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3. Prüfer: Prof. Dr. R. Oppermann

im Promotionskolloquium

Tag des Promotionskolloquiums: 10.10.2005

Doktorurkunde ausgehändigt am:
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Introduction

Microelectronic based on semiconductors is present in almost all parts of life.
Most of the integrated circuits are realised with the element silicon, whereas for
optical application compound semiconductors are necessary. In this field, the III-V
heterostructures are dominant. Due to the technological problems in the produc-
tion and microstructuring II-VI semiconductors play a minor role on the market
for electronic components. The only exception are infrared photodiodes which
are commercially produced on the basis of HgCdTe. Traditionally these diodes
are fabricated by means of liquid phase epitaxy. Such photodiodes are commer-
cially available for one of the two atmospheric windows. But this method can not
fabricate a double diode which is sensitive in both windows at once because of
the impossibility to grow a crystal with two different, sharply separated cadmium
contents. Recently several research centres, mainly in the USA, started intense re-
search on the development of such structures by means of molecular beam epitaxy.
Also at the chair of experimental physics three at Würzburg University successful
studies of the feasibility of such structures were done in the framework of this the-
sis in cooperation with AEG Infrarot Module company. These studies resulted in a
research project granted by the German ministry of defence. Due to nondisclosure
reasons these results will not be presented here.

Since the seminal paper of Datta and Das, where they proposed a field effect tran-
sistor which is toggled not by the electronic charge but by the electronic spin, a
revolutionary new field in the applied semiconductor physics was opened. This
field now called spintronics, attracted huge attention in solid state physics and as
a consequence fundamental research activities on the behaviour of the electronic
spin raised. A mercury based heterostructure is a very good template for such
investigations. Asymmetric HgTe quantum wells (QWs) due to their structure in-
version asymmetry exhibit a giant spin-orbit splitting, known as Rashba spin-orbit
splitting, which is at least four to five times larger as in III-V semiconductors.
Furthermore it is possible to incorporate manganese isoelectrically into these crys-
tals and form a diluted magnetic semiconductor (DMS). Such DMS have been,
among others in Würzburg, successfully used to demonstrate the injection of spin-
polarised carriers into a semiconductor device, which was a milestone in the de-
velopment of spintronics. A next step is the control over spin coherence of the
carriers to maintain spin-polarised transport. Hence, giant spin-orbit splitting and
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6 INTRODUCTION

giant Zeeman splitting, which are both tunable in HgMnTe QWs, are important
effects and therefore have been studied in the framework of this thesis.

Demonstration of spin coherent transport could be equivalent to the observation
of the spin-orbit Berry phase. Hence, this phase recently aroused much attention.
Although there exist many theoretical descriptions and proposals for experimental
realisation, up until now it has not been directly observed. One major goal of this
thesis is the investigation of phase coherence transport, which is the basis for the
observation of the spin-orbit Berry phase. Theoretical considerations suggest that
HgTe QWs are a good candidate to observe the Berry phase, but many technologi-
cal problems have to be solved. A nanostructuring technology has to be developed,
which overcomes the material specific problems. Furthermore, the successful real-
isation of nanostructured devices allows a new method of measuring the magnetic
ordering of a sample. Usually this is performed by means of magneto-optical or
SQUID1 measurements. However, here the two-dimensional electron gas is used
as a sensor of the magnetic ordering.

To present the above mentioned aspects this thesis is organised as follows: At the
beginning the relevant transport theory for the experiments is summarised. The
next chapter is dedicated to the theory of phase coherent effects. Then particular
properties of mercury based heterostructures are presented. Herein, the exper-
iments to deduce sample specific parameters are introduced. The development
and the realisation of nanostructures on HgTe QWs are presented in chapter 4.
Measurements on these nanostructures are focused on ballistic effects and phase
coherence, here. Finally QWs consisting of HgMnTe are investigated. The inter-
play of Rashba, Zeeman and Landau splitting will be clarified. Phase coherent
measurement on micro Hall bars demonstrate the possibility to use the magnetic
two-dimensional electron gas as a sensor for the magnetic ordering in the sample.
In the last chapter a summary of the results is given and an outlook for further
research is presented.

1superconducting quantum interference device
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Chapter 1

Basic Transport Theory

Based on the design and the electronic properties of a sample, magneto-transport
can be divided into different transport regimes. In macroscopic or low mobility
samples the electronic transport can be described with the classical Drude for-
mula [Dru00a; Dru00b]. When the device dimensions are reduced and the mo-
bility is increased, such that the mean free path becomes the order of the de-
vice dimensions, ballistic and coherent phenomena have been observed. The
theories of classical, semi-classical and quantum transport can be found in
modern standard textbooks of solid state and semiconductor physics such as
[AM76; Hel88; See91; Dat95; Dav98]. Moreover, they have been summarised
in several Ph.D. thesis, e.g., [Ger97; Zha01; Liu03]. Here, only a short summary
of their main aspects will be given. The last two sections of this chapter are an
introduction to ballistic transport phenomena and its simulation. An introduction
to phase coherent phenomena will be given in chapter 2.
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10 1. BASIC TRANSPORT THEORY

1.1 Classical Transport Theory

In the kinetic theory of gases, the molecules are assumed to be incompressible
spheres, which move with constant velocity in a straight line except for short col-
lisions with other molecules or the boundaries. Drude adapted this model in order
to describe electronic transport in metals [Dru00a; Dru00b].
Analogous to the theory of an ideal gas he made some simplifying assumptions:

• Between collisions with other electrons or ion cores, the electrons move
independently in a straight line with the same velocity, i.e., without interac-
tions. In the presence of an external field they move according to Newton’s
equations of motion.

• The collisions are instantaneous and velocity is altered abruptly. Scattering
happens mainly with the ion cores.

• Irrespective of their velocity or location, the relaxation or collision time τ is
defined as the average time between two collisions. The collision probability
in an infinitesimal time interval dt amounts to dt/τ .

• The thermal equilibrium of the electrons with the environment is reached
through these collisions. After several collisions the electron has a randomly
oriented velocity with an absolute value according to the local temperature.

In an applied electric field ~E, the electrons attain after a short initial period an
average drift velocity

~vd = −µ~E, (1.1)

where µ = (eτ)/m is the mobility and e and m are the electron charge and mass,
respectively. According to Ohm’s law the current density ~j is

~j = σ~E, (1.2)

where σ represents the conductivity tensor. The resistivity ρ , an observable vari-
able in a transport experiment, is the inverse of the conductivity, i.e., ρ = σ−1. In
absence of an external magnetic field, σ is a scalar and can be written as

σ0 = enµ =
ne2τ

m
, (1.3)

where n is the electron density. When a magnetic field ~B is applied perpendicular
to the current density ~j is applied, i.e., in the z-direction, the Hall effect has to be
taken into account and the conductivity tensor can be written as

σ =





σxx ±σxy 0
∓σxy σxx 0

0 0 σ0



 ,
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with σxx =
σ0

1+(µB)2 = −σxy

µB
. (1.4)

The upper sign is valid for electrons, the lower one for holes. Hence, the resistivity
can be calculated to be:

ρxx =
σxx

σ2
xx +σ 2

xy
and ρxy =

σxy

σ2
xx +σ 2

xy
(1.5)

ρxx = ρ0 =
1

enµ
=

m
e2nτ

(1.6)

ρxy = RH ·B = ± B
ne

, (1.7)

where RH is the Hall coefficient.

1.2 Semiclassical Transport Theory and Quantum
Transport

The limitations of the Drude theory are obvious with regard to its inherent simpli-
fying assumptions. For a better description of the electronic transport in a solid
state material several improvements have to be made. The Bloch formula [Hel88]
introduces the effective mass approximation into the solution of the Schrödinger
equation for the wave function of an electron in a periodic lattice potential of a
crystal. The effective mass depends on the curvature of the dispersion of the energy
band. Therefore, band structure calculations are essential in order to understand
magneto-transport measurements (s. sec. 3.1 and ref. [PJ00]).

In contrast to Drude’s assumption of uniformity of the electron velocities, the semi-
classical transport theory requires, that they obey the Fermi-Dirac distribution f :

f =
1

exp[(Ek −µF)/(kBT )]+1
(1.8)

The distribution function f also indicates the probability of an electron occupying
a band state with energy Ek at temperature T . Here, µF is the chemical potential
(in the case of T = 0 K, µF is the Fermi energy) and kB is the Boltzmann constant.
Since the difference between µF and the Fermi energy is small at low tempera-
tures, especially for metals, the notation is often used synonymously. Taking the
Pauli exclusion principle and the Heisenberg uncertainty relation into account, the
density of states (DOS), Di(E), can be calculated by integrating over the allowed
~k vectors in the energy range between Ei and Ei +dE:

Di(E)dE =
2
V

∫ d~k

∆~k
, (1.9)
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where V is volume of the allowed ~k space and the factor 2 is included because
of the twofold spin degeneracy. The integration over the density of states Di(E)
multiplied by the occupation probability f (E) for all possible energies provides
the number n of electrons per unit volume in the energy band Ei.

ni(E) =

∫ ∞

0
Di(E) f (E)dE (1.10)

This equation can be used to calculate the Fermi energy EF , if one has already
obtained the carrier concentration e.g., from a Hall measurement (s. eq. (1.7)).
The Fermi surface separates the occupied (E ≤ EF) from the unoccupied (E > EF )
states in the~k space.

Due to the complicated scattering processes, with their different origins, the dis-
tribution function has to be approximated. Widely used is the relaxation time ap-
proximation. Within this approximation, the microscopic scattering processes are
described by a macroscopic, energy dependent quantity τ(~k). For further details
the reader is referred to the corresponding section in [Ger97] and the references
therein.

If one replaces the charge carrier mass m with the effective mass m∗ and the re-
laxation time τ with τ(~k), the equations (1.3)-(1.7) remain valid. Thus, the Hall
mobility µH can be calculated with:

µH = |RH(~B = 0) ·σxx(~B = 0)|, (1.11)

where σxx(~B = 0) is the zero magnetic field longitudinal conductivity. In a
magneto-transport experiment resistances or the corresponding voltages and cur-
rents are usually measured. Thus, equation (1.11) has to be transformed using
equations (1.3)-(1.7) and the relation Rxx = ρxx

l
w for the resistance of a sample

with length l and width w. Thus, the Hall mobility is given by

µH = | 1
neRxx(~B = 0)

· l
w
|, (1.12)

where n is the carrier concentration, that can be derived directly from the Hall
coefficient (eq. (1.7)), i.e., the slope of the straight line in a low field Rxy vs. B
plot.

When the temperature is reduced and the applied magnetic field is increased,
new phenomena have to be considered. In a perpendicular magnetic field (z-
direction) the electrons are deflected on circular trajectories in the x-y-plane due
to the Lorentz force, where they circulate with the cyclotron frequency given by
ωc = | eB

m∗ | and the cyclotron radius1 by rc =
√

2m∗E
|eB| . In the above mentioned limit

of high magnetic fields and low temperatures2, when rc is of the order of the

1E is the kinetic energy; electron charge e and effective mass m∗, as used before.
2Typical values for our samples are B ≥ 1 T and T ≤ 40 K
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Figure 1.1: Landau quantisation of a spher-
ical surface of constant energy in ~k-space
into discrete, concentric Landau cylinders
oriented parallel to the applied magnetic
field (taken from [See91].

de Broglie wave length the electrons are quantised in the Landau levels [Lan30].
In other words, the condition that the cyclotron energy3 h̄ωc is much larger than
the thermal energy kBT must be fulfilled. A schematic diagram of the concentric
Landau cylinders in the 3D case is shown in Figure 1.1. The electron motion in the
x-y-plane is quantised, but along the magnetic field direction is not affected. If the
motion of the electrons is additionally confined in a quantum well (2DEG) in the
z-direction their energy eigenvalues are completely quantised and the energy states
condense onto Landau circles, which are the intersection of the Landau cylinders
with the x-y-plane. Then the energy eigenvalues are given by

Ei,N = Ei +

(

N +
1
2

)

· h̄ωc, (1.13)

where N = 0,1,2,3, ... is the Landau quantum number and the index i indicates
the particular energy level. Thus, the density of states D(E) is discrete and can be
obtained by summation of the δ -functions for all i and N according to

D(E) =
1

2π l2
B
·∑

i,N
δ (E −Ei,N). (1.14)

The magnetic length lB is given by lB =
√

h̄/eB. In the case of spin degeneracy
the equation above has to be multiplied by a factor of 2.

With increasing magnetic field, the cyclotron energy and consequently the radii
of the circles or cylinders become larger and eventually cross the Fermi surface.
Hence, the density of state near the surface oscillates, which results, e.g., in oscilla-
tions of the longitudinal magneto-resistance, the Shubnikov-de Haas (SdH) effect.
The parameter ν , called the filling factor, specifies the number of fully occupied
Landau levels, i.e., the number of them lying within the volume enclosed by the
Fermi surface. It is defined as

ν =
h

eB
n, (1.15)

3h̄ is the Planck constant divided by 2π
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where n is the total electron density. According to equation (1.14) the filling factor
provides the ratio of electrons per flux quantum h/e.

In the presence of a magnetic field the Landau levels are split due to the Zeeman
effect. This leads to an additional term in the Hamiltonian for an electron in a QW.
Hence, the energy eigenvalues can be calculated using

Ei,N,s = Ei +

(

N +
1
2

)

· h̄ωc +S ·g∗µBB, (1.16)

where S = ± 1
2 is the spin quantum number, g∗ the effective g-factor, and µB the

Bohr magneton. In addition to the Zeeman effect, the level splitting can be en-
hanced due to the spin-orbit coupling (Rashba [BR84] and Dresselhaus [Dre55]
effect, s. sec. 3.4), which leads again to an additional term in the Hamiltonian.

In a real system the Landau levels have not the shape of δ -functions but are broad-
ened. The main reasons for this are the Heisenberg uncertainty relation and es-
pecially the different scattering processes. Several approaches have been made to
calculate the density of states with a consideration of scattering events. See, for
example, the article by Ando et al. [AFS82] and the references therein. For an
overview of these theories the reader is referred to [Ger97; Liu03].

Apart from low temperature T and high magnetic field B, which ensure a high
energy-spacing h̄ωc, and low thermal broadening kBT of the individual Landau
levels, the observation of SdH oscillations also require a minimum broadening due
to scattering processes, Γ (as shown in Figure 1.2).

Figure 1.2: When the
Landau level broadening is
larger than the Landau level
separation (left), the SdH
effect can not be observed.
The density of states (y-
axis) between the Landau
levels must approach zero
and they should not overlap
(right).

Evidently, one or more Landau levels must lie within the Fermi sphere due to the
already mentioned origin of the SdH oscillations. The analysis of the SdH oscilla-
tions is a powerful tool for the characterisation of our samples. By using this tech-
nique, characteristic sample parameters could be extracted [GLO+01; ZPJO+01]
and the interplay of Rashba, Zeeman and Landau level splitting has been clarified
[GBL+04].
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1.3 Analysis of Shubnikov-de Haas Oscillations

Under the above mentioned conditions, SdH oscillations could be observed. The
expression for the normalised amplitude usually used to extract sample specific
parameter is [AH59; RA66; SS91]

∆ρ
ρ0

=
∞

∑
R=1

5
2

√

(

RP
2B

)

β ′Tm′ cos(Rπν)

sinh(Rβ ′Tm′/B)
exp

(−Rβ ′TDm′

B

)

× cos
[

2π
(

R
PB

− 1
8
−Rγ

)]

, (1.17)

which takes spin splitting and the non-parabolicity of the bands into consideration.
Here ∆ρ is the longitudinal resistivity without background, ρ0 the zero field resis-
tivity, P = h̄e/EFm∗, the period of the SdH oscillations (in T−1), B the transverse
magnetic field, β ′ = 2π2kBm0/h̄e = 14.707 TK−1 summarises some constants, T
the temperature, m′ = m∗/m0, the ratio of the effective to the free electron mass,
ν = 1

2 m′g∗, with g∗, the effective g-factor, TD the Dingle temperature and γ the
Onsager phase factor. The first term of the sum (R = 1) usually describes the tem-
perature dependence of the amplitude sufficiently. It has to be mentioned, that
equation (1.17) was derived originally for the three-dimensional case. Since the
oscillations are observed in the two-dimensional (2D) case due to the same rea-
son, the equation is also used for the analysis of the 2D case. A comparison with
complex numerical calculations provides the justification for this procedure.

According to Seiler [SS91] the derivations of equation (1.17) provide the sample
parameters such as the Fermi energy EF and the carrier concentration, the effective
mass m∗, the Dingle temperature TD, and the effective g-factor g∗, in case the spin
splitting is resolved.

In the SdH oscillations of our samples beating patterns are often observed be-
cause of the existence of two closely spaced frequency components with similar
amplitudes due to level splitting. The shift of the node position of this beating
by variation of temperature and applied gate-voltage is analysed to determine, on
one hand, the exchange interaction of the manganese ions with the carriers (s. sec-
tion 3.3) and, on the other hand, the Rashba and Zeeman effect as described in
section 5.1.

1.4 Quantum Hall Effect

More than 20 years after its discovery [vKDP80], the quantum Hall effect (QHE)
is still a challenge for theory and experiment. The importance of the research on
the QHE can be recognised in the number of papers which have been published
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on the subject. Up to now about 6100 papers have been published, more than 400
per year since 1995 (INSPEC). A historical overview of the discovery and the first
theoretical interpretations has been given by Landwehr [Lan03].

As a consequence of the Landau quantisation the Hall resistivity in two-
dimensional (2D) systems is quantised in units of h/e2:

ρxy =
1
ν
· h

e2 , (1.18)

where ν is the integer filling factor from equation (1.15). In 2D systems the Hall
resistivity is equal to the Hall resistance and thus, the quantum Hall plateaus occur
at integer fractions of the von Klitzing constant, RK = h/e2 = 25812.807 Ω. The
theoretical description of the QHE is more complex than that of the SdH effect.
Solely, the transit of Landau levels through the Fermi sphere with increasing mag-
netic field can not explain the existence of plateaus with finite width. Hence, in
the initial paper [vKDP80] itself the existence of localised states was taken into
account. Among others, Aoki and Ando [AA81], as well as, Laughlin [Lau81] put
this consideration on a more quantitative basis. Earlier numerical calculations al-
ready showed, that around the centre of the Landau levels, delocalised (extended)
states exist and that the states in the tails of the DOS at the borders of the Landau
levels are localised [Aok77]. Following the review article of Aoki [Aok87], the
QHE can be described in terms of a transition between localised and delocalised
states and vice versa. In the case that the Fermi energy EF falls in the range of lo-
calised states between two Landau levels, the number of delocalised states below
EF , which are responsible for the Hall voltage, is constant and the Hall resistance
shows a plateau. Furthermore, the absence of delocalised states near EF , which
could contribute to a dissipative longitudinal current, leads to a minimum in the
longitudinal resistance. If the centre of the next Landau level with delocalised
states approaches EF , the Hall resistance increases and the longitudinal resistance
has a maximum.

