
Mode-resolved Fabry-Perot experiment
in low-loss Bragg-reflection waveguides

B. Pressl,1∗ T. Günthner,1 K. Laiho,1 J. Geßler,2
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Abstract: Based on the interaction between different spatial modes, semi-
conductor Bragg-reflection waveguides (BRWs) provide a highly functional
platform for non-linear optics. For achieving any desired quantum optical
functionality, we must control and engineer the properties of each spatial
mode. To reach this purpose we extend the Fabry-Perot technique and
achieve a detailed linear optical characterization of dispersive multimode
semiconductor waveguides. With this efficient broadband spectral method
we gain direct experimental access to the relevant modes of our BRWs and
determine their group velocities. Furthermore, we show that our waveguides
have lower than expected loss coefficients. This renders them suitable for
integrated quantum optics applications.
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1. Introduction

Waveguided light sources are widely employed in many applications both in the field of clas-
sical and quantum optics, since the light inside them can simultaneously be guided very flex-
ibly and controlled strictly [1–5]. The confined waveguide size results in a finite selection of
transversal modes that can propagate through the structure, further determining whether only a
single optical mode is supported or if a multitude of them is accepted.

The linear optical waveguide characteristics such as refractive index and its dispersion, trans-
mission losses or the reflectivity at the end facets are relevant to practical purposes and impor-
tant feedback for manufacturing. One often employed loss measurement technique is the Fabry-
Perot characterization that is suitable for structures with well-cleaved, parallel end facets that
have at least modest reflectivity [6]. After travelling several round trips inside the waveguide
light interferes, and fringes can be observed in the transmission if the optical length the light
sees inside the resonator is changed for example by heating it [7] or by altering the wavelength
of light [8]. The loss characteristics can then be extracted from the fringe contrast. In the latter
case this information can also be extracted via the Fourier transformation of the transmission
spectrum [9]. With this technique, properties of sophisticated structures such as single-mode
semiconductor lasers, surface plasmon resonators and ridge waveguides have been investigated
and indications of cavity defects have been observed [10–13].

Regarding waveguides, their typically very rich spatial mode structure [14–16] may pose
a significant challenge in their application. For single mode waveguides a clear fringe con-
trast can be recorded in the Fabry-Perot transmission. However, for multimode waveguides this
is not the case [17, 18]. Nevertheless, the mode-resolved characteristics are of great interest,
especially for non-linear optical waveguides that are utilized as frequency-converted photon
sources. Thus, the characteristics of all interacting modes have to be carefully studied for opti-
mizing the conversion processes [19–22]. Despite sophisticated fabrication techniques, single-
mode waveguides that have a non-linear optical response are challenging to manufacture and
multimodeness is often introduced in the fabrication process by the chosen waveguide shape
and size [22–24]. The multimodeness can also be taken advantage of, as is the case in Bragg-
reflection waveguides (BRWs) that are built from semiconductor compounds [25]. The mode
structure of BRWs is highly complex, and apart from supporting the total-internal-reflection
modes they also carry higher-order modes, such as the Bragg modes [26]. This is necessary for
their use in frequency conversion processes. Recent demonstrations show that semiconductor
waveguides are a versatile source for four-wave mixing [27] and parametric down-conversion
(PDC) [28, 29].

Here, we present an extension of the existing Fabry-Perot technique of linear optical charac-
terization for transversally multimode waveguides and apply this method to our BRWs. Similar
to measurements of the group delay difference in multimode fibers [30, 31], our analysis uses
the fact that different spatial modes generally possess different dispersion. In our case, however,
the system allows for a direct and highly accurate determination of the absolute group effective
indices. These parameters play an important role, for example, in the PDC process [28,29,32].
The applied method gives access to the loss characteristics in a mode resolved manner. Our
results show a low level of total loss in the Bragg mode and excellent uniformity across several
samples. Additionally, we extract a lower bound for the number of excited modes and estimate
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the strength of the light coupling for the desired modes. By investigating waveguides with dif-
ferent cross-sections we show that the multimodeness is increasing with a larger waveguide
size.

