Die Simkania-Vakuole: Die Rolle von ER, retro-/anterograden Protein- und Lipidtransport

DISSERTATION

zur Erlangung des

naturwissenschaftlichen Doktorgrades

(Dr. rer. nat.)

im Fach Biologie

eingereicht an der Fakultät für Biologie

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Dipl. Biol.

Jo-Ana Herweg

geboren am 05.08.1985 in Hamburg

Würzburg, Mai 2016

Eingereicht am:

Mitglieder der Promotionskommission:

Vorsitzender: Prof. Dr. Erstgutachter: Prof. Dr. Thomas Rudel Zweitgutachter: Prof. Dr. Georg Krohne

Tag des Promotionskolloquiums:

Doktorurkunde ausgehändigt am:

"Es ist unmöglich zu überprüfen, welche Entscheidung die richtige ist, weil es keine Vergleiche gibt. Man erlebt alles unmittelbar, zum ersten Mal und ohne Vorbereitung."

(Milan Kundera)

Aequitas • Veritas

I Inhaltsverzeichnis

II Zusammenfassung	11
III Summary	13
1. Einleitung	14
1.1 Die Biologie der Chlamydiales: Chlamydiaceae vs. Simkaniaceae	14
1.1.1 Taxonomie	14
1.1.2 Simkanien und Umwelt-Chlamydien	15
1.1.3 Medizinische Relevanz	16
1.1.4 Entwicklungszyklus	17
1.2 Die <i>Simkania</i> -Vakuole	19
1.2.1 Morphologie und Assoziation mit dem Endoplasmatischen Retikulum	20
1.2.2 Invasion, Typ3- und Typ4-Sekretionssystem	21
1.2.3 Erhalt der Simkania-Vakuole und Schutz vor ER-Stress	24
1.3 Das Endoplasmatische Retikulum (ER)	25
1.3.1 Funktion und Struktur	25
1.3.2 Interaktionen mit Organellen der Wirtszelle	27
1.3.3 Interaktionen mit intrazellulär pathogenen Bakterien	28
1.4 Vakuolenaufreinigung und die Zusammensetzung von parasitophoren Vakuolen	29
1.5 Der intrazelluläre vesikuläre Transport in eukaryotischen Zellen	30
1.5.1 Toxintransport	31
1.5.2 Retro-Inhibitoren	32
1.5.3 C ₆ -NBD-Ceramidtransport	33
1.5.4 Brefeldin A und Bafilomycin A1	34
1.6 Zielsetzung dieser Arbeit	35
2. Material und Methoden	36
2.1 Material	36
2.1.1 Zelllinien	36
2.1.2 Bakterienstämme	36
2.1.3 Plasmide	36
2.1.4 Oligonukleotide	37
2.1.5 Antiseren	41
2.1.6 Lösungen, Puffer und Medien	42
2.1.7 Enzyme	45
2.1.8 Antibiotika	45
2.1.9 Chemikalien	45
2.1.10 Einwegmaterial	47
2.1.11 Kits	48
2.1.12 Geräte	48
2.1.13 Software	48

2.2 Methoden	49
2.2.1 Arbeiten mit Bakterien	49
2.2.1.1 Kultivierung und Lagerung von <i>E.coli</i>	49
2.2.1.2 Herstellung elektrokompetenter <i>E.coli</i>	49
2.2.1.3 Transformationen	49
2.2.2 Zellbiologische Methoden	50
2.2.2.1 Passagieren von Zellen	50
2.2.2.2 Anlegung von Zelllinien	50
2.2.2.2.1 Anlegung von mit Antibiotika behandelten stabilen Zelllinie	en50
2.2.2.2.2 Anlegung und Auftauen von Zell-Kryostocks	
2.2.2.3 Infektionen mit Simkania negevensis	51
2.2.2.4 S. negevensis Präparation	51
2.2.2.5 Titerbestimmung	52
2.2.2.6 Behandlungen mit Antibiotika und Inhibitoren	
2.2.2.7 Aufreinigung von Organellen	53
2.2.2.7.1 ER-SCV-Membranisolierung und -aufreinigung	53
2.2.2.7.2 Mitochondrienisolierung und -aufreinigung	53
2.2.2.8 Gradienten (Percoll, Saccharose, Renografin)	54
2.2.2.8.1 Percoll-Gradient	54
2.2.2.8.2 Saccharose-Gradient	54
2.2.2.8.3 Renografin-Gradient	54
2.2.2.9 Infektivitätsassay	55
2.2.2.9.1 Inhibitoren Infektivitätsassay	55
2.2.2.9.2 Bafilomycin A1 Infektivitätsassay	56
2.2.2.10 RNA-Interferenz	56
2.2.2.10.1 Traffickome RNA-Interferenz	56
2.2.2.11 Mikroskopie	57
2.2.2.12 Immunofluoreszenz-Färbung	57
2.2.2.12.1 DAPI-snGroEL/SN-Cy-Färbung	58
2.2.2.13 Elektronenmikroskopie	59
2.2.2.14 Lebendzellmikroskopie und C6-NBD-Ceramidtransport	59
2.2.2.15 Adhäsionstest	59
2.2.3 Molekularbiologische Methoden	59
2.2.3.1 Polymerasekettenreaktion (PCR)	59
2.2.3.2 Isolierung von RNA	60
2.2.3.3 Umschreiben von RNA in cDNA	60
2.2.3.4 Quantitative Real-Time-PCR	61
2.2.4 Proteinbiochemische Methoden	62
2.2.4.1 SDS-Gelelektrophorese	63
2.2.4.2 Detektionsmöglichkeiten von SDS-Gelen	63

2.2.4.2.1 Coomassie-Färbung	64
2.2.4.2.2 Immunoblot	64
2.2.4.3 Bradford zur Bestimmung des Proteingehalts	65
2.2.4.4 LC-MS/MS	65
2.2.4.5 Analyse von Proteomdaten	65
2.2.5 Lipidbiochemische Methoden	66
2.2.5.1 Lipidextraktion	66
2.2.5.2 Dünnschichtchromatographie	67
2.2.5.3 DC-Auswertung	67
2.2.5.4 LC/MS und Auswertung	68
3. Ergebnisse	69
3.1 Charakterisierung von infektionsassoziierten Proteinen über Proteomanalysen der Simkania-Vakuole	69
3.1.1 Etablierung eines subzellulären Fraktionierungsprotokolls zur Aufreinigung von ER-SCV-Membranen	69
3.1.2 Erstellung eines <i>Simkania-</i> Proteoms zur Identifizierung von SCV-assoziierten bakteriellen Proteinen	73
3.1.3 Identifizierung von potentiellen SCV-assoziierten, humanen und bakteriellen Proteinen durch LC-MS ²	74
3.1.4 Die Datenanalyse der humanen ER-SCV-Membranproteine deutet auf einen gegensätzlichen Einfluss von retrograden und anterograden Transportwegen auf die SCV-Membran hin	77
3.1.5 Humane Proteine des retrograden und anterograden Transportes beeinflussen die Primär- und Sekundärinfektion von Simkania-infizierten Zellen	85
3.1.6 Potentielle, bakterielle ER-SCV-Membranproteine sind mit dem Typ3- Sekretionssystem und Inc-Proteinen assoziiert	90
3.2 Charakterisierung von infektionsassoziierten Lipiden in Lipidomanalysen der Simkania-Vakuole	101
3.2.1 Identifizierung und qualitative Analyse von infektionsassoziierten Lipiden	102
3.2.2 Qualitative und quantitative Charakterisierung von infektionsassoziierten Lipiden	104
3.2.3 Cholesterol-β-D-Glykosid ist in ER-SCV-Membranen lokalisiert	116
3.3 Retrograde Transportwege und der intrazelluläre Lipidtransport haben einen großen Einfluss auf die <i>Simkania</i> -Infektion	118
3.3.1 Retro-Inhibitoren senken die Durchschnittsgröße der SCV sowie die Infektivität von <i>Simkania negevensis</i>	119
3.3.2 Retro-Inhibitoren zeigen einen drastischen Einfluss auf die SCV-Ausbildung und SCV-Morphologie	124
3.3.3 Retro-Inhibitoren verursachen unterschiedliche Verschiebungen des retrograden C ₆ -NBD-Ceramidtransportes zum Golgi und zur SCV	128
3.3.4 Eine Bafilomycin A1 oder Brefeldin A induzierte Blockierung vom retro- oder anterograden Transport beeinflusst die <i>Simkania</i> -Primär- und -Sekundärinfektion	142
3.3.5 Eine frühe Behandlung mit Bafilomycin A1 unterbindet die Ausbildung einer intakten SCV, aber nicht die Adhäsionsfähigkeit von <i>Simkania negevensis</i>	153

Inhaltsverzeichnis

3.3.6 Bafilomycin A1 verursacht eine Retro1- und/oder Retro2-ähnliche Verschiebung des retrograden C ₆ -NBD-Ceramidtransportes zum Golgi und zur SCV	157
3.4 Die Simkania-Primärinfektion wird von verschiedenen Vesikeltransportwegen beeinflusst.	164
4. Diskussion	169
4.1 Das Proteom der <i>Simkania</i> -Vakuole	169
4.1.1 Zur Isolierung von ER-SCV-Membranen sowie Simkania Elementar- und Retikularkörperchen sind andere Methoden notwendig als für Chlamydien	169
4.1.2 ER-SCV-Membran-Proteomanalysen deuten auf veränderte Verteilungen humaner Proteine während der <i>Simkania</i> -Infektion hin	171
4.1.3 Retro- und anterograd transportierte Wirtszellproteine zeigen eine entgegengesetzte Verteilung im SCV-Proteom	174
4.2 Die Bedeutung des retrograden Protein- und Lipidtransportes für Simkania	176
4.2.1 Endosomale Transportwege beeinflussen die Sekundärinfektion von Simkania negevensis	176
4.2.2 Retro-Inhibitoren verursachen phänotypische Veränderungen der SCV	177
4.2.3 Retro-Inhibitoren beeinflussen den intrazellulären Ceramidtransport	178
4.2.4 Bafilomycin A1 – ein wirksamer Inhibitor für Simkania-Infektionen	182
4.2.5 Das Simkania-Traffickome und der Einfluss von weiteren zellulären Transportproteinen auf die Simkania-Infektion	188
4.3 Die <i>Simkania</i> -Vakuolenmembran	191
4.3.1 Proteomanalysenvergleiche zeigen Ähnlichkeiten der Simkania-Vakuole zur Legionella- und Chlamydia-Vakuole	191
4.3.2 Potentielle ER-SCV-Membranproteine sind Bestandteile des zellulären Metabolismus, des Typ3-Sekretionssystems oder Inc-Proteine	197
4.4 Das Lipidom der Simkania-Vakuole	204
4.4.1 Cholesterol-β-D-Glykosid und PE 30:0, zwei infektionsspezifische Lipide von <i>Simkania</i>	205
4.5 Ein <i>Simkania</i> -Infektionsmodell	209
4.6 Perspektiven und Ausblick	212
Literaturverzeichnis	214
Anhang	232
Abkürzungsverzeichnis	264
Publikationen und Präsentationen	275
Publikationen	275
Vorträge und Poster Präsentationen	275
Danksagung	277
Selbständigkeitserklärung	279

Zusammenfassung

II Zusammenfassung

Simkania negevensis (*Sn*) repliziert als *Chlamydia*-ähnliches obligat intrazelluläres Bakterium auch in einer membranumschlossenen Vakuole, die als SCV (engl. *Simkania-containing vacuole*) bezeichnet wird. Die SCV ist ein bis jetzt einzigartiges Kompartiment, das stark mit ER-Membranen assoziiert ist, wobei ER-Stress von den Bakterien blockiert wird. Die Morphologie der SCV scheint dabei in Epithelzellen (HeLa229, A549, HEp-2) als auch in Makrophagen (THP1) gleich zu sein. Die SCV stellt die erste intrazelluläre Berührungsfläche dar, an der Interaktionen zwischen Wirt und Pathogen erfolgen, und dient gleichzeitig als Replikationsnische. Mithilfe der Identifizierung von humanen und bakteriellen Faktoren, die mit der ER-SCV-Membran assoziiert sind, sollten die Zusammensetzung der SCV sowie mögliche Interaktionen mit dem ER oder zellulären Transportwegen ermittelt werden. Vergleichsstudien von SCV-assoziierten Proteinen sollten Ähnlichkeiten zur chlamydialen Inklusion aufzeigen, für die bereits einige interagierende Wirtszellfaktoren beschrieben wurden.

In dieser Arbeit wurde ein Aufreinigungsprotokoll etabliert, das sowohl für ER-SCV-Membranen aus HeLa229 als auch THP1 geeignet war und für spätere Proteom- oder Lipidomanalysen diente. Über markierungsfreie massenspektrometrische Messungen konnten 302 bakterielle und 1178 humane Proteine in ER-(SCV-) Membranen und 885 bakterielle Proteine in aufgereinigten *Sn* identifiziert werden. In ER-(SCV-) Membranen von nicht und *Sn*-infizierten HeLa229 Zellen befanden sich 51 unterschiedlich verteilte und 57 transportassoziierte humane Proteine, die auf infektionsinduzierte Unterschiede beim intrazellulären Proteintransport hindeuteten. Eine entgegengesetzte Regulation von retro- und anterograd transportierten Proteinen konnte mithilfe von RNA-Interferenz und dem Einsatz geeigneter Inhibitoren bestätigt werden, wobei sich zeigte, dass Clathrin-assoziierte und COPI-Vesikel eine zentrale Rolle spielen. Retro-Inhibitoren, die den retrograden Transport zwischen Endosomen zum Golgi oder zwischen frühen und späten Endosomen inhibieren, sowie Bafilomycin A1 (retrograd, späte Endosomen und Lysosomen) und Brefeldin A (anterograd, ER und Golgi), beeinflussten massiv die SCV-Ausbildung, SCV-Morphologie und den intrazellulären Lipidtransport.

Über markierungsfreie massenspektrometrische und dünnschichtchromatographische Analysen konnten erste Unterschiede im Lipidvorkommen in *Sn*-infizierten Zellen, an ER-SCV-Membranen und in aufgereinigten *Sn* im Vergleich zu nicht infizierten Zellen ermittelt werden. Dabei konnten neben An- und Abreicherungen in Gesamtzellextrakten sowie ER-SCV-Membranen zwei infektionsspezifische Lipide, Cholesterol-ß-D-Glykosid und PE 30:0, identifiziert werden.

Weiterführende umfangreiche RNA-Interferenzstudien weisen darauf hin, dass die *Sn*-Infektion vom Endosomen-zum-Golgi-Transport und vom Clathrin-assoziierten Vesikeltransport abhängig ist.

Zusammenfassung

Zusammenfassend konnten erste mögliche SCV-assoziierte Proteine und Lipide identifiziert werden, die mit der bakteriellen Infektion verbunden waren. Des Weiteren hängen eine stabile SCV-Ausbildung und *Sn*-Infektivität von verschiedenen retrograden Transportwegen und damit von dem Erwerb von Nährstoffen wie bspw. Lipiden ab.

III Summary

Simkania negevensis (*Sn*) is a *Chlamydia*-like obligate intracellular bacterium which replicates within a membrane bound vacuole, termed SCV (*Simkania*-containing vacuole). The SCV is a unique compartment closely associated with ER-membranes, consequently ER-stress is blocked by the bacteria. SCV morphology is similar among epithelial cells (HeLa229, A549, HEp-2) and macrophages (THP1). The SCV represents the first intracellular interface between the host and pathogen which serves as a replication niche. Identifying human and bacterial factors associated with ER-SCV-membranes should contribute towards the understanding of SCV composition and formation as well as interactions with ER or transports. Comparative studies of the SCV should indicate similarities to the chlamydial inclusion since some host cell factors are already known for *Chlamydia*.

In this thesis, a purification protocol has been established that is applicable to HeLa229 and THP1 ER-SCV-membranes and has been further utilized for proteome and lipidome analyses. 302 bacterial and 1178 human proteins composing ER-SCV-membranes and 885 bacterial proteins composing purified *Sn* have been identified by using label-free mass spectrometry measurements. Among the human factors of non or *Sn* infected ER-(SCV-) membranes we found 51 enriched or depleted proteins in addition to 57 transport associated ones that indicated infection induced differences among intracellular protein transport. Contrary regulation of retrograde and anterograde transported proteins could be confirmed by using RNA interference and inhibitor tests, whereby Clathrin-associated and COPI vesicles seem to play a central role. Application of Retro-inhibitors, which interfered with retrograde transport processes between endosome to Golgi or early to late endosomes, as well as Bafilomycin A1 (retrograde, late endosomes and lysosomes) and Brefeldin A (anterograde, ER and Golgi) exerted a strong influence on SCV formation, morphology and intracellular lipid transport.

By using label-free mass spectrometry measurements and thin layer chromatography we could determine differences in lipid levels within *Sn* infected cells, ER-SCV-membranes and purified *Sn* in comparison to uninfected cells. In addition to lipid enrichment or depletion in whole-cell extracts and ER-SCV-membranes, we identified two infection-specific lipids, cholesterol-ß-D-glucoside and PE 30:0.

Further, high-throughput RNA interference tests indicated a dependence of *Sn* infections on endosome to Golgi and Clathrin-associated vesicle transports.

Taken together, we were able to identify initial potential SCV-associated proteins and lipids that were connected to bacterial infection. Furthermore, SCV formation and *Sn* infectiousness depends on retrograde transport processes and therefore also on acquisition of nutrients, such as lipids.

1.1 Die Biologie der Chlamydiales: Chlamydiaceae vs. Simkaniaceae

Die Ordnung der Chlamydiales wird gebildet durch obligat intrazellulär replizierende Gramnegative Bakterien, die einen Chlamydien-ähnlichen Entwicklungszyklus aufweisen und bis zu 80 % Gemeinsamkeit in ihrer 16S oder 23S rRNA zueinander haben. Sie lässt sich nach aktuellem Stand in acht Familien unterteilen, wobei zunächst Vertreter der Familie Chlamydiaceae gefunden und untersucht wurden. Chlamydien wurden erstmals 1907 von dem deutschen Radiologen Ludwig Halberstaedter und dem österreichischen Zoologen Stanislaus von Prowazek beschrieben. Sie entdeckten kleine Partikel innerhalb von zytosolischen Vakuolen konjunktivaler Epithelzellen, welche sich als Verursacher des Trachoms, einer bakteriellen Entzündung des Auges, herausstellten. Gut 25 Jahre später wurden ähnliche Partikel im Blut von Pneumoniepatienten entdeckt, die die von Vögeln übertragene Psittakose hervorrufen (Bedson, 1932). Aufgrund ihrer geringen Größe und rein intrazellulären Vermehrung zählte man Chlamydien für längere Zeit zu den Chlamydozoa, einer Zwischenform von Bakterien und Viren (Lippschütz, 1924). Ab den 60er Jahren gelang es Wissenschaftlern mithilfe von neuartigen biochemischen und molekularbiologischen Methoden, wie der 16S rRNA Analyse, die wahre Natur der Chlamydien festzustellen. Heutzutage werden Chlamydien zu den am weitesten verbreiteten bakteriellen Krankheitserregern von Menschen und Tieren weltweit gezählt. Die Identifizierung weiterer Familien der Chlamydiales wie bspw. Simkaniaceae, Parachlamydiaceae (Everett et al., 1999) und Waddliaceae (Rurangirwa et al., 1999) machte deutlich, dass innerhalb des Phylums Chlamydiae viele Umwelt-Chlamydien oder Chlamydien-ähnliche Bakterien existieren und darin ein bisher noch unbekannter Artenreichtum vorliegen muss.

1.1.1 Taxonomie

Die Familie der *Chlamydiaceae* wird heutzutage phylogenetisch in zwei Gattungen unterteilt. Die Gattung *Chlamydia* wird gebildet aus den Vertretern *C. trachomatis* (Page, 1968), *C. muridarum* und *C. suis* und die Gattung *Chlamydophila* enthält die Spezies *C. psittaci* (Page, 1968), *C. pneumoniae* (Grayston, 1989), *C. pecorum*, *C. felis*, *C. abortus* und *C. caviae*. Anfang der 90er Jahre wurden die ersten Chlamydien-ähnlichen Organismen beschrieben, welche als Endosymbionten in freilebenden Amöben (Dilbeck *et al.*, 1990) oder Kontamination in der Zellkultur (Kahane *et al.*, 1993) beobachtet wurden. Die Familie der *Parachlamydiaceae* (Everett *et al.*, 1999) enthält bislang die meisten Umwelt-Bakterien und wird in die drei Gattungen *Parachlamydia*, *Neochlamydia* und *Protochlamydia* unterteilt (Amann *et al.*, 1997, Fritsche *et al.*, 2000, Horn *et al.*, 2000, Collingro *et al.*, 2005). Simkanien wurden das erste Mal 1993 als Verunreinigung in der Zellkultur beschrieben (Kahane *et al.*, 1993). Die Familie der *Simkaniaceae* besitzt bislang nur einen charakterisierten Vertreter der Gattung *Simkania*. Dieser wurde zunächst als Organismus ,Z' bezeichnet (Kahane *et al.*, 1993) und später in

S. negevensis Z (*Sn*) umbenannt (Everett *et al.*, 1999). Basierend auf 16S und 23S rRNA Sequenzanalysen wurde die taxonomische Klassifizierung der *Chlamydiales* seit 1999 von Wissenschaftlern wie Karin D. E. Everett umgestellt (Everett *et al.*, 1999, Everett *et al.*, 2005) (s. Abb. 1.1).

Abb. 1.1: Phylogenetischer Stammbaum nach der 16S rRNA aus dem Phylum Chlamydiae (Horn, 2008). Dieser fasst die Ordnung der Chlamydiales zusammen, welche aus den Familien Chlamydiaceae, Clavochlamydiaceae, Criblamydiaceae, Parachlamydiaceae, Piscichlamydiaceae, Rhabdochlamydiaceae, Simkaniaceae und Waddliaceae gebildet wird. In Rot sind alle Vertreter der bisher identifizierten Chlamydiaceae, in Violett der Simkaniaceae abgebildet. S. negevensis bildet dabei den bisher einzigen humanen Vertreter.

Nach und nach kamen weitere Familien, wie die *Piscichlamydiaceae* (Draghi *et al.*, 2004), *Rhabdochlamydiaceae* (Kostanjsek *et al.*, 2004), *Waddliaceae* (Rurangirwa *et al.*, 1999) und *Criblamydiaceae* (Thomas *et al.*, 2006) hinzu. Die von Karlsen *et al.* beschriebenen *Clavochlamydiaceae* (Karlsen *et al.*, 2008) mit dem Vertreter ,*Candidatus Clavochlamydia salmonicola*⁴ werden mittlerweile zu den *Chlamydiaceae* gezählt. Zuletzt wurde 2013 eine neue Familie namens ,*Candidatus Parilichlamydiaceae*⁴ vorgestellt, deren Vertreter ⁴ *Candidatus Parilichlamydia carangidicola*⁴ aus australischen Gelbschwanzmakrelen isoliert wurde (Stride *et al.*, 2013).

1.1.2 Simkanien und Umwelt-Chlamydien

Ein großer Teil der *Chlamydiae* sind als Symbionten oder Pathogene mit eukaryotischen Organismen assoziiert, wozu sowohl Protisten, Invertebraten als auch Vertebraten zählen (Subtil *et al.*, 2014). Das massive Auftreten von Chlamydien-ähnlichen Bakterien neben den *Chlamydiaceae* bot eine einzigartige Möglichkeit der Untersuchung von Umwelt-Bakterien und ihrer stetigen Adaptation an höhere eukaryotische Wirte. Die Ergebnisse solcher Arbeiten könnten erklären, wie einzelne Vertreter der *Chlamydiaceae* sich auf Infektionen von

ausschließlich Vertebraten spezialisiert haben und welche zellulären Mechanismen für ihr Überleben im Wirt essentiell sind. Erste Genom Sequenzen von mehreren Vertretern sind bereits in Datenbanken wie NCBI einsehbar und lassen Vergleiche zu den stärker erforschten Chlamydien zu, z.B. hinsichtlich Metabolismus, Aufbau der bakteriellen Zellwand und Virulenzfaktoren (Collingro et al., 2011, Pilhofer et al., 2013, Pilhofer et al., 2014, Aistleitner et al., 2015). Von Simkanien ist bisher bekannt, dass sie eine relativ große Bandbreite an Zellen infizieren und sich in diesen vermehren können. Dazu zählen Amöben, humane und simiane Epithelzellen sowie Makrophagen/Monozyten (Kahane et al., 2001, Kahane et al., 2002, Kahane et al., 2008). Simkanien ähneln dabei Chlamydien hinsichtlich der Infektion von zahlreichen humanen Zellen und deren intrazellulären Entwicklungszyklus, werden aber aufgrund der Besiedlung verschiedenster Amöbenarten oftmals als Umwelt-Chlamydien bezeichnet. Der natürliche Wirt von Simkanien ist bisher noch nicht definiert, wäre aber aufgrund ihrer Verbreitung bei den Amöben anzusiedeln (Horn, 2008). Aktuelle Studien zur phylogenetischen und ökologischen Diversität innerhalb der Chlamydiae wurden mithilfe von Metagenom- und Amplikon-Daten durchgeführt (Lagkouvardos et al., 2014). Durch den Vergleich von gesammelten Protein und 16S rRNA Sequenzen konnte ein bisher noch verborgener, enorm großer Reichtum an verschiedensten Familien und Arten aufgezeigt werden. Dabei soll die Familie der Simkaniaceae aus mehreren Vertretern gebildet werden, welche bisher noch nicht kultiviert oder molekularbiologisch weiter beschrieben worden sind. Da der einzig charakterisierte Vertreter Simkania negevensis Z als Kontamination in der Zellkultur entdeckt wurde (Kahane et al., 1993), sind für die Isolierung und Kultivierung weiterer Spezies noch keine effektiven Methoden bekannt.

1.1.3 Medizinische Relevanz

In der Medizin werden hauptsächlich Vertreter der *Chlamydiaceae* untersucht. Dabei spielen *Chlamydia trachomatis, C. pneumoniae* und *C. psittaci* als humane Pathogene die größte Rolle und sind von zentraler Bedeutung in der wissenschaftlichen Forschung und in klinischen Studien. Humanpathogene Chlamydien sind verantwortlich dafür, dass jedes Jahr Millionen Menschen weltweit an Auge, Genitaltrakt, dem oberen und unteren Respirationstrakt, Blutgefäßen und Gelenken erkranken (Byrne and Ojcius, 2004). Infektionen mit *C. trachomatis* stellen dabei die häufigste Ursache von sexuell übertragenen Erkrankungen (engl. *sexually transmitted diseases, STD*) dar, neben dem Befall des inneren Oberlides, was zur Trachomausbildung und Blindheit führen kann (WHO, *Prevalence* and *incidence* of *selected sexually transmitted infections*; Wright *et al.*, 2008, Bebear and de Barbeyrac, 2009). *C. pneumoniae* und *C. psittaci* ähneln sich in ihrem Krankheitsbild, da sie vorwiegend die Lunge infizieren. Dabei kommt es oftmals zu Pneumonien, welche vom Menschen oder Tieren übertragen wurden, chronischer Bronchitis oder chronischem Asthma (Hughes *et al.*, 1997, Hahn and McDonald, 1998, Harkinezhad *et al.*, 2009).

Aufgrund neuerer Studien kann davon ausgegangen werden, dass auch Sn aus der medizinischen Sicht eine wichtige Rolle spielt. Das Bakterium wurde in klinischen Proben nachgewiesen, wobei größtenteils Erkrankungen des oberen Respirationstraktes vorlagen. Dazu zählen Pneumonien, auch als CAP (engl., community acquired pneumonia) bezeichnet (Lieberman et al., 1997), Bronchiolitis (Kahane et al., 1998), chronisch obstruktive Lungenerkrankungen (Lieberman et al., 2002) und akute Abstoßungsreaktionen bei Empfängern von Lungentransplantaten (Husain et al., 2007). Weitere Berichte zeigen, dass Sn auch in Proben des unteren Respirationstraktes nachgewiesen werden kann (Greenberg et al., 2003). Zusätzlich wird diskutiert, ob Infektionen mit Chlamydien-ähnlichen Bakterien wie Simkanien Frühgeburten oder sogar einen Fetusverlust während der Schwangerschaft zur Folge haben könnten (Baud et al., 2008). Neben dem Nachweis bei akuten Infektionen wurde eine hohe Seropositivität bei nicht erkrankten Probanden festgestellt. Die Untersuchungen dazu wurden von verschiedenen Gruppen an mehreren geografischen Standorten weltweit durchgeführt (Kumar et al., 2005, Yamaguchi et al., 2005, Johnsen et al., 2005, Friedman et al., 2006, Kahane et al., 2007). Vor kurzem wurden Infektionen mit Simkanien bei Reptilien gemeldet (Soldati et al., 2004), was das Wirtsspektrum von terrestrischen Organismen noch erweitert. Aufgrund der vielen Funde ist es zweifelhaft, dass es sich bei Simkanien nur um Umwelt-Chlamydien handelt. Sie stellen ein potentiell pathogenes Bakterium für Menschen und Tiere dar, welches in der Art der Infektion C. pneumoniae und C. psittaci ähnelt.

1.1.4 Entwicklungszyklus

Der Entwicklungszyklus von Chlamydien während der intrazellulären Replikation ist einzigartig innerhalb der Domäne der *Bacteria* und erfolgt in ähnlicher Weise auch bei *Sn*. Die Infektion von eukaryotischen Epithelzellen beginnt mit dem Eindringen von einem infektiösen Elementarkörperchen (engl. *elementary body*, EB) in die Wirtszelle (s. Abb. 1.2) (1). Dabei wird das EB von einer endosomalen Vakuole eingeschlossen (2), in der es nach wenigen Stunden mit der Differenzierung zu metabolisch aktiven Retikularkörperchen (engl. *reticulate body*, RB) beginnt (3). Dieses vermehrt sich durch Zweiteilung über mehrere Generationen innerhalb der Vakuole, welche auch als Inklusion bezeichnet wird (5) (Moulder, 1991). Am Ende dieser Vermehrungsperiode differenzieren RBs zurück zu EBs, um einen neuen infektiösen Zyklus zu starten (Dautry-Varsat *et al.*, 2005, Hybiske and Stephens, 2007) (6). Durch die obligat intrazelluläre Replikation sind sie an die Zelle gebunden. Um von einer Zelle zu einer benachbarten zu gelangen, müssen sie ihre Zelle lysieren (7) oder sich von dieser in Form einer Extrusion abschnüren (Hybiske and Stephens, 2008).

Wachstumskurven und elektronenmikroskopische Untersuchungen haben gezeigt, dass *Sn* längere Entwicklungszyklen aufweisen als Chlamydien. So benötigt *C. trachomatis* 48 Stunden und *C. pneumoniae* 72 Stunden für einen Entwicklungszyklus (Brunham and Rey-Ladino, 2005, Hammerschlag, 2002). *Sn* erreicht eine Plateauwachstumsphase erst nach drei Tagen.

Die vollständige intrazelluläre Replikation ist jedoch erst innerhalb von fünf bis zu zwölf Tagen beendet, je nach Zelllinie (Kahane *et al.*, 1993, Kahane *et al.*, 1999, Kahane *et al.*, 2002). Der verlängerte Entwicklungszyklus von *Sn* könnte dabei an die evolutionär konservierte Inhibierung vom Zelltod der Wirtszelle gekoppelt sein (Karunakaran *et al.*, 2011). Da im Fall von *Sn* EBs als auch RBs während des gesamten Entwicklungszyklus auftreten, wird diskutiert, ob beide Entwicklungsformen infektiös sein könnten (Kahane *et al.*, 2002).

Abb. 1.2: Der chlamydiale Entwicklungszyklus. Die Aufnahme von Elementarkörperchen (engl. *elementary body*, EB) ins Wirtszytosol wird durch das bakterielle Typ3-Sekretionssystem induziert (1). Dabei werden Effektorproteine ins Zytosol der Wirtszelle sekretiert, welche zur Kommunikation dienen und intrazelluläre Veränderungen zur Infektionsetablierung hervorrufen: Einfluss an induziertem Zelltod (pink), Hemmung von Apoptose (blau) und Neutral (beige) sind farblich in Legende und Abbildung dargestellt. EBs werden von einer internalisierten endosomalen Membran umschlossen (2), in der sie zu Retikularkörperchen (engl. *reticulate body*, RB) differenzieren (3) und sich vermehren (5). Interferon-Gamma (INF-g) und Penicillin hemmen die Replikation und führen zur Persistenz (persistente Körperchen, engl. *persistent bodies*, PBs) (4). Nach der Rückdifferenzierung zu EBs (6) entkommen diese durch eine induzierte Zelllyse (7).

Ein ähnlicher Replikationsvorgang wurde für *Sn* auch in Amöben beobachtet. Der Zyklus beginnt entsprechend mit der Aufnahme der EBs über Phagozytose. Anschließend differenzieren die EBs durch Zweiteilung zu RBs innerhalb einer langsam wachsenden

Vakuole. Bei Teilung der Amöben wurde auch eine Teilung der Vakuole beobachtet, sowie ein Überleben in Zysten. Nach der Rückdifferenzierung von RBs zu EBs werden diese über Vesikel oder durch Lyse freigelassen.

In Studien zu der Monozyten/Makrophagen Zelllinie THP1 konnte gezeigt werden, dass Sn innerhalb dieser nicht nur überleben kann, sondern einen ähnlichen Entwicklungszyklus aufweist wie in Epithelzellen (Mehlitz et al., 2014). Ein ähnliches Verhalten konnte bisher nur bei wenigen bakteriellen Vertretern wie bspw. Mykobakterien und Legionellen beobachtet werden (Cirillo et al., 1999, Pieters and Gatfield, 2002, Kahane et al., 2008). Da Monozyten/Makrophagen eine zentrale Rolle bei u.a. der Immunabwehr von Bakterien einnehmen, müssen Simkanien, Legionellen und Mykobakterien effektive Strategien entwickelt haben, um diese als Wirt nutzen zu können. Sn behält nach einer Isolierung aus Monozyten/Makrophagen die Fähigkeit bei, adhärente Epithelzellen zu infizieren. Durch Ko-Kultivierung von Monozyten/Makrophagen mit persistent infizierten Amöben zeigte sich, dass letztere während der Sekundärinfektion mit Sn sterben und erstere durch Simkanien aus dem umgebenden Medium infiziert werden. Im menschlichen Körper könnte ein ähnlicher Mechanismus erfolgen, wenn Amöben aus der Umwelt in den oberen respiratorischen Trakt gelangen und dort auf Immunzellen treffen, was die bereits existierende Adaptation an humane Makrophagen erklären würde. Ähnlich wie C. pneumoniae wären Simkanien dann möglicherweise in der Lage innerhalb des gesamten Körpers über Blut- und Lymphgefäße zu zirkulieren (Moazed et al., 1998).

1.2 Die Simkania-Vakuole

Simkanien werden nach dem Eintritt in die Wirtszelle von einer Membran umschlossen, die vor einer Erkennung durch das Immunsystems schützt, ähnlich wie bei Chlamydien. Die Biogenese der sogenannten chlamydialen Inklusion und ihre Interaktionen mit der Wirtszelle wurden in den letzten Jahrzehnten intensiv untersucht (Fields and Hackstadt, 2002). Gelingt Chlamydien die Invasion in eine Wirtszelle, werden sie von einer membranumschlossenen Vakuole ummantelt, welche ursprünglich von der Wirtszelle stammt (Hackstadt et al., 1997). Allgemein ist die Entwicklung von Chlamydiae innerhalb der Inklusion von deren Milieu abhängig, welches größtenteils von der Inklusionsmembran bestimmt wird (Heinzen and Hackstadt, 1997). Kurze Zeit später wird die Vakuole über einen Dynein-abhängigen Vorgang zum Mikrotubuli-organisierenden Zentrum transportiert und aktiv modifiziert (Clausen et al., 1997, Hackstadt, 2000, Grieshaber et al., 2003). Durch die Typ3-Sekretion und den Einbau von mehreren Effektorproteinen wie bspw. den Inc-Proteinen (engl. inclusion membrane proteins) in die Inklusionsmembran wird diese auf der zytosolischen Seite von der Wirtszelle abgeschirmt (Rockey et al., 1997, Hackstadt et al., 1999, Scidmore and Hackstadt, 2001). Die dabei vorgenommene Modifizierung schützt die Inklusion u.a. vor einer endolysosomalen Fusion oder dem Immunsystem der Wirtszelle. Gleichzeitig können Inc-Proteine eine effektive

Fusion mit bspw. Sphingomyelin- und Cholesterol-beladenen exozytotischen Vesikeln des Golgi-Apparates generieren, um einen Bezug von intrazellulären Nährstoffen zu garantieren (Hackstadt *et al.*, 1996, Ojcius *et al.*, 1997, Hackstadt *et al.*, 1999, Carabeo *et al.*, 2003). Bei Simkanien und Umwelt-Chlamydien ist noch unbekannt, welche molekularen Mechanismen innerhalb der *Chlamydiales* evolutionär konserviert sind.

1.2.1 Morphologie und Assoziation mit dem Endoplasmatischen Retikulum

Die *Simkania*-Vakuole (SCV, engl. *Simkania-containing vacuole*) wurde aufgrund ihrer Einzigartigkeit vgl. zur chlamydialen Inklusion und zu anderen intrazellulären Bakterien in der AG Simkania bzgl. ihrer Morphologie genauer untersucht (Mehlitz *et al.*, 2014) (s. Abb. 1.3).

Abb. 1.3: Morphologie der Simkania-Vakuole (engl. Simkania-containing vacuole) (SCV). Schematische Darstellung der SCV-Morphologie und -Assoziation mit Wirtszellorganellen. Die SCV (rot) umschließt EBs und RBs nahe dem Zellkern (Nukleus) der Wirtszelle (blau) und ist mit Mitochondrien (grün) assoziiert. Die Vakuolendoppelmembran umschließt einzelne Bakterien in einem in sich verbundenen System entlang des Endoplasmatischen Retikulums (ER) (grau). Zusätzlich liegen einzelne ER-Röhren der SCV-Membranoberfläche auf, wodurch einzelne Kontaktpunkte zum Wirtszellzytosol bestehen bleiben. Die starke Assoziation der SCV mit Teilen des ERs resultiert in ER-SCV-Kontaktstellen (gelb).

Erste elektronenmikroskopische (EM) Aufnahmen zeigten zuvor, dass die SCV aus vielen aneinandergereihten Vakuolen innerhalb einer Zelle besteht. Die einzelnen Vakuolenmembranen umschließen dabei EBs und RBs (Kahane *et al.*, 2001, Friedman *et al.*, 2003) und sind auf der Außenseite von einer großen Anzahl an Mitochondrien umgeben. Weiterführende Analysen von Kryo-EM-Schnittbildern verdeutlichten dabei, dass die SCV eine Doppelmembran bildet, welche eine starke Assoziation zu dem Endoplasmatischen Retikulum (ER) der Wirtszelle aufweist (Mehlitz *et al.*, 2014).

Gleichzeitig wurde beobachtet, dass einzelne ER-Röhren an größere Bereiche der SCV-Doppelmembran assoziiert vorlagen. Diese Beobachtung konnte durch dSTORM mikroskopische Aufnahmen bestätigt werden. Dabei wurde gezeigt, dass die SCV nicht, wie zuerst angenommen, innerhalb des ER-Lumens lokalisiert ist und dieses während des Entwicklungszyklus langsam ausfüllt. Vielmehr ist die SCV mit Teilen der äußeren ER-Membran assoziiert, entlang derer sie sich auszudehnen scheint. Dabei werden noch uncharakterisierte ER-SCV-Kontaktpunkte ausgebildet, die sich an mehreren Stellen entlang der bakteriellen Vakuolenmembran erstrecken, weshalb sich ER und SCV höchstwahrscheinlich nicht leicht voneinander trennen lassen. Welche Wirtszellproteine über das ER-Kompartiment mit welchen bakteriellen und/oder humanen Proteinen der SCV-Membran assoziiert sind, ist noch unbekannt.

Es stellte sich heraus, dass es sich bei der SCV um eine zusammenhängende Vakuole handelt, die entlang des ERs "wächst" und aufgrund dessen eine unförmige, nicht eindeutig definierbare Morphologie ausbildet. ER-Markerproteine wie Calnexin, Calregulin, PDI und ER-KDEL zeigen dabei eine klare Assoziation mit der SCV-Membran in Transfektions- oder Immunofluoreszenzmikroskopieexperimenten. Des Weiteren konnte eine zusätzliche Assoziation von Mitochondrien an der SCV beobachtet werden, deren Bedeutung noch nicht genau verstanden ist.

Bereits 36 Stunden nach erfolgter Infektion bildet die SCV ein zusammenhängendes inhomogenes Membransystem aus, welches sich von der peri-nuklearen Region in die Zellperipherie ausdehnt. Aufgrund dessen unterscheidet sich die SCV von der klassischen chlamydialen Inklusion, welche keine derartige ER-Assoziation aufweist und im Zellzytosol als kreisförmige, durchscheinende Vakuole lokalisiert vorliegt (Derre, 2015). Die Deformierung der SCV resultiert wahrscheinlich aus der starken ER-Assoziation. Unklar ist, ob die SCV in einem frühen Stadium zum ER-Netzwerk transportiert wird oder bereits kurz nach der bakteriellen Invasion mit ER-Membranen in Kontakt kommt. Innerhalb der ersten 24 Stunden scheint sich die SCV jedoch entlang des ER-Membransystems replikationsbedingt auszudehnen. Fusionen mehrerer kleiner Vakuolen zu einer SCV innerhalb der ersten Stunden der Infektion wären dabei möglich. Die Charakterisierung der SCV-Entstehung und deren Zusammensetzung waren das Ziel der im Folgenden beschriebenen Untersuchungen.

1.2.2 Invasion, Typ3- und Typ4-Sekretionssystem

Die Ausbildung einer Pathogen-tragenden Vakuole, wie die SCV, erfordert zunächst eine Invasion des Erregers in eine geeignete Wirtszelle. Intrazellulär pathogene Mikroorganismen haben dabei verschiedene Strategien entwickelt, die es ihnen ermöglichen in eine Zelle einzudringen, eine Infektion hervorzurufen und diese aufrechtzuerhalten. Dafür findet eine Vermehrung in ausgewählten Nischen statt, an die sich diese Organsimen adaptiert haben,

und welche eine Flucht vor dem Immunsystem ermöglichen (Cossart and Sansonetti, 2004). Nach abgeschlossener Vermehrung oder zur weiteren Verbreitung der Infektion müssen die Pathogene die Wirtszelle unbeschadet wieder verlassen, um benachbarte Zellen neu zu infizieren oder sich mit der infizierten Zelle teilen (Hybiske and Stephens, 2008, Schulz *et al.*, 2014).

Für Chlamydien ist bekannt, dass diese über exprimierte Oberflächenproteine an Oberflächenrezeptoren von eukaryotischen Wirtszellen adhärieren, bevor sie in diese eindringen können. Dadurch wird ein Zell-Zell-Kontakt hergestellt, der eine Invasion in nicht phagozytische Zellen ermöglicht (Fadel and Eley, 2007). Diese Bindung ist zunächst reversibel und wird bei *C. trachomatis* durch Faktoren wie bspw. OmcB und MOMP generiert (Caldwell *et al.*, 1981, Hatch *et al.*, 1986, Stephens *et al.*, 2001). Die Aufnahme der Chlamydien erfolgt über eine induzierte Endozytose, die mit einer sichtbaren Ausbildung von Mikrovilli beginnt und einer Einverleibung des Pathogens ins Innere der Zelle endet (Carabeo *et al.*, 2002). Ein ähnlicher Ablauf für die Invasion eukaryotischer Zellen ist auch für *Sn* denkbar.

Der molekulare Erfolg einer Invasion von intrazellulären Pathogenen ist maßgeblich gekoppelt an den Besitz von sogenannten Sekretionssystemen (Cornelis, 2000). Das Typ3-Sekretionssystem (T3SS), welches bei verschiedenen Gram-negativen Bakterien identifiziert wurde, gewährleistet einen hochspezialisierten Mechanismus zur gezielten Einbringung von manipulierenden Proteinen in eine eukaryotische Wirtszelle für darauffolgende Interaktionen (Hueck, 1998, Galan and Collmer, 1999). Nach erfolgter Adhäsion wird ein direkter Kontakt über das T3SS des Bakteriums mit der Zielzelle hergestellt, welcher dann eine Sekretion von teils toxischen Effektorproteinen ermöglicht.

Das T3SS ist ein strukturell konservierter Nanostruktur-Komplex, der bei Chlamydien aus über 20 Proteinuntereinheiten gebildet wird (Subtil *et al.*, 2000). Chlamydien besitzen ein funktionelles T3SS (s. Abb. 1.4) (Hsia *et al.*, 1997, Stephens *et al.*, 1998, Shaw *et al.*, 2000, Fields and Hackstadt, 2000, Belland *et al.*, 2003, Fields *et al.*, 2003, Slepenkin *et al.*, 2003), welches ihnen ermöglicht, Effektorproteine gezielt in das Zytosol der Wirtszelle zu sekretieren (Stephens *et al.*, 1998, Fields and Hackstadt, 2000, Subtil *et al.*, 2005). Dabei modulieren Chlamydien aktiv die Struktur der infizierten Zelle bspw. durch den Umbau von Zytoskelett Komponenten (Campbell *et al.*, 1989, Schramm and Wyrick, 1995, Clausen *et al.*, 1997, Carabeo *et al.*, 2002, Coombes and Mahony, 2002) oder Änderungen am Lipidtransport (Hackstadt *et al.*, 1996, Scidmore *et al.*, 1996a, Carabeo *et al.*, 2003) und sind zusätzlich in der Lage, Apoptose bis kurz vor der Zelllyse zu inhibieren (Fan *et al.*, 1998, Geng *et al.*, 2000, Schoier *et al.*, 2001, Fischer *et al.*, 2001, Rajalingam *et al.*, 2001, Carratelli *et al.*, 2002, Airenne *et al.*, 2002).

Abb. 1.4: Typ3-Sekretionssystem (T3SS) -abhängige Modulation des Zellzytoskeletts von *Chlamydia* (Mehlitz and Rudel, 2013). (*links*) *C. trachomatis* sekretiert Effektorproteine wie Tarp und CT694 über das T3SS. Eine C-terminale Aktin-Bindedomäne von Tarp, ABD vermittelt eine verstärkte lokale Produktion von Aktin und dessen Bündelung. Über die N-terminale Domäne von Tarp wird das Erk1/2 vermittelte Überleben der Zelle und ein starkes Verzweigen von Aktin mithilfe von zellulären Faktoren und Komplexen wie SOS1, Abi1, Eps8, WAVE2 und Arp2/3 unterstützt. Eine Membranbindedomäne (MBD) von CT694 und eine Interaktion mit AHNAK stellt wahrscheinlich die Verbindung zwischen der penetrierten Wirtszellmembran und der Aktinkette her. (*rechts*) Das Tarp Protein von *C. caviae* und *C. pneumoniae* enthält nur das C-terminale ABD-Motiv und den damit verbundenen Funktionen. *C. caviae* scheint dabei mit intrazellulären Faktoren wie Rac1, Cdc42 und Pl4K wechselzuwirken. Bei *C. pneumoniae* wäre eine Interaktion des EGFRs mit Faktoren wie Pl3K, FAK und Rac1 denkbar, konnte aber noch nicht belegt werden.

Phylogenetische Studien zu den Hauptvertretern der *Chlamydiae*, darunter *Chlamydiaceae* und *Simkaniaceae*, zeigten, dass *Sn* im vollständigen Besitz der T3SS Gene ist (Peters *et al.*, 2007) (s. Abb. 1.5, *oben*). Durch den Besitz eines vollständigen T3SS kann bei *Sn* von einem Chlamydien-ähnlichen Invasionsprozess ausgegangen werden (Collingro *et al.*, 2011).

Zusätzlich wurde ein Typ4 Sekretionssystem (T4SS) identifiziert, welches auf einem konjugativen Megaplasmid (pSn, 132 kb) kodiert ist (Collingro *et al.*, 2011) (s. Abb. 1.5, *unten*). Allgemein ist das T4SS das vielseitigste Sekretionssystem, welches für verschiedene Grampositive und -negative Bakterien und Archäen bisher beschrieben wurde (Wallden *et al.*, 2012). Es ermöglicht Mikroorganismen den Transport von unterschiedlichen Makromolekülen, die sich aus Proteinen und/oder DNA zusammensetzen, über die bakterielle Zellwand (Rego *et al.*, 2010). Oftmals wird es für einen konjugativen DNA-Transport (*Agrobacterium tumefaciens*), zur DNA-Aufnahme über Transformation (*Helicobacter pylori*), DNA-Abgabe ins extrazelluläre Milieu (*Neisseria gonorrhoeae*) oder zum Transfer von Toxinen (*H. pylori*, *Bordetella pertussis*, *Legionella pneumophila*, *Brucella* spp. und *Bartonella* spp.) genutzt (Alvarez-Martinez and Christie, 2009, Wallden *et al.*, 2010).

Ein T4SS ist neben *Sn* auch bei anderen Umwelt-Chlamydien vorhanden, welches dem von *Rickettsia bellii* gleicht (s. Abb. 1.5, *unten*). Struktur- und Funktionsanalysen des *Rickettsia* T4SSs belegen seine Funktionalität, wenn auch Effektoren noch nicht identifiziert wurden. Des

Weiteren konnte eine phylogenetische Übereinstimmung mit dem *Legionella Ivh* T4SS nachgewiesen werden, welches aus einem gemeinsamen Lebensraum in Amöben übernommen worden sein könnte (Gillespie *et al.*, 2009).

Abb. 1.5: Das Typ3- und Typ4-Sekretionssystem (T3SS/T4SS) innerhalb der Chlamydiae. (oben) Gen-Cluster des T3SSs von C. trachomatis (Ctr), Protochlamydia amoebophila (Pam) und Simkania negevensis (Sn) sind dargestellt (anlehnend an Peters et al., 2007). Gennamen sind oberhalb gekennzeichnet. Funktionen sind farblich markiert (s. Legende). (unten) Gen-Cluster des T4SSs von Parachlamydia acanthamoebae UV-7 (Pac), Sn und Rickettsia bellii RML-369C (Rbe) sind dargestellt (anlehnend an Collingro et al., 2011). Gennamen sind oberhalb und Positionen des offenen Leserahmens sind seitlich gekennzeichnet. Genhomologien sind farblich markiert (s. Legende). Pam und Sn besitzen ein F-Plasmid ähnliches tra T4SS, welche eine große Ähnlichkeit und Syntänie zur tra Region von Rbe aufweisen.

Das Fehlen eines konjugativen Megaplasmids bei den anderen Familien der *Chlamydiales* lässt darauf schließen, dass ein zunächst vorhandenes Plasmid relativ früh in der Entwicklung reduziert und ins Chromosom integriert wurde als Folge einer fortlaufenden Diversifizierung (Collingro *et al.*, 2011).

1.2.3 Erhalt der Simkania-Vakuole und Schutz vor ER-Stress

Letzte Studien in der AG Rudel haben gezeigt, dass Simkanien aktiv die Ausbildung und Aufrechterhaltung der SCV vor zellulären Abwehrmechanismen schützen, worunter der Zelltod durch Apoptose oder der ER-Stress fallen (Karunakaran *et al.*, 2011, Mehlitz *et al.*, 2014). Ein Wachstum von Bakterien nahe dem ER würde normalerweise die ER-Physiologie beeinflussen, was eine Aktivierung von ER-Stress und infolge dessen auch Apoptose der betroffenen Zellen hervorriefe. *Sn* ist jedoch in der Lage innerhalb der ersten drei Tage p. i. (engl. *post-infection*) einen ER-Stress bereits auf UPR- (engl. *unfolded protein response*)

Ebene zu blockieren. Dabei wurde während der Infektion eine verstärkte BiP-Proteintranslation nach Stressinduktion durch Zugabe von Thapsigargin und Tunicamycin verhindert, sowie die Translokation von Chop in den Zellkern (Nukleus) stark reduziert. Dieses Phänomen konnte sowohl in HeLa229, A549 als auch aktivierten THP1 Zellen beobachtet werden (Mehlitz *et al.*, 2014). Außerdem blockiert *Sn* die Apoptose in infizierten Epithelzellen oberhalb oder auf Ebene der Mitochondrien, was bereits für verschiedene Chlamydien nachgewiesen werden konnte (Fischer *et al.*, 2004, Rajalingam *et al.*, 2008, Sharma and Rudel, 2009). Man kann demnach davon ausgehen, dass anti-apoptotische und Überlebensmechanismen innerhalb der *Chlamydiales* relativ konserviert vorliegen. Ausnahmen wie bspw. Parachlamydien, die keine Apoptose-Inhibierung hervorrufen können, sind aufgrund dessen wahrscheinlich nicht in der Lage in vielen mammalischen Zelllinien zu replizieren (Matsuo *et al.*, 2008). Die Blockierung von ER-Stress und daran gekoppelte Apoptose mag demnach auch bei Chlamydien auf eine ähnliche oder dieselbe Weise reguliert sein. Für Simkanien scheint diese aktive Modulation der ER-Physiologie dem Erhalt der SCV und wahrscheinlich auch dem verlängerten Entwicklungszyklus zu dienen.

1.3 Das Endoplasmatische Retikulum (ER)

Das ER spielt eine zentrale und essentielle Rolle für eukaryotische Zellen, da hier die Proteinsynthese und -modifikation neben der Synthese von Lipiden (Hormone) oder der Aufrechterhaltung des Kalzium- (Ca²⁺) Haushaltes stattfindet (Chen *et al.*, 2013). Damit ist es ein Knotenpunkt für den intrazellulären Protein- und Lipidaustausch mit anderen Organellen wie dem Golgi, dem Zellkern oder der Plasmamembran (PM). Dieser zu den sekretorischen Transporten gezählte Prozess wird vorwiegend über Vesikel generiert (s. Abschnitt 1.5). Daneben existieren noch weitere nicht vesikuläre Transporte, die nur kurze Distanzen überwinden können. So konnte bei Chlamydien bspw. ein Mitwirken des Arf1/COPI-Komplexes und des Ceramidtransferproteins CERT (engl. *ceramide transfer protein*) an dem Ceramid- bzw. Sphingomyelin- (SM-) Transport zur Inklusion beobachtet werden (Hanada *et al.*, 2003, Hanada, 2010, Derre *et al.*, 2011, Elwell *et al.*, 2011, Dumoux *et al.*, 2012, Wilfling *et al.*, 2014). Demnach könnten neben den ER-SCV-Kontaktpunkten auch vesikuläre oder nicht vesikuläre Transportprozesse bei Simkanien eine wichtige Rolle spielen.

1.3.1 Funktion und Struktur

Das ER wird aus einem stark verzweigten Netzwerk aus Röhren, Blättern und Zisternen gebildet, welche einen mit Flüssigkeit gefüllten Hohlraum ummanteln. Ein Teil der ER-Membran ist mit der Kernmembran verbunden, wohingegen der Rest sich ins Zytosol bis hin zur PM erstreckt (English *et al.*, 2009). Es wird aufgrund seiner Membranbeschaffenheit in raues und glattes ER unterteilt. Auch funktional unterscheiden sich die beiden Domänen. Das raue ER ist leicht an seiner Besetzung mit vielen Ribosomen auf zytosolischer Seite zu

erkennen. Hier findet die Proteinsynthese, -faltung, -qualitätskontrolle, Ca²⁺-Homöostase und Regulierung der Apoptose statt (Breckenridge *et al.*, 2003, Rizzuto *et al.*, 2009, Braakman and Bulleid, 2011). Das glatte ER besitzt keine Ribosomen und ist verantwortlich für die Ausbildung von Vesikeln und deren spätere Abspaltung oder Fusion (s. Abb. 1.6).

Abb. 1.6: Struktur und Funktion des Endoplasmatischen Retikulums nach Bravo et al. 2013. (A) Das ER wird in drei definierte Domänen unterteilt: Kernhülle, blattähnliche Zisternen (engl. *sheet-like cisternae*) und röhrenähnlich (engl. *tubules*). Die Kernhülle bildet erste Membrannetzwerke, die sich zum rauen und später glatten ER erstrecken. Die ersten beiden Domänen bestehen hauptsächlich aus blattähnlichen Zisternen, wohingegen das glatte ER hauptsächlich Röhren ausbildet. Nur das raue ER ist mit Ribosomen besetzt - an dem die Proteinsynthese erfolgt -, wodurch dieser Bereich unterm Mikroskop als rau erscheint. (B) Das ER erfüllt viele verschiedene Funktionen in der eukaryotischen Zelle: Proteinsynthese, Lipidmetabolismus, Transport von Proteinen und Lipiden zu anderen Organellen (Golgi-Apparat), Kalzium-Homöostase und eine Assoziation und Interaktion mit anderen Organellen wie den Mitochondrien über die mitochondrienassoziierte Membran (MAM). Proteine werden hier nicht nur synthetisiert, sondern auch einer Qualitätskontrolle unterzogen, was zur Degradation führen kann.

Es bildet viele charakteristische und verschieden vernetzte Röhrensysteme aus (Shibata *et al.*, 2006, Bravo *et al.*, 2013). Proteine werden am rauen, granulären ER mithilfe der Ribosomen auf zytosolischer Seite synthetisiert. Neu synthetisierte Proteine werden anschließend über den sekretorischen Weg post- oder ko-translational ins ER transloziert (Corsi and Schekman, 1996), dort gefaltet und modifiziert, bevor sie für den weiteren Transport in COPII-Vesikel verpackt werden. Der Besitz von spezifischen Erkennungssequenzen ermöglicht einen gezielten Transport zu verschiedenen Kompartimenten in der Zelle. Dieser sekretorische Transport ist für die meisten löslichen und Membranproteine essentiell, um die ER-Membran zu überwinden und zum Zielbestimmungsort geleitet zu werden. Integrale

Proteine des ERs müssen hingegen in die ER-Membran inseriert werden (Palade, 1975). Die Erkennungssequenz von löslichen Proteinen wird als Signalsequenz bezeichnet und ist meistens aminoterminal (N-terminal) lokalisiert. Sie wird aus ca.15-20 Aminosäuren gebildet (Chou and Kendall, 1990) und bereits während der Translokation auf der *trans*-Seite der Membran durch eine membrangebundene Signalpeptidase abgespalten, wodurch die Gesamthydrophobizität geändert wird. Membranproteine besitzen Transmembrandomänen, welche aus ca. 20-30 vornehmlich hydrophoben Aminosäuren gebildet werden (High and Dobberstein, 1992). Diese Domäne wird von der Translokationsmaschinerie erkannt und an entsprechenden Stellen der ER-Membran integriert (Lodish et al., Sektion 17.5, 2000). Für lösliche und Transmembranproteine ist gemein, dass sie über den Sec61-Translokon-Komplex "gesteuert" werden (Corsi and Schekman, 1996).

1.3.2 Interaktionen mit Organellen der Wirtszelle

Das ER nimmt, wie bereits beschrieben, einen relativ großen Platz innerhalb einer eukaryotischen Zelle ein und grenzt damit an viele andere Organellen. Des Weiteren ist die ER-Membran spezifisch mit Peroxisomen, der PM (English and Voeltz, 2013), den Mitochondrien und dem Golgi-Apparat assoziiert (Lebiedzinska *et al.*, 2009) und ermöglicht darüber verschiedene Interaktionen, die für die Struktur und Funktion der Organellen wichtig sind. Darüber können bspw. neu synthetisierte Proteine, Lipide und Kohlenhydrate, die nicht gleich in die ER-Membran eingebaut werden, zu den angrenzenden Organellen und endosomalen Vesikeln transportiert werden (Roy *et al.*, 2006).

Die PM muss ständig mit (Phospho-) Lipiden versorgt werden. Dies kann an Stellen erfolgen, wo ER-PM-Assoziationen im Bereich von 10-30 nm vorliegen (Wu *et al.*, 2006, Elbaz and Schuldiner, 2011) oder wird über exozytotische Vesikel des anterograden Transportes (s. Abschnitt 1.5) generiert (Kaplan and Simoni, 1985a, Kaplan and Simoni, 1985b). Darüber hinaus werden Ca²⁺-Signale bis hin zu ER-PM-Kontaktstellen weitergeleitet (Wu *et al.*, 2006, Giordano *et al.*, 2013).

Auch Mitochondrien benötigen Lipide und Proteine zum Einbau in ihre Membran (Lebiedzinska *et al.*, 2009). Dafür versorgt das ER sie mit Phospholipiden (Ardail *et al.*, 1993) und Vorläuferproteinen (Hartl *et al.*, 1989, Becker *et al.*, 2011), welche für Stabilität und verschiedene Funktionen in der Mitochondrienmembran sorgen. Über die mitochondrienassoziierte Membran (MAM) des ERs finden verschiedene Signalwege statt, wie der intrazelluläre Ca²⁺-Transport (Rapizzi *et al.*, 2002). Diese Interaktion beider Organellen ist wichtig für die Ca²⁺-Aufnahme der Mitochondrien und entscheidet letztendlich über Leben oder Tod der Zelle. Regulatorische Proteine und Chaperone generieren dafür Kontaktpunkte entlang der äußeren Membran von ER und Mitochondrien.

Der Golgi-Apparat interagiert mit dem ER zur Gewinnung von Proteinen, Lipiden und Kohlenhydraten (Peretti *et al.*, 2008, Lebiedzinska *et al.*, 2009). Diese Metabolite können

entweder durch räumliche Annäherung beider Organellen über einen nicht vesikulären Austausch oder über Vesikeltransporte von einem zum anderen Organell bezogen werden (s. Abb. 1.6 und Abschnitte 1.3, 1.5). Der Bereich zwischen ER und Golgi wird vom ERGIC (engl. *ER-Golgi intermediate compartment*) ausgefüllt, über welches der anterograde und der retrograde Proteintransport zusammentreffen (s. Abschnitt 1.5). Wahrscheinlich liegt hier der Knotenpunkt zur Sortierung von Proteinen auf dem Weg zu ihrem Zielorganell (Klumperman *et al.*, 1998). Es ist jedoch noch umstritten, ob das ERGIC ein eigenständiges Kompartiment zwischen ER und Golgi bildet oder ob es einem der beiden Organellen zugeordnet werden soll.

1.3.3 Interaktionen mit intrazellulär pathogenen Bakterien

Intrazelluläre Bakterien besitzen allgemein die Fähigkeit in Zellen einzudringen und innerhalb dieser zu replizieren. Um in ihrer Wirtszelle zu überleben, haben diese verschiedenste Methoden entwickelt, dem zellulären Immunsystem zu entgehen und sich in einer geeigneten Nische zu vermehren. Dafür interagiert das Pathogen mit bestimmten intrazellulären Organellen, wozu auch das ER gezählt wird (Roy et al., 2006). Obligat intrazelluläre Bakterien wie Coxiella und Rickettsia haben sich hierfür auf Lysosomen bzw. das Zytosol spezialisiert. Bisher konnte nur bei fakultativ intrazellulären Bakterien wie Legionella pneumophila und Brucella abortus eine starke Assoziation mit dem ER beobachtet und dokumentiert werden (Swanson and Isberg, 1995, Pizarro-Cerda et al., 1998). Diese rekrutieren COPII-Vesikel, um ihre Replikationsvakuole aufzubauen. Im Fall von Legionella werden zusätzlich COPI-Vesikel rekrutiert (Kagan and Roy, 2002, Celli et al., 2003). Wird dieser Mechanismus unterbunden, bspw. durch eine Mutation der Hauptkomponenten Sar1 und Arf1 der COP-Vesikel, sind L. pneumophila und B. abortus nicht in der Lage, ihre Replikationsvakuole zu bilden und sich intrazellulär zu vermehren. Innerhalb des Pathogen-spezifischen Kompartiments gelangen sie zusätzlich an Nährstoffe, die wahrscheinlich u.a. über dieselben Vesikel bezogen werden (Kagan and Roy, 2002, Celli et al., 2003). Seit kurzem werden auch Chlamydien zu ERassoziierenden Pathogenen gezählt (Derre et al., 2011, Dumoux et al., 2012). Für Chlamydien war bekannt, dass sie Vesikel rekrutieren, die normalerweise vom Golgi-Apparat zur PM transportiert werden, um an Lipide wie Sphingomyelin zu gelangen (Hackstadt et al., 1996). Ohne diese Lipide sind sie nicht in der Lage, intrazellulär zu replizieren, da ihnen entsprechende Enzyme fehlen, um diese selber zu synthetisieren (van Ooij et al., 2000). Nun konnte auch ein zusätzlicher Transport über Kontaktstellen zwischen ER und der Inklusionsmembran beobachtet werden (Derre et al., 2011, Dumoux et al., 2012, Agaisse and Derre, 2014, Agaisse and Derre, 2015). Die Interaktion und Assoziation von Sn und dem ER unterscheidet sich dabei stark von den anderen ER-assoziierten Pathogenen (Mehlitz et al., 2014, Derre, 2015). Sie scheinen entlang des ERs zu wachsen, ohne viele Bereiche dem

Zytosol zuzuwenden, weshalb eine Rekrutierung von vesikulären sowie nicht vesikulären Transportprodukten denkbar wäre.

1.4 Vakuolenaufreinigung und die Zusammensetzung von parasitophoren Vakuolen

Die Aufreinigung von erregerhaltigen Vakuolen ist seit mehreren Jahren im zentralen Fokus der Forschung, um Komponenten zu identifizieren, die den Aufbau, den Erhalt und die daran involvierten Transportprozesse der Vakuolenmembran bestimmen. Die Reinheit der isolierten Organellen ist dabei essentiell für umfangreiche Studien an deren Proteom und Lipidom (Abdolzade-Bavil et al., 2004, Moritz et al., 2005, Loizides-Mangold, 2013, Klose et al., 2013, Brugger, 2014). Vakuolen von Chlamydia psittaci (Matsumoto, 1981), C. trachomatis (Subbarayal et al., 2015, Aeberhard et al., 2015), Legionella pneumophila (Derre and Isberg, 2004, Urwyler et al., 2010), und Toxoplasma gondii (Ossorio et al., 1994) konnten relativ frei von Organellen aufgereinigt werden. Trotzdem wurden starke Assoziationen zu bspw. ER und/oder Mitochondrien (Matsumoto et al., 1991, Sinai et al., 1997) identifiziert. Bei allen vier Organismen wird vermutet, dass ein Zusammenhang zwischen der ER- und/oder Mitochondrien-Assoziation und der intravakuolaren Replikation der Bakterien besteht (Matsumoto et al., 1991, Berger and Isberg, 1993, Swanson and Isberg, 1995, Storz and Spears, 1977). Die starke Assoziation mit ER und Mitochondrien lässt darauf schließen, dass ein direkter Lipidtransport zu der Pathogen-enthaltenen Vakuole stattfindet (Trotter and Voelker, 1994, Vance and Shiao, 1996). Daher ist es denkbar, dass auch Sn einen ähnlichen Prozess für die Ausbildung und Aufrechterhaltung der SCV benötigt. Proteome von parasitophoren Vakuolenmembranen (PVM) aus C. trachomatis, L. pneumophila und Salmonella enterica infizierten Zellen konnten bereits über LC-MS² ermittelt werden (Urwyler et al., 2009b, Subbarayal et al., 2015, Vorwerk et al., 2015). Hinzukommend wurde das Proteom von aufgereinigten EBs und RBs von C. trachomatis veröffentlicht (Saka et al., 2011), sowie eines von C. pneumoniae EBs (Vandahl et al., 2001), über welches Verbindungen und Gemeinsamkeiten zum Inklusionsproteom überprüft werden können.

In den letzten Jahren ist auch die Rolle von Lipiden und ihr Zusammenhang zu unterschiedlichen Lungenerkrankungen immer mehr in den Fokus der Forschung getreten (Yang and Uhlig, 2011, Levy, 2013, Scarpa *et al.*, 2013, Zehethofer *et al.*, 2015). So akquirieren Chlamydien Wirtszellipide über Fusionen mit Golgi-abgeleiteten Exozytose-Vesikeln (Hackstadt *et al.*, 1995, Wylie *et al.*, 1997, Carabeo *et al.*, 2003) und endosomalen multivesikulären Körperchen (Beatty, 2006). Des Weiteren wurden zelluläre Lipidtröpfchen (engl. *lipid droplets*, LD) als zusätzliche Lipidquelle beschrieben (Waltermann *et al.*, 2005), die im Fall von *C. trachomatis* über IncA und nach Penetration der Inklusionsmembran an RBs assoziieren oder über Wechselwirkungen mit dem bakteriellen Protein Lda3 an der zytosolischen Seite der Inklusionsmembran eingebaut werden (Cocchiaro *et al.*, 2008). Es gibt

bisher noch keine Berichte über Lipidomanalysen von aufgereinigten Inklusionen oder einem Einbau von chlamydial synthetisierten Lipiden in die Inklusionsmembran.

Durch eine separate Proteom- und Lipidomanalyse der einzelnen Komponenten (parasitophoren Vakuolen, Bakterien, assoziierte zelluläre Organellen) wäre es möglich, mehr über die Entwicklung und Manifestierung von PVMs zu erfahren, diese miteinander zu vergleichen, um damit noch ungeklärte Mechanismen bzgl. der Infektivität und Virulenz von Krankheitserregern nachzuvollziehen.

1.5 Der intrazelluläre vesikuläre Transport in eukaryotischen Zellen

Die Integrität der Kompartimente einer eukaryotischen Zelle ist auf einen kontinuierlichen Austausch von Proteinen und Lipiden zwischen den einzelnen Organellen angewiesen, was über eine Vielzahl an intrazellulären Transportwegen generiert wird (s. Abb. 1.7).

Abb. 1.7: Intrazelluläre vesikuläre Transportwege. Die Abbildung zeigt das Zusammenspiel von sekretorischen (ER \rightarrow Golgi, exozytotische Vesikel), lysosomalen/vakuolaren und endozytotischen (Clathrin-vermittelt, Caveolae-vermittelt, Makropinozytose, Phagozytose) Signalwegen. Einzelne Transportwege sind mit Pfeilen gekennzeichnet. Farblich markiert sind bekannte Membranlokalisationen von COPII (rot), COPI (grün) und Clathrin-gebundenen (gelb) Vesikelhüllen. Neben den abgebildeten Vesikelarten existieren noch weitere, die hier nicht weiter beschrieben werden.

Sekretierte und Membranproteine werden zunächst im ER synthetisiert und mithilfe einer Qualitätskontrolle auf ihre korrekte Faltung überprüft (Bukau and Horwich, 1998). Erst danach dürfen Proteine die ER-Membran passieren und werden zunächst zum Golgi-Apparat transportiert, bevor sie ihr Zielkompartiment erreichen. Dieser sekretorische Transport, der am ER beginnt und über das ERGIC, den Golgi bis hin zur PM (Lodish et al., Sektion 17.3, 2000)

läuft, wird als anterograd bezeichnet. Transportprozesse von der PM, über Golgi und ERGIC bis hin zum ER werden als retrograd definiert. Darüber hinaus kann auch ein bidirektionaler Transport zwischen ER und Golgi erfolgen, der dem Recyceln von Proteinen dient (Bonifacino and Glick, 2004). Ein Großteil der intrazellulären Proteintransporte erfolgt über sogenannte Vesikel. Diese stellen kleine membranumschlossene Vakuolen dar, welche von einer sogenannten Donormembran abgeschnürt werden, um nach erfolgtem Transport mit einer Akzeptormembran zu fusionieren. Die Hülle (engl. coat) dieser Vesikel besteht demnach aus Lipiden und Membranproteinen der Donormembran und hüllt zu transportierende Moleküle, vorwiegend Proteine, ein, die nicht ohne weiteres durch eine Membran diffundieren oder ohne andere Hilfe transportiert werden können. Damit sind alle Vesikel aufgrund von charakteristischen Hüllkomponenten definiert und lassen sich demnach unterteilen in bspw. COPI, COPII oder Clathrin-beschichtet. Letztere Vesikel sind für den Transport vom trans-Golgi-Netzwerk (TGN) und dem endozytotischen Transport von der PM zuständig (Schekman and Orci, 1996, Rothman and Wieland, 1996, Schmid, 1997). Die Hüllkomponenten übernehmen dabei die Aufgabe der Vesikelbildung an spezifischen Membranabschnitten und der Abschnürung vom Donor. Zunächst werden sogenannte Frachtproteine (engl. cargo) an eine mögliche Membran-Exportseite rekrutiert. Durch einen GTPase-abhängigen Prozess lagern sich weitere Hüllproteine an den Cargo und bilden einen Komplex. Darüber wird die GTPase in ihre lösliche GDP-gebundene Form überführt und somit inaktiviert. Mithilfe eines GTP-Austauschfaktors (GEF, engl. GTP exchange factor) wird die GTPase wieder in ihre aktive Form gebracht und kann anschließend weitere Hüllproteine rekrutieren, was zu einer Polymerisierung und schließlich zur Ausbildung der Vesikelhülle führt. Entsprechend der Frachtproteine auf der Hüllmembran werden die Vesikel spezifisch zu ihrem intrazellulären Ziel transportiert.

1.5.1 Toxintransport

Der retrograde Transport einer Zelle kann für die Invasion von Pathogenen und deren Toxinen ausgenutzt werden. Darunter fallen bakterielle und Pflanzentoxine wie Shigatoxin, Choleratoxin, Pertussistoxin und Rizin (Sandvig and van Deurs, 2000, Sandvig and van Deurs, 2005, Utskarpen *et al.*, 2006, Plaut and Carbonetti, 2008). Frühe Endosomen stellen das erste endozytotische Kompartiment nach einer Internalisierung der Erreger oder Proteintoxine durch die PM dar (Gruenberg *et al.*, 1989). Nach dem Eintritt in eine Zelle können Proteintoxine in frühen und Recycling-Endosomen nachgewiesen werden (Johannes and Decaudin, 2005). Choleratoxin und Rizin interferieren mit der Clathrin-abhängigen Endozytose, wobei das Choleratoxin wie auch das Shigatoxin über eine Clathrin-unabhängige Endozytose in die Zellen aufgenommen werden kann (Montesano *et al.*, 1982, Saint-Pol *et al.*, 2004, Johannes and Decaudin, 2005, Renard *et al.*, 2015). Um einen Rücktransport zur PM und eine Degradation durch die Fusion mit Lysosomen zu vermeiden, wird der Endozytoseweg auf

Ebene der frühen oder späten Endosomen verlassen. Durch einen aktiven Transport gelangen die Endosomen anschließend zum TGN (Bonifacino and Rojas, 2006, McKenzie *et al.*, 2009). Beim Golgi angekommen, nutzen die meisten Proteintoxine einen COPI/KDEL-Rezeptorunabhängigen Transportweg zum ER, der noch nicht weiter charakterisiert werden konnte (Johannes and Decaudin, 2005). Sie folgen allem Anschein nach der retrograden Route weiter zum ER (Lord and Roberts, 1998, Johannes and Goud, 1998, Sandvig *et al.*, 2000). Rizin greift dabei das ER selber an und unterbindet die Proteinbiosynthese. Choleratoxin und Shigatoxin benötigen das ER zur Modifizierung ihrer enzymatischen A-Untereinheit, welche nach Translokation über die ER-Membran ins Zytosol zu ihrem zellulären Zielort gelangt.

1.5.2 Retro-Inhibitoren

Retro-Inhibitoren wurden entwickelt, um Proteintoxine wie Shigatoxin, Choleratoxin und Rizin für menschliche Zellen unschädlich zu machen. Diese sollten bereits in einem frühen Stadium des retrograden Transportes auf Ebene der Endosomen vor Erreichen des Golgis wirksam sein (Stechmann *et al.*, 2010, Barbier *et al.*, 2012, Ming *et al.*, 2013, Noel *et al.*, 2013). Es ist bekannt, dass die Zugabe von Brefeldin A auf Zellen gezielt den Weitertransport vom Golgi zum ER verhindert, jedoch den Transport über Endozytose zum TGN nicht blockiert (Donta *et al.*, 1995). Dabei ist es zwar wirksam gegen Rizin und Shigatoxin, jedoch nicht gegenüber bspw. das Diphtherietoxin, welches bereits bei einer Ansäuerung der Endosomen ins Zytosol gelangt (Yoshida *et al.*, 1991, Sandvig *et al.*, 1991, Thompson *et al.*, 1995, Donta *et al.*, 1995). Eine frühe Blockierung vom Toxintransport soll dementsprechend alle intrazellulären zytotoxischen Aktivitäten verhindern. Mithilfe eines Hochdurchsatz-Screenings konnten einige kleine Moleküle identifiziert werden, die die schädlichen Wirkungen von bakteriellen und Pflanzentoxinen reduzierten (Stechmann *et al.*, 2010).

Für Retro1 und -2 wurde beobachtet, dass sie weder Zellmorphologie oder essentielle Transportwege in der Zellkultur zu beeinflussen scheinen, noch dass sie zytotoxisch für Zellen sind (Ming *et al.*, 2013, Noel *et al.*, 2013). Sie sollen dabei bei dem retrograden Transport zwischen frühen Endosomen und TGN wirksam sein und Endozytose-, Recycling- oder sekretorische Transportprozesse nicht beeinflussen (Barbier *et al.*, 2012). Des Weiteren wurden keine Veränderungen in der Morphologie von ER, frühen Endosomen, Recycling-Endosomen und späten Endosomen/Lysosomen beobachtet (Stechmann *et al.*, 2010). Eine Internalisierung der Toxine durch die PM konnte durch Retro1 und -2 nicht verhindert werden. Die Wirkung beider Inhibitoren erfolgt sowohl Clathrin-abhängig als auch -unabhängig und deckt damit ein größeres Vesikelspektrum ab. Es wurden Interaktionen mit Syntaxin 5 (Stx5), Syntaxin 6 (Stx6) und Syntaxin 16 (Stx16) beobachtet, weshalb diese ein direktes oder indirektes Ziel von Retro1 und -2 sein könnten (Stechmann *et al.*, 2010, Nonnenmacher *et al.*, 2015). Neu veröffentliche Studien zu Retro2 in Verbindung mit Virusinfektionen ergaben, dass der Inhibitor in der Lage ist, den retrograden Transport von Polyoma-, Pappiloma- sowie

Adeno-assoziierte Viren zu inhibieren und damit deren intrazelluläre Replikation (Nelson *et al.*, 2013, Carney *et al.*, 2014, Nonnenmacher *et al.*, 2015). Damit scheint es eine Übereinstimmung im Transportweg und bei den Wirtszellfaktoren zu geben, die von bakteriellen Toxinen und Viren genutzt werden. In dieser Arbeit wurden neben Retro1 und Retro2 zwei weitere Retro-Komponenten verwendet und auf ihre Wirkung bei *Sn*-Infektionen in der Zellkultur untersucht (s. Abschnitt 3.3). Bei VP184 handelt es sich um ein Retro2-Derivat, das entsprechend zu den beiden Retro-Komponenten Retro1 und -2 den retrograden Transport inhibieren soll, wohingegen Comp20 den endosomalen Transport beeinflusst.

1.5.3 C₆-NBD-Ceramidtransport

 C_6 -NBD-Ceramid (N- C_6 -NBD-D-erythro-dihydro-Sphingosin) ist ein biologisch aktives, fluoreszierendes Analog von kurzkettigen, permeablen Ceramiden, welches für eine vitale Färbung des Golgi-Apparates der Zelle genutzt wird (Lipsky and Pagano, 1985b, Wu *et al.*, 1994) (s. Abb. 1.8).

Abb. 1.8: Chemische Strukturformel von C₆-NBD-Ceramid. Ceramide werden mithilfe einer SM-Synthase zu SM (Ceramide mit einer Phosphocholin-Gruppe), einer Glucosylceramid-Synthase (Ceramide mit Oligosacchariden) zu Glycosphingolipiden, oder auch Cerebroside genannt, umgewandelt.

Erste Arbeiten zeigten, dass die Inkubation des fluoreszierenden Lipides in CHANG Zellen bei 2 °C zu einer Translokation in Mitochondrien, ER und Kernhülle führte, wohingegen nach Inkubation bei 37 °C das Ceramid im Golgi und der Plasmamembran (PM) lokalisiert vorlag (Lipsky and Pagano, 1985a). Weitere Studien ergaben, dass das fluoreszierende Lipid zunächst über die PM in die Zellen diffundierte, bevor es über frühe und Recycling-Endosomen, und damit Vesikel-abhängig, zum Golgi-Komplex transportiert wurde (Babia *et al.*, 2001). Intrazellulär wird das Ceramid zu gleichen Teilen an fluoreszierendem Sphingomyelin und Glucocerebrosid umgewandelt, welche vom Golgi zurück zur PM transportiert werden (Lipsky and Pagano, 1983, Lipsky and Pagano, 1985a). *Chlamydiaceae* erwerben Sphingolipide von der Wirtszelle, da ihnen entsprechende Enzyme fehlen. Für *Chlamydia trachomatis* konnte beobachtet werden, dass fluoreszierende Lipide wie C₅- und C₆-NBD-Ceramide innerhalb weniger Minuten in die Inklusion transportiert und während der ersten 2 Stunden in die Zellwand der Bakterien inkorporiert wurden (Hackstadt *et al.*, 1996, Scidmore *et al.*, 1996a, Heuer *et al.*, 2009). Dieser Transport war Temperatur- und Golgi-abhängig und konnte durch Zugabe von Brefeldin A oder Monensin inhibiert werden

(Hackstadt *et al.*, 1995, Scidmore *et al.*, 1996a). Entsprechende Beobachtungen konnten auch für *C. pneumoniae* bestätigt werden (Wolf and Hackstadt, 2001). Es wird angenommen, dass der Transport von endogen synthetisiertem Sphingomyelin über einen Mikrotubuliunabhängigen vesikulären Prozess vom TGN zur Inklusion erfolgt, was Studien mit Nocodazol unterlegen. Ein weiterer bekannter Vertreter der Inkorporierung von C₆-NBD-Ceramid sind *Toxoplasma gondii*, wohingegen *Coxiella burnetii* nicht in der Lage war, C₆-NBD-Ceramid zu akkumulieren (Heinzen *et al.*, 1996, de Melo and de Souza, 1996).

1.5.4 Brefeldin A und Bafilomycin A1

Inhibitoren wie Brefeldin A (BFA) und Bafilomycin A1 (BafA1) sind dafür bekannt, dass sie den intrazellulären vesikulären Transport in eukaryotischen Zellen gezielt hemmen und in der Lage sind, diesen auf mehreren Ebenen zu beeinflussen.

BafA1 ist ein Makrolidantibiotikum, welches bei den frühen Endosomen innerhalb der Endozytose ansetzt, wo es die vakuoläre H⁺-ATPase und darüber die endosomale Ansäuerung blockiert (Pillay et al., 2002). Dadurch wird der Transport von endozytiertem Material (D'Arrigo et al., 1997), sowie die eigentliche Entwicklung zu den späten Endosomen verhindert (Clague et al., 1994). Als Konsequenz dieser Inhibition erzeugt BafA1 sekundäre Effekte. Dazu zählen die Inhibierung von Rezeptor-Liganden-Dissoziation bei Mannose (Harada et al., 1997), ein verzögertes Rezeptorrecycling (Johnson et al., 1993), die Inhibierung der Fusion von späten Endosomen mit Lysosomen (van Weert et al., 1995) sowie die Blockierung der TGN-Prozessierung und des retrograden Golgi-ER-Transportes (Henomatsu et al., 1993, Palokangas et al., 1998, Gustafson et al., 2000). Derartige sekundare Effekte sind vom Zelltyp abhängig (Bayer et al., 1998). In Experimenten mit C. trachomatis und C. pneumoniae konnte ein Einfluss auf den chlamydialen Entwicklungszyklus, die Ausbildung der Inklusion und die bakterielle Infektivität beobachtet werden (Ouellette et al., 2011). Der Einfluss von BafA1 konnte in der Infektivität der Chlamydien wiedergespiegelt werden, wobei die Ausbildung der Inklusion bei C. pneumoniae stärker gehemmt war als bei C. trachomatis. BFA ist ein Lactonantibiotikum und wechselwirkt mit dem retro- sowie dem anterograden Golgi-ER-Transport. Durch die Hemmung eines GTP-Austauschfaktors wird die Aktivierung von Arf1 verhindert (Donaldson et al., 1992b). Dadurch kommt es zu einer Auflösung der COPI-Vesikel und schließlich zur Kollabierung des gesamten Golgis (Sciaky et al., 1997). Es wird vermutet, dass es anschließend zu einer Proteinumverlagerung auf Seiten des ERs kommt. BFA beeinflusst gezielt den Lipidtransport in Chlamydien-infizierten Zellen, was Studien zum SM-Erwerb von C. trachomatis demonstrierten (Hackstadt et al., 1996). Dabei wird diskutiert, ob es über die BFA-Behandlung zu einem verminderten Vesikeltransport kommt, woraus kleinere Inklusionen resultieren. Da BFA keinen Effekt auf die chlamydiale Replikation ausübt, müssen weitere Transportwege von Lipiden wie SM existieren, die BFAinsensitiv sind und/oder nicht vesikulär verlaufen (Elwell et al., 2011).

In dieser Arbeit wurden vier weitere Inhibitoren untersucht, die den intrazellulären Transport auf eine ähnlich Art und Weise beeinflussen sollen wie BafA1 und BFA (s. Abschnitt 3.3.4). Darunter befanden sich Concanamycin B (Inhibierung der vakuoläre H⁺-ATPase und des intra-Golgi-Transportes), Chloroquin (Inhibierung der endosomalen Ansäuerung und Fusion mit Lysosomen), Ionomycin (senkt Ca²⁺-Gehalt im ER durch Komplexbildung und damit die Proteinfaltung) und Monensin (Inhibierung von Protein- und Cholesteroltransport am Golgi). Für diese vier Inhibitoren sind noch keine Interaktionen mit der chlamydialen Inklusion beschrieben worden.

1.6 Zielsetzung dieser Arbeit

Im zentralen Fokus dieser Arbeit lag es Protein- und/oder Lipid-basierende Methoden zu etablieren, um sowohl humane als auch mögliche bakterielle Faktoren, die einen Hinweis auf die Ausbildung und Zusammensetzung der SCV geben, zu identifizieren. Aufgrund der starken Assoziation mit dem ER sollten ER-SCV-Membranen isoliert und mit ER-Membranen verglichen werden, um mögliche Veränderungen am ER zu identifizieren. Diese könnten aufzeigen, wo eine Simkanien-Infektion in zelluläre Prozesse eingreift und wie die Interaktion mit diesem Organell verläuft. Dafür sollte mithilfe von massenspektrometrischen Messungen eine Übersicht über das ER-SCV-Proteom und/oder Lipidom gegeben werden und als Grundlage für diese Arbeit dienen. Über die zusätzliche Ermittlung des Sn-Proteoms/-Lipidoms sollten bakterielle Faktoren auf SCV-konzentrierte Faktoren abgeglichen werden, die für die SCV wichtig sein könnten. Weitere Analysen zu humanen Transportproteinen sollten Aufschluss darüber geben, wie die SCV entstehen könnte, welche zellulären Transportmechanismen bis hin zum ER involviert sind und wie die Assoziation mit dem ER zustande kommt. Dabei war davon auszugehen, dass endozytotische und/oder autophagozytotische Faktoren wiederzufinden sind. Schließlich sollten durch die Verwendung von transportassoziierten siRNAs und chemischen Inhibitoren einzelne infektionsabhängige Faktoren genauer untersucht werden, die für Simkanien und deren Infektion essentiell sind. Die Ermittlung von mehreren SCV-spezifischen und humanen regulierten Faktoren wurde als Grundlage genutzt, um essentielle Proteine und/oder Lipide von Sn und der SCV zu identifizieren.

2. Material und Methoden

2.1 Material

2.1.1 Zelllinien

Tabelle 2.1: humane Zelllinien verwendet in Zellkultur.

Zelllinie	Eigenschaften	Medien	Ursprung
HeLa229	humanes Cervixepithel	RPMI 1640, 10 % FCS	ATCC CCL-2.1
HeLa-KDEL-dsRed	pDsRed2-ER Expressionsvektor, stabil transfiziert	RPMI 1640, 10 % FCS, 400 µg G418	Mikrobiologie
HeLa-Golgi-mRFP	B4GalT1-pCMV6-AC- mRFP Klonierungs- vektor, stabil transfiziert	RPMI 1640, 10 % FCS, 400 µg G418	Mikrobiologie
THP1	humane Monozyten	RPMI 1640, 10 % FCS	ATCC TIB-202
AGS pcDNA3 (AGS3)	pcDNA3, stabil transfiziert	RPMI 1640, 10 % FCS	Mikrobiologie

2.1.2 Bakterienstämme

Tabelle 2.2: Bakterienstämme.

Spezies	Ordnung	Medien	Ursprung
S. negevensis	Chlamydiales	SPG	ATCC VR-1471
Stamm Z			

E.coli DH5α (LB-Medium) wurde zur Amplifizierung von Plasmiden verwendet.

2.1.3 Plasmide

Tabelle 2.3: Plasmide.

Plasmid	Eigenschaften	Ursprung
pDsRed2-ER	Markierung des ER in lebenden Säugerzellen	Mikrobiologie
Expressionsvektor	(Calreticulin-Signalpeptid gekoppelt an dsRed2	
	und ER-Erkennungssequenz KDEL)	
B4GalT1-pCMV6-	Golgi Organell Marker für lebende Säugerzellen	OriGene
-------------------	--	----------
AC-mRFP	(Homo sapiens B4GalT1 (GTS) Sequenz	RC100121
Klonierungsvektor	gekoppelt C-mRFP tag)	

2.1.4 Oligonukleotide

Tabelle 2.4: siRNA Oligonukleotide (Qiagen FlexiPlate).

Oligo Name	NCBI Gensymbol	Ent Gene ID	Produkt ID	Sequenz 5' nach 3'
Negative Control	-	-	SI03650318	-
Negative Control	-	-	SI03650325	-
Hs_AMFR_1	AMFR	267	SI00022533	CACGCTCAGTTGAA ATAACAA
Hs_AMFR_2	AMFR	267	SI00022540	AAGGATCGATTTGA ATATCTT
Hs_BCAP31_5	BCAP31	10134	SI02661904	CAAGAAGTACATGG AGGAGAA
Hs_BCAP31_6	BCAP31	10134	SI02662408	AAAGGTGAACCTCC AGAACAA
Hs_COPB_5	COPB1	1315	SI00299887	AACTCCAGATGGGA GACTTTT
Hs_COPB1_4	COPB1	1315	SI04249175	CACGTTAATTAACGT GCCAAT
Hs_COPE_2	COPE	11316	SI00351512	CAGAGCTGTCAGGA CCATGAA
Hs_COPE_6	COPE	11316	SI03192952	CGAGCTGTTCGACG TAAAGAA
Hs_CYC1_1	CYC1	1537	SI00029918	CCCATCATGGGAAT AAATTAA
Hs_CYC1_2	CYC1	1537	SI00029925	CAGCATGGACTTCG TGGCCTA
Hs_DNM1L_1 0	DNM1L oder DLP1	10059	SI04320092	AAGGGTTATTCCAG TCAAACT
Hs_DNM1L_1 1	DNM1L oder DLP1	10059	SI05007919	CCACATCAGTCTGA TACGATA
Hs_ERGIC1_1	ERGIC1	57222	SI03164763	CACGGTGGCCAACA AGGAATA
Hs_ERGIC1_5	ERGIC1	57222	SI04302872	CACCGGATTTATAAC GACAGA
Hs_LMAN1_1 0	ERGIC53 oder LMAN1	3998	SI05110133	GAGGTCAGACTTCC TAATCAA
Hs_LMAN1_2	ERGIC53 oder LMAN1	3998	SI00078974	CAGAATCGTATTCAT CTTGAA
Hs_GABARAP L2_5	GEF2 oder GABARAPL2	11345	SI03194240	CGCGAAGATTCGAG CGAAATA

Hs_GABARAP L2_6	GEF2 oder GABARAPL2	11345	SI04243232	TTAGACTAGTAAATT ATCATA
Hs_HSPA9B_ 5	HSPA9 oder GRP75	3313	SI02654813	AATTGTATTCTCCGA GTCAGA
Hs_HSPA9_1	HSPA9 oder GRP75	3313	SI04279884	AGGCGGGATTATGC ATCAGAA
Hs_ITPR3_1	ITPR3 oder IP3R3	3710	SI00034580	CCGCAGCATGCCGC TGATCTA
Hs_ITPR3_2	ITPR3 oder IP3R3	3710	SI00034587	TCAGTTTACCTTAAT GCCTTA
Hs_MFN2_10	MFN2	9927	SI04993016	CAGCATGGTACCAA GGAGTTA
Hs_MFN2_5	MFN2	9927	SI04188835	CTGCACCGCCACAT AGAGGAA
Hs_GCS1_2	MOGS	7841	SI00087220	CCGTGCCAACGTGG TAGGCAA
Hs_GCS1_3	MOGS	7841	SI00087227	TTGCCTGTAGCCCA TATGCTA
Hs_OAS3_5	OAS3	4940	SI04177845	CTCATCGATACTGC CTGGTAA
Hs_OAS3_6	OAS3	4940	SI04234692	TAGGCTTAATGGTC ACCCTAA
Hs_PACS2_6	PACS2	23241	SI04193112	CCCGGCTGACGTGC CCGAGAA
Hs_PACS2_7	PACS2	23241	SI04314730	AGCAGCGGAGATCG ATTGTAA
Hs_RAB5A_5	RAB5A	5868	SI00301588	ATTCATGGAGACAT CCGCTAA
Hs_RAB5A_8	RAB5A	5868	SI02655037	AACCCAAACTGTAT GTCTTGA
Hs_RAB5B_6	RAB5B	5869	SI02662233	CAGAATGCGACTGC TGATTTA
Hs_RAB5B_7	RAB5B	5869	SI02662800	TAGGTACAAGACAG CGACTTA
Hs_RAB8A_5	RAB8A	4218	SI02662254	TCGCCAGAGATATC AAAGCAA
Hs_RAB8A_1	RAB8A	4218	SI00076090	CACGTTGTATATTCA GAGAGA
Hs_RAB11B_6	RAB11B	9230	SI02662695	CCGCATCGTGTCAC AGAAACA
Hs_RAB11B_1	RAB11B	9230	SI00061145	CACGGACGGACAGA AGCCCAA
Hs_RAB14_1	RAB14	51552	SI00115346	CACGTTAATAGAGG TAGTACA
Hs_RAB14_2	RAB14	51552	SI00115353	TCCATTGATCCCGTA TCTTAA
Hs_RAB18_7	RAB18	22931	SI02662156	ACCAACTTGTACAG ACTAATA
Hs_RAB18_8	RAB18	22931	SI02662709	CCAGGCCAATTTATA ACTAAA

Hs_RAB35_5 RAB35 11021 SI02662205 CAGTTTCGTGCCC TATTTAA Hs_RAB35_2 RAB35 11021 SI00092624 AGGTGTGCTGTG AATTCAA Hs_RHOA_6 RHOA 387 SI02654211 TTCGGAATGACAA Hs_RHOA_7 RHOA 387 SI02654267 CAAGCTAGACGT GAAGAAA Hs_SARA1_1 SAR1A 56681 SI00301728 AAGCACGTGCGG TGGAAAA Hs_SCARB2_ SCARB2 950 SI02777208 AAGCACGTCACT ACTTA Hs_SCARB2_ SCARB2 950 SI02777208 AAGCACGTCACTG CAGTA Hs_SCARB2_ SCARB2 950 SI02777208 AAGCACGTTACTTG CGGGAA Hs_SEC13_1 SEC13 6396 SI04137525 CTGGTGGAGACA Hs_SEC22B_3 SEC22B 9554 SI03157280 CAAGCCATTATATA AGGGAA Hs_SEC23A_1 SEC23A 10484 SI03019464 CAGACTCATAATA AGGCAA Hs_SEC24C_ SEC24C 9632 SI04176022 CTGGAGACA ACTGAA Hs_SEC31A_1 SEC31A 22872 SI04270553 GCCATGGACAT ACCGAA <					
Hs_RAB35_2 RAB35 11021 SI00092624 AGGGTGTGCTTGA ATTCAA Hs_RHOA_6 RHOA 387 SI02654211 TTCGGAATGATGA CACACAA Hs_RHOA_7 RHOA 387 SI02654267 CAACCTAGACGT GAGAAA Hs_SARA1_1 SAR1A 56681 SI00301728 AAGCACCTGCGG TGGAAAA Hs_SCARB2_ SCARB2 950 SI02777208 AAGACAGTTACTT ACGCAT Hs_SCARB2_ SCARB2 950 SI02777215 CTGGTGAGAGA CACGTA Hs_SCARB2_ SCARB2 950 SI02777215 CTGGTGAGAGA CAGCTATACTTC TCAGTA Hs_SEC13_1 SEC13 6396 SI04297524 CTGCCTTAACGTC TCGGAGA Hs_SEC22B_2 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC23A_1 SEC33 10484 SI03019464 CAGCTTGAGAGA ACTGTAT Hs_SEC23A_1 SEC31A 10484 SI03157280 CAAGCTCATATATA AGGGAA Hs_SEC24C_ SEC24C 9632 SI04176029 TACGGAA Hs_SEC31A_1 SEC31A 22872 SI04170922 CTGGTAAT <td>Hs_RAB35_5</td> <td>RAB35</td> <td>11021</td> <td>SI02662205</td> <td>CAGTTTCGTGCCGT TATTTAA</td>	Hs_RAB35_5	RAB35	11021	SI02662205	CAGTTTCGTGCCGT TATTTAA
Hs_RHOA_6 RHOA 387 SI02654211 TTCGGAATGATGA CACACAA Hs_RHOA_7 RHOA 387 SI02654267 CAACAAA Hs_SARA1_1 SAR1A 56681 SI00301728 AAGCACTGCGG TGGAAAA Hs_SAR1A_1 SAR1A 56681 SI04203171 CCGGGTAAACGTT ATGCCAT Hs_SCARB2_ SCARB2 950 SI02777208 AAGACAGTTACT ACTTTA Hs_SCARB2_ SCARB2 950 SI02777215 CTGGTCAAACTTC CAGGTA Hs_SEC13_1 SEC13 6396 SI04137525 CTGGTGGAGACA AAGGTGA Hs_SEC22B_2 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC23A_5 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC23A_1 SEC23A 10484 SI03019464 CAGCTAGCAGA ACTTGAA Hs_SEC23A_1 SEC24C 9632 SI04158070 AGCCTTGACGTA GAACGAA Hs_SEC31A_1 SEC31A 22872 SI04170922 CTGGTAGCTTC TGGTAAT Hs_SEC31A_2 SEC42C 9632 SI04158070 AGCCTTGACGTA GACCTACTCT TACTGTA	Hs_RAB35_2	RAB35	11021	SI00092624	AGGGTGTGCTTGCA AATTCAA
Hs_RHOA_7 RHOA 387 SI02654267 CAAGCTAGACGTG GAAGAAA Hs_SARA1_1 SAR1A 56681 SI00301728 AAGCACGTCGCG TGGAAAA Hs_SAR1A_1 SAR1A 56681 SI04203171 CCGGGTAAAGCTG ATTGCCAT Hs_SCARB2_ SCARB2 950 SI02777208 AAGCACGTCACT Hs_SCARB2_ SCARB2 950 SI02777215 CTGGTCTAACTTC TCAGTA Hs_SEC13_1 SEC13 6396 SI04137525 CTGGTGGAGACA AAGGTGA Hs_SEC13_3 SEC13 6396 SI04137526 CTGCGTAAGGCA AAGGTGA Hs_SEC28B_2 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC23A_5 SEC23A 10484 SI03019464 CAGCACTCATAATA AGGGCAA Hs_SEC23A_1 SEC24C 9632 SI00713965 CCCGTTGAGCATC TACCGAA Hs_SEC31A_1 SEC31A 22872 SI04176922 CTGGTAGCACT/T GAAGAA Hs_SEC31A_2 SEC31A 22872 SI04170922 CTGGTGGCACT/T ACCGTA Hs_SEC31A_2 SEC31A 22872 SI04148945 CACACTGTATGAC	Hs_RHOA_6	RHOA	387	SI02654211	TTCGGAATGATGAG CACACAA
Hs_SARA1_1 SAR1A 56681 SI00301728 AAGCACGTCGCG TGGAAAA Hs_SAR1A_1 SAR1A 56681 SI04203171 CCGGGTAAAGCTU ATGCCAT Hs_SCARB2_ SCARB2 950 SI02777208 AAGACAGTTACCT ACTTTA Hs_SCARB2_ SCARB2 950 SI02777215 CTGGTCAACTTC CAGTA Hs_SCARB1_1 SEC13 6396 SI04297524 CTGCCTTAACTTC TGGAGAA Hs_SEC13_3 SEC13 6396 SI04297524 CTGCCTTAACGTC TGGAGA Hs_SEC2B_2 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC23A_5 SEC23A 10484 SI05116209 TACGCTAGCCT/ ATGCCAA Hs_SEC23A_1 SEC24C 9632 SI04158070 AGCCTTGAGGT7/ GAACGAA Hs_SEC31A_1 SEC31A 22872 SI04270553 GCCATGGACACT/ TACTGTA Hs_SEC31A_2 SEC71A 22872 SI04178022 CTGGTAGACT/ GAACGAA Hs_SEC31A_2 SEC71A 22872 SI04270553 GCCATGGACACT/ TACTGTA Hs_SEPT2_6 SEPT2 4735 SI04144945 CACACT	Hs_RHOA_7	RHOA	387	SI02654267	CAAGCTAGACGTGG GAAGAAA
Hs_SAR1A_1 SAR1A 56681 SI04203171 CCGGGTAAAGCTA ATGCCAT Hs_SCARB2_ 5 SCARB2 950 SI02777208 AAGACAGTTACCT ACTTTA Hs_SCARB2_ 6 SCARB2 950 SI02777215 CTGGTCTAACTTC TCAGTA Hs_SEC13_1 SEC13 6396 SI04137525 CTGGTCTAACTTC TCGGAGA Hs_SEC13_3 SEC13 6396 SI04297524 CTGCCTTAACGTC TCGGAGA Hs_SEC22B_2 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC23A_5 SEC23A 10484 SI03119464 CAGCTATATA ATGTCAA Hs_SEC23A_1 SEC23A 10484 SI05116209 TACGCTAGGCT/ ATGCGAA Hs_SEC24C_ SEC24C 9632 SI00713965 CCCGTTGAGGTT/ GACGAA Hs_SEC31A_1 SEC31A 22872 SI04170922 CTGGTGACACA/ AGCTAA Hs_SEC31A_2 SEC13 22872 SI04170922 CTGGTGACACA/ AGCTAA Hs_SEC13_1 SIGMAR1 10280 SI00082075 CCGCTTGACCT/ CCGGTGA Hs_SEPT2_6 SEPT2 4735 SI04144945 CACAC	Hs_SARA1_1	SAR1A	56681	SI00301728	AAGCACGTCGCGTT TGGAAAA
Hs_SCARB2_ SCARB2 950 SI02777208 AAGACAGTTACCT ACTTTA Hs_SCARB2_ SCARB2 950 SI02777215 CTGGTCTAACTTC TCAGTA Hs_SEC13_1 SEC13 6396 SI04137525 CTGGTGAGACAA AAGGGAA Hs_SEC13_3 SEC13 6396 SI04297524 CTGCCTTAACGTC TCGGAGA Hs_SEC22B_2 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC22B_3 SEC22B 9554 SI04196255 CCAGGATGCGAA ACTTGAA Hs_SEC23A_5 SEC23A 10484 SI03119464 CAGACTCATAATA ATGCAA Hs_SEC24C_ SEC24C 9632 SI00713965 CCCGTTGAGGCT7 GCCGAA Hs_SEC31A_1 SEC31A 22872 SI04170922 CTGGTAGCTTCT TGCTAAT Hs_SEC31A_2 SEC31A 22872 SI04270553 GCCATGGACACT/ TACCGAA Hs_SEPT2_5 SEPT2 4735 SI03233461 TCGACAGTA Hs_OPRS1_1 SIGMAR1 10280 SI00082075 CCGGCTTGACGCTA Hs_OPRS1_3 SIGMAR1 10280 SI00082089 AGGCATAGCTA	Hs_SAR1A_1	SAR1A	56681	SI04203171	CCGGGTAAAGCTGT ATGCCAT
Hs_SCARB2_ SCARB2 950 SI02777215 CTGGTCTAACTTC TCAGTA 6 Hs_SEC13_1 SEC13 6396 SI04137525 CTGGTGAGACA. AAGGTGA Hs_SEC13_3 SEC13 6396 SI04297524 CTGCCTTAACGTC TCGGAGA Hs_SEC22B_2 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC22B_3 SEC22B 9554 SI04196255 CCAGGATGCGAA ACTTGAA Hs_SEC23A_5 SEC23A 10484 SI03117280 CAGCCTATATATA AGGGAA Hs_SEC23A_1 SEC23A 10484 SI05116209 TACCGTAGCCT/ ATGCCAA hs_SEC24C_ SEC24C 9632 SI00713965 CCCGTTGACGTT/ GAACGAA Hs_SEC31A_1 SEC31A 22872 SI04170922 CTGGTAGCTCT TGGTAAT Hs_SEC31A_2 SEC71A 22872 SI04170953 GCCATGGACACT/ TACTGA Hs_SEPT2_6 SEPT2 4735 SI04144945 CACCGATGGACACT/ TACTGA Hs_OPRS1_1 SIGMAR1 10280 SI00082075 CCGGGCTTAACTG TATGTA Hs_OPRS1_3 SIGMAR1 10280 SI0000820	Hs_SCARB2_ 5	SCARB2	950	SI02777208	AAGACAGTTACCTTA ACTTTA
Hs_SEC13_1 SEC13 6396 SI04137525 CTGGTGGAGACA. AAGGTGA Hs_SEC13_3 SEC13 6396 SI04297524 CTGCTTAACGTC TCGGAGA Hs_SEC22B_2 SEC22B 9554 SI03157280 CAAGCCATATATA AGGGAA Hs_SEC22B_3 SEC22B 9554 SI04196255 CCAGGATGCGAA ACTTGAA Hs_SEC23A_5 SEC23A 10484 SI03019464 CAAGCTCATATATA AGGCTAATATA ATGTAT Hs_SEC23A_1 SEC23A 10484 SI05116209 TACGCTAGGCT/ ATGCCAA Hs_SEC24C_ SEC24C 9632 SI04178925 CCCGTTGAGAGT/ GAACGAA Hs_SEC31A_1 SEC31A 22872 SI04170922 CTGGTAGCTATATA GACCGAA Hs_SEC31A_2 SEC31A 22872 SI04270553 GCCATGGACACT/ TACTGTA Hs_SEC71A_2 SEC13 22872 SI04170922 CTGGTAGCTA Hs_SEC71A_2 SEC13 22872 SI04170925 GCCATGGACACT/ TACTGTA Hs_SEPT2_6 SEPT2 4735 SI03233461 TCGGACTA Hs_OPRS1_3 SIGMAR1 10280 SI00082089 AGGGA	Hs_SCARB2_ 6	SCARB2	950	SI02777215	CTGGTCTAACTTCAT TCAGTA
Hs_SEC13_3SEC136396SI04297524CTGCCTTAACGTC TCGGAGAHs_SEC22B_2SEC22B9554SI03157280CAAGCCATATATA AGGGAAHs_SEC22B_3SEC22B9554SI04196255CCAGGATGCGAA ACTTGAAHs_SEC23A_5SEC23A10484SI03019464CAGACTCATAATA ATGTATHs_SEC23A_1SEC23A10484SI05116209TACGCTAGGCCT/ ATGCCAAHs_SEC24C_SEC24C9632SI00713965CCCGTTGAGGTT GAACGAAHs_SEC24C_SEC24C9632SI04158070AGCCTTGACGTTA GAACGAAHs_SEC31A_1SEC31A22872SI04170922CTGGTAGCTTCATAA AGCTAATHs_SEC31A_2SEC31A22872SI04270553GCCATGGACACT/ TACTGTAHs_SEPT2_6SEPT24735SI03233461TCGACTCCATAAA AGCCTAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGACGTT CCACCTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT ATGGAAHs_VAMP2_4VAMP26844SI00103838CCATTAGTTCTT ATCACA	Hs_SEC13_1	SEC13	6396	SI04137525	CTGGTGGAGACAAT AAGGTGA
Hs_SEC22B_2SEC22B9554SI03157280CAAGCCATATATA AGGGAAHs_SEC22B_3SEC22B9554SI04196255CCAGGATGCGAA ACTTGAAHs_SEC23A_5SEC23A10484SI03019464CAGACTCATAATA ATGTATHs_SEC23A_1SEC23A10484SI05116209TACGCTAGGCCTA ATGCCAAHs_SEC24C_SEC24C9632SI00713965CCCGTTGAGAGTA TACCGAAHs_SEC24C_SEC24C9632SI04158070AGCCTTGACGTTA GAACGAAHs_SEC31A_1SEC31A22872SI04170922CTGGTAGCTCTCATAATA AGCCTAHs_SEC31A_2SEC31A22872SI04270553GCCATGGACACTA TACTGTAHs_SEPT2_5SEPT24735SI03233461TCGACTCTCATAA AGCCTAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGACGTCA CCACCTAHs_STX4_1STX46810SI03090976CTCGACAGGACCT ATGGAAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTCT AGTCGA	Hs_SEC13_3	SEC13	6396	SI04297524	CTGCCTTAACGTGA TCGGAGA
Hs_SEC22B_3SEC22B9554SI04196255CCAGGATGCGAA ACTTGAAHs_SEC23A_5SEC23A10484SI03019464CAGACTCATAATA ATGTATHs_SEC23A_1SEC23A10484SI05116209TACGCTAGGCCT/ ATGCCAA0TACSCTAGGCCT/ ATGCCAA9632SI00713965CCCGTTGAGAGT/ TACCGAAHs_SEC24C_SEC24C9632SI04158070AGCCTTGACGTTA GAACGAAHs_SEC31A_1SEC31A22872SI04170922CTGGTAGCTCTCATAATA AGCCTTGACGTTA GACCGAAHs_SEC31A_2SEC31A22872SI04270553GCCATGGACACT/ TACTGTAHs_SEPT2_5SEPT24735SI03233461TCGACTCTCATAA AGCCTAHs_OPRS1_1SIGMAR110280SI00082075CCGGGTTGAGCTT CCACCTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT ATGAGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCT ATCACA	Hs_SEC22B_2	SEC22B	9554	SI03157280	CAAGCCATATATATT AGGGAA
Hs_SEC23A_5SEC23A10484SI03019464CAGACTCATAATA ATGTATHs_SEC23A_1SEC23A10484SI05116209TACGCTAGGCCT/ ATGCCAA0Hs_SEC24C_SEC24C9632SI00713965CCCGTTGAGAGT/ TACCGAAHs_SEC24C_SEC24C9632SI04158070AGCCTTGACGTTA GAACGAAHs_SEC31A_1SEC31A22872SI04170922CTGGTAGCTTCTC TGCTAATHs_SEC31A_2SEC31A22872SI04270553GCCATGGACACT/ TACTGTAHs_SEPT2_5SEPT24735SI03233461TCGACTGCTGATGGTG TGGTGGTHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTTC CCACCTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTCT ATCAGA	Hs_SEC22B_3	SEC22B	9554	SI04196255	CCAGGATGCGAAGT ACTTGAA
Hs_SEC23A_1SEC23A10484SI05116209TACGCTAGGCCTAGGCCTA ATGCCAAHs_SEC24C_SEC24C9632SI00713965CCCGTTGAGAGTA TACCGAAHs_SEC24C_SEC24C9632SI04158070AGCCTTGACGTTA GAACGAAHs_SEC31A_1SEC31A22872SI04170922CTGGTAGCTTCTC TGCTAATHs_SEC31A_2SEC31A22872SI04270553GCCATGGACACCTA TACTGTAHs_SEPT2_5SEPT24735SI03233461TCGACTCTCATAA AGCCTAHs_SPT2_6SEPT24735SI04144945CACACTGATGGTC CCACCTAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTTC CCACCTAHs_STX4_1STX46810SI03090976CTCGACAGGCCTT AATGAGAHs_VAMP2_4VAMP26844SI00103838CCATTAGTTCT ATCACA	Hs_SEC23A_5	SEC23A	10484	SI03019464	CAGACTCATAATAAT ATGTAT
Hs_SEC24C_ 3SEC24C9632SI00713965CCCGTTGAGAGT/ TACCGAAHs_SEC24C_ 6SEC24C9632SI04158070AGCCTTGACGTTA GAACGAAHs_SEC31A_1SEC31A22872SI04170922CTGGTAGCTTCTO TGCTAATHs_SEC31A_2SEC31A22872SI04270553GCCATGGACACT/ TACTGTAHs_SEPT2_5SEPT24735SI03233461TCGACTCTCATAA AGCCTAHs_SEPT2_6SEPT24735SI04144945CACACTGATGGTO CGGTGAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTTC CCACCTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCT CCACTTAGTCT	Hs_SEC23A_1 0	SEC23A	10484	SI05116209	TACGCTAGGCCTAA ATGCCAA
Hs_SEC24C_ 6SEC24C9632SI04158070AGCCTTGACGTTA GAACGAAHs_SEC31A_1SEC31A22872SI04170922CTGGTAGCTTCTO TGCTAATHs_SEC31A_2SEC31A22872SI04270553GCCATGGACACT/ TACTGTAHs_SEPT2_5SEPT24735SI03233461TCGACTCTCATAA AGCCTAHs_SEPT2_6SEPT24735SI004144945CACACTGATGGTO TCGGTGAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTO CCACCTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCTT ATCACA	Hs_SEC24C_ 3	SEC24C	9632	SI00713965	CCCGTTGAGAGTAC TACCGAA
Hs_SEC31A_1SEC31A22872SI04170922CTGGTAGCTTCTO TGCTAATHs_SEC31A_2SEC31A22872SI04270553GCCATGGACACT/ TACTGTAHs_SEPT2_5SEPT24735SI03233461TCGACTCTCATAA AGCCTAHs_SEPT2_6SEPT24735SI04144945CACACTGATGGTG TCGGTGAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTC CCACCTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCTT ATCACA	Hs_SEC24C_ 6	SEC24C	9632	SI04158070	AGCCTTGACGTTAG GAACGAA
Hs_SEC31A_2SEC31A22872SI04270553GCCATGGACACT/ TACTGTAHs_SEPT2_5SEPT24735SI03233461TCGACTCTCATAA AGCCTAHs_SEPT2_6SEPT24735SI04144945CACACTGATGGTG TCGGTGAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTG CCACCTAHs_OPRS1_3SIGMAR110280SI00082089AGGGATATCCATG TTATGTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCTT ATCACA	Hs_SEC31A_1	SEC31A	22872	SI04170922	CTGGTAGCTTCTGG TGCTAAT
Hs_SEPT2_5SEPT24735SI03233461TCGACTCTCATAA AGCCTAHs_SEPT2_6SEPT24735SI04144945CACACTGATGGTG TCGGTGAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTG CCACCTAHs_OPRS1_3SIGMAR110280SI00082089AGGGATATCCATC TTATGTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCTT ATCACA	Hs_SEC31A_2	SEC31A	22872	SI04270553	GCCATGGACACTAG TACTGTA
Hs_SEPT2_6SEPT24735SI04144945CACACTGATGGTGAHs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTG CCACCTAHs_OPRS1_3SIGMAR110280SI00082089AGGGATATCCATG TTATGTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_STX4_2STX46810SI04989264AGGGCAGAGCCT AGTCGGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCTT ATCACA	Hs_SEPT2_5	SEPT2	4735	SI03233461	TCGACTCTCATAAAC AGCCTA
Hs_OPRS1_1SIGMAR110280SI00082075CCGGCTTGAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCACCTAHs_OPRS1_3SIGMAR110280SI00082089AGGGATATCCATGCTTATGTAHs_STX4_1STX46810SI03090976CTCGACAGGCCTCCACGGAGAGCCTCCATGCAGGAGAGAGA	Hs_SEPT2_6	SEPT2	4735	SI04144945	CACACTGATGGTGG TCGGTGA
Hs_OPRS1_3SIGMAR110280SI00082089AGGGATATCCATO TTATGTAHs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_STX4_2STX46810SI04989264AGGGCAGAGCCT AGTCGGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCTT ATCACA	Hs_OPRS1_1	SIGMAR1	10280	SI00082075	CCGGCTTGAGCTCA CCACCTA
Hs_STX4_1STX46810SI03090976CTCGACAGGCCT AATGAGAHs_STX4_2STX46810SI04989264AGGGCAGAGCCT AGTCGGAHs_VAMP2_4VAMP26844SI00103838CCCATTAGTTCTT ATCACA	Hs_OPRS1_3	SIGMAR1	10280	SI00082089	AGGGATATCCATGC TTATGTA
Hs_STX4_2 STX4 6810 SI04989264 AGGGCAGAGCCT AGTCGGA Hs_VAMP2_4 VAMP2 6844 SI00103838 CCCATTAGTTCTT ATCACA	Hs_STX4_1	STX4	6810	SI03090976	CTCGACAGGCCTTA AATGAGA
Hs_VAMP2_4 VAMP2 6844 SI00103838 CCCATTAGTTCTT ATCACA	Hs_STX4_2	STX4	6810	SI04989264	AGGGCAGAGCCTCC AGTCGGA
	Hs_VAMP2_4	VAMP2	6844	SI00103838	CCCATTAGTTCTTGT ATCACA

Hs_VAMP2_5	VAMP2	6844	SI03027241	AACAAGCGCAGCCA AGCTCAA
Hs_VAMP4_5	VAMP4	8674	SI03019653	AAAGATTGCTGCATA ATTTAA
Hs_VAMP4_1 0	VAMP4	8674	SI05471795	GCGGATCGACTTCC TCGATTA
Hs_SYBL1_6	VAMP7	6845	SI04143335	TCCAGACTACTTAC GGTTCAA
Hs_SYBL1_7	VAMP7	6845	SI04212453	TAGGGCAATCGTGT CGCTAAT
Hs_LMAN2_1 0	VIP36 oder LMAN2	10960	SI05070856	CCGAGTGTGACCGT TTGCTAA
Hs_LMAN2_1 1	VIP36 oder LMAN2	10960	SI05070863	AAGTGAAATACCCA ACCTCAA
Hs_VDAC1_1 0	VDAC1	7416	SI04179497	CTGGGATGCAAGTA TTGCTAA
Hs_VDAC1_1 1	VDAC1	7416	SI04368665	CTCCAGGTTAAAGTT GATTCA

Tabelle 2.5: siRNA SMARTpool Oligonukleotide (Dharmacon).

