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Abstract. Graphene’s peculiar electronic band structure makes it of interest for
new electronic and spintronic approaches. However, potential applications suffer
from quantization effects when the spatial extension reaches the nanoscale. We
show by photoelectron spectroscopy on nanoscaled model systems (disc-shaped,
planar polyacenes) that the two-dimensional band structure is transformed into
discrete states which follow the momentum dependence of the graphene Bloch
states. Based on a simple model of quantum wells, we show how the band
structure of graphene emerges from localized states, and we compare this result
with ab initio calculations which describe the orbital structure.
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1. Introduction

Owing to its extraordinary properties and fascinating possible applications, graphene is
currently one of the most interesting materials in physics and material sciences [1]. In this
respect, small planar carbon-based molecules have also attracted considerable interest since they
represent a well-defined starting point for the preparation of larger and more complex graphene-
like systems. In particular, two-dimensional polyacenes, i.e. planar π-conjugated molecules
consisting of small sub-units resembling the honeycomb lattice of graphite, are promising
candidates for such a controlled bottom-up approach [2–5]. Among these, coronene (C24H12)
and hexa-peri-hexabenzocoronene (HBC, C42H18) (see figure 1(a) for molecular structures)
are comparatively large and at the same time thermally stable compounds, consisting of
6 and 12 edge-fused benzene rings, respectively. Thus, the central carbon ring experiences the
same chemical environment as in graphene (see figure 1(a)). When deposited on the noble
metal surfaces Ag(111) or Au(111), coronene and HBC form notably ordered monolayer
phases. All molecules are oriented in the same way, so that the macroscopic angular resolved
photoemission signal of the organic layer can be approximated by the signal of one individual
molecule [6–8]. Although the films show a very high long-range order, as demonstrated by
the electron diffraction measurements in figure 1(c), the structure differs obviously from that of
graphene since the terminating hydrogen atoms separate the molecules laterally. This separation
seems to suppress emergent lattice effects. This raises the question of whether the isolated
molecule picture or the isolated quantum dot interpretation should be deployed in order to
understand the electronic structure of graphene nanoarchitectures.

In this paper, we present angle-resolved photoelectron spectroscopy (ARPES)
measurements of coronene and HBC on Ag(111) and compare these measurements with density
functional theory (DFT) calculations of the molecular orbital structure of coronene and HBC
and show how well the simplified quantum well model of graphene [9–15] describes the
molecular electronic states.

2. Experimental and computational details

All experiments were performed in an ultrahigh vacuum system with a base pressure below
10−10 mbar. The coronene films were prepared in an attached preparation chamber by organic
molecular beam deposition with a deposition rate of 0.05 ML min−1 onto clean and well-
ordered Ag(111) single-crystal surfaces [16] at room temperature. The monolayer film quality
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Figure 1. (a) Molecular structure of coronene (top) and HBC (bottom). (b) Two-
dimensional Brillouin zone scheme of coronene on Ag(111). The high-symmetry
points are shown, and primed characters mark the second Brillouin zone.
(c) LEED image of ≈1 ML coronene on Ag(111) recorded at Ekin = 76 eV
showing the 4 × 4 superstructure. The positions of substrate LEED spots are
marked by black circles.

and thickness were characterized by monitoring the evolution of sharp spots of the low-
energy electron diffraction (LEED) pattern in figure 1(c), i.e. the typical commensurate 4 × 4
superstructure of the first monolayer [7]. In contrast to multi-domain systems like in [17, 18],
the present one-domain system provides the prerequisites for ARPES measurements, because
the photoemission signal is not a sum of different rotational domains.