For a microscopic description of the QHE, Büttiker [Büt88] developed in 1988
the so called edge channel model based on the Landauer-Büttiker (LB) formula
[Lan57; Büt86]. The LB formula will be explained more in detail in the next
section, due to its relevance in the description of (quasi-)ballistic transport phe-
nomena.

A laterally structured 2DEG (e.g., a Hall bar) has at the sample boundaries an
additional confinement potential. In a magnetic field applied perpendicular to the
plane of movement, the electrons move in semi-classical cyclotron orbits. Near
the sample boundary the circles are truncated and the electrons propagate along
the edge in skipping orbits, the edge channels. They develop on both sides of the
sample and the electrons propagate in opposite direction for the left and right hand
side channels. For every Landau, level below EF exists one quantised, quasi one-
dimensional channel. Thus, in this model the number of edge channels is given
by the filling factor ν . With increasing field, the edge channels move to the centre
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of the sample, are open and form localised cyclotron orbits in the bulk. While
this transition, backscattering from one side of the sample to the other is possible
due to the spatial vicinity of the states that are otherwise separated. In Figure 1.3
the transition from filling factor ν = 3 to ν = 2 is illustrated. The final situation
(ν = 2, not shown in the Figure) looks like the initial one (upper part) with only
two edge channels left. This possibility of backscattering is the origin of a non-
zero longitudinal resistance.

Figure 1.3: Edge channels in a 2D sam-
ple at transition from ν = 3 to ν = 2.
In the upper part one can see the situa-
tion, where the edge channels are sepa-
rated on both sides of the sample. Tran-
sition from one side to the other is not
possible and all electrons injected at µ1
reach µ2. Thus, the longitudinal resis-
tance is zero. With increasing field,
the edge channels move to the centre
of the sample and backscattering (grey
regions in the middle part) is possible.
Consequently, the resistance rises. In-
creasing the field further, the inner one
form closed loops with decreasing radii
and the backscattering possibility de-
creases (lower part). Figure taken from
[Buh04].

One can distinguish between extended states near the sample boundaries, those
which form the edge channels and localised states, encircling potential maxima
and minima in the bulk. Hence, the QHE can be described by the combination of
the existence of localised states and edge currents. A first experimental proof for
the existence of edge channels was given by Fontein et al. [FKH+91].

Only two years after the discovery of the integer QHE, Tsui et al. [TSG82] mea-
sured a Hall plateau corresponding to the filling factor ν = 1/3. Whereas the phe-
nomenon of the integer QHE can be explained in terms of a single particle effect,
as done in the section above, the fractional QHE requires a many particle theory.
An interpretation of Laughlin’s wave function [Lau83] is the composite fermion
concept introduced by Jain et al. [Jai92]. Here, every electron is coupled with 2n
flux quanta. In the case of n = 1, the effective field for the composite fermion is
zero at Bν=1/2 and the plateaus occur at the corresponding values of the effective
integer QHE of the composite fermion.
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1.5 Ballistic Transport

In the previous section we discussed the semiclassical extension to the Drude trans-
port theory, which essentially means that Fermi-Dirac statistics was taken into
account, but the dynamics of electrons at the Fermi level was assumed to be clas-
sical. In connection with the Landau quantisation, this description is satisfactory
for many transport experiments. In contrast, a different theory is necessary, if the
device dimensions are on the order of the mean free path l = vFτ , where vF is the
Fermi velocity and τ the scattering time. Therefore the Landauer-Büttiker (LB)
theory, that will be explained in this section, can be used. Phenomena related to
the phase coherence length, which is usually much larger than l, will be analysed
in chapter 2 separately. A comprehensive review related to the quantum transport
in semiconductor nanostructures is given by Beenakker and van Houten in their
treatise with the same name [BvH91].

In the LB theory the electron transport is described in terms of transmission proba-
bilities. The following derivation is taken from a lecture given by R.R. Gerhardts at
Würzburg university in the spring term 2000. Assume we have a sample with four
contacts, which are connected via one-dimensional leads, as show in Figure 1.4.
The sample scatters incoming electrons elastically into outgoing channels. The
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41µ

Figure 1.4: Sample connected
via one-dimensional leads with the
contacts. The contacts have the
chemical potential µi. Incoming
electrons are scattered elastically
into outgoing channels.

leads are quasi one-dimensional conductors, which means that the energy is quan-
tised in n modes. For lead i, the energy values are given by

En +
h̄2k2

n

2m
= EF . (1.19)

If En < EF we have two states k±i,n, where k−i,n is from contact i towards the sample
and k+

i,n vice versa. The number of modes in lead i is called Ni. The contacts are
systems in equilibrium with chemical potential µi. They act as source and drain
of carriers and energy (reservoirs). In the contacts themselves the electrons are in
thermal equilibrium due to inelastic scattering events therein. The work to be done
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in order to bring an electron from reservoir i to j is µi −µ j = e(Vi −V j), where e
is the electron charge e and Vi −V j the Voltage between these contacts.

At equilibrium µi = µ0 is valid for all contacts. We assume µi = µ0 + ∆µi. Then
the contact i injects the current e

h Ni∆µi into lead i and the current reflected into
this lead is −Rii

e
h ∆µi. Additionally, the current − e

h Ti j∆µi, which is injected into
lead i from another contact j has to be considered. Thus, this provides us with the
Büttiker equation for the current in lead i:

Ii =
e
h

[

(Ni −Rii)µi −∑
j 6=i

Ti jµ j

]

(1.20)

Current conservation requires Ni −Rii = ∑ j 6=i Tji and the Casimir-Onsager rela-
tions, which are obvious from microscopic arguments are now

Rii(~B) = Rii(−~B) (1.21)
Ti j(~B) = −Tji(−~B) (1.22)

Defining the resistance Rmn,kl = µk−µl
eInm

, directly gives us the van der Pauw condi-
tion: R12,34(~B) = R34,12(−~B).

Now we shall focus our attention on a four terminal probe with a cross shaped
geometry, as we have investigated in section 4.2. In order to demonstrate that the
transport properties are dominated by ballistic effects, nonlocal transport measure-
ments were performed, because the results in this setup are in contrast to those
expected, if the transport were dominated by diffusive scattering. The nonlocal
resistance measurement setup is as follows: The current is driven through adjacent
contacts (from contact 1 to contact 2 in Figure 1.5) while the voltage is measured
between the other adjacent contacts (contacts 3 and 4). After long calculations
[Ger00], or as often written in a textbook, as you can easily see, the nonlocal re-
sistance (NLR) R12,34 = V34

I12
is derived, using the LB theory, to be

R12,34 =
V34

I12
=

h
2e2

T 2 − trtl
(tr + tl)(2T 2 +2(tr + tl)T + t2

r + t2
l )

, (1.23)

where in our notation, T is the transmission probability of electrons from con-
tact 1 into contact 3, and tl and tr are the transmission probabilities from contact 1
to contacts 2 and 4 respectively. In the diffusive case, no voltage signal would
be expected to appear between contacts 3 and 4 in this geometry, whereas in the
ballistic regime, electrons injected from contact 1 into the cross reach the opposite
channel before they are scattered. This leads to charge accumulation at contact
area 3 and thus to the NLR signal. Application of a small magnetic field perpen-
dicular to the 2DEG plane deflects the ballistic electrons due to the Lorentz force
and therefore the voltage signal between 3 and 4 decreases. Due to multiple spec-
ular reflections at the rounded cross boundaries, the electrons then can be scattered
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I

V

B1

T

2 4t tl

3

r

Figure 1.5: Left: Setup to measure the nonlocal resistance. The current is driven
from contact 1 to contact 2, while the relative charging of contacts 3 and 4 is
measured with a voltmeter. Right: Classical rebound trajectories in a cross shaped
geometry with rounded borders: In a small magnetic field, the electrons can be
scattered elastically into the opposite contact. Figure taken from [HBGM98]

elastically into the opposite contact 4. Two classical trajectories of this case are
shown in Figure 1.5. Thus, the product of the transmission probabilities tl and tr
can exceed T 2 and the NLR, calculated in equation (1.23), becomes negative. En-
larging the magnetic field further, such that the cyclotron radius becomes smaller
than the curvature of the corners, all electrons will be guided into one of the side
contacts. Hence, T 2 and either tl or tr become zero, and therefore, the numerator
in equation (1.23) is zero and consequently also the NLR.

An alternative measurement to the four-terminal configuration introduced above
is a three-terminal configuration. Hereby, the contact configuration is the same as
before but the contacts 2 and 4 (Fig. 1.5) are now grounded. According to LB, the
measured signal in that case is

R12,34 =
V34

I12
=

h
2e2

T
(tr + tl)(2T + tr + tl)

. (1.24)

A comparison with equation (1.23) shows that in the three terminal geometry again
a maximum around B = 0 is expected in the ballistic case but the negative dips
should be absent.

In the Hall geometry, which means that the current is driven from contact 1 to
contact 3 and the voltage is measured between contacts 2 and 4, the Hall resistance
can be calculated to

R13,24 =
V24

I13
=

h
2e2

tr − tl
(2T 2 +2(tr + tl)T + t2

r + t2
l )

. (1.25)
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Here, an anomalous Hall effect is expected in an intermediate magnetic field range,
when the transmission probabilities for contact 2 and 4 (tl , tr) are in the same order
of magnitude.

1.6 Monte-Carlo Simulations

To compare the results of transport experiments in the ballistic regime with the
LB theory, classical electron trajectories can be calculated. One of the most com-
monly used methods is the simulation with Monte-Carlo (MC) techniques. The
application of this method to the above situation has been successfully demon-
strated [BvH89; BvH90; HBGM98; DGG+03]. The program code, used in this
thesis, was originally written by C.W.J. Beenakker and adapted by E.G. Novik.

For the numerical calculation of the corresponding transmission probabilities in a
cross shaped structure, we assume, that the electrons are injected through contact 1
into the cross with Fermi velocity vF and an arbitrary angle distribution. Accord-
ing to this model the electrons are subsequently specularly reflected at the sample
boundaries. The electrons reaching contact 2, 3 or 4 are counted and provide di-
rectly the transmission probabilities, correspondingly. The only initial parameter,
besides the sample geometry, is vF , which is derived from the carrier density. In
order to simulate a sample with a mean free path of the same magnitude as the de-
vice dimensions, we vary the scattering time τ . This means, that the probability of
the electron being scattered in the time ∆t (∆t � τ) is ∆t/τ . After each scattering
process, the direction of motion is altered. Several scattering mechanisms have
been assumed and simulated as described in detail in section 4.2. Figure 1.6 shows

Figure 1.6: Monte-Carlo simulation
of classical electron trajectories in a
cross shaped structure with rounded
borders. The scattering time τ is
normalised with τ0 =Wmax/vF . The
maximum and minimum widths,
Wmax and Wmin,respectively, are de-
termined from the sample geom-
etry, e.g., SEM photographs, as
shown in Figure 4.1.

some typical trajectories for different scattering times τ , which are normalised
with τ0 = Wmax/vF . The boundary potential is assumed to be parabolic, and the
radius of the boundary curvature is r = (1−Wmin)/2 with the parameters Wmax
and Wmin = Wmax/2 from the sample geometry. Measurements on cross shaped
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structures on HgTe QWs in the ballistic transport regime and the associated MC
simulations will be presented in section 4.2.

1.7 Summary

In this chapter a short outline of the transport theory was given. Starting with
the classical Drude model, semiclassical extensions to it have been made, such as
the inclusion of Fermi-Dirac statistic, the effective mass approximation and the
Landau quantisation. Effects of the Landau quantisation, since they are important
for the understanding of the measurements in the following chapters, have been
explained in more detail. Thus, the Shubnikov-de Haas and the quantum Hall
effect have been analysed.

In the frame work of this thesis, the first nanostructures on Hg-based quantum well
structures have been realised. Hereby ballistic transport phenomena were observed
and therefore, the Landauer-Büttiker theory has been introduced. With this theory
the magneto-transport experiments on such structures can be described. Finally,
the calculation of classical electron trajectories using Monte-Carlo simulations has
been presented. Herewith, a comparison of experimental data with the LB theory
will be presented in the corresponding section 4.2.
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Chapter 2

Phase Coherence

Magneto-transport experiments often require the quantum mechanical [Mes69;
Sak95] description of the carriers, especially, when the device dimensions are on
the order of the phase coherence length. For our samples this is the case for a
length-scale of a few tens of micrometer. Examples of these effects, that will be
discussed later in this chapter in detail, are the universal conductance fluctuations,
anti-localisation due to strong spin-orbit coupling and geometric phases such as
Berry phases.

25
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2.1 Phase in Physics

In quantum mechanics, the wave functions Ψ and Ψ′ = ΨeiΦ, where Φ is an ar-
bitrary phase difference, represent the same state of a physical system, and are,
therefore, equivalent. A simple demonstration of the equivalence is given by the
calculation of the expectation value of an observable A, as follows:

〈A〉Ψ = 〈Ψ|A|Ψ〉 =

∫

Ψ∗AΨ

〈A〉Ψ′ = 〈Ψ′|A|Ψ′〉 =

∫

Ψ∗e−iΦAΨeiΦ = 〈A〉Ψ.

The reason for this is the gauge invariance of the quantum mechanical theory. On
the other hand, the phase contains information about the temporal evolution of the
system, i.e., a shift in the time axis. Thus, the phase is irrelevant for an isolated
wave function. But if the wave function is a superposition of two functions, the
relative phase difference cannot be neglected. This is illustrated in the following
example. If we assume that Ψ1 = caΨa + cbΨb and Ψ2 = caΨaeiΦ + cbΨb, then
the corresponding expectation values are

〈A〉Ψ1 = 〈Ψ1|a|Ψ1〉 =

= |ca|2〈A〉Ψa + |cb|2〈A〉Ψb + c∗acb〈Ψa|A|Ψb〉
+ c∗bca〈Ψa|A|Ψb〉

〈A〉Ψ2 = |ca|2〈A〉Ψa + |cb|2〈A〉Ψb + c∗acbe−iΦ〈Ψa|A|Ψb〉
+ c∗bcaeiΦ〈Ψa|A|Ψb〉.

Because the non-diagonal elements in the matrix are complex conjugated they can
be written as

And = 2Re{c∗acbe−iΦ〈Ψa|A|Ψb〉}
= 2Re{c∗acb〈Ψa|A|Ψb〉}cosΦ+2Im{c∗acb〈Ψa|A|Ψb〉}sinΦ.

Here it can be seen, that the relative phase of the components plays an important
role. This leads to interference effects such as amplification and annihilation.

2.2 Aharonov-Bohm Effect

A well known example illustrating the relevance of phase in physics is the
Aharonov-Bohm effect [AB59]. In their article, Aharonov and Bohm describe
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the significance of electromagnetic potentials in the quantum theory. The effect
was first described eleven years earlier by Ehrenberg and Siday [ES49], but their
article went unnoticed.

Figure 2.1: Schematic setup
of the Aharonov-Bohm ef-
fect: an electron wave
packet surrounds an isolated
magnetic flux line and inter-
feres on the screen.

To explain their idea, Aharonov and Bohm suggested the following thought ex-
periment: Assume that an electron wave packet surrounds an isolated magnetic
field line. Then, from the classical point of view, this will not influence the elec-
tron, because there is no field on the path. Aharonov and Bohm showed that in
the quantum mechanical description, the phase of the electron depends on the en-
closed magnetic flux, i.e., dϕ = ~Ad~s. Although the flux on the electron path is
zero, the vector potential is not zero and the phase shift can be calculated using
Stoke’s theorem for the closed loop integral of the enclosed vector potential. The
first experimental proof was provided by Chambers one year later with a modified
electron microscope [Cha60]. He divided an electron beam with an electrostatic
Al biprism, inserted a thin magnetic iron needle and then observed the interfer-
ence pattern on a screen. Another possibility is the definition of two separate paths
by electron lithographical patterning of a semiconducting crystal, e.g., in a ring
shaped structure. Magneto-transport experiments on such structures will be shown
later in this work. Applying a magnetic field perpendicular to the plane of motion
results in periodic oscillations of the conductance. The phase can be calculated
using

Φ/Φ0 = πr2B/(h/e), (2.1)

where Φ/Φ0 is the enclosed magnetic flux divided by the flux quantum, r is the
radius of the ring, B the applied magnetic flux, h the Planck constant and e the
electron charge. The period for a ring with radius 1 µm is 1.3 mT. An example is
given in the following chapter 4 in Figure 4.11.

2.3 Aharonov-Casher Effect

According to the Maxwell equations, symmetric effects are observed in many sys-
tems. For the Aharonov-Bohm (AB) effect the corresponding effect is called the
Aharonov-Casher (AC) effect [AC84]. Previously, we discussed the motion of an
electric monopole, which encircles a magnetic dipole in the stationary reference
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Figure 2.2: Parallel transport of two
orthogonal vectors on a sphere, i.e.,
translation without twisting them
around the local vertical axis.

frame of the magnetic dipole. From the stationary reference frame of the electron,
we see a magnetic dipole surrounding the electric monopole. In three dimension
this can be translated in a cyclic motion of the magnetic dipole around an electro-
static charged wire and is therefore the analogon to the magnetic flux line in the
AB effect.

The first demonstration of the pure AC effect without the superimposed Coulomb
effect was carried out with neutral particles with a magnetic moment, i.e., neutrons
[COK+89]. Later this effect was observed with other neutral particles that have a
magnetic dipole moment [GSW95; ZZRH95].

In our experiments with electrons the AC phase can be investigated by applying a
gate voltage perpendicular to the plane of movement. In the measurement results
(Fig. 4.13), presented in the following chapter 4, one can see these oscillations
with an amplitude of the order of the conductance quantum.

2.4 Berry Phase

The phase effects described in sections 2.2 and 2.3 can be summarised and gener-
alised as geometric phase effects. The first extensive description of these effects
in the adiabatic limit was given by Berry [Ber84b]. Thereby adiabatic means, that
a time dependent Hamiltonian evolves slowly with time and an eigenstate of the
system does not change into another eigenstate [Mes69]. For example when an
electron moves slowly through an inhomogeneous magnetic field and the spin of
the electron retains its alignment along the local field direction, i.e., continously
changes its orientation adiabatically to coincide with the local field direction. In
other words, the spin part of the state evolves as an instantaneous eigenstate of the
local Zeeman interaction. Geometric phase effects can be explained using an anal-
ogon in differential geometry. In Euclidean geometry parallel transport, e.g., of a
vector, can be described by translating the vector without rotating it. On a contin-
uously differentiable surface, parallel transport is defined as parallel transport in
the actual tangential plane. In a strict sense, this is the definition for infinitesimal
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motion, but connecting a path of such neighbouring points is also called parallel
transport. Parallel transport along a closed path in Euclidean geometry will not
result in any phase shift. In contrast, consider an in-plane vector at the north pole
of a sphere pointing towards the south pole. We move it along a meridian to the
equator, and then change the direction of motion and travel along the equator a
quarter of its length to the east without twisting the vector around the local normal
axis. Now, we move it along a meridian back to the north pole. The result is, that
the vector is still pointing towards south, however, the vector is rotated 90° with
respect to the initial orientation, in spite of the fact that local parallel transport was
carried out. Detailed considerations show, that the phase shift results solely due
to the curvature of the surface, which is the same reason that the sum of the inner
angles of a triangle may be more than 180°, e.g, in our example 270°. A detailed
overview of the theory of Berry phase and experimental realisations is given in the
review article of Resta [Res00]. For further reading the nearly 100 citations therein
can be used.