Oligo Name	Produkt ID	Sequenz 5' nach 3'
ARHGEF2	M-009883 - 01-0005	GGACAAGCCUUCAGUGGUA, CAACAUUGCUGGACAUUUC, GAAUUAAGAUGGAGUUGCA, GUGCGGAGCAGAUGUGUAA

Tabelle 2.6: siRNA SMARTpool Oligonukleotide (Qiagen).

Oligo Name	Produkt ID	Sequenz 5' nach 3'
ATG4B	1027416- GS23192	CTCCGGTTTGCTGAGTTTGAA, CTGGAAAGATTCTTCGACTCA, CACGGACATCAACGAGGCCTA, TCCATTCACCAGATAGCGCAA
AP2B1	1027416- GS163	TCCCATCTATGTTAAACTAGA, CCGGTGCACATTAAAGATCCA, CCGCCTCCGGTGCACATTAAA, AGGCGTCATGTTGGACTGAGA
COPB2	1027416- 9276	CAGGTTTCAAGGGTAGTGAAA, ACGATTCTTCAGAGTATGCAA, CTGCTAGATCTGATCGAGTTA, CCCAGTCAGGTTTCAAGGGTA
STX5	1027416- 6811	CCAGGATTTCGTGAGAGCCAA, CAACCGGTGGCTCATGGTCAA, CAGTGGAAATTGAAGAGCTAA, ATCAATAGCCTCAACAAACAA
All-Stars negative control	SI03650325	-

Oligo Name	Sequenz 5' nach 3'	GC (%)	Temperatur (°C)
ARHGEF Forward	CTCGAAAGAAAGTTGCTCCG	50	60
ARHGEF Reverse	ACAGGCATAGCACATGGTCA	50	60
AP2B1 Forward	CCAGAGCATTGATGTCTCCC	55	64
AP2B1 Reverse	GGGATGAGGCAGCTGAAGTA	55	64
COPB2 Forward	GTAGCCGGTAACAAACGAGG	55	64
COPB2 Reverse	CCAACATCCATGGCTCTGTA	50	64
STX5 Forward	TGAGTTGGGCTCCATCTTTC	50	63
STX5 Reverse	TTGAGGATCTCTGAATGGGC	50	64

Tabelle 2.7: Quantitative RT-PCR Primer.

2.1.5 Antiseren

Tabelle 2.8: Primärantikörper für Immunoblot (IB) und Immunofluoreszenz (IF).

Antikörper	Herkunft	Firma	Produkt ID	MGW (kDa)	Verdünnung
β-Aktin	Maus	Sigma-Aldrich	A5441	43	1:5000 (IB)
Calnexin	Hase	Cell Signaling	C5C9	90	1:1000 (IB), 1:200 (IF)
CCT2	Hase	Cell Signaling	3561	54	1:500 (IB)
ERp72	Hase	Cell Signaling	D70D12	72	1:1000 (IB)
GEF H1	Hase	Cell Signaling	4076	120	1:250 (IB)
(55B6)					
KDEL	Maus	Enzo	10C3	94, 78	1:1000 (IB)
LaminB	Ziege	Santa Cruz	6216	67	1:500 (IB)
PDI	Hase	Cell Signaling	C81H6	55	1:1000 (IB)
Sam50	Hase	Mikrobiologie	selbst	50	1:50 (IB)
Sn-GroEL	Hase	Mikrobiologie	selbst	60	1:1000 (IB), 1:800- 1600 (IF)

Sn	Hase	Mikrobiologie	selbst	-	1:5000 (IB), 1:100-
	Насо	Cell Signaling	13508	13	200 (IF)
(D601A)	11030	Cen Signaling	13300	15	1.200 (10)

Tabelle 2.9: Sekundärantikörper für Immunoblot (IB) und Immunofluoreszenz (IF).

Antikörper	Herkunft	Firma	Produkt ID	Verdünnung
ECL™ anti-mouse IgG HRP gekoppelt	Ziege	Santa Cruz	sc-2005	1:2500 (IB)
ECL [™] anti-rabbit IgG HRP gekoppelt	Ziege	Santa Cruz	sc-2004	1:2500 (IB)
ECL™ anti-goat IgG HRP gekoppelt	Esel	Santa Cruz	sc-2020	1:2500 (IB)
Cy™3-konjugiertes anti-rabbit IgG	Ziege	Dianova	111-165-003	1:800 (IF)
Cy™2-konjugiertes anti-rabbit IgG	Ziege	Dianova	111-225-144	1:400 (IF)

2.1.6 Lösungen, Puffer und Medien

Tabelle 2.10: Puffer für ER-SCV-Membranaufreinigung.

Puffer	Zusammensetzung
0,5 x hypotoner Puffer	10 mM HEPES, 0,5M EGTA, 12,5 mM KCl, 0,125 M Saccharose, Protease und Phosphatase Inhibitoren, pH 7,6
0,5 x isotoner Puffer	5 mM HEPES, 0,5M EGTA, 12,5 mM KCl, Protease und Phosphatase Inhibitoren, pH 7,6

Tabelle 2.11: Puffer und Lösungen für SDS-PAGE und Immunoblotting.

Puffer	Zusammensetzung
10 x SDS-Laufpuffer	30,25 g Tris, 144 g Glycin, 10 g SDS (1 Liter)
Trenngel-Puffer	1,5 M Tris HCI, pH 8,8
Trenngel 10 %	4 ml dH₂O, 2,5 ml Trenngel Puffer, 3,38 ml 30 % Acryl- bisacrylamid, 75 μl Ammoniumpersulfat, 7,5 μl TEMED

Sammelgel-Puffer	1 M Tris HCl pH, 6,8
Sammelgel	6,5 ml dH₂O, 2,5 ml Sammelgel Puffer, 1 ml 30 % Acryl- bisacrylamid, 100 μl Ammoniumpersulfat, 10 μl TEMED
10 x semi-dry-Puffer	192 mM Glycin, 0,1 % (w/v) SDS, 25 mM Tris HCl, 20 % (w/v) Methanol, pH 8,3
Semi-dry-Transferpuffer	1x semi dry Transferpuffer, 20 % (v/v) Methanol
10 x TBS	60,5 g Tris, 87,6 g NaCl, pH 7,5 (1 Liter)
TBST ₂₀	1 x TBS, 0,5 % (v/v) Tween20
Blockierungslösung	1 x TBS, 5 % (w/v) Milchpulver oder BSA
Ladepuffer (2x)	100 mM Tris HCl pH 6,8, 4 % SDS, 20 % Glycerin, 1,5 % ß- Mercaptoethanol, 0,2 % Bromphenolblau
Coomassie- Färbelösung	44 %, Methanol, 11 % Essigsäure, 0,2 % Coomassie-Blau R250
Coomassie- Entfärbelösung	20 % Methanol, 7 % Essigsäure
Stripping-Puffer	Thermo Fisher [™] Restore [™] Plus Western Blot Stripping Buffer (Produkt ID 46430)
ECL-Lösung1	2,5 mM Luminol, 0,4 mM Cumarsäure, 100 mM Tris HCl, pH 8,5
ECL-Lösung 2	0,02 % Wasserstoffperoxid, 100 mM Tris HCI pH 8,5

Tabelle 2.12: Puffer und Lösungen für Immunofluoreszenz und Elektronenmikroskopie.

Puffer	Zusammensetzung
10 x PBS	1,37 M NaCl, 27 M KCl, 43 M Na ₂ HPO ₄ x 7 H ₂ O, 14 M KH ₂ PO ₄
4 % PFA-Saccharose	Paraformaldehyd, 4 % in PBS, pH 7,4, 21 ml 80 % Saccharose (1 Liter)
Blockierungslösung	1 x PBS, 2 % (w/v) goat serum
Permeabilisierungs- lösung	1 x PBS, 0,1 % (v/v) TritonX-100

Mowiol-Einbettmittel	6 g Glycerin, 2,4 g Mowiol 4-88, 6 ml H ₂ O, 12 ml 0,2 M Tris HCl pH 8,5, 25 mg/ml DABCO
2,5 % TEM- Fixierungslösung	2,5 % Glutaraldehyd, 50 mM KCl, 2,5 mM MgCl ₂ , 50 mM Cacodylatpuffer pH 7,2
Cacodylatpuffer	50 mM Dimethylarsinsäure, pH 7,2

Tabelle 2.13: Puffer und Medien für Bakterienkulturen, Zellkulturen, Infektionen, RNAi-Transfektionen und Lebendzellmikroskopie.

Puffer	Zusammensetzung
LB-Medium	10 g Trypton, 5 g Hefeextrakt, 10 g NaCl (1 Liter)
LB-Agar	10 g Trypton, 5 g Hefeextrakt, 10 g NaCl, 15 g Agar (1 Liter)
SOC-Medium	2 % (w/v) Bacto-Trypton, 0,5 % (w/v) Hefeextrakt, 10 mM NaCl, 2,5 mM KCl, 10 mM MgCl ₂ , 20 mM Glukose
Zellkulturmedium	RPMI 1640, GlutaMAX™, (w/o) HEPES, 10 % FBS
Infektionsmedium	RPMI 1640, GlutaMAX™, (w/o) HEPES, 5 % FBS
Einfriermedium	70 % FBS, 20 % (v/v) RPMI1640, GlutaMAX [™] , (w/o) HEPES, 10 % (v/v) DMSO
Transfektionsmedium 1	RPMI 1640, GlutaMAX [™] , 25 mM HEPES
Transfektionsmedium 2	RPMI 1640, GlutaMAX™, 25 mM HEPES, 10 % FBS
SPG-Puffer	75 g Saccharose, 0,52 g KH ₂ PO ₄ , 1,22 g Na ₂ HPO ₄ , 0,72 g L- Glutaminsäure, pH 7,4
Lebendzellmikroskopie- Medium	RPMI 1640, L-Glutamin, ohne Phenolrot

DPBS (Sigma Aldrich), Fetales Kälberserum (FBS) (PAA, A15-101), RPMI und HBSS (Gibco) wurden von den angegebenen Herstellern erworben.

Tabelle 2.14: Lösungen für Dünnschichtchromatographie.

Puffer	Zusammensetzung
Polares Laufmittel	Chloroform : Methanol : d H ₂ O, 65:25:4 (v:v:v)

Waschlösung	1 M NaCl
Färbelösung	0,2 % (w/v) Naphtol-Blau-Schwarz, 1M NaCl

Tabelle 2.15: Lösungen für Saccharose-, Percoll- und Renografingradienten.

Lösungen	Zusammensetzung
Percoll (16 %)	20,9 ml Percoll, 3 ml 10 x SPG Puffer, 6,1 ml d H_2O
Renografin (60 %)	26 g <i>Meglumin</i> -Amidotrizoat, 4 g Natrium-Amidotrizoat, 0,16 g Natriumcitrat, 0,02 g EDTA, 50 ml HBSS, pH 7,4
Saccharose (40 %)	40 (w/v) Saccharose in dH ₂ O, steril filtriert
Saccharose (80 %)	80 (w/v) Saccharose in dH ₂ O, steril filtriert

2.1.7 Enzyme

Tabelle 2.16: Enzyme

Enzym	Produkt ID	Hersteller
TrypLE™ Express Enzyme (1X), ohne Phenolrot	12604-013	Gibco

2.1.8 Antibiotika

Tabelle 2.17: Antibiotika

Antibiotikum	Ausgangskonzentration	Lösungsmittel	Arbeitskonzentration
СНХ	10 mg/ml	d H₂O	2 µg/ml
Ampicillin	100 mg/ml	d H ₂ O	100 µg/ml

2.1.9 Chemikalien

Tabelle 2.18: Inhibitoren, Induktoren und Feinchemikalien.

Chemikalie	Produkt ID	Hersteller
Acrylamid Rotiphorese Gel 30 (37, 5:1)	3029.1	Roth
Bafilomycin A1 (BafA1)	B-1080	Miscellaneous

Bradford Reagenz	K015.1	Roth
Brefeldin A (BFA)	9972	Cell Signaling
BSA Alexa Fluor 488 conjugate	A13100	Molecular Probes
Cardiolipin (18:1) 1',3'-bis[1,2-dioleoyl <i>sn</i> -glycero-3-phospho]- <i>sn</i> -glycerol (sodium salt)	115404-77-8	Avanti Lipids
Chloroquin (Clq)	C6628	Sigma Aldrich
Choleratoxin Fluor 647	C-34778	Molecular Probes
Cholesterol-β-D-Glykosid (TLC)	28609	Sigma Aldrich
Complete Protease Inhibitor EDTA free	11873580001	Roche
Concanamycin B (ConB)	sc-221434	Santa Cruz
Cumarsäure	C-9008	Sigma Aldrich
4', 6-diamidino-2-phenylindole (DAPI)	D9542	Sigma Aldrich
Dimethyl Sulfoxid (DMSO)	A994.2	Sigma Aldrich
G418	Ant-gn-1	InvivoGen
Goat serum	16210-064	Gibco
HiPerFect	30170x	Qiagen
Hoechst 33342	B2261	Sigma Aldrich
lonomycin (lon)	10634	Sigma Aldrich
Luminol	09253	Fluka
Meglumin-Amidotrizoat	M5266	Sigma Aldrich
Monensin (Mon)	M5273	Sigma Aldrich
Natrium-Amidotrizoat	S4506	Sigma Aldrich
Naphtol-Blau-Schwarz	19, 524-3	Sigma Aldrich
NBD-C ₆ -ceramide (6 - ((N - [7 - nitrobenz - 2 - oxa - 1, 3 - diazol - 4 - yl)	N-1154	Molecular Probes

amino) hexanoyl] sphingosine) complexed to BSA		
Paraformaldehyd, 4 % in PBS, pH 7,4	11762	Morphisto
Percoll [®] pH 8.5-9.5 (25 °C)	P1644	Sigma Aldrich
PerfeC⊺a [®] SYBR [®] Green FastMix [®] , ROX™	95073-012	Quanta Biosciences
PG (18:1, Δ9 <i>cis</i>) 1,2-dioleoyl- <i>sn</i> - glycero-3-phospho-(1'- <i>rac</i> -glycerol) (sodium salt)	67254-28-8	Avanti Lipids
Phalloidin-647	A22287	Molecular Probes
PhosSTOP Phosphatase Inhibitor	04906837001	Roche
PMA (phorbol-12-myristate-13-acetate)	9905	Cell Signaling
PS (18:1, DOPS) 1,2-dioleoyl- <i>sn-</i> glycero-3-phospho-L-serine (sodium salt)	90693-88-2	Avanti Lipids
Soy Phospholipid Mixture	690050C	Avanti Lipids

Nicht aufgeführte Chemikalien wurden, falls nicht anders aufgeführt, von Sigma Aldrich, Roth, Serva oder Merck erworben.

2.1.10 Einwegmaterial

Zu den Einwegmaterialien zählten Einwegspitzen, 15 und 50 ml Zentrifugationsröhrchen, 1,5-2,0 ml Reaktionsgefäße, PCR Reaktionsgefäße, sterile Handschuhe (Latex und Nitril soft), Einwegpipetten, Zellkulturflaschen, -schalen und –platten, Spritzen, Kanülen, Filter und Filtersysteme mit sterilen Flaschen, Whatmanpapier, Parafilm, Pasteurpipetten, Impfösen, sowie Glasperlen.

Diese wurden von den Firmen BD Plastipak, Braun, Brand, caromed GmbH, Corning, Costar, Sarstedt, Greiner, ProLine, VWR, Roth und Hartenstein bezogen. Für die Dünnschichtchromatographie wurden DC Kieselgel 60 W F₂₅₄S Aluminiumblätter von Merck und Glasgefäße zur Probenaufbereitung und -aufbewahrung von Sigma Aldrich verwendet. Benetzbare Zentrifugationsröhrchen (offen, polyclear, 14 x 95 mm, 7031W) wurden von Seton bezogen.

2.1.11 Kits

Tabelle 2.19: Kommerzielle Kits.

Kit	Hersteller
AxiPrep™ Plasmid Miniprep Kit	Axygen Bioscience
RevertAid™ Premium First Strand cDNA Synthesis Kit	Fermentas
Mitochondria isolation Kit, human	MACS

2.1.12 Geräte

Folgende Geräte wurden für diese Studie verwendet: Autoklaven (Biomedis, Webeco), Brutschränke (Hera cell 150 und 150i), Chemilumineszenzdetektionssystem (Intas), Grobwaage (Hartenstein EW 1500-2M), Heizblock (Eppendorf Thermomixer comfort), Feinwaage (Hartenstein ABS 80-4), Kühlzentrifuge (Beckman Avanti J-25I und J-26XP), Kühlschrank mit Gefrierfach (Liebherr Comfort), Magnetrührer (IKA Labortechnik RCT basic), Mikroskope (Leica SP5 - konfokal und Leica DMIR - Epifluoreszenz), Mikrowellengerät (Privileg), Minizentrifuge (VWR Mini Star silverline), Spektrometer (Nanodrop, Peqlab ND-1000), PCR-Gerät (G-storm), pH-Meter (Hartenstein), Pipetten (Gilsen und Eppendorf research), qRT-PCR Maschine (Applied Biosystems), Roller Mixer (CAT RM5-30V), SDS-Gel-Gieß- und Laufapparatur (Biorad), Sterilbänke (Hera safe), Tischzentrifuge (Hartenstein MC-6400), Ultraschallbad (Sonorex RK 255S), Vakuumzentrifuge (Eppendorf concentrator 5301), Vortexer (Heidolph REAX 2000), Ultrazentrifuge (Beckman Coulter Optima L80 XP und Optima MAX XP), Wippschüttler (VWR ROCKING PLATFORM), Zentrifugationsröhrchen (Beckman, dickwandige Polycarbonat-Röhrchen (16 x 64 mm, 10 ml, 355647) und verschließbare Polycarbonat-Röhrchen (29 x 104 mm, 50 ml, 357002)).

2.1.13 Software

Windows XP und 2007, Microsoft Office 2010 und 2013, effectors.org (SignalP 3.0 und 4.0) (EffectiveT3), EndNote X7.1, Photoshop CS4, Corel Draw X5, Inkscape, ABI StepOne v2.1 und 2.3, LAS AF confocal microscopy software, ImageJ, LabImage Chemostar (Intas), Scaffold 3.5.1 und 4.1, SecReT4, WebGestalt, STRING; TargetP 1.1.

2.2 Methoden

2.2.1 Arbeiten mit Bakterien

2.2.1.1 Kultivierung und Lagerung von E.coli

Die Kultivierung von dem *E.coli* Stamm DH5 α erfolgte in LB-Medium bzw. auf LB-Agarplatten supplementiert (s. Tab. 2.13) mit 100 µg/ml Ampicillin (s. Tab. 2.17) unter aeroben Bedingungen bei 37 °C und 5 % CO₂. Die Inkubationszeit betrug 12-16 h, wobei die Kultivierung in flüssigem LB-Medium unter ständigem Schütteln bei 220 rpm stattfand. Zur Aufbewahrung von transformierten Klonen wurden Glycerolstocks erstellt und diese bei -80 °C gelagert. Dafür wurde eine Bakterien-Medium-Kultur 1:4 mit 100 % sterilem Glycerin versetzt.

2.2.1.2 Herstellung elektrokompetenter E.coli

Am Vortag wurde in 10 ml salzfreiem LB-Medium eine Über-Nacht-Kultur mit einem elektrokompetenten *E.coli* Stamm angesetzt und über Nacht bei 37 °C unter Schütteln inkubiert. Die 10 ml Über-Nacht-Kultur wurde in 500 ml salzfreies LB-Medium überführt und bei 37 °C unter Schütteln inkubiert bis zu einer OD_{600} = 0,4-0,6. Anschließend wurde die 500 ml Bakterienkultur in großen Zentrifugationsröhrchen 5 min bei 5000 x g und 4 °C zentrifugiert, um die Bakterien von dem Anzuchtmedium abzutrennen. Danach wurden die Pellets zum Waschen jeweils in 10 ml eiskaltem sterilen Wasser resuspendiert. Die so gelösten Bakterienpellets konnten nun in einem 50 ml Plastikröhrchen vereinigt werden und wurden 10 min bei 5000 x g und 4 °C zentrifugiert. Dieser Waschschritt wurde einmal wiederholt, um noch mögliche LB-Medienreste zu entfernen. Das daraus hervorgehende Pellet wurde in 2,5 ml 10 % Glycerin resuspendiert und in 100 μ l aliquote Mengen auf 25 sterile 1,5 ml Reaktionsgefäße verteilt. Mit flüssigem Stickstoff wurden die Reaktionsgefäße schockgefroren und bei -80 °C gelagert.

2.2.1.3 Transformationen

Eine Transformation erfolgte über Elektroporation. Bei dieser Methode wird die Bakterienzellmembran physikalisch kurzzeitig permeabilisert, um sie durchgängig zur Aufnahme von DNA-Fragmenten oder ganzen Plasmiden zu machen. Auf Eis wurden die kompetenten *E.coli* (DH5 α) aufgetaut und die Elektroporationsküvetten vorgekühlt. Die Plasmid-DNA wurde zugefügt (1 µl Ligationsprodukt bzw. 200 ng Plasmid-DNA) und der Ansatz bei 200 Ω , 25 µF und 2,4 V elektroporiert (12 Volt pro cm). Danach wurde der Transformationsansatz in 900 µl SOC Medium (s. Tab. 2.13) überführt und 2 h bei 37 °C und 600 rpm geschüttelt. Die Bakterienzellen wurden 1 Minute bei 10000 x g sedimentiert und das dabei entstehende Pellet in 100 µl LB-Medium aufgenommen und in verschiedenen Verdünnungsstufen auf LB-Agarplatten, supplementiert mit 100 µg/ml Ampicillin,

ausgestrichen. Nach erfolgter Inkubation bei 37 °C und 5 % CO₂ für 12-24 h wurden die Transformanten mit Hilfe von Kolonie PCR und Sequenzanalyse verifiziert. Plasmide (s. Tab. 2.3) wurden mithilfe des Plasmid Miniprep Kits (s. Tab. 2.19) isoliert und zur Transfektion von Zellen weiterverwendet (s. 2.2.2.2.1).

2.2.2 Zellbiologische Methoden

2.2.2.1 Passagieren von Zellen

Alle Zelllinien (s. Tab. 2.1) wurden bei 37 °C und 5 % CO₂ in einer wasserstoffgesättigten Atmosphäre in Zellkulturflaschen kultiviert. Die Zellen wurden alle drei bis vier Tage im präkonfluenten Zustand passagiert. Nach 10 Passagen wurden die Zellen verworfen und ein neuer Stock an Zellen aufgetaut. Das Ablösen der Zellen von der Matrix erfolgte enzymatisch durch Inkubation der Zellen mit Trypsin (s. Tab. 2.16) bei 37 °C für 5 bis 10 min.

Alle Zelllinien wurden mit RPMI 1640 GlutaMAX[™] Medium, supplementiert mit 10 % hitzeinaktiviertem FBS (w/o HEPES) (s. Tab. 2.13), inkubiert. Die stabil transfizierten Zelllinien HeLa-KDEL-dsRed und HeLa-Golgi-mRFP benötigten zusätzlich 400 µg/ml G418 (s. Tab. 2.18) im Zellkulturmedium, um eine dauerhafte Plasmidexpression zu ermöglichen. Zur Differenzierung der Monozyten-Zelllinie THP1 wurden diese durch Zugabe von 2,3 ng/ml PMA (phorbol-12-myristate-13-acetate) für 24 h aktiviert.

2.2.2.2 Anlegung von Zelllinien

2.2.2.2.1 Anlegung von mit Antibiotika behandelten stabilen Zelllinien

HeLa229 Zellen wurden anlehnend an Mehlitz *et al.* (2014) mit einem pDsRed2-ER Expressionsvektor oder B4GalT1-pCMV6-AC-mRFP Klonierungsvektor mithilfe des Transfektionsreagenzes Lipofectamin transfiziert, um das ER oder den Golgi fluoreszent zu markieren¹. Unter Zugabe von 400 μ g/ml G418 (s. Tab. 2.18) im Medium wurden die Vektoren konstant exprimiert, sodass stabile Zelllinien angelegt wurden.

2.2.2.2 Anlegung und Auftauen von Zell-Kryostocks

Von allen HeLa Zellinien wurden Kryostocks hergestellt. Nach Ablösen der Zellen von der Matrix und Zugabe von 10 ml DPBS wurden diese in ein 50 ml Plastikröhrchen überführt und für 15 min bei 600 x g und RT zentrifugiert (s. Tab. 2.13). Anschließend wurde jedes Pellet in Einfriermedium (70 % FBS, 20 % RPMI-Medium und 10 % DMSO) gelöst und in Kryoröhrchen überführt. Die Zellen wurden in entsprechenden Kryoboxen bei -80 °C schrittweise runter gekühlt und für längere Zeiträume in flüssigem Stickstoff gelagert.

Zum Auftauen von Zell-Kryostocks wurden diese für wenige Minuten bei RT unter eine Sterilbank gestellt. Die aufgetaute Zellsuspension wurde in ein 15 ml Plastikröhrchen mit 9 ml

¹ Versuchsdurchführung von Andrea Fick. Fluoreszierende Zellen wurden mithilfe eines BD FACSAria III von nicht fluoreszierenden Zellen heraussortiert und weiter kultiviert.

RPMI Zellkulturmedium überführt. Durch Zentrifugation für 5 min bei 600 x g und RT wurden die Zellen vom DMSO-haltigen Medium abgetrennt. Der Überstand wurde durch 10 ml frisches Zellkulturmedium ersetzt und die Zellsuspension in eine 75 cm² Zellkulturflasche überführt und bei 37 °C und 5 % CO₂ inkubiert.

2.2.2.3 Infektionen mit Simkania negevensis

Die adhärenten Zellen wurden in entsprechenden Zellkulturgefäßen bei 37 °C und 5 % CO₂ inkubiert bis diese eine Zelldichte von ~ 80 % erreicht hatten (Dauer ein-drei Tage). Bei Zeitverlaufsexperimenten durften nur 40-50 % der Zellen konfluiert sein. Bei längerer Inkubation musste zwischenzeitlich das Zellmedium erneuert werden. Der Zellmonolayer wurde mit *S. negevensis* (s. Tab. 2.2) infiziert. Dafür wurde die Hälfte des Mediums abgenommen und danach von einem *S. negevensis*-Stock die gewünschte Menge direkt auf das Medium gegeben. T₇₅ Zellkulturflaschen wurden mit einer MOI von 25, 6 Wellkalotten mit einer MOI von 1 und 12, 24, 96 Wellkalotten mit einer MOI von 0,5 infiziert (MOI, engl. *multiplicity of infection*). Eine Zellkulturflasche wurde aufgrund des höheren Volumens 1 h bei RT geschwenkt, damit sich die Bakterien gleichmäßig über den gesamten Zellmonolayer verteilen konnten. Danach wurden die Zellen bei 35 °C und 5 % CO₂ inkubiert, damit die Simkanien über eine von ihnen induzierte Invasion in die Zellen eintreten konnten. Nach insgesamt 6 h wurde das Medium durch das Infektionsmedium (RPMI 1640 GlutaMAXTM supplementiert mit 5 % hitzeinaktiviertem FBS, w/o HEPES) (s. Tab. 2.13) ersetzt.

2.2.2.4 S. negevensis Präparation

Eine zuvor mit S. negevensis-infizierte T₇₅ Zellkulturflasche (drei-vier Tage Infektion) mit HeLa229 wurde bei 35 °C und 5 % CO₂ inkubiert. Die infizierten Zellen wurden ins Zellmedium abgeschabt und durch Vortexen mit 2-5 mm sterilen Glasperlen aufgeschlossen. Der Überstand wurde auf 10-12 x 6 Wellkalottenplatten mit 50-70 % konfluenten HeLa229 Zellen gleichmäßig verteilt. Das Medium wurde nach 6 h durch das Infektionsmedium ersetzt und die Platten wurden wiederum für drei Tage bei 35 °C und 5 % CO₂ inkubiert. Anschließend wurden die Zellen ins Zellmedium abgeschabt und in 30 ml Einheiten in einem 50 ml Plastikröhrchen mit 7,5 ml von 2-5 mm sterilen Glasperlen (Roth) gesammelt. Jedes Plastikröhrchen wurde 3 min bei maximaler Geschwindigkeit gevortext und das Zellmedium ohne Schaum in ein neues 50 ml Plastikröhrchen überführt. Durch Zentrifugation für 5 min bei 600 x g und 4 °C wurden die Zelltrümmer sedimentiert und darüber von den frei liegenden Simkanien abgetrennt. Der Überstand wurde in verschließbare Polycarbonat-Röhrchen überführt und bei 20000 x g in der Avanti Zentrifuge für 30 min bei 4 °C zentrifugiert. Bei diesem Zentrifugationsschritt wurden die Bakterien sedimentiert, sodass der Überstand verworfen werden konnte und mit den Pellets weitergearbeitet wurde. Die Pellets wurden in insgesamt 10 ml SPG-Medium (s. Tab. 2.13) resuspendiert und vereinigt. Es folgte ein weiterer

Zentrifugationsschritt für 30 min bei 20000 x g und 4 °C. Das resultierende Pellet wurde in 5 ml SPG-Medium resuspendiert und anschließend in ein 50 ml Plastikröhrchen überführt. Zur vollständigen Homogenisierung wurde der Ansatz dreimal durch eine G22 Nadel und anschließend dreimal durch eine G18 Nadel gezogen (s. 2.1.10). Der Simkanien-Stock wurde in 50 µl aliquoten Mengen bei -80 °C gelagert.

2.2.2.5 Titerbestimmung

Nach der Präparation musste der Titer des erstellten S. negevensis-Stocks bestimmt werden, um festzustellen wie infektiös die Bakterien waren. Dafür wurden HeLa229 Zellen in 12 Wellkalottenplatten ausgesät und in Zellkulturmedium inkubiert bis ca. 40 % der Oberfläche bewachsen waren. Anschließend wurden die Zellen in 500 µl Medium mit jeweils 5 µl (1:100), 2,5 µl (1:200), 1 µl (1:500) und 0,5 µl (1:1000) des Simkanien-Stocks infiziert (im Duplikat) und das Medium nach 6 h Inkubation bei 35 °C und 5 % CO2 durch Infektionsmedium ersetzt (s. 2.2.2.3). Nach drei Tagen Infektion wurden die Zellen in 12 Wellkalotten über eine DAPIsnGroEL-Cy3-Färbung (s. 2.2.2.12.1) angefärbt und anschließend mikroskopiert, um die infizierten von den nicht infizierten Zellen unterscheiden zu können. Von jeden 12 Wellkalottenplatten wurden mithilfe eines Leica DMIR Mikroskops 9 Bilder pro Wellkalotte automatisch aufgenommen. Nach Auswertung der Bilder über ImageJ konnten die Inklusionszahl pro Zellkernzahl für jede Verdünnung und darüber der Titer (IFU, engl. infection forming units) ermittelt werden. Dafür wurde die Verdünnungsstufe ausgewählt, bei der 40-50 % infizierte Zellen zu beobachten waren, und der Mittelwert bestimmt. Der Titer wurde über folgende Formel ermittelt: IFU/ml = 1 ml Ausgangsvolumen x Verdünnung x Mittelwert x 2105,26. Der Faktor 2105,26 stellt dabei einen Formfaktor für das 40 x Objektiv am Mikroskop und der 12 Wellkalottenplatte dar. In dieser Arbeit wurden Simkanien-Stocks mit IFU = \sim 1,2-2,3 x 10⁵ hergestellt.

2.2.2.6 Behandlungen mit Antibiotika und Inhibitoren

Zur Inhibierung eines unterschiedlich schnellen Zellwachstums bei den Experimenten zur ER-SCV-Membranaufreinigung (s. 2.2.2.7.1) und einem Inhibitoren-Infektivitätsassay (s. 2.2.2.9.1) wurden infizierte und nicht infizierte Zellen mit 2 μ g/ml CHX (Cycloheximid) (s. Tab. 2.17) im Infektionsmedium behandelt. In darauffolgenden Experimenten wurde auf eine Antibiotikabehandlung der Zellen verzichtet. Zur Inhibierung von intrazellulären Autophagieprozessen gekoppelt an retrograden Transportwegen auf Ebene von Endosomen, Lysosomen, Golgi und ER, wurden Zellen mit 25-75 nM Bafilomycin A1, 50-150 ng/ml Brefeldin A, 5-15 nM Concanamycin B, 5-15 μ M Ionomycin, 5-40 nM Monensin, gelöst in DMSO und 50-150 μ M Chloroquin, gelöst in dH₂O, behandelt (s. Tab. 2.18). Zur gezielten Inhibierung des retrograden Transportes zwischen frühen Endosomen und dem *trans*-Golgi-Netzwerkes (TGN) wurden Zellen mit 25-75 μ M verschiedener Retro-Inhibitoren (Retro1, -2, VP184, Comp20, zur Verfügung gestellt von Daniel Gillet), gelöst in DMSO, behandelt. Mit dem Lösungsmittel-behandelte Zellen dienten als Kontrolle.

2.2.2.7 Aufreinigung von Organellen

2.2.2.7.1 ER-SCV-Membranisolierung und -aufreinigung

HeLa229 Zellen wurden in 12 x 6 Wellkalottenplatten pro Kondition ausgesät und bei einer Zelldichte von ~ 70 % mit Simkanien von MOI 1 in 1 ml Medium pro Wellkalotte infiziert. Nicht infizierte Zellen dienten als Kontrolle. Die Platten wurden für 1 h bei 910 x g und 4 °C zentrifugiert und anschließend für 5 h bei 35 °C und 5 % CO2 inkubiert. Nach insgesamt 6 h wurde das Medium durch Infektionsmedium ersetzt und das Wachstum für drei Tage zugelassen. Nach Abnahme des Mediums wurden die Zellen mit je 1 ml eiskaltem DPBS pro Wellkalotte versehen und die Zellen ins Medium abgeschabt. Die Zellsuspension wurde auf Eis in 50 ml Plastikröhrchen überführt und für 5 min bei 600 x g und 4 °C zentrifugiert. Der Überstand wurde verworfen und das Zellpellet in 600 µl 0,5 x hypotonem Puffer (s. Tab. 2.10) gelöst und in ein 15 ml Plastikröhrchen überführt. Die Rotation in einem Drehrad für 20 min bei 4 °C sorgte für ein gleichmäßiges Anschwellen der Zellen. Anschließend wurden die aufgeschwollen Zellen durch eine Zentrifugationsschritt für 5 min bei 600 x g und 4 °C pelletiert und das Pellet in 0,5 x isotonem Puffer gelöst. Für einen folgenden mechanischen Aufbruch der Zellen wurden diese zunächst im Ultraschallbad behandelt für 10 min bei 4 °C. Anschließend wurde das Prä-Lysat mithilfe eines Dounce Homogenisators (Glaszylinder mit Pistill) bei 200 rpm für 10 Schläge homogenisiert. Zur Isolierung der CMF (engl. crude microsomal fraction), welche die ER-SCV-Membranen enthielten, musste das Prä-Lysat durch sequenzielle Zentrifugationsschritte aufgereinigt werden: 1. PNF (engl. pre-nuclear fraction) -10 min bei 1000 x g und 4 °C; 2. PMF (engl. pre-mitochondrial fraction) – 15 min bei 12000 x g und 4 °C; 3. CMF – 1 h bei 100000 x g in dickwandigen Polycarbonat-Röhrchen bei 4 °C mithilfe einer Optima MAX-XP Ultrazentrifuge und eines MLA-80 Festwinkelrotors (Beckman).

2.2.2.7.2 Mitochondrienisolierung und -aufreinigung

HeLa229 Zellen wurden in 12 x 6 Wellkalottenplatten pro Kondition ausgesät (50000 Zellen/Wellkalotte) und nach 24 h mit MOI 1 *Sn* in 1 ml Medium pro Wellkalotte infiziert. Nicht infizierte Zellen dienten als Kontrolle. Die Platten wurden für drei Tage bei 35 °C und 5 % CO₂ inkubiert. Nach Abnahme des Mediums wurden die Zellen mit je 1 ml DPBS pro Wellkalotte versehen und die Zellen ins Medium abgeschabt. Anschließend wurden die Zellen in 50 ml Plastikröhrchen überführt und für 10 min bei 300 x g und 4 °C zentrifugiert. Der Überstand wurde verworfen und das Zellpellet in 3 ml Lysepuffer gelöst (MACS Mitochondrien Kit, s. Tab. 2.19) und in ein 15 ml Plastikröhrchen überführt. Anschließend wurden die Zellen mithilfe eines Dounce Homogenisators (Glaszylinder mit Pistill) bei 200 rpm für 20 Schläge homogenisiert und mit 5 ml PEB Puffer inkubiert. Das Lysat wurde für 5 min bei 800 x g und 4 °C zentrifugiert,

der Überstand auf 1,5 ml Eppendorf Caps verteilt und für 15 min bei 10000 x g und 4 °C zentrifugiert. Pro Kondition wurden die Pellets vereinigt und mit 5 ml PEB Puffer sowie 50 µl TOMM20 markierte magnetische Kügelchen für 1 h in einem Drehrad bei 4 °C rotiert. Die Proben wurden entsprechend dem MACS Mitochondrien Kit isoliert und in der Dünnschicht Chromatographie getestet (s. 2.2.5.2).

2.2.2.8 Gradienten (Percoll, Saccharose, Renografin)

Zur Aufreinigung von Simkanien wurden verschiedene Gradienten untersucht. Dafür wurde für jedes Experiment eine gesamte *S. negevensis* Präparation (s. 2.2.2.4) verwendet.

2.2.2.8.1 Percoll-Gradient

23 ml einer 16 % Percoll-Lösung (s. Tab. 2.15) (20,9 ml verdünnt in 3 ml 10 x SPG und 6,1 ml dH₂O) wurden in ein JA25.15 Röhrchen gegeben. Die Eigen-Ausbildung eines Gradienten ist bei Percoll abhängig von dessen Konzentration sowie der Zentrifugationskraft und -zeit. Die 5 ml Simkanien Suspension wurde vorsichtig auf einen Percoll-Gradienten gegeben und für 90 min bei 30000 x g und 4 °C zentrifugiert. Ein Röhrchen, welches mit gefärbten Dichtemarkierenden Latexkügelchen beladen war, diente dabei als Dichtekontrolle. Durch vorsichtiges Abnehmen von 14 Fraktionen in 2 ml Schritten wurde der Gradient abgetragen und die Proben bei -20 °C gelagert. Die einzelnen Fraktionen wurden im Folgenden durch Immunoblot-Analysen untersucht (s. 2.2.4.2.2).

2.2.2.8.2 Saccharose-Gradient

Die Proben wurden vorsichtig auf einen auf 4 °C vorgekühlten Saccharose-Gradienten gegeben (benetzbare Zentrifugationsröhrchen). Der kontinuierliche Dichtegradient wurde aus einer 80 % und einer 40 % Saccharose-Lösung gegossen (s. Tab. 2.15), von der höchsten bis zur kleinsten Dichte (Zeichner, 1982). Die aufgetragene Probe ist somit nach unten diffundiert und seine einzelnen Komponenten wurden durch den folgenden Zentrifugationsschritt nach oben getrieben. Dabei wurden die verschiedenen Komponenten aufgrund ihrer Dichte in dem Gradienten aufgetrennt. Die Gradienten wurden 4 h in der Ultrazentrifuge zentrifugiert (SW40 Ti Rotor, 20000 rpm und 4 °C). Durch vorsichtiges Abnehmen von 24 Fraktionen in 0,5 ml Schritten wurde der Gradient abgetragen und die Proben bei -20 °C gelagert. Der Boden des Zentrifugationsröhrchens wurde mit 0,5 ml sterilem DPBS ausgespült, um nicht aufgetrennte schwerere Fragmente zu identifizieren und stellt die 25. Fraktion dar. Die einzelnen Fraktionen wurden im Folgenden durch Immunoblot-Analysen untersucht (s. 2.2.4.2.2).

2.2.2.8.3 Renografin-Gradient

Zur Erstellung des Gradienten wurden vorgekühltes 60 % Renografin (pH 7.4, steril filtriert) und HBSS (mit Phenolrot) 1:1 vermengt (s. Tab. 2.13 und 2.15). 10 ml der 30 % Renografin-

Lösung wurden in benetzbare Zentrifugationsröhrchen (Beckman) gegeben. Darauf wurden 2 ml der Simkanien Suspension vorsichtig überführt und für 1 h bei 19000 rpm und 4 °C ultrazentrifugiert (SW40 Ti Rotor). Durch das Renografin wurden Elementar- und Retikularkörperchen von zellulären Komponenten aufgereinigt und in ein Pellet vereinigt. Das Pellet wurde anschließend für LC-MS²-Messungen (s. 2.2.4.4) in 50 µl Ladepuffer (2 x) aufgenommen (s. Tab. 2.11) bzw. für Dünnschichtchromatographie (s. 2.2.5.2) und LC-MS²-Experimente in 100 µl DPBS, 400 µl Methanol und 200 µl Chloroform und bis zur Weiterverarbeitung bei -20 °C gelagert.

2.2.2.9 Infektivitätsassay

40000 HeLa229 Zellen wurden in 12 Wellkalottenplatten ausgesät und nach 24 h entsprechend behandelt. Dabei sind die Verwendung von Infektionen, Inhibitoren und Kontrollen innerhalb der Experimente aufgeführt. Anschließend wurden die Zellen für Immunoblot (s. 2.2.4.2.2), Immunofluoreszenz (s. 2.2.2.12) und Sekundärinfektionen weiter bearbeitet. Für den Immunoblot wurden Zelllysate (s. 2.2.4.1) erstellt und mit den Primärantikörpern snGroEL und ß-Aktin untersucht. Bei der Immunofluoreszenz wurden die Zellen in der 12 Wellkalottenplatte fixiert und DAPI-snGroEL-Cy3 gefärbt (s. 2.2.2.12.1), um die SCV-Bildung in der Primärinfektion zu untersuchen. Für Infektivitätsassays wurden die Zellen zur Überprüfung der Infektiosität in der Sekundärinfektion verwendet. Dafür wurden die Simkanien über einen Einfrier-Auftau-Prozess (-70 °C/37 °C) mit darauffolgendem Hoch- und Runterpipettieren mechanisch aus den Zellen herausgelöst. Der infektiöse Überstand wurde 1:25-50 auf frische HeLa229 Zellen mit 500 µl Zellkulturmedium überführt. Für eine optimale Infektion wurden die 12 Wellkalottenplatten zunächst für 1 h bei 910 x g und 35 °C zentrifugiert und im Anschluss das Medium mit Infektionsmedium ersetzt. Die Platten wurden für drei Tage bei 35 °C und 5 % CO₂ inkubiert und die Zellen für Immunoblot und Immunofluoreszenz weiter bearbeitet (s.o.). DAPI-snGroEL-Cy3 gefärbten Platten wurden mithilfe eines automatischen Leica DMIR Fluoreszenz-Mikroskops mikroskopiert. Die Bilder wurden mit FIJI (ImageJ) und Excel (Microsoft) analysiert und quantifiziert, sodass die Anzahl und die gemittelte Größe der SCV im Vergleich zu der Zellkernanzahl bestimmt werden konnten.

2.2.2.9.1 Inhibitoren Infektivitätsassay

20000 Zellen wurden in 24 Wellkalottenplatten ausgesät und nach 24 h entsprechend Abschnitt 2.2.2.6 behandelt. Inhibitoren wurden für 2 h bei 37 °C inkubiert (s. Tab. 2.18). Anschließend erfolgte eine durch Zentrifugation synchronisierte *Sn*-Infektion (MOI 0,5) in Inhibitor freiem Medium. Nach 1 h Zentrifugation bei 4 °C und 910 x g wurde das Medium gewechselt, um nicht adhärierte *Sn* zu entfernen (s. Tab. 2.13). Nach 5 h Inkubation bei 35 °C wurde das Medium mit 2 μ g/ml CHX haltigem gewechselt und die Zellen für drei Tage bei

35 °C inkubiert. Primär- und Sekundärinfektionen wurden in Platte DAPI- anti-*Sn*-Cy3 gefärbt und mithilfe eines Leica DMIR Fluoreszenz-Mikroskops manuell mikroskopiert.

2.2.2.9.2 Bafilomycin A1 Infektivitätsassay

Die Experimente wurden anlehnend an Ouelette *et al.* (2011) und 2.2.2.9 durchgeführt. Es wurden parallel drei Bedingungen untersucht: toi (engl. *time of infection*), 74 h Inhibitor und 72 h Infektion; (2) poi (engl. 24 h *post-infection*), 72 h Infektion und 48 h Inhibitor; (3) prt (engl. 24 h *pre-treatment*), 72 h Inhibitor und 48 h Infektion. Für toi-Proben wurde der Inhibitor 2 h vor Infektionsbeginn auf die Zellen gegeben. Nach 2 h oder 24 h BafA1-Behandlung (toi und prt) wurde das Medium für die Infektion gewechselt (mit/ohne 2 μ g/ml CHX) (s. Tab. 2.13, 2.17-18). Bei nachträglicher BafA1-Behandlung (poi) wurde der Inhibitor nach 24 h Infektion direkt auf das Zellmedium gegeben.

2.2.2.10 RNA-Interferenz

RNA-Interferenzexperimente wurden anlehnend an das Protokoll von Ghurumurthy *et al.* (2011) und den Herstelleranleitungen von Qiagen für siRNA Transfektionen unter Verwendung von HiPerFect als Transfektionsmittel durchgeführt (s. Tab. 2.18). Dabei wurden Zellen mit einer Endkonzentration von 10 nM siRNA (s. Tab. 2.4) und 1:200 HiPerFect behandelt. Für 96 Wellkalottenplatten wurden 3000 HeLa229 Zellen, für 24 Wellkalottenplatten 20000 Zellen und für 12 Wellkalottenplatten 40000 Zellen ausgesät und nach 24 h Inkubation bei 37 °C transfiziert. Der Transfektionsansatz wurde weitere 24 h bei 37 °C inkubiert. Anschließend wurden die Zellen infiziert (s. 2.2.2.3) und nach 48 h (insg. 96 h) die Experimente gestoppt. Für Immunofluoreszenz wurden Zellen in Platte fixiert (s. 2.2.2.12) und snGroEL-Cy3-DAPI gefärbt (s. 2.2.2.12.1), für Immunoblot wurden Proteinlysate erstellt (s. 2.2.3.2-4).

2.2.2.10.1 Traffickome RNA-Interferenz

Für das Taffickome wurde nur die Primärinfektion untersucht (s. Abb. 2.1). Dabei wurden vier technische Replikate durchgeführt und zusammengefasst. Die Transfektionsansätze wurden für drei Tage inkubiert, um einen konstanten siRNA knock-down hervorzurufen, bevor die *Sn*-Infektion (MOI1) erfolgte. Nach insgesamt fünf Tagen wurden die Zellen fixiert, snGroEL-Cy3-DAPI gefärbt (s. 2.2.2.12.1) und mit einem automatischen Mikroskop (Olympus Soft Imaging Solutions) mikroskopiert. Zellen und *Simkania*-Vakuolen wurden anschließend mithilfe der ScanR Analysis Software automatisch identifiziert als auch quantifiziert.

Als Kontrolle dienten: ein neutraler siRNA-Standard, eine MOCK Blindkontrolle, ein *Chlamydia*-spezifischer Inhibitor, eine toxische siRNA-Kontrolle und zwei konditional inhibierende siRNA-Standards. Der neutrale siRNA-Standard wurde zur Normalisierung verwendet (siRNAs, Qiagen). Der *Chlamydiales*-spezifische Inhibitor wurde als Vergleichswert

für eine eingeschränkte SCV-Ausbildung verwendet. Die toxische siRNA gab einen Vergleichswert für zytotoxische Effekte auf die Zelle und deren Auswirkung auf die SCV-Ausbildung wieder.

Die gemessenen Ergebnisse folgten einer z-score angepassten Glockenkurve, wobei der z-score die gemittelte SCV-Größe in Pixel pro Kern beschreibt. Letztendlich sind drei-vier biologische Replikate in die Datenanalyse mit eingeflossen.

Abb. 2.1: Arbeitsablauf des Traffickome RNA-Interferenz- (RNAi) Screens. Der knock-down von 497 humanen Faktoren wurde mit jeweils 3 Einzel-siRNAs (Qiagen) in 384 Wellclusterplatten getestet. Die Transfektion erfolgte 24 h nach Zellaussaat (Tag 0). Die Infektion erfolgte 72 h nach Transfektion (Tag drei). 48 h p.i. wurden *Sn*- und nicht infizierte Zellen fixiert, snGroEL-Cy3-DAPI gefärbt und mikroskopiert. p.i. = engl. *post-infection*.

2.2.2.11 Mikroskopie

Zur Beobachtung der Zellen während eines Experimentes oder in der Zellkultur wurden diese unter einem Lichtmikroskop betrachtet. Bei Färbung mit fluoreszierenden Antikörpern oder mit DAPI wurden die Zellen unter einem Epifluoreszenz- (Leica DMIR) bzw. konfokalen Mikroskop beobachtet (Leica SP5).

2.2.2.12 Immunofluoreszenz-Färbung

Bei der Immunofluoreszenz wird sich zu Nutze gemacht, dass durch die Fixierung der Zellen (4 % PFA-Lösung, 25 Min, Raumtemperatur, s. Tab. 2.12) mit bestimmten Detergenzien die Zellmembran durchlässig wird und so zytosolische Antigene nachweisbar werden. Mithilfe der Färbung durch spezifische Antikörper (AK) können intrazelluläre aber auch extrazelluläre

Verteilungen von Antigenen beobachtet werden. In dieser Arbeit wurde mit indirekter Immunofluoreszenz (IF) gearbeitet, bei der zuerst eine Bindung mit einem antigenspezifischen Primärantikörper eingeleitet wird, an den danach ein Fluorochrom-markierter Sekundärantikörper bindet. Der Vorteil der indirekten IF liegt darin, auch schwach exprimierte Antigene gut sichtbar zu machen, da am Primärantikörper mehrere fluoreszierende Moleküle Sekundärantikörpers binden können.

Zur Permeabilisierung der Zellen wurde eine 0,2 % Triton-PBS-Lösung verwendet und für 30-45 min bei RT inkubiert. Zum Abwaschen dieses Detergenzes wurden die Zellen dreimal mit PBS gewaschen. Danach wurde eine 2 % goat Serum-PBS-Lösung auf die Zellen gegeben und 30-60 min bei RT unter langsamen Schwenken der Platte inkubiert, um unspezifische AK-Bindungsstellen zu blockieren. Der Primärantikörper (s. Tab. 2.8) wurde je nach erwarteter Intensität in 2% goat Serum-PBS-Lösung verdünnt und auf die Zellen gegeben, 500 μ l pro 12 Wellkalotte und 50-100 μ l pro Deckgläschen. Diese wurden bei 4 °C über Nacht inkubiert. Die Zellen wurden anschließend dreimal mit PBS gewaschen. Danach folgte die Färbung mit dem Sekundärantikörper (s. Tab. 2.9). Dafür wurden die immunfluoreszierenden Cy-Antikörper Spezies-spezifisch und in Abhängigkeit ihres Emissionsspektrums 1:400 in 2% goat Serum-PBS-Lösung verdünnt und auf die Zellen gegeben. Die Zellen wurden anschließend dreimal mit PBS gewaschen. Zuletzt wurden diese mit 1:3000 verdünntem DAPI in PBS für 1h bei RT und im Dunklen unter langsamen Schwenken inkubiert. Nach dreimaligem Waschen in PBS wurden Deckgläschen kurz in dH₂O getaucht und mit 7 μ l Mowiol auf Objektträgern fixiert und Platten dunkel bei 4 °C mit 1 ml DPBS pro 12 Wellkalotte gelagert.

2.2.2.12.1 DAPI-snGroEL/SN-Cy-Färbung

Die DAPI-snGroEL-Cy oder DAPI-SN-Cy-Färbung wurde bei Untersuchungen der SCV-Bildung von Simkanien-Infektionen verwendet. Dafür wurden die infizierten Zellen einmal mit 1 ml DPBS gewaschen. Zum Fixieren der Zellen auf Deckgläschen wurde 4 % Paraformaldehyd - Saccharose auf die Zellen gegeben und für 25 min bei RT inkubiert. Anschließend wurden die Zellen zweimal mit DPBS gewaschen.

Für die Färbung wurde ein selbst aufgereinigter snGroEL-Primärantikörper (1:800-1600 Verdünnung) bzw. selbst aufgereinigter anti-SN-Primärantikörper (1:100 Verdünnung) mit einem Cy2- oder Cy3- rabbit-Sekundärantikörper (1:400-800) gekoppelt. Anschließend wurden die Zellen mit 0,5 ml PBS + 1:3000 DAPI bedeckt und für 30-45 min inkubiert. Anschließend wurde dreimal mit PBS gewaschen. Durch die Färbung wurden die Bakterien (wenige Stunden Infektion) bzw. die gesamte SCV (snGroEL-Cy3, zwei-drei Tage Infektion) oder äußere SCV-Membran (anti-SN-Cy3, zwei-drei Tage Infektion) angefärbt. DAPI markierte die Nukleinsäuren der Bakterien und des Zellkerns.

2.2.2.13 Elektronenmikroskopie

Die Proben wurden in einer 2,5 % TEM Fixierlösung für 1 h bei 4 °C fixiert und anschließend mit 50 mM Cacodylatpuffer zur kurzzeitigen Aufbewahrung bei 4 °C versehen (s. Tab. 2.12). Anschließend wurden von der AG Krohne die Proben mit Osmium angefärbt, dehydriert, in Epon812 eingebettet und geschnitten. 50 nm ultradünne Schnitte wurden anschließend mit 2 % Uranylacetat, gelöst in Ethanol, und lead citrate angefärbt. Die Mikroskopie erfolgte manuell an einem Zeiss EM10 (Zeiss, Deutschland).

2.2.2.14 Lebendzellmikroskopie und C₆-NBD-Ceramidtransport

100000-150000 Zellen wurden in 35 mm Ibidi-Schälchen ausgesät und nach 24 h mit *S. negevensis* MOI 1 infiziert (s. 2.2.2.3). Nach drei Tagen Inkubation wurden die Zellen einmal mit eiskaltem DPBS gewaschen und mit 1 ml vorgewärmten RPMI1640 Medium (GlutaMAX[™], w/o FBS, 25 mM HEPES, w/o PhenoIrot) für 30 min inkubiert (s. Tab. 2.13). Inhibitoren wurden entsprechend dazu gegeben und 30 min mit inkubiert. Anschließend wurde das jeweilige Schälchen in einer auf 37 °C vorgewärmte Mikroskopie Kammer eines Leica TCS SP5 Mikroskops befestigt und der Schälchen-Deckel entfernt. Nach Fokussieren der Zellen wurden Lebendzellaufnahmen mit 2 Bildern/Min über eine Gesamtzeit von 30 min aufgenommen. Nach dem dritten Bild wurden 10 µl einer 50 µM C₆-NBD-Ceramid-PBS-Lösung (s. Tab. 2.18) auf die Mediumoberfläche der fokussierten Zellen gegeben, um den intrazellulären Ceramidtransport zu untersuchen. Die Mikroskopieaufnahmen wurden über FIJI (ImageJ) und Excel (Microsoft) analysiert und bearbeitet.

2.2.2.15 Adhäsionstest

HeLa229 Zellen wurden auf Deckgläschen in 12 Wellkalottenplatten ausgesät und für 24 h inkubiert. Adhärenzexperimente sind anlehnend an Prema Subbarayals Protokoll durchgeführt worden. Die Zellen (ca. 200000 pro Wellkalotte) wurden für 2 h mit 100 nM BafA1 vorbehandelt. Unbehandelte Zellen dienten als Kontrolle. Anschließend wurde das Medium durch 4 °C kaltes HBSS ersetzt und die Zellen mit einer MOI 15 *Sn*-infiziert und für 1, 2 bzw. 4 h bei 4 °C inkubiert. Anschließend wurden die Zellen vorsichtig mit DPBS gewaschen (3 x auf Eis) und mit 4 % PFA-Saccharose fixiert (s. Tab. 2.12). Anschließend wurden die Proben für Simkanien (anti-*Sn*-Cy2) (s. Tab. 2.9), Nuklei (Hoechst 33342) und Zellmembran (Phalloidin-647) gefärbt (s. Tab. 2.18) (s. 2.2.2.12) und im konfokalen Leica SP5 Mikroskop mikroskopiert.

2.2.3 Molekularbiologische Methoden

2.2.3.1 Polymerasekettenreaktion (PCR)

Die Polymerasekettenreaktion (PCR, engl. *polymerase chain reaction*) nach Kary Mullis (1984) (Griffith et al., Sektion Genetics in Progress 1-2, 1999) dient der Vervielfältigung von DNA-

Sequenzen. Dabei werden drei sich wiederholende Prozesse in mehreren Zyklen immer wieder durchlaufen. Zunächst kommt es durch einen Denaturierungsschritt, Hitze induziert, zur Strangtrennung. Danach kommt es bei einem Abkühlungsschritt zur Hybridisierung von den eingesetzten Primerpaaren am jeweiligen 3'-Ende des Leit- und Folgestrangs. Zuallerletzt wird die Temperatur auf die optimale Temperatur der verwendeten Polymerase angehoben, sodass dieses hitzestabile Enzym die Primer in 5'-Richtung verlängert. Diese drei Schritte bilden einen PCR-Amplifikationszyklus, wobei es durch eine Aneinanderreihung mehrerer Zyklen zur exponentiellen Amplifikation der DNA-Sequenzen kommt.

Die PCR diente im Rahmen der Arbeit zur Amplifikation von Genen aus genomischer *S. negevensis* DNA und zur Kontrolle transformierter *E. coli* Stämme. Die PCR-Reaktion wurde mithilfe von Agarose-Gelelektrophorese auf ihre Richtigkeit überprüft. Zur Größenbestimmung der DNA-Fragmente ließ man einen Marker mitlaufen, der aus einem Gemisch von Molekülen mit bekannter Größe bestand.

2.2.3.2 Isolierung von RNA

Die Isolierung der RNA erfolgte mithilfe von Trizol (Ambion). 1 ml Trizol kam auf eine 6 Wellkalotte oder 3 x 12 Wellkalotten und wurde für 5 min bei RT inkubiert, was zur vollständigen Lösung des Zellmonolayers von der Zellkulturplatte führte. 200 μ l Chloroform wurden zugegeben und nach gutem Mischen in einem 2 ml Reaktionsgefäß 7 min bei RT inkubiert. Durch Zentrifugation bei 12000 x g und 4 °C für 15 min bildeten sich 3 Phasen, wobei die obere wässrige Phase mit der RNA abgenommen und weiter verwendet wurde. 500 μ l Isopropanol wurden zugegeben und nach gutem Mischen für 7,5 min inkubiert. Durch Zentrifugation für 15 min bei 12000 x g und 4 °C bildete sich ein Pellet. Nach Abnahme des Überstandes wurde 1 ml 75 % Ethanol auf jedes Pellet gegeben und 5 min bei 7500 x g und 4 °C zentrifugiert. Der Überstand wurde wiederum abgenommen und das luftgetrocknete Pellet anschließend in 50 μ l ultrapure water (Biochrome) aufgenommen.

Da RNA sehr instabil ist, wurde sie bei -80 °C gelagert oder durfte im Weiteren nur auf Eis gehalten werden.

2.2.3.3 Umschreiben von RNA in cDNA

Bei der Isolierung von Protein kodierenden eukaryotischen Genabschnitten stören die in ihnen enthaltenen Introns, da diese Sequenzen durch Spleißen entfernt werden müssen. Deswegen sollten die isolierten mRNA-Moleküle nach ihrer Isolierung in cDNA (engl. *complementary DNA*) umgeschrieben werden. Hierfür wurde ein aus Retroviren stammendes Enzym verwendet, die Reverse Transkriptase (RT), die als Matrize sowohl RNA als auch DNA-Einzelstränge verwenden kann. Die reverse Transkription wird induziert, indem Thymin-Oligonukleotide vorab an das Poly(A)-Ende der mRNA-Moleküle anhybridisiert werden. Diese dienen als Primer für die folgende Polymerisierung durch das Enzym. Die RT ist keine normale

Polymerase, sondern besitzt des Weiteren eine Ribonukleaseaktivität, die sie dazu befähigt, den RNA-Teil des entstandenen RNA-DNA-Hybridstranges zu hydrolysieren. Aus dem entstandenen einzelsträngigen DNA-Transkript kann das Enzym im letzten Schritt eine vollständige doppelsträngige DNA synthetisieren.

Für die Reaktion wurde 1 µl des Oligo(dT)₁₈-Primer's zu 1-2 µg der totalen RNA gegeben und diese mit DEPC-behandeltem Wasser auf ein Gesamtvolumen von 12 µl aufgefüllt (RevertAid[™] Premium First Strand cDNA Synthesis Kit, s. Tab. 2.19). Von jeder RNA-Probe wurde ein Ansatz mit RT und einer ohne RT erstellt für eine später folgende Real-Time-PCR (RT-PCR). Dies war wichtig, um eine Aussage über die Reinheit der einzelnen cDNA-Proben machen zu können, da Verunreinigungen der Proben mit DNA in der RT-PCR sichtbar werden.

Tabelle 2.20: PCR-Reaktionsansatz	z für reverse	Transkription
-----------------------------------	---------------	---------------

Komponente	Volumen	Endkonzentration
5 x Reaktionspuffer	4 µl	1 x
RiboLock RNAse Inhibitor	1 µl	40 Units
10 mM dNTP Mix	2 μΙ	1 mM
Reverse Transkriptase	1 µl	200 Units

Tabelle 2.21: PCR-Programm zur reversen Transkription

Schritt	Temperatur	Dauer
Reverse Transkription	42 °C	60 Min
Hitzeinaktivierung der Reaktion	70 °C	5 Min

Die umgeschriebenen cDNAs wurden bei -80 °C gelagert.

2.2.3.4 Quantitative Real-Time-PCR

Die quantitative Real-Time-PCR (qRT-PCR) ist eine Vervielfältigungsmethode für Nukleinsäuren, die auf dem Prinzip der herkömmlichen Polymerasekettenreaktion (PCR) beruht und zusätzlich die Möglichkeit der Quantifizierung in Echtzeit bietet. Die Quantifizierung wird mit Hilfe von Fluoreszenz-Messungen am Ende oder während eines PCR-Zyklus durchgeführt und unterscheidet sich somit von anderen quantitativen PCR-Methoden, die erst nach Ablauf der PCR quantitativ ausgewertet werden. Als fluoreszierendes Molekül wurde SYBR-Green verwendet, welches an doppelsträngige DNA bindet. Dabei absorbiert das

Molekül blaues Licht bei 494 nm und emittiert grünes Licht bei 521 nm. Die Fluoreszenz nimmt proportional mit der Menge der PCR-Produkte zu, was eine Quantifizierung möglich macht. Die qRT-PCR lief über eine 96 Wellkalottenplatte mit 20 µl Reaktionsansatz pro Wellkalotte. Dafür wurden 2 Mastermixe erstellt mit dem SYBR green Mix (s. Tab. 2.18) und der cDNA in einem Ansatz und den Primerpaaren (s. Tab. 2.7) und dH₂O im anderen, um größere Pipettierfehler zu vermeiden.

Komponente	Volumen	Endkonzentration
SYBR green Mix (2 x)	10 µl	1 x
Primerpaare (for und rev)	1 µl (je 0,5 µl)	250 nM
cDNA	5 µl	variabel (1 pg - 100 ng)
Nuklease freies Wasser	4,2 µl	

Tabelle 2.22: qRT-PCR Reaktionsansatz

Pro Primerpaar wurden Triplikate erstellt, auch für die Negativkontrolle. Anschließend wurde die 96 Wellkalottenplatte 1 min bei 400 x g zentrifugiert, um Luftblasen zu entfernen, und 2 h in den qRT-PCR Cycler gestellt, der mit dem Programm *StepOne Software V2.1* lief. Mit demselben Programm wurden im Anschluss die Daten analysiert.

Schritte	Temperatur	Dauer
Initiale Denaturierung	95 °C	5 Min
Denaturierung (40 Zyklen)	95 °C	15 Sek
Hybridisierung (40 Zyklen)	60 °C	30 Sek
Polymerisierung (40 Zyklen)	72 °C	30 Sek
Schmelzkurve	95 °C	15 Sek
	60 °C	1 Min
	95 °C	15 Sek

Tabelle 2.23: PCR-Programm für die qRT-PCR

2.2.4 Proteinbiochemische Methoden

Bevor Proteine näher analysiert werden können, müssen sie zunächst isoliert werden und in einem relativ gereinigten Zustand vorliegen. Intrazelluläre Proteine müssen dabei aus Zellen aufgeschlossen und angereichert werden, damit sie in ausreichender Menge und Reinheit vorliegen, was ihre eigentlichen Untersuchungen erlaubt. Der erste Reinigungsschritt ist somit der Zellaufschluss, der unter anderem durch Ultraschall, Homogenisator, French-Presse, Kugelmühle oder der gezielten Behandlung mit bestimmten Detergenzien erfolgt.

2.2.4.1 SDS-Gelelektrophorese

Die SDS-Polyacrylamidgelelektrophorese beruht auf der Wanderung geladener Proteinmoleküle in einem elektrischen Feld. Unterscheiden sich die Moleküle bezüglich ihrer Größe oder ihrer Ladung können diese über die Elektrophorese voneinander getrennt werden. Das Polyacrylamidgel wirkt dabei als Molekularsieb, sodass die Proteinmoleküle im Verhältnis zu den Gelporen aufgetrennt werden. Die elektrische Kraft, die durch das Anlegen einer Spannung auf ein Protein wirkt, treibt das geladene Molekül zur entgegengesetzt geladenen Elektrode. Kleine und mehrfach geladene Moleküle laufen dabei schneller durch die Gelmatrix als große oder weniger stark geladene Moleküle. Dieser Kraft wirkt die Reibungskraft entgegen. Die Reibung ist abhängig von der Masse, der Gestalt des Proteins und der Viskosität des Mediums. Um die Trennung der Proteine weitgehend unabhängig von ihrer Nettoladung durchführen zu können, wird Natriumdodecylsulfat (SDS, engl. sodium dodecyl sulfate) verwendet. Das SDS wirkt denaturierend auf Proteine, weshalb diese sich aufgrund ihrer Masse trennen lassen. Es zerstört dabei alle nichtkovalenten Wechselwirkungen innerhalb des nativen Proteins und bindet in Form von SDS-Anionen an den Hauptketten der Proteine, sodass alle Proteine stark negativ geladen sind. Diese negative Ladung ist der Masse des jeweiligen Proteins in etwa proportional, sodass die Proteine aufgrund ihrer Masse über die Elektrophorese aufgetrennt werden. Bei der Elektrophorese können verschiedene Proteinproben parallel aufgetragen werden, sodass sich das elektrophoretische Verhalten dieser Proteine miteinander vergleichen lässt. Die Proteinproben stammten in dieser Arbeit aus geernteten Zellen bzw. aus subzellulären Fraktionierungen von Zellen und wurden in Ladepuffer aufgenommen (s. Tab. 2.11). Anschließend wurden die Proben 10 min bei 95 °C denaturiert und über ein 10-12 %iges SDS-Polyacrylamidgel aufgetrennt. Zur Molekülmassenbestimmung ließ man einen Marker mitlaufen, der aus einem Gemisch von gefärbten Proteinen mit bekannter Molekülmasse bestand, sodass die Molekülmasse der jeweiligen Proteine aus den einzelnen Proben ermittelt werden konnte.

2.2.4.2 Detektionsmöglichkeiten von SDS-Gelen

Da die aufgetrennten Proteine für das normale Auge so nicht sichtbar sind, müssen diese im Anschluss der Gelelektrophorese durch eine Färbung sichtbar gemacht werden. Dabei bedient man sich häufig einer Silberfärbung oder verwendet einen Farbstoff wie Coomassie-Blau. Radioaktive Markierungen lassen sich nur über einen Röntgenfilm sichtbar machen.

2.2.4.2.1 Coomassie-Färbung

Coomassie-Brilliant-Blau (CBB) R250 war der erste bekannte Farbstoff, der zur Färbung von Proteinen genutzt wurde und ist seit dem 19. Jahrhundert bereits als blauer Textilfarbstoff bekannt. Hier wurde dieser zum Einfärben von aufgetrennten Proteinen in Polyacrylamid-Gelen verwendet. Dabei lagert sich CBB R250 an den basischen Seitenketten der Aminosäuren an und besitzt eine Nachweisgrenze von 0,1 µg Protein pro Bande. SDS-Gele wurden dafür nach der Elektrophorese in eine Coomassie-Färbelösung (s. Tab. 2.11) gelegt und für 10-15 min unter Schwenken bei RT inkubiert. Anschließend mussten die Gele in eine Coomassie Entfärbelösung gelegt werden, um den Hintergrund zu entfärben und den Kontrast zu den Banden zu schärfen.

2.2.4.2.2 Immunoblot

Die Immunoblot Technik eignet sich insbesondere um geringe Proteinmengen von zahlreichen anderen Proteinen aus einer Probe nachzuweisen. Dabei werden die elektrophoretisch aufgetrennten Proteinproben von dem SDS-Polyacrylamid Gel auf eine Polymerschicht, zum Beispiel Nitrocellulose, übertragen (= "Elektroblotting"). Dies ist möglich, da die Proteine durch das SDS eine negative Ladung besitzen und sich somit bei Anlegen eines elektrischen Feldes aus der Gelmatrix heraus auf eine Membran transferieren lassen. Es handelt sich um eine Abklatsch-Methode, damit die Proteine für die spätere Charakterisierung mithilfe von Antikörpern leichter zugänglich sind. Dafür wird ein Antikörper gegen das gesuchte Protein (=Antigen) gewählt, der mit diesem reagiert und einen Antikörper-Antigen-Komplex bildet. Dieser Komplex kann auf dem Träger sichtbar gemacht werden durch Zugabe eines zweiten Antikörpers, der für den ersten spezifisch und mit einem Enzym markiert ist.

Die aufgetrennten Proteine wurden auf eine mit Methanol aktivierte PDVF Membran (Polyvinyldifluorid) in einer Semi Dry Blotting Kammer bei 1 mA pro cm² für 2 h transferiert. Nach dem Transfer wurde die Membran 1 h in 5 % Milchpulver bzw. 5 % BSA (bei Verwendung von Mausantikörpern) (s. Tab. 2.11), gelöst in TBST, neutralisiert. Der Primärantikörper (s. Tab. 2.8), verdünnt in der jeweils verwendeten Blockierungslösung, wurde auf die Membran gegeben und diese über Nacht bei 4 °C unter Schwenken inkubiert. Die Membran wurde am Folgetag mehrmals mit TBST gewaschen und anschließend 1 h mit einem kovalent mit Meerrettich- Peroxidase-gekoppeltem Sekundärantikörper (s. Tab. 2.9) in 5 % Milchpulver-TBST-Lösung, der Spezies-spezifisch zum Primärantikörper war, bei RT unter Schwenken inkubiert. Nach mehrmaligem Waschen in TBST wurde die Membran mit einer ECL-Lösung 1 und 2 (1:1) behandelt, welche aufgrund einer enthaltenen Peroxidase eine Chemilumineszenz an der Stelle hervorruft wo der Sekundärantikörper "spezifisch" gebunden hat. Diese Lumineszenz ließ sich über den Chemilumineszenz Imager detektieren. Die Banden wurden anschließend über FIJI (ImageJ) und Excel (Microsoft) quantifiziert.

2.2.4.3 Bradford zur Bestimmung des Proteingehalts

Die quantitative Konzentrationsbestimmung von Proteinen erfolgte mit Hilfe einer Bradford-Lösung (BioRad, München) und einer BSA-Eichreihe. Es handelte sich hierbei um eine Protein-spezifische Färbemethode, bei der die Intensität der Farbänderung von der Proteinkonzentration abhängig gewesen ist. Die Färbung erfolgte über eine Bindung des Farbstoffes Coomassie-Brilliant-Blau G-250 an positiv geladene Seitenketten der Aminosäuren der Proteine. Die Färbemethode richtete sich dabei auf alle Proteine, die in der jeweiligen Probe enthalten waren. Durch die Bindung trat eine Veränderung im Absorptionsmaximum des Farbstoffes von 465 nm (protonierte braunrote kationische Form) zu 565 nm (unprotonierte blaue anionische Form) ein. Die Intensitäten wurden mithilfe eines Photometers gemessen. Durch den Vergleich mit der BSA-Eichgeraden, von der die Proteinkonzentration bekannt war, konnte auf die Konzentration in der jeweiligen Probe geschlossen werden.

2.2.4.4 LC-MS/MS

Die LC-MS/MS ist ein relativ modernes Analyse- und Detektionsverfahren, gebildet aus der Kombination von Flüssigchromatographie (engl. *liquid chromatography*, LC) und Massenspektrometrie (MS). Das MS/MS oder MS² ergibt sich aus der Aneinanderschaltung von mehreren Massenspektrometer Einheiten, welches mit einem chromatographischen Trennsystem verbunden ist. Dies ermöglicht eine Identifizierung und Quantifizierung von Substanzgemischen in einem relativ kurzen Zeitraum.

ER-(SCV-) Membranproben (s. 2.2.2.7.1) wurden zu unserem Kooperationspartner Prof. Dr. Dörte Becher (Uni Greifswald) geschickt, wo diese für die LC-MS²-Messungen weiter aufbereitet wurden (Herweg *et al.*, 2015a). Die ermittelten LC-MS²-Daten wurden anschließend mit den Gen-Einträgen von NCBI für *Simkania negevensis* NC 015713 sowie NC 015710 und von UniProtKB für *Homo sapiens* (version 2/12) abgeglichen und kombiniert. Die aus der LC-MS² ermittelten Proteomdaten wurden mithilfe der Software Scaffold (Version 3.5.1 und 4.1, Proteome Software Inc., Portland, OR, USA) analysiert. Dafür wurden Filter zur Identifizierung und späteren Validierung der MS²-basierenden Peptide und Proteine gesetzt. Peptide wurden nur akzeptiert, wenn die *,spectra exceeded Xcorr*⁴ Werte 2.2, 3.2 und 3.8 für zwei-, drei- und vierfach Peptide betrugen. Der deltaCN Wert musste dabei über 0.1 liegen. Die Proteinidentifikation basierte auf mindestens zwei eindeutigen Peptiden.

2.2.4.5 Analyse von Proteomdaten

Die ER-(SCV-) Membran-Proteomrohdaten (s. 2.2.4.4) wurden zu unserem Kooperationspartner Dr. Hilmar Berger (MPI, Berlin) geschickt, der die bioinformatischen Analysen unter Verwendung der Programme EdgeR und Ingenuity durchgeführt hat (Herweg *et al.*, 2015b). Die Proteomdaten wurden mithilfe der Software Web-based Gene SeT AnaLysis Toolkit

(WEB-Gestalt) (Wang *et al.*, 2013) weiter analysiert. Dabei wurden Anreicherungen von Proteinen über Gene Ontology Annotationen gegen das *Homo sapiens* Genom identifiziert. Hierbei wurde ein hypergeometrisches statistisches Verfahren kombiniert mit einem Mehrfachtest Abgleich genutzt, welches an Benjamini und Hochberg (1995) angelehnt war (Benjamini and Hochberg, 1995). Die Ermittlung von Signifikanzlevel wurde ausschließlich für Top10 Kategorien bei einer minimalen Proteinanzahl von 10 pro Kategorie erlaubt. Die Proteomik-Ergebnisse wurden danach anhand der ermittelten ribosomalen Proteine innerhalb aller Experimente normalisiert. Anschließend wurde eine Rangliste der miteinander abgeglichenen Proteine erstellt, angelehnt an dem ermittelten p-Wert (engl. *p-value*). Dafür wurden die Proteine beginnend mit den stärksten Veränderungen zwischen den ER-SCV-Membranen verglichen zu den ER-Membranproben eingeteilt. Anschließend wurden ausgewählte Proteingruppen über die Software "Search tool for the retrieval of interacting genes/proteins" (STRING) analysiert und ein Netzwerk generiert.

2.2.5 Lipidbiochemische Methoden

Zur Untersuchung der SCV-Lipidzusammensetzung wurden lipidbiochemische Methoden eingesetzt. Dabei sollten essentielle Lipide über Dünnschichtchromatographie und/oder massenspektroskopische Untersuchungen identifiziert werden, die weitere Analysen zu intrazellulären physiologischen Funktionen und dem Aufbau der SCV ermöglichen. Die Massenspektroskopie eignete sich dabei aufgrund ihrer hohen Sensitivität und dem geringen Lipid-Zerfall. Präparationen von Gesamtlipidextrakten und von Dünnschichtchromatographie-(DC-) Experimenten sind angelehnt an das Protokoll von Seipel und Flieger (Seipel and Flieger, 2013).

2.2.5.1 Lipidextraktion

Zum Herauslösen von Lipiden aus Bakterien, Zellorganellen oder Zellmonolayern müssen diese zunächst pelletiert werden. Für Dünnschichtchromatographie (DC-) Experimente (s. 2.2.5.2) wurden Renografin-aufgereinigte Simkanien (s. 2.2.2.8.3), ER-(SCV-) Membranproben (s. 2.2.2.7.1) oder infizierte und nicht infizierte HeLa229 Zellen verwendet (s. 2.2.3). Für LC/MS-Messungen wurden Lipidextrakte und/oder Lipidspots aus infizierten und nicht infizierten HeLa229 Zellen verwendet.

Die Lipidextraktion ist angelehnt an Bligh und Dyer (Bligh and Dyer, 1959). Das erstellte Pellet wurde anschließend in 100 μ l DPBS gelöst und mit 400 μ l Methanol, sowie 200 μ l Chloroform versetzt. In diesem Zustand können Lipide für mehrere Wochen bei -20 °C gelagert werden. Nach kurzer Inkubation bei RT wurden 280 μ l dH₂O und 200 μ l Chloroform zugegeben und der Ansatz durch Invertieren des 1,5 ml Reaktionsgefäßes gut durchmischt. Mithilfe eines Zentrifugationsschrittes für 5 min bei 1000 x g und 20 °C kam es zu einer Phasentrennung. Die obere wässrige Phase und die ausgefallenen Proteinflocken wurden verworfen. Die untere

Phase wurde in einer Vakuumzentrifuge für ~ 30 min bei 30 °C vollständig konzentriert, sodass die Lipide getrocknet am Boden des 1,5 ml Reaktionsgefäßes vorlagen. Für die Probenauftragung in der Dünnschichtchromatographie (DC) wurden die Lipide anschließend in 20 µl Chloroform: Methanol (2:1) gelöst. Von Borstel durchgeführte Lipidextraktionen sind angelehnt an Matyash und Kollegen (Matyash *et al.*, 2008).

2.2.5.2 Dünnschichtchromatographie

Bei der Dünnschichtchromatographie (DC) wurden die Lipidproben über ein polares Laufmittel (s. Tab. 2.14) auf ein mit Kieselgel (60W) beschichtetes Aluminiumblatt der Polarität nach aufgetrennt. 10-20 µl der Lipidproben wurden zusammen mit Lipidstandards entlang einer 1 cm hohen Parallele zum Blattende tropfenweise mithilfe einer 10 µl Kapillare aufgetragen. Für eine optimale Auftrennung mussten bei jeder Probe einzelne Tropfen einheitlich auf derselben Stelle mit einer maximalen Größe von 0,5 cm gegeben werden. Als Standard (s. Tab. 2.18) wurden Phosphatidylserin (PS), Phosphatidylglycerol (PG), Cardiolipin (CL) und ein SOY Mix (Phosphatidylcholin (PC), Phosphatidylethanolamin (PE), Phosphatidylinositol (PI), Phosphatidsäure (PA), Lyso-PC (LPC)), sowie Cholesterol-ß-D-Glykosid (ßCG) verwendet, wobei 10 µl einer 1:10 Verdünnung (10 mg/ml Stock) aufgetragen wurden. Anschließend wurde das Kieselgelblatt senkrecht in eine Chromatographiekammer gestellt, welche ~ 0,5 cm hoch mit einem polaren Lösungsmittel gefüllt war. Die Auftrennung erfolgte im geschlossenen Gefäß in einer gesättigten Atmosphäre, wozu in die Kammer Filterpapier eingelegt, der Deckel fest verschlossen und der Abzug ausgestellt wurde. Das Laufmittel zog sich aufgrund von Kapillarkräften nach oben und löste die Lipide jeder Probe aus dem Kieselgel heraus. Diese wurden dann entlang der Laufrichtung aufgetrennt, in Abhängigkeit zu ihrer Laufgeschwindigkeit, welche bestimmt wurde durch die Lipid-Polarität und -Wechselwirkungen zur stabilen und mobilen Phase. Kurz bevor die Laufmittelfront das obere Blattende erreicht hatte, wurde das Blatt herausgenommen und für die Auswertung weiter bearbeitet (s. 2.2.5.3).

2.2.5.3 DC-Auswertung

Die Auswertung von DC-aufgetrennten Lipiden erfolgte über eine Färbung mit Naphtol-Blau-Schwarz (Plekhanov, 1999) (s. Tab. 2.14), wenn keine LC/MS-Messungen vorgesehen waren. Hierfür mussten die gelaufenen Kieselgelblätter zunächst in dH₂O gewaschen werden, um die Reste des Laufmittels zu entfernen. Anschließend wurden diese für 10 min in einer 0,2 % Naphtol-Blau-Schwarz-Lösung unter Schwenken gefärbt. Die Blätter wurden danach in einer 1 M NaCl-Lösung entfärbt bis nur noch Naphtol markierte Lipidpunkte zu sehen waren. Für LC/MS-Messungen wurden Lipidpunkte ungefärbt mit einem Skalpell von dem Blatt herausgelöst und jeweils in ein Glasgefäß überführt.

2.2.5.4 LC/MS und Auswertung

Für die LC/MS-Messungen (Zehethofer *et al.*, 2015) wurden Zellpellets in PBS:MetOH:Chloroform (14:57:29) gelöst (Methode 1) (s. 2.2.5.1) oder Lipidspots aus DC-Platten abgetragen (Methode 2) (s. 2.2.5.2-3). Die Lipidextraktion (Matyash *et al.*, 2008) und die vollständige LC/MS-Messung und -Datenanalyse wurde in Borstel durchgeführt. Proben mussten in plastikfreien, DMSO/Methanol/Chloroform resistenten Gefäßen gehalten werden.

3. Ergebnisse

3.1 Charakterisierung von infektionsassoziierten Proteinen über Proteomanalysen der *Simkania*-Vakuole

Es ist noch wenig über die Entstehung und Entwicklung der *Simkania*-Vakuole (engl. *Simkania-containing vacuole*, SCV) innerhalb von eukaryotischen Zellen bekannt und warum eine stärkere Assoziation der SCV zum Endoplasmatischen Retikulum (ER) aufgebaut wird. Vermutbar wäre eine Chlamydien-ähnliche Invasion und intrazelluläre Reifung der Vakuole. Aufgrund der stärkeren Assoziation mit ER-Membranen scheint sich ihre Entwicklung jedoch von der chlamydialen Inklusion in einigen Aspekten zu unterscheiden (Mehlitz *et al.*, 2014, Derre, 2015). Im folgenden Abschnitt werden verschiedene humane Proteine vorgestellt, für die eine Assoziation mit ER-SCV-Membranen ermittelt werden konnte (bspw. T-Komplex-Proteine und die kleine GTPase ARHGEF2) und/oder für die ein Einfluss auf die bakterielle Infektivität in Primär-/ Sekundärinfektionen beobachtet wurde (bspw. das COPI-Protein COPB2, das Adaptorprotein AP2B1 und das ER-Golgi-Transportprotein STX5).

In dieser Arbeit wurden ER-SCV-Membranen aufgereinigt, um ihre molekulare Zusammensetzung zu bestimmen. Darüber sollte festgestellt werden, ob Proteine identifiziert werden können, die aufzeigen, mit welchen Teilen des ERs die SCV verbunden ist und welche intrazellulären Faktoren für die Entwicklung der parasitophoren Vakuolenmembran (PVM) wichtig sind. Immunoblots und elektronenmikroskopische Aufnahmen (EM) ergaben, dass diese Membranen relativ frei von Kontaminationen anderer Organellen, sowie gänzlich frei von aktiven Simkanien waren. Dies ermöglichte eine Messung über LC-MS², um das Proteom von ER-assoziierten *Simkania*-Vakuolen zu untersuchen.

3.1.1 Etablierung eines subzellulären Fraktionierungsprotokolls zur Aufreinigung von ER-SCV-Membranen

Die Aufreinigung der SCV wurde an eine ER-Isolierung aus eukaryotischen Zellen gekoppelt (s. Abb. 3.1.1). Aufgrund der starken Assoziation zwischen beiden Kompartimenten konnten ER-SCV-Membranen gemeinsam aufgereinigt werden (s. Abschnitt 2.2.2.7.1). ER-Membranen von nicht infizierten Zellen dienten als Kontrolle und ein Vergleich mit ER-SCV-Membranen sollte aufzeigen, ob es während der *Sn*-Infektion zu Veränderungen von humanen ER-Proteinen bzw. von SCV-assoziierten, humanen Proteinen oder Lipiden (s. Abschnitte 3.1.4-5 und 3.2) kommt (Tag drei post-infiziert (p.i.)).

Für die Aufreinigung von ER-SCV-Membranen wurde eine reproduzierbare subzelluläre Fraktionierung etabliert, die für Zelllinien wie HeLa und THP1 anwendbar war.

Ergebnisse

Abb. 3.1.1: Schematische Darstellung zum Arbeitsablauf der Aufreinigung von ER-(SCV-) Membranen. ER-(SCV-) Membranen wurden aus nicht und *Sn*-infizierten HeLa Zellen isoliert (72h p.i.). Dafür wurden Gesamtzelllysate erstellt durch Abschaben, waschen und zuletzt Aufbrechen der Zellen über Schwellen und mechanische Lyse. Aus den Gesamtzelllysaten wurden anschließend ER-(SCV-) Membranen über sequenzielle Zentrifugationsschritte aufgereinigt und von anderen Zellkompartimenten abgetrennt. *Sn* = *Simkania negevensis*; PNF = prä-nukleare Fraktion; PMF = prä-mitochondriale Fraktion; p.i. = post-infiziert.

Hierbei wurden durch osmotische und mechanische Lyse die Zellen aufgebrochen und anschließend die Organellen durch sequenzielle Zentrifugationsschritte separiert (s. Abb. 3.1.2).

Abb. 3.1.2: Lichtmikroskopische Aufnahmen der osmotischen und mechanischen Lyse von HeLa Zellen. Der osmotische und mechanische Aufbruch der Zellen wurde im Phasenkontrastmikroskop beobachtet. Während der osmotischen Behandlung waren die Zellen gleichmäßig angeschwollen ohne aufzuplatzen (*links*). Nach der mechanischen Lyse waren die zellulären Membranen freigelegt von den Nuklei und wurden für die ER-SCV-Membranaufreinigung weiter aufbereitet (*rechts*). 10 μm Größenbalken sind abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Durch eine Auftrennung in verschiedene Organellenfraktionen sollte eine Anreicherung schwach exprimierter Proteine wie ER-assoziierte Faktoren im Vergleich zu Gesamtzelllysaten erreicht werden, um deren Detektion zu ermöglichen. Somit konnten auch niedrigkonzentrierte

Ergebnisse

Proteine wie bspw. Kinasen oder GTPasen besser detektiert werden (Dreger, 2003, Huber *et al.*, 2003).

Ein erster niedertouriger Zentrifugationsschritt vereinigte die prä-nukleare Fraktion (PNF), welche vornehmlich große Zelltrümmer und Nuklei enthielt. Über einen zweiten hochtourigen Zentrifugationsschritt wurden kleinere Zelltrümmer, Organellen und intakte Simkanien in die prä-mitochondriale Fraktion (PMF) zusammengefasst. Durch eine darauffolgende Ultrazentrifugation wurde die rohe mikrosomale Fraktion (CMF, engl. *crude microsomal fraction*) erworben, welche das raue und glatte ER im Verbund mit der SCV enthalten sollte. transmissionselektronenmikroskopische (TEM)² Untersuchungen der PMF von *Sn*-infizierten Zellen konnten bestätigen, dass diese kleinere Organellen (u.a. intakte Mitochondrien) und intakte Bakterien enthielt, welche in der CMF gänzlich fehlten (s. Abb. 3.1.3).

Abb. 3.1.3: Elektronenmikroskopische Aufnahmen der ER-SCV-Membranaufreinigung von der prä-mitochondrialen und rohen mikrosomalen Fraktion. Dargestellt sind die PMF (*links*) und CMF (*rechts*) von *Simkania negevensis*-infizierten HeLa Zellen in der Transmissionselektronenmikroskopie (TEM). Die PMF enthielt intakte Simkanien und Mitochondrien, wohingegen in der CMF (2,5 x vergrößert) ausschließlich kleine Membran-Vesikel zu beobachten waren. µm Größenbalken sind abgebildet. PMF = prä-mitochondriale Fraktion; CMF = rohe mikrosomale Fraktion. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

In TEM-Aufnahmen der CMF konnten Vesikel beobachtet werden, die teilweise kleinere Vakuolen enthielten. Ein Vorhandensein von intakten oder grob fragmentierten Organellen oder Bakterien war nicht zu beobachten.

Die Qualität der ER-SCV-Membranaufreinigung wurde über Immunoblots überprüft (s. Abb. 3.1.4 und Abschnitte 2.2.4.2.2 und 2.2.4.3). Dafür wurden verschiedene Antikörper verwendet, die die einzelnen Zellorganellen, sowie die Bakterien markieren sollten.

ER-Membranproteine (Calnexin und KDEL) waren dominierend in der CMF von *Sn*- und nicht infizierten Zellen, wohingegen lösliche ER-Proteine (ERp72 und PDI) größtenteils in der PMF vorlagen. Dies deutete darauf hin, dass sich innerhalb der CMF hauptsächlich ER-Membranen

² Probenvorbereitungen für EM-Schnitte und EM-Einbettungen von Daniela Bunsen und Claudia Gerig (unter der Leitung von Prof. Dr. Georg Krohne) (s. Abschnitt 2.2.2.13).

Ergebnisse

und keine Bestandteile des ER-Lumens befanden. Die Identifizierung von Calnexin in der PNF und PMF, sowie von KDEL in der PMF resultierte wahrscheinlich aus einer Assoziation von ER-Membranen mit weiteren Organellen wie Zellkern und Mitochondrien. Über die subzelluläre Fraktionierung könnten Membranen zerbrochen worden sein, wodurch Teile vom ER, die noch mit intakten Organellen assoziiert waren, in die entsprechenden Fraktionen sedimentiert wurden.

Abb. 3.1.4: Immunoblots der ER-SCV-Membranaufreinigung von Simkania negevensisinfizierten und nicht infizierten HeLa Zellen. Die Vorfraktionen (PNF, PMF) und Hauptfraktion (CMF) wurden in Immunoblots miteinander verglichen. Von allen Proben wurde mithilfe eines Bradfordassays die Proteinkonzentration bestimmt und 50 μ g auf die SDS-PAGE aufgetragen. Im Immunoblot wurde die Zusammensetzung der aufgereinigten ER-SCV-Membranen für verschiedenste Markerproteine ermittelt. Über die Aufreinigung wurden in der Hauptfraktion (CMF) hauptsächlich ER-Membran-assoziierte (Calnexin, KDEL) und bakterielle Proteine (anti-*Sn*) isoliert. Lösliche ER-Proteine (ERp72, PDI) und andere Organellenmarker für Mitochondrien (Sam50), Zellkern (LaminB) und Zytoskelett (ß-Aktin) waren hauptsächlich in den Vorfraktionen lokalisiert. Das bakterielle Markerantigen (snGroEL) war hauptsächlich in den Vorfraktionen zu finden. ER = Endoplasmatisches Retikulum; PNF = prä-nukleare Fraktion; PMF = prä-mitochondriale Fraktion; CMF = rohe mikrosomale Fraktion; *Sn* = *Simkania negevensis*. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Das *Sn*-spezifische GroEL-Antigen (GroEL) war hauptsächlich in der PNF und PMF angereichert. Abbildung 3.1.3 zeigte für *Sn* EBs und RBs hier ein ähnliches Sedimentierungsverhalten zu Mitochondrien. Der unerwartete Fund von snGroEL in der CMF deutete auf eine
Freisetzung des Proteins hin. Da in den TEM-Aufnahmen keine intakten Bakterien oder bakteriellen Bruchstücke zu beobachten waren, scheint das snGroEL aus lysierten EBs und RBs zu stammen. Die generelle Verteilung von bakteriellen Proteinen wurde mithilfe eines *Sn*-spezifischen Antikörpers (anti-*Sn*) untersucht. Dabei belegt die Negativkontrolle Kreuz-reaktionen mit wenigen humanen Proteinen. Dominante Banden wurden mit einem weißen Pfeil markiert. Bei der oberen Bande scheint es sich dabei um ein ER-Protein zu handeln, da dieses nur in der CMF zu beobachten war. Innerhalb der drei Fraktionen von *Sn*-infizierten Zellen konnte eine unterschiedliche Verteilung von Simkanien-Proteinen beobachtet werden. Neben der Gesamtheit an bakteriellen Proteinen innerhalb der PNF konnten fraktionsspezifische Bereiche in der PMF und CMF identifiziert werden. In der CMF befanden sich bakterielle Proteine, die höchstwahrscheinlich mit der SCV assoziiert sind.

Markerproteine von Zytoskelett (ß-Aktin) und Zellkern (LaminB1) waren sowohl in der PNF als auch PMF verteilt, wohingegen Markerproteine von Mitochondrien (Sam50) hauptsächlich in der PMF vorlagen. In der CMF fehlten diese fast vollständig.

Anhand der Ergebnisse konnte gezeigt werden, dass sich über die hier etablierte Methode ER-SCV-Membranen aus *Sn*-infizierten Zellen aufreinigen lassen. Diese waren frei von intakten Bakterien und relativ frei von Kontaminationen anderer Zellkompartimente. Aufgereinigte ER-SCV-Membranen konnten im Weiteren über Massenspektrometrie analysiert und auf ihre Proteinzusammensetzung untersucht werden.

3.1.2 Erstellung eines Simkania-Proteoms zur Identifizierung von SCVassoziierten bakteriellen Proteinen

Die Proteomanalyse der ER-SCV-Membranen erforderte einen Vergleich der bakteriellen Proteine. Eine Analyse von exprimierten *Simkania*-Proteinen (Tag drei p.i.) im Vergleich zu SCV-Membranproteinen machte die Erstellung eines *Sn*-Proteoms notwendig. Darüber sollte das Vorhandensein von möglichen Vakuolen-assoziierten Proteinen nachgewiesen werden. Zusätzlich sollte *Sn* in seine beiden Entwicklungsformen, Elementarkörperchen (engl. *elementary body*, EB) und Retikularkörperchen (engl. *reticulate body*, RB) aufgetrennt werden (s. Abschnitt 2.2.2.8). Ein Proteomvergleich von EBs und RBs könnte Aufschluss darüber geben, welche Unterschiede in der Proteinexpression bei beiden Entwicklungsformen vorliegen. Mithilfe eines EB/RB-Proteoms könnten weitere Kenntnisse über bspw. den bakteriellen Metabolismus oder die Infektivität (Saka *et al.*, 2011) sowie dessen Einfluss auf Ausbildung und Reifung der SCV erworben werden. Da noch kein Protokoll zur Aufreinigung von Simkanien existierte, wurden etablierte Methoden zur Aufreinigung und Auftrennung von *C. trachomatis* und *C. psittaci* Entwicklungsformen angewendet.

Ein 16 %iger Percoll-Gradient (anlehnend an die Bachelorarbeit von Elke Rieck) sowie ein kontinuierlicher 40-80 % Saccharose-Gradient erwiesen sich jedoch als ungeeignet, da es zu

73

keiner Auftrennung in *Sn* EB- und RB-Fraktionen kam. Letztendlich wurden drei biologische Replikate einer *Sn*-Präparation (Tag drei p.i.), die eine Mischung beider Entwicklungsformen enthielten, erstellt und die Bakterien anschließend über einen Renografin-Gradienten aufgereinigt. Diese konnten anschließend über LC-MS² analysiert und auf ihre Proteinzusammensetzung untersucht werden.

3.1.3 Identifizierung von potentiellen SCV-assoziierten, humanen und bakteriellen Proteinen durch LC-MS²

Die massenspektrometrischen Experimente (LC-MS²) von ER-SCV-Membranen und aufgereinigten Simkanien wurden wie in Abschnitt 2.2.4.4 beschrieben durchgeführt³. Als Kontrolle dienten isolierte ER-Membranen von nicht infizierten HeLa Zellen, die parallel zu den ER-SCV-Membranen präpariert wurden (s. Abb. 3.1.5). Drei biologische Replikate wurden dabei jeweils für ER-(SCV-) Membranen und für *Sn*-Präparationen analysiert.

Abb. 3.1.5: Flussdiagramm der Probenvorbereitung bis zur finalen Proteomanalyse. ER-SCV-(*Sn*-infiziert) und ER-Membranen (Kontrolle) wurden aus HeLa Zellen isoliert (Tag drei p.i.), aufgereinigt und über subzelluläre Fraktionierung von anderen Zellkompartimenten getrennt. Simkanien (*Sn*) wurden aus HeLa Zellen isoliert und über einen Renografingradienten von restlichen Zellfragmenten aufgereinigt (Tag drei p.i.). Alle Proben wurden über LC-MS² analysiert und über Scaffold ausgewertet. P.i. = post-infiziert. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015a.

Über die LC-MS² Analysen (s. Abschnitt 2.2.4.4) konnten in jedem biologischen Replikat von ER- und ER-SCV-Membranen zwischen 1731-2297 Proteine identifiziert werden. Durch den Vergleich der zueinander gehörenden biologischen Replikate über das Programm Scaffold 3.5.1-4.1 (www.proteomesoftware.com/products/scaffold) wurde eine Gesamtheit von Proteinen ermittelt, für die ein sehr wahrscheinliches Vorkommen der Proteine in einem der drei Replikate vorhergesagt wurde. Darüber konnten 1480 Proteine in ER- und ER-SCV-Membranen (s. Abb. 3.1.6), sowie 1399 Proteine in aufgereinigten Simkanien identifiziert werden (s. Abb. 3.1.8). Durch die Unterteilung in zelluläre und bakterielle Proteine wurden in ER-SCV-Membranen 1178 humane und 302 *Sn*-Proteine nachgewiesen (s. Abb. 3.1.6).

³ Massenspektrometrie-Experimente wurden von Sebastian Grund (unter der Leitung von Prof. Dr. Dörte Becher und Prof. Dr. Michael Hecker) an der Universität Greifswald durchgeführt.

Abb. 3.1.6: VENN-Diagramm der über LC-MS² identifizierten humanen und bakteriellen Proteine aus ER-SCV-Membranen. Im VENN-Diagramm ist die Anzahl der Proteine im einzelnen (n = 1) und in ihrer Gesamtheit von sicher identifizierten Proteinen aus drei biologischen Replikaten (n = 3), die über LC-MS² identifiziert wurden, dargestellt. Eine Gesamtmenge von 1480 Proteinen, unterteilt in 1178 humane und 302 *Simkania negevensis* spezifische Proteine, konnte dabei ermittelt werden. Exp. = Experiment. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Von den 1178 humanen Proteinen waren alle in jeder Probe vorhanden. Die Proben unterschieden sich in den Gesamtzahlen der ermittelten Spektren vom jeweiligen Protein. Die 302 *Sn*-Proteine waren in den ER-SCV-Membranproben wiederzufinden, konnten jedoch nicht immer in allen drei Proben identifiziert werden.

Ein Vergleich von allen 302 *Sn*-Proteinen mit dem *Simkania negevensis Z* Genom (Collingro *et al.*, 2011), unter Verwendung der Datenbank KEGG, zeigte, dass ca. 12 % von 2512 Protein kodierenden Genen wiederzufinden waren. Unter diesen bakteriellen Proteinen sollte es möglich sein, Faktoren zu identifizieren, die mit der PVM assoziiert sind.

Bei einer Verwendung des online Toolkits WEB-Gestalt (WEB-based Gene SeT AnaLysis) (Wang *et al.*, 2013) wurde die potentielle subzelluläre Lokalisation und Funktion der 1178 humanen Proteine ermittelt (s. Abb. 3.1.7). Unter der Berücksichtigung von GO-Annotationen (GO = engl. *Gene Ontology*) wurden bei einer Vielzahl der Proteine ähnliche Lokalisationen in zellulären Komponenten beobachtet. Darunter fielen makromolekulare Komplexe, membranumschlossene Lumen, die Zellkernmembran, das Zytosol, Mitochondrien, das Zytoskelett, das endomembranes System und das ER (s. Abb. 3.1.7 *links*). Bezogen auf molekulare Funktionen schienen viele Proteine an metabolischen, regulatorischen und zellulären Prozessen beteiligt zu sein (s. Abb. 3.1.7 *Mitte*). In biologischen Prozessen waren die Proteine größtenteils mit der Bindung von Proteinen, Nukleinsäuren, Ionen oder Nukleotiden assoziiert (s. Abb. 3.1.7 *rechts*).

Abb. 3.1.7: WebGestalt-basierende Kategorisierung der humanen Proteine. Über WebGestalt wurden die 1178 humanen Proteine anhand ihrer Verteilung bzgl. der zellulären Lokalisation (A), molekularen Funktion (B) und biologischen Prozesse (C) in entsprechende Histogramme eingeteilt. Die einzelnen Kategorisierungen basieren auf GO-Annotationen, die Mehrfachzuordnungen der Proteine zulassen. GO = engl. *Gene Ontology*. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

In Simkanien Präparationen wurden 514 humane und 885 *Sn*-Proteine nachgewiesen (s. Abb. 3.1.8).

Abb. 3.1.8: VENN-Diagramm der über LC-MS² identifizierten humanen und bakteriellen Proteine aus aufgereinigten Simkanien. Im VENN-Diagramm ist die Gesamtheit von Proteinen aus drei biologischen Replikaten (n = 3), die über LC-MS² identifiziert wurden, dargestellt. Eine Gesamtmenge von 1399 Proteinen, unterteilt in 514 humane und 885 *Simkania negevensis* spezifische Proteine, konnte dabei ermittelt werden. Exp. = Experiment.

Damit konnten ca. 35 % der im SCV Genom kodierenden *Sn*-Proteine identifiziert werden. Ein Großteil der 302 *Sn*-Proteine des ER-SCV-Proteoms tauchte auch unter den 885 *Sn*-Proteinen wieder auf (s. Abschnitt 3.1.6), was darauf hindeutet, dass diese an Tag drei der *Sn*-Infektion oder möglicherweise dauerhaft exprimiert werden.

Im Weiteren wurden die Datenanalysen der humanen (s. Abschnitt 3.1.4) und bakteriellen Proteine (s. Abschnitt 3.1.6) vorgenommen, welche Rückschlüsse auf die intrazelluläre Ausbildung und molekulare Zusammensetzung der SCV-Membran geben sollten.

3.1.4 Die Datenanalyse der humanen ER-SCV-Membranproteine deutet auf einen gegensätzlichen Einfluss von retrograden und anterograden Transportwegen auf die SCV-Membran hin

Die über das Scaffold-Programm visualisierten Rohdaten wurden in Form einer Excel-Tabelle exportiert, welche als Grundlage für die Datenanalysen der humanen und bakteriellen Proteine (s. Abschnitt 3.1.6) diente. Dafür wurden von jeder Probe die Gesamtzahlen der zugewiesenen Spektren der einzelnen Proteine ermittelt. Dies ermöglichte einen direkten Vergleich zwischen den Proben der ER- und der ER-SCV-Membranen.

Die bioinformatische Datenanalyse wurde wie in Abschnitt 2.2.4.5 beschrieben durchgeführt⁴. Dafür wurde zunächst die unterschiedliche Verteilung der Spektren von den ER- und ER-SCV-Proben unter der Verwendung des EdgeR Programmes abgeglichen. Es konnten einige Proteine mit einem nominalen p-Wert < 0,05 identifiziert werden (darunter OAS3, ROA2, VDAC1, ATPB, ROA0 und ATPA) (s. Tab. 3.1.1).

#	Entrez Gene	Ensembl	Gen- symbol	Proteinname	Log Ratio Inf/Kon	Nominaler p-Wert	p-Wert
1	281	Q9Y6K5	OAS3	2'-5'-Oligoadenylat-Synthase 3	2,18	0,0001	0,0000001
2	815	Q9GZR7	DDX24	ATP-abhängige RNA-Helikase DDX24	2,02	0,131	0,004
3	449	Q8WWM7	ATX2L	Ataxin-2-ähnliches Protein	1,68	0,134	0,005
4	860	Q92974	ARHG2	Rho-Guanin-Nukleotid-Austauschfaktor 2	1,49	0,108	0,002
5	429	P02538	K2C6A	Keratin, Typ II, Zytoskelett 6A	1,30	0,077	0,001
6	450	O60841	IF2P	Eukaryotischer Translationsinitiationsfaktor	1,28	0,107	0,002
7	358	P49591	SYSC	Seryl-tRNA-Synthetase, zytoplasmatisch	1,27	0,082	0,001
8	629	P22314	UBA1	Ubiquitin-ähnliches modifikator-	1,24	0,157	0,006
9	491	P13647	K2C5	Keratin, Typ II, Zytoskelett 5	1,19	0,123	0,004
10	400	Q14258	TRI25	E3 Ubiquitin/ISG15 Ligase TRIM25	1,11	0,113	0,002
11	120	P61254	RL26	60S ribosomales Protein L26	0,80	0,123	0,004
12	205	P78344	IF4G2	Eukaryotischer Translationsinitiations-	0,77	0,134	0,005
13	220	P56192	SYMC	Methionyl-tRNA-Synthetase,	0,74	0,123	0,004
14	97	P53396	ACLY	ATP-Zitrat-Synthase	0,69	0,053	0,001
15	52	P07814	SYEP	Bifunktionale Aminoacyl-tRNA-Synthetase	0,62	0,050	0,001
16	34	P26038	MOES	Moesin	0,62	0,071	0,0005
17	101	P11940	PABP1	Polyadenylat-Bindeprotein 1	0,59	0,184	0,008
18	110	P17987	ТСРА	T-Komplex-Protein 1, Untereinheit Alpha	0,57	0,137	0,005

⁴ Bioinformatische Datenanalyse von Dr. Hilmar Berger, Max-Planck-Institut, Berlin.

19	8	P05787	K2C8	Keratin, Typ II, Zytoskelett 8	-0,43	0,142	0,005
20	9	P05783	K1C18	Keratin, Typ I, Zytoskelett 18	-0,58	0,115	0,003
21	88	P61106	RAB14	Ras-abgeleitetes Protein Rab-14	-0,59	0,105	0,002
22	59	P07910	HNRPC	Heterogenes Zellkern-Ribonukleo-	-0,60	0,050	0,002
23	15	P09651	ROA1	Heterogenes Zellkern-Ribonukleo-	-0,60	0,113	0,0005
24	79	P16403	H12	Protein A1 Histon H1.2	-0,68	0,114	0,003
25	103	Q09666	AHNK	Neuroblasten-Differenzierungs-	-0,72	0,182	0,007
26	6	P22626	ROA2	ASSOZIEITES Protein AHNAK Heterogenes Zellkern-Ribonukleoprotein	-0,73	0,0001	0,0000002
27	236	O75396	SC22B	Vesikeltransportprotein SEC22b	-0,81	0,115	0,003
28	237	P62820	RAB1A	Ras-abgeleitetes Protein Rab-1A	-0,92	0,077	0,001
29	402	P08754	GNAI3	Guanin-Nukleotid-Bindeprotein G(k),	-0,96	0,125	0,004
30	134	P06576	ATPB	ATP-Synthase, Untereinheit Beta,	-0,98	0,019	0,0001
31	455	P16615	AT2A2	Sarkoplasmatische-/Endoplasmatische	-1,03	0,123	0,004
32	408	P48047	ATPO	ATP-Synthase, Untereinheit O,	-1,09	0,185	0,008
33	174	P25705	ATPA	ATP-Synthase-Untereinheit Alpha,	-1,11	0,019	0,0001
34	283	P35232	PHB	Prohibitin	-1,12	0,114	0,003
35	252	Q13151	ROA0	Heterogenes Zellkern-Ribonukleo-	-1,14	0,019	0,0001
36	310	Q99623	PHB2	Prohibitin-2	-1,21	0,107	0,002
37	144	P21796	VDAC1	Spannungsabhängiges Anionen-selektives	-1,23	0,002	0,000004
38	399	P24539	AT5F1	ATP-Synthase, Untereinheit B,	-1,27	0,123	0,004
39	853	Q15019	SEPT2	Septin-2	-1,28	0,186	0,008
40	474	P49748	ACADV	Acyl-CoA-Dehydrogenase, mitochondrial	-1,36	0,107	0,002
41	561	Q13423	NNTM	NAD(P)-Transhydrogenase, mitochondrial	-1,52	0,123	0,004
42	575	P51648	AL3A2	Fetthaltige Aldehyd-Dehydrogenase	-1,55	0,050	0,0004
43	814	P35580	MYH10	Myosin-10	-1,57	0,113	0,002
44	704	O75694	NU155	Zellkern-Porenkomplex-Protein Nup155	-1,69	0,050	0,001
45	829	Q9H9B4	SFXN1	Sideroflexin-1	-1,71	0,175	0,007
46	430	Q9NVI7	ATD3A	ATPase-Familie-AAA-Domäne-	-1,88	0,050	0,001
47	1104	Q8NF37	PCAT1	Lyso-Phosphatidylcholin-Acyltransferase 1	-2,01	0,134	0,005
48	440	P22695	QCR2	Cytochrom b-c1 Komplex, Untereinheit 2, mitochondrial	-2,02	0,107	0,002
49	713	Q9HDC9	APMAP	Adipozyten-Plasmamembran-assoziiertes Protein	-2,10	0,114	0,003
50	864	O96008	TOM40	Mitochondrialer Importrezeptor,	-2,10	0,114	0,003
51	1024	Q86UE4	LYRIC /MTHD	Protein LYRIC /metadherin	-2,20	0,050	0,0005

Tab. 3.1.1: Über LC-MS² identifizierte humane Proteine von ER-SCV-Membranen mit signifikant unterschiedlicher Verteilung. Es konnte eine Gesamtmenge von 51 humanen Proteinen identifiziert werden, die in ER-SCV-Membranen eine signifikant unterschiedliche Verteilung aufwiesen. Gen-Spezifikationsnummer über Entrez Gene (NCBI) und Ensembl sowie Gensymbole und Proteinnamen sind angegeben. Die logarithmische Verteilung der Signifikanzwerte (Log Ratio) mit zugehörigem nominalen und unbearbeiteten p-Wert sind aufgeführt. Potentiell angereicherte (grün) und abgereicherte Proteine (rot) sind farbig hinterlegt. Inf = infiziert; Kon = Kontrolle. Tabelle in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Für explorative Datenanalysen wurde der Schwellenwert des erhobenen nominalen p-Wertes auf < 0,2 zurückgesetzt. Dabei konnten in zwei biologischen Replikaten 51 signifikant unterschiedlich verteilte Proteine (in unterschiedlichen Mengen an- oder abgereichert in ERund ER-SCV-Membranen) identifiziert werden (s. Tab. 3.1.1). Zur Validierung der LC-MS²-Analyse wurden einzelne an- und abgereicherte Faktoren in Immunoblots untersucht (s. Abb. 3.1.9).

Abb. 3.1.9: Immunoblot Analyse der rohen mikrosomalen Fraktion (CMF) und der Gesamtzelllysate aus Simkania- und nicht infizierten HeLa229 (drei Tage p.i.). (links) Die ER-(SCV) Membranen (CMF) von *Sn*- und nicht infizierten Zellen wurden miteinander verglichen (Grundsatzbeweis, n = 1). Mithilfe eines Bradfordassays wurden die Proteinkonzentration bestimmt und 50 µg auf die SDS-PAGE aufgetragen. (*rechts*) Gesamtzelllysate von *Sn*- und nicht infizierten Zellen wurden miteinander verglichen (Grundsatzbeweis, n = 2). Calnexin und Glycerin-aldehyd-3-phosphat-Dehydrogenase (GAPDH) waren unverändert in ER-(SCV-) Membranen als auch im Gesamtzelllysat. Der Rho-Guanin-Austauschfaktor 2 (ARHGEF2/GEF H1) und das zytosolische T-Komplex-Protein 1 (TCP1/CCT2) lagen in ER-SCV-Membranen angereichert vor, waren jedoch im Gesamtzelllysat unverändert. Das spannungsabhängige Anionen-selektive Kanalprotein 1 (VDAC1) und die Translokase der äußeren mitochondrialen Membran 40 (TOMM40) lagen in ER-SCV-Membranen abgereichert vor und waren entsprechend mit dem vesikelassoziierten Membran-protein 2 (VAMP2) auch im Gesamtzelllysat abgereichert. ß-Aktin diente als Ladekontrolle der Gesamtzelllysate. P.i. = engl. *post-infection*. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Neben ER- und ER-SCV-Membranen aus der CMF (drei Tage p.i.) (s. Abb. 3.1.9 *links*) wurden Gesamtzelllysate von nicht und mit *Sn*-infizierten HeLa229 Zellen (drei Tage p.i.) untersucht (s. Abb. 3.1.9 *rechts*). Zur Validierung wurden auch über die LC-MS²-Datenanlyse ermittelte, relativ unveränderte Faktoren, wie das ER-Membran-Markerprotein Calnexin (Log Ratio Inf/Kon = - 0,20), das Glykolyseenzym GAPDH (Log Ratio Inf/Kon = - 0,26) und das Zytoskelett-Markerprotein ß-Aktin (Log Ratio Inf/Kon = - 0,20) untersucht. Diese zeigten wie erwartet weder in der CMF noch im Gesamtzelllysat eine Veränderung und waren damit geeignete Kontrollen im Immunoblot.

Für angereicherte Proteine in ER-SCV-Proben (Log Ratio Inf/Kon > + 0,50, s. Tab. 3.1.1) wurden der Rho-Guanin-Austauschfaktor 2 (GEF2/ARHGEF2, zugehöriger Antikörper geführt

unter GEF H1) und das zytosolische T-Komplex-Protein, Untereinheit Beta (TCP1-B, zugehöriger Antikörper geführt unter CCT2), die mit TCP1-A (zytosolisches T-Komplex Protein, Untereinheit Alpha, CCT1) verbunden ist, getestet. ARHGEF2 ist eine Rho-GTPase, die den Austausch von GDP mit GTP begünstigt und damit eine Aktivierung von bspw. RhoA-oder NFkB-Signalwegen induziert. TCP1-B gehört zu einem makromolekularen Chaperon-Komplex (TCP1 oder CCT), der für die Proteinfaltung unter ATP-Verbrauch von u.a. Aktin oder Tubulin verantwortlich ist. Wie erwartet lagen beide Proteine angereichert in der CMF-Probe mit den ER-SCV-Membranen vor. Allerdings konnte bei beiden Faktoren in Gesamtzelllysaten kaum eine Veränderung beobachtet werden. Dies spricht stark dafür, dass es sich bei GEF2/ARHGEF2, TCP1-B und wahrscheinlich weiteren Faktoren des T-Komplexes (TCP1-A, sowie Z, G, E, D und B, Log Ratio Inf/Con > + 0,20, nominale p-Werte = 0,59-0,88) um Proteine handelt, die während der *Sn*-Infektion an ER-SCV-Membranen rekrutiert werden, ohne dass der Proteingehalt innerhalb der Zelle verändert wird.

Ganz anders verhielt es sich für abgereicherte Proteine in ER-SCV-Proben (Log Ratio Inf/Kon > - 1,20, s. Tab. 3.1.1), wie das spannungsabhängige Anionen-selektive Kanalprotein 1 (VDAC1), die Translokase der äußeren mitochondrialen Membran 40 (TOMM40) oder das vesikelassoziierte Membranprotein 2 (VAMP2) (Log Ratio Inf/Con = -1,34, nominaler p-Wert = 0,54, nicht signifikant). Bei VDAC1 und TOMM40 handelt es sich um Kanalproteine der äußeren mitochondrialen Membran, die für den Transport von Molekülen verantwortlich sind. VAMP2 ist für die Zielvorgabe und Fusion beim anterograden, vesikulären Golgi-zum-Plasmamembran-gerichteten Transport mitverantwortlich. Die untersuchten Faktoren zeigten sowohl in der CMF (VAMP2 zu schwach konzentriert) als auch dem Gesamtzelllysat eine Abreicherung auf Proteinebene, was damit auf eine globale Veränderung der Proteinexpression während der *Sn*-Infektion hindeutet.