The photoemission measurements for coronene were obtained with a monochromatized
vacuum ultraviolet lamp for He IIα radiation (hν = 40.8 eV) and a high-resolution photoelectron
analyzer (Scienta R4000), leading to an overall energy resolution of about 1E = 5 meV.
For measuring the angular-dependent photoelectron intensity, we used the angular mode of
the analyzer, allowing the simultaneous detection of an emission window of θ = ±15◦ in
one direction, with a resolution of 1θ = 0.3◦. To have access to a larger k-space region
we tilted the sample additionally with a step width of 2◦, providing an overall momentum
resolution of approximately 1k = 0.1 Å−1 [19]. The equipotential plots (I (EB = const, kx , ky))
were integrated over an energy window of 1EB = 200 meV, covering the main fraction of
the photoemission line of the respective molecular orbital. The ARPES data show repeating
intensity distributions after rotating the sample by 60◦, so the six-fold symmetry of the system
was used to generate the complete maps from the individual angle scans accordingly. The
sample temperature during ARPES and LEED measurements was kept constant at about 70 K.
The sample was checked repeatedly for possible beam damage or other deterioration effects. The
photoemission measurements for HBC were obtained with a Scienta SES 200 high-resolution
photoelectron analyzer, leading to an overall energy resolution of about 1E = 10 meV. The
window for parallel detection in the angular mode was θ = ±7◦ with a resolution of 1θ = 0.3◦.
To reduce beam damage, these measurements were carried out at a temperature of T = 200 K.

All DFT calculations were performed with the VASP code [20], which uses plane waves
as basis functions and employs the projector augmented wave approach to account for treating
core electrons [21]. Exchange and correlation effects are treated by using a generalized gradient
approximation [22]. Since the plane wave basis set implies periodic boundary conditions,
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calculations for isolated molecules are performed by using a supercell approach with a sufficient
amount of vacuum in order to prevent wave function overlap across periodic replica of
molecules. Thus, a coronene molecule is put into a box of size 20 × 20 × 12 Å, HBC in a box of
24 × 24 × 12 Å, and circum-coronene in a box of 26 × 26 × 12 Å. For simulating photoemission
intensity maps, either in the kx − ky mode or in the energy distribution curve (EDC) mode
Eb − k, we calculate the photoemission intensity with the one-step model and approximate
the final state by a plane wave [23]. In order to obtain smooth momentum representations
of the simulated photoemission intensity maps, we use a 6 × 6 × 3 k-point sampling of the
supercell’s Brillouin zone. This numerical trick simply enhances the resolution of the simulated
maps in reciprocal space. For the comparison with the graphene band structure, we used a
free-standing layer of graphene in a repeated slab approach with a vacuum size of 20 Å and
a k-point sampling of 18 × 18 × 1. Note that we aligned the calculated HOMO of coronene
and HBC with its measured binding energy and stretched all coronene, HBC and graphene
energies by a factor of 1.1 to facilitate comparison with experiment. It is a well-known fact that
DFT calculations employing the local density approximation (LDA) or the generalized gradient
approximation (GGA) for the exchange-correlation functional not only severely underestimate
band gaps of semi-conductors but also yield too small π-band widths of many systems including
graphene—and hence also graphene-like molecules—which can be corrected by self-energy
calculations within the so-called GW-approximation [24]. Moreover, in the presence of a metal,
apart from a rigid energy shift of the DFT band structures of the isolated graphene/molecules,
an additional renormalization of the energy axis may also occur [25].

3. The electronic structure of coronene and hexa-peri-hexabenzocoronene (HBC)

Figures 2(c) and (f) show angle integrated photoemission spectra, i.e. EDCs, of 1 ML coronene
and HBC on Ag(111). For both samples we identify several peaks that we attribute to molecular
signals. Three of these are labeled MO1, MO2, MO3 and are discussed in detail below. For
coronene, the highest occupied molecular orbital (MO1) appears at EB = 2.5 eV, whereas the
HOMO of HBC lies at EB = 2.3 eV. The next state follows at EB = 3.7 eV for coronene (MO2),
whereas for HBC additional intensity appears already at EB = 2.7 eV, which can be attributed
to the larger size of HBC compared to coronene. The most intense signal between EB = 3.8 and
7.7 eV is due to the emission from the 4d states of the Ag substrate. Within this regime, no clear
distinction between the photoemission intensity from the substrate and from the molecules is
possible. More information can be gained when analyzing angle-resolved PES data as displayed
in a color-scale plot in figures 2(b) and (e) for coronene and HBC, respectively. Here, the
k-dependence of the PES intensity clearly makes the Ag sp-bands visible, which disperse
between the Fermi edge and the 4d states at about 1 Å−1 and which are thus forming a
nearly constant background in the angle-integrated EDCs. As in other organic monolayer
systems [26–28], the Shockley state of Ag(111) [29] does not appear in the photoemission data,
because it has most likely shifted above the Fermi level. Apart from these substrate features, we
observe a strong and characteristic k-dependence of the molecular signals as seen in figures 2(b)
and (e). The highest occupied molecular state (HOMO, labeled MO1), appears in both cases
most intense near the K -point at kx = 1.7 Å−1. The MO2 for coronene as well as the MO3 for
HBC are a little closer to the 0-point, whereas the coronene MO3 is a superposition of mainly
two states, one exactly at 0 and one at kx = 2 Å−1.
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Figure 2. Photoemission intensity versus binding energy and parallel electron
momentum in 0– K – M direction for coronene (a)–(c) and HBC (d)–(f) showing
in (a) and (d) the DFT calculated intensity for an isolated molecule and in
(b) and (e) experimental data for 1 ML coronene or HBC, respectively, on
Ag(111) with HeIIα radiation at T = 70 K. The white dashed lines in (b) and
(e) represent the calculated band structure of graphene. Panels (c) and (f) display
the EDC, after k-integration of the data in (b) and (e). The blue horizontal lines
in (a), (b) and (d), (e) indicate the eigenvalues for graphene π-band electrons
confined in a cylindrical quantum well, the yellow horizontal lines in (a), (b)
mark some split-off states for coronene.

