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Abstract

We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic
microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their
behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying
external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences
in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change
in their mode of swimming.
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Introduction

Human african trypanosomiasis (HAT) and nagana are

devastating plagues occurring in sub-Saharan Africa with infec-

tions of humans and cattle, respectively. Besides their medical

importance, these neglected tropical diseases cause enormous

economic damage in some 36 African countries [1,2]. Trypano-

somiasis is caused by the unicellular blood parasite Trypanosoma

brucei, which is transmitted between mammalian hosts by the

infamous tsetse fly vector. To date only few drugs are available,

which also have severe side effects [1]. The self-propulsion of the

unicellular blood parasites is thought to contribute to their

virulence. Trypanosomes deploy several ways of evading the

host’s immune system. One mechanism is antigenic variation of its

surface coat, which is dominated by a single type of variant surface

glycoprotein (VSG). A sporadic change of VSG expression allows

the cells to escape the humoral immune response. Undoubtedly,

antigenic variation is the main mechanism of parasite virulence. A

second mechanism has been recently discovered that allows the

trypanosomes in an early state of infection to ‘‘wash off’’ surface-

bound host antibodies from their cell surface. This process requires

cellular motion and rapid endocytosis [3]. The proposed

‘‘molecular sails’’ mechanism exploits the hydrodynamic drag

exerted on the surface of moving cells; the shear force specifically

pushes antibody-bound VSGs to the posterior end of the cell,

where they are internalized via a specialized organelle, the flagellar

pocket. The intake rate depends on several factors, amongst them

antibody size and speed and directionality of cellular motion. The

rate of endocytosis itself is unusually fast but constant.

The propulsion of trypanosomes occurs via beating of a single

flagellum attached along the cell body. This motion is driven by a

flagellar wave typically propagating in tip-to-base direction during

periods of directional swimming. The exact mode of trypanosome

motion has intensively been discussed [4,5,6] and only recently

been deciphered (Heddergott et al., submitted). The mechanism of

antibody removal can only be kept up as long as the cell shows

directional movement, i.e. swimming with the flagellum leading

[3]. Molecular biological studies in combination with light

microscopy suggest that trypanosomes do have the ability to

reverse the direction of flagellar beating [5,6,7,8,9]. While pure

tumbling has been observed in procyclic (insect form) RNAi

mutants [6], swimming, neither of bloodstream form (BSF) nor

procyclic form (PCF) trypanosomes had so far been analyzed in

three dimensions. This, however is important for quantifying the

role of swimming for antibody removal and, hence was one goal of

our project. In addition, it is reported in literature

[3,5,7,8,9,10,11], that one can paralyze trypanosomes or reverse

swimming direction, by means of RNA interference (RNAi)

technology [12]. We have exploited this technique to reverse

flagellar beat and induce tumbling in BSF trypanosomes.

In this manuscript we apply digital holographic microscopy for

a full 3D quantitative analysis of motion patterns of BSF and PCF

trypanosomes in varying environments. Classical microscopy

motility studies have so far been done on procyclic trypanosomes

at room temperature [7,8,13,14]. We have also used the

pathologically more relevant bloodstream form trypanosomes

under physiological conditions.
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Materials and Methods

Trypanosome Culture
Wildtype bloodstream form (BSF) Trypanosoma brucei brucei, strain

427 [15,16], Molteno Institute Trypanozoon antigen type 1.6,

were cultivated in suspension at 37uC, 5% CO2 in HMI-9

medium, including a final volume of 10% FCS (Sigma-Aldrich,

Germany). BSF were kept in the exponential growth phase at a cell

density below 56105 cells/ml by dilution with fresh culture

medium. Prior to dilution of the cells, the medium was filtered

using a 0.22 mm sterile filter to remove particles from the medium,

which would lead to reduced holographic imaging quality. PCF

strain 29–13 was grown in SDM-79 medium at 27uC without

increased CO2 to a maximum concentration of 16107 cells/ml.

The cells were harvested right before each experiment by

centrifugation (1,400 g for BSF/900 g for PCF, for 10 min at

4uC).

