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Abstract: The natural environment and livelihoods in the Lower Mekong Basin (LMB) are 
significantly affected by the annual hydrological cycle. Monitoring of soil moisture as a 
key variable in the hydrological cycle is of great interest in a number of Hydrological and 
agricultural applications. In this study we evaluated the quality and spatiotemporal 
variability of the soil moisture product retrieved from C-band scatterometers data across 
the LMB sub-catchments. The soil moisture retrieval algorithm showed reasonable 
performance in most areas of the LMB with the exception of a few sub-catchments in the 
eastern parts of Laos, where the land cover is characterized by dense vegetation. The best 
performance of the retrieval algorithm was obtained in agricultural regions. Comparison of 
the available in situ evaporation data in the LMB and the Basin Water Index (BWI), an 
indicator of the basin soil moisture condition, showed significant negative correlations up 
to R = −0.85. The inter-annual variation of the calculated BWI was also found corresponding 
to the reported extreme hydro-meteorological events in the Mekong region. The retrieved 
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soil moisture data show high correlation (up to R = 0.92) with monthly anomalies of 
precipitation in non-irrigated regions. In general, the seasonal variability of soil moisture in 
the LMB was well captured by the retrieval method. The results of analysis also showed 
significant correlation between El Niño events and the monthly BWI anomaly 
measurements particularly for the month May with the maximum correlation of R = 0.88. 

Keywords: soil moisture; Scatterometer; ASCAT; Mekong 
 

1. Introduction 

The Mekong River is the longest river in Southeast Asia and the world’s eighth largest in discharge 
draining an area of 795,000 km². It flows through six states in Southeast Asia and drains a pan-shaped 
basin to the South China Sea (Figure 1). The upper part of the basin consists of mountainous terrain 
and is referred to as Upper Mekong Basin. In the lower remaining portion of the basin, Lower Mekong 
Basin (LMB), the Mekong River has several tributaries with a drainage area of 606,000 km² within 
Laos, Thailand, Cambodia and Vietnam [1,2]. The LMB is considered as the most important part of 
the Mekong basin, both socio-economically and environmentally [3]. Millions of people living in 
different geographical areas of the LMB rely on the river system for their livelihoods. The livelihoods 
and food security of most people in many parts of the LMB are tightly dependent on water resources 
which this makes the life of people highly vulnerable to availability and quality of the resources. The 
flat terrains in the LMB are used for crop irrigation, animal raising and fish farm operations. About 
80–90% of all water from the Mekong River is used for agriculture, most of which for crop cultivation [4]. 
“The rapid population growth and socioeconomic development in the Mekong region over the past 
several decades has been accompanied by extensive deforestation, expansion of agriculture and 
irrigation, and stream-flow regulation” [5]. Furthermore, extensive hydropower developments along 
the Mekong River main stem and its tributaries are built for irrigation and energy supply, causing basin 
wide effects on annual water flow and sediment load cycles [6]. The riparian people and the ecosystem 
of the Mekong basin are strongly affected by the river’s annual cycle of rainy and dry season and the 
hydrologic cycle plays a fundamental role in maintaining the health of the Mekong Basin environment.  

Soil moisture is a key variable in the hydrologic cycle over timescales ranging from hourly to  
inter-annual. It functions as a link between the energy and water fluxes at the soil surface and the 
atmosphere interface. The local and regional hydrological processes, partitioning of precipitation into 
infiltration and runoff as well as the availability of water to plants and so also the partitioning of latent 
and sensible heat are influenced and controlled by soil moisture [7]. Furthermore, soil moisture has 
been recognized as an essential variable in the climate system [8]. It is, along with snow, the most 
important component of meteorological memory over land [9]. Soil moisture and the memory 
associated with it have important roles in the feedback mechanisms that intensify and prolong climate 
anomalies [10]. Knowledge of soil moisture variations is valuable for understanding the hydrological 
cycle and predicting extreme events and their impacts on environment, climate change and weather 
forecasting [11]. 
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Figure 1. Maps of the Mekong Basin: (a) river network; (b) topography; and (c) main 
catchments in the Lower Mekong Basin. 

