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1 Introduction

Being a sub-discipline of probability theory and statistics, extreme value theory is con-
cerned with random observations. However, while fundamental theories of classical
stochastics - such as the laws of large numbers or the central limit theorem - are used
to investigate the behavior of a normalized sum of observations, extreme value theory
focuses on the maximum or minimum of a set of observations. Thus the key task of
extreme value theory is to model extremal (and hence rare) events. These events can be
of any kind: Climatologists, for instance, are interested in extreme heatwaves, heavy rain
events, or severe storms. In finance, on the other hand, huge losses on the stock market
or complete financial fallouts, such as the 2008 Lehman Brothers bankruptcy, serve as
examples of extremal events. Mathematically speaking, the following setup is the basis
of classical (univariate) extreme value theory:
Take independent and identically distributed (iid) random variablesX,X(1), X(2), . . . ∈

R with common distribution function F . We will use an example from the field of
climatology for way of illustration. Without doubt, it would not be realistic to model
the daily rainfall at a weather station by an iid sequence X(1), X(2), . . . Neither will
daily rainfall values be independent (the weather today has an influence on the weather
tomorrow), nor will they be identically distributed (weather is highly dependent on the
season in most parts of the world). However, we can think of X(1), X(2), . . . as the annual
maxima of rainfall at a weather station. The iid assumption is now a lot more reasonable,
despite the fact that there will be other disruptive factors, such as climate change. Now
consider the random variables

M (n) := max
(
X(1), . . . , X(n)

)
, m(n) := min

(
X(1), . . . , X(n)

)
.

It is sufficient to focus on the maximum since

min
(
X(1), . . . , X(n)

)
= −max

(
−X(1), . . . ,−X(n)

)
.
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Given the iid property, calculating the distribution of these random variables is not
difficult:

P
(
M (n) ≤ x

)
= P

(
X(1) ≤ x, . . . ,X(n) ≤ x

)
= Fn(x)→n→∞

1, if x ≥ xF ,
0, if x < xF ,

where xF = sup {x ∈ R : F (x) < 1} is the right endpoint of F . Clearly, this relation
does not yield much information on the behavior of the extremal distribution. As in the
central limit theorem, it is therefore necessary to normalize the maximum, i. e. we take
cn > 0, dn ∈ R, n ∈ N, and consider the convergence

P
(
(M (n) − dn)/cn ≤ x

)
= Fn(cnx+ dn)→n→∞ G(x), x ∈ R,

where G is a non-degenerate distribution function, i. e. its mass is not concentrated on a
single point. The fundamental theorem of extreme value theory by Fisher and Tippett
(1928) and Gnedenko (1943) now states that the limit G is either a Fréchet, a Weibull
or a Gumbel type distribution.
The next step is to go beyond the univariate world, and to observe several weather

stations or a portfolio of shares simultaneously. This results in a sequence of iid random
vectors X,X(1),X(2), . . . ∈ Rd, where the random variable X(i)

j ∈ R represents the i-th
observation at the j-th spot, i ∈ N, j = 1, . . . , d. An extreme multivariate observation
is meant to be extreme in each component. A heavy rainfall event, for instance, is
observed at several weather stations simultaneously, or each share in a portfolio registers
a huge loss at the same time etc. In accordance with that, we look at the componentwise
maximum

M (n) =
(
M

(n)
1 , . . . ,M

(n)
d

)
:=

(
max
i=1,...,n

X
(i)
1 , . . . , max

i=1,...,n
X

(n)
d

)
.

Unlike the sequence of observations itself, the components X(i)
1 , . . . , X

(i)
d of each obser-

vation X(i), i ∈ N, are typically not iid. Modeling the dependence of the components
is, in fact, one of the most crucial and challenging tasks in multivariate extreme value
theory. For instance, if a portfolio contains shares of two banks - say bank A and bank
B - it is likely that a significant loss made by bank A will have an influence also on bank
B. Similarly, the weather observed at one weather station will have an impact on the
weather at a second station, if they are not too far from each other.
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As before, we examine the limit behavior of the componentwise maximum, i. e.

P
(
(M (n) − dn)/cn ≤ x

)
→n→∞ G(x), x ∈ Rd,

where cn ∈ [0,∞)d, dn ∈ Rd, n ∈ N, are norming vectors and G is a d-variate distribution
function with non-degenerate univariate margins. The characteristic property of G is its
max-stability, i. e. there exist norming vectors an ∈ [0,∞)d, bn ∈ Rd, such that

Gn(anx+ bn) = G(x), n ∈ N, x ∈ Rd.

Note that all operations such as multiplication, addition, ≤, and so on are defined com-
ponentwise. The theory of multivariate extremes can further be extended to stochastic
processes. In that functional case, the observations are continuous real-valued functions
on a compact metric space. Examples are the height of the sea level along a section
of coast (modeled by S = [0, 1]), or of the temperature over a certain part of a map
(modeled by S = [0, 1]2). This leads to the theory of max-stable processes.
The representation of max-stable processes is much more complex than the univariate

theory. Remember that the limit distribution function G is either a Fréchet, a Weibull,
or a Gumbel type distribution in the one-dimensional case. In fact, the entire class of
univariate max-stable distributions can be described by the three parameters of scale,
location, and shape. In the multivariate or functional world, however, the complex
dependence structure within the univariate margins leads to non-parametric classes of
max-stable processes. Higher-dimensional max-stable distributions can be described by
the so-called angular measure, which was described mainly by de Haan and Resnick (1977)
in the multivariate, and by Giné et al. (1990) in the functional setup. Useful models
of the dependence structure are also given by a certain class of norms, more precisely
the D-norms, established by Falk et al. (2011). Max-stable processes are discussed in
Chapter 2 extensively. Section 2.1 provides a recap of how max-stable distributions can
be represented, and summarizes well-established facts, which are of crucial importance
for the remainder of this thesis. In addition, different parametric models of multivariate
max-stable distributions are presented. Section 2.2 introduces the new concept of dual
D-norm functions, an important tool for higher-dimensional records, which are discussed
later on. Finally, Section 2.3 places a focus on path properties of max-stable processes.
More precisely, the concept of differentiability in distribution is introduced, and further
results on max-stable processes - such as the distribution of the increments of a max-
stable process - are collected.
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The theory of max-stable processes with continuous sample paths has been developed
a lot since the groundbreaking paper of de Haan (1984) was published. There is, however,
a basic problem in practice, as it is not possible in reality to observe an entire process
on an interval. Regardless of how many weather stations have been built in a country, it
will only be possible to collect measurements from a finite number of locations. It must
therefore be asked how stochastic processes with continuous sample paths on the interval
[0, 1] - or, more generally, on a compact metric space S - can be constructed, such that
a given max-stable random vector is interpolated by this process while max-stability is
being preserved. This leads to the generalized max-linear models that will be discussed
in Chapter 3.
The last part of this dissertation, finally, takes a closer look on multivariate records. In

daily life, it is impossible not to come across such records, given the diverse fields in which
they appear. In 2009, Usain Bolt set the current 100 meters record; in 2015 the German
stock market index DAX reached a new all time high; and global temperatures in 2015
were the warmest since modern record keeping began in 1880. From a mathematical
point of view, it is quite straightforward to define a record from a sequence of random
variables X(1), X(2), . . . ∈ R. The n-th observation is called a record, if it is greater (or
less) than all n−1 observations before. However, ifX(1),X(2), . . . are random vectors or
even stochastic processes, the lack of natural order in higher-dimensional spaces enables
the definition of records in many different ways. For illustration, think of a decathlete.
In our example, the decathlete sets a new record, if he or she sets a new decathlon record
in at least one event, say javelin. Later on, we will name such an observation a simple
record. A very strong decathlete might even be able to set a new record in all ten events
at the same time. Naturally, such a complete record is much less likely. In Chapter
4, new results on simple and complete records, provided that the underlying sequence
of observations is iid, are collected. Finally, the development of the componentwise
maximum M (n) over time will be investigated by means of so-called hitting scenarios.
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2 Max-stable processes

2.1 Representations of max-stable processes

Let in what follows S be a compact metric space. Recall that, in particular, S is complete
and also separable. To begin with, we define some function spaces that will be needed
throughout the whole work. Let

C(S) := {f : S → R : f continuous} ,
C+(S) := {f ∈ C(S) : f > 0} and C−(S) := {f ∈ C(S) : f < 0} ,
C̄+(S) := {f ∈ C(S) : f ≥ 0} and C̄−(S) := {f ∈ C(S) : f ≤ 0} ,

E(S) := {f : S → R : f bounded with only finitely many discontinuities} ,
E+(S) := {f ∈ E(S) : f > 0} and E−(S) := {f ∈ E(S) : f < 0} ,
Ē−(S) := {f ∈ E(S) : f ≤ 0} and Ē+(S) := {f ∈ E(S) : f ≥ 0} .

All these function spaces can be equipped with the supremum norm

‖f‖∞ := sup
s∈S
|f(s)| .

A typical choice of S would be the euclidean cube S = [0, 1]k for some k ∈ N, but we
can also think of S = {1, . . . , d} equipped with the discrete metric. In that case, any
function mapping from {1, . . . , d} to R is continuous, and hence C(S) = E(S) = Rd,
C+(S) = (0,∞)d, and so on. To point out possible differences between the finite and the
general case, we use the term multivariate case clarifying that the index set S is finite,
whereas the functional case should be pictured as S = [0, 1]k.
Any operation on these function spaces is always meant componentwise, that is, for

instance for f1, . . . , fn ∈ C(S),

f1 ≤ f2 :⇐⇒ f1(s) ≤ f2(s) for all s ∈ S,
f1 + f2 := (f1(s) + f2(s))s∈S ,
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max
i=1,...,n

fi :=

(
max
i=1,...,n

fi(s)

)
s∈S

,

...

We denote by (Ω,A, P ) a probability space, i. e. A is a σ-algebra on Ω and P a
probability measure on (Ω,A). If ξ : (Ω,A) → (Ω′,A′) is a measurable mapping to
another measure space (Ω′,A′), then P ∗ ξ := P ◦ ξ−1 marks the distribution of ξ.
Constant functions are often indicated by bold numbers, i. e. we write

1 := 1S := (1)s∈S , 0 := 0S := (0)s∈S , . . .

The indicator function corresponding to a subset A of an arbitrary set X is denoted by

1A(x) :=

1, if x ∈ A,
0, else.

If there is a σ-Algebra B available on X , we can define the Dirac measure εx for a fixed
x ∈ X via

εx(A) := 1A(x), A ∈ B.

If X is a topological space, we denote by B(X ) the Borel σ-algebra, i. e. the σ-algebra
which is generated by the open subsets of X . We will often discuss weak convergence of
finite measures or random variables on (X ,B(X )), where X is a metric space. A sequence
of finite measures µn on (X ,B(X )) converges weakly to a a finite measure µ on (X ,B(X ))

(write µn →w µ), if ∫
X
f(x) µn(dx)→n→∞

∫
X
f(x) µ(dx)

for every continuous and bounded function f : X → R. Analogously, a sequence of
random variables on (X ,B(X )) converges weakly or in distribution to a random variable
X on (X ,B(X )), if P ∗Xn →w P ∗X, i. e.

E(f(Xn))→n→∞ E(f(X)),

where E(ξ) denotes the expectation of an integrable real-valued random variable ξ. In
that case, we also write

Xn →D X.
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A stochastic process ϑ = (ϑs)s∈S with sample paths in C(S) and non-degenerate uni-
variate margins is called a max-stable process (MSP), if there are norming functions
an ∈ C+(S), bn ∈ C(S), n ∈ N, such that

max
i=1,...,n

ϑ(i) − bn
an

=D ϑ, n ∈ N, (2.1)

where ϑ(1),ϑ(2), . . . are independent and identically distributed (iid) copies of ϑ, and
=D denotes equality in distribution. The distribution of an MSP is called max-stable
itself. Note again that in the case S = {1, . . . , d}, we deal in fact with random vectors
in Rd rather than with actual stochastic processes.
Since max-stable distributions are the only possible non-degenerate limit distributions

in a sequence of linearly standardized maxima of iid processes, MSP play an outstanding
role in extreme value theory. Let X(1),X(2), . . . be iid stochastic processes with sample
paths in C(S). Assume there exist norming functions cn ∈ C+(S), dn ∈ C(S), n ∈ N,
and a stochastic process Y with sample paths in C(S) and non-degenerate univariate
margins such that

max
i=1,...,n

X(i) − dn
cn

→D Y (2.2)

in C(S). The process Y in (2.2) is called extreme value process, and its distribution
extreme value distribution. In fact, it is not difficult to see (cf. de Haan and Ferreira
(2006, Section 9.2)) that the class of max-stable and extreme value processes coincide.
Therefore, we will only refer to max-stable instead of extreme value processes from now
on, even if we have the convergence (2.2) in mind. In Section 2.2, we will specifically
bring relation (2.2) into focus.
Clearly, the univariate margins of an MSP are max-stable themselves, and hence belong

to the class of either Fréchet, Weibull or Gumbel type distributions. In fact, the funda-
mental theorem in Extreme Value Theory of Fisher and Tippett (1928) and Gnedenko
(1943) states that for every s ∈ S,

P (ϑs ≤ a(s)x+b(s)) = Gγ(s)(x) = exp
(
− (1 + γ(s)x)−1/γ(s)

)
, 1+γ(s)x > 0, (2.3)

where a(s) > 0, b(s), γ(s) ∈ R are parameters of scale, location and shape, and in the
case γ(s) = 0, the right hand side is interpreted as exp (−e−x). The parameter γ(s) is
commonly known as the extreme value index. It was shown in Giné et al. (1990) that the
functions a(·), b(·) and γ(·) are in fact continuous.
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A stochastic process ξ = (ξs)s∈S with sample paths in C(S) is commonly called a
simple max-stable process if it is max-stable with standard univariate Fréchet margins,
i. e. P (ξs ≤ x) = exp(−x−1), x > 0, s ∈ S. In that case, we necessarily have a(s) ≡ n,
b(s) ≡ 0, i. e.

ξ =D
1

n
max
i=1,...,n

ξ(i),

where ξ(1), . . . , ξ(n) are iid copies of ξ. Different to that, we call a stochastic process
η = (ηs)s∈S with sample paths in C(S) a standard max-stable process (SMSP) if it is
max-stable with standard negative exponential margins, i. e. P (ηs ≤ x) = exp(x), x ≤ 0,
s ∈ S. In that case, we have

η =D n max
i=1,...,n

η(i), (2.4)

where η(1), . . . ,η(n) are iid copies of η. Having a closer look to the univariate margins
of simple and standard MSP, it seems to be obvious that −1/ξ is an SMSP if ξ is a
simple MSP, and vice versa. However, to this end, it is necessary to prove that neither
a simple MSP ξ nor an SMSP η attains the value zero with probability one. This is
trivial in case the parameter space S is a finite set, since (2.3) implies that a max-stable
random vector has a continuous distribution function (df). In addition, P (ξ > 0) = 1

was shown in Giné et al. (1990, Corollary 3.4). For the sake of completeness, we state
the equivalent result in the SMSP case, observing that the assertion has already been
proven in Hofmann (2012, Lemma 2.2) in the case S = [0, 1].

Lemma 2.1. Let η = (ηs)s∈S be an SMSP. Then P (η < 0) = 1.

Proof. Denote by δ the metric pertaining to the compact metric space S. The max-
stability of η (2.4) implies

P (η < 0) = P

(
max
i=1,...,n

η(i) < 0

)
= P (η < 0)n,

hence
P (η < 0) ∈ {0, 1}. (2.5)

Now suppose P (η < 0) = 0 ⇐⇒ P (sups∈S ηs = 0) = 1. Choose closed sets ∅ 6=
A1, B1 ( S with A1 ∪ B1 = S. Then (2.5) yields either P

(
sups∈A1

ηs = 0
)

= 1 or
P
(
sups∈B1

ηs = 0
)

= 1, since the spaces (A1, δ) and (B1, δ) are compact metric spaces
again, and it cannot occur that both probabilities are zero. Suppose without loss of
generality that P

(
sups∈A1

ηs = 0
)

= 1. Again, choose closed sets ∅ 6= A2, B2 ( A1 with
A2 ∪ B2 = A1, repeat the preceding arguments and assume without loss of generality
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that P
(
sups∈A2

ηs = 0
)

= 1. By iteration, it is possible to find a sequence of closed sets
An, n ∈ N, with A1 ⊃ A2 ⊃ A3 ⊃ · · · such that

diam(An) := sup{δ(x, y) : x, y ∈ An} →n→∞ 0

and P
(
sups∈An ηs = 0

)
= 1, n ∈ N. With S being a complete metric space, Cantor’s

intersection theorem implies that there is s0 ∈ S with
⋂
n∈NAn = {s0}. Therefore, we

obtain by the continuity from above of a probability measure and the fact that ηs0 is
continuously distributed

0 = P (ηs0 = 0) = P

(⋂
n∈N

{
sup
s∈An

ηt = 0

})
= lim

n→∞
P

(
sup
s∈An

ηs = 0

)
= 1,

which is clearly a contradiction.

Corollary 2.2. A stochastic process η is an SMSP if and only if (iff) −1/η defines a
simple MSP.

Generators and D-norms

In the literature, there are various approaches that aim the characterization and rep-
resentation of MSP. Depending on the nature of the index set S, different challenges
have to be faced in order to understand the structure of max-stable distributions. For
instance, considering either S = {1, . . . , d} or S = [0, 1] will leave us with either regular
random vectors or stochastic processes with continuous sample paths on [0, 1] - needless
to say that not every result can be transferred from the finite-dimensional setup to the
world of stochastic processes in a straightforward way, due to the different topological
structure of Rd and C([0, 1]).
In the beginnings, multivariate extreme value theory was mainly restricted to the

finite-dimensional framework, where S = {1, . . . , d}. The first step on the way to the
characterization of multivariate max-stability was in fact the investigation of a broader
class of distributions, the max-infinitely divisible (max-id) distributions. The crucial
observation is that every max-id distribution can be expressed by means of a so-called
exponent measure. This was shown by Balkema and Resnick (1977) in the bivariate
setup, and was later extended to higher (and even infinite) dimensions by Vatan (1985),
see also Gerritse (1986). Since max-stable distributions are in particular max-id, it is
clear that max-stable distributions have exponent measures as well. However, it was
the groundbreaking paper of de Haan and Resnick (1977) that laid the foundation of
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multivariate extreme value theory by observing that the exponent measure satisfies some
kind of homogeneity in the max-stable case. This property allows the factorization of
the exponent measure into a radial and an angular part, where the latter is expressed by
a finite measure on the unit circle, commonly known as the angular measure.
The strategy to deduce an angular measure which characterizes max-stable distribu-

tions has mainly been adapted to obtain analogous results in the case of sample path
continuous stochastic processes on an arbitrary compact metric index space S. The pa-
pers of de Haan (1984) and Giné et al. (1990) are certainly two of the most seminal
contributions in this matter.
Nice representations of MSP, in the finite-dimensional setup as well as in the functional

context, can be obtained by using the angular measure to define a certain class of norms,
the so-calledD-norms, which traces back to Falk (2006) (see also Falk et al. (2011, Section
4.4) for details), and Aulbach et al. (2013) in the functional setup.
We will start with the representation of MSP established by de Haan and Resnick

(1977) (in the finite-dimensional case) and Giné et al. (1990) (in the functional setup).
In contrast to the above references, we will formulate the result for SMSP rather than
simple MSP.

Theorem 2.3 (de Haan and Resnick (1977), Giné et al. (1990)). Let η = (ηs)s∈S be
an SMSP. There is a stochastic process Z = (Zs)s∈S with sample paths in C̄+(S) which
satisfies

‖Z‖∞ = m ∈ [1,∞) almost surely and E(Zs) = 1, s ∈ S, (2.6)

such that for compact subsets K1, . . . ,Kd of S and x1, . . . , xd ≤ 0, d ∈ N,

P (ηs ≤ xj , s ∈ Kj , j = 1, . . . , d) = exp

(
−E

(
max

1≤j≤d

(
|xj |max

s∈Kj
Zs

)))
. (2.7)

Conversely, every stochastic process Z ∈ C̄+(S) with (2.6) gives rise to an SMSP via
(2.7), and Z is called a generator.

The requirement ‖Z‖∞ = m almost surely arises because we have equipped the space
C(S) with the supremum norm to turn it into a complete and separable metric space. In
the multivariate case, however, the choice of the norm does not matter since all norms
are equivalent on Rd. We can therefore replace the norm ‖·‖∞ by any norm ‖·‖, if S is
a finite set.
Actually, it is not necessary to demand that the norm of a generator is almost surely

constant, but only that it is integrable. Hence (2.6) can be replaced by the weaker

10



assumption

E

(
sup
s∈S

Zs

)
<∞ and E(Zs) = 1, s ∈ S, (2.6′)

cf. de Haan and Ferreira (2006, Corollary 9.4.5). Note that in case S is a finite set,
E(Zs) = 1 implies E (sups∈S Zs) < ∞. It depends on the application whether to use
(2.6) or (2.6′) for the definition of a generator. Of course, it is more convenient to verify
(2.6′) in order to provide a generator, whereas it can also be useful to know that there
exists a generator whose supremum is constant almost surely. Every generator gives rise
to the following definition of a D-norm, irrespective of whether condition (2.6) or (2.6′)
serve as basis for the definition.

Definition 2.4. Let Z = (Zs)s∈S be a generator process with sample paths in C̄+(S).
The mapping

‖·‖D : E(S)→ [0,∞), f 7→ ‖f‖D := E

(
sup
s∈S
|f(s)|Zs

)
,

is called D-norm with generator Z. Indeed, ‖·‖D defines a norm on the linear space
E(S).

It is obvious from the definition that every D-norm ‖·‖D is standardized, i. e.

∥∥1{s}∥∥D = 1, s ∈ S,

as well as monotone, that is, for arbitrary f, g ∈ E(S),

|f(s)| ≤ |g(s)| , s ∈ S =⇒ ‖f‖D ≤ ‖g‖D .

Clearly, the supremum norm ‖f‖∞ = sups∈S |f(s)| defines a D-norm, for instance in-
duced by the trivial generator Z ≡ 1. Beyond that, the supremum norm is generated
by any constant stochastic process Zs = Z, s ∈ S that satisfies E(Z) = 1. Thus, the
distribution of a generator is not unique. However, the number

‖1‖D = E

(
sup
s∈S

Zs

)
<∞

is obviously uniquely determined, which justifies the term generator constant for ‖1‖D.
It is an easy task to verify

‖f‖∞ ≤ ‖f‖D ≤ ‖1‖D ‖f‖∞ , f ∈ E(S), (2.8)
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see Hofmann (2012, Lemma 2.6). These inequalities are of particular interest if S is not a
finite set. It is well-known that all norms on Rd are equivalent to each other which is not
true on, say, C ([0, 1]). However, (2.8) actually shows that every D-norm is equivalent to
the supremum norm. In particular, the common Lp-norms

‖f‖p :=

(∫ 1

0
|f(s)|p ds

)1/p

, f ∈ C ([0, 1]) ,

do not define D-norms, in distinction from the case S = {1, . . . , d}, where we will see
that the Lp-norms define D-norms indeed.
A slight modification of Theorem 2.3 now yields a representation of the distribution of

SMSP via D-norms.

Corollary 2.5 (Aulbach et al. (2013, Lemma 2)). Let η = (ηs)s∈S be an SMSP with
generator Z = (Zs)s∈S. Then for every f ∈ Ē−(S),

P (η ≤ f) = exp

(
−E

(
sup
s∈S
|f(s)|Zs

))
= exp (−‖f‖D) . (2.9)

Conversely, every generator Z gives rise to an SMSP via (2.9).

We prefer the space E(S) to the space of all continuous functions on S because it allows
the incorporation of the finite-dimensional distributions in the representation P (η ≤ f),
even if S is e. g. a compact interval such as [0, 1]. Take an SMSP η = (ηs)s∈S with gen-
erator Z = (Zs)s∈S and D-norm ‖·‖D. Choose pairwise different indices s1, . . . , sd ∈ S,
d ∈ N. Then (ηs1 , . . . , ηsd) defines a standard max-stable random vector with pertaining
D-norm

‖x‖Ds1,...,sd = E

(
max

1≤j≤d

(
|xj |Zsj

))
, x = (x1, . . . , xd) ≤ 0.

Put f(·) =
∑d

j=1 xj1{sj}(·) ∈ Ē−(S). Then

P (η ≤ f) = exp (−‖f‖D)

= exp

(
−E

(
sup
s∈S

(|f(s)|Zs)
))

= exp

(
−E

(
max

1≤j≤d

(
|xj |Zsj

)))
= exp

(
−‖x‖Ds1,...,sd

)
= P (ηs1 ≤ x1, . . . , ηsd ≤ xd). (2.10)
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The function

G : Ē−(S)→ [0, 1], f 7→ G(f) = P (η ≤ f) = exp (−‖f‖D) ,

is called the distribution function (df) of the SMSP η. Clearly, if S = {1, . . . , d}, this
definition coincides with the regular definition of a df on Rd. In particular, in that case, it
is obvious from the univariate margins that G is continuous. Interestingly, this result can
be generalized to arbitrary index sets S. The function G is continuous with respect to the
supremum norm, resulting in the fact that G(f) = P (η < f) for every f ∈ Ē−(S), see
Aulbach et al. (2013, Lemma 5). Just like in the multivariate case, the function G fully
determines the distribution of η since we have seen previously that the finite-dimensional
distributions are embedded by the choice of the function space Ē−(S).
We end this section with the observation that the set of all D-norms forms a convex

set.

Lemma 2.6. Let ‖·‖D1
and ‖·‖D2

be two D-norms on E(S). Then

‖·‖λD1+(1−λ)D2
:= λ ‖·‖D1

+ (1− λ) ‖·‖D2

also defines a D-norm on E(S) for each λ ∈ [0, 1].

Proof. Let X be a Bernoulli distributed random variable with success probability
P (X = 1) = λ, independent of the generators Z(1) and Z(2) of ‖·‖D1

and ‖·‖D2
. Then

Z∗ := XZ(1) + (1−X)Z(2)

is a generator of ‖·‖λD1+(1−λ)D2
, since (2.6′) is clearly satisfied, and

E

(
sup
s∈S
|f(s)|Z∗s

)
= E

(
1{X=1} sup

s∈S
|f(s)|Z∗s

)
+ E

(
1{X=0} sup

s∈S
|f(s)|Z∗s

)
= λE

(
sup
s∈S
|f(s)|Z(1)

s

)
+ (1− λ)E

(
sup
s∈S
|f(s)|Z(2)

s

)
.

Examples of generators and D-norms

So far we have only seen one example of a D-norm, namely the supremum norm ‖·‖∞.
Clearly, ‖·‖∞ is the D-norm of an SMSP η = (ηs)s∈S iff the univariate margins of η
are completely dependent, i. e. ηs = ηt almost surely for s, t ∈ S. This makes ‖·‖∞ a
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rather trivial D-norm, as the complete dependence case basically reflects the univariate
setup, where η is simply a standard negative exponentially distributed random variable.
Convergence to the D-norm of complete dependence can be characterized very easily:

Lemma 2.7 (Aulbach et al. (2013, Lemma 3)). Let ‖·‖Dn, n ∈ N, be a sequence of
D-norms on E(S). Then

‖f‖Dn →n→∞ ‖f‖∞ for all f ∈ E(S) ⇐⇒ ‖1‖Dn →n→∞ ‖1‖∞ = 1.

As an application of the preceding Lemma, we consider an SMSP with sample paths
in C ([0, 1]), and show how it can be stretched to an SMSP with complete dependent
univariate margins.

Example 2.8. Let η = (ηs)s∈[0,1] be a SMSP with generator Z = (Zs)s∈[0,1], D-norm
‖·‖D, and generator constant ‖1‖D. Choose a sequence of intervals [an+1, bn+1] ⊂
[an, bn] ⊂ [0, 1], n ∈ N, such that limn→∞ bn−an = 0. By Cantor’s intersection theorem,
there is a uniquely determined c0 ∈

⋂
n∈N[an, bn]. Define for n ∈ N a stochastic process

η(n) =
(
η

(n)
s

)
s∈[0,1]

∈ C[0, 1] by

η(n)
s = ηan+s(bn−an), s ∈ [0, 1].

More vividly, we select a piece (ηs)s∈[an,bn] of the original SMSP η, and stretch it to a
stochastic process defined on the whole interval [0, 1]. We then have for f ∈ Ē−[0, 1]

P
(
η(n) ≤ f

)
= P

(
ηan+s(bn−an) ≤ f(s), s ∈ [0, 1]

)
= P

(
ηt ≤ f

(
t− an
bn − an

)
, t ∈ [an, bn]

)
= exp

(
−E

(
sup

t∈[an,bn]

(∣∣∣∣f ( t− an
bn − an

)∣∣∣∣Zt)
))

= exp

(
−E

(
sup
s∈[0,1]

(
|f (s)|Zan+s(bn−an)

)))
,

which immediately implies that η(n), n ∈ N, is an SMSP itself with generator Z(n) =

(Zan+s(bn−an))s∈[0,1]. Denote by ‖·‖Dn the D-norm corresponding to η(n). We have for
n ∈ N

‖1‖Dn+1
= E

(
sup

t∈[an+1,bn+1]
Zt

)
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≤ E
(

sup
t∈[an,bn]

Zt

)
= ‖1‖Dn

≤ E
(

sup
t∈[0,1]

Zt

)
= ‖1‖D .

Hence, we obtain a decreasing sequence of generator constants

‖1‖D ≥ ‖1‖D1
≥ ‖1‖D2

≥ . . . ≥ ‖1‖Dn ≥ . . . ≥ 1.

Therefore, m0 := limn→∞ ‖1‖Dn exists, and m0 ≥ 1. Define Yn := supt∈[an,bn] Zt. Then
Yn ↓ Zc0 , and by the monotone convergence theorem,

‖1‖Dn = E(Yn) ↓ E(Zc0) = 1 = m0.

We have shown ‖1‖Dn →n→∞ 1, which implies ‖f‖Dn →n→∞ ‖f‖∞ for every f ∈ E[0, 1]

by Lemma 2.7.

The counterpart of complete dependent univariate margins is the case where all com-
ponents ηs, s ∈ S, are independent. This in turn can only occur if S is finite. If, for
instance, S = [0, 1], the assumption that all univariate margins are independent of each
other contradicts the continuity of the sample paths.
This is a fundamental difference between max-stable random vectors and ’actual’ max-

stable processes. In fact, it is not easy to derive closed form representations for functional
D-norms, whereas this is no problem in the multivariate setup. In the following, we
will gather some examples of parametric families of D-norms, always assuming that
S = {1, . . . , d}. Note that we will still use the term SMSP, even though we actually
consider random vectors.

Example 2.9 (Complete dependence and independence). Complete dependence of the
univariate margins can be characterized via the supremum norm ‖·‖∞ which is, for
instance, induced by the constant generator Z ≡ 1. Also, it has been pointed out before
that ‖·‖D ≥ ‖·‖∞. On the other hand, the SMSP η = (η1, . . . , ηd) has independent
components, iff

P (η1 ≤ x1, . . . , ηd ≤ xd) =
d∏
i=1

P (ηi ≤ xi)
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= exp

(
−

d∑
i=1

|xi|
)

= exp (−‖x‖1) , x = (x1, . . . , xd) ≤ 0.

Thus, the independence case is characterized by the sum norm ‖·‖1. It is further easy to
see that ‖·‖D ≤ ‖·‖1 for any D-norm ‖·‖D. To summarize, we have

‖·‖∞ ≤ ‖·‖D ≤ ‖·‖1 ,

where ‖·‖∞ and ‖·‖1 are D-norms themselves characterizing the two extremal cases of
complete dependent and independent univariate margins. Hence the D-norm models the
dependence structure within the components of the SMSP η, which justifies the letter
D. It is well-known from Takahashi’s theorem that ‖·‖D = ‖·‖∞ iff ‖1‖D = 1 and
‖·‖D = ‖·‖1 iff ‖1‖D = d, see Takahashi (1988) or Falk et al. (2011, Theorem 4.4.1).
This makes the generator constant ‖1‖D ∈ [1, d] a popular dependence parameter, in the
literature more commonly known as the extremal coefficient, cf. Smith (1990).

