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Preface

In recent years the thermoelectric properties of low dimensional systems and

nano-devices have become the subject of a large and active body of research in

condensed matter physics. A strong driving force in this development is clearly

the practical problem of heat dissipation in small scaled devices which the infor-

mation and computational industry is facing nowadays: Continuously shrinking

dimensions and an increasing packing density in logical circuits urgently demand

a solution for the effective control of the flow of heat at the micro and nano

scales [GHL+06, Sha11, DDV11]. Moreover, for the sake of increased device effi-

ciency, the conversion of waste heat into a more useful energy form, for example

as mechanical work or an electro-chemical potential difference, is highly desir-

able. This large field is generally referred to as thermal management ; it includes,

for example, ways to rectify and switch heat currents (thermotronics) as well as

harvesting energy from heat reservoirs [SKR+08, SB11].

The general interest in nano-thermoelectrics is further stimulated by the recogni-

tion that low dimensional systems can be utilized to strongly enhance the thermo-

electric efficiency of a device. This is mainly due to the energy filtering properties

of small systems which arise from the changes in the electronic density of states

when the dimensionality is reduced [HD93, MvHB+90]. The thermoelectric effi-

ciency is usually characterized by the so-called figure of merit or ZT -value which

contains electronic as well as phononic contributions. While the electronic proper-

ties become enhanced by energy filtering, nano-structures such as quantum wires

or quantum dots are expected to reduce phonon contributions: Due to their size,

they can be utilized as scatterers for phonons and thereby reduce phonon heat

transport across the device while providing good electrical conduction. Hence,

they are promising candidates for the application in future thermoelectric devices

with high efficiency [MS96, HL05, NXL10].
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PREFACE

Furthermore, there are also fundamental scientific aspects to the ongoing interest

in thermoelectrics. From a thermodynamics point of view, nano-structures of-

ten operate in the transition regime between large ensembles and single particle

systems. This applies especially to systems containing quantum dots [BLR05].

Hence, they represent interesting model systems to test fundamental laws of

thermodynamics [SLSB10]. Over the past decades progress in nano-fabrication

and increasingly sophisticated experimental techniques have triggered a develop-

ment which, for example, lead to the discovery and experimental tests of new

fluctuation theorems [Jar97, LDS+02, Cro99, CRJ+05, BLR05], and to a better

understanding of the connection between entropy, thermodynamics and informa-

tion theory [MNV09, RMPP14]. Since the concept of energy harvesting at the

nano-scale essentially relies on the rectification of thermal fluctuations the search

for new ways of heat conversion is directly linked to such fundamental thermo-

dynamic considerations.

Moreover, the Seebeck-coefficient (or thermopower) of a system, i.e. the voltage

which is generated due to an applied temperature difference across a device for

open circuit conditions, is known to be exceedingly sensitive to different trans-

port mechanisms taking place in the system [But90, BS92]. Thus, thermoelectric

measurements can be used as a powerful spectroscopy tool to study transport in

small systems, even under conditions where conductance data provide only poor

information. This has been exploited fruitfully in systems as diverse as two dimen-

sional electron gases [GGB+90, MGB+04], quantum point contacts [MvHB+90]

and Quantum Dots [SMA+93, DSB+98, GMB+99, SBR+05, SNK+07].

These considerations illustrate how rich and diverse the field of thermoelectrics

in nano-devices is, with respect to both fundamental research and applications.

The aim of this thesis is to contribute to the topic by experimentally study-

ing the thermoelectric properties of single quantum dots and coupled quantum

dot systems. Transport in semiconductor quantum dots, as used in this work, is

dominated by the on-site Coulomb repulsion which gives rise to the well-known

Coulomb blockade. Thermoelectric transport in this regime is known to be well

described by the Onsager coefficients in the framework of the Landauer-Büttiker

formalism. Such basic considerations, as well as the basic experimental tech-

niques used in the present work, are introduced in the first part (Part I) of this

thesis.
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In the thermoelectric community QDs have especially attracted a large attention.

This is partly because thermoelectric transport in these systems is not yet fully

understood. In particular, how a single spin occupying a quantum dot influ-

ences the thermopower is still subject of an ongoing discussion [SBR+05, CZ10,

ZMRR13]. In this context, the Kondo effect is of great importance because it is

known to strongly influences the transport properties of a system due to many-

body spin-correlations. Here, the thermopower as a spectroscopy tool is expected

to play an important role in order to gain deeper insight into the transport mech-

anisms in this regime. Experiments which investigate questions concerning the

relation between thermopower and spins in single quantum dots are presented in

Part II.

Interesting information are also expected to be obtained from thermopower mea-

surements on two serially tunnel coupled Quantum dots. First, because one

obtains information about delocalized, molecular-like electronic states. Second,

because serial double quantum dots are considered an important building unit in

future thermal and thermoelectric devices, thermal rectifiers and thermal ratch-

ets [HL05, NXL10, Sha11]. Hence, a detailed knowledge about the fundamental

thermoelectric properties of tunnel coupled quantum dots is of high interest. This

question is addressed in the experiments at the beginning of Part III. Part III

further deals with the suitability of QD systems as energy harvester and also

as thermotronic devices, which use temperature to manipulate charge currents.

For example, how thermal occupation fluctuations of a QD can be used to con-

trol a charge current through an adjacent dot via electrostatic interaction will

be investigated. Regarding energy harvesting at the nano-scale, the attempt is

made towards the realization of a concrete concept: A recent proposal by R.

Sánchez and M. Bütikker suggests to use two capacitively coupled QDs, which

are embedded in a three terminal device, to extract thermal energy from the hot

environment and convert it into a directed charge current [SB11]. According to

the Sánchez and Büttiker, this can be done by making use of a novel mechanism

which decouples the heat flow from the particle flow in the device and thereby

allows the directions of the temperature gradient and the charge current to be

adjusted independently. The proof of this concept for this novel energy harvester

is the goal of the final section of Part III.

vii





Part I

Fundamentals
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Chapter 1

Non-Equilibrium

Thermodynamics in Small

Systems

1.1 Onsager Relations

Transport experiments investigate the response of a system to a perturbation

from equilibrium conditions. In non-equilibrium thermodynamics the system’s

response is described as an irreversible process, where a generalized forceXi drives

the flux Ji [dG63]. For example, in order to describe transport in a condensed

matter system, appropriate generalized forces would be the electro-chemical po-

tential ∆µ and the thermal gradient ∆T . The corresponding fluxes are the charge

current I and the heat current J . As long as Xi are small, the relation between

forces and fluxes is linear (linear response) and they relate as(
I

J

)
=

(
L11 L12

L21 L22

)(
∆µ/e

∆T

)
. (1.1)

The matrix elements Lxy are the so-called Onsager coefficients which relate the

forces to the fluxes. For example, L11 describes the relation between the electro-

chemical potential ∆µ and the charge current I. Thus, it can be identified with

the electrical conductance G. Interestingly, the off-diagonal coefficients allow

for an interference of different fluxes and forces: For example, a charge current
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1. Non-Equilibrium Thermodynamics in Small Systems

also experiences contributions from a temperature difference ∆T , indicated by

the coefficient L12. These interference phenomena are generally referred to as

thermo-electric effects [dGM62]. They are observed in experiments where they

are known as the thermopower (or Seebeck-coefficient) S and the Peltier-Effect

Π. Like the electrical conductance G and the thermal conductance Θ, these

experimental coefficients are related to the matrix elements in Eq. (1.1) by the

following set of equations [dG63, But90]:

G = L11, (1.2)

S = −L12

L11

, (1.3)

Π =
L21

L11

, (1.4)

Θ =
L12L21

L11

− L22. (1.5)

Transport in mesoscopic systems is often described within the exceedingly suc-

cessful Landauer-Büttiker formalism which treats transport as a transmission

problem. This formalism can be applied to the Onsager matrix which then yields

the following expressions for the matrix elements [But90]:

L11 =
e2

h

∫
dEt(E)

(
− ∂f

∂E

)
, (1.6)

L12 = − e

hT

∫
dE(E − µ)t(E)

(
− ∂f

∂E

)
, (1.7)

L21 = − e
h

∫
dE(E − µ)t(E)

(
− ∂f

∂E

)
, (1.8)

L22 = − 1

hT

∫
dE(E − µ)2t(E)

(
− ∂f

∂E

)
, (1.9)

where e2/h is the conductance quantum, f(E) is the Fermi-Dirac distribution

function, µ is the electro-chemical potential, T is the temperature and t(E) is

the energy dependent transmission function of the system. In principle, this

set of equations (1.6) - (1.9) enables the calculation of all the thermo-electric

coefficients, once the transmission function t(E) is known for a given mesoscopic

system.

It is noteworthy that Eq. (1.1) can easily be extended to other forces and fluxes.

4



1.2. Thermopower

For example, including spin-potentials and spin-fluxes then gives rise to more

exotic quantities like the spin-Seebeck coefficient [BSvW12].

1.2 Thermopower

By definition, the thermopower, or Seebeck-coefficient, S is given by the difference

in chemical potential ∆µ which arises due to a small temperature difference ∆T

under open circuit conditions (I → 0) between two voltage probes, divided by

∆T :

S ≡ ∆µ

∆T

∣∣∣∣
I→0

. (1.10)

When taking a closer look at the form which S takes in the Landauer-Büttiker

formalism, S = L12/L11, one makes an interesting observation: While the nomi-

nator L11 simply consists of the conductance G (Eq. 1.6), the denominator is an

integral over the energy, which contains the extra term (E − µ) [Eq. (1.7)]. This

makes L12 an odd function with respect to the energy E. While L11 is even and

has its larges contribution at E = µ (because here ∂f/∂E has its maximum), L12

becomes zero for E = µ. Instead it gives large numerical values for energies far

away from the electro-chemical potential. This odd, energy-dependent contribu-

tions make S a powerful experimental spectroscopy tool: S contains information

about the energy-dependent transmission of a system in the linear transport

regime. In contrast, an attempt to access similar information with conductance

measurement requires to enter the non-linear transport regime, where the system

is strongly perturbed and far from equilibrium [BS92].

Matveev et al. have found an expression for S which emphasizes this spectro-

scopic property of the thermopower even more [MA02]:

S = −〈E〉
kT

. (1.11)

This expression plainly shows, that S essentially is related to the average energy

of charge carriers 〈E〉, which contribute to transport. 〈E〉 = 0 at the Fermi

energy. This means, that the sign of S provides direct access to the information,

5



1. Non-Equilibrium Thermodynamics in Small Systems

whether the transmission is higher for electrons or for holes or, in other words,

whether the temperature differences causes electrons to flow from the hot to the

cold side or from the cold to the hot side. Correspondingly, one uses the terms

electron-like thermopower and hole-like thermopower to indicate that 〈E〉 > EF

or 〈E〉 < EF , respectively.

Another interpretation of S has been introduced by Heikes [AM69], who related

the thermopower to the entropy S,

S =
S
ne
, (1.12)

by dividing the entropy by the number of charge carriers n. This suggests to

consider S to be the ’entropy per charge carrier’. Note, however, that in a strict

sense Eq. (1.12) only holds in the limit T →∞ [CB76].

Finally, a comment is given on the well-known Mott thermopower SMott, which

derives from the Boltzmann model of transport. It is obtained from a Sommerfeld

expansion and reads

SMott = −π
2

3

k2T

e

∂lnG(E)

∂E

∣∣∣∣
E=EF

. (1.13)

Because its derivation assumes G to depend only weakly on E and because

it neglects electron-electron interaction terms, one might expect SMott to fail

in most low dimensional systems, where these assumptions often do not hold

anymore. However, sometimes, Eq. (1.13) yields surprisingly good agreement

[Sch07, NDT+11].

1.3 Thermopower of a Quantum Dot

Quantum Dots (QDs) are very small puddles of electrons which connect to one or

more electron reservoirs via tunnel barriers [MKHW89, STFK+90]. The electro-

chemical potential of a QD, µ(N), as a function of electron occupation number

N , exhibits a discrete spectrum due to the small capacitance of the structure

and the discrete nature of the electronic charge [Ihn10]. This results in a char-

acteristic ’ladder’ of the electro-chemical potential with energetically equidistant

µ(N), as shown in the cartoon in Fig. 1.1 (a). The conductance G of a QD
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1.3. Thermopower of a Quantum Dot

exhibits a maximum whenever µ(N) is aligned with the electro-chemical poten-

tials in the contact reservoirs (Coulomb-peak), as it is depicted in Fig. 1.1 (a).

Otherwise, the conductance is strongly suppressed (Coulomb-blockade). Today,

many properties of QDs are well understood, especially in terms of conductance,

and there exist a number of comprehensive reviews on the topic, for example

Refs. [HKP+07, GP03, Ihn10], to which the reader is referred for further details.

For a very basic introduction, also see Appendix C.

In Fig. 1.1 (b) a QD is located between two contact reservoirs, source S and drain

D, with temperatures TS > TD and with electro-chemical potentials µS, µD, re-

spectively. µ(N) of the QD is aligned with µS and µD. Red arrows indicate

that electrons can travel from the hot source reservoir across the QD and occupy

empty states at D. Similarly, electrons move from D towards reservoir S, which

is indicated by blue arrows. Since the level alignment of the QD is symmetric

with respect to µS and µD (electron-hole-symmetric), these currents cancel and

the net current is zero. Hence, the system is in a stationary state so that µS and

µD do not change. A comparable situation is depicted in Fig. 1.1 (c). Here, the

QD is at the center of the Coulomb Blockade valley, i.e. µ(N) and µ(N+1) have

energetically the same distance from µS and µD. Again, this corresponds to an

electron-hole-symmetric case: Hot electrons in reservoir S, which have enough

energy to occupy the µ(N+1)-level, compete with electrons, that tunnel from

the cold contact D to the source via the µ(N)-level. Since Fermi-Dirac statistic

is energy-symmetric, these currents (indicated by red and blue arrows) cancel

each other exactly. Again, the net current is zero and the state of the system

is stable, µS = µD. However, a different situation occurs for a configuration as

shown in Fig. 1.1 (d). Here, the QD exhibits the Coulomb-blockade, but now

µ(N) is energetically closer to µS,D than µ(N+1). Therefore, the current from D

to S via µ(N) is larger than charge flow in the opposite direction via µ(N+1).

Hence, this state of the system is not stable: There is a net charge drain from

reservoir D and, correspondingly, a charge accumulation in reservoir S. For open

circuit conditions, this changes µS and µD, respectively, which in turn affects the

charge currents via µ(N) and µ(N+1). Thus, the system will evolve into a state

where the difference in temperature driven charge currents is compensated by a

difference in electro-chemical potential µS − µD = Vth, as shown in Fig. 1.1 (e).

The difference in electro-chemical potential Vth can be identified with a thermo-

7



1. Non-Equilibrium Thermodynamics in Small Systems

µ(N-1) 

µ(N) 

µ(N+1) 
(a) (b) (c) 

(d) 

µS µS 

µS 

µS µD 

µD 

µD µD 

TS  > TD 

(e) 

Vth 

TS  = TD TS  > TD 

TS  > TD TS  > TD 

µS 

µD 

µ(N-1) 

µ(N) 

µ(N+1) 

µ(N) 

µ(N+1) 

µ(N) 

µ(N+1) 

µ(N) 

µ(N+1) 

Figure 1.1: Energy diagrams of a QD with occupation number N and electro-
chemical potential µ(N), µ(N+1), etc. The reservoirs S and D are at temperature
TS and TD. Arrows indicate temperature driven currents from hot to cold (red)
and from cold to hot (blue) (a) QD at a Coulomb-peak with TS = TD. (b)
QD at a Coulomb-peak with TS > TD. (c) QD at the Coulomb-valley center,
TS > TD. (d) TS > TD, QD exhibits an asymmetric level alignment. Figure
without built-up thermovoltage Vth. (e) Asymmetric QD configuration as in (d),
now with built-up Vth.

voltage and thus, the thermopower SQD = −Vth/∆T |I→0 can be assigned to the

QD. It is straightforward to show that Vth, and thus SQD, changes sign if the

asymmetry of the QD-level alignment is reversed, i.e. if µ(N+1) is closer to µS,D

than µ(N): In this case the charge current above µS,D dominates and charges

accumulate in the drain-reservoir.

A deeper understanding of this effect is provided by Eq. (1.11), which relates S

to the average energy of charge carriers 〈E〉. At a conductance peak, transport is

dominated by carriers at the Fermi-level, so that 〈E〉 = 0. Tuning the QD away

from this configuration shifts 〈E〉 below or above the Fermi-level, and trans-

port becomes hole-like or electron-like, respectively. Since 〈E〉 changes linearly

around a conductance peak, so does thermopower. 〈E〉 becomes largest close to

the Coulomb-valley center because here the asymmetry of the electro-chemical

potentials of the QD is maximal. However, at the center of the blockade valley

〈E〉 = 0. Hence, on both sides of the valley center, 〈E〉 has its maxima but it

8



1.3. Thermopower of a Quantum Dot

exhibits opposite signs.

From analytical calculations based on the orthodox model of sequential trans-

port C.W.J. Beenakker and A.A.M. Staring obtained similar results [BS92]. By

applying the integrals of the Onsager coefficients, Eq. (1.3), the authors derived

analytical expressions for the thermopower which predicted SQD to exhibit a saw-

tooth line shape as it is sketched in Fig. 1.2 (a). The slope of the sawtooth close

to the conductance maxima is determined by the environmental temperature.

The calculations by Beenakker and Staring where first verified experimentally by

Staring et. al [SMA+93].

The sawtooth line shape is only observed when sequential tunneling dominates

transport. However, in real QDs higher-order tunneling processes (co-tunneling)

may significantly contribute to charge transport. This can have a dramatic effect

on the thermopower, as it was first pointed out by Matveev et al. [MA02] and

later was demonstrated experimentally by Scheibner et al. [SNK+07]. The co-

tunneling currents cause SQD to decay in the Coulomb blockade regime, where

sequential tunneling currents become very small. Close to a conductance peak,

however, sequential tunneling dominates and SQD still exhibits a linear behav-

ior here. This leads to an overall resonance-like line shape. Co-tunneling pro-

cesses become strongly suppressed with an increasing environmental temperature.

Moreover, these processes are very sensitive to the coupling energy between the

QD-levels and the reservoirs. Hence, the thermopower line shape can strongly

vary, depending on these parameters. As examples, Fig. 1.2 shows measurements

of the conductance (solid) and thermopower (dashed) for low temperature and

weak coupling (b), low temperature and strong coupling (c) and high tempera-

ture and strong coupling (d). Figure 1.2 emphasizes how sensitive thermopower

is to different transport mechanisms.

Finally, it is noted that the excited states of a QD leave characteristic fingerprints

of the form of additional peaks in the thermopower [BS92, DSB+97]. Further-

more, for small QDs it has been shown that excited state may even dominate

SQD and give rise to unique rectification effects [SKR+08].
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Figure 1.2: Thermovoltage Vth (dashed) and conductance G (solid) as a function
of QD energy for various transport regimes. Q+n indicates the energy of the QD
in units of charging energy U . VP denotes the QD energy in terms of gate voltage
VP. (a) Sketch for delta-function density of states (DOS) after the Beenakker-
Staring model [BS92]. Long dashes: small system temperature TL; short dashes:
large TL (b) Experimental data for weak coupling energy Γ ≈ 30 µeV and small
TL = 80 mK. (c) Data for stronger coupling Γ ≈ 200 µeV and small TL = 80 mK.
(d) Data for strong coupling Γ ≈ 700 µeV and high TL = 1350 mK.
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Chapter 2

Experimental Techniques

2.1 Sample Processing

The samples investigated in this thesis are realized by means of the split-gate

technique: Metallic electrodes (so-called gates) are brought onto the surface of

the semiconductor heterostructure GaAs/AlGaAs. The heterostructure contains

a two-dimensional electron gas (2DEG) with a low carrier density and a mod-

erately high electron mobility at a distance of 90 to 120 nm below the surface

[for details see Appendix A]. Because a Schottky-barrier is created at the metal-

semiconductor interface, energizing the gates with a negative voltage with re-

spect to the 2DEG depletes the electron gas underneath. This way insulating

regions are created electrostatically in the 2DEG which act as potential barriers

for charge carriers. By choosing an appropriate arrangement of gate electrodes,

a huge variety of structures can be realized this way. For the experiments pre-

sented in this thesis the samples were fabricated by optical and electron-beam

lithography. First, a small piece of the wafer is etched into what is called the

mesa, which is then be equipped with ohmic contacts made of Au/Ge. The gates

are brought onto the surface by metalization with Au/Ti and subsequent lift-off.

Optical lithography is used for the fabrication of the gate contacts, electron beam

lithography is used for the inner part which defines the QD-system because here a

much better resolution is required. Finally, the sample is glued into a chip carrier

and ohmic and gate contacts are contacted with bond-wires. A more detailed

description of the sample fabrication and the corresponding lithography recipes

can be found in Refs. [Mai10, Kno11].

11



2. Experimental Techniques

2.2 Transport Measurements

The physics studied in this thesis takes place on small energy scales which are

typically of the order of 0.10 to 1 meV. It is therefore crucial that all environ-

mental energy scales are significantly smaller. This is especially important for

the environmental temperature. Hence, all transport experiments are carried out

in a dilution refrigerator (model: Oxford Instruments 400 TLM) with a base

temperature of Tbase < 80 mK. Estimates for the temperature of the electron

gas based on Coulomb-resonance thermometry yield Tel ≈ 200 mK. This cor-

responds to a thermal energy of kTel = 17.2 µeV and thus suffices the above

requirement. Since the changes in electro-chemical potential which are to be de-

tected in the experiments are very small in most cases (∼ µV), a proper shielding

of the measurement circuit from electro-magnetic noise is essential in order to

obtain a good signal-to-noise ratio (SNR). Moreover, electromagnetic noise can

even cause a significant heating of the sample. Therefore, a clean laboratory

ground which is disconnected from the polluted power supply ground potential,

is used for all measurement equipment, including the dilution refrigerator (cryo-

stat). The cryostat acts as a Faraday cage and thus shields the sample from

external sources of electrical noise. Moreover, all lines outside the cryostat which

connect to the sample are BNC-cables with BNC-connectors that carry the clean

ground on their outer line and the signal on the core-line. Before entering the

cryostat, these lines run through a set of high-frequency Pi-filters which keep

voltage noise in the MHz-range away from the sample.

2.2.1 Conductance Measurements

Measurements of the conductance G of the QDs are performed by applying a

small excitation voltage (here: Vex = 5 to 15 µV) to one of the ohmic contacts

of the sample, for example the source reservoir, and connecting another contact,

in this case the drain reservoir, to a well defined ground potential. The resulting

current I is obtained from the detection of the voltage drop Vref across a well

known resistor Rref which is connected in series with the sample. Instead of a

resistor, one can also use a current amplifier which gets connected to the drain

contact (model used here: Ithaco 1211). The working principle of the current

amplifier is as follows: It sets the contact, to which it is connected, to a virtual

12



2.2. Transport Measurements

ground potential by means of operational amplifiers. The resulting current into

the virtual ground is converted into a voltage which gets amplified. This enables

amplification factors of up to 10−11 A/V with a good SNR. In addition to the

current, the voltage drop VS across the sample is measured. Both quantities, I

and VS, then enable the calculation of G = I/VS. In order to get clean, low-

noise data, the measurements are carried out with ac-voltages, using Lock-In

amplifiers for voltage detection. We make sure that the sample is in a linear

regime by choosing low excitation frequencies. Furthermore, it is important that

the chosen frequency and its higher harmonics are not too close to the supply

voltage frequency of 50 Hz. In this thesis the following frequencies are used:

f = 11, 13 or 113 Hz.

Measurements of the differential conductance are carried out by using two induc-

tively coupled coils in order to add the ac-excitation to a dc-voltage. Dc-voltages

are measured by using high-impedance 1:1 voltage amplifiers in combination with

low-noise dc-voltmeters. A detailed discussion of conductance measurements on

QDs is also given in Ref. [Sch07].

2.2.2 Thermopower Measurements: The Current-Heating

Technique

When performing thermopower experiments on nanostructures at cryogenic tem-

peratures, the main problem is to locally create a small controllable tempera-

ture gradient across the device. In recent years a current-heating technique has

been established which provides a convenient way to address this problem. It

is applicable in high mobility 2DEGs down to dilution refrigerator temperatures

[SBR+05, SNK+07, Sch07, SKR+08] and even works for bulk materials [NDT+11].

The key idea of the current-heating technique is that electron-lattice interaction

becomes strongly reduced at low temperature and the mean free path which

an electron travels between two scattering events with the lattice increases to

lel-lat � 10 µm for T < 1 K [MWK+96]. This leaves electron-electron interac-

tion as the dominant scattering mechanism on a length scale of a few µm. One

can exploit this property by sending a heating current through a narrow chan-

nel with a width w = 2 µm and a length l = 20 µm. A schematic of such a

heating channel is shown in Fig. 2.1 (a) (red: heating channel, blue: cold reser-

voirs). By applying a small ac-current Iheat to the channel via the contacts I1

13
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and I2 the Joule heating power P ∝ I2
heat is introduced into the system. It is

indicated in the figure that the contact reservoirs I1 and I2 have much larger

dimensions than the channel. Hence, the Joule-heating power of the current is

dissipated into the lattice in the contact areas because here the spacial dimension

suffice to cool the electron gas by electron-lattice interaction. The electron gas

in the channel, however, is heated up because here electron-lattice interaction is

strongly suppressed. Thus, the electron gas is heated up locally to a temperature

Tch = Tel + ∆T . It is emphasized that due to the quadratic relation of P and

Iheat, ∆T oscillates with twice the excitation frequency of the ac-heating current

f . This provides all thermal signals with the signature of a 2f -oscillation. In

combination with Lock-In amplifiers this is a powerful tool for the identification

and low noise detection of thermal voltage signals. The QD-system under inves-

tigation is attached to one side of the heating channel. It also connects to the

cold electron reservoir V2 [cf. Fig. 2.1 (a)]. On the other side of the heating chan-

nel a Quantum Point Contact (QPC) is situated. Behind the QPC lies contact

reservoir V1. For measurements of the thermovoltage, the potential difference is

detected between V1 and V2 with a Lock-In working at 2f . The signal is then

given by ∆V = V2 − V1 = ∆T (SQPC − SQDsys). When the QPC is adjusted to

a conductance plateau, SQPC = 0 [MvHB+90]. Hence, in this case the detected

voltage is only generated by the QD-system, ∆V = ∆TSQDsys.

The QPC can be used to calibrate the temperature difference resulting from a

given heating current [MvHB+90] because it exhibits quantized thermopower am-

plitudes (see Appendix B). An example for the temperature calibration on the

material Hamburg1472 is given in Fig. 2.1 (b). The upper inset shows Vth of a

QPC for different currents Iheat at Tbase ≈ 80 mK. The maxima marked with a

blue arrow in the inset are plotted against Iheat in the main diagram (left axis).

It has been established that for the transition from G = 4e2/h to G = 2e2/h, the

thermopower maximum is given by S4→2
QPC ≈ 39 µV/K [MvHB+90]. Thus, a mea-

surement of the thermovoltage allows the calculation of the corresponding ∆T to

be carried out. In Fig. 2.1 (b), ∆T is shown on the right axis. The inset at the

bottom shows the temperature calibration for a larger range of Iheat. Here a clear

deviation from the characteristic parabolic Iheat − ∆T relation can be observed

for large Iheat. This indicates that heating power is no longer absorbed mainly

by the electron gas but that lattice heating becomes relevant.

14



2.2. Transport Measurements

We note that the temperature change ∆T for a given heating current depends on

material parameters such as mobility and carrier density. This makes it necessary

to perform an individual temperature calibration for each material used, if the

thermopower is to be determined quantitatively. Furthermore, we note that there

are other methods of temperature calibration such as weak-localization measure-

ments [MWK+96] or measurements of Shubnikov-deHaas oscillations [MFZ+91].

Those methods have not been used for this thesis. However, they may be supe-

rior to QPC-thermometry in terms of accuracy under certain conditions [Sch07]

and thus should be considered if a quantitative evaluation of the thermopower

is desired. Finally, it should be noted that Ref. [Sch07] gives a very detailed

and comprehensive discussion of thermopower measurements and temperature

calibration.
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Figure 2.1: (a) Schematic of a sample layout with heating channel of length
l = 20 µm and width w = 2 µm for thermopower measurements. Black regions
denote gate electrodes. Red denotes hot regions with Tel + ∆T due to a heating
current Iheat applied between contacts I1 and I2. Blue regions remain at Tel.
Thermovoltage is measured between V1 and V2. (b) Temperature calibration
with a QPC (material: Hamburg 1472 ). Upper inset: G and Vth of the QPC.
Vth given for Iheat = 2...20 nA. The blue arrow indicates the feature used for
calibration. Main diagram: Vth of the transition N = 4 → N = 2 as function of
Iheat. Right axis: Vth converted to ∆T . Bottom inset: Temperature calibration
for a larger Iheat-range.
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Part II

Single Quantum Dots
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Chapter 3

Introduction

In this part experiments are presented which investigate the influence of electron

spins on the thermopower of a Quantum Dot (QD).

Ever since the thermopower (S) of a QD was first studied experimentally by

Staring et al. [SMA+93], a number of experiments unanimously confirmed the

supreme sensitivity of S on the transmission spectrum of QDs [DSB+97, DSB+98,

GMB+99, SKR+08] and on different kinds of processes that govern transport

[SBR+05, SNK+07, SPH+12]. Furthermore, it was shown that the energy filter-

ing properties of QDs make them interesting candidates for application as basic

units in future thermoelectric devices [Sha11, NXL10]. On the other hand, trans-

port experiments have revealed the important role of the spin configuration of a

QD on its conductance, which can become both enhanced [GGSM+98, COK98]

or suppressed [WHvK93, WHK95] by spin-dependent effects. Obviously, this

arouses the question: How do spins on a QD influence the thermoelectric prop-

erties of the device? This problem gained even more attention when in recent

years the field of spin-caloritronics emerged, which studies, for example, ways to

obtain spin-currents from a temperature difference [BSvW12].

The only experiments reported so far, which address signatures of spins in the

thermopower of QDs, have been performed by Scheibner et al. [SBR+05]. There,

the thermopower of a Kondo-correlated QD has been measured. The Kondo

effect is a many-body state which arises if a QD exhibits a net spin that cou-

ples through exchange interaction to the spins of the surrounding conduction

electrons. Hence, it is a direct result of the spin-configuration of the QD. It is

noteworthy here, that nowadays the Kondo effect is a well understood many-
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3. Introduction

body phenomenon, and therefore has become a test bench for new numerical

techniques [DFvdW11]. Hence, detailed experimental tests of transport coeffi-

cients other than the conductance are of high interest and QDs, highly tunable

model systems, are expected to give valuable contributions to this field. In their

experiments, R. Scheibner et al. clearly showed that the Kondo-correlated state

dramatically changes S. Yet, a definite conclusion about how the physics in-

volved causes these changes could not be given. Furthermore, in a more detailed

discussion of the experiments R. Scheibner also notes that there are thermopower

amplitude modulations in regimes of odd spin occupation where Kondo correla-

tions are strongly suppressed [Sch07]. Apparently, the amplitude of S correlates

with the spin configuration of the QD, suggesting an effect of spins on S of un-

clear origin.

The following Part II of the thesis aims at contributing to a more complete pic-

ture of spin contributions in the thermopower of a QD. This will be done (1.) by

investigating S of a Kondo-correlated QD in greater detail and (2.) by providing

new data on the observed spin-dependent thermopower amplitude modulation.

Part II is organized as follows: At first, the sample design is discussed in Chap-

ter 4. After that, experiments on the thermopower of a Kondo-QD are described

in Chapter 5. The conductance G and S are studied in the Kondo regime for

different coupling energies as well as for a variation of the sample temperature.

A qualitative picture is given which fully explains the observed changes in S as a

result of competing thermopower contributions from the Kondo effect and from

the Coulomb resonances of the QD. The data are compared to calculations by T.

Costi and V. Zlatić [CZ10] for which good qualitative agreement is obtained. Fi-

nally, open questions concerning the thermopower of a Kondo-QD are discussed.

In Chapter 6, the spin-dependent thermopower amplitude modulation is investi-

gated. The phenomenology observed by R. Scheibner is confirmed in new exper-

iments. The effect is studied for a variation of QD occupation number, sample

temperature and coupling energy. The results suggest a connection to Kondo-

correlations. A picture is presented which is capable of explaining the observa-

tions as a result of Kondo-correlated transport. Moreover, it plausibly explains

the occurrence of Kondo-signatures in S while there is a lack of such signatures

in the conductance. Part II concludes with a summary of the results (Chapter 7).
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Chapter 4

Single Quantum Dot: Sample

Layout

For the experiments on single QDs, the wafer material BO-12647 is used. At

75 nm below the surface this heterostructure contains a 2DEG with a nomi-

nal electron density n = 2.98 × 1011 cm−2 and a charge carrier mobility µ =

5.5× 105 cm2/Vs at 4 K [cf. Appendix A].

The sample layout for a single QD is shown in Fig. 4.1. White regions indicate

conducting reservoirs. They are equipped with ohmic contacts I1, I2, V1, and V2.

Black regions denote the surface gate electrodes under which the 2DEG can be

depleted. This is done by adjusting the voltages applied to the gates with re-

spect to the 2DEG. The gates are denoted with letters A - E and P. The heating

channel is formed by gates A, B, C, and D (length: 20 µm, width: 2 µm). In

addition A and B create the QPC which enables current heating thermometry.

Moreover, it connects the electron reservoir V2 to the channel which can be used

as a voltage probe .

The QD (length: 350 nm, width: 270 nm) is located opposite to the QPC AB.

It is formed by gates C, D, and E while P serves as plunger gate. The gates

are aligned in such a way that the enclosed region has a triangular shape. This

design has been proven to be especially suitable for few electron quantum dots

[CSH+00]: By tuning the gate voltages VE and VD to higher values while leaving

VC at comparably smaller voltage, the QD is formed close to the thin tip of gate

C. This allows to deplete the QD down to very small occupation numbers and

even completely empty dots have been achieved this way [CSH+00]. While most
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QD 

Figure 4.1: Sample design for single QD experiments. White regions indicate
conducting electron reservoirs, black regions denote areas which can be depleted
by adjusting the gate voltages (gates: letters A-E, P). For thermopower mea-
surements the heating current is applied to the ohmic contacts I1 and I2. The
thermovoltage is probed using Vth = V2 − V1.

other designs encounter a strong current suppression due to increasing tunneling

barriers if the QD occupation numbers become very small, the triangular design

ensures a proper tunnel coupling to the reservoirs even for N → 0 because even

for large VP the potential landscape keeps the QD spatially close to the reservoirs.

Moreover, the design has the advantage that the potential barriers separating the

QD from the reservoirs can conveniently be tuned: For most other designs a vari-

ation of coupling has a strong impact on the potential landscape, including shape

and quantum states of the QD. Here, a variation of VC changes both barriers

symmetrically once VE and VD have been adjusted properly. This enables exper-

iments to be carried out in which the tunnel coupling is varied while all other

parameters are kept constant. The QPC AB is tuned to the 10 e2/h plateau for

all experiments on this sample.

Note that between gates E and C there is another gate depicted in Fig. 4.1. It

can be used to form an additional QPC next to the QD which then serves as

a charge detector. However, this charge readout technique is not used for the
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experiments presented here. The gate is grounded in all experiments.

For thermopower experiments I1 and I2 are used as current contacts to apply

the heating current Iheat to the channel. In order to suppress oscillations of the

chemical potential µ at the center of the channel V2 is connected to ground poten-

tial. Then µ stays constant in the channel while the electro-chemical potential

at I1 and I2 oscillate. V1 and V2 are used as thermovoltage probes such that

Vth = V2 − V1.
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Chapter 5

Thermopower of a Strongly

Correlated Quantum Dot

In the following chapter a series of experiments is presented which studies the

thermopower of a QD in the Kondo-correlated regime. The chapter is orga-

nized as follows: First a very brief introduction to the Kondo effect is given.

It contains only the most important characteristics of Kondo-physics. Further-

more, the work published so far on the thermopower of Kondo-correlated QDs

is briefly summarized. Then, new experimental data are presented. A conduc-

tance characterization (section 5.2) of a QD and the corresponding thermopower

data (section 5.3) are shown and compared to previously published work. The

thermopower is investigated experimentally with respect to a variation of the

coupling energy Γ of the QD and the electron reservoirs (section 5.3.1) and for

a variation of the bath temperature (section 5.3.2). Then, the results are com-

pared to model calculations conducted by T. Costi and V. Zlatić [CZ10] for which

we obtain good qualitative agreement. Finally, a remark is given on the broken

electron-hole-symmetry found at the Coulomb valley center if Kondo-correlations

are present. A similar effect has been observed in previous investigation by R.

Scheibner et al. [SBR+05]. Based on the experimental data, conclusions are

drawn about the characteristics of the thermopower in this regime and possible

origins of the effect are discussed.
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5. Thermopower of a Strongly Correlated Quantum Dot

5.1 Introduction: The Kondo Effect

The Kondo effect is the result of a many-body state formed coherently by a

localized spin impurity and a continuum of electrons in a Fermi sea [DFvdW11].

It is named after the Japanese theoretical physicist Jun Kondo who was the first

to explain the macroscopic manifestations of such correlated states in metals.

There, the Kondo effect gives rise to a characteristic ’resistivity anomaly’ at low

temperatures T , i. e. the resistivity ρ increases with ln(T ) if T → 0. The Kondo

effect also can be observed in QDs. If the QD exhibits a net spin and tunnel

coupling to the electronic reservoirs is sufficiently strong, a similar many body

state is formed. However, while in metals the correlated state effectively increases

the scattering radius of the impurity site and thus increases ρ, in QDs the Kondo

effect increases the transparency of the dot. This is due to the fact that electrons

from the source and from the drain reservoir become correlated. In transport

experiments this lifts the Coulomb blockade and an enhanced conductance G is

observed in the Coulomb valleys. As in metals, a hallmark of the Kondo effect is

that it becomes suppressed if the temperature is increased. For QDs, this leads

to a characteristic behavior which follows G ∝ −ln(T ) in the Coulomb blockade

regime. This suppression of Kondo physics with temperature can be understood

if the Kondo state is associated with a binding energy which is characterized by

the so-called Kondo temperature TK,

kTK =

√
ΓU

2
× eπε0(ε0+U)/ΓU . (5.1)

Here k is the Boltzmann constant, U refers to the on-site Coulomb repulsion of

the impurity (QD), Γ is the tunnel-coupling energy between the impurity (QD)

and the conduction electrons and ε0 denotes the energy difference between the

spin-impurity level and the Fermi energy in the Fermi sea. If T � TK the Kondo

state is broken up and Kondo physics is suppressed. Only when T ≤ TK can

Kondo physics be observed.