4. Coronene and HBC as π-conjugated molecules

This characteristic angular dependence of the photoemission intensity can be explained by
starting from an ab initio description of the free molecule. As demonstrated for other
systems [19, 23, 25, 30], a Fourier transformation of the molecular orbitals, describes the
angular distribution of the photoemission intensity for planar compounds very well under certain
preconditions [23]. This can be seen for the high-symmetry direction 0– K – M in figures 2(a)
and (d), where the series of discrete energy levels has clear intensity maxima in certain
kx -directions. These intensity patterns provide additional information if the full kx–ky-dependent
intensity distribution for every single state is plotted.

Beginning with coronene, figure 3 compares the experimental results (figures 3(a)–(c))
with the corresponding calculated data (figures 3(d)–(f)). The orbitals closest to the Fermi level,
in particular MO1, show a six-fold symmetry with maxima in the direction of the K -points
located at the corners of the dashed hexagon, similar to the Fermi surface of graphene [31].
The states MO2 and MO3 at higher binding energies have different intensity distributions.
For MO2 the maxima are in the direction of M . The slight shift of the maxima to lower
k-values might be caused by the superposition of the molecular intensities with the underlying
d-band emission of the substrate. The intensity distribution of MO3 is a superposition of
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Figure 3. Experimental kx,y-dependent ARPES intensity of the (a) MO1,
(b) MO2 and (c) MO3 of coronene on Ag(111) measured with HeIIα. Panels
(d)–(f) show the corresponding DFT calculations for the isolated molecule at
the respective photoelectron energies. The dotted hexagons represent the first
Brillouin zone of graphene.

two different contributions, one with six-fold symmetry with maxima in the K -direction and
another one peaked at the 0-point, i.e. in the normal emission. These two contributions can
also be distinguished in figure 2(b), where an intensity maximum appears at EB = 8.4 eV near
k‖ = 0 Å−1 (0-point) and another one at k‖ ≈ 2.0 Å−1 (i.e. close to M). The contributing real
space wave functions differ. The intensity maximum near the 0-point is given by the lowest
coronene π-orbital, whereas the intensity at k‖ ≈ 2.0 Å−1 is due to an orbital with σ -character.
Note that the intensity of these states is much lower compared to the π-states, so that we could
make them unambiguously visible in ARPES for the first time [25, 30, 32–34]. In the calculation
these two orbitals are split in binding energy by 0.5 eV, which is due to self-interaction errors
in π - and σ -orbitals. This results in an overestimation of the σ -orbital energy in our DFT-GGA
calculations. In experiment, however, these two π - and σ -states show the same binding energy
within the experimental energy resolution. Focusing on the experimental maps in figure 3, one
has to consider the contributions from the substrate: in panels (a) (MO1) and (b) (MO2) the
Ag sp-band emission appears as a hexagon around k‖ ≈ 1 Å−1. Additionally, the photoemission
intensity in panel (b) contains some contribution from the adjacent Ag 4d-bands, which creates
a broad background. Taking these results into account, the intensity distributions for MO1 and
MO2 match the DFT calculations for the isolated molecule well, thus justifying our neglect of
lattice effects for the organic overlayer. Note that for MO3 in panel (c) the signal-to-background
ratio is lower than for MO1 or MO2 and the intensity maxima at higher k-values are not
fully accessible with He IIα-radiation. Despite these restraints we can predict the experimental
intensity distribution from the DFT calculations.
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Figure 4. Experimental kx,y-dependent ARPES intensity of the (a) MO1,
(b) MO2 and (c) MO3 of HBC on Ag(111) measured with HeIIα. Panels
(d)–(f) show the corresponding DFT calculations for the isolated molecule at
the respective photoelectron energies. The dotted hexagons represent the first
Brillouin zone of graphene.