2.5 Spin-orbit Berry Phase

Recently, a special manifestation of Berry phase aroused much interest in semi-
conductor physics: the spin-orbit (SO) Berry phase. Potential applications of spin-
tronics require the sustainance of electron spin coherence. The observation of SO
Berry phase can be a milestone on the way to spin-coherent quantum circuits in
semiconductors. Although there exist many theoretical descriptions and proposals
for experimental realisation [LGB90; ALG93; Res00; EL00], till now it has not
been directly observed. Some groups [MHK+98; NKT02; YPS02] have reported
evidence for SO Berry phase, but due to the complexity of the indirect derivation
of the data, these results are not commonly accepted. For example, Morpurgo et
al. analysed the Fourier spectra of ensemble averages of AB oscillations and con-
cluded, in their own words, that the splitting in the peak of the h/e oscillations
“may be a manifestation of the geometric phase induced on the spin of an electron
traversing the ring” [MHK+98]. Furthermore, Yau et al. analysed Fourier spectra
of averaged AB oscillations, where they found side peaks near the central peak
which occurred at πr2/(h/e). By means of a comparison with simulation data
they claim to have evidence for the Berry phase, although they admit discrepan-
cies between their experimental data and the simulation [YPS02]. Moreover, they
do not require the adiabaticity criterion be fulfilled.
One possible experimental setup, in which the SO Berry phase can be explored,
are Aharonov-Bohm rings in semiconductors with a strong Rashba spin splitting
[ALG93; EL00]. As described in section 2.2, charged particles aquire an addi-
tional phase of 2πΦ/Φ0 after traversing a closed circuit, due to the AB-effect.
The Rashba SO splitting can be expressed as a Zeeman like radial magnetic field
(Beff in Fig2.3). The angle Θ between the external magnetic field (Bext) and the
resulting magnetic field is the half angle of the cone.
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Figure 2.3: Experimental setup to identify
the SO Berry phase: motion of an electron
in an AB ring in a material with Rashba SO
splitting leads to an additional radial effec-
tive magnetic field (Beff). Applying a per-
pendicular external magnetic field (Bext)
leads to a resultant field with angle Θ.

For particles with spin 1/2 the SO Berry phase can be calculated to be π(1−cosΘ)
[Sak95]. In the calculation of the SO Berry phase in Fig. 2.4 the amplitude of
the AB conductance is plotted as function of the external (x-axis) and the inter-
nal (y-axis) magnetic fields in a contour plot. Cross section lines parallel to the
x-axis in this plot are AB conductance oscillations for a particular value of the
Rashba splitting. The SO Berry phase can be identified by the typical cross-over
from minimum (dark regions) to maximum (bright regions) and vice versa in the
conductance, that occur when the internal field is increased (y-direction).

2.6 Aharonov-Anandan Phase

In a fundamental generalisation of Berry’s idea, Aharonov and Anandan (AA)
lifted the adiabatic restriction and examined the geometric phase for the non-
adiabatic cyclic evolution [AA87]. By removing the dynamic part from the total
phase acquired in the cyclic evolution, Aharonov and Anandan were able to define
a non-adiabatic geometric phase, now called the Aharonov-Anandan (AA) phase.
The AA phase can be calculated to be ΦAA = ±π(1− cosα), where α is, in con-
trast to the above introduced Θ, the resulting angle of the not fully oriented, tilted
spin and the plane of movement. Here, not fully oriented means that the time of
the spin precession is smaller or equal to the time of travel in the ring, i.e.,

2π
ωL

≤ 2πr
vF

,

where ωL is the Lamour frequence, r the radius of the ring and vF the Fermi ve-
locity. Qian and Su demonstrated the existence of the AA phase in the AC effect
[QS94]. Choi et al. investigated the non-adiabatic AC phase in mesoscopic rings
embedded in criss-crossing electric fields [CYRK97]. In the adiabatic limit this
AA phase becomes the SO Berry phase suggested by Aronov and Lyanda-Geller
[ALG93]
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Figure 2.4: Calculation of the AB-oscillations depending on the internal (Bint) and
external (Bext) magnetic field in a contour plot. Cross section lines parallel to the
x-axis are AB conductance oscillations for a particular value of the Rashba SO
splitting.

2.7 Universal Conductance Fluctuations

The realisation of a two dimensional electron gas (2DEG) in a HgTe, quantum
well (QW) exhibits, in contrast to an ideal system, deviations in the periodicity
of the lattice. This may originate from defects in the crystal structure such as
vacancies, dislocations, impurities or from lattice vibrations (phonons). Phonon
scattering is inelastic, which means that the electron eigenstate changes, but in
elastic scattering events the momentum parallel to the scattering centre and the
phase of the wavefunction is conserved. Similar to the AB effect an electron wave
packet propagates on different paths through the 2DEG which leads to construc-
tive or destructive interferences [FH65]. With the application of a perpendicu-
lar magnetic field the electrons are deflected and hence completely new paths are
chosen by them. This results in a conductance pattern, called universal conduc-
tance fluctuations (UCF) [LS85; LSF87], which are stable in time and charac-
teristic for a given sample in a given temperature cycle. The fluctuations disap-
pear slowly and smoothly as temperature is increased. When the temperature is
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decreased again, another pattern appears due to a different local potential land-
scape due to impurities and hence due to different possible paths. Because of this
characteristic, the UCF were called “magneto-fingerprints” of the sample in the
original paper [LS85]. Following this idea, several groups have used the UCF as
a magneto-fingerprint of a special frozen spin configuration in mesoscopic spin
glasses [dVLF91; CBD95; JWK+98]. Hg1−xMnxTe samples show a phase transi-
tion from the paramagnetic to the spin-glass phase at temperatures below 1 K (see
Fig.3.8). A possible transition in the UCF will be discussed in section 5.3.

2.8 Weak Localisation and Weak Anti-Localisation

Additional effects related to phase coherence are weak localisation and weak anti-
localisation. The origin of these two effects is similar, but the consequences on
magneto-transport measurements are opposite. Starting with the weak localisation,
both effects will be explained in this section.
In the case of phase coherent transport, the probability of finding an electron at
its origin is four times higher than anywhere else in the sample, which leads
to a localisation of the carriers and hence to an increase of the resistance.
The result can be understood in terms of constructive and destructive interfer-
ences due to the time reversal invariance [Mes70] of the Schrödinger equation
[AAR79; GLK79; Ber83; Ber84a]. The different possible paths can be calcu-
lated with the Feynman path integral method [FH65]. An applied magnetic field
breaks the time reversal invariance and hence, the constructive interference van-
ishes. The possibility of backscattering decreases and so the resistance decreases
with increasing magnetic field. The effect is called “weak” due to the relative
weak fields (about 10 mT) necessary to destroy this effect. In the presence of
strong spin-orbit coupling, as it exists in HgTe-QWs, the Hamiltonian is modified
accordingly but the effect is the opposite effect, i.e., weak localisation becomes
weak anti-localisation. At zero magnetic field electrons on the same paths inter-
fere destructive, the possibility of backscattering is reduced and the resistance is
lower (anti-localisation) [HLN80]. With increasing magnetic field the preference
for destructive interference is reduced and the resistance rises. The observation of
this effect will be presented in the following chapters.

2.9 Summary

When the device dimensions are reduced, quantum effects can be observed in
magneto-transport experiments. In this chapter the relevance of the quantum me-
chanical phase of a wave function was elucidated. The consequences of this, for
several magneto-transport interference experiments, were presented. The observa-
tion of Aharonov-Bohm, Aharonov-Casher, Aharonov-Anandan, Berry phase, and
localisation effects are explained in detail in the following chapters.
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Chapter 3

Hg Based Heterostructures

Mercury-based heterostructures are very different in comparison with group IV
(Si, Ge) or III-V (GaAs) semiconductors. The samples investigated in this the-
sis are MBE1 grown heterostructures. They consist of a Hg1−xMnxTe quantum
well (QW) embedded in barriers of Hg1−x−yCdxMnyTe. The barriers are modu-
lation doped, either on one or on both sides of the QW, with Iodine. Thus, the
confinement potential of the QW is asymmetric or symmetric, respectively. The
incorporation of typically 2% Manganese in the QW leads to a diluted magnetic
semiconductor (DMS), which has additional properties, that are introduced here
and discussed in detail in chapter 5.

1molecular beam epitaxy

35



36 3. HG BASED HETEROSTRUCTURES

3.1 Band Structure of Hg1−xMnxTe Quantum Wells

In contrast to type-I QW e.g., consisting of a GaAs/AlGaAs heterostructure, type-
III Hg1−xMnxTe narrow gap QWs with a well width of more than 6 nm and a
manganese content less than 7% have an inverted band alignment. Whereas in
type-I QWs the conduction band (CB) has Γ6 and the valence band (VB) Γ8 sym-
metry, in type-III QWs with an inverted band alignement the Γ6 band is the VB
and the Γ8 band is the CB. Therefore, this alignment is also called an inverted
band structure. Additionally, the degeneracy of the Γ8 band is lifted. It splits into
the heavy hole band, named H1, and the light hole band L1. The latter shifts to
lower energies, and consequently, the H1 band is the CB. Thus, the subband wave
functions for k|| = 0 are pure |Γ8,±3/2〉 states.

The actual situation is more complex. The band structure of a HgTe-QW depends
on the confinement potential, i.e., the well width dHgTe. To provide a quantitative

Figure 3.1: (a) Band structure of a HgTe/Hg0.3Cd0.7Te QW with dHgTe = 40 Å well
width. (b) Dependence of the bands on the well width dHgTe. (c) Band structure
of a HgTe/Hg0.3Cd0.7Te QW with dHgTe = 150 Å well width. In (a) and (c) the
dispersion of the particular subbands for k||||(1,0) and k||||(1,1) are shown [PJ00].

description, self-consistent Hartree calculations have been carried out. The band
structure of HgTe QWs with Hg0.3Cd0.7Te barrier is described by Kane’s three-
band 8× 8 k ·p model including second-order remote band contributions. The
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envelope function method has been used to calculate this band structure as shown
in Figure 3.1 [PJ00].

As can be seen in Figure 3.1(b), narrow QWs with a well width less than 60 Å ex-
hibit a normal band alignment. Around dHgTe = 60 Å, the electron band E1 crosses
the heavy hole band H1 and the band structure is inverted, as mentioned above. All
QWs, investigated in this thesis, have a well width of 120 Å and are therefore in the
regime of inverted band structure. This type of heterostructure is indeed unique in
II-VI semiconductor, because of the availability of the semimetallic HgTe as QW
material.

Figure 3.2: Band edge profiles of the Γ6 (solid) and Γ8 (dashed) band and the
electron probability (thick solid line) of the H1 subband in an asymmetric (a) and
symmetric (b) case.

Although the QWs investigated in this thesis are n-type, i.e., the charge carriers
are electrons, their wave function corresponds to an eigenvalue equation for holes
due to the heavy hole character of their states. This leads to an apriori surprising
result. Usually, the maximum of the electron density distribution in an asymmetric
QW is shifted to the minimum of the confinement potential. However, the heavy
hole character shifts the maximum of the electron density towards the maximum
of the confinement potential, as it is expected for holes. This situation is illustrated
in Fig. 3.2(a). Here, the band edge potentials for the asymmetric (a) and symmet-
ric (b) case of a QW with dHgTe = 12 nm are plotted. The electron probability
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distribution for both cases together with the Fermi energy EF is shown. The asym-
metry of the charge distribution as well as the penetration of the wave function into
the barrier can be clearly seen.

The incorporation of manganese atoms into the QW modifies the band structure. A
schematic plot of the energy-band structure of Hg1−xMnxTe for various Mn con-
centrations x is shown in Figure 3.3. For low Mn concentrations (x<7%), HgM-
nTe is as HgTe a zero gap material with inverted band structure (c.f. sec. 3.1). For

Figure 3.3: Schematic energy-band structure of Hg1−xMnxTe for different Mn
contents at the centre of the Brillouin zone (taken from [BRG+81]).

higher Mn concentrations (x>7%), the Γ6- and Γ8-band change their roles and the
fundamental energy gap becomes positive [BRG+81]. Recently, this model has
been extended in order to take the influence of the sp−d exchange interaction on
the band structure of magnetic QWs into account [NPJJ+04]. Furthermore, the
incorporation of magnetic ions causes a temperature and magnetic field dependent
effective g-factor. For further details as, e.g., the matrix elements of Hex in terms
of the Bloch functions, the reader is referred to [NPJJ+04]. A comparison of such
band structure calculations of magnetic QWs with magneto-transport experiments
is given in section 5.2. A more detailed derivation of the description of the mag-
netic interaction is presented in the following section.
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3.2 Giant Zeeman Splitting

For the description of the magnetic exchange interaction, an additional exchange
term (Hex) in the Hamiltonian (H) of the non-magnetic case is added. According
to Winkler [Win03] and Furdyna [Fur88] the total Hamiltonian can now be written
as

H +Hex = H −∑
Rn

J(r−Rn)σSn, (3.1)

where σ is the spin operator of the band electrons at position r, Sn is the total spin
operator of the nth Mn ion at the position Rn, and J(r−Rn) is the electron-ion
exchange integral. Since the electron wave function is extended, the spin operator
Sn can be replaced by the thermal average over all states of Mn moments 〈Sz〉 for
a magnetic field in z-direction (mean field approximation). Moreover, within the
virtual crystal approximation, J(r−Rn) can be replaced by yJ(r−Rn), where y
is mole fraction of Mn, and the summation is now carried out over all cation sites.
The exchange term in Eq. (3.1) then becomes [Fur88]

Hex = −σz〈Sz〉y∑
R

J(r−R). (3.2)

The average 〈Sz〉 of the z component of Mn spin in the approximation of non-
interacting magnetic moments is determined in the following.

The Mn atom has a half filled 3d orbital, i.e., a spin quantum number S = 5
2 . Thus,

the resulting magnetic moment of a Mn atom is

~µ = −~S ·gMnµB, (3.3)

where gMn = 2 is the Landé factor of Mn and µB the Bohr magneton. For such a
DMS, the above mentioned influence of the Mn on the charge carriers has to be
considered. The sp− d exchange interaction between the s and p band electrons
with the 3d5 Mn states is described by an additional Kondo-like exchange integral
in the Hamiltonian of the Mn free system. The eigenvalues of the Schrödinger
equation (see eq.(1.16) in section 1.2) then contain an additional, spin-related term
with the effective g-factor g∗. In DMS the g∗ can be renormalised to [BRG+81]

g∗ = g0 +
x(αN0)〈Sz〉

µBB
(3.4)

for the Γ6 band and to

g∗ = g0 +
x(βN0)〈Sz〉

3µBB
(3.5)

for the Γ8 band. αN0 and βN0 are the exchange integrals for Γ6 and Γ8 bands,
respectively. The mean value 〈Sz〉 is determined by the Brillouin function for S =
5
2 :

〈Sz〉 = −S0B 5
2
(y) (3.6)



40 3. HG BASED HETEROSTRUCTURES

where

B 5
2
(y) =

2S+1
2S

coth
(

2S+1
2S

y
)

− 1
2S

coth
(

1
2S

y
)

(3.7)

and
y =

gMnµBSB
kB(T +T0)

. (3.8)

Here, B is the magnetic field and kB the Boltzmann constant. The empirical param-
eters S0 and T0 take into account the existence of clusters and an antiferromagnetic
interaction2 between the manganese ions, respectively.

The strong temperature-dependent and magnetic-field-dependent g∗ factor gives
rise to a modulation of the Shubnikov-de Haas (SdH) amplitude according to the
cos(πν) term in equation (1.17), which has been discussed in section 1.2. We
exploit these dependences in order to deduce the sample specific parameters S0
and T0, as shown in the next section.

The Zeeman splitting is not the only effect which influences the spin-dependent
subband splitting. In zinc blende structures bulk inversion asymmetry and struc-
ture inversion asymmetry lead to a suppression of the B = 0 energy degeneracy
(Rashba effect), which will be discussed in detail in section 3.4. However, these
effects do not show a temperature dependence in contrast to Zeeman splitting.
Therefore it is possible to separate the giant Zeeman splitting from the Rashba
spin-orbit splitting by analysing the temperature dependence of the SdH ampli-
tude as demonstrated in section 5.1.

3.3 Antiferromagnetic Temperature and Effective
Spin in HgMnTe

For the common description with the Brillouin function (Eq. (3.4)-(3.8)) the an-
tiferromagnetic temperature T0 and effective spin S0 in the effective g-factor are
very important parameters. These empirical parameters take into account the anti-
ferromagnetic interaction between the manganese ions, and the existence of pairs
and clusters of them. The antiferromagnetic exchange interaction [LHEC88] re-
duces the alignment of the Mn ions in the same way as a higher lattice temperature
would cause and therefore T0 > 0 is expected. Pairs and clusters of N manganese
ions, which are antiferromagnetic coupled, have in the sum a resulting spin, which
is less than N · 5

2 . Hence, the effective spin S0 is expected to be less than 5
2 .

However, for epilayers and especially QWs like our Hg1−xMnxTe samples with a
typical manganese content of x=0.02, grown on thick CdZnTe substrates, it is diffi-
cult to measure directly the magnetisation of the magnetic layer. One may deduce
the conduction band splitting from the Zeeman shifts in optical experiments, which

2d −d exchange interaction [LHEC88]
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are a combination of the heavy-hole and conduction band splitting. The knowledge
of complicated effects such as the non parabolic band structure is required to de-
termine the correct ratios between conduction band and heavy-hole spin splitting.
Ignoring these effects may lead to erroneous estimations of the antiferromagnetic
temperature and effective spin.

Figure 3.4: SdH oscillations measured at different temperatures for Q1586. The
plots are offset for clarity.

An alternative method to deduce these parameters is an analysis of the anomalous
SdH behaviour in such materials. Usually, in the non magnetic case with one oc-
cupied subband, the maxima and minima of the SdH oscillations are determined
by the density of states as described in section 1.3. The amplitude of these oscilla-
tions decreases monotonous with increasing temperature according to the relation
χ/sinh(χ), where χ = β ′T m′/B. This is the important relation of the normalised
amplitude of the SdH oscillations given in Eq. (1.17). There all the parameters are
defined. In the case of a magnetic sample discussed here, the situation is differ-
ent. The temperature dependent effective g-factor (Eq. (3.4) and (3.5)) causes an
oscillatory SdH amplitude with distinct nodes. The node position is not fixed and
shifts towards lower magnetic fields with increasing temperature. The dependence
of the amplitude from the effective g-factor g∗ can be found in the cos(πν) term in
Eq. (1.17), where ν = δ/h̄ωc = 1

2 m′g∗, with the Landau level splitting δ and the
Landau level separation h̄ωc. Nodes in the oscillations would occur, if the ampli-
tude is zero, cos(πν) = 0, which means at half-integer values of ν . In Fig. 3.4 SdH
oscillations at different temperatures for a Hg0.95Mn0.05Te epilayer are plotted.