Die Ergebnisse der Immunoblots korrelieren mit den durch LC-MS² und statistisch erhobenen Daten. Zusammenfassend konnte gezeigt werden, dass die *Sn*-Infektion sowohl eine Veränderung des Proteinexpressionsprofils der Wirtszelle als auch eine Umverteilung von Proteinen zwischen Wirtszellkompartimenten induziert.

Um humane Transportproteine zu identifizieren, die mit SCV-ER-Membranen assoziiert sind, wurden 57 Proteine aus der Liste des ER-SCV-Proteoms herausgefiltert (s. Tab. 3.1.2). Darunter fielen Proteine, die mit frühen oder Recycling-endosomalen, exozytotischen, Clathrin-abhängigen, COPI-, COPII- bzw. späteren ER-zu-Golgi-Transportwegen (sekretorisch) assoziiert sind. Von den 57 Transportproteinen lag ein Großteil an- bzw. abgereichert vor (Log Ratio Inf/Kon < - 0,20 und > + 0,20), wobei die Signifikanzkriterien zumeist nicht erfüllt wurden (nominaler p-Wert < 0,2).

80

#	Identifizierte Proteine	Accession-Nummer Synonym	STRING- Synonym	Log Ratio Inf/Con	Nominaler p-Wert	p-Wert
1	Ras-abgeleitetes Protein Rab-5A	P20339 RAB5A	RAB5A	-0,72	0,849	0,239
2	Ras-abgeleitetes Protein Rab-14	P61106 RAB14	RAB14	-0,59	0,105	0,002
3	Ras-abgeleitetes Protein Rab-1A	P62820 RAB1A	RAB1A	-0,92	0,077	0,001
4	Ras-abgeleitetes Protein Rab-8A	P61006 RAB8A	RAB8A	-0,39	0,937	0,400
5	Ras-abgeleitetes Protein Rab-21	Q9UL25 RAB21	RAB21	-0,68	0,819	0,192
6	Ras-abgeleitetes Protein Rab-2A	P61019 RAB2A	RAB2A	-0,33	0,854	0,258
7	Ras-abgeleitetes Protein Rab-31	Q13636 RAB31	RAB31	-0,60	0,849	0,235
8	Ras-abgeleitetes Protein Rab-7a	P51149 RAB7A	RAB7A	-0,59	0,276	0,015
9	Ras-abgeleitetes Protein Rab-18	Q9NP72 RAB18	RAB18	0,01	1,000	0,990
10	Ras-abgeleitetes Protein Rab- 5C	P51148 RAB5C	RAB5C	-0,63	0,359	0,026
11	Ras-abgeleitetes Protein Rab-10	P61026 RAB10	RAB10	-0,44	0,910	0,331
12	Ras-abgeleitetes Protein Rab-32	Q13637 RAB32	RAB32	-0,65	0,849	0,234
13	Ras-abgeleitetes Protein Rab-6A	P20340 RAB6A	RAB6A	-0,68	0,726	0,139
14	Ras-abgeleitetes Protein Rab-35	Q15286 RAB35	RAB35	-0,26	0,981	0,695
15	Vesikelassoziiertes Membranprotein 2	P63027 VAMP2	VAMP2	-1,34	0,539	0,062
16	Vesikelassoziiertes Membranprotein 7	P51809 VAMP7	VAMP7	-0,54	0,879	0,280
17	Vesikelassoziiertes Membranprotein 3	Q15836 VAMP3	VAMP3	-0,19	0,970	0,556
18	Vesikelassoziiertes Membranprotein 8	Q9BV40 VAMP8	VAMP8	0,14	0,984	0,825
19	Syntaxin 10	O60499 STX10	STX10	-0,43	0,970	0,531
20	Syntaxin 4	Q12846 STX4	STX4	-0,45	0,970	0,505
21	Coatomer-Untereinheit Alpha	P53621 COPA	COPA	-0,11	0,984	0,710
22	Coatomer-Untereinheit Delta	P48444 COPD	ARCN1	-0,62	0,879	0,279
23	Coatomer-Untereinheit Epsilon	O14579 COPE	COPE	-0,45	0,937	0,355
24	Coatomer-Untereinheit Beta	P53618 COPB	COPB1	0,16	0,984	0,716
25	Coatomer-Untereinheit Gamma	Q9Y678 COPG	COPG	-0,02	1,000	0,970
26	Coatomer-Untereinheit Beta'	P35606 COPB2	COPB2	0,41	0,885	0,289
27	Coatomer-Untereinheit Zeta-1	P61923 COPZ1	COPZ1	0,02	1,000	0,958
28	GTP-Bindeprotein SAR1a	Q9NR31 SAR1A	SAR1A	-1,69	0,619	0,091
29	Sekretorisches Carrier- assoziiertes Membranprotein 2	O15127 SCAM2	SCAMP2	0,00	1,000	1,000
30	Protein-Transportprotein Sec23A	Q15436 SC23A	SEC23A	-0,26	0,970	0,536
31	Protein-Transportprotein Sec61, Untereinheit Beta	P60468 SC61B	SEC61B	-0,31	0,981	0,648
32	Signalpeptidase-Komplex, katalytische Untereinheit SEC11A	P67812 SC11A	SEC11A	-0,25	0,970	0,595
33	Protein-Transportprotein Sec24C	P53992 SC24C	SEC24C	-0,30	0,970	0,537
34	Protein-Transportprotein Sec31A	O94979 SC31A	SEC31A	-0,07	1,000	0,906
35	Protein-Transportprotein Sec61, Untereinheit Alpha, Isoform 1	P61619 S61A1	SEC61A1	0,33	0,970	0,538
36	Vesikel-Trafficking-Protein SEC22b	O75396 SC22B	SEC22B	-0,81	0,115	0,003
37	Protein ERGIC-53	P49257 LMAN1	LMAN1	-0,51	0,937	0,420

38	Vesikuläres Integral- Membranprotein VIP36	Q12907 LMAN2	LMAN2	-0,76	0,631	0,099
39	Lysosomenassoziiertes Membran-Glykoprotein 1	P11279 LAMP1	LAMP1	-0,27	0,937	0,515
40	Lysosomenassoziiertes Membran-Glykoprotein 2	P13473 LAMP2	LAMP2	-0,21	0,631	0,714
41	Synaptosomalassoziiertes Protein 23	O00161 SNP23	SNAP23	-0,32	0,981	0,645
42	Endoplasmatisches Retikulum- Golgi-intermediäres- Kompartimentprotein 1	Q969X5 ERGI1	ERGIC1	-1,38	0,433	0,036
43	Vakuolenprotein-sortierungs- assoziiertes Protein 35	Q96QK1 VPS35	VPS35	-0,15	0,984	0,818
44	Transferrin-Rezeptorprotein 1	P02786 TFR1	TFRC	0,03	1,000	0,916
45	Calmodulin	P62158 CALM	CALM1	0,34	0,960	0,449
46	Calreticulin	P27797 CALR	CALR	-0,24	0,970	0,556
47	Calnexin	P27824 CALX	CANX	-0,20	0969	0,483
48	Dynamin-2	P50570 DYN2	DNM2	0,43	0,937	0,417
49	V-Typ Proton-ATPase, Untereinheit G 1	O75348 VATG1	ATP6V1G1	0,65	0,937	0,413
50	V-Typ Proton-ATPase, Untereinheit E 1	P36543 VATE1	ATP6V1E1	0,16	0,984	0,811
51	EH-Domäne-enthaltendes Protein 2	Q9NZN4 EHD2	EHD2	-0,35	0,937	0,367
52	AP-2 Komplex, Untereinheit Beta	P63010 AP2B1	AP2B1	0,23	0,937	0,393
53	AP-2 Komplex, Untereinheit Alpha-1	O95782 AP2A1	AP2A1	0,48	0,748	0,153
54	ADP-Ribosylierungsfaktor 3	P61204 ARF3 (+1)	ARF3	-0,34	0,882	0,283
55	ADP-Ribosylierungsfaktor 4	P18085 ARF4	ARF4	-0,29	0,970	0,577
56	ADP-Ribosylierungsfaktor 6	P62330 ARF6	ARF6	-0,25	0,970	0,576
57	Transformierendes Protein RhoA	P61586 RHOA	RHOA	-0,66	0,638	0,104

Tab. 3.1.2: Über LC-MS² identifizierte humane Transportproteine der ER-SCV-Membranen. Es konnte eine Gesamtmenge von 57 humanen, endosomalen Transportproteinen in ER-SCV-Membranen identifiziert werden. Proteinnamen und GI-Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Synonym-Proteinnamen (festgesetzt über STRING) sind angegeben. Die logarithmische Verteilung der Signifikanzwerte (Log Ratio) mit zugehörigem nominalen und unbearbeiteten p-Wert sind aufgeführt. An- (> 0,20; grün), abgereicherte (< -0,20; rot) und unveränderte Proteine (-0,20-0,20; gelb) sind farblich hinterlegt. Inf = infiziert; Kon = Kontrolle. Tabelle in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Von den 51 signifikant unterschiedlich verteilten Faktoren aus Tab. 3.1.1 waren drei mit Transportprozessen assoziiert (RAB1A, RAB14 und SEC22B). Da sich die verwendeten Synonyme der Proteinnamen von den Datenbanken NCBI, UniProt und STRING zum Teil stark unterscheiden, wurden alle bekannten Synonyme in Tabelle 3.1.2 aufgeführt.

Die 57 Transportproteine wurden über eine Netzwerkanalyse mithilfe des Programmes STRING untersucht (s. Abb. 3.1.10). In einer vereinfachten Darstellung wurden die einzelnen Punkte, welche Proteine repräsentieren, entsprechend ihrer Verteilung in SCV-ER-Membranen (LC-MS², EdgeR Regulation > +/- 0,20 Log Ratio Inf/Kon, s. Tab. 3.1.2) farbig hinterlegt (grün = angereichert, rot = abgereichert, gelb = unverändert). Das resultierende Gesamtnetzwerk wurde anschließend in kleinere Unternetzwerke unterteilt (Recycling-,

Endosomaler, Exozytotischer, COPI-, COPII-, Clathrin-abgeleitete und ER-zu-Golgi-Transport), die zentrale intrazelluläre Transortprozesse abbilden.

Abb. 3.1.10: STRING-basierendes Proteinnetzwerk der humanen Transportproteine. Innerhalb des LC-MS²-Datensatzes konnten 57 humane Proteine endosomalen, retrograden und anterograden Transportwegen zugeordnet werden. Das über STRING erstellte Proteinnetzwerk zeigt alle bisher bekannten Protein-Protein-Interaktionen. Die in ER-SCV- und ER-Proben unterschiedlich verteilten Proteine sind entsprechend farblich markiert (s. Legende). Viele an- (grün) oder abgereicherte (rot) Proteine (EdgeR Regulation > +/- 0,20 Log Ratio Inf/Kon) und wenige unveränderte (gelb) waren in folgenden Unternetzwerken wiederzufinden: endosomaler, Recycling-endosomaler, exozytotischer, COPI-, COPII-, Clathrin-abgeleiteter und ER-zu-Golgi-Transport. Unternetzwerke wurden entsprechend der Legende farblich hinterlegt. COPI- und Clathrin-abgeleitete Proteine waren größtenteils unverändert bis angereichert, wohingegen COPII-, ER-zu-Golgi, endosomale und exozytotische Proteine größtenteils abgereichert vorlagen. Proteinnamen (festgelegt über UniProt und STRING). Inf = infiziert; Kon = Kontrolle. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Interessanterweise waren fast alle anterograden und endosomalen Transportproteine (COPII, ER-zu-Golgi, Exozytose) in ER-SCV-Membranen abgereichert, wohingegen der Großteil der retrograden Transportproteine (COPI, Clathrin) unverändert bis angereichert vorlag. Recycling-endosomale Transportproteine lagen in ER-SCV-Membranen unverändert oder abgereichert vor. Fünf Proteine besaßen keine bekannten Interaktionen zu den anderen (RAB18, RAB21, RAB31, RAB32 und RAB35).

Das Muster in der Proteinverteilung innerhalb der Unternetzwerke lässt die Vermutung zu, dass eine Veränderung von anterograden und retrograden Transportwegen mit einer *Sn*-Infektion in Epithelzellen einhergeht. Die Abreicherung von anterograden Transportproteinen würde dafür sprechen, dass ein Abtransport von Molekülen von ER-SCV-Membranen weg reduziert wird. Der retrograde Transport scheint dafür auf Clathrin-Vesikelebene verstärkt und auf COPI-Vesikelebene konstant gehalten zu werden, wodurch ein Hintransport von Molekülen zu ER-SCV-Membranen gewährleistet bzw. sogar verstärkt wäre.

Daraus resultiert, dass Transportprozesse, die zu ER-SCV-Membranen führen entsprechend modifiziert wären, wodurch eine direkte Versorgung der SCV mit z.B. Nährstoffen, Effektoren oder Metaboliten vorläge.

Eine Caveolin-abhängige Endozytose spielt bei der *Sn*-Infektion offenbar keine Rolle, da AGS Zellen (Caveolin-negativ) keine Unterschiede in *Sn*-Primär- und -Sekundärinfektionen zeigten (s. Abb. 3.1.11).

Abb. 3.1.11: Immunofluoreszenzaufnahmen *Simkania*-infizierter AGS Zellen. AGS Zellen wurden mit einer MOI 0,5 oder 2 infiziert und für drei Tage inkubiert (Primärinfektion). Anschließend wurden die Zellen aufgebrochen (MOI 0,5) und unbehandelte AGS oder HeLa229 Zellen mit dem Zellüberstand infiziert (1:25 oder unv.) oder der Überstand von unaufgebrochenen Zellen verwendet (ÜS) (drei Tage p.i. Sekundärinfektion, engl. *Progeny*). Die Zellen wurden fixiert, snGroEL-Cy3-DAPI gefärbt und an einem automatisierten Mikroskop (Leica DMIR) mikroskopiert. Nuklei wurden mit DAPI gefärbt (blau) und die SCV mit snGroEL-Cy3 (rot). Die zusammengesetzten Bilder (Überlagerung) zeigen die Verteilung von SCV/Nuklei. Phasenkontrastbilder zeigen die Zellmorphologie. SCV = *Simkania*-enthaltende Vakuole (engl. *Simkania-containing vacuole*); unv. = unverdünnt; ÜS = Überstand; p.i. = post-infiziert.

Bei einem Vergleich der 57 Transportproteine mit dem ER-SCV-Proteom aus THP1 Zellen (s. Masterarbeit, Elke Rieck) konnte ein Großteil der dargestellten Transportproteine wiedergefunden werden (51 Proteine, ausgenommen ARF3, EHD2, ERGIC1, SAR1A, SEC23A und VAMP2). Erste Voranalysen zeigen eine ähnliche Verteilung der einzelnen humanen Transportproteine. Proteine, die dieselbe veränderte Verteilung in HeLa229 als auch THP1 Zellen aufweisen, könnten demnach in verschiedenen Zelltypen oder global eine zentrale Rolle für die *Sn*-Infektion spielen.

Zusammenfassend konnte bisher gezeigt werden, dass sich mithilfe von LC-MS² und Immunoblots an- bzw. abgereicherte humane Proteine in ER-SCV-Membranen bestätigen lassen. Die Analysen von Transportproteinen zeigten darüber hinaus, dass es womöglich zu einem modifizierten Transport zur SCV kommt. Im folgenden Abschnitt wird die Beeinflussung von humanen Faktoren verschiedener Transportprozesse durch eine *Sn*-Infektion beschrieben.

3.1.5 Humane Proteine des retrograden und anterograden Transportes beeinflussen die Primär- und Sekundärinfektion von *Simkania*-infizierten Zellen

In Abschnitt 3.1.4 wurden diejenigen humanen Faktoren vorgestellt, die wahrscheinlich während der Infektion an ER-SCV-Membranen an- oder abgereichert werden bzw. deren Expression verändert wird. Zur Validierung der Bedeutung dieser Faktoren für eine erfolgreiche *Sn*-Infektion wurden RNA-Interferenzexperimente (RNAi) durchgeführt. Die Methode wurde anlehnend an für *C. trachomatis* etablierte Protokolle (Gurumurthy *et al.*, 2010) strukturiert (s. Abb. 3.1.12).

In einem RNAi-Screen wurde der Einfluss des knock-downs ausgewählter Faktoren durch jeweils zwei Einzel-siRNAs (s. Tab. 2.4) auf die Primärinfektion (HeLa229) in 96 Wellclusterplatten untersucht (s. Abb. 3.1.12 links) (s. Abschnitt 2.2.2.10). Dabei wurde ein breites Spektrum an Proteingruppen ausgewählt, die verschiedene intrazelluläre Transportprozesse regulieren. Neben potentiell an- oder abgereicherten Proteinen der ER-SCV-Membranen, wurden auch unveränderte und assoziierte Faktoren (nicht in LC-MS²-Datensatz) ausgewählt. Darunter fielen folgende 38 Proteine aus den funktionellen Gruppen: COPI (COPB1 und -E), COPII (SAR1A, SEC13, 23A, 24C und 31A), ER- und Golgi-Transportprozesse (ERGIC1, -53, MOGS, SEC22B, VIP36), anterograder Golgi-Vesikeltransport (STX4, VAMP2, -4 und -7), kleine GTPasen des Proteintransportes (RAB5A, -B. -8A, -11B, -14, -18 und -35) oder der Filamentausbildung (SEPT2), Signaltransduktionswege (CYC1, GEF2/ARHGEF2, OAS3 und RHOA), sowie der mitochondrienassoziierten Membran (MAM) (AMFR, BCAP31, DNM1L, GRP75, ITPR3, MFN2, PACS2, SCARB2, SIGMAR1 und VDAC1). Als Kontrolle dienten zwei neutrale siRNA-

85

Standards (Negative Control 1 und 2, s. Tab. 2.4), sowie nicht mit siRNA, aber mit Transfektionsagens (HiPerFect, HF) behandelte Zellen.

Der knock-down der Primärinfektion wurde für drei biologische Replikate untersucht. Dafür wurden snGroEL-Cy3-DAPI gefärbte Nuklei und *Simkania*-Vakuolen (s. Abschnitt 2.2.2.12.1) mithilfe eines automatisierten Epifluoreszenz-Mikroskops (Leica DMIR) mikroskopiert. Die mikroskopischen Aufnahmen wurden anschließend mithilfe von ImageJ analysiert, worüber die Anzahl der SCV/Zellkern (SCV/Nuk, Nuk = Nukleus), sowie die SCV-Gesamtfläche oder -Durchschnittsgröße ermittelt wurde. Die Ergebnisse wurden für zusammengehörige EinzelsiRNAs zusammengefasst (sechs biologische Replikate) und auf nicht mit siRNA, mit Transfektionsagens behandelte Zellen (HF –siRNA) normalisiert (s. Abb. 3.1.13).

Bei dem knock-down von allen COPII-assoziierten Faktoren konnte eine Zunahme bei den SCV/Zellkern-Zahlen und der SCV-Gesamtfläche beobachtet werden (~15-50 %), wobei für SAR1A und SEC24C zusätzlich eine leichte Zunahme der SCV-Durchschnittgröße identifiziert wurde (~5-15 %).

Bei dem knock-down von COPI-assoziierten Faktoren wurde nur für COPB1 eine leichte Reduktion für die SCV/Zellkern-Zahlen und die SCV-Durchschnittgröße ermittelt, wobei die SCV-Gesamtfläche um ca. 12 % abgenommen hat.

Abb. 3.1.13: Auswirkungen des knock-downs ausgewählter Wirtszellproteine auf die *Sn*-Primärinfektion. Von Leica DMIR ermittelten Mikroskopiebildern wurden die relativen Zahlen für SCV-Gesamtfläche/Zellkernzahl, SCV-Durchschnittsgröße und SCV-/Zellkernzahl für drei biologische Replikate (n = 3) über ImageJ ermittelt. Jeder Balken entspricht dem Mittelwert von drei Messungen für zwei Einzel-siRNAs (n = 6). Standardfehler sind für SCV-Durchschnittsgröße und SCV-/Zellkernzahl abgebildet. Dargestellt ist ein RNA-Interferenz- (RNAi) Screen von *Sn*-infizierten HeLa229 Zellen, die mit Einzel-siRNAs (Qiagen) transfiziert wurden. Als Kontrollen dienten ohne siRNA transfizierte Zellen oder mit neg con bzw. neg con 2 transfizierte Zellen.

Bei dem knock-down von ER- und Golgi-assoziierten Transportfaktoren waren größtenteils keine Veränderungen zu beobachten. Nur der knock-down von VIP36 ergab eine ca. 20 %ige Reduktion in der SCV-Durchschnittsgröße und SCV-Gesamtfläche bei einer Zunahme der SCV/Zellkern-Zahl um 20 %.

Bei dem knock-down von anterograden Golgi-Proteinen waren die Werte für den Faktor STX4 relativ unverändert, wohingegen bei knock-downs von VAMP-Proteinen eine Zunahme für die SCV-Durchschnittsgröße und SCV-Gesamtfläche (~10-20 %) ohne Zunahme der SCV/Zellkern-Zahl ermittelt wurde.

Der knock-down von Rab-Proteinen bewirkte eine unterschiedlich starke Zu-/Abnahme für die SCV/Zellkern-Zahlen und SCV-Durchschnittsgröße (Rab8A, -18, -14, -11B und -35 ~15-30 % Zunahme und RAB5B ~12 % Abnahme). Der knock-down von SEPT2 zeigte für die *Sn*-Infektion keinen Effekt.

Von den Signaltransduktionsfaktoren waren nur bei RHOA und CYC1 die Werte klar verändert. Der knock-down von RHOA und CYC1 zeigte zusammen mit dem COPII-Faktor SAR1A die stärksten Zunahmen für alle drei Messwerte (~20-98 %).

Bei dem knock-down von GEF2/ARHGEF2 konnte eine ca. 10 %ige Abnahme in der SCV-Gesamtfläche ermittelt werden.

Der knock-down der MAM-Proteine fiel für jeden Faktor unterschiedlich aus. Dabei konnte für den knock-down von SCARB2 oder VDAC1 eine Zunahme der SCV/Zellkern-Zahlen und der SCV-Gesamtfläche (20-35 %) und von AMFR, GRP75, BCAP31 und SIGMA1 eine Abnahme an der SCV-Durchschnittgröße und SCV-Gesamtfläche (~12-22 %) ermittelt werden.

Bei AMFR und BCAP31 nahm die SCV/Zellkern-Zahl um ca. 10 % zu, bei GRP75 und SIGMA1 um ca. 12 % ab.

Interessanterweise korrelierte der knock-down von COPI- und COPII-assoziierten (SAR1A, SEC23A, -24C, -31A, COPE und –B1) und anterograden Golgi-Faktoren (STX4, VAMP2 und -7), sowie RAB8A, -14, -35, und den signifikant verteilten Faktoren GEF2/ARHGEF2 oder VDAC1 während der *Sn*-Infektion mit den durch LC-MS² erhobenen Daten (s. Tab. 3.1.1-2) und dem STRING-Proteinnetzwerk (s. Abb. 3.1.10).

Zusammenfassend konnten mithilfe des RNAi-Screens erste transportassoziierte Faktoren, die einen Effekt auf die *Sn*-Infektion ausüben, identifiziert werden. Dabei entsprach die Verteilung der Werte bei einem Großteil der Faktoren den durch LC-MS² erhobenen Daten. Da der knock-down im 96 Well Maßstab nicht mithilfe von quantitativer Real-Time-PCR (qRT-PCR) oder Immunoblot bestätigt werden konnte, ist in der Abbildung 3.1.13 nur eine tendenzielle Verteilung der Werte dargestellt.

In weiteren RNAi-Experimenten wurde der knock-down für signifikant angereicherte (GEF2/ARHGEF2) und retrograde Transportproteine (AP2B1, COPB2, STX5) untersucht. Unter der Verwendung von gebündelten siRNAs, zusammengesetzt aus vier Einzel-siRNAs

(s. Tab. 2.5 und 2.6), wurde die *Sn*-Primärinfektion (s. Abb. 3.1.12 *Mitte*) untersucht. Die Zellkulturüberstände der Primär- wurden ebenfalls für die *Sn*-Sekundärinfektion (s. Abb. 3.1.12 *rechts*) getestet.

Die Effizienz des knock-downs wurde über Immunoblots quantifiziert (24 Wellclusterplatten) (s. Abb. 3.1.14). Mithilfe eines *Sn*-spezifischen GroEL-Antikörpers (snGroEL) konnte die Verteilung der Bakterienmenge in jeder Probe untersucht werden. Die über ImageJ ermittelten Signalintensitäten wurden auf die jeweilige ß-Aktin Ladekontrolle normalisiert. Ein neutraler siRNA-Standard diente als Kontrolle (s. Tab. 2.6).

Abb. 3.1.14: Immunoblotanalyse der Primär- und Sekundärinfektion aus siRNA transfizierten und Simkania-infizierten HeLa229 (drei Tage p.i.). HeLa229 Zellen wurden mit einer Endkonzentration von 10 nM der siRNAs transfiziert und 24 h später mit einer MOI 0.5 infiziert (zwei Tage p.i.) (Primärinfektion). Anschließend wurden die Zellen aufgebrochen und unbehandelte HeLa229 Zellen mit dem Kulturüberstand 1:10 infiziert (drei Tage p.i.) (Sekundärinfektion). Gesamtzelllysate von *Sn*-infizierten Zellen wurden miteinander verglichen (Grundsatzbeweis, n = 3). Anhand des snGroEL-Proteingehalts in Immunoblots wurde das bakterielle Wachstum in der Primärinfektion ermittelt. ß-Aktin diente als Ladekontrolle der Gesamtzelllysate. Con = Kontrolle, engl. *control*; p.i. = post-infiziert. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Bei Syntaxin 5 (STX5) handelt es sich um einen Faktor des retrograden ER-zu-Golgi-Transportes. STX5 tritt nicht in dem LC-MS²-Datensatz auf, wurde aber hinzugezogen, da es beim retrograden Transport und den Retro-Inhibitoren (s. Abschnitt 1.5.2) eine zentrale Rolle spielt. Er zählt zu der Familie der SNARE-Proteine und soll mit Proteinen wie NAPA, BET1L und USO1 interagieren (Rabouille *et al.*, 1998, Shorter *et al.*, 2002). Des Weiteren interagiert STX5 mit Retro-Inhibitoren wie Retro2 (s. Abschnitt 3.3) und soll für den frühen Endosomenzum-Golgi-Vesikeltransport eine zentrale Rolle spielen (Amessou *et al.*, 2007). Verglichen mit den anderen Faktoren, zeigte der STX5 knock-down nur in der Primärinfektion einen Effekt. Dabei konnte eine leichte Reduktion im snGroEL-Proteingehalt beobachtet werden (26 %).

Bei der AP-2 Komplex Untereinheit Beta (AP2B1) und der Coatomer-Untereinheit Beta' (COPB2) handelt es sich um potentiell in der ER-SCV-Membran angereicherte Proteine des retrograden Transportes, die im ER-SCV-Membran-Proteom identifiziert wurden (s. Abb.

3.1.10). Der siRNA knock-down zeigte bei COPB2 den stärksten Effekt. Dabei war sowohl in der Primär- als auch Sekundärinfektion eine relativ starke Abnahme des *Sn*-spezifischen GroEL-Signals bei der Primärinfektion zu beobachten (37 % und 34 %). Dies lässt auf eine geringere Vermehrung der Bakterien innerhalb der SCV schließen und einer eventuell reduzierten bakteriellen Infektivität.

Bei AP2B1 wurde eine leichte Abnahme in der Primärinfektion (13 %) und eine stärkere Abnahme in der Sekundärinfektion (27 %) beobachtet, was definitiv auf eine Reduktion der bakteriellen Infektivität rückschließen lässt.

GEF2/ARHGEF2 wurde im Abschnitt 3.1.4 bereits als signifikant angereicherter Faktor in ER-SCV-Membranen vorgestellt. Wider Erwarten zeigte der siRNA knock-down von GEF2/ARHGEF2 keine Veränderung in der Primärinfektion und eine leichte Zunahme des snGroEL-Signals in der Sekundärinfektion (12 %).

Parallel zu den Immunoblots wurde der knock-down von STX5, COPB2, AP2B1 und GEF2/ARHGEF2 über qRT-PCR (s. Abschnitte 2.2.3.2-4) bestätigt. Dafür wurde für jedes biologische Replikat die RNA aus nicht infizierten HeLa229 Zellen isoliert und mit der RNA von unbehandelten Kontrollzellen verglichen (12 Wellclusterplatten). Dabei wurden folgende knock-down Effizienzen ermittelt: AP2B1 (98 %), STX5 (96 %), COPB2 (86 %) und GEF2/ARHGEF2 (74 %).

Zusammenfassend konnte gezeigt werden, dass der siRNA knock-down von den retrograden Transportproteinen COPB2 (COPI) und AP2B1 (Clathrin) einen negativen Effekt für die *Sn*-Primär- als auch -Sekundärinfektion hatte. Damit korrelieren die RNAi-Daten mit der durch LC-MS² erhobenen Daten von Transportproteinen.

3.1.6 Potentielle, bakterielle ER-SCV-Membranproteine sind mit dem Typ3-Sekretionssystem und Inc-Proteinen assoziiert

Neben humanen Proteinen wurde das Vorhandensein von bakteriellen Proteinen in den zwei Proteomen von ER-SCV-Membranen und von *Sn*-Präparationen (s. Abschnitt 3.1.3) ermittelt (s. Rohdaten im Anhang, Tab. 3.1.3 und 3.1.4). Diese wurden miteinander verglichen, um mögliche SCV-spezifische Faktoren herauszufiltern. Zusätzlich wurden die bakteriellen SCV-assoziierten Proteine auf subzelluläre Lokalisation und eine Zugehörigkeit zu Typ3-, Typ4- und Sec-Sekretionssystemen (T3SS, T4SS, SecSS) untersucht, um mögliche infektionsrelevante Faktoren zu identifizieren.

Bei dem Vergleich der 302 bakteriellen SCV-Proteine mit dem *Sn*-Proteom wurden 13 Simkanien-Proteine herausgefiltert, die nur in den ER-SCV-Proben vorkamen (s. Tab. 3.1.5). Die übrigen 289 Proteine konnten alle im *Sn*-Proteom wiedergefunden werden.

#	Identifizierte Simkania- Proteine	Gen	Accession-Nummer	MGW (kDa)	Eigenschaften
1	30S ribosomal protein S19	rpsS, SNE_A21240	gi 338734019 ref YP_004672492.1	10	ribosomal
2	chorismate mutase	aroH2, SNE_A02140	gi 338732109 ref YP_004670582.1	13	SecS
3	hypothetical protein SNE_A01160	SNE_A01160	gi 338732012 ref YP_004670485.1	39	SecS
4	hypothetical protein SNE_A03210	SNE_A03210	gi 338732216 ref YP_004670689.1	13	"Inc"
5	hypothetical protein SNE_A03880	SNE_A03880	rev_gi 338732283 ref YP_004670756.1	183	"Inc"
6	hypothetical protein SNE_A04060	SNE_A04060	gi 338732301 ref YP_004670774.1	18	Typ3S, Mito, SecS
7	hypothetical protein SNE_A14320	SNE_A14320	gi 338733327 ref YP_004671800.1	100	-
8	hypothetical protein SNE_A20720	SNE_A20720	gi 338733967 ref YP_004672440.1	18	SecS
9	hypothetical protein SNE_A22650	SNE_A22650	gi 338734160 ref YP_004672633.1	64	"Inc"
10	hypothetical protein SNE_A23660	SNE_A23660	gi 338734261 ref YP_004672734.1	22	-
11	hypothetical protein SNE_B24340	SNE_B24340	gi 338731810 ref YP_004662929.1	58	-
12	MOMP_like family protein	SNE_A08820	gi 338732777 ref YP_004671250.1	46	Membran
13	pyridoxinepyridoxamine 5 phosphate oxidase	pdxH, SNE A06350	gi 338732530 ref YP_004671003.1	25	-

Tab. 3.1.5: *Simkania*-Proteine, die ausschließlich in ER-SCV-Membranen über LC-MS² identifiziert wurden. Bei dem Vergleich von 302 bakteriellen Proteinen aus ER-SCV-Membranen und 885 *Sn*-spezifischen Proteinen konnten 13 potentielle ER-SCV-Membranen-assoziierte Faktoren identifiziert werden. Protein- und Gennamen, GI-Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Molekulargewicht (MGW, kDa) sind angegeben. Mögliche Sec- oder Typ3-Sekretion (anlehnend an EffectiveT3) und von Mitochondrien importierte Proteine (SecS, Typ3S und Mito) sowie wahrscheinliche Funktionen sind unter Eigenschaften aufgelistet.

Mit großer Wahrscheinlichkeit handelt es sich hierbei um Proteine, die an die SCV-Membran sekretiert oder transportiert wurden, wo sie eine ähnliche Funktion wie bspw. Inc-Proteine bei der chlamydialen Inklusion spielen könnten.

Es wurden vorwiegend hypothetische Proteine identifiziert, zu deren Funktionen noch nichts Näheres bekannt ist. Insgesamt sind zwölf der proteinkodierenden Gene auf dem bakteriellen Chromosom (genomische DNA = SNE_A) und eines auf dem Megaplasmid lokalisiert (pSn = SNE_B). Das Megaplasmid scheint somit bei der SCV-Bildung eine Rolle zu spielen.

Das 30S ribosomale Protein S19 interagiert mit der 16S rRNA (Wiener and Brimacombe, 1987, Wiener *et al.*, 1988) und bildet dafür einen Komplex mit dem S13 Protein (Dijk *et al.*, 1977, Schwarzbauer and Craven, 1985, Pohl and Wittmann-Liebold, 1988). Des Weiteren bindet es Aminoacyl-tRNA an der ribosomalen A- (Lin *et al.*, 1984, Osswald *et al.*, 1995) und P-Seite (Rosen *et al.*, 1993), sowie IF3 (Boileau *et al.*, 1983). Bei dem 30S ribosomalen Protein S19 handelt es sich mit großer Wahrscheinlichkeit um eine bakterielle Verunreinigung.

Die Chorismat-Mutase (engl., *chorismate mutase*) dient zur Produktion von L-Tyrosin über den Shikimisäureweg. Dabei wird Chorismat zu Prephenat umgewandelt und dient als Vorstufe einer NAD⁺- und L-Glutamat-abhängigen Tyrosinsynthese (Zucko *et al.*, 2010). Der Shikimisäureweg scheint für das parasitäre Wachstum von Pathogenen wie bspw. *Toxoplasma gondii* und *Plasmodium falciparum* eine wichtige Rolle zu spielen und ist bei (Säuge-) Tieren nicht vertreten (Roberts *et al.*, 2002).

Das SNE_08820 Protein ist ein für *Sn* beschriebenes MOMP-ähnliches Protein (engl. *major outer membrane protein, MOMP-like family protein*). Zu seinen Funktionen ist noch nichts bekannt. Bei *C. trachomatis* stellen MOMPs immunodominante Oberflächenproteine dar, die auf der bakteriellen Zellwand präsentiert vorliegen und damit als Antigen zur Serotypisierung genutzt werden können (Caldwell and Perry, 1982, Zhang *et al.*, 1987, Yuan *et al.*, 1989, Zhang *et al.*, 1989). Bei *C. pneumoniae* werden MOMPs wahrscheinlich nicht auf der Oberfläche präsentiert, da sie immunorezessiv (Campbell *et al.*, 1990a, Campbell *et al.*, 1990b) und damit nicht zur Serotypisierung geeignet sind.

Die Pyridoxin/Pyridoxamin-5-Phosphat Oxidase ist ein Flavin-bindendes Enzym des Vitamin-B6-Metabolismus (Musayev *et al.*, 2003). Sie scheint dabei für den mikrobiellen Metabolismus zur Besiedlung verschiedenster Habitate eine Rolle zu spielen.

Bei dem hypothetischen Protein SNE_A04060 konnte als einziges eine wahrscheinliche Typ3-Sekretions-, sowie eine mögliche Sec-Sekretionssequenz nachgewiesen werden, was ein Abgleich mit der Datenbank Effector.org 3.0 ergab. Eine Untersuchung zur subzellulären Lokalisation mit der Datenbank TargetP 1.1 (Emanuelsson *et al.*, 2000) ergab, dass dieses Protein eine Signatur für einen Mitochondrium-Import trägt.

Bei den hypothetischen Proteinen, für die noch keine Eigenschaft bekannt ist, könnte es sich aufgrund ihrer geringen Größe trotzdem um sekretierte Faktoren handeln. Eine weiterführende Methode zur Charakterisierung von Sekretionssequenzen muss hierfür noch gefunden werden.

Eine wahrscheinliche Sec-Sekretionssequenz wurde auch bei der Chorismat-Mutase, SNE_A01160 und SNE_A20720 identifiziert. Bei SNE_A03210, SNE_A03880 und SNE_A22650 konnte sogar eine mögliche Zugehörigkeit zu Inc-Proteinen ermittelt werden. Inc-Proteine werden den Typ3-Effektorproteinen zugeordnet und fungieren in Fusionsprozessen von chlamydialen Inklusionen, Interaktionen mit Wirtsproteinen, Veränderungen der Wirtszytokine und der Inhibierung der zellulären Apoptose-Aktivierung über NFkB (Hackstadt et al., 1999; Delevoye et al., 2004; Cortes et al., 2007; Alzanov et al., 2009; Wolf et al., 2009). Es wird vermutet, dass nicht nur Chlamydien (Beeckman and Vanrompay, 2010), sondern auch Waddlien oder Simkanien Inc-Proteine in die PVM einbauen. Für Simkanien werden funktionshomologe Proteine vermutet, wobei sich die *Sn*-assoziierten wahrscheinlich von Chlamydien-assoziierten Inc-Proteinen, aufgrund ihrer hohen Spezies-Spezifität, unterscheiden. *Sn* Inc-Proteine können anhand von folgenden Kriterien prognostiziert werden (Collingro *et al.*, 2011): (1) hypothetisches Protein, (2) kein Sec-Signal und (3) zwei-blättrige hydrophobe Domäne. Innerhalb des ER-SCV-Proteoms konnten dabei 23 von 41 für *Sn* beschriebenen (Collingro *et al.*, 2011), potentiellen Inc-Faktoren nachgewiesen werden (s. Tab. 3.1.6).

#	Identifizierte <i>Simkania</i> - Proteine	Accession-Nummer	MGW (kDa)	Inf 1	Inf 2	Inf 3	Subzelluläre Lokalisation	Typ3S
1	hypothetical protein SNE_A03210	gi 338732216 ref YP_004670689.1	13	1	3	0	Nicht bekannt	-
2	hypothetical protein SNE A03880	rev_gi 338732283 ref YP_004670756.1	183	2	1	0	Nicht bekannt	-
3	hypothetical protein SNE_A03990	gi 338732294 ref YP_004670767.1	21	9	1	4	Nicht bekannt	-
4	hypothetical protein SNE_A04070	gi 338732302 ref YP_004670775.1	31	5	6	2	Nicht bekannt	+
5	hypothetical protein SNE_A05010	gi 338732396 ref YP_004670869.1	121	50	19	24	Nicht bekannt	-
6	hypothetical protein SNE_A05430	gi 338732438 ref YP_004670911.1	46	13	10	11	Nicht bekannt	-
7	hypothetical protein SNE_A05480	gi 338732443 ref YP_004670916.1	40	6	8	4	Nicht bekannt	-
8	hypothetical protein SNE_A05510	gi 338732446 ref YP_004670919.1	74	28	20	23	Nicht bekannt	-
9	hypothetical protein SNE_A08130	gi 338732708 ref YP_004671181.1	33	6	3	4	Nicht bekannt	-
10	hypothetical protein SNE_A08410	gi 338732736 ref YP 004671209.1	39	4	0	7	Nicht bekannt	-
11	hypothetical protein SNE_A08770		31	2	0	0	Nicht bekannt	-
12	hypothetical protein SNE_A09960	gi 338732891 ref YP_004671364.1	30	7	0	0	Nicht bekannt	-
13	hypothetical protein SNE_A10910		38	2	0	4	Nicht bekannt	-
14	hypothetical protein SNE_A10930	gi 338732988 ref YP_004671461.1	38	3	3	4	Nicht bekannt	-
15	hypothetical protein SNE_A11500		15	3	3	2	Nicht bekannt	-
16	hypothetical protein SNE_A14220	gi 338733317 ref YP 004671790.11	46	5	1	6	Nicht bekannt	-
17	hypothetical protein SNE_A14450	gi 338733340 ref YP_004671813.1	18	5	4	2	Nicht bekannt	-
18	hypothetical protein SNE_A14830	gi 338733378 ref YP_004671851.11	52	4	9	13	Nicht bekannt	-
19	hypothetical protein SNE_A22640	gi 338734159 ref YP_004672632_1	64	82	36	73	Nicht bekannt	+
20	hypothetical protein SNE_A22650	gi 338734160 ref YP_004672633.11	64	2	3	0	Nicht bekannt	-
21	hypothetical protein SNE A22660	gi 338734161 ref YP_004672634_1	65	2	0	3	Nicht bekannt	-
22	hypothetical protein SNE_A22670	gi 338734162 ref YP_004672635_1	64	2	0	0	Nicht bekannt	-
23	hypothetical protein SNE_A22910	gi 338734186 ref YP_004672659.1	171	2	1	0	Nicht bekannt	-

Tab. 3.1.6: Potentielle *Simkania* Inc-Proteinen, die über LC-MS² identifiziert wurden. Unter 302 bakteriellen Proteinen von ER-SCV-Membranen wurden 23 potentielle Inc-Proteine identifiziert. Proteinnamen, GI-Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Molekulargewicht (MGW, kDa) sind angegeben. Die Gesamtzahl der bestimmten Spektren (engl. *total number of assigned spectra*) und ihr Vorkommen in drei infizierten Proben ist aufgelistet. Subzelluläre Lokalisationen (festgesetzte über UniProt) sind angegeben. Mögliche Typ3-sekretierte Proteine (Typ3S) sind mit einem (+) markiert (anlehnend an EffectiveT3).

Dabei wurden die drei hypothetischen ,Inc'-Proteine SNE_03210, SNE_03880 und SNE_22650 bereits als SCV-Membran-assoziiert vorgestellt (s. Tab. 3.1.5). Zwei weitere potentielle Inc-Proteine besitzen ein Typ3-Sekretionssignal (SNE_A04070, SNE_A22640). Über den Vergleich der 23 potentiellen Inc-Proteine von *Sn* mit bekannten zur Inklusion sekretierten *Chlamydiaceae* Faktoren wurde für den Faktor SNE_A11500 nachgewiesen, dass es sich um ein Typ3-Effektorprotein handelt (*C. trachomatis* Homolog = CT009) (Collingro *et al.*, 2011, Tabelle S2).

In den Proteomen von ER-SCV-Membranen und von *Sn*-Präparationen wurden Bestandteile der Typ3-Sekretionsmaschinerie und potentielle Effektoren (ohne Inc-Protein Prognose) nachgewiesen (s. Tab. 3.1.7 und 3.1.8). Interessanterweise konnten 12 Faktoren des Typ3-Sekretionsapparates im ER-SCV- und/oder *Sn*-Proteom wiedergefunden werden (s. Tab. 3.1.7). Orthologe Gene von *Sn* tragen dieselben Namen wie die entsprechenden Bestandteile des T3SS von Yersinien (ww.kegg.jp) (Cornelis, 2000). Bei dem Vergleich der Simkanien-Proteine mit dem Typ3-Sekretionsapparat von *Yersinia* (Peters *et al.*, 2007) zeigte sich, dass es sich bei SctQ um das Basiselement handelt. SctN fungiert als ATPase und SctL als ATPase-Inhibitor. SctJ stellt ein periplasmatisches Lipoprotein dar, welches den periplasmatischen Raum durchspannt. SctD wird zum Ringteil der inneren Membran und SctC zum Ringteil der äußeren Membran zugeordnet. SctR und SctV stellen integrale Proteine der inneren Membran dar, welche eine multiple Transmembrandomäne aufweisen.

Der negative Regulator SctW scheint universal in *Chlamydiales*-Stämmen vertreten zu sein, die ein vollständiges T3SS besitzen, wird jedoch zu den sekretierten Effektorproteinen gezählt (Collingro *et al.*, 2011). Des Weiteren wurden die Typ3S-Chaperone SctE, SctG und SctO identifiziert, welche homolog zu CT665, CT667 und CT670 von *C. trachomatis* (*Ctr*) sind. Sechs von den 12 vorgestellten Typ3-Strukturproteinen wurden neben dem Proteom von *Sn*-Präparationen zusätzlich im Proteom von ER-SCV-Membranen identifiziert.

#	Identifizierte Simkania-Proteine	Accession- Nummer	MGW (kDa)	Inf 1	Inf 2	Inf 3	Lok.	Chromosom- Lokus	Gen-Lokus	Gen- name
1	putative flagellar	gi 338733900 ref	44	12	1	1	SCV	2082622-	SNE_A20050	SctQ-B
	motor switch protein	YP_004672373.1		26	23	10	Sn	2083800		
2	type III secretion	gi 338732186 ref	24	4	0	0	SCV	293085-	SNE_A02910,	SctL
	ATPase inhibitor	YP_004670659.1		15	13	7	Sn	293711	cdsL	
3	type III secretion	gi 338732188 ref	35	3	3	9	SCV	294580-	SNE_A02930,	SctJ
	periplasmic lipoprotein	YP_004670661.1		40	35	15	Sn	295533	cdsJ	
4	negative regulator	gi 338733662 ref	46	2	0	0	SCV	1841407-	SNE_A17670,	SctW
	of type III secretion	YP_004672135.1		10	8	5	Sn	1842594	copN	
5	type III secretion	gi 338733889 ref	64	3	0	3	SCV	2072766-	SNE_A19940,	SctD
	integral inner membrane ring protein	YP_004672362.1		43	43	18	Sn	2074511	cdsD	
6	putative SctF	gi 338733893 ref	16	12	6	5	SCV	2075159-	SNE_A19980	SctG-B
	chaperone SctG	YP_004672366.1		59	67	39	Sn	2075587		

7	type III secretion integral inner membrane protein	gi 338732185 ref YP_004670658.1	32	4	4	3	Sn	292214- 293080	SNE_A02900, cdsR	SctR
8	type III secretion outer membrane ring component	gi 338732950 ref YP_004671423.1	64	3	4	3	Sn	1092703- 1094412	SNE_A10550, cdsC	SctC-A
9	type III secretion integral inner membrane protein	gi 338733660 ref YP_004672133.1	78	24	18	7	Sn	1837416- 1839542	SNE_A17650, cdsV	SctV
10	type III secretion needle formation regulating protein	gi 338733890 ref YP_004672363.1	9	3	11	11	Sn	2074545- 2074772	SNE_A19950, cdsE	SctE
11	type III secretion ATPase	gi 338733895 ref YP_004672368.1	68	0	4	3	Sn	2076304- 2078082	SNE_A20000, cdsN	SctN
12	type III secretion chaperone	gi 338733896 ref YP_004672369.1	48	40	16	1	Sn	2078158- 2079474	SNE_A20010, cdsO	SctO

Tab. 3.1.7: Proteinkomponenten des Simkania Typ3-Sekretionsapparates, die über LC-MS² identifiziert wurden. 302 bakterielle ER-SCV-Membranproteine und 885 *Sn*-spezifische Proteine wurden mit der Datenbank EffectiveT3 untersucht. Es konnten insgesamt 12 Faktoren des Typ3-Sekretionsapparates (Chromosom kodiert) identifiziert werden. Proteinnamen, GI-Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Molekulargewicht (MGW, kDa) sind angegeben. Die Gesamtzahl der bestimmten Spektren (engl. *total number of assigned spectra*) von drei infizierten Proben und ihr Vorkommen im ER-SCV (SCV) bzw. *Sn*-Proteom (Lok. = Lokalisation) sind aufgelistet. Dazugehörige Chromosom- und Gen-Loki sowie Gennamen (festgesetzt über NCBI) sind benannt. Sct = engl. *secretion protein*.

Der Vergleich der identifizierten Faktoren mit der simkanialen Genorganisation des T3SSs, anlehnend an Collingro und Kollegen, ist in Abbildung 3.1.15 vereinfacht dargestellt (Collingro *et al.*, 2011). Dabei konnte keine erkennbare Zentrierung auf einen bestimmten Gen-Cluster Bereich festgestellt werden.

Entsprechend dem T3SS von *Ctr* sind auch bei *Sn* die Gene des Typ3-Sekretionssystems in multiplen Regionen über das ganze Genom verstreut. Interessant war jedoch, dass mehrere Komponenten aus den drei zentralen Gen-Loki SctJT (R, L und J), SctNQ (C-A, D, E, G-B, N, O und Q-B) und SctVU (V und W) vertreten waren. SctT, S, U und C sowie Pkn5 fehlten in beiden Proteomdatensätzen.

Mithilfe der Datenbank EffectiveT3 konnten zehn potentielle Effektorproteine des T3SSs innerhalb der Proteomdatensätze von ER-SCV-Membranen und von *Sn*-Präparationen ermittelt werden (s. Tab. 3.1.8). Darunter waren zwei hypothetische Proteine ausschließlich in den SCV-Proben (SNE_A04060, SNE_A04070) und die ATP-abhängige DNA-Helikase ruvB nur in den *Sn*-Proben wiederzufinden. Für alle Faktoren wurde eine Typ3-Sekretion

prognostiziert, wobei die drei Effektoren SNE_A04060, SNE_A08990 und SNE_A22630 eine weitere Sec-Sekretionssequenz aufweisen.

#	Identifizierte S <i>imkania-</i> Proteine	Accession- Nummer	MGW (kDa)	Sec sekr.	Signal P NN score	SignalP NN Klass.	SignalP HMM score	SignalP HMM Klass.	T3 sekr.	T3 Score	Lokalisa- tion
1	hypothetical protein SNE_A04060	gi 338732301 ref YP_004670774.1	44	+	0.503	+	0.325	-	+	1	SCV
2	hypothetical protein SNE_A04070	gi 338732302 ref YP_004670775.1	24	-	0	-	0	-	+	1	SCV
3	hypothetical protein SNE_A08990	gi 338732794 ref YP_004671267.1	35	+	0.617	+	0	-	+	1	SCV, Sn
4	putative flagellar motor switch protein SNE_A20050	gi 338733900 ref YP_004672373.1	44	-	-	-	0	-	+	0.95790	SCV, Sn
5	hypothetical protein SNE_A17030	gi 338733598 ref YP_004672071.1	46	-	0	-	0	-	+	1	SCV, Sn
6	hypothetical protein SNE_A22630	gi 338734158 ref YP_004672631.1	64	+	0.534	+	0.985	+	+	1	SCV, Sn
7	hypothetical protein SNE_A22640	gi 338734159 ref YP_004672632.1	16	-	0	-	0	-	+	0.99991	SCV, Sn
8	hypothetical protein SNE_A23080	gi 338734203 ref YP_004672676.1	120	-	0	-	0	-	+	0.99992	SCV, Sn
9	ribonucleoside- diphosphate reductase subunit alpha	gi 338733551 ref YP_004672024.1	124	-	0	-	0	-	+	1	SCV, Sn
10	holliday junction ATP-dependent DNA helicase ruvB	gi 338733346 ref YP_004671819.1	28	-	0	-	0	-	+	1	Sn

Tab. 3.1.8: Potentiell sekretierte *Simkania* T3SS Effektoren, die über LC-MS² identifiziert wurden. Bei dem Vergleich von 302 bakteriellen ER-SCV-Membranproteinen und 885 *Sn*-spezifischen Proteinen mit EffectiveT3 konnten insgesamt 10 potentielle Typ3-sekretierte Faktoren identifiziert werden. Proteinnamen, GI-Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Molekulargewicht (MGW, kDa) sind angegeben. Das Vorkommen von Proteinen im ER-SCV (SCV) und/oder *Sn*-Proteom (*Sn*) sind aufgelistet (Lokalisation). Die über EffectiveT3 prognostizierte Sec-/Typ3-Sekretion ist aufgeführt. Dazugehörige Werte von Signalpeptid Vorhersage Modellen sind aufgelistet: SignalP-NN score (Neural Network Modell, Wertung für Signalpeptide-Diskriminierungsverhalten von sekretorischen zu nicht sekretorischen Proteinen), SignalP HMM (Hidden Markov Modell, Wertung für Signalpeptide-kalkulierte Wahrscheinlichkeit zum Vorhandensein eines Signalproteins), Typ3 Score (Wertung für wahrscheinliche Typ3-Sekretion) oder (+) ja / (-) nein Klassifizierung. Klass. = Klassifikation; sek. = sekretiert.

Das *putative flagellar motor switch protein* SNE_A20050 wurde bereits in Tabelle 1.3.7 vorgestellt und wird anlehnend an Genannotationen eher zum Typ3-Sekretionsapparat gezählt. SNE_A04060 tauchte bereits in Tabelle 3.1.5 auf und zählt damit zu den potentiell SCV-spezifischen Faktoren. SNE_A04070 und SNE_A22640 wurden bereits in Tabelle 3.1.6 als mögliche Inc-Proteine vorgestellt.

Die Untersuchung der 302 bakteriellen ER-SCV-Membranproteine (s. Rohdaten im Anhang, Tab. 3.1.3) ergab, dass 16 % einen ribosomalen, 11 % einen zytosolischen und 9 % einen

Membran-Ursprung haben. Bei 64 % ist jedoch noch nichts Näheres bekannt (davon 41 % hypothetische Proteine). Von den 302 Proteinen waren ca. 20 % mit dem T3SS, T4SS oder dem SecSS assoziiert.

Es konnten drei mögliche Typ4-sekretierte Proteine (chromosomaler Gen-Lokus) im Proteom von *Sn*-Präparationen identifiziert werden, für die eine Rolle in DNA-, Nukleotid- Bindung und Reparatur prognostiziert wird und die potentiell Sec-sekretiert sind (s. Tab. 3.1.9).

#	Identifizierte S <i>imkania-</i> Proteine	Accession- Nummer	MGW (kDa)	Typ4S	Chromosom- Lokus	Gen-Lokus	Gen- name	Vorherge- sagte Funktion
1	General secretion pathway protein E	gi 338731996 ref YP 004670469.1I	59	+	116833-	SNE_A01000 epsE	TraJ-I	ATP-, DNA- Bindung
2	DNA translocase ftsK	gi 338732452 ref YP_004670925.1	85	+	589801- 592086	SNE_A05570 ftsK	ТсрА	ATP-, DNA-, Nukleotid- Bindung
3	Hypothetical protein SNE_A07690	gi 338732664 ref YP_004671137.1	83	+	803620- 805815	SNE_A07690 yrrC	Tral_F	DNA-Bindung/ - Reparatur

Tab. 3.1.9: *Simkania* **Typ4-sekretierte Proteine, die über LC-MS² identifiziert wurden.** Bei dem Vergleich von 302 bakteriellen Proteinen in ER-SCV-Membranen (s. Tab. 3.1.3, Anhang) und 885 *Sn*-spezifischen Proteinen (s. Tab. 3.1.4, Anhang) mit dem Programm SecReT4 konnten insgesamt drei Typ4-sekretierte Faktoren prognostiziert werden. Diese waren nur in aufgereinigten Simkanien, aber nicht in ER-SCV-Membranen vorhanden. Proteinnamen, GI-Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Molekulargewicht (MGW, kDa) sind angegeben. Dazugehörige Chromosom- und Gen-Loki, sowie Gennamen (festgesetzt über NCBI und SecReT4) sind benannt.

Bei SNE_A01000 handelt es sich um ein Protein, das über NCBI und UniProt unter dem Gennamen epsE und über SecReT4 unter TraJ-I geführt wird.

SNE_05570 wird über KEGG und UniProt unter dem Gennamen ftsK und über SecReT4 unter TcpA geführt.

SNE_A07690 wird über KEGG unter dem Gennamen yrrC und über SecReT4 unter Tral-F geführt. Unter KEGG Orthologie wird dem Protein eine biologische Funktion bei Replikation,

Reparatur und homologer Rekombination zugesprochen sowie einer Hydrolaseaktivität. Laut STRING soll es mit dem Makrophagen-spezifischen Protein MIP-a interagieren.

Von 14 Vertretern der beschriebenen *Sn*-Plasmid kodierten Strukturproteine des Typ4-Sekretionsapparates wurden keine in den Proteomen von ER-SCV-Membranen oder *Sn*-Präparaten detektiert.

Von 28 annotierten Membran-Proteinen der ER-SCV-Proben (s. Tab. 3.1.10) war keines mit dem T3SS oder T4SS assoziiert. Einzig das SecDF-Protein kann dem SecSS zugeordnet werden.

Neben vorwiegend MOMP-ähnlichen Proteinen wurden die Metalloendopeptidase OMA1, das Peptidoglykan-assoziierte Lipoprotein, das SecDF-Protein, sowie das äußere Membranprotein Omp85 identifiziert.

OMA1 zählt zu Metalloproteasen mit wahrscheinlicher Hydrolaseaktivität. Das menschliche OMA1 ist Teil des Qualitätskontrollsystems der inneren Mitochondrienmembran (Head *et al.*, 2009) (UniProt). Das bakterielle Ortholog von OMA1 wird den Stress-induzierbaren Proteinen zugeordnet (Sakoh *et al.*, 2005).

#	Identifizierte Proteine	Accession Nummer	MGW (kDa)	Inf 1	Inf 2	Inf 3	Subzelluläre Lokalisation
1	metalloendopeptidase OMA1	gi 338732436 ref YP_004670909.1	40	3	1	2	Membran
2	MOMP_like family protein	gi 338732404 ref YP_004670877.1	47	43	20	30	Membran
3	MOMP_like family protein	gi 338732777 ref YP_004671250.1	46	3	1	3	Membran
4	MOMP_like family protein	gi 338732173 ref YP_004670646.1	45	205	57	112	Membran
5	MOMP_like family protein	gi 338732639 ref YP_004671112.1	45	47	17	37	Membran
6	MOMP_like family protein	gi 338734236 ref YP_004672709.1	43	96	31	68	Membran
7	MOMP_like family protein	gi 338734237 ref YP_004672710.1	43	55	14	36	Membran
8	MOMP_like family protein	gi 338732181 ref YP_004670654.1	43	8	3	5	Membran
9	MOMP_like family protein	gi 338733489 ref YP_004671962.1	43	14	1	0	Membran
10	MOMP_like family protein	gi 338732638 ref YP_004671111.1	42	29	10	12	Membran
11	MOMP_like family protein	gi 338733380 ref YP_004671853.1	42	4	3	3	Membran
12	MOMP_like family protein	gi 338732182 ref YP_004670655.1	42	6	0	0	Membran
13	MOMP_like family protein	gi 338734234 ref YP_004672707.1	42	4	0	0	Membran
14	MOMP_like family protein	gi 338733966 ref YP_004672439.1	41	75	19	52	Membran
15	MOMP_like family protein	gi 338732690 ref YP_004671163.1	41	8	4	3	Membran
16	MOMP_like family protein	gi 338732896 ref YP_004671369.1	41	5	2	0	Membran
17	MOMP_like family protein	gi 338732101 ref YP_004670574.1	41	6	1	0	Membran
18	MOMP_like family protein	gi 338733381 ref YP_004671854.1	40	13	5	14	Membran
19	MOMP_like family protein	gi 338732701 ref YP_004671174.1	40	11	0	1	Membran
20	MOMP_like family protein	gi 338732179 ref YP_004670652.1	40	2	0	0	Membran
21	MOMP_like family protein	gi 338732121 ref YP_004670594.1	37	20	6	5	Membran
22	MOMP_like family protein	gi 338732175 ref YP_004670648.1	25	94	37	80	Membran
23	MOMP_like family protein	gi 338732774 ref YP_004671247.1	21	7	4	9	Membran
24	MOMP_like family protein	gi 338732773 ref YP_004671246.1	18	7	2	1	Membran
25	MOMP_like family protein	gi 338732176 ref YP_004670649.1	15	40	16	25	Membran
26	peptidoglycan_associated lipoprotein	gi 338732020 ref YP_004670493.1	26	3	1	5	Äußere/Plasma Membran
27	putative bifunctional preprotein translocase subunit SecDSecF	gi 338734080 ref YP_004672553.1	171	17	3	13	Integrale Membran
28	putative outer membrane protein Omp85	gi 338732712 ref YP_004671185.1	91	15	1	4	Membran

Tab. 3.1.10: *Simkania* **Membranproteine, die über LC-MS² identifiziert wurden.** Proteinnamen, GI-Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Molekulargewicht (MGW, kDa) sind angegeben. Die Gesamtzahl der bestimmten Spektren (engl. *total number of assigned spectra*) von drei infizierten Proben und ihr Vorkommen im ER-SCV-Proteom sind aufgelistet. Subzelluläre Lokalisationen (festgesetzt über UniProt) sind angegeben.

Das Peptidoglykan-assoziierte Lipoprotein (LPS) ist, soweit bekannt, in der äußeren Membran von Gram-negativen Bakterien verankert. Es interagiert dabei mit Tol-Proteinen, um Komplexe zu bilden, die für die Pathogenität, das Überleben und die Virulenz der Bakterien essentiell zu sein scheinen (Godlewska *et al.*, 2009).

SecDF ist ein Fusionsprotein, zusammengesetzt aus den Untereinheiten SecD und SecF, und zählt zum Translokase- oder auch multimeren Proteinexport-Komplex bei Prokaryoten (SecSS). Es liegt bei *Bacillus subtilis* auch als Polypeptid vor, wohingegen bei *Escherichia coli*

die seperaten Untereinheiten SecD und SecF vorkommen. Über das SecSS sind Gramnegative und -positive Bakterien in der Lage, Proteine über die bakterielle Zytoplasmamembran zu sekretieren (Bolhuis *et al.*, 1998).

Omp85 ist maßgeblich an der Insertion von Lipiden und integralen Proteinen in die äußere Membran von Gram-negativen Bakterien, wie bspw. *Neisseria meningitidis*, beteiligt (Voulhoux *et al.*, 2003). Komparative Sequenzanalysen lassen vermuten, dass Omp85-Homologe in allen Bakterien mit einer äußeren Membran existieren und dass die Familie der Omp85-Proteine auch in der äußeren mitochondrialen Membran von Pflanzen und dem Menschen wiederzufinden sind (Gentle *et al.*, 2004).

Im ER-SCV-Proteom aus THP1 Zellen (s. Elke Riecks Masterarbeit) konnte nur ein potentielles SCV-Membran-assoziiertes Protein, das hypothetische Protein SNE_A22650, herausgefiltert werden (von insg. 112 identifizierten bakteriellen Proteinen aus ER-SCV-Membranen). SNE_A22650 trat bereits im ER-SCV-Proteom aus HeLa Zellen als potentielles SCV-Membran-assoziiertes Protein auf (s. Tab. 3.1.5).

Ca. 50 % der potentiellen *Sn* Inc-Proteine aus Tabelle 3.1.6 wurden auch im THP1-Proteom wiedergefunden (SNE_A03990, _A05010, _A05430, _A05480, _A05510, _A08130, _A10930, _A11500, _A14220, _A14830, _A22650, _A22660 und _A22670).

Von den Typ3-Strukturproteinen (s. Tab. 3.1.7) wurden zwei Faktoren (SctL (SNE_A02910) und SctN (SNE_A20000)) und von den potentiellen Typ3-sekretierten Proteinen (s. Tab. 3.1.8) zwei hypothetische, potentiell Sec-sekretierte Proteine (SNE_A08990 und SNE_A22630) wiedergefunden. Es konnten keine bekannten Faktoren des T4SS ermittelt werden.

Von den bakteriellen Membranproteinen wurden ca. 50 % der im ER-SCV-Proteom aus HeLa229 Zellen vorgestellten Faktoren (# 2, 4, 5, 6, 7, 8, 10, 14, 18, 22, 25, 26, 28) auch im THP1-Proteom gefunden (s. Tab. 3.1.10).

Schließlich wurden die 302 bakteriellen ER-SCV-Membranproteine mit bekannten Faktoren von Chlamydien und Chlamydia-ähnlichen Organismen anlehnend an die Arbeit von Collingro und Kollegen (Collingro et al., 2011) verglichen. Dabei konnten einzelne Proteine beschriebener Simkania-spezifischer (SNE A22630, SNE A09010, SNE A08620, SNE_A12180, SNE_A22920, SNE_A17530 und SNE_A11710), als auch Chlamydiaespezifischer Proteine (SNE A05070, SNE A21040, SNE A11500 und SNE A06020) zugeordnet werden. Des Weiteren wurden Proteine des konjugativen Megaplasmids (pSn) (SNE_B23850, SNE_B23910, SNE_B24300 und SNE_B24340) oder Proteine mit einer eukaryotischen Domäne (SNE A14320) identifiziert. Beschriebene Chlamydiaceae-Virulenzfaktoren oder Faktoren des äußeren Membrankomplexes und der LPS-Biosynthese konnten auch ermittelt werden. Diese sind zum Teil auch in Waddlia chondrophila, Parachlamydia acanthamoebae und Protochlamydia amoebophila präsent (SNE A17680, SNE A14370, SNE A00480, SNE B24980, SNE A21670, SNE B25030, SNE A00230,

99

SNE_A17670, SNE_A07850, SNE_A22590, SNE_A05870, SNE_A07850, SNE_A22590, SNE_A05870, SNE_A07850, SNE_A22590, SNE_A05870, SNE_A05290, SNE_A05330, SNE_A03310, SNE_B24980, Peptidoglykan-assoziiertes Lipoprotein oder ADP-Heptose-LPS-heptosyl-Transferase 2).

3.2 Charakterisierung von infektionsassoziierten Lipiden in Lipidomanalysen der *Simkania*-Vakuole

Chlamydien benötigen für eine erfolgreiche Entwicklung der Inklusion und ihre Vermehrung Lipide, die über die Wirtszelle in Form von Vesikeln akquiriert werden (Hackstadt *et al.*, 1995, Beatty, 2006, Cocchiaro and Valdivia, 2009). Durch ihr Einwirken auf mehrere Transportwege der Wirtszelle beeinflussen Chlamydien dabei aktiv die Art und Verteilung der zellulären Lipide (Wylie *et al.*, 1997, Hatch and McClarty, 1998). Im folgenden Abschnitt dieser Arbeit wird beschrieben, dass sich während einer *Sn*-Infektion die intrazelluläre Lipidverteilung verändert. Dabei scheint es zu einer verstärkten Synthese oder sogar Neusynthese von humanen und/oder bakteriellen Lipiden wie Cholesterol-ß-D-Glykosid, kurzkettigen Phosphatidyl-ethanolamin- oder Phosphatidylglycerol-Spezies zu kommen.

Zur Erfassung von Veränderungen in der zellulären Lipidzusammensetzung wurden Lipidextrakte von nicht und *Sn*-infizierten Zellen, aufgereinigten ER-SCV-Membranen oder aufgereinigten *Sn* (aus nicht oder *Sn*-infizierten HeLa229 Zellen (72 h p.i.) isoliert) analysiert. Zwei verschiedene Strategien wurden angewandt (s. Abb. 3.2.1): (1) direkte Analyse von Gesamtlipidextrakten, die experimentell nicht weiter bearbeitet wurden, über Flüssig-chromatographie-Massenspektrometrie (LC/MS) (LC, engl. *liquid chromatography*); (2) Analyse von Lipidfraktionen, die durch dünnschichtchromatographische Auftrennung von rohen Gesamtlipidextrakten erhalten wurden (Lipidspots), mittels LC/MS.

Abb. 3.2.1: Arbeitsablauf der LC/MS-Lipidanalyse. Lipide wurden aus nicht und *Sn*-infizierten HeLa229 Zellen extrahiert (72h p.i.) nach *Flieger* (s. Abschnitt 2.2.5) und über Flüssigchromatographie-Massenspektrometrie (LC/MS) analysiert. Es wurden zwei Methoden verwendet: (1) direkte LC/MS-Analyse von Gesamtlipidextrakten; (2) Analyse von Einzellipidfraktionen über LC/MS von über Dünnschichtchromatographie (DC) aufgetrennten Gesamtlipidextrakten.

Bei der ersten Methode wird eine Degradation von Lipiden vermieden und der experimentelle Aufwand minimiert, wohingegen die zweite Methode sensitiver ist, um seltene Lipidgruppen zu messen (Schiller *et al.*, 2004).

3.2.1 Identifizierung und qualitative Analyse von infektionsassoziierten Lipiden Über die Dünnschichtchromatographie (DC) (*Flieger* Methode, s. Abschnitt 2.2.5.2) konnten Lipide in verschiedene Klassen aufgetrennt werden, welche mit folgenden Standards nachgewiesen wurden: CL, LPC, LPE, LPG, PA, PC, PE, PG, PI und PS (s. Tab. 3.2.1).

#	Lipidkürzel	Lipidname	Rest-x (Klasse)	Fettsäurereste
1	CL	Cardiolipin	Glycerinphosphatidsäure	2
2	LPC	Lyso-Phosphatidylcholin	Cholin	1
3	LPE	Lyso-Phosphatidylethanolamin	Ethanolamin	1
4	LPG	Lyso-Phosphatidylglycerol	Glycerin	1
5	PA	Phosphatidsäure	Wasserstoffatom	2
6	PC	Phosphatidylcholin	Cholin	2
7	PE	Phosphatidylethanolamin	Ethanolamin	2
8	PG	Phosphatidylglycerol	Glycerin	2
9	PI	Phosphatidylinositol	Inosit	2
10	PS	Phosphatidylserin	Serin	2

Tab. 3.2.1: Verwendete Lipidstandards und ihre Charakteristika. Von allen als Standard verwendeten Lipiden sind das Lipidkürzel, der Lipidname und die Anzahl der Fettsäurereste aufgeführt. Der angehängte Alkohol- oder Zuckerrest gibt dabei eine Einsortierung in einzelne Lipidklassen vor.

Neben ER-(SCV-) Membranen wurden Lipidextrakte von Renografin-aufgereinigten Bakterien sowie von *Sn*- und nicht infizierten HeLa229 Zellen mittels DC untersucht (s. Abb. 3.2.2 und 3.2.3 sowie Abschnitte 2.2.2.7.1, 2.2.2.8.3 und 2.2.3). Die Standardlösungen wurden zusammen mit den Lipidproben auf eine DC-Platte aufgetragen und gleichzeitig aufgetrennt. Dabei tauchten sowohl bei ER-SCV-Membranen, aufgereinigten Bakterien als auch *Sn*-infizierten Zellen Lipidspots auf (Pfeile und PE, Rot), die bei den Kontrollen (ER und HeLa) fehlten und die einzelnen Lipidklassen zugeordnet werden konnten. Des Weiteren waren leichte Intensitätsunterschiede zwischen einigen Spots von nicht und *Sn*-infizierten Zellen zu beobachten, die auf eine Anreicherung einzelner Lipide hindeuten könnten.

Abb. 3.2.2: Dünnschichtchromatographie von ER-SCV-Membranen, aufgereinigten Simkanien, sowie von Simkania- und nicht infizierten HeLa229 Zellen. (links, rechts) Über die Dünnschichtchromatographie (DC) wurden die Lipidproben mit Hilfe eines polaren Laufmittels auf einem mit Kieselgel (60W) beschichteten Aluminiumblatt der Polarität nach aufgetrennt. 10-20 µl der Lipidproben wurden zusammen mit Lipidstandards entlang einer 1 cm hohen Parallele am Blattende aufgetragen. (links) ER- und ER-SCV-Membranen wurden auf ihr Lipidvorkommen zusammen mit AG Flieger untersucht. Als Standard wurden je 1 mg/ml Lyso-/Phosphatidylcholin (L/PC), Lyso-/Phosphatidylglycerol (L/PG), Lyso-/Phosphatidylethanolamin (L/PE) und Phosphatidylserin (PS) von AG Flieger verwendet. (rechts) Ein über Renografin aufgereinigter Sn-Stock sowie Lipidextrakte von Sn- und nicht infizierten HeLa229 Zellen wurden auf ihr Lipidvorkommen untersucht. Als Standard wurden Phosphatidylserin (PS), Phosphatidylglycerol (PG), Cardiolipin (CL) und ein SOY Mix (Phosphatidylcholin (PC), Phosphatidylethanolamin (PE), Phosphatidylinositol (PI), Phosphatidsäure (PA), Lyso-PC (LPC)) verwendet (s. Tab. 2.18). (links, rechts) Lipidspots mit korrespondierendem Standard sind namentlich aufgeführt. Lipidspots ohne korrespondierenden Standard wurden mit einem Pfeil markiert. Rot markierte Spots waren nur in der ER-SCV-Probe bzw. den Sn-Proben gefärbt.

Zur genauen Charakterisierung einzelner Lipidspezies und ihres -gehaltes in den jeweiligen Proben mussten massenspektrometrische Analysen von Lipidextrakten durchgeführt werden⁵ (siehe Abschnitte 2.2.5.3 und 2.2.5.4). Dafür wurden Gesamtlipidextrakte direkt (Methode 1) oder einzeln isolierte, ungefärbte DC-Lipidspots aus entsprechenden Lipidextrakten analysiert (Methode 2) (s. Abb. 3.2.1). Für beide Methoden wurden nicht und *Sn*-infizierte Zellen verwendet. Diese zeigten die gleiche Lipidspotverteilung in den DC-Experimenten wie ER-(SCV-) Membranen und aufgereinigte Bakterien (s. Abb. 3.2.2) und waren experimentell am einfachsten im großen Maßstab herzustellen.

Für Methode 2 wurden Gesamtlipidextrakte aus nicht und *Sn*-infizierten Zellen erstellt (s. Abschnitt 2.2.5.1) und im Duplikat auf DC-Platten aufgetragen und aufgetrennt. Vor dem Färbeschritt wurde die DC-Platte geschnitten, sodass Lipidspots blind von dem ungefärbten Plattenstück abgetragen werden konnten (Spot 1-5). Das Laufmuster von Proben und

⁵ Massenspektrometrie-Experimente wurden von Dr. Nicole Zehethofer und Michael Weinkauf (unter der Leitung von Prof. Dr. Buko Lindner und Dr. Dominik Schwudke) am Leibniz-Zentrum Borstel, Hamburg, durchgeführt und analyseirt.

Standards des dazugehörigen gefärbten Plattenstücks dienten dabei als Vorlage (s. Abb. 3.2.3).

Abb. 3.2.3: Dünnschichtchromatographie von *Simkania-* und nicht infizierten HeLa229 Zellen mit Cholesterol-β-D-Glykosid Standard. Lipidextrakte von *Sn-* und nicht infizierten HeLa229 Zellen wurden untersucht. Als Standard wurden je 1mg/ml Phosphatidylserin (PS), Phosphatidylglycerol (PG), Cardiolipin (CL), ein SOY Mix (Phosphatidylcholin (PC), Phosphatidylethanolamin (PE), Phosphatidylinositol (PI), Phosphatidsäure (PA), Lyso-PC (LPC)) und Cholesterol-β-D-Glykosid (βCG) verwendet. Lipidspots mit passendem Standard sind namentlich aufgeführt. Lipidspots ohne passenden Standard wurden mit einem Pfeil markiert. Rot markierte Spots waren nur in der *Sn*-Probe gefärbt.

Bei den DC-Experimenten, zur Gewinnung von Lipidfraktionen für die darauffolgende LC/MS-Analyse (Methode 2) wurde zusätzlich der Standard Cholesterol- β -D-Glykosid (β CG) (s. Tab. 2.18) verwendet, nachdem dieses Lipid in ersten LC/MS-Analysen von Gesamtlipidextrakten als infektionsspezifischer Faktor identifiziert werden konnte (s. Abb. 3.2.4 und 3.2.6). β CG wurde demnach mit großer Wahrscheinlichkeit bereits in ersten DC-Experimenten als nicht charakterisierter Lipidspot beobachtet (s. Abb. 3.2.2 *links* und *rechts*, roter Pfeil oben).

3.2.2 Qualitative und quantitative Charakterisierung von infektionsassoziierten Lipiden

Massenspektrometrische Untersuchungen von Lipiden wurden in den letzten Jahren immer weiter verbessert. So werden unter Verwendung von Tandem-Massenspektrometrie (MS/MS) sogenannte *shotgun lipidomics* durchgeführt, die eine simultane Identifizierung und Quantifizierung von mehreren Lipidklassen ermöglichen (Schwudke *et al.*, 2011). Gesamtlipidextrakte weisen jedoch zumeist starke Verunreinigungen auf, weshalb für derartige Proben bevorzugt die Flüssigkeitschromatographie-Massenspektrometrie (engl. *liquid chromatography-mass-spectrometry*, LC-MC) verwendet wird (Zehethofer *et al.*, 2015). Mithilfe der LC/MS-Analysen konnte den Lipidspots aus *Sn*-infizierten Zellen (Pfeil und PE,

rot), die in nicht infizierten Zellen fehlten, qualitativ zwei Lipidklassen (Cholesterol-β-D-Glykosid und PE) zugeordnet werden. Darüber hinaus wurden Veränderungen bei einzelnen PG-Spezies beobachtet.

In einer im kleinen Maßstab durchgeführten LC/MS-Analyse von Gesamtlipidextrakten (Methode 1) aus *Sn*- und nicht infizierten Zellen konnten erste Unterschiede zwischen beiden Proben (MS-ID 22482/6) beobachtet werden (s. Abb. 3.2.4-7 und Tabelle 3.2.2, Anhang). Am auffälligsten war hier das Auftreten von Cholesterol-β-D-Glykosid (βCG) und PE 30:0 in Extrakten *Sn*-infizierter Zellen. Die LC/MS-Analyse ermöglichte dabei eine grobe Einsortierung der Probenbestandteile in einzelne Lipidklassen, da Lipide anhand der Kopfgruppe und ihrer Fettsäure-Reste (FS-R) aufgetrennt werden. Beim Auftreten mehrerer Lipidspezies aus einer Lipidklasse wurden diese in den Abbildungen 3.2.4-7 mit einer kreisförmigen Umrandung kenntlich gemacht (Cer, HexCer, LBPA, PG, PE, PI, PC, SM und PS).

Abb. 3.2.4: LC/MS-Analyse im negativen lonenmodus von Gesamtlipidextrakten aus Simkaniainfizierten HeLa229 Zellen. Aufgezeichnet wurden die Flugzeiten der Lipide (Masse/Ladung, m/z) in Abhängigkeit von der Zeit (Min). Die einzelnen Lipidspezies einer Klasse sind kreisförmig umrandet und mit einem Lipidkürzel versehen. Die Lipidmenge ist über die Intensität dargestellt – von blau nach rot zunehmend. Cer = Ceramid; CI = Chlorid; HexCer = Hexosyl-Ceramid; LBPA = Lyso-Bisphosphatsäure; PE = Phosphatidylethanolamin; PI = Phosphatidylinositol; PG = Phosphatidylglycerol; PS = Phosphatidylserin; SM = Sphingomyelin; ? = unbekanntes Signal.

Die LC/MS-Läufe wiesen im negativen Ionenmodus ein leicht verändertes Verlaufsmuster zwischen der *Sn*- und nicht infizierten Probe auf (s. Abb. 3.2.4 und 3.2.5). Dabei konnten zusätzlich Unterschiede im Vorkommen (Intensität nimmt von blau nach rot zu) von kurz- und langkettigen Lipidspezies beobachtet werden. Ein Vergleich mit dem *base peak* Chromatogramm zeigte, dass es wahrscheinlich zu Veränderungen bei den Lipidklassen HexCer, LBPA, PC, PE, PG und PS während einer *Sn*-Infektion kommt. Unterhalb von PE 30:0 (Bereich mit (?) markiert) befanden sich mit großer Wahrscheinlichkeit Lysolipide (nur eine Fettsäure).

Abb. 3.2.5: LC/MS-Analyse im negativen lonenmodus von Gesamtlipidextrakten aus nicht infizierten HeLa229 Zellen. Aufgezeichnet wurden die Flugzeiten der Lipide (Masse/Ladung, m/z) in Abhängigkeit von der Zeit (Min). Die einzelnen Lipidspezies einer Klasse sind kreisförmig umrandet und mit einem Lipidkürzel versehen. Die Lipidmenge ist über die Intensität dargestellt – von blau nach rot zunehmend. Cer = Ceramid; CI = Chlorid; HexCer = Hexosyl-Ceramid; LBPA = Lyso-Bisphosphatsäure; PE = Phosphatidylethanolamin; PI = Phosphatidylinositol; PG = Phosphatidyl-glycerol; PS = Phosphatidylserin; SM = Sphingomyelin; ? = unbekanntes Signal.

Im positiven Ionenmodus (s. Abb. 3.2.6 und 3.2.7) und durch den Vergleich mit dem *base peak* Chromatogramm konnten Veränderungen bei den Lipidklassen LBPA, PC, und SM während einer *Sn*-Infektion beobachtet werden.

Abb. 3.2.6: LC/MS-Analyse im positiven lonenmodus von Gesamtlipidextrakten aus *Simkania*-infizierten HeLa229 Zellen. Aufgezeichnet wurden die Flugzeiten der Lipide (Masse/Ladung, m/z) in Abhängigkeit von der Zeit (Min). Die einzelnen Lipidspezies einer Klasse sind kreisförmig umrandet und mit einem Lipidkürzel versehen. Die Lipidmenge ist über die Intensität dargestellt – von blau nach rot zunehmend. Cer = Ceramid; NH4 = Ammonium; HexCer = Hexosyl-Ceramid; LBPA = Lysobisphosphatsäure; PE = Phosphatidylethanolamin; PI = Phosphatidylinositol; PG = Phosphatidyl-glycerol; PS = Phosphatidylserin; SM = Sphingomyelin; ? = unbekanntes Signal.

Entsprechend dem negativen Ionenmodus (s. Abb. 3.2.4) wurde auch im positiven (s. Abb. 3.2.6) β CG nachgewiesen, wohingegen PE 30:0 nicht auftrat. Das Vorhandensein von β CG

konnte in späteren LC/MS-Analysen, unter Zuhilfenahme des β CG-Standards, eindeutig bestätigt werden (s. Abb. 3.2.13).

Abb. 3.2.7: LC/MS-Analyse im positiven lonenmodus von Gesamtlipidextrakten aus nicht infizierten HeLa229 Zellen. Aufgezeichnet wurden die Flugzeiten der Lipide (Masse/Ladung, m/z) in Abhängigkeit von der Zeit (Min). Die einzelnen Lipidspezies einer Klasse sind kreisförmig umrandet und mit einem Lipidkürzel versehen. Die Lipidmenge ist über die Intensität dargestellt – von blau nach rot zunehmend. Cer = Ceramid; NH4 = Ammonium; HexCer = Hexosyl-Ceramid; LBPA = Lyso-Bisphosphatsäure; PE = Phosphatidyl-ethanolamin; PI = Phosphatidylinositol; PG = Phosphatidylglycerol; PS = Phosphatidylserin; SM = Sphingo-myelin; ? = unbekanntes Signal.

Die LC/MS-Analyse der Gesamtlipidextrakte deutete somit darauf hin, dass die Lipidklassen βCG, LBPA, PC und PE 30:0 eine infektionsbedingte unterschiedliche Verteilung aufweisen.

Über preparative DC-Experimente (Methode 2) wurden die Lipidklassen der hervorstechendsten Lipidspots eindeutig bestimmt und der Lipidgehalt sowie die Verteilung von Lipidspezies innerhalb der Gesamtlipidextrakte ermittelt.

Vier biologische Replikate (n = 4) von fünf ungefärbten Lipidspots (s. Abb. 3.2.3) wurden mit Methode 2 analysiert (s. Tabelle 3.2.2, Proben 26026-34 Anhang). Dadurch konnte von jedem Lipidspot eine qualitative Aussage über die Lipidklasse und das Vorkommen von einzelnen Lipidspezies getroffen werden. Im Folgenden ist die Verteilung der einzelnen Lipidspezies einer Lipidklasse in Form eines Balkendiagrammes für beide Konditionen dargestellt (s. Abb. 3.2.8-9 und 3.2.11-12).

In Spot 1, der nicht auf Höhe eines der verwendeten DC-Standards lief (s. Abb. 3.2.3), konnten Ceramide klassifiziert werden. Die identifizierten Ceramid-Spezies (32:1 - 42:1) zeigten dabei keine unterschiedliche Verteilung im Vorkommen bei *Sn*- oder nicht infizierten Zellen (s. Abb. 3.2.8).

Abb. 3.2.8: Prozentuale Verteilung der Ceramide in den DC-Spots 1 von Simkania- und nicht infizierten HeLa229 Zellen. Die über LC/MS-Analysen ermittelten Anteile verschiedener Ceramid-Spezies sind in Stoffmengenprozent (Mol%) als Balkendiagramm dargestellt. Analysen von vier biologischen Replikaten (n = 4) von Sn (rot) und nicht infizierten Zellen (blau) mit dazugehöriger Standardabweichung sind abgebildet. Lipidspezies zwischen 32:1 – 42:1 konnten hierbei bestimmt werden. Ein höherer Anteil von Cer 34:1 und 42:2 ist typisch für HeLa Zellen. Con = Kontrolle (engl. control); Cer = Ceramid.

Ceramide scheinen somit nicht drei Tage nach einer Sn-Infektion beeinflusst worden zu sein.

Bei Spot 2, der auf Höhe des verwendeten Cardiolipin-DC-Standards lief (s. Abb. 3.2.3), wurde erwartungsgemäß Cardiolipin (CL) identifiziert und die Speziesverteilung von Cardiolipin in *Sn*- und nicht infizierten Zellen bestimmt. Vorstudien unserer Arbeitsgruppe zeigten, dass Simkanien CL benötigen und wahrscheinlich von der Wirtszelle beziehen, da ihnen entsprechende Biosyntheseenzyme fehlen. Es konnte vorwiegend kurzkettiges CL (60:0 – 72:4) identifiziert werden (s. Abb. 3.2.9).

Abb. 3.2.9: Prozentuale Verteilung der Cardiolipine in den DC-Spots 2 von Simkania- und nicht infizierten HeLa229 Zellen. Die über LC/MS-Analysen ermittelten Anteile verschiedener Cardiolipin-Spezies sind in Stoffmengenprozent (Mol%) als Balkendiagramm dargestellt. Analysen von vier biologischen Replikaten (n = 4) von Sn (rot) und nicht infizierten Zellen (blau) mit dazugehöriger Standardabweichung sind abgebildet. Lipidspezies zwischen 60:0 - 72:4 konnten hierbei bestimmt werden. Con = Kontrolle (engl. control); CL = Cardiolipin.
Dabei tauchten die ungesättigten CL-Spezies 60:0, 61:0, 62:0, 63:0 und 64:0 nur in den *Sn*-infizierten Zellen auf. Dies weist auf eine infektionsbedingte Verschiebung in der Verteilung der CL-Spezies zu kurzkettigen FS-R hin. Kurzkettige Lipide könnten während der Infektion möglicherweise besser oder schneller von den Bakterien bezogen werden. Die hohen Standardabweichungen innerhalb des Balkendiagramms sind auf hohe Variationen zwischen den einzelnen Spots 2 der vier Replikate zurückzuführen. Deswegen konnten hierbei nur Tendenzen und keine signifikanten Verteilungen im Vergleich zu Spot 1, 3 und 4 (s. Abb. 3.2.8, 3.2.11-12) beobachtet werden.

Aufgrund der Ergebnisse der LC/MS-Analyse wurde bei der DC ein zusätzlicher Standard verwendet. Dadurch konnte Spot 3 in der Abbildung 3.2.3 als β CG identifiziert werden, was durch die anschließenden LC/MS-Analysen bestätigt wurde (s. Abb. 3.2.13 und 3.2.14). Der Peak des vermuteten β CGs lag bei 583.3733 m/z im negativen und 566.4368 m/z im positiven Chromatogramm (s. Abb. 3.2.10). Bei den Kontrollzellen fehlte ein entsprechender Peak.

Abb. 3.2.10: Ausschnitte aus LC/MS basierenden Chromatogrammen des negativen und positiven lonenmodus von Gesamtlipidextrakten aus *Simkania-* und nicht infizierten HeLa229 Zellen. In den Chromatogrammen ist die Intensitätsanalyse der im Spot 3 enthaltenen Lipide in Abhängigkeit von Masse und Ladung (m/z) dargestellt. Die DC-Spots von *Sn-* und nicht infizierten Zellen (Kontrolle) wurden miteinander verglichen. Die Massenanalyse der Lipidspots ermöglichte eine Identifizierung von Cholesterol- β -D-Glykosid in *Sn*-infizierten Zellen bei 583.3733 m/z im negativen und 566.4368 m/z im positiven Chromatogramm.

Eine Bestimmung der Intensität von βCG in den drei Proben ergab eine pro Sekunde ermittelte Molekülzahl [cps] (engl. *counts per second*) von durchschnittlich 200.000 in *Sn*-infizierten Zellen (s. Abb. 3.2.11).

Abb. 3.2.11: Intensitätsmessung von Cholesterol- β -D-Glykosid in den DC-Spots 3 von *Simkania-* und nicht infizierten HeLa229 Zellen. Die über LC/MS-Analysen ermittelten Intensitäten (cps) von Cholesterol- β -D-Glykosid (β CG) in 3 biologischen Replikaten (n = 3) von *Sn* (grau) und nicht infizierten Zellen (schwarz) mit dazugehöriger Standardabweichung sind als Balkendiagramm dargestellt. Nur in *Sn*-infizierten Zellen wurde β CG identifiziert und eine Intensität von 100.000-300.000 ermittelt. Con = Kontrolle (engl. *control*); cps = ermittelte Molekülanzahl pro Sekunde (engl. *counts per second*).

Somit konnte in dieser Arbeit zum ersten Mal ein humanes Lipid identifiziert werden, welches durch die *Sn*-Infektion (drei Tage p.i.) bedingt verstärkt synthetisiert wird.

Bei Spot 4 und 5 konnte nur eine eingeschränkte Analyse erfolgen. Die Ergebnisse von Spot 5 mussten verworfen werden, da innerhalb der Spot 5 Replikate mehr als eine Lipidklasse identifiziert wurde. Für Spot 4 konnten kurzkettige PE-Spezies analysiert werden, die nicht in Spot 5 auftraten (s. Abb. 3.2.12). Dabei war eine starke Anreicherung von gesättigten PE-Spezies (30:0 und 32:0) in *Sn*-infizierten Zellen zu beobachten (~ 1-4 x 10⁶ cps).

Abb. 3.2.12: Intensitätsmessung von kurzkettigen PE-Spezies in den DC-Spots 4 von *Simkania-* und nicht infizierten HeLa229 Zellen. Die über LC/MS-Analysen ermittelten Intensitäten (cps) von verschiedenen PE-Spezies in 3 bzw. 4 biologischen Replikaten von *Sn* (rot, n = 4) und nicht infizierten Zellen (blau, n = 3) mit dazugehöriger Standardabweichung sind als Balkendiagramm dargestellt. In *Sn*-infizierten Zellen wurden PE 30:0 und 32:0 stark angereichert identifiziert mit einer Intensität von $4x10^6$ bzw. $1,5x10^6$. Con = Kontrolle (engl. *control*); cps = ermittelte Molekülanzahl pro Sekunde (engl. *counts per second*); PE = Phosphatidylethanolamin.

Damit konnte die erste dokumentierte Beobachtung einer infektionsabhängigen Anreicherung von PE 30:0 (s. Abb. 3.2.4) bestätigt werden.

Um neben einer qualitativen auch eine quantitative Aussage über die vorgestellten Lipidklassen und Lipidspezies geben zu können, wurden vier biologische Replikate (n = 4) der Gesamtlipidextrakte von nicht und *Sn*-infizierten Zellen erstellt und über Methode 1 analysiert (s. Tabelle 3.2.2, Proben 27591-647 Anhang). Zusätzlich wurden aufgereinigte *Sn* untersucht (s. Abschnitt 2.2.2.8), um ggf. zwischen zellulär oder bakteriell angereicherten humanen Lipiden zu unterscheiden (s. Abb. 3.2.13-16). Diese Proben wurden mit beigemengten Lipidstandards untersucht (s. Tab. 3.2.3, Anhang), um eine genaue Angabe zur Lipidmenge der einzelnen Lipidklassen und Lipidspezies innerhalb der Proben zu ermitteln.

Die Gesamtübersicht von allen identifizierten Lipidklassen ist in Abb. 3.2.13 in Form eines Balkendiagrammes dargestellt. Dabei wurden die einzelnen Lipidklassen anhand ihres Vorkommens innerhalb der Gesamtlipidextrakte aufgeführt. Niedrigkonzentrierte Lipidklassen (< 0,5 % der Gesamtprobe) sind in die Analyse nicht mit eingeflossen. Jede Probe enthielt zwischen 200.000-300.000 pmol Lipide.

Abb. 3.2.13: Prozentuale Gesamtverteilung der Lipide von aufgereinigten Simkanien, Simkania- und nicht infizierten HeLa229 Zellen. 14 Lipidklassen, mit einem Mindestgesamtanteil von 0,5 % in der gesamten Probe, sind basierend auf ihrem Stoffmolprozentanteil (Mol%) in einem Balkendiagramm mit dazugehöriger Standardabweichung aufgeführt. Analysiert wurden nicht (schwarz, n = 4, con) oder *Sn*-infizierte Zellen (schwarz-rot, n = 4, *Sn*) und aufgereinigte Simkanien (rot, n = 3, aufg *Sn*). Der über einen t-Test ermittelte p-Wert beträgt: ** <0.01 oder * <0.05. Con = Kontrolle (engl. *control*); aufg = aufgereinigt; β CG = Cholesterol- β -D-Glykosid; LBPA = Lysobisphosphatsäure; HexCer = Hexosyl-Ceramid; PE/-O = Phosphatidylethanolamin/-Ether; CL = Cardiolipin; PG = Phosphatidylglycerol; PI = Phosphatidylinositol; PS = Phosphatidylserin; Chol-Ester = Cholesterol-Ester; DAG = Diakylglycerol; PC/O = Phosphatidylcholin/-Ether und SM = Sphingomyelin.

In den einzelnen Gesamtlipidextrakten konnten 14 Lipidklassen (βCG, LBPA, HexCer, PE, PE-O, CL, PG, PI, PS, Chol-Ester, DAG, PC-O, PC und SM) mit den dazugehörigen Lipidspezies (insgesamt 422) eindeutig bestimmt werden. Der Gesamtlipidwert lag durchschnittlich bei 230.000 pmol pro Probe. Durch die Aufsummierung der pmol Werte der 14 Klassen konnte der Stoffmengenmolanteil (Mol%) bestimmt werden (s. Tab. 3.2.4).

#	Lipidkürzel	Lipidname	Mol % HeLa Con	Mol % aufg <i>Sn</i>	Mol % HeLa <i>Sn</i>
1	βCG	Cholesterol-β-D-Glykosid	0,002	0,6	1,4
2	LBPA	Lyso-Bisphosphatsäure	1,9	0,3	2,7
3	HexCer	Hexosyl-Ceramid	0,3	0,3	1,0
4	PE	Phosphatidylethanolamin	12,7	13,0	14,8
5	PE-O	Phosphatidylethanolamin-Ether	7,8	7,1	5,7
6	CL	Cardiolipin	1,1	1,5	1,8
7	PG	Phosphatidylglycerol	1,9	4,0	10,3
8	PI	Phosphatidylinositol	2,4	0,9	3,1
9	PS	Phosphatidylserin	6,3	7,3	3,8
10	Chol-E	Cholesterol-Ester	0,7	7,0	0,7
11	DAG	Diakylglycerol	2,4	1,7	2,4
12	PC-O	Phosphatidylcholin-Ether	8,0	5,4	5,0
13	PC	Phosphatidylcholin	46,2	35,8	41,9
14	SM	Sphingomyelin	7,8	13,7	4,7

Tab. 3.2.4: Identifizierung der Lipide von aufgereinigten Simkanien, Simkania- und nicht infizierten HeLa229 Zellen. Von allen identifizierten Lipidklassen ist das Lipidkürzel und der Lipidname aufgeführt. Gemittelte Stoffmolprozentanteile (Mol%) von nicht (HeLa Con, n = 4) oder Sn-infizierten Zellen (HeLa Sn, n = 4) und aufgereinigten Simkanien (aufg Sn, n = 3) sind aufgelistet.

Im Gesamtbild wurde die Verteilung die jeweiligen Spezies für die entsprechende Klasse aufsummiert und die Signifikanz über einen Student'scher t-Test ermittelt. Dabei konnten für die Lipidklassen β CG, PE-O, PC-O und SM eine signifikante Verteilung mit einem p-Wert von 0.01 und für PS von 0.05 in den drei Proben (HeLa229, aufgereinigte *Sn*, *Sn*-infizierte HeLa229) erfasst werden (s. Abb. 3.2.13). β CG wurde hauptsächlich in *Sn*-infizierten und aufgereinigten *Sn*-Proben nachgewiesen. Die Werte für PE-O und PC-O waren in nicht infizierten Proben leicht erhöht. Bei PS und SM konnte eine leichte Anreicherung in aufgereinigten *Sn* beobachtet werden.

Bei Chol-E konnte eine auffällige, jedoch nicht signifikante Anreicherung in aufgereinigten Simkanien und bei PG in aufgereinigten Simkanien und *Sn*-infizierten Zellen beobachtet werden.

Normales Ceramid ist bei der Analyse verworfen worden, da diese Lipidklasse unter einen Mindestwert von 0,5 % in der Gesamtprobe fiel.

Über die Einzelspeziesverteilungen war es möglich, Veränderungen innerhalb einzelner Lipidklassen festzustellen (s. Abb. 3.2.14-16). Dabei konnte ausschließlich bei den humanen Lipidklassen βCG, PE und PG eine eindeutige Veränderung in der Verteilung der Lipidspezies beobachtet werden.

Für β CG wurden folgende Durchschnittswerte ermittelt: HeLa = 6,5 pmol, aufgereinigte *Sn* = 75 pmol und Hela-*Sn* = 4905 pmol (s. Abb. 3.2.14).

Abb. 3.2.14: Absolute Menge von Cholesterol- β -D-Glykosid von aufgereinigten Simkanien, Simkania- und nicht infizierten HeLa229 Zellen. Die über LC/MS ermittelten Konzentrationen (pmol) von Cholesterol- β -D-Glykosid (β CG) in drei bis vier biologischen Replikaten (n = 3-4) mit dazugehöriger Standardabweichung sind als Balkendiagramm dargestellt. Gemessen wurden nicht (schwarz, n = 4) oder *Sn*-infizierte Zellen (schwarz-rot, n = 4) und aufgereinigten Simkanien (rot, n = 3). β CG wurde in allen Proben identifiziert. Con = Kontrolle (engl. *control*); aufg = aufgereinigt.

 β CG scheint somit bereits in sehr geringen Mengen in der humanen Zelle vorzuliegen. Das erhöhte Vorkommen von β CG in aufgereinigten Simkanien deutet darauf hin, dass eine Inkorporierung des Lipids über die SCV in die Bakterien stattfindet. Durch eine *Sn*-Infektion wurde der zelluläre Anteil von β CG rapide gesteigert. Dies lässt darauf schließen, dass β CG von Simkanien innerhalb der SCV oder der Wirtszelle benötigt wird.

Chlamydien bauen neben Proteinen auch Lipide in die Inklusionsmembran ein, was bspw. über eine Verschmelzung mit exozytotischen Vesikeln geschieht (Carabeo *et al.*, 2003, Hackstadt, 2000). Demnach besteht die Möglichkeit, dass auch Simkanien β CG in der SCV-Membran einbauen.

PE und PE-O zeigten in ihrer Gesamtverteilung nur leichte Unterschiede (s. Abb. 3.2.13). Dabei war PE in *Sn*-infizierten Zellen etwas stärker vertreten und PE-O etwas schwächer, verglichen zu nicht infizierten Zellen oder aufgereinigten Simkanien. Bei der PE-Speziesverteilung wurden PE 30:0 – 40:5 und PE-O 34:3 – 40:5 identifiziert (s. Abb. 3.2.15). Entsprechend zu den Voranalyse (s. Abb. 3.2.12) kamen die kurzkettigen gesättigten PE 30:0, 31:0 und 32:0 ausschließlich in Proben von aufgereinigten Simkanien oder *Sn*-infizierten Zellen vor. Dabei waren PE 30:0 (~12-15 %) und PE 32:0 (~4-5 %) stärker vertreten als PE 31:0 (~2 %). Im Vergleich dazu waren PE 34:1, 34:2, 36:1, 36:2, 38:4, 38:5, 40:6 sowie PE-O 38:6, 38:7 und 40:7 erhöht (~1-4 %) in den Kontrollzellen.

Abb. 3.2.15: Prozentuale Verteilung der PE/-O-Spezies von aufgereinigten Simkanien, Simkania- und nicht infizierten HeLa229 Zellen. Die über LC/MS ermittelten Konzentrationen (Mol%) von PE/-O mit dazugehöriger Standardabweichung sind als Balkendiagramm dargestellt. Analysiert wurden nicht (schwarz, n = 4) oder mit *Sn*-infizierte Zellen (schwarz-rot n = 4) und aufgereinigte Simkanien (rot, n = 3). Aufg = aufgereinigt; PE/-O = Phosphatidylethanolamine/-Ether. Con = Kontrolle (engl. *control*); aufg = aufgereinigt.

Damit konnte zumindest die in Abb. 3.2.13 gemachte Beobachtung bestätigt und quantitativ bestimmt werden, dass kurzkettige gesättigte PE-Spezies infektionsbedingt angereichert vorliegen (insgesamt ~17-21 % für PE 30:0, 31:0 und 32:0). Ob kurzkettige PE-Spezies von *Sn* inkorporiert werden oder von Simkanien selber synthetisiert werden, ist noch offen. Der Besitz von Enzymen wie SNE_A02080 (Phosphatidylserin Decarboxylase Proenzym, psd) und SNE_A00300 (hypothetische Acyl-[Acyl-Carrier-Protein]-Phospholipid-O-Acyltransferase/ langkettige Fettsäuren--[Acyl-Carrier-Protein] Ligase) konnte über Genomannotationen bereits bestätigt werden; entsprechende Funktionalitätsstudien fehlen jedoch noch (Collingro *et al.*, 2011).

Weitere Vergleiche der übrigen PE und PE-O Spezies waren aufgrund der Verunreinigungen in den Spots 5 nicht möglich.

Für PG war am Auffälligsten das stärkere Vorkommen von kurzkettigen gesättigten PG-Spezies in *Sn*-haltigen Proben (s. Abb. 3.2.16). Ähnlich wie bei den PE-Spezies (s. Abb. 3.2.15) lag hier eine Verteilung von PG 30:0 (~45-49 %), 31:0 (~5-6 %) zu 32:0 (~19-21 %) vor. Dafür waren bei der Kontrolle PG 34:1 (~27 %), 36:1 (~20 %) und 36:2 (~7 %) angereichert. Somit kommt es bei PG anscheinend auch zu einer infektionsbedingten Verschiebung von langkettigen zu kurzkettigen und gesättigten Lipidspezies.

Abb. 3.2.16: Prozentuale Verteilung der PG-Spezies in Simkanien, Simkania- und nicht infizierten HeLa229 Zellen. Die über LC/MS ermittelten Konzentrationen (Mol%) von PG mit dazugehöriger Standardabweichung sind als Balkendiagramm dargestellt. Analysiert wurden nicht (schwarz, n = 4) oder mit *Sn*-infizierte Zellen (schwarz-rot n = 4) und aufgereinigte Simkanien (rot, n = 3). Es wurden PG 28:0 – 36:3 identifiziert, wovon PG 34:1 und 36:1 den größten Anteil in HeLa Zellen und PG 30:0 und 32:0 in den Simkanien-Proben hatten. Con = Kontrolle, engl. *control*; aufg = aufgereinigt; PG = Phosphatidylglycerol.

Die in Abb. 3.2.13 und Tab. 3.2.4 dokumentierte Anreicherung von PG in aufgereinigten *Sn* und *Sn*-infizierten im Vergleich zu nicht infizierten Zellen deutet darauf hin, dass dieses Lipid ein wichtiger Faktor für *Sn* zu sein scheint. PG wird während der Infektion möglicherweise nicht nur bakteriell, sondern auch zellulär angereichert. In nicht infizierten Zellen traten keine PG-Spezies 28:0, 29:0 und 31:0 und so gut wie kein 32:0 auf. Ob die kurzkettige PG-Spezies ähnlich zu den PE-Spezies von *Sn* inkorporiert oder selber synthetisiert werden, ist noch offen. Über Genomannotationen konnte bisher nur der Besitz von Enzymen zur Synthese der PG-Vorstufe Phosphatidylglycerolphosphat bestätigt werden, worunter SNE_A18150 (CDP-Diacylglycerol-Glycerol-3-Phosphat 3-Phosphatidyltransferase, pgsA-A) und SNE_A22140 (CDP-Diacylglycerol-Glycerol-3-Phosphat 3-Phosphatidyltransferase, pgsA-B) fallen (Collingro *et al.*, 2011). Entsprechende Funktionalitätsstudien fehlen auch hier.

Die Daten zu CL waren mit den in Abb. 3.2.9 gezeigten Ergebnissen nicht vergleichbar, da andere CL-Spezies identifiziert wurden. In aufgereinigten Simkanien kamen etwas mehr CL 70:0, 70:2, 74:0, 74:2, 74:4 und 74:6 vor (jeweils um ~2-5 %), wohingegen in *Sn*- und nicht infizierten Zellen mehr CL 78:6 und 78:8 vorlag (~5-10 %). Der Gesamtanteil von CL ist in allen Proben jedoch relativ konstant geblieben.

Das Lipid SM lag in aufgereinigten *Sn* angereichert vor (~5 %) (s. Abb. 3.2.13 und Tab. 3.2.4). Bei der Einzelspeziesverteilung konnten jedoch keine Unterschiede festgestellt werden. Damit besteht die Möglichkeit, dass SM unabhängig von der Lipidspezies von *Sn* inkorporiert wird, da dieses Lipid nicht selber von den Simkanien synthetisiert werden kann.

Zusammenfassend konnte gezeigt werden, dass es sich bei β CG und PE 30:0 um humane Lipide handelt, die bei einer *Sn*-Infektion angereichert werden. Eine Anreicherung in

Sn-infizierten Zellen und aufgereinigten Simkanien konnte sowohl qualitativ, quantitativ als auch optisch über DC bestätigt werden. Für PG war ausschließlich eine qualitative und quantitative Bestimmung in Gesamtlipidextrakten (Methode 1) möglich. Ob es bei β CG, PE und/oder PG zu einer intrazellulär verstärkten Synthese oder einer Neusynthese kommt, die durch eine *Sn*-Infektion induziert wird, ist noch nicht bekannt.

3.2.3 Cholesterol-β-D-Glykosid ist in ER-SCV-Membranen lokalisiert

Über die Lipidzusammensetzung der SCV ist noch nichts bekannt. Man kann jedoch davon ausgehen, dass ein Großteil der Lipide ähnlich wie bei Chlamydien während der SCV-Entwicklung über eine Verschmelzung mit u.a. exozytotischen Vesikeln bezogen wird (Hackstadt *et al.*, 1996). Der spätere Transport von Lipiden zur bzw. in die SCV könnte entweder über weitere vesikuläre Wege oder über einen nicht vesikulären CERT-abhängigen Weg erfolgen (Elwell *et al.*, 2011). Dabei werden bestimmte Lipide höchstwahrscheinlich nicht ausschließlich dem Aufbau der SCV-Membran dienen, sondern zusätzlich von den Bakterien innerhalb der SCV benötigt, wenn entsprechende Enzyme zur Lipidsynthese fehlen.

Das humane Lipid β CG (s. Abschnitte 3.2.1 und 3.2.2) ist bisher weder in Studien zu Simkanien oder Chlamydien beschrieben worden. Der Befund, dass β CG vorwiegend in *Sn*-infizierten Zellen als in den Bakterien selber wiederzufinden ist, deutet auf eine mögliche SCV-Assoziation hin. In einer weiteren DC-Analyse wurde das Auftreten von β CG in ER-(SCV-) Membranen untersucht (s. Abb. 3.2.17).

Interessanterweise konnte in der DC ein klarer β C-Spot bei der Probe mit ER-SCV-Membranen beobachtet werden. Dieser Spot fehlte in der Kontrollprobe mit ER-Membranen. Allerdings zeigten beide Proben einen leichten Hintergrund, wahrscheinlich von kleineren CL-Molekülen resultierend. Damit liegt β CG an/in SCV-Membranen konzentriert vor, was eine zusätzliche Assoziation mit dem ER allerdings nicht ausschließt. Unterhalb des β CG-Spots war ein zusätzlicher Spot zu sehen, der in beiden Proben auftauchte (s. Abb. 3.2.17, weißer Pfeil). Dieser wurde in vorherigen Experimenten noch nicht beobachtet. Eine Charakterisierung dieses humanen Lipids war im Rahmen dieser Arbeit nicht möglich.

Zusätzlich konnte eine starke Anreicherung von wahrscheinlich PA- und PE-Molekülen beobachtet werden. Dabei zeichnete sich ein weiterer Spot in der Probe mit ER-SCV-Membranen ab (s. Abb. 3.2.17, roter Pfeil), der sich aufgrund der Lipidmenge nicht in Form eines einzelnen Spots auftrennte. Von der Höhe würde dieser Lipidspot Spot 4 entsprechen (s. Abb. 3.2.3), weshalb es sich hierbei um kurzkettige PE-Spezies handeln könnte. Die unteren Spots zwischen PI und LPC haben sich kaum voneinander getrennt, was wahrscheinlich auf den Lipidgehalt der Probe und die Lauffläche der DC-Platte zurückzuführen ist.

Abb. 3.2.17: Dünnschichtchromatographie von aufgereinigten ER-(SCV-) Membranen. Lipidextrakte von ER- und ER-SCV-Membranen wurden auf ihr Lipidvorkommen untersucht. Als Standard wurden Phosphatidylserin (PS), Phosphatidylglycerol (PG), Cardiolipin (CL), ein SOY Mix (Phosphatidylcholin (PC), Phosphatidylethanolamin (PE), Phosphatidylinositol (PI), Phosphatidsäure (PA), Lyso-PC (LPC)) und Cholesterol- β -D-Glykosid (β CG) verwendet. Lipidspots mit passendem Standard sind namentlich aufgeführt. Lipidspots ohne passenden Standard wurden mit einem Pfeil markiert. Rot markierte Spots waren nur in der SCV-Probe gefärbt. Grundsatzbeweis (n = 1).

Zusammenfassend konnte gezeigt werden, dass es sich bei β CG um ein möglicherweise "*Sn* spezifisches" Lipid handelt, das in SCV-Membranen angereichert vorliegt. Dabei ist es möglicherweise zusätzlich mit ER-Membranen assoziiert. Eine Assoziation von β CG mit weiteren zellulären Bestandteilen konnte bisher noch nicht nachgewiesen werden. Dafür wurde das Vorhandensein von kurzkettigen PE-Spezies in isolierten Mitochondrien beobachtet (Daten nicht gezeigt).

3.3 Retrograde Transportwege und der intrazelluläre Lipidtransport haben einen großen Einfluss auf die *Simkania*-Infektion

Chlamydien haben Mechanismen entwickelt, um einer vesikulären Degradation über Lysosomen zu entgehen und gleichzeitig Lipide über Golgi-abgeleitete Sphingomyelin-reiche Vesikel zu beziehen (Hackstadt *et al.*, 1995, Scidmore *et al.*, 2003). Vesikel stellen damit eine zentrale intrazelluläre Lipid-, aber auch Protein-Bezugsquelle dar, die an retro- und anterograde Transportprozesse gekoppelt ist (s. Abschnitt 1.5). Neben größtenteils Golgi-abgeleitete Vesikel oder multivesikuläre Körperchen (engl. *multivesicular bodies*, MVBs), gelangen Lipide über nicht-vesikuläre Transportwege zur Inklusion (Bastidas *et al.*, 2013). Im folgenden Abschnitt wird mithilfe von Inhibitorexperimenten beschrieben, dass die SCV-Morphologie und/oder *Sn*-Infektivität von unterschiedlichen, wahrscheinlich retrograden Transport (Retro1, Retro2, VP184), endosomalen Transport (Comp20), späte Endosomen und Lysosomen (Bafilomycin A1) oder ER und Golgi (Brefeldin A) korrelierte dabei mit dem Ceramidlipidtransport zum Golgi und zur SCV. Behandlungen mit Bafilomycin A1 resultierten sogar in einem Zusammenbruch der SCV während der *Sn*-Primärinfektion, was bereits in einfachen epifluoreszenzmikroskopischen Aufnahmen zu beobachten war.

Die in Abschnitt 3.1.4 aufgeführten Ergebnisse aus der LC-MS²-Datenanalyse deuteten darauf hin, dass Simkanien intrazelluläre Transportwege modulieren. Dabei scheinen retro- und anterograde Transportwege beeinflusst gewesen zu sein. Das ER würde demnach eine direkte Versorgung der SCV mit Nährstoffen gewährleisten, sofern der retrograde Hintransport größer wäre als der anterograde Abtransport. Der retrograde Transport könnte bspw. über Clathrinund/oder COPI-assoziierte Vesikel stattfinden. Der in Abschnitt 3.1.5 gezeigte knock-down von COPB2 oder AP2B1 (s. Abb. 3.1.14) bestätigte hierbei eine gewisse Abhängigkeit der *Sn*-Primär- und/oder -Sekundärinfektion von Clathrin- und COPI-assoziierten Faktoren. Eine Unterdrückung von anterograden Transportprozessen müsste dementsprechend den Abtransport von Nährstoffen vom ER und somit auch von der SCV verhindern.

Für weiterführende Experimente wurden im Folgenden der Einfluss von Inhibitoren auf die *Sn*-Infektion in HeLa229 Zellen untersucht. Retro-Inhibitoren wurden dabei für Analysen des retrograden (Retro1, Retro2 und VP184) und endosomalen Transportes (Comp20) (s. Abschnitt 1.5.2) verwendet. BafA1 diente zur Blockierung der endozytotischen Vesikelreifung und BFA zur Hemmung von retro- und anterograden Transportwegen, u.a. durch Fragmentierung des Golgis (s. Abschnitt 1.5.4).

3.3.1 Retro-Inhibitoren senken die Durchschnittsgröße der SCV sowie die Infektivität von *Simkania negevensis*

Zunächst wurden Infektivitätsexperimente durchgeführt (s. Abschnitt 2.2.2.9), um die *Sn*-Primär- als auch -Sekundärinfektion über Immunoblots und Mikroskopie zu untersuchen (s. Abb. 3.3.1-3.3.6). Für Immunoblotanalysen der Primärinfektion wurden zwei Konzentrationen (25 und 75 μ M) für alle vier Retro-Inhibitoren und eine DMSO-Lösungsmittelkontrolle eingesetzt (s. Abb. 3.3.1). Gesamtzelllysate von behandelten und *Sn*-infizierten Zellen (Primärinfektion, drei Tage p.i.) wurden mithilfe eines *Sn*-spezifischen GroEL-Antikörpers (snGroEL) auf die Verteilung der Bakterienmenge untersucht. ß-Aktin diente als Ladekontrolle.

Abb. 3.3.1: Immunoblots von Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Inhibitoren des retrograden und endosomalen Transportes. HeLa229 Zellen wurden mit einer MOI 0.5 infiziert und in Anwesenheit der Inhibitoren für drei Tage inkubiert. Im Vergleich zur DMSO-Lösungsmittelkontrolle nahm der snGroEL-Proteingehalt nach einer Behandlung mit Inhibitoren (75 μ M) des retrograden (Retro1, Retro2, VP184) und endosomalen Transportes (Comp20) ab (vier biologische Replikate (n = 4)). Equi = entsprechend (engl. *equivalent*). Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Eine quantitative Messung des snGroEL-Gehaltes innerhalb der einzelnen Proben unter Verwendung von ImageJ zeigte, dass bei allen vier niedrigkonzentrierten Inhibitoren (25 μ M) kaum ein Unterschied zur DMSO-Kontrolle zu sehen war. Bei höheren Konzentrationen (75 μ M) konnte jedoch eine leichte Abnahme bei Retro1 und Retro2 (6-18 %), sowie eine starke Abnahme bei VP184- und Comp20-behandelten (54-67 %), *Sn*-infizierten Zellen beobachtet werden.

Für mikroskopische Analysen wurden entsprechende Konzentrationen (25/75 μ M Retro-Inhibitoren) verwendet (s. Abb. 3.3.2 und 3.3.3.). Zellkulturplatten mit behandelten und *Sn*-infizierten Zellen (Primärinfektion, drei Tage p.i.) wurden snGroEL-Cy3-DAPI gefärbt (s. Abschnitt 2.2.2.12.1) und über ein automatisiertes Leica DMIR Mikroskop eingelesen.

Die mikroskopischen Aufnahmen (s. Abb. 3.3.3) wurden mithilfe von ImageJ für vier biologische Replikate (n = 4) quantitativ ausgewertet und die durchschnittliche SCV-Größe ermittelt (s. Abb. 3.3.2).

