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2. Prüfer: Prof. Dr. Haye Hinrichsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Zusammenfassung

Auf Grund ihres Potentials hinsichtlich der Realisierung eines Quantencomputers wur-
de Quantenpunkten im Laufe der letzten Jahre große Aufmerksamkeit zuteil. In diesen
Halbleiterstrukturen können einzelne Elektronen kontrolliert eingeschlossen werden, deren
Spin wiederum als Basis eines Quantenbits zu Speicherung von Informationen verwen-
det werden kann. Allerdings unterliegt das Elektron vielvältigen Wechselwirkungen mit
seiner Umgebung, was oftmals zu einem sehr schnellen Verlust dieser Information führt.
Eine der wichtigsten Ursachen stellt dabei die Hyperfeinwechselwirkung der Kernspins
der Halbleiteratome mit dem Elektronspin dar. Eine vielversprechende Möglichkeit diesen
Effekt zu minimieren besteht daher in der Verringerung der Anzahl an Kernspins durch
Anreicherung spinfreier Isotope. Diese Strategie kann auf Bauteile, bestehend aus Ele-
menten der IV. Gruppe des Periodensystems wie beispielsweise Kohlenstoff, angewendet
werden. Ausgehend von dieser Möglichkeit, wird in der vorliegenden Arbeit das Verhal-
ten des Elektronspins in (kohlenstoffbasierten) Graphenquantenpunkten im Rahmen des
zentralen Spinmodells analysiert. Besonderes Augenmerk wird dabei auf die Abhängigkeit
der Dekohärenzphänomene von der Kernspinzahl gelegt.

Da sich die Modelle, auf denen diese Untersuchung basiert, an experimentellen Gege-
benheiten orientieren, wird zunächst ein Überblick über die wichtigsten experimentellen
Errungenschaften präsentiert. Neben einer allgemeinen Behandlung der Spinwechselwir-
kungen in Halbleitern wird dabei auch speziell auf die Eigenschaften von GaAs- und Gra-
phenquantenpunkten eingegangen, die beide als Musterbeispiele angesehen werden können.
Des Weiteren wird erläutert, wie sich das zentrale Spinmodell als offenes bzw. geschlosse-
nes Quantensystem beschreiben lässt und mit welchen theoretischen Methoden sich diese
untersuchen lassen.

Aufbauend auf diesen Erkenntnissen, wird dann das Verhalten des Elektronspins mit Hil-
fe analytischer und numerischer Methoden erforscht. Im Rahmen der statistischen Physik
findet sich ein thermisch induzierter Wechsel der Spinorientierung. Überdies wird die Zeit-
entwicklung des Elektronspins für unterschiedliche Kernspinzahlen analysiert. Der Limes
großer Kernspinzahlen wird mit Hilfe der Nakajima-Zwanzig Mastergleichung untersucht,
wobei sich für den zeitlichen Verlauf der Dekohärenz des Elektronspins ein Potenzgesetz
findet. Die Details dieses Potenzgesetzes hängen dabei von der Orientierung eines äußeren
Magnetfeldes ab. Eine Beschränkung auf sehr kleine Spinsysteme ermöglicht die Anwen-
dung von exakter Diagonalisierung, welche zusätzliche Erkenntnisse über die mikroskopi-
schen Vorgänge, die zu Dekohärenz führen, liefert. Insbesondere ist ein schneller Übergang
zu einem quasi-statischen Verhalten beobachtbar, das durch kleine Fluktuationen um einen
Langzeitmittelwert gekennzeichnet ist. Für diese Fluktuationen konnten im Rahmen der
Quantenthermodynamik zusätzlich analytische Obergrenzen gefunden werden.
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Summary

Due to their potential application for quantum computation, quantum dots have attracted
a lot of interest in recent years. In these devices single electrons can be captured, whose
spin can be used to define a quantum bit (qubit). However, the information stored in these
quantum bits is fragile due to the interaction of the electron spin with its environment.
While many of the resulting problems have already been solved, even on the experimental
side, the hyperfine interaction between the nuclear spins of the host material and the
electron spin in their center remains as one of the major obstacles. As a consequence,
the reduction of the number of nuclear spins is a promising way to minimize this effect.
However, most quantum dots have a fixed number of nuclear spins due to the presence of
group III and V elements of the periodic table in the host material. In contrast, group IV
elements such as carbon allow for a variable size of the nuclear spin environment through
isotopic purification. Motivated by this possibility, we theoretically investigate the physics
of the central spin model in carbon based quantum dots. In particular, we focus on the
consequences of a variable number of nuclear spins on the decoherence of the electron spin
in graphene quantum dots.

Since our models are, in many aspects, based upon actual experimental setups, we
provide an overview of the most important achievements of spin qubits in quantum dots in
the first part of this Thesis. To this end, we discuss the spin interactions in semiconductors
on a rather general ground. Subsequently, we elaborate on their effect in GaAs and
graphene, which can be considered as prototype materials. Moreover, we also explain how
the central spin model can be described in terms of open and closed quantum systems and
which theoretical tools are suited to analyze such models.

Based on these prerequisites, we then investigate the physics of the electron spin using
analytical and numerical methods. We find an intriguing thermal flip of the electron
spin using standard statistical physics. Subsequently, we analyze the dynamics of the
electron spin under influence of a variable number of nuclear spins. The limit of a large
nuclear spin environment is investigated using the Nakajima-Zwanzig quantum master
equation, which reveals a decoherence of the electron spin with a power-law decay on
short timescales. Interestingly, we find a dependence of the details of this decay on the
orientation of an external magnetic field with respect to the graphene plane. By restricting
to a small number of nuclear spins, we are able to analyze the dynamics of the electron
spin by exact diagonalization, which provides us with more insight into the microscopic
details of the decoherence. In particular, we find a fast initial decay of the electron spin,
which asymptotically reaches a regime governed by small fluctuations around a finite
long-time average value. Finally, we analytically predict upper bounds on the size of these
fluctuations in the framework of quantum thermodynamics.
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Introduction
“If I have seen further it is by standing on ye
shoulders of giants.”

Isaac Newton [1]

In his letter to Robert Hooke, Isaac Newton refers to an old metaphor attributed to
Bernard of Chartres. The original metaphor of dwarfs sitting on the shoulders of giants
expresses the relation between new discoveries and previous achievements [2]. Naturally,
this Thesis rests upon many giants. But rather than the giants themselves, let us name
two of their footsteps guiding us to the physics described in this Thesis. Much of modern
physics roots in the formulation of quantum mechanics in the mid-twenties of the 20th

century. Having originally been developed to describe the physics of microscopic objects
such as the hydrogen atom, it has been shown in the course of more than eighty years,
that its laws extend to much larger objects of mesoscopic or even macroscopic size [3].
One possibility to prove this extensive validity is the detection of a coherent superposition
of states, a hallmark of quantum mechanics. Such coherences have, for instance, been suc-
cessfully demonstrated by interference experiments on molecules [4] containing hundreds
of atoms. Another important step towards the physics relevant for this Thesis, has been
the realization of the transistor in the 1940s [5, 6]. Quite reverse to quantum mechanics,
the transistor, since then, took a route from the macroscopic world down towards the
mesoscopic realm following the predictions of Moore’s law [7] in remarkable agreement.

At the end of this development, we find single electron transistors. These extraordi-
nary devices are small boxes made of semiconducting materials, which contain only few
electrons [8, 9]. With regard to their small spatial extension, these transistors are also
referred to as quantum dots (QDs). The fact that objects like single electron transistors
can be designed and manipulated on very small lengthscales gives rise to exciting possi-
bilities for new types of quantum devices. One of the most prominent examples is the
quantum computer. As its name already suggests, quantum mechanics is at the heart of
this computer. While a classical bit of information is encoded in either of the two states
“0” and “1”, a quantum computer processes information stored in a qubit [10], which is
any coherent superposition of these two states. Using specific algorithms [11, 12], the
quantum computer allows for a fundamental new way of processing the data stored in ar-
rays of such qubits [10], which allows to solve certain problems much more efficient. It was
in 1998, when Loss and DiVincenzo finally suggested to do “quantum computation with
quantum dots” [13]. In their seminal work, they have proposed the spin of an electron in a
QD to realize a qubit. Moreover, Loss and DiVincenzo have demonstrated the feasibility
of quantum algorithms in coupled QDs in terms of universal quantum operations. Much
progress has been achieved since then, but the path towards a working quantum computer
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Introduction

seems still long and challenging. One reason is that quantum systems are not isolated.
Instead quantum systems, like the qubits, are rather fragile with respect to interactions
with their environment, leading to a very fast loss of their coherence. In the case of elec-
tron spin qubits, the interaction with the nuclear spins of the QD is one of the reasons for
decoherence.1 However, as we will see, it is more our limited capabilities than quantum
mechanics itself, which gives rise to this (apparent) loss of coherence.

Besides this rather practical issues of how to construct and operate quantum devices,
the advance of technology down to the mesoscopic and microscopic regime highlights even
more fundamental questions concerning the coexistence of the quantum and the classical
world. First attempts to explain the appearance of a classical world in a quantum universe
by decoherence have been pioneered by H. D. Zeh [14] in 1970. However, it was not until
the mid of the 1980s that decoherence attracted the attention of a broader community
by the seminal work of Zurek [15, 16] and Joos and Zeh [17].2 In 1991, this development
culminated in Zurek’s article in Physics today [19], which finally introduced decoherence
to a broad audience. In the years that followed, decoherence has been studied in various
models, many of which can now be actually investigated in numerous physical systems
with QDs being only one of them.

It is a fascinating observation that decoherence links both fundamental questions scruti-
nizing the foundations of quantum mechanics and practical difficulties in the development
of new devices such as the quantum computer. Schlosshauer [18] summarizes this intrigu-
ing circumstance in the preface to his book “Decoherence and the quantum-to-classical
transition”: “Decoherence makes a fantastic subject of research, as it touches upon many
different facets of physics, from philosophically inclined questions of interpretation all the
way to down-to-earth problems in experimental settings and engineering applications.”

In view of these words, this Thesis is mostly concerned with the down-to-earth part
of physics. In particular, we will investigate the dynamics of an electron spin in a QD
interacting with the surrounding nuclear spins. While the number of nuclear spins is
typically high for many materials such as the widely used GaAs heterostructures, devices
realized with group IV elements like graphene allow for the realization of nuclear spin
environments of variable size. Consequently, we will analyze the dynamics of the electron
spin surrounded by many and very few nuclear spins. Besides external magnetic fields, the
most important driving force for this dynamics is the hyperfine interaction (HI) between
the electron spin and the nuclear spins. The limit of large environments is analytically
investigated by means of a quantum master equation. More specifically, we will exploit
the Nakajima-Zwanzig equation, which is applicable to systems exhibiting so-called non-
Markovian dynamics. Subsequently, turning to very small nuclear spin environments will
allow us to analyze the dynamics using exact diagonalization. This approach will enable
us to better understand the microscopic processes being relevant for the decoherence of
the electron spin. Moreover, we will explore the importance of the size of the environment
by slowly increasing the number of nuclear spins. Based on these investigations, we will
then turn to the generic problem of equilibration in closed, mesoscopic quantum systems.

1The decoherence time gives the timescale on which coherent superpositions of states are lost. We clarify
the meaning of decoherence in Chapter 2.

2More details on the development of the “decoherence program” can be found in the introduction of
Ref. [18].
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To this end, we will derive certain analytic bounds on the fluctuations of the electron
spin, which we will then compare to its dynamics obtained before. Besides this dynamics,
we will also analyze the properties of the electron spin and the nuclear spins in thermal
equilibrium. Surprisingly, we will encounter a thermally induced flip of the electron spin
upon increasing temperature for certain materials. In total, these chapters constitute the
second part of this Thesis.

Since not all readers will be familiar with the physics of quantum dots, which is necessary
to follow the presentation of our findings, we give a summary of the most important
properties of quantum dots and some techniques to investigate them in the first part of
this Thesis. To this end, we review the physics of solid state QDs with a focus on GaAs
and graphene based setups. Subsequently, we will recapitulate how quantum systems like
the spin system in QDs can be modeled in terms of closed and open quantum systems. In
this context, we will also explain the physical reasons for the non-Markovian behavior of
our model. Furthermore, we will also discuss different theoretical tools to investigate this
model such as the Nakajima-Zwanzig equation and the method of exact diagonalization.

While we will give specific conclusions about our findings at the end of each chapter,
we will draw a more complete picture at the end of this Thesis. In this Conclusion we will
also suggest how the work presented in this Thesis can be continued in future projects.
Let us finally return once again to the giants of this Thesis. Regarding its limitations in
view of the previous achievements of so many physicists, let us cite a slightly different
version of Newton’s words.

“If I have not seen as far as others, it is because
giants were standing on my shoulders.”

attributed to Hal Anderson, Prof. at the MIT [2]
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Part I.

Physical background of quantum dots
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1. Physical properties of quantum dots

In this chapter, we give an overview on the physics of solid state quantum dots (QDs).1 To
this end, we first discuss how QDs can be realized in solid state systems by means of a brief
overview of commonly used materials. Subsequently, we discuss the spin physics of QDs
by introducing the particles present in these nanostructures and the interactions among
them. Based on this background, we review two important experimental realizations of
QDs in GaAs heterostructures and in graphene in more detail. Finally, we review, how
the states of the involved particles can be manipulated using the specific properties of
these QDs. This chapter as a whole is intended to provide the physical background for
the subsequent chapters. However, information relevant to understand the main ideas is
given in each chapter, such that this chapter can be likewise skipped upon first reading.

The interest in solid state QDs and the investigation of non-equilibrium spin physics of
an excess electron has been strongly promoted by the seminal work of Loss and DiVincenzo
[13], in which the spin of a confined electron has been proposed as a realization of a
qubit for quantum computation. Considering the DiVincenzo criteria [20] for a quantum
computer with respect to this specific qubit, the authors have presented an (at that time)
ambitious, yet promising way towards the realization of a quantum computer. Pushed by
this proposal, the quest for realizing qubits and, consequently, a quantum computer by
means of solid state QDs has become a prospering branch of physics.

So far, we have omitted a strict definition of what a QD is. QDs can be considered
as structures in which an electron is confined in each spatial dimension on length scales
comparable to its wavelength [21, 22]. For semiconductors, this wavelength is typically
given by the Fermi-wavelength of the electron [21]. In fact, typical diameters of QDs
range between tens and hundreds of nanometers [9, 23, 24] in agreement with the above
statement. According to the discrete spacing of their energy levels, these zero-dimensional
structures are also often referred to as artificial atoms.

Due to the capabilities of semiconductor nanostructuring, solid state QDs can be quite
intuitively considered as “a scalable physical system with well characterized qubits” [20].
In addition, the spin of the electron is less prone to environmental noise [13] than its
charge, which potentially gives rise to “long relevant decoherence times ...” [20]. However,
as we will show in Section 1.2, also the spin of the electron is not totally isolated from
its environment leading to a loss of information stored in the spin qubit. In particular,
we will see that the rate of loss strongly depends on the material used to built the QD.
Moreover, a meaningful quantum computer must provide “the ability to initialize the state
of the qubits ... ”, “a ‘universal’ set of quantum gates”, and “a qubit specific measurement
capability” [20]. Below, we illustrate these so-called DiVincenzo criteria in more detail by
virtue of a specific example.

1All acronyms used in this Thesis are also listed on p. 141 for convenience.
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1. Physical properties of quantum dots
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Figure 1.1. QDs realized in different materials. a)-f): scanning electron microscopy images,
g): scanning tunneling microscopy topographic image. a): InAs nanowire double QD, b): gated
graphene double QD, c): Si-MOS QD, d): GaAs double QD with a micro-magnet (yellow), e):
Ge/Si nanowire double QD, f): CNT double QD (CNT underneath the gate electrodes) g): two self
assembled InAs QDs. Figure a) reprinted from [25], c©2008, with permission from Elsevier , figure
b) reprinted with permission from [26], c©2010 American Chemical Society, figure c) reprinted
from [27], used in accordance with the Creative Commons Attribution (CC BY) license, figure
d) adapted with permission from [28], c©2014 American Physical Society, figure e) reprinted by
permission from Macmillan Publishers Ltd: [29], c©2007 , figure f) reprinted by permission from
Macmillan Publishers Ltd: [30], c©2009 , figure g) reprinted with permission from [31], c©2010 AIP
Publishing LLC.

1.1. Materials

As the DiVincenzo criteria and our definition of a QD suggest, there is a plethora of
methods [22, 32]2 to realize qubits in solid state systems. A collection of qubits formed in
various materials is shown in Fig. 1.1

Among the experimentally most successful systems over the past decade, one finds QDs
based on a two-dimensional electron gas (2DEG) formed in III-V heterostructures [9] such
as AlGaAs/GaAs. While the confinement in one dimension is achieved by a difference
in the band gaps, the remaining spatial degrees of freedom of the electron are usually
limited by electrostatic potentials built on top of the heterostructure, cf. Fig. 1.1 d). By
exploiting the specific properties of these QDs, these so-called gates also allow for a fast
and precise electric control of the electron spin. We elaborate on this type of QDs in
Section 1.3.1 below. Very similar physics can be achieved if the spin of a hole—a missing
electron in the valence band—is considered. Since electron and holes can not coexist in
these QDs due to the specific properties of the band edges, the respective spins cannot be
addressed by optical means. However, this is possible in so-called self-assembled quantum
dots [24] also made from group III and V elements, where electrons and holes form excitons.
The most prominent example is probably an InAs QD formed in an AlAs or GaAs host
material shown in Fig. 1.1 g). By applying laser light, precise control of the spins has been
demonstrated in many groundbreaking experiments [24]. Alternatively, QDs from III-V

2These and most of the following references of this section are mainly detailed review articles or textbooks,
which should enable the interested reader to explore this wide area of physics.
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1.1. Materials

materials can be also formed by means of nanowires [22], where two spatial dimensions
are already confined by the geometry, cf. Fig. 1.1 a). The remaining spatial degree of
freedom can again be limited by either electrostatic gates or again by a difference in the
energy gaps in heterostructures. The major advantage of these III-V systems is an overall
high quality of the QD samples and a high degree of control of the spin forming the qubit.
However, this comes with the price of a huge nuclear spin environment introduced by
the group III and V elements. Thus, the electron spin typically interacts with up to 106

nuclear spins via the HI leading to a comparably fast decay of its initial state.

One way to overcome this issue is to use group IV elements instead, in which the
abundance of spin carrying isotopes is typically low on the order of few percent. By
isotopic purification [33, 34, 35, 36] even spin free environments have been realized [37].
A prominent example is a QD formed in graphene [38, 39], in which the carbon atoms
are ordered in a two-dimensional honeycomb lattice. The confinement of the electron in
this plane can for instance be achieved by etching the desired structure out of single-
layer graphene or by electrostatic gates in bilayer graphene [23] as shown in Fig. 1.1 b).
More details on graphene based QDs are presented in Section 1.3.1. Besides graphene,
carbon nanotubes (CNTs) [40] form the second class of carbon systems used to realize
quantum dots, cf. Fig. 1.1 f). Since a CNT can be considered as a graphene sheet rolled
up along some direction, these QDs share many properties with graphene QDs, among
which a very weak hyperfine interaction is the most important one. Moreover, in both
systems, the electron exhibits another degree of freedom, the so-called valley degree of
freedom, which makes the spin physics more complex. We discuss its implications on the
spin physics in more detail below. The confinement of the electrons in CNTs is usually
achieved by top gates placed upon the CNT, which locally change the chemical potential.
Finally, qubits can be also found in so-called NV color centers of diamond [41], which show
remarkable properties regarding the spin physics with very long spin decoherence times
even at room temperature [34]. However, since the electron spin is bound to the color
center in insulating diamond, the construction of linked multi-qubit arrays seems much
more challenging.

Besides carbon, also silicon and germanium are interesting for forming QDs [42]. Two
examples of this type of QDs are presented in Fig. 1.1 c) and e). Due to advanced
fabrication technologies, a wide variety of different quantum dot designs has been devel-
oped, where geometrical and electrostatical confinement complement each other. Electrons
bound to dopants in Si crystals and self-assembled silicon nanocrystals constitute intrin-
sically zero-dimensional QDs. One dimensional nanowires can be grown from either pure
silicon or germanium and from heterostructures of both elements. For instance, in Si/Ge
core/shell nanowires, a one dimensional hole gas is established at the interface. The con-
finement of the particles in these one-dimensional nanostructures can again be obtained
by gate electrodes. Finally, also 2DEGs can be formed in Ge/Si heterostructures or in
silicon MOSFETs. Similar to the case of group III-V QDs, this electron gas is then locally
depleted by means of additional electrostatic potentials. However, as in the case of car-
bon, also silicon features a valley degree of freedom, which makes the spin physics more
complicated for certain applications [42].
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1. Physical properties of quantum dots

+ ++++++
Figure 1.2. Schematic diagram illustrating the periodic potential landscape V (r) created by the
positively charged nuclear cores. This periodicity is taken into account by the lattice periodic Bloch
function umS ,mτ (r), which is modulated by the envelope function φmS ,mτ (r). Figure adapted from
Ref. [43], c©2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

1.2. Particles and interactions in solid state quantum dots

Despite the fact that QDs are constructed in many different shapes, the relevant particles
in these devices are overall the same. Electrons and, likewise, holes are in the focus of
research, since they can be manipulated directly due to a strong coupling to external fields.
In contrast to this, the nuclear spins have been mainly treated as an obstacle towards the
realization of long-lived qubits in the past, since they interact with both electrons and
holes. Yet recently, a change of paradigm can be observed, where these nuclear spins are
rather considered as a resource for interesting physics. Moreover, the unavoidable presence
of phonons in solid state systems potentially gives rise to relaxation processes of the spins,
which have to be taken into account. In addition, certain QD setups feature cavities, in
which a photon bath is established. Since the physics, which we describe in the second
part of this Thesis, is not concerned with these systems, we give no further information
about photons here.

1.2.1. Electrons and holes

Depending on the details of the respective QD and the strength of the applied electrostatic
potentials, QDs can hold an arbitrary3 number of electrons and (or) holes. Within the
envelope-function approximation [44], the state of a single electron is described by

|ψ〉 =
∑

j,mS ,mτ

cjmS ,mτ |Φ
j
mS ,mτ

〉 ⊗ |mS〉 ⊗ |mτ 〉 , (1.1)

where |Φj
mS ,mτ

〉 is the orbital degree of freedom of an electron in band j and |mS〉 describes
its spin. The complex coefficients cjmS ,mτ obey

∑
j,mS ,mτ

|cjmS ,mτ |
2 = 1. In Eq. (1.1),

we have also considered the so-called valley pseudo-spin |mτ 〉 for completeness. This
3Of course, this number shows an upper limit. However, the experimentally relevant regime is found for

only few particles in the dot, such that the exact size of this limit is not important.
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1.2. Particles and interactions in solid state quantum dots

additional degree of freedom is only present in certain materials such as carbon or silicon
and results from certain symmetries of the atomic lattice. The orbital part of the state
|Φ
mjS ,mτ

〉 = |φjmS ,mτ 〉 ⊗ |u
j
mS ,mτ

〉 is described by a product of a lattice periodic Bloch
function ujmS ,mτ (r) = 〈r |ujmS ,mτ 〉 and the envelope function φjmS ,mτ (r) = 〈r |φjmS ,mτ 〉
originating from the confining potential. In contrast to the Bloch part, this envelope
function varies only slowly over the extent of the QD as is illustrated in Fig. 1.2. The
single particle state given in Eq. (1.1) also forms the basis for the calculation of effective
Hamiltonians, where typically expectation values with respect to the Bloch function are
calculated. As an example, we will calculate the effective spin Hamiltonian of the HI in
Section 1.2.3. As a consequence, the position r of the particle within the dot only enters
via the envelope function φmS ,mτ (r). Since most experiments are carried out at very
low temperatures usually only the envelope function of the ground state and potentially
energetically low-lying excited states are taken into account for further investigations.

The state of the spin of an electron is described by eigenstates of the z-component of
the spin operator Ŝ

Ŝz|mS〉 = mS |mS〉 mS ∈ {−
1
2 ,+

1
2} =̂ {⇓,⇑} . (1.2)

In our notation, this spin operator is defined dimensionless (h̄ = 1). This definition is
extended to all other operators describing angular momentum in this Thesis. In the final
results, we will reintroduce the factor h̄ in all expressions in order to obtain physical
dimensions. Moreover, we likewise use ⇑ for mS = +1

2 and ⇓ for mS = +1
2 , since this

notation is often more intuitive. Interestingly, in many semiconductors, the spin of a heavy
hole can be described identically. The splitting of heavy-hole and light-hole subbands [44]
with total angular momentum j = 3

2 causes a well defined two-level system formed by the
two total spin eigenstates mJ = ±3

2 , which allows for an effective description in the form
of Eq. (1.2). Finally, the valley degree of freedom, if relevant, can be described in terms
of eigenstates |mτ 〉 of the τ̂z Pauli-matrix, where

τ̂z|mτ 〉 = mτ |mτ 〉 mτ ∈ {−1,+1} . (1.3)

In many cases, however, this valley degree of freedom is irrelevant [38, 42, 45, 46, 47].
First, if only the spin dynamics of a single particle is considered, the respective spin
Hamiltonians do not couple to the valley pseudo spin and, hence, we do not have to
take it into account in the effective theory. Moreover, often, the presence of boundaries
and substrates within the QD structures induces a valley splitting, which lifts the valley
degeneracy. As a consequence, the electron stays within one valley subspace during its
dynamics and, thus, the valley degree of freedom can be also neglected. We will give
more information on this mechanism when we discuss the realization of graphene QDs in
Section 1.3.1.

At last, we would like to set the basis for the discussion of the interactions the electron
spin is subjected to. For spin physics in semiconductors, the most important interactions
are the Zeeman coupling of the electron spin to external fields, the spin-orbit interaction
(SOI) which couples both spin and angular momentum, and the HI of the electron spin
and the nuclear spins. All these interactions can be rigorously derived from the relativistic
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1. Physical properties of quantum dots

Dirac equation

ih̄∂|Ψ〉
∂t

= [c α̂ · (p̂+ eA) +m0c
2β̂ − eΦ1]|Ψ〉 = ĤD|Ψ〉 , (1.4)

where Ψ denotes a four-component spinor describing the spin states of the electron and
the positron and α̂1, α̂2, α̂2, and β̂ are the Dirac matrices [48, 49]. Moreover, this equation
takes into account the coupling of the electron to the electromagnetic potentials A and
Φ as well as the relativistic rest energy m0c

2, where e is the elementary charge, m0 is
the mass of the free electron, and c is the speed of light. An expansion of the Dirac-
Hamiltonian in powers of 1

m0c2
can be obtained by means of subsequent Foldy-Wouthuysen-

transformations [48, 49] of the Dirac Hamiltonian ĤD.4 Expanding to third order in 1
m0c2

results in the effective Hamiltonian, in which the first two components of the four spinor
decouple from the second pair of components. The differential equation for the first pair
of components describes the dynamics of the electron and is explicitly given by

ih̄∂|ψ〉
∂t

=
{ [

m0c
2 +

=Ĥkin︷ ︸︸ ︷
1

2m0
(p̂+ eA)2− p4

8m3
0c

2

]
− eΦ + eh̄2

8m2
0c

2 ∇ · (∇Φ) (1.5)

+ g
eh̄

2m0
Ŝ · (∇×A)︸ ︷︷ ︸

=ĤS
ZE

+ eh̄

2m2
0c

2 Ŝ ·
[
(∇Φ)× (p̂ + eA)

]
︸ ︷︷ ︸

=ĤSOI

}
|ψ〉 , (1.6)

where |ψ〉 now describes the state of the electron. Moreover, we assumed that the magnetic
field B = ∇ × A is constant over time resulting in ∇ × E = 0, such that the electric
field E = ∇Φ originates solely from the Coulomb potential. In this form, Eq. (1.6)
corresponds to the Pauli equation [52] with additional relativistic corrections. The terms
in the rectangular bracket in the first line correspond to relativistic corrections to the
kinetic energy. The following term describes the coupling of the electron charge to the
Coulomb potential Φ. The last term in the first line of Eq. (1.6) is the Darwin term,
which is related to the so-called Zitterbewegung [50] of the electron. The terms, which
are of particular interest for this Thesis, are the kinetic term Ĥkin, the electron Zeeman
term ĤS

ZE and the spin-orbit interaction described by ĤSOI. As we will show below, the
HI arises from all of these terms. We will discuss the Zeeman interaction and the HI in
more detail below and focus on the SOI

ĤSOI = eh̄

2m2
0c

2 Ŝ ·
[
(∇Φ)× (p̂ + eA)

]
(1.7)

now. For a central potential Φ = Φ(r = |r|) and A = 0, this interaction takes the
familiar form ĤSOI ∝ Ŝ · L̂, since ∇Φ(r) = 1

r (∂Φ(r)
∂r ) r and h̄L̂ = r̂ × p̂ is the orbital

angular momentum. For A 6= 0, additional contributions arise, which are, for instance,
responsible for the so-called contact HI caused by the magnetic moment of the nucleus.

4An alternative approach to obtain such an expansion based on an elimination of the second pair of
spinors, can be found in [50]. This approach is also used by Stoneham [51] in order to derive the HI in
solid state systems.
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1.2. Particles and interactions in solid state quantum dots

The confinement of the electron motion in quasi one- or two-dimensional electron gases
and the structure of the lattice influence the specific form of the SOI for a given quantum
dot. Following different approaches to calculate the SOI in semiconductors relying on an
analysis of symmetries [44] yields more specific results for the SOI Hamiltonian. We refer
to work of Winkler [44] and to the discussion of the SOI in GaAs and graphene below for
more details.

1.2.2. Nuclear spins
Depending on the respective host material, there will be K nuclear spins being spread over
the Nsites atoms within the dot. If not all isotopes of the elements forming the QD carry
a spin, the natural abundance nI = K

Nsites
fulfills 0 < nI < 1, which allows to change the

number of nuclear spins from K = 0 to K = Nsites by isotopic purification. In carbon and
silicon systems such a purification was already successfully applied [33, 34, 35, 36]. For
typical graphene QDs, the diameters vary in the range of 10 nm to 100 nm and, hence,
the number of carbon atoms is on the order of 103 to 105. Recently, dots with diameters
on the order of 1 nm were realized [53]. Thus, nuclear spin numbers K which range from
less than ten to 105 for a pure 13C QD seem feasible. In contrast to this, the widely used
III-V semiconductors have nI = 1 and, thus, do not allow to exploit isotopic purification.
Consequently, these QDs contain typically on the order of 105 to 106 nuclear spins [9, 24].

In parts of the theoretical work on spin dynamics in QDs, these nuclear spins are
described as spin one-half particles for simplicity, despite the fact that many are actually of
higher spin number [43, 54]. This strategy allows us to identify the important mechanisms
determining the spin dynamics of the electron spin. Moreover, often the properties of
different isotopes are not distinguished, but average values weighted by the abundance
of the respective isotope or atom are considered. If xj is some property of the atomic
species j like the nuclear g-factor or the HI coupling constant and nj is its abundance,
then the average value of this property is given by x =

∑
j njxj . If not stated otherwise,

we also adopt these simplifications in order to identify the important spin physics, which
could otherwise be concealed by the microscopic details. For graphene, which is mainly
considered in this Thesis, however, these difficulties do not arise anyway, since all nuclear
spins are carried by the 13C isotope, which are true spin one-half particles. In summary,
if not stated otherwise, we describe all nuclear spins by

Îk,z|mk〉 = mk|mk〉 mk ∈ {−
1
2 ,+

1
2} =̂ {↓, ↑} , (1.8)

where k ∈ {1, . . . ,K}. Similar to the electron spin states, we also use the alternative
notation ↑ and ↓ for mk = +1

2 and mk = −1
2 , respectively.

1.2.3. Direct spin interactions
Zeeman interaction

The coupling of the electron spin to external magnetic fields B is of great importance for
the realization of spin qubits in semiconductors, since it allows for a direct manipulation
of its state. As we discussed above, this interaction is a consequence of the relativistic
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1. Physical properties of quantum dots

Material GaAs Graphene

ASZE 101 102

AIZE 10−2 10−2

Ap
HI 102 10−2

Af
HI 10−2 10−4

As
HI 10−4 10−6

ADD 10−6 10−5

Ae
DD 10−6 10−8

Table 1.1. Energy scales of different direct spin interactions, where all energies are measured
in µeV: The electron and nuclear Zeeman energies ASZE and AIZE are calculated for an external
magnetic field of Bz = 1 T. We give the energy scale of the HI for a fully polarized (Ap

HI = nIAHI), a
randomly fluctuating nuclear spin bath (Af

HI = nIAHI/
√
K), and for a single nuclear spin (As

HI =
nIAHI/K) in the center of the QD. We have chosen Nsites = 106 and nI = K/Nsites = 0.01
(nI = 1) for graphene (GaAs). The nuclear dipole-dipole energy scale ADD is effectively reduced
to AeDD = ADD n

3/2
I by the abundance nI = K/Nsites of spin carrying isotopes.

nature of the electron. According to Eq. (1.6), the Zeeman coupling is given by ĤS
ZE =

gµB B · Ŝ = h̄γS B · Ŝ, where g = 2 is the bare g-factor of the electron and µB = |e|h̄
2m0

is
Bohr’s magneton. Often, the Zeeman interaction is expressed in terms of the gyromagnetic
ratio γS = gµB

h̄ . In many semiconductors, however, this coupling is modified due to a
comparably strong SOI, which can be taken into account by replacing g with an effective
electron g-factor g∗. It was first shown by Roth et al. [55], that SOI gives rise to effective g-
factors, which can differ significantly from the bare g-factor. Later, an even more elaborate
theory [44] has been used to include subtleties such as the anisotropy of the valence bands,
which give rise to an anisotropic effective g-factor. However, typically, this anisotropy is
not taken into account leading to the following Zeeman Hamiltonian for an electron in a
semiconductor

ĤS
ZE = g∗µB B · Ŝ . (1.9)

Important exceptions of this are QDs realized in carbon and silicon nanostructures, where
the SOI is too weak to renormalize the bare g-factor of the electron. If we choose B =
(0, 0, Bz)T without loss of generality, we can define the energy associated with the Zeeman
interaction by ASZE = g∗µBBz.

Similar to the electron, also the magnetic moments of the nuclear spins couple to external
magnetic fields. In contrast to the negatively charged electron, however, their magnetic
moment is parallel to the nuclear spin Î resulting in a relative sign difference in the
respective Zeeman Hamiltonian:

ĤI
ZE = −gNµN B · Î (1.10)

where gN is the nuclear g-factor [54] and µN = eh̄
2mp is the nuclear magneton. For B =
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1.2. Particles and interactions in solid state quantum dots

(0, 0, Bz), the associated energy of the Zeeman interaction is given by AIZE = gNµNBz.
Alternatively to the product of g-factor and nuclear magnetic moment, the gyromagnetic
ratio γN = gNµN

h̄ is used to describe the Zeeman coupling of the nuclear spins. Extensive
lists of either gN or γN for many elements of semiconducting materials can be found in
Refs. [43] and [54]. Due to the large mass mp of the proton, the nuclear magnetic moment is
about three orders of magnitude smaller than Bohr’s magneton, which renders the nuclear
Zeeman coupling negligible in many cases. This fact is illustrated in Tab. 1.1, where we
compare different spin interactions for the most important materials.

Hyperfine interaction

Besides the Zeeman couplings of the spins to external fields, the HI is another important
spin interaction, which mediates between the electron spin and the nuclear spins. The
HI in solid state structures can be directly related to the atomic HI, which itself can be
derived from the Dirac equation in Eq. (1.4) and its non-relativistic expansion given in
Eq. (1.6). The effect of a nucleus and its spin can be taken into account by means of its
Coulomb potential and the magnetic field induced by the magnetic dipole. The charge
of the nucleus gives rise to a point like Coulomb potential Φ = Zeffe

4πε0
1
r depending on the

absolute value r of the position r, where Zeffe is the effective charge of the nucleus and
ε0 is the electric constant. The vector potential caused by the magnetic moment of the
nuclear spin is given by A = µ0

4πgNµN∇× Î 1
r = µ0

4πgNµN Î ×
r
r3 , where µ0 is the vacuum

permeability. Note, that we have assumed a point like source for both potentials. Hence,
these two potentials are only good approximations to the exact potentials as long as the
distance r is larger than some length d, which is on the order of atomic core diameters.
As a consequence, one has to take care whenever expectation values of the interactions
arising from these potentials are calculated.

Inserting both potentials in the expanded Dirac equation in Eq. (1.6) yields three major
contributions to the HI [51]. The first contribution ĥ1 is the so-called contact hyperfine
interaction, which stems from the coupling of the electron spin to the vector potential in
the SOI term ĤSOI ∝ Ŝ ·

[
(∇Φ) ×A)

]
. Inserting the definitions of Φ and A from above

finally yields

ĥ1 = µ0
4πgNµNgµB

d

2
1
r6

[
r2 Ŝ · Î − (r · Ŝ)(r · Î)

]
, (1.11)

where d = Zeffe
2

4πε0
1

m0c2
≈ 1.5 × 10−15 m · Zeff is a length on the order of atomic core

diameters.5
At this point, two comments seem necessary: The interaction in Eq. (1.11) shows a

divergence at r = 0, which arises from the approximation of the nucleus as a point like
charge and dipole. This unphysical behavior can be corrected by the introduction of an
additional factor (1 + d

r )−1 [51], which cancels the divergence for r < d ≈ 10−15 m.6 In
5Interestingly, this is half of the classical electron radius for Zeff = 1.
6This factor is derived by Stoneham [51] by virtue of an exact solution of the Dirac equation for the

electron two-spinor. Comparing this with a similar approach presented in [50], however, lets us believe
that the derivation of Stoneham [51] is questionable, since it misses some subtleties mentioned in [50]
such as the appearance of a non-hermitian operator and the fact that the resulting equation is not
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1. Physical properties of quantum dots

addition, the point like approximation of the dipole moment even leads to an ill-defined
definition of the contact HI. As pointed out by Soliverez [56], the well known result for
the contact HI is restored if a spherical volume for the magnetic moment is considered.

Typically, the contact HI is not presented in this form, but rather a simpler, effective
Hamiltonian ĥeff

1 is considered, which, however, gives the same expectation values with
respect to the electron wave functions. This effective Hamiltonian can be found considering
two aspects. First, ĥ1 is clearly dominated by the contributions at small r ∼ d. Second,
the typical length scale of the wave function Ψ(r) = 〈r |Ψ〉is much larger than the cutoff d.
For instance, often the orbitals of semiconducting elements are approximated by hydrogen
orbitals [57, 58], still using an effective charge Zeff , which vary on length scales on the
order of Bohr’s radius a0 = 5.29×10−11 m� d. Thus, only the value of the wave function
at r ≈ 0 is relevant for expectation values of ĥ1. Since these orbitals are additionally
either spherically symmetric around the atomic core or vanish as r → 0, the expectation
value of the second term in Eq. (1.11) vanishes, which finally yields:

〈Ψ|ĥ1|Ψ〉 = µ0
4π

8π
3 gNµNgµB|Ψ(0)|2 . (1.12)

The effective Hamiltonian giving rise to the same expectation value is, thus, given by

ĥeff
1 = µ0

4π
8π
3 gNµNgµB δ(r) Ŝ · Î , (1.13)

where δ(r) is the Dirac delta function. This effective Hamiltonian is then considered to
calculate the actual contact HI in a specific material, where usually the envelope function
approximation is applied. Hence, the energy scale AHI of the HI is obtained by

AHI = µ0
4π

8π
3 gNµNgµB|ujmS ,mτ (0)|2 , (1.14)

which is typically on the order of µeV. In contrast to the Zeeman Hamiltonian, the bare
g-factor of the electron enters the HI, since this interaction is strongly localized around
the core, such that the renormalization caused by the SOI is irrelevant [59].

The second contribution ĥ2 to the HI is anisotropic and results from inserting the
vector potential A into the Zeeman term gµBŜ · [∇×A] of the expanded Dirac equation
in Eq. (1.6):

ĥ2 = µ0
4πgNµNgµBŜ · [∇× (∇× Î 1

r
)] ≈ µ0

4πgNµNgµB
3(er · Ŝ)(er · Î)− Ŝ · Î

r3(1 + d
r )

(1.15)

where er is a unit vector parallel to r and the additional factor (1 + d
r )−1 has been

introduced to avoid unphysical behavior. According to its specific form, it is clear, why

an exact eigenvalue equation. Moreover, if we solved the Dirac equation itself, the problem of the
divergence at r → 0 would still exist without the additional factor correcting it. In summary, it seems
somewhat inadequate to take d, which is half the classical electron radius, rather than the size of the
nuclear core as a cutoff. Nevertheless, the classical electron radius gives the right length scale and
the resulting-factor is physically reasonable. In addition, this factor is also considered in the literature
and, consequently, we also choose this factor, but consider it rather as a phenomenological approach to
recover the correct physics.
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1.2. Particles and interactions in solid state quantum dots

this interaction can be also considered as the interaction of two magnetic dipoles from
a (more) classical point of view. The expectation value of ĥ2 vanishes identically for
spherical symmetric states like the s-states. Finally, the last contribution to the HI arises
from the mixed term e

m p̂ ·A in the kinetic part (p̂+ eA)2:

ĥ3 = e

m0
A · p̂ ≈ µ0

4πgNµNgµB
1

r3(1 + d
r )
Î · L̂ . (1.16)

Since both terms ĥ2 and ĥ3 scale with r−3, also these contributions are strongly localized
around the core and, therefore, only the bare g-factor of the electron enters. The energy
of these terms is given by

AHI = µ0
4πgNµNgµB〈u

j
mS ,mτ

| 1
r3 |u

j
mS ,mτ

〉 , (1.17)

where the expectation value is calculated with respect to the Bloch part of the electron
wave function.

