Proximal methods
in
medical image reconstruction
and in
nonsmooth optimal control of
partial differential equations

Dissertation zur Erlangung
des naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universitat Wiirzburg

vorgelegt von

Andreas Schindele

Eingereicht am: 28. April 2016
Betreuer: Prof. Dr. Alfio Borzi, Universitat Wiirzburg

Erklarung/ Declaration

Hiermit erklare ich, dass ich die eingereichte Doktorarbeit eigenstiandig, d.h. insbesondere
selbstdndig und ohne Hilfe einer kommerziellen Promotionsberatung angefertigt und
keine anderen als die von mir angegebenen Hilfsmitteln benutzt habe.

I hereby declare that I executed the thesis independently, i.e. in particular self-prepared
and without the assistance of a commercial doctorate consultancy and that no sources
and tools other than those mentioned have been used.

Ort/ Place, Datum/ Date Unterschrift/ Signature

Zusammenfassung

Proximale Methoden sind iterative Optimierungsverfahren fiir Funktionale J = J; + Js,
die aus einem differenzierbaren Teil J; und einem méglicherweise nichtdifferenzierbaren
Teil bestehen. In dieser Arbeit werden proximale Methoden fiir endlich- und unendlich-
dimensionale Optimierungsprobleme diskutiert. In endlichen Dimensionen lésen diese
¢1- und TV-Minimierungsprobleme welche erfolgreich in der Bildrekonstruktion der Ma-
gnetresonanztomographie (MRT) angewendet wurden. Die Konvergenz dieser Methoden
wurde in diesem Zusammenhang bewiesen. Die vorgestellten proximalen Methoden wur-
den mit einer geteilten proximalen Methode verglichen und konnten ein besseres Signal-
Rausch-Verhaltnis erzielen. Zuséatzlich wurde eine Anwendung présentiert, die parallele
Bildgebung verwendet.

Diese Methoden werden auch fiir unendlichdimensionale Probleme zur Losung von nicht-
glatten linearen und bilinearen elliptischen und parabolischen optimalen Steuerungspro-
blemen diskutiert. Insbesondere wird die schnelle Konvergenz dieser Methoden bewiesen.
AuBlerdem werden abgeschnittene proximale Methoden mit einem inexakten halbglatten
Newtonverfahren verglichen. Die numerischen Ergebnisse demonstrieren die Effektivitat
der proximalen Methoden, welche im Vergleich zu den halbglatten Newtonverfahren in
den meisten Féallen weniger Rechenzeit benétigen. Zusatzlich werden die theoretischen
Abschétzungen bestétigt.

Abstract

Proximal methods are iterative optimization techniques for functionals, J = J; + Js,
consisting of a differentiable part J; and a possibly nondifferentiable part J;. In this
thesis proximal methods for finite- and infinite-dimensional optimization problems are
discussed. In finite dimensions, they solve [;- and TV-minimization problems that are
effectively applied to image reconstruction in magnetic resonance imaging (MRI). Con-
vergence of these methods in this setting is proved. The proposed proximal scheme is
compared to a split proximal scheme and it achieves a better signal-to-noise ratio. In
addition, an application that uses parallel imaging is presented.

In infinite dimensions, these methods are discussed to solve nonsmooth linear and bilin-
ear elliptic and parabolic optimal control problems. In particular, fast convergence of
these methods is proved. Furthermore, for benchmarking purposes, truncated proximal
schemes are compared to an inexact semismooth Newton method. Results of numerical
experiments are presented to demonstrate the computational effectiveness of our proxi-
mal schemes that need less computation time than the semismooth Newton method in
most cases. Results of numerical experiments are presented that successfully validate
the theoretical estimates.

Danksagung

Zuerst danke ich meinem Doktorvater Prof. Dr. Alfio Borzi dafiir, dass er mir die Mog-
lichkeit fiir diese Promotionsarbeit eroffnet hat. Er gab mir brilliante Ideen, sorgte fiir
eine sehr angenehme und herzliche Arbeitsatmosphére und hat mir mit seiner Erfahrung,
seinem Verstandnis und seiner Geduld den Weg gezeigt, der zu vier wissenschaftlichen
Publikationen und dieser Dissertation gefithrt hat.

Des weiteren danke ich Prof. Dr. Herbert Kostler fiir die herzliche Zusammenarbeit
in dem Projekt Parallel Multigrid Imaging and Compressed Sensing for Dynamic 3D
Magnetic Resonance Imaging und den inspirierenden interdisziplindren Austausch.

Ein grofler Dank geht an Dr. Tobias Wech und an Valentin Ratz, die mir als Schnitt-
stelle zwischen der Mathematik und der Medizin eine grofie Hilfe waren. Durch diese
Zusammenarbeit sind zwei medizinische Veroffentlichungen entstanden.

Ich bedanke mich auch bei allen Mitarbeitern des Lehrstuhls Wissenschafliches Rech-
nen der Julius-Maximilians-Universitat Wiirzburg fiir eine herzliche Arbeitsatmosphére
und einem sehr unterstiitzenden Teamgeist. Besonders hervorheben mochte ich die er-
tragreichen Diskussionen mit Dr. Gabriele Ciaramella tiber die Anwendung Proximaler
Methoden in der Optimalen Steuerung und die inspirierenden Gesprache mit meinem
Biirokollegen Duncan Gathungu.

Besonders bedanken mochte ich mich bei meiner Familie, allen voran meinen Eltern
Annemarie Schindele und Edmund Schindele, die mit ihrer Weisheit, ihrer Geduld und
ihrer Anerkennung eine grofie Unterstiitzung fiir mich sind.

Ein unvergleichbarer Dank geht an meine Frau Sonja Eder. Thre Liebe und ihre Prasenz
sind wichtige Pfeiler meines Lebens, tragen mich durch herausfordernde sowie gliickliche
Zeiten und waren fiir das Entstehen dieser Arbeit unentbehrlich.

Zuletzt bedanke ich mich bei dem Interdisziplindren Zentrum fir klinische Forschung
(IZKF), das mich wéhrend meiner Zeit in Wiirzburg finanziell unterstiitzt hat.

Contents

. Introduction

Finite-dimensional optimization problems

. Sparsity and compressed sensing

2.1. Sparsity and image compression

2.2. Exact reconstruction of undersampled signals — compressed sensing
2.2.1. Restricted isometry property
2.2.2. Coherence
2.2.3. Random matrices L

. Proximal methods

3.1. Fast iterative soft thresholding algorithm — FISTA
3.2. Total variations and /;-minimization

. Proximal methods for image reconstruction — MRI

4.1. A Short introduction to MRI

4.2. Comparison of selected proximal methods in image reconstruction
4.2.1. 2D MRI reconstruction
4.2.2. 3D MRI reconstruction

4.3. A MR application with parallel imaging

II. Infinite-dimensional optimization problems

5. Partial differential equation models

5.1. Ellipticmodels
5.1.1. Linear control mechanism
5.1.2. Bilinear control mechanism

5.2. Parabolicmodels
5.2.1. Linear control mechanism
5.2.2. Bilinear control mechanism

. Optimal control problems with Sparsity Functionals

6.1. Nonsmooth analysis in function space

6.2. Convexity of the cost functional

6.3. Optimality conditions
6.3.1. Ellipticmodels

11

15

17
17
18
19
20
21

23
23
27

31
31
32
32
33
37

6.3.2. Parabolicmodels,

7. Proximal methods in function spaces
7.1. Imertial proximal algorithms
7.2. A special case — The fast truncated proximal scheme (FTP)
7.3. Convergence analysis of truncated inertial proximal methods
7.3.1. Convergence of the GTIP method
7.3.2. Fast convergence of the FTP method
7.4. Proximal methods in optimal control

8. Inexact semismooth Newton methods in function space
8.1. The semismooth Newton method
8.2. Convergence of the ISSN scheme
8.3. Semismooth Newton methods in optimal control

9. Numerical experiments
9.1. Ellipticmodels
9.2. Parabolicmodels

10.Conclusion
List of Figures
List of Tables

List of Algorithms
A. Matlab Code

Bibliography

59
62

66
66
71
7

83
83
84
85

107

108

109

109

111

131

1. Introduction

The rise of compressed sensing in the last decade has paved the way for new possibilities
in the field of signal acquisition and reconstruction, where [!-based optimization and
sparsity have been exploited to successfully recover ‘functions’ from few samples; see,
e.g., [CRT06b, DE03]. In particular, it was shown [CWO05] that I'-based inverse problems
in signal recovery can be very efficiently solved by proximal iterative schemes pioneered
by Rockafellar [Roc76] and Nesterov [Nes83]. Nowadays, these iterative schemes are the
method of choice in magnetic resonance imaging for solving finite dimensional optimiza-
tion problems of the following form

: - 2
min || Az — b3 + A @,

where the rectangular measurement matrix A represents a blur operator [LDPO07], x is the
signal to reconstruct, b is the measurement vector and ® represents some sparsification
matrix.

We remark that the research and successful application of proximal schemes is at-
tracting attention of many scientists and practitioners, which results in many new de-
velopments in this field. We refer to, e.g., [LBR15] for recent results and additional
references.

One of the most famous representative of proximal methods is the fast iterative soft
thresholding algorithm (FISTA) that was introduced by Beck et al. in [BT11]. In
addition to ¢;-minimization, proximal methods are also used to minimize total variations
(TV) functionals [BT09] or a combination of TV and ¢; minimization [HZM10] of the
following form

min | Az — b]|2 + N|Dx|| + pl|z||7v. (1.0.1)

This formulation plays an important role in image reconstruction due to the ‘smoothness’
of natural images.

Recently, Ochs et al. [OCBP14] introduced a variant of proximal method called iner-
tial proximal iterative algorithm for nonconvex optimization (iPiano) to solve nonconvex
problems of the following structure

min f(z) +],

reR”™

where f : R™ — R is differentiable bounded from below and possibly nonconvex.
One of the purposes of our work is the efficient solution of the ¢;-TV-optimization
problem (1.0.1) with a proximal method and thus to contribute to the field of image

11

1. Introduction

reconstruction problems. Therefore, we introduce new optimization variables such that
equation (1.0.1) can be solved by the FISTA scheme. This new algorithm is called
FISTA-TV. We apply this method to medical MRI images.

Simultaneously to the development of ¢;-based optimization in finite dimensions, a
great research effort has been made to solve infinite dimensional optimization problems
governed by partial differential equations (PDEs); see, e.g., [BS11, Tr609, Ulb11] and
references therein. In many cases, this research has focused on objective functionals
with differentiable L? terms and non-smoothness resulted from the presence of control
and state constraints. However, more recently, the investigation of L' cost functionals
has become a central topic in PDE-based optimization [Sta09, WW10, IK03, CHW12],
because they give rise to sparse controls that are advantageous in many applications
like, e.g., optimal actuator placement [Sta09]. A representative formulation of optimal
control problems with L' control costs is the following

) 1 «Q
min Ly =23+ Sl + Al

(yu)eHY ()% L2(9) (1.0.2)

st. cly,u) =0, u, <u<u ae. in €,

where ¢(y,u) = 0 represents a PDE for the state y including the control u. This prob-
lem has been discussed in, e.g., [Sta09, WW10, IK03, IK04] for the case where c(y, u)
represents a linear elliptic operator, in [CHW12] for the case where ¢(y, u) represents a
nonlinear elliptic operator, and in [HSW12, CCK13] for the case where c(u, y) represents
a parabolic operator. However, most of these works focus on PDEs with a linear control
mechanism. An investigation of L! bilinear control problems in quantum mechanics can
be found in [CB16]. Concerning the optimization methodology for (1.0.2), the semi-
smooth Newton (SSN) method has been the solver of choice in all these references; see
also the equivalent primal-dual active set method discussed in [IK04].

One of the purposes of our work is to combine the finite dimensional point of view
with the infinite dimensional point of view and thus contribute to the field of PDE-based
optimization with L! control costs by investigating proximal methods in the infinite-
dimensional setting. In particular, we aim at implementing and analyzing proximal
schemes for solving (1.0.2), where ¢(y,u) is an elliptic or parabolic PDE with linear or
bilinear control mechanism. Notice, that the latter has been a much less investigated
problem. Our investigation is motivated by the fact that proximal methods may have
a computational performance that is comparable to that of SSN methods. However, in
contrast to the latter, proximal schemes do not require the construction of second-order
derivatives and the implementation of, e.g., a Krylov solver.

We present a detailed implementation of different proximal schemes for solving our
PDE control problems that is similar to the spirit of iPiano. Further, we extend the
theoretical investigation in [OCBP14] for unconstrained finite-dimensional optimization
problems, to our infinite-dimensional setting. In particular, we prove that our proxi-
mal schemes provide minimizing sequences that converge strongly to a local minimizer.
Furthermore, we prove an O(1/v/k) convergence rate of the so-called proximal residual
(that is closely related to a generalized gradient), where k is the number of proximal

12

1. Introduction

iterations. This notion of convergence is used in ¢! -based optimization and in some
application fields [WSS*16]. In addition, in a particular case, one can even prove an
O(1/k?*) convergence rate of the value of reduced cost functional.

We remark that the application of proximal schemes to large-scale PDE control prob-
lems requires the iterative solution of the underlying PDEs. Therefore we focus on two
inexact variants of our proximal schemes, where the PDE problems are solved up to a
given tolerance and prove their convergence. For these variants, we obtain the same rate
of convergence as in the exact case for a specific truncation strategy.

To validate our proximal schemes, we benchmark them with the state-of-the-art SSN
scheme. However, in the case of large scale problems also a truncated version of the SSN
scheme is required. We refer to it as the inexact SSN (ISSN) scheme and we prove its
convergence for a specific truncation strategy.

We remark that many arguments in our analysis are similar to those presented in the
finite-dimensional case. However, some additional arguments are necessary in infinite
dimensions, especially regarding the structure of our differential constraints and the
discussion of our inexact proximal schemes. We refer to [LBR15] for further results
concerning the formulation of proximal schemes for infinite-dimensional optimization
problems from a different perspective.

This thesis is organized into two parts. The first part covers proximal methods in
the finite dimensional setting of image reconstruction and compressed sensing, whereas
the second part addresses proximal methods in the infinite dimensional setting of sparse
optimal control problems. The first part is subdivided in the following three chapters.

In Chapter 2, we discuss the role of sparse vectors in image compression and image
reconstruction. Furthermore an introduction to compressed sensing is given, which is a
mathematical theory of exact reconstruction of undersampled signals.

In Chapter 3, we discuss proximal methods in finite dimensions. These methods solve
¢1-minimization problems that arise in compressed sensing. In particular, a special prox-
imal method, the FISTA and a corresponding O(1/k?) convergence theorem is presented.
We extend FISTA to FISTA-TV, such that it can also be used for a combination of ¢;-
and total variation minimization. A theorem of convergence of the FISTA-TV method
is proven.

In Chapter 4, the application of proximal methods for the reconstruction of magnetic
resonance images is discussed. First, the theory of magnetic resonance imaging (MRI) is
introduced. Then, the FISTA-TV is applied on 2D and 3D images and compared with
another proximal method called FCSA that was introduced in [HZM10]. Lastly, our
FISTA-TV method is adapted to a 4D real-time reconstruction of videos from mouse
heartbeats. The second part of the thesis is organized in the following five chapters.

In Chapter 5, we discuss linear and bilinear elliptic and parabolic optimal control
problems, where for completeness, some conditions for the existence of a unique control-
to-state operator and its properties are considered.

Chapter 6 is devoted to the formulation and analysis of L' nonsmooth optimal control
problems governed by elliptic and parabolic equations with linear and bilinear control
mechanisms. In particular, we study conditions for convexity and the characterization
of the optimal control solution as the solution to optimality systems for the linear and

13

1. Introduction

bilinear control cases.

In Chapter 7, we present a general truncated inertial proximal method (TIP) and four
special variants of it, namely the CTIP and VTIP method, that differ in the choice of the
stepsize strategy, and the FTP and FTPB method, that represent an infinite dimensional
extension of the FISTA method. Furthermore the convergence of the function values is
proven together with the convergence rate of the proximal residual. For the FTP and
FTPB method the convergence rate of the objective values is shown to be O(1/k?).

In Chapter 8, an ISSN method in function spaces is presented as the state of the
art method for comparison purposes. For completeness, the theory of this method is
extended to the case of elliptic and parabolic bilinear control problems.

In Chapter 9, a numerical comparison of the FTP, FTPB, CTIP, VTIP and ISSN
schemes is presented. The results of this comparison demonstrate the competitiveness
for our proximal schemes. Furthermore, results of numerical experiments are reported
to validate our theoretical estimates.

A chapter of conclusion completes this work.

The results presented in this thesis formed the basis of the following publications

e A. Schindele and A. Borzi. Proximal Methods for Elliptic Optimal Control Prob-
lems with Sparsity Cost Functional. Applied Mathematics, 2016.

e A. Schindele and A. Borzi. Proximal methods for parabolic optimal control prob-
lems with a sparsity promoting cost functional, submitted.

e T. Wech, N. Seiberlich, A. Schindele, V. Grau, L. Diffley, M. L. Gyngell, A. Borzi,
H. Kostler, and J. E. Schneider. Development of real-time magnetic resonance
imaging of mouse hearts at 9.4 Tesla — simulations and first application. IEEE
Transactions on Medical Imaging, 35(3):912-920, 2016.

e V. Ratz, T. Wech, A. Schindele, A. Dierks, A. Sauer, J. Reibetanz, A Borzi, T.
Bley, H. Kostler. Dynamic 3D MR-Defecography, submitted.

14

Part 1.

Proximal methods for
finite-dimensional optimization
problems

15

16

2. Sparsity and compressed sensing

The Shannon sampling theorem [Sha49] states that the sampling rate has to be at least
twice as high as the maximum frequency of a signal in order to guarantee exact recon-
struction of the signal from the sampling. If the sampling rate is below this threshold,
the signal is called to be undersampled. The theory of compressed sensing, however, can
guarantee exact reconstruction also for undersampled signals under some conditions. In
this section, the mathematical theory of compressed sensing is introduced. For a more
detailed discussion, we refer to [FR14, CRT06a]. We first give an overview of the concept
of sparsity and image compression that are essential to understand compressed sensing.

2.1. Sparsity and image compression

In this section the term sparsity is defined and we introduce the compression of a sparse
signal. Let z € CY be a complex valued vector. Then, we define
[z]lo := [supp(z)],

where supp(x) := {j : #; # 0}. It is common to call ||z||o the {p-norm of z, even if it does
not fulfill the requirements of a quasi-norm. Now, we are able to define the k-sparsity
of a vector x € CV.

Definition 2.1.1. (k-sparsity) The vector x is called k-sparse if ||z|lo < k for k > 0.
The set of k-sparse vectors is denoted by

Y i={x € CV : ||z|lo < k}.
Furthermore, we define the best k-term approximation error in /¢, as follows.

Definition 2.1.2. The best k-term approximation error in £, is defined by
or(T)p = zlensz |z — 2|y,

where || - ||, denotes the p-norm, ||v||, = (L)Y

The signal z is called compressible if for £ << N the best k-term approximation
error o(x), is reasonably small. In order to obtain a compressed signal xp where
|z — xpyll, = ok(2),, we use the rearrangement 7(z) := (|,], ..., @iy |)", where |z;,| >
[T, 7 =1,...,N — 1. Then, we have the following

N

ou(2), = (> m(az)p)p.

j=k+1

17

2. Sparsity and compressed sensing

We construct

| xy for |x;] > r(x)
(zw)s = { 0 else

This sparse vector satisfies the following

Ty = argmin ||z — z|[,.
2€X

2.2. Exact reconstruction of undersampled signals —
compressed sensing

In image compression, one acquires the whole signal and then compresses it, thus costly
acquired information is given away. Now, we only consider m << N linear, nonadaptive
measurements. The goal is to exactly reconstruct the signal from these incomplete
measurements under the assumption of a small oy(x),.

The acquisition of m linear measurements b € C™ is equivalent to applying the mea-
surement matrix A € C™*¥ on the signal x € CV

b=A z.

If o1 (x), is not small enough but there exists a basis (¢1,...,¢y) = &7 € CN*N and a
re € CV where x = ®T - 25 such that oy (zs), is small, we have

b= Ad" . z4. (2.2.1)

This system is highly underdetermined, since m << N. However, we have additional
information on x¢ since we assume that it is nearly k-sparse, or in other words oy (z4),
is small. So in order to reconstruct the signal from the measurements, one can calculate
the sparsest vector xg that solves (2.2.1). This problem is represented in the following
combinatorial minimization problem

min || ®zllp s.t. Az =0,
zeCN
or equivalently

i b ADTz =1 2.2.2
min [|zflo s z="b, (2:2.2)

where the reconstructed signal is given by o = ®72*. This problem is in general NP-hard;
see, e.g., [FR14]. Therefore the following convex relaxation is considered

min || Pz|; st. Az =0b. (2.2.3)
zeCN
or equivalently
' 4. APTz=b. 2.2.4
min [|2[l s z (2.2.4)

18

2. Sparsity and compressed sensing

f T / T 1
\ Anit

ball

Figure 2.1.: Minimizing the ¢;-norm leads to sparsity.

As a motivation for this relaxation, one can consider the special case of N=2, m=1, that
is illustrated in Figure 2.1.

Notice, that the solution of (2.2.2) coincides with the solution of (2.2.4) if the kernel
of A®T is not parallel to one of the surfaces of the ¢; unit ball. This intuition of a
connection between ¢;-minimization and sparsity will be analyzed in an exact way in
the next section. From now on, we write A := A®T and refer to it as the measurement
matrix.

2.2.1. Restricted isometry property

In this section, the connection between ¢;-minimization and sparsity, which is the essen-
tial idea of compressed sensing, is analyzed. The following property is needed.

Definition 2.2.1. (Restricted isometry property — RIP)
The restricted isometry constant 6y, of a matriz A € C™N s the smallest number, such
that the following holds

(1= du)ll=ll* < [1A2)* < (1 + 8)ll=11%, (2.2.5)

for all z € Si, where we denote with || - || == || - ||2 for the 2-norm. The matriz A has
the RIP of order k with constant &y if o € (0,1).

The following theorem states a connection between the ¢;-minimization problem with
noisy measurements and the best k-term approximation error.

19

2. Sparsity and compressed sensing

Theorem 2.2.1. [FoulO, FR14] Let A fulfill the RIP of order k with constant
3
446

Furthermore, let z € CN, b= Az + e, |le]| <n and z* the solution of

52k <

i L Az =02 <.
min [|2[s [Az = blIF <n

Then, we have

or(x)q

\/E)

[= 2"} < Cin + Cs

where C7 and Cy only depend on dgy.

We see that if the product of measurement matrix and sparsification matrix M®
fulfills the RIP, the ¢;-minimization provides a good signal reconstruction.

2.2.2. Coherence

In this section, the coherence is introduced, which is a helpful tool to analyze recovery
ability of matrices in the special case of normed matrix columns.

Definition 2.2.2. (Coherence) Let A = (ay, ..., ayx) € C™N be a matriz where ||| =
1Vie{l,...,N}. Then, we define

= rglggl (ar, ag) |,

the coherence of A.
Theorem 2.2.2. [FR1/] Let p be the coherence of A. Then, A fulfills the RIP of order
k and o, < (k—1)p.

1

Several matrices with y = —— are known, such as

A = (I,|F) € C™¥2m, (2.2.6)

where I, is the identity matrix and F' is the unitary Fourier matrix F;; = ﬁ exp(2m(i —

1)(j — 1)k/m)). From Theorem 2.2.2, we have that the restricted isometry constant of
(2.2.6) is given by

k—1

Op < —— 2.2.7
k= \/m) ()

and in order to use Theorem 2.2.1, the following must hold

2k —1
Oop, < <0, (2.2.8)
which is equivalent to

(2k —1)> < 8 -m. (2.2.9)

As far as we know, this quadratic dependence between k£ and m, could not be improved
by now for deterministic matrices.

2. Sparsity and compressed sensing

2.2.3. Random matrices

In order to improve the quadratic dependence between k£ and m, we introduce random
matrices.

Definition 2.2.3. (Random matriz) Let (Q,%,P) be a probability space and X;; : Q —
C,i=1,....,m, j =1,...,N be random variables. Then, A := A(w) where Aij =
Xij(w) is called a random matriz.

The following definition plays an important role to study the RIP of real-valued ran-
dom matrices.

Definition 2.2.4 (Concentration inequality). Let A € R™N be a random matriz where
E(||Az||?) = ||z||?, Vx € RY and E is the expectation value. Then, the concentration
inequality for a constant ¢y > 0 is defined by

P (|l Ae]? — lo]?] = 6le)2) < 2e, 0 <d<1. (2.2.10)

There are several random matrices that fulfill the concentration inequality, such as
the Gauss matrix, whose entries flij are independent, identically distributed Gaussian
random variables, X;; ~ N(u,0?) with 4 = 0 and 0 = 1/m. Another example is the
Bernoulli matrix, whose entries flij are independent, identically distributed +k-Bernoulli
random variables with k = 1//m. This means that each entry A;; has the value 4+1/,/m
or the value —1/4/m with the same probability.

The following theorem connects the concentration inequality with the restricted isom-
etry property.