Holographic Microscopy
The principle of holographic microscopy was introduced by

Gabor in 1948 [17]. In digital holographic microscopy, the

hologram, a diffraction pattern generated when a sample is

illuminated with a coherent, divergent electromagnetic wave, is

recorded by CCD- or CMOS-modules. The whole three-

dimensional spatial information about the probed object is

recorded within a single exposure. Amplitude as well as phase

information are preserved since the latter is encoded in the

diffraction pattern as a modulation of the amplitude measured by

the detector. In this work we apply point source laser in-line

holographic microscopy as described earlier [18]. The real space

information can be reconstructed from the acquired holograms by

applying the Kreuzer implementation of the Kirchhoff-Helmholtz

reconstruction formula [18]. A four-dimensional set of informa-

tion, consisting of three spatial coordinates and a temporal

coordinate, is provided if one acquires a sequence of holograms of

moving objects such as swimming microorganisms

Figure 1. Schematic representation of the digital in-line holographic microscopy setup. A) Schematic drawing of the optical setup used in
this study. B) Schematic drawing of the beam path between aperture and detector.
doi:10.1371/journal.pone.0037296.g001

Figure 2. Microstructured sample cuvette used in the study. A) Photograph of pillar channel, B) Electron micrograph of a pillar field with
thousand fold magnification.
doi:10.1371/journal.pone.0037296.g002
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[19,20,21,22,23]. For this data one can derive characteristic

descriptors for motility of a given species in a semi-automatic way

involving user intervention [20,23] or fully automatic as soon as a

reliable ground truth has been established for the system under

investigation [24,25]. Holography has successfully been applied in

the past to study swimming organisms such as algae, paramecium,

dinophyceae and dinoflagellates with high spatial and temporal

accuracy [19,20,21,22,23,26,27]. In biology, holographic imaging

also found a range of non-tracking applications, such as cell

morphometric studies [28]. These examples show that holographic

microscopy holds great potential for biological applications.

The general design of the digital holographic microscope used

in this study follows the idea of using a pinhole to generate a

divergent beam for coherent projection microscopy [29]. All

optical elements were set up in the in-line geometry. A schematic

of the beam path and the setup of the optical elements within the

device are given in Figure 1. The light source, a diode-pumped

solid-state-laser (IMM Messtechnologie, Germany) working at a

wavelength of 532 nm (continuous wave, 30 mW) was used to

illuminate a 500 nm pinhole (National Apertures Inc., USA). To

improve the photon flux through the pinhole the laser beam was

first expanded using a 2x Galilean beam expander (Thorlabs,

USA) and then focused by a 206objective (NA = 0.4, Euromex

Microscopes, The Netherlands). A CCD-OEM module (Lume-

nera Corp., Canada) (128061024 active pixels, 8.366.6 mm2

active pixel area, 8 bit dynamic range, max. frame rate 15.4 Hz)

typically run at 10 Hz or a 10 bit dynamic range pco.1200s

CMOS-camera (pco.imaging, Germany) (128061024 pixels,

detector size of 12.3615.4 mm2, max. frame rate 636 Hz)

typically run at 5 Hz, were used as detectors. Cameras were

positioned at distances of 18–20 mm behind the aperture. In

between the pinhole and the camera microcuvettes were

positioned which contained the trypanosome suspension. For the

used illuminating light cone, distances of 1–2 mm between pinhole

Figure 3. 3D representations of trypanosome trajectories. Shown are trajectories of BSF trypanosomes at RT (A) or 37uC (D) and PCF
trypanosomes at 22uC (G). In the left column (A, D, G) points with the same color mark traces of the same trypanosome. In the middle column (B, E,
H), the color represents the velocity as given by the color bar. Blue points indicate faster movement, red points slower movement. The right column
(C, F, I) shows the velocity histograms of the traces.
doi:10.1371/journal.pone.0037296.g003
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and cuvette are a good compromise of magnification and

sampling. The detector sizes and distances result in numerical

apertures of NA = 0.18 and 0.34, respectively, for the used camera

systems. Achievable resolutions in plane range between 1.8 mm

and 0.95 mm and in depth from 16.4 mm down to 4.6 mm

depending on the camera used, and are thus sufficient to track

trypanosomes with a typical size of 3 mm620 mm. The housing of

the device is designed as an incubator with temperature control to

suit the demands of the biological samples. Temperatures were

stable at 37uC and did not differ by more than 0.1uC between the

both sides of the microfluidic system during tests. To keep the

device thermally well isolated, positioning of the sample holder

was achieved by remotely operating the mechanical translation

stages by flexible rods (Haspa GmbH, Germany).