Besides the temperature dependence, the second hallmark of the Kondo effect in

QDs is that the differential conductance dI/dVSD is enhanced in Coulomb valleys

only for zero bias, VSD = 0. If the bias voltage is increased, dI/dVSD decreases.

This results in a characteristic zero bias anomaly (ZBA). The ZBA arises because

Kondo correlations create an enhanced density-of-states (DOS) peak on the QD
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5.1. Introduction: The Kondo Effect

close to the Fermi energy EF of the reservoirs. For finite bias this peak splits and

the QD transparency is reduced.

A more comprehensive introduction to the Kondo effect is given in Appendix D

and in Refs. [Hew93, Pus06, DFvdW11].

Previous Studies on the Thermopower of a Kondo Quan-

tum Dot

The Kondo DOS peak on the QD is a very fundamental consequence of the Kondo

correlated state. Clearly, a broad knowledge about its properties are of high fun-

damental interest. However, since the conductanceG only probes transport at the

Fermi level, detailed information about the Kondo DOS are not easily obtained

in such experiments. Here, thermopower is of great advantage: As explained in

Chapter 1, it provides access to the energy-dependent transmission of a system

and thus may be used to determine for example the exact peak position of the

Kondo DOS and its dependence on important system parameters [CZ10].

So far, the only experimental data on the thermopower of a Kondo QD have been

provided by Scheibner et al. [SBR+05] (a more detailed discussion of the exper-

iments is also found in Ref. [Sch07]). In these experiments, the authors observe

two features which can be associated with Kondo correlations: First, Vth is not

even qualitatively correctly predicted by the semi-classical Mott-thermopower

[Eq. (1.13)]. Note that Mott relates S to the energy derivative of the conduc-

tance and therefore, a qualitative agreement is obtained in many cases even for

nano-structures [Sch07, THK+13]. Hence, a breakdown of Eq. (1.13) has funda-

mental implications. Second, Vth does not exhibit sign changes at the center of

the Kondo-valleys resulting in non-zero thermopower. These positions correspond

to QD level configuration which are expected to be symmetric in energy even in

the presence of Kondo correlated transport because, in general, the Kondo effect

does not break particle-hole symmetry [GGGK+98, CZ10]. However, according

to Eq. (1.11), broken particle-hole symmetry is fundamentally required for finite

Vth. Hence, according to the authors, the data in Ref [SBR+05] directly imply

an asymmetric DOS on the QD in the Kondo regime. Scheibner et al. suggest

that mixed valence fluctuations or spin entropy contributions might cause the

observed thermopower anomalies. However, up to now no further experimental

effort has been reported which investigates these issues in greater detail.
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5. Thermopower of a Strongly Correlated Quantum Dot

In contrast, theoretical treatments are numerous [BF01, KH02, DL02, KH03,

SKK07, FSVF08, YO09, NKK10, ACZ11, RvMR12, ZMRR13, LLS14, TRBv14].

While most of them agree with a breakdown of Mott’s thermopower, only few sug-

gest reasons for broken electron-hole symmetry. A particularly instructive work

has been provided by T. Costi and V. Zlatić [CZ10]. By means of Wilson’s numer-

ical renormalization group method, they have calculated the transport properties

of a Kondo-correlated QD in the framework of the single-level Anderson model

with Coulomb interaction. The results cover a wide parameter range for the bath

temperature, the charging energy and the coupling energy. Conductance G and

thermopower S are extensively studied. Moreover, detailed dependences of S on

temperature and impurity level depth are presented. However, we note that the

calculations by Costi and Zlatić explicitly assume the Kondo effect to be particle-

hole symmetric with respect to the Coulomb valley center, i.e. for ε0 = −U/2.

Thus, their model is intrinsically not capable of providing an explanation for the

finite Vth at the Kondo-valley center observed in Refs. [SBR+05, Sch07]. Yet, it

gives exceptionally detailed descriptions of how Kondo correlations are expected

to affect the thermopower of a QD if the particle-hole symmetric Anderson impu-

rity model applies. Clearly, a comparison with detailed experimental data would

provide valuable insight into Kondo-physics.

In the following we will describe conductance and thermopower experiments per-

formed on a Kondo QD. After a characterization of the Kondo-system we present

thermopower data which are compared to those reported in Refs. [SBR+05,

Sch07]. Next, a detailed study of the dependence of Vth on the coupling energy

Γ is presented. This way, it is shown that the thermopower line shape is highly

sensitive to Kondo correlations. Moreover, the measurements provide direct in-

formation about the energetic position of the Kondo DOS if the impurity level

depth is tuned to ε0 6= −U/2. Furthermore, the thermoelectric response of the

Kondo QD is investigated for various lattice temperatures TL and the results are

compared to calculations provided by Ref. [CZ10]. As pointed out by Costi and

Zlatić, the Kondo thermopower provides characteristic signatures which qualify

S as an extremely sensitive tool to probe Kondo physics. Finally, we discuss

temperature and coupling dependence of the thermovoltage at the Kondo-valley

center and possible origins are suggested.
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Figure 5.1: (a) Conductance G for TL = 80 mK and B⊥ = 0.6 T. Red arrows
denote enhanced Coulomb valley conductance indicating Kondo correlations. (b)
Differential conductance dI/dVSD for the same VP range. Charge stability regions
are denoted N -2, N -1, etc. Solid, blue lines indicate the Coulomb diamond for
N+1 while dotted lines indicate signatures of excited QD states. Red arrows
point out zero bias anomalies in dI/dVSD.

5.2 Conductance Characterization

In order to create a Kondo-QD, the sample described in Chapter 4 is used. The

gate voltages are adjusted such that a small QD is created at the tip of the

coupling gate C. In this configuration, the dot exhibits a strong coupling to the

electron reservoirs. For a small magnetic field B⊥ = 0.6 T applied perpendicular

to the 2DEG plane, the tunneling barriers of the QD are symmetrized by tuning

the voltages of gates D and E so that for a Coulomb resonance the peak amplitude

is maximized at minimal width. Variation of the plunger gate voltage VP then

yields a series of Coulomb peaks in conductance G which is shown in Fig. 5.1 (a).

We observe conductance resonances with amplitudes of up to 1.5 e2/h. The peaks

are separated by valleys where G is reduced due to Coulomb blockade. However,

for two valleys G is enhanced compared to other blockade regions (red arrows in

Fig. 5.1), indicating that Kondo-correlations might be dominant in these valleys.

Figure 5.1 (b) shows dI/dVSD data for the same plunger gate voltage range. The
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5. Thermopower of a Strongly Correlated Quantum Dot

characteristic Coulomb diamonds are clearly visible (indicated by solid, blue lines

for one stability region). The regions inside the Coulomb diamonds are associated

with fixed QD occupation numbers, which are denoted N -2, N -1, N , etc. in the

figure (cf. Appendix C). Quantitative Coulomb diamond analysis for N+1 yields

a charging energy U ≈ 1.7 meV and a plunger gate coupling constant α = 0.016 e.

The Coulomb blockade regions associated with N+1 and N+3 electrons are in-

dicated by red arrows. Those are the valleys which exhibit an enhanced conduc-

tance in Fig. 5.1 (a). The data indicate that the enhancement of G only exists

around VSD = 0, visible as a thin dark stripe in Fig. 5.1 (b). For larger VSD,

the differential conductance decays strongly. This zero-bias anomaly is generally

considered strong evidence for Kondo-correlations [Hal78, MW93, GGSM+98]. It

becomes even more clear in Fig. 5.2 (a) where single dI/dV -traces for the mid-

valleys of N+1,..., N+4 are plotted as a function of VSD. If the QD exhibits N+1

(dotted, blue line) or N+3 (dashed, red line) electrons, dI/dVSD shows a sharp

maximum at VSD = 0 which strongly decays for larger VSD. In contrast, for the

N+2 (dashed-dotted, yellow) and N+4 (solid, black) regions we do not observe

this behavior.

Besides the zero bias anomaly, the second hallmark of the Kondo effect in QDs

is the temperature dependence of the enhanced valley conductance which typi-

cally follows G ∝ −ln(T ) [GGGK+98]. Figure 5.2 (b) provides data of G over

a range for lattice temperature TL = 80 to 1370 mK. For N+2 and N+4, G

increases at the mid-valley, as expected if the valley conductance is dominated

by the overlap of the tails of thermally broadened Coulomb conductance peaks

[MWL91, FMM+94]. For occupation numbers N+1 and N+3, in contrast, we

observe a fundamentally different behavior: For increasing temperature, the val-

ley conductance decreases. Figure 5.2 (c) shows the temperature dependence of

G with a logarithmic TL-scale. The characteristic linear decay of G for the N+1

and N+3 valleys (blue diamonds and black left-triangles) is clearly pronounced.

We thus identify two charge configurations of the QD where Kondo-correlations

dominate transport: The Kondo effect for N+1 electrons is denoted Kondo I in

Fig. 5.2 (b), while Kondo II will refer to the stability region N+3, henceforth.

When we examine the temperature dependence of G in Fig. 5.2 (b) in more detail,

we observe a shift of the conductance peak positions with temperature. Interest-

ingly, the peaks move away from the Kondo-valley centers if TL is increased. This
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Figure 5.2: (a) dI/dVSD vs VSD for the mid-valleys of occupation numbers N+1
(blue dots), N+2 (dashed-dotted, yellow), N+3 (solid, black), and N+4 (dashed,
red). (b) G for different lattice temperatures TL. Dashed, vertical lines indicate
the conductance peak positions at TL = 1370 mK. Regions with occupation
numbers N+1 and N+3 are denoted Kondo I and Kondo II. (c) Mid-valley
conductance G vs TL on a log-scale for occupation numbers N+1 (3, blue), N+2
(K, yellow), N+3 (�, black), and N+4 (#, red).

has been observed in experiments previously [GGGK+98, KSM12]. It is gener-

ally believed to result from the strong Kondo resonance which competes with the

Coulomb conductance resonance such that the effective conductance maximum

is pulled towards the valley center for small TL. For higher TL, the Kondo effect

becomes suppressed and G is dominated again by sequential transport due to

lifted Coulomb blockade. Thus, it is only for higher TL that the conductance

peak position corresponds to an alignment of the electro-chemical potential of

the QD with EF in the leads. The peak positions for TL = 1.37 K are marked

with dashed lines in Fig. 5.2 (b).

In order to determine the energy scale of the Kondo states, we calculate the

Kondo temperature TK for the mid-valley (ε0 = −U/2) of Kondo I and II ac-

cording to Eq. (5.1). For this purpose the intrinsic level broadening Γ and the

charging energy U are determined from the FWHM of the conductance peak and

from the dI/dVSD data, respectively. For Kondo I, we obtain Γ ≈ 550 µeV and

U ≈ 1.7 meV which yields T IK ≈ 0.5 K. For Kondo II, Γ can not be determined

directly from Fig. 5.2 by simple analysis because the Coulomb peak broadening
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5. Thermopower of a Strongly Correlated Quantum Dot

is blurred by the strong Kondo resonance. Therefore, we measure Γ/2 from the

peak position of G of TL = 1.37 K and from the peak broadening towards the

N+2 valley. This yields Γ ≈ 700 µeV. Together with U ≈ 1.5 meV, Eq. (5.1)

then gives T IIK ≈ 1.1 K.

Finally, we would like to give a note on the magnetic field B⊥ = 0.6 T applied

in the experiments. A small perpendicular field is known to couple mainly to

the orbital momentum of the QD states. Often this leads to a strong enhance-

ment of the Kondo effect, e.g. as reported in Ref. [vdWDF+00]. There it is

suggested that because small B⊥ reduce orbital degeneracies in the QD, spin

values are reduced to 1/2 and 0 for odd and even occupation numbers, respec-

tively. This enhances Kondo-correlations. On the other hand, however, Zeeman-

splitting ∆Z due to a magnetic field is expected to affect Kondo physics. It

splits the Kondo resonance, comparable to an applied bias voltage [KAGG+04].

Using ∆Z = |g|µBB (µB = 58 µeV/T: Bohr magneton, gGaAs = 0.44) we find

∆Z ≈ 15 µeV� kT IK ≈ 43 µeV in our experiments. Hence, B⊥ can be considered

to be small so that effects of the Zeeman energy can safely be neglected.

5.3 Thermopower of a Kondo-QD

For thermopower measurements, a temperature difference ∆T ≈ 30 mK is es-

tablished across the QD according to the techniques described in Chapter 2 at

base temperature. By monitoring the heating channel resistance we make sure

that for B⊥ = 0.6 T, the 2DEG is not in the quantum hall regime so that there

is no edge channel transport present which might significantly alter the thermo-

voltage [Sch07]. Moreover, suppressed electron-electron scattering would prevent

the electron gas in the channel from heating up since quantum hall edge channel

transport is dissipationless [Bee91].

The resulting thermovoltage is shown in Fig. 5.3 (b) (solid, black line). For a more

convenient comparison, the corresponding conductance data for TL = 80 mK are

displayed in the top panel [Fig. 5.3 (a)]. Moreover, the Mott-thermopower SMott

is calculated from the conductance data according to Eq. (1.13). The result is

given as a dashed-dotted, red line in Fig. 5.3 (b).

For Vth in the non-Kondo regions (N+2 and N+4), we observe sign changes from

electron-like (at less negative VP, i.e. more positive QD energies) to hole-like
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with Kondo-correlations are labeled Kondo I and Kondo II.

thermopower (towards more negative VP) around the valley centers as expected

for a QD without Kondo-correlations. This results in positive slopes of Vth at

the mid-valleys in our experiments. Positive and negative Vth maxima close to

the conductance resonances indicate 〈E〉 > EF and 〈E〉 < EF , respectively, due

to an asymmetric alignment of chemical potentials around the Fermi level (see

Section 1.3 and Refs. [BS92, SMA+93]). This results in a qualitatively good

agreement with Mott.

For the Kondo valleys, however, we observe a very different thermopower behav-

ior. Most strikingly, in the Kondo II region, Vth exhibits a negative slope at the

valley center, opposite to the adjacent non-Kondo valleys. The slope does not

invert over the whole N+3 region. As a result, there is a finite thermovoltage at

the conductance peak positions. For the transition N+2 ↔ N+3 we find that

Vth > 0 while it is hole-like (Vth < 0) around N+3 ↔ N+4. We note, that the
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5. Thermopower of a Strongly Correlated Quantum Dot

sign change does not occur precisely at the valley center, but it is shifted towards

the transition N+3 ↔ N+4. Therefore, at the mid-valley we find Vth ≈ 0.6 µV

[indicated by a red bar in Fig. 5.3 (b)].

For Kondo I, we observe the following behavior: Starting from the transition

N+1 ↔ N+2 and going towards more negative VP, Vth starts hole-like and in-

creases with a steep negative slope. It changes sign and then exhibits a small

maximum approximately half way between the conductance peak position and

the mid-valley. Vth then decreases slowly until it reaches a second turning point

where the slope becomes negative again. This occurs approximately half way

between mid-valley and the transition N ↔ N+1. Note that in between the

thermopower does not become hole-like. After that point Vth strongly increases

again with a maximum just outside the N+1 region. Beyond this maximum, it

decays quickly. Interestingly, at the valley center, Vth ≈ 0.6 µV, similar to the

observations in the Kondo II region. Due to this shift, Vth is electron-like over a

wide range of the Kondo I region.

We note that the deviations from Mott are very similar to those reported by

Scheibner at al. [SBR+05], including finite thermovoltage at the valley center.

However, the Vth line shape observed there only shows similarities with our ex-

periments for Kondo I. The thermopower in the Kondo II region exhibits a very

different line shape.

Scheibner et al. report that they operated the QDs in the regime Γ ≈ 350 µeV

and U ≈ 0.7 meV. Applying Eq. (5.1) then gives TK ≈ 0.59 K. This is remark-

ably close to the T IK ≈ 0.5 K. Thus, we infer that the Kondo region I operates in

a comparable regime as the devices used by Scheibner et al. In contrast, Kondo II

apparently operates in a regime of stronger correlations (T IIK ≈ 2 T IK). Hence, we

suggest that it is the difference in ”binding energy“ TK of the Kondo state that

causes the considerable differences in thermopower.

We recall that the transport properties of the Kondo state crucially depend on the

parameters coupling Γ and lattice temperature TL. Since Kondo physics breaks

down if TL � TK, they can be used to continuously control the transition from

Kondo physics to non-Kondo physics: Obviously, by increasing TL, but also by

reducing Γ because it decreases TK. For further investigations we will therefore

study the dependence of the thermopower on these two parameters. First, data

for different Γ are presented. Afterwards, Vth is discussed for a variation of TL.
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5.3.1 Coupling Dependence

Experiment

In order to investigate Vth as a function of coupling energy Γ, we conduct a series

of experiments for which the voltage value VC applied to the coupling gate C

is increased stepwise. Due to the symmetric design of the QD, this reduces the

coupling to both reservoirs symmetrically. For each VC, thermovoltage Vth and

conductance G are measured for the Kondo I and Kondo II region. The results

are given in Fig. 5.4. Figures (a) and (b) show G and Vth for Kondo II, (c) and

(d) give the same quantities for Kondo I. Note that due to the capacitive coupling

of gate C to the QD, a change in VC also shifts the electro-chemical potential of

the QD. Thus, different plunger gate voltages VP are required for each setting of

VC in order to obtain the same energy level configurations. This makes it diffi-

cult to directly compare data for different coupling. Therefore, in Fig. 5.4 the

displacement along VP is compensated by shifting the data sets such that they

align at the mid-valley position. Hence, G and Vth are plotted as function of

∆VP = VP − VP(valley center). In addition, the top axes of the figures translate

the plunger gate voltage VP into the spin-impurity level depth ε0. ε0 = 0 corre-

sponds to the alignment of the Fermi level in the leads with the chemical potential

for the addition of an electron which adds a net spin to the QD. ε0 = −U iden-

tifies the addition of one more electron so that the net spin of the QD becomes

zero. Hence, the mid-valley corresponds to ε0 = −U/2. For a more quantitative

comparison of the data, the coupling energy has been estimated from the FWHM

of the conductance peaks for each VC. The curves are labeled accordingly. We

will first focus on the observations for Kondo II and later turn to the Kondo I

region.

In Fig. 5.4 (a), G is shown for Kondo II, covering a range of coupling energies from

Γ = 700 µeV (solid line), which corresponds to the data discussed above, down

to Γ = 230 µeV (short dots). As expected, the conductance peaks are shifted

away from each other with increasing barrier thickness. This is similar to the

behavior observed for increasing temperature TL discussed above (cf. Fig. 5.2).

Moreover, the mid-valley conductance is continuously reduced with decreasing Γ.

For Γ ≈ 230 µeV, G has dropped down to G ≈ 0.07 e2/h at the valley center.

This is only a very small enhancement compared to the Coulomb blockade regions
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Figure 5.4: Thermovoltage Vth and conductance G for a variation of coupling
energy Γ. The data are plotted against ∆VP = VP−VP(mid-valley). The top axes
convert ∆VP into ε0. (a) G, (b) Vth for Kondo II. The following VP(mid-valley)
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scale shifted by Vth = 0.6 µV such that Vth = 0 at ε0 = −U/2.
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at higher or lower VP (G ≈ 0.01 e2/h). From both observations we conclude that

Kondo correlations obviously become increasingly suppressed if the coupling to

the reservoir electrons is reduced.

Turning towards the thermopower in Fig. 5.4 (b), we observe the following be-

havior: When Γ is reduced, the monotonic slope of Vth at the valley center gets

smaller until it becomes a plateau for Γ ≈ 460 to 440 µeV (dotted and dashed-

dotted lines). Then the slope changes sign. For Γ < 360 µeV, Vth approaches a

line shape which exhibits a maximum and a minimum with an approximately lin-

ear behavior in between. This is similar to the line shape observed in the Kondo

I region in Fig. 5.3. The extrema of Vth appear close to the G peak positions for

Γ ≈ 700 µeV. For reduced coupling, they become sharper and their amplitude

increases.

Outside the region of Kondo correlations in Fig. 5.4 (b), at more negative VP, we

observe an additional Vth peak emerging for Γ < 360 µeV, indicating signatures

of the excitation spectrum of the QD [BS92, DSB+97]. However, a similar fine

structure is not observed for hole-like thermovoltage at ∆VP > 0. Furthermore,

we note that the finite Vth = 0.6 µV at the valley center, that has been described

in the context of Fig. 5.3, is also visible for all Γ. Apparently, it is not affected

by the variation of coupling over the given range.

Next, we turn towards the data for the Kondo I region. They are shown in

Figs. 5.4 (c) and (d) for G and Vth. Here the variation of VC reduces Γ from

550 µeV to 130 µeV. The conductance shows a strong reduction in the valley as

the coupling energy becomes smaller. The shift in G peak position mentioned

before is observed here, too. For the trace corresponding to the most weakly

coupled QD (Γ ≈ 130 µeV, short dashes), G is fully suppressed at the valley

center.

The thermovoltage line shape exhibits drastic changes over the given coupling

energy range. Starting with the line shape described previously for Γ ≈ 550 µeV

(solid line), the slope at the mid-valley becomes steeper for reduced Γ. This

leads to an increase of the thermovoltage maximum around −U/2 > ε0 > −U
and to a decrease of the minimum at 0 > ε0 > −U/2. For Γ ≈ 180 µeV the

minimum changes sign and becomes hole-like. The thermovoltage in the Kondo

region for ε0 < −U/2 changes shape from a round, continuous maximum for large

Γ towards a sharper maximum. It is noteworthy, that for reduced Γ, the points
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where Vth = 0 move closer towards the conductance peak positions such that

for Γ ≈ 130 µeV they are almost aligned. Moreover, the additional sign change

which only occurs for Γ < 180 µeV shifts towards ε0 = −U/2 if the coupling is

reduced even further. Interestingly, features of the excitation spectrum of the

QD are observed here, too. Again, they occur only around ε0 = 0.

Outside the regions of Kondo correlations we observe a strong decay of Vth if

Γ ≤ 240 µeV. This indicates the suppression of sequential tunneling processes

due to the reduced transparency of the tunnel barriers so that higher order tun-

neling currents dominate. It marks the transition to the well-known thermopower

line-shape in the regime of weak coupling and low temperature as described in

Ref. [SNK+07].

Discussion

First of all, a comment is given on the finite thermopower at ε0 = −U/2: The

data indicate that the magnitude Vth(−U/2) = 0.6 µeV is not affected by a

variation of Γ over a wide range, even though the coupling energy changes by

almost an order of magnitude. It shows a deviation only for Γ = 130 µeV in the

Kondo I region [Fig. 5.4 (d)]. Moreover, the conductance data suggest that the

Kondo effect is tuned over a wide range from clearly pronounced (Γ = 700 µeV)

to strongly suppressed (Γ < 180 µeV) while Vth(−U/2) = 0.6 µeV stays constant.

Thus, we infer that this feature is not a direct result of Kondo correlations. For

now, it is therefore considered as an offset. Hence, the data are discussed with

respect to a ”corrected“ Vth-scale shown in the right axis (red) in Fig. 5.4 (b)

and (d). This scale sets Vth(−U/2) = 0. For a discussion of the finite mid-valley

thermopower the reader is referred to a later section of this chapter (section 5.4).

In order to understand the changes in line shape of Vth with Γ, we recall that

at ε0 = −U/2, Kondo correlations create an enhanced transmission probability

through the QD for electrons at the Fermi level. The resulting DOS peak on

the QD has a width ΓK ∼ kTK. Its amplitude is very sensitive to TL and TK.

For TK � TL, the Kondo temperature is the dominant energy scale and Kondo

physics is strongly pronounced in transport. The amplitude of the Kondo DOS is

large. It starts to decrease if TK reaches the order of TL. Then the thermal energy

of charge carriers in the leads is of the order of the energy scale of the Kondo

state. Hence, the system is at the crossover from Kondo to non-Kondo physics.
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Figure 5.5: Energy diagrams of the DOS for Kondo QDs with different spin
impurity level depth ε0 with respect to the Fermi level EF. U indicates the QD
charging energy, Γ the FWHM of the Coulomb resonances, kTK the FWHM of
the Kondo resonance. The Kondo DOS peak shifts away from EF if ε0 6= −U/2.
(a) symmetric configuration: ε0 = −U/2, (b) ε0 > −U/2, (c) ε0 < −U/2.

Further decreasing TK, or increasing TL, causes the Kondo DOS to become more

and more suppressed until at TK � TL the Kondo state is completely broken up

and Coulomb blockade effects dominate.

Transport in the Kondo regime is due to higher order tunneling processes which

involve two charge states of the QD [PG04]. Thus, a crucial requirement for the

Kondo effect is the on-site Coulomb repulsion of the QD which creates an energy

state at ε0 + U in addition to the spin impurity level ε0. Only if both energy

states are taken into account one can obtain the Kondo resonance on the QD, for

example from the Anderson impurity model. This indicates that the Kondo effect

is an electron-hole symmetric problem. If for holes the accessibility of the ε0 state

is the same as that of ε0 +U for electrons [i.e. if ε0−EF = −(ε0 +U −EF )], the

Kondo DOS will have its maximum exactly at the Fermi level of the reservoirs

[CHZ94]. This configuration, which corresponds to the mid-valley ε0 = −U/2, is

shown in the cartoon in Fig. 5.5 (a). However, if either of the energy states, ε0

or ε0 +U , is associated with a higher occupation probability, the DOS will move

away from the Fermi level. Accordingly, as it is shown in Fig. 5.5 (b) and (c) the

Kondo DOS peak is expected to be shifted slightly below or above EF [CHZ94].

Applying this picture to the data in Fig. 5.4 leads to the following interpretation:

For Γ = 700 µeV [solid line in Fig. 5.4 (b)] we have a Kondo temperature T IIK =
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1.1 K > TL = 80 mK. Thus, the Kondo DOS peak is large and Kondo physics

dominates. At the valley center ε0 = −U/2, so the DOS is aligned with EF in

the leads and hence, Vth = 0 [right, red axes in Figs. 5.4 (b) and (d)]. A small

variation of ε0 moves the Kondo peak away from this symmetric alignment so

that it lies below EF if ε0 < −U/2. Now, hole-like transport processes become

enhanced and Vth < 0. (Note, that this is the opposite sign of what we would

expect if Coulomb blockade effects dominated transport.) In contrast, the Kondo

DOS is shifted above EF for ε0 > −U/2. Then 〈E〉 > 0 and Vth is electron-like.

This also results from a Sommerfeld expansion of the expression for thermopower

in the Kondo regime as applied by T. Costi and V. Zlatić [CHZ94, CZ10]. This

expansion yields

S(T ) = − k

|e|
π2

3
kT

1

A(0, T )

∂A

∂ω

∣∣∣∣
ω=0

, (5.2)

which indicates that the sign of S depends on the energy derivative of the DOS

∂A(ω)/∂ω at the Fermi level (ω = 0). Obviously, this yields opposite signs for

ε0 > −U/2 and ε0 < −U/2 (cf. Figs. 5.5 (b) and (c)).

Further detuning of the QD levels enhances the misalignment of the Kondo peak

with the Fermi-level resulting in the increase of the absolute amplitudes of Vth.

Even in close vicinity of the conductance resonance, Kondo physics persist so that

Vth does not change sign at ε0 = 0,−U . Beyond these points, however, the QD

enters a different charge stability region. Here the QD does not predominantly

exhibit a net spin any more. Thus, the Kondo effect vanishes and Coulomb block-

ade effects take over.

A reduction of Γ emphasizes the competition between the Kondo effect and

the Coulomb resonances, as it is observed for Kondo II in Fig. 5.4 (b). Be-

cause weaker coupling decreases the Kondo DOS amplitude, its dominance is

slowly reduced while the influence of Coulomb blockade effects on Vth is en-

hanced. Therefore, the thermopower slope first gets smaller around ε0 = −U/2
and then becomes a plateau if the QD is further decoupled from the reservoirs.

For Γ ≈ 360 µeV the slope at the mid-valley changes sign. This means that the

Kondo effect has become so weak that now the Coulomb resonances determine

the sign of S. However, the presence of Kondo correlations suffice to keep the

thermopower amplitude small in this regime and, moreover, to cause its sign to

change again if the QD is tuned further away from the mid-valley. This is due
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to the fact that for configurations ε0 6= −U/2 the DOS peak is not only shifted

but also TK becomes enhanced, as it can be inferred from Eq. (5.1). This way,

Vth changes sign again before the conductance peak position is reached and it

exhibits finite values at ε0 = 0,−U .

The continuation of this process can be observed in the Kondo I regime shown

in Fig. 5.4 (d). For Γ = 550 µeV the slope at the mid-valley is already positive

(T IK ≈ 500 mK). It becomes steeper and the Vth extrema increase when the QD

becomes more decoupled from the reservoirs, indicating that Coulomb blockade

effects more and more dominate the thermopower line shape. Accordingly, the

positions of Vth = 0 move closer to the conductance peak positions until they be-

come almost aligned for Γ = 130 µeV. For this coupling energy the thermopower

has almost recovered its well-known sawtooth line shape. A cross-check with the

corresponding Kondo temperature for this regime yields T IK ≈ 1 mK� TL which

confirms the suppression of Kondo physics.

These observations indicate that the line shape of Vth is an extremely sensitive

probe for Kondo correlations. This is further emphasized if we directly compare

the thermopower line shape for similar coupling energies of different Kondo res-

onances. This is done in Fig. 5.6. Here, Fig. 5.6 (a) compares G and Vth for

Γ = 280 µeV obtained from the Kondo I region, with a trace for Γ = 230 µeV

from Kondo II. In terms of Kondo temperature this corresponds to T IK ≈ 34 mK

and T IIK ≈ 20 mK, respectively. We note, that the conductance traces show

considerable differences in amplitude and mid-valley conductance. Moreover, the

presence of Kondo-correlations is not obvious from these data. In contrast, Vth,

exhibits surprisingly similar line shapes for both QDs. Furthermore, the line

shape clearly differs from the one expected for non-Kondo-QDs. We therefore

conclude that the thermopower can quite generally be considered a good indica-

tor for the parameter regime of Kondo-correlations. This observation is further

confirmed by the data shown in Fig. 5.6 (b). Here the same analysis can be

applied to data for Γ = 160 µeV (Kondo I, T IK ≈ 3 mK) and Γ = 170 µeV

(Kondo II, T IIK ≈ 1 mK). Again, the line shapes exhibit remarkable similarities.

In their extensive theoretical study T. Costi and V. Zlatić obtain results, that are

very similar to our observations [CZ10]. The authors present calculations of S as

a function of gate voltage, or ε0, for different T/Γ and a given charging energy

U/Γ = 8. Although the latter ratio is larger than in our experiments (Kondo I :
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Figure 5.6: Direct comparison of G and Vth of different Kondo valleys with com-
parable coupling energy Γ. (a) Γ = 280 µeV for Kondo I and Γ = 230 µeV for
Kondo II. (b) Γ = 170 µeV for Kondo II and Γ = 160 µeV for Kondo I.

U/Γ = 1.7 meV/0.5 meV ≈ 3; Kondo II : U/Γ = 1.5 meV/0.7 meV ≈ 2) the

authors describe the same features and generally the experimental data show an

overall very good agreement with theory. For kT/Γ = 0.01, Costi and Zlatić

obtain a thermopower line shape similar to the one shown for Γ = 700 µeV (solid

line) in Fig. 5.4 (b). From the experiments we obtain for this trace kT/Γ = 0.025,

which is of the same order. For this we have assumed an electron temperature

Te ≈ 200 mK for TL = 80 mK. (This is in agreement with electron temperatures

obtained for similar TL in other studies, cf. Chapter 10 and Ref. [Sch07]). For

kT/Γ = 0.1, Ref. [CZ10] gives a thermopower line shape as given in Fig. 5.4 (b)

for Γ = 230 µeV (short dashes) and in Fig. 5.4 (d) for Γ > 180 µeV. Hence,

the ratio obtained from the experiments covers the range kT/Γ = 0.075 to 0.095.

Again, this coincides well with Ref. [CZ10]. We note, however, that agreement

with theory is only obtained if we make use of the ”offset-corrected“ Vth scale

which disregards the finite thermopower at ε0 = −U/2.

The theoretical treatment in Refs. [CZ10] also includes a detailed analysis of

the temperature dependence of S in the Kondo regime. Although reducing the

coupling energy Γ and increasing the bath temperature TL may play a similar

role for Kondo correlations, the Coulomb blockade thermopower is expected to

be affected quite differently. Since it has been established here that it is the
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5.3. Thermopower of a Kondo-QD

interplay between Kondo and Coulomb blockade physics that gives rise to the

interesting changes in line shape of the thermopower it would be useful to study

the temperature dependence of S in the Kondo regime separately.

5.3.2 Temperature Dependence

Experiment

Figure 5.7 (a) presents thermovoltage data for lattice temperatures TL = 80

to 1050 mK with a small voltage applied to gate C so that Γ = 550 µeV

(Γ = 700 µeV) in the Kondo I (Kondo II ) region. All other parameters are

the same as in the measurements shown above [∆T ≈ 30 mK (Iheat = 70 nA),

B⊥ = 0.6 T]. The conductance peak positions at large TL are represented by

dashed lines.

For both Kondo and non-Kondo configurations we observe an overall decreasing

Vth amplitude for increasing TL. This is generally expected for a QD because

temperature activated transport processes increase and hence a smaller poten-

tial difference is required to compensate differences in temperature driven charge

transfer [BS92, SMA+93, SNK+07]. For TL = 1050 mK the line shape has trans-

formed into a sinusoidal pattern. Vth amplitudes are of approximately 100 nV

at this temperature. Around Kondo I this transition is mainly established by a

strong decrease of the Vth amplitudes closely outside the N+1 region while the

line shape inside the N+1 regions does not undergo a strong change. In contrast,

for Kondo II we do observe a change at the center of the Kondo valley. Here, a

plateau emerges for TL > 190 mK which becomes more pronounced with increas-

ing TL.

Figure 5.7 (b) compares Vth as a function of TL at the mid-valley for different

occupation numbers. Interestingly, the behavior for the Kondo I (N+1, 3, blue)

and Kondo II valleys (N+3, #, red) differs from that in the non-Kondo valleys

(N+2, K, yellow and N+4, �, black). The mid-valley thermovoltage is 0.6 µV

at TL = 80 mK for both Kondo regions. They show a similarly linear decrease

with TL plotted on a logarithmic scale. In contrast, Vth for N+2 and N+3 is

much smaller (0.2 µV and 0.05 µV at 80 mK) and does not exhibit a clear, linear

log(TL) dependence.

In order to evaluate the behavior of thermopower with TL we ask the question: To
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Figure 5.7: Vth for various lattice temperatures TL. Data taken for B⊥ = 0.6T ,
∆T ≈ 30 mK, VC = −0.45 V. (a) Vth as function of VP for QD occupation
numbers N+1...N+4. (b) Vth as a function of TL in a log-plot for the mid-valley
configurations of occupation numbers N+1 (3, blue), N+2 (�, yellow), N+3 (#,
red), N+4 (�, black).

what degree is the observed behavior covered by a model that assumes electron-

hole symmetry to hold at the valley center? As mentioned above, detailed calcula-

tions for such a system are provided by Costi and Zlatić [CZ10]. For a comparison,

we subtract the mid-valley thermovoltage for N+1 and N+3 electrons shown in

Fig. 5.7 (b) from the respective set of data of TL given in Fig. 5.7 (a). The results

are displayed in Fig. 5.8 (a) for Kondo I and (b) for Kondo II. In both figures

the top axis translates the plunger gate voltage VP into the spin-impurity level

depth ε0. ε0 = 0 corresponds to the addition of an electrons which renders the

QD occupation number odd. At ε0 = −U one more electron is added.

For what follows it will be useful to distinguish regions where the QD occupation

number is fixed from those where it fluctuates. In this context it is common to

use the following terminology [Hew93, GGGK+98, CZ10]: The Kondo regime is

identified with those configurations where the spin impurity level ε0 lies within

−Γ/2 > ε0 > −U + Γ/2. This corresponds to the region where the occupation

number is fixed. If 0 > ε0 > −Γ/2 or −U + Γ/2 > ε0 > −U , the QD occupation

number fluctuates. Still, it mainly exhibits a net spin so that Kondo-physics is

still present. This regime is called mixed valence (MV). For Γ/2 > ε0 > 0 and

44



5.3. Thermopower of a Kondo-QD

-0.6 -0.5 -0.4

-2

-1

0

1

2

V
th
 /

 µ
V

V
P
 / V

-0.35 -0.30 -0.25 -0.20

-1

0

1

 

 

V
th
 /

 µ
V

V
P
 / V

(a) (b) 

Kondo I Kondo II 

TL = 80 mK 

1050 mK 

TL = 80 mK 

1050 mK 

-0.5 -1 0 

ϵ0 / U 
-0.5 -1 0 

ϵ0 / U 

Figure 5.8: Thermopower of a Kondo QD for lattice temperatures TL = 80 to
1050 mK. Vth(TL)-dependence at ε0 = −U/2 subtracted for the whole VP-range
(see text). Black arrows indicate the onset of the mixed valence regime. (a)
Kondo I, top axis translates VP into spin level depth ε0. Vertical, dashed lines
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steps of 0.83 U . (b) Identical data analysis for Kondo II.

−U > ε0 > −U −Γ/2 the QD is technically outside the stability region for which

the QD has a net spin. Still, it exhibits a spin occasionally. This regime is called

empty orbital (EO). [For further details see Appendix D].

In Fig. 5.8 certain values for ε0 are denoted with symbols. This way we can iden-

tify in Fig. 5.8 (a) the center of the Kondo I -valley, ε0 = −U/2, with a pentagon

(D), the onset of MV with a right triangle (�), and the transition to EO with a

diamond (3). A similar treatment can be applied to Kondo II [Fig. 5.8 (b)] so

that ε0 = −U/2 and MV are denoted here with a square (2) and a triangle (�),

respectively. Note that the EO regime is not indicated here.