Abb. 3.3.2: Relative Größe der SCV von Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Inhibitoren des retrograden und endosomalen Transportes. Von Leica DMIR ermittelten mikroskopischen Aufnahmen wurde die relative SCV-Durchschnittsgröße (%) über ImageJ für vier biologische Replikate (n = 4) ermittelt. Im Vergleich zur DMSO-Kontrolle nahm die SCV-Größe nach einer Behandlung mit Inhibitoren des retrograden (Retro1, Retro2, VP184) und endosomalen Transportes (Comp20) mehr oder weniger stark ab. P-Werte: < 0.05 = *; < 0.01 = **; < 0.001 = ***; equi = entsprechend (engl. equivalent). Abbildung in modifizierter Form zuerst veröffentlicht in Herweg et al., 2015b.

Interessanterweise konnte bereits bei einer Behandlung mit 25 μ M von Retro1 oder Comp20 eine geringe Abnahme der relativen SCV-Größe beobachtet werden (s. Abb. 3.3.2), die verglichen mit der DMSO-Kontrolle um 15-20 % signifikant sank (p-Wert < 0.01). Durch die Behandlung mit 75 μ M Retro1 oder Retro2 nahm die SCV-Größe sogar um 40-50 % signifikant ab (p-Wert < 0.001-0.01) und bei Comp20 um etwa 40 %. Nur bei den VP184-Behandlungen konnte bereits für 25 μ M eine starke Abnahme von ca. 50 % beobachtet werden, die bei 75 μ M auf fast 60 % signifikant sank (p-Wert < 0.001).

Bei den mikroskopischen Aufnahmen konnte erst bei 75 μ M eine Veränderung in der relativen SCV-Größe festgestellt werden (s. Abb. 3.3.3). Diese hat im Vergleich zur DMSO-Kontrolle bei allen vier Retro-Inhibitoren in unterschiedlichem Ausmaß für den jeweils verwendeten Inhibitor abgenommen. Hinzukommend konnte eine deutliche Abnahme der Zellzahl nach einer Behandlung mit VP184 (75 μ M) sowie eine Minimierung der SCV-Anzahl bei Comp20behandelten Zellen (75 μ M) beobachtet werden. Da diese Beobachtungen in vier unabhängigen Experimenten gemacht wurden, kann der beschriebene Effekt eindeutig als Folge der Inhibitorbehandlung betrachtet werden. In nicht infizierten, Inhibitor-behandelten Zellen, sowie einer Lebend-Tod-Messung für Retro1 über FACS (Daten nicht gezeigt), konnten keine zytotoxischen Effekte für Retro1, Retro2 und Comp20 beobachtet werden. Deshalb sind zelluläre Veränderungen hier auf die *Sn*-Infektion zurückzuführen.

Abb. 3.3.3: Immunofluoreszenz Aufnahmen von Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Inhibitoren des retrograden und endosomalen Transportes. HeLa229 Zellen wurden mit einer MOI 0.5 infiziert und in Anwesenheit von 75 µM der Inhibitoren des retrograden (Retro1, Retro2, VP184) und endosomalen Transportes (Comp20) für drei Tage inkubiert. Nuklei wurden über DAPI gefärbt und sind grün dargestellt. Die SCV wurde snGroEL-Cy3 gefärbt und ist rot dargestellt. Die zusammengesetzten Bilder (Überlagerung) spiegeln die Abnahme der relativen SCV-Durchschnittsgröße in Inhibitor-behandelten Zellen verglichen zur DMSO-Kontrolle wieder. 30 µm Größenbalken ist abgebildet.

In keiner der Proben konnte ein Zerfall der inhomogenen SCV beobachtet werden, welcher sich durch das Auftreten von mehreren kleinen Vakuolen innerhalb der infizierten Zellen bemerkbar macht. Jede SCV erschien nach wie vor als ein Kompartiment.

Zusätzlich zur Primärinfektion wurde die Sekundärinfektion mit *Sn* aus den mit Inhibitorbehandelten, infizierten Zellen untersucht, um deren Auswirkungen auf die *Sn*-Infektivität zu ermitteln (s. Abb. 3.3.4-3.3.6). Dafür wurden simultan Zellkulturplattenduplikate mitgeführt und entsprechend zwei Konzentrationen (25 und 75 μ M) für alle vier Retro-Inhibitoren und eine für DMSO als Lösungsmittelkontrolle eingesetzt. Anschließend wurde der Zellkulturüberstand der lysierten Zellen der Primärinfektion (drei Tage p.i.) auf frische Zellen überimpft (1:50) und für weitere drei Tage inkubiert (Sekundärinfektion).

Für Immunoblotanalysen wurden Gesamtzelllysate von *Sn*-infizierten Zellen entsprechend der Primärinfektion (s. Abb. 3.3.1) auf die Verteilung der Bakterienmenge hin untersucht (s. Abb. 3.3.4).

Abb. 3.3.4: Immunoblots von sekundär Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Inhibitoren des retrograden und endosomalen Transportes. Sekundärinfektion von HeLa229 Zellen durch Überimpfung der Primärinfektion (MOI 0.5 infiziert, in Anwesenheit der Inhibitoren für drei Tage inkubiert). Im Vergleich zur DMSO-Lösungsmittelkontrolle nahm der snGroEL-Proteingehalt in allen Proben stark ab (n = 4). Equi = entsprechend (engl. *equivalent*). Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Eine quantitative Messung des snGroEL-Gehaltes (ImageJ) zeigte, dass bei allen vier Inhibitoren eine starke Reduktion verglichen zur DMSO-Kontrolle zu sehen war. Diese betrug bei 25 μ M Retro1-, Retro2- oder Comp20-Behandlung zwischen 30-34 % und bei VP184 sogar 76 %. Nach einer Behandlung mit 75 μ M der Retro-Inhibitoren fielen die Werte weiter auf 53-89 %.

Bei den mikroskopischen Experimenten wurden entsprechend der Primärinfektion *Sn*-infizierte Zellen snGroEL-Cy3-DAPI gefärbt und über ein automatisiertes Leica DMIR Mikroskop eingelesen. Die mikroskopischen Aufnahmen (s. Abb. 3.3.5) wurden mithilfe von ImageJ für vier biologische Replikate (n = 4) quantitativ ausgewertet und auf die durchschnittliche SCV-Anzahl untersucht (s. Abb. 3.3.6).

Bei den mikroskopischen Aufnahmen konnte bei 75 µM der optisch deutlichste Effekt bezüglich der SCV-Anzahl beobachtet werden (s. Abb. 3.3.5). Im Vergleich zur DMSO-Kontrolle zeigten alle mit Inhibitoren behandelten Proben eine starke Abnahme der SCV-Anzahl bei konstanter Zellzahl. Da keine direkte Inhibitoreneinwirkung auf die Sekundärinfektion vorlag, waren auch keine Veränderungen in der durchschnittlichen SCV-Größe zu beobachten.

Die quantitative Auswertung der mikroskopischen Aufnahmen zeigte die starke Reduktion der SCV-Zahlen (s. Abb. 3.3.6). Diese fiel wiederum inhibitorspezifisch und konzentrationsabhängig aus. Bei einer Behandlung mit 25 μ M der Retro-Inhibitoren reduzierte sich die SCV-Zahl um 30-50 %. Durch die Behandlung mit 75 μ M nahm die Reduktion größtenteils signifikant weiter zu (60-90 %).

Abb. 3.3.5: Immunofluoreszenz Aufnahmen von sekundär Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Inhibitoren des retrograden und endosomalen Transportes. Sekundärinfektion von HeLa229 Zellen durch Überimpfung der Primärinfektion (MOI 0.5 infiziert, in Anwesenheit der Inhibitoren für drei Tage inkubiert). Nuklei wurden über DAPI gefärbt und sind grün dargestellt. Die SCV wurde snGroEL-Cy3 gefärbt und ist rot dargestellt. Die zusammengesetzten Bilder (Überlagerung) spiegeln die Abnahme der *Sn*-Infektivität in Inhibitor-behandelten Zellen verglichen zur DMSO-Kontrolle wieder. 30 µm Größenbalken ist abgebildet Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Entsprechend der Primärinfektion zeigte VP184 die stärksten inhibitorischen Effekte in allen Experimenten (s. Abb. 3.3.1-3.3.6).

Zusammenfassend konnte gezeigt werden, dass alle Inhibitoren des retrograden (Retro1, Retro2 und VP184) und endosomalen Transportes (Comp20) bei *Sn*-Infektionen unterschiedlich starke Effekte auf die Ausbildung und/oder die Größe der SCV ausüben. Da bei der Sekundärinfektion kein direkter Kontakt mit den einzelnen Retro-Inhibitoren vorlag, müssen die hier gemachten Beobachtungen auf Defizite der *Sn*-Infektion und damit einer verminderten Infektivität resultierten.

Abb. 3.3.6: Relative Größe der SCV von sekundär Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Inhibitoren des retrograden und endosomalen Transportes. Von Leica DMIR ermittelten mikroskopischen Aufnahmen wurde die relative SCV-Anzahl über ImageJ für vier biologische Replikate (n = 4) ermittelt. Im Vergleich zur DMSO-Kontrolle nahm die SCV-Durchschnittszahl nach einer Behandlung mit Inhibitoren des retrograden (Retro1, Retro2, VP184) und endosomalen Transportes (Comp20) stark ab. P-Werte: < 0.05 = *; < 0.01 = **; < 0.001 = ***; equi = entsprechend (engl. *equivalent*). Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

3.3.2 Retro-Inhibitoren zeigen einen drastischen Einfluss auf die SCV-

Ausbildung und SCV-Morphologie

Bakterielle AB₅-Toxine werden allgemein retrograd von der Plasmamembran (PM) über das *trans*-Golgi-Netzwerk (TGN) zum ER transportiert (s. Abschnitt 1.5.1). Für Retro1 und Retro2 wurde beschrieben, dass sie den Toxintransport zwischen frühen Endosomen und dem TGN blockieren. Dabei wurden keine morphologischen Veränderungen vom ER, Golgi oder von Endosomen (frühe, Recycling, späte) und Lysosomen beobachtet. Ausgewählte Markerproteine der einzelnen zellulären Komponenten bestätigten diese Beobachtung, indem keine Lokalisationsänderungen der jeweiligen Faktoren auftraten (Stechmann *et al.*, 2010). Ähnliches wird für VP184 und Comp20 vermutet (s. Abschnitt 1.5.2).

Die in Abschnitt 3.3.1 dargestellten Ergebnisse zeigten einen relativen starken Effekt der Retro-Inhibitoren auf die *Sn*-Primär- und -Sekundärinfektion. Die Veränderungen in SCV-Größe und Ausbildung wurden im Folgenden in TEM-Experimenten⁶ für die Primärinfektion (drei Tage p.i.) untersucht (s. Abb. 3.3.7-3.3.11).

Zellen, die mit DMSO (Lösungsmittelkontrolle) behandelt wurden, zeigten eine normale SCV-Morphologie (s. Abb. 3.3.7).

⁶ Probenvorbereitungen für EM-Schnitte und EM-Einbettungen von Daniela Bunsen und Claudia Gerig (unter der Leitung von Prof. Dr. Georg Krohne) (s. Abschnitt 2.2.2.13).

Abb. 3.3.7: Elektronenmikroskopische Aufnahmen von *Simkania*-infizierten HeLa229 Zellen nach einer Behandlung mit DMSO. HeLa229 Zellen wurden mit *Sn*-infiziert (MOI 0.5) und in Anwesenheit von DMSO für drei Tage inkubiert. Die Kontrolle zeigt eine normale SCV (rot), welche sich nahe dem Zellkern (blau) im gesamten Zytosol ausdehnt. Die SCV zeigt eine deutliche Assoziation zu Mitochondrien (grün) und ist komplett mit EBs und RBs gefüllt, die innerhalb von Sub-Vakuolen angeordnet sind. 2 µm Größenbalken ist abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

In Retro1-behandelten Zellen (75 μ M) erschien die SCV kleiner, mit wenigen Sub-Vakuolen, und es konnten weniger infizierte Zellen identifiziert werden (s. Abb. 3.3.8). Es wurden keine weiteren morphologischen Veränderungen der SCV oder der Bakterien beobachtet.

Abb. 3.3.8: Elektronenmikroskopische Aufnahmen von Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Retro1. HeLa229 Zellen wurden mit *Sn*-infiziert und in Anwesenheit von Retro1 (75 μM) für drei Tage inkubiert. Retro1 beeinflusste die SCV-Größe, was u.a. in Form von kleineren Sub-Vakuolen zu beobachten war. Mitochondrien (grün) waren intrazellulär verteilt und assoziierten z.T. mit der SCV (rot) nahe dem Zellkern (blau). 2 μm Größenbalken sind abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Die Behandlung mit Retro2 (75 µM) zeigte die auffälligsten Veränderungen der SCV-Morphologie (s. Abb. 3.3.9). Innerhalb der SCV waren nur wenige Sub-Vakuolen zu sehen. Diese erschienen jedoch stark vergrößert und enthielten zusätzliches, zumeist freistehendes Membranmaterial (s. Abb. 3.3.9 *rechts*, orangener Pfeil). Ein Teil der Sub-Vakuolen war von mehr als einer Doppelmembran (DM) ummantelt (s. Abb. 3.3.9 *rechts*, gelbe Pfeile), was zusammen mit der Beobachtung von freistehendem Membranmaterial auf einen Defekt in Membranfusionen und der SCV-Membranausbildung hindeutet. Die stark vergrößerten Sub-Vakuolen waren mit nur wenigen EBs und RBs gefüllt, die an der DM assoziiert vorlagen

(s. Abb. 3.3.9 *rechts*, türkisen Pfeile). Dies deutet auf eine Beeinträchtigung der bakteriellen Replikation hin.

Abb. 3.3.9: Elektronenmikroskopische Aufnahmen von Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Retro2. HeLa229 Zellen wurden mit *Sn*-infiziert und in Anwesenheit von Retro2 (75 μM) für drei Tage inkubiert. Retro2 beeinflusste die SCV-Größe, SCV-Morphologie und bakterielle Replikation. Stark vergrößerte Sub-Vakuolen enthielten nur wenige Bakterien, welche größtenteils am Rand der Vakuolenmembran lokalisiert waren (türkise Pfeile) und wiesen zusätzliches Membranmaterial auf (orangene Pfeile). Manche Sub-Vakuolen wurden von mehreren Membranen umschlossen (gelbe Pfeile). Insgesamt erschien die SCV dadurch größer. Mitochondrien (grün) assoziierten größtenteils mit der SCV (rot) nahe dem Zellkern (blau). 2 μm Größenbalken sind abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Aufgrund der vergrößerten Sub-Vakuolen erschien die SCV größer (s. Abb. 3.3.9). Diese war im Vergleich zur DMSO-Kontrolle (s. Abb. 3.3.7) jedoch deutlich kleiner.

VP184-behandelte (25 μ M) Zellen (nicht und *Sn*-infiziert) erschienen an sich kleiner zu sein (s. Abb. 3.3.10).

Abb. 3.3.10: Elektronenmikroskopische Aufnahmen von Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit VP184. HeLa229 Zellen wurden mit *Sn*-infiziert und in Anwesenheit von VP184 (25 μM) für drei Tage inkubiert. VP184 beeinflusste die Zellentwicklung sowie die Zell- und SCV-Größe. Die Sub-Vakuolen der SCV (rot) waren in der ganzen Zelle verteilt, nahe dem Zellkern (blau), und teilweise mit Mitochondrien (grün) assoziiert. Innerhalb einiger Sub-Vakuolen konnten freistehende transparente Vesikel von unbekannter Herkunft beobachtet werden (gelbe Pfeile). Einige Mitochondrien schienen mit transparenten Tröpfchen von unbekannter Herkunft assoziiert zu sein (Weiße Pfeile). 2 μm Größenbalken ist abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Dies deutet auf einen für die Wirtszelle negativen zellulären Effekt des Inhibitors hin. Die SCV-Größe war dementsprechend auch kleiner. Interessanterweise konnten innerhalb mancher

Sub-Vakuolen kleine durchscheinende Vesikel beobachtet werden (s. Abb. 3.3.10 *rechts*, gelbe Pfeile). Zusätzlich lagen an manchen Mitochondrien (grün) kleine transparente Tröpfchen unbekannter Herkunft vor (s. Abb. 3.3.10, *Mitte*, weiße Pfeile).

Beides könnte auf eine Veränderung des Lipidmetabolismus oder auf eine Interaktion mit Lipidtröpfchen (engl. *lipid droplets*, LDs) hindeuten.

Die Behandlung mit Comp20 (75 µM) zeigte massive intrazelluläre Effekte, wodurch der Inhibitor sich von den anderen Retro-Inhibitoren komplett unterschied (s. Abb. 3.3.11). Neben einer starken Anhäufung von intrazellulären transparenten Vesikeln (möglicherweise Stressvesikel) traten vermehrt dunkle und kompakte Komplexe auf, die auf Degradationsprodukte (höchstwahrscheinlich EBs und RBs) hindeuten. Des Weiteren traten nur ein bis vier Bakterien innerhalb von stark reduzierten Sub-Vakuolen auf, die keine Nähe zum Zellkern mehr aufwiesen.

Abb. 3.3.11: Elektronenmikroskopische Aufnahmen von Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Comp20. HeLa229 Zellen wurden mit *Sn*-infiziert und in Anwesenheit von Comp20 (75 μM) für drei Tage inkubiert. Comp20 induzierte eine Anhäufung an intrazellulären transparenten "Stress"vesikeln (grüne Pfeile) und Degradationsprodukten (gelbe Pfeile, dunkle, dichte Komplexe). Die SCV erschien kleiner, da einzelne Sub-Vakuolen zumeist nur ein-vier Simkanien enthielten. Mitochondrien (grün) erschienen leicht vergrößert und waren intrazellulär verteilt, z.T. mit der SCV (rot) assoziiert. Es fehlte die Nähe zum Zellkern (blau). 2 μm Größenbalken ist abgebildet.

Zusammenfassend zeigten alle vier Retro-Inhibitoren massive morphologische Veränderungen der SCV und teilweise der infizierten Zellen selber. Diese fielen inhibitorspezifisch aus und deuten damit auf unterschiedliche intrazelluläre Wirkungsspektren hin. Eine gezielte Hemmung von retrograden Endosomen-zu-Golgi (Retro1, Retro2 und VP184) als auch endosomalen Transportwegen (Comp20) resultierte hier in einer massiven Beeinträchtigung der normalen Entwicklung von Simkanien und ihrer Replikationsnische, der SCV.

3.3.3 Retro-Inhibitoren verursachen unterschiedliche Verschiebungen des retrograden C₆-NBD-Ceramidtransportes zum Golgi und zur SCV

Der retrograde Vesikeltransport kann von Pathogenen als eine mögliche Lipid-Bezugsquelle genutzt werden. So manipulieren Chlamydien bspw. sekretorische Transportwege, um bspw. an exozytotische Vesikel des Golgis zu gelangen, welche lebenswichtige Lipide wie SM enthalten, die eine intrazelluläre Ausbildung der Inklusion sowie bakterielle Replikation garantieren (Bastidas *et al.*, 2013).

Um herauszufinden, ob die vier Retro-Inhibitoren Effekte auf den zellulären Lipidtransport ausüben, wurde der Ceramid Lipidtransport näher untersucht. Dafür wurde ein fluoreszierendes Ceramid-Derivat (C₆-NBD-Ceramid) in Lebendzellmikroskopieexperimenten verwendet (s. Abb. 3.3.12-3.3.32 und Tab. 2.18). Derartige Ceramid-Derivate können für Vitalfärbungen des Golgis verwendet werden (s. Abschnitt 1.5.3). Des Weiteren wurde ein Transport zur chlamydialen Inklusion sowie eine Inkorporierung in die bakterielle Zellwand beobachtet, was auch für Simkanien vermutet werden kann (s. Abb. 3.3.12). Da NBDgekoppelte Glykosyl-Ceramide oder Glykosyl-SM retrograd von der PM über Endosomenzum-Golgi-Komplex transportiert werden, eignete sich das C₆-NBD-Ceramid für weitere Untersuchungen der Retro-Inhibitoren.

🖔 frühe Endosomen

U Recycling Endosomen

Abb. 3.3.12: Schematische Darstellung des C₆-NBD-Ceramidtransportes in nicht und *Simkania*-infizierten Zellen. HeLa229 Zellen wurden nicht (Kontrolle, *links*) oder mit *Sn*-infiziert (*rechts*) und für drei Tage inkubiert. Nach Zugabe des NBD-Ceramids (blau) tritt das Lipid über die Plasmamembran ins endosomale System und wird zum Golgi (G) transportiert. Aufgrund eines stetigen Hin- und Rücktransportes zwischen Endosomen und Golgi in Kontrollzellen fluoresziert neben dem Golgi ein Großteil des Zytosols. Bei *Sn*-infizierten Zellen nimmt die Fluoreszenz im Zytosol ab, wohingegen die SCV, die am dritten Tag der Infektion teilweise den Zellkern (N, Nukleus) umschließt, ähnlich stark wie der Golgi fluoresziert. Hier kann im Vergleich zu den Kontrollzellen auch noch eine deutliche Färbung der Plasmamembran beobachtet werden. Das Endoplasmatische Retikulum (ER) fluoresziert nicht.

Für die Lebendzellmikroskopie wurden stabil transfizierte, fluoreszierende Zelllinien verwendet (s. Tab. 2.1), um kinetische Studien durchzuführen. Mithilfe von HeLa-Golgi-mRFP Zellen

konnte der exakte Eintritt von C₆-NBD-Ceramid-Molekülen in fluoreszierende Golgis, sowie ein Transport zur SCV ermittelt werden (s. Abschnitt 2.2.2.14). Der C₆-NBD-Ceramidtransport wurde in An- oder Abwesenheit von den einzelnen Retro-Inhibitoren oder Brefeldin A (BFA) untersucht (s. Abb. 3.3.13, 3.3.14, 3.3.16, 3.3.18-25). HeLa-KDEL-dsRed Zellen dienten zur Überprüfung, ob der C₆-NBD-Ceramidtransport über den Golgi hinaus bis zum ER nachverfolgt werden kann (s. Abb. 3.3.17). Die *Sn*-Infektion wurde anhand von Durchlicht-Hellfeldmikroskopieaufnahmen für jedes Experiment überprüft.

Die Abb. 3.3.13 und 3.3.14 zeigen einen Ausschnitt von mikroskopischen Aufnahmen (insg. 30 min mit einer Aufnahme/30 Sek) von nicht und *Sn*-infizierten HeLa-Golgi-mRFP Zellen (drei Tage p.i.). 50 μ M C₆-NBD-Ceramid wurden zwei min nach Beginn der Messung zu den Zellen gegeben. Dabei ist für beide Konditionen der Eintritt des C₆-NBD-Ceramids über die Plasmamembran (zweieinhalb Min) und dessen schnellen Übergang ins endosomale System abgebildet.

Abb. 3.3.13: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-Golgi-mRFP Zellen. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) ist deutlich zu sehen. 10 µm Größenbalken ist abgebildet.

Das C₆-NBD-Ceramid ist bei siebeneinhalb min deutlich im Golgi vorhanden und hat in *Sn*-infizierten Zellen bereits Teile der SCV erreicht. Über die Zeit nimmt das C₆-NBD-Ceramidsignal im Golgi und der SCV scheinbar zu. C₆-NBD-Ceramid, das nicht im Golgi und/oder der SCV lokalisiert war, konnte weiterhin im Zytosol detektiert werden. Die Fluoreszenz im Zytosol in *Sn*-infizierten Zellen war verglichen zur Kontrolle stark reduziert. Dafür verlagerte sich das Signal, sodass die SCV, der Golgi und die Plasmamembran deutlich markiert waren (s. Abb. 3.3.14).

Abb. 3.3.14: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) und die SCV (gestrichelte Linie) ist deutlich zu sehen. 10 µm Größenbalken ist abgebildet; (*) = infizierte Zellen – Zellmorphologie (gerade Linie) und Position der SCV (gestrichelte Linien) wurden nachträglich eingezeichnet.

Interessanterweise folgte der C₆-NBD-Ceramidtransport zum mRFP-fluoreszierenden Golgi einer Kinetik, die einem Carrier-vermittelten Transport entspricht (s. Abb. 3.3.15). Dabei war die Signalintensität am Golgi von *Sn*-infizierten Zellen etwas schwächer, folgte aber derselben Kinetik.

Abb. 3.3.15: Graphische Darstellung der mikroskopischen Aufnahmen vom intrazellulären C₆-NBD-Ceramid zum Golgi-Transport in nicht und *Simkania*-infizierten HeLa-Golgi-mRFP Zellen. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zum Golgi transportierten C₆-NBD-Ceramids ist graphisch dargestellt. Jeder Messwert repräsentiert den Mittelwert aus n = 3 biologischen Replikaten und m \ge 20 Golgi-mRFP. Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Der C₆-NBD-Ceramidtransport zum Golgi steigt exponentiell an. *Sn*-infizierte Zellen (orange) absorbieren etwas langsamer und weniger des fluoreszenten Ceramids als nicht infizierte Zellen (blau). Maximalwerte wurden nach 28-30 min erreicht. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Als Negativkontrolle wurde BFA verwendet (0,2 µg/ml, 30 min vor Messungen) (s. Abb. 3.3.16).

Abb. 3.3.16: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit Brefeldin A. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit BFA ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) und die SCV schwach zu sehen. 10 µm Größenbalken ist abgebildet; (*) = infizierte Zellen. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

BFA fragmentiert den Golgi und sollte damit den C₆-NBD-Ceramidtransport unterbinden (s. Abschnitt 1.5.3). Die Fragmentierung des Golgis konnte bereits nach 15 min Inkubation beobachtet werden und war bei 30 min gleichmäßig fortgeschritten. Die Aufnahmen zeigten eine sehr stark abgeschwächte Aufnahme des C₆-NBD-Ceramids in fluoreszierende Golgi Fragmente von *Sn*-infizierten Zellen, die der von nicht infizierten Zellen entsprach (Daten nicht gezeigt). In *Sn*-infizierten Zellen konnte weiterhin eine sehr schwache Aufnahme des C₆-NBD-Ceramids in die SCV beobachtet werden.

Studien mit unbehandelten HeLa-KDEL-dsRed Zellen zeigten, dass der C₆-NBD-Ceramidtransport auf Höhe des Golgis enden muss, da KDEL-markiertes ER nicht erreicht wurde (s. Abb. 3.3.17). Damit sollte ein C₆-NBD-Ceramidtransport retrograd zur SCV über Endosomen und/oder den Golgi verlaufen. Hinzukommend sollte eine über Retro-Inhibitoren induzierte Veränderung des C₆-NBD-Ceramidtransportes sofort sichtbar werden.

Abb. 3.3.17: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-KDEL-dsRed Zellen. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Es ist kein C₆-NBD-Ceramidtransport (grün) in das ER (rot) zu sehen. 10 µm Größenbalken ist abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Interessanterweise war der C₆-NBD-Ceramidtransport zum mRFP-Golgi nach einer Behandlung mit den einzelnen Retro-Inhibitoren verändert (s. Abb. 3.3.18-28).

Retro1-behandelte Zellen zeigten ein stärkeres C_6 -NBD-Ceramidsignal im Golgi in *Sn*-infizierten als in nicht infizierten Zellen (s. Abb. 3.3.18 und 3.3.19).

Abb. 3.3.18: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit Retro1. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit Retro1 ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) deutlich zu sehen. 10 µm Größenbalken ist abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Bei *Sn*-infizierten Zellen konnte ein optisch deutliches C₆-NBD-Ceramidsignal in der SCV beobachtet werden (s. Abb. 3.3.19).

Abb. 3.3.19: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit Retro1. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit Retro1 ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) und die SCV deutlich zu sehen. 10 µm Größenbalken ist abgebildet; (*) = infizierte Zellen. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Die Beobachtung, dass das C₆-NBD-Ceramidsignal im Golgi in *Sn*-infizierten Zellen stärker erscheint als in nicht infizierten, wurde auch bei Retro2-behandelten Zellen gemacht (s. Abb. 3.3.20 und 3.3.21).

Abb. 3.3.20: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit Retro2. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit Retro2 ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) deutlich zu sehen. 10 µm Größenbalken ist abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Auch bei *Sn*-infizierten Zellen konnte ein optisch deutliches C₆-NBD-Ceramidsignal in der SCV beobachtet werden (3.3.21).

Abb. 3.3.21: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit Retro2. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit Retro2 ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) und die SCV deutlich zu sehen. 10 μ m Größenbalken ist abgebildet; (*) = infizierte Zellen. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

VP184-behandelte Zellen zeigten überraschenderweise ein stärkeres C₆-NBD-Ceramidsignal im Golgi in nicht infizierten als in *Sn*-infizierten Zellen (s. Abb. 3.3.22 und 3.3.23).

Abb. 3.3.22: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit VP184. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit VP184 ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) deutlich zu sehen. 10 µm Größenbalken ist abgebildet. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Das C₆-NBD-Ceramidsignal in der SCV war optisch sehr schwach (s. Abb. 3.3.23), ähnlich wie bei BFA-behandelten Zellen (s. Abb. 3.3.16).

Abb. 3.3.23: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit VP184. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit VP184 ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) und die SCV deutlich zu sehen. 10 μ m Größenbalken ist abgebildet; (*) = infizierte Zellen. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Bei Comp20-behandelten Zellen konnte sowohl im Golgi als auch in der SCV ein optisch deutliches C₆-NBD-Ceramidsignal beobachtet werden (s. Abb. 3.3.24 und 3.3.25).

Abb. 3.3.24: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-Golgi-mRFP Zellen nach einer Comp20-Behandlung. Dargestellt sind Ausschnitte einer Zeitreihe mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit Comp20 ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) eindeutig zu sehen. 10 µm Größenbalken ist abgebildet.

Abb. 3.3.25: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen nach einer Comp20-Behandlung. Dargestellt sind Ausschnitte einer Zeitreihe mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Nach der Behandlung mit Comp20 ist der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) und die SCV eindeutig zu sehen. 10 µm Größenbalken ist abgebildet; (*) = infizierte Zellen.

Die kinetischen Auswertungen der Lebendzellmikroskopieexperimente zeigten interessanterweise eine unterschiedliche, inhibitorspezifische Verteilung (s. Abb. 3.3.26-28).

Abb. 3.3.26: Graphische Darstellung der mikroskopischen Aufnahmen vom intrazellulären C₆-NBD-Ceramid zum Golgi-Transport in Inhibitor-behandelten nicht infizierten HeLa-Golgi-mRFP Zellen. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zum Golgi transportierten C₆-NBD-Ceramids ist graphisch dargestellt. Jeder Messwert repräsentiert den Mittelwert aus n = 3 biologischen Replikaten und m \ge 20 Golgi-mRFP. Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. VP184-behandelte Zellen (violett) zeigten einen starken Anstieg, der nach 12-13 min wieder abfällt. Retro2-behandelte Zellen (grau) zeigten einen leichten Anstieg verglichen zur unbehandelten Kontrolle (blau), Retro1- (rot) sowie Comp20-behandelte Zellen (grün) einen leichten Abfall. In BFA-behandelten Zellen (gelb) war der Transport sehr schwach. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

BFA-behandelte, nicht infizierte Zellen wiesen den schwächsten, gerade noch detektierbaren C₆-NBD-Ceramidtransport zu mRFP-Golgis im Vergleich zu der unbehandelten Kontrolle auf (Signifikanzwert (SW) 0.005) (s. Abb. 3.3.26). Aus der Comp20-Behandlung (75 μ M, 30 min vor Messungen) resultierte ein leicht abgeschwächter Transport. Der Ceramidtransport von Retro1-behandelten Zellen (75 μ M, 30 min vor Messungen) (SW 0.02) folgte der Kinetik von Comp20. Nach der Retro2-Behandlung (75 μ M, 30 min vor Messungen) wurden im Vergleich zur unbehandelten Kontrolle stärkere C₆-NBD-Ceramidtransporte ermittelt (SW 0.18). Nur in VP184-behandelten Zellen (25 μ M, 30 min vor Messungen) wurde ein schneller und massiv angestiegener Transport gemessen (SW 0.02).

Auch die BFA-behandelten, *Sn*-infizierten Zellen wiesen den schwächsten, gerade noch detektierbaren C₆-NBD-Ceramidtransport zu mRFP-Golgis auf (SW 0.01) (s. Abb. 3.3.27). Die Comp20-Behandlung (75 μ M, 30 min vor Messungen) zeigte kaum Veränderungen im Vergleich zur unbehandelten Kontrolle. In Retro1-behandelten Zellen konnte ein verstärkter Transport ermittelt werden (SW 0.008). Dieser ist in Retro2-behandelten Zellen (75 μ M, 30 min vor Messungen) sogar weiter angestiegen, wobei sich die Messwerte (SW 0.02) im

Vergleich zu unbehandelten *Sn*-infizierten Zellen fast verdoppelt haben. Überraschenderweise ist der Transport in VP184-behandelten Zellen (SW 0.06) auf dieselbe Kinetik wie die von BFA gesunken.

Abb. 3.3.27: Graphische Darstellung der mikroskopischen Aufnahmen vom intrazellulären C₆-NBD-Ceramid zum Golgi-Transport in Inhibitor-behandelten *Simkania*-infizierten HeLa-Golgi-mRFP Zellen. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zum Golgi transportierten C₆-NBD-Ceramids ist graphisch dargestellt. Jeder Messwert repräsentiert den Mittelwert aus n = 3 biologischen Replikaten und m \geq 20 Golgi-mRFP. Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Retro1 (rot) und Retro2-behandelte Zellen (grau) zeigten einen starken Anstieg verglichen zur unbehandelten Kontrolle (orange). Comp20-behandelte Zellen (grün) verhielten sich ähnlich zur Kontrolle. In VP184- (violett) und BFA-behandelten Zellen (gelb) war der Transport sehr schwach, aber immer noch detektierbar. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Die Untersuchung des C₆-NBD-Ceramidtransportes zur SCV (s. Abb. 3.3.28) in Inhibitorbehandelten Zellen, verglichen mit der unbehandelten Kontrolle, ergab ein ähnliches Bild wie in Abbildung 3.3.27 dargestellt. Die Messwerte für Retro1 (SW 0.01) und Retro2 (SW 0.01) waren ähnlich erhöht wie bei den mRFP-Golgis. Interessanterweise war der Transport nach der BFA-Behandlung nur leicht reduziert, verglichen zur Kontrolle (SW 0.01). Bei VP184behandelten Zellen (SW 0.01) war der Transport sogar für die ersten 20 min erhöht, verglichen zur Kontrolle, und fiel danach auf deren Kinetik zurück. Der Transport in Comp20-behandelten Zellen folgte weiterhin derselben Kinetik der Kontrolle.

Die Ergebnisse deuten darauf hin, dass drei Retro-Inhibitoren (Retro1, Retro2 und VP184) den intrazellulären C₆-NBD-Ceramidtransport sowohl zum Golgi als auch zur SCV beeinflussen. Ob der veränderte Ceramidtransport dabei mit den morphologischen Veränderungen der SCV und der verminderten bakteriellen Infektivität nach der Retro-Inhibitorbehandlung zusammenhängt (s. Abschnitte 3.3.1 und 3.3.2), ist noch unklar.

Abb. 3.3.28: Graphische Darstellung der mikroskopischen Aufnahmen vom intrazellulären C₆-NBD-Ceramid zur SCV Transport in Inhibitor-behandelten *Simkania*-infizierten HeLa-GolgimRFP Zellen. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zur SCV transportierten C₆-NBD-Ceramids ist graphisch dargestellt. Jeder Messwert repräsentiert den Mittelwert aus n = 3 biologischen Replikaten und m \ge 20 Golgi-mRFP. Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Retro1 (rot) und Retro2-behandelte Zellen (grau) zeigten einen starken Anstieg verglichen zur unbehandelten Kontrolle (orange). Comp20-behandelte Zellen (grün) verhielten sich ähnlich zur Kontrolle. VP184-behandelte Zellen (violett) zeigten für 10-15 min einen leichten Anstieg, der dann auf Höhe der Kontrolle abfiel. In BFA-behandelten Zellen (gelb) war der Transport schwach, aber immer noch detektierbar. Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015b.

Der Befund, dass nach einer Behandlung mit BFA oder VP184 der C₆-NBD-Ceramidtransport zur SCV teilweise stärker ist als zum Golgi, deutet auf ein Mitwirken von Golgi-unabhängigen Lipidtransportwegen hin. Erstaunlicherweise verhielt sich das Retro2-Derivat VP184 völlig anders als die anderen Retro-Inhibitoren und zeigte die vergleichsweise stärksten Effekte.

Der für *C. trachomatis* beobachtete Transport von NBD-Ceramiden in die Inklusion (Golgi-abhängig) konnte durch Zugabe von BFA oder Monensin inhibiert werden (s. Abschnitt 1.5.3). Eine Verwendung von Monensin als weitere Negativkontrolle neben BFA wurde jedoch ausgeschlossen, nachdem ein deutlicher C₆-NBD-Ceramidtransport zu mRFP-Golgi Fragmenten und zur SCV beobachtet werden konnte (s. Abb. 3.3.29-32). Trotz starker morphologischer Veränderungen, bei denen der Golgi sowohl bei nicht als auch bei *Sn*-infizierten Zellen in abgerundete Vesikel-ähnliche Strukturen zerfallen war, konnte das fluoreszierende Ceramid in viele mRFP-markierte Bereiche gelangen (s. Abb. 3.3.29 und 3.3.30).

Abb. 3.3.29: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit Monensin. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Der C₆-NBD-Ceramidtransport (grün) in den fragmentierten Golgi (rot) ist nach der Monensin-Behandlung unterschiedlich stark. 10 µm Größenbalken ist abgebildet.

Des Weiteren konnte ein Transport in die SCV beobachtet werden (s. Abb. 3.3.30).

Abb. 3.3.30: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit Monensin. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Der C₆-NBD-Ceramidtransport (grün) in den fragmentierten Golgi (rot) ist nach der Monensin-Behandlung unterschiedlich stark und verhält sich normal bei der SCV. 10 µm Größenbalken ist abgebildet; (*) = infizierte Zellen.

Obwohl es zu einem unterschiedlich starken C₆-NBD-Ceramidtransport in mRFP-markierte Golgi Fragmente kommt, verhält sich dessen Kinetik ähnlich zu Retro2 (s. Abb. 3.3.31 und 3.3.32).

Abb. 3.3.31: Graphische Darstellung vom intrazellulären C₆-NBD-Ceramid zum Golgi-Transport in nicht infizierten HeLa-Golgi-mRFP Zellen unter Einwirkung von Monensin. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zum Golgi transportierten C₆-NBD-Ceramids ist graphisch dargestellt (n = 3, m \ge 20 Golgi-mRFP). Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Retro2-behandelte Zellen (grau) zeigten einen leichten Anstieg verglichen zur unbehandelten Kontrolle (blau) nach ca. 9 min. Monensin-behandelte Zellen (dunkelgrün) zeigten einen schnelleren Anstieg und passten sich nach ca. 15 min der Kurve von Retro2 an.

Dabei fiel der C₆-NBD-Ceramidtransport stärker in *Sn*-infizierten Zellen (s. Abb. 3.3.32) aus, als in nicht infizierten (s. Abb. 3.3.31).

Abb. 3.3.32: Graphische Darstellung vom intrazellulären C₆-NBD-Ceramid zum Golgi-Transport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen unter Einwirkung von Monensin. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zur SCV transportierten C₆-NBD-Ceramids ist graphisch dargestellt (n = 3, m \geq 20 Golgi-mRFP). Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Retro2-behandelte Zellen (grau) zeigten einen starken Anstieg verglichen zur unbehandelten Kontrolle (orange), welcher bei Monensin (dunkelgrün) noch etwas verstärkt war.

Um einen unspezifischen Transport von C₆-NBD-Molekülen (komplexiert mit BSA) auszuschließen, wurde fluoreszierendes BSA-Alexa-488 getestet (s. Tab. 2.18). Dieses gelangte jedoch weder zum Golgi, noch überquerte es überhaupt die Plasmamembran (Daten nicht gezeigt).

Eine Verwendung von THP1 Zellen (s. Tab. 2.1) als vergleichende Primärzelllinie wurde ausgeschlossen, nachdem ein C₆-NBD-Ceramidtransport aufgrund der Zellmorphologie schwer zu mikroskopieren war (Daten nicht gezeigt).

Retro-Inhibitoren sollen die Wirkung von AB₅-Toxinen inhibieren, indem sie deren Transport zum Zielorganell blockieren, wo diese ihre enzymatische Aktivität erlangen. Es ist noch nicht bekannt, ob und wenn, wie die *Sn*-Infektion direkt mit dem retrograden Toxintransportweg assoziiert ist. Zu diesem Zweck wurden vorläufige Studien mit einem fluoreszierenden Choleratoxin (Untereinheit B) (s. Tab. 2.18) durchgeführt. Die B-Untereinheit dient dem AB₅-Toxin zur Bindung an Membranen über GM1-Ganglioside oder Cholesterole, bevor es in das Lumen von endozytotischen oder COPI-Vesikeln, vom *trans*-Golgi-Netzwerk und vom ER treten kann (de Haan and Hirst, 2004). Die Experimente zeigten allerdings keinen (nicht infiziert) oder einen stark abgeschwächten (*Sn*-infiziert) Transport zu rot fluoreszierenden Golgis (ähnlich zu BFA), weshalb es sich für weitere Retro-Inhibitorenexperimente nicht eignete (Daten nicht gezeigt).

Zusammenfassend konnte gezeigt werden, dass der zelluläre Ceramid Lipidtransport während einer *Sn*-Infektion von verschiedenen frühen retrograden Transportwegen (frühe Endosomen zu TGN) abhängig ist. Interessanterweise scheinen sich die Wirkspektren der beschriebenen Inhibitoren (Retro1, Retro2, VP184 und Comp20) aufgrund der beobachteten inhibitorspezifischen Kinetiken voneinander zu unterscheiden. Ob Veränderungen am Ceramid- oder allgemeinen Lipidtransport für Modifikationen an der SCV-Morphologie oder der bakteriellen Infektivität verantwortlich sind, ist noch nicht bekannt.

3.3.4 Eine Bafilomycin A1 oder Brefeldin A induzierte Blockierung vom retrooder anterograden Transport beeinflusst die *Simkania*-Primär- und -Sekundärinfektion

Für Chlamydien wird angenommen, dass die PVM weder mit Lysosomen noch mit frühen oder späten Endosomen fusioniert, da keine entsprechenden Marker (Saure-Phosphatase, Ferritin-Rezeptor, Mannose-6-phosphat-Rezeptor, Glykoproteine 1 und 2, Cathepsin D, vakuoläre H⁺-ATPase) identifiziert werden konnten (Hackstadt, 1998). Des Weiteren ist unklar, wie die Inklusionsmembran entsteht und woraus sie sich zusammensetzt. Wechselwirkungen mit endozytotischen Wirtszellproteinen sowie Interaktionen mit vesikulären Transportwegen sind noch weitestgehend unverstanden. Studien zur Interaktion mit endosomalen Vesikeln zeigten jedoch, dass die chlamydiale Inklusion in frühen Stadien (innerhalb der ersten zwei Stunden)

minimal fusogen für endozytotische Vesikel sein kann (Hackstadt *et al.*, 1996). Zur selben Zeit kommt es auch zu einer Anhäufung von Recycling-Endosomen, deren genaue Funktion noch nicht wirklich verstanden ist (Scidmore *et al.*, 1996b, van Ooij *et al.*, 1997). Des Weiteren zeigen C₆-NBD-Ceramid-Studien (s. Abschnitt 1.5.3), dass Chlamydien durchaus mit sekretorischen, exozytotischen Signalwegen wechselwirken. Demnach finden minimierte Wechselwirkungen zwischen der Inklusion und Lysosomen statt, ohne dass es zu einer Fusion oder generellen Inhibierung der intrazellulären lysosomalen Funktionen kommen muss (Eissenberg and Wyrick, 1981, Heinzen *et al.*, 1996).

Die Ergebnisse der Retro-Inhibitorenbehandlungen (s. Abschnitte 3.3.1-3.3.3) zeigten eine deutliche Abhängigkeit der SCV von intrazellulären Transportwegen. Daher wurde die Wirkung weiterer Inhibitoren, die einen Einfluss auf Endosomen, Lysosomen, Golgi und ER haben, in einem Inhibitoren-Infektivitätsassay (s. Abschnitt 2.2.2.9.1) untersucht (s. Abb. 3.3.33-34).

Abb. 3.3.33: Relative Größe der SCV von primär Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit verschiedenen Inhibitoren des intrazellulären Golgi-, ER- und endosomalen Transportes. HeLa229 Zellen wurden mit einer MOI 0,5 infiziert und in Anwesenheit der Inhibitoren für drei Tage inkubiert (n = 3). Zur Inhibierung von intrazellulären Prozessen auf Ebene von Endosomen, Lysosomen, Golgi und ER, wurden Zellen mit Bafilomycin A1 (BafA1), Brefeldin A (BFA), Concanamycin B (ConB), Ionomycin (Ion), Monensin (Mon) oder Chloroquin (Clq) behandelt. Anschließend wurden die Zellen anti-*Sn*-Cy3-DAPI gefärbt und am Leica DMIR mikroskopiert. Dargestellt ist die relative SCV-Anzahl vgl. mit der DMSO-Kontrolle.

Die sechs getesteten Inhibitoren (Bafilomycin A1, Brefeldin A, Chloroquin, Concanamycin B, Ionomycin und Monensin) (s. Abschnitt 1.5.4 und Tab. 2.18), sollten Aufschluss darüber geben, welche Transportwege zwischen Endosomen, Lysosomen, Golgi und ER essentiell für die SCV-Ausbildung und Entwicklung während der *Sn*-Primär- und -Sekundärinfektion sind.

Für die *Sn*-Primärinfektion wurden die Zellen in Anwesenheit von den sechs Inhibitoren oder DMSO (Kontrolle) simultan infiziert (MOI 0,5) (mit Zentrifugation zur Synchronisierung) (s. Abb. 3.3.33). Die unterschiedlichen Inhibitorkonzentrationen wurden anlehnend an publizierte Wirkspektren gewählt (Bayer *et al.*, 1998, Klausner *et al.*, 1992, Woo *et al.*, 1992, Greenstein *et al.*, 2009, Wibo and Poole, 1974, Enyeart *et al.*, 2011). Die SCV wurde anti-*Sn*-Cy3 gefärbt (s. Abschnitt 2.2.2.12.1), um zum einen die relative SCV-Größe und zum anderen die relative SCV-Anzahl zu ermitteln. Die Bafilomycin A1- (BafA1-) Behandlungen zeigten als einziges eine konzentrationsabhängige signifikante Abnahme der relativen SCV-Zahlen bei gleichbleibender Zellkernzahl. Die relative SCV-Zahl hat sich bei 50 nM BafA1 in etwa halbiert und ist bei 75 nM sogar um 80 % gesunken. Die Behandlung mit den anderen Inhibitoren zeigten keine deutlichen konzentrationsabhängigen Veränderungen. Bei Concanamycin B (ConB) kam es zu einer durchschnittlich 30 % Zunahme (5 nM), bei BFA und Monensin (Mon) zu einer durchschnittlich 11 % Zunahme, wohingegen es bei Chloroquin (Clq) und Ionomycin (Ion) zu keiner Zu- oder Abnahme kam.

Abb. 3.3.34: Relative Größe der SCV von sekundär *Simkania*-infizierten HeLa229 Zellen nach einer Behandlung mit verschiedenen Inhibitoren des intrazellulären Golgi-, ER- und endosomalen Transportes. Sekundärinfektion von HeLa229 Zellen, die mit einer MOI 0,5 infiziert und in Anwesenheit der Inhibitoren für drei Tage inkubiert wurden (n = 3). Zur Inhibierung von intrazellulären Prozessen auf Ebene von Endosomen, Lysosomen, Golgi und ER wurden Zellen mit Bafilomycin A1 (BafA1), Brefeldin A (BFA), Concanamycin B (ConB), Ionomycin (Ion), Monensin (Mon) oder Chloroquin (Clq) behandelt. Anschließend wurden die Zellen anti-*Sn*-Cy3-DAPI gefärbt und am Leica DMIR mikroskopiert. Dargestellt ist die relative SCV-Anzahl vgl. mit der DMSO-Kontrolle.
In der *Sn*-Sekundärinfektion konnten bei einer vorherigen BafA1- und BFA-Behandlung (Primär) die auffälligsten Veränderungen beobachtet werden (s. Abb. 3.3.34). Die BafA1-Proben wiesen immer noch eine konzentrationsabhängige Abnahme der relativen SCV-Zahlen auf. Dabei zeigte die Behandlung mit 25 nM BafA1 einen infektivitätsfördernden (~40 %) und erst ab 75 nM einen hemmenden Effekt (~20-80 %). Die BFA-Proben zeigten eine mit Zunahme der Konzentration kontinuierlich ansteigende SCV-Zahl. Hierbei hat sich die SCV-Anzahl bereits bei 50 nm/ml BFA fast verdoppelt. Bei ConB kam es zu einer durchschnittlich 40 % Zunahme und bei Ion sowie Mon zu einer durchschnittlich 70-80 % Zunahme. Clq hatte wie zuvor in der Primärinfektion keinen Einfluss auf die SCV-Ausbildung oder bakterielle Infektivität.

Zusammenfassend zeigte eine Behandlung mit Chloroquin (Clq) keinen Effekt auf die *Sn*-Infektion, womit ausgeschlossen werden kann, dass die allgemeine endosomale Ansäuerung oder Fusion mit Lysosomen für Simkanien eine Rolle spielt. Zusätzlich zu den eher positiven Effekten einer Concanamycin B- (ConB-) Behandlung für die *Sn*- Infektion scheint die inhibierende Wirkung von BafA1 eher nicht an einer Blockierung der vakuolären H⁺-ATPase (ConB), der Fusion mit Lysosomen (Clq) oder der Ansäuerung von Endosomen (Clq) zu liegen. Die verbesserte *Sn*-Sekundärinfektion nach einer Ionomycin (Ion) oder Monensin- (Mon-) Behandlung schließt auch aus, dass ein veränderter Ca²⁺-Gehalt im ER (Ion) bzw. Protein oder Cholesteroltransport am Golgi (Mon) die Simkanien-Infektivität beeinträchtigt. Damit scheint die inhibierende Wirkung von BafA1 eher mit einer Beeinträchtigung des Transportes von endozytiertem Material, dem Rezeptorrecycling, der TGN-Prozessierung und/oder dem retrograden Golgi-ER-Transport zu korrelieren. Die massiv verbesserte *Sn*-Sekundärinfektion nach einer BFA-Behandlung korreliert wahrscheinlich mit einer Proteinumverteilung ans ER, nachdem der retro-/ anterograde Golgi-ER-Transport durch eine Kollabierung des Golgis und der COPI-Vesikel inhibiert wurde.

Da BafA1 den stärksten Effekt auf die SCV-Ausbildung zeigte, wurden seine Auswirkungen auf die *Sn*-Infektion näher untersucht und die folgenden Experimente, anlehnend an die Arbeit von Scot P. Ouellette und Kollegen (2011), durchgeführt. Hierbei sind ausschließlich die BafA1-Experimente von *C. trachomatis* L2 (*Ctr*) und *C. pneumoniae* AR39 (*Cpn*) mit der *Sn*-Infektion verglichen worden. Dafür wurde zusätzlich mit einer 100 nM BafA1 Konzentration weitergearbeitet, die laut Ouelette nur geringfügige zytotoxische Effekte ausübt (Ouellette *et al.*, 2011).

Humane Zellen lassen sich mit *Sn* ähnlich wie *Ctr* ohne Zentrifugation infizieren. Da der Inhibitoren-Infektivitätsassay (s. Abb. 3.3.33), sowie die *Cpn*-Studien von Ouellette und Kollegen (2011) mit Zentrifugation durchgeführt wurden, sind in den folgenden BafA1-Infektivitätsexperimenten beide Konditionen berücksichtigt worden (s. Abb.3.3.35-3.3.43). Des

Weiteren wurde die von Ouellette und Kollegen beschriebene Wirkung von CHX untersucht, welche die inhibitorischen Effekte von BafA1 stark minimieren soll. Alle Experimente wurden für drei Bedingungen durchgeführt: (1) toi (engl. *time of infection*), 74 h Inhibitor und 72 h Infektion; (2) poi (engl. 24 h *post-infection*), 72 h Infektion und 48 h Inhibitor; (3) prt (engl. 24 h *pre-treatment*), 72 h Inhibitor und 48 h Infektion (s. Abschnitt 2.2.2.9.2). Die SCV wurde anti-snGroEL-Cy3 gefärbt, um die relative SCV-Anzahl zu ermitteln (s. Abb. 3.3.36, 3.3.37 und 3.3.40), welche mithilfe der Zellkernzahl (DAPI gefärbt) quantifiziert wurde.

In der *Sn*-Primärinfektion ist deutlich der Unterschied zwischen den Infektionen mit/ohne Zentrifugation zu sehen (s. Abb. 3.3.35-3.3.41).

Abb. 3.3.35: Relative Größe der SCV von primär Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit 75 und 100 nM Bafilomycin A1 und CHX mit Zentrifugation. Von Leica DMIR aufgenommenen Mikroskopiebildern wurde die relative SCV-Zahl über ImageJ für zwei (100 nM) bis drei (75 nM) biologische Replikate ermittelt (n = 2/3). Eine frühe BafA1 Inkubation (toi und prt) hatte inhibierende Effekte auf die SCV-Ausbildung (~ 30-40 %), die bei 100 nM BafA1 zunahm (~ 40-60 %). CHX konnte inhibierende Effekte wieder aufheben, zeigte aber auch in DMSO-Kontrollzellen einen Anstieg der SCV-Zahlen (toi und prt). Eine späte BafA1 Inkubation (poi) zeigte mit/ohne CHX fast keine (100 nM) bis leichte (75 nM) Veränderung. P-Werte: < 0.05 = *; < 0.01 = **; < 0.001 = ***.

Für die Ermittlung der relativen SCV-Zahl wurde die SCV-Anzahl mithilfe der Zellkernzahl normalisiert (s. Abb. 3.3.35, 3.3.39, 3.3.42-43). Die Zentrifugation sorgte für eine durchschnittlich stärkere Infektion in *Sn*-infizierten Zellen. Trotzdem war die Infektion in BafA1behandelten Zellen wie erwartet inhibiert (s. Abb. 3.3.35). Die inhibierenden Effekte nahmen größtenteils von 75 nM nach 100 nM zu (~ 10-20 %). Bei einer gleichzeitigen BafA1-Behandlung (toi (engl. *time of infection*)) kam es im Vergleich zur DMSO-Kontrolle zu einer Abnahme der relativen SCV-Zahl um ca. 40-60 %. Nach einer 24 h BafA1-Vorbehandlung (prt

(engl. 24 h *pre-treatment*)) kam es zu einer Abnahme der relativen SCV-Zahl um ca. 30-40 %. Dagegen konnten bei einer nachträglichen BafA1-Behandlung (poi (engl. 24 h *post-infection*)) keine Veränderungen mehr beobachtet werden (75 nM und 100 nM).

Interessanterweise erzeugte die Anwesenheit von CHX, wie erwartet, einen dem Inhibitor entgegenwirkenden Effekt. So kam es bei einer gleichzeitigen BafA1- (+ CHX) Behandlung (toi) nur noch zu einer Abnahme von etwa 10 % (75 nM und 100 nM). Bei der BafA1- (+ CHX) Vorbehandlung (prt) lagen die relativen SCV-Werte auf Höhe der DMSO-Kontrolle (100 nM) oder sind sogar um 20 % gestiegen (75 nM).

Unabhängig von der BafA1-Behandlung, nahm die relative SCV-Zahl in DMSO-Kontrollzellen in Anwesenheit von CHX um ~ 10-25 % zu (75 nM und 100 nM).

In den mikroskopischen Aufnahmen konnte bei fast allen Konditionen eine relativ normale Morphologie der SCV beobachtet werden (s. Abb. 3.3.36).

Abb. 3.3.36: Immunofluoreszenzaufnahmen der Primärinfektion von Simkania-infizierten HeLa Zellen nach Behandlung mit 100 nM Bafilomycin A1 mit Zentrifugation. HeLa229 Zellen wurden mit einer MOI 0.5 infiziert und in Anwesenheit von 100 nM BafA1 für drei Tage inkubiert. (1) toi (engl. *time of infection*), 74 h Inhibitor und 72 h Infektion; (2) poi (engl. 24 h *post-infection*), 72 h Infektion und 48 h Inhibitor; (3) prt (engl. 24 h *pre-treatment*), 72 h Inhibitor und 48 h Inhibitor. Die SCV wurde snGroEL-Cy3 gefärbt und ist rot dargestellt. Bei konstanter Zellzahl hat sich die Anzahl an intakten SCV in BafA1- (ohne CHX) behandelten Zellen von toi und prt Experimenten reduziert. 20 µm Größenbalken ist abgebildet.

Die mikroskopischen Aufnahmen der BafA1-behandelten poi-Proben zeigten jedoch, dass die SCV innerhalb der Zelle wahrscheinlich in kleinere "Vakuolen" zerbrochen ist (s. Abb. 3.3.36 und 3.3.37). Ein deutlicher Zusammenbruch konnte bei ca. 1/3 der *Simkania*-Vakuolen beobachtet werden. Dies lässt auf eine massive Veränderung der SCV-Morphologie schließen.

Abb. 3.3.37: Vergrößerte Immunofluoreszenzaufnahme der poi (engl. 24 h post-infection) Behandlung mit 100 nM Bafilomycin A1 mit Zentrifugation. Mit Sternen markierte Zellen zeigten einen anfänglichen Zerfall der SCV in mehrere kleinere Vakuolen. Diese Beobachtung fehlte in poi-Proben, die mit BafA1 und CHX behandelt wurden und konnte auch bei keiner weiteren Kondition beobachtet werden (s. Abb. 3.3.36). 20 µm Größenbalken ist abgebildet.

Konfokalmikroskopische Aufnahmen von snGroEL-Cy3-DAPI gefärbten Zellen nach einer *Sn*-Infektion (drei Tage p.i.) bestätigten diese Beobachtung (s. Abb. 3.3.38).

Die Bakterien schienen in kleinen bis größeren Haufen gebündelt zu sein und zeigten keine für drei Tage typische, einheitlich mit Bakterien gefüllte, inhomogenen Vakuole. Ob die getrennt voneinander lokalisierten Bakterienansammlungen sich alle noch innerhalb einer zusammenhängenden Vakuole befinden, ist dabei offen.

In der *Sn*-Primärinfektion ohne Zentrifugation kam es bei der gleichzeitigen BafA1-Behandlung toi (engl. *time of infection*)) zu einer extrem hohen Abnahme der relativen SCV-Zahlen um ca. 94 % im Vergleich zur Kontrolle (s. Abb. 3.3.39).

Abb. 3.3.39: Relative Größe der SCV von primär Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit 100 nM Bafilomycin A1 und CHX ohne Zentrifugation. Von Leica DMIR aufgenommenen Mikroskopiebildern wurde die relative SCV-Zahl über ImageJ für sechs biologische Replikate (n = 6) ermittelt. Eine frühe BafA1-Inkubation (toi und prt) hatte extrem stark inhibierende Effekte auf die SCV-Ausbildung (> 90 %), welche von CHX nur minimal abgepuffert wurden (≥ 80 %). CHX förderte jedoch die SCV-Ausbildung in der prt DMSO-Kontrolle. Eine späte BafA1-Inkubation (poi) zeigte mit/ohne CHX nur kleine Veränderungen. P-Werte: < 0.05 = *; < 0.01 = **; < 0.001 = ***.

Eine ähnliche Reduktion konnte auch bei 24 h BafA1-vorbehandelten Zellen (prt (engl. 24 h *pre-treatment*)) ermittelt werden. Bei der nachträglichen BafA1-Behandlung (poi (engl. 24 h *post-infection*)) konnten keine großen Veränderungen gemessen werden womit diese den DMSO-Kontrollen entsprach (toi, poi und prt).

Der dem Inhibitor entgegenwirkende Effekt von CHX fiel in BafA1-behandelten und -unbehandelten Zellen etwa gleich stark aus (~ 10 - 20 %). Ausschließlich die prt DMSO-Kontrolle (+ CHX) zeigte einen > 50 %igen Anstieg der relativen SCV-Zahlen.

Zusammenfassend zeigte der Vergleich aus zentrifugierten und nicht zentrifugierten Simkanien massive Unterschiede bzgl. des Ausmaßes an der BafA1 inhibierenden und der CHX fördernden Wirkung auf die *Sn*-Infektion. Dabei konnte nur in Experimenten mit zentrifugierten Simkanien ein Unterschied zwischen der gleichzeitigen und 24 h BafA1-Vorbehandlung ermittelt werden. Eine 24 h BafA1-Nachbehandlung ergab keinen Unterschied zur DMSO-Kontrolle.

In mikroskopischen Aufnahmen konnte für zwei Konditionen (toi (engl. *time of infection*) und prt (engl. 24 h *pre-treatment*)) keine intakte SCV mehr beobachtet werden (BafA1-Behandlung mit und ohne CHX) (s. Abb. 3.3.40).

Abb. 3.3.40: Immunofluoreszenzaufnahmen der Primärinfektion von *Simkania*-infizierten HeLa Zellen nach Behandlung mit 100 nM Bafilomycin A1 ohne Zentrifugation. HeLa229 Zellen wurden mit einer MOI 0.5 infiziert und in Anwesenheit von 100 nM BafA1 für drei Tage inkubiert. (1) toi (engl. *time of infection*), 74 h Inhibitor und 72 h Infektion; (2) poi (engl. 24 h *post-infection*), 72 h Infektion und 48 h Inhibitor; (3) prt (engl. 24 h *pre-treatment*), 72 h Inhibitor und 48 h Infektion. SCV wurden snGroEL-Cy3 gefärbt und sind rot dargestellt. Bei konstanter Zellzahl sind keine intakten SCV in BafA1- (mit/ohne CHX) behandelten Zellen von toi und prt Experimenten mehr zu sehen. Einzelne undefinierbare Punkte fluoreszieren rot. 20 µm Größenbalken ist abgebildet.

Dabei wurden undefinierbare punkt-/brockenförmige Bereiche angefärbt, die der normalen SCV-Morphologie nicht gleichen (s. Abb. 3.3.41).

Abb. 3.3.41: Vergrößerte Immunofluoreszenzaufnahme der toi (engl. *time of infection*) Behandlung mit 100 nM Bafilomycin A1 ohne Zentrifugation. Vergrößerte Aufnahme der BafA1behandelten toi-Probe (ohne CHX) aus Abbildung 3.3.40 (*links*). Nuklei wurden über DAPI gefärbt und sind grün dargestellt (*rechts*). Die Simkanien und/oder SCV wurden snGroEL-Cy3 gefärbt und sind rot dargestellt (*links* und *rechts*). Es wurde keine intakte SCV beobachtet. 20 µm Größenbalken ist abgebildet.

Diese hatten auch keine Ähnlichkeiten zu einer zerbrochenen SCV wie sie in Abbildung 3.3.37 dargestellt ist.

Die *Sn*-Sekundärinfektion von den zuvor behandelten und zentrifugierten Simkanien (s. Abb. 3.3.42) glich nicht der Primärinfektion (s. Abb. 3.3.35). Bei Proben mit gleichzeitiger

BafA1-Behandlung (toi (engl. *time of infection*)) und 24 h Vorbehandlung (prt (engl. 24 h *pre-treatment*)) haben sich die relativen SCV-Zahlen kaum regeneriert und zeigten im Vergleich zur DMSO-Kontrolle eine Reduktion von ca. 45-60 % (75 nM und 100 nM). Überraschenderweise konnte bei den nachbehandelten BafA1-Proben (poi (engl. 24 h *post-infection*)) eine Abnahme der relativen SCV-Zahlen beobachtet werden, die zwischen 25-50 % (100 nM und 75 nM) lag. Ein fördernder Effekt von CHX wurde in den gleichzeitig BafA1- (+ CHX) behandelten Zellen (toi) nicht (75 nM) oder nur geringfügig (100 nM) beobachtet. Dafür waren in den BafA1- (+ CHX) vorbehandelten Proben (prt) die relativen SCV-Werte im Vergleich zur DMSO-Kontrolle um ca. 50 % (75 nM) oder sogar ca. 100 % (100 nM) gestiegen. Überraschenderweise konnte bei den nachbehandelten BafA1-Proben (+ CHX) (poi) eine Abnahme (75 nM) bzw. keine Veränderung (100 nM) bei den relativen SCV-Zahlen beobachtet werden.

Interessanterweise zeigte eine CHX-Behandlung in DMSO-Kontrollen nur noch eine ca. 40 %ige Steigerung in BafA1-nachbehandelten (100 nM) und eine massive, >250-300 %ige in BafA1-vorbehandelten Proben (75 nM und 100 nM).

Abb. 3.3.42: Relative Größe der SCV von sekundär *Simkania*-infizierten HeLa229 Zellen nach einer Behandlung mit 75 und 100 nM Bafilomycin A1 und CHX mit Zentrifugation. Von Leica DMIR ermittelten Mikroskopiebildern wurde die relative SCV-Zahl über ImageJ für drei biologische Replikate (n = 3) ermittelt Die BafA1 Inkubation hatte in allen Proben (toi, poi und prt) stark inhibierende Effekte auf die SCV-Ausbildung (~ 35-50 %). CHX konnte inhibierende BafA1-Effekte insbesondere in der prt wiederaufheben (> 100-150 %) und zeigte auch bei der DMSO-Kontrolle eine sehr starke Anreicherung an SCV (> 180 %). In den poi-Proben konnten sowohl inhibierende (75 nM) als auch fördernde (100 nM) Wirkungen von CHX beobachtet werden. P-Werte: < 0.05 = *; < 0.01 = **; < 0.001 = ***.

Die *Sn*-Sekundärinfektion von den zuvor behandelten, nicht zentrifugierten Simkanien (s. Abb. 3.3.43) glich teilweise der Primärinfektion (s. Abb. 3.3.39). Bei Proben mit gleichzeitiger BafA1-Behandlung (toi (engl. *time of infection*)) haben sich die relativen SCV-Zahlen kaum regeneriert und zeigten eine Reduktion von ca. 80-90 % im Vergleich zur DMSO-Kontrolle. Bei den 24 h BafA1-vorbehandelten Zellen (prt (engl. 24 h *pre-treatment*)) lag nur noch eine ca. 40 %ige Abnahme der relativen SCV-Zahlen vor, weshalb hier eine Regeneration vorlag. Überraschenderweise konnte bei den nachbehandelten BafA1-Proben (poi (engl. 24 h *post-infection*)) eine Abnahme der relativen SCV-Zahlen beobachtet werden, die bei fast 60 % lag.

In Anwesenheit von CHX haben sich die relativen SCV-Zahlen nur in BafA1-nachbehandelten Proben (poi) und in DMSO-Kontrollzellen der 24 h BafA1-vorbehandelten Proben (prt) verändert. Dabei konnte eine Zunahme von ca. 25 % im Vergleich zur BafA1 bzw. 125 % im Vergleich zur DMSO-Probe ermittelt werden.

Abb. 3.3.43: Relative Größe der SCV von sekundär *Simkania*-infizierten HeLa229 Zellen nach einer Behandlung mit BafA1 und CHX ohne Zentrifugation. Von Leica DMIR ermittelten Mikroskopiebildern wurde die relative SCV-Zahl über ImageJ für fünf biologische Replikate (n = 5) ermittelt. Eine gleichzeitige BafA1 Inkubation (toi) hatte anhaltend inhibierende Effekte auf die SCV-Ausbildung (~ 84-89 %). In den poi-Proben halbierte sich die SCV-Zahl und nahm in den prt-Proben um 35 % ab. CHX konnte inhibierende Effekte in toi und prt nicht wiederaufheben, jedoch in poi. Eine späte BafA1 Inkubation (poi) zeigte mit/ohne CHX fast keine Veränderung. CHX zeigte jedoch bei der DMSO-Kontrolle eine sehr starke Anreicherung an SCV (> 120 %). P-Werte: < 0.05 = *; < 0.01 = **; < 0.001 = ***.

Zusammenfassend konnte gezeigt werden, dass die Verteilung der relativen SCV-Zahlen in der Sekundärinfektion nur teilweise der Primärinfektion glich. Wie erwartet wurden, keine SCV-Morphologieänderungen beobachtet, da keine BafA1-Einwirkung auf die Sekundärinfektion vorlag (Daten nicht gezeigt). Der Vergleich aus zentrifugierten und nicht zentrifugierten Simkanien zeigte, dass es nur bei der Sekundärinfektion von den 24 h BafA1-vorbehandelten

Simkanien zu einer Regenerierung der Bakterien gekommen ist (nicht zentrifugiert +/- CHX; zentrifugiert + CHX). Bei gleichzeitig BafA1-behandelten Simkanien haben sich die relativen SCV-Werte nicht verbessert und bei einer vorherigen CHX-Behandlung sogar verschlechtert. Bei Simkanien, die einer 24 h BafA1-Nachbehandlung ausgesetzt waren (+/- CHX) wurde sogar ein Verlust der bakteriellen Infektivität ermittelt.

Der Vergleich von Primär- und Sekundärinfektionen zeigte, dass der negative Einfluss einer BafA1-Behandlung sich massiv von der praktischen Durchführung der *Sn*-Infektion (Zeitpunkt der BafA1-Inkubation, Verwendung von CHX und/oder von Zentrifugation) unterscheidet. Je nach Anwendung konnte BafA1 so die Ausbildung der SCV in *Sn*-Primärund -Sekundärinfektionen von kaum bis zu extrem stark inhibieren bzw. für einen Zerfall der SCV in kleinere Bakterienhaufen oder undefinierbare ,Vakuolenfragmente' sorgen. Damit scheint BafA1 einen Transportweg zu hemmen, der für die frühe Entwicklung von *Sn* und der SCV essentiell sein könnte.

3.3.5 Eine frühe Behandlung mit Bafilomycin A1 unterbindet die Ausbildung einer intakten SCV, aber nicht die Adhäsionsfähigkeit von *Simkania negevensis*

Die chlamydiale Inklusion bildet eine nicht angesäuerte Vakuole, die impermeabel für Komponenten ab einer Größe von 520 Da wird (Heinzen and Hackstadt, 1997, Al-Younes *et al.*, 1999, Grieshaber *et al.*, 2002, Rzomp *et al.*, 2003). Trotzdem scheint diese von lysosomalen Aktivitäten abhängig zu sein, die den Erwerb von Nährstoffen in Form von bspw. Aminosäuren garantieren (Ouellette *et al.*, 2011). Durch eine Verwendung des vakuolären H⁺-ATPasen-Inhibitors BafA1 werden zum einen eine Ansäuerung von frühen Endosomen und deren Verschmelzung mit Lysosomen unterbunden. Zum anderen verlieren Lysosomen ihre Fähigkeit neue Nährstoffe durch den Abbau von Zellmaterial zur Verfügung zu stellen (s. Abschnitt 1.5.4). Ouellette und Kollegen konnten für *Ctr* L2 und *Cpn* AR39 eine unterschiedlich starke Abhängigkeit bzgl. BafA1 und des bakteriellen intrazellulären Wachstums identifizieren. Für *Cpn*-Infektionen bedeutete eine BafA1-Behandlung einen kompletten Verlust von intakten Inklusionen, für *Ctr*-Infektionen hingegen eine deutliche Reduzierung der Vakuolengröße (Ouellette *et al.*, 2011).

Die in dem Abschnitt 3.3.4 dargestellten Ergebnisse zeigen einen relativ starken Effekt von BafA1 auf die SCV-Ausbildung in *Sn*-Primär- und -Sekundärinfektionen. Daher wurde die *Sn*-Primärinfektion in TEM-Experimenten⁷ untersucht (zwei Tage p.i. ohne Zentrifugation) (s. Abb. 3.3.44-3.3.46).

⁷ Probenvorbereitungen für EM-Schnitte und EM-Einbettungen von Daniela Bunsen und Claudia Gerig (unter der Leitung von Prof. Dr. Georg Krohne) (s. Abschnitt 2.2.2.13).

Zellen, die mit DMSO (Lösungsmittelkontrolle) behandelt wurden, zeigten eine normale Morphologie (s. Abb. 3.3.44 *links*). BafA1-behandelte Zellen (100 nM) wiesen hingegen starke intrazelluläre Veränderungen auf (s. Abb. 3.3.44 *rechts*). Diese waren mit über das gesamte Zytosol verstreuten, vergrößerten Vesikeln gefüllt. Innerhalb der Vesikel befanden sich viele kleine bis größere Abbauprodukte.

Abb. 3.3.44: Elektronenmikroskopische Aufnahmen von HeLa229 Zellen nach einer Behandlung mit Bafilomycin A1. HeLa229 Zellen wurden in Anwesenheit von DMSO (Kontrolle, *links*) oder 100 nM BafA1 (*rechts*) für zwei Tage inkubiert. Kontrollzellen zeigten eine normale Morphologie, wohingegen BafA1-behandelte Zellen stark verändert waren. Behandelte Zellen waren mit vielen vergrößerten Vesikeln gefüllt, welche teilweise abgebautes Material unterschiedlicher Größe enthielten. Mitochondrien schienen unter beiden Bedingungen intakt zu sein. 2 μm Größenbalken ist abgebildet.

Aufgrund der starken Ähnlichkeiten zu den *Ctr* L2 und *Cpn* AR39 Experimenten kann ein endolysosomaler Ursprung vermutet werden. Dabei diskutieren Ouelette und Kollegen, dass der deutlich sichtbare, unvollständige Abbau in stark vergrößerten Vesikeln aus Defiziten der endosomalen/lysosomalen Verschmelzung und Beeinträchtigungen in ihren Funktionen resultiert.

Sn-infizierte Zellen, die mit DMSO (Lösungsmittelkontrolle) behandelt wurden, zeigten eine normale SCV-Morphologie (zwei Tage p.i.) (s. Abb. 3.3.45 *links*). Die SCV war dabei komplett mit EBs und RBs gefüllt, die sich innerhalb von Sub-Vakuolen verteilten. Nach einer Behandlung mit BafA1 (100 nM) ähnelten *Sn*-infizierte Zellen (s. Abb. 3.3.45 *rechts*) nicht infizierten Zellen (s. Abb. 3.3.44 *rechts* und 3.3.46 *links*). Diese wiesen viele vergrößerte Vesikel auf, welche auch unvollständig abgebautes Material unterschiedlicher Größe enthielten. Eine intakte SCV oder vereinzelte Sub-Vakuolen waren nicht mehr zu beobachten. EBs oder RBs konnten nicht mehr von Abbauprodukten unterschieden werden.

Abb. 3.3.45: Elektronenmikroskopische Aufnahmen von Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Bafilomycin A1. HeLa229 Zellen wurden mit *Sn*-infiziert und in Anwesenheit von DMSO (Kontrolle, *links*) oder 100 nM BafA1 (*rechts*) für zwei Tage inkubiert. Unter normalen Bedingungen dehnte sich die SCV nahe dem Zellkern im gesamten Zytosol aus (DMSO). BafA1-behandelte Zellen waren morphologisch stark beeinflusst. 2 µm Größenbalken ist abgebildet.

Wiederum konnte eine starke Ansammlung an vergrößerten Vesikeln beobachtet werden (s. Abb. 3.3.46 *rechts*).

Abb. 3.3.46: Elektronenmikroskopische Aufnahmen von nicht und Simkania-infizierten HeLa229 Zellen nach einer Behandlung mit Bafilomycin A1. Abgebildet ist ein vergrößerter Ausschnitt der Abb. 3.3.44 (BafA1, nicht infiziert, *links*) und ein vergrößerter Ausschnitt der Abb. 3.3.45 (BafA1, *Simkania*-infiziert, *rechts*). 4 µm Größenbalken ist abgebildet.

Überraschenderweise konnten weder eine intakte SCV oder Bakterien noch ein übriggebliebenes Membrannetzwerk identifiziert werden. Des Weiteren war unklar, ob es sich bei teilweise größeren Abbauprodukten um einstmals EBs oder RBs handelte. Dieselben Beobachtungen wurden auch nach einer niedrigkonzentrierteren Behandlung mit BafA1 (50 nM) bzw. DMSO gemacht (Daten nicht gezeigt).

Um auszuschließen, dass BafA1 bereits auf Adhäsionsprozesse von *Sn* einwirkt und eine Aufnahme der Bakterien aufgrund eines Rezeptoren-Abbaus an der zellulären PM minimiert,

wurde die bakterielle Adhäsion mikroskopisch untersucht (s. Abb. 3.3.47) (s. Abschnitte 2.2.2.12.1 und 2.2.2.15). Dabei zeigten die Bakterien in BafA1-behandelten Zellen keine Veränderungen im Adhäsionsverhalten im Vergleich zur Kontrolle, innerhalb der ersten drei Stunden der *Sn*-Infektion. Aufgrund dessen müssen Defizite bei der SCV-Ausbildung, die durch eine Inhibitorbehandlung entstehen, einen intrazellulären Ursprung haben, der noch nicht genau verstanden ist.

Abb. 3.3.47: Mikroskopische Aufnahme von *Simkania*-infizierten HeLa229 Zellen nach einer Behandlung mit BafA1 nach ein bis drei Stunden. BafA1-behandelte Zellen (100 nM) wurden mit einer größeren Menge Simkanien (MOI 5) infiziert und nach ein, zwei oder drei Stunden (h) untersucht. DMSO diente als Kontrolle. Nuklei wurden mit DAPI gefärbt (blau). Durch eine Phalloidin-647-Färbung der Zellmembranen (rot) und snGroEL-Cy2-Färbung der *Sn* (grün), konnte eine bakterielle Adhäsion für alle sechs Konditionen beobachtet werden. Weiße Pfeile markieren adhärierte Bakterien. 10 µm Größenbalken sind abgebildet. Grundsatzbeweis (n = 1).

Zusammenfassend konnte gezeigt werden, dass die *Sn*-Infektion auch von späten Endosomen und Lysosomen abhängig ist. Dabei hatte eine frühzeitige BafA1-Behandlung starke Auswirkungen auf die SCV-Morphologie und deutet auf einen Zerfall der Vakuole und der Bakterien hin. Die Adhäsionsfähigkeit von Simkanien spricht dabei für eine spätere inhibierende Wirkung zwischen der Invasion und der SCV-Entwicklung hin.

3.3.6 Bafilomycin A1 verursacht eine Retro1- und/oder Retro2-ähnliche Verschiebung des retrograden C₆-NBD-Ceramidtransportes zum Golgi und zur SCV

Ouellette und Kollegen (2011) konnten zeigen, dass die BafA1-Behandlung, trotz Einschränkungen in der *Ctr* oder *Cpn* Infektion, eine Aufnahme von fluoreszentem SM nicht inhibiert. Dieselbe Beobachtung wird in diesem Abschnitt auch für den C₆-NBD-Ceramidtransport bei der *Sn*-Infektion beschrieben (s. Abschnitt 2.2.2.14).

Bafilomycin A1 (BafA1) ist ein endolysosomal inhibierendes Antibiotikum, welches die *Sn*-Infektion stark beeinträchtigt. Ähnlich zur BFA-Behandlung konnte bei 100 nM BafA1 (30 min vor jeder Messung) eine Fragmentierung des Golgis in lebendzellmikroskopischen Aufnahmen beobachtet werden (s. Abb. 3.3.48).

Abb. 3.3.48: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit 100 nM Bafilomycin A1. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) ist nach der BafA1-Behandlung unterschiedlich stark. 10 μm Größenbalken ist abgebildet.

Bei einer analogen BafA1-Konzentration zu Retro-Inhibitoren (75 µM) nahmen die Golgis wieder eine normalere kompaktere Morphologie an, bildeten jedoch fortlaufend lange fadenförmige Fortsätze aus (s. Abb. 3.3.49).

Abb. 3.3.49: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in nicht infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit 75 μ M Bafilomycin A1. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) ist deutlich zu sehen. 10 μ m Größenbalken ist abgebildet.

Verglichen mit nicht infizierten Zellen (s. Abb. 3.3.48), scheint bei einer *Sn*-Infektion der C_6 -NBD-Ceramidtransport in den Golgi stärker zu sein (s. Abb. 3.3.50).

Abb. 3.3.50: Lebendzellmikroskopische Aufnahmen vom intrazellulären C₆-NBD-Ceramidtransport in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen nach einer Behandlung mit 100 nM Bafilomycin A1. Dargestellt ist ein Ausschnitt eines Experiments mit zwei Aufnahmen pro min ab Zeitpunkt 0 bis min 30. Der C₆-NBD-Ceramidtransport (grün) in den Golgi (rot) und die SCV ist nach der BafA1-Behandlung deutlich zu sehen. 10 µm Größenbalken ist abgebildet; (*) = infizierte Zellen.

Diese Beobachtung konnte durch kinetische Auswertungen bestätigt werden (s. Abb. 3.3.51-53).

In nicht infizierten Zellen folgte der C₆-NBD-Ceramidtransport zu mRFP-Golgi von BafA1behandelten Zellen (s. Abb. 3.3.51) der Kinetik von Retro1 (s. Abschnitt 3.3.3).

Abb. 3.3.51: Graphische Darstellung vom intrazellulären C₆-NBD-Ceramidtransport zum Golgi in nicht infizierten HeLa-Golgi-mRFP Zellen unter Einwirkung von 100nM Bafilomycin A1. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zum Golgi transportierten C₆-NBD-Ceramids ist graphisch dargestellt (n = 3, m \ge 20 Golgi-mRFP). Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Kurven der Retro1, -2, BFA und Kontrollproben entsprechen der Abb. 3.3.26. Die Kurve von Retro2-behandelten Zellen (grau) zeigte einen leichten Anstieg verglichen zur unbehandelten Kontrolle (blau) und die Kurve von Retro1-behandelten Zellen (rot) einen leichten Abfall. In BFA-behandelten Zellen (gelb) war der Transport sehr schwach. BafA1-behandelten (schwarz) Zellen folgten einer Retro1-Kinetik

In *Sn*-infizierten Zellen (s. Abb. 3.3.52) war der C₆-NBD-Ceramidtransport zu mRFP-Golgi von BafA1-behandelten Zellen stark erhöht. Die BafA1-Kurve folgte dabei einer Kinetik von Retro2 und hat sich damit fast verdreifacht im Vergleich zu den nicht infizierten Zellen.

Der C₆-NBD-Ceramidtransport in die SCV war etwas verstärkt verglichen mit dem Transport in den Golgi und lag oberhalb von Retro2 (s. Abb. 3.3.53).

Damit hatte die BafA1-Behandlung einen ähnlichen Einfluss auf den Ceramidlipidtransport wie Retro1 oder Retro2.

Abb. 3.3.52: Graphische Darstellung vom intrazellulären C₆-NBD-Ceramidtransport zum Golgi in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen unter Einwirkung von 100 nM Bafilomycin A1. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zum Golgi transportierten C₆-NBD-Ceramids ist graphisch dargestellt (n = 3, m \ge 20 Golgi-mRFP). Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Kurven der Retro1-, Retro2-, BFA- und Kontrollproben entsprechen der Abb. 3.3.27. Retro1 (rot) und Retro2-behandelte Zellen (grau) zeigten einen starken Anstieg verglichen zur unbehandelten Kontrolle (orange), der nach BafA1-Behandlung (Schwarz) noch stärker war. Bei BFA-behandelten Zellen (gelb) war der Transport sehr schwach, aber immer noch detektierbar.

Abb. 3.3.53: Graphische Darstellung vom intrazellulären C₆-NBD-Ceramidtransport zur SCV in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen unter Einwirkung von 100 nM Bafilomycin A1. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zur SCV transportierten C₆-NBD-Ceramids ist graphisch dargestellt (n = 3, m \ge 20 Golgi-mRFP). Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Kurven der Retro1-, Retro2- und Kontrollproben entsprechen der Abb. 3.3.28. Retro1 (rot) und Retro2-behandelte Zellen (grau) zeigten einen starken Anstieg verglichen zur unbehandelten Kontrolle (orange). BafA1-behandelte Zellen (schwarz) zeigten einen extrem starken Anstieg. In BFA-behandelten Zellen (gelb) war der Transport schwach, aber immer noch detektierbar.

Aufgrund einiger Ähnlichkeiten im Kurvenverlauf von Retro1- oder Retro2- zu BafA1behandelten Zellen wurden folgende Vorstudien durchgeführt. Diese beinhalteten eine Untersuchung der Zusammenwirkung von BafA1 mit Retro1 oder Retro2 in entsprechenden lebendzellmikroskopischen Untersuchungen (s. Abb. 3.3.54-56).

In nicht infizierten Zellen verhält sich die Kinetik der Kurven von BafA1-Retro1- bzw. BafA1-Retro2-behandelten Zellen (s. Abb. 3.3.54) überraschenderweise fast identisch zur Kinetik von allein behandelten Retro1- bzw. Retro2-Proben während einer *Sn*-Infektion (Abb. 3.3.55). Dabei liegt ein verstärkter C₆-NBD-Ceramidtransport zu mRFP-Golgi im Vergleich zur unbehandelten Kontrolle vor.

Abb. 3.3.54: Graphische Darstellung vom intrazellulären C₆-NBD-Ceramidtransport zum Golgi in nicht infizierten HeLa-Golgi-mRFP Zellen unter Einwirkung von Bafilomycin A1/Retro1 und Retro2. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zum Golgi transportierten C₆-NBD-Ceramids ist graphisch dargestellt (n = 3, m \ge 20 Golgi-mRFP). Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Kurven der Retro1-, Retro2- und Kontrollproben entsprechen der Abb. 3.3.26.

Bei BafA1-Retro1-behandelten, nicht infizierten Zellen (schwarz-rot) hat sich der Transport in etwa verdoppelt vgl. zu einzeln mit Retro1- (rot) bzw. BafA1-behandelten (schwarz) Zellen (s. Abb. 3.3.54).

Bei BafA1-Retro2-behandelten Zellen (schwarz-grau) hat sich der Transport auch in etwa verdoppelt vgl. zu Retro2 (grau).

Der C₆-NBD-Ceramidtransport zu mRFP-Golgi ändert sich jedoch für BafA1-Retro1 bzw. BafA1-Retro2 in *Sn*-infizierten Zellen (Abb. 3.3.55).

Hier wirkte die BafA1-Retro1 (schwarz-rot) Behandlung verstärkend, wobei ein Kurvenverlauf ermittelt werden konnte, der zwischen den Kurven einer Einzelbehandlung mit BafA1 (schwarz) bzw. Retro2 (grau) lag. Bei BafA1-Retro1-behandelten Zellen (schwarz-rot) hat sich

der Transport in etwa verdoppelt vgl. zu Retro1 (rot) und entspricht damit fast dem Transport von BafA1-behandelten Zellen (schwarz).

Abb. 3.3.55: Graphische Darstellung vom intrazellulären C₆-NBD-Ceramidtransport zum Golgi in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen unter Einwirkung von Bafilomycin A1/Retro1 und Retro2. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zum Golgi transportierten C₆-NBD-Ceramids ist graphisch dargestellt (n = 3, m \ge 20 Golgi-mRFP). Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Kurven der Retro1-, Retro2- und Kontrollproben entsprechen der Abb. 3.3.27.

Für die BafA1-Retro2-Behandlung (schwarz-grau) konnte ein abgeschwächter Transport ermittelt werden, da die Kurve nach ca. 7 min unterhalb der Kurve von der Retro2-Kurve (grau) verlief. Der Transport fiel nach ca. 15 min und der BafA1-Retro2-Kurvenverlauf (schwarz-grau) passte sich langsam der Kurve der Retro1-Probe (rot) an.

Der C₆-NBD-Ceramidtransport zur SCV (s. Abb. 3.3.56) folgte bei BafA1-Retro1-behandelten Zellen (schwarz-rot) der BafA1 (schwarz) Kinetik. Der Transport von BafA1-Retro1behandelten Zellen (schwarz-rot) hat sich in etwa verdoppelt vgl. zu Retro1-behandelten (rot). Bei BafA1-Retro2-behandelten Zellen (schwarz-grau) folgte der Kurvenverlauf der Retro2-Kinetik.

Zusammenfassend deuten die Ergebnisse darauf hin, dass neben retrograden Endosomenzu-Golgi-Prozessen zusätzlich eine endolysosomale Abhängigkeit bei dem C₆-NBD-Ceramidtransport in *Sn*- und nicht infizierten Zellen vorliegt. Ob Retro1, Retro2 und BafA1 dabei mit denselben zellulären Molekülen wechselwirken, ist noch nicht bekannt. Aufgrund der synergistischen Wirkung von BafA1-Retro1 und BafA1-Retro2 in nicht bzw. *Sn*-infizierten Zellen könnte dies der Fall sein.

Abb. 3.3.56: Graphische Darstellung vom intrazellulären C₆-NBD-Ceramidtransport zur SCV in *Simkania*-infizierten HeLa-Golgi-mRFP Zellen unter Einwirkung von Bafilomycin A1/Retro1 und Retro2. Kalkulation der durchschnittlichen Intensität der Fluoreszenz des zur SCV transportierten C₆-NBD-Ceramids ist graphisch dargestellt (n = 3, m \ge 20 Golgi-mRFP). Jede Zeitreihe entspricht einer Aufnahme/30 Sek für insg. 30 min. Kurven der Retro1-, Retro2- und Kontrollproben entsprechen der Abb. 3.3.28.

3.4 Die Simkania-Primärinfektion wird von verschiedenen Vesikeltransportwegen beeinflusst

Die Ergebnisse in den Abschnitten 3.1 und 3.3 zeigen eine klare Abhängigkeit der *Sn*-Infektion von intrazellulären Transportprozessen. Veränderungen in zentralen Transportwegen haben dabei nicht nur die SCV-Ausbildung, sondern auch die bakterielle Vermehrung und/oder Infektivität mehr oder weniger beeinflusst. Über die Erstellung eines Traffickomes sollten transportassoziierte Proteine charakterisiert werden, die einen Einfluss auf die *Sn*-Primärinfektion nehmen könnten (s. Abschnitt 2.2.2.10.1). Dieser RNAi-Screen wurde für 497 zentrale Transportfaktoren unter Verwendung von drei Einzel-siRNAs pro Zielgen durchgeführt⁸. Dafür wurden *Sn*-Stocks und der *Sn*-spezifische GroEL-Antikörper zur Verfügung gestellt.

Bei der Datenanalyse wurden die Endwerte für jede siRNA manuell miteinander abgeglichen (z-score Werte = gemittelten Größe aller SCV in Pixel im Vergleich zur Zellkernzahl). Dabei mussten mindestens zwei Einzel-siRNAs denselben knock-down-Effekt auf die z-score Werte zeigen, damit ein Faktor als infektionsspezifisch eingestuft wurde. Werte, die < -2,0 von der neutralen Kontrolle (z-score = 0,09) abwichen (entspricht 2 Standardabweichungen) wurden als gut inhibierend eingeordnet und Werte mit < -3,0 (3 Standardabweichungen) als zuverlässig inhibierend.

Es konnten insgesamt sechs Faktoren identifiziert werden, die einen signifikanten knockdown-Effekt (z-score < - 3,0) bei zwei oder sogar drei siRNAs zeigen (s. Tab. 3.4.1). Die NAD-abhängige Proteindeacetylase Sirtuin-1 (SIRT1) ist dabei ein interessanter Kandidat, da das Protein mit Faktoren wie p53, PGC1-Alpha und LXR bei Signaltransduktionswegen von bspw. Stressresistenz, Glukosehomöostase und Lipidmetabolismus wechselwirkt (Brooks and Gu, 2009). Die E3 Ubiquitin-Protein-Ligase HERC2 ist bei der Protein-Ubiquitinierung an geschädigten Chromosomen bzw. der DNA-Reparatur beteiligt (Bekker-Jensen et al., 2010). Importin-5 (Ipo5) ist ein Rezeptorprotein, das den Proteintransport in den Zellkern reguliert (Chao et al., 2012). Der Peroxisom-Biogenese-Faktor 1 (PEX1) stellt einen Peroxisom Faktor dar, der einen ATP-abhängigen Proteinimport ins Peroxisom generiert (Matsumoto et al., 2003). Das Ras-abgeleitete C3-Botulinumtoxin-Substrat 1 (RAC1) ist eine kleine GTPase der Plasmamembran, die an vielen zellbiologischen Prozessen beteiligt ist (Matos et al., 2000). Es interagiert dabei mit dem bereits vorgestellten Protein ARHGEF2 (Ren et al., 1998) und weist damit eine erste Überlappung zu den erhobenen LC-MS²-Daten auf (s. Abschnitte 3.1.4 und 3.1.5). Über das STE20-abgeleitete Kinaseadaptorprotein Alpha (STRADA) ist noch wenig bekannt. Es wird aber vermutet, dass es LKB1, eine Tumor-Supressorkinase, aktiviert und

⁸ Durchführung von Anja Greiser, Auswertung von Dr. Marion Rother (unter der Leitung von Prof. Dr. Thomas F. Meyer) am Max-Planck-Institut, Berlin.

Gen ID	Funktion	Gen-name	siRNA ID	Replikate	z-score [Area*SCV/Nuk]	Nukleus- zahl
8924	Probable E3 ubiquitin-protein ligase HERC2	HERC2	Hs_HERC2_8	4	-3,90	4388
			Hs_HERC2_6	4	-3,15	2487
3843	Importin-5	IPO5	Hs_RANBP5_ 3	3	-5,10	4601
			Hs_RANBP5_ 2	4	-3,13	2575
5189	Peroxisome bioFullsis factor 1	PEX1	Hs_PEX1_2	4	-4,15	2655
			Hs_PEX1_1	3	-3,05	4483
5879	RAC1 Ras-related C3 botulinum toxin substrate 1	Rac 1	Hs_RAC1_6	4	-7,35	928
			Hs_RAC1_5	4	-4,04	3637
23411	NAD-dependent deacetylase sirtuin-1	SIRT1	Hs_SIRT1_3	4	-3,76	4024
			Hs_SIRT1_1	4	-3,04	4742
92335	STE20-related kinase adapter protein alpha	STRADA	Hs_LYK5_7	4	-4,20	4246
			Hs_LYK5_5	4	-4,05	4322
			Hs LYK5 1	4	-3,34	1911

damit bei der Ausbildung von Krankheiten eine wichtige Rolle spielen könnte (Baas *et al.*, 2003).

Tab. 3.4.1: Reduzierte Liste von humanen Transportproteinen mit signifikant reduzierten z-scores. Bei dem Vergleich von 1491 Einzel-siRNAs konnten bei insgesamt 29 Faktoren eine signifikante Reduktion des z-scores für zwei bis drei siRNAs ermittelt werden. Der z-score gibt die aus der Mikroskopie erworbenen Messungen zur gemittelten Größe (engl. *area*) aller SCV in Pixel im Vergleich zur Zellkernzahl (Nukleus, Nuk) an. Gen ID, -funktion und -name (festgesetzt über NCBI) sowie siRNA ID (Qiagen) sind angegeben. Eingeflossene Anzahl an Replikaten, gemittelte z-score Werte und gemittelte Zellkernzahlen sind aufgelistet.

Der knock-down von den zwei SIRT1 siRNAs hatte keinen negativen Einfluss auf die Zellkernzahl verglichen mit der Kontrolle (neutrale siRNA = 3985 Nuklei). Der knock-down der siRNAs Hs_HERC2_6, Hs_RANBP5_2, Hs_PEX1_2 und Hs_RAC1_5 (s. Tab. 3.4.1) zeigte einen leicht zytotoxischen Effekt verglichen mit der Kontrolle (neutrale siRNA = 3985 Nuklei), was an einer Abnahme der Zellkernzahl zu beobachten war (~2500 Nuklei). Bei dem knock-down der siRNAs Hs_RAC1_6 und Hs_LYK5_1 konnte sogar ein stärkerer zytotoxischer Effekt beobachtet werden (~1000 Nuklei). Bei einer Abnahme der Zellzahl während der Transfektion könnten mehr Zellen infiziert oder die SCV-Größe verändert worden sein. Ohne Zytotoxizität wäre somit ein noch kleinerer z-score Wert zu erwarten.

Alle sechs Proteine haben unterschiedliche biologische Funktionen. Eine STRING-Analyse zeigte, dass die Proteine nicht miteinander interagieren und separaten Transportprozessen zugeordnet werden können (nicht dokumentiert). Zur Erhebung eines STRING-basierenden Proteinnetzwerkes wurden deswegen alle gut inhibierenden Faktoren (z-score < - 2,0)

hinzugezogen (s. Abb. 3.4.1). Es konnten insgesamt 29 Proteine identifiziert werden (s. Tab. 3.4.2, Anhang), wovon 12 Faktoren in vier Unternetzwerke unterteilt wurden (FOS, RAC1, CAV1 und RAB35) (PEX1 und 3) (VPS45, HGS und SCAMP3) (USO1, STRADA und STRADB). Alle anderen zeigten keine bisher bekannten Interaktionen.

Abb. 3.4.1: STRING-basierendes Proteinnetzwerk der negativen Effektoren des SCV-Traffickomes. Innerhalb des Traffickome-Datensatzes konnten 29 humane Faktoren identifiziert werden, deren knock-down einen negativen Effekt auf die SCV-Ausbildung hatten. Das über STRING erstellte Proteinnetzwerk zeigt alle bisher bekannten Protein-Protein-Interaktionen. Die Unternetzwerke sind entsprechend ihrer biologischen Funktion farblich hinterlegt (s. Legende, *unten*). ER-, Golgi-, Mitochondrien- oder Autophagie- Proteine sind farbig markiert (s. Legende, *oben*). Proteinnamen (festgelegt über UniProt und STRING).

Neben neun Mitochondrien-assoziierten Proteinen kamen sechs Golgi-, drei ER- und ein Autophagie-assoziierter Faktor vor. USO1 ist dabei sowohl am ER als auch am Golgi lokalisiert. Die restlichen elf Proteine wurden anderen subzellulären Lokalisationen zugeordnet (UniProt). Im Gegensatz zu den mitochondrialen Faktoren waren die meisten Golgi- und ER-Proteine innerhalb von Unternetzwerken wiederzufinden. Zu den zentralen Unternetzwerken zählen die peroxisomale Biogenese, Proteine mit GTPase-Aktivität sowie der Endosom-zu-Golgi oder der allgemeine Vesikeltransport.

Neben infektionsinhibierenden wurden auch infektionsfördernde Faktoren gefunden. Hierbei mussten die z-score Werte > 3,0 (3 Standardabweichungen) betragen, um als zuverlässig verstärkend eingestuft zu werden. Es konnten 68 Proteine identifiziert werden (s. Tab. 3.4.3,

Anhang) die über ein STRING-basierendes Proteinnetzwerk in neun Unternetzwerke unterteilt wurden (s. Abb. 3.4.2).

Abb. 3.4.2: STRING-basierendes Proteinnetzwerk der positiven Effektoren des SCV-Traffickomes. Innerhalb des Traffickome-Datensatzes konnten 68 humane Faktoren identifiziert werden, deren knock-down einen positiven Effekt auf die SCV-Ausbildung hatten. Das über STRING erstellte Proteinnetzwerk zeigt alle bisher bekannten Protein-Protein-Interaktionen. Die Unternetzwerke sind entsprechend ihrer biologischen Funktion farblich hinterlegt (s. Legende, *unten*). ER-, Golgi-, Mitochondrien- oder Autophagie-Proteine sind farbig markiert (s. Legende, *oben*). Proteinnamen (festgelegt über UniProt und STRING).

Unter den 68 Proteinen waren insgesamt sechs ER-, fünfzehn Golgi-, acht Mitochondrien- und vier Autophagie-assoziierte Faktoren. Dabei konnte eine klare Verteilung in verschiedene Unternetzwerke beobachtet werden. Zu den zentralen Unternetzwerken zählt die peroxisomale Biogenese, der nukleare und mitochondriale Import, die ribosomale oder RNA-Bindung, der retrograde Golgi- oder allgemeine Vesikeltransport, sowie Mitochondrien-, Autophagie- und Zytoskelett-assoziierte Faktoren. Golgi-Proteine waren hauptsächlich dem allgemeinen (AP3D1, VPS41) oder retrograden Transport (ARCN1, CLTB, COPA, COPB1, COPB2, COPG, COPZ2, RAB6B, SEC31A) zugeordnet oder befanden sich in keinem Netzwerk (CSPG5, GGA1, IRGM). Mitochondrien-Faktoren konnten bis auf STARD3 in

mitochondriale (GSR, MPO, PRDX5, TSPO) oder Import-Proteine (TIMM10, 13, 17B) unterteilt werden. Neben dem Autophagie-Unternetzwerk (ATG7, 9A, 10) kamen IRGM und ER-Proteine (ATG9A, CSPG5, LSG1, PDIA3, RHOA, VCP) relativ verteilt vor und gehörten größtenteils keinem Unternetzwerk an.

Alle siRNAs der infektionsfördernden Faktoren (z-score Werte > 3,0) hatten einen zytotoxischen Effekt. Damit ist es fraglich, ob die Zunahme der z-score Werte wirklich auf einen knock-down der einzelnen Faktoren beruht oder die Zellen aufgrund von zytotoxischen Effekten stärker *Sn*-infiziert waren. Für eine genauere Aussage müssten weitere Experimente durchgeführt werden.

Simkania negevensis (Sn) repliziert in seinen Wirtszellen innerhalb einer einzigartigen inhomogenen Vakuole, von der starke Assoziationen mit dem zellulären Endoplasmatischen Retikulum (ER) und Mitochondrien bekannt sind (beschrieben für Acanthamoebae castellanii, HeLa229, HEp-2, A549 und THP1) (Mehlitz et al., 2014). Trotz der bisherigen Stellung von Sn als neu aufkommender potenter Krankheitserreger sind die intrazellulären Mechanismen zur Entstehung und Entwicklung der Simkania-Vakuole (SCV), sowie zum Erwerb von Nährstoffen weder beschrieben noch verstanden. Genetische Manipulationen von Sn sind ähnlich zu Chlamydia pneumoniae (Cpn) noch nicht etabliert worden (erfolgreiche Protokolle zur genetischen Manipulation von Chlamydia trachomatis (Ctr) (Wang et al., 2011, Subbarayal et al., 2015) waren nicht wirksam), weshalb in dieser Arbeit ausschließlich zellbasierende Experimente durchgeführt wurden.

Mithilfe der vorgestellten Analysen zur Ermittlung des SCV-/*Sn*-Proteoms und SCV-Lipidoms konnten erste Erkenntnisse über SCV-assoziierte bakterielle und humane Faktoren sowie eine Abhängigkeit ihrer Entwicklung von intrazellulären Transportwegen gewonnen werden.

4.1 Das Proteom der Simkania-Vakuole

In dieser Arbeit wurde die Zusammensetzung der *Simkania*-Vakuolenmembran über eine Proteomanalyse von SCV- und ER-Membranen näher untersucht. Parallel zum hier dargestellten Proteom aus *Sn*-infizierten HeLa229 Epithelzellen wurde ein weiteres für THP1 Makrophagen erstellt (in Zusammenarbeit mit Elke Rieck, Masterarbeit), um mögliche Gemeinsamkeiten und Unterschiede bei *Sn*-Infektionen von Primärzellen zu identifizieren. Proteomanalysen von parasitophoren Vakuolen (-membranen) wurden bereits von einigen bekannten Humanpathogenen erfolgreich vorgenommen und wurden deshalb für einen Abgleich mit dem SCV-Proteom herangezogen.

4.1.1 Zur Isolierung von ER-SCV-Membranen sowie *Simkania* Elementar- und Retikularkörperchen sind andere Methoden notwendig als für Chlamydien

Zur Isolierung von SCV- und/oder ER-Membranen konnte im Rahmen dieser Arbeit ein entsprechendes Protokoll für *Sn*-infizierte HeLa229 und THP1 Zellen (Elke Rieck, Masterarbeit) etabliert werden.

Eine große Problematik bei einer Isolierung von "reinen" SCV-Membranen besteht in der starken Assoziation mit dem ER, die bei der chlamydialen Inklusion so nicht vorliegt (Derre, 2015). Dabei ist bislang noch nicht bekannt, wie diese Assoziation erfolgt. Eine Verbindung über mehrere (Multi-) Proteinkomplexe ist denkbar, da die einzelnen Membranen in transmissionselektronenmikroskopischen (TEM) Aufnahmen in nächster Nähe zu liegen scheinen (Mehlitz *et al.*, 2014). Trotzdem kann eine zusätzliche Fusion mit Teilen der ER-Membran oder ER-abgeleiteten Vesikeln, wie bspw. COPII, nicht ausgeschlossen werden.

Deswegen wurde von einer möglichen Trennung der SCV-Membranen von ER-Membranen, bspw. durch eine Verwendung von Digitonin, abgesehen. Zum einen könnten ER-Kontaminationen nicht mehr von tatsächlich SCV-lokalisierten ER-Proteinen unterschieden werden. Zum anderen waren bislang keine SCV-assoziierten Proteine (human oder bakteriell) bekannt, über die eine weitere Aufreinigung mithilfe von immunomagnetischen oder -markierten Kügelchen möglich gewesen wäre (Herweg *et al.*, 2015a).

Der Vorteil in der hier durchgeführten Isolierung von ER-SCV-Membranen liegt darin, dass auch Veränderungen bei der Verteilung von ER-Proteinen identifiziert werden können. Darüber sollte es möglich sein, erste Rückschlüsse auf die intrazelluläre Entstehung der Vakuole oder Wechselwirkungen mit intrazellulären Transportprozessen zu ziehen. In dieser Arbeit konnte mithilfe der Identifizierung von Transport-Markerproteinen untersucht werden, ob es während der Infektion zu einer *Sn*-induzierten Modifizierung von intrazellulären Transportwegen kommt.

Eine erfolgreiche Isolierung von ER-(SCV-) Membranen, die frei von intakten Bakterien sowie Organellen waren, konnte über Immunoblot und TEM bestätigt werden (s. Abschnitt 3.1.1). Im Immunoblot wurden mithilfe des anti-*Sn* Antikörpers eine Reihe bakterielle SCV-assoziierte Proteine identifiziert (s. Abb. 3.1.4). Dieselben bakteriellen Proteine sind höchstwahrscheinlich im LC-MS²-Datensatz wiederzufinden (s. Tab. 3.1.3, Anhang).

Geringfügige Kontaminationen mit Organellfragmenten von Zellkern, Mitochondrien oder Golgi wurden bei dieser Methode akzeptiert, da bestehende Verknüpfungen über bspw. mitochondrienassoziierte Membranen (MAMs) oder die Zellkernmembran auch in reinen ER-Membranproben vorkommen.

Quantitative Proteomanalysen von *Ctr*-Entwicklungsformen ergaben Unterschiede in der Proteinexpression (Saka *et al.*, 2011). Dabei konnten mithilfe zellbiologischer Methoden bereits beobachtete Unterschiede zwischen metabolischer Aktivität und Infektivität bei Elementarkörperchen (EBs) und Retikularkörperchen (RBs) bestätigt werden. Anders als bei Chlamydien sollen *Sn* RBs genauso infektiös sein wie EBs (Kahane *et al.*, 2002). Es ist allerdings noch ungewiss, ob *Sn* EBs damit auch ähnlich metabolisch aktiv sind wie RBs. Derartige Unterschiede sollten ursprünglich über die Erhebung eines RB-Proteoms und eines EB-Proteoms von *Sn* untersucht werden, sofern eine Trennung der beiden Entwicklungsformen erfolgreich gewesen wäre (s. Abschnitt 3.1.2).

Percoll-Gradienten eigneten sich nicht zur Trennung der *Sn*-Entwicklungsformen, da sich Percollpartikel nicht vollständig entfernen ließen oder die Bakterien lysierten. Kontinuierliche Saccharose-Gradienten eigneten sich auch nicht zur Auftrennung in separate Bakterienfraktionen. Die Verwendung eines Konzentrationsbereiches zwischen 25-55 % wäre wahrscheinlich besser geeignet, da in Vorarbeiten zwei unterschiedliche Fraktionsbereiche auf eine

mögliche Trennung von den zwei Entwicklungsformen hindeuteten (Jo-Ana Herweg, Diplomarbeit).

Vor kurzem konnte gezeigt werden, dass sich ein Gastrografin-Gradient zur Isolierung von *Sn* EBs am besten eignet (Aistleitner *et al.*, 2015). Es ist fraglich, ob sich damit auch RBs isolieren lassen, da sie osmotisch sensitiver sind, oder man hierfür eine andere Methode finden müsste. Ein denkbarer Ansatz wäre die Verwendung von fluoreszenten Molekülen, welche nur von einer Entwicklungsform (EBs oder RBs) aufgenommen werden. Damit ließen sich die beiden Entwicklungsformen mithilfe eines geeigneten FACS-Gerätes in fluoreszierende und nicht fluoreszierende Gruppen sortieren. So konnte bspw. für *Protochlamydia amoebophila* (*Pam*) gezeigt werden, dass metabolisch aktive EBs 2-NBD-Glukose aufnehmen (Sixt *et al.*, 2013).

Da *Sn*-Entwicklungsformen wahrscheinlich während des gesamten Entwicklungszyklus gemeinsam auftreten (Kahane *et al.*, 2002), konnte alternativ nicht auf frühere oder spätere Infektionszeitpunkte zur Isolierung der Bakterien zurückgegriffen werden, wie es bereits bei Chlamydien erfolgreich durchgeführt wurde (Saka *et al.*, 2011, Omsland *et al.*, 2012). Eine Aufreinigung von einem Gemisch aus EBs und RBs, bei gleichzeitiger Trennung der Bakterien von groben Verunreinigungen der zellulären Komponenten, war in dieser Arbeit nur über die Verwendung eines Renografin-Gradienten möglich (drei Tage p.i., HeLa229) (Howard *et al.*, 1974). Damit sollten im Proteom von ER-SCV-Membranen und aufgereinigten *Sn* dieselben bakteriellen Proteine vorliegen, die drei Tage p.i. von Simkanien exprimiert werden und an der SCV-Membran assoziiert vorliegen (gleiche Bedingungen während der Experiment-durchführungen).

4.1.2 ER-SCV-Membran-Proteomanalysen deuten auf veränderte Verteilungen humaner Proteine während der *Simkania*-Infektion hin

Die LC-MS²-Datenanalyse der ER-SCV-Membranen aus HeLa229 Zellen war eine Herausforderung, da eine relativ große Anzahl an Wirtszellproteinen identifiziert wurde (s. Abschnitte 3.1.3 und 3.1.4). Aus ursprünglich drei biologischen Replikaten von *Sn*- und nicht infizierten HeLa Zellen konnten letztendlich nur zwei in die finale semi-quantitative Analyse mit einfließen. Dies ist wahrscheinlich auf technische Probleme bei der Verwendung einer neuen *Sn*-Stock Passage und einer neuen HeLa229 Zellcharge bei dem dritten Experiment zurückzuführen. Von den insgesamt 1178 identifizierten humanen Proteinen zeigten 51 eine signifikant unterschiedliche Verteilung (an- oder abgereichert in ER-SCV-Membranen). 57 Faktoren waren mit Transportprozessen assoziiert. Mithilfe der WEB-Gestalt Datenanalyse konnten unterschiedliche sub-zelluläre Lokalisationen für die 1178 humanen Proteine ermittelt werden. Darunter waren viele Proteine membranassoziiert, teilweise aus endomembranen Kompartimenten oder mit membranumschlossenen Lumen assoziiert.

Es wurden viele Proteine identifiziert, die eine Lokalisation am/im Zellkern, Mitochondrium, Zytosol und Zytoskelett besitzen (s. Abschnitt. 3.1.3). Eine Kontamination mit intakten Organellen konnte aufgrund der vorherigen Immunoblot- und TEM-Untersuchungen weitgehend ausgeschlossen werden. Des Weiteren stellt das ER den Ort der Proteinbiosynthese dar, weshalb das Vorhandensein von Proteinen mit anderer zellulärer Lokalisation erwartet wurde. Dabei sollten Wirtszellproteine, die nicht mit ER-SCV-Membranen assoziiert sind, gleichermaßen in nicht infizierten Proben vorhanden sein, sofern ihre Expression nicht durch die *Sn*-Infektion modifiziert wurde.

Bei ca. 15 % der humanen Proteine lag eine ER-Lokalisation vor (s. Abschnitt. 3.1.3). Darunter könnten sich einige Proteine befinden, die für die Assoziation der SCV mit ER-Membranen verantwortlich sind. Gleichzeitig deuten vesikelassoziierte Proteine, wie bspw. COPI oder COPII, auf mögliche Fusionen von Vesikeln oder Organellen mit der SCV-Membran hin. Eine eindeutige Zuordnung von Transportproteinen, die an der SCV-Entstehung und -Entwicklung beteiligt sind, konnte mithilfe der semi-quantitativen Datensätze nicht vorgenommen werden. Deswegen wurde mithilfe der Erhebung von transportassoziierten Proteinnetzwerken und möglichen -interaktionen eine erste Einschätzung von infektionsabhängigen oder -regulierten Veränderung der intrazellulären Transportprozesse durchgeführt (s. Abschnitt 3.1.4).

Die weitere Datenanalyse des ER-SCV-Proteoms (HeLa229) ergab keine starke An- oder Abreicherung von Proteinen. Es ist deswegen denkbar, dass *Sn* so gut an seine Nische adaptiert ist, dass keine größeren Veränderungen am ER entstehen. *Sn* kann verschiedene Amöbenarten, welche höchstwahrscheinlich den primären Hauptwirt darstellen, parasitär besiedeln (Horn, 2008, Kahane *et al.*, 2008). Dadurch könnte *Sn* sich ähnliche umweltbedingte Adaptationen wie *Lpn* angeeignet haben, von denen es zur Besiedelung des menschlichen Organismus profitieren könnte. Dafür würde auch die Vorbeugung vor zellulären Stressmechanismen wie bspw. Apoptose oder ER-Stress sprechen, was *Sn* längere Wachstumsphasen (sieben-zwölf Tage pro Entwicklungszyklus) ermöglicht (Karunakaran *et al.*, 2011, Mehlitz *et al.*, 2014). Im Gegensatz zu *Chlamydia pneumoniae* (*Cpn*) oder *Ctr* zeigt *Sn* dabei ein ähnliches Wachstumsverhalten in Makrophagen wie in Epithelzellen (Herweg and Rudel, 2015).

Alveolare Makrophagen sind massiv in der menschlichen Lunge vertreten und stellen die erste Barriere für respiratorische Infektionen dar. Da ein ähnliches Replikationsverhalten in verschiedensten Epithelzellen und THP1 beobachtet wurde (Elke Rieck, Masterarbeit; Herweg and Rudel, 2015), spricht vieles dafür, dass *Sn* möglicherweise Phagozyten als eine Art Trojanisches Pferd nutzt, um sich "unbemerkt" innerhalb des menschlichen Wirtes auszubreiten und zu vermehren (Greub and Raoult, 2004). Die sehr stark ausgeprägte Assoziation mit dem ER könnte bei *Lpn* und *Sn* ein möglicher Grund für die Fähigkeit zur

intrazellulären Replikation in Makrophagen sein, womit sie sich von anderen Pathogenen wie bspw. *Ctr* unterscheiden.

Aufgrund der geringen Menge und der relativ niedrigen Signifikanzwerte von an- oder abgereicherten humanen Proteinen konnte keine klare Aussage über deren Beteiligung am Aufbau der SCV oder an Veränderungen am ER getroffen werden (s. Abschnitt 3.1.4). Jedoch wurde für einen Teil der 51 unterschiedlich an-/abgereicherten Faktoren (TCP1/CCT2, ARHGEF2, VDAC1, TOMM40) und das wahrscheinlich abgereicherte Transportprotein VAMP2 eine entsprechende Verteilung auf Proteinebene bestätigt, was darauf schließen lässt, dass es während der *Sn*-Infektion zu einer Rekrutierung zu ER-SCV-Membranen und/oder einer veränderten zellulären Regulation kommt (s. Abschnitt 3.1.3). Weitere Untersuchungen sind notwendig, um Ähnliches bei den restlichen an-/abgereicherten oder Transportproteinen zu demonstrieren.

Der Ausbruch aus der phagolysosomalen Route ist ein oft beobachteter Mechanismus bei intrazellulären Pathogenen, um einer Degradation durch Lysosomen zu entgehen. Eine Möglichkeit ist eine Umbildung der vorher endosomalen zu einer parasitophoren Vakuolenmembran (PVM), die ein ganzes Pathogen(e)-enthaltenes Kompartiment mit (Membran-) Eigenschaften von bspw. zellulärem ER oder Golgi ergibt (Desjardins, 2003). Dies konnte bereits für verschiedene Bakterien wie Brucella, Legionella oder Chlamydia gezeigt werden, bei denen unterschiedlichste Assoziationen der PVM mit dem ER und/oder trans-Golgi-Netzwerk (TGN) beobachtet wurden (Horwitz, 1983, Anderson and Cheville, 1986, Swanson and Isberg, 1995, Hackstadt et al., 1996, Heinzen et al., 1996, Pizarro-Cerda et al., 1998, Tilney et al., 2001, Derre, 2015). Brucella und Legionella greifen dabei relativ früh in der phagolysosomalen Route ein, um die Struktur der parasitophoren Vakuole (PV) so zu modulieren, dass die reife PVM ER-ähnliche Charakteristika aufweist (Desjardins, 2003). Chlamydia hingegen replizieren in einer einzigartigen parasitophoren Vakuole (PV), die nicht angesäuert wird (Friis, 1972, Lawn et al., 1973, Wyrick and Brownridge, 1978, Heinzen et al., 1996, Al-Younes et al., 1999, Rockey et al., 2002). Ähnlich zu Legionella pneumophila (Lpn) und Brucella abortus interagiert auch Ctr mit ER- und/oder Golgi-abgeleiteten Vesikeln, um die Inklusion als Replikationsnische auszubilden (Hilbi and Haas, 2012). Chlamydia-ähnliche Organismen wie Parachlamydia acanthamoebae (Pac), Sn oder Waddlia chondrophila (Wch), bilden ebenfalls eine PV innerhalb von Amöben oder Zellen von höheren Tieren aus (Everett, 2000). Unsere Vorstudien zur SCV zeigten eine bisher einzigartige Interaktion mit ER-Membranen (drei Tage p.i.) (Mehlitz et al., 2014), weshalb gleichermaßen für Sn ein Bezug von ER- und/oder Golgi-abgeleiteten Vesikeln, und damit assoziierten Lipiden und Proteinen, angenommen werden kann.

