satisfies the local growth property.
(ii) For each $\varepsilon>0$, there exists a $\delta>0$ such that whenever $t \in[0, T-\delta]$, some cross-cut F of D_{t} with $\operatorname{diam}(F)<\varepsilon$ separates 0 from $g_{t}\left(\mathfrak{H}_{t+\delta} \backslash \mathfrak{H}_{t}\right)$.

Proof. 1) (i) \Rightarrow (ii): Let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be a family of increasing Ω-hulls satisfying the local growth property. Let $\varepsilon>0$ be small. We find a $\delta>0$ such that whenever $t \in[0, T-\delta]$, some cross-cut E of Ω_{t} with $\operatorname{diam}(E)<\varepsilon$ separates 0 from $\mathfrak{H}_{t+\delta} \backslash \mathfrak{H}_{t}$. Assume $a \in E$. For each $r \in[\varepsilon, \sqrt{\varepsilon}], C_{r}:=\partial B_{r}(a) \cap \Omega_{t}$ separates E in Ω_{t} from 0 . Obviously, C_{r} separates $K_{t+\delta} \backslash K_{t}$ in Ω_{t} from 0 as well. Using Wolff's lemma, we find $\inf _{r \in(\varepsilon, \sqrt{\varepsilon})} \operatorname{diam}\left(g_{t}\left(C_{r}\right)\right)<$ $4 \pi / \sqrt{\log 1 / \varepsilon}$. Let $F:=h_{t}(E)$, so we get $\operatorname{diam}(F)<4 \pi / \sqrt{\log 1 / \varepsilon}$ as well.
2) $(\mathrm{ii}) \Rightarrow(\mathrm{i})$: This works in the same way by Wolff's lemma.

Remark 5.1. In the simply connected case, (i) and (ii) from Lemma 5.8 are equivalent to the statement
(iii) For each $\varepsilon>0$, there exists $a \delta>0$ such that whenever $t \in[0, T-\delta]$, $\operatorname{diam}\left(g_{t}\left(\mathfrak{H}_{t+\delta}\right)\right.$ $\left.\left.\mathfrak{H}_{t}\right)\right)<\varepsilon$.

Unfortunately, this is not the case if we consider multiply connected domains, see Example 5.1 where condition (iii) is satisfied, while (i) or (ii) are not.

Obviously, the implication (ii) \Rightarrow (iii) is true. When this happens, we are able to define $U_{t}:=\bigcap_{\delta>0} \operatorname{cl}\left(g_{t}\left(\mathfrak{H}_{t+\delta} \backslash \mathfrak{H}_{t}\right)\right)$ for all $t \in[0, T)$. Analogously to the previous chapters $t \mapsto U_{t}$ is called driving term or driving function.

Lemma 5.9. Let Ω be a circular slit disk and let $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of radial Ω-hulls satisfying the local growth property. Then for each $t \in[0, T], \operatorname{cl}\left(\mathfrak{H}_{t}\right)$ is connected.

Proof. First of all keep in mind that $\mathfrak{H}_{0}=\emptyset$ as $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ is an increasing family of radial Ω-hulls. Suppose there is a $t_{0} \in(0, T]$ such that $\operatorname{cl}\left(\mathfrak{H}_{t_{0}}\right)$ is not connected. Then there are proper compact sets A and B such that $A \cap B=\emptyset$ and $A \cup B=\operatorname{cl}\left(\mathfrak{H}_{t_{0}}\right)$. We set $t_{A}:=\inf \left\{t \in\left[0, t_{0}\right] \mid A \cap \operatorname{cl}\left(\mathfrak{H}_{t}\right) \neq \emptyset\right\}$ and $t_{B}:=\inf \left\{t \in\left[0, t_{0}\right] \mid B \cap \operatorname{cl}\left(\mathfrak{H}_{t}\right)=\emptyset\right\}$. Without restricting generality we may assume $t_{A} \geq t_{B}$. Note that $t_{A}<t_{0}$. Otherwise $t \mapsto \Omega_{t}$, with $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$, is not continuous at $t=t_{0}$ contradicting Lemma 5.3. Using the same argument, $A \cap \mathfrak{H}_{t_{A}}=\emptyset$.

If $t_{A}=0$, we immediately find $g_{0}\left(\mathfrak{H}_{\varepsilon}\right) \cap A \neq \emptyset$ and $g_{0}\left(\mathfrak{H}_{\varepsilon}\right) \cap B \neq \emptyset$. Consequently, $\operatorname{diam}\left(\mathfrak{H}_{\varepsilon}\right)>\operatorname{dist}(A, B)$ for all $\varepsilon>0$. This yields a contradiction to the local growth property, see also Remark 5.1.

Next, assume $t_{A}>0$. Obviously, we find an open set $E \subseteq \Omega_{t_{A}}$ such that $\operatorname{cl}(A \cap$ $\left.\mathfrak{H}_{t_{A}+\varepsilon^{\prime}}\right) \subseteq E \cup \mathbb{T}$ and $\operatorname{dist}\left(\partial E \backslash \mathbb{T}, A \cap \mathfrak{H}_{t_{A}+\varepsilon^{\prime}}\right)>0$ with some small $\varepsilon^{\prime}>0$. For each $t \in\left[0, t_{A}\right]$, we reflect g_{t} on $T_{E}:=\mathbb{T} \cap \operatorname{cl}(E)$, so g_{t} is analytic on $\Omega_{t_{A}} \cup \bar{E}$ with $\bar{E}:=\{w \in$ $\mathbb{C} \mid 1 / \bar{w} \in E\}$. Then Proposition 5.6 gives us $g_{t_{A}-\varepsilon} \xrightarrow{\text { l.u. }} g_{t_{A}}$ on $\Omega_{t_{A}} \cup \bar{E} \cup T_{E}$ as $\varepsilon \searrow 0$. Let $E^{\prime}:=g_{t_{A}}(E)$. This shows $\operatorname{diam}\left(g_{t_{A}-\varepsilon}\left(\mathfrak{H}_{t_{A}+\varepsilon} \backslash \mathfrak{H}_{t_{A}-\varepsilon}\right)\right) \geq \operatorname{dist}\left(g_{t_{A}}\left(\mathfrak{H}_{t_{A}+\varepsilon^{\prime}} \cap A\right), \partial E^{\prime}\right)$ for all small $\varepsilon<\varepsilon^{\prime}$ yielding a contradiction to the local growth property, see Remark 5.1.

Lemma 5.10. Let Ω be a circular slit disk and $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ be an increasing family of radial Ω-hulls satisfying the local growth property. For each $t \in[0, T]$, g_{t} denotes the normalised radial mapping function on $\Omega_{t}:=\Omega \backslash \mathfrak{H}_{t}$. Assume $U_{t}:=\bigcap_{\delta>0} \operatorname{cl}\left(g_{t}\left(\mathfrak{H}_{t+\delta} \backslash \mathfrak{H}_{t}\right)\right)$ with $t \in[0, T)$.