 

Surface soil moisture has high spatial and temporal variability, which makes the ground-truth 
measurement very difficult. The in situ measurements are precise but basically point measurements. A 
large number of samples must be taken to determine the regional variability of soil moisture. Hence, 
applying remote sensing techniques are very practical for monitoring of soil moisture dynamics 
providing frequent measurements (up to twice a day in case of scatterometer) over large areas. Remote 
sensing techniques have also the advantage of averaging within-pixel variability which masks the 
underlying land surface heterogeneity [12]. Microwave remote sensing specially in the low frequency 
domain (1–10 GHz) offers a relatively direct method of soil moisture retrieval thanks to the strong 
relationship between the moisture content and dielectric constant of the soil [13]. The microwave 
remote sensing methods are limited to shallower soil depth compared to in situ measurement because 
of limited penetration depth of the low frequency microwaves (1~5 cm). Nevertheless, an appropriate 
infiltration model can be applied for estimation of the profile soil moisture from surface observations.  

In this study we used scatterometer-derived soil moisture data for determination of soil moisture 
variability in the LMB. The two main objectives of this study were to investigate the overall quality of 
the scatterometer derived soil moisture in the Mekong Basin and characterization of the catchment-based 
soil moisture variability in the LMB. A brief overview of the study region is given in Section 2 
followed by the descriptions of the datasets used in this study in Section 3. Section 4 describes the 
methodology and retrieval procedure of the soil moisture data. Section 5 presents the results of the 
analysis divided in three main sub-sections: the quality assessment of the scatterometer soil 
moisture (SSM) product through the SSM uncertainty analysis, comparison of the SSM data with  
hydro-meteorological observations, and descriptive analysis of the SSM spatiotemporal variability in 
the LMB.   
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2. Study Area 

The study area is limited to the Lower Mekong Basin (LMB), where the Mekong’s major tributaries 
are located. The Lower Mekong Basin contains the Northern Highlands, the Khorat Plateau, the Tonle 
Sap Basin and the Mekong Delta. Figure 1-right shows the LMB’s sub-catchments, which put together 
the major physiographic sub-regions. The “Northern Highlands” with elevations of up to about 2,800 m 
comprise the northern parts of Thailand and Laos, the upland region of northeast Myanmar, and 
eastward into the northern end of the Annamite Range in Vietnam. The Northern Highlands region 
receives the highest amount of rainfall in the LMB. The “Khorat Plateau” is bound to the northeastern 
region of Thailand and the Annamite Mountains to the east and northeast. The Khorat Plateau is the 
driest region in the LMB with the highest evapotranspiration rate despite the annual rainfall between 
1,000 to 1,600 mm [2]. The “Tonle Sap” Basin, situated in Cambodia, is the catchment area of the 
Tonle Sap River at its confluence with the Mekong River. The western and central parts of the Tonle 
Sap Basin form a low-relief region in which the Tonle Sap Lake, the largest freshwater lake in 
Southeast Asia, is located. The “Mekong Delta” is defined as the flat region in southwestern Vietnam 
where the Mekong River approaches and drains into the sea through a vast network of natural 
distributaries and man-made channels. The climate of the Mekong Basin is strongly influenced by the 
rainy southwest monsoon occurring between May and October and dry northeast monsoon in the 
period of October-March. Therefore rainfall is strongly seasonal. About 90% of precipitation falls 
between the months of May and October with mean annual totals ranging from 1,000 mm in northeast 
Thailand to more than 3,200 mm in the mountainous regions of Laos [14]. The hydrologic cycle in  
the LMB is dominated by a single-wet-season flow peak. Annual floods in the Mekong Basin are 
characterized as natural occurrences with a distinct peak and large amplitude, bringing fertile and 
nutrients-rich sediments [15]. 