Theorem 2.2.3. [FR1}] Let A € R™N be q random matriz that fulfills the concentra-
tion inequality (2.2.10) and let

m > 05~ 2(klog(N/m) + log(e™1)),

for some constant C', that only depends on co. Then, A fulfills the RIP (2.2.1) with the
restricted isometry constant o < & with a probability of 1 — €.

Consequently, the condition d9, < ¢ from Theorem 2.2.1 holds with high probability,
if

m > C'klog(N/m),

with some constant C" > 0.

Another important class of random matrices are the random partial Fourier matrices,
where m rows of a discrete Fourier matrix F' € CV*V with F; = \/Lﬁe%(i—l)(j—l)k/]v are
chosen randomly.

In applications, the random partial Fourier matrix plays an important role. Let there-
fore x € CN be a signal, that nearly consists of only %k different frequencies, i.e. for

xy = Fx the best k-term approximation error oy (xs); is small enough. We furthermore

21

2. Sparsity and compressed sensing

consider the measurement matrix A to be the random partial Fourier matrix. Then we
have that the measurements y € C™ are given by y = fle = [d™N . Fap = Id™N .z,
where Id™ " are m randomly chosen rows of the identity matrix. So, the measurements
y are m randomly chosen measurements of the frequencies of the original signal z.

The following theorem states how many measurements are needed for exact recon-
struction.

Theorem 2.2.4. [CRT06a] Let A € C™N be a random partial Fourier matriz, C' > 29.6
and let

m > Cklog(N/e).

Then, the solution of the {1-minimization problem (2.2.4) is an exact reconstruction of
an arbitrary vector x € Xy with probability greater or equal 1 — €.

22

3. Proximal methods

In Chapter 2, we have seen that the ¢;-minimization (2.2.3) of the form

min ||®z|; st. Ax =0, (3.0.1)

T€ERZN

often results in a sparse solution. The complex-valued space CV is identified with the
equivalent real-valued space R?*" and the corresponding equivalent l,-norms. In the
following, we will write R" instead of R?" for convenience.

Now, we consider the following unconstrained minimization problem

1
in \||® ~||Az — b|]*. 0.2
min A|®zfy + 5 Az — | (3.0.2)

In [DTO06] it is shown that the solution x, of (3.0.2) is equal to zero if X is big enough
and that limy o x) = z*, where z* is the solution of (3.0.1).

In this Chapter we discuss first-order proximal methods to solve a larger class of this
nonsmooth optimization problem. Proximal methods originate from the proximal point
algorithm introduced by Rockafellar in [Roc76], where the proximal function is used to
solve a nonsmooth minimization problem of the general form

min f (),
where f(z) is a lower semicontinuous, convex, and nondifferentiable functional and H
is a Hilbert space. Nesterov [Nes07] as well as Beck and Teboule [BT11] developed two
different methods that use an additional composite structure of the functional in order
to accelerate the proximal point method.

3.1. Fast iterative soft thresholding algorithm —
FISTA

In this section we focus on the proximal method of [BT11] that is called iterative soft
thresholding algorithm (ISTA) and its fast extension FISTA.

The starting point to discuss proximal methods consists in identifying a smooth and
a nonsmooth part in the objective functional. That is, we consider the following opti-
mization problem

min f1(z) + f>(z), (3.1.1)

z€RN

23

3. Proximal methods

where fi(x) is continuous, convex, and possibly nonsmooth and f,(x) is a smooth, convex
function with Lipschitz continuous gradient as follows

IV fo(z) = V)]l < L(f2)llz =yl Vz,y € RY, (3.1.2)

where L(fy) > 0 is the Lipschitz constant. Notice, that our ¢;-minimization problem
(3.0.2) has the additive structure (3.1.1), where fi(z) = A||®z||; and fo(z) = || Az —b|>.
The following lemma is essential in the formulation of proximal methods.

Lemma 3.1.1. Let fy be differentiable, convex and it has Lipschitz continuous gradient
with Lipschitz constant L(f2). Then, for all L > L(fy), we have

fo(x) < foly) + (Valy),z —y) + gllw —y|?, Vz,yeRY (3.1.3)

Proof.

ala) = Do) + (V1) 5 =)+ [(Valy 4 =) = Vo), =) e
< foly) + (V)2 =)+ [IV Ay + 1z —) = V)] e~ yldt
< faly) + (Vo) — o) + [Ltlle =yl
< B) + (V)2 —y)+ 2~y =

The following is valid for all L > L(f3) € R*. Furthermore if f5 is twice differentiable,
the Lipschitz constant of the gradient is given by L(fs) = [[V2fali2 2, see [RW97, The-
orem 9.7|. This can be once evaluated by a power iteration [Wil88]. Because of Lemma
3.1.1, we have that

min fo(z) < min {fz(y) +(Va(y), (z —y)) + g\lx - yll2} ;
and

argmin { 2(9) + (VSa(y). (o =) + e = oI} =y = LVR0) = 510,

zERN

Therefore 1/L is the approximation to the optimal steplength for the steepest descent
step to minimize f5. Now, we can extend this method to the function f = f; + f5 and
obtain the following

argmin{ () + £aly) + (Valu) (2~) + 5 e = ol

zeRN

—agmin {(0) + 5 e = GO} = prox), G.14)

zeRN

24

3. Proximal methods

where we introduce the proximal function

pros (y) = argmin { £(z) + 1 o —).

z€RN

In general, it is impossible or too expensive to calculate the proximal function apart
from particular f;. In the particular case of (3.0.2), we have an explicit form of the
proximal function as stated in Lemma 3.1.2. The soft thresholding function is defined
in the following definition.

Definition 3.1.1. We define the soft thresholding function by the following

yi— T fory, >T1
S:(y)i =40 for |yl <7 .
i + 71 fory < —

Lemma 3.1.2. Let ® € RY*Y be an orthogonal matriz, then the following holds

1
arg min {THCDle + §Hx — y|]2} = O'S,(®y) for any y € RY.

zeRN

Proof. With the substitution & = ®x have that
: 1 : . 1 "
arg min{7|| Pzl + S [lv — y|*} = " arg min{r||#]: + S "2 - y[*},

Then, there exists a (%) € 9||Z||;, the subdifferential of || - ||;, such that the solution
% = argmin, {T||x||1 + 2||PTz — y||2} fulfills the following variational inequality; see,
g, [ET99];

(& — ®y +7y(2),z — &) >0, VzeRY (3.1.5)

Now, we show that # := S,;(®Py) fulfills (3.1.5). The following investigation of the
different cases is meant to be pointwise. We have

o (Dy), —7>0:
It follows that #; = (®y); — 7 > 0 and (%&); = 1 such that

(% — (Py); + 7)(x; — 2;) = 0.

o [(Py)i| <7
It follows that #; = 0 and v(Z); = (I)y)l € B1(0) such that

);
(l ((I)y)l+7((T)))(xl z;) = O.

o (Dy);,+7<0:
It follows that #; = (®y); + 7 < 0 and (Z); = —1 such that

25

3. Proximal methods

Based on this lemma, we conclude that the solution to (3.1.4) is given by

2}:@%%(®<y—2vﬁ@»)j

that provides an approximation to the optimal x sought. Therefore we can use this
result to define an iterative scheme as follows

o - 78, (@ (s - ing(xkl))) ,

starting from a given xy. The Algorithm 1 implements this proximal scheme, the so-
called ISTA method.
This scheme is discussed in [BT11] and we give the following convergence result.

e (- Lenw)

L
arg min {f1 () + =
z€RN 2

Theorem 3.1.3. [BT11] Let {xx} be a sequence generated by Algorithm 1 and z* be the
solution to (3.0.2). Then, for every k > 1, the following holds

(2o — 2|

flan) — fla) < &

2k
Algorithm 1 (ISTA) Algorithm 2 (FISTA)
Require:)\, f5, x¢, K Require: A, fo, ¢, K
Calculate L = L(fs); Calculate L = L(fs); yo = xo; to =1
while 1 <k < K do while 1 <k < K do

Ty < CI)TS% (@ (xk—l — %Vfg(l‘k_l)>) T < (I)TS% (CI) (yk—l — %Vfg(yk_1)>)

tr= (14 /1442))/2

Yk = Tp_1 + (tk;;_l)(l‘k—l —)

end while end while

In [Nes83], an acceleration strategy for proximal methods applied to convex optimiza-
tion problems fulfilling (7.0.3) is formulated, that improves the rate of convergence of
these schemes from O(1/k) to O(1/k?*). Specifically, one defines the sequence {t,yx}

with
to =1, tr =14/ 1+4t3_,/2, (3.1.6)
and
th1— 1
Yo :=To, Yp =T+ M;)(ﬂfk — Tp-1). (3.1.7)
k

Correspondingly, the optimization variable xy is updated by the following

o 078 (@ (o — TV).

This procedure FISTA is summarized in Algorithm 2.
We have the following error estimation for the FISTA-algorithm.

26

3. Proximal methods

Theorem 3.1.4. [BT11] Let {xx} be a sequence generated by Algorithm 2 and x* be the
solution of (3.1.1), then for every k > 1, the following holds

2L(f2)l[xo — 2|

f(xk)_f(x*) < (]{5—1-1)2

3.2. Total variations and /;-minimization

In this section, the model function (3.0.2) is extended by a total variation term as follows

. 1
min A||®z||; + ul|z||rv, + = || Az — b]|?, (3.2.1)
xERN 2
where
ni ng d
2l = D2 D2 D Vil
i1=1 ig=1j=1
with the finite differences V; : R xnd —: RMXXNd and Vil i, o= Tiy.ij4ioig —
-fjil...ij...id fOY ij € {1, e ,TL]' — 1} and ijil...id =0 fOl" 7;]' = TL]', N = M- Ngq,)\, 1% 2 O,

and ® € RY*Y orthogonal. Here, we use the following bijective relation between x € RY
and £ € R™M > >

Liy,osig :xil+2j:2((ij_l)) (3.2.2)

The optimization problem (3.2.1) results in good reconstructed images as shown in
[LDPO7] for a slightly different model function. In fact instead of the T'V;-seminorm,
they use the isotropic T'Vo-norm

n1 nd d
||x||TV2 = Z T Z Z V JZ“ Zd

i1=1 ig=1 \ j=1

Problem (3.2.1) was solved for A = 0 in [BT09] by a dual method and in [OBG™05]
by a split Bregman method. As far as we know, the most efficient algorithm to solve
(3.2.1) is the fast composite splitting algorithm (FCSA) which was presented by Huang
et al. in [HZM10]. The FCSA method is implemented in Algorithm 3.

The main difficulty of (3.2.1) is that there exists no explicit form of the proximal
function of the combination of TV} and ¢; minimization fi(z) = A||®x||1 + pl|z|7v;-
The FCSA calculates the proximal functions for the ¢;-norm and the T'V;-seminorm
separately. The drawback of this method is the expensive estimation of the proximal
function of the T'Vi-seminorm.

In the algorithm that we present in this thesis, new optimization variables

g] € Rnlxmxnd? Qfl iq = vjj’h ,,,,, iq) j € {1 s 7d}

27

3. Proximal methods

are introduced in order to replace the T'Vi-seminorm by the f;-norm. So the TV;-
seminorm becomes

ni

lzllzv, = > - Z Z 9l = (g% gD =2 Mgl

i1=1 ig=17=1

with ¢ € RN¥4 g = (¢%,...,¢9%)7 and the same equivalence between §/ and ¢’ as in
(3.2.2).

With this setting, we arrive at the following optimization problem, which is equivalent
o (3.2.1),

r%ign fi(z, g) + fa(z, g), st. c(z,9) =0, [<z<u, (3.2.3)
where
fi(z, g) = [|(A®x, pg)" 1,
Falir,) = 514z ~ b}
and

c(x,g) = (Viz —g',... . Vaz — g")" = Va — g,

where @j € RY — RY is obtained by the equivalence between @jx and V;Z, see
(3.2.2). Furthermore, we define V : RVN4 — RN4 Vi := (Vyz,...,Vaz)T. We can
solve this constrained optimization problem by using the differentiable penalty function
p(z,g) := 3llc(z, g)||3 that results in the following optimization problem

) o
min fi(z,9) + fo(z,9) + S lle(z, 9)lls, st I<zi<u (3:2.4)
where

fl(xug) = H(/\q)xnug)Hl?
1 o
pa(2,9) = 5ll Az — b3 + EHC(JC,Q)H; a e RY

In order to obtain a relationship between (3.2.3) and (3.2.4) we use Theorem 5.6(e) in
[CGO2] to state the following.

Theorem 3.2.1. The sequence (o) is strictly monotone increasing, ay — oo, the set
{(z,9) € RUFVN ¢(z,9) = 0} is nonempty and (zy, gr) is a sequence of solutions of
the optimization problem (3.2.4) with o = ay,. Then, the sequence (x, gx) 1S converging
to the unique solution of (3.2.3) and therefore . is converging to a unique solution of
(3.2.1).

Proof. According to Theorem 5.5(e) in [CGO02], every accumulation point (z*,g*) of
(xk, gr) is a solution of (3.2.3). Since f;+py is strictly convex, it has a unique solution and
therefore, every accumulation point of the sequence (Zy, gi)r—oo iS the unique solution
of (3.2.4). Hence, (Zy, gr)r—oo is converging to the solution (z*, g*) of (3.2.4). O

28

3. Proximal methods

Now the total variation term can be written as a ¢; — norm and thus it is possibly
to apply Algorithm 2. Therefore, we separate the functions f; and s,, according to the
variables x and g to obtain

f= Mzl fi = pllgl,

and
. 1
sz(‘xag) =T vaPQ(‘rag)
1
552, 9) 1= 9 = 7 Vgp2(2, 9)-

Furthermore, we need the Lipschitz constant of the gradient of p w.r.t. (x,g) given by

ATA+a- VIV —aVT
—CY@ (07 [N-d

L(ps) = [V2pallise H(

12,12

These considerations are summarized in Algorithm 4 that implements our new FISTA-
TV method.

Algorithm 3 (FCSA) Algorithm 4 (FISTA-TV)
Require: A, b, xg, A\, u, [, u Require: A, b, xg, go, A\, pt, o, 1, u
Calculate L = || AT Al|j2 2 Calculate L = || V2psl|;22
Set yo = xo; to =1 Set yo = x0; ho = go; to =1
while 0 <k < K —-1do while 0 <k <K —1do

Tpyy = TSy (‘I’ (yk — VD2 (Y, hk))) Trs1 = TSy (‘D (yk — 1 Vapa(yi, hk)))
xiﬂ = Prox ulizlipy, (yk — %V:er(yka hk)) Jktr1 = S%(hk — %ng(yk, hi))

T = (Thy + 2301)/2 teps = (111 483)/2

ter1 = (14 \/@)/2 Yk+1 = Tp + %(% — Thi1)

. tr—1 o tp—1 _
Yrar = T+ E (T — T hier = gk + E= (9 — gri)

end while end while

In the following theorem, the convergence of the FISTA-TV scheme is proved.

Theorem 3.2.2. For every given accuracy € > 0 there ezists an a(g) such that for every
a > a(e) the FISTA-TV method provides a sequence xy that converges to a limit & with
|z — x*|| < e, where x* is a minimizer of (3.2.1).

Proof. Let ay be a strictly monotone increasing sequence. According to Theorem 3.1.4,
the FISTA-TV scheme provides a sequence that is converging to a minimizer (zy, gx) of
(3.2.4) for a = .. By using Theorem 3.2.1, we see that zj, is converging to the solution
x* of (3.2.1) as k — oo. Thus, for every ¢ > 0 there exists a K such that for all £ > K
and therefore for all a > ax =: a(e) we have that ||z* — z;|| < e. O

29

30

4. Proximal methods for image
reconstruction — MRI

4.1. A Short introduction to MRI

In this section, we illustrate magnetic resonance imaging (MRI), which is a widely used
imaging method to obtain clinical images of organs and soft tissues. For more detailed
information, we refer to [WKMOG6].

MRI uses the properties of the hydrogen atom H'. The nuclei of these atoms are
protons and have an intrinsic spin with a magnetic moment showing in the direction
of the spinning axis. If these nuclei are exposed to a strong magnetic field By in the
direction of the z-axis, their moments tend to align parallel to this field and add up to a
measurable magnetization M,. However, precession occurs, which means that the mean
moments rotate around the z-axis with a specific frequency proportional to the strength
of the magnetic field By. This frequency is called Larmor frequency wg = vBgy, where
v = 42.58 MHz/T for the protons.

Now, assume the protons are in a stable state. By applying an electromagnetic wave
of the same frequency as the Larmor frequency, the moments can be flipped by 90 ° into
the x-y-plane, synchronously spinning around the z-axis. These transversal moments
generate an alternating voltage of the same frequency as the Larmor frequency in a
receiver coil, the magnetic resonance (MR) signal. The absence of phase differences
between the so-called magnetic moments is called phase coherence. However, the MR
signal reduces due to two independent processes T1 relaxation and T2 relaxation. T1
relaxation occurs because the transversal moments in the x-y-plane slowly realign with
the magnetic field By in the direction of the z-axis. T2 relaxation occurs because the
phase coherence of the spinning transversal moments is lost after some time, and thus
the nonsynchronous moments cancel each other.

In the different tissues of the body, the protons are part of different molecular struc-
tures such that the MR signals reduce at different speeds. This fact results in the
contrast of the MR image.

Now, we know how the MR signal is produced and the remaining question is how
to obtain an image from this signal. In particular, it is necessary to gain information
about the spatial positions of the protons with the different MR signals. Therefore, the
strength of the magnetic field By, and therefore the Larmor frequency of the protons,
is not constant any more but varies in the z-direction. By choosing a specific frequency
of the electromagnetic wave w,,,, one is exciting only the protons of a specific z-slice,
where the strength of the magnetic field equals B, = we,, /7. In the y-direction, one is

31

4. Proximal methods for image reconstruction — MRI

applying another variation of the strength of the magnetic field such that the precession
frequency of the moments around the z-axis vary in the y-direction. After removing the
variation in the y-direction, there is a phase difference between the rotation uniquely
defining the y-position. Now, also in the remaining x-direction, one applies a magnetic
variation such that the precession frequency uniquely defines the x-position. This phase-
frequency space is called k-space. A 2D inverse Fourier transformation defined in Section
4.2, transforms the data from the fully-sampled k-space to the spatial space and provides
the MR image. In the following section, we discuss undersampled data sets in the k-
space.

4.2. Comparison of selected proximal methods in
image reconstruction

In this section, we compare Algorithm 3 and Algorithm 4 to reconstruct undersampled
2D and 3D medical images. That means, instead of measuring the MR signal in the
whole k-space, only some phases and frequencies are chosen according to a random mask.
An example of this mask is shown in Figure 4.1. For the 2D comparison we are using
the same images and parameters as in Huang et al. [HZM10]. We also use the algorithm
FCSA published by Huang on his webpage!. The images of Figure 4.2 are also taken
from this page.

Figure 4.1.: Mask in the k-space.

4.2.1. 2D MRI reconstruction

We first apply the algorithm to the 2D images shown in Figure 4.2. We reconstruct
an image with N = 256 - 256 pixels with only m << N measurements b € R™. In
our case we use the sampling rate m/N = 0.158. These measurements represent the m
MR signals in the k-space that are chosen by some random mask shown in Figure 4.1.
We use the same mask that is also used in [HZM10, MYZCO08]|, consisting of randomly
chosen information concentrated around the center in the k-space (low frequencies are
more often chosen than high frequencies).

'http://ranger.uta.edu/~huang/codes/FCSA_MRI1.0.rar

32

4. Proximal methods for image reconstruction — MRI

The 2D Fourier matrix F' € CV*¥ is given by

ni—1ng—1 k l
(Fa: : Z - exp(2mm> exp (—27m'n>,

mOnO n1

where £ € C"*™ is the equivalent 2 dimensional form of the signal x € C" as described
in Section 3.2. Our measurement matrix is A € C™» = M - F and the mask M €
{0, 1}™*N consists of m lines of the identity matrix corresponding to the white pixels in
Figure 4.1. The matrix ® € CV*¥ is chosen as the 2-dimensional wavelet transform,
that lead to good sparsity for images as shown e.g. in [LDP07].

We measure the accuracy of the FCSA and FISTA-TV method by the signal-to-noise
ratio defined by the following equation

Var(zey)

SNR(z, zex) := 10log;, Bl — 2o
Here, the expectation Value estimator is defined by E[z| := % SN | x; and the variance
estimator by Var(z) := +15 YN (z; — E[2])? and ze is the exact image, z is the image
we obtain from the algorithm.

We first compare the FCSA algorithm with the FISTA-TV where we additionally use
the maximal range of possible greyscale values of the image = € [0, 255] by projecting x
in the same way as Huang in [HZM10]. We have

x < max{min{z, 255}, 0}.

The chosen parameters are A = 0.035, ¢ = 0.001 as in [HZM10]. The starting value
is always the zero vector o = (0,...,0). We determine undersampled images from
the exact images. The reconstructed images are shown in Figure 4.3 and Figure 4.4.
The accuracy results and the convergence history are shown in Figure 4.5. We see that
initially the FCSA iteration gains better results but after enough iterations the FISTA-
TV method is much more accurate. The final signal-to-noise ratios are shown in Table
4.1.

4.2.2. 3D MRI reconstruction

In this section, we compare the FCSA and FISTA-TV method for a 3D image reconstruc-
tion. We consider a three dimensional image of a human heart with N =ny - ny - ng =
256 - 256 - 10 pixels. So it consists of ten 2D image slices. Figure 4.6 shows the real part
of four different slices of this image. A € C™¥ consists of m lines of the partial 3D
Fourier transform and ® € CY*¥ represents a 2-dimensional wavelet transformation for
each of the ten slides as follows

W 0 0
& o w . ’

T ()

0 0o W

33

4. Proximal methods for image reconstruction — MRI

(a) Chest (b) Renal arteries (c) Heart

Figure 4.2.: 2D Test Images

(a) Chest (b) Renal arteries (c) Heart (d) Brain

Figure 4.3.: 2D Reconstruction by the FCSA scheme

(a) Chest (b) Renal arteries (c) Heart (d) Brain

Figure 4.4.: 2D Reconstruction by the FISTA-TV scheme

34

4. Proximal methods for image reconstruction — MRI

18 26
17 E 24 E
16+ E 22t E
.
150/ 1 201 1
o ! o«
z I 4
2] | [}
1ar 1 18 1
I
1
131 q 16+ q
I
I
t2r ! g 14t i
— — — FCSA b — — — FCSA
FISTA-T FISTA-T
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ : 12 ‘ ‘
0 02 04 06 08 1 12 14 16 18 0 05 1 15
CPUtimeins CPUtimeins
(a) Chest (b) Renal arteries
20 22
19r 1
201 1
18- E
17} g 18]
16+ E
16 E
o«
Z 150 g =
[}
14r E
14r ,
13+ 1 121 i
12 E
| 1of | g
"ry - - —FCSA | — — — FCSA
| FISTA-T FISTA-T
10 ‘ ‘ ‘ ‘ ‘ ‘ : s ‘ ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 02 0.4 0.6 0.8 1 1.2 1.4
CPUtimeins CPUtimeins
(c) Heart (d) Brain

Figure 4.5.: The signal-to-noise ratio of the FCSA and FISTA-TV algorithms for the 2D
images.

35

4. Proximal methods for image reconstruction — MRI

Figure 4.8.: 3D Reconstruction by the FISTA-TV scheme

36

4. Proximal methods for image reconstruction — MRI

— — — FCSA

FISTA-T

0 5 10 15 20 25 30 35
CPUtimeins

Figure 4.9.: The signal-to-noise ratio of the two algorithms for the 3D image

SNR FCSA FISTA-TV
Chest 16.2 17.2

Renal arteries | 23.8 24.9

Heart 17.7 19.0

Brain 20.4 21.4

Heart 3D 18.35 24.48

Table 4.1.: Comparison of the SNR between FCSA and FISTA-TV schemes.

where W € C(mm2)x(mm2) s the discrete two-dimensional wavelet transform. We use
again a random mask which is concentrated around the center in the frequency domain.
The sampling rate is m/N = 0.225. The chosen parameters are A = 0.008, p = 0.03
and o = 0.3. The reconstructed images are shown in Figure 4.7 and Figure 4.8 and the
corresponding signal-to-noise ratios and the convergence history in Figure 4.9.

We observe that in the first 17s the FCSA method leads to better results than our
FISTA-TV scheme. However, after 17s the FISTA-TV increases the SNR and the solu-
tion is more accurate than the best possible solution of FCSA.

4.3. A MR application with parallel imaging

Our FISTA-TV was successfully applied to assess real-time information of the cardiac
function in mice from parallel coil data. The results are published in [WSS*16]. In this
work, several receiver coils are placed side by side for the simultaneous acquisition of the
MR signal that consists of undersampled radial measurements, the projections. On this
data the generalized radial autocalibrating partially parallel acquisitions (GRAPPA)
technique [SED™11] is applied in order to increase the number of initial projections per

37

4. Proximal methods for image reconstruction — MRI

time frame. Then, the radial information is assigned from the radial grid to a Carte-
sian grid by GRAPPA operator gridding [SBB*08] which exploits the variation of the
coil sensitivities to perform small changes in k-space. This results in the Cartesian un-
dersampled multicoil k-space information b. In the linearly segmented (LS) case, the
projections were equiangularly distributed with an increment between adjacent projec-
tions of AV = 7/ny,j, where ny,,; is total number of projections. In addition, a Golden
Angle (GA) acquisition is discussed, where the increment between consecutive projec-
tions was set to AY = 27/(y/5 + 1), guaranteeing optimal profile distribution for any
arbitrary number of projections used in the reconstruction.
We consider the following minimization problem to determine fully sampled data.

min ||V, Sz + b — Ax|3, (4.3.1)

where x € CN*meoits ig the resulting fully sampled image from the n.., different coils,
S 1 CNxneoits — CN holds the information of the coil sensitivities and is a coil combina-
tion operation [WMGO00] resulting in one single complex valued image, A is a discrete
Fourier transform for each coil and each time frame and b is the undersampled k-space
information after applying GRAPPA and GRAPPA operation gridding. Furthermore
V. denotes the temporal, discrete total variation operator.