Then $t \mapsto U_{t}$ is uniformly continuous on $[0, T)$. Furthermore, the $\operatorname{limit} \lim _{t} \lambda_{T} U_{t}=$: U_{T} exists.

Proof. We are going to prove the following statement:

$$
\forall \varepsilon>0 \exists \delta>0 \forall 0 \leq t<s<T \text { with } s-t<\delta:\left|U_{t}-U_{s}\right|<\varepsilon .
$$

For each $0 \leq t<s<T$, we set $S_{t, s}:=g_{t}\left(\mathfrak{H}_{s} \backslash \mathfrak{H}_{t}\right)$.
Let us assume the opposite, so there are sequences $\left(t_{n}\right)_{n \in \mathbb{N}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}}$ with $t_{n}<s_{n}$ and $\left|t_{n}-s_{n}\right| \rightarrow 0$ such that $\left|U_{s_{n}}-U_{t_{n}}\right|>\varepsilon$ for all $n \in \mathbb{N}$ and some $\varepsilon>0$. Without loss of generality we assume that the sequences $\left(t_{n}\right)_{n \in \mathbb{N}},\left(s_{n}\right)_{n \in \mathbb{N}}$ and $\left(U_{t_{n}}\right)_{n \in \mathbb{N}}$ are convergent with limits $t_{0}=s_{0}$ and U^{*}, respectively.

Next, we denote by $C_{1}, \ldots, C_{\mathfrak{n}-1}$ the interior concentric circular arcs of $\partial \Omega$. Each C_{k} that gets not swallowed by $\mathfrak{H}_{t_{0}}$ fulfils $\operatorname{dist}\left(g_{t_{n}}\left(C_{k}\right), 0\right)>\rho$ for all large $n \in \mathbb{N}$ and some $\rho>0$ with $\rho<\varepsilon$. If C_{k} gets swallowed by $\mathfrak{H}_{t_{0}}$ such that $\operatorname{dist}\left(C_{k}, \mathfrak{H}_{t_{n}}\right)>0$ for at least infinite $n \in \mathbb{N}$, we get $\operatorname{dist}\left(S_{t_{n}, t_{0}}, g_{t_{n}}(C)\right)=0$ and $t_{n}<t_{0}$ for almost all $n \in \mathbb{N}$. Thus any small cross-cut F that separates $S_{t_{n}, t_{0}}$ from 0 separates $g_{t_{n}}(C)$ from 0 as well.

Using Lemma 5.8, we choose $N \in \mathbb{N}$ large enough such that whenever $n \geq N$, some cross-cut F_{n} of $D_{t_{n}}$ separates $S_{t_{n}, \max \left(s_{n}, t_{0}\right)}$ from 0 with $\operatorname{diam}\left(F_{n}\right)<\frac{\rho}{4}$. Moreover, we enlarge N in such a way to get $\left|U_{t_{n}}-U^{*}\right|<\frac{\rho}{4}$ for all $n \geq N$.

Figure 5.2: Mapping behaviour of $g_{s_{n}}$ and $g_{t_{n}}$
As mentioned before, for any $k \in\{1, \ldots, \mathfrak{n}-1\}$ and large $n \geq N$, $\operatorname{dist}\left(g_{t_{n}}\left(C_{k}\right), \mathbb{T}\right)=0$ (i.e. C_{k} was already swallowed by the hull), $\operatorname{dist}\left(g_{t_{n}}\left(C_{k}\right), \mathbb{T}\right)>\rho$, or F_{n} separates $g_{t_{n}}\left(C_{k}\right)$ from 0

In either case, $h_{n}:=g_{s_{n}} \circ g_{t_{n}}^{-1}$ can be continued in an analytic way to a neighbourhood V of $\partial B_{\rho / 2}\left(U^{*}\right)$ for all $n \geq N$, as $\left|U^{*}-U_{t_{n}}\right|<\frac{\rho}{4}, U_{t_{n}} \in \operatorname{cl}\left(S_{t_{n}, s_{n}}\right)$ and $\operatorname{diam}\left(S_{t_{n}, s_{n}}\right)<$ $\operatorname{diam}\left(F_{n}\right)<\frac{\rho}{4}$ for all large $n \geq N$. Using Proposition 5.6, h_{n} convergences uniformly on $\partial B_{\rho / 2}\left(U^{*}\right)$ to the identity. Thus we find $h_{n}\left(\partial B_{\rho / 2}\left(U^{*}\right)\right) \subseteq B_{3 \rho / 4}\left(U^{*}\right)$ for all large n. Moreover, we set

$$
s_{t_{n}, s_{n}}:=\operatorname{cl}\left\{z \in \mathbb{T} \mid \exists r>0 \exists\left(z_{k}\right)_{k \in \mathbb{N}} \subseteq D_{s_{n}}: z_{k} \rightarrow z \text { and }\left|h_{n}^{-1}\left(z_{k}\right)\right|<1-r\right\},
$$

so we have $s_{t_{n}, s_{n}} \subseteq B_{3 \rho / 4}\left(U^{*}\right)$ and $U_{s_{n}} \in s_{t_{n}, s_{n}}$ for all large n. Consequently, we find $\left|U_{s_{n}}-U_{t_{n}}\right| \leq\left|U_{s_{n}}-U^{*}\right|+\left|U^{*}-U_{t_{n}}\right|<\frac{3 \rho}{4}+\frac{\rho}{4}=\rho<\varepsilon$. This is a contradiction, so the proof is complete.

Remark 5.2. As another consequence, we have seen in the previous proof that $s_{t_{n}, s_{n}} \rightarrow$ $U_{t_{0}}$ whenever $t_{n} \rightarrow t_{0} \leftarrow s_{n}$. Herein, $s_{t_{n}, s_{n}}$ is defined in the same way as before.

Let Ω be a circular slit disk and let \mathfrak{H} be a radial Ω-hull. Note that we can not apply Lemma 2.27 or 2.28 , as $\Omega \backslash \mathfrak{H}$ is not necessarily locally connected. In the following we will deduce a way to circumvent this problem. Therefore, we denote by g the normalised radial mapping function from $\Omega \backslash \mathfrak{H}$ onto the circular slit disk D. Moreover, let us assume $\operatorname{cl}(\mathfrak{H})$ is connected. Using Lemma 5.9, this is always the case if the hull \mathfrak{H} comes from a family that satisfies the local growth property. Next we set

$$
\begin{equation*}
s_{\mathfrak{H}}:=\operatorname{cl}\left\{z \in \mathbb{T} \mid \exists r>0 \exists\left(z_{k}\right)_{k \in \mathbb{N}} \subseteq D: z_{k} \rightarrow z \text { and }\left|g^{-1}\left(z_{k}\right)\right|<1-r\right\} . \tag{5.2}
\end{equation*}
$$

$s_{\mathfrak{H}}$ is a connected and compact subset of \mathbb{T}. On top of this we define

$$
\mathfrak{H}^{\varepsilon}:=\mathfrak{H} \cup\left\{g^{-1}(z) \mid z \in D, \operatorname{dist}\left(z, s_{\mathfrak{H}}\right) \leq \varepsilon\right\},
$$

Figure 5.3: The ε-extension of a hull \mathfrak{H}
what we call the ε-extension of \mathfrak{H} in Ω, see Figure 5.3. Note that $\mathfrak{H}^{\varepsilon}$ is a radial Ω-hull as well if $\varepsilon>0$ is small enough.