3. Data 

3.1. Scatterometer-Derived Soil Moisture Product 

The scatterometer soil moisture (SSM) product used in this study is retrieved from C-band 
(5.3 GHz) active sensors aboard European Remote Sensing Satellites (ERS-1&2) [16] and the first 
Meteorological Operation (Metop-A) satellite [17] by using the TUWien soil moisture retrieval 
algorithm developed at the Vienna University of Technology [18,19]. The SSM product generation is 
carried out by employing two sets of model parameters, extracted separately from backscatter time 
series measured by the scatterometers onboard ERS-1&2 (SCATs) and the advanced scatterometer 
(ASCAT) onboard Metop-A. The Metop-A is the first of three foreseen meteorological satellites 
planned by the European Organization for the Exploitation of Meteorological Satellites 
(EUMETSAT). The SCATs data acquisitions in the Mekong river basin are available from August 
1991 to January 2001 with a spatial resolution of about 50 km and daily coverage of about 40%. The 
backscatter measurements of the ASCAT, the successor of SCATs, are available in two different 
spatial resolutions of 25 km and 50 km since January 2007 [20]. The ASCAT has double daily spatial 
coverage with respect to its predecessor SCAT. In the TUWien processing algorithm, the backscatter 
measurements from SCATs (50 km) and ASCAT (25 km) are re-sampled from the satellite orbit into a 
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Discrete Global Grid (DGG) with 12.5 km grid spacing. The outcome of this procedure, which has been 
used throughout the study, is the backscatter time series covering from 1991 to 2011 with a gap 
between 2001 and 2007. Although the quality of SSM retrieved from SCAT and ASCAT measurements 
depends highly on the relative radiometric accuracy and calibration of the two generations of 
instruments, it was shown that the overall consistency of the combined dataset is satisfying [21]. 

3.2. Hydro-Meteorological Data 

Since no in situ soil moisture measurements in the LMB were available for this study, in situ 
evaporation and reanalysis precipitation data have been used for indirect quality assessment of the 
SSM product. 

3.2.1. Evaporation in situ Data  

The Mekong River Commission (MRC) collects a variety of hydro-meteorological in situ 
measurements within the LMB from the national hydro-meteorological agencies of the member states. 
The MRC database is available through the MRC Master Catalogue [22]. The actual evaporation data 
have been collected from 68 stations within the LMB available in the period of 1992–2011.  

3.2.2. Reanalysis Precipitation Data  

The Global Precipitation Climatology Centre (GPCC) provides monthly precipitation and relative 
climatological normal produced based on long-term in situ rain-gauge observations. In this study, the 
full reanalysis product with the spatial resolutions of 0.5° × 0.5° is used which was generated using the 
complete GPCC monthly rainfall station database covering the period from 1901 to 2010 [23,24]. The 
GPCC products are freely available from http://gpcc.dwd.de. 

4. Method 

4.1. TUWien Soil Moisture Retrieval Algorithm 

The TUWien soil moisture retrieval algorithm is based on change detection of the normalized radar 
cross section (σ0) measured by the SCAT and ASCAT scatterometers. Two distinct parameter 
databases were used for processing of the backscatter data extracted separately from SCAT and 
ASCAT backscatter time series. The multi-looking direction ability of the scatterometers is utilized to 
describe the incidence angle behavior of the backscatter as a seasonal function. Then the estimated 
incidence-angle dependency function is used for normalization of the σ0 to a reference incidence angle 
chosen as 40° and also to remove vegetation contribution in the σ0 measurements. Once the incidence 
angle dependency is removed, it can be assumed that there is a linear relationship between the 
variations in soil water content and σ0 expressed in decibel [13]. Eventually, the normalized 
backscatter σ40 is scaled between the lowest and the highest values ever measured over a given 
geographical location within the long-term σ40 observations representing the driest and wettest 
conditions. In this way, the corresponding surface soil moisture saturation index at topmost soil surface 
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is extracted ranging between 0% and 100% [18,19]. The TUWien soil moisture retrieval method has 
been used and validated in numerous studies (e.g., [25–34]). 

4.2. TUWien Soil Moisture Retrieval Uncertainty 

In parallel to the SSM retrieval, an error analysis is carried out within the TUWien processing 
algorithm to determine uncertainties associated with the measurements and the model parameters. The 
TUWien error propagation is initialized with a so-called Estimated Standard Deviation of backscatter 
(ESD), which represents azimuthal noise caused by surface anisotropy. The ESD is calculated using 
concurrent backscatter measurements from the fore and aft beam antennas at the same incidence angle 
but from two different azimuthal directions [35]. Using the TUWien error propagation procedure, the 
uncertainties in the measured variables are carried over to determine the final SSM uncertainty. The 
noise of soil moisture retrieved from the scatterometer data comprises errors coming from the 
instrument, azimuthal anisotropy, speckle, as well as the uncertainties associated with the model 
parameters. The calculated SSM noise is an indicator of the TUWien model performance [19]. 