To solve (4.3.1) we use the strategy developed in Chapter 3 and apply the FISTA-TV
algorithm. Therefore, we introduce new optimization variables g such that with

C(l‘,g) = VtSl’ -9
o M
P2 = EHC(%Q)Hg + 5“5 — Axlf3.
Further, we have

Lipy) = pATA+a-STV,IV,S —aSTV,"
P2) = —aV,S o-Ing

12,2
With this setting, Algorithm 4 provides a solution to the following minimization problem

. 1 a
min gl + 116 = Azl + (.)|, (43.2)

whose solution, for sufficiently large «, is close to a solution of (4.3.1).

It is shown in [WSS*16] that this method enables real time cardiac imaging in mice,
significantly reduces the scan time, and enables the investigation of small animal models
with ventricular arrhythmias for the first time.

Representative end-diastolic (top row) and end-systolic (bottom row) frames are shown
in Figure 4.10 for conventional (left column) and real-time acquisitions, respectively.
While the left-ventricular wall and cavity were well resolved in all cases, the linear sam-
pling schemes showed better image quality compared to the golden angle acquisitions.

The left-ventricular functional parameters obtained by blinded analysis in a mid-
ventricular slice are listed in Table 4.2, and show generally good agreement between
real-time undersampled and fully-sampled data. The spread of the left-ventricle mass as
measured in the real-time data was larger than for the conventional data, while it was
comparable for the volumes.

38

4. Proximal methods for image reconstruction — MRI
GA

Figure 4.10.: Mid-ventricular slice through the same mouse thorax showing the heart
in short-axis orientation, acquired with a prospectively-gated Cartesian
multiframe sequence (left column) and with the radial real-time sequence.
Top row: end-diastole; bottom row: end-systole. Scale bar - 5 mm.

fully-sampled

End-Diastole

End-Systole

fully-sampled LS GA
end-diastolic mass in mg 14.5£0.8 16.9£25 17.9+£29
end-diastolic volume in pul 9.6 +1.2 91+1.0 88=£22
end-systolic mass in mg 18.54+0.5 20.1 £2.8 18.6+29
end-systolic volume in pul 29+1.5 25+13 1.7+£08

stroke volume in pl 6.7£1.1 6.6£09 T71+£26
ejection fraction in % 70+ 13 73+£12 79+ 12
Table 4.2.:

39

40

Part 11.

Proximal methods for
infinite-dimensional optimization
problems

41

42

5. Partial differential equation
models

In this section, we discuss elliptic and parabolic PDE models with linear and bilinear
control structures. Notice that these models are already discussed in many references;
see, e.g., [Eval0, KV09, Lio71, Tr609]. However, our focus is the presence of a control
function that will be determined by proximal schemes.

5.1. Elliptic models

We start our discussion with linear elliptic equations.

5.1.1. Linear control mechanism

Consider the following boundary value problem

{Ay—i—u:f in

5.1.1
y=0 on 09, ()

where Q@ C R", with n < 3, is a bounded domain and f € L?*(Q). The operator
A : H} () — H'(Q) represents a second-order linear elliptic differential operator of
the following form

"0 0
Ay == 2 (ay— ,
/ ”21 O (aj&ij> o

such that a; ;,ap € L>(Q), and a; ; satisfies the coercivity condition

n

> aij(x)és > HZTL:SJQ a.e. in €, (5.1.2)
j=1

ij=1
for some 6 > 0 and ay > 0, for any &,& € R. For the existence and uniqueness of
solutions to (5.1.1) see [Eval0, Section 6.

5.1.2. Bilinear control mechanism

Further, we consider the following bilinear elliptic control problem

Ay+uy=f in
5.1.3
{ y=0 on 0. ()

43

5. Partial differential equation models

In both linear and bilinear control settings, we require u € U,q, with the following set
of feasible controls

Upa = {u € L*(Q) : uy < u < uy a.e. in QF, (5.1.4)

where u, <0 < uy, u, < up.
Now, we discuss the existence of a unique weak solution to (5.1.3). For this purpose,
we need the Poincaré-Friedrichs lemma; see, e.g., [Eval0].

Lemma 5.1.1. (Poincaré-Friedrichs inequality) Let Q@ C R™ be a bounded Lipschitz
domain, which is contained in the cube C' := I, x --- X I,,, where Iy, ... 1, are intervals

-1
and let cq = (Z?:l ﬁ) , then

[e < cq [Ve, (5.1.5)
Q Q

holds for all y € H(Q).

We denote with || - || := || - ||z2¢ for the L?(Q7)-norm in the Hilbert space L*(Q)
induced by the inner product (-,-) := (-,") ;2(q)-
Theorem 5.1.2. Let u € U,y, where
7
Ug > —Ag — —. (5.1.6)
CQ

Then, there exists a unique weak solution y € H}(Q) to the bilinear elliptic problem
(5.1.3) and the following property holds

[yl < Cill £, (5.1.7)

Proof. Problem (5.1.3) can be written as follows
(Ay + uy,v) = (f,v) for all v e Hy(Q).

We define a(y,v) := (Ay 4+ uy,v) and k := %}7119/09 > 0, then by using (5.1.2), u > u,,
and (5.1.5), we have

- Oy Oy 2
A _ 3 d
a(y,y) = (Ay + uy, y) /Q(MZ:lamamjaxiJr(aowLU)y) X

> /Q (6\Vy\2 + (ap + ua)yQ) dx

= K:CQ/Q ’Vy|2dX—|— ((9 — /@CQ)/Q’VdeX—F /Q(ao +Ua>y2dX

0
> Kkeq /Q |VyPdx + <C - /i) /QyZdXJr /Q(ao + ug)y*dx
Q

: o _ 2 _ 2
> min (| keq, ug + ag + . K Wyl = keallyl|s-
Q

44

5. Partial differential equation models

In the forth line the Poincaré-Friedrichs was used. With x := 1%)715/69 > 0, we have
that keq = ug + ag + 0/cq — K and thus, we have

(Ay + uy,y) > Colly||z for Co = kcq, (5.1.8)

and therefore

Iyll* < llyllin < Co' (Ay +uy,y) = Cg ' (foy) < Co £yl
Therefore we obtain (5.1.7) with C; := Cy'. Furthermore, one has
la(y, v)| < (E:H%ﬂhw-%Hmr+UHhm)\WHHWWHHL
1,J
We can use the Lemma of Lax-Milgram with V' = HJ(f2) to complete the proof. O

Remark 5.1.1. In the case of Q= (0,1)", n <3, and A = —A, including homogeneous
Dirichlet boundary conditions, we have ag=0, § = 1 and cq = 1/2n such that we can
ensure invertibility for u, > —2n.

Remark 5.1.2. In order to ensure a unique solution, we require condition (5.1.6) for
the choice of uq in the bilinear case.

Next, we recall the following theorem stating higher regularity of solutions to (5.1.3);
see [Gri85, Theorem 4.3.1.4].

Theorem 5.1.3. Let Q) C R", n < 3, be a convex and bounded polygonal or polyhedral

domain. If in addition to the assumptions of Theorem 5.1.2, we have that a;; € C*(Q),
then y € H'(Q) N H*(Q) and the following holds

Iyl 20 < CULFI+ Nyl < CIAIL (5.1.9)
for some appropriate constants C,C > 0 that only depend on €.

Remark 5.1.3. Because H?() can be embedded in L°° () [Ada75], for n < 3 and using
(5.1.9), we obtain

yeL®Q) and yli=@ < CIS. (5.1.10)

Theorem 5.1.2 and Theorem 5.1.3 ensure the existence of a unique control-to-state
operator

S Upg — HY Q) N H?*(Q), uw S(u), (5.1.11)

where in the linear case S(u) = A™'(f — u) represents the unique solution to (5.1.1) and
in the bilinear case S(u) = (A + u)~'f is the unique solution to (5.1.3).

45

5. Partial differential equation models

Remark 5.1.4. For the bilinear case, the control-to-state operator S(u) is not Fréchet-
differentiable in the L? topology since for every € > 0 there is always an h € L*(Q)
with ||h]] < e such that u+ h ¢ U,q and therefore it is not necessarily defined. How-
ever, we only need the following weaker form of differentiability, which is a directional
differentiability in all v € Uuq in the directions (uw — v) for w € Uyq. This is called
Q-differentiability; see [KV09).

Definition 5.1.1. (Q-Differentiability). Let U C X be a convex set andT : U — Y.
Then T is called to be Q-differentiable in v € U, if there exists a mapping T}, (v) €
L(X,Y), such that for all uw € U the following holds

[T +u—v) = T) = Tj(v)(u—v)|y
[—vllx

— 0 if |lu—v|x —0.

In the following, we omit the index U and write T' = T};.
The Q-derivatives of S(u) have the following properties in the bilinear case.

Lemma 5.1.4. The control-to-state-operator S is at least two times Q-differentiable in
U.q and its derivatives have the following properties for all directions hy, ho € LQ(Q):

(i) S'(u)(hy) € H(2) N H?(QQ) is the solution y' of

Ay +uy = —h1S(u). (5.1.12)
(ii) S”(u)(hy,he) € Hi(2) N H%(Q) is the solution y" of
Ay +uy” = —haS' (u)(h1) — hS"(u)(ha). (5.1.13)
(iii) The following inequalities hold
15 (w) (ha) || < Callha [l £ (5.1.14)
15 (w) (R, ko)l < Csl[[l A2l £1]- (5.1.15)

Proof. Part (i) and (i7) can be shown by direct calculation (see [KV09, Lemma 2.9]).
So part (i) is left to be proved. If y' := S'(u)(hy) € H3(2) N H() is a solution to

Ay +uy' = —h1S(u),
for u € U,q and f € L*(Q), by using (5.1.10), we obtain
Il < Clly' iz < CliaS@)ll < CllaalllS(w)llzoe @) < CollhalllI £, (5.1.16)

where the constants depend on the measure of €2 and not on y. Therefore, we obtain
(5.1.14) and y' € L>(Q).

Furthermore, let y” := S”(u)(hy, he) € HY(Q) N H*(Q) be a solution to the following
problem

Ayll -+ Uy” = _hQSl(u)(hl) — hlsl(u)(h2)7

for u € Uyg and f € L*(Q). With the same argumentation as above and using (5.1.16),
we obtain

Ily"[| < CllhaS"(w)(ha) + haS'(w)(ha)|| < 2C% [halll| 2|l [£
Therefore, we obtain (5.1.15), which completes the proof.]

46

5. Partial differential equation models

5.2. Parabolic models

In this section, we discuss parabolic models with linear and bilinear control mechanism.

5.2.1. Linear control mechanism

Consider the following boundary value problem

oy+Ay+u=f inQpr=Qx(0,T)
y =1y on Qx {t =0} (5.2.1)
y=0 onX=00x(0,T).

where 0 C R" is a bounded domain, n < 3, f € L*(Qr), and yo € H3 (). The operator
O+ A: L*(0,T; H () — L*(0,T; H'(Q2)) represents a second-order linear parabolic
differential operator, where

"0 0

Ay = — — | aij=—y | + aoy,

1= 32 g (s v
1,]=—

such that a; ;,ap € L>(Sr), and a; ; satisfies the coercivity condition

n

Z aij(x, t)£1£2 2 an:f? a.e. in QT7 (522)
7j=1

ij=1

for some 6 > 0 and a¢ > 0.

Here, we define L*(0,T;B) := {v : (0,T) — B such that [[|v(t)||3dt < oo} for some
Banach space B. For the existence and uniqueness of solutions to (5.2.1) see [EvalO,
Section 7].

5.2.2. Bilinear control mechanism
Further, we consider the following bilinear parabolic control problem
Oy+ Ay+uy =f in Qp

y =10 on) x{t=0} (5.2.3)
y=0 on 2.

In both linear and bilinear control settings, we require u € U,q4, with the following set
of feasible controls

Upa :={u € L*(Qr) : ug <u <y ae. in Qp} C L=(Q7), (5.2.4)

where we choose u, <0 < uy, u, < up.

The following theorem from [BA15] ensures existence and uniqueness of (5.2.3).

In the parabolic case, we denote with || - || := || - || 12, for norms in the Hilbert space
L?(2) induced by the inner product (-,-) := (-,) L2

47

5. Partial differential equation models

Theorem 5.2.1. [BA15] Suppose that u € L>*(Qr) and f € L*(Qr), and the initial
condition yo € Hy(Q). Furthermore, let O C R™,n < 3, be a conver and bounded

domain with Lipschitz boundary. Then there exists a unique weak solution y to (5.2.3)
such that y € H*(Qr), where H>'(Qr) = L*(0,T; H*(Q) N HY(Q)) N H'(0,T; L*(2))
and it fulfills the following inequality

Il o220y < €1 (Ilollz2 + II£11) - (5.2.5)

where ¢; depends on wu;,. Theorem 5.2.1 ensures the existence of a unique control-to-
state operator

S Uy — H* (Qr), urs S(u). (5.2.6)

We note that in the linear case this operator is affine linear, such that its first Fréchet-
derivative is independent of u and we have S’(u)(h) = S(h) + t for some constant ¢
independent of u and h. The Fréchet-derivatives of S(u) in the bilinear case have the
following properties.

Lemma 5.2.2. The control-to-state-operator S is at least twice Fréchet-differentiable in
Uaq with respect to the L*(Qr)-topology and its derivatives have the following properties
for all directions hy, hy € L (Q7):

(i) S'(u)(hy) € H*'(Qr) is the solution y' of
oy + Ay +uy = —hiS(u), ' (-,0)=0. (5.2.7)
(ii) S"(u)(hi, he) € H*(Qr) is the solution y" of
oy + Ay" + uy” = —hoS'(u)(h1) — h1S'(u)(ha), "(-,0) = 0. (5.2.8)
(iii) The following inequalities hold
15" (@) (h) | < elliall (111 + 9ol 2@) - (5.2.9)

15" (w) (o, o)l < calltallBall (L1 + lyol 2o) - (5.2.10)

Proof. Part (i) is proven in [BA15], so we sketch the proof of part (ii). From (5.2.5) we
have the following estimates for the solution ¢y of (5.2.7) and y” of (5.2.8).

111 < 1Y 20,7382y < Cillhall < Chllha |z ag)
and therefore

1[I < CollPa]l @) [P2 = () -

48

5. Partial differential equation models

It follows that the bilinear mapping L>(Qr)x L (Qr) — H>'(Qr) C L*(Q7), (hy, hy) —
y” is continuous with respect to the L?*(Qr)-topology. Next, we have that § = S'(u +
ha)(h1) — S'(u)(hy) satisfies

Oy + Ay +ug = —hy(S(u+ he) — S(u)) — haS’ (u + h2)(h1), 9(-,0) =0,
such that the following estimate holds
191l < sl [l < @) 1o £ (@2r)-
We conclude the proof by an estimate of w := ¢ — 3" which satisfies
dhw + Aw + uw = — hy(S(u + he) — S(u) — S'(u)(he)) — hay, H(-,0) =0,
such that
lwll < Callhallz=(@n)1h2llze 0r)-
Thus, we obtain
18" (w + ha)(h1) = S"(u)(h1) = y"I| < Cllhallzoe(r) P2l L o).

which shows that y” is indeed the Fréchet-derivative of S’(u)(hy) with respect to the
L?(Q7)-topology. Part (ii7) follows directly from (i), (ii) and (5.2.5). O

49

20

6. Optimal control problems with
Sparsity Functionals

In this chapter, we discuss optimal control problems governed by the linear- and bilinear-
control elliptic and parabolic equations discussed in the previous chapter. We consider
the following cost functional

1 Q
Iy w) = 5lly = 21 + Sl + Bllulle, (6.0.1)

where u € U,q, o, 8 > 0. Furthermore z € L*(Q), y € H}(Q) for the elliptic case and
z € L*(Qr), y € H*'(Q7) for the parabolic case.

This functional is made of a Fréchet-differentiable classical tracking type cost with
L?-regularization and a nondifferentiable L!-control cost. Using the control-to-state
operator (5.1.11) in the linear-control and (5.2.6) in the bilinear-control case, we have
the following reduced optimal control problem

A 1 Q
min J(u) = §||S(u) — 2| + §||u||2 + Bllul| L. (6.0.2)

u€Uyq

6.1. Nonsmooth analysis in function space

For the analysis that follows, we need the definition of derivative for nonconvex, nons-
mooth functions that is introduced below.

Definition 6.1.1. Let X and Y be Banach spaces, D C X be open and F : D — 'Y
be a nonlinear mapping. We say that F is generalized differentiable in an open subset
U C D if there exists a set-valued mapping O*F : D = L(X,Y) with 0*F(x) # O for all

x € D such that
li 1
im-——
=0 ||h|| x

|F(x+h)—F(x) —G(x+ h)h|y =0, (6.1.1)

for every G € 0*F and for every x € U. We call O*F the generalized differential and
every G € O*F a generalized derivative.

This definition is similar to the semismoothness stated in [Ulb11] and also known
under the name ’slant differentiability’; see, e.g., [CNQOO].

For convex functionals on Hilbert spaces, the generalized differential is equivalent to
the following subdifferential.

51

6. Optimal control problems with Sparsity Functionals

Lemma 6.1.1. Let H be a Hilbert space, D C H be open and F': D — R be a convex
functional. The mapping OF : H = H* given by
OF (z) ={ye H" : (v,y =)y y < Fly) — F(x) forallyec H}
is called the subdifferential of F in u and it holds O*F = OF.
Proof.

'C’: Let v € 0*F. We first show that the mapping ¢ : (0,1] — R defined by

F(rx+tly—x)) —f(x)‘

g(t) == ;

is monotonically increasing. Therefore, consider t1,%5 with 0 < t; < t5 < 1 and
define t' := % € (0,1) and z = = + t2(y — z). Due to the convexity of F, it holds
that

Fl+t(z—2) <t'F(z)+ (1 —t)F(x).

Inserting ¢’ := € (0,1) and 2 = z + t5(y — x) yields

Flx+ti(y —x)) — F(x) < Flr+ta(y —x)) — F(x)
tl o t2

9

and, hence, that ¢ is monotonically increasing. Furthermore, by replacing h =
t(y — x), one has that

0 = lim — | F(z + h) — Fx) — (v(z + h),) |

=
o Wt iy — o) - F@) —t (e + tly —2) y —)|
=0 tly — ||
i @) — @+ ty — 7).y —) |
t—0 ||y _ x“ .

Hence,

(V(@),y —x) =lim (y(z + 1y — 2)),y —) = limg(t) < g(1) = F(y) — F(x).

t—0

52

6. Optimal control problems with Sparsity Functionals

D% Let v € OF. Then, (y(z),y — z) < F(y) — F(z), and we have

}llig(l)m|f(x +h) = F(x) = (v(z + k), h) |
= lim ”y_lx”HpE(y) —F(z) = (v(y),y —)|

, 1
:}/%Mjl((y(y),y —x) + F(x) _]—“(y))

(06— D)ty = 0) + F@) - P+ ity -)

=0 tly — x|

(o Fla iy - 2) - Fla)
~ s (e = a) - :)
<o (0 = a) -y R

where the third equality is due to the fact, that F(y) — F(z) — (v(y),y —x) =
(v(y),x —y) = (F(x) = F(y)) < 0. Hence, v € 9"F. O

6.2. Convexity of the cost functional

The nondifferentiable part J;(u) := S||ul|z: is convex. Therefore, in order to discuss
local convexity of the reduced functional J(u), we investigate the second derivative of
the differentiable part Jo(u) := 3[|S(u) — z||* + %[|u/|*>. We have

J3 (@) (v, w) = (S (@)(v), S' (@) (w)) + (S(@) = z,8"(@)(v,w)) + o (v,w).
In particular, in the linear case, we have
JY(@)(v,v) = ||S"(w)(W)||* + alv)|* > 0, for all v e L2(Q), ||v|| # 0. (6.2.1)

We conclude that the reduced functional is strictly convex in the linear case.

In the bilinear case, we have a non-convex optimization problem. However, local con-
vexity can be guaranteed under some conditions. To be specific, we chose the sufficient
condition stated in the following theorem.

Lemma 6.2.1. Let C"(u) := supy, < [|S”(u)(v,v)]], if the following inequality holds
C"(w)||S(u) — z|| < a, (6.2.2)
then the reduced functional j(u) is strictly conver in a neighborhood of u € UYL

Proof. Since Jy(u) := f|ul|11 is convex, we have to prove that Jo(u) := S (u) — 2> +
2||ul? is strictly convex in u. Therefore we show that the reduced Hessian is positive

23

6. Optimal control problems with Sparsity Functionals

definite in U,y as follows

T3 (u) (v, 0) = (8" (w)(v), 8 () (v)) + (S(u) = 2,5" (u) (v, v)) + o {v,0)
> (a = C"(w)]|S(w) — 2ol

and thus J(u) is strictly convex in u. O

We remark that the result of Lemma 6.2.1 is well known. It expresses local convexity
of the reduced objective when the state function is sufficiently close to the target and
the weight of the quadratic L? cost of the control is sufficiently large. Indeed, local
convexity may result with much weaker assumptions. However, for the investigation of
the fast proximal schemes (FTIP), see Chapter 7, we need strict convexity of the cost
functional. Therefore, we make the following strong assumption that is required in the
formulation of the FTIP method.

Assumption 1. We assume that (6.2.2) holds for all u € Uyq.

Remark 6.2.1. Because of Lemma 5.1.4, this assumption holds if the reqularization
parameter o > Cs|| f||[(C||f]| + ||z|l) for the elliptic case and because of Lemma 5.2.2 it

holds for o > c3 (||f|| + ||y0||L2(Q)) [cl (||f|| + ||y0||L2(Q)) + ||Z||] for the parabolic case.

6.3. Optimality conditions

To characterize the optimal control sought, we discuss in the following the first-order
optimality conditions.
6.3.1. Elliptic models

In this section, we investigate the convexity conditions and optimality conditions for
(6.0.2), where S(u) is the control-to-state operator of the elliptic model (5.1.11).

In the next step, the optimality conditions of (6.0.2) are derived. From [ET99, Remark
3.2], we obtain that @ is a solution of (6.0.2) if and only if there exists a A € 8.J; (@) such
that

<S’(ﬂ)*(5(ﬂ) —2) + Qi+ A\ u— ﬂ> >0, forall u€ Uy, (6.3.1)

where * denotes the adjoint operator. From (6.3.1) one can derive the optimality system
by using the Lagrange multipliers \,, A\, € L?(Q) (see [Sta09, Theorem 2.1]):

Theorem 6.3.1. The optimal solution u of (6.0.2) is characterized by the existence of

o4

6. Optimal control problems with Sparsity Functionals

(A A, \o) € L2(Q) x L2(Q) x L*(Q) such that

S (@)*(S(w) — 2) + it + A+ Xy — Ay = 0, (6.3.2)
M >0, wu—u>0, M(up—1u)=0, (6.3.3)
M >0, U—ug >0, A(&l—ug) =0, (6.3.4)
A=p ae on{reQ:u>0}, (6.3.5)
N <B ae on{recQ:u=0}, (6.3.6)
A=—F ae on{reQ:u<0}. (6.3.7)

If one introduces the parameter ji := A 4+ A\, — A, it is shown in [Sta09] that the
conditions (6.3.3)-(6.3.7) are equivalent to

B(u, i) =0, (6.3.8)
where

B(u, it) :==u — max{0,% + c(it — 8)} — min{0,u + c(z + ()}
+ max{0,u — up + c(p — B8)} + min{0,w — u, + c(+ 5)},

where ¢ > 0 is arbitrary. With this setting (6.3.2)-(6.3.7) reduces to

S'(@)*(S(@) — 2) + i+ fi = 0, (6.3.9)
B(u, ji) = 0. (6.3.10)

Next we discuss the linear control mechanism (5.1.1). In the linear control case, the
equation (6.3.9) becomes the following

—~AT(ANf —u) —2)+au+ =0, (6.3.11)

where A™* = (A*)~!. By setting y = A™'(f —u) and p := —A~*(y — 2) equation (6.3.11)
can be written as follows

p+au+p=0.
We summarize the previous considerations into the following theorem.