For the thermopower in Fig. 5.8 we find that now, with Vth(TL) subtracted,

Kondo I and Kondo II both exhibit an overall symmetric line shape with respect

to ε0 = −U/2. Here Vth = 0 for all TL. Focusing on Fig. 5.8 (a) we find that

for ε0 < −U/2 (ε0 > −U/2), Vth first becomes hole-like (electron-like) with a

small amplitude, then changes sign close to the transition to MV and gives large

positive (negative) values which have a maximum in the EO regime. Moreover,

we observe that for increasing TL the outer Vth maxima shift deeper into the EO
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region, indicated by the red arrow for the negative maximum. Simultaneously,

the points of sign change of Vth, which are closer to ε0 = −U/2 for low tempera-

ture, also move in the same direction. For TL = 1050 mK they are almost aligned

with ε0 = 0 and ε0 = −1.

A similar tendency is observed for Kondo II in (b) (red arrow). However, the

sign changes close to MV found for Kondo I are not observed here. Instead, for

higher TL the slope of the thermopower becomes more flat at the valley center so

that Vth ≈ 0 for a wide range of ε0 around the center.

Discussion

According to the Kondo theory which has been applied so far, an increase in TL

affects Kondo-correlations in a similar way as a reduction of Γ. Thus, we expect

to identify features in the temperature dependence in Figs. 5.8 (a) and (b) which

resemble those found in the previous section for reduced Γ [Figs. 5.4 (b) and (d)].

In the Vth vs ε0 representation for Kondo I such a feature is the positions of ε0 for

which Vth = 0 [Fig. 5.8 (a)]. The TL-data show that those positions move towards

ε0 = −U and ε0 = 0 with increasing TL. For TL = 1050 mK the Vth = 0 positions

have aligned with the conductance peak positions (i.e. at ε0 = −U and ε0 = 0). A

similar behavior has been observed for reduced coupling in Fig. 5.4. Furthermore,

in the Kondo II region [Fig. 5.8 (b)] a plateau emerges for TL > 245 mK at which

Vth ≈ 0 around ε0 = −U/2. This is the equivalent of a similar feature which is

observed for Γ ≈ 440 µeV in Fig. 5.4 (b). These similarities are strong indications

that the picture which has been used to explain the coupling dependence of Vth

in the Kondo regime can also be applied qualitatively to the dependence of Vth

on TL. However, we emphasize that the thermopower of a QD is governed by

different processes in the limit of weak coupling at low temperature, compared

to higher temperatures and stronger coupling [SNK+07]. Hence, a suppression of

Kondo physics changes the thermopower towards different line shapes for both

cases.
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Characteristic Temperatures T1 and T2

In their theoretical study of the thermopower of a Kondo-QD as a function of

TL in Ref. [CZ10], T. Costi and V. Zlatić identify two temperatures for a given

ε0, T1 and T2, which are characteristic for a Kondo system. At theses tem-

peratures Vth changes sign: As long as TL < T1, Vth has the same sign for all

0 > ε0 > −U/2 or −U < ε0 < −U/2, respectively. Vth = 0 only at the valley

center, ε0 = −U/2. However, if TL is increased so that TL = T1, two additional

sign changes are expected to occur: one in the region 0 > ε0 > −U/2, the other

one, by particle-hole-symmetry, at −U < ε0 < −U/2. Note that even within the

regions −U < ε0 < −U/2 and 0 > ε0 > −U/2, T1 varies with ε0, respectively. If

TL is further increased, the thermopower changes sign a second time at TL = T2.

T1 and T2 are characteristic for a Kondo system because their absolute values do

not only vary with ε0 but they also strongly depend on the ratio of the charging
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energy and the coupling energy, U/Γ. For example, for ε0 close to the valley

center, the authors obtain kT1 = 0.13 Γ and kT2 = 0.71 Γ for U/Γ = 3, while

kT1 = 0.056 Γ and kT2 = 2.12 Γ if U/Γ = 6. Another important feature found

by Costi and Zlatić is directly related to the characteristic temperatures. It is

the thermopower peak that occurs between T1 and T2. This peak is expected

to exhibit a typical dependence on ε0: The peak height first increases if ε0 is

tuned away from ε0 = −U/2. Then it exhibits a maximum and decreases until it

vanishes when ε0 enters the MV regime. At this point also the direct dependency

of T1 and T2 on ε0 becomes evident: As the peak height gets smaller with ε0,

the difference between T1 and T2 gets smaller too. At the transition to MV, T1

and T2 merge and from this point on, i.e. in the MV and EO regime, no sign

changes of thermopower with temperature are expected to occur anymore. (This

behavior is depicted in the diagram of Fig. 3 of Ref [CZ10].)

In order to compare these theoretical considerations with the experiments pre-

sented here, Vth values are extracted from Fig. 5.8 for fixed ε0, indicated by

vertical, dashed lines. These lines are equally distributed around ε0 = −U/2 in

steps of 0.83 U . For a more convenient identification the specific values of ε0 are

denoted with symbols. The Vth data extracted for each ε0 are plotted against

a logarithmic TL-scale in Fig. 5.9. Figure 5.9 (a) shows the data for Kondo II,

Figs. 5.9 (b) and (c) display Vth for Kondo I. The top panels refer to ε0 < −U/2
while for the bottom panels ε0 > −U/2. Black arrows indicate the direction away

from ε0 = −U/2.

For Kondo II, given in Fig. 5.9 (a), we observe a strong decrease of Vth with

TL. Intersections with Vth = 0 are observed around T exp
1 ≈ 800 mK in the top

panel (encircled region). In the bottom panel a sign change is estimated to occur

around T exp
1 = 1 to 1.5 K. For the ratio U/Γ we obtain from the experiments

1.5 meV/0.7 meV ≈ 2.14. Since this is not too far off from the value U/Γ = 3

used in Ref. [CZ10] we calculate T theo
1 = 0.13 Γ and obtain T theo

1 = 1.06 K.

Clearly, theory and experiment yield values of the same order of magnitude. In

the same way, one gets for T theo
2 = 0.71 Γ = 5.8 K. Obviously, this regime for T2

is not covered anymore by the data shown in Figs. 5.9 (a). However, a careful

comparison with the data for Kondo I [Figs. 5.9 (b) and (c)] reveals that here a

second change in sign for Vth is observed at higher TL: For ε0 values close to the

valley center, shown in Fig. 5.9 (b), Vth exhibits the opposite sign compared to
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MV and EO, given in Fig. 5.9 (c). Furthermore, the Vth amplitude first increases

when ε0 is tuned away from the mid-valley (black arrow, Fig. 5.9 (b)). After a

maximum (+) the peak decreases (Figs. 5.9 (c), top panel: �, bottom panel:

�). Then, it vanishes when the MV regime is entered and here Vth changes sign

(Figs. 5.9 (c), top panel: �, bottom panel: �). Moreover, in Fig. 5.9 (c) it can

clearly be observed that T1 (red arrows) increases with ε0. This behavior strongly

resembles the descriptions given above and in Ref. [CZ10]. If we directly compare

the data for Kondo I with the results of T. Costi and V. Zlatić for a system with

U/Γ = 3, we observe significant quantitative deviations. For the coupling energy

Γ = 550 µeV we expect T theo
1 = 831 mK and T theo

2 = 4.5 K according to theory.

From Fig. 5.9 (b) with ε0 close to ε0 = −U/2 we estimate T exp
1 < 0.1 mK and

T exp
2 ≈ 2 to 3 K. While T2 is of the same order of magnitude for theory and

experiment, T exp
1 is too small by an order of magnitude.

These differences can be explained by the following observations. For example,

the ratio U/Γ is only approximately comparable in theory (U/Γ = 3) and exper-

iment (U/Γ ≈ 2 to 3). Since its numerical value is crucial for the evaluation of

T1 and T2 inaccuracy in this value may lead to significant deviations from the-

ory. More importantly, however, the experimental data have been symmetrized

in order to match the requirement Vth = 0 at ε0 = −U/2. In order to do so,

we assumed that the “offset” Vth(TL) determined for ε0 = −U/2 is constant over

the full Kondo region. From the experiments, however, there is no way to di-

rectly verify if this holds for all ε0 because according to Kondo theory even at

the conductance peak positions, Vth is expected to give finite values. Although

the processed data seem to exhibit an approximately symmetric behavior with

respect to ε0 = −U/2, slight deviations of Vth(TL) from this symmetric behavior

could have considerable consequences for the experimentally determined T1 and

T2. Taking into account these uncertainties, the qualitative agreement between

theory and experiment is even more remarkable.

5.4 Remarks on the Broken Electron-Hole Sym-

metry at ε0 = −U/2

So far, it has been assumed that the finite thermopower found at the mid-valley

ε0 = −U/2 can be considered as an offset in a first approximation. Subtraction
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of the Vth(ε0 = −U/2) for each Γ or TL has yielded qualitatively good agreement

with Kondo theory, that assumes electron-hole symmetry to hold at the mid-

valley. From that point of view, the treatment as an offset is justified. However,

there is a number of aspects which imply that this offset may not simply be

an experimental error or related to an offset resulting from measurement equip-

ment. Instead, the signal exhibits distinct dependencies on certain parameters

which suggest that it may be of fundamental relevance and that there is some

physics involved which is not yet fully understood. In the following, we will give

a summary of the properties that can be assigned to the signal based on the

experimental data obtained so far. Finally, we will discuss possible origins of the

effect.

First of all, the experiments have shown that the offset at the valley center is par-

ticularly pronounced if Kondo correlations are present. Moreover, similar magni-

tudes are observed for different Kondo valleys (here: Vth(ε0 = −U/2) ≈ 0.6 µV,

in Ref. [SBR+05]: Vth(ε0 = −U/2) ≈ 0.5 µV).

In the previous section it has been shown that Vth(ε0 = −U/2) exhibits a tem-

perature dependence which is linear on a log-scale for TL, and thus clearly differs

from possible offsets in non-Kondo valleys (cf. Fig. 5.7). It is noteworthy, that a

linear dependence on TL in a log-plot is characteristic for the Kondo effect and

thus is found for several properties including conductance, magnetic susceptibil-

ity, specific heat and entropy [Hew93].

In terms of coupling energy Γ, Vth(ε0 = −U/2) stays constant for the coupling

energies shown in Fig. 5.4. However, for a wider range of Γ, it is found that in

the limit of weak and strong coupling, the thermovoltage signal at ε0 = −U/2
changes. The corresponding Vth vs ∆VP traces are given in Fig. 5.10 (a) and (b)

for those Γ values which have not been shown previously. A compilation for all

Vth(ε0 = −U/2) as a function of Γ is shown in Fig. 5.10 (c). Here it can be seen

that for weak decoupling, the offset is quenched (covered by data from Kondo I ).

At the other end, for strong coupling, the data from Kondo II indicate a decrease

of Vth as well.

For both the experiments presented here and those shown in Ref. [SBR+05] (see

also Ref. [Sch07]) a perpendicular magnetic field B⊥ has been applied. Thus, one

might argue that broken electron-hole symmetry at ε0 = −U/2 could somehow

be related to B⊥. However, we note that a similar offset has also been observed
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Figure 5.10: Experimental data on the thermovoltage Vth at ε0 = −U/2. (a)
Vth for Kondo I with very weak coupling and (b) for Kondo II with very strong
coupling. The red line in both figures indicates Vth at ε0 = −U/2 as it has
been observed for the data in Fig. 5.4. (c) Vth at ε0 = −U/2 as a function of
coupling Γ for Kondo I (#) and Kondo II (�). (d) Conductance G and (e) Vth

for B⊥ = 0.6 T (red) and B⊥ = −0.6 T (black).

in the presence of Kondo correlations without a magnetic field (for example, cf.

Fig. 6.6 in the next chapter). Nevertheless, we need to check if B⊥ has an influ-

ence on Vth. This is done in Fig. 5.10 (d) and (e) where G and Vth are compared

for B⊥ = 0.6 T and B⊥ = −0.6 T. The conductance data show perfect alignment

for both field directions (as expected). We conclude that the Kondo-correlations

are not influenced by a reversal of B⊥. Vth exhibits identical line shapes in both

directions of B and both traces are offset towards electron-like thermopower. Sur-

prisingly, the offset becomes larger if the magnetic field is reversed. This result

is puzzling because any B⊥ dependence is expected to be inverted if B⊥ changes

sign. [Note, that due to the heating current in the channel, a Hall voltage arises

with B⊥, which changes the potentials of the voltage probes used for thermopower

measurements. This Hall-voltage, which obviously inverts with B⊥, may interfere

with the thermopower measurement.]

In Refs. [SBR+05] Scheibner et al. suggest that the finite thermopower signal

might be due to the fact that in their experiment the QDs operate in the MV

regime even at the valley center such that the Kondo-DOS-peak is shifted above
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the Fermi-level in the leads. For the common definition of the MV (0 > ε0 > −Γ/2

and −U + Γ/2 > ε0 > −U , [GGGK+98, Hew93]) this requires U/2 ≤ Γ/2. In the

experiments discussed here, Kondo II may be close to this regime. For Kondo I,

however, this is clearly not the case (U ≈ 1.7 meV, Γ ≈ 550 µeV). Hence, MV

fluctuations can be ruled out as an origin for broken electron-hole-symmetry at

ε0 = −U/2.

Moreover, spin entropy contributions have been suggested as an origin [SBR+05,

Sch07]. This idea agrees well with the fact, that the offset is observed for Kondo

correlations, where the QD exhibits a net spin. Moreover, it is supported by the

data of coupling dependence because the spin states should be independent of

Γ in a first approximation. Only for strong coupling, when charges and spins

become delocalized, and for weak coupling, where thermopower at the mid-valley

becomes suppressed, should the spin contributions vanish. However, this interpre-

tation contradicts the temperature dependence of the signal. This is because the

expected value for spin entropy contributions S ≈ 60 µV/K [SBR+05] should be

constant over a wide temperature range. Spin contributions should only decrease

if the two-fold degeneracy of the QD states becomes smeared out by thermal ex-

citations (separation of excited QD states in our system: ∆ ≈ 200 µeV ∼ 2 K).

This is in strong contrast to the constant decay of Vth found in the experiments

presented here.

It has been observed so far that the offset is electron-like in all experiments. This

could lead to the assumption that the offset results from the energy dependence of

the tunnel barriers. If the barriers are assumed to become more transparent with

higher energy, this would lead to an enhanced tunneling probability for electrons

above EF . For the Kondo effect, this introduces an asymmetry in the accessi-

bilities of the states at ε0 and ε0 + U which is known to shift the Kondo-DOS

away from the Fermi level [CHZ94]. However, such an asymmetry would favor

the state at ε0 + U . This leads to a shift of the DOS peak below EF , as it has

been shown unambiguously in section 5.3.1 of this chapter, and thus would cause

a hole-like offset. Hence, energy dependence of the tunnel barriers can be ruled

out as an origin as well.

Among the theoretical treatments of Kondo-QDs, Tooski et al. [TRBv14] present

a model which gives finite Vth at the valley center. The authors introduce an as-

sisted hopping parameter x which results from higher order terms of the Coulomb
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interaction. Tooski et al. find that increased assisted hopping affects the states

at ε0 and ε0 +U in a different way and thus introduces an asymmetry which can

lead to broken electron hole-symmetry at the valley center. An experimental test

of this hypothesis clearly would be desirable.

We also point out another direction for the interpretation of the data: We have

seen that Vth persists over an extremely wide range of coupling, for which the

transport properties of the QD change dramatically. This indicates, that the

finite signal at ε0 = −U/2 may actually not be a direct property of the QD itself.

Although the thermopower measured in the experiments is a quantity which can

be assigned to the QD, the actual potential difference arises from electrons added

to or removed from the leads connected to the QD. Thus, we should keep in mind

that a change of the DOS in one of the leads can also have an impact on the de-

tected thermovoltage [ZMRR13]. A variation of Γ would leave this asymmetry

unaffected as long as (i) the QD is transparent enough so that a thermovoltage

is generated (Γ not too weak) and (ii) the two leads can be considered as two

separate reservoirs (Γ not too large). Furthermore, we note that in a first ap-

proximation the properties of the QD are not expected to change drastically by

a variation of TL. In contrast, it will obviously affect the occupation statistics in

the reservoirs since TL is a global parameter in our experiments.

Finally, it is noteworthy that the sample layout used in Refs. [SBR+05, Sch07] as

well as in the experiments presented here has a built-in spatial asymmetry (cf.

Fig. 4.1): While the cold reservoir opens quickly and has large dimensions, the

hot reservoir (the heating channel) only has a width of 2 µm. Thus, in the experi-

ments conducted up to now it has always been the reservoir with small dimensions

that has served as a heat bath while the large reservoir always served as a heat

sink. In connection with this, we recall that the Kondo state is a many body state

that extends into the reservoirs. The spatial dimensions of this ”Kondo cloud“

are currently under debate and to get experimental access to its characteristic

length scale ξ is a field of intensive research [AS01, SA01, SA05, KKGS13]. How-

ever, scaling theory predicts [AS01]

ξ =
~νF
kTk

, (5.3)

where νF is the Fermi velocity. For a carrier density n = 3.4·1011 cm−2 the author

of Ref. [Mai10] yields EF = 13 meV. Together with TK = 1 K (as found for Kondo
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II ) we obtain ξ = 1.8 µm. [Note, that ξ increases with decreasing TK, so that

we get for Kondo I ξ = 3.8 µm]. Obviously, this is of the order of the heating

channel width in the thermopower experiments. In this context, experiments

which further investigate the electron-like thermopower at the Kondo mid-valley,

especially with respect to a more symmetric sample design, are highly desirable.

54



Chapter 6

Odd-Even Effects in the

Thermopower of a Quantum Dot

In the following chapter we pick up on observations that were first noted by

R. Scheibner [Sch07]. In experiments, which originally addressed the thermopower

of Kondo-correlated QDs, the author noticed indications of a spin dependent

thermopower even for configurations where the Kondo effect is suppressed in the

conductance valley (hereafter called odd-even effect): In the experiments, which

are extensively described in Refs. [Sch07] and [SBR+05], Kondo-correlations are

observed for large QD occupation numbers. Further reduction of the QD oc-

cupation involves a strong reduction of the coupling energy Γ. This suppresses

Kondo-correlations in the conductance valleys. Since the Kondo effect usually

occurs where the QD exhibits a net spin, this provides a starting point to as-

sign odd and even occupation numbers to the stability regions even beyond the

Kondo-regime. Interestingly, for small electron numbers a new pattern in thermo-

voltage seems to emerge [Sch07]: At those conductance peaks where the addition

of an electron changes the occupation number from even to odd, the electron-like

thermovoltage appears to be enhanced. In contrast, the addition of one more

electron, rendering the occupation number even, tends to increase the hole-like

contribution to the thermovoltage Vth. In order to confirm and explain the odd-

even pattern of thermopower in this regime and obtain more information about

the physics behind the spin-dependent thermopower, further experiments have

been carried out in the present thesis in order to get relevant data.

This chapter describes in detail new results obtained relating to the odd-even-
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effect. For a weakly coupled QD we identify filling of two-fold degenerate states

from the shift of conductance peak positions in a small perpendicular magnetic

field. We find that the weakly coupled QD indeed exhibits an odd-even effect in

the thermovoltage signal. It is manifested in a remarkable amplitude modulation

of the thermovoltage Vth comparable to the one described above. This unambigu-

ously confirms the observation by R. Scheibner. Furthermore, we find that the

thermopower which is generated in a stability region with an odd number of elec-

trons also exhibits a different temperature dependence compared to Vth in regions

with even occupation numbers. By gradually increasing the coupling energy, we

show that both effects, amplitude modulation and temperature dependence, per-

sist and even get more pronounced for strong coupling. In a strongly coupled

QD, the Kondo effect is observed for two conductance valleys. In these valleys,

Vth exhibits a similar behavior of the amplitude modulation and the temperature

dependence. This similarity is interpreted as an indication that the odd-even

effects are related to Kondo-physics. Finally, we present a qualitative picture

which takes into account the exponential dependence of the Kondo-temperature

on the level depth of the QD with respect to EF . We find that for a weakly

coupled QD, this may lead to a transition from suppressed Kondo physics at

the valley center to an enhanced Kondo-related density of states (DOS) close

to the Fermi level for asymmetric QD-level configurations. Hence, it is strongly

suggested that this behavior reduces the average energy of charge carriers con-

tributing to transport if the occupation number of the QD is odd. Thus, the

thermopower S exhibits smaller amplitudes, according to the Matveev interpre-

tation of thermopower. This extended picture provides an explanation for the

experimentally observed odd-even behavior and explains the similarities in the

weak and strong coupling regimes. Moreover, it may be understood as a con-

nection between research on Kondo physics [SBR+05] and recent investigations

addressing the strong sensitivity of S on higher order tunneling events in QDs

[SNK+07]. Thus, the experiments presented here can be considered a valuable

contribution to both fields.
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6.1. Experiment

6.1 Experiment

For the following experiments a sample is used similar to the one described in

Chapter 4. The QD is investigated in two regimes: First, measurements in the

weak-coupling regime are discussed. They include measurements of conductance

G, thermovoltage Vth and characterizations from the differential conductance

dI/dVSD of the system. Furthermore, the conductance is investigated for small

perpendicular magnetic fields and G and Vth are studied in a temperature range

from TL = 80 mK to TL > 1 K. In addition, similar experiments are presented

which are performed on a QD with more transparent tunnel barriers.

6.1.1 Weak-Coupling Regime

In a first set of experiments the QD is tuned into the regime of weak coupling.

It exhibits several narrow Coulomb resonances which are separated by regions of

low conductance G. A series of seven G-peaks is displayed in the top panel of

Fig. 6.1 (a). The amplitude reaches up to 0.2 e2/h while in the Coulomb valleys

between the conductance peaks, G is strongly suppressed. Those regions can be

identified with fixed occupation numbers; this is indicated in Fig. 6.1 by the labels

N , N+1, N+2, etc. The bottom panel of Fig. 6.1 (a) shows the thermovoltage

Vth obtained for a temperature difference ∆T ≈ 30 mK in the same plunger gate

voltage range. It can be seen that Vth exhibits positive and negative values in the

vicinity of each conductance resonance. Sign changes occur at each maximum

of G. Vth quickly decays towards the Coulomb blockade valleys, as it has been

observed by Scheibner et al. [SNK+07]. This behavior is well known for weakly

coupled QDs in the low temperature limit. It can be attributed to co-tunneling

currents, which become increasingly dominant when first order sequential trans-

port is blocked due to Coulomb blockade [TM02].

Analyzing the thermovoltage data more carefully, one observes a pattern of small

and large amplitudes for different peaks. More precisely, one may say that for

both positive and negative Vth signals the amplitudes show an alternating behav-

ior, indicated by small and large arrows in Fig. 6.1 (a).

This alternating pattern emerges more clearly when the difference in amplitude

∆Vth is calculated for the thermovoltage associated with two adjacent conduc-

tance peaks. This has been done in Fig. 6.1 (b). Here, the x-axis indicates the two
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Figure 6.1: (a) Conductance G (top panel) and thermovoltage Vth (bottom panel,
∆T ≈ 30 mK) vs. plunger gate voltage VP for QD occupation numbers N to N+5
at TL = 80 mK. An alternating thermovoltage amplitude causes small amplitudes
(indicated by small arrows) being enclosed by two larger Vth-amplitudes (larger
arrows) of identical sign. (b) Difference between adjacent thermovoltage max-
ima ∆Vth (for details see text). Black squares (blue triangles) refer to positive
(negative) thermovoltage.

conductance peaks to which ∆Vth can be assigned. For example, the black square

at [(N+1)−(N+2)] indicates the difference between the positive Vth maximum

associated with the conductance peak for the addition of the N+1 electron (i.e.

the conductance peak separating the N from the N+1 region) and the positive

Vth maximum at the conductance resonance that corresponds to the addition of

the N+2 electron. Negative amplitudes are treated likewise and the resulting

∆Vth are indicated by blue triangles. It can be seen that ∆Vth exhibits an alter-

nating behavior around ∆Vth = 0 for both positive and negative amplitudes. This

confirms the observation that Vth maxima of identical sign alternately increase

and decrease.

In order to study this behavior more closely, a detailed characterization of the

QD states is desirable. For this purpose, dI/dVSD data is shown in Fig. 6.2 (b).

As an example, the Coulomb diamond for N electrons is indicated by solid red

lines. The analysis gives a charging energy U = 2 meV and a level broadening

Γ ≈ 90 µeV determined from the full width at half maximum (FWHM) of the

conductance peaks at VSD = 0. In addition, Fig. 6.2 (b) reveals signatures of
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Figure 6.2: (a) Conductance G vs. plunger gate voltage VP and magnetic field B.
Arrows indicate the direction of conductance peak position shift. (b) Differential
conductance dI/dVSD for occupation numbers N to N+5. The Coulomb diamond
edges and excited states are indicated by solid and dotted lines. The charging
energy is U = 2 meV. (c) dI/dVSD vs VSD for different occupation numbers. Data
sets offset by 2.5× 10−3 e2/h.

excited states, denoted by dotted red lines, from which a level splitting due to

quantum confinement ∆ ≈ 50 − 200 µeV is determined. Moreover, regions of

negative differential conductance are observed which are commonly ascribed to

spin blockade effects [WHK95]. In Fig. 6.2 (c) dI/dVSD is plotted against VSD

for different occupation numbers. For all valleys, the differential conductance is

found to be below 1 × 10−3 e2/h at VSD = 0. A significant increase is observed

only for VSD > 0.3 meV. Thus, we infer that the conductance is indeed strongly

suppressed in the Coulomb valleys.

In order to obtain more information about the QD states, Fig. 6.2 (a) displays

the conductance peak positions for small magnetic fields B applied perpendicular

to the 2DEG-plane. It can be seen that pairs of conductance remain parallel to

each other with increasing B. We interpret this observation as corresponding to

the filling of two-fold degenerate states: For small fields, B couples to the orbital

momentum of the QD states while coupling to spins is negligible since it becomes

relevant only for larger fields (typically B � 1 T) [TAH+96, HSY+04]. Hence,

an identical B-field dependence of conductance peak positions identifies filling of

states with identical angular momentum. Thus, the pairwise behavior observed

in Fig. 6.2 (a) is a strong indication for a two-fold degeneracy of states. Clearly,

spin degeneracy is a prime candidate. Hence, we identify the occupation numbers
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6. Odd-Even Effects in the Thermopower of a Quantum Dot

N , N+2 and N+4 with an even number of electrons while N+1, N+3 and N+5

correspond to odd occupation numbers.

A direct comparison of the conductance characterization with Vth leads to an

interesting observation: The thermovoltage generated e.g. in the stability re-

gion N+3 clearly exhibits smaller absolute Vth than in the adjacent N+2 and

N+4 regions. Correspondingly, the N+3 valley has been identified with an odd

electron number, while for N+4 and N+2 the occupation number was found to

be even. Also, the N valley corresponds to even numbers and exhibits a larger

thermopower. On the oher hand, the odd valleys N+1 and N+5 both show an

overall smaller thermovoltage. This means that larger and smaller thermovoltage

amplitudes may be related to the parity of the stability region between two con-

ductance peaks rather than to the parity of the added electron at the conductance

peak as it was suggested in Ref. [Sch07]. Thus, we propose that it is actually the

parity of the QD occupation number which causes the thermovoltage amplitude

modulation described above: Coulomb valleys to which an odd number of elec-

trons can be assigned tend to exhibit smaller thermopower amplitudes. For even

valleys larger thermovoltage is observed.

Temperature Dependence

Figure 6.3 compares the Vth for different lattice temperatures TL in the range of

TL = 80 mK to TL = 1.09 K. As an example Vth is shown for the regions N+2,

N+3 and N+4. For other occupation numbers Vth behaves likewise.

For the even regions N+2 and N+4 (indicated by large arrows) the well-known

transition of thermovoltage is observed from the low temperature limit, which is

dominated by co-tunneling, to the sequential tunneling regime at higher temper-

ature [SNK+07]: the maximum of Vth (Fig. 6.3, circles) decreases with increasing

TL. Furthermore, it moves towards the center of the Coulomb valley. The over-

all shape changes from a sharp resonance at low temperature towards a more

sine-wave-like or sawtooth-like shape as predicted by Beenakker et al. [BS92].

Moreover, a change in amplitude is observed already when the lattice tempera-

ture is increased from TL = 80 mK (solid, black line) to TL = 120 mK (dashed,

yellow line).

In contrast, the thermovoltage in the (N+3)-valley (small arrows) shows a con-

siderable deviation from this behavior: For TL < 230 mK, the decrease of the

60



6.1. Experiment

-1.00 -0.95 -0.90 -0.85

-6

-4

-2

0

2

4

6

  80 mK

  120 mK

  230 mK

  530 mK

  1090 mK

 

 

 

V
th

 / 
V

V
P
 / V

N+2 N+3 N+4 N+5 

Figure 6.3: Thermovoltage at various lattice temperatures TL ranging from 80 mK
to 1090 mK for occupation numbers N+2 to N+5. Small and larger thermovolt-
age amplitudes are indicated by small and large arrows. The local Vth extrema
of each TL are indicated by circles.

thermovoltage signal is very small. For the positive maximum at VP = 0.91 V,

Vth stays approximately constant. A significant decrease occurs only for TL >

230 mK. Above this range, the transition to the sequential tunneling regime

takes place gradually, comparable to the other valleys. Figure 6.4 visualizes this

difference in TL-dependence even more clearly. The Vth peak values are extracted

from gate voltage dependent measurements for different TL and are now plotted

against a logarithmic TL-scale. Note that Vth(TL) is scaled to Vth(80 mK). The

curves are offset for clarity. Figure 6.4 (a) shows the data for regions with odd

electron numbers. Data for even valleys are shown in Fig. 6.4 (b). Open or solid

symbols refer to negative or positive amplitudes, respectively. In Fig. 6.4 (a),

Vth stays approximately constant when TL is increased to 120 mK. For higher

temperature values Vth slowly starts to decrease. The slopes of the curves change

with increasing temperature and Vth decreases more strongly. For comparison,

valleys N , N+2, and N+4 [Fig. 6.4 (b)] show a strong decay of Vth already for

smaller temperatures. For TL ≥ 530 mK the slope flattens, indicating a less

strong decrease of Vth with TL. This behavior is well pronounced in the N+2 and

N+4 region. From this we infer, that the thermovoltage originating from a QD

with an odd electron number configuration significantly differs in TL-dependence
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from Vth generated by QD with two-fold degenerate levels and an even number

of electrons.

6.1.2 Strong-Coupling Regime

In a next series of experiments the coupling of the QD to both reservoirs is grad-

ually increased. This is done by decreasing the voltage VC applied to gate C

[see. Fig. 4.1 in Chapter 4]. The design of the sample ensures that this changes

the tunnel barriers to source and drain symmetrically. Fig. 6.5 (a) and (b) show

the conductance and the thermovoltage data at TL = 80 mK for a voltage range

VC = −0.83 V to −0.79 V. The curves are offset for clarity. The data for

VC = −0.83 V (black line, no offset) have been discussed in the previous sec-

tion. They will be referred to henceforth as weak-coupling while the regime for

VC = −0.79 V (orange line, offset by 0.8 e2/h) will be called strong-coupling

regime.

The conductance data in Fig. 6.5 (a) indicate a significant increase of the tun-

nel barrier transparency, so that the conductance peak height changes from

G ≈ 0.2 e2/h for VC = −0.83 V to G ≈ 0.5 e2/h for VC = 0.79 V. In order
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Figure 6.5: Variation of the coupling of the QD to source and drain via voltage
VC applied to gate C. (a) Conductance G for weak coupling at VC = −0.83 V
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to quantify the coupling energy Γ we choose the conductance resonance for the

addition of the N+2 electron. We obtain Γ = 90 µeV for weak coupling and

Γ = 270 µeV in the strong-coupling regime. Moreover, Fig. 6.5 (a) shows that

the transition from weak to strong coupling takes place continuously, so that each

conductance peak can be traced without discontinuities from one regime to the

other.

The same is true for the corresponding Vth in Fig. 6.5 (b). Here it can be seen

that an increased transparency of the tunnel barriers has a strong effect on the

thermopower line shape. It changes from the resonant-like form described in the

previous section for VC = −0.83 V towards a regime where finite positive and

negative voltages also occur far away from the conductance resonances in the

Coulomb valleys (VC = −0.79 V). Sign changes take place not only at the con-

ductance peak positions but also at the center of the Coulomb valleys as it has

been observed by Staring et al. [SMA+93] and Dzurak et al. [DSB+97].

Figure 6.5 (c) compares the magnetic field dependence of conductance peak posi-

tions for the weak-coupling (left) and the strong-coupling regime (right). We still

observe that the conductance peaks shift pairwise with B for strong coupling. It

can be seen that for VC = −0.79 V, G follows the same B-dependence as in the

weak coupling regime for VC = −0.83 V. Obviously, the increased coupling does

not affect the nature of the QD states and a two-fold level degeneracy is still

present.

Figure 6.6 (a) gives the Coulomb diamonds for the strong-coupling regime. By

comparison with Fig. 6.5 the Coulomb valleys are identified with the occupa-

tion numbers N , N+1, N+2 etc. The dI/dVSD data reveal a charging energy

of U ≈ 1.5 meV, which is slightly smaller than in the weak-coupling case. Sig-

natures of excited QD states are still visible (dotted lines), although they are

less pronounced compared to Fig. 6.2. Regions which exhibit spin-blockade in

the weak coupling regime do not show the characteristic negative dI/dVSD in the

Coulomb diamond of the strong coupling regime. Regions with dI/dVSD < 0 are

observed only for an electron number N+6.

Figure 6.6 (b) presents a single dI/dVSD trace for VSD = 0. Figure 6.6 (c) shows

Vth for ∆T = 30 mK for the same plunger-gate voltage range. Vth for TL = 80 mK

is shown as a black line. The pattern of alternating large and small Vth values is

also observed here. Similar to the weakly coupled QD, a small negative thermo-
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Figure 6.6: (a) Differential conductance dI/dVSD, (b) conductance G, and (c)
thermovoltage Vth for VC = −0.79 V. (c) compares thermovoltage traces at TL =
80 mK (black) and TL = 180 mK (gray). (d) differences in Vth amplitudes
calculated according to the description given for a weakly coupled QD in the
previous section.

voltage peak has neighboring negative peaks which exhibit a larger amplitude,

and vice versa for positive voltages [cf. Fig. 6.6 (d)]. Again, small Vth occur in

valleys with odd occupation numbers (N+1, N+3, and N+5) while even electron

numbers (N , N+2 and N+4) give larger thermovoltage values.

Concerning the thermopower line shape, we find that for the N+1 valley (and less

pronounced also in the N+3 region), Vth resembles the thermovoltage observed

in a Kondo-QD, as described in the previous chapter. Given a coupling energy

Γ = 270 µeV, we compare Vth for N+1 and N+3 to the results in Chapter 5 and

find a similar line shape for comparable Γ [cf. Fig. 5.6 (a) (Γ ≈ 230− 280 µeV)].

This is a strong indication that there are indeed Kondo-correlations present in

the N+1 and N+3 regions.

In order to further verify this observation, Fig. 6.7 displays the conductance data

for the strongly coupled QD in more detail. Figure 6.7 (a) depicts dI/dVSD
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Figure 6.7: (a) Differential conductance vs. VSD taken at the Coulomb valley
center for different occupation numbers. The N+1 (red, dashed) and N+3 (blue,
dashed-dotted) valleys exhibit a peak at VSD = 0 (arrows). (b) Conductance G
for a variation of lattice temperature TL from 80 mK to 500 mK. For N+1 and
N+3 the valley conductance decreases with increasing TL, indicating the presence
of Kondo correlations.

vs. VSD at the center of the Coulomb blockade regions for N to N+4. The

curves for N+1 (dashed, red line) and N+3 (dashed-dotted, blue line) exhibit

the characteristic conductance peak at VSD = 0 which is known as the zero bias

anomaly and which is generally considered a strong indication for Kondo corre-

lations [MW93, PG04]. Figure 6.7 (b) gives the temperature dependence of G at

VSD = 0 on a logarithmic scale at various TL for occupation numbers N to N+4.

The odd valleys N+1 and N+3 exhibit a significantly different behavior than G

in other valleys. Here G decreases for higher TL, as expected for a Kondo cor-

related QD. In contrast, the conductance in valleys N+4 and N increases which

is consistent with observations of non-Kondo QDs. Thus, we infer that at least

two conductance valleys exhibit the Kondo effect. As explained in Chapter 5, the

Kondo effect requires a two fold degeneracy, which in most cases is the electron

spin. Thus, our findings fit very well to the conclusions drawn from measurements

of the B-field dependence of G.
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Figure 6.8: (a) Maximum thermovoltage for different QD occupation numbers
identified with a net spin in the strong-coupling regime vs. lattice temperature
TL. Data are scaled to Vth at TL = 80 mK. They are offset for clarity. Open
(solid) symbols indicate data obtained from negative (positive) Vth amplitudes.
Identical symbols denote identical occupation number. (b) Same as (a), but for
occupation numbers with no net spin.

Temperature Dependence

We turn again towards the thermopower in Fig. 6.6 (c). Vth for TL = 180 mK is

shown in bright gray. Clearly, strong changes in amplitude can be seen compared

to TL = 80 mK. As in the weak-coupling regime, the changes with temperature

are more pronounced in the even regions N , N+2 and N+4.

In Fig. 6.8 the maxima Vth values for occupation numbers N to N+5 are given for

various TL ranging from 80 mK to 1040 mK. The Vth maxima are plotted against

TL in a similar fashion as in Fig. 6.4. Note, that the data for the negative N+1

maximum are disregarded for this evaluation because they exhibit a sign change

from Vth > 0 at low temperatures to Vth < 0 at TL = 1040 mK. Thus, for this

feature a representation of relative amplitude change is not comparable to other

maxima. The data show a similar TL-dependence as it has been observed for weak

coupling in Fig. 6.4. However, it appears more pronounced than in the weakly

coupled QD. Thermovoltage maxima in valleys with odd electron numbers show

only a slow decay up to TL ≈ 200 mK. In contrast, valleys with an even number

of electrons show a thermovoltage which strongly decreases with temperature for

67



6. Odd-Even Effects in the Thermopower of a Quantum Dot

TL < 200 mK. At higher TL, Vth decays more slowly for most even valleys which

leads to an overall hyperbolic TL-dependence.