4.3. Basin Water Index (BWI) 

The soil moisture product retrieved from scatterometer data provides information about the top soil 
surface as the penetration depth of the C-band microwaves in the soil is only about 1–3 cm, while 
knowledge of soil water content in the plant root zone is of interest to many hydrological and 
agricultural applications. The land surface components of the hydrological cycle behave in different 
time scales. Depending on vegetation-soil system, different water reservoirs have different time scales; 
very short time scale for canopy water, intermediate for surface soil moisture, and long term scale for 
root zone soil moisture [36]. The moisture contained within the surface soil layer and root zone interact 
via the process of infiltration. Wagner et al. [18] proposed a simple method for estimation of profile 
soil moisture using surface soil moisture measurements. The method is based on a simple infiltration 
model to extract a so-called Soil Water Index (SWI). The Soil Water Index (SWI) is calculated from 
temporally irregular SSM measurements using the following formulation: 

( )
( )

nin

i

T
tt

n

i

T
tt

i

n ttfor
e

etSSM
tSWI

in

in

≤=

∑

∑
−

−

−
−

 (1)

where SSM is the surface soil moisture, t is the time of measurements and T is a time characteristic 
parameter linking SWI with the observation depth according to T = L/C where L is the depth of 
reservoir layer and C is an area-representative pseudeo-diffusivity constant. In this study T has been 
chosen as 20. 

The above formulation assumes a two-layer water balance model, with the first layer representing 
the soil surface layer accessible to C-band scatterometer and the second layer as the part of the profile 
which extends downwards from the bottom of the soil surface layer. It is assumed that the water 
content of the lower layers is solely controlled by the past moisture conditions in the surface layer and 
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thus the precipitation history. In order to obtain a representative indicator of soil moisture conditions 
across the basin, SWI measurements are aggregated according to the following equation: 
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where N is the number of grid points (gp) within the basin boundaries. 

5. Results and Discussion 

This section presents first a quality assessment of the SSM based on the soil moisture retrieval 
performance in the studied region, followed by ground-truthing of the SSM with hydro-meteorological 
data, and finally an evaluation of the SSM in terms of spatial and temporal patterns all over the LMB. 

5.1. Quality Assessment of the SSM Retrieval 

The C-band active sensors have been demonstrated to be suitable instruments for change detection of 
soil moisture independent to solar illumination and cloud cover [37]. However, the intensity of the 
backscatter signal is also affected by surface roughness, vegetation structure, and vegetation water 
content. All these factors influence σ0 at different time scales. At the end the degree of accuracy and 
reliability of the soil moisture product will depend on the sensitivity of backscatter to the soil surface, the 
backscatter measurement noise, and the functionality of the retrieval algorithm. Figure 2(a) shows the 
backscatter sensitivity of the ERS scatterometer in Southeast Asia. Sensitivity is the range between the 
highest and lowest backscatter measurements, which varies mainly depending on the fraction of area 
covered by vegetation and the vegetation architecture (size, shape, and orientation of trunks, branches, 
and foliage). Backscatter has the lowest sensitivity to changes at the soil surface in very densely 
vegetated area like rainforest, where the penetration of the C-band signal is limited and therefore the 
majority of backscatter comes from the vegetation canopy. The lowest sensitivity in Southeast Asia is 
evident in Central Vietnam and parts of Laos, northern Myanmar, southwest Cambodia and the southern 
part of Thailand where dense vegetation dominates (e.g., Thorn forest, evergreen forest). 

Figure 2(b) shows the Estimated Standard Deviation of backscatter (ESD) and Figure 2(c) shows 
the mean of the estimated SSM noise in Southeast Asia. The estimated SSM noise can be used to 
identify areas where the algorithm has the lowest performance. This includes areas with dense 
vegetation cover, sand deserts, coastal areas, water bodies, areas covered with permanent snow or ice, 
and areas with complex topography. Figure 3 shows the range and magnitude of the SSM noise 
averaged for different land cover types based on GLC2000 land cover data [38] in Southeast Asia. 
However, because of the large footprint size of the scatterometer sensor, the impact of land cover on 
the SSM noise is not very clear in areas that are characterized by a mixture of different classes of land 
cover. The highest uncertainty in the soil moisture retrieval occurs when the soil surface is partly 
covered with water because retrieval is not possible over water bodies. Backscattering from water 
depends on roughness of the water surface. When the water surface is calm then specular reflection 
occurs and σ0 is the lowest. The large water reservoirs, shallow bodies of water like swamps, marshes, 
estuaries, rivers and any set of small bodies of water increases the soil moisture noise depending on the 
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water extent compared to the spatial resolution of the scatterometer. However, the magnitude of 
backscatter noise can be moderated in presence of vegetation as it is the case in swamp areas in the 
LMB. In the Mekong river basin, the effect of water on SSM retrieval is becoming critical during the 
flooding season. The structural properties of the surface and the three dimensional architecture of 
vegetation have also a clear influence on the backscatter sensitivity and SSM retrieval uncertainty.  
In general, backscatter from the land surfaces covered by vegetation is governed by the scattering 
properties of the geometrical elements that can be considered to be made up of vegetation, soil  
surface and the interaction between the vegetation volume and soil surface in the form of multiple  
scattering [39–42]. The highest sensitivity and therefore lowest uncertainty in the SSM retrieval is 
obtained in agricultural regions, shrubs and grasslands. The quality of soil moisture retrieval is 
degraded over anisotropic surfaces, which could be classified as Barren, Gravels, or even Savannas. 