While the positions of the maxima and minima are fixed, the amplitudes vary with
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temperature. In the neighbourhood of nodes they are drastically decreased and
their phase change by π after passing the nodal point. If the temperature is high
enough, the Brillouin function B 5

2
(y) approaches (S + 1)y/(3S)(y << 1) and g∗

is magnetic-field independent and only changes slightly with temperature. Then,
the effective masses and Dingle temperatures can be deduced by means of the
relationships for nonmagnetic semiconductors at temperatures given by 35 K <
T < 45 K. Hereby, the effective mass is deduced, using the relation

A(T1,B)

A(T2,B)
=

T1 sinh(βT2m′/B)

T2 sinh(βT1m′/B)
, (3.9)

where A is the amplitude of the SdH oscillations at certain temperature and field,
and the other parameters as defined in Eq. (1.17). This was done for different pairs
of temperature (T1,T2) at a certain B, and then repeated at different fields. In the
case of the samples discussed here, the values of m′ are significantly enhanced by
the high electron concentration.

Parameter Sample

Q1585 Q1586

x 0.0075±0.005 0.05±0.005

depilayer (µm) 1.8 1.8

nelectron (cm−3) 1.07×1018 1.37×1018

µHall(cm2/Vs) 1.84×104 2.00×104

T0 (K) 2.63 3.35

TD (K) 28.6 19.5

S0/S 0.16 0.25

m′ = m∗/m0 0.04 0.05

Table 3.1: Summary of sample characteristics for two Hg1−xMnxTe epilayers.

The Dingle temperature can be deduced from the magnetic field dependence of the
SdH-amplitude at a constant temperature, i.e.,

A(T,B1)

A(T,B2)
≈

√

B1

B2
exp

[

−βTDm′
(

1
B1

− 1
B2

)]

. (3.10)

In the Dingle plot, ln
[

A
√

Bx/sinh(x)
]

(with x = βT m′/B) versus B−1, the result-
ing straight line has the slope −βTDm′. The parameters obtained for our samples
are listed in Table 3.1. The value of T0 can be easily deduced from fitting the
temperature dependent node position using Eq. (3.4) or (3.5), where the values of
〈Sz〉/B should be kept constant. Such fits, agree well with the experimental data,
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Figure 3.5:
Temperature
dependent
node position.
Points are the
experimental
data and lines
are the fitting
results.

as shown in Fig. 3.3. From the fits, we obtain T0 = 2.63 K for sample Q1585 and
T0 = 3.35 K for sample Q1586. According to Bastard and Lewiner, T0 is nearly
proportional to x(1-x) [BL80]. Using their data, T0 for a sample with x=0.015 at
2 K, the corresponding values for Q1585 and Q1586 are 4.8 and 5.2 K, respec-
tively. Our experimental values are less than those of Bastard but increasing with
x. The actual value of T0 may be much less than the estimated value for x≥0.05.

Once the value of T0 is known, the effective spin S0 can be obtained from the node
position, where the value ν must be equal to half of an odd integer. The number
of nodes is very sensitive to the choice of ν . We found ν = −3/2 and 1/2 are the
only suitable values for Q1586 and Q1585, respectively; otherwise four or more
nodes should appear in our magnetic field range. As expected, g∗ is negative for
the sample with inverted band structure (x=0.05) and positive for the sample with
normal band structure (x=0.075). The values for the exchange integrals multiplied
with the number of cations per unit volume, αN0 = −0.4 eV and βN0 = 1.5 eV,
are taken from [BM84] and therewith, the corresponding values of S0/S are 0.16
and 0.25 for Q1585 and Q1586, respectively. The value of S0/S proves to be less
than 1, presumably due to cluster formation. The S0 behaviour shows that cluster
formation in Hg1−xMnxTe is more likely when the manganese concentration in-
creases. The probability of isolated Mn2+ ions in Hg1−xMnxTe (x=0.06) has been
estimated to be only 2%, which is much less than the probabilities of 30%, 10%,
and 40% in a cluster for pair, closed-triangle, and open-triangle types, respectively
[NRGA+80].

With our deduced sample parameters (Tab. 3.1) we have calculated the normalised
SdH amplitude according to Eq. (1.17). These calculated amplitudes for differ-
ent magnetic fields agree very well with the experimental data, as demonstrated
in Fig. 3.6. One can clearly see the effect of the cosine term. As the tempera-
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Figure 3.6: Normalised SdH amplitudes at different magnetic fields for sample
Q1586. The lines represent calculated values and the points are experimental data.

ture is decreased, the amplitude of the oscillations at first increases in the normal
(nonmagnetic) fashion, but as the temperature continues to decrease, the amplitude
decreases to zero, and reemerges at still lower temperature with an opposite phase.

3.4 Bychkov-Rashba Spin-Orbit Splitting

Whereas Zeeman splitting of the two spin levels of a conduction band is caused by
an external magnetic field, spin-orbit splitting may appear at zero magnetic field
due to inversion asymmetry. Two different reasons for this zero field splitting are
known: The bulk inversion asymmetry (BIA) of the crystal structure, e.g., zinc
blende, can remove the spin degeneracy of electrons in the absence of a magnetic
field [Dre55], and also the structure inversion asymmetry (SIA) known as Rashba
spin-orbit (SO) splitting such as that found in inversion layers or asymmetric QWs
with an asymmetric confinement potential [BR84].

The Rashba effect usually dominates in two-dimensional structures while in partic-
ular, the influence of BIA has been shown to be negligible in HgTe based narrow-
gap heterostructures discussed here [RML89]. For electrons this spin-splitting is
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given by [BR84]
ε(k||) = ±αk||, (3.11)

and for heavy-hole systems [Win00], as is the case in Hg-based QWs with an
inverted band structure discussed here (s. sec. 3.1),

ε(k||) = ±βk3
||, (3.12)

where α and β are the SO coupling constants.

It has to be mentioned, that the SO spin-split

Figure 3.7: Schematic diagram
of the Rashba SO splitting into
opposite oriented, circular po-
larised states.

states are circular polarised as illustrated in
Figure3.7. They contain the same number of
spin-up and spin-down spinor components. In
a magnetic field the states are not addition-
ally split, but the spins are aligned with re-
spect to the magnetic field. In a simple the-
oretical model, which takes the Rashba effect
and the sp-d exchange interaction into consid-
eration, but neglects BIA and nonparabolicity
of the band structure, the total splitting δ of the
levels can be approximated by [DDR90; Pfe97;
PZ99]

δ ≈
√

/h̄ωc −g∗µBB)2 +∆2
R − h̄ωc, (3.13)

where h̄ωc is the Landau level, g∗µBB the Zee-
man, and ∆R the Rashba splitting energy. In
section 5.1 we will show that this simplified
model describes our experimental data quite
well.

The Rashba SO splitting was first observed experimentally in p-type and n-type
GaAs/GaAlAs heterostructures by Störmer et al. [SSC+83] and Stein et al.
[SvKW83], respectively. Zhang et al. and Gui et al. have shown that the Rashba
SO splitting in HgTe QWs has values up to 30 meV and therewith at least four
to five times as large as in III-V heterostructures [ZPJO+01; GBD+04]. This can
be understood qualitatively because splitting for heavy-holes is proportional to k3

||
(s. eq. (3.12)) and not linear with the in-plane wave vector k||. According to Win-
kler [Win00] the carrier densities N± in the spin-split subbands of a heavy-hole
band is

N± =
1
2

Ns ±
√

2m∗βNs

h̄X

√

πNs(6−4)/X (3.14)

with

X = 1+

√

1−4πNs(2m∗β/h̄2)2. (3.15)
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From equations (3.14) and (3.15) one can easily show [ZPJO+01] that

β =
h̄2

2m∗

√

X(2−X)

4πNs
, (3.16)

and

X =
2(2+

√
1−a2)

a2 +3
, (3.17)

where Ns is the total carrier density3 and a = ∆Ns/Ns.

Although the prediction of the consequences of the Rashba effect shows good
agreement with the experimental results, the theoretical description of its origin is
still somewhat controversial. An overview of these descriptions is given following
the discussion provided by Zhang et al. [ZPJO+01]. When the influence of the
interface electric fields is neglected, Ohkawa and Uemura have shown, that the
spin splitting is proportional to 〈dV/dz〉, where V is the electrostatic potential
energy and z the growth direction of the heterostructure [OU74]. However, Därr et
al. argued, that the average value of the electric field of the bound states in the first
approximation is negligibly small [Fum76]. On the other hand it has been pointed
out by Lassnig [Las85] and Winkler and Rössler [WR93] that this conclusion is
not correct because the spin splitting of the conduction band is determined by the
electric field in the valence band. The importance of spin-dependent boundary
conditions, as well as the penetration of the wave function into the barriers and
its asymmetry at the interfaces has been emphasised by de Andrada e Silva et al.
[dAeSlRB97] and Pfeffer and Zawadzki [PZ99], and has been demonstrated in a
recent experiment on InGaAs QWs with both front and back gates [Gru00].

A widely used tool to investigate level splitting is the analysis of Shubnikov-de
Haas (SdH) oscillations. In the case of spin-split Landau levels a beating pattern
can be observed because of the existence of two closely spaced frequency compo-
nents with similar amplitudes. The amplitude of the SdH oscillations is modulated
according to

A ∝ cos(πν), (3.18)

where ν is given by

ν =
δ

h̄ωc
, (3.19)

h̄ωc is the Landau level separation energy and δ is the total energy splitting of
each Landau level. Nodes in the beating pattern in the SdH oscillations will occur
at half-integer values of ν , where A is zero. In section 3.3 an analysis of the
temperature dependence of the node position and in section 5.1 an analysis of the
temperature and gate voltage dependences will be presented. The population of
the spin-split subbands can be directly determined by a fast Fourier transformation
(FFT) of the SdH oscillations as a function of B−1.

3As the H1 band is the conduction band, NH1 is often written instead of Ns.
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However, another phenomenon can lead to a beating pattern in the SdH oscilla-
tions, magneto-intersubband scattering (MIS) from a populated second electronic
subband [RNSF01]. Zhang et al. have demonstrated, that MIS is absent in type-III
HgTe QWs due to the strong non-parabolicity of the conduction bands [ZPJO+02].
They compared temperature dependent SdH measurements of HgTe QWs with
two occupied subbands with self-consistent band structure calculations based on
an 8×8 k ·p model (s. sec. 3.1). An important consequence of the absence of MIS
is that the Rashba SO splitting can be properly identified from SdH oscillations
in a perpendicular magnetic field and at a constant temperature, in contrast to the
recent findings on InAs QWs [RNSF01].

3.5 Spin Glass

The DMS Hg1−xMnxTe has two different magnetic ordering phases depending on
the temperature T and the manganese concentration x. As shown in Figure 3.8,
HgMnTe is in the paramagnetic phase for temperatures above the dashed line for
the corresponding manganese content. In the paramagnetic phase, the Curie-Weiss
law is obeyed. In the limit of low external magnetic fields or high temperatures, the
magnetisation M is linear in an external field B and the magnetic susceptibility χ is
defined by M = χB. Taking antiferromagnetic Heisenberg interaction in the DMS
with randomly distributed magnetic moments into account, the expression for χ
can be derived to be

χ =
C0x

T −Θ(x)
, (3.20)

where C0 is the Curie constant, x the Mn concentration, T the temperature and
Θ(x) the Curie-Weiss temperature. For temperatures below the dashed line in
Figure3.8, HgMnTe is in the spin glass phase. The phase transition is accompa-
nied by the appearance of a susceptibility kink. The spin glass can be defined
as a random, mixed interacting, magnetic system characterised by a random, yet
co-operative freezing of spins at a well-defined temperature T f (the freezing tem-
perature) below which a highly irreversible, metastable frozen state occurs without
the usual long-range spatial magnetic order [Myd93].

A very simple picture which gives a first idea how a spin glass behaves or what
glassy state means is the following: Randomly distributed local magnetic moments
embedded in a jelly-like environment. This means that the spin and magnetic mo-
ment orientation, respectively, can change but with a certain temperature depen-
dent resistance. Due to the antiferromagnetic exchange interaction of the Mn ions
in a zinc blende crystal, parts of the spin glass may be “frustrated”. Imagine a
triangle with a magnetic moment on every corner. When two moments align anti-
ferromagnetic, the third will be frustrated because it is not possible for it to align
antiferromagnetic with each other. This statement is true for all three moments.
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Figure 3.8: Phase diagram of Hg1−xMnxTe: The magnetic ordering is plotted de-
pending on the Mn content and temperature (from [BM84]). P is the paramagnetic
and S the spin-glass phase. The inset shows the magnification of the low tempera-
ture part. The open circles are Hg1−xMnxSe data from [KAGK81]

For the magnetic exchange interactions several mechanism are known [Myd93].
Next neighbours can couple directly by an overlap of their electronic wave func-
tions from the two sites. The Pauli exclusion principle favours an antiparallel
configuration. But due to the exponential decrease of the wave functions with the
distance, the exchange integral obtained from the overlap is very small. More im-
portant are the longer-range indirect-exchange interactions. The best known is the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction mediated by the conduction
electrons. Embedding a magnetic impurity, i.e., a local magnetic moment, in a
sea of conduction electrons with itinerant spin causes a damped oscillation in the
susceptibility of the electrons, and thereby a coupling between the spins. The 1/r3

fall-off of the RKKY interaction is sufficiently long-ranged so that it can effec-
tively reach a number of nearest-neighbour sites.

Another long-range interaction is the super-exchange [Myd93; Liu03]. In this
case an intervening ligand or anion transfers an electron (usually in a p state) to
the neighbouring magnetic atom. A sort of covalent mixing of the p and d wave
functions occurs with spins pointing in the same direction. Because the two anion
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p-spins must be opposite in direction (Pauli exclusive principle), they will cause
antiparallel pairing with the d-electrons on the magnetic atoms to the left and to
the right. This situation is shown in Figure 3.9 and leads to an antiferromagnetic
coupling via the ligand situated between the two magnetic atoms.

Figure 3.9: Super-exchange between two magnetic d-ions and a p-state ligand.
The shaded regions represent the covalent mixing of the different wave functions
(from [Myd93]).

The theory of spin glasses is still being developed. The model, which has been
explored by Oppermann in the corresponding project (D5) of the centre of excel-
lence (SFB 410)4 at Würzburg University, is the replica-symmetry-breaking(RSB)
or mean-field picture. The RSB picture is based on Parisi’s solution [Par83] of the
Sherrington-Kirkpatric model [SK75] and its interpretation in terms of a multitude
of thermodynamics states [MPS+84]. For further details the reader is referred to
[Myd93; KR03] and the references therein.

In order to test models of spin glasses, Altshuler and Spivak [AS86] and Feng et
al. [FBLM87] have suggested that the sensitivity of quantum interference of scat-
tered electron waves to the instantaneous configuration of the localised spins in
mesoscopic systems might serve as an important tool. In nanostructures of Cu:Mn
de Vegvar et al. observed an unique magneto-fingerprint of the specific frozen spin
configuration exploiting the broken time-reversal symmetry of the spin glass state.
In particular, an antisymmetric term in the magnetoresistance tensor, generated by
the frozen spins, persisted above Tf characteristic for the bulk material [dVLF91].

4Sonderforschungsbereich
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This surprising observation, together with a visible reduction of the Kondo resis-
tivity, was taken as indicative of the importance of magnetic inclusions, such as
MnO [Wei92; dVL92].

In mesoscopic spin glasses, universal conductance fluctuations (UCF)5 will be
largely destroyed by spin-flip scattering in the paramagnetic phase above T f . Be-
low Tf , a dramatic slowing down of the spin glass dynamics should allow the
experimental observation of a UCF signal [FBLM87]. In DMS the main cou-
pling mechanism of the localised spins is the short-range antiferrromagnetic super-
exchange interaction illustrated in Figure 3.9. Nanostructures on HgMnTe there-
fore should be a suitable probe to examine the spin glass phase by the phenomena
of coherent transport. Owing to a large difference between the relevant length
scales, such samples are mesoscopic from the point of view of the electronic prop-
erties but macroscopic as far as the range of magnetic interactions is concerned.
Measurements of a possible phase transition from the paramagnetic to the spin
glass phase (Fig. 3.8) will be discussed in section 5.3. Performing measurements
on 300 nm thick wires of several µm length on a 300 nm thick CdMnTe film,
Jaroszynski et al. observed a strong increase of the amplitude of the UCF when
the temperature and the magnetic field are reduced below the freezing temperature
curve [JWK+98].

3.6 Summary

Mercury based heterostructures exhibit unique properties in contrast to “classical”
III-V semiconductors. In the beginning of this section the results of band struc-
ture calculations have been presented and the inverted band structure has been
explained. The common description of a DMS with the Brillouin function has
been introduced and the experiments to obtain the empiric parameters T0 and S0
have been presented. The Rashba spin-orbit splitting has been explained, which is
at least four to five times larger in Hg-based material as in III-V semiconductors.
Finally, the magnetic ordering of a spin glass and the relevant interacions therein
have been discussed.

5introduced by Lee et al. [LS85; LSF87]
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Chapter 4

Measurements of
Nanostructures

As already mentioned in chapter 3, mercury based heterostructures are different
from other semiconductor heterostructures. Another, not yet mentioned property
of Hg samples is the comparatively low growth temperature of 180 °C. Hence,
standard e-beam lithography techniques using polymethylmethacrylate (PMMA)
as photo resist could not be applied and a new process had to be developed. This
will be described in the initial section of this chapter. Then, experiments on cross-
shaped nanostructures will be presented, in which the first ballistic transport in
HgTe QWs has been demonstrated. Finally, recent experiments to account for
spin-orbit Berry phase on ring shaped structures will be presented.

53
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4.1 Process Development for Nanostructures on
HgTe QWs

In standard nanostructuring lithographical processes, PMMA in conjunction with
electron beam lithography is used to fabricate such structures. However, for epi-
taxially grown HgTe samples this is not possible due to the high bake-out tempera-
ture necessary for PMMA of about 200 °C. Temperatures exceeding 100 °C cause
deterioration of the HgTe QW structures by interdiffusion of well and barrier ma-
terials. As an alternative, we have used the photo resist ARU 4060/3 (Allresist).
This resist can be used not only for optical but also for electron beam lithograph-
ical pattern transfer. The advantage of this resist is the low bake-out temperature.
For our samples a bake-out of 2 min at 80 °C was sufficient, which ensures that
the sample structures remain unaffected.

The nanostructures have been written using an acceleration voltage of 2.5 kV. First
attempts to use the photo resist as an etch mask failed. On the one hand side, dry
etching with argon ions in a sputtering machine resulted in adhesion of the resist
with the sample. The resist could not be removed, which is essential for the sub-
sequent gate technology that we need for the experiments presented in section 4.3.
Furthermore, the sputtering process modifies the underlying nanostructure such
that it was not possible to perform transport experiment on these samples. The
reason for this modification may be a local over heating which causes a detoria-
tion of the QW as mentioned above. On the other hand side, wet-chemical etching
with various etchants resulted in strong, not reproducible under-etching, that made
it impossible to control the lateral size of the nanostructures. Therefore, an im-
proved etch mask technology had to be developed. This consisted of titanium
masks fabricated in a lift-off process as described in the following.