If we compare the equivalent findings for HBC in figure 4 with coronene in figure 3,
we find that MO1 and MO3 of HBC are similar to MO1 and MO2 of coronene. The most
obvious difference between these two states of coronene and HBC is the width in both the
kx - and ky-directions. For HBC the MOs are sharper in k-space, due to the larger extent of the
respective real-space wave function for HBC compared to coronene. In contrast MO2 of HBC
is different. This orbital arises in the gap between two coronene states and is purely located
at the outer six benzene rings of the HBC molecule. Due to the energetic proximity to MO1,
we had to disentangle these two signals in the experimental data by a fit with two Gaussians.
Again experiment and theory match nicely. The difference for MO2 might originate either from
intensity from MO1 or from a slight distortion of the geometric structure of HBC on the silver
substrate. Due to the stronger localization at the outer rings this orbital is expected to be very
sensitive to such a distortion.

5. Graphene quantum wells

Alternatively, the electronic states of coronene and HBC can be described in a quantum well
approach. Along this line, the electronic structure of the molecules can be understood as a
local confinement of the electronic structure of an infinity graphene sheet. To illustrate this
we have superposed the graphene valence bands as white dashed lines in figure 2 [35]. The
first intriguing aspect is that all the molecular eigenstates appear along the graphene bands.
This demonstrates that already the presence of the small graphene subunits of 2.5 Å size in
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the coronene/HBC molecules anticipates properties of the infinite, two-dimensional graphene
lattice [13–15, 36]. Therefore, the individual molecule can be regarded as graphene quantum
wells, separated laterally by the hydrogen atoms. Since for finite systems, k is not an exact
quantum number, the electronic states are broadened in k. The broadening in k is immediately
connected to the finite number of periods of the real space wave function. This can be tested
when comparing the linewidth in the kx -direction of coronene with the larger HBC. As expected
the linewidth decreases (about 7%) when increasing the size of the molecule. We can drive
this approach one step further and approximate the disc-shaped HBC by a cylindrical potential
with infinitely high potential wells. In such a case, the eigenvalues are given by the following
expression [37]:

En =
h̄2

2meffr 2

[
am,n

]2
.

Here, meff = 1.3me denotes the effective mass of the graphene π-band in a parabolic
approximation around 0, and r is the radius of the cylindrical well which we approximate
by half of the largest extent of the molecule, i.e. r = 5.9 Å for HBC. Finally, am,n denotes
the nth zeros of the mth Bessel function am,n. We have included the energy eigenvalues of
the cylindrical well in the HBC ARPES data in figures 2(d) and (e) as horizontal dashed blue
lines. They correspond to the lowest six energy levels for n = 1, where the energy of the lowest
quantum well state was shifted to match the lowest π-state of HBC. The crossing points of
the eigenenergy lines with the graphene π-band give a good approximation for the positions
of MO1 and MO3 in energy and k‖ and also match two high-intensity areas within the Ag 4d
states. We would like to stress that this simple model for the cylindrical quantum well uses only
two parameters, the effective mass of the π-band and the radius of the molecule, but neglects
any substrate, lattice or many-body interactions. Thus, the good agreement between theory and
experiment is impressive. For the other states at higher binding energies, this simple model
cannot be applied, since the effective mass of the respective graphene bands changes with kx .
Note that for the smaller coronene molecule, the quantum well solutions do not fit as good as
for HBC. This is reasonable since for the smaller coronene the approximation of infinite barrier
height and cylindrical shape is obviously less valid than for HBC. For coronene the radius of the
quantum well that provides a reasonable match to the experimental data is 5.0 Å, compared to
the half of the extent of the molecule of 3.8 Å . Additionally, one has to include split-off states
with the same energetic spacing (illustrated by the yellow lines in figures 2(a) and (b)) due to a
lift of degeneracy due to the lower symmetry of the coronene compared to the quantum well.

