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1. Introduction

There are two sorts of sciences: Deductive ones and inductive ones. The former, like biology

and chemistry, study nature and try to derive rules that describe it as good as possible.

The latter start from just a few basic laws, or objects and combine them in order to gain

deeper cognitions and more elaborated tools.

Computer science is an inductive discipline. Although modern computer systems, net-

works, and software can be very complicated, all of them are built using a few basic objects

which are then put together following some simple rules or operations.

Take for example a functional programming language: In the basic package of such a

language there are just a few important functions, and the only way one is allowed to

combine them is basically the substitution of an argument of one function with another

function. Nevertheless, most functional programming languages are provably as strong as

the other popular computational models.

As another example, take a computer-chip like a central processing unit (CPU). They

have to be able to do numerous computations with large arguments and they control and

synchronize most of the other components of a computer. These are large and difficult

tasks, and to meet the demands, the CPU’s have to be very complicated. How can you

build such a complicated device? Of course, the answer is: You do not start with the whole

device but with only a very small part of it. You could say, that the first step is to build

a few gates (which can be seen as very simple processors themselves). Then you wire the

gates together thus building a simple circuit which is still transparent. Take several such

circuits to build an even larger one, and so on, until you finally arrive at the finished CPU.

Naturally, this method works the other way round, too: We are not only able to build

very complicated structures, we are also able to better control them. Take the chip example:

If one looks at the design plans of a modern processor, one sees an ocean of gates that

are all somehow linked together. But the designer of the processor will be able to point

out small subsections, with only a few hundred gates, and he will be able to describe the

function of that subsection to us. He can then go further and brake the subsection down

to a sub-sub-section with only a handful of gates the function of which is comparatively

easy to understand. By this divide and conquer method, we will be able to understand the

whole processor in time.

In algebra, closures are deeply related with the inductive principle. A closure is a set

that is closed under a number of operations. We can visualize a set as a bag of objects and

the operations as a toolkit containing tools to change or combine the objects in the bag. A
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set S is closed under the operations in Ω if we cannot build new objects from the objects

in S by application of the tools of Ω. With other words, if we apply a tool of Ω on, say,

two objects of S the result is an object which is equal to one that is already in the bag.

So, if S were not closed, you could build a closed set from S by applying the operations

from Ω on S thus building a larger set, on which you apply the operations again, and so

on, until you finally arrive at a set where new objects cannot be built any more, since all

possible objects are there already (this could take infinitely long, though).

In this thesis, the objects in our bags are functions and we are interested in building

new functions from basic ones. The most straightforward way to do this, is to write down

formulas with symbols that stand for the known functions. Take for example two func-

tions f(x, y) and g(z): Then, if we substitute the argument x of f with g(z), we get the

formula f(g(z), y) which may describe a new function that is neither equal to f nor to g.

The operations, or the toolkit, we use to assemble new functions from old ones is called

superposition. Sets of functions that are closed under superposition are called clones. So,

a function h is in the superposition-closure of {f, g} if and only if there is a formula, for

example f(f(g(x1), x2), g(f(x3, x4))), that describes h. This thesis deals with questions

that arise in connection with clones and computational complexity.

In computational complexity, you ask how difficult certain questions are to answer and

how many resources a computer needs to answer them. Take, for example, a map with a

number of cities on it which may or may not be connected with roads. One question is,

given two cities A and B on the map, can you reach A from B? This is easy if there are just

a few cities and roads but it becomes more and more difficult the more cities and roads

are involved. This means that a computer needs the more resources, e.g. time, the larger

the map is. Therefore the complexity of a question is always dependent on the question’s

size.

The above reachability-question is a rather easy problem; a human being will be able

to efficiently solve it quickly, granted that the map is presented in reasonable form, and

there are very efficient algorithms solving this problem. However, there are much more

complex problems like the so called Traveling Salesman Problem (TSP): Here, we are also

confronted with a map with a number of cities that are conneted by roads. Each road

between two cities has a certain length. A salesman has to visit all the, say n, cities. In

order to be efficient, he should not travel more than, say k, kilometers. The question is,

whether there is a route through the cities that makes this possible. There is no known

algorithm that solves the TSP in polynomial time. This means that every known algorithm

needs more than nc steps to solve the problem for every natural number c.

In order to understand what it means that a problem cannot be solved in polynomial

time, we have a look at a chart where the running times of different algorithms are com-

pared. We assume in this chart that a computing-step can be carried out in 10−10 seconds

which corresponds roughly to a 10 GHz computer. From left to right, we note the running

times, from top to bottom, the size of the input (the number of cities in the example of

TSP).
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n (# cities) n log n n2 n20 2(log n)2 2n

5 < 10−9s 2.5 · 10−9s ∼ 2.7 hours 4 · 10−9s 3.2 · 10−9s

10 1.7 · 10−9s 10−8s ∼ 317 years 2 · 10−7s 10−7s

50 2.8 · 10−8s 2.5 · 10−7s 3 · 1016 years 0.3s 31.3 hours

100 6.6 · 10−8s 10−6s 3.2 · 1022 years 21.6min 9.6 · 1013 years

1000 9.9 · 10−7s 10−4s 7.6 · 1043 years 1012 years 3.4 · 10283 years

Note, that a running time of n log n is acceptable, even for large inputs, as is a running

time for polynomials nk where k is small. For large k, the running time grows very fast, but

in practice such running times seldomly occur; in most cases, if an algorithm was found with

a polynomial time bound shortly thereafter another one was found which was bounded by

a polynomial of low degree. On the other hand, algorithms with super-polynomial running

time are nearly always unacceptable. In the case of TSP this means that it cannot be

exactly solved (although in special cases approximated), neither by human beings nor by

computers, as far as we know.

The goal of complexity theory is to determine the complexity, or difficulty, of such

problems as the TSP. That means that on the one hand, you want to find a fast algorithm

for a problem. Such a fast algorithm establishes an upper complexity bound. On the other

hand, you want to find a lower bound for the problem, i.e., you want to prove that you

really need, say polynomial time, and no less, to solve the problem. We can group different

problems that share the same upper (and sometimes lower) bounds together in complexity

classes.

This makes the rating of the difficulty of problems easier. So, the TSP is in the com-

plexity class NP. Furthermore, we can show that it is at least as difficult as every other

problem in NP. This has two important consequences. Firstly, this means that the TSP is

really very difficult; problems like it are known for roughly 35 years but no efficient, i.e.,

polynomial-time, algorithms have been found for solving one of them, so far. The question

of whether such an algorithm exists consitutes the famous P-NP problem. Secondly, if we

find an efficient algorithm to solve the TSP we can use it to efficiently solve every problem

in NP. This means that we can use single problems as representatives for a whole class of

problems.

This thesis shows that algebraic closures are a useful tool in complexity theory. We can

use an existing classification of Boolean clones in order to classify different problems in

connection with Boolean functions and Boolean relations according to their complexity.

We show that a lot of complexity classes like FP are closed under superposition, and

study some properties of the clone FP. We examine variations of the generation-problem,

which is a problem defined with algebraic closures. The complexity of this problem catches

exactly that of several important complexity classes, like P, NP, and PSPACE.
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1.1 Overview

The second chapter is a preliminary one where we introduce the basics of universal algebra

and complexity theory that are needed in the following chapters. We introduce our basic

computation model, the Turing machine, in several variations. This we use to define the

complexity classes we need.

In the third chapter we introduce clones and co-clones. We observe that the clones of

functions over a domain form a lattice. Co-clones are closed sets of relations over a domain.

We show that the worlds of clones and co-clones have a nice Galois connection. We then

concentrate on Boolean clones and co-clones. We give a finite base for every Boolean clone

and depict their inclusion structure, that was discovered by E. Post in the first half of

the last century [Pos41]. The inclusion structure for the Boolean co-clones follows by said

Galois connection. We also give “minimal” bases for co-clones and justify why these bases

are indeed minimal.

We then, in the fourth chapter, have a closer look at the complexity of various problems

in connection with Boolean circuits. The circuit satisfiability problem for B-circuits with

selected exceptions is the question of whether or not a B-circuit is satisfiable with inputs

other then a finite number of specified ones. Here, a B-circuit is a circuit where each gate

is labeled with a function from B. A frozen variable in a B-circuit is a variable that takes

the same value in all satisfying assignments for the circuit. We examine the complexity of

finding out whether or not a circuit has one or more frozen variables and variations of this

question. We classify the complexity of these problems according to the clone, B falls in

optimally.

In the fifth chapter, we examine the complexity-class FP of functions computable in

polynomial time. We observe that FP is a clone with a finite base. This implies that there

is a lattice of clones below FP. There are several important complexity-classes which are

clones in this lattice. Since the lattice is dual-atomic, these classes are either equal to FP

or they are dual-atoms of FP or they are true sub-clones of such a dualatom. Therefore,

the dualatoms are of special interest to us. We show that there are uncountably many

dual-atoms in the lattice below FP. All functions in FP can be described by families of

B-circuits of polynomial size in the number of input gates if the closure of B is the set of

all Boolean functions. For all sets of Boolean functions A, we determine those for which

families of A-circuits of polynomial size describe dualatoms in the lattice below FP. Finally,

we show that there is no time complexity class that is a dual-atom in this lattice.

In the final chapter, we examine the generation problem GEN which is defined as

follows. For a given binary function f on N, we ask whether a function g is contained in

the clone generated by f where we define g via a finite number of inputs and outputs. We

get a more special version GENs of this problem if we give only one input (a1, . . . , an) and

one output d of g. This is equivalent of asking whether d can be generated by repeated

application of f on {a1, . . . , an}. We first examine GEN and GENs for polynomial-time

computable functions f and show that both are recursive enumerable if f is arbitrary
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in FP, in EXPTIME if it is length-monotonic, in PSPACE if it is length-monotonic and

associative, and in NP if it is length-monotonic, associative, and commutative. For all

cases we find an f such that the easier problem GENs is hard for the respective class.

We then examine the problems for f such that f is a polynomial. We show that for most

polynomials both problems are in NP. We then prove NP-lower bounds for GENs with

some polynomials. As by-product of this proofs, we show that a generalized version of the

sum-of-subset problem SOS is NP-complete.

1.2 Publications

Parts of this thesis are published in the following papers:

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer, Playing with Boolean

blocks, Part I: Post’s lattice with applications to complexity theory. ACM-

SIGACT Newsletter 34, 2003.

[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer, Playing with Boolean

blocks, Part II: Constraint satisfaction problems. ACM-SIGACT Newsletter

35, 2004.

[BGSW] E. Böhler, C. Glaßer, B. Schwarz, and K. W. Wagner, Generation problems.

to appear in Theoretical Computer Science.

[BSRV05] E. Böhler, H. Schnoor, S. Reith, and H. Vollmer Bases for Boolean Co-

Clones. To appear in Information Processing Letters 96, October 2005.

Moreover, the technical reports [BBC+05] and [Böh05] contain parts of this thesis, and

Sections 4.1 and 4.2 are based on unpublished joint work with N. Creignou, M. Galota,

and S. Reith.
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2. Basics and Notations

2.1 Sets, Relations, and Functions

For a set A, let 2A
def
= {B : B ⊆ A} be the power set of A. Let |A| = #A be the

number of elements in A. Let N = {0, 1, 2, . . . } be the set of natural numbers and let

Z = {0, 1,−1, 2,−2, . . . } be the set of integers. For sets A and B, let A × B
def
= {(a, b) :

a ∈ A and b ∈ B} be the cross product of A and B. Let A0 def
= {ε}, A1 def

= A and for n > 1,

let An
def
= A × An−1. We write (a1, a2, . . . , an−1, an) for (a1, (a2, . . . (an−1, an) . . . )) ∈ An.

Also, we sometimes regard the elements of An as words of length n with letters from

A. In this case we write a1 · · · an instead of (a1, . . . , an) and call A an alphabet. Mostly,

we denote a finite but non-empty alphabet with Σ. Since there are easily computable

bijections between Σ∗ and N, all our definitions and claims on the one set also hold for

the other one and we will use both notations interchangeably. For a word w ∈ An, let

|w|
def
= n. Let A∗ def

=
⋃
n∈NA

n and A+ def
= A∗ − {ε}. If w = w1w2 · · ·wn ∈ An is a word,

let w[i]
def
= wi be the i-th letter of w and, similarly, for tuples α = (a1, . . . , an) ∈ An, let

α[i]
def
= ai (1 ≤ i ≤ n). If B ⊆ A∗, let B

def
= {x : x ∈ A∗ − B}; hence the semantic of the

notation B is always relative to a basic universum A, which will always be clear from the

context. For example, for subsets B of N, let B
def
= N −B.

We say B is a relation over A, if there is an n ≥ 1 such that B ⊆ An. Then n is the

arity of B, and B is n-ary. Let eqA
def
= {(a, a) : a ∈ A} be the equality relation. We write

just eq, if A is clear from the context. Let Rn(A) be the set of n-ary relations over A, and

let R(A) be the set of all relations over A with finite arity.

An n+1-ary relation f over a set A is called function, if for all tuples (a1, . . . , an, an+1),

(b1, . . . , bn, bn+1) ∈ f holds that (a1, . . . , an) = (b1, . . . , bn) implies an+1 = bn+1. We say

f is a function from An to A, and write f : An → A. If (a1, . . . , an, an+1) ∈ f , we write

f(a1, . . . , an) for an+1. We let f−1(a)
def
= {α ∈ An : f(α) = a}. If |f−1(a)| = 1 for all a, we

often treat the set f−1(a) as if it were its single element. A function f is a function on A if

there is an n ∈ N such that f is a function from An to A. We say that n is the arity of f or

f is n-ary. A function on A with arity 0 can be identified with an element from A and is

called a constant from A. A function of arity 1 is called unary, a function of arity 2 is called

binary. Let Fn(A) be the set of all n-ary functions on A and let F (A) be the set of all

functions on A. Let f be an n-ary function on A. In order to avoid cumbersome notation,

let f((a1, . . . , an))
def
= f(a1 · · · an)

def
= f(a1, . . . , an) for a1, . . . , an ∈ A. For example, if
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A = {0, 1}, and n = 3, then f((1, 1, 0)) = f(110) = f(1, 1, 0). f is called essentially unary,

if there is a unary function g : A→ A and an i ∈ {1, . . . , n} such that f(a1, . . . , an) = g(ai)

for all a1, . . . , an ∈ A. An n-ary function f on A is called total if it is defined on every

possible input from An, i.e., if for every (a1, . . . , an) ∈ An there is a an+1 ∈ A such that

(a1, . . . , an, an+1) ∈ f . For a function ϕ, let Dϕ
def
= {x : ϕ(x) is defined} be the domain of

ϕ. If f is a unary function and x ∈ A, let f 0(x)
def
= x and fk(x)

def
= f(fk−1(x)) for k ≥ 1.

For every set A, all n ≥ 1, and all i ∈ {1, . . . , n} we define n-ary functions IA,ni such

that for all a1, . . . , an ∈ A holds IA,ni (a1, . . . , an) = ai. If A is clear from the context, we

write Ini for IA,ni . We call IA,ni an identity function, identity, or projection. For the unary

identity I11, we also write id. For all k ∈ N, let ck ∈ F1(N) be the unary function with

ck(x) = k. Let succ : N → N be the successor function with succ(x)
def
= x+ 1 for all x ∈ N.

For all natural numbers k ≥ 2, n ≥ 1 we define a bijection encn,k between {0, . . . , k − 1}n

and {0, . . . , kn − 1} with

encn,k(an−1, . . . , a0)
def
=

n−1∑

i=0

aik
i

For the following definition, let mx
def
= blog x+1c if x > 0 and let mx

def
= 1 if x = 0. Define

for n ≥ mx binn(x)
def
= wn−1 . . . w0 such that encn,2(wk−1, . . . , w0) = x and bin(x)

def
=

binmx(x). If x ∈ N, let |x|
def
= |bin(x)|. With log we denote the logarithm to the base of 2.

Let f, g ∈ F1(N) be total. We say f is less or equal than g (f ≤ g) if and only if

f(x) ≤ g(x) for all x ∈ N. We say that f is less than or equal to g almost everywhere, if

f(x) ≤ g(x) for all, but finite x ∈ N. In this case, we write g ≤ae f . We say, f = O(g), if

there is a k ∈ N such that f ≤ k+k ·g. Also, let O(g)
def
= {g′ : g′ ≤ k+k ·g for a k ∈ N} and

for a class of functions K, let O(K)
def
= {g′ : there is a g ∈ K and a k ∈ N such that g′ ≤

k + k · g}.

2.2 Algebraic Structures

2.2.1 Closures

Let A be a set, and let f be an n-ary function on A. For every m ≥ 1 we define a function

fm∗ on Am as follows: For α1, . . . , αn ∈ Am, where αi = (ai1, . . . , aim), let

fm∗(α1, . . . , αn)
def
= (f(a11, . . . , an1), . . . , f(a1m, . . . , anm))

def
= (b1, . . . , bn)

be the coordinate-wise application of f ; Figure 2.1 illustrates the concept.

We write f instead of fm∗ in most cases, since it will be clear from the context which

function is meant. Let R ⊆ Am be an m-ary relation over the set A, and let f be an n-ary

function on A. We say R is closed under f or f preserves R or f is a polymorphism of R
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f
(

f
(

f
(

f
(

α1 = a11 a12 a13 · · · a1m

α2 = a21 a22 a23 · · · a2m
...

...
...

...
...

αn = an1 an2 an3 · · · anm)
=

)
=

)
=

)
=

β = b1 b2 b3 · · · bm

Fig. 2.1: fm∗(α1, . . . , αn)
def
= β.

if and only if for all α1, . . . , αn ∈ R we have f(α1, . . . , αn) ∈ R. If f preserves R, we write

f ∼ R and say R is invariant with respect to f .

Let Ω be a set of (not necessarily total) functions on A, and let B ⊆ A. Then [B]Ω is the

smallest set that contains B and that is closed under every function in Ω. That means that

for every, say, n-ary function f ∈ Ω and all a1, . . . , an ∈ [B]Ω holds f(a1, . . . , an) ∈ [B]Ω.

If A = [A]Ω then A is closed under Ω. We call [A]Ω the Ω-closure of A. If Ω = {f}

just contains a single function, we also write [A]f for [A]Ω. Furthermore, we also write

[a1, . . . , an]Ω for [{a1, . . . , an}]Ω. If for a set C holds [C]Ω = A, then C is a Ω-base of A. If

Ω is clear from the context, we also write just base for Ω-base. Also, if B is a Ω-base for

A, we call B Ω-complete (or just complete) for A. If there is a finite C such that [C]Ω = A

then A is finitely Ω-generated.

2.2.2 Algebras, Sub-algebras, and Lattices

An Ω-algebra A is a tuple (A,Ω) where A is a set of objects, the universe of A, and Ω is a

set of functions on A. We call these functions operators. If Ω is clear from the context, we

will often identify A with its universe and simply write algebra instead of Ω-algebra. We

call A finitely generated, if there is a finite B ⊆ A such that A = [B]Ω. If B ⊆ A is closed

under Ω, then (B,Ω) is a sub-algebra of (A,Ω). A binary relation ≤ over a set X is called

partial order, if for all x, y, z ∈ X holds

1. x ≤ x,

2. x ≤ y and y ≤ x implies x = y, and

3. x ≤ y and y ≤ z implies x ≤ z.

With other words, ≤ is reflexive, antisymmetrical, and transitive. X together with such a

relation is called a partially ordered set or poset. An element a ∈ Y ⊆ X is the maximum

of Y with respect to ≤, if for all y ∈ Y with a ≤ y follows y = a. An element a ∈ X is

an upper bound of Y ⊆ X if for all y ∈ Y holds y ≤ a. We define the minimum and the

lower bound of Y analogously but with reversed order. For Y ⊆ X, we define
⊔
Y to be

the minimum of the set of upper bounds of Y and ⊔Y to be the maximum of the set of

lower bounds of Y . If Y = {a, b}, we also write a t b and a u b for
⊔
{a, b} and ⊔{a, b},

respectively. We call a t b the meet of a and b and a u b the join of a and b. If for all
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a, b ∈ A both, meet and join, exist in A, we call the algebra (A, {t,u}) a lattice. A lattice

is complete if for all B ⊆ A the elements ⊔B and
⊔
B exist in A. Therefore a complete

lattice always has a minimal element ⊔A and a maximal element
⊔
A. For example, the

natural numbers form a lattice with respect to ≤N, but the lattice is not complete, since⊔
N does not exist. In a poset A with respect to ≤, for a, b ∈ A we write a < b if a ≤ b and

a 6= b. We say a is predecessor of b or b is successor of a (a ≺ b) if and only if a < b and

there is no c ∈ A such that a < c < b. A lattice A is atomar if it has a minimal element

0 ∈ A, and for every a ∈ A − {0} there is a b � 0 such that a ≥ b. For example, N is

an atomar lattice with respect to ≤Q, the normal order relation on Q, but Q+, the set of

positive rational numbers together with 0, is not. Analogously, A is called dual-atomic if

it has a maximum element 1 ∈ A, and for every a ∈ A − {1} there is a b ≺ 1 such that

a ≤ b. In such a lattice, an element b with b ≺ 1 is called dual-atom or precomplete. See

[DP90] for a thorough introduction to lattices.

For every Ω-algebra A = (A,Ω), the set of subalgebras

L(A)
def
= {(B,Ω) : B = [B]Ω ⊆ A}

forms a complete lattice [Coh65, Grä79]. Hence, the elements of the lattice are exactly the

subsets of A that are closed under Ω. They are ordered via set inclusion. If B and C are

elements in L((A,Ω)), the join of B and C is [B∪C]Ω and the meet is B∩C. The minimal

element of the lattice is always [∅]Ω, and the maximal one is always A itself.

Proposition 2.1. If the algebra A = (A,Ω) is finitely generated then L(A) is dual-atomic.

Proof. Suppose L(A) were not dual-atomic. Then there is an infinite chain C1 ⊂ C2 ⊂

· · · ⊂ A of sub-algebras directly below A, i.e., there is no sub-algebra C ⊂ A such that

Ci ⊂ C for all i ≥ 1. Let D
def
=

⋃
i≥1Ci. Then Ci ⊂ D for all i ≥ 1 and, since L(A) is not

dual-atomic, A = D. Let B be a finite set with [B]Ω = A = D. Due to the nature of D,

there has to be an i ≥ 1 such that B ⊆ Ci and therefore [Ci]Ω = A. ❑

We can use the structure of the lattice of sub-algebras to find bases for the elements of

the lattice in the following way.

Proposition 2.2. Let (A,Ω) be an algebra, B ∈ L((A,Ω)) and C ⊆ A. Then [C]Ω = B

if and only if C ⊆ B and for all D ∈ L((A,Ω)) with D ≺ B holds C 6⊆ D.

Proof. If [C]Ω = B, then obviously C ⊆ B. Assume there were a D ≺ B such that C ⊆ D.

Then [C]Ω ⊆ D 6= B.