Now let us focus on the generator of ‖·‖1. Different to the complete dependence case,
where ‖·‖∞ has a generator that concentrates on the vector 1, the sum norm can be
generated by a discrete random vector with all its mass on the axes. More precisely,
let Z = (Z1, . . . , Zd) be a random permutation of the vector (d, 0, . . . , 0), such that
P (Zi = d) = 1/d, i = 1, . . . , d. It is not difficult to verify that

E

(
max
i=1,...,d

|xi|Zi
)

= ‖x‖1 , x = (x1, . . . , xd) ∈ Rd.

In fact, it can be shown quite easily that η = (η1, . . . , ηd) is an SMSP with independent
margins iff the (not necessarily uniquely determined) generator Z = (Z1, . . . , Zd) satisfies

P (min(Zi, Zj) = 0) = 1, 1 ≤ i 6= j ≤ d, (2.11)

see Hofmann (2012).

Having established the two extremal cases, we will now give some examples of paramet-
ric families of multivariate D-norms covering the whole range from complete dependence
to independence. We begin with theMarshall-Olkin-norm, which is a convex combination
of the sum and the supremum norm.

Example 2.10 (Marshall-Olkin model). The Marshall-Olkin norm on Rd is defined by

‖·‖Mλ
:= λ ‖·‖∞ + (1− λ) ‖·‖1 , λ ∈ [0, 1].
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According to Lemma 2.6, ‖·‖Mλ
defines a D-norm and it is generated by

Z := X1 + (1−X)Z̃,

where Z̃ is a generator of ‖·‖1 as in Example 2.9, and X is a Bernoulli random variable
with success probability P (X = 1) = λ, independent of Z̃. Clearly, the Marshall-Olkin
model covers the whole range from complete dependence (λ = 1) to independence (λ = 0).

Next we show that the Lp-norm is a D-norm, in the literature also known as the logistic
model.

Example 2.11 (Logistic model). Consider for p ∈ (1,∞) the Lp-norm on Rd, i. e.

‖x‖p :=

(
d∑
i=1

|xi|p
)1/p

. (2.12)

Let Z̃1, . . . , Z̃d be independent and identically Fréchet distributed with parameter p ∈
(1,∞), that is,

P (X1 ≤ t) = exp(−t−p), t > 0.

It is well known that E(Z̃1) = Γ(1−p−1), where Γ(·) denotes the gamma function. Define
a random vector Z = (Z1, . . . , Zd) by

Zi :=
Z̃i

Γ(1− p−1)
, i = 1, . . . , d.

Then clearly Z ≥ 0 and E(Zi) = 1, i = 1, . . . , d. Thus, Z defines a generator on
Rd, and it induces the Lp-norm indeed: Take x = (x1, . . . , xd) ∈ Rd. We have by the
independence of Z̃1, . . . , Z̃d

E

(
max
i=1,...,d

|xi|Zi
)

=
1

Γ(1− p−1)
E

(
max
i=1,...,d

|xi| Z̃i
)

=
1

Γ(1− p−1)

∫ ∞
0

1− P
(

max
i=1,...,d

|xi| Z̃i ≤ t
)

dt

=
1

Γ(1− p−1)

∫ ∞
0

1− P
(
Z̃1 ≤

t

|x1|
, . . . , Z̃d ≤

t

|xd|

)
dt

=
1

Γ(1− p−1)

∫ ∞
0

1− exp

(
−t−p

(
d∑
i=1

|xi|p
))

dt

=
1

Γ(1− p−1)
‖x‖p

∫ ∞
0

1− exp
(
−u−p

)
du
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= ‖x‖p .

The generator constant ‖1‖p pertaining to the D-norm ‖·‖p on Rd is given by d1/p,
obviously. This is also immediate by the well-known fact that the Fréchet distribution is
max-stable, that is

max(Z̃1, . . . , Z̃d) =D d
1/pZ̃1.

Furthermore, ‖1‖p is a strictly monotone decreasing function in p with the limits d and
1 as p tends to 1 and∞, respectively. Hence, the whole range from complete dependence
to independence is covered by the logistic model.

The next model is built on a Weibull distributed generator. Recall the useful formulas

max
i=1,...,d

ai =
∑

∅6=T⊆{1,...,d}

(−1)|T |−1 min
i∈T

ai and min
i=1,...,d

ai =
∑

∅6=T⊆{1,...,d}

(−1)|T |−1 max
i∈T

ai,

(2.13)
which hold for arbitrary vectors a = (a1, . . . , ad) ∈ Rd. Here, |T | denotes the num-
ber of elements of the set T . Furthermore, we introduce for a nonempty subset T =

{i1, . . . , ik} ⊆ {1, . . . , d} with i1 < · · · < ik the notation

aT := (ai1 , . . . , aik) ∈ Rk.

Example 2.12 (Weibull model). Let Z̃1, . . . , Z̃d be independent and identically Weibull
distributed with parameter α ∈ (0,∞), that is,

P (Z̃1 > t) = exp (−tα) , t > 0.

It is well known that

E(Z̃1) =

∫ ∞
0

exp (−tα) dt = Γ(1 + α−1).

Therefore, the random vector Z = (Z1, . . . , Zd) defined by

Zi :=
Z̃i

Γ(1 + α−1)
, i = 1, . . . , d,
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is a generator. Denote by ‖·‖Wα
the D-norm generated by Z. Then for every x =

(x1, . . . , xd) ∈ Rd with xi 6= 0, i = 1, . . . , d,

‖x‖Wα
=

∑
∅6=T⊆{1,...,d}

(−1)|T |−1 (‖1/xT ‖α)−1 , α > 0.

Here we presume that ‖·‖α is exactly defined as in (2.12), being aware of the fact that it
is actually not a norm in the case α ∈ (0, 1). Now (2.13) implies

E

(
max
i=1,...,d

|xi|Zi
)

=
1

E(Z̃1)

∑
∅6=T⊆{1,...,d}

(−1)|T |−1E

(
min
i∈T
|xi| Z̃i

)

=
1

E(Z̃1)

∑
∅6=T⊆{1,...,d}

(−1)|T |−1

∫ ∞
0

P

(
min
i∈T
|xi| Z̃i > t

)
dt

=
1

E(Z̃1)

∑
∅6=T⊆{1,...,d}

(−1)|T |−1

∫ ∞
0

P
(
Z̃i > t/ |xi| , i ∈ T

)
dt

=
1

E(Z̃1)

∑
∅6=T⊆{1,...,d}

(−1)|T |−1

∫ ∞
0

exp

(
−tα

∑
i∈T
|xi|−α

)
dt

=
∑

∅6=T⊆{1,...,d}

(−1)|T |−1 (‖1/xT ‖α)−1 .

The generator constant of ‖·‖Wα
is given by

‖1‖Wα
=

d∑
k=1

(
d

k

)
(−1)k−1k−1/α, α > 0.

We have

lim
α→0
‖1‖Wα

= d+
d∑

k=2

(
d

k

)
(−1)k−1 lim

α→0
k−1/α = d,

as well as

lim
α→∞

‖1‖Wα
=

d∑
k=1

(
d

k

)
(−1)k−1 = −

d∑
k=0

(
d

k

)
(−1)k1d−k + 1 = 1,

which means again that the Weibull model covers the whole range from independence to
complete dependence.

In contrast to the last two examples, the next parametric family of D-norms is induced
by a generator whose components are bounded.
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Example 2.13. Choose γ > 0 and take iid random variables Z̃1, . . . , Z̃d with df

P (Z̃1 ≤ t) = tγ , t ∈ [0, 1].

Then E(Z̃1) = γ/(γ+ 1). In order to obtain a generator Z = (Z1, . . . , Zd), we normalize

Zi :=
γ + 1

γ
Z̃i, i = 1, . . . , d.

The D-norm generated by Z is given by

‖x‖Pγ =
γ + 1

γ

(
‖x‖∞ −

‖x‖dγ+1
∞

(dγ + 1) |x1|γ · . . . · |xd|γ
)

for every x = (x1, . . . , xd) ∈ Rd with xi 6= 0, i = 1, . . . , d, since for such x

E

(
max
i=1,...,d

|xi|Zi
)

=
γ + 1

γ

∫ ‖x‖∞
0

1− P
(

max
i=1,...,d

|xi| Z̃i ≤ t
)

dt

=
γ + 1

γ

∫ ‖x‖∞
0

1− P
(
Z̃i ≤ t/ |xi| , i = 1, . . . , d

)
dt

=
γ + 1

γ

∫ ‖x‖∞
0

1− tdγ

|x1|γ · . . . · |xd|γ
dt

=
γ + 1

γ

(
‖x‖∞ −

‖x‖dγ+1
∞

(dγ + 1) |x1|γ · . . . · |xd|γ
)
.

The generator constant of ‖·‖Pγ on Rd is given by

‖1‖Pγ =
dγ + d

dγ + 1
, γ > 0.

In particular, ‖1‖Pγ →γ→0 d and m ‖1‖Pγ →γ→∞ 1, and ‖1‖Pγ is strictly monotonically
decreasing in γ for d > 1.

Another example of aD-norm with a discrete generator is the Bernoulli model. Despite
its very simple nature, it is still suitable to cover the whole dependence range.

Example 2.14 (Bernoulli model). Let Z̃1, . . . , Z̃d be iid Bernoulli random variables with
success probability β ∈ (0, 1]. The standardization Zi := Z̃i/β, i = 1, . . . , d, yields a
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generator. The corresponding D-norm ‖·‖Bβ is

‖x‖Bβ =
∑

∅6=T⊆{1,...,d}

β|T |−1(1− β)d−|T | ‖xT ‖∞ , x ∈ Rd,

since we have

E

(
max
i=1,...,d

(|xi|Zi)
)

=
1

β

∑
∅6=T⊆{1,...,d}

max
i∈T
|xi|P

(
Z̃i = 1, i ∈ T, Z̃j = 0, j ∈ T {

)
.

Note that ‖x‖B1
= ‖x‖∞ and ‖x‖B0

:= limq→0 ‖x‖Dq = ‖x‖1. The generator constant
‖1‖Bβ can easily be computed by

‖1‖Bβ =
1

β
E

(
max
i=1,...,d

Z̃i

)
=

1

β
P

(
max
i=1,...,d

Z̃i = 1

)
=

1

β

(
1− (1− β)d

)
.

The bivariate case yields the Marshall-Olkin norm again, yet the distribution of the
generator is clearly not the same as the one we have discussed in Example 2.10.

The calculation of concrete examples of functional D-norms is usually a very difficult
task. Nevertheless, there exist numerous popular models of max-stable processes with a
non-finite index set, two of which are introduced in the following. However, it is often
only possible to give closed formulas of the bivariate marginal distributions and hence
bivariate D-norms, which is still of value in many practical purposes.
In the next two examples, with a slight abuse of notation, we will discuss SMSP

η = (ηs)s∈R with the domain R instead of the compact metric space S. Note that the
finite dimensional distributions of η still define standard max-stable random vectors.
We will need the following terminology. A stochastic process X = (Xs)s∈R is called

stationary, if X =D (Xs+h)s∈R for any h ∈ R. Different to that, a stochastic process
Y = (Ys)s∈R has stationary increments, if the distribution of (Ys+h − Yh)s∈R does not
depend on the choice of h ∈ R.

Example 2.15 (Brown-Resnick model). This model was originally created by Brown and
Resnick (1977), and developed by Kabluchko et al. (2009) for MSP ϑ = (ϑs)s∈R with
Gumbel margins, i. e. P (ϑs ≤ x) = exp (−e−x), x ∈ R. Note that the transformation
to SMSP is straightforward since − exp (−ϑ) is an SMSP if ϑ is an MSP with Gumbel
margins. Let W = (Ws)s∈R be a centered (i. e. E(Ws) = 0, s ∈ R) Gaussian process
with continuous sample paths and stationary increments. Denote by σ2

s the variance of
Ws, s ∈ R. Then

Zs = exp
(
Ws − σ2

s/2
)
, s ∈ R,
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defines a generator of a stationary SMSP η. The distribution of W , and hence of
Z = (Zs)s∈R is fully determined by the variances σ2

s and the variogram

γ(h) = E
(

(Ws0+h −Ws0)2
)
.

Note that the choice of s0 ∈ R in the upper formula does not matter since W has
stationary increments. The bivariate distributions of η are described by the bivariate
Brown-Resnick D-norms

‖(x, y)‖BRh
= E (max (|x|Zs, |y|Zs+h))

= |x|Φ
(√

γ(h)

2
+

log(x/y)√
γ(h)

)
+ |y|Φ

(√
γ(h)

2
+

log(y/x)√
γ(h)

)
,

where Φ is the df of the standard normal distribution, see Kabluchko et al. (2009, Remark
24). The bivariate generator constants are given by

‖(1, 1)‖BRh
= 2Φ

(√
γ(h)

2

)
.

Hence, ‖(1, 1)‖BRh
→ 1 as h → 0 and ‖(1, 1)‖BRh

→ 2 as |h| → ∞ iff γ(h) → ∞ as
|h| → ∞.

Example 2.16 (Schlather model). Schlather (2002) proposed to consider the generator

Zs =
√

2πmax(0,Ws), s ∈ R,

whereW = (Ws)s∈R is a stationary standard Gaussian process (i. e. W is stationary and
Ws is standard normally distributed for each s ∈ S) with correlation function ρ(h) =

Cov(Ws,Ws+h) and continuous sample paths. The pertaining bivariate Schlather D-
norms are given by

‖(x, y)‖SCHh
= E (max (|x|Zs, |y|Zs+h))

=
1

2
(|x|+ |y|)

(
1 +

√
1− 2(1 + ρ(h))

|x| |y| (1/ |x|+ 1/ |y|)2

)
,

cf. Schlather (2002, Formula (7)), and the generator constant is

‖(1, 1)‖SCHh
= 1 +

√
1− ρ(h)

2
.
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Note that ‖(1, 1)‖SCHh
≤ 1 +

√
1/2 ≈ 1.7 if ρ(h) ≥ 0, such that the independence case

cannot be approximated by the Schlather model with a positive correlation function.

Exponent measure and angular measure

As mentioned before, there is a key element in the representation of multivariate and
functional max-stable distributions, which is the exponent measure, or finally the angular
measure. In our setup, these measures are hidden in the distribution of a generator
of a max-stable process. Since we will use the properties of an exponent measure at
some point, it makes sense to introduce it carefully, that is, we will deduce it from the
distribution of a generator. Historically, it worked the other way around: First the
so-called max-id distributions where characterized by means of the exponent measure
(Balkema and Resnick (1977), Giné et al. (1990)). In the smaller class of max-stable
distributions, it turned out that the exponent measure can be factorized into a radial
part and an angular measure (de Haan and Resnick (1977), de Haan (1984), Giné et al.
(1990)), which in turn gave rise to a generator.
We now closely follow the discussion in de Haan and Lin (2001), see also de Haan and

Ferreira (2006), Hult and Lindskog (2005) and Davis and Mikosch (2008) in order to
establish a complete and separable metric space on which the exponent measure will be
defined. Let C̄+

1 (S) be the unit sphere in C̄+(S), i. e. C̄+
1 (S) =

{
f ∈ C̄+(S) : ‖f‖∞ = 1

}
.

Define
E := (0,∞]× C̄+

1 (S), (2.14)

where (0,∞] is equipped with the metric %(x, y) = |1/x− 1/y|, x, y ∈ (0,∞], to turn
(0,∞] (and thus E) into a complete and separable metric space. By the transformation
to polar coordinates

T : C̄+(S) \ {0} → (0,∞)× C̄+
1 (S), f 7→ (‖f‖∞ , f/ ‖f‖∞) ,

the spaces C̄+(S)\{0} (equipped with the relative topology of C(S)) and (0,∞)×C̄+
1 (S)

(equipped with the relative topology of E) are homeomorphic, and hence

B
(
E ∩ [(0,∞)× C̄+

1 (S)]
)

= B
(
T
(
C̄+(S) \ {0}

))
.

Note that the relative compact sets in (0,∞] are those that are bounded away from 0.
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Let Z = (Zs)s∈S be a generator process and assume it satisfies ‖Z‖∞ = m almost
surely. Define a finite measure ρ on C̄+

1 (S) via

ρ(A) := mP (Z/m ∈ A) , A ∈ B
(
C̄+

1 (S)
)
. (2.15)

The measure ρ is usually referred to as the angular measure or the spectral measure in
the literature. Now we can define a measure ν on the product space E = (0,∞]× C̄+

1 (S)

such that
dν = r−2 dr × dρ. (2.16)

This is the exponent measure corresponding to the generator Z, and hence corresponding
to some SMSP. The characteristic property of the exponent measure is its homogeneity
of order −1, i. e.

ν(cA) = c−1ν(A), c > 0, A ∈ B(E). (2.17)

The connection between the exponent measure ν and the D-norm ‖·‖D generated by Z is
as follows: Define for h ∈ E(S) the set Ah := {(r, g) ∈ E : rg(s) > h(s) for some s ∈ S}.
Then we have for every f ∈ E+(S) by (2.15) and (2.16)

ν(A1/f ) = ν

({
(r, g) ∈ E : r > 1/ sup

s∈S
f(s)g(s)

})
=

∫
C̄+

1 (S)

∫ ∞
(sups∈S f(s)g(s))

−1
r−2 dr ρ(dg)

= E

(
sup
s∈S

f(s)Zs

)
= ‖f‖D .

Poisson point process representations

A powerful tool in the analysis of max-stable processes is the representation via Poisson
point processes tracing back to de Haan (1984). To establish that characterization, we
follow the monographs of Resnick (2008) and de Haan and Ferreira (2006).
Let X be a complete and separable metric space. A counting measure m on (X ,B(X ))

is a measure of the form

m(A) =
∑
k∈N

εxk(A), A ∈ B(X ),
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where (xk)k∈N is a collection of points in X , and, as before, εx(·) denotes the Dirac
measure on B(X ). Ifm is boundedly finite, i. e. m(B) <∞ for all bounded sets B ∈ B(X ),
then we call m a point measure. Denote by Mp(X ) the set of all point measures on
(X ,B(X )), and letMp(X ) be the smallest σ-Algebra such that all the mappings

fA : Mp(X )→ [0,∞], m 7→ fA(m) = m(A),

are measurable, i. e. it contains all sets of the form

{m ∈Mp(X ) : m(A) ∈ B} , A ∈ B(X ), B ∈ B ([0,∞]) .

A point process N with state space X is a measurable mapping

N : (Ω,A)→ (Mp(X ),Mp(X ))

from a probability space (Ω,A, P ), yielding a point measure N(ω, ·) for each ω ∈ Ω, and a
random variable N(·, A) with values in N∪{∞} for each A ∈ B(X ). Hence, N(ω,A) is the
number of points in A for the realization ω. The distribution P ∗N on (Mp(X ),Mp(X ))

is somewhat difficult to imagine, but luckily it is completely determined by its finite-
dimensional distributions, i. e. two point processes N1, N2 have the same distribution
iff

(N1(A1), . . . , N1(Ak)) =D (N2(A1), . . . , N2(Ak))

for all bounded A1, . . . , Ak ∈ B(X ), see Daley and Vere-Jones (2008, Section 9.2).
Without loss of generality, we can assume that a point process N is of the form

N(ω,A) =
∑
k∈N

εXk(ω)(A),

where (Xk)k∈N are random variables with values in (X ,B(X )), often referred to as the
points of N , see Daley and Vere-Jones (2008, Section 9.1). Point processes whose uni-
variate margins are Poisson distributed random variables are particularly interesting in
extreme value theory.

Definition 2.17. A point process N with state space (X ,B(X )) is called Poisson point
process with intensity measure µ (shortly PPP(µ)) on B(X ), if

25



(i) For A ∈ B(X ) and k ∈ N ∪ {0}

P (N(A) = k) =

exp (−µ(A))µ(A)k/k!, if µ(A) <∞,
0, if µ(A) =∞.

(ii) If A1, . . . , An ∈ B(X ) are pairwise disjoint sets, then N(A1), . . . , N(Am) are inde-
pendent random variables.

Clearly, E(N(A)) = µ(A) if µ(A) <∞, which is why µ is also often called mean measure.

To discuss the representation of max-stable processes via Poisson point processes, it
is convenient to consider simple max-stable processes with univariate standard Fréchet
margins. So let ξ be a simple MSP with a generator Z = (Zs)s∈S , i. e. (2.9) is satisfied
by the SMSP η = −1/ξ. Assume the generator fulfills ‖Z‖∞ = m almost surely. Denote
by ν and ρ the exponent measure and the angular measure which have been derived in
the previous section. The Poisson point process representation of a simple MSP is

ξ =D sup
k∈N

ζ(k)V (k), (2.18)

where
((
ζ(k),V (k)

))
k∈N are the points of PPP(ν) on E = (0,∞] × C̄+

1 (S), and the
intensity measure ν satisfies dν = r−2 dr×dρ, see de Haan and Ferreira (2006, Corollary
9.4.2). Alternatively, we have

ξ =D sup
k∈N

ζ(k)W (k), (2.19)

where
((
ζ(k),W (k)

))
k∈N are the points of PPP(ν̃) on (0,∞]×mC̄+

1 (S) with mean mea-
sure dν̃ = r−2 dr×d(P ∗Z). Even though technically, ν and ν̃ are two measures defined
on different spaces, we call ν̃ exponent measure as well with abuse of notation. Lastly, it
can be shown (de Haan and Ferreira (2006, Corollary 9.4.5)) that (2.19) is equivalent to
the representation

ξ =D sup
k∈N

ζ(k)Z(k), (2.20)

where
(
ζ(k)

)
k∈N are the points of PPP

(
r−2 dr

)
on (0,∞], and Z(1),Z(2), . . . are indepen-

dent copies of the generator Z, independent of
(
ζ(k)

)
k∈N. In the representation (2.20),

it is no longer necessary to suppose ‖Z‖∞ = m almost surely. Again, this assumption
can be replaced by E (‖Z‖∞) <∞.

Remark 2.18. In the multivariate case S = {1, . . . , d}, the exponent measure is usually
defined on the unfactorized set E = [0,∞]d \ {0}. While the representations (2.19) and
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(2.20) remain essentially the same (choose an arbitrary norm ‖·‖ on Rd and replace
C̄+

1 (S) by SE := {y ∈ E : ‖y‖ = 1}), we usually prefer

ξ =D sup
k∈N

ϑ(k), (2.18′)

where
(
ϑ(k)

)
k∈N are the points of PPP(ν) on E. The connection between ν and a

generator Z with ‖Z‖ = m almost surely is

ν ({y ∈ E : ‖y‖ > mr,my/ ‖y‖ ∈ A}) = r−1P (Z ∈ A).

2.2 Dual D-norm functions and domain of attraction

The dual D-norm function

While there was a strong connection between the df of a max-stable process and its D-
norm, the dual D-norm function will occur in the context of exceedances over a threshold.
This will be of particular interest in Chapter 4 when complete records are discussed. We
start with a Lemma taken from Aulbach et al. (2013, Lemma 6), albeit the proof therein
assumes the supremum of the generator to be constant, which we want to omit. For the
sake of completeness, we show the result again.

Lemma 2.19. Let η = (ηs)s∈S be an SMSP with generator Z = (Zs)s∈S. Then, for
f ∈ Ē−(S):

(i) P (η > f) ≥ 1− exp

(
−E

(
inf
s∈S

(|f(s)|Zs)
))

.

(ii) lim
h↓0

h−1P (η > hf) = E

(
inf
s∈S

(|f(s)|Zs)
)
.

Proof. As we have seen in (2.20), ξ := −1/η =D supk∈N ζ
(k)Z(k), where

(
ζ(k)

)
k∈N are

the points of PPP
(
r−2 dr

)
on (0,∞], and

(
Z(k)

)
k∈N are independent copies of Z, inde-

pendent of the point process. The point process N , defined by

N(A) :=
∞∑
k=1

ε(ζ(k),Z(k))(A), A ∈ B
(
(0,∞]× C̄+(S)

)
,

has the same distribution as a Poisson point processN∗ on (0,∞]×C̄+(S) whose intensity
measure ν satisfies dν = r−2 dr × d(P ∗ Z), cf. de Haan and Ferreira (2006, Lemma
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9.4.7). Therefore, for f ∈ Ē−(S),

P (∃s ∈ S : ηs ≤ f(s)) = P

(
∃s ∈ S ∀k ∈ N : ζ(k)Z(k)

s ≤ 1

|f(s)|

)
≤ P

(
∀k ∈ N ∃s ∈ S : ζ(k)Z(k)

s ≤ 1

|f(s)|

)
= P

(
@k ∈ N : ζ(k) > sup

s∈S

1

|f(s)|Z(k)
s

)

= P

(
N

({
(r, z) ∈ (0,∞]× C̄+(S) : r > sup

s∈S

1

|f(s)| z(s)

)}
= 0

)
= P

(
N∗
({

(r, z) ∈ (0,∞]× C̄+(S) : r > sup
s∈S

1

|f(s)| z(s)

)}
= 0

)
= exp

(
−
∫
C̄+(S)

∫ ∞
(infs∈S |f(s)|z(s))−1

r−2 dr (P ∗Z)(dz)

)

= exp

(
−E

(
inf
s∈S

(|f(s)|Zs)
))

,

which proofs (i). The proof in Aulbach et al. (2013, Lemma 6) can now be adapted to
obtain (ii).

The limit in Lemma 2.19 (ii) now serves as definition for the dual D-norm function.

Definition 2.20. Let ‖·‖D be a D-norm on E(S), generated by Z = (Zs)s∈S . The
mapping

oo · ooD : E(S)→ [0,∞), f 7→ oo f ooD := E

(
inf
s∈S
|f(s)|Zs

)
is called the dual D-norm function corresponding to ‖·‖D.

Despite the fact that the generator of ‖·‖D is not uniquely determined, Lemma 2.19
(ii) guarantees that the dual D-norm function oo · ooD does not depend on the choice of the
generator of ‖·‖D. Therefore, the mapping

‖·‖D → oo · ooD

is well-defined, yet not one-to-one, since different D-norms can lead to the same dual D-
norm function. In fact, let η = (ηs)s∈S be an SMSP with some corresponding generator
Z = (Zs)s∈S . Takahashi’s theorem (Falk et al. (2011, Theorem 4.4.1)) implies that two
components ηs, ηt are independent iff E(max(Zs, Zt)) = 2 = E(Zs + Zt), resulting in
max(Zs, Zt) = Zs +Zt almost surely, which in turn yields min(Zs, Zt) = 0 almost surely.
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Hence, the dual D-norm function is always the constant zero if there are at least two
independent components of the SMSP η.
In the multivariate case, where

oo x ooD = E

(
min

i=1,...,d
|xi|Zi

)
, x ∈ Rd,

a simple connection between the functions ‖·‖D and oo · ooD is given by the equations (2.13).
A multivariate dual D-norm function is also known as the tail copula in the literature,
which was introduced by Schmidt and Stadtmüller (2006), see also de Haan et al. (2008).
However, they define the tail copula to be the limit in (2.25) below without providing an
explicit formula.
We continue with some examples of multivariate dual D-norm functions.

Example 2.21 (Complete dependence and independence). We have seen before that

oo · oo1 = 0

is the least dual D-norm function, corresponding to the case of independent univariate
margins, where ‖·‖D = ‖·‖1. On the other hand, |xj |Zj ≥ mini=1,...,d |xi|Zi for each
j = 1, . . . , d, and hence

oo x oo∞ = min
1≤i≤d

|xi| , x ∈ Rd,

is the largest dual D-norm function, corresponding to the perfect dependence case, where
‖·‖D = ‖·‖∞. Hence, we have for an arbitrary dual D-norm function the bounds

0 = oo · oo1 ≤ oo · ooD ≤ oo · oo∞.

Clearly, these bounds are also valid in the functional case, where oo f oo∞ = infs∈S |f(s)|
is the dual D-norm function corresponding to the complete dependence of the univariate
margins.

Example 2.22 (Logistic model). We have seen in Example 2.11 that

‖x‖λ =

(
d∑
i=1

|xi|λ
)1/λ

, x ∈ Rd, λ ∈ (1,∞),
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defines a D-norm. Now by (2.13), the corresponding dual D-norm function is

oo x ooλ =
∑

∅6=T⊆{1,...,d}

(−1)|T |−1 ‖xT ‖λ , x ∈ Rd, λ ∈ (1,∞).

Example 2.23 (Weibull model). In Example 2.12, we have defined a generator Z =

(Z1, . . . , Zd) by taking independent Weibull distributed random variables Z̃1, . . . , Z̃d, i. e.
P (Z̃1 > t) = exp(−tα), t > 0, α > 0, and putting Zi := Z̃i/Γ(1 + 1/α). In fact, we have
already shown that

oox ooWα = E

(
min

i=1,...,d
|xi|Zi

)
= (‖1/x‖α)−1 (2.21)

for all x = (x1, . . . , xd) ∈ Rd with xi 6= 0, i = 1, . . . , d.

Example 2.24 (Bernoulli model). In Example (2.14), we have derived a D-norm based
on Bernoulli distributed generator components

‖x‖Bβ =
∑

∅6=T⊆{1,...,d}

β|T |−1(1− β)d−|T | ‖xT ‖∞ , x ∈ Rd, β ∈ (0, 1].

Analogously, one can show that the attendant dual D-norm function is

oo x ooBβ =
∑

∅6=T⊆{1,...,d}

β|T |−1(1− β)d−|T | ooxT oo∞, x ∈ Rd, β ∈ (0, 1].

Domain of attraction

Max-stable processes are of outstanding interest in extreme value theory. However, the
max-stability property itself, though being very handy and simple, does not explain
the relevance of MSP. The importance is much rather explained by the fact that max-
stable distributions are the only possible limit distributions in a sequence of linearly
standardized maxima of iid processes. Hence, max-stable distributions play the same
role in extreme value theory as the normal distribution in the central limit theorem. We
will now focus on that property.
Let Y = (Ys)s∈S be an MSP. This is equivalent to the existence of a stochastic process

X with sample paths in C(S), and norming functions cn ∈ C+(S), dn ∈ C(S), n ∈ N,
such that

max
i=1,...,n

X(i) − dn
cn

→D Y , (2.2)
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where X1,X(2), . . . are iid copies of X. In that case, we say that X is in the domain of
attraction of the MSP Y , and we write X ∈ D(Y ). If F and G are the df of X and Y ,
respectively, we also say that F is in the domain of attraction of G, and write F ∈ D(G).
Another concept, yet closely related to the latter one, was introduced by Aulbach

et al. (2013), and pursued in Aulbach et al. (2015). We say that X ∈ C(S) is in the
functional domain of attraction of an MSP Y , if there are norming functions cn ∈ C(S),
dn ∈ C+(S), n ∈ N, such that

lim
n→∞

P

(
max
i=1,...,n

X(i) − dn
cn

≤ f
)

= P

(
X − cn
dn

≤ f
)n

= P (Y ≤ f) , f ∈ E(S),

(2.22)
where X(1),X(2), . . . are iid copies of X. In that case, we write X ∈ FDA(Y ) or
F ∈ FDA(G), if F and G are the df of X and Y , respectively. It has been shown in
Aulbach et al. (2013, Proposition 5) that X ∈ D(Y ) implies X ∈ FDA(Y ). It is also
not difficult to see that X ∈ FDA(Y ) yields the convergence of the finite-dimensional
distributions. As a matter of fact, in the multivariate case S = {1, . . . , d}, there is
no difference between the concepts of domain of attraction and functional domain of
attraction.
The concept of domain of attraction is closely related to the theory of regular variation

which relies on weak hash and vague convergence of measures. For details on these types
of convergence, see Daley and Vere-Jones (2003, Appendix 2) or Resnick (2008, Section
3.4). For nice reviews on regular variation in function spaces, see Hult and Lindskog
(2005), Davis and Mikosch (2008) and Dombry and Ribatet (2015).