6.2 Discussion

Before discussing our observations, we will briefly summarize the experimental

results presented so far. They include conductance and thermovoltage data for

a QD in the weak-coupling (Γ ≈ 90 µeV) and strong-coupling regimes (Γ ≈
270 µeV). Both regimes show the filling of spin-degenerate energy levels. This

allows to identify stability regions with even and odd occupation numbers. In

the strong coupling regime the Kondo effect is observed for two odd valleys in

conductance and thermopower. For the weak-coupling regime, no signatures of

the Kondo effect are found. Concerning thermovoltage, Vth exhibits differences

in amplitude and temperature dependence when we compare regions with odd to

those with even electron numbers. This holds for the weak-coupling as well as for

the strong-coupling regimes. The differences in amplitudes lead to an alternation

in such a way that for each Vth peak in an odd-electron region, the neighboring

Vth maxima of identical sign are both larger. From studies of the temperature

dependence, we learnt that thermovoltage arising in regions with an odd electron

number changes only weakly if the lattice temperature TL is slightly increased. In

contrast, for other valleys, Vth decreases strongly even if TL is varied only slightly.

In the limit of large TL for both QDs the well-known high temperature regime is

established where sequential tunneling processes dominate.

We point out that the odd-even effect is observed in the weak-coupling as well

as in the strong-coupling regimes. Moreover, even in regions where the Kondo

effect is observed, the same amplitude modulation and temperature dependence is

found. As discussed in Chapter 5, Kondo correlations strongly influence transport

across a QD. Moreover, thermopower has proven to be an extremely sensitive tool

to probe Kondo-correlated transport. Thus, we suggest that our observations in

the weak-coupling regime are also related to spin-Kondo physics.

The characteristic energy scale for Kondo physics is the Kondo temperature TK

which can be interpreted as the binding energy of the Kondo state and which is

given by [Hal78]

kTK =

√
ΓU

2
× eπε0(ε0+U)/ΓU . (6.1)
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6.2. Discussion

Equation (6.1) relates TK to the charging energy U , the intrinsic level broadening

Γ and the energetic depth of the (spin) impurity level ε0 with respect to the Fermi

level in the leads so that ε0 = −U/2 represents the Coulomb valley center.

For our experiments in the weak-coupling regime Eq. (6.1) gives a Kondo temper-

ature T
(wc)
K � 1 µK with U = 2 meV and Γ = 90 µeV. For the strongly coupled

QD (U = 1.5 meV, Γ = 270 µeV), we obtain T
(sc)
K ≈ 50 mK. This is in agreement

with the experimental results for the conductance G: At the valley center of the

weakly coupled QD, obviously TL � T
(wc)
K which causes Kondo physics to break

down. In contrast, for the strongly coupled QD, TL & T
(sc)
K and thus, signatures

of the Kondo effect, although weakly pronounced, are observable.

Equation (6.1) implies that TK increases if |ε0| 6= U/2, i.e. if the QD level is tuned

away from the valley center. Actually, ln(TK) ∝ ε20, which strongly enhances the

Kondo temperature if the dot is tuned into an asymmetric level configuration

[GGGK+98, vdWDF+00]. However, Eq. (6.1) breaks down in close vicinity of

the conductance peaks where Coulomb blockade is lifted. In this regime, which is

generally referred to as mixed-valence, −Γ/2 < ε0 < 0 (or, by electron-hole sym-

metry, −U < ε0 < −U+Γ/2) so that charge, and thus spins, on the dot fluctuate

and the Kondo state is destroyed [Hew93, GGGK+98, CZ10]. As a consequence

TK decays exponentially. Hence, at the transition from Kondo to mixed-valence

TK is expected to approach its maximum [Pus06].

We can now use Eq. (6.1) to give an estimate for T
(wc)
K if the spin impurity level

is tuned just below Γ/2 from EF . This gives T
(wc)
K ≈ 0.4 K. Thus, we have

TL � T
(wc)
K at the valley center and TL ≤ T

(wc)
K close to the conductance res-

onance. For odd occupation numbers we therefore expect that this transition

causes Kondo correlations (and thus a Kondo DOS peak on the dot) to emerge if

one approaches the Coulomb conductance peaks while around the valley center

Kondo correlations should be suppressed [see cartoons in Figs. 6.9 (b) and (a)].

For a symmetric QD level configuration (ε0 = −U/2) the Kondo DOS-peak lies

at the Fermi level. Tuning the QD level away from this symmetric configuration

shifts the Kondo DOS above EF for ε0 > −U/2 and below EF for ε0 < −U/2 (see

Chapter 5 and Refs. [Hew93, CHZ94]). In the case of ε0 > −U/2 this leads to a

DOS as it is sketched in Fig. 6.9 (b). When the Coulomb resonance is located

below EF a narrow Kondo DOS peak emerges closely above the Fermi level. Here,

close to the transition to mixed valence where T
(wc)
K ≥ TL, the Kondo resonance
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Figure 6.9: Thermopower of a QD with charging energy U and energetic spin-
level depth ε0 for weak coupling Γ in different regimes (a) The symmetric case
ε0 = −U/2 leads to T � TK so that Kondo correlations are suppressed and
Vth = 0. (b) ε0 > −U/2 increases the Kondo temperature T ≥ TK so that a
Kondo DOS peak emerges above EF. This results in Vth < 0. (c) For a QD
without net spin the resulting Vth < 0 is larger for identical level configurations
due to the missing Kondo resonance above EF .

and the Coulomb resonance compete. While sequential transport is hole-like,

the Kondo resonance gives an electron-like contribution. However, in this regime

the spectral weight of the Kondo resonance is rather small [CHZ94]. Therefore,

sequential transport dominates the sign and Vth is hole-like. The amplitude of

Vth however, is known to be extremely sensitive to higher order tunneling pro-

cesses taking place in the Coulomb blockade region [SNK+07, TM02]. Hence,

the electron-like contribution of the Kondo DOS causes the Vth amplitude to de-

crease.

In terms of the Matveev interpretation of thermopower Ref. [MA02], the contri-

bution of the Kondo DOS peak emerging, e.g. for ε0 > −U/2, reduces the average

energy of charge carriers 〈E〉 with respect to EF because it lies close to the Fermi

level. Thus, we observe a smaller thermopower amplitude in regions with odd

occupation numbers where the QD carries a net spin compared to those with an

even number of electrons [cf. Figs. 6.9 (b) and (c)]. This model also provides a

consistent explanation why the features are observed for both the weakly and the

strongly coupled QD in a similar way: Since the physics involved results from

Kondo correlations in both cases, it leads to a comparable behavior in amplitude

modulation and temperature dependence in both regimes.
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6.2. Discussion

Finally, we note that the results presented here could be of relevance in the context

of recent research on heavy fermion systems [CZ10, MJBC12], Ce-doped materi-

als [BCW85, PSH+13] and other systems containing dilute magnetic impurities

[MTC+09, ZDS+11] where anomalous thermoelectric properties are ascribed to

spin correlations in the Kondo and mixed valence regime. Our experiments em-

phasize that spin-correlated transport can considerably influence thermopower

even though it may not be observable in conductance.
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Chapter 7

Summary of Part II

In Part II experiments are presented which address effects of the spin configura-

tion of a QD on its thermoelectric properties. In the context of recent progress in

spin-caloritronics and thermoelectrics this question has gained increasing atten-

tion. But also due to its spectroscopic properties the thermopower is expected

to contribute valuable information about spin dependent transport processes in

QDs. Part II starts with a brief motivation (Chapter 3) and a description of the

sample design (Chapter 4). In Chapter 5 an extensive study on the thermopower

of a spin-correlated Kondo-QD is presented. Generally, the Kondo effect is a

many-body state which arises from an anti-ferromagnetic coupling of a magnetic

impurity with the surrounding conduction electrons. Here, the magnetic impu-

rity is represented by a QD which is occupied with an odd number of electrons

so that it exhibits a net spin and thus a magnetic moment. A fundamental con-

sequence of this many-body correlated state is that it locally changes the density

of states (DOS) on the QD. Furthermore, the dependence of the spectral DOS

on the energetic position of the spin-level is non-trivial. Since conductance mea-

surements provide only limited access to the properties of the Kondo-correlated

state, thermopower as a spectroscopy tool plays an important role in this context.

In the experiments presented here, the thermopower is studied systematically as

a function of QD energy, coupling energy and sample temperature for the first

time. It is shown that the thermopower line shape as a function of QD energy

is determined by competing contributions from the Kondo-DOS and from the

Coulomb resonances. Furthermore, the experiments confirm the current theory

that the spectral Kondo-DOS is shifted away from the Fermi level for those QD
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energy level configurations which are not electron-hole symmetric. Comparison

with model calculations by T. Costi and V. Zlatić [CZ10] show very good qualita-

tive agreement. Hence, the experiments provide unique insight into the complex

interplay of different transport mechanisms in a spin-correlated QD. Moreover,

the results confirm the potential of thermopower measurements as a highly sensi-

tive tool to probe Kondo-correlations. A finite thermovoltage which repeatingly

occurred in previous investigations at the center of the Kondo-region is also found

in the experiments presented here. This thermovoltage signal is not covered by

the current theory of the Kondo effect. Based on the experimental data, the

dependence of this signal on temperature, coupling energy and magnetic field

is compiled. The data indicate that instrumental errors as an origin are rather

unlikely. In order to clarify the physics behind this phenomenon further studies

are desirable.

Chapter 6 picks up on observations made in a previous work by R. Scheibner,

which indicate a connection between thermopower and spin-occupation of a QD

even for weak tunnel coupling when Kondo correlations are generally expected

to be strongly suppressed. A series of new experiments is presented, which con-

firms the phenomenology: A clear correlation of the thermovoltage amplitude

and the spin occupation of a weakly coupled QD is observed (odd-even-pattern).

However, by means of temperature dependent measurements and by variation of

the QD coupling energy it is shown that a close connection can be established

between the observed odd-even-pattern and the behavior of a Kondo-correlated

QD. Finally, a qualitative model is presented which explains the experimental

observations: When taking into account the dependence of the Kondo state on

the energetic spin-level position, one finds that in close vicinity to a Coulomb res-

onance spin-correlated transport is expected to occur even in the weak coupling

regime. While this effect leaves no visible signatures in conductance, it leads to a

clear modulation of thermopower amplitudes depending on the spin-occupation

of the QD. Hence, the observations are traced back to Kondo-physics. The results

show that Kondo-correlations can significantly change the thermoelectric prop-

erties of a QD even though Kondo signatures are not visible in the conductance

data. This may be of relevance with respect to recent research on high-Seebeck

materials.
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Double Quantum Dots
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Chapter 8

Introduction

The results of the previous Part II have emphasized how important a role the

type of coupling between a QD and its surrounding electronic reservoirs plays for

the thermoelectric properties of a system.

In the following Part III the electric response to a temperature bias will be investi-

gated for a QD which couples not only to electronic reservoirs, but also to another

QD. The nature of the mutual QD interaction can be of different kinds. For ex-

ample, one can imagine a device in which two QDs are coupled through a tunnel

barrier. In this case, particle exchange is enabled. A temperature difference ap-

plied across the structure then generates a thermovoltage. The investigation of

such a thermovoltage is an interesting enterprise for several reasons: First of all,

the tunnel coupling between two QDs gives rise to the formation of molecular-

like states as a result of the overlap of the electronic wave functions. Thus, the

thermopower of such a tunnel coupled double QD (DQD) will contain informa-

tion about the nature of these states which can then be probed, for example,

as a function of QD energies. Second, multi-QD devices in serial configuration

(QD-arrays, QD-ratchets) are considered promising candidates for high perfor-

mance thermoelectric devices because they allow the realization of highly energy

selective devices to be achieved [CM08, RS11, WS11]. Furthermore, there exist

a number of interesting proposals to use two tunnel-coupled QDs as heat pumps

[JHMS13] or heat rectifiers [TKCL13]. Yet, despite the effort in theoretical re-

search, no experimental thermoelectric characterization of such a DQD has been

reported up to now.

As a second type of inter-dot coupling, one could think of two QDs that interact
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8. Introduction

only electrostatically. In this case, energy transfer between the QDs is possible

while particle exchange is suppressed. Obviously, this leads to a fundamentally

different situation compared to the tunnel-coupled case because now the gener-

ation of a thermovoltage as it is known from the Seebeck effect is suppressed.

However, new ways of energy conversion open up if one of the two QDs is con-

nected with more than one electron reservoir. Hence, such multi-terminal devices

are subject to a considerable body of theoretical research nowadays [EWIA10,

SB11, SS11, EWA12, JEWI12, HPBC12, SB12b, BSS13, BS13, SSJB13a].

This part of the thesis presents experiments which relate to both kinds of cou-

pling; QD systems with finite inter dot tunnel coupling are investigated as well as

purely electrostatically coupled QDs. In the following Chapter 9 fundamentals of

two-QD systems are discussed with the focus on conductance properties and on

the so-called stability diagram of the system. Then, the thermopower of a tunnel

coupled DQD is studied in Chapter 10. It is shown that largest thermovoltage is

generated in the vicinity of the so-called triple points, where the electro-chemical

potentials of both QD are aligned. If the QDs become detuned, the thermopower

becomes very sensitive to the configuration of the QD-energies, which is shown

to be a result of transport through delocalized, molecular-like states.

In Chapter 11 thermal effect are investigated which arise from two Coulomb-

coupled QDs in a three-terminal device. First, it is shown that the temperature

in an electron reservoir which connects to one of the dots can be used to manip-

ulate a charge current which is applied to the other two reservoirs via the second

QD. Essentially, this effect works as a thermally operated switch for charge cur-

rents and its underlying mechanism is strongly related to the cross correlation

of occupation fluctuations on the two QDs. Second, it is shown how a similar

device works as a heat engine that harvests thermal energy from its environment

and converts it into a directed charge current. The concept of this type of heat

engine, first proposed by R. Sánchez and M. Büttiker [SB11], uses asymmet-

ric transmission coefficients between two reservoirs to create a state of broken

detailed balance if the temperature in the third reservoir is increased. The exper-

iments provide direct evidence that this effect indeed leads to a sizable, directed

electric current. Finally, the results of this part are summarized in Chapter 12.

78



Chapter 9

Fundamentals of Transport in

Double Quantum Dots

The following chapter gives an introduction to the transport properties of a two-

quantum dot system. It only summarizes the most important and fundamental

characteristics of a double quantum dot (DQD), that will be needed for the expla-

nation of the experiments and discussions in the following chapters. Whenever

possible, the description is kept in close analogy to the single dot case. Ac-

cordingly, we start with an electrostatic treatment of the system and derive the

energy diagram. A large part of the chapter will focus on an introduction and

discussion of the stability- or honeycomb diagram. This kind of diagram cap-

tures many fundamental properties of the system. Since it is a wide-spread and

useful representation for the transport properties of DQDs, it will appear many

times throughout the following chapters and thus is essential for a comprehensive

understanding. Thereafter, the electrostatic treatment is extended by including

finite inter dot tunnel coupling and its impact on the energy spectrum of the

DQD is discussed. Finally, a brief description of non-linear transport is given.

As already mentioned, this introduction only sketches the most important prop-

erties. The peculiarities in transport are numerous and, obviously, go far beyond

the scope of this chapter. However, since double quantum dots have been stud-

ied extensively in recent years, there is a number of excellent reviews articles and

textbooks available on the topic, e.g. Refs. [Ihn10], [vdWDE+03] and [HKP+07],

to which the reader is referred for further details. The following chapter closely

follows parts of those reviews and adapts the main ideas.
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9. Fundamentals of Transport in Double Quantum Dots

9.1 Linear Transport Regime

In a first approximation the DQD-system is modeled in the classical limit of two

metallic islands, QD1 and QD2. Their occupation number will be denoted N for

QD1 and M for QD2. In order to construct a DQD-system, the dots are assumed

to be interconnected by a tunnel barrier junction. Moreover, each of them couples

to two electron reservoirs. The electron reservoirs will be referred to as sources

S1 and S2 and drains D1 and D2 for QD1 and QD2, respectively. Such a system

is schematically drawn as a capacitor-resistor network in Fig. 9.1 (a). The QDs

are coupled capacitively to plunger-gates PG1 and PG2, which are indicated by

the capacitors CPG1 and CPG2. Thus, the total energy of the DQD system is

the sum of the individual dot energies U1(N) and U2(M), the mutual coupling

energy between the two dots, Um, and the electrostatic potentials resulting from

the voltages VPG1, VPG2, which are applied to the gates PG1 and PG2. The total

energy of the double dot system then reads [Ihn10]

EΣ(N,M) = U1(N) + U2(M) + Um(N,M) + f(VPG1, VPG2). (9.1)

The individual QD energies depend on the capacitances of the QDs within their

environment, which can be summarized as CΣ (a detailed derivation of the com-

position of CΣ can be found in [Ihn10]). U1, U2 are described by

U1(N) =
e2N2

2CΣ1

, (9.2)

U2(M) =
e2M2

2CΣ2

. (9.3)

The mutual coupling energy Um is calculated in a similar way. However, now

both occupation numbers N and M enter into the equation [Ihn10]

Um(N,M) =
e2NM

C̃m
. (9.4)

Note that the effective coupling capacitance C̃m is not identical with Cm, which

is associated with the inter-dot tunnel barrier in Fig. 9.1 (a), since C̃m, again, in-
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Figure 9.1: (a) Schematic picture of the DQD-system as a network of capacitors
Ci and resistors Ri. N and M denote the occupation numbers of QD1 and
QD2. Ohmic contacts S1,2, D1,2 couple to the QD-system via tunnel junctions.
Electrodes PG1 and PG2 couple to the respective QDs only through capacitors.
(b) Energy diagram of the DQD system. Electro chemical potentials of QD1 and
QD2 for different occupation numbers are indicated by black lines. The charging
energies E1, E2 of QD1, QD2 and the interaction energy Em are indicated.

cludes various capacitances affecting the energy of the system [Ihn10, vdWDE+03].

The influence of PG1 and PG2 follows the same principles as for a single QD sys-

tem (see Appendix C),

f(VPG1, VPG2) = eNα1VPG1 + eNβ1VPG2

+eMα2VPG2 + eMβ2VPG1. (9.5)

Here α1 denotes the direct coupling between QD1 and PG1, α2 refers to the

coupling between QD2 and PG2. However, because QD2 couples to both PG2

and QD1, the energy of QD1 is affected by the potential applied to PG2, leading

to an indirect coupling of QD1 and PG2. The same is true for PG1 and QD2.

This indirect kind of coupling is described by β1 and β2 in Eq. (9.5). [A detailed

derivation of β in terms of capacitances is given in Ref. [vdWDE+03].]

During part II of this thesis it has become clear that the electro-chemical potential

is crucial for charge transport because it defines the energy required for adding

to or removing an electron from the dot. For the DQD system this potential
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9. Fundamentals of Transport in Double Quantum Dots

can be calculated from the equations given above. In the following the notation

µ
(1)
N-1→N(M) will be used to denote the electro-chemical potential required for a

transition of QD1 from (N − 1) to N while keeping the occupation number M of

the other dot constant (and vice versa for QD2). Inserting Eqs. (9.2) - (9.5) into

Eq. (9.1), one obtains for the electro-chemical potential

µ
(1)
N-1→N(M) = EΣ(N,M)− EΣ(N − 1,M)

=
e2

CΣ1

(
N − 1

2

)
− eα1VPG1 − eβ1VPG2 +

e2

C̃m
M (9.6)

for adding the N th electron to QD1 and

µ
(2)
M-1→M(N) = EΣ(N,M)− EΣ(N,M − 1)

=
e2

CΣ2

(
M − 1

2

)
− eα2VPG2 − eβ2VPG1 +

e2

C̃m
N. (9.7)

for increasing the occupation number of QD2 from M -1 to M .

Equations (9.6) and (9.7) reveal that the electro-chemical potentials of the in-

dividual dots do not only depend on the individual occupation number (as it is

known from the single QD case), but also on the occupation number of the other

dot. Thus, an energy diagram follows for the DQD system as it is sketched in

Fig. 9.1 (b) for QD1 exhibiting N or N+1 electrons and QD2 exhibiting M or

M+1 electrons. It can be seen that each dot exhibits discrete energy levels corre-

sponding to different charge configurations. The energy required for the addition

of one electron to QD1 is denoted E1 and to QD2 by E2, analogous to the single

dot case. However, in addition to this kind of level quantization, the electro-

chemical potential for each single dot occupation number splits up into multiple

discrete energy states. These energy states arise from the mutual coupling of the

QDs leading to an energy level for each occupation number of the other dot, e.g.

(N, M -1), (N, M ) etc. for QD1. Inserting the corresponding occupation numbers

into Eqs. (9.6) and (9.7) we find that these levels are separated by an energy

quantum Em = ∆Um = e2

C̃m
. Note that, while generally E1 6= E2, Em is identical

for QD1 and QD2 [cf. Fig. 9.1 (b)].
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9.1. Linear Transport Regime

9.1.1 The Stability Diagram

For a single QD most transport properties can be displayed in a simple x-y di-

agram in which the x-axis represents the QD energy, (or, usually equivalently,

gate voltage) and the y-axis displays a physical quantity such as conductance,

thermopower etc. Although this simple x-y-representation works well for a single

dot, it is not sufficient to model a DQD because the total energy of a DQD sys-

tem is determined by two variables: the energies of QD1 and QD2. The values of

these energies are determined by the voltages applied to the plunger gates VPG1

and VPG2 in an experiment. Hence, a more complex representation of the system

is needed.

The model usually used is the so-called stability- or honeycomb-diagram. In such

a diagram the two gate voltages VPG1 and VPG2 span a 2D-plane and the physical

quantity of interest, e.g. conductance G, is plotted as z-parameter. For conduc-

tance, this distinguishes regions with fixed electron numbers (so-called stability

regions) that are separated by lines along which the occupation number of either

QD can fluctuate. Such a stability diagram is schematically shown in Fig. 9.2.

The axes indicate the direction towards less negative gate voltages. For strongly

negative VPG2 a variation of VPG1 tunes the system through the stability regions

(N -1, M -1), (N, M -1) and (N +1, M -1). Thus, two configurations occur, for

which the electro-chemical potential µ(1) is aligned with those in source (µS) and

drain (µD). The situations, in which the Coulomb blockade is lifted for QD1, are

indicated by solid lines. They correspond to conductance peaks in the single QD

conductance.

Tuning VPG2 towards less negative voltages shifts the solid lines towards more

negative VPG1. This is in agreement with Eqs. (9.6) and (9.7), because a less

negative energy of QD2 requires a more negative VPG1 to obtain the same con-

figuration of electro-chemical potentials for QD1. Hence, the interaction term in

Eqs. (9.6) and (9.7) causes the resonance condition for QD1 to shift continuously

with VPG2. As it is indicated exemplarily by A and B in Fig 9.2, the solid lines

exhibit dislocations at specific positions along VPG2. It can be seen that from B

the conductance resonance proceeds to continuously shift towards negative VPG1

again. Similar jumps occur whenever QD2 matches the condition µ(2) = µS2, µD2.

This causes M to change by one. Thus QD1 gains the energy quantum Em and

µ(1) exhibits the observed dislocation.
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9. Fundamentals of Transport in Double Quantum Dots

Analogous considerations apply to the resonance conditions for QD2. This be-

havior is indicated by dashed lines in Fig. 9.2. Together with the solid lines they

form a honeycomb-shaped structure: Within each honeycomb the DQD system

has a fixed occupation number (N, M ). Along the lines delimiting the honey-

combs the occupation number of one of the two dots can fluctuate.

A peculiar configuration occurs where two stability regions assemble along the

diagonal axis, indicated by dotted, blue lines in Fig. 9.2: here, the total occupa-

tion number of the system (N+M) is constant. Yet, the occupation numbers of

the individual dots can fluctuate such that one electron is transferred from QD1

to QD2 (and vice versa) and the transition, e.g. from the (N+1, M) stability

region to (N , M+1), takes place. Thus, along the dashed, blue lines the topmost

electron is shared by both QDs. This creates a two-level system which, under

certain conditions, may be viewed as a molecular-like state and gives rise to a

large number of fascinating phenomena including the formation of spin singlet-

triplet transitions or SU(4)-Kondo physics [BPH+98, GLK05, HCP+04, HD00,

HHWvK08, NKNV07, KBT+06, STAF09].

The precise shape of the honeycomb diagram is determined by the characteris-

tics of the DQDs. Hence, the diagram can be used to extract information like

the individual charging energies for QD1 and QD2 and their mutual interaction

energy. These characteristic energies can be determined in units of plunger gate

voltages by simply measuring the distances indicated by the red arrows shown

in Fig. 9.2. The gate voltage difference between two successive transitions e.g.

N − 1 → N and N → N + 1 (M − 1 → M and M → M + 1), called ∆V1

(∆V2), gives the charging energy for QD1 (QD2) in units of plunger gate voltage.

Accordingly, the interaction energy Em is gained from the gate voltage difference

between a conductance resonance and the extrapolation of a dislocated resonance

which gives ∆Vm1 (∆Vm2).

Stability diagrams resulting from experimental conductance data are shown in

Fig. 9.3. The DQD device for which they have been obtained can be represented

by the capacitor-resistor-network that has been introduced in Fig. 9.1. The data

are obtained for different experimental configurations, indicated in Fig. 9.3 (c).

Figure 9.3 (a) shows the honeycomb diagram for a measurement of the conduc-

tance GS1,D1 across QD1. White denotes regions of low conductance. Clearly,

only one “half” of the stability diagram (namely the solid lines from Fig. 9.2) is
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Figure 9.2: Schematic representation of a DQD stability diagram. The x- and
y-axis are given by the voltages applied to the plunger gates PG1 and PG2,
pointing from more to less negative voltages. For each charge-stable region the
corresponding occupation numbers for QD1 and QD2 are given in parentheses.
Black, solid lines indicate the conductance resonance conditions for QD1, black,
dashed lines denote resonance conditions for QD2. Blue, dotted lines show config-
urations where an electron can be transferred between both dots. ∆V1,2 indicate
the charging energy of QD1, QD2 and ∆Vm1,m2 is the mutual interaction energy
Em in terms of gate voltage.

85



9. Fundamentals of Transport in Double Quantum Dots

-0.12 -0.10 -0.08

-0.55

-0.50

-0.45

 

 

  
V

P
G

2
 /

 V

VPG1 / V 

0.0 0.1

(b) 

-0.14 -0.12 -0.10
-0.55

-0.50

-0.45

-0.40

 
 

 

 

0.0 0.3 0.5

V
P

G
2

 /
 V

VPG1 / V

(a) GS1,D2 / e²/h GS1,D1 / e²/h 

S1 

QD1 

QD2 

D1 D2 

PG1 PG2 

(b) 

(a) 

S2 
(c) 

Figure 9.3: Conductance stability diagram of a DQD device (a) measured in a
parallel and (b) in a serial configuration. The full honeycomb-diagram is shown
in fine, blue lines. (c) DQD as resistor-capacitor network, indicating the current
paths corresponding to the data shown in (a) (red) and (b) (blue).

visible: For µ(1) = µS1, µD1 high conductance is observed and for specific plunger

gate voltages VPG2, the conductance GS1,D1 exhibits the characteristic disconti-

nuity. Any direct contribution from QD2 to the conductance is suppressed.

However, Fig. 9.3 (b) shows a different pattern. Here, the DQD has been in-

vestigated in a serial configuration and the current through both QDs has been

measured. The stability diagram reveals that finite conductance is observed only

at distinct spots. They occur pairwise and correspond to those configurations

where solid and dashed lines intersect, i.e. where the electro-chemical potentials

of both QDs are aligned with those of source and drain. These so-called triple

points play an important role in electron transport in DQD. In the following they

will be discussed in more detail.
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9.1. Linear Transport Regime

Triple Points

In order for an electron to tunnel from source to drain across both quantum dots,

four states need to be degenerate: (i) QD1, (ii) QD2, (iii) the source and (iv)

drain reservoir. For the DQD system this requires the ability to fluctuate between

three charge states: (N,M), (N+1,M) and (N,M+1). Hence, configurations for

which this requirement is fulfilled are called triple points (TP). In the stability

diagram they are found at those spots where conductance resonances of both

dots intersect. Due to the inter dot coupling, such points occur pairwise, as it

can be seen e.g. in Fig. 9.3 (b). Two adjacent TPs will be called triple point

pair (TP pair) henceforth. To distinguish between the two TPs building a TP

pair, TP1 will denote the one at more negative gate voltages, i.e. with lower

occupation number, while TP2 will refer to the TP at less negative gate voltages

(see schematic in Fig. 9.4). In the following the transport cycle for electrons

moving from source to drain will be described in more detail for both TP1 and

TP2.

Figures 9.4 (a) and (b) depict the energy diagrams of the DQD system for the

transport cycles associated with TP1 and TP2. The relevant electro-chemical

potentials µ(1)(N,M) for QD1 and µ(2)(N,M) for QD2 are indicated. Solid lines

denote the electro-chemical potential corresponding to the current occupation

number while dotted lines represent electro-chemical potentials for other possible

occupation configurations. For simplicity each dot is assumed to exhibit either 0

or 1 electron. The transport cycle for TP1 is shown in Fig. 9.4 (a): If the chemical

potentials, required to add an electron to either of the dots [namely µ(1)(1, 0) and

µ(2)(0, 1)] align with µS and µD, it may happen that an electron tunnels from

the source contact onto QD1, indicated by a blue arrow in Fig. 9.4 (a) (i). Now

electrons in the drain reservoir need a larger energy to occupy QD2: the required

electro-chemical potential is µ(2)(1, 1) = µ(2)(0, 1)+Em, which cannot be supplied

by electrons from the drain. However, the electron on QD1 can tunnel onto QD2,

because the charge configuration after this tunneling process is (0,1) and hence

the energy of the electron residing on QD1 is sufficient. Thus, an electron transfer

from QD1 to QD2 is possible [Fig. 9.4 (a) (ii)]. After such a tunneling event the

electron now occupying QD2 can exit to the drain contact [Fig. 9.4 (a) (iii)].

This leaves both QDs unoccupied. Hence, their initial charge configuration is

re-established. The net result of this cycle is that an electron has been transfered
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9. Fundamentals of Transport in Double Quantum Dots

from the source to the drain contact.

The other transport channel, TP2, opens when µ(1)(1,1) and µ(2)(1,1) align with

µS and µD [Fig. 9.4 (b)]. In this case one electron is constantly trapped on

the DQD because µ(1)(1,0) and µ(2)(0,1) are both below the Fermi level of the

reservoirs. The electron can tunnel back and forth between QD1 and QD2 because

the electro-chemical potentials for a single occupancy of the DQD system are

aligned, like in the case for TP1. If it resides on, say, QD2 [Fig. 9.4 (b) (i)],

electrons in the source reservoir have enough energy to occupy the (1,1)-state

of QD1 and thus lift QD2 into the (1,1)-state too [Fig. 9.4 (b) (ii)]. Now the

electron occupying QD2 is no longer trapped on the DQD system and can exit to

the drain contact. This leaves the system in the (1,0)-state. Due to the alignment

of µ(1)(1,0) and µ(2)(0,1) the system may change its state to (0,1) by transfer of

an electron from QD1 to QD2 [Fig. 9.4 (b) (iii)]. This re-establishes the initial

configuration in Fig. 9.4 (b) (i) and the net result is, again, the transfer of an

electron from source to drain. These two transport processes of TP1 and TP2

described here are often referred to as electron-like process for TP1 and hole-like

process for TP2. However, to prevent possible confusion with electron-like and

hole-like thermopower, these expression will be avoided in this thesis.

When comparing the energy diagrams for TP1 and TP2 in Figs. 9.4 (a) and (b)

one finds that for both situations the relative positions of the various µ(1) and µ(2)

are identical. Only their positions compared to µS and µD have changed. This

transition from TP1 to TP2 (and vice versa) corresponds to a line connecting

the two adjacent triple points in the stability diagram. Along this direction both

VPG1 and VPG2 are tuned simultaneously in such a way that the level alignment

of the DQD system remains unchanged. Only its total energy is varied. It is

therefore useful to distinguish this direction in the honeycomb diagram from

other directions. This so-called axis of total energy is denoted ε in the schematic

in Fig. 9.4 (c). The orthogonal direction, labeled δ, is often called detuning axis.

Along this line the total energy of the DQD system is constant while the energy

levels of the individual QDs are shifted with respect to each other.

Finite Inter-Dot Tunnel Coupling

The discussion of the transport processes at the triple points has elucidated the

importance of the degeneracy of the energy levels µ(1)(N , M -1) and µ(2)(N -1,M).

88



9.1. Linear Transport Regime

(0,0) 

(1,0) 

(0,1) (1,1) 

EC 

TP2 

t 

t 

TP1 

e d 

µ1(1,0) 

µ1(0,0) µ2(0,0) 

µ2(0,1) µ1(1,0) 

µ2(0,1) 

µ1(0,1) 

TP1 

µ1(1,1) 

µ2(0,1) 

µ1(0,1) 

µ1(1,1) 

µ1(1,0) µ2(0,1) 

µ2(1,1) 

µ2(1,0) 

TP2 
(i) 

(ii) 

(iii) 

(i) 

(ii) 

(iii) 

µ2(0,1) 

µ2(1,1) µ1(1,1) 

µ1(0,1) µ2(1,0) 

QD1 QD2 

µS µD 

VPG2 

VPG1 

µ+ 

µ- 

(b) (a) 

(c) 

Figure 9.4: Detailed representation of the region of the triple points for occupa-
tion numbers (N+M) = 0, 1 or 2. (a) energy diagram for the transport cycles of
TP1 and (b) for TP2. Blue arrows indicate tunnel processes of electrons. Solid
lines denote the chemical potential of the dots corresponding to the current oc-
cupation number, dotted lines indicate µ for possible occupation configurations.
(c) Schematic of the corresponding stability regions. TP1 and TP2 are indicated
by red circles. Gray lines indicate the stability diagram for finite inter dot tun-
nel coupling t. ε and δ denote the axis of total energy and the detuning axis,
respectively.
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9. Fundamentals of Transport in Double Quantum Dots

It has turned out that this is a crucial requirement for a direct transfer of an

electron from one QD to the other. Yet, another important requirement, namely

the finite inter-dot tunneling probability t, has only been incorporated trivially

by allowing for particle exchange between QD1 and QD2. However, a finite

inter dot tunnel coupling may also have a strong influence on the energies of the

DQD states: quite generally, a quantum mechanical treatment of two degenerate

states which are tunnel-coupled results in a splitting into two different states,

one at higher and one at lower energy. In the physics of atoms and molecules

this produces states of binding and anti-binding character. A similar kind of

splitting is also known to occur in two-QD-systems with finite tunnel coupling.

In order to understand the resulting effects in greater depth, a brief discussion of

the underlying mechanism follows.

For convenience, the DQD is assumed to be empty initially, which defines a

zero energy state (ε(0e) = 0). Next, a single electron is added (N + M = 1).

The corresponding tunneling hamiltonian in the basis Ψ1,Ψ2, representing the

probability distribution for the electron to be found on QD1 or QD2, then reads

[CT77]

Ht =

(
ε1 t

t∗ ε2

)
(9.8)

where t denotes the inter dot tunnel coupling and ε1,2 the eigenvalues of Ψ1,2 for

t = 0, i.e. the QD energy levels if tunnel coupling is suppressed. Diagonalization

of the above hamiltonian yields the eigenvalues

ε± = ε± 1

2

√
4t2 + δ2, (9.9)

where ε =
ε1 + ε2

2
and δ = ε1 − ε2,

with the corresponding eigenfunctions Φ+ and Φ−. Due to the close analogies to

molecular states, ε− will be called the “binding” state, while ε+ will be referred

to as “anti-binding”.
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9.1. Linear Transport Regime

If a second electron is added, the total energy of the DQD system becomes [Ihn10]

ε(2e) = 2ε+
e2

C̃m
(9.10)

and thus the corresponding electro-chemical potentials for adding the first and

the second electron can be calculated:

µ− = ε− − ε(0e) = ε− 1

2

√
4t2 + δ2, (9.11)

µ+ = ε(2e) − ε− = ε+
1

2

√
4t2 + δ2 +

e2

C̃m
. (9.12)

For t = 0 and δ = 0 Eqs. (9.11) and (9.12) recover the previously obtained results:

the energies required to add one (µ−) and two (µ+) electrons are separated by an

energy quantum EC = e2

C̃m
, representing the capacitive interaction between the

two QDs. For finite t (and still δ = 0), the energy difference further increases: µ−

is lowered by t while µ+ is increased by the same amount. Their total separation

then is Em = EC + 2t.

In Eq. (9.9), δ is defined as the energy difference between QD1 and QD2. Thus,

for δ = 0 the energy levels of QD1 and QD2 are aligned. If δ 6= 0, this align-

ment is broken and the energy levels of the two QDs become detuned. If this is

done in such a way that ε = ε1+ε2
2

is kept constant, it precisely corresponds to

the above definition of the detuning axis δ in the stability diagram [Fig. 9.4 (c)].

Correspondingly, ε is identified with the axis of total energy. For large detuning

(δ � t) the second term in Eqs. (9.11) and (9.12) becomes δ/2 and thus, the

DQD energies without tunnel coupling ε1 and ε2 + e2

C̃m
are recovered from µ− and

µ+.

Including finite inter dot tunnel coupling in the stability diagram yields the

schematics shown in Fig. 9.4 (c). Gray lines indicate µ+ and µ−, black lines

show the electro-chemical potentials for t = 0. It can be seen that µ+ and µ−

exhibit a characteristic anti-crossing at the triple points. Here, at δ = 0, the

deviation from t = 0 is largest. Increasing δ causes the gray lines to approach

µ(t = 0) until for δ � t they merge with the original borders of the honeycombs.

Note that the changes of the stability diagram point out a way to experimentally
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9. Fundamentals of Transport in Double Quantum Dots

quantify the parameters t and EC by simply extrapolating the lines denoting the

stability regions of the honeycomb diagram towards the region of the TPs. The

distances between the intersections of the extrapolations and the measured con-

ductance maximum then equals the inter dot tunnel coupling t (c.f. dotted lines

in Fig. 9.4).