Now, assume that right hand side of the claim holds. Since C ⊆ B, the closure [C]Ω
is a subalgebra of B or B itself. Since C is not contained in a predecessor of B, we have

[C]Ω = B. ❑
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2.3 Graphs, Trees, Boolean Functions, and Circuits

A (undirected) graph is a pair (V,E) such that V ⊆ N and E ⊆ {{v1, v2} : v1, v2 ∈

V and v1 6= v2}. We call v ∈ V nodes of the graph and e ∈ E its edges. In a directed

graph (V,E), we have E ∈ R2(V ). Such a graph is called cyclic if there is a n ∈ N and

v1, . . . , vn ∈ V such that (vi, vi+1) ∈ E for 1 ≤ i < n and v1 = vn. A graph that is not

cyclic is called acyclic. The size of a (directed) graph is |V |. The depth of a directed graph

(V,E) is defined as the largest n such that there are pairwise different v1, . . . , vn ∈ V and

(vi, vi+1) ∈ E for 1 ≤ i < n. The (directed) graph (V,E) is called connected if for all

v1, v2 ∈ V where v1 6= v2 there is a n ∈ N and w1, . . . , wn ∈ V such that v1 = w1 and

v2 = wn and {wi, wi+1} ∈ E (either (wi, wi+1) ∈ E or (wi+1, wi) ∈ E) for 1 ≤ i < n.

Let (V,E) be a directed graph. For a v ∈ V , let #{w : (v, w) ∈ E} be the fan-out of v

and let #{w : (w, v) ∈ E} be the fan-in of v. If (v, w) ∈ E, we call v parent of w and we

call w child or successor of v. A tree is a directed, connected, acyclic graph where every

node has fan-in of at most 1. In a tree, a node with no successors is called leaf. A binary

tree is a tree where every node has either two children or none. If G = (V,E) is a tree,

there is exactly one node in V with fan-in 0. We call this node the root node or simply

root of G. In a binary tree (V,E), every node can be characterized by a path, i.e., a word

w ∈ {l, r}∗, as follows: The path of the root node is ε. If v ∈ V is characterized by the

path w and has children v1, v2 where v1 < v2, then v1 is characterized by the path wl and

v2 is characterized by the path wr. A node v1 is called ancestor of another node v2 if there

are w1, w2 ∈ {l, r}∗ such that v2 is characterized by w1w2, and w1 characterizes v1. The

depth of a node v is |w| if w characterizes v.

A Boolean function f is a function from {0, 1}n to {0, 1} where n ∈ N. We use several

ways to define Boolean functions. For one we have some special Boolean functions, we will

often need: And, Or, Not, Imp, Eq, Xor, Nand, Nor, c0, and c1 are the Boolean and,

or, not, implication, equivalence, exclusive or, nand, nor, and the 0-ary constants 0 and

1, respectively (see Figure 2.2). A way to define a Boolean function is to explicitly give

its truth table, i.e., listing the input-output behavior of the function. The characteristic

string of a Boolean function is a compressed version of such a truth-table. We say w ∈

{0, 1}2n
is the characteristic string of the n-ary Boolean function f if and only if for all

i ∈ {0, . . . , 2n − 1} holds w[i+ 1] = f(binn(i)). Although characteristic strings are a short

description of the truth-table of a Boolean function, a much more efficient description of

these functions exists in most cases. We mostly use propositional formulas (see below) to

describe Boolean functions. The connectives we use in these formulas are subsumed in

Figure 2.2.

Definition 2.3. Let B be a set of Boolean functions. A tuple C = (V,E, o, φ, ψ) is called

B-circuit if it satisfies the following conditions.

– V ⊆ N is finite and (V,E) is a tree with root node o. We call o the output node of C.

Since o ∈ V , there is no B-circuit with |V | = 0. The elements of V are also called gates.

– φ : V → B∪{x1, x2, . . . } is a function that assigns to every node from V either a variable

or a function from B in the following way: If v ∈ V has fan-in 0, then φ(v) = xi, for
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Name arity Description Connective(s) Characteristic String
And 2 Boolean and x ∧ y, x · y, xy 0001
Or 2 Boolean or x ∨ y 0111
Imp 2 implication x → y 1101
Eq 2 equivalence x ↔ y 1001
Xor 2 exclusive or x ⊕ y 0110
Nand 2 negation of and nd(x, y) 1110
Nor 2 negation of or nr(x, y) 1000
Not 1 negation x, ¬x 10
id 1 identity x 01
c0 0 constant zero 0 0
c1 0 constant one 1 1

Fig. 2.2: Description of Important Boolean Functions

some i ≥ 1, or φ(v) is a 0-ary function from B. If v has fan-in n ≥ 1, then φ(v) = f

for some n-ary function from B.

– ψ : V ∪E → N is an injective function that assigns a natural number to every node from

V and every edge from E.

If x1, . . . , xn are the variables assigned to some gate of C then in every gate v of C, an

n-ary Boolean function fv is calculated as follows.

– If φ(v) = xi then fv
def
= Ini .

– If φ(v) = ca for an a ∈ {0, 1} then fv is the n-ary constant a.

– If φ(v) = g for an m-ary g ∈ B and (v1, v), . . . , (vm, v) ∈ E such that ψ((vi, v)) <

ψ((vj , v)) if i < j then fv(x1, . . . , xn)
def
= g(fv1(x1, . . . , xn), . . . , fvm(x1, . . . , xn)).

Finally we say C describes the Boolean function fC
def
= fo, which is the Boolean function

calculated in the output gate of C.

Observe that the Boolean functions that can be described by B-circuits are exactly

those in [B]. If we do not want to emphasise the base B, we say Boolean circuit for B-

circuit. For a more detailed introduction to Boolean circuits, see [Vol99]. A propositional

formula is a special Boolean circuit where the fan-out of every node is at most one. For

α ∈ {0, 1}n, we often write C(α) instead of fC(α), if C is an n-ary Boolean circuit that

describes f . An n-tuple of Boolean values is often called assignment for a Boolean circuit

of arity n. We say two Boolean circuits C1, C2 are equivalent (C1 ≡ C2) if and only if they

describe the same Boolean function.

2.4 Complexity-Theoretical Basics

2.4.1 Turing Machines

We want to fix Turing machines with separate input-tape and output-tape and a constant

number of working-tapes where each tape has infinite space on both sides as the standard
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model of computation. Let us give a formal definition of this model. A Turing machine

M is a tuple (k,Σ, Z, s, h, ϕ), where

– k ≥ 1 is a natural number, the number of working tapes,

– Σ is a finite alphabet with {0, 1,2} ⊆ Σ, the working alphabet,

– Z is a finite set of states,

– s ∈ Z is the initial state,

– h ∈ Z is the halting state, and

– ϕ : Z × Σ ∪ {∗} × Σk → 2Z×Σk+1×{L,R,O}k+2
− {∅} where ∗ /∈ Σ, is a total function, the

transition function

of M . A configuration of a Turing machine with k working tapes is a (k + 3)-tuple from

Z × ((Σ ∪ {∗})+ · p · (Σ ∪ {∗})+) × (Σ+ · {p} · Σ+)k+1

where p /∈ Σ ∪ {∗}. Let C
def
= (z, v0pw0, . . . , vkpwk, vk+1pwk+1) be a configuration of M

where z ∈ Z and vi, wi ∈ Σ+ for 0 ≤ i ≤ k + 1. Let furthermore

ϕ(z, w0[1], . . . , wk[1]) = {(z′j , aj,1, . . . , aj,k+1, Xj,0, . . . , Xj,k+1) : 1 ≤ j ≤ `},

for some ` ≥ 1. Each configuration has successor configurations. For that we define the

successor-function SM with SM (C) = {C} if z = h and SM (C)
def
= {(z′j , uj,0, . . . , uj,k+1) :

1 ≤ j ≤ `}, otherwise, where

uj,i =





vipaj,iw
′
i , if Xj,i = O

viaj,ipw
′
i , if Xj,i = R and |wi| > 1

viaj,ip2 , if Xj,i = R and |wi| = 1

vi[1] · · · vi[|vi| − 1]pvi[|vi|]aj,iw
′
i , if Xj,i = L and |vi| > 1

2pviaj,iw
′
i , if Xj,i = L and |vi| = 1

for 1 ≤ j ≤ `, 1 ≤ i ≤ k + 1, and w′
i

def
= wi[2] · · ·wi[|wi|] and

uj,0 =





v0pw0 , if Xj,0 = O

v0w0[1]pw0[2] · · ·w0[|w0|] , if Xj,0 = R and |w0| > 1

v0w0p2 , if Xj,0 = R and |w0| = 1

v0[1] · · · v0[|v0| − 1]pv0[|v0|]w0 , if Xj,0 = L and |v0| > 1

2pv0w0 , if Xj,0 = L and |v0| = 1

for 1 ≤ j ≤ `.

For two configurations C1, C2 we say M transforms C1 into C2 in n steps (C1
M,n
−→ C2)

if and only if there are configurations K1, . . . ,Kn+1 such that K1 = C1 and Kn+1 = C2

and Ki+1 ∈ SM (Ki) for 1 ≤ i ≤ n. Call all C ′ such that C
M,1
−→ C ′ the M -successors of C

or simply the successors of C. We say M transforms C1 into C2 (C1
M,∗
−→ C2) if there is an

n ∈ N such that C1
M,n
−→ C2.
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Let ψ be an n-ary function on N. We say the Turing machine M computes ψ(a1, . . . , an)

in m ∈ N steps if and only if

(s,2pbin(a1) ∗ · · · ∗ bin(an),2p2, . . . ,2p2)
M,m
−→

(h,2pbin(a1) ∗ · · · ∗ bin(an)w0, w1prw2, w3pw4, . . . , w2k+1pw2k+2)
(2.1)

where wi ∈ {2}∗ for 0 ≤ i ≤ 2k+2 and r = bin(ψ(a1, . . . , an)). Let us call the configuration

on the left hand side the starting configuration of M for a1, . . . , an and the configurations

on the right hand side halting configurations of M for a1, . . . , an. Let us furthermore call r

the result of the halting configuration. The machine M computes ψ(a1, . . . , an) with space

` if and only if there is an m such that (2.1) holds and |bin(ψ(a1, . . . , an))|+Σ2k
i=1|wi| ≤ `.

We say M computes ψ if and only if for all (a1, . . . , an) ∈ Dψ there is an m ∈ N such that

(2.1) holds. Such a ψ is called computable; if ψ is total, it is called recursive.

A set A ⊆ A is recursively enumerable if there is a recursive function f : N → N

such that f(N) = A. Turing machines can be encoded with a finite alphabet; there are

many encoding schemes for Turing machines such that the set of all encodings of Turing

machines can be enumerated recursively.

A Turing machine is called deterministic, if for all possible inputs α of its transition

function ϕ, holds |ϕ(α)| = 1. Otherwise, it is called nondeterministic.

An alternating Turing machine M = (k,Σ, Z, s, h, ϕ, π) is a Turing machine together

with a function π : Z → {e, u} that partitions the states of M in existential (if π(z) = e)

and universal (if π(z) = u) states (for z ∈ Z). Let C be a configuration of an alternating

Turing machine on input (a1, . . . , an). If

C = (h,2pbin(a1) ∗ · · · ∗ bin(an)w0, w1p1w2, w3pw4, . . . , w2k−1pw2k) (2.2)

where w0, . . . , w2k ∈ {2}∗, then C is accepting. Such a configuration is called accepting end-

configuration for a1, . . . , an. If C = (z, v0, . . . , vk), such that z ∈ Z−{h} and {C1, . . . , C`}

are all successors of C, then C is accepting if and only if one of the following holds:

1. π(z) = e and there is an i ∈ {1, . . . , `} such that Ci is accepting.

2. π(z) = u and Ci is accepting for all i ∈ {1, . . . , `}.

All configurations that are not accepting are rejecting. An alternating Turing machine

accepts an input (a1, . . . , an), if the starting configuration for a1, . . . , an is accepting.

2.4.2 Complexity Classes

For a function f ∈ F1(N), we say the Turing machine M computes ψ in time f (M

computes ψ with space f) if and only if ψ is total and M computes ψ(a1, . . . , an) in

f(Σn
i=1|bin(ai)|) steps (with space f(Σn

i=1|bin(ai)|)) for all but finite (a1, . . . , an) ∈ Nn.

Let K ⊆ F1(N) and let P be the set of unary polynomials. We define the following

function-complexity classes:
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FDTIME(K)
def
= {ψ : there is a deterministic Turing machine M and an f ∈ K

such that M computes ψ in time f}

FDSPACE(K)
def
= {ψ : there is a deterministic Turing machine M and an f ∈ K

such that M computes ψ with space f}

FPSPACE
def
= FDSPACE(P) ∩

{f : there is a polynomial p such that |f(x)| ≤ p(|x|) for all x}

FP
def
= FDTIME(P)

FL
def
= FDSPACE(log n)

Note, that all functions in FPSPACE have an output-length of only polynomial size.

Since it is possible to produce outputs of exponential length with functions computable in

polynomial space, this definition would not suit our needs, since we want FDSPACE to be

closed under substitution. The characteristic function of a set A ⊆ N is a total function

cA : N → {0, 1} such that cA(x) = 1 if and only if x ∈ A. We say cA decides A and A is

decidable, if cA is recursive. Analogous to the function-complexity classes, we define the

following decision-complexity classes:

DTIME(K)
def
= {A : cA ∈ FDTIME(K)}

DSPACE(K)
def
= {A : cA ∈ FDSPACE(K)}

EXPTIME
def
= DTIME(2P )

PSPACE
def
= DSPACE(P)

P
def
= DTIME(P)

L
def
= DSPACE(log n)

A nondeterministic Turing machine can transform the starting configuration into sev-

eral halting configurations simultaneously. We say, M decides the set A, if for all α holds:

– If α ∈ A then there is a halting configuration of M on input α with result 1.

– If α /∈ A then for all halting configurations of M on input α the result is 0.

For an f ∈ F1(N), we say M decides A in time f (M decides A with space f), if M decides

A and for all α ∈ A there is a halting configuration C as in Equation 2.2 of M on x such

that M transforms the starting configuration of M on x into C in at most f(|x|) steps

(such that Σ2k
i=1|wi| ≤ f(|x|)).

We define the following nondeterministic complexity classes:
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NTIME(K)
def
= {A : there is a nondeterministic Turing machine and an f ∈ K

such that M decides A in time f}

NSPACE(K)
def
= {A : there is a nondeterministic Turing machine and an f ∈ K

such that M decides A with space f}

NP
def
= NTIME(P)

NL
def
= NSPACE(log n)

Another way to define NP is with an existential quantifier as follows: A is in NP if and

only if there is a set B ∈ P and a polynomial p such that for all x holds

x ∈ A⇔ ∃y(|y| ≤ p(|x|) and (x, y) ∈ B)

For a complexity class C, let coC
def
= {A : A ∈ C}. Another way to define coNP is as in the

above definition for NP, but with a ∀-quantifier. We can use this quantifier approach to

define a hierarchy of complexity classes as follows. For k ≥ 0, a set A is in Σp
k if and only

if there is a B ∈ P and a polynomial p such that for all x holds:

x ∈ A⇔ ∃y1∀y2 . . . Qkyk(|yi| ≤ p(|x|) for all 1 ≤ i ≤ k and (x, y1, . . . , yk) ∈ B),

where Qk = ∃ if k is odd, and Qk = ∀ otherwise. Let Πp
k

def
= coΣp

k. These classes form the

polynomial-time hierarchy. Let PH
def
=

⋃
k≥0 Σp

k.

Another hierarchy is the Boolean hierarchy. For that, let C and K be complexity classes

and define

C ⊕ K
def
= {A4B : A ∈ C and B ∈ K}.

Here, A4B
def
= (A ∪B) − (A ∩B). For k ≥ 1, we say A ∈ K(k) if and only if

A ∈ K ⊕K ⊕ · · · ⊕ K︸ ︷︷ ︸
k times

.

We are especially interested in the Boolean hierarchy over NP. Let DP
def
= NP(2).

We want to fix a notion of time- and space-complexity for alternating Turing machines

M . For this, we define functions tαM and sαM for α = (a1, . . . , an) that map accepting con-

figurations of M on α to N as follows: If C is an accepting end-configuration for a1, . . . , an

as in Equation 2.2, then tαM (C)
def
= 1 and sαM (C)

def
= Σ2k

i=1|wi|. If C = (z, w0, . . . , wk) is

another accepting configuration which has exactly the successors C1, . . . , C`, then

tαM(C)
def
=

{
1 + min{tαM (Ci) : Ci is accepting (1 ≤ i ≤ `)} , if π(z) = e

1 + max{tαM (Ci) : 1 ≤ i ≤ `} otherwise

and

sαM (C)
def
=

{
min{sαM (Ci) : Ci is accepting (1 ≤ i ≤ `)} , if π(z) = e

max{sαM (Ci) : 1 ≤ i ≤ `} otherwise.
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We say M decides the set A ⊆ Nn in time (with space) f ∈ F 1(N) if for all α ∈ N the

following holds: If α ∈ A then the starting configuration C of M on α is accepting and

tαM (C) ≤ f(|α|) (sαM (C) ≤ f(|α|)). If α /∈ A then C is rejecting. We define the following

alternating complexity classes, where K ⊆ F 1(N):

ATIME(K)
def
= {A : there is an alternating Turing machine M and an f ∈ K

such that M decides A in time f}

ASPACE(K)
def
= {A : there is an alternating Turing machine M and an f ∈ K

such that M decides A with space f}

The definition of Turing machines and standard notions of complexity theory can be

found in a number of textbooks [BDG95, BDG90, Pap94, WW86].

2.4.3 Families of Boolean Circuits and Uniformity

We have already given a definition of Boolean circuits in Definition 2.3. However, we want

to be able to somehow compute functions on N as well. For that, let a B-circuit with mul-

tiple outputs be a tuple (V,E,O, φ, ψ) where V,E, φ, ψ are defined as in Definition 2.3 but

O ⊆ V . We say B-circuit as a shortcut for B-circuit with multiple outputs when it is clear

from the context that we mean a circuit with multiple outputs. Let C = (V,E,O, φ, ψ)

be a circuit with multiple outputs and n input-gates. Let O = {o1, . . . , om} where

ψ(oi) < ψ(oj) implies i < j. Then C computes the function that maps a1 · · · an ∈ {0, 1}n

to fo1(a1, . . . , an) · · · fom(a1, . . . , an). Remember that fv(a1, . . . , an) denotes the Boolean

function that is computed in node v on input a1, . . . , an. Let size(C) denote the number

of gates in the circuit C and let depth(C) denote the length of a longest path from an

input gate to an output gate, formally,

depth(C)
def
= max{n : there are gates c1, . . . , cn+1 ∈ V such that c1 is an input-gate

and cn+1 is an output-gate and (ci, ci+1) ∈ E for all 1 ≤ i ≤ n}.

Since every single Boolean circuit has a fixed number of input gates, for such a circuit

it is possible to compute a function only for inputs of a fixed length. Therefore, we need

sequences or families C = (Cn)n∈N of Boolean circuits to compute a function on N. Here

Cn denotes a circuit with n input-gates. A family of Boolean circuits is an infinite object

and therefore different from the other models of computation we have considered so far,

which are always finite. Therefore, it is not surprising that there are undecidable sets that

can be decided by families of Boolean circuits:

Example: Let A
def
= {1n : Mn accepts n} be the tally version of the special halting prob-

lem, which is undecidable (here Mn means the n-th Turing machine in some enumeration

of all Turing machines). It is obvious, that for every n ∈ N there is a very small circuit C n

that outputs 1 if and only if 1n ∈ A [Vol99]. 2
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So, we need a finite way to encode families of Boolean circuits. If a family of circuits

can be encoded by a finite object, it is called a uniform family of circuits. There are several

different notions of uniformity but in this thesis it suffices to define log-space uniformity.

Definition 2.4. Let C = (Cn)n∈N be a family of circuits. Then C is called log-space uni-

form or UL-uniform if there is a function f ∈ FL such that f(1n) = Cn for all n ∈ N.

A function that can be calculated by a log-space uniform family of Boolean circuits

is obviously computable, since we can compute f(1|x|) = C |x| and evaluate C |x| on input

x. The choice of log-space uniformity is based on the following reasons. First of all, the

uniformity should not be too “weak” for the circuit classes in consideration. Too weak

means that the power of the function f : {1}∗ → (Cn)n∈N should not be greater than the

power of the circuits themselves. In the above example, the circuits Cn could be“generated”

by a non-recursive function f ; in that sense, the family of circuits C that decides A is (non-

recursively-)uniform. But this uniformity is clearly too weak if you are interested in the

question whether A is decidable or not. In our case, log-space uniformity is strong enough,

since we are mostly interested in circuits that have a polynomial size and a depth that is

at most slightly less than polynomial. A log-space computation can always be computed

by such circuits, since all functions from FL can be computed by circuits of polynomial

size and a depth of (log n)2. On the other hand, log-space uniformity is weak enough to

handle various encodings of Boolean circuits and gives us the freedom to not actually have

to give a concrete encoding of the Boolean circuits we use. For a detailed disquisition of

uniformity we refer to [Vol99].

We define the following circuit-complexity classes. Let K1,K2 ∈ F1(N) and i ≥ 0:

FSIZE-DEPTHB(K1,K2)
def
= {f : there are functions s ∈ K1 and d ∈ K2 such that f

can be computed by a log-space uniform family of

B-circuits (Cn)n∈N and for all n ∈ N holds

size(Cn) ≤ s(n) and depth(Cn) ≤ d(n)}

FNCi def
= FSIZE-DEPTH{And, Or, Not}(P, O((log n)i))

FNC
def
=

⋃

i≥0

FNCi

NCi def
= {A : cA ∈ FNCi}

We remark, that sometimes FNCi and NCi are defined as nonuniform classes of func-

tions. However, their most important interpretation is that they are the functions/sets

that are computable/decidable efficiently by means of parallel computing. The open ques-

tion of FNC
?
= FP gains its importance only in the light of this interpretation. Hence we

choose the uniform definition. Also, logspace-uniformity is normally considered too weak

for NCi and FNCi where i ≤ 1 , since FNC1 ⊆ FL. But in the scope of this thesis this will

not lead to any problems, so we skip the introduction of another uniformity.
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2.4.4 Reductions and Complete Sets

We want to compare the difficulty of deciding two sets A,B ⊆ N. For this we introduce the

notion of “A being at most as difficult as B”. This shall be the case if there is a function

f such that for all x ∈ N holds: x ∈ A if and only if f(x) ∈ B. In order to fit our notion,

the power of f should not be too strong, especially, it should not be stronger than the

power we need to decide A. We define A ≤p
m B if and only if there is an f ∈ FP such

that x ∈ A⇔ f(x) ∈ B. We say, A ≤p
m-reduces to B, or simply A reduces to B. We write

A ≡p
m B if and only if A ≤p

m B and B ≤p
m A. Let A be a set, K be a complexity class. We

say A is ≤p
m-hard for K if for all B ∈ K holds B ≤p

m A, and A is ≤p
m-complete for K if A

is ≤p
m-hard for K and A ∈ K. If it is clear from the context, we say A is complete for K

instead of A is ≤p
m-complete for K.

Another reducibility is the log-space reducibility. A set A is log-space reducible to a set

B (A ≤log
m B) if and only if there is a function f ∈ FL such that for all x holds x ∈ A

if and only if f(x) ∈ B. We define ≤log
m -hard and ≤log

m -complete as in the case of the

≤p
m-reducibility.