To prove that the match for HBC and coronene is not accidental, we compare the DFT
results of the even larger molecule circum-coronene with the quantum well solutions in the
right panel of figure 5. Unfortunately, the experimental data are not straightforwardly accessible
since this compound cannot be prepared by vacuum sublimation. One can clearly see that the
main states in the DFT calculation can be described by the quantum well model, whereas a
few additional and weaker states appear due to the lift of the degeneracy by changing from
the cylindrical symmetry C∞ of the quantum well model to the hexagonal symmetry C6 of the
molecule.

Figure 5 concludes our findings for the investigated disc-shaped molecules. The electronic
structure of the molecules (figure 5 right) can be approximated by taking the π-band of
graphene (figure 5 left) and applying a confining potential of the dimension of the molecule
(figure 5 middle). The resulting solutions can predict the molecular states in both, energy and
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Figure 5. The relationship of graphene and circum-coronene. The top part shows
in each case the radially averaged confining potential, which is absent in the
free graphene layer. For the graphene quantum well in the middle, we use
a cylindrical box and for the circum-coronene the potential is given by the
molecular structure. The bottom shows in each case the respective calculated
electronic structure in the 0– K – M

′

direction. For the quantum well, the
parabolic approximation of the π-band is plotted as the red curve, the solutions
for the quantum well with a size of r = 6.55 Å are plotted as horizontal black
lines. Their crossing points are superposed to the circum-coronene as cyan
crosses. The additional states in the circum-coronene are related to the hexagonal
symmetry of the system, which is omitted in the quantum well picture.

momentum position, although some additional split-off states appear. As for coronene, these
arise due to the hexagonal symmetry of the molecule, which is omitted in the cylindrical
quantum well model. Such a formation of lateral quantum well states is well known for
other low-dimensional systems. On vicinal metal surfaces [38–40], periodically arranged step
edges lead to a quantum well state formation of the Shockley state. Quantum confinement of
surface-state-related wave functions also occurs between supramolecular chains in grating-like
assemblies [41], in small metal islands [42] or in metal-organic networks [43]. Moreover, a few
reports exist on organic molecular systems which show one-dimensional quasi-band structures,
e.g. sexiphenyl, pentacene or alkane chain systems [30, 32, 44]. In the present example of
coronene and HBC, however, we show unambiguously that also for systems with a quasi-two-
dimensional periodicity, the band structure of the infinite counterpart, i.e. graphene, emerges
from the molecular states of the finite quasi-periodic systems. By changing the size of the
molecule, we can follow the evolution of the intramolecular electronic band dispersion, from
coronene over HBC up to the infinite-sized graphene with the well-known Dirac point, which
is absent in the graphene quantum wells of ≈1 nm size described here. Moreover, this approach
offers the intriguing perspective of tuning the lateral intermolecular coupling by a (partial)
substitution of the terminating hydrogen atoms.
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6. Conclusion

We have demonstrated that the electronic structure of the polycyclic hydrocarbons coronene
and HBC can be interpreted as lateral quantum dots of graphene. The molecules show discrete
electronic energy levels that resemble the momentum dependence of the electronic band
dispersion of graphene. The shape of the molecular orbitals of coronene or HBC leads to a
characteristic angle dependence of the photoemission intensity, reflecting the spatial distribution
of electrons in the graphene sheet. We have shown that the isolated planar molecule can be
treated as a graphene quantum dot with distinct finite size effects. With basic textbook theory
of cylindrical quantum wells, we can predict the position of the observed states of HBC in
energy and momentum surprisingly well. Precise ab initio methods coincide with the quantum
well states in energy and describe the complete ARPES signal very accurately. Therefore, the
presented systems are basic model systems for more complex nanoscale graphene structures,
such as ribbons or artificial quantum dots [45, 46].
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and Höfer U 2011 Energy shift and wave function overlap of metal–organic interface states Phys. Rev. B
84 081301
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