Interessanterweise konnte über unsere Analysen ein Effekt auf sieben zentrale Transportwege ermittelt werden (s. Abschnitt 3.1.4), welche im folgenden Abschnitt diskutiert werden. Die

einzelnen Transportprozesse wurden anlehnend an die Funktionen und Lokalisationen (UniProt) der identifizierten Proteine in retro- (Clathrin und COPI) und anterograd (COPII, ERzu-Golgi, Endosomen, Exozytose und Recycling-Endosomen) unterteilt.

4.1.3 Retro- und anterograd transportierte Wirtszellproteine zeigen eine entgegengesetzte Verteilung im SCV-Proteom

Positivstrang-RNA Viren sind bekannt dafür, dass sie intrazelluläre Membranen zu Mini-Organellen umgestalten, in welcher die RNA-Amplifikation und Zusammensetzung der Virionen erfolgt (Miller and Krijnse-Locker, 2008). Flaviviren wie Dengue oder West-Nil Viren, replizieren bspw. innerhalb von Membraneinschnürungen, die von dem ER abstammen (Welsch *et al.*, 2009, Gillespie *et al.*, 2010). Hepatitis C Viren verwenden sogar weiter spezialisierte Vesikel, die sich aus einzelnen Teilen von rauem ER, frühen und späten Endosomen, COP-Vesikeln, Mitochondrien, sowie Lipidtröpfchen (engl. *lipid droplets*, LD) zusammensetzen (Romero-Brey *et al.*, 2012).

In unseren SCV-Proteomdaten konnten wir Proteine von denselben zellulären Komponenten und Kompartimenten nachweisen (s. Abschnitt 3.1.4), was auf ähnliche Prozesse der PV-Ausbildung bei *Sn* hindeuten könnte. Interessanterweise konnten wir dabei eine entgegengesetzte Verteilung von retro- und anterograd transportierten Proteinen feststellen (s. Abb. 3.1.10 und 4.1.1). Die Abreicherung von anterograd und die Anreicherung bzw. Aufrechterhaltung von retrograd transportierten Proteinen lässt auf eine Regulation während einer *Sn*-Infektion schließen. Dadurch kann zum einen ein Abtransport von Nährstoffen von SCV-ER-Membranen unterbunden werden, während ein Hintransport weiter bestehen bleiben kann. In beiden Fällen würden *Sn* viele Nährstoffe zur Verfügung stehen.

Obwohl die retrograden COPI-Proteine im SCV-Proteom (HeLa229) relativ unverändert waren im Vergleich zu den angereicherten Clathrin-assoziierten Proteinen, zeigte der knock-down von beiden Proteingruppen in späteren RNAi-Experimenten (COPB1/COPB2 oder AP2B1/AP1G1) einen negativen Einfluss auf die *Sn*-Infektion (s. Abschnitte 3.1.5 und 3.4). Damit müssen verschiedene retrograde Transportwege eine wichtige Rolle für die SCV-Ausbildung spielen. Unter Zuhilfenahme der Retro-Inhibitoren wurde eine Abhängigkeit der SCV-Morphologie und *Sn*-Infektivität vom retrograden Transport (Endosomen-zu-Golgi) über Immunofluoreszenz, Immunoblot, TEM und Lebendzellmikroskopie bestätigt (s. Abschnitte 3.3.1-3.3.3). Auch zeigte die Traffickome-Datenanalyse eine Abhängigkeit der SCV-Entwicklung von Faktoren des endosomalen-zu-Golgi und weiteren vesikulären Transporten (s. Abschnitt 3.4).

AP2B1 und AP1G1 sind bereits auf Ebene der Endosomen angesiedelt und stellen Untereinheiten des AP2-Komplexes dar. Über den AP2-Komplex werden Proteine über Vesikel-abhängige Transportwege zwischen Membranen (Plasmamembran, Endosomen,

trans-Golgi-Netzwerk) transportiert (Bonifacino and Lippincott-Schwartz, 2003). Dabei sind AP2-assoziierte Vesikel an der Clathrin-abhängigen Endozytose, deren Vesikel mit frühen Endosomen fusionieren, beteiligt (McMahon and Boucrot, 2011). Des Weiteren sind AP2-assoziierte Vesikel an der rezeptorvermittelten Endozytose sowie dem Recyceln von Vesikelmembranen von präsynaptischen Oberflächen beteiligt (Pechstein *et al.*, 2010).

Abb. 4.1.1: Schematische Darstellung der Protein An-/ Abreicherung von intrazellulär vesikulären Transportwegen während einer Simkania-Infektion. Innerhalb des LC-MS²-Datensatzes konnten humane Proteine des endosomalen, retrograden und anterograden Transportweges identifiziert werden. COPI- (grün) und Clathrin-abgeleitete Proteine (gelb) waren größtenteils unverändert bis angereichert. Knock-down-Experimente von den angereicherten Faktoren COPB2 und AP2B1 resultierten in einer Abnahme des snGroEL-Proteingehalts, sowie einer eingeschränkten Infektivität in Primär- und Sekundärinfektion. COPII-, ER-zu-Golgi, endosomale und exozytotische Proteine lagen größtenteils abgereichert und Recycling-endosomale Proteine unverändert vor.

COPI-Vesikel werden am Golgi gebildet und dienen dem Transport von Lumen als auch Membranproteinen zum ER (s. Abschnitt 1.5). Auch wenn AP2-assoziierte und COPI-Vesikel sich im Aufbau und ihrer Funktion unterscheiden, werden anlehnend an die RNAi-Ergebnisse beide gleichermaßen während der *Sn*-Infektion benötigt (s. Abb. 4.1.1).

Der knock-down von anterograd transportierten Proteinen (COPII, ER-zu-Golgi, Golgi-zur-PM) führte in späteren RNAi-Experimenten zu einer verbesserten *Sn*-Primärinfektion (s. Abschnitt 3.1.5). Durch den knock-down der anterograden Proteine sollte ein Abtransport von

Nährstoffen von ER und Golgi per se minimiert sein, was in einer verbesserten/verstärkten *Sn*-Infektion resultierte. Dies bestätigte die Vermutung, dass anterograde Transportproteine einen anderen Einfluss auf *Sn* haben als retrograde.

4.2 Die Bedeutung des retrograden Protein- und Lipidtransportes für Simkania

Als obligat intrazelluläre Parasiten sind *Chlamydiae* sehr gut angepasst, um zelluläre Ressourcen für den Aufbau der Inklusionsmembran zu verwenden, was ihre Replikation garantieren soll. Dafür müssen verschiedenste Signal- und Transportwege manipuliert werden, um gezielt einzelne Faktoren beziehen zu können oder damit die Inklusionsmembran mit anderen Membranen fusionieren kann. Durch die Rekrutierung von Vesikeln wird ein großer Teil an Nährstoffen, Lipiden, oder Proteinen zur Inklusion transportiert, welche die Bakterien in der PVM vor dem angeborenen Immunsystem schützen soll (Scidmore *et al.*, 1996a, Scidmore *et al.*, 1996b, Scidmore *et al.*, 2003, Scidmore, 2011).

Die Retro-Inhibitoren (Retro1, Retro2, VP184 und Comp20) zeigten allesamt einen starken Effekt auf die SCV-Morphologie, *Sn*-Entwicklung und -Infektivität (s. Abschnitte 3.3.1 und 3.3.2). Ihre Rolle beim retrograden/endosomalen Transport oder ihre Interaktionen mit Wirtszellfaktoren sind auf molekularer Ebene noch nicht verstanden (s. Abschnitt 1.5.2). Aufgrund der Vorarbeiten von Barbier *et al.* 2012 und Stechmann *et al.* 2010 wurde vermutet, dass die Inhibierung am frühen endosomalen-zum-*trans*-Golgi-Netzwerk- bzw. am späten Endosomen-Transport ansetzt. Erste Untersuchungen zum Lipidtransport während einer *Sn*-Infektion konnten diese Hypothese bestätigen (s. Abschnitt 3.3.3).

4.2.1 Endosomale Transportwege beeinflussen die Sekundärinfektion von Simkania negevensis

Der retrograde Transport von Proteinen und Lipiden erfolgt von der Plasmamembran (PM) über Endosomen zum Golgi-Apparat. Recycling-Endosomen fungieren hierbei als ein Sortierungsorganell (Bonifacino and Rojas, 2006). Darauffolgend werden Proteine und Lipide über das *trans*-Golgi-Netzwerk (TGN) zum ER transportiert, was u.a. über COPI-Vesikel erfolgt (Orci *et al.*, 1997. Sandvig and van Deurs, 2005). Proteintoxine, wie das Cholera- oder Shigatoxin, werden ebenfalls über Endosomen und das TGN zum ER transportiert (s. Abschnitt 1.5.1). Auch viele Viren werden über ähnliche Routen zum ER transportiert, wo deren Assemblierung stattfindet (Brandenburg and Zhuang, 2007). Vor kurzem konnte gezeigt werden, dass Retro2 den retrograden Transport von Polyoma-, Papilloma- und Adeno-assoziierten Viren inhibieren kann, was vermuten lässt, dass für einen Transport von bakteriellen Toxinen und Viren dieselbe Route und damit dieselben zellulären Faktoren verwendet werden (Nelson *et al.*, 2013, Carney *et al.*, 2014, Nonnenmacher *et al.*, 2015). Des Weiteren konnte für Parasiten wie *Leishmania amazonensis* eine starke Reduktion der PV-Größe nach Behandlungen mit Retro2 beobachtet werden (Canton and Kima, 2012).

Verglichen mit der *Sn*-Primärinfektion beeinträchtigten die vier Retro-Inhibitoren Retro1, Retro2, VP184 und Comp20 massiv die *Sn*-Sekundärinfektion, was in Form einer verminderten Bakterienmenge im Immunoblot und einer reduzierten relativen SCV-Zahl im Vergleich zu einer DMSO-Kontrolle nachgewiesen wurde. Das Retro2-Derivat VP184 erwies sich dabei als wirksamster Inhibitor trotz seiner zytotoxischen Wirkung bei 75 μ M (s. Abschnitt 3.3.1). Dabei bleibt offen, ob nach einer VP184-Behandlung die *Sn*-Infektion bereits durch eine Zellschädigung verändert wird und dadurch beeinträchtigt ist.

Die Daten der Retro-Inhibitorenexperimente lassen zusammenfassend darauf schließen, dass die *Sn*-Infektivität von retrograden sowie endosomalen Transportwegen abhängig ist. Dabei ist es sehr wahrscheinlich, dass durch die Inhibitorbehandlung die Verfügbarkeit von Nährstoffen verändert wird, sodass *Sn* bestimmte Nährstoffe schlechter oder nicht beziehen kann. Dies würde die verminderte Bakterienmenge in der Primärinfektion (75 μ M pro Inhibitor) und die darüber hinaus verminderte *Sn*-Infektivität in der Sekundärinfektion (25-75 μ M) erklären. Demnach wären sowohl Retro1, Retro2, als auch Comp20 gute Kandidaten, um den frühen Endosomen-zum-Golgi bzw. endosomalen Transport zu inhibieren und dadurch eine *Sn*- und möglicherweise auch *Chlamydia*-Infektion zu unterbinden.

4.2.2 Retro-Inhibitoren verursachen phänotypische Veränderungen der SCV

In dieser Arbeit konnte gezeigt werden, dass alle Retro-Inhibitoren nicht nur einen Einfluss auf die Sn-Entwicklung, sondern auch auf die SCV-Ausbildung hatten (s. Abschnitte 3.3.1 und 3.3.2). Die über Immunofluoreszenzexperimente ermittelte durchschnittliche SCV-Größe korrelierte dabei nicht immer mit dem durch Immunoblot bestimmten snGroEL-Gehalt. Dies war ein erster Hinweis dafür, dass größere morphologische Unterschiede vorliegen mussten, die mit klassischen mikroskopischen Aufnahmen nicht festzustellen waren. Dabei offenbarten elektronenmikroskopische (TEM) Studien, dass es einen für jeden Inhibitor spezifischen Effekt auf die SCV-Morphologie gibt. Eine Retro1-Behandlung zeigte nur einen Einfluss auf die SCV-Größe und eine VP184-Behandlung ein Auftreten von kleinen Vesikeln bzw. Tröpfchen, wohingegen bei einer Retro2- und Comp20-Behandlung neben massiven Veränderungen der SCV eine Veränderung der Bakterienzahl beobachtet wurde. Die unterschiedlichen Resultate sprechen dafür, dass jeder Inhibitor unterschiedliche Wirtszellfaktoren beeinflussen muss. Dabei könnte der jeweilige Inhibitor mit mehr als einem Wirtszellfaktor wechselwirken, was dann eine Überschneidung der einzelnen Zielfaktoren nicht ausschließt. Deswegen sind wahrscheinlich unterschiedliche Transportwege, die alle während einer Sn-Infektion für die SCV-Ausbildung genutzt werden, betroffen.

Wirtszellfaktoren des retrograden Clathrin-Vesikel- oder COPI-Transportes (z.B. AP2A1, AP2B1, COPB2, AP1G1), die für die *Sn*-Infektion von Bedeutung sein könnten, wurden bereits in der Proteomdatenanalyse oder den RNA-Interferenzexperimenten untersucht (s. Abschnitte 3.1.4, 3.1.5 und 3.4). Ein knock-down von AP2B1, COPB2 oder AP1G1 führte zu einer

reduzierten Bakterienmenge in der *Sn*-Primär- und Sekundärinfektion oder zu einer verkleinerten SCV-Größe. Ob diese mit den Retro-Inhibitoren wechselwirken, wurde experimentell noch nicht überprüft. Ein potentieller Retro2-assoziierter Faktor STX5 (Nonnenmacher *et al.*, 2015) erwies sich jedoch nicht als *Sn*-infektionsrelevant, da ein STX5 knock-down die durch Immunoblots überprüfte Bakterienmenge in der *Sn*-Sekundärinfektion nicht veränderte (s. Abschnitt 3.1.5).

Die TEM-Aufnahmen von VP184-behandelten *Sn*-infizierten Zellen zeigten eine starke Anreicherung von kleinen vesikulären Strukturen, die auf eine mögliche Wechselwirkung mit Lipidtröpfchen (engl. *lipid droplet*, LD) schließen lassen. LD wurden bspw. bei *Mycobacterium*-Infektionen in Makrophagen oder *Dictyostelium* beobachtet, in denen sie mit den Bakterien assoziieren (Barisch *et al.*, 2015). Auch bei *Ctr* wurde eine Assoziation mit LD über die Inklusionsmembranfaktoren CAP1, CTL0882 und IncG beschrieben (Saka *et al.*, 2015). Interessanterweise korreliert eine *Ctr*-Infektion dabei massiv mit dem Vorkommen von LD, was auch für *Sn* denkbar wäre.

Bei Comp20-behandelten Zellen muss überprüft werden, ob *Sn* während der Primärinfektion in der Lage ist, intakte SCVs auszubilden. Die TEM-Aufnahmen ließen auf einen Zusammenbruch des SCV-Netzwerkes schließen, da kleine Sub-Vakuolen relativ zusammenhangslos innerhalb der Zelle verteilt zu sein schienen (s. Abschnitt 3.3.2). In den Immunofluoreszenzbildern konnte jedoch keine derartige Beobachtung gemacht werden (s. Abschnitt 3.3.1). Eine Vermutung ist, dass auch Degradationsprodukte, die möglicherweise lysierte EBs und RBs enthalten, vom snGroEL-Antikörper markiert wurden. Aufgrund der inhibierenden Wirkung von Comp20 auf späte Endosomen könnten Ähnlichkeiten zu BafA1assoziierten Transportwegen bestehen.

4.2.3 Retro-Inhibitoren beeinflussen den intrazellulären Ceramidtransport

Der Molekültransport über Membranen in intrazelluläre Kompartimente stellt einen zentralen Prozess für obligat intrazelluläre Organismen dar. Bei der *Toxoplasma*-Vakuole wurde eine passive Diffusion von Molekülen bis zu 1300 und 1900 Dalton beobachtet (Schwab *et al.*, 1994). Im Gegensatz dazu sind chlamydiale Inklusionen nicht permeabel für Moleküle, die größer als 520 Dalton sind (Heinzen and Hackstadt, 1997). Große Metabolite oder Proteine müssen über einen direkten Transport oder durch eine Fusion mit Vesikeln über die Inklusionsmembran transportiert werden. Das gilt sowohl für humane als auch bakterielle Proteine. In dieser Arbeit wurde ein C₆-NBD-Ceramid verwendet, welches als vitaler Farbstoff für den Golgi-Apparat nützlich war, um den intrazellulären Sphingolipidtransport zu untersuchen (Lipsky and Pagano, 1985a, Lipsky and Pagano, 1985b, Pagano *et al.*, 1989, Rosenwald and Pagano, 1993). C₆-NBD-Ceramid wird wie in Abschnitt 1.5.3 aufgeführt zum TGN transportiert und innerhalb des *cis*- oder *medialen*-Golgi, entsprechend zu endogenem Ceramid, in Sphingomyelin (SM) oder Glykosylceramid umgewandelt (Lipsky and Pagano,

1985a) (s. Abb. 4.2.1). Anschließend wird das NBD-SM zurück ins endosomale System überführt, von wo es wieder zur PM transportiert werden kann. Es konnte gezeigt werden, dass *C. trachomatis* (*Ctr*), *C. pneumoniae* und *C. psittaci* dieses fluoreszierende SM inkorporieren und in ihre äußere Membran einbauen, was ein Einwirken von *Chlamydia* auf den exozytotischen Lipidtransport demonstrierte (Scidmore *et al.*, 1996a, Rockey *et al.*, 1996, Wolf and Hackstadt, 2001). Durch die induzierte Fusion von exozytotischen Vesikeln mit der Inklusion kann so der intrazelluläre Lipidtransport modifiziert und eine ausreichende Menge an SM bezogen werden (Fields and Hackstadt, 2002). Da *Sn* ein naher Verwandter der *Chlamydia*-Spezies ist (Fritsche *et al.*, 2000) und *Sn* auch Gene für die SM-Biosynthese fehlen, ist es denkbar, dass es Ceramid und SM über ähnliche Transportwege bezieht.

Abb. 4.2.1: Vergleichendes Modell des Simkania negevensis und Chlamydia trachomatis Ceramidtransportes. Simkania negevensis (*links*), Chlamydia trachomatis (*rechts*). Ceramide werden am ER synthetisiert und mithilfe von CERT über eine Bindung an VAPA oder VAPB zum Golgi transportiert. Über eine Sphingomyelin-Synthase (SMS) können Ceramide (Cer) in Sphingomyeline (SM) umgewandelt werden. Deren Bezug ist essentiell für das chlamydiale Wachstum. SM kann anschließend über verschiedene vesikuläre Transporte bezogen werden, was u.a. humane Faktoren wie GBF1 und/oder ARF1 miteinbezieht. Für einen direkten Bezug von Cer zur CCV über ER-Membranen ist das bakterielle Protein IncD nötig. Es setzt das Vorhandensein der SMS auf der CCV-Membran voraus. SM wird anschließend von RBs inkorporiert. Im SCV-Proteom konnte nur VAPA identifiziert werden. Trotzdem sind ähnliche Mechanismen anzunehmen oder zusätzliche Vesikeltransporte zwischen ER-zu-Golgi notwendig. Bei *Sn* wurde ein Transport von C₆-NBD-Ceramid zur und in die SCV beobachtet, weshalb eine darauffolgende Inkorporierung von RBs und möglicherweise EBs nicht ausgeschlossen werden kann.

Chlamydiae brechen ziemlich früh in der Entwicklungsphase vom endozytotischen Weg aus, um mit dem exozytotischen Weg zu interagieren, wofür die genauen Prozesse noch wenig verstanden sind (Hackstadt *et al.*, 1995, Hackstadt *et al.*, 1997, Rzomp *et al.*, 2003). Vermutet wird jedoch, dass Chlamydien-Lipide über sekretorische Transporte, bspw. über exozytotische Vesikel, beziehen. Dafür müssen die Bakterien mit dem endosomalen zum Golgi-gekoppelten Vesikeltransport interagieren.

Unter Verwendung der Retro-Inhibitoren wurde der zelluläre Lipidtransport untersucht, da Ähnlichkeiten zwischen Chlamydien und *Sn* erwartet wurden. Der Lipidtransport wurde über C₆-NBD-Ceramid untersucht und damit an einen intrazellulären Nährstofferwerb der Bakterien gekoppelt (s. Abschnitt 3.3.3). Dabei üben NBD-gekoppelte Lipide keine toxischen Effekte auf Chlamydien oder die Zellen aus (Banhart *et al.*, 2014).

Wie erwartet, wurde C₆-NBD-Ceramid zum Golgi und zur SCV transportiert. Durch eine Behandlung mit Retro-Inhibitoren kam es bei Verwendung von Retro1, Retro2 oder VP184 zu einer Veränderung des ermittelten Ceramidtransportes zum Golgi oder zur SCV. Eine Behandlung mit Retro1 oder Retro2 resultierte in einem verstärkten C₆-NBD-Ceramidtransport in SCV und Golgi. Es scheint, dass ein Rücktransport des Lipides aus dem *trans*-Golgi-Netzwerk (TGN) zu Endosomen blockiert war (s. Abb. 4.2.2). Dies führte letztendlich zu einer stärkeren Anreicherung im Golgi. Wir vermuten, dass ein direkter Golgi zu SCV-Transport vorliegen muss, welcher zu der verstärkten Anreicherung des Lipides in der SCV geführt hat.

Abb. 4.2.2: Schematische Darstellung des intrazellulären Simkania negevensis C6-NBD-Ceramidtransportes nach Behandlung mit Retro-Inhibitoren und Brefeldin A. Bekannte und hypothetische intrazelluläre Transportwege des C₆-NBD-Ceramidtransportes von der Plasmamembran bis zum TGN und zur SCV sind dargestellt. Für Sn werden dieselben Transportwege sowie ein möglicher Bezug von frühen, späten oder Recycling-endosomalen als auch COPI-Vesikeln vermutet. VP184 scheint den Import in den Golgi zu blockieren. Retro1 und Retro2 scheinen den Austausch von Golgi zu Endosomen zu blockieren, wodurch ein direkter Transport vom Golgi zur SCV bestehen bliebe. BFA ruft eine Fragmentierung des Golgis hervor, weshalb alle Golgiabgeleiteten Transportwege blockiert wären. Demnach müsste bei VP184- und BFA-behandelten Zellen C₆-NBD von der SCV direkt über Endosomen bezogen werden.
Die Resultate zeigen jedoch auch, dass es hier zu einer Inhibition des anterograden TGN-zu-Endosomen-Transportes gekommen sein muss. Daher besteht die Möglichkeit, dass die Retro-Inhibitoren nicht ausschließlich auf retrograde Transportwege wirken oder dass eine Inhibierung von bestimmten retrograd assoziierten Wirtszellfaktoren gleichzeitig an anterograde Prozesse gekoppelt ist. Eine Behandlung mit VP184 zeigte den auffälligsten verstärkten C₆-NBD-Ceramidtransport zum Golgi, in nicht infizierten Zellen. Dieser war überraschenderweise in Anwesenheit von Sn komplett geblockt. Ähnlich zu BFA-behandelten Sn-infizierten Zellen konnte hier fast keine Aufnahme des Lipides in den Golgi beobachtet werden. Dies deutet darauf hin, dass eine an die Sn-Infektion gekoppelte Inhibierung des Lipidtransportes zum Golgi vorlag. Ob die verbesserte Aufnahme in nicht infizierten bzw. die inhibierte Aufnahme in Sn-infizierten Zellen mit vesikulären und/oder Golgi-Membranveränderungen zusammenhängt, ist noch nicht bekannt. Wahrscheinlich ist jedoch, dass über die Sn-Infektion noch unbekannte VP184-assoziierte Wirtszellfaktoren weiter modifiziert werden, was eine Aufnahme von C6-NBD-Ceramid in den Golgi blockiert. Diese Inhibierung wirkte sich jedoch nicht auf den leicht verstärkten Lipidtransport zur SCV aus. Deswegen müssen weitere Lipidtransportwege zur SCV existieren, als nur ein direkter vom Golgi ausgehender Transport. Frühe oder Recycling-Endosomen sollten dabei in Betracht gezogen werden, da diese C₆-NBD-Ceramide aufnehmen und zum Golgi transportieren können.

Eine anhaltende BFA-Behandlung induziert einen Zusammenbruch des Golgi-Apparates und damit eine Umverteilung von Golgi-assoziierten, sekretorischen und Membranproteinen zum ER (Donaldson et al., 1992a, Helms and Rothman, 1992). Es konnte gezeigt werden, dass BFA den SM-Transport zur chlamydialen Inklusion komplett unterbinden kann (Scidmore et al., 1996b). In dieser Arbeit wurde festgestellt, dass BFA bereits den C₆-NBD-Ceramidtransport zum Golgi in nicht infizierten Zellen blockiert und wie erwartet in Sn-infizierten Zellen, wobei bereits die Signalintensität des C6-NBD-Ceramides in den behandelten Zellen reduziert war. Dies lässt vermuten, dass die Inhibierung relativ früh, möglicherweise bereits an der PM, ansetzt, weshalb weniger C₆-NBD-Ceramid in die Zelle gelangt. Nichtsdestotrotz war der C₆-NBD-Ceramidtransport zur SCV abgeschwächt, aber nicht komplett inhibiert. Das bedeutet, dass neben einem direkten C6-NBD-Ceramidtransport vom Golgi zur SCV weitere Transportwege unterstützend wirken müssen, wie es bereits für VP184 diskutiert wurde. Da BFA keinen Einfluss auf die Replikation von Chlamydia ausübt, wird die Vermutung untermauert, dass Ceramide und SM über mehrere Transportwege bezogen werden, die BFA-unbeeinflusst und/oder mit nicht vesikulären Wegen assoziiert sind (s. Abb. 4.2.1) (Scidmore et al., 1996b, Derre et al., 2011, Elwell et al., 2011, Dumoux et al., 2012).

Die Experimente mit BFA-behandelten Zellen zeigen, dass durch eine Fragmentierung des Golgis der C₆-NBD-Ceramidtransport sowohl zum Golgi als auch zur SCV stark beeinträchtigt ist. Im Vergleich mit den Ergebnissen einer Retro1- und Retro2-Behandlung wird klar, dass ein

relativ intakter bzw. funktionaler Golgi-Komplex von Nöten ist. Trotz keiner klaren Fragmentierung der einzelnen Golgi in VP184-behandelten Zellen müssen hier durch die Inhibitorbehandlung stärkere Veränderungen am TGN entstanden sein als bei Retro1 oder Retro2.

Bei den Experimenten mit Comp20-behandelten Zellen konnten keine Veränderungen im Vergleich zu den Kontrollzellen beobachtet werden, weshalb es den Ceramidtransport nicht direkt beeinflusst. Damit scheinen späte Endosomen nicht direkt am Ceramidtransport beteiligt zu sein, sofern der inhibitorische Effekt auf die ganze Vesikelklasse wirkte.

Offen bleibt, ob der Ceramidtransfer auch von Clathrin-assoziierten Vesikeln begünstigt wird, was eine mögliche Erklärung für die Anreicherung der Clathrin-assoziierten Faktoren AP2A1 und AP2B1 in den SCV-Proteomdatensätzen wäre (s. Abschnitt 3.1.4). Diese Vermutung wird unterstützt von dem Fund, dass rekombinantes Verotoxin (VT1B), welches spezifisch an Glycolipid-Globotriaosyl-Ceramide bindet, über Clathrin-assoziierte Transportwege in Endosomen gelangen kann, über die es zum TGN transportiert wird (Schapiro *et al.*, 1998).

Die Identifizierung eines *Chlamydia*-ähnlichen Ceramidtransportes lässt auf Ähnlichkeiten im Lipid-Nährstofferwerb der *Chlamydiales* schließen. Ein erhöhtes Sphingomyelinaufkommen innerhalb der Bakterien konnte zwar über LC/MS gemessen werden, müsste jedoch über Immunofluoreszenzexperimente bzw. über LC/MS-Analysen von C₆-NBD-Ceramid-behandelten Bakterien eindeutig belegt werden. Des Weiteren fehlen Experimente zu den Ceramidtransportwegen über CERT, GBP1 oder ARF1, die bestätigen würden, dass *Simkania* dieselben intrazellulären Lipidtransportwege nutzt wie *Chlamydia*.

Zusammenfassend konnte sowohl auf Protein- als auch auf Lipidebene gezeigt werden, dass retrograde Transportwege die SCV-Ausbildung und *Simkania*-Infektivität positiv beeinflussen. Dabei spielen Clathrin-, endosomale und/oder Golgi-Vesikel eine Rolle. Die Bestätigung, dass der Inhibitor Retro2 auch bei *Ctr* die bakterielle Infektivität hemmt (Aeberhard *et al.*, 2015), lässt auf eine universelle Abhängigkeit innerhalb der *Chlamydiales* schließen und bestätigt unsere Beobachtung.

4.2.4 Bafilomycin A1 – ein wirksamer Inhibitor für Simkania-Infektionen

Der Fund von einer entgegengesetzten Verteilung von retro- und anterograden Transportprozessen im ER-SCV-Membran-Proteom spiegelte sich auch in den Inhibitorexperimenten wieder, bei denen Bafilomycin A1 (BafA1) und Brefeldin A (BFA) verwendet wurden. Eine Behandlung mit BFA (blockiert anterograd, ER und Golgi) förderte die Ausbildung der SCV, wofür eine SCV-Anreicherung bei Primär- und Sekundärinfektion sprach (s. Abschnitt 3.3.4). Damit verhält sich *Sn* anders als Bakterien wie bspw. *Legionella pneumophila (Lpn)*, bei dem die intrazelluläre Vermehrung und Replikation nach einer BFA-Behandlung inhibiert wird (Kagan and Roy, 2002).

Durch eine BFA-Behandlung verändert sich die Form der vom ER-rekrutierten sekretorischen Vesikel, jedoch nicht die Ausbildung von Vesikeln an den ERES (engl. ER-exit sites) selber (Robinson and Roy, 2006). Aufgrund der inhibierenden Wirkung von BFA auf die kleine GTPase Arf1 wird eine Ausbildung von COPI-Vesikeln blockiert, sodass ein Großteil an Proteinen und Membranen nicht mehr über sekretorische Vesikel recycelt wird. Gleichzeitig wird eine Reifung der sekretorischen Vesikel unterbunden, welche dadurch nicht mehr mit dem Golgi-Apparat verschmelzen können (Ward et al., 2001). Nicht verstanden ist, warum ein durch eine BFA-Behandlung stark verminderter Ceramidtransport (s. Abschnitt 3.3.3) für die Sn-Infektion nicht von Nachteil war. Da die SCV-Ausbildung und die bakterielle Infektivität nicht beeinträchtigt waren, scheint der reduzierte C₆-NBD-Ceramidtransport zur SCV mit keinem Nährstoffmangel zusammenzuhängen. Damit ist ein verminderter Abtransport von Metaboliten vom ER durch eine BFA-Behandlung förderlich für die Sn-Infektion. Dabei könnte von Vorteil sein, dass sekretorische Vesikel (Golgi-ER) anstelle mit dem Golgi direkt mit ER-Membranen verschmelzen (Ward et al., 2001), wobei das ERGIC (engl. ER-Golgi intermediate compartment) als Sortierungsorganell und Knotenpunkt für anterograde und retrograde Prozesse dienen könnte. Hinzu kommt, dass Ceramide am ER synthetisiert werden, weshalb die Bakterien aufgrund der ER-SCV-Kontaktstellen nicht auf einen vesikulären Ceramidtransport zur SCV angewiesen wären.

Die Ergebnisse der BFA-Experimente sind nur ein erster Hinweis dafür, dass der anterograde Transport die *Sn*-Infektion negativ beeinflussen kann. Interessanterweise stimmte die Verbesserung der *Sn*-Infektion nach einer BFA-Behandlung mit den Beobachtungen aus der LC-MS²-Analyse (s. Abschnitt 3.1.4) und den RNAi-Experimenten (s. Abschnitt 3.1.5) überein.

Durch eine Behandlung mit BafA1 kommt es zu einer Blockierung der vakuolären H⁺-ATPase, wodurch eine Reifung von Endosomen zu späten Endosomen, eine Verschmelzung mit Lysosomen und dadurch endolysosomale Funktionen inhibiert sind (Pillay *et al.*, 2002, Vanweert *et al.*, 1995, Ouellette *et al.*, 2011). Für *Chlamydia trachomatis* (*Ctr*) und *C. pneumoniae* (*Cpn*) konnte gezeigt werden, dass durch unterschiedliche Behandlungen mit BafA1 die Ausbildung von Inklusionen und die bakterielle Infektivität stark beeinträchtigt sind (Ouellette *et al.*, 2011). Die Ergebnisse von den BafA1-Experimenten zeigten ähnliche Resultate wie die von Ouelette *et al.* (2011) beschriebenen für *Ctr* und *Cpn* (s. Abschnitt 3.3.4). Dabei waren die Ausbildung der SCV, sowie die *Sn*-Infektivität in Primär- und Sekundär-infektion stark beeinträchtigt. Vieles spricht dafür, dass BafA1 (blockiert retrograd, späte Endosomen und Lysosomen) zelluläre Prozesse inhibiert und weniger/nicht die Bakterien, da die *Sn*-Adhäsionsfähigkeit nicht betroffen war.

Lysosomen sorgen in der Zelle für eine Degradierung von endozytiertem Material in kleinere Bestandteile oder sogar in Einzelbestandteile (Kornfeld and Mellman, 1989), die den Zellorganellen u.a. für Syntheseprozesse dann zur Verfügung stehen. So könnte in frühen

Phasen der *Sn*-Infektion in BafA1-behandelten Zellen neben einem Mangel an Nährstoffen auch ein Mangel an Membranmaterial vorherrschen. Da die Ausbildung einer intakten SCV in BafA1-vorbehandelten Zellen stark beeinträchtigt ist, muss es zu einem Mangel an für die *Sn*-Infektion essentiellen zellulären Metabolite kommen. Längere Vorinkubationen mit BafA1 (24 Stunden) minimierten den inhibierenden Effekt auf die *Sn*-Infektion verglichen zu kurzen (zwei Stunden), was auf eine zeitabhängige Wirksamkeit bzw. eine zelluläre Anpassung rückschließen lässt. Trotzdem konnte nur nach einer einstündigen Zentrifugation eine intakte SCV ausgebildet werden. Ohne die Zentrifugation kam es zu einem massiven Zerfall der PV, deren Morphologie weder Ähnlichkeiten zur *Simkania*-Vakuole noch zur chlamydialen Inklusion aufwies, was auch über die TEM-Aufnahmen (s. Abschnitt 3.3.5) bestätigt wurde. Durch die mechanische Einwirkung der Zentrifugation muss es zu einer Veränderung der Invasion und der invasionsassoziierten Prozesse, die für die SCV-Ausbildung essentiell waren, gekommen sein.

Interessanterweise scheinen aber auch nachträglich behandelte Zellen von den Auswirkungen einer BafA1-Behandlung betroffen gewesen zu sein, wofür die stark verminderte *Sn*-Infektivität der Sekundärinfektion spricht (s. Abschnitt 3.3.4). Eine mögliche Unterversorgung mit Nährstoffen und/oder Membranmaterial ist dabei denkbar, da die *Sn*-Infektivität betroffen war. Das Zerbrechen der *Simkania*-Vakuole während der Primärinfektion, unter der Verwendung von Zentrifugation bei der Infektion, lässt wie bei der BafA1-Vorinkubation auf starke Veränderungen während der Invasion schließen. Durch die Zentrifugation scheint *Sn* essentielle Vorläufermoleküle oder Membranmaterial nicht beziehen zu können, wodurch sich die Natur der SCV-Membran verändert, was sich in Form eines Vakuolenzusammenbruchs ausschlug. Damit handelt es sich bei BafA1 um einen gegen *Sn*-Infektionen wirksamen Wirkstoff, für den neben einer Minimierung der bakteriellen Infektivität gleichzeitig auch ein Zusammenbruch des SCV-Kompartimentes bestätigt wurde. Womit der Zerfall der SCV genau zusammenhängt, ist jedoch noch unklar.

Ouellette und Kollegen diskutieren, dass sich einzelne Chlamydienspezies in ihren Entwicklungszyklen bezüglich ihrer Abhängigkeit von lysosomalen Ansäuerungsprozessen unterscheiden (Ouellette *et al.*, 2011). So wurde in Experimenten mit BafA1-behandelten Zellen beobachtet, dass für *Ctr*-Infektionen das Vorhandensein einer lysosomalen Ansäuerung nur in frühen Phasen der Entwicklung essentiell ist, wohingegen *Cpn* auf eine stetige Ansäuerung während des gesamten Zyklus angewiesen ist. Die Defizite bei der chlamydialen Inklusionsausbildung und der bakteriellen Infektivität werden dabei auf einen verminderten Erwerb von Nährstoffen zurückgeführt, der aus der BafA1-Behandlung resultierte. Eine essentielle Nährstoffgruppe bilden die Aminosäuren (AS). AS sind Metabolite, die von *Chlamydiae* zu großen Teilen von der Wirtszelle bezogen werden müssen (Hatch, 1988). Dabei zeigen *Chlamydiae* verschiedene Variationen bzgl. des Bedarfs einzelner AS innerhalb

der jeweiligen Spezies. Das Genom von Ctr besitzt bspw. nur einzelne Gene für AS-Biosynthesewege, kodiert aber für beträchtlich viele AS-Transporter was für einen direkten Bezug aus der Wirtszelle spricht (McClarty, 1999). Des Weiteren sind anlehnend an Genomanalysen vorhandene AS-Biosynthesewege oftmals frühzeitig abgebrochen, wobei die Zwischenprodukte wahrscheinlich als Vorläufermoleküle für andere Biosynthesewege verwendet werden. So enden wahrscheinlich frühe Phenylalanin- oder Tyrosinsynthesewege bspw. bei Chorismat, welches für die Synthese von Folaten und Ubiquinon dient. Die Degradation von Proteinen findet innerhalb von lysosomalen Vesikeln statt, wobei infolge einer Ansäuerung Oligopeptide und AS freigesetzt werden. Der Bezug von freien AS ist bei Chlamydiae deswegen an eine vollständige Funktion der Lysosomen gekoppelt, wobei Lysosomen in unmittelbarer Nähe der Inklusion lokalisiert sind (Ouellette et al., 2011). Wie ein Transport von den Lysosomen über die Inklusionsmembran hinweg zu den Bakterien stattfindet, ist dabei noch nicht exakt verstanden. Ouelette und Kollegen (2011) diskutieren, dass Cpn aufgrund von 14 Oligopeptid-Dipeptidtransporter-kodierenden Genen (Read et al., 2000) hauptsächlich Oligopeptide aus dem Wirtszytosol bezieht. Di- und Tripeptide, die nicht größer als 520 kDa sind, könnten so ins Lumen der Inklusion diffundieren, von wo aus die Moleküle über die Transporter von den Bakterien importiert werden (Heinzen and Hackstadt, 1997). Freie AS scheinen trotz des Besitzes von AS-Transportern schlechter von Cpn bezogen werden zu können, da bei einer Verwendung von Medien, die ausschließlich freie AS enthielten, ein verschlechtertes Wachstum beobachtet wurde (Ouellette et al., 2011). Für Ctr wurde beobachtet, dass freie AS insbesondere zu späteren Zeitpunkten des Entwicklungszyklus aus dem Wirtszytosol aufgenommen werden. Während der Inklusionsausbildung und -reifung ist Ctr jedoch auf den Bezug von Oligopeptiden über die Lysosomen angewiesen. Der Übergang von dem Bezug von Oligopeptiden zu freien AS soll dabei auch mit einer sinkenden Abhängigkeit von Lysosomen zusammenhängen, da die Bakterien gegenüber einer Behandlung mit BafA1 resistenter sind. Es ist noch nicht verstanden, ob die spezifischen AS-Transporter erst später von Ctr exprimiert werden oder erst später die intrazelluläre Vermehrung begünstigen.

Durch die Verwendung des Antibiotikums Cycloheximid (CHX) wird die zelluläre Translation inhibiert und damit auch die Verwendung freier AS von der Zelle. Dadurch steht nach einer CHX-Behandlung dem Pathogen ein größeres AS- und Oligopeptid-Reservoir zur Verfügung. Bei *Ctr-* und *Cpn-*Infektionen wurde in BafA1- und CHX-behandelten Zellen eine Verbesserung der Ausbildung von Inklusionen beobachtet, was auch in den Versuchen mit *Sn-*infizierten Zellen bestätigt werden konnte. Interessanterweise konnte in der Doktorarbeit von Joscha Gussmann gezeigt werden, dass ein Überschuss an AS wie Leucin, Isoleucin, Methionin und Phenylalanin einen negativen Effekt auf das chlamydiale Wachstum ausübte (*Long-term effects of amino acids on chlamydia infections*). Dabei wurde eine persistente Bakterien-

population induziert. Es wird davon ausgegangen, dass vor allem verzweigtkettige AS wie Leucin und Isoleucin durch Kompetition an einen chlamydialen AS-Transporter zu einem Valinmangel führen (Braun *et al.*, 2008).

Eine zusätzliche Cycloheximid- (CHX-) zur BafA1-Behandlung war teilweise förderlich für die Sn-Infektion oder zeigte keinen sichtbaren Effekt. Dies hängt höchstwahrscheinlich mit der Verteilung freier AS zusammen. Die Ergebnisse waren dabei sowohl mit den Resultaten von Scot P. Ouelette (2011) für Cpn (BafA1-Vorinkubationen) als auch für Ctr (spätere BafA1-Inkubationen) vergleichbar. Aus den Daten von BafA1-behandelten Zellen resultiert, dass Sn wahrscheinlich einen ähnlichen Bedarf an spezifischen Oligopeptiden und/oder AS aufweist wie Cpn, da Vorinkubationen mit BafA1 beide Pathogene extrem stark in der Ausbildung der parasitären Vakuole inhibierte. Anscheinend ist Sn jedoch in der Lage, 24 Stunden nach der Infektion einer BafA1-Behandlung entgegenzuwirken. Eine Möglichkeit dafür ist, dass der Bezug von bestimmten Oligopeptiden/AS von der Zelle nur in den frühen Entwicklungsstadien essentiell ist und Sn 24 Stunden p.i. einen AS-Mangel kompensieren kann. Eine andere Möglichkeit wäre der Besitz von spezifischen AS-Transportern, ähnlich wie bei Ctr. Da es trotz unveränderter Primärinfektion jedoch zu einer reduzierten Sn-Infektivität in der Sekundärinfektion gekommen ist, muss es letztendlich zu einer Unterversorgung mit AS oder anderen Nährstoffen, bzw. muss es zu einem Überschuss an AS während der BafA1- (+/- CHX) Behandlung gekommen sein. Ähnlich wie bei einem AS-Mangel wird bei einem Überschuss an bestimmten AS, wie Leucin, Isoleucin, Methionin oder Phenylalanin, die Ctr-Infektion und Inklusionsausbildung stark inhibiert (Braun et al., 2008), was auch bei Sn der Fall sein könnte. Aufgrund der unterschiedlichen Phänotypen zwischen Sn und Ctr wird sich der Besitz von ASoder Oligopeptid-Transportern unterscheiden. Weitere Untersuchungen sind nötig, um aufzuzeigen, welche AS und Transporter (Oligopeptid/AS) für den Sn-Phänotyp verantwortlich sind.

Ungeklärt ist jedoch noch die Frage, ob BafA1 eine Wirkung auf *Sn* selber hat. Die Existenz einer vakuolären (v-Typ) H⁺-ATPase (ATPE) in *Sn*, welche sowohl im *Sn*- als auch SCV-Proteom wiedergefunden wurde, lässt auf eine zusätzliche Beeinflussung der Bakterien durch den Inhibitor selber schließen. Da ATPE auch in *Ctr* und *Cpn* vorliegt, könnten bereits bei Scot P. Ouelette und Kollegen (2011) inhibierende Effekte auf die Bakterien beobachtet worden sein. Studien zu dem lysosomalen Wirtstranskriptionsfaktor TFEB deuten auf eine zusätzliche Abhängigkeit der lysosomalen Funktionen während der *Chlamydiae*-Infektionen hin.

In Lebendzellmikroskopieexperimenten wurde der Einfluss einer BafA1-Behandlung auf den Ceramidtransport in den Golgi und/oder der SCV untersucht. Ein Vergleich der BafA1-Behandlung mit dem retrograden C₆-NBD-Ceramidtransport (s. Abschnitt 3.3.6) zeigte ähnliche Kinetiken zu Retro1- oder Retro2-behandelten Zellen auf (s. Abb. 4.2.3). Dabei war der Lipidtransport von BafA1-behandelten *Sn*-infizierten Zellen noch weiter verstärkt. Ob die

Retro-Inhibitoren auch mit Faktoren von späten Endosomen oder Lysosomen interagieren, ist noch unklar. Zumindest spricht eine durch BafA1-induzierte Fragmentierung des Golgis für Veränderungen der Golgi-Membran. Dabei muss es unter Verwendung von BafA1 auch zu einer Inhibition des anterograden Transportes auf Höhe von TGN-zu-Endosomen gekommen sein, der demnach mit der Zusammensetzung des Golgis zu korrelieren scheint. Da unklar ist, mit welchen Wirtszellfaktoren BafA1 interagiert, sind die genauen Mechanismen noch nicht verstanden.

Abb. 4.2.3: Schematische Darstellung des intrazellulären Simkania negevensis C₆-NBD-Ceramidtransportes nach Behandlung mit Bafilomycin A1. Bekannte und hypothetische intrazelluläre Transportwege des C₆-NBD-Ceramidtransportes von der Plasmamembran bis zum TGN und zur simkanialen Inklusion sind dargestellt. BafA1 scheint ähnlich zu Retro1 und -2 den Austausch von C₆-NBD vom Golgi zu Endosomen zu blockieren. Gleichzeitig werden lysosomale und späte Endosomen in ihren Funktionen inhibiert. Damit bliebe ein direkter Transport vom Golgi zur SCV und/oder von frühen oder Recycling-Endosomen zur SCV bestehen.

Aufgrund von synergistischen Effekten während der gleichzeitigen Behandlung von BafA1 und Retro1 oder Retro2 wurde deutlich, dass die Inhibitoren ähnliche Veränderungen in den behandelten Zellen hervorrufen müssen. Unterschiede zwischen Retro2- und Retro1behandelten Zellen wurden auch bei der gleichzeitiger Behandlung von BafA1 und Retro1 oder Retro2 beobachtet, was verdeutlicht, dass beide Retro-Inhibitoren mit (zum Teil) unterschiedlichen Wirtszellfaktoren wechselwirken müssen. Da BafA1- und Retro1-behandelten Zellen infizierte Zellen viele Ähnlichkeiten zu denen von ausschließlich mit BafA1-behandelten Zellen aufwiesen, muss Retro1 mit einigen ähnlichen Wirtszellfaktoren interagieren wie BafA1. Ob Retro1 demnach auch mit dem BafA1-assoziierten Signalweg wechselwirkt, ist noch nicht geklärt.

Ob Comp20 bereits mit Faktoren von frühen Endosomen oder mit Faktoren von späten Endosomen interagiert, ist noch nicht gewiss. Weiterführende Experimente mit Comp20 und endosomalen Inhibitoren wie BafA1 könnten dabei helfen, weitere Gemeinsamkeiten bei der Wirkungsweise auf das endosomale System zu identifizieren. Da Comp20 jedoch keine Veränderungen im C₆-NBD-Ceramidtransport aufzeigte, scheint die Wirkung von Comp20 sich per se von BafA1 zu unterscheiden. Man kann deswegen davon ausgehen, dass Comp20 nicht die vakuoläre H⁺-ATPase blockiert, sondern an anderen endosomalen Wirtszellfaktoren ansetzt. Ein Vergleich der TEM-Aufnahmen von Comp20-behandelten und von BafA1-behandelten Zellen (s. Abschnitte 3.3.2 und 3.3.5) bestätigte eine unterschiedliche Wirkungsweise der Inhibitoren.

Es zeigte sich, dass bereits frühe Prozesse im retrograden Transport (endosomaler und Endosomen-zu-Golgi) essentiell für die SCV-Ausbildung, *Sn*-Entwicklung als auch eine Aufnahme von Ceramid bzw. Sphingomyelin (SM) sind. Da die involvierten Wirtszellfaktoren der Retro-Inhibitoren noch nicht bekannt sind, ist auch der Verlauf der Transportwege während einer *Sn*-Infektion ungewiss.

Für *Chlamydiae* ist bekannt, dass sie über sekretierte Effektoren wie IncA, IncD, IncG oder CT229 mit dem ER-Golgi-Netzwerk über Wirtszellfaktoren interagieren (Escoll *et al.*, 2015). Dies garantiert ihnen einen Bezug von Nährstoffen und Vorläufermolekülen wie dem beschriebenen Ceramidtransport. Des Weiteren beziehen sie Nährstoffe über Recycling-Endosomen und unterbinden Assoziationen mit frühen sowie späten Endosomen ähnlich zu *Legionella*. Die Ergebnisse der Proteom-Analysen und BafA1-Experimente zeigten (s. Abschnitte 3.1.4, 3.1.5 und 3.3.4-6), dass bei der *Sn*-Infektion Clathrin-/COPI-abhängige oder -unabhängige Wege sowie späte Endosomen und Lysosomen involviert sind. Dies schließt nicht aus, dass auch *Sn* eine Assoziation mit frühen und/oder späten Endosomen unterbindet. Jedoch ist anlehnend an die BafA1-Experimente die Funktionalität von späten Endosomen und Lysosomen essentiell für die SCV-Ausbildung, die SCV-Morphologie und die *Sn*-Infektivität. Weitere Studien sind notwendig, um die molekularen Prozesse und die eigentliche Rolle von retro- und anterograden Transportwegen während der *Sn*-Infektion und *Sn*-Entwicklung zu verstehen.

4.2.5 Das *Simkania*-Traffickome und der Einfluss von weiteren zellulären Transportproteinen auf die *Simkania*-Infektion

Unter der Verwendung von Hochdurchsatz siRNA-basierenden Screenings wurden bereits für Organismen wie *Chlamydia*, *Klebsiella* oder Influenza-Viren infektionsassoziierte Faktoren veröffentlicht. Dabei zeigte sich, dass z.B. *Chlamydia trachomatis* (*Ctr*) und *Klebsiella pneumoniae* über Rezeptor-abhängige Signalwege die Infektion von Wirtszellen einleiten und einer zellulären Entzündungsantwort entgegenwirken (Karlas *et al.*, 2010, Frank *et al.*, 2013,

Subbarayal *et al.*, 2015). Des Weiteren konnte über RNAi eine von Raf- und Ras-unabhängige Aktivierung des MEK/ERK-Signalweges bei *Ctr*-Infektionen bestätigt werden (Gurumurthy *et al.*, 2010). Für Influenza-Viren wurden mehrere humane Faktoren identifiziert, deren knockdown eine intrazelluläre Replikation beeinträchtigte, darunter auch das COPI-Protein COPG (Karlas *et al.*, 2010).

In dieser Arbeit wurde eine erste Analyse des SCV-Traffickomes von 497 transportassoziierten Faktoren durchgeführt, um zusammenhängende Transportkomponenten herauszufiltern, die für die Ausbildung und Entwicklung der SCV eine essentielle Rolle spielen (s. Abschnitt 3.4). Leider konnte auch hier keine siRNA die *Sn*-Infektion komplett inhibieren. Selbst ein *Chlamydia*-spezifischer Inhibitor⁹ führte nicht zu einer vollständigen Inhibierung der *Sn*-Infektion trotz starker Beeinträchtigung der SCV-Ausbildung (z-score < - 6,0). Des Weiteren konnten kaum Faktoren identifiziert werden, die intrazellulär miteinander interagieren. Damit war es schwierig, den Einfluss eines oder mehrerer zentraler Transportwege für die SCV-Ausbildung aufzuzeigen. Letztendlich konnten 29 Faktoren herausgefiltert werden, deren knock-down eine Reduktion der SCV-Größe zur Folge hatte. Für 23 Faktoren sind unterschiedliche zelluläre Lokalisationen und Funktionen beschrieben (UniProt) (s. Abb. 4.2.4), welche bei den fehlenden 6 Proteinen noch nicht bekannt sind.

Interessanterweise hatte ein knock-down von AP1G1 (AP-1 Komplex) eine inhibierende Wirkung auf die SCV-Ausbildung. AP1G1 gehört zu den Clathrin-assoziierten Adapter-Proteinkomplexen (UniProt). Die Untereinheit AP1G1 ist mitverantwortlich für das Sortieren von Proteinen an das trans-Golgi-Netzwerk (TGN) und/oder an Endosomen (Doray and Kornfeld, 2001). Durch die Präsentation von AP1G1 an Clathrin-assoziierten Vesikeln werden diese von der Plasmamembran oder dem Golgi zu Lysosomen transportiert (Sachse et al., 2002). Hinzu kommt, dass AP1- und AP2-Komplexe miteinander über eine Clathrinspezifische Bindesequenz interagieren können (Shih et al., 1995). Die Protein-Untereinheiten AP2A1 und AP2B1 des AP-2 Komplex wurden bereits in der Proteomanalyse vorgestellt (s. Abschnitt 3.1.4). Die RNAi-Ergebnisse zeigen, dass beide Protein-Untereinheiten AP1G1 (Traffickome) und AP2B1 (Proteom) eine wichtige Rolle bei der SCV-Ausbildung spielen (s. Abschnitte 3.1.4, 3.1.5 und 3.4). Der knock-down von AP2A1 (Traffickome), hatte jedoch keinen größeren Effekt auf die SCV z-scores (Daten nicht gezeigt). Da der AP2B1 knock-down größtenteils die Sn-Infektivität in der Sekundärinfektion beeinflusst hat (s. Abschnitte 3.1.5), ist es denkbar, dass Ähnliches auch bei AP2A1 hätte beobachtet werden können, wenn eine weitere Sekundärinfektion durchgeführt worden wäre. Ein weiteres Clathrin-assoziiertes Protein, AP3D1 (AP3-Komplex), wurde im Traffickome als infektionsfördernder Faktor

⁹ Für Chlamydien spezifischer Inhibitor, der die Ausbildung von Inklusionen hemmt, indem der Eisengehalt in der Zelle gesenkt wird (s. Abschnitt 2.2.2.10.1).

identifiziert (s. Abschnitt 3.4). Die AP3D1 siRNAs hatten alle einen zytotoxischen Effekt, weshalb für das Protein keine Aussage bzgl. der *Sn*-Infektion gemacht werden kann. Die ermittelte Zunahme der SCV-Größe hängt mit großer Wahrscheinlichkeit mit einer erhöhten Bakterienzahl/Zellkernzahl zusammen.

Zusammenfassend deuten die vielfältigen Funde von Clathrin-assoziierten Faktoren stark darauf hin, dass *Sn* mit Clathrin-abgeleiteten Vesikeln interagiert. Weitere Untersuchungen sind nötig, um festzustellen, ob Clathrin-Vesikel während der *Sn*-Invasion, der SCV-Ausbildung sowie Reifung oder zu späteren Zeitpunkten als Quelle von Membranen, Nährstoffen und/oder Vorläufermolekülen dienen.

Abb. 4.2.4: Schematische Darstellung des Simkania-Traffickomes. Abgebildet sind alle wichtigen intrazellulären, z.T. auch vesikulären, Transportwege von humanen Faktoren, die einen Einfluss auf die SCV-Größe in der Primärinfektion genommen haben. Signifikant inhibierende Faktoren (blau) konzentrierten sich auf Zellkern, Mitochondrien und Peroxisomen, wohingegen wahrscheinlich inhibierende Faktoren (pink) größtenteils an intrazelluläre und/oder intraorganelle, vesikuläre Transportwege gekoppelt waren. Die ermittelten z-score Werte sind in Tab. 3.4.1 und Tab. 3.4.2 (Anhang) aufgeführt.

Ein weiterer interessanter Faktor ist die NAD⁺-abhängige Histon-Deacetylase SIRT1. Das Protein reguliert viele zentrale Mechanismen, worunter metabolische (Lipidmetabolismus, Cholesteroltransport, Glukoneogenese) als auch überlebenswichtige Stressantwort-Prozesse (p53 Deacetylierung, Zellzyklus, DNA-Reparatur) der Zelle zählen (Brooks and Gu, 2009). Über eine Regulation von verschiedenen Transkriptionsfaktoren im Zellkern kann SIRT1 die

Lipidsynthese/Lipolyse oder die Oxidierung von Fettsäuren beeinflussen (Houtkooper *et al.*, 2012). Abhängig von dem vorherrschenden Energiezustand der Zelle kann SIRT1 so die Verfügbarkeit von freien Fettsäuren oder eine Einspeisung von in Glyceraldehyd-3-phosphat modifiziertes Glycerol in die Glykolyse und/oder Glukoneogenese begünstigen bzw. inhibieren. Ein knock-down von SIRT1 in Mausmodellen resultiert extrazellulär in einer Abnahme von Serum-Cholesterolen und einer Veränderung des Cholesteroltransportes (Rodgers and Puigserver, 2007). Aufgrund der Regulation vom zellulären Lipid- und Glukosemetabolismus könnte SIRT1 wichtig für eine ausreichende Versorgung von Vorläufermolekülen für eine *Sn*-induzierte Synthese von βCG und PE 30:0 sein. Für SIRT1 wurde auch beschrieben, dass es von dem intrazellulären NAD⁺-Gehalt abhängig ist (Dan Dunn *et al.*, 2015). Eine Abnahme von NAD⁺ sorgt gleichzeitig für eine Inaktivierung von SIRT1. Da seine Deacetylasefunktion die Aktivität von NFκB inhibieren kann und darüber eine intrazelluläre Produktion von reaktiven Sauerstoffspezies (engl. *reactive oxygen species*, ROS) und Stickstoffoxiden (engl. *nitric oxides*, NO) unterbindet, dient SIRT1 auch als Sensor für Mitochondrienschäden und für modifizierte Stoffwechselwege.

Die anderen vorgestellten Faktoren (s. Abb. 4.2.4) sind auch potentielle Kandidaten für weiterführende Untersuchungen der SCV und *Sn*-Infektion. Bei Caveolin 1 (CAV1) stellt sich jedoch die Frage, warum im Traffickome größere Veränderungen in der SCV-Größe beobachtet wurden, da AGS Zellen sich vergleichbar zu HeLa229 Zellen infizieren ließen und eine vergleichbar infektiöse Sekundärinfektion zu beobachten war. Eine Möglichkeit wäre, dass *Sn* über verschiedene, höchstwahrscheinlich rezeptorvermittelte, Invasionswege in die Zelle gelangt. Dies würde eine Besiedelung in verschiedensten Zellen ermöglichen und eine schnelle Anpassung auf evolutionär bedingte Veränderungen und Mutationen garantieren.

4.3 Die Simkania-Vakuolenmembran

4.3.1 Proteomanalysenvergleiche zeigen Ähnlichkeiten der Simkania-Vakuole zur Legionella- und Chlamydia-Vakuole

Der Vergleich von den Vakuolen-Proteomen von Simkania, Chlamydia trachomatis, Legionella pneumophila, Salmonella enterica und Mycobacteria zeigte Ähnlichkeiten zu bekannten Pathogen-Vakuolen. Damit wird zum ersten Mal eine mögliche Komposition der SCV-Membran auf molekularer Ebene vorgestellt. SCV-assoziierte Proteine können für zukünftige Aufreinigungsversuche bspw. über antikörpermarkierte Kügelchen hilfreich sein. Darauf aufbauend ließen sich mithilfe von Biotin-markierten Proteinen die Interaktionspartner der SCV-Membran identifizieren (Roux *et al.*, 2012) oder aus dem SCV-Proteomdatensatz bestätigen. Des Weiteren müsste über Immunofluoreszenz-Färbungen deren Lokalisation an der SCV-Membran überprüft und über weitere Experimente deren Funktion untersucht werden.

Proteomanalysen von einzelnen parasitophoren Vakuolen (PV) oder parasitophoren Vakuolenmembranen (PVM) können mithilfe weiterführender Untersuchungen validiert werden, um bspw. infektionsassoziierte Faktoren herauszufiltern oder um die Effektivität der Aufreinigungsmethode zu bestätigen. Dabei konnten bereits bei einigen Pathogenen eine Abhängigkeit von bestimmten humanen Faktoren aufgezeigt werden. Über Proteomanalysen von chlamydialen Inklusionen (CCV) konnten Faktoren ermittelt werden, für die gezeigt wurde, dass C. trachomatis (Ctr) mit zellulären Rezeptoren und Retromer-Proteinkomplexen wechselwirkt (Subbarayal et al., 2015, Aeberhard et al., 2015, Mirrashidi et al., 2015). Retromere spielen dabei eine zentrale Rolle bei dem Recyceln von Transmembran Rezeptoren (Mannose-6-Phosphat) oder Frachtproteinen zwischen Endosomen und dem trans-Golgi-Netzwerk (TGN) (Pfeffer, 2001, Seaman, 2005). Bei der Salmonella-Vakuole (SMM) von S. enterica wurde ein Einwirken auf proliferationsrelevante Wirtsproteine nachgewiesen (Vorwerk et al., 2015). Ein Pathogen übergreifender bioinformatischer Abgleich von Vakuolen-Proteomen könnte ein interessanter Ansatz sein, um speziesübergreifende Homologien, evolutionäre Entwicklungen und Weiterentwicklungen, mögliche Spezialisierungen und vieles mehr zu ermitteln.

Im Rahmen dieser Arbeit wurde ein erster Vergleich der Proteomdatensätze von der *Legionella*- (LCV), *Salmonella*- (SMM), *Chlamydia*- (CCV), *Simkania*-Vakuole (SCV) und dem *Mycobacteria*-abgeleiteten Phagosom (TDM) vorgenommen (Herweg *et al.*, 2015a). Ohne Berücksichtigung der TDM wurde ein STRING-basierendes Proteinnetzwerk der humanen Proteine erstellt, welches Gemeinsamkeiten zwischen allen vier Pathogenen aufzeigt (s. Abb. 4.3.1). Darunter befinden sich 56 gemeinsame humane Faktoren, wovon die Hälfte membranassoziiert und/oder Bestandteile von größeren Proteinkomplexen sind. Etwa 40 % sind mit Mitochondrien, 20 % mit dem ER und 7 % mit dem Golgi assoziiert. Innerhalb des Gesamtnetzwerkes konnten fünf Unternetzwerke identifiziert werden, welche sich in Proteinfaltung/-degradation, Energiemetabolismus und endosomalen Vesikeltransport unterteilten. Interessanterweise wurde auch bei den anderen Pathogenen ein Teil der T-Komplex-Proteine¹⁰ (CCT3, CCT5 und CCT6A) wiedergefunden, die im SCV-Proteom nicht signifikant verteilt vorlagen (TCPG, TCPE und TCPZ) (s. Abschnitt 3.1.4). Interaktionen mit dem T-Komplex scheinen demnach allgemein essentiell für die PVM zu sein.

Die meisten Gemeinsamkeiten lagen zwischen dem LCV- und SCV-Proteom vor, wobei mehr ER-assoziierte humane Faktoren identifiziert wurden als bei den anderen Pathogenen. Darin stimmten die Proteome beider ER-Pathogene wie erwartet mit den bisherigen wissenschaftlichen Erkenntnissen überein. Da sowohl *L. pneumophila* (*Lpn*) als auch *Sn* bekannte

¹⁰ makromolekularen Chaperon Komplex (TCP1 oder CCT), der für die Proteinfaltung unter ATP-Verbrauch von u.a. Aktin oder Tubulin verantwortlich ist.

Parasiten von Amöben sind, besteht die Möglichkeit, dass sich beide Organismen nicht nur an den Wirt, sondern auch an das amöbiale ER adaptiert haben.

Abb. 4.3.1: STRING-basierendes Proteinnetzwerk der konservierten Faktoren von SCVs, CCVs, LCVs und SMMs. Innerhalb der PVM-Proteome von *S. negevensis* (SCV¹), *C. trachomatis* (CCV²), *L. pneumophila* (LCV³) und *S. enterica* (SMM⁴) konnten 56 gemeinsame humane Faktoren identifiziert werden. Das über STRING erstellte Proteinnetzwerk zeigt alle bisher bekannten Protein-Protein-Interaktionen. Die Unternetzwerke sind entsprechend ihrer biologischen Funktion farblich hinterlegt (s. Legende, *unten*). ER-, Golgi- und mitochondriale Proteine sind farbig markiert (s. Legende, *oben*). Proteinnamen (festgelegt über UniProt und STRING).

¹ (Herweg *et al.*, 2015a, Herweg *et al.*, 2015b); ² (Subbarayal *et al.*, 2015); ³ (Hoffmann *et al.*, 2014);

⁴ (Vorwerk *et al.*, 2015) Abbildung in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015a.

Dadurch wären beide von vornherein gut an intrazelluläre Replikationen und insbesondere auf Säugetiere als natürliche Wirte angepasst. Die ER-Assoziation könnte gleichzeitig ein Vorteil für eine Replikation in Makrophagen sein, der sie vor intrazellulären Stressmechanismen schützt und ausreichend mit Nährstoffen versorgt (Herweg and Rudel, 2015). Der Befund,

dass *Sn in vitro* eine Aktivierung von ER-Stress in verschiedenen Epithelzellen und Makrophagen inhibiert (Mehlitz *et al.*, 2014), deutet zusätzlich darauf hin, dass es evolutionär stark an ein breites Wirtsspektrum angepasst ist. Interessanterweise konnten in LCV-Proteomen (*Dictyostelium discoideum* und RAW 264.7) zahlreiche ER- und Rab-Proteine identifiziert werden, welche mit der LCV-Membran assoziiert sind (Urwyler *et al.*, 2009b, Hoffmann *et al.*, 2014). Mithilfe einer Manipulation der kleinen GTPasen ARF1 und SAR1 werden COPI- und II-Vesikel vom Golgi oder ER von den Bakterien rekrutiert, welche dem Aufbau der LCV dienen (Roy *et al.*, 2006). Darüber ist es möglich, die LCV-Membran über ER-Proteine wie Calnexin zu markieren (Hoffmann *et al.*, 2012). Nachdem beobachtet worden war, dass eine starke Interaktion zwischen SCV und ER besteht, wurden in Tabelle 4.3.1 ER-assoziierte Faktoren zusammengefasst, die sowohl im SCV- als auch LCV-Proteom identifiziert wurden.

Protein- kürzel	Proteinname	HeLa SCV	THP1 SCV	Mouse LCV	Dictyostelium LCV	Lokalisation	Funktion
KTN1	Kinektin	+	+	+		ER	Zytoskelett
ERAP1	ER-Aminopeptidase 1		+	+		ER	Immunantwort
TAP1	Antigen-Peptid- Transporter 1		+	+		ER	Immunantwort
ALOX5AP	Arachidonat 5- Lipoxygenase- aktivierendes Protein		+	+		ER, GA	Lipidmetabolismus
ASAH1	Acid-Ceramidase		+	+		ER, GA	Lipidmetabolismus
FDFT1	Squalene-Synthase		+		+	ER	Lipidmetabolismus
NCEH1	Neutrale Cholesterol- Ester-Hydrolase 1	+	+	+		ER	Lipidmetabolismus
OSBPL8	Oxysterol- Bindungsprotein- abgeleitetes Protein 8		+	+		ER, GA	Lipidmetabolismus
PGRC1	Membranassoziierte Progesteron-Rezeptor- Komponente 1	+		+		ER	Lipidmetabolismus
ZMPSTE24	CAAX-Prenyl-Protease-1- Homolog		+	+		ER, GA	Lipidmetabolismus
RAB1A	Ras-abgeleitetes Protein Rab-1A	+	+	+	+	ER, GA, LCV	Membrandynamiken
RAB1B	Ras-abgeleitetes Protein Rab-1B		+	+		ER,GA	Membrandynamiken
RAB2A	Ras-abgeleitetes Protein Rab-2A	+	+	+	+	ER, GA	Membrandynamiken
RAB6A	Ras-abgeleitetes Protein Rab-6A	+	+	+		GA, ERGIC	Membrandynamiken
RAB18	Ras-abgeleitetes Protein Rab-18	+	+	+	+	ER	Membrandynamiken
RTN4	Retikulon-4	+	+	+		PM, ER	Membrandynamiken
SAR1A	GTP-Bindungsprotein SAR1a	+			+	ER, ERGIC, LCV	Membrandynamiken
SC22B	Vesikel-Transportprotein SEC22b	+	+	+		ER, LCV	Membrandynamiken
VAPA	Vesikelassoziiertes membranprotein- assoziiertes Protein A		+	+		ER	Membrandynamiken

LMAN2	Vesikulär Integral- Membranprotein VIP36	+	+	+		ER	Membrandynamiken
CALX	Calnexin	+	+	+	+	ER, LCV	Divers
CALR	Calretikulin	+	+	+	+	ER, LCV	Divers
LMAN1	Protein ERGIC-53	+	+	+		ERGIC	Divers
PDIA1	Protein-Disulfid-Isomerase	+	+	+	+	ER	Divers
SC11A	Signalpeptidase-Komplex, katalytische Untereinheit SEC11A	+	+	+	+	ER	Divers
S61A1	Protein-Transportprotein Sec61, Untereinheit Alpha, Isoform 1	+		+	+	ER	Divers
BAX	Apoptoseregulator BAX		+	+		CP, MC, ER	Signaltransduktion
BRI3BP	BRI3-Bindeprotein			+		ER	Signaltransduktion
SACM1L	Phosphatidylinositid Phosphatase SAC1		+	+	+	ER	Signaltransduktion
ATP2A2	Sarkoplasmatische-/ER- Kalzium-ATPase 2		+	+		ER or PM	Transport

Tab. 4.3.1: Potentielle LCV- und SCV-assoziierte humane Proteine. Dargestellt ist ein Vergleich der PVM-Proteome von *L. pneumophila (Lpn)* und *S. negevensis (Sn)* von bekannten ER-assoziierten Proteinen. ER = Endoplasmatisches Retikulum, GA = Golgi-Apparat, ERGIC = ER-Golgi-Intermediär-kompartiment (engl. *ER Golgi intermediate compartment*), CP = Zytosol (engl. *cytoplasm*), MC = Mitochondrien, PM = Plasmamembran. Tabelle in modifizierter Form zuerst veröffentlicht in Herweg *et al.*, 2015a.

Darunter befinden sich möglicherweise Proteine, die für die ER-Interaktionen und damit für die Infektion beider Pathogene essentiell sind. Da ER-SCV-Membranen jedoch zu einem späteren Zeitpunkt der Infektion (drei Tage p.i.) isoliert wurden als die LCV (eine Stunde p.i.) und beide Organismen keine verwandten Organismen darstellen, ist hier nur ein vager Vergleich möglich. Erst 24 Stunden nach einer *Sn*-Infektion können bisher eindeutige Assoziationen mit ER-Membranen mikroskopisch beobachtet werden (Mehlitz *et al.*, 2014). Innerhalb von 48-72 Stunden wird die klassische SCV ausgebildet, welche von ER-Membranen weitestgehend umschlossen ist. Ob die Interkation der *Simkania*-Vakuole erst am ER selber oder bereits über Kontaktstellen von ER-Membranen mit der Plasmamembran (PM) kurz nach der Invasion erfolgt, ist noch nicht bekannt.

Ein Vergleich des SCV-Proteoms mit CCV-Proteomen von *Ctr* (Subbarayal *et al.*, 2015, Aeberhard *et al.*, 2015) ermöglichte es, ein paar Gemeinsamkeiten zwischen den beiden Pathogenen herauszufiltern. Für Chlamydien ist bekannt, dass sie auch mit dem ER assoziieren (Derre, 2015), sie jedoch nicht die klassischen SCV-ER-Kontaktstellen aufbauen. Diese Limitierung könnte ein Grund dafür sein, dass die *Ctr-* und *C. pneumoniae-* (*Cpn-*) Inklusion intrazellulär als runde Vakuole vorliegt, wohingegen die SCV sich entlang von ER-Membranen windet und so ein inhomogenes Netzwerk bildet, das trotzdem aus einer einzigen Vakuole besteht (Mehlitz *et al.*, 2014). Der fehlende Kontakt zum ER könnte auch eine Rolle

bei der Infektion von Makrophagen spielen, was die intrazelluläre Replikation von *Sn* begünstigt und die von *Ctr*, *Cpn* oder *C. psittaci* stark beeinträchtigt (Herweg and Rudel, 2015).

In Tabelle 4.3.2 sind humane Proteine aufgelistet, die laut der Literaturangaben mit der *Ctr*-Inklusion assoziiert sein sollen und in ER-SCV-Membranen wiederzufinden waren.

Protein- name	UniProt ID	Ctr ¹	Ctr ²	Lpn ³	Sen ⁴	Sn *	Mtb ⁵	Referenz
14-3-3 Beta	P31946	+	+			+/+		(Scidmore and Hackstadt, 2001)
ACSL3	O95573	+	+			+/+		(Soupene <i>et al.</i> , 2012)
Aktin	P60709	+		+		+/-		(Kumar and Valdivia, 2008)
AT2A2	P16615	+				+/+		(Majeed <i>et al.</i> , 1999)
CALR	P27797	+	+	+		+/+		(Majeed <i>et al.</i> , 1999)
K1C18	P05783		+			+/-		(Kumar and Valdivia, 2008)
MYPT1	O14974	+	+			+/-		(Lutter <i>et al</i> ., 2013)
PCAT1	Q8NF37	+	+			+/-		(Soupene <i>et al.</i> , 2012)
PDIA1	P07237	+	+	+	+	+/+	+	(Dumoux <i>et al.</i> , 2012)
RAB1A	P62820	+	+	+		+/+		(Rzomp <i>et al.</i> , 2003)
RAB14	P61106	+	+	+	+	+/+	+	(Capmany <i>et al</i> ., 2011)
RAB6A	P20340	+	+	+		+/+		(Rzomp <i>et al.</i> , 2003)
REEP5 (Dp1)	Q00765		+			+/+		(Dumoux <i>et al.</i> , 2012)
RTN4	Q9NQC3	+	+	+		+/+		(Dumoux <i>et al.</i> , 2012)
VAMP3	Q15836	+	+	+		+/+		(Delevoye <i>et al</i> ., 2008)
VAMP7	P51809	+		+		+/+		(Delevoye <i>et al.</i> , 2008)
VAMP8	Q9BV40			+		+/+		(Delevoye <i>et al.</i> , 2008)
VAPA	Q9P0L0		+	+	+	+/+		(Elwell <i>et al.</i> , 2011)
VIME	P08670	+				+/+		(Kumar and Valdivia, 2008)

Tab. 4.3.2: Potentielle humane PVM-assoziierte Proteine. Dargestellt ist ein Vergleich der PVM-Proteome von *C. trachomatis* (*Ctr*), *L. pneumophila* (*Lpn*), *S. enterica* (*Sen*), und *M. tuberculosis* (*Mtb*) mit dem von *S. negevensis* (*Sn*) von bekannten humanen Proteinen, die bei einer entwickelten *Ctr*-Inklusion (24 h p.i.) an der Inklusionsmembran assoziiert sind. Die zytosolischen Proteine 14-3-3 Beta und MYPT1 sind mit Signaltransduktionswegen assoziiert. Bei ACSL3 (ER/Mitochondrium) und PCAT1 (ER/Golgi/Lipidtröpfchen) handelt es sich um Proteine, die die Lipidsynthese, Lipolyse bzw. den Phospholipidmetabolismus regulieren. Bei Aktin, K1C18 und VIME handelt es sich um Strukturproteine des Zytoskeletts und bei PDIA1 der ER-Membran. Die Proteine AT2A2, CALR und REEP5 sind an ER-Membranen gebunden und übernehmen dort verschiedenste Funktionen. Bei RAB1A, RAB14, RAB6A, RTN4, VAMP3-8 und VAPA handelt es sich auch um membranassoziierte Proteine, die an verschiedenen Prozessen des Vesikel und/oder Membrantransportes, sowie der Fusion von (Vesikel) Membranen involviert sind. Die Proteine interagieren dabei mit dem ER und/oder Golgi und größtenteils mit dem endosomalen System.

¹ (Subbarayal *et al.*, 2015); ² (Aeberhard *et al.*, 2015); ³ (Hoffmann *et al.*, 2014); ⁴ (Vorwerk *et al.*, 2015);

⁵ (Herweg *et al.*, 2015a); * (Herweg *et al.*, 2015a, Herweg *et al.*, 2015b) (HeLa229/THP1)

Dafür wurden die zwei CCV-Datensätze mit den bereits vorgestellten LCV-, SMM-, SCV- und TDM-Proteomdaten verglichen. Insgesamt waren 15/19 bzw. 14/19 in der CCV, 11/19 in der LCV, 3/19 in der SMM und 2/19 in der TDMs wiederzufinden. Damit wird deutlich, dass die SCV unabhängig von ER-Assoziationen auch große Ähnlichkeiten zur chlamydialen Inklusion besitzt. Interaktionen von den in Tabelle 4.3.2 vorgestellten humanen Faktoren mit der SCV

müssen allerdings noch experimentell bestätigt werden. Interessanterweise fehlte bei den CCV-Proteomen ein Teil der hier aufgelisteten Faktoren. Insgesamt konnten nur ca. 80 % der 19 Proteine über LC-MS² identifiziert werden. Davon war VAMP8 in keinem von beiden CCV-Proteomen wiederzufinden. Offen ist, ob ein Teil der Proteine zu schwach konzentriert in den gemessenen Proben vorlag, sodass diese in der LC-MS² Analysen nicht ermittelt wurden. Möglicherweise assoziieren die Proteine aber auch zu einem anderen Zeitpunkt als 24 h p.i. mit der CCV.

Weitere Proteomvergleiche sind nötig, um aufzeigen, dass neben vielen Gemeinsamkeiten auch essentielle Unterschiede bei der Verteilung humaner PVM-Proteine zwischen den einzelnen Pathogenen vorliegen. Eine derartige, weiterführende Analyse ist notwendig, um Faktoren herauszufiltern, die für die einzigartige Morphologie der SCV verantwortlich sind.

Durch einen direkten Vergleich von den SCV-Proteomen aus HeLa229 und THP1 Zellen lassen sich möglicherweise Ähnlichkeiten und Unterschiede bzgl. der SCV-Ausbildung herausfiltern und könnten eine Erklärung dafür geben, warum *Simkania* in Makrophagen replizieren. Diesbezüglich werden in zukünftigen Experimenten die Rolle von βCG und Autophagie-Markerproteinen untersucht, da diese Faktoren verglichen zur chlamydialen Inklusion die unterschiedliche Replikationsfähigkeit in Primärzellen wiederspiegeln könnte.

4.3.2 Potentielle ER-SCV-Membranproteine sind Bestandteile des zellulären Metabolismus, des Typ3-Sekretionssystems oder Inc-Proteine

In Abschnitt 3.1.6 wurden eine Reihe von potentiell SCV-assoziierten Bakterienproteinen vorgestellt. Darunter befand sich eine recht große Anzahl an potentiell Typ3-Sekretionssystem-assoziierten Faktoren und potentiellen Inc-Proteinen, die wahrscheinlich mit humanen Proteinen wechselwirken. In Abb. 4.3.2 ist ein Modell dargestellt, dass mögliche SCV-assoziierte Proteine (humanen und bakteriellen Ursprungs) vereinigt, die in dem ER-SCV-Proteom (HeLa229) identifiziert wurden. Diese wurden mit bekannten Proteininteraktionen der *Ctr*-Inklusion (CCV) verglichen, um mögliche Gemeinsamkeiten aufzuzeigen.

So sind bspw. fünf humane Proteine (RAB14, RAB6A, RAB1, 14-3-3-beta und MYPT1) im SCV-Proteom vorhanden, für welche bereits eine Ko-Lokalisation an der CCV gezeigt werden konnte. 14-3-3-β ist ein Wirstzelladapterprotein, das mit dem zellulären Apoptose-Signalweg interagiert. Dabei wird das pro-apoptotische Protein BAD rekrutiert und phosphoryliert, um eine Bindung an Mitochondrien und damit eine Auslösung vom Zelltod zu vermeiden (Verbeke *et al.*, 2006). Für 14-3-3-β wurde eine Interaktion mit dem chlamydialen Inc-Protein IncG beschrieben (Scidmore and Hackstadt, 2001). Bei MYPT1 handelt es sich um eine Untereinheit der zellulären Myosin-Phosphatase. Für das Protein wurde eine Interaktion mit dem chlamydialen Inter

Abb. 4.3.2: Vergleichendes Modell der Simkania- und Chlamydia-Inklusion. Bekannte bakterielle und humane Proteine, die mit der *Chlamydia trachomatis-containing vacuole* (CCV) (*rechts*) assoziiert sind, wurden mit möglichen Faktoren der *Simkania negevensis-containing vacuole* (SCV) (LC-MS²-Datenanalyse) verglichen (*links*). Proteinzuordnungen und subzelluläre Lokalisationen sind in der Legende abgebildet. Biologische Funktionen der SCV Proteine sind hypothetisch ('') und wurden, wenn möglich, an bekannten Prozessen der CCV-assoziierten Faktoren angelehnt. Es sind ausschließlich humane Proteine auf der SCV Seite aufgeführt, für die eine Wechselwirkung mit der CCV gefunden wurde. Darunter befanden sich fünf humane Proteine (Rab14, 6A, 1, 14-3-3-beta und MYPT1). Potentiell Typ3- und Sec-sekretierte Proteine sind noch nicht weiter charakterisiert. Für A04060 konnte bereits eine Lokalisation in mitochondrialen Membranen beobachtet werden (Vera Kozjak-Pavlovic, Daten nicht gezeigt). Potentielle *Sn* Inc-Proteine oder Proteine mit unbekannter Funktion können möglicherweise ähnliche Funktionen wie bekannte *C. trachomatis* Faktoren ausüben und mit hier vorgestellten humanen Proteinen interagieren. RB = Retikularkörperchen; EB = Elementarkörperchen.

MYPT1 wird dabei peripher um die chlamydiale Inklusion rekrutiert. CT228 kann über darauffolgende Signalwege so auf das Beenden von *Ctr*-Entwicklungszyklen und die darauffolgende Lyse oder Extrusion mitwirken (Lutter *et al.*, 2013). Es ist demnach zu

erwarten, dass *Sn* funktionshomologe Proteine zu dem chlamydialen CT228 und IncG besitzt, welche sich möglicherweise bereits unter den potentiellen SCV-assoziierten, bakteriellen Proteinen befinden.

Für die humanen Proteine wie RAB14, RAB6A und RAB1 wird auch eine Interaktion mit bakteriellen Inklusions-assoziierten Proteinen erwartet, welche bisher noch nicht charakterisiert wurden. Da RAB14, RAB6A und RAB1 bei *C. trachomatis* (*Ctr*) mit biologischen Prozessen wie der Nährstoffaufnahme und Interaktionen mit sekretorischen Vesikeln assoziiert sind (Capmany *et al.*, 2011), könnten die Proteine ähnliche Funktionen in *Sn*-infizierten Zellen haben. Diesbezüglich fehlt für *Sn* allerdings noch die experimentelle Bestätigung.

Vom Sphingomyelin- (SM-) Biosyntheseapparat sind in CCV-Proteomen und in Ctr in vitro Experimenten Faktoren wie CERT, VAPA, VAPB, ARF1 und GBF1 identifiziert worden (s. Abb. 4.3.2) (Elwell et al., 2011, Agaisse and Derre, 2014, Aeberhard et al., 2015, Herweg et al., 2015a). Das Ceramidtransferprotein CERT interagiert mit dem chlamydialen IncD Protein, für welches noch kein simkaniales Inc-Homolog bekannt ist. Über CERT werden Ceramide von dem ER zum Golgi bzw. direkt zur CCV transportiert (s. Abschnitt 4.2.3), wo die Ceramide über eine Sphingomyelin-Synthase zu SM umgewandelt werden. Über GBF1 und/oder ARF1 kann SM von Ctr über einen Vesikel-abhängigen Transport vom Golgi bezogen werden (Elwell et al., 2011). VAPA und VAPB sind Membranproteine, welche auf der Plasmamembran (PM) oder intrazellulären Vesikeln lokalisiert sind und beim Vesikeltransport (u.a. COPII oder ER-zu-Golgi) oder Membranfusionen beteiligt sind. Interessanterweise interagiert es mit verschiedenen VAMP-Proteinen, die mit exozytotischen Vesikeln assoziiert sind (Weir et al., 1998). Bei dem SCV-Proteom wurde von den fünf humanen Proteinen allerdings nur VAPA ermittelt (Herweg et al., 2015a, Herweg et al., 2015b). Dies könnte bedeuten, dass Sn über andere Transportwege SM bezieht oder dass entsprechende Faktoren aufgrund der Masse an Proteinen während der LM-MS² Analysen überdeckt und damit nicht identifiziert wurden. Für Chlamydia wurde bereits ein Bezug von Lipiden über exozytotische Vesikel beschrieben (s. Abschnitt 1.2), weshalb ein ähnlicher Prozess auch für Sn denkbar wäre und unabhängig von CERT ablaufen könnte. Da bei Ctr mehrere Transportwege für den Bezug von SM involviert sind (Elwell et al., 2011), ist eine ähnliche Beobachtung in Sn-infizierten Zellen zu erwarten.

Die 302 bakteriellen Proteine der LC-MS²-Datenanalyse von ER-SCV-Membranen (HeLa229) wurden in ihrer Gesamtheit untersucht (ein- bis dreimal vorhanden in drei biologischen Replikaten). Aufgrund der vielen humanen Proteine könnten niedrigkonzentrierte Proteine, darunter mögliche sekretierte Faktoren, in der einen oder anderen Messung verloren gegangen sein. Durch den Vergleich mit 885 bakteriellen Proteinen des *Sn*-Proteoms wurde eine Identifizierung von potentiellen SCV-assoziierten Markerproteinen ermöglicht

(s. Abschnitt 3.1.6). Derartige SCV-Faktoren sind vielversprechende Kandidaten für verschiedenste Markierungen der SCV-Membran in zukünftigen Experimenten. So konnten bereits für *Legionella pneumophila* mögliche *Legionella*-Vakuolen (LCV)-assoziierte Faktoren identifiziert werden. Neben Faktoren des bakteriellen Metabolismus waren viele Proteine des Icm/Dot T4SS (Typ4 Sekretionssystem) sowohl in einem Amöben- als auch Makrophagen-Proteom wiederzufinden, darunter ca. 60 Typ4-translozierte Faktoren (Hoffmann *et al.*, 2014). SidC, welches für die Aufreinigung von LCV-Membranen verwendet wurde (Urwyler *et al.*, 2010), konnte bereits 2004 als Typ4-Sekretionsfaktor identifiziert werden (Luo and Isberg, 2004). Spätere Experimente zeigten, dass es an der wirtszytosolischen Seite der LCV-Membran mit Phosphatidylinositol-4-phosphat interagiert und u.a. für die Rekrutierung von ER Vesikeln verantwortlich ist (Ragaz *et al.*, 2008, Urwyler *et al.*, 2009a).

Interessanterweise konnten unter den 13 potentiell SCV-assoziierten Faktoren (s. Abb. 4.3.2) drei potentielle Inc-Proteine (SNE_A03210/ A03880/ A22650) (engl. *inclusion membrane proteins*) identifiziert werden. Ob diese drei Faktoren funktionshomolog zu bestimmten CCV-assoziierten Inc-Proteinen sind, muss experimentell noch untersucht werden.

Bei den bakteriellen Biosyntheseproteinen PDXH und AROH2 ist fraglich, ob sie an SCV-Membranen assoziieren oder bakterielle Kontaminationen darstellen, was experimentell noch nachgewiesen werden muss. PDXH ist eine Pyridoxin-5'-phosphat-Oxidase, welche wichtige Intermediate des Vitamin-B6-Metabolismus synthetisiert. Es liegt relativ konserviert in humanen und bakteriellen Genomen vor, wobei vorwiegend im Menschen Pyridoxamin-5'phosphat und bspw. bei *Escherichia coli* Pyridoxal-5'-phosphat generiert wird (Musayev *et al.*, 2003). Vitamin-B6-Derivate fungieren dabei als Ko-Faktoren für die Aminosäurebiosynthese. Eine Lokalisation an SCV-Membranen wäre nur denkbar, wenn Vitamin-B6-Derivate zusätzliche Funktionen in der *Simkania*-Vakuole ausüben würden.

AROH2 ist eine Chorismat-Mutase. Die Synthese von Prephenat aus Chorismat ist der erste bekannte Schritt der Phenylalanin- und/oder Tyrosinbiosynthese, den Bakterien, Pilze und Pflanzen gemeinsam haben (Basso *et al.*, 2005). Chorismat-Mutasen sind auch bei Parasiten wie dem Malariaerreger *Plasmodium falciparum* oder bei opportunistischen Erregern wie *Pneumocystis carinii*, *Mycobacterium tubercuolosis*, *Cryptosporidium parvum* und *Toxoplasma gondii* (*Tg*) mit dem Shikimisäureweg assoziiert. Diese Pathogene können insbesondere bei AIDS-Patienten schwere Erkrankungen hervorrufen (Roberts *et al.*, 2002). Die Abwesenheit dieses Enzyms beim Menschen macht es zu einem geeigneten Kandidaten zur Entwicklung von antimikrobiellen Substanzen und Medikamenten (Basso *et al.*, 2005). Aufgrund der potentiellen Sec-Sekretionssequenz ist es möglich, dass AROH2 an die SCV-Membran sekretiert wird.

Das MOMP-ähnliche Protein SNE_A08820 ist eines von 84 über Genomannotationen vorhergesagten *Sn* OMP-Proteinen, wovon 35 in MOMP-ähnliche Proteine untergeordnet

werden (,M'OMP = ,Haupt'bestandteile der äußeren Membran, engl. *(major) outer membrane proteins*) (Aistleitner *et al.*, 2015). Membranproteine der Hop-Familie von *Helicobacter pylori* (*Hp*) oder OMP-1/MSP2/P44 Familie von *Anaplasma marginale*, *A. phagocytophilum* bzw. *Ehrlichia chaffeensis* werden während einer Infektion von Vertebraten, Invertebraten oder bei Temperaturveränderungen unterschiedlich exprimiert (Ohashi *et al.*, 1998, Alm *et al.*, 2000, Unver *et al.*, 2001, Unver *et al.*, 2002, Brayton *et al.*, 2005, Noh *et al.*, 2006, Huang *et al.*, 2007, Lin *et al.*, 2011). Ihnen werden Porin-ähnliche Aktivitäten zugesprochen, die für die Nährstoffaufnahme von u.a. Zitratzyklus-Derivaten und damit die bakterielle Entwicklung essentiell sind. Ähnliche Funktionen wurden für *Simkania* oder *Waddlia* (M)OMP-ähnliche Proteine noch nicht identifiziert, sind aber anzunehmen (Aistleitner *et al.*, 2015).

Das SNE_A04060 Protein ist unter allen 13 potentiell SCV-Membran-assoziierten das interessanteste bakterielle Protein, da es neben einer potentiellen Typ3- auch eine Sec-Sekretionssequenz, sowie eine Signatur für einen mitochondrialen Import aufweist. Vorstudien von Vera Kozjak-Pavlovic zeigten eine Lokalisation von SNE_A04060 Konstrukten an mitochondrialen Membranen (Daten nicht gezeigt). Ob das Protein Typ3- oder Sec-sekretiert wird, ist noch nicht bekannt. Falls es über das Typ3-Sekretionssystem (T3SS) sekretiert wird, könnte das Protein direkt von der SCV zu Mitochondrien oder indirekt über einen Transport durch das Wirtszytosol zu den Mitochondrien gelangen. Eine weitere Möglichkeit wäre eine Translokation über membranassoziierte Proteine zwischen SCV und Mitochondrien, da eine starke Assoziation der SCV zu Mitochondrien besteht (s. Abschnitt 1.2.1).

Für die beiden weiteren potentiellen Sec-sekretierten Faktoren SNE_A01160 und SNE_A20720 ist noch nichts bekannt.

Bei dem ribosomalen Protein RPSS handelt es sich mit höchster Wahrscheinlichkeit um eine bakterielle Kontamination während der Präparation, da solche Proteine außerhalb des Bakteriums keine bekannte Funktion übernehmen.

Für die hypothetischen Proteine SNE_A14320/A23660 und B24340 wurden noch keine möglichen Eigenschaften oder Funktionen vorhergesagt.

Da bei allen potentiell SCV-assoziierten bakteriellen Proteinen extrem niedrige Spektrenzahlen ermittelt wurden (s. Tab. 3.1.3, Anhang), konnten nur vage Vermutungen aufgestellt werden, die experimentell belegt werden müssen. Es besteht jedoch die Möglichkeit, dass die Proteine nur in geringfügigen Konzentrationen in der SCV-Membran vorliegen, über diese Membran transportiert werden oder von anderen Proteinen während der Messung überdeckt wurden.

Eine Schwierigkeit zur Identifikation von *Sn* Typ3-sekretierten Effektoren liegt darin, dass keine ausreichend konservierte Konsensussequenzen bekannt sind. Des Weiteren liegen Gene der potentiellen Typ3-sekretierten Effektoren weit verstreut und nicht unmittelbar an demselben Gen-Lokus des Typ3-Sekretionsapparates vor. Ein weiterer Nachteil liegt darin, dass keine

Homologien zu chlamydialen Effektoren, darunter auch Inc-Proteine, existieren (Collingro et al., 2011). Bis vor kurzem existierten auch keine Protokolle zur genetischen Manipulation von Chlamydiales-Vertretern, was eine Untersuchung von Typ3-sekretierten Faktoren erschwerte (Fields et al., 2003). Trotzdem wurden Virulenzfaktoren wie Inc-Proteine und Tarp (engl. translocated actin-recruiting phosphoprotein) beschrieben (Carabeo et al., 2002, Clifton et al., 2004, Dehoux et al., 2011, Brinkworth et al., 2011), die den Invasionsprozess der Chlamydien induzieren. Tarp spielt dabei in der frühen Endozytose eine wichtige Rolle, indem es eine Reorganisation von F-Aktin zu Mikrotubulistrukturen stimuliert (Jewett et al., 2006, Jewett et al., 2010, Jiwani et al., 2012, Jiwani et al., 2013). Dies wird u.a. über eine Interaktion mit den kleinen GTPasen der Rho-Familie erreicht, bspw. der Modulation von RAC1 durch CT166 (Aspenstrom, 1999, Carabeo et al., 2004, Thalmann et al., 2010). Nach der Aufnahme in die Wirtszelle und der Ausbildung der Inklusion spielen Inc-Proteine eine zentrale Rolle. Sie dienen zur Aufrechterhaltung und Abschirmung der Inklusion, indem sie Fusionsprozesse, Interaktionen mit dem Mikrotubulinetzwerk oder Lipidtransportwege modifizieren (Derre et al., 2011, Dumoux et al., 2012, Suchland et al., 2000, Mital et al., 2010). Inc-Proteine, wie CT228, scheinen jedoch erst in späteren Entwicklungsphasen wichtig zu sein (Lutter et al., 2013). Mithilfe der EffectiveT3 Datenbank konnten zehn potentielle Typ3- und 46 potentielle Secsekretierte Proteine über einen Abgleich mit dem bakteriellen Genom herausgefiltert werden. Die Datenbank versucht, entsprechende transportierte Proteine über einen Abgleich mit Eukaryoten-ähnlichen Domänen und Signalpeptiden aus Aminosäuresequenzen zu ermitteln (Jehl et al., 2011). Für Sn wurden von EffectiveT3 126 potentielle Typ3- und 186 potentielle Sec-sekretierte Effektoren vorhergesagt. Im ER-SCV-Proteom (HeLa229) konnten demnach ca. 8 % der potentiellen Typ3- und ca. 25 % der potentiellen Sec-sekretierten Proteine wiedergefunden werden. Die hier dargestellten Vergleiche wurden mit den Versionen SignalP 3.0 (2004) und 4.0 (2011) (EffectiveT3) abgeglichen, können sich jedoch bei Neuerungen der Datenbank mit der Zeit verändern. Über eine Prognostizierung von Chlamydiales Inc-Proteinen (s. Abschnitt 3.1.6), konnten 23 von wahrscheinlich 41 Sn Inc-Faktoren (Collingro et al., 2011) (56 %) wiedergefunden werden. Da die 23 potentiellen Inc-Faktoren als hypothetische Proteine mit unbekannter Lokalisation und Funktion dokumentiert sind (UniProt), sind weitere Vermutungen rein spekulativ.

Typ3-Sekretionsapparatproteine konnten mithilfe von bekannten Protein- und Gennamen über UniProt, EffectiveT3, sowie einem Abgleich der Arbeit von Collingro *et al.* 2011, herausgefiltert werden (s. Abschnitt 3.1.6). Dabei konnte ein Großteil in den Proteomen von *Sn*-Präparationen (12 Faktoren) und ER-SCV-Membranen (HeLa229, 6 Faktoren) ermittelt werden. Da *Sn* laut Genomannotation auch ein vollständiges T4SS besitzen soll, wurden die bakteriellen Proteine des ER-SCV- und *Sn*-Proteoms über die Datenbank SecReT4 untersucht. Anstelle von potentiellen Typ4-Sekretionsapparatproteinen konnten nur wenige potentielle Typ4-sekretierte

Proteine im *Sn*-Proteom ermittelt werden. Daraus kann geschlossen werden, dass nur der Typ3-Sekretionsapparat drei Tage nach der *Sn*-Infektion exprimiert vorliegt. Ob Typ3-Effektoren (darunter auch Inc-Proteine) zu diesem Zeitpunkt sekretiert werden, ist noch nicht geklärt, aber aufgrund der einzelnen Funde wahrscheinlich. So gesehen würde das *Sn* T3SS nicht nur während der Invasion, sondern auch zu späteren Zeitpunkten der bakteriellen Entwicklungsstadien eine Rolle spielen. Ungeklärt bleibt, ob die im ER-SCV-Proteom ermittelten Faktoren aus einer bakteriellen Kontamination resultieren, da diese auch im *Sn*-Proteom zu finden waren oder möglicherweise mit der ER-SCV-Membran assoziieren. Im letzteren Fall würden SCV-Membran-assoziierte T3SS Elemente einen direkten Transport von Effektoren ins Wirtszytosol zur Modulation von intrazellulären Prozessen ermöglichen. Dies würde auch die Präsenz von vielen Typ3-Sekretionsapparat- und Typ3-Effektorproteinen im ER-SCV- und *Sn*-Proteom erklären.

Weitere Experimente sind notwendig, um herauszufinden, welche Funktion die hier vorgestellten bakteriellen Proteine bei der *Sn*-Infektion und der SCV-Ausbildung ausüben. Zum Nachweis einer SCV-Lokalisation und/oder -Assoziation mit zellulären Organellen würden sich zunächst Transfektionsstudien unter Verwendung von Fluoreszenzproteinen oder Antikörperfärbungen eignen. Die daraus gemachten Beobachtungen könnten anschließend über *Chlamydiales*-kreuzreaktive oder selbst hergestellte *Sn*-Antikörper bestätigt werden. Für Sekretionsanalysen müssten die Proteine von Bakterien exprimiert werden, die ein vollständig funktionales T3SS und/oder Sec-Sekretionssystem besitzen, um den Transport der Faktoren mikroskopisch nachzuverfolgen. Bei Typ3-Proteinen würden sich besonders transformierte *C. trachomatis* eignen, da diese die größte T3SS-Ähnlichkeit zu *Sn* aufweisen.

Bei einem Vergleich der bakteriellen Proteine der ER-SCV-Proteome von HeLa229 und THP1 Zellen konnten 31 Übereinstimmungen ermittelt werden (s. Abschnitt 3.1.6). Darunter fallen ein potentiell SCV-assoziiertes Protein (SNE_A22650), zwei Typ3-Sekretionsapparatmoleküle (SctL und SctN), zwei potentielle Typ3-Effektorproteine (SNE_A08990 und SNE_A22630), 13 potentielle Inc-Proteine (darunter SNE_A22650) und 13 Membranproteine.

Ob diese 31 Faktoren eine zentrale Rolle bei der *Sn*-Infektion sowohl in Epithel- als auch Primärzellen einnehmen, ist noch ungeklärt. Tendenziell konnten mehrere Übereinstimmungen mit potentiellen membranassoziierten Proteinen beobachtet werden, was auf eine erfolgreiche Aufreinigung von SCV-Membranen zurückschließen ließ.

Lukas Aeberhard hat in seiner Doktorarbeit (*Isolation and proteomic characterization of the mid-infection inclusion of Chlamydia trachomatis*) eine Proteomanalyse von *Ctr*-Inklusionen durchgeführt, in der ein Großteil der bakteriellen Proteine ermittelt wurde. Aeberhard hat die mit *Ctr* gefüllte Inklusion zum Zeitpunkt 24 h *Ctr* p.i. untersucht und konnte innerhalb seiner biologischen Replikate 602-708 Proteine wiederfinden (68-80 % der gesamten offenen Leserahmen). Darunter befanden sich 21-32 von 62 vorhergesagten *Ctr* Inc-Proteinen

(Dehoux et al., 2011) und 51-67 von 96 vorhergesagten Ctr Typ3-Substraten (Jehl et al., 2011). Interessanterweise konnten in dem Proteom der ER-SCV-Membranen (HeLa229) ähnlich viele potentielle Inc-Proteine (23 Stück), aber wesentlich weniger potentielle Typ3-Effektoren (neun Stück) wiedergefunden werden. Die Identifizierung von ca. 50 % Faktoren des Sn Typ3-Sekretionsapparates lässt darauf schließen, dass Simkanien drei Tage nach der Infektion ein funktionales T3SS exprimieren. Ob Teile des Typ3-Sekretionsapparates wirklich in die SCV-Membran eingebaut werden oder im SCV-Proteom bakterielle Verunreinigungen darstellen, ist noch nicht geklärt. Die Diskrepanz, dass im Vergleich zum CCV-Proteom nur wenige potentielle Typ3-sekretierte Proteine im ER-SCV-Proteom identifiziert wurden, lässt sich damit erklären, dass vornehmlich membranassoziierte Proteine untersucht wurden. Darunter fielen potentielle Typ3-Sekretionsapparat- und potentielle SCV-Membran-assoziierte Inc-Proteine. Potentielle Typ3-sekretierte Proteine sind deswegen wahrscheinlich auch Membranassoziiert. Jedoch sind auch im Proteom von Sn-Präparationen verhältnismäßig wenige potentielle Typ3-Effektorproteine ermittelt worden. Offen ist, ob die mittlere Entwicklungsphase von Sn (72 h p.i.) der von Ctr (24 h p.i.) entspricht und damit Vergleiche zum Proteinexpressionsmuster möglich sind. Insbesondere muss dabei berücksichtigt werden, dass für Sn 2412 genomannotierte Proteine vorhergesagt werden verglichen mit 885 vorhergesagten Ctr-Proteinen. Deswegen wird Sn ein anderes Protein-Repertoire aufweisen als Ctr, wobei noch offen ist, welche Gemeinsamkeiten zu T3SS-assoziierten und Inc-Proteinen vorliegen. Bakterielle Faktoren könnten aber auch während der LC-MS²-Analysen verloren gegangen sein, da die Anzahl an Proteinen, die über diese Methode ermittelt wird, limitiert ist. Die Beobachtung, dass ca. 50 % der vorhergesagten Inc-Proteine jeweils im SCV- und im CCV-Proteom präsent waren, lässt darauf schließen, dass die Proteinklasse eine wichtige Rolle für die Infektion spielt. Ob die "potentiellen" Inc-Proteine funktionshomolog zueinander sind und damit Ähnlichkeiten in der Ausbildung der parasitophoren Vakuolenmembran innerhalb der Chlamydiales bestehen, muss experimentell noch untersucht werden.

4.4 Das Lipidom der Simkania-Vakuole

Die Lipidomik ist ein relativ neu aufkommendes Forschungsfeld bezüglich der Untersuchungen von parasitophoren Vakuolenmembranen (PVM). Die Interaktionen zwischen Wirt und Pathogen sind so komplex, dass die Rolle von Lipiden während der Infektion ebenso bedeutsam ist wie die von Proteinen. Lipide übernehmen dabei strukturelle Aufgaben, sind in intrazelluläre Transport- und Signalwege involviert oder dienen als Energielieferant bzw. Ressource für Bakterien selbst, können aber auch zur Erkennung von Pathogenen (LPS) dienen (Wenk, 2006). Trotz einiger Hinweise, dass aufgereinigte parasitophoren Vakuolen (PV) und PVM auch für Lipidomabgleiche herhalten könnten (Shevchuk and Steinert, 2013), sind bisher noch keine umfangreichen Lipidomanalysen beschrieben worden. Diesbezüglich sind weitere Entwicklungen in der Lipidanalyse notwendig, um einen direkten Vergleich mit

bekannten zell- und molekularbiologischen Erkenntnissen zu vereinfachen (Wenk, 2006). Einzelne Arbeiten, in denen PVM-assoziierte Faktoren oder transportierte Lipide beschrieben wurden, zeigen bereits erste Erkenntnisse über eine Wirt-Pathogen-Interaktion auf Lipidebene. So wurde bspw. für *Legionella pneumophila* (*Lpn*) die Gruppe der Phosphoinositide und deren Interaktion mit der *Legionella*-Vakuole (LCV) während der *Lpn*-Infektion genauer untersucht (Weber *et al.*, 2014, Haneburger and Hilbi, 2013). Phosphoinositide scheinen auch für andere Pathogene essentiell zu sein (Jeschke *et al.*, 2015). *Chlamydia trachomatis* ist größtenteils mit der Modifizierung von Lipidtransportwegen beteiligt und kann Lipide über Lipidtröpfchen (LD, engl. *lipid droplets*) beziehen, wofür bereits das LD-assoziierte Protein Lda3 identifiziert werden konnte (Cocchiaro *et al.*, 2008) (s. Abschnitt 1.4).

In dieser Arbeit wurden erste LC/MS-Analysen von aufgereinigten *Sn*, ER-SCV-Membranen und infizierten Wirtszellen durchgeführt, um globale Veränderungen in der Lipidzusammensetzung zu untersuchen. Die hier aufgeführten Untersuchungen sind ein erster Ansatz zur Lipidomanalyse der SCV. Dafür wurden bestimmte Lipidgruppen untersucht, da für einen Vergleich aller Lipidklassen der Umfang der anzuwendenden Methoden und Protokolle bei der Dünnschichtchromatographie sowie der Massenspektrometrie zu groß gewesen wäre. Aufgrund der zu geringen Ausbeute von aufgereinigten ER-SCV-Membranen wurde der Großteil der Analysen mit Gesamtlipidextrakten von *Sn*-infizierten Zellen oder aufgereinigten Bakterien durchgeführt.

4.4.1 Cholesterol-β-D-Glykosid und PE 30:0, zwei infektionsspezifische Lipide von Simkania

Der Fund von kurzkettigen Phosphatidylethanolaminen (PE), wie PE 30:0, und einer massiven Anreicherung von Cholesterol-ß-D-Glykosid (β CG) in *Sn*-infizierten Zellen sowie in aufgereinigten ER-SCV-Membranen zeigte deutlich eine infektionsabhängige Veränderung in der Lipidzusammensetzung bzw. -verteilung (s. Abschnitt. 3.2). Dabei lag β CG in *Sn*-infizierten Zellen um ein Vielfaches angereichert vor, verglichen zu aufgereinigten Simkanien. Dies deutete darauf hin, dass das Lipid nicht nur in den Bakterien, sondern vor allem auch in Zell-kompartimenten lokalisiert ist, wie bspw. in der ER-SCV-Membran. Eine Anreicherung von β CG und kurzkettigem PE an ER-SCV-Membranen konnte über Dünnschichtchromatographie (DC) bestätigt werden. Da weiterführende LC/MS-Analysen aufgrund zu geringer Ausbeuten von ER-SCV-Membranen nicht durchgeführt werden konnten, müssen andere Methoden gefunden werden, um die Lokalisation der zwei Lipidspezies in ER-SCV-Membranen und möglicherweise noch weiteren zellulären Kompartimenten aufzuzeigen und zu bestätigen. Erste Voranalysen durch DC zeigten ein Auftreten von kurzkettigen Phosphatidylethanol-aminen in aufgereinigten Mitochondrien (Daten nicht gezeigt). Ob *Sn* jedoch während der frühen SCV-Entwicklung direkt mit Mitochondrien und darüber mit Autophagosomen oder

autophagosomalen Signalwegen interagiert, um an PE-Moleküle zu gelangen (Hailey *et al.*, 2010), ist noch unklar.

Cholesterol ist eine universell verbreitete Lipidklasse in Eukaryoten und vielen Prokaryoten, die neben Struktur- und Membranfluiditätfunktionen auch bei der Ausbildung von sogennannten lipid rafts¹¹ und nachgeschalteten Signalwegen eine wichtige Rolle spielt (Wunder et al., 2006). So ist bspw. das Bakterium Helicobacter pylori (Hp) auxotroph für Cholesterol und muss dieses Lipid über Serum, Blut oder die eukaryotische Plasmamembran beziehen (Testerman et al., 2001). Cholesterole werden anschließend glykosyliert (Lebrun et al., 2006), was für Hp die Voraussetzung für ein Entkommen vor einer Phagozytose und darauffolgende Immunreaktionen (z.B. T-Zellaktivierung) sein soll und eine Beseitigung der Bakterien in vivo verhindern soll (Wunder et al., 2006). Im Fall von Hp werden bevorzugt nicht veresterte Cholesterole absorbiert und in Form von Cholesterol-α-D-Glykosid-Derivaten (αCG) nach einer Modifizierung durch eine Cholesterol-α-Glykosyl-Transferase (CGT- bekannt als HP0421) in die zytosolische Seite der bakteriellen äußeren Membran eingebaut (Inamoto et al., 1995, Hirai et al., 1995, Lebrun et al., 2006, Shimomura et al., 2013) (s. Abb. 4.4.1). Nicht veresterte Cholesterole oder nicht veresterte Steroide binden dabei selektiv an PE-Moleküle in der äußeren Membran (Shimomura et al., 2012, 2013). Alleine der Einbau und die Präsentation von nicht veresterten Cholesterolen auf der äußeren Membran von Hp vermittelt einen Schutz vor bakteriziden Substanzen wie Antibiotika, Gallensalzen oder Phosphatidylcholinen (PC) (McGee et al., 2011, Trainor et al., 2011, Shimomura et al., 2013). McGee und Kollegen diskutieren, dass dabei glykosylierte Derivate wie aCG Antibiotikaresistenzen vermitteln könnten, da eine Hp cgt Mutante sensitiv gegenüber Behandlungen mit Colistin oder Polymyxin B war. Es wurde bestätigt, dass ein Funktionsverlust der CGT HP0421 zu einem Verlust der aCG-Moleküle und deren Derivaten führt (Lebrun et al., 2006). Weitere Experimente zeigen, dass die CGT eine zentrale Rolle bei Hp-Infektionen einnimmt, wobei diskutiert wird, ob aCG-Moleküle die bakterielle Morphologie und Vermehrung bestimmen (Ito et al., 2013).

Cholesterol-β-D-Glykosid (ßCG) und PE 30:0 wurden hier zum ersten Mal in *Chlamydia*ähnlichen Vertretern beschrieben. Für *Sn* wäre eine ähnliche Schutzfunktion von gebundenen Cholesterolmolekülen denkbar und würde ihre starke Resistenz gegenüber verschiedensten Antibiotika (Friedman *et al.*, 2003) erklären (s. Abb. 4.4.1). Ein Abgleich der Nukleotid- bzw. Aminosäuresequenzen der *Hp* CGT HP0421 mit den *Simkania negevensis* Genomdaten (NCBI) zeigte, dass für *Sn* kein homologes Enzym annotiert ist. Da für sehr viele *Sn*-Proteine eine Assoziation mit Gykosyl-Transferasen vorhergesagt wird (KEGG Enzymes -*Simkania*

¹¹ Deutsch: Lipidflöße – Cholesterin-reiche Bereiche in Zellmembranen, die an der Sortierung von Proteinen für Zellmembranen im Golgi-Apparat, der Endozytose und der Signaltransduktion beteiligt sind.

negevensis), besteht die Möglichkeit, dass ein zu HP0421 funktionshomologes Enzym existiert.

Abb. 4.4.1: Vergleichendes Modell von infektionsspezifischen Lipid-Faktoren von Simkania, Salmonella und Helicobacter. Simkania negevensis (links), Salmonella typhimurium (Mitte) und Helicobacter pylori (rechts). Helicobacter bezieht Cholesterol (C) von Seren, Blut oder der eukaryotischen Plasmamembran (Testerman et al., 2001) und baut es nach einer Bindung an Phosphatidylethanolamine (PE) in die äußere Membran ein (Shimomura et al., 2013). Nicht verestertes Cholesterol kann wahrscheinlich an der bakteriellen inneren Membran (IM) über eine Cholesterol-Glykosyl-Transferase (CGT) glykosyliert werden. Cholesterol-alpha-Glykoside (αCG) werden anschließend auf der äußeren Membran (ÄM) präsentiert. Die Bindung von nicht verestertem Cholesterol schützt Helicobacter vor verschiedenen bakteriziden/-statischen Einflüssen (Antibiotika, Gallensalze, Phosphatidylcholine, Immunantwort). Für aCG werden dabei Resistenzwirkungen gegenüber einzelnen Antibiotika und der Immunantwort des Wirtes vermutet (Wunder et al., 2006, McGee et al., 2011). Salmonella besitzt das Typ3-sekretiertes Enzym SseJ auf der zytoplasmatischen Seite der replikativen Vakuole, welches durch GTP-gebundenes RhoA reguliert wird. Das Enzym ist als Deacylase. Phospholipase A1 und/oder Acyltransferase von Phospholipiden und Cholesterol aktiv, worüber an der Salmonella-Vakuole gebundene Lipide modifiziert werden. Es wird vermutet, dass SseJ auch für eine Abspaltung von Phospholipiden verantwortlich ist (Haraga et al., 2008). Ein Fehlen des Enzyms kann zu starken morphologischen Veränderungen der Vakuole und einer eingeschränkten Infektivität führen (Ruiz-Albert et al., 2002). Gleichzeitig wird ein Bezug von Nährstoffen aus endozytotischen Vesikeln über eine Permeabilisierung der Vesikelhülle vermutet (Kolodziejek and Miller, 2015). Bei Simkania wurde βCG in ER-SCV-Membranen und aufgereinigten EBs/RBs identifiziert und kurzkettige Phosphatidylethanolamine (PE) zusätzlich in Mitochondrien.

Ob eine Bindung von β CG an Phosphatidylethanolamine (wie PE 30:0) besteht, ist noch nicht bekannt. Die Synthese von PE 30:0, 31:0 und 32:0 tritt bekanntermaßen nur bei bakteriellen Infektionen auf (Macfarlane and Macfarlane, 2003, Murzyn *et al.*, 2005) und ist bei *Sn* wahrscheinlich an die vorhergesagten PE-Syntheseenzyme SNE_02080 und SNE_A00300 gekoppelt. Da keine Cholesterol-freien Zelllinien existieren und auch nicht lebensfähig wären, müssen andere Verfahren gefunden werden, um die Funktion von β CG und PE 30:0 während einer *Sn*-Infektion zu untersuchen. Eine weitere Limitierung besteht darin, dass das Enzym zur β CG-Synthese noch unbekannt ist und Simkanien bisher noch nicht genetisch manipulierbar sind. Durch fluoreszentmarkiertes β CG könnte die intrazelluläre Lokalisation mikroskopisch ermittelt werden, da β CG-spezifische Antikörper fehlen.