Sample Cuvettes
Experiments were carried out in biocompatible ibidi m-slide I

Luer channels (ibidi GmbH, Germany). The cuvettes used had a

length of 5 mm, height of 800 mm and a volume of 200 ml to

assure free movement of the trypanosomes within the channel.

Experiments to study the motility in a locally confined micro-

structured array were done in custom-built microfluidic channels.

On one lid a pillar array has been created by soft-lithography

methods, as described elsewhere [30]. Channels consisted of two

parts, 40 mm high channels constructed in a few micrometers thin

layer of polydimethylsiloxane (PDMS) on a microscope cover slip.

The top part comprised a PDMS block a few millimeters in height

structured with a 565 mm2 pillar field. The pillars were 5 mm in

diameter and 15 mm in height, with 20 mm center-to-center

spacing [31]. A photograph and an electron micrograph of the

pillar array of such a device are depicted in Figure 2.

Data reconstruction and Analysis
The data presented in this work is based on several datasets

typically consisting of 2000–5000 consecutively recorded holo-

grams. Holographic movies have been recorded at 5–10 fps frame

rate, and data analysis was carried out with an effective frame rate

of 0.5 Hz. This rate was chosen because it corresponds to a travel

of about one cell length per frame, giving a sufficient sampling of

the cells’ trajectory. Prior to reconstruction, holograms are

cropped to their center 102461024 pixels. Data reconstruction

and coordinate determination for trajectory visualization were

Figure 4. Detectable swimming modes. A) tumbling, B) swimming, C) switching between A) and B).
doi:10.1371/journal.pone.0037296.g004

Figure 5. Example for switching trypanosome trajectories from the BSF 376C dataset. A) shows exemplary trajectories color coded with
blue colors indicating fast segments and red colors indicating slower segments. B) Shows the whole class’ velocity distribution with a characteristic
dip at 5 mm/s.
doi:10.1371/journal.pone.0037296.g005
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carried out according to previously published methods

[20,23,24,25]. In brief, after subtraction of a source hologram,

single holograms were reconstructed in multiple planes with 5 mm

separation. A sufficiently small z-stepping is important to make the

depth determination as accurate as possible. The holograms were

reconstructed in a 1 mm broad z-range per dataset at varying

distances with the minimal distance from the pinhole being

1100 mm and a maximum distance of 2600 mm from the pinhole,

depending on the given sample and its position in the beam path.

Due to the divergence of the beam [29], the field of view changes

with the z-coordinate. For the given datasets the field of view is

typically in the range between 2006200 mm2 up to 4506450 mm2

depending on the distance of the given plane from the pinhole. As

described previously by our group, from the volume reconstruc-

tions three different projections can be calculated, i.e. the xy-, xz-

and yz-projection. From these the centers of mass of the

Figure 6. Relative occurrence of the different motion patterns. Shown are relative occurrence of switching (light grey), run (black) and
tumble (dark grey) phases for BSF cells at 22uC and 37uC, respectively and PCF at 22uC.
doi:10.1371/journal.pone.0037296.g006

Figure 7. Comparison of the fitted velocity distributions for swimmer and tumbler trajectories. The data for the pure swimmer and
tumbler class are compared to the segmented data and to those trajectories which show a clear, ‘‘bimodal’’ switching manifested in the dip in the
velocity histograms. The curves have been normalized to their maxima for better comparability.
doi:10.1371/journal.pone.0037296.g007

3D Motility Analysis of Trypanosoma brucei

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e37296



3D Motility Analysis of Trypanosoma brucei

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e37296



microorganisms’ images are extracted on a frame-by-frame basis

by a computer-aided algorithm, which follows single particles and

interrupts for user intervention in the case of position uncertain-

ties, e.g. if particles are crossing [23]. The resulting trajectories can

be analyzed regarding swimming speeds and angles. Since the

setups have relatively small numerical apertures the depth

resolution is always worse than the lateral resolution. To take

this fact into account, data was smoothed in the z-coordinate in

order to avoid that noise alters velocities [24].