The quality of the SSM retrieval is also affected in areas with complex topography. If the look 
direction of the sensor becomes perpendicular to the orientation of surface feature, a large portion of 
incident energy will be reflected back to the sensor. The more oblique look direction in relation to the 
feature orientation, the less energy will be returned to the sensor. Therefore complex topography can 
significantly increase the azimuthal noise. The areas with complex topography can be identified by the 
standard deviation of elevation. Figure 4 (right) indicates the normalized standard deviation of elevation 
in Southeast Asia based on GTOPO30 digital elevation model data [43]. Scatterplots in Figure 4 show 
the increasing of the averaged SSM noise with intensifying the degree of topographic complexity. 

Figure 2. (a) Sensitivity of the backscatter signal; (b) Estimated Standard Deviation (ESD) 
of the backscatter signal; (c) Mean of the TUWien soil moisture retrieval noise. 
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Figure 3. Soil moisture retrieval noise in Southeast Asia averaged over land cover classes. 

 

Figure 4. The scatterometer soil moisture (SSM) noise versus the topographic complexity 
in different land cover classes. 
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5.2. Comparison of the SSM with Hydro-Meteorological Data 

Soil moisture is connected to precipitation and evapotranspiration through water balance equation. 
The rate of soil moisture (Θ) change is described as the balance between precipitation (P), 
evapotranspiration (E) and run off (R) [44]: 

RPE
dt

td −+−=Θ )(  (3)

Although the soil moisture is not solely controlled by evaporation, a negative correlation between 
evaporation and soil moisture is expected in humid regions [45]. Figure 5 shows time series of the 
SSM compared to the in situ evaporation data at three different stations in the LMB. The results of 
comparison reveal a significant linear relationship between the SSM and the evaporation across the 
basin with the most significant correlation of R = −0.85 at Se San sub-catchment in Vietnam. Figure 6 
shows the results of analysis for all available evaporation measuring stations. It is shown that the 
inverse correlation was intensified in wet season after excluding the measurements during the flooding 
period most evidently in Khorat plateau and Delta region. 

Figure 5. Examples of the SSM time series compared with the Mekong River Commission 
(MRC) in situ data.  
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Figure 6. Comparison results of the SSM with in situ evaporation data. 

 

Soil moisture variation due to evaporation, runoff and precipitation occurs on different time scales 
influenced by soil physical properties and vegetation. Soil texture and structure determine pore size 
distribution in the soil and therefore they are important factors in determining the rate of water 
movement in unsaturated soil [46]. Vegetation type and density have also impact on soil water storage 
dynamics due to different evapotranspiration patterns. Nevertheless, considering the water balance 
equation, soil moisture increases when precipitation or irrigation exceed evaporation, evapotranspiration 
and run off. Figure 7 shows three examples of monthly GPCC compared to weekly composites of SSM 
indicating a noticeable relation between soil moisture and precipitation. Although the total soil water 
content depends on sum of input precipitation and output evaporation and run off, it is expected that 
precipitation anomalies are reflected in soil moisture observations. Figure 8 indicates the results of 
correlation analysis between GPCC monthly anomalies and SSM monthly composites.  

Figure 7. Comparison of the monthly Global Precipitation Climatology Centre (GPCC) 
data with the SSM weekly composites. 
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Figure 8. Comparison results of GPCC monthly anomalies and monthly soil moisture. r* 
shows critical correlation coefficient range considering significance level of 01.0=α . 