Lipide spielen bei dem Aufbau und der Stabilität von allen PVM eine zentrale Rolle. Für Salmonella ist die Lipidzusammensetzung der Vakuole überlebenswichtig. Diese ist an ein funktionales Typ3-Sekretionssystem (T3SS) gekoppelt. Das Effektorprotein SseJ sorgt im Zusammenspiel mit dem Effektorprotein SifA dafür, dass vakuoläre Lipide enzymatisch modifiziert werden, um die Stabilität der Salmonella-Vakuole in der späteren Vakuolen-Entwicklungsphase zu garantieren (Ruiz-Albert et al., 2002, Malik-Kale et al., 2011). SseJ ist auf der phagosomalen Membran enzymatisch aktiv und wahrscheinlich auch an endozytotischen Vesikeln (Ruiz-Albert et al., 2002, Haraga et al., 2008, Ohlson et al., 2008) (s. Abb. 4.4.1). Es zählt zu einem der am besten charakterisierten Salmonella Typ3-Effektoren, dessen enzymatische Aktivität unabhängig von der Wirkung oder Präsenz anderer bakterieller Faktoren abläuft (Kolodziejek and Miller, 2015). SseJ ist an der zytosolischen Seite der Vakuole präsentiert, wo es mit der kleinen GTPase RhoA interagiert (Kolodziejek and Miller, 2015). Dabei ist das Besondere, dass SseJ über GTP-gebundenes RhoA aktiviert bzw. reguliert wird und damit eines der ersten bekannten bakteriellen Enzyme ist, welches von Wirt-GTPasen beeinflusst wird (Christen et al., 2009, Malik-Kale et al., 2011). Für SseJ konnten verschiedene enzymatische Aktivitäten ermittelt werden, von denen bisher die einer Phospholipase A1 (Phospholipid \rightarrow Lysophospholipid + freie Fettsäure, möglicherweise auch Abspaltung von Phospholipiden) und Deacylase (Cholesterol + Phospholipid \rightarrow Lysophospholipid + Cholesterolester) beschrieben wurden (Ohlson et al., 2008, Haraga et al., 2008, Lossi et al., 2008). Es besitzt zusätzlich Homologien zu Glycerophospholipid-Cholesterol-Acyl-Transferasen (GCAT) (Kolodziejek and Miller, 2015). Es wird vermutet, dass durch die enzymatische Modulation der Lipidoberfläche der Salmonella-Vakuole Fusionen von Vesikeln oder Bindungen von Gerüstproteinen vereinfacht werden. Da SseJ in Typhii-Stämmen als Pseudogen vorkommt, wird vermutet, dass ein Verlust der SseJ-Aktivität in Salmonellae ein entscheidender Schritt bei der Weiterentwicklung zum Pathogen von systemischen Erkrankungen beim Menschen sein könnte (Malik-Kale et al., 2011).

Der Vergleich beider Modelle zeigt, dass Vakuolen- bzw. Bakterien-assoziierte Lipide eine zentrale Rolle für Bakterien und ihre Replikationsnische spielen. Aufgrund des erhöhten β CG-Vorkommens in ER-SCV-Membranen ist eine Präsentation des Lipids auf der *Simkania*-Vakuole ähnlich zu SseJ von *Salmonella* denkbar (s. Abb. 4.4.1). Das zusätzliche Auftreten von β CG in aufgereinigten *Sn* deutet demnach auf ein Vakuolen- und Bakterien-assoziiertes Lipid hin. Ob Parallelen zu *Hp* und/oder *Salmonella* bestehen, ist noch nicht geklärt.

Da glykosylierte Cholesterole auch von Zellen gebildet werden, besteht die Möglichkeit, dass βCG entweder von HeLa229 Zellen oder Sn selber synthetisiert wird. Glykosylierte Cholesterole von Säugetieren wurden zum ersten Mal im Jahr 2000 isoliert (Kunimoto et al., 2000). In humanen Fibroblasten konnte GBA1 (β -Glykosidase I) als β CG-synthetisierendes Enzym identifiziert werden (Akiyama et al., 2013). Des Weiteren konnte gezeigt werden, dass Hitzeschock eine zentrale Rolle bei der Expression von glykosylierten Cholesterolen spielt (Kunimoto et al., 2000). Durch externe Zugabe von Cholesteryl-Glykosiden erfolgt eine Aktivierung von HSF1 (Hitzeschocktranskriptionsfaktor 1) und Induktion von HSP70 (Hitzeschockprotein 70) (Kunimoto et al., 2002). Weitere Studien gehen davon aus, dass glykosylierte Ceramide als Glukosequelle für CG dienen (Akiyama et al., 2011). So können GM95 Zellen (Glykosphingolipid-defiziente MEB4 Mausfibroblasten) ohne eine externe Zugabe von glykosylierten Ceramiden keine glykosylierten CG-Derivate synthetisieren (Ichikawa et al., 1994, Hirabayashi, 2012). Erste Infektionsexperimente von mit Sn-infizierten GM95 Zellen und MEB4 Kontrollzellen zeigen eine uneingeschränkte SCV-Ausbildung und bakterielle Infektivität. Dabei wurden ähnliche Sekundärinfektionen in GM95, MEB4 und HeLa229 Zellen beobachtet. Ob Sn in der Lage ist, βCG in GM95 Zellen auszubilden und anzureichern, wird experimentell noch über DC überprüft. Trifft dieser Fall zu, ist die Sn-Infektion nicht von einer Aktivität der zellulären Ceramid-Glykosyl-Transferase abhängig. Gleichzeitig wird *Sn* dann keine glykosylierten Ceramide als Glukosequelle zur ßCG-Synthese verwenden, sondern kann Glukose aus einer oder mehreren anderen Quellen beziehen. Falls βCG für die Sn-Infektion ähnlich wichtig ist wie αCG für die Hp-Infektion, könnten Wirkstoffe, die eine Glykosylierung von Cholesterol durch die Bakterien unterbinden, für neue Therapieansätze genutzt werden (Wunder et al., 2006). Dabei wird ausgenutzt, dass die Bakterien zugänglich für das Immunsystem der Wirtszelle gemacht werden, worauf eine Immunantwort folgen kann.

4.5 Ein Simkania-Infektionsmodell

Über die Datenanalysen aus der SCV- und *Sn*-Proteomik, -Lipidomik und damit assoziierten Protein- oder Lipidtransportwegen wurde ein vorläufiges Modell erstellt, dass die *Sn*-Infektion und SCV-Ausbildung beschreibt (s. Abb. 4.5.1).

Die Daten der RNAi-Experimente zeigten, dass frühe Faktoren wie AP1G1 und AP2B1 sowohl einen Einfluss auf die SCV-Ausbildung als auch die *Sn*-Infektivität haben (s. Abschnitte 3.1.5 und 3.4).

Abb. 4.5.1: Schematische Darstellung der Simkania negevensis Infektion in humanen Epithelzellen. Nach der Invasion von Simkania scheinen Clathrin-assoziierte Faktoren wie AP1G1 und AP2B1 sowie STX5 die Primär- und/oder Sekundärinfektion zu beeinflussen. Frühe Endosomen korrelieren mit dem Ceramidtransport, könnten aber noch weitere Funktionen ausüben. Späte Endosomen und Lysosomen sind wahrscheinlich für die SCV-Ausbildung als auch Nährstoffaufnahme und der damit assoziierten Infektivität essentiell. Ob die SCV sich erst ausbildet und dann zum ER transportiert wird oder ER-Membranen die Bakterien bereits an der Plasmamembran einschließen, muss noch untersucht werden. Lipide wie Ceramid oder Sphingomyelin werden zur SCV transportiert und von den Bakterien inkorporiert. Dabei könnten humane Proteine wie CERT und VAPA beteiligt sein. Cholesterol-ß-D-Glykosid (ßCG) und PE 30:0 liegen vermehrt in ER-SCV-Membranen als auch in den Bakterien selber vor. Des Weiteren interagiert Simkania mit COPI-Vesikeln vom nicht fragmentierten Golgi, u.a. über den Faktor COPB2. Weitere Assoziationen mit humanen Faktoren wie Rab1, Rab6A, Rab14, 14-3-3-beta und MYPT1 sind denkbar.

Auch über die Ceramidtransportexperimente wird deutlich, dass die SCV mit frühen Endosomen direkt oder indirekt wechselwirkt (s. Abschnitt 3.3.3). Weitere Interaktionen mit Endosomen sind denkbar, da Chlamydien bspw. endozytotische Vesikel zur Inklusionsmembran rekrutieren (Brurnell and Scidmore, 2007). Ob, und wenn wie, sich die Wechselwirkungen mit endosomalen Vesikeln während der SCV-Reifung unterscheiden, ist noch nicht bekannt. Die Daten der BafA1-Experimente zeigen jedoch, dass späte Endosomen und Lysosomen in frühen Phasen der *Sn*-Infektion einen Einfluss auf die SCV-Ausbildung haben und in späten Phasen auf die *Sn*-Infektivität (s. Abschnitt 3.3.4). Ob *Sn* ähnlich wie *Ctr* oder *Cpn* auf die Funktionalität der Lysosomen angewiesen ist, um an Nährstoffe zu gelangen (Ouellette *et al.*, 2011), muss noch belegt werden. Weitere Untersuchungen sind nötig, um zu zeigen, dass *Sn* dabei nicht mit Lysosomen selber fusioniert und welche Nährstoffe bezogen werden.

Über Untersuchungen des Lipidtransportes konnte ein Transport von C₆-NBD-Ceramid bzw. -SM zur SCV beobachtet werden, der analog zu Chlamydia-Infektionen zu verlaufen scheint (s. Abschnitt 3.3.3). Der Transport könnte mithilfe der zellulären Proteine VAPA oder CERT über vesikuläre und/oder nicht vesikuläre Wege erfolgen. Durch die Lipidomdaten ist bekannt, dass eine große Menge an SM in aufgereinigten Bakterien vorliegen, was auf eine Inkorporierung schließen lässt, da den Bakterien entsprechende Enzyme zur SM-Synthese fehlen (s. Abschnitt 3.2.2). Für eine eindeutige Bestimmung wären Immunofluoreszenz-Färbungen mit entsprechenden SM- und Ceramid-Antikörpern nötig, oder C₆-NBD-Ceramid bzw. -SM müsste aus isolierten Bakterien massenspektrometrisch oder über Raman-Spektroskopie nachgewiesen werden. Des Weiteren würden solche Untersuchungen zeigen, ob die Lipide an der SCV-Membran binden und ob diese nicht nur von RBs, sondern auch von EBs in die äußere Membran der Bakterien eingebaut werden. Bei den zwei Lipiden &CG und PE 30:0 handelt es sich um infektionsspezifische Faktoren. ßCG und kurzkettige PE-Moleküle kamen verstärkt in ER-SCV-Membranen vor, weshalb diese Lipidklassen wichtige Komponenten für die SCV darstellen könnten. Ob diese Lipide eine Rolle für die Vakuolenstabilität spielen oder möglicherweise auch eine Schutzfunktion ausüben, ist noch ungewiss.

Eine Interaktion mit COPI-Vesikeln vom Golgi-Apparat konnte über RNAi-Experimente für die Untereinheit COPB2 nachgewiesen werden und deutet auf eine weitere Bezugsquelle der Bakterien von Nährstoffen hin (s. Abschnitt 3.1.5). Die Präsenz von humanen Proteinen an der SCV-Membran wurde in Abschnitt 3.1.4 vorgestellt. Darunter befinden sich Proteine, die wahrscheinlich keine Rolle für eine Assoziation mit ER-Membranen spielen. So könnten die Proteine Rab1, RAB6A, RAB14, 14-3-3- ß und MYPT1 ähnliche Funktionen während der *Sn*-Infektion ausüben wie es bereits in *Ctr*-Infektionen beobachtet wurde (s. Abschnitt 4.3.2), was experimentell aber noch bestätigt werden muss.

Unklar bleibt, ob die SCV während der Entwicklung zum ER transportiert wird oder ER-Membranen bereits nahe der PM an die Membranen der frühen SCV assoziieren. Ein möglicher Ansatz wären hierbei zunächst klassische Immunofluoreszenz-Färbungen von Zeitreihenstudien.

Innerhalb dieser Arbeit sind wir auf mehrere Probleme gestoßen, die eine Untersuchung der SCV-Entstehung und der Ausbildung von ER-SCV Kontaktstellen erschwert haben. Da es kein genetisches System für *Sn* gibt, konnten keine fluoreszenzmarkierten Bakterien hergestellt werden, ohne auf DNA-markierende Substanzen wie bspw. DAPI zurückzugreifen. Bei Untersuchungen zur Phagozytierung von *Sn* durch THP1 Zellen zeigte sich, dass Lebend-/Tod-Färbungen mit SYTO9 und Propidiumiodid analog zu dem Protokoll von Croxatto und Kollegen ungeeignet für *Sn*-Infektionen waren (Croxatto and Greub, 2010). Des Weiteren konnten SYTO-Farbstoffe, Acridinorange, DAPI oder Hoechst-33342 nicht für Lebendzell-mikroskopieexperimente verwendet werden, da längere Einwirkungen einen Zelltod zur Folge hatten oder durch Interkalierung in die zelluläre und bakterielle DNA mögliche Veränderungen nicht ausgeschlossen werden konnten. Da die fluoreszierende Choleratoxin (Ctx) Untereinheit B nicht zur oder in die SCV transportiert wurde, konnte hier kein Vergleich zu Ctx-assoziierten Transportwegen gezogen werden. Aufgrund dessen war es nicht möglich, den *Sn*-Infektionsverlauf und die SCV-Entstehung über Lebendzellmikroskopie zu verfolgen oder auf spezifische Transportwege hin zu untersuchen.

4.6 Perspektiven und Ausblick

Diese Arbeit repräsentiert einen ersten Meilenstein in der Identifizierung von Wirt-Pathogen-Interaktionen von *Simkania negevensis*- (*Sn*-) infizierten HeLa229 Zellen durch eine Kombinierung von subzellulären Organellaufreinigungen, semi-quantitativer Proteomik und siRNA- bzw. Inhibitorexperimenten. Es wurde gezeigt, dass frühe Prozesse des retrograden Transportes essentiell für die SCV-Ausbildung, die *Sn*-Infektivität und -Vermehrung und den Bezug von Ceramiden sind. Da nicht bekannt ist, welche zellulären Proteine von den einzelnen Inhibitoren (Retro1, Retro2, Comp20, VP184 und Bafilomycin A1) blockiert oder modifiziert werden, muss über weitere Untersuchungen gezeigt werden, welche Transportprozesse dabei beeinträchtigt sind. Ein Einfluss von einem von Retro2-modifizierten humanen Protein Stx5 konnte bei einer *Sn*-Infektion ausgeschlossen werden, obwohl es in Studien von Adenoassoziierten Viren essentiell für die intrazelluläre Replikation war (Nonnenmacher *et al.*, 2015). Daneben zeigten Clathrin- und COPI-assoziierte Faktoren einen Einfluss auf die *Sn*-Infektivität und die *Sn*-Vermehrung und könnten möglicherweise von einem der Inhibitoren blockiert werden.

Neben Clathrin-/COPI-abhängigen und -unabhängigen retrograden Transportwegen könnte auch das ERGIC eine wichtige Rolle spielen, da es den ersten Knotenpunkt zwischen retround anterograden Sortierungsvorgängen darstellt. Da retrograd transportierte Proteine (Clathrin-assoziierte und Golgi-zu-ER) tendenziell angereichert und anterograd transportierte Proteine abgereichert im ER-SCV-Membran-Proteom vorliegen, kommt es während einer *Sn*-Infektion höchstwahrscheinlich zu einer Umverteilung wichtiger Transportwege von Nährstoffen in Richtung der SCV. Dabei würde ein verstärkter retrograder Transport einen in-

/direkten Transport von Metaboliten zur SCV begünstigen, ohne den Grundbedarf der Zelle zu verändern. Durch einen verminderten Abtransport von Metaboliten auf Höhe des ERs stünden den Bakterien mehr Nährstoffe zur Verfügung. Diese Vermutungen werden unterstützt von Inhibitorexperimenten, bei denen eine Behandlung mit Bafilomycin A1 (blockiert retrograde Transportwege) die SCV-Ausbildung und die *Sn*-Infektivität stark beeinträchtigte und eine Behandlung mit Brefeldin A (blockiert anterograde Transportwege) diese verstärkte. Weitere Untersuchungen sind notwendig, um zu verstehen, wie die retrograden und anterograden Transportwege die *Simkania*-Infektion und -Entwicklung beeinflussen. Für Bakterien wie *Legionella, Coxiella, Salmonella* und *Chlamydia* konnte bereits ein starker Einfluss von retrograden Transportwegen an der Ausbildung einer parasitophoren Vakuole und der bakteriellen Vermehrung dokumentiert werden, wofür bereits erste humane Faktoren identifiziert wurden (Personnic *et al.*, 2016).

Simkania negevensis hebt sich aufgrund des Besitzes eines konjugativen Plasmides, der Fähigkeit unterschiedlichste eukaryotische Zellen zu infizieren und zu besiedeln sowie einer bisher einzigartigen Assoziation der Simkania-Vakuole mit ER-Membranen von humanpathogenen Chlamydien oder Umwelt-Chlamydien ab. Da ER-SCV-Kontaktpunkte nicht nur in Epithelzellen wie HeLa229, sondern auch in der Makrophagenzelllinie THP1 beobachtet wurden, stellt es einen geeigneten Modellorganismus dar, um die Biologie und Evolution der Chlamydiales besser zu verstehen. Auf Grundlage der ER-SCV-Membran-Proteome von Sninfizierten HeLa229 und THP1 Zellen können über weitere Vergleichsstudien mögliche Gemeinsamkeiten in der SCV-Ausbildung ermittelt werden. Da in den Proteomdaten ein Einfluss von endosomalen, jedoch nicht von autophagieassoziierten Transportwegen identifiziert wurde, wären Simkanien nicht nur ein geeigneter Modellorganismus zur Untersuchung von Apoptose- oder ER-Stress-, sondern auch von möglichen Autophagieinhibierenden Mechanismen. Da Bafilomycin A1 jedoch auch Autophagiemechanismen beeinflussen kann, indem es die Fusion von Autophagosomen mit Lysosomen unterbindet (Yamamoto et al., 1998), muss vorerst untersucht werden, ob Wechselwirkungen mit der Autophagie eine wichtige Rolle für *Sn*-Infektionen spielen.

Literaturverzeichnis

- Abdolzade-Bavil, A., Hayes, S., Goretzki, L., Kroger, M., Anders, J. and Hendriks, R. (2004) Convenient and versatile subcellular extraction procedure, that facilitates classical protein expression profiling and functional protein analysis. *Proteomics* **4**: 1397-1405.
- Aeberhard, L., Banhart, S., Fischer, M., Jehmlich, N., Rose, L., Koch, S., et al. (2015) The proteome of the isolated *Chlamydia trachomatis* containing vacuole reveals a complex trafficking platform enriched for retromer components. *PLoS Pathog* **11**: e1004883.
- Agaisse, H. and Derre, I. (2015) STIM1 Is a Novel Component of ER-*Chlamydia trachomatis* Inclusion Membrane Contact Sites. *Plos One* **10**.
- Agaisse, H. and Derre, I. (2014) Expression of the effector protein IncD in *Chlamydia trachomatis* mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. *Infect Immun* **82**: 2037-2047.
- Airenne, S., Surcel, H.M., Tuukkanen, J., Leinonen, M. and Saikku, P. (2002) *Chlamydia pneumoniae* inhibits apoptosis in human epithelial and monocyte cell lines. *Scand J Immunol* **55**: 390-398.
- Aistleitner, K., Anrather, D., Schott, T., Klose, J., Bright, M., Ammerer, G. and Horn, M. (2015) Conserved features and major differences in the outer membrane protein composition of *chlamydiae*. *Environ Microbiol* **17**: 1397-1413.
- Akiyama, H., Kobayashi, S., Hirabayashi, Y. and Murakami-Murofushi, K. (2013) Cholesterol glucosylation is catalyzed by transglucosylation reaction of beta-glucosidase 1. *Biochem Biophys Res Commun* **441**: 838-843.
- Akiyama, H., Sasaki, N., Hanazawa, S., Gotoh, M., Kobayashi, S., Hirabayashi, Y. and Murakami-Murofushi, K. (2011) Novel sterol glucosyltransferase in the animal tissue and cultured cells: Evidence that glucosylceramide as glucose donor. *Biochim Biophys Acta* 1811: 314-322.
- Al-Younes, H.M., Rudel, T. and Meyer, T.F. (1999) Characterization and intracellular trafficking pattern of vacuoles containing *Chlamydia pneumoniae* in human epithelial cells. *Cell Microbiol* 1: 237-247.
- Alm, R.A., Bina, J., Andrews, B.M., Doig, P., Hancock, R.E.W. and Trust, T.J. (2000) Comparative genomics of *Helicobacter pylori*: Analysis of the outer membrane protein families. *Infect Immun* 68: 4155-4168.
- Alvarez-Martinez, C.E. and Christie, P.J. (2009) Biological diversity of prokaryotic type iv secretion systems. *Microbiol Mol Biol Rev* **73**: 775-808.
- Amann, R., Springer, N., Schonhuber, W., Ludwig, W., Schmid, E.N., Muller, K.D. and Michel, R. (1997) Obligate intracellular bacterial parasites of acanthamoebae related to *Chlamydia* spp. *Appl Environ Microbiol* 63: 115-121.
- Amessou, M., Fradagrada, A., Falguieres, T., Lord, J.M., Smith, D.C., Roberts, L.M., et al. (2007) Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J Cell Sci 120: 1457-1468.
- Anderson, T.D. and Cheville, N.F. (1986) Ultrastructural morphometric analysis of *Brucella abortus*infected trophoblasts in experimental placentitis. Bacterial replication occurs in rough endoplasmic reticulum. *Am J Pathol* **124**: 226-237.
- Ardail, D., Gasnier, F., Lerme, F., Simonot, C., Louisot, P. and Gateau-Roesch, O. (1993) Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. *J Biol Chem* **268**: 25985-25992.
- Aspenstrom, P. (1999) Effectors for the Rho GTPases. Curr Opin Cell Biol 11: 95-102.
- Baas, A.F., Boudeau, J., Sapkota, G.P., Smit, L., Medema, R., Morrice, N.A., et al. (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22: 3062-3072.
- Babia, T., Ledesma, M.D., Saffrich, R., Kok, J.W., Dotti, C.G. and Egea, G. (2001) Endocytosis of NBD-sphingolipids in neurons: exclusion from degradative compartments and transport to the Golgi complex. *Traffic* 2: 395-405.
- Banhart, S., Saied, E.M., Martini, A., Koch, S., Aeberhard, L., Madela, K., *et al.* (2014) Improved plaque assay identifies a novel anti-*Chlamydia* ceramide derivative with altered intracellular localization. *Antimicrob Agents Ch* **58**: 5537-5546.
- Barbier, J., Bouclier, C., Johannes, L. and Gillet, D. (2012) Inhibitors of the cellular trafficking of ricin. *Toxins (Basel)* **4**: 15-27.
- Barisch, C., Paschke, P., Hagedorn, M., Maniak, M. and Soldati, T. (2015) Lipid droplet dynamics at early stages of *Mycobacterium marinum* infection in *Dictyostelium*. *Cell Microbiol* **17**: 1332-1349.
- Basso, L.A., da Silva, L.H.P., Fett-Neto, A.G., Junior, W.F.D., Moreira, I.D., Palma, M.S., *et al.* (2005) The use of biodiversity as source of new chemical entities against defined molecular targets

for treatment of malaria, tuberculosis, and T-cell mediated diseases - A Review. *Memorias Do Instituto Oswaldo Cruz* **100**: 575-606.

- Bastidas, R.J., Elwell, C.A., Engel, J.N. and Valdivia, R.H. (2013) Chlamydial intracellular survival strategies. *Cold Spring Harb Perspect Med* **3**: a010256.
- Baud, D., Regan, L. and Greub, G. (2008) Emerging role of *Chlamydia* and *Chlamydia*-like organisms in adverse pregnancy outcomes. *Curr Opin Infect Dis* **21**: 70-76.
- Bayer, N., Schober, D., Prchla, E., Murphy, R.F., Blaas, D. and Fuchs, R. (1998) Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. *J Virol* **72**: 9645-9655.
- Beatty, W.L. (2006) Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of *Chlamydia trachomatis*. *J Cell Sci* **119**: 350-359.
- Bebear, C. and de Barbeyrac, B. (2009) Genital *Chlamydia trachomatis* infections. *Clin Microbiol Infect* **15**: 4-10.
- Becker, T., Wenz, L.S., Kruger, V., Lehmann, W., Muller, J.M., Goroncy, L., et al. (2011) The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. J Cell Biol 194: 387-395.
- Bedson, S.P. and Bland J.O. (1932) The developmental forms of psittacosis virus. *Brit J Exp Pathol* **13**: 461-466.
- Beeckman, D.S. and Vanrompay, D.C. (2010) Bacterial secretion systems with an emphasis on the chlamydial Type III secretion system. *Curr Issues Mol Biol* **12**: 17-41.
- Bekker-Jensen, S., Rendtlew Danielsen, J., Fugger, K., Gromova, I., Nerstedt, A., Lukas, C., et al. (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. *Nat Cell Biol* **12**: 80-86; sup pp 81-12.
- Belland, R.J., Zhong, G., Crane, D.D., Hogan, D., Sturdevant, D., Sharma, J., et al. (2003) Genomic transcriptional profiling of the developmental cycle of *Chlamydia trachomatis*. Proc Natl Acad Sci U S A 100: 8478-8483.
- Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate a practical and powerful approach to multiple testing. *J R Stat Soc Series B Stat Methodol* **57**: 289-300.
- Berger, K.H. and Isberg, R.R. (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in *Legionella pneumophila*. *Mol Microbiol* **7**: 7-19.
- Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. *Can J Biochem Physiol* **37**: 911-917.
- Boileau, G., Butler, P., Hershey, J.W. and Traut, R.R. (1983) Direct cross-links between initiation factors 1, 2, and 3 and ribosomal proteins promoted by 2-iminothiolane. *Biochemistry* **22**: 3162-3170.
- Bolhuis, A., Broekhuizen, C.P., Sorokin, A., van Roosmalen, M.L., Venema, G., Bron, S., et al. (1998) SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem 273: 21217-21224.
- Bonifacino, J.S. and Rojas, R. (2006) Retrograde transport from endosomes to the trans-Golgi network. *Nat Rev Mol Cell Biol* **7**: 568-579.
- Bonifacino, J.S. and Glick, B.S. (2004) The mechanisms of vesicle budding and fusion. *Cell* **116**: 153-166.
- Bonifacino, J.S. and Lippincott-Schwartz, J. (2003) Opinion Coat proteins: shaping membrane transport. *Nat Rev Mol Cell Biol* **4**: 409-414.
- Braakman, I. and Bulleid, N.J. (2011) Protein folding and modification in the mammalian endoplasmic reticulum. *Annu Rev Biochem* **80**: 71-99.
- Brandenburg, B. and Zhuang, X. (2007) Virus trafficking learning from single-virus tracking. *Nat Rev Microbiol* **5**: 197-208.
- Braun, P.R., Al-Younes, H., Gussmann, J., Klein, J., Schneider, E. and Meyer, T.F. (2008) Competitive inhibition of amino acid uptake suppresses chlamydial growth: Involvement of the chlamydial amino acid transporter BrnQ. *J Bacteriol* **190**: 1822-1830.
- Bravo, R., Parra, V., Gatica, D., Rodriguez, A.E., Torrealba, N., Paredes, F., *et al.* (2013) Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. *Int Rev Cell Mol Biol* **301**: 215-290.
- Brayton, K.A., Kappmeyer, L.S., Herndon, D.R., Dark, M.J., Tibbals, D.L., Palmer, G.H., *et al.* (2005) Complete genome sequencing of *Anaplasma marginale* reveals that the surface is skewed to two superfamilies of outer membrane proteins. *PNAS* **102**: 844-849.
- Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M. and Shore, G.C. (2003) Regulation of apoptosis by endoplasmic reticulum pathways. *Oncogene* **22**: 8608-8618.
- Brinkworth, A.J., Malcolm, D.S., Pedrosa, A.T., Roguska, K., Shahbazian, S., Graham, J.E., *et al.* (2011) *Chlamydia trachomatis* Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP. *Mol Microbiol* **82**: 131-144.

Brooks, C.L. and Gu, W. (2009) How does SIRT1 affect metabolism, senescence and cancer? *Nat Rev Cancer* **9**: 123-128.

Brugger, B. (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. *Annu Rev Biochem* **83**: 79-98.

Brunham, R.C. and Rey-Ladino, J. (2005) Immunology of *Chlamydia* infection: Implications for a *Chlamydia trachomatis* vaccine. *Nat Rev Immunol* **5**: 149-161.

Brurnell, J.H. and Scidmore, M.A. (2007) Manipulation of Rab GTPase function by intracellular bacterial pathogens. *Microbiol Mol Biol Rev* **71**: 636-+.

Bukau, B. and Horwich, A.L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366.

Byrne, G.I. and Ojcius, D.M. (2004) *Chlamydia* and apoptosis: life and death decisions of an intracellular pathogen. *Nat Rev Microbiol* **2**: 802-808.

Caldwell, H.D. and Perry, L.J. (1982) Neutralization of *Chlamydia trachomatis* infectivity with antibodies to the major outer membrane protein. *Infect Immun* **38**: 745-754.

Caldwell, H.D., Kromhout, J. and Schachter, J. (1981) Purification and partial characterization of the major outer membrane protein of *Chlamydia trachomatis*. *Infect Immun* **31**: 1161-1176.

Campbell, L.A., Kuo, C.C. and Grayston, J.T. (1990a) Structural and antigenic analysis of *Chlamydia* pneumoniae. Infect Immun **58**: 93-97.

Campbell, L.A., Kuo, C.C., Wang, S.P. and Grayston, J.T. (1990b) Serological response to *Chlamydia pneumoniae* infection. *J Clin Microbiol* **28**: 1261-1264.

Campbell, S., Richmond, S.J. and Yates, P.S. (1989) The effect of *Chlamydia trachomatis* infection on the host cell cytoskeleton and membrane compartments. *J Gen Microbiol* **135**: 2379-2386.

Canton, J. and Kima, P.E. (2012) Targeting host syntaxin-5 preferentially blocks *Leishmania* parasitophorous vacuole development in infected cells and limits experimental *Leishmania* infections. *Am J Pathol* **181**: 1348-1355.

Capmany, A., Leiva, N. and Damiani, M.T. (2011) Golgi-associated Rab14, a new regulator for *Chlamydia trachomatis* infection outcome. *Commun Integr Biol* **4**: 590-593.

Carabeo, R.A., Grieshaber, S.S., Hasenkrug, A., Dooley, C. and Hackstadt, T. (2004) Requirement for the Rac GTPase in *Chlamydia trachomatis* invasion of non-phagocytic cells. *Traffic* **5**: 418-425.

Carabeo, R.A., Mead, D.J. and Hackstadt, T. (2003) Golgi-dependent transport of cholesterol to the *Chlamydia trachomatis* inclusion. *Proc Natl Acad Sci U S A* **100**: 6771-6776.

Carabeo, R.A., Grieshaber, S.S., Fischer, E. and Hackstadt, T. (2002) *Chlamydia trachomatis* induces remodeling of the actin cytoskeleton during attachment and entry into HeLa cells. *Infect Immun* **70**: 3793-3803.

Carney, D.W., Nelson, C.D., Ferris, B.D., Stevens, J.P., Lipovsky, A., Kazakov, T., *et al.* (2014) Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses. *Bioorg Med Chem* **22**: 4836-4847.

Carratelli, C.R., Rizzo, A., Catania, M.R., Galle, F., Losi, E., Hasty, D.L. and Rossano, F. (2002) *Chlamydia pneumoniae* infections prevent the programmed cell death on THP-1 cell line. *FEMS Microbiol Lett* **215**: 69-74.

Celli, J., de Chastellier, C., Franchini, D.M., Pizarro-Cerda, J., Moreno, E. and Gorvel, J.P. (2003) Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med **198**: 545-556.

Chao, H.W., Lai, Y.T., Lu, Y.L., Lin, C.L., Mai, W. and Huang, Y.S. (2012) NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. *Nucleic Acids Res* **40**: 8484-8498.

Chen, Y.T., Chen, Y.F., Chiu, W.T., Wang, Y.K., Chang, H.C. and Shen, M.R. (2013) The ER Ca(2)(+) sensor STIM1 regulates actomyosin contractility of migratory cells. *J Cell Sci* **126**: 1260-1267.

Chou, M.M. and Kendall, D.A. (1990) Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides. *J Biol Chem* **265**: 2873-2880.

Christen, M., Coye, L.H., Hontz, J.S., LaRock, D.L., Pfuetzner, R.A., Megha and Miller, S.I. (2009) Activation of a bacterial virulence protein by the GTPase RhoA. *Sci Signal* **2**.

Cirillo, J.D., Cirillo, S.L., Yan, L., Bermudez, L.E., Falkow, S. and Tompkins, L.S. (1999) Intracellular growth in *Acanthamoeba castellanii* affects monocyte entry mechanisms and enhances virulence of *Legionella pneumophila*. *Infect Immun* **67**: 4427-4434.

Clague, M.J., Urbe, S., Aniento, F. and Gruenberg, J. (1994) Vacuolar ATPase activity is required for endosomal carrier vesicle formation. *J Biol Chem* **269**: 21-24.

Clausen, J.D., Christiansen, G., Holst, H.U. and Birkelund, S. (1997) *Chlamydia trachomatis* utilizes the host cell microtubule network during early events of infection. *Mol Microbiol* **25**: 441-449.

Clifton, D.R., Fields, K.A., Grieshaber, S.S., Dooley, C.A., Fischer, E.R., Mead, D.J., *et al.* (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. *PNAS* **101**: 10166-10171.
- Cocchiaro, J.L. and Valdivia, R.H. (2009) New insights into *Chlamydia* intracellular survival mechanisms. *Cell Microbiol* **11**: 1571-1578.
- Cocchiaro, J.L., Kumar, Y., Fischer, E.R., Hackstadt, T. and Valdivia, R.H. (2008) Cytoplasmic lipid droplets are translocated into the lumen of the *Chlamydia trachomatis* parasitophorous vacuole. *PNAS* **105**: 9379-9384.
- Collingro, A., Tischler, P., Weinmaier, T., Penz, T., Heinz, E., Brunham, R.C., *et al.* (2011) Unity in variety--the pan-genome of the *Chlamydiae*. *Mol Biol Evol* **28**: 3253-3270.
- Collingro, A., Toenshoff, E.R., Taylor, M.W., Fritsche, T.R., Wagner, M. and Horn, M. (2005) 'Candidatus Protochlamydia amoebophila', an endosymbiont of Acanthamoeba spp. Int J Syst Evol Microbiol **55**: 1863-1866.
- Coombes, B.K. and Mahony, J.B. (2002) Identification of MEK- and phosphoinositide 3-kinasedependent signalling as essential events during *Chlamydia pneumoniae* invasion of HEp2 cells. *Cell Microbiol* **4**: 447-460.
- Cornelis, G.R. (2000) Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. *Philos Trans R Soc Lond B Biol Sci* **355**: 681-693.
- Corsi, A.K. and Schekman, R. (1996) Mechanism of polypeptide translocation into the endoplasmic reticulum. *J Biol Chem* **271**: 30299-30302.
- Cossart, P. and Sansonetti, P.J. (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. *Science* **304**: 242-248.
- Croxatto, A. and Greub, G. (2010) Early intracellular trafficking of *Waddlia chondrophila* in human macrophages. *Microbiol-Sgm* **156**: 340-355.
- D'Arrigo, A., Bucci, C., Toh, B.H. and Stenmark, H. (1997) Microtubules are involved in bafilomycin A1-induced tubulation and Rab5-dependent vacuolation of early endosomes. *Eur J Cell Biol* **72**: 95-103.
- Dan Dunn, J., Alvarez, L.A., Zhang, X. and Soldati, T. (2015) Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. *Redox Biol* **6**: 472-485.
- Dautry-Varsat, A., Subtil, A. and Hackstadt, T. (2005) Recent insights into the mechanisms of *Chlamydia* entry. *Cell Microbiol* **7**: 1714-1722.
- de Haan, L. and Hirst, T.R. (2004) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). *Mol Membr Biol* **21**: 77-92.
- de Melo, E.J. and de Souza, W. (1996) Pathway of C6-NBD-Ceramide on the host cell infected with *Toxoplasma gondii. Cell Struct Funct* **21**: 47-52.
- Dehoux, P., Flores, R., Dauga, C., Zhong, G.M. and Subtil, A. (2011) Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. *Bmc Genomics* **12**.
- Delevoye, C., Nilges, M., Dehoux, P., Paumet, F., Perrinet, S., Dautry-Varsat, A. and Subtil, A. (2008) SNARE protein mimicry by an intracellular bacterium. *Plos Pathog* **4**.
- Derre, I. (2015) *Chlamydiae* interaction with the endoplasmic reticulum: contact, function and consequences. *Cell Microbiol* **17**: 959-966.
- Derre, I., Swiss, R. and Agaisse, H. (2011) The lipid transfer protein CERT interacts with the *Chlamydia* inclusion protein IncD and participates to ER-*Chlamydia* inclusion membrane contact sites. *PLoS Pathog* **7**: e1002092.
- Derre, I. and Isberg, R.R. (2004) *Legionella pneumophila* replication vacuole formation involves rapid recruitment of proteins of the early secretory system. *Infect Immun* **72**: 3048-3053.
- Desjardins, M. (2003) ER-mediated phagocytosis: a new membrane for new functions. *Nat Rev Immunol* **3**: 280-291.
- Dijk, J., Littlechild, J. and Garrett, R.A. (1977) The RNA binding properties of "native" protein-protein complexes isolated from the *Escherichia coli* ribosome. *FEBS Lett* **77**: 295-300.
- Dilbeck, P.M., Evermann, J.F., Crawford, T.B., Ward, A.C., Leathers, C.W., Holland, C.J., *et al.* (1990) Isolation of a previously undescribed Rickettsia from an aborted bovine fetus. *J Clin Microbiol* **28**: 814-816.
- Donaldson, J.G., Cassel, D., Kahn, R.A. and Klausner, R.D. (1992a) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to golgi membranes. *PNAS* **89**: 6408-6412.
- Donaldson, J. G., Finazzi, D. and Klausner, R. D. (1992b) Brefeldin A inhibits Golgi membranecatalysed exchange of guanine nucleotide onto ARF protein. *Nature* **360**, 350–352.
- Donta, S.T., Tomicic, T.K. and Donohue-Rolfe, A. (1995) Inhibition of Shiga-like toxins by brefeldin A. *J Infect Dis* **171**: 721-724.
- Doray, B. and Kornfeld, S. (2001) Gamma subunit of the AP-1 adaptor complex binds clathrin: Implications for cooperative binding in coated vesicle assembly. *Mol Biol Cell* **12**: 1925-1935.
- Draghi, A., 2nd, Popov, V.L., Kahl, M.M., Stanton, J.B., Brown, C.C., Tsongalis, G.J., et al. (2004) Characterization of "Candidatus piscichlamydia salmonis" (order Chlamydiales), a Chlamydia-

like bacterium associated with epitheliocystis in farmed Atlantic salmon (*Salmo salar*). *J Clin Microbiol* **42**: 5286-5297.

- Dreger, M. (2003) Subcellular proteomics. Mass Spectrom Rev 22: 27-56.
- Dumoux, M., Clare, D.K., Saibil, H.R. and Hayward, R.D. (2012) *Chlamydiae* assemble a pathogen synapse to hijack the host endoplasmic reticulum. *Traffic* **13**: 1612-1627.
- Eissenberg, L.G. and Wyrick, P.B. (1981) Inhibition of phagolysosome fusion is localized to *Chlamydia psittaci*-laden vacuoles. *Infect Immun* **32**: 889-896.
- Elbaz, Y. and Schuldiner, M. (2011) Staying in touch: the molecular era of organelle contact sites. *Trends Biochem Sci* **36**: 616-623.
- Elwell, C.A., Jiang, S., Kim, J.H., Lee, A., Wittmann, T., Hanada, K., *et al.* (2011) *Chlamydia trachomatis* co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. *PLoS Pathog* **7**: e1002198.
- Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. *J Mol Biol* **300**: 1005-1016.
- English, A.R. and Voeltz, G.K. (2013) Endoplasmic reticulum structure and interconnections with other organelles. *Cold Spring Harb Perspect Biol* **5**: a013227.
- English, A.R., Zurek, N. and Voeltz, G.K. (2009) Peripheral ER structure and function. *Curr Opin Cell Biol* **21**: 596-602.
- Enyeart, J.J., Liu, H. and Enyeart, J.A. (2011) Calcium-dependent inhibition of adrenal TREK-1 channels by angiotensin II and ionomycin. *Am J Physiol Cell Physiol* **301**: C619-629.
- Escoll, P., Mondino, S., Rolando, M. and Buchrieser, C. (2015) Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. *Nat Rev Microbiol*.
- Everett, K.D., Thao, M., Horn, M., Dyszynski, G.E. and Baumann, P. (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm. Int J Syst Evol Microbiol **55**: 1581-1587.
- Everett, K.D. (2000) *Chlamydia* and *Chlamydiales*: more than meets the eye. *Vet Microbiol* **75**: 109-126.
- Everett, K.D., Bush, R.M. and Andersen, A.A. (1999) Emended description of the order *Chlamydiales*, proposal of *Parachlamydiaceae fam. nov.* and *Simkaniaceae fam. nov.*, each containing one monotypic genus, revised taxonomy of the family *Chlamydiaceae*, including a new genus and five new species, and standards for the identification of organisms. *Int J Syst Bacteriol* **49 Pt 2**: 415-440.
- Fadel, S. and Eley, A. (2007) *Chlamydia trachomatis* OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin. *J Med Microbiol* **56**: 15-22.
- Fan, T., Lu, H., Hu, H., Shi, L., McClarty, G.A., Nance, D.M., et al. (1998) Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187: 487-496.
- Fields, K.A., Mead, D.J., Dooley, C.A. and Hackstadt, T. (2003) Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol Microbiol 48: 671-683.
- Fields, K.A. and Hackstadt, T. (2002) The chlamydial inclusion: escape from the endocytic pathway. *Annu Rev Cell Dev Biol* **18**: 221-245.
- Fields, K.A. and Hackstadt, T. (2000) Evidence for the secretion of *Chlamydia trachomatis* CopN by a type III secretion mechanism. *Mol Microbiol* **38**: 1048-1060.
- Fischer, S.E., Vier, J., Kirschnek, S., Klos, A., Hess, S., Ying, S.M. and Hacker, G. (2004) *Chlamydia* inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. *J Exp Med* **200**: 905-916.
- Fischer, S.F., Schwarz, C., Vier, J. and Hacker, G. (2001) Characterization of antiapoptotic activities of *Chlamydia pneumoniae* in human cells. *Infect Immun* **69**: 7121-7129.
- Frank, C.G., Reguerio, V., Rother, M., Moranta, D., Maeurer, A.P., Garmendia, J., *et al.* (2013) *Klebsiella pneumoniae* targets an EGF receptor-dependent pathway to subvert inflammation. *Cell Microbiol* **15**: 1212-1233.
- Friedman, M.G., Kahane, S., Dvoskin, B. and Hartley, J.W. (2006) Detection of *Simkania negevensis* by culture, PCR, and serology in respiratory tract infection in Cornwall, UK. *J Clin Pathol* **59**: 331-333.
- Friedman, M.G., Dvoskin, B. and Kahane, S. (2003) Infections with the chlamydia-like microorganism *Simkania negevensis*, a possible emerging pathogen. *Microbes Infect* **5**: 1013-1021.
- Friis, R.R. (1972) Interaction of L cells and *Chlamydia psittaci*: entry of the parasite and host responses to its development. *J Bacteriol* **110**: 706-721.
- Fritsche, T.R., Horn, M., Wagner, M., Herwig, R.P., Schleifer, K.H. and Gautom, R.K. (2000) Phylogenetic diversity among geographically dispersed *Chlamydiales* endosymbionts

recovered from clinical and environmental isolates of *Acanthamoeba spp. Appl Environ Microbiol* **66**: 2613-2619.

- Galan, J.E. and Collmer, A. (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. *Science* **284**: 1322-1328.
- Geng, Y.M., Shane, R.B., Berencsi, K., Gonczol, E., Zaki, M.H., Margolis, D.J., *et al.* (2000) *Chlamydia pneumoniae* inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. *J Immunol Met* **164**: 5522-5529.
- Gentle, I., Gabriel, K., Beech, P., Waller, R. and Lithgow, T. (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. *J Cell Biol* **164**: 19-24.
- Gillespie, L.K., Hoenen, A., Morgan, G. and Mackenzie, J.M. (2010) The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. *J Virol* 84: 10438-10447.
- Gillespie, J.J., Ammerman, N.C., Dreher-Lesnick, S.M., Rahman, M.S., Worley, M.J., Setubal, J.C., *et al.* (2009) An anomalous type iv secretion system in *Rickettsia* is evolutionarily conserved. *Plos One* **4**.
- Giordano, F., Saheki, Y., Idevall-Hagren, O., Colombo, S.F., Pirruccello, M., Milosevic, I., *et al.* (2013) PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. *Cell* **153**: 1494-1509.
- Godlewska, R., Wisniewska, K., Pietras, Z. and Jagusztyn-Krynicka, E.K. (2009) Peptidoglycanassociated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. *FEMS Microbiol Lett* **298**: 1-11.
- Grayston, J.T. (1989) Chlamydia pneumoniae, strain TWAR. Chest 95: 664-669.
- Greenberg, D., Banerji, A., Friedman, M.G., Chiu, C.H. and Kahane, S. (2003) High rate of *Simkania negevensis* among Canadian inuit infants hospitalized with lower respiratory tract infections. *Scand J Infect Dis* **35**: 506-508.
- Greenstein, R.J., Su, L., Whitlock, R.H. and Brown, S.T. (2009) Monensin causes dose dependent inhibition of *Mycobacterium avium* subspecies paratuberculosis in radiometric culture. *Gut Pathog* **1**: 4.
- Greub, G. and Raoult, D. (2004) Microorganisms resistant to free-living amoebae. *Clin Microbiol Rev* **17**: 413-433.
- Grieshaber, S.S., Grieshaber, N.A. and Hackstadt, T. (2003) *Chlamydia trachomatis* uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. *J Cell Sci* **116**: 3793-3802.
- Grieshaber, S., Swanson, J.A. and Hackstadt, T. (2002) Determination of the physical environment within the *Chlamydia trachomatis* inclusion using ion-selective ratiometric probes. *Cell Microbiol* **4**: 273-283.
- Griffiths, A.J.F., Gelbart, W.M., Miller, J.H., *et al.* (1999) Modern Genetic Analysis. New York: W. H. Freeman, Genetics In Process 1-2: Deducing the nature of genes. Available from: http://www.ncbi.nlm.nih.gov/books/NBK21222/box/A92/
- Gruenberg, J., Griffiths, G. and Howell, K.E. (1989) Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. *J Cell Biol* **108**: 1301-1316.
- Gurumurthy, R.K., Maurer, A.P., Machuy, N., Hess, S., Pleissner, K.P., Schuchhardt, J., *et al.* (2010) A loss-of-function screen reveals Ras- and Raf-independent MEK-ERK signaling during *Chlamydia trachomatis* infection. *Sci Signal* **3**: ra21.
- Gustafson, C.E., Katsura, T., McKee, M., Bouley, R., Casanova, J.E. and Brown, D. (2000) Recycling of AQP2 occurs through a temperature- and bafilomycin-sensitive trans-Golgi-associated compartment. *Am J Physiol Renal Physiol* **278**: F317-326.
- Hackstadt, T. (2000) Redirection of host vesicle trafficking pathways by intracellular parasites. *Traffic* **1**: 93-99.
- Hackstadt, T., Scidmore-Carlson, M.A., Shaw, E.I. and Fischer, E.R. (1999) The *Chlamydia trachomatis* IncA protein is required for homotypic vesicle fusion. *Cell Microbiol* **1**: 119-130.
- Hackstadt, T. (1999b) Cell biology. In *Chlamydia*: Intracellular Biology, Pathogenesis, and Immunity. Stephens, R.S. (ed.). Washington, DC: *American Society for Microbiology (ASM) Press*, pp. 101±138.
- Hackstadt, T. (1998) The diverse habitats of obligate intracellular parasites. *Curr Opin Microbiol* **1**: 82-87.
- Hackstadt, T., Fischer, E.R., Scidmore, M.A., Rockey, D.D. and Heinzen, R.A. (1997) Origins and functions of the chlamydial inclusion. *Trends Microbiol* **5**: 288-293.
- Hackstadt, T., Rockey, D.D., Heinzen, R.A. and Scidmore, M.A. (1996) *Chlamydia trachomatis* interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. *EMBO J* **15**: 964-977.

Hackstadt, T., Scidmore, M.A. and Rockey, D.D. (1995) Lipid metabolism in *Chlamydia trachomatis*infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. *Proc Natl Acad Sci U S A* **92**: 4877-4881.

Hahn, D.L. and McDonald, R. (1998) Can acute *Chlamydia pneumoniae* respiratory tract infection initiate chronic asthma? *Ann Allergy Asthma Immunol* **81**: 339-344.

Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K. and Lippincott-Schwartz, J. (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. *Cell* **141**: 656-667.

Hammerschlag, M.R. (2002) The intracellular life of *chlamydiae*. Semin Pediatr Infect Dis 13: 239-248.

Hanada, K. (2010) Intracellular trafficking of ceramide by ceramide transfer protein. *Proc Jpn Acad Ser B Phys Biol Sci* **86**: 426-437.

Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M. and Nishijima, M. (2003) Molecular machinery for non-vesicular trafficking of ceramide. *Nature* **426**: 803-809.

Haneburger, I. and Hilbi, H. (2013) Phosphoinositide lipids and the *Legionella* pathogen vacuole. *Curr Top Microbiol Immunol* **376**: 155-173.

Harada, M., Shakado, S., Sakisaka, S., Tamaki, S., Ohishi, M., Sasatomi, K., *et al.* (1997) Bafilomycin A1, a specific inhibitor of V-type H+-ATPases, inhibits the acidification of endocytic structures and inhibits horseradish peroxidase uptake in isolated rat sinusoidal endothelial cells. *Liver* **17**: 244-250.

Haraga, A., Ohlson, M.B. and Miller, S.I. (2008) *Salmonellae* interplay with host cells. *Nat Rev Microbiol* **6**: 53-66.

Harkinezhad, T., Geens, T. and Vanrompay, D. (2009) *Chlamydophila psittaci* infections in birds: a review with emphasis on zoonotic consequences. *Vet Microbiol* **135**: 68-77.

Hartl, F.U., Pfanner, N., Nicholson, D.W. and Neupert, W. (1989) Mitochondrial protein import. *Biochim Biophys Acta* **988**: 1-45.

Hatch, G.M. and McClarty, G. (1998) Cardiolipin remodeling in eukaryotic cells infected with *Chlamydia trachomatis* is linked to elevated mitochondrial metabolism. *Biochem Biophys Res Commun* **243**: 356-360.

Hatch TP (1988) Metabolism of *Chlamydia*. In: Barron AL, editor. Microbiology of *Chlamydia*. Boca Raton, Florida: *CRC Press*. pp. 97–109.

Hatch, T.P., Miceli, M. and Sublett, J.E. (1986) Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of *Chlamydia psittaci* and *Chlamydia trachomatis*. *J Bacteriol* 165: 379-385.

Head, B., Griparic, L., Amiri, M., Gandre-Babbe, S. and van der Bliek, A.M. (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. *J Cell Biol* **187**: 959-966.

Heinzen, R.A. and Hackstadt, T. (1997) The *Chlamydia trachomatis* parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds. *Infect Immun* **65**: 1088-1094.

Heinzen, R.A., Scidmore, M.A., Rockey, D.D. and Hackstadt, T. (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of *Coxiella burnetii* and *Chlamydia trachomatis*. *Infect Immun* **64**: 796-809.

Helms, J.B. and Rothman, J.E. (1992) Inhibition by brefeldin-a of a Golgi membrane enzyme that catalyzes exchange of guanine-nucleotide bound to ARF. *Nature* **360**: 352-354.

Henomatsu, N., Yoshimori, T., Yamamoto, A., Moriyama, Y. and Tashiro, Y. (1993) Inhibition of intracellular transport of newly synthesized prolactin by bafilomycin A1 in a pituitary tumor cell line, GH3 cells. *Eur J Cell Biol* **62**: 127-139.

Herweg, J.A., Hansmeier, N., Otto, A., Geffken, A.C., Subbarayal, P., Prusty, B.K., et al. (2015a) Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 5: 48.

Herweg, J.A., Pons, V., Becher, D., Hecker, M., Krohne, G., Barbier, J., *et al.* (2015b) Proteomic analysis of the *Simkania*-containing vacuole: the central role of retrograde transport. *Mol Microbiol*.

Herweg, J.A. and Rudel, T. (2015) Interaction of Chlamydiae with human macrophages. FEBS J.

Heuer, D., Rejman Lipinski, A., Machuy, N., Karlas, A., Wehrens, A., Siedler, F., et al. (2009) Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457: 731-735.

High, S. and Dobberstein, B. (1992) Mechanisms that determine the transmembrane disposition of proteins. *Curr Opin Cell Biol* **4**: 581-586.

Hilbi, H. and Haas, A. (2012) Secretive bacterial pathogens and the secretory pathway. *Traffic* **13**: 1187-1197.

Hirabayashi, Y. (2012) A world of sphingolipids and glycolipids in the brain -Novel functions of simple lipids modified with glucose. *PNAS* **88**: 129-143.

Hirai, Y., Haque, M., Yoshida, T., Yokota, K., Yasuda, T. and Oguma, K. (1995) Unique cholesteryl glucosides in *Helicobacter pylori* - composition and structural-analysis. *J Bacteriol* **177**: 5327-5333.

Hoffmann, C., Finsel, I., Otto, A., Pfaffinger, G., Rothmeier, E., Hecker, M., *et al.* (2014) Functional analysis of novel Rab GTPases identified in the proteome of purified *Legionella*-containing vacuoles from macrophages. *Cell Microbiol* **16**: 1034-1052.

Hoffmann, C., Finsel, I. and Hilbi, H. (2012) Purification of pathogen vacuoles from *Legionella*-infected phagocytes. *J Vis Exp*.

Horn, M., Wagner, M., Muller, K.D., Schmid, E.N., Fritsche, T.R., Schleifer, K.H. and Michel, R. (2000) Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiol **146** (5): 1231-1239.

Horn, M. (2008) Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62: 113-131.

Horwitz, M.A. (1983) Formation of a novel phagosome by the Legionnaires' disease bacterium (*Legionella pneumophila*) in human monocytes. *J Exp Med* **158**: 1319-1331.

Houtkooper, R.H., Pirinen, E. and Auwerx, J. (2012) Sirtuins as regulators of metabolism and healthspan. *Nat Rev Mol Cell Biol* **13**: 225-238.

Howard, L., Orenstei.Ns and King, N.W. (1974) Purification on renografin density gradients of *Chlamydia trachomatis* grown in yolk-sac eggs. *Appl Microbiol Biotechnol* **27**: 102-106.

Hsia, R.C., Pannekoek, Y., Ingerowski, E. and Bavoil, P.M. (1997) Type III secretion genes identify a putative virulence locus of *Chlamydia*. *Mol Microbiol* **25**: 351-359.

Huang, H.B., Wang, X.Q., Kikuchi, T., Kumagai, Y. and Rikihisa, Y. (2007) Porin activity of *Anaplasma phagocytophilum* outer membrane fraction and purified P44. *J Bacteriol* **189**: 1998-2006.

Huber, L.A., Pfaller, K. and Vietor, I. (2003) Organelle proteomics: implications for subcellular fractionation in proteomics. *Circ Res* **92**: 962-968.

Hueck, C.J. (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. *Microbiol Mol Biol Rev* **62**: 379-433.

Hughes, C., Maharg, P., Rosario, P., Herrell, M., Bratt, D., Salgado, J. and Howard, D. (1997) Possible nosocomial transmission of psittacosis. *Infect Control Hosp Epidemiol* **18**: 165-168.

Husain, S., Kahane, S., Friedman, M.G., Paterson, D.L., Studer, S., McCurry, K.R., *et al.* (2007) *Simkania negevensis* in bronchoalveolar lavage of lung transplant recipients: a possible association with acute rejection. *Transplantation* **83**: 138-143.

Hybiske, K. and Stephens, R.S. (2008) Exit strategies of intracellular pathogens. *Nat Rev Microbiol* **6**: 99-110.

Hybiske, K. and Stephens, R.S. (2007) Mechanisms of host cell exit by the intracellular bacterium *Chlamydia. Proc Natl Acad Sci U S A* **104**: 11430-11435.

Ichikawa, S., Nakajo, N., Sakiyama, H. and Hirabayashi, Y. (1994) A mouse B16 melanoma mutant deficient in glycolipids. *PNAS* **91**: 2703-2707.

Inamoto, Y., Hamanaka, S., Hamanaka, Y., Nagate, T., Kondo, I., Takemoto, T. and Okita, K. (1995) Lipid-composition and fatty-acid analysis of *Helicobacter pylori*. *J Gastroenterol* **30**: 315-318.

Ito, Y., Vela, J.L., Matsumura, F. *et al.*, (2013) *Helicobacter pylori* cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells. *PLoS One* 8(12):e78191. doi: 10.1371/journal.pone.0078191.

Jehl, M.A., Arnold, R. and Rattei, T. (2011) Effective--a database of predicted secreted bacterial proteins. *Nucleic Acids Res* **39**: D591-595.

Jeschke, A., Zehethofer, N., Lindner, B., Krupp, J., Schwudke, D., Haneburger, I., *et al.* (2015) Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. *Proc Natl Acad Sci U S A* **112**: 4636-4641.

Jewett, T.J., Miller, N.J., Dooley, C.A. and Hackstadt, T. (2010) The conserved Tarp actin binding domain is important for chlamydial invasion. *PLoS Pathog* **6**: e1000997.

Jewett, T.J., Fischer, E.R., Mead, D.J. and Hackstadt, T. (2006) Chlamydial TARP is a bacterial nucleator of actin. *Proc Natl Acad Sci U S A* **103**: 15599-15604.

Jiwani, S., Alvarado, S., Ohr, R.J., Romero, A., Nguyen, B. and Jewett, T.J. (2013) *Chlamydia trachomatis* Tarp Harbors Distinct G and F Actin Binding Domains That Bundle Actin Filaments. *J Bacteriol* **195**: 708-716.

Jiwani, S., Ohr, R.J., Fischer, E.R., Hackstadt, T., Alvarado, S., Romero, A. and Jewett, T.J. (2012) *Chlamydia trachomatis* Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization. *Biochem Biophys Res Commun* **420**: 816-821.

Johannes, L. and Decaudin, D. (2005) Protein toxins: intracellular trafficking for targeted therapy. *Gene Ther* **12**: 1360-1368. Johannes, L. and Goud, B. (1998) Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? *Trends Cell Biol* **8**: 158-162.

Johnsen, S., Birkebaek, N., Andersen, P.L., Emil, C., Jensen, J.S. and Ostergaard, L. (2005) Indirect immunofluorescence and real time PCR for detection of *Simkania negevensis* infection in Danish adults with persistent cough and in healthy controls. *Scand J Infect Dis* **37**: 251-255.

Johnson, L.S., Dunn, K.W., Pytowski, B. and McGraw, T.É. (1993) Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor's internalization motif. *Mol Biol Cell* **4**: 1251-1266.

- Kagan, J.C. and Roy, C.R. (2002) *Legionella* phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. *Nat Cell Biol* **4**: 945-954.
- Kahane, S., Dvoskin, B. and Friedman, M.G. (2008) The role of monocyte/macrophages as vehicles of dissemination of *Simkania negevensis*: an in vitro simulation model. *FEMS Immunol Med Microbiol* **52**: 219-227.

Kahane, S., Greenberg, D., Newman, N., Dvoskin, B. and Friedman, M.G. (2007) Domestic water supplies as a possible source of infection with *Simkania*. *J Infect* **54**: 75-81.

- Kahane, S., Kimmel, N. and Friedman, M.G. (2002) The growth cycle of *Simkania negevensis*. *Microbiol* **148**: 735-742.
- Kahane, S., Dvoskin, B., Mathias, M. and Friedman, M.G. (2001) Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl Environ Microbiol 67: 4789-4795.
- Kahane, S., Everett, K.D., Kimmel, N. and Friedman, M.G. (1999) *Simkania negevensis* strain ZT: growth, antigenic and genome characteristics. *Int J Syst Bacteriol* **49** (2): 815-820.
- Kahane, S., Greenberg, D., Friedman, M.G., Haikin, H. and Dagan, R. (1998) High prevalence of "Simkania Z," a novel Chlamydia-like bacterium, in infants with acute bronchiolitis. J Infect Dis 177: 1425-1429.
- Kahane, S., Gonen, R., Sayada, C., Elion, J. and Friedman, M.G. (1993) Description and partial characterization of a new *Chlamydia*-like microorganism. *FEMS Microbiol Lett* **109**: 329-333.
- Kaplan, M.R. and Simoni, R.D. (1985a) Intracellular transport of phosphatidylcholine to the plasma membrane. *J Cell Biol* **101**: 441-445.
- Kaplan, M.R. and Simoni, R.D. (1985b) Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. *J Cell Biol* **101**: 446-453.
- Karlas, A., Machuy, N., Shin, Y., Pleissner, K.P., Artarini, A., Heuer, D., *et al.* (2010) Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. *Nature* **463**: 818-U132.
- Karlsen, M., Nylund, A., Watanabe, K., Helvik, J.V., Nylund, S. and Plarre, H. (2008) Characterization of 'Candidatus Clavochlamydia salmonicola': an intracellular bacterium infecting salmonid fish. *Environ Microbiol* **10**: 208-218.
- Karunakaran, K., Mehlitz, A. and Rudel, T. (2011) Evolutionary conservation of infection-induced cell death inhibition among *Chlamydiales*. *PLoS One* **6**: e22528.
- Klausner, R.D., Donaldson, J.G. and Lippincott-Schwartz, J. (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. *J Cell Biol* **116**: 1071-1080.
- Klose, C., Surma, M.A. and Simons, K. (2013) Organellar lipidomics--background and perspectives. *Curr Opin Cell Biol* **25**: 406-413.
- Klumperman, J., Schweizer, A., Clausen, H., Tang, B.L., Hong, W., Oorschot, V. and Hauri, H.P. (1998) The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. *J Cell Sci* **111 (22)**: 3411-3425.
- Kolodziejek, A.M. and Miller, S.I. (2015) *Salmonella* modulation of the phagosome membrane, role of SseJ. *Cell Microbiol* **17**: 333-341.
- Kornfeld, S. and Mellman, I. (1989) The Biogenesis of Lysosomes. *Annual Review of Cell Biology* **5**: 483-525.
- Kostanjsek, R., Strus, J., Drobne, D. and Avgustin, G. (2004) '*Candidatus Rhabdochlamydia porcellionis*', an intracellular bacterium from the hepatopancreas of the terrestrial isopod *Porcellio scaber* (Crustacea: *Isopoda*). *Int J Syst Evol Microbiol* **54**: 543-549.
- Kumar, Y. and Valdivia, R.H. (2008) Actin and intermediate filaments stabilize the *Chlamydia trachomatis* vacuole by forming dynamic structural scaffolds. *Cell Host Microbe* **4**: 159-169.
- Kumar, S., Kohlhoff, S.A., Gelling, M., Roblin, P.M., Kutlin, A., Kahane, S., et al. (2005) Infection with Simkania negevensis in Brooklyn, New York. Pediatr Infect Dis J 24: 989-992.
- Kunimoto, S., Murofushi, W., Kai, H., Ishida, Y., Uchiyama, A., Kobayashi, T., *et al.* (2002) Steryl glucoside is a lipid mediator in stress-responsive signal transduction. *Cell Struct Funct* **27**: 157-162.

Kunimoto, S., Kobayashi, T., Kobayashi, S. and Murakami-Murofushi, K. (2000) Expression of cholesteryl glucoside by heat shock in human fibroblasts. *Cell Stress Chaperon* **5**: 3-7.

Lagkouvardos, I., Weinmaier, T., Lauro, F.M., Cavicchioli, R., Rattei, T. and Horn, M. (2014) Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the *Chlamydiae*. *ISME J* **8**: 115-125.

Lawn, A.M., Blyth, W.A. and Taverne, J. (1973) Interactions of TRIC agents with macrophages and BHK-21 cells observed by electron microscopy. *J Hyg (Lond)* **71**: 515-528.

Lebiedzinska, M., Szabadkai, G., Jones, A.W., Duszynski, J. and Wieckowski, M.R. (2009) Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. *Int J Biochem Cell Biol* **41**: 1805-1816.

Lebrun, A.H., Wunder, C., Hildebrand, J., Churin, Y., Zahringer, U., Lindner, B., et al. (2006) Cloning of a cholesterol-alpha-glucosyltransferase from *Helicobacter pylori*. J Biol Chem **281**: 27765-27772.

Levy, B.D. (2013) Sphingolipids and susceptibility to asthma. N Engl J Med 369: 976-978.

Lieberman, D., Dvoskin, B., Lieberman, D.V., Kahane, S. and Friedman, M.G. (2002) Serological evidence of acute infection with the *Chlamydia*-like microorganism *Simkania negevensis* (Z) in acute exacerbation of chronic obstructive pulmonary disease. *Eur J Clin Microbiol Infect Dis* **21**: 307-309.

Lieberman, D., Kahane, S., Lieberman, D. and Friedman, M.G. (1997) Pneumonia with serological evidence of acute infection with the *Chlamydia*-like microorganism "Z". *Am J Respir Crit Care Med* **156**: 578-582.

Lin, M.Q., Kikuchi, T., Brewer, H.M., Norbeck, A.D. and Rikihisa, Y. (2011) Global proteomic analysis of two tick-borne emerging zoonotic agents: *Anaplasma phagocytophilum* and *Ehrlichia chaffeensis*. *Front Microbiol* **2**.

Lin, F.L., Kahan, L. and Ofengand, J. (1984) Crosslinking of phenylalanyl-tRNA to the ribosomal A site via a photoaffinity probe attached to the 4-thiouridine residue is exclusively to ribosomal protein S19. *J Mol Biol* **172**: 77-86.

Lipschütz, B. (1924) Über Chlamydozoa-Strongyloplasmen. IX. Mitteilung: Cytologische Untersuchungen über das *Condyloma acuminatum*. *Arch Derm Syph*, Wien **146**: 427.

Lipsky, N.G. and Pagano, R.E. (1985a) Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. *J Cell Biol* **100**: 27-34.

Lipsky, N.G. and Pagano, R.E. (1985b) A vital stain for the Golgi apparatus. Science 228: 745-747.

Lipsky, N.G. and Pagano, R.E. (1983) Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. *Proc Natl Acad Sci U S A* **80**: 2608-2612.

Lodish, H., Berk, A., Zipursky, S.L., *et al.* (2000) Molecular Cell Biology. 4th edition. New York: W. H. Freeman. Section 17.3, Overview of the Secretory Pathway. Available from: http://www.ncbi.nlm.nih.gov/books/NBK21471/

Lodish, H., Berk, A., Zipursky, S.L., *et al.* (2000) Molecular Cell Biology. 4th edition. New York: W. H. Freeman. Section 17.5, Insertion of Membrane Proteins into the ER Membrane. Available from: http://www.ncbi.nlm.nih.gov/books/NBK21731/

Loizides-Mangold, U. (2013) On the future of mass-spectrometry-based lipidomics. *FEBS J* **280**: 2817-2829.

Lord, J.M. and Roberts, L.M. (1998) Toxin entry: retrograde transport through the secretory pathway. *J Cell Biol* **140**: 733-736.

Lossi, N.S., Rolhion, N., Magee, A.I., Boyle, C. and Holden, D.W. (2008) The *Salmonella* SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity. *Microbiology-Sgm* **154**: 2680-2688.

Luo, Z.Q. and Isberg, R.R. (2004) Multiple substrates of the *Legionella pneumophila* Dot/Icm system identified by interbacterial protein transfer. *PNAS* **101**: 841-846.

Lutter, E.I., Barger, A.C., Nair, V. and Hackstadt, T. (2013) *Chlamydia trachomatis* Inclusion Membrane Protein CT228 Recruits Elements of the Myosin Phosphatase Pathway to Regulate Release Mechanisms. *Cell Rep* **3**: 1921-1931.

Macfarlane, S. and Macfarlane, G.T. (2003) Regulation of short-chain fatty acid production. *PNS* **62**: 67-72.

Majeed, M., Krause, K.H., Clark, R.A., Kihlstrom, E. and Stendahl, O. (1999) Localization of intracellular Ca2+ stores in HeLa cells during infection with *Chlamydia trachomatis*. J Cell Sci 112: 35-44.

Malik-Kale, P., Jolly, C.E., Lathrop, S., Winfree, S., Luterbach, C. and Steele-Mortimer, O. (2011) Salmonella - at home in the host cell. *Front Microbiol* **2**.

- Matos, P., Skaug, J., Marques, B., Beck, S., Verissimo, F., Gespach, C., *et al.* (2000) Small GTPase Rac1: structure, localization, and expression of the human gene. *Biochem Biophys Res Commun* **277**: 741-751.
- Matsumoto, N., Tamura, S. and Fujiki, Y. (2003) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. *Nat Cell Biol* **5**: 454-460.
- Matsumoto, A., Bessho, H., Uehira, K. and Suda, T. (1991) Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. *J Electron Microsc (Tokyo)* **40**: 356-363.
- Matsumoto, A. (1981) Isolation and electron microscopic observations of intracytoplasmic inclusions containing *Chlamydia psittaci. J Bacteriol* **145**: 605-612.
- Matsuo, J., Hayashi, Y., Nakamura, S., Sato, M., Mizutani, Y., Asaka, M. and Yamaguchi, H. (2008) Novel *Parachlamydia acanthamoebae* quantification method based on coculture with amoebae. *Appl Environ Microbiol* **74**: 6397-6404.
- Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A. and Schwudke, D. (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. *J Lipid Res* **49**: 1137-1146.
- McClarty, G. (1999) Chlamydial metabolism as inferred from the complete genome sequence. In *Chlamydia*: Intracellular Biology, Pathogenesis, and Immunity. Stephens, R.S. (ed.). Washington, DC: *American Society for Microbiology (ASM) Press*, pp. 69±100.
- McGee, D.J., George, A.E., Trainor, E.A., Horton, K.E., Hildebrandt, E. and Testerman, T.L. (2011) Cholesterol enhances *Helicobacter pylori* resistance to antibiotics and LL-37. *Antimicrob Agents Chemother* **55**: 2897-2904.
- McKenzie, J., Johannes, L., Taguchi, T. and Sheff, D. (2009) Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. *FEBS J* **276**: 1581-1595.
- McMahon, H.T. and Boucrot, E. (2011) Molecular mechanism and physiological functions of clathrinmediated endocytosis. *Nat Rev Mol Cell Bio* **12**: 517-533.
- Mehlitz, A., Karunakaran, K., Herweg, J.A., Krohne, G., van de Linde, S., Rieck, E., *et al.* (2014) The chlamydial organism *Simkania negevensis* forms ER vacuole contact sites and inhibits ER-stress. *Cell Microbiol* **16**: 1224-1243.
- Mehlitz, A. and Rudel, T. (2013) Modulation of host signaling and cellular responses by *Chlamydia*. *Cell Commun Signal* **11**: 90.
- Miller, S. and Krijnse-Locker, J. (2008) Modification of intracellular membrane structures for virus replication. *Nat Rev Microbiol* **6**: 363-374.
- Ming, X., Carver, K., Fisher, M., Noel, R., Cintrat, J.C., Gillet, D., et al. (2013) The small molecule Retro-1 enhances the pharmacological actions of antisense and splice switching oligonucleotides. *Nucleic Acids Res* 41: 3673-3687.
- Mirrashidi, K.M., Elwell, C.A., Verschueren, E., Johnson, J.R., Frando, A., Von Dollen, J., *et al.* (2015) Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts *Chlamydia* Infection. *Cell Host Microbe* **18**: 109-121.
- Mital, J., Miller, N.J., Fischer, E.R. and Hackstadt, T. (2010) Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. *Cell Microbiol* **12**: 1235-1249.
- Moazed, T.C., Kuo, C.C., Grayston, J.T. and Campbell, L.A. (1998) Evidence of systemic dissemination of *Chlamydia pneumoniae* via macrophages in the mouse. *J Infect Dis* **177**: 1322-1325.
- Montesano, R., Roth, J., Robert, A. and Orci, L. (1982) Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. *Nature* **296**: 651-653.
- Moritz, R.L., Clippingdale, A.B., Kapp, E.A., Eddes, J.S., Ji, H., Gilbert, S., et al. (2005) Application of 2-D free-flow electrophoresis/RP-HPLC for proteomic analysis of human plasma depleted of multi high-abundance proteins. *Proteomics* 5: 3402-3413.
- Moulder, J.W. (1991) Interaction of *chlamydiae* and host cells in vitro. *Microbiol Rev* 55: 143-190.
- Murzyn, K., Rog, T. and Pasenkiewicz-Gierula, M. (2005) Phosphatidylethanolamine
 - phosphatidylglycerol bilayer as a model of the inner bacterial membrane. *Biophys J* 88: 1091-1103.
- Musayev, F.N., Di Salvo, M.L., Ko, T.P., Schirch, V. and Safo, M.K. (2003) Structure and properties of recombinant human pyridoxine 5'-phosphate oxidase. *Protein Sci* **12**: 1455-1463.
- Nelson, C.D., Carney, D.W., Derdowski, A., Lipovsky, A., Gee, G.V., O'Hara, B., *et al.* (2013) A retrograde trafficking inhibitor of ricin and Shiga-like toxins inhibits infection of cells by human and monkey polyomaviruses. *MBio* **4**: e00729-00713.
- Noel, R., Gupta, N., Pons, V., Goudet, A., Garcia-Castillo, M.D., Michau, A., et al. (2013) Nmethyldihydroquinazolinone derivatives of Retro-2 with enhanced efficacy against Shiga toxin. *J Med Chem* 56: 3404-3413.

- Noh, S.M., Brayton, K.A., Knowles, D.P., Agnes, J.T., Dark, M.J., Brown, W.C., *et al.* (2006) Differential expression and sequence conservation of the *Anaplasma marginale* msp2 gene superfamily outer membrane proteins. *Infect Immun* **74**: 3471-3479.
- Nonnenmacher, M.E., Cintrat, J.C., Gillet, D. and Weber, T. (2015) Syntaxin 5-Dependent Retrograde Transport to the trans-Golgi Network Is Required for Adeno-Associated Virus Transduction. *J Virol* **89**: 1673-1687.
- Ohashi, N., Zhi, N., Zhang, Y.L. and Rikihisa, Y. (1998) Immunodominant major outer membrane proteins of *Ehrlichia chaffeensis* are encoded by a polymorphic multigene family. *Infect Immun* **66**: 132-139.
- Ohlson, M.B., Huang, Z.W., Alto, N.M., Blanc, M.P., Dixon, J.E., Chai, J.J. and Miller, S.I. (2008) Structure and Function of *Salmonella* SifA Indicate that Its Interactions with SKIP, SseJ, and RhoA Family GTPases Induce Endosomal Tubulation. *Cell Host Microbe* **4**: 434-446.
- Ojcius, D.M., Hellio, R. and Dautry-Varsat, A. (1997) Distribution of endosomal, lysosomal, and major histocompatability complex markers in a monocytic cell line infected with *Chlamydia psittaci*. *Infect Immun* **65**: 2437-2442.
- Omsland, A., Sager, J., Nair, V., Sturdevant, D.E. and Hackstadt, T. (2012) Developmental stagespecific metabolic and transcriptional activity of *Chlamydia trachomatis* in an axenic medium. *Proc Natl Acad Sci U S A* **109**: 19781-19785.
- Orci, L., Stamnes, M., Ravazzola, M., Amherdt, M., Perrelet, A., Sollner, T.H. and Rothman, J.E. (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. *Cell* **90**: 335-349.
- Ossorio, P.N., Dubremetz, J.F. and Joiner, K.A. (1994) A soluble secretory protein of the intracellular parasite *Toxoplasma-gondii* associates with the parasitophorous vacuole membrane through hydrophobic interactions. *J Biol Chem* **269**: 15350-15357.
- Osswald, M., Doring, T. and Brimacombe, R. (1995) The ribosomal neighbourhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site. *Nucleic Acids Res* **23**: 4635-4641.
- Ouellette, S.P., Dorsey, F.C., Moshiach, S., Cleveland, J.L. and Carabeo, R.A. (2011) *Chlamydia* species-dependent differences in the growth requirement for lysosomes. *PLoS One* **6**: e16783.
- Pagano, R.E., Sepanski, M.A. and Martin, O.C. (1989) Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. *J Cell Biol* **109**: 2067-2079.
- Page, L. A. (1968) Proposal for the recognition of two species in the genus *Chlamydia* Jones, Rake, and Stearns, 1945. *Int J Syst Bacteriol* **18**: 51-66.
- Palade, G. (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347-358.
- Palokangas, H., Ying, M., Vaananen, K. and Saraste, J. (1998) Retrograde transport from the pre-Golgi intermediate compartment and the Golgi complex is affected by the vacuolar H+-ATPase inhibitor bafilomycin A1. *Mol Biol Cell* **9**: 3561-3578.
- Pechstein, A., Bacetic, J., Vahedi-Faridi, A., Gromova, K., Sundborger, A., Tomlin, N., *et al.* (2010) Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. *PNAS* **107**: 4206-4211.
- Peretti, D., Dahan, N., Shimoni, E., Hirschberg, K. and Lev, S. (2008) Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. *Mol Biol Cell* **19**: 3871-3884.
- Personnic, N., Barlocher, K., Finsel, I. and Hilbi, H. (2016) Subversion of Retrograde Trafficking by Translocated Pathogen Effectors. *Trends Microbiol*.
- Peters, J., Wilson, D.P., Myers, G., Timms, P. and Bavoil, P.M. (2007) Type III secretion a la Chlamydia. *Trends Microbiol* **15**: 241-251.
- Pfeffer, S.R. (2001) Membrane transport: Retromer to the rescue. Curr Biol 11: R109-R111.
- Pieters, J. and Gatfield, J. (2002) Hijacking the host: survival of pathogenic mycobacteria inside macrophages. *Trends Microbiol* **10**: 142-146.
- Pilhofer, M., Aistleitner, K., Biboy, J., Gray, J., Kuru, E., Hall, E., *et al.* (2013) Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. *Nat Commun* **4**.
- Pilhofer, M., Aistleitner, K., Ladinsky, M.S., Konig, L., Horn, M. and Jensen, G.J. (2014) Architecture and host interface of environmental chlamydiae revealed by electron cryotomography. *Environ Microbiol* **16**: 417-429.
- Pillay, C.S., Elliott, E. and Dennison, C. (2002) Endolysosomal proteolysis and its regulation. *Biochem J* **363**: 417-429.
- Pizarro-Cerda, J., Meresse, S., Parton, R.G., van der Goot, G., Sola-Landa, A., Lopez-Goni, I., *et al.* (1998) *Brucella abortus* transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. *Infect Immun* **66**: 5711-5724.

- Plaut, R.D. and Carbonetti, N.H. (2008) Retrograde transport of pertussis toxin in the mammalian cell. *Cell Microbiol* **10**: 1130-1139.
- Plekhanov, A.Y. (1999) Rapid staining of lipids on thin-layer chromatograms with amido black 10B and other water-soluble stains. *Anal Biochem* **271**: 186-187.
- Pohl, T. and Wittmann-Liebold, B. (1988) Identification of a cross-link in the *Escherichia coli* ribosomal protein pair S13-S19 at the amino acid level. *J Biol Chem* **263**: 4293-4301.
- Rabouille, C., Kondo, H., Newman, R., Hui, N., Freemont, P. and Warren, G. (1998) Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. *Cell* **92**: 603-610.
- Ragaz, C., Pietsch, H., Urwyler, S., Tiaden, A., Weber, S.S. and Hilbi, H. (2008) The *Legionella pneumophila* phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. *Cell Microbiol* **10**: 2416-2433.
- Rajalingam, K., Al-Younes, H., Muller, A., Meyer, T.F., Szczepek, A.J. and Rudel, T. (2001) Epithelial cells infected with *Chlamydophila pneumoniae* (*Chlamydia pneumoniae*) are resistant to apoptosis. *Infect Immun* 69: 7880-7888.
- Rajalingam, K., Sharma, M., Lohmann, C., Oswald, M., Thieck, O., Froelich, C.J. and Rudel, T. (2008) Mcl-1 is a key regulator of apoptosis resistance in *Chlamydia trachomatis*-infected cells. *Plos One* **3**.
- Rapizzi, E., Pinton, P., Szabadkai, G., Wieckowski, M.R., Vandecasteele, G., Baird, G., et al. (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159: 613-624.
- Read, T.D., Brunham, R.C., Shen, C., Gill, S.R., Heidelberg, J.F., White, O., et al. (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28: 1397-1406.
- Rego, A.T., Chandran, V. and Waksman, G. (2010) Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. *Biochem J* **425**: 475-488.
- Ren, Y., Li, R., Zheng, Y. and Busch, H. (1998) Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 273: 34954-34960.
- Renard, H.F., Garcia-Castillo, M.D., Chambon, V., Lamaze, C. and Johannes, L. (2015) Shiga toxin stimulates clathrin-independent endocytosis of VAMP2/3/8 SNARE proteins. *J Cell Sci*.
- Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., *et al.* (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. *Biochim Biophys Acta* **1787**: 1342-1351.
- Roberts, C.W., Roberts, F., Lyons, R.E., Kirisits, M.J., Mui, E.J., Finnerty, J., *et al.* (2002) The shikimate pathway and its branches in apicomplexan parasites. *J Infect Dis* **185** (1): S25-36.
- Robinson, C.G. and Roy, C.R. (2006) Attachment and fusion of endoplasmic reticulum with vacuoles containing *Legionella pneumophila*. *Cell Microbiol* **8**: 793-805.
- Rockey, D.D., Fischer, E.R. and Hackstadt, T. (1996) Temporal analysis of the developing *Chlamydia psittaci* inclusion by use of fluorescence and electron microscopy. *Infect Immun* **64**: 4269-4278.
- Rockey, D.D., Grosenbach, D., Hruby, D.E., Peacock, M.G., Heinzen, R.A. and Hackstadt, T. (1997) *Chlamydia psittaci* IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. *Mol Microbiol* **24**: 217-228.
- Rockey, D.D., Scidmore, M.A., Bannantine, J.P. and Brown, W.J. (2002) Proteins in the chlamydial inclusion membrane. *Microbes Infect* **4**: 333-340.
- Rodgers, J.T. and Puigserver, P. (2007) Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. *PNAS* **104**: 12861-12866.
- Romero-Brey, I., Merz, A., Chiramel, A., Lee, J.Y., Chlanda, P., Haselman, U., *et al.* (2012) Threedimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. *PLoS Pathog* **8**: e1003056.
- Rosen, K.V., Alexander, R.W., Wower, J. and Zimmermann, R.A. (1993) Mapping the central fold of tRNA2(fMet) in the P site of the *Escherichia coli* ribosome. *Biochemistry* **32**: 12802-12811.
- Rosenwald, A.G. and Pagano, R.E. (1993) Intracellular transport of ceramide and its metabolites at the Golgi complex: insights from short-chain analogs. *Adv Lipid Res* **26**: 101-118.
- Rothman, J.E. and Wieland, F.T. (1996) Protein sorting by transport vesicles. *Science* **272**: 227-234. Roux, K.J., Kim, D.I., Raida, M. and Burke, B. (2012) A promiscuous biotin ligase fusion protein
- identifies proximal and interacting proteins in mammalian cells. *J Cell Biol* **196**: 801-810.
- Roy, C.R., Salcedo, S.P. and Gorvel, J.P. (2006) Pathogen-endoplasmic-reticulum interactions: in through the out door. *Nat Rev Immunol* **6**: 136-147.

- Ruiz-Albert, J., Yu, X.J., Beuzon, C.R., Blakey, A.N., Galyov, E.E. and Holden, D.W. (2002) Complementary activities of SseJ and SifA regulate dynamics of the *Salmonella typhimurium* vacuolar membrane. *Mol Microbiol* **44**: 645-661.
- Rurangirwa, F.R., Dilbeck, P.M., Crawford, T.B., McGuire, T.C. and McElwain, T.F. (1999) Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order *Chlamydiales*: proposal of *Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. Int J Syst Bacteriol* **49** (2): 577-581.
- Rzomp, K.A., Scholtes, L.D., Briggs, B.J., Whittaker, G.R. and Scidmore, M.A. (2003) Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. *Infect Immun* **71**: 5855-5870.
- Sachse, M., Urbe, S., Oorschot, V., Strous, G.J. and Klumperman, J. (2002) Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. *Mol Biol Cell* **13**: 1313-1328.
- Saint-Pol, A., Yelamos, B., Amessou, M., Mills, I.G., Dugast, M., Tenza, D., *et al.* (2004) Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. *Dev Cell* **6**: 525-538.
- Saka, H.A., Thompson, J.W., Chen, Y.S., Dubois, L.G., Haas, J.T., Moseley, A. and Valdivia, R.H. (2015) *Chlamydia trachomatis* infection leads to defined alterations to the lipid droplet proteome in epithelial cells. *PLoS One* **10**: e0124630.
- Saka, H.A., Thompson, J.W., Chen, Y.S., Kumar, Y., Dubois, L.G., Moseley, M.A. and Valdivia, R.H. (2011) Quantitative proteomics reveals metabolic and pathogenic properties of *Chlamydia trachomatis* developmental forms. *Mol Microbiol* 82: 1185-1203.
- Sakoh, M., Ito, K. and Akiyama, Y. (2005) Proteolytic activity of HtpX, a membrane-bound and stresscontrolled protease from *Escherichia coli*. *J Biol Chem* **280**: 33305-33310.
- Sandvig, K., Grimmer, S., Iversen, T.G., Rodal, K., Torgersen, M.L., Nicoziani, P. and van Deurs, B. (2000) Ricin transport into cells: studies of endocytosis and intracellular transport. *Int J Med Microbiol* **290**: 415-420.
- Sandvig, K., Prydz, K., Ryd, M. and van Deurs, B. (1991) Endocytosis and intracellular transport of the glycolipid-binding ligand Shiga toxin in polarized MDCK cells. *J Cell Biol* **113**: 553-562.
- Sandvig, K. and van Deurs, B. (2000) Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. *EMBO J* **19**: 5943-5950.
- Sandvig, K. and van Deurs, B. (2005) Delivery into cells: lessons learned from plant and bacterial toxins. *Gene Ther* **12**: 865-872.
- Scarpa, M.C., Baraldo, S., Marian, E., Turato, G., Calabrese, F., Saetta, M. and Maestrelli, P. (2013) Ceramide expression and cell homeostasis in chronic obstructive pulmonary disease. *Respiration* **85**: 342-349.
- Schapiro, F.B., Lingwood, C., Furuya, W. and Grinstein, S. (1998) pH-independent retrograde targeting of glycolipids to the Golgi complex. *Am J Pathol* **274**: C319-C332.
- Schekman, R. and Orci, L. (1996) Coat proteins and vesicle budding. Science 271: 1526-1533.
- Schiller, J., Suss, R., Arnhold, J., Fuchs, B., Lessig, J., Muller, M., et al. (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43: 449-488.
- Schmid, S.L. (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. *Annu Rev Biochem* **66**: 511-548.
- Schoier, J., Ollinger, K., Kvarnstrom, M., Soderlund, G. and Kihlstrom, E. (2001) *Chlamydia trachomatis*-induced apoptosis occurs in uninfected McCoy cells late in the developmental cycle and is regulated by the intracellular redox state. *Microb Pathog* **31**: 173-184.
- Schramm, N. and Wyrick, P.B. (1995) Cytoskeletal requirements in *Chlamydia trachomatis* infection of host cells. *Infect Immun* **63**: 324-332.
- Schulz, F., Lagkouvardos, I., Wascher, F., Aistleitner, K., Kostanjsek, R. and Horn, M. (2014) Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. *ISME J* 8: 1634-1644.
- Schwab, J.C., Beckers, C.J. and Joiner, K.A. (1994) The parasitophorous vacuole membrane surrounding intracellular *Toxoplasma gondii* functions as a molecular sieve. *Proc Natl Acad Sci U S A* **91**: 509-513.
- Schwarzbauer, J. and Craven, G.R. (1985) Evidence that *E. coli* ribosomal protein S13 has two separable functional domains involved in 16S RNA recognition and protein S19 binding. *Nucleic Acids Res* **13**: 6767-6786.
- Schwudke, D., Schuhmann, K., Herzog, R., Bornstein, S.R. and Shevchenko, A. (2011) Shotgun lipidomics on high resolution mass spectrometers. *Cold Spring Harb Perspect Biol* **3**: a004614.

Sciaky, N., Presley, J., Smith, C., Zaal, K.J., Cole, N., Moreira, J.E., *et al.* (1997) Golgi tubule traffic and the effects of brefeldin A visualized in living cells. *J Cell Biol* **139**: 1137-1155.

Scidmore, M.A. (2011) Recent advances in *Chlamydia* subversion of host cytoskeletal and membrane trafficking pathways. *Microbes Infect* **13**: 527-535.

Scidmore, M.A., Fischer, E.R. and Hackstadt, T. (1996a) Sphingolipids and glycoproteins are differentially trafficked to the *Chlamydia trachomatis* inclusion. *J Cell Biol* **134**: 363-374.

Scidmore, M.A., Fischer, E.R. and Hackstadt, T. (2003) Restricted fusion of *Chlamydia trachomatis* vesicles with endocytic compartments during the initial stages of infection. *Infect Immun* **71**: 973-984.

Scidmore, M.A. and Hackstadt, T. (2001) Mammalian 14-3-3beta associates with the *Chlamydia trachomatis* inclusion membrane via its interaction with IncG. *Mol Microbiol* **39**: 1638-1650.

Scidmore, M.A., Rockey, D.D., Fischer, E.R., Heinzen, R.A. and Hackstadt, T. (1996b) Vesicular interactions of the *Chlamydia trachomatis* inclusion are determined by chlamydial early protein synthesis rather than route of entry. *Infect Immun* **64**: 5366-5372.

Seaman, M.N.J. (2005) Recycle your receptors with retromer. Trends Cell Biol 15: 68-75.

Seipel, K. and Flieger, A. (2013) *Legionella* phospholipases implicated in infection: determination of enzymatic activities. *Methods Mol Biol* **954**: 355-365.

Sharma, M. and Rudel, T. (2009) Apoptosis resistance in *Chlamydia*-infected cells: a fate worse than death? *Fems Immunology and Medical Microbiology* **55**: 154-161.

Shaw, E.I., Dooley, C.A., Fischer, E.R., Scidmore, M.A., Fields, K.A. and Hackstadt, T. (2000) Three temporal classes of gene expression during the *Chlamydia trachomatis* developmental cycle. *Mol Microbiol* **37**: 913-925.

Shevchuk, O. and Steinert, M. (2013) Isolation of pathogen-containing vacuoles. *Methods Mol Biol* **983**: 419-429.

Shibata, Y., Voeltz, G.K. and Rapoport, T.A. (2006) Rough sheets and smooth tubules. *Cell* **126**: 435-439.

Shih, W., Gallusser, A. and Kirchhausen, T. (1995) A clathrin-binding site in the hinge of the beta 2 chain of mammalian AP-2 complexes. *J Biol Chem* **270**: 31083-31090.

Shimomura, H., Hosoda, K., Hayashi, S. *et al.* (2012) Phosphatidylamine of *Helicobacter pylori* functions as a steroid-binding lipid in the assimiliation of free cholesterol and 3ß-hydroxyl steroids into the bacterial cell membrane. *J Bacteriol* **194**(10): 2658-2667.

Shimomura, H., Hosoda, K. and Hirai, Y. (2013) Interaction of *Helicobacter pylori* Cell Membrane with Non-Esterified Cholesterol and Other Steroids. *Open J Med Microbiol* **3**: 70-79.

Shorter, J., Beard, M.B., Seemann, J., Dirac-Svejstrup, A.B. and Warren, G. (2002) Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. *J Cell Biol* **157**: 45-62.

Sinai, A.P., Webster, P. and Joiner, K.A. (1997) Association of host cell endoplasmic reticulum and mitochondria with the *Toxoplasma gondii* parasitophorous vacuole membrane: a high affinity interaction. *J Cell Sci* **110 (17)**: 2117-2128.

Sixt, B.S., Siegl, A., Muller, C., Watzka, M., Wultsch, A., Tziotis, D., *et al.* (2013) Metabolic features of *Protochlamydia amoebophila* elementary bodies - a link between activity and infectivity in *Chlamydiae*. *Plos Pathog* **9**.

Slepenkin, A., Motin, V., de la Maza, L.M. and Peterson, E.M. (2003) Temporal expression of type III secretion genes of *Chlamydia pneumoniae*. *Infect Immun* **71**: 2555-2562.

Soldati, G., Lu, Z.H., Vaughan, L., Polkinghorne, A., Zimmermann, D.R., Huder, J.B. and Pospischil, A. (2004) Detection of mycobacteria and chlamydiae in granulomatous inflammation of reptiles: a retrospective study. *Vet Pathol* **41**: 388-397.

Soupene, E., Rothschild, J., Kuypers, F.A. and Dean, D. (2012) Eukaryotic protein recruitment into the *Chlamydia* inclusion: Implications for survival and growth. *Plos One* **7**.

Stechmann, B., Bai, S.K., Gobbo, E., Lopez, R., Merer, G., Pinchard, S., *et al.* (2010) Inhibition of retrograde transport protects mice from lethal ricin challenge. *Cell* **141**: 231-242.

Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., et al. (1998) Genome sequence of an obligate intracellular pathogen of humans: *Chlamydia trachomatis*. *Science* 282: 754-759.

Stephens, R.S., Koshiyama, K., Lewis, E. and Kubo, A. (2001) Heparin-binding outer membrane protein of *chlamydiae*. *Mol Microbiol* **40**: 691-699.

Storz, J. and Spears, P. (1977) *Chlamydiales*: properties, cycle of development and effect on eukaryotic host cells. *Curr Top Microbiol Immunol* **76**: 167-214.

Stride, M.C., Polkinghorne, A., Miller, T.L., Groff, J.M., LaPatra, S.E. and Nowak, B.F. (2013) Molecular characterization of "*Candidatus Parilichlamydia carangidicola*," a novel *Chlamydia*like epitheliocystis agent in yellowtail kingfish, *Seriola lalandi* (*Valenciennes*), and the proposal of a new family, "*Candidatus Parilichlamydiaceae*" fam. nov (order *Chlamydiales*). *Appl Environ Microbiol* **79**: 1590-1597.

- Subbarayal, P., Karunakaran, K., Winkler, A.C., Rother, M., Gonzalez, E., Meyer, T.F. and Rudel, T. (2015) EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for *Chlamydia trachomatis. PLoS Pathog* **11**: e1004846.
- Subtil, A., Blocker, A. and Dautry-Varsat, A. (2000) Type III secretion system in *Chlamydia* species: identified members and candidates. *Microbes Infect* **2**: 367-369.
- Subtil, A., Collingro, A. and Horn, M. (2014) Tracing the primordial *Chlamydiae*: extinct parasites of plants? *Trends Plant Sci* **19**: 36-43.
- Subtil, A., Delevoye, C., Balana, M.E., Tastevin, L., Perrinet, S. and Dautry-Varsat, A. (2005) A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. *Mol Microbiol* **56**: 1636-1647.
- Suchland, R.J., Rockey, D.D., Bannantine, J.P. and Stamm, W.E. (2000) Isolates of *Chlamydia trachomatis* that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. *Infect Immun* **68**: 360-367.
- Swanson, M.S. and Isberg, R.R. (1995) Association of *Legionella pneumophila* with the macrophage endoplasmic reticulum. *Infect Immun* **63**: 3609-3620.
- Testerman, T.L., McGee, D.J. and Mobley, H.L.T. (2001) *Helicobacter pylori* growth and urease detection in the chemically defined medium Ham's F-12 nutrient mixture. *J Clin Microbiol* **39**: 3842-3850.
- Thalmann, J., Janik, K., May, M., Sommer, K., Ebeling, J., Hofmann, F., et al. (2010) Actin Re-Organization Induced by *Chlamydia trachomatis* Serovar D - Evidence for a Critical Role of the Effector Protein CT166 Targeting Rac. *Plos One* 5.
- Thomas, V., Casson, N. and Greub, G. (2006) *Criblamydia sequanensis*, a new intracellular *Chlamydiales* isolated from Seine river water using amoebal co-culture. *Environ Microbiol* **8**: 2125-2135.
- Thompson, J., Hu, H., Scharff, J. and Neville, D.M., Jr. (1995) An anti-CD3 single-chain immunotoxin with a truncated diphtheria toxin avoids inhibition by pre-existing antibodies in human blood. *J Biol Chem* **270**: 28037-28041.
- Tilney, L.G., Harb, O.S., Connelly, P.S., Robinson, C.G. and Roy, C.R. (2001) How the parasitic bacterium *Legionella pneumophila* modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. *J Cell Sci* **114**: 4637-4650.
- Trainor, E.A., Horton, K.E., Savage, P.B., Testerman, T.L. and McGee, D.J. (2011) Role of the hefc efflux pump in *Helicobacter pylori* cholesterol-dependent resistance to ceragenins and bile salts. *Infect Immun* **79**: 88-97.
- Trotter, P.J. and Voelker, D.R. (1994) Lipid transport processes in eukaryotic cells. *Biochim Biophys Acta* **1213**: 241-262.
- Unver, A., Ohashi, N., Tajima, T., Stich, R.W., Grover, D. and Rikihisa, Y. (2001) Transcriptional analysis of p30 major outer membrane multigene family of *Ehrlichia canis* in dogs, ticks, and cell culture at different temperatures. *Infect Immun* **69**: 6172-6178.
- Unver, A., Rikihisa, Y., Stich, R.W., Ohashi, N. and Felek, S. (2002) The omp-1 major outer membrane multigene family of *Ehrlichia chaffeensis* is differentially expressed in canine and tick hosts. *Infect Immun* **70**: 4701-4704.
- Urwyler, S., Brombacher, E. and Hilbi, H. (2009a) Endosomal and secretory markers of the *Legionella*containing vacuole. *Commun Integr Biol* **2**: 107-109.
- Urwyler, S., Finsel, I., Ragaz, C. and Hilbi, H. (2010) Isolation of *Legionella*-containing vacuoles by immuno-magnetic separation. *Curr Protoc Cell Biol* **Chapter 3**: Unit 3 34.
- Urwyler, S., Nyfeler, Y., Ragaz, C., Lee, H., Mueller, L.N., Aebersold, R. and Hilbi, H. (2009b) Proteome analysis of *Legionella* vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. *Traffic* **10**: 76-87.
- Utskarpen, A., Slagsvold, H.H., Iversen, T.G., Walchli, S. and Sandvig, K. (2006) Transport of ricin from endosomes to the Golgi apparatus is regulated by Rab6A and Rab6A'. *Traffic* **7**: 663-672.
- van Ooij, C., Apodaca, G. and Engel, J. (1997) Characterization of the *Chlamydia trachomatis* vacuole and its interaction with the host endocytic pathway in HeLa cells. *Infect Immun* **65**: 758-766.
- van Ooij, C., Kalman, L., van, I., Nishijima, M., Hanada, K., Mostov, K. and Engel, J.N. (2000) Host cell-derived sphingolipids are required for the intracellular growth of *Chlamydia trachomatis*. *Cell Microbiol* **2**: 627-637.
- van Weert, A.W., Dunn, K.W., Geuze, H.J., Maxfield, F.R. and Stoorvogel, W. (1995) Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump. *J Cell Biol* **130**: 821-834.

Vance, J.E. and Shiao, Y.J. (1996) Intracellular trafficking of phospholipids: import of phosphatidylserine into mitochondria. *Anticancer Res* **16**: 1333-1339.

Vandahl, B.B., Birkelund, S., Demol, H., Hoorelbeke, B., Christiansen, G., Vandekerckhove, J. and Gevaert, K. (2001) Proteome analysis of the *Chlamydia pneumoniae* elementary body. *Electrophoresis* **22**: 1204-1223.

Vanweert, A.W.M., Dunn, K.W., Geuze, H.J., Maxfield, F.R. and Stoorvogel, W. (1995) Transport from Late Endosomes to Lysosomes, but Not Sorting of Integral Membrane-Proteins in Endosomes, Depends on the Vacuolar Proton Pump. *J Cell Biol* **130**: 821-834.

Verbeke, P., Welter-Stahl, L., Ying, S., Hansen, J., Hacker, G., Darville, T. and Ojcius, D.M. (2006) Recruitment of BAD by the *Chlamydia trachomatis* vacuole correlates with host-cell survival. *PLoS Pathog* **2**: e45.

Vorwerk, S., Krieger, V., Deiwick, J., Hensel, M. and Hansmeier, N. (2015) Proteomes of host cell membranes modified by intracellular activities of *Salmonella enterica*. *Mol Cell Proteomics* **14**: 81-92.

Voulhoux, R., Bos, M.P., Geurtsen, J., Mols, M. and Tommassen, J. (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. *Science* **299**: 262-265.

Wallden, K., Rivera-Calzada, A. and Waksman, G. (2010) Type IV secretion systems: versatility and diversity in function. *Cell Microbiol* **12**: 1203-1212.

Wallden, K., Williams, R., Yan, J., Lian, P.W., Wang, L., Thalassinos, K., et al. (2012) Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci U S A 109: 11348-11353.

Waltermann, M., Hinz, A., Robenek, H., Troyer, D., Reichelt, R., Malkus, U., *et al.* (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. *Mol Microbiol* **55**: 750-763.

Wang, J., Duncan, D., Shi, Z. and Zhang, B. (2013) WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. *Nucleic Acids Res* **41**: W77-83.

Wang, Y., Kahane, S., Cutcliffe, L.T., Skilton, R.J., Lambden, P.R. and Clarke, I.N. (2011) Development of a transformation system for *Chlamydia trachomatis*: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. *PLoS Pathog* **7**: e1002258.

Ward, T.H., Polishchuk, R.S., Caplan, S., Hirschberg, K. and Lippincott-Schwartz, J. (2001)
Maintenance of Golgi structure and function depends on the integrity of ER export. *J Cell Biol* 155: 557-570.

Weber, S., Wagner, M. and Hilbi, H. (2014) Live-cell imaging of phosphoinositide dynamics and membrane architecture during *Legionella* infection. *MBio* **5**: e00839-00813.

Weir, M.L., Klip, A. and Trimble, W.S. (1998) Identification of a human homologue of the vesicleassociated membrane protein (VAMP)-associated protein of 33 kDa (VAP-33): a broadly expressed protein that binds to VAMP. *Biochem J* **333**: 247-251.

Welsch, S., Miller, S., Romero-Brey, I., Merz, A., Bleck, C.K., Walther, P., *et al.* (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. *Cell Host Microbe* **5**: 365-375.

Wenk, M.R. (2006) Lipidomics of host-pathogen interactions. FEBS Lett 580: 5541-5551.

Wibo, M. and Poole, B. (1974) Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. *J Cell Biol* **63**: 430-440.

Wiener, L. and Brimacombe, R. (1987) Protein binding sites on *Escherichia coli* 16S RNA; RNA regions that are protected by proteins S7, S14 and S19 in the presence or absence of protein S9. *Nucleic Acids Res* **15**: 3653-3670.

Wiener, L., Schuler, D. and Brimacombe, R. (1988) Protein binding sites on *Escherichia coli* 16S ribosomal RNA; RNA regions that are protected by proteins S7, S9 and S19, and by proteins S8, S15 and S17. *Nucleic Acids Res* **16**: 1233-1250.

Wilfling, F., Thiam, A.R., Olarte, M.J., Wang, J., Beck, R., Gould, T.J., *et al.* (2014) Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. *Elife* **3**: e01607.

Wolf, K. and Hackstadt, T. (2001) Sphingomyelin trafficking in *Chlamydia pneumoniae*-infected cells. *Cell Microbiol* **3**: 145-152.

Woo, J.T., Shinohara, C., Sakai, K., Hasumi, K. and Endo, A. (1992) Inhibition of the acidification of endosomes and lysosomes by the antibiotic concanamycin B in macrophage J774. *Eur J Biochem* 207: 383-389.

Wright, H.R., Turner, A. and Taylor, H.R. (2008) Trachoma. Lancet 371: 1945-1954.

Wu, M.M., Buchanan, J., Luik, R.M. and Lewis, R.S. (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. *J Cell Biol* **174**: 803-813.

Literaturverzeichnis

- Wu, Y.N., Gadina, M., Tao-Cheng, J.H. and Youle, R.J. (1994) Retinoic acid disrupts the Golgi apparatus and increases the cytosolic routing of specific protein toxins. *J Cell Biol* **125**: 743-753.
- Wunder, C., Churin, Y., Winau, F., Warnecke, D., Vieth, M., Lindner, B., et al. (2006) Cholesterol glucosylation promotes immune evasion by *Helicobacter pylori*. *Nature Medicine* **12**: 1030-1038.
- Wylie, J.L., Hatch, G.M. and McClarty, G. (1997) Host cell phospholipids are trafficked to and then modified by *Chlamydia trachomatis*. *J Bacteriol* **179**: 7233-7242.
- Wyrick, P.B. and Brownridge, E.A. (1978) Growth of *Chlamydia psittaci* in macrophages. *Infect Immun* **19**: 1054-1060.
- Yamaguchi, T., Yamazaki, T., Inoue, M., Mashida, C., Kawagoe, K., Ogawa, M., *et al.* (2005) Prevalence of antibodies against *Simkania negevensis* in a healthy Japanese population determined by the microimmunofluorescence test. *FEMS Immunol Med Microbiol* **43**: 21-27.
- Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R. and Tashiro, Y. (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. *Cell Struct Funct* **23**: 33-42.
- Yang, Y. and Uhlig, S. (2011) The role of sphingolipids in respiratory disease. *Ther Adv Respir Dis* **5**: 325-344.
- Yoshida, T., Chen, C.C., Zhang, M.S. and Wu, H.C. (1991) Disruption of the Golgi apparatus by brefeldin A inhibits the cytotoxicity of ricin, modeccin, and *Pseudomonas* toxin. *Exp Cell Res* 192: 389-395.
- Yuan, Y., Zhang, Y.X., Watkins, N.G. and Caldwell, H.D. (1989) Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 *Chlamydia trachomatis* serovars. *Infect Immun* 57: 1040-1049.
- Zehethofer, N., Bermbach, S., Hagner, S., Garn, H., Muller, J., Goldmann, T., *et al.* (2015) Lipid analysis of airway epithelial cells for studying respiratory diseases. *Chromatographia* **78**: 403-413.
- Zeichner, S.L. (1982) Isolation and characterization of phagosomes containing *Chlamydia psittaci* from L cells. *Infect Immun* **38**: 325-342.
- Zhang, Y.X., Stewart, S., Joseph, T., Taylor, H.R. and Caldwell, H.D. (1987) Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of *Chlamydia trachomatis*. *J Immunol* **138**: 575-581.
- Zhang, Y.X., Stewart, S.J. and Caldwell, H.D. (1989) Protective monoclonal antibodies to *Chlamydia trachomatis* serovar- and serogroup-specific major outer membrane protein determinants. *Infect Immun* **57**: 636-638.
- Zucko, J., Dunlap, W.C., Shick, J.M., Cullum, J., Cercelet, F., Amin, B., *et al.* (2010) Global genome analysis of the shikimic acid pathway reveals greater gene loss in host-associated than in free-living bacteria. *BMC Genomics* **11**: 628.