Definition 2.25 (Weak hash convergence). Let X be a complete and separable metric
space. Let µn, n ∈ N ∪ {0}, be boundedly finite measures on B(X ), i. e. µn(B) <∞ for
every bounded set B ∈ B(X ), n ∈ N ∪ {0}. Then µn →w# µ0, iff∫

X
f(x) µn(dx)→n→∞

∫
X
f(x) µ0(dx)

for every f ∈ C̄+(X ) vanishing outside a bounded set, i. e. there is a bounded set
B ∈ B(X ) with f(x) = 0 for all x ∈ B{. Equivalently, µn →w# µ0 iff

µn(B)→n→∞ µ0(B)

for all bounded sets B ∈ B(X ) with µ0(∂B) = 0.
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Remark 2.26. In case the space X is locally compact, weak hash convergence coincides
with vague convergence. Let µn, n ∈ N∪{0}, be Radon measures on B(X ), i. e. µn(K) <

∞ for every compact set K ∈ B(X ), n ∈ N∪{0}. Then µn converges vaguely to µ0 (write
µn →v µ0), iff ∫

X
f(x) µn(dx)→n→∞

∫
X
f(x) µ0(dx)

for every f ∈ C̄+(X ) vanishing outside a compact set. Equivalently, µn →v µ0 iff

µn(K)→n→∞ µ0(K)

for all compact sets K ∈ B(X ) with µ0(∂K) = 0.

The following characterization of the domain of attraction of a simple MSP will be
a very helpful tool in some proofs. It connects the concepts of domain of attraction,
regular variation, and convergence of point processes. For a proof, see e. g. de Haan and
Lin (2001).

Proposition 2.27. Let X,X(1),X(2), . . . iid stochastic processes with sample paths in
C+(S). Let E = (0,∞] × C̄+

1 (S) be the complete and separable space from (2.14). The
following statements are equivalent:

(i) Domain of attraction:
n−1 max

i=1,...,n
X(i) →D ξ,

that is, X ∈ D(ξ), where ξ is a simple MSP in C+(S).

(ii) Regular variation:
νn(·) := nP

(
n−1ξ ∈ ·

)
→w# ν(·),

where νn, ν are defined on (E,B(E)). The measure ν is the exponent measure from
(2.16).

(iii) Convergence of point processes:

Nn :=

n∑
i=1

εn−1X(i) →D N,

in (Mp(E),Mp(E)), where N is PPP(ν), and ν is the exponent measure from (2.16).

Remark 2.28. The preceding proposition explains why it is necessary to introduce the
space E = (0,∞] × C̄+

1 (S) from (2.14). Although C+(S) might be the natural choice
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considering probabilities like P
(
n−1ξ ∈ ·

)
, where ξ is a simple MSP, it has the major

drawback that it is not a complete and separable metric space, if for instance S = [0, 1],
such that assertions like (ii) and (iii) would not make any sense. By the transformation
to polar coordinates and the extension to E, we enlarged C+(S) to obtain a complete and
separable metric space. It is also worth noticing that the metric %(x, y) = |1/x− 1/y|
which is used on (0,∞] implies that the bounded sets in E are those that are bounded
away from 0, i. e. the sets B ∈ B(E) that satisfy inf {‖f‖∞ : f ∈ B} > 0.

Another class of particularly interesting stochastic processes are copula processes, i. e.
stochastic processes with continuous sample paths and uniformly on (0, 1) distributed
univariate margins. Suppose a copula process U = (Us)s∈S is in the domain of attraction
of an MSP η, i. e.

n

(
max
i=1,...,n

U (i) − 1

)
→D η, (2.23)

where U (1),U (2), . . . are iid copies of U . Then the limiting MSP is necessarily an SMSP,
which explains why it seems natural to consider MSP with standard negative exponen-
tially distributed margins. IfX = (Xs)s∈S is a stochastic process with continuous sample
paths and continuous marginal df Fs(x) = P (Xs ≤ x), s ∈ S, x ∈ R, then (Fs(Xs))s∈S
is the copula process corresponding to X. In fact, it is not difficult to verify that the
sample paths of (Fs(Xs))s∈S are continuous. It is shown in de Haan and Lin (2001) that
X is in the domain of attraction of an MSP Y iff the corresponding copula process is in
the domain of attraction of the SMSP (log (Gs(Ys)))s∈S , where Gs is the df of Ys, s ∈ S,
and the univariate margins of X satisfy some uniformity condition. A similar statement
is true in the case of functional domain of attraction, see Aulbach et al. (2015).
The following result will be crucial when it comes to multivariate records, being inves-

tigated in Chapter 4.

Proposition 2.29. Let U be a copula process with U ∈ D(η) (i. e. (2.23) holds), where
η = (ηs)s∈S is an SMSP. Let ‖·‖D be the D-norm corresponding to η and Z be a generator
of ‖·‖D. Then

n (1− P (n(U − 1) ≤ f))→n→∞ E

(
sup
s∈S
|f(s)|Zs

)
= ‖f‖D , f ∈ Ē−(S), (2.24)

and

nP (n(U − 1) > f)→n→∞ E

(
inf
s∈S
|f(s)|Zs

)
= oo f ooD, f ∈ Ē−(S). (2.25)
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Proof. Condition (2.23) implies that U is in the functional domain of attraction of η,
i. e.

P (n(U − 1) ≤ f)n →n→∞ P (η ≤ f) = exp (−‖f‖D) , f ∈ Ē−(S).

Now (2.24) follows from Aulbach et al. (2013, Proposition 8). Next we verify (2.25).
Having in mind that U < 1 a. s. (Hofmann (2012, Corollary 3.15)) and η < 0 a. s.
(Lemma 2.1), it is easy to see that (2.23) is equivalent with

1

n
max
i=1,...,n

1

1−U (i)
→D −

1

η
,

where −1/η is a simple MSP. Put E = (0,∞] × C̄+
1 (S) as in (2.14). Denoting by ν the

exponent measure from (2.16), we have by Proposition 2.27

νn(A) = nP
(
(n(1−U))−1 ∈ A

)
→n→∞ ν(A) (2.26)

for all Borel sets A ∈ B(E) with ν(∂A) = 0 and inf{‖f‖∞ : f ∈ A} > 0. Define
for h ∈ E(S) the set Ah := {(r, g) ∈ E : rg > h}. Let ρ be the angular measure
from (2.15), and define a generator Z = (Zs)s∈S of η via (P ∗ Z)(A) = m−1ρ

(
m−1A

)
,

A ∈ B
(
mC̄+

1 (S)
)
. Now by (2.26), for all f ∈ E−(S),

nP (n(U − 1) > f) = νn
(
A−1/f

)
→n→∞ ν(A−1/f )

= ν ({(r, g) ∈ E : rg > 1/ |f |})

=

∫
C̄+

1 (S)

∫ ∞
(infs∈S |f(s)|g(s))−1

r−2 dr ρ(dg)

= E

(
inf
s∈S
|f(s)|Zs

)
.

It remains to show that ν(∂Ah) = 0 for each h ∈ E+(S). The boundary of Ah can be
expressed via

∂Ah = {(r, g) ∈ E : rg(s) = h(s) for some s ∈ S, rg(s) ≥ h(s) for all s ∈ S} .

Hence,
ν(∂Ah) = ν ({(r, g) ∈ E : rg ≥ h})− ν ({(r, g) ∈ E : rg > h}) = 0,

since the radial part of the exponent measure has the Lebesgue density r−2 dr.
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Remark 2.30. We call a stochastic process V with sample paths in C̄−(S) a standard
generalized Pareto process (SGPP), if there is a D-norm ‖·‖D on E(S) and some c > 0

such that
P (V ≤ f) = 1− ‖f‖D

for all f ∈ Ē−(S) with ‖f‖∞ ≤ c. It is obvious that V is in the functional domain of
attraction of an SMSP withD-norm ‖·‖D. Note further that V is an SGPP iff there exists
M < 0 such that V has in its upper tail the same distribution as (max(−U/Zs,M)s∈S),
more precisely there is c > 0 such that

P (V ≤ f) = P (max(−U/Zs,M) ≤ f(s), s ∈ S)

for each f ∈ Ē−(S) with ‖f‖∞ ≤ c. It can easily be deduced that the survival function
of V is given by

P (V > tf) = t oof ooD

for t > 0 close enough to zero. Hence, condition (2.24) and (2.25) mean that the upper
tail of the distribution of the copula process U is close to that of the shifted SGPP V +1.
For details on generalized Pareto processes, see e. g. Buishand et al. (2008), Aulbach and
Falk (2012a,b), Aulbach et al. (2013), Aulbach et al. (2015) and Ferreira and de Haan
(2014).

2.3 Differentiability in distribution of max-stable processes

Even though max-stable processes have been studied quite extensively over the last
decades, the focus is rarely put on path properties. However, while continuity of the
sample paths is assumed throughout this work, many authors investigate max-stable
processes with weaker sample path properties, starting with Norberg (1986) who studied
max-id processes with upper semicontinuous sample paths. Others also examine max-
stable processes with sample paths in D ([0, 1]), the space of right-continuous functions
on [0, 1] with left limits, see e. g. de Haan and Lin (2001). A necessary and sufficient
condition when a max-stable process has continuous sample paths is in turn provided
by Resnick and Roy (1991). Moreover, in Hofmann (2013), the probability of an SMSP
with continuous sample paths on [0, 1] hitting some constant function x1 with x < 0 is
investigated, which provides some insight in the path behavior of max-stable processes
as well.
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However, a topic that seems to be fairly new is the differentiability of max-stable
processes with sample paths in C ([0, 1]). Whereas pathwise differentiability is likely to be
too restrictive, we will establish distributional differentiability of an SMSP η = (ηs)s∈[0,1].
This concept was originally presented in Aulbach et al. (2015, Section 4) and will be
discussed here again.
In Proposition 2.34 we will prove the following result: Let Z = (Zs)s∈[0,1] ∈ C[0, 1] be

a generator process of η. Suppose that Z ′s = (∂/∂s)Zs exists for s = s0 almost surely.
Then (ηs0+h− ηs0)/h converges in distribution to some random variable on the real line,
as h→ 0, and we compute its df.
This is a first result on differentiability of max-stable processes. To the best of our

knowledge, the question, under which conditions a max-stable process is differentiable at
s0 ∈ [0, 1] almost surely, is an open problem. However, if η′s = (∂/∂s)ηs actually exists
at s = s0 almost surely, the distribution of η′s0 equals that of −ηs0ζs0 , where the random
variable ζs0 is independent of ηs0 and has the df Fs0(x) = E

(
1{Z′s0≤xZs0}Zs0

)
, x ∈ R;

see the discussion after Proposition 2.34.
As an auxiliary result, which is of interest on its own, we first compute the partial

derivatives of a functional D-norm ‖·‖D. For this purpose, we need the following defini-
tion. Let X be a normed function space, and J : X → R a functional. The first variation
(or the Gâteaux differential) of J at u ∈ X in the direction v ∈ X is defined as

∇J(u)(v) := lim
ε→0

J(u+ εv)− J(u)

ε
=

d

dε
J(u+ εv)

∣∣∣
ε=0

.

Moreover, the right-hand (left-hand) first variation of J at u in the direction v is defined
as

∇+J(u)(v) := lim
ε↓0

J(u+ εv)− J(u)

ε
and ∇−J(u)(v) := lim

ε↓0

J(u)− J(u− εv)

ε
.

Considering a D-norm ‖·‖D a functional on the space E[0, 1], we can calculate the
first variation of ‖·‖D. As discussed before, the choice of the space E[0, 1] allows us the
incorporation of the fidis and therefore yields the partial derivatives of a multivariate D-
norm. This finite-dimensional version of the following result has already been observed
by Einmahl et al. (2012). Note that as a norm is a convex function, a multivariate
D-norm ‖x‖D is for almost every x ∈ Rd continuously differentiable.

Lemma 2.31 (Aulbach et al. (2015, Lemma 4.1)). Let ‖·‖D be a D-norm on the function
space E[0, 1] with generator Z = (Zs)s∈[0,1] ∈ C̄+[0, 1] and choose s0 ∈ [0, 1]. Then for
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every f ∈ E[0, 1],

∇+ ‖f‖D
(
1{s0}

)
= lim

ε↓0

∥∥f + ε1{s0}
∥∥
D
− ‖f‖D

ε

=

−E
(
1{sups 6=s0 |f(s)|Zs<|f(s0)|Zs0}Zs0

)
, f(s0) < 0,

+E
(
1{sups 6=s0 |f(s)|Zs≤|f(s0)|Zs0}Zs0

)
, f(s0) ≥ 0,

and

∇− ‖f‖D
(
1{s0}

)
= lim

ε↓0

‖f‖D −
∥∥f − ε1{s0}∥∥D
ε

=

−E
(
1{sups 6=s0 |f(s)|Zs≤|f(s0)|Zs0}Zs0

)
, f(s0) ≤ 0,

+E
(
1{sups 6=s0 |f(s)|Zs<|f(s0)|Zs0}Zs0

)
, f(s0) > 0.

The first variation (or the partial derivatives, respectively) of a D-norm emerge in the
easiest case of the so-called prediction problem, cf. Wang and Stoev (2011), Dombry et al.
(2013) and Dombry and Éyi-Minko (2013). Suppose the distribution of an SMSP η is
known, and the point {ηs0 = x}, x < 0, has already been observed. We are interested in
the conditional distribution of η, given {ηs0 = x}. The finite-dimensional version of the
following Lemma is part of Proposition 4.2 in Dombry and Éyi-Minko (2013). Its proof
is stated here again to point out the relevance of the first variation of a D-norm.

Lemma 2.32 (Aulbach et al. (2015, Lemma 4.2)). Let η = (ηs)s∈[0,1] be an SMSP with
D-norm ‖·‖D generated by Z = (Zs)s∈[0,1]. Choose an arbitrary s0 ∈ [0, 1]. Then for
every f ∈ Ē−[0, 1] with f(s0) = 0 and almost all y < 0

P
(
η ≤ f

∣∣ηs0 = y
)

= exp
(
−
(
y +

∥∥f + y1{s0}
∥∥
D

))
· E
(
1{sups∈[0,1]|f(s)|Zs≤|y|Zs0}Zs0

)
.

Proof. The random variable ηs0 has Lebesgue-density ex, x ≤ 0. Therefore, we have by
basic rules of conditional distributions for almost all y < 0

P
(
η ≤ f

∣∣ηs0 = y
)

= lim
ε↓0

ε−1P (η ≤ f, ηs0 ∈ (y, y + ε])

ε−1P (ηs0 ∈ (y, y + ε])

= exp(−y) lim
ε↓0

P (η ≤ f, ηs0 ≤ y + ε)− P (η ≤ f, ηs0 ≤ y)

ε
.
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Now define the function g := f + y1{s0} ∈ E−[0, 1]. Then we have by Lemma 2.31

P
(
η ≤ f

∣∣ηs0 = y
)

= exp(−y) lim
ε↓0

exp
(
−
∥∥g + ε1{s0}

∥∥
D

)
− exp (−‖g‖D)

ε

= − exp(−y) exp (−‖g‖D) · ∇+ ‖g‖D
(
1{s0}

)
= exp (− (y + ‖g‖D)) · E

(
1{sups∈[0,1]|g(s)|Zs=|y|Zs0}

)
= exp

(
−
(
y +

∥∥f + y1{s0}
∥∥
D

))
· E
(
1{sups∈[0,1]|f(s)|Zs≤|y|Zs0}

)
.

As a simple consequence of the preceding Lemma, we can calculate the distribution of
the increments of an SMSP. This will clearly be needed to derive the distribution of the
difference quotient (ηs0+h − ηs0)/h. However, this result is also of its own interest. The
proof is presented since it was dropped in the original paper.

Lemma 2.33 (Aulbach et al. (2015, Lemma 4.3)). Consider an SMSP η = (ηs)s∈[0,1]

with generator process Z = (Zs)s∈[0,1] and choose arbitrary s, t ∈ [0, 1], s 6= t. Denote by
‖·‖D the D-norm pertaining to (ηs, ηt). Then for every x ∈ R

P (ηs − ηt ≤ x)

=


∫ 0

−∞
exp (−‖(x+ y, y)‖D) · E

(
1{yZt≤(x+y)Zs}Zt

)
dy, x < 0∫ −x

−∞
exp (−‖(x+ y, y)‖D) · E

(
1{yZt≤(x+y)Zs}Zt

)
dy + 1− exp(−x), x ≥ 0.

Proof. Conditioning on ηt = y yields

P (ηs − ηt ≤ x) =

∫ 0

−∞
P
(
ηs ≤ x+ y

∣∣ηt = y
)
ey dy.

In the case x < 0, we obtain by Lemma 2.32

P (ηs − ηt ≤ x) =

∫ 0

−∞
exp (−‖(x+ y, y)‖D) · E

(
1{yZt≤(x+y)Zs}Zt

)
dy.

The case x ≥ 0 works analogously, yet P
(
ηs ≤ x+ y

∣∣ηt = y
)

= 1 for y ≥ −x.
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Note that the only possible point of discontinuity of the df P (ηs − ηt ≤ x) is x = 0,
where

P (ηs − ηt ≤ 0) = (‖(1, 1)‖D)−1E
(
1{Zt≥Zs}Zt

)
.

The preceding lemma allows us to introduce the following differentiability concept.
Firstly, we call a stochastic process (Xs)s∈[0,1] almost surely differentiable in s0 ∈ [0, 1], if
the difference quotient (Xs0+h−Xs0)/h converges almost surely to some random variable
X ′s0 on the real line for h → 0. Different to that, we call a stochastic process (Ys)s∈[0,1]

differentiable in distribution in s0 ∈ [0, 1], if the difference quotient (Ys0+h − Ys0)/h

converges in distribution to some real-valued random variable for h→ 0. Lastly, we call
a stochastic process ξ = (ξs)s∈[0,1] pathwise differentiable on [0, 1] if every path ξ(ω) is
differentiable on [0, 1].

We proof the following Proposition once again to illustrate the connection to the pre-
vious results.

Proposition 2.34 (Aulbach et al. (2015, Proposition 4.3)). Let η = (ηs)s∈[0,1] be an
SMSP with generator process Z = (Zs)s∈[0,1] ∈ C̄+[0, 1]. Suppose that for some s0 ∈ [0, 1]

Zs0+h − Zs0
h

→h→0 Z
′
s0 almost surely. (2.27)

Then for x 6= 0,

P

(
ηs0+h − ηs0

h
≤ x

)
→h→0 Hs0(x) :=

∫ 0

−∞
exp(y)E

(
1{

Z′s0≤−
x
y Zs0

}Zs0
)

dy.

Proof. We have for x 6= 0 and h > 0 by Lemma 2.33

P (ηs0+h − ηs0 ≤ hx)

=

∫ −h|x|
−∞

exp
(
−‖(hx+ y, y)‖D(h)

)
· E
(
1{yZs0≤(hx+y)Zs0+h}Zs0

)
dy + o(1)

as h ↓ 0, where ‖·‖D(h) is the D-norm generated by (Zs0+h, Zs0). Now we obtain for
almost all y < −h |x|

E
(
1{yZs0≤(hx+y)Zs0+h}Zs0

)
= E

1{
y
Zs0−Zs0+h

h ≤xZs0+h
}Zs0
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= E

1{Zs0+h−Zs0
h ≤−xy Zs0+h

}Zs0


→h↓0 E

(
1{

Z′s0≤−
x
y Zs0

}Zs0
)

by condition (2.27) which implies the assertion if h ↓ 0. On the other hand, we have for
x 6= 0 and h < 0 by Lemma 2.33, condition (2.27), and the fact that E(Zs0) = 1

P (ηs0+h − ηs0 ≥ hx) = 1− P (ηs0+h − ηs0 ≤ hx)

= 1−
∫ h|x|

−∞
exp

(
−‖(hx+ y, y)‖D(h)

)
· E
(
1{yZs0≤(hx+y)Zs0+h}Zs0

)
dy + o(1)

→h↑0 1−
∫ 0

−∞
exp(y)E

(
1{

Z′s0≥−
x
y Zs0

}Zs0
)

dy

= 1−
∫ 0

−∞
exp(y) dy +

∫ 0

−∞
exp(y)E

(
1{

Z′s0≤−
x
y Zs0

}Zs0
)

dy

=

∫ 0

−∞
exp(y)E

(
1{

Z′s0≤−
x
y Zs0

}Zs0
)

dy.

Proposition 2.34 gives a sufficient condition on the differentiability in distribution of
an SMSP. However, it does not imply differentiability of the path of η at s0. But if η
is differentiable at s0 almost surely, then Hs0 is the df of the derivative (∂/∂s)ηs of η at
s = s0. We, therefore, denote by η′s0 a random variable which follows the df Hs0 .
Suppose that Z is almost surely differentiable in s0. Then

Fs0(x) := E
(
1{Z′s0≤xZs0}Zs0

)
, x ∈ R,

defines a common df on R. Denote by ζs0 a random variable which follows this df and
which is independent of ηs0 . Then we obtain the equation

Hs0(x) = P (−ηs0ζs0 ≤ x) , x ∈ R,

i.e., we have
η′s0 =D −ηs0ζs0 .
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Assuming its existence, the pathwise derivative of η at s0, coincides therefore in distri-
bution with −ηs0ζs0 .

Lemma 2.35 (Aulbach et al. (2015, Lemma 4.5)). Suppose that E
(
Z ′s0
)
exists. Then

the mean value of Fs0 exists as well and coincides with E
(
Z ′s0
)
.

As a consequence, we obtain in particular

E
(
η′s0
)

= −E (ηs0ζs0) = −E (ηs0)E (ζs0) = E
(
Z ′s0
)
.

We close this chapter by giving some examples how Proposition 2.34 can be applied.

Example 2.36 (Aulbach et al. (2015, Example 4.6)). Put for λ ∈ R

Zs := U cos2(λs) + V sin2(λs), s ∈ [0, 1],

where U ≥ 0, V ≥ 0 are rv with E(U) = E(V ) = 1. The process Z = (Zs)s∈[0,1] is
pathwise differentiable with

∂

∂s
Zs = λ sin(2λs)(V − U) =: Z ′s.

The distribution of the derivative in distribution η′s is accessible under additional con-
ditions on U and V , but it follows immediately from Lemma 2.35 that in general
E(η′s) = E(Z ′s) = 0.

Example 2.37 (Aulbach et al. (2015, Example 4.7)). The constant generator process
Zs ≡ 1, s ∈ [0, 1], gives rise to an SMSP η = (ηs)s∈[0,1] with complete dependent
univariate margins. The paths of this SMSP are constant almost surely, which means
that η′s = 0 with probability one. This fact is reflected in Proposition 2.34. If Zs ≡ 1,
s ∈ [0, 1], then Fs(x) = 1[0,∞)(x), which implies

Hs(x) =

∫ 0

−∞
exp(y)Fs(−x/y) dy = 1[0,∞)(x).

Example 2.38 (Aulbach et al. (2015, Example 4.8)). Let (Z0, Z1) be the generator of a
bivariate standard max-stable random vector (η0, η1) with independent margins, i. e.

P (Z0 = 0, Z1 = 2) = P (Z0 = 2, Z1 = 0) = 1/2,
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cf. Example 2.9. Now define a generator process by

Zs := Z0 + s(Z1 − Z0) (= max((1− s)Z0, sZ1)) , s ∈ [0, 1],

and denote by η = (ηs)s∈[0,1] the corresponding SMSP. Then obviously Z = (Zs)s∈[0,1]

is pathwise differentiable with Z ′s = Z1 − Z0, s ∈ [0, 1]. Lemma 2.35 instantly implies
E(η′s) = E(Z ′s) = 0. Furthermore, we have for x ∈ R and s ∈ [0, 1]

Fs(x) = E
(
1{Z′s≤xZs}Zs

)
= 1{2≤2xs} · 1/2 · 2s+ 1{−2≤x(2−2s)} · 1/2 · (2− 2s)

= s1{x≥1/s} + (1− s)1{x≥1/(s−1)}

=


1, x ≥ 1/s,

1− s, 1/(s− 1) ≤ x < 1/s,

0, x < 1/(s− 1).

Hence, the corresponding random variable ζs that follows the df Fs is discrete with
P (ζs = 1/(s− 1)) = 1− s and P (ζs = 1/s) = s. Therefore, we obtain

Hs(x) =

∫ 0

−∞
Fs(−x/y) exp(y) dy

=


∫ x(1−s)

−∞
exp(y)(1− s) dy, x < 0,∫ −xs

−∞
exp(y)(1− s) dy +

∫ 0

−xs
exp(y) dy, x ≥ 0

=

(1− s) exp(x(1− s)), x < 0,

1− s exp(−xs), x ≥ 0.

The density of Hs is given by

hs(x) =

(1− s)2 exp(x(1− s)), x < 0,

s2 exp(−xs), x ≥ 0.

Example 2.39 (Aulbach et al. (2015, Example 4.9)). Let Z0 be uniformly distributed
on (0, 2) and Z1 be a random variable with Z0 + Z1 = 2 almost surely. Clearly, Z0 and
Z1 are identically distributed and (Z0, Z1) defines a (bivariate) generator. Define the
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generator process
Zs := Z0 + s(Z1 − Z0), s ∈ [0, 1].

Again, Z = (Zs)s∈[0,1] is pathwise differentiable with Z ′s = Z1−Z0, s ∈ [0, 1]. In addition,

P (Z1 − Z0 ≤ x) = P (Z0 ≥ (2− x)/2) = x/4 + 1/2, x ∈ [−2, 2],

which implies that Z ′s is uniformly distributed on (−2, 2). This, along with the fact that
Z1/2 = 1 almost surely, yields

F1/2(x) = E
(

1{Z′
1/2
≤x}

)
= P

(
Z ′1/2 ≤ x

)
.

Hence, F1/2 is the df of the uniform distribution on (−2, 2). Now choose an arbitrary
y < 0. In the case of x < 0 we have

−x
y
≤ −2 ⇐⇒ y ≥ x

2
,

whereas x > 0 yields
−x
y
≥ 2 ⇐⇒ y ≥ −x

2
.

Therefore, for x < 0,

H1/2(x) =

∫ 0

−∞
exp(y)F1/2

(
−x
y

)
dy

=

∫ x/2

−∞
exp(y)

(
− x

4y
+

1

2

)
dy

= −x
4

∫ x/2

−∞

exp(y)

y
dy +

1

2

∫ x/2

−∞
exp(y) dy

= −x
4

Ei
(x

2

)
+

1

2
exp

(x
2

)
Here, Ei(x) =

∫ x
−∞ exp(t)/t dt denotes the exponential integral, which is well-defined for

negative values of x. Analogously, for x > 0,

H1/2(x) =

∫ −x/2
−∞

exp(y)

(
− x

4y
+

1

2

)
dy +

∫ 0

−x/2
exp(y) dy

= −x
4

Ei
(
−x

2

)
− 1

2
exp

(
−x

2

)
+ 1.
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To summarize, we have

H1/2(x) =


−x

4
Ei
(x

2

)
+

1

2
exp

(x
2

)
, x < 0,

−x
4

Ei
(
−x

2

)
− 1

2
exp

(
−x

2

)
+ 1, x > 0.

Furthermore, we have H1/2(0) = 1/2. In particular, H1/2 is continuous in 0 since the
exponential integral satisfies xEi(x)→x→0 0. The density of H1/2 is given by h1/2(x) =

−Ei (− |x| /2) /4, x 6= 0.
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3 Generalized max-linear models

There is a crucial problem in the theory on stochastic processes concerning its relevance in
practice: as (continuous) processes on, say [0, 1], as a whole cannot be measured exactly,
the question is how to construct these processes (with some characteristic stochastic
behavior such as max-stability) from a finite set of observations. For instance, measuring
the sea level along a coast is only possible at a finite number of stations. However, it
is also important to predict the sea level between these stations. Hence, our aim is the
’prediction’ of stochastic processes in space rather than in time.
In the case of max-stable processes, there are (partial) answers on the arising questions

in Wang and Stoev (2011) and Dombry et al. (2013) based on conditional sampling.
Different to that, our approach is conditionally deterministic.
In this chapter, we pick up the so-called max-linear model introduced in Wang and

Stoev (2011). For the ease of notation, we consider SMSP with sample paths in C
(
[0, 1]k

)
,

k ∈ N, being aware of the fact that we could replace the domain [0, 1]k by any compact
metric space S. For arbitrary nonnegative continuous functions g1, . . . , gd satisfying con-
dition (3.1) below, an SMSP η = (ηs)s∈[0,1] is given by

ηs = max
i=1,...,d

Xi

gi(s)
, s ∈ [0, 1]k,

where X = (X1, . . . , Xd) is a standard max-stable random vector with independent
components. The obvious restriction of this model is the required independence of the
margins of X, which results in the fact that X always has a discrete angular measure
(the angular measure is essentially the distribution of the generator (Z1, . . . , Zd) of X,
cf. (2.15)).
In Section 3.1, we generalize this model by allowing arbitrary dependence structures

of the margins of the max-stable random vector X. This immediately leads to the main
issue of this chapter, namely the reconstruction of a max-stable process with sample paths
in C

(
[0, 1]k

)
which is observed only through a finite set of indices. Starting with the

case k = 1, it is shown in Section 3.2 that if the random vector is some finite dimensional
projection an SMSP, the processes resulting from a particular construction based on the
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model in Section 3.1 converge uniformly to the original process as the grid of indices
gets finer. Moreover, the mean squared error between the predictive and the original
process is computed at a fixed index, which is useful for practical purposes. Most of the
results in Section 3.1 and Section 3.2 have already been published in Falk et al. (2015).
Nevertheless, some proofs are repeated in order to be more elaborate than in the initial
paper.
It is also possible to interpolate generalized Pareto processes (cf. Remark 2.30) with

the same techniques as for MSP, which is the content of Section 3.3.
Having stated the model in its generality, we continue by considering SMSP with

domain [0, 1]. The extension of the results to more general domains (in particular higher
dimensions of the domain) is not immediately obvious and the subject of Section 3.4.

3.1 The generalized max-linear model

Introduction of the model

Let in what follows η = (ηs)s∈[0,1]k be an SMSP with generator Z = (Zs)s∈[0,1]k and D-
norm ‖·‖D. As shown in (2.10), the finite-dimensional projection (ηs1 , . . . , ηsd) defines a
standard max-stable random vector with generator (Zs1 , . . . , Zsd) andD-norm ‖·‖Ds1,...,sd
for pairwise different s1, . . . , sd ∈ [0, 1]k, that is,

P (ηs1 ≤ x1, . . . , ηsd ≤ xd) = exp

(
−E

(
max
i=1,...,d

(|xi|Zsi)
))

=: exp
(
−‖x‖Ds1,...,sd

)
,

where x = (x1, . . . , xd) ≤ 0. Choose arbitrary deterministic functions g1, . . . , gd ∈
C̄+[0, 1] with the property

‖(g1(s), . . . , gd(s))‖Ds1,...,sd = 1, s ∈ [0, 1]k. (3.1)

For instance, in case of independent margins of (ηs1 , . . . , ηsd), we have ‖·‖Ds1,...,sd = ‖·‖1,
and condition (3.1) becomes

d∑
i=1

gi(s) = 1, s ∈ [0, 1]k,

i. e. gi(s), i = 1, . . . , d, defines a probability distribution on the set {1, . . . , d} for each
s ∈ [0, 1]k. This is the setup in the max-linear model introduced by Wang and Stoev
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(2011). A onedimensional example for this case is given by the binomial distribution

gi(s) :=

(
d− 1

i− 1

)
si−1(1− s)d−i+1, i = 1, . . . , d, s ∈ [0, 1].

Put now
η̂s := max

i=1,...,d

ηsi
gi(s)

, s ∈ [0, 1]k. (3.2)

The model (3.2) is called generalized max-linear model. It defines an SMSP as the next
lemma shows. The proof shall not be omitted in order to present it more extensively
than in the original paper.

Lemma 3.1 (Falk et al. (2015, Lemma 1)). The stochastic process η̂ = (η̂s)s∈[0,1]k in
(3.2) defines an SMSP with generator process Ẑ = (Ẑs)s∈[0,1]k given by

Ẑs := max
i=1,...,d

(gi(s)Zsi) , s ∈ [0, 1]k. (3.3)

Proof. At first we verify that the process Ẑ is a generator process indeed. It is obvious
that the sample paths of Ẑ are in C̄+

(
[0, 1]k

)
. Furthermore, we have by construction

for each s ∈ [0, 1]k

E(Ẑs) = ‖(g1(s), . . . , gd(s))‖Ds1,...,sd = 1.