We will discuss the relevance and the exact form of the HI contributions ĥ1,2,3 in more
detail in Section 1.3.1, where we elaborately analyze the properties of GaAs and graphene
based quantum dots.

Additional direct spin interactions

In the previous section, we have identified an interaction between the nuclear magnetic
moment and the magnetic moment of the electron. Obviously, two nuclear magnetic
moments Îi and Îj also interact with each other via the dipole-dipole interaction:

ĤDD = −µ0
4π

µ2
Ngigj
a3

NN

3(Îi · ei,j)(Îj · ei,j)− Îi · Îj
r3
i,j

, (1.18)

where gi is the g-factor of the nuclear spin Îi. For convenience, we measure the absolute
distance between two nuclei ri,j = |ri − rj |/aNN in units of the nearest-neighbor distance
aNN and we have defined the unit vector ei,j = |ri − rj |/(aNN ri,j). Since this interaction
is generally anisotropic, it does not preserve spin. However, the energy scale

ADD = µ0
4π

µ2
Ngigj
a3

NN
(1.19)

is typically several orders of magnitude smaller than the Zeeman energy and the energy
associated with the HI as can be seen from Tab. 1.1. Hence, these non-spin-conserving
processes become already irrelevant in moderate magnetic fields. The remaining part of
this interaction

Ĥsec
DD = −ADD

[3 cos(θi,j)2 − 1][Îi,z Îj,z − Îi,xÎj,x − Îi,y Îj,y)]
r3
i,j

(1.20)

still leads to a spin diffusion, which gives rise to an exchange with nuclear spins in the bulk
around the QD. However, in the presence of a sufficiently large gradient of Zeeman energies,

17



1. Physical properties of quantum dots

this diffusion is strongly quenched [60]. In a QD, such a gradient is naturally present due
to the Knight-field induced by the HI [60, 61]. Such an energy difference suppressing
this dipolar interaction can be also caused by the quadrupole interaction [43, 60], which
is present for nuclear spins with quantum numbers I > 1

2 . This interaction couples the
nuclear spin to gradients of electric fields at the position of the nuclear spin [62, 63] and
is particularly relevant in systems with strain such as optically active QDs [24]. Since the
energy scales related to the quadrupole interaction are very small compared to the Zeeman
coupling and the HI, we will not take this interaction into account for the remainder of
this Thesis. The suppression of the nuclear dipole-dipole interaction is also known as the
frozen core or diffusion barrier effect.

Further, the dipole-dipole interaction is on average reduced in systems with a low natural
abundance nI of spin carrying isotopes such as carbon. If we consider, for instance,
graphene and randomly place nuclear spins with equal probability for each site, the average
distance in units of aNN is given by r̃ =

√
nI · r0, where r0 = O(1). Hence, the dipole-

dipole interaction is reduced by a factor n3/2
I , which gives three orders of magnitude for

the natural abundance of 13C.
In summary, the nuclear dipole-dipole interaction is only relevant if there is no HI or

on very long timescales, when the total spin in the system changes due to the non-spin-
conserving contributions for small external magnetic fields. In addition to that, systems
with a low abundance of spin carrying isotopes such as carbon or silicon exhibit large
inter-nuclear distances ri,j , which renders this interaction even less important. Hence, we
will neglect this interaction for the rest of this Thesis as long as the HI is present.

1.2.4. Indirect spin interactions with phonons

As mentioned in the beginning of this chapter, the spins do not only interact with each
other, but they are also affected by the unavoidable presence of phonons. Yet due to
their lack of a spin degree of freedom, the phonons cannot couple directly to the spins of
the electron and to the nuclear spins. However, as we will discuss in more detail below,
by means of additional interactions such as electron spin-orbit interaction and nuclear
dipole-dipole interaction, the phonons can couple indirectly to these spins.

Although the phonons cannot couple to the electron spin, they can well interact with its
charge via electric fields. Keeping the SOI in mind, electric fields can influence the electron
spin indirectly. In general, fluctuating electric fields can arise from many sources, including
fluctuations in the gate potentials, background charge fluctuations or other electrical noise.
However, these sources can be minimized by a careful design of an experimental setup [9],
such that phonons become the most important source of an electric field. First, so-called
deformation potential phonons inhomogeneously deform the crystal lattice, which leads to
a spatially altering band gap and effectively to fluctuating electric fields [9, 42]. This effect
is present in all semiconductors. Second, in polar crystals such as GaAs the piezoelectric
effect leads to electric fields in the presence of homogeneous strain [9, 42]. These two
effects are typically subsumed as electron-phonon coupling (EPC).

Thus, the electron spin can be coupled to phonons by the combined interaction of SOI
and EPC [64, 65]. There are two ways to interpret the effect of this combined interaction.
First, a sequential view: The spin-orbit interaction perturbs the pure spin states and
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1.3. Experimental properties of solid state quantum dots

creates states, which consist of admixtures of spin and orbital states. These states are
then coupled by the electron phonon coupling. Second, one can apply perturbation theory
directly to the combined Hamiltonian ĤSOI + ĤEPC. In both cases, the perturbation leads
to a relaxation of the electron spin induced by the phonon bath. Usually, only acoustic
phonons are taken into account, since their energy spectrum matches the other relevant
energy scales in the QD. Since the phonons pick up the spin flip energy difference, the
relaxation rate depends on the Zeeman energy and, hence, on the strength of the external
magnetic field. Moreover, it depends on the (material specific) strength of the SOI and
the EPC. Finally, also the number of phonons is relevant. This number is typically small
at mK temperatures, at which the experiments are carried out. As a consequence, the
relevance of the electron spin phonon coupling has to be considered for each QD setup
individually. We will discuss the importance of this spin interaction in more detail for
GaAs and graphene QDs in the next section.

The interaction of nuclear magnetic moments with phonons is a well studied phe-
nomenon. In the field of nuclear magnetic resonance research it is known as spin lattice
relaxation. The corresponding timescales are typically quite long and can reach minutes
(GaAs, carbon) [66, 67]. Since this exceeds the relevant times scale of the electron spin
dynamics by several orders of magnitude [22], this interaction is normally not taken into
account for investigations of the electron spin dynamics. However, it can be relevant if
one is interested in the thermal equilibrium of the nuclear spins as discussed in Chapter 3.

1.3. Experimental properties of solid state quantum dots

In the previous section, we have discussed the microscopic details of spin interactions
in QDs in general. In this section, we will discuss different experimental realizations of
QDs, in which this spin physics are important and can be investigated. Our focus lies on
QDs in which the electron spin can be controlled by means of electrostatic potentials also
known as gates. In comparison with optically controlled electron spins, scalability is more
promising in gated QDs. Moreover, having silicon based QDs in mind, a combination
of a quantum computer with conventional computer technology within one device seems
feasible. Finally, many groundbreaking experiments on electron spin qubits have been
carried out using electrical control.

QDs in GaAs can be considered as the prime example of a whole family of “gated” QDs
due to the large number of groundbreaking experiments realized in this material during
the past decade. In particular, we will elaborately explain the properties of double QDs
due to their importance for these experiments. In this specific setup many techniques to
manipulate both the electron spin and the nuclear spins have been developed, some of
which we will discuss at the end of this section in more detail. Many of these ideas can be
directly transferred to graphene based QDs, once the difficulty of confining an electron,
due to Klein-Tunneling, has been overcome. The most important difference of graphene
is, however, its low abundance of spin carrying isotopes, which severely changes the spin
physics in these QDs. With respect to this last property, graphene can be considered as a
prototype of group IV element based QDs.
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1.3.1. Quantum dots in specific materials

Quantum dots in AlGaAs/GaAs heterostructures

GaAs QDs are among the technologically most advanced QD realizations, where the fabri-
cation of multi QDs [68] and QDs with additional features such as micro-magnets [69] has
been demonstrated. Based on these exceptional experimental prerequisites, many impor-
tant steps towards the realization of a solid state quantum computer have been taken, such
as single electron occupation of the QDs as well as single- and two-(spin) qubit operations.
Moreover, even control over the nuclear spin environment has been demonstrated, which
we will review in Section 1.3.3 below.

GaAs QDs are formed in a 2DEG emerging at the interface of AlGaAs and GaAs, where
free electrons are introduced by doping the AlGaAs layer with Si, cf. Fig. 1.3. By means of
electron beam lithography, electrostatic gates are grown on top of these heterostructures,
which are used to deplete the 2DEG locally via electrostatic potentials, as illustrated in
Fig. 1.3 c). These potentials also function as electrostatic gates, which allow to manipulate
the electron spin as described in the previous section.

The electron spin can be further controlled through external magnetic fields, where
the effective g-factor g∗ = −0.44 in the Zeeman Hamiltonian in Eq. (1.9) is negative.
Moreover, electron spins in a double QDs experience an effective spin-spin interaction. If
the energy scale associated with the hopping of the electrons is much smaller than the
charging energy of the respective QDs, than this effective interaction is of the Heisenberg
form

ĤJ = J({Vi}) Ŝ1 · Ŝ2 , (1.21)

whose strength can be changed via the electrostatic potentials {Vi} of the gates. The
physics of this effective interaction will be explained in more detail in Section 1.3.2.

The most important intrinsic spin interaction is provided by the HI. In order to find the
effective HI for GaAs, its band structure has to be considered, which is described within
the envelope function approximation (EFA). For an electron in the conduction band, the
Bloch part of the orbital wave function in Eq. (1.1) is of s-type and, thus, only the contact
HI given in Eq. (1.13) contributes [43]. The anisotropic HI ĥ2 given in Eq. (1.15) vanishes
due the symmetry of the s-orbital and the third contribution ĥ3 is zero due to the missing
angular momentum L = 0 for an s-state. Calculating the expectation value of the HI
within the EFA, thus, yields [43, 54]

ĤHI =
K∑
k=1

AHI v0 |φ(rk)|2︸ ︷︷ ︸
≡Ak

Ŝ · Îk =
K∑
k=1

Ak[Ŝz Îk,z + 1
2(Ŝ+Îk,− + Ŝ−Îk,+)] , (1.22)

where we sum over the contributions of all nuclear spins in the QD. Since in GaAs different
atoms and isotopes are involved, the HI coupling constant AHI depends on the species of
the k-th atom. In most theoretical studies of the HI in QDs, however, this dependence
is neglected and an average value AHI is used as described in Section 1.2.2. We will
also adopt this scheme and we will use this average value, henceforth. The product of
the envelope function |φ(rk)|2 with the atomic volume v0, which is half the volume of
the unit cell, gives the probability to find the electron at the site rk of the atom. We
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Figure 1.3. a): An AlGaAs/GaAs heterostructure exhibiting a 2DEG at the interface. b):
The specific form of the conduction bands of AlGaAs and GaAs cause the additional electrons
of the Si dopants to accumulate at their interface. c): By means of electrostatic gates on top,
this 2DEG can be locally depleted forming a quantum dot. By this procedure, single d), double
e), and multiple f) QDs can be realized. (Scanning electron micrographs.) Figures a) and
b) reprinted from [68], c©2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, figure c)
adapted by permission from Macmillan Publishers Ltd: [70], c©2013, figures d) and e) reprinted
with permission from [9], c©2007 American Physical Society, figure f) reprinted by permission from
Macmillan Publishers Ltd: [71], c©2013.
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have defined the usual raising and lowering operators Ŝ± = Ŝx ± iŜy and Î± = Îx ±
iÎy, respectively, and the HI coupling constant is given by AHI = 85µeV, cf. Tab. 1.1.
Obviously, this interaction strongly depends on the probability |φ(rk)|2 to find the electron
at the position of the respective nuclear spin. Typically, the experiments are carried out
using dilution refrigerators, which cool the system down to the mK regime [24, 39, 40, 72].
The corresponding thermal energies are on the order of µeV and, thus, well below the
orbital energies of the electron, which are on the order of 1 mK [9, 23, 24, 72]. Hence,
only the ground state and low lying excited states have to be considered. The envelope
function of the ground state is typically approximated by a Gaussian [73, 74, 75, 76]

φ(rk) = φ0 exp
[
− 1

2
( rk
RD

)2
]
, (1.23)

where a circular QD with radius RD is assumed and rk = |rk|. Consequently, the nor-
malization factor is given by φ0 = 1√

πRD
. This envelope function is not the exact electron

wave function, but should give a good approximation to the precise solution. The most
important aspects, which are captured by this specific choice are the absence of nodes in
the ground-state, a peak of the wave function in the center as well as a strong decay inside
the barriers.

As a consequence of this choice, the probability v0|φ(rk)|2 to find the electron at a site
with a distance rk from the center is only of considerably magnitude within the radius RD,
which defines the number of atoms within the dot: Nsites = πR2

D
v0

. Evidently, the number
of atoms is equal to the number of nuclear spins K = nINsites, since the abundance of spin
carrying isotopes is nI = 1 in GaAs. However, in the next section, we consider graphene,
in which only the 13C-isotopes carry a spin with nI ≈ 0.01. According to Eq. (1.23),
the probability distribution of the electron v0|φ(rk)|2 and, consequently, also the coupling
constants of the HI

Ak = AHI v0 |φ(rk)|2 = AHI
Nsites

exp
[
− ( rk

RD
)2
]

= nIAHI
K

exp
[
− ( rk

RD
)2
]

(1.24)

scale with the inverse of the number of atoms. Thus, the typical energy scale of the
HI between the electron and a single nuclear spin in the center of the QD is given by
AsHI = nIAHI/K. This energy scale also defines a typical timescale τ sHI = 2h̄/AsHI, which
is on the order of τ sHI = 1µs for GaAs. The restriction to atoms with a sufficiently large
probability density of the electron effectively corresponds to the introduction of a constant
cutoff C, where the following relation holds

|φ(rk)|2

|φ0|2
> C . (1.25)

This point of view is especially convenient for a numerical simulation of the spin dynamics
in a QD as employed in Chapter 5, where we choose C = 10−6. An illustrative example
of such a cutoff is shown in Fig. 1.5 b).

The typical diameters of GaAs QDs are in the range of 10 nm to 100 nm [9], for which
the number of atoms in the QD is on the order of K ∼ 104 to 106 [22]. Since all atoms
in GaAs carry a nuclear spin, the number of nuclear spins K is equal to this number. In
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many cases, it is convenient not to take each nuclear spin individually into account, but
to consider the collective effect of all spins by an effective magnetic field operator

ĥ =
K∑
k=1

AkÎk ≈ g∗µBB̂nuc . (1.26)

Many experimental results can be understood in terms of the quantity [72] Bnuc =√
〈B̂2

nuc〉/
√

3, where the expectation value 〈. . .〉 is taken with respect to the nuclear spin
states. This effective field is known as the Overhauser field, whose size is Bnuc = AHI

g∗µB
≈

5 T for a fully polarized spin bath in GaAs.
However, in typical experiments, the nuclear spins exhibit a random distribution of

their spins. Since the number K of nuclear spins is large, the effective nuclear magnetic
field being a sum of these magnetic moments can be calculated using the central limit
theorem. According to this theorem, we find a Gaussian distribution for the values of the
nuclear magnetic field with a vanishing average value and a root mean square value of its
fluctuations proportional to

√
K. Since the dynamics of the nuclear spins is much slower

than the electron spin dynamics, these fluctuations are quasi constant and the typical
nuclear magnetic field seen by the electron is on the order of Bnuc =

√
K AHI

Kg∗µB
≈ 1 mT

for K = 106 nuclear spins. Due to this statistical nature of the nuclear magnetic field, the
local nuclear magnetic fields of two neighboring QDs are different, which leads to different
spin dynamics in each dot. We will present a scheme to manipulate electron spins by
means of such a difference in Section 1.3.3 below.

Besides the HI also SOI mediated spin relaxation with the phonon bath could be relevant
for GaAs QDs as explained in Section 1.2.4. However, the SOI is strongly suppressed due
to the reduced dimensionality of the QDs leading to unusually low spin flip rates [64, 65].
As a result, the related timescales τSOI of these effects are at least on the order of ms [77] for
experimentally realistic parameters, which is well above the timescales of the HI induced
electron spin dynamics [43, 61, 73, 74, 75, 76, 78]. As a consequence, the SOI has been
neglected for most investigations on the electron spin dynamics in GaAs QDs.

Graphene quantum dots

Although GaAs QDs have proved to be an outstanding system for the realization of quan-
tum dots, there are reasons to consider other materials like graphene [84]. The most
important advantage of graphene QDs over GaAs is the low natural abundance of spin
carrying isotopes, which carbon shares with silicon and germanium. Among the group IV
elements, carbon additionally exhibits the smallest HI coupling constant, which is about
one order of magnitude smaller than in silicon and about two orders of magnitude smaller
than in GaAs, cf. Tab. 1.2. Moreover, graphene is considered to have a comparably
weak SOI in contrast to CNTs. Finally, graphene is a truly two-dimensional condensed
matter system with strong confinement of the electrons perpendicular to the plane of the
graphene sheet. Due to the honeycomb structure of its atomic lattice, graphene features
very interesting electronic properties [85, 86], which allow the implementation of efficient
electric circuits to run future quantum devices due to a high mobility of the charge carri-
ers. Finally, additional degrees of freedom give rise to interesting possibilities to construct
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Figure 1.4. Atomic force micrographs of single and double graphene QDs realized on a silicon
substrate. a) and c): QDs made from single-layer graphene. Nearby the QDs additional electro-
static gates (B1,B1,Lg,Pg,RG) have been created, which allow to tune the devices. Below the QDs
a graphene nanoribbon serves as a charge detector (CD). The QDs are contacted by source and
drain also formed in graphene. Scale bar in c) denotes 500 nm. b): A double QD realized in bilayer
graphene. d): A double QD formed in single-layer graphene. Figure a) reprinted with permission
from [79], c©2008 AIP Publishing LLC, figure b) reprinted from [80], c©2012 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim, figure c) reprinted with permission from [81], c©2010 American
Physical Society, figure d) reprinted with permission from [82].

GaAs Graphene

Nsites 106 105

nI 1 0.01

K = nI Nsites 106 103

AHI [µeV] 85 0.6

Bnuc = nIAHI/g
∗µB [T] 3.5 2.6× 10−3

τ sHI = 2h̄K/nIAHI [µs] 1 100

Table 1.2. Comparison of the most important parameters of GaAs and graphene. The total
number of nuclei Nsites is estimated for a QD of typical size RD = 50 nm. While all nuclei in GaAs
carry spin, the abundance nI of 13C can in principle be modified, where the natural abundance
is only nI = 0.01. The HI constant A in GaAs is about two orders of magnitude higher than
in graphene (with nI = 1) demanding lower external magnetic fields B0 � Bnuc and leading
to a prolonged typical hyperfine timescale τsHI. Table adapted with permission from [83], c©2012
American Physical Society. All rights reserved.
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quantum devices. For instance, there is an interesting proposal of a tunable Heisenberg
interaction similar to Eq. (1.21) [23, 46, 87] between arbitrary electron spins in arrays of
graphene QDs.

However, these electronic properties also make the realization of QDs in graphene more
challenging. The low energy physics in graphene is dominated by electronic states around
two inequivalent K-points K and K ′ in the Brillioun zone known as valleys [86]. Near
these valleys, the spectrum is linear resembling the one of massless Dirac fermions. As a
consequence of this effective relativistic behavior, Klein tunneling [88] through potential
barriers occurs, which makes it impossible to confine electrons in graphene just by using
electrostatic potentials as done in GaAs heterostructures. Moreover, the occurrence of the
additional valley degree of freedom of the orbital part of the electron wave function can
have serious implications on the spin physics in graphene double QDs [89].

One way to construct QDs by means of electrostatic potentials similar to GaAs, is
to create a finite energy gap in the spectrum [23, 47, 90, 91], which can, for instance,
be induced in single-layer graphene by the substrate [92, 93] or in bilayer graphene by
applying different potentials to the layers [94, 95, 96, 97]. Other proposals involve quasi-
bound states and magnetic confinement of the electrons [23]. For more information on
the realization of graphene nanostructures and the confinement of electrons within them,
we also refer to the review articles by Recher and Trauzettel [23] and Rozhkov et al. [38].
Finally, graphene QDs can be carved out of graphene flakes by a chemical or mechanical
treatment, which is the experimentally most applied approach [39, 98, 99, 100, 101, 102,
103], cf. Fig. 1.4. However, so far the resulting QDs typically suffer from rough edges and
and defects stemming from vacancies, adatoms and irregularly shaped substrates, which
severely reduce the functionality of the QDs [39]. In particular, the few electron regime
and the Pauli blockade regime have not yet been reached, which are both essential for
effective characterization and operation of QDs as explained in Section 1.3.2.

Typical diameters of graphene QDs are on the order of tens to hundreds of nanometers
resulting in 103 to 105 carbon atoms within the QD. Assuming a natural abundance of
spin carrying 13C of 1%, there are K = 15 to K = 1500 nuclear spins present in the QD.
Thus reducing the abundance of 13C by only two orders of magnitude leads to very small
spin baths even in the case of rather large QDs. Recently, ultra small graphene QDs with
diameters in the 1 nm range were fabricated using electroburning [53], which should also
host only very few nuclear spins. In contrast, a complete enrichment with 13C will lead
to large nuclear spin baths with K = 105 nuclear spins. Altogether, these considerations
show that graphene quantum dots allow to study both the spin physics in very small and
very large nuclear spin baths and to possibly identify a crossover of both regimes. In the
second part of this Thesis, we will explore both regimes in Chapters 4 and 5, respectively.

The peculiarities of graphene also have direct consequences on the relevant spin in-
teractions. The effective Hamiltonian of the HI in graphene can be obtained within the
EFA [58] analogously to GaAs. In graphene, the conduction band is mainly formed by
the p2z orbital, which is used to describe the electron wave function at an arbitrary 13C
atom. Thus, the Bloch part of the wave function |umS 〉 can be described by a hydrogenic
orbital with an effective central potential of charge Z13C = 3.16, whose angular part is
given by the spherical harmonic |Y 0

1 〉. This choice implicitly assumes a tight binding of the
electron around the carbon atoms, whose validity has been verified by Fischer et al. [58].
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Since the radial part of this orbital vanishes at the origin, the contact HI in Eq. (1.11)
does not contribute. Further, the coupling of the nuclear spins to the orbital angular mo-
mentum vanishes as described in Eq. (1.16) identically, since the expectation value of ĥ3
with respect to the orbital part of the wave function is zero. Thus, the only contribution
to the HI in graphene stems from the anisotropic part ĥ2 in Eq. (1.15), which yields an
anisotropic effective HI

ĤHI =
K∑
k=1

Ak
∑
µ,ν

←→
A µν ŜµÎk,ν , (1.27)

where the indices µ and ν run over spatial coordinates x, y, z and the coupling constants
Ak ∝ AHI are defined in Eq. (1.24). The energy scale of this interaction is given by
AHI = 0.6µeV [58]. The Hamiltonian in Eq. (1.27) forms a spherical tensor [104] of rank
2, where the matrix ←→A takes into account the anisotropy of the HI in graphene [58]. Due
to the symmetry of the p2z orbital, the Hamiltonian takes its simplest form if we choose
the z-component of the spins to be perpendicular to the graphene plane as illustrated in
Fig. 1.5:

ĤHI =
K∑
k=1

Ak [Ŝz Îk,z −
1
4(Ŝ+Îk,− + Ŝ−Îk,+)] . (1.28)

Physically, this means that the spin components in x- and y-direction are not conserved.
If we consider a coordinate system, which is tilted by an angle β around the y-axis7 with
respect to the graphene plane, the matrix ←→A is given by

←→
A =←→A (β) =

 1
4 [1− 3 cos(2β)] 0 −3

4 sin(2β)
0 −1

2 0
−3

4 sin(2β) 0 1
4 [1 + 3 cos(2β)]

 . (1.29)

We will see, that this anisotropy has profound consequences on the spin dynamics in
Chapters 4 and 5.

If the temperature is very low, the electron occupies only the orbital ground-state of the
QD, whose envelope function is again approximated by the Gaussian function in Eq. (1.23),
since the same requirements as for the ground-state of a GaAs QD apply. This assumption
is also in agreement with a recent experiment investigating the wave function of a graphene
QD with soft confinement [106]. As a consequence, the HI coupling constants are given by
Eq. (1.24) as in the case of GaAs. However, since only a small portion of the carbon atoms
carries a nuclear spin, these coupling constants are effectively diminished by the abundance
nI < 1 according to Eq. (4.8) if we express them in terms of the number of nuclear spins
K = nINsites. Aside from this additional reduction, the HI constant AHI in graphene is
already two orders of magnitude smaller than in GaAs. Since the typical timescale of
the electron spin dynamics is set by τ sHI = 2h̄K

nIAHI
, appreciable decoherence will set in on

longer timescales. Moreover, typically magnetic fields B0 � Bnuc = nIAHI
g∗µB

= 2.6 mT well
7Since we consider circular shaped QDs, any axis in the graphene plane can be considered.

26



1.3. Experimental properties of solid state quantum dots

-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30

2 nm2 nm
-30

-20

-10

0

10

20

30
10-8 10-6 10-4 10-2

a) b)

c)

Figure 1.5. a): The HI Hamiltonian takes its simplest form in the reference frame defined by
the geometry of the graphene plane (black axes). The consequences of its anisotropy are apparent
in the rotated coordinate system (red axes), in which we represent all operators. b): A graphene
QD (red sites) for a Gaussian envelope function with K = 10 uniformly random distributed 13C
atoms (blue squares). The QD is defined via the cut-off relation in Eq. (1.25) with C = 10−6. All
spatial coordinates are measured in units of the nearest-neighbor distance aNN. c): The envelope
function for fixed x = 0 and x = 22 aNN, respectively. The dashed line indicates the cut-off. Figure
adapted with permission from [105], c©2013 American Physical Society. All rights reserved.

above the nuclear magnetic field are used to stabilize the electron spin. Hence, graphene
allows to use significantly smaller external fields. A comparison of important properties
of graphene and GaAs QDs is presented in Tab. 1.2.

So far, we have only considered the effect of the HI on the electron spin. The HI
in graphene gives also rise to a valley scattering, which is caused by the short range
nature of the r−3 potential in Eq. (1.15). We have investigated the resulting momentum
dependence of the coupling constant AHI = AHI (Q), where Q is the difference between
incoming and outgoing momentum. Assuming, that the most important contributions
arise from on-site terms [58], we estimate, that the valley mixing Q = ∆K = K − K′
and valley conserving Q = 0 processes are of comparable strength, which agrees with
the analysis by Pályi and Burkard [89]. Hence, the valley scattering is irrelevant only
if it is forbidden due to energy conservation. From Eq. (4.8) and Tab. 1.1, we know
that the energy scale of a single scattering processes between the electron and a nuclear
spin is on average of order 10−6 µeV. In typical graphene QDs, we expect a non-zero
valley splitting ∆K,K’ because of several mechanisms. First, every experimental setup
will have deviations from an “ideal“ setup, e.g., roughness of the boundaries or adatoms,
which couple the valleys. But even in an ideal experiment, one can expect a valley-
splitting due to the presence of an external magnetic-field in combination with a finite
mass term induced by the substrate [47]. Furthermore, if we assume a QD made of a
semi-conducting graphene ribbon with armchair boundaries, the valley degeneracy is also
lifted by ∆K,K’ ∼ 10 meV [23]. Thus, the valley degeneracy should be lifted for many
experimentally relevant setups. Finally, as mentioned in Section 1.2.1, the valley degree
of freedom is irrelevant if only one electron spin in a single QD is considered. As a
consequence, the valley degree of freedom will be neglected henceforth.
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a) b)

Figure 1.6. Orbital energy levels of double QDs. a): The gate potentials VG,1 and VG,2 of each
QD allow to control the position of the energy levels with respect to the chemical potentials µS
and µD of source and drain, respectively. Hence, shifting these energy levels allows to change the
number of electrons (circles) in the double QDs. A current from source to drain is prohibited
due to the Coulomb interaction between the electrons, which raises the second energy level of the
right QD. b): The gate potentials VG,1 and VG,2 allow to bring the system in the Pauli blockade
regime. In the (1, 1) charge configuration, the singlet and triplet states (X = S, Tm) are (almost)
degenerate. The electron in the left QD can only tunnel if the two electrons form a singlet |S(1, 1)〉.
If they are in a triplet state |Tm(1, 1)〉, an orbital of higher energy has to be occupied in the final
state |Tm(0, 2)〉 due to the Pauli exclusion principle and, hence, the tunneling is suppressed.

Besides the HI, also the SOI can affect the dynamics of the electron spin. A figure of
merit to estimate the relevance of SOI is the spin life-time T1, over which the electron
spin relaxes due to the SOI mediated interaction with the phonon bath. This lifetime
is only well defined if this relaxation follows an exponential decay. Considering graphene
nanoribbons [107, 108] and QDs [109], this timescale has been found to exceed milliseconds
for external magnetic fields below B0 . 1 T. Since the scattering rate strongly depends on
the matching of the electron Zeeman energy with the phonon energy, this timescale is even
larger for smaller fields. Additionally, also the decoherence time T2 has been investigated
for graphene QDs [109], which is predicted to be on the same order of magnitude. Besides
more specific factors such as the geometry of the graphene structure and time reversal
symmetry, these remarkably long times are traced back to the weak SOI in (flat) graphene.
As we will see, the effects investigated in this Thesis have typical timescales well below
milliseconds, such that neglecting the SOI is justified. Finally, the weakness of SOI in
graphene is also reflected by the fact that the electron g-factor is not renormalized. Thus,
the bare g-factor of the electron g = 2 enters the Zeeman Hamiltonian in Eq. (1.9), which
is also in agreement with recent transport experiments [110].

1.3.2. Properties of gated quantum dots

As stated above, the most important examples of gated single and double QDs are based
on GaAs heterostructures. Accordingly, most of the ideas described below have been
developed and tested in these systems. Nevertheless, most of these techniques are readily
transferred to other QDs realized in graphene, CNT, nanowires, and silicon. The common
feature of all of these setups is the possibility to control the chemical potentials of the
QDs by surrounding electrostatic potentials, as shown in Figs. 1.1, 1.3 and 1.4. Adjusting
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a) b)

Figure 1.7. A charge stability diagram (nL, nR) shows the number of electrons on the left (nL)
and right (nR) QD, respectively, as a function of the voltages ∆VG,1 and ∆VG,2 applied on the
respective gates. b): Differential conductance dI QPC

dV G,1
through a QPC as a function of the voltages

∆VG,1 and ∆VG,2 for double QD in AlGaAs/GaAs [111]. Figures b) reprinted with permission
from [9], c©2007, American Physical Society. All rights reserved.

the voltages of the central gate, the source and the drain, respectively, allows to control
the flow of electrons through the QD and, consequently, to manipulate the number of
electrons on the dot, as illustrated in Fig. 1.6. If additionally an external magnetic field
is applied, the degenerate electron spin states split up by their difference in the Zeeman
energy. In addition to the QD itself, oftentimes quantum point contacts (QPC) are defined
nearby. Since the current through a QPC is very sensitive to changes of the local Coulomb
potentials [112], they function as very sensitive electrometers measuring the charge and,
thus, the number of electrons on the QD non-invasively. A scanning electron micrograph of
such a QPC is, for instance, shown in Fig. 1.3 e). Besides the charge, also a measurement
of the spin of the electrons is needed according to the DiVincenzo criteria. However, the
magnetic field originating from the electron spin is on the order of BS ∼ 10−12 T at a
distance of 1µm away from the electron spin. Since the magnetic moment of the electron
spin is, therefore, too small to be measured directly, a so-called spin-to-charge conversion
is needed, which allows to determine the spin state indirectly via charge measurements.
Indeed, various methods for such a spin-to-charge conversion have been proposed [9, 113]
such as a technique developed by Elzerman et al. [114], where the energy difference of
the spin states is used to achieve single-shot readout in single QDs. Another important
method is to tune the energy levels of two coupled QDs into the so-called spin- or Pauli
blockade regime, in which the tunneling of the electrons from one QD to the other is
spin-dependent as we discuss below.

However, the interest in these double QDs is not only based on the existence of Pauli
blockade. In addition, these systems are the smallest possible realization of a qubit array,
in which two-spin operations can be investigated. Further, the extension of the double
dot setup to lines of several QDs is, in principle, straightforward.8 These facts make the
double QDs a very interesting setup, whose most important properties are summarized in

8Since source and drain couple only to the outer QDs, the loading of a desired number of electrons,
however, becomes more and more difficult for longer chains of QDs. Yet, these difficulties may be
overcome for more advanced designs of multi dot setups [22].
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the following.
A double QD can be realized by putting two QDs next to each other and connecting

them via a tunable tunnel barrier as shown in Fig. 1.3 e). By changing the height of
this potential barrier, the tunneling coupling tc of the two electrons can be tuned during
the experiment as suggested by Loss and DiVincenzo [13] and experimentally realized by
Bertrand et al. [115]. In most experiments, however, the tunnel coupling is kept at a
fixed value, while the levels of the two dots are shifted with respect to each other via
electrostatic gates. If in addition the chemical potentials of source and drain are fixed,
a variation of the electrostatic gates ∆VG,1 and ∆VG,2 of the dots allows to control the
number of electrons in the double QD system as shown in Fig. 1.6 a). This setup also
allows to control the current through the double dot by means of the so-called Coulomb
blockade. In this regime, the strong Coulomb interaction between the electrons within a
QD prohibits a transition of the electron from one dot to the other one as illustrated in
Fig. 1.6 a).

If the charge configuration (nL, nR) consisting of the number of electrons on the left
(nL) and right (nL) QD, respectively, is plotted as a function of these gate voltages a
charge stability diagram is obtained as shown in Fig. 1.7. The theoretical diagram in
Fig. 1.7 a) obtained by means of the constant interaction model [9, 116] shows a remarkable
agreement with experimentally measured charge configurations presented in Fig. 1.7 b).
The absence of charge transition lines in a comparably large region allows to experimentally
identify the region in which the QDs are completely depleted. The number of electrons
in different configurations can then be reached with certainty by counting the number of
charge transitions lines. Once a desired number of electrons in the setup is reached, the
two voltages VG,1 and VG,2 can be tuned with respect to each other such that the total
number of electrons is constant as illustrated in Fig. 1.7 a). This (de)tuning is usually
described by the detuning parameter ε = ε(∆VG,1,∆VG,2).

The most relevant case is the two electron configuration. For the (1, 1) charge state, the
two electrons can be described in the basis of singlet

|S(1, 1)〉 = (|⇓⇑〉 − |⇑⇓〉)/
√

2 (1.30)

and triplet spin states

|T+(1, 1)〉 = |⇑⇑〉 (1.31)
|T0(1, 1)〉 = (|⇓⇑〉+ |⇑⇓〉)/

√
2 (1.32)

|T−(1, 1)〉 = |⇓⇓〉 , (1.33)

which are degenerate for zero magnetic field and a vanishing tunnel coupling between
the dots. However, this degeneracy is generally lifted. First, in most experiments, an
external magnetic field B0 is applied, which splits off the |T±〉 triplets from the remaining
triplet state |T0〉 and the singlet |S〉. Second, also the singlet and triplet states exhibit
different energies. For a finite tunnel coupling tc > 0 between the QDs, the singlet and
triplet states are separated in energy by an exchange energy J = 4 t2c

EC
if tc � EC , where

EC is the charging energy of the QDs. However, another mechanism is typically more
important. Imagine that the electrons in the two quantum dots feel magnetic fields of
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different strength BL and BR with g∗µB|BL,R| � J . In this case, the eigenstates of the
corresponding Hamiltonian are no longer the singlet |S〉 and triplet |T0〉 states, but the
bare product states |⇑⇓〉 and |⇓⇑〉. As we will discuss below, such different magnetic fields
BL and BR are typically generated by the nuclear spins residing in both QDs. Another
possibility to create such a field difference is to build a ferromagnet with an inhomogeneous
stray field close to the QDs [69].

For the (0, 2) charge state, the situation is different. The ground state is given by the
singlet state |S(0, 2)〉 with both electrons in the lowest orbital level of the (right) QD.
If the energy levels in both dots are equal, its energy, however, is above the energy of
the |S(1, 1)〉 singlet due to the Coulomb repulsion of the two electrons. Also, the triplet
states are affected by this additional energy. Moreover, the (0, 2) triplet states exhibit
even higher energies than the singlet state, because one of the electrons has to occupy
an excited orbital state due to the Pauli exclusion principle, which gives rise to a singlet-
triplet splitting EST . This splitting is very important for the hybridization of the charge
states (1, 1) and (0, 2) due to the finite tunnel coupling tc between the QDs. Since the
tunneling processes conserve spin, (1, 1) singlet (triplet) states can only couple to (0, 2)
singlet (triplet) states. For a specific value of the detuning, the energies of |S(1, 1)〉 and
|S(0, 2)〉 cross without a coupling of the dots as is illustrated in Fig. 1.8 a). However, for
finite tc > 0, this crossing is avoided due to a tunnel splitting of 2

√
2tc, cf. Fig. 1.8 b).

The same is true for the triplet states, but due to the singlet-triplet splitting EST this
happens at much larger detuning ε. This observation has two important consequences [9]:
First, the charge distribution of the singlet and triplet states is different over a wide range
of detunings, where the triplet stays in the (1, 1) while the singlet changes from (1, 1) to
(0, 2). This property in fact allows to map these spin states to different charge states.
Second, the size of the energy splitting J = J(ε) between the singlet and the triplet states
becomes effectively a function of the detuning ε, which allows for an electrical control of
an effective Heisenberg interaction between the two electron spins Ŝ1 and Ŝ2:

ĤJ = J(ε) Ŝ1 · Ŝ2 . (1.34)

An important consequence of the conservation of spin in tunneling processes is the phe-
nomenon of a current blockade known as Pauli blockade. Let us assume a specific choice of
the chemical potential as depicted in Fig. 1.6 b) and a (1, 1) charge configuration. Due to
the specific arrangement of the energy levels, the only reachable state with a (0, 2) charge
configuration is the singlet state |S(0, 2)〉. If the two electrons form a singlet |S(1, 1)〉 in
the beginning, the transition to the (0, 2) charge state is allowed and a current from left
to right is possible. However, if the initial state is a triplet |T0(1, 1)〉, the Pauli exclusion
principle forbids the electron in the left QD to tunnel to the right. Thus, the current from
left to right is blocked until the left electron spin has been changed relative to the other
spin due to an interaction, for instance, with the nuclear spins. As a consequence, this
spin-to-charge conversion can be utilized to measure the spin state of the left electron. A
typical experiment to study the spin dynamics of an electron on the left dot would, thus,
exhibit the following scheme: 1) Prepare a (0, 2) singlet state. 2) Move one electron to the
left to obtain (1, 1). 3) Let the system evolve for some time. 4) Change the potentials,
such that the Pauli blockade regime is fulfilled and measure if the electron tunnels from
left to right. Thus, the right electron spin serves as a reference for the left electron spin,
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Figure 1.8. a): Energies of the triplet and singlet state without an external magnetic field and
no coupling between the dots. The energies are presented as a function of the detuning ε between
the levels of the left and right dot. In this case, the detuning is chosen such that the average of the
left and right levels is constant explaining the constant energy of (1, 1) states. Due to the singlet-
triplet splitting EST the energies of the singlet and the triplets for different charge configurations
cross at different values of ε. b): If tunneling between the dots is allowed, this crossing is avoided
due to a hybridization of the charge states. c): In presence of a magnetic field B0, the degeneracy
of the triplet states is lifted, where g∗ < 0 is assumed. Figure adapted from [9] and [70].
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such that the measurement will reveal the relative change of both spins. Experimentally,
this Pauli blockade measurement scheme has turned out to be the most successful electron
spin measurement, which enabled many groundbreaking results.

1.3.3. Manipulating spins in quantum dots
Gated double QDs built in the way described above exhibit very interesting possibilities to
manipulate the spin of the residing electrons necessary for quantum computation. We will
discuss these methods in more detail by reviewing exemplary experiments. Additionally,
we will also provide a survey of electron spin control in other systems. Based on the full
control of the electron spin, these QDs setups further allow for very powerful schemes to
prepare the nuclear spins in a desired state, which include dynamical nuclear polarization,
state narrowing and nuclear magnetic resonance. The implementation of tailored nuclear
states has originally been motivated by its importance to prolong the electron coherence
times. However, as we will show in Chapter 6, precise control of both the electron spin
and the nuclear spins also provides an excellent experimental playground to investigate
predictions of recent theoretical investigations of closed quantum systems.