Theorem 6.3.2. (Linear optimality conditions) The optimal solution (y,u) € Hy () x
L3(2) to (6.0.2) in the linear control case is characterized by the existence of the dual
pair (p, 1) € Hy(Q) x L*(Q) such that

Aj+ta—f=0 (6.3.12)
Ap+5—2=0 (6.3.13)
P+ ai+i=0 (6.3.14)
B(i, i) = 0. (6.3.15)

95

6. Optimal control problems with Sparsity Functionals

Furthermore, the explicit gradient and the Hessian of jg(U) are given by
V.o (u) = au+p (6.3.16)
and
V2Jy(u) = ol + A7* A (6.3.17)

Next, we discuss the bilinear elliptic control mechanism (5.1.3). For the bilinear
system, we have S'(u)(h;) = —(A + u) [(A + w)~'f] and therefore S'(u)*(hy) =
—(A+u)"'f(A +u)"*h; such that equation (6.3.9) becomes the following

—(A+a) 'fA+a) T (A+a) ' f —2) +au+ja=0. (6.3.18)
By setting y = (A+@)~'f and p := —(A + @) ~*(y — 2) this can be written as follows
yp +au+ pu=0.
We summarize the previous considerations into the following theorem.

Theorem 6.3.3. (Bilinear optimality system) The optimal solution (y,u) € H}(Q2) x
L*(Q) to (6.0.2) in the bilinear control case is characterized by the existence of the dual
pair (p,) € Hy(Q) x L*(Q) such that

Aj+aj— f =0

Ap+g+iap—z=0

- _ (6.3.19)
yp+oau+p=0
B(u, 1) = 0.
Furthermore, the explicit gradient and the Hessian of jg(u) are given by
V(u) = au+ py (6.3.20)
and
Ty () (v1,05) = (01, V2 Dy (u)s) (6.3.21)
where

V2 Ia(u)() = y(A+u) (A +u) " (y(-) = y(A+) (p() = p(A+u) " (y(-) +al-).

6.3.2. Parabolic models

In this section, we investigate the convexity conditions and optimality conditions for
(6.0.2), where S(u) is the control-to-state operator of the parabolic model (5.2.6).

In the next step the optimality conditions of (6.0.2) are derived. From [ET99, Remark
3.2] we obtain that @ is a solution of (6.0.2) if and only if there exists a A € d.J; (@) such
that

<S'(ﬂ)*(5’(ﬁ) —2) Qi+ A\ u— ﬂ> >0, forallue Uy, (6.3.22)

where * denotes the adjoint operator. From (6.3.22) one can derive the optimality system
by using the Lagrange multipliers A,, Ay € L®(Q7) (see [Sta09, Theorem 2.1]):

26

6. Optimal control problems with Sparsity Functionals

Theorem 6.3.4. The optimal solution u of (6.0.2) is characterized by the existence of
(A Aas Ap) € L2(Qp) x L=®(Qr) x L>=(Qr) such that

S’(w)*(S(u) — 2) + i + A+ Xy — Ay = 0,

(6.3.23)
N >0, wy—u>0, N(up—u)=0, (6.3.24)
M >0, U—ug >0, M(—uy) =0, (6.3.25)
A=p3 ae on{xecQ:u>0}, (6.3.26)
A< B ae on{reQ:u=0}, (6.3.27)
A=—8 ae on{recQ:u<0}. (6.3.28)

If one introduces the parameter fi :== A+, — A4, it is shown in [Sta09] that conditions
(6.3.24)-(6.3.28) are equivalent to

B(a, i) = 0, (6.3.29)
where we define
B(u, i) :==u — max{0,u + c(ig —)} — min{0,u + c(p + 8)}
+ max{0,u — up + c(ip — 5)} + min{0,u — u, + c(+ B)}.
With this setting (6.3.23)-(6.3.28) reduces to
S'(w)*(S(u) —2) +au+ p =0, (6.3.30)
B(a, i) = 0. (6.3.31)

For the linear parabolic problem (5.2.1), we define y := S(u) and introduce the adjoint
operator p as a solution to

From standard arguments, e.g., [Tro09], we see that equation (6.3.30) can be written as
follows

ptrau+p=0
We summarize the previous considerations into the following theorem.

Theorem 6.3.5. (Optimality conditions for the parabolic linear control problem) The
optimal solution (y,u) € H>'(Qr) x L>®(Qr) to (6.0.2), in the linear control case, is
characterized by the existence of the dual pair (p, i) € H>*(Qr) x L>®(Qr) such that

dQy+Ay+u—f=0 in Qr (6.3.32)
—Op+Ap+y—2=0 in Qr (6.3.33)
ptau+p=0 in Qr (6.3.34)
B(u, i) =0 in Qr (6.3.35)
Y= 1o on Q x {t =0} (6.3.36)
p=0 on Q x {t="T} (6.3.37)

o7

6. Optimal control problems with Sparsity Functionals

Furthermore, in the linear control case, the explicit gradient of jg(u) is given by
Vo (u) = au+p (6.3.38)

For the bilinear parabolic problem (5.2.3), we define y = S(u) and introduce the
adjoint operator p as a solution of

—op+Ap+up+y—2=0, p(-,T)=0.
From standard arguments, e.g., [Tro09] we see that equation (6.3.30) can be written as
yp +au+ = 0.
We summarize the previous considerations into the following theorem.

Theorem 6.3.6. (Optimality conditions for the parabolic bilinear control problem) The
optimal solution (y,u) € H>'(Qr) x L®(Qr) to (6.0.2), in the bilinear control case, is
characterized by the existence of the dual pair (p, 1) € H>Y(Qr) x L®(Qr) such that

Oy+Ay+uy—f=0 in Qp (6.3.39)
—O0p+APp+y+up—z=0 in Qr (6.3.40)
yp+au+p = in Qr (6.3.41)
B(i, i) = in Qr (6.3.42)
Y=Y on Q x {t =0} (6.3.43)
=0 on Qx{t="T} (6.3.44)

Furthermore, in the bilinear control case, the explicit gradient of jg(u) is given by

A

VJo(u) = au + py (6.3.45)

o8

7. Proximal methods in function
spaces

In this section, we discuss first-order inertial proximal methods to solve our linear and
bilinear optimal control problems. The starting point to discuss proximal methods
consists of identifying a smooth and a nonsmooth part in the reduced objective J (u).
That is, we consider the following optimization problem

min J(u) := Jy(u) + Jy(u), (7.0.1)
u€Uyq
where we assume
Ji(u) is continuous, convex and nondifferentiable (7.0.2)

Jy(u) is Q-differentiable with respect to Uy,

and has Lipschitz-continuous gradient:

IV Jo(u) — VI (v)|| < L(J)|Ju— |, Vu,v e Uy, (7.0.3)

where L(.J;) > 0. The following lemma is essential in the formulation of proximal
methods.

Lemma 7.0.1. Let J, be Q-differentiable with respect to U,q and it has Lipschitz con-
tinuous gradient with Lipschitz constant L(Jy) (7.0.3). Then for all L > L(Js), the
following holds.

N L
Ja(u) < Jo(v) + (Vp(v),u — v) + Flu—vl’, Vv € U (7.0.4)

A

V(v +tu—v)) = Vi(v),u— U> dt

S

< K@) + (V) u—v)+ = |lu—v O

Notice that L := L(.J,) represents the smallest value of L such that (7.0.4) is satisfied.
We remark that the discussion that follows is valid for L > L(.J;) as in (7.0.4). However,

29

7. Proximal methods in function spaces

as we discuss below, the efficiency of our proximal schemes depends on how close is
the chosen L to the minimal and optimal value L(jg). Now, since this value is usually
not available analytically, we discuss and implement below some numerical strategies
for determining a sufficiently accurate approximation of L(j2). In particular, we con-
sider a power iteration [Wil88], and the backtracking approach discussed in Algorithm
8. Further, notice that also in the case of choosing L >> L(jz), our proximal scheme
still converges with the same convergence rate as shown in Section 7.3. However, the
convergence constant grows considerably as L becomes larger and therefore the conver-
gence of the proximal method appears recognizably slower. On the other hand, if L is
chosen smaller than the Lipschitz constant, then convergence cannot be guaranteed.

The strategy of the proximal scheme is to minimize an upper bound of the objective
functional at each iteration, instead of minimizing the functional directly. Lemma 7.0.1
gives us the following upper bound for all v € U,y. We have

min {Jy(u) + J2(u)} < min {jl(u) + Ja(v) + (Voha(y),u—v) + gHu — UHQ} 7

u€Ugyq T u€Uqg

where we have equality if © = v. Furthermore, we have the following equation

N A o L
arg min {Jl(u) + 0y(0) + (Vha(o)u—) + = — v||2}

u€lUgyq

A L
= arg min {Jl(u) + =

1 N
u—|(v—=VJ v)
S u= (o= vE@

2} . (7.0.5)

In the optimal control problems stated in Chapter 6, we have J;(u) = S|juz: and
(7.0.5) has an explicit solution, that we discuss in the following lemma.

Lemma 7.0.2. The following equation holds

1
arg min {7'||u||L1 + §||u — UHQ} =SY%i(v) for any v € L*(Q),
ucUqgq

where the projected soft thresholding function is defined as follows

min{v —7,up} on{reQ:v(x)> 7}

SVed (1) := < 0 on{reQ:|v(x) <7} .

max{v + T,u,} on{reN:v(r)< -7}

Proof. There exists a y(u) € 0||u||r:, the subdifferential of || - ||, such that the solution

U = argmin,ep; {THUH o+ sllu— 71“2} fulfills the following variational inequality; see,
e.g., [ET99];

(u—v+71y(u),u—u) >0, Yu€ Uy (7.0.6)

Now, we show that @ := SVed(v) fulfills (7.0.6). The following investigation of the
different cases is meant to be pointwise. We have

60

7. Proximal methods in function spaces

o v—1T>uy > 0:
It follows that @ = w, and therefore v(@) = 1 such that
(up —v+7)(u—up) >0, Yu € Upg.

o D <v—17T < uy:
It follows that @ = v — 7 > 0 and (@) = 1 such that
(@ —v+7)(u—1up) =0, Vu € Upg.

° |2)| <T:
It follows that 4 = y(4) = 2 € B1(0) such that
(u—v—l—T(» OVuEUad

o U, <v+T1<O
It follows that & = v+ 7 < 0 and therefore (@) = —1 such that
(t—v—myu—10)y =0, Vu € Uy

o vt T <u, <0:
It follows that @ = u, and therefore v(@) = —1 such that
(Ug — v —T)(u—1u,) >0, Yu € Uy. O

Based on this lemma, we conclude that the solution to (7.0.5) is given by

2 U 1 .
} = S%“d (v — LVJQ(U)> :

thus obtaining an approximation to the optimal u sought. Therefore we can use this
result to define a general iterative scheme as follows

arg min {jl(u) + g Hu - (v — ing(U)>

uEU 4

upyr = S5 (uk — s VIa(un) + Okllug — weal]) (7.0.7)

starting from given ug = u_;. For s, := % and 0, = 0 we have the iterative scheme
discussed above that. We investigate requirements on the steplength s; and the inertial
parameter 65 such that the general method provides convergence towards a solution of
our optimal control problem.

The update step (7.0.7) requires the solution of (6.3.12) and (6.3.13), resp. (6.3.39)

and (6.3.40), to get y and p for the calculation of

VJg(u) p+ au (linear)
resp. V.Ja(u) = py + o (bilinear).

However, the exact inversion of a discretized differential operator A := A in the elliptic
case resp. A := 0; + A in the parabolic case, may become too expensive. Therefore one
has to estimate an approximate solution; e.g., the conjugate gradient method [HS52].
For this reason, we discuss a truncated version of the proximal scheme where the equality
constraints and the corresponding adjoint equations are solved up to a given tolerance
quantified by € > 0. In the following, we denote by Vsjg(u) the truncated gradient that

61

7. Proximal methods in function spaces

corresponds to a truncated integration of the equation Ay = f — u, resp. (A+u)y = f,
that results in an approximated state variable 3¢, resp. p°, in the following sense

lAy" = f+ull <&, resp. Ay +uwyfS - fl <e
Hence, there exists an é € L*(2) with ||é]| < & such that
Ay = f—u+eé, resp. Ay" +uy® = f+é. (7.0.8)

We denote the truncated inversion method for the problem By = g, with an error
| By*—g|| < e, with inv(B, g,¢). With this notation, the truncated gradient computation
is illustrated in Algorithm 5 and 6.

Algorithm 5 (Calculation of the truncated gradient V.Js(u)) — elliptic case
Require: A, f, z, ¢, u

1. y* =inv(A, f —u,e), resp. 4 =inv(A+u, f,¢)
2. pf =inv(A*, 2 — %, €), resp. p° =inv(A* +u,z — y°,¢€)
3. Voda(u) = p° + au, resp. V.Jo(u) = p°y° + au

Algorithm 6 (Calculation of the truncated gradient V..J5(u)) - parabolic case
Require: A, f, z, ¢, u

1.y =inv(0 + A, f —u,e), resp. y° =inv(0 + A+ u, f,¢)
2. p°=in nu(—0; + A*, z—y g), resp. p° :Aim;(—ﬁt—{—A*%—u,z—ye,s)
3. Voda(u) = p° + au, resp. V.Jo(u) = p°y° + au

7.1. Inertial proximal algorithms

With this preparation, we formulate our general truncated inertial proximal schemes
given by Algorithms 7 8 & 9.

62

7. Proximal methods in function spaces

Algorithm 7 (General truncated inertial proximal (GTIP) method)

Require: 3, Jo, ug = u_1, Upg, TOL, ¢1, 2, ¢35 > 0 close to 0;
Initialize: By =1, k =0;
while ||By_1]| > TOL do
1. Uk41 Sgas‘i (uk - Skngk (uk) + Hk(uk - Ufk:—l))
where s, > ¢, 0 > 0 are chosen such that dp > v > ¢ + c3, defined by

op=————— and yp=—————

with Lj satisfying

A A

R L
Jo(upg1) < Jo(ug) + <VJ2(Uk)7 Upg1 — Uk> + f”ukﬂ — %,

llusr—ug_1]?

ep < (’71@ - 02) c(up—1a)
and (0)x is monotonically decreasing.
2. pup = —ouy — S (ug)*(S(ug) — 2) (6.3.9)
4. E=Fk+1
end while

, ¢ > 0 is the constant defined in Lemma 7.4.4,

This scheme is discussed in [OCBP14] for the case of finite-dimensional optimization
problems. The convergence results for Algorithm 7 presented in [OCBP14] can be ex-
tended to our linear and bilinear parabolic control problems.

The following algorithm is a special case of Algorithm 7 in the case that it is possible
to calculate the a priori Lipschitz constant of the gradient directly.

Algorithm 8 (Constant truncated inertial proximal (CTIP) method)

Require: 3, jg, uy = U_1, Uyg, TOL, €;
Initialize: Set By =1, k =0, choose 0 € [0,1) and some small ¢; > 0;
Calculate the Lipschitz constant L(J3) = Apax(V2Jo) and set s < 2(1 —6)/(L + 2¢3).
while ||By|| > TOL do
1. ugyq ng;d (uk — sVsng(uk) + G(uk — uk_l))

2. g1 = (%(1 —0) - L - 02) lwe—wsl ' yhere ¢ > 0 is defined in Lemma 7.4.4.

c(up—uq)
3. ppr1 = —ugyr — S (ups1)*(S(ugs1) — 2) (6.3.9)
4. B = B(Upq1, fit1)
5. k=k+1

end while

63

7. Proximal methods in function spaces

Algorithm 9 (Variable truncated inertial proximal (VTIP) method)

Require: 3, Jo, ug = u_1, Upg, TOL, n>1,Ly>0, e
Initialize: By =1, k = 0, choose 6 € [0,1) and some small ¢ > 0;
while ||B|| > TOL do
1. Backtracking: Find the smallest nonnegative integer ¢ such that with
L=n"Lk

~

jQ(fL) S jg(Uk) + <Vj2(uk)7ﬂ — uk> + E”ﬂ — uk||2

where @ = Sg,“sd (uk — sV, Jo(up) + 0(uy, — uk_l)), s <2(1—0)/(L+ 2c,),

2. Set Ly, = L and s < 2(1 —) /(L — 2¢3).
3. Uppr = Sg“sdk (uk — 5k Ve, jg(uk) + 0(uy, — uk,1)>
4. epy1 = (%(1 —6) — % — 02) %, where ¢ > 0 is defined in Lemma 7.4.4.
5. MEg+r1 = — QU1 — S,<Uk+1)*(5(uk+1) - Z) (639)
6. Brt1 = B(Wkt1, ft1)
7. k=k+1
end while

It is easily verified that Algorithm 8 and Algorithm 9 are special cases of Algorithm
7, i.e., they fulfill all the requirements of Algorithm 7.

7.2. A special case — The fast truncated proximal
scheme (FTP)

Now, we would like to discuss the special case, where s = % and 0, = 0 because this
will lead to a faster convergence if Assumption 1 is fulfilled as we will see in Subsection

7.3.2.
The following Algorithm implements a proximal scheme

64

7. Proximal methods in function spaces

Algorithm 10 (Truncated proximal (TP) method)

Require: 3, Jo, ug, Usg, TOL, &
Initialize: vo = ug; to=1; By=1; k=1
Calculate L(jg) = /\max(VQJAQ)
while ||By_i|| > TOL do

o

1. €k ::?

2. U = S(é‘ld (kal — %ngjg(uk,l))
3. g = —ouy — S'(ug)*(S(ug) — 2) (6.3.9)
5. k=k+1

end while

This scheme is discussed in [BT11] for the case of finite-dimensional optimization

problems without the truncation.

In [Nes83], an acceleration strategy for proximal methods applied to convex opti-
mization problems fulfilling (7.0.3) is formulated, that improves the rate of convergence
of these schemes from O(1/k) to O(1/k*). We will see in Subsection 7.3.2 that this
also holds for the infinite dimensional truncated version. Specifically, one defines the

sequence {ty, vy} with

to =1, tri=1+/1+4t2_ /2,

and

teq—1
Vg = U, U = Uy + (715)(uk — Up_1).
k

Correspondingly, the optimization variable uy is updated by the following
1_ 4
Up < Sg’ld (’Ukl — VJQ(Ukl)) .
T L

This procedures is summarized in the following algorithm.

65

(7.2.1)

(7.2.2)

7. Proximal methods in function spaces

Algorithm 11 (Fast truncated proximal (FTP) method)
Require: 3, Jo, ug, Usg, TOL, &

Initialize: vy = up; to = 1; ABO =1, k=1

Calculate L(J5) = Apaz(V2J2)

while ||B;_1|| > TOL do

1. Ek - — (k,‘j—iol)?’)
2. up = S%“d (Uk—l — %VskJQ(Uk—l))
3. = —auy, — S (ug)* (S(ug) — 2) (6.3.9)
5. 4, = 1+\/1;—4ti71
6. Vp = U + (%) (Uk - uk,l)
7. k=k+1
end while

7.3. Convergence analysis of truncated inertial
proximal methods

In this section, we investigate the convergence of our truncated proximal schemes. In
the following we assume that the error of the truncated gradient has the following upper

bound
|Vea(u) — Vio(u)]| < ce. (7.3.1)

This assumption is discussed in the next section for our elliptic and parabolic optimal
control problems separately. We refer to the estimation error of the truncated gradient
in step k as follows

er = Ve, Jo(up) — Vio(ui), where ||| < cey.

7.3.1. Convergence of the GTIP method

In this section, we investigate the convergence of our GTIP scheme and therefore also
for CTIP and VTIP. Notice that our analysis differs considerably from that presented
in [OCBP14] where finite-dimensional problems and exact inversion are considered.

In order to prove the convergence of the GTIP method, we use the strategy of
[OCBP14] and extend it to the case of infinite dimensions and non-exact inversion.
First, we need the following two lemmas.

Lemma 7.3.1. Let vy,vy € Uy and let w be given by

w = nggi (v1 — S (v1) + O (v — vg)))

66

7. Proximal methods in function spaces

Then, there ezists y(vy,vy) € dJy (w), such that , for all u € U,q, the following holds
1 R 0
<’}/(U1,Ug) + S—(w — 1) + Vida(vy) + e — S—k(vl — Vg), U — w> > 0. (7.3.2)
k k

Proof. Inequality (7.3.2) is the variational inequality that characterizes the solution to
the following problem

w = arg min {jl(u) + 2; Hu — (vl — spJy* (vy) + Op(vg — Uz))HQ} . O

u€Uyq

The next Lemma is an extension of Proposition 4.7 in [OCBP14]. Therefore, we define
Hj(u,v) == J(u) +6llu—v||*> and Ay = |jup — up_1]|-
Lemma 7.3.2.
(a) We have that

H5k+1(uk+1, Uk) < H(Sk(uka Uk—1) - %Ai + Cék(ub - Ua)-

(b) The sequence (Hs, (ug, ug—1))x is monotonically decreasing and thus converging.

(c) It holds that 332, A2 < oo and therefore limy_ o, Ay, = 0.
Proof.
(a) Using inequality (7.0.4) and (7.0.3) with v = w41 and v = uy, we obtain

7.
j(uk+1) < j(uk) + <Vj2(uk)7 Ugt1 — U/c>

L
+ 7k||uk+1 - Uk||2 + (Y Uk, Up—1), g1 — Ug)

and using (7.3.2) with u = ug, v1 = ug, v2 = ux_1 and w = gy, in the above
inequality, we have

4 - 1 L
J(UkJrl) < J(Uk)_ (— k) Huk+1 — ukH2
Sk 2
+8j <Uk — Ug—1, Ug+1 — Uk) - <€k>uk+1 - Uk>
k
5 1 Ly 6)
< Jlup)— [— — =k -
< J)= (=2 = 2 s -
O)
o e — w7+ cen(up — ua),
2Sk
where in the second inequality, we used 2 (a,b) < ||a||*+[|b]|?, the Cauchy-Schwarz
inequality, and |lugy1 — ug| < (up — us). Now, with 6 = i - % - ;S—kk and
v =+ — Lo — 9% 45in Algorithm 7, we have
Sk 2 Sk

j(uk+1) + (5kAk+1 S j(uk) -+ 5kAz — '7kAz -+ cak(ub — Ua).

Hence the claim follows, since d; is monotonically decreasing.

67

7. Proximal methods in function spaces

(b) From (a), we can conclude that the sequence (Hs, (uy,ug—1))x is monotonically
decreasing if —y;A2 + cep(up — u,) < 0 which is fulfilled due to the algorithms

fles —wgo—1 ||
c(up—uq) °

from below by J > 0 and therefore converges.

requirement g, < (7 — ¢2) Furthermore (Hjs, (ug, uk—1)) is bounded

(c) Summing up the inequality in (a) from & =0,..., K gives

K K K
S AL <> (Hak(uk, Upy1) — Hs, | (Upgr, Uk)) + c(uy — uq) Y €

k=0 k=0 k=0

K
J(u0> - H5K+1 (uK+17 uK) + (ub - ua) Z €k
k=0

K

J(uo) + 3 (7 — ¢+ ea) AL

k=0

IA

Since ¢, co > 0 by the algorithm requirements, the claim follows by letting K tend
to infinity. O

Now, we can prove the following theorem.
Theorem 7.3.3.
(a) The sequence (J(uz))i converges.
(b) There exists a weakly convergent subsequence (ug,); .

(¢) If in addition Assumption 1 hold, then any weak limit u* of (uy,); is a critical point
of (7.0.1) and J(u*) < liminf, o j(uk])

Proof.
(a) With the definition of Hs(u,v), it holds that

H_s, (ug,up—1) < j(uk) < Hs, (ug, up—1) (7.3.3)
and

H s (up,up_1) = Hs, (up, up_1) — 20622
So we can use Lemma 7.3.2 (b) and (c) to show that

lim H_s, (ug, up_1) = lim Hs, (up, up_1) — 2062 = lim Hj, (up, up_1)
k—so00 k—so0 k—oo

and with (7.3.3) and the squeeze theorem this yields

g,) = [, Ho b).

68

(b)

7. Proximal methods in function spaces

Since Hs,(ug, u_1) = j(uo) and (Hs, (ug, ug—1))r is monotonically decreasing by
Lemma 7.3.2 (a) it holds that the sequence (uy)g is contained in the level set
{u € Upyg: 0 < J(u) < J(up)} and therefore bounded due to the fact that J(u) —
o0 as ||lul]| = oco. Now we can use [Brell, Theorem 3.18] on weakly converging
subsequences and the fact that L?*(Q7) is reflexive to state that there exists a
weakly converging subsequence (uy,);.

Let u* be the weak limit of the sequence uy,. Then, from [Juj11 —ug|| — 0 we have
that ug; 41 — v*. From dJ(u) = V.Jo(u) 4+ d.J; (u) and Lemma 7.3.1, it follows that

<Vj2(ukj+1) +7 =& u— Ukj+1> >0 Yue Uy (7.3.4)

where v; € o.J, (ug;4+1) and

1 R Oy, R
fj = —g(ukﬁl - uk].) — VJQ(ukJ) - ij + ;(Ukj — ukj_1) + VJQ(Ukj+1).
J J

Therefore we have the following

1 O, A 5
611 < = Akyan 2, + [V (g 10) = Vool | + e,

1 0.
< (+ L) A1+ SﬁAh + Ek;-
By Lemma 7.3.2 (c) it follows that lim; , & = 0. From Assumption 1, we have
the convexity of J; and it follows the monotonicity of V.J, see, e.g., [Kac60]; The

convexity of .J; and the monotonicity of V.J, together with [KT09, Remark 3(b)]
provides the equivalence between inequality (7.3.4) and

(VIa(w) = &1 — gy g1) + Ji(w) = Ji(wra1) >0 Vo € Usa. (7.3.5)
Now, letting j pass to infinity , we obtain from the lower semicontinuity of .J;, that
(VIa(u),u =)+ Ji(u) = Ji(u?) 20 Vu € Usg,
that is, due to [KT09, Remark 3(b)], equivalent to
<Vj2(u*) + v, u— u*> >0 Yue€ Uy,

where v € 9Jy(u*), such that each weak limit u* of the sequence (ug,); is a

critical point of (7.0.1). Furthermore, since J is convex, we have that .J(u*) <
lim inf;_, J(u,). n

Next, we define the proximal residual and state its convergence rate.