 

The correlation coefficients are significantly higher in wet season than in dry season. This is 
because of the specific regional climate of the LMB with distinctive dry season with no or very low 
precipitation. In agricultural areas especially in Delta region, Khorat plateau and northern Vietnam, 
correlation coefficients are clearly lower especially during dry season. In such regions the soil moisture 
regime does not always follow the meteorological conditions and other regional factors like irrigation 
activities have important influence on soil moisture conditions. 

5.3. Spatiotemporal Variability of Soil Moisture in the LMB 

5.3.1. Seasonal Variability of the BWI  

Soil moisture conditions in the LMB are strongly influenced by the tropical monsoonal climate. The 
annual mean temperature in the LMB region varies just only few degrees between the hottest and 
coldest months of the year and the annual rainfall and evaporation are roughly equal over the major 
part of the basin. However, the variability of soil moisture is high throughout the LMB. Soil moisture 
patterns in the LMB are closely related to seasonal hydro-meteorological factors as well as the  
sub-catchments characteristics. The variability of soil moisture differs significantly, depending on 
region and month of the year, and changes year to year. Transition from dry to wet season in the LMB 
occurs in the period between March and May and transition from wet to dry season happens sometime 
between November and January [2]. The annual variability of normalized backscatter can be used for 
determination of the seasonal transition times. The transition times are calculated by using a least square 
fitting method of a step function applied on backscatter time series in the period of 2007–2010 [47]. 
According to this parameter, it can be seen in Figure 9 that the transition from dry to wet soil 
conditions in the LMB is observed foremost in the Delta region followed by in the agricultural regions 
in the northern Vietnam and southeastern Tonle Sap sub-catchments during the second half of March 
which is most likely related to irrigation activities. The onset of wet season begins in the Northern 
Highlands during April and in the rest of LMB sometime in May.  
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Figure 9. (Left) First and second transitions times determined based on the ASCAT annual 
backscatter variations. (Right) the annual backscatter at Ban Me Thout, Vietnam shown as  
an example. 

    

Monthly averages of the BWI for different sub-catchment areas calculated using the multi-year 
SSM time series indicate strong annual variability of soil moisture in the LMB. The wettest period 
across the LMB is from June to October and the driest months of the year are January to April (Figure 10). 
This corresponds to the fact that the total annual flow in the LMB occurs in an average year about 75% 
within just four months between July and October [48]. In December and January, the central and 
northern parts of the LMB are normally drier than the southern parts. March is the driest month across 
the LMB. During the wet season from May to September the BWI measurements show relatively drier 
conditions in Khorat plateau in Thailand compared to the other regions. In October the situation is 
reversed and the Nam Mun and Nam Chi sub-catchments in Thailand show wetter soil condition than 
the eastern and northeastern parts of the LMB in Laos. Decreasing of soil moisture in the LMB starts 
from the Northern Highlands in Laos during first weeks of November followed by other regions with 
delays of 1–2 weeks. The spatial distribution of the BWI reveals distinctive patterns throughout the 
LMB showing high variability of soil moisture between sub-catchments. 

Figure 11(a,b) indicates total averages of BWI with and without considering flooding period and 
Figure 11(c) shows the standard deviation of the BWI calculated for each sub-catchment. Tropical 
monsoonal regions are generally associated with a water surplus and a highly reliable flow regime. 
Nevertheless, the BWI measurements indicated that the soil moisture condition still varies significantly 
in different parts of the LMB. The regions located in the north and the west of the LMB, show highest 
variability of soil moisture. The total mean of soil moisture is highest in the Northwestern mountainous 
regions of Laos, specifically in Nam Mae Kok, Nam Mae Kham, and Nam Mae Ing sub-catchments, as 
a result of higher rainfall and lower evaporation. The BWI values show a clear surplus of soil moisture 
in the south and the southeast regions of the LMB, Mekong Delta in Vietnam and the most parts of 
Cambodia, remarkably in Sre Pok, Se San, and the eastern Tonle Sap sub-catchments. There is also a 
decreasing gradient of soil moisture observable from east to west across the Mekong River within the 
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regions located in the central LMB. The highest evaporation occurs over the Khorat Plateau in 
northeast Thailand, one of the driest parts of Southeast Asia [2], which is also reflected in the soil 
moisture observations. In spite of significant soil moisture excess during the rainy season in summer, 
the total mean of soil moisture in this region is rather low compared to the other regions across the 
LMB. This implies that the area is particularly vulnerable to critically low levels of soil moisture 
during winter and has a high occurrence potential of agricultural drought conditions 

Figure 10. Spatial maps of the monthly Basin Water Index (BWI) averaged over the 
periods between 1991–2000 and 2007–2011 illustrating the seasonal behavior of soil 
moisture in the Lower Mekong Basin (LMB). 