The positive resist was developed and Ti was evaporated onto the sample. After
lift-off, the contact pads were fabricated in an optical lithography step with stan-
dard optical photo resist (Microresist ma-P215). Both optical and e-beam patterns
were etched in a dilute solution of Br2 in ethylene glycol at room temperature for
30 s. After etching about 150 nm into the CdTe buffer layer, the resist was re-
moved with acetone and the Ti mask a 2:1 H2O:HF(50%) solution for 10 s. Ohmic
contacts were fabricated by thermal bonding with indium.

This newly developed procedure [DGG+03] provided our first reproducible nanos-
tructured samples on HgTe QWs. Different geometries have been realised, e.g.,
cross-shaped (sec. 4.2), ring-shaped (sec. 4.3), and micro Hall-bar structures
(sec. 5.3). Comparative measurements of the carrier concentration and the carrier
mobility on standard Hall-bars and the nanostructures assure us that the sample
properties remain unaffected by the nanostructuring process.
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4.2 Quasi-Ballistic Transport

HgTe QW structures offer interesting opportunities to study spin related transport
effects. One goal is the exploration of the electronic spin behaviour in nanostruc-
tures in which transport is dominated by ballistic effects. However, up to now
ballistic transport had not been demonstrated in HgTe QW structures, mainly due
to specific material properties that prevent the application of well known and es-
tablished nanostructuring technologies used for Si and GaAs based structures. Fur-
thermore, high mobility HgTe QWs were previously not available. In the time span
of this thesis the growth of HgTe QWs had been continously improved. In the be-
ginning, a good sample had a mobility of about 2 to 5 m2/(Vs). For the samples
presented in this section the mobility had already more than doubled. Nowadays,
a mobility of 10 m2/(Vs) is almost standard and the best samples exhibit a value
of more than 30 m2/(Vs).

1

2 4

3

Figure 4.1: Scanning electron microscope photograph of a cross shaped structure
with 0.45 µm wide leads

Initially, the designated sample, a n-type asymmetrically modulation doped HgTe
QW in the form of a standard macroscopic Hall bar, was characterised in ac and dc
measurements in a 4He bath cryostat with a superconducting magnet and fields
up to 7 T. A carrier concentration of 1.7× 1016m−2 and a carrier mobility of
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6.2 m2/(Vs), which corresponds to a Fermi wave vector kF of 3.27× 108m−1

and a transport mean free path lm f p of 1.3×10−6m, were used. Concluding from
these results, it should be possible to observe ballistic transport effects in devices
fabricated from this material with an active area L2 of less than 1 µm2.

Therefore, nanostructured samples were fabricated which exhibit a cross-shape
geometry with lead widths of ∼ 1.0 µm and ∼ 0.45 µm. A scanning electron
microscope (SEM) image of the latter is shown in Fig. 4.1.

Quasi-dc, low frequency (13 Hz) ac measurements with an excitation voltage of
150 µV were carried out in a 4He bath cryostat with a magnetic field perpendicular
to the 2DEG using lock-in techniques. Various contact combinations have been
used to characterise the sample after the etching process. In the Hall geometry
(I: 1→3, V: 2→4, c.f. Fig. 4.1) the carrier concentration was found to be the
same as that of macroscopic samples and therefore shows clearly, that the sample
properties have not been changed by the fabrication process.

In order to demonstrate that the transport properties are dominated by ballistic
effects we have performed non-local transport measurements in different con-
tact arrangements, which previously have been demonstrated in high mobility
GaAs nanostructures [MSB+90; HBGM98]. One of the most prominent effects
is the non-local bend resistance (NLR). This signal is measured by passing current
through contacts 1 and 2, while the voltage is measured between contacts 3 and 4
(see Fig. 1.5 and Fig. 4.1). The bend resistance is obtained simply by dividing the
voltage V3,4 by the injected current I1,2. If the transport were dominated by dif-
fusive scattering, no voltage signal would be expected to appear between contacts
3 and 4 in this geometry, whereas in the ballistic regime, electrons injected from
contact 1 into the cross reach the opposite channel before they are scattered. This
leads to charge accumulation at contact area 3 and thus to the NLR signal. Apply-
ing a small magnetic field perpendicular to the 2DEG plane deflects the ballistic
electrons and the voltage signal between 3 and 4 decreases.

The result for the 0.45 µm cross is shown in Fig. 4.2. The NLR signal is indeed
observed, which is direct evidence of ballistic transport in this device. As expected,
the signal exhibits a pronounced maximum around B = 0. With an applied field
the signal decreases, exhibiting a large dip with a negative NLR signal before it
approaches zero in the high field range (B > 2 T). This behaviour of the NLR
signal can be qualitatively understood by applying the Landauer-Büttiker (LB)
formalism. In our geometry the resulting NLR is derived according to

R12,34 =
V34

I12
=

h
2e2

T 2 − trtl
(tr + tl)(2T 2 +2(tr + tl)T + t2

r + t2
l )

, (4.1)

where T , tl and tr are the corresponding transmission probabilities as already de-
fined in Equation (1.23).

Comparing the results of Eq. (4.1) with the data presented in Fig. 4.2, one can see
that at zero magnetic field the NLR signal is dominated by electrons that travel
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Figure 4.2: Non-local resistance signal R12,34 for the structure with 0.45 µm wide
leads.

ballistically from contact 1 to 3 (T 2, Eq.(4.1)). This signal is reduced by electrons
which reach either the left or right contact (trtl , Eq.(4.1)). At zero magnetic field
this corresponds to electrons that are either injected outside the acceptance angle
of contact 3 or are scattered by unintentional impurities. In a magnetic field the
electrons are deflected due to the Lorentz force either toward the left or the right
contact depending on the field direction, which implies that the NLR should de-
crease and approach zero, i.e., T = 0 and, either tl = 0 or tr = 0. However, due to
the boundary scattering processes mentioned above, an intermediate field regime
exists where the signal becomes negative. In this regime rebound trajectories (see
Fig. 1.5, right) may cause the product tltr to exceed T 2 [HBGM98]. Enlarging
the B field further will guide all electrons to only one contact (T 2 → 0 and, either
tr → 0 or tl → 0) and the NLR becomes zero.

In Fig. 4.2 one can see that in the regime where R12,34 is expected to approach
zero, Shubnikov-de Haas oscillations, which are not included in Eq. (4.1), are
superimposed on the signal. However, the ratio of the absolute magnitude of the
positive signal at B = 0 and the largest negative value is rather small compared
to the published results for high mobility GaAs structures [MSB+90; HBGM98;
Tim92]. The main reason for this difference is the comparatively short mean free
path, which is of the order of the device dimensions in the present case. Therefore,
it is plausible that random scattering in the cross area increases the transmission
probability to contacts 2 and 4, leading to a reduction in the NLR signal at zero
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magnetic field.

This effect is also observed, when the device size is increased; the NLR signal
for the 1.0 µm structure is much smaller than that for the 0.45 µm structure, as
shown in Fig. 4.3. In a first approximation the ratio of the signal for these two
structures can be used to estimate the carrier mean free path in the cross area. The
signal is proportional to the number of electrons that reach contact 3 ballistically
(∝ exp(−L/lm f p)) reduced by those electrons that are scattered into the contacts 2
and 4 (∝ 1−exp(−L/lm f p)). Evaluating the values deduced from Fig. 4.3, lm f p ≈
1.2 µm is obtained which is in good agreement with the average mean-free path
for the macroscopic sample.

Further evidence for transport in the ballistic regime provide the measurements in
the three-terminal configuration and the Hall geometry as shown in Fig. 4.4. In
the left part of the figure the resistance R12,34 is plotted versus the perpendicularly
applied magnetic field. The red curve shows the experimental data of a three-
terminal configuration, which means that the setup is the same as described above,
but contacts 2 and 4 are grounded, and therefore, their potentials are identical. The
black curve shows again the four-terminal NLR data for comparison. As expected
from Eq. (1.24), the three-terminal data show a pronounced maximum around B =
0 and are always positive. The relatively large background of about 690 Ω could be
a hint for enhanced scattering (not purely ballistic) effects discussed below. In the
right part of Fig. 4.4 the resistance R13,24 in the Hall geometry is shown. Hereby,
the current is driven from contact 1 to 3 and the voltage is measured between
contacts 2 and 4. As one can see, the experimental curve shows a clear deviation
from a straight line, a phenomenon called the anomalous Hall effect. To emphasise
this effect the difference between the measured Hall resistance and the straight
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Figure 4.4: Left: Three-terminal measurement of the NLR (red curve) and corre-
sponding four-terminal measurement (black curve). Right: Hall resistance mea-
surement. The straight line (thin) is only a guide to the eye.
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Figure 4.5: Anomalous Hall effect in the cross-shaped structure. From the mea-
surement data in the right panel of Fig. 4.4, the straight Hall line is subtracted.
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Hall line is shown in Figure 4.5. This deviation is largest in the regime where the
transmission probabilities tl and tr are of the same order of magnitude as expected
from Eq. (1.25). When tl and tr are similar, negative dips appear in the four-
terminal NLR due to the rebound trajectories.

In order to put these considerations into a more quantitative basis we have used a
MC simulation of the classical electron trajectories in which electrons with an arbi-
trary velocity distribution are injected from contact 1 into the cross. In this model
the electrons are then specularly reflected at the sample boundaries. Hereby, the
boundaries are assumed to have a graded potential ∝ 1

x . The boundary reflection
is simulated as illustrated in Figure 4.6. The velocity component v⊥ of the im-

W
m

in

W
m

ax

Figure 4.6: Classical MC simulation of electron trajectories.

pinging electron perpendicular to the wall is decelerated between Wmin and Wmax
to zero. Then the electron is specularly reflected, accelerated and leaves Wmin with
-v⊥. The velocity component parallel to the wall remains unaffected. The slope of
the potential allows electrons with the maximum v⊥ to reach Wmax. The electrons
that reach the individual contacts are counted. This number is proportional to the
corresponding transmission probability [HBGM98; BvH90].

Unfortunately, only a qualitative agreement with our measurement data could be
achieved. Hence, we concluded that the experimental results can not be fully
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explained by purely ballistic transport and boundary scattering. From the mea-
surements (Fig. 4.3) one observes that the signal exhibits additional fine structure
which is not induced by electronic noise. This fine structure is fully reproducible
and stable over time provided the sample is kept at low temperatures. We identify
the fine structure as universal conductance fluctuation (UCF), which is caused by
electronic interference effects due to the random distribution of scatterers within
the cross area. Detailed temperature dependent studies of the UCF in these and
other structures are presented in section 5.3.

Consequently, we have introduced randomly distributed, locally fixed scatterers
with dimensions on the order of the Fermi wave length λF in the MC simulation.
The scatterers are assumed to have a cone-shaped geometry with a 1

x -flank and
an outer and inner radius R and r, respectively. In the two-dimensional projection
these are two concentric circles. The scattering event is simulated similar to the
boundary scattering. The perpendicular velocity component of the impinging elec-
tron is decelerated to zero between R and r. After the reflection at the tangential
plane of the inner radius, the electron leaves the outer radius again with the same
magnitude as that of the incoming velocity. The scattering time τ , which is related
to the transport mean free path, is used as an adjustable parameter. Examples of

Figure 4.7: Left: Electron trajectories for different τ . Right: MC simulations
with different scattering times τ for the three-terminal (upper panel) and the four-
terminal configuration (lower panel).

trajectories for three different τ are shown in the left part of Figure 4.7. In the
right part of the same Figure two sets of simulated data are presented. In the upper
panel of the figure the results for the three-terminal and in the lower panel for the
four-terminal configuration are shown. The introduction of scatterers as described
above leads to a significant reduction of the ratio Rmax/Rmin, but good quantitative
agreement is still not achieved.
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Hence, we concluded that the scattering mechanisms are more complex. Electron-
phonon scattering can be excluded due to the low temperatures at which the mea-
surements are performed. According to the relatively high dislocation/stacking
fault density in HgTe of about 106 cm−2 [Dau99], it is not possible to propose
a discrete scatterer arrangement concerning locations and sizes as well as poten-
tial heights. Therefore, we have introduced a random scattering process, i.e., the
ballistic propagation is altered randomly for electrons that dwell longer than the
scattering time τ in the cross area. Whereas the experimental measurement is the
realisation of one possible scatterer configuration, the MC simulation includes ran-
dom scattering averages over all possible configurations. Thus, the experimental
curve shows the characteristic UCF pattern and the simulated curve is smooth.

Figure 4.8: Experimental data for a 0.45 µm device together with the Monte Carlo
simulation result (smooth curve) for a scattering time of τ = 1.1×10−12 s.

Fig. 4.8 shows the resulting NLR curve. For a scattering time of τ = 1.1×10−12 s
good agreement with the experimental data is obtained. This value implies a mean
free path of ≈ 0.9 µm and agrees well with the τ = 1.6× 10−12 s (⇒ lm f p =
1.3 µm), obtained from the macroscopic transport measurements and the value
deduced from the peak height (lm f p = 1.2 µm) discussed above. These results
demonstrate that for the given device dimensions, electrons either reach the con-
tacts ballistically or are scattered randomly. This implies that transport in these
structures is in the transition regime between ballistic and diffusive transport,
which is usually referred to as quasi-ballistic transport.
In Figure 4.9 the transmission probabilities T , tl and tr at B = 0 are plotted for dif-
ferent scattering times τ . For τ/τ0 < 1, transport is in the diffusive regime where
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Figure 4.9: Transmission probabilities T , tl and tr at B = 0 for different scattering
times τ . Two regions where the transmission probabilities are constant can be
identified: τ/τ0 < 1, the diffusive regime and τ/τ0 > 1.7, the ballistic regime. The
intermediate region is the transition regime between those two.

only 30% of the injected electrons reach contact 3 (T ). With an increasing τ/τ0
ratio more and more electrons reach contact 3 and for τ/τ0 > 1.7 the transmission
probability T saturates and the transport is purely ballistic. The initial parameter
τ0 is the maximum length in the cross area divided by the Fermi velocity. For the
sample in question τ0 ≈ 7× 10−13 s was calculated. With the above introduced
value of τ = 1.1× 10−12 s, the best agreement between experiment and simula-
tion resulted in a ratio of τ/τ0 = 1.57. This result shows again, that the transport
is in the transition regime with a small diffusive component, i.e., quasi-ballistic
transport.

In conclusion, we have presented evidence for quasi-ballistic transport in high mo-
bility HgTe QW nanostructures which are fabricated with a technology that over-
comes the specific problems of Hg containing devices [DGG+03]. Furthermore,
a quantitative analysis of the non-local resistance measurements revealed that the
actual HgTe QW nanostructure samples permit a detailed study of the transition
from a diffusive to a local ballistic transport regime.
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4.3 Transport in Rings

Figure 4.10: SEM photograph of a ring shaped structure with a radius of 1 µm

After the successful development of a fabrication process for nanostructures,
which has been demonstrated in the last section with the cross shaped structure,
more complex structures were the goal. As introduced in section 2.5, the the-
oretically predicted SO Berry phase has not been observed experimentally. One
possible experimental setup, in which the SO Berry phase could be detected, are
Aharonov-Bohm (AB) rings in semiconductors with a strong Rashba spin splitting
[ALG93; EL00]. Hence, HgTe QWs with its large, tunable Rashba splitting are
good candidates for the direct observation of the SO Berry phase. To resolve AB
oscillations, ring shaped structures with a small radius r must be fabricated. The
period of the oscillations as a function of the magnetic field can be calculated using
Eq. (2.1). One full oscillation results, if the enclosed magnetic flux Φ = B ·πr2 is
incremented by one magnetic flux quantum Φ0 = h/e. Thus, the condition of at
least ten data points per oscillation in a magnet with steps width of 0.1 mT requires
a radius of

r =

√

h
πeB

=

√

6.626×10−34 Js
π ·1.602×10−19 As ·1×10−3 T

= 1.15×10−6 m. (4.2)

The implementation of the nanofabrication process described above allowed us to
define lateral structures with a width of some hundred nanometers with high repro-
ducibility. The problem with the lithographic patterning of ring shaped structures
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with a radius of 1 µm was to remove the Ti inside the ring by the lift-off pro-
cess. After many failures with partly removed or re-attached inner parts of the ring
during the standard lift-off process, we succeeded with a short ultra sonic bath in
acetone. The result is shown in the SEM photograph in Fig. 4.10. Here, a ring
shaped structure with a radius of 1 µm and an arm width of 300 nm is shown. Low
temperature (below 100 mK), four terminal resistance measurements exhibit clear
AB oscillations as depicted in Fig. 4.11. For a radius of 1 µm a period of 1.3 mT
can be calculated, which corresponds to a frequency f0 of 760 T−1. The period
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Figure 4.11: Left: Measurement of Aharonov-Bohm oscillations in a ring shaped
structure with a radius of 1 µm. The conductance is plotted as a function of the
magnetic field. Right: Corresponding FFT.

can be extracted directly from the oscillations in the left part of the Figure and
the frequency can be found in the corresponding FFT in the right panel on side.
The FFT exhibits additional smaller peaks around 2 f0 and 3 f0 which correspond
to electrons that aquire 2Φ0 and 3Φ0, respectively. The 2 f0 peak is from electrons
that make one circuit of the ring and the 3 f0 peak is from those which have made
1.5 circuits. The probability of coherent transport decreases with an increase in
the path length which is reflected in the peak heights.

The fabrication of these structures was the first milestone in the search for the SO
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Berry phase. Due to the Rashba effect, curves such as that depicted in Fig. 4.11 ex-
hibit a SO Berry phase; however, proof requires that the contribution of the Rashba
SO splitting has to be determined by varying its magnitude. Therefore an altered
structure is needed. An additional Schottky gate on top of the ring is required
in order to control the inversion asymmetry of the underlying heterostructure and
hence, the Rashba splitting. Again the standard technology, which was improved
for the fabrication of top gates on standard Hall bars, failed. Several adhesion and
leak current problems had to be solved. We have developed a process with the re-
cently acquired plasma enhanced chemical vapour deposition (PE-CVD) machine.
In contrast to the previously used thermal evaporated insulator Al2O3, the com-
pound materials SiO2 and SiN in connection with a new deposition method were
now available. The use of only one of these two materials resulted in adhesion
problems due to stress originated cracks during the subsequent gate structuring
process. This stress could be reduced by an alternating deposition of SiO2 and SiN.
Five double layers with a total thickness of 80 nm provided an insulator with leak
currents of only some pA while applying a 10 V gate voltage. A fully processed

Figure 4.12: Optical micro-
scope photograph of a ring
shaped structure (r = 1 µm)
with gate on top. The under-
lying ring structure is visible
due to an enhanced height
contrast.

ring shaped structure with PE-CVD multilayer insulator and thermal evaporated
metal gate is shown in the optical micrograph in Fig. 4.12. The underlying ring
structure with the leads is visible due to an enhanced height contrast.