69

7. Proximal methods in function spaces

Definition 7.3.1. The proxzimal residual is defined by
r(u) ==u— Sg’ld (u — VjQ(U))
Note that
Uad 5 . 1 A 2
r(u) =0 u=S;"(u—Vih(u) = arg min {BHvHLl t3 Hv - (u - VJg(u)) H }
v€Uqq
< Jy(u) € J||ul|pr - <67(u) + VJy(u), @ — u> >0 forall ue Uy

which is exactly the optimality condition, see (6.3.1). To prove the convergence rate, we
need the following two lemmas.

Lemma 7.3.4. Let u,v € L*(Qr), then the function p : Rt — R with

Y

p(s) == i Hu — Sg‘gi (u — stg(u))

is decreasing in s and the function q : R™ — RT with

q(s) :== Hu - Sg;f (u - stg(u))

1S 1ncreasing in S.
Proof. See [Nesl3, Lemma 2]. O

Lemma 7.3.5. Let s > 0, then

Proof. See [BC11, Proposition 12.27]. O

SVt (u) — SV (0)| < llu—]| for all u,v € LX(Qp).

The next Lemma gives a relationship between the Ay from Lemma 7.3.2 and the
proximal residual r(ug).

Lemma 7.3.6. Let (uy)r be a sequence that is produced from Algorithm 7, then

K 9 K
D lra)l < = > Appr.
k=0 €1 k=0
Proof. From Lemma 7.3.4, we have
1 <s=q(1) <q(s), (7.3.6)
and

1>s=p(l) <p(s). (7.3.7)

70

7. Proximal methods in function spaces

Then by using Lemma 7.3.5 and the linearity of S, we obtain

Onllux — un|| = |[ux — sV Ta(ur) + O (wr — ux—1) = (ur — 5V Ja(uy)) |

J. 7.3.
> JJurir — S04 (ur — 56V ())| (7.3.8)

Now, we can use this to obtain the following inequalities

leaker = vl > flawen = vl = Ol = ol + fJuin = 855 (= 56V o))|
Z Huk — SSU:E (uk — sijg(uk))H — 9k||uk — uk_1||
> min (1, i)l (o) | — g — |

> e[()l = llun — wpi|

where the first inequality uses (7.3.8), the second uses the triangular equation, and the
third arises from (7.3.6), (7.3.7) and 6, < 1. The claim follows by summing both sides
for k=0,..., K and applying u_; = uyg. O]

Now we can state the desired convergence result.

Theorem 7.3.7. Let (ug)y be the sequence generated by Algorithm 7, then the following
holds

A

2J(U0)
i ()] < (ae) 2

Proof. Summing up the inequality of Lemma 7.3.2 (a), for k =0,..., K+1, and applying
ug =u_1 and J(ugy1) > 0 gives

R K+1 K+1
0 < J(uo) = Y valluw — wea [P + (o — wa) > ek
k=0 k=0
R K+1 K+1
< J(up) = > vrllur — we—a|I” + D (v — o) |lug — ugp—a ||
k=0 k=0
R K41 R
< J(up) —];) callur — up—1||* < J(ug) — co(K +2) og}cignKAkH'

By using this and Lemma 7.3.6, we obtain

~—

2 2.J (ug
2 - “ < 1
o2 [l (un) | < min Appr < (ere2) ™ =

7.3.2. Fast convergence of the FTP method

In this subsection we investigate the faster convergence of the FTP method. To prove
this, we need convexity of the differentiable part J such that (7.0.4) holds. Therefore
we require Assumption 1 to be fulfilled.

71

7. Proximal methods in function spaces

First, we define
A A L 9
Qu(u,v) = Bllullor + Ja(v) +(Va(v), u = v) + Zllu— o],
A A L
Qf (u,v) := Blu||pr + J2(v) + <VJ2(U),U — v> + EH’LL — o> + (e, u — v),
and

P (v) := argmin { Q% (u,v)}, (7.3.9)

u€Ugq

such that one step of Algorithm 10, resp. Algorithm 11, can be written as follows
up = Py (ug_1), Tesp. up = P (vp_q).

In order to prove the convergence of the TP method, we need the following two
lemmas.

Lemma 7.3.8. For any v € U,q, one has w = Pf(v) iff there exists y(v) € O||w| 1, the
subdifferential of || - || 11, such that

<Vf2(v) + L(w —v) + By(v) + e, u — w> >0, Yué€ Uy (7.3.10)

Proof. This is immediate from the variational inequality of (7.3.9). For a proof see, e.g.,
[ET99]. O

Lemma 7.3.9. Letv € Uy and L > L(jg), then for any u € U,q, we have
J(u) = J(Pi(v)) = sl\PE(v) —vl* + L (v —u, P(v) —v) + (PL(v) —u,e).
Proof. From (7.0.4), we have
J(Pf(v)) < Qr(Pf(v),v),
and therefore
J(u) — J(Pf(v) > J(u) — Qu(Ps(v),v). (7.3.11)
Now, since 3| - ||+ and J, are convex, we have

Bllull = BIPL() | + (u = PL(v), 5y(v))
and Jy(u) > Jo(v) + <u -, ng(v)> :

Summing the above inequalities gives

J(u) = BIPE)1r + (u— PE(v), By(v)) + La(v) + (u— v, Vo(v)), (7.3.12)

72

7. Proximal methods in function spaces

thus using (7.3.10), (7.3.12), and the definition of @, in (7.3.11) gives the following

A

J(u) = JPEw) 2 =S IPE(w) ol + (u — P (), Vhofo) + 1 (0))
> 2| P50) — ol + L {u— Pi0), v~ Pi(w) + (P5(0) — u,c)
= IPE@) — ol + L (v —u, Piw) —) + (P(0) ~we). O

Now, we prove an O(1/k) convergence rate for Algorithm 10 (TP scheme).

Theorem 7.3.10. Let (uy) be the sequence generated by Algorithm 10 and u* be the
solution of (6.0.2) with linear or bilinear elliptic equality constraints; let ¢ be determined
by (7.4.3) resp. (7.4.5). Then for any k > 1, we have

J(ug) — J(w*) < L(S2)luo - u*||22—|]; 2¢lluy = tall -2 (7.3.13)
Proof. Using Lemma 7.3.9 with u = u*, v = u,, and L = L(J,) we obtain
2 () = 1) 2 lobnn — 4+ 2 (= 8 s =)+ o = 0,)
= " =l = 7 = w4 s —)
Summing this inequality over n =0,...,k — 1 gives

= (k) > T)
" k—1 2

2 *
> [lu* — ug|]* + |l — uol]® + 7 > (upg1,en) — Zk (u*,er)y. (7.3.14)
n=0

Using Lemma 7.3.9 one more time with ©v = v = u,,, we obtain
2 5 2
7 (W) = I () 2 fJun = st ||” + 7 (Unsr = uns)

Multiplying this inequality by n and summing again over n =0,...,k — 1 gives

i z_% (0 () = (04 1) (tns1) + J (tn11))

k—1 k-1
2
2> nllun = unga[l* 4 7 Do (=n (s ex) + (04 1) (wngrs ex) = (unsas ex)),

which simplifies to the following

2 k—1 k—1) 9 9 k—1
T <—k<](uk) +> J(Un+1)> > > nllun — Unsa||* + Zk (ur, ex) — T Y (Unsr,en)
n=0 n=0 n=0

(7.3.15)

73

7. Proximal methods in function spaces

Adding (7.3.14) and (7.3.15) together, we get

7 (J) = J(u) = flu” = wl* + 3 nllwn = wna” = [lu” = wol* + Tk (ue — w7, ex),
n=0

and hence with g, = £ and u, < ug, u* < wy it follows that

Lijuo — u*|* Ljuo — u*|]*

J(ug) — J(u*) < + L {u* —uy,e) < + c||u* — ug|| - ek

- 2k 2k

< L(J2)|Jug — u*||? + 2¢||u* — ug| - o

- 2k

< L(J2)||luo —U*H;j 2c]juy — uallzo -

Next, we present a convergence result for the FTP method. For this purpose, we need
the following lemma.

Lemma 7.3.11. Let (uy), (vx) and (tx) be the sequences generated by Algorithm 11, let
ex be the error of the truncated gradient, and let u* be the solution to (6.0.2), then for
any k > 1, we have

2 2 2
zti—lwk = plkn 2 l7gal® = [lrell® + Tt (e en)
with wy, == J(ug) — J(u*), rg = tg_qup — (tp—1 — Dug—1 — u*.
Proof. We apply Lemma 7.0.1 at the points (u := uy, v := v;) and likewise at the points
(u:=u*,v :=v;). We obtain the following
2L N wy — wp—1) > |Jwrgr — vil]” + 2 (uis1 — vk, vg — ug) + 207 (U1 — s €x)
2L Mg > |Jupgr — vrl]? 2 (Upgr — Vg, v — uF) A+ 207 (uppq — ut,er)

where we used the fact that w1 = p§ (vx). Now, we multiply the first inequality above
by (t, — 1) and add it to the second inequality to obtain the following

2
z((tk — Dwy, — tpwg41)
> tellupsr — vrll® + 2 (uprr — vi, trop — (B — Dy, — ™)

+ 2)+ 2 (s —)
I k \Uk+1 U, €k I U u ,er).

Multiplying this inequality by ¢, and using t; , = t7 — t, which holds due to (7.2.1),
we obtain

2
f(< ho1WE — tpwki1)
> [[tn (s — vi)|1? + 2t (wer — v tivr — (tr — Dy — u*)

2 x
+ Ztk <tkuk+1 — (tk — 1)uk —Uu ,6k> .

74

7. Proximal methods in function spaces

Applying the Pythagoras relation
la = bl +2(b—a,a—c)=lb—c|* — |la—c|,
to the right-hand side of the last inequality with
[tkvk, b= tkukﬂ, C = (tk — 1)uk -+ U*,
we obtain
2 00 2
z((tk—lwk — L Wyt1)
> |ltpugsr — (e — Dug — o |* = [[tron — (t — Dug — u*?

2 *
+ Ztk <tkuk+1 — (tk — 1)Uk —Uu 76k> .

Therefore, with v (see (7.2.2)) and r defined as
thor = trug + (t—1 — 1) (ug — ug—1), 7% = th—rug — (o1 — Dup—y — u”,

it follows that

2 2 2
Ztiqwk = e = Irreall® = llrell? + Tt (Tht1ser) - O

We also have the following lemmas.

Lemma 7.3.12. The positive sequence (ty) generated by the FTP scheme via (7.2.1)
with to = 1 satisfies (k+2)/2 <ty <k+1 forall k > 0.

Proof. The proof is immediate by mathematical induction. O

Lemma 7.3.13. Let (ax) and (bg) be positive sequences of reals and (cx) be a sequence
of reals satisfying

ap +bg > apy1 + b1+ g1 Ve>1landay +by4+c¢p <d, d>0.
Then, aj, < d —XF_, c,.
Proof. The proof is immediate by mathematical induction. O]
Now, we can prove a convergence rate of O(1/k?) for Algorithm 11 (FTP scheme).

Theorem 7.3.14. Let (ug) be the sequence generated by Algorithm 11, let u* be the
solution to (6.0.2) with linear or bilinear elliptic equality constraints; let ¢ be determined

by (7.4.3) resp. (7.4.5). Then for any k > 0, the following holds

oo 2L(Jy) |luo — u¥||? 4 2¢|lup — 2uq|g0
J(ug) = J () < =5 k1)

(7.3.16)

75

7. Proximal methods in function spaces

Proof. Let us define the quantities

2
ag := th_ﬂl)k, b i= ||mell?, = Ztk_l (re,er), d:=|lug — u*|]*

As in Lemma 7.3.11, we define wy := J(ux) — J(u*). Then, by Lemma 7.3.11, the
following holds for every k£ > 1

ar — g+1 > by — b + Crp1 & ap + by > agy1 + b1 + Crya,

and hence assuming that a; + b; + ¢; < d holds true, invoking Lemma 7.3.13, we obtain

which combined with ¢,y > (k+1)/2 (Lemma 7.3.12) gives the following

2L ug — u*||?

Furthermore with Lemma 7.3.12 and u, < u*, u; < uy, we have that

-1
2

n
HrnH = ||tn71un - (tnfl - 1)Un71 — U*|| < Hnub - < Ug + ua>

\ < nlluy — 2ua])

which combined with (7.3.17) and ¢ = (ki’l)g gives the following

L ()|t — w*||% + 2¢||up — 2ua|g0

<
= (k + 1)2

What remains to be proved is the validity of the relation a; + b1 + ¢; < d. Since ty = 1,
we have
2 2

ap = fttg)wl I by = [Ir1]* = lun =[P, er =2(uw —u*,er).

Applying Lemma 7.0.1 to the points v := u* and v = vy = ug, we get

2 * * 2 *
Z(J(u) — J(u1)) > |Jur — vol|* + 2 (vo — u*,uy — vo) + Z<u1 —u* ep)
2
ZHMf%ﬂP—H%—UW2+Z@n—Uﬁﬁ%
that is, —a; > by —d + ¢1 & a1 + by + ¢; < d holds true.]

Remark 7.3.1. The TP and FTP methods converge also replacing L with an upper
bound of it. In particular, we can prove O(1/k?*) convergence of the FTP method using
a backtracking stepsize rule for the Lipschitz constant (Step 1 in Algorithm 11) as in
Algorithm 9.

76

7. Proximal methods in function spaces

We complete this section formulating a fast inexact proximal scheme where the Lips-
chitz constant L is obtained by forward tracking, (nevertheless we call it backtracking as
in [BT11]), thus avoiding any need to compute the reduced Hessian. Our fast truncated
proximal backtracking (FTPB) method is presented in Algorithm 12.

Algorithm 12 (Fast truncated proximal backtracking (FTPB)
method)

Require: 3, Jo, ug, Usg, TOL, o, n>1,Ly>0
Initialize: vg = ug; to=1; By =1, k = 1;
while ||By_1]| > TOL do
1. Backtracking: Find the smallest nonnegative integer ¢ such
that with
L=n'Lr

A A

~ z ~ L e
Jo(0) < Ja(vg—1) + <VJ2(UI<:—1)>U - Uk:—1> + §||U — U)?

where v = Sg‘ld <U]€_1 — %ngg(ﬂk_1>)
L

2. Set Lk =1L

3. Ek = (kiol)g

14wy = SZL’” (qu - ivsjﬂkal))

k
5. pp = —ouy, — S (ug)*(S(ug) — 2) (6.3.9)
By, = B(ug, pir,)
o T4y /14482,
k=5 —

v = Uy + (%) (ur — up—1)
k=k+1
end while

© oo N o

7.4. Proximal methods in optimal control

In this section, we will show that the 'reduced’ optimal control problem (6.0.2) fulfills
the requirements of the algorithms in the previous section.

First, notice that (6.0.2) has the additive structure (7.0.2)-(7.0.3) where (7.0.2) holds
for Ji(u) = B|u| 1, and Ja(u) = 1[|S(u) — 2||> + ¢[|u||? is at least twice Q-differentiable,
it is convex under appropriate conditions discussed in the previous section, and it has
Lipschitz-continuous gradient as we prove in the next subsections for the elliptic and
parabolic cases separately.

Furthermore, we show that the truncation error of the gradient is bounded from above

by inequality (7.3.1).

77

7. Proximal methods in function spaces

Now, we discuss the case of elliptic models. First, we prove that the differentiable
part of our elliptic optimal control problem has a Lipschitz continuous gradient.

Lemma 7.4.1. The functional Jo(u) = IS () —z)2+ < ||ul|* has a Lipschitz-continuous
gradient for S(u) = A7 (f—u) (linear-control case) and for S(u) = (A+u)~Lf (bilinear-
control case).

Proof. For the linear-control case, we have
IV Jo(u) = Vo (0)|| = [la(u —v) + A7 A7 (u =)

< affu— o] + A~ A llu - o]
= (a+ A A g e)lu - o]

such that we have the Lipschitz-constant L(J,) = (a + [|A™*A™Y|12.2).
For the bilinear-control case, we use the mean value theorem. There exists a £ € U,y
such that

IVJa(u) = V()| < sup |[Vy(u)(h) = Va(v)(h)]
heL2(Q),[IR]I<1

= sup () (hu—w)|
heL?(Q),|[h[I<1

= sup (&) (u—v), S(E)(R))

heL?(Q),|[h[I<1
+ <Slly/(£)(u -0, h’)? Sb(f) - Z> ta <u - v, h>‘
< (C3IFI? + CoCs) fI* = Csll fllN1=] + @) flu— o], (7.4.1)
for the last inequality, we use (5.1.7),(5.1.14),(5.1.15), that completes the proof. O

Now, we investigate the error of the truncated gradient V..J,(u).

Lemma 7.4.2. The following estimate holds
|Velatw) = V()| < ce.
for some ¢>0.

Proof. In the linear-control case, we have V.Jy(u) = —A~*(A~Y(f —u) — 2) + au. Using
(7.0.8) there exist the errors €, é; € L*(Q2) with ||é;]|, ||é2]] < & such that

[Veha(u) = Viha(u)| = [-A (A (f —u+ &) — 2+ &) + A (AN —u) - 2)
=[-A7A™e + A7 < e, (7.4.2)
where

c=|Aa7a™ + 4. (7.4.3)

78

7. Proximal methods in function spaces

In the bilinear-control case, we have V.Jy(u) = —(A + u)*((A + u)~'f — 2)(4 +
u)~'f + aqu. Furthermore, Theorem 5.1.2 implies that the solution 7 := (A + u)~'g of
the equation Ay + uy = g has the following property

(A +u)"tg|| < Ci|lgll, forall g € L*(Q). (7.4.4)
Since A* also fulfills (5.1.2) with the same 6, we also have
I(A+w) gl = [[(A" + u) gl < Callg]l-

We have errors €1, é, é3 € L*(Q2) with ||é]], ||éz2]|, ||és]] < & such that, using (7.0.8) the
following holds

|Vedau) = Vha(u)| = |- (A+w) ™ (A+u)(f+ &) — 2+ &) (A+u) M (f + &)
HA+w) T (A+w) " f = 2)(A+u) |
= [-(A+w) ((A+w) e +) (A+u)(f +6)
—(A+u) ((A+u)f = 2) (A+u) 6|

<+ ((A+w e+)| (o] + |+ wa)
+|a+w ((A+ w7 = 2) | [[(4+ 07|

<G H(A +u) e + &l (Ch]l f]| + Cullés]])
+ Cr ([lyll + [Iz]) Callés||

< C} [015 +e)([fIl+2) + (Cill Il + HZ||)€]

< cg,
where
c=C22C £l + If] + C1 + 1+ ||2l]. (7.4.5)
For the three last inequalities, we use (7.4.4), (5.1.7), and € < 1. O

Next, we discuss the case of parabolic models. We prove that the differentiable part
of our parabolic optimal control problem has a Lipschitz continuous gradient.

Lemma 7.4.3. The functional Jo(u) = S () — 2|2+ < ||ul|* has a Lipschitz-continuous
gradient.

Proof. For the linear-control case, we have

I9.42(0) = VJa(0) 1y = llas — v) + 5°S(u =)llzzcan)
< OCHU — U”Lz(QT) + ||S*S||L2,L2”U — U“LQ(QT)
= (a+ 1575 e2.22)lJu = vl 2 (),

79

7. Proximal methods in function spaces

such that we have the Lipschitz-constant L(Jy) = (a 4 ||S*S||12.12)-
For the bilinear-control case, we use the mean value theorem. There exists a £ € U,y
such that

IVJa(u) = Va(v)lli20p £ sup |[Via(u)(h) = VI (v)(h)]

 heLX(Q),|hlI<1

= sup | (hu—)

heL2(Q),||h|I<1

= sup 1(S"(§) (u —v), S"(€)(h))

heL?(Q),|[h]I<1

+ <S//<5)(u - U,h),S(ﬁ) - Z> +a <’LL - Uwh>|

2 2
< (Cg (||y0HL2(Q) + Hf||) + cics (||y0HL2(Q) + Hf||)

A

+ ¢ (Iyoll 2oy + /1) N21l + a) I = vllL2@r),

for the last inequality, we use (5.2.5),(5.1.14),(5.1.15), that completes the proof. O

Furthermore, since Jy is convex, the generalized differential is identical to the subdif-
ferential (see Lemma 6.1.1) and we have

O Ji(u) = 8Jy(u) = {y € L*(w) : (v,v —u) < Jy(v) — Jy(u) forall ve Uy} (7.4.6)

Now, we investigate the error of the truncated gradient ngz(u) for the parabolic
model.

Lemma 7.4.4. The following estimate holds
vajg(u) — ng(u)H <c-eg,
for some ¢>0.
Proof. We start considering the case of bilinear control. Since y° satisfies
Oy + Ay" +uy” = f+er, ¥ (1) =y,
for some e; € L?(Qr) and ||e1|| < &, we have that § := y° — y satisfies the following
Oy + Ay +ug=er, y(-,0)=0,
and therefore, using Theorem 5.1.2
ly" =yl < Cilleall < Cre. (7.4.7)
Furthermore, p° satisfies

—atPE‘FA*pE‘i‘UpE :Z_y6+627 ﬁ(aT) :Oa

80

7. Proximal methods in function spaces

for some e; € L*(Qr) and ||es]] < € and since A* also fulfills (5.1.2) , we can use Theorem
5.1.2 and obtain

271l < Collzll + (1] + llwoll 2@y + 2¢).

In addition, we have that p := p® — p satisfies

—0p+Aprup=y—y +e, p(-,T)=0,
such that

1p° — pll < Csl|(y — v°) + ea]| < C5(Cie+¢) < Cle. (7.4.8)

Now, we can estimate the error of the gradient Vfg(u) = py + au.
IVeds(u) = Vo)l = [Ip7y" = pyll = I0°(y" =) + 5" =)| < [Ip°[|Cae + yllCre

< (G711 + Mol zy + 21 +2) + CCs (111 + ollzaiey)) < e

with ¢ = CiCa(|l | + lyoll 2y + 121 +2) + CoCs (/1] + 1ol 2(en)-
Now, we prove the inequality for the linear-control case. For the unique solution to

Oy + Ay =g, y(-0) = o,
with g € L?(27), we have the following estimate; see, e.g., [Eval0, Chapter 7];
19l 22001300y < CUlgll + 1yollz2()-
Since § := y® — y satisfies
g+ Ag=-e1, y(-,0) =0,
for some e; € L?(Qr) and ||e1|| < €, we have that
Iy —yll < Crex < Che.
Furthermore, p = p* — p satisfies
—0p+Ap=y—y +ey p(-,T)=0,
for some ey € L*(Q27) and ||ez|| < &, such that
Ip* = pll < Coll(y — ¥°) + e2l| < Ca(Chre +¢) < Che. (7.4.9)
Now, we can estimate the error of the gradient V.J,(u) = p + au.
IVeda(u) = VIa(u)]| = [[p7 = p|| < Cse
which finishes the proof. m

We see, that both our elliptic and parabolic optimal control problem fulfill the as-
sumptions needed for convergence of the proximal methods.

81

82

8. Inexact semismooth Newton
methods in function space

8.1. The semismooth Newton method

We consider the semismooth Newton method as a benchmark scheme for solving ellip-
tic and parabolic non-smooth optimal control problems.The inexact semismooth New-
ton (ISSN) method was presented in [MQ95] for finite-dimensional problems and in
[Ulb11] for infinite-dimensional problems. In this section, we discuss the ISSN method
for infinite-dimensional optimization problems and use it for comparison with our trun-
cated proximal schemes. In this section, to support our use of the ISSN scheme to solve
bilinear control problems, we extend two theoretical results in [Ulb11, Sta09].
Now, we discuss the solution of the following nonlinear equation

F(x)=0.
We have the following theorem.

Theorem 8.1.1. [HIK02, Theorem 1.1] Suppose that z* is a solution to F(x) = 0
and that F is generalized differentiable in an open neighborhood U containing x* with a
generalized derivative G. If G(x) is invertible for all x € U and {||G(z) " |yx : x € U}
is bounded, then the semismooth Newton (SSN) iteration

xk—f—l — xk o Q(xk)_l]-"(xk)
converges superlinearly to x*, provided that ||x° — x*|| is sufficiently small.

An inexact version of the SSN scheme discussed in this theorem is formulated in
[Ulb11, Algorithm 3.19], where the direction update dy to xj is obtained as follows.
Choose a boundedly invertible operator By, € £(X,Y) and compute

dy = — By ' F(x). (8.1.1)

For this scheme, superlinear convergence is proven in [Ulbl1, Theorem 3.20], provided
that there exists a Gy € 0*F(zy) such that

| (Br — Gr)di|ly

i = 0.
lldy || x —0 k|| x

83

8. Inexact semismooth Newton methods in function space

However, this procedure is difficult to realize in practice. For this reason, in our ISSN
scheme, the ‘exact’ update step 2! = 2% + dj, with dj, = —G(2*)~1F(2*), as discussed
in [HIK02], is replaced by x**! = 2% + d;, with dj, satisfying the following inequality

|G (zr)dy, + F (i) [ly < el F(zn)ly (8.1.2)

Our ISSN scheme is given in algorithmic form in Algorithm 13.