As ‖·‖∞ ≤ ‖·‖D for an arbitrary D-norm, we have ‖(g1(s), . . . , gd(s))‖∞ ≤ 1, s ∈ [0, 1]k,
and, thus, Ẑs ≤ maxi=1,...,d Zsi , s ∈ [0, 1]k. In addition, we have for f ∈ Ē−[0, 1]

P (η̂ ≤ f) = P
(
ηsi ≤ gi(s)f(s), i = 1, . . . , d, s ∈ [0, 1]k

)
= P

(
ηsi ≤ − sup

s∈[0,1]k
(gi(s) |f(s)|), i = 1, . . . , d

)

= exp

(
−
∥∥∥∥∥
(

sup
s∈[0,1]k

(g1(s) |f(s)|), . . . , sup
s∈[0,1]k

(gd(s) |f(s)|)
)∥∥∥∥∥

Ds1,...,sd

)

= exp

(
−E
(

max
i=1,...,d

(
sup

s∈[0,1]k

(
gi(s) |f(s)|

)
Zsi

)))
= exp

(
−E
(

sup
s∈[0,1]k

(
|f(s)| max

i=1,...,d
(gi(s)Zsi)

)))
= exp

(
−E
(

sup
s∈[0,1]k

(
|f(s)| Ẑs

)))
which completes the proof.
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Remark 3.2 (Falk et al. (2015, Remark 1)). Condition (3.1) ensures that the univariate
margins η̂s, s ∈ [0, 1]k, of the process η̂ in model (3.2) follow the standard negative
exponential distribution P (η̂s ≤ x) = exp(x), x ≤ 0. If we drop this condition, we still
obtain a max-stable process: Take for n ∈ N iid copies η̂(1), . . . , η̂(n) of η̂. We have for
f ∈ Ē−[0, 1]

P

(
n max

1≤k≤n
η̂(k) ≤ f

)
= P

(
η̂si ≤ inf

s∈[0,1]k

(
gi(s)f(s)

n

)
, i = 1, . . . , d

)n
= exp

(
−
∥∥∥∥∥
(

sup
s∈[0,1]k

(g1(s) |f(s)|) , . . . , sup
s∈[0,1]k

(
gd(s) |f(s)|

))∥∥∥∥∥
Ds1,...,sd

)
= P (η̂ ≤ f).

The univariate margins of η̂ are now given by

P (η̂s ≤ x) = exp
(
x ‖(g1(s), . . . , gd(s))‖Ds1,...,sd

)
, x ≤ 0, s ∈ [0, 1]k. (3.4)

Note that the above calculations also give an alternative proof of Lemma 3.1, except we
do not obtain the generator process of η̂ with this approach.

In model (3.2), we have not made any further assumptions on the D-norm ‖·‖Ds1,...,sd ,
that is, on the dependence structure of the random variables ηs1 , . . . , ηsd . The special case
‖·‖Ds1,...,sd = ‖·‖1 characterizes the independence of ηs1 , . . . , ηsd . This is the regular max-
linear model, cf. Wang and Stoev (2011). On the contrary, ‖·‖Ds1,...,sd = ‖·‖∞ provides
the case of complete dependence ηs1 = · · · = ηsd a. s. with the constant generator
Zs1 = · · · = Zsd = 1. Thus, condition (3.1) becomes maxi=1,...,d gi(s) = 1, s ∈ [0, 1]k,
and therefore

Ẑs = max
i=1,...,d

(gi(s)Zsi) = max
i=1,...,d

gi(s) = 1, s ∈ [0, 1]k.

If we want η̂ to interpolate (ηs1 , . . . , ηsd), then we only have to demand

gi(sj) = δij :=

1, i = j,

0, i 6= j,
1 ≤ i, j ≤ d. (3.5)

Recall that ηsi is negative with probability one. We call η̂ and Ẑ the discretized version of
η and Z with grid {s1, . . . , sd} and weight functions g1, . . . , gd, when the weight functions

48



satisfy both (3.1) and (3.5). We will see different examples of discretized versions in the
next sections.

The mean squared error of the discretized version

We start this section with a result that applies to bivariate standard max-stable random
vectors in general. The first part of the Lemma is Falk et al. (2015, Lemma 5), yet the
proof was omitted therein.

Lemma 3.3. Let (η1, η2) be standard max-stable with generator (Z1, Z2) and D-norm
‖·‖D. Then

E(η1η2) =

∫ ∞
0

1

‖(1, t)‖2D
dt. (3.6)

In particular, the covariance and the correlation coefficient % of η1 and η2 are given by

Cov(η1, η2) =

∫ ∞
0

1

‖(1, t)‖2D
dt− 1 = %(η1, η2). (3.7)

Furthermore,
E(|Z1 − Z2|) = 2 (‖(1, 1)‖D − 1) . (3.8)

Proof. Recall that the expected value of a negative exponentially distributed random
variable η with parameter λ > 0 is given by

E(η) =

∫ 0

−∞
xλ exp(λx) dx = −1/λ.

Hence, elementary calculations show

E(η1η2) =

∫ 0

−∞

∫ 0

−∞
P (η1 ≤ x, η2 ≤ y) dx dy

=

∫ 0

−∞

∫ 0

−∞
exp (−‖(x, y)‖D) dx dy

=

∫ 0

−∞

∫ 0

−∞
exp (x ‖(1, y/x)‖D) dx dy

= −
∫ ∞

0

∫ 0

−∞
x exp (x ‖(1, t)‖D) dx dt

= −
∫ ∞

0

1

‖(1, t)‖D

∫ 0

−∞
x ‖(1, t)‖D exp (x ‖(1, t)‖D) dx dt

=

∫ ∞
0

1

‖(1, t)‖2D
dt,
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which is (3.6). The assertions (3.7) follow from the fact that E(η1) = E(η2) = −1

and Var(η1) = Var(η2) = 1. Lastly, (3.8) follows from the general identity max(a, b) =
1
2(a+ b+ |a− b|).

Example 3.4. In accordance to the characterization of the independence and complete
dependence case in terms of D-norms, we obtain in the case ‖·‖D = ‖·‖1

Cov(η1, η2) =

∫ ∞
0

1

(u+ 1)2
du− 1 = 0

and in the case ‖·‖D = ‖·‖∞

Cov(η1, η2) =

∫ ∞
0

1

(max(u, 1))2 du− 1 = 1.

In particular, we have Cov(η1, η2) = %(η1, η2) ∈ [0, 1] for every bivariate standard max-
stable random vector (X,Y ) since the maximum norm is the least D-norm and the sum
norm is the largest D-norm. In addition to this, we obtain for ‖·‖D = ‖·‖2

Cov(η1, η2) =

∫ ∞
0

1

(u2 + 1)
du− 1 =

[
arctan(u)

]∞
0
− 1 = π/2− 1.

For a general logistic D-norm with parameter λ ∈ [1,∞) we obtain by substituting
u 7→ u1/λ

Cov(η1, η2) =

∫ ∞
0

1

(uλ + 1)2/λ
du− 1

=
1

λ

∫ ∞
0

u1/λ−1

(u+ 1)2/λ
du− 1

=
1

λ
B

(
1

λ
,

1

λ

)
− 1,

where B(x, y) =
∫ 1

0 u
x−1(1− u)y−1 du =

∫∞
0 ux−1(1 + u)−x−y du denotes the Euler beta

function.

Let η̂ = (η̂s)s∈[0,1]k be the discretized version of η = (ηs)s∈[0,1]k with grid {s1, . . . , sd}
and weight functions g1, . . . , gd. In order to calculate the mean squared error of η̂s, we
need the following lemma.

Lemma 3.5. Let Ẑ = (Ẑs)s∈[0,1]k be the generator of η̂ that is defined in (3.3). For each
s ∈ [0, 1]k, the random vector (ηs, η̂s) is standard max-stable with generator (Zs, Ẑs) and
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D-norm

‖(x, y)‖D̂s := E
(
|x|Zs, |y| Ẑs

)
= ‖(x, g1(s)y, . . . , gd(s)y)‖Ds,s1,...,sd , (3.9)

where ‖·‖Ds,s1,...,sd is the D-norm pertaining to (ηs, ηs1 , . . . , ηsd).

Proof. As Z = (Zs)s∈[0,1]k is a generator of η, we have for x, y ≤ 0

P (ηs ≤ x, η̂s ≤ y) = P (ηs ≤ x, ηs1 ≤ g1(s)y, . . . , ηsd ≤ gd(s)y)

= exp (−E (max (|x|Zs, |y|max (g1(s)Zs1 , . . . , gd(s)Zsd))))

= exp
(
−E

(
max

(
|x|Zs, |y| Ẑs

)))
.

The assertion now follows from the fact that Ẑs ≥ 0 and E(Ẑs) = 1.

We can now use the preceding Lemmas to compute the mean squared error of the
discretized version.

Proposition 3.6. The mean squared error of η̂s is given by

MSE (η̂s) := E
(

(ηs − η̂s)2
)

= 2

(
2−

∫ ∞
0

1

(‖(1, t)‖D̂s)2
dt

)
, s ∈ [0, 1]k.

Proof. Due to Lemma 3.5, (ηs, η̂s) is standard max-stable. Therefore, (3.6) and the fact
that E(ηs) = E(η̂s) = −1 and Var(ηs) = Var(η̂s) = 1 yield

MSE (η̂s) = E
(
η2
s

)
− 2E (ηsη̂s) + E

(
η̂2
s

)
= 4− 2

∫ ∞
0

1

(‖(1, t)‖D̂s)2
dt.

Example 3.7. Suppose, (ηs, ηs1 , . . . , ηsd) follows the logistic D-norm

‖x‖Ds,s1,...,sd = ‖x‖λ =

(
d+1∑
i=1

|xi|λ
)1/λ

, x ∈ Rd+1,

for some λ ∈ [1,∞]. Clearly, the D-norm ‖·‖s1,...,sd pertaining to (ηs1 , . . . , ηsd) is the
logistic norm with parameter λ on Rd and, thus,

‖(x, y)‖D̂s = ‖(x, g1(s)y, . . . , gd(s)y)‖Ds,s1,...,sd
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=

(
|x|λ + |y|λ

d∑
i=1

gi(s)
λ

)1/λ

=
(
|x|λ + |y|λ ‖(g1(s), . . . , gd(s))‖λs1,...,sd

)1/λ

=
(
|x|λ + |y|λ

)1/λ
.

Hence the norm ‖·‖D̂s is the bivariate logistic norm with parameter λ. In this particular
case, we obtain by substituting t 7→ t1/λ

MSE (η̂s) = 4− 2

∫ ∞
0

1

(tλ + 1)2/λ
dt = 4− 2

λ

∫ ∞
0

t1/λ−1

(t+ 1)2/λ
dt = 4− 2

λ
B

(
1

λ
,

1

λ

)
,

where B(·, ·) denotes the Euler beta function, cf. Example 3.4. It is in evidence that,
under the above assumptions, the mean squared error does not depend on the weights
g1(s), . . . , gd(s).

Lemma 3.8. The mean squared error of η̂s satisfies

MSE (η̂s) ≤ 6E
(∣∣∣Zs − Ẑs∣∣∣) , s ∈ [0, 1]k.

Proof. We have

2−
∫ ∞

0

1

(‖(1, t)‖D̂s)2
dt

=

∫ ∞
0

1

‖(1, t)‖2∞
dt−

∫ ∞
0

1

(‖(1, t)‖D̂s)2
dt

=

∫ ∞
0

(
‖(1, t)‖D̂s − ‖(1, t)‖∞

) ‖(1, t)‖D̂s + ‖(1, t)‖∞
(‖(1, t)‖D̂s)2 ‖(1, t)‖2∞

dt

=

∫ 1

0

(
‖(1, t)‖D̂s − 1

) ‖(1, t)‖D̂s + 1

(‖(1, t)‖D̂s)2
dt+

∫ ∞
1

(
‖(1, t)‖D̂s − t

) ‖(1, t)‖D̂s + t

t2(‖(1, t)‖D̂s)2
dt

≤ 3

∫ 1

0

(
‖(1, t)‖D̂s − 1

)
dt+ 2

∫ ∞
1

‖(1/t, 1)‖D̂s − 1

t2
dt

=: 3I1 + 2I2.

Since every D-norm is monotone, we have

‖(1, t)‖D̂s ≤ ‖(1, 1)‖D̂s , t ∈ [0, 1], and ‖(1/t, 1)‖D̂s ≤ ‖(1, 1)‖D̂s , t > 1,
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and, thus, by (3.8),

I1 + I2 ≤ ‖(1, 1)‖D̂s − 1 +
(
‖(1, 1)‖D̂s − 1

)∫ ∞
0

t−2 dt = E
(∣∣∣Zs − Ẑs∣∣∣) .

3.2 Reconstruction of SMSP in C ([0,1])

The preceding approach offers a way to reconstruct an SMSP with sample paths in
C ([0, 1]) in an appropriate way. Originally, the work on generalized max-linear models
started with the following discussion, which is mainly taken from Falk et al. (2015). The
generalization to higher dimensions of the domain was subject of further research. Let
η = (ηs)s∈[0,1] be an SMSP with generator process Z = (Zs)s∈[0,1] and D-norm ‖·‖D.
Choose a grid 0 =: s1 < s2 < · · · < sd−1 < sd := 1 of points within [0, 1]. Again,
(ηs1 , . . . , ηsd) is a standard max-stable random vector in Rd with pertaining D-norm
‖·‖Ds1,...,sd generated by (Zs1 , . . . , Zsd).
The aim of this section is to define some discretized version η̂ = (η̂s)s∈[0,1] for which

η̂si = ηsi , i = 1, . . . , d, holds, i.e. η̂ interpolates the finite dimensional projections
(ηs1 , . . . , ηsd) of the original SMSP η in an appropriate way. This will be done by means
of a special case of the generalized max-linear model, i.e., by a particular choice of the
functions gi in equation (3.2). In a next step, we consider a sequence of discretized
versions η̂(d), d ∈ N, with a grid that gets finer and finer, and show that this way of
predicting the original MSP η in space is reasonable, as the pointwise mean squared
error

MSE
(
η̂(d)
s

)
= E

((
ηs − η̂(d)

s

)2
)

diminishes for all s ∈ [0, 1] as d increases. Moreover, we establish uniform convergence
of the ’predictive’ processes and the corresponding generator processes to the original
ones. In order to help the reader to keep track of the strategy, most of the proofs of the
following results will be presented again, since some of them have been omitted in the
original paper.

Uniform convergence of the star-discretized versions

As we have shown in Lemma 3.1, the stochastic process η̂ = (η̂s)s∈[0,1],

η̂s = max
i=1,...,d

ηsi
gi(s)

, s ∈ [0, 1],
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defines an SMSP with generator process Ẑ = (Ẑs)s∈[0,1], given by

Ẑs = max
i=1,...,d

(gi(s)Zsi) , s ∈ [0, 1],

for arbitrary functions g1, . . . , gd in C̄+[0, 1] that satisfy condition (3.1). We are going to
specialize them now.
Denote by ‖·‖Di,i+1

the D-norm pertaining to the bivariate random vector (ηsi , ηsi+1),
i = 1, . . . , d− 1. Put

g∗1(s) :=


s2 − s

‖(s2 − s, s)‖Ds1,s2
, s ∈ [0, s2],

0, else,

g∗i (s) :=



s− si−1

‖(si − s, s− si−1)‖Dsi−1,si

, s ∈ [si−1, si],

si+1 − s
‖(si+1 − s, s− si)‖Dsi,si+1

, s ∈ [si, si+1],

0, else,

i = 2, . . . , d− 1,

g∗d(s) :=


s− sd−1

‖(sd − s, s− sd−1)‖Dsd−1,sd

, s ∈ [sd−1, 1],

0, else.

Clearly, g∗0, . . . , g∗d ∈ C̄+[0, 1] since the fact that a D-norm is standardized implies

lim
s↑si

g∗i (s) =
si − si−1

‖(0, si − si−1)‖Dsi−1,si

= 1 =
si+1 − si

‖(si+1 − si, 0)‖Dsi−1,si

= lim
s↓si

g∗i (s).

Moreover, we have for s ∈ [si−1, si], i = 2, . . . , d,

‖(g∗0(s), . . . , g∗d(s))‖Ds1,...,sd =
∥∥(g∗i−1(s), g∗i (s)

)∥∥
Dsi−1,si

= 1.

Hence, the functions g∗0, . . . , g∗d are suitable for the generalized max-linear model (3.2).
In addition, they have the following property:

Lemma 3.9 (Falk et al. (2015, Lemma 2)). The functions g∗0, . . . , g∗d defined above satisfy

‖g∗i ‖∞ = g∗i (si) = 1, i = 1, . . . , d.

In consideration of their properties described above, the functions g∗i can be viewed
as kernel functions quite similar to kernels in nonparametric kernel density estimators.
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Each function g∗i (s) has maximum value 1 at s = si and, with the distance between s and
si increasing, the value g∗i (s) shrinks to zero. This view provides also the idea behind
the extension of this approach to higher dimension as described in Section 3.4.

Proof of Lemma 3.9. From the fact that a D-norm is monotone and standardized, we
obtain for i = 2, . . . , d− 1 and s ∈ [si−1, si)

g∗i (s) =
s− si−1

‖(si − s, s− si−1)‖Dsi−1,si

=
1∥∥∥( si−s

s−si−1
, 1
)∥∥∥

Dsi−1,si

≤ 1

‖(0, 1)‖Dsi−1,si

= 1,

and for s ∈ [si, si+1)

g∗i (s) =
si+1 − s

‖(si+1 − s, s− si)‖Dsi,si+1

=
1∥∥∥(1, s−si

si+1−s

)∥∥∥
Dsi,si+1

≤ 1

‖(1, 0)‖Dsi,si+1

= 1.

Analogously, we have g∗0 ≤ 1 and g∗d ≤ 1. The assertion now follows since g∗i (si) = 1,
i = 0, . . . , d.

The SMSP η̂ = (η̂s)s∈[0,1] that is generated by the generalized max-linear model with
these particular functions g∗1, . . . , g∗d is given by

η̂s = max

(
ηsi−1

g∗i−1(s)
,
ηsi
g∗i (s)

)
(3.10)

= ‖(si − s, s− si−1)‖Dsi−1,si
max

(
ηsi−1

si − s
,

ηsi
s− si−1

)
, s ∈ [si−1, si], i = 2, . . . , d.

Note that ηsi < 0 almost surely, i = 1, . . . , d. This implies that the maximum taken over
d points in (3.2) breaks down to a maximum taken over only two points in (3.10) since
all except two of the gi vanish in [si−1, si], i = 1, . . . , d. We have, moreover,

η̂si = ηsi , i = 1, . . . , d,

so the above process interpolates the random vector (ηs1 , . . . , ηsd).
To give an example, put ‖(x1, x2)‖Dsi−1,si

:= ‖(x1, x2)‖λ := (|x1|λ+ |x2|λ)1/λ, 1 ≤ λ ≤
∞ for every 1 ≤ i ≤ d, i. e. each bivariate D-norm ‖·‖Dsi−1,si

is a logistic one. In this
case, we obtain the representation

η̂s = ((si − s)λ) + (s− si−1)λ)1/λ max

(
ηsi−1

si − s
,

ηsi
s− si−1

)
, (3.11)
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s ∈ [si−1, si], i = 2, . . . , d,

which we will illustrate later. To summarize, we state the following result.

Corollary 3.10 (Falk et al. (2015, Corollary 1)). Let η = (ηs)s∈[0,1] be an SMSP with
generator Z = (Zs)s∈[0,1], and let 0 := s1 < s2 <, . . . , < sd−1 < sd := 1 be a grid of
points in the interval [0, 1]. The process η̂ = (η̂s)s∈[0,1] defined in (3.10) is an SMSP with
generator process Ẑ = (Ẑs)s∈[0,1], where

Ẑs =
max

(
(si − s)Zsi−1 , (s− si−1)Zsi

)
‖(si − s, s− si−1)‖Dsi−1,si

, s ∈ [si−1, si], i = 2, . . . , d. (3.12)

The processes η̂ and Ẑ interpolate the random vectors (ηs1 , . . . , ηsd) and (Zs1 , . . . , Zsd),
respectively.

We call η̂ the star-discretized version of η and Ẑ the star-discretized version of Z,
both with grid {s1, . . . , sd}. Next we show that the preceding approach allows the ap-
proximation of an underlying SMSP based on multivariate observations; that is, the
star-discretized version of the underlying SMSP converges to the original process in a
strong sense. We need the following two lemmata which provide some technical insight
in the structure of the chosen max-linear model.

Lemma 3.11 (Falk et al. (2015, Lemma 3)). The SMSP defined in (3.10) fulfills for
i = 2, . . . , d

sup
s∈[si−1,si]

η̂s = max
(
ηsi−1 , ηsi

)
,

and
inf

s∈[si−1,si]
η̂s = −

∥∥(ηsi−1 , ηsi)
∥∥
Dsi−1,si

.

This minimum is attained for s = (si−1ηsi−1 + siηsi)/(ηsi−1 + ηsi).

Proof. We know from Lemma 3.9 that g∗i (s) ≤ 1 for an arbitrary i = 1, . . . , d and
s ∈ [0, 1]. Hence,

η̂s = max

(
ηsi−1

g∗i−1(s)
,
ηsi
g∗i (s)

)
≤ max(ηsi−1 , ηsi)

for i = 2, . . . , d and s ∈ [si−1, si], which yields the first part of the assertion. Recall that
ηsi < 0 with probability one, i = 1 . . . , d.
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Moreover, we have for s ∈ (si−1, si)

ηsi−1

si − s
≤ ηsi
s− si−1

⇐⇒ si − s
s− si−1

≤ ηsi−1

ηsi
⇐⇒ s ≥ si−1ηsi−1 + siηsi

ηsi−1 + ηsi
,

where equality in one of these expressions occurs iff it does in the other two. In this case
of equality we have

η̂s = ‖(si − s, s− si−1)‖Dsi−1,si
· ηsi
s− si−1

= −
∥∥(ηsi−1 , ηsi)

∥∥
Dsi−1,si

.

On the other hand, the monotonicity of a D-norm implies for every s ∈ (si−1, si) with
s ≥ (si−1ηsi−1 + siηsi)/(ηsi−1 + ηsi)

η̂s ≥ ‖(si − s, s− si−1)‖Dsi−1,si

ηsi
s− si−1

=

∥∥∥∥( si − s
s− si−1

, 1

)∥∥∥∥
Dsi−1,si

ηsi

≥
∥∥∥∥(ηsi−1

ηsi
, 1

)∥∥∥∥
Dsi−1,si

ηsi

= −
∥∥(ηsi−1 , ηsi)

∥∥
Dsi−1,si

.

Recall again that ηsi < 0 almost surely. The case s ≤ (si−1ηsi−1 + siηsi)/(ηsi−1 + ηsi)

works analogously.

As an immediate consequence of the preceding result we obtain for x ≤ 0

η̂ ≤ x ⇐⇒ max (ηs0 , . . . , ηsd) ≤ x

and
η̂ > x ⇐⇒ max

1≤i≤d

∥∥(ηsi−1 , ηsi
)∥∥
Dsi−1,si

< −x.

In order to visualize the interpolation scheme of this particular generalized max-linear
model, we plot some discretized versions with different grids and bivariate D-norms
‖·‖Di−1,i

. For the sake of simplicity, the underlying path η(ω) in this example shall
not arise from a simulation of an actual SMSP, but rather is replaced by a smooth
deterministic continuous function on [0, 1]. More precisely, we choose in the following
picture ηs(ω) := 7.5(0.16s− 0.5s2 + s3/3)− 0.125, s ∈ [0, 1] which is represented by the
dashed curve. The solid line in each plot is the discretized version η̂(ω) of this path. We
use equidistant grids of dimension d = 5, d = 10 and d = 20. Each bivariate D-norm
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‖·‖Di−1,i
are logistic norms such that the discretized versions are given by formula (3.11)

with λ = 2, λ = 4 and λ = 8.
The plots apparently show that the approximation of the original process through a

discretized version improves as the dimension d gets higher and as the bivariate D-norms
get closer to complete dependence case.
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Fig. 3.1: Plots of logistic type discretized versions (solid) of a deterministic function that
stands for a path of an SMSP (dashed).

The next lemma concerns the structure of the underlying generator processes.

Lemma 3.12 (Falk et al. (2015, Lemma 4)). The generator process defined in (3.12)
fulfills for i = 2, . . . , d

sup
s∈[si−1,si]

Ẑs = max
(
Zsi−1 , Zsi

)
.

In particular, the extremal coefficient E
(
||Ẑ||∞

)
of the SMSP η̂ coincides with the ex-

tremal coefficient E(maxi=1,...,d Zsi) of the random vector (ηs1 , . . . , ηsd). Moreover, for
i = 2, . . . , d,

inf
s∈[si−1,si]

Ẑs =


(∥∥(1/Zsi−1 , 1/Zsi)

∥∥
Dsi−1,si

)−1
if Zsi−1 , Zsi > 0,

0 else.
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In the first case, the minimum is attained for s = (si−1Zsi + siZsi−1)/
(
Zsi−1 + Zsi

)
.

Proof. We know from Lemma 3.9 that g∗i (s) ≤ 1 for an arbitrary i = 1, . . . , d and
s ∈ [0, 1]. Hence,

Ẑs = max
(
g∗i−1(s)Zsi−1 , g

∗
i (s)Zsi

)
≤ max(Zsi−1 , Zsi), i = 2, . . . , d, t ∈ [si−1, si],

which yields the first part of the assertion.
Moreover, we have for s ∈ (si−1, si) in case of Zsi−1 , Zsi > 0

(si − s)Zsi−1 ≤ (s− si−1)Zsi ⇐⇒
si − s
s− si−1

≤ Zsi
Zsi−1

⇐⇒ s ≥ si−1Zsi + siZsi−1

Zsi−1 + Zsi
,

where equality in one of these expressions occurs iff it does in the other two. In this case
of equality we have

Ẑs =
(s− si−1)Zsi

‖(si − s, s− si−1)‖Dsi−1,si

=
1∥∥(1/Zsi−1 , 1/Zsi)

∥∥
Dsi−1,si

.

On the other hand, the monotonicity of a D-norm implies for every s ∈ (si−1, si) with
s ≥ (si−1Zsi + siZsi−1)/(Zsi−1 + Zsi)

Ẑs ≥
(s− si−1)Zsi

‖(si − s, s− si−1)‖Dsi−1,si

=

(∥∥∥∥( si − s
s− si−1

, 1

)∥∥∥∥
Dsi−1,si

)−1

Zsi

≥
(∥∥∥∥( Zsi

Zsi−1

, 1

)∥∥∥∥
Dsi−1,si

)−1

Zsi

=
1∥∥(1/Zsi−1 , 1/Zsi)

∥∥
Dsi−1,si

.

The case s ≤ (si−1Zsi + siZsi−1)/(Zsi−1 + Zsi) is shown analogously.

So far we have only considered a fixed star-discretized version of an SMSP. The next
step is to examine a sequence of star-discretized versions with certain grids whose diam-
eter converges to zero. It turns out that such a sequence converges to the initial SMSP
in the function space C[0, 1] equipped with the sup-norm. Thus, our method is suitable
to reconstruct the initial process.
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Let

Gd :=
{
s

(d)
1 . . . , s

(d)
d

}
, 0 =: s

(d)
1 < s

(d)
2 < · · · < s

(d)
d−1 < s

(d)
d := 1, d ∈ N,

be a sequence of grids in [0, 1] with diameter

κd := max
i=2,...,d

(
s

(d)
i − s

(d)
i−1

)
→d→∞ 0.

Let η̂(d) = (η̂
(d)
s )s∈[0,1] be the discretized version of an SMSP η = (ηs)s∈[0,1] with grid Gd.

Denote by Ẑ
(d)

= (Ẑ
(d)
s )s∈[0,1] and Z = (Zs)s∈[0,1] the generator processes pertaining to

η̂(d) and η, respectively.

Theorem 3.13 (Falk et al. (2015, Theorem 1)). The processes η̂(d) and Ẑ
(d)

, d ∈ N,
converge uniformly to η and Z pathwise, i. e.

∥∥∥η̂(d) − η
∥∥∥
∞
→ 0 and

∥∥∥Ẑ(d) −Z
∥∥∥
∞
→ 0

with probability one as d→∞.

Proof. Denote by [s]d the left neighbor of s ∈ [0, 1] among Gd, and by 〈s〉d the right
neighbor of s ∈ [0, 1] among Gd, d ∈ N. Choose a sequence s(d) ∈ [0, 1], d ∈ N, with
s(d) →d→∞ s ∈ [0, 1]. Then obviously [s(d)]d →d→∞ s and 〈s(d)〉d →d→∞ s. Hence we
obtain by Lemma 3.11, and the continuity of the process η

η̂
(d)

s(d)
≤ max

s∈[[s(d)]d,〈s(d)〉d]
η̂(d)
s = max

(
η[s(d)]d

, η〈s(d)〉d

)
→d→∞ ηs,

as well as

η̂
(d)

s(d)
≥ min

s∈[[s(d)]d,〈s(d)〉d]
η̂(d)
s = −

∥∥∥(η[s(d)]d
, η〈s(d)〉d

)∥∥∥
D

[s(d)]d,〈s
(d)〉d

→d→∞ ηs,

where ‖·‖D
[s(d)]d,〈s

(d)〉d
denotes the D-norm pertaining to

(
η[s(d)]d

, η〈s(d)〉d

)
. Hence the

first part of the assertion is proven.
Now we show that Ẑ

(d) →d→∞ Z in (C[0, 1], ‖·‖∞). If Zs 6= 0, the continuity of Z
implies Z[s(d)]d

6= 0 6= Z〈s(d)〉d for sufficiently large values of d. Repeating the above
arguments, the assertion now follows by Lemma 3.12. If Zs = 0, the continuity of Z
implies

Ẑ
(d)

s(d)
≤ 2 max

(
Z[s(d)]d

, Z〈s(d)〉d

)
→d→∞ 2Zs = 0,

which completes the proof. Check that
∥∥(〈s(d)〉d − s, s− [s(d)]d)

∥∥
D
≥ 1/2 since every

D-norm is monotone and standardized.
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The preceding theorem is the main reason why we consider the discretized version η̂ of
an SMSP η a reasonable predictor of this process, where the prediction is done in space,
not in time. The predictions η̂t of the points ηs, s ∈ [0, 1], only depend on the multivariate
observations (ηs1 , . . . , ηsd). More precisely, the only additional thing we need to know
to make these predictions is the set of the adjacent bivariate marginal distributions of
(ηs1 , . . . , ηsd), that is, the bivariate D-norms ‖·‖Di−1,i

, i = 2, . . . , d. This might, however,
be a restrictive condition in praxis and suggests the problem to fit models of bivariate
D-norms to data, which is, however, beyond the scope of the present discussion and
requires future investigation.
The following results, however, are obvious. Let η̂s be a point of the star-discretized

version defined in (3.10) and define a defective discretized version via

η̃s := ‖(si − s, s− si−1)‖D̃i max

(
ηsi−1

si − s
,

ηsi
s− si−1

)
, s ∈ [si−1, si], i = 2, . . . , d,

where ‖·‖D̃i is an arbitrary norm on R2 which we call the defective norm. Then for every
s ∈ [si−1, si], i = 1, . . . , d,

|η̂s − η̃s| =∣∣∣‖(si − s, s− si−1)‖Dsi−1,ssi
− ‖(si − s, s− si−1)‖D̃i

∣∣∣min

(−ηsi−1

si − s
,
−ηsi

s− si−1

)
.

In particular, we have η̃si = η̂si = ηsi , i = 1, . . . , d. This means that we obtain an
interpolating process even if we replace the D-norm ‖·‖Di−1,i

by the defective norm
‖·‖D̃i . Furthermore, the defective discretized version still defines an MSP with sample
paths in C̄−[0, 1]. Its univariate marginal distributions are given by

P (η̃s ≤ x) = exp

(‖(si − s, s− si−1)‖Dsi−1,si

‖(si − s, s− si−1)‖D̃i
x

)
, x ≤ 0, s ∈ [si−1, si], i = 1, . . . , d.