In contrast to $\mathfrak{H}, \mathfrak{H}^{\varepsilon}$ is locally connected. This allows us to apply Lemma 2.27 and 2.28 followed by the limit process $\varepsilon \rightarrow 0$. See the following three lemmas for more details

Lemma 5.11. Let Ω be a circular slit disk, \mathfrak{H} be a radial Ω-hull such that $\operatorname{cl}(\mathfrak{H})$ is connected, and for each small $\varepsilon>0, \mathfrak{H}^{\varepsilon}$ denotes the ε-extension of \mathfrak{H}. Moreover, we denote by g and g^{ε} the normalised radial mapping function on $\Omega \backslash \mathfrak{H}$ and $\Omega \backslash \mathfrak{H}^{\varepsilon}$, respectively.

Then $g^{\varepsilon} \xrightarrow{\text { l.u. }} g$ on Ω as $\varepsilon \rightarrow 0$. Moreover, $s_{\mathfrak{H}^{\varepsilon}} \rightarrow s_{\mathfrak{H}}$ as $\varepsilon \rightarrow 0$ where $s_{\mathfrak{H}}$ and $s_{\mathfrak{H}^{\varepsilon}}$ are defined by Equation (5.2).

Proof. Obviously, $\Omega \backslash \mathfrak{H}^{\varepsilon} \xrightarrow{\mathrm{k}} \Omega \backslash \mathfrak{H}$ as $\varepsilon \rightarrow 0$, so Proposition 5.6 gives us $g^{\varepsilon} \xrightarrow{\text { l.u. }} g$ on $\Omega \backslash \mathfrak{H}$ as $\varepsilon \rightarrow 0$. Consequently, $h_{\varepsilon}:=g \circ\left(g^{\varepsilon}\right)^{-1}$ tends to the identity, so $s_{\mathfrak{H} \varepsilon} \rightarrow s_{\mathfrak{H}}$ follows immediately with an reflection of h_{ε} on \mathbb{T}.

Lemma 5.12. Let Ω be a circular slit disk and let \mathfrak{H} be a radial Ω-hull such that $\operatorname{cl}(\mathfrak{H})$ is connected. Moreover, g denotes the normalised radial mapping function from $\Omega \backslash \mathfrak{H}$ onto the circular slit disk D. Then

$$
\log \frac{g^{-1}(z)}{z}=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi} \int_{s_{\mathfrak{H}} \varepsilon} \ln \left|\left(g^{\varepsilon}\right)^{-1}(\zeta)\right| \cdot \Phi_{0, \zeta, D^{\varepsilon}}(z)|\mathrm{d} \zeta| \quad \text { for all } z \in D
$$

where $\mathfrak{H}^{\varepsilon}$ denotes the ε-extension of \mathfrak{H}, g^{ε} is the normalised radial mapping function from $\Omega \backslash \mathfrak{H}^{\varepsilon}$ onto the circular slit disk D^{ε}, and $s_{\mathfrak{H}^{\varepsilon}}$ is defined by Equation (5.2).

Proof. This follows immediately from Lemma 2.28 and 5.11.
Lemma 5.13. Let Ω be a circular slit disk and let \mathfrak{H} be a radial hull in Ω such that $\operatorname{cl}(\mathfrak{H})$ is connected. Moreover, g denotes the normalised radial mapping function from $\Omega \backslash \mathfrak{H}$ onto the circular slit disk D. Then

$$
\operatorname{lmr}(g)=-\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi} \int_{s_{\mathfrak{h}^{\varepsilon}}} \ln \left|\left(g^{\varepsilon}\right)^{-1}(\zeta)\right||\mathrm{d} \zeta|,
$$

where $\mathfrak{H}^{\varepsilon}$ denotes the ε-extension of \mathfrak{H}, g^{ε} is the normalised radial mapping function on $\Omega \backslash \mathfrak{H}^{\varepsilon}$, and $s_{\mathfrak{H}^{\varepsilon}}$ is defined by Equation (5.2).

Proof. This follows immediately from Lemma 2.27 and Lemma 5.11.

5.2 Proof of Theorem 5.1 and 5.2

Proof of Theorem 5.2. First of all, for each $t \in[0, T], \operatorname{cl}\left(\mathfrak{H}_{t}\right)$ is connected, as $\left(\mathfrak{H}_{t}\right)_{t \in[0, T]}$ satisfies the local growth property, see Lemma 5.9. Moreover, U_{t} is defined as in Lemma 5.10 for each $t \in[0, T]$. Let $0 \leq \underline{t}<\bar{t} \leq T$ be fixed, so $g_{\underline{t}, \bar{t}}:=g_{\mathfrak{A}}:=g_{\bar{t}} \circ g_{\underline{t}}^{-1}$ is the normalised radial mapping function on $D_{t} \backslash \mathfrak{A}$, with $\mathfrak{A}:=g_{\underline{t}}\left(\mathfrak{H}_{\bar{t}} \backslash \mathfrak{H}_{t}\right)$, onto the circular slit disk $D_{\bar{t}}$. Obviously, \mathfrak{A} is a radial $D_{\underline{t}}$-hull, so the mapping function is well-defined. Using Lemma 5.12, we find

$$
\log \frac{g_{t, t}^{-1}(z)}{z}=\log \frac{g_{\mathfrak{A}}^{-1}(z)}{z}=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi} \int_{s_{\mathfrak{A}} \varepsilon} \ln \left|g_{\mathfrak{A} \varepsilon}^{-1}(\zeta)\right| \cdot \Phi_{0, \zeta, D^{\varepsilon}}(z)|\mathrm{d} \zeta| \quad \text { for all } z \in D_{\bar{t}},
$$

where $\mathfrak{A}^{\varepsilon}$ denotes the ε-extension extension of $\mathfrak{A}, g_{\mathfrak{A}^{\varepsilon}}$ denotes the normalised radial mapping function from $D_{\underline{t}} \backslash \mathfrak{A}^{\varepsilon}$ onto the circular slit disk D^{ε} and $s_{\mathfrak{5}^{\varepsilon}}$ is defined by Equation (5.2). As a consequence of Lemma 2.18, $\zeta \mapsto \Phi_{0, \zeta, D^{\varepsilon}}(z)$ is continuous on $s_{\mathfrak{A} \mathfrak{\varepsilon}}$, so the mean value theorem yields

$$
\log \frac{g_{t, \bar{t}}^{-1}(z)}{z}=\lim _{\varepsilon \rightarrow 0}\left(\Re\left(\Phi_{0, \zeta_{\S}^{\varepsilon}, D^{\varepsilon}}(z)\right)+\mathrm{i} \Im\left(\Phi_{0, \zeta_{\bar{\Sigma}}^{\varepsilon}, D^{\varepsilon}}(z)\right)\right) \frac{1}{2 \pi} \int_{s_{\mathfrak{A} \varepsilon}} \ln \left|g_{\mathfrak{A} \varepsilon}^{-1}(\zeta)\right||\mathrm{d} \zeta|, \quad z \in D_{\bar{t}}
$$