Results

The goal of this work was to derive a motility model for

trypanosomes based on quantitative data and to investigate how

the adaption of the trypanosomes either in the bloodstream or the

insect form affects motility. One important physicochemical

parameter we investigate is the influence of temperature on the

motility of the microswimmers. Therefore, we compared the

bloodstream forms at physiologic temperature of 37uC and at

room temperature. The room temperature data were then

compared to the swimming performance of the PCF. It was not

possible to analyze recorded procyclic data at elevated tempera-

ture since the PCF cells rapidly ceased motion and eventually died

during the 37uC measurement most probably due to heat shock.

Trajectories as well as an evaluation of the swimming velocities by

histograms are shown in Figure 3. At first glance there are no

obvious differences in the trajectories. However, the histograms

reveal that BSF cells swim slower at room temperature.

Interestingly, Figure 3I shows, that the procyclic form swims

faster than the bloodstream form at the same temperature. This

suggests that swimming velocities of both forms are optimized with

respect to their naturally occurring environmental temperature.

The trajectories in Figure 3B, E and H are color coded

according to the velocity at each given data point. Blue colors

resemble faster and red color slower trypanosomes. A closer

inspection of the color coded data shows that three different kinds

of trajectories can be observed and typical examples for each class

are exemplarily shown in Figure 4: cells that swim slow (A), cells

that swim fast (B), and cells, which show both, fast and slow motion

(C). Class A (slow moving trypanosomes) and class B (fast

swimming trypanosomes) can easily be recognized as the velocity

and thus color is conserved along the trajectory. In contrast, the

behavior of switching cells (C) is characterized by sections of fast

swimming, depicted by blue colors, which are interrupted by slow

(tumbling) phases, depicted in red colors. Intermediated velocities,

indicated by the yellow colors, seldom occur and can mostly be

found when a transition between the two swimming modes occurs.

We termed the traces in Figure 4 tumbling (A), swimming (B) and

switching (C) in analogy to bacterial run and tumble behavior

[32].

A similar, statistical analysis can be done for the switching traces

in Figure 5. Switching traces can be found for the PCF, the BSF at

22uC, and the BSF at 37uC. The corresponding velocity

distributions in Figure 5B clearly show two maxima with a

characteristic dip at velocities around 5 mm/s. This dip will be

used below as a threshold to separate switching trajectories into

swimming and tumbling phases. The velocities at the two maxima

Figure 8. Comparison of swimming parameter distributions for tumbler class trajectories and motility mutant. Shown are the
distributions of velocity (A, C, E, G) and swimming angle (B, D, F, H) for tumbler class trajectories of BSF wildtype measurements (C and D for 22uC, G
and H for 37uC) and the motility mutant reference dataset (A and B for 22uC, E and F for 37uC) after 12 h of induction of RNA interference against
dynein intermediate chain (RNAiDIC). Panels I and J show overlays of the fitted curves for the velocity distributions of wildtype tumbler class and
motility mutant reference at 22uC (I) and 37uC (J). Curves in I and J were normalized to their maxima.
doi:10.1371/journal.pone.0037296.g008

Figure 9. Schematic representation of the configuration of the microstructured channel within the beam path of the holographic
microscope.
doi:10.1371/journal.pone.0037296.g009
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Figure 10. Comparison of swimming parameter distributions for swimmer class trajectories in unstructured channels and
trajectories measured in the micropillar array. Shown are the velocity (A and C) and swimming angle (B and D) distributions for swimmer class
trajectories of BSF wildtype measurements in structured (C and D) and unstructured (A and B) channels. Panel E shows an overlay of the fitted curves
for the velocity distributions of wildtype swimmer class and the ensemble velocity distribution for trypanosomes in pillar-decorated channels at 22uC.
Curves in E were normalized to their maxima.
doi:10.1371/journal.pone.0037296.g010
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correlate very well with the most probable velocities found for

purely swimming (6.4 mm/s versus 7.1 mm/s) and purely tumbling

(3.8 mm/s versus 2.7 mm/s) trajectories. The observation of this

class of switching trajectories in which two velocities are dominant

suggests that trypanosomes have the ability to switch between the

two modes tumbling and swimming.