Algorithm 13 (Inexact semismooth Newton (ISSN) method)
Require: F, 2o € D
Initialize: k = 0;
while F(z;) =0 do
1. Calculate the direction dj, such that

1G (zr)dy. + F(zi)lly < nellF(n)lly (8.1.3)

with ny < 1and g — 0
2. Ty = T+ dy,
3. k=k+1
end while

8.2. Convergence of the ISSN scheme

On the basis of the proof of Theorem 3.20 in [Ulb11], we prove the following theorem
that states convergence of Algorithm 13. We have

Theorem 8.2.1. Suppose that z* is a solution to F(x) = 0 and that F is generalized
differentiable and Lipschitz continuous in an open neighborhood U containing x* with a
generalized derivative G. If G(x) is invertible for all x € U and {||G(x) |yx : 2 € U}
is bounded, then Algorithm 13 converges superlinearly to x*, provided that ||zo — x*||x is
sufficiently small.

Proof. Let vy, := G(xy)dy, + F(zx) and vy := x, — 2*. Furthermore, let 6 > 0 be so small
that ||xg — 2*||x < d and F is Lipschitz continuous in z* + 0Bx C U with L > 0. Now,
we show inductively that ||zg1 — 2% < d for all k. We assume that ||z — 2*|] < ¢ for
some k > 0. Then there holds

| F(zp)lly < Llvkllx-
We estimate the Y-norm of r:

Irelly < mell Fzw)lly < Loeloellx, (8.2.1)

84

8. Inexact semismooth Newton methods in function space

Next, using F(z*) = 0 we obtain

G(xp)vgsr = G(ag)(dg + vi) = 1 — F(x) + G(2k) v

8.2.2
=rp — [F(a* 4+ vg) — F(z") — G(z" + vy)vg]. ()
This result, the generalized differentiability of F at z*, and (8.2.1), give the following

1G (@) vrilly = o([lvellx) as [lug[ly — 0. (8.2.3)

Hence, for sufficiently small 6 > 0, we have

1G (k) vga]ly < vl x,

= 20
with Cg-1 = sup{||G(x)~!||y.x : z € U} and thus

_ 1
lorsallx < 1G(e) " lvx 19 (@) vpslly < Sllvwllx-

This gives

_ 0
Th41 EiE*—i-HUkQHXBX C$*+§BX C U,

which inductively gives zx — 2* in Y. Now, we conclude from (8.2.3) that

[ok1llx < Corl|G(zr)venlly = o(llorllx),

which completes the proof. O]

8.3. Semismooth Newton methods in optimal
control

Our purpose is to solve the nonlinear and nonsmooth system (6.3.9)-(6.3.10) by the
semismooth Newton iteration. We introduce the operator

T L) = I(Q), T(u) = Z(S'(u)’ (= — S(u)))

where Z is the Sobolev embedding (see [Ada75, Theorem 5.4]) of H}(Q2) into L*(€2) for
the elliptic case, resp. H'(Qr) D H>'(Q7) into L*(Q7) for the parabolic case, with
s > 2. This embedding is necessary to show that the function F defined in (8.3.2) is
generalized differentiable.

Now, by using ji = —au + T (u) from (6.3.9) and choosing ¢ := a™!, equation (6.3.10)
becomes to

F(u) =0, (8.3.1)

85

8. Inexact semismooth Newton methods in function space

where

F(u) :=u—a *max{0, T (u) — B} — a ' min{0, T (u) + 3}

+ o' max{0, T(u) — f — awp} + o' min{0, T (u) + 5 — au,}. (8.3.2)

The function F is generalized differentiable (see [Sta09, Theorem 4.2] for the elliptic
linear case, analogue for the parabolic and the bilinear case) and a generalized derivative
is given by

G(u)(v) = v — o 'xz_uz) (T (W) (v)), (8.3.3)
where

I ={x€Qr: au, <T(u)+ 5 <0 ae. in Qr}
I, :={z€Qr: 0<T(u)— B <au ae. inQr}.

Using Theorem 8.2.1, we can prove the following theorem that guarantees the superlinear
convergence of the semismooth Newton method applied to our problems. To prove this,
we extend the proof of Theorem 4.3 in [Sta09].

Theorem 8.3.1. If
C"(w)||S(u) — z|| < a, (8.3.4)

with C"(u) := supy, <1 [|S”(w)(v,v)|, then G(u) is invertible for all u € U,q and
G (w) Y| r2.r2 : w € Usa} is bounded.

Proof. We denote V' = € for the elliptic case and V = Qp for the parabolic case.
Furthermore, we define J :=Z_UZ,, and for D C V and v € L*(Qr) the restriction
operator Ep : L*(V) — L*(D) by Ep(v) := v|p. The corresponding adjoint operator
is the extension-by-zero operator E} : L?*(D) — L*(V). We assume that G(u)(v) = w.
From (8.3.3), we obtain that Ey\\ v = Ey\yw. Thus, vy := Ejv € L*(J) satisfies

vy — o By T (u)(Ejvy) = Eyw+ o BT (u) (B By w). (8.3.5)
Now, we define

9(p) = (Eyw+ o BT () (Bjn By yw). @),

and
a(vi, va) = (U1, V2) 12y + at {(S(u) — 2, 8" (u)(Ejv1, Ejv2)) 12 (v
+ (8" (W) (Ejm), S (u)(E502)) 12|

for ¢, vy, vy € L*(J). We use

<T’(u)(w1),w2>L2 = <Z — S(u), 8" (w)(w, w2)> - <S’(u)(w1), S’(u)(w2)>L2(V),

V) L2(V)

86

8. Inexact semismooth Newton methods in function space

to see that (8.3.5) is equivalent to

a(vy,p) = g(p), forall p € L*(J). (8.3.6)

Using <U1,U2>L2(J) = <Ejv1,E§UQ>L2(QT
(8.3.4) in the bilinear case we have coercivity of a for u € U,y and therefore the Lax-
Milgram-Lemma can be applied to show that (8.3.5) admits a unique solution v; €
L*(J). Moreover, this solution satisfies

: and S”(u)(hy,hy) = 0 in the linear case resp.

[vsllz20y < Cllgllzacn < Cllwllzavy,

with a constant C' independent of u. For the last inequality we use the fact that 7'(u) is
bounded due to the boundedness of S(u), S'(u) and S”(u) as shown in (5.1.7),(5.1.14),
(5.1.15) for the elliptic case resp. (5.2.5),(5.2.9), and (5.2.10) for the parabolic case. [

Remark 8.3.1. The assumption of Theorem 8.3.1 is equivalent to Assumption 1.

87

88

9. Numerical experiments

In this section, we present results of numerical experiments to validate the computational
performance of our FTP method and to demonstrate the convergence rate of O(1/k?)
proved in Theorem 7.3.14. For benchmarking purposes, the FTP scheme is compared to
an inexact semismooth Newton method. Results of numerical experiments demonstrate
the computational effectiveness of truncated proximal schemes and successfully validate
the theoretical estimates.

9.1. Elliptic models

We start our discussion with the elliptic models. For validation purposes, we formulate
control problems for which we know the exact solution. We have

Procedure 1. (Linear case)

1. Choose §j € HY(Q) and p € HL(Q) arbitrary

max{=2 v} on {z e Q:p(x)>F}

2. Set 6 := {min{=22L w} on{z e Q:px) <P}
0 elsewhere

3. 1= —p—ai
4. f=Ag+1
5 2 =AD+79

Lemma 9.1.1. Procedure 1 provides a solution (§,4) of the optimal control problem
(6.0.2) with the elliptic model and linear control mechanism.

Proof. We show that the optimality conditions (6.3.12)—(6.3.15) in Theorem 6.3.2 are
fulfilled. In fact, (6.3.12)—(6.3.14) are obviously fulfilled because of 3.— 5. in Procedure
1. Now, we consider different cases to show (6.3.15):

e |p| < B: From 2. we have & = 0 and from 3. u = —p and therefore

B(t, 1) = 0 — max{0, c(—p — #)} — min{0, c(—p + B)}
+ max{0, —up + ¢(—p — B)} + min{0, —u, + c(—p+)} = 0.

89

9. Numerical experiments

e p> [

*x u, < =P8 < qu: From 2. we have 4 = y < 0 and from 3. we have

Uq = a
= —p—at = —f, therefore
B(t, p) = 0 —max{0,4 — ¢(20)} — min{0,a)}
+ max{0,% — up — ¢(268)} + min{0, 4@ — u,}
—4—0—a+0+0=0.

* %ﬂ’) < u,: From 2. we have & = u, and from 3. we have y = —p — au,,
therefore

B(1, 1) = uy — max{0,uq + c(—p — g — B)} — min{0, uy + c(—p — qug + B)}
+ max{0, u, — up + c(—p — au, — f)}
+ min{0, u, — uy + c¢(—p — au, + B)}
=g — 0 — (g + (=D — g+ B)) + 0+ c(—p — aup + B) = 0.

> 0 and from 3. we have

A
S
%

A

g

* Ug < wup: From 2. we have 4 = 7pa*5

1 :_—ﬁi at = . So
B(t, n) = @ — max{0,a} — min{0, 0 + ¢(25)}
+ max{0, 4 — up} + min{0, 4 — u, + ¢(26)}
=u—1u—-0+0+0=0.

* _ﬁa_ﬁ > up: From 2. we have @ = w, and from 3. we have y = —p — awy,

therefore

B(1, i) = up — max{0,up + c(—p — aup — B)} — min{0, up + c(—p — auy + 8)}
+ max{0, up, — up + c(—p — au, —)}
+ min{0, up — uq + (=P — aup + B)}

= up — (up + c(—p — auy — f)) = 0+ c(=p — aup, —) + 0= 0. 0

Procedure 2. (Bilinear case)

1. Choose §j € H}(Q) and p € HY(Q) arbitrary

max{ 22y} on {z € Q:p(x)j(z) > B}
2. Set @ := { min{ =28 4} on {z € Q: p(x)j(z) < —B}.

&7

0 elsewhere

90

9. Numerical experiments

3 1= —pf— abi
4. = Ay+uy
5. 2= AP+ G+ ap

Lemma 9.1.2. Procedure 2 provides a solution (§,0) to the optimal control problem
(6.0.2) with the elliptic model and bilinear control mechanism.

Proof. The proof is similar to the one of the linear case. m

Next, we specify the elliptic operator, the domain of computation, the choice of g
and p, and some optimization and numerical parameters. We consider the following
examples.

Case 1. (I dimensional) Q@ = (0,1), A = —=A, u, = —1, a = 0.05, § = sin(wz) and
p = 20sin(2nx). We discretize Q with gridsize h = 1024. A is discretized by second-
order finite differences. Then we have cq = %, ap =0 and 6 =1 such that (5.1.6) holds.
The results are shown in Table 9.1.

Case 2. (2 dimensional) 2 = (0,1)>, A= —A, u, = —1, a = 0.05, § = sin(7x;) sin(7z1)
and p = 48 sin(2nxy) sin(wzy). We discretize Q with gridsize h = 1/256. A is discretized
by second-order finite differences. Then we have cq = 3, ag = 0 and 0 = 1 such that
(5.1.6) holds. The results are shown in Table 9.2.

1
47

We compare the FTP, FTPB and [SSN schemes in terms of computational time. In the
FTP method, we calculate the smallest Lipschitz constant as the dominant eigenvalue of
V?2Jy(u) with a power iteration. The power iteration is defined by the following scheme.

. Vng(u)bk
AN

k+1

This power iteration is stopped if the difference between two iterates of the norm
||V2JA2||L2’L2 is less or equal than a tolerance of 107°. For the FTPB method, we use
backtracking with n = 1.5 and Ly = 0.001. All algorithms are stopped if B(ug, ux) <
107%. We can see in Table 9.1 and 9.2 that the computational performance of the FTP
and FTPB methods is comparable to that of the ISSN method.

In order to validate the theoretical rate of convergence of O(1/k?), the theoretical
upper bound of Theorem 7.3.14 and the actual error of the functional in correspondence
to Case 1 and Case 2 with § = 0.1 and a = 0.005, are plotted in Figure 9.1. We see
that the observed convergence rate may be faster than the theoretical prediction.

We conclude this section considering a challenging linear- and a bilinear-control case.
However the exact solutions are not known. In these cases the target function is not
attainable. We have

91

9. Numerical experiments

linear case (u, = 155)

bilinear case (u, = 7/3)

o 15} FTP FTPB ISSN | FTP FTPB ISSN
0.5 0.1 | 0.441s 3.86s 0.591s | 2.89s 8.62s 4.11s
0.01 | 0.333s 8.26s 0.587s | 2.07s 9.57s 2.758

0.05 0.1 | 2.33s 8.74s 2.56s | 6.94s 17.8s 6.62s
0.01 | 1.82s 7.78 1.26s | 3.11s 19.42s 4.37s

0.006 0.1 | 6.48 51.7s 2.49s | 15.0s 7.2s 7.9s
0.01 | 648 5.50s 2.68s | 8.04s 7.15s 6.61s

Table 9.1.: Case 1 — Comparison of the FTP, FTPB and ISSN methods.

linear case (u, = 150)

bilinear case (up, = 703)

o 15} FTP FTPB ISSN | FTP FTPB ISSN
0.5 0.1 | 6.55s 34.0s 6.83s | 58.3s 156s 123s
0.01 | 5.27s 28.6s 6.46s | 44.9s 105s 75.3s

0.05 0.1 |21.8 42.3s 39.3s | 77.7s 118s 117s
0.01 | 154s 389s 14.6s | 55.8s 95.8s 112s

0.005 0.1 | 34.1s 478 38.9s | 268 90.5s 172s
0.01 | 40.8s 59.5s 45.0s | 104s 63.6s 139s

Table 9.2.: Case 2 — Comparison of the FTP, FTPB, and ISSN methods.

92

error

error

9. Numerical experiments

— — — Theoretical quadratic upper bound
Error of the functional

10 B .]
10 10 10
iterations
(a) Case 1 - Linear problem
107
107 ¢ -l 1
— — — Theoretical upper bound
Error of the functional
_14
10 5 L]
10 10 1C
iterations

(c) Case 2 - Linear problem

Figure 9.1.: Validation of the theoretical upper bound (Theorem 7.3.14).

error

93

10
10°]
8
)
107 1
— — — Theoretical quadratic upper bound
Error of the functional
~15
10 B . T
10 10 10
iterations
(b) Case 1 - Bilinear problem
10°
107t T 1
10}) E
107]
107 g
107 g
107" 1
— — — Theoretical upper bound
Error of the functional
14
10 0 ! 1 2
10 10 10
iterations

(d) Case 2 - Bilinear problem

9. Numerical experiments

Case 3. (Linear case) Q2 = (0,1)%, A= —A, u, = —20, up = 20, z = 1+sin(27z) sin(27y)
¢ H} () and f = 1. We discretize Q with gridsize h = 1/256. A is discretized by second-
order finite differences.

Case 4. (Bilinear case) Q = (0,1)%, A = —=A, u, = —10, w, = 10, 2 = 1 +
sin(2rx) sin(2my) ¢ HY(Q) and f = 1. We discretize Q0 with gridsize h = 1/256. A
is discretized by second-order finite differences.

In the Figures 9.2 and 9.3, we present the optimal controls obtained for the Cases
3 and 4, respectively. Notice that the controls obtained with the FTP, FTPB, and
ISSN schemes are indistinguishable. We observe that in the case of a small a there
is an abrupt change between u = 0 and u = w;, whereas for bigger o the change is
continuous. We also see that by increasing [the support of u decreases as expected.
The different computational times of the FTP, FTPB, and ISSN schemes are given in the
figure. We see that the FTPB scheme may outperform the ISSN scheme and vice versa.
We also have a case where the ISSN scheme has difficulty to converge; see Figure 9.3,
test case (c). Notice that very similar results are also obtained using a globalized version
[CB16] of the ISSN scheme. These results and further results of numerical experiments
demonstrate that fast truncated proximal schemes represent a valuable alternative to
semi-smooth Newton methods.

9.2. Parabolic models

In this section, we present results of numerical experiments to validate the computational
performance of our truncated proximal methods applied to parabolic methods and to
demonstrate the convergence rate of the proximal residual proved in Theorem 7.3.7.
Further, we benchmark our proximal methods with the ISSN scheme discussed in the
previous section. For validation purposes, we formulate control problems for which we
know the exact solution. We have

Procedure 3. (Linear control case)

1. Choose §j € L*(0,T; H}(Q)) and p € L*(0,T; H}(Q)) arbitrary

max{ ﬂfjﬂ,ua} on{x € Qr: p(z,t) > B}

2. Set 6 := {min{=22L w} on {z € Qr:p(z,t) < —B}.

0 elsewhere

3. pi=—p—ai
4. [=0y+Ay+1a

5 z:=—-0p+AD+7

94

9. Numerical experiments

1 T T T r 1
09 -2 09 0.5
0.8F 0.8F Rl
0.7 07F
0.6F 0.6
05F 0.5F
0.4F 0.4
03F 0.3F
02 02k
0.1F 0.1F
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) =10"2, a =105, (b) B=10"2, o =102
FTP: 46.9s FTPB: 82.5s ISSN: 21.5s FTP: 2.17s FTPB: 6.07s ISSN: 5.52s
1 - - - - 1
09F 1 2 09 1 -0.05
0.8 1 -4 0.8 01
0.7F 1 6 07k
-0.15
0.6F E -8 0.6
-0.2
05F E -10 05F
-0.25
0.4 E 12 0.4
03F E -14 03F 03
02t 1 -16 02t 035
0.1F g -18 0.1t 0.4
0 . : - - 20 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
() 5=65-10"2, a =10""° (d) =65-10"2, @ =102
FTP: 46.5s FTPB: 32.2s ISSN: 17.4s FTP: 1.81s FTPB: 2.60s ISSN: 3.65s

Figure 9.2.: Controls u of Case 3

95

9. Numerical experiments

1

0.9

0.8

0.7

0.6

0.5 K

0.4

0.3

0.2 -

0.1)
0 -

% 0.2 0.4 06 0.8 1
(a) B=10" r",oz—lO5 (b) B=10"2, a =102
FTP: 56.7s, FTPB: 47.8s, ISSN: 42.8s FTP: 15.3s, FTPB: 8.59s, ISSN: 25.8s
; 1 0
0.9 09f
0.8 0.8t b 01
0.7 07t . .
06 06
05) o5t . 03
0.4) 0.4 F 1
03 03f . : 04
02) 02f :
-0.5
0.1 - 01t
0 - 0 : : : !
0 0.2 0.4 06 0.8 1
(c) p=6- 10_,a—105 (d) B=6-10"2, a =102
FTP: 52.6s, FTPB: 46.1s, ISSN: 1010s FTP: 10.7s, FTPB: 40.9s, ISSN: 6.85s

Figure 9.3.: Controls u of Case 4

96

9. Numerical experiments

Lemma 9.2.1. Procedure 3 provides a solution (§,4) of the optimal control problem
(6.0.2) with the parabolic model and linear control mechanism.

Proof. We show that the optimality conditions (6.3.32)—(6.3.35) in Theorem 6.3.5 are
fulfilled. (6.3.32)—(6.3.34) are obviously fulfilled because of 3. 5. in routine 3. Now, we
consider different cases to show (6.3.35):

e |p| < 5 From 2. we have & = 0 and from 3. p = —p and therefore

B(t, p) = 0 — max{0, c(=p —)} — min{0, c(—p + 5)}
+ max{0, —up + c¢(—p — 5)} + min{0, —u, + c(—p +)} = 0.

e p>f:

* Uy < %*5 < up: From 2. we have 4 = % < 0 and from 3. we have

1= —p—au = —F, therefore

B(t,u) = @ — max{0,a — ¢(26)} — min{0, @)}
+ max{0, % — up — ¢(20)} + min{0, 4 — u,}
—i—0—a40+0=0.

* # < uy: From 2. we have 4 = u, and from 3. we have y = —p — auy,,
therefore

B(t, p) = ug — max{0,u, + c(—p — au, — 8)} — min{0, u, + c¢(—p — au, + f)}
+ max{0, u, — up + c(—p — au, — f)}
+ min{0, uy, — U + c(—p — au, +)}
=y —0— (ug +c(—p—aug+B)) + 0+ c(—p — aw, + §) = 0.

ﬁa’B > 0 and from 3. we have

*x u, < == < y;: From 2. we have 4 =

B(t, n) = @ — max{0,a} — min{0, 0 + ¢(25)}
+ max{0, 4 — up} + min{0, & — u, + ¢(20)}
=4—-—u—-04+0+0=0.

> up: From 2. we have @ = wu, and from 3. we have y = —p — auy,
therefore

% —P=6
(e}

B(1, i) = up — max{0,up + c(—=p — aup — B)} — min{0, up + c(—p — auy + 3)}
+ max{0, up — up + c(—p — aup — H)}
+ min{0, up — uy + c(—p — aup + B)}

=up— (up +c(—p—aup — B)) = 0+ c(—p — aup, —) +0 = 0. O

97

9. Numerical experiments

Procedure 4. (Bilinear control case)

1. Choose § € L*(0,T; H}(Q)) and p € L*(0,T; HY(Q)) arbitrary
max{ 2w} on {x € Qp : p(a,1)j(z.t) > B}
2. Set @ := { min{ =28 4} on {z € Qp: p(x, t)f(x,t) < =B}

«

0 elsewhere
3. pi=—py —ai
4. [=0y+ Ag+ay
5. z:=—=Op+Ap+y+up

Lemma 9.2.2. Procedure j provides a solution (§,0) to the optimal control problem
(6.0.2) with the parabolic model and bilinear control mechanism.

Proof. The proof is similar to the one of the linear case. O

Next, we specify the parabolic operator, the domain of computation, the choice of
and p, and some optimization and numerical parameters. We consider the following test
case.

Case 5. Q = (0,1), T =1, A = —A, § = 5/Btsin(3nx)sin(nzy), p = 5/B(t —
1) sin(mzy) sin(mxs), vy, = —1 and u, = 2. The functions f and z are then given by
Procedure 3, resp. Procedure 4. We discretize Q with gridsize h = 1/32 and 6t = 1/1024.
A is discretized by second-order finite differences and the time derivative is discretized
by finite forward differences. The results are shown in Table 9.3.

The high temporal resolution is used to reduce the error of calculating the functional
in the VTIP method. However, in each step of the CTIP and the ISSN method, the
functional is not needed and the algorithms also converge for smaller temporal resolution.
We compare the CTIP, VTIP, and ISSN schemes in terms of computational time. In the
CIIP method, we calculate the smallest Lipschitz constant as the dominant eigenvalue
of V2 J}(u) with a power iteration. The effort of this calculation is included in the total
CPU time. This power iteration is stopped if the difference between two iterates of
the norm || V2.5 2.2 is less or equal than a tolerance of 107°. For the VTIP method,
we use backtracking with n = 1.5 and Ly = 0.0005. All algorithms are stopped if

| B(ug,)] < 107%. Furthermore, we used co = 1072, 6 = 0.5, g = ﬁ and the
stepsize s was chosen by s = 1.9 L1+_29(;2' We can see in Table 9.3 that the CTIP and VTIP

methods result competitive to the ISSN method. In the case of a big «, the proximal
methods outperform the ISSN scheme, while in the case of a sufficiently small «, the
ISSN performs better.

In order to validate the theoretical rate of convergence of the proximal residual, the
theoretical upper bound of Theorem 7.3.7 and the actual error of the proximal residual
in correspondence to Case 5, with § = 0.1 and a = 0.001, are plotted in Figure 9.1. We
see that the actual convergence may even be faster than the theoretical prediction.

98

proximal residual

9. Numerical experiments

linear case bilinear case
o g | CTIP VTIP ISSN | CTIP VTIP ISSN
0.01 0.1 | 98.3s 126s 102s | 219s 288s 501s
0.01 | 99.2s 130s 131s | 163s 227s 330s
0.001 0.1 | 69.4s 96.3s 114s | 517s 2258 794s
0.01 | 788 107s 128s | 172s 192s 514s
0.0001 0.1 | 338 530s 97.1s | 8327s 1331s 1077s
0.01 | 368s 444s 141s | 710s 521s 812s

Table 9.3.: Case 5 — Comparison of the CTIP, VTIP and ISSN methods.

10° 10
10° 10
®
10° 8 107
)
o
®
£
107 g 107°
Qo
107 107°F
— — — Theoretical upper bound — — — Theoretical upper bound
Proximal residual Proximal residual
-20 1072 n

10° 10’ 1 10° 10’ 10°
iterations iterations
(a) Case 5 - Linear problem. (b) Case 5 - Bilinear problem.

Figure 9.4.: Validation of the theoretical upper bound (Theorem 7.3.7).