where $\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon} \in s_{\mathfrak{A} \varepsilon}$. Note that $\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon}$ are bounded, so we find a sequence $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ with $\varepsilon_{n} \rightarrow 0$ and $\zeta_{j}^{\varepsilon_{n}} \rightarrow \zeta_{j}, j \in\{1,2\}$, as $n \rightarrow \infty$. Moreover, Lemma 5.11 yields $\zeta_{j} \in s_{\mathfrak{R}}$, $j \in\{1,2\}$. Using Lemma 5.11, we find $D^{\varepsilon_{n}} \xrightarrow{\mathrm{k}} D_{\bar{t}}$ with $\operatorname{con}\left(D^{\varepsilon_{n}}\right)=\operatorname{con}\left(D_{\bar{t}}\right)$ if n is large enough. Letting $n \rightarrow \infty$, Lemma 2.18 and 5.13 give us

$$
\log \frac{g_{\underline{t, \bar{t}}}^{-1}(z)}{z}=-\left(\Re\left(\Phi_{0, \zeta_{1}, D_{\bar{t}}}(z)\right)+\mathrm{i} \Im\left(\Phi_{0, \zeta_{2}, D_{\bar{t}}}(z)\right)\right) \operatorname{lmr}\left(g_{\mathfrak{A}}\right) \quad \text { for all } z \in D_{\bar{t}} .
$$

Using $\operatorname{lmr}\left(g_{\mathfrak{R}}\right)=\operatorname{lmr}\left(g_{\underline{t}, \bar{t}}\right)=\operatorname{lmr}\left(g_{\bar{t}}\right)-\operatorname{lmr}\left(g_{\underline{t}}\right)=\bar{t}-\underline{t}$ and by applying $z=g_{\bar{t}}(w)$, we find

$$
\frac{-\log \frac{g_{t}(w)}{g_{\bar{t}}(w)}}{\bar{t}-\underline{t}}=\Re\left(\Phi_{0, \zeta_{1}, D_{\bar{t}}}\left(g_{\bar{t}}(w)\right)\right)+\mathrm{i} \Im\left(\Phi_{0, \zeta_{2}, D_{\bar{t}}}\left(g_{\bar{t}}(w)\right)\right) \quad \text { for all } w \in \Omega_{\bar{t}} .
$$

For each $j \in\{1,2\}, \zeta_{j} \in s_{\mathfrak{A}}$, so $\zeta_{j} \rightarrow U_{\underline{t}}$ if $\bar{t} \searrow \underline{t}$ and $\zeta_{j} \rightarrow U_{\bar{t}}$ if $\underline{t} \nearrow \bar{t}$, see Remark 5.2. Letting $\underline{t} \nearrow \bar{t}$, Lemma 2.18 shows

$$
\Phi_{0, \zeta_{j}, D_{\bar{t}}} \circ g_{\bar{t}} \xrightarrow{\text { l.u. }} \Phi_{0, U_{\bar{t}}, D_{\bar{t}}} \circ g_{\bar{t}} \text { on } \Omega_{\bar{t}} \quad \text { as } \underline{t} \nearrow \bar{t} .
$$

On the other hand let $\bar{t} \searrow \underline{t}$. Then Lemma 5.4 yields $\operatorname{con}\left(D_{\underline{t}}\right)=\operatorname{con}\left(D_{\bar{t}}\right)$ if \bar{t} is close enough to \underline{t}. Consequently, we can use Lemma 2.18 once again together with Proposition 5.6 to obtain

$$
\Phi_{0, \zeta_{j}, D_{\bar{t}}} \circ g_{\bar{t}} \xrightarrow{\text { l.u. }} \Phi_{0, U_{\underline{t}}, D_{\underline{t}}} \circ g_{\underline{t}} \text { on } \Omega_{\underline{t}} \quad \text { as } \bar{t} \searrow \underline{t} .
$$

Note that the continuity of $t \mapsto \Phi_{0, U_{t}, D_{t}}$ follows analogously to the proof of Lemma 2.18 combined with Wolff's lemma (applied in the same way as in Example 5.1). Summarising, the proof is complete as $t \mapsto U_{t}$ is continuous by Lemma 5.10.

Proof of Theorem 5.1. Note that the previous proof showed already (ii) \Rightarrow (i), so we need to prove (i) \Rightarrow (ii) only.

1) First of all, $t \mapsto \Omega_{t}$ and $t \mapsto g_{t}$ are continuous on $[0, T]$ by (ii) \Rightarrow (i),(iii) from Proposition 5.6. Let us denote by $C_{1}(t), \ldots, C_{\mathfrak{n}}(t)$ the boundary components of D_{t} where $C_{\mathfrak{n}}(t)=\mathbb{T}$. As $\operatorname{con}\left(\Omega_{t}\right)=\operatorname{con}(\Omega)$ for all $t \in[0, T]$, Lemma 2.42 gives us a $\rho>0$ such that $\operatorname{dist}\left(C_{k}(t), \mathbb{T}\right)>\rho$ for all $t \in[0, T]$ and all $k \in\{1, \ldots, \mathfrak{n}-1\}$.
2) Next, we are going to prove $\left|\Phi_{0, U_{t}, D_{t}}(w)\right| \leq \frac{K}{\left|U_{t}-w\right|}$ for all $w \in D_{t}$ and all $t \in[0, T]$ with some $K>0$. Using the definition of $\Phi_{0, U_{t}, D_{t}}$, we find $R_{t}(w):=\Phi_{0, U_{t}, D_{t}}(w) \cdot\left(w-U_{t}\right)$ is bounded on D_{t}. Suppose there is no $K>0$ fulfilling the previous condition. Thus there is a sequence $\left(t_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ and a sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ with $w_{n} \in D_{t_{n}}$ such that $R_{t_{n}}\left(w_{n}\right) \rightarrow \infty$. By boundedness, we may assume $t_{n} \rightarrow t_{0} \in[0, T]$. Using Proposition 2.11, $D_{t_{n}} \xrightarrow{\mathrm{k}} D_{t_{0}}$, so together with $\operatorname{con}\left(D_{t_{n}}\right)=\operatorname{con}\left(D_{t_{0}}\right)$ and Lemma 2.18 we find $\Phi_{0, U_{t}, D_{t}} \xrightarrow{\text { l.u. }} \Phi_{0, U_{t_{0}}, D_{t_{0}}}$ on $D_{t_{0}}$. Thus $R_{t} \xrightarrow{\text { l.u. }} R_{t_{0}}$ on $D_{t_{0}}$ as well. Since $\operatorname{dist}\left(C_{k}(t), \mathbb{T}\right)>$ ρ for all $t \in[0, T]$, we are able to reflect each $\Phi_{0, U_{t}, D_{t}}, t \in[0, T]$, along \mathbb{T}, so we are able to continue each R_{t} analytically to $\mathbb{A}_{1,1+\rho}$ with $\rho>0$ defined in Part 1 .
Let $r \in(1,1+\rho)$, so $R_{t_{n}}$ converges uniformly on \mathbb{T}_{r} to $R_{t_{0}}\left(\mathbb{T}_{r}\right)$. Obviously, $R_{t_{0}}\left(\mathbb{T}_{r}\right)$ is bounded and we have $\left|R_{t_{n}}\left(w_{n}\right)\right| \leq \max _{z \in \mathrm{cl}\left(\mathbb{D}_{r}\right)}\left|R_{t_{n}}(z)\right|=\max _{\zeta \in \mathbb{T}_{r}}\left|R_{t_{n}}(\zeta)\right|$. This is a contradiction.
3) In order to continue the proof, we follow the first part of Pommerenke's proof, see proof of Theorem 1 in [Pom66]. Therefore, we set $S_{t, s}:=g_{t}\left(\mathfrak{H}_{s} \backslash \mathfrak{H}_{t}\right)$, whenever $0 \leq t<s \leq T$, and let $\varepsilon>0 . t \mapsto U_{t}$ is uniformly continuous on $[0, T]$, so we find a $\delta<\frac{\varepsilon^{2}}{8 K}$ such that $\left|U_{t}-U_{s}\right|<\frac{\varepsilon}{4}$ for all $0 \leq t \leq s \leq T$ with $s-t \leq \delta$. Here $K>0$ is defined like in Part 2