Electron spin control

The experiment carried out by Brunner et al. [69] was not the first experiment realiz-
ing single electron spin control and two-spin operations, but it is remarkable for several
reasons. First, single electron spin manipulation has been achieved by solely using elec-
trostatic gates, which has been possible due to a magnetic field gradient of an attached
micro-magnet. Before, time-dependent magnetic fields have usually been employed, which
are, however, more challenging to control. Moreover, this magnetic field gradient allows
to address electrons in different QDs individually, because electric fields can be sufficiently
localized in contrast to magnetic fields. Finally, also two-spin operations have been re-
alized in the very same experimental setup, which allow for the realization of universal
quantum gates.

Single electron spin operations are conveniently described in the Bloch sphere represen-
tation of the electron spin states

|ΨS〉 = cos
(θ

2
)
|⇓〉+ sin

(θ
2
)

eiφ|⇑〉 , (1.35)

where the parameters θ and φ can be interpreted as the polar, 0 ≤ θ ≤ π, and the azimuthal
angle, 0 ≤ φ ≤ 2π, describing a point on the unit sphere in R3 [10] as depicted in Fig. 1.9 a).
In order to reach an arbitrary point on the surface of this so-called Bloch-sphere, rotations
around two different axes are necessary. Since experiments are typically carried out in the
presence of a strong static magnetic field B0 = B0ez, the first rotation is simply achieved
by a precession of the electron spin around this magnetic field with the Larmor frequency
ω0 = g∗µBB0

h̄ . A rotation around a second axis can be realized by additionally coupling
the electron spin to a time-dependent magnetic field B1(t) = B1(cos(ωt)ex + sin(ωt)ey)
perpendicular to B0.9 This interaction induces transitions between |⇓〉 and |⇑〉 known as

9In a reference frame rotating with the Larmor frequency ω0, this magnetic field induces a rotation around
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a) b)

Figure 1.9. a): Bloch sphere representation of a single electron spin. Rotations around the z-
axis are achieved by the Larmor precession around the static magnetic field B0 = B0ez. Rotations
around another axis are obtained by means of Rabi oscillations induced by the time-dependent
magnetic field B1(t). In a reference frame rotating with the Larmor frequency, these oscillations
correspond to rotations around the fixed direction of B1(t). b): Bloch sphere representation of
two-spin states. Rotations between the bare product states |⇓⇑〉 and |⇑⇓〉 are driven by a finite
singlet-triplet exchange energy J(ε) > 0. If the system is tuned towards J(εfb)� g∗µB∆B‖loc, the
difference in the nuclear magnetic field ∆B‖loc allows to induce rotations in the plane of the singlet
and triplet states.

Rabi oscillations [104]. Assuming the initial electron spin state to be |⇑〉, the probability
to find it in |⇓〉 at time t is given by

P⇑→⇓(ω, t) = ω2
1

ω2
1 + (ω − ω0)2 sin2

(√
ω2

1 + (ω − ω0)2 t

2
)

(1.36)

where we have defined ω1 = g∗µBB1
h̄ . If the time-dependent magnetic field is in resonance

with the Larmor frequency of the static field, ω = ω0, this probability is maximal. In this
case, the frequency of the Rabi oscillations ω1 ∝ B1 is solely determined by the strength
of the time-dependent field. The first observation of single electron spin resonance (ESR)
has been achieved by directly using the magnetic field of a narrow wire located near a
double QD [117]. Since this approach has certain disadvantages as discussed above, it
is beneficial to realize ESR by other means. In the experiment by Brunner et al. [69],
such a time-dependent magnetic field is created by means of an micro-magnet attached
to a double QD. The resulting setup is similar to the one shown in Fig. 1.1 d), where the
underlying shape of the electrostatic gates is equivalent to the arrangement depicted in
Fig. 1.3. In the presence of the spatially non-uniform magnetic field BM(r) of the micro-
magnet, a time-dependent magnetic field can be realized by a spatial displacement of the
electron spin induced by microwave pulses applied to the electrostatic gates.10 Since the
local, static magnetic field Bloc = B0 + BM

z (r) is varying over the extent of the double

a fixed axis, whereas in the laboratory frame, the trajectory of the electron spin along the Bloch sphere
is a spiral.

10In experiments, typically, only magnetic fields oscillating in one direction can be achieved. Yet, this
magnetic field B1 cos(ωt)ex = 1

2 [B1(t) + B̃1(t)] can be considered as a sum of two magnetic fields
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QD, the resonance occurs at different Larmor frequencies ωloc ∝ Bloc allowing for an
individual addressing of electron spins in the left and the right QD, respectively. Besides
the magnetic field gradient of a micro-magnet, also SOI [118] and a spatially varying
g-factor can be exploited to generate time-depend magnetic fields via microwave pulses.
Another interesting approach is to create an effective time-dependent HI [119] by taking
advantage of its spatial dependence described in Eq. (1.22). Since, in this case, a flip of
the electron is accompanied by a flip of a nuclear spin, this method can be also applied
to manipulate the nuclear spins. All these techniques relying on a spatial variation of the
electron by electric fields in combination with another interaction are known as electron-
dipole spin resonance (EDSR).

While single-spin operations are already a powerful experimental tool to investigate
the spin dynamics in QDs, also two-spin operations are necessary for the realization of
quantum computation. These operations can be described similar to single-spin operations
if we consider the singlet |S〉 and triplet states |T0〉 as a logical qubit. In a Bloch sphere
representation, these two states then form the poles, while the bare product states |⇑⇓〉 and
|⇓⇑〉 lie on opposite sides of the equatorial plane, as illustrated in Fig. 1.9 b). The energy
difference of this singlet-triplet two-level system is given by the exchange splitting J(ε),
whose strength can be tuned electrically, as illustrated in Fig. 1.8. A detailed theoretical
analysis of the parameters determining this splitting, we refer the reader to Ref. [120]. For
a finite J(ε) > 0, the eigenstates11 for two-spins are the singlet and triplet states. As a
consequence, this exchange splitting drives rotations around to the singlet-triplet axis [72].
If we start in the product state |⇑⇓〉 and wait for a time τJ = πh̄

J(ε) , this state is rotated by
an angle π to |⇓⇑〉, which corresponds to a swap of both spins. If we rotate just by half
the angle a √swap gate is achieved, which in combination with the single-spin rotations
constitutes a universal set of quantum gates [9, 10].

For completeness, we also mention a second rotation around a different axis, which is
provided by the difference ∆B‖loc of the magnetic fields components parallel toB0 in the left
and right QD, respectively. Interestingly, this rotation is also part of an efficient feedback
scheme, which allows to manipulate the state of the nuclear spins as we explain below. If
the exchange energy is tuned to J(εfb) � g∗µB∆B‖loc, cf. Fig. 1.8, the eigenstates of the
corresponding Hamiltonian are no longer the singlet and the triplet state11, but the bare
product states |⇓⇑〉 and |⇑⇓〉, respectively. Due to the magnetic field difference between
the left and the right QD, the resulting Larmor frequencies cause a relative rotation of
the spins with respect to each other, which in turn gives rise to a rotation of the two-spin
states around the |⇑⇓〉-|⇓⇑〉 axis. Even without a micro-magnet, such rotations can be
realized due to the presence of the nuclear spins. The statistical nature of the nuclear
magnetic field originating from the HI gives rise to two different magnetic fields Bnuc,L
and Bnuc,R in the left and right QD12, which have been used for the first experimental

B1(t) = B1 cos(ωt)ex +B1 sin(ωt)ey and B̃1(t) = B1 cos(ωt)ex −B1 sin(ωt)ey with frequencies ω and
−ω, respectively [104]. But, if B1(t) is resonant at ω0, the other part of the magnetic field B̃1(t) is off
resonance by 2ω0 and can, thus, be neglected according to Eq. (1.36).

11In the strict sense, these states are only approximate eigenstates due to the presence of the local magnetic
field Bloc. The exact eigenstates take into account both the exchange splitting as well as the local
magnetic fields.

12These are the root mean square values Bnuc,L,Bnuc,R ∝
√
K of the random fields, please see the
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realization of two-spin operations [112].
Of course, coherent control of single and multiple electron spin states is not limited to

gated GaAs QDs. In fact, there is a huge variety of materials in which equivalent methods
have been developed. An extensive review on optical control of electron spins in III-V and
II-VI QDs is given by Liu et al. [121]. Gate controlled experiments on group IV element
QDs include CNTs [40] and silicon devices [42, 122]. Further, Kloeffel and Loss [22] present
a broad overview including additional systems such as nanowires.

Dynamical nuclear polarization and state narrowing

Although nuclear spins are generally much more difficult to manipulate due to their weak
coupling to external fields, many efforts have been undertaken to accomplish this task all
the same. Once control over the nuclear spin states is established, they can serve as long-
lived quantum memories [70, 123], in which, for instance, information processed by electron
spin quantum computation could be stored. Moreover, strongly polarized nuclear spin
baths or baths with a narrowed distribution of contributing states significantly reduce the
effect of the HI according to Eqs. (1.22) and (1.28) and, hence, result in longer coherence
times of the electron spin. Ironically, such a dynamical nuclear polarization (DNP) or
state narrowing (SN) can be accomplished by means of the very same interaction as we
show by reviewing an experiment carried out in a GaAs double QD.

All techniques to control the nuclear spin bath by means of the HI rely on the presence
of flip-flop terms Ŝ+Îk,− + Ŝ−Îk,+ terms. In terms of the nuclear Overhauser field Bnuc,
this is expressed by the coupling of the electron to Bx,y

nuc as indicated in Fig. 1.8 c). Hence,
the nuclear spins are polarized by a two step process. First, the electron spin is prepared
in a state with defined angular momentum. This momentum is then transferred to the
nuclear spins via the HI. If this procedure is repeated many times, an accumulation of
angular momentum in the nuclear spin bath is achieved, as long as the pumping rate
exceeds the relaxation rate of the nuclear spins. Given the slow dynamics of the nuclear
spins in absence of the HI as discussed in Section 1.2.3, large polarizations seem possible
both in gated and optically controlled QDs.

However, the involved spin flips are suppressed in finite magnetic fields B0 due to the
large Zeeman splitting of the electron spin unless energy is provided from another source.
As mentioned above one possibility is to apply microwave pulses on the electrostatic gates,
which generates an effective time-dependent HI [119, 124]. Alternatively, the specific
properties of double QDs can be exploited [125], which we discuss in more detail below.
By tuning the energy levels of the left and right dot, the detuning can be chosen, such
that the singlet state |S(0, 2)〉 of the electrons becomes degenerate with the triplet state
|T+(1, 1)〉 at ε = εp as illustrated in Fig. 1.8.

Typically the system is initialized with ε � εp, for which the singlet |S(0, 2)〉 is the
ground-state. Then, the gate voltages are tuned to εp, where the electron spin and one
nuclear spin flip with probability (1−PS). Subsequently, the system is tuned to the Pauli
blockade regime with ε� εp for readout. Since the left electron can only tunnel back if its
spin has not been flipped, a measurement of the charge on the right QD allows to determine

discussion after Eq. (1.26) for more details
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the singlet probability PS , which has, for instance, been estimated to be PS ∼ 0.7 for a
specific experiment [125]. Finally, one electron is removed from the dot and the next
sequence begins with the initialization of the singlet state |S(0, 2)〉 with a new electron
from the leads. Alternatively to this probabilistic approach, another deterministic pulse
sequence has been investigated [125]. Starting from the initial (0, 2) singlet with ε � εp,
the detuning can be rapidly changed to ε � εp. Since the time spent at the degeneracy
ε ≈ εp is then comparably short, the singlet is preserved in the (1, 1) configuration. If
the detuning is subsequently adiabatically increased up to ε � εp, this singlet will be
transformed to the |T+(1, 1)〉 triplet state due to the avoided crossing at εp and a nuclear
spin is flipped. This sequence is also completed by pushing out one of the electrons. In
summary, both S pumping cycles [125] increase the total nuclear momentum by ∆I = +1
such that a polarization parallel to the external magnetic field B0 is built up. Conversely,
the system can be also initialized in the triplet state |T+(1, 1)〉. With the remainder of the
detuning cycles unchanged a T+ pumping cycle is realized, which allows to change the total
nuclear angular momentum by ∆I = −1 resulting in an anti-parallel polarization of the
nuclear spins [126]. By many repetitions of these cycles, a finite nuclear polarization can
be established due to the comparably slow spin dynamics of the nuclear spins in absence
of the HI as explained in Section 1.2.3. A theoretical investigation of this nuclear state
preparation is provided in Ref. [127]. Once the pumping rate exceeds the spin diffusion
rate, a finite polarization on the order of few percent is established [43]. However, also a
polarization up to 40 % has been reported [128].

Similarly to the electrically operated DNP, also DNP induced by optical excitation relies
on fast control of the electron spin, spin transfer by means of the HI, and slow relaxation
rates of the nuclear spins. For more details, we refer to the extensive review by Urbaszek
et al. [24]. Nuclear spin polarizations achieved by optical preparation are typically higher
than in gate controlled systems, where values of up to 60 % are now routinely obtained [70].
Such high degrees of polarization are possible because of strong quadrupolar effects in
strained, optically active QDs, which strongly suppress spin diffusion in the environment.

Although, this is a quite remarkable degree of polarization, it is still far from the polar-
izations p necessary in order to significantly prolong the coherence times of the electron
spin. For a polarized nuclear spin bath with a Gaussian distribution of states, a Gaussian
decay of the coherences on a timescale τc ∝

√
1− p2 has been found [76], which demands a

polarization above p > 0.99 in order to prolong this timescale by one order of magnitude.
However, it turns out that the effect of the HI can be strongly suppressed even at small po-
larizations by changing the distribution of the nuclear spin states [61, 76, 78, 129, 130, 131].
By reducing the statistical fluctuations, the nuclear spin state is driven towards an eigen-
state |n〉 of the nuclear magnetic field operator ĥz defined in Eq. (1.26)

ĥz|n〉 = 〈ĥz〉n|n〉 . (1.37)

We will consider this nuclear initial state in Chapter 4, where we will investigate the
electron spin dynamics in presence of a large number of nuclear spins and a strong external
magnetic field for a graphene QD.

In gated QDs, such a state preparation can be achieved by a slight modification of
the experiment discussed above. After initializing the electron spin state in the singlet
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Figure 1.10. DNP and SN of nuclear spin states in QDs. Experimentally, the distribution of
the states is determined by the distribution of the hyperfine field gradient ∆B‖nuc between the two
QDs. This gradient is a function of the polarization according to Eq. (1.26), where ∆B‖nuc ∝ p if
only one nuclear spin species would be present and uniform HI couplings Ak = A are assumed.)
a): A feedback loop can be achieved by combining a positive oscillating S pumping rate with a
negative T+ pumping rate. By this procedure, stable fixed points emerge, which lock the nuclear
magnetic field to a specific value. Measured nuclear magnetic field gradient without b) and with
feedback c). All figures adapted with permission from [132], c©2010 American Physical Society.
All rights reserved.

|S(0, 2)〉, the system can be tuned to the (1, 1) charge configuration at ε � εfb, where
oscillations between the singlet |S(1, 1)〉 and the triplet |T0(1, 1)〉 are induced by the nuclear
magnetic field gradient as discussed in the previous section and illustrated in Fig. 1.8. The
probability of finding the singlet after a time τfb is given by [132]

PS =
1 + cos(g∗µB∆B‖nucτfb/h̄)

2 . (1.38)

If the system is then swept back to εp, only the singlet part of the electron state allows for
an exchange of angular momentum. Hence, if this cycle is repeated many times, the pump
rate d∆ B

‖
nuc

dt of this feedback pulse is proportional to PS [132] and, thus, oscillates as a
function of ∆B‖nuc. If this positive pump rate is combined with the negative pump rate of
the T+ cycle, a stable fixed point of ∆B‖nuc can be established whenever the total d∆ B

‖
nuc

dt
crosses zero with a negative slope as depicted in Fig. 1.10 a). By applying such a feedback
scheme, indeed a narrowed nuclear magnetic field has been measured [132] in contrast to
a broader distribution if only DNP is applied as shown Fig. 1.10 b) and c). The effect
of this SN has been tested measuring the dephasing time T ∗2 of the electron spin, where
an enhancement from 14 ns to 94 ns has been observed [132] after the preparation of a
narrowed state.

Similar effects have also been achieved by optical means [24, 70], where a stabilization
of the nuclear polarization has been realized by resonant continuous-wave and pulsed laser
excitation. By reversing any changes of the nuclear magnetic field via feedback, narrowed
distributions around low polarization have been obtained

Besides DNP and SN, also nuclear magnetic resonance (NMR) has been successfully
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used to manipulate the nuclear spins. By applying radio frequency pulse schemes, the
authors of [133] were able to show fast redirection on the microsecond timescale of the
Overhauser field on the order of 0.5 T. This was achieved using coherent control of an
ensemble of 105 optically polarized nuclear spins.

Finally, the nuclear spins can be also driven towards an ordered state if the system is
sufficiently cooled [43]. Due to their interaction with electrons spin via the HI [134, 135]
and the RKKY interaction [136, 137], the nuclear spins are supposed to undergo a phase
transition to an ordered magnetic state below a Curie temperature in the mK regime.
Although a recent experiment has possibly detected a nuclear spin ordering in a GaAs
nanowire, a clear experimental evidence for these phase transitions is still missing. In
Chapter 3, we will analyze a single electron spin coupled to the nuclear spin via the HI by
means of statistical physics similar to the work of Fröhlich and Nabarro [134]. In contrast
to them, we also investigate the properties of the electron spin, where we find an intriguing
thermal spin flip together with an ferromagnetic state of the nuclear spins.
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2.1. Introduction to decoherence
If a physicist was given the task to give an idea about quantum mechanics in a single
word, a good choice might be “superposition”. The coherent superposition of states

|ψ〉 =
∑
n

cn|ψn〉 (2.1)

forming a new state |ψ〉 is one of the fundamental differences between quantum mechanics
and classical physics [18]. In the resulting state, all states |ψn〉 are simultaneously realized
with complex coefficients cn determining their weight and the coherent phase relation
between them. This property is in contrast to a classical ensemble, where (classical)
probabilities describe our lack of knowledge about in which single state the system is
currently prepared. Due to the importance of the superposition principle, decoherence
describing the disappearance of coherence is a very important mechanism, which touches
various fields such as the foundations of quantum mechanics [3, 18, 138, 139] or rather
“applied” topics like quantum error correction for quantum computation [10, 140].

Let us, for instance, consider the superposition |ψ〉 = (|ψ1〉+ eiφ|ψ2〉)/
√

2 of two states
|ψ1〉 and |ψ2〉. The resulting state is called coherent with respect to |ψ1〉 and |ψ2〉 if
they have a constant relative phase φ. In fact, this phase and, thus, coherence is ex-
perimentally measurable. An illustrative example for such experiments is the Ramsey
interferometry [18, 141], which is, for instance, used to measure the relative phase of elec-
tron spin states by observing interference patterns. As we describe in Section 1.3.3, the
spin of an electron in a quantum dot can be manipulated such that any superposition
of its states |⇑〉 and |⇓〉 can be created. This is typically achieved by a Larmor preces-
sion around a static external magnetic field Bz in combination with Rabi oscillations,
which are induced by an oscillating magnetic field B⊥ or by laser light. Both operations
are mathematically expressed by unitary transformations, where Ûz(φ(t)) = e−iφ(t)Ŝz and
Ûy(φ(t)) = e−iφ(t)Ŝy correspond to the Larmor precession and the Rabi oscillations, re-
spectively. In both cases, the amount of the acquired phase φ(t) can be controlled by the
time t we allow these processes to act. Given these tools, the Ramsey experiment can be
carried out by the following scheme.

If we start in |⇑〉 and apply Ûy(π2 ) to this state, we obtain a superposition 1√
2(|⇑〉+ |⇓〉).

Due to the external magnetic field, both states |⇑〉 and |⇓〉 start to precess in opposite
directions according to Ûz(φ(t)), which results in a superposition

|ψL〉 = Ûz(φL)Ûy(π2 )|⇑〉 = 1√
2(e−iφL/2|⇑〉+ eiφL/2|⇓〉) (2.2)

exhibiting a relative phase difference of φL = φ(tL). The experiment is finished by ap-
plying another rotation Ûy(π2 ) and measuring Ŝz, which is equivalent to a measurement
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2. Systems, environments and decoherence

of Û †y(π2 )ŜzÛy(π2 ) = −Ŝx in the first place. With this, we find the following expectation
value

〈Ŝz〉 = 〈ψL|Û †y(π2 )ŜzÛy(π2 )|ψL〉 = 〈ψL|(−Ŝx)|ψL〉 = −1
2 cos(φL) . (2.3)

Hence, the relative phase φL acquired by the Larmor precession during the time tL leads to
interference patterns, which are actually measurable. While it is not particularly surpris-
ing for a non-classical degree of freedom such as the spin to show non-classical behavior,
interference experiments on molecules containing hundreds of atoms [4] have also demon-
strated the existence of interference and, therefore, the relevance of coherence even for
large objects.

However, in most cases, the assumption of an isolated quantum system is unrealistic. So,
what do we, for instance, expect for an electron spin coupled to an environment? Let us
illustrate this by considering an electron spin in a QD, which is in contact with the nuclear
spins of the host material via the HI interaction as described in Chapter 1 [18, 141]. In
order to prevent our example from being overcomplicated, we impose two simplifications.
First, we assume that the HI interaction is switched on after we have acquired the relative
phase of φL. Second, we neglect the (off-diagonal) flip-flop terms in Eq. (1.22), which
leads to the following effective interaction

Ĥeff
HI = Ŝz

K∑
k=1

AkÎk,z , (2.4)

where K is the number of nuclear spins. Since the electron spin and the nuclear spins have
not interacted with each other, they are initially uncorrelated yielding a product state for
the combined system

|ΨL〉 = 1√
2

(e−iφL/2|⇑〉+ eiφL/2|⇓〉)⊗ |Ψnuc〉 . (2.5)

The initial state of the nuclear spins |Ψnuc〉 =
∑
n cn|n〉 can be expressed in terms of

complex coefficients cn ∈ C and product states |n〉 =
⊗K

k=1|mn
k〉 with Îk,z|mn

k〉 = mn
k |mn

k〉.
The resulting basis states {|mS〉⊗ |n〉} are already eigenstates of the HI Hamiltonian with

Ĥeff
HI |mS〉 ⊗ |n〉 = msEn|mS〉 ⊗ |n〉 , (2.6)

where En =
∑K
k=1Akm

n
k . Calculating the time evolution ÛHI(t) = e−ih̄−1Ĥeff

HI t caused by
the HI, this procedure then yields

|ΨL(t)〉 = ÛHI(t)|ΨL〉 = 1√
2

(e−iφL/2|⇑〉 ⊗ |Ψ⇑nuc(t)〉+ eiφL/2|⇓〉 ⊗ |Ψ⇓nuc(t)〉) , (2.7)

where |ΨmSnuc(t)〉) =
∑
n cn e−ih̄−1mSEnt. Finally, we apply again a π

2 -rotation around the
y-axis and calculate the expectation value of Ŝz, which results in

〈Ŝz〉 = 〈ΨL(t)|Û †y(π2 )ŜzÛy(π2 )|ΨL(t)〉 = 〈ΨL(t)|(−Ŝx)|ΨL(t)〉

= −1
2(e−iφL〈Ψ⇓nuc(t) |Ψ⇑nuc(t)〉〈⇓|Ŝx|⇑〉+ eiφL〈Ψ⇑nuc(t) |Ψ⇓nuc(t)〉〈⇑|Ŝx|⇓〉)

= −1
2Re[eiφL〈Ψ⇑nuc(t) |Ψ⇓nuc(t)〉] . (2.8)
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Due to the interaction of the electron spin with the nuclear spins, its expectation value
is modified by the overlap of the two nuclear spin states |Ψ⇑nuc(t)〉 and |Ψ⇓nuc(t)〉. The
physical mechanism behind this phenomenon is the generation of entanglement1 between
system and environment, which spreads the coherence over the total system. If no HI
interaction was present, the two nuclear spin states would be equal and we would recover
our previous result in Eq. (2.3), since no entanglement would have been established. With
the HI being active, we find for the overlap

r(t) = 〈Ψ⇑nuc(t) |Ψ⇓nuc(t)〉 =
2K−1∑
n=0
|cn|2 e−ih̄−1Ent =

2K−1∑
n=0
|cn|2

K∏
k=1

e−ih̄−1Akm
n
k t . (2.9)

In a first attempt to analyze the behavior of this function, it can be considered as a vector
in the complex plane, which results from the addition of 2K vectors, whose length and
direction are determined by |cn|2 and h̄−1Ent, respectively. If there are no special relations
between the different coupling constants, the directions will be approximately random at
any time t larger than the decoherence timescale τd. Therefore, the decoherence function
r(t) can be considered as a result of a random walk in a two-dimensional plane [16, 18].
Assuming the initial nuclear spin state to be close to a uniform distribution over the
whole Hilbert space, the average step size 〈|cn|2〉 is equal to 2−K due to the normalization
condition

∑
n|cn|

2 = 1 of the nuclear states. The average distance traveled in a random
walk after K steps is given by the root mean square distance σr ' 2K/2, see, for instance,
Ref. [142]. Consequently, the average value of the decoherence function scales with

〈r(t)〉 ' 〈|cn|2〉σr = 2−K 2
K
2 = 2−

K
2 (2.10)

Thus, even comparably small environments can lead to a suppression of the signal 〈Sz〉(t) ∝
r(t) below any experimentally feasible resolution. Clearly, the exact behavior of this de-
coherence factor r(t) [18] depends on the specific choice of the coefficients cn and on the
distribution of the coupling constants. Investigating this and similar toy models, a Gaus-
sian decay of the decoherence function on very short timescales τd has been observed for
a wide range of distributions of the couplings Ak [16, 18, 143]. Yet, for any limited num-
ber of nuclear spins, the decoherence function will return to 1 at the recurrence time τR.
However, it has been shown, that this recurrence time is typically very large and even
exceeding the age of the universe for comparably small environments [16, 144]. Thus,
from a practical point of view decoherence is irreversible. Yet there are ways to circum-
vent decoherence by a careful choice of the nuclear initial state as can be seen from the
decoherence function. If we, for instance, choose one of the product states |m〉, we have
cm = 1 and cn6=m = 0 and, therefore, r(t) = e−ih̄Emt, for which the interference patterns
are restored.

Since a precise knowledge of decoherence is essential for any meaningful quantum error
correction, the decoherence of electrons in QDs has been under intensive research over
the past decade due to their potential as qubits. We review some important findings at

1 Two systems S1 and S2 are called entangled if the state of the composite system S cannot be written
as a tensor product |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉, where |Ψ1〉 and |Ψ2〉 represent the state of system S1 and S2,
respectively. Please also see, e.g., Ref. [18].
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the beginning of Chapter 4, in which we analyze the decoherence of an electron spin in
a graphene quantum dot interacting with the surrounding nuclear spins. In this review,
we encounter a large variety of decoherence functions exhibiting exponential, Gaussian or
power-law decay. Also these studies suggest very short decoherence times τd if no further
efforts are undertaken.

For clarity, let us illustrate decoherence on the basis of our simple example: First, we
have considered an isolated electron spin starting in a particular state. An experiment
revealing the coherence of quantum states via interference has been described by a set
of unitary transformations, which in the end resulted in the interference pattern of the
electron spin expectation value in Eq. (2.3). In our second example, we have introduced a
nuclear spin environment with which the electron is interacting. Starting from a specific
initial state, we have again been able to calculate the final state by another set of unitary
transformations. However, this time, the expectation value of Ŝz has shown decoherence.
So why do we find decoherence in the second case although again only unitary transfor-
mations have been applied. As it turns out, the answer to this questions is the fact that
we have the wrong “tool” to find interference patterns. When calculating the expectation
value of the electron spin we have been imprecise, since we have not explicitly stated that
this operator acts only on a subspace of the whole Hilbert space. Thus in more obvious
notation, we have to determine the expectation value of Ŝx = Ŝ′x ⊗ 1nuc, where the local
measurement Ŝ′x acts only on the electron spin subspace and 1nuc is the identity operation
on the nuclear spin subspace. However, we have seen that the coherence is spread over
the total system due to the establishment of entanglement between the electron spin and
the nuclear spins. Thus, the apparent decoherence of the electron spin states is an effect
caused by the locality of our measurement. The total state of the system is coherent for
all times and given a proper measurement we could find interference patterns. However,
given the large size of typical environments, such a global measurement cannot be found
in general. Thus, a theory is needed, which is capable of dealing with such a limitation to
local observables.

In the following sections, we show how these findings can be formalized in terms of closed
and open quantum systems. By using the density matrix formalism, we demonstrate how
effective equations of motion of the electron spin can be obtained, which take into account
the interaction with an environment. Equipped with these equations, we are then able
to analyze decoherence in the context of QDs. A general description of decoherence and
its implications is beyond the scope of this Thesis and, therefore, we refer the interested
reader to the books of Joos et al. [138] and Schlosshauer [18] for a broad and in-depth
discussion of this exciting topic.

2.2. Modeling quantum systems

From the examples above, we have already seen two different notions of quantum systems,
whose properties we want to discuss in more detail. The first example constitutes a closed
system, where in principle all degrees of freedom are accessible to the observer. Thus, there
is no contact to any kind of environment except for external fields. The time evolution of
a closed system is determined by a Hamiltonian, which is in general time-dependent. If
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the Hamiltonian is time-independent, the system is called isolated [145]. In any case, the
time evolution of the system is deterministic and can be calculated by means of a unitary
time evolution operator.

However, a closed quantum system is in general unrealistic, since perfect isolation of a
system is not possible. Moreover, as our first example illustrates, this model is also not
capable of describing decoherence. Thus, a more realistic description of a quantum system
is needed. In our second example, we have seen that both issues are resolved if we limit
our perspective to a (sub)system, which is in contact with an environment, for instance,
the other part of the system.

If we limit our point of view to observables of the subsystem and follow its dynamics
by its genuine Hamiltonian and the interaction with the environment, we will generally
encounter a non-unitary time evolution due to system-environment correlations [145]. Nev-
ertheless, the combination of this system and its environment again constitutes a closed
quantum system with unitary time evolution.2 Thus, typically this total system is chosen
as a starting point, from which the effective dynamics of the (sub)system can be obtained.
According to this scheme, the (sub)system is also called the reduced system. For simplic-
ity, we use the expression “system” for both the total system and the (sub)system as long
as the correct meaning is guaranteed by the context.

So far, we have not imposed any restrictions on the environment such as a minimum
size. In fact, we will encounter particularly small environments consisting of less than ten
nuclear spins in Chapters 5 and 6. There, we demonstrate, that already very few nuclear
spins can suffice in order to equilibrate the electron spin. Although it is difficult to define
a strict border, there is certainly a (finite) number of environmental degrees of freedom for
every model, above which the environment effectively acts as if it were infinite. Typically,
its energy spectrum is then (quasi-)continuous and its state is hardly changed due to the
interaction with the system. Such environments are usually referred to as reservoirs. We
consider such a reservoir in Chapter 4, in which we follow the dynamics of an electron spin
in contact with many nuclear spins. If in addition a reservoir is in thermal equilibrium, we
speak of a heat bath or bath [145]. This is the typical setting, in which standard statistical
mechanics is applicable [146]. We follow this approach in Chapter 3, where we assume
that a system consisting of both the electron spin and the nuclear spins is in contact with
a heat bath.

2.2.1. Closed quantum systems
Although not stated explicitly, the examples in the introduction have been described in
terms of the familiar quantum state vectors |Ψ〉. The dynamics of these elements of a
Hilbert space H is determined by the Hamiltonian Ĥ of the system via the well known
Schrödinger equation

∂

∂t
|Ψ(t)〉 = −ih̄−1Ĥ(t)|Ψ(t)〉 (2.11)

2Of course, there may again be an environment interacting with this total system, which makes this an
unrealistic approximation to nature in the strict sense. However, since this interaction is generally even
much weaker, the combined system-environment is in general a much better approximation than con-
sidering the system alone. Thus, the typical timescales related to this coupling to another environment
is much longer than the timescale on which the dynamics of the subsystem occurs.
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This differential equation is solved by the introduction of the time-evolution operator

Û(t, t0) = exp[−ih̄−1
t∫

t0

dt′ Ĥ(t′)] , (2.12)

which maps the initial state |Ψ(t0)〉 to the final state |Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉 at time
t. With this time-dependent state at hand, we are then able to calculate the expec-
tation values of any observable Ô. Using the spectral decomposition of the operator
Ô =

∑
iOi|Oi〉〈Oi|, we find

〈Ô〉(t) = 〈Ψ(t)|Ô|Ψ(t)〉 =
∑
i

Oi|〈Oi |Ψ(t)〉|2 , (2.13)

where Oi is a eigenvalue and |Oi〉 is the corresponding state. A equivalent description of
this physics can be obtained by defining a projector ρ̂(t) = |Ψ(t)〉〈Ψ(t)|, which is called
density operator or density matrix.3 This projector allows us to calculate the expectation
value of an operator Ô by performing the trace operation4

〈Ô〉(t) = Tr[Ôρ̂(t)] = Tr[ÔÛ(t, t0)ρ̂(t0)Û †(t, t0)] . (2.14)

Since the eigenstates |Oi〉 constitute a basis5 of the Hilbert space, we explicitly find

〈Ô〉(t) =
∑
i

〈Oi|Ôρ̂(t)|Oi〉 = Oi|〈Oi |Ψ(t)〉|2 , (2.15)

which is the same result as in Eq. (2.13) above. This is not particularly surprising, since
both the state vector |Ψ〉(t) and the corresponding density matrix ρ̂(t) contain the max-
imum knowledge we have about the state of the physical system [18]. If we express the
state vector |Ψ(t)〉 =

∑
i ci(t)|Ψi〉 in a particular basis |Ψi〉 by means of complex coefficients

ci(t), we find for the density matrix

ρ̂(t) =
∑
i

|ci(t)|2|Ψi〉〈Ψi|+
∑
i 6=j

cic
∗
j |Ψi〉〈Ψj | , (2.16)

where the off-diagonal terms i 6= j encode the coherence between the states |Ψi〉 and |Ψj〉.
If we reconsider our first example of an isolated electron spin, we find for its density matrix

ρ̂S = |ΨL〉〈ΨL| =
1
2(|⇑〉〈⇑|+ |⇓〉〈⇓|) + 1

2(e−iφL |⇑〉〈⇓|+ eiφL |⇓〉〈⇑|) , (2.17)

in which the coherences are found in the off-diagonal elements. However, the density
matrix is a Hermitian operator and, therefore, we can find a basis |Ψ̃i〉 in which it is

3Strictly speaking, this is not the matrix representation with respect to a particular basis, but a basis
independent operator. However, the expression density matrix for this operator is established in the
literature.

4If the set of states {|Ψi〉}di=1 forms a basis of a Hilbert space H with dimension d = dim(H), then the
trace of an arbitrary operator Ô is defined by Tr[Ô] =

∑
i
〈Ψi|Ô|Ψi〉.

5In the case of degenerate eigenvalues, a basis for the degenerate subspace may be found using the
Gram-Schmidt procedure.
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diagonal and the coherences seem to be absent. Thus, the exact form of the coherences
and the interferences is in general depending on our choice of the basis in which the density
matrix is represented. Since the basis |Oi〉 defined by our observable typically does not
coincide with the eigenstates of the density matrix, this ostensible loss of coherence is not
present in an experiment.

Nevertheless, there are situations in which we clearly have insufficient knowledge of
the state of the system, which, for instance, arises from probabilistic elements in the
initialization of the system [18]. Within the density matrix formalism, also a lack of
knowledge of the state of a system can be easily incorporated by means of a so-called
mixed density matrix ρ̂ =

∑
i pi|Ψi〉〈Ψi| with pi ∈ R and

∑
i pi = 1. Hence, the physical

system is always in one of the pure states ρ̂i = |Ψi〉〈Ψi|, but we do not know in which. The
only knowledge the observer can gain by measurement is the classical probability pi [18]
to find a specific pure state. By inserting this mixed density matrix in Eq. (2.15), we can
readily show, that the resulting expectation value 〈Ô〉 of any observable Ô exhibits the
correct average over the probability distribution {pi}.

Similar to the density matrix being the equivalent to the state vectors, the Schrödinger
equation in Eq. (2.11) has its counterpart, too, the (Liouville-) von Neumann equation [145]

d
dt ρ̂(t) = −ih̄−1[Ĥ(t), ρ̂(t)] . (2.18)

Using the time-evolution operator defined in Eq. (2.12), the density matrix at time t can
be obtained from its initial state by

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0) . (2.19)

If we have a closer look at our findings in Eqs. (2.14), (2.15) and (2.19), we see that the
role, which the state vectors of the Hilbert space play in the density matrix formalism, is
rather small. Their only remaining purpose is to provide a basis necessary to calculate
the final trace. Hence, this formalism is mainly based on the operators acting on elements
of the Hilbert space such as Ĥ(t), Ô, and ρ̂(t). These operators themselves are elements
of another vector space known as the Liouville space F [147]. Similar to these operators
acting on elements of the Hilbert space, there exist so-called superoperators acting on
the elements of the Liouville space. We have already encountered one example of such a
superoperator above. Since the commutator of the density matrix with the Hamiltonian
creates another element of the Liouville space, we can rewrite the above equation by

d
dt ρ̂(t) = −iL(t) ρ̂(t) (2.20)

where the Liouville (super)operator [147] is given by L(t)Ô = h̄−1[Ĥ(t), Ô] for an arbitrary
operator Ô ∈ F .6 For the remainder of this section, we assume a time-independent
Hamiltonian for simplicity and refer to the books by Fick and Sauermann [147] and Breuer
and Petruccione [145] for a detailed discussion including time-dependent Hamiltonians.
The Liouville superoperator acts by definition on everything to its right such that powers

6This definition follows the convention of Ref. [147], whereas in Ref. [145] the factor of −i is absorbed in
L.
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of it result in nested commutators according to LnÔ = Ln−1[Ĥ, Ô] = Ln−2[Ĥ[Ĥ, Ô]] = . . . .
The von Neumann equation is formally solved by

ρ̂(t) = U(t, t0)ρ̂(t0) , (2.21)

where we have introduced another superoperator U(t, t0). If we insert this equation in the
differential equation Eq. (2.20), we obtain a differential equation for this superoperator

d
dt U(t, t0) = −iLU(t, t0) with U(t0, t0) = 1 , (2.22)

which finally yields
U(t, t0) = e−iL(t−t0) . (2.23)

Hence the time evolution of the density matrix is completely determined according to Eqs.
(2.21) and (2.22). The formulation of the time-evolution of a closed system in terms of
superoperators is equivalent to the usual description using standard operators acting on
states of the corresponding Hilbert space. Comparing, for instance, Eqs. (2.19) and (2.21),
we find

ρ̂(t) = U(t, t0)ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0) , (2.24)

Thus, so far the introduction of the Liouville space has not provided any advantage. How-
ever, physically relevant systems are in general too complicated to be solved analytically.
There are two possibilities to circumvent this difficulty: approximate solutions of so-called
open systems and exact diagonalization of sufficiently small systems. As we will show be-
low, these approximate solutions for the former case are conveniently expressed in terms
of Liouville superoperators.

If we are in contrast confronted with a small system, it is always possible to represent
the Hamiltonian in some basis |n〉 of the Hilbert space H and to diagonalize the resulting
matrix Hnm exactly by numerical means. This technique known as “exact diagonalization“
has been successfully applied to investigate the spin dynamics in QDs before [74, 148,
149, 150]. This procedure provides all eigenvalues {Eν}dν=1 with d = dim(H) and the
corresponding eigenstates |Ψν〉 of the Hamiltonian matrix. Defining the matrix M through
its elements Mνn, the n-th element of eigenstate |Ψν〉, we can rewrite the time-evolution
operator Unm(t− t0) = 〈n|Û(t− t0)|m〉 in diagonal form

V (t, t0) = MU(t, t0)M † =


e−ih̄−1E1(t−t0)

e−ih̄−1E2(t−t0)

. . .
e−ih̄−1Ed(t−t0)

 .

(2.25)
With this form, the expectation value of an observable Ô is then given by

〈Ô〉(t) = Tr[Ôρ̂(t)] =
∑

n,m,p,q
ν,µ

OnmM
∗
mνVνν(t, t0)Mνp ρpq(t0)M∗qµV ∗µµ(t, t0)Mµn (2.26)

with the matrix representations Onm = 〈n|Ô|m〉 and ρpq(t0) = 〈p|ρ̂(t0)|q〉. In Chapters
5 and 6, we use exact diagonalization in order to investigate the dynamics of an electron
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Figure 2.1. Illustration of different perspectives on quantum systems. If a system of interest
is not interacting with another system it is called closed. However, since perfect isolation is
not possible, more sophisticated models consider a system in contact with an environment. The
combined system itself is again a closed quantum system.

spin coupled to less than ten nuclear spins. This spin model is also very illustrative to
demonstrate the limitations of this procedure. Since each spin has a two dimensional
Hilbert space, the dimension of the total Hilbert space is given by d = 2K+1, where K
is the number of nuclear spins. This exponential growth quickly outruns the capacity of
even the most powerful computers. Therefore, the notion of open quantum systems has
been introduced, which allows to treat large environments.