It is easy to observe, that both, ≤log
m and ≤p

m, are reflexive and transitive.
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3. Boolean Clones and Boolean Co-Clones

3.1 Clones and Co-Clones and their Galois Connection

In this section we define two special kinds of algebras, clones and co-clones, which are

very natural kinds of algebras on functions and relations, respectively. We begin with the

definition of clones. We will need some special operators for that, so let f, g, h be functions

of arities `,m, n, respectively, where ` ≥ 1, m ≥ 0 and n ≥ 2.

– PI
def
= I21 is the presence of the identity function. This is a 0-ary operator on the set of

functions.

– RF(f)(x1, x2, . . . , x`)
def
= f(x2, . . . , x`, x1) is the rotation of variables in a function.

– TF(h)(x1, . . . , xn−1, xn)
def
= h(x1, . . . , xn, xn−1) is the transposition of the last variables

in a function.

– LVF(h)(x1, . . . , xn−1)
def
= h(x1, . . . , xn−1, xn−1) is the identification of the last variables.

– SUB(f, g)(x1, . . . , x`−1, y1, . . . , ym)
def
= f(x1, . . . , x`−1, g(y1, . . . , ym)) is the substitution

of g in f .

We subsume these five operation under the term superposition. Let SUP
def
= {PI,RF,TF,

LVF,SUB}. A clone of functions, or simply a clone, is a set of functions that is closed

under superposition (clone is short for closed set of operations on a set, abbreviation due

to P. Hall). Let [A]
def
= [A]SUP be the clone generated by A.

Clones are of special interest, because they consist exactly of those functions that can

be described by formulas over a basic set. Take for example the set B
def
= {+, ·, 0, 1}, i.e.,

the set of addition, multiplication, the constant 0, and the constant 1, all of which are

functions over the natural numbers. Then [B] is exactly the set of functions that can be

described by polynomials with positive coefficients. The order of a set of functions B is

max{n : there is an n-ary function in B} if such a maximum exists and ∞ otherwise. The

order of a clone A is min{n : there is a base of order n for A}.

Co-clones are algebras over sets or relations and again we need to define some operators.

Let n ≥ 0, m ≥ 2, R be an n-ary, and Q be an m-ary relation over some set A.

– PE
def
= eq is the presence of the equality relation. It is a 0-ary operator on the set of

relations.

– RR(Q)
def
= {(a2, . . . , an−1, a1) : (a1, . . . , an−1, an) ∈ Q} is the rotation of variables in a

relation.
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– TR(Q)
def
= {(a1, . . . , an, an−1) : (a1, . . . , an−1, an) ∈ Q} is the transposition of the last

variables in a relation.

– FVR(R)
def
= {(b, a1, . . . , an) : b ∈ A and (a1, . . . , an) ∈ R} is the introduction of a fictive

variable in a relation.

– PRO(Q)
def
= {(a1, . . . , am−1) : there is a b ∈ A such that (b, a1, . . . , am−1) ∈ Q} is the

projection.

We call these operations together with the intersection of sets relational superposition,

or SUPR, for short. That means SUPR
def
= {PE,RR,TR,FVR,PRO,∩}, where ∩ is the

normal intersection of sets. A set of relations B over A is called co-clone if it is closed

under relational superposition. Let 〈B〉
def
= [B]SUPR

be the co-clone generated by B.

Proposition 3.1. Let B be a co-clone over a set A.

1. For every n ≥ 1, the full relation An is in B.

2. If R,S ∈ B then R× S ∈ B.

3. Let R be an n-ary relation in B. Then

DIAG(R)
def
= {(a1, . . . , an−1) : (a1, . . . , an−1, an−1) ∈ R}

is also in B. DIAG(R) is called the diagonalization of R.

Proof. 1. Since eq ∈ B, A = PRO(eq) ∈ B. Furthermore, for 1 ≤ i < n, is Ai+1 =

FVR(Ai) ∈ B.

2. Let R be m-ary and S be n-ary. Then R×An ∈ B and Am ×S ∈ B, due to FVR and

RR. Finally, R× S = (R×An) ∩ (Am × S).

3. Observe, that T
def
= {(a1, . . . , an−2, b, b) : ai, b ∈ A(1 ≤ i < n − 1)} = An−2 × eq is in

B. Then DIAG(R) = T ∩R.

❑

Obviously, the diagonalization can be applied to arbitrary positions, not only to the

last ones. Analogous to the order of sets of functions, we define an order for sets of

relations. If Γ ⊆ R(A), then the order of Γ is defined as max{n : there is an R ∈

Γ that has arity n}, if such a maximum exists and ∞ otherwise. The order of a co-clone

A is min{n : there is a base B of A with order n}; here we assume n <∞ for all n ∈ N.

We now define two mappings between sets of functions and sets of relations. For a set

of relations B over a set A, let

Pol(B)
def
= {f : f ∈ F (A) and f ∼ R for all R ∈ B}

be the set of polymorphisms of all relations in B. For a set of functions B on a set A, let

Inv(B)
def
= {R : R ∈ R(A) and f ∼ R for all f ∈ B}

be the set of all relations that are invariant under all functions of B. Observe, that if Ω

is a set of functions on a set A, then (X,Ω) ∈ L((A,Ω)) if and only if X ∈ Inv(Ω).
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Proposition 3.2. Let C,D ⊆ F (A) be sets of functions, and let X,Y ⊆ R(A) be sets of

relations.

1. If C ⊆ D, then Inv(D) ⊆ Inv(C)

2. If X ⊆ Y , then Pol(Y ) ⊆ Pol(X)

3. C ⊆ Pol(Inv(C))

4. X ⊆ Inv(Pol(X))

Proof. Let C ⊆ D. Then every relation that is invariant under all functions ofD is invariant

under all functions of C. Therefore Inv(D) ⊆ Inv(C). The proof of the second claim is

analogous. Assume C 6⊆ Pol(Inv(C)). Then there is an f ∈ C and an R ∈ Inv(C) such

that f 6∼ R. But since R ∈ Inv(C), it is preserved by all functions from C, including f .

The proof of the fourth claim is analogous. ❑

A pair of mappings like (Pol, Inv) between two ordered sets like 2F (A) and 2R(A) that

satisfies properties 1. through 4. is called a Galois correspondence.

Proposition 3.3. Let A be a set, B be a set of relations over A, and C be a set of

functions on A.

1. Pol(B) = Pol(〈B〉) = [Pol(B)]

2. Inv(C) = Inv([C]) = 〈Inv(C)〉

Proof. All equalities can be shown by an easy induction over superposition or relational

superposition respectively. ❑

Hence, for every set of functions B on A, Pol(Inv(B)) is a clone containing [B], and for

every set of relations C over A, Inv(Pol(C)) is a co-clone containing 〈C〉.

Proposition 3.4 ([Pös79]). Let A be a set with |A| = k, B be a set of functions on A

and C be a set of relations over A.

1. [B] = Pol(Inv(B))

2. 〈C〉 = Inv(Pol(C))

Proof. Both inclusions from left to right are clear from Propositions 3.2 and 3.3. First, we

show the inclusion from right to left for 1.: We define a special relation ∆n for all n ≥ 1.

For 1 ≤ i ≤ n, let

δin
def
= (enc−1

n,k(0)[i], . . . , enc−1
n,k(k

n − 1)[i])

and

∆′
n

def
= {δin : 1 ≤ i ≤ n}

Example: For A = {0, 1}, list all the elements of An such that they appear as the rows

of a matrix that has 2n rows and n columns.



30 3. Boolean Clones and Boolean Co-Clones

δ1n δ2n δn−1
n δnn

enc−1
n,k(0) = (0, 0, . . . 0, 0)

enc−1
n,k(1) = (0, 0, . . . 0, 1)

enc−1
n,k(2) = (0, 0, . . . 1, 0)
...

...
...

...
...

...
...

enc−1
n,k(2

n − 2) = (1, 1, . . . 1, 0)

enc−1
n,k(2

n − 1) = (1, 1, . . . 1, 1)

Then the columns of the matrix form the elements of ∆′
n. 2

Now, let

∆n
def
= ∆′

n ∪ {f(δ1n, δ
2
n, . . . , δ

n
n) : f ∈ [B] is n-ary}

Observe, that ∆n is preserved by every function from [B]: Let f ∈ [B] be m-ary and

let α1, . . . , αm ∈ ∆n. Then there are f1, . . . , fm ∈ [B] such that αi = fi(δ
1
n, . . . , δ

n
n)

by the definition of ∆n (in the case where αi ∈ ∆′
n, for some i, remember that

Ini ∈ [B]). Let g(x1, . . . , xn)
def
= f(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)). Obviously, g ∈ [B]

and g(δ1n, . . . , δ
n
n) = f(α1, . . . , αm). Hence ∆n ∈ Inv([B]). Now let f ∈ Pol(Inv(B)) =

Pol(Inv([B])) be n-ary. Then f ∼ ∆n, i.e., f(δ1n, . . . , δ
n
n) ∈ ∆n and therefore f ∈ [B].

Now we prove the direction from right to left of 2. Let ∆′
n be defined as above for all

n ≥ 1 and let

∆n
def
= ∆′

n ∪ {f(δ1n, δ
2
n, . . . , δ

n
n) : f ∈ Pol(C) is n-ary}

Claim 3.5. Inv(Pol(C)) ⊆ 〈
⋃
n≥1{∆n}〉.

Proof: Let R be an m-ary relation in Inv(Pol(C)) with R = {α1, . . . , αt}. Then for all

1 ≤ i ≤ m there are j1, . . . , jm ∈ {0, . . . , kt − 1} such that (α1[i], . . . , αt[i]) = enc−1
t,k (ji).

With other words,R can be computed from (∆′
t)
m by finitely many applications of RR,TR,

and PRO. Furthermore, since R ∈ Inv(Pol(C)), it is closed under every function from

Pol(C). Therefore, if we apply RR,TR, and PRO to (∆t)
m in the same way we applied

them to (∆′
t)
m, the result is again R. Hence R ∈ 〈{∆m}〉, and the proof of the claim is

finished. 2

So, the following inclusions hold:

〈C〉 ⊆ Inv(Pol(C)) ⊆ 〈
⋃

n≥1

{∆n}〉

This means that we can finish our proof by showing 〈
⋃
n≥1{∆n}〉 ⊆ 〈C〉. For this, it suffices

to show ∆n ∈ 〈C〉 for all n ≥ 1. Choose an R from {R : R ∈ 〈C〉 and ∆′
n ⊆ R} such that

|R| is minimal. Since ∆′
n ⊆ Ak

n
∈ 〈C〉, there exists such an R. We show ∆n = R. Since

R ∈ 〈C〉 ⊆ Inv(Pol(C)) it follows that R must be closed under every f ∈ Pol(C) and

therefore ∆n ⊆ R.

Suppose ∆n 6= R. Then there is an α ∈ R − ∆n. Hence, the n-ary function f with

f(δ1n, . . . , δ
n
n) = α is not in Pol(C) and therefore there is a relation S ∈ C such that
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f 6∼ S. Let S be m-ary and let β, β1, . . . , βn ∈ S be such that f(β1, . . . , βn) = β /∈ S.

For every i ∈ {1, . . . ,m}, let h : {1, . . . ,m} → {1, . . . , kn} such that (β1[i], . . . , βn[i]) =

(δ1n[h(i)], . . . , δ
n
n [h(i)]). Due to the nature of the δin’s, such a function h exists. Let

T
def
= {(a1, . . . , akn , b1, . . . , bm) : aj , b` ∈ A for 1 ≤ j ≤ kn, 1 ≤ ` ≤ m and

bi = ah(i) for all 1 ≤ i ≤ m}

such that coordinates kn + i and h(i) of every element from T are equal. Observe, that

T is member of any co-clone over A. Then S ′ def
= (R × S) ∩ T is in 〈C〉, since R,S, T ∈

〈C〉. Suppose there were a1, . . . , akn ∈ A such that (a1, . . . , akn , b1, . . . , bm) ∈ S′, where

α = (a1, . . . , akn). Then, since ah(i) = bi for 1 ≤ i ≤ m, it follows that (b1, . . . , bm) = β,

which is not possible, since β /∈ S. Therefore, if S ′′ is the projection of S ′ on the first kn

coordinates, then S ′′ ⊆ R but α ∈ R− S ′′ and therefore S ′′ ( R. Finally, for all 1 ≤ i ≤ n

and all γ ∈ S holds δin × γ is contained in both, R× S and T . Hence ∆′
n ⊆ S′′ which is a

contradiction to the minimality of R. ❑

We get the following connection between the lattice of clones and the lattice of co-clones

over finite sets.

Proposition 3.6. Let A be a finite set and B,C be clones from 2F (A). Then B is prede-

cessor of C in L(F (A)) if and only if Inv(C) is predecessor of Inv(B) in L(R(A)).

Proof. Let B ⊂ C. It is clear from the definition, that Inv(C) ⊆ Inv(B). Suppose Inv(C) =

Inv(B). Then [C] = Pol(Inv(C)) = Pol(Inv(B)) = [B], which is a contradiction, hence

Inv(C) ⊂ Inv(B). In the same way, one can prove that if Inv(C) ⊂ Inv(B) then B ⊂ C.

Now suppose there were an X ∈ L(R(A)) such that Inv(C) ⊂ X ⊂ Inv(B). Then B ⊂

Pol(X) ⊂ C which is a contradiction to B ≺ C. The argument works analogous in the

other direction. ❑

3.2 Clones of Boolean Functions

The Boolean domain {0, 1} is the largest domain for which all clones of functions are

known. Moreover, their inclusion structure, a finite base for each clone, and the order of

each clone was discovered in the twenties of the last century by E. L. Post (although the

result was published only in the forties [Pos41]). Therefore, we call the lattice of all clones

of Boolean functions Post’s lattice. Observe Figure 3.1 and Figure 3.2: They show the

inclusion structure and an example for a base for each clone, respectively.

We are especially interested in the dual-atoms M, D, L, R1, and R0 of L(BF), where

BF denotes the set of all Boolean functions. Figure 3.3 gives a definition of these clones.

Nevertheless, we need to characterize some additional types of Boolean functions.
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Fig. 3.1: Lattice L(BF) of Boolean Clones.
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Class Definition Order Base(s)
BF all Boolean functions 2 {And, Not}
R0 { f ∈ BF | f is 0-reproducing } 2 {And, Xor}
R1 { f ∈ BF | f is 1-reproducing } 2 {Or, x ⊕ y ⊕ 1}
R2 R0 ∩ R1 3 {Or, x ∧ (y ⊕ z ⊕ 1)}
M { f ∈ BF | f is monotonic } 2 {And, Or, c0, c1}
M0 M ∩ R1 2 {And, Or, c1}
M1 M ∩ R0 2 {And, Or, c0}
M2 M ∩ R2 2 {And, Or}
Sn

0 { f ∈ BF | f is 0-separating of degree n } n + 1 {Imp, dual(hn)}
S0 { f ∈ BF | f is 0-separating } 2 {Imp}
Sn

1 { f ∈ BF | f is 1-separating of degree n } n + 1 {x ∧ y, hn}
S1 { f ∈ BF | f is 1-separating } 2 {x ∧ y}
Sn

02 Sn
0 ∩ R2 n + 1 {x ∨ (y ∧ z), dual(hn)}

S02 S0 ∩ R2 n + 1 {x ∨ (y ∧ z)}
Sn

01 Sn
0 ∩ M n + 1 {dual(hn), c1}

S01 S0 ∩ M 3 {x ∨ (y ∧ z), c1}
Sn

00 Sn
0 ∩ R2 ∩ M n + 1 {x ∨ (y ∧ z), dual(hn)}

S00 S0 ∩ R2 ∩ M 3 {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩ R2 n + 1 {x ∧ (y ∨ z), hn}

S12 S1 ∩ R2 3 {x ∧ (y ∨ z)}
Sn

11 Sn
1 ∩ M n + 1 {hn, c0}

S11 S1 ∩ M 3 {x ∧ (y ∨ z), c0}
Sn

10 Sn
1 ∩ R2 ∩ M n + 1 {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩ M 3 {x ∧ (y ∨ z)}
D { f | f is self-dual } 3 {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 3 {xy ∨ xz ∨ yz}
D2 D ∩ M 3 {xy ∨ yz ∨ xz}
L { f | f is linear} 2 {Xor, c1}
L0 L ∩ R0 2 {Xor}
L1 L ∩ R1 2 {Eq}
L2 L ∩ R2 3 {x ⊕ y ⊕ z}
L3 L ∩ D 3 {x ⊕ y ⊕ z ⊕ c1}
V { f | f is an n-ary Or-function or a constant function} 2 {Or, c0, c1}
V0 [Or] ∪ [c0] 2 {Or, c0}
V1 [Or] ∪ [c1] 2 {Or, c1}
V2 [Or] 2 {Or}
E { f | f is an n-ary And-function or a constant function} 2 {And, c0, c1}
E0 [And] ∪ [c0] 2 {And, c0}
E1 [And] ∪ [c1] 2 {And, c1}
E2 [And] 2 {And}
N [Not] ∪ [c0] ∪ [c1] 1 {Not, c0}, {Not, c1}
N2 [Not] 1 {Not}
I [c1] ∪ [c0] 0 {c0, c1}
I0 [c0] 0 {c0}
I1 [c1] 0 {c1}
I2 [∅] 0 {∅}

Fig. 3.2: Bases for Boolean Clones. Here hn is the n + 1-ary Boolean function such that

hn(x1, . . . , xn+1) = 1 if and only if Σn+1
i=1 xi ≥ n. Furthermore, dual(f)(a1, . . . , an)

def
=

¬f(a1, . . . , an).
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Name Symbol Description

Monotonic M Let n ≥ 1 and α = (a1, . . . , an) ∈ {0, 1}n and β = (b1, . . . , bn) ∈ {0, 1}n.
functions We write α ≤ β if and only if ai ≤ bi for all 1 ≤ i ≤ n. An n-ary

Boolean function f is called monotonic if and only if for all
α, β ∈ {0, 1}n with α ≤ β follows f(α) ≤ f(β).

Self-Dual D An n-ary Boolean function f is called self-dual if for all
functions (a1, . . . , an) ∈ {0, 1}n holds f(a1, . . . , an) = ¬f(a1, . . . , an), i.e.,

if and only if f = dual(f).

Linear L An n-ary Boolean function is called linear if and only if there are
functions constants c0, . . . , cn ∈ {0, 1} such that f(x1, . . . , xn) can be described

by the propositional formula c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn. We call this
formula the linear normal form of the function.

a-Reproducing R0, R1 For a ∈ {0, 1}, let the Boolean function f be called a-reproducing

functions if and only if f(a, . . . , a) = a.

Fig. 3.3: Functions forming dual-atoms in L(BF).

Definition 3.7.

Let M ⊆ {0, 1}n and a ∈ {0, 1}. Then, M is a-separating if and only if there is an

i ∈ {1, . . . , n} such that for all (a1, . . . , an) ∈ M we have ai = a. Let M be called a-

separating of degree m if and only if all T ⊆M with |T | = m are a-separating. An n-ary

Boolean function f is called a-separating (of degree m), if f−1(a) is a-separating (of

degree m).

The dual of a Boolean function is defined as follows: The n-ary function g is the dual

function of f if and only if for all a1, . . . , an ∈ {0, 1} holds g(a1, . . . , an) = ¬f(a1, . . . , an).

Let dual(f)
def
= g and for a set of Boolean functions A, let dual(A)

def
= {dual(f) : f ∈ A}.

Observe, that dual(dual(f)) = f for all Boolean functions f , and hence for all sets of

Boolean functions A we have dual(dual(A)) = A. Dual functions are very important when

studying Post’s lattice, because for every clone A of Boolean functions, dual(A) is a clone,

too [Pos41, JGK70]. Moreover, if a Boolean function is specified by a Boolean circuit,

then another one, that specifies the dual function can easily be found, as the following

proposition sugests:

Proposition 3.8 ([JGK70]). Let h, f, g1, . . . , gn be Boolean functions such that

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

Then

dual(h)(x1, . . . , xm) = dual(f)(dual(g1)(x1, . . . , xm), . . . ,dual(gn)(x1, . . . , xm))
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Proof. Observe the following equation:

dual(h)(x1, . . . , xm) = ¬h(x1, . . . , xm)

= ¬f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

= ¬f(¬¬g1(x1, . . . , xm), . . . ,¬¬gn(x1, . . . , xm))

= dual(f)(dual(g1)(x1, . . . , xm), . . . ,dual(gn)(x1, . . . , xm))

❑

Hence, the dual circuit can be found by replacing the function of every gate by its dual

one. If the circuit was built over a finite set of Boolean functions then this task can be

done very efficiently.

In Figure 3.1, A and dual(A) are symmetrical with respect to the symmetry axis going

through BF and I2. For example, V1 is the dual of E0 and vice versa and M is its own

dual as is D. The case of D is special insofar, as every function from D is its own dual

whereas, for example, for every function f in M, the function dual(f) is also in M without

necessarily f = dual(f).

3.3 Boolean Constraints, and Co-Clones of Boolean Relations

There are many applications in computer science where a program has to choose from

a pool of objects those which fulfill certain properties. For example, think of a database

containing the data of different cars. A user could want to see all cars which are yellow

and have a maximum speed of 200 kmh−1 and have a steering wheel. So, the objects have

to satisfy a list of so-called constraints simultaneously. We want to formalize this notion

for Boolean objects and connect that notion to that of Boolean functions.

An n-ary Boolean constraint R is a subset of {0, 1}n. There are several ways to define a

Boolean constraint. One way is to explicitly list all elements of the constraint, for example

R = {(0, 0, 1), (0, 1, 0), (1, 0, 1), (1, 1, 1)}. A similar way is to define an order on {0, 1}n

and describe R by setting bits in a string of length 2n. The characteristic string of an

n-ary Boolean relation is a word w ∈ {0, 1}2n
such that w[i + 1] = 1 if and only if

(binn(i)[1], . . . ,binn(i)[n]) ∈ R. For example, the characteristic string of the above relation

is 01100101. However, since an n-ary Boolean constraint can contain up to 2n elements,

the above methods can be rather inefficient. Therefore, we often use Boolean functions to

describe Boolean relations in the obvious way: A Boolean function f corresponds to the

Boolean relation R if and only if R = {α : f(α) = 1} is the set of satisfying assignments

for f . So, we can use propositional formulas and Boolean circuits to describe Boolean

relations.

We want to be able to express that several constraints hold simultaneously, as in the

car example. For that we introduce constraint formulas.
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Definition 3.9. Let Γ be a set of Boolean constraints, n ≥ 1, and R1, . . . , Rn ∈

Γ ∪
⋃
i≥1{0, 1}

i be constraints of arity m1, . . . ,mn, respectively. Let k
def
= Σn

i=1mi and

let {i1, . . . , ik} be a set of indices that is equal to {1, . . . , `} for some ` ≤ k. Then

F
def
= R1(xi1 , . . . , xim1

) ∧R2(xim1+1 , . . . , xim1+m2
) ∧ · · · ∧Rn(xik−mn+1

, . . . , xik)

is a Γ-constraint formula. F (xi1 , . . . , xik) describes the constraint

{(a1, . . . , a`) : (ai1 , . . . , aim1
) ∈ R1 and

(aim1+1 , . . . , aim1+m2
) ∈ R2 and

...