 

Figure 11. (a) Total mean of the calculated BWI; (b) Total Mean of the BWI after 
excluding flooding period; (c) Standard deviation of the BWI, during the periods of  
1991–200 and 2007–2011. 
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5.3.2. BWI Anomalies 

The anomalies of BWI were calculated for all sub-catchments in the LMB using the total mean and 
standard deviation of soil moisture in catchment scale. Figure 12 illustrates the anomaly maps of BWI. 
Soil moisture retrieval is not possible during flooding period in Tonle Sap basin and Mekong Delta as 
the soil surface is usually covered largely with water. Therefore during the flooding period, the 
scatterometer measurements in these sub-catchments are excluded from the BWI anomaly calculation. 
Occurrence and location of the extreme events across the LMB differs each year depending on rainfall 
patterns and climate conditions. According to [2], there is no significant connection in the severity of 
the annual flood or drought between the northern and southern parts of the LMB, as the weather 
generating mechanisms which cause extreme conditions such as tropical storms and cyclones are 
usually not large enough to affect the region as a whole. The extreme wet conditions across the LMB 
between July and October are associated each year with a massive flood wave towards the LMB 
lowlands. During the flood season, water flows from the Mekong and Bassac rivers into the Tonle Sap 
Lake. From October onwards the flow direction is reversed and the water is drained back into the 
Mekong and Bassac rivers [49]. Each year, vast regions across the Cambodian lowlands and Vietnam 
delta are flooded for 2–4 months, affecting the life of several million people [50]. Analysis of the BWI 
time series in the periods of 1991–2000 and 2007–2011 showed that the years 1999 and 2000 were the 
wettest years. In 2000, severe flooding occurred with extended duration across the Cambodian 
lowlands and the Vietnam delta. The flooding event in 2000 led to over 800 fatalities, and economic 
damage exceeding 400 million USD [51]. Droughts in the LMB can occur at any time of the year. 
Extreme and prolonged dry conditions have considerable impacts on fisheries and agriculture. Unlike 
floods, droughts have no benefits and cause immense costs for the people living in the LMB. Droughts 
occur more often in Laos and Thailand (with the likelihood of two years in five) than in Cambodia and 
Vietnam (every three years) [2]. The BWI anomaly maps in 1992 show very dry conditions in the Thai 
sub-catchments (Nam Mun and Nam Chi) which are continued until 1993, predominantly in Nam Chi 
sub-catchment. The findings comply with hydro-meteorological observations at Vientiane and Kratie 
in Thailand. In the year 1992, the most severe drought since 1960 occurred when the peak and volume 
of the flood were 40 percent and more below the average figures [52]. The lowest BWI values in the 
Mekong Delta were observed in 1997–1998, 2007 and 2010. In 1998, the drought was equally 
profound in the LMB, especially in the Mekong Delta and the Tonle Sap basins. Tonle Sap lake did 
not expand as usual, with an estimated flooded area of 7,000 km² compared to a typical season 
maximum of 15,000 km² [2]. The BWI time series indicate that the year 2007 was a dry year in the 
whole LMB especially in Northern Highlands in Laos and northern Thailand. In 2010, extreme dry 
conditions were observable in the most parts of Laos, Cambodia, and the Mekong Delta. This is also 
confirmed with hydrological observations at Kratie. The total volume of flow at Kratie during the 2010 
flood season was even less than that of 1992 which is generally regarded as the most severe drought on 
record [53]. The BWI anomalies show that the abnormal dry conditions in 2010 persisted until 2011 in 
the eastern Laos and the northern parts of the Tonle Sap basin. 
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Figure 12. Inter-annual anomalies of the BWI in the LMB. 

 

Figure 13. Comparison of the monthly BWI anomalies with Multivariate Enso Index 
(MEI): correlation coefficients are obtained by: (a) considering all measurements; and 
(b) considering only the measurements in May, during the periods of 1991–2000 and 
2007–2011; (c) Comparison of the BWI and MEI measurements in May in Nam Chi  
sub-catchment, Thailand. 