2.2.2. Open quantum systems
If we combine a system S with an environment E, the Hilbert space of the total system
is given by the tensor product H = HS ⊗HE of the Hilbert spaces of the system HS and
the environment HE . The total Hamiltonian is then given by

Ĥ = Ĥ
′
S ⊗ 1E + 1S ⊗ Ĥ

′
E + ĤI ≡ ĤS + ĤE + ĤI , (2.27)

where Ĥ ′S is the Hamiltonian of the system, Ĥ ′E is the Hamiltonian of the environment,
and 1x is the identity operation on the respective subspaces x ∈ {S,E}. The Hamiltonian
ĤI describes the interaction between them. A schematic of this combination is shown in
Fig. 2.1. Since the total system is closed, we already know the time-evolution of its density
matrix ρ̂ according to Eq. (2.24). However, as we have seen in our second example above,
often only a certain subspace of the whole Hilbert space is relevant for the calculation
of expectation values of observables ÔS ⊗ 1E , where 1E is the identity operation on the
environment. Hence, there should be a density matrix ρ̂S(t) in this subspace, which gives
rise to the same expectation values as the full density matrix:

Tr[ÔS ⊗ 1E ρ̂(t)] ≡ Tr[ÔS ρ̂S(t)] , (2.28)

where the second trace operation is solely carried out in the subspace of the system. Indeed,
there is a unique operation known as partial trace [10, 18], which allows to calculate the
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density matrix ρ̂S(t) of the subsystem from the total density matrix ρ̂(t). If the states
{|ΨE,i〉} form a basis in HE , the partial trace with respect to the environment is defined
by

TrE [ρ̂(t)] =
∑
i

〈ΨE,i|ρ̂(t)|ΨE,i〉 =
∑
k,l

ρ̂′k,l(t)|ΨS,k〉〈ΨS,l| ≡ ρ̂S(t) , (2.29)

where the states {|ΨS,k〉} form a basis of the Hilbert space HS and the coefficients are
given by ρ̂′k,l(t) =

∑
i〈ΨS,k|〈ΨE,i|ρ̂(t)|ΨE,i〉|ΨS,l〉. Since the resulting density matrix ρ̂S(t)

acts only on a subspace of the total Hilbert space, it is often referred to as reduced density
matrix. As an example, let us calculate the reduced density matrix of our second example
above, in which the electron spin interacts with the nuclear spins via the HI. Given the
time evolution of its state |ΨL(t)〉 in Eq. (2.7), we can calculate its total density matrix
ρ̂(t) on which we apply a partial trace over the nuclear spins:

ρ̂S(t) = Trnuc[ρ̂(t)] = 1
2(|⇑〉〈⇑|+ |⇓〉〈⇓|) + 1

2(e−iφL r∗(t)|⇑〉〈⇓|+ eiφL r(t)|⇓〉〈⇑|) , (2.30)

where the decoherence function r(t) = 〈Ψ⇑nuc(t) |Ψ⇓nuc(t)〉 has been discussed above. If we
compare this result to the density matrix of an isolated electron spin in Eq. (2.17), we see
that the off-diagonal elements encoding the coherences are reduced by the decoherence
factor r(t). Despite of this factor, however, both density matrices are formally equal.

By means of the partial trace, we also obtain a differential equation for the reduced
density matrix ρ̂S(t) from the Liouville equation of the total system in Eq. (2.20)

d
dt ρ̂S(t) = −i TrE [L ρ̂(t)] . (2.31)

However, so far we have not gained anything by the fact that we are only interested in
the subsystem, since we have to calculate the time-evolution of the total system before
we are able to obtain the dynamics of the reduced system. Thus, in order to profit from
the distinction between system and environment, another approach is preferable, which
directly yields an effective differential equation for ρ̂S(t) without the need to solve the
total system in the first place. Due to its importance and the generality of this problem,
various schemes have been developed such as the projection operator techniques leading
to the Nakajima-Zwanzig [145, 147] equation, which we will discuss in the subsequent
section.

In the course of this discussion, we will encounter situations in which a superoperator
can be divided into two parts. For such superoperators, we generalize the findings in
Eqs. (2.22) and (2.23) for later convenience. Let us define d

dt UO(t, t0) = −iOUO(t, t0) and
UO(t0, t0) = 1 for an arbitrary superoperator O, which is solved by

UO(t, t0) = e−iO(t−t0) . (2.32)

In the case of a separable superoperator in the form O = O1 +O2, there exists a relation
between the full superoperator UO(t, t0) and an partial superoperator UO1(t, t0)

UO(t, t0) = UO1(t, t0)− i
t∫

t0

dt′ UO1(t, t′)O2 UO(t′, t0) , (2.33)
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where a proof of this relation is presented in Ref. [147]. This relation is even valid for
time-dependent superoperators O1(t) and O2(t), where the exponents are given by time-
ordered integrals over these superoperators. In the time-independent case, we can insert
the explicit form of UO(t− t0) and UO1(t− t0) in Eq. (2.23) yielding

e−iO(t−t0) = e−iO1(t−t0)−i
t∫

t0

dt′ e−iO1(t−t′)O2 e−iO(t′−t0) . (2.34)

2.3. The Nakajima-Zwanzig generalized master equation

Typically, open quantum systems as described above are analyzed in the framework of
quantum master equations, which are effective equations of motion of the subsystem only
and allow the investigation of non-unitary effects in open quantum systems. The interac-
tion with the environment is taken into account in an indirect manner. Depending on the
ability of the environment to keep track of earlier events, these quantum master equations
are divided into two groups. If the environment loses its memory quickly, the resulting
dynamics are called Markovian, which are consequently described in terms of so-called
Markovian master equations [18, 145]. In contrast, if the internal dynamics of the envi-
ronment are slow, the environment preserves its memory, which typically gives rise to more
complicated dynamics. Thus, we need so-called non-Markovian master equations for this
particular situation, which are, however, in general mathematically more demanding. We
will make more quantitative arguments for this distinction in the course of this section.
The most prominent examples for a non-Markovian master equation are the Nakajima-
Zwanzig equation and the time convolutionless master equation [145]. The applicability
of both equations strongly depends on the specific properties of the microscopic model to
study [145, 151]. Typically, the unitary time-evolution of the total system consisting of
the actual system of interest and its environment is taken as a starting point to obtain an
equation of motion of the system alone. In this Thesis, we focus on the Nakajima-Zwanzig
equation, which has been successfully applied to the central spin model as described in
the previous chapter. The mathematical formulation of the Nakajima-Zwanzig equation
closely follows the book of Fick and Sauermann [147], whereas we additionally refer to the
books of Breuer and Petruccione [145] and Schlosshauer [18] for a physical interpretation
of various important steps within this derivation.

2.3.1. Relevant and irrelevant parts of the density matrix

By considering an open quantum system instead of a closed one, we have drastically
enlarged the Hilbert space H and the associated Liouville space F , respectively, in order
to capture the effects of the environment. At the same time, however, certainly only a
limited set of observables {Ôn} ⊂ F is of interest, since we have at most only limited
knowledge about the environment.7 Since the associated operators do not constitute a

7This set of observables does not have to be limited to observables of the system. In fact, these observables
can be more complicated objects, which for instance also take into account certain correlations between
the system and its environment.
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complete basis of the Liouville space, only certain parts of the density matrix ρ̂(t) are
relevant for the calculation of expectation values 〈Ôn〉 = Tr[Ônρ̂(t)] of the operators [147].
Thus, we can split the density matrix

ρ̂(t) = ρ̂rel(t) + ρ̂irr(t) (2.35)

in a relevant part ρ̂rel(t) and an irrelevant part ρ̂irr(t), such that

Tr[Ônρ̂(t)] = Tr[Ônρ̂rel(t)] (2.36)

and
Tr[Ônρ̂irr(t)] = 0 (2.37)

hold. The relevant part of the density matrix obviously shows a strong analogy to the
reduced density matrix ρ̂S of the subsystem. However, the relevant part of the density
matrix is more general and acts on the total Hilbert space rather than the Hilbert space
of the system. The specific form of the relevant part of the density matrix depends on the
set of operators {Ôn}, but Eqs. (2.35) to (2.37) do not define it uniquely leaving freedom
in the choice of the mapping

ρ̂(t) 7→ ρ̂rel(t) = f(t, ρ̂(t)) (2.38)

The simplest choice for this mapping is a time-independent linear function, which we will
discuss in the following. For a treatment of non-linear dependencies and an explicit time-
dependence of f , we refer the interested reader to the book of Fick and Sauermann [147].
Our specific choice of the mapping allows us to re-express Eq. (2.38) by

ρ̂rel(t) = P ρ̂(t) , (2.39)

where we have introduced a linear superoperator P. Once the density matrix only con-
tains the relevant part ρ̂rel(t), this operator should give exactly the same density matrix
P ρ̂rel(t) = ρ̂rel(t). Hence this superoperator is idempotent,

P2 = P . (2.40)

and, consequently, P is a projector on the relevant part of the density matrix. Moreover,
this superoperator has to preserve the expectation values of our observables of interest
according to

Tr[Ônρ̂(t)] = Tr[Ônρ̂rel(t)] = Tr[ÔnP ρ̂(t)] . (2.41)

The above assumptions regarding the projector also imply certain constraints on the initial
state of the system. In general, physical experiments include a (willful) preparation of the
initial state of the system. Owing to our definition of the relevant part of the density
matrix by means of measurable observables, it is reasonable to assume, that we are able
to prepare the system initially in a state with no irrelevant part, which results in

P ρ̂(t0) = ρ̂(t0) . (2.42)
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2.3.2. Derivation of the Nakajima-Zwanzig equation
With the definitions of the relevant part of the density matrix and the corresponding
projector P, we proceed with the derivation of an effective differential equation of the
relevant part from the Liouville equation of the total system. To this end, we define the
complementary operator Q via Qρ̂ = ρ̂− P ρ̂, which has the following defining properties

P +Q = 1 (2.43)
Q2 = Q (2.44)

PQ = QP = 0 . (2.45)

We start with the Liouville equation of the total system given in Eq. (2.20) to which we
apply the projector P yielding

d
dt P ρ̂(t) = −iPL ρ̂(t) = −iPLP ρ̂(t)− iPLQ ρ̂(t) . (2.46)

The first term on the right hand side is already of the desired form containing only the
relevant part P ρ̂(t) = ρ̂rel(t). The irrelevant part Qρ̂ = ρ̂irr can be eliminated by applying
Eq. (2.34) to the time-evolution of the total density matrix in Eq. (2.21), where we choose
O1 = LQ and O2 = LP such that O1 +O2 = LQ+ LP = L. Applying Q from left then
yields

Qρ̂(t) = Q e−iL(t−t0) ρ̂(t0)

= Q e−iLQ(t−t0) ρ̂(t0)− i
t∫

t0

dt′ Q e−iLQ(t−t′) LP e−iL(t′−t0) ρ̂(t0)︸ ︷︷ ︸
=ρ̂(t′)

(2.47)

The exponential functions of this equation can be rewritten using the idempotence of the
projector Q in the form

Q e−iLQ(t−t0) = e−iQLQ(t−t0) = Q e−iQLQ(t−t0)Q = e−iQL(t−t0)Q . (2.48)

Thus, we finally obtain the Nakajima-Zwanzig equation

d
dt P ρ̂(t) =− iPLP ρ̂(t)−

t∫
t0

dt′ PLQ e−iQLQ(t−t′)QLP ρ̂(t′)

− iPLQ e−iQLQ(t−t0)Qρ̂(t0) , (2.49)

which is an exact integro-differential equation. No approximation has been applied so far
to obtain this equation. If the system exhibits only a relevant part at the beginning as
described in Eq. (2.42), the last term vanishes according to Qρ̂(t0) = ρ̂irr(t0) = 0. In this
case, the Nakajima-Zwanzig equation can be reformulated in compact form by

d
dt ρ̂rel(t) = −iLrel ρ̂rel(t)− i

t∫
t0

dt′ K(t− t′)ρ̂rel(t′) , (2.50)
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where we have defined Lrel = PLP and the memory kernel

K(t− t′) = −iPLQ e−iQLQ(t−t′)QLP . (2.51)

This memory kernel is also often referred to as the self-energy superoperator. According
to Eq. (2.50), the Nakajima-Zwanzig equation contains both a unitary part and a non-
unitary part. The unitary contribution −iLrel ρ̂rel(t) has the same form as the Liouville
equation of a closed system, but the dynamics originate from an effective Hamiltonian
Ĥrel (LrelÔ = [Ĥrel, Ô]). The non-unitary part takes into account the whole history of
events from time t0 to time t, where the influence of the irrelevant part of the system on
the relevant part is expressed by the memory kernel K(t− t0).

In summary, we have first split the density matrix of the total system into a relevant and
an irrelevant part by realizing, that we do not need the full density matrix in order to calcu-
late the expectation values of a finite number of observables. Based on this separation, we
have then obtained the Nakajima-Zwanzig equation, which is an exact integro-differential
equation for the relevant part only. So far, we have not applied any approximations, but
the price for this is a rather abstract result with little use for actual calculations. In
particular, the memory kernel still contains the full Liouville superoperator, which makes
the actual calculation of the convolution in Eq. (2.50) challenging. The first step towards
a more applicable equation of motion is to make a physically meaningful assignment of
relevant and irrelevant parts. Once this is done, we will be able to define the projection
operators P and Q, where we will encounter the need of certain approximations, which
are subsumed in the so-called Born approximation.

Born approximation

With the previous sections in mind, we consider an open system consisting of the system
of interest S and an environment E, where the relevant part is identified with a product
state of the system S with a certain environmental state. The Liouville superoperator of
the combined system is then given by the commutator

LÔ = [Ĥ, Ô] = [ĤS + ĤE + ĤI , Ô] (2.52)

of an arbitrary operator Ô with the total Hamiltonian given in Eq. (2.27). Due to the
linearity of the commutator we can split the total Liouville operator

L = LS + LE + LI , (2.53)

where the individual Liouville operators are defined by LiÔ = [Ĥi, Ô] with i = S,E, I.
While these superoperators are fixed by the respective Hamiltonians, we have some free-
dom of choice for the projection operator P defining the relevant part of the density matrix.
Keeping in mind the physical situation, which we want to describe, this task can be guided
by the following aspects:

1. Since we are able to measure and control the system, it is reasonable to assume,
that the system and the environment are not correlated at the beginning of the
experiment, which results in a tensor product state ρ̂(t0) = ρ̂S(t0)⊗ ρ̂E(t0).
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2. Typically, the dimension of the system is much smaller than the dimension of the
environment, which is formally expressed by dim(HS)� dim(HE).

3. The interaction between the system and its environment should be weak compared
to the internal interactions of system and environment, which can be quantified by
the respective spectral norms8 fulfilling ‖ĤI‖ � ‖ĤS‖. Elsewise, we should modify
our separation of system and environment, such that this condition is fulfilled.

Considering the last argument, the interaction between system and environment is suffi-
ciently weak, such that almost no correlations between both subspaces are built up during
the duration of the experiment. As a consequence, the initial product form of the total
density matrix will approximately be preserved yielding ρ̂(t) = ρ̂S(t) ⊗ ρ̂E(t). However,
as we will see below, this assumption does not imply the disappearance of all correlations
within the system or within the environment. If we further assume the environment to be
sufficiently large, the interaction with the system will only slightly change its state, which
effectively leads to a constant density matrix ρ̂E(t) ≈ ρ̂E(t0) ≡ ρ̂E . These two approxima-
tions together form the well known Born approximation. Since we additionally consider
an initial product state, a possible choice for the projector, which fulfills all requirements
described in Eqs. (2.40) to (2.42) is given by

PÔ = TrE [Ô]⊗ ρ̂E , (2.54)

where Ô is an arbitrary operator in F . However, this rather simple form of the operator
comes not without a price. It has been shown [151, 152] that this approach only gives
rise to a good approximation deep in the Born regime ‖ĤI‖ � ‖ĤS‖, where correlations
between the system and the environment are small. However, if these correlations become
stronger, another projector, which explicitly takes into account these correlations, can
be chosen [151, 152]. In this Thesis, however, we apply this master equation approach
on models well satisfying the Born approximation and, hence, the above choice of P is
sufficient.

Due to this specific form of the projector, several useful relations with respect to the
Liouville operators L, LS , LE , and LI can be obtained. Using the definition of P and
writing the superoperators L explicitly in the commutator form yields:

PLSÔ = LSPÔ (2.55)

as well as

PLEÔ = TrE
[
[ĤE , Ô]

]
⊗ ρ̂E = TrE

[
[1S ⊗ Ĥ ′E , ÔS ⊗ ÔE ]

]
⊗ ρ̂E = 0 ,

LEPÔ = [Ĥ ′E ,TrE [Ô]⊗ ρ̂E ] = ÔS Tr[ÔE ] [H′E , ρ̂E ] = 0 , (2.56)

where we have assumed the state of the environment to be stationary in the last line.
With these results, we additionally find

PLP = P(LS + LI)P , (2.57)
PLQ = PLIQ , (2.58)
QLP = QLIP . (2.59)

8For a Hermitian operator such as the Hamiltonian Ĥ, the spectral norm ‖Ĥ‖ = maxj(|Ej |) is equal to
the largest absolute value of its eigenvalues Ei.

55



2. Systems, environments and decoherence

Since all of these combined superoperators appear in the Nakajima-Zwanzig equation in
Eq. (2.50) and Eq. (2.51), we will analyze their effect on an arbitrary operator Ô in more
detail. Applying the first superoperator in Eq. (2.57) on Ô yields

PLPÔ = P(LS + LI)PÔ = P[ĤS + 〈ĤI〉ρ̂E , Ô] , (2.60)

where 〈ĤI〉ρ̂E = TrE [ĤI 1S ⊗ ρ̂E ] ⊗ 1E ≡ 〈ĤI〉′ρ̂E ⊗ ρ̂E is the expectation value of the
interaction with respect to the environment [147]. In the Nakajima-Zwanzig equation this
superoperator acts on the total density matrix ρ̂, which leads to

P(LS + LI)P ρ̂S(t)⊗ ρ̂E = P[Ĥ ′S + 〈ĤI〉′ρ̂E , ρ̂S(t)]⊗ ρ̂E ≡ P(L̃S ρ̂S(t))⊗ ρ̂E . (2.61)

Both Hamiltonians and, consequently, also the effective Liouville superoperator L̃S act
only on the subspace of the system S and, hence, this term leads to a unitary time-
evolution of the system driven by the effective Hamiltonian Ĥ ′S + 〈ĤI〉′ρ̂E . Thus, the
interaction with the environment leads to a renormalization of the energy levels of the
unperturbed system S, which is known as Lamb-shift contribution [18]. Similarly, we find
the action of the superoperators in Eqs. (2.58) and (2.59) on an arbitrary operator

PLIQÔ = P[ĤI − 〈ĤI〉ρ̂E , Ô] (2.62)

QLIPÔ = [ĤI − 〈ĤI〉ρ̂E ,PÔ] , (2.63)

where commutators of the operator with the “fluctuations” ĤI − 〈ĤI〉ρ̂E of the system-
environment interaction appear [147]. Both superoperators enter the memory kernel de-
fined in Eq. (2.51) and, thus, the non-unitary behavior can be related to these “fluctu-
ations”. Using the relations in Eqs. (2.57) to (2.63) and performing a trace over the
environment, we finally find the Nakajima-Zwanzig equation for the density matrix of the
system S to be of the comparably simple form

d
dt ρ̂S(t) = −iL̃S ρ̂S(t)− i

t∫
t0

dt′ KS(t− t′)ρ̂S(t′) , (2.64)

where
KS(t− t′)ρ̂S(t′) = −i TrE [PLIQ e−iQLQ(t−t′) PLIQ ρ̂S(t′)⊗ ρ̂E ] . (2.65)

Although, we have already gained some physical insight in the structure of the Nakajima-
Zwanzig equation, it remains complicated to be solved even with these approximations.
The reason for this is its complex non-unitary part, which involves a convolution of the
memory kernel with the reduced density matrix ρ̂S(t).

In principle, there are two different schemes to simplify this non-unitary part. The first
scheme pursues the same path, which we have already taken by the Born approximation.
Due the weakness of the system-environment interaction the kernel can be expanded in
powers of LI . In order to obtain such an expansion, we use Eq. (2.34), where we set
O = QLQ and split it into O1 = Q(LS + LE)Q and O2 = QLIQ. Since LS and LE
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commute with the projector Q due to Eqs. (2.55) and (2.56), we can use its idempotence
given in Eq. (2.44) to find

e−iQLQ(t−t′) = e−i(LS+LE)(t−t′)Q− i
t∫

t′

dt′′ e−i(LS+LE)(t−t′′)QLIQ e−iQLQ(t′′−t′) . (2.66)

Inserting this relation into Eq. (2.65) then yields KS(t−t′) = K(2)
S (t−t′)+K(3)

S (t−t′)+ . . . ,
where the superscript indicates the number of LI superoperators. Thus, in lowest order
Born-approximation, the memory kernel is given by

K(2)
S (t− t′)ρ̂S(t′) = −i TrE [PLIQ e−i(LS+LE)(t−t′)QLIP ρ̂S(t′)⊗ ρ̂E ] . (2.67)

Evidently, truncating this series at second or any higher order yields only a reasonable
approximation if the contributions with higher powers of the interaction are suppressed.
Indeed, this is intimately related to the discussion about a suitable choice of the projector
P above. It has been shown [151, 152], that an analysis including all orders is needed
in the case of a comparably strong system-environment interaction in order to obtain the
correct physical behavior. In these situations, a different choice of P allows to restrict the
maximally needed order to a feasible number.

Unfortunately, testing whether a specific choice of P is suitable is generally a difficult
task with such an abstract version of the Nakajima-Zwanzig equation. Rather, we have to
prove its validity for a specific model as we do in Chapter 4. However, this approach does
not dissolve the convolution and in many cases even the expanded version of the memory
kernel is still too complicated to solve. Fortunately, there is another scheme to get rid of
this convolution known as Markov approximation.

Markov approximation

The Markov approximation is based on an analysis of the lifetime of correlations within
the environment. In general, an environmental correlation originating from the interaction
between system and environment does not persist forever, but decays on a timescale τcorr.
If this timescale is much shorter than the typical timescale τS over which the system
changes noticeably, the interaction of the system with its environment does not depend on
events which have happened at earlier times t′ < t, since it has effectively lost its memory.
This assumption is known as Markov approximation. As this “loss of memory” already
indicates, this separation of timescales allows us to simplify the convolution of the memory
kernel KS(t− t′) with the density matrix ρ̂S(t′), in which the history of events is encoded.

The dependence of the dynamics on the lifetime of correlations within the environment
can be made explicit by rewriting the memory kernel given in Eq. (2.65), where we analyze
the lowest order Born approximation K

(2)
S (t − t′) for simplicity. This analysis follows a

similar investigation in Ref. [18], in which, however, another master equation is considered.
Higher order contributions to the kernel can be reformulated analogously, where the calcu-
lus is just as simple but tedious. According to Eqs. (2.62) and (2.63), this memory kernel
contains two commutators with the interaction Hamiltonian ĤI =

∑
n Ŝn⊗ Ên, which can
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be expressed in terms of system and environment operators Ŝn and Ên, respectively [18].
With this form, we find

ĤI − 〈ĤI〉ρ̂E =
∑
n

Ŝn ⊗ (Ên − Tr[Ênρ̂E ]) ≡
∑
n

Ŝn ⊗∆Ên (2.68)

Inserting this formula in the definition of the second order memory kernel and expressing
the time evolution operator in terms of ordinary operator according to Eq. (2.19) finally
yields

K(2)
S (t− t′)ρ̂S(t′) = −i

∑
n,m

[Ŝn, e−iĤ′S(t−t′) Ŝmρ̂S(t′) e−iĤ′S(t−t′)] 〈∆Ên(t− t′)∆Êm〉ρ̂E

−[Ŝn, e−iĤ′S(t−t′) ρ̂SŜm(t′) e−iĤ′S(t−t′)] 〈∆Êm∆Ên(t− t′)〉ρ̂E ,
(2.69)

where we have introduced the correlation functions

〈∆Ên(t− t′)∆Êm〉ρ̂E = Tr[eiĤ′E(t−t′) ∆Ên e−iĤ′E(t−t′) ∆Êm ρ̂E ] (2.70)

and
〈∆Êm∆Ên(t− t′)〉ρ̂E = Tr[∆Êm eiĤ′E(t−t′) ∆Ên e−iĤ′E(t−t′) ρ̂E ] . (2.71)

Hence, the timescale τcorr ∝ ‖Ĥ ′E‖
−1 on which the correlations decay is determined by

the internal interaction Ĥ ′E of the environment. This fact becomes clear if we carry out
the trace using the eigenstates of Ĥ ′E , where we find a similar mathematical structure
as for the decoherence function in Eq. (2.9). According to Eq. (2.64), the (short-time)
dynamics of the system is predominantly caused by the effective system Hamiltonian
Ĥ ′S + 〈Ĥ ′I〉ρ̂E and, hence, the timescale on which the system changes significantly is given
by τS ∝ ‖Ĥ ′S + 〈Ĥ ′I〉ρ̂E‖

−1. Thus, the Markov approximation is valid as long as

τcorr
τS

=
‖Ĥ ′S + 〈Ĥ ′I〉ρ̂E‖

‖Ĥ ′E‖
� 1 . (2.72)

In this case, the correlation functions are sharply peaked9 at t − t′ ≈ 0 enabling several
convenient simplifications. Since these environmental correlations decay quickly, the den-
sity matrix of the system ρ̂S(t′) does not change appreciably and, consequently, we can
replace it by ρ̂S(t). Due to this modification, the convolution in Eq. (2.64) is dissolved
and the integro-differential equation becomes time-local. In this form, it is known as the
Redfield equation [18]. In addition to its fast loss of memory, the recurrence time of the
environment is in general large9, which enables the extension of the lower bound of the
integral t0 to −∞ without changing the integral. Substituting t′ → τ = t− t′, Eq. (2.64)

9At first glance, the correlation functions undergo periodic oscillations, which ultimately lead to their
recurrence at some time. Since the environment is large, these recurrences are, however, typically much
longer than the age of the universe [144]. We will encounter this argument again in Chapter 6, where
we analyze the recurrence time of the central spin model for less than ten nuclear spins.
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finally becomes

d
dt ρ̂S(t) = −iL̃S ρ̂S(t)−

∑
n,m

∞∫
0

dτ
{

[Ŝn, e−iĤ′Sτ Ŝmρ̂S(t) e−iĤ′Sτ ] 〈∆Ên(τ)∆Êm〉ρ̂E

−[Ŝn, e−iĤ′Sτ ρ̂SŜm(t) e−iĤ′Sτ ] 〈∆Êm∆Ên(τ)〉ρ̂E
}
.

(2.73)

However, in many situations of physical interest, the requirement for the Markov approx-
imation in Eq. (2.72) is not fulfilled due to low temperatures of the environment leading to
longer τcorr or comparably weak interactions within the environment. An example for this,
which is relevant for this Thesis, is the central spin model with the electron spin interacting
with the nuclear spins via HI. Neglecting external magnetic fields, the typical timescale τS
of the electron spin is determined by the effective nuclear magnetic field originating from
a random distribution of the nuclear spin states: τS ∝ Af

HI = nIAHI/
√
K. The internal

dynamics of the nuclear spins is driven by either the nuclear dipole-dipole interaction or
by the Knight-field due to the HI depending on which mechanism is stronger. In QDs,
the dipole-dipole interaction is typically very weak, cf. Tab. 1.1 and, hence, correlations
are lost over a time τcorr ∝ As

HI, where As
HI = nIAHI/K is the energy involved with the

Knight-field. Using the values for Af
HI and As

HI given in Tab. 1.1, we find for the ratio of
the respective timescales τcorr

τS
= Af

HI
As

HI
∼ 102 for GaAs and graphene. As a consequence, the

nuclear spins keep track of their past and, thus, the dynamics of the electron spin become
non-Markovian [76].
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The central spin model in quantum
dots

61





3. Thermal electron spin flip in quantum
dots

In this chapter, we are interested in the thermal properties of the electron spin, which we
investigate in terms of statistical physics. The most important interactions determining
the properties of the electron spin involve the HI between the electron spin and the nuclear
spins and the Zeeman coupling of these spins to an external magnetic field as discussed in
Chapter 1. Besides these interactions, there is a comparably weak interaction between the
spins and the phonons present in the QD. As a consequence of this weakness, it is justified
to consider the electron spin and the nuclear spins as one system, which is in contact
with the phonon environment. Hence, it is possible to study the equilibrium physics of
the electron spin and the nuclear spins in terms of the canonical ensemble of statistical
physics, where the coupling to the phonon environment defines the temperature of the
system. Using this approach, we find an intriguing flip of the electron spin, which is
triggered by an increasing temperature.

Due to these properties, the present chapter is particular with respect to the subse-
quent chapters for several reasons. While in the following chapters the nuclear spins are
considered as the environment interacting with the electron spin, they are a part of the
system of interest here. Moreover, we are interested in equilibrium states rather than in
spin dynamics investigated in the subsequent chapters. Finally, the results obtained in
the present chapter are most relevant for QDs built from group III and V or II and VI
elements of the periodic table, whereas the rest of this Thesis focuses on (group IV based)
graphene QDs.

This chapter closely follows our publication in Ref. [153].1 In order to improve the
readability of the text, some derivation of results discussed in this chapter are presented
in detail in Appendix A.

3.1. Introductory considerations

Our analysis of the thermal behavior of the combined system is based on a minimal model
for the spin dynamics in a QD. It incorporates an external magnetic field to which the
electron and the nuclear spins couple and the HI which links the electron spin to all nuclear
spins. The effect of an external magnetic field on the electron spin Ŝz is described by the
Zeeman Hamiltonian in Eq. (1.9), where we choose the external magnetic field to point in
z-direction,

ĤS
ZE = g∗µBBzŜz . (3.1)

1 c©2015 American Physical Society. All rights reserved.
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3. Thermal electron spin flip in quantum dots

Likewise, the nuclear spins Îk,z also align with respect to the external magnetic field by
means of another Zeeman term

ĤI
ZE = −

K∑
k=1

gNµNBz Îk,z . (3.2)

The relative sign difference between Eq. (3.1) and Eq. (3.2) resembles the negative sign of
the electron charge.

By writing the nuclear Zeeman Hamiltonian in the form of Eq. (3.2), we already assume
that there is only one spin species present in the dot. This assumption simplifies our
reasoning and, thus, allows us to better identify the main physics being relevant for our
results. Distinguishing different spin species would not change our findings significantly
as we discuss at the end of this chapter. As a consequence of this simplification, we use
average values of the nuclear g-factors, where we refer to Section 1.2.2 for more details
of this average over different spin species. Our assumption of a single spin species also
simplifies the HI Hamiltonian in Eq. (1.22)

ĤHI =
K∑
k=1

Ak
[
Ŝz Îk,z + 1

2(Ŝ+Îk,− + Ŝ−Îk,+)
]
, (3.3)

where the coupling constants
Ak = AHI v0|φ(rk)|2 (3.4)

are defined in Eq. (1.24). From our discussion of the HI in Section 1.2.3, we know that
the constant

AHI ∝ g gN (3.5)

is proportional to the nuclear g-factor gN and the bare electron g-factor g in contrast to
the effective g-factor g∗ entering the Zeeman Hamiltonian in Eq. (3.1). Since g is positive,
the sign of the HI is determined by the sign of the nuclear g-factor gN . This sign, however,
plays an important role, since it determines the form of the ground state of the HI.

If the coupling constant AHI is positive (negative), the ground state of the bare HI will
favor an anti-parallel (parallel) alignment of the electron spin with respect to all nuclear
spins. Both ground states are twice degenerate, since a flip of all spins results in the same
energy. Similarly, the two Zeeman terms also show the same two types of spin ordering
depending on the signs of the respective g-factors g∗ and gN . In contrast to the HI,
these ground states are unique. If, for instance, g∗ < 0 and gN > 0, the Zeeman terms
would force both the electron spin and all nuclear spins to be parallel to the external
magnetic field at zero temperature. Thus, when both the HI and the Zeeman interaction
are present, there can arise an interesting competition of spin ordering with the electron
spin being parallel or anti-parallel with respect to the nuclear spins. In particular, if
the external magnetic field is sufficiently small, the HI is still strong enough to maintain
the anti-parallel alignment of the electron spin with respect to the nuclear spins. If then
additionally the signs of the g-factors are given by g∗ < 0 and gN > 0, the electron spin
will be anti-parallel to the external magnetic field, whenever its Zeeman energy is below
the total Zeeman energy of all nuclear spins. Starting from this particular ground state,
we will show that a sudden flip of all spins can happen at a finite temperature T0 > 0.
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3.2. Thermal electron spin flip

To this end, we will first argue in Section 3.2.1 how the HI Hamiltonian can be simplified
based on physical arguments. We will then apply standard statistical physics to the
Hamiltonian Ĥ = ĤS

ZE + ĤI
ZE + ĤHI in Section 3.2.2, where we neglect the off-diagonal

parts of the HI. Doing so, we calculate the thermal expectation value of the electron spin,
whose properties are studied both analytically and numerically in Sections. 3.2.3 and 3.2.4,
respectively. In Section 3.2.4, we also present the results for the thermal expectation values
for an extended HI Hamiltonian including its off-diagonal part, i.e., the flip-flop terms.
The corresponding calculations are carried out in Appendix A. After this mathematical
analysis, we will then explain the physical mechanism being responsible for this spin flip
in Section 3.2.5. We finally review our initial simplifications of the HI and discuss in which
real systems our findings should be observable in Section 3.3.

3.2. Thermal electron spin flip
3.2.1. Simplified Hamiltonian
As mentioned above, we will first introduce certain simplifications to the HI Hamiltonian,
which allow for an analytical calculation of thermal expectation values:

1. We assume that all nuclear spins are spin one-half, where the number of nuclear
spins is K.

2. We will use the so-called box-model, where the couplings Ak = AHI
K are all the same.

By this, we assume that every nucleus in the dot carries a spin and that the envelope
function φ(rk) of the electron does not change much inside the QD.

With these two assumptions and g∗ < 0 as explained in the introduction, the total Hamil-
tonian is given by

Ĥα = ĤS
ZE + ĤI

ZE + ĤHI

= −|g∗|µBBzŜz − gNµNBzĴz + AHI
K

[
ŜzĴz + α

2 (Ŝ+Ĵ− + Ŝ−Ĵ+)
]
, (3.6)

where we have introduced the total nuclear spin Ĵ =
∑K
k=1 Îk for convenience. The usual

raising and lowering operators Ŝ± = Ŝx ± iŜy and Ĵ± = Ĵx ± iĴy form the flip-flop terms.
By means of the parameter α, we distinguish between an extended Hamiltonian Ĥ1 and
a simplified Hamiltonian Ĥ0, which allows us to present the basic physics of the electron
spin flip more easily.

Before we proceed with the calculation of thermal expectation values, we introduce
dimensionless parameters by measuring all energies in units of AHI

2K . The total Hamiltonian
then reads

Ĥα = −σŜz − νĴz + 2ŜzĴz + α (Ŝ+Ĵ− + Ŝ−Ĵ+) , (3.7)

where the parameters are given by σ = |g∗|µBBz/AHI
2K and ν = gNµNBz/

AHI
2K . These two

quantities are obviously not independent of each other since both are proportional to the
external magnetic field Bz. Thus, we choose σ = Kρν, where ρ = |g∗|µBBz/(K gNµNBz)
is the ratio of the Zeeman energies of the electron and all nuclear spins, respectively. This
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3. Thermal electron spin flip in quantum dots

ratio can be also characterized by the critical number of nuclear spins κ = ρK, which is
constant for a given material. If the number of nuclear spins present in the QD is below
this critical number, there is no electron spin flip, because the electron is parallel to the
external magnetic field for all temperatures.

In the following, we will first analyze the thermal expectation value of the electron spin
for the simplified Hamiltonian Ĥ0. Since this Hamiltonian is already diagonal in the basis
of products states of the individual spin states, all calculations are much easier and, hence,
the physics causing the spin flip becomes more apparent. However, it is not clear in the
first place, if the neglected flip-flop terms give rise to quantum fluctuations, which destroy
the electron spin flip. Thus, we have also calculated the thermal expectation value of the
electron spin for an extended Hamiltonian Ĥ1 including the flip-flop terms in Appendix A.
Interestingly, many findings are unchanged with respect to the simpler case or restored in
the limit of large system sizes, where the flip-flop terms are shown to be irrelevant.

3.2.2. Thermal expectation values

Without the flip-flop terms, the simplified Hamiltonian is already diagonal in the product
basis |mS〉 ⊗

⊗K
k=1|mk〉, where |mS〉 is an eigenstate of Ŝz with mS ∈ {−1

2 ,
1
2}. Similarly,

the state |mk〉 is an eigenstate of the k-th nuclear spin operator Îk,z with mk ∈ {−1
2 ,

1
2}.

In this basis, the partition function for this Hamiltonian then reads

Z = Tr[e−Ĥ0/kBT ] =
∑
mS

∑
{mk}Kk=1

e−〈mS ,mK ,mK−1,...|Ĥ0|mS ,mK ,mK−1,...〉/kBT , (3.8)

where the diagonal matrix elements are given by

〈mS ,mK ,mK−1, . . .|Ĥ0|mS ,mK ,mK−1, . . .〉/kBT

=− 2
τ

[
ρνK mS +

K∑
k=1

(ν mk − 2mSmk)
]

(3.9)

with the dimensionless temperature τ = kBT/
AHI
2K . Exploiting the fact that sums in the

exponential functions factorize finally yields

Z =
∑
mS

K∏
k=1

∑
mk

emS ,mk = (e 1
2 ,

1
2

+ e 1
2 ,−

1
2
)K + (e− 1

2 ,
1
2

+ e− 1
2 ,−

1
2
)K , (3.10)

where
emS ,mk = exp

[2
τ

(ρν mS + ν mk − 2mSmk)
]
. (3.11)

With the partition function at hand, the calculation of the thermal expectation value of
the electron spin is readily obtained

〈Ŝz〉τ = τ

2
∂

∂σ
ln[Z] = τ

2Kν
∂

∂ρ
ln[Z] = 1

2

(
1

1−Π −
1

1−Π−1

)
, (3.12)
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3.2. Thermal electron spin flip

Figure 3.1. a): Π(τ, ν, ρ,K) as a function of the dimensionless temperature τ for ν = 2, ρ = 0.35
and K = 104. As we show in the text and in Fig. 3.2, this choice of parameters fulfills the necessary
conditions for the spin flip. At a temperature τ0, the function suddenly drops from very large
values to zero. At temperatures τ & τ1 the function rises again and saturates at Π = 1 for large
temperatures. b): The thermal expectation value of the electron spin 〈Ŝz〉τ exhibits a sudden flip
at τ0. For temperatures above τ1 the electron spin is thermally equilibrated. c): The thermal
expectation value of the total nuclear spin 〈Ĵz〉τ = τ

2
∂
∂ν ln[Z] decreases before the electron spin

flip. At τ0, it is suddenly increased again. For ν < 1 instead, the total nuclear spin would exhibit
a flip similar to the electron spin. Figure reprinted with permission from [153]. c©2015 American
Physical Society. All rights reserved.
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3. Thermal electron spin flip in quantum dots

where the function

Π = Π(τ, ν, ρ,K) =
[
e− 1

2 ,
1
2

+ e− 1
2 ,−

1
2

e 1
2 ,

1
2

+ e 1
2 ,−

1
2

]K
(3.13)

controls the behavior of 〈Ŝz〉τ . If Π→∞, we find 〈Ŝz〉τ → −
1
2 , Π = 0 results in 〈Ŝz〉τ = 1

2
and, finally, Π = 1 yields 〈Ŝz〉τ = 0. As it turns out, the electron spin has to go through
exactly these steps for the thermal spin flip to occur as illustrated in Fig. 3.1. In the
following, we will first explore the parameter space of Π(τ, ν, ρ,K) to mathematically find
the conditions necessary for the spin flip to occur. Afterwards, we calculate at which
temperatures Π and, consequently, 〈Ŝz〉τ undergo their characteristic changes. To this
end, we will analyze Π analytically and compare the findings with numerical calculations
of 〈Ŝz〉τ . Finally, we will interpret these results in order to understand when and why this
effect appears in a physical system.