(aik−mn+1
, . . . , aik) ∈ Rn}.

Let CF(Γ)
def
= {R : there is a Γ-constraint formula F describing R}.

In this definition, all variables in constraint formulas need to be from a set {x1, . . . , x`}

for some `. We use this definition to fix the order of the variables. In practice, when this

order is not necessary or is obvious, as in the case of x, y, z, we also use other variables.

The reason we allow the Ri’s to be not only from Γ but also from
⋃
n≥1{0, 1}

n is that we

always want to be able to express constraints with fictive variables.

If R is described by a Γ-constraint formula F , we write R = F , for simplicity. We say, a

Γ-constraint formula F of arity n is satisfied by α ∈ {0, 1}n if and only if α is contained in

the relation described by F . It is easy to see, that every constraint that can be described

by a Γ-constraint formula is included in 〈Γ〉. We can even show more.

Proposition 3.10. Let Ω = {PE,RR,TR,FVR,∩}. For every set of Boolean relations Γ,

CF(Γ ∪ {eq}) = [Γ]Ω holds.

Proof. Let R ∈ CF(Γ) and let n ≥ 1, and Ri, mi, k, `, {i1, . . . , ik}, and F be as in

Definition 3.9 and let R be described by F . All Ri are in [Γ]Ω, hence T
def
= R1 ×· · · ×Rn ∈

[Γ]Ω (see Proposition 3.1). Let T ′ be derived from T by diagonalizing all variables at

positions s, t such that is = it. Then there is a permutation π on {1, . . . , `} such that

(aπ(1), . . . , aπ(`)) ∈ T ′ if and only if (a1, . . . , a`) ∈ R. Therefore we can derive R from T ′

using RR and TR.

On the other hand, let R ∈ [Γ]Ω. If R ∈ Γ∪{eq} is n-ary, then the formula R(x1, . . . , xn)

describes R. Now let R1, R2 ∈ [Γ]Ω be n-ary. Then RR(R1) and TR(R1) can obviously

be described by a formula in which the variables are permuted properly. FVR(R1) can be

expressed by the formula S(x1) ∧ R(x2, . . . , xn+1), where S
def
= {0, 1} (remember that we

are allowed to use all full constraints {0, 1}i). Finally, R1 ∩ R2 can be described by the

formula R1(x1, . . . , xn) ∧R2(x1, . . . , xn). ❑

So relations that can be expressed with constraints are very close to the elements of

co-clones. Therefore CF(Γ) is often called the weak co-clone of Γ. The differences between
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co-clone and weak co-clone are obviously due to the operators PE and PRO. The operator

PRO is the more powerful one in many contexts, since the equality of two variables can be

expressed as follows: If eq(x, y) is used in a conjunct of a constraint formula, remove it, and

replace every occurrence of y in the rest of the formula by x. The new constraint formula

describes a relation of smaller arity, so it is syntactically different, but since all tuples of the

original constraint always have the same value at positions x and y, the difference can be

neglected for most applications. Therefore we introduce existentially quantified constraint

formulas.

Definition 3.11. Let Γ be a set of Boolean constraints and F (x1, . . . , xn, y1, . . . , ym) be a

Γ-constraint formula that describes the constraint R. Then

G
def
= ∃x1 . . . ∃xnF (x1, . . . , xn, y1, . . . , ym)

is an existentially quantified Γ-constraint formula. It describes the relation

{(b1, . . . , bm) : there are a1, . . . , an ∈ {0, 1} such that (a1, . . . , an, b1, . . . , bm) ∈ R}.

Let EQCF(Γ) be the set of all relations that can be expressed by an existentially quantified

Γ-constraint formula.

The (existentially quantified) constraint formulas F1 and F2 are equivalent if they

describe the same relation. We write F1 ≡ F2;

Proposition 3.12. For every set of Boolean relations Γ holds EQCF(Γ ∪ {eq}) = 〈Γ〉.

Proof. The inclusion from left to right follows from Proposition 3.10 and the existence of

PRO in SUPR. For the other direction, it suffices to note that EQCF(Γ ∪ {eq}) is closed

under PRO. ❑

The similarities between weak Boolean co-clones and Boolean co-clones are often suf-

ficient to simplify proofs about constraints very much by utilizing properties of co-clones.

As an example, have a look at the following problems.

Problem: Constraint Satisfaction Problem, CSP(Γ)

Input: A Γ-constraint formula F

Question: Does the relation described by F contain at least one element? With

other words, is F satisfiable?

There is a well-known dichotomy theorem by T. Schaefer for the computational com-

plexity of the CSP problem [Sch78]. The claim of the theorem is that for every set of

Boolean constraints Γ, the problem CSP(Γ) is either NP-complete or in P. Schaefer char-

acterized all sets of constraints Γ for which CSP(Γ) ∈ P as follows. Let R be a constraint

of arity n.

– R is called a-valid for a ∈ {0, 1} if and only if (a, . . . , a) ∈ R.
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– R is called Horn (anti-Horn) if and only if it can be described by a propositional for-

mula in conjunctive normal form, where every conjunction contains at most one positive

(negative) literal.

– R is called bijunctive if and only if it can be described by a propositional formula in

conjunctive normal form, where every conjunct contains at most two literals.

– R is called affine if and only if it can be described by a conjunction, where every conjunct

is a formula over ⊕.

– R is called Schaefer if R is one of the above.

A set of constraints Γ is called 0-valid, 1-valid, Horn, etc., if every R ∈ Γ is 0-valid,

1-valid, Horn, etc., respectively.

Theorem 3.13 ([Sch78]). If a set of Boolean constraints Γ is Schaefer, then CSP(Γ) is

in P. In all other cases, CSP(Γ) is NP-complete.

The original proof of this theorem is very complicated and technical. The easier part

of the proof is to show that the CSP problem is easy for Schaefer formulas. But it is not

at all clear, why Schaefer formulas are the only ones, for which the problem is easy and to

prove so is the hard part. We will see in the following, that this task becomes easier when

making use of the structure of the Boolean co-clones. This proof is due to P. Kolaitis but

is implicit in [JCG97, JCG99, Dal00].

For that, we define the constraint satisfaction problems for existentially quantified

constraints.

Problem: Constraint Satisfaction Problem for Existentially Quantified Con-

straints, ECSP(Γ)

Input: An existentially quantified Γ-constraint formula F

Question: Does the relation described by F contain at least one element? With

other words, is F satisfiable?

In the next proposition we show that, with a little modification, the two constraint

satisfaction problems have an equivalent computational complexity. We modify the ECSP-

problem insofar, as we always allow the eq-relation. Then we can use Proposition 3.12 and

therefore the structure of the Boolean co-clones.

Proposition 3.14. For all sets Γ of Boolean relations, CSP(Γ) ≡p
m ECSP(Γ∪{eq}) holds.

Proof. The direction from left to right is obvious. For the other direction, let F =

∃x1 . . . ∃xnG(x1, . . . , xn, y1, . . . , ym) be a quantified (Γ ∪ {eq})-constraint formula, where

G a is (Γ ∪ {eq})-constraint formula. Obviously, F is satisfiable if and only if G is. Let

G′ be the Γ-constraint formula that can be derived from G by removing every conjunct of

the form eq(xi, xj) from G and replacing every occurrence of xj in G by xi. If there are no

other conjuncts in G, let G′ def
= S(x), where S = {0, 1}. Then G′ is satisfiable if and only

if G is. ❑
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So it suffices to prove Theorem 3.13 for existentially quantified constraint formulas. We

know that we can express with such formulas over a set Γ∪{eq} exactly the relations from

〈Γ〉 which is a Boolean co-clone. We want to use the structure of the Boolean co-clones.

Since we know the structure of the lattice of Boolean clones and because of Proposition 3.6,

we know the structure of Boolean co-clones, too: It is the same with reversed inclusion

structure. For every clone A, we denote Inv(A) with IA for invariant of A and, additionally,

BR
def
=II2. The structure of Boolean co-clones is given in Figure 3.4.

Let us now have a look at the Schaefer classes.

Proposition 3.15 ([CKS01]). Let Γ be a set of constraints.

1. Γ is a-valid if and only if Γ is closed under ca, the 0-ary constant function a.

2. Γ is Horn if and only if it is closed under And, and it is anti-Horn if and only if it is

closed under Or.

3. Γ is bijunctive if and only if it is closed under the 3-ary majority function xy∨xz∨yz.

4. Γ is affine if and only if it is closed under the linear function x⊕ y ⊕ z.

Observe, that {ca}, {And}, {Or}, {xy ∨ xz ∨ yz}, and {x ⊕ y ⊕ z} are bases of the

Boolean clones Ia, E2, V2, D2, and L2, respectively. Therefore the Schaefer classes are

descriptions of Boolean co-clones! They are even descriptions of dual-atoms in the lattice

L(BR). The remaining dual-atom of this lattice is IN2. It contains all relations R such

that α ∈ R if and only if α ∈ R, since these relations have to be closed under negation.

We call such constraints complementive. If we consult Figure 3.4, we see that every set of

constraints is contained in one of the Schaefer classes except for those which describe a

base for IN2 or BR. So, it remains to show that CSP(Γ) is NP-complete, if Γ describes a

base for IN2 or even for BR.

If Γ describes a base for BR, then we can express every possible 3-ary clause as an

existential quantified constraint formula, i.e., we can express all of x∨ y∨ z, x∨ y∨ z, . . . ,

x ∨ y ∨ z. Because of Proposition 3.14 and since the equality relation can be removed as

described above, we can reduce 3-SAT to CSP(Γ).

Let NAE-3-SAT be the problem to satisfy a 3-CNF formula such that in each clause

there is a literal that is not satisfied. Schaefer showed that this problem is NP-complete

[Sch78] in his proof of Theorem 3.13. If Γ is complete for IN2, then the relation Rnae
def
=

{0, 1}3−{(0, 0, 0), (1, 1, 1)} is in 〈Γ〉 since Rnae is complementive. This relation can be used

to reduce NAE-3-SAT to CSP(Γ).

This finishes the alternative proof of Schaefer’s Theorem. The advantage in this ap-

proach is that we can make use of the known structure of the Boolean co-clones thus

avoiding a lot of cumbersome case-distinctions. Also, we get a better impression where the

essential parts of Schaefer’s proof lie: The upper bounds for the easy cases and the lower

bound for NAE-3-SAT.
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3.4 Minimal Bases for Boolean Co-Clones

We want to give a list of bases for the Boolean co-clones, as we did for Boolean clones in

Figure 3.2. Based on Proposition 2.2, we can check whether a set Γ of Boolean relations

is a base of a co-clone A:

Algorithm 3.16. First, we test, whether Γ is in A. Since we know a finite base B of

Pol(A), this can be done by checking whether every relation in Γ is closed under every

function in B. Then we check whether Γ is contained in a dual-atom of L(A). Finally, Γ

is a base of A if and only if the first test is successful and the second is not.

We introduce a duality for Boolean relations as we did for Boolean functions, since it

will help us to find bases in a faster way.

Definition 3.17. The dual Boolean relation of the n-ary Boolean relation R is defined as

dual(R)
def
= {(a1, . . . , an) : (a1, . . . , an) ∈ R}.

For a set of Boolean relations Γ, let dual(Γ)
def
= {dual(R) : R ∈ Γ}.

Let us look at some properties of duality for Boolean relations.

Proposition 3.18. Let R be a Boolean relation, let Γ be a set of Boolean relations, and

let f be a Boolean function.

1. f ∼ R if and only if dual(f) ∼ dual(R).

2. Pol(dual(Γ)) = dual(Pol(Γ)).

Proof. The second point is immediate from the first one, which remains to prove. Let f

be m-ary and let α1, . . . , αm ∈ R. Then dual(f)(α1, . . . , αm) = f(α1, . . . , αn) ∈ dual(R),

since f ∼ R. This shows the direction from left to right; the other direction is true, since

dual(dual(R)) = R and dual(dual(f)) = f . ❑

Therefore the symmetry, we know from L(BF), can also be found in L(BR), and the

dual of every co-clone can be found as a mirror image with respect to the symmetry axis

going through BR and IBF in Figure 3.4. Furthermore, we need to find only bases for “one

half” of the lattice, since the other half can be derived by duality.

Proposition 3.19. If Γ1 and Γ2 are bases for co-clones B1 and B2, then Γ1∪Γ2 is a base

of the join C
def
= 〈B1 ∪B2〉 of B1 and B2.

Proof. Obviously, Γ1 ∪Γ2 ⊆ C. Therefore either A
def
= 〈Γ1 ∪Γ2〉 = C or A is a sub-co-clone

of C. Since there is a relation in Γ1 that is not in Γ2 and vice versa, A is a co-clone

containing both, B1 and B2, i.e., B1 ( A and B2 ( A. Therefore A 6= C is a contradiction

to the minimality of C. ❑
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This enables us to derive bases for all co-clones from the bases of just a few ones. We

define some special relations for m,n ∈ N.

ORm def
= {(a1, . . . , am) ∈ {0, 1}m : Σm

i=1ai > 0} = {0, 1}m − {(0, . . . , 0)}

ANDm def
= {(a1, . . . , am) ∈ {0, 1}m : Σm

i=1ai = m} = {(1, . . . , 1)}

NORm def
= {(a1, . . . , am) ∈ {0, 1}m : Σm

i=1ai = 0} = {(0, . . . , 0)}

NANDm def
= {(a1, . . . , am) ∈ {0, 1}m : Σm

i=1ai 6= m} = {0, 1}m − {(0, . . . , 0)}

n-IN-m
def
= {(a1, . . . , am) ∈ {0, 1}m : Σm

i=1ai = n}

EVENm def
= {(a1, . . . , am) ∈ {0, 1}m : Σm

i=1ai is even}

ODDm def
= {(a1, . . . , am) ∈ {0, 1}m : Σm

i=1ai is odd}

NAEm
def
= {0, 1}m − {(0, . . . , 0), (1, . . . , 1)}

Furthermore, we define the relation

DUP
def
= {0, 1}3 − {(0, 1, 0), (1, 0, 1)}

Proposition 3.20. Let m ≥ 2.

〈ORm〉 = ISm0

〈x〉 = IR1

〈x⊕ y〉 = ID

〈EVEN4〉 = IL

〈x→ y〉 = IM

〈DUP〉 = IN

〈x ∨ y ∨ z〉 = IV

Proof. Let f be a k-ary Boolean function. First, let f ∈ ISm0 . By definition, if α1, . . . , αm ∈

f−1({0}) then {α1, . . . , αm} ⊆ {0, 1}i−1 × {0} × {0, 1}k−i for some i. This is the same as

saying that if f(α1[1], . . . , α1[k]) = 0, f(α2[1], . . . , α2[k]) = 0, . . . , f(αm, [1], . . . , αm[k]) = 0

then there is some i such that (α1[i], α2[i], . . . , αm[i]) = (0, 0, . . . , 0). Hence, f ∼ ORm.

Now, let f /∈ ISm0 . Then there are α1, . . . , αm ∈ {0, 1}k such that for all i ∈ {1, . . . ,m}

we have f(αi) = 0 and for all j ∈ {1, . . . , k} there is an i ∈ {1, . . . ,m} such that αi[j] = 1.

Since {(α1[i], α2[i], . . . , αm[i]) : 1 ≤ i ≤ k} ⊆ ORm, we have f 6∼ ORm.

The remaining points can easily be verified using Algorithm 3.16. ❑
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These basic cases suffice to find bases for all Boolean co-clones, using duality and

Proposition 3.19, using Figure 3.4. In Figure 3.5 we indicate in the third column how the

base could be derived from the above basic ones.

This systematic approach yields quite complicated bases for some co-clones as, e.g., the

important ones IN2 and BR. So we additionally give at least one base of minimal order

for each co-clone. That these are in fact bases can be verified using Algorithm 3.16.

To determine the order of a co-clone, we proceed as follows. First, note that 〈∅〉 = IBF,

〈x〉 = IR1, 〈x〉 = IR0, and 〈x, x〉 = IR). Since we have thus identified all co-clones that

have order of at most one, every other co-clone has to have an order of at least two. The

next proposition tells us something about the nature of co-clones of order two.

Proposition 3.21. If A is not a sub-co-clone of ID2, and Γ is a set of relations containing

just relations with arity less then 3, then 〈Γ〉 6= A.

Proof. We know from Proposition 3.15 that exactly the bijunctive relations are closed

under {xy∨xz∨yz}, which is a base of D2. Hence ID2 coincides with the class of relations

that are bijunctive and can hence be expressed by 2-CNF formulas. Every 2-ary relation

can be expressed by such a formula and if A had a base with just relations of arity 2 or

less, then A ⊆ ID2 would hold, which is a contradiction. ❑

Hence every non-bijunctive co-clone has order greater than two. It turns out, that we

find a base of order three for nearly all of them. Propositions 3.22 and 3.23 deal with the

remaining cases.

Proposition 3.22. The order of IL and IL3 is 4.

Proof. Observe, that {EVEN4} is a base for IL, and {ODD4} is a base for IL3. Therefore

4 is an upper bound for the orders of IL and IL3. Since all 2-ary relations are bijunctive,

it suffices to show in the case of IL that all 3-ary relations in IL are also in IBF and in

the case of IL3 that all 3-ary relations in IL3 are in ID. This is an easy exercise, since we

have to check only a small number of relations: If R ∈ IL3, then R is complementive and

affine. Since R is complementive, one half of the possible elements of R is determined by

the other half. Hence we have to check the constraints with the following characteristic

strings:

0000 0000

0001 1000

0010 0100
...

1110 0111

1111 1111

Using Algorithm 3.16 we can see that all these constraints are in IBF or ID which are both

bijunctive co-clones. ❑
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Co-Clone O. Remark Base(s)

BR 3 IL ∪ IM ∪ IR2 {EVEN4, x → y, x, x}, {1-IN-3} ,{x → (y ⊕ z)}
II1 3 IL ∪ IM ∪ IR1 {EVEN4, x → y, x} ,{x ∨ (x ⊕ z)}
II0 3 IL ∪ IM ∪ IR0 {EVEN4, x → y, x} ,{DUP, x → y}
II 3 IL ∪ IM {EVEN4, x → y}
IN2 3 IN ∪ IL3 {DUP, EVEN4, x ⊕ y}, {NAE3}
IN 3 {DUP}
IE2 3 dual of IV2 {x ∨ y ∨ z, x, x}
IE0 3 dual of IV1 {x ∨ y ∨ z, x}
IE1 3 dual of IV0 {x ∨ y ∨ z, x}
IE 3 dual of IV {x ∨ y ∨ z}
IV2 3 IV ∪ IR2 {x ∨ y ∨ z, x, x}
IV1 3 IV ∪ IR1 {x ∨ y ∨ z, x}
IV0 3 IV ∪ IR0 {x ∨ y ∨ z, x}
IV 3 {x ∨ y ∨ z}
IL3 4 IL ∪ ID {EVEN4, x ⊕ y} ,{ODD4}
IL2 3 IL ∪ IR2 {EVEN4, x, x} , every {EVENn, {(1)}}, n ≥ 3 is odd
IL1 3 IL ∪ IR1 {EVEN4, x} ,{ODD3}
IL0 3 IL ∪ IR0 {EVEN4, x} ,{EVEN3}
IL 4 {EVEN4}
ID2 2 ID ∪ IM {x ⊕ y, x → y} ,{xy ∨ xyz}
ID1 2 ID ∪ IR1 {x ⊕ y, x}, every R ∈ {{(a1, a2, a3), (b1, b2, b3)} |

∃c ∈ {1, 2} such that Σ3
i=1ai = Σ3

i=1bi = c}
ID 2 {x ⊕ y}
IS10 ∞ dual of IS00 {NANDm | m ≥ 2} ∪ {x, x, x → y}
ISm

10 m dual of ISm
00 {NANDm, x, x, x → y}

IS11 ∞ dual of IS01 {NANDm | m ≥ 2} ∪ {x → y}
ISm

11 m dual of ISm
01 {NANDm, x → y}

IS12 ∞ dual of IS02 {NANDm | m ≥ 2} ∪ {x, x}
ISm

12 m dual of ISm
02 {NANDm, x, x}

IS00 ∞ IS0 ∪ IR2 ∪ IM {ORm | m ≥ 2} ∪ {x, x, x → y}
ISm

00 m ISn
0 ∪ IR2 ∪ IM {ORm, x, x, x → y}

IS01 ∞ IS0 ∪ IM {ORm | m ≥ 2} ∪ {x → y}
ISm

01 m ISm
0 ∪ IM {ORm, x → y}

IS02 ∞ IS0 ∪ IR2 {ORm | m ≥ 2} ∪ {x, x}
ISm

02 m ISn
0 ∩ IR2 {ORm, x, x}

IS1 ∞ dual of IS0 {NANDm | m ≥ 2}
IS0 ∞ ∪m≥2IS

m
0 {ORm | m ≥ 2}

ISm
1 m dual of ISm

0 {NANDm}
ISm

0 m {ORm}
IM2 2 IM ∪ IR2 {x → y, x, x} ,{x → y, x → y} , {xy ∧ (u → v)}
IM0 2 IM ∪ IR0 {x → y, x} ,{x ∧ (y → z)}
IM1 2 IM ∪ IR1 {x → y, x} ,{x ∧ (y → z)}
IM 2 {x → y}
IR2 1 IR0 ∪ IR1 {x, x} ,{xy}
IR1 1 {x}
IR0 1 dual of IR1 {x}
IBF 0 {eq}, {∅}

Fig. 3.5: Bases for all Boolean co-clones
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Proposition 3.23. For n ≥ 2 and a ∈ {0, 1}, the orders of ISna , ISna2, ISna1, and ISna0 are

n.

Proof. It suffices to show the claim for a = 1, because the case a = 0 follows by duality. We

define hn(x1, . . . , xn+1)
def
=

∨n+1
i=1 x1 ∧ x2 ∧ · · · ∧ xi−1 ∧xi+1 ∧ · · · ∧ xn+1 to be the n+ 1-ary

function that maps inputs to 1 if and only if at least n of the inputs are set to 1 (so hn is

the function version of n-IN-(n+ 1)). We show that, for 2 ≤ m < n, every m-ary relation

that is closed under hn is already closed under hn−1. From this follows that if a relation

of arity less than n is in ISn1 then it is in fact already included in ISn−1
1 since for all n ≥ 2

the set {x ∧ y, hn} is a base for the clone Sn1 .

Let R be a relation with arity m where 2 ≤ m < n that is closed under hn and

suppose it were not closed under hn−1. Then there are α1, . . . , αn ∈ R such that δ
def
=

hn−1(α1, . . . , αn) /∈ R. For i ∈ {1, . . . , n}, let βi
def
= hn(α1, . . . , αi−1, αi, αi, αi+1, . . . , αn).

Since hn preserves R, all of the βi are in R and therefore for all of them holds βi 6= δ.

We have a look at the coordinates of βi. For that let k ∈ {1, . . . ,m}. If αi[k] = 1, then

βi[k] = δ[k]. If αi[k] = 0 and there is a j 6= i such that αj [k] = 0 then again βi[k] = δ[k].