 

Many of the extreme droughts and floods in Southeast Asia are supposed to be associated with strong 
El Niño and La Niña events [53] as a result of the interaction between Asian Monsoon and El Niño 
Southern Oscillation (ENSO) [54–56]. Kuenzer et al. [57] demonstrated that the ENSO related climate 
variations in 1997/1998 are globally reflected in the scatterometer derived soil moisture data. To 
investigate the relation between the soil moisture extremes and ENSO events, the monthly BWI 
anomalies were compared with a Multivariate ENSO Index (MEI) dataset. The MEI used in this study is 
based on long-term marine measurements derived from tropical Pacific Comprehensive Ocean-
Atmosphere Data Set (COADS) records and is a multivariate measure of the ENSO signal extracted 
from six observed variables over the tropical pacific: sea-level pressure, surface zonal and meridional 
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wind components, sea surface temperature, surface air temperature, and cloudiness [58,59]. Figure 13(a) 
illustrates the correlation coefficients calculated for each sub-catchment considering monthly BWI 
anomalies. There is a clear negative correlation between BWI anomalies and MEI in Khorat Plateau, 
Tonle Sap basin, and Mekong Delta. This finding corresponds to the observed link of the North-West 
Pacific monsoon, which in turn is influenced by ENSO, to the discharge in Kratie [60]. The correlation 
coefficients are markedly increased after performing the correlation analysis separately for each month of 
year, showing the strong seasonal relation of soil moisture and ENSO index. The most significant 
correlation was found in the period between April and June with the maximum in May (Figure 13(b)). 
Figure 13(c) shows time series of the BWI anomalies in May compared to MEI in Nam Chi sub-catchment 
in Thailand as example. In the catchments with low correlation coefficients, no conclusion could be made 
about the relation between BWI anomalies and MEI as the coefficients are statistically insignificant. 
However, in general, this might be due to low performance of the SSM retrieval in forest areas. 

6. Summary and Conclusions 

The scatterometer soil moisture retrieval showed satisfactory performance in most areas of the 
LMB with the exception of a few sub-catchments in the eastern parts of Laos, where the land cover is 
characterized by dense vegetation, and in areas with oversaturated soil situations induced by large 
flooding events in the Delta region and the Tonle Sap basin during the peak of wet season. The 
azimuthal noise, which causes uncertainties in the soil moisture retrieval, was generally low in most 
parts of the LMB with an average value of 0.18 dB (Figure 2(b)). The best performance of the retrieval 
algorithm was obtained in agricultural regions, shrubs, and grasslands with SSM noise less than five 
percent (Figure 2(c)), showing the high potential of the scatterometer derived soil moisture product for 
agricultural applications. Absolute validation of the SSM product was not possible as no long-term 
in situ soil moisture data are available in the LMB. However, despite the indirect relation of soil 
moisture and evaporation, comparison of the SSM time series with in situ evaporation data indicates 
significant inverse correlation up to R = −0.85 across the LMB, especially during the wet season. 
Comparison of the reanalysis precipitation anomalies with the SSM data showed also high correlation 
up to R = 0.92 especially in non-irrigated areas in the LMB. 

In general, the spatiotemporal variability of soil moisture in the LMB was well captured by the 
SSM retrieval algorithm. The northern parts of the LMB in Laos and the west side of the Mekong 
River show the highest variations of soil moisture. The Mekong Delta, Tonle Sap basin and the 
northern parts of the LMB in Myanmar were identified as the wettest and the Thai sub-catchments in 
the LMB as the driest regions. The inter-annual variations of the BWI reveal distinct spatial patterns 
altering from year to year which are confirmed by the reported extreme hydro-meteorological events in 
the Mekong region. Furthermore, there was a clear indication that the ENSO related phenomena were 
contained in the BWI anomalies. The reasonable quality of the retrieved soil moisture in the LMB and 
the high-temporal acquisition capability of the European C-band scatterometers operating in all-weather 
conditions make the SSM product attractive for monitoring soil moisture dynamics in the LMB which 
is potentially valuable for numerous applications in hydrological and natural environmental processes 
such as climate studies, weather forecasting, runoff forecasting, soil erosion prediction, early flood 
warning, drought monitoring, irrigation planning, and yield monitoring. 
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