Finally it is worthy to note that additional electro-chemical potentials actually

exist between the two TP. These are given by (ε+ − ε(0e)) and (ε(2e) − ε+). The

first case corresponds to the addition of the first electron directly into the anti-

binding state. The second one identifies the addition of the second electron while

the anti-binding state is occupied. Both transitions require the population of an

excited state and thus, they do not appear in the stability diagram of the linear

transport regime. However, they can be detected using excited state spectroscopy

[OFV+98, HLL+05].

9.2 Non-Linear Transport Regime

For the characterization of single QDs the differential conductance dI/dVSD is a

valuable tool [cf. Appendix C]: the well-known Coulomb diamonds which result

from such measurements can be used for excited state spectroscopy and they

even reveal more exotic effects like spin-blockade [WHK95]. Moreover, dI/dVSD

enables the determination of the conversion factor α, which relates the plunger

gate voltage to an energy scale. For a serial DQD system however, measuring

a Coulomb diamond is quite challenging. It requires a simultaneous tuning of

both plunger gate voltages, such that the energy of the system varies along the

ε-axis, exactly intersecting the triple points. A more convenient way to study

the non-linear transport regime is to record the stability diagram in the vicinity

of a TP pair for a fixed, well known DC-bias. Data from such a measurement is

shown in Fig. 9.5 (a) for VSD = 440 µV. It can be seen that the dI/dVSD shows a

triangular pattern where each triangle stems from a TP, positioned at a corner of

the triangle. In order to understand the observed signal, the adjacent schematic

in Fig. 9.5 (b) and the cartoon in (c) are discussed: The schematic shows the TP

pair region of a stability diagram. Black lines denote the borders of the linear

transport stability regions for small inter dot tunnel coupling (t� EC). dI/dVSD

is indicated for a fixed VSD in red color while solid lines identify a forward (pos-
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Figure 9.5: (a) dI/dVSD of TP stability region for VSD = 440 µV for a serial
DQD. δV1,2 describe the dimensions of the triangles resulting each from a TP.
Inset: data for same stability parameters as Fig. 9.3 (b). γ1,2 indicate lines inside
the triangles resulting from excited states. (b) Schematic of a dI/dVSD stability
diagram for smaller VSD. Solid, red lines correspond to VSD > 0 as it is the
case in (a). Dashed, red lines refer to VSD < 0. The numbers 1-4 indicate the
configurations of electro-chemical potentials depicted (c).

itive) and dashed lines a reverse (negative) VSD. Numbers 1-4 mark positions

where the electro-chemical potentials are aligned corresponding to the cartoons

in (c). Here, for simplicity the energy levels associated with the other TP are

omitted.

Position 1 corresponds to the original triple point of the linear transport stability

diagram, where µ(1), µ(2) both align with µS. However, in the drain reservoir all

states are occupied due to the applied VSD. In 2 QD2 has been tuned so that it

aligns with µD while QD1 is kept at a constant energy. 3 identifies the situation

where QD1 and QD2 both align with µD. These three configurations enclose the

triangular region in the stability diagram where transport across the system via

elastic as well as inelastic tunneling processes is enabled [vdWDE+03]. Cartoon

4 depicts a situation where an electron is trapped on QD2. Thus, transport is
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9. Fundamentals of Transport in Double Quantum Dots

blocked and the signal within the region of the red, dashed triangle in (b) is

suppressed. Inverting VSD changes the situation so that configuration 4 becomes

conducting while 2 blocks transport. This leads to an inversion of the triangular

structure in the honeycomb diagram.

Excited states that originate from quantum confinement of the individual dots

appear within the triangles in the dI/dVSD stability diagram as distinct lines

running parallel to the ε-axis as indicated in Fig. 9.5 (a) by dotted lines denoted

γ1 and γ2.

The dimensions of the triangular regions in the honeycomb diagram are given by

[vdWDE+03]

α1δVPG1 = |eVSD|,

α2δVPG2 = |eVSD| (9.13)

as shown in Fig. 9.5. Because VSD is an experimental parameter, Eqs. (9.13)

conveniently allow α1,2 to be determined so that voltage differences of the stability

diagram can be related to energies.
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Chapter 10

Thermopower of a

Tunnel-Coupled Double

Quantum Dot

As pointed out in the introduction, Chapter 8, to this Part III, there is a large

discrepancy between theoretical and experimental efforts in studying the ther-

mopower of two tunnel-coupled QDs. While theoretical treatments have ad-

dressed a large number of problems associated with the thermoelectric properties

of such a DQD system, there are no experimental thermoelectric characteriza-

tions available up to now.

In this chapter, first experimental data are presented that provide information

about the basic thermoelectric properties of a serial, tunnel-coupled DQD. Follow-

ing the description of the sample layout, a discussion of the conductance charac-

terization of the DQD system is given. Then, the thermopower stability diagram

is presented. Its discussion focuses on two regimes: First, the thermopower in

the region of the triple points is discussed and compared to theoretical considera-

tions. The experimental data in this regime show good agreement with Mott’s law

and can be understood in a simple picture of sequential transport. Second, the

regime of strong detuning is investigated and the dependence of the thermopower

on the individual QD energies is discussed. Again, the results are consistent with

the Mott-thermopower. In addition, a theoretical model of molecular states is

presented which explains the experimental observations intuitively. Finally, the

theoretical considerations for both regimes are combined in order to obtain a
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Figure 10.1: SEM-micrographs of a DQD structure similar to the one used in this
chapter. Regions of dark gray indicate conductive areas. They act as electron
reservoirs and are labeled with numbers 1 to 4. The gate electrodes under which
the 2DEG can be depleted appear in bright gray and they are denoted with letters
A to F, P1 and P2. (a) Larger section of the sample showing the heating channel
with QPC and DQD-system on either side. (b) Closeup of the DQD structure.
QD1 and QD2 identify the individual dots of the DQD system.

microscopic model for a full honeycomb cell. Parts of this chapter have been

published in Ref. [THK+13].

10.1 Sample Design and Characterization

In order to investigate the thermopower arising from two tunnel-coupled QDs, a

sample is processed similar to the one shown in Fig. 10.1. As a 2DEG the ma-

terial of choice is HAMBURG 1472 (cf. Appendix A). Figure 10.1 (a) shows a

SEM-picture of the gate structure. The gate electrodes are labeled with letters A

to F. Gates A, B, E and F form the heating channel, called reservoir 1 henceforth.

It couples to reservoir 4 through the 1-dimensional constriction (QPC) created

by gates E and F. By setting the voltages applied to these gates the conductance

of the QPC is adjusted to 10 e2/h for all experiments described in this chapter.

The DQD system is located opposite to the QPC. It is formed by the gates A,

B, C, D and P1.

In Fig. 10.1 (b) the DQD system is labeled QD1 and QD2 identifying each single
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Figure 10.2: Stability diagram for the conductance G1,3. N and M identify the
occupation numbers of QD1 and QD2. The dash-dotted (dashed) lines indicate
configurations where only QD1 (QD2) is in resonance with the reservoirs. ε
denotes the axis of constant energy of one TP pair along which the QD states
stay aligned and are shifted parallel in energy.

QD: QD1 exhibits three tunnel junctions. One is created by gates A and B. It

couples QD1 to the heating channel, reservoir 1. The second one can be tuned

by the voltages applied to gates D and C. It connects QD1 to a cold reservoir,

labeled 2 in Fig. 10.1 (a). The third tunnel junction controls inter dot particle

exchange between QD1 and QD2. This tunnel barrier can be adjusted by vari-

ation of the voltages applied to gates B and D. QD2, in contrast, only exhibits

one tunnel junction, in addition to the inter dot tunnel barrier. It couples QD2

to a cold lead, reservoir 3, and its thickness can be varied by the voltages applied

to gates B and D. In order to investigate transport across the DQD system in a

serial configuration, one should ensure that the influence of lead 2 on transport

is suppressed. This is done by tuning the tunnel junction CD to pinch off so

that G1,2 ≈ 0.001 e2/h. This is negligible compared to the conductance between
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Figure 10.3: (a) Conductance stability diagram of a double quantum dot in a se-
rial configuration showing the gate voltages extracted for Coulomb peak spacings
and mutual coupling of QD1 and QD2. (b) dI/dVSD for a section of (a) with
applied bias V1,3 = 230 µV.

reservoirs 1-3, which is typically G1,3 ≈ 0.3 e2/h at conductance maxima.

The energy of the individual dots can be changed by the plunger-gate voltages

applied to P1 for QD1 and P2 for QD2. In order to estimate the occupation

number of each dot we calculate the number of electrons residing in an area de-

fined by the lithographical dimensions of each QD (250 nm × 250 nm) from the

electron density n of the 2DEG. We need to take into account that due to the

distance of 92 nm between surface and 2DEG the gate pattern smears out when

it is transferred to the 2DEG. This slightly reduces the effective QD size and

leads to an estimate for the electron number of N < 100 on QD1 and M < 100

on QD2.

All measurements are performed in a top loader dilution refrigerator at base

temperature (Tbase < 70 mK). The conductance characterization of the DQD is

carried out by using an excitation voltage VAC = 5 µV at a frequency f = 19 Hz

which is applied between reservoirs 1 and 3.

Figure 10.2 shows the stability diagram, displaying the conductance G1,3 in a

gray scale plot as a function of plunger-gate voltages VP1 and VP2. Dark colors

represent high conductance. Dashed-dotted and dashed lines indicate configura-

tions for which only QD1 and QD2 are in resonance, respectively. The stability

regions are labeled with the occupation numbers of the individual dots, ranging
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from N to N+1 for QD1 and from M -1 to M+1 for QD2. In agreement with

the considerations from Chapter 9, highest conductance is observed at the triple

points (TPs) where both dots are tuned into resonance with the reservoirs. In

order to extract the characteristic energy scales of the system, the differential

conductance dI/dVSD is measured in the parameter region of a TP pair for a

dc-bias VSD = 230 µV applied between reservoirs 1 and 3. The resulting data are

shown in Fig. 10.3 (b). The characteristic triangular shaped regions of conduc-

tance are clearly visible. Following the descriptions from Chapter 9, we obtain

δV1 = 19.5 mV, δV2 = 45.0 mV. Applying Eq. (9.13) yields the conversion

factors α1 = 0.0112 e for QD1 and α2 = 0.0051 e for QD2. Together with

∆V1 = 0.043 V and ∆V2 = 0.102 V [see Fig. 10.3 (a)], these results give the

single dot charging energy E1 = 0.5 meV for QD1 and E2 = 0.5 meV for QD2.

From the separation of the triple points the mutual coupling of QD1 and QD2

is identified: Em ≈ 140 µV. In order to estimate the inter dot tunnel coupling

t, the anti-crossing of the conductance maxima of the triple points is determined

as described in Chapter 9. This yields t = 20 − 40 µeV. Although this method

allows only a rough estimate to be made, a comparison of this estimate to the

total coupling energy Em shows that the influence of t on the QD energy states

can not be neglected.

This observation is also evident from the lines delimiting the honeycombs: For

weak tunnel coupling, these lines are expected to be suppressed and fade quickly

as one moves away from the triple point. The fact that they are indeed visible in

Fig. 10.2, is an indication for enhanced co-tunneling currents across the device

which require a significant inter dot tunnel coupling [GSL+08]. In Fig. 10.2 the

axis of total energy, ε, is indicated by an arrow.

10.2 Thermopower Stability Diagram

For thermopower measurements we use a heating current frequency f = 19 Hz

and an amplitude of heating current Iheat = 22 nA which corresponds to a tem-

perature difference of ∆T ≈ 20 mK (cf. Chapter 2). The resulting thermovoltage

Vth is detected between reservoirs 4 and 3.

Figure 10.4 displays Vth in a color scale plot for the same stability parameters as

the conductance characterization. It can be seen that in the vicinity of the lines
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Figure 10.4: Thermovoltage stability diagram for the same parameters as in
Fig. 10.2. Data taken for Iheat = 22 nA (∆T ≈ 20 mK). The arrow denoted ε
indicates the axis of total energy.

delimiting the stability regions [indicated by dashed and dashed-dotted lines, cf.

Fig. 10.2], Vth exhibits positive and negative voltages of up to 5 µV. Moreover, dis-

tinct lines of Vth = 0 are observed, which seem to retrace the honeycomb pattern.

However, before discussing the thermovoltage stability diagram in greater detail,

we will first verify the heating current dependence of the detected voltage signal.

Signal Dependence on the Heating Current Iheat

Figure 10.5 (a) shows the thermovoltage stability diagram for a higher heating

current (Iheat = 44 nA). Obviously, the honeycomb structure is still visible and

the pattern originating from the lines for which Vth = 0 has not changed. Because

the temperature difference is enhanced due to the higher heating current, thermo-

voltages of up Vth = 15 µV are observed. Figure 10.5 (b) compares several traces
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Figure 10.5: (a) Thermovoltage stability diagram for Iheat = 44 nA. (b) Traces
for constant VP2 extracted from stability diagram [white dashed lines in (a)]. Red
squares: Iheat = 44 nA, black triangles: Iheat = 22 nA. Note that the data for
Iheat = 22 nA are multiplied by a factor 3.

of thermovoltage for different VP1 extracted from Fig. 10.4 and Fig. 10.5 (a). Note

that the data for Iheat = 22 nA are now scaled by a factor 3. It can be seen that

both data sets show the same features and do not differ significantly. Because

from the definition of the thermopower Vth is expected to scale linearly with ∆T ,

we can estimate the temperature difference created by Iheat = 44 nA from the

observation that Vth(44 nA) ≈ 3× Vth(22 nA). This yields ∆T (44 nA) ≈ 60 mK

which is consistent with results obtained from QPC thermometry (cf. Fig. 2.1 in

Chapter 2). Hence, we conclude that the observed signal is truly temperature de-

pendent and is not distorted by unwanted contributions possibly originating from

rectification effects, parasitic capacitances of the experimental setup or time de-

pendent drift of structure defining electrostatic potentials. It is emphasized that

the features shown in the diagrams in Figs. 10.4 and 10.5 are very stable and

reproducible, even if ∆T is changed through variation of Iheat.

10.3 Discussion

When studying the thermovoltage stability diagram in Fig. 10.4 more closely, two

main observations attract attention: 1. Features which give rise only to a weak
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conductance signal show a strong thermovoltage (cf. Figs. 10.2 and 10.4). This

is the case, for example, along the lines delimiting the honeycombs. Here one ob-

serves positive and negative contributions of Vth which resemble the thermopower

signal of a single QD [SNK+07]. 2. Another striking feature is the pronounced

structure of positive and negative thermovoltage around each pair of TPs and in

particular in between two adjacent TPs.

10.3.1 Thermopower of the Triple Points

For a detailed analysis of the thermopower arising in the region of the triple

points, we extract the thermovoltage data along the ε axis for all 6 TP pairs

shown in Fig. 10.4. In a first approximation, α1 and α2 can be used to con-

vert the voltage axis into the appropriate energy scale, using the relation ε =√
(α1∆VP1)2 + (α2∆VP2)2. The result is given in Fig. 10.6 (a): The thermovolt-

age shows a characteristic line shape which is similar for all TP pairs.

As an example, Fig. 10.6 (b) compares the thermovoltage and conductance data

along the ε- axis for TP e [see inset of Fig. 10.6 (a)]. ε = 0 is defined at the

center between the two TP conductance peaks [(I) in Fig. 10.6 (b)]. Note that

ε increases with decreasing gate voltages as indicated by the arrow in Fig. 10.2

and the inset of Fig. 10.6 (a). For increasing ε, the thermovoltage first decreases,

reaching a minimum at ε = 0.05 meV (II) and then becomes positive at ε = 0.07

meV. It increases (III) until it reaches a maximum of +4.0 µV and then decays

until it becomes zero again for ε > 0.25 meV. For negative ε we observe the same

behavior but with an inverted sign (IV). The sign changes occur at the maxima

of G and at ε = 0.

The variation of Vth can be explained as follows: From Eq. (1.11) we understand

that Vth is related to the average energy of the charge carriers contributing to

transport with respect to the Fermi level. At ε = 0 the system is in a symmetric

state, i.e. the two triple points TP1 and TP2 are energetically located symmetri-

cally around the Fermi level of the reservoirs [cf. Fig. 10.7 (I)]. Consequently, any

temperature driven currents across the DQD cancel out. These currents consist of

electrons moving from the hot to the cold reservoir involving energy level TP2 and

energy level TP1 for electrons transferred in the opposite direction. The average

energy of the charge carriers equals the chemical potentials in the reservoirs and

therefore the system remains in a steady state with Vth = 0. Rising or lowering
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Figure 10.6: (a) Vth extracted for all TP pairs from the thermovoltage stability
diagram along the respective ε-axis. ε = 0 was chosen to be at the center of the
TP pair. (b) Top panel: Conductance G. Experimental data for TP pair e
(open squares) and model calculation (red, solid line, see text). Bottom panel:
Thermovoltage Vth data for TP pair e (black triangles). Dashed, blue line: Mott-
thermopower calculated from the conductance data and Eq. (1.13) for ∆T =
12 mK. Solid, red line: Model calculation for Vth (see text). Roman numbers
indicate energetic configurations of the DQD system as shown in Fig. 10.7.

ε breaks this symmetry. For small ε > 0, TP1 approaches the Fermi level, while

TP2 is moved further away. This leads to an enhanced charge transfer across

TP1 while reducing currents via TP2. Hence, a net electron drain from the cold

reservoir to the hot causes the chemical potential of the cold reservoir to decrease

until a current equilibrium is re-established [Fig. 10.7 (II)] which gives rise to a

negative thermovoltage signal. A further increase of the electrostatic energy of

the system, ε > 0.07 meV, shifts both TPs above the Fermi level [Fig. 10.7 (III)].

In this regime only hot carriers contribute to charge transport, which raises the

chemical potential of the cold reservoir and leads to a high thermovoltage signal.

For ε > 0.18 meV the transmission probability for hot carriers decreases and

the thermovoltage signal approaches zero. For ε < 0, the mechanisms are the

same with inverted symmetry so that, for example, in the case of ε = -0.15 meV

[Fig. 10.7 (IV)], transport is only possible for electrons from the cold to the hot

reservoir until a steady state is reached, which results in a negative thermovoltage
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Figure 10.7: Energetic positions of the DQD resonances TP1 and TP2 for various
ε as indicated in Fig. 10.6 (b). Left column without, right column with built up
thermovoltage.

signal.

The observed line shape resembles the derivative of G indicated by the Mott-

relation Eq. (1.13). To verify this assumption we calculate the Mott-thermopower

from the conductance data for an electron temperature T = 230 mK, which is

obtained from sequential tunneling fits (cf. next section). The smoothed result

is shown in Fig. 10.6 (b) (dotted, blue line). Clearly, the line shape is recovered

and even quantitative agreement with the experimental data is obtained if the

thermovoltage is calculated for ∆T = 12 mK.

104



10.3. Discussion

Model Calculations

For a single QD the conductance and the thermopower can be modeled accord-

ing to the orthodox linear response model introduced by C.W.J. Beenakker and

A.A.M. Staring [BS92]. Within this model, a single conductance resonance is

described by

G =
e2

h

1

4kT

Γ1Γ2

Γ1 + Γ2

−ε/kT
sinh(−ε/kT )

(10.1)

where ε is the position of the resonant energy level and Γ1,Γ2 are the transmission

coefficients of the tunnel barriers to the leads; k is the Boltzmann constant and T

is the base temperature of the system. In a most simple model, transport across a

DQD is assumed to be comparable to a single QD. This assumption disregards the

fact that resonant tunneling through two states needs to take place and, moreover,

it neglects any contributions of the third tunnel barrier, which can affect the

line shape of the conductance resonance considerably [vdVGN+95]. However,

this single dot approximation is motivated by a relatively strong inter dot tunnel

coupling observed in the conductance stability diagram. G can then be calculated

simply by a superposition of two resonances at ε = ±70 µeV representing TP1

and TP2, respectively. [It is recalled that the total separation between TP1

and TP2 is Em = 140 µeV.] In order to take into account the fact that TP2 is

only relevant if TP1 is already occupied, Fermi-Dirac statistics f (ε) need to be

included as a factor for the individual occupation probabilities. Using Γ1 and Γ2

as fit parameters for the amplitudes and the temperature T for the FWHM, one

obtains the solid, red line in the top panel of Fig. 10.6 (b) with Γ1,2 = 52 µeV

and T = 230 mK. Black squares indicate the experimental data for G extracted

from Fig. 10.2. The data reveal a good agreement between experiment and model

calculations.

For the thermopower the relevant Casimir-Onsager transport coefficient is [BS92]

L12 =
1

2

ek

h

1

4kT

Γ1Γ2

Γ1 + Γ2

(ε/kT )2

sinh(−ε/kT )
. (10.2)

Together with Eq. (10.1) this yields S = −L12/G. Vth is then obtained by convert-

ing S for ∆T = 20 mK. To account for leakage currents and higher order transport
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processes, a background conductance Gho = 0.005 e2/h is added. The result of

the model calculation for Vth is shown in the bottom panel in Fig. 10.6 (b) (solid,

red line). Clearly, the model reproduces the thermovoltage data qualitatively

very well. Also quantitatively it predicts the amplitudes of the thermovoltage

oscillations correctly. Significant quantitative deviations from the experiment are

observed far away from the TP resonances along the ε-axis where Vth decays to

zero. Here the model gives too large thermovoltages. In this regime, higher order

tunneling processes are known to cause Vth to decrease. However, these processes

have not been explicitly incorporated into the model. The simple addition of a

background conductance is obviously not sufficient to capture the full impact of

higher oder tunneling processes in this regime. Hence, this can explain the strong

deviations of the experimental results from this simple model.

10.3.2 Thermopower in the Regime of Strong Detuning

In the previous section the thermopower in the region of the triple points has

been discussed, which is characterized by a configuration for which both QDs are

tuned in resonance with the leads. Thus, the axis of total energy ε played an

important role because along this direction the two quantum dots can be viewed

as one DQD system.

In contrast, along the detuning axis δ the chemical potentials of the individual

QDs are tuned away from each other, which results in a stronger localization of

electrons on the individual dots. Hence, the single dot properties of QD1 and

QD2 are expected to become dominant with increasing δ and molecular states

effects become suppressed. For the conductance, this leads to a suppressed signal

along the lines delimiting the honeycombs. Even though one QD is in resonance

with one of the leads, no transport channel exists at the Fermi energy EF. This

is due to the Coulomb blockade of the other dot. Thus, conductance across the

DQD is suppressed. However, thermopower S is known to provide information

about the energy spectrum of a nanostructure even though transport may be

blocked at the Fermi energy. This has been exploited extensively for single QDs

in Part II of this thesis and it is based on the fact that S is highly sensitive to

the energetic symmetry of transport through a device with respect to EF.

Indeed, the thermopower stability diagram in Fig. 10.4 reveals significant ther-

movoltage outside the region of the triple points where the conductance stability
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Figure 10.8: (a) Conductance (top panel) and thermovoltage (bottom panel)
at VP2 = −0.2306 V for variation of VP1. Black squares indicate experimental
data, dashed blue line denotes thermovoltage after Mott for ∆T = 12 mK. (i)-
(iii) correspond to energy level configurations as shown in the cartoon in (b).
Here black, dotted lines indicate finite inter-dot tunnel coupling. The Fermi level
(bright gray) is labeled EF.

diagram provides only poor information. Hence, S appears to be a useful tool to

study the energy levels of the DQD system in this regime of detuning. Moreover,

it might provide information about how the DQD states are affected by the inter

dot tunnel coupling t and by a variation of the individual QD energies.

As an example, the following discussion concentrates on the transition from the

(N , M) to the (N+1, M) stability region, indicated by the dashed-dotted line

in Figs. 10.2 and 10.4. According to Chapter 9, the electro-chemical potential

µ
(1)
N→N+1(M) of QD1 is constantly aligned with EF in the reservoirs along this line.

QD2 is tuned through a full stability region with occupation number M . In the

following the thermoelectric response to tuning the individual dots is analyzed.

Thermoelectric Response to changes in QD1

Figure 10.8 (a) depicts the conductance (top panel) and thermovoltage (bottom

panel) extracted from the stability diagrams for the transition from (N,M) to

(N+1, M) at fixed VP2 = −0.2306 V. At this gate voltage, QD2 is tuned to an

approximately symmetric off-resonant configuration [i.e. in the stability diagram
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half way between two TP pairs along the VP2-axis, see also Fig. 10.8 (b)]. Along

the VP1-axis, QD1 undergoes the transition N → N+1. The conductance peak

associated with this transition is shown in the top panel of Fig. 10.8 (a). As ex-

pected, its amplitude is very small, Gmax ≈ 0.015 e2/h. The line shape resembles

that of a single QD resonance.

The corresponding thermopower generates a voltage amplitude of ±1 µV, as

shown in the bottom panel of Fig. 10.8 (a) (black squares). Vth has a distinct

line shape that also resembles the one observed in weakly coupled single QDs

(cf. Ref. [SNK+07] and Section 1.3): It exhibits a point-symmetric behavior with

respect to the position of the conductance peak. In close vicinity to this point,

Vth changes linearly with gate voltage. It reaches a positive maximum for more

negative VP1 and a negative maximum for less negative VP1. Beyond the peaks,

it decays to zero.

In Fig. 10.8 (a) certain gate voltages are highlighted by arrows (i), (ii) and (iii).

In Fig. 10.8 (b) the corresponding energy diagrams are shown. Here, the level

splitting due to capacitive interaction is omitted for simplicity. At (ii), QD1 is

tuned in resonance with EF of the hot reservoir. This corresponds to a maxi-

mum for G and to Vth = 0. Obviously, small currents can leak through QD2

despite Coulomb blockade if µ(1) is aligned with EF. According to Gustavsson

et al. [GSL+08] this can be described by second order co-tunneling through the

off-resonant QD if detuning is large and finite inter dot tunnel coupling is present.

A requirement for these processes to occur is that one of the two dots is tuned

in resonance with EF of the leads. Conductance becomes suppressed if both dots

are in the Coulomb blockade regime. This is in agreement with Fig. 10.8 (a)

where G strongly decreases for a small variation of VP1, i.e. for tuning QD1 out

of resonance.

Making VP1 more negative shifts µ(1) above EF. In the thermopower experiment

this leads to an electron-like signal, which is consistent with the observations

in section 10.3.1. Accordingly, less negative VP1 yields hole-like thermovoltage.

Thus, we infer that transport across the device is dominated by the energetic

position of µ(1). This is further confirmed by calculating the Mott-thermopower

[Eq. (1.13)] from the conductance data. Since Mott relates S to the energy de-

pendent transmission we expect good agreement with the experiment if transport

is dominated by QD1, i.e. if changing the energy of QD1 represents the change
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of the total energy of the system in a good approximation. The result is shown in

Fig. 10.8 (a) as a dashed, blue line. It clearly yields qualitative agreement with

the experimental data. A quantitative evaluation, however, gives a too large ther-

movoltage for SMott when ∆T = 12 mK is assumed, based on the results of the

previous Section 10.3.1. Still, qualitatively, it is evident that the thermovoltage

signal is directly related to the measured conductance resonance, and hence the

thermoelectric response is dominated by QD1 in this regime.

Thermoelectric Response to changes in QD2

We now turn towards the question of how transport is affected by a variation

of QD2. In order to do so, data for G and Vth are extracted along the dashed-

dotted line indicated in the respective stability diagrams (Figs. 10.2 and 10.4)

corresponding to the same transition (N+1, M) → (N , M) as discussed in the

previous section for QD1. Along this direction QD2 is tuned through one full

stability region with electron number M while QD1 remains aligned with EF in

the leads. Hence, along this line the energy difference between QD1 and QD2 is

varied, which thus corresponds to a variation of the detuning parameter δ. Fig-

ure 10.9 (a) gives the extracted data for conductance G and (b) for thermovoltage

Vth (both black squares). The data are plotted against VP2.

G exhibits maxima at VP2 = −0.3 V and VP2 = −0.15 V which correspond to

the TPs. At the TP for more negative VP2 values, QD2 changes its occupation

number M -1→ M , while at the resonance for less negative VP2 values, QD2 ex-

hibits the transition M → M+1. In between these two TPs, G strongly decays

with minimal conductance of G ≈ 0.01 e2/h for VP2 = −0.225 V. Note that

this is the region where the response to QD1 has been studied in the previous

section. Correspondingly, for the thermovoltage in Fig. 10.9 (b), Vth = 0 close to

VP2 = −0.225 V. At the TPs, Vth = 0, too. In between, Vth < 0 for more negative

VP2 values. Around VP2 = −0.225 V, thermovoltage changes sign. If VP2 is tuned

towards less negative voltages, Vth > 0. Figure 10.9 (c) sketches configurations

of the electro-chemical potentials for the individual QDs, labeled (i)-(iii). They

correspond to the positions that are denoted accordingly in Figs. 10.9 (a) and

(b). (i) and (iii) indicate the configurations of the TPs, (ii) depicts the energy

levels for finite detuning δ. At (i) and (iii), Vth = 0 due to high transmission at

EF (cf. Section 10.3.1). However, at (ii) the experiment gives a hole-like ther-
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Figure 10.9: (a) Conductance G of the DQD along the line separating the (N ,M)
from the (N+1,M) stability region plotted against VP2. Black squares indicate
experimental data extracted from Fig. 10.2. Solid, red line: Model calculations
according to Eq. (10.8). (b) Thermovoltage for the same parameters as (a). Ex-
perimental data extracted from Fig. 10.4 are shown as black squares. Blue, dashed
line indicates thermovoltage after Mott calculated from G and ∆T = 12 mK.
Solid, red line: Model calculations for Vth (see text). (c) Various configurations
of electro-chemical potentials of the DQD. (i)-(iii) correspond to the positions
labelled accordingly in (a) and (b).

110
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movoltage, indicating that 〈E〉 < EF, according to the Matveev interpretation

of thermopower [Eq. (1.11)]. Around VP2 = −0.21 V, Vth is electron-like, and

thus 〈E〉 > EF. These observations are in contrast to the results of the previous

section, which stated that transport is dominated by QD1 if µ(1) is aligned with

the EF. Obviously, the energy of QD2 also affects the thermopower of the DQD.

Note that a shift of µ(1) with VP2 due to mutual capacitive coupling between the

QDs can be ruled out as the cause of this discrepancy: Although the data are

plotted against VP2, the representation has been chosen in such a way that QD1

stays constantly aligned with EF. Thus, it compensates for a change in energy

due to mutual capacitively coupling of the dots.

In order to explain the experimental data, a more detailed knowledge about

the transport processes in the regime of detuning is desirable. As already men-

tioned, finite conductance in this regime is known to originate from second-order

co-tunneling processes across the off-resonant dot. These involve virtual energy

states, which can be occupied by electrons on short time scales as a result of

energy-time-uncertainty [DSE+01, GSL+08]. However, since these processes are

of higher order, they are not easily incorporated into a simple transport model.

Interestingly, Gustavsson et al. [GSL+08] showed by detection of tunneling pro-

cesses in real time that those second order tunneling events in DQDs can be

treated in a first order sequential picture if one interprets the DQD states in terms

of molecular wave functions. This approach, introduced in Chapter 9, considers

an electron to be delocalized across both QDs. The degree of delocalization is

determined by the inter dot tunnel coupling t and the detuning δ = EQD1−EQD2.

Gustavsson et al. demonstrated that when they experimentally detected the in-

dividual tunneling rates Γ from the reservoirs onto one specific dot of the DQD

system, their results were very well described by

Γ = Γ0
1

2

(
1− δ tanh(

√
4t2 + δ2/2kT )√
4t2 + δ2

)
, (10.3)

where Γ0 refers to the tunneling rate at δ = 0. The origin of this relation goes

back to the Hamiltonian shown in Eq. (9.8) in Section 9.1 which describes the

tunnel coupled DQD system. The corresponding eigenstate Φ− and Φ+ can be
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10. Thermopower of a Tunnel-Coupled Double Quantum Dot

written in the basis Ψ1 and Ψ2 for the left and right dot as [CT77, vdWDE+03]

|Φ−〉 = − sin

(
ϕ

2

)
|Ψ1〉+ cos

(
ϕ

2

)
|Ψ2〉, (10.4)

|Φ+〉 = cos

(
ϕ

2

)
|Ψ1〉+ sin

(
ϕ

2

)
|Ψ2〉, (10.5)

with tanϕ = 2t
δ

. Gustavsson et al. assume the molecular states Φ− and Φ+ to

exhibit the occupation probabilities

P− = 1− 1

1 + e
√

2t2+δ2/kT
and P+ =

1

1 + e
√

2t2+δ2/kT
(10.6)

following Fermi-Dirac statistics. The probability P for finding an electron e.g.

on QD1 is now just the projection

P1 = P−〈Ψ1|Φ−〉+ P+〈Ψ1|Φ+〉 (10.7)

and P2 = 1 − P1 for QD2. Multiplication with the tunneling probability Γ0

originating from the potential barriers then yields the tunneling rates as a function

of δ as given in Eq. (10.3).

Transferring this picture to the conductance data in Fig. 10.9, one finds that

along the VP2-axis, the variation of the QD-level alignment precisely corresponds

to changing the detuning parameter δ. At the triple points δ = 0. Let ΓA and ΓB

identify the total transmission of the DQD system at the TP VP2 = −0.275 V and

VP2 = −0.18 V, respectively; tA, tB are the inter dot tunnel coupling coefficient

at the respective TP. Then one can model the data in Fig. 10.9 (a) by

G =
1

4kT

[
ΓA

1

2

(
1−

δ tanh(
√

4t2A + δ2/2kT )√
4t2A + δ2

)

+ΓB
1

2

(
1−

(E2 − δ) tanh(
√

4t2B + (E2 − δ)2/2kT )√
4t2B + (E2 − δ)2

)]
, (10.8)

with E2 being the charging energy of QD2. Applying Eq. (10.8) to the conduc-
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tance data in Fig. 10.9 (a) [with ΓA = 26 µeV and ΓB = 9 µeV, obtained from

the conductance peak height and α2 = 0.0051 e from section 10.1] and using the

individual tunnel coupling tA and tB as fit parameters, one obtains the solid, red

line displayed in Fig. 10.9 (a) for tA = 33 µeV and tB = 20 µeV, T = 230 mK

and E2 = 520 µeV. As was done in the previous section 10.3.1, a background

conductance Gho = 0.005 e2/h has been added.

It can be seen that Eq. (10.8) yields excellent agreement with the experiment

between the two conductance maxima. Obviously, the model can not be applied

beyond these maxima, because there the electron number of the resonant QD be-

comes fixed (N for VP2 > −0.185 V and N+1 for VP2 < −0.28 V) and the decay of

G is not only governed by detuning any more. Therefore the model calculations

shown in Fig. 10.9 only cover the region between the two conductance maxima.

Applying the picture of delocalized molecular states to the thermopower data

also provides an intuitive explanation for the observations. Now the energetic

position of the transmission channels arising from the inter dot tunnel coupling

is described by

µ− =
ε1 + ε2

2
− 1

2

√
4t2 + (ε1 − ε2)2,

µ+ =
ε1 + ε2

2
+

1

2

√
4t2 + (ε1 − ε2)2 + EC . (10.9)

Equation 10.9 visualizes that µ−, µ+ do not depend linearly on the energies of

the individual QDs. Hence, for fixed ε1 and a variation of ε2, µ+ and µ− do not

stay aligned but move in energy according to Eq. (10.9). The single dot energy

states are recovered only for large detuning.

Thus, the line shape of the thermovoltage in Fig.10.9 (b) can be understood as

follows: At VP2 = −0.275 V (i) detuning of QD1 and QD2 is zero. Transport takes

place via µ+. When increasing the detuning, i.e. making ε2 more positive, the

µ+ state will decrease in energy according to Eq. (10.9). Thus, it will drop below

EF. For S this results in a hole-like thermopower (ii). The TP at VP2 = −0.18 V

represents transport across the µ− state of the corresponding TP pair. When

moving towards more negative VP2, µ− moves towards higher energies and thus it

becomes located above the Fermi level of the reservoirs (iii). Hence, one observes

a positive, electron-like thermovoltage.
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10. Thermopower of a Tunnel-Coupled Double Quantum Dot

Since the picture of molecular states explains the arising thermovoltage in terms

of an energy dependent transmission, we expect that the experimental data along

the VP2-axis should again be reproduced by Mott’s equation [Eq. (1.13)]. For a

quantitative analysis, VP2 is converted into an appropriate energy scale using

VP2 × α2. Applying Eq. (1.13) then yields the blue, dashed line in Fig. 10.9 (b).

We observe even quantitative agreement with the experiment for a temperature

difference of ∆T = 12 mK which is consistent with the findings in Section 10.3.1.

Model Calculations for a Full Honeycomb Cell

To this end it has been shown that the conductance in the regime of detuning

can be modeled by Eq. (10.8). Moreover, Eq. (10.9) predicts how the electro-

chemical potentials of the QD system evolve when the energies of QD1 and QD2

are changed separately. Together with Eq. (10.1), which describes the line shape

of G in the region of the TPs, one holds a set of equations that should be ca-

pable of modeling a full honeycomb cell of the DQD stability diagram. More-

over, Eq. (10.3) can be incorporated into the calculation of the Casimir-Onsager-

coefficient L12 [Eq. (10.2)], since the detuning mainly affects the tunneling rate

but not the line shape of a resonance. This enables a calculation of the ther-

movoltage stability diagram. Results obtained from this model are shown in

Fig. 10.10. The following parameters were used: E1,2 = 0.52 µeV, tA = 33 µeV,

tB = 20 µeV, T = 230 mK, EC = 60 µeV, ΓA = 26 µeV, ΓB = 9 µeV,

Gho = 0.005 e2/h, ∆T = 20 mK. Given the simplicity of the model the results

show a remarkable agreement with the experimental data, which, for convenience,

are displayed again in part (b) of the figure.