2. Theoretical Background

BRWs are well-suited for loss measurements via the Fabry-Perot technique, due to the high re-
fractive index (> 3) of the semiconductor material. If their facets are uncoated, typically a Fres-
nel reflectivity of about 30% is expected. Thus, the waveguide forms a low-finesse (F ≈ 2.5)
Fabry-Perot resonator. The transmission spectrum of this resonator can be readily calculated
by summation of the complex field amplitudes at the facets. Following the notation in [9], the
transmittance of this resonator in terms of a vacuum wavenumber β = 2π/λ , where λ is the
vacuum wavelength of the light, is given by

T (β ) =
(1−R)2 exp(−2kLβ )+4sin(φ)

[1−Rexp(−2kLβ )]2 +4Rexp(−2kLβ )sin2(φ +nLβ )
, (1)

where L is the physical length of the resonator (i.e. waveguide length), R and φ are the reflectiv-
ity and phase change at the facet, respectively. In the dispersive case, the frequency-dependent
effective index of the mode n = n(β ) can be substituted. Linear losses are modeled through a
complex effective index ñ = n+ ik, where k is the absorption index that can be related to the
linear loss coefficient α via the vacuum wavelength λ0 with k = αλ0

4π
. The Fourier-transformed

transmission spectrum shows distinct peaks centered at integer multiples of the optical length
ngL of the dispersive resonator, with ng being the group index of the mode. As the light prop-
agates through the waveguide it accumulates some phase. In terms of the Fourier transform a
phase shift in real space causes a translation in Fourier space. Consequently, the individual facet
reflections are separated in the Fourier domain, with the amplitude at each reflection being pre-
served. Thus, the ratio of the amplitudes of subsequent peaks indicates the total loss R̃ at each
pass, which is given by

R̃ = Re−αL. (2)

If R and L are known, calculating α is straightforward.
The linearity of the Fourier transform is a key feature for applying the Fabry-Perot analy-

sis to multimode waveguides. Essentially, individual Fabry-Perot resonators are formed for the
different modes with their differing group effective indices. This is justified if the sample is
designed in a way that avoids interaction between the orthogonal eigenmodes [17]. To facilitate
this constraint in our BRWs, the cross-section of the waveguides along the propagation direc-
tion remains constant and adjacent waveguides are isolated by separating them far enough so
that evanescent coupling is avoided. Usually the spacing of modes in the effective index scale
is narrow, and therefore, complex beating effects are recorded in the transmission spectrum.
However, the distinct propagation indices lead to distinct optical lengths, and hence, it is pos-
sible to observe and measure each mode individually in Fourier space. In addition to this the
relative excitation strength of each mode is also preserved.

Strictly speaking, the ”multimode inverse Fabry-Perot transform” is an ill-posed inverse
problem as the number of contributing modes is not known a-priori. The Fourier transform is
not the proper inverse, but it simplifies the problem enough to enable modally resolved measure-
ments. Note that system-dependent additional effects, for example limited spectral resolution,
may influence the Fourier transform. Thus, the achievable measurement accuracy will vary de-
pending on the studied waveguide and its optical properties. Furthermore, the Fourier method
will take the collective data into account instead of just the minima and maxima of fringe con-
trast, which makes it more robust against noise. Simulations are useful for understanding the
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implications these effects on the measurements (see Appendix A). Figure 1 shows a simulation
of the expected spectrum of a two-mode system representative of our sample. Due to the uncer-
tainty principle, measuring several dozens of fringes is required to get a high resolution mode
spectrum in Fourier space. Nevertheless, a lot of information can already be gained by visual
inspection and interpretation, since reading the spectrum is easy and intuitive.

0 5 10 15 20

10 -5

10 -4

10 -3

10 -2

10 -1

1

0 10 20 30 40 50 60

Optical Length (mm)

8.1 8.11
0.2

0.4

0.6

0.8
775776

Wavelength (nm)

Wavenumber (µm-1)

T
ra

ns
m

itt
iv

ity

Mode 1

Mode 2

1st 2nd 3rd 4th 5th  Pass

Time (ps)Propagation
S

pe
ct

ra
l A

m
pl

itu
de

Fig. 1. Simulated spectrum of the fringe pattern of two dispersive (ng,1 = 4.1, ng,2 = 3.5)
and lossy modes (R = 0.3, k = 10−5) representative of our 0.9 mm long sample. Excitation
strength is 80% for Mode 1 and 20% for Mode 2. The peaks appear at multiples of the
resonators optical lengths indicating the group effective index for each mode. There are
five passes of each mode visible. The inset shows an excerpt of the simulated fringe pattern
with its two-mode beating.