But if αi[k] = 0 and αj [k] = 1 for all j 6= i, then βi[k] = 0 and δ[k] = 1.

So, if βi[k] differs from δ[k] then αi[k] = 0 and αj [k] = 1 for all j 6= i. Therefore for all

j 6= i we have βj [k] = δ[k]. Following the pigeon hole principle, there has to be a j such

that βj = δ, which is a contradiction.

The proofs for ISn12, ISn11, and ISn10 are analogous. ❑

Corollary 3.24. There is no finite set of constraints Γ such that

〈Γ〉 ∈ {IS0, IS1, IS00, IS01, IS02, IS10, IS11, IS12}.

Proof. Follows from Proposition 2.1, since L(〈Γ〉) is not dual-atomar. ❑

Finally, note that for every co-clone for which there is a finite base, there is a base that

contains just one relation.

Proposition 3.25. Let Γ = {R1, R2, . . . , Rk} be a base of a co-clone A. Then R
def
=

{R1 ×R2 × · · · ×Rk} is a base of A.

Proof. Obviously,R is closed under all functions from Pol(A), so R ∈ A. Using permutation

of variables and projection, we can derive from R all Ri for 1 ≤ i ≤ k, so all relations of

A can be generated. ❑



46 3. Boolean Clones and Boolean Co-Clones



4. Complexity Classifications for Problems on the Boolean

Domain

Among the most important problems in complexity theory are the satisfiability problems

for propositional formulas SAT and Boolean circuits CSAT. The proof by S. Cook [Coo71]

of the NP-completeness of the CSAT problem is established by building a circuit that simu-

lates the computation of a polynomial-time bounded Turing machine. In 1979, H. R. Lewis

[Lew79] made the observation that these circuits do not need to be built over a complete

set of Boolean functions. He showed that NP-completeness of CSAT can be proven with

circuits over a set of Boolean functions B if and only if the function x∧y can be expressed

with a circuit over B. In 1999, S. Reith and K. Wagner published a connection of Lewis’s

result with universal algebra [RW00, Rei01]: The set {x ∧ y} is a base of the clone S1 and

for S1-circuits, i.e., circuits that are built over a set of Boolean functions B with [B] = S1,

the satisfiability problem is NP-hard, already. It is not too difficult to see, that for all other

circuits the respective CSAT-problem is in P. For example, if the circuits are build over a

set of functions that is complete for a sub-clone of R1, then every function described by

such a circuit is 1-reproducing and hence satisfiable.

In this chapter we study the complexity of similar problems. We give a formal definition

of CSAT.

Problem: Circuit Satisfiability Problem for B-Circuits, CSAT(B)

Input: A B circuit C with arity n for some n ∈ N

Question: Is there an α ∈ {0, 1}n such that C(α) = 1?

Theorem 4.1 ([Lew79, RW00]). If B is a set of Boolean functions such that S1 ⊆ [B],

then CSAT(B) is NP-complete otherwise CSAT(B) ∈ P.

4.1 Satisfiability with Exceptions

As mentioned, CSAT(B) is trivial if [B] ⊆ R1. However, the tractability rests on just one

tuple: If we would ask whether there is an α 6= (1, . . . , 1) that satisfies such a B-circuit, it

is not at all clear that this problem would be easy. We define a more general version that

can be difficult even so a circuit is obviously satisfiable by a finite number of assignments.

Problem: Circuit Satisfiability Problem with Selected Exceptions, SelectSAT(B)

Input: A B-circuit C of arity n and tuples α1, . . . , αm (m ≥ 0)

Question: Is there a β ∈ {0, 1}n − {α1, . . . , αm} such that C(β) = 1?
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The following theorem shows that the situation does not change much: The normal

B-circuit satisfiability problem is NP-complete if and only if S1 ⊆ [B], whereas the prob-

lem SelectSAT(B) is NP-complete if and only if S12 ⊆ [B]. Therefore the tractability of

CSAT(B) if B ⊆ R1 does not solely depend on the fact that B is 1-reproducing.

Theorem 4.2. Let B ⊆ BF be a set of Boolean functions. If S12 ⊆ [B] then SelectSAT(B)

is NP-complete. In all other cases SelectSAT(B) ∈ P.

Proof. For that, we need a restricted version of SelectSAT(B):

Problem: SAT∗(B)

Input: A B-circuit C with arity n ≥ 0

Question: Is there an α ∈ {0, 1}n − {(1, . . . , 1)} such that C(α) = 1?

Claim 4.3. If S12 ⊆ [B] then SAT∗(B) is NP-hard.

Proof: Looking at Figure 3.1, we see that [S12 ∪ {c0}] = S1, hence with Theorem 4.1,

CSAT(S12 ∪ {c0}) is NP-complete. We will now reduce CSAT(S12 ∪ {c0}) to SAT∗(S12).

Given a (B ∪ {c0})-circuit C on variables {x1, . . . , xn}, we use a new variable x as a

replacement for the constant c0. Thus we obtain an S12-circuit C ′ that behaves as C does,

for all inputs that set x to 0. Observe, that the Boolean function x ∧ (y ∨ z̄) belongs to

S12. Therefore we can build an S12-circuit Ĉ which is equivalent to

C ′(x1, . . . , xn, x) ∧
n∧

i=1

(xi ∨ x̄)

and that is at most polynomially larger than C ′. Observe that C has a satisfying assignment

if and only if there is an input different from (1, . . . , 1) that makes Ĉ output 1. We conclude

that SAT∗(S12) is NP-hard. 2

Now, let S12 ⊆ [B]. We easily reduce SAT∗(S12) to SelectSAT(B), because SAT∗(B) is a

restriction of SelectSAT(B). It remains to prove that in all remaining cases, i.e., if B ⊆ A

for an A ∈ {M,S2
0,D,L}, then SelectSAT(B) is in P.

If B ⊆ M, then for every satisfying assignment α of a B-circuit C holds that all β with

β ≥ α are also satisfying. We use this in the following polynomial-time algorithm that

decides for a SelectSAT(B) instance (C,α1, . . . , αk) whether C has a satisfying assignment

besides α1, . . . , αk:

function sSAT(C,α1, . . . , αk)

return sSATbelow(1n, C, α1, . . . , αk)

function sSATbelow(β,C, α1, . . . , αk)

if C(β) = 1 then

if β /∈ {α1, . . . , αk} return true
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else

go through all γ ∈ {0, 1}n with hamming-distance(β, γ)=1 and γ ≤ β

if (sSATbelow(γ,C, α1, . . . , αk) = true) return true

return false

1 0 1 1 1 0

1 0 0

1 1 1

0 1 0 

0 0 0 

0 0 1

0 1 1

1

1

0 0

1

1

0

1

Fig. 4.1: An example of possible assignments for a 3-ary Boolean function (boxes) together with possible

function values of a monotonic function (circles). Since all satisfying assignments are grouped in the“upper”

part of the lattice, due to the monotonicity of the function, a constant number of satisfying assignments

can be found very fast. The dotted line illustrates a possible search path of the algorithm.

See Figure 4.1 for an example of the work of the algorithm. Remember, that γ ≤ β if

and only if γ is coordinate-wise less than or equal to β. The first if-block in sSATbelow is

reached only if β is a satisfying assignment and for every β there are at most n assignments

γ that are smaller than β and have hamming-distance 1. So, if C has c ≤ k satisfying

assignments, the algorithm needs no more than c ·n calls to sSATbelow to find all of them

and to verify that there are no further satisfying assignments. If there are more than k

satisfying assignments, the algorithm will stop accepting after no more than k ·n+ 1 calls

to sSATbelow.

If B ⊆ L, we can use the linear normal form c0 ⊕
⊕n

i=1 cixi, which exists for every

linear Boolean function and can be found quickly, to solve SelectSAT(B) efficiently.

If B ⊆ D then all B circuits are trivially satisfiable, since for every assignment α

f(α) 6= f(ᾱ), if f is self-dual.

Finally, if B ⊆ S2
0 then each n-ary B-circuit has at least 2n−1 satisfying assignments:

No 0-separating set M ⊆ {0, 1}n of degree 2 can contain α and ᾱ. ❑
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4.2 Frozen Variables

An important aspect in connection with satisfiability is that of frozen variables. A variable

of a satisfiable Boolean circuit is frozen if it has the same value in every assignment that

is satisfying for the circuit. The problem of frozen variables is of importance in all areas,

where large amounts of data have to be stored, as for example, in databases. If there is an

attribute that takes the same value for all objects stored in a database, then this attribute

is redundant and can be removed.

A. Krokhin and P. Jonsson examined the complexity of the problem of finding frozen

variables in constraint satisfaction problems [JK04]. They show that the problem for gen-

eral constraint satisfaction problems is complete for the complexity class DP. We examine

variations of this problem for Boolean circuits. First, let us give an exact definition of a

frozen variable.

Definition 4.4. Let C be a Boolean circuit with variables x1, . . . , xn and let 1 ≤ i ≤ n.

The variable xi is a frozen variable of C if and only if

#{α[i] : α ∈ {0, 1}n and C(α) = 1} = 1.

With other words, xi is a frozen variable of C if and only if C is satisfiable and there

is an a ∈ {0, 1} such that for every α with C(α) = 1 holds α[i] = a. If V ⊆ {x1, . . . , xn}

then V is frozen in C if and only if every x ∈ V is a frozen variable of C.

Problem: Frozen Variables Problem for Boolean Circuits, FV(B)

Input: A B-circuit C with input variables V , and V ′ ⊆ V

Question: Is V ′ frozen in C?

Note, that the frozen variables problem is a generalization of the well-known unique

satisfiability problem. We define this problem for B-circuits.

Problem: Unique Satisfiability Problem for B-circuits, UNIQUE-SAT(B)

Input: A B-circuit C over the set of variables V

Question: Is V frozen in C, i.e., does C have exactly one satisfying assignment?

It is rather obvious, that UNIQUE-SAT(BF) is in DP: An n-ary circuit C is in

UNIQUE-SAT(BF) if and only if

1. there is an α ∈ {0, 1}n such that C(α) = 1 and

2. for all α1, α2 ∈ {0, 1}n holds: If C(α1) = C(α2) = 1 then α1 = α2.
(4.1)

Then 1. is an NP condition and 2. is a coNP-condition. However, there is an oracle

against UNIQUE-SAT(BF) being DP-complete [BG82].

Instead of testing whether all of the variables of a given set are frozen in a Boolean

circuit, we could also ask whether there is such a variable at all. This is the idea of the

following, existential version of the frozen variable problem.
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Problem: The Existential Frozen Variable Problem for B-circuits, ∃FV(B)

Input: A B-circuit C

Question: Is there a frozen variable in C?

Per definition, a variable can only be frozen in a circuit C, if that circuit can be satisfied.

This adds a lot to the complexity of the frozen variable problem. If our main motivation is

to just find frozen variables without caring whether the given circuit is actually satisfiable,

we are interested in the following additional problem.

Problem: The Auditing Problem for B-Circuits, AUDIT(B)

Input: A B-circuit C

Question: Does C have a frozen variable or is C unsatisfiable?

The goal of this section is to classify the complexity of all these problems with respect

to all possible clones B. Let us begin with some upper bounds.

Proposition 4.5. For every set B of Boolean functions holds

1. FV(B) is in DP.

2. AUDIT(B) is in coNP.

3. ∃FV(B) is in DP.

4. UNIQUE-SAT(B) is in DP.

Proof. Let C be an n-ary B-circuit over a set of variables V and let V ′ ⊆ V . For the first

point, note that V ′ is frozen in C if and only if

1. C is satisfiable and

2. for all α0, α1 ∈ {0, 1}n holds that if C(α0) = C(α1) = 1 then for all i with xi ∈ V ′ we

have α0[i] = α1[i].

The first condition is in NP and the second one is in coNP, hence FV(B) is in DP. For the

second point note that C ∈ AUDIT(B) if and only if there are α1, β1, . . . , αn, βn ∈ {0, 1}n

such that C(αi) = C(βi) = 1 and αi[i] 6= βi[i] for 1 ≤ i ≤ n. This is an NP-condition.

The third point follows, since ∃FV(B) is a conjunction of AUDIT(B) and CSAT(B).

We already saw the fourth point in (4.1). ❑

Therefore, we have upper bounds for our problems. Let us now search for lower bounds,

and start with FV(B) and ∃FV(B).

Lemma 4.6. Let B ⊆ BF be a set of Boolean functions. If D1 ⊆ [B] ⊆ D or S02 ⊆ [B] ⊆

R1, then ∃FV(B) and FV(B) are coNP-complete.

Proof. Observe that for all B that satisfy the conditions above all B-circuits are trivially

satisfiable. Therefore the only difficulty that remains is to test whether there are frozen

variables, and hence FV(B) and ∃FV(B) are in coNP.

Let S02 ⊆ [B] ⊆ R1. We will reduce CSAT(R0) to ∃FV(B) and FV(B). This gives the

needed coNP-hardness, since CSAT(R0) is coNP-complete, see Theorem 4.1. For that let C
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be an R0-circuit over {x∨ (y∧z), 0}, which is a base of R0. We build a new circuit C ′ from

C by taking a variable x that does not occur in C and by replacing every occurrence of 0

in C with x. Then C ′∨x is a S02-circuit, because {Or, x∨ (y∧ z)} ⊆ [S02] (see Figure 3.2:

Or ∈ V2 ⊂ S02 and x ∨ (y ∧ z̄) is a base of S02). Since C ′ ∨ x can be satisfied by every

assignment that sets x to 1, the only possibly frozen variable in C ′ ∨ x is x. Furthermore,

x is a frozen variable in C ′ ∨ x if and only if C is not satisfiable.

Now let D1 ⊆ [B] ⊆ D. We will reduce the coNP-complete problem EQ(D1) [Rei03] to

∃FV(B) and FV(B). For a clone B, this problem is defined as follows:

Problem: Circuit Equivalence Problem for B-circuits, EQ(B)

Input: Two B-circuits C1 and C2

Question: Do C1 and C2 describe the same Boolean function?

Let C1 and C2 be two n-ary D1-circuits. Let x be a variable that occurs neitherin C1 nor

in C2 and let C ′ def
= x ⊕ C1 ⊕ C2. Since x ⊕ y ⊕ z is a function in L2 ⊆ D1 (see Figures

3.1, 3.2), C ′ is a D1-circuit. Note that C ′′(x, y, z) = xy ∨ xz ∨ yz is a D1-circuit, too. The

reduction g works as follows:

g(C1, C2)
def
=

{
C ′′ , if C1(0

n) 6= C2(0
n) or C1(1

n) 6= C2(1
n)

C ′ otherwise

We claim that C1 ≡ C2 holds if and only if g(C1, C2) ∈ ∃FV(D1) if and only if (g(C1, C2),

{x}) ∈ FV(B). For that let C1 ≡ C2. Then g(C1, C2) = C ′. Since C1 ⊕ C2 ≡ 0 the

circuit C ′ is satisfied if and only if x is satisfied. Thus x is a frozen variable and therefore

g(C1, C2) ∈ ∃FV(B) and (g(C1, C2), {x}) ∈ FV(B).

On the other hand, if C1 6≡ C2 then we have two cases. If C1(0
n) 6= C2(0

n) or C1(1
n) 6=

C2(1
n) then g(C1, C2) = C ′′, which is a circuit without frozen variables. If C1(0

n) = C2(0
n)

and C1(1
n) = C2(1

n) then g(C1, C2) = C ′. Since C1 6≡ C2, there is an assignment α ∈

{0, 1}n such that C1(α) 6= C2(α). Therefore 1 = 0⊕C1(α)⊕C2(α) = 1⊕C1(0
n)⊕C2(0

n) =

1 ⊕ C1(1
n) ⊕C2(1

n) and there is no frozen variable in C ′. ❑

For the next theorem, we need the following standard argument about how to build

DP-complete sets from NP-complete sets.

Lemma 4.7. Let Σ be a finite alphabet. If A ⊆ Σ∗ is NP-complete, then the set dp(A)
def
=

(A× Σ∗)4(Σ∗ ×A) is DP-complete.

Proof. Since both, (A×Σ∗) and (Σ∗×A) are in NP, the set dp(A) is in DP by the definition

of DP. Let B = C4D be in DP where C,D ∈ NP. Since A is NP-complete, there are

functions f, g ∈ FP that reduce C to A andD to A, respectively. Let h(x, y)
def
= (f(x), g(y)).

Then h ∈ FP and for all (x, y) holds (x, y) ∈ B if and only if h((x, y)) ∈ A. So dp(A) is

DP-complete. ❑
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Theorem 4.8. Let B ⊆ BF be a set of Boolean functions.

1. If B ⊆ L, B ⊆ M, or [B] = S12 then ∃FV(B) is in P,

2. ∃FV(S1) is NP-complete,

3. if S1 ⊂ [B] then ∃FV(B) is DP-complete,

4. and in all other cases ∃FV(B) is coNP-complete.

Proof. 1. If B ⊆ L then in a B-circuit there is a frozen variable if and only if exactly one

of the variables of its linear normal form has a coefficient of 1.

Let B ⊆ M and let C(x1, . . . , xn) be a B-circuit. The variable xi is frozen if and only if

C is satisfiable and C(βi) = 0 for βi
def
= 1i−101n−i: If C(βi) = 0, then C(α) = 0 for every

tuple α ∈ {0, 1}i−1×0×{0, 1}n−i, since α ≤ βi and C is monotonic. Hence xi is frozen.

On the other hand, if C(βi) = 1, then xi is not a frozen variable, because C(1n) = 1.

Moreover, the satisfiability of a monotonic C can be easily tested by computing C(1n).

If B = S12 = R1 ∩ S1 then every B-circuit C is satisfiable and has a frozen variable

because C is 1-separating.

2. Note, that an S1-circuit has a frozen variable if and only if it is satisfiable. Therefore,

∃FV(S1) ≡ CSAT(S1) and the claim is proved with Theorem 4.1.

3. Let B be such that S1 ⊂ [B]. Since CSAT(S1) is NP-complete (Theorem 4.1) the

set dp(CSAT(S1)) is DP complete, due to Lemma 4.7. We reduce dp(CSAT(S1)) to

∃FV(B). For k ≥ 2, let hk be the Boolean function such that hk(x1, . . . , xk + 1) = 1

if and only if Σk+1
i=1 xi ≥ n. Since S1 ⊂ B, there is a k ≥ 2 such that hk is in [B] (see

Figures 3.2 and 3.1). For a pair of S1-circuits C ′
1 and C ′

2, which are m− and n−ary

respectively, let C1 (C2, resp.) be the polynomial-time computable B-circuit, which is

equivalent to C ′
1 (C ′

2, resp.). Now define C
def
= hk(C1, C2, x1, . . . , xk−1), where each xi

is a variable neither occurring in C1 nor in C2. Clearly C can be encoded as a B-circuit

of polynomial size with respect to |C ′
1| + |C ′

2|. Next we show that this transformation

gives the needed reduction.

If C ′
1, C

′
2 ∈ CSAT(S1) then there are assignments α ∈ {0, 1}m and β ∈ {0, 1}n such that

C1(α) = C2(β) = 1. Then none of the variables of C1 is frozen, since C(γβ1k−1) = 1

for all γ ∈ {0, 1}m. The same argumentation holds for all variables in C2. Furthermore

for all 1 ≤ i ≤ k − 1 it holds that xi is not frozen in C, since C(αβ1i−101k−i−1) =

C(αβ1k−1) = 1.

If C ′
1, C

′
2 ∈ CSAT(S1), then C is not satisfiable and therefore has no frozen variables.

So let without loss of generality C1 ∈ CSAT(S1) and C2 ∈ CSAT(S1). Then C ≡

C1 ∧ x1 ∧ · · · ∧ xk−1 and obviously at least all of the xi’s are frozen.

4. If D1 ⊆ [B] ⊆ D or S02 ⊆ [B] ⊆ R1, then ∃FV(B) is coNP-complete because of

Lemma 4.6. The only remaining case is S12 ⊂ [B] ⊂ R2. Then B-circuits are trivially

satisfiable and therefore ∃FV(B) ∈ coNP. The proof of the lower bound is similar to

Case 3, but this time the reduction starts with SAT∗(S12), which is coNP-complete

(see proof of Theorem 4.2). Since S12 ⊂ [B] there is a k ≥ 2 such that hk is in [B]. Let

C(x1, . . . xn) be an S12-circuit and let
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D(x1, . . . , xn, y1, . . . , yk)
def
= hk(C(x1, . . . , xn), y1, . . . , yk) ∧ ((

∧k
i=1 yi) ∨ ¬(

∧n
j=1 xn)),

where all the yi are variables not already occurring in C. Observe that D can be

encoded as B-circuit, because {And, x ∧ (y ∨ z)} ⊂ S12 ⊆ [B].

If C ∈ SAT∗(S12) then D is satisfiable only by setting yi to 1 for all 1 ≤ i ≤ k, hence

all yi are frozen.

On the other hand, if there is an α ∈ {0, 1}n such that α 6= (1, . . . , 1) and C(α) = 1

then none of the xi’s is frozen (1 ≤ i ≤ n), since D can be satisfied by just setting all

the yi’s to 1. Furthermore, for each j ∈ {1, . . . , k} holds D(α1j−101k−j) = D(α1k) = 1,

hence none of the yj’s is frozen.

❑

Figure 4.2 gives an overview of Theorem 4.8. So, some interesting properties of Boolean

circuits are natural to some Boolean clones: 1-separating functions have a frozen variable

if and only if they are satisfiable which makes their complexity-classification especially

easy. This is a good example, that it is worth our while to study the algebraic structure

of objects in order to gain knowledge about problems that are based on them.

Since we require instances of FV(S1) to have a whole set of frozen variables, which may

not even contain the one which is guaranteed to be frozen, the 1-separability cannot help

us in this case.

Theorem 4.9. Let B ⊆ BF be a set of Boolean functions.

1. If B ⊆ M or B ⊆ L, then FV(B) is tractable,

2. else if S1 ⊆ [B], then FV(B) is DP-complete,

3. else FV(B) is coNP-complete.

Proof. If B ⊆ M or B ⊆ L, then the argumentation from Theorem 4.8 holds. Furthermore,

we have seen in Lemma 4.6 that if D1 ⊆ [B] ⊆ D or S02 ⊆ [B] ⊆ R1, then FV(B) is

coNP-complete.

Hence, the coNP-hardness of FV(B) for B such that S12 ⊆ [B] and the DP-hardness of

FV(B) for all B such that S1 ⊆ [B] remains to be proven. We reduce FV(R1) to FV(S12)

(FV(BF), which is DP-complete [JK04], to FV(S1), resp.). For that, let C be a circuit over

the R1-complete basis {x ∧ (y ∨ z), 1} (over the complete basis {x ∧ y, 1}, resp.) and let

V be the set of variables used in C. Build a circuit C ′ by taking a variable x that is not

contained in C and replace every occurrence of 1 in C by x. Then C ′∧x is an S12-circuit (an

S1-circuit, resp.), which can only be satisfied by assignments that set x to 1. For all these

assignments, C ′ ∧ x is satisfied if and only if C is satisfied. Therefore (C, V ) ∈ FV(R1)

((C, V ) ∈ FV(BF), resp.) if and only if (C ′ ∧ x, V ) ∈ FV(S12) ((C ′ ∧ x, V ) ∈ FV(S1),

resp.). ❑

Figure 4.3 gives an overview for Theorem 4.9. After what we have seen so far, the following

result is the expected one, since AUDIT(B) is an easier variant of ∃FV(B) where we leave

away the NP-complete question of whether a circuit is satisfiable.
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Theorem 4.10. Let B ⊆ BF be a set of Boolean functions.