99

9. Numerical experiments

We conclude this section considering challenging parabolic linear bilinear control cases
where the exact solution is not known. In these cases, the target function is not attain-
able. We have

Case6. 2= (0,12, T=1,A=—-A,u, =—0.1,u, = 0.1, 2 = (1—t) sin(7zy) sin(27zy),
[=5 and yo = sin(mzy)sin(2mzy). We discretize Q with gridsize h = 1/32 and
ot = 1/1024. A is discretized by second-order finite differences and the time deriva-
tive is discretized by finite forward differences.

In the Figures 9.5 - 9.10, we depict the optimal controls obtained for Case 6 in the
linear and bilinear cases, respectively. Notice that the controls obtained with the CTIP,
VTIP, and ISSN schemes are indistinguishable. We can see that choosing smaller values
of o, sharper edges between the regions v = 0 and u = u, and u = u;, appear. We also see
that by increasing 3 the support of u decreases as expected. The different computational
times of the CTIP, VTIP, and ISSN schemes are also shown in the figures. We obtain
the same dependence as for Case 3 & 4 of the computational performance with respect
the optimization parameters. These results and further results of numerical experiments
demonstrate that fast truncated proximal schemes represent a valuable alternative to
the state-of-the-art semi-smooth Newton schemes.

100

9. Numerical experiments

1 1

0.9 0.08 0.9' ‘ 0.09
0.8 : . 0.08
0.7 . . 0.07
0.6 . X 0.06
0.5 . 0.05
0.4 . 0.04
0.3 . 0.03
0.2 . 0.02
0.1 . 0.01

0o 0.2 0.4 0.6 0.8 1 ' 0

0 0.2 0.4 0.6 0.8 1
(a) t=0 (b) t=0.5
1
o.gr 1 0.09
0.8 0.08
0.7 0.0% 0.7 0.07
0.6 0.0¢ 0.6 0.06
0.5 0.0¢ 0.5 0.05
0.4 0.0¢ 0.4 0.04
0.3 0.0¢ 0.3 0.03
0.2 0.0: 0.2 0.02
0.1 0.0 0.1 0.01
00 0.2 0.4 0.6 0.8 1 0 00 0.2 0.4 0.6 0.8 1 0
(c) t=0.75 (d) t=0.875

Figure 9.5.: Controls u of Case 6 with linear control mechanism, 3 = 1073, a = 10~
CTIP: 354s, VTIP: 200s, ISSN: 259s.

101

9. Numerical experiments

o
<)
)
N
~
<)
o

0.8

10.0¢

10.0¢

0.0°

0.0¢

[S)
o
)

0.4 0.6 0.8

(c¢) t=0.75

Figure 9.6.: Controls u of Case 6 with linear control mechanism, 8 = 1072, «
CTIP: 300s, VTIP: 178s, ISSN: 254s.

102

0.2

0.4 0.6

(b) t=0.5

0.4 0.6

(d) t=0.875

0.8

0.8

10.09

10.08

10.07

10.06

9. Numerical experiments

o
<)
)
N
~
<)
o

0.8

10.0¢

10.0¢

0.0°

0.0¢

0 0.2

0.4 0.6 0.8

(c¢) t=0.75

Figure 9.7.: Controls u of Case 6 with linear control mechanism, 8 = 1072, «
CTIP: 117s, VTIP: 138s, ISSN: 82s.

103

0.2

0.4 0.6

(b) t=0.5

0.4 0.6

(d) t=0.875

0.8

0.8

10.09

10.08

10.07

10.06

9. Numerical experiments

1 1
0.9 . 0.9 0.09
0.8 . 0.8 0.08
0.7 . 0.7 0.07
0.6 . 0.6 0.06
0.5 0.5 0.05
0.4 0.4 0.04
0.3 0.3 0.03
0.2 0.2 0.02
0.1 0.1 0.01

0O 0.2 0.4 0.6 0.8 1 B 00 0.2 0.4 0.6 0.8 1 0

(a) t=0 (b) t=0.5
1 1
0.9 .0¢ 0.9 0.09
0.8 0.0¢ 0.8 0.08
0.7 .00 0.7 0.07
0.6 . 0.6 0.06
0.5 .0¢ 0.5 0.05
04 . 0.4 0.04
0.3 .0¢ 0.3 0.03
0.2 .0: 0.2 0.02
0.1 .0 0.1 0.01
0O 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1 0

(c) t=0.75 (d) t=0.875

Figure 9.8.: Controls u of Case 6 with bilinear control mechanism, 8 = 1072, o = 10~*.
CTIP: 566s, VTIP: 262s, ISSN: 249s.

104

9. Numerical experiments

(a) t=0

(c¢) t=0.75

]
0.9 .
0.8)
07 .
0.6 .
05
0.4
03
0.2
0.1
% 0.2 0.4 06 058 1 B
|
0.9 0¢
0.8)
0.7 0
0.6 :
05 0t
0.4 .
03 0
0.2 0z
0.1 0
% 0.2 04 06 08 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

D H.
0 0.2 0.4 0.6 0.8 1

0
(b) t=0.5
1
0.9 .
0.8 .
0.7 X
0.6 .
0.5 .
0.4 X
0.3 .
0.2 X
0.1 X
00 0.2 0.4 0.6 0.8 1
(d) t=0.875

Figure 9.9.: Controls u of Case 6 with bilinear control mechanism, 8 = 1072, a = 10~
ISSN: 330s.

CTIP: 350s, VTIP: 187s,

105

9. Numerical experiments

(a) t=0

(c¢) t=0.75

]
0.9 .
0.8)
07 .
0.6 .
05
0.4
03
0.2
0.1
% 0.2 0.4 06 058 1 B
|
0.9 0¢
0.8)
0.7 0
0.6 :
05 0t
0.4 .
03 0
0.2 0z
0.1 0
% 0.2 04 06 08 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

u H.
0 0.2 0.4 0.6 0.8 1

0
(b) t=0.5
1
0.9 .
0.8 .
0.7 X
0.6 .
0.5 .
0.4 X
0.3 .
0.2 X
0.1 X
00 0.2 0.4 0.6 0.8 1
(d) t=0.875

Figure 9.10.: Controls u of Case 6 with bilinear control mechanism, 8 = 1072, o = 1072
ISSN: 229s.

CTIP: 118s, VTIP: 163s,

106

10. Conclusion

First-order proximal schemes were discussed for finite dimensional and infinite dimen-
sional applications. In finite dimensions they were used for solving /- and TV-minimization
problems in image reconstruction with successful application to MRI. Convergence of
these methods in this setting was proved.

In infinite dimensions, first-order proximal schemes were used for solving nonsmooth
linear and bilinear elliptic and parabolic optimal control problems. A complete analysis
of these methods was presented and convergence of the function values as well as the
existence of a sequence that converges to a solution was proven. Furthermore, it was
shown that the proximal residual has convergence rate of O(1/v/k), resp. O(1/k?), in
the fast case. For benchmarking purposes, the proposed truncated proximal schemes
were compared to an inexact semismooth Newton method. Results of numerical experi-
ments demonstrated the computational effectiveness of truncated proximal schemes and
successfully validated the theoretical estimates.

107

List of Figures

2.1.

4.1.
4.2.
4.3.
4.4.
4.5.

4.6.
4.7.
4.8.
4.9.
4.10.

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.
9.9.
9.10.

Minimizing the ¢;-norm leads to sparsity. 19
Mask in the k-space. Lo 32
2D Test Images 34
2D Reconstruction by the FCSA scheme 34
2D Reconstruction by the FISTA-TV scheme 34
The signal-to-noise ratio of the FCSA and FISTA-TV algorithms for the

2D images.o 35
3D Test Images 36
3D Reconstruction by the FCSA scheme 36
3D Reconstruction by the FISTA-TV scheme 36
The signal-to-noise ratio of the two algorithms for the 3D image 37
Mid-ventricular slice through the same mouse thorax showing the heart

in short-axis orientation, acquired with a prospectively-gated Cartesian
multiframe sequence (left column) and with the radial real-time sequence.

Top row: end-diastole; bottom row: end-systole. Scale bar - 5 mm. . .. 39
Validation of the theoretical upper bound (Theorem 7.3.14). 93
Controls wof Case 3 95
Controls uw of Case 4 96
Validation of the theoretical upper bound (Theorem 7.3.7). 99

Controls u of Case 6 with linear control mechanism, 8 = 1073, o = 10~* 101
Controls u of Case 6 with linear control mechanism, 8 = 1072, o = 10™* 102
Controls u of Case 6 with linear control mechanism, 3 = 1072, o = 1072 103
Controls u of Case 6 with bilinear control mechanism, 3 = 1073, a = 107* 104
Controls u of Case 6 with bilinear control mechanism, 3 = 1072, o = 107* 105
Controls u of Case 6 with bilinear control mechanism, 3 = 1072, a = 1072 106

108

List of Tables

4.1. Comparison of the SNR between FCSA and FISTA-TV schemes. 37
420 e 39
9.1. Case 1 — Comparison of the FTP, FTPB and ISSN methods. 92
9.2. Case 2 — Comparison of the FTP, FTPB, and ISSN methods. 92
9.3. Case 5 — Comparison of the CTIP, VTIP and ISSN methods. 99
List of Algorithms
Lo (ISTA) oo oo 26
9. (FISTA) . o oo oo 2
3. (FCSA) . o 29
4. (FISTATV) oottt 29
5. (Calculation of the truncated gradient V.Jy(u)) — elliptic case 62
6. (Calculation of the truncated gradient V.Js(u)) — parabolic case 62
7. (General truncated inertial proximal (GTIP) method) 63
8. (Constant truncated inertial proximal (CTIP) method) 63
9. (Variable truncated inertial proximal (VTIP) method) 64
10. (Truncated proximal (TP) method) 65
11. (Fast truncated proximal (FTP) method) 66
12. (Fast truncated proximal backtracking (FTPB) method) 7
13. (Inexact semismooth Newton (ISSN) method) 84

109

110

© 2] ~ =] t - w [N —

[I N R N R R N S T < T e T
S O A W N = O © 0 N O Gk W N = O

[V]
N

A. Matlab Code

This PhD thesis is completed with a CD-ROM containing MATLAB codes for solving
the elliptic and parabolic control problems. To run the elliptic control solver type in the
MATLAB environment

» [ul,u2,u3]=CodeElliptic;
For the parabolic case type

» [ul,u2,u3]=CodeParabolic;
The parabolic solver is shown in Listing A.1.

Listing A.1: A parabolic optimal control example

%% Main function ;

function [ul,u2,u3] = CodeParabolic

% RETURN: ul [N,N,NTime] Optimal Control of CTIP method
% u2 [N,N,NTime] Optimal Control of VTIP method
% ud [N,N,NTime] Optimal Control of ISSN method
% This script is solving the parabolic optimal control problem
% min 1/2]|y—z]|"2+alph /2]/u]|"2+bet []/u/] L1

% subject to

% y_t—laplace y+u =f in [0,T] © Omega (lin=0)

% resp. y_t—laplace y+uy=f in [0,T] z Omega (lin=1)

% y=y0 on t=0 x Omega

% y=0 on [0,T] z delltaOmega

% low<=u<=up

R

First—optimize—then—discretize strateqy %
close all
% Define the global wvariables:

% dimensions:
global N
global NTime
% parameters :
global bet
global alph
% bounds :

111

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

A. Matlab Code

global low

global up

% lin=0 (linear control), lin=1(bilinear control)
global lin

%tolerance

global tol_ stop

%% Set the global wvariables:

% dimensions:

Nexp = b;

N = 2" Nexp+1;
NTime = 27 (Nexp+5)+1;
% parameters:

bet = le—1;

alph = le—2;

% bounds :

low = —1;

up = 2;

% lin=0 (linear control), lin=1 (bilinear control)
lin=1;

% tolerance :

tol__stop = le—6;

% Getting the test constants z,f and y0
[z,f,y0,u_test] = GetSystem;

% Initializing the optimization variable:
u0 = zeros (N,N,NTime);
u=u0l;

% mazimum iterations:
maxit = 1000;

% Ezxact functional for comparison
f ex = functional (u_test,f, z,y0);

%% CTIP

tic

L = powerit (50,f,z,y0,u0);

[ul] = CTIP(f,z,y0,u0,L, maxit);
toc

%% VTIP
tic
[u2] = VTIP(f,z,y0,u0, maxit);

112

A. Matlab Code

74| toc
75
6| %% Semismooth Newton

7| tic

78| [u3] = ssnewton(f,z,y0,u0, maxit);
79| toc

80
s1|end
82
83

sa| %% test problem

ss| function [z,f,y0,u_test] = GetSystem

s6| % RETURN: z [N, N, NTime] target state

81| % f [N,N, NTime] right hand side

ss| % y0 [N,N] starting state

s0| % u__test [N,N,NTime] test control

90

01| % This function creates a test problem including the solution

92
93
91|% Global variables:
95| global h

96| global bet

97| global alph

os| global low

99| global up

1ol global lin

01| global N

12| global NTime

103

04| % Define the gridpoints:

105 T = 1;

106 h =T / (N-1);
107| h2=hxh;

108| time__max = 1;

09| dtime = time_max / (NTime—1);

10| [x_vec,y_vec, time_vec|=meshgrid(0:h:1, 0:h:1,0:dtime:time_max);
111
12|% Discretize the Laplace operator:
us|A = gallery (’poisson’ ,N)/h2;

114
115
ue| if lin==0 % linear control mechanism

117 % example :
118 y_ test=bxsqrt (bet)xtime_vec.*sin (3xpixx_vec).xsin(pixy_vec);
119 p_test=bxsqrt(bet)*x(time_vec —1).xsin(pi*x_vec).xsin(pixy_vec);

113

120

121

122

123

124

125

126

127

128

129

130

131

132

134

135

136

137

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

156

157

158

159

160

161

162

163

164

165

A. Matlab Code

% Calculating the optimization variable
u_ test=zeros (N,N,NTime);

ind = p_test>bet;
u_test(ind)=(—p_test(ind)+bet)/alph;
ind=p_ test<—bet;
u_test(ind)=(—p_test(ind)—bet)/alph;

u_ test=max(low ,min(u_test ,up));

% Calculating the derivative of the states with respect to time

deltay=y_ test;

deltay (:,:,2:end)=(y_test (:,:,2:end)—y_test(:,:,1:end—1))/dtime;

deltay (:,:,1)=y_test (:,:,2);

deltay=reshape(deltay , [N+«N,NTime]);

deltap=p_test;

deltap (:,:,1:end—1)=(p_test(:,:,2:end) —...
p_test(:,:,l:end—1))/dtime;

deltap (:,: ,end)=—p_test (:,: ,end—1);

deltap=reshape (deltap ,[N«N,NTime]);

% Calculating the right—hand—side and the tartget—state
f=deltay+Axreshape (y_test ,[NxN,NTime])+...
reshape(u_test ,[N«N,NTime]);
z=deltap+Asxreshape(p_test ,[N«N ,NTime]|)+...
reshape (y_test ,[N«N,NTime]) ;
f=reshape(f,[N,N,NTime]);
z=reshape(z,[N,N,NTime]) ;

else % bilinear control mechanism

% example :
y__test=bxsqrt (bet)xtime_vec.xsin (3xpixx_vec).*sin(pixy_vec);
p_test=bxsqrt (bet)*(time_vec—1).xsin(pixx_vec).*sin(pixy_vec);

% Calculating the optimization wvariable
u_test=zeros (N,N,NTime) ;

ind=(p_test.*xy_test)>bet;

u_test (ind)=(—(y_test(ind).xp_test(ind))+bet)/alph;
ind=(y__test.*p_test)<—bet;
u_test(ind)=(—(y_test(ind).*p_test(ind))—bet)/alph;
u_test=max(low ,min(u_test ,up));

%Calculating the derivative of the states with respect to time
deltay=y_ test;

deltay (:,:,2:end)=(y_test (:,:,2:end)—y_test (:,:,l:end—1))/dtime;
deltay (:,:,1)=y_test (:,:,2);

deltay=reshape(deltay , [N«N,NTime]);

114

166

167

169

170

171

172

174

175

176

177

178

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

A. Matlab Code

deltap=p__test;

deltap (:,:,1l:end—1)=(p_test (:,:,2:end) —...
p_test(:,:,l:end—1))/dtime;

deltap (:,: ,end)=—p_test (:,: ,end—1);

deltap=reshape(deltap ,[N«N,NTime]);

% Calculating the right—hand—side and the tartget—state
f=deltay+Axreshape (y_test ,[N«N,NTime])+...
reshape (u_test , [N«N,NTime]).+ reshape (y_test , [N«xN,NTime]);
z=—deltap+Asxreshape(p_test ,[N«N,NTime])+...
reshape (y_test , [N«N,NTime])+...
reshape(u_test.xp_test ,[NxN,NTime]);
f=reshape(f,[N,N,NTime]);
z=reshape (z,[N,N,NTime]) ;
end
% Calculating the starting state
yO=y__test (:,:,1);
end

%% cost functional

function | func | = functional(u, f, z,y0)

% INPUT: u [N, N, NTime] control

% f [N,N, NTime] right—hand—side
% z [N, N, NTime] target state

% y0 [N,N] starting state

% RETURN: func [1] functional value

% This function calculates the actual functional value

global alph
global bet
global lin
global N
global NTime

% Calculating the state:

if lin==0 % linear control mechanism
[y,~]=laplacesolv(—u+f,u,z,y0,le—8,u,u,0);

else % bilinear control mechanism
[y,~]=laplacesolv (f,u,z,y0,1le—8,u,u,0);

end

% Getting function handles of the LIl-norm and the L2-norm
% using the trapez rule

x=0:1/(N-1):1;

x2=0:1/(NTime—1):1;

115

A. Matlab Code

212l normL2sq=Q(uu) trapz (x2, trapz (x,trapz(x,uu.” 2)));
213 normL1=Q(uu) trapz(x2,trapz(x,trapz(x,abs(uu))));
214
215 % Calculating the functional wvalue

216/ func = 0.5%normL2sq(y—z)+alph0.5 s*normL2sq(u)+bet * normLl(u);
217/ end

218

20| %% gradient assembler;

220 function [grad | = gradient(u,y0,p0)

2211 % INPUT: u [N,N, NTime] control

222| % y0 [N,N, NTime] state

223| % p0 [N, N, NTime] adjoint state
224| % RETURN: grad [N, N, NTime] gradient

225
26| % This function calculates the actual gradient
227
28| % Getting the necessary global wvariables
220| global alph

230| global lin

231
2321 % Calculating the gradient

233 if lin==0 % linear control mechanism
234 grad=alph*u+p0;

235 else % bilinear control mechanism

236 grad=alph*ut+y0.xp0;

237| end

238
239| end
240

w1 | %%% Calculating Lipschitz constant

212/ function Lu = powerit (it ,f,z,y0,u0)

213 % INPUT: it [1] mazimum iterations
204| % f [N,N,NTime] right—hand side

215| % z [N,N, NTime] target state

216| % y0 [N,N] starting state

2471 % u0 [N,N,NTime] control

218 % RETURN: Lu [1] Lipschitz constant

249
250| % This function calculates the Lipschitz constant
51| % using a power iteration

252
253 % Getting the necessary global variables
24| global alph

25| global lin

256

os7| %Setting the tolerances

116

258

259

261

262

263

264

266

267

268

269

270

271

272

273

274

275

277

278

279

280

281

282

283

284

285

286

288

289

290

291

292

293

294

295

296

297

299

300

301

302

303

A. Matlab Code

tol=le —6;
tol2=1le—4;

% Initializing the start values of the power iteration
u = ones(size(f));

Lu=u;

y=u;

p=u;

% Starting power iteration
for i = 1:it
Luold=Lu;

if lin==0 % linear control mechanism
% Calculating the Hessian
temp=laplacesolv2 (u,u0,zeros(size(y0)),tol ,y,0);
hess = alphx*utlaplacesolv2 (temp,u0,zeros(size(y0)),tol ,y,0);
else % bilinear control mechanism
% Calculating the Hessian
[v,p]=laplacesolv (f,u,z,y0,tol ,y,p,1);
yprime=laplacesolv2(—y.*u,u,zeros(size(y0)),tol ,y,0);
pprime=laplacesolv2(—p.xu—yprime ,u,zeros(size(y0)),tol ,p,1);
hess=alph*u+(y.*pprime+yprime.xp);
end

% Updating the Hessian
Lu = norm(hess (:));
u = hess/Lu;

% Stopping if step is small enough:
if norm(Lu(:)—Luold(:))<tol2

break

end
end
end
function [u] = ssnewton(f,z,y0,u0, maxit)
% INPUT: f [N,N,NTime] right—hand side
% z [N,N,NTime] target state
% y0 [N,N] starting state
% u0 [N,N,NTime] control
% maxit [1] maximum number of iterations
% RETURN: u [N,N,NTime] optimal control
% This function implements the inezxact semismooth Newton method

117

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

A. Matlab Code

% Initializing the global wvariables
global alph

global bet

global low

global up

global h

global tol_stop

global lin

global N

global NTime

% Getting dimension
n2=NxNxNTime ;

% starting point
u = ul;
x0=zeros(size (u));
y=x0;

p=x0;

% tolerance for the truncation
tol ex=le —6;

% Initialize iterations and stopping criterion
it=1;

stopping=1;

delta=x0;

% Getting the states
if lin==
[y,p]=laplacesolv(—u+f,u,z,y0,tol_ex,y,p,1);
else
[y,p]=laplacesolv (f,u,z,y0,tol_ex,y,p,1);
end

% Starting iteration
while (stopping>tol stop)&&(it<=maxit)
if lin==0 %linear control mechanism
% Getting functional F(u)=0
F=u+1./alph*(—max(0,—p—bet)—min(0,—p+bet) ...
+max(0,—p—bet—alph*up)+min(0,—p+bet—alphxlow));

% Getting the generalized derivative
ind=((—pt+bet<=0 & —p+bet>alphxlow) |...