One can now extract data along arbitrary lines from the modeled stability dia-

gram and compare it to the experiment. This has been done for the line separating

two stability regions which differ in occupation number N by one. For the con-

ductance the result is identical with the calculation shown in Fig. 10.9 (a). For

the thermovoltage one obtains the solid, red line plotted in Fig. 10.9 (b). The

line shape of the modeled thermovoltage curve is in excellent agreement with the

experimental findings. Quantitatively the model predicts a thermovoltage that

is too small, approximately by a factor 2. Possible reasons can be related to

the fact that the simple model neglects several mechanisms which can have a

strong influence on the thermovoltage amplitude, including relaxation processes
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Figure 10.10: (a) Model calculation of a full charge stability region for G and
Vth. Calculated for parameters: T = 230 mK, E1,2 = 0.52 meV, tA = 33 µeV,
tB = 18 µeV, EC = 60 µeV, ΓA = 26 µeV, ΓB = 9 µeV, ∆T = 20 mK. Cross
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currents a background conductance Gho = 0.005 e2/h has been added. (b) single
honeycomb cell from experimental data.
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10. Thermopower of a Tunnel-Coupled Double Quantum Dot

[vdVGN+95] or tunneling processes which are not covered by the sequential tun-

neling picture [vdWDE+03, GSL+08, GL04]. Also, note that Eq. (10.1) assumes

the system to have a continuous energy spectrum and properties arising from

quantum confined states are entirely neglected, such as a variation of the inter

dot tunnel coupling for different quantum numbers [HSY+04] or singlet-triplet

spin blockade [JPM05]. Most importantly, however, the model does not include

the existence of excited states and accompanying chemical potentials which arise

from the splitting of molecular states into symmetric and antisymmetric wave

function. Although the energy splitting is taken into account in Eq. (10.9), the

impact of transport via excited states is ignored [CBM00, HLL+05]. To imple-

ment these considerations into the model should be a next step in order to obtain

quantitative predictions also in the regime of strong detuning.

Ultimately, the results presented in this section emphasize how finite tunnel cou-

pling modifies the interaction of the two QDs. A differentiation between the indi-

vidual dots becomes increasingly difficult for enhanced inter dot tunnel coupling

because the variation of the energy of either of the two QDs strongly changes the

electronic wave function even in the regime of strong detuning. This effect is only

weakly visible in conductance but it has a strong influence on the thermopower

stability diagram.
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Chapter 11

Thermal Effects in

Coulomb-Coupled Quantum Dots

When QD-systems are subjected to a temperature difference, they respond to

this thermodynamic non-equilibrium situation with the build up of a potential

difference in order to re-establish equilibrium conditions. This is possible only

if particle exchange between the hot and cold reservoir of the system is allowed.

This requirement explicitly enters the Onsager-equations which then lead to the

appropriate expression for the thermopower (see Chapter 1). The result is a flux

of energy and entropy which is carried by particles. This flux is especially in-

fluenced by the energy-filtering properties of QDs which then lead to the unique

thermoelectric features discussed in the previous chapters.

In this regard, it is interesting to note that a way of energy transport across

a DQD without particle transport has already been introduced in Section 9.1:

Electrostatic interaction between the QDs can lead to the transfer of an energy

quantum EC from one QD to the adjacent one. R. Sánchez and M. Büttiker

have pointed out that this energy transfer can have remarkable consequences

[SB11]. The authors propose a device which consists of two capacitively inter-

acting QDs for which one of the dots couples asymmetrically to two electron

reservoirs via tunneling junctions such that both source-drain (left-right) sym-

metry and electron-hole (energy) symmetry are broken at the same time. The

other QD couples only to a single lead. Such a system is depicted in the car-

toons in Fig. 11.1. Here, the individual tunneling coefficients are indicated by

Γiab where the subscript a = 1, 2, 3 denotes the corresponding electron reservoir

117



11. Thermal Effects in Coulomb-Coupled Quantum Dots

Γ1
+ 

Γ2
+ 

Γ4
+ Γ2

- 

Γ1
- 

Γ2
- 

Γ1
- 

|0  

Γ10
+ Γ20

+ 

Γ30
+ 

|2  

T2 T1 

Γ11
- 

Γ31
- 

|𝑢  

Γ30
- 

Γ11
+ Γ21

+ 

|𝑑  

Γ10
- 

Γ31
+ 

Γ20
- Γ21

- 

T3 

Figure 11.1: Heat-to-current converter according to [SB11]. The lower QD con-
nects to electron reservoirs 1 and 2 (blue) through tunnel barriers, the upper dot
connects to reservoir 3 (red) which is at a higher temperature T3 > T1 = T2. The
QD-system can exhibit 4 charge configurations: |0〉 (both dots empty), |d〉 (lower
dot occupied), |2〉 (both dots occupied), |u〉 (upper dot occupied). Γiab denote the
tunneling coefficients, where a = 1, 2, 3 indicates the respective reservoir, b = 0, 1
gives the charge state of the other QD (0: empty, 1: occupied) and i = +,−
refers to the addition (+) or the removal (−) of an electron to or from the QD.
If Γ+

10Γ−21 6= Γ+
20Γ−11, heat flowing from the hot to the cold subsystem is rectified

into a charge current from reservoir 1 to 2 (green arrows).

with which the QD exchanges an electron. b = 0, 1 indicates whether during this

event the other QD is occupied with an additional electron (1) or not (0). The

superscript i = +,− gives the direction of the tunneling event, i.e. if it adds (+)

or removes (−) an electron to or from the dot. Broken Source-drain symmetry

is realized, for example, by Γ+
10 6= Γ+

20 while broken electron-hole symmetry is

assumed to be fulfilled by Γ+
10 6= Γ−10. In addition to this, Sánchez and Büttiker

assume that the QD system is subjected to a temperature difference such that

T1 = T2 < T3. For these conditions, the authors identify a state of broken de-

tailed balance between contacts 1 and 2 which leads to a directed charge current.

Since, as the authors stress, these reservoirs are at the same temperature and

electro-chemical potential, the energy which is required for the charge transfer,

needs to be extracted from the heat reservoir [SLSB10, SB11]. It is transferred

to the asymmetric QD only by the mutual electrostatic interaction. Remarkably,

the direction of the induced current is expected to be determined only by the tun-

nel barrier asymmetry. Hence, a new kind of conversion of thermal energy into

a charge current takes place which does not require particle exchange between
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the hot and the cold reservoir and which decouples energy transfer from particle

transfer. The authors stress that although this mechanism operates away from

equilibrium (broken detailed balance), fluctuation relations hold. Furthermore,

they point out that with a slightly modified design of the device, a similar mech-

anism can be used to induce currents by means of Coulomb drag [SLSB10].

The following chapter addresses the experimental detection of such charge cur-

rents resulting from heat flow between the hot and the cold subsystems. On a

microscopic scale the mechanism proposed by Sánchez and Büttiker consists on

a specific series of 4 tunneling events. The challenge in experimentally realiz-

ing this heat-to-current converter (HCC) is to distinguish this special series of

tunneling events from all others. If we take into account any possible 4-electron-

process that might take place in such a three terminal device, we obtain a total

number of 34 = 81. This means, that 1 out of 81 possible outcomes contributes

to the proposed effect. Although many of the other tunneling sequences do not

contribute to charge transport, some of them indeed transfer an electron from

one reservoir to another. Thus, they might be relevant in experiments, either

because they counteract the desired energy conversion or because they can lead

to additional charge currents that mask signatures of the HCC. Moreover, they

might become enhanced by unwanted asymmetries of the reservoirs, for example

by very small differences in temperature or chemical potential that are hard to

control on such a small scale in an experiment.

In the first section of this chapter we will address some of those additional pro-

cesses arising from a difference in electro-chemical potential across the asymmetric

QD. It is shown that these processes, which are clearly undesirable in the context

of the HCC, are closely related to an interesting property of Coulomb coupled

QDs: the correlation of charge fluctuation. Its unusual adjustability enables us

to utilize the device as a thermal switch for charge currents and, in principle, it

even opens up the possibility for a quantum dot based thermal transistor.

In the second part, the HCC is treated in further detail and the distinguished

4-electron process is presented. A more detailed understanding of the physics

involved leads us to characteristic properties which the HCC signal is expected

to exhibit. This is tested in experiments and the resulting data are discussed. Fi-

nally it is shown that the data indeed provide strong indications for the presence

of HCC processes in our device.
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11. Thermal Effects in Coulomb-Coupled Quantum Dots

11.1 Thermal Switching of Charge Currents with

a Double Quantum Dot

This section considers a three-terminal system as discussed above (cf. Fig. 11.1).

We investigate the interdependence between the charge current through one QD

and the heating of the reservoir connected to a second QD when a bias voltage

is applied to the two cold reservoirs. First, the device and a conductance char-

acterization of the system are introduced. Second, the experimental results are

presented. It is shown that the charge current can be manipulated by varying the

temperature in the heat bath and that this switching behavior can be inverted by

tuning the QD energies to different configurations. Further, the current change

is investigated for a variation of the temperature difference between hot and cold

reservoirs. Third, the experimental findings are discussed and explained within

a microscopic picture of charge fluctuations. A simple phenomenological model

is presented which allows a calculation of the detected signal to be carried out,

based on the fluctuations of the occupation numbers of the two QDs. The model

calculations show good qualitative agreement with the experimental data. The

experiments are compared to measurements of the cross correlation of shot noise

in a DQD recently conducted by McClure et al. [MDZ+07]. Furthermore, it is

shown that the device works as a thermal switch for charge currents and other

possible applications in thermometry and thermotronics are suggested. Finally,

the results are discussed with respect to their implications for the realization of

a heat-to-current converting device.

11.1.1 Sample Design and Characterization

The sample is processed from a GaAs/AlGaAs heterostructure (wafer material

Hamburg 1472 ; n2DEG = 2.4× 1011 cm−2; µ = 0.69× 106 cm2/Vs, see Appendix

A). Figure 11.2 shows a schematic of the gate pattern (black regions). White

denotes conducting areas. The gates Q, R, T and U form the heating channel

[length: 20 µm, width: 2 µm] to which we will refer as heat reservoir H with

temperature TH. A quantum point contact (QPC) is created by the gates Q and

R. It is set to the 10 e2/h plateau. Opposite of the QPC gates T and U together

with V define a quantum dot QD1. We denote its occupation number by N. The

plunger gate P1 is used to tune the electro-chemical potential µ(1) of QD1. The
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Figure 11.2: Overview (top) and close-up (bottom) of the schematic gate struc-
ture of the QD-device. Black regions denote insulating areas, white regions denote
conducting areas of the 2DEG. Individual gates are labeled with letters Q - X,
P1 and P2. S, D and H indicate the source, drain and heat reservoir.

dot can exchange particles only with the heat reservoir since the QPC formed by

gates T and V is pinched off.

Below QD1 there is a second dot QD2 with occupation number M. It is defined by

Gates V, W and X, and it couples to the reservoirs S and D through tunnel bar-

riers that can be adjusted by the gate pairs WV and XV. The electro-chemical

potential µ(2) of QD2 can be tuned by the variation of the voltage applied to

gate P2. Because the two QDs are spatially in close vicinity to each other

they exhibit a mutual capacitive coupling, which results in µ(1) = µ(1)(N,M)

[µ(2) = µ(2)(N,M)], implying that the energy of each dot is influenced by the

total charge configuration of the system (see Chapter 9). By carefully checking

the conductance across the double dot device from reservoir H to S and D, we

make sure that particle exchange between QD1 and QD2 is strongly suppressed.

This corresponds to an inter dot tunnel coupling t → 0. Thus, the interaction

energy is only determined by capacitive coupling (Em = EC).

The schematic in Fig. 11.3 (a) sketches the energy diagram of the QD-system

resulting from these considerations. It shows µ(1)(N,M) and µ(2)(N,M) of QD1

and QD2 and the energy quantum EC.

The DQD-system is characterized by measuring the conductance G of QD2 be-
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11. Thermal Effects in Coulomb-Coupled Quantum Dots

tween reservoirs S and D while changing the voltages applied to the gates P1 and

P2, i.e. varying the energies of both dots. This is done in a top loader dilution

refrigerator at Tbase = 80 mK. An excitation voltage Vac = 5 µV is applied to

reservoir S with respect to ground and the resulting current through QD2 is then

measured with a current amplifier which connects D to a virtual ground potential.

This yields the stability diagram shown in Fig. 11.3 (b). Here, G is displayed in

a gray scale plot as function of the gate voltages VP1 and VP2. Along the hor-

izontal axis VP2, we find three conductance resonances which enable transport

across QD2. Due to the mutual capacitive coupling of the QDs, the energetic

position of µ(2) is affected by the energy of QD1. This leads to a shift of the

conductance resonances along the VP1 axis as expected from the considerations

in Chapter 9. Several jumps of G are observed for specific settings of VP1 (e.g.

around VP1 = 320 mV, indicated by red arrows). Here µ(1) is aligned with µH

which causes a change of N by one (N ↔ N + 1). This also increases the energy

of QD2 by EC: µ(2)(N + 1,M) = µ(2)(N,M) +EC. Some of the gate voltage con-

figurations for an alignment of µ(1) with µH or µ(2) with µS and µD are indicated

in Fig. 11.3 (b) by solid, blue lines. A close-up of a similar level configuration is

shown in Fig. 11.3 (c). We call this region of the stability diagram honeycomb

vertex, according to [MDZ+07]. The blue lines divide the diagram into sections

1 - 4, corresponding to the different charge configurations of the DQD-system.

EC can be determined as described in section 9.1: From extrapolation of the

solid, blue line into an adjacent stability region [dotted lines in Fig. 11.3 (c)] one

obtains ∆Vm2 ≈ 3 mV. Fig. 11.3 (d) shows a measurement of the differential

conductance dI/dVSD of QD2. This results in the well-known Coulomb diamond

(see Chapter C). It reveals a charging energy E2 = 0.8 meV of QD2 and a con-

ductance peak separation of ∆V2 = 25 mV. According to Eq. (9.13) this gives

for the gate efficiency α2 = 0.032 e which can be applied to ∆Vm2. This yields

EC ≈ 90 µeV.

11.1.2 Experiment

In order to subject the DQD-system to a temperature difference, we make use

of the current heating technique [MvHB+90]: an ac-current of Iheat = 150 nA

with frequency f = 113 Hz is applied to the heating channel (reservoir H). We

estimate that this corresponds to a temperature difference of ∆T ≈ 100 mK (cf.
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Figure 11.3: (a) Energy diagram of the DQD-system showing the electro chemical
potentials µ of the electron reservoirs S, D and H and of QD1, QD2 for different
charge occupation numbers (N,M) of the DQD-system. (b) Charge stability
diagram for the conductance G of QD2 for a wide parameter range. Shifts of the
conductance peak (examples are indicated by red arrows) are visible for specific
VP1. They are evidence for a capacitive interaction between the QDs. Blue
lines indicate the edges of the stability regions. (c) Conductance of QD2 at the
honeycomb vertex of the charge stability diagram. Blue, solid lines indicate the
alignment of µ1 (µ2) with the connected reservoirs. The displacement of µ2 due
to a change of N on QD1 is labeled ∆Vm2. (d) Measurement of the differential
conductance of QD2 for VP1 = 389 mV.
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Figure 11.4: Two different ways of sample wiring used in the experiments for a
Iheat-dependent measurement of the current through QD2. For finite VSD the 2f
component of the current ID in the drain reservoir is determined with a Lock-In
through (a) the voltage drop across the resistor R = 100 kΩ or (b) by a current
amplifier (input impedance Rin = 2 kΩ).

Chapter 2). We make sure that an oscillation of the electro-chemical potential

in the channel is suppressed at the position of QD1 by grounding the reservoir

behind the QPC formed by gates Q and R. Due to the symmetric design of the

channel, the potentials at the “entrance” and the “exit” of the channel are then

changing antipodally while the potential at the center is fixed. The ac-heating

causes the temperature in the heat reservoir to oscillate with 2f = 226 Hz between

Tbase and Tmax = Tbase + ∆T . This provides all temperature-driven effects in our

structure with the signature of an oscillation frequency 2f .

Next, the sample is wired as shown in Fig. 11.4 (a): A dc-voltage source is

connected to S which applies VS,GND = −100 µV to this reservoir. The drain

reservoir is connected to ground potential via the resistor R = 100 kΩ. A phase

sensitive lock-in amplifier working at 2f = 226 Hz detects the voltage drop across

the resistor. This allows the change of current in the drain contact ∆ID with

temperature TH to be calculated. For the parameter range of the honeycomb

vertex in Fig. 11.3 (c), we obtain the data shown in Fig. 11.5 (a). The lines

delimiting the honeycombs appear in yellow color.
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A pattern of a four-leaf clover shaped structure is observed in the vicinity of

the TP pair. It is composed of positive and negative currents of up to ±20 pA.

The sign changes occur at transitions from one quarter of a “clover leave” to

the adjacent ones. Diagonally assembled parts exhibit an identical sign. A direct

comparison with Fig. 11.3 (b) identifies the four parts of the pattern with different

stability regions of the honeycomb vertex: parts 1 and 4 produce a positive signal

while for sections 2 and 3 negative contributions are observed.

A single trace extracted from the colored scale plot for constant VP1 = 382 mV

(blue, horizontal line) is shown in the top panel of Fig. 11.5 (a). It exhibits a

positive and a negative maximum. In between, the signal changes approximately

linearly with VP2. Moving away from the honeycomb vertex causes the signal to

decay. A trace extracted along the VP1 axis for constant VP2 = 518 mV (red,

vertical line) behaves likewise (side panel).

In a next step the dc-voltage applied to reservoir S is reversed without changing

the sample wiring so that VS,GND = 100 µV. The result is given in Fig. 11.5 (b).

Clearly, the clover leaf pattern is reproduced. However, now all signs are inverted.

Heating Current Dependence

In order to analyze the dependence of ∆ID on the temperature difference ∆T ,

Fig. 11.6 compares ∆ID for different heating currents at VS,GND = −100 µV.

Figure 11.6 (a) shows the vertex region for Iheat = 50, 100 and 150 nA. For

these measurements, a measurement configuration has been used as it is shown

in Fig. 11.4 (b). Here, the resistor R = 100 kΩ is replaced by a current amplifier

(input impedance: Rin = 2 kΩ), which connects D to virtual ground. The output

signal of the current amplifier is detected by a Lock-In amplifier at 2f . Note that

the small Rin reduces the total resistance of the circuit.

For increasing Iheat by a factor 3 from 50 nA to 150 nA we observe an enhancement

of ∆ID by approximately the same factor in Fig. 11.6 (a). Moreover, the size

of the “clover leaf” increases with increasing Iheat. Interestingly, this applies

only to the vertical extension of the pattern, i.e. the VP1-direction, while the

lateral size in VP2-direction stays approximately constant. This observation is

confirmed when we compare the line shape of ∆ID in the VP1 and VP2 direction

separately for different Iheat. Fig. 11.6 (b) shows traces extracted from (a) for

fixed VP1 = −372 mV (indicated by a dashed blue line for Iheat = 50 nA). The
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Figure 11.6: ∆ID for different heating currents Iheat. (a) clover-leaf structure for
Iheat = 50, 100 and 150 nA (left to right). The dashed, blue line indicates VP1 =
−372 mV, the dotted, red line denotes VP1 = −531 mV. For these configurations
data for different Iheat are compared in (b) (fixed VP1) and (c) (fixed VP2). Traces
for 100 nA and 50 nA are multiplied by constant factors. (i) - (iii) indicate
characteristic configurations which reveal different Iheat-dependence of ∆ID (see
text).

data for Iheat = 50 nA (100 nA) are multiplied by a factor 1.28 (2.83) for a more

convenient comparison. We find that all traces exhibit the same line shape. In

contrast, Fig. 11.6 (c) compares ∆ID as a function of VP1 at fixed VP2 = −531 mV

(vertical, dotted line in (a) for Iheat = 50 nA). Again, traces for different heating

currents are scaled (factor 1.29 for Iheat = 100 nA and 2.76 for Iheat = 50 nA).

Obviously, along the VP1-direction ∆ID can not be brought into alignment by

simple scaling. This becomes especially clear for ∆ID < 0. For this part of the

curve the onset is labeled (i) for 150 nA and (ii) for 50 nA. It can be seen that

the 150 nA trace starts to decrease much earlier than for Iheat = 50 nA when

following VP1 from less to more negative values. Moreover, for a larger heating
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11. Thermal Effects in Coulomb-Coupled Quantum Dots

current, the slope of the ∆ID-curve decreases towards the negative maximum

around VP1 = −372 mV (iii). This behavior is not observed for Iheat = 50 nA.

Although this change in line shape with Iheat is visible for both maxima, it is

more pronounced for the negative maximum than for the positive one.

11.1.3 Discussion

Before starting a detailed analysis of the clover-leaf pattern, we note that the

region of the honeycomb vertex is characterized by the ability of both QDs to ex-

hibit fluctuating occupation numbers. In contrast, towards the stability regions,

the charge configuration of the system becomes fixed. Thus, we suggest that the

detected signal is caused by charge carrier fluctuations on QD1 and QD2.

The dependence of ∆ID on Iheat confirms this assumption: Since larger TH values

are expected to cause a stronger smearing of the Fermi level in reservoir H, this

will have a strong effect on the occupation number of QD1, if µ(1) is close to EF.

Hence, if Iheat = 150 nA the charge fluctuations on QD1 take place over a wider

energy range (i.e. VP1-range) than for Iheat = 50 nA. In contrast, QD2 is not

expected to be directly affected by a change in TH because it only couples to reser-

voirs at a lower temperature. However, large Iheat values result in an enhanced

∆ID, even for a variation of VP2. Obviously, charge fluctuations on QD1 strongly

influence transport across QD2. Because QD1 and QD2 couple capacitively, we

suggest that this interaction is a crucial parameter in order to identify the origin

of the clover-leaf pattern.

Microscopic Mechanism of the Cloverleaf pattern

From Fig. 11.5, we understand that the sign of ∆ID depends on the stability

region of the system. In the following we will therefore discuss the configurations

of the different stability regions in greater detail. In Fig. 11.5 the configurations

are labeled 1 - 4 corresponding to the occupation numbers given in Fig. 11.3 (c).

We will first focus on section 1 and afterwards extend our considerations to other

configurations.

Figure 11.7 (a) shows the alignment of µ(1) and µ(2) for section 1 with applied

VS,D < 0. The system is depicted according to the labels in Fig. 11.3 (a). Due
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Figure 11.7: Schematic energy diagram of the QD-system for the 4 stability
regions denoted 1 - 4. Each configuration is shown for low (left) and higher
(right) temperature in reservoir H under VSD = −100 µV. For QD2 the solid
line indicates the enabled, the dotted line the suppressed transport channel. Red
arrows indicate increased charge fluctuation.

to the ac-nature of the heating current TH oscillates, and hence, we need to con-

sider the two cases TH = Tbase and TH = Tbase + ∆T = Tmax. The first one can

be seen on the left side of Fig. 11.7 (a): QD1 is occupied with N +1 electrons,

i.e. µ(1) is below µH and therefore this electron number is fixed. QD2 is occu-

pied with M electrons. As can be seen in Fig. 11.7 (a), the chemical potential

µ(2)(N+1,M+1) (solid line for QD2) lies outside the bias window VSD. Thus,

transport across QD2 is blocked. Turning now towards the condition TH = Tmax

[right hand side in Fig. 11.7 (a)] we find that an increase of TH creates additional

empty states below µH. This increases the charge fluctuation rate on QD1 be-

tween N+1 and N . If QD1 is in the N -state, the energy required to add an
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11. Thermal Effects in Coulomb-Coupled Quantum Dots

electron to QD2 is reduced by EC. The corresponding µ(2)(N,M+1) lies below

µS and the current across QD2 increases [indicated by red arrows in Fig. 11.7 (a)].

Effectively, this mechanism leads to a temperature driven modulation of the con-

ductance of QD2: If TH increases, the current across QD2 increases, too. For TH

at a minimum, transport is blocked. The resulting current change ∆ID at the

drain contact is then detected by the Lock-In amplifier as a positive signal.

Next, we turn to region 2 which corresponds to the (N+1, M+1) stability region.

The alignment of the µ(1) and µ(2) is depicted in Fig. 11.7 (b). Because section

2 is located at less negative VP2, the energy levels of QD2 have moved down-

wards in Fig. 11.7 (b). Starting again with the condition TH = Tbase with fixed

N +1, one finds transport across QD2 enabled now because µ(2)(N+1,M+1) lies

within VSD. However, charge fluctuations on QD1, which increase with increasing

TH [right side in Fig. 11.7 (b)], tend to block transport across QD2 because the

corresponding µ(2)(N , M+1) lies below µD and thus, electrons are trapped on

QD2. The correlation between TH and ID is now inverted compared to section 1:

a temperature increase tends to block transport while small TH increase ID and

the resulting ∆ID is negative.

The signal for sections 3 and 4 can be derived accordingly: Here QD1 is in the

N -state and increasing TH leads to an occasional occupation with N+1 electrons.

This reverses the starting condition compared to 1 and 2 and thus we observe an

additional sign change. Within this picture, the explanation of the observations

for VSD = −100 µV [cf. Fig. 11.5 (b)] is now straightforward: because a sign

change of the bias voltage reverses the dc-current through QD2, this leads to an

overall reversal of the observed signal.

Model Calculations

In order to verify the presented model, we try to reproduce the experimental

observations within a simple, phenomenological picture. Assuming sequential

transport across QD2, the current ID can be related to the applied difference

in electro-chemical potential VSD = µS − µD by simply considering Fermi-Dirac

occupation statistics in the source contact and the drain contact plus a single
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resonant QD level µ′(2) which is located at µ(2) = −EC/2. Then

I ′D(µ(2)) ∝ 1

1 + e(µ(2)+EC/2−µS)/kTS
×
(

1− 1

1 + e(µ(2)+EC/2−µD)/kTD

)
, (11.1)

where TS, TD refer to the temperature in source and drain contact, respectively.

The first factor represents occupied states in the source contact while the second

factor describes the number of empty states in the drain reservoir at the same

energy.

Next, we add a second transport channel across QD2, representing the condi-

tion that QD1 is occupied with an additional electron. In this case, the second

resonant level µ′′(2) of QD2 is positioned at µ(2) = +EC/2, which leads to

I ′′D(µ(2)) ∝ 1

1 + e(µ(2)−EC/2−µS)/kTS
×
(

1− 1

1 + e(µ(2)−EC/2−µD)/kTD

)
. (11.2)

The total current ID through QD2 is now the sum of Eqs. (11.1) and (11.2)

weighted with the appropriate probabilities of QD1 exhibiting N or N+1 elec-

trons. Thus,

ID(µ(1), µ(2)) ∝
(

1− 1

1 + e(µ(1)−µH)/kTH)

)
× I ′D

+

(
1

1 + e(µ(1)−µH)/kTH)

)
× I ′′D, (11.3)

where µ(1) refers to the electro-chemical potential of QD1 and µH and TH are

respectively the electro-chemical potential and temperature in reservoir H. The

first term in Eq. (11.3) contains the probability of QD1 being uncharged and

thus corresponds to the probability that electrons are transferred across QD2 via

the transport channel µ′(2). The second term describes the probability that the

transport channel µ′′(2) is enabled.

Results from Eq. (11.3) as a function of µ(1) and µ(2) are shown in Fig. 11.8.

Based on the results of previous chapters, we take TS,D = Tbase = 230 mK. In

addition, the following parameters were used: µS = −µD = −50 µeV, µH = 0

and EC = 90 µeV. Fig. 11.8 (a) shows model calculations for ID with TH = Tbase,

(b) gives the current for TH = Tbase + ∆T = Tmax with ∆T = 100 mK. As ex-
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Figure 11.8: Model Calculations for ID and ∆ID (see text). The following pa-
rameters where used: TS,D = Tbase = 230 mK, µS = −µD = −50 µeV, µH = 0
and EC = 90 µeV. (a) ID for TH = 230 mK. (b) ID for TH = 330 mK. (c)
∆ID = ID(TH = 330 mK)−ID(TH = 230 mK). (d) ∆ID for ∆T = 50, 100, 200 mK
at fixed µ(1) = 0.042 meV. Data for ∆T = 50 (100) mK scaled by a constant fac-
tor of 3.32 (1.73). (e) ∆ID for ∆T = 50, 100, 200 mK at fixed µ(2) = 0.047 meV.
Data for ∆T = 50 (100) mK scaled by a constant factor of 3.13 (1.7).
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pected, the results strongly resemble the conductance stability diagram around a

honeycomb vertex. However, strong differences for different TH are not obvious.

In order to obtain the clover-leaf signal, we need to subtract Fig. 11.8 (b) from

(a) because the experiment measures the difference in ID for TH = Tbase and

TH = Tmax. The result of this calculation is given in Fig. 11.8 (c). Obviously, the

clover-leaf pattern is reproduced. Figs. 11.8 (d) and (e) compare cross sections ex-

tracted from the model calculations of ∆ID for ∆T = 50, 100, and 200 mK. Sim-

ilar to Fig. 11.6, the results are compared for a variation of µ(2) [Fig. 11.8 (d)] and

µ(1) [Fig. 11.8 (e)] separately and the data are scaled to make a direct comparison

for different ∆T more convenient. The experimental findings concerning the de-

pendence of ∆ID on ∆T are qualitatively reproduced within the presented model:

While the line shape along the µ(2)-axis [Fig. 11.8 (d)] scales with ∆T , the model

gives a change in line shape for different ∆T along the µ(1)-axis [Fig. 11.8 (e)],

similar to the observations in the experiment.

We point out that the model described here neglects the influence of the charge

occupation of QD2 on µ(1). However, including this interaction into the model

is expected to have qualitative consequences only for the region between the two

TP. [This issue will be discussed in great detail in Section 11.2.] As soon as

of µ(1) is above or below the Fermi level for both occupation configurations of

QD2, we can expect the above results to be recovered. Hence, this issue is not

quantitatively relevant for configurations at which the clover-leafs appear.

11.1.4 Double Quantum Dot as a Thermal Current-Switch

We would like to point out that a similar four-leafed clover-pattern has been

observed in connection with DQD previously: In Ref. [MDZ+07] McClure et al.

report on shot noise measurements performed on two capacitively coupled QDs.

In this work the authors especially address the cross-correlation of shot noise in

the device. Generally, shot noise is a type of current noise which is typically

large for a small current that passes through a tunnel barrier. It originates from

the discreteness of charge that leads to current fluctuations due to single electron

tunnel processes. Hence, the correlation of shot noise provides rich information

about the transport statistics in a device, compared to the conductance which

only measures the averaged current [BB00]. McClure et al. found that at the hon-

eycomb vertex of two capacitively coupled QDs, the shot noise exhibits regions
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of positive and negative correlation (anti-correlation) resulting in a clover-leaf

shaped pattern that is similar to the one discussed here. The close relation be-

tween both processes can be understood as follows:

Negatively correlated shot noise indicates that charge fluctuations on one quan-

tum dot tend to suppress fluctuations on the other one (and vice versa). A

positive correlation implies that fluctuations of occupation numbers tend to oc-

cur simultaneously on both dots. This is in good agreement with the discussion

of the experimental data presented in the previous section. For regions which

are identified with positively correlated shot noise in Ref. [MDZ+07], we observe

an enhanced current through QD2 if the temperature in reservoir H is increased.

Regions of anti-correlation yield the opposite result. This way, our experiments

can be regarded as a manifestation of a fundamental property of two Coulomb-

interacting QDs.

The experiments have shown that this interaction acts as a switch for charge

currents that is triggered by the temperature of the heat reservoir: TH can be

used to increase or decrease the charge current through QD2. The on/off-ratio of

such a “thermal switch” can be estimated from the data shown in Figs. 11.3 (c)

and 11.5 (a). Those gate configurations which give maximal ∆ID in Fig. 11.5

can be compared to the stability diagram in order to obtain the conductance of

QD2 in this configuration. For a given VSD = 100 µV, one can then estimate

the total current across QD2 and relate it to the current change ∆ID due to a

change in TH. For example, for the plunger-gate configuration at the maximum

of ∆ID = 18 µV in section 1, we obtain G = 0.09 e2/h from the stability dia-

gram. This gives a total current ID = 360 nA (if TH = Tbase). We thus obtain an

on/off-ratio of about 5%. Although this ratio is rather small, it can in principle

be strongly enhanced if EC, kTH � kTS,D. This would prevent currents from

leaking through QD2 when TH = Tbase (off-position) and thus would lead to more

well-defined on/off states. This way, larger switching amplitudes could easily be

realized. Note, that due to the nature of the correlation of charge fluctuations,

the switching behavior of the device can even be inverted simply by tuning the

DQD-system to a regime of anti-correlation.

The thermal current-switch can also be used for thermometry in the heating

channel. Since it has been shown that the line shape along VP1 (µ(1)) is very

sensitive to changes of TH, we can relate ∆ID to the Fermi-function f(µ(1), TH)

134



11.1. Thermal Switching of Charge Currents with a Double Quantum Dot

in the heating channel. Simple transformation of Eq. (11.3) for TH = Tmax, Tbase

yields

∆ID(µ(1), TH) ∝ f(µ(1), Tmax)− f(µ(1), Tbase). (11.4)

This allows a precise determination of the temperature change in the heating

channel to be made if both plunger-gate axes can be converted into energy scales.

However, the current sample layout, which is used in the experiments here, has

the drawback that a conductance characterization can only be done for QD2 [see

Fig. 11.2]. The conductance of QD1 is not easily accessible. Thus, a precise

determination of α1, which would relate VP1 to an energy scale, is difficult. A

remedy on this issue would make it possible to directly access the temperature

difference ∆T created by the heating current with the DQD as a non-invasive

thermometer.

Finally, we note that the presented mechanism may also be considered a promising

candidate for a true thermal transistor. So far, the temperature TH has been used

to manipulate a charge current through QD2 resulting from an applied DC-bias.

However, one could also think of applying a thermal bias between reservoirs S and

D. This would lead to a heat flow across QD2 according to its thermal conductance

κ as described by the Onsager relations [see. Eqs. (1.1)]. Since it is known that

for QDs in the Coulomb blockade regime, κ exhibits a peak-like structure similar

to the conductance [KKP08, CZ10, LSX10], we expect a comparable dependence

of heat transport on TH as it has been shown for charge transport. This would

allow a manipulation of heat flow across QD2 to be achieved by varying the

temperature of reservoir H connected to QD1.

Implications for QD-Systems as Energy Harvester

Concerning the heat-to-current converter mentioned at the beginning [SB11], the

results discussed in this chapter are of high relevance. First of all, they show

that in addition to the distinguished 4-electron-process associated with the HCC

there are indeed other temperature dependent processes that influence charge

transfer in Coulomb coupled DQD devices. Although these processes do not

require a heat flow from the hot to the cold reservoirs, they are still highly

sensitive to the temperature of the heat reservoir. Thus, such processes need
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to be considered when evaluating the performance of a real energy harvester.

Moreover, thermal current-switching has been observed even down to very small

bias voltages VSD < 5 µV with resulting ∆ID ≈ 0.05 pA [Mit13, Arn14]. One

has to be aware that (i) the current generated by the HCC mechanism may

be of the same order of magnitude and (ii) when connected to a load resistor,

the HCC will generate a voltage which also may be of the order of µV. This

emphasizes even more clearly, that in order to identify HCC processes in an

experiment, the device needs to be operated in a very delicate regime where even

smallest uncontrolled asymmetries may complicate an unambiguous detection.

Thus, above all, a salient signature for the HCC is desirable which would enable

one to clearly distinguish the two processes, namely heat conversion and thermal

switching from each other experimentally.
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11.2 Energy Harvesting with Quantum Dots

In this section experimental data are discussed which strongly suggest the suc-

cessful realization of a DQD device that harvests energy from a heat reservoir

and converts it into a directed charge current according to the ideas of R. Sánchez

and M. Büttiker [SB11]. The section is organized as follows:

First, the concept of the heat-to-current converter (HCC) is discussed in detail.

This is done from a microscopic point of view and also in terms of thermodynamics

which highlights the unique properties of the HCC. Second, these considerations

are used to design an experiment that is capable of unambiguously identifying

currents arising from heat-to-current conversion. After a detailed characteriza-

tion of the relevant system parameters, the experimental data are presented. In

agreement with theory, a directed current is observed for specific QD energy con-

figurations when the temperature in the heat bath is increased. It is shown, that

the direction of the current is independent of the direction of a small voltage

bias. Instead, we find the sign of the current to be extremely sensitive to how

the coupling energies, connecting the QDs to different electron reservoirs, relate

to each other. This enables the control of the direction of the current by varia-

tion of specific potential barriers in thickness and shape. Finally, the results are

discussed with respect to the application of the HCC-mechanism to other devices.

11.2.1 Concept of the Heat-to-Current Converter

In order to get deeper insight into the mechanism of the HCC, the system is

first approached from a thermodynamic point of view: It is assumed that there

are only two electronic ensembles G and C which can exchange energy through

two Coulomb-interacting QDs while they are kept at arbitrary temperatures TG

and TC . The heat flow ∆U between the two reservoirs then is accompanied

by a change in entropy ∆Si in each reservoir according to ∆Ui/Ti = ∆Si with

i = G,C. Since the energy is exchanged between the two ensembles by the

Coulomb interaction of the QDs, ∆U flows in packages of EC. Thus, the entropy

production for the transfer of EC can be determined:

∆S = ∆SC + ∆SG = EC(
1

TC
− 1

TG
). (11.5)
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Microscopically, the transfer of EC takes place, if the system undergoes a par-

ticular 4-stage cycle of QD states. This cycle is depicted in Fig. 11.9 (a) with

i = C and j = G for the case TC = TG. The tunneling processes are denoted

with numbers 1 - 4: First, an electron from reservoir C tunnels onto QDC (1).

This is followed by the tunneling process of an electron from reservoir G onto

QDG (2). Thus, the energy of QDC is increased by EC. If then the electron re-

siding on QDC leaves into reservoir C again (3), the energy of QDG is reduced by

EC. Subsequent tunneling of the electron from QDG into reservoir G completes

the cycle (4). As a net result the energy package EC has been transferred from

reservoir G to C. We note, that the time averaged energy flow is not directed in

this case because due to equal temperatures in C and G, the detailed occupation

probabilities are identical for QDC and QDG; the system is in an equilibrium

state and thus we get for the total entropy production ∆S = 0 [cf. Eq. (11.5)].

Obviously, this symmetry is broken when a temperature difference is applied, for

example so that TG > TC . Then the probability for the processes 2 and 4 to

occur in reservoir G are increased while steps 1 and 3 are more likely to take

place in reservoir C. Hence, energy flow becomes directed from reservoir G to

C. Since energy transfer in the reversed direction increases entropy according to

Eq. (11.5), the corresponding tunneling processes are strongly suppressed.