Figure 6 shows the relative occurrence of running, tumbling and

switching trajectories. The analysis is based on the assignment of

single trajectories with a typical duration of 140 s. The majority of

trajectories can be assigned to the class of switchers, while runners

and tumblers only play a minor role in their contribution to the

ensemble velocity distributions. Already based on the relative

occurrence of runners, a clear correlation with the ensemble

distributions can be seen where BSF at 22uC reveal the smallest

percentage of runners (8%) and the lowest most probable velocity

(v = 3.6 mm/s), while PCF trypanosomes show an intermediate

behavior (13% swimmers, v = 4.2 mm/s). BSF at 37uC reveal the

highest percentage of swimmers (18%) and fastest ensemble speed

(v = 5.6 mm/s). In agreement with the general velocity analysis

these data support the notion that a decrease of temperature

adversely affects motility, which is not unexpected.

As the switching trajectories are the dominant class of patterns,

they were analyzed in greater detail. We observe slight differences

in the transition between the running and the tumbling phase and

only for a minor fraction of the trajectories a clear dip in the

velocity distribution as shown in Figure 5 can be observed. This is

due to the fact that the switching process between running and

tumbling phase can take different times. The longer the transition

takes, the more intermediate velocities occur, which broaden the

histograms and make it less likely to observe a dip. This becomes

obvious when the distributions of all cells (ensemble) are analyzed

(Figure 3). No two-peak system can be found and instead the

distribution is broad and smears out resulting in one large peak.

The velocities in this distribution cover the whole range of

swimming and tumbling cells.

Visualization of the velocities by the color coding introduced

above (blue = fast and red = slow) in Figure 4 and Figure 5 reveals

the frequent changes between swimming and tumbling motion in

switching traces. As this behavior can easily be determined by eye,

we manually segmented the switching trajectories into swimming

and tumbling segments using the constraints that a swimming

phase must have a velocity .5 mm/s (according to the minimum

in the histogram in Figure 5B) and a minimum duration of 6 s.

Figure 7 shows the distributions of swimming velocities for the

obtained swimmer segments and the obtained tumbler segments.

For comparison, the velocity histograms for purely swimming and

purely tumbling trajectories are also included. The good

agreement of the distributions of swimmer and swimmer segments

as well as tumbler and tumbling segments supports the notion that

switching traces consist of alternating swimming and tumbling

phases. Summarizing, the occurrence of the pure running and

tumbling modes and the observation that switching modes have

segments of similar velocity (color coded representation), which

can result in a bimodal distribution, show that trypanosomes are

able to switch between both swimming modes.

Modeling the Tumbling Phase by Knock-down of a
Motility Associated Gene

We investigated a motility mutant (cell line 13–90/pZJM.DIC)

with a reversed flagellar beat. Knock-down of a dynein

intermediate chain coding gene causes the transgenic trypano-

somes to exclusively tumble as shown by Bastin et al. for procyclic

trypanosomes after dynein’s light chain knock-down [6]. The

distributions of characteristic swimming parameters of the mutant

dataset as well as the tumbler traces of BSF wildtype cells at 22uC
and 37uC are shown in Figure 8 for comparison. The swimming

parameters obtained from the mutant dataset match very well with

those acquired for the tumbling trajectories (tumbler class) of the

wildtype at both temperatures. The fitted curves of the velocity

distributions of wildtype tumblers and mutants show almost

perfect agreement (compare Figure 8I and J), which may indicate

mechanistic similarity. Both curves resemble tumbler segments

(Figure 7). Thus, trypanosomes indeed interrupt their swimming

by tumbling phases. Besides the similar motion patterns we can

take the data as an indirect hint that the trypanosome tumbling

may results from a similar mechanism of propulsion, supporting a

model which suggests that the direction of the flagellar bending

wave is reversed with respect to the swimming mode (Heddergott

et al., submitted).