3. Experiment

We are interested in the BRW properties in the near infrared region around 780 nm, since the
Bragg mode in this wavelength regime is exploited to pump the process of PDC [32]. Our BRWs
are fabricated with molecular beam epitaxy and have the layer structure described in [29, 33].
The ridges are defined by electron beam lithography and transferred into the semiconductor via
reactive plasma etching (see Fig. 2). We investigate BRW samples with two different lengths,
0.9 mm and 2.0 mm, which are cleaved pieces of a larger sample. Ridge widths from 3.0 to 6.5
µm in 0.5 µm steps were used. Our BRWs are modally phase matched for nonlinear conversion
processes between the NIR and telecom range.

In our experiment as illustrated in Fig. 3(a), we launch the broadband light of a superlumi-
nescent diode (SLED, Superlum BLMS mini, centered at 777 nm, 17.4 nm FWHM) with power
and polarization control into our BRW with a 100× microscope objective. The polarization of
the input beam is kept horizontal. After the waveguide the transmitted light is collimated with
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(a) (b)

Fig. 2. SEM image of a waveguide on the sample. (a) The ridge after carrying out the
measurements. Note that the sample has been exposed to the laboratory atmosphere for
more than half a year. (b) Close view of the core region. The SEM-measured thickness
values were used in the detailed simulation in Appendix B.
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Fig. 3. (a) Experimental setup consisting of the SLED, polarization control optics (half-
wave plate and sheet polarizer), coupling optics (microscope objective and aspheric lens)
and spectrograph. For optimization on SHG (see main text), a tunable telecom laser is back-
coupled and analyzed with another spectrometer. Ψ and γ are the geometrical parameters
of the spectrograph used for calibration (see Appendix C). (b) Raw, 14.5 nm wide, stitched
transmission spectrum where different colors show the three exposures of different wave-
length ranges. The 210 Fabry-Perot fringes of the waveguide resonator are superimposed
on the oscillation (FSR ≈ 2 nm) of another resonator formed by other optics. The power
envelope is determined by the spectrum of the SLED.

an aspheric lens and coupled to a single-mode fiber. The single-mode fiber may cut out some
modes or affect their coupling strengths, this is, however, a prerequisite for gaining the desired
resolution. Nevertheless, in this configuration our measurement technique provides direct indi-
cation to what extent higher order modes can be coupled to or excited via a single mode fiber.
The collected light is then directed through an spectrograph incorporating a grating with a 1800
grooves/mm (Acton SP2750 with 750 mm focal length), where we image the end facet of the
single mode fiber onto a 2D camera with large sensor and small pixels (9×9 µm2, SBIG STT-
1603ME). The achievable spectral resolution with this setup is better than 10 pm FWHM across
the entire image plane. Figure 3(b) shows a typical transmissions spectrum of our waveguides.
In general, we employ two different procedures to optimize coupling into the waveguide: either
maximizing the transmitted intensity, which causes most power to be coupled to the TIR mode,
or using a more elaborate scheme that involves second-harmonic generation (SHG). In the latter
case, we couple a telecom laser backwards for generating second harmonic light at NIR in the
phase-matched Bragg-mode. Since the light of the second-harmonic is only in the Bragg mode,
we can easily optimize the coupling of this mode to the single mode fiber.
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4. Results

Our results in Fig. 4(a) illustrate two different measurement configurations. First, we only op-
timize the transmission through the waveguide into the single mode fiber. In this case, shown
as a blue solid line in Fig. 4(a), most of the input light couples to the fundamental total internal
reflection (TIR) mode. After SHG optimization (yellow solid line in Fig. 4(a)) we can easily
identify the Bragg-mode and clearly notice that the amount of light coupled into the Bragg
mode is largely increased, while the other peaks corresponding to other modes stay approxi-
mately the same. We note that, while most of the power is still coupled to other modes, the
amplitude of the Bragg-mode is increased twofold. By integrating over the spectrum of the first
pass, we estimate that in the SHG optimized case 8% of the in-coupled power is guided by
the Bragg-mode. Furthermore, in Fig. 4(b) five excited modes can be identified for the given
waveguide. As each mode has a different group index, we can separate the modes from the
background by searching for a signal at twice the optical length. Figure 4(c) shows the num-
ber of clearly identifiable modes with respect to the ridge width (see also Appendix B). These
values are only lower bounds on the minimum number of excited modes because closely spaced
or degenerate modes cannot be separated. Nevertheless, a clear trend is visible that the number
of modes increases with increasing ridge width.