AB oscillations, identical to those depicted in Fig. 4.11, could be resolved also in
this structure. The effect of the top gate is demonstrated on Aharonov-Casher (AC)
oscillations (c.f. sec. 2.3). Analoguous to the AB effect, an applied perpendicular
electric field leads to oscillations in the resistance. In Fig. 4.13 the conductance is
plotted as a function of the gate voltage. The red and black curves represent two
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separate measurements which demonstrated the experimental reproducibility. The
amplitude of the oscillations is on the order of one conductance quantum (e2/h).
The reduction of charge carriers with increasing gate voltage results in a decrease
of the mean conductance. This is clear evidence of a successfully prepared sample
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Figure 4.13: Measurement of Aharonov-Casher oscillations in a ring shaped struc-
ture with a radius of 1 µm by applying a gate voltage perpendicular to the plane of
movement. The red curve is a repeat measurement of the black curve to show the
reproducibility.

which permits us to search for the SO Berry phase. Hence, we measured the AB
oscillations (as a function of magnetic field) for various gate voltages. The result
is shown as a contour plot in Fig. 4.14. The magnetic field and the applied gate
voltage are on the x-axis and y-axis, respectively. The maxima and minima of the
oscillations are bright and dark, respectively. Cross section lines parallel to the x-
axis are AB oscillations for one particular Rashba splitting. A comparison with the
theoretical plot of the SO Berry phase in Fig. 2.4 suggests the assumption that this
is the first direct observation of SO Berry phase. Also the experimental data exhibit
a clear phase change from maximum to minimum and vice versa with increasing
Rashba splitting (along the y-axis). Theoretical calculations of the SO Berry phase
demonstrate that the adiabacity criterion has to be fulfilled [EL00], i.e., the Lamour
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Figure 4.14: Contour plot of AB oscillations as a function of magnetic field (x-
axis) and applied gate voltage (Rashba splitting, y-axis).

frequency ωL of the spin precession must be much larger than the frequency ωr of
the cyclic movement in the ring. Using the corresponding equations in Ref. [EL00]
leads to a value of the internal (Rashba induced) field of about 1 T. One may argue
that the Rashba splitting even in this low gate voltage range is large enough, but
to observe the phase change, the internal and external (magnetic) field must be of
the same order. Therefore, measurements in an extended field range have been
performed. In Fig. 4.15 a similar contour plot for magnetic field values of ∼1 T
is depicted. One can identify several, separated regions, where a phase change
appears. The interpretation of this plot is quite complex. In contrast to the simplest
case, depicted in Fig. 2.4, the heavy hole character of the charge carriers has to be
taken into consideration. For |±3/2〉 states, the SO Berry phase is 3π(1− cosΘ),
which results in phase changes of an odd number of π 1. The relation between the
applied gate voltage and the Rashba splitting energy in the nanostructure could not
be determined due to the lack of SdH oscillations even in high field measurements.
Furthermore, transport in the described samples is a multi-mode transport which
may result in many-particle interference effects.

Initiated through these promising, measurements numerical calculations which

1in contrast to π(1− cos Θ) for |±1/2〉 states, which results only in a phase change of π



4.4 SUMMARY 69

Figure 4.15: Contour plot of AB oscillations as a function of magnetic field (x-
axis) and applied gate voltage (Rashba splitting, y-axis).

include sample specific parameters, e.g., band structure, have been initiated by
means of a collaboration with the group of A.H. MacDonald in Austin, Texas. The
results are still forthcoming and will be presented elsewhere. For future exper-
iments, which exceed the scope of this thesis, new structures are suggested. To
determine the Rashba splitting, a micro Hall bar should be connected on one side
of the ring. Then it should be possible to resolve SdH oscillations in the longitu-
dinal resistance of the Hall bar. The influence of the gate induced SIA, i.e., the
Rashba splitting, can then be directly determined.

4.4 Summary

In this section, the development of nanostructures fabricated from HgTe QWs that
overcome the Hg specific processing problems, was presented. In cross shaped
structures with lead widths down to 0.45 µm, evidence for quasi-ballistic trans-
port was demonstrated. Transport measurements in ring shaped structures exhibit
clear Aharonov-Bohm oscillations. With an additionally developed gate technol-
ogy applied on these rings, it was possible to account for the Aharonov-Casher
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effect. A first hint, that the previously not directly observed SO Berry phase could
be experimentally verified in such structures was found. With the proof of phase
coherent transport in the exceptional Hg based material a wide field of fundamental
as well as spintronics relevant research has been opened. Further experiments on
phase coherent transport in nanostructured HgTe and HgMnTe QWs will be given
in section 5.3, where the universal conductance fluctuations will be analysed.
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Chapter 5

Measurements on Hg1−xMnxTe
Quantum Wells

In this chapter some unique features of HgMnTe QW samples will be described.
First, the separate investigation of the Rashba and giant Zeeman splitting in one
and the same sample will be demonstrated. The next section is dedicated to an
extraordinary sample which exhibits the ν = 1 quantum Hall plateau from below
1 T up to 28 T whose origin was unknown so far. In the last section of this chapter
experiments are presented which open the possibility to use the magnetic 2DEG
in these samples as a probe for the magnetic ordering in the sample. Evidence for
a phase transition from the paramagnetic to the spin glass phase will be given.

73
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5.1 Interplay of Rashba, Zeeman and Landau Split-
ting

After the assignation of the parameters S0 and T0 in the general chapter 3, that
are essential for the description of the DMS HgMnTe, we can now focus on the
investigation of a magnetic 2DEG formed by a HgMnTe QW. With the inclusion
of Mn in a gated QW we are able to analyse two different effects in one sample
independently [GBL+04]: the (only) temperature dependent Zeeman effect caused
by the strong sp− d exchange interaction between the conduction electrons and
the Mn ion spins [GLO+01] and the (only) gate voltage dependent Rashba effect
due to the structure inversion asymmetry (SIA) [ZPJO+01; GLD+02]. The giant
Zeeman effect in these structures leads to spin splitting energies, ∆Es, of tens of
meV, which are comparable to or larger than the Landau level (LL) splitting, h̄ωc,
and also the Rashba SO splitting is of a similar magnitude.

A widely used tool to explore level splitting is the analysis of SdH oscillations
as introduced in section 1.3. Level splitting causes a beating pattern in the SdH
oscillations due to the existence of two closely spaced frequency components with
similar amplitudes. These beating patterns show characteristic of both Zeeman
splitting (dependence on temperature) and Rashba splitting (dependence on gate
voltage). Magneto intersubband scattering (MIS) [RNSF01] can be excluded for
our samples as discussed in section 3.4.

One of the main attentions in the analysis is focused on the modulation of the SdH
amplitude

A ∝ cos(πν), (5.1)

where ν is given by

ν =
δ

h̄ωc
, (5.2)

h̄ωc is the LL separation energy and δ is the splitting of each LL. Nodes in the
in the beating pattern in the SdH oscillations will occur at half values of an odd
integer of ν , where the amplitude A is zero. In Figure 5.1 SdH oscillations of
the HgMnTe QW, Q1697, at a fixed gate voltage as a function of temperature are
shown. On the right hand side of the same Figure the corresponding fast Fourier
transformations (FFT) of the SdH oscillations as a function of 1/B are plotted.
A double peak structure is clearly resolved in the FFT spectra. The two peaks
correspond to the two spin-split components of the first conduction band H1. De-
pending on the gate voltage the total charge carrier concentration can be varied
from 2.7 to 3.6× 1012 cm−2. A gate voltage of 2.0 V corresponds to a carrier
concentration of 3.1×1012 cm−2. Here, in the higher carrier concentration range,
three nodes can be observed which are indicated with arrows. These nodes show a
large temperature shift which is caused by the strong sp−d exchange interaction
discussed in the section above. The origin of the temperature dependence lies in
the reduction in magnetisation of the Mn ions with increasing temperature. Similar
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Figure 5.1: SdH oscillations of the HgMnTe QW, Q1697, at a fixed gate voltage
as a function of temperature. Node positions in the beating patterns are indicated
with arrows. On the left side the corresponding FFT of the SdH oscillations as a
function of 1/B are shown. All traces are shifted vertically for clarity.

to the analysis of the node position introduced for HgMnTe bulk material in the
section above, the Zeeman splitting energies are deduced here. In the phenomeno-
logical description of a DMS with the Brillouin function (c.f. sec. 3.2) the effective
g-factor g∗ can be expressed as

g∗ = g0 −
(∆E)max

µBB
B 5

2

[

5gMnµBB
2kB(T +T0)

]

, (5.3)

where (∆E)max is the saturated spin splitting energy caused by the sp−d exchange
interaction and g0 is the g-factor for a HgTe QW without the presence of Mn,
i.e., g0 = −20 [ZOPJ+04]. The remaining parameters are already introduced in
Equation (3.7).

An experimental estimate for (∆E)max can be obtained from the results displayed
in Figure 5.2, where the differences in experimental level splitting energies, δ ,
between 0.38 K and temperature T are plotted versus the LL splitting energy,
h̄ωc = h̄(e/m∗)B. The electron effective mass employed here has been determined
by means of self-consistent Hartree calculations described in section 3.1. We find
m∗ = 0.047 to 0.051m0 for the carrier concentrations observed in the experiments,
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i.e., the population of the first conduction band H1 is nH1 = 2.2 to 2.6× 1012

cm−2 for Vg between −3.75 and +4.75 V. The curves in Fig. 5.2 are results of
least square fits of Eq. (5.3) at the corresponding temperatures. The agreement
is reasonable and results in (∆E)max = 4.3± 0.5 meV and T0 = 2.6± 0.5 K. In
principle, these parameters depend only on the Mn composition.

However, the giant Zeeman effect can not explain why the observed nodes also
shift with gate voltage, i.e., the asymmetry of the QW structure, as can be seen
in Fig. 5.3. This behaviour is typical for level splitting due to the Rashba SO
component, as was discussed for non-magnetic HgTe quantum wells by Zhang et
al. [ZPJO+01]. In the right part of Fig. 5.3 the corresponding FFT of the SdH
oscillations as a function of 1/B are shown. Again, a double peak structure is re-
solved. As mentioned above, the carrier concentration of the spin-split H1 can be
determined from the FFT spectra. The results are presented in Fig. 5.4. Here, the
population difference ∆nH1/nH1 is plotted versus the total carrier concentration.
The line are the theoretical values obtained from self-consistent Hartree calcula-
tions. In the inset the corresponding Rashba SO splitting energies, ∆R, which are
extracted from the values of ∆nH1/nH1 by means of band structure calculations,
are shown.

While the carrier concentration of H1 changes only from 2.24 to 2.65×1012 cm−2

in the accessible gate voltage range, the node at the highest field in Fig. 5.3 shifts
from 2.25 T (Vg = −3.75 V) to 3.72 T (Vg = 4.75 V). Concurrently the calculated
Rashba SO splitting energies, ∆R, change from 5 meV to 13 meV. ∆R magnitudes
of up to 13 meV are greater than that of Zeeman and Landau level splitting for
magnetic fields up to approximately 4 to 5 T. Although, the sample was designed
to be symmetrical, it was not possible within this voltage range to eliminate the
inherent asymmetry, i.e., to tune the Rashba splitting to zero. One reason can be
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Figure 5.3: SdH oscillations of the HgMnTe QW, Q1697, at T = 0.38 K as a
function of gate voltage. Node positions in the beating patterns are indicated with
arrows. On the left side the corresponding FFT of the SdH oscillations as a func-
tion of 1/B are shown. All traces are shifted vertically for clarity.
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Figure 5.4: Population difference of the spin-split H1 as a function of the total
carrier concentration. The circles are FFT data as shown in Fig. 5.3, the line are
the theoretical values obtained from Hartree calculations. The inset shows the
corresponding Rashba energies.



78 5. MEASUREMENTS ON HG1−xMNxTE QUANTUM WELLS

the processing of the sample with insulator and gate. According to our experience,
a symmetric sample measured without assembled gate often exhibits with the gate
a small asymmetrie. Usually a gate voltage less than ±1 V is sufficient to eliminate
the asymmetrie. Therefore, it is more likely that during the growth the doping
profiles below and above the QW have been different.

To ensure that the conclusions which we draw from the measurements are correct,
another uncertainty of the epitaxial growth of the sample has to be ruled out. If
the manganese concentration were not constant along the growth direction and the
centre of the H1− and H1+ wavefunctions would shift significantly with gate volt-
age, then (∆E)max would change, causing a shift in the node positions and the gate
voltage dependence of the experimental node positions is caused by an inhomo-
geneous Mn distribution rather than the Rashba effect. The expected dependence
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Figure 5.5: The perpendicular component of the magnetic field of the ν = 1.5
node as a function of tilt angle, θ . Calculated values are also shown when
(∆E)max = 4.3 meV (thick line) is employed in Eq. (5.3) and a variation in (∆E)max
of ±0.5 meV is allowed (thin lines).

on tilt angle, θ , for different values of (∆E)max can be calculated by combining
Eqs. (5.2) and (5.3). As shown in Fig. 5.5, tilted magnetic field experiments have
demonstrated that B⊥ values for the ν = 1.5 node follow the predicted dependence
on θ when (∆E)max = 4.3 meV. The results for a variation in (∆E)max of ±0.5 meV
are also shown in Fig. 5.5. Hence the uncertainty in (∆E)max is < ±0.5 meV and
the Mn distribution is homogeneous to better than ±10 % across the quantum
well. The experimental differences in population between the two sub-levels of
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the first conduction subband have been accurately reproduced by self-consistent
Hartree calculations as a function of the gate voltage or asymmetry of the QW.
The carrier density maximum for H1− and H1+ shifts a mere 2.4 and 1.1 mono-
layers, respectively, over the entire range of experimental gate voltages. Therefore
a change in the saturation value of the exchange energy due to an inhomogeneous
Mn distribution is inconceivable.
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Figure 5.6: Experimental values (empty symbols) for the total level splitting en-
ergy, δ , versus B and the Landau level splitting, h̄ωc for Q1697 for three gate
voltages at T = 0.38 K. The corresponding calculated Rashba s-o splitting ener-
gies are indicated by filled symbols. The curves are the results for δ via Eq. (5.4)
at these three gate voltages, for ∆ES = g∗µBB using g∗ from Eq. (5.3) and for
∆EL = h̄(e/m∗)B.

Valuable insight into the relative importance of the various effects can be obtained
from a simple model, which takes the Rashba effect and sp−d exchange interac-
tion into consideration, but neglects bulk inversion asymmetry and nonparabolic-
ity. With this model the total level splitting energy for high Landau numbers can
be expressed to a first approximation as a function of magnetic field according to
[DDR90; Pfe97; PZ99]

δ ≈
√

(h̄ωc −g∗µBB)2 +∆2
R− h̄ωc. (5.4)

In spite of their strong nonparabolic band structure, experimental and theoretical
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values of h̄ωc for HgTe QWs are nearly linear with magnetic field [PJ00]. Using
the theoretical value of ∆R and the values of the effective g factor according to
Eq. (5.3), the total spin splitting energy, δ , has been calculated for three gate volt-
ages and is plotted in Fig. 5.6 together with g∗µBB and h̄ωc. The calculated values
of ∆R are also plotted in Fig. 5.6 at B = 0. At high magnetic fields, the exchange
interaction tends to saturate and the Zeeman splitting, i.e., g0µBB, corresponds to
the value for a HgTe QW without Mn. The experimental spin splitting energies
from Eqs. (5.1) and (5.2) for three gate voltages are also plotted in Fig. 5.6 ver-
sus h̄ωc. Obviously these values are in good agreement with the calculated values
of δ (B).

To sum up, one can say that the Rashba effect and giant Zeeman spin splitting have
been separately investigated in one and the same sample by varying the structure
inversion asymmetry via a gate voltage and by changing the temperature of the Mn
ions, respectively.

5.2 Filling factor ν = 1

In the progress of this thesis one extraordinary sample arrested special attention:
The 2% manganese containig HgMnTe quantum well Q1721. In transport mea-
surements on a standard Hall bar this sample exhibits the ν = 1 quantum Hall
plateau from below 1 T up to the maximum at that time available field of 8 T. This
behaviour is apriori astonishing because for HgMnTe samples one would expect
the quantisation not below 2 T which corresponds to the observations made on
such samples so far. Therefore a new phenomenon has to be taken into account.
One possible explanation is the anomalous Hall effect (AHE) in paramagnetic
two-dimensional systems which will be introduced in the following according to
Ref. [CMN03].

When a nonferromagnetic metallic sample is exposed to a perpendicular exter-
nal magnetic field, the Lorentz force acting on the current carriers gives rise to a
transverse voltage in the plane of the sample. The transverse component of the
resistivity ρxy depends on the magnetic field through

ρxy = R0B, (5.5)

where R0 = 1/ne is known as the Hall coefficient. This phenomenon is known as
ordinary Hall effect (OHE).

In many ferromagnets, however, the transverse resistivity acquires an additional
term which is often seen to be proportional to the magnetisation of the sample, and
becomes constant once the sample has reached its saturation magnetisation Ms.
Empirically, one writes

ρxy = R0B+RsM. (5.6)
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The effect is referred to as the anomalous Hall effect while the constant Rs is
called the anamalous Hall coefficient. The effect was subsequently observed in
a large number of bulk alloys and ferromagnetic semiconductors. Although the
experimental evidence of the AHE was proved for a long time, the theoretical de-
scription has had a controversial history and the AHE remains a somewhat poorly
understood phenomenon. For a review of the mechanisms that have been made ac-
countable for the AHE the reader is referred to [CMN03]. The model applied here
is based on a semiclassical analysis of wave packet motion in Bloch bands with
a Berry phase correction to the carrier velocity as described in [CMN03]. This
model provides a conceptual framework for the theoretical study of the AHE in
magnetic QWs which have been realised among others in HgMnTe QWs. These
structures constitute the simplest systems in which the Berry phase can be evalu-
ated analytically from the Hamiltonian including the Rashba SO coupling.