Local Confinement as Swimmer Model System
Since there is no known mutant of Trypanosoma brucei in which

specifically tumbling is impaired and that always swims direction-

ally, we made use of recent findings revealing that the geometry of

the microenvironment greatly influences trypanosome motion

behavior (Heddergott et al., submitted). The strategy here was to

confine the geometry of the sample cuvette, taking into account

that trypanosomes in directional motion show an elongated cell

form, while tumbling trypanosomes need more space because they

typically exhibit a bent cell shape [33]. The approach was realized

by selecting a microenvironment in which obstacles are present

that prevent trypanosomes from switching into the tumbling state.

The microstructured channels used in this study contained an

array of pillars with a spacing of 20 mm (center-to-center) and a

height of 15 mm (Figure 2). A schematic drawing depicting the

configuration within the beam path of the holographic microscope

is given in Figure 9.

The characteristic swimming parameter distributions acquired

from the motility data recorded in the pillar-decorated channel is

shown along with the swimmer subclass of bloodstream forms for

comparison in Figure 10. A very good agreement for the

swimming speed and angle distributions is observed. Especially,

the comparison of the fitted curves of the velocity distributions for

the compared data (Figure 10E) reveals almost perfect agreement.

Unfortunately, it was not possible to measure motion at elevated

temperatures as the inhomogeneous heat transfer in the micro-

channels was inevitably causing convection artifacts. Figure 10E

illustrates the remarkable agreement of the swimming model with

the purely swimming class of trajectories. Futhermore, the

Figure 11. States of the proposed quasi two state system for
trypanosome motility. The system consists of swimming (A),
tumbling (B) and switching between both states (C). Velocities above
5 mm/s are depicted in green, those below in red.
doi:10.1371/journal.pone.0037296.g011
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similarity with the swimming segments (Figure 7) reveals that those

are mechanistically identical with purely swimming motion

(swimming subclass) and the class after stimulation by micro-

structured arrays.

Discussion

The detailed analysis of motility data reveals a dip in velocities

at 5 mm/s and the comparison with purely swimming, purely

tumbling, and segmented trajectories along with two reference

Figure 12. Swimming parameter overview. Depicted is a comparison of (A) most probable swimming velocities and (B) mean angles between
two consecutive swimming vectors. The black lines indicate the thresholds between swimming and tumbling at a velocity of 5 mm/s (as derived from
the histograms of switching trajectories) and an angle of 55u.
doi:10.1371/journal.pone.0037296.g012
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systems (genetic knock-down and motility in a microstructured

environment) show that trypanosome motility occurs in a two-

state-run-and-tumble-mechanism. While microorganisms that

switch between both modes are dominant, we also observed few

trajectories that for up to 500 seconds revealed either fast and

directional swimming (swimmers) or tumbling without relevant net

displacement (tumblers). A schematic representation of the

observed states is given in Figure 11.

Figure 12 shows a comparison of the most probable velocities

and the mean swimming angles for the ensembles, the pure

swimmer, the swimming segments, the segments from the

bimodal swimmers and the same subclasses for the tumblers at

different temperatures. The distributions verify that the threshold

for the swimming velocity is well chosen and in good agreement

with the segmented data as well as pure swimming and tumbling

classes.

Based on the extensive analysis of the two swimming modes we

can now address the question why in some cases the two

behavioral classes can be distinguished (bimodal trajectories), while

when considering the full ensemble, the dip in the velocity

histogram vanishes and appears as one broad peak. Figure 13

shows the fitted curves over the tumbler (red) and swimmer

segments (green) as well as the sum of both (blue) for both cases,

bimodal switchers (A) and switchers without dip (B). The visible

separation in the summed distribution occurs if (a) the contribution

of swimmers to the histogram is large and (b) if the width of the

distribution of the two subclasses is small. For all bimodal

distributions, the swimming state is well populated and thus, a

separation of the two modes becomes recognizable. This

observation can be interpreted such that switching becomes

immediately obvious if the cells are very motile and prefer

swimming instead of tumbling and if the switching phase between

the modes is short, which reduces the width of the distribution.