3.2.3. Analysis of the spin flip
By inserting the definition of the exponential functions in Eq. (3.11) into Eq. (3.13) and
rearranging factors, we find

Π(τ, ν, ρ,K) =
{

exp
[
− 2ρν

τ

]exp
[

1
τ (−ν − 1)

]
+ exp

[
1
τ (ν + 1)

]
exp

[
1
τ (−ν + 1)

]
+ exp

[
1
τ (ν − 1)

]}K ≡ πK . (3.14)

By further rearrangements of factors in Eq. (3.14), we identify that ρ < 1 and 0 < ν < ρ−1

are necessary conditions for Π to diverge at τ → 0 and, consequently, for the spin flip to
occur. Within this parameter regime, we want to identify the temperature τ0, at which Π
drops from infinity to zero, and the temperature τ1 at which Π rises to 1 as indicated in
Fig. 3.1.

The latter temperature can be directly read off from Eq. (3.14), since Π = 1 for all
temperatures τ well above

τ1 = 2ρνK . (3.15)

At a specific temperature τ the function π defined in Eq. (3.14) changes from π > 1 to
π < 1. Since one has to take it to the power of K � 1, this marks the temperature, at
which the sudden drop from Π� 1 to Π� 1, and, hence, the spin flip occurs. Thus, the
transcendental equation defining τ0 reads

ρ = − τ0
2ν ln

{exp
[

1
τ0

(−ν − 1)
]

+ exp
[

1
τ0

(ν + 1)
]

exp
[

1
τ0

(−ν + 1)
]

+ exp
[

1
τ0

(ν − 1)
]} . (3.16)

This equation can be expanded in powers of 1
τ0
� 1,

ρ ≈ 1
τ0

+ O
( 1
τ3

0

)
. (3.17)

As a consequence, the temperature τ0 ≈ ρ−1 is independent of ν for ρ� 1. Since ρ = κ/K
is a constant for a given QD, this is a rather intriguing result. This constant being ρ� 1
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3.2. Thermal electron spin flip

corresponds to a situation, where the total nuclear Zeeman energy is much larger than the
electron Zeeman energy.

Before we give a detailed physical interpretation of our results, let us compare these
analytical results for the simplified Hamiltonian Ĥ0 with a numerical analysis of Eqs. (3.12)
and (3.13), respectively, and the behavior of the electron spin for the extended Hamiltonian
Ĥ1 as calculated in Appendix A.

3.2.4. Numerical results and the spin flip for the extended Hamiltonian

In order to verify our analytical results for Ĥ0, we show density plots of the expectation
value of the electron spin 〈Ŝz〉τ = 〈Ŝz〉τ (τ, ν, ρ,K), where we choose the number of nuclear
spins to be K = 104. With K being fixed, τ , ρ, and ν remain as parameters. In Fig. 3.2 a),
we show 〈Ŝz〉τ as a function of τ and ρ with ν = 2. As we will show below, for this choice
of ν, the electron Zeeman energy competes with the total HI energy. If ρν > 1 the Zeeman
energy exceeds the HI energy and the electron spin is up for all τ , which is clearly shown
in Fig. 3.2 a). Additionally, we plotted Eqs. (3.15) and (3.16) in order to demonstrate the
behavior of τ1 and τ0, respectively. Both analytical results show a remarkable agreement
with the numerical findings. In Fig. 3.2 b), we show the same plot for ν = 0.09. For
this choice of ν, the electron Zeeman energy is always smaller than the total HI energy.
However, if ρ > 1, the electron Zeeman energy is larger than the total nuclear Zeeman
energy and, consequently, the electron spin flip is up for all τ as can be seen from Fig. 3.2 b).

As indicated above, in a real system, ρ is rather a fixed parameter than a real variable.
Hence, we also calculated 〈Ŝz〉τ as a function of temperature τ and the Zeeman energy
of a single nucleus ν, which is proportional to the magnetic field Bz. The result is shown
in Fig. 3.2 c), where we have chosen ρ = κ

K = 0.09. This is a realistic value considering
the values of the critical number κ in Tab. 3.1 and the typical number of nuclear spins on
the order of K ' 105 to 106. In this figure, the behavior of τ0 = ρ−1 is most prominent.
Moreover, it is obvious that ρν < 1 is indeed a necessary condition for the spin flip.

Finally, we have to confirm that the influence of the flip-flop terms, which are present
in the extended Hamiltonian Ĥ1 does not destroy the electron spin flip. As we show in
Appendices A.2 and A.3, the thermal expectation value of the electron spin can be exactly
solved for the box-model [154, 155, 156, 157]. By investigating the temperature dependence
of 〈Ŝz〉τ for up to K = 60 nuclear spins, we find that both temperature scales τ0 and τ1
are unchanged. For small numbers of nuclear spins, however, we find that the additional
interaction alters the behavior of 〈Ŝz〉τ . To be more specific, the minimum of the thermal
expectation value 〈Ŝz〉0 at zero temperature is larger than −1

2 for few nuclear spins as
can be seen from Fig. 3.3 a). For larger system sizes, the original value of 〈Ŝz〉0 = −1

2
seems to be restored. Identifying the ground state of the system in Appendix A.4, we are
indeed able to show that 〈Ŝz〉0 = −1

2 is exactly reached in the limit of large K. Moreover,
the maximum of the electron expectation value at approximately τ = 2

ρ is altered by the
flip-flop terms as is obvious from Fig. 3.3 b). Again, their effect is most pronounced for
small K, while the results for Ĥ0 are reproduced for large system sizes. Thus, the quantum
fluctuations do not destroy the spin flip. Physically, it seems very likely, that the nuclear
Zeeman energy additionally stabilizes the spin system against the flip-flop terms. In the
limit of large system sizes, the physics of the simplified Hamiltonian is restored, which can
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3. Thermal electron spin flip in quantum dots

Figure 3.2. a): The thermal expectation value of the electron spin as a function of temperature
τ and ρ for ν = 2. The green dashed line shows the defining Eq. (3.16) of τ0. For small ρ, one
finds τ0 = ρ−1 in agreement with the plot. The light blue line is given by τ1 in Eq. (3.15). For
ρν ≥ 1 the spin flip is absent. For temperatures above τ1, the electron is thermally equilibrated
and, hence, 〈Ŝz〉τ = 0. b): The thermal expectation value of the electron spin as a function of
temperature τ and ρ for ν = 0.09. Clearly, the spin flip is absent for ρ ≥ 1. c): The thermal
expectation value of the electron spin as a function of temperature τ and ν for ρ = 0.09. The
light blue line is given by τ1 in Eq. (3.15). The horizontal green line corresponds to ν = ρ−1 and
the vertical green line to τ = ρ−1. For ρν ≥ 1 the spin flip is absent. For temperatures above τ1,
the electron is again thermally equilibrated. Figure reprinted with permission from [153]. c©2015
American Physical Society. All rights reserved.

a) b)

Figure 3.3. Dependence of the thermal expectation value of the electron spin 〈Ŝz〉τ on the num-
ber of nuclear spin for the simplified Hamiltonian Ĥ0 (red squares) and the extended Hamiltonian
Ĥ1 (blue circles) containing the flip-flop terms. We have chosen ρ = 0.35, ν = 2, and σ = Kρν. a):
At τ = 0, the electron spin 〈Ŝz〉0 is in its ground state, which depends on K in the case of Ĥ1. b):
The electron spin 〈Ŝz〉2/ρ reaches its maximum at approximately τ = 2/ρ. This maximum is in
any case a function of K. Figure reprinted with permission from [153]. c©2015 American Physical
Society. All rights reserved.
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3.2. Thermal electron spin flip

be understood by analyzing how different states are affected by the flip-flop terms. The
states being most efficient for this interaction are of the form |−1

2 ,
1
2 , . . . ,

1
2〉 and vice versa,

since the electron spin can flip with every nuclear spin. The states |−1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 , . . .〉

(and all permutations of the nuclear spins) are the less affected ones. For large system
sizes, however, the statistical weight of the latter states is much higher than for the former
states, explaining the vanishing influence of the flip-flop terms for increasing K.

3.2.5. Physical interpretation of the results
So far, we have mathematically clarified for which parameters one finds the spin flip. In
the following, we want to explain why this spin flip occurs and how the conditions found
above can be interpreted physically. Therefore, we will have a closer look on the energies
of the Hamiltonian Ĥ0 given in Eq. (3.7). Since the Hamiltonian is invariant under the
exchange of two nuclear spins, only the total nuclear angular momentum MJ =

∑
kmk is

relevant resulting in

NK
MJ

=
(

K
K
2 −MJ

)
(3.18)

equal energies
EMJ
mS

= −KρνmS −MJν + 2mSMJ . (3.19)

A plot of EMJ

1/2 and EMJ

−1/2 is presented in Fig. 3.4, where a small system size of K = 10
nuclear spins has been chosen for practical reasons. Although the spin flip is not perfect
for such a small number of nuclear spins as is obvious from Fig. 3.3 b), the physics of the
spin flip still becomes clear. The ground state is given by mS = −1

2 and MJ = K
2 , whose

energy eigenvalue EK/2−1/2 is not degenerate. Hence, the electron spin is anti-parallel to the
external magnetic field, whereas all nuclear spins are parallel. If one follows the energies
EMJ

−1/2 and EMJ

1/2 starting from MJ = K
2 , one finds that EMJ

−1/2 increases much faster than
EMJ

1/2 , which is also obvious from Eq. (3.19). Since the degeneracy of the corresponding
energy levels NK

MJ
defined in Eq. (3.18) is strongly increasing, many states with mS = 1

2
become thermally available for finite temperatures. Once the temperature reaches τ0,
there is a strong imbalance between the number of states with mS = −1

2 and the number
of states with mS = 1

2 , which finally causes the sudden spin flip. If the temperature is
further increased above τ1, almost all states are reached and, hence, one finds 〈Ŝz〉τ = 0.

Finally, we would like to interpret the mathematical conditions on the parameters
physically. Let us start with the constraints on ρ and ρν. Since the parameter ρ =
|g∗|µBBz/KgNµNBz is given by the ratio of the electron Zeeman and the total nuclear
Zeeman energy, the ratio being ρ < 1 implies that the Zeeman energy of all nuclear spins
exceeds the electron Zeeman energy. Similarly, the product ρν = 2|g∗|µBBz/AHI < 1 tells
us that the Zeeman energy of the electron has to be smaller than the total HI energy. This
imposes an upper bound on the external magnetic field

Bz < Bmax = AHI
2|g∗|µB

. (3.20)

Yet, the magnetic field has additionally to be large enough in order to separate the two
temperatures τ0 and τ1. For small magnetic fields, the former temperature is given by
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3. Thermal electron spin flip in quantum dots

Figure 3.4. Energies of the Hamiltonian as a function of the total nuclear angular momentum
MJ =

∑
kmk for an electron spin parallel (mS = 1

2 , red) and anti-parallel (mS = − 1
2 , blue) to the

external magnetic field. The other parameters are ν = 2, ρ = 0.35, and K = 10. The width of a
column is proportional to the degeneracy of the respective energy level given by NK

MJ
in Eq. (3.18).

The green and light blue line show the temperatures τ0 and τ1, respectively. Figure reprinted with
permission from [153]. c©2015 American Physical Society. All rights reserved.

τ0 = ρ−1, which corresponds to an absolute temperature

T0 = k−1
B

AHI
2

gNµN
|g∗|µB

. (3.21)

The latter temperature τ1 corresponds to the Zeeman splitting of the electron, since

T1 = k−1
B |g

∗|µBBz . (3.22)

For T0 < T1 the spin flip is present, which is the case if the magnetic field obeys

Bz > Bmin = gNµN
|g∗|µB

AHI
2|g∗|µB

= 1
κ
Bmax . (3.23)

3.3. Discussion and conclusion
All of the above results were obtained applying certain approximations, which are in
general not fulfilled by real systems. In the following, we will discuss all approximations
one by one and analyze, how a more realistic model would change our results.

First of all, we have assumed that all nuclear spins are of the same species. This is
a commonly made approximation [43], where root-mean-square averages of the Zeeman
and HI coupling constants can be used to mimic the situation of only one spin species
being present as described in Section 1.2.2. As long as the individual constants are not
too different and if the sign of the nuclear magnetic moment is the same for all nuclear
spins, we do not expect qualitative changes of our findings. Additionally, we have chosen
all nuclear spins to be one-half. If one allows for larger nuclear spin quantum numbers
I = 1

2 ,
3
2 , . . . , the model can still be solved analytically. Since the thermal relaxation of the
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g∗ gN κ AHI Bmax Imin T0 T1

Material [103] [µeV] [mT] [mK] [mK]

GaAs −0.4 1.2 0.66 84 1700 3
2 3.7 49

CdTe −1.8 −1.3 2.4 −34 170 1
2 0.008 20

Ga0.47In0.53As −4.4 1.2 6.6 93 180 3
2 0.41 54

InAs −15 1.1 2.5 98 57 3
2 0.11 57

Table 3.1. Relevant materials and their parameters. The values of g∗ are taken from Ref. [44].
The magnetic moment gN and the HI constant AHI are averaged by gN =

∑
i nig

i
N and AHI =∑

i niA
i
HI, where ni is the natural abundance of isotope i. The values are taken from Refs. [43,

54, 158]. The temperatures T1 and T0 are calculated at Bz = 0.1Bmax, at which T0 = k−1
B [4I(I +

1)/3]κ−1AHI
2 is valid. By this choice, we also take into account that larger nuclear spin quantum

numbers I increase T0. For simplicity, we took the smallest quantum number Imin of different
isotopes present in the dot. Please note the difference of the data presented here and in our
publication [153], in which wrong values of the nuclear g-factors have been used. Table adapted
with permission from [153]. c©2015 American Physical Society. All rights reserved.

electron spin does only depend on its Zeeman energy, the temperature τ1 is unchanged. In
contrast to this, the spin flip temperature τ0 = ρ−14 I(I+1)/3 increases by an I-dependent
factor. Finally, we have also implicitly assumed that all nuclei carry a spin. Yet, this is
not the case for all materials. If K out of N nuclei carry a spin, the probability to find the
electron at the site of a nuclear spin is given by v0|φ(rk)|2= N−1 = K−1 (K/N) ≡ K−1 nI ,
where 0 ≤ nI ≤ 1 is the abundance of spin carrying nuclei [58]. Hence, our results still
hold if the HI constant AHI is replaced by nI AHI according to Eq. (3.4).

Besides approximations concerning the nuclear spins, we simplified the physics of the
electron spin by using the box model for its envelope function: |φ(rk)|2= K−1 nI . In
reality, the probability to find the electron, should strongly decrease with the distance
from the center of the QD. As we discuss in Section 1.3.1, this envelope function is often
described by a Gaussian envelope function |φ(rk)|2∝ K−1 exp[−(rk/R)2], where we again
assume that all nuclei carry a spin. Our results should be modified in this case by two
aspects: Nuclear spins with |φ(rk)|2� K−1 couple only very weakly to the electron and
can, thus, be neglected. Effectively, this reduces the number of involved nuclear spins
from K to Keff < K. For nuclear spins in the center, one finds O(|φ(rk)|2) = K−1.
As a consequence, the non-uniform HI will (slightly) lift the degeneracy of the energies in
Eq. (3.19) and Fig. 3.4, but it will not change the energy spectrum in principle. Therefore,
the main physical mechanism stays the same and our results still hold.

Finally, we have investigated the behavior of the electron spin expectation value for the
extended Hamiltonian including the HI flip-flop terms in Appendices. A.2 to A.4. Doing
so, we have confirmed, that the relevant temperature scales are essentially the same and
that the physics of the simplified Hamiltonian is reproduced in the limit of a large number
of nuclear spins.

Having convinced ourselves, that the results obtained within the simplified model should
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3. Thermal electron spin flip in quantum dots

be reasonable for real systems, we finally want to give several examples, where we expect
the spin flip to occur. The most severe constraint is the negative sign of g∗. As can
be seen from Tab. 3.1, this is realized, for instance, in III-V heterostructures, where the
electron experiences a strong spin-orbit interaction. Most promising among the considered
materials is GaAs, since its spin flip temperature is on the order of mK. The other materials
having a smaller T0 suffer mostly from a large g∗ factor. Beside a small g∗ factor, potential
materials would also benefit from a strong HI and from heavy nuclei with large gN factors
and large spin quantum numbers I. Among them, also systems with a negative gN such
as CdTe can be considered, since this sign changes both the nuclear Zeeman coupling and
the sign of the HI. Redefining the nuclear spin operator by Îz → −Îz then yields the same
results.

Finally, let us briefly discuss the nature of the spin flip. If one leaves the equilibrium
state while heating up the system (non-adiabatically), it will take some time for the system
to reach the equilibrium at its new temperature. Especially for crossing T0, the system is
not only forced to flip the electron spin, but also approximately up to κ� 1 nuclear spins.
Thus, depending, for instance, on the microscopic details of the coupling of the spins to
one or several baths, the time needed to equilibrate could be comparably long.
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4. Spin decoherence in graphene quantum
dots due to hyperfine interaction

The investigation of spin decoherence in QDs has attracted a lot of interest over the past
decade due to its importance for the future realization of quantum computers using QDs.
Due to the experimental success of GaAs based QDs, these systems are also in the focus
of most of the theoretical works. We give a brief overview on theoretical investigations
of the decoherence of the electron spin at the beginning of this chapter. Among other
techniques, these studies have been carried out applying quantum master equations such
as the Nakajima-Zwanzig equation, cf. Section 2.3. We also use this formalism, but we
consider graphene based QDs instead of GaAs QD, which show several graphene related
peculiarities as we have discussed in Section 1.3.1. We repeat these properties, when we
discuss our model below in more detail. Moreover, we briefly explain how the Nakajima-
Zwanzig equation has to be adapted in order to apply it to our problem. The results
presented in this chapter have been published in Ref. [83].1

4.1. Overview on spin decoherence in QDs

Successful quantum computation requires a coherent manipulation of qubits over a suffi-
ciently long time interval. Although, the coherence of spin qubits is in general preserved
over longer times than in other qubits like charge qubits, it is still prone to interactions
with the environment, which sooner or later leads to a loss of coherence. The most impor-
tant source for the decoherence of spin qubits is given by the HI with the nuclear spins of
the host material, as pointed out in Section 1.3.1.

Evidently, a promising approach is to use materials, which allow to reduce the number
of nuclear spins. Indeed, isotopic purification of group IV element based QDs allows, in
principle, for spin free environments. We will investigate systems with very few nuclear
spins in Chapters 5 and 6. However, often this strategy is not applicable. In consequence,
decoherence is, at least to some degree, an unavoidable phenomenon, and, hence, strategies
to cope with it are necessary.

Since decoherence is not an instantaneous effect, a simple strategy is to speed up the
quantum computation, such that it finishes before the coherence of the electron spin
states is lost. However, there is a limit to the fastness of quantum operations due to finite
switching times and a limited strength of the applied fields, cf. Section 1.3.3. Since typical
quantum algorithms involve a large number of quantum gates, the total operation time
often exceeds the decoherence time. In this case, more sophisticated strategies known
as quantum error correction [10, 140] are needed, which allow fault tolerant quantum

1 c©2012 American Physical Society. All rights reserved.
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4. Spin decoherence in graphene quantum dots due to hyperfine interaction

computation. A figure of merit if this strategy is applicable is given by ratio of the
decoherence time and the longest operation time [22]. This ratio estimates the number
of operations, which can be performed before information is lost. If this number exceeds
the threshold of a specific error correction code, fault tolerant quantum computation is
possible. For standard codes, this threshold is on the order of 104 operations [22], whereas
for specific surface codes [159] already 102 suffices. Such codes allow to (partially) undo the
effect of decoherence, where, however, precise knowledge of decoherence is necessary. In
particular, the specific dependence of the decoherence function on time is of high relevance.
Therefore, the details of the electron spin decoherence have been in the focus of theoretical
research revealing a great variety of different types of decay.

While different publications certainly (slightly) differ in the models used to obtain these
results, we can nonetheless define a “canonical” model incorporating the most important
aspects needed to investigate decoherence in spin based QDs. We have already mentioned
the HI as the main source of decoherence. The number of nuclear spins is typically
assumed to be large and the envelope function of the electron is considered to be of
Gaussian form as described in Section 1.3.1. Basically, there are two ways to reduce the
effect of the HI. First, a strong external magnetic field can be applied, which stabilizes
the electron spin, as we will show below. Second, we have argued in Section 1.3.3, that
certain nuclear spin states drastically reduce the action of the HI. To be more specific,
we will consider a so-called narrowed state, which is an eigenstate of the effective nuclear
magnetic field originating from the HI. In summary, our “canonical” model consists of
the Zeeman interaction of the spins with an external magnetic field, the HI between the
electron spin and the nuclear spins, and a narrowed nuclear spin state. This model,
with some variations, has been used to investigate the effect of decoherence in numerous
works [57, 73, 75, 76, 78, 152, 160, 161, 162, 163, 164, 165, 166]. We also adopt it for
this chapter. In all of these works, the physics of a free induction decay (FID) has been
investigated. For a FID experiment, the electron is initially prepared in some reference
state and its current state is measured after some time t. By repeating the experiment
and varying t, the whole dynamics of the electron spin can be monitored.

If we follow the time evolution of the electron spin by regarding its expectation values
〈Ŝz〉(t) and 〈S+〉(t) = 〈Sx〉(t)+i〈Sy〉(t), we encounter three relevant timescales [22]. First,
the relaxation timescale T1 characterizes the time, over which the electron relaxes from the
excited state |⇑〉 to its ground state |⇓〉 due to the interaction with the environment. This
time is typically sufficiently long, such that it does not limit quantum computations [22].
Second, investigating 〈S+〉(t) allows to determine the decoherence timescale T2, which
is the characteristic time over which the amplitude of oscillations of 〈Ŝ+〉(t) decay. As
we discuss in Chapter 2, the physical mechanism of this behavior is the apparent loss of
coherence between the electron spin states due to the entanglement with the environment.
However, in practice, measuring the time evolution of the electron spin involves many
repetitions of the experiment in order to determine the quantum mechanical expectation
value. Due to the limited precision of any experiment, these runs slightly differ from
each other leading effectively to an ensemble average of the observable, which leads to
additional damping. Thus, the decay of 〈S+〉(t) is seemingly faster on a timescale T ∗2
known as dephasing time. In the strict sense, these timescales are only well defined if the
corresponding decay is exponential. In the literature, however, this notation is occasionally
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Figure 4.1. Schematic decay of |〈Ŝ+〉(t)|, which is a measure for the coherence of the electron spin
states |⇑〉 and |⇓〉. The loss of their coherent superposition is illustrated in the inset. The presented
behavior is typical for an electron spin experiencing a large Zeeman splitting, which stabilizes it
against the HI with the nuclear spins. These spins are assumed to be in a narrowed state. The
nature of the decay changes with time and includes quadratic, power-law and exponential decay.
Figure from [167]. Reprinted with permission from AAAS

used to characterize other, non-exponential forms of decay [22]. Typically, the three
timescales are related to each other by T ∗2 < T2 � T1 [22]. Hence, quantum computation
is mainly limited by decoherence and, therefore, we focus on the time evolution of 〈S+〉(t)
in the following.

Before we analyze the time evolution of the electron spin in a graphene QD, let us briefly
review the time evolution for an electron confined in GaAs QDs. Intensive research on this
model has revealed that the expectation value 〈Ŝ+〉(t) undergoes several regimes with very
different types of decay as illustrated in Fig. 4.1. In the beginning, a very short quadratic
decay has been observed, which is followed by a partial power-law decay. Via a quadratic
shoulder, the signal than enters an exponential regime lasting over a rather long time. At
long times finally, it experiences again a power-law decay. Note that these results are, in
general, specific to two-dimensional QDs exhibiting a Gaussian envelope function [22, 76].
The origin of this variety is the non-Markovian conditions arising from the slow dynamics
of the nuclear spins as discussed at the end of Section 2.3. While these findings have been
obtained using many different approaches [57, 73, 75, 76, 78, 161, 162, 163, 168], all of
them have been recovered in one unified method by Coish et al. [61], which is based on
the Nakajima-Zwanzig method described in Section 2.3. In their work, the authors also
provide a detailed discussion of the different stages of the decay, which is beyond the scope
of this Thesis.

Most of the results reported above have been obtained considering an isotropic HI.
Motivated by the anisotropic HI in graphene, we consider a more general form of the HI
to investigate the decoherence of an electron spin. Based on the background on the physics
of QDs in Chapter 1, we will first discuss the initial states of the electron spin and the
nuclear spins and the Hamiltonian of our problem. We will then adjust the Nakajima-
Zwanzig equation discussed in Section 2.3 to our specific model. With this equation of
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4. Spin decoherence in graphene quantum dots due to hyperfine interaction

motion of the electron spin at hand, we will be able to investigate the non-Markovian
dynamics of the electron spin.

4.2. Hamiltonian and initial conditions
4.2.1. Initial conditions
A reasonable initial state of the total system consisting of the electron spin and the nuclear
spins can be obtained from the following considerations. First, the nuclear spin state is
prepared in a narrowed state by means of dynamical nuclear polarization (DNP) and state
narrowing (SN) as described in Section 1.3.3. Then, a new electron is loaded into the QD
and its state is prepared in a specific state. As we discuss in Section 1.3.3, in principle
the whole Bloch sphere is experimentally accessible. Due to this preparation scheme, the
electron spin and the nuclear spins are initially uncorrelated giving rise to a product state

ρ̂(0) = ρ̂S(0)⊗ ρ̂I , (4.1)

where the density matrix of the electron spin may be written as

ρ̂S(0) = 1
2
(
1+ 〈Ŝx〉0 σx + 〈Ŝy〉0 σy + 〈Ŝz〉0 σz

)
. (4.2)

The matrices {σ̂i}i=x,y,z are the 2×2-Pauli-matrices and 1 is the identity operator. Defin-
ing σ⇑,⇓ = 1

2(1± σz) and σ± = 1
2(σx ± σy), this density matrix can be rewritten by

ρ̂S(0) = 〈Ŝ⇑〉0σ⇑ + 〈Ŝ⇓〉0σ⇓ + 〈Ŝ+〉0σ+ + 〈Ŝ−〉0σ− . (4.3)

where the components of the electron spin are given by 〈Ŝ⇑,⇓〉0 = 1
2 ± 〈Ŝz〉0 and 〈Ŝ±〉0 =

〈Ŝx〉0 ± i〈Ŝy〉0.
The density matrix of the nuclear spins is assumed to be ρ̂I = |n〉〈n|, where the narrowed

state |n〉 defined in Eq. (1.37) is an eigenstate of the nuclear magnetic field ĥz. For a large
number of nuclear spins, this narrowed state is, in general, a superposition of gn degenerate
eigenstates |nj〉:

|n〉 =
gn∑
j=1

αj |nj〉 with ĥz|nj〉 = 〈ĥz〉n|nj〉 . (4.4)

The corresponding eigenvalue of the nuclear field operator ĥz is then given by [76]:

〈ĥz〉n =
∑
k

Ak

gn∑
j=1
〈nj |Îk,z|nj〉 =

∑
k

Ak

gn∑
j=1

m
nj
k , (4.5)

The sum over the degenerate eigenstates |nj〉 on the right hand-side of Eq. (4.5) corre-
sponds to an average of the z-component of the k-th nuclear spin. Assuming a uniform
polarization p of the nuclear spins, its value

∑gn
j=1m

nj
k = pI is the same for all nuclear

spins. Since
∑
k Ak equals nIAHI by definition, we find

〈ĥz〉n = p I nIAHI . (4.6)
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4.2.2. Hamiltonian
The Zeeman interaction of the electron spin and the nuclear spins as well as the HI forming
the total interaction of our “canonical” model have been discussed in detail in Chapter 1.
We assume the external magnetic field to point in z-direction and rewrite the Zeeman
Hamiltonians for the electron spin and the nuclear spins given in Eqs. (1.9) and (1.10),
respectively, in terms of the Zeeman energies ASZE and AIZE. This formulation yields the
simple Hamiltonians ĤS

ZE = ASZEŜz and Ĥk
ZE = AIZEÎk,z. Moreover, we express the HI

in terms of the effective nuclear magnetic field defined in Eq. (1.26) and split it into
ĥz =

∑
k AkÎk,z and ĥx,y =

∑
k AkÎk,x + AkÎk,y. If we relate the radial position rk < RD

of an arbitrary nuclear spin to the number of nuclear spins k within this radius rk [76, 83]
by (

rk
RD

)2
= k

K
, (4.7)

we can rewrite the expression for the coupling constants

Ak = nIAHI
K

exp
[
− ( rk

RD
)2
]

= nI AHI
K

exp
[
− k

K

]
, (4.8)

for a QD containing K = nINsites nuclear spins. With the splitting of the HI interaction,
we can define an unperturbed Hamiltonian

Ĥ0 = ASZEŜz +
K∑
k=1

AIZEÎk,z + λzĥzŜz (4.9)

and a perturbative Hamiltonian

ĤV = λxĥxŜx + λyĥyŜy , (4.10)

where the constants λx, λy, and λz take into account a potential (directional) anisotropy
of the HI. For the isotropic contact HI present in GaAs QDs, we simply have λx = λy =
λz = 1, whereas the anisotropic HI in graphene leads to different values of these constants
depending on the direction of the external magnetic field B = (0, 0, Bz)T with respect
to the graphene plane. The tilt of the graphene sheet with respect to the magnetic field
can be parametrized by an angle β as depicted in Fig. 1.5. The resulting values for the
constants λi can be calculated using Eq. (1.29). We find λx = λy = −1

2 and λz = 1 for
β = 0 and λy = λz = −1

2 and λx = 1 for β = π
2 . For other values of β, additional terms

like ŜxÎz or Ŝz Îx arise, which are, however, not captured by our Hamiltonian in Eq. (4.10).
It is convenient to rewrite the perturbative Hamiltonian in terms of raising and lowering
operators

HV = 1
2
(
ĝ+Ŝ− + ĝ−Ŝ+

)
, (4.11)

where we have introduced generalized nuclear operators

ĝ± = 1
2
[
(λx ± λy) ĥ+ + (λx ∓ λy) ĥ−

]
≡ 1

2
[
λ±ĥ+ + λ∓ĥ−

]
. (4.12)

The bare nuclear magnetic field operators ĥ± = ĥx ± iĥy can also be considered in terms
of single nuclear spin raising and lowering operators: ĥ± =

∑
k AkÎk,±. If λx = λy, the

generalized operators ĝ± = λxĥ± reduce to simple multiples of the bare nuclear operators.
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4.3. Method

4.3.1. Nakajima-Zwanzig-equation

Since the nuclear spins have comparably slow dynamics, as explained in detail in Sec-
tions 1.2, 1.3, and 2.3, the whole spin system is in a non-Markovian regime, which we
want to analyze by means of the Nakajima-Zwanzig equation. To this end, we identity
the electron spin with the subsystem S and the nuclear spins form the environment E.
Assuming a large external magnetic field, the electron Zeeman energy is much larger than
the HI interaction and, hence, the Born approximation is justified. We have already seen
in Section 2.3, that the initial state of the environment is approximately preserved within
the Born approximation. Thus, we have for the nuclear spin state

ρ̂I(t) ≈ ρ̂I(0) = |n〉〈n| . (4.13)

With the state of the environment known, the projector P onto the relevant part of the
density matrix is given by

PÔ = TrI [Ô]⊗ ρ̂I . (4.14)

With this definition, we are able to start our analysis of the non-Markovian spin dynamics
with Eq. (2.64), which we slightly rewrite to find

d
dt ρ̂S (t) = −iLn0 ρ̂S (t)− i

t∫
0

dt′ ΣS

(
t− t′

)
ρ̂S
(
t′
)

. (4.15)

The unitary part of this equation is determined by the effective Liouville operator Ln0 ÔS =
[ωn Ŝz, ÔS ]−.2 The action of this superoperator on an arbitrary operator in the Hilbert
space of the electron spin is given by its commutator with the effective Hamiltonian

Ĥn
0 = (ASZE + 〈ĥz〉n)Ŝz ≡ ωnŜz . (4.16)

The self-energy ΣS (t− t′) is equal to the memory kernel KS (t− t′) defined in Eq. (2.65).
In order to dissolve the convolution between the self-energy ΣS (t) and the spin density
matrix, we perform a Laplace transform to obtain a much simpler algebraic form

sρ̂S (s)− ρ̂S (0) = −iLn0 ρ̂S (s)− i ΣS (s) ρ̂S (s) , (4.17)

ΣS(s) = −i TrI

[
LV

{ ∞∑
l=0

1
s+ iQL0

(
−iQLV

1
s+ iQL0

)l}
LV ρ̂I

]
≡
∞∑
j=2

Σ(j)
S (s) . (4.18)

The series for the self-energy ΣS (s) in powers of the interaction Liouvillian LV is obtained
by applying the Laplace-transform to Eq. (2.66).

For the explicit calculation of these self-energy terms, it is convenient to express the
density matrix ρ̂S(s) according to Eq. (4.3) and to consider the matrices σ⇑,⇓ and σ± as

2Since we will also encounter anti-commutators, we have introduced the notation [. . . ]± for clarity, where
− (+) denotes the (anti-)commutator.
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basis vectors in an abstract vector space. The electron spin density matrix then forms a
4-component vector

ρ̂S(s) = 〈Ŝ⇑〉(s)σ⇑ + 〈Ŝ⇓〉(s)σ⇓ + 〈Ŝ+〉(s)σ− + 〈Ŝ−〉(s)σ+

=
(
〈Ŝ⇑〉(s), 〈Ŝ⇑〉(s), 〈Ŝ+〉(s), 〈Ŝ−〉(s)

)T
. (4.19)

In this particular basis, the unperturbed Liouvillian is given by a diagonal matrix L0 =
1
2 diag (L−,−L−,−L+,L+), where the operators

L±ÔI = [Ĥ0, ÔI ]± (4.20)

are defined by their action on an arbitrary nuclear spin operator ÔI . The perturbative
Liouvillian LV has a 4× 4 off-diagonal form containing the generalized nuclear magnetic
field operators ĝ±. For further details of this calculation, we refer to Appendix A of
Ref. [76] and note that the bare nuclear magnetic field operators ĥ± there correspond
to the generalized operators ĝ± of our model. In general, all contributions Σ(2j+1) (s) to
the self-energy containing odd powers of LV vanish, since only virtual flip-flop processes
are allowed due to the large Zeeman splitting of the electron spin. Each even summand
Σ(2j+2) (s) is associated with a small parameter [76] ∆j , where ∆ is given by

∆ = nIAHI
2ωn

, (4.21)

which is small for a large Zeeman splitting of the electron spin. In this parameter regime,
all orders higher than second order are strongly suppressed and, thus, can be neglected. As
we show below, neglecting terms of order O(∆) limits the range of validity of our analysis
to times of order t � ∆−1. In order to extent to longer times, it would be necessary to
include higher orders of the self-energy [61], which is, however, beyond the scope of this
article.

The self-energy exhibits to all orders of LV a 4× 4 structure

ΣS(s) =


Σ↑↑(s) Σ↑↓(s) 0 0
Σ↓↑(s) Σ↓↓(s) 0 0

0 0 Σ++(s) Σ+−(s)
0 0 Σ−+(s) Σ−−(s)

 , (4.22)

which shows a block-diagonal form indicating, that the Ŝz and Ŝ± subspaces are decoupled.
This fact becomes more obvious, if we calculate the expectation values of these observables
according to

〈Ŝi〉(s) = TrS
(
Ŝiρ̂S(s)

)
, (4.23)

where i = z,±. Using this equation, we find

〈Ŝz〉 (s) =
〈Sz〉0 −

i
2 s [Σ↑↑ (s) + Σ↑↓ (s)]

s+ i
[
Σ↑↑ (s)− Σ↑↓ (s)

] (4.24)

and
〈Ŝ±〉 (s) = 〈Ŝ±〉0

D± (s) + iΣ±∓ (s) 〈Ŝ∓〉0
D± (s)D∓ (s) , (4.25)

81



4. Spin decoherence in graphene quantum dots due to hyperfine interaction

where the denominator functions are given by

D± (s) = s∓iωn + iΣ±± (s) . (4.26)

With these results, we are then able to calculate time-dependent expectation values by
means of an inverse Laplace transform

〈Ŝi〉(t) = 1
2πi

γ+i∞∫
γ−i∞

ds est〈Ŝi〉(s) , (4.27)

where the integral is evaluated along the Bromwich contour, as illustrated in Fig. 4.2
below. The constant γ ∈ R is chosen, such that all singularities of 〈Ŝi〉(s) have a real part
smaller than γ. Since the mathematics involved with this integration is quite involved,
we will only present the results of 〈Ŝ+〉(t), which are the relevant ones for decoherence.
For the calculation of 〈Ŝz〉(t), we refer to our publication [83]. There, we show that the
calculation of this observable is connected with the solution of 〈Ŝ+〉(t) by a shift of the
variable s. Hence, the main mathematical steps presented in the following are also relevant
for 〈Ŝz〉(t). Evaluating the self-energy in second order according to Eq. (4.18), we find

Σ(2)
++(s) = − i

4 TrI (ĝ+G↑ĝ−ρ̂I + ĝ−ĝ+G↓ρ̂I) , (4.28)

Σ(2)
+−(s) = i

4 TrI (ĝ+G↓ĝ+ρ̂I + ĝ+ĝ+G↑ρ̂I) , (4.29)

Σ(2)
−+(s) = i

4 TrI (ĝ−G↑ĝ−ρ̂I + ĝ−ĝ−G↓ρ̂I) , (4.30)

Σ(2)
−−(s) = − i

4 TrI (ĝ−G↓ĝ+ρ̂I + ĝ+ĝ−G↑ρ̂I) , (4.31)

where
G↑,↓ (L−) =

(
s+ i

2α↑,↓QL−
)−1

with α↑,↓ = ±1 (4.32)

Using Eq. (4.12), these elements can be explicitly calculated as shown in Appendix B. In
order to simplify the resulting contributions to the self-energy, we additionally assume,
that the nuclear Zeeman energy AIZE = gNµNBz is much smaller than the energy involved
with the HI interaction. The relevant HI energy is given by AsHI = nIAHI/K, which is
the energy scale involved with a single spin flip. Thus, the external magnetic field should
be chosen sufficiently weak. However, we have to keep in mind that the Zeeman energy
ASZE = g∗µBBz of the electron spin has to be much larger than the total HI in order to
satisfy ∆ ∼ nIAHI

ASZE
� 1, which demands a sufficiently strong magnetic field. Combining

both requirements and inserting the specific forms of the Zeeman energies, we find

K

κ
Bz � Bnuc � Bz , (4.33)

where κ = gNµN
g∗µB

and Bnuc = nIAHI
g∗µB

are material dependent constants. In graphene, these
constants are given by κ ≈ 2.5×103 and Bnuc ≈ 2.6 mT and, hence, we can adjust both K
and Bz such that this inequality is fulfilled. In this case, we can neglect AIZE to obtain a
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more tractable form of the self-energy, but this assumption also limits the range of validity
of our predictions to times smaller than τ IZE = h̄/AIZE. With this simplification, the second
order matrix elements of the self-energy contributing to 〈Ŝ+〉(s) are given by

Σ(2)
++(s) = −iK

λ2
− + λ2

+
4λ2

z

[c+I− (s) + c−I+ (s)] , (4.34)

Σ(2)
−−(s) = −iK

λ2
− + λ2

+
4λ2

z

[c−I− (s) + c+I+ (s)] , (4.35)

Σ(2)
−+(s) = − 2λ−λ+

λ2
− + λ2

+
Σ(2)

++(s) , (4.36)

Σ(2)
+−(s) = − 2λ−λ+

λ2
− + λ2

+
Σ(2)
−−(s) (4.37)

where the coefficients c± originate from the action of the perturbation LV on the nuclear
spin state ρ̂I [152]. For a spin 1

2 system like graphene with a uniform polarization, these
coefficients c± are explicitly given by c± = [1∓ p]/2 depending on the polarization p. The
action of the superoperator G↑,↓ (L−) on nuclear magnetic field eigenstates |q〉,|n〉 gives
rise to the functions

I± (s) = s [log (s∓ i)− log (s)]± i , (4.38)

which are calculated applying the same continuum limit as used to obtain Eq. (4.6).
Analyzing the above Eqs. (4.34) to (4.37) in more detail, one finds that the diagonal parts
Σ(2)

++ and Σ(2)
−− are always finite, whereas the off-diagonal parts Σ±∓(s) vanish for λx = λy.

In the following, we introduce dimensionless quantities by measuring energies in units
of ÃsHI = |λz |

2 AsHI, where AsHI = nI
AHI
K is the energy involved with a single HI flip. This

energy scale also defines the timescale τ̃ sHI = h̄/ÃsHI = τ sHI/|λz|, which serves as a measure
for times henceforth. As a consequence, the small parameter expressed in dimensionless
units reads ∆ = K

ωn
. For clarity, we give a summarizing list of the most important symbols

in Tab. 4.1.