Bragg mode

SHG optimized
Power optimized

TIR mode

0 5

0.9 mm sample
4 µm ridge width

● ●

● ● ● ● ●

●

3 4 5 6 7

3

5

7

3 3.5 4 4.5

A
m

pl
itu

de
 S

pe
ct

ru
m

OL (mm)

(b) (c)
(a)

1 2 3

4

5

1st 4th Pass 

1st Pass

1

10

100

103

104

105

10 15

Optical Length (mm)

2nd 3rd

1

3

5
A

m
pl

itu
de

×
10

3

Ridge Width (µm)M
in

 #
 o

f m
od

es

1
2
3

4
5

Fig. 4. (a) Modulus of the Fourier transform of the transmission spectrum from Fig. 3(b)
(blue solid line). Superimposed is a second spectrum showing the result from optimizing
by maximizing SHG in the waveguide (orange solid line). The strongest mode is visible up
to the 4th pass. Two modes and their respective total loss value R̃ are indicated. (b) Linear
plot of the first pass with five easily discernible modes. (c) The minimum visible mode
numbers of several waveguides with different ridge widths.

In order to determine the mode loss, Eq. (2) has to be employed. Since only R̃ and L are
known, we are left with two unknowns: the modal reflectivity R and the loss value α . We have
two samples with different lengths (0.9 mm and 2.0 mm) but identical waveguides available.
If we rewrite Eq. (2) as a function of L, R̃(L) = Re−αL we can find a least-squares solution for
α and R simultaneously. In order to get good statistics, we measure multiple similar waveg-
uides at each of the two waveguide lengths. Both values strongly depend on the exact value
of R̃, so corrections for the limited resolution have to be applied (see Appendix D). For our
BRWs, we retrieve a TIR mode reflectivity of R = 0.35(4) and an ensemble loss coefficient of
α = 0.5(1)mm−1 = 2.2(5)dB/mm. The expected Fresnel reflectivity is 0.30 for an interface
between a material with refractive index of 3.4 and air. However, the Fresnel equations tend to
underestimate the semiconductor waveguide facet reflectivity. For systems similar to ours, we
may say that the mode reflectivity is 20 % higher than the Fresnel reflectivity [34]. This is in
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good agreement with the measured value.
For the modes of the waveguide in Fig. 4, taking the values of R̃ and the facet reflectiv-

ity of R = 0.35(4), yields linear loss coefficients of αTIR = 0.46(12)mm−1 and αBragg =
0.36(12)mm−1. A survey of many waveguides with different ridge widths indicates that to-
tal loss R̃ varies only about 10% for both modes. This suggests a high quality, highly re-
peatable waveguide fabrication and a lower level of loss than previously reported for BRW
modes [13, 29].

These values are much higher than expected from numerical simulations (see also Appendix
B), which take into account mainly the leakage of the mode through the Bragg mirrors. Other
potential loss mechanisms are material absorption and scattering through imperfections and
side-wall roughness along the waveguides. Absorption losses reported for the material with the
highest loss (Al0.2Ga0.8As) [35] are two orders of magnitude smaller than the measured linear
loss coefficient. Thus, scattering because of side-wall roughness and imperfections seem to be
the main loss mechanism.

Finally, by investigating the location of the peaks in Fig. 4(a) on the optical length scale
we can estimate the group indices. This yields group velocities of vTIR

g = 68(1)µm/ps and
vBragg

g = 81(1)µm/ps for the TIR and Bragg modes at the NIR, respectively. Additionally, in
Fig. 5 we show a dispersion map similar to a spectrogram. Analyzing the transmission spectrum
in limited wavelength ranges allows us to trace a change in the group index with changing
wavelength. The resulting map hints at the group velocity dispersion (GVD) of each individual
mode.