In the cartoon in Fig. 11.9 (b) a second reservoir is connected symmetrically to

QDC which is also at temperature TC . Now the QD is equipped with a source

(S) and a drain contact (D). When the probabilities for electrons tunneling be-

tween QDC and S and D are identical at all energies, the internal symmetry of

the cold subsystem remains unchanged and thus, the situation does not change

fundamentally. The energy transferred from the hot to the cold subsystem is

dissipated equally into both contacts S and D.

However, this only holds if the two contacts are symmetric, i.e. if the tunneling

coefficients associated with the processes 1S, 1D, 3S and 3D shown in Fig. 11.9 (b)

are identical, because then they can be treated formally as a single reservoir with

twice the particle number. If this symmetry is broken, S and D become distin-

guishable. We need to be aware of the fact that breaking a symmetry reduces the

accessibility of micro states of a system. Thus, it reduces entropy. In the case dis-

cussed here, a broken source-drain (or, equivalently, left-right) symmetry, given

for example by the tunneling coefficients Γ1S,Γ3S > Γ1D,Γ3D associated with the
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Figure 11.9: Cartoon of two subsystems G (top) and C (bottom) each consisting
of a QD and a number of electron reservoirs. The 4-electron cycle which transfers
energy in packages of EC due to the capacitive coupling C between the QDs from
subsystem G to C is denoted with numbers 1-4. (a) Both subsystems are at the
same temperature TC = TG. They both consist of a QD which couples to a single
reservoir. (b) TG > TC and QDC now couples to two reservoirs S and D. The
corresponding tunneling processes are denoted 1S, 1D, 3S and 3D. (c) Same as in
(b), except for the shape of the potential barriers confining QDC. Now individual
coefficients Γ1S,Γ1D,Γ3S,Γ3D have to be assigned to the tunneling processes in
reservoir C. Electron-hole symmetry and left-right symmetry are broken at the
same time in subsystem C.

processes 1S, 3S, 1D and 3D, respectively, favors energy flow from reservoir G

into S. Since the only energy form available is thermal energy, the temperature

in S increases which in turn leads to a temperature difference between S and D.

The internal symmetry of the cold subsystem can be further reduced, if in ad-

dition to the left-right-symmetry also particle-hole symmetry is broken. This is

achieved by asymmetric potential barriers for QDC which exhibit differences in

height, thickness and energy dependence, as it is shown in Fig. 11.9 (c). For

such a system, the tunneling coefficients generally fulfill Γ3DΓ1S 6= Γ3SΓ1D. When

this DQD-system is driven out of equilibrium by TG > TC, detailed balance for

the cold subsystem is broken: The probability for an electron to travel in one

direction between source and drain differs from that for the opposite direction;
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tunneling probabilities favor electrons entering QDC from one reservoir at a low

energy and leaving into the other one at a higher energy.

For the cold subsystem, the condition Γ3DΓ1S 6= Γ3SΓ1D opens up the possibil-

ity to compensate the reduction of entropy resulting from the broken symmetry

with a difference in chemical potential between S and D. We emphasize, that this

two-fold broken symmetry with respect to S-D and energy is the central point of

the work by Sánchez and Büttiker because it is the key which allows the conver-

sion of thermal energy supplied by reservoir G into an electro-chemical potential

difference between S and D.

During their thorough investigation of this mechanism Sánchez and Büttiker

found that the rate of charge transfer between S and D, the current I, is given

by

I = e
Γ3DΓ1S − Γ3SΓ1D

(Γ3S + Γ1S)(Γ3D + Γ1D)

JG
EC

, (11.6)

where JG denotes the heat current into QDG. We note that I is proportional

to JG which establishes a dependence of the charge current on the temperature

difference ∆T = TG − TC . The connection between JG and ∆T is not trivial.

Yet, for 0 < ∆T < TC , JG can be assumed to change approximately linear with

∆T (cf. Fig. 4 in Ref. [SB11] and Appendix C therein ).

Equation 11.6 reveals that the direction of I only depends on the difference

between the two products of tunneling probabilities Γ3DΓ1S and Γ3SΓ1D. If the

asymmetry is very strong such that Γ3DΓ1S � Γ3SΓ1D (or vice versa), one arrives

at the point where charge and heat current are only related by

I

e
=
JG
EC

, (11.7)

which implies that each energy package EC leaving reservoir G is used to transfer

one electron from S to D (or vice versa).

Furthermore, JG is related to the potential difference ∆V between S and D.

Sánchez and Büttiker find that I becomes maximal for ∆V → 0, which can be un-

derstood quite intuitively. Moreover, they identify a stopping voltage ∆V = Vstop

for which HCC processes become suppressed and JG → 0. The relation between

the charge current and the potential difference directly connects to the device
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efficiency η, which can be defined as η = P/JG, where P = I∆V is the power

extracted from the charge current. The authors show that if ∆T is not too large,

the efficiency at maximum power, which practically is the relevant parameter,

even approaches the Curzon-Ahlborn limit ηCA = 1−
√
TC/TG.

Besides the novelty of the HCC-mechanism, its direct dependence on a tunable

device parameter (the tunneling asymmetry) and the potentially high efficiency,

the QD energy harvester exhibits yet another unusual property: The directions

of heat and particle flow are decoupled. Usually, for the thermoelectric effects

known so far, both heat and charge are carried by the same particles which fixes

the relation between the direction of the temperature gradient and the resulting

voltage. For the HCC, in contrast, the energy is mediated through the elec-

trostatic coupling. Hence, the directions of JG and I become uncorrelated and

thereby a degree of freedom is provided which has not been feasible in thermo-

electric devices up to now [SB11].

11.2.2 Experiment

Experiment Design and Sample Description

For the detection of HCC processes in a real device one faces two major problems:

1. The concept of the HCC is based on the condition of simultaneously broken

source-drain and particle-hole symmetry, which is expressed by Γ3DΓ1S 6=
Γ3SΓ1D. Moreover, this asymmetry is directly related to the expected cur-

rent amplitude by Eq. (11.6). Thus, in the experiments it is crucial that

this requirement is sufficiently well fulfilled.

2. So far, the current heating technique supplied the thermally generated sig-

nals with the signature of a 2f-oscillation. This allowed to clearly identify

those signals which result from the temperature difference. However, in

the previous section 11.1 it has been shown that certain effects may oc-

cur in Coulomb-coupled QD-systems, which are not related to the HCC,

but still lead to a 2f-modulated current signal. Clearly, this complicates

a reliable distinction of HCC-processes. Thus, a characteristic property of

the HCC-signal needs to be identified which enables one to unambiguously

distinguish it from currents originating from other effects.
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We note here that split-gate defined QD-structures are especially well suited to

address the two aspects mentioned, because such structures are distinguished by

a unique flexibility in tuning important system parameters; hence, they allow a

source-drain asymmetry to be introduced conveniently by simply adjusting the

corresponding gate voltages. This way, the thickness and height of the poten-

tial barriers can be customized in order to ensure source-drain symmetry to be

broken. Furthermore, an energy dependence of the barrier transparencies, which

depends in detail on the shape of the potential barrier, is expected to occur quite

naturally in split-gate defined structures [MAR+07]. Moreover, in such devices

the exact shape, and thus the energy dependence of the barrier transparency,

depends on the one hand on the detailed configuration of lattice defects and DX-

centers [DL95, PLDL+05]. Because this configuration and its interaction with the

charge carriers in the 2DEG, is likely to vary on a length scale of 100 nm, tunnel-

ing asymmetries are expected to generally be present in split-gate defined QDs.

On the other hand, the potential barrier shape is determined by the potential

landscape created by the surrounding gates. Hence, present asymmetries of the

tunneling coefficients in terms of energy and with respect to source and drain will

become even more emphasized if an asymmetric configuration of gate voltages is

chosen not only for the gates which directly create the potential barrier, but also

for those which are in close vicinity.

An even more powerful property of split-gate defined structures is that they allow

the system to be adjusted in-situ during an experiment. This means, that we

can tune the barrier asymmetry and even invert it. Hence, we can utilize the

unique dependence on the barrier asymmetry given by Eq. (11.6) as a signature

to unambiguously distinguish the HCC-current from other 2f-modulated currents

in the structure.

Generally, we expect the HCC-current to be rather small and to be very sensitive

to the potentials in reservoirs S and D [SB11]. Often, when a small current is

to be detected in transport experiments, the resulting voltage drop is measured

across a large, well-known resistor. For our purpose this method is not well suited

for the following reason: For a small current (which may be, for example, of the

order of a few pA) a large resistor (∼ MΩ) is required in order to obtain a sizable

voltage (∼ µV). However, it has been mentioned above, that a large resistor acts

as a load for the HCC. Furthermore, it increases the sensitivity of the reservoirs
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to potential fluctuations (voltage noise) because the reservoirs become practically

floating as they get decoupled from a fixed potential. Since each reservoir couples

capacitively to several gate electrodes, which are generally not at the same po-

tential, this leads to a voltage between S and D which can easily be of the order

of 100 µV [Mit13]. Hence, a much more appropriate method than using a large

resistor is to connect either S or D directly to the physical ground potential while

the other reservoir is set to a virtual ground by a current amplifier. This allows

currents to be detected with good amplification, while the potential difference

Vbi between S and D is kept small, because Vbi is determined by the accuracy of

the current amplifier to equilibrate virtual and physical ground.

The above considerations suggest to use a slightly modified gate geometry com-

pared to the one of the thermal switching device presented in sec. 11.1. The

new geometry is shown in Fig. 11.10 (a). It is realized on the material Hamburg

1864 [cf. Appendix A]. Compared to the thermal switching device, the new

design contains an additional gate electrode which is denoted Y in Fig. 11.10 (a).

This gate can be used to manipulate the potential landscape in the vicinity to

the barrier connecting QDC and reservoir D. This way, we obtain an additional

parameter that can be used to especially influence the potential barrier shape on

the drain-side of QDC. Moreover, gate Y is expected to shield the drain reservoir

electrostatically from the plunger gate electrode PG of the gating dot QDG.

System Characterization

The QD-system is defined by applying appropriate voltages to the gate electrodes.

By variation of the respective gate potential, it is taken care that gate Y affects

the potential landscape in the 2DEG less strong than gate V. Hence, we introduce

a controllable asymmetry in shape for the potential barriers created by the gates

V, W and V, X. This is expected to emphasize the difference for the tunneling

coefficients for electron transfer at higher or lower energy between QDC and S

and D.

Variation of the potentials of gates W and X allows for directly tuning the po-

tential barriers on the source-side and on the drain-side of the QDC, respectively.

However, we note that information about the detailed coupling energies at higher

or lower energy, Γ1S,Γ1D,Γ3S and Γ3D, are not easily obtained for each barrier
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Figure 11.10: (a) Gate geometry of the device. (b) Coulomb peak of the con-
ductance G of QDC for different gate voltages VX and VW . The maximized peak
amplitude (Sym) corresponds to symmetric tunneling probabilities at the Fermi
level γS = γD (black). Increasing the voltage only on gate X gives the peak
denoted ASX (red) which corresponds to γD < γS. Increasing VW instead yields
ASW, γD > γS (blue).

individually from a conductance characterization. In contrast, the tunneling co-

efficients at the Fermi-level γS and γD can be inferred directly from a set of mea-

surements of the amplitude G0 of a Coulomb peak as shown in Fig. 11.10 (b).

The peak amplitude of a Coulomb resonance is given by [Ihn10]

G0 =
1

4kBT

γSγD

γS + γD

. (11.8)

In order to get quantitative access to the tunneling parameters γS and γD, first

VW and VX are fine-tuned until the amplitude of the conductance peak of QDC is

maximized. The corresponding conductance peak SYM is shown in Fig. 11.10 (b)

(black). For this configuration we obtain G0 = 0.145 e2/h. From Eq. (11.8) we

infer that G0 has a maximum for γS = γD. Thus, we obtain γS = γD = 23.2 µeV

for the configuration SYM, where we have used T = 230 mK. If we then carefully

increase VX, the peak amplitude decreases to G0 = 0.084 e2/h and we obtain the

conductance maximum ASX (red). As a first approximation we assume that a
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Figure 11.11: (a) Stability diagram displaying the conductance of QDC. The
borders of the stability region are indicated with solid and dotted lines. The occu-
pation numbers of QDC and QDG are denoted N and M , respectively. The frame
indicates the stability vertex investigated in greater detail. (b) 2f-component of
the current in the drain contact ∆ID resulting from an applied temperature os-
cillation in reservoir H by ∆T ≈ 100 mK. Stability regions are labeled with the
corresponding N and M . ∆ID gives a clover-leaf structure. The individual clover
leafs are labeled (I) to (IV).

variation of VX only affects γD. Then we obtain γD = 9 µeV and γS = 23.2 µeV.

This gives for the source-drain asymmetry γS ≈ 2.6γD. If we increase VW instead

of VX, we obtain the inverted barrier asymmetry, which gives the peak ASW in

Fig. 11.10 (b) (blue) with G0 = 0.048 e2/h. Correspondingly, we find γS =

4.6 µeV, and thus γD ≈ 5γS.

For the following experiments we set the gate voltages to the configuration ASX,

so that γD < γS. If we then measure the conductance G of QDC for a variation

of VPC and VPG, we obtain the stability diagram of the QD-system shown in

Fig. 11.11 (c) for TH = TS,D = 230 mK. Red, solid lines denote alignment of

the electro-chemical potential of QDC, µC, with those in the source and drain

reservoir, µS and µD. Dotted lines indicate configurations for which the similar
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condition is fulfilled for QDG and reservoir H, µG = µH. Together they define a

honeycomb-structure of stability regions within which the occupation numbers N

and M of QDC and QDG are fixed. At the vertex of three stability regions (triple

points, TP) both QD occupation numbers can fluctuate. Due to the capacitive

interaction, the TPs occur in pairs, separated by the energy EC. From dI/dV

measurements we obtain the charging energy of QDC, UC = 0.9 meV, which then

allows us to determine the capacitive inter dot coupling energy EC ≈ 90 µeV

from Fig. 11.11 (c).

Experiment

The temperature TH in the heat bath H is controlled by means of the current-

heating technique [MvHB+90]. Applying an ac-current IH = 150 nA with fre-

quency f = 11 Hz to reservoir H increases the temperature in the heating channel

by ∆T ≈ 100 mK (cf. sec. 11.1). In order to detect the resulting current between

S and D we ground contact S and connect D to a current amplifier, as described

above. For the given current amplifier settings (model: Ithaco 1211, amplifica-

tion: 10−8 A/V, input impedance: 2 kΩ), the potential difference Vbi between S

and D is kept in the range 0 < Vbi < 10 µV. By measuring the 2f -component

of the amplified current with a Lock-in amplifier we obtain the change of the

current ∆ID due to a temperature change ∆T in reservoir H.

11.2.3 Results

For the vertex indicated by a frame in the conductance stability diagram in

Fig. 11.11 (a), ∆ID is given in Fig. 11.11 (b). The stability regions are delim-

ited by solid and dotted lines and they are denoted with the corresponding QD

occupation numbers N , M . The data reveal a clover-leaf shaped structure of

positive and negative ∆ID, as it has been described in the previous section 11.1.

The regions of different sign for ∆ID are denoted (I) - (IV). As discussed above

(sec. 11.1), the clover-leaf pattern is caused by the effect of ’thermal switching’,

which requires a finite voltage across QDC. In this case, this potential difference

is given by Vbi, resulting from the current amplifier. However, we emphasize that

at the center of the stability vertex, i.e. in the region between the TPs, charge

fluctuations are uncorrelated [MDZ+07]. Therefore, thermal switching is not ex-
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Figure 11.12: ∆ID at the center of the stability vertex for different gate voltage
configurations and different Vbi. Stability sections are labeled (I) - (IV) according
to Fig. 11.11 (b). Borders of the stability regions are denoted with green lines.
The arrow indicates the line connecting the two TPs (axis of total energy). (a)
Configuration ASX (γD < γS) and 0 < Vbi < 10 µV. At the center of the
vertex region, where occupation fluctuations are uncorrelated, the data show
∆ID ≈ −0.6 pA. (b) Same as in (a), but with −10 µV < Vbi < 0. Sections (I) -
(IV) show inverted signs compared to (a), at the vertex center ∆ID ≈ −0.7 pA.
(c) Configuration ASW with 0 < Vbi < 10 µV. Compared to (a), sections (I) -
(IV) show the same signs while at the vertex center ∆ID ≈ 0.3 pA.
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pected to give a signal here. In contrast, heat-to-current conversion generates a

current maximum in this regime, because here the QD levels are aligned sym-

metrically around the Fermi level [SB11]. Hence, in the following we focus on the

region between the two TPs.

Fig. 11.12 (a) shows a detailed measurement of ∆ID at the center of the clover-

leaf structure given in Fig. 11.11 (b). The green lines denote the borders of the

stability regions obtained from the conductance data. The arrow in Fig. 11.12 (a)

connects the two TPs (axis of total energy, cf. Chap. 9). A finite current

∆ID ≈ −0.6 pA is observed here, between the triple points. In order to test

if this signal is related to Vbi, we adjust the setting of the current amplifier so

that −10 µV < Vbi < 0. The result is given in Fig. 11.12 (b). For the clover-leaf

pattern the signs of ∆ID have switched, so that ∆ID is now negative in sections

(I) and (IV) while sections (II) and (III) give ∆ID > 0. Interestingly, the current

signal at the center of the vertex is still negative (∆ID ≈ −0.7 pA). Obviously,

an inversion of Vbi does not cause ∆ID to switch here.

Next, we re-establish the conditions for Fig. 11.12 (a), so that 0 < Vbi < 10 µV.

Then, the gate voltages VW and VX are set to the configuration ASW. ∆ID ob-

tained for this configuration is shown in Fig. 11.12 (c). One now observes a

positive ∆ID ≈ 0.2 pA between the TPs while the signs of the clover-leaf sections

have not changed compared to Fig. 11.12 (a) [(I), (IV): ∆ID > 0; (II), (III):

∆ID < 0].

Finally, VW and VX are adjusted to the symmetric configuration SYM. [Note,

that for these measurements −10 µV < Vbi < 0]. The experimental data shown

in Fig. 11.13 (a) indicate that there is still a small negative current present at the

center of the vertex (∆ID ≈ −0.2 pA). When the voltage bias applied to gate

Y is carefully increased by approximately 10% one obtains Fig. 11.13 (b). This

configuration is denoted SYMY. It can be seen that the current is now positive

(∆ID ≈ 0.4 pA) between the TPs. The clover-leafs, in contrast, exhibit the same

signs as in Fig. 11.13 (a).

11.2.4 Discussion

The experimental data clearly show a temperature related 2f-current in the drain

contact for those QD-level configurations for which theory predicts the heat-to-

current converter to give the largest signal. Moreover, the experiments show
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Figure 11.13: ∆ID for −10 µV < Vbi < 0. The borders of the stability regions are
indicated by green lines, the clover-leaf section are denoted with roman numbers.
(a) Data for the configuration SYM. (b) ∆ID for SYM with slightly increased
voltage on gate Y (≈10%). The data show that between the TPs, the sign of
∆ID is sensitive to an increase of the voltage applied to gate Y.

that the direction of the current is independent of a small potential difference Vbi

between S and D, as it is evident from a comparison of Figs. 11.12 (a) and (b). In-

stead, it can be concluded from the data shown in Figs. 11.12 (a) and (c) that the

direction of the current can be manipulated by inverting the source-drain asym-

metry by variation of γS and γD: For the configuration ASX, for which γS > γD,

∆ID < 0 at the center of the vertex [Fig. 11.12 (a)]. For ASW, in contrast, it

has been shown that γS < γD. The corresponding measurements for the drain

current give ∆ID > 0 between two TP [Fig. 11.12 (c)]. This is strong evidence

that broken source-drain symmetry plays a central role for the generation of this

signal.

∆ID becomes small if gates W and X are set to the configuration SYM for which

γS = γD [Fig. 11.13 (a)]. This is in agreement with theory. However, the experi-

ments show that ∆ID does not vanish for this source-drain-symmetric adjustment

of QDC. This can be understood, if one takes into account that γS,D have been

inferred from the conductance peak amplitude which is only sensitive to the bar-

149



11. Thermal Effects in Coulomb-Coupled Quantum Dots

rier transparency at the Fermi level. Heat-to-current conversion, in contrast, also

requires an asymmetry of the tunneling coefficients at higher and lower energies.

Thus, we suggest that despite the symmetric configuration of γS and γD, the

corresponding barriers exhibit different shapes which lead to different tunneling

coefficients for electrons above and below EF. This is confirmed by the data in

Fig 11.13 (b). Here, the bias on gate Y has been slightly increased, which is

expected to mainly influence the shape of the tunnel barrier connecting QDC to

reservoir D. The data show that increasing VY also switches the direction of ∆ID.

This is a strong indication that also the energy dependence of the tunnel coupling

is a crucial parameter for the generation of the current signal.

Thus, the experimental data provide strong evidence, that the observed current

at the center of the clover-leaf structure is indeed a result of heat conversion into

a directed current as proposed in Ref. [SB11]. Furthermore, we note that the

presented results have been reproduced qualitatively, and partly even quantita-

tively, in calculations by B. Sothmann and R. Sánchez.

Finally, we would like to give a comment on the implications of the data presented.

The fact, that transport through a QD necessarily involves tunneling processes

constitutes a conceptual limitation to the current generated by the HCC, and

thus to the device’s efficiency and its potential practical usage. The proper-

ties of the two-QD system have been investigated theoretically in great detail

[SSJB13a, SB12a] and possible solutions to increase the maximum power extrac-

tion have been proposed, for example by using open QDs [SSJB12]. In order to

increase the maximum power extraction even further, the HCC-concept has been

extended to resonant tunneling in QD and Quantum wells [SSJB13b, JSSB13]

and even microwave-cavities [BSS+14]. Furthermore, the mechanism underlying

the HCC is very fundamental and thus it is not restricted to the conversion of heat

into a useful current. In the introduction to this chapter it has already been men-

tioned that a very similar mechanism gives rise to Coulomb-drag [SLSB10] and

even harvesting energy from bosonic sources has been proposed [SB12b]. Given

this huge potential in application, the proof-of-concept provided by the exper-

iments presented in this chapter may be considered an important step towards

energy harvesting at the nano-scale.
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Chapter 12

Summary of Part III

Part III studies thermal effects in devices which contain two interacting QDs.

Such systems have come into the focus of recent research in thermoelectrics be-

cause they have the potential to become a central building unit in future high

performance thermoelectric devices and, if embedded in multi-terminal struc-

tures, are expected to show novel ways of heat conversion which makes them

interesting candidates for energy harvesting at the nano-scale.

This part of the thesis starts with a brief introduction (Chapter 8) and an

overview concerning the physics of two-QD systems (Chapter 9). Next, in Chap-

ter 10, thermopower data of a double quantum dot (DQD) are presented for the

first time. The DQD is investigated in a serial configuration with finite inter dot

tunnel coupling. It is found that the honeycomb structure, which is characteristic

for the conductance stability diagram of a DQD, can also be identified in the ther-

mopower. In the region of the triple points (TP), at which three charge states of

the DQD are degenerate, maximum thermovoltage is observed. Along the axis of

total energy, which connects two adjacent TP, a characteristic thermopower line

shape is observed. The line shape is explained within an intuitive picture that

assumes two transport channels across the DQD, representing the TP. Applica-

tion of Mott’s rule as well as model calculations based on sequential tunneling of

electrons give qualitative and quantitative agreement with the experiments. For

those regions which are far away from the TP, the conductance and thermopower

data are well reproduced within a model that assumes transport via molecular

states. Combination of both models then allows model calculations for a com-

plete stability region in conductance and thermopower to be done.
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12. Summary of Part III

Chapter 11 deals with thermal effects which arise in two QDs that interact only

capacitively. The sample used for the experiments can be divided into two subsys-

tems: Subsystem G consists of the heating channel and a QD (QDG); subsystem

C, in contrast, contains a QD (QDC) which is tunnel coupled to two cold electron

reservoirs S and D. Both subsystems communicate only through the electrostatic

interaction of the QDs. Particle exchange between the subsystems is suppressed.

At first, it is shown that QDG can be used as a thermally operated switch for

charge currents across QDC. The working principle of the switch is closely re-

lated to the correlation of the fluctuations of charge occupation of both QDs:

While in some energetic configurations of the QD system occupation fluctuations

are positively correlated, an anti-correlation is obtained for other configurations.

Since an increase of the temperature in the heating channel also increases the oc-

cupation fluctuation rate on QDG, this enables a manipulation of the occupation

fluctuations rate of the capacitively coupled QD. Hence, for an applied potential

difference between S and D this allows the resulting current to be manipulated.

Depending on whether a region of positive or negative correlation is chosen, an

increase of the temperature in the heating channel increases or decreases the

charge current. In the experiments this results in a typical clover-leaf structure

at the vertex region around the TP in the stability diagram. Application of a

simple model reproduces all experimental observations qualitatively. The similar-

ities between electrical and thermal conductance of a QD imply that the observed

switching behavior could also apply for the thermal conductance of a QD. This

way, it could be possible to manipulate thermal currents across a QD and thus,

to realize a thermal transistor with QDs.

Furthermore, it is shown in this chapter that such a two-QD system can also

be operated as a heat engine: It converts thermal energy into a directed charge

current. The concept for this heat-to-current converter (HCC) was first proposed

by R. Sánchez and M. Büttiker [SB11]: As a key ingredient it requires the po-

tential barriers, which connect QDC with the reservoirs S and D, to exhibit an

asymmetry such that left-right symmetry and electron-hole symmetry are broken

at the same time. If this condition is fulfilled, an increase of the temperature

in subsystem G creates a state of broken detailed balance in subsystem C. This

means, that the probability for an electron to tunnel from S to D differs from the

probability for the reversed direction. This leads to a directed charge current be-
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tween the two reservoirs S and D. The energy required for this process is supplied

by subsystems G in the form of thermal energy. It is transferred to subsystem

C via the electrostatic interaction of the QDs. It is important to note, that the

direction of the current generated this way only depends on the asymmetry of

the tunneling coefficients in subsystem C. Another remarkable property of the

HCC is that the direction of heat current and particle current become decoupled.

In order or provide experimental evidence for the existence of HCC currents, one

needs to experimentally distinguish between charge flow due to HCC processes

and charge currents due to other thermal effects, e.g. the thermal switching effect

discussed in the first section of this chapter. For this purpose we make use of

the characteristic dependence of the HCC current on the barrier asymmetry: For

a well prepared asymmetric potential barrier configuration of QDC we observe a

small current signal of approximately 0.4 pA at the center of the clover-leaf struc-

ture. The latter results from a very small potential difference between reservoirs S

and D which is due to the instruments used in the experimental setup. Inversion

of this potential difference leaves the sign of the currents unchanged only at the

center of the clover leaf. In contrast, inverting the barrier asymmetry changes

only the sign of the current at the center. Here, the current signal also shows a

high sensitivity on the barrier shape. These observations are in agreement with

theoretical predictions for the HCC. They are reproduced even quantitatively

by model calculations by R. Sánchez and B. Sothmann. Thus, the experiments

provide direct evidence for the existence of HCC-currents. Due to the novelty of

the working principle of the HCC and its relevance from a fundamental scientific

point of view, the results presented here may be considered an important step

towards energy harvesting devices at the nanoscale.
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Appendix A

List of Materials

Material properties

Material density n at 4K mobility µ at 4K

/ cm−2 / cm2(Vs)−1

Bochum 12647 2.98× 1011 0.55× 106

Hamburg 1472 2.4× 1011 0.69× 106

Hamburg 1864 2.14× 1011 0.71× 106

Layer Stacking

layer thickness / nm
GaAs 50.0
GaAs 5.0
AlAs 5.0
GaAs 650.0

Al0.36Ga0.64As 20.0
Al0.36Ga0.64As:Si 40.0

GaAs 15.0

Table A.1: Layer stack of Bochum 12647

155



A. List of Materials

layer thickness / nm
GaAs N/A

Al0.33Ga0.67As 30.0
Al0.33Ga0.67As:Si 57.0

GaAs 5.0

Table A.2: Layer Stack of Hamburg 1472

layer thickness / nm
GaAs 50.0

30 × AlAs, GaAs 2.8, 2.8
GaAs 1000.0

Al0.341Ga0.659As 30.0
Al0.341Ga0.659As:Si 57.0

GaAs 5.0

Table A.3: Layer stack of Hamburg 1864
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Appendix B

Thermopower of a QPC

In the following section we will discuss the thermopower of the most fundamental

mesoscopic device: the Quantum Point Contact (QPC).

A QPC is a narrow 1D-constriction where electrons can move freely in only one

direction with a parabolic dispersion while energies are quantized for the other

two spatial dimensions. The resulting 1D-density of states has a 1/E dependence.

As it can be easily shown for a fixed number of modes this leads to a linear relation

between the potential difference ∆µ between source and drain contact of a QPC

and the resulting current. Hence the conductance G = ∆µ/I is constant [cf.

Fig. B.2 (a)]. Only if the number of conducting modes changes, one observes a

change in G [Fig. B.2 (b)]. Since each mode contributes the universal conductance

quantum 2e2/h, G is described by

G = 2
e2

h

∑
N (B.1)

for a system with N modes below the Fermi energy EF . N can be varied in an

experiment, if the constriction width is tuned. This has been done in the mea-

surements shown in Fig. B.1 where the x-axis corresponds the voltage applied to

two electrodes on top of a two-dimensional electron gas which depletes the carri-

ers and thus confines the electron path. Hence, more negative voltages represent

a more narrow QPC. The conductance data clearly exhibit a step function (red

line, right axis) indicating the reduction of N according to Eq. B.1. The thermo-

voltage Vth of the QPC is shown as a black line referring to the left axis. It can

157



B. Thermopower of a QPC

-1.4 -1.2 -1.0 -0.8 -0.6

0

2

4

 

V
A,C

 / V

 

0

5

10

15

 

G
 / e²/h

V
th

 /
 µ

V
 

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

0

2

4
 

V
A,C

 / V

 

0

5

10

15

20

 

G
 / e²/h

Figure B.1: Conductance G (red, right axis) and thermovoltage Vth (black, left
axis) of a Quantum Point Contact (QPC) as a function of gate voltage VA,C. In
the experiments, more negative VA,C correspond to a reduced QPC width. The
data are recorded at T = 1.8 K with ∆T ≈ 100 mK for Vth.

be seen Vth oscillates such that it exhibits a maximum for each step in conduc-

tance. This behaviour can be easily understood when considering the cartoon in

Fig. B.2 (c). If the temperature is increased in one of the contact reservoirs, e.g.

in the source contact, this creates empty states below and occupied states above

EF . If now a mode is moved through the Fermi level, corresponding to a step

in conductance, electron-hole symmetry is broken, i.e. electrons above the Fermi

level can access a different number of conducting modes than electrons below EF .

For the case shown in Fig. B.2 (c), hot electron in the source contact can use

two modes to move to the drain-side and occupy empty states there. In contrast,

cold electrons in the drain-contact can only access a single mode to travel to the

hot side and occupy empty states there. Thus, there is a net flow of electrons

from hot to cold. For open-circuit conditions the resulting potential difference is

then measured as a thermovoltage. When the QPC is adjusted to a conductance

plateau, electron-hole symmetry is re-established and Vth = 0.

Obviously, the thermovoltage increases if (for a fixed temperature difference) the

number of contributing modes is reduced. For example, for the transition from

N = 6 to N = 5 the thermovoltage peak will be small because the relative differ-
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Figure B.2: Energy cartoon of a QPC. (a) Condition for a conductance mea-
surement with applied VSD with two conducting modes (N=2). The conductance
shows a plateau in this regime. (b) The (N=2)-mode is within the bias window.
The system exhibits a step in conductance between two plateaus. (c) Same sit-
uation as in (b), but now TS > TD and no bias voltage is applied. The difference
in conducting modes for electrons above and below the Fermi level (dotted line)
causes a finite thermovoltage Vth to build up.

ence of modes for hot and cold electrons is small compared to the total number of

modes below EF . In contrast, for N = 2→ 1, the difference of one mode for hot

and cold carriers is much more significant. This explains why the thermovoltage

oscillations in Fig. B.1 increased with reduced QPC width.

Notably, since the conductance is directly related to multiples of the universal

conductance quantum an analogous reduction to fundamental constants can be

found for the thermopower amplitude maximum according to [MvHB+90, Str89]:

Smax
QPC =

k

e

ln2

i+ 1/2
≈ − 60

i+ 1/2

µV

K
. (B.2)

where k is the Boltzmann constant, e is the electron charge and i denotes the

mode index which crosses the Fermi energy for the given maximum. Hence,

Eq. B.2 can be used to directly calculate the temperature difference across a

QPC for a known transition of modes from measurement of the thermovoltage.
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Appendix C

Quantum Dot Basics

The following chapter presents a brief summary on the physics of Quantum Dots.

Since it intends to recall only the most fundamental aspects, it is very incomplete.

For more detailed reviews the reader is referred to Refs. [KG01, GP03, HKP+07,

Ihn10] from which this section adapts the main ideas.

C.1 Energy states of a Quantum Dot

Quantum Dots (QDs) are very small puddles of electrons which connect to one

or more electron reservoirs via tunnel barriers. Hence, the electrons inside the

QD are confined to a very small region. Correspondingly, the QD carries a to-

tal amount of charge Q and is surrounded by i electronic contacts or electrodes.

Thus, one can assign a total capacitance CΣ to the QD. The corresponding elec-

trostatic energy E can then be expressed by [Ihn10]:

E =
1

2

(Ne)2

CΣ

+ eN

j∑
i=1

Cdi
CΣ

Vi, (C.1)

where N is the number of electrons residing on the QD and e is the elementary

charge. Cdi denotes the capacitance of the QD and reservoir i if there are j

reservoirs (or electrodes) present. Vi refers to the potential of reservoir i. Equa-

tion (C.1) directly shows that E changes by a fixed amount if the electron number

on the QD, N , changes by one. Note that this is a direct result of the quantiza-

tion of charge in units of e.
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C. Quantum Dot Basics

In the case of semiconductor QDs, the size of the puddle often is of the order of

the Fermi-wavelength of the electrons. Therefore, the energy states of electrons

on the QD become quantized due to quantum mechanical confinement. If this is

to be taken into account, Eq. (C.1) becomes

E =
1

2

(Ne)2

CΣ

+ eN

j∑
i=1

Cdi
CΣ

Vi +
N∑
n=0

εn. (C.2)

Hence, the energy states of the QD are quantized with respect to two parameters:

(1) the number of electrons N on the QD and (2) the energy states on the QD

εn which can be occupied by electrons.

Since conductance experiments investigate the flux of charges in a device, the

relevant parameter is the chemical potential µ. By definition, µ is the energy

required to add or remove an electron to or from an ensemble of electrons to a

given temperature. Using Eq. (C.2), one obtains for the energy µ
(d)
N+1 to add the

(N+1) electron to a QD

µ
(d)
N+1 = E(N + 1)− E(N) = εN+1 +

e2

CΣ

(
N − 1

2

)
+ e

j∑
i=1

Cdi
CΣ

Vi. (C.3)

Hence, if the QD is tunnel-coupled to two reservoirs source (S) and drain (D)

with chemical potential µS and µD, respectively, transport across the QD is only

possible if the energy given by Eq. C.3 can be supplied by electrons in S and

D. In general, however, this is not the case because electrons will tunnel onto

the QD as long as µS, µD > µ(d) and will cease to do as soon as µS, µD > µ(d).

Thus, in the equilibrium state, there will be a fixed number N occupying the

QD. In this context, Eq. C.3 highlights three aspects: (i) the addition of one

electron requires a certain amount of energy in order to occupy the next free

energy state εN+1 on the QD (first term in the equation). (ii) In addition to

that, a charging energy has to be paid. This is expressed by the second and third

term in Eq. (C.3). (iii) The charging energy can be changed by changing the

potential of one of the reservoirs or electrodes which couple capacitively to the

QD [third term in Eq. (C.3)]. Interestingly, aspect (iii) can be put into practical

use by attaching an additional gate-electrode to the QD-device which couples
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C.2. Electrical Transport Properties of a Quantum Dot
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Figure C.1: Conductance (G) measurement for a QD at T = 80 mK as a function
of plunger gate voltage. Whenever the electro-chemical potential of the QD aligns
with those in the source and the drain contact, transport across the QD is en-
abled and a conductance peak is observed (Coulomb resonance). Otherwise, G is
suppressed (Coulomb blockade). (a) For strong tunnel barriers (weak coupling).
(b) For reduced barrier thickness (strong coupling).

only capacitively to the QD (a so-called plunger gate). This plunger gate can

then be used continuously tune the energy of the QD and this way controllably

create the resonance condition µS = µ
(d)
N+1 = µD.

C.2 Electrical Transport Properties of a Quan-

tum Dot

Figure C.1 (a) shows a measurement of the conductance G of a gate-defined

QD in units of e2/h as a function of the plunger-gate voltage VP. It can be

seen that G exhibits evenly distributed, sharp peaks of high conductance, so-

called Coulomb resonances, which are separated by regions where G is strongly

suppressed. This is the Coulomb blockade regime. Coulomb resonances occur

whenever the µS = µ(d) = µD so that the occupation number on the QD can

fluctuate and electrons can be exchanged with the reservoirs S and D. For a

small applied bias voltage between S and D (linear response) a current is then

flowing between S and D. In contrast, in the Coulomb blockade region, the QD
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C. Quantum Dot Basics

exhibits a fixed number of electrons N ; µS and µD are not sufficiently large to

add the (N+1) electron and the N electron occupying the QD has not enough

energy to leave into S or D. Thus, it is trapped on the QD.

The line shape of the Coulomb resonances is mainly determined by two things: (1)

The Fermi-Dirac distribution of the electrons in the reservoirs, which is directly

connected to the temperature T of the system, and (2) the level-broadening of

the QD levels Γ due to the finite tunnel coupling between QD and S and D

(lifetime broadening). In the limit kT � Γ transport the line shape is given by

[FMM93, Ihn10]

G =
e2

h

1

4kT

ΓSΓD
ΓS + ΓD

1

cosh2[(µ(d) − µS,D)/(2kT )]
, (C.4)

which results from considerations of transport taking place via a single level. If

the single-level spacing of the QD states is small, the peak has been found to be

better described by [Bee91]

G =
e2

h

1

4kT

ΓSΓD
ΓS + ΓD

−(µ(d) − µS,D)/kT

sinh[−(µ(d) − µS,D)/kT ]
. (C.5)

In the case of kT � Γ, the peak line shape approaches the shape of a thermally

broadened Lorentzian [FMM93].