We are going to show $\nu(s):=\left|U_{t}-\left(g_{s} \circ g_{t}^{-1}\right)(w)\right|>\frac{\varepsilon}{2}$ whenever $w \in D_{t} \backslash S_{t, s},\left|w-U_{t}\right|>\varepsilon$ and $0 \leq s-t \leq \delta$. Suppose this is false, i.e. we find $t, s \in[0, T]$ with $0<s-t<\delta$ and $w \in D_{t} \backslash S_{t, s},\left|w-U_{t}\right|>\varepsilon$ such that $\nu(s) \leq \frac{\varepsilon}{2}$. Note that $\nu(t)=\left|U_{t}-w\right|>\varepsilon$, so we find a first time $t_{1} \in(t, s]$ such that $\nu\left(t_{1}\right)=\frac{\varepsilon}{2}$. This follows immediately from the fact that $\tau \mapsto \nu(\tau)$ is continuous on $[t, s]$. Consequently, we get

$$
\begin{aligned}
\left|U_{\tau}-\left(g_{\tau} \circ g_{t}^{-1}\right)(w)\right| \geq\left|U_{t}-\left(g_{\tau} \circ g_{t}^{-1}\right)(w)\right| & -\left|U_{\tau}-U_{t}\right| \\
& =\nu(\tau)-\left|U_{\tau}-U_{t}\right| \geq \frac{\varepsilon}{2}-\frac{\varepsilon}{4}=\frac{\varepsilon}{4}
\end{aligned}
$$

for all $\tau \in\left[t, t_{1}\right]$. Using the differential equation, we find together with the previous part

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} \tau} \nu(\tau)\right| \leq\left|\left(g_{\tau} \circ g_{t}^{-1}\right)(w)\right| \cdot\left|\Phi_{0, U_{\tau}, D_{\tau}}\left(g_{\tau} \circ g_{t}^{-1}(w)\right)\right| \leq 1 \cdot \frac{4 K}{\varepsilon}
$$

for all $\tau \in\left[t, t_{1}\right]$. Summarising, we find the following contradiction

$$
\frac{\varepsilon}{2}=\varepsilon-\frac{\varepsilon}{2} \leq \nu(t)-\nu\left(t_{1}\right)=\left|\int_{t_{1}}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau} \nu(\tau) \mathrm{d} \tau\right| \leq\left(t_{1}-t\right) \frac{4 K}{\varepsilon} \leq \delta \frac{4 K}{\varepsilon}<\frac{\varepsilon^{2}}{8 K} \cdot \frac{4 K}{\varepsilon}=\frac{\varepsilon}{2} .
$$

Unfortunately, we can not apply further parts of Pommerenke's proof, so we need to argue in an another way.
4) Next, we are going to show that for each $\varepsilon>0$, there is a $\mu>0$ such that $\operatorname{diam}\left(S_{t, s}\right)<3 \varepsilon$, whenever $t, s \in[0, T]$ with $0<s-t<\mu$. In order to prove this, suppose there are sequences $\left(t_{n}\right)_{n \in \mathbb{N}},\left(s_{n}\right)_{n \in \mathbb{N}} \subseteq[0, T]$ and an $\varepsilon>0$ such that $t_{n}-s_{n} \rightarrow 0$ and $\operatorname{diam}\left(S_{t_{n}, s_{n}}\right) \geq 3 \varepsilon$ for all $n \in \mathbb{N}$. By boundedness, we may assume that $\left(t_{n}\right)$ and $\left(s_{n}\right)$ are convergent with limit $t_{0} \in[0, T]$. Thus we find $w_{n} \in D_{t_{n}} \backslash S_{t_{n}, s_{n}}$ (close enough to $\left.S_{t_{n}, s_{n}}\right)$ such that $\left|w_{n}-U_{t_{n}}\right|>\varepsilon$ and $\left|\left(g_{s_{n}} \circ g_{t_{n}}^{-1}\right)\left(w_{n}\right)\right| \geq \sqrt{\left|w_{n}\right|}$ for all $n \in \mathbb{N}$. Moreover, we write $g_{t_{n}}\left(z_{n}\right)=w_{n}$, so we have $\left|g_{s_{n}}\left(z_{n}\right)\right| \geq \sqrt{\left|g_{t_{n}}\left(z_{n}\right)\right|}$. Using Part 3 , we are able to choose n large enough in order to get $0<s_{n}-t_{n}<\delta$ where $\delta<\frac{\varepsilon^{2}}{8 K}$ is defined as in Part 3. Thus we find

$$
\nu(s)=\left|U_{t_{n}}-\left(g_{s} \circ g_{t_{n}}\right)^{-1}\left(w_{n}\right)\right|=\left|U_{t_{n}}-g_{s}\left(z_{n}\right)\right|>\frac{\varepsilon}{2} \quad \text { for all } s \in\left[t_{n}, s_{n}\right] .
$$