Being highly sensitive to the slope of the dispersion characteristic, the group velocity and
GVD delivers an accurate test of the used dispersion model (see Appendix B). From our results,
we also conclude that the in the NIR the Bragg mode lies below the respective TIR mode in
the group index scale, and has a lower GVD. Other than that, these parameters are crucial, for
example, for modelling the joint spectral properties of the twin photons created in the process
of PDC. For BRWs these values are typically gained from numerical simulations (see [32]
and references therein). Luckily, for highly dispersive resonators, the Fourier analysis provides
direct experimental access and a starting point for more detailed analyses.
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Fig. 5. Dispersion map, or spectrogram, of the first pass of the waveguide in Fig. 4. Each
horizontal row represents a mode spectrum like Fig. 4, but only a limited wavelength range
of the original transmission spectrum data is processed. Each part is weighted with a sinc
window and centered on the wavelength plotted on the vertical axis. The window is then
slightly shifted on the wavelength axis and the resulting slices are stacked. This allows a
more local recovery of the group index at the expense of resolution in the mode spectrum.
A mode-dependent shift of the group index with the central wavelength of the window is
clearly visible, indicating GVD.
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5. Conclusion

To summarize, we have shown how Fourier analysis of the optical transmission spectrum can
provide useful information about the modal structure of multimode waveguides. We have ap-
plied this method to our BRW samples at NIR wavelengths, where their rich modal structure
prevent the fringe contrast method from providing sufficient data. From our results we can
infer the linear characteristics in a mode resolved manner and illustrate the mode spectrum
of a low-loss BRW sample. Our technique, especially when combined with broadband spec-
troscopy, can be employed towards multimode waveguide characterization in many integrated
optics platforms.

A. Transmission spectrum: simulation and analysis

The transmission spectrum of a simple, isolated ridge waveguide is determined by its reflec-
tivity of the air interface and the phase shift accumulated along the propagation direction. In
that sense, the waveguide forms a Fabry-Perot resonator, with the transmitted light showing
the interference of partial reflections accumulated through multiple round-trips. The transmis-
sion spectrum shows a series of distinct Lorentzian peaks, whose width is determined by the
coefficient of finesse and, subsequently, through the reflectivity. The position of the peaks is
determined by the single-pass phase

δ (β ) = n(β )Lβ , (3)

where L is the waveguide length, β = 2π/λ is the vacuum wavenumber of the mode and n(β )
is the dispersive effective index of the mode.

As motivated in section 2, assuming orthogonal modes [17] the total multimode spectrum
can be calculated as the sum of multiple resonators’ spectra as

I(β ) = ∑
n

xiTi(β ), (4)

in which xi denotes the amount of light coupled to the i-th mode.
In Eq. (5) , the normalized transmission spectrum of the i-th single Fabry-Perot cavity is

given by

Ti(β ) =
(1−Ri)

2 exp(−2kiLβ )+4sin(φ)
[1−Ri exp(−2kiLβ )]2 +4Ri exp(−2kiLβ )sin2(φ +δi(β ))

, (5)

where k is the absorption index and R and φ are the facet reflectivity and the correspond-
ing phase shift. The Fresnel equations provide good initial estimates of the reflectivity R =[
(n−1)2 + k2

]
/
[
(n+1)2 + k2

]
and phase shift φ = arctan

[
−2k/(n2 + k2 −1)

]
. In the limit of

very low loss k � n, however, the phase shift φ can be neglected. For a certain mode i, we as-
sume only that the phase accumulated along the propagation direction δi(β ) changes according
to the effective index of the mode ni(β ). Furthermore, we note that in the dispersive case, the
spacing of the peaks in frequency domain, or free spectral range (FSR), is effectively given by
the group index ng = n+ω

∂n
∂ω

, with ω being the angular frequency of the light [36, 37]. This
result carries on to the Fourier domain: the ”optical length” measured from the peak position
of each mode actually reports ngL in first approximation . The GVD may cause an additional
broadening of the peaks (see Fig. 7).

To simulate the measurement of the spectrometer, I(β ) is sampled in frequency space accord-
ing to the pixel spacing of our spectrometer camera. The result is Gaussian filtered with a filter
width equivalent to the measured resolution of the spectrometer (see Section D). Subsequent
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simulations show that the power variation of the utilized broadband light source (superlumines-
cent diode) has little effect on the higher-order peaks appearing at multiple resonator passes,
aside from slightly reducing the signal.

B. Comparing the mode spectrum with extended simulations

For a more detailed qualitative investigation of BRW’s spatial and spectral dispersion properties
we use numerical simulations to interpret the results in (Figs. 4 and 5). These simulations
require certain additional parameters which strongly affect the result: an exact model of the
refractive index of the AlxGa1−xAs system is required and the layer thicknesses and waveguide
lengths have to be measured. Then, a mode solver (Mathematica 10.2, COMSOL 5.0) is used
to determine the effective index of certain modes in the wavelength range between 760 nm
and 790 nm. The total multimode transmission spectrum is then calculated from the individual
modes according to Eqs. 4 and 5 using the same values for the absorption index k and the modal
reflectivity R as in Fig. 1. Subsequent analysis of the transmission spectrum is then carried out
analogous to the experiment.