Wissenschaftliche Arbeiten (Universität Würzburg, Biozentrum, Institut für Mikrobiologie)

- Herweg, J.A. (2010) Das Leben von *Simkania negevensis* in der Vakuole/Zelle während der Infektion (Diplomarbeit)
- Rieck, E. (2012) Untersuchungen zur Aufreinigung des obligat intrazellulären Bakteriums *Simkania negevensis* (Bachelorarbeit)
- Rieck, E. (2014) Intrazelluläre Adaption von *Simkania negevensis* in Monozyten/Makrophagen (Masterarbeit)

Wissenschaftliche Arbeiten (Humboldt Universität, Berlin)

Aeberhard, L. (2015) Isolation and proteomic characterization of the mid-infection inclusion of *Chlamydia trachomatis*. (Doktorarbeit)

Gussamnn, J. (2007) Long-term effects of amino acids on *Chlamydia* infections. (Doktorarbeit)

#	Identifizierte <i>Simkania</i> Proteine	Accession-Nummer	MGW (kDa)	P1 Kon.	P2 Kon.	P3 Kon.	P1 Inf.	P2 Inf.	P3 Inf.
1	10 chaperonin	gi 338734155 ref YP_004672628.1	14	0	0	0	7	5	5
2	10 chaperonin	gi 338732681 ref YP_004671154.1	11	0	0	0	5	1	4
3	3_oxoacyl_[acyl_carrier_protein] reductase	gi 338732719 ref YP_004671192.1	27	0	0	0	7	3	6
4	3_oxoacyl_[acyl_carrier_protein] reductase	gi 338732901 ref YP_004671374.1	27	0	0	0	11	3	0
5	30S ribosomal protein S1	gi 338733650 ref YP_004672123.1	60	0	0	0	5	0	1
6	30S ribosomal protein S10	gi 338732221 ref YP_004670694.1	13	0	0	0	17	10	9
7	30S ribosomal protein S11	gi 338734003 ret YP_004672476.1	15	0	0	0	36	26	23
8	30S ribosomal protein S13	gi[338734004]ref[YP_004672477.1]	14	0	0	0	19	16	8
9 10	30S ribosomal protein S14	gi[338732645]ref[VP_004671118_1]	12	0	0	0	24 16	10	12
11	30S ribosomal protein S16	gi[338732653]ref[YP_004671126.1]	10	0	0	0	4	1	12
12	30S ribosomal protein S17	gi[338734014]ref[YP_0046724871]	10	0	0	0	- 0	5	0
13	30S ribosomal protein S18	gil338733702lreflYP_004672175.1	9	0	0	0	11	5	6
14	30S ribosomal protein S19	gi 338734019 ref YP_004672492.1	10	0	0	0	3	2	2
15	30S ribosomal protein S2	gi 338732133 ref YP_004670606.1	30	0	0	0	11	8	11
16	30S ribosomal protein S20	gi 338734246 ref YP_004672719.1	11	0	0	0	7	8	3
17	30S ribosomal protein S3	gi 338734017 ref YP_004672490.1	23	0	0	0	55	24	32
18	30S ribosomal protein S4	gi 338733817 ref YP_004672290.1	23	0	0	0	17	10	12
19	30S ribosomal protein S5	gi 338734007 ref YP_004672480.1	18	0	0	0	47	14	16
20	30S ribosomal protein S6	gi 338733703 ref YP_004672176.1	13	0	0	0	11	6	5
21	30S ribosomal protein S7	gi 338732223 ref YP_004670696.1	18	0	0	0	30	14	11
22	30S ribosomal protein S8	gi 338734010 ref YP_004672483.1	15	0	0	0	38	28	31
23	30S ribosomal protein S9	gi 338732622 ref YP_004671095.1	14	0	0	0	29	16	13
24	3R_hydroxymyristoyl_[acyl_carrier_protein]	gi 338734035 ref YP_004672508.1	17	0	0	0	15	10	11
25	600 ribosomol protoin L1	ail229722410/rafIVD_004671992.11	25	0	0	0	4.4	12	20
25	50S ribosomal protein L 10	gi[338733400]ref[VP_004671882.1]	10	0	0	0	44 7	6	10
20	50S ribosomal protein L 11	gi[338733411]ref[VP_004671884.1]	15	0	0	0	/ 41	11	15
28	50S ribosomal protein L 13	gi[338732621]ref[YP_004671094.1]	17	0	0	0	12	6	9
29	50S ribosomal protein L 14	gi[338734013]ref[YP_0046724861]	14	0	0	0	12	6	9
30	50S ribosomal protein L 15	gil338734006lreflYP_0046724791	17	0	0	0	23	10	5
31	50S ribosomal protein L16	gil338734016lreflYP 004672489.11	16	1	0	0	39	24	19
32	50S ribosomal protein L17	gil338734001/reflYP_004672474.1	16	0	0	0	20	15	18
33	50S ribosomal protein L18	gi 338734008 ref YP_004672481.1	12	0	0	0	14	9	5
34	50S ribosomal protein L19	gi 338732655 ref YP_004671128.1	20	0	0	0	17	9	1
35	50S ribosomal protein L2	gi 338734020 ref YP_004672493.1	31	0	0	0	17	13	12
36	50S ribosomal protein L20	gi 338733285 ref YP_004671758.1	13	0	0	0	13	11	12
37	50S ribosomal protein L21	gi 338732243 ref YP_004670716.1	11	0	0	0	12	10	3
38	50S ribosomal protein L22	gi 338734018 ref YP_004672491.1	12	0	0	0	30	14	20
39	50S ribosomal protein L23	gi 338734021 ref YP_004672494.1	13	0	0	0	25	19	16
40	50S ribosomal protein L24	gi 338734012 ref YP_004672485.1	13	0	0	0	12	7	9
41	50S ribosomal protein L25	gi 338733705 ref YP_004672178.1	21	0	0	0	8	3	0
42	50S ribosomal protein L27	gi 338732242 ref YP_004670715.1	9	0	0	0	8	6	0
43	50S ribosomal protein L28	gi 338733675 ref YP_004672148.1	10	0	0	0	4	4	2
44	50S ribosomal protein L29	gi[338734015]ref[YP_004672488.1]	8	0	0	0	9	4	5
45	50S ribosomal protein L3	gi 338734023 ret YP_004672496.1	23	0	0	0	1	1	2
40	50S ribosomal protein L35	gi[336732642][ei]1P_004671313.1]	0	0	0	0	4	3 12	0
47	50S ribosomal protein L4	gi[336734022][ei]1P_004672493.1]	23	0	0	0	43 6	2	10
40	50S ribosomal protein L6	gi[338734009]ref[VP_004672482.1]	10	0	0	0	48	5 21	32
50	50S ribosomal protein L 7I 12	gi[338733408]ref[YP_004671881.1]	14	0	0	0	9 9	2	0
51	50S ribosomal protein L9	gil338733701/reflYP_004672174_1	23	0	0	0	30	13	20
52	acetyl coenzyme A carboxylase carboxyl	gil338732696lreflYP_004671169_1	37	0	0	0	12	6	6
	transferase subunit alpha	24							
53	acetyl_coenzyme A carboxylase carboxyl transferase subunit beta	gi 338732333 ref YP_004670806.1	36	0	0	0	7	3	3
54	acyl carrier protein	gi 338732720 ref YP_004671193.1	9	0	0	0	5	3	3
55	adenylate kinase	gi 338732526 ref YP_004670999.1	27	0	0	0	5	1	0
56	ADP_heptoseLPS heptosyltransferase 2	gi 338732114 ref YP_004670587.1	40	0	0	0	3	1	0
57	alkaline phosphatase synthesis transcriptional regulatory protein phoP	gi 338732018 ref YP_004670491.1	29	0	0	0	14	2	0
58	aspartate aminotransferase	gi 338731980 ref YP_004670453.1	45	0	0	0	6	0	0
59	ATP_dependent chaperone protein ClpB	gi 338733672 ref YP_004672145.1	103	0	0	0	6	0	2
60	ATP_dependent Clp protease proteolytic subunit 1	gi 338733921 ref YP_004672394.1	23	0	0	0	5	2	4
61	ATP_dependent Clp protease proteolytic subunit 2	gi 338733855 ref YP_004672328.1	22	0	0	0	6	1	0
62	biotin carboxyl carrier protein of acetyl_CoA carboxylase	gi 338733639 ref YP_004672112.1	18	0	0	0	2	0	0
63	biotin carboxylase 1	gi 338733638 ref YP_004672111.1	50	0	0	0	4	1	3
64	chaperone protein ClpB	gi 338733671 ref YP_004672144.1	99	0	0	0	4	0	0
65	chaperone protein dnaJ	gi 338733952 ref YP_004672425.1	41	0	0	0	2	0	0
66	chlamydia virulence plasmid protein 6	gi 338731944 ref YP_004670417.1	27	0	0	0	3	0	0
67 68	cnorismate mutase Daunorubicin resistance ABC transporter ATPase subunit	gi 338732109 ref YP_004670582.1 gi 338733977 ref YP_004672450.1	13 29	0 0	0	0	6 1	3 2	1 6

69	dihydrolipoyl dehydrogenase	gi 338732094 ref YP 004670567.1	50	0	0	0	3	1	0
70	dihydrolipoyllysine residue	gil338732707lreflYP_004671180.1	45	0	0	0	3	2	2
	acetyltransferase component of pyruvate	3.10001.021.011.0111. <u>_</u> 001.0111.001.11	10		0	°,	0	-	-
	dehydrogenase complex								
71	DNA gyrase subunit A	qi 338733305 ref YP 004671778.1	93	0	0	0	4	0	1
72	DNA gyrase subunit B	gil338733306lreflYP_004671779_1	94	0	0	0	5	0	0
73	DNA polymerase III subunit ensilon	gi 338734104/reflYP_004672577_1	28	0	0	0	7	0	0
74	DNA directed DNA polymerces suburit	cil2287240021=cflVD_004672475_1	40	0	0	0	21	17	22
74	DNA_directed RNA polymerase subunit	gi 338734002 ref YP_004672475.1	42	0	0	0	31	17	22
	alpha	-:::0007004001{\\D	455	0	0	0	100	50	50
/5	DNA_directed RNA polymerase subunit	gij338733406[ref]YP_004671879.1]	155	0	0	0	128	52	50
76	DNA directed DNA polymorphic suburit		111	0	0	0	110	40	44
/6	DNA_directed RNA polymerase subunit	gij338733407 [ref YP_004671880.1]	141	0	0	0	113	46	41
		-:::0007005001{\\D_004070000.4	50	0	0	0	00	0	0
"	DO Serine protease	gi 338733560 ref YP_004672033.1	52	0	0	0	20	9	8
78	elongation factor G	gi 338732222 ref YP_004670695.1	77	0	0	0	5	0	0
79	elongation factor P 1	gi 338733640 ref YP_004672113.1	21	0	0	0	3	0	0
80	elongation factor P 2	gi 338732300 ref YP_004670773.1	21	0	0	0	3	1	2
81	elongation factor Tu	qi 338733414 ref YP 004671887.1	43	0	0	0	32	12	20
82	exodeoxyribonuclease 7 small subunit	gil338732784/reflYP_004671257_1	11	0	0	0	0	2	0
83	fructose, bisphosphate aldolase class 1	gi 338733060/refl/P_004671533.1	30	0	0	0	11	5	2
0.0		cil228724000/ref/VD_004672562.1	50	0	0	0	0	2	4
04	giulariyi_iRNA synthetase	gij338734090jieij1P_004672563. ij	56	0	0	0	9	2	1
85	gp103	gi 338732503 ref YP_004670976.1	33	0	0	0	3	0	0
86	heat shock protein 60	gi 338732680 ref YP_004671153.1	59	0	0	0	86	22	70
87	heat shock protein 60	gi 338734154 ref YP_004672627.1	58	0	0	0	109	33	57
88	heat shock protein 60	gi 338732482 ref YP_004670955.1	57	0	0	0	4	6	12
89	heat shock protein 70	ail338732428/reflYP_004670901.1	70	0	0	0	3	2	0
90	holliday junction ATP dependent DNA	gil338732112lreflYP_004670585_1	22	0	0	0	3	0	0
	helicase ruvA	3-1500.02.12point _004070000.1		v	0	v	0	v	0
91	hypothetical protein SNE_A00380	gil338731934/reflYP_004670407_1	109	0	0	0	47	24	46
02	hypothetical protein SNE_A00000	cil228721086/rofIVD_004670460.11	66	0	0	0	4	0	10
92	hypothetical protein Sine_A00900	910007010001011F_004070409.1	00	0	0	0	4	0	13
93	hypothetical protein SNE_A00960	gi 338/31992 ref YP_0046/0465.1	28	0	0	0	12	2	14
94	hypothetical protein SNE_A01040	gi 338732000 ref YP_004670473.1	17	0	0	0	4	4	5
95	hypothetical protein SNE_A01080	gi 338732004 ref YP_004670477.1	20	0	0	0	5	0	1
96	hypothetical protein SNE_A01160	gi 338732012 ref YP_004670485.1	39	0	0	0	4	2	0
97	hypothetical protein SNE A01200	qi 338732016 ref YP 004670489.1	15	0	0	0	11	13	14
98	hypothetical protein SNE_A01230	gil338732019lreflYP_004670492.1	24	0	0	0	3	3	6
99	hypothetical protein SNE_A01520	gil338732047lreflYP_004670520.1	16	0	0	0	3	2	1
100	hypothetical protein SNE_A02020	cil228722008/rofIVD_004670571_1	20	0	0	0	7	4	0
100	hypothetical protein SNE_A02050	gij338732098jieij1F_004070571.1	29	0	0	0	7	4	0
101	nypotnetical protein SNE_A02050	gl 338732100 ref YP_004670573.1	28	0	0	0	6	2	0
102	hypothetical protein SNE_A02510	gi 338732146 ref YP_004670619.1	18	1	0	0	61	32	35
103	hypothetical protein SNE_A02520	gi 338732147 ref YP_004670620.1	36	0	0	0	89	19	14
104	hypothetical protein SNE_A02610	gi 338732156 ref YP_004670629.1	22	0	0	0	15	7	2
105	hypothetical protein SNE A02710	gi 338732166 ref YP 004670639.1	11	0	0	0	2	2	2
106	hypothetical protein SNE_A03100	gil338732205lreflYP_004670678.1	31	0	0	0	7	3	0
107	hypothetical protein SNE_A03190	gi 338732214/refl/P_004670687.1	13	0	0	0	3	3	1
400	hypothetical protein CNE_A03100	cil228722214[ci]11_004670601.1]	10	0	0	0	3	2	
108	nypotnetical protein SNE_A03210	gl 338732216 ref YP_004670689.1	13	0	0	0	1	3	0
109	hypothetical protein SNE_A03870	gi 338732282 ref YP_004670755.1	14	0	0	0	10	4	13
110	hypothetical protein SNE_A03880	rev_gi 338732283 ref YP_00467075	6.1 183	0	0	3	2	1	0
111	hypothetical protein SNE_A03990	gi 338732294 ref YP_004670767.1	21	0	0	0	9	1	4
112	hypothetical protein SNE_A04060	gi 338732301 ref YP_004670774.1	18	0	0	0	8	6	0
113	hypothetical protein SNE A04070	gi 338732302 ref YP 004670775.1	31	0	0	0	5	6	2
114	hypothetical protein SNE_A04650	gil338732360lreflYP_004670833.1	92	0	0	0	2	0	6
115	hypothetical protein SNE_A04920	gil338732387IrefIYP_004670860.1	15	0	0	0	1	2	4
116	hypothetical protein SNE_A05010	cil228722206/rof/VD_004670860.1	10	0	0	0	50	10	24
147	hypothetical protein SNE_A05010	gijoor ozoolieli r F_004070009.1	121	0	0	0	50	19	24
117	hypothetical protein SNE_A05040	gij338732399[tel]1P_004670872.1]	11	0	0	0	3	2	0
118	nypotnetical protein SNE_A05070	gij338732402 ret YP_004670875.1	82	0	0	0	23	9	21
119	hypothetical protein SNE_A05430	gi 338732438 ref YP_004670911.1	46	0	0	0	13	10	11
120	hypothetical protein SNE_A05460	gi 338732441 ref YP_004670914.1	43	0	0	0	7	2	3
121	hypothetical protein SNE_A05480	gi 338732443 ref YP_004670916.1	40	0	0	0	6	8	4
122	hypothetical protein SNE A05500	gi 338732445 ref YP 004670918.1	49	0	0	0	255	142	246
123	hypothetical protein SNE_A05510	gil338732446lreflYP_004670919.1	74	0	0	0	28	20	23
124	hypothetical protein SNE_A05520	gil338732447/reflYP_004670920_11	49	0	0	0	18	10	12
125	hypothetical protein SNE_A05590	gi 338732454/ref VP_004670927.1	14	0	0	0	7	10	1
120	hypothetical protein SNE_A05000		74	0	0	0	7	4	1
126	nypotnetical protein SNE_A05890	gij338732484[ref]YP_004670957.1]	71	0	0	0	9	3	1
127	nypotnetical protein SNE_A06020	gij338/32497 ret YP_004670970.1	12	0	0	0	1	2	2
128	hypothetical protein SNE_A06100	gi 338732505 ref YP_004670978.1	17	0	0	0	0	3	0
129	hypothetical protein SNE_A06380	gi 338732533 ref YP_004671006.1	41	0	0	0	3	2	4
130	hypothetical protein SNE_A07770	gi 338732672 ref YP_004671145.1	30	0	0	0	6	0	1
131	hypothetical protein SNE A08130	gi 338732708 ref YP_004671181_1	33	0	0	0	6	3	4
132	hypothetical protein SNE_A08410	gil338732736IreflYP_004671209_1	39	0	0	0	4	0	7
132	hypothetical protein SNE_A08620	dil338732757/ref/VP_004671220.11	40	0	0	0	5	0	,
100	hypothetical protein ONE_A00020	ail2207227721-ail/D_004074240.1		0	0	0	5	0	0
134	hypothetical protein SNE_A08770	gij338/32//2 ret YP_0046/1245.1	31	U	U	U	2	U	U
135	nypothetical protein SNE_A08990	gi 338732794 ref YP_004671267.1	77	0	0	0	29	17	19
136	hypothetical protein SNE_A09010	gi 338732796 ref YP_004671269.1	57	0	0	0	3	0	1
137	hypothetical protein SNE_A09040	gi 338732799 ref YP_004671272.1	72	0	0	0	2	0	0
138	hypothetical protein SNE_A09260	gi 338732821 ref YP_004671294.1	11	0	0	0	0	1	3
139	hypothetical protein SNE A09960	gi 338732891 ref YP_004671364.1	30	0	0	0	7	0	0
140	hypothetical protein SNE A10030	gi 338732898Iref YP_004671371_1	7	0	0	0	6	7	8
141	hypothetical protein SNE_A10110	gil338732906IrefIVP_004671370.1	q	0	0	0	4	2	n
1/2	hypothetical protein SNE_A10220	gi[338732027/ref/VD_004674400.4]	20	0	0	0	- 1 11	2	0
144	hypothetical protein SixE_A10320	9100010202111E111F_004071400.1	20	0	0	0	-	3	0
143	hypothetical protein SINE_A10750	gijoborbzarujieiji P_00467 1443.1	32	U	U	U	Э	1	U

144	hypothetical protein SNE_A10910	gi 338732986 ref YP_004671459.1	38	0	0	0	2	0	4
145	hypothetical protein SNE_A10930	gi 338732988 ref YP_004671461.1	38	0	0	0	3	3	4
146	hypothetical protein SNE A11330	gi 338733028 ref YP 004671501.1	61	0	0	0	4	1	2
147	hypothetical protein SNE_A11500	gil338733045lreflYP_00467151811	15	0	0	0	3	3	2
148	hypothetical protein SNE_A11710	gil338733066lreflYP_00467153911	23	0	0	0	2	0	3
149	hypothetical protein SNE_A11840	gil338733079/reflYP_004671552.1	23	0	0	0	35	14	22
143	hypothetical protein SNE_A12120	cil2207222407/softVD_004671592.1	23	0	0	0	10	2	10
150	hypothetical protein SNE_A12120	gij356755107 jiel j1 F_004071580. 1	42	0	0	0	10	3	10
151	hypothetical protein SNE_A12180	gij336733113jieij1P_004671566.1	39	0	0	0	2	0	0
152	hypothetical protein SNE_A12190	gij338733114jieij1P_004671587.1	39	0	0	0	3	1	-
153	nypothetical protein SNE_A12590	gi 338733154 ref YP_004671627.1	17	0	0	0	4	3	(
154	hypothetical protein SNE_A12890	gi 338733184 ref YP_004671657.1	27	0	0	0	1	2	3
155	hypothetical protein SNE_A12920	gi 338733187 ref YP_004671660.1	25	0	0	0	5	4	1
156	hypothetical protein SNE_A13430	gi 338733238 ref YP_004671711.1	69	0	0	0	9	4	0
157	hypothetical protein SNE_A13780	gi 338733273 ref YP_004671746.1	10	0	0	0	6	1	1
158	hypothetical protein SNE_A13850	gi 338733280 ref YP_004671753.1	23	0	0	0	87	63	86
159	hypothetical protein SNE_A14220	gi 338733317 ref YP_004671790.1	46	0	0	0	5	1	6
160	hypothetical protein SNE_A14320	gi 338733327 ref YP_004671800.1	100	0	0	0	2	0	0
161	hypothetical protein SNE_A14450	gi 338733340 ref YP_004671813.1	18	0	0	0	5	4	2
162	hypothetical protein SNE A14830	gi 338733378 ref YP 004671851.1	52	0	0	0	4	9	13
163	hypothetical protein SNE A15340	ail338733429lreflYP_004671902.11	14	0	0	0	6	1	0
164	hypothetical protein SNE A15580	ail338733453lreflYP_004671926.1	15	0	0	0	2	1	0
165	hypothetical protein SNE_A16160	gil338733511/reflYP_004671984_1	13	0	0	0	0	2	0
166	hypothetical protein SNE_A16470	gil338733542lreflYP_004672015_1	44	0	0	0	3	1	2
167	hypothetical protein SNE_A16490	gil338733544/reflYP_004672017_1	20	0	0	0	95	60	67
169	hypothetical protein SNE_A16620	gil338733557/ref/VP_004672030_1	20	0	0	0	3	2	2
100	hypothetical protein SNE_A10020	gi[330733357][e][1F_004072030.1]	20	0	0	0	1	4	4
109	hypothetical protein SNE_A17030	gij338733598jieij1P_004672071.1j	10	0	0	0	1	4	1
170	hypothetical protein SNE_A17080	glj338733603[ref]YP_004672076.1]	14	0	0	0	3	3	3
1/1	nypotnetical protein SNE_A17110	glj338733606jrefjYP_004672079.1	61	0	0	0	6	2	0
1/2	nypothetical protein SNE_A17160	gi 338733611 ref YP_004672084.1	9	0	0	0	23	17	12
173	hypothetical protein SNE_A17530	gi 338733648 ret YP_004672121.1	26	0	0	0	2	0	0
174	hypothetical protein SNE_A17950	gi 338733690 ref YP_004672163.1	15	0	0	0	2	0	0
175	hypothetical protein SNE_A17960	gi 338733691 ref YP_004672164.1	13	0	0	0	1	3	5
176	hypothetical protein SNE_A18230	gi 338733718 ref YP_004672191.1	22	0	0	0	5	2	0
177	hypothetical protein SNE_A18330	gi 338733728 ref YP_004672201.1	18	0	0	0	5	0	3
178	hypothetical protein SNE_A18560	gi 338733751 ref YP_004672224.1	110	0	0	0	19	4	0
179	hypothetical protein SNE_A18800	gi 338733775 ref YP_004672248.1	11	0	0	0	29	23	24
180	hypothetical protein SNE_A18870	gi 338733782 ref YP_004672255.1	9	0	0	0	24	11	13
181	hypothetical protein SNE_A19020	gi 338733797 ref YP_004672270.1	24	0	0	0	15	8	11
182	hypothetical protein SNE_A19170	gi 338733812 ref YP_004672285.1	39	0	0	0	4	2	12
183	hypothetical protein SNE_A19380	gi 338733833 ref YP_004672306.1	9	0	0	0	52	24	16
184	hypothetical protein SNE A19580	gi 338733853 ref YP 004672326.1	134	0	0	0	4	2	0
185	hypothetical protein SNE A19590	gi 338733854 ref YP_004672327.1	58	0	0	0	32	7	14
186	hypothetical protein SNE A19900	gi 338733885 ref YP_004672358.1	18	0	0	0	3	1	0
187	hypothetical protein SNE A19990	ail338733894lreflYP_004672367.1	23	0	0	0	6	2	0
188	hypothetical protein SNE_A20110	ail338733906lreflYP_004672379.1	194	0	0	0	40	0	3
189	hypothetical protein SNE_A20280	gil338733923lreflYP_004672396.1	11	0	0	0	2	0	1
190	hypothetical protein SNE_A20410	gil338733936/reflYP_004672409.1	30	0	0	0	20	15	15
191	hypothetical protein SNE_A20450	gil338733940/reflYP_0046724131	33	0	0	0	16	4	15
192	hypothetical protein SNE_A20460	gil338733941/refl/P_004672414_1	16	0	0	0	2	2	3
193	hypothetical protein SNE_A20720	gil338733967/ref/YP_004672440_1	18	0	0	0	0	3	1
104	hypothetical protein SNE_A20720	gi[338733000]ref[VP_004672472.1]	28	0	0	0	7	3	2
105	hypothetical protein SNE_A21360	gil338734031/refl/P_004672504.1	30	0	0	0	23	0	16
106	hypothetical protein SNE_A21000	gi[229724042]rof[VD_004672516_1]	00	0	0	0	126	10	11
190	hypothetical protein SNE_A21480	gij338734043jieij1F_004672510.1j	90	0	0	0	120	40	4
197	hypothetical protein SNE_A21660	gi[336734065][6][1F_004672590.1]	17	0	0	0	0	2	4
100	hypothetical protein SNE_A22120	gij338734107 jiel 11 - 004672580.1	30	0	0	0	4	40	0
199	hypothetical protein SNE_A22200	gij338734121jtelj1F_004672594.1	37	0	0	0	11	12	9
200	hypothetical protein SNE_A22300	gij338734131jieij1F_004672004.1	15	0	0	0	0	5	3
201	hypothetical protein SNE_A22630	gl 338734158 ref YP_004672631.1	62	0	0	0	78	50	71
202	hypothetical protein SNE_A22640	gl 338734159 ref YP_004672632.1	64	0	0	0	82	30	73
203	nypotnetical protein SNE_A22650	gi[338734160[ref]YP_004672633.1]	64	0	0	0	2	3	0
204	hypothetical protein SNE_A22660	gi 338734161 ret YP_004672634.1	65	0	0	0	2	0	3
205	hypothetical protein SNE_A22670	gi 338734162 ref YP_004672635.1	64	0	0	0	2	0	0
206	hypothetical protein SNE_A22910	gi 338734186 ref YP_004672659.1	171	0	0	0	2	1	0
207	hypothetical protein SNE_A22920	gi 338734187 ref YP_004672660.1	37	0	0	0	4	4	0
208	hypothetical protein SNE_A23080	gi 338734203 ref YP_004672676.1	120	0	0	0	8	1	1
209	hypothetical protein SNE_A23660	gi 338734261 ref YP_004672734.1	22	0	0	0	2	0	0
210	hypothetical protein SNE_B23850	gi 338731761 ref YP_004662880.1	42	0	0	0	6	2	6
211	hypothetical protein SNE_B23910	gi 338731767 ref YP_004662886.1	14	0	0	0	3	2	2
212	hypothetical protein SNE_B24300	gi 338731806 ref YP_004662925.1	10	0	0	0	21	8	12
213	hypothetical protein SNE_B24340	gi 338731810 ref YP_004662929.1	58	0	0	0	2	0	0
214	intracellular protease 1	gi 338733072 ref YP_004671545.1	19	0	0	0	5	1	0
215	lon protease	gi 338733949 ref YP_004672422.1	94	0	0	0	20	4	1
216	macrophage infectivity potentiator	gi 338734062 ref YP_004672535.1	32	0	0	0	5	1	1
217	malate dehydrogenase	gi 338732596 ref YP_004671069.1	36	0	0	0	2	0	0
218	metalloendopeptidase OMA1	gi 338732436 ref YP_004670909.1	40	0	0	0	3	1	2
219	MOMP like family protein	qi 338732404 ref YP 004670877 1	47	0	0	0	43	20	30
220	MOMP like family protein	qi 338732777lreflYP_004671250_1	46	0	0	0	3	1	3
221	MOMP like family protein	qi 338732173 ref YP_004670646.1	45	0	0	0	205	57	112
222	MOMP like family protein	gil338732639lreflYP_004671112_1	45	0	0	0	47	17	37
223	MOMP like family protein	dil338734236lrefIVP_004672700_1	43	n	n	ñ	96	31	68
		9.10001 0.12001 0111 _004012109.11	-0		5	5	00		00

234

224	MOMP like family protein	ail3387342371refIYP 004672710.11	43	0	1	0	55	14	36
225	MOMP, like family protein	gil338732181/reflVD_004670654_1	13	0	0	0	8	3	5
225		gij550752101jieij1F_004070054.1j	45	0	0	0	0	5	5
226	MOMP_like family protein	gi 338733489 ret YP_004671962.1	43	0	0	0	14	1	0
227	MOMP_like family protein	gi 338732638 ref YP_004671111.1	42	0	0	0	29	10	12
228	MOMP like family protein	ail3387333801refIYP 004671853.11	42	0	0	0	4	3	3
220	MOMB like family protein	gil229722192lrofIVD_004670655_1	10	0	0	0	6	0	0
229		gij356752162jieij1F_004670655.1j	42	0	0	0	0	0	0
230	MOMP_like family protein	gi 338734234 ref YP_004672707.1	42	0	0	0	4	0	0
231	MOMP like family protein	ail3387339661ref1YP_004672439.11	41	0	0	0	75	19	52
	MOMP like family protein	cil220722600/refl/D_004671462.1		0	0	0	0	4	2
232		gij556752090[rel[1P_004071105.1]	41	0	0	0	0	4	3
233	MOMP_like family protein	gi 338732896 ref YP_004671369.1	41	0	0	0	5	2	0
234	MOMP like family protein	ail338732101/reflYP_004670574_1	41	0	0	0	6	1	0
				•	•	•		-	
235	MOMP_like family protein	gi 338733381 ref YP_004671854.1	40	0	0	0	13	5	14
236	MOMP_like family protein	gi 338732701 ref YP_004671174.1	40	0	0	0	11	0	1
237	MOMP like family protein	ail338732179/reflVP_004670652.11	40	0	0	0	2	0	0
201		gijooroz in girciji i _004070002. ij	40	0	0	0	2	0	-
238	MOMP_like family protein	gi 338732121 ref YP_004670594.1	37	0	0	0	20	6	5
239	MOMP like family protein	qi 338732175 ref YP 004670648.1	25	0	0	0	94	37	80
240	MOMP like family protein	gil338732774/reflVP_004671247_1	21	0	0	0	7	4	٩
240			21		•			-	
241	MOMP_like family protein	gi 338732773 ref YP_004671246.1	18	0	0	0	7	2	1
242	MOMP like family protein	gi 338732176 ref YP 004670649.1	15	0	0	0	40	16	25
243	negative regulator of type III secretion	ail338733662lreflVP_004672135_1	46	0	0	0	2	0	0
240	negative regulator of type in secretion	gijood700002jicij11 _004072100.1j	40	0	0	0	2	0	
244	nitrogen regulatory protein	gi 338732347 ret YP_004670820.1	28	0	0	0	2	0	1
245	nucleoside diphosphate kinase	gi 338733843 ref YP 004672316.1	16	0	0	0	7	3	1
246	oligonentide, binding protein OppA	ail338734212lrofIVP_004672685_1	61	0	0	0	21	2	27
240		gij550754212jicij11_004072005.1j	01	0	0	0	21	2	21
247	peptide deformylase	gi 338732788 ref YP_004671261.1	20	0	0	0	3	0	1
248	peptidoglycan associated lipoprotein	gi 338732020 ref YP 004670493.1	26	0	0	0	3	1	5
249		ail338732928/reflVP_004671401_1	18	0	0	0	11	3	2
243	peptidyipiolyrisonerase	gij550752520jrei[1F_004071401.1]	10	0	0	0		5	2
250	peroxiredoxin_1	gi 338734151 ref YP_004672624.1	22	0	0	0	4	2	1
251	polyA polymerase	qi 338733740 ref YP 004672213.1	48	0	0	0	4	0	0
252	nolyribanyolootida nyolootidyltranoforaaa	ail229722644/rofIVD_004671117_1	76	0	0	0	26	6	2
252	polymboliucieolide nucleolidyitransierase	gij356752044[lei]TF_004071117.1]	70	0	0	0	20	0	2
253	protein MraZ	gi 338732389 ref YP_004670862.1	20	0	0	0	7	3	0
254	protein recA	ail338731966lreflYP 004670439.11	37	0	0	0	21	7	20
255	putative apotultrapoforaça	gil229722772lrofIVD_004672245_1	20	0	0	0		1	
255	putative acetylitaristerase	gij356735772jieij1F_004672245.1j	20	0	0	0	4	1	0
256	putative aconitate hydratase 2	gi 338733104 ref YP_004671577.1	70	0	0	0	7	0	0
257	putative alphabeta hydrolase	ail338733341 ref YP 004671814.1	37	0	0	0	3	0	0
250	putative ATP dependent Cla protecco	gil229722240/rofIVD_004670922.11	06	0	0	0	0	0	1
250	ATD binding outpunit	gij356752549jieij1F_004070622. ij	90	0	0	0	0	0	1
	ATP_binding suburile								
259	putative bifunctional preprotein translocase	gi 338734080 ref YP_004672553.1	171	0	0	0	17	3	13
	subunit SecDSecF								
260	putative cytosol aminopeptidase	ail338732748/reflYP_004671221.1	54	0	0	0	20	9	8
004			10	0	0	-		0	-
261	putative DNA_binding protein HU	gij338732693[ref]YP_004671166.1]	12	0	0	0	11	8	5
262	putative DNA_binding protein HU	gi 338731863 ref YP_004662982.1	11	0	0	0	7	1	2
263	putative flagellar motor switch protein	ail338733900/reflYP_004672373_1	44	0	0	0	12	1	1
200				0	0	0	12		
264	putative outer membrane protein Omp85	gi[338732712[ref]YP_004671185.1]	91	0	0	0	15	1	4
265	putative peptidylprolyl isomerase II	gi 338734263 ref YP_004672736.1	20	0	0	0	8	8	1
	Cyclophilin A								
266	nutative RNA binding protein rbnA	ail338732260/reflVP_004670733_1	15	2	0	0	58	36	26
200	patative rawbinding protein rbp/ t		10	-	0	0	00	00	-
267	putative SctF chaperone SctG	gi 338733893 ret YP_004672366.1	16	0	0	0	12	6	5
268	putative sigma regulatory factor	gi 338733610 ref YP 004672083.1	13	0	0	0	2	3	3
269	nutative signal pentide pentidase sppA	ail338734114/reflYP_004672587_1	38	0	0	0	6	4	10
200			00		•		•	-	10
270	putative thiol peroxidase	gi 338733118 ret YP_004671591.1	20	0	0	0	3	0	0
271	putative transaldolase	gi 338732569 ref YP_004671042.1	24	0	0	0	3	0	2
272	putative TrmH family tRNArRNA	ail3387329001refIYP_004671373_1	26	0	0	0	2	1	0
	methyltransferase	3.12.201 02.000 01.01 01.01 01.01		·	5	5	-	•	v
			05			•	•		•
2/3	pyndoxinepyndoxamine 5_phosphate	gijoo8/32530[ret]YP_0046/1003.1]	25	U	U	U	Ŭ	4	3
	oxidase								
274	pyruvate kinase	gi 338732762 ref YP_004671235.1	66	0	0	0	3	0	0
275	ribonucleoside diphosphate reductase	ail338733551 ref YP 004672024 1	124	0	0	0	16	1	3
	subunit alpha			-	-	-			Ũ
276	ribosomal protein SS modification protein	ail3387320241rofIVD_004674204_4	25	0	0	0	А	0	^
2/0		9100010202111011F_004071094.1	35	-	U	U	4	U	U
277	ribosome_binding factor A	gij338733653 ret YP_004672126.1	14	0	0	0	3	1	1
278	ribosome recycling factor	gi 338732136 ref YP 004670609.11	20	0	0	0	4	2	0
270		gil229724242lrofIVD_004672716_1	6E	0	0	0	0	0	2
213		910007072701011F_004072710.1	00	0	0	0	0		2
280	Skp_like protein	gi 338732711 ref YP_004671184.1	22	0	0	0	28	14	8
281	superoxide dismutase	gi 338733193 ref YP 004671666.1	22	0	0	0	3	0	0
282	tail specific protease	gil338734084lreflYP_004672557_1	75	Ω	0	٥	7	1	Ω
202		gij550754004jicij11_004072557.1j	15	0	0	0		-	-
283	thioredoxin	gij338734066 ret YP_004672539.1	12	0	0	0	12	8	7
284	transcription antitermination protein nusG	gi 338733412 ref YP 004671885.1	20	0	0	0	5	1	0
285	transcription elongation factor greA	dil338734208lreflYP_004672681_1	84	Ω	0	٥	17	1	2
200			04	0	5	5			2
286	transcription elongation protein nusA	gi[338733651 ref YP_004672124.1	48	0	0	0	4	1	4
287	transcription termination factor Rho	gi 338734117 ref YP 004672590.11	55	0	0	0	49	15	25
289	translation initiation factor IF 1	dil338733415/ref/VP_004671999_1	8	Ω	0	٥	2	Δ	0
200		91000700+101011F_004071000.1	0	-	-	U	<u> </u>		U
289	translation initiation factor IF_2	gi 338733652 ref YP_004672125.1	89	0	0	0	23	7	5
290	translation initiation factor IF 3	qi 338733287 ref YP 004671760.11	19	0	0	0	11	3	7
201	type III secretion ATPase inhibitor	dil338732186lrofIVP_004670650_1	24	0	0	0	А	0	∩
201			24	-	5	5	-	-	0
292	type III secretion integral inner membrane	gij338733889 ret YP_004672362.1	64	0	0	0	3	U	3
	ring protein								
293	type III secretion periplasmic lipoprotein	gi 338732188 ref YP 004670661.11	35	0	0	0	3	3	9
204	type III secretion specific chlamydia	dil338733332/ref/VP_004671805_1	21	1	0	0	13	5	- 20
234	chanerone 1	910001000211011F_00407 1000.1	21	1	U	U	13	5	20
				-	-	-	-	-	-
~~-	ubiquinonemenaquinone biosynthesis	all338733314lreflYP 004671787.11	28	0	0	0	3	0	0
295		51000 T T T							

296	UDP_3_O_[3_hydroxymyristoyl] glucosamine N_acyltransferase	gi 338732710 ref YP_004671183.1	38	0	0	0	5	5	1
297	UDP_3_O_[3_hydroxymyristoyl] N_acetylglucosamine deacetylase	gi 338734036 ref YP_004672509.1	32	0	0	0	8	3	4
298	uvrABC system protein A	gi 338732761 ref YP_004671234.1	209	0	0	0	2	0	0
299	v_type ATP synthase subunit alpha	gi 338733387 ref YP_004671860.1	65	0	0	0	7	0	0
300	v_type proton ATPase subunit E	gi 338733389 ref YP_004671862.1	24	0	0	0	10	2	11
301	virginiamycin A acetyltransferase	gi 338732521 ref YP_004670994.1	24	0	0	0	3	1	0
302	virulence plasmid protein pGP6_D	gi 338731874 ref YP_004662993.1	28	0	0	0	7	1	2

Tab. 3.1.3: Über LC-MS² ermittelte ER-SCV-Membranen-assoziierte Simkania-Proteine. Eine Gesamtmenge von 302 Simkania-Proteinen wurde über Massenspektrometrie in ER-SCV-Membranproben identifiziert. Proteinnamen, GI Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Molekulargewicht (MGW, kDa) sind angegeben. Die Gesamtzahl der bestimmten Spektren (engl. *total number of assigned spectra*) von drei Kontroll- und drei infizierten Proben sind aufgelistet. P1/2/3 = Probe 1/2/3; Kon. = Kontrolle; Inf. = infiziert.

Identifizierte Simkania Proteine	Accession-Nummer	MGW (kDa)	P1 Inf.	P2 Inf.	P3 Inf.
hypothetical protein SNE_A05500	gi 338732445 ref YP_004670918.1	49	546	836	491
MOMP_like family protein	gi 338732173 ref YP_004670646.1	45	222	646	489
heat shock protein 60	gi 338732680 ref YP_004671153.1	59	297	485	255
DNA_directed RNA polymerase subunit beta	gi 338733407 ref YP_004671880.1	141	409	279	190
DNA_directed RNA polymerase subunit beta	gi 338733406 ref YP_004671879.1	155	372	242	179
elongation factor Tu	gi 338733414 ref YP_004671887.1	43	344	319	183
hypothetical protein SNE_A13850	gi 338733280 ref YP_004671753.1	23	191	242	155
heat shock protein 60	gi 338734154 ref YP_004672627.1	58	165	250	157
elongation factor G	gi 338732222 ref YP_004670695.1	77	288	146	86
hypothetical protein SNE_A16490	gi 338733544 ref YP_004672017.1	29	118	203	143
MOMP_like family protein	gi 338732176 ref YP_004670649.1	15	87	167	167
hypothetical protein SNE_A22630	gi 338734158 ref YP_004672631.1	62	132	152	98
MOMP_like family protein	gi 338732175 ref YP_004670648.1	25	253	549	382
hypothetical protein SNE_A00380	gi 338731934 ref YP_004670407.1	109	182	182	93
heat shock protein 70	gi 338732428 ref YP_004670901.1	70	152	125	68
heat shock protein 60	gi 338732482 ref YP_004670955.1	57	138	161	88
30S ribosomal protein S1	gi 338733650 ref YP_004672123.1	60	147	96	44
hypothetical protein SNE_A02510	gi 338732146 ref YP_004670619.1	18	137	176	169
putative bifunctional preprotein translocase	gi 338734080 ref YP_004672553.1	171	126	105	85
subunit SecDSecF					
hypothetical protein SNE_A22640	gi 338734159 ref YP_004672632.1	64	78	106	89
putative RNA_binding protein rbpA	gi 338732260 ref YP_004670733.1	15	62	105	91
hypothetical protein SNE_A20110	gi 338733906 ref YP_004672379.1	194	46	109	116
chaperone protein ClpB	gi 338733671 ref YP_004672144.1	99	109	95	57
DNA_directed RNA polymerase subunit alpha	gi 338734002 ref YP_004672475.1	42	101	117	60
putative outer membrane protein Omp85	gi 338732712 ref YP_004671185.1	91	84	71	55
hypothetical protein SNE_A01150	gi 338732011 ref YP_004670484.1	110	84	59	44
DNA gyrase subunit A	gi 338733305 ref YP_004671778.1	93	110	56	31
MOMP_like family protein	gi 338732404 ref YP_004670877.1	47	63	75	41
putative SctF chaperone SctG	gi 338733893 ref YP_004672366.1	16	59	67	39
MOMP_like family protein	gi 338732639 ref YP_004671112.1	45	106	96	60
putative aconitate hydratase 2	gi 338733104 ref YP_004671577.1	70	113	71	33
hypothetical protein SNE_A05510	gi 338732446 ref YP_004670919.1	74	66	65	48
ribonucleoside_diphosphate reductase subunit alpha	gi 338733551 ref YP_004672024.1	124	84	55	44
transcription elongation factor greA	gi 338734208 ref YP_004672681.1	84	74	76	43
oligopeptide_binding protein OppA	gi 338734212 ref YP_004672685.1	61	69	95	70

hypothetical protein SNE A19580	gi 338733853 ref YP 004672326.1	134	69	60	39
50S ribosomal protein L7L12	gi 338733408 ref YP_004671881.1	14	57	32	51
50S ribosomal protein L1	gi 338733410 ref YP_004671883.1	25	66	105	51
hypothetical protein SNE_A19590	gi 338733854 ref YP_004672327.1	58	81	43	28
translation initiation factor IF_2	gi 338733652 ref YP_004672125.1	89	84	51	40
10 chaperonin	gi 338732681 ref YP_004671154.1	11	51	37	86
v_type ATP synthase subunit alpha	gi 338733387 ref YP_004671860.1	65	153	93	42
30S ribosomal protein S3	gi 338734017 ref YP_004672490.1	23	82	62	41
hypothetical protein SNE_A20170	gi 338733912 ref YP_004672385.1	354	22	25	30
hypothetical protein SNE_A04650	gi 338732360 ref YP_004670833.1	92	68	66	47
hypothetical protein SNE_A05430	gi 338732438 ref YP_004670911.1	46	35	33	15
hypothetical protein SNE_A02520	gi 338732147 ref YP_004670620.1	36	62	85	67
DO Serine protease	gi 338733560 ref YP_004672033.1	52	75	20	7
hypothetical protein SNE_A22910	gi 338734186 ref YP_004672659.1	171	22	18	17
hypothetical protein SNE_A05010	gi 338732396 ref YP_004670869.1	121	72	70	50
DNA gyrase subunit B	gi 338733306 ref YP_004671779.1	94	41	51	28
protein translocase subunit secA	gi 338732102 ref YP_004670575.1	116	68	48	28
transketolase	gi 338732314 ref YP_004670787.1	73	62	39	15
transcription elongation protein nusA	gi 338733651 ref YP_004672124.1	48	87	79	46
MOMP_like family protein	gi 338734236 ref YP_004672709.1	43	76	57	66
hypothetical protein SNE_A20410	gi 338733936 ref YP_004672409.1	30	79	51	29
hypothetical protein SNE_A23080	gi 338734203 ref YP_004672676.1	120	44	76	32
putative ATP_dependent Clp protease	gi 338732349 ref YP_004670822.1	96	74	68	28
ATP_binding subunit					
transcription termination factor Rho	gi 338734117 ref YP_004672590.1	55	60	64	38
elongation factor Ts	gi 338732134 ref YP_004670607.1	31	96	46	18
isoleucyl_tRNA synthetase	gi 338733495 ref YP_004671968.1	120	72	47	28
biotin carboxylase 1	gi 338733638 ref YP_004672111.1	50	37	22	13
50S ribosomal protein L4	gi 338734022 ref YP_004672495.1	23	41	40	19
ribosome_recycling factor	gi 338732136 ref YP_004670609.1	20	44	27	28
glycyl_tRNA synthetase	gi 338733714 ref YP_004672187.1	117	57	31	25
protein recA	gi 338731966 ref YP_004670439.1	37	79	69	34
50S ribosomal protein L9	gi 338733701 ref YP_004672174.1	23	41	46	26
hypothetical protein SNE_A20230	gi 338733918 ref YP_004672391.1	143	35	17	7
30S ribosomal protein S5	gi 338734007 ref YP_004672480.1	18	59	39	32
hypothetical protein SNE_A08990	gi 338732794 ref YP_004671267.1	77	43	60	30
hypothetical protein SNE_A05070	gi 338732402 ref YP_004670875.1	20	26	29	25
hypothetical protein SNE_A19020	gi 338733797 ref YP_004672270.1	24	54	47	33
ATP_dependent zinc metalloprotease FtsH	gi 338732631 ref YP_004671104.1	105	69	42	18
alanyl_tRNA synthetase	gi 338732313 ref YP_004670786.1	99	56	41	27
ATP_dependent Clp protease	gi 338733856 ref YP_004672329.1	45	85	57	29
aubunit CloX					
suburint CIPA $x_{\rm T}$ type ATD syntheses suburit beta	ail2297222961rofVD 004671950 11	10	26	20	15
V_type ATF synthase suburnit beta	gi[228724000/rof/VD_004672482.1]	40	20 47	29	10
by not hot is a protoin SNE A22000	gij338734009[10][FP_004672667.1]	19	47 50	აი 22	20
nypolitelical protein SNE_A22990	gi[336734194][ei]1F_004672007.1]	76	50	33	20
	gi[229722291]rof[VD_004671954_1]	10	71	40 50	29
	gij336733361jieij1P_004671634.1j	40	7 I 5 A	00	3Z 25
hypothetical protain SNE A17110	gi[336733356][e][1F004672031.1]	61	26	40	10
sorinothrooping, protoin kingso pkn1	gi[338733048]rof[VD_004671521_1]	76	20 75	30 45	10 27
hypothetical protein SNE A18870	gi[338733782]ref[VD_004672255_1]	0	26	40	20
hypothetical protein SNE_A00260	gi[338732821]rof[VD_004671204_1]	9	20	23	20 5
50S ribosomal protein 1 2	ail3387340201rofIVD_00467240241	11 31	25	ອ ງງ	11
hypothetical protein SNE A01200	ail338732016lrafIVD 004670420 1	15	20 53	22 16	14 25
nutative DNA binding protein HI	ail3387326931afIVD_004070409.11	12	33	- 1 0 20	12
30S ribosomal protein S2	ail338732133lrefIVP_004670606_1	30	18	17	12
30S ribosomal protein S9	gi[338732622]ref[VP_0046710651]	14	34	18	24
	Siloon of of the line of the solution of the s	17	57	10	24

30S ribosomal protein S11	gi 338734003 ref YP_004672476.1	15	25	30	25
hypothetical protein SNE_A05460	gi 338732441 ref YP_004670914.1	43	29	21	13
50S ribosomal protein L25	gi 338733705 ref YP_004672178.1	21	15	14	12
peroxiredoxin_1	gi 338734151 ref YP_004672624.1	22	53	37	30
MOMP_like family protein	gi 338732181 ref YP_004670654.1	43	32	32	22
lysyl_tRNA synthetase	gi 338733585 ref YP_004672058.1	88	29	23	16
putative cytosol aminopeptidase	gi 338732748 ref YP_004671221.1	54	63	40	18
MOMP_like family protein	gi 338732638 ref YP_004671111.1	42	78	68	36
hypothetical protein SNE_A11660	gi 338733061 ref YP_004671534.1	147	37	38	11
thioredoxin	gi 338734066 ref YP_004672539.1	12	29	30	25
hypothetical protein SNE_A00900	gi 338731986 ref YP_004670459.1	66	21	36	14
hypothetical protein SNE_A19380	gi 338733833 ref YP_004672306.1	9	26	31	29
50S ribosomal protein L22	gi 338734018 ref YP_004672491.1	12	26	23	28
30S ribosomal protein S7	gi 338732223 ref YP_004670696.1	18	35	25	26
valyl_tRNA synthetase	gi 338733366 ref YP_004671839.1	108	40	19	8
30S ribosomal protein S4	gi 338733817 ref YP_004672290.1	23	29	23	19
transaldolase	gi 338733396 ref YP_004671869.1	35	49	26	8
peptidylprolyl isomerase	gi 338732928 ref YP_004671401.1	18	22	25	28
hypothetical protein SNE_A03870	gi 338732282 ref YP_004670755.1	14	40	35	20
hypothetical protein SNE_A18560	gi 338733751 ref YP_004672224.1	110	68	14	6
MOMP_like family protein	gi 338734237 ref YP_004672710.1	43	47	27	44
hypothetical protein SNE_A05520	gi 338732447 ref YP_004670920.1	49	29	37	25
glutamate dehydrogenase 2	gi 338732432 ref YP_004670905.1	121	47	32	11
hypothetical protein SNE_A04800	gi 338732375 ref YP_004670848.1	194	40	30	32
hypothetical protein SNE_A01140	gi 338732010 ref YP_004670483.1	146	35	22	11
serine hydroxymethyltransferase	gi 338733922 ref YP_004672395.1	56	31	27	15
v_type proton ATPase subunit E	gi 338733389 ref YP_004671862.1	24	49	43	21
lon protease	gi 338733949 ref YP_004672422.1	94	63	37	12
type III secretion specific chlamydia	gi 338733332 ref YP_004671805.1	21	34	36	37
chaperone 1					
hypothetical protein SNE_A22660	gi 338734161 ref YP_004672634.1	65	22	32	16
hypothetical protein SNE_A16470	gi 338733542 ref YP_004672015.1	44	47	26	10
hypothetical protein SNE_A17160	gi 338733611 ref YP_004672084.1	9	21	20	29
dihydrolipoyl dehydrogenase	gi 338732094 ref YP_004670567.1	50	60	32	20
putative proline dehydrogenasedelta_1	gi 338734157 ref YP_004672630.1	137	43	28	13
_pyrroline_5_					
carboxylate dehydrogenase					
50S ribosomal protein L10	gi 338733409 ref YP_004671882.1	19	40	42	27
ADP,ATP carrier protein 1 "	gi 338732401 ref YP_004670874.1	59	28	29	22
biosynthetic arginine decarboxylase	gi 338732506 ref YP_004670979.1	72	44	20	11
leucine dehydrogenase	gi 338732425 ref YP_004670898.1	40	35	50	25
50S ribosomal protein L23	gi 338734021 ref YP_004672494.1	13	35	29	25
10 chaperonin	gi 338734155 ref YP_004672628.1	14	37	29	32
hypothetical protein SNE_A12120	gi 338733107 ref YP_004671580.1	42	34	37	20
hypothetical protein SNE_A08590	gi 338732754 ref YP_004671227.1	138	19	23	13
MOMP_like family protein	gi 338733966 ref YP_004672439.1	41	25	30	24
hypothetical protein SNE_A09040	gi 338732799 ref YP_004671272.1	72	41	31	18
50S ribosomal protein L11	gi 338733411 ref YP_004671884.1	15	28	28	22
hypothetical protein SNE_A19420	gi 338733837 ref YP_004672310.1	100	38	18	12
fructose_bisphosphate aldolase class 1	gi 338733060 ref YP_004671533.1	39	60	46	20
50S ribosomal protein L19	gi 338732655 ref YP_004671128.1	20	81	43	27
Skp_like protein	gi 338732711 ref YP_004671184.1	22	43	13	17
hypothetical protein SNE_A08410	gi 338732736 ref YP_004671209.1	39	76	50	25
hypothetical protein SNE_A10110	gi 338732906 ref YP_004671379.1	9	9	9	4
peptidase S9, prolyl oligopeptidase	gi 338732953 ref YP_004671426.1	75	13	8	6
active site region "					
50S ribosomal protein L16	gi 338734016 ref YP_004672489.1	16	28	36	28

aspartate aminotransferase	ail338731980/reflYP_004670453_1	45	34	26	19
type III secretion periplasmic lipoprotein	gil000701000[ref]TP_0046706611]	35	40	35	15
nitrogen regulatory protein	gil000102100[ref]YP_00467082011	28	25	25	15
inner membrane protein ova	gil000102047 [ref]TP_004671801 1]	Q2	6	16	5
leucyl tRNA synthetase	gil238733149/reflYP_004671622.1	92	51	17	8
type III secretion integral inner	ail338733889[ref[YP_004672362.1]	64	43	43	18
membrane ring protein	gilosof socialicit in _004072002.1	04	70	-0	10
4 hydroxy 3 methylbut 2 en 1 yl	ail338732866lreflYP_004671339_1	68	28	25	13
dinhosnhate synthase	gilosof 02000 i ci i i _00407 1000. I	00	20	20	10
50S ribosomal protein L 17	ail338734001/reflYP_004672474_1	16	24	28	10
chaperone protein htpG	ail3387322851reflYP_004670758 1	70	24	20	12
50S ribosomal protein L13	gi[338732621]ref[VP_004671094_1]	17	23 12	27 13	11
elongation factor P 2	gi[338732300]ref[VP_004670773_1]	21	26	18	1/
MOMP like family protein	gi[338732171]rof[VP_004670644_1]	43	20 46	25	15
UDD 2 0 12 bydrowymyriotoyll N	gij330732171[[ei]1F_004070044.1]	40	40	25	15
	gij336734030jieij1P_004072309.1j	32	34	35	20
Depentulese					
NAD dependent melie enzyme	ail228722110/raflVD_004671502.11	64	22	24	11
hypothetical protein CNE A21040	gij336733119jtelj1P_004671592.1j	04	32	21	11
nypolnelical protein SNE_A21040	gij338733999[fei] P_004672472.1]	28	22	22	6
305 ribosomal protein 58	glj338734010[ref]YP_004672483.1]	15	26	25	29
30S ribosomal protein S10	gl 338/32221 ref YP_0046/0694.1	13	15	20	9
GTP_binding protein TypABipA_	gij338733308[ref YP_004671781.1]	68	31	19	11
like protein		05	50	00	10
DNA topoisomerase 1	gi 338/341/3 ref YP_0046/2646.1	95	53	20	12
6_phosphogluconate dehydrogenase	gi 338/32398 ref YP_0046/08/1.1	53	46	30	13
hypothetical protein SNE_A10840	gi 338732979 ref YP_004671452.1	53	16	8	4
hypothetical protein SNE_A19170	gi 338733812 ref YP_004672285.1	39	21	26	18
50S ribosomal protein L5	gi 338734011 ref YP_004672484.1	21	16	19	14
DNA polymerase III subunit alpha	gi 338734055 ref YP_004672528.1	141	10	7	4
rNA polymerase sigma factor rpoD	gi 338734243 ref YP_004672716.1	65	16	12	7
glycogen synthase	gi 338733709 ref YP_004672182.1	57	4	2	0
tyrosyl_tRNA synthetase	gi 338732692 ref YP_004671165.1	47	35	21	8
putative signal peptide peptidase sppA	gi 338734114 ref YP_004672587.1	38	41	40	18
MOMP_like family protein	gi 338732701 ref YP_004671174.1	40	34	19	11
hypothetical protein SNE_A00960	gi 338731992 ref YP_004670465.1	28	31	35	25
hypothetical protein SNE_A10030	gi 338732898 ref YP_004671371.1	7	12	11	13
30S ribosomal protein S6	gi 338733703 ref YP_004672176.1	13	21	12	4
hypothetical protein SNE_A20870	gi 338733982 ref YP_004672455.1	24	40	23	17
hypothetical protein SNE_A17270	gi 338733622 ref YP_004672095.1	24	21	19	8
phenylalanyl_tRNA synthetase	gi 338733810 ref YP_004672283.1	89	32	19	11
subunit beta					
hypothetical protein SNE_A11840	gi 338733079 ref YP_004671552.1	23	10	32	34
glyceraldehyde_3_phosphate	gi 338734000 ref YP_004672473.1	37	32	22	10
dehydrogenase					
50S ribosomal protein L21	gi 338732243 ref YP_004670716.1	11	15	10	13
malate dehydrogenase	gi 338732596 ref YP_004671069.1	36	35	19	13
alanine dehydrogenase	gi 338733919 ref YP_004672392.1	40	46	27	11
type III secretion integral inner	gi 338733660 ref YP_004672133.1	78	24	18	7
membrane protein					
type III secretion needle formation	gi 338733890 ref YP_004672363.1	9	3	11	11
regulating protein					
hypothetical protein SNE_A10760	gi 338732971 ref YP_004671444.1	84	22	9	4
transcription antitermination	gi 338733412 ref YP_004671885.1	20	13	16	14
protein nusG					
elongation factor P 1	gi 338733640 ref YP_004672113.1	21	34	23	18
rod shape_determining	gi 338733852 ref YP_004672325.1	38	25	17	5
protein mreB					

3_oxoacyl_[acyl_carrier_protein] reductase	gi 338732719 ref YP_004671192.1	27	37	19	18
nucleoside diphosphate kinase	ail3387338431ref1YP 004672316.11	16	15	16	20
putative flagellar motor switch protein	gi 338733900/ref YP_004672373_1	44	26	23	10
hypothetical protein SNE_A10910	gil338732986lreflYP_004671459_1	38	28	26	15
30S ribosomal protein S13	gi 338734004lreflYP_004672477_1	14	13	9	14
50S ribosomal protein L 15	gij000704004jrefjYP_004672479.1	17	16	13	10
threenvl tRNA synthetase	gi 338731942lref VP_004670415_1	74	20	10	10
hypothetical protoin SNE A21260	gij330731342[rei]11 _004070413.1]	20	23	10	22
MOND like femily protein	gij338734031jteij17F_004072304.1j	30	21	19	20
	yij336732696jieij1P_004671369.1j	41	34	25	13
hypothetical protein SNE_A14830	gij338733378 ret YP_004671851.1	52	15	20	16
nypotnetical protein SNE_A21880	gi 338734083 ret YP_004672556.1	17	12	8	16
30S ribosomal protein S15	gi 338732645 ref YP_004671118.1	10	10	11	18
ribonuclease G	gi 338733749 ref YP_004672222.1	60	18	12	6
MOMP_like family protein	gi 338732182 ref YP_004670655.1	42	25	20	11
glutamyl_tRNAGIn amidotransferase subunit A	gi 338733026 ref YP_004671499.1	54	34	30	12
superoxide dismutase	gi 338733193 ref YP_004671666.1	22	19	18	17
50S ribosomal protein L14	gi 338734013 ref YP_004672486.1	14	18	20	13
succinyl CoA ligase subunit beta	gi 338733576 ref YP_004672049.1	41	34	28	6
ATP_dependent Clp protease proteolytic subunit 1	gi 338733921 ref YP_004672394.1	23	9	33	29
enoyl_[acyl_carrier_protein] reductase	gi 338732994 ref YP_004671467.1	34	21	17	11
ATP_dependent chaperone	gi 338733672 ref YP_004672145.1	103	19	27	11
50S ribosomal protein 18	ail338734008/reflVP_004672481_1	12	0	٥	16
	gij338732683lrofIVD_004671156_1	70	16	5	0
by pethodical protoin SNE A18800	gij330732003jreij1F_004071130.1j	10	20	20	16
halliday inaction ATD_demondent DNA	cil220722246/msf/VD_004672246.1	20	32	20	10
helicase ruvB	gij338733346jreij1P_004671819.1j	38	28	17	11
hypothetical protein SNE_A22060	gi 338734101 ref YP_004672574.1	28	21	27	16
alkaline phosphatase synthesis transcriptional regulatory	gi 338732018 ref YP_004670491.1	29	32	31	16
protein phoP					
hypothetical protein SNE_A09960	gi 338732891 ref YP_004671364.1	30	24	28	13
hypothetical protein SNE A17030	gi 338733598 ref YP_004672071.1	10	10	13	10
hypothetical protein SNE B24910	qi 338731867 ref YP_004662986.1	62	38	25	11
hypothetical protein SNE B23850	gil338731761lreflYP_004662880.1	42	25	21	12
Admatinase 1	gil338732507lreflYP_004670980_1	32	25	19	11
ATP_dependent Clp protease proteolytic	gi 338733855 ref YP_004672328.1	22	18	11	12
subunit 2					
MOMP_like family protein	gi 338732121 ref YP_004670594.1	37	22	25	17
MOMP_like family protein	gi 338733707 ref YP_004672180.1	44	31	18	18
hypothetical protein SNE_A19990	gi 338733894 ref YP_004672367.1	23	43	27	13
hypothetical protein SNE_A14400	gi 338733335 ref YP_004671808.1	26	18	25	18
putative glutamine_dependent	gi 338732293 ref YP_004670766.1	61	28	18	10
NAD+ synthetase					
acetyl_coenzyme A carboxylase	gi 338732333 ref YP_004670806.1	36	24	20	8
carboxyl transferase subunit beta					
biotin carboxyl carrier protein of	gi 338733639 ref YP 004672112.1	18	16	13	11
acetyl_CoA carboxylase					
hypothetical protein SNE_A09240	gi 338732819 ref YP_004671292.1	11	9	6	4
arginyl_tRNA synthetase	gi 338734098 ref YP_004672571.1	66	28	12	5
hypothetical protein SNE_A02610	gi 338732156 ref YP_004670629.1	22	24	30	25
aspartyl_tRNA synthetase	gi 338734061 ref YP_004672534.1	69	10	0	0
macrophage infectivity potentiator	gi 338734062 ref YP_004672535.1	32	37	11	3

tail_specific protease	gi 338734084 ref YP_004672557.1	75	41	9	3
30S ribosomal protein S20	gi 338734246 ref YP_004672719.1	11	22	18	17
transcription_repair_coupling factor	gi 338732308 ref YP_004670781.1	122	22	9	5
hypothetical protein SNE_A14220	gi 338733317 ref YP_004671790.1	46	13	13	10
DNA ligase	gi 338732615 ref YP_004671088.1	74	12	10	3
hypothetical protein SNE_A11500	gi 338733045 ref YP_004671518.1	15	9	13	15
50S ribosomal protein L20	gi 338733285 ref YP_004671758.1	13	0	12	11
aspartylglutamyl_tRNAAsnGln	gi 338733025 ref YP_004671498.1	55	21	16	7
amidotransferase subunit B					
deoxycytidine triphosphate deaminase	gi 338733345 ref YP_004671818.1	21	21	18	13
Daunorubicin resistance ABC transporter	gi 338733977 ref YP_004672450.1	29	16	16	8
ATPase subunit					
hypothetical protein SNE_A08760	gi 338732771 ref YP_004671244.1	48	16	12	4
30S ribosomal protein S18	gi 338733702 ref YP_004672175.1	9	3	11	7
ribosomal protein S6 modification protein	gi 338732921 ref YP_004671394.1	35	22	11	11
metalloendopeptidase OMA1	gi 338732436 ref YP_004670909.1	40	7	10	14
hypothetical protein SNE_A14930	gi 338733388 ref YP_004671861.1	31	15	14	8
citrate synthase	gi 338732597 ref YP_004671070.1	43	18	12	5
hypothetical protein SNE_A01070	gi 338732003 ref YP_004670476.1	77	26	10	4
glucose_6_phosphate 1_dehydrogenase	gi 338732848 ref YP_004671321.1	59	12	13	6
hypothetical protein SNE_A03050	gi 338732200 ref YP_004670673.1	26	10	11	9
putative cation_transporting ATPase	gi 338733186 ref YP_004671659.1	92	31	12	5
MOMP_like family protein	gi 338733380 ref YP_004671853.1	42	32	21	12
50S ribosomal protein L3	gi 338734023 ref YP_004672496.1	23	3	12	4
uvrABC system protein A	gi 338732761 ref YP_004671234.1	209	13	6	8
type III secretion chaperone	gi 338733896 ref YP_004672369.1	48	40	16	1
hypothetical protein SNE_A00390	gi 338731935 ref YP_004670408.1	47	10	11	4
type III secretion ATPase inhibitor	gi 338732186 ref YP_004670659.1	24	15	13	7
hypothetical protein SNE_A09250	gi 338732820 ref YP_004671293.1	11	9	6	4
hypothetical protein SNE_A17010	gi 338733596 ref YP_004672069.1	102	25	17	8
chaperone protein dnaJ	gi 338733952 ref YP_004672425.1	41	9	7	1
DNA polymerase I	gi 338734115 ref YP_004672588.1	100	32	13	3
hypothetical protein SNE_B23910	gi 338731767 ref YP_004662886.1	14	10	11	10
glucose_6_phosphate isomerase	gi 338733162 ref YP_004671635.1	60	22	13	4
protein MraZ	gi 338732389 ref YP_004670862.1	20	12	16	12
MOMP_like family protein	gi 338732690 ref YP_004671163.1	41	38	32	11
putative sigma regulatory factor	gi 338733610 ref YP_004672083.1	13	13	12	8
glucosaminefructose_6_phosphate	gi 338733222 ref YP_004671695.1	68	25	7	4
aminotransferase					
50S ribosomal protein L24	gi 338734012 ref YP_004672485.1	13	10	14	6
hypothetical protein SNE_A01230	gi 338732019 ref YP_004670492.1	24	21	14	6
hypothetical protein SNE_A11520	gi 338733047 ref YP_004671520.1	78	22	9	7
hypothetical protein SNE_A03920	gi 338732287 ref YP_004670760.1	138	24	7	0
1,4_Dihydroxy_2_naphthoyl_CoA	gi 338733320 ref YP_004671793.1	30	19	16	6
synthase "					
hypothetical protein SNE_A17540	gi 338733649 ref YP_004672122.1	7	15	19	11
hypothetical protein SNE_A18670	gi 338733762 ref YP_004672235.1	103	9	6	2
hypothetical protein SNE_A05480	gi 338732443 ref YP_004670916.1	40	6	19	8
glucose 1_dehydrogenase	gi 338732678 ref YP_004671151.1	31	29	18	9
MOMP_like family protein	gi 338732774 ref YP_004671247.1	21	15	13	14
enolase	gi 338734144 ref YP_004672617.1	46	26	17	8
hypothetical protein SNE_A00970	gi 338731993 ref YP_004670466.1	15	0	8	6
malonyl CoA_acyl carrier protein	gi 338732718 ref YP_004671191.1	35	22	17	9
transacylase					
hypothetical protein SNE_A16170	gi 338733512 ref YP_004671985.1	14	18	14	11
30S ribosomal protein S17	gi 338734014 ref YP_004672487.1	10	4	2	5
pyruvate dehydrogenase E1 component	gi 338734180 ref YP_004672653.1	41	18	8	3

subunit beta					
elongation factor 4	gi 338732400 ref YP 004670873.1	67	16	9	4
polymorphic outer membrane protein B	gi 338732415 ref YP_004670888.1	177	28	19	11
succinate dehydrogenase flavoprotein subunit	gi 338732032 ref YP_004670505.1	71	13	0	0
tryptophanyl_tRNA synthetase	gi 338733364 ref YP_004671837.1	38	25	14	6
hypothetical protein SNE_A20450	gi 338733940 ref YP_004672413.1	33	22	25	15
pyruvate dehydrogenase E1 component	gi 338732705 ref YP_004671178.1	38	10	8	4
subunit alpha					
DNA polymerase III subunit beta	gi 338733156 ref YP_004671629.1	40	13	10	6
MOMP_like family protein	gi 338733489 ref YP_004671962.1	43	25	19	9
30S ribosomal protein S14	gi 338733729 ref YP_004672202.1	12	13	16	9
isocitrate dehydrogenase	gi 338732267 ref YP_004670740.1	53	12	10	4
methionyl_tRNA synthetase	gi 338732662 ref YP_004671135.1	78	13	7	6
translation initiation factor IF 3	gi 338733287 ref YP_004671760.1	19	13	12	6
fumarate hydratase class II	gi 338733379 ref YP_004671852.1	51	22	10	4
inositol 1 monophosphatase	gi 338732830 ref YP_004671303.1	31	13	10	6
hypothetical protein SNE A20090	gi 338733904 ref YP_004672377.1	34	13	9	4
30S ribosomal protein S16	gi 338732653 ref YP_004671126.1	12	4	4	3
hypothetical protein SNE A04070	qi 338732302 ref YP_004670775.1	31	0	8	3
hypothetical protein SNE A01040	ail338732000lreflYP_004670473.1	17	13	19	15
lipoamide acyltransferase component of	gil338732264lreflYP_004670737.1	43	12	9	1
branched_chain alpha_ keto acid debydrogenase complex	3,			-	
CTP dependent nucleic acid, hinding	ail338733656[rof[VP_004672120_1]	11	22	10	Q
protein engD	gij550755050jieij1F_004072129. ij	41	22	19	0
dihydrolipoyllysine_residue acetyltransferase	gi 338732707 ref YP_004671180.1	45	7	10	4
component of pyruvate dehydrogenase complex					
hypothetical protein SNE_A12890	gi 338733184 ref YP_004671657.1	27	3	6	3
hypothetical protein SNE_A14520	gi 338733347 ref YP_004671820.1	47	15	7	0
ribonucleoside_diphosphate reductase subunit beta	gi 338733552 ref YP_004672025.1	41	12	9	4
putative branched_chain_amino_acid aminotransferase	gi 338732277 ref YP_004670750.1	32	15	16	13
DNA polymerase III subunit gammatau	qi 338732465 ref YP 004670938.1	55	16	7	6
hypothetical protein SNE A12590	qi 338733154 ref YP_004671627.1	17	9	12	7
phenylalanyl_tRNA synthetase subunit alpha	gi 338733284 ref YP_004671757.1	40	10	6	4
ribose_phosphate pyrophosphokinase	gi 338733706 ref YP_004672179.1	34	28	10	5
succinate_semialdehyde dehydrogenase	gi 338733805 ref YP_004672278.1	54	12	6	1
cyclic nucleotide_binding domain_containing	gi 338732570 ref YP_004671043.1	59	12	9	1
protein					
hypothetical protein SNE_B24300	gi 338731806 ref YP_004662925.1	10	19	16	13
phosphoenolpyruvate synthase	gi 338732767 ref YP_004671240.1	88	25	8	0
hypothetical protein SNE_A23280	gi 338734223 ref YP_004672696.1	49	0	4	0
hypothetical protein SNE_A17870	gi 338733682 ref YP_004672155.1	103	10	0	0
hypothetical protein SNE_A06380	gi 338732533 ref YP_004671006.1	41	29	14	8
hypothetical protein SNE_B24140	gi 338731790 ref YP_004662909.1	115	24	10	1
acetyl_coenzyme A carboxylase carboxyl	gi 338732696 ref YP_004671169.1	37	12	17	8
transferase subunit alpha					
single_stranded DNA_binding protein	gi 338732747 ref YP_004671220.1	18	0	0	6
dihydrolipoyllysine_residue	gi 338733004 ref YP_004671477.1	41	15	10	2
succinyltransferase component of					

2_oxoglutarate dehydrogenase complex

3_oxoacyl_[acyl_carrier_protein] synthase I	gi 338733602 ref YP_004672075.1	45	3	4	0
acyl_[acyl_carrier_protein]UDP_N_	gi 338734034 ref YP_004672507.1	30	7	9	4
acetylglucosamineO_acyltransferase					
30S ribosomal protein S12	gi 338732224 ref YP_004670697.1	14	0	0	6
hypothetical protein SNE_A00020	gi 338731898 ref YP_004670371.1	30	12	12	6
hypothetical protein SNE_A16450	gi 338733540 ref YP_004672013.1	49	15	9	0
MOMP like family protein	gi 338732101 ref YP 004670574.1	41	13	10	6
hypothetical protein SNE A17470	gi 338733642 ref YP_004672115.1	36	7	9	1
50S ribosomal protein L27	gi 338732242 ref YP_004670715.1	9	0	7	11
uroporphyrinogen decarboxylase	gi 338732315 ref YP_004670788.1	34	12	3	0
servl tRNA synthetase	gil338732440lreflYP_004670913.1	49	9	8	4
pyridine nucleotide disulfide	gil338732457lreflYP_004670930.11	48	0	7	0
oxidoreductase		-			
ervthronolide synthase	gil338731900/reflYP_004670373.11	101	16	4	1
general stress protein 160	gil338732251lreflYP_004670724_1	14	6	3	6
3 oxoacyl [acyl carrier protein]	gil338732717/reflYP_004671190_1	36	21	12	4
synthase 3		00	21	12	•
ADP I alvero D manno hentose 6	ail3387336991refIVP_004672172_11	30	12	10	4
enimerase	gijooriooosijicijin _004072172.1j	00	12	10	-
epimerase	ail2327327621rofIVD_004671235_11	66	20	6	0
apore cost polycocobaride biogynthesis	gi[330732702][e][1F_004071233.1]	22	29	10	6
spore coal polysacchande biosynthesis	gij336732153jieij1P_004670626.1j	32	1	10	0
the mainline triane a		00	40	40	40
tnymidine kinase	gi 338732418 ref YP_004670891.1	23	12	10	12
pyrophosphatetructose 6_phosphate 1_phosphotransferase subunit beta	gij338732861[ref YP_004671334.1]	58	16	14	4
UDP glucose 6 dehydrogenase	gil338732038/refIYP 004670511.11	49	13	11	6
hypothetical protein SNE_A09010	gil338732796lreflYP_004671269.11	57	10	6	4
DNA mismatch repair protein mutS	gil338733719lreflYP_004672192.1	97	16	10	1
ABC transporter ATP binding protein	gil338733938/reflYP_004672411_1	59	10	10	4
hypothetical protein SNE_A01520	gil338732047lreflYP_004670520_1	16	13	11	9. 9
multidrug resistance protein mdtA	gil338733018lreflYP_004671491_1	42	10	3	0
dutamate 1 semialdehyde 2 1	gil338732983lreflYP_004671456.1	51	25	13	4
aminomutase "	gijoor ozooliciji i _00407 1400. ij	51	20	10	-
hypothetical protein SNE A18300	ail3387337251refIVD_00/672108_11	17	1	1	٨
CDP mappage 3.5 opimorage 2."	gi[338732030]rof[VP_0046705121]	20	+ 16	+ 11	+ 6
MOND like family protein	gi[338732039][e][1F_004670512.1]	30	10	10	0 E
	gij336732179 101 1P_004670652.1	40	10	12	5
glycogen priosphorylase	gij338732197[fei]YP_004670670.1]	99	10	1	2
giutamyi_tRNA synthetase	gi 338734090 ref YP_004672563.1	58	12	11	9
	gi 338734209 ref YP_004672682.1	23	18	13	11
peptidoglycan_associated lipoprotein	gi 338732020 ref YP_004670493.1	26	1	12	10
putative membrane_bound serine	gi 338732984 ref YP_004671457.1	83	6	2	0
protease		4.0	10	10	•
MOMP_like family protein	gi 338732773 ref YP_004671246.1	18	10	12	8
ribonuclease R	gi 338732813 ref YP_004671286.1	77	7	12	2
hypothetical protein SNE_A20030	gi 338733898 ref YP_004672371.1	62	13	7	0
ATP_dependent DNA helicase pcrA	gi 338734163 ref YP_004672636.1	81	13	9	1
hypothetical protein SNE_A21350	gi 338734030 ref YP_004672503.1	26	0	8	4
acrBAcrDAcrF family protein	gi 338732344 ref YP_004670817.1	113	7	0	0
virulence plasmid protein pGP5_D	gi 338731873 ref YP_004662992.1	30	12	11	6
intracellular protease 1	gi 338733072 ref YP_004671545.1	19	9	8	8
hypothetical protein SNE_A15340	gi 338733429 ref YP_004671902.1	14	9	9	6
MOMP_like family protein	gi 338734234 ref YP_004672707.1	42	12	13	4
signal recognition particle protein	gi 338732652 ref YP_004671125.1	51	10	7	4
hypothetical protein SNE_A08000	gi 338732695 ref YP_004671168.1	38	12	11	7
bifunctional 3_dehydroquinate	gi 338733093 ref YP_004671566.1	55	12	8	2
dehydrataseshikimate dehydrogenase					

2_oxoglutarate dehydrogenase E1 component	gi 338733003 ref YP_004671476.1	103	6	2	0
parA family protein	gi 338731943 ref YP_004670416.1	29	24	8	7
2,3_bisphosphoglycerate_dependent	gi 338732202 ref YP_004670675.1	27	7	13	5
phosphoglycerate mutase "					
hypothetical protein SNE_A04900	gi 338732385 ref YP_004670858.1	67	9	7	7
adenylate kinase	gi 338732526 ref YP_004670999.1	27	15	0	2
hypothetical protein SNE_A08130	gi 338732708 ref YP_004671181.1	33	10	12	6
type III secretion outer membrane ring	gi 338732950 ref YP_004671423.1	64	3	4	3
serThr protein kinase	gil338733901/reflYP_004672374.1	60	10	12	4
hypothetical protein SNF A20640	gil338733959lreflYP_004672432.1	16	4	9	6
hypothetical protein SNE_A20980	gi 338733993 ref YP_004672466.1	20	9	0	3
pyridine nucleotide_disulfide oxidoreductase	gi 338732732 ref YP_004671205.1	39	9	11	1
exodeoxyribonuclease 7 small subunit	gi 338732784 ref YP 004671257.1	11	7	13	12
putative signal peptidase I	gi 338732902 ref YP_004671375.1	70	7	4	4
hypothetical protein SNE_B24350	gi 338731811 ref YP_004662930.1	61	29	21	6
protein grpE	gi 338732429 ref YP_004670902.1	22	10	11	10
putative M18 family aminopeptidase 2	gi 338732435 ref YP_004670908.1	47	16	10	4
hypothetical protein SNE_A08620	gi 338732757 ref YP_004671230.1	40	4	8	6
negative regulator of type III secretion	gi 338733662 ref YP_004672135.1	46	10	8	5
monothiol glutaredoxin	gi 338732588 ref YP_004671061.1	12	3	0	3
hypothetical protein SNE_A03190	gi 338732214 ref YP_004670687.1	13	21	18	9
3_oxoacyl_[acyl_carrier_protein] reductase	gi 338732901 ref YP_004671374.1	27	13	6	4
dihydrolipoyl dehydrogenase	gi 338733005 ref YP_004671478.1	49	21	8	1
3R_hydroxymyristoyl_[acyl_carrier_protein] dehydratase	gi 338734035 ref YP_004672508.1	17	18	11	9
glycerol_3_phosphate dehydrogenase [NADP+]	gi 338732118 ref YP_004670591.1	36	10	16	6
prolyl tRNA synthetase 2	gi 338732357 ref YP 004670830.1	57	9	3	2
putative transaldolase	gi 338732569 ref YP_004671042.1	24	7	9	11
hypothetical protein SNE_A09000	gi 338732795 ref YP_004671268.1	57	7	9	4
histidyl_tRNA synthetase	gi 338734060 ref YP_004672533.1	49	21	9	6
MOMP_like family protein	gi 338734235 ref YP_004672708.1	46	19	16	6
aromatic compound monooxygenase yhjG	gi 338733173 ref YP_004671646.1	61	4	0	0
phosphoenolpyruvate_protein phosphotransferase	gi 338732461 ref YP_004670934.1	66	12	10	8
hypothetical protein SNE A15910	gi 338733486 ref YP 004671959.1	12	7	9	13
acyl carrier protein	gi 338732720 ref YP_004671193.1	9	0	6	7
virulence plasmid protein pGP2_D	gi 338731871 ref YP_004662990.1	51	9	6	3
virulence plasmid protein pGP6_D	gi 338731874 ref YP_004662993.1	28	7	4	2
putative tRNA threonylcarbamoyladenosine	gi 338732888 ref YP_004671361.1	36	18	8	8
biosynthesis protein YwIC					
polyA polymerase	gi 338733740 ref YP_004672213.1	48	16	12	2
ADP_heptoseLPS heptosyltransferase 2	gi 338732114 ref YP_004670587.1	40	10	4	3
hypothetical protein SNE_A21590	gi 338734054 ref YP_004672527.1	42	7	11	4
hypothetical protein SNE_A22670	gi 338734162 ref YP_004672635.1	64	3	9	7
guanylate kinase	gi 338732660 ref YP_004671133.1	22	0	2	3
hypothetical protein SNE_A00370	gi 338731933 ref YP_004670406.1	65	0	2	1
hypothetical protein SNE_A10800	gi 338732975 ref YP_004671448.1	45	10	7	2
putative signal peptidase I	gi 338733490 ref YP_004671963.1	75	6	4	3
asparaginyl_tRNA synthetase	gi 338733819 ref YP_004672292.1	52	7	9	3
hypothetical protein SNE_A19900	gi 338733885 ref YP_004672358.1	18	12	8	3
putative cadmium_transporting ATPase	gi 338732193 ref YP_004670666.1	79	15	4	0
hypothetical protein SNE_A02150	gi 338732110 ref YP_004670583.1	38	10	9	4
hypothetical protein SNE_A10930	gi 338732988 ref YP_004671461.1	38	6	11	5

v_type ATP synthase subunit D	gi 338733385 ref YP_004671858.1	24	10	7	2
putative aminoacrylate hydrolase RutD	gi 338733954 ref YP_004672427.1	29	16	10	5
oligopeptide_binding protein OppA	gi 338732943 ref YP_004671416.1	62	0	4	4
hypothetical protein SNE_A20280	gi 338733923 ref YP_004672396.1	11	4	6	3
DNA polymerase III subunit epsilon	gi 338734104 ref YP_004672577.1	28	16	9	4
type III secretion ATPase	gi 338733895 ref YP_004672368.1	68	0	4	3
putative cysteine desulfurase	gi 338732163 ref YP_004670636.1	46	18	7	0
inosine_5_monophosphate	gi 338733125 ref YP_004671598.1	37	13	12	2
dehydrogenase					
hypothetical protein SNE_A18330	gi 338733728 ref YP_004672201.1	18	15	7	6
hypothetical protein SNE_A17530	gi 338733648 ref YP_004672121.1	26	0	10	8
hypothetical protein SNE_A03160	gi 338732211 ref YP_004670684.1	27	7	9	5
MOMP_like family protein	gi 338732702 ref YP_004671175.1	40	10	13	6
protease HtpX_like protein	gi 338733695 ref YP_004672168.1	34	13	11	6
hypothetical protein SNE_A01530	gi 338732048 ref YP_004670521.1	36	4	7	1
succinyl_CoA ligase subunit alpha	gi 338733575 ref YP_004672048.1	30	9	8	2
hypothetical protein SNE_A05040	gi 338732399 ref YP_004670872.1	11	4	3	4
hypothetical protein SNE_A10000	gi 338732895 ref YP_004671368.1	208	3	3	2
hypothetical protein SNE_A09160	gi 338732811 ref YP_004671284.1	25	0	8	6
hypothetical protein SNE_A13780	gi 338733273 ref YP_004671746.1	10	6	9	6
MOMP_like family protein	gi 338732745 ref YP_004671218.1	44	22	6	4
UDP_glucose 6_dehydrogenase	gi 338732839 ref YP_004671312.1	53	4	3	2
hypothetical protein SNE_A12110	gi 338733106 ref YP_004671579.1	136	7	4	0
GTP_binding protein hflX	gi 338732604 ref YP_004671077.1	50	6	2	0
hypothetical protein SNE A01080	gi 338732004 ref YP_004670477.1	20	15	7	5
putative ATP dependent transporter vcf16	gi 338732161 ref YP_004670634.1	27	12	9	5
6 phosphogluconolactonase	qi 338732846 ref YP_004671319.1	29	10	6	3
peptidyl tRNA hydrolase	ail338733704lreflYP 004672177.1	21	6	8	6
putative ribosome biogenesis GTPase RsgA	gi 338734142 ref YP_004672615.1	43	9	8	1
glucokinase	gi 338731970 ref YP_004670443.1	36	16	6	0
hypothetical protein SNE A20210	gi 338733916 ref YP_004672389.1	20	3	0	4
DNA translocase ftsK	gi 338732452 ref YP_004670925.1	85	3	7	0
50S ribosomal protein L28	gi 338733675 ref YP_004672148.1	10	0	2	4
hypothetical protein SNE A02920	qi 338732187 ref YP_004670660.1	34	7	2	0
dihydrodipicolinate synthase	qi 338732930 ref YP_004671403.1	32	7	7	4
oligopeptide binding protein OppA	qil338732965lreflYP 004671438.1	61	6	7	2
putative arogenateprephenate	qi 338733092 ref YP_004671565.1	31	18	9	2
dehydrogenase					
HIT_like protein	gi 338733422 ref YP_004671895.1	12	6	7	5
hypothetical protein SNE_A22920	gi 338734187 ref YP_004672660.1	37	4	4	5
hypothetical protein SNE_A23770	gi 338734272 ref YP_004672745.1	62	10	7	4
putative phosphoketolase	gi 338733185 ref YP_004671658.1	88	6	2	0
peptidase S9 prolyl oligopeptidase active site	gi 338733368 ref YP_004671841.1	70	25	0	0
domain_containing protein					
hypothetical protein SNE_A09460	gi 338732841 ref YP_004671314.1	77	3	4	4
adenylate cyclase	gi 338733401 ref YP_004671874.1	54	7	8	0
putative	gi 338733625 ref YP_004672098.1	48	7	7	3
UDP_N_acetylmuramoyl_tripeptide D alanyl D alanine ligase					
hypothetical protein SNE A18200	gi 338733715 ref YP 004672188.1	23	9	6	6
acetoin2,6 dichlorophenolindophenol	gi 338734179 ref YP_004672652.11	36	6	7	2
oxidoreductase subunit alpha "					
hypothetical protein SNE A12970	gi 338733192 ref YP 004671665.1	15	3	7	4
putative TrmH family tRNArRNA	gi 338732900 ref YP_004671373.1	26	9	7	1
methyltransferase					

2. ovojaovalarata dobudrogonaca oubunit	ail2297224421rofIVD_00467004E_1	76	7	c	0
2_0X0IS0Valerate denydrogenase suburnit	gij336732442jieij1P_004670915. ij	70	1	0	0
replicative DNA belicase	ail338732050/reflVP_004670532.11	54	1	7	1
hypothetical protein SNE A02040	gi[338732039][e][1F_004670532.1]	46	4	6	י ר
hypothetical protein SNE_A02040	gij338732099jieij1P_004070372.1j	40	7	0	4
hypothetical protein SNE_A09520	gij338732847 [rei] YP_004671320.1]	42	1	8	1
tnymidylate kinase	gi 338/33304 ref YP_0046/1///.1	25	12	1	4
hypothetical protein SNE_A18420	gi 338/33/3/ ref YP_0046/2210.1	26	4	9	6
hypothetical protein SNE_A20460	gi 338733941 ref YP_004672414.1	16	6	8	6
hypothetical protein SNE_A20140	gi 338733909 ref YP_004672382.1	36	0	10	2
dCTP pyrophosphatase 1	gi 338731890 ref YP_004663009.1	15	0	2	4
putative alphabeta hydrolase	gi 338733341 ref YP_004671814.1	37	6	4	0
putative zinc metalloprotease CT_072	gi 338732412 ref YP_004670885.1	72	0	0	1
putative ATPase	gi 338731782 ref YP_004662901.1	46	7	7	1
phosphatidylethanolamine	gi 338731822 ref YP_004662941.1	31	0	2	3
N_methyltransferase					
putative fumarate hydratase subunit alpha	gi 338732297 ref YP_004670770.1	30	15	8	4
peptide deformylase	gi 338732788 ref YP_004671261.1	20	10	7	5
hypothetical protein SNE_A20940	gi 338733989 ref YP_004672462.1	462	19	4	3
chlamydia virulence plasmid protein 6	gi 338731944 ref YP_004670417.1	27	3	0	1
hypothetical protein SNE_A03530	gi 338732248 ref YP_004670721.1	34	9	4	4
hypothetical protein SNE_A01970	gi 338732092 ref YP_004670565.1	34	10	9	1
ribosome binding factor A	gi 338733653 ref YP_004672126.1	14	0	0	4
hypothetical protein SNE A10690	qi 338732964 ref YP_004671437.1	79	6	0	0
cell division protein ftsY	gil338733577lreflYP_004672050.1	34	9	7	0
hypothetical protein SNE_A11710	ail338733066lreflYP_004671539.1	23	0	0	4
hypothetical protein SNE_A02320	ail338732127/ref/YP_004670600_1	113	10	4	0
bifunctional protein hldF	ail338733698/reflYP_004672171_1	48	6	3	0
putative DNA binding protein HU	ail338731863lreflYP_004662982.1	11	4	6	6
hypothetical protein SNE_A02720	ail338732167/ref/YP_004670640.1	52	7	6	2
nhosphoglycerate kinase	gil338734105/reflYP_004672578_1	44	7	4	2
hypothetical protein SNE_A05810	gil238732476/ref/YP_004670949_1	13	0	7	0
hypothetical protein SNE_A00450	gil338731941/reflYP_004670414_1	98	10	3	0
amino acid ABC transporter periplasmic	gil3387321951reflYP_004670668_1	27	10	11	4
amino	giloser oz resperir _004070000.1	21	10		7
acid binding protein					
hypothetical protein SNE A06020	ail338732497/reflYP 004670970.1	12	9	7	4
triosephosphate isomerase	ail338732786lreflYP_004671259_1	28	9	4	4
putative fucosyl transferase	gil338733207/reflYP_004671680_1	41	7	8	1
gMC oxidoreductase	gil338733668lreflYP_004672141_1	57	3	3	0
hypothetical protein SNE_A02710	gil238732166/reflYP_004670639_1	11	4	7	с З
hypothetical protein SNE_A19280	gi[338733823]ref[YP_004672296_1]	102	+ 13	6	0
serinethreoning protein kingse pkpD	gil338733365/ref/VP_0046718381	102	10	2	0
putative pontidularabil isomoroas II	gi[336733305][e][1F_004671838.1]	20	0	2	4
	gij350754205jrei[11_004072750.1]	20	9	0	4
by pathetical protein SNE A08200	ail229722715/rof/VD_004671199_1	67	4	٨	2
Chikimata kinasa	gij338732715jieij1F_004071188.1	07	4	4	2
	gij336733063jieij1P_004671556.1		7	7	5
	gij338733595[ref]YP_004672068.1]	54	1	6	3
2_denydro_3_deoxypnosphooctonate	gi 338733838 ref YP_004672311.1	30	4	2	5
aluciase	ail3387324621reflVP_004670935_1	13/	0	2	0
alveoral 3 phosphate dehydrogonase	gil338732262[ref]11_004070303.1]	59 59	4	2	0
oligonantida, binding protoin OppA	gil228722066[rof]VD_004671420.1]	61	-	2	0
bAD superfemily hydrolesenbeenbetees	gi[338732900][e][1F_004671459.1]	21	4	2	2
	yijoorozyyzlieijt P_004071465.1	ວ i ວ o	4 10	U C	ა ი
	gijoo6733314jreijYP_004671787.1	Zŏ	10	σ	3
		05	0	2	^
∠_succinyi_5_enoipyruvyi_6_hydroxy_3_	gij338733316[ret]YP_004671789.1]	69	Э	3	კ
cyclonexene_1_carboxylate synthase		25	C	0	~
cylicylate kinase	gij338734009[ret]YP_004672542.1	20	O	Ø	3

hypothetical protein SNE_A22970	gi 338734192 ref YP_004672665.1	46	9	3	0
succinate_semialdehyde dehydrogenase	gi 338732148 ref YP_004670621.1	51	3	2	1
hypothetical protein SNE A18580	gi 338733753 ref YP 004672226.1	13	3	0	3
hypothetical protein SNE A07640	gi 338732659 ref YP_004671132.1	34	13	4	1
mercuric reductase	gi 338731819 ref YP_004662938.1	76	9	4	0
tRNA uridine 5 carboxymethylaminomethyl	gi 338732049 ref YP_004670522.1	67	7	7	0
modification protein MnmG					
hypothetical protein SNE B23870	gi 338731763 ref YP 004662882.1	45	9	8	4
transcriptional repressor NrdR	qi 338732250 ref YP_004670723.1	18	7	6	8
delta aminolevulinic acid dehvdratase	ail338734196lreflYP 004672669.1	37	6	6	4
phospho 2 dehvdro 3 deoxyheptonate	ail338732918lreflYP 004671391.1	38	4	2	0
aldolase	3.1				
MOMP like family protein	ail338733016lreflYP 004671489.11	38	4	6	2
putative thiol peroxidase	ail338733118lreflYP_004671591.1	20	0	7	5
peptide chain release factor 1	ail338732649lreflYP_004671122_1	39	7	6	1
glycerol 3 phosphate acyltransferase	ail338733750lreflYP_004672223 1	39	6	2	0
hypothetical protein SNE_A07920	ail338732687lreflYP_004671160.1	11	6	6	5
hypothetical protein SNE_A09730	gil338732868lreflYP_004671341_1	24	3	6	4
hypothetical protein SNE_A20930	ail338733988lreflYP_004672461_1	66	6	6	0
virginiamycin A acetyltransferase	gil338732521/reflYP_004670994_1	24	6	3	0
hypothetical protein SNE A23520	gil338734247/reflYP_004672720_1	16	4	6	4
hypothetical protein SNE_A21450	gil338734040lreflYP_004672513_1	10 41	15	0	0
hypothetical protein SNE_A02650	gil338732160/reflVP_004670633_1	54	10	3	0
Xaa Pro dipentidase	gi[338733420]ref[VP_004671803.1]	J 4 44	+ 12	J 1	0
hypothetical protein SNE A05500	gil338732454/reflVP_004670927_1	 1/	0	т 6	5
1 doory D xyluloso 5 phosphato	gi[338732783]rof[VD_004671256_1]	60	6	2	2
synthase	gij556752765jieij1P_004071250.1j	09	0	Z	3
hypothetical protein SNE_A13430	gi 338733238 ref YP_004671711.1	69	4	7	6
farnesyl diphosphate synthase	gi 338732838 ref YP_004671311.1	32	0	4	3
hypothetical protein SNE_A01910	gi 338732086 ref YP_004670559.1	39	7	7	4
hypothetical protein SNE_A15540	gi 338733449 ref YP_004671922.1	134	10	4	1
hypothetical protein SNE_A21640	gi 338734059 ref YP_004672532.1	23	0	2	1
hypothetical protein SNE_A10950	gi 338732990 ref YP_004671463.1	20	6	6	6
hypothetical protein SNE_A01840	gi 338732079 ref YP_004670552.1	136	10	2	0
peptide chain release factor 2	gi 338733773 ref YP_004672246.1	37	3	0	0
hypothetical protein SNE_B25060	gi 338731882 ref YP_004663001.1	40	9	3	2
hypothetical protein SNE_A22750	gi 338734170 ref YP_004672643.1	44	4	2	2
hypothetical protein SNE_A11430	gi 338733038 ref YP_004671511.1	64	13	9	1
ubiquinol oxidase subunit 2	gi 338733528 ref YP_004672001.1	33	9	6	4
hypothetical protein SNE A17960	gi 338733691 ref YP_004672164.1	13	0	9	6
type III secretion specific chlamydia	gi 338733663 ref YP_004672136.1	18	0	3	6
chaperone 1					
nitroreductase	gi 338732881 ref YP 004671354.1	22	0	0	1
virulence plasmid protein pGP1 D	qi 338731872 ref YP_004662991.1	51	7	3	0
general secretion pathway protein E	ail338731996lreflYP 004670469.1	59	9	7	0
hypothetical protein SNE A05720	qi 338732467 ref YP_004670940.1	80	13	2	0
putative outer membrane factor OMF	qi 338733019 ref YP_004671492.1	55	4	6	1
family efflux porin					
	ail338733170/reflVP_004671643_1	10	7	3	Δ
	gil338733772/ref/VP_004672245_1	20	1	0	1
hypothetical protein SNE_A04030	gil338732388lreflVP_004670861_1	20	- 0	3	י 2
hypothetical protein SNE_A02550	gi[338732150]ref[VP_004670623.1]	20	2	3	0
hypothetical protein SNE_A02000	ail3387336021rofIVD_004672076_4	2 4 1 <i>1</i>	6	0	0
nypoinelical protein SNE_AT7000	ail338732684/rofIVD_004674457.4	10	0	0	5
phosphotanici protein CNE A09020	gil3397327871rofIVD_004674260.4	10	0	0	5
509 ribosomal protein L 20	gij330732707 [10] [T_00407 1200. []	ιι 0	0	0	7
by nothering protein SNE A12550	gij330734013jieij1P_004072488.1	0 57	0	9	י ר
nypothetical protein SNE_A12550	gijooo/oo ioujieijirP_0040/1023.1	57	U	4	ა

a da su da a constructor lo cana	=:100070404Elas fl\/D_00407044041	50	4	~	4
adenylosuccinate lyase	gi 338/31945 ref YP_0046/0418.1	53	4	3	1
hypothetical protein SNE_A10320	gi 338732927 ref YP_004671400.1	20	10	3	2
ribosomal RNA small subunit	gi 338732391 ref YP_004670864.1	23	3	4	0
methyltransferase H					
hypothetical protein SNE_A22360	gi 338734131 ref YP_004672604.1	15	3	6	2
mg2 transporter protein CorA family protein	gi 338732709 ref YP_004671182.1	36	0	4	2
hypothetical protein SNE_A14020	gi 338733297 ref YP_004671770.1	19	6	0	4
glutathione biosynthesis bifunctional	gi 338732945 ref YP 004671418.1	93	4	3	0
protein gshAB					
v type ATP synthase subunit I	ail3387333841ref1YP 004671857.11	73	0	2	0
hypothetical protein SNE A19820	gil338733877lreflYP_004672350.11	90	10	0	0
hypothetical protein SNE_A21900	gil338734085lreflYP_004672558 1	29	6	0	2
hypothetical protein SNE_A22260	gil338734121lreflYP_004672594_1	37	0	2	- 3
hypothetical protein SNE_A08600	gil238732755/ref/YP_004671228 1	89	3	7	0
formultotrabydrofolato doformulaso	gil338732503lrofIVD_004671066_1	33	0	1	0
TotP family transprintional regulator	gi[229722512]ref[VD_004671096_1]	00 00	0	+ 2	0
	gij330735313jreij1F_004071980.1	20	10	2	0
phosphate acyltransierase	gi[338733748]rei] + P_004672221.1	43	12	3	0
nypothetical protein SNE_A07230	gi 338732618 ref YP_004671091.1	22	0	0	1
2_C_methyI_D_erythritol 4_phosphate cytidylyltransferase	gi 338732140 ref YP_004670613.1	48	6	3	0
putative competence_damage inducible	gi 338732254 ref YP_004670727.1	46	6	2	0
protein					
holliday junction ATP_dependent DNA	gi 338732112 ref YP_004670585.1	22	7	0	5
helicase ruvA					
ribonuclease 3	gi 338732330 ref YP_004670803.1	27	4	4	1
hypothetical protein SNE_A06370	gi 338732532 ref YP_004671005.1	26	4	3	1
spermidineputrescine import ATP_binding	gi 338732728 ref YP_004671201.1	42	9	6	2
protein PotA					
D alanine D alanine ligase	gi 338732939 ref YP 004671412.1	41	9	4	4
hypothetical protein SNE A20580	gil338733953lreflYP_004672426.1	30	0	2	2
UDP 3 O [3 hydroxymyristov]]	gil338732710/reflYP_004671183_1	38	0	3	0
glucosamine N		00	Ū	Ū	Ũ
acvltransferase					
hypothetical protein SNE A17170	ail338733612 ref YP 004672085.1	21	0	3	0
hypothetical protein SNE_A08770	gil338732772lreflYP_004671245.1	31	3	9	5
nutative ribonucleotide transport	gil338732976lreflYP_004671449_1	29	4	2	0
ATP binding		20	т	2	Ū
protein mkl					
translation initiation factor IF 1	ail338733415/reflYP_004671888_1	8	4	0	3
exodeoxyribonuclease 7 large subunit	gil238732785/ref/YP_004671258_1	53	4	0	1
hypothetical protein SNE_A15280	gi 338733423 ref VP_004671896_1	34	4	3	1
single stranded DNA specific	gi[338734081]rof[VD_004672554_1]	65	т 6	0	0
exonuclease	gij556754061jieij1F_004072554.1j	05	0	0	0
rec.l					
hypothetical protein SNE A14450	ail338733340lrefIVP_004671813_1	18	0	7	5
hypothetical protein SNE_A04570	gi[338732352]ref[VP_004670825_1]	75	16	0	0
hypothetical protein SNE_A04070	gi[338734043]rof[VD_004672516_1]	00	16	0	0
hypothetical protein SNE_A21480	gij338734043jieij1F_004672316.1	90	10	0	0
hypothetical protein SNE_A00060	gi[336731962][ei] FP_004670435.1]	30	9	3	2
neat_inducible transcription repressor nrcA	gi[338732430[ref]YP_004670903.1]	44	12	3	2
4_nydroxy_3_metnyibut_2_enyi diphosphate	gi 338733051 ret YP_004671524.1	34	6	2	2
reductase				_	
manganese transport system ATP_binding	gi 338732408 ref YP_004670881.1	28	6	6	4
		07	0	<u>^</u>	~
mer kinasephosphorylase 1	yij338732459[ret]YP_004670932.1	31	ა -	3	0
hypothetical protein SNE_A15830	yij338733478/retjYP_004671951.1	54 00	1	3	U
nypothetical protein SNE_A12180	gij338/33113 ret YP_004671586.1	39	4	0	1
secretion protein HlyD family protein	gi 338733477 ref YP_004671950.1	34	7	6	0

hypothetical protein SNE_A08570	gi 338732752 ref YP_004671225.1	41	10	0	0
ribose 5 phosphate isomerase A	gi 338732686 ref YP_004671159.1	25	4	4	0
hypothetical protein SNE A11330	gi 338733028 ref YP_004671501.1	61	13	2	0
hypothetical protein SNE A05890	gi 338732484 ref YP_004670957.1	71	18	0	0
exodeoxvribonuclease V subunit beta	gil338731918lreflYP 004670391.1	120	6	2	1
ribonuclease HIII	gil338733044lreflYP_004671517.1	33	6	6	1
aroup 1 alvcosvl transferase	gil338734177/reflYP_004672650_1	43	6	7	3
All5029 protein	gil338732358lreflYP_004670831_1	39	3	6	1
cyclase family protein	ail338734238/ref/VP_004672711_1	23	0	4	4
hypothetical protein SNE_B24030	gil338731770/ref/VP_004662808_1	20 14	1	- 0	- -
thisrodovin roductose	gi[330731779][e][1F_004002090.1]	24	4 6	0	0
dTDD_4_dobydrorbompoop	gi[338732729][e][1F_004671202.1]	34 20	0	0	2
3,5_epimerase "	gij338732152jieij1P_004670625.1j	20	U	0	3
carbohydrate_selective porin, OprB family "	gi 338732549 ref YP_004671022.1	50	3	6	4
hypothetical protein SNE_A09940	gi 338732889 ref YP_004671362.1	14	3	0	3
hypothetical protein SNE_A22230	gi 338734118 ref YP_004672591.1	50	4	6	1
lipoyl synthase	gi 338732093 ref YP_004670566.1	36	0	2	0
type III secretion chaperone	gi 338733887 ref YP_004672360.1	15	0	2	1
subtilin transport ATP binding protein	gil338732122lreflYP 004670595.11	68	0	2	0
SpaT	3.1				
hypothetical protein SNE A02350	gi 338732130 ref YP 004670603.1	34	12	0	0
hypothetical protein SNE_A04920	gil338732387lreflYP 004670860.1	15	6	6	4
type III secretion integral inner membrane	gi 338732185 ref YP_004670658.1	32	4	4	3
succinate dehydrogenase iron_sulfur	gi 338732033 ref YP_004670506.1	28	0	2	1
1,4_dihydroxy_2_naphthoyl_CoA	gi 338733326 ref YP_004671799.1	16	0	4	4
hypothetical protein SNE_A07690	ail338732664/reflYP_004671137_1	83	7	0	0
hypothetical protein SNE_A11020	gil338732007/rof/VP_004671470_1	40	0	2	0
nutotive Hellidev junction received	gij330732997 jielj i F_00407 1470. i j	40	9	2	2
	gij336732651jieij1P_004671324.1	15	0	ა ი	2
	gi 338/32064 ref YP_0046/053/.1	67	6	0	0
lipid A export A I P_bindingpermease MsbA	gi 338732697 ref YP_004671170.1	74	0	3	0
hypothetical protein SNE_A16410	gi 338733536 ref YP_004672009.1	15	0	0	1
3_phosphoshikimate 1_carboxyvinyltransferase	gi 338733084 ref YP_004671557.1	47	6	2	0
hypothetical protein SNE_A12190	gi 338733114 ref YP_004671587.1	39	7	0	0
hypothetical protein SNE_A05630	gi 338732458 ref YP_004670931.1	29	4	3	1
iron sulfur cluster insertion protein erpA	gi 338733011 ref YP 004671484.1	21	4	4	3
hypothetical protein SNE A07760	gi 338732671 ref YP_004671144.1	18	0	0	4
membrane fusion protein, component of	gil338732345lreflYP 004670818.1	39	9	7	0
multidrug efflux system "					
hypothetical protein SNE_A13930	ail338733288/refIYP_004671761.1	50	7	0	0
succinylglutamate	gi 338732336 ref YP_004670809.1	37	6	3	0
family					
notoin					
protein lingh tig protein		25	0	0	~
	gij338733080[rei] YP_004671553.1]	35	0	0	0
putative short chain	gi 338731885 ref YP_004663004.1	30	0	0	2
denydrogenasereductase					
tamily					
protein					_
ROK family protein	gi 338734130 ref YP_004672603.1	35	9	2	0
alkaline phosphatase synthesis sensor	gi 338732073 ref YP_004670546.1	47	4	0	0
protein phoR					
hypothetical protein SNE_A16160	gi 338733511 ref YP_004671984.1	13	0	3	3
NUDIX hydrolase	gi 338733460 ref YP_004671933.1	17	0	0	1
acetate kinase	gi 338733588 ref YP_004672061.1	44	12	3	0

hypothetical protein SNE_A04680	gi 338732363 ref YP_004670836.1	28	4	4	3
hypothetical protein SNE_A17980	gi 338733693 ref YP_004672166.1	50	6	2	1
putative AMP nucleosidase	gi 338732303 ref YP_004670776.1	30	3	2	0
hypothetical protein SNE_A00830	gi 338731979 ref YP_004670452.1	43	3	3	1
CTP synthase	gi 338732852 ref YP_004671325.1	60	6	4	0
hypothetical protein SNE_A22760	gi 338734171 ref YP_004672644.1	43	3	8	2
GTPase Der	gi 338733913 ref YP_004672386.1	52	0	2	1
hypothetical protein SNE_A15290	gi 338733424 ref YP_004671897.1	79	3	0	0
N utilization substance protein B_like protein	gi 338733295 ref YP_004671768.1	17	0	0	4
putative inorganic polyphosphateATP NAD kinase	gi 338732782 ref YP_004671255.1	31	7	2	0
hypothetical protein SNE A11700	ail338733065/reflYP_004671538.1	17	0	0	3
hypothetical protein SNE_A17950	gi 338733690 ref YP_004672163_1	15	0	6	4
hypothetical protein SNE_A06770	gi 338732572 ref YP_004671045.1	33	4	2	1
cysteine desulfurase	gi 338732203 ref YP_004670676.1	43	4	2	1
UV DNA damage endonuclease	gil338732382IreflYP_004670855.1	35	6	2	0
UDP N acetvlmuramovI L alanvI D	gi 338732394 ref YP_004670867.1	54	4	2	1
alutamate 2.6 diaminopimelateligase "	3.1	•		_	-
hypothetical protein SNE A22930	gil3387341881refIYP 004672661.11	38	0	7	3
putative pterin 4 alpha carbinolamine	gi 338732865 ref YP 004671338.1	13	0	4	6
dehvdratase	31111				
hypothetical protein SNE A12810	qi 338733176 ref YP 004671649.1	30	0	2	0
50S ribosomal protein L33	gi 338732842 ref YP_004671315.1	6	0	0	4
hypothetical protein SNE A14470	gi 338733342 ref YP_004671815.1	47	0	6	1
DNA recombination protein rmuC	gi 338733547 ref YP_004672020.1	50	4	0	0
like protein					
hypothetical protein SNE_A00980	gi 338731994 ref YP_004670467.1	53	6	0	0
hypothetical protein SNE_B25050	gi 338731881 ref YP_004663000.1	38	0	2	2
hypothetical protein SNE A07040	gi 338732599 ref YP_004671072.1	42	3	3	1
hypothetical protein SNE_A06180	gi 338732513 ref YP_004670986.1	20	4	4	2
oligopeptide_binding protein OppA	gi 338732944 ref YP_004671417.1	61	3	3	1
hypothetical protein SNE_A22770	gi 338734172 ref YP_004672645.1	69	6	4	2
hypothetical protein SNE_A09620	gi 338732857 ref YP_004671330.1	45	9	3	1
hypothetical protein SNE_A01670	gi 338732062 ref YP_004670535.1	31	3	2	3
3_dehydroquinate synthase	gi 338733085 ref YP_004671558.1	42	6	0	0
hypothetical protein SNE_A08360	gi 338732731 ref YP_004671204.1	14	0	0	4
hypothetical protein SNE_A12880	gi 338733183 ref YP_004671656.1	24	0	3	2
nicotinate phosphoribosyltransferase	gi 338733481 ref YP_004671954.1	55	4	2	0
uridylate kinase	gi 338732135 ref YP_004670608.1	26	12	2	0
mechanosensitive ion channel MscS	gi 338732284 ref YP_004670757.1	33	0	2	0
hypothetical protein SNE_A18230	gi 338733718 ref YP_004672191.1	22	0	3	3
sulfite reductase [NADPH] flavoprotein	gi 338734092 ref YP_004672565.1	43	6	2	0
alpha_component					
pyrroline_5_carboxylate reductase	gi 338732883 ref YP_004671356.1	29	6	0	0
protein mrp_like protein	gi 338732405 ref YP_004670878.1	30	9	7	0
deoxyribonuclease yabD	gi 338732025 ref YP_004670498.1	29	6	2	0
deoxyuridine 5_triphosphate	gi 338732334 ref YP_004670807.1	16	0	0	3
nucleotidohydrolase					
indole_3_glycerol phosphate synthase	gi 338732914 ref YP_004671387.1	28	4	2	0
dipeptide transport ATP_binding	gi 338733056 ref YP_004671529.1	37	3	0	1
protein DppD					
tRNA modification GTPase mnmE	gi 338732108 ref YP_004670581.1	50	4	0	0
GTPase obg	gi 338732241 ref YP_004670714.1	37	3	0	0
hypothetical protein SNE_A15840	gi 338733479 ref YP_004671952.1	47	6	0	0
preprotein translocase subunit secY	gi 338734005 ref YP_004672478.1	50	0	3	0
replication_associated recombination	gi 338732875 ref YP_004671348.1	47	4	0	0

protein A					
hypothetical protein SNE A15490	ail338733444/reflYP 004671917.1	36	6	2	0
putative glutamine amidotransferase	ail338732922lreflYP_004671395.1	30	4	0	1
adenvlosuccinate synthetase	gil338734072/reflYP_004672545.1	47	9	3	0
choline transport ATP binding	gil338731982lreflYP_004670455.1	37	3	4	0
protein OpuBA	<u>3. </u>	0.	Ū.	·	· ·
tRNA dimethylallyltransferase	gil338733609lreflYP_004672082_1	40	6	3	0
superoxide dismutase	gil3387328851refIYP_004671358 1	28	4	0	0
hypothetical protein SNE_A20650	gil338733960/reflYP_004672433_1	38	6	3	3
hypothetical protein SNE_A06190	gil338732514lreflYP_004670987_1	51	6	0	0
protein tolB	gi[338732021]ref[VP_004670494_1]	<u>4</u> 0	3	0	1
hypothetical protein SNE_A10870	gi[338732982]ref[VP_004671455_1]	20	0	0	2
diaminonimelate enimerase	gi[338733020]ref[VD_00/672303_1]	20	0	0	1
dibudrodinicolinate existence	gi[338733920][e][1F_004072393.1]	29	2	0	1
	gi[338733440][e][F004671913.1]	33	0	0	0
nutative 9 amine 7 avenanceste	gi[338732793][e][1F_004071200.1]	47	0	0	4
putative o_amino_7_oxononanoate	gij556752527 jiei j t P_004670600. Ij	47	4	2	0
synthasez_amino_3_					
ketobutyrate coenzyme A ligase		~~	•		
O_antigen export system ATP_binding protein RfbE	gi 338734184 ref YP_004672657.1	28	3	0	2
PTS system IIA protein	gi 338732335 ref YP_004670808.1	18	0	2	2
hypothetical protein SNE_A14480	gi 338733343 ref YP_004671816.1	48	0	3	0
phosphoheptose isomerase	gi 338732261 ref YP_004670734.1	22	0	3	4
hypothetical protein SNE_A15580	gi 338733453 ref YP_004671926.1	15	0	3	2
hypothetical protein SNE_A18750	gi 338733770 ref YP_004672243.1	26	4	0	0
putative general secretion pathway	gi 338731997 ref YP_004670470.1	45	12	0	0
protein F					
NTE family protein ylbK	gi 338731936 ref YP 004670409.1	34	7	4	0
cysteine desulfurase	gi 338733339 ref YP_004671812.1	41	9	0	0
hypothetical protein SNE A07300	ail338732625lreflYP_004671098.1	42	3	3	0
D alanyl D alanine carboxypeptidase	gil338734255lreflYP_004672728.1	52	4	0	0
dacC	3.1000.0.1001.0.1.1.0.00.0.0.0.0.0.1		•	Ū	· ·
hypothetical protein SNE_A23570	gil338734252lreflYP_004672725_1	30	4	3	1
metal binding linoprotein	gil338732407lreflYP_004670880_1	37	9	4	2
hypothetical protein SNE_A06130	gi[338732508]ref[VP_004670981_1]	30	a	3	1
hypothetical protein SNE_A00100	gi[33873/107/ref/VP_00/672580_1]	28	0	2	0
hypothetical protein SNE_A22120	gi[338734107][e][1F_004072380.1]	20	0	2	0
hypothetical protein SNE_A07610	gi[338732070][e][1F_004071149.1]	49	0	3	0
river in a midetraneferrate of enthranilate	gij338733073jieij1F_004071540.1j	19	0	3	4
giutamine amidotransierase of anthranilate	gij338732912jreij P_004671385. Ij	22	ю	0	0
synthase		45	0	2	0
nypothetical protein SNE_A05020	gi[338732397][ei] YP_004670870.1]	45	0	3	0
gp103	gij338732503jreijYP_004670976.1j	33	3	0	0
ribulose_phosphate 3_epimerase	gi 338/33643 ret YP_0046/2116.1	26	0	0	2
arabinose 5_phosphate isomerase	gi 338732268 ref YP_004670741.1	36	4	0	0
Putative copper_importing P_type ATPase A	gi 338731990 ref YP_004670463.1	77	9	0	0
hypothetical protein SNE_A19560	gi 338733851 ref YP_004672324.1	29	7	0	0
hypothetical protein SNE_A08970	gi 338732792 ref YP_004671265.1	63	4	0	0
putative O_sialoglycoprotein endopeptidase	gi 338732843 ref YP_004671316.1	36	3	2	1
hypothetical protein SNE_A20890	gi 338733984 ref YP_004672457.1	37	3	2	0
hypothetical protein SNE_A20760	gi 338733971 ref YP_004672444.1	21	4	4	1
hypothetical protein SNE_A06100	gi 338732505 ref YP_004670978.1	17	0	0	4
hypothetical protein SNE_A18850	gi 338733780 ref YP_004672253.1	82	6	2	0
hypothetical protein SNE_A05800	gi 338732475 ref YP_004670948.1	34	0	2	2
hypothetical protein SNE_A06390	gi 338732534 ref YP_004671007.1	13	0	4	0
chorismate synthase	gi 338733082 ref YP_004671555.1	39	3	2	0
hypothetical protein SNE_A23730	gi 338734268 ref YP_004672741.1	18	0	0	2