1. If B ⊆ M or B ⊆ L or B ⊆ S1, then AUDIT(B) is tractable.

2. In all other cases, AUDIT(B) is coNP-complete.

Proof. First, observe that if CSAT(B) ∈ P, then AUDIT(B) ≡p
m ∃FV(B).

1. Since CSAT(B) ∈ P if [B] ⊆ L or [B] ⊆ M (see Theorem 4.1), the claim for such

B follows from the above observation and Theorem 4.8. If B ⊆ S1, it is either not

satisfiable or has always a frozen variable.

2. If B ⊆ R1 or B ⊆ D, every B-circuit is trivially satisfiable. Hence, we can use the above

observation and Theorem 4.8, again. It remains to show that AUDIT(B) is coNP-hard

if S1 ⊂ [B]. We will reduce CSAT(S1), which is coNP-hard (see Theorem 4.1), to

AUDIT(B). The proof runs along the same lines as in Theorem 4.8. Take an S1-circuit

C ′ and let C be a B-circuit with is equivalent to C ′. Since S1 ⊂ [B] there is an

hk ∈ [B] for some k ≥ 2. Define C ′′ def
= hk(C, x1, . . . , xk), where xi is a variable not

occurring in C (1 ≤ i ≤ k). If C ′ is not satisfiable, xi is frozen (1 ≤ i ≤ k). If C ′ is

satisfiable by an assignment α none of the variables in C ′ is frozen, since C ′ can be

satisfied by setting all the xi’s to 1. Furthermore xi is not frozen for 1 ≤ i ≤ k, because

C ′(α1i−101k−i) = C ′(α1k) = 1.

❑

Figure 4.4 gives an overview for Theorem 4.10. Hence, we still have to classify the

UNIQUE-SAT(B)-problem.

Theorem 4.11. Let B ⊆ BF be a set of Boolean functions.

1. If S1 ⊆ [B], then UNIQUE-SAT(B) ≡p
m UNIQUE-SAT(BF)

2. else if S12 ⊆ [B] ⊆ R1, then UNIQUE-SAT(B) is coNP-complete

3. else UNIQUE-SAT(B) is tractable.

Proof. 1. Trivially UNIQUE-SAT(B) ≤p
m UNIQUE-SAT(BF) holds. Now let C be a

Boolean circuit over the complete base {x ∧ y, 1}, let x be a variable not occurring in

C, let C ′′ be an S1-circuit that is derived from C by replacing every occurrence of 1 in

C by x, and let C ′ def
= C ′′ ∧ x. Observe, that C ′ is an S1-circuit with the same number

of satisfying assignments as C.

2. If B ⊆ R2, we have UNIQUE-SAT(B) ≤p
m SAT∗(B) ≤p

m SelectSAT(B). So, since for

all B ⊆ R1 holds UNIQUE-SAT(B) ∈ coNP, the coNP-completeness for all B with

S12 ⊆ [B] ⊆ R1 follows by Theorem 4.2.

3. For all B ⊆ S2
0 or B ⊆ D the claim holds because every n-ary function from B has

at least 2n−1 satisfying assignments. If B ⊆ M, then an n-ary B-circuit has more

than one satisfying assignment if and only if there is an i ∈ {1, . . . , n} such that

C(1i−101n−i) = 1. If B ⊆ L, then the number of satisfying assignments for every

B-circuit can easily be determined using its linear normal form.

❑

Figure 4.5 gives an overview for Theorem 4.11
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4.3 Quantified Boolean Constraint Satisfaction with Bounded
Alternations

In the last sections we classified of the complexity of different problems over Boolean

circuits with respect to the Boolean functions that occur in their gates. We made heavy

use of the Boolean clones and were thus able to give short and simple proofs. In this

section we have a look at a problem from the world of Boolean constraints. Recently,

E. Hemaspaandra studied the complexity of satisfiability of certain constraint formulas

with quantifiers where the number of alternations between the quantifiers is bounded by

a constant [Hem04]. She gave a full classification for these problems with respect to the

types of constraints that are allowed in the constraint formulas.

In this section, we reproof the results of Hemaspaandra. However, we will make use of

the structure of Boolean co-clones which will simplify the proofs considerably.

Definition 4.12. Let Γ be a set of Boolean constraints and let F (x1, . . . , xn) ∈ CF(Γ). Let

Q1, . . . , Qn be quantifiers from {∃,∀}. We call G
def
= Q1x1Q2x2 . . . QnxnF a fully quantified

Γ-formula. Let k be the number of quantifier alternations in G. We call G a Σk(Γ)-formula

if Q1 = ∃ and a Πk(Γ)-formula otherwise.

We call G a Ξk(Γ)-formula if either k is odd and G is a Σk(Γ)-formula or k is even and

G is a Πk(Γ)-formula. With other words, G is a Ξk(Γ) formula if it is a fully quantified

Γ-formula with k alternations of quantifiers and the rightmost quantifier is ∃.

Definition 4.13. For every k ∈ N, and every finite set of Boolean relations Γ, we define

the following problem.

Problem: Quantified Boolean Constraint Satisfaction Problem, QSATk(Γ)

Input: A fully quantified Ξk(Γ)-formula ϕ

Question: Is ϕ true?

Why are we interested in Ξk(Γ) formulas, of all things? Since in Ξk(Γ)-formulas the

rightmost quantifier is always an existential one, a Ξk(Γ)-formula is in fact a quantified

EQCF(Γ)-formula. We have seen in Section 3.3 that there is a strong connection between

this type of formulas and Boolean co-clones that we can use here. We remark, that the

result of Hemaspaandra is over the same type of constraint formulas (although her defini-

tion differs). She also makes use of Schaefer’s classification of Boolean constraints, which

we have seen to be implied by Boolean co-clones. So, Hemaspaandra makes use of some

universal algebra in her paper, without explicitly stating it. In the following, let Ξp
k

def
= Σp

k

if k is odd and Ξp
k

def
= Πp

k, otherwise.

In order to utilize the co-clone structure of L(BR), we have to establish a link between

the lattice and QSATk(Γ).

Lemma 4.14. Let Γ1 and Γ2 be sets of relations over {0, 1} such that Γ1 is finite and

〈Γ1〉 ⊆ 〈Γ2〉. Then for all k ≥ 1 we have QSATk(Γ1) ≤
p
m QSATk(Γ2).
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Proof. The idea of the reduction is to replace every occurrence of a relation from Γ1 with

an existential quantified constraint formula over Γ2.

According to Proposition 3.12, we can express relations from Γ1 using relations from Γ2

plus existential quantifiers and the eq-relation. For every Ξk(Γ1)-formula F an equivalent

Ξk(Γ2 ∪ {eq})-formula F ′ can be computed in polynomial time:

Let F = Q1x1 · · ·QmxmG, whereG is in CF(Γ1). Then there is a formula ∃y1 · · · ∃y`G
′ ∈

EQCF(Γ2) where ` ∈ N and y1, . . . , y` are new variables and that formula describes the

same relation as G. We can compute this new formula in polynomial time, since we can

replace every atomar relation in G by an existential quantified formula from EQCF(Γ2).

Then F ′ def
= Q1x1 · · ·Qmxm∃y1 · · · ∃y`G

′ describes the same relation as F and is in Ξk(Γ2∪

{eq}).

Now, F ′ may contain eq-constraints, which we have to remove in the case that

eq /∈ Γ2. To do this, we go through all maximal sets of variables {x1, . . . , xn} such that

eq(x1, x2), eq(x2, x3), . . . , eq(xn−1, xn) are clauses of F ′. Observe, that we can identify these

sets in polynomial time: This is as difficult as finding the connected parts in an undirected

graph. For each of these sets, we do the following.

Case 1. There exist i, j ∈ {1, . . . , n} such that xi and xj are both universally quantified.

Then F ′ is true if and only if ∀xi∀xjeq(xi, xj) is true, i.e., F ′ is false.

Case 2. All variables xi of the set are existentially quantified. In this case we replace

all variables in {x1, . . . , xn} with x1 and delete the corresponding equality constraints

and the quantifiers for x2, . . . , xn. The resulting formula is equivalent to F ′.

Case 3. There is an i ∈ {1, . . . , n} such that xi is universally quantified and xj is

existentially quantified for all j ∈ {1, . . . , n} − {i}. If there is such a j such that xj is

quantified before xi, then F ′ can be true if and only if there is an element in {0, 1} that

is equal to all elements in {0, 1}, which is impossible. So let xi be quantified before the

other variables of the set. Then we can just replace the variables from {x1, . . . , xn}−{xi}

with xi, delete the equality constraints and the quantifiers belonging to them, and get

an equivalent formula.

This can be done in polynomial time. ❑

Theorem 4.15. QSATk({NAE3}) is ≤p
m-complete for Ξp

k if k ≥ 1.

Proof. It is obvious, that QSATk(Γ) is in Ξk for all sets of relations Γ and all k ≥ 0, since

the constraint formulas can be viewed as normal formulas. Due to Lemma 4.14 and since

〈{1-IN-3}〉 = BR, the problem QSATk({1-IN-3}) is as hard as the general satisfiability

problem for Ξk-formulas, which is known to be complete for Ξp
k [Wra77]. We now show

QSATk({1-IN-3}) ≤p
m QSATk({NAE3}).

Let ϕ
def
= Q1X1 · · · ∀Xk−1∃XkF be a Ξk(1-IN-3)-formula, where

F
def
=

n∧

j=1

1-IN-3(xj1 , xj2 , xj3)
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and for 1 ≤ i ≤ k is QiXi an abbreviation of Qixi1 . . . Qiximi
if Xi = {xi1, . . . , ximi

} is a

subset of the variables in F and Qi ∈ {∃,∀}. For each constraint 1-IN-3(xj1 , xj2 , xj3) of F ,

introduce a new constraint

Cj
def
= NAE3(xj1 , xj2 , t) ∧ NAE3(xj1 , xj3 , t) ∧ NAE3(xj2 , xj3 , t) ∧

NAE3(xj1 , xj2 , xj3)

≡ 2-IN-4((xj1 , xj2 , xj3 , t),

where t is a new variable. We define

F ′ def
= C1 ∧ · · · ∧ Cn,

ϕ′ def
= Q1(X1 ∪ {t})Q2X2 · · · ∀Xk−1∃XkF

′,

ψ
def
= Q1X1 · · · ∀Xk−1∃XkF

′(t = 0), and

ψ′ def
= Q1X1 · · · ∀Xk−1∃XkF

′(t = 1).

Here, F ′(t = a) means the constraint formula that is derived from F ′ by replacing

every occurrence of t in F ′ with the constant a ∈ {0, 1}. Observe, that ψ ′ ≡ ϕ, since

2-IN-4((x, y, z, 1) = 1-IN-3(x, y, z).

Claim 4.16. ψ is true if and only if ψ′ is true.

Proof: Let ψ be true. We use that F ′ describes a complementive relation to show that ψ ′

is true, too. For that, we need the notion of a quantifier function. Let ξ = Q1X1 · · ·Q`X`G

be a fully quantified Γ-formula where G ∈ CF(Γ) and Γ is an arbitrary set of constraints.

Let

A
def
= {I : I is a function from V to {0, 1} for a V ⊆ {x1, x2, . . . }}

be the set of all functions that assign Boolean values to finite sets of variables. Let

Iξ∀
def
= {I : I maps all universally quantified variables from ξ to {0, 1}} ( A

be the set of Boolean assignments for the universally quantified variables from ξ.

A function f : A → A is called quantifier function for ξ if and only if the following

holds:

1. For all I ∈ Iξ∀ the function f(I) is an assignment for all existentially quantified variables

of ξ and

2. if I1, I2 ∈ Iξ∀ and y is an existentially quantified variable in ξ and {x1, . . . , xm} is the set

of universally quantified variables of ξ that appear left of y, then f(I1)(y) = f(y)(xi).

That means that for an existentially quantified variable y, the value of f(I)(y) is

determined by {I(xj) : xj is universally quantified and appears left of y}.

The function f is called satisfying quantifier function for ξ if and only if for all I ∈ I ξ∀
the assignment I ∪ f(I) is satisfying for G. Observe, that ξ is true if and only if there is a

satisfying quantifier function for ξ.
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For I ∈ A, we define the function Ī ∈ A as follows:

I(xi)
def
=

{
1 − I(xi) , if I(xi) is defined

not defined otherwise.

Now let ψ be true. Then there is a satisfying quantifier function f for ψ. For all I ∈ Iψ∀ ,

let f ′(I)
def
= f(I). Observe, that f ′ is a quantifier function for ψ′, since ψ and ψ′ share

the same quantifier prefix. Then for all I ∈ Iψ∀ = Iψ
′

∀ holds I ∪ f ′(I) = I ∪ f(I) satisfies

F ′(t = 0) since I ∪ f(I) satisfies F ′(t = 1) and F ′ is complementive. The other direction

is analogous. 2

Since ϕ′ is equivalent to ψ ∧ ψ′ if Q1 = ∀ and ϕ′ is equivalent to ψ ∨ ψ′ if Q1 = ∃, we

can conclude

ϕ′ is true ⇔ ψ′ is true ⇔ ϕ is true,

since 1-IN-3(x, y, z) ≡ 2-IN-4(x, y, z, 1). ❑

Theorem 4.17. Let Γ be a set of Boolean constraints. Then for all k ≥ 1 the problem

QSATk(Γ) is ≤p
m-complete for Ξp

k if IN ⊆ 〈Γ〉 and in P otherwise.

Proof. If IN 6⊆ 〈Γ〉 then 〈Γ〉 ⊆ B for a B ∈ {IE2, IV2, IL2, ID2}. Therefore B is Horn, anti-

Horn, affine, or bijunctive. For all these cases the quantified constraint satisfaction problem

with no bounds on the quantifier alternations is known to be in P [Sch78, Dal97, CKS01]. So

the remaining cases are those where IN ⊆ 〈Γ〉. For k = 0, the problem QSATk(Γ) coincides

with CSP(Γ). We have seen in Section 3.3 that Schaefer’s theorem (Theorem 3.13) already

settles this case, so let k ≥ 1. We reduce QSATk({NAE3}) to QSATk({DUP}) which

finishes the proof, since 〈{NAE3}〉 = IN2 and 〈{DUP}〉 = IN and because of Theorem 4.15

and Lemma 4.14.

Let ϕ = Q1X1 · · · ∀Xk−1∃XkF be a Ξk({NAE3})-formula where

F =

m∧

i=1

NAE3(xi1, xi2, xi3)

is a {NAE3}-constraint formula. For 1 ≤ i ≤ m, let

Ci(xi1, xi2, xi3, t)
def
= DUP(xi1, t, xi2) ∨ DUP(xi1, t, xi3) ∨ DUP(xi2, t, xi3),

where t is a new variable, and let

ϕ′ def
= Q1X1 · · · ∀Xk−1 ∪ {t}∃Xk

m∧

i=1

Ci(xi1, xi2, xi3, t).

Observe, that ϕ is true if and only if ϕ′ is true, since NAE3(xi1, xi2, xi3) is equivalent to

∀tCi(xi1, xi2, xi3, t). ❑
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5. Clones in Structural Complexity Theory

We have seen that the structures of universal algebra can be very helpful when proving

complexity results on problems over the Boolean domain. In computer science, there are

other sets that are of interest which are not always at first sight recognized as clones.

Examples are the set of recursive functions, the set of functions computable in polynomial

time, or the set of functions computable in logarithmic space. They are all clones in the

lattice of functions on N. Since the exact relationship between many important complexity

classes is still unknown, every means that could shed light on these relationships should

be studied. Therefore, we examine some properties of complexity classes that are in fact

clones, in this chapter. The focus of our attention will be on the clone FP – the set of

functions that are computable deterministically in polynomial time.

5.1 Identifying Complexity Clones

In this section, we will see that there are a lot of function-complexity classes, that are in fact

clones. For all complexity classes we examine it is rather obvious that they are closed under

{PI,TF,LVF,RF}. Therefore we have to check whether they are closed under substitution.

Furthermore, since arguments can be easily paired, and paired arguments can easily be

separated again in all complexity classes we are concerned with, it suffices to concentrate

on unary functions.

Theorem 5.1. The following function-complexity classes are clones: FL, FP, FPSPACE,

FNCi for all i ≥ 1, and FNC.

Proof. It is well known, that L is closed under log-space-reductions and P is closed under

polynomial-time reductions. The same argumentation used in the proofs of these closures

can be used to show that FL and FP are closed under substitution. For FPSPACE, note

that we require for every f ∈ FPSPACE that |f(x)| ≤ |x|k for some k ∈ N and all x ∈ Σ∗.

Let i ≥ 1 and f, g ∈ FNCi. Since g ∈ FNCi there is a kg ∈ N and a polynomial p

such that for all n ∈ N there is a circuit Cn
g such that for all x ∈ Σn holds Cn

g (x) = g(x)

and size(Cn
g ) ≤ p(n) and depth(Cn

g ) ≤ kg(log n)i. Due to the size of Cn
g for all x ∈ Σ∗

holds |g(x)| ≤ p(n). Since f ∈ FNCi there exists a polynomial q and a kf ∈ N such that

for all n ∈ N there is a circuit C
p(n)
f such that for all x ∈ Σp(n) holds f(x) = C

p(n)
f (x),

size(C
p(n)
f ) ≤ q(p(n)) and depth(C

p(n)
f ) ≤ kf (log p(n))i ≤ae c(log n)i for a suitable constant
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c ∈ N. So if we build a new circuit by sequentializing Cn
g and C

p(n)
f , i.e., we build a new

circuit by connecting the outputs of Cn
f with the inputs of Cn

g , we get a circuit of polynomial

size and depth O((log n)i) that calculates g ◦ f . It is easy to see, that if f and g can be

realized by UL-uniform families of circuits, so can be g ◦ f .

❑

5.2 An Example of a Hierarchy of Complexity Clones Below FP

We are especially interested in clones in L(FP) that are time-complexity classes. In the

following, we will see that there are countably many such complexity classes that are clones

below FP. We know, that FDTIME(nO(1)) = FP is a clone and it is easy to see, that

FDTIME(n(log n)O(1)) is a clone, too. Are there time-complexity classes, that are clones,

between these two classes? We define an in-between hierarchy of time-complexity classes

containing countably many different clones. First, we make the following observation about

time-complexity classes and them being closed under substitution.

Proposition 5.2. Let K ⊆ F 1(N) be a class of functions on N. Then FDTIME(K) is

closed under substitution if for all t1, t2 ∈ K there is a t3 ∈ K such that t2 + t1 ◦ t2 ≤ae t3.

Proof. Let f, g ∈ FDTIME(K) such that f can be computed deterministically in time t1
and g can be computed deterministically in time t2. Then for all x ∈ Σ∗ holds |g(x)| ≤

t2(|x|). Therefore f ◦g can be computed in time t2(|x|)+ t1(t2(|x|)) ≤ae t3(|x|) ∈ K. Hence

f ◦ g ∈ FDTIME(K). ❑

Definition 5.3. Let lg(x)
def
= log x if x > 0 and lg(0)

def
= 0. Let for i ≥ 1 and k ≥ 0,

ld(0, n)
def
= n,

ld(i, n)
def
= lg ld(i− 1, n),

tpk(a1, a2, . . . , ai)
def
= ka

ka ...kai
2

1 ,

ltki (n)
def
= tpk(ld(1, n), ld(2, n), . . . , ld(i, n), 1), and

ltnki (n)
def
= n · ltki (n).

Here, ld stands for nested logarithmus dualis, tp stands for tower of powers, lt stands

for logarithmic tower, and ltn stands for logarithmic tower multiplied with n. Note that

the order of the exponentiations in tpk(a1, . . . , ai) is from upper to lower, i.e., first you

compute aai
i−1, which is the exponent for ai−2 and so on. In particular,

tpk(a1, a2, . . . , ai) 6= k((aka21 ) ...)kai .

We write tp for tp1. Note, that we can replace all occurrences of lg in the definition of

ltki (n), by log, if n ≥ tp(2, . . . , 2︸ ︷︷ ︸
i

). We used n in the above definitions instead of the usual
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x or y, since we want to emphasise that these functions are meant to be upper bounds for

computing-times and the normal variable we use for input-lengths is n.

We are interested in the classes FDTIME(ltn
O(1)
i (n)) for all i ≥ 1. In the next two lemmas

and the following corollary, we show that all these classes are closed under substitution

and are therefore clones.

Lemma 5.4. For all ε > 0, and all c, i ≥ 1 holds

ltci(x) ≤ae x
ε.

Proof. If x ≥ 1 then

ltc1(x) = tpc(ld(1, x), 1)

= c · ld(1, x)c·1

= c(log x)c

= c2c log log x

≤ae 2ε log x

= xε

for all c ≥ 1 and ε > 0. Now assume that for all j ≤ i, for all δ > 0, and for all c ≥ 1 holds

ltcj(x) ≤ae x
δ. Then for all ε > 0, all c ≥ 1 and all x ≥ tp(2, . . . , 2︸ ︷︷ ︸

i

) we have

ltci+1(x) = tpc(lg x, ld(2, x), . . . , ld(i+ 1, x), 1)

= tpc(y, ld(2, 2y), . . . , ld(i+ 1, 2y), 1) , where y = log x

= c · tp(y, ltci (y))

≤ae c · tp(y, yδ) , for a δ <
1

2

= c · tp(log x, (log x)δ)

= c · 2log log x·(log x)δ

≤ae 2(log x)2δ

≤ae 2ε log x

= xε

❑

Lemma 5.5. For all i ≥ 1, k ≥ 0, holds ltnki ◦ ltnki ≤ae ltnci for a constant c ≥ 0.

Proof. First, using Lemma 5.4, observe that for all n > 0 and m ≥ 1 and holds

ld(m, ltnki (n)) = ld(m,n · ltki (n)) ≤ae ld(m,n2) ≤ae 2ld(m,n)

Using this, we obtain:
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ltnki (ltn
k
i (n)) = ltnki (n) · ltki (ltn

k
i (n))

= ltnki (n) · tpk(lg(n · ltki (n)), ld(2, ltnki (n)), . . . , ld(i, ltnki (n)), 1)

≤ae ltnki (n) · tpk(2 lg n, 2ld(2, n), . . . , 2ld(i, n), 1)

≤ae n · ltki (n) · tpk((lg n)2, (ld(2, n))2, . . . , (ld(i, n))2, 1)

≤ n · k · lt2ki (n) · lt2ki (n)

≤ ltn4k
i (n)

❑

With Proposition 5.2 and Lemma 5.5 we can conclude:

Corollary 5.6. FDTIME(ltn
O(1)
i (n)) is a clone for all i ≥ 1.