The simulated group indices of the relevant modes and their respective shapes are seen in
Fig. 6. For sake of simplicity, the simulations are carried out in a 1D slab configuration. Since
the waveguides are relatively wide (> 3 µm), the dispersive properties of the modes are mostly
determined by the dispersion of the materials.
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Fig. 6. Group indices of the four simulated slab modes with their respective mode shape
E2 along the vertical direction z. We do not expect the lowest effective index mode to con-
tribute significantly to the spectrum. Nevertheless, this illustrates that the group index can
be drastically different than the effective index. The numbers indicate the corresponding
modes in Fig. 4. Intuitively, we expect the TIR mode to be the strongest mode, while the
Bragg mode can be identified by the SHG optimization procedure (see Sec. 3). Further-
more, the simulated group index dispersion as well as the relative separation to the TIR and
Bragg modes match best for mode 3 in Figs. 4 and 5.

When comparing the simulation in Fig. 6 to our experimental results in Figs. 4 and 5, we
notice that the 1D simulations account for three of the five observed modes. We believe the
other two modes are defined by the finite extension of the ridge, where horizontal confinement
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needs to be taken into account. In 2D simulations, the complex structure of the BRW ridge
causes the appearance of thousands of spurious modes, which make a full survey of the dis-
persion very challenging. While these modes are in principle solutions to the wave equation in
the simulation, they are, however, not relevant in practice. Examples include highly radiative
modes propagating at the absorptive boundary of the simulation or modes propagating along
the surface or the substrate.

As expected, we find the Bragg-mode at a lower group index than the TIR mode. However,
the simulated group indices are consistently shifted by 0.3 when compared to the experiment.
We attribute this to the accuracy of the refractive index model employed [38]. Despite utilizing
a high precision dispersion model, the seemingly high difference is still well within the uncer-
tainty of the model. This is because the group index is highly sensitive to slope of the refractive
index. If the slope of the model is slightly different than in the experiment, a constant shift is in-
troduced. Note that other possible sources of errors, like varying layer thicknesses or aluminum
concentrations also affect the group index, but the combined, worst-case effect is less than 10
% of the observed deviation.

Further simulations have shown that the group index measured is highly stable with respect
to any accountable systematic error, like calibration (see Appendices C and D). Therefore, the
measured group index can be taken as very reliable and thus serve as a test for the refractive
index model. For example, one can think of adding corrections to the refractive index model to
better represent the sample.

Finally, Fig. 7 shows the result of the Fourier analysis of the simulated multimode transmis-
sion spectrum including the three modes found in Fig. 6. In addition to the slight shift of the
expected optical lengths, one can clearly see the broadening of the mode peaks compared to
Fig. 4. This broadening is caused by the GVD of the modes and, subsequently, the refractive
index model. Similar to the group index, the refractive index model seems to overestimate the
GVD, but also within the uncertainty of the model. To conclude, we find a good qualitative
agreement between the experiment and simulation.
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Fig. 7. Fourier mode spectrum with four simulated modes, and three easily discernible.
The inset shows a portion of the simulated multimode transmission spectrum. The numbers
indicate the corresponding modes in Fig. 4.

#249829 Received 9 Sep 2015; revised 30 Oct 2015; accepted 13 Nov 2015; published 21 Dec 2015 
© 2015 OSA 28 Dec 2015 | Vol. 23, No. 26 | DOI:10.1364/OE.23.033608 | OPTICS EXPRESS 33618 



C. Spectrograph considerations

The FSR of the waveguide resonator scales inversely proportional to the group index and res-
onator length. Therefore, care has to be taken when using a spectrograph for recording the
fringes, especially with regard to the resolution. The Lorentzian aspect of the peaks and the
beating pattern has to be properly resolved.