In addition to this, the assertions in Lemma 3.11 also hold for the defective discretized
version in case we know that each defective norm ‖·‖D̃i is monotone and standardized.
Repeating the arguments in the proof of Theorem 3.13 now shows that the uniform
convergence towards the original process η is retained if we replace the norms ‖·‖Di−1,i

by arbitrary monotone and standardized norms (not necessarily D-norms) ‖·‖D̃i . Hence
in that case, the only property of the discretized version that we have to drop is the
standardization of the univariate margins.
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The mean squared error of the star-discretized versions

In Proposition 3.6, the pointwise mean squared error of an arbitrary discretized version
has been calculated. This can be used to derive convergence of the mean squared error
of the star-discretized version to zero. As before, suppose η is an SMSP and choose a
sequence of grids Gd of the interval [0, 1] with diameter κd →d→∞ 0. Denote by η̂(d),
d ∈ N, the sequence of star-dicretized versions of η with grid Gd. Denote further by
‖·‖

D̂
(d)
s

the D-norm pertaining to (ηs, η̂
(d)
s ), s ∈ [0, 1], d ∈ N.

Theorem 3.14 (Falk et al. (2015, Theorem 2)). Let η and η̂(d), d ∈ N, be as above.
The mean squared error of η̂(d)

s is given by

MSE
(
η̂(d)
s

)
= E

((
ηs − η̂(d)

s

)2
)

= 2

(
2−

∫ ∞
0

1

(‖(1, u)‖
D̂

(d)
s

)2
du

)
→d→∞ 0.

3.3 Reconstruction of SGPP

The preceding technique of discretizing and reconstructing a given SMSP can also be
applied to the case of SGPP by simply replacing the standard max-stable random vector
in the model (3.2) by a standard generalized Pareto distributed random vector. Again,
the generalized max-linear model results in an SGPP. Once this statement is proven,
most of the results of the previous sections carry over in a straightforward way.
Recall that a stochastic process V in C̄− (S) is an SGPP, if there exists a D-norm ‖·‖D

on E (S) and some c > 0, such that P (V ≤ f) = 1−‖f‖D for all f ∈ Ē− (S) with ‖f‖∞ ≤
c, cf. Remark 2.30. Note that this implies that each univariate marginal distribution of
V coincides in the upper tail with the uniform distribution on [−1, 0]. In the literature,
there are different definitions of multivariate generalized Pareto distributions (GPD)
available. For instance, Rootzén and Tajvidi (2006) define a d-dimensional generalized
Pareto distribution function H to be

H(x) = − 1

logG(0)
log

G(x)

G(min(x,0))
, x ∈ Rd, (3.13)

where G is a max-stable distribution function with 0 < G(0) < 1. Different to that, it
is defined in Falk et al. (2011) that Y ∈ Rd follows a standard GPD, if there exists a
D-norm ‖·‖D on Rd and some y(0) < 0, such that

P (Y ≤ y) = 1− ‖y‖D , y(0) ≤ y ≤ 0. (3.14)
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Even though both definitions are closely related, cf. Falk et al. (2011, Section 5.2),
the approach of Rootzén and Tajvidi (2006) has the drawback that lower-dimensional
margins of GPD are not necessarily GPD again, which obviously causes problems for the
discretization and reconstruction of SGPP. For that reason, we prefer Definition (3.14)
to (3.13), and work with that from now on.

Uniform Convergence of the Discretized Versions

Let V = (Vs)s∈[0,1]k be an SGPP with generator Z = (Zs)s∈[0,1]k and D-norm ‖·‖D.
Choose arbitrary (and pairwise different) points s1, . . . , sd ∈ [0, 1]k. Then (Vs1 , . . . , Vsd)

is a standard GPD random vector in Rd with pertaining D-norm ‖·‖Ds1,...,sd generated
by (Zs1 , . . . , Zsd). Now choose deterministic functions g1, . . . , gd ∈ C̄+

(
[0, 1]k

)
with the

property (3.1) and put

V̂s := max
i=1,...,d

Vsi
gi(s)

, s ∈ [0, 1]k. (3.15)

Lemma 3.15. The stochastic process V̂ = (Vs)s∈[0,1]k in (3.15) defines an SGPP with
generator process Ẑ = (Ẑs)s∈[0,1]k ,

Ẑs = max
i=1,...,d

(gi(s)Zi) , s ∈ [0, 1]k. (3.3)

Proof. We have already shown in Lemma 3.1 that Ẑ defines a generator process. Choose
c > 0 such that P (V ≤ f) = 1 − ‖f‖D for f ∈ Ē−

(
[0, 1]k

)
with ‖f‖∞ ≤ c. Put

ĉ := c/maxi=1,...,d ‖gi‖∞. Then we have for all f ∈ Ē−
(
[0, 1]k

)
‖f‖∞ ≤ ĉ ⇐⇒ inf

s∈[0,1]k
f(s) ≥ −c/ max

i=1,...,d
‖gi‖∞ .

Hence, for every f with ‖f‖∞ ≤ ĉ and every i = 1, . . . , d,

inf
s∈[0,1]k

(gi(s)f(s)) ≥ inf
s∈[0,1]k

gi(s) ·
(
− c

maxj=1,...,d ‖gj‖∞

)
= max

j=1,...,d

(
−c

infs∈[0,1]k gi(s)

sups∈[0,1]k gj(s)

)

≥ −c
infs∈[0,1]k gi(s)

sups∈[0,1]k gi(s)

≥ −c.
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To summarize, we have for all f close enough to zero (that is, ‖f‖∞ ≤ ĉ)

P (V̂ ≤ f) = P
(
Vi ≤ gi(s)f(s), i = 1, . . . , d, s ∈ [0, 1]k

)
= P

(
Vi ≤ inf

s∈[0,1]k
(gi(s)f(s)) , i = 1, . . . , d

)
= 1−

∥∥∥∥∥
(

sup
s∈[0,1]k

(g1 |f(s)|) , . . . , sup
s∈[0,1]k

(gd(s) |f(s)|)
)∥∥∥∥∥

Ds1,...,sd

= 1− E
(

max
i=1,...,d

(
sup

s∈[0,1]k
(gi(s) |f(s)|)Zi

))

= 1− E
(

sup
s∈[0,1]k

(
|f(s)| max

i=1,...,d
(gi(s)Zi)

))

= 1− E
(

sup
s∈[0,1]k

(
|f(s)| Ẑs

))
,

which completes the proof.

The generalized max-linear model is now applied to the case of SGPP. As before, the
generalized max-linear model interpolates the underlying GPD random vector, the func-
tions g1, . . . , gd need to satisfy condition (3.5) in addition to (3.1). In particular, SGPP
with sample paths in C ([0, 1]) can be reconstructed via the star-discretized versions con-
sidered in the previous section. By choosing a grid 0 := s1 < s2 < · · · < sd−1 < sd := 1

and the exact same functions g∗1, . . . , g∗d ∈ C̄+ ([0, 1]) as in Section 3.2, the process
V̂ = (V̂s)s∈[0,1] from (3.15) turns into

V̂s = max

(
Vsi−1

g∗i−1(s)
,
Vsi
g∗i (s)

)
(3.16)

= ‖(si − s, s− si−1)‖Dsi−1,si
max

(
Vsi−1

si − s
,

Vsi
s− si−1

)
, s ∈ [si−1, si], i = 2, . . . , d.

Again, ‖·‖Dsi−1,si
is the D-norm generated by (Zsi−1 , Zsi), i = 2, . . . , d. In order to show

that V̂ defines an SGPP as well, we only have to verify that the functions g∗0, . . . , g∗d
realize in C̄+[0, 1] and satisfy condition (3.1), which we have already done in Section 3.2.
Thus, the following result is proven.

Corollary 3.16. Let V = (Vs)s∈[0,1] be an SGPP with generator Z = (Zs)s∈[0,1], and
0 := s1 < s2 <, . . . , < sd−1 < sd := 1 be a grid in the interval [0, 1]. The process V̂ =

(V̂s)s∈[0,1] defined in (3.16) is an SGPP with the generator Ẑ = (Ẑs)s∈[0,1] from (3.12).
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The processes V̂ and Ẑ interpolate the random vectors (Vs1 , . . . , Vsd) and (Zs1 , . . . , Zsd),
respectively.

In complete accordance to the SMSP case we call V̂ the star-discretized version of V
with grid {s1, . . . , sd}.

Remark 3.17. Let the original SGPP V satisfy P (V ≤ f) = 1−‖f‖D for all f ∈ Ē−[0, 1]

with ‖f‖∞ ≤ c, with some D-norm ‖·‖D and some c > 0. Now denote by ‖·‖D̂ the D-
norm pertaining to the discretized version V̂ of V with grid {s1, . . . , sd}. Just like in
the proof of Lemma 3.15, we obtain P (V̂ ≤ f) = 1 − ‖f‖D̂ for all f ∈ Ē− ([0, 1]) with
‖f‖∞ ≤ ĉ, where

ĉ =
c

maxi=1,...,d ‖g∗i ‖∞
= c,

since ‖g∗i ‖∞ = 1 holds for all i = 1, . . . , d according to Lemma 3.9. Thus, the upper tail
region where we know the distribution of the discretized version V̂ is just as large as
that of the initial SGPP V .

It is obvious that the pathwise structure of the star-discretized version of an SMSP we
have established in Lemma 3.11 now carries over to the SGPP case since the assertion
in this lemma follows solely from the structure of g∗1, . . . , g∗d and the fact that the initial
process is nonpositive with probability one.

Lemma 3.18. The SGPP defined in (3.16) fulfills for i = 2, . . . , d

sup
s∈[si−1,si]

V̂s = max
(
Vsi−1 , Vsi

)
,

and
inf

s∈[si−1,si]
V̂s = −

∥∥(Vsi−1 , Vsi)
∥∥
Dsi−1,si

.

This minimum is attained for s = (si−1Vsi−1 + siVsi)/Vsi−1 + Vsi).

Now consider a sequence of star-discretized versions V̂
(d)

of an SGPP V with grid Gd,
where the diameter of Gd converges to zero. Repeating the arguments in the proof of
Theorem 3.13 yields the following result.

Theorem 3.19 (Falk et al. (2015, Theorem 3)). The sequence of processes V̂
(d)

, d ∈ N,
converges uniformly to V pathwise, i. e.

∥∥∥V̂ (d) − V
∥∥∥
∞
→d→∞ 0 with probability one.
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The Mean Squared Error of the Discretized Version

The next aim is to calculate the mean squared error of the predictor V̂s of Vs. We
obtain again some kind of pointwise convergence in mean square of a sequence of star-
discretized versions with decreasing diameter to the initial SGPP. Nevertheless, there is
a difference to the considerations in the previous section. In contrast to the case of max-
stable distributions, we typically only know the distribution of an SGPP in the upper
tail. Note that the function W (x) := 1 − ‖x‖D, x ≤ 0, ‖x‖D ≤ 1, does not define
a multivariate df in general, see cf. Falk et al. (2011). This fact forces us to consider
conditional expectations in this section.
In the bivariate case, however, W defines a df, and we can assume that a GPD has this

representation on the whole domain. The next Lemma is on some conditional moments
of bivariate standard GPD random vectors in general.

Lemma 3.20. Let (U, V ) be a standard GPD random vector, i. e. there exists some
D-norm ‖·‖D such that P (U ≤ u, V ≤ v) = 1−‖(u, v)‖D, u, v ≤ 0, ‖(u, v)‖D ≤ 1. Then
we have for all such u, v

(i)
P (U > u, V > v) = oo (u, v) ooD = ‖(u, v)‖1 − ‖(u, v)‖D ,

and, in case of ‖·‖D 6= ‖·‖1,

(ii)

E(U2|U > u, V > v)

= −
2
3u

3 + u2 (u+ ‖(u, v)‖D) + v3
∫ u/v

0

∫ u/v
0 ‖(max(t1, t2), 1)‖D dt1 dt2

‖(u, v)‖1 − ‖(u, v)‖D
,

(iii)

E(UV |U > u, V > v) =−
∫ 0
v

∫ 0
u ‖(t1, t2)‖D dt1 dt2 + v3

∫ u/v
0 ‖(t, 1)‖D dt

‖(u, v)‖1 − ‖(u, v)‖D

− u3
∫ v/u

0 ‖(1, t)‖D dt+ uv ‖(u, v)‖D
‖(u, v)‖1 − ‖(u, v)‖D

.
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Note that the case ‖·‖D = ‖·‖1 has to be treated with caution. It represents the case
of uniform distribution on the line {(x, y) : x, y ≤ 0, x+ y = −1}, which means that no
observations fall in any rectangle [u, 0]× [v, 0], u+ v ≥ −1, cf. Falk et al. (2011).

Proof of Lemma 3.20. (i) The equation P (U > u, V > v) = oo (u, v) ooD is immediate
from the inclusion-exclusion principle. Furthermore, we have

P (U > u, V > v) = 1− P (U ≤ u)− P (V ≤ v) + P (U ≤ u, V ≤ v)

= 1− (1 + u)− (1 + v) + 1− ‖(u, v)‖D
= ‖(u, v)‖1 − ‖(u, v)‖D .

(ii) We obtain by Fubini’s theorem and elementary computations

E
(
1{U>u,V >v}U

2
)

=

∫
[u,0]×[v,0]

x2 (P ∗ (U, V ))(d(x, y))

=

∫
[u,0]×[v,0]

(∫ 0

u

∫ 0

u
1[x,0](t1) · 1[x,0](t2) dt1 dt2

)
(P ∗ (U, V ))(d(x, y))

=

∫ 0

u

∫ 0

u

(∫
[u,0]×[v,0]

1[x,0](t1) · 1[x,0](t2) (P ∗ (U, V ))(d(x, y))

)
dt1 dt2

=

∫ 0

u

∫ 0

u

(∫
[u,min(t1,t2)]×[v,0]

(P ∗ (U, V ))(d(x, y))

)
dt1 dt2

=

∫ 0

u

∫ 0

u
P (U ∈ [u,min(t1, t2)], V ∈ [v, 0]) dt1 dt2

=

∫ 0

u

∫ 0

u
P (U ≤ min(t1, t2)) dt1 dt2 −

∫ 0

u

∫ 0

u
P (U ≤ u) dt1 dt2

+

∫ 0

u

∫ 0

u
P (U ≤ u, V ≤ v) dt1 dt2 −

∫ 0

u

∫ 0

u
P (U ≤ min(t1, t2), V ≤ v) dt1 dt2

=

∫ 0

u

∫ 0

u
1− ‖(t1, t2)‖∞ dt1 dt2 − u2 (1 + u)

+ u2 (1− ‖(u, v)‖D)−
∫ 0

u

∫ 0

u
1− ‖(min(t1, t2), v)‖D dt1 dt2

= −2

3
u3 − u2 (u+ ‖(u, v)‖D) +

∫ 0

u

∫ 0

u
‖(min(t1, t2), v)‖D dt1 dt2

= −2

3
u3 − u2 (u+ ‖(u, v)‖D)− v3

∫ u/v

0

∫ u/v

0
‖(max(r1, r2), 1)‖D dr1 dr2,
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where we substitute r1 = t1/v and r2 = t2/v in the last equality. Together with
assertion (i), the statement is proven.

(iii) Similar arguments as in the proof of (ii) yield

E
(
1{U>u,V >v}UV

)
=

∫ 0

v

∫ 0

u
P (U ∈ [u, t1], V ∈ [v, t2]) dt1 dt2

=

∫ 0

v

∫ 0

u
P (U ≤ t1, V ≤ t2) dt1 dt2 −

∫ 0

v

∫ 0

u
P (U ≤ t1, V ≤ v) dt1 dt2

−
∫ 0

v

∫ 0

u
P (U ≤ u, V ≤ t2) dt1 dt2 +

∫ 0

v

∫ 0

u
P (U ≤ u, V ≤ v) dt1 dt2

= −
∫ 0

v

∫ 0

u
‖(t1, t2)‖D dt1 dt2 +

∫ 0

u

∫ 0

v
‖(t1, v)‖D dt2 dt1

+

∫ 0

v

∫ 0

u
‖(u, t2)‖D dt1 dt2 −

∫ 0

v

∫ 0

u
‖(u, v)‖D dt1 dt2

= −
∫ 0

v

∫ 0

u
‖(t1, t2)‖D dt1 dt2 − v

∫ 0

u
‖(t1, v)‖D dt1

− u
∫ 0

v
‖(u, t2)‖D dt2 − uv ‖(u, v)‖D

= −
∫ 0

v

∫ 0

u
‖(t1, t2)‖D dt1 dt2 − v3

∫ u/v

0
‖(r, 1)‖D dr

− u3

∫ v/u

0
‖(1, r)‖D dr − uv ‖(u, v)‖D .

Example 3.21. In case of total dependence of U and V (i. e. ‖·‖D = ‖·‖∞) and u =

v =: c, the formulas in Lemma 3.20 (ii) and (iii) become

E(U2|U > u, V > v) = −
2
3c

3 + c2(c− c) + c3

−c =
5

3
c2

and

E(UV |U > c, V > c) = −−
∫ 0
c

∫ 0
c min(s, t) ds dt+ c3 + c3 − c3

−c =
5

3
c2.

We now return to the discretized Version V̂ of an SGPP V . Again, we have to show
that for every s ∈ [0, 1] the random vector (Vs, V̂s) follows a standard GPD. The exact
same arguments as in Lemma 3.5 provide the bivariate df of this random vector, at least
in the upper tail.
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Lemma 3.22. Let V = (Vs)s∈[0,1]k be an SGPP with generator Z = (Zs)s∈[0,1]k . Denote
by V̂ = (V̂s)s∈[0,1]k its discretized version with grid {s1, . . . , sd} and generator Ẑ =

(Ẑs)s∈[0,1]. Then (Vs, V̂s) defines a bivariate standard GPD random vector for every
s ∈ [0, 1]. Its df is given by

P (Vs ≤ x, V̂s ≤ y) = 1− ‖(x, y)‖D̂s ,

for x, y close enough to zero, where ‖·‖D̂s is the D-norm generated by (Zs, Ẑs), see (3.9).

Lemma 3.20 and Lemma 3.22 allow the calculation of the mean squared error of V̂s,
under the condition that Vs and V̂s attain values that are close enough to zero, such that
there is a representation of the df of (Vs, V̂s) available in this area. In particular, we can
consider the star-discretized version and show that in this case, the mean squared error
converges to zero.
Suppose V is an SGPP with sample paths in C ([0, 1]) with generator Z and choose,

as in Section 3.2, a sequence of grids Gd of the interval [0, 1] with its fineness converging
to zero as d increases. Denote by V̂

(d)
, d ∈ N, the sequence of star-dicretized versions

of V with grid Gd, and by Ẑ
(d)

, d ∈ N, their generators. Denote further by ‖·‖
D̂

(d)
s

the

D-norm generated by (Zs, Ẑ
(d)
s ), s ∈ [0, 1], d ∈ N.

Theorem 3.23. Let V and V̂
(d)

, d ∈ N, be as above. Suppose ‖·‖
D̂

(d)
s
6= ‖·‖1 for d large

enough. Then we have for c close enough to zero

E

((
Vs − V̂ (d)

s

)2 ∣∣∣Vs > c, V̂ (d)
s > c

)
→d→∞ 0.

Proof. According to Lemma 3.22, the random vector
(
Vs, V̂

(d)
s

)
, d ∈ N, is a standard

GPD random vector with pertaining D-norm ‖·‖
D̂

(d)
s
. We have already shown in the

proof of Theorem 3.14 that ‖·‖
D̂

(d)
s
→d→∞ ‖·‖∞ pointwise. Substituting ‖·‖D by ‖·‖1 in

the numerators of Lemma 3.20 (ii) and (iii) leads to finite integrals exclusively. Hence,
all these integrands are dominated by an integrable function, which is why we can apply
the dominated convergence theorem in each of these integrals. Therefore, we obtain by
the calculations in Example 3.21 for all s ∈ [0, 1]

E

((
Vs − V̂ (d)

s

)2 ∣∣∣Vs > c, V̂ (d)
s > c

)
= E

(
V 2
s

∣∣Vs > c, V̂ (d)
s > c

)
− 2E

(
VsV̂

(d)
s

∣∣Vs > c, V̂ (d)
s > c

)
+ E

((
V̂ (d)
s

)2 ∣∣∣Vs > c, V̂ (d)
s > c

)
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→d→∞
10

3
c2 − 10

3
c2 = 0.

3.4 Generalized max-linear models in arbitrary dimension

Although introduced quite generally with the domain [0, 1]k, k ∈ N, the only concrete
example of generalized max-linear models so far is based on the star-discretized versions,
and restricted to the case k = 1. In this section, we will give possible extensions to higher-
dimensional domains. As a start, we give a concrete example of an interpolating mul-
tivariate generalized max-linear model. As before, in the entire section η = (ηs)s∈[0,1]k

is an SMSP with D-norm ‖·‖D generated by Z = (Zs)s∈[0,1]k . If s1, . . . , sd are pair-
wise different points in [0, 1]k, the norm ‖·‖Ds1,...,sd denotes the D-norm generated by
(Zs1 , . . . , Zsd).

Example 3.24. Choose pairwise different points s1, . . . , sd ∈ [0, 1]k and an arbitrary
norm ‖·‖ on Rk. Define

h̃i(s) :=
minj 6=i (‖s− sj‖)
minj 6=i (‖si − sj‖)

, s ∈ [0, 1]k, i = 1, . . . , d.

In order to normalize, put

g̃i(s) :=
h̃i(s)∥∥∥(h̃1(s), . . . , h̃d(s))

∥∥∥
Ds1,...,sd

, s ∈ [0, 1]k, i = 1, . . . , d.

These functions g̃i are well-defined since the denominator never vanishes: Suppose there is
s ∈ [0, 1]k with h̃1(s) = · · · = h̃d(s) = 0. Then minj 6=i (‖s− sj‖) = 0 for all i = 1, . . . , d.
Now fix i ∈ {1, . . . , d}. There is j 6= i with s = sj . But on the other hand, we have
also mink 6=j (‖s− sk‖) = 0 which implies that there is k 6= j with s = sk = sj which is a
contradiction.
Clearly, gi, i = 1, . . . , d, are functions in C̄+

(
[0, 1]k

)
that satisfy condition (3.1) and

(3.5). Thus, we have found an interpolating generalized max-linear model on C
(
[0, 1]k

)
.

A generalized max-linear model based on kernels

Unfortunately, the model from Example 3.24 is difficult to handle in terms of convergence
to the original SMSP. Alternatively, one can consider the following model, which is at
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least ’close’ to an interpolating generalized max-linear model. It was first introduced in
Falk et al. (2015) and will be intensified here.
Let K : [0,∞)→ [0, 1] be a continuous and strictly monotonically decreasing function

(kernel) with the two properties

K(0) = 1, lim
x→∞

K(ax)

K(bx)
= 0, 0 ≤ b < a. (3.17)

The exponential kernel Ke(x) = exp(−x), x ≥ 0, is a typical example. Choose an
arbitrary norm ‖·‖ on Rk and a grid of pairwise different points {s1, . . . , sd} in [0, 1]k.
Put for i = 1, . . . , d and the bandwidth h > 0

gi,h(s) :=
K(‖s− si‖ /h)

‖(K(‖s− s1‖ /h), . . . ,K(‖s− sd‖ /h))‖Ds1,...,sd
, s ∈ [0, 1]k.

Define for i = 1, . . . , d

N(si) :=
{
s ∈ [0, 1]k : ‖s− si‖ ≤ ‖s− sj‖ , j 6= i

}
, (3.18)

which is the set of those points s ∈ [0, 1]k that are closest to the grid point si.

Lemma 3.25. For arbitrary s ∈ [0, 1]k and i = 1, . . . , d,

gi,h(s)→h↓0

1, if s = si

0, if s 6∈ N(si)

as well as gi,h(s) ≤ 1.

Proof. The convergence gi,h(si)→h↓0 1 follows from the fact that K(0) = 1 and that the
D-norm is standardized. The fact that an arbitrary D-norm is bounded below by the
sup-norm together with the monotonicity of K implies for s ∈ [0, 1]k

gi,h(s) ≤ K (‖s− si‖ /h)

max1≤j≤dK (‖s− sj‖ /h)
=

K (‖s− si‖ /h)

K (min1≤j≤d ‖s− sj‖ /h)
≤ 1.

Note that K (‖s− si‖ /h) /K (min1≤j≤d ‖s− sj‖ /h)→h↓0 0 if s 6∈ N(si) by the required
growth condition on the kernel K in (3.17).

The above Lemma shows in particular gi,h(sj) →h↓0 δij which is close to condition
(3.5). Obviously, the functions gi,h are constructed in such a way that condition (3.1)
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holds, too. Therefore, we obtain the kernel-based generalized max-linear model

η̂s,h = max
i=1,...,d

ηsi
gi,h(s)

, s ∈ [0, 1]k,

which does not interpolate (ηs1 , . . . , ηsd) exactly, but η̂si,h converges to ηsi as h ↓ 0.
Note that the limit functions limh↓0 gi,h are not necessarily continuous: For instance,
there may be s0 ∈ [0, 1]k with ‖s0 − s1‖ = · · · = ‖s0 − sd‖. Then s0 ∈ ∂N(s1) and
limh↓0 g1,h(s0) = 1/ ‖(1, . . . , 1)‖Ds1,...,sd , but limh↓0 g1,h(s) = 0 for all s /∈ N(s1) due to
Lemma 3.25.
Next we investigate a sequence of kernel-based generalized max-linear models, where

the diameter of the grids decreases. We analyze under which conditions the integrated
mean squared error of (η̂s,h)s∈[0,1]k converges to zero. We start with a general result on
generator processes.

Lemma 3.26. Let (Zs)s∈[0,1]k be a generator of an SMSP and εn, n ∈ N, be a null
sequence. Then

E

(
sup

‖s−t‖≤εn
|Zs − Zt|

)
→n→∞ 0,

where ‖·‖ is an arbitrary norm on Rk.

Proof. The paths of (Zs)s∈[0,1]k are continuous, so they are also uniformly continuous.
Therefore, sup‖s−t‖≤εn |Zs − Zt| →n→∞ 0. Furthermore,

E

(
sup

‖s−t‖≤εn
|Zs − Zt|

)
≤ 2E

(
sup

s∈[0,1]k
Zs

)
<∞.

The assertion now follows from the dominated convergence theorem.

Let Gn :=
{
s1,n, . . . , sd(n),n

}
, n ∈ N, be a set of distinct points in [0, 1]k with the

property
∀n ∈ N ∀s ∈ [0, 1]k ∃ si,n ∈ Gn : ‖s− si,n‖ ≤ εn,

where εn →n→∞ 0. Define, for instance, Gn in such a way that

εn := max
i=1,...,d

sup
s,t∈N(si,n)

‖s− t‖ →n→∞ 0,

with N(si,n) as defined in (3.18). Clearly, d := d(n)→n→∞ ∞. Denote by ‖·‖
D

(n)
1,...,d

the

D-norm pertaining to ηs1,n, . . . , ηsd,n . Let further η̂n = (η̂s,n)s∈[0,1]k be the kernel-based
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discretized version of η with grid Gn, that is,

η̂s,n = max
i=1,...,d

ηsi,n
gi,n(s)

, s ∈ [0, 1]k,

where for i = 1, . . . , d

gi,n(s) =
K(‖s− si,n‖ /hn)

‖(K(‖s− s1,n‖ /hn), . . . ,K(‖s− sd,n‖ /hn))‖
D

(n)
s1,...,sd

, s ∈ [0, 1]k,

where K : [0,∞)→ [0, 1] is the continuous and strictly decreasing kernel function satis-
fying condition (3.17) and hn, n ∈ N, is some positive sequence. We have already seen in
Lemma 3.25 that gi,n(s) ∈ [0, 1], s ∈ [0, 1]k, n ∈ N. Furthermore, we have the following
result.

Lemma 3.27. Choose s ∈ [0, 1]k. There is a sequence i(n), n ∈ N, such that s ∈⋂
n∈NN(si(n),n). Define gi(n),n and εn as above, n ∈ N. Then

lim
n→∞

gi(n),n(s) = 1,

if εn →n→∞ 0, hn →n→∞ 0, εn/hn →n→∞ ∞.

Proof. Let s ∈ [0, 1]k and choose a sequence i(n), n ∈ N, as above. Put for simplicity
si(n),n =: si,n and gi(n),n =: gi,n. We have

1 ≥ gi,n(s) =
K (‖s− si,n‖ /hn)

E
(
maxj=1,...,dK (‖s− sj,n‖ /hn)Zsj,n

)
≥
(
E
(

maxj:‖sj,n−s‖≥2εn K (‖s− sj,n‖ /hn)Zsj,n

)
K (‖s− si,n‖ /hn)

+
E
(

maxj:‖sj,n−s‖<2εn K (‖s− sj,n‖ /hn)Zsj,n

)
K (‖s− si,n‖ /hn)

)−1

=: (Ai,n(s) +Bi,n(s))−1.

From s ∈ N(si,n) we conclude ‖s− si,n‖ ≤ εn. Hence, we have due to the properties of
the kernel function K

0 ≤ Ai,n(s) ≤ K(2εn/hn)

K(εn/hn)
E

(
sup

s∈[0,1]k
Zs

)
→n→∞ 0,
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since εn/hn →n→∞ ∞ by assumption. Furthermore, s ∈ N(si,n) and the fact that K is
decreasing implies

max
j:‖sj,n−s‖<2εn

K (‖s− sj,n‖ /hn) = K (‖s− si,n‖ /hn) .

Thus,

1 ≤ Bi,n(s) =
1

K (‖s− si,n‖ /hn)

(
E

(
max

j:‖sj,n−s‖<2εn
K (‖s− sj,n‖ /hn)Zsj,n

− max
j:‖sj,n−s‖<2εn

K (‖s− sj,n‖ /hn)Zsi,n

))
+ 1

≤
E
(

maxj:‖sj,n−s‖<2εn K (‖s− sj,n‖ /hn)
∣∣Zsj,n − Zsi,n∣∣)

K (‖s− si,n‖ /hn)
+ 1

≤ E
(

max
j:‖sj,n−s‖<2εn

∣∣Zsj,n − Zsi,n∣∣)+ 1

≤ E
(

sup
‖r−t‖<3εn

|Zr − Zt|
)

+ 1

→n→∞ 1,

because of Lemma 3.26. Note that ‖sj,n − s‖ < 2εn and s ∈ N(si,n) imply
‖sj,n − si,n‖ < 3εn.

We have now gathered the tools to proof the convergence of the mean squared error
to zero.

Theorem 3.28. Define η̂n and εn as above, n ∈ N. Then for every s ∈ [0, 1]k

MSE (η̂s,n)→n→∞ 0,

and
IMSE (η̂s,n) :=

∫
[0,1]k

MSE (η̂s,n) ds→n→∞ 0,

if εn →n→∞ 0, hn →n→∞ 0, εn/hn →n→∞ ∞.

Proof. Denote by
Ẑs,n = max

i=1,...,d

(
gi,n(s)Zsi,n

)
, s ∈ [0, 1]k,
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the generator of η̂n. Choose s ∈ [0, 1]k and a sequence i := i(n), n ∈ N, such that
s ∈ ⋂n∈NN (si,n). We have by Lemma 3.8, Lemma 3.27 and the continuity of Z

MSE (η̂s,n) ≤ 6E
(∣∣∣Zs − Ẑs,n∣∣∣)

≤ 6E
(∣∣Zs − Zsi,n∣∣)+ 6E

(∣∣Zsi,n − gi,n(s)Zsi,n
∣∣)

+ 6E
(∣∣∣gi,n(s)Zsi,n − Ẑs,n

∣∣∣)
= 6E

(∣∣Zs − Zsi,n∣∣)+ 12 (1− gi,n(s))

→n→∞ 0.