The previously for B = 0 developed model has to be adapted as in the paramag-
netic system the exchange field which causes the AHE can only be maintained
by applying an external magnetic field. This causes two problems to observe the
AHE: The Landau quantisation and the ordinary Hall effect. The first obstacle
is circumvented by the presence of disorder in the sample, as impurity scattering
causes the Landau levels to broaden so that for small enough magnetic fields they
overlap. The impurity scattering is represented by a scattering time τ which is in
the order of 1 ps (c.f. sec. 4.2). In small enough magnetic fields, where ωcτ < 1,
an overlap is ensured and the semiclassical approximation is valid. Here, in ab-
sence of quantum oscillations, the ordinary Hall contribution is given by the Drude
formula (sec. 1.1). To ensure that the AHE is the dominant effect, we set

σOHE
xy < σ AHE

xy . (5.7)

The condition that the AHE is not completely overshaded by disorder requires that
the exchange splitting h0 must exceed the energy fluctuation due to disorder, h̄/τ .
According to [CMN03] the condition for the observation of the AHE is now

2πnh̄2

m∗ ωcτ <
h̄
τ

< h0. (5.8)

To obtain the mentioned parameters intense measurements on the longitudinal and
transversal resistance have been carried out. Because of the extraordinary be-
haviour of the sample to exhibit the ν = 1 plateau from below 1 T up to 30 T,
it was not possible to determine the carrier density until we found a small kink
at 0.31 T in the Hall resistance with a corresponding small local minimum in
the longitudinal resistance, which we could identify as a hint for the filling fac-
tor ν = 2 plateau. The charge carrier density can therefore be calculated to be
1.5×1010 cm−2. Hence, we obtain a mobility of 62.5×103cm2/(Vs). Introduc-
ing these values into Eq. (5.8) provide the condition that the anomalous Hall effect
in this sample can if at all be observed in magnetic fields below 0.15 T. In such
small fields a deviation from the ordinary Hall effect is not resolvable with our
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Figure 5.7: In the upper panel the calculated band structure of the 2% Mn con-
taining QW Q1721 at 40 mK is shown. In the lower panel measurements of the
longitudinal (blue) and transversal (red) resistance of this sample at the same tem-
perature are plotted.
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measurement setup. The origin of the extraordinary behaviour remains therefore
unexplained. But the determination of the carrier density allows us now to cal-
culate the correct band structure of the sample according to section 3.1. In the
upper panel of figure 5.7 the calculated band structure (according to sec. 3.1) of
the discussed sample is shown. One can see the extraordinary behaviour of the H1
band (black). For small magnetic fields it has a positive curvature but then changes
to a negative curvature and remains above the Fermi energy (dotted line) until more
than 30 T at a temperature of 40 mK. Hence, it is comprehensible that the sample
remains in a conducting phase. The rising H2 band (blue) remains unoccupied due
to different Bloch components. The consequence of this particular behaviour can
be found in the lower panel of figure 5.7: The ν = 1 quantum Hall plateau is main-
tained up to the highest accesible magnetic field at the Grenoble High Magnetic
Field Laboratory of 28 T. If the temperature is increased, as shown in Fig. 5.8, the
H1 band crosses the Fermi energy at lower fields (according to the band structure
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Figure 5.8: Hall effect data on Q1721 for various temperatures.

calculations not shown here) and the sample enters the isolating phase. This fact is
observable in the measurement curves up to 20 K, where the ν = 1 plateau is still
obtained. In contrast to the afore presented measurement data, here, a rise in the
resistance for fields above 25 T is observable.
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On the other hand Culcer et al. have calculated the condition for an observation of
the anomalous Hall effect [CMN03]: For a manganese concentration of 2.2% and
a carrier density of 1× 1011 cm−2 they find, that the ordinary and the anomalous
conductivities will be equal to just over 0.14 of the conductivity quantum, when
applying the sufficient field of 130 mT according to Eq. (5.8). This can not explain
a quantisation of ν = 1.

To sum up, it is now possible to give a complete explanation of this extraordinary
behaviour. The above mentioned band structure calculations can fully explain the
experimental results.
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5.3 Phase Transition into Spin-Glass Phase?

In section 4.2 we observed fluctuations in the NLR signal in the cross shaped
sample structure which we identified as universal conductance fluctuations (UCF).
Following the idea that the UCF signal is a “magneto-fingerprint” of the sample,
as introduced in section 2.7, we expected to find a characteristic change therein, if
a DMS sample is cooled down below the freezing curve for the spin glass phase
(c.f. sec. 3.5). Initially we investigated the temperature dependence of the UCF
in the nonmagnetic QW sample Q1819 with the cross shaped structure. In the
second part of the section, UCF measurements of the 5% manganese containing
QW Q1946 will be presented.

The proof that the fluctuations are not induced by electronic noise is given by re-
peating the measurement. In Fig. 5.9 part of the NLR signal is shown (black curve).
The red curve is a repetition of the measurement. One can see clearly that the fine

Figure 5.9: The repeatment (red curve) of a four terminal resistance measurement
(black curve) demonstrates the reproducibility of the fine structure.

structure is fully reproducible. Measurements at various temperatures as shown in
the left part of Fig. 5.10 indicate the dependence of the amplitude on the tempera-
ture. To extract the UCF signal from the large NLR signal, a 40 point average was
subtracted as demonstrated in Fig. 5.10. The resulting UCF signal for temperatures
from 1.4 K to 42 K are plotted in the left part of Fig. 5.11. One can see clearly a
decrease of the amplitude with increasing Temperature. The reproducibility of the
traces for two different temperatures is demonstrated in the right part of the same
figure which shows an enlargement of the 1.4 K and 4.2 K measurements. A mea-
sure of the amplitude is the standard deviation σ =

√

〈(∆R)2〉 of the resistance R.
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Figure 5.10: Left: Measured data of the NLR at various temperatures. Right: A
40 point average (red curve) was subtracted from the NLR data (left) which results
in the UCF signal (black curve).

Figure 5.11: Left: Four point resistance (after background subtraction) for vari-
ous temperatures. Right: Enlargement of the 1.4 K and 4.2 K measurements to
demonstrate the reproducibility.

It should be noted that the standard deviation of R is the sum of the standard de-
viations of the signal and the noise. Therefore the standard deviation of the noise,
which has been estimated to be 0.2 Ω, must be subtracted. This estimate has been
determined from the difference of the two curves in Fig. 5.9 as well as an extrapo-
lation to still higher temperatures where the phase coherence is destroyed and the
fluctuations are only produced by noise. According to the UCF theory, the depen-
dence of σ on temperature should be given by a power law, i.e., σ(T ) ∝ T b, where
b ≈ −0.5 [LS85; LSF87]. In Fig. 5.12 the corresponding σ is plotted versus T
with logarithmic axes. The red line represents the Y =const.·T−0.64 function. The
temperatures have an error on the order of ±2 K for those temperatures greater
than 4.2 K since at this point sample heating was required. Within this large error
at high temperatures the experimental data agree very well with the least square
fitted line representing a power law based on the theoretical description.
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Figure 5.12: Standard deviation of four point resistance fluctuations (minus stan-
dard deviation of noise) as a function of temperature. The least square fitted (red)
line has a temperature dependence of T−0.64.

Because the UCF originate from randomly distributed imperfections in the peri-
odic lattice potential, they are not expected to show any periodicity. In order to see
if the UCF measurements exhibit periodicity, FFT spectra of the resistance curves
in Fig. 5.11 have been performed. The raw data of the FFT, plotted in the left part
of Fig. 5.13, show peaks at many frequencies. For a better comparison a ten point
average (red curve) was taken and plotted for various temperatures in the right
part of the same figure. Here, distinct peaks around 20 T−1, 40 T−1 and 60 T−1

can be found. This peaks can be identified for all temperatures demonstrating a
general structure in the smoothed FFT spectra. Such peaks at a given frequency
in 1/B can be assigned to two different paths around a characteristic area acquir-
ing an additional relative phase difference of 2π just as the two arms in the ring
shaped structure which result in the Aharonov-Bohm effect (c.f. sec. 2.2). The
corresponding area A can be calculated according to

A =
ϕ0

∆B
, (5.9)

where ϕ0 = h/e is the flux quantum and ∆B the field difference between two ad-
jacent maxima of constructive interference. For the above mentioned peaks the
corresponding areas are 0.83, 1.65 and 2.48×10−13 m2, respectively. A rough esti-
mate of the relevant area in the cross shaped structure with lead widths of 0.45 µm
is (0.45× 0.45) µm2 = 2.03× 10−13 m2, which is of the same order as the ones
calculated from the FFT spectra. Therefore, it is plausible that the periodicity ev-
ident in the FFT of resistance fluctuations is caused by the specific geometry of
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Figure 5.13: Left: FFT spectrum of the 1.4 K resistance measurement and the
smoothed, 10 point average, curve (red). Right: Smoothed FFT spectra for various
temperatures.

the sample. In contrast to a ring shaped structure the paths are geometrically less
defined and may depend on the injecting angle and the degree of deflection of the
electrons caused by the magnetic field. Hence, the peaks in the FFT spectra are
smeared out around a central frequency.

As the coherence length becomes shorter with rising temperature, due to, e.g.,
phonon scattering, then the amplitude of the periodic contributions to the resis-
tance fluctuation curve measured by varying the magnetic field, is expected to
decrease. Although this can clearly be seen in Fig. 5.13, an additional plot of the
amplitude of the first peak in the smoothed FFT spectra as a function of tempera-
ture, depicted in Fig. 5.14, reveals, that the temperature dependence is practically
the same as that for the standard deviation of the fluctuations. That is to say, the
amplitude of the contributions to the resistance fluctuations which are periodic in
magnetic field also appears to be proportional to T−0.6. However, it should be
noted that in the determination of the temperature dependence of the standard de-
viation of the fluctuations the result obtained is strongly influenced by the value
attributed to noise and subsequently subtracted from the data. For example, if no
value is subtracted then a fit of the data results in a T−0.4 dependence. The danger
of inaccuracy by smoothing the FFT data is evident, but the comparison of raw
data with the smoothed data in Fig. 5.13 and a similar comparison for the data at
different temperatures (not shown), as well as the agreement of the temperature
dependence σ(T ) and with that of the UCF theory strengthens this conclusion.

However, the agreement between the temperature dependence of the peak ampli-
tude in the Fourier spectrum and the standard deviation of the resistance fluctua-
tions is not surprising. The peak in the Fourier spectrum can be interpreted as being
an averaged amplitude of contributions to fluctuations in the magneto-fingerprint,
which are caused by the combined interference effect of those pairs of paths, which
differ from each other by a certain reflection sequence on the cross walls. Since
these particular pairs of paths are just a subset of all classically allowed paths, it is
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Figure 5.14: Amplitude of the first peak of the smoothed FFT in Fig. 5.13 as a
function of temperature. The fitted (red) line has a temperature dependence of
T−0.63.

expected that the statistics for this subset will be the same as for the complete set of
paths. This assumption explains the temperatur dependence of the FFT spectrum
peak, since if the amplitude of the peak can be regarded as being the aforemen-
tioned averaged amplitude then this must be something like the standard deviation
of a subset of fluctuations.

Encouraged by the matching results on the nonmagnetic sample, UCF measure-
ments on the 5% Mn containing symmetric QW Q1946 have been performed. To
avoid the problems with the specific sample geometry several simpler geometries
have been realised. At first, a standard Hall bar was fabricated to determine the
sample parameters. In a standard 4He bath cryostat at 4.2 K a carrier concentra-
tion of 3.5× 1011 cm2 and a mobility of 20× 103 cm2/(Vs) have been obtained.
Then, on one piece of the sample, 0.5 µm wide stripes with a distance between
the voltage contacts of 1, 2, and 3 µm have been fabricated. Another piece of the
sample has been patterned as a micro Hall bar with a width of 5 µm and a distance
between the longitudinal voltage probes of 20 µm.

The stripe with the 1 µm separated voltage contacts was not measurable, possibly
due to a large defect in the crystal structure directly below the nanostructure. The
2 µm long stripe exhibits resistance oscillations on the order of 1 MΩ, which is
of the same order as vertical transport through the substrate would cause and re-
mains therefore disregarded. Hence, only the results of the 3 µm long stripe will
be discussed here. At that time the lowest temperature accessible at our labora-
tory was 300 mK in a single shot 3He cryostat. Since the phase transition of a
Hg0.95Mn0.05Te sample between spin glass and paramagnetic phase occurs around
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400 mK according to the phase diagram in Fig. 3.8, a characteristic change in the
resistance behaviour should be measurable, even though fine tuning of the tem-
perature in our single shot 3He cryostat was impossible. In Figure 5.15 the four
point resistance as a function of the magnetic field for temperatures from 0.3 K
up to 40 K is shown. In the left part of the Figure, the corresponding FFTs are
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Figure 5.15: Left: Temperature dependent four point resistance of a 3 µm long,
0.5 µm wide stripe on a Hg0.95Mn0.05Te sample as a function of magnetic field.
Right: Corresponding FFT.

plotted. The curves of the longitudinal resistance exhibit a large fluctuation whose
amplitude is strongly temperature dependent. The origin of this oscillation is apri-
ori unclear. The curves below (0.3 K) and above (0.7 K) the phase transition line
differ only slightly. A first weak hint for a phase transition may be the follow-
ing: Whereas the amplitude decreases monotonously with increasing temperature
for T ≥ 0.7 K, the amplitude of the 0.7 K measurement is reproducible slightly
larger then the one measured at 0.3 K. This fact is also evident in the FFT ampli-
tude. In the FFT peaks at 4 T−1, 7 T−1, 11 T−1, and a broad one around 17.5 T−1

are observed. Following the arguments above, the corresponding areas, calculated
according to Eq. (5.9), are summarised in Table 5.1. In the last column the corre-
sponding radii r, assuming an orbital area of A = πr2, are given. Compared to the
results obtained from the FFT analysis of the cross shaped structure whose areas
and lengths are far from those of the sample geometry here. If any at all, only the
broad peak near 17.5 T−1 can be attributed to a sample geometry induced pair of
paths.
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freq. (T−1) ∆B (T) A (m2) r (nm)

4 0.250 1.65×10−14 72.6

7 0.143 2.90×10−14 96.0

11 0.091 4.55×10−14 120.3

17.5 0.057 7.24×10−14 151.8

Table 5.1: Summary of parameters obtained by analysis of the FFT spectra in
Fig. 5.15.

Unfortunately, it was not possible in the cryostat setup at that time to reduce the
noise below 0.2% of the signal, which was 80 Ω. Therefore UCF induced resis-
tance fluctuations which are on the order of several Ohms could not be resolved.
The newly installed, shielded 3He/4He dilution refrigerator with automatic temper-
ature control opens the possibility of low noise measurements in the temperature
range from 10 mK up to 1 K. However, the discussed sample with the stripes did
not survive the previous temperature cycles and transfer to the dilution refrigerator.
A new sample had to be prepared and we decided to increase the dimensions fur-
ther to avoid sample geometry specific features. For the new design, a micro Hall
bar with a width of 5 µm and a distance between the longitudinal voltage contacts
of 20 µm was chosen. A low resolution, high field measurement of the longitu-

0 5
field (T)

0

2000

4000

6000

8000

10000

12000

14000

R
xx

( Ω
)

0 1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

14000

R
xy

  (
Ω

)

Figure 5.16: SdH oscillations (black) and quantum Hall effect (red) in a micro Hall
bar on Q1946.
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dinal (black curve) and Hall resistances (red curve), depicted in Fig. 5.16, shows
that the sample parameter n and µ which have been derived to be 3.7×1011 cm−2

and 13×103 cm2/(Vs), respectively, have not been changed by the nanofabrication
process. The small decrease in mobility is not surprising since restrictions of trans-
port by a dislocation is more relevant in a structure with only 1/50 of the width of
a standard Hall bar. High resolution measurements of the longitudinal resistance
in small magnetic fields for various temperatures as well as the corresponding FFT
are plotted in Fig. 5.17.
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Figure 5.17: Left: Temperature dependent longitudinal resistance of a micro Hall
bar on Q1946 as a function of magnetic field. Right: Corresponding FFT.

It has to be mentioned that sometimes between two measurement cycles, sudden
resistance changes of 500 Ω occured independent of temperature. Thus, the total
curve shifted 500 Ω. This happened randomly at different temperatures once or
twice a day, likely caused by a point defect in the crystal structure which in some
configuration reduces the mobility. But due to the long stabilising times only two
or three different temperatures could be measured on one day. Hence, for a better
comparison, the curves in Fig. 5.17 are shifted together to have the same value
at B = 0. The resistance curves again exhibit a large fluctuation with amplitudes
depending on temperature. But in contrast to the stripe patterned piece of the same
sample, a tendency is clearly revealed. With increasing temperature the ampli-
tude increases up to the one measured at 350 mK, then decreases monotonously
with increasing temperature. To find the temperature with the maximum ampli-
tude avoiding the aforementioned problems, measurements at a fixed magnetic
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field have been performed while the sample was heated up or cooled down within
a time period of hours. Subtracting the values found at B = 210 mT (maximum)
from those found at B = 150 mT (minimum), provides a measure of the amplitude
as a function of temperature. The result is shown in Fig. 5.18. One can see clearly
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Figure 5.18: Difference of the resistance at B = 210 mT and B = 150 mT as a
function of temperature.

that the amplitude has a maximum at 420 mK, right at the temperature where the
phase transition between spin glass and paramagnetic phase for a Hg0.95Mn0.05Te
sample is expected [BM84]. This is strong evidence that the large fluctuations are
connected with the presence of manganese in the sample. Whereas the increase
of the amplitude with decreasing temperature from 1 K down to 420 mK can be
explained straight forward with an increasing phase coherence length, the inverse
dependency for the temperatures below 420 mK requires the consideration of a dif-
ferent magnetic ordering. In the spin glass phase the antiferromagnetic exchange
interaction is mediated by the charge carriers as well as other mechanism [Myd93].
During freeze out of the spin glass the carriers are more and more localised and can
not contribute to phase coherence transport. Thus, the amplitude also decreases at
lower temperatures.

Comparing the FFTs of the resistance in the stripe (Fig. 5.15) with those of the
micro Hall bar measurements (Fig. 5.17), one can also find in the latter unam-
biguous peaks at 4 T−1 and 7 T−1 which are consequently independent of the
particular sample geometry. The corresponding periods of 250 mT and 143 mT,
respectively, can be identified with those of the large fluctuations. Hence, the
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lateral size of Mn cluster can be estimated to be (1.65± 0.21)× 10−14 m2 or
(2.90± 0.21)× 10−14 m2. The uncertainty results from an error of ±0.5 T−1

in the FFT. The latter corresponds to an area twice as large as that of the former
which is synonymous to a dual circuit rather than one. As it is more plausible to
consider a path with twofold circulation than two different cluster sizes with one
twice as large as the other, the lateral size of the Mn cluster in Q1946 is found to
be (1.65± 0.21)× 10−14 m2. Regardless of the fact that the geometric form of a
Mn cluster is most probably not circular, for better comprehension the radius of
such a circle would be given by r = 72.6±4.5 nm.
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An enlargement of the measured curves in Fig. 5.17 reveals additional features. In
Fig. 5.19 a pronounced minimum around B = 0 for all temperatures can be seen.
We identify this minimum as the weak anti-localisation peak due to spin-orbit
interaction [HLN80]. The curves for different temperatures differ only slightly
and the relative peak height is almost constant. In HgMnTe samples the weak
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anti-localisation is caused by the Rashba SO coupling [Win03]. As the Rashba
effect is nearly temperature independent, the weak anti-localisation is expected to
be equally independent which is demonstrated in Fig. 5.19. Although the sample
was designed to be symmetrical, possible differences in the doping profiles above
and below the QW can introduce an asymmetry as discussed in detail in the last
section.