Many information about a QD can be extracted from measurements of the dif-

ferential conductance dI/dVSD. Data from such a measurement are given in

Fig. C.2. The top panel shows single traces obtained from a variation of the

plunger gate voltage VP for VSD = 0 (dashed, blue) and VSD = 1.25 mV (solid,

black). The bottom panel gives dI/dVSD for a wide range of VSD from -1.5 mV

to +1.5 mV in a color scale plot. Regions with fixed occupation numbers are

denoted N , N+1, etc. [In addition, the N+1 region is labeled (1) in Fig. C.2.]

It can be seen that these regions of stable charge configurations form diamonds

(Coulomb diamonds, indicated by black solid lines in the figure) within which the

occupation number of the QD is fixed. The borders of the Coulomb diamonds

are denoted by configurations, at which the µ(d) aligns with µS [(3), (3’)] and µD

[(4), (4’)]. Those points, at which the borders of one Coulomb diamond meet,

correspond to configurations for which the chemical potentials of two different
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Figure C.2: Differential conductance dI/dVSD of a QD with occupation numbers
N to N+3. Top panel: Single traces of dI/dVSD vs VP for VSD = 0 (dashed)
and VSD = 1.25 mV (solid line). Bottom panel: Color-scale plot for VSD =
−1.5 to 1.5 mV. Solid lines indicate the borders of the stability region (Coulomb
diamond). Outside the diamonds single electron transport takes place (SET). Red
arrows mark regions of negative dI/dVSD. Dashed lines indicate signatures from
excited QD states, separated from the ground state by ∆ε. Encircled numbers
denote specific QD level configurations (see text).

occupation numbers, for example N and N+1, are within the bias window at the

same time. Hence, these points can be used to determine the charging energy of

the QD. A different way to obtain this number is to determine the distance ∆VP

as indicated in the bottom panel of Fig. C.2 at a well-known source drain voltage

VSD. Then,

α∆VP = e|VSD|, (C.6)

if one assumes fixed capacitive coupling of the plunger gate to the QD. Once α

is known, the VP axis can be converted into an energy scale.

The Coulomb diamonds can also be used to do excited state spectroscopy. In

Fig. C.2 the circles labeled with (5) mark additional peaks of dI/dVSD in regions
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C. Quantum Dot Basics

between two Coulomb diamonds where only single electron tunneling is taking

place (SET).

These peaks arise from tunneling processes that involve the occupation of an

excited state instead of the ground state. If the corresponding chemical potential

enters (or leaves) the bias window, this leads to a change in conductance which

is visible in the dI/dVSD diagram. Often, the excited states exhibit different

spin and angular momentum compared to the ground states and thus they show

interesting features, for example in magnetic field spectroscopy. Furthermore, we

note that under certain condition the relaxation rate from such excited states

into the ground state can be small for certain spin-configurations. This can

lead to so-called spin-blockade effects which cause the differential conductance

in the dI/dVSD measurement to become negative (red arrows in Fig. C.2). If

an excited state enters the bias window while the QD is still in the Coulomb

blockade regime, often this leads to a sudden increase in current [(6), dashed,

horizontal line]. This is due to tunneling processes of higher order (co-tunneling)

which involve coherent tunneling of two electrons through what is called a virtual

state: One electron enters the QD from the source and occupies the excited state

while simultaneously an electron from the QD ground state leaves into the drain

contact. Since both tunneling events take place coherently the electron number of

the QD does not change and thus, such processes are not affected by the Coulomb

blockade.
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Appendix D

A Detailed Introduction to the

Kondo Effect

This chapter closely follows the content of Refs. [GP03, Pus06, DFvdW11].

History: The Kondo Effect in Metals

The experimental discovery of the Kondo effect goes back as far as 1934, when

de Haas et al. investigated the resistivity of various metals at low temperature T

[HBdB34]. They found that, in contrast to the established theory of metals, the

resistivity of gold samples exhibits a minimum at low temperature. If then T is

further reduced, the resistivity increases with ln(T ). The origin of this anomaly

remained an unresolved puzzle for a long time. It was only after 30 years when

Kondo presented a theory which could explain the peculiar ln(T ) dependence.

Kondo based his considerations on the fact that experimental results suggested

a connection with diluted magnetic impurities in the samples [Kon64]. He real-

ized that a magnetic impurity in a host metal may exhibit an anti-ferromagnetic

coupling J < 0 with the conduction electrons at the Fermi level, leading to a

correlated many-body state from which incident conduction electrons scatter.

A rather intuitive picture of this interaction is given by M. Pustilnik [Pus06]:

In a first approximation, the impurity is assumed to be occupied with an elec-

tron with e.g. spin up, which only couples to a single conduction electron. The

resulting ground state will be a singlet. It is separated from the excited state,

a triplet, by the exchange interaction J . Thus, J can be considered a binding

167



D. A Detailed Introduction to the Kondo Effect

energy, or in other words: the energy required to break up the singlet state.

Kondo correlations arise, if the impurity spin is surrounded by a continuum of

conduction electrons. Coherent superposition then leads to a spin density rather

than a single spin coupling to the impurity electron. Correspondingly, the re-

sulting ground state is a many-body-singlet state. Its binding energy is not fully

described by J anymore, but instead a new parameter, the Kondo temperature

TK, needs to be introduced. This new binding energy sets an energy scale for the

Kondo-correlated state.

If now an incident conduction electron scatters with a spin-flip with an electron

that participates in the many-body Kondo state, conservation of angular mo-

mentum requires all surrounding electrons and the impurity site to participate in

this scattering event because they are correlated through the many body singlet

state, i.e. essentially by the Pauli exclusion principle. This effectively increases

the scattering radius of the impurity and thus leads to an enhanced resistivity. A

reduction of the temperature of the system enhances the stability of the many-

body state and hence, causes the observed enhancement of the resistivity with

ln(T ) [DFvdW11], [Pus06].

In order to describe the interaction between impurity spin and conduction elec-

trons, Kondo used a Hamiltonian of the form

H = H0 +
∑
k,k′

Jk,k′(S+c†k,↓ck′,↑ + S−c†k,↑ck′,↓ + Sz(c
†
k,↑ck′,↑ − c†k,↓ck′,↓)) (D.1)

where H0 accounts for potential scattering terms, Sz and S± are the spin opera-

tors for the impurity spin and c
(†)
k,σ create (annihilate) conduction electrons with

wave vector k and spin σ(=↑, ↓) [Hew93].

The challenge with this Hamiltonian is that it does not yield the ln(T ) depen-

dence if it is treated perturbatively in first order [Hew93]. This can be understood

if we consider that a perturbative treatment starts with the impurity site decou-

pled from the conduction electrons (J → 0) [Pus06]. For this, the ground state

is not a singlet, but a doublet. Hence, the ground state degeneracy is not lifted,

which however is the ”very essence of the Kondo effect“ [Pus06]. Kondo showed,

that only if the problem is solved perturbatively up to the third order of J , one

obtains the logarithmic T -dependence of the resistivity. He could then show,
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that together with the established theory for phonon scattering in metals, this

resulted in the observed resisitivity minimum [Kon64].

The perturbative approach used by Kondo is not applicable in the low temper-

ature limit: It yields unphysical results for T � TK because the ln(T ) terms

diverge in this regime [Pus06]. This circumstance became known as the Kondo-

problem and the search for a more advanced theory which could deal with the

divergencies spawned a huge activity in theoretical research. Finally, it was solved

by K. Wilson (1975), who introduced the method of numerical renormalization

group theory [Wil75]. The ability to treat the Kondo effect in the low tempera-

ture limit paved the way to investigate many-body correlations in many facets.

For example, Wilson’s renormalization techniques showed that J becomes in-

finite if T → 0. This proved the existence of the many body singlet ground

state mentioned above, which had only been a hypothesis at that time. Further-

more, together with scaling theory introduced by P. Anderson in 1967 [And67],

it enabled the calculation of the density of states (DOS) which revealed that

the correlated Kondo-state leads to an enhanced DOS on the impurity site. To-

day, the Kondo effect is a well understood phenomenon and thus has become a

test bench for new calculation methods and theoretical approaches in many-body

physics [DFvdW11].

With the technological advances in nano-fabrication, the Kondo effect received re-

newed attention. Already in 1966 Schrieffer and Wolf had shown, that the Kondo

Hamiltonian can be mapped onto the so-called Anderson impurity model with

Coulomb interaction [SW66]. Later it became clear that the Anderson model

also applies to QDs which therefore can be considered as artificial impurities.

Hence, the search for signatures of the Kondo effect in QD transport experi-

ments started [NL88, GR88]. In 1998 Goldhaber-Gordon et al. were the first to

succeed [GGSM+98]; two other groups subsequently followed in the same year

[COK98, SWEvK98]. The results from all three groups proved that the manifes-

tation of Kondo correlations in QDs are quite different from those found in metals:

While in metals, Kondo correlation increase the resistivity, the Kondo-effect in

QDs leads to an enhanced conductance.
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The Kondo Effect in Quantum Dots

Already in early theoretical considerations by Ng and Lee [NL88] and Glazman

and Răıkh [GR88] it has been pointed out that the Kondo effect is expected to

show different signatures for QDs than for magnetic impurities in metals. The

series of experiments in 1998 [GGSM+98, GGGK+98, COK98, SWEvK98] then

confirmed that in QDs, Kondo-correlations indeed lift the Coulomb blockade of

a QD so that the system exhibits an enhanced transparency in the conductance

valleys between two Coulomb resonances. In order to understand the origin of

this difference in Kondo-behavior we will compare the two systems with respect

to the conditions during transport experiments.

In most cases, a QD is tunnel-coupled to two separate electron reservoirs (source

and drain). If such a QD is occupied with an odd number of electrons 2N -1,

it will exhibit a net spin. Thus, it conceptionally resembles a single magnetic

impurity in a host metal. For such a system the Anderson impurity model gives

the Hamiltonian [GR88]

H =
∑
k,σ,i

εk,ia
†
k,σ,iak,σ,i +

∑
σ

ε0d
†
σdσ + Ud†↑d↑d

†
↓d↓ +

∑
k,σ,i

(Via
†
k,σ,idσ + V ∗i d

†
σak,σ,i).

(D.2)

The operators a†k,σ,i and d†σ create an electron with spin σ(=↑, ↓) and wave-vector

k in reservoir i(= source, drain) and on the QD, respectively. The corresponding

energies are εk,i for source and drain and ε0 for the QD. U is the charging energy of

the QD and Vi describes the hybridization of states on the QD and in reservoir i.

Correspondingly, the first sum accounts for the energy of the reservoir-electrons

and the second refers to the energy of the electron residing on the dot. The

charging energy of the QD resulting from electrostatic interaction is described by

the third term. Finally, the last summation accounts for the anti-ferromagnetic

coupling of the QD-electron with those in the leads, as for the Kondo effect in

metals.

However, when we compare the two systems, a magnetic impurity in a host metal

on the one hand and a QD with a spin coupling to two leads on the other hand,

we find that although they are formally very similar, they differ in a very im-

portant aspect: An impurity embedded in a metal effectively couples to a single
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Figure D.1: top: Transport in a Kondo QD as a co-tunneling process with (a)
inital state, (b) intermediate virtual state and (c) final state. Green arrows
indicate spins, U denotes the QD charging energy. bottom: Kondo DOS of a
QD (d) without and (e) with finite bias voltage VSD. The bias supresses the
correlation of electrons from left and right leads and thus splits the Kondo DOS
on the QD which leads to a zero bias anomaly in the differential conductance.

reservoir. Correspondingly, transport experiments yield information about scat-

tering events of electrons with the impurities. Kondo correlations essentially lead

to a mixing of different k and thus to a higher scattering rate. In contrast, the

QD couples to two reservoirs and, obviously, it can exhibit an anti-ferromagnetic

coupling with both leads. As a consequence, the Kondo effect correlates electrons

from two separate reservoirs. This effectively increases the transparency of the

QD. Correspondingly, for a small bias voltage the resulting current is enhanced.

Hence, it is the difference in geometry which causes such different phenomenolo-

gies of the Kondo effect [DFvdW11].

Since Kondo-correlations require the QD to exhibit a net spin, occupation number

fluctuations need to be suppressed. This is provided by the Coulomb-energy U

which separates QD states with different electron numbers, e.g. µ2N-1 +U = µ2N.

Therefore, the Kondo effect enhances the conductance in charge stability regions

where sequential, first order transport is suppressed due to Coulomb blockade.

Similar to the resistivity in metals, the enhanced conductance in QDs exhibits a

characteristic temperature dependence which goes as G ∝ −ln(T ). The physics
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involved here is the same as in metals: Kondo correlations are strong if the tem-

perature T is smaller than the Kondo temperature TK. If one enters the regime

T ∼ TK the Kondo state becomes gradually suppressed leading to the character-

istic ln(T ) dependences.

Furthermore, it has been mentioned above that Kondo-correlations lead to a

Kondo-DOS peak on the impurity site at the Fermi level. While this is not

directly visible in measurements of the resistivity of metals, the Kondo-DOS res-

onance can be detected in a QD by means of dI/dVSD measurements [MW93].

Here the differential conductance in the Coulomb valley decays if VSD is increased

leading to a peak in the curve for dI/dVSD as a function of VSD, a so-called

zero-bias anomaly [GGSM+98, COK98]. This behavior can be understood if we

look at the cartoons in Fig. D.1 (c) and (d). The increased VSD separates the

two reservoirs energetically which prevents coherent coupling of electrons at the

Fermi-level from both sides and thus reduces the transmission of the QD.

Transport across a Kondo QD can also be modeled as a co-tunneling process

[PG04]: Since Coulomb blockade forbids a change in occupation number, trans-

port needs to be of higher order involving two electrons tunneling coherently.

This is depicted in Fig. D.1 (a) to (c). Energy-time-uncertainty allows an elec-

tron from one of the leads with the opposite spin of the QD to overcome the

Coulomb barrier and to occupy the µ2N-state for a short time. Simultaneously,

the electron on the QD-electron at µ2N-1, which carries a spin up, can leave into

the other reservoir in a coherent process. This leaves the QD at the same oc-

cupation number as in the initial state. However, as a net result the dot has

experienced a spin-flip while an electron has been transferred from one reservoir

to the other. Within this picture it becomes intuitively clear, that the Kondo

effect requires the presence of a second energy level µ2N, in addition to the one at

µ2N-1. This makes the Kondo effect an electron-hole-symmetric process with re-

spect to the Coulomb valley center [CZ10]. (Note, that also for the Kondo-Effect

in metals J. Kondo had to assume an on-site Coulomb-repulsion of the magnetic

impurity in order to obtain the correct result [Hew93].)

However, there are certain restrictions for the charging energy. If U → ∞, the

wave function of the impurity electron and the wave functions of the conductance

electrons do not overlap and Kondo-correlations do not exist. On the other hand,

if U ∼ Γ the impurity does not exhibit a well-defined spin anymore. Similarly,
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Figure D.2: Possible QD level configurations representing in (a) and (d) the
empty orbital (EO) and in (b) and (c) the mixed-valence regime (MV). Red
arrows indicate the QD spin state. Since in the EO the QD is non-magnetic
over a time average, the spin is indicated with a dotted arrow here. U : charging
energy, Γ: intrinsic level broadening, ε0 = µ2N-1 − EF : spin level depth. In the
MV an additional DOS peak close to EF that merges with he Coulomb DOS
indicates the presence of Kondo correlations.

we expect the Kondo effect to vanish if the coupling to the reservoir electrons

at the Fermi level is reduced. This may happen if either U becomes large while

µ(2N-1) lies far below the Fermi level, or if the potential barriers become too thick

(i. e. small Γ). Hence, we expect both parameters to affect the binding energy

of the Kondo-state and thus, to determine the Kondo-temperature TK. Indeed,

according to Refs. [Hal78, GGGK+98] they relate to TK as

kBTK =

√
ΓU

2
× eπε0(ε0+U)/ΓU . (D.3)

Here, the energetic configuration of the QD is denoted ε0 = µ(2N-1) − EF , which

is called ”(spin-)impurity level depth“ in analogy to magnetic impurities in met-

als. We obtain ε0 = 0 if µ(2N-1) = EF and ε0 = −U if µ(2N) = EF . Thus, the

symmetric QD level configuration at the Coulomb valley center corresponds to

ε0 = −U/2.

For further discussions of Kondo-physics in QDs it is helpful to point out the sig-

nificance of certain regimes for ε0. The corresponding terminology is commonly

used in the Kondo-literature [Hew93, GGGK+98, CZ10]: If the QD is tuned
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into close vicinity to a G resonance, charge and spin of the QD fluctuate. For

0 > ε0 > −Γ/2 and −U < ε0 < −U + Γ/2, the dot mainly exhibits a net spin

so that Kondo correlations are still relevant [cf. Fig. D.2 (b) and (c)]. However,

non-Kondo physics dominate whenever the occupation number of the QD devi-

ates from 2N -1. This drastically changes the physics in this regime. Since the

topmost (valence-) electron is shared with the leads, it is called mixed-valence-

regime (MV). On the other hand, if Γ/2 > ε0 > 0 or −U−Γ/2 < ε0 < −U the QD

is outside the N -1 stability region [Fig. D.2 (a) and (d)]. It exhibits a net spin

only occasionally. Thus, these configurations belong to the empty-orbital-regime

(EO).

Equation 5.1 indicates that TK is determined by the parameters charging energy

U , coupling energy Γ and the spin-impurity level depth ε0. For diluted magnetic

impurities these parameters are practically fixed because they are directly con-

nected to the materials used. In QDs, however, they can be adjusted over a wide

range. Some of the parameters, e.g. ε0 or Γ, can even be tuned in-situ during an

experiment. Obviously, this opens up unique possibilities to directly access and

even manipulate properties of Kondo-systems. In recent years fundamental con-

sequences of Kondo-correlations have been investigated experimentally this way

such as the quadratic dependence of ln(TK) on ε0 given by eq. 5.1 [GGGK+98],

the limitation of the transmission of a Kondo-QD to the universal conductance

quantum 2 e2/h (“Unitary limit”) [vdWDF+00] and the phase shift of an electron

transmitted through a Kondo-system by π [JHS+00, TBY+14]. Furthermore, the

Kondo effect has been investigated in the presence of a third reservoir (2-channel

Kondo) [PRS+07], under non-of-equilibrium conditions [DHvdW+02, LSE+05,

KSM12], for other 2 level systems as two capacitively coupled QDs [HHWvK08]

and in numerous experiments which addressed many other interesting properties

[SWEvK00, SDE+00, vdWDE+02, JHKvdZ+05, PRW+06].

The vast majority of these experiments provides information about transport

at the Fermi level. However, the techniques used are not capable of directly

addressing relevant questions about transport away from EF which are related

to electron-hole-symmetry and the spectral density of states. Hence, important

aspects of the Kondo effect have not been tested directly in experiments. For

example, calculations by T. Costi et al. suggest that the peak of the Kondo DOS

is shifted away from the Fermi level if the QD is tuned away from the symmet-
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ric position ε0 = −U/2 [CHZ94]. Furthermore, the mixed-valence regime is not

easily accessed with conductance experiments because sequential transport dom-

inates here. For the investigations of such questions thermopower measurements

have proven to be a well-suited tool.
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Summary

This thesis treats the thermopower and other thermal effects in single quantum

dots (QD) and quantum dot systems. It contributes new experimental results

to the broad and active field of research on thermoelectrics in low dimensional

systems. The thermopower experiments discussed in this work focus on QDs

which exhibit a net spin and on tunnel-coupled double QDs (DQD). Further-

more, experiments are presented which address the realization of a QD device

which extracts thermal energy from a heat reservoir and converts it into a di-

rected charge current in a novel way.

The samples used for these investigations have been fabricated from GaAs/AlGaAs

heterostructures which contain a two dimensional electron gas. Using optical and

electron beam lithography, the devices have been realized by means of the top-

gate technology. All experiments have been performed at low temperature. In

order to create a controllable temperature difference in the samples the current

heating technique has been used. These experimental basics as well as funda-

mentals of electric and thermoelectric transport are introduced in Part I of this

thesis.

The experiments on the thermopower of a single QD are described in Part II.

Essentially, they deal with the problem of how a single spin situated on a QD

influences the thermoelectric properties of the system. In this context, the Kondo-

effect plays a crucial role. Generally, the Kondo effect is the result of a many-body

state which arises from an antiferromagnetic coupling of a magnetic impurity with

the surrounding conduction electrons. Here, the magnetic impurity is represented

by a QD which is occupied with an odd number of electrons so that it exhibits

a net spin. For the first time the thermopower of a Kondo-QD has been studied

systematically as a function of two parameters, namely the QD coupling energy

and the sample temperature. Both parameters are crucial quantities for Kondo-
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physics to be observed. Based on these data, it is shown that the thermopower

line shape as a function of QD energy is mainly determined by two competing con-

tributions: On the one hand by the enhanced density of states around the Fermi

level due to Kondo-correlations and on the other hand by thermopower contri-

butions from the Coulomb resonances. Furthermore, the experiments confirm

theoretical predictions which claim that the spectral DOS arising from Kondo-

correlations shifts away from the Fermi level for those QD level configurations

which are not electron-hole symmetric. Comparison with model calculations by

T. Costi and V. Zlatić [Phys. Rev. B, 81 235127 (2010)] shows qualitative and

partly even quantitative agreement. A finite thermovoltage at the center of the

Kondo-region, which occurred in previous investigations, is also observed in the

experiments presented here. It is not covered by the current theory of the Kondo

effect. The dependence of this signal on temperature, coupling energy and mag-

netic field, which differ from non-Kondo regions, is analyzed. In order to clarify

the physics behind this phenomenon further studies are desirable.

Furthermore, it is shown by variation of the QD coupling energy over a wide

range that Kondo-correlations can be detected in the thermopower even in the

regime of very weak coupling. In contrast, no Kondo signatures are visible in the

conductance in this energy range. It is found that in the limit of weak coupling

the Kondo effect causes the thermopower to exhibit a diminished amplitude in

close vicinity of a conductance resonance. Subsequent filling of spin-degenerate

states then leads to a thermopower amplitude modulation (odd-even-effect). Al-

though this effect had been observed in previous studies, no connection to Kondo

physics had been established in order to explain the observations. Hence, the

experiments on a single QD presented in this thesis provide unique insight into

the complex interplay of different transport mechanisms in a spin-correlated QD.

Moreover, the results confirm the potential of thermopower measurements as a

highly sensitive tool to probe Kondo-correlations.

In Part III thermal effects are investigated in systems which contain two cou-

pled QDs. Such QD-systems are particularly interesting with respect to thermo-

electric applications: Many proposals utilize the extremely sharp energy filtering

properties of such coupled QDs and also different kinds of inter dot coupling to

construct novel and highly efficient thermoelectric devices. In the present work,

thermopower characterizations are performed on a tunnel-coupled DQD for the
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first time. The key result of these investigations is the thermopower stability dia-

gram. Here it is found, that in such a system maximal thermopower is generated

in the vicinity of the so-called triple points (TP) at which three charge states

of the DQD are degenerate. Along the axis of total energy, which connects two

adjacent TP, a typical thermopower line shape is observed. It is explained and

modeled within an intuitive picture that assumes two transport channels across

the DQD, representing the TP. For those regions which are far away from the

TP, the thermopower turns out to be very sensitive to the relative configuration

of the QD energies. The conductance and thermopower data are well reproduced

within a model that assumes transport via molecular states. Integration of both

models into one then allows model calculations for a complete stability cell in

conductance and thermopower to be done.

Furthermore, experiments on two capacitively coupled QDs are presented. In

these studies the focus lies on testing the feasibility of such systems for the ma-

nipulation and generation of charge currents from thermal energy. In a series of

experiments it is shown that such a system of QDs can be utilized to increase or

decrease a current flowing between two electron reservoirs by varying the tem-

perature in a third reservoir. This effect is based on the cross-correlation of

occupation fluctuations of the individual QDs. These are positive for certain QD

energy level configurations and negative for others, which increases or decreases

the charge current in the experiments, respectively. In the stability diagram this

is manifested in a characteristic clover leaf shaped structure of positive and neg-

ative current changes in vicinity of the TP. All main experimental results are

reproduced qualitatively in simple model calculations. Due to the close anal-

ogy between electrical and thermal conductance of a QD, this effect of thermal

switching can, in principle, also be used to built a thermal transistor.

Finally, it is shown that a system consisting of two Coulomb-coupled QDs, which

couple a hot electron reservoir electrostatically to two cold electron reservoirs,

can be utilized as a novel device which extracts heat from its environment and

converts it into a directed charge current. The idea of this heat-to-current con-

verter (HCC) was first proposed by R. Sánchez and M. Büttiker [Phys. Rev. B,

83 085428 (2011)]. It is not only characterized by the novelty of its working prin-

ciple but also by the fact, that it decouples the directions of charge current and

energy flow. In the experiments presented here, such HCC-currents are identified
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unambiguously: For certain QD-level configurations an electric current between

the two cold reservoirs is observed if the temperature in the third reservoir is

increased. The direction of this current is shown to be independent of an ex-

ternal voltage. In contrast, the direction of the current exhibits a characteristic

dependence on the tunneling coefficients of the QDs, as predicted by theory:

By adjusting the thickness and the shape of the respective tunnel junctions, a

charge current can be generated between two cold reservoirs, and it can even be

inverted. The experimental observations are quantitatively reproduced by model

calculations by R. Sánchez and B. Sothmann. Thus, the results represent direct

evidence for the existence of HCC-currents. Due to the novelty of the working

principle of the HCC and its relevance from a fundamental scientific point of

view, the results presented here are an important step towards energy harvesting

devices at the nano scale.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Thermokraft und anderen thermi-

schen Effekten in einzelnen Quantenpunkten (QP) und Quantenpunktsystemen.

Sie liefert durch neue experimentelle Ergebnisse einen Beitrag zu dem breiten und

besonders in jüngster Zeit stark beachteten Themenkomplex der Thermoelektrik

in niedrigdimensionalen Systemen. Im Fokus stehen hier die Thermokraft von

spin-besetzten QP und tunnelgekoppelten Doppelquantenpunkten (DQP) sowie

die Realisierung von neuartigen Wärmemaschinen mit Hilfe von QP-Systemen.

Die für diese Untersuchungen verwendeten Proben wurden mit Hilfe der soge-

nannten split-gate Technologie lithographisch in einem zweidimensionalen Elek-

tronengas innerhalb des Halbleiterschichtsystems GaAs/AlGaAs realisiert. Sämt-

liche Experimente wurde bei tiefen Systemtemperaturen durchgeführt. Zur kon-

trollierten Erzeugung einer Temperaturdifferenz wurde die sogenannte Stromheiz-

technik verwendet. Diese experimentellen Grundlagen sowie allgemeine Hinter-

gründe zur Physik von elektrischem und thermoelektrischem Transport werden

im Gund-lagenteil, Teil I, behandelt.

Die Thermokraftexperimente an einzelnen QP sind in Teil II dieser Arbeit

beschrieben. Sie befassen sich im Kern mit der Frage, auf welche Art einzelne

Spins in einem QP die Thermokraft des Systems beeinflussen. In diesem Zusam-

menhang ist der Kondoeffekt von zentraler Bedeutung. Der Kondoeffekt resul-

tiert allgemein aus einem Vielteilchenzustand, der durch die antiferromagnetische

Kopplung einer magnetischen Verunreinigung mit Leitungselektronen der angren-

zenden Reservoire hervorgerufen wird. Die magnetische Verunreinigung wird hier

durch einen QP dargestellt, der Aufgrund einer ungeraden Besetzungszahl von

Elektronenspins ein magnetisches Moment besitzt. In den präsentierten Experi-

menten wird erstmals systematisch der Verlauf der Thermokraft eines Kondo-QP

in Abhängigkeit von den beiden Parametern Kopplungsenergie und Systemtempe-
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ratur untersucht. Diese beiden Parameter legen im Wesentlichen die Ausprägung

des Kondozustandes fest. Auf der Basis dieser Daten wird gezeigt, dass der Ver-

lauf der Thermokraft mas̈sgeblich von dem konkurrierenden Einfluss zweier Bei-

träge bestimmt wird: Einerseits der Thermokraft resultierend aus einer erhöhten

Zustandsdichte nahe der Fermienergie aufgrund von Kondokorrelationen und an-

dererseits dem Beitrag der Coulombresonanzen. Des Weiteren belegen die Expe-

rimente die theoretisch vorhergesagte Verschiebung der spektralen Zustandsdich-

te auf dem QP weg von der Fermienergie, und zwar für solche Energieniveau-

konfigurationen, welche nicht elektron-loch-symmetrisch sind. Vergleiche mit nu-

merischen Berechnungen von T. Costi und V. Zlatić [Phys. Rev. B, 81 235127

(2010)] zeigen qualitative und teilweise sogar quantitative Übereinstimmung. Ei-

ne im Zentrum des Kondobereiches entstehende, elektronenartige Thermospan-

nung, wie sie bereits in früheren Untersuchungen zum Kondoeffekt beobachtet

wurde, kann auch in den Experimenten hier festgestellt werden. Sie wird durch

die gegenwärtige Theorie zum Kondoeffekt nicht erklärt. Die experimentell ge-

fundenen Abhängigkeiten dieses Signals von Temperatur, Kopplungsenergie und

Magnetfeld unterscheiden sich von denen in Nicht-Kondobereichen und werden

analysiert. Zur Klärung des physikalischen Hintergrundes dieses Phänomens sind

weiterführende Experimente wünschenswert.

Durch Variation der Kopplungsenergie über einen sehr weiten Bereich wird zudem

gezeigt dass sich Kondokorrelationen noch bis hin zu sehr schwacher Kopplung in

der Thermokraft nachweisen lassen. In diesen Energiebereichen weist der entspre-

chende Leitwert keinerlei Kondosignaturen mehr auf. Für die Thermospannung

bewirkt der Kondoeffekt im Grenzfall schwacher Kopplung eine Reduktion der

Amplitude nahe der Coulombresonanzen. Bei regelmässiger Aufüllung von spin-

entartetn QP-Orbitalen führt dies zu einer Amplitudenmodulation (Ungerade-

Gerade-Effekt), wie sie bereits in früheren Arbeiten beobachtet, dort jedoch nicht

mit Kondokorrelationen in Verbindung gebracht wurde. In ihrer Summe geben die

Experimente auf einzigartige Weise neue Einblicke in das komplexe Zusammen-

wirken verschiedener Transportmechanismen in einem spinkorrelierten QP. Sie

belegen das Potenzial von Thermokraftmessungen als hochsensitives Instrument

zur Erforschung von Kondokorrelationen.

In Teil III werden thermische Effekte in Systemen untersucht, welche zwei

gekoppelte QP enthalten. Solche QP-Systeme sind insbesondere für thermoelek-
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trische Anwendungen interessant: Zahlreiche Vorschläge nutzen die besonders

präzisen Energiefiltereigenschaften von gekoppelten QP, aber auch unterschied-

liche Arten der Kopplung zwischen den QP, zur Konzeption von neuen, hochef-

fizienten thermoelektrischen Bauteilen und neuartigen Wärme-Strom-Wandlern.

In der vorliegenden Arbeit werden erstmalig Thermokraftmessungen an einem

tunnelgekoppelten DQP in serieller Anordnung untersucht. Das zentrale Ergeb-

nis dieser Experimente ist das Thermokraftstabilitätsdiagramm. Hier lässt sich

beobachten, dass das System in der Region um die Tripelpunkte (TP), an denen

drei Ladungszustände des DQP entartet sind, maximale Thermospannungen er-

zeugt. Entlang der Achse der Gesamtenergie wird ein charakteristischer Verlauf

der Thermospannung beobachtet, der unter Annahme zweier Transportkanäle

über den DQP, die TP, erklärt und modelliert werden kann. Abseits der TP

zeigt sich, dass die Thermospannung höchst sensitiv auf die relative Anordnung

der einzelnen QP-Energien reagiert. Eine Beschreibung des Ladungstransports

durch molekülartige Zustände gibt hier die experimentellen Beobachtungen sehr

gut wieder. Zusammenführung der Modelle für den Bereich nahe und fernab der

TP erlaubt schliesslich die vollständige Modellierung des Stabilitätsdiagramms in

Leitwert und Thermokraft.

Des Weiteren werden Experimente an QP-Systemen mit zwei kapazitiv gekoppel-

ten QP gezeigt. Hier steht die Nutzung solcher Systeme zur Manipulation oder

Generation von elektrischen Strömen durch thermische Energie im Mittelpunkt.

Es wird gezeigt, dass sich ein System kapazitiv gekoppelter QP eignet, den elek-

trischen Strom zwischen zwei Elektronenreservoiren durch Änderung der Tempe-

ratur in einem dritten Reservoir kontrolliert zu vergrössern oder zu vermindern.

Der Effekt basiert dabei auf der Kreuzkorrelation der Elektronenbesetzungsfluk-

tuation der beiden QP, welche in einigen QP-Energiekonstellationen positiv und

in anderen Einstellungen negativ ist. So führt ersteres in den Experimenten bei

Erhöhung der Temperatur zu einer Vergrösserung, letzters zu einer Verminde-

rung des Stromflusses. Im Stabilitätsdiagramm erzeugt dieser Mechansimus ein

charakteristisches Kleeblattmuster aus positiven und negativen Stromänderungen

im Bereich der TP. Durch einfache Modellrechnungen können sämtliche experi-

mentellen Beobachtungen qualitativ reproduziert werden. Aufgrund der Analogie

zwischen Ladungstransport und Wärmetransport in einem QP ist auch eine Funk-

tionsweise als rein thermischer Transistor denkbar.
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Schliesslich wird nachgewiesen, dass ein solches System aus zwei elektrostatisch

wechselwirkenden QP und drei Elektronenreservoiren dazu genutzt werden kann,

um auf neuartige Weise thermische Energie in einen gerichteten Ladungsstrom

umzuwandeln. Das Konzept dieses Wärme-Strom-Wandlers (engl: Heat-to-Current

Converter, HCC) folgt dabei einem Vorschlag von R. Sánchez und M. Büttiker

[Phys. Rev. B, 83 085428 (2011)]: Es zeichnet sich nicht nur dadurch aus, dass

der zugrundeliegende Mechanismus der Wärmewandlung neu ist, sondern auch

dadurch, dass in diesem System die Richtungen von elektrischem Strom und

Wärmestrom voneinander entkoppelt sind. In den hier präsentierten Experimen-

ten können solche HCC-Ströme eindeutig nachgewiesen werden: Für bestimmte

QP-Energiekonfigurationen wird ein elektrischer Strom zwischen den beiden kal-

ten Reservoiren beobachtet, wenn die Temperatur in dem dritten Reservoir erhöht

wird. Es wird gezeigt, dass die Richtung dieses Stroms unabhängig von einer ex-

tern angelegten Spannung ist. Die Stromrichtung läßt sich jedoch, wie durch die

Theorie gefordert, durch Änderung der Tunnelkoeffizienten der QP beeinflussen.

Sie kann durch Variation der Dicke und der Form der entsprechenden Tunnel-

barrieren invertiert werden. Die experimentellen Beobachtungen werden durch

Modellrechnungen von B. Sothmann und R. Sánchez quantitativ reproduziert.

Sie sind somit ein direkter Beleg für die Existenz von HCC-Strömen. Aufgrund

der Neuartigkeit des Konzepts und seiner Bedeutung für weitere thermoelektri-

sche Anwendungen sind die hier präsentierten Ergebnisse ein wichtiger Schritt

auf dem Weg hin zur Realisierung von Wärmemaschinen auf der Nanoskala.
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thermoelectric power in molecular quantum dots described by the

negative-U Anderson model. Physical Review B, 84(24):241107,

2011.

[AM69] I.G. Austin and N.F. Mott. Polarons in crystalline and non-

crystalline materials. Advances in Physics, 18(71):41–102, 1969.

[And67] P.W. Anderson. Ground State of a Magnetic Impurity in a Metal.

Physical Review, 164(2):352–359, 1967.

[Arn14] F. Arnold. Entwicklung, Charakterisierung und Realisierung eines

Quantenpunkt basierten thermischen Stromschalters. Masterar-

beit, Experimentelle Physik 3, Universität Würzburg, April 2014.

[AS01] I. Affleck and P. Simon. Detecting the Kondo Screening Cloud

Around a Quantum Dot. Physical Review Letters, 86(13):2854–

2857, 2001.
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sisted hopping on thermopower in an interacting quantum dot.

New Journal of Physics, 16(5):055001, 2014.

[vdVGN+95] N.C. van der Vaart, S.F. Godijn, Y.V. Nazarov, C.J.P.M. Har-

mans, J.E. Mooij, L.W. Molenkamp, and C.T. Foxon. Resonant

Tunneling Through Two Discrete Eneregy States. Physical Review

Letters, 74(23):4702–4706, 1995.

[vdWDE+02] W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, S. Tarucha,

and L.P. Kouwenhoven. Two-Stage Kondo Effect in a Quantum

Dot at a High Magnetic Field. Physical Review Letters, 88(12):23–

26, 2002.

[vdWDE+03] W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa,

S. Tarucha, and L.P. Kouwenhoven. Electron transport through

double quantum dots. Reviews of Modern Physics, 75(1):1, 2003.

200



BIBLIOGRAPHY

[vdWDF+00] W.G. van der Wiel, S. De Francesci, T. Fujisawa, J.M. Elzerman,

S. Tarucha, and L.P. Kouwenhoven. The Kondo Effect in the

Unitary Limit. Science, 289(5487):2105–2108, 2000.
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List of Abbreviations

Abbrv abbreviation

0D zero dimensional

1D one dimensional

2D two dimensional

2DEG two-dimensional electron gas

AC alternating current

DC direct current

DOS density of states

DQD double quantum dot

EO empty orbital regime

FWHM full width at half maximum

HCC heat to current converter

MV mixed valence regime

QD quantum dot

QPC quantum point contact

SEM scanning electron microscopy

SNR signal-to-noise ratio

TP triple point

ZBA zero bias anomaly
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