Next we prove the convergence of the integrated mean squared error. The sets N(si,n),
as defined in (3.18), are typically not disjoint, but the intersections N(si,n) ∩ N(sj,n),
i 6= j, have Lebesgue measure zero on [0, 1]k. Clearly,

⋃d
i=1N(si,n) = [0, 1]k. Therefore,

applying Lemma 3.8 yields

IMSE (η̂s,n) =
d∑
i=1

∫
N(si,n)

MSE (η̂s,n) ds

≤ 6

d∑
i=1

∫
N(si,n)

E
(∣∣∣Zs − Ẑs,n∣∣∣) ds

≤ 6

( d∑
i=1

∫
N(si,n)

E (|Zs − Zsi,n|) ds

+
d∑
i=1

∫
N(si,n)

|1− gi,n(s)|E (Zsi,n) ds

+

d∑
i=1

∫
N(si,n)

E
(∣∣∣gi,n(s)Zsi,n − Ẑs,n

∣∣∣) ds

)
=: 6 (S1,n + S2,n + S3,n)

due to Lemma 3.8. From Lemma 3.26 we conclude

S1,n =

d∑
i=1

∫
N(si,n)

E
(∣∣Zs − Zsi,n∣∣) ds

≤
d∑
i=1

∫
N(si,n)

E

(
sup

‖r−t‖≤εn
|Zr − Zt|

)
ds
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=

∫
[0,1]k

E

(
sup

‖r−t‖≤εn
|Zr − Zt|

)
ds

= E

(
sup

‖r−t‖≤εn
|Zr − Zt|

)
→n→∞ 0.

Define

An :=
K(2εn/hn)

K(εn/hn)
E

(
sup

s∈[0,1]k
Zs

)
, Bn := E

(
sup

‖r−t‖<3εn

|Zr − Zt|
)

+ 1.

As we have seen in the proof of Lemma 3.27, we have for s ∈ N(si,n)

1 ≥ gi,n(s) ≥ (An +Bn)−1 → 1,

and therefore

S2,n =
d∑
i=1

∫
N(si,n)

(1− gi,n(s)) ds

≤
d∑
i=1

∫
N(si,n)

1− (An +Bn)−1 ds

=

∫
[0,1]k

1− (An +Bn)−1 ds

= 1− (An +Bn)−1

→n→∞ 0.

Lastly, we have by the same argument as above

S3,n =
d∑
i=1

∫
N(si,n)

E
(
Ẑs,n − gi,n(s)Zsi,n

)
ds = S2,n →n→∞ 0,

which completes the proof.

Discretized versions of copula processes

The last task in that chapter will be the transformation of the generalized max-linear
model to copula processes that are in a sense ’close’ to max-stable processes. In Section
2.2 we have dealt with copula processes U = (Us)s∈[0,1]k , i. e. with stochastic processes
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with continuous sample paths, such that each random variable Us is uniformly distributed
on the interval [0, 1]. We have also defined thatU is in the functional domain of attraction
of an SMSP η = (ηs)s∈[0,1]k , if

lim
n→∞

P (n (U − 1) ≤ f)n = P (η ≤ f) = exp (−‖f‖D) , f ∈ Ē−
(

[0, 1]k
)
. (3.19)

Define for any s ∈ [0, 1]k and n ∈ N

Y (n)
s := n

(
max
i=1,...,n

U (i)
s − 1

)
,

with U (1),U (2), . . . being independent copies of U . In the sense of (3.19), the process
Y (n) = (Y

(n)
s )s∈[0,1]k is close to the SMSP η for large values of n. Choose again pairwise

different points s1, . . . , sd ∈ [0, 1]k and functions g1, . . . , gd ∈ C̄+
(
[0, 1]k

)
with the proper-

ties (3.12) and (3.5). Condition (3.19) implies weak convergence of the finitedimensional
distributions of Y (n), i. e. (

Y (n)
s1 , . . . , Y (n)

sd

)
→D (ηs1 , . . . , ηsd) .

Just like before, we can define the discretized version Ŷ
(n)

= (Ŷ
(n)
s )s∈[0,1]k of Y (n) with

grid {s1, . . . , sd} and weight functions g1, . . . , gd to be

Ŷ (n)
s := max

i=1,...,d

Y
(n)
si

gi(s)
, s ∈ [0, 1]k.

Elementary calculations show that (3.19) implies

lim
n→∞

P
(
Ŷ (n) ≤ f

)
= P (η̂ ≤ f) , f ∈ Ē−

(
[0, 1]k

)
,

where η̂ is the discretized version of η as defined in (3.2). Also, it is not difficult to see
that for each s ∈ [0, 1]k, (

Y (n)
s , Ŷ (n)

s

)
→D (ηs, η̂s)

where (ηs, η̂s) is the standard max-stable random vector from Lemma 3.5. Now applying
the continuous mapping theorem, we obtain(

Y (n)
s − Ŷ (n)

s

)2
→D (ηs − η̂s)2.
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It remains to prove uniform integrability of the sequence on the left hand side in order
to obtain the next result.

Proposition 3.29. Let s ∈ [0, 1]k. Then

MSE
(
Ŷ (n)
s

)
= E

((
Y (n)
s − Ŷ (n)

s

)2
)
→n→∞ MSE (η̂s) .

Proof. Fix s ∈ [0, 1]k. It remains to show that the sequence X(n)
s :=

(
Y

(n)
s − Ŷ (n)

s

)2
is

uniformly integrable. A sufficient condition for uniform integrability is

sup
n∈N

E

((
X(n)
s

)2
)
<∞,

see Billingsley (1999, Section 3). Clearly, for every n ∈ N,

E

((
X(n)
s

)2
)
≤ E

((
Y (n)
s

)4
)

+ E

((
Ŷ (n)
s

)4
)
.

It is easy to verify that the random variable Y (n)
s has the density (1+x/n)n−1 on [−n, 0].

Therefore,

E

((
Y (n)
s

)4
)

=

∫ 0

−n
x4
(

1 +
x

n

)n−1
dx =

24n5(n− 1)!

(n+ 4)!
≤ 24.

Moreover, putting c := mini=1,...,d gi(s) > 0,

∣∣∣Ŷ (n)
s

∣∣∣ = min
i=1,...,d

∣∣∣Y (n)
si

∣∣∣
gi(s)

≤

∣∣∣Y (n)
s1

∣∣∣
c

,

and hence
E

((
Ŷ (n)
s

)4
)
≤ 24

c4
,

which completes the proof.

78



4 Higherdimensional records

Records among a sequence of iid random variables X(1), X(2), . . . on the real line have
been investigated extensively over the past decades, see e. g. the monographs of Galambos
(1987, Sections 6.2 and 6.3), Resnick (2008, Chapter 4) and Arnold et al. (1998). A record
is defined as a random variable X(n) such that X(n) > max(X(1), . . . , X(n−1)). Trying to
generalize this concept to the case of random vectors, or even stochastic processes with
continuous sample paths, the question arises how to define records in higher dimensions.
While in the univariate case the definition of a record is rather inherently determined,
the lack of a natural order in the case d ≥ 2 gives rise to many possible definitions of
records. In this chapter, we discuss different concepts of higherdimensional records and
investigate their stochastic behavior. For instance, we are interested in the probability
that a stochastic process X(n) is a record as n tends to infinity.
The concept of records is closely related to classical extreme value theory. A crucial

assumption for most of the results in this chapter will be that the observations are in
the domain of attraction of an MSP. This is where extreme value theory will step in.
Note that the domain-of-attraction condition is not very restrictive - it is actually not
an easy task to find distributions that are not in the domain of attraction of some MSP.
However, an example of such a distribution is given in Galambos (1987, Example 2.6.1).
Let X,X(1),X(2), . . . be an iid sequence of stochastic processes in C(S), where S

denotes an arbitrary compact metric space as throughout Chapter 2. During the whole
chapter, we assume that each univariate margin is continuously distributed in order to
prevent ties within the sequence, i. e. we want to make sure that

P (X(i)
s = X(j)

s ) = 0, i 6= j, s ∈ S.

We define
X(n) simple record :⇐⇒ X(n) 6≤ max

i=1,...,n−1
X(i)

and
X(n) complete record :⇐⇒ X(n) > max

i=1,...,n−1
X(i).
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Put further

πsn(X) := P
(
X(n) is a simple record

)
,

πcn(X) := P
(
X(n) is a complete record

)
.

By definition, the first observation X(1) is always a record, so we have πs1(X) =

πc1(X) = 1. In the univariate case, where X,X(1), X(2), . . . are simply random variables
on the real line, records are much easier to handle. It was Rényi (1962) who proved in
that case

πsn(X) = πcn(X) =
1

n
,

using a very simple combinatorial argument: There are n! permutations of the obser-
vations X(1), . . . , X(n), including (n− 1)! permutations where X(n) is on the last place.
Bearing in mind that X(1), . . . , X(n) are independent and continuously distributed yields
πsn(X) = πcn(X) = (n− 1)!/n! = 1/n.
As mentioned before, there are many detailed works on univariate records and record

times. A lot of results can be found in the monographs of Resnick (2008, Chapter 4),
Galambos (1987, Sections 6.2 and 6.3) and Arnold et al. (1998). Multivariate records
have not been discussed that extensively, yet there are also many papers available on
that subject. In the seminal paper of Goldie and Resnick (1989), for instance, it is shown
that under a domain-of-attraction condition, there are either finitely many or infinitely
many complete records almost surely among a sequence of iid bivariate random vectors,
depending on whether or not the max-stable limit distribution has independent margins.
Gnedin (1998) studies the asymptotic behavior of πcn(X) under the assumption that the
observations are iid normally distributed. In Hashorva and Hüsler (2005), the limit of
πcn(X) is investigated without assuming a certain dependence model for the margins.
Hwang and Tsai (2010) provide a central limit theorem for the number of simple records
within a sequence, albeit they make strong conditions on the dependence structure within
the components by assuming the observations are uniformly distributed on the d-variate
simplex. Similarly, Gnedin (2007) proves a central limit theorem for the number of
so-called chain records, under the assumption that the observations follow a product
distribution. In our work, we only touch on the asymptotic number of complete and
simple records in Corollary 4.2 and 4.13 below, merely assuming the underlying copula
process is in the domain of attraction of a max-stable process.
Unfortunately there is no consistent term for the different kinds of multivariate records,

and often, they are just referred to as records. Gnedin (2007) proposes the terms strong
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and weak records instead of complete and simple records. However, this might cause
confusion since there exists the same terminology in the univariate setup to distinguish
whether or not records of discrete observations are strictly greater than the previous
observations, cf. Vervaat (1973). Furthermore, complete and simple records are not the
only possible definition of multivariate records. For other suggestions, see e. g. Kałuszka
(1995) or Gnedin (2007). For more results on multivariate records, see e. g. Barndorff-
Nielsen and Sobel (1966), Gnedin (1993, 1994a,b), Goldie and Resnick (1995), Deuschel
and Zeitouni (1995), Arnold et al. (1998, Chapter 4) and Chen et al. (2012), as well as
the references therein.
A concept that is closely related to the field of complete records is the so-called con-

currency of extremes, which is due to Dombry et al. (2015). We say that X(1), . . . ,X(n)

are sample concurrent, if

max
i=1,...,n

X(i) = X(k) for some k ∈ {1, . . . , n}.

In that case, we call X(k) the champion among X(1), . . . ,X(n). We denote the sample
concurrence probability by pn(X) and obtain due to the iid property

pn(X) = P

(
n⋃
i=1

{
X(i) > max

1≤j 6=i≤n
X(j)

})
(4.1)

=
n∑
i=1

P

(
X(i) > max

1≤j 6=i≤n
X(j)

)
= nP

(
X(n) > max

j=1,...,n−1
X(j)

)
= nπcn(X).

Different to records, the concept of multivariate and functional champions is very recent.
It has been established in the work of Dombry et al. (2015). In their paper, they derive
the limit sample concurrence probability under iid random vectors X(1), . . . ,X(n) in Rd.
There are also some results on statistical inference in their work.
In Section 4.1, we generalize the limit sample concurrence probability which has been

derived in Dombry et al. (2015, Theorem 2) to the case of stochastic processes with
continuous sample paths on an arbitrary compact metric space S. Further, we compute
the conditional distribution of a champion, given that there actually is one. Section
4.2 deals with simple record times and the distribution of simple records, where all
considerations are restricted to the finite-dimensional case. Finally, we will specify simple
records in Section 4.3 in order to get a better understanding of the evolution of the
componentwise maxima max

(
X(1), . . . ,X(n)

)
as n increases.
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4.1 The functional extremal concurrence probability

The aim of this section is to investigate the limit behavior of the sample concurrence
probability. In Dombry et al. (2015), it is shown that the sample concurrence probability
pn(X) of a random vector X converges, provided that X has continuously distributed
margins and lies in the domain of attraction of a max-stable random vector. We generalize
this assertion to stochastic process with continuous sample paths on a compact metric
space S.
We start with a stochastic process X = (Xs)s∈S , such that Fs(x) := P (Xs ≤ x),

x ∈ R, is continuous on R for each s ∈ S. Then the process (Fs(Xs))s∈S is a copula
process, meaning that it has continuous sample paths and the univariate margins are
uniformly distributed on (0, 1). Since continuity of the df Fs, s ∈ S, is assumed, we have

P (Xs > Ys) = P (Fs(Xs) > Fs(Ys)) , s ∈ S.

if Y = (Ys)s∈S is an independent copy of X. If Fs is strictly monotonically increasing
in addition, we even have

P (X > Y ) = P (Fs(Xs) > Fs(Ys), s ∈ S). (4.2)

Note that in the multivariate case S = {1, . . . , d}, (4.2) is still valid even if the strict
monotonicity of the marginal df is omitted. Hence, dealing with records, it is reasonable
to pay particular attention to the case where the observations follow a copula process. If
a copula process U is in the domain of attraction of an MSP η (U ∈ D(η)), i. e.

n

(
max
i=1,...,n

U (i) − 1

)
→D η, (2.23)

then it is clear from the univariate margins that η is necessarily an SMSP. Besides the
continuity of the univariate margins, (2.23) will be the crucial assumption in the following.
The SMSP η = (ηs)s∈S satisfies P (η ≤ f) = exp (−‖f‖D), f ∈ Ē−(S), for some D-norm

‖f‖D = E

(
sup
s∈S
|f(s)|Zs

)
, f ∈ E(S),
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with generator Z = (Zs)s∈S . In Section 2.2, we introduced the dual D-norm function
oo · ooD corresponding to ‖·‖D via

oo f ooD = E

(
inf
s∈S
|f(s)|Zs

)
, f ∈ E(S).

In Proposition 2.29, we have seen that assuming U ∈ D(η) for some SMSP with D-norm
‖·‖D, the value ‖f‖D arises as the limit of nP (U 6≤ 1 + f/n), as n → ∞, whereas
oo f ooD is the limit of nP (U > 1 + f/n), as n → ∞, f ∈ Ē−(S). This is a first hint
on what role ‖·‖D and oo · ooD will play in the world of records: It seems that ‖·‖D is
related to simple records, whereas oo · ooD corresponds to the case of complete records.
The case of simple records is postponed to Section 4.2. In this section, we start with the
limit sample concurrence probability, and hence by (4.1) with complete records. For the
finitedimensional version of the following theorem, see Dombry et al. (2015, Theorems 1
and 2), or, in a different version, Hashorva and Hüsler (2005, Theorem 2.1).

Theorem 4.1. Let U (1),U (2), . . . be independent copies of a copula process U , satisfying
U ∈ D(η), where η is an SMSP with corresponding D-norm ‖·‖D. Then

pn(U) = nπcn(U)→n→∞ E (oo η ooD) ,

where oo · ooD is the dual D-norm function corresponding to ‖·‖D.

We call E (oo η ooD) the extremal concurrence probability corresponding to ‖·‖D, in accor-
dance with the terminology in Dombry et al. (2015). As it is shown therein, the extremal
concurrence probability has the following interpretation. Remember the Poisson point
process representation (2.18) of the simple MSP ξ := −1/η, that is

ξ =D sup
k∈N

ϑ(k),

where ϑ(k) = ζ(k)V (k), k ∈ N, and
((
ζ(k),V (k)

))
k∈N are the points of PPP(ν) on

(0,∞] × C̄+
1 (S), with ν being the exponent measure, see (2.16). The extremal concur-

rence probability is now precisely the probability that only one function ϑ(k) contributes
to the supremum in (2.18), see Dombry et al. (2015, Theorem 1) and also Remark 4.28
below. The concept of extremal concurrence is embedded in the more general framework
of extremal hitting scenarios, which will be investigated in Section 4.3.
Note that one has to distinguish between E (oo η ooD) and E (infs∈S |ηs|Zs) in general.

However, if η and Z are independent, both terms coincide, cf. Lemma 4.3 below.
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Proof of Theorem 4.1. Let η be an SMSP with D-norm ‖·‖D and put

M (n) := n max
i=1,...,n−1

(
U (i) − 1

)
→D η

due to (2.23). Conditioning on M (n) = f yields

nπcn(U) =

∫
C−(S)

nP (n(U − 1) > f)
(
P ∗M (n)

)
(df)

=:

∫
C−(S)

Gn(f)
(
P ∗M (n)

)
(df),

since M (n) and U are independent. Setting Xn := Gn ◦M (n), we need to show

nπcn(U) = E(Xn)→n→∞= E (oo η ooD) .

It is enough to verify (Billingsley (1968, p. 32)):

(i) Xn →D oo η ooD.

(ii) There is ε > 0 with supn∈NE
(
|Xn|1+ε

)
<∞.

Note that (ii) implies the uniform integrability of the sequence (Xn)n∈N.
We first show (i). Let fn, f ∈ C−(S) with ‖fn − f‖∞ →n→∞ 0. Choose ε > 0. There

exists N ∈ N such that f − ε ≤ fn ≤ f + ε for all n ≥ N . Clearly, for such n,

Gn(f − ε) ≥ Gn(fn) ≥ Gn(f + ε).

It has been shown in Proposition 2.29 that Gn(f ± ε)→n→∞ oo f ± ε ooD, which yields

oo f − ε ooD ≥ lim
n→∞

Gn(fn) ≥ oo f + ε ooD.

Letting ε ↓ 0, we obtain oo f ± ε ooD → oo f ooD by the monotone convergence theorem, and
hence Gn(fn)→n→∞ oo f ooD. Now noticing that M (n) →D η, the assertion is immediate
from the extended continuous mapping theorem, see cf. Billingsley (1968, Theorem 5.5).
Now we proof (ii). Elementary calculations show that for fixed s0 ∈ S and all n ≥ 2

E
(
X2
n

)
=

∫
C−(S)

n2P (n(U − 1) > f)2
(
P ∗M (n)

)
(df)

≤
∫
C−(S)

n2P (n (Us0 − 1) > f(s0))2
(
P ∗M (n)

)
(df)
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=

∫
C−(S)

f(s0)2
(
P ∗M (n)

)
(df)

= E

((
M (n)
s0

)2
)

=
2n

n+ 1
≤ 2.

To verify the second to last equality, check thatM (n)
s0 is a random variable with Lebesgue

density h(x) = (n− 1)/n · (1 + x/n)n−2, x ∈ [−n, 0].

Corollary 4.2. Denote by Nc(n) :=
∑n

i=1 1{X(i)>max1≤j<iX(j)} the number of complete

records among X(1), . . . ,X(n). Then

E(Nc(n))

log n
→n→∞ E (oo η ooD) .

Proof. The assertion follows from Theorem 4.1 and the fact that
(∑n

i=1
ai
i

)
/ log n

→n→∞ a, if (an)n∈N is some real-valued sequence with an →n→∞ a.

The following lemma provides an alternative representation for the extremal concur-
rence probability.

Lemma 4.3. Let η = (ηs)s∈S be an SMSP with D-norm ‖·‖D generated by Z = (Zs)s∈S,
and f ∈ Ē−(S). Then

(i)
E (oo η ooD) = E

(
‖1/Z‖−1

D 1{Z>0}

)
.

(ii)

E (oomax(η, f) ooD) =

= E

(
(‖1/Z‖D)−1

(
1− exp

(
‖1/Z‖D sup

s∈S
(f(s)Zs)

))
1{Z>0}

)
.

Proof. Without loss of generality, choose a generator Z of ‖·‖D which is independent of
η. Then

E

(
inf
s∈S
|ηs|Zs

)
=

∫
C̄−(S)

oo f ooD (P ∗ η)(df) = E (oo η ooD) .

Suppose P (Z > 0) = 1 for ease of notation. Fubini’s theorem and the fact that η and
Z are independent, entail

E

(
inf
s∈S

(|ηs|Zs)
)

=

∫ ∞
0

P

(
inf
s∈S

(|ηs|Zs) > t

)
dt
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=

∫ ∞
0

P (ηs < −t/Zs, s ∈ S) dt

= E

(∫ ∞
0

exp (−t ‖1/Z‖D) dt

)
= E

(
(‖1/Z‖D)−1

∫ ∞
0

exp (−t) dt

)
,

which is (i). Assertion (ii) can be shown by similar arguments: Assuming P (Z > 0) = 1,
we have for f ∈ Ē−(S)

E

(
inf
s∈S

(|max(ηs, f(s))|Zs)
)

=

∫ ∞
0

P

(
inf
s∈S

(|max(ηs, f(s))|Zs) > t

)
dt

=

∫ ∞
0

∫
C̄−(S)

P (|ηs| z(s) > t, |f(s)| z(s) > t, s ∈ S) (P ∗Z)(dz) dt

=

∫
C̄−(S)

∫ infs∈S |f(s)|z(s)

0
P

(
ηs < −

t

z(s)
, s ∈ S

)
dt (P ∗Z)(dz)

=

∫
C̄−(S)

∫ infs∈S |f(s)|z(s)

0
exp (−t ‖(1/z)‖D) dt (P ∗Z)(dz)

=

∫
C̄−(S)

(
1− exp (− infs∈S (|f(s)| z(s)) ‖(1/z)‖D)

‖(1/z)‖D

)
(P ∗Z)(dz)

= E
(

(‖1/Z‖D)−1
)
− E

(
(‖1/Z‖D)−1 exp

(
‖1/Z‖D inf

s∈S
(|f(s)|Zs)

))
.

Example 4.4 (Independence and perfect dependence). A generator of the special D-
norm ‖·‖D = ‖·‖∞, which characterizes the complete dependence of the univariate mar-
gins of η, is given by the constant Z ≡ 1. In that case, Theorem 4.1 shows that the
extremal concurrence probability is one, i. e. pn(U) = nπcn(U) →n→∞ 1. This is not at
all surprising: in the univariate context, where X(1), . . . , X(n) are random variables on
the real line, there clearly exists a champion with probability one - it is the maximum of
X(1), . . . , X(n).
In contrast to that, we have

E
(

(‖1/Z‖D)−1
1{Z>0}

)
= 0 ⇐⇒ inf

s∈S
Zs = 0 a. s. (4.3)
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In particular, this is the case when at least two components ηs, ηt, s 6= t, are independent,
see the discussion after Definition 2.20.

Example 4.5 (Bernoulli model). Consider a standard max-stable random vector η ∈ Rd

with corresponding D-norm ‖·‖Bβ , β ∈ (0, 1], known from Example 2.14. The generator
constant is given by

‖1‖Bβ =
1− (1− β)d

β
.

From the general equality

E (oo η̃ oo∞) =

∫ ∞
0

P

(
min

i=1,...,d
|η̃i| > t

)
dt

=

∫ ∞
0

P (η̃i < −t, i = 1, . . . , d) dt

=

∫ ∞
0

exp (−t ‖1‖D) dt

= 1/‖1‖D,

where η̃ is some standard max-stable random vector with D-norm ‖·‖D, we conclude

E
(
oo η ooBβ

)
=

∑
∅6=T⊆{1,...,d}

β|T |−1(1− β)d−|T |E (oo ηT oo∞)

=
d∑

k=1

(
d

k

)
βk

(1− β)d−k

1− (1− β)k
.

For another example, namely the logistic model, we refer to Example 4.14 below.

Remark 4.6. (i) Theorem 4.1 implies that the extremal concurrence probability, just
like the dual D-norm function, does not depend on the choice of Z, but only on
‖·‖D.

(ii) In the preceding theorem, we can replace U ,U (1),U (2), . . . by a sequence of iid
stochastic processes X,X(1),X(2), . . . whose univariate marginal df Fs(x) =

P (Xs ≤ x), s ∈ S, are continuous and strictly monotonically increasing on their
support. Condition (2.23) will then have to apply to the copula process (Fs(Xs))s∈S .
In that case,

nP

(
X > max

i=1,...,n−1
X(i)

)
→n→∞ E

(
(‖1/Z‖D)−1

1{Z>0}

)
,
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where Z is a generator of the D-norm corresponding to the limit SMSP η in (2.23).
Hence, the probability that there is a champion among X(1), . . . ,X(n) does not
depend on the univariate margins, but only on the copula process of X.

The above remark shows that we do not have to limit our considerations to copula
processes. If, for instance, X is an MSP itself with univariate marginal distributions Gs,
s ∈ S, then η := (log (Gs(Xs)))s∈S is an SMSP. Applying the max-stability of η, we
obtain

πcn(X) = πcn(η) = P

(
η > max

i=1,...,n−1
η(i)

)
= P

(
(n− 1)η > η(1)

)
=

∫
C̄−(S)

P
(

(n− 1)f > η(1)
)

(P ∗ η)(df)

=

∫
C̄−(S)

exp (−(n− 1) ‖f‖D) (P ∗ η)(df)

= E (exp (−(n− 1) ‖η‖D)) ,

where ‖·‖D is the D-norm corresponding to η, and η(1),η(2), . . . are iid copies of η.
Having established the functional extremal concurrence probability, we can now derive

the limit survival function of a complete record. We will have to restrict to the case
where P (Z > 0) > 0, which is equivalent to the extremal concurrence probability being
positive, cf. (4.3).
Just like before, we consider the copula process case first.

Proposition 4.7. In addition to the assumptions of Theorem 4.1, suppose that the gen-
erator fulfills P (Z > 0) > 0. Then, for f ∈ Ē−(S),

P
(
n
(
U (n) − 1

)
> f

∣∣∣U (n) is a complete record
)

=: H̄n(f)→n→∞ H̄D(f) :=
E (oomax(η, f) ooD)

E (oo η ooD)
,

where η = (ηs)s∈S is an SMSP with corresponding D-norm ‖·‖D.

Note that we avoid division by zero in the preceding formula since we assume P (Z >

0) > 0.
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Proof of Proposition 4.7. For the ease of notation, we write πcn instead of πcn(U). We
have

H̄n(f) =
Πn(f)

πcn
:=

P

(
n(U − 1) > f,U > max

i=1,...,n−1
U (i)

)
P

(
U > max

i=1,...,n−1
U (i)

) .

By Theorem 4.1, it remains to show that for each f ∈ Ē−(S)

nΠn(f) = nP
(
n(U − 1) > max

(
f,M (n)

))
→n→∞ E (oomax(η, f) ooD) ,

whereM (n) := nmaxi=1,...,n−1

(
U (i) − 1

)
. This can be done by repeating the arguments

of the proof of Theorem 4.1.

Note that by Lemma 4.3, another representation of H̄D(f) is given by

H̄D(f) = 1−
E

(
(‖1/Z‖D)−1 exp

(
‖1/Z‖D sup

s∈S
(f(s)Zs)

)
1{Z>0}

)
E
(

(‖1/Z‖D)−1
1{Z>0}

) , (4.4)

where Z is a generator of ‖·‖D.

Example 4.8. Remember the the Marshall-Olkin D-norm from Example 2.10, i. e.

‖x‖Mλ
= λ ‖x‖∞ + (1− λ) ‖x‖1 , x ∈ Rd, λ ∈ (0, 1).

A generator of ‖·‖Mλ
is given by Z = X1+ (1−X)Z̃, where Z̃ is a generator of ‖·‖1 (cf.

Example 2.9), and X is a Bernoulli distributed random variable with P (X = 1) = λ,
independent of Z̃. Obviously, P (Z > 0, X = 0) = 0. On the other hand, X = 1 implies
Z = 1. Thus, we obtain by (4.4) for all x ≤ 0

H̄Mλ
(x) = 1−

E

((
‖1/Z‖Mλ

)−1
exp

(
‖1/Z‖Mλ

max
i=1,...,d

(xiZi)

)
1{Z>0,X=1}

)
E

((
‖1/Z‖Mλ

)−1
1{Z>0,X=1}

)
= 1− exp

(
‖1‖Mλ

max
i=1,...,d

xi

)
.

It is easy to see that H̄Mλ
is the survival function of the max-stable random vector

(η, . . . , η)/ ‖1‖Mλ
, where η is standard negative exponentially distributed and ‖1‖Mλ

=
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λ + d(1 − λ). Clearly, this random vector has complete dependent and identically dis-
tributed univariate margins.

In order to generalize Proposition 4.7 to stochastic processes in C(S) with arbitrary
margins, the following lemma is needed.

Lemma 4.9. Let fn, n ∈ N, be a sequence of functions in Ē−(S) converging uniformly
to f ∈ Ē−(S). Then, under the conditions and notation of Proposition 4.7,

H̄n(fn) =
Πn(fn)

πcn
→n→∞ H̄D(f).

Proof. Let ε > 0. Due to the uniform convergence of fn, there exists N ∈ N such that
f − ε ≤ fn ≤ f + ε for n ≥ N . Assume without loss of generality f + ε < 0, otherwise
consider min(f + ε, 0). Clearly, for such n,

Πn(f + ε) ≤ Πn(fn) ≤ Πn(f − ε).

Now with n→∞, Proposition 4.7 shows

E

(
inf
s∈S
|max (ηs, f(s)− ε)|Zs

)
≤ lim

n→∞
Πn(fn) ≤ E

(
inf
s∈S
|max (ηs, f(s) + ε)|Zs

)
.

Now check
inf
s∈S
|max (ηs, f(s)± ε)|Zs ≤ −ηs0Zs0 , s0 ∈ S,

and let ε ↓ 0. The assertion now follows from the dominated convergence theorem.

We are now ready to generalize Proposition 4.7 to stochastic processes in C(S) with
arbitrary univariate margins. Let X = (Xs)s∈S be a process in C(S) whose univariate
marginal df Fs(x) = P (Xs ≤ x), x ∈ R, s ∈ S, are continuous and strictly monotonically
increasing on their support. Let Y be an MSP with univariate marginal df Gs(x) =

P (Ys ≤ x), x ∈ R, s ∈ S. We conclude from de Haan and Lin (2001, Theorem 2.8)
that X is in the domain of attraction of Y (in the sense of (2.2)) iff the copula process
corresponding to X, i. e. U = (Us)s∈S = (Fs(Xs))s∈S , is in the domain of attraction of
the SMSP η = (ηs)s∈S =: (log(Gs(Ys)))s∈S and the univariate margins fulfill

Fs(cn(s)x+ dn(s))n →n→∞ Gs(x), x ∈ R, (4.5)

uniformly for s ∈ S and locally uniformly for x ∈ R, where cn ∈ C+(S), dn ∈ C(S),
n ∈ N, are the norming functions from (2.2).
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Corollary 4.10. Let Y be an MSP with univariate marginal df Gs, s ∈ S, and X(1),

X(2), . . . be independent copies of a process X ∈ D(Y ) in C(S). Let cn ∈ C+(S),
dn ∈ C(S), n ∈ N, be the norming functions from (2.2), and suppose the univariate
margins of X satisfy (4.5). Put

U = (Us)s∈S := (Fs(Xs))s∈S , η = (ηs)s∈S =: (log(Gs(Ys)))s∈S ,

and let ‖·‖D be the D-norm of η. Choose a generator Z = (Zs)s∈S of ‖·‖D and suppose
that P (Z > 0) > 0. Then, for f ∈ E(S) with infs∈S Gs(f(s)) > 0,

P

(
X(n) − dn

cn
> f

∣∣∣X(n) is a complete record

)
→n→∞ H̄D(ψ(f))

where ψ(f)(s) = log (Gs(f(s))), s ∈ S.