In our case, the group indices of the waveguide eigenmodes lie between 3.1 and 4.1, which
leads to a free spectral range of only 40 pm for a 2 mm long sample. Also, in order to record
more fringes, several exposures at different central wavelengths have to be stitched together. A
modified Czerny-Turner model [39] was used as calibration function, as the higher order poly-
nomial model performed unsatisfactorily due to the large spacing of the lines in this wavelength
range. The calibration model relates the observed wavelength λ at the pixel position ∆xcam for
a given ”central wavelength” setting λc of the spectrometer controller:

λ (Ψ,∆xcam) =
d
m

[
sin
(

Ψ− γ

2
− arctan

∆xin

f

)
+sin

(
Ψ+

γ

2
+ arctan

∆xcam

f

)]
, and

Ψ(λc) = arcsin
(

mλc

2d cos γ

2

)
.

(6)

Equation (6) is based on the key geometrical parameters of the spectrograph (see also Fig.
8): γ is the inclusion angle between grating and the mirrors, Ψ is the grating angle calculated
from λc, the diffraction order m and the groove spacing d of the grating. ∆xin and ∆xcam are the
off-center distances of the input fiber and camera, respectively. During the measurement, only
the central wavelength λc was changed.

The calibration and resolution measurement was done by investigating several lines of a low-
pressure Argon lamp between 763 and 801 nm (see Fig. 9). These bright Argon lines served as
reference for a total of 110 different (λc, ∆xcam) pairs. Despite having few emission lines around
775 nm, the typical calibration error is less than 10 pm in the wavelength region of interest. This
is more then enough to do a pixel-accurate stitch of three spectra with ≈ 6.5 nm coverage each
and an overlap of ≈ 2.4 nm. This yields a total spectrum of 14.5 nm showing approximately
210 (0.9 mm length sample, see main text Fig. 1) to 350 (2.0 mm length) fringes.

We note, that any nonlinearity on the wavelength calibration results in an artificial ”dis-
persion”, as there is an additional, frequency-dependent scaling error. The previously stated
calibration error of 10 pm over 14.5 nm yields a nonlinearity of 0.07 %. In comparison, the
refractive index of the weakest dispersive material in our system, Al0.8Ga0.2As, changes ap-
proximately by 0.2 % in the same wavelength range.

The use of geometrical model of the spectrograph with the addition of ∆xin as extra parameter
is critical in achieving the required calibration accuracy. However, more intricate geometrical
models, for example with a ray optics approach, show that there is still some room for improve-
ment [40].

D. Correcting for limited resolution

The finite resolution of the spectrograph affects the values of the total loss R̃, so here we show
a simple correction scheme for this parameter. Recovery can be performed by recognising that
limited resolution simply biases R̃ towards lower values deterministically, depending on the
group index of the mode and the resolution of the spectrometer. This is motivated by the prop-
erties of the Fourier transform: the recorded transmission spectrum is convolved with the point-
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Fig. 9. Real space camera image of the Argon 772.5887 nm and 772.6333 nm lines.

spread function (PSF) of the spectrograph (see Fig. 9). For the sake of simplicity, we assume
that the PSF can be represented as a narrow Gaussian whose width corresponds to the resolu-
tion. The individual pixels of the CCD can be seen a dirac comb which is convolved with the
PSF to model the instrument response. In Fourier space, the convolution becomes a multiplica-
tion and the narrow Gaussian of the PSF transforms to a wide Gaussian with a width inversely
proportional to the resolution. The multiplication of the Fourier transformed signal with the
wide Gaussian causes damping at high optical lengths. This results in lower than expected
values for R̃. In that sense, the uncorrected loss values should be seen as upper bound.

Figure 10 shows correction curves for four modes with different group indices in the range
expected in our sample. The corrected R̃ is simply calculated by multiplying the measured
value with the correction factor for a given waveguide length and group index. In the case of
the 0.9 mm length sample discussed in the main text, the raw total loss values are expected to
be overstated by about 10 % on average. For the long, 2.0 mm length samples, it may be as high
as 60 % with our setup.

A more elaborate method is deconvolving the original transmission spectrum, which is a
well-studied technique in spectroscopy [41]. This approach has also been discussed in the con-
text of the Fabry-Perot problem in microlaser gain measurements [42], but care has to be taken
in order to preserve the signal-to-noise ratio and avoid the introduction of artifacts.
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Fig. 10. Bias of the total loss R̃ for several modes with different group indices for the reso-
lution (10 pm) measured in our system. For example, with a 0.9 mm sample the measured
values of R̃ may be multiplied with a correction factor of 1.07− 1.14, depending on the
mode.
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