Especially the distinctiveness of switching between the modes is

affected by all processes related to changes in the underlying

molecular machinery. This frequently results in a gradual

transition between the two states and thus a broadening of the

apparent distributions.

In addition to deriving a general motility model for trypano-

somes we present evidence for an adaption of the different

trypanosome life cycle stages to their natural environments. First

hints can directly be derived from the ensemble velocity

distributions shown in Figure 3. The bloodstream forms at 22uC
show a most probable velocity of 3.6 mm/s, well in the tumbling

regime, while at elevated temperature (37uC, physiological

conditions) the most probable velocity shifts towards the swimmer

regime (5.6 mm/s) or, in other words, the population becomes

governed by swimmers. The insect forms show an intermediate

behavior. This can be understood by analysis of the temporal

switching behavior, i.e. considering the mean segment durations

for switchers. The duration of the swimming and tumbling

segments as well as the total time spent by the trypanosome in

either state is shown in Figure 14. The bloodstream form data

clearly indicate more cells swim at 37u when compared to 22uC.

Enhanced swimming at elevated temperature is not surprising as

most chemical reactions, enzymatic processes, and molecular

machinery have activation barriers and are thus temperature

dependent. The higher tendency to swim for procyclic trypano-

somes at 22uC compared to bloodstream forms at the same

temperature can be seen as a sign of adaption of the procyclic cells

to lower temperature. This observation seems reasonable as the

temperatures in the procyclic cells’ natural environment lie well

below 37uC, but they need to swim in order to proliferate within

the fly vector.

The two model systems for running (confined micro-geometry)

and tumbling (knock-down mutant) are not only important to

support the developed run-and-tumble-model but they also reveal

important mechanistic implications. The striking similarity of the

tumbling mutant with the tumbling segments suggests that flagellar

beat reversal plays a major role in the tumbling mode. This

connection between swimming mode and direction of the flagellar

beat, seen here for bloodstream forms, has so far only been

suggested (but not directly shown) for procyclic trypanosomes [6].

Thus, the similarity of tumbling states and mutant data is a strong

hint for a mechanistic analogy. In both cases tumbling is induced

Figure 13. Comparison of bimodal switching and switching behavior without occurrence of a dip in the velocity distribution. Fit
curves for bimodal (A) segments and segments of switchers without dip at 5 mm/s (B) and sum curves are shown. Data from PCF dataset.
doi:10.1371/journal.pone.0037296.g013
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by flagellar wave reversal, which itself is being reversible in

wildtype cells but irreversible in the mutant background.

Conclusion and Outlook
The swimming behavior of the pathogen Trypanosoma brucei was

investigated in 3D by digital in-line holographic microscopy. The

motility is of general interest as it is a prerequisite for one

mechanism of trypanosome immune evasion. We have described

in a quantitative manner the swimming trajectories of trypano-

somes and have formulated a two-state-model consisting of

swimming and tumbling motion as well as switching between

both modes. Using segmentation of trajectories, average values for

swimming angles and speed have been extracted for wildtype cells

and compared to genetically modified trypanosomes, which are

only able to tumble. Swimmer traces and segmented swimmer

traces agree well with trypanosomes which are stimulated to

exclusively swim due to a confinement in a microstructured pillar

environment. The data furthermore show that the wildtype life

cycle stages of trypanosomes may be adapted to their natural

environments also in terms of cell motility. This becomes evident

when looking at the behavior of bloodstream cells, which show a

clear trend to swim at their physiological temperature of 37uC,

while the rate of swimmers and the duration of swimming phases

drop significantly when the temperature is lowered. Experiments

in microstructured channels confirm that not only elevated

temperature, but also introduction of obstacles in the microenvi-

ronment triggers swimming. This can be connected with the

presence of obstacles, such as red blood cells, in the bloodstream,

which are utilized by the trypanosomes to enhance swimming

speed. In the future, our insight may be used to correlate the

motility of trypanosomes to various other external factors and for

screening of new compounds targeted against this deadly disease.
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