4.3.2. Inverse Laplace transform

With the explicit form of the self-energy in second order given in Eqs. (4.34) to (4.37), we
are able to proceed with the inverse Laplace transform. The components of the electron
spin perpendicular to the external magnetic field can be split into two parts

〈Ŝ+〉 (s) = 〈Ŝ+〉0
D+ (s) +

iΣ(2)
+− (s) 〈Ŝ−〉0

D+ (s)D− (s) . (4.39)

With the introduction of the effective nuclear spin number K̃ = K(λ2
x + λ2

y)/2λ2
z, these

functions are formally equal for an arbitrary choice of the constants {λi}. Using Eqs.
(4.36) and (4.37), one can rewrite the spin component 〈Ŝ+〉 (s) in terms of two generalized
functions:

〈Ŝ+〉 (s) = 〈S+,1〉 (s) + 〈S+,2〉 (s) = 〈S+,1〉0
D+ (s) + 〈S+,2〉0 (s+ iωn)

D+ (s)D− (s) , (4.40)
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Symbol Definition Symbol Definition

AsHI nIAHI /K ÃsHI |λz|AsHI / 2

τ sHI 2h̄ /AsHI τ̃ sHI τ sHI / |λz|

∆ nIAHI / 2ωn ∆̃ ∆ (λ2
x + λ2

y) / 2|λz|

δ ∆2 /K δ̃ δ (λ2
x + λ2

y) / 2

c± [1∓ p] / 2 K̃ K(λ2
x + λ2

y) / 2λ2
z

Table 4.1. Index of recurring symbols in the text. The parameters c± originate from expectation
values of the nuclear spin operators ĥ± depending on the polarization p. The total Zeeman energy
is given by ωn = bS + λz〈ĥz〉n. The small parameter ∆ � 1 determines the perturbative regime,
while the second small parameter δ quantifies the non-Markovian corrections. The shorthands K̃,
∆̃, and δ̃ allow a compact notation of our results. Table adapted with permission from [83]. c©2012
American Physical Society. All rights reserved.

Symbol ⊥ ‖ (λx, λy, λz)

〈S+,1〉0 〈Ŝ+〉0 〈Ŝ+〉0 −
3
5〈Ŝ−〉0 〈Ŝ+〉0 −

λ2
x−λ2

y

λ2
x+λ2

y
〈S−〉0

〈S+,2〉0 0 3
5〈Ŝ−〉0

λ2
x−λ2

y

λ2
x+λ2

y
〈Ŝ−〉0

Table 4.2. Prefactors defined in Eq. (4.40) for graphene in a magnetic field perpendicular (⊥)
or parallel (‖) to the graphene plane. In the first case (⊥), we find λx = λy = − 1

2 and λz = 1,
whereas a parallel magnetic field leads to λz = λy = − 1

2 and λx = 1. For completeness, we also
consider a general anisotropy with {λi}. Note that there is no special choice of the initial values
〈S+,i〉0 of the electron spin. Table adapted with permission from [83]. c©2012 American Physical
Society. All rights reserved.
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where the prefactors for different cases are listed in Tab. 4.2. In our publication [83], we
have shown that these generalized functions are invariant under a change of sign of both
λz → −λz and the external magnetic field Bz → −Bz. Hence, we consider only positive
λz in the following.

Since the Laplace transform is a linear operation, its inverse can be carried out inde-
pendently for each summand by evaluating integrals of the form

〈Ŝ+,i〉 (t) = 1
2πi

γ+i∞∫
γ−i∞

est〈Ŝ+,i〉 (s) ds . (4.41)

The singularities of 〈Ŝ+,i〉 (s) are generated by the denominators D± (s) each possessing
zeros at sj,± (j = 1, 2, 3), which come in complex-conjugated pairs sj,+ = s∗j,−. Further-
more, there are three branch cuts from s = 0,±i to −∞, whose position in the complex
plane is illustrated in Fig. 4.2.

In order to evaluate the integral in Eq. (4.41), one can close the contour as depicted in
Fig. 4.2, where the integral over the great circle vanishes according to Jordan’s lemma.
Note that the poles with finite real part s2,± are outside of this contour and, hence, do
not contribute to the integral. Therefore, the solution of Eq. (4.41) generally consists of
residues arising from the remaining poles, s1,± and s3,±, the integrals Bα

i (t) along the
upper and lower branch-cut as well as an integral Ii (t) along the imaginary axis:

〈Ŝ+,i〉 (t) =
∑

s=sj,±
Res

[
est 〈Ŝ+,i〉 (s)

]
− 1

2πi
{∑

α

Bα
i (t) + Ii (t)

}
︸ ︷︷ ︸

=P+,i(t)

, (4.42)

where the integrals are explicitly given by

Bα
i (t) = lim

η→0
eiαt

0∫
−∞

dx ext〈Ŝ+,i〉
(
x+ iα(1 + η)

)
(4.43)

with α = ±1 and

Ii (t) = i
1∫
−1

dy eiyt 〈Ŝ+,i〉(iy) . (4.44)

In order to simplify the notation of the results and to make their interpretation easier, we
use the short hands K̃, ∆, ∆̃ = ∆ (λ2

x +λ2
y) / 2λ2

z, δ, and δ̃ = δ (λ2
x +λ2

y) / 2 listed in Table
4.1 as well as the relations c−+ c+ = 1 and c−− c+ = p, which are fulfilled for nuclei with
spin I = 1/2 [76, 152] as considered here.

4.4. Results
4.4.1. Inverse Laplace transform of the first spin contribution
We begin the inverse transform back into the time domain with the first part of the spin
component 〈S+,1〉 (s), which is exemplary for the calculation of all other expectation values.
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4. Spin decoherence in graphene quantum dots due to hyperfine interaction

i

-i

Figure 4.2. Illustration of the Bromwich contour integral in the complex plane with the analytic
features of the denominator functions D+(s) and D−(s) consisting of branch-cuts (red dashed lines)
and poles (blue and green disks). The integral in Eq. (4.41) is completed to a closed contour by an
exponentially vanishing integral over the great circle, integrals along the upper and lower branch-
cuts, Bαi (t), and an integral along the imaginary axis Ii (t). Within this closed contour lie the
poles sj,±, j = 1, 3, whereas the poles s2,± are not encircled and, thus, do not contribute to the
integral. Note that the poles sj,− are relevant only for the calculation of 〈S2,+〉(t). Figure adapted
with permission from [83]. c©2012 American Physical Society. All rights reserved.

sj,+ Res
[
est 〈S+,1〉 (s)

]
s=sj,+

s1,+ = −i
[
1 + 2−

c−
c+ e

− 1
∆̃ c+

]
〈S+,1〉0

[
K̃c+2

c−
c+
]−1

e
− 1

∆̃ c+
−it

s3,+ = iωn 〈S+,1〉0
[
1 + 1

2 δ̃
]−1

eiωnt

Table 4.3. Zeros of the denominator D+(s) and the corresponding residues for 〈S+,1〉(t). The
purely imaginary pole s3,+ gives rise to an undamped oscillation around the effective magnetic-
field ωn. Table adapted with permission from [83]. c©2012 American Physical Society. All rights
reserved.
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Figure 4.3. Real and imaginary part of P+,1(t) (solid, black) as a function of time obtained by
numerical integration. For times t > π (τ̃sHI = 1), the real part approximately described by an
oscillating function (dashed, red), whose amplitude decays with ∼ t−1 (dotted, blue), where the
amplitude is proportional to the polarization p. The oscillations show a period of 2π determined by
the HI. The imaginary part of P+,1(t) (solid, black) exhibits a similar behavior as the real part. In
contrast to the real part, the amplitude of the imaginary part does not depend on the polarization.
The parameters used to create these plots are K̃ = 100, ∆ = 0.003, and p = 0.59. Figure adapted
with permission from [83]. c©2012 American Physical Society. All rights reserved.

First, we analyze the residues arising from the poles sj,+, which are summarized in Tab. 4.3.
The pole s3,+ located on the imaginary axis gives rise to a purely oscillating term, where the
frequency is given by the effective magnetic field ωn. This oscillating part corresponds to
a simple precession of the electron spin around this magnetic field. The calculation of this
residue also nicely illustrates in which sense the disregard of the fourth order contribution
Σ(4)(s) ∝ ∆ of the self-energy sets an upper time limit. For simplicity, we assume that
this contribution can be described by a complex valued constant Σ(4)(s) ≈ ξ∆ of order
O(∆), where we neglect any dependence on s. According to Eq. (4.26), this constant shift
can be formally treated as a modification of the effective magnetic field iωn → iωn − ξ∆
giving rise to an additional exponential factor exp(−ξ∆t). Hence, our predictions are
valid only for times t � ∆−1τ̃ sHI, for which this factor is irrelevant. In order to extend
this limit, one would have to take the fourth order contribution with its full s-dependence
into account. This line of arguing is, however, not directly applicable to the oscillating
portion originating from the pole s1,+, since this pole has a more complicated structure.
It is located near the lower branching point at −i, as is illustrated in Fig. 4.2. This
residue generates an amplitude, which is exponentially small exp[−(c+∆)−1] � 1 in a
large magnetic field. As a consequence of its small size, we will neglect this contribution
in the following for simplicity. Finally, the pole s2,+ does not contribute, because it is
outside of the contour.

Since the integral over the great circle vanishes due to Jordan’s lemma, the only re-
maining, unknown expressions arise from the integrals along the branch-cuts and along
the imaginary axis. The calculation of these integrals is, however, mathematically very
challenging due to the fact that three different scaling behaviors are involved. The inverse
Laplace transform itself gives rise to an exponential factor exp(st), while the denomina-
tors contain both logarithmic and power-law terms hampering analytical solutions to these
integrals. Nevertheless, analytical considerations give valuable insights to the structure
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of the results. First, we checked, that there are no contributions present in Pi(t), which
diverge for longer times and, thus, would lead to unphysical results. Moreover, one can
testify, that the leading order contributions arising from the branch cut integrals B±i (t)
and from the imaginary integrals Ii (t) cancel each other leaving terms of order δ = ∆2/K.
While it is easy to show that the contributions of this order stemming from the branch
cut integrals are oscillating with a frequency proportional to 1/τ̃ sHI determined by the HI,
this is not evident for the imaginary integral. Furthermore, there is no obvious way to
analytically extract more information on the time dependence of the amplitudes such as
the form of a possible decay. Hence, we use numerical methods to find the results for all
integrals, which are subsequently summed up in order to give the functions Pi(t) defined
in Eq. (4.42) above.

The function being relevant for 〈S+,1〉(t) is given by P+,1(t), whose real and imaginary
part is plotted in Figs. 4.3 a) and 4.3 b), respectively. For times t > π (τ̃ sHI = 1), we find
that the sum of the branch-cut contributions is approximately described by an oscillating
term, whose amplitude is decaying with a power law:

P+,1(t) = 〈S+,1〉0

{
− 2πi δ̃

[sin(t)
t
− ipcos(t)

t

]}
. (4.45)

The final result for 〈S+,1〉(t) is obtained by summing up the residues and power-law
contributions according to Eq. (4.42):

〈S+,1〉 (t) = 〈S+,1〉0

{[
1 + (λ2

x + λ2
y)
δ

4
]−1

eiωnt +
λ2
x + λ2

y

2 δ
[sin(t)

t
− ipcos(t)

t

]}
, (4.46)

where we reintroduced the explicit dependence on the anisotropy of the HI using the
relations summarized in Tab. 4.1.

For the special case of λx = λy, Eq. (4.40) readily gives 〈S+,2〉 = 0. Thus, the above
equation already allows us to interpret the dynamics of such a system, which is, for in-
stance, realized in GaAs or graphene subjected to a perpendicular magnetic field. Accord-
ing to Eq. (4.46) only a small fraction of order δ = ∆2/K of the initial spin decays and
does so in a power law, while most of the spin is preserved and oscillates with a frequency
determined by the effective magnetic field ωn.

4.4.2. Inverse Laplace transform of the second spin contribution
So far, we have calculated the time-dependence of the first spin part 〈S+,1〉(t), which fully
describes the behavior of a system with rotational symmetry in the transverse x-y-plane.
For a system having a broken rotational symmetry with λx 6= λy, one has additionally
to calculate the second spin function 〈S+,2〉(t), which contains two denominator functions
D+(s) and D−(s) instead of one.

Turning first to the residues, we can take advantage of the fact, that the zeros of
these denominators come in complex conjugated pairs sj,+ = s∗j,− because of the relation
D∗+(s) = D−(s∗). Therefore, the calculation of the residues is straightforward, resulting
in the contributions listed in Tab. 4.4. The poles s1,± generate exponentially suppressed
terms, which are equivalent to the s1,+-residue of 〈S+,1〉(t). This means in particular,

88



4.4. Results

sj Res
[
est〈S+,2〉 (s)

]
s=sj,+ Res

[
est〈S+,2〉 (s)

]
s=sj,−=s∗j,+

s1,+
〈S2,+〉0

K̃c+ 2
c−
c+

e−it e
− 1

∆̃c+ − 〈S2,+〉0

K̃c+ 2
c−
c+

eit e
− 1

∆̃c+

s3,+ 〈S+,2〉0
[
1 + 1

2 δ̃
]−1

eiωnt 0

Table 4.4. Residues of the second spin part 〈S2,+〉(t). The poles sj,+ are listed in Tab. 4.3. Here,
the s3,±-poles produce inequivalent residues due to the rewritten form of 〈S2,+〉 (s) in Eq. (4.40).
Table adapted with permission from [83]. c©2012 American Physical Society. All rights reserved.

Figure 4.4. Real part of P+,2(t) (solid, black) as a function of time obtained by numerical
integration. For times t > π (τ̃sHI = 1), it is approximately described by an oscillating power-law
decay (dashed, red; dotted, blue) ∼ t−1, where the amplitude is proportional to the polarization p
and the period is given by 2π. The same parameters as in Fig. 4.3 have been used. Figure adapted
with permission from [83]. c©2012 American Physical Society. All rights reserved.
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that these residues are also negligible for large magnetic fields. In contrast to these paired
terms, the pole s3,+ creates a purely oscillating component, while the residue of pole s3,−
vanishes identically.

The calculation of the sum of the branch-cut integrals, P+,2(t), is again obtained by
numerical integration accompanied by analytical considerations. We find, that only the
real part of P+,2(t) has a relevant contribution of order O(δ), while the imaginary part is
much smaller, namely of order O(δ/ωn) and, thus, neglected. The time evolution of this
real part is, up to a factor of two, analogous to the real part of P+,1(t), which can be read
off from Fig. 4.4.

We find, that the branch-cut contribution can be approximately described by

P+,2(t) = 〈S+,2〉0

{
− 2πi δ̃

[
− i2pcos(t)

t

]}
(4.47)

for times t > π. In order to obtain the full 〈S+,2〉(t) term, we sum up the residues and
power-law contributions yielding:

〈S+,2〉(t) = 〈S+,2〉0

{[
1 + (λ2

x + λ2
y)
δ

4
]−1

eiωnt +
λ2
x + λ2

y

2 δ
[
− i2pcos(t)

t

]}
. (4.48)

In combination with the result for 〈S+,1〉(t) given in Eq. (4.46), we are now able to formu-
late the time dependence of the electron spin component 〈S+〉(t) for arbitrary constants
λx, λy, λz, and a general initial condition 〈S±〉0 = 〈Sx〉0 ± i〈Sy〉0:

〈S+〉(t) =
(
〈Sx〉0 + i〈Sy〉0

) eiωnt

1 + (λ2
x + λ2

y) δ4

+
(
λ2
y〈Sx〉0 + iλ2

x〈Sy〉0
)
δ

sin(t)
t

− i
(
λ2
x〈Sx〉0 + iλ2

y〈Sy〉0
)
δ p

cos(t)
t

. (4.49)

4.5. Discussion and conclusion
According to Eq. (4.49), the overall dynamics of the electron spin components perpendic-
ular to the external magnetic field is the same for any non-zero choice of the coupling con-
stants λx, λy, and λz. They exhibit a dominant oscillating contribution, which describes a
simple precession of the electron spin around the effective magnetic field ωn = ASZE +〈ĥz〉n
consisting of the external and nuclear magnetic fields. This contribution arises from the
unitary part of the Nakajima-Zwanzig equation as described in Section 2.3. The conser-
vation of the major part of 〈Ŝ+(t)〉 originates from the large Zeeman splitting ASZE, which
is expressed by the small parameter δ ∝ (ASZE)−2. Due to this large Zeeman splitting
only virtual flip-flops are allowed effectively suppressing the action of the HI. However,
a part of 〈Ŝ+(t)〉 is lost nevertheless, which is described by the second and third line of
Eq. (4.49). The specific power-law decay found for this contribution originates from the
non-Markovian corrections in Eq. (4.15), which take into account the flip-flop terms of
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the HI. The term in the second line of Eq. (4.49) oscillates with a period given by the HI
timescale τ̃ sHI. Its amplitude exhibits a λx and λy weighted mixing of the initial values
〈Sx〉0 and 〈Sy〉0. This amplitude is proportional to the initial state 〈Ŝ+〉0 = 〈Ŝx〉0 + i〈Ŝy〉0
if λx = λy, whereas it depends on the individual choices of 〈Ŝx〉0 and 〈Ŝy〉0 in the case
of λx 6= λy. The property of the initial state reflects the broken rotational symmetry for
different couplings within the x-y plane. The contribution to the non-Markovian dynamics
in the last line of Eq. (4.49) exhibits qualitatively the same behavior as the former contri-
bution. However, its amplitude shows a different mixing of the x- and y-components of the
initial state, where λx and λy are interchanged. Furthermore, its amplitude depends on
the polarization p of the nuclear spins, which quantifies the excess of one nuclear spin ori-
entation over the other. For increasing p, one type of the HI-induced scattering processes,
for instance ĥ+, becomes more likely, while the other one is suppressed since its phase
space is more and more limited. Probably, this can explain the polarization dependence of
our result. However, within the Nakajima-Zwanzig formalism, it is not possible to single
out microscopic processes explaining the specific form of the dependence on the anisotropy
and the polarization demanding for successive studies using different techniques.

According to our findings, we can distinguish two classes of anisotropy. The first class
is characterized by λx = λy 6= λz for which Eq. (4.46) already describes the full dynamics
of 〈Ŝ+〉(t), since the off-diagonal elements Σ(2)

±∓(s) are identically zero. In this case, this
dynamics differ only quantitatively from the isotropic limit with λx = λy = λz. Analyzing
our results in the isotropic case, we recover the initial power-law decay found in Refs. [61,
76], which is depicted in Fig. 4.1 in Section 4.1. The reason for the universal behavior
for λx = λy is the conserved rotational symmetry around the z-axis and the fact that the
Ŝz and Ŝ+ subspaces are decoupled, cf. Eq. (4.22). This type of anisotropy is realized in
graphene, if the external magnetic field is applied perpendicular to its plane and, hence,
parallel to the symmetry axis of the p2,z orbital forming the conduction band. For more
details on the role of this orbital, we refer to Section 1.3.1, in which we discuss the HI in
graphene. Yet, there is another class of anisotropy, which is characterized by λx 6= λy =
λz.3 This class can also be realized in graphene if the external magnetic field is parallel
to the graphene plane. For this choice of the coupling constants, the rotational symmetry
around the z-axis is clearly broken. In this case, the individual initial values 〈Ŝx〉 and 〈Ŝy〉
are relevant rather than their superposition 〈Ŝ+〉 = 〈Ŝx〉+ i〈Ŝy〉 for λx = λy. The partial
power-law decay of 〈Ŝ+〉(t), however, is found for any (non-zero) choice of the constants
λi.

All these results have been obtained for times t � min(∆−1τ̃ sHI, τ
I
ZE), where the first

timescale is determined by the ratio of the nuclear and external magnetic fields, ∆ ∝
AHI/A

S
ZE. For λx = λy, the HI is isotropic in the x-y plane and we can introduce a

reference frame [76] rotating with a frequency given by the nuclear Zeeman energy AIZE.
In this reference frame, the nuclear Zeeman term is absent and, thus, the results hold
always for times t � ∆−1τ̃ sHI. For these times, the electron nuclear spin system is in
a non-Markovian regime. Considering even longer times t � ∆−1τ̃ sHI, which are not
captured by our treatment, the system can, however, return to a Markovian regime again,

3As we have stated in Section 1.3.1, the specific choice of the x and y axis is arbitrary, such that this
class can be likewise defined by λy 6= λx = λz.
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as discussed in the beginning of this chapter. Our findings are qualitatively valid for other
systems fulfilling the requirements of our model, where the most important demands are
a Gaussian-like envelope function, slow dynamics of the nuclear spin environment and
a sufficiently large Zeeman-splitting with respect to the HI energy scale. Besides the
time-evolution of 〈Ŝ+〉(t), we have also analyzed the dynamics of the z-component of the
electron spin. Due to the large external magnetic fields, most of its original amplitude
is preserved, while we have found a small power-law decay for the remaining amplitude.
These results have been published in Ref. [83].
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5. Spin dynamics in a graphene quantum
dot with few nuclear spins

In Chapter 4, we have investigated the behavior of the electron spin interacting with a
large nuclear spin environment. Following an open system approach, we have used the
Nakajima-Zwanzig equation to explore the non-Markovian dynamics of the electron spin.
The present chapter can be regarded as complementary to this previous study. We consider
the combined system formed by the electron and the nuclear spins as a closed quantum
system. Moreover, we restrict ourselves to a small number of nuclear spins. While this
choice is a rather strong approximation to the physics of the widely studied GaAs QDs,
small nuclear spin environments can, in fact, be realized in graphene QDs. Due to the
small size of our total system, we can analyze the dynamics of the electron spin using exact
diagonalization, which allows us to study both its short time and long time dynamics. The
presentation of our results closely follows our publication in Ref. [105].1

5.1. Model

We consider a graphene QD, whose properties we have discussed in detail in Section 1.3.1.
Formally, this QD is described by a set of atomic sites {rk}Nsitesk=1 defined by the cutoff
relation in Eq. (1.25), where we use C = 10−6 for the cutoff. The probability to find
the electron at one of these sites is described by a Gaussian envelope function defined in
Eq. (1.23), where we use a radius R = 7 aNN with aNN being the distance between nearest
neighbors. This corresponds to a dot with diameter D ≈ 7.2 nm containing Nsites ≈ 103

carbon atoms, such that K = 9 atoms correspond to the natural abundance nI = 0.01 of
13C. Applying a spatial cutoff, we effectively ignore everything outside the barrier defined
by the cut-off, which is justified by the vanishingly small probability to find the electron
there. In order to find the electron with probability 1 inside of our QD, we impose the
following normalization condition

∑Nsites
k=1 v0|φ(rk)|2= 1. A plot of a QD realized in this

way is shown in Fig. 1.5. Since we do not have further knowledge about the distribution of
13C within the dot, we randomly place the nuclear spins on the sites rk, where each site is
chosen with equal probability. An example of a configuration of ten nuclear spins is shown
in Fig. 1.5. Besides the HI, we also include an external magnetic field, which gives rise
to a finite Zeeman interaction of the electron spin and the nuclear spin. In summary, the
total Hamiltonian Ĥ = ĤS

ZE +
∑
k Ĥ

k
ZE +ĤHI is given by the electron Zeeman Hamiltonian

ĤS
ZE = g∗µBBŜ in Eq. (1.9), all nuclear Zeeman terms Ĥk

ZE = gNµNBÎk defined in

1 c©2013 American Physical Society. All rights reserved.
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Eq. (1.10), and the anisotropic HI in graphene

ĤHI =
K∑
k=1

Ak
∑
µ,ν

←→
A µν ŜµÎk,ν , (5.1)

where the sums run over spatial coordinates x, y, z and the tensor ←→A µν describing the
anisotropy is defined in Eq. (1.29).

In the following, we aim to simulate a model experiment consisting of the preparation
of the spins and the actual measurement of the spin dynamics. The electron spin can be
well prepared2 in experiments as we elaborately discuss in Section 1.3.3. There, we also
describe schemes to prepare the nuclear spins in specific states. Since these schemes are,
however, quite involved, we assume for this chapter, that no further efforts are undertaken
to manipulate the nuclear spins. Since the energy scales of the nuclear spins are below the
typical thermal energies found for such experiments [9, 24], the nuclear spins are assumed
to be in a random, unpolarized state ρ̂nuc at the beginning of the actual experiment.
The coefficients of this state are created by drawing random numbers Re[αp] and Im[αp]
from [−1, 1] with equal probability and normalizing them according to Eq. (5.8) below. A
similar approach has been used in Refs. [54, 74].

We always choose the initial state of the electron to be |−1
2〉, such that the initial expec-

tation value of its z-component is always 〈Ŝz〉(0) = −1
2 . Through this specific choice, we

define a Cartesian coordinate system (x, y, z), which we will use for all calculations pre-
sented in this chapter. Yet, the geometry of the graphene sheet defines another coordinate
system (x′, y′, z′), which is invariant under rotations around the z′ axis perpendicular to
the graphene plane. If we choose, without loss of generality, the y- and y′-axis to coincide,
both coordinate systems are connected via a rotation matrix

D̂(β) = e−iβ2 (Ŝy+
∑

k
Îk,y) (5.2)

about this common axis as illustrated in Fig. 1.5. In this chapter, we investigate the
time dependence of the z-component 〈Ŝz〉(t) of the electron spin, in contrast to 〈Ŝ+〉(t)
analyzed in the previous chapter. However, in the specific setup considered in the present
chapter, these two quantities are intimately related to each other. The time-dependent
expectation value of the z-component of the electron spin is given by

〈Ŝz〉(t) = Tr[ŜzÛ(t)ρ̂0Û
†(t)] , (5.3)

where
ρ̂0 = |−1

2〉〈−
1
2 | ⊗ ρ̂nuc (5.4)

describes the initial state of the total spin system and Û(t) = e−ih̄−1Ĥt is the time evolution
operator determined by the total Hamiltonian. How is this expectation value connected

2Good control of the electron spin has been demonstrated for QDs build in group III-V materials. Up to
now, the quality of graphene QDs hampers a comparable degree of control in these QDs. However, this
is a problem of optimization of the processing techniques rather than a fundamental physical problem.
Alternatively, one can also think of silicon based QDs, which are very promising with respect to the
control of the electron spin.
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with Ŝ+, which is an observable to detect (de)coherence? In Eq. (5.3), we have decided
to measure the electron spin in a specific coordinate system. However, we are not at all
limited to this choice, but we may, for instance, rotate all operators around the y-axis to
find

〈Ŝz〉[ρ̂0,Û(t)](t) = Tr[D̂(β)ŜzD̂†(β)︸ ︷︷ ︸
≡Ŝ(β)

D̂(β)Û(t)D̂†(β)︸ ︷︷ ︸
≡Û(β,t)

D̂(β)ρ̂0D̂
†(β)︸ ︷︷ ︸

≡ρ̂0(β)

D̂(β)Û †(t)D̂†(β)︸ ︷︷ ︸
≡Û†(β,t)

]

≡ 〈Ŝ(β)〉[ρ̂0(β),Û(β,t)](t) , (5.5)

where 〈. . .〉[ρ̂,Û(t)] specifies with respect to which density matrix ρ̂ and to which time
evolution operator Û(t) the expectation value is actually calculated. The time-evolution
operator Û(β, t) = eih̄−1Ĥ(β)t is then determined by the transformed Hamiltonian Ĥ(β) =
D̂(β)ĤD̂†(β). Choosing β = π

2 yields Ŝ(β) = Ŝx = Re[Ŝ+] and ρ̂0(β) = (|12〉+ |−
1
2〉)/
√

2⊗
ρ̂nuc(β). Thus, the time-evolution of Ŝz with respect to Ĥ and ρ̂0 is equivalent to the
dynamics of Ŝx with respect to Ĥ(β) and ρ̂0(β). However, from the latter point of view, it
is more apparent, that we are actually monitoring the fate of a coherent superposition of
electron spin states. This observation illustrates the fact that the appearance of coherence
and, thus, of decoherence depends on the specific choice of basis states [18].

5.2. Method

In order to analyze the time evolution of the electron spin, we apply exact diagonalization,
which we have already introduced in Section 2.2.1. For this numerical procedure to work,
we need a basis to represent the state of our system and the operators acting on it. A
natural choice for N = K + 1 spins is given by the tensor product states of the electron
spin and the nuclear spin eigenstates

|p〉 = |mp
S〉 ⊗

K⊗
k=1
|mp

k〉 , (5.6)

where the electron spin is represented by |mp
S〉, m

p
S =⇓,⇑ and the nuclear spin states by

|mp
k〉, m

p
k =↓, ↑. For convenience, we have ordered the nuclear spins |mp

Sm
p
Km

p
K−1 . . .〉

according to their coupling strength Ak to the electron spin:

AK ≥ AK−1 ≥ . . . (5.7)

Within this basis, an arbitrary state is given by a linear superposition of these 2N states

|ψ〉 =
2N−1∑
p=0

αp|p〉 ,
2N−1∑
p=0
|αp|2= 1 (5.8)

with complex coefficients αp, which can be also written in terms of a density matrix
ρ̂ = |ψ〉〈ψ|. With the matrix representations of the Hamiltonian, Hpq, the electron spin
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5. Spin dynamics in a graphene quantum dot with few nuclear spins

(Sz)pq, and the initial state ρpq, we can use Eq. (2.26) in order calculate the time-evolution
of the electron spin

〈Ŝz〉(t) = Tr[Ŝzρ̂(t)] =
∑

n,m,p,q
ν,µ

(Sz)nmM∗mνVνν(t, t0)Mνp ρpq(t0)M∗qµV ∗µµ(t, t0)Mµn (5.9)

where the matrix elements of the time-evolution operator Vνν(t, t0) = e−ih̄−1Eνt are de-
termined by the eigenvalues Eν of the Hamiltonian Ĥ. The numerical diagonalization
to obtain these eigenvalues and the corresponding eigenstates forming the matrix Mnν is
performed using the EIGEN [169] package for C++.

5.3. Results
In this section, we present our findings for the model system defined above. As one can
notice from the explanations above, we deal with a rather large parameter space in which
we can analyze the outcome of Eq. (5.9). First, we control the shape of the dot by means of
the envelope function |φ(r)|2, second the number of nuclear spins K is variable and finally
these spins can have different positions or configurations c within the dot. All of these
parameters change the HI Hamiltonian in Eq. (5.1). Moreover, we will investigate different
initial states |ψ0〉 of the electron and the nuclear spins affecting Eq. (5.9). Additionally,
the eigenvector matrix M̂ , appearing in this equation is a function of the twisting angle β
between the normal vector of the graphene plane and the orientation of the electron spin,
which defines the z-direction. Note that the spectrum of eigenvalues Eν is unaffected by a
change of β. Finally, we can also modify the absolute value of the external magnetic field,
which we will parametrize by the resulting Zeeman energy of the electron ASZE.

In order to determine qualitatively and quantitatively the impacts of the parameters,
we investigate the time dependent expectation value 〈Ŝz〉(t), which is calculated using
Eq. (5.9). A typical time evolution of 〈Ŝz〉(t) is plotted in Fig. 5.1. Within the decoherence
time TD, the initial amplitude of the electron spin of −1

2 decays to its long-time average
value, where still finite oscillations and beatings occur. This can be traced back to the
finite size of the spin bath considered here. Its long-time average value is calculated by

〈Ŝz〉T = 1
NT

NT∑
n=0
〈Ŝz〉(Tmin + n∆T ) , (5.10)

where we average over NT = (Tmax − Tmin)/∆T time steps of width ∆T . In order to
investigate the oscillations of 〈Ŝz〉(t) quantitatively, we consider the standard deviation

σSz =

√√√√ 1
NT

NT∑
n=0

(
〈Ŝz〉(Tmin + n∆T )− 〈Ŝz〉T

)2
(5.11)

as well as the sample range

∆Sz = max
t∈[Tmin,Tmax]

[〈Ŝz〉(t)]− min
t∈[Tmin,Tmax]

[〈Ŝz〉(t)] . (5.12)
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Figure 5.1. Exemplary time evolution of the electron spin component 〈Ŝz〉(t). For a certain
range of time [Tmin, Tmax], we calculate the long-time average 〈Ŝz〉T and the standard deviation
σSz (not shown) using a a time resolution ∆T . Furthermore, we consider the maximal deviation
∆Sz of the signal within this time interval as explained in the text. The decoherence time TD
is determined by a constant threshold CS . Figure adapted with permission from [105]. c©2013
American Physical Society. All rights reserved.

This sample range is sensitive to the occurrence of oscillations with a big amplitude which
originate from either recurrences of the signal, an entire lack of decoherence or beatings.
While for beatings one expects rather small sample ranges ∆Sz < 〈Ŝz〉(0), the former two
cases should give values on the order of the initial amplitude, ∆Sz ∼ O(〈Ŝz〉(0)) in the
out-of-plane case β = 0 and ∆Sz ∼ 2O(〈Ŝz〉(0)) in the in-plane case β = π

2 , cf. Fig. 1.5.
Besides these quantities characterizing the long time average of the electron spin, we are

also interested in the amount of time it takes to decohere the system. In order to be inde-
pendent from specific models of the decay, such as exponential or power-law decoherence,
and to account for the characteristics of the numerics, we find this decoherence time TD
by the first minimum exceeding a certain threshold CS . For clarity, CS is also illustrated
in Fig. 5.1. This approach is similar to the one used in Ref. [150] to find the decoherence
times. Of course, the choice of this constant CS changes the value of TD. However, its
order of magnitude and its dependence on the different parameters is rather independent
from a specific choice as long as CS is not too close to 〈Ŝz〉T , which we have confirmed for
different values of CS .

In the following, we analyze both the decoherence time and the long-time average of
the z-component of the electron spin for different parameter sets. For each number of
nuclear spins K, many initial states and configurations are created and labeled by num-
bers 0, 1, 2 . . . for later comparison of the results. Note, that, for different nuclear spin
numbers K, these labels describe different initial states and configurations. Moreover, we
concentrate on two orientations of the quantization axis, namely out-of-plane orientation
for β = 0 and in-plane orientation with β = π

2 .
We have investigated the effect of finite magnetic fields for exemplary initial states,

configurations and K = 2, 4, 6 nuclear spins, where we have varied the resulting Zeeman
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5. Spin dynamics in a graphene quantum dot with few nuclear spins

constant from ASZE/AHI � 1 to ASZE/AHI � 1. For increasing ASZE, we find a continuous
crossover to a perfect alignment of the electron spin in the case of a very strong magnetic
field. In the following, we set Bz = 0 because we would like to better understand the low-
magnetic field behavior of the spin dynamics in the presence of the HI, which complements
our high field analysis of Chapter 4.

5.3.1. The long-time average of the electron spin

First, we investigate the consequences of both different random complex (RC) initial states
and different configurations of the nuclei within the dot. To this end, we have calculated
〈Ŝz〉T , σSz and, ∆Sz for different parameter sets and found stable results for Tmin =
0.5 × 109τHI , Tmax = 1.5 × 109τHI , and ∆T = 104τHI with τHI = h̄/AHI ≈ 1 ns. In
Fig. 5.2 a), we plot the long-time average 〈Ŝz〉T as a function of different RC states and
configurations for K = 3 and K = 6, respectively, in out-of-plane orientation. The color
map in Fig. 5.2 b) was created for the same parameters with in-plane orientation. For a
small number of nuclear spins K = 3 and β = 0, we observe strong fluctuations for both
different RC states and different configurations around an average value of 〈Ŝz〉T ≈ −0.22
as depicted in the color map of Fig. 5.2 a). The horizontal stripes dominate over the vertical
structures indicating, that the choice of the RC initial states has a greater influence on
the results than the spatial configuration of the nuclear spins within the dot. Moreover,
we find large oscillations around this long-time average value for many configurations and
initial states. This results in both sizable sample ranges ∆Sz and standard deviations σSz .
By averaging over all 51×51 results, we find 〈〈Ŝz〉T 〉 = −0.22±0.06, 〈σSz〉 = (0.13±0.04),
and 〈∆Sz〉 = 0.52± 0.11, which is also shown in Fig. 5.3. The large average value of the
sample range 〈∆Sz〉 shows that for most cases analyzed, there is at least one big change
in amplitude. However, no total spin flip with ∆Sz = 1 is achieved. The occurrence of
sizable standard deviations indicates that there are on average many of these events. Thus
in the case of few nuclear spins, coherent oscillations of the electron spin are the dominant
dynamics.

If we consider a larger environment of nuclear spins as presented in Fig. 5.2 a) with
K = 6, the behavior of the long-time average changes. First of all, the result is much more
uniform with respect to both the RC initial states and the configurations. In addition,
the remaining differences in 〈Ŝz〉T depend on the configurations rather than on the initial
states, which is obvious from the vertical lines present in this color map. Averaging over
all 51 × 51 results gives 〈〈Ŝz〉T 〉 = −0.22 ± 0.02, which is essentially the same as for
K = 3. However, the standard deviation 〈σSz〉 = 0.06 ± 0.03 and the sample range
∆Sz = 0.37 ± 0.06 clearly decrease. We confirmed this trend of decreasing fluctuations
by repeating the above averaging procedure for other numbers of nuclear spins. These
results are presented as a function of K in Fig. 5.3. While the long-time average value is
constant, both the standard deviation and the sample range become smaller. Especially,
the pronounced decay of the sample range clearly indicates that recurrences of 〈Ŝz〉(t)
or an entire lack of decoherence occur much less. This behavior can be understood by
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Figure 5.2. a): Plot of the long-time average 〈Ŝz〉T for out-of-plane orientation β = 0 and K = 3
and K = 6 nuclear spins without an external magnetic field. We have considered 51 different RC
initial states and 51 random configurations. For both numbers of nuclear spins, the electron spin
decays from its initial value 〈Ŝz〉(0) = − 1

2 to a finite long-time value 〈Ŝz〉T around −0.22. b):
Same plot as in a) but for in-plane orientation with β = π

2 . For all parameters the long-time
average saturates around 〈Ŝz〉T ≈ 0. Figure adapted with permission from [105]. c©2013 American
Physical Society. All rights reserved.

99



5. Spin dynamics in a graphene quantum dot with few nuclear spins

-0.5

0

0.5

1

2 3 4 5 6 7 8 9

Figure 5.3. Plot of the long-time average 〈Ŝz〉T , the standard deviation σSz and, the sample
range ∆Sz as a function of the number of nuclear spins K for in-plane (β = π

2 , red) and out-of-plane
orientation (β = 0, black). The values are obtained by averaging over 51 RC initial states and 51
different configurations, see Figs. 5.2 a) and 5.2 b). Error bars are given by the standard deviation
with respect to averaging over all 51 × 51 results. Figure adapted with permission from [105].
c©2013 American Physical Society. All rights reserved.

analyzing the impact of the nuclear spin number on the dimension of the Hilbert space
and on the strength of the hyperfine interaction.

For a small number of nuclear spins, the dimension of the corresponding Hilbert space
D = 2K+1 is small and, hence, we draw our RC initial states from a rather limited set,
where individual single product states |p〉 lead to very different dynamics of the electron
spin. Due to the combination of only 2K states |p〉 to a RC initial state, it is not unlikely
that one of these states is occupied with a much larger probability than all other states
leading to rather diverse results. By increasing K, the Hilbert space dimension grows with
2K+1, which yields a different situation. Since the individual state of nuclear spins at
the border of the dot is almost irrelevant due to a small |φ(rk)|2, groups of effectively
equivalent states are superposed in this case. Thus, a more effective averaging is achieved
suppressing the dependence on a specific initial state. As a consequence, it is very unlikely
for a single state to dominate over the rest. A similar effect has been reported before in
the context of quantum parallelism and amplitude averaging [54, 74].

The individual coupling strengths of the nuclear spins are the key in understanding
the dependence of the results on the configuration. Its energy scale is proportional to
the envelope function |φ(rk)|2 at the respective sites of the nuclear spins. For a small
number of spin carrying 13C isotopes, the probability to find two or more nuclear spins,
which couple almost equally with the electron spin, is low due to the large gradient of
the envelope function. Hence, effectively only one nuclear spin strongly interacts with the
electron leading to simple oscillations. This fact can be easily verified by diagonalizing the
resulting, effective 4× 4 matrix of the HI Hamiltonian, where we find a discrete spectrum
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a)

c)b)

Figure 5.4. (a): Eigenvalues Eν of the HI Hamiltonian for for K = 6 nuclear spins and configura-
tion c = 10 in units of AK . (b): Eigenvalues Eν for K = 6 and c = 3. (c): Number of distinct eigen-
values Eν as a function of the relative probabilities |φ(rK−1)|2/|φ(rK)|2 and |φ(rK−2)|2/|φ(rK)|2
for K = 6 nuclear spins. If both |φ(rK−1)|2/φ(rK)|2≈ 1 and |φ(rK−2)|2/φ(rK)|2≈ 1 at least
three nuclear spins are strongly interacting with the electron spin causing a spectrum with many
different eigenvalues as depicted in (b). If only the most central nuclear spin couples strongly to
the electron spin (lower left part), the spectrum is highly degenerate showing only three different
eigenvalues as shown in (a). The upper limit for the number of 15 has no deeper meaning besides
distinguishing both types of spectra. Figure adapted with permission from [105]. c©2013 American
Physical Society. All rights reserved.

of frequencies. These frequencies are given by the (highly) degenerate eigenvalues Eν
of the effective Hamiltonian {Eν} = {−1

2AK , 0,
1
4AK ,

1
4AK}. This limited amount of

distinct frequencies is responsible for the rather uniform dynamics with respect to different
configurations in a small K regime. This situation can of course also occur for larger
nuclear spin environments, as shown in Fig. 5.4 (a) for K = 6. It is, however, rather
the exception from the more probable case of several nuclei coupling comparably to the
electron, where an almost continuous spectrum is found as depicted in Fig. 5.4 (b). If we
characterize these spectra quantitatively by counting the number of distinct eigenvalues,
i.e., eigenvalues which differ significantly, we can map the configuration of the nuclei to
the spectra as depicted in Fig. 5.4 (c).