Proof. Denote by U (n) the copula process corresponding to X(n), n ∈ N. Taking loga-
rithms, (4.5) becomes

sup
s∈S
|n (Fs(cn(s)x+ dn(s))− 1)− log (Gs(x))| →n→∞ 0. (4.6)

It can be shown by elementary arguments that (4.6) is equivalent to

sup
s∈S
|ψn(f(s))− ψ(f(s))| :=

sup
s∈S
|n (Fs(cn(s)f(s) + dn(s))− 1)− log (Gs(f(s)))| →n→∞ 0

for each f ∈ E(S) with infs∈S Gs(f(s)) > 0. Hence, Lemma 4.9 and the strict mono-
tonicity of Fs entail

nP

(
X − dn
cn

> f,X > max
i=1,...,n−1

X(i)

)
= nP

(
n (Us − 1) > ψn(f(s)), s ∈ S, U > max

i=1,...,n−1
U (i)

)
→n→∞ E (oomax(η, ψ(f)) ooD) .
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4.2 Simple records for multivariate observations

Simple record probability

In the preceding section, we have investigated the (normalized) probability of a complete
record and in particular, its limit, the extremal concurrence probability. Now we will
repeat this procedure, this time for the simple record probability. Unlike in the previ-
ous section, where we were actually dealing with the probability of having a champion,
normalizing the record probability with the factor n does not yield an interpretation in
terms of a probability in the simple record case.
The following result is the equivalent of Theorem 4.1 and Proposition 4.7 in the context

of multivariate simple records. Let X,X(1),X(2), . . . be iid random vectors in Rd with
common continuous df F . Recall that X(n) is a simple record, if

X(n) 6≤ max
1≤i≤n−1

X(i),

and πsn(X) denotes the probability of X(n) being a simple record within the iid sequence
X(1),X(2), . . . As before, we initially focus on random vectors U = (U1, . . . , Ud) that
follow a copula C(u) = P (U ≤ u) on Rd, i. e. each univariate margin Ui is uniformly
distributed on (0, 1), i = 1, . . . , d.

Theorem 4.11. Let U (1),U (2), . . . be independent copies of a random vector U ∈ Rd

following a copula C. Suppose that C ∈ D(G) with G(x) = exp(−‖x‖D), x ≤ 0 ∈ Rd.
Let η be a random vector with df G. Then

nπsn(U)→n→∞ E (‖η‖D) ,

and

P
(
n(U (n) − 1) ≤ x

∣∣∣U (n) is a simple record
)

→n→∞ HD(x) :=
E(‖min(x,η)‖D)− ‖x‖D

E (‖η‖D)
, x ≤ 0 ∈ Rd.

In the one dimensional case d = 1 we obtain HD(x) = exp(x), x ≤ 0. Note, however,
that HD is not a probability df in general. Take, for instance, ‖·‖D = ‖·‖1, which is
the largest D-norm. In this case the components η1, . . . , ηd of η are independent and we
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obtain for x = (x1, . . . , xd) ≤ 0 ∈ Rd

H1(x) =

∑d
i=1

(
E(|min(xi, ηi)|)− |xi|

)
∑d

i=1E(|ηi|)
=

∑d
i=1 exp(xi)

d
.

This is not a probability df on (−∞, 0]d as, for example, H1(x) does not converge to zero
if only one component xi converges to −∞. Even more, choose a ≤ b ≤ 0 ∈ Rd. If H1

would define a probability measure Q on (−∞, 0]d, then the probability Q([a, b]) were
given by

∆b
aH1 =

∑
m∈{0,1}m

(−1)d−
∑

1≤j≤dmjH1

(
bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)
.

But elementary computations show that ∆b
aH1 = 0, i.e., Q is the null measure on

(−∞, 0]d.
Instead one can define Q on [−∞, 0]d\ {−∞} by putting for xi ≤ 0 and i = 1, . . . , d

Q
(
{−∞} × · · · × {−∞} × (−∞, xi]× {−∞} × · · · × {−∞}

)
:=

exp(xi)

d
.

Then Q has its complete mass on the set
{⋃d

i=1

(
{−∞}i−1 × (−∞, 0] × {−∞}d−i

)}
and

Q
(
×di=1[−∞, xi]\ {−∞}

)
= Q

(
d⋃
i=1

({−∞} × · · · × {−∞} × (−∞, xi]× {−∞} × · · · × {−∞})
)

=
d∑
i=1

Q ({−∞} × · · · × {−∞} × (−∞, xi]× {−∞} × · · · × {−∞})

=
1

d

d∑
i=1

exp(xi).

This approach is closely related to the formulation of the exponent measure theorem as
in Balkema and Resnick (1977) and Vatan (1985).
Take, on the other hand, ‖·‖D = ‖·‖∞, which is the least D-norm. In this case, the

components η1, . . . , ηd of η are completely dependent, i.e., η1 = η2 = · · · = ηd a.s. and,
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thus,

H∞(x) = E
(∥∥∥(min(xi, η1))di=1

∥∥∥
∞

)
− ‖x‖∞

= E (max(‖x‖∞ , η1))− ‖x‖∞
= exp(−‖x‖∞), x = (x1, . . . , xd) ≤ 0 ∈ Rd,

which is a max-stable distribution.

Proof of Theorem 4.11. Let Z be a generator of ‖·‖D, independent of η. Theorem 4.1,
the inclusion-exclusion principle and (2.13) yield

nπsn(U) = nP

(
U 6≤ max

i=1,...,n−1
U (i)

)

= nP

 d⋃
j=1

{
Uj > max

i=1,...,n−1
U

(i)
j

}
=

∑
∅6=T⊆{1,...,d}

(−1)|T |−1nP

(
Uj > max

i=1,...,n−1
U

(i)
j , j ∈ T

)

→n→∞
∑

∅6=T⊆{1,...,d}

(−1)|T |−1E

(
min
j∈T
|ηj |Zj

)

= E

(
max
j=1,...,d

|ηj |Zj
)

= E (‖η‖D) .

Similarly, one can use Proposition 4.7 in order to show for x ≤ 0 ∈ Rd

nP
(
n(U − 1) 6≤ min

(
x,M (n)

))
→n→∞ E (‖min(x,η)‖D) ,

whereM (n) := nmaxi=1,...,n−1

(
U (n−1)

)
→D η. In summary, taking into account (2.24),

we obtain

nP

(
U ≤ 1 +

x

n
,U 6≤ max

i=1,...,n−1
U (i)

)
= nP

(
n(U − 1) 6≤ min

(
x,M (n)

))
− nP

(
U 6≤ 1 +

x

n

)
→n→∞ E (‖min(x,η)‖D)− ‖x‖D .
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The arguments in the preceding proof can easily be repeated to extend Theorem 4.11
to the case of a general random vectors X ∈ Rd, whose df is in the domain of attraction
of a max-stable distribution. Denote by

CF (u) := F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
, u = (u1, . . . , ud) ∈ [0, 1]d,

the copula of a continuous df F on Rd, where Fi is the i-th univariate marginal df and
F−1
i its quantile function.

Corollary 4.12. Let X(1),X(2), . . . be independent copies of a rv X ∈ Rd, whose df F
is continuous and its copula CF satisfies CF ∈ D(G), G(x) = exp(−‖x‖D), x ≤ 0 ∈ Rd.
Assume in addition that each univariate margin Fi of F is in the domain of attraction
of a univariate max-stable distribution Gi, i.e., there are constants an,i > 0, bn,i ∈ R,
n ∈ N, such that for i = 1, . . . , d

n(1− F (an,ix+ bn,i))→n→∞ − log(Gi(x)) =: −ψi(x), Gi(x) > 0.

Define for all x = (x1, . . . , xd) with Gi(xi) > 0, i = 1, . . . , d,

ψ(x) := (ψ1(x1), . . . , ψd(xd)).

Then we obtain with an := (an,1, . . . , an,d), bn := (bn,1, . . . , bn,d)

P

(
X(n) − bn

an
≤ x

∣∣∣X(n) is a simple record

)
→n→∞ HD(ψ(x)).

Note that in the case d = 1

HD(ψ(x)) = exp(ψ(x)) = G(x), G(x) > 0.

Note, moreover, that the assumptions on the df F in the preceding theorem are equivalent
with the condition F ∈ D(G), where G is a d-dimensional max-stable df, together with
the condition that F is continuous.

Proof of Corollary 4.12. Assume the representation

X =
(
F−1

1 (U1), . . . , F−1
d (Ud)

)
=: F−1(U),
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where U = (U1, . . . , Ud) follows the copula C of X. Repeating the arguments in the
proof of Theorem 4.11 now implies the assertion.

In Corollary 4.2, we have investigated the expected number of complete records as the
sample size goes to infinity, which can be done for simple records analogously.

Corollary 4.13. Denote by Ns(n) :=
∑n

i=1 1{X(i) 6≤max1≤j<iX(j)} the number of simple

records among X(1), . . . ,X(n). Then

E(Ns(n))

log n
→n→∞ E (‖η‖D) .

The next example shows some connection between the Fréchet and the Weibull model,
and provides in particular closed formulas for E (oo η ooλ) and E (‖η‖λ).

Example 4.14 (Fréchet model). Choose λ > 1. Let η be a max-stable random vector in
Rd with df P (η ≤ x) = exp (−‖x‖λ), x ≤ 0. Let ZF a Fréchet-based generator of ‖·‖λ
(see Example 2.11 and Example 2.22), and ZW a Weibull-based generator of ‖·‖Wλ

(see
Example 2.12 and Example 2.23). We know from Dombry et al. (2015, Example 1) that

E (oo η ooλ) =
Γ(d− 1/λ)

(d− 1)!Γ(1− 1/λ)
=

d−1∏
i=1

(
1− 1

λi

)
.

In the Fréchet model, a nice analogy between the formulas of the complete and simple
record case occurs. We will prove in the following

E (‖η‖λ) =
Γ(d+ 1/λ)

(d− 1)!Γ(1 + 1/λ)
=

d−1∏
i=1

(
1 +

1

λi

)
,

where the last equality can easily be shown by induction. To this end, we will show below

E (‖ZW ‖λ) =
Γ(d+ 1/λ)

(d− 1)!Γ(1 + 1/λ)
. (4.7)

Furthermore, (2.21) together with Lemma 4.3 yields

E (ooZF ooWλ
) = E

(
‖1/ZF ‖−1

λ

)
= E (oo η ooλ) .
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On the other hand, it is easy to see that (Γ(1− 1/λ)Γ(1 + 1/λ)ZW )−1 is also a generator
of ‖·‖λ, which yields in turn

E (ooZF ooWλ
) = E (ooZW ooλ) .

Altogether, we obtain
E (oo η ooλ) = E (ooZW ooλ) ,

and hence by (2.13)

E (‖η‖λ) = E (‖ZW ‖λ) =
d−1∏
i=1

(
1 +

1

λi

)
.

It remains to show (4.7). Let ZW = (W1, . . . ,Wd)/Γ(1 + 1/λ), where W1, . . . ,Wd are iid
Weibull with P (Wi > x) = exp

(
−xλ

)
, x > 0. Then

E (ooZF ooWλ
) =

1

Γ(1 + 1/λ)
E

( d∑
i=1

W λ
i

)1/λ


It is easy to see that W λ
i is standard exponentially distributed, and by convolution, the

sum S :=
∑d

i=1W
λ
i follows the Gamma(d, 1)-distribution, i. e. the density of S is given

by

h(x; d, 1) =
xd−1e−x

(d− 1)!
, x > 0.

Hence,

E
(
S1/λ

)
=

∫ ∞
0

xd−1+1/λe−x

(d− 1)!
dx =

Γ(d+ 1/λ)

(d− 1)!
,

which proofs (4.7).

Simple record times

So far we have investigated records within a sequence of iid random vectors, that is, the
probability that the n-th observation is a record, and the conditional distribution of a
record, given that there is one at hand. In this section, however, we will focus on the
random indices at which a record occurs, the so-called record times. Generally speaking,
records within an iid sequence are fairly uncommon, which makes the record times a ran-
dom sequence of integers that grows very fast. This fact has already been touched on in
the Corollaries 4.2 and 4.13. In fact, if X,X(1), X(2), . . . are continuously distributed iid
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random variables on the real line, we have seen before that πsn(X) = πcn(X) = 1/n, result-
ing in the fact that we can only expect

∑1000
n=1 1/n ≈ 7.49 records within the first 1000 ob-

servations. Obviously, complete records are even more uncommon: If X,X(1),X(2), . . .

are continuously distributed iid bivariate random vectors with independent margins, we
have πcn(X) = 1/n2, and the expected number of complete records among the first 1000
observations is

∑1000
n=1 1/n2 ≈ 1.64. Bearing in mind that the first observation is always a

records by definition, this leaves us with only 0.64 non-trivial expected complete records.
However, simple records are more frequent, depending on the dimension of the random
vectors. Taking bivariate vectors X,X(1),X(2), . . . as above, it is easy to show that
πsn(X) = 2/n− 1/n2, which yields an expectation of

∑1000
n=1 (2/n− 1/n2) ≈ 13.33 simple

records within the first 1000 observations.
Denote by F the bivariate df of X and assume F ∈ D(G) for some max-stable df G.

It has been shown in Goldie and Resnick (1989, Theorem 5.3), that the total number of
complete records among X(1),X(2), . . . is either finite almost surely or infinite almost
surely, depending on whether or not G has independent margins. In this section, we will
prove a similar statement concerning the expectation of the record times. With complete
records being so rare, we will focus on simple record times from now on, since most of
the results we will derive will turn out to be trivial in the complete record case. It is
well known that the record times have infinite expectation for a sequence of univariate
iid random variables with a common continuous df, see e. g. the discussion in Arnold
et al. (1998, Section 2.5) or Galambos (1987, Theorem 6.2.1). This is no longer true in
the multivariate simple record case. Later, we give a precise characterization of when
simple record times are integrable.
Let X,X(1),X(2), . . . be iid random vectors in Rd. Throughout the whole section,

unless expressly stated otherwise, the df F ofX is assumed to be continuous. We denote
by L(n), n ≥ 1, the simple record times, i.e., those subsequent random indices at which a
simple record occurs. Precisely, L(1) = 1, as X(1) is by definition a simple record, and,
for n ≥ 2,

L(n) := min

{
j : j > L(n− 1),X(j) 6≤ max

1≤i≤L(n−1)
X(i)

}
.

The n-th simple record among X(1),X(2), . . . is obviously given by X(L(n)). Clearly, in
contrast to the original observations, the sequence of simple records X(L(1)),X(L(2)), . . .

is not iid. (Note that in the univariate case, records actually do occur independently as
mentioned in the beginning of Chapter 4.) However, the following result, even though
being quite obvious, should be noticed. Exceptionally, it is not necessary to assume
continuity of the df F .
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Lemma 4.15. Let X(1),X(2), . . . be iid random vectors in Rd with df F .

(i) P
(
X(L(n)+m) ≤ x

)
= F (x) for every n,m ∈ N and x ∈ Rd.

(ii) X(L(n)) and X(L(n)+m) are independent for n,m ∈ N.

Proof. Partitioning the sample space into disjoint events, we obtain

P
(
X(L(n)+1) ≤ x

)
=

∞∑
k2=2

∞∑
k3=1

· · ·
∞∑

kn=1

P

(
X(

∑n
i=2 ki+1) ≤ x, L(n) =

n∑
i=2

ki, . . . , L(3) = k2 + k3, L(2) = k2

)

= F (x)
∞∑
k2=2

∞∑
k3=1

· · ·
∞∑

kn=1

P

(
L(n) =

n∑
i=2

ki, . . . , L(3) = k2 + k3, L(2) = k2

)
= F (x),

since the observations are iid, and the events {L(n) =
∑n

i=2 ki} , . . . , {L(2) = k2} only
depend on X(1), . . . ,X(

∑n
i=2 ki). This shows (i). Similar arguments show

P
(
X(L(n)+m) ≤ x,X(L(n)) ≤ y

)
= F (x)P

(
X(L(n)) ≤ y

)
,

and hence (ii).

Denote by M (n) := maxi=1,...,nX
(i), n ∈ N, the sequence of componentwise maxima

within X(1),X(2), . . . . Then the independence of the observations implies that M (n),
n ∈ N, is a homogenous Markov chain (cf. Resnick (2007, Section 5.6) and Resnick (2008,
Section 4.1)), and it is easy to see that the transition is given by

P
(
M (n+1) ≤ x

∣∣M (n) = y
)

=

F (x), if x ≥ y,
0, else.

(4.8)

The observations which generate the jumps in this Markov chain are precisely the simple
records. Now put ∆1 := 1 and define by

∆n := L(n)− L(n− 1), n = 2, 3, . . .

the interrecord waiting times.

Lemma 4.16. Let X,X(1),X(2), . . . be iid random vectors in Rd following a continuous
df F .
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(i) For every n ∈ N,

P
(
X(L(n+1)) ≤ x

∣∣M (L(n)) = y
)

= P
(
X ≤ x

∣∣X 6≤ y) .
(ii) For every n ∈ N,

∆n+1

∣∣M (L(n)) = x ∼ Geom(1− F (x)),

where Geom(p) denotes the geometric distribution with support {1, 2, . . . } and pa-
rameter p ∈ (0, 1].

Remark 4.17. The above Lemma could just as easily be formulated for complete instead
of simple records. Instead of {X 6≤ y} in (i), we would have to condition on {X > y}
in the complete record case. Note that the n-th complete record X(Lc(n)) coincides with
the maximumM (Lc(n)) at the n-th complete record time Lc(n). Analogously, in (ii), the
parameter of the geometric distribution would change from 1− F (x) to P (X > x).

Proof of Lemma 4.16. We have due to Lemma 4.15

P
(
X(L(n+1)) ≤ x

∣∣M (L(n)) = y
)

=
∞∑
k=1

P
(
X(L(n+1)) ≤ x,∆n+1 = k

∣∣M (L(n)) = y
)

=
∞∑
k=1

P
(
X(L(n)+k) ≤ x,X(L(n)+1) ≤ y, . . .

. . . ,X(L(n)+k−1) ≤ y,X(L(n)+k) 6≤ y
∣∣M (L(n)) = y

)
=

∞∑
k=1

P
(
X(L(n)+k) ≤ x,X(L(n)+k) 6≤ y

)
F (y)k−1

=
P (X ≤ x,X 6≤ y)

1− F (y)

= P (X ≤ x
∣∣X 6≤ y),

which shows (i). By similar arguments, we obtain

P
(
L(n+ 1)− L(n) = k

∣∣M (L(n)) = x
)

= P
(
X(L(n)+1) ≤ x, . . . ,X(L(n)+k−1) ≤ x,X(L(n)+k) 6≤ x

∣∣M (L(n)) = x
)

= F (x)k−1(1− F (x)),

which is (ii).
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Computing the distribution of the second record X(L(2)) is now an easy task: Condi-
tioning on X(1) = y we obtain

P
(
X(L(2)) ≤ x

)
=

∫
Rd
P
(
X(L(2)) ≤ x

∣∣X(1) = y
)
F (dy)

=

∫
Rd
P (X ≤ x

∣∣X 6≤ y)F (dy).

The distribution of X(L(n)) for an arbitrary n ≥ 2 is much more complex, but generally
manageable. Computation of the limit distribution of X(N(n)), properly linearly stan-
dardized, as n tends to infinity, is an open problem. For the univariate case we refer to
Galambos (1987, Section 6.4) or Resnick (2008, Section 4.2).
From now on, we will focus on simple record times and interrecord waiting times,

whereas the sequence of simple records itself will take a back seat. As the df F is
continuous, the distribution of L(n) does not depend on F and, therefore, we assume in
what follows without loss of generality that F is a copula C on Rd, i. e. each component
of X is uniformly distributed on (0, 1).
Conditioning on X(1) = u yields for j ≥ 2

P (L(2) = j) = P
(
X(2) ≤X(1), . . . ,X(j−1) ≤X(1),X(j) 6≤X(1)

)
=

∫
[0,1]d

C(u)j−2(1− C(u))C(du).

Solving the geometric series, we get

E(L(2)) =
∞∑
j=2

jP (L(2) = j) =

∫
[0,1]d

1

1− C(u)
C(du) + 1. (4.9)

Now we generalize this formula. Choose n ∈ N. Partitioning the sample space in disjoint
events, we obtain for kn ≥ 1

P (L(n+ 1)− L(n) = kn) =

=

∞∑
k1=2

∞∑
k2=1

· · ·
∞∑

kn−1=1

P

L(n+ 1) =

n∑
j=1

kj , L(n) =

n−1∑
j=1

kj , . . . , L(2) = k1

 ,

101



and further, similar to the calculation above,

P

L(n+ 1) =

n∑
j=1

kj , L(n) =

n−1∑
j=1

kj , . . . , L(2) = k1

 =

∫
{un 6≤···6≤u1}

C(u1)k1−2C(u2)k2−1 · · ·C(un)kn−1(1− C(un)) C(du1) · · ·C(dun).

Hence, solving all the occurring geometric series yields

E (L(n+ 1)− L(n)) =

∫
{un 6≤···6≤u1}

n∏
i=1

1

1− C(ui)
C(du1) · · ·C(dun).

We summarize this result.

Lemma 4.18. Let X(1),X(2), . . . be iid random vectors following a copula C on [0, 1]d.
For every n ∈ N,

E (∆n+1) =

∫
{un 6≤···6≤u1}

n∏
i=1

1

1− C(ui)
C(du1) · · ·C(dun). (4.10)

Suppose now that d = 1. Then we have u = u ∈ [0, 1], C(u) = u and

E(L(2)) =

∫ 1

0

1

1− u du+ 1 =∞,

which is well-known (Galambos (1987, Theorem 6.2.1)). Suppose next that d ≥ 2 and
that the margins of C are independent, i.e.,

C(u) =
d∏
i=1

ui, u = (u1, . . . , ud) ∈ [0, 1]d.

Then we obtain∫
[0,1]d

1

1− C(u)
C(du) =

∫ 1

0
. . .

∫ 1

0

1

1−∏d
i=1 ui

du1 . . . dud <∞

by elementary arguments and, thus, E(L(2)) < ∞. This observation gives rise to the
problem of characterizing those copulas C on [0, 1]d with d ≥ 2, such that E(L(2)) is
finite. Note that E(L(2)) = ∞ if the components of C are completely dependent. The
next lemma characterizes finiteness of E(L(2)). Note that in the complete record case,
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the second record time is never integrable, which is trivial since complete records are
even less likely than univariate records.

Lemma 4.19. Let X = (X1, . . . , Xd) follow a copula C on Rd. Then E(L(2)) <∞ iff∫ ∞
1

P

(
Xi > 1− 1

t
, 1 ≤ i ≤ d

)
dt <∞. (4.11)

Condition (4.11) is trivially satisfied in case of independent components X1, . . . , Xd

and d ≥ 2. Below we will see that it is, roughly, in general satisfied, if there are at least
two components that are asymptotically independent.

Proof of Lemma 4.19. Any copula C satisfies the Fréchet-Hoeffding bounds, that is, for
u = (u1, . . . , ud) ∈ [0, 1]d,

max

(
1− d+

d∑
i=1

ui, 0

)
≤ C(u) ≤ min (u1, . . . , ud) . (4.12)

Therefore, we obtain due to the upper bound in (4.12)

E(L(2))− 1 =

∫
[0,1]d

1

1− C(u)
C(du)

= E

(
1

1− C(X)

)
=

∫ ∞
1

P

(
C(X) > 1− 1

t

)
dt

≤
∫ ∞

1
P

(
Xi > 1− 1

t
, 1 ≤ i ≤ d

)
dt.

On the other hand, the lower bound in (4.12) yields

E(L(2))− 1 ≥
∫ ∞

1
P

(
d∑
i=1

(1−Xi) <
1

t

)
dt

≥
∫ ∞

1
P

(
1−Xi <

1

dt
, 1 ≤ i ≤ d

)
dt

= d

∫ ∞
1/d

P

(
1−Xi <

1

t
, 1 ≤ i ≤ d

)
dt.
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Let C be a copula that is in the domain of attraction of a (standard) max-stable df G
on Rd, i. e.

Cn
(

1 +
x

n

)
→n→∞ G(x) = exp (−‖x‖D) , x ≤ 0 ∈ Rd,

which we abbreviate as before by C ∈ D(G). In order to prove the following result, we
will benefit from Proposition 2.29, which dealt with convergence to the D-norm and the
dual D-norm function, in case the copula is in the domain of attraction of a standard
max-stable df.

Proposition 4.20. Suppose that C ∈ D(G), where the D-norm corresponding to G

satisfies oo 1 ooD > 0. Then E(L(2)) =∞.

Proof. Let X be a random vector with df C. It is well known from real analyis that∫ ∞
1

P

(
X > 1− 1

t

)
dt <∞ ⇐⇒

∞∑
n=1

P

(
X > 1− 1

n

)
<∞.

From (2.25), we know nP
(
X > 1− 1

n

)
→n→∞ oo 1 ooD > 0. Now applying the limit

comparison test for an infinite series, we deduce that
∑∞

n=1 P
(
X > 1− 1

n

)
has the same

limit behavior as the harmonic series
∑∞

i=1
1
n , and hence, E(L(2)) =∞ by Lemma 4.19.

Suppose that C ∈ D(G). Due to Proposition 4.20, a finite expectation E(L(2)) < ∞
can only occur if oo1 ooD = 0, which is true, for instance, if G has at least two independent
margins.
Let X follow the df C. Next we show that E(L(2)) is typically finite if X has at least

two components Xj , Xk which are tail independent, i. e.

lim
u↑1

P (Xk > u|Xj > u) = 0.

In case the limit exists, define the dependence measure

χ̄ := lim
u↑1

2 log(1− u)

log(P (X1 > u,X2 > u))
− 1 ∈ [−1, 1],

where (X1, X2) follows some bivariate copula, cf. Coles et al. (1999) or Heffernan (2000).
Note that we have χ̄ = 1 if X1, X2 are tail dependent (meaning that they are not tail
independent). In the class of (bivariate) copulas that are tail independent, however, χ̄ is

104



a popular measure of tail comparison. For a bivariate normal copula with coefficient of
correlation ρ ∈ (−1, 1) it is, for instance, well known that χ̄ = ρ.

Proposition 4.21. Let X = (X1, . . . , Xd) follow a copula C in Rd. Suppose that there
exist indices k 6= j such that

χ̄k,j = lim
u↑1

2 log(1− u)

log(P (Xk > u,Xj > u))
− 1 ∈ [−1, 1).

Then we have E(L(2)) <∞.

Corollary 4.22. We have E(L(2)) <∞ for multivariate normal random vectors unless
all components are completely dependent.

Proof of Proposition 4.21. We have∫ ∞
1

P

(
Xi ≥ 1− 1

t
, 1 ≤ i ≤ d

)
dt

≤
∫ ∞

1
P

(
Xk ≥ 1− 1

t
, Xj ≥ 1− 1

t

)
dt

=

∫ ∞
1

exp

(
log
(
P
(
Xk ≥ 1− 1

t , Xj ≥ 1− 1
t

))
log
(

1
t2

) log

(
1

t2

))
dt,

where
log
(
P
(
Xk ≥ 1− 1

t , Xj ≥ 1− 1
t

))
log
(

1
t2

) →t→∞
1

1 + χ̄
>

1

2
.

But this implies that the above integral is finite and, thus, the assertion is a consequence
of Lemma 4.19.

To complete this section, we investigate E(L(n)) for n ≥ 2. Recall ∆n+1 = L(n +

1)− L(n), n ∈ N. Again, let X(1),X(2), . . . be an iid sequence of random vectors on Rd

following a copula C. Obviously, E(L(2)) = ∞ implies E(L(n)) = ∞ for n ≥ 2, since
L(n) ≥ L(2), n ≥ 2. On the other hand, if E(L(2)) <∞, we obtain due to (4.10) for all
n ≥ 2

E (∆n+1) = E

(
1

1− C(X(1))
· · · 1

1− C(X(n))
1{X(n) 6≤···6≤X(1)}

)
≤ E

(
1

1− C(X(1))
· · · 1

1− C(X(n))

)
=

[
E

(
1

1− C(X(1))

)]n
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= [E (L(2))− 1]n ,

which means that E(∆n+1) <∞ as well in that case. Furthermore, we will show below
that E(∆n+1) = ∞ for all n ∈ N if E(L(2)) = ∞. In conclusion, it is sufficient to
decide whether E(L(2)) is finite or not if expectations of arbitrary simple record times
are investigated. We summarize this discussion.

Proposition 4.23. Let X(1),X(2), . . . be iid random vectors following a copula C on
[0, 1]d. Then the following implications hold:

(i) If E(L(2)) =∞, then E(∆n) =∞ for all n = 2, 3, . . .

(ii) If E(L(2)) <∞, then E(∆n) <∞ for all n ∈ N.

Proof. It remains to proof (i). We show that ∆n+1, n ∈ N, is stochastically increasing,
i. e.

P (∆n+1 ≤ t) ≥ P (∆n+2 ≤ t), t ∈ R, n ∈ N. (4.13)

Recall that the df of a random variableX ∼ Geom(p) is given by P (X ≤ t) = 1−(1−p)btc,
where btc = max{m ∈ Z : m ≤ t}. Conditioning on M (L(n)) = x, we obtain by Lemma
4.16 (ii) for each t ∈ R and n ∈ N

P (∆n+1 ≤ t)

=

∫
[0,1]d

P
(

∆n+1 ≤ t
∣∣M (L(n)) = x

) (
P ∗M (L(n))

)
(dx)

=

∫
[0,1]d

1− C(x)btc
(
P ∗M (L(n))

)
(dx)

= 1− E
(
C
(
M (L(n))

)btc)
,

which shows (4.13) since M (L(n)) ≤M (L(n+1)). Hence,

E(∆n+1) =

∫ ∞
0

P (∆n+1 > t) dt ≤
∫ ∞

0
P (∆n+2 > t) dt = E(∆n+2).

4.3 Partial records and hitting scenarios

Let X,X(1),X(2), . . . be a sequence of iid random vectors on Rd, and denote by F the
df of X. As before, we assume throughout this section that F is continuous in order
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to avoid ties within the sequence. It has already been remarked that the sequence of
componentwise maximaM (n) = maxi=1,...,nX

(i), n ∈ N, is a homogenous Markov chain
(cf. (4.8)) which jumps at time n ∈ N iff X(n) is a simple record. In this section, we
will focus on the genesis and the development of M (n) as n increases. In particular, we
will specify the term of a simple record in order to state exactly on which subset T of
{1, . . . , d} a simple record exceeds the previous componentwise maximum. This will lead
to the notion of T -records.
In the univariate setup, the structure of the Markov chain M (n), n ∈ N, is rather

simple. There is a jump at time n iff X(n) is a record, and in that case, the new
maximum M (n) coincides with that record. In the multivariate world, however, both the
composition of M (n) and the evolution of M (n) as n increases are much more complex,
since there is possibly more than one observation that contributes to the componentwise
maximum. More precisely, in Rd, up to d different observations among X(1), . . . ,X(n)

might contribute to M (n). A precise description on the number of contributing random
vectors and their impact can be given by the so-called sample hitting scenario (cf. Wang
and Stoev (2011), Dombry et al. (2013), Dombry and Éyi-Minko (2013) and Dombry
et al. (2015)), which we will investigate below.

T -records

It is obvious that the sequenceM (n), n ∈ N, jumps at time n iff X(n) is a simple record.
However, the term of a simple record does not explain on which subset T ⊆ {1, . . . , d}
the observation X(n) exceeds M (n−1), which is why we will introduce a more precise
definition. Remember the notation

aT = (ai1 , . . . , aik) ∈ Rk

for a vector a = (a1, . . . , ad) and a nonempty subset T = {i1, . . . , ik} ⊆ {1, . . . , d} with
i1 < · · · < ik. We define for ∅ 6= T ( {1, . . . , d}

X(n) is a T -record :⇐⇒ X
(n)
T >M

(n−1)
T and X(n)

T { ≤M
(n−1)

T { .

In case T = {1, . . . , d}, a T -record is meant to be a complete record. For the ease of
notation, we introduce the convention of T -records with T = ∅: X(n) is a ∅-record means
that X(n) is not a simple record. By πn,T = πn,T (X) we denote the probability of X(n)

being a T -record. Our first aim is to investigate the limit behavior of πn,T as n tends to
infinity.
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Let us now assume that F is in the max-domain of attraction of a max-stable df G.
It is clear that πn,T does not depend on the univariate margins of F , but only on its
dependence structure, that is, on the copula of F . Thus, without loss of generality, G
can be assumed to be standard max-stable, i. e. G(x) = exp (−‖x‖D), x ≤ 0 ∈ Rd, for
some D-norm

‖x‖D = E

(
max
i=1,...,d

|xi|Zi
)
, x ∈ Rd.