Next, we show that this hierarchy is strict. For f, g ∈ F 1(N), let f ≺io g if and only if

lim inf
n→∞

f(n) + 1

g(n) + 1
<∞.

We need this definition in the following hierarchy theorem:

Theorem 5.7 ([HS66]). Let f, g ∈ F 1(N) such that id ≤ae g, f ≺io g, f ≤ae g · log g,

and let g be time-constructible in time g log g. Then FDTIME(f) ( FDTIME(g log g).

A function g is time-constructible in time t, if and only if there is a deterministic

Turing machine that outputs 1g(n) on an input of length n in at most t(n) steps. Let us

now verify, that the functions that define the levels of our hierarchy meet the preconditions

of the hierarchy theorem.

Lemma 5.8. Let 1 ≤ i < j and k ≥ 1. Then the following holds:

1. id ≤ae ltnki .

2. ltnki ≺io ltnkj .

3. ltnki ≤ae ltnkj .

4. ltnki is time-constructible in time ltnki · log ltnki .

Proof. The first point is obvious. The second point holds true since we even have

lim
n→∞

ltnki (n) + 1

ltnkj (n) + 1
= 0.

The third point is immediate from the definition of ltnki . This leaves the fourth point to

prove.

We construct a machine, that works as follows on an input x of length n. First, the

machine computes ld(`, n) for all 1 ≤ ` ≤ i+ 1. This can be done in time O(n log n). The

function exp(x, y)
def
= xy can be computed in time O(|x|O(|y|)) and
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| exp(x, y)| < |(2|x|)2
|y|
|

= |2|x|2
|y|
|

= |x|2|y| + 1

= 2log |x|+|y| + 1

≤ae 2|y|·log |x|

= |x||y|.

Therefore, ltki (n) = tpk(ld(1, n), ld(2, n), . . . , ld(i, n), 1) can be computed in time

i∑

j=1

tpc(ld(j + 1, n), ld(j + 2, n), . . . , ld(i+ 1, n), 1) ≤

n · tpc(ld(2, n), ld(3, n), . . . , ld(i+ 1, n), 1) ≤ae ltnki (n)

for some constant c. Finally, we have to output ltnki (n) symbols. To do that, we need

` ·n · (log n+ ltki (n)) steps, where ` is some constant (First, we write ltki (n) symbols on an

extra tape, then we copy this string n times to the output tape). Hence, we need no more

than

O(n log n) + ltnki (n) + `n(log n+ ltki (n)) = O(n log n) + ltnki (n) + `(n log n+ ltnki )

= O(ltnki (n))

≤ae ltnki (n) · log ltnki (n)

steps to write a string of ltnki (n) symbols to the output tape. ❑

So we can apply the hierarchy theorem, and therefore this hierarchy of time-complexity

clones is strict. We summarize our results as follows.

Theorem 5.9. 1. For all i ≥ 1 the class FDTIME(ltn
O(1)
i ) is a clone.

2. If 1 ≤ i < j then FDTIME(ltn
O(1)
i ) ( FDTIME(ltn

O(1)
j )

3. For all i holds FDTIME(ltn
O(1)
i ) ( FP.

4. LT
def
=

⋃
i≥1 FDTIME(ltn

O(1)
i ) ( FP is a clone.

5.3 Finite Bases

In this section, we show that FL, FP, and FPSPACE have finite bases.

Definition 5.10. Let A be a set of functions.

– A pair of functions (f, h) ∈ A2 where f is binary and h is unary is called a universal

pair of functions for A if for all unary g ∈ A, there are i, k ∈ N such that for all x ∈ N

holds g(x) = f(i, hk(x)).
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– A is closed under pairing if and only if there is a binary function pair ∈ A such that for

all n ≥ 2 and all n-ary functions g ∈ A there is a unary f ∈ A such that

g(x1, . . . , xn) = f(pair(x1,pair(x2, . . . pair(xn−1, xn))))

for all x1, . . . , xn ∈ N. We write pairn(x1, . . . , xn) for pair(x1,pair(x2, . . . pair(xn−1, xn)))

and call pair a pairing function for A.

Lemma 5.11. If A is a clone that contains c0 and succ, that has a universal pair of

functions (univ, h), and is closed under pairing, then it has a finite base.

Proof. We show that B
def
= {c0,pair,univ, succ, h} is a base of A, where pair is a pairing

function for A and (univ, h) is a universal pair of functions of A. Obviously, [B] ⊆ A, since

all functions from B are in A, and A is a clone.

Now let g ∈ A be an arbitrary n-ary function. Since A is closed under pairing, there

is a function g′ such that g(x1, . . . , xn) = g′(pairn(x1, . . . , xn)) for all x1, . . . , xn ∈ N.

Since (univ, h) is a universal pair of functions for A, there are i, k ∈ N such that

g′(x) = univ(i, hk(x)) for all x ∈ N. For all n ∈ N is cn ∈ [B], since cn(x) =

succ(. . . succ(︸ ︷︷ ︸
n

c0(x)) . . . ). Hence g(x1, . . . , xn) = univ(ci(x1), h
k(pairn(x1, . . . , xn))) for all

x1, . . . , xn ∈ N, and therefore g ∈ [B]. ❑

Corollary 5.12. The classes FP, FPSPACE, and FL have finite bases.

Proof. Obviously, all three classes contain c0 and succ and are closed under pairing. We

show that FP has a universal pair of functions. For that, let M0,M1, . . . be an enumeration

of Turing machines such that Mi can be computed in time O(|i|2) on input i and every

step of Mi can be computed in time O(|i|2). Let

pad(x)
def
= 1|x|

2−|x|−10x

univ(i, x)
def
=

{
Mi on input x , if Mi halts after |i||x|2 + |i| steps

pad(x) otherwise.

Then pad(x) can be computed in time O(|x|2) and univ can be computed in time O(|i|3|x|2)

and hence univ and pad are in FP. Let g be a unary function from FP. Then there is an

i such that Mi computes g in time O(nk) for some constant k ∈ N. Let

f(x)
def
=

{
g(x′) , if x = paddlog ke(x′)

0 otherwise.

We can compute f in time O(|x|2) and therefore there is a j such that Mj computes f and

halts always after less than |j||x|2+|j| steps on all inputs x. Therefore f(x) = univ(cj(x), x)

and g(x) = univ(cj(x),paddlog ke(x)).

We can use analogous proofs to show that FPSPACE and FL have a universal pair of

functions. ❑
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Together with Proposition 2.1 this leads us to the following corollary.

Corollary 5.13. The lattices L(FP), L(FPSPACE), and L(FL) are dual-atomic.

We remark, that FNC is not likely to have a finite base unless the NC-hierarchy collapses,

due to Proposition 2.1.

Proposition 5.14. If FNC has a universal pair of functions then the NC-hierarchy col-

lapses.

So, since L(FP) is dual-atomic, it would be nice to know the dual-atoms of this lattice. In

the next section, we search for these.

5.4 Dual-atoms for L(FP)

We first show, that there are uncountably many dual-atoms for all complexity clones that

contain all constant functions and can do something like a case-distinction. For this, we

make use of the fact that for every set A ⊆ N, the set Pol(A) is a clone (see Proposition 3.3).

Furthermore, we know that for two clones A and B, the intersection A∩B is a clone, too.

Proposition 5.15. Let ∅ 6= A ( N. For k ∈ N, let fk : N3 → N be such that

fk(x, y, z)
def
=

{
y , if x = k

z otherwise.

If K is a clone of functions that contains all constant functions on N and fk for all k ∈ N,

then B
def
= K ∩ Pol(A) is a predecessor of K in the lattice L(K), i.e., B ≺ K.

Proof. For every a ∈ A, the constant functions ca with ca(x) = a for all x ∈ N is contained

in both, K and Pol(A). Therefore the clone B is not empty. Since A 6= ∅, there a constant

function cb ∈ K such that cb 6∼ A, hence B ( K.

Let f ∈ K − B be an n-ary function. Then there are a1, . . . , an ∈ A such that z
def
=

f(a1, . . . , an) 6∈ A. Obviously, cai
∈ Pol(A) for 1 ≤ i ≤ n. Let g ∈ K be an m-ary function

and a ∈ A. We define

sz(x1, . . . , xm, y)
def
=

{
g(x1, . . . , xm) , if y = z

a otherwise

Observe, that sz ∈ K ∩ Pol(A). Furthermore,

g(x1, . . . , xm) = sz(x1, . . . , xm, f(ca1(x1), . . . , can(x1))).

Hence, g ∈ [B ∪ {f}]. ❑
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Corollary 5.16. If K is a clone that meets the prerequisites of Proposition 5.15, then

L(K) has uncountably many dual-atoms.

Proof. We have to show that if A,B ( N and A 6= B, then K∩Pol(A) 6= K∩Pol(B). This

is the case, since K contains all constant functions: Without loss of generality, there is an

a ∈ A with a /∈ B. Then ca ∈ K ∩ Pol(A) but ca /∈ K ∩ Pol(B). ❑

This shows that classes like FP do have uncountably many dual-atoms and that these

classes can not be defined as the set of functions preserving a subset of N. We can generalize

this statement.

Proposition 5.17. Let K ∈ {FL,FP,FPSPACE,FNC} ∪
⋃
i≥1 FNCi. Then K 6= Pol(A)

for every A ⊆ Nn where n ≥ 1.

Proof. Since Pol(Nn) = Pol(∅) is the set of all functions on N for all n ≥ 1, K can be none

of them. Let therefore A ( Nn and non-empty, and suppose K = Pol(A).

Then there is a β ∈ Nn − A. We can assume that for all i, j ∈ {1, . . . , n} there is an

α ∈ A such that α[i] 6= α[j]: If there are i, j such that for all α ∈ A holds α[i] = α[j]

then K = Pol(A′) where A′ is derived from A by projecting out the i-th coordinate. Let

α1, . . . , αn ∈ A such that α1[1] 6= α1[2], α2[2] 6= α2[3], . . . , αn[n] 6= αn[1]. Then for all

i, j ∈ {1, . . . , n} we have (α1[i], . . . , αn[i]) 6= (α1[j], . . . , αn[j]) if i 6= j.

Let

f(x1, . . . , xn)
def
=

{
β[i] , if (x1, . . . , xn) = (α1[i], . . . , αn[i])

0 otherwise.

Obviously, f ∈ K and f 6∼ A since f(α1, . . . , αn) = β. ❑

Corollary 5.18. Let K ∈ {FL,FP,FPSPACE,FNC} ∪
⋃
i>1 FNCi. If Γ ⊆ R(N) is finite,

then K 6= Pol(Γ).

Proof. Let Γ = {R1, . . . , Rn}. If K = Pol(Γ) then K = Pol(R1 × · · · × Rn) which is a

contradiction to Proposition 5.17. ❑

We have found a lot of dual-atoms for FP. However, it is not difficult to see, that these

dual-atoms have essentially the same computational power as FP: Let A ( N be non-

empty, and let a /∈ A. Then for every n-ary function f ∈ FP there is an (n + 1)-ary

function g ∈ Pol(A)∩FP such that f(x1, . . . , xn) = g(x1, . . . , xn, a) for all x1, . . . , xn ∈ N.

We want to find dual-atoms for FP that are not only syntactically weaker than FP. We

will examine two approaches to accomplish this: For one, it is known that every function

from FP can be computed by uniform families of B-circuits with polynomial size where

B is a complete set of Boolean functions. What is the power of such circuits if B is not

complete? In the second approach, we will have a look at deterministic Turing machines

that have a running-time that is not quite polynomial but slightly less.
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5.4.1 Dual-Atoms of FP and Polynomial-Sized Circuits

Let K1 and K2 be sets of functions on N. Let

FCPSB
def
= FSIZE-DEPTHB(O(nO(1)), O(nO(1)))

be the class of functions computable by circuits of polynomial size with gates from B.

For every set of Boolean functions B, for which [B] = BF, we have FP = FCPSB , (e.g.

B = {And,Or,Not}) [Lad75b]. Note that the actual base B we choose is not relevant.

Let f ∈ FCPSB be calculated by a family of circuits (Ci)i∈N over B. Every gate in the

circuits computes Boolean function from B, and since [B ′] = [B], each of these Boolean

functions can be computed by a B ′-circuit: Hence we find a family of circuits (C ′
i)i∈N over

B′ where we replace every gate in Ci by the corresponding circuit over B ′. The circuits in

the family (C ′
i)i∈N grow for a constant factor, at most, with respect to the circuits in the

family (Ci)i∈N.

In our search for candidates for dual-atoms for FP, our first observation is, that we can

rule out all classes FCPSB where [B] is not a dual-atom of L(BF).

Proposition 5.19. If [B] is not a dual-atom in L(BF) then FCPSB cannot be a dual-atom

in L(FP).

Proof. Let A ∈ {R0,R1,L,M,D} be a dual-atom in L(BF) with [B] ⊂ A, let A′ be a

base of A, and let f ∈ A− [B]. Of course, all Boolean functions are in FP and no circuit

over B (regardless of its size and depth) can compute f . Therefore, f ∈ FP − FCPSB . If

FCPSB were a dual-atom in L(FP) we would expect [FCPSB∪{f}] = FP. But since every

g ∈ FCPSB can be computed by a family of circuits over B, every g ′ ∈ [FCPSB ∪ {f}]

can be computed by a family of circuits over B ∪ {f} and therefore [FCPSB ∪ {f}] ⊆

FCPSA′ ⊂ FP. ❑

So, for FCPSB to be a dual-atom in L(FP) it is necessary that [B] is a dual-atom in L(BF).

However, this condition is not sufficient: For clones of Boolean functions [A] and [B] where

[A] ⊂ [B] = BF, suppose there exists a function f ∈ [A] that can be computed by relatively

small circuits over B, but all circuits over A computing f are huge in comparison. Then

[FCPSA∪{f}] could be a proper super-clone of FCPSA which would still not contain, e.g.,

the Boolean function Nand ∈ FP. We will see that this is the case with the monotonic

Boolean functions. First, we need to formalize the notion of huge and small circuits with

respect to different bases.

Definition 5.20. Let B1 and B2 be finite sets of Boolean functions. We say B2 is poly-

nomially unnecessary for B1 if there is a polynomial p such that for every B2-circuit C2

that describes a Boolean function f ∈ [B1] there is a B1-circuit C1 describing f with

size(C1) ≤ p(size(C2)). Otherwise, we call B2 polynomially necessary for B1.

Lemma 5.21. Let B1, B2 be sets of Boolean functions. If [B1] ∈ {L,D,R1,R0} then B2

is polynomially unnecessary for B1.
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Proof. If [B1] = L then every B1 circuit can be described by a circuit of linear size in the

number of variables.

If [B1] = D, let sd(x, y, z)
def
= xy ∧ xz ∧ yz, which is a base for D. Observe, that

sd(1, x, y) = Nand(x, y). Remember, that the Nand-function is complete for BF. Now let

f be an n-ary Boolean function from D. Let f ′(x2, . . . , xn)
def
= f(1, x2, . . . , xn). Since

f ′(x2, . . . , xn) = f(Nand(xn,Nand(xn, xn)), x2, . . . , xn)

there is a {Nand}-circuit C ′ computing f ′ which has two more gates than a {Nand}-

circuit computing f . We build an {sd}-circuit C from C ′ by replacing every Nand-gate g

as follows: If y and z are the inputs of g, replace it by an sd-gate with inputs x1, y, and

z. Here, x1 is an additional input gate and we connect every g with this gate. Let fC be

the function computed by C. Then fC(1, x2, . . . , xn) = f ′(x2, . . . , xn) = f(1, x2, . . . , xn).

On the other hand, since fC is self-dual, we have fC(0, x2, . . . , xn) = fC(1, x2, . . . , xn) =

f ′(x2, . . . , xn) = f(1, x2, . . . , xn) = f(0, x2, . . . , xn). Hence fC = f .

Let B1 = R0. Obviously {∨,∧,⊕} ⊆ R0. Let f ∈ R0 be described by a circuit C over

{∧,¬} with inputs x1, . . . , xn. We build a new circuit C ′ by replacing every occurrence

of a ¬-gate in C with an ⊕-gate with the following inputs: The first input is the input

of the original ¬-gate and the second one is
∨n
i=1 xi. Since C ′ describes an R0 function,

fC′(0, . . . , 0) = f(0, . . . , 0) = 0. For every other input, the new ⊕-gates behave like ¬-gates

on their first input, since their second input evaluates to 1. The proof for B1 = R1 is due

to the duality of R1 and R0 and can be done by switching 1 and 0, ∧ and ∨, and ⊕ and

↔. ❑

In the following proofs, we need two special functions.

– For k ∈ N, x = x1 · · · xn ∈ {0, 1}n, and i = min{k, n}, let idk(x)
def
= xi.

– For x, y ∈ {0, 1}∗, let conc(x, y)
def
= xy be the function that concatenates x and y.

Note that for all sets of Boolean functions B, and all k > 0, idk and conc are in FCPSB .

Theorem 5.22. Let B ⊆ BF. If [B] = D then FCPSB is a dual-atom of FP.

Proof. Let [B] = D. Obviously FCPSB ⊂ FP. We have to show its precompleteness.

For that, let f ∈ FP − FCPSB. Then there is a uniform family of circuits (C f
n)n∈N over

{∨,∧,¬} that computes f . Since f ∈ FCPSB all Cf
k have polynomial size with respect

to k. Therefore, there is a polynomial p such that for i ∈ {1, . . . , p(k)} Boolean functions

fki are computed at the i-th output gate of circuit C f
k . Since {∨,∧,¬} is polynomially

unnecessary for {sd}, cf. Lemma 5.21, and since f /∈ FCPSB, there must be a k ∈ N and

an ` ∈ {1, . . . , p(k)} such that f k` /∈ [sd]. That means, that there are a1, . . . , ak ∈ {0, 1}

such that fk` (a1, . . . , ak) = fk` (a1, . . . , ak). For a ∈ {0, 1}, let a1 def
= a and a0 def

= 1 − a.

Observe, that the function h(x1 . . . xn)
def
= xa11 · · · xak

1 ∈ {0, 1}k is in FCPSB , since N ⊂ D.

In fact, h can be calculated by a family of small circuits over any base that can express

negation. Then for all x ∈ N holds |h(x)| = k and f k` (h(x)) = c for some c ∈ {0, 1}.
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Therefore there is a c ∈ {0, 1} such that the constant function c(x) = c = id`(f(h(x))) is

in [FCPSB ∪ {f}].

Assume that c = 1. Now let g ∈ FP be computed by a uniform family of circuits

(Dg
n)n∈N over {Nand} such that each circuit has polynomial size with respect to n. Regard

the family of circuits (En)n∈N where E1 computes c and En+1 is derived from Dg
n by

adding an additional input gate x0 and replacing every Nand-gate that has inputs x and

y by an sd-gate with inputs x0, x, and y. Obviously, (En)n∈N is uniform. Then for the

function g′ that is computed by (En)n∈N and all x ∈ {0, 1}+ holds g′(1x) = g(x). Hence

g(x) = g′(conc(c(x), x)) is in [FCPSB ∪ {f}].

If c = 0 the proof is analogous with a family of circuits over {Nor}. ❑

Theorem 5.23. Let B ⊆ BF. If [B] ∈ {R0,R1} then FCPSB is a precomplete sub-clone

of FP.

Proof. We prove the claim for [B] = R0. Obviously FCPSB ⊂ FP. We have to show

its precompleteness. For that, let f ∈ FP − FCPSB . Then there is a uniform family of

circuits (Cf
n)n∈N over {∨,∧,¬} that computes f . Also, there is a polynomial p, such that

for i ∈ {1, . . . , p(k)} Boolean functions f ki are computed by the i-th output gate of circuit

Cfk . Since {∨,∧,¬} is polynomially unnecessary for {∨,∧,⊕}, cf. Lemma 5.21, there must

be a k ∈ N and an ` ∈ {1, . . . , p(k)} such that f k` /∈ [∨,∧,⊕] and f k` (0, . . . , 0) = 1. Since

the constant unary Boolean function c0 is in R0, the function ck0 that maps all words from

{0, 1}+ to 0k is in FCPSB. So the constant function c1 with c1(x) = 1, for all x ∈ N, is in

[FCPSB ∪ {f}], since c1(x) = id`(f(ck0(x))).

Now let g ∈ FP. Then there is a uniform family of circuits (Gn)n∈N over {∧,¬} that

computes g. Let g′ ∈ [FCPSB∪{f}] be computed by the uniform family of circuits (En)n∈N

that is derived from (Gn)n∈N as follows. Let E1 map the input constantly to 1. Construct

En+1 from Gn by introducing a new input gate x0 and replacing every ¬ gate with input

y by an ⊕ gate with inputs x0 and y. Obviously, this family of circuits is uniform, and for

all x ∈ {0, 1}+, g′(1x) = g(x). Therefore g(x) = g′(conc(c1(x), x)) is in [FCPSB ∪ {f}].

The proof for [B] = R1 is as above, but ∧ is switched with ∨, ⊕ is switched with ↔,

and 0 is switched with 1. ❑

Theorem 5.24. Let B ⊆ BF. If [B] = M, the clone FCPSB is not precomplete for FP.

Proof. Razborov [Raz85] proved a super-polynomial lower bound for the size of monotonic

circuits computing the perfect matching function. Since this function is in FP, it can be

computed by a family of circuits of polynomial size over {∧,∨,¬}. That means that there

is a function f in FP − FCPSB that can be expressed by a family of monotonic circuits.

Therefore [FCPSB ∪ {f}] contains just functions computable by monotonic circuits, but

not, for example, the function that flips just the first bit of the input, which is a non-

monotonic function that is clearly in FP. ❑

There remains just the one case were [B] = L. In this case FCPSB is no dual-atom in

L(FP), too: Per definition, every linear Boolean function can be described by a very short
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propositional formula, and therefore every f ∈ FCPSB can be described by circuits of very

small depth. Hence we can use Smolensky’s theorem [Smo87] to show that FCPSB is not

a dual-atom in L(FP). We need a few definitions for that.

Definition 5.25. Let y ∈ N be such that bin(y) = a1 · · · am ∈ {0, 1}m, n > 0 and

x1, . . . , xn ∈ {0, 1}. Let p ∈ N. We define

– modnp(x1, . . . , xn)
def
= 1 if and only if Σn

i=1xi ≡ 0(mod p)

– modp(y)
def
= modmp (a1, . . . , am).

– ∨n(x1, . . . , xn)
def
= 1 if and only if Σn

i=1xi > 0

– ∧n(x1, . . . , xn)
def
= 1 if and only if Σn

i=1xi = n

– MODp
def
= {¬} ∪

⋃
n∈N{modnp ,∨

n,∧n}

Theorem 5.26 (Smolensky). Let p be prime and r > 1 be relatively prime to p. Then

modr /∈ FSIZE-DEPTHMODp(O(nO(1)), O(1)).

Corollary 5.27. Let B ⊆ BF. If [B] = L then FCPSB is not precomplete for FP.