For the in-plane case, our findings are quite different from the former ones. The electron
spin saturates around 〈Ŝz〉T = 0 for both K = 3 and K = 6 as shown in Fig. 5.2 b).
Interestingly, we find already for K = 3, that this average is reached very precisely with
smaller fluctuations than in the out-of-plane case. This fact becomes also clear from
averaging the expectation value of the electron spin 〈〈Ŝz〉T 〉 = 0.000 ± 0.004 over all
51 × 51 results. Moreover, the results are independent from the choice of the RC initial
state. Some single configurations, however, give rise to deviations from this, where also
a dependence on the initial state is restored. It seems, that this is the case, whenever
several nuclear spins couple comparably to the electron spin explaining the sensitivity on

101



5. Spin dynamics in a graphene quantum dot with few nuclear spins

the initial states. The size of the fluctuations is on average given by 〈σSz〉 = 0.15± 0.02.
The mean value of the sample range of 〈∆Sz〉 = 0.92 ± 0.07 close to 1 indicates, that in
most cases, the electron spin is at least once almost completely flipped. The study for
K = 6 exhibits qualitatively the same result with 〈〈Ŝz〉T 〉 = 0.000 ± 0.001, where the
fluctuations 〈σSz〉 = 0.057 ± 0.004 are further suppressed. Moreover, the appearance of
recurrences and total spin flips is also strongly decreased for K = 6 as is clear from the
sample range 〈∆Sz〉 = 0.51± 0.09. Analyzing this observable as a function of the number
of nuclear spins, we observe again a prominent suppression of the fluctuations for growing
K as is apparent in Fig. 5.3.

In order to understand the differences between the in-plane and out-of-plane dynamics
of the electron spin in more detail, an analytic analysis of the dynamics in the case of only
one nuclear spin is very useful. Calculating the long-time average analytically for K = 1
yields

〈Ŝz〉T (β) = lim
∆T→∞

1
2∆T

T−∆T∫
T+∆T

〈Ŝz〉(t, β)

= −1
4 cos(β)

[
2ρ↓↓ cos(β) + (ρ↑↓ + ρ↓↑) sin(β)

]
, (5.13)

where the initial density matrix

ρ0 = |⇓〉〈⇓| ⊗ ρ̂nuc (5.14)

is a tensor product of the electron spin density matrix ρ̂S = |⇓〉〈⇓| and the nuclear spin
density matrix

ρ̂nuc =
(
ρ↓↓ ρ↓↑
ρ↑↓ ρ↑↑

)
. (5.15)

For more nuclear spins involved, the resulting equations become much more complicated.
However, for the special case of only one strongly coupling nuclear spin, the structure of
the HI Hamiltonian remains the same and Eq. (5.13)) still holds. We have numerically
investigated the dependence of the long-time average on β for some configurations and
initial states and K = 2, 4, 6 and 9 nuclear spins, where we find good agreement of our
results with 〈Ŝz〉T (β) = 〈Ŝz〉T (0) cos2(β) with increasing K. Particularly, we observe
this behavior also for configurations with several nuclear spins coupling almost equally
to the electron spin. As an example, we plot the dependence of 〈Ŝz〉T on β for K = 6
and configuration C = 3 in Fig. 5.5. Its spectrum is shown in Fig. 5.4 (b). This specific
dependence on β is also supported by our results presented in Figs. 5.2 a) and 5.2 b), where
we find on average 〈Ŝz〉T ≈ −0.22 for β = 0 and 〈Ŝz〉T ≈ 0 for β = π

2 . The deviation
of 〈Ŝz〉T (β = 0) from −1

4 presumably originates from the finite time window [Tmin, Tmax]
used in the numerical calculations, which misses recurrences of the full initial value of
〈Ŝz〉(t = 0) = −1

2 . From these numerical findings and Eqs. (5.13) and (5.14), we suppose
that contributions from the off diagonal parts cancel each other almost completely and
that the elements of the diagonal parts of the density matrix ρ↓↓, ρ↑↑ have approximately
equal weight of 2−K , which seems reasonable for random complex initial states.
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Figure 5.5. Dependence of the long-time average 〈Ŝz〉T (β) on the angle β of the quantization
axis with respect to the graphene plane for K = 6 nuclear spins. The example shown here has
been calculated for a specific configuration, whose spectrum is presented in Fig. 5.4 (b). The only
parameter used to fit the numerical values to the analytic curve 〈Ŝz〉T (β) = 〈Ŝz〉T (0) cos2(β) is the
longtime average value 〈Ŝz〉T (0) = −0.22. Figure reprinted with permission from [105]. c©2013
American Physical Society. All rights reserved.

5.3.2. Decoherence times of the electron spin
In this section, we want to investigate the decoherence times of the electron spin Sz for
different initial states and different configurations. We have chosen the threshold to be
always about 0.1 below the obtained long-time average, which gives CS = −0.325 for the
out-of-plane case β = 0 and CS = −0.1 for the in-plane case β = π

2 . Moreover, we used
exactly the same initial states and configurations for all K as for the calculation of the long-
time average. The decoherence times have been estimated for times up to 107 τHI ≈ 10 ms
with a time resolution ∆T = 102 τHI , which yields at least P = 2πh̄/(∆TAK) ≈ 20 points
per period.3 By considering such long times, we make sure no to miss very slow decays
with very long decoherence times.

As it turns out, the decoherence times obtained by this method are rather independent
from the initial states. Several factors are important for this fact. First of all, for larger
numbers of nuclei of course the same arguments concerning the Hilbert space dimensions
as for the long-time average hold. However, we also find for small K only little dependence
on the initial states. One reason for this is probably, that our method is robust against
small changes of the electron spin caused by different initial states, since we measure when
the minimum of the signal is above a certain threshold, but not how much. Finally, as we
show below, the decoherence seems strongly related to the presence of many incommen-
surate frequencies. These frequencies are proportional to the eigenvalues of the hyperfine
Hamiltonian and, hence, independent from the initial state.

Therefore, we focus in the following on the consequences of different configurations on
the decoherence times for different numbers of nuclear spins. In principle, there are two
relevant aspects concerning the positions of the nuclei, the absolute value of the envelope
function |φ(rK)|2 at the site of the strongest coupling nuclear spin and the relative position
of the nuclei with respect to each other. The importance of the former is obvious, since the
envelope function sets the maximal energy scale AK of the HI according to Eq. (1.24) and,
consequently, rescales all times by a factor |φ(rK)|−2. Therefore, if we want to analyze the

3For K = 6 we have extended the investigated time regime to 108 τHI ≈ 100 ms using the same time
resolution ∆T in order to better understand the behavior of T̃D in Fig. 5.6.
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Figure 5.6. Normalized decoherence time T̃D as a function of 51 RC initial states and 51 random
configurations for K = 6 nuclear spins in in-plane and out-of-plane orientation. Please note the
logarithmic color scale of T̃D. While the decoherence time is approximately the same for different
initial states, it strongly depends on the configurations showing deviations over several orders of
magnitude. White spaces indicate the total lack of decoherence up to absolute times of 0.1 s given
a threshold of CS = −0.325. For special configurations, c = 10, 32 and 35, and β = 0 there is no
decoherence at all, but coherent oscillations of the electron spin. Figure reprinted with permission
from [105]. c©2013 American Physical Society. All rights reserved.

influence of the relative positions, we have to measure the decoherence times TD in units
of τKHI = h̄/AK , which yields dimensionless times T̃D = TD/τ

K
HI.

A color map of the normalized decoherence times for 51 initial states and 51 configura-
tions is shown in Fig. 5.6. For the out-of-plane case, we find that the decoherence times
are almost independent of the initial state, but vary over several orders of magnitude for
different configurations. If we plot the normalized times as a function of the number of
distinct eigenvalues, cf. Fig. 5.4, we find a direct connection between these times and
the configuration of the nuclei in the dot shown in Fig. 5.7. As becomes clear from this
figure, long decoherence times are only found for the discrete spectra, which are realized
if only one nuclear spin strongly interacts with the electron. The configurations without
any decoherence, which are indicated by white spaces in Fig. 5.6, exhibit discrete spectra
with the minimal number of distinct eigenvalues of 3. An example of such a spectrum is
shown in Fig. 5.4 (a). In this case, the dynamics of the electron spin are given by coherent
oscillations. In contrast to this, short normalized decoherence times are a consequence of
continuous spectra as presented in Fig. 5.4 (b). Thus, by the configurations studied, we
can prove a direct relation between the relative positions of the nuclear spins and their rela-
tive coupling strengths, respectively, and the order of magnitude of the decoherence times.
For the in-plane case, the qualitative picture is similar, however, with shorter normalized
decoherence times over all, such that we find decoherence within the investigated times
for all configurations. In contrast to the out-of-plane case, also discrete spectra can show
rather short decoherence times for specific configurations. Altogether, this demonstrates
a much faster decoherence due to the broken symmetry in the in-plane orientation.

104



5.3. Results

1

2

3

4

5

3 5 7 9 11 13 15
0

0.02

0.04

0.06

0.08

0.1

Figure 5.7. Normalized decoherence time T̃D as a function of the number of distinct eigenvalues
Eν of the HI Hamiltonian for K = 6 nuclear spins in out-of-plane orientation. For this plot all
out-of-plane results presented in Fig. 5.6 are considered. Please note the logarithmic scale of T̃D.
The color scale encodes the relative frequency of the results within a rectangular determined by
the decoherence time and the number of eigenvalues. For completeness, we plot cases exhibiting
no decoherence within the investigated time interval at the top of this figure. Figure adapted with
permission from [105]. c©2013 American Physical Society. All rights reserved.

Turning from normalized times to absolute decoherence times, the value of the envelope
function |φ(rK)|2 at the site of the strongest coupling nuclear spins additionally becomes
relevant, since it sets the order of magnitude of all times. Putting a larger and larger
number of nuclear spins on a QD of constant area increases the average value of |φ(rK)|2,
since it is more likely to find a spin very close to the center. Moreover, as we have
discussed above, an increased number of nuclear spins K makes it much more likely to
have several nuclear spins coupling almost equally to the electron spin. Altogether, this
lets us generally expect a prominent decay of long decoherence times as a function of
growing K, which is confirmed by Fig. 5.8. For β = 0 and very few nuclear spins K = 3,
we find that the majority of decoherence times is longer than 10 ms, whereas very short TD
are almost completely irrelevant. For K = 8 this ratio of short and long times is inverse.
In the in-plane orientation, long decoherence times make up only a small fraction even for
few nuclear spins. Short decoherence times in the range of 5µs to 500µs are significantly
increasing for more spins. Notably, ultra short times below 5µs do not become much more
important.

In summary, typical decoherence times are on the order of ms under ideal conditions
of small nuclear spin numbers and out-of-plane orientation. In the case of such long
decoherence times, of course, other effects like spin orbit coupling could become relevant.
In the presence of acoustic phonons and small external magnetic fields, this spin orbit
coupling [109, 170] can lead to spin relaxation times of T1 ∼ 1 ms below the decoherence
times found here as discussed in Section 1.3.1. For larger numbers of nuclear spins and,
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5. Spin dynamics in a graphene quantum dot with few nuclear spins

Figure 5.8. Relative number of absolute decoherence times TD falling in a certain time interval
[Tmin, Tmax[ for different numbers K of nuclei in in-plane and out-of-plane orientation. For each
K 51 RC initial states and 51 configurations are considered leading to Ncalc = 2601 calculations in
total. (a): In the out-of-plane case, long decoherence times are clearly dominating for few nuclear
spins. Figure adapted with permission from [105]. c©2013 American Physical Society. All rights
reserved.

generally, for in-plane orientation, decoherence times are smaller, but still above 5µs.
Typical decoherence times of GaAs QDs under spin echo [171] lie in the T2,echo ∼ 1µs
regime, whereas the current record of T2,CPMG ≈ 200µs was measured using the Carr-
Purcell-Meiboom-Gill (CPMG) pulse sequence [172]. Pure dephasing times T ∗2 are below
50 ns for GaAs. Although all our estimates for the decoherence times are done for a model
without any effort to improve the coherence of the electron spin like pulse sequences or
strong magnetic fields, in almost all considered cases, we are above the GaAs spin echo
time T2,echo. For smaller nuclear spin numbers, graphene even outperforms the CPMG
time, which lets us expect very long decoherence times in graphene QDs when using pulse
sequences.

5.4. Discussion and conclusion

Starting from a generic model of a graphene QD, we have studied the dynamics of the
electron spin caused by the hyperfine interaction with the nuclear spins present in the
dot. The number of nuclei has been varied from K = 3 to K = 8, where the upper limit
corresponds to the natural abundance of spin carrying 13C for the dot size considered in
this work. Besides the role of the number of nuclei, we have also investigated the influence
of the initial conditions as well as the impact of different configurations of the nuclei
in the dot. Moreover, we have explored the consequences of the orientation of the spin
quantization axis with respect to the graphene plane. In order to characterize and quantify
these effects, we have analyzed both the long-time average 〈Ŝz〉T of the z-component of
electron spin and its decoherence time TD.

Since nuclear spins are usually very hard to control in the envisioned experiments, we
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have chosen the initial states to be random complex superpositions of single product states.
For this class of initial states, we found an appreciable effect on the long-time average only
in the case of very few nuclear spins. Upon increasing the number of nuclear spins, the
effects of quantum parallelism and amplitude averaging [54, 74] reduce the differences
between individual initial states more and more effectively. In this parameter regime, the
results are dominated by the configuration of the nuclear spins within the dot, i.e., by their
relative positions with respect to each other. For different configurations, the spectrum
of eigenvalues of the hyperfine interaction varies from a highly discrete one with many
degenerate eigenvalues to a continuous spectrum with many incommensurate frequencies.

For all K, a pronounced dependence of the long-time average on the orientation angle
β between the spin quantization axis and the normal vector of the graphene plane was
found. It saturates at approximately one-half of its initial value of 〈Ŝz〉T ≈ −

1
4 for β = 0

and at 〈Ŝz〉T ≈ 0 in the in-plane case with β = π
2 . While the long-time average of the

electron spin is almost constant with respect to K, we have observed a strong reduction of
fluctuations around it for larger nuclear spin baths. In contrast to the long-time average,
the decoherence times TD never exhibit a recognizable dependence on the initial states.
Instead, the decoherence times depended decisively on the number of nuclear spins and
their position in the QD. If only one nuclear spin is close to the center of the QD, long
decoherence times have been observed, while a very fast decoherence results from several
nuclei interacting equally strong with the electron spin. Moreover, the decoherence times
show a strong dependence on the orientation of the quantization axis.

Although our results have been obtained for a specific model of the graphene quantum
dot using a Gaussian envelope function, they can be generalized quite naturally. In our
model, the QD was comparably small with a sharp boundary. This choice resulted in a
steep envelope function. Physically, this situation corresponds approximately to an etched
QD. Thinking of larger QDs with smoother boundaries, we expect a flatter envelope func-
tion which gives rise to more nuclear spins interacting comparably with the electron spin.
Consequently, it becomes more likely to end up with rather low fluctuations around the
long-time average and to find quite short decoherence times. In contrast, the realization of
even smaller dots [53] with diameters of about 1 nm causes a very steep envelope function.
This case should result in, at most, one nuclear spin interacting with the electron spin.
Both scenarios seem experimentally interesting in order to engineer QDs for different ap-
plications. A 13C enriched QD could potentially be used to prepare the electron spin very
precisely in a certain superposition of spin up and down for subsequent experiments. A
very small QD, in contrast, could serve as a storage for the electron spin where very long
decoherence times are to be expected.
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6. Equilibration in closed quantum systems:
Applications to spin qubits

In the previous chapter, we have seen that the electron spin dynamics show a quasi-static
behavior for long times, which is characterized by small fluctuations around a finite long-
time average. Surprisingly, this long-time average shows no dependence on the number
of nuclear spins in the investigated regime. The fluctuations, in contrast, clearly decrease
with a larger size of the environment. From these observations, the question arises, in
how far this behavior can be understood in terms of equilibration in closed quantum
systems. The present chapter is dedicated to find an answer to this question. To this end,
we consider a specific notion of equilibration in closed quantum systems and apply its
predictions to numerical results, which have been obtained for a more general but related
model as described in the previous chapter. The results presented in this chapter have
been published in Ref. [173]1, whose text we closely follow.

6.1. Introduction

The theoretical understanding of the notion of equilibration in closed quantum systems
has significantly developed in recent years [174, 175, 176, 177, 178, 179, 180, 181, 182].
In the absence of a thermal bath and the presence of quantum fluctuations, the classical
concepts of the physical and mathematical description of equilibration do in general not
work anymore [183]. Therefore, it is very important to first find a proper definition of
equilibration in closed quantum systems. This difficult task is one of the driving forces of
the research area of quantum thermodynamics. Useful concepts imply different definitions
of equilibration. For instance, many authors identify equilibrium with the saturation of
the expectation values of certain observables [178, 183, 184, 185, 186]. These ideas are
appealing as they are intuitive and the relevant quantities are measurable. However,
it is argued in Ref. [176], that this definition is not satisfying because the measurable
probabilities of the outcomes of an observable may still be dynamical while its expectation
values have saturated.

In this work, we start from a different concept [176, 177] of equilibration and link it to
the above discussed idea of measuring expectation values. Doing so, we connect abstract
definitions of quantum equilibration to spin dynamics in a QD. In our opinion, there are
several aspects, which render solid state QDs a system suitable to study predictions related
to quantum equilibration. First, as we discuss in Section 1.1, QDs offer a large variety
of realizations, which differ, for instance, in their isotropic composition, the confinement
of the electron spin and the number of nuclear spins in its environment. This flexibility

1 c©2015 American Physical Society. All rights reserved.
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should allow us to investigate the influence of different parameters separately. Second,
due to intensive experimental efforts over the past decade, there exists now a large set of
methods to control both the electron and the nuclear spins. For further reading, we refer
to Section 1.3.3, in which we discuss some of these means in more detail. Moreover, we
also provide references to extensive review articles on further methods. These remarkable
experimental achievements have been accompanied by intensive theoretical investigations,
which should provide an excellent basis for the interpretation of future experiments. Some
selected articles of the vast literature on these studies are presented at the beginning of
Chapter 4. In summary, these properties of solid state QDs make us confident about their
use to study quantum equilibration.

However, we first have to introduce a general theory of equilibration of a closed quantum
system that fulfills all the requirements of the realization that we have in mind. This will
be done on the basis of the distinguishability [176, 177] which is a measure to distinguish
the actual state of a quantum system from its equilibrium state on the basis of a finite
set of observables. If the values of the distinguishability are on average smaller than a
given reference value ε we argue that the quantum system is ε-equilibrated. In order to
connect our concept of equilibration with experimentally measurable predictions, we first
relate the distinguishability with the weak distinguishability, [176, 178, 182] which offers
an equivalent description of equilibration for two-outcome observables. The time-averaged
weak distinguishability (TAWD), however, is capable to introduce an upper bound on the
variances of expectation values. We have analytically derived certain limits for the TAWD,
which depend on the Hamiltonian and the initial state of the quantum system. As a
consequence, our analytical equilibration bounds for the TAWD should directly affect the
experimentally determined variance of the measurement operator. Therefore, it should
be possible to modify the system at hand such that the bounds are varied and to see
the difference in a direct measurement of the variance. With this prediction at hand, we
eventually try to better understand quantum equilibration by looking at our central spin
model mentioned above. In order to calculate the TAWD, we treat very simple observables
like the electron spin operator in direction parallel or perpendicular to an external magnetic
field. Since we employ exact diagonalization for this calculation, we are limited to a finite
number of nuclear spins. However, in state of the art QDs based on silicon or carbon host
materials, such numbers of nuclear spins are within experimental reach as described in
Section 1.1.

As a consequence of our approach to equilibration in closed quantum systems, this
chapter is roughly divided into two major parts. First in Section 6.2, we explain the
notion of equilibration employed in this work and introduce the (weak) distinguishability
used to describe it. Subsequently, in Section 6.3, we will derive analytical results of
equilibration bounds. Some derivations are presented in Appendix C. In Section 6.4, these
general results are then compared to a central spin model of an electron spin in a QD
coupled to a quantum environment of nuclear spins.
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6.2. Basic concepts of equilibration

In this section, we briefly describe known concepts of quantum equilibration for future
reference. We consider a closed quantum system whose state ρ̂(t) evolves according to
the von Neumann equation ˙̂ρ(t) = i

h̄ [ρ̂(t), Ĥ] where Ĥ is the d dimensional Hamiltonian
of the total system H. Due to the unitary time evolution, each finite quantum system
obeys a recurrence time TR > 0, at which the state of the system approaches within some
accuracy its initial state. However, this time does not play a role in most experiments as
it scales exponentially [144] with the dimension of H and is almost always much larger
than the age of the universe. With the commonly used and well-defined time-averaged
state [176, 178]

ω̂ = 〈ρ̂〉∞ = lim
t→∞
〈ρ̂〉t (6.1)

one circumvents recurrence problems. Throughout this chapter, 〈f〉t = 1
t

∫ t
0 dt′ f(t′) is used

to denote time averages. This time-averaged state can be considered as an equilibrium
state for several reasons. First, it does not evolve in time as [ω̂, Ĥ] = 0. More importantly,
if the expectation value O(t) := Tr[Ôρ̂(t)] of any observable Ô saturates at some value
for long times, it can be calculated by 〈O〉∞ = Tr[〈ρ(t)〉∞Ô] = Tr[ω̂Ô]. In contrast to
thermal states like the Gibbs state, ω̂ generally depends on the initial state.

Analogously to earlier works [176, 177, 178], we regard a quantum mechanical system
to be in equilibrium if one cannot distinguish between the state ρ̂(t) of the full system
and its equilibrium state ω̂ for most times by applying a finite set of measurements Ω =
{Ôi}. These measurements are not restricted to subspaces of the whole Hilbert space.
Hence, this definition does not rely on the subdivision of the full quantum system into
a small, measurable system and a large, not measurable environment. The restriction to
a finite set reflects the conditions of realistic experiments. Let us consider an observable
Ô =

∑
j ojP̂j , which is generally defined by its eigenvalues oj and the projectors P̂j onto

the respective subspaces. Considering the above notion of equilibration and the limited
number of measurements, Short [176] has introduced the distinguishability

dΩ(ρ̂(t), ω̂) = max
Ô∈Ω

1
2
∑
j

|Tr[P̂j ρ̂(t)]− Tr[P̂jω̂]| . (6.2)

as a proper measure of distance between ρ̂(t) and ω̂. Mathematically, it is closely related
to the trace distance, but considers the finite number of accessible measurement operators.
In contrast to the trace distance, however, this measure is not a metric, but a semi-metric
since dΩ(ρ̂(t), ω̂) = 0 is possible for ρ̂(t) 6= ω̂. This behavior is important, because it
permits the desired property of equilibrated states: A sufficient condition for equilibrium
is that one is not capable to distinguish the state of the system ρ̂(t) from ω̂ for most times
by the set Ω of measurements.

In order to account for the fact that the state of the system must be indistinguish-
able for most times during the time evolution, one can demand the time-average of the
positive quantity dΩ(ρ̂(t), ω̂) to be small [176]. Consequently, we regard a system to be
ε-equilibrated at time t if

〈dΩ(ρ̂(t), ω̂)〉t < ε , (6.3)
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where ε is a small positive constant, which we are free to choose. A reasonable choice
for this constant is, for instance, the precision of the measurement devices in an exper-
iment. Further, we call systems equilibrating in a time interval I if the time-averaged
distinguishability 〈dΩ(ρ̂, ω̂)〉t decreases on average within I.

By introducing the distinguishability and its time average in Eq. (6.3), we achieved
a suitable mathematical definition of our concept of equilibration. However, the distin-
guishability cannot be measured directly in an experiment. Yet, with a slight modification
of the distinguishability, one can find the so-called weak distinguishability [176, 178, 180,
182]

DÔ(t) =
(
Tr[ρ̂(t)Ô]− Tr[ω̂Ô]

)2
. (6.4)

This quantity is unlike the distinguishability dΩ(ρ̂(t), ω̂) only given by the expectation
values of Ô2 with respect to both ρ̂ and ω̂, but does not depend on the probabilities to
measure individual eigenvalues. Hence, the weak distinguishability carries the same unit
as the squared measurement operator and takes values between 0 and 4‖Ô‖2, where ‖Ô‖
is the spectral norm3 of Ô. As we will show below, the long-time average of the weak
distinguishability can be identified with the variances of the observable, which can be
determined in an experiment. A small time-averaged weak distinguishability (TAWD)
〈DÔ〉t < ε′ � ‖Ô‖2 is a necessary condition for 〈dÔ(ρ̂(t), ω̂)〉t < ε � 1 and, hence,
according to Eq. (6.3) for the system to be in equilibrium. If two-outcome measurements
Ô = o1P̂1 + o2P̂2 with o1 6= o2 and P̂1 + P̂2 = 1d are considered, both quantities are even
equivalent as they are then related to each other by

DÔ(t) = (o1 − o2)2[dÔ(ρ̂(t), ω̂)]2. (6.5)

However, for general measurements, it is not sufficient that the expectation value of a
observable saturates, since ρ(t) and ω can still be distinguished by the (experimentally)
measurable probabilities Tr[ρ̂(t)P̂j ] of its eigenvalue oj . Rather each of these time-depend
probabilities has to saturate in order to guarantee indistinguishability, which is taken into
account by the distinguishability dÔ(ρ̂(t), ω̂). In Fig. 6.1, we summarize these dependen-
cies and the connection to equilibrium. As a last property of the TAWD, we show in
Appendix C.1 that the TAWD

〈DÔ〉t = ∆Ô + δÔ(t) (6.6)

is separable in a time-independent part ∆Ô and a time-dependent part δÔ(t), which de-
creases at least with δÔ(t) = O(t−1) for t→∞. This behavior will play an important role
for relating the TAWD to measurable quantities in the next section.

2As the distinguishability can only become small if ρ̂ and ω̂ cannot be distinguished by any Ô ∈ Ω, we
will study the contribution a single but arbitrary observable Ô

3For a Hermitian operator such as an observable Ô, the spectral norm ‖Ô‖ = maxj(|oj |) is equal to the
largest absolute value of its eigenvalues λj .
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Figure 6.1. Relation between equilibrium, distinguishability, weak distinguishability, and expec-
tation values. For clarity within this figure, we assume that only one observable Ô is measurable,
i. e., Ω = {Ô}. If Ô is a measurement with only two possible outcomes a 6= b, the weak distin-
guishability is equivalent to the distinguishability. Therefore, saturated expectation values are then
a necessary and sufficient condition for equilibrium. Figure reprinted with permission from [173].
c©2015 American Physical Society. All rights reserved.

6.3. Equilibration bounds

Weak distinguishability vs. variance

As argued above, the TAWD is a useful quantity to describe equilibration in closed quan-
tum systems. Moreover, it is directly related to measurable properties of the system
under consideration. As we explicitly derive in Appendix C.2, the variance VarÔ(t,∆t) of
expectation values O(t′) in a time interval t′ ∈ I = [t, t+ ∆t] is bounded by

VarÔ(t,∆t) ≤ 〈DÔ〉t, (6.7)

where the size ∆t of the time interval I needs to be sufficiently large. More precisely,
∆t must be of such a size, that 〈DÔ〉t does not increase on average within I. The above
estimate turns into an equality if 〈DÔ〉t is constant within I. According to Eq. (6.6), this
is the case for each system and all observables at long times because the TAWD converges.
Consequently, its infinite-time limit

∆Ô = lim
t→∞
〈DÔ〉t = lim

t→∞
VarÔ(t,∆t) (6.8)

equals the variance of expectation values in any time interval I at long times. Since
the time-dependent part δÔ(t) can decay much faster than O(t−1), this saturation will
be already reached within finite times for many systems. The quantity ∆Ô describes
the variance of expectation values of Ô arising from the fluctuations within the finite
quantum system. It is, however, not related to possible measurement errors. Hence, ∆Ô

also quantifies the capability of the system to equilibrate with respect to Ô. The smaller
∆Ô, the less fluctuations of the expectation values of Ô(t) around Tr[ω̂Ô] are present.
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Useful equilibration bounds at large times

As we elaborately show in Appendix C.3, the long-time values of the TAWD can be
estimated in different manners giving rise to the bounds

∆Ô ≤ ∆̃1
Ô

:= NG‖ρ̂‖2Tr[Ô2] , (6.9)

∆Ô ≤ ∆̃2
Ô

:= NG‖Ô‖2Tr[ρ̂2] , (6.10)

∆Ô ≤ ∆̃3
Ô

:= NG
‖Ô‖2

deff
. (6.11)

Before we discuss and compare these findings, let us explain the quantities they depend on.
First, in all bounds the maximum degeneracy NG of gaps in the energy spectrum of the
Hamiltonian enters, whose size is, hence, crucial for them to be of reasonable magnitude.
Note that it is not sufficient to have a non-degenerate spectrum of eigenvalues in order
to reach NG = 1.4 The properties of the observable enter the equations via ‖Ô‖ and
Tr[Ô2], which are related to each other by ‖Ô‖2≤ Tr[Ô2] ≤ ‖Ô‖2 rank Ô.5 The bounds
also take into account different initial states ρ̂. Explicitly, Tr[ρ̂2] is its purity and ‖ρ̂‖ is
the maximum eigenvalue of the initial state, where Tr[ρ̂2], ‖ρ̂‖ ≥ d−1 are bounded from
below by the inverse of the dimension. Moreover, the initial state also determines the
size of the so-called effective dimension [176] deff , which is defined by d−1

eff =
∑
j(Tr[Êj ρ̂])2

with Êj being the projector onto the eigenspace of energy Ej . Vividly, deff quantifies the
dimension of the Hilbert space that is actually reached during the time evolution. It takes
values between 1 and d. The latter is the case for the totally mixed state ρ̂ = 1

d1 or for
pure states such as |ψ〉 = 1√

d

∑
j |Ej〉.

Due to the last property of deff , the third estimate ∆̃3
Ô

, which has previously been found
in Ref. [177] with a different approach, is the most restrictive bound if pure initial states
are considered. The other two estimates are useful for mixed states as both ‖ρ̂‖ and Tr[ρ̂2]
become small if the state ρ̂ is mixed. The advantage of ∆̃2

Ô
is that the quantity Tr[ρ̂2] is

independent of the basis whereas one needs to know all eigenstates and eigenvalues of Ĥ
in order to calculate deff . The bound ∆̃1

Ô
is more restrictive than ∆̃2

Ô
, ∆̃3

Ô
, and previously

found estimates [176, 178], if
deff ‖ρ̂‖2 rank Ô ≤ 1 . (6.12)

This is the case if the rank of Ô is small while the mixture of the initial state ρ̂ is high,
since deff scales as d for very mixed states while ‖ρ̂‖2 scales as d−2.

Generalization to finite times

So far we have focused on the behavior of the TAWD for long times. However, according
to Eqs. (6.6) and (6.7), we can even give estimates for finite times provided that one can
bound the time-dependent part δÔ(t). As we have discussed, δÔ(t) is at least decaying as
t−1 in the long-time limit. In a recent analysis, L. P. Garćıa-Pintos and coworkers [182]

4For instance, although each eigenvalue En = h̄ω(n + 1
2 ) of a one-dimensional harmonic oscillator is

non-degenerate, the gap h̄ω is infinite-times degenerate.
5The rank of a hermitian matrix equals the number of its non-zero eigenvalues.
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have derived many interesting properties of the TAWD. Among other things, the authors
have bounded the time dependent part of the TAWD by δÔ(t) ≤ L

t for all times, where
L is a constant that dependents on ρ̂, Ĥ, and Ô. Thus, we can estimate the variance of
expectation values around the long-time average Tr[ω̂Ô] within any time interval [t, t+∆t]
by

VarÔ(t,∆t) ≤ 〈DÔ〉t ≤
L

t
+ min

i
∆̃i
Ô
. (6.13)

The infinite-time bounds ∆̃i
Ô

are given in Eqs. (6.9) to (6.11). If one of the ∆̃i
Ô

is a small
number and Ô is a two-outcome measurement, then the system will equilibrate in the
way defined in Section 6.2. In that sense, ∆̃i

Ô
gives an estimate for the ability of a closed

quantum system to equilibrate. Regardless of a specific notion of equilibration, the above
bounds always estimate the variances of observables in any closed system.

6.4. Application to spin models
6.4.1. Definition of the model
In this section, we apply the general concepts of equilibration explained above to the
dynamics of an electron spin in a QD. This allows us to show the physical significance of the
above ideas for experiments. Besides the hyperfine interaction (HI) defined in Eq. (1.28)
between the electron spin and the nuclear spins, we consider an external magnetic field,
which is commonly used to split the Zeeman levels of the spins according to Eqs. (1.9)
and (1.10). For convenience, we measure all spin operators in the reference frame defined
by the graphene plane such that β = 0 and (x, y, z) coincides with (x′, y′, z′) in Fig. 1.5.
By means of isotopic purification, it is possible to manipulate the number of nuclear spins
present in the QD, which in turn allows to probe the influence of the system size on
our bounds in Eqs. (6.9) to (6.11). In the following, we are especially interested in how
the nuclear spins will equilibrate the electron spin. Since the observables of the electron
spin Ŝx,y,z all have two outcomes, the distinguishability and the weak distinguishability
are equivalent according to Eq. (6.5). The saturation of the expectation values of spin
operators, hence, corresponds to the equilibration of the full system—given that they are
the only accessible measurements.

After these general considerations, let us introduce the total Hamiltonian Ĥ = ĤHI +
ĤZE describing our model in more detail. Although our qualitative results are independent
of this choice, we choose a graphene QD as a reference in order to benefit from the results
of Chapter 5. Then, the HI Hamiltonian is given by

ĤHI =
K∑
k=1

Ak [Ŝz Îk,z −
1
4(Ŝ+Îk,− + Ŝ−Îk,+)] (6.14)

according to Eq. (1.28), where the coupling constants are defined in Eq. (1.24). The
strongest HI coupling AK defines the characteristic time τKHI = h̄/AK . Whenever we av-
erage over different initial conditions, we maintain a maximum ratio of Ak/Aj < 100 for
all k, j. For qualitative results, we present the results for an exemplary set of coupling
constants as we have found similar results for many randomly generated sets of coupling
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constants. The effect of an external magnetic field Bz is described by the Zeeman Hamil-
tonian

ĤZE = ASZEŜz +AIZE

K∑
k=1

Îk,z = bAK (Ŝz −
1
κ

K∑
k=1

Îk,z) , (6.15)

where b = ASZE/AK is the electron Zeeman splitting in units of the strongest HI coupling
and κ = ASZE/A

I
ZE is the ratio of the electron and nuclear Zeeman energies, which is

κ ≈ 2.5× 103 for graphene.
Besides the Hamiltonian, the time evolution of observables depends on the initial state

ρ̂. In the following, we choose a product state ρ̂ = ρ̂S⊗ ρ̂nuc, where ρ̂S = |ψS〉〈ψS | and ρ̂nuc
describe the initial states of the electron and nuclear spins, respectively. The absence of
entanglement between the electron spin and the nuclear spins is plausible since the initial
state of the electron spin can be experimentally well prepared in a pure (polarized) state as
described in Section 1.3.3. The nuclear spins, however, will on average be in an unpolarized
state if no further efforts are undertaken in an experiment. Since experimentally relevant
temperatures are on the order of mK to K [9, 24], the thermal energy exceeds all other
energy scales of the nuclear spins by far. In order to follow the time evolution of the
electron spin, however, many repetitions of the experiment are needed. Since each of
these runs start with a different initial state due to the thermal fluctuations, the nuclear
spin state can be described by a totally mixed state ρ̂nuc = 1/2K on average. However,
the nuclear spin state can be also manipulated by means of dynamical nuclear polarization
(DNP) and state narrowing (SN), cf. Section 1.3.3, which allow to significantly polarize
the nuclear spins and to change the composition of their initial state. Motivated by these
experimental possibilities, we additionally investigate the effect of polarized initial states
of the nuclear spins.

With both, the Hamiltonian and the initial state given, the time evolution of the density
matrix and, hence, of every observable in the system can be calculated by exact diagonal-
ization as described in Section 2.2.1, which is performed using the EIGEN [169] package
for C++.

6.4.2. Spin dynamics

Once the time evolution of an observable is known, its variance, the weak distinguishability
and the TAWD defined in Sec. 6.2 are readily calculated. This enables us to demonstrate,
that the TAWD indeed bounds the variances of an observable. As an example, we show
the evolution of 〈Ŝx〉(t) in Fig. 6.2. At times t ∼ τKHI, the initially polarized electron spin
begins to oscillate with decreasing amplitude around its long-time average 〈Sx〉∞ ≈ 0.
The square root of the weak distinguishability

√
〈DŜx

〉t bounds the standard deviation
of 〈Ŝx〉(t) as predicted at all times. At large times, the TAWD 〈DŜx

〉t saturates at a
finite value whose size corresponds to the quantum fluctuations in our finite model. As
explained above, the TAWD in turn can be bounded itself by the analytical expression
given in Eq. (6.13). For finite times, this bound decays with O(t−1), while it saturates at
∆̃2
Ŝx

given in Eq. (6.10) for large times. For the parameters chosen in Fig. 6.2, we find
∆̃2
Ŝx

= 2−(K+1), where we have used Eq. (6.10) with NG = 1, Tr[ρ̂2] = d
2(2
d)2, ‖Ŝx‖2 = 1

4 ,
and d = 2K . Remarkably, already for K = 6 nuclear spins, this long-time estimate yields
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Figure 6.2. The time evolution of the electron spin component 〈Ŝx〉(t) and its long-time average
〈Ŝx〉∞. We use a magnetic field b = 1

4 and K = 6 nuclear spins with random coupling constants.
Initially, the electron spin is maximally polarized in x-direction while the nuclear spins are in the
totally mixed state. The square root of the TAWD

√
〈DŜx

〉t bounds the standard deviation of
〈Ŝx〉(t) for all times and converges to it for large times. The apparent increase of the fluctuations
is a consequence of the logarithmic presentation of the data, which highlights large spikes. For
comparison, we plot the analytically derived bounds given in Eq. (6.13) and Eq. (6.10). All
quantities are dimensionless. Figure adapted with permission from Ref. [173]. c©2015 American
Physical Society. All rights reserved.

a very sharp upper bound on the standard deviation of fluctuations of the signal.
As explained above, the properties of the TAWD and its bounds depend on the Hamil-

tonian of the system. Thus, one should test how different Hamiltonians alter the equili-
bration. In a QD, the easiest way to change the Hamiltonian is to modify the external
magnetic field. By varying b over approximately two orders of magnitude, we sweep from
a situation in which the electron spin couples most strongly to the nuclear spins to a
scenario where the Zeeman coupling is dominant. In Fig. 6.3, we compare the TAWDs of
Ŝx and Ŝz for different b. For both spin components, we observe that equilibration sets
in approximately at the time τKHI and reduces the initial values of the TAWDs roughly by
two orders of magnitude for all values of b. As we discuss later, the size of this reduction
depends on the number of nuclear spins. In fact, even high values of b cause only Lamor
oscillations of Ŝx at small times τSZE ∝ b, but do not change the overall equilibration be-
havior. Besides this, the only effect of large magnetic fields is a reduced initial value of
the TAWD for Ŝz. This can be understood as follows. As the electron spin is initially
fully polarized parallel to a strong magnetic field, its initial state is almost fully preserved,
since the flip-flop terms of the HI are suppressed due to the large Zeeman splitting of the
electron spin states. In other words, the electron is initially approximately in an eigenstate
of the total Hamiltonian for strong external magnetic fields. Hence, ρ̂ is already initially
close to ω̂ and, as a consequence, indistinguishable from ω̂ by means of Ŝz. Similar ef-
fects can be found for polarized states, which we approximate by a Gaussian distribution
of states characterized by a mean polarization p̄ and a standard deviation σp. First, we
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Figure 6.3. The TAWD as a function of time for different external magnetic fields b in z-direction
for a) Ŝx and b) Ŝz. The electron spin is initially polarized in x- and z-direction, respectively.
Apart from that, the same parameters as in Fig. 6.2 have been used. a) All TAWDs start with the
same value and show oscillations on a timescale τSZE ∝ b. The actual equilibration starts at τKHI.
b) The TAWDs start with a different value for different b. The equilibration due to the HI also
starts at τKHI. Figure reprinted with permission from [173]. c©2015 American Physical Society. All
rights reserved.