Let η be a random vector following the standard max-stable df G. In Theorem 4.1 and
Theorem 4.11 we have shown

nπn,{1,...,d} →n→∞ E (oo η ooD) ,

where oo x ooD = E (mini=1,...,d |xi|Zi), x ∈ Rd, is the dual D-norm function, and

n
(
1− πn,∅

)
→n→∞ E (‖η‖D) .

Now we derive an analogous result for T -records in general. To this end, the following
technical lemma is helpful.

Lemma 4.24. Choose ∅ 6= T ( {1, . . . , d} and let (a1, . . . , ad) be an arbitrary vector in
Rd. Then ∑

∅6=S⊆T {

(−1)|S|−1 min
k∈T∪S

ak = min

(
min
i∈T

ai,max
j∈T {

aj

)
.

Proof. Put bk := min (mini∈T ai, ak), k ∈ T {. Then clearly mink∈S bk = mink∈T∪S ak for
S ⊆ T {. Hence, we have by (2.13)∑

∅6=S⊆T {

(−1)|S|−1 min
k∈T∪S

ak =
∑

∅6=S⊆T {

(−1)|S|−1 min
k∈S

bk

= max
k∈T {

bk

= max
k∈T {

min

(
min
i∈T

ai, ak

)
= min

(
min
i∈T

ai,max
k∈T {

ak

)
.

In the following, we write with an abuse of notation oo xT ooD = E (mini∈T |xi|Zi)
(and analogously ‖xT ‖D = E (maxi∈T |xi|Zi)), even though ‖·‖D and oo · ooD are actually
functions on Rd and not on R|T |.
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Proposition 4.25. Assume the underlying df F satisfies F ∈ D(G) for some standard
max-stable df G(x) = exp (−‖x‖D), x ≤ 0 ∈ Rd. Choose ∅ 6= T ⊆ {1, . . . , d}. Then

nπn,T →n→∞ E
(
max

(
oo ηT ooD −

∥∥ηT {

∥∥
D
, 0
))
,

where η follows the df G and ‖η∅‖D is interpreted to be zero.

Proof. Define, for ∅ 6= T ⊆ {1, . . . , d},

π̃n,T := P

(
X

(n)
T > max

i=1,...,n−1
X

(i)
T

)
.

This corresponds to the probability thatX(n)
T is a complete record withinX(1)

T , . . . ,X
(n)
T .

By Theorem 4.1, we obtain

nπ̃n,T →n→∞ E (oo ηT ooD) .

Thus, the inclusion exclusion principle yields

nπn,T = n

(
π̃n,T − P

(
X

(n)
T > max

i=1,...,n−1
X

(i)
T ,X

(i)

T { 6≤ max
i=1,...,n−1

X
(i)

T {

))

= n

π̃n,T − P
 ⋃
j∈T {

{
XT∪{j} > max

i=1,...,n−1
X

(i)
T∪{j}

}
= n

π̃n,T − ∑
∅6=S⊆T {

(−1)|S|−1P

 ⋂
j∈T {

{
XT∪{j} > max

i=1,...,n−1
X

(i)
T∪{j}

}
= n

π̃n,T − ∑
∅6=S⊆T {

(−1)|S|−1P

(
XT∪S > max

i=1,...,n−1
X

(i)
T∪S

)
→n→∞ E (oo ηT ooD)−

∑
∅6=S⊆T {

(−1)|S|−1E (oo ηT∪S ooD)

= E
(
max

(
oo ηT ooD −

∥∥ηT {

∥∥
D
, 0
))
,

where the last equality follows from Lemma 4.24.

Hitting scenarios

A precise description of the composition of the componentwise maximum M (n) can be
given in terms of hitting scenarios. Take x(1), . . . ,x(n) ∈ Rd and put x = maxi=1,...,n x

(i).
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Define the (possibly empty) sets

Ci :=
{
j : xj = x

(i)
j

}
⊆ {1, . . . , d}, i = 1, . . . , n,

that consist of those indices at which x(i) is contributing to x. Assuming that the max-
imum x is attained uniquely, the set τ := {Ci : Ci 6= ∅, i = 1, . . . , `} defines a partition
of the index set {1, . . . , d} which we call the hitting scenario of maxi=1,...,n x

(i) or of
x(1), . . . ,x(n), respectively.

1 2 3 4

x(1)

x(2)

x(3)

x(4)

Fig. 4.1: The functions x(1), . . . ,x(4) are observed at four sites, resulting in fourdi-
mensional vectors (x

(i)
1 , . . . , x

(i)
4 ), i = 1, . . . , 4. The hitting scenario τ is given by

C1 = {2, 3}, C2 = ∅, C3 = {4}, C4 = {1}. Hence, τ = {{1} , {2, 3} , {4}}.

In Chapter 2, we have introduced point measures and point processes. We can also
define hitting scenarios of point measures on E = [0,∞]d\{0}, which will be an important
space in the following, since max-stable random vectors with unit Fréchet margins can
be expressed via Poisson point processes on E, see Remark 2.18. Let m =

∑
k∈N εx(k) ∈

Mp(E) be such a point measure. Choose ε > 0 such that supk∈N x
(k)
j > ε for all j =

1, . . . , d. Since bounded sets in E are those that are bounded away from 0, the set
Kε := E \ [0, ε)d is bounded in E, and hence, only finitely many points x(k1), . . . ,x(kN )

fall in the set Kε. By construction, supk∈N x
(k) = maxi=1,...,N x

(ki). Assuming this
maximum is attained uniquely, its hitting scenario is defined to be the hitting scenario
of m or of

(
x(k)

)
k∈N, respectively.
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So far, hitting scenarios have only been introduced for deterministic sequences and
point measures. Now let X,X(1),X(2), . . . be an iid sequence with continuous df F .
Since there are no ties in that sequence almost surely, the random hitting scenario Πn

of the componentwise maximum M (n) is well-defined with probability one. Following
Dombry et al. (2015), this random partition is called the sample hitting scenario. Note
thatX(n) being a T -record implies T ∈ Πn. Again, the distribution of the hitting scenario
does not depend on the univariate margins, but only on the copula of the underlying
continuous df F . Thus, if we have two sequences X(1),X(2), . . . with continuous df F1

and Y (1),Y (2), . . . with continuous df F2, such that F1 and F2 have the same copula,
the sample hitting scenarios associated to X(1), . . . ,X(n) and Y (1), . . . ,Y (n) follow the
same distribution for each n ∈ N.
Different to M (n), n ∈ N, the sequence Πn, n ∈ N, does not define a Markov chain.

However, the joint sequence
(
M (n),Πn

)
n∈N does, since the observations X(1),X(2), . . .

are independent. In the following, we will discuss the transition of this Markov chain.
Denote by Pd the power set of {1, . . . , d} and by Pd the set of all partitions of {1, . . . , d}.

By definition, there is exactly one T ∈ Pd (possibly T = ∅) such that X(n) is a T -record.
Knowing this set T and the n-th sample hitting scenario Πn, one can easily deduce the
(n+ 1)-th sample hitting scenario via

Πn = τ = {S1, . . . , S`} ∈ Pd =⇒ Πn+1 = τT := {S1 ∩ T {, . . . , S` ∩ T {, T} \ {∅} ∈ Pd.

Now define for a fixed τ ∈ Pd the mapping

Θτ : Pd → Pd, Θτ (T ) = τT . (4.14)

Clearly, this mapping is not one-to-one. For instance, if τ = {{1, 2}}, then τ{1} = τ{2} =

{{1}, {2}}. Hence, given that Πn = {{1, 2}}, either X(n) being a {1}-record or a {2}-
record results in the new sample hitting scenario Πn+1 = {{1}, {2}}. More generally, not
only a T -record, but every S-record, with S being an element of the preimage Θ−1

τ ({τT })
leads to the new sample hitting scenario τT . Hence, we have for each τ ∈ Pd and T ∈ Pd
due to the iid property of the observations

P
(

Πn+1 = τT
∣∣Πn = τ,M (n) = y

)
= P

 ⋃
S∈Θ−1

τ ({τT })

{
X(n+1) is an S-record

} ∣∣Πn = τ,M (n) = y
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=
∑

S∈Θ−1
τ ({τT })

P
(
XS > yS ,XS{ < yS{

)
=

∑
S∈Θ−1

τ ({τT })

P
(
X(n+1) is an S-record

∣∣M (n) = y
)
.

We distinguish between three cases in order to visualize the transition from the n-th to
the (n+ 1)-th sample hitting scenario. Let in the following Πn = τ = {S1, . . . , S`}.

Case 1: Nothing changes. It might happen that the sample hitting scenario does not
change at all, i. e. Πn+1 = τ = {S1, . . . , S`}. This is the case when X(n+1) is either a ∅-
record or a Sj-record for some j = 1, . . . , `. It is easy to see that τ∅ = τS1 = · · · = τS` = τ .

b

b
b

b

T = S1 T = ∅

S1 S2

T = S2

Θ−1
τ ({τT }) = τ ∪ {∅}

Fig. 4.2: The sample hitting scenario does not change. The dots mark elements of the
sets.

Case 2: Cut. In that case, X(n+1) is a T -record, where T ’cuts’ some set Sj ∈ τ

into two pieces, without intersecting a second set Sk ∈ τ , k 6= j. For instance, if
τ = {{1, 2} , {3, 4}}, then either a {1}- or a {2}-record result in the new sample hitting
scenario τ{1} = τ{2} = {{1} , {2} , {3, 4}}.

Case 3: Cut & Paste. The third case works as follows: One can choose at least two
different sets Sj1 , . . . , Sjk ∈ τ , take as many elements (but at least one) from each of these
sets, and paste them together in a new set T . In that case, τT = τT ′ implies T = T ′. For
example, choose τ = {{1, 2} , {3, 4} , {5}}. Then only a {2, 3, 5}-record will result in the
new sample hitting scenario τ{2,3,5} = {{1} , {2, 3, 5} , {4}}.
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b

b
b

b

TC ∩ S1
T

S1 S2

TC ∩ S2

Θ−1
τ ({τT }) = τT \ (τT ∩ τ)

Fig. 4.3: Every set in the new sample hitting scenario is a subset of an element of the
preceding sample hitting scenario. The dots mark elements of the sets.

b

b
b

b
S1 S2

Θ−1
τ ({τT }) = {T }

b

S3

T

TC ∩ S1
TC ∩ S2

TC ∩ S3 = ∅

Fig. 4.4: Figure of the Cut & Paste case. Only the new T -record can generate the new
sample hitting scenario τT . The dots mark elements of the sets.

Alternatively, let Tn ∈ Pd the (possibly empty) random set such that X(n) is a Tn-
record. Then

P
(

Πn+1 = τT , Tn+1 = T
∣∣Πn = τ,M (n) = y

)
= P

(
XT > yT ,XT { < yT {

)
= P

(
Xn+1 T -record

∣∣M (n) = y
)
.

We summarize these results.

Proposition 4.26. Let X,X(1),X(2), . . . be an iid sequence with continuous df.
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(i) The sequence
(
Πn,M

(n)
)
n∈N is a homogenous Markov chain on Pd×Rd with tran-

sition

P
(

Πn+1 = τ ′
∣∣Πn = τ,M (n) = y

)
=


∑

S∈Θ−1
τ ({τT }) P

(
XS > yS ,XS{ < yS{

)
, if τ ′ = τT for some T ∈ Pd,

0, else.

(ii) The sequence
(
Πn, Tn,M (n)

)
n∈N is a homogenous Markov chain on Pd × Pd × Rd

with transition

P
(

Πn+1 = τ ′, Tn+1 = T
∣∣Πn = τ,M (n) = y

)
=

P
(
XT > yT ,XT { < yT {

)
, if τ ′ = τT for some T ∈ Pd,

0, else.

In general, the unconditional probability P (Πn = τ) for some τ ∈ Pd can not be
calculated explicitly. However, in case the observations follow - or at least are in the
domain of attraction - of a max-stable distribution themselves, a nice connection to the
so-called extremal hitting scenario that has been developed by Wang and Stoev (2011)
occurs (see also Dombry et al. (2013), Dombry and Éyi-Minko (2013) and Dombry et al.
(2015)).
From now on, it will be more convenient to consider simple max-stable instead of

standard max-stable random vectors. Note that this is just a matter of transforming the
univariate margins, and does not affect the distribution of a hitting scenario. Remember
the PPP representation

ξ =D sup
k∈N

ϑ(k), (2.18′)

of a simple max-stable random vector ξ in Rd, where
(
ϑ(k)

)
k∈N are the points of PPP(ν)

on E = [0,∞]d \ {0}, and ν denotes the exponent measure, cf. Remark 2.18. The hitting
scenario of (

(
ϑ(k)

)
k∈N is called the extremal hitting scenario of ξ.

The following Lemma is Theorem 1 in Dombry et al. (2015), and establishes a connec-
tion between the sample and the extremal hitting scenario in the domain of attraction
case.

Lemma 4.27. LetX(1),X(2), . . . be an iid sequence following a continuous df F ∈ D(H)

for some max-stable df H. Denote by H1, . . . ,Hd the univariate margins of H. Then
the sample hitting scenario of X(1), . . . ,X(n) converges weakly to the extremal hitting
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scenario of ξ which follows the simple max-stable df G defined by

G(x) := H
(
H−1

1

(
e−x

−1
1

)
, . . . ,H−1

d

(
e−x

−1
d

))
, x = (x1, . . . , xd) > 0.

Remark 4.28. The preceding Lemma reflects again the convergence of the champion
probability to something we called the extremal concurrence probability in Section 4.1 for
a good reason. Let X,X(1),X(2), . . . ∈ Rd be in the domain of attraction of a simple
max-stable random vector ξ. Denoting by Πn the sample hitting scenario of max

(
X(1),

. . . ,X(n)
)
and by Π the extremal hitting scenario of ξ, Lemma 4.27 implies in particular

P (|Πn| = 1)→n→∞ P (|Π| = 1) .

But clearly, the left-hand side is exactly the probability pn(X) that there is a champion
among X(1), . . . ,X(n). Comparing this result with Theorem 4.1 yields that

E (oo −1/ξ ooD) = P (|Π| = 1) ,

i. e. the limit champion probability is indeed the probability that only one of the points
of the PPP

(
ϑ(k)

)
k∈N actually contributes to the supremum in (2.18′), which explains

the term ’extremal concurrence probability’.

Next we derive a connection between the sample and the extremal hitting scenario in
case the observations are max-stable themselves. It is again sufficient to consider the
simple max-stable case. The following Proposition extends Lemma 2 from Dombry et al.
(2015). It was first derived by Stephenson and Tawn (2005) with a completely different
and more heuristic proof based on likelihood analysis. A partition τ ′ ∈ Pd is said to be
finer than τ ∈ Pd if every block of τ ′ is included in some block of τ . We write τ ′ � τ

then.

Proposition 4.29. Let Πn be the sample hitting scenario of iid copies ξ(1), . . . , ξ(n) of
a simple max-stable random vector ξ ∈ Rd, and Π be the extremal hitting scenario of ξ.
For all τ ∈ Pd,

P (Πn = τ) =
∑
τ ′�τ

`!

(
n

`

)
n−`

′
P (Π = τ ′)

with ` and `′ being the sizes of τ and τ ′, respectively.

Proof. The proof in Dombry et al. (2015) can be adapted so as to obtain

P (Πn = τ) =
∑
τ ′�τ

cn(τ ′, τ)P (Π = τ ′)
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where cn(τ ′, τ) is the probability to recover τ from τ ′ by coloring independently the
blocks of τ ′ with n colors and merging the blocks with the same color. This probability
is computed easily. For τ = (S1, . . . , S`), the blocks of τ ′ � τ can be labeled such that

τ ′ = {S1,1, . . . , S1,k1 , S2,1, . . . , S2,k2 , . . . , S`,1, . . . , S`,k`} ,

where Sj =
⋃
k=1,...,kj

Sj,k, j = 1, . . . , `. There are n(n − 1) . . . (n − ` + 1) choices
of different colors for the blocks of τ and then, for each block Sj , the subblocks Sj,k,
k = 1, . . . , kj must be colored with the assigned color which happens with probability
n−kj . Hence we have

cn(τ ′, τ) = n(n− 1) . . . (n− `+ 1)
∏̀
j=1

n−kj = `!

(
n

`

)
n−`

′
.

Limit theory

In this section, we closely follow the discussion in Resnick (2008, Section 4.4) or Resnick
(2007, Chapter 7). Consider an iid sequence X(1),X(2), . . . ∈ Rd of continuously dis-
tributed random vectors. It is well known that these random vectors are in the max-
domain of attraction of a simple max-stable random vector ξ, i e.

n−1M (n) = n−1 max
i=1,...,n

X(i) →D ξ (4.15)

iff
Yn(·) := n−1M ([n·]) →D sup

k∈N
j(k)1{tk≤·} =: Y (·) (4.16)

in the Skorokhod space D
(
[0,∞),Rd

)
, where [x] denotes the integer part of x, and the

time-space point process
N :=

∑
k∈N

ε(tk,j(k))

is PPP(λ×ν) on [0,∞)×E, with λ being the Lebesgue measure and ν being the exponent
measure on E = [0,∞]d \{0}, see e. g. Resnick (2007, Proposition 7.2). The limit process
Y is called a multivariate extremal process. The equivalence of (4.15) and (4.16) can be
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shown by proving first that (4.15) is equivalent to

Nn :=

n∑
k=1

ε(k/n,X(k)/n) →D N, (4.17)

where the convergence is meant in the spaceMp ([0,∞)× E) of point measures on [0,∞)×
E equipped with the vague metric, see Resnick (2008, Section 3) for details. This is very
similar to the equivalence of (i) and (iii) in Proposition 2.27. Applying the continuous
mapping theorem then yields the assertion. We adapt this strategy to prove a similar
result for hitting scenarios.
Note that it is also possible to define hitting scenarios of supk∈N x

(k)1{tk≤t} for t > 0,
where

(
tk,x

(k)
)
, k ∈ N, are the points of a point measure on [0,∞) × E. Again, the

supremum is actually a maximum due to the topological structure of E, and we have to
assume that it is reached uniquely.
Since we will work on the space D ((0,∞),Pd) below, a quick repetition on Skorokhod

spaces will be useful. Excellent reviews on Skorokhod spaces can be found in Resnick
(2008, Section 4.4.1) or Billingsley (1999, Sections 12 and 16). Let (X , δ) be a com-
plete and separable metric space and choose a, b ∈ R, a < b. We start with the space
D([a, b],X ) of right-continuous functions on [a, b) with finite left limits on (a, b]. Define
the set of time deformations

Λ :=
{
λ : [a, b]→ [a, b] : λ(a) = a, λ(b) = b,

λ continuous and strictly increasing
}
.

Let id ∈ Λ be the identity transformation, i. e. id(t) = t, t ∈ [a, b]. The Skorokhod
distance of f, g ∈ D([a, b],X ) is

da,b(f, g) = inf
λ∈Λ

max

(
‖λ− id‖∞ , sup

t∈[a,b]
δ(f(t), g(λ(t)))

)
.

Given a sequence fn, f ∈ D([a, b],X ), n ∈ N, we have da,b(fn, f) → 0 iff there exist
λn ∈ Λ, n ∈ N, such that

‖λn − id‖∞ → 0, sup
t∈[a,b]

δ(fn(λn(t)), f(t))→ 0.

It is possible to extend the definition of the Skorokhod metric to the space D((0,∞),X )

of right-continuous functions f : (0,∞)→ X with left limits. However, in order to show
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fn → f in D((0,∞),X ) , it is sufficient to show that for all 0 < a < b such that f is
continuous in a, b, the restrictions of fn to the interval [a, b] converge to those of f in
D([a, b],X ), see Resnick (2008, Lemma 4.16).
In the next Lemma, we will have to deal with a converging sequence of point measures

on the locally compact space [0,∞) × E. The suitable notion of convergence is vague
convergence, introduced in Remark 2.26.

Lemma 4.30. Let m =
∑

k∈N ε(tk,xk) be a point measure on [0,∞) × E such that
supk∈N xk1{tk≤t} is attained uniquely for all t > 0. Denote by τ(t) the hitting scenario
of supk∈N xk1{tk≤t}. The mapping

Ψ : Mp ([0,∞)× E)→ D ((0,∞),Pd) , Ψ(m)(t) = τ(t), t ∈ (0,∞),

is continuous if m satisfies m ([0, a]× E) > 0 and m ({b} × E) = 0 for arbitrary a, b ∈
(0,∞).

Proof. The proof is very similar to the arguments in Resnick (2008, p.214). Let m,m1,

m2, . . . ∈ Mp ([0,∞)× E), m =
∑

k∈N ε(tk,xk), mn =
∑

k∈N ε
(
t
(n)
k ,x

(n)
k

), such that mn

converges vaguely to m satisfying the assumptions above. Denote by πn(t) and π(t) the
hitting scenarios of sup

t
(n)
k ≤t

x
(n)
k and suptk≤t xk, respectively. We have to show that

Ψ(mn) = πn(·)→ π(·) = Ψ(m) in D ([a, b],Pd). Choose ε > 0 such that

sup
tk≤a

xk,j > ε, j = 1, . . . , d, (4.18)

xk,j 6= ε, j = 1, . . . , d, k ∈ N, (4.19)

and put Kε := E \ [0, ε)d. The set [0, b] × Kε is compact in [0,∞) × E. Furthermore,
(4.19) and the assumption m ({b} × E) = 0 imply m (∂ ([0, b]×Kε)) = 0. Therefore, we
have for n large enough

mn ([0, b]×Kε) = m ([0, b]×Kε) = N <∞.

By (4.18), we have N > 0. Repeating this argument, we obtain for n large enough

mn ([0, a]×Kε) = m ([0, a]×Kε) = M < N.

with M > 0. The points that fall in [0, b]×Kε can be relabeled such that

0 < t
(n)
1 < · · · < t

(n)
M < a < t

(n)
M+1 < · · · < t

(n)
N < b,
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0 < t1 < · · · < tM < a < tM+1 < · · · < tN < b,

and (
t
(n)
i ,x

(n)
i

)
→n→∞ (ti,xi) , i = 1, . . . , N, (4.20)

cf. Resnick (2008, Proposition 3.13). Let t ∈ [a, b]. By construction, suptk≤t xk only
depends on {(ti,xi) : i = 1, . . . , N} and sup

t
(n)
k ≤t

x
(n)
k only depends on

{(
t
(n)
i ,x

(n)
i

)
: i =

1, . . . , N
}
. More precisely, denote by

tL = max {ti ∈ {t1, . . . , tN} : ti ≤ t}

the left neighbor of t among {t1, . . . , tN}, and analogously by t(n)
L(n) the left neighbor of t

among
{
t
(n)
1 , . . . , t

(n)
N

}
. Then

sup
tk≤t

xk = max (x1, . . . ,xL) ,

sup
t
(n)
k ≤t

x
(n)
k = max

(
x

(n)
1 , . . . ,x

(n)
L(n)

)
.

Note that in general, L 6= L(n)! For instance, if tL = t, and t(n)
L = t+ 1/n, then L(n) <

L, and the pointwise convergence πn(tL) → π(tL) will generally fail in such a jump.
This is where the Skorokhod time transformation steps in. Define a homeomorphism
λn : [a, b]→ [a, b] by

λn(a) = a, λn(b) = b, λn(ti) = t
(n)
i , i = M + 1, . . . , N,

and linearly interpolated elsewhere. Then t ∈ [ti, ti+1) iff λn(t) ∈
[
t
(n)
i , t

(n)
i+1

)
, i = M +

1, . . . , N − 1 (and analogously t ∈ [a, tM+1) ⇐⇒ λn(t) ∈
[
a, t

(n)
M+1

)
and t ∈ [tN , b] ⇐⇒

λn(t) ∈
[
t
(n)
N , b

]
). This implies

sup
t
(n)
k ≤λn(t)

x
(n)
k = max

(
x

(n)
1 , . . . ,x

(n)
L

)
.

Clearly, (4.20) now implies πn(λn(t)) = π(t) for t ∈ [a, b] and n large enough. Further-
more, we have

πn(λn(t)) = πn
(
t
(n)
i

)
, π(t) = π(ti), t ∈ [ti, ti+1), i = M, . . . , N,
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with a slight abuse of notation since λn is not defined on [tM , a)∪ (b, tN+1), where tN+1

has to be chosen such that tN+1 > b. Hence, denoting by δ the discrete metric on Pd,

sup
t∈[a,b]

δ (πn(λn(t)), π(t)) = max
i=M,...,N

sup
t∈[ti,ti+1)

δ (πn(λn(t)), π(t))

= max
i=M,...,N

δ
(
πn
(
t
(n)
i

)
, π(ti)

)
= 0,

for n large enough.
Lastly, it is easy to see that supt∈[a,b] |λn(t)− t| →n→∞ 0. Finally, we have proven

πn(·)→ π(·) in the Skorokhod metric.

The following theorem now extends Lemma 4.27 which states the weak convergence of
the sample hitting scenario to the extremal hitting scenario. Now we are adding a time
variable and proof convergence of entire hitting scenario functionals. This is a similar
step as from (4.15) to (4.16).

Theorem 4.31. Suppose (4.15) holds and denote by Π[nt] and Π(t) the hitting scenarios
of M[nt] and Y (t) from (4.16). Then

Π[n·] →D Π(·)

in D ((0,∞),Pd).

Proof. It is sufficient to show Π[n·] →D Π(·) in D([a, b],Pd) with 0 < a < b such that
Π(·) is almost surely continuous in b, cf. Resnick (2008, Proposition 4.18). Condition
(4.15) is equivalent with the convergence Nn →D N from (4.17). It is not difficult to see
that N satisfies the assumptions of Lemma 4.30 with probability one, which means that
the mapping Ψ is almost surely continuous at N . The continuous mapping theorem now
yields

Π[n·] = Ψ(Nn)→D Ψ(N) = Π(·)

in D([a, b],Pd).

Remark 4.32. Interestingly, the distribution of Π(t) does not depend on t and is equal
to the distribution of the extremal hitting scenario Π of ξ. This can be seen as follows.
Following the arguments in Resnick (2007, Section 5.5.2), it is easy to see that the
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extremal process Y = (Yt)t≥0 has some self-similarity property, i. e. for any c > 0

Y (c·) =D cY (·). (4.21)

This is mainly due to the fact that the exponent measure ν is homogenous of order −1,
i. e for any c > 0

ν(cA) = c−1ν(A), A ∈ B(E).

Therefore, Y (ct) =D cY (t) for any c, t > 0. Hence the distribution of the hitting scenarios
of both sides have to coincide as well, which implies Π(ct) =D Π(t). In particular, it
follows Π(c) =D Π(1) =D Π, where the last equality is due to the fact that

η =D sup
k∈N

ϑ(k)1{tk≤1},

with
((
tk,ϑ

(k)
))
k∈N being the points of PPP(λ× ν) on [0,∞)× E, where λ denotes the

Lebesgue measure.

Proposition 4.33. Let Π(t) be the hitting scenario of Y (t) from (4.16), t > 0. Then
the time-changed processes (e−sY (es))s∈R and (Π(es))s∈R are stationary processes in
D
(
R,Rd

)
and D (R,Pd), respectively.

Proof. The stationarity of (e−sY (es))s∈R directly follows from (4.21). Let

N =
∑
k∈N

ε(tk,j(k))

be PPP(λ×ν) on (0,∞)×E, where λ is the Lebesgue measure and ν is the exponent mea-
sure. The homogenity of order −1 of the exponent measure implies that the transformed
point process

N ′ =
∑
k∈N

ε(t′k,j′(k))
=
∑
k∈N

ε(log tk,j(k)/tk)

is PPP(λ× ν) on R× E, which can be seen as follows: Define the transformation

Φ : (0,∞)× E→ R× E, (t, j) 7→ (log t, j/t).

Then the intensity measure of N ′ is given by

(
(λ× µ) ◦ Φ−1

)
(A) =

∫
1A((log t, j/t)) dt ν(dj)

=

∫
t−11A((log t, j)) dt ν(dj)
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=

∫
e−t1A((t, j))et dt ν(dj)

= (λ× ν)(A).

Next, define for h ≥ 0 a mapping via

Φ̃h : R× E→ D(R,E ∪ {0}), (t′, j′) 7→
(
j′et

′−s−h1{t′≤s+h}

)
s∈R

.

This yields another PPP

Ñh =
∑
k∈N

ε(
j′(k)e

t′
k
−s−h

1{t′
k
≤s+h}

)
s∈R

=
∑
k∈N

ε(
j(k)e−s−h1{tk≤es+h}

)
s∈R

on D(R,E ∪ {0}). The intensity measure of Ñh is given by(
(λ× ν) ◦ Φ̃−1

h

)
(A) =

∫
1A

((
j′et

′−s−h1{t′≤s+h}

)
s∈R

)
dt′ ν(dj′)

=

∫
1A

((
j′et

′−s1{t′≤s}

)
s∈R

)
dt′ ν(dj′) =

(
(λ× ν) ◦ Φ̃−1

0

)
(A).

Hence, Ñh =D Ñ0 for any h ≥ 0. Since (Π(es+h))s∈R is built on Ñh, the stationarity of
(Π(es))s∈R follows.

Remark 4.34. The multivariate process Z̃(s) = supk∈N j
′(k)et

′
k−s1{t′k≤s}, s ∈ R, that

arises in the proof of Proposition 4.33 has an interesting interpretation in terms of so-
called moving maxima processes which were firstly introduced by Deheuvels (1983), and
later investigated by e. g. Schlather (2002) or Stoev and Taqqu (2005). Let f be a
probability density on Rd, and

(
ζk,T

(k)
)
be the points of PPP(r−2 dr×λ) on (0,∞)×Rd,

with λ denoting the Lebesgue measure. Then

Z(s) = sup
k∈N

ζkf
(
s− T (k)

)
, s ∈ Rd,

defines a stationary max-stable process on Rd with unit Fréchet margins, which is called
moving maxima process. It is obvious that the processes

Z̃i(s) = sup
k∈N

j
′(k)
i et

′
k−s1{t′k≤s}, i = 1, . . . , d,

with j′(k) =
(
j
′(k)
1 , . . . , j

′(k)
d

)
define moving maxima processes on R. The corresponding

probability density is f(s) = e−s1{s≥0}, which corresponds to the standard exponential
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distribution. In that sense, we can think of Z̃ = (Z̃(s))s∈R as a multivariate version of a
moving maxima processes on R.
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5 Summary and Outlook

In the beginning of this thesis, a review of representations of max-stable processes, mostly
in terms of generators and D-norms, was given. Next, the concept of dual D-norm
functions was introduced. It turned out that dualD-norm functions arise when discussing
componentwise exceedances of max-stable processes over a given function. This was
particularly important when we were later investigating complete records. Chapter 2
ended with an introduction of distributional differentiability of max-stable processes.
Naturally, there are many questions open for future research. In Proposition 2.34, we
started with a generator that is almost surely differentiable, and ended up with a max-
stable process which is only differentiable in distribution. Despite there is not much hope
that we can actually obtain a max-stable process which is differentiable in a stronger
sense, it might be possible to reduce the assumptions on the generator.
In Chapter 3, it was proposed how to reconstruct a given max-stable process by dis-

cretizing and interpolating the resulting max-stable random vector again, such that
max-stability is being preserved. In the onedimensional case, where the index set of
the max-stable processes is S = [0, 1], there has been developed a method, which is also
applicable to the interpolation of generalized Pareto processes. This model however, can
not be transferred to the case S = [0, 1]k since it relies explicitly on the natural order
that is given in R. Therefore, other models have been discussed to deal with the high-
erdimensional case. However, there is still a lot of work to do, and it would be helpful
to come up with simulation studies.
Lastly, we presented many results on multivariate records in Chapter 4. For instance,

we derived formulas for the weighted limit probability that the n-th observation is a
record, as n tends to infinity. It would be very nice to develop methods how to estimate
these probabilities based on the observations. Also, it is still an open problem to use the
domain-of-attraction condition in order to determine the limit distribution of a suitably
normed multivariate record. In the univariate case, this has already been achieved, see
e. g. Resnick (2008, Section 4.2). Last but not least, there might be a lot of other possible
definitions of multivariate records that are still not discussed yet!
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