(—p—bet<alphxup & —p—bet >=0));
ind=ind (:);

118

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

A. Matlab Code

temp=Q(x)laplacesolv2(x,u,zeros(size(y0)),tol _ex,y,0);
G=Q(x)x+1./alph«*(sparse(1:n2,1:n2,ind ,n2,n2,n2)x*...
reshape (temp (temp (reshape(x,[N,N,NTime]))) ,[n2,1]));

% Getting the tolerance depending on the functional value
tol ex2=norm(F (:))/(it+1);
if tol ex2>1
tol _ex2=0.5;
end

% Calculating the step
[T, delta]=evalc(’gmres(G,F(:),[],tol _ex2 ,N,[],[],delta(:))’);
delta=reshape(delta ,[N,N,NTime]);

% Updating the optimization wvariable
u=u—delta;

else % bilinear control mechanism

% Calculating the functional F(u)=0

py=p.*y;

F=u+1./alph*(—max(0,—py—bet)—min(0,—py+bet)...
+max(0,—py—bet—alph+up)+min(0,—py+bet—alphxlow));

% Getting the generalized derivative
ind=((—py+bet<=0 & —py+bet>alphx*low) |...
(—py—bet<alphxup & —py—bet >=0));

ind=ind (:);
if lin==

[y,p]=laplacesolv(—u+f, u,z,y0,tol_ex,y,p,1);
else

[y,p]=laplacesolv (f,u,z,y0,tol_ex,y,p,1);
end

yprime=Q(x)laplacesolv2(—y.*x,u,zeros(size(y0)),tol _ex,y,0);
pprime=Q(x)laplacesolv2(—p.xx—yprime(x),u,...
zeros (size(y0)),tol_ex ,p,1);
hess=Q(x)y.*pprime (x)+yprime(x).*p;
G=Q(x)x+1./alph«*(sparse(1:n2,1:n2,ind ,n2,n2,n2)x*...
reshape (hess(reshape (x,[N,N,NTime])) ,[n2,1]));

% Getting the tolerance depending on the functional value
tol_ex2=norm(F (:))/(it+1)"2;
if tol ex2>1
tol_ex2=0.5;
end

% Calculating the step
[T, delta]=evalc(’gmres(G,F(:),[],tol ex2 N,[],[],delta(:))");

119

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

end
end

A. Matlab Code

delta=reshape(delta ,[N,N,NTime]);

% Updating the optimization wvariable
u=u—delta ;
end

% Calculating the stopping criterion

if lin==
[y,p]=laplacesolv(—u+f,u,z,y0,tol_ex,y,p,1);
mu=->p—alph=*u;

else
[y,p]=laplacesolv (f,u,z,y0,tol_ex,y,p,1);
mu=—y .*xp—alphx*u;

end
B=u-max (0 ,utmu-bet)—min (0, utmutbet)+max(0,u—(up)+mu-bet) +...
min (0 ,u—(low)+mutbet);
stopping=1/sqrt (hx(length(f)—1))*norm(B(:));

% Calculating the funcional value
func = functional(u, f, z,y0);

% Plot
fprintf(Tt = %d stop = J%-ge\ func, = \%'106\ J\n’)
it , stopping , func);

it=it +1;

%% VTIP method
function [u] = VTIP(f,z,y0,u0,maxit)

N N N N X X

INPUT: f [N,N,NTime] right—hand side

2 [N,N,NTime] target state

y0 [N,N] starting state

u0 [N,N,NTime] control

maxit [1] mazimum number of iterations
RETURN: u [N,N,NTime] optimal control

% This function implements the wariable truncated inertial
% proximal method

% Initializing the global wvariables
global alph
global bet
global low

120

A. Matlab Code

42| global up

13| global h

44| global lin

15| global tol__stop
16| global N

17| global NTime

448
a9| % Parameters for estimating the Lipschitz constant
a0l L=1e —4;

w1l eta=1.5;

12| % Getting the inertial parameter

a53) par2=0.5;

454
w5\ % Initializing

56| c2=1e —3;
as7fu = ul;
asg| it =1;

459| uuold=u;

a60| stopping =1;

61| y=zeros (size(u));
462| D= ;

163 eps=le —2;

64| LO=L;

465
w66| % Calculating the gradient
a7 if lin==

468 [y,p]=laplacesolv(—u+f,u,z,y0,eps,y,p,1);
09| else

470 [y,p]=laplacesolv (f,u,z,y0,eps,y,p,1);

ar1| end

ar2| grad=gradient (u,y,p);
473
aa|% Getting function handles for the norms wusing the trapez rule
ars|x=0:1/(N—1):1;

a76| x2=0:1/(NTime—1):1;

a7 normL2sq=Q(u)trapz (x2, trapz(x,trapz(x,u.”2)));

ars| scalprodL2=Q(u,v)trapz(x2,trapz(x,trapz(x,u.xv)));

479
as0| % Starting iteration

ss1 while (stopping>tol stop)&&(it<=maxit)

482

483 % Estimating Lipschitz constant
484 if it <2

185 L=L0;

486 end

487

121

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

504

505

506

507

508

509

510

511

512

513

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

A. Matlab Code

% Getting update

utemp = u — 1./L.xgrad;
utemp = prox (utemp,L);
utemp=max(utemp , low);
utemp=min (utemp ,up) ;

% Calculating new gradient
if lin==
[ytemp ,ptemp|=laplacesolv(—utemp+f ,utemp,z,y0,eps,y,p,1);
else
[ytemp ,ptemp|=laplacesolv (f,utemp,z,y0,eps,y,p,1);
end
gradtemp=gradient (u,y,p);

% Getting required functional values

J2const=0.5 * normL2sq(y—z)+alph % 0.5 % normL2sq(u);

fval = 0.5 * normL2sq(ytemp—z)+alph % 0.5 * normL2sq(utemp);
QL=J2const +0.5%LxnormL2sq (utemp—u)+scalprodL2 (gradtemp , utemp—u);

% Updating Lipschitz constant
while (fval-QL>le-3)

L=etaxL;
utemp = u — 1./L.xgrad;
utemp = prox (utemp,L);

utemp=max(utemp , low);
utemp=min (utemp ,up);
if lin=—=
[ytemp ,ptemp|=laplacesolv(—utemp+f ,utemp,z,y0,...
eps,ytemp ,ptemp,1);
else
[ytemp , ptemp]=1laplacesolv (f,utemp,z,y0,...
eps,ytemp ,ptemp,1);
end
fval = 0.5xnormL2sq(ytemp—z)+alph*0.5%xnormL2sq (utemp);
QL=J2const +0.5%LxnormL2sq (utemp—u) +...
scalprodL2 (gradtemp ,utemp—u);
end

% Getting the gradient
grad=gradtemp;

% Calculating the Lipschitz constant
Lt=(L+2%c2)/1.9/(1 —par2);

% Truncation tolerance

122

534

535

536

537

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

A. Matlab Code

eps=1/(it+1)73;

% Updating the optimization wvariable
u=mu— 1./Lt.xgrad+par2x(u—uuold);
u = prox(u,Lt);

u=max(u,low);

u=min (u,up);

uuold=u;

% Getting the stopping criterion

if lin==
[y,p]=laplacesolv(—u+f,u,z,y0,eps,y,p,1);
mu=p—alphx*u;

else
[y,p]=laplacesolv (f,u,z,y0,eps,y,p,1);
mu=y .*xp—alphx*u;

end

B=u-max (0 ,utmu-bet)—min (0, u+tmutbet)+max(0 ,u—(up)+mu-bet) +...

min (0 ,u—(low)+mutbet);
stopping=1/sqrt (hx(length(f)—1))*norm(B(:));

% Getting the functional value
func=functional (u, f, z,y0);

% Plotting
fprintf(’it = %d stop.= %.3e func = ,%.10e \n’,
it , stopping , func);

it=it+1;
end

end

%% Proximal function

function [out] = prox(u,L)

% INPUT: u [N,N,NTime] control

% L [1] Lipschitz constant

% RETURN: out [N,N,NTime] prozimal functional value

% This function implements the proximal functional
% to the functional \[u\|/_LI

% global wvariable :
global bet

% Getting the absolute wvalue:

123

A. Matlab Code

ssolabs_ = abs(u);
581
ss2| % Not dividing by zero:
sss| abs_ (abs_==0)=bet /L;

sss| % Proximal functional:

ss6| out = max(abs_—bet/L,0).%(u./abs_);
587
sss| end
589
so0| %% CTIP method

501 function [u] = CTIP(f,z,y0,u0,L, maxit)

s92| % INPUT: f [N,N,NTime] right—hand side

s93| % z [N,N,NTime] target state

s91| % y0 [N,N] starting state

595| % u0 [N,N, NTime] control

596| % L [1] Lipschitz constant

597 % maxit [1] maximum number of iterations
s08| % RETURN: u [N,N, NTime] optimal control

599
60| % This function implements the constant truncated inertial
01| % proximal method

602
603) % Initializing the global wvariables
e04| global alph

65| global bet

e0s| global low

e07| global up

e0s| global lin

69| global tol_stop

e10| global h

611
612\ % Getting the inertial parameter
613 par2=0.5;

614
65| % Initializing

616| c2=1e —3;

e17lu = ul;

618| uold=u;

69| t=1.;

620 it =1;

621| stopping=1;

o622| y=zeros (size(u));
623 P=Y ;

624

625| % Getting the truncation tolerance

124

A. Matlab Code

626 eps=2/(it +1)"3;

627

628| % Calcultating the states

620 if lin==

630 [y,p]=laplacesolv(—u+f,u,z,y0,eps,y,p,1);
631| else

632 [y,p]=laplacesolv (f,u,z,y0,eps,y,p,1);

633| end

634

635 % Calculating the steplength 1/Lt:

o36| Lt=(L+2%c2)/1.9/(1 —par2);

637

63s| % Starting iteration

630| while (stopping>tol stop)&&(it<=maxit)

640

641 % Calculating the gradient

642 grad=gradient (u,y,p);

643

644 % Getting the truncation tolerance

645 eps=1/(it+1)73;

646

647 % Updating the optimization wvariable

648 u=u-— 1./Lt.xgrad4+par2x(u—uold);

649 u = prox(u,Lt);

650 u=max(u, low);

651 u=min (u,up);

652 uold=u;

653

654 % Getting the stopping criterion

655 if lin==

656 [y,p]=laplacesolv(—u+f,u,z,y0,eps,y,p,1);
657 mu=—p—alphxu;

658 else

659 [y,p]=laplacesolv (f,u,z,y0,eps,y,p,1);
660 mu=—y .*xp—alphx*u;

661 end

662 B=u—max(0 ,utmu-bet)—min (0, u+tmutbet)+max (0 ,u—(up)+mu-bet) +...
663 min (0 ,u—(low)+mutbet);

664 stopping=1/sqrt (hx(length(f)—1))*norm(B(:));
665

666 % Geting the functional value

667 func=functional (u, f, z,y0);

668

669 % Plotting

670 fprintf(’it = %d stop =,%.3e func, = %.10e, \n’,
671 it , stopping , func);

125

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

A. Matlab Code

it=it +1;
end
end

%% Solve the Laplace problem

function [y,p| = laplacesolv(f,u,z,y0,eps,y,p,both)

% INPUT : f [N,N,NTime] right—hand side

% u [N,N,NTime] control

% z [N,N,NTime] target state

% y0 [N,N] starting state

% eps [1] truncation tolerance

% Yy [N,N,NTime] estimation of state

% D [N,N,NTime] estimation of adjoint state
% both [bool] both=1 (Calculate y and p)
% both=0 (Calculate y)

% RETURN: vy [N,N,NTime] state

% P [N,N,NTime] adjoint state

% This function implements the truncated solution of the parabolic
% Laplace Problem with conjugate gradient

% y_t—laplace y + v = f (lin=0)

% y_t—laplace y + uwy= f (lin=1)

% y=0 on delta Omega

%Initializing the global variables

global lin

global NTime

global N

% Getting the time difference
dtime =1/ (NTime—1);

n2 = (N-1)*(N-1); % computing n”2

% Cutting f, z and y

f = f(2:end—1,2:end—1,:); f=reshape(f,(N—2)%(N—2) ,NTime);
z = z(2:end—1,2:end—1,:); z=reshape(z,(N—2)x(N—2) NTime);
y=y(2:end—1,2:end—1,:);

y(:,:,1)=y0(2:end—1,2:end—1);
y=reshape (y, (N—2)%(N—2) ,NTime);

% Cutting p if necessary

if both==
p=p(2:end—1,2:end—1,:); p=reshape(p,(N—2)%(N—2) NTime);
p (:,NTime)=0;

126

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

end

A. Matlab Code

% Set laplace:

A =

(n2xgallery ('poisson’ ,N—2));

% Calculate the Inverse:
if lin==0 % linear control mechanism

NN=(N—2)"2;
U = 1/dtimexspeye (NN,NN);

for time=2:NTime
func A=Q(x) (A+U)*x;
y (:,time)=cg(func_A, f(:,time)+y(:,time—1)/dtime ,eps,...
y (¢, time —1) ,N«N«NTime) ;

end
if both==
for time=NTime—1:—1:1
func A=0(x) (AHU)*x;
p(:,time)=cg(func_A ,...
z(:,time)—y (:,time)+p(:,time+1)/dtime , ...
eps,p(:,time+1) N«N«NTime);
end
end

else % bilinear control mechanism

end

for time=2:NTime
U= u(2:end—1,2:end—1,time); U =TU(:);
U = spdiags(U+1/dtime ,0,length(U),length(U));
func_ A=Q(x) (A4HU)*x;
y(:,time)=cg(func_ A, f(:,time)+y(:,time—1)/dtime,eps,...
y (i, time —1) ,N«N);

end
if both==1
for time=NTime—1:—1:1
U= u(2:end—1,2:end—1,time); U = U(:);
U = spdiags (U+1/dtime ,0,length(U) , ,length(U));
func_ A=Q(x) (A+U)*x;
p(:,time)=cg(func_A ,...
z(:,time)—y(:,time)+p(:,time+1)/dtime ,...
eps,p(:,time+1) NxN);
end
end

% Filling y

y:
y =

reshape (y ,N—2,N—2 NTime);

horzcat (zeros ([N,1 ,NTime]), vertcat (zeros([1,N—2,NTime]) ,y,...

zeros ([1 ,N—2 NTime|)), zeros([N,1,NTime]));

127

A. Matlab Code

764
5| % Filling p if necessary
66| if both==

767 p = reshape(p,N—2 N—2 NTime);

768 p = horzcat (zeros ([N,1,NTime|), vertcat(zeros([1,N—2 NTime]) ,...
769 p,zeros ([1 ,N—2 NTime])), zeros([N,1,NTime]));

770/ end

771l end

772

73| function y = laplacesolv2(f,u,y0,eps,y,ifp)

74| % INPUT: f [N,N,NTime] right—hand side

75| % u [N,N, NTime] control

776| % y0 [N,N] starting state

77| % eps [1] truncation tolerance
18| % Yy [N,N,NTime] estimation of state
9| % ifp [bool] ifp=1 (Calculate p)
780| % ifp=0 (Calculate y)
81| % RETURN: Yy [N,N,NTime] state

782
3| % This function implements the truncated solution of the parabolic
wa| % Laplace Problem with gmres

785
we|Initializing the global wvariables
7s7| global lin

7ss| global NTime

7s0| global N

790
m|%Getting the time difference
792| dtime =1 / (NTime—1);
793
794 n2 = (N—1)*%(N—1);
795
16| %Cutting f and y or p

7| f = {(2:end—1,2:end—1,:); f=reshape(f,(N—2)%(N—2) ,NTime);
798| y=y (2:end—1,2:end —1,:);

790l if ifp==

800 y(:,:,1)=y0(2:end—1,2:end—1);
801 y=reshape(y,(N—2)%(N—2),NTime);
soz| else

803 y (:,:,NTime)=0;

804 y=reshape(y,(N—2)*(N—2) NTime);
sos| end

806
sor| % Set laplace:
sos|] A = (n2xgallery (’poisson’ ,N—2));

809

128

A. Matlab Code

sw|% Calculate the Inverse:

su| if lin==0 % linear control mechanism

812 NN=(N-2)"2;

813 U = 1/dtimexspeye (NN,NN);

814 if ifp==

815 for time=2:NTime

816 func A=Q(x) (A+U)*x;

817 [T,y (:,time)] = evalc(’gmres(func A ,...

818| LU uuupuuuuuuuq;uuuuuuuq;uuf(3 ,time)‘f‘}’(i ,time—l)/dtime y e
LS T e e T I W N | H , €PS ,N, H) H 7Y(: atime _1)) 7);
820 end

821 else

822 for time=NTime—1:—1:1

823 func_ A=0(x) (A+U)*x;

824 [T,y (:,time)] = evalc(’gmres(func_A ...

825 LU uuupuuuuuuquuuuuuuquuuf(3 ,time)“‘}’(i s time+1)/dtime g oo
826 LU LU UL DU DU U DU L U U UL L H ,eps,N, H s H ,Y(3 7time+1)) ’);
827 end

828 end

s20l €lse % bilinear control mechanism

830 if ifp==0

831 for time=2:NTime

832 U= u(2:end—1,2:end—1,time); U = U(:);

833 U = spdiags (U+1/dtime ,0,length(U) ,length(U));

834 func_ A=Q(x) (A4HU)*x;

835 [T,y (:,time)] = evalc(’gmres(func_A ...

836 Lyl uuupuuuuuuquuuuuuuquuuf(3 ,time)“‘}’(i ,time—l)/dtime y oo
837| LU LU UL U UL DU U DU L U U UL L H ,eps,N, H s H ,Y(3 , time —1)) ’);
838 end

839 else

840 for time=NTime—1:—-1:1

841 U= u(2:end—1,2:end—1,time); U = U(:);

842 U = spdiags (U+1/dtime ,0,length (U) ,length(U));

843 func_ A=Q(x) (A+U)*x;

844 [T,y (:,time)] = evalc(gmres(func_A ...

845| LU _H_H_IL_H_H_ILH_H_H_IJL_H_H_If(: ,time)+y (1 ,time+1)/dtime y oo

846 | 111 L U UL U UL L L H ,eps ,N, H s H 7}7(3 ,time+1)) ’);

847 end

848 end

s19| end

850

ss1| % Filling y

ss2| y = reshape(y,N—2,N—2 NTime);

ss3|y = horzcat (zeros ([N,1 ,NTime]), vertcat(zeros([1,N—2 NTime]),y,...
854 zeros ([1 ,N—2,NTime])), zeros([N,1,NTime]));
855

129

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

end

%% Conjugate gradient

A. Matlab Code

function [x] = cg(A,b,tol ,x ,maxit)

% INPUT: A [function handle] differentiation operator

% b [N«N« NTime] right—hand side

% tol [1] truncation tolerance

% T [N«N« NTime] starting wvalue

% maxit [1] maximum number of iterations
% RETURN: [N, N, NTime] Solution of Ax=b

% This function implements the conjugate gradient method
% to solve Ax=b

if nargin<5

maxit=length (b);

end

r=b—A(x);

h=r;

d=h;

for it=1:maxit

end
end

z=A(d);

a=r’xh/(d’*z);

x=x+axd;

rold=r;

r=r—axz;

hold=h;

h=r ;

b=r’«h/(rold ’«hold);

d=r+bx*d;

if norm(r)<tol
break

end

130

Bibliography

[AdaT75]

[BA15]

[BC11]

[Brell]

[BS11]

[BT09)

[BT11]

[CB16]

[CCK13]

[CG02]

[CHW12]

R. A. Adams. Sobolev Spaces. Pure and Applied Mathematics. Academic
Press, Inc, 1975.

A. Borzi and S. G. Andrade. Second-order approximation and fast multigrid
solution of parabolic bilinear optimization problems. Advances in Computa-
tional Mathematics, 41(2):457-488, 2015.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Oper-
ator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer-Verlag
New York, 2011.

H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Fqua-
tions. Springer-Verlag New York, 2011.

A. Borzi and V. Schulz. Computational Optimization of Systems Governed
by Partial Differential Equations. STAM, Philadelphia, 2011.

A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained
total variation image denoising and deblurring problems. Image Processing,
IEEE Transactions on, 18(11):2419-2434, 2009.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183—
202, 2011.

G. Ciaramella and A. Borzi. A LONE code for the sparse control of quantum
systems. Computer Physics Communications, 200:312-323, 2016.

E. Casas, C. Clason, and K. Kunisch. Parabolic control problems in measure
spaces with sparse solutions. SIAM Journal on Control and Optimization,
51(1):28-63, 2013.

C. Kanzow C. Geiger. Theorie und Numerik restringierter Optimierungsauf-
gaben. Springer Berlin Heidelberg, 2002.

E. Casas, R. Herzog, and G. Wachsmuth. Optimality conditions and error
analysis of semilinear elliptic control problems with L' cost functional. SIAM
Journal on Optimization, 22(3):795-820, 2012.

131

[CNQOO]

[CRT064]

[CRTO6b]

[CW05]

[DEO03]

[DT06]

[ET99]

[Eval0]

[Foul0]

[FR14]

[Gri85]

[HIK02]

[HS52]

[HSW12]

Bibliography

X. Chen, Z. Nashed, and L. Qi. Smoothing methods and semismooth meth-
ods for nondifferentiable operator equations. SIAM Journal on Numerical
Analysis, 38(4):1200-1216, 2000.

E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. Infor-
mation Theory, IEEE Transactions on, 52(2):489-509, 2006.

E.J. Candes, J.K. Romberg, and T. Tao. Stable signal recovery from incom-

plete and inaccurate measurements. Communications on Pure and Applied
Mathematics, 59(8):1207-1223, 2006.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-
backward splitting. Multiscale Modeling € Simulation, 4(4):1168-1200, 2005.

D. L. Donoho and M. Elad. Maximal sparsity representation via ¢; mini-
mization. Proceedings of the National Academy of Sciences, 100:2197-2202,
2003.

D. L. Donoho and Y. Tsaig. Fast solution of /;-norm minimization problems
when the solution may be sparse, 2006.

[. Ekeland and R. Témam. Convex Analysis and Variational Problems. So-
ciety for Industrial and Applied Mathematics, 1999.

L. C. Evans. Partial Differential Equations. American Mathematical Society,
2010.

S. Foucart. A note on guaranteed sparse recovery via ¢;-minimization. Applied
and Computational Harmonic Analysis, 29(1):97 — 103, 2010.

M. Fornasier and H. Rauhut. Compressive sensing. In Otmar Scherzer, editor,
Handbook of Mathematical Methods in Imaging, pages 1-48. Springer Berlin
Heidelberg, 2014.

P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman Publishing,
Boston, 1985.

M. Hintermiiller, K. Ito, and K. Kunisch. The primal-dual active set strategy
as a semismooth newton method. SIAM Journal on Optimization, 13(3):865—
888, 2002.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards,
49(6):409-436, 1952.

R. Herzog, G. Stadler, and G. Wachsmuth. Directional sparsity in optimal
control of partial differential equations. SIAM Journal on Control and Opti-
mization, 50(2):943-963, 2012.

132

[HZM10]

[1KO03]

1K04]

[Kac60]

[KT09)]

[KV09]

[LBR15]

[LDPO7]

[Lio71]

[MQ95]

Bibliography

J. Huang, S. Zhang, and D. Metaxas. Efficient MR image reconstruction
for compressed MR imaging. In Medical Image Computing and Computer-
Assisted Intervention — MICCAI 2010, volume 6361 of Lecture Notes in Com-
puter Science, pages 135—142. Springer Berlin Heidelberg, 2010.

K. Ito and K. Kunisch. Semi-smooth newton methods for state-constrained
optimal control problems. Systems & Control Letters, 50(3):221 — 228, 2003.

K. Ito and K. Kunisch. The primal-dual active set method for nonlinear op-
timal control problems with bilateral constraints. SIAM Journal on Control
and Optimization, 43(1):357-376, 2004.

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi
Mat. Nauk, 15(4):213 — 215, 1960.

A. Kaplan and R. Tichatschke. Proximal point method and elliptic regular-
ization. Nonlinear Analysis: Theory, Methods € Applications, 71(10):4525 —
4543, 20009.

A. Kroner and B. Vexler. A priori estimates for elliptic optimal control
problems with bilinear state equation. Journal of Computational and Applied
Mathematics, 230(2):781-802, 2009.

D. A. Lorenz, K. Bredies, and S. Reiterer. Minimization of non-smooth, non-
convex functionals by iterative thresholding. Journal of Optimization Theory
and Applications, 165:78-112, 2015.

M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of
compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine,
58(6):1182-1195, 2007.

J.L. Lions. Optimal Control of Systems Governed by Partial Differential
Equations. Springer, Berlin, 1971.

J.M. Martinez and L. Qi. Inexact newton methods for solving nonsmooth
equations. Journal of Computational and Applied Mathematics, 60(1-2):127
— 145, 1995.

IMYZCO08] S. Ma, W. Yin, Y. Zhang, and A. Chakraborty. An efficient algorithm for

[Nes83]

compressed mr imaging using total variation and wavelets. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1-8, 2008.

Y. E. Nesterov. A method for solving the convex programming problem with

covergence rate O(1/k?). Dokl. Akad. Nauk SSSR, 269:543-547, 1983.

133

[Nes07]

[Nes13]

[OBG*05]

[OCBP14]

[Roc76)]

[RW97]

[RWS*16]

[SB16a]

[SB16b)]

[SBB+08]

[SED*11]

[Sha49]

[Sta09]

[Tr609)]

Bibliography

Y. E. Nesterov. Gradient methods for minimizing composite objective func-
tion. CORE Discussion Papers 2007076, Université catholique de Louvain,
Center for Operations Research and Econometrics (CORE), 2007.

Y. E. Nesterov. Gradient methods for minimizing composite functions. Math-
ematical Programming, 140(1):125-161, 2013.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative reg-
ularization method for total variation-based image restoration. Multiscale
Modeling & Simulation, 4(2):460-489, 2005.

P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano: Inertial Proximal Algorithm
for Nonconvex Optimization. SIAM Journal on Imaging Sciences, 7(2):1388—
1419, 2014.

R. Tyrrell Rockafellar. Monotone operators and the proximal point algo-
rithm. STAM Journal on Control and Optimization, 14(5):877-898, 1976.

R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer-Verlag,
1997.

V. Ratz, T. Wech, A. Schindele, A. Sauer A. Dierks, J. Reibetanz, A Borzi,
T. Bley, and H. Kostler. Dynamic 3d mr-defecography. Submitted, 2016.

A. Schindele and A. Borzi. Proximal methods for elliptic optimal control
problems with sparsity cost functional. Applied Mathematics, 2016.

A. Schindele and A. Borzi. Proximal methods for parabolic optimal control
problems with a sparsity promoting cost functional. Submitted, 2016.

N. Seiberlich, F. Breuer, M. Blaimer, P. Jakob, and M. Griswold. Self-
calibrating GRAPPA operator gridding for radial and spiral trajectories.
Magnetic Resonance In Medicine, 59(4):930-935, 2008.

N. Seiberlich, P. Ehses, J. Duerk, R. Gilkeson, and M. Griswold. Improved ra-
dial GRAPPA calibration for real-time free-breathing cardiac imaging. Mag-
netic Resonance In Medicine, 65(2):492-505, 2011.

C. E. Shannon. Communication in the presence of noise. Proceedings of the
IRE, 37(1):10-21, 1949.

G. Stadler. Elliptic optimal control problems with L!-control cost and ap-
plications for the placement of control devices. Computational Optimization
and Applications, 44(2):159-181, 20009.

F. Troltzsch. Optimale Steuerung partieller Differentialgleichungen. Theorie,
Verfahren und Anwendungen. Vieweg, 2009.

134

[Ulb11]

[Wilss]

[WKMO6]

[WMGO0]

[WSS*16]

(WW10]

Bibliography

M. Ulbrich. Semismooth Newton Methods for Variational Inequalities and
Constrained Optimization Problems in Function Spaces. STAM, Philadelphia,
2011.

J. H. Wilkinson. The Algebraic Figenvalue Problem. Oxford University Press,
1988.

D. Weishaupt, V. D. Koéchli, and B. Marincek. How Does MRI Work?
Springer Berlin Heidelberg, 2006.

D. O. Walsh, M. W. Marcellin, and A. F. Gmitro. Adaptive reconstruction
and enhancement of phased array MR imagery, 2000.

T. Wech, N. Seiberlich, A. Schindele, V. Grau, L. Diffley, M. L. Gyngell,
A. Borzi, H. Kostler, and J. E. Schneider. Development of real-time mag-

netic resonance imaging of mouse hearts at 9.4 Tesla — simulations and first
application. IEEE Transactions on Medical Imaging, 35(3):912-920, 2016.

G. Wachsmuth and D. Wachsmuth. Convergence and regularisation results
for optimal control problems with sparsity function. ESAIM Control Opti-
misation and Calculus of Variations, 17(3):858-886, 2010.

135