Moreover, using $\left|U_{t}-U_{s}\right|<\frac{\varepsilon}{4}$ whenever $|t-s|<\delta$, we find $\left|U_{s}-g_{s}\left(z_{n}\right)\right| \geq \frac{\varepsilon}{4}$ for all $s \in\left[t_{n}, s_{n}\right]$. For each $n \in \mathbb{N}$, we get

$$
\begin{align*}
\frac{1}{4}\left(\frac{1}{\lg _{n}\left(z_{n}\right) \mid}-1\right) \leq \frac{1}{2} \frac{1}{2} \ln \left|\frac{1}{g_{t_{n}}\left(z_{n}\right)}\right| \leq \ln \left|\frac{g_{s_{n}}\left(z_{n}\right)}{g_{t_{n}}\left(z_{n}\right)}\right| & = \\
\ln \left|g_{s_{n}}\left(z_{n}\right)\right|-\ln \left|g_{t_{n}}\left(z_{n}\right)\right| & =\left(s_{n}-t_{n}\right) \Re \Phi_{0, U_{\xi_{n}}, D_{\xi_{n}}}\left(g_{\xi_{n}}\left(z_{n}\right)\right) \tag{5.3}
\end{align*}
$$

with $\xi_{n} \in\left[t_{n}, s_{n}\right]$. Here, the last equality is a consequence of the differential equation. In particular we used the mean value theorem applied to the real part of the logarithmic derivative. Notice, Equation (5.3) together with Part 2 show that $\left|g_{t_{n}}\left(z_{n}\right)\right| \rightarrow 1$ if $n \rightarrow \infty$, as $U_{\xi_{n}}-g_{\xi_{n}}\left(z_{n}\right) \geq \frac{\varepsilon}{4}$. Moreover, $\left|g_{t_{n}}\left(z_{n}\right)\right| \leq\left|g_{\xi_{n}}\left(z_{n}\right)\right|$ for all $n \in \mathbb{N}$. This follows from the fact that $t \mapsto \ln \left|g_{t}(z)\right|$ is increasing, as g_{t} satisfies the given differential equation while $\Re \Phi_{0, U_{t}, D_{t}}(z) \geq 0$. Consequently $\left|g_{\xi_{n}}\left(z_{n}\right)\right| \rightarrow 1$ if $n \rightarrow \infty$.
Obviously, we have $\xi_{n} \rightarrow t_{0}$, and we may assume without loss of generality $g_{\xi_{n}}\left(z_{n}\right) \rightarrow$ $\zeta_{0} \in \mathbb{T}$. Consequently, $\left|\zeta_{0}-U_{t_{0}}\right|>\frac{\varepsilon}{4}$. Once again the mean value theorem yields

$$
\begin{equation*}
\left|\frac{\Re \Phi_{0, U_{\xi_{n}}, D \xi_{n}}\left(g_{\xi_{n}}\left(z_{n}\right)\right)-\Re \Phi_{0, U_{\xi_{n}}, D \xi_{n}}\left(\frac{g g_{\xi_{n}}\left(z_{n}\right)}{\left.\mid g \xi_{n} z_{n}\right) \mid}\right)}{g_{\xi_{n}}\left(z_{n}\right)-\frac{g_{\xi_{n}}\left(z_{n}\right) \mid}{\left|g_{\xi_{n}}\left(z_{n}\right)\right|}}\right| \leq\left|\Phi_{0, U_{\xi_{n}}, D \xi_{\xi_{n}}^{\prime}}\left(\zeta_{n}\right)\right| \tag{5.4}
\end{equation*}
$$

with $\zeta_{n} \in\left\{\left(g_{\xi_{n}}\left(z_{n}\right) /\left|g_{\xi_{n}}\left(z_{n}\right)\right|-g_{\xi_{n}}\left(z_{n}\right)\right) t+g_{\xi_{n}}\left(z_{n}\right) \mid t \in[0,1]\right\}$ and $n \in \mathbb{N}$ large. Herein,
 the fact $\left|U_{t_{0}}-\zeta_{0}\right|>0$, each $w \mapsto \Phi_{0, U_{\xi_{n}}, D_{\xi_{n}}}(w)$ can be extended analytically to a small neighbourhood around ζ_{0} if n is large enough. Thus $\Phi_{0, U_{\xi_{n}}, D_{\xi_{n}}}^{\prime}\left(\zeta_{n}\right) \rightarrow \Phi_{0, U_{t_{0}}, D_{t_{0}}}^{\prime}\left(\zeta_{0}\right)$, so we get $\left|\Phi_{0, U_{\xi_{n}}, D_{\xi_{n}}}^{\prime}\left(\zeta_{n}\right)\right| \leq L$ for all $n \in \mathbb{N}$ large enough with $L>0$.
Combined with Equation (5.3) and (5.4), we find

$$
\begin{equation*}
\frac{1}{4}\left(\frac{1}{\left|g_{t_{n}}\left(z_{n}\right)\right|}-1\right) \leq\left(s_{n}-t_{n}\right) L\left|g_{\xi_{n}}\left(z_{n}\right)\right|\left(\frac{1}{\left|\lg _{\xi_{n}}\left(z_{n}\right)\right|}-1\right) \leq\left(s_{n}-t_{n}\right) L\left(\frac{1}{\left|\lg _{t_{n}}\left(z_{n}\right)\right|}-1\right) . \tag{5.5}
\end{equation*}
$$

Finally, Equation (5.5) yields a contradiction, as $s_{n}-t_{n} \rightarrow 0$ when n tends to infinity.
5) Using the previous part, we find a $\mu>0$ such that $\operatorname{diam}\left(S_{t, s}\right)<\varepsilon$, whenever $0 \leq t \leq s \leq T$ with $0 \leq s-t \leq \mu$. Here, we can choose $\varepsilon<\rho$ where ρ is defined according
to Part 1. Let $a \in \mathbb{T} \cup \operatorname{cl}\left(S_{t, s}\right)$. Consequently, $S_{t, s} \subseteq B_{\varepsilon}(a)$ and $B_{\varepsilon}(a) \cap D_{t}=B_{\varepsilon}(a) \cap \mathbb{D}$. Thus $\partial B_{\varepsilon}(a) \cap \mathbb{D}$ is a cross-cut in D_{t} separating $S_{t, s}$ from 0 . Using Lemma 5.8, the proof is complete.

List of Figures

2.1 Triply connected canonical domains 11
2.2 Radial single slit mapping 26
2.3 Normalised radial mapping function on $\Omega_{k}(t, \tau)$ 31
2.4 Bilateral multiple slit mapping 33
2.5 Chordal multiple slit mapping 36
2.6 Radial mappings $f_{t, \tau}, f_{t_{0}, \tau} f_{t_{0}, \tau_{0}}$ and $f_{t, \tau_{0}}$ in the proof of Lemma 2.43 42
2.7 Proof of Theorem 2.30, 2.31 and $2.36(\mathrm{i}) \Rightarrow$ (iii) in the case $t>t_{0}$ 46
2.8 Proof of Theorem 2.30, 2.31 and 2.36 (i) \Rightarrow (iii) in the case $t<t_{0}$ 49
2.9 Proof of Theorem 2.30, 2.31 and 2.36 (ii) \Rightarrow (i) 51
2.10 Radial mappings $f_{k ; \underline{t}_{n}, \tau_{n}}, h_{k ; \underline{t}_{n}}, h_{k ; \bar{t}_{n}}$ and $f_{k ; \bar{t}_{n}, \tau_{n}}$ in the proof of Proposi- tion 2.55 54
3.1 Uniqueness proof of Theorem 3.2, 3.3 and 3.4 72
3.2 Tuple of branched unparametrised slits in canonical domains 73
4.1 The mapping functions g_{t} and $h_{k ; t}$ in the radial case 84
4.2 The mapping $g_{t} \circ h_{k ; t}^{-1}$ involved in the distortion factor $t \mapsto\left|\alpha_{k}(t)\right|$ 85
4.3 A counterexample to Theorem 4.1 for slits having branch points 90
4.4 The function u from Example 4.2 94
5.1 The concentric circular arc C_{1} gets swallowed by the hull $\mathfrak{H}_{t_{0}}$ 96
5.2 Proof of Lemma 5.10 102
5.3 The ε-extension of a hull \mathfrak{H} 103