hypothetical protein SNE_A03990 ribosomal large subunit pseudouridine	gi 338732294 ref YP_004670767.1 gi 338733069 ref YP_004671542.1	21 35	0 3	0 0	4 0	
bynchotical protain SNE D24820	~:!229721959!rof!VD_004662077_1	25	0	2	^	
hypothetical protein SNE_B24620	gi[338731856][e][1P_004662977.1]	20	0	3	0	
hypothetical protein SNE_A13310	gij338733226jreijYP_004671699.1	104	9	0	0	
phosphate acetyltransferase	gi 338/3358/ ref YP_0046/2060.1	76	6	2	0	
putative protein phosphatase 2C_type	gi 338733338 ref YP_004671811.1	29	3	2	1	
hypothetical protein SNE_A07770	gi 338732672 ref YP_004671145.1	30	0	0	1	
metal dependent hydrolase of the beta_	gi 338732603 ref YP_004671076.1	29	0	2	0	
hypothetical protoin SNE A04220	ail229722229IrofIVD_004670901_1	51	0	4	1	
nutotive nightingte, puelectide	gij330732320[tel]1F_004070801.1]	24	4	4	1	
putative mcolinate_nucleotide	gij336733604jieij1P_004672077.1j	24	4	0	1	
adenyiyitransferase			•	•	~	
ribosomal protein S12	gi 338732536 ref YP_004671009.1	50	0	2	0	
metnyitniotransferase						
RimO						
N_acetyltransferase YnaD	gi 338733991 ref YP_004672464.1	21	3	0	1	
hypothetical protein SNE_A16620	gi 338733557 ref YP_004672030.1	20	3	2	0	
putative polysaccharide export protein Wza	gi 338732126 ref YP_004670599.1	39	4	3	0	
putative metal transport system ATP_	gi 338732247 ref YP_004670720.1	26	0	2	2	
binding protein						
c factor	qi 338733266 ref YP 004671739.1	25	3	3	0	
putative metalloprotease vpwA	gil338732626lreflYP_004671099_1	59	3	0	0	
hypothetical protein SNE A07840	ail338732679lreflYP_004671152_1	26	3	3	0	
hypothetical protein SNE_A23200	gil338734225lrofIVD_004672608_1	50	0	2	0	
hypothetical protein SNE_A25500	gi[338734225][e][1F_004072096.1]	10	4	2	0	
hypothetical protein SNE_A 19130	gij338733808 rei YP_004672281.1	43	4	2	0	
polymorphic outer membrane protein B	gi 338/31959 ret YP_0046/0432.1	152	6	6	0	
hypothetical protein SNE_A03100	gi 338732205 ref YP_004670678.1	31	0	0	3	
transporter, MscS family "	gi 338733974 ref YP_004672447.1	31	0	0	1	
hypothetical protein SNE_A09740	gi 338732869 ref YP_004671342.1	11	0	0	1	
hypothetical protein SNE_A19000	gi 338733795 ref YP_004672268.1	60	3	0	0	
hypothetical protein SNE_A02480	gi 338732143 ref YP_004670616.1	19	10	0	0	
hypothetical protein SNE A17210	gi 338733616 ref YP 004672089.1	38	7	0	0	
phosphoglucomutase	gi 338732473 ref YP_004670946.1	65	4	0	0	
hypothetical protein SNE A04550	gil338732350lreflYP_004670823.1	26	4	2	1	
hypothetical protein SNF_A11030	gil338732998lreflYP_004671471_1	26	0	2	1	
hypothetical protein SNE_A06050	gil338732500lreflYP_004670973_1	24	0	2	2	
hypothetical protein SNE_A00730	gi 338731969 ref VP_004670442_1	25	0	2	2	
hypothetical protein SNE_A00750	gil229722926irofIVD_004672200_1	45	0	5 2	2	
nypolitelical protein SNE_A19410	gi[338733830][e][1P_004672309.1]	40	0	2	4	
	gij338732024[ref]YP_004670497.1]	21	0	0	1	
putative FKBP_type 16 peptidyl_prolyl	gi 338734197 ref YP_004672670.1	15	0	2	0	
		00	•	•	~	
ribosomal RNA small subunit	gi 338/32/68 ref YP_0046/1241.1	26	0	2	0	
methyltransferase E						
hypothetical protein SNE_A18460	gi 338733741 ref YP_004672214.1	28	4	0	0	
carbonic anhydrase 2	gi 338733519 ref YP_004671992.1	25	0	2	0	
hypothetical protein SNE_A12270	gi 338733122 ref YP_004671595.1	50	3	0	0	
putative transposase	gi 338733143 ref YP_004671616.1	13	3	0	2	
tryptophan synthase subunit beta 2	gi 338732916 ref YP 004671389.1	42	3	0	0	
hypothetical protein SNE A15330	gi 338733428 ref YP_004671901.1	46	3	3	0	
hypothetical protein SNE A13700	gil338733265lreflYP 004671738.1	27	3	0	0	
hypothetical protein SNE_A11480	gil338733043lreflYP_004671516_1	59	3	0	0	
recombination protein recR	dil338732713lrefIVD 00/671186 1	22	0	3	4	
hypothetical protoin SNE A04610	ail338732356/rofiVD_004670920.4	6	1	3	- 1 1	
hypothetical protein SNE_A04010	gilo30732127 roftVD_0040700404	10	- -	5 2	۱ ۵	
	yij330732137 jieij r P_004070010.1	40 40	0	<u>э</u>	U 4	
	gij338733623jretj¥P_004672096.1	43	U	U	1	
giutamate ligase			•			
nypotnetical protein SNE_A18210	gij338733716jretjYP_004672189.1	21	U	U	1	
hypothetical protein SNE_A17310 gl338733268/piertYP_00467209.1 24 0 0 4 hypothetical protein SNE_A03740 gl338733471jertYP_004671211.1 33 4 0 0 hypothetical protein SNE_A03740 gl3387332469jretYP_00467122.11 31 4 0 0 1 hypothetical protein SNE_A03490 gl33873249jretYP_00467122.11 31 4 0 0 0 hypothetical protein SNE_A03490 gl33873373620jretYP_00467128.11 24 0						
--	--	--	----------	--------	--------	--------
hypothetical protein SNE_A15760 gil38733471(reftYP_004671944.11 21 0 2 0 methionine aminopeptidase gil387332489(reftYP_004670942.11 13 4 0 0 hypothetical protein SNE_A05740 gil38732449(reftYP_004670942.11 17 0 0 1 hypothetical protein SNE_A12760 gil387334244(reftYP_00467057.11 24 0 0 0 ypothetical protein SNE_A12760 gil387331571(reftYP_00467057.11 24 0 0 0 _acetyflucosamine gil38733151(reftYP_00467057.11 28 7 0 0 _pyothetical protein SNE_A02050 gil38733151(reftYP_00467057.11 28 7 0 0 hypothetical protein SNE_A02050 gil38733411(reftYP_00467057.11 37 4 0 0 hypothetical protein SNE_A02030 gil38733414(reftYP_00467057.11 37 4 0 0 0 hypothetical protein SNE_A02510 gil38733426(reftYP_00467057.11 37 4 0 0 0 2 1 0 0 0	hypothetical protein SNE_A17310	gi 338733626 ref YP_004672099.1	24	0	0	4
metholine aminopeptidase gi338733688/jeffYP_004672161.1 33 4 0 hypothetical protein SNE_A0540 gi33873248/jeffYP_004670717.1 18 0 1 nibosomal large subuit pseudouridine gi33873249/jeffYP_004671222.1 31 4 0 hypothetical protein SNE_A03490 gi338733749/jeffYP_004671222.1 31 4 0 hypothetical protein SNE_A03490 gi338733749/jeffYP_004671222.1 31 4 0 N_acetylipucosamine gi33873373171/jeffYP_004671644.1 24 6 0 N_acetylipucosamine transferase gi338733100/jeffYP_004670573.1 28 7 0 hypothetical protein SNE_A02030 gi33873349/jeffYP_00467057.1 29 4 0 0 putative murein peptide carboxypeptidase gi33873349/jeffYP_00467057.1 33 6 0 0 putative Nat_translocation NAD_L gi33873349/jeffYP_00467058.1 13 2 0 putative Nat_translocation NAD_L gi338733378/jeffYP_00467058.1 13 2 0 putative Nat_translocation NAD_L gi338733378/jeffYP_004	hypothetical protein SNE_A15760	gi 338733471 ref YP_004671944.1	21	0	2	0
hypothetical protein SNE_A03400 gi338732489/reftYP_004677042.11 17 0 0 1 hypothetical protein SNE_A03490 gi3387332499/reftYP_004677022.11 31 4 0 0 synthase C hypothetical protein SNE_A12760 gi338733620/reftYP_00467122.11 31 4 0 0 N_acetyfurusamine	methionine aminopeptidase	gi 338733688 ref YP_004672161.1	33	4	0	0
hypothetical protein SNE_A03490 gi338732244/jer(YP_004677017.1) 16 0 1 ribosomal large subunit pseudouridine gi33873371/jer(YP_004677122.1) 31 4 0 0 hypothetical protein SNE_A12760 gi3387332749/jer(YP_004677073.1) 24 0 3 0 N_acetylplucosamine gi3387332100/ref(YP_004677057.1) 28 7 0 0 pyrophosphory_lundecaprenolN_acetylglucosamine transferase gi338732100/ref(YP_00467057.1) 29 4 0 0 hypothetical protein SNE_A02030 gi3387334341/ref(YP_00467057.1) 33 6 0 0 hypothetical protein SNE_A02030 gi3387334341/ref(YP_00467057.1) 33 6 0 0 hypothetical protein SNE_A02030 gi3387334341/ref(YP_00467057.1) 33 6 2 1 hypothetical protein SNE_A0800 gi338733426/ref(YP_00467057.1) 33 2 0 2 1 hypothetical protein SNE_A14810 gi338733376/ref(YP_004677053.1) 84 3 0 3 0 3 0 3 0	hypothetical protein SNE A05740	gi 338732469 ref YP_004670942.1	17	0	0	1
nicosomal large subunit pseudouridine gij38732749jref[YP_004671222.1] 31 4 0 0 synthase C nypothetical protein SNE_A12760 gij386733171/jref[YP_004671644.1] 24 6 0 0 _pyrophosphoryL_pentaceptide gij386732100/ref[YP_004670573.1] 28 7 0 0 _pyrophosphoryL_pentaceptide gij386732100/ref[YP_004670573.1] 28 7 0 0 Npothetical protein SNE_A02030 gij386732140/ref[YP_00467057.1] 27 2 1 0 HXNARNA methyttransfrasse YsgA gij338732141/ref[YP_00467057.1] 37 4 0 0 hypothetical protein SNE_A02030 gij38732141/ref[YP_00467057.1] 37 4 0 0 hypothetical protein SNE_A05310 gij387331214/ref[YP_004670842.1] 33 2 0 hypothetical protein SNE_A14910 gij38733241/ref[YP_004670842.1] 33 2 0 Nypothetical protein SNE_A14910 gij387332559/ref[YP_004677184.1] 33 0 2 0 Nypothetical protein SNE_A14910 gij387332559/ref[YP_004677051.1]	hypothetical protein SNE A03490	gi 338732244 ref YP_004670717.1	18	0	0	1
synthase C hypothetical protein SNE_A12760 gi 338733171 ref YP_004671644.1 24 6 0 0 N_acetylgucosamine	ribosomal large subunit pseudouridine	gi 338732749 ref YP_004671222.1	31	4	0	0
hypothetical protein SNE_A12760 gi[38773171[ref]YP_00467164.1] 24 6 0 0 UDP_N_acetylglucosamine gi[38733171[ref]YP_004672093.1] 42 0 3 0 _pyrophosphoryl_undecaprenolN gi[38732100[ref]YP_004670573.1] 28 7 0 0 hypothetical protein SNE_A02050 gi[38732160[ref]YP_004670573.1] 28 7 0 0 hypothetical protein SNE_A02030 gi[38732154[ref]YP_004670573.1] 27 7 2 1 dTDP_glucose 4.6_dehydratase 1* gi[387332154[ref]YP_004672614.1] 27 7 2 1 hypothetical protein SNE_A05310 gi[387332456]ref]YP_004672484.1] 28 3 2 0 quinone reductase subunit C hypothetical protein SNE_A12860 gi[387332756]ref]YP_004677042.1] 33 3 2 0 hypothetical protein SNE_A12860 gi[387332256]ref]YP_004670453.1] 4 3 0 0 3 0 0 3 0 3 0 0 3 0 0 3 0 <td< td=""><td>synthase C</td><td></td><td></td><td></td><td></td><td></td></td<>	synthase C					
UDP_M_acetylglucosamine gi[338733620]ref[YP_004672093.1] 42 0 3 0 N_acetylmuramyl_pentapeptide	hypothetical protein SNE A12760	gi 338733171 ref YP 004671644.1	24	6	0	0
N_acetylmuramyl_pentapeptide _pyrophosphoryl_undecaprenolN_ acetylgiucosamine transferase hypothetical protein SNE_A02050 gi 338732109 ref YP_004670573.1 28 7 0 0 0 hypothetical protein SNE_A02030 gi 33873208 ref YP_004670571.1 29 4 0 0 hypothetical protein SNE_A02030 gi 338732154 ref YP_004670571.1 29 4 0 0 hypothetical protein SNE_A02030 gi 338732154 ref YP_00467057.1 37 4 0 0 0 hypothetical protein SNE_A05310 gi 338732154 ref YP_00467057.1 37 4 0 0 0 hypothetical protein SNE_A05310 gi 3387332456 ref YP_004670642.1 33 6 0 0 hypothetical protein SNE_A05310 gi 3387332456 ref YP_004670642.1 33 2 0 quinone reductase subunit C hypothetical protein SNE_A12960 gi 338733376 ref YP_004670642.1 33 0 2 0 hypothetical protein SNE_A12960 gi 338733376 ref YP_004670642.1 33 0 2 0 hypothetical protein SNE_A12960 gi 3387332569 refYP_004670642.1 33 0 2 0 hypothetical protein SNE_A12960 gi 338732456 refYP_004670642.1 34 0 3 0 putative Na+_translocating NADH_ gi 338732569 refYP_004670632.1 44 3 0 0 secretion protein HipD family protein gi 338732569 refYP_004670632.1 44 3 0 0 putative Na+_translocating NADH_ gi 338732456 refYP_00467055.1 17 0 3 2 hypothetical protein SNE_A22070 gi 33873306 ref YP_004671681.1 38 4 0 0 hypothetical protein SNE_A21990 gi 33873306 ref YP_004671681.1 38 4 0 0 hypothetical protein SNE_A11680 gi 33873306 ref YP_004671681.1 38 4 0 0 hypothetical protein SNE_A07130 gi 3387332601 ref YP_004671861.1 38 4 0 0 hypothetical protein SNE_A01050 gi 3387332601 ref YP_004671868.1 40 4 0 0 psectionnyin phosphotransferase gi 3387332601 ref YP_00467186.1 40 4 0 0 phypothetical protein SNE_A01050 gi 3387332601 ref YP_004671868.1 40 4 0 gi 3387332970 ref YP_00467186.1 40 3 0 hypothetical protein SNE_A0340 gi 3387332601 ref YP_004671868.1 40 4 0 gi 3387332970 ref YP_00467186.1 40 3 0 hypothetical protein SNE_A0340 gi 3387332970 ref YP_00467186.1 40 3 0 hypothetical protein SNE_A01050 gi 3387332970 ref YP_00467186.1 40 3 0 gi 3387332970 ref YP_00467195.1 4 0 0 gi 3387332970 ref YP_00467065.1 4	UDP N acetylglucosamine	gi 338733620 ref YP_004672093.1	42	0	3	0
	N acetylmuramyl pentapeptide					
acetylglucosamine transferase hypothetical protein SNE_A02050 gij338732100/reflYP_004670573.11 28 7 0 0 hypothetical protein SNE_A02030 gij338732100/reflYP_004670573.11 29 4 0 0 tRNAFNA methyltransferase YsgA gij338732141/reflYP_004670627.11 37 4 0 0 utative murein peptide carboxypeptidase gij338732426/reflYP_00467089.11 86 0 0 10 hypothetical protein SNE_A05310 gij33873326/reflYP_004670842.11 33 3 2 0 putative murein peptide carboxypeptidase gij338733269/reflYP_0046702448.11 28 3 2 0 putative Na+_translocating NADH_ gij38733274/reflYP_0046705448.11 33 0 2 0 0 2 1 0 0 3 0 0 0 2 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>pyrophosphoryl undecaprenolN</td> <td></td> <td></td> <td></td> <td></td> <td></td>	pyrophosphoryl undecaprenolN					
hypothetical protein SNE_A02050 gij38732100/reftYP_004670573.11 28 7 0 0 hypothetical protein SNE_A02030 gij3873208/reftYP_004670571.11 27 7 2 1 dTDP_glucose 4.6, dehydratase 1" gij38733149/reftYP_004670877.11 37 4 0 0 hypothetical protein SNE_A0510 gij387332154/reftYP_004670899.11 85 0 2 1 hypothetical protein SNE_A20800 gij387332369/reftYP_004670842.11 33 2 0 quinone reductase suburit C requinate enductase suburit C repothetical protein SNE_A12900 gij387337269/reftYP_004670842.11 33 0 2 0 hypothetical protein SNE_A12900 gij387337269/reftYP_00467168.11 30 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 1 1	acetylglucosamine transferase					
hypothetical protein SNE_A02030 gij38732098/reflYP_004670571.11 29 4 0 0 RRNARNA methyltransferase YsgA gij38731414/reflYP_004670527.11 37 7 0 0 putative murein peptide carboxypeptidase gij38731494/reflYP_004670927.11 33 6 0 0 hypothetical protein SNE_A05310 gij38733749/reflYP_004670847.11 33 6 0 0 putative murein peptide carboxypeptidase gij3873375/reflYP_004670842.11 33 3 2 0 putative Na+_translocating NADH_ gij387337376/reflYP_00467058.11 64 3 0 0 2 0 hypothetical protein SNE_A12960 gij387332065/reflYP_004671053.11 64 3 0 0 putative Na+_translocating NADH_ gij38732056/reflYP_004671053.11 64 3 0 0 putative Na+_translocating NADH_ gij3873102/reflYP_004671055.11 44 3 0 0 propthetical protein SNE_A12900 gij3873402/reflYP_0046772567.11 40 6 2 0 proptentical protein SNE_A	hypothetical protein SNE A02050	gi 338732100 ref YP 004670573.1	28	7	0	0
RNA/rRNA methyltransterase YsgA gij338734141 [ref[YP_004672614.1] 27 7 2 1 dTDP_glucose 4,6_dehydratase 1" gij338732154[ref[YP_004670672.1] 37 4 0 uptative murphice carboxypeptidae gij338732436[ref[YP_004670842.1] 33 6 0 hypothetical protein SNE_A20800 gij33873376[ref[YP_004670842.1] 33 3 2 0 putative Nav_translocating NADH_ gij33873376[ref[YP_004677848.1] 28 3 2 0 hypothetical protein SNE_A12960 gij33873376[ref[YP_004677684.1] 33 0 2 0 hypothetical protein SNE_A12960 gij33873373[ref[YP_004677658.1] 34 0 3 0 DNA mismatch repair protein mutL gij33873259[ref[YP_004677055.1] 44 3 0 3 2 hypothetical protein SNE_A120200 gij33873401[ref[YP_00467755.1] 17 0 3 2 0 putative Na+_translocating NADH_ gij338732001[ref[YP_00467755.1] 17 0 3 2 hypothetical protein SNE_A10500 gij33873251[ref[YP_004671	hypothetical protein SNE A02030	gi 338732098 ref YP_004670571.1	29	4	0	0
dTDP_glucose 4,6_dehydratase 1 * gij338732154 ref YP_004670627.1] 37 4 0 0 putative murein peptide carboxypeptidase gij338733494 ref YP_004670697.1] 33 6 0 hypothetical protein SNE_A20800 gij338733269 ref YP_004672448.1] 28 3 2 0 quinone reductase subunit C rypothetical protein SNE_A12800 gij338733269 ref YP_004671849.1] 20 0 0 2 hypothetical protein SNE_A18200 gij33873372/ref YP_004671849.1] 20 0 0 2 hypothetical protein SNE_A18200 gij33873272/ref YP_0046719538.1] 64 3 0 0 secretion protein NE_A18200 gij3387327292[ref YP_004671953.1] 17 0 3 0 quinone reductase subunit C gij3387327292[ref YP_004671953.1] 17 0 3 0 quinone reductase subunit F gij338734094[ref YP_004672567.1] 40 6 2 0 hypothetical protein SNE_A21900 gij338732068[ref YP_00467163.1] 38 4 0 0 hypothetical protein SNE_A11680 gij33873201[ref YP_00467163.1] 74 0 0 0	tRNArRNA methyltransferase YsgA	gil338734141lreflYP_004672614.1	27	7	2	1
putative murein peptide carboxypeptidase gli338733494/ref[YP_004671967.1] 33 6 0 0 hypothetical protein SNE_A20800 gli33873246/ref[YP_004670842.1] 85 0 2 1 hypothetical protein SNE_A20800 gli33873379/ref[YP_004670842.1] 33 3 2 0 quinone reductase subunit C hypothetical protein SNE_A12960 gli33873376/ref[YP_004671849.1] 20 0 0 2 2 hypothetical protein SNE_A12960 gli33873376/ref[YP_00467164.1] 33 0 2 0 hypothetical protein SNE_A12960 gli338733724/ref[YP_00467164.1] 33 0 2 0 hypothetical protein SNE_A12960 gli338733256/ref[YP_00467163.1] 64 3 0 0 Secretion protein HyD family protein gli338732269/ref[YP_00467053.1] 64 3 0 0 putative Na+_translocating NADH_ gli338732269/ref[YP_004671032.1] 34 0 3 0 quinone reductase subunit F hypothetical protein SNE_A2070 gli338734102/ref[YP_004671032.1] 34 0 3 0 hypothetical protein SNE_A21990 gli338732068/ref[YP_004671032.1] 44 0 3 hypothetical protein SNE_A21990 gli338732068/ref[YP_004671081.1] 48 4 0 0 hypothetical protein SNE_A21990 gli338732068/ref[YP_004671081.1] 48 4 0 0 hypothetical protein SNE_A1050 gli338732068/ref[YP_004671671.1] 17 0 2 0 hypothetical protein SNE_A1050 gli338732001/ref[YP_004671681.1] 40 4 0 0 penicillin_binding protein AmpH gli338732970/ref[YP_00467168.1] 47 4 0 0 penicillin_binding protein SNE_A10750 gli33873215/ref[YP_00467168.1] 40 4 0 0 hypothetical protein SNE_A03340 gli338733215/ref[YP_00467168.1] 40 4 0 CCA_adding protein SNE_A03340 gli33873215/ref[YP_004670702.1] 21 0 1 hypothetical protein SNE_A03340 gli338732125/ref[YP_004670505.1] 47 0 2 0 QCA_adding protein gli338732125/ref[YP_004670505.1] 47 0 2 0 gli338732125/ref[YP_004670505.1] 47 0 2 0 QCA_adding protein SNE_A03340 gli338732125/ref[YP_004670505.1] 47 0 2 0 QDP_gli338732125/ref[YP_004670505.1] 47 0 2 0 putative methyltransferase gli33873215/ref[YP_004670505.1] 47 0 2 0 putative methyltransferase gli33873215/ref[YP_004670505.1] 47 0 2 0 putative methyltransferase gli33873216/ref[YP_004670505.1] 47 0 2 0 putative methyltransferase gli33873216/ref[YP_004670505	dTDP_glucose 4.6_dehvdratase 1 "	gil338732154lreflYP_004670627.1	37	4	0	0
hypothetical protein SNE_A05310 gij338732426[ref]YP_004670899.1 85 0 2 1 hypothetical protein SNE_A20800 gij338732369[ref]YP_004670842.1 33 3 2 0 quinone reductase subunit C hypothetical protein SNE_A14810 gij338733376[ref]YP_004670842.1 33 0 2 0 hypothetical protein SNE_A12960 gij33873324[ref]YP_004671634.1 3 0 2 0 hypothetical protein SNE_A12960 gij338732265[ref]YP_004671053.1 64 3 0 0 sccretion protein MIVJ family protein gij338732065[ref]YP_004671053.1 44 3 0 0 putative Na+_translocating NADH_ gij33873209[ref]YP_004671055.1 17 0 3 0 hypothetical protein SNE_A2070 gij33873409[ref]YP_004672567.1 40 6 2 0 hypothetical protein SNE_A1050 gij338732001[ref]YP_004671536.1 27 4 0 0 hypothetical protein SNE_A1050 gij338732001[ref]YP_004671536.1 27 4 0 0 hypothetical protein SNE_A10750	putative murein peptide carboxypeptidase	gil338733494lreflYP 004671967.1	33	6	0	0
Appothetical protein SNE_A20800 gli338733975/refYP_0046772448.1 28 3 2 0 putative Na+_translocating NADH_ gli33873375/refYP_004670842.1 33 3 2 0 quinone reductase subunit C gli33873376/refYP_004671664.1 33 0 2 0 hypothetical protein SNE_A12960 gli338733724/refYP_004671664.1 13 0 2 0 DNA nismatch repair protein mut_ gli33873205/jerfYP_00467053.1 64 3 0 0 3 0 putative Na+_translocating NADH_ gli33873209/refYP_004670765.1 48 4 3 0 0 3 2 0 3 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 0 3 2 0 0 0 3 0 1 0 0 3 0 1 0 0 1 0 0 1 0	hypothetical protein SNE_A05310	gil338732426lreflYP_004670899.1	85	0	2	1
Appletive Na+_translocating NADH_ gil338732369/reflYP_004670842.11 33 3 2 0 upinone reductase subunit C hypothetical protein SNE_A12960 gil338733376/reflYP_004671849.11 20 0 2 0 hypothetical protein SNE_A12960 gil338733724/reflYP_004671664.11 33 0 0 3 DNA mismatch repair protein mutL gil338732559/reflYP_004670538.11 64 3 0 0 putative Na+_translocating NADH_ gil33873259/reflYP_00467055.11 48 4 3 0 putative Na+_translocating NADH_ gil338734094/reflYP_004671081.11 48 4 3 0 hypothetical protein SNE_A21990 gil33873209/reflYP_004671081.11 48 4 0 0 hypothetical protein SNE_A21990 gil33873209/reflYP_004671081.11 17 0 2 0 hypothetical protein SNE_A11680 gil33873209/reflYP_004671081.11 18 4 0 0 pericillin_binding protein AmpH gil33873209/reflYP_004671081.11 17 0 2 1 hypothetical protein SNE_A10750	hypothetical protein SNE_A20800	gil338733975lreflYP_004672448.1	28	3	2	0
protection of the	putative Na+ translocating NADH	gil338732369lreflYP_004670842_1	33	3	2	0
quantion to book tobok to book to book to book to book to book to book	quinone reductase subunit C	<u>gilosoi ezecelieitti –</u> ee iei ee izi i	00	Ũ	-	Ũ
Inpotentical protein SNE_A12960 gi[338733191]ref[YP_004671664.1] 33 0 2 0 hypothetical protein SNE_A18290 gi[338733724]ref[YP_00467164.1] 19 0 33 DNA mismatch repair protein mult_ gi[338732269]ref[YP_004670538.1] 64 3 0 putative Na+_translocating NADH_ gi[338732292]ref[YP_004670765.1] 48 4 3 0 putative Na+_translocating NADH_ gi[338734094]ref[YP_004670765.1] 48 4 3 0 hypothetical protein SNE_A21990 gi[338734094]ref[YP_004670567.1] 40 6 2 0 hypothetical protein SNE_A01050 gi[33873206]ref[YP_00467168.1] 74 0 0 hypothetical protein SNE_A11680 gi[338732970]ref[YP_00467168.1] 4 0 0 hypothetical protein SNE_A10750 gi[338732911]ref[YP_00467168.1] 4 0 0 hypothetical protein SNE_A03340 gi[33873213719[ref]YP_00467168.1] 3 0 1 hypothetical protein SNE_A03340 gi[3387321373191[ref]YP_00467168.1] 4 0 0 hypothetical protein SNE_A03340 gi[3387321391[ref]YP_004670702.1] 1 1	hypothetical protein SNF A14810	ail338733376lreflYP_004671849_1	20	0	0	2
hypothetical protein SNE_A18280 gij338733724jreftYP_0046772197.1 19 0 0 BNA mismatch repair protein mutL gij3387332059jreftYP_004670538.1 64 3 0 gecretion protein SNE_A18280 gij3387322959jreftYP_004670558.1 64 3 0 putative Nat_translocating NADH_ gij338732959jreftYP_004670765.1 14 4 3 nypothetical protein SNE_A22070 gij338734094jreftYP_004672567.1 17 0 3 2 hypothetical protein SNE_A01050 gij338732001jreftYP_004671081.1 38 4 0 0 hypothetical protein SNE_A01050 gij33873201jreftYP_004671081.1 17 0 2 0 hypothetical protein SNE_A01050 gij338732970jreftYP_004671688.1 4 0 0 hypothetical protein SNE_A11680 gij33873291jreftYP_004671688.1 4 0 0 hypothetical protein SNE_A0340 gij33873291jreftYP_004671681.1 3 0 1 hypothetical protein SNE_A03340 gij3387312911jreftYP_0046716702.1 2 0 1 hypothetical protein SNE_A03340 gij338731291[reftYP_00467702.1 2 0 1	hypothetical protein SNE_A12960	gil338733191/reflYP_004671664_1	33	0 0	2	0
Inportional protein with the interval of the in	hypothetical protein SNE_A18290	gil338733724/reflYP_004672197_1	19	0	0	3
Entriminantice protein Hilp Dramin kack gipsorson (1970) (DNA mismatch repair protein mut	gil338732065/reflYP_004670538_1	64	3	0 0	0
Bitsbester Bitsbester Bitsbester Bitsbester putative Na+_translocating NADH_ gij38732292]ref[YP_004670765.1] 48 4 3 nypothetical protein SNE_A21990 gij38734102[ref[YP_004672575.1] 17 0 3 2 hypothetical protein SNE_A21990 gij38734094[ref]YP_004672575.1] 40 6 2 0 hypothetical protein SNE_A20130 gij38732001[ref]YP_004671858.1] 40 0 0 hypothetical protein SNE_A11680 gij38733063[ref]YP_004671688.1] 27 4 0 0 penicillin_binding protein AmpH gij38732970[ref]YP_004671688.1] 27 4 0 0 spectinomycin phosphotransferase gij38732970[ref]YP_004671688.1] 27 0 0 1 hypothetical protein SNE_A10750 gij38732970[ref]YP_004671784.1] 39 0 1 hypothetical protein SNE_A03340 gij387322911[ref]YP_004670702.1] 1 0 1 hypothetical protein SNE_A0340 gij387322973[ref]YP_004670702.1] 2 0 0 gigcorglucronate 4_epimerase 4 <t< td=""><td>secretion protein HIVD family protein</td><td>gijooor 62666 [ci]11 _00467 0000.1] gij338732559 [ref]YP_004671032 1]</td><td>34</td><td>0</td><td>3</td><td>0</td></t<>	secretion protein HIVD family protein	gijooor 62666 [ci]11 _00467 0000.1] gij338732559 [ref]YP_004671032 1]	34	0	3	0
platintor rad_ctabledung int PL_ gigobi 32222[re][T]_00407100.1] rd rd rd rd hypothetical protein SNE_A22070 gig38734094[re][YP_004672567.1] 17 0 3 2 hypothetical protein SNE_A21990 gig38734094[re][YP_004672667.1] 40 6 2 0 hypothetical protein SNE_A01050 gig38732001[re][YP_004670474.1] 18 4 0 0 hypothetical protein SNE_A1050 gig38732070[re][YP_004671474.1] 17 0 2 0 hypothetical protein SNE_A10750 gig38732970[re][YP_004671974.1] 32 6 0 0 spectinomycin phosphotransferase gig387322970[re][YP_004671974.1] 32 6 0 0 1 hypothetical protein SNE_A10750 gig387322970[re][YP_004671974.1] 32 6 0 0 1 1 hypothetical protein SNE_A0340 gig38731291[re][YP_004670702.1] 21 0 1 1 hypothetical protein SNE_A0340 gig38731291[re][YP_004670598.1] 4 0 0 0 1 1 hypothetical protein SNE_A0850 gig38731291[re][YP_004670598.1] 37 6 0 0 0<	nutative Na+ translocating NADH	gi 338732292lref YP_004670765_1	48	4	3	0
quintor root outbound gij338734102/ref[YP_004672575.1] 17 0 3 2 hypothetical protein SNE_A21990 gij338734094/ref[YP_004672567.1] 40 6 2 0 hypothetical protein SNE_A01050 gij338732008/ref[YP_004671638.1] 38 4 0 0 hypothetical protein SNE_A01050 gij338732001/ref[YP_004671638.1] 40 4 0 0 hypothetical protein SNE_A11680 gij338732070/ref[YP_004671638.1] 40 4 0 0 hypothetical protein SNE_A11680 gij338732070/ref[YP_00467143.1] 32 6 0 0 hypothetical protein SNE_A10750 gij338732229/ref[YP_00467143.1] 32 6 0 0 hypothetical protein SNE_A03340 gij338732222/ref[YP_00467143.1] 55 0 2 1 hypothetical protein SNE_A03340 gij33873128/ref[YP_004677052.1] 21 0 0 1 hypothetical protein SNE_A03340 gij33873128/ref[YP_004677052.1] 27 0 0 1 hypothetical protein SNE_A0350 gij33873128/ref[YP_004677052.1]	quinone reductase subunit F	gilosof 02202[[Ci]11 _004070700.1]	40	-	0	0
Injointeduce protein SNE_A21990 gij330734702[rm]_004672567.1] 40 6 2 0 hypothetical protein SNE_A07130 gij338732008[ref]YP_004672567.1] 40 6 2 0 hypothetical protein SNE_A01050 gij338732003[ref]YP_004671636.1] 27 4 0 0 pencillin_binding protein AmpH gij338732030[ref]YP_004671638.1] 44 0 0 pypothetical protein SNE_A10750 gij338732970[ref]YP_004671638.1] 30 1 Anthranilate synthase component 1 gij33873229[ref]YP_0046717384.1] 55 0 2 1 hypothetical protein SNE_A03340 gij33873229[ref]YP_004670702.1] 21 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hypothetical protein SNE A22070	ail338734102/reflVP_004672575_1	17	0	з	2
Injointidial protein SNE_A07130 gij38073063(ref)(P_004671081.1] 38 4 0 hypothetical protein SNE_A01050 gij38732608[ref](P_004671081.1] 17 0 2 0 hypothetical protein SNE_A11680 gij38732608[ref](P_004671081.1] 17 0 2 0 hypothetical protein SNE_A10750 gij38733215[ref](P_004671483.1] 32 6 0 0 spectinomycin phosphotransferase gij38732970[ref](P_004671483.1] 32 6 0 0 1 hypothetical protein SNE_A10750 gij38732911[ref](P_004671483.1] 32 0 1 1 hypothetical protein SNE_A10750 gij38732911[ref](P_004671384.1] 55 0 2 1 hypothetical protein SNE_A03340 gij38732921[ref](P_004670702.1] 21 0 1 1 hypothetical protein SNE_B25130 gij38731281[ref](P_00467265.1] 47 0 2 0 UDP_glucuronate 4_epimerase 4 gij38732191[ref](P_004670664.1] 40 0 3 0 0 glycosyl transferase family protein gij38733249[ref](P_00467064.1] 43 3 0 0 0 <td>hypothetical protein SNE_A2100</td> <td>gi[338734094]ref[VP_004672567_1]</td> <td>40</td> <td>6</td> <td>2</td> <td>0</td>	hypothetical protein SNE_A2100	gi[338734094]ref[VP_004672567_1]	40	6	2	0
Injointidial protein SNE_A01050 gij380732001[ref][YP_004670474.1] 17 0 2 0 hypothetical protein SNE_A11680 gij387332001[ref][YP_004671474.1] 17 0 2 0 penicillin_binding protein AmpH gij388732970[ref]YP_004671443.1] 32 6 0 0 spectinomycin phosphotransferase gij388732970[ref]YP_004671744.1] 39 3 0 1 Anthranilate synthase component 1 gij38873229[ref]YP_004670702.1] 21 0 0 1 hypothetical protein SNE_A03340 gij388732229[ref]YP_004670702.1] 21 0 1 1 hypothetical protein SNE_A03340 gij388732125[ref]YP_004670702.1] 21 0 0 1 hypothetical protein SNE_B25130 gij388732125[ref]YP_004670658.1] 37 6 0 0 amidohydrolase 2 gij38873219[ref]YP_004670664.1] 40 0 3 0 0 adenylate cyclase 1 gij388731981[ref]YP_004670454.1] 43 3 0 0 glycosyl transferase family protein gij388731981[ref]YP_004670454.1] 43 0 0 0 glyco	hypothetical protein SNE_A07130	dil338732608/ref/VP_004671081_1	38	4	0	0
Injoinetical protein SNE_A01000 gi 338730063 ref YP_004671536.1 27 4 0 hypothetical protein SNE_A11680 gi 338733063 ref YP_004671536.1 27 4 0 0 hypothetical protein SNE_A10750 gi 338733215 ref YP_004671588.1 40 4 0 0 spectinomycin phosphotransferase gi 338732970 ref YP_004671384.1 55 0 2 1 hypothetical protein SNE_A0340 gi 338732291 ref YP_004670702.1 21 0 0 1 hypothetical protein SNE_B25130 gi 338731889 ref YP_0046670702.1 21 0 0 1 hypothetical protein SNE_B25130 gi 338731225]ref YP_004670505.1 46 4 2 0 UDP_glucuronate 4_epimerase 4 gi 338732125 ref YP_004670598.1 37 6 0 0 amidohydrolase 2 gi 338731881 ref YP_004671537.1 58 4 0 0 3 0 0 hypothetical protein SNE_A00850 gi 338731891 ref YP_004671537.1 58 4 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>hypothetical protein SNE_A01050</td><td>gi[338732001]ref[VP_004670474_1]</td><td>17</td><td></td><td>2</td><td>0</td></td<>	hypothetical protein SNE_A01050	gi[338732001]ref[VP_004670474_1]	17		2	0
Inspondencial protein SNE_A1050 gi[338733201]ref[]YP_004671688.1] 27 4 0 0 penicillin_binding protein SNE_A10750 gi[3387332070]ref[]YP_004671688.1] 40 4 0 0 spectinomycin phosphotransferase gi[3387332070]ref[]YP_004671484.1] 39 3 0 1 Anthranilate synthase component 1 gi[33873220]ref[]YP_004670702.1] 21 0 0 1 hypothetical protein SNE_A03340 gi[338732229]ref[]YP_004670702.1] 21 0 0 1 hypothetical protein SNE_B25130 gi[338731222]ref[]YP_004670505.1] 47 0 2 0 CCA_adding protein gi[338732125]ref[]YP_004670505.1] 47 0 2 0 amidohydrolase 2 gi[338732191]ref]YP_004670508.1] 37 6 0 0 glycosyl transferase family protein gi[338731981]ref]YP_00467054.1] 43 3 0 0 hypothetical protein SNE_A10850 gi[338731981]ref]YP_004671537.1] 58 4 0 0 glycorsl transferase gi[338731881]ref]YP_00467132.1] 55 0 2 0 0 pypot	hypothetical protein SNE_A11680	dil338733063lrefIVP_004671536.1	27	4	0	0
perindimi_ontain protein Anipri gi[338732970]ref[YP_004671443.1] 32 6 0 hypothetical protein SNE_A10750 gi[338732970]ref[YP_004671443.1] 32 6 0 0 Anthranilate synthase component 1 gi[338732911]ref[YP_004671384.1] 55 0 2 1 hypothetical protein SNE_A03340 gi[338732229]ref[YP_004670702.1] 21 0 1 hypothetical protein SNE_B25130 gi[338732125]ref[YP_004670598.1] 47 0 2 0 UDP_glucuronate 4_epimerase 4 gi[338732125]ref[YP_004670664.1] 28 2 0 glycos) transferase family protein gi[338732193]ref[YP_004670664.1] 43 3 0 glycos) transferase family protein gi[338733249]ref[YP_004670454.1] 43 3 0 glycos transferase gi[338733472]ref[YP_004671537.1] 58 4 0 0 glycerol kinase gi[33873349]ref[YP_004671453.1] 43 3 0 0 glycos transferase gi[338732191]ref[YP_004670454.1] 43 3 0 0 glycerol kinase gi[338733472]ref[YP_004671537.1] 58 4 0	penicillin, binding protein AmpH	gi[338733215]ref[VP_004671688_1]	40	4	0	0
Inspondencial protein SNE_A1570 gi 33873201/lef YP_004671974.1 39 3 0 spectinomycin phosphotransferase gi 33873201/lef YP_004671384.1 55 0 2 1 hypothetical protein SNE_A03340 gi 338732229/lef YP_004670702.1 21 0 0 1 hypothetical protein SNE_B25130 gi 338731889/lef YP_004670702.1 21 0 0 1 OCCA_adding protein gi 338731889/lef YP_004670508.1 37 6 0 0 UDP_glucuronate 4_epimerase 4 gi 338732125/lef YP_004670664.1 40 0 3 0 amidohydrolase 2 gi 338731891/lef YP_0046706454.1 43 3 0 0 glyccolk inase gi 338731891/lef YP_004670454.1 43 3 0 0 hypothetical protein SNE_A15770 gi 338731801/lef YP_004671945.1 74 3 0 0 hypothetical protein SNE_A15770 gi 338731831/lef YP_004672312.1 22 0 1 1 putative methyltransferase gi 338731937187319871/lef YP_004672312.1 22 0 1 1 1 0 0 0	hypothetical protein SNE_A10750	gi[338732970]ref[VP_004671443_1]	32	6	0	0
Spectration gi[3367330301][ref][YP_004671384.1] 55 0 1 Anthranilate synthase component 1 gi[338732911][ref][YP_004671384.1] 55 0 2 1 hypothetical protein SNE_A03340 gi[33873229][ref][YP_004670702.1] 21 0 0 1 hypothetical protein SNE_B25130 gi[338732128][ref][YP_004670605.1] 47 0 2 0 UDP_glucuronate 4_epimerase 4 gi[338732125][ref][YP_004670598.1] 37 6 0 0 amidohydrolase 2 gi[338732125][ref][YP_004670664.1] 40 3 0 0 glycosyl transferase family protein gi[338732191][ref][YP_004670664.1] 40 3 0 nypothetical protein SNE_A00850 gi[338733249][ref][YP_004671537.1] 58 4 0 0 glycerol kinase gi[338733830[ref][YP_004671537.1] 58 4 0 0 putative methyltransferase gi[3387338373249][ref][YP_004671537.1] 58 4 0 0 putative methyltransferase gi[338731880][ref][YP_004671313.1] 74 3 0 0 putative methyltransferase gi[338731907][ref][YP_0046	spectinomycin phosphotransferase	gi[338733501]ref[VP_004671974_1]	30	3	0	1
Antimizate synthase component in a gi[050702511]ref](YP_004670702.1] 21 0 1 hypothetical protein SNE_A03340 gi[338732229]ref]YP_004670702.1] 21 0 1 hypothetical protein SNE_B25130 gi[338731889]ref]YP_004670702.1] 21 0 0 1 hypothetical protein SNE_B25130 gi[338731389]ref]YP_0046706508.1] 46 4 2 0 CCA_adding protein gi[33873125]ref]YP_004670658.1] 47 0 2 0 UDP_glucuronate 4_epimerase 4 gi[33873125]ref]YP_004670664.1] 40 0 3 0 glycosyl transferase family protein gi[338731981]ref]YP_004670654.1] 43 3 0 0 adenylate cyclase 1 gi[338733249]ref]YP_00467054.1] 43 3 0 0 glycerol kinase gi[3387338731880]ref]YP_004671722.1] 55 0 2 0 hypothetical protein SNE_A15770 gi[338733839]ref]YP_004672312.1] 74 3 0 0 putative methyltransferase gi[338731880]ref]YP_004672312.1] 22 0 1 1 1 1 0 2 0 prot	Anthranilate synthese component 1	dil338732011/ref/VP_004671384_1	55	0	2	1
Inspondentical protein SNE_A0500 gi[300732229]ref]YP_004603008.1] 21 0 0 hypothetical protein SNE_B25130 gi[338731889]ref]YP_004672605.1] 47 0 2 0 CCA_adding protein gi[338731889]ref]YP_004670598.1] 37 6 0 0 uDP_glucuronate 4_epimerase 4 gi[338732973]ref]YP_004670598.1] 37 6 0 0 amidohydrolase 2 gi[338732973]ref]YP_004670664.1] 40 0 3 0 hypothetical protein SNE_A00850 gi[338731981]ref]YP_004670646.1] 43 3 0 0 adenylate cyclase 1 gi[338733064]ref]YP_004670454.1] 43 3 0 0 glycerol kinase gi[338733472]ref]YP_004671455.1] 74 3 0 0 hypothetical protein SNE_A15770 gi[338733472]ref]YP_004671945.1] 74 3 0 0 putative methyltransferase gi[338731880]ref]YP_004670513.1] 74 3 0 0 protein LoID gi[338731907]ref]YP_004670380.1] 29 0 2 0 0 modification methylase MjaIII gi[338732045]ref]YP_004670518.1]	hypothetical protein SNE A03340	gi[338732220]ref[VP_004670702_1]	21	0	2	1
Inypotietical protein SNE_B23130 gi[33873132]er[]YP_004672605.1] 40 4 2 0 CCA_adding protein gi[338734132]er[]YP_004672605.1] 47 0 2 0 UDP_glucuronate 4_epimerase 4 gi[338732125]ref]YP_004670598.1] 37 6 0 0 amidohydrolase 2 gi[338732973]ref]YP_004670598.1] 37 6 0 0 glycosyl transferase family protein gi[338732191]ref]YP_004670664.1] 40 0 3 0 hypothetical protein SNE_A00850 gi[338731981]ref]YP_004670664.1] 43 3 0 0 adenylate cyclase 1 gi[338733249]ref]YP_004670454.1] 43 3 0 0 glycerol kinase gi[338733472]ref]YP_004671537.1] 58 4 0 0 nypothetical protein SNE_A15770 gi[338733839]ref]YP_004671945.1] 74 3 0 0 nypothetical protein SNE_A1540 gi[33873180]ref]YP_004672312.1] 22 0 0 1 potative methyltransferase gi[338731907]ref]YP_004670380.1] 29 0 2 0 nodification methylase Mjalli gi[338731907]ref]Y	hypothetical protein SNE_A00040	gi[338731880]rof[VD_004663008_1]	46	1	2	, 0
COA_addining protein gi 338732125 ref YP_004670598.1 37 6 0 UDP_glucuronate 4_epimerase 4 gi 338732125 ref YP_004670598.1 37 6 0 amidohydrolase 2 gi 338732973 ref YP_004670598.1 37 6 0 glycosyl transferase family protein gi 338732973 ref YP_004670664.1 40 0 3 0 hypothetical protein SNE_A00850 gi 338731981 ref YP_004670454.1 43 3 0 0 adenylate cyclase 1 gi 338733064 ref YP_004671537.1 58 4 0 0 glycerol kinase gi 338733249 ref YP_004671722.1 55 0 2 0 hypothetical protein SNE_A15770 gi 338731880 ref YP_004671945.1 74 3 0 0 putative methyltransferase gi 338731880 ref YP_004672312.1 22 0 0 1 piportein_releasing system ATP_binding gi 338731907 ref YP_004670380.1 29 0 2 0 protein LoID 3 0 0 0 carboxypeptidase 3 0 0	CCA adding protoin	gi[338734132]rof[VD_004672605.1]	40 47	4	2	0
ODI _gluculonate 4_epinterase 4 gi 330732123 ref YP_0046705030.1 37 0 0 amidohydrolase 2 gi 338732973 ref YP_0046705080.1 27 0 3 0 glycosyl transferase family protein gi 338732973 ref YP_004670664.1 40 0 3 0 hypothetical protein SNE_A00850 gi 338731981 ref YP_004670454.1 43 3 0 0 adenylate cyclase 1 gi 33873249 ref YP_004671537.1 58 4 0 0 glycerol kinase gi 338733249 ref YP_004671722.1 55 0 2 0 hypothetical protein SNE_A15770 gi 338733839 ref YP_004671945.1 74 3 0 0 putative methyltransferase gi 338731880 ref YP_004672312.1 22 0 0 1 pipoprotein_releasing system ATP_binding gi 338731907 ref YP_004670380.1 29 0 2 0 protein LoID modification methylase MjallI gi 338732045 ref YP_004670518.1 29 0 2 0 putative serine_type D_Ala_D_Ala gi 338732045 ref YP_004670518.1 29 3 0 0 carboxypeptidase	UDP ducuronate 4 enimerase 4	gi[338732125]ref[VP_004670598_1]	37	6	2	0
anilotity of blase 2 gij (3007 3297 3) ref YP_00467064.1 40 3 0 glycosyl transferase family protein gij (338732191 ref YP_004670644.1) 43 3 0 0 hypothetical protein SNE_A00850 gij (338731981 ref YP_004670454.1) 43 3 0 0 adenylate cyclase 1 gij (338733064 ref YP_0046701537.1) 58 4 0 0 glycerol kinase gij (338733249) ref YP_004671722.1) 55 0 2 0 hypothetical protein SNE_A15770 gij (338733472 ref YP_004671945.1) 74 3 0 0 putative methyltransferase gij (338731880 ref YP_004672312.1) 22 0 1 popothetical protein SNE_A19440 gi (338731907 ref YP_004670380.1) 29 0 2 0 hypothetical protein LolD modification methylase MjallI gi (338731907 ref YP_004670380.1) 29 0 2 0 putative serine_type D_Ala_D_Ala gi (338732045 ref YP_004670518.1) 29 3 0 0 carboxypeptidase	amidohydrolase 2	gi[338732073]ref[VP_004671446.1]	28	3	2	0
gij3387328191[e]]YP_004670004.1] 40 0 3 0 hypothetical protein SNE_A00850 gij338731981]ref]YP_004670454.1] 43 3 0 0 adenylate cyclase 1 gij338733064]ref]YP_004671537.1] 58 4 0 0 glycerol kinase gij338733249]ref]YP_004671722.1] 55 0 2 0 hypothetical protein SNE_A15770 gij338733472[ref]YP_004671945.1] 74 3 0 0 putative methyltransferase gij338731880[ref]YP_004662999.1] 30 3 2 0 hypothetical protein SNE_A19440 gij338732840[ref]YP_004672312.1] 22 0 1 1 pipoprotein_releasing system ATP_binding gij338731907[ref]YP_004670380.1] 29 0 2 0 protein LoID	alveosyl transforase family protoin	gi[338732101/rof/VP_004670664_1]	40	0	2	0
nypothetical protein SNE_A00000 gi[338731901[ref]YP_004671537.1] 58 4 0 0 adenylate cyclase 1 gi[338733064[ref]YP_004671537.1] 58 4 0 0 glycerol kinase gi[338733249]ref]YP_004671537.1] 58 4 0 0 hypothetical protein SNE_A15770 gi[338733472]ref]YP_004671945.1] 74 3 0 0 putative methyltransferase gi[338731880]ref]YP_004662999.1] 30 3 2 0 1 hypothetical protein SNE_A19440 gi[338733839]ref]YP_004672312.1] 22 0 0 1 lipoprotein_releasing system ATP_binding gi[338731907]ref]YP_004672312.1] 24 0 3 0 protein LoID	by pothetical protoin SNE A00850	gi[338731081]rof[VD_004670454_1]	40	2	0	0
aderiyiate cyclase 1 gi 336733004 iei 1P_004671337.1 36 4 0 0 glycerol kinase gi 338733249 ref YP_004671722.1 55 0 2 0 hypothetical protein SNE_A15770 gi 338733472 ref YP_004671945.1 74 3 0 0 putative methyltransferase gi 338731880 ref YP_004662999.1 30 3 2 0 1 hypothetical protein SNE_A19440 gi 338733839 ref YP_004672312.1 22 0 0 1 lipoprotein_releasing system ATP_binding gi 338731907 ref YP_004670380.1 29 0 2 0 modification methylase MjallI gi 338732045 ref YP_004670518.1 29 0 2 0 putative serine_type D_Ala_D_Ala gi 338732045 ref YP_004670518.1 29 3 0 0 carboxypeptidase	adopulato cuclaso 1	gi[338733064]rof[VD_004671537_1]	40 59	1	0	0
gij 338733249jref YP_004671945.1 74 3 0 0 hypothetical protein SNE_A15770 gij 338733472 ref YP_004671945.1 74 3 0 0 putative methyltransferase gij 338731880 ref YP_004662999.1 30 3 2 0 1 hypothetical protein SNE_A19440 gij 338733839 ref YP_004672312.1 22 0 0 1 lipoprotein_releasing system ATP_binding gij 338732840 ref YP_004671313.1 24 0 3 0 protein LoID gij 338731907 ref YP_004670380.1 29 0 2 0 putative serine_type D_Ala_D_Ala gij 338732045 ref YP_004670518.1 29 3 0 0 carboxypeptidase gij 338733337]ref YP_004670518.1 29 3 0 0 serpin_like protein gij 338733062 ref YP_004671518.1 29 3 0 0 ADP_ribose pyrophosphatase gij 338733062 ref YP_004671535.1 21 4 0 0		gi[338733240]rof[VP_004671722_1]	55	4	2	0
hypothetical protein SNE_A15770 gi 338733472 ref YP_0046771943.1 74 5 0 0 putative methyltransferase gi 338731880 ref YP_004662999.1 30 3 2 0 hypothetical protein SNE_A19440 gi 338733839 ref YP_004672312.1 22 0 0 1 lipoprotein_releasing system ATP_binding gi 338731800 ref YP_004670380.1 24 0 3 0 protein LoID gi 338731907 ref YP_004670380.1 29 0 2 0 putative serine_type D_Ala_D_Ala gi 338732045 ref YP_004670518.1 49 3 0 0 carboxypeptidase gi 338733337 ref YP_004670518.1 29 3 0 0 hypothetical protein SNE_A01500 gi 338733337 ref YP_004671810.1 46 7 0 0 ADP_ribose pyrophosphatase gi 338733062 ref YP_004671535.1 21 4 0 0	by pothetical protein SNE A15770	gij229722472lrof/VD_00467104511	74	2	2	0
by putative metrification size gi[338731800]ref[YP_004672312.1] 30 3 2 0 hypothetical protein SNE_A19440 gi[338733839]ref[YP_004672312.1] 22 0 0 1 lipoprotein_releasing system ATP_binding gi[338732840]ref[YP_004671313.1] 24 0 3 0 protein LoID gi[338731907]ref[YP_004670380.1] 29 0 2 0 putative serine_type D_Ala_D_Ala gi[338734045]ref[YP_004672518.1] 49 3 0 0 carboxypeptidase gi[338733045]ref[YP_004670518.1] 29 3 0 0 serpin_like protein gi[338733337]ref[YP_004671518.1] 29 3 0 0 ADP_ribose pyrophosphatase gi[338733062]ref[YP_004671535.1] 21 4 0 0	nypolitelical protein SNE_A15770	gi[338731880]rof[VD_004662000_1]	20	3	2	0
Inypotitietical protein SNE_A19440 gi[338733839]ref[YP_004672312.1] 22 0 0 1 lipoprotein_releasing system ATP_binding gi[338732840]ref[YP_004671313.1] 24 0 3 0 protein LoID gi[338731907]ref[YP_004670380.1] 29 0 2 0 putative serine_type D_Ala_D_Ala gi[338734045]ref[YP_004670518.1] 49 3 0 0 carboxypeptidase	by pothetical protein SNE A10440	gi[229722920]rof[VD_004672212.1]	20	0	2	1
Inpoprotein_releasing system ATP_binding gi[338732840]rel[TP_004671313.1] 24 0 3 0 protein LoID modification methylase MjallI gi[338731907]ref[YP_004670380.1] 29 0 2 0 putative serine_type D_Ala_D_Ala gi[338734045]ref[YP_004672518.1] 49 3 0 0 carboxypeptidase	lipoprotoin rologging system ATD binding	gij228722840/rof/VD_004671212_11	24	0	2	0
modification methylase MjallI gi 338731907 ref YP_004670380.1 29 0 2 0 putative serine_type D_Ala_D_Ala gi 338734045 ref YP_004672518.1 49 3 0 0 carboxypeptidase gi 338732045 ref YP_004670518.1 29 3 0 0 hypothetical protein SNE_A01500 gi 338733045 ref YP_004670518.1 29 3 0 0 serpin_like protein gi 338733037 ref YP_004671810.1 46 7 0 0 ADP_ribose pyrophosphatase gi 338733062 ref YP_004671535.1 21 4 0 0	protein LoID	gij556752640jieij1P_004071515. ij	24	0	3	0
putative serine_type D_Ala_D_Ala gi 338734045 ref YP_004672518.1 49 3 0 0 carboxypeptidase gi 338732045 ref YP_004670518.1 29 3 0 0 hypothetical protein SNE_A01500 gi 338733045 ref YP_004670518.1 29 3 0 0 serpin_like protein gi 338733037 ref YP_004671810.1 46 7 0 0 ADP_ribose pyrophosphatase gi 338733062 ref YP_004671535.1 21 4 0 0	modification methylase MjaIII	gi 338731907 ref YP_004670380.1	29	0	2	0
carboxypeptidase gi 338732045 ref YP_004670518.1 29 3 0 0 hypothetical protein SNE_A01500 gi 338733045 ref YP_004670518.1 29 3 0 0 serpin_like protein gi 338733037 ref YP_004671810.1 46 7 0 0 ADP_ribose pyrophosphatase gi 338733062 ref YP_004671535.1 21 4 0 0	putative serine_type D_Ala_D_Ala	gi 338734045 ref YP_004672518.1	49	3	0	0
hypothetical protein SNE_A01500gi 338732045 ref YP_004670518.1 29300serpin_like proteingi 338733337 ref YP_004671810.1 46700ADP_ribose pyrophosphatasegi 338733062 ref YP_004671535.1 21400	carboxypeptidase					
serpin_like proteingi 338733337 ref YP_004671810.1 46700ADP_ribose pyrophosphatasegi 338733062 ref YP_004671535.1 21400	hypothetical protein SNE_A01500	gi 338732045 ref YP_004670518.1	29	3	0	0
ADP_ribose pyrophosphatase gi 338733062 ref YP_004671535.1 21 4 0 0	serpin_like protein	gi 338733337 ref YP_004671810.1	46	7	0	0
	ADP_ribose pyrophosphatase	gi 338733062 ref YP_004671535.1	21	4	0	0

hypothetical protein SNE_A12920	gi 338733187 ref YP_004671660.1	25	0	2	1
putative heptosyltransferase I	gi 338732751 ref YP_004671224.1	40	3	0	0
hypothetical protein SNE_A22530	gi 338734148 ref YP_004672621.1	25	0	0	1
MOMP_like family protein	gi 338732172 ref YP_004670645.1	39	0	2	0
hypothetical protein SNE_A19320	gi 338733827 ref YP_004672300.1	25	3	0	0
hypothetical protein SNE_A00550	gi 338731951 ref YP_004670424.1	20	0	2	0
hypothetical protein SNE_B25100	gi 338731886 ref YP_004663005.1	41	3	2	0
hypothetical protein SNE_A09020	gi 338732797 ref YP_004671270.1	20	0	2	1
Ankyrin repeat_containing protein	gi 338732801 ref YP_004671274.1	34	3	0	0
hypothetical protein SNE_A16110	gi 338733506 ref YP_004671979.1	33	4	0	0
hypothetical protein SNE_A03420	gi 338732237 ref YP_004670710.1	34	0	0	1
hypothetical protein SNE_A00650	gi 338731961 ref YP_004670434.1	16	0	2	0
acetoin2,6_dichlorophenolindophenol	gi 338733567 ref YP_004672040.1	37	3	0	0
oxidoreductase					
subunit alpha "					
chemiosmotic efflux system B protein B	gi 338731815 ref YP_004662934.1	43	3	2	0
hypothetical protein SNE_A23500	gi 338734245 ref YP_004672718.1	18	0	0	1
hypothetical protein SNE_A20150	gi 338733910 ref YP_004672383.1	15	0	2	0
periplasmic trehalase	gi 338732904 ref YP_004671377.1	58	3	0	0
peptide methionine sulfoxide	gi 338732545 ref YP_004671018.1	17	0	2	0
reductase msrA					
patatin_like phospholipase	gi 338733582 ref YP_004672055.1	36	4	0	0
bifunctional enzyme MurCDdl	gi 338733615 ref YP_004672088.1	47	3	0	0
putative carboxypeptidase yocD	gi 338732139 ref YP_004670612.1	36	3	0	0
hypothetical protein SNE_A02010	gi 338732096 ref YP_004670569.1	26	0	2	0
crossover junction endodeoxy _ribonuclease ruvC	gi 338732113 ref YP_004670586.1	18	3	0	0
isoamylase 3	gi 338733334 ref YP_004671807.1	72	3	0	0
hypothetical protein SNE_A21800	gi 338734075 ref YP_004672548.1	22	3	0	0
dTDP_4_dehydrorhamnose 3,5_	gi 338732567 ref YP_004671040.1	21	0	0	2
epimerase "					
hypothetical protein SNE_B25070	gi 338731883 ref YP_004663002.1	44	4	0	0
protein_L_isoaspartate O_methyltransferase	gi 338732844 ref YP_004671317.1	36	3	0	0
DNA polymerase III, chi subunit "	gi 338732809 ref YP_004671282.1	17	0	0	2
hypothetical protein SNE_A22610	gi 338734156 ref YP_004672629.1	48	3	0	0
glycosyl transferase family protein	gi 338732480 ref YP_004670953.1	37	0	2	0

Tab. 3.1.4: Über LC-MS² ermittelte Simkania-Proteine. Eine Gesamtmenge von 885 Simkania-Proteinen wurde über Massenspektrometrie in aufgereinigten Simkanien identifiziert. Proteinnamen, GI-Identifizierungszeichen (festgesetzt über NCBI, Accession-Nummer) und Molekulargewicht (MGW, kDa) sind angegeben. Die Gesamtzahl der bestimmten Spektren (engl. *total number of assigned spectra*) von drei Kontroll- und drei infizierten Proben sind aufgelistet. P1/2/3 = Probe 1/2/3; Inf. = infiziert.

#	MS-Identifikationsnummer	Probenbezeichnung	Experiment
1	22482	HeLa	LC/MS Vortest Gesamtlipidextrakt
2	22486	HeLa + Sn	LC/MS Vortest Gesamtlipidextrakt
3	26026	DC-Hintergrund	LC/MS Vortest DC-Spots 1-4
4	26027	HeLa + Sn	LC/MS Vortest DC-Spots 1
5	26028	HeLa	LC/MS Vortest DC-Spots 1
6	26029	HeLa + Sn	LC/MS Vortest DC-Spots 2
7	26030	HeLa	LC/MS Vortest DC-Spots 2
8	26031	HeLa + Sn	LC/MS Vortest DC-Spots 3
9	26032	HeLa	LC/MS Vortest DC-Spots 3
10	26033	HeLa + Sn	LC/MS Vortest DC-Spots 4
11	26034	HeLa	LC/MS Vortest DC-Spots 4
12	26717	HeLa + Sn	LC/MS DC-Spots 1
13	26718	HeLa	LC/MS DC-Spots 1
14	26749	DC-Hintergrund	LC/MS DC-Spots 1
15	26741	HeLa + Sn	LC/MS DC-Spots 2
16	26720	HeLa	LC/MS DC-Spots 2
17	26721	HeLa + Sn	LC/MS DC-Spots 3
18	26755	HeLa	LC/MS DC-Spots 3
19	26727	DC-Hintergrund	LC/MS DC-Spots 4
20	26723	HeLa + Sn	LC/MS DC-Spots 4
21	26724	HeLa	LC/MS DC-Spots 4
22	(nicht auswertbar)	HeLa + Sn	LC/MS DC-Spots 5
23	(nicht auswertbar)	HeLa	LC/MS DC-Spots 5
24	27591	HeLa	LC/MS Gesamtlipidextrakt 1
25	27592	HeLa	LC/MS Gesamtlipidextrakt 2
26	27593	HeLa	LC/MS Gesamtlipidextrakt 3
27	27595	HeLa	LC/MS Gesamtlipidextrakt 4
28	27596	HeLa + Sn	LC/MS Gesamtlipidextrakt 1
29	27597	HeLa + Sn	LC/MS Gesamtlipidextrakt 2

30	27598	HeLa + Sn	LC/MS Gesamtlipidextrakt 3
31	27600	HeLa + Sn	LC/MS Gesamtlipidextrakt 4
32	27601 (aus Analyse genommen)	Sn	LC/MS Gesamtlipidextrakt 1
33	27602	Sn	LC/MS Gesamtlipidextrakt 2
34	27603	Sn	LC/MS Gesamtlipidextrakt 3
35	27604	Sn	LC/MS Gesamtlipidextrakt 4
36	27646	PBS-Hintergrund	LC/MS Gesamtlipidextrakt 1
37	27647	PBS-Hintergrund	LC/MS Gesamtlipidextrakt 2

Tab. 3.2.2: Kennzeichnung der gemessenen LC/MS-Proben in Borstel. Alle in Borstel gemessenen Lipidproben wurden mit einer Probenidentifikationsnummer versehen. Die dazugehörigen Probenbezeichnungen und Zuordnung zu den Experimenten sind aufgelistet. LC/MS = Flüssigchromatographie-Massenspektrometrie; *Sn* = *Simkania negevensis*.

#	Lipid- nummer	Lipidkürzel	Avanti Nr.	Konz. in Mix (µM) = pmol/µl	Zugabe in pmol
1	119	18:0 Diether PC	999991	181.1850225	905.9251126
2	104	4ME 16:0 Diether PE	999985P	306.7427266	1533.713633
3	102	17:0 SM (d18:1/17:0)	860585	143.4438681	717.2193406
4	105	17:0 Lyso PC	110686	303.6589407	1518.294704
5	106	C17 Ceramide (d18:1/17:0)	860517	448.6445628	2243.222814
6	114	17:0 cholesteryl ester	110864	335.2987053	1676.493527
7	116	17:0-17:1-17:0 D5 TG	110544	111.7273807	558.6369036
8	117	17:0 PS	840028	170.8460953	854.2304765
9	108	Chol-D7	-	2423.361202	12116.80601

Tab. 3.2.3: Probenvorbereitung für qualitative und quantitative Gesamtlipidextraktmessungen über LC/MS. Die in Borstel gemessenen Gesamtlipidextrakte (Methode 1) wurden vor der LC/MS-Messung mit mehreren Standards versehen. Lipidkürzel, Katalognummer (Avanti), Standard-konzentration pro Probe und Zugabe in pmol sind angegeben.

Gen ID	Funktion	Genname	siRNA ID	Replikate	z-score [Area*SCV/Nuk]	Nukleuszahl
164	AP-1 complex subunit gamma-1	AP1G1	Hs_AP1G1_5	4	-2,75	4002
164	AP-1 complex subunit gamma-1	AP1G1	Hs_AP1G1_6	4	-2,24	3926
23192	Cysteine protease ATG4B	ATG4B	Hs_ATG4B_5	4	-4,83	3925
23192	Cysteine protease ATG4B	ATG4B	Hs_ATG4B_3	4	-2,19	3245
664	BCL2/adenovirus E1B 19 protein-interacting protein 3	BNIP3	Hs_BNIP3_9	4	-3,44	4591
664	BCL2/adenovirus E1B 19 protein-interacting protein 3	BNIP3	Hs_BNIP3_5	4	-2,03	4466
857	CAV1 caveolin 1, caveolae protein, 22	caveolin 1	Hs_CAV1_6	4	-3,80	3907
857	CAV1 caveolin 1, caveolae protein, 22	caveolin 1	Hs_CAV1_8	4	-2,78	4439
1376	Carnitine O- palmitoyltransferase 2, mitochondrial	CPT2	Hs_CPT2_2	4	-2,08	4313
1376	Carnitine O- palmitoyltransferase 2, mitochondrial	CPT2	Hs_CPT2_1	4	-2,05	3709
29118	ATP-dependent RNA helicase DDX25	DDX25	Hs_DDX25_7	4	-3,93	4372
29118	ATP-dependent RNA helicase DDX25	DDX25	Hs_DDX25_8	4	-2,83	4266
2353	Proto-oncogene protein c-fos	FOS	Hs_FOS_6	4	-3,72	4536
2353	Proto-oncogene protein c-fos	FOS	Hs_FOS_5	4	-2,83	4137
8924	Probable E3 ubiquitin- protein ligase HERC2	HERC2	Hs_HERC2_8	4	-3,90	4388
8924	Probable E3 ubiquitin- protein ligase HERC2	HERC2	Hs_HERC2_6	4	-3,15	2487
9146	Hepatocyte growth factor-regulated tyrosine kinase substrate	HGS	Hs_HGS_2	4	-4,82	3270
9146	Hepatocyte growth factor-regulated tyrosine kinase substrate	HGS	Hs_HGS_6	4	-2,99	4324
3843	Importin-5	IPO5	Hs_RANBP5_3	4	-5,10	4601
3843	Importin-5	IPO5	Hs_RANBP5_2	4	-3,13	2575
9361	Lon protease homolog, mitochondrial	LONP1	Hs_PRSS15_4	3	-5,61	3586
9361	Lon protease homolog, mitochondrial	LONP1	Hs_PRSS15_1	4	-2,61	3427
9361	Lon protease homolog, mitochondrial	LONP1	Hs_PRSS15_2	4	-2,25	4671
4599	myxovirus (influenza virus) resistance 1, interferon-inducible protein p78	Mx1	Hs_MX1_2	4	-3,40	4815
4599	myxovirus (influenza virus) resistance 1, interferon-inducible protein p78	Mx1	Hs_MX1_3	4	-2,30	4260
4628	Myosin-10	MYH10	Hs_MYH10_6	4	-2,64	3941

4628	Myosin-10	MYH10	Hs_MYH10_1	4	-2,51	3895
4747	Neurofilament light polypeptide	NEFL	Hs_NEFL_2	4	-2,13	4002
4747	Neurofilament light polypeptide	NEFL	Hs_NEFL_4	4	-2,09	3976
8615	USO1 USO1 homolog, vesicle docking protein (yeast)	p115	Hs_VDP_7	4	-2,42	4187
8615	USO1 USO1 homolog, vesicle docking protein (yeast)	p115	Hs_VDP_6	4	-2,02	4114
5189	Peroxisome bioFullsis factor 1	PEX1	Hs_PEX1_2	4	-4,15	2655
5189	Peroxisome bioFullsis factor 1	PEX1	Hs_PEX1_1	3	-3,05	4483
5189	Peroxisome bioFullsis factor 1	PEX1	Hs_PEX1_3	4	-2,56	1602
8504	Peroxisomal bioFullsis factor 3	PEX3	Hs_PEX3_9	4	-2,96	3467
8504	Peroxisomal bioFullsis factor 3	PEX3	Hs_PEX3_5	4	-2,08	4349
11021	Ras-related protein Rab- 35	RAB35	Hs_RAB35_4	4	-3,93	3468
11021	Ras-related protein Rab- 35	RAB35	Hs_RAB35_2	4	-2,27	4214
5879	RAC1 ras-related C3 botulinum toxin substrate 1	Rac 1	Hs_RAC1_6	4	-7,35	928
5879	RAC1 ras-related C3 botulinum toxin substrate 1	Rac 1	Hs_RAC1_5	4	-4,04	3637
55288	Mitochondrial Rho GTPase 1	RHOT1	Hs_RHOT1_9	3	-2,77	3585
55288	Mitochondrial Rho GTPase 1	RHOT1	Hs_RHOT1_10	4	-2,75	4002
10067	Secretory carrier- associated membrane protein 3	SCAMP3	Hs_SCAMP3_6	3	-2,24	3926
10067	Secretory carrier- associated membrane protein 3	SCAMP3	Hs_SCAMP3_7	4	-4,83	3925
23411	NAD-dependent deacetylase sirtuin-1	SIRT1	Hs_SIRT1_3	4	-2,19	3245
23411	NAD-dependent deacetylase sirtuin-1	SIRT1	Hs_SIRT1_1	4	-3,44	4591
10166	Mitochondrial ornithine transporter 1	SLC25A15	Hs_SLC25A15_5	3	-2,03	4466
10166	Mitochondrial ornithine transporter 1	SLC25A15	Hs_SLC25A15_6	4	-3,80	3907
23557	SNARE-associated protein Snapin	SNAPIN	Hs_SNAPAP_2	4	-2,78	4439
23557	SNARE-associated protein Snapin	SNAPIN	Hs_SNAPAP_6	4	-2,08	4313
92335	STE20-related kinase adapter protein alpha	STRADA	Hs_LYK5_7	4	-2,05	3709
92335	STE20-related kinase adapter protein alpha	STRADA	Hs_LYK5_5	4	-3,93	4372
92335	STE20-related kinase adapter protein alpha	STRADA	Hs_LYK5_1	4	-2,83	4266
55437	STE20-related kinase adapter protein beta	STRADB	Hs_ALS2CR2_7	3	-3,72	4536

55437	STE20-related kinase adapter protein beta	STRADB	Hs_ALS2CR2_3	4	-2,83	4137
10452	Mitochondrial import receptor subunit TOM40 homolog	TOMM40	Hs_TOMM40_1	4	-3,90	4388
10452	Mitochondrial import receptor subunit TOM40 homolog	TOMM40	Hs_TOMM40_7	4	-3,15	2487
8409	Protein UXT	UXT	Hs_UXT_3	4	-4,82	3270
8409	Protein UXT	UXT	Hs_UXT_4	4	-2,99	4324
11311	Vacuolar protein sorting- associated protein 45	VPS45	Hs_VPS45_2	4	-5,10	4601
11311	Vacuolar protein sorting- associated protein 45	VPS45	Hs_VPS45_3	4	-3,13	2575

Tab. 3.4.2: Reduzierte Liste von humanen Transportproteinen mit reduzierten z-scores. Bei dem Vergleich von 1491 Einzel-siRNAs konnten bei insgesamt 29 Faktoren eine relative Reduktion des z-scores für zwei bis drei siRNAs ermittelt werden. Der z-score gibt die aus der Mikroskopie erworbenen Messungen zur gemittelten Größe (engl. *area*) aller SCV in Pixel im Vergleich zur Zellkernzahl (Nukleus, Nuk) an. Gen ID, Genfunktion und Genname (festgesetzt über NCBI), sowie siRNA ID (Qiagen) sind angegeben. Eingeflossene Anzahl an Replikaten, gemittelte z-score Werte und gemittelte Zellkernzahlen sind aufgelistet.

Gen ID	Funktion	Genname	siRNA ID	Replikate	z-score [Area*SCV/Nuk]	Nukleuszahl
20	ATP-binding cassette sub- family A member 2	ABCA2	Hs_ABCA2_2	4	3,96	2265
20	ATP-binding cassette sub- family A member 2	ABCA2	Hs_ABCA2_3	4	5,72	2000
226	aldolase A, fructose- bisphosphate	ALDOA	Hs_ALDOA_6	4	6,02	366
226	aldolase A, fructose- bisphosphate	ALDOA	Hs_ALDOA_7	4	6,86	1019
8943	AP-3 complex subunit delta-1	AP3D1	Hs_AP3D1_2	4	11,77	1342
8943	AP-3 complex subunit delta-1	AP3D1	Hs_AP3D1_3	4	3,14	3431
372	Coatomer subunit delta	ARCN1	Hs_ARCN1_4	4	244,81	5
372	Coatomer subunit delta	ARCN1	Hs_ARCN1_7	4	98,67	10
372	Coatomer subunit delta	ARCN1	Hs_ARCN1_8	4	46,38	9
10533	Autophagy-related protein 7	ATG7	Hs_ATG7_1	4	4,60	2638
10533	Autophagy-related protein 7	ATG7	Hs_ATG7_3	3	4,61	2234
79065	Autophagy-related protein 9A	ATG9A	Hs_ATG9A_2	4	5,13	1783
79065	Autophagy-related protein 9A	ATG9A	Hs_ATG9A_3	4	11,58	1616
83734	Autophagy-related protein 10	ATG10	Hs_APG10L_2	4	3,59	2451
83734	Autophagy-related protein 10	ATG10	Hs_ATG10_1	4	12,00	742
706	Translocator protein	TSPO	Hs_BZRP_3	3	3,43	3545
706	Translocator protein	TSPO	Hs_BZRP_5	4	18,38	805
1212	Clathrin light chain B	CLTB	Hs_CLTB_1	4	9,82	550
1212	Clathrin light chain B	CLTB	Hs_CLTB_2	4	3,49	3837
1212	Clathrin light chain B	CLTB	Hs_CLTB_7	4	12,33	521
1314	Coatomer subunit alpha	COPA	Hs_COPA_3	4	110,81	20
1314	Coatomer subunit alpha	COPA	Hs_COPA_6	3	44,94	11
1315	Coatomer subunit beta	COPB1	Hs_COPB_5	4	3,31	447

1315	Coatomer subunit beta	COPB1	Hs_COPB1_2	4	8,86	242
1315	Coatomer subunit beta	COPB1	Hs_COPB1_3	3	61,12	15
9276	Coatomer subunit beta	COPB2	Hs_COPB2_1	4	27,97	14
9276	Coatomer subunit beta	COPB2	Hs_COPB2_6	3	55,55	31
9276	Coatomer subunit beta	COPB2	Hs_COPB2_7	4	42,15	44
22820	Coatomer subunit gamma	COPG	Hs_COPG_1	4	75,66	39
22820	Coatomer subunit gamma	COPG	Hs_COPG_5	4	77,83	14
51226	Coatomer subunit zeta-2	COPZ2	Hs_COPZ2_2	4	8,40	1408
51226	Coatomer subunit zeta-2	COPZ2	Hs_COPZ2_6	3	7,87	1558
51226	Coatomer subunit zeta-2	COPZ2	Hs_COPZ2_7	4	4,32	3322
1409	Alpha-crystallin A chain	CRYAA	Hs_CRYAA_2	3	17,25	735
1409	Alpha-crystallin A chain	CRYAA	Hs_CRYAA_3	4	18,55	1160
10675	Chondroitin sulfate	CSPG5	Hs_CSPG5_3	4	11,39	1440
10675	Chondroitin sulfate proteoglycan 5	CSPG5	Hs_CSPG5_5	4	6,05	1421
10675	Chondroitin sulfate proteoglycan 5	CSPG5	Hs_CSPG5_6	4	4,85	2158
1778	Cytoplasmic dynein 1 heavy chain 1	DYNC1H1	Hs_DNCH1_2	4	33,23	169
1778	Cytoplasmic dynein 1 heavy chain 1	DYNC1H1	Hs_DNCH1_3	4	7,04	1139
1778	Cytoplasmic dynein 1 heavy chain 1	DYNC1H1	Hs_DNCH1_4	4	25,81	281
2316	Filamin-A	FLNA	Hs_FLNA_5	4	43,26	108
2316	Filamin-A	FLNA	Hs_FLNA_9	4	17,57	832
10772	FUS-interacting serine- arginine-rich protein 1	FUSIP1	Hs_FUSIP1_4	4	65,78	84
10772	FUS-interacting serine- arginine-rich protein 1	FUSIP1	Hs_FUSIP1_7	4	3,72	2681
26088	ADP-ribosylation factor- binding protein GGA1	GGA1	Hs_GGA1_11	4	3,25	2174
26088	ADP-ribosylation factor- binding protein GGA1	GGA1	Hs_GGA1_13	4	38,15	118
2923	Protein disulfide-isomerase A3	PDIA3	Hs_GRP58_5	4	3,51	1042
2923	Protein disulfide-isomerase A3	PDIA3	Hs_GRP58_6	4	4,43	2095
2932	Glycogen synthase kinase-3 beta	GSK3B	Hs_GSK3B_5	4	7,18	1383
2932	Glycogen synthase kinase-3 beta	GSK3B	Hs_GSK3B_7	4	4,82	3132
2932	Glycogen synthase kinase-3 beta	GSK3B	Hs_GSK3B_8	4	12,02	1121
2936	Glutathione reductase, mitochondrial	GSR	Hs_GSR_1	4	5,43	2705
2936	Glutathione reductase, mitochondrial	GSR	Hs_GSR_2	4	10,27	2028
547	Kinesin-like protein KIF1A	KIF1A	Hs_KIF1A_1	4	4,86	2414
547	Kinesin-like protein KIF1A	KIF1A	Hs_KIF1A_6	4	40,60	302
10749	Kinesin-like protein KIF1C	KIF1C	Hs_KIF1C_7	4	7,86	2077
10749	Kinesin-like protein KIF1C	KIF1C	Hs_KIF1C_8	4	5,01	2711
3838	Importin subunit alpha-2	KPNA2	Hs_KPNA2_5	4	21,06	423
3838	Importin subunit alpha-2	KPNA2	Hs_LOC728860_5	4	15,95	1409
3839	Importin subunit alpha-3	KPNA3	Hs_KPNA3_2	4	11,57	974

3839	Importin subunit alpha-3	KPNA3	Hs_KPNA3_5	4	7,20	1578
3837	Importin subunit beta-1	KPNB1	Hs_KPNB1_1	4	38,98	95
3837	Importin subunit beta-1	KPNB1	Hs_KPNB1_2	4	50,42	104
3837	Importin subunit beta-1	KPNB1	Hs_KPNB1_3	4	63,36	73
3875	Keratin, type I cytoskeletal 18	KRT18	Hs_KRT18_3	4	46,86	109
3875	Keratin, type I cytoskeletal 18	KRT18	Hs_KRT18_8	4	18,57	475
3895	Kinectin	KTN1	Hs_KTN1_5	4	3,37	2176
3895	Kinectin	KTN1	Hs_KTN1_8	4	3,82	2375
345611	immunity-related GTPase family. M	IRGM	Hs_LRG47_2	4	37,02	185
345611	immunity-related GTPase family, M	IRGM	Hs_LRG47_4	4	13,24	714
55341	Large subunit GTPase 1 homolog	LSG1	Hs_LSG1_1	4	3,27	2900
55341	Large subunit GTPase 1 homolog	LSG1	Hs_LSG1_2	4	3,90	1296
4353	Myeloperoxidase	MPO	Hs_MPO_4	4	34,03	279
4353	Myeloperoxidase	MPO	Hs_MPO_5	4	4,80	2238
4624	Myosin-6	MYH6	Hs_MYH6_6	3	34,58	97
4624	Myosin-6	MYH6	Hs_MYH6_7	4	12,28	332
8775	Alpha-soluble NSF attachment protein	NAPA	Hs_NAPA_5	4	34,58	97
8775	Alpha-soluble NSF attachment protein	NAPA	Hs_NAPA_6	3	12,28	332
51517	SH3 adapter protein SPIN90	NCKIPSD	Hs_NCKIPSD_7	4	3,39	3245
51517	SH3 adapter protein SPIN90	NCKIPSD	Hs NCKIPSD 8	3	7,79	2651
01011					•	
4763	Neurofibromin	NF1	 Hs_NF1_1	4	35,18	132
4763 4763	Neurofibromin Neurofibromin	NF1 NF1	 Hs_NF1_1 Hs_NF1_6	4	35,18 9,98	132 1099
4763 4763 4795	Neurofibromin Neurofibromin NF-kappa-B inhibitor-like protein 1	NF1 NF1 NFKBIL1	 Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6	4 4 4	35,18 9,98 6,78	132 1099 2678
4763 4763 4795 4795	Neurofibromin Neurofibromin NF-kappa-B inhibitor-like protein 1 NF-kappa-B inhibitor-like protein 1	NF1 NF1 NFKBIL1 NFKBIL1	Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6 Hs_NFKBIL1_7	4 4 4 4	35,18 9,98 6,78 6,16	132 1099 2678 2704
4763 4763 4795 4795 91662	Neurofibromin NF-kappa-B inhibitor-like protein 1 NF-kappa-B inhibitor-like protein 1 NACHT, LRR and PYD domains-containing protein 12	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12	Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6 Hs_NFKBIL1_7 Hs_NLRP12_1	4 4 4 4 4	35,18 9,98 6,78 6,16 10,61	132 1099 2678 2704 494
4763 4763 4795 4795 91662 91662	Neurofibromin NEurofibromin NF-kappa-B inhibitor-like protein 1 NF-kappa-B inhibitor-like protein 1 NACHT, LRR and PYD domains-containing protein 12 NACHT, LRR and PYD domains-containing protein 12	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NLRP12	Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6 Hs_NFKBIL1_7 Hs_NLRP12_1 Hs_NLRP12_2	4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48	132 1099 2678 2704 494 2195
4763 4763 4795 4795 91662 91662 57122	NeurofibrominNeurofibrominNF-kappa-B inhibitor-likeprotein 1NF-kappa-B inhibitor-likeprotein 1NACHT, LRR and PYDdomains-containing protein12NACHT, LRR and PYDdomains-containing protein12NACHT, LRR and PYDdomains-containing protein12NACHT, LRR and PYDdomains-containing protein12Nuclear pore complex proteinNup107	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NLRP12 NUP107	Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6 Hs_NFKBIL1_7 Hs_NLRP12_1 Hs_NLRP12_2 Hs_NUP107_6	4 4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48 27,03	132 1099 2678 2704 494 2195 98
4763 4763 4795 4795 91662 91662 57122 57122	Neurofibromin Neurofibromin NF-kappa-B inhibitor-like protein 1 NF-kappa-B inhibitor-like protein 1 NACHT, LRR and PYD domains-containing protein 12 NACHT, LRR and PYD domains-containing protein 12 Nuclear pore complex protein Nup107 Nuclear pore complex protein Nup107	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NLRP12 NUP107 NUP107	Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6 Hs_NFKBIL1_7 Hs_NLRP12_1 Hs_NLRP12_2 Hs_NUP107_6 Hs_NUP107_7	4 4 4 4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48 27,03 27,81	132 1099 2678 2704 494 2195 98 151
4763 4763 4795 4795 91662 91662 57122 57122 57122	Neurofibromin NEurofibromin NF-kappa-B inhibitor-like protein 1 NF-kappa-B inhibitor-like protein 1 NACHT, LRR and PYD domains-containing protein 12 NACHT, LRR and PYD domains-containing protein 12 NACHT, LRR and PYD domains-containing protein 12 Nuclear pore complex protein Nup107 Nuclear pore complex protein Nup107 Nuclear pore complex protein Nup107	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NLRP12 NUP107 NUP107 NUP107	Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6 Hs_NFKBIL1_7 Hs_NLRP12_1 Hs_NLRP12_2 Hs_NUP107_6 Hs_NUP107_7 Hs_NUP107_8	4 4 4 4 4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48 27,03 27,81 5,16	132 1099 2678 2704 494 2195 98 151 1429
4763 4763 4795 4795 91662 91662 57122 57122 57122 57122 55746	NeurofibrominNeurofibrominNF-kappa-B inhibitor-likeprotein 1NF-kappa-B inhibitor-likeprotein 1NACHT, LRR and PYDdomains-containing protein12NACHT, LRR and PYDdomains-containing protein12NACHT, LRR and PYDdomains-containing protein12Nuclear pore complex proteinNup107Nuclear pore complex proteinNup103	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NLRP12 NUP107 NUP107 NUP107 NUP107	Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6 Hs_NFKBIL1_7 Hs_NLRP12_1 Hs_NLRP12_2 Hs_NUP107_6 Hs_NUP107_7 Hs_NUP107_8 Hs_NUP133_7	4 4 4 4 4 4 4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48 27,03 27,81 5,16 58,05	132 1099 2678 2704 494 2195 98 151 1429 68
4763 4763 4795 4795 91662 91662 57122 57122 57122 55746 55746	NeurofibrominNeurofibrominNF-kappa-B inhibitor-likeprotein 1NF-kappa-B inhibitor-likeprotein 1NACHT, LRR and PYDdomains-containing protein12NACHT, LRR and PYDdomains-containing protein12Nuclear pore complex proteinNup107Nuclear pore complex proteinNup107Nuclear pore complex proteinNup107Nuclear pore complex proteinNup103Nuclear pore complex proteinNup133Nuclear pore complex proteinNup133	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NLRP12 NUP107 NUP107 NUP107 NUP133 NUP133	Hs_NF1_1 Hs_NF1_6 Hs_NFKBIL1_6 Hs_NFKBIL1_7 Hs_NLRP12_1 Hs_NLRP12_2 Hs_NUP107_6 Hs_NUP107_7 Hs_NUP107_8 Hs_NUP133_7 Hs_NUP133_8	4 4 4 4 4 4 4 4 4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48 27,03 27,81 5,16 58,05 58,84	132 1099 2678 2704 494 2195 98 151 1429 68 54
4763 4763 4795 4795 91662 91662 57122 57122 57122 57122 55746 55746 23165	NeurofibrominNeurofibrominNF-kappa-B inhibitor-likeprotein 1NF-kappa-B inhibitor-likeprotein 1NACHT, LRR and PYDdomains-containing protein12NACHT, LRR and PYDdomains-containing protein12Nuclear pore complex proteinNup107Nuclear pore complex proteinNup107Nuclear pore complex proteinNup107Nuclear pore complex proteinNup107Nuclear pore complex proteinNup133Nuclear pore complex proteinNup205	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NLRP12 NUP107 NUP107 NUP107 NUP133 NUP133 NUP133		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48 27,03 27,81 5,16 58,05 58,84 69,45	132 1099 2678 2704 494 2195 98 151 1429 68 54 101
4763 4763 4795 4795 91662 91662 91662 57122 57122 57122 57122 55746 55746 23165 23165	NeurofibrominNeurofibrominNF-kappa-B inhibitor-like protein 1NF-kappa-B inhibitor-like protein 1NACHT, LRR and PYD domains-containing protein 12NACHT, LRR and PYD domains-containing protein 12Nuclear pore complex protein Nup107Nuclear pore complex protein Nup107Nuclear pore complex protein Nup107Nuclear pore complex protein Nup107Nuclear pore complex protein Nup133Nuclear pore complex protein Nup133Nuclear pore complex protein Nup133Nuclear pore complex protein Nup205Nuclear pore complex protein Nup205	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NLRP12 NUP107 NUP107 NUP103 NUP133 NUP205 NUP205		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48 27,03 27,81 5,16 58,05 58,84 69,45 91,69	132 1099 2678 2704 494 2195 98 151 1429 68 54 101 20
4763 4763 4795 4795 91662 91662 91662 57122 57122 57122 57122 55746 25746 23165 23165 23165	NeurofibrominNeurofibrominNF-kappa-B inhibitor-like protein 1NF-kappa-B inhibitor-like protein 1NACHT, LRR and PYD domains-containing protein 12NACHT, LRR and PYD domains-containing protein 12NACHT, LRR and PYD domains-containing protein 12Nuclear pore complex protein Nup107Nuclear pore complex protein Nup107Nuclear pore complex protein Nup107Nuclear pore complex protein Nup107Nuclear pore complex protein Nup133Nuclear pore complex protein Nup133Nuclear pore complex protein Nup133Nuclear pore complex protein Nup205Nuclear pore complex protein Nup205	NF1 NF1 NFKBIL1 NFKBIL1 NLRP12 NUP107 NUP107 NUP103 NUP103 NUP133 NUP205 NUP205	- - - Hs_NF1_1 + Hs_NF1_6 + Hs_NFKBIL1_6 + Hs_NFKBIL1_7 + Hs_NLRP12_1 + Hs_NLRP12_2 + Hs_NUP107_6 + Hs_NUP107_7 + Hs_NUP107_8 + Hs_NUP133_7 + Hs_NUP205_4 + Hs_NUP205_5 + Hs_NUP205_6 +	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	35,18 9,98 6,78 6,16 10,61 5,48 27,03 27,81 5,16 58,05 58,84 69,45 91,69 61,20	132 1099 2678 2704 494 2195 98 151 1429 68 54 101 20 56

8021	Nuclear pore complex protein Nup214	NUP214	Hs_NUP214_5	4	112,94	78
4928	Nuclear pore complex protein Nup98-Nup96	NUP98	Hs_NUP98_3	4	28,10	233
4928	Nuclear pore complex protein Nup98-Nup96	NUP98	Hs_NUP98_5	4	10,28	387
4928	Nuclear pore complex protein Nup98-Nup96	NUP98	Hs_NUP98_7	4	39,47	106
5163	pyruvate dehydrogenase kinase, isozyme 1	PDK1	Hs_PDK1_5	4	4,22	2513
5163	pyruvate dehydrogenase kinase, isozyme 1	PDK1	Hs_PDK1_6	4	3,40	3070
5192	Peroxisome assembly protein 10	PEX10	Hs_PEX10_1	4	5,03	3008
5192	Peroxisome assembly protein 10	PEX10	Hs_PEX10_7	4	4,13	2185
5190	Peroxisome assembly factor 2	PEX6	Hs_PEX6_2	4	16,51	740
5190	Peroxisome assembly factor 2	PEX6	Hs_PEX6_5	4	3,56	2573
10465	Peptidyl-prolyl cis-trans isomerase H	PPIH	Hs_PPIH_6	3	4,93	2310
10465	Peptidyl-prolyl cis-trans isomerase H	PPIH	Hs_PPIH_7	4	3,89	1775
25824	Peroxiredoxin-5, mitochondrial	PRDX5	Hs_PRDX5_1	4	3,65	1787
25824	Peroxiredoxin-5, mitochondrial	PRDX5	Hs_PRDX5_2	3	9,54	803
51560	Ras-related protein Rab-6B	RAB6B	Hs_RAB6B_1	4	39,62	170
51560	Ras-related protein Rab-6B	RAB6B	Hs_RAB6B_2	4	7,24	2425
8480	mRNA export factor	RAE1	Hs_RAE1_8	4	25,28	619
8480	mRNA export factor	RAE1	Hs_RAE1_9	4	4,60	2275
55696	Pre-mRNA-splicing factor RBM22	RBM22	Hs_RBM22_5	4	30,01	279
55696	Pre-mRNA-splicing factor RBM22	RBM22	Hs_RBM22_6	4	15,13	877
55696	Pre-mRNA-splicing factor RBM22	RBM22	Hs_RBM22_7	4	18,91	815
387	RHOA ras homolog Full family, member A	Rho A	Hs_RHOA_6	3	14,08	304
387	RHOA ras homolog Full family, member A	Rho A	Hs_RHOA_8	4	43,59	410
388	Rho-related GTP-binding protein RhoB	RHOB	Hs_RHOB_4	4	7,27	716
388	Rho-related GTP-binding protein RhoB	RHOB	Hs_RHOB_5	4	4,54	1702
6135	60S ribosomal protein L11	RPL11	Hs_RPL11_2	4	16,06	850
6135	60S ribosomal protein L11	RPL11	Hs_RPL11_5	4	40,27	167
6135	60S ribosomal protein L11	RPL11	Hs_RPL11_6	4	65,56	20
6209	40S ribosomal protein S15	RPS15	Hs_RPS15_3	4	73,53	121
6209	40S ribosomal protein S15	RPS15	Hs_RPS15_8	4	33,01	434
6209	40S ribosomal protein S15	RPS15	Hs_RPS15_9	4	61,12	66
22872	Protein transport protein Sec31A	SEC31A	Hs_SEC31A_1	4	2,12	3720
22872	Protein transport protein Sec31A	SEC31A	Hs_SEC31A_2	4	5,32	1501
10948	StAR-related lipid transfer protein 3	STARD3	Hs_STARD3_6	4	3,18	3652

10948	StAR-related lipid transfer protein 3	STARD3	Hs_STARD3_7	4	6,20	1980
8417	Syntaxin-7	STX7	Hs_STX7_1	4	5,18	1072
8417	Syntaxin-7	STX7	Hs_STX7_2	4	7,13	1098
26519	Mitochondrial import inner membrane translocase subunit Tim10	TIMM10	Hs_TIMM10_3	3	13,73	712
26519	Mitochondrial import inner membrane translocase subunit Tim10	TIMM10	Hs_TIMM10_5	4	4,14	2049
26517	Mitochondrial import inner membrane translocase subunit Tim13	TIMM13	Hs_TIMM13_4	4	10,33	955
26517	Mitochondrial import inner membrane translocase subunit Tim13	TIMM13	Hs_TIMM13_5	4	12,81	1036
10245	Mitochondrial import inner membrane translocase subunit Tim17-B	TIMM17B	Hs_TIMM17B_1	3	3,16	606
10245	Mitochondrial import inner membrane translocase subunit Tim17-B	TIMM17B	Hs_TIMM17B_2	4	5,46	3201
10245	Mitochondrial import inner membrane translocase subunit Tim17-B	TIMM17B	Hs_TIMM17B_3	4	7,78	1357
9874	Serine/threonine-protein kinase tousled-like 1	TLK1	Hs_TLK1_5	4	7,13	2644
9874	Serine/threonine-protein kinase tousled-like 1	TLK1	Hs_TLK1_6	4	3,00	2882
7168	Tropomyosin alpha-1 chain	TPM1	Hs_TPM1_5	4	4,64	2439
7168	Tropomyosin alpha-1 chain	TPM1	Hs_TPM1_6	4	6,67	1911
7175	Nucleoprotein TPR	TPR	Hs_TPR_2	4	7,26	1890
7175	Nucleoprotein TPR	TPR	Hs_TPR_5	4	236,68	15
7415	Transitional endoplasmic reticulum ATPase	VCP	Hs_VCP_6	4	18,19	582
7415	Transitional endoplasmic reticulum ATPase	VCP	Hs_VCP_7	4	74,61	46
27072	Vacuolar protein sorting- associated protein 41 homolog	VPS41	Hs_VPS41_4	4	18,19	645
27072	Vacuolar protein sorting- associated protein 41 homolog	VPS41	Hs_VPS41_5	4	5,97	2221
9525	Vacuolar protein sorting- associating protein 4B	VPS4B	Hs_VPS4B_5	4	5,11	2541
9525	Vacuolar protein sorting- associating protein 4B	VPS4B	Hs_VPS4B_6	4	22,23	387

Tab. 3.4.3: Reduzierte Liste von humanen Transportproteinen mit signifikant erhöhten z-scores. Bei dem Vergleich von 1491 Einzel-siRNAs konnten bei insgesamt 68 Faktoren eine signifikante Erhöhung des z-scores für zwei bis drei siRNAs ermittelt werden. Der z-score gibt die aus der Mikroskopie erworbenen Messungen zur gemittelten Größe (engl. *area*) aller SCVs in Pixel im Vergleich zur Zellkernzahl (Nukleus, Nuk) an. Gen ID, Genfunktion und Genname (festgesetzt über NCBI), sowie siRNA ID (Qiagen) sind angegeben. Eingeflossene Anzahl an Replikaten, gemittelte z-score Werte und gemittelte Zellkernzahlen sind aufgelistet.

αCG	Cholesterol-a-D-Glykosid
βCG	Cholesterol-β-D-Glykosid
μ	Mikro
μΙ	Mikroliter
μm	Mikrometer
μΜ	Mikromolar
%	Prozent
Ω	Ohm
14-3-3-beta	Protein Kinase C Inhibitor Protein 1 Untereinheit Beta
3D	Dreidimensional
A	Ampere
A549	humane alveolare basale Adenokarzinom-Epithelzelllinie
Abb.	Abbildung
ABD	Aktin-Bindedomäne
Abi1	(engl. Abelson interactor 1)
Acc.	Zugang (engl. accession)
AG	Arbeitsgruppe
AGS	humane Magen Adenokarzinom Zell-Linie
AHNAK	Neuroblasten Differenzierungs-assoziiertes Protein
AK	Antikörper
AP1/2/3-Komplex	Adapter-Proteinkomplex AP1/2/3
AP1A1	AP1-Komplex Untereinheit Alpha
AP1G1	AP1-Komplex Untereinheit Gamma
AP2B1	AP2-Komplex Untereinheit Beta
AP3D1	AP3-Komplex Untereinheit Delta
APS	Ammoniumpersulfat
ARCN1	Synonym für COPD (engl. coatomer subunit delta)
ARF	ADP-Ribosylierungsfaktor
ARHGEF2	Rho Guanin Austauschfaktor 2, Synonym GEF2
Arp2/3	Aktin entsprechende Proteine 2 und 3 (engl. actin-
	related protein 2 and 3)
AS	Aminosäure
-ase	Enzymnamenendung (International Union of
	Biochemistry, IUPAC Nomenklatur)
ATG	Autophagie abgeleitetes Protein
ATP	Adenosintriphosphat

B. burgdorferi	Borrelia burgdorferi
B. garnii	Borrelia garnii
B. afzelii	Borrelia afzelii
B. abortus	Brucella abortus
BafA1	Bafilomycin A1
BFA	Brefeldin A
BGM	simiane Nierenzellen (engl. Buffalo Green Monkey
	kidney cells)
BiP	78 kDa Glukose-reguliertes Protein (engl. binding
	immunoglobulin protein)
Вр	Basenpaare
BSA	Bovines Serumalbumin
bspw.	beispielsweise
bzgl.	bezüglich
bzw.	beziehungsweise
°C	Celsius
C ₆ -NBD-Ceramide	NBD C ₆ -Ceramide (6-((<i>N</i> -(7-Nitrobenz-2-Oxa-1,3-Diazol-
	4-yl)amino)hexanoyl)Sphingosine)
C. abortus	Chlamydia (Chlamydophila) abortus
C. caviae	Chlamydia (Chlamydophila) caviae
C. felis	Chlamydia (Chlamydophila) felis
C. muridarum	Chlamydia muridarum
C. pecorum	Chlamydia (Chlamydophila) pecorum
C. pneumoniae	Chlamydia (Chlamydophila) pneumoniae (Cpn)
C. psittaci	Chlamydia (Chlamydophila) psittaci (Cps)
C. trachomatis	Chlamydia trachomatis (Ctr)
C. burnetii	Coxiella burnetii
Ca ²⁺	Kalzium
CAP	ambulant erworbene Pneumonie (engl. community
	acquired pneumoniae)
CAV1	Caveolin 1
Cdc42	(engl. cell division control protein 42)
cDNA	komplementäre DNA (engl. complementary DNA)
Cer	Ceramid(e)
CERT	Ceramid Transferprotein
CHANG	humane Bindehautzellen
Chol-E	Cholesterol-Ester

Chop	(engl. DNA damage-inducible transcript 3 protein)
СНХ	Cycloheximid
CL	Cardiolipin
Clq	Chloroquin
CLTB	(engl. <i>clathrin light chain B</i>)
cm	Zentimeter
CMF	rohe mikrosomale Fraktion (engl. crude microsomal
	fraction)
CO ₂	Kohlenstoffdioxid
Con	Kontrolle (engl. <i>control</i>)
ConB	Concanamycin B
COPI/II	Mantel-Protein-Komplex I/ II (engl. coat protein complex
	l/ ll)
Сор	(engl. coatomer subunit alpha)
Cpn	Chlamydia (Chlamydophila) pneumoniae
Cps	Chlamydia (Chlamydophila) psittaci
cps	gemessene Molekülzahl pro Sekunde (engl. counts per
	second)
CSPG5	Chondroitin Sulfat Proteoglykan 5
CT166	C. trachomatis Effektorprotein 166
CT694	C. trachomatis Effektorprotein 694
Ctr	Chlamydia trachomatis
Ctx	Cholera Toxin
Су	Cy-konjugiertes Anti-Spezies IgG
Da	Dalton
DAG	Diakylglycerol
DAPI	4', 6-diamidino-2-phenylindole
DC	Dünnschichtchromatographie
dH ₂ O	destilliertes Wasser
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethyl sulfoxid
DNA	Desoxyribonukleinsäure (engl. deoxyribonucleic acid)
dNTP	Desoxyribonukleosidtriphosphat
DPBS	Dulbecco's Phosphat gepufferte Salzlösung
dsRed	Discosoma sp. rot fluoreszierendes Protein
dSTORM	(engl. direct STochastic Optical Reconstruction

	Microscopy)
E. coli	Escherichia coli
EB(s)	Elementarkörper (-chen) (engl. elementary body)
ECL	Elektrochemilumineszenz
EDTA	Ethylendiamintetraessigsäure
EGF	(engl. epidermal-growth-factor)
EGFR	(engl. epidermal-growth-factor receptor)
EGTA	Ethylenglykol-bis(aminoethylether)-N, N, N', N'-
	tetraessigsäure
EM	Elektronenmikroskop oder Elektronenmikroskopie
Engl.	Englisch
Eps8	(engl. epidermal growth factor receptor kinase substrate
	8)
ER	Endoplasmatisches Retikulum
ERES	(engl. <i>ER exit sites</i>)
ERGIC	(engl. ER-Golgi intermediate compartment)
Erk1/2	(engl. extracellular signal-regulated kinase 1/2)
Exp.	Experiment
F	Farad (technisch) / Fraktion (zellbiologisch)
FAK	(engl. focal adhesion kinase)
F-Aktin	filamentäres Aktin
F-Plasmid	Fertilitätsplasmid
FCS	Fetales Kälberserum (engl. fetal calf serum)
FOS	(engl. Proto-oncogene c-Fos)
FS-R	Fettsäure-Rest
g	Gramm
GAPDH	Glycerinaldehyd-3-phosphat-Dehydrogenase
GBP1	Guanylat Bindeprotein 1
GDP	Guanosindiphosphat
GEF	GTP-Austauschfaktor (engl. Guanine nucleotide
	exchange factor), Synonym ARHGEF
GGA1	Golgi-localized, gamma ear-containing, ARF-binding
	protein 1
ggf.	gegebenenfalls
goat	Ziege
GroEL	60 kDa Hitzeschockprotein

GSR	Glutathion Reduktase, mitochondrial
GTP	Guanosintriphosphat
h	Stunde
H. pylori	Helicobacter pylori (Hp)
Нр	H. pylori
Hs	H. sapiens, Homo sapiens
H⁺-ATPase	Protonen austauschende Pumpe
H ₂ O	Wasser
HeLa	Helen-Lane-Zelllinie (Epithelzellen eines
	Cervixkarzinoms)
HEp-2	Humane Epitheliomzellen Typ 2 eines Larynxkarzinoms
HEPES	2-(4-(2-Hydroxyethyl) - 1-piperazinyl)-ethansulfonsäure
HERC2	E3 Ubiquitin-Protein Ligase HERC2
HexCer	Hexosylceramid
Hf	HiPerFect
HGS	(engl. hepatocyte growth factor-regulated tyrosine
	kinase substrate)
HRP	Meerrettich- Peroxidase (engl. horseradish peroxidase)
Hsp	Hitzeschockprotein
IB	Immunoblot
IF	Immunofluoreszenz
IFN-gamma	Interferon Gamma
IFU	Infektion-bildende Einheit (engl. infection forming units)
lg	Immunglobulin
lon	lonomycin
IL	Interleukin
Inc	Inklusionsmembranproteine (engl. inclusion membrane
	proteins)
lpo5	Importin-5
IRGM	(engl. immunity-related GTPase family M protein)
k	Kilo
kb	Kilobasen
KCI	Kaliumchlorid
kd	knock-down
KDEL	Lysin-Asparaginsäure-Glutaminsäure-Leucin ER-
	Signalsequenz
1	Liter

L. pneumophila	Legionella pneumophila (Lpn)
LBPA	Lyso-Bisphosphatsäure
LC3	(engl. Microtubule-associated protein 1A/1B-light chain
	3)
LC/MS	Flüssigkeitschromatographie Massenspektrometrie
	(engl. Liquid-Chromatography-Mass-Spectrometry)
LC-MS/MS (LC-MS ²)	Flüssigkeitschromatographie gekoppelte Tandem-
	Massenspektrometrie (engl. Liquid-Chromatography-
	Mass-Spectrometry- Mass-Spectrometry)
LD	Lipidtröpfchen (engl. lipid droplets)
Lda	LD-assoziierte Proteine
LPC	Lyso-Phosphatidylcholin
LPE	Lyso-Phosphatidylethanolamin
LPG	Lyso-Phosphatidylglycerol
Lpn	Legionella pneumophila
LPS	Lipopolysaccharid
LSG1	(engl. large subunit GTPase 1)
LXR	Oxysterol Rezeptor LXR
LYK5	Synonym für STRADA
m	Milli
Μ	Mol/Mega
M. marinum	Mycobacterium marinum
M. tuberculosis	Mycobacterium tuberculosis (Mtb)
m/z	Masse durch Ladung
ml	Milliliter
mm	Millimeter
mM	Millimolar
МАМ	Mitochondrienassoziierte ER-Membran (engl.
	mitochondria associated ER-membrane)
MBD	Membranbindedomäne
Мbp	Megabasenpaare
MetOH	Methanol
MGW	Molekulargewicht
min	Minute
ml	Milliliter
MOI	Multiplizität der Infektion (engl. multiplicity of infection)

Mol%	Stoffmengenprozent
MOMP	Haupt-Außenmembranproteinkomplex (engl. major outer
	membrane protein complex)
Mon	Monensin
MPI	Max-Planck-Institut
MPO	Myeloperoxidase
mRFP	monomeres rotes fluoreszierendes Protein
mRNA	(engl. <i>messenger RNA</i>)
MS	Massenspektrometrie
MS-ID	Identifikationsnummer von MS-Messungen
ms	Maus (engl. <i>mouse</i>)
Mtb	Mycobacterium tuberculosis
MYPT1	(engl. Myosin phosphatase target subunit 1)
n	Nano
n = x	Anzahl von Replikaten
ng	Nanogramm
nM	Nanomol
NAD	Nicotinamid-Adenin-Dinukleotid
NCBI	(engl. National Centre for Biotechnology Information)
neg. con.	Negativkontrolle (engl. negative control)
nm	Nanometer
OAS	2'-5'-Oligoadenylat Synthetase
OmcB	(engl. outer membrane cytochrome B)
p53	Tumorprotein 53
P. amoebophila	Protochlamydia amoebophila (Pam)
P. acanthamoebae	Parachlamydia acanthamoebae (Pac)
PA	Phosphatidsäure
Pac	P. acanthamoebae
PAGE	Polyacrylamidgelelektrophorese
Pam	P. amoebophila
PB(s)	Persistente Körper (-chen) (engl. persistent bodies)
PBS	Phosphat gepufferte Salzlösung (engl. phosphate-
	buffered saline)
PC	Phosphatidylcholin
pcDNA3	mammaler Expressionsvektor pcDNA3
PCR	Polymerasekettenreaktion (engl. polymerase chain
	reaction)

PDI	Protein Disulfid Isomerase
PDIA3	Protein Disulfid Isomerase A3
PE	Phosphatidylethanolamin
PEX	Peroxisomale ATPase
PFA	Paraformaldehyd
pg	Picogramm
PG	Phosphatidylglycerol
PGC1a	(engl. peroxisome proliferator-activated receptor gamma
	co-activator 1-alpha)
рН	Potenz Hydrogenii (engl. potential hydrogenii)
p.i.	(engl. post-infection)
PI	Phosphatidylinositol
РІЗК	Phosphoinositid-3-Kinasen
PI4K	Phosphoinositid-4-Kinasen
PNF	prä-nukleare Fraktion (engl. pre-nuclear fraction)
PM	Plasmamembran
PMF	prä-mitochondriale Fraktion (engl. pre-mitochondrial
	fraction)
pmol	Picomol
PRDX5	Peroxiredoxin-5, mitochondrial
PS	Phosphatidylserin
pSn	konjugatives Megaplasmid von S. negevensis
PV	Parasitophore Vakuole
PVDF	Polyvinylidenfluorid
PVM	Parasitophore Vakuolenmembran (engl.
	parasitophorous vacuole membrane)
qRT	quantitative Real-Time
R. bellii	Rickettsia bellii
Rab	(engl. Ras-related protein Rab)
Rac1	(engl. Ras-related C3 botulinum toxin substrate 1)
RANBP5	Synonym für Importin-5
Ras	kleines GTP-bindendes Protein
rb	Hase (engl. <i>rabbit</i>)
RB(s)	Retikularkörper (-chen) (engl. reticular body)
Rcf	Relative Zentrifugalkraft (x g) (engl. relative centrifugal
	force)
RhoA	(engl. Ras homolog gene family, member A)

RNA	Ribonukleinsäure
RNAi	RNA-Interferenz
rRNA S	rRNA Svedberg-Sedimentationsfaktor der
	ribosomalen RNA
ROS	reaktive Sauerstoff-Spezies (engl. reactive oxygen
	species)
Rpm	Umdrehung pro Minute (engl. rounds per minute)
RPMI	Roswell Park Memorial Institute
RQ	Relativer Quantifizierungswert
RT	Raumtemperatur / Reverse Transkriptase
S.	siehe
S. enterica	Salmonella enterica (Sen)
S. typhimurium	Salmonella typhimurium
S. negevensis	Simkania negevensis (Sn) spp. Spezies (plural)
Sar	(engl. small COPII coat GTPase)
SCAMP3	(engl. secretory carrier membrane protein 3)
SCV	Simkania-enthaltende Vakuole (engl. Simkania-
	containing vacuole)
SDS	Natriumdodecylsulfat (engl. sodiumdodecylsulfate)
SE	Standardfehler
Sec	Protein Transportprotein
SecSS	Sec-Sekretionssystem
Sek	Sekunde
Sen	Salmonella enterica
siRNA	Small interfering RNA
SIRT1	Sirtuin-1
SM	Sphingomyelin(e)
Sn	Simkania negevensis
snGroEL	Sn-spezifischer GroEL-Antikörper
Sos1	(engl. son of sevenless homolog 1)
spp.	Mehrere Spezies
SPG	Saccharose-phosphat-glutamat
STABW	Standardabweichung
STARD3	(engl. StAR-related lipid transfer protein 3)
STD	sexuell übertragbare Krankheiten (engl. sexual
	transmitted diseases)
STE	Serin-/Threonin- Protein Kinase

STRAD (A/ B)	(engl. STE20-related kinase adapter protein)
	(Alpha/ Beta)
STRING	(engl. Search Tool for the Retrieval of Interacting
	Genes/Proteins)
Stx	Syntaxin
SW	Signifikanzwert
t	Zeit
T. gondii	Toxoplasma gondii (Tg)
T3SS	Typ3-Sekretionssystem
T4SS	Typ4-Sekretionssystem
Tab.	Tabelle
Тагр	Translozierendes Aktin-rekrutierendes Phosphoprotein
	(engl. translocated actin-recruiting phosphoprotein)
TBST	TRIS gepufferte Saline + Tween20 (engl. Tris buffered
	saline + Tween20)
TCA	Trichloressigsäure
TEMED	N, N, N´, N´-Tetramethylendiamin
Tg	Toxoplasma gondii
TGN	<i>trans</i> -Golgi-Netzwerk
THP1	humane Monozyten Zelllinie
ТІММ	Translokase der inneren mitochondrialen Membran
TNF-alpha	Tumornekrosefaktor-Alpha (engl. tumor necrosis factor-
	alpha)
TRIS	Tris-(Hydroxymethyl)-Aminomethan
tRNA	Transfer-RNA
TSPO	Translokatorprotein
U	enzymatische Einheit (engl. Unit)
u.a.	unter anderem
ULK1	Serin-/Threonin- Proteinkinase ULK1
unb.	unbehandelt
UniProt	(engl. Universal Protein Resource)
unv.	unverdünnt
UPR	(engl. unfolded protein response)
ÜS	Überstand
USO1	Vesikel Kopplungsprotein
V/v	Volumen pro Volumen
V	Volt

VAPA/B	Vesikelassoziiertes membranenproteinassoziiertes
	Protein A/B
VCP	(engl. vasolin-containing protein)
VPS45	(engl. vacuolar protein sorting-associated protein 45)
W. chondrophila	Waddlia chondrophila (Wch)
Wch	Waddlia chondrophila
W/v	Gewicht pro Volumen
WAVE2	Wiskott-Aldrich Syndrom Protein 2
WHO	Weltgesundheitsorganisation (engl. World Health
	Organization)
z-score	standardisierte Zufallsvariable
z.T.	zum Teil

Publikationen und Präsentationen

Publikationen

<u>Mehlitz A</u>, Karunakaran K, Herweg JA, Krohne G, van de Linde S, Rieck E, Sauer M, Rudel T. The chlamydial organism *Simkania negevensis* forms ER vacuole contact sites and inhibits ER-stress. *Cellular Microbiology*. 2014 Aug; 16(8):1224-43. doi: 10.1111/cmi.12278.

<u>Herweg JA</u>, Hansmeier N, Otto A, Geffken A, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, and Hilbi H. Purification and proteomics of pathogen-modified vacuoles and membranes. *Frontiers in Cellular and Infection Microbiology*. 2015 Jun; 5: 48. doi: 10.3389/fcimb.2015.00048.

<u>Herweg JA</u>, Pons V, Becher D, Hecker M, Krohne G, Barbier J, Berger H, Rudel T, Mehlitz A. Proteomic analysis of the *Simkania*-containing vacuole: The central role of retrograde transport. *Molecular Microbiology*. 2015 Sep; 99(1), 151–171. doi: 10.1111/mmi.13222.

<u>Herweg JA</u> and Rudel T. Interaction of Chlamydiae with human macrophages. *FEBS*. 2015 Nov. doi: 10.1111/febs.13609.

Titelbild Illustration *FEBS*. Macrophage-pathogen interactions. Band 283, Nummer 4, Februar 2016, ISSN 1742-464x. Confocal microscopy image of a *Simkania negevensis* infected A549 cell [snGroEL (red), DAPI (blue) staining] by J.-A. Herweg and T. Rudel (pp. 608-618). Image kindly provided by Adrian Mehlitz, Elke Rieck and Jo-Ana Herweg, Department of Microbiology, Germany.

<u>Herweg JA</u>, Vera Kozjak-Pavlovic, Dagmar Beier, Marion Rother, Elke Rieck, Kerstin Parprotka, Maximilian Klepsch, Martin Fraunholz, Dörte Becher, Michael Hecker, Nicole Zehethofer, Dominik Schwudke, Buko Lindner, Adrian Mehlitz, Rudel T. Unique factors enables *Simkania negevensis* to replicate within macrophages. In preparation

Vorträge und Poster Präsentationen

<u>Herweg JA</u>, Mehlitz A, Becher D, Rudel T. Analysis of the molecular mechanisms responsible for the formation of the *Simkania*-containing vacuole (SCV). SPP1580 National Meeting October 2012, Bonn. (Vortrag)

<u>Herweg JA</u>, Mehlitz A, Becher D, Rudel T. Purification and Proteome Analysis of the *Simkania*-Containing Vacuole (SCV). SPP1580 National Meeting October 2012, Bonn. (Poster)

<u>Herweg JA</u>, Becher D, Rudel T, Mehlitz A. Proteomic analysis of purified *Simkania* containing vacuole (SCV) indicates involvement of ER and trafficking processes in vacuole accommodation. 11. Deutscher Chlamydien Workshop 2013, Würzburg. (Poster)

<u>Herweg JA</u>, Becher D, Rudel T, Mehlitz A. Proteomic analysis of purified *Simkania* containing vacuole (SCV) indicates involvement of ER and trafficking processes in vacuole accommodation. SPP1580 International Meeting 2013, Glashütten. (Vortrag)

<u>Herweg JA</u>, Becher D, Krohne G, Rudel T, Mehlitz A. Inhibition of ER exit sites supporting *Simkania* vacuole formation. SPP1580 International Meeting 2013, Glashütten. (Poster)

<u>Herweg JA, Kozjak-Pavlovic V, Rudel T</u>. *Simkania negevensis* containing vacuoles: Formation, trafficking and subversion of host signaling. Evaluation Meeting Priority Programme SPP 1580 of the Deutsche Forschungsgemeinschaft im Gustav-Stresemann-Institut, Bonn, 2014 (Poster)

<u>Herweg JA</u>, Barbier J, Becher D, Hecker M, Krohne G, Pons V, Mehlitz A, Rudel T. Proteomic analysis of the purified *Simkania*-containing vacuole (SCV) - a trailblazer for retrograde transport. 13. Deutscher Chlamydien Workshop 2015, Wien. (Vortrag)

<u>Herweg JA</u>, Kozjak-Pavlovic V, Miller C, Pons V, Barbier J, Becher D, Hecker M, Krohne G, Berger H, Mehlitz A, Rudel T. *Simkania* infection interfaces with host ER, mitochondria and trafficking pathways to form the *Simkania*-containing vacuole (SCV). SPP1580 National Meeting April 2015, Bonn. (Vortrag)

<u>Herweg JA</u>, Kozjak-Pavlovic V, <u>Miller C</u>, Chowdhury SR, Das S, Mehlitz A and Rudel T. *Simkania* infection interfaces with host ER, mitochondria and trafficking pathways to form the *Simkania*-containing vacuole (SCV). SPP1580 National Meeting April 2015, Bonn. (Poster) (Poster Preis)

Danksagung

An dieser Stelle möchte ich mich bei all jenen Menschen bedanken, die zum Gelingen dieser Arbeit beigetragen haben.

Zunächst möchte ich mich bei Herrn *Prof. Dr. Thomas Rudel* dafür bedanken, dass ich an dem spannenden Organismus *Simkania negevensis* forschen durfte, mir für diese Arbeit immer der nötige Freiraum und die notwendigen Mittel zugestanden wurden und dass er mir jederzeit mit guten Ratschlägen zur Seite stand.

Bei Herrn *Prof. Dr. Georg Krohne* bedanke ich mich für die freundliche Übernahme des Zweitgutachtens sowie für die tolle Zusammenarbeit und große Unterstützung von *Daniela Bunsen* und *Claudia Gehrig*, ohne die die TEM-Untersuchungen nicht möglich gewesen wären.

Ich bedanke mich bei jenen Kollegen, die an dem Organismus *Simkania negevensis* forschen bzw. geforscht haben und ihr Wissen mit uns geteilt haben. Ohne sie wäre diese Arbeit so nicht zustande gekommen und ich wünsche allen, die weiter an *Simkania* arbeiten viel Erfolg und das Quäntchen Glück was es dazu braucht.

Dem DFG danke ich für die finanzielle Unterstützung im SPP1580. Dabei möchte ich mich besonders bei meinen Kollegen und den Organisatoren des SPP1580 bedanken. Der umfangreiche Wissensaustausch hat diese Arbeit auf vielerlei Weise positiv beeinflusst und verbessert.

Ein großes Dankeschön geht an *Prof. Dr. Albert Haas* und *Prof. Dr. Antje Flieger* für ihre Ratschläge bei der praktischen Durchführung von Experimenten, bei *Prof. Dr. Buko Lindner, Dr. Dominik Schwudke, Dr. Nicole Zehethofer* und Michael Weinkauf für die LC/MS-Kooperationsarbeiten und Hilfe bei einzelnen Fragestellungen.

Des Weiteren möchte ich mich herzlich bei *Prof. Dr. Hubert Hilbi, Dr. Nicole Hansmeier, Dr. Andreas Otto, Anna C. Geffken, Dr. Prema Subbarayal, Dr. Bhupesh K. Prusty, Prof. Dr. Dörte Becher, Prof. Dr. Michael Hensel, Prof. Dr. Ulrich E. Schaible* und *Prof. Dr. Thomas Rudel* für die Möglichkeit und die Zusammenarbeit zur Erstellung einer Organismus-übergreifenden Publikation bedanken, welche im Rahmen des SPP1580 entstanden ist.

Bei *Prof. Dr. Michael Hecker, Prof. Dr. Dörte Becher* und *Dr. Hilmar Berger* bedanke ich mich herzlich für die LC-MS²-Analysen und ihre Unterstützung bei der Publikation.

Bei *Prof. Dr. Daniel Gillet, Dr. Julien Barbier* und *Dr. Valerie Pons* bedanke ich mich herzlich für die Bereitstellung der Retro-Inhibitoren sowie ihre Unterstützung bei der Publikation und wissenschaftlichen Hintergründe.

Bei *Prof. Dr. Thomas F. Meyer, Dr. Marion Rother* und *Anja Greiser* bedanke ich mich herzlich für die Durchführung und die Auswertung des Traffickome RNAi-Screens.

Danksagung

Ferner möchte ich mich bei allen Mitgliedern des Lehrstuhls für Mikrobiologie für die angenehme Arbeitsatmosphäre und die fachliche Unterstützung im Laufe meiner Doktorarbeit bedanken sowie für die vielen Schoko-Weihnachtsmänner und -Osterhasen.

Bei *Dr. Adrian Mehlitz* möchte ich mich für die Betreuung und stets sehr gute Zusammenarbeit in der AG Simkania bedanken, die ohne die folgenden Kollegen nicht so erfolgreich und motivierend gewesen wäre: *Claudia Binder, Andrea Fick, Isabella Lengfelder, Elke Rieck* und *Nadine Vornberger*. Euch allen ein riesengroßes Dankeschön!

Ein besonderer Dank geht an *Prof. Dr. Dagmar Beier* für die große Unterstützung und die kritischen wissenschaftlichen Diskussionen u.a. bei der Fertigstellung der Dissertation.

Ein besonderer Dank geht auch an *Prof. Dr. Roy Gross*, *Dr. Martin Fraunholz, PD Dr. Vera Kozjak-Pavlovic*, *Dr. Bhupesh Prusty* und an *Dr. Andreas Demuth* für die stetige Unterstützung von wissenschaftlichen Fragen im Labor bzw. für die große Unterstützung bei allen koordinativen Aufgaben – und das ein oder andere Späßchen.

Ich möchte mich bei meinen lieben Kollegen bedanken, die mich während meiner wissenschaftlichen Laufbahn, aber auch privat sehr unterstützt haben und ohne die vieles nicht möglich gewesen wäre: *Dr. Angela Baljuls, Dr. Birgit Bergmann, Sebastian Blättner, Roy Chowdhury, Sudip Das, Frederike Fritsch, Manuela Geier, Simone Haninger, Jessica Hümmer, Dr. Kristina Keidel, Kerstin Kordmann, Maria Kupper, Kerstin Parprotka und Dr. Claudia Sibilski.* Dasselbe gilt für meine externen Kollegen *Katharina Beer, Manuel Lange* und *Christoper Spahn*. Danke für die tolle Zeit mit euch!

Bei Dennis Imes, Christiane Fenner, Simone Fink, Dr. Vera Flad, Florian Flad, Sven Heiligenthal, Martin Kerstner, Anand Krishna, Christiane Ort, Peter Ort, Tim Reising, Christina Schneider, Dr. Axel Steinke, Dr. Maria Steinke und Theresia Weise bedanke ich mich für ihre Herzlichkeit, für den Spaß, den wir in den letzten Jahren zusammen hatten und für ihre Unterstützung.

Ich möchte mich bei all meinen Freunden noch einmal für die gemeinsam geteilte Zeit, die vielen schönen und lustigen oder spannenden Momente bedanken. Vor allem aber auch, dass ihr in den wichtigsten Momenten für mich da ward und man auf euch zählen konnte, wenn man Hilfe oder einfach mal ein offenes Ohr brauchte. Ich hoffe, es folgen noch viele weitere Koch-, Filme- oder Spieleabende.

Abschließend gilt mein Dank meiner Familie: *Sophie Cohrs-Herweg & Rainer Herweg, Cathrin Herweg & Jo Röttger, Dürken & Kuddel Marsmann, Edith & Gerd Marsmann* und *Dennis Imes.* Ohne euch hätte ich vieles nicht (so einfach) geschafft und ich bin euch dankbar für all eure Unterstützung in all den Jahren. Deswegen ist diese Arbeit euch gewidmet.

Selbständigkeitserklärung

Ich erkläre ehrenwörtlich, dass die vorliegende Arbeit von mir selbständig, ohne Hilfe eines kommerziellen Promotionsberaters und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt wurde.

Diese Dissertation hat weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegen.

Ich habe früher, außer den mit dem Zulassungsgesuch urkundlich vorgelegten Graden, keine weiteren akademischen Grade erworben oder zu erwerben versucht.

Würzburg,

Jo-Ana Herweg