In Fig. 5.20 one can see additional fine structure superimposed on the large fluctu-
ations. Analogous to the analysis of the nonmagnetic sample, discussed in the first
part of this section, the UCF have been studied for various temperatures. There-
fore, a 20 point (∆B =10 mT) average curve has been subtracted. The average of
the curve together with the curve at 10 mK are represented in Fig. 5.20. The stan-
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Figure 5.20: Longitudinal resistance as a function of magnetic field (black) at
10 mK and a 20 point average curve (red).

dard deviation σ of the resulting curves has been employed as a measure for the
amplitude. In Fig. 5.21 the standard deviation of the UCF is plotted as a function
of temperature. According to the results in the nonmagnetic sample, the data have
been fitted with a T−0.64 dependence. But only for data with T > 400 mK, in the
paramagnetic phase is it possible to obtain reasonable results which are indicated
by the red line. For temperatures below the freezing curve the amplitude of the
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UCF tends to saturate. To our knowledge this is the first time that a phase tran-
sition in the magnetic ordering has been investigated by transport measurements
on a magnetic 2DEG. De Vegvar et al. have studied CuMn films and wires and
could identify frozen spin configurations by exploiting the time reversal invariance
of the Onsager-Büttiger relations [dVLF91; dVF93]. Their resistance amplitudes
decrease monotonously with temperature when crossing the freezing curve. In thin
epilayers of CdMnTe with various manganese content, Jaroszynski et al. found an
increase in the fluctuation amplitude in the paramagnetic phase if they increased
the applied magnetic field [JWK+98]. In the spin glass phase they observed a de-
crease in the amplitude, whereas the noise increased. In their earlier paper, they
reported on a monotonous increase of the resistance amplitude with decreasing
temperature [JWS+95]. Furthermore, Benoit et al. reported an increase of the
amplitude with decreasing temperature in the spin glass phase [BMPN92].

Nevertheless, the subject of none of the aforementioned publications was a mag-
netic 2DEG. In this investigation we found clear evidence for a phase transition
from the paramagnetic to the spin glass phase in a Hg0.95Mn0.05Te QW. The tran-
sition was observable in the irregular behaviour of the resistance fluctuations as
well as in the deviation of the UCF amplitude from the theoretically expected be-
haviour, which is only expected for our sample in the paramagnetic phase.
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5.4 Summary

In this chapter several aspects of the unique properties of Hg1−xMnxTe QWs have
been analysed. In the first section it has been demonstrated that the Rashba and
giant Zeeman splitting can be observed in one and the same sample. A method
for separating these effects has been introduced. Whereas the Rashba effect can
be identified by the solely dependency from the structure inversion asymmetry,
varied by the applied gate voltage, the giant Zeeman splitting is extracted by its
strong temperature dependency, while the Rashba splitting is kept constant. In
the next section intense studies on the 2% Mn containing sample Q1721 have
been presented. After two research stays at the Grenoble High Magnetic Field
Laboratory an explanation of the extraordinary behaviour of this sample could be
given. Finally clear evidence for a phase transition between the paramagnetic and
spin glass phase in a 5% Mn containing sample has been found.
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Summary and Outlook

Although spintronics has aroused increasing interest, much fundamental research
has to be done. One important issue is the control over the electronic spin. There-
fore, spin and phase coherent transport are very important phenomena. This thesis
describes experiments with mercury based quantum well structures. This narrow
gap material provides a very good template to study spin related effects. It exhibits
large Zeeman spin splitting and Rashba spin-orbit splitting. The latter is at least
four to five times larger than in III-V semiconductors.

Initially a short review on the transport theory was presented. The main focus was
on quantisation effects that are important to understand the related experiments.
Thus, Shubnikov-de Haas and the quantum Hall effect have been analysed. Due
to the first fabrication of nanostructures on Hg-based quantum well samples, the
observation of ballistic transport effects could be expected. Hence, the Landauer-
Büttiker theory has been introduced which gives the theoretical background to
understand such effects.

With respect to the main topic of this thesis, phase coherence has been introduced
in detail. Experiments, where coherence effects could be observed, have been
explained theoretically. Here, possible measurement setups have been discussed,
e.g., a ring shaped structure to investigate the Aharonov-Bohm and related effects.

Due to the fact, that all experiments, described in this thesis, were performed on
Hg-based samples, the exceptional position of such samples among the “classi-
cal” semiconductors has been clarified. Hg1−xMnxTe quantum wells are type-III
QWs in contrast to the type-I QWs formed by e.g., GaAs/AlGaAs heterostruc-
tures. With a well width of more than 6 nm and a manganese content of less than
7% they exhibit an inverted band alignment. Band structure calculations based on
self consistent Hartree calculations have been presented. The common descrip-
tion of a diluted magnetic semiconductor with the Brillouin function has been
introduced and the experiments to obtain the empiric parameters T0 and S0 have
been presented. Rashba spin-orbit splitting and giant Zeeman splitting have been
explained theoretically and the magnetic ordering of a spin glass as well as the
relevant interactions therein have been discussed.

The next chapter describes the first realisation of nanostructures on Hg-based het-
erostructures. Several material specific problems have been solved, but the unique
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features of this material system mentioned above justify the effort. Interesting
new insight could be found and will be found with these structures. Onto a se-
ries of QW samples, cross-shaped structures with several lead widths have been
patterned. With the non-local resistance measurement setup, evidence for quasi-
ballistic transport was demonstrated in cross-shaped structures with lead widths
down to 0.45 µm. The non-local bend resistance and a regime of rebound tra-
jectories as well as the anomalous Hall effect could be identified. Monte-Carlo
simulations of the classical electron trajectories have been performed. A good
agreement with the experimental data has been achieved by taking a random scat-
tering process into account.

Encouraged by this success the technology has been improved and ring-shaped
structures with radii down to 1 µm have been fabricated. Low temperature (below
100 mK), four terminal resistance measurements exhibit clear Aharonov-Bohm
oscillations. The period of the oscillations agrees very well with a calculation that
takes only the sample geometry into account. One goal using such a structure
is the experimental prove of the spin-orbit Berry phase. Therefore an additional
Shottky gate on top of the ring was needed. With this structure evidence for the
Aharonov-Casher effect was observed. Here, a perpendicular applied electric field
causes analogous oscillations as does the magnetic field in the AB effect.

A subsequent change in the Rashba SO splitting due to several applied gate volt-
ages while measuring the AB effect should reveal the SO Berry phase. Although
initially evidence of a phase change was detected, a clear proof for the direct mea-
surement of the SO Berry phase could not be found. In the future, with an advanced
sample structure, e.g., with an additional Hall bar next to the ring, which permits a
synchronous measurement of the Rashba splitting, it might be possible to measure
the SO Berry phase directly.

In manganese doped HgTe QWs two different effects simultaneously cause spin
splitting: the giant Zeeman and the Rashba effect. By analysing the Shubnikov-
de Haas oscillations and the node positions of their beating pattern, it has been
possible to separate these two effects. Whereas the Rashba effect can be identified
by its dependence on the structure inversion asymmetry, varied by the applied
gate voltage, the giant Zeeman splitting is extracted from its strong temperature
dependence, because Rashba splitting is temperature independent. The analysis
revealed, that the Rashba splitting is larger than or comparable to the giant Zeeman
splitting even at moderately high magnetic fields.

In an extraordinary HgMnTe QW sample, that exhibits the ν = 1 quantum Hall
plateau from less than 1 T up to 28 T, the anomalous Hall effect could be ex-
cluded. Intense studies on the temperature dependence of the QHE as well as band
structure calculations have revealed this extraordinary behaviour to be an ordinary
band structure effect of this system.

In a series of mesoscopic structures on nonmagnetic and magnetic QWs, an in-
vestigation of the universal conductance fluctuations have been carried out. In the
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nonmagnetic case, the temperature dependence of the standard deviation of the re-
sistance, which is a measure for the amplitude of the fluctuations, obeys a power
law (∝ T−0.64) in good agreement with the theory of Lee et al. In samples con-
taining 5% manganese this agreement could only be found for temperatures above
400 mK. These samples exhibit an additional fluctuation with a period of 140 mT
and an amplitude up to 200 Ω. This amplitude increases with decreasing temper-
atures down to 400 mK and decreases at lower temperatures again. A possible
explanation has been found in the phase change from paramagnetic (T>400 mK)
to the spin glass phase (T<400 mK), which explains the behaviour of the am-
plitude of the universal conductance fluctuations, too. With this identification a
characteristic manganese cluster size has been determined to be on the order of
1.5×10−14 m2 for this sample as described in detail in the text. Hence, a new
method has been found to use a two-dimensional electron gas as a probe for the
magnetic ordering.

This thesis introduced new methods and sample structures which can be employed
to investigate phase coherent and spin dependent transport phenomena. New and
known effects have been observed for the first time in Hg based heterostructures.
As always, the unanswered questions increase faster than answers to previous
questions. With an improved sample structure, as proposed in the text, the direct
observation of the spin orbit Berry phase might be possible. The method which
uses a 2DEG as a probe for the magnetic ordering can be applied to samples with
different manganese content to finish the magnetic ordering phase diagram.
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Zusammenfassung

Trotz des ständig steigenden Interesses an der Spintronik gibt es diesbezüglich
noch viel an Grundlagenforschung zu leisten. Eine wichtige Aufgabe dabei ist
es den Spin zu kontrollieren und gezielt zu beeinflussen. Aus diesem Grund
ist es wichtig spin- und phasenkohärente Transportphänomene zu untersuchen
und zu verstehen. Die vorliegende Arbeit befasst sich mit Experimenten an
Quantentrogstrukturen auf der Basis quecksilberhaltiger Materialien. Dieser
schmallückige Halbleiter ist ein ideales Versuchsobjekt zur Untersuchung von Ef-
fekten, die mit dem Spin zusammenhängen, denn er zeigt den riesigen Zeeman-
Effekt sowie Rashba-Spin-Bahn-Aufspaltung. Letztere ist sogar vier- bis fünfmal
so groß wie die in III-V Halbleitern.

Zu Beginn dieser Arbeit wurde ein kurzer Überblick über die Transportheorie
gegeben. Dabei lag das zentrale Interesse auf Quantisierungseffekten, welche zum
Verständnis der nachfolgenden Experimente unabdingbar sind, insbesondere wur-
den der Shubnikov-de Haas und der Quanten-Hall-Effekt betrachtet. Da es im
Rahmen dieser Arbeit erstmals gelungen ist, Nanostrukturen auf quecksilberhalti-
gen Quantentrögen herzustellen, war es zu erwarten, dass ballistische Transportef-
fekte beobachtet werden könnten. Daher wurde eine Einführung in die Landauer-
Büttiker-Theorie gegeben, mit welcher es möglich ist solche ballistischen Effekte
theoretisch zu beschreiben.

Das Hauptaugenmerk der vorliegenden Arbeit liegt auf Untersuchungen zur
Phasenkohärenz. Deswegen wurde diese ausführlicher eingeführt. Dabei wurde
die Theorie der Experimente, bei denen man Phasenkohärenz beobachten kann,
dargestellt. Ebenso wurden mögliche experimentelle Aufbauten diskutiert, wie
zum Beispiel eine ringförmige Struktur, an welcher man den Aharonov-Bohm,
sowie damit verwandte Effekte untersuchen kann.

Quecksilberhaltige Heterostrukturen nehmen neben den “klassischen” Halbleitern
eine Sonderstellung ein. Diese wurde im dritten Kapitel gewürdigt. Im Gegen-
satz zu den Typ-I Quantentrögen, z.B. gebildet aus einer GaAs/AlGaAs Het-
erostruktur, sind Quantentröge aus Hg1−xMnxTe/Hg0.3Cd0.7Te vom Typ-III. Ist
hierbei die Trogbreite größer als 6 nm und der Mangangehalt geringer als 7%, so
weisen diese Tröge eine invertierte Bandstruktur auf. Hierzu wurden Bandstruk-
turberechnungen mittels selbstkonsistenter Hartree-Berechnungen dargestellt. Zur
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Beschreibung verdünnt magnetischer Halbleiter wurde die dafür allgemein übliche
Brillouin Funktion eingeführt. Die Experimente mit denen die dabei benötigten
empirischen Parameter T0 und S0 gewonnen wurden, wurden an dieser Stelle
präsentiert. Auch die Theorie der Rashba-Spin-Bahn-Aufspaltung sowie des riesi-
gen Zeeman-Effekts wurden erklärt. Darüberhinaus wurde der magnetische Ord-
nungszustand “Spinglas” eingeführt, sowie die wichtigsten Wechselwirkungen
darin dargestellt.

Im nächsten Kapitel wurde die erstmalige Realisierung von Nanostrukturen auf
quecksilberhaltigen Heterostrukturen berichtet. Dafür mussten materialspezifi-
sche, technologische Probleme überwunden werden, aber die einzigartigen Eigen-
schaften dieses Materialsystems rechtfertigen den Aufwand. So konnten bereits
und werden neue Einsichten gewonnen werden. Auf eine Serie von Quanten-
trogproben wurden Kreuzstrukturen mit unterschiedlichen Armdicken definiert.
In diesen Strukturen konnte mit Hilfe der sogenannten Nichtlokalen Wider-
standsmessung der Nachweis für quasiballistischen Transport erbracht werden.
Der sogenannte Biegewiderstand, der Bereich der abprallenden Trajektorien sowie
der anomale Hall-Effekt konnten identifiziert werden. Um diese Beobachtun-
gen auch auf eine quantitative Beschreibung zurückzuführen, wurden Monte-
Carlo-Simulationen der klassischen Trajektorien der Elektronen durchgeführt.
Durch die Einführung eines zufälligen Streuprozessess konnte eine hervorragende
Übereinstimmung mit den experimentellen Daten erzielt werden.

Ermutigt durch diesen Erfolg, wurde die Technologie weiter verbessert. So konn-
ten ringförmige Strukturen mit Radii hinunter bis zu 1 µm hergestellt werden.
Elektrische Vier-Punkt-Messungen bei niedrigsten Temperaturen (unter 100 mK)
zeigen deutliche Aharonov-Bohm -Oszillationen. Die Periode dieser Oszillationen
stimmt sehr gut mit der berechneten überein, die aus geometrischen Überlegungen
zur Probe gewonnen wurde. Ein Ziel für die Verwendung solcher ringförmigen
Strukturen ist der direkte experimentelle Nachweis der Spin-Bahn-Berry-Phase.
Hierzu wird allerdings ein zusätzliches Shottky-Gatter auf der Oberseite des
Rings benötigt. Mit einer solchen Struktur konnte der Aharonov-Casher-Effekt
nachgewiesen werden. Dabei verursacht ein senkrecht anliegendes elektrisches
Feld analoge Oszillationen wie das Magnetfeld im Aharonov-Bohm-Effekt.

Durch ein kontinuierliches Ändern der Rashba Spin-Bahn-Aufspaltung, her-
vorgerufen durch die Änderung der anliegenden Gatter-Spannung, während man
den Aharonov-Bohm-Effekt misst, sollte die Spin-Bahn-Berry-Phase offenbaren.
Obwohl zunächst ein Hinweis auf einen Phasenübergang gefunden werden konn-
te, war ein eindeutiger Nachweis für die direkte Messung der Berry-Phase nicht
möglich. Zukünftige Messungen mit einer verbesserten Probenstruktur, z.B. einem
zusätzlichen Hall-Streifen direkt neben dem Ring um gleichzeitig die Rashba-
Aufspaltung messen zu können, werden möglicherweise diesen direkten Nachweis
erbringen.

In mit Mangan dotierten HgTe Quantentrögen gibt es zwei unterschiedliche Ef-
fekte, die eine Spin-Aufspaltung hervorrufen: Der riesige Zeeman-Effekt und der
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Rashba-Effekt. Durch die Analyse der Shubnikov-de Haas Oszillationen und der
Knotenpositionen ihrer Schwebung, war es möglich, diese zwei Effekte zu tren-
nen. Während der Rashba-Effekt durch seine Abhängigkeit von der Struktur-
inversionsasymmetrie, die durch Veränderung der anliegenden Gatter-Spannung
variiert werden kann, identifiziert werden kann, erkennt man die riesige Zeeman-
Aufspaltung durch ihre Temperaturabhängigkeit, da der Rashba-Effekt tempera-
turunabhängig ist. Diese Analyse konnte zeigen, dass die Rashba-Aufspaltung
größer als oder mindestens vergleichbar der riesigen Zeeman-Aufspaltung ist, und
das sogar bei mäßig hohen Magnetfeldern.

In einer außergewöhnlichen HgMnTe Quantentrogprobe, welche das ν = 1
Quanten-Hall-Plateau von unter einem Tesla bis zu 28 Tesla aufweist, konnte
der anomale Hall-Effekt als Ursache für dieses Verhalten ausgeschlossen werden.
Intensive Untersuchungen der Temperaturabhängigkeit des Quanten-Hall-Effekts
sowie Bandstrukturberechnungen konnten dieses außergewöhnliche Verhalten als
einen gewöhnlichen Effekt der Bandstruktur in diesem System erklären.

An einer Serie von mesoskopischen Strukturen auf nichtmagnetischen und mag-
netischen Quantentrögen wurden universelle Leitwertfluktuationen untersucht. Im
nichtmagnetischen Fall gehorchte die Temperaturabhängigkeit der Standardabwei-
chung des Widerstands, die ein Maß für die Amplitude der Fluktuationen ist, einem
Potenzgesetz (∝ T−0.64) in guter Übereinstimmung mit der Theorie von Lee et al.
. In Proben, die 5% Mangan enthielten, konnte diese Übereinstimmung nur im
Temperaturbereich über 400 mK gefunden werden. Darüberhinaus wiesen diese
Proben eine zusätzliche Fluktuation mit einer Periode von etwa 140 mT und einer
Amplitude von 200 Ω auf. Diese Amplitude wächst mit sinkender Temperatur bis
400 mK und verkleinert sich wieder, wenn man die Temperatur weiter absenkt.
Eine mögliche Erklärung konnte in einem Phasenübergang von der paramagneti-
schen (T>400 mK) zur Spinglas Phase (T<400 mK) gefunden werden, die ebenso
das Verhalten der Amplitude der universellen Leitwertfluktuationen erklärt. Durch
diese Identifikation lässt sich mittels einfacher geometrischer Überlegungen eine
charakteristische Größe für Mangananhäufungen (1.5×10−14 m2) in dieser Probe
geben. Mit diesen Experimenten konnte gezeigt werden, dass das zweidimensio-
nale Elektronengas als Sensor für den magnetischen Ordnungszustand einer Probe
verwendet werden kann.

Die vorliegende Arbeit hat neue Methoden und Probenstrukturen eingeführt,
die zur Untersuchung von phasenkohärenten und spinabhängigen Trans-
portphänomenen verwendet wurden. Erstmalig wurden neue und bekannte Ef-
fekte an quecksilberhaltigen Heterostrukturen beobachet. Wie immer, so auch hier
wächst die Zahl der unbeatworteten Fragen schneller als die der beantworteten.
Für zukünftige Arbeiten ergeben sich im direkten Anschluss an diese Arbeit
neue, spannende Fragen. Mit einer verbesserten Probenstruktur, wie sie im Text
vorgeschlagen wird, könnte eine direkte Beobachtung der Spin-Bahn-Berry-Phase
möglich sein. Die Methode, ein zweidimensionales Elektronengas als Sensor
für den magnetischen Ordnungszustand zu verwenden könnte auf Proben mit un-
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terschiedlichem Mangangehalt angewendet werden um das Phasendiagramm der
magnetischen Ordnung zu vervollständigen.
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