Bibliography

[ABCDM10] Marco Abate, Filippo Bracci, Manuel Contreras, and Santiago DíazMadrigal, The evolution of Loewner's differential equations, Eur. Math. Soc. Newsl 78 (2010), no. 1, 31-38.
[BF06] Robert O. Bauer and Roland M. Friedrich, On radial stochastic Loewner evolution in multiply connected domains, J. Funct. Anal. 237 (2006), no. 2, 565-588.
[BF08] , On chordal and bilateral SLE in multiply connected domains, Math. Z. 258 (2008), no. 2, 241-265.
[Bie16] Ludwig Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss. (1916), 940-955.
[BL14] Christoph Böhm and Wolfgang Lauf, A Komatu-Loewner Equation for Multiple Slits, Computational Methods and Function Theory 14 (2014), no. 4, 639-663.
[BS15a] Christoph Böhm and Sebastian Schleißinger, Constant coefficients in the radial Komatu-Loewner equation for multiple slits, Mathematische Zeitschrift 279 (2015), no. 1-2, 321-332.
[BS15b] , The Loewner equation for multiple slits, multiply connected domains and branch points, 2015.
[CDMG11] Manuel Contreras, Santiago Díaz-Madrigal, and Pavel Gumenyuk, Loewner Theory in annulus II: Loewner chains, Analysis and Mathematical Physics 1 (2011), no. 4, 351-385.
[CDMG13] , Loewner Theory in annulus I: evolution families and differential equations, Transactions of the American Mathematical Society 365 (2013), no. 5, 2505-2543.
[CFR13] Zhen-Qing Chen, Masatoshi Fukushima, and Steffen Rohde, Chordal Komatu-Loewner equation and Brownian motion with darning in multiply connected domains, preprint, 2013.
[CM02] Lennart Carleson and Nikolai Makarov, Laplacian path models, Journal d'Analyse Mathématique 87 (2002), no. 1, 103-150.
[Con95] John B. Conway, Functions of one complex variable. II., Graduate Texts in Mathematics. 159. New York, NY: Springer-Verlag., 1995.
[Cou77] Richard Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Springer, 1977, reprint.
[CP03] José A. Cid and Rodrigo López Pouso, On First-order ordinary differential equations with nonnegative right-hand sides, Nonlinear Anal. 52 (2003), no. 8, 1961-1977.
[DB85] Louis De Branges, A proof of the Bieberbach conjecture, Acta Mathematica 154 (1985), no. 1-2, 137-152.
[dMG13] Andrea del Monaco and Pavel Gumenyuk, Chordal Loewner Equation, preprint, arXiv:1302.0898, 2013.
[dMS15] Andrea del Monaco and Sebastian Schleißinger, Multiple SLE and the complex Burgers equation, preprint, arXiv:1506.04679, 2015.
[Dre11] Shawn Drenning, Excursion reflected Brownian motions and loewner equations in multiply connected domains, Ph.D. thesis, 2011, arXiv:1112.4123.
[Dur83] Peter L. Duren, Univalent Functions, Applications of Mathematics, Springer, 1983.
[Dur14] , Variational Methods in Function Theory, Lecture 2 at Universität Würzburg, May 2014.
[EE01] Clifford J. Earle and Adam L. Epstein, Quasiconformal variation of slit domains, Proc. Am. Math. Soc. 129 (2001), no. 11, 3363-3372.
[FK14] Masatoshi Fukushima and Hiroshi Kaneko, On Villat's Kernels and BMD Schwarz Kernels in Komatu-Loewner Equations, Stochastic Analysis and Applications 2014, Springer Proceedings in Mathematics \& Statistics, vol. 100, Springer International Publishing, 2014, pp. 327-348.
[FP85] Carl H. FitzGerald and Christian Pommerenke, The de Branges theorem on univalent functions, Transactions of the American Mathematical Society 290 (1985), no. 2, 683-690.
[GM05] John B. Garnett and Donald E. Marshall, Harmonic Measure, New Mathematical Monographs, Cambridge University Press, 2005.
[Gol51] Gennadii M. Goluzin, On the parametric representation of functions univalent in a ring, Mat. Sb., Nov. Ser. 29 (1951), 469-476 (Russian).
[Gol69] , Geometric Theory of Functions of a Complex Variable, Translations of mathematical monographs, American Mathematical Society, 1969.
[Gru78] Helmut Grunsky, Lectures on theory of functions in multiply connected domains, Studia Mathematica, Vandenhoeck \& Ruprecht, 1978.
[GS08] Tomasz Gubiec and Piotr Szymczak, Fingered growth in channel geometry: A Loewner-equation approach, Physical Review E 77 (2008), no. 4, 041602.
[KK55] Pavel P. Kufarev and M. P. Kuvaev, An equation of Löwner's type for multiply connected regions, Tomskiui Gos. Univ. Uv. c. Zap. Mat. Meh. 25 (1955), 19-34.
[KL07] Michael J. Kozdron and Gregory F. Lawler, The configurational measure on mutually avoiding SLE paths, Universality and Renormalization: From Stochastic Evolution to Renormalization of Quantum Fields, vol. 50, American Mathematical Soc., 2007, pp. 199-224.
[Kom43] Yûsaku Komatu, Untersuchungen über konforme Abbildung von zweifach zusammenhängenden Gebieten, Proc. Phys. Math. Soc. Japan, III. Ser. 25 (1943), 1-42 (German).
[Kom50] , On conformal slit mapping of multiply-connected domains, Proc. Japan Acad. 26 (1950), no. 7, 26-31.
[KR14] Daniela Kraus and Oliver Roth, Strong submultiplicativity of the Poincare metric, preprint, 2014.
[KSS68] Pavel. P. Kufarev, V. V Sobolev, and L. V. Sporyševa, A certain method of investigation of extremal problems for functions that are univalent in the half-plane, Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 200 (1968), 142-164 (Russian).
[Kuf43] Pavel. P. Kufarev, On one-parameter families of analytic functions, Mat. Sb., Nov. Ser. 13 (1943), 87-118 (Russian).
[Kuf47] , Eine Bemerkung über die Integrale der Löwnerschen Gleichung, Dokl. Akad. Nauk SSSR, n. Ser. 57 (1947), 655-656 (Russian).
[Law05] Gregory F. Lawler, Conformally Invariant Processes in the Plane, Mathematical surveys and monographs, vol. 114, American Mathematical Society, 2005.
[Law11] Defining SLE in multiply connected domains with the Brownian loop measure, preprint, arXiv:1108.4364, 2011.
[LMR10] Joan Lind, Donald E. Marshall, and Steffen Rohde, Collisions and spirals of Loewner traces, Duke Mathematical Journal 154 (2010), no. 3, 527-573.
[Löw23] Karel Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I, Mathematische Annalen 89 (1923), no. 1, 103-121.
[LSW01] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar brownian frontier is 4/3, Math. Res. Lett. 8 (2001), 401-411.
[Neh52] Zeev Nehari, Conformal mapping, Dover Publications, 1975, New York, 1952, reprint of the ed. published by McGraw-Hill, New York, in series: International series in pure and applied mathematics.
[New52] Maxwell Newman, Elements of the topology of plane sets of points, reprint of the 2nd ed. ed., 1952.
[Pes36] Ernst Peschl, Zur Theorie der schlichten Funktionen, J. Reine Angew. Math. 176 (1936), 61-94 (German).
[Pom65] Christian Pommerenke, Über die Subordination analytischer Funktionen, Journal für die reine und angewandte Mathematik 218 (1965), 159-173 (German).
[Pom66] , On the Loewner differential equation, Michigan Math. J. 13 (1966), no. 4, 435-443.
[Pom75] , Univalent functions, Studia mathematica, Vandenhoeck und Ruprecht, 1975.
[Pom92] , Boundary behaviour of conformal maps, Berlin: Springer-Verlag, 1992.
[Pro93] Dimitri Prokhorov, Reachable set methods in extremal problems for univalent functions, Saratov University Publishing House, 1993.
[Ren61] Heinz Renggli, An inequality for logarithmic capacities, Pacific J. Math. 11 (1961), no. 1, 313-314.
[RS14] Oliver Roth and Sebastian Schleißinger, The chordal Loewner equation for multiple slits, preprint, 2014.
[Sch93] Joel Schiff, Normal families, Springer-Verlag, 1993.
[Sch00] Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221-288.
[Sch15] Sebastian Schleißinger, Embedding Problems in Loewner Theory, Ph.D. thesis, 2015, arXiv:1501.04507.
[Sel99] Göran Selander, Two deterministic growth models related to diffusionlimited aggregation, Ph.D. thesis, 1999.
[Tak05] Kato Takao, Yûsaku Komatu, Scientiae Mathematicae Japonicae 62 (2005), no. 2, 167-180.
[Tsu75] Masatsugu Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Company, 1975.