118



6.4. Application to spin models

10-5

10-4

10-3

10-2

10-1

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

Figure 6.4. Dependence of the weak distinguishability on the mean polarization p̄ of the nuclear
spin bath for a distribution of states with standard deviation σp = 0.3. Both the initial weak
distinguishability DŜz

(0) and its long-time average 〈DŜz
〉∞ decrease for a larger polarization.

However, their ratio 〈DŜz
〉∞/DŜz

(0) increases as a function of p.

have fixed σp = 0.3 and varied the mean polarization between p = 0 and p = 0.75 for
a system containing K = 6 nuclear spins as shown in Fig. 6.4. Since the initial states
approach eigenstates of the total Hamiltonian for increasing polarization, we observe a
decreasing initial distinguishability DŜz

(0). Due to the HI, the TAWD 〈DŜz
〉∞ saturates

again around a value, which is about two orders of magnitude smaller than its initial
size. For larger polarizations this reduction becomes smaller, since the HI spin flip-flops
become less effective. These findings are consistent with a smaller effective dimension deff
of polarized initial states in Eq. (6.11). Analogous simulations with standard deviations
in an interval 0.15 < σp < 0.75 show no significant differences to these observations.

6.4.3. Dependence on the size of the nuclear spin environment

We finally want to address the question how many nuclear spins are required in order to
treat them effectively as a large environment. By adding more and more nuclear spins, no
sudden change is observed but the fluctuation of spin components of the electron decrease
exponentially with the number of nuclear spins, cf. Fig. 6.5.

The numerically obtained values of the long-time TAWD are about one order of mag-
nitude smaller than the presented bound ∆̃2

Ŝz
. Fig. 6.5 also suggests that quantum fluc-

tuations may decrease even faster with increasing system size than our analytic bounds
require. Note that this K-dependence of the equilibration properties is not limited to
mixed states only. Reconsidering the data obtained in Chapter 5, we have calculated the
effective dimension for these randomly chosen pure initial states. For these states, it scales
approximately with deff ∼ d/2 = 2K . According to ∆̃3

Ŝz
∝ d−1

eff = 2−K given in Eq. (6.11),
this dependence also gives rise to an exponential decay of 〈DŜz

〉∞, which is confirmed
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by the results of Chapter 5. As discussed by Reimann [178], the effective dimension of
almost all states grows exponentially with the size of the system. Hence, such a decay
is a rather generic result, which can be understood as follows. If we add a nuclear spin
to the system, we double both the size of the Hilbert space and the number of energies
driving the dynamics of the electron spin, which finally leads to the observed reduction of
fluctuations.

We can indeed generalize these findings to other quantum systems that differ from our
model, e.g., a central spin model with isotropic hyperfine interaction or even more distinct
models like spin chains. Assuming that the effective dimension deff ∼ d scales exponentially
with the number K of nuclear spins, we can use Eq. (6.11) to find the number K̃ of nuclear
spins that is sufficient to reduce the fluctuations of the electron spin below resolution of
the measurement apparatus. If we set deff = c d, this number is given by

K̃ ≥ log2

(
NG‖O‖2

1
c

1
r2

)
, (6.16)

where c ∈ R. Interestingly, it increases only logarithmically with the inverse resolution 1/r.
For instance, assuming a resolution r = 0.01 of the measurement of the electron spin and
an initial state far away from an energy eigenstate (c→ 1), the electron spin components
equilibrate in any quantum model with (almost) non-degenerate gaps (NG = O(1)) if the
electron is coupled to more than 11 bath spins. As our model demonstrates, even less
bath spins K̃ ≈ 7 are capable of equilibrating the electron spin components below this
resolution in experimentally relevant scenarios.

6.5. Discussion and conclusion
In summary, we have shown how a general theory on equilibration can be applied to a
realistic closed quantum system. We have introduced a specific understanding of equilibra-
tion relevant for our system under consideration and analyzed its properties by analytical
calculations. Afterwards, we have applied this concept to a model of electron and nuclear
spins in a solid state QD, which we have investigated by numerical simulations.

A system is assumed to be in equilibrium, if an observer cannot distinguish, for most
times, between the actual state of the system and its equilibrium state using a finite set
of measurements. Notably, two observers with different measurement sets could come to
different conclusions. This equilibrium state is not necessarily a thermal state since it can,
for instance, depend on the initial state of the system. The distinguishability between
the state of the system and its equilibrium state can be quantified by a suitable “measure
of distance”. We consider the so-called weak distinguishability which vanishes whenever
the system is in equilibrium. For two-outcome measurements, we have been able to show
that a saturation of the corresponding expectation values is equivalent to equilibration.
Furthermore, we have demonstrated how the variance of a time-dependent observable can
be bounded by this weak distinguishability, which has allowed us to connect this abstract
mathematical function to an experimentally measurable quantity. We have also derived
three different bounds for the time-averaged weak distinguishability and thereby recovered
one previously known bound by means of a new method [176]. We have therefore been
able to predict upper limits to the size of fluctuations in small closed quantum systems.
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Figure 6.5. Dependence of the long-time TAWD for the observable Ŝz on the number of nuclear
spins K. We approximate 〈DŜz

〉∞ by 〈DŜz
〉t∈I , where I = [τ, τ + ∆τ ] is a time interval with

τ � ∆τ � τKHI. The numerical data is compared to the analytical bound ∆̃2
Ŝz

(solid line) given
in Eq. (6.10). The fit (dashed line) suggests a 〈DŜz

〉∞ ∼ 2−1.2K dependence. We average over at
least 100 (40 for K = 10) sets of random coupling constants |φk|2 and show the mean value with
the standard deviation as blue points. Besides a magnetic field of b = 0.05, we use the totally
mixed state for nuclear spins but polarize the electron spin in z direction. Figure reprinted with
permission from [173]. c©2015 American Physical Society. All rights reserved.

Applying our analytical results to a QD setup in which an electron spin is coupled to
nuclear spins of the host material through the hyperfine interaction enables us to make
precise predictions. Since this spin system is typically well isolated from its environment,
QDs can be considered as a closed quantum system for sufficiently short timescales. We
have simulated the time evolution of the total spin system and have analyzed its depen-
dence on experimentally accessible parameters such as the strength of an external magnetic
field and the polarization of the initial state of the nuclear spins. Intriguingly, we have
discovered cases in which strong magnetic fields do not prevent the electron spin from
equilibration, while polarized nuclear spins always diminishes the equilibration capability.
Finally, we have also investigated the importance of the number of nuclear spins on equi-
libration properties. We show both analytically and numerically that very small amounts
of nuclear spins are sufficient to fully equilibrate the electron spin in our model. The
analytical results even hold for a wider class of spin models, and, thus are not limited to
our specific model.
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The investigation of the physics of the electron spins hosted in solid state QDs is a very
active and promising field of physics. While its long-term goal is beyond doubt the real-
ization of a working quantum computer, the findings reported in this Thesis also suggest
that it may be beneficial to broaden our view to the interesting developments made aside
from this main route.

Our first discovery is a thermally induced flip of the electron spin in a QD. This in-
triguing effect arises from an interesting interplay between the HI of the electron spin
with the nuclear spins of the host material and the Zeeman interaction of these spins with
an external magnetic field. Starting from the system’s ground-state, the electron spin
suddenly flips upon increasing the temperature. The specific temperature of this spin flip
is a constant, which depends on material-specific properties. Relevant materials include
group III-V based structures, which all exhibit a negative effective g-factor g∗. Since the
spin flip temperatures lie in the mK regime for these materials, we are confident about
a detection of our predictions in the near future. While this result has been obtained in
the framework of statistical equilibrium physics, all of our other results have been realized
analyzing the dynamics of the spins.

As we have explained in detail in the first part of this Thesis, group IV based materi-
als such as graphene feature several specific properties in comparison to the widely used
GaAs heterostructures. In particular, graphene allows for the realization of a variable
number of nuclear spins within the QD and, thus, for a change of the relevance of the
HI, which is, oftentimes, the major source of decoherence of the electron spin. Moreover,
this HI is anisotropic in graphene arising from the peculiarities of its electronic band-
structure. Motivated by these possibilities, we have studied the dynamics of the electron
spin in different setups, which are characterized by the number of involved nuclear spins
and the presence and strength of an external magnetic field. In our first project on spin
dynamics, we have analyzed the consequences of this anisotropy on the coherence of the
electron spin in the limit of large external magnetic fields and a large number of nuclear
spins. This choice generalizes previous results considering an isotropic HI to the case of
an anisotropic HI. Due to the slow internal dynamics of the nuclear spins, the system
is non-Markovian, which can be analyzed using the Nakajima-Zwanzig master equation.
Following this scheme, we have recovered the power-law decay of the coherence reported
before arising from this non-Markovian dynamics. In contrast to the isotropic case, how-
ever, we have revealed a strong dependence of the details of this decay on the orientation of
the external magnetic field with respect to the plane of graphene. In a subsequent project,
we have investigated a contrary regime characterized by a very small number of nuclear
spins and small or even absent external magnetic fields. Due to the small size of the total
spin system, we have been able to exploit exact diagonalization, which has provided us
additional insights into the microscopic processes dominating the dynamics of the electron
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spin. In particular, it has been possible to study the importance of initial states and the
coupling of individual nuclear spins to the electron spin. In this context, we have also
observed a strong tendency of the electron spin to exhibit a quasi stationary behavior
characterized by small fluctuations around its long-time average value. This equilibration
has been reached in most cases by a fast decay of its amplitude. This observation has
been the starting point for our last project. Extending the numerical investigations to a
more general setup including finite magnetic fields and thermal initial states of the nuclear
spins, we have obtained a more complete picture of this quasi equilibration. Furthermore,
we have achieved the formulation of analytical bounds for the size of the fluctuations of
the electron spin in the framework of quantum thermodynamics. Interestingly, already a
comparably small number of nuclear spins is sufficient to induce this equilibration, as we
have verified by a comparison of our numerical and analytical results. By this procedure,
we have successfully applied a rather abstract concept from quantum thermodynamics to
a realistic system.

With these theoretical findings in mind, let us briefly comment on the current ex-
perimental situation of graphene based QDs. While certain steps towards graphene QDs
competing with GaAs QDs have been taken, there remain major problems yet to be solved,
which hamper further progress. Most importantly, neither single electron occupation nor
the Pauli blockade regime have been achieved so far. While the single electron regime is
essential to study the effects of the HI on the electron spin dynamics, the Pauli blockade
regime provides one of the best tools to actually measure the electron spin. Hopefully,
these challenges will be overcome in the next years, but, nonetheless, other materials
should also be considered in the future. Fortunately, other elements of the fourth group of
the periodic table are available to create QDs with a variable number of nuclear spins. In
our opinion, the most promising material is silicon, which offers a large variety of different
realizations of QDs and the (dis)advantage of an isotropic HI. Most importantly, the oc-
cupation of QDs with a single electron and the readout of its spin via Pauli blockade have
already been successfully demonstrated. In summary, the realization of QDs featuring a
single electron spin in contact with a variable nuclear spin environment can in fact be
experimentally realized. However, it is certainly beneficial to consider the peculiarities of
other materials than just graphene, e.g., silicon.

Based on these experimental possibilities, it would be most interesting to study the evo-
lution of the electron spin dynamics under a continuous change of the number of nuclear
spins. To this end, the regime of nuclear spin environments of intermediate size should
be additionally studied. For this task, a twofold strategy seems most promising, which
includes an extension of the numerical analysis to larger spin systems. Since the computa-
tional effort of the exact diagonalization grows exponentially with the number of nuclear
spins, other numerical methods such as the Suzuki-Trotter approach and the Chebyshev
expansion could be considered. Moreover, these numerical studies have to be accompanied
by further analytical work. As a starting point, it should be investigated how our ana-
lytical results can be extended to an intermediate number of nuclear spins. However, the
Nakajima-Zwanzig master equation is mathematically demanding due to the convolution
in its non-unitary part. Further, this master equation does not allow for an expansion
in terms of simple diagrams representing important microscopic processes. Hence, other
analytic methods such as the time-convolutionless master equation [145] or cluster expan-
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sions [187, 188] could, for instance, be considered. These additional tools would most likely
also allow us to better explore the long-time behavior of the electron spin interacting with
many nuclear spins. In the case of GaAs, theory predicts the restoration of Markovian
dynamics on longer timescales. Analytical results on the long-time dynamics of the elec-
tron spin would also certainly promote the formulation of time-dependent bounds on the
fluctuation of the electron spin, which is the next step towards a deeper understanding of
these dynamics in terms of quantum thermodynamics.

In addition to the electron spin dynamics, future research might also consider the nuclear
spins as a resource rather than an obstacle. In parts, the community interested in GaAs
based QDs has already undergone such a change of paradigm. However, with the reduction
of the environment to only few nuclear spins, a more directed manipulation of the nuclear
spin states becomes possible [113, 189]. With the additional possibility to control the
strength of the HI via the probability density of the electron spin, at least to some extent,
group IV based QDs seem very promising in this regard. In this sense also other spin
related physics such as many body localization could be explored in QDs in the future.
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A. Thermal electron spin flip for the
extended Hamiltonian

A.1. Properties of the extended Hamiltonian
In this section, we briefly discuss the properties of the extended Hamiltonian Hα ≡
Ĥ(σ, ν, α) given in Eq. (3.7). Since all nuclear spins couple with the same strength to
both the electron spin and the external magnetic field, the Hamiltonian is invariant under
an exchange of two nuclear spins

X̂i,j |mS ,mK , . . . ,mi, . . . ,mj , . . . ,m1〉 = |mS ,mK , . . . ,mj , . . . ,mi, . . . ,m1〉 , (A.1)

where X̂i,j = X̂j,i, X̂i,j = X̂†i,j and X̂2
i,j = 1. This invariance is formally described by the

vanishing commutator

[Ĥ, X̂i,j ] = 0 ∀ i, j ∈ {1, 2, . . . ,K} . (A.2)

Moreover, we want to analyze how the Hamiltonian behaves under a total flip of all spins

F̂ |mS ,mK , . . . ,m1〉 = |−mS ,−mK , . . . ,−m1〉 , (A.3)

where F̂ 2 = 1 and F̂ † = F̂ . Applying this operator to the Hamiltonian yields

F̂ Ĥ(σ, ν, α)F̂ † = Ĥ(−σ,−ν, α) , (A.4)

since the Zeeman part of the Hamiltonian changes its sign and the HI interaction is
invariant under a total flip of all spins. Finally, the Hamiltonian commutes with the
z-component of the total spin Ŝz +

∑
k Îk,z ≡ Ŝz + Ĵz, where we have introduced the

total nuclear spin Ĵ =
∑
k Îk. Due to this last property, it is convenient to represent the

extended Hamiltonian in the basis of product states between the electron spin and the
total nuclear spin |mS〉 ⊗ |J,MJ , {qi}〉 = |mS , J,MJ , {qi}〉, in which it has a simple block-
diagonal structure. The additional quantum numbers {qi} are related to the corresponding
Clebsch-Gordon coefficients. These quantum numbers qi = qi({Ik}Kk=1) depend on the
quantum numbers Ik of the original states |Ik,mk〉. Thus, these states form an orthonormal
basis with

〈mS , J,MJ , {qi} |m′S , J ′,M ′J , {q′i}〉 = δmS ,m′SδJ,J
′δMJ ,M

′
J
δ{qi},{q′i} , (A.5)

where both sets of quantum numbers {qi} and {q′i}, respectively, have to be equal in all
elements as indicated by the “δ” symbol. Since the Hamiltonian is degenerate in these
quantum numbers, we will use the shorthand notation |J,MJ〉 for the nuclear spin state
whenever it is appropriate.
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A.2. Diagonalization of the extended Hamiltonian
In this section, we show how the extended Hamiltonian Hα ≡ Ĥ(σ, ν, α) in Eq. (3.7) can
be diagonalized [154, 155, 156, 157]. Ordering the product states |mS , J,MJ〉 defined in
the previous section properly,

|12 ,
K
2 ,

K
2 〉 , |−

1
2 ,

K
2 ,

K
2 〉 , |

1
2 ,

K
2 ,

K
2 − 1〉 , |−1

2 ,
K
2 ,

K
2 − 1〉 , . . . , |−1

2 ,
K
2 ,−

K
2 〉 ,

|12 ,
K
2 − 1, K2 − 1〉 , |−1

2 ,
K
2 − 1, K2 − 1〉 , . . . , |−1

2 ,
K
2 − 1,−K

2 + 1〉 ,
...

|12 ,
K mod 2

2 ,−K mod 2
2 〉 , |−1

2 ,
K mod 2

2 ,−K mod 2
2 〉 ,

(A.6)

this yields a block-diagonal representation of the Hamiltonian, where the blocks are of
dimension 1 or 2. In this basis, all diagonal entries of the Hamiltonian are formed by the
energies

E1(σ, ν,MJ ,mS) = 〈mS , J,MJ |H(σ, ν, α)|mS , J,MJ〉
= −σmS − νMJ + 2mSMJ , (A.7)

where mS = 1/2,−1/2. The states |1/2, J, J〉 and |−1/2, J,−J〉 are already eigenstates
of the Hamiltonian, and, hence the corresponding energies constitute the one-dimensional
blocks. The off-diagonal parts of the two-dimensional blocks are given by

F (J,MJ) = 〈−1
2 , J,MJ |H(σ, ν, α)|12 , J,MJ − 1〉

=
√
J(J + 1)−MJ(MJ − 1) (A.8)

Thus, the eigenenergies and eigenstates of the two-dimensional blocks are obtained by
diagonalizing the 2× 2 matrices

H2(σ, ν, α, J,MJ) = E1(σ, ν,MJ ,−1
2) αF (J,MJ)

αF (J,MJ) E1(σ, ν,MJ − 1, 1
2)

 . (A.9)

The eigenenergies of the 2× 2 matrix in Eq. (A.9) are, then, given by

E2,±(σ, ν, α, J,MJ)

=1
2
[
E1(σ, ν,MJ ,−

1
2) + E1(σ, ν,MJ − 1, 1

2)
]

±
{[
E1(σ, ν,MJ ,−

1
2)− E1(σ, ν,MJ − 1, 1

2)
]2

+ 4α2F (J,MJ)2
} 1

2

(A.10)

The eigenstates of this matrix are given by

|E2,±(σ, ν, α, J,MJ)〉 = η
1
2
±(σ, ν, α, J,MJ)|12 , J,MJ − 1〉

+ η
− 1

2
± (σ, ν, α, J,MJ)|−1

2 , J,MJ〉 , (A.11)
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where all coefficients ηmS± are real. With this relation, we know all eigenenergies and
eigenstates of the total Hamiltonian. For later convenience, we invert the above relation in
order to obtain a representation of the total spin basis states in terms of energy eigenstates:

|−1
2 , J,MJ〉 = γ

− 1
2

+ (σ, ν, α, J,MJ))|E2,+(σ, ν, α, J,MJ)〉

+γ−
1
2
− (σ, ν, α, J,MJ))|E2,−(σ, ν, α, J,MJ)〉 (A.12)

and

|12 , J,MJ〉 = γ
1
2
+(σ, ν, α, J,MJ + 1))|E2,+(σ, ν, α, J,MJ + 1)〉

+γ
1
2
−(σ, ν, α, J,MJ + 1))|E2,−(σ, ν, α, J,MJ + 1)〉 , (A.13)

respectively.

A.3. Calculation of the partition function

In this section, we calculate the partition function Z = Tr[e−βĤα ] of the extended Hamil-
tonian Ĥα ≡ Ĥ(σ, ν, α) in Eq. (3.7). Since the Hamiltonian is invariant under an exchange
of two nuclear spins, the trace can be written as

Z =
∑
mS

K
2∑

MJ=−K2

NK
MJ
〈mS ,ΨMJ

|e−βĤα |mS ,ΨMJ
〉 , (A.14)

where the nuclear spin state is given by

|ΨMJ
〉 = |−1

2 , . . . ,−
1
2︸ ︷︷ ︸

K
2 −MJ

,
1
2 , . . . ,

1
2︸ ︷︷ ︸

K
2 +MJ

〉 (A.15)

and NK
MJ

is defined in Eq. (3.18). In order to benefit from previous results [156, 157],
which have been obtained for MJ ≥ 0, we additionally use the effect of a total flip of
all spins F̂ |mS ,ΨMJ

〉 = |−mS ,Ψ−MJ
〉 and F̂ Ĥ(σ, ν, α)F̂ † = Ĥ(−σ,−ν, α). Thus, the

partition function can be expressed by

Z =
∑
mS

[ K
2∑

MJ=K mod 2
2

NK
MJ
〈mS ,ΨMJ

|e−βĤ(σ,ν,α)|mS ,ΨMJ
〉

+
K
2∑

MJ= 1−K mod 2
2

NK
MJ
〈mS ,ΨMJ

|e−βĤ(−σ,−ν,α)|mS ,ΨMJ
〉
]
. (A.16)

Next, we replace the states |mS ,ΨMJ
〉 by the states |mS , J,MJ〉. For spin one-half parti-

cles, this replacement [156, 157] is given by

|mS ,ΨMJ
〉 =

K
2 −MJ∑
k=0

∑
{qi}

c
{qi}
k |mS ,

K

2 − k,MJ , {qi}〉 (A.17)
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A. Thermal electron spin flip for the extended Hamiltonian

where the coefficients c{qi}k obey the following relation

∑
{qi}
|c{qi}k |2=

(K2 −MJ)! (K2 +MJ)! (K − 2k + 1)
(K − k)! k! (K − k + 1) ≡ dk (A.18)

The states |1/2,MJ ,MJ , {qi}〉 are already eigenstates of the Hamiltonian. Moreover, the
state |−1/2, 0, 0, {qi}〉 is also an eigenstate. All other remaining states can be expressed in
terms of eigenstates of the Hamiltonian according to Eqs. (A.12) and (A.13). With this,
we have calculated the partition function Z = Z(σ, ν, α,K), which allows us to find the
thermal expectation value of the electron spin according to Eq. (3.12). In order to confirm
that there is still a spin flip in the presence of the flip-flop terms, we have calculated this
thermal expectation value for up to K = 60 nuclear spins. In Fig. 3.3 a), we show the
electron spin at zero temperature. Clearly, the flip-flop terms reduce the polarization of
the electron spin for small system sizes. For larger K, the thermal expectation value 〈Ŝz〉0,
however, tends to the same value as without the flip-flop terms. In the next section, we
analytically show, that 〈Ŝz〉0 = −1

2 is exactly reached for large system sizes. Moreover,
we have analyzed the maximum value of the electron spin 〈Ŝz〉2/ρ, which is approximately
found at τ = 2

ρ , cf. Fig. 3.1. As is clear from Fig. 3.3 b), this quantity tends to 〈Ŝz〉2/ρ = 1
2

for a large number of nuclear spins K. Note, that also for α = 0, this quantity is a
function of K. Since the quantum fluctuations due to the flip-flop terms are already at zero
temperature irrelevant for large system sizes, it is evident that they are also unimportant
at higher temperatures.

A.4. Ground state of the Hamiltonian
In this section, we want to find the ground state of the extended Hamiltonian with α = 1.
To this end, we first find the minimum of the energies E2,−(σ, ν, 1, J,MJ) for a fixed J with
respect to MJ . From this set of minima, we then find the smallest energy with respect to
J . Finally, we compare this minimum to the energies E1(σ, ν, J,mS) resulting from the
one-dimensional sub-spaces of the Hamiltonian.

The minimum with respect to MJ for fixed J can be found by investigating the derivative

d
dMJ

E2,−(σ, ν, 1, J,MJ)

=− ν − σ − ν
[4J(J + 1)− 4MJ(Mj − 1) + (1− 2MJ − ν + σ)2]

1
2
, (A.19)

which is always negative for σ > ν > 0. Hence, the energy is a decreasing function of
MJ with its “local” minimum at MJ = J . In order to find the absolute minimum of
E2,−(σ, ν, 1, J, J), we analyze the derivative with respect to J , which is

d
dJ E2,−(σ, ν, 1, J, J) = −ν − 2− (1− 2J − ν + σ)

[8J + (1− 2J − ν + σ)2]
1
2
. (A.20)

For a nuclear Zeeman energy ν > 1, this derivative is negative for all values of J within
(K mod 2)/2 ≤ J ≤ K/2. As a consequence, the absolute minimum of E2,−(σ, ν, 1, J, J)
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is then given by

E2,−(σ, ν, 1, K2 ,
K

2 ) = 1
2[ν − 1−Kν −

√
4K + (1−K − νσ)] (A.21)

This minimum has to be compared to the minimum of the energies E1(σ, ν, J,mS) given
in Eq. (A.7). For σ > ν > 1, the minimum energy is found for mS = 1

2 and J = K/2 with

E1(σ, ν, K2 ,
1
2) = 1

2[−σ −Kν +K] , (A.22)

As we have shown in the main text, the spin-flip occurs if σ = Kρν with ρν < 1 and
ρ < 1. In this case, the minimum of the E2,− energies is given by

E2,−(σ, ν, 1, K2 ,
K

2 ) = 1
2[ν − 1−Kν −

√
4K + (1−K − νσ)]

≤ −K2 [ν + 1− ρν]

< −K2 [ν − 1 + ρν] = E1(Kρν, ν, K2 ,
1
2) (A.23)

Thus, the ground state energy is given by E2,−(σ, ν, 1, K2 ,
K
2 ). In order to find the ther-

mal expectation value of the electron spin at zero temperature, we have to calculate the
coefficients

η
− 1

2
− (Kρν, ν, 1, K2 ,

K

2 ) = r − s
t

1[
( r−st )2 + 1

] 1
2

(A.24)

and
η

1
2
−(Kρν, ν, 1, K2 ,

K

2 ) = 1[
( r−st )2 + 1

] 1
2
, (A.25)

where r = 1 − K − ν + Kρν, t = 2K
1
2 , and s = (r2 + t2)

1
2 . In the limit of large K,

η
− 1

2
− (Kρν, ν, 1, K2 ,

K
2 ) = 1 and η

1
2
−(Kρν, ν, 1, K2 ,

K
2 ) = 0 and, hence, also for α = 1 the

ground state exhibits 〈Ŝz〉0 = −1
2 .
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B. Matrix elements of the self-energy of the
Nakajima-Zwanzig equation

In this appendix, we discuss the computation of the self-energy matrix-elements given in
Eqs. (4.28) to (4.31) in more detail. We assume, that the nuclear magnetic field operators
ĝ± = 1

2

[
λ±ĥ+ + λ∓ĥ−

]
defined in Eq. (4.12) have already been inserted. Thus, all ma-

trix elements of the self-energy are linear combinations with prefactors depending on the
couplings λi. The respective summands always contain one super-operator G↑,↓, two bare
nuclear magnetic field operators ĥ±, and the nuclear density matrix ρ̂I = |n〉〈n|. Calcu-
lating expectation values with respect to the nuclear state |n〉, all summands featuring
squared operators ĥ2

± vanish identically, which reduces the number of contributions. In
the following, we will present, how the remaining expressions can be evaluated in a general
approach. For simplicity, we will neglect the prefactors in the following presentation.

Due to the linearity and the cyclicity of the trace, all self-energy parts in second order
can be written as a linear combination of terms of the form

TrI ( ρ̂I) , (B.1)

where the free spots can be filled with one raising operator ĥ+, one lowering operator
ĥ−, and one of the two super-operators G↑,↓(L−) given in Eq. (4.32). Altogether, this
leads to 3× 2× 2 = 12 possible combinations. This number can be reduced by using the
relation [147] of Liouvillian-like operators:

TrI
(
f [L±]Ô1Ô2

)
= TrI

(
Ô1f [±L±]Ô2

)
(B.2)

for arbitrary operators Ô1,2 and a function f [L±], which can be expanded in powers
of (anti-)commutators L− (L+). Therefore, moving G↑,↓ (L−) to a neighboring position
involves a change of sign of its argument L− → −L−. As a consequence of this, it is
sufficient to calculate the following trace TrI(G↑,↓ĥ±ĥ∓ρ̂I), which gives rise to sums over
expectation values with respect to nuclear eigenstates |q〉 =

⊗
k|m

q
k〉:

TrI
(
Giĥ±ĥ∓ρ̂I

)
=
∑
p,q,r

〈p|Gi
{
|q〉〈q|ĥ±|r〉〈r|

}
ĥ∓|n〉〈n | p〉

=
∑
q,r

〈n|Gi
{
|q〉〈r|

}
〈q|ĥ±|r〉ĥ∓|n〉

=
∑
q,r

[
Gi
]
qr
〈q|ĥ±|r〉〈n | q〉〈r|ĥ∓|n〉

≡
∑
r

[
Gi
]
nr

[
ĥ±
]
nr

[
ĥ∓
]
rn

, (B.3)

133



B. Matrix elements of the self-energy of the Nakajima-Zwanzig equation

As we explain in the main text, we assume the nuclear Zeeman energy to be sufficiently
small such that we can neglect AIZE from now on. Using Eq. (4.32), one can calculate the
expectation values of these super-operators:[

G↑,↓ (βL−)
]
nr

=
{
s+ iα↑,↓β

λz
2
∑
k

Ak (mn
k −mr

k)
}−1

, (B.4)

where α↑,↓ = ±1 and β = ±1. The factor λz is the anisotropy coefficient in z-direction.
Next, we calculate the magnetic field expectation values, where we begin with the action
of a local operator Îk,± at an arbitrary site k in order to simplify later steps:

Îk,±
⊗
l

|mq
l 〉 =

√
I(I + 1)−mq

k(m
q
k ± 1)|mq

k ± 1〉 ⊗
⊗
l 6=k
|mq

l 〉

≡M±(mq
k) |m

q
k ± 1〉

⊗
l 6=k
|mq

l 〉 , (B.5)

We introduced the shorthand notation M±(mq
k), which obeys the relation M±(mq

k ∓ 1) =
M∓(mq

k). Note, that only one single nuclear spin state was changed by the action of Îk,±
while all other states remain unchanged. Using the above equation, one can calculate the
expectation value of the nuclear magnetic field operators ĥ± with respect to eigenstates
|p〉, |q〉 of the ĥz-component:

〈p|ĥ±|q〉 =
[
ĥ+
]
pq

= 〈p|
∑
k

AkÎk,±
⊗
p

|mq
p〉

=
∑
k

AkM±(mq
k) 〈p|

{
|mq

k ± 1〉 ⊗
⊗
p 6=k
|mq

p〉
}

=
∑
k

AkM±(mq
k)
{⊗

l′

〈mp
l′ |
}{
|mq

k ± 1〉 ⊗
⊗
l 6=k
|mq

l 〉
}

=
∑
k

AkM±(mq
k) δmpk,mqk±1

∏
l,l′ 6=k

δmp
l′ ,m

q
l
. (B.6)

This equation completely sets the relation between the two sets of product states
{
m
p/q
l

}
with l ∈ {1, . . . ,K}. Inserting this result in Eq. (B.3), we find:∑

r

[
G↑,↓ (βL−)

]
nr

[
ĥ±
]
nr

[
ĥ∓
]
rn

=
{
s+ iα↑↓β

λz
2
∑
k1

Ak1

(
mn
k1 −m

r
k1

) }−1

×
{∑

k2

Ak2M±(mr
k2) δmn

k2
,mr

k2
±1

∏
l,l′ 6=k1

δmn
l′ ,m

r
l

}
×
{∑

k3

Ak3M∓(mn
k3) δmr

k3
,mn

k3
∓1

∏
l̃,l̃′ 6=k3

δmr
l̃′
,mn

l̃

}

=
∑
k2

A2
k2
M2
∓(mn

k2
)

s± iα↑↓β λz2 Ak2

. (B.7)

The functions M2
±(mn

k) defined in Eq. (B.5) can be replaced by their average assuming a
nuclear state which is highly degenerate [76, 152]:

〈〈M2
±(mn

k)〉〉 = c± . (B.8)
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Finally, for a large nuclear spin system with K � 1, the remaining sums in Eq. (B.7)
can be replaced by integrals in the continuum limit. Changing to dimensionless units by
measuring energies in units of εHI = |λz|nIAHI/2K, one finds up to small corrections [76]:

TrI
(
G↑,↓ (βL−) ĥ±ĥ∓ρ̂I

)
= 4K

λ2
z

c∓I∓{α↑↓βλ̃z}(s) , (B.9)

where λ̃z = λz/|λz| and

I± (s) = s [log (s∓ i)− log (s)]± i . (B.10)

Applying this continuum limit, however, sets an upper bound t �
√
K
2 τHI as discussed

in the main text. Knowing the four basic terms given in Eq. (B.9), respectively, all other
remaining possible summands to the self-energy are readily obtained using Eq. (B.2).
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C. Properties of the weak distinguishability
and its bounds

C.1. Saturation of variances
In this appendix, we show that the TAWD 〈DÔ〉t = δÔ(t)+∆Ô defined in Eq. (6.4) is sep-
arable in a time dependent part δÔ(t) that vanishes at large times and a time independent
part ∆Ô. To do so, we follow a previous analysis [182] and use the fact that the matrix
elements ωij = 〈Ei|ω̂|Ej〉 of ω̂ in energy space are given by

ωij =
{
ρij Ei = Ej

0 else
, (C.1)

where Ei is the energy of the i-th eigenvector |Ei〉 of Ĥ. Now, we can rewrite the TAWD
by

〈DÔ〉t = 1
t

∫ t

0
dt′

(
Tr[ρ̂(t′)Ô]− Tr[ω̂Ô]

)2

= 1
t

∫ t

0
dt′ |

∑
n,m

(ρnme−ih̄−1(En−Em)t′ − ωnm)Omn|2

= 1
t

∫ t

0
dt′ |

∑
n,m

(ρnm−ωnm)e−ih̄−1(En−Em)t′Omn|2. (C.2)

The last step is possible, because for all n,m with ωnm 6= 0 follows En = Em according
to Eq. (C.1). Therefore, ωnme−ih̄−1(En−Em)t′ = ωnm is time independent. We define
vα = (ρnm − ωnm)Omn and gaps Gα = En − Em. Note that α is an abbreviation for a
double index, running over all d2 gaps. We then find

〈DÔ〉t = 1
t

∫ t

0
dt′ |

∑
α

vαe
−ih̄−1Gαt′ |2

= 1
t

∫ t

0
dt′

∑
α,β

vαv
∗
βe
−ih̄−1(Gα−Gβ)t′

= 1
t

∫ t

0
dt′
( ∑

α,β
Gα=Gβ

+
∑
α,β

Gα 6=Gβ

)
vαv
∗
βe
−ih̄−1(Gα−Gβ)t′

= 1
t

∑
α,β

Gα 6=Gβ

vαv
∗
β

∫ t

0
dt′ e−ih̄−1(Gα−Gβ)t′

︸ ︷︷ ︸
=δÔ(t)

+
∑
α,β

Gα=Gβ 6=0

vαv
∗
β

︸ ︷︷ ︸
=∆Ô

. (C.3)
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We can exclude the cases Gα = Gβ = 0 in the second term because Gα = 0 implies vα = 0.
Note that δÔ(t) vanishes at least with 1

t in the limit of infinite times, because the sum in
δÔ(t) is upper-bounded by

∑
{α,β |Gα 6=Gβ}|vαv

∗
β|, which yields

lim
t→∞
〈DÔ〉t = ∆Ô . (C.4)

C.2. Relation between distinguishability and variance

Defining s(t) := d
dln t ln 〈DÔ〉t, one can rewrite the definition of 〈DÔ〉t (see Eq. (6.4)) by

DÔ(t) = [s(t) + 1]〈DÔ〉t . (C.5)

An average over the time interval I = [t, t+ ∆t] yields∫
I

dt′ DÔ(t′) ≤ max
t′∈I
〈DO〉t′

∫
I

dt′ [s(t′) + 1] . (C.6)

With DÔ(t) = (Tr[ρ̂(t)Ô] − Tr[ω̂Ô])2, the left hand side of the latter equation represents
the variance of expectation values of Ô around the value Tr[ω̂Ô] within the time interval
I. Defining s̄(t) to be the average slope s(t) within I, we derive

VarÔ(t,∆t) ≤ [s̄(t) + 1]〈DÔ〉t , (C.7)

where we assume that maxt′∈I〈DÔ〉t′ = 〈DÔ〉t. This assumption is correct if the system is
on average approaching its equilibrium state. The value of s̄(t) is then negative, however,
s(t) ≥ −1 holds strictly. This follows from both the semi-positive values of DÔ(t) and the
1
t in the definition of 〈DÔ〉t. Therefore, we prove that

VarÔ(t,∆t) ≤ 〈DÔ〉t . (C.8)

The latter bound holds for all systems that approach equilibrium in the sense defined in
Section 6.2. If a system is already equilibrated, the TAWD 〈DÔ〉t is no longer decreasing
such that s̄(t) = 0. Note that in this limit, the estimate for the variance becomes exact.
This is also the case at large times, where 〈DÔ〉t of each system saturates as we explain
above in App. C.1.

C.3. Infinite time estimates

In the following, we show how to estimate ∆Ô using only basic information about the
system. For this purpose, we start with the long-time limit of C.3

∆Ô =
∑
α,β

Gα=Gβ 6=0

vαv
∗
β =

∑
j

nj∑
a,b

vjav
j
b

∗
, (C.9)
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where the sum in the last step is symmetrized by defining a parameter j to run over all
distinct values of energy gaps, while a and b run over all nj gaps of size Gj . Therefore, vja
belongs to the a-th gap of size Gj 6= 0. We estimate the symmetric double sum by

N∑
i,j

xix
∗
j =

N∑
i

|xi|2 + 1
2

N∑
i 6=j

(
xix
∗
j + xjx

∗
i

)

≤
N∑
i

|xi|2 + 1
2

N∑
i 6=j

(
|xi|2 + |xj |2

)
= N

N∑
i

|xi|2, (C.10)

where {xi} is a set of N arbitrary complex numbers. Applying this relation to Eq. (C.9),
we obtain

∆Ô ≤
∑
j

nj

nj∑
a

|vja|
2, (C.11)

which even is an equality as long as all gaps are not degenerate, i.e., nj = 1 ∀j. With the
maximum degeneracy of energy gaps NG = maxj nj , we find

∆Ô ≤ NG
∑
j

nj∑
a

|vja|
2, (C.12)

where both sums combined run over all d2 gaps in the energy spectrum. In the previous
notation, this reads

∆̃Ô ≤ NG
∑
α

|vα|2. (C.13)

We now insert the definition of vα and use |ρnm − ωnm| ≤ |ρnm|, which follows from
Eq. (C.1). Thus, we find

∆̃Ô ≤ NG
∑
n,m

|ρnmOmn|2. (C.14)

First and second estimate

For the first estimate ∆̃1
Ô

, we use that |ρnmOmn| = |ρnm||Omn| and |ρnm| ≤ ‖ρ̂‖, where
‖ρ̂‖ is the spectral norm of ρ̂. Using this and Ô = Ô†, this yields

∆Ô ≤ NG‖ρ̂‖2
∑
nm

OnmO
∗
nm = NG||ρ̂||2 Tr[Ô2] =: ∆̃1

Ô
(C.15)

The same steps but ρ̂ and Ô interchanged yields

∆Ô ≤ ∆̃2
Ô

:= NG‖Ô‖2Tr[ρ̂2]. (C.16)
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Third estimate
We derive estimate ∆̃3

Ô
by following an approach along the lines of Ref. [177]. We can

then estimate Eq. (C.14) by

∆Ô ≤ NG
∑
n,m

ρnnρmmOmnOnm = NG Tr[ρ̂diagÔρ̂diagÔ], (C.17)

where |ρnm|2 ≤ ρnnρmm because ρ̂ is positive and (ρ̂diag)nm = ρnmδnm. With the Cauchy-
Schwarz inequality and Tr[AB] ≤ ‖A‖Tr[B] for positive A and B follows

∆Ô ≤ NG Tr[Ô2ρ̂2
diag]

≤ NG‖Ô‖2Tr[ρ̂2
diag]

≤ NG‖Ô‖2Tr[ω̂2] = NG
‖Ô‖2

deff
=: ∆̃3

Ô
(C.18)

This bound has previously been obtained in Ref. [177] on the basis of an analysis with
pure initial states that have been expanded to mixed states afterwards.
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Acronyms

2DEG two-dimensional electron gas

CNT carbon nanotube

EFA envelope function approximation

EDSR electron-dipole spin resonance

EPC electron-phonon coupling

ESR electron spin resonance

DNP dynamical nuclear polarization

FID free induction decay

HI hyperfine interaction

NMR nuclear magnetic resonance

QD quantum dot

RC random complex

SN state narrowing

SOI spin-orbit interaction

TAWD time-averaged weak distinguishability
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[165]  L. Cywiński, W. M. Witzel, and S. Das Sarma. “Electron Spin Dephasing due to
Hyperfine Interactions with a Nuclear Spin Bath”. Phys. Rev. Lett. 102, 057601
(2009). [p. 76]
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