Acknowledgment

I would like to express my deepest gratitude equally to Professor Oliver Roth and Professor Wolfgang Lauf for their continuous support during my PhD study.
My very sincere thank also goes to Sebastian Schleißinger for the pleasant collaboration.
I am thankful to all my colleagues from Würzburg and Regensburg. Especially, I would like to thank all members of the Chair for Complex Analysis of the University in Würzburg.
Last but not least, I wish to thank my brother and sister and all my friends.

- Index -

Symbolsε-extension of \mathfrak{H}103 kernel of a sequence15
A
admissible parametrisation 59
Ahlfors function 14 locally bounded sequence95
analytic Jordan domain 12 locally uniform convergence 16
appropriate capacity 40 Loewner parametrisation 60
appropriate hull 39 logarithmic conformal modulus 32
logarithmic mapping radius 25

B

bilateral compact hull 32
C
canonical domain 11
chordal compact hull 35
circular slit annulus 11
circular slit disk 11
compact convergence 16
conformal mapping 1
continuity w.r.t compact convergence 16
continuity w.r.t. kernel convergence 15
continuous family of bilateral hulls 32
continuous family of chordal hulls 35
continuous family of radial hulls 25
cross-cut 95
G
Green's function 18
Hhalf-plane capacity35
harmonic measure 19
harmonic measure vector 19
hydrodynamic normalisation 13

I

increasing family of bilateral hulls 32
increasing family of chordal hulls 35
increasing family of radial hulls 25
JJordan curve12 weak kernel of a sequence16

[^0]: ${ }^{1}$ If $f: \Omega \rightarrow D$ is analytic and one-to-one but not necessarily onto, we call f univalent. Thus an univalent function $f: \Omega \rightarrow D$ is conformal if and only if $f(\Omega)=D$.
 ${ }^{2}$ We will always indicate the derivative w.r.t. t by $\dot{h}_{t}(z)$, while we write $h_{t}^{\prime}(z)$ to denote the derivative w.r.t. z.

[^1]: ${ }^{3}$ This was mentioned by P. Duren during some lectures at Würzburg university in May 2014, see [Dur14].

[^2]: ${ }^{4}$ For historical reasons, γ is most often parametrised in such a way that $a_{t}=2 t$. Moreover the value 2 plays a (hidden) role in the radial case as well, see for example Proposition 2.5 and Remark 2.2.

[^3]: ${ }^{5}$ Throughout in this thesis, Komatu-Loewner equations represent the multiply connected case, while Loewner equations represent the simply connected case.

[^4]: ${ }^{6}$ For example \mathbb{C} is not nondegenerate.

[^5]: ${ }^{7}$ In the simply connected case this definition is equivalent to the usual definition of a radial \mathbb{D}-hull, see [Law05], Section 3.5.

[^6]: ${ }^{8}$ In order to get \tilde{u} and \tilde{v} well-defined for each $x, t \in[0, L]$ with $x \leq t$, we extend γ_{1} and γ_{2} to an interval $\left[0, L^{*}\right]$ such that $\mathfrak{c}\left(L^{*}, 0\right)>L$ and $\mathfrak{c}\left(0, L^{*}\right)>L$.

[^7]: ${ }^{9}$ For each $t \in[0, T]$, let f_{t} be analytic on Ω_{t}, and assume $\left(\Omega_{t}\right)_{t \in[0, T]}$ is continuous. We say $t \mapsto f_{t}$ is differential at t_{0} if for every $z \in \Omega_{t_{0}}, t \mapsto f_{t}(z)$ is differentiable at t_{0}.

[^8]: ${ }^{10}$ An open Jordan arc in Ω is the trace of a simple and continuous $\gamma:(a, b) \rightarrow \Omega, a<b$.
 ${ }^{11}$ Let $C_{1}, \ldots, C_{\mathfrak{n}}$ denote the connected components of Ω where $C_{\mathfrak{n}}=\mathbb{T}$. For each $j \in\{1, \ldots, \mathfrak{n}-$ $1\}$, we denote by z_{j}, w_{j} the two tips of C_{j}. Moreover, we set $m_{1}:=\min _{j=1}^{\mathrm{n}-1}\left|z_{j}-w_{j}\right|$ and $m_{2}:=$ $\min _{j=1}^{\mathfrak{n}-1} \operatorname{dist}\left(C_{j}, 0\right)$. Then $\varepsilon>0$ is sufficiently small if $\varepsilon<\min \left(m_{1}, m_{2}\right)$.

[^9]: ${ }^{12}$ See [Pom92], Proposition 2.2.