Proof. Since every function from L can be computed by a circuit of the form c0
⊕n

i=1 cixi,

every function in FCPSB can be computed by a circuit of linear size over MOD2. However,

there are functions in FSIZE-DEPTHMOD2(O(1), O(1)) that are not in FCPS(B) as, for

example, the Boolean function Or. Because of Theorem 5.26, and since modr ∈ FP for all

r ∈ N, we obtain

FCPSB ( FSIZE-DEPTHMOD2(O(1), O(1))

⊆ FSIZE-DEPTHMOD2(n
O(1), O(1)) ( FP.

We can show that FSIZE-DEPTHMOD2(O(1), O(1)) is a clone with a similar argumentation

as in Theorem 5.1, where we prove that FNCi is a clone for all i ≥ 1. Therefore there is a

clone between FCPS and FP, which means that FCPS is not precomplete for FP. ❑

Let us summarize the results of this subsection.

Corollary 5.28. Let B be a set of Boolean functions. Then FCPSB is a dual-atom in

L(FP) if and only if [B] ∈ {R0,R1,D}.

By restricting the power of the gates of polynomial-sized circuits, we found three dual-

atoms in L(FP). These classes are weaker than FP itself, however, they are still very

near to the full power of FP: So, for every function f from FP there is a function f ′ ∈

FCPS{And,Xor} such that f ′(x) = f(x) for all x 6= 0 ([And,Xor] = R0). We can bypass

this insufficiency by choosing a different encoding for the natural numbers where each

number is mapped to a binary string that contains at least one occurrence of 1. Also,

for every f ∈ FP there is an f ′ ∈ FCPS{xy∨xz∨yz} such that for all x ∈ {0, 1}∗ holds

f(x) = f ′(1x) ([xy ∨ xz ∨ yz] = D). Again a minimal re-encoding of the natural numbers

fixes the insufficiency of the class.
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5.4.2 Time-Complexity Classes as Dual-Atoms of FP

We want to find dual-atoms of FP that are not only syntactically weaker than FP. FP is

the class of functions that can be computed by a Turing machine in polynomial time, but

can we find a more restrictive time bound for Turing machines, such that the functions

computed by these machines form a dual-atom of FP? We will see in this subsection that

this is not the case.

In particular, we show that there is no K such that [FDTIME(K)] is precomplete for

FP. The technique we use is similar to the one used to show that there exist infinitely

many Turing degrees between P and NP if P 6= NP [Lad75a, Sch82]. We define classes

of functions that on large areas of N produce very short, sub-polynomial, outputs and on

other areas produce outputs of polynomial size. We find such classes that are in fact clones

and show that every [FDTIME(K)] is either contained in one of these or already contains

FP.

For a set B ⊆ F1(N) of unary functions, let

[B]+fict
def
= {f : there are n ≥ 1, i ∈ {1, . . . , n}, and f ′ ∈ B such that

f ∈ F (N) and f(x1, . . . , xn) = f ′(xi) for all x1, . . . , xn ∈ N }.

That means that [B]+fict contains all functions f that have at most one non-fictive variable

and on this variable f behaves like a function from B. Clearly, B ⊂ [B]+fict and if B is

closed under substitution, [B]+fict is closed under superposition. We use this construction

in order to not have to deal with all the operations of superposition.

We define the function pl(x, y)
def
= 2(log x)y

; pl stands for power of length.

Proposition 5.29. For all x, y > 0 holds pl(pl(x, y), z) = pl(x, yz).

Proof. Observe the following equation:

pl(pl(x, y), z) = pl(2(log x)y

, z)

= 2(log 2(log x)y )z

= 2((log x)y)z

= 2(log x)yz

= pl(x, yz)

❑

In particular, this means that pl(pl(x, y), 1
y ) = x.

Definition 5.30. For a function g : N → N, k ∈ N, and ` ≥ k, let

lgbgk(`)
def
= pl(g(`), 1/2`−k+1)

rgbgk(`)
def
= tp(2, g(`), 2, ` − k + 1) − 1
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Fig. 5.1: A k-gap-defining function. For every ` ≥ k, there are several nested intervals (the gaps) around
g(`). The number of intervals depends on the size of ` − k. If k′ ≥ k, then g is a k′-gap-defining function.
The distance between the right border of an interval around g(`) and the left border of an interval around
g(` + 1) has to be at least 1.

Then g is a k-gap-defining function if for all ` ≥ k holds

rgbgk(`) + 1 < lgbgk(`+ 1).

Lemma 5.31. If g is a k-gap-defining function, then g is a k ′-gap-defining function for

all k′ ≥ k.

Proof. It suffices to show that g is a (k + 1)-gap-defining function. For this, let ` ≥ k + 1.

Then

rgbgk+1(`) + 1 < rgbgk(`) + 1 < lgbgk(`+ 1) < lgbgk+1(`+ 1),

and hence g is a k + 1-gap-defining function. ❑

The intervals [lgbgk(`), rgb
g
k(`)] are the gaps that give gap-defining functions their name.

These intervals are gaps in the computational power of the functions f , that we define in

Definition 5.32. If an input x is in such a gap, then the output of f has to be very short

whereas for every other input y, the length of f(y) is not limited.

Definition 5.32. We say a function f has (g, k)-gaps if g is a k-gap-defining function

and for all ε with 0 < ε < 1 and all ` ≥ k we have

x ∈ [lgbgk(`), rgb
g
k(`)] ⇒ |f(x)| ≤ |x|1+ε.

For a k-gap-defining function g, let

GAPPg
def
= [{f : f ∈ FP and there is a k′ ≥ k such that f has (g, k′)-gaps}]+fict

We give an example of a gap-defining function in the next lemma.

Lemma 5.33. The function g with g(0)
def
= 1 and

g(x)
def
= pl(2 · tp(2, g(x − 1), 2, x − 1), 2x),

for x > 0, is a 1-gap-defining function.
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Proof. For all ` ≥ 1 holds:

rgbg1(`) + 1 = tp(2, g(`), 2, `)

< 2 · tp(2, g(`), 2, `)

= pl(pl(2 · tp(2, g(`), 2, `), 2`+1), 1/2`+1)

= pl(g(` + 1), 1/2`+1)

= lgbg1(`+ 1)

❑

Lemma 5.34. Let g be a k-gap-defining function, where k ≥ 1

1. For all ` ≥ k and all 0 < ε < 1 holds |rgbgk(`)|
1+ε < |rgbgk−1(`)|.

2. If f has (g, k)-gaps, then it has (g, k ′)-gaps for all k′ ≥ k.

Proof. 1. Let ` ≥ k and ε ∈ (0, 1). Observe for a
def
= g(`) and b

def
= 1 + ε:

|rgbgk(`)|
b = |tp(2, a, 2, ` − k + 1) − 1|b

= tp(a, 2, ` − k + 1)b

= tp(a, b · 2`−k+1)

< tp(a, 2 · 2`−k+1)

= tp(a, 2, ` − k + 2)

= |rgbgk−1(`)|

2. This holds, since g is a k′-gap-defining function and rgbgk′(`) ≤ rgbgk(`) and lgbgk′(`) ≥

lgbgk(`), for all ` ≥ k′ .

❑

The next lemma shows that our classes of functions having gaps, are closed under substi-

tution. Figure 5.2 depictures the idea of the proof.

g(`)lgbg

k′
(`) rgbg

k′
(`)lgbg

k′−1
(`) rgbg

k′−1
(`)· · · · · ·lgbg

k+1(`) rgbg
k+1(`)

f2(x)

f1(f2(x))
f2(x) f1(f2(x))

Fig. 5.2: If g is a k-gap-defining function, f1, f2 ∈ FP have (g, k)-gaps, and k′ ≥ k is large enough, we have
the following situation for f1 ◦ f2 and x ∈ [lgbg

k′(`), rgb
g

k′(`)]: Either f2(x) is even smaller than lgbg
k+1(`).

Then f2(x) is more than polynomially smaller than x, which means that f1(f2(x)) ≤ x, since f1 ∈ FP.
The second case is that f2(x) falls into a gap of f1 and therefore f1(f2(x)) can grow just slightly.

Lemma 5.35. Let g be a k-gap-defining function. Then GAPPg is closed under substitu-

tion.
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Proof. Let f1 ∈ GAPPg have (g, k1)-gaps and let f2 ∈ GAPPg have (g, k2)-gaps. Without

loss of generality, we can assume that k1 = k2
def
= k, because of Lemma 5.34.2. Let f1 be

such that for all x holds |f1(x)| ≤ |x|c. Choose a k′ such that

k′ ≥ k + 1,

2k
′−k−1 ≥ c+ 1, and

log(lgbgk+1(k
′))c+1 ≥ (log(lgbgk+1(k

′)) + 2)c.

We show that f1 ◦ f2 has (g, k′)-gaps. For that, let ` ≥ k′ and let x ∈ [lgbgk′(`), rgb
g
k′(`)].

Case f2(x) < x:

If f2(x) ≥ lgbgk+1(`), then |f2(x)| ≤ |x|1+ε for all 0 < ε < 1, since f2 has (g, k + 1)-gaps.

Because of Lemma 5.34.1 we have

|f2(x)|
1+ε < |rgbgk′(`)|

1+ε < |rgbgk(`)|.

Since f1 has (g, k)-gaps,

|f1(f2(x))| ≤ |f2(x)|
1+ε ≤ (|x|1+ε)1+ε = |x|1+2ε+ε2 (5.1)

for all 0 < ε < 1.

Now let f2(x) < lgbgk+1(`) and hence |f2(x)|
c ≤ |lgbgk+1(`)|

c. Then

f1(f2(x)) < 2(|lgbg
k+1(`)|+1)c

= 2(blog(lgbg
k+1(`))c+2)c

≤ 2log(lgbg
k+1(`))

c+1

= pl(lgbgk+1(`), c + 1)

= pl(pl(g(`), 1/2`−k), c+ 1)

= pl(g(`), (c + 1)/2`−k)

≤ pl(g(`), 1/2`−k
′+1)

= lgbgk′(`)

≤ x

Case f2(x) ≥ x: Then, since f2 has (g, k′)-gaps, |f2(x)| ≤ |x|1+ε for all 0 < ε < 1.

Because of Lemma 5.34.1 we have f2(x) < lgbgk′−1(`) and since f1 has k′ − 1-gaps, we can

conclude as in Equation 5.1. ❑

Corollary 5.36. For all k-gap-defining functions g, the class GAPPg is a proper sub-clone

of FP.

Proof. Since GAPPg is closed under superposition and GAPPg ⊆ FP, it is a sub-clone of

FP. Since the function s(x)
def
= 1|x|

2
∈ FP has no (g, k)-gaps, for any gap-defining function

g, the inclusion is proper. ❑
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We have seen in Corollary 5.12 how to construct a finite base for FP. There are two main

ingredients in the proof of the corollary. One is a universal function. In our proof this

function had a quadratic running time, but this was in order to keep the proof simple and

rather arbitrary. We could have chosen n1+ε for every ε > 0 as upper bound, with aan

appropriate enumeration of Turing machines.

The second main ingredient is the padding function, which has the following important

property: For every input x of length n and every k ∈ N we can blow up x to a size of

nk with a constant number of applications of the padding function. Again, for the sake of

simplicity, we chose a quadratic function. However, it suffices to have a padding function,

that inflates every word of length n to a length of n1+ε for some ε > 0.

The remaining functions of the finite base for FP are a constant, the successor function

and a pairing function. All these functions are in FDTIME(O(n1+ε)) for all ε > 0. Hence

the following proposition.

Proposition 5.37. For every ε > 0 holds [FDTIME(O(n1+ε))] = FP.

Therefore, if there is a dual-atom in L(FP) of the form [FDTIME(K)] for some class of

functions K, then every function in K grows more slowly than n1+ε for every ε > 0. It is

obvious, that all these classes are contained in the class SUBP
def
=

⋂
ε>0 FDTIME(O(n1+ε)).

SUBP stands for subpolynomial time.

Lemma 5.38. SUBP is a sub-clone of FP and it is no dual-atom in the clone lattice below

FP.

Proof. Obviously, SUBP ⊆ FP. We show that it is a clone. For that let f1, f2 ∈ SUBP.

Then for all ε > 0, there are constants c, k1, k2 such that for all x, we can compute f1(f2(x))

in time less than k1(k2|x|
1+ε)1+ε = c|x|1+2ε+ε2 steps.

To show that SUBP is not a dual-atom, we show that SUBP ( GAPPg for a k-gap-

defining function g. Since obviously SUBP ⊆ GAPPg for all gap-functions g, we have to

show that the inclusion is proper.

Let g be the 1-gap-defining function from Lemma 5.33. Let s(x)
def
= tp(2, |x|2). Let

f(x)
def
=

{
s(x) , if x = rgbg1(y) + 1 for some y

0 otherwise.

Since there are infinitely many x such that |f(x)| > |x|2, the function f is not in SUBP. We

show that f ∈ GAPPg. Obviously, s ∈ FP. So, in order to show that f ∈ FP, we have to

observe the following: We can decide whether there is a y such that x = rgbg1(y)+1 for all

x ∈ N in polynomial time. We can do this by sequentially computing rgbg1(0), rgb
g
1(1), . . . ,

until we find a suitable y, or the result is growing larger than x. Since rgbg1 grows faster

than exponentially, we have to compute less than a linear number of such values.

Hence f ∈ FP and it remains to show, that there is a k such that f has (g, k)-gaps.

This is obvious from the definition of f , since f(x) = 0 for all x but those for which there

is a y with x = rgbg1(y) + 1. It is clear that these x are not in an interval [lgbg1(`), rgb
g
1(`)]

for all ` ≥ 1. So f has (g, 1)-gaps and therefore f ∈ GAPPg. ❑
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Theorem 5.39. For all classes K of functions, [FDTIME(K)] is not a dual-atom in the

lattice of clones below FP.

Proof. Suppose there is an ε > 0 such that for a function f ∈ K holds f(n) ≥ n1+ε for all

but finite n. Then FP ⊆ [FDTIME(K)] because of Proposition 5.37.

On the other hand, if for all ε > 0 and every f ∈ K we have f(n) < n1+ε, then

[FDTIME(K)] ⊆ SUBP ⊂ GAPPg ⊂ FP where g is the 1-gap-defining function from

Lemma 5.33. ❑

We remark that the GAPPg clones are not precomplete for FP themselves, since for a gap-

defining function g we can always construct a gap-defining function g ′ such that g′ shares

every second gap with g. Then g′ is still a gap-defining function, but a less restrictive one,

and therefore GAPPg ⊂ GAPPg′ ⊂ FP.

Although we talked about time-complexity classes FDTIME(K) and their closures in

this subsection, our main argumentation only used the fact, that the length of the output

of such functions is bounded in the length of their input. So, the same argumentation would

hold true for classes of functions where the computation time is bounded polynomially,

but the length of the output is bounded by a sub-polynomial function.

In summary, all dual-atoms that we found for L(FP) are very close to FP: We can

“simulate” every function from FP with a function from one of these dual-atoms if we

use a proper encoding of N. We have seen, that there is rich structure of clones between

every class [FDTIME(K)] and FP, if the former is a proper sub-clone of the latter. All this

hints, that the structure of clones below FP is very “fine-grained”. We saw that the width

of L(FP) is uncountable since there are uncountably many dual-atoms of FP. Since the

size of L(FP) is uncountable, most clones in this lattice have no finite base. The depth,

however, is countable, since the number of functions in FP is countable, but infinite, as

we saw in subsection 5.2.

In the next chapter, we examine clones with a fixed, small base that contains only one

binary function from FP. We will see, that a question concerning a closure property of

such a clone characterizes important complexity classes.
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Many important questions could be solved if we could decide for every set of functions B,

and every function f , whether or not f ∈ [B]. For example, if we let B be a (finite) base

of FL, and cA be the characteristic function of a P-complete problem A, then P = L if and

only if cA ∈ [B]. However, such problems are undecidable in general. Therefore we study

a more special version of this problem. For one, we want to examine the problem just for

B = {g}, where g is a binary function on N. Binary functions are of special interest, since

many interesting algebras like monoids and groups are based on this kind of operation.

Secondly, we just ask whether there is a function f in [B] such that

f(a1,1, . . . , a1,n) = z1

f(a2,1, . . . , a2,n) = z2
...

f(am,1, . . . , am,n) = zm

where ai,j , zi ∈ N for 1 ≤ i ≤ m and 1 ≤ j ≤ n. With other words, we define a function f

on a finite number of inputs (its carrier) and ask whether there is a function in [g] that

has the same input-output behavior as f on these carriers. This is much easier than asking

whether an arbitrary function f , perhaps specified by a program for a Turing-machine, is

in [g]: In this setting we would define f on every possible carrier rather than just finite

many ones.

If the number of carriers is 1, an alternative way of putting this problem, is to ask

whether z can be generated from a1, . . . , an by repeated application of g. If m > 1, it is

the question, whether all zi can be generated from ai,1, . . . , ai,n where in the generation

process we apply g in the same way for all i. This generation problem is a generalization

of the following ones:

– Does b belong to the closure of {a1, . . . , an} under pairwise addition? This is equivalent

to a modification of the sum-of-subset problem where factors other than 0 and 1 are

allowed. It can be shown that this is NP-complete [vEB79].

– Does the empty clause belong to the closure of the clauses {φ1, . . . , φn} under the rule

of the resolution proof system. This problem is coNP-complete.

– Does a given element of a monoid belong to the sub-monoid that is generated by a given

set?
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The complexity of special generation problems has been investigated earlier, especially for

groups. Generation problems for matrix groups [Bab85, BS84], for finite groups, where the

group operation is given by a multiplication table [BKLM01], and for permutation groups

[BLS87, FHL84, Sim70] have been examined.

Let us make our generation problems precise. Let g be a computable binary operation

on Σ∗, i.e., g : Σ∗ × Σ∗ → Σ∗. For fixed g we define the generation problem.

Problem: Generation problem for a set of carriers, GEN(g)

Input: m,a1,1, . . . , a1,n, . . . , am,1, . . . , am,n, z1, . . . , zm ∈ Σ∗.

Question: Is there an f ∈ [g] such that f(ai,1, . . . , ai,n) = zi for all 1 ≤ i ≤ m?

An easier version of the generation problem is the following where we define only one

carrier of the function:

Problem: Generation problem for a single carrier, GENs(g)

Input: a1, . . . , an, z ∈ Σ∗.

Question: Is there an f ∈ [g] such that f(a1, . . . , an) = z? In other words: Can

z be generated out of a1, . . . , an by repeated application of g? This is

equivalent to asking whether z ∈ [a1, . . . , an]g.

For convenience we write operations like addition in infix form. Obviously, GENs(g) ≤
log
m

GEN(g) for all binary functions g.

The process of generating elements by iterated application of a binary operation can

be visualized by a generation tree. For example, z ∈ [a1, . . . , an]g if and only if there is a

binary tree of the following form: All leaves of the tree are labeled with ai where 1 ≤ i ≤ n.

All inner nodes v of the tree are labeled with g(x1, x2), where x1 is the label of the left

successor of v and x2 is the label of the right successor of v. The root is labeled with z.

We introduce some notation we need in order to work with trees. For a binary tree T ,

let Leaf(T ) be the set of leaves, Root(T ) be the root and Node(T ) be the set of nodes of

T (including the leaves and the root). Let path(T )
def
= {w : w is a path of T} ⊆ {l, r}∗.

Every v ∈ path(T ) that does not lead to a leaf node is called initial path of T . In contrast,

every path in path(T ) that is not an initial path is a full path. Let ipath(T ) be the set of

initial paths of T and fpath(T ) be the set of full paths in T . For q ∈ path(T ), let l(q) and

r(q) be the number of left turns and right turns, respectively, in q. For a node x of T with

path v, let l(x)
def
= l(v) (respectively, r(x)

def
= r(v)).

Definition 6.1. Let B ⊆ Σ∗. If f is a binary operation, then a tuple (T, α) where T is

a binary tree and α : Node(T ) → Σ∗ is a function that labels the nodes of T is called

f -generation tree from B for z if the following holds:

– If v ∈ Leaf(T ) then α(v) ∈ B.

– If v /∈ Leaf(T ) and v has left successor v1 and right successor v2, then α(v) =

f(α(v1), α(v2)).

– α(Root(T )) = z.
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If α is clear from the context, we call α(v) the value of v or the label of v. So, T

determines the function from [f ] that is computed by the generation tree. The values of

all inner nodes, including the root, are determined by T and the labels of the leaves.

If f is binary function, the generation process of every function in [f ] can be separated

into two steps: One step, where the substitution structure, the generation tree, is defined.

In the second step no substitution occurs, but variables are permuted and identified.

Proposition 6.2. Let f be a binary function. The following statements are equivalent:

1. (m,a1,1, . . . , a1,n, . . . , am,1, . . . , am,n, z1, . . . , zm) ∈ GEN(f)

2. There is a binary tree T and labeling functions α1, . . . , αm such that

a) for all i ∈ {1, . . . m} is (T, αi) is an f -generation tree from {ai,1, . . . , ai,n} for zi,

and

b) for all v ∈ Leaf(T ) there is a k ∈ {1, . . . , n} such that for all i ∈ {1, . . . m} we have

αi(v) = ai,k.

Proof. Let (T, αi) be as in 2. Then we can build a function f ′ ∈ [f ] with arity |Leaf(T )|,

using the operators SUB and RF on f such that the structure of T is reproduced in the

substitution structure. Then the operators TF,RF, and LVF can be used to build an n-ary

function f ′′ that maps all m input tuples to the respective outputs. Due to 2b, exactly the

same sequence of these operators can be applied for all i.

The other direction can be shown by an easy induction over the superposition-

operators. ❑

6.1 Generation Problems for General Operations

Since we are mostly interested in complexity issues, we restrict ourselves to computable

operations. All of the corresponding generation problems are recursively enumerable and

we show that there are polynomial-time computable operations whose generation prob-

lems are undecidable. There remain undecidable problems even if we furtherly restrict the

operation’s resources like time and space. The reason is that even with restricted resources

it is possible to let a generation problem simulate grammatical derivation trees of arbitrary

formal languages. We achieve decidability when we demand the operation to be length-

monotonic. Hence we study the complexity of various restrictions of length-monotonic

operations.

Theorem 6.3. GEN(◦) is recursively enumerable for every computable operation ◦ : Σ∗×

Σ∗ → Σ∗.

Proof. Consider the following algorithm working on ◦-formulae, i.e., formulae built up

from words in Σ∗ using the operation ◦. Given a formula F that uses just the variables

x1, . . . , xn and the connector ◦, the algorithm evaluates F on inputs (a1,1, . . . , a1,n), . . . ,

(am,1, . . . , am,n) ∈ (Σ∗)n and outputs m,a1,1, . . . , a1,n, . . . , am,1, . . . , am,n, z1, . . . , zm where

zi is the value of F (ai,1, . . . , ai,n). Obviously, the algorithm just enumerates GEN(◦). ❑
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In the next theorem, we observe that polynomial-time computable operations are still too

difficult for a complexity-oriented examination of generation problems. For example, with

such an operation we can simulate single steps of arbitrary Turing machines.

Theorem 6.4. There is an associative, commutative, polynomial-time computable oper-

ation ◦ : Σ∗ × Σ∗ → Σ∗ such that GENs(◦) is m-complete for recursively enumerable

sets.

Proof. Let ϕ : Σ∗ → Σ∗ be a function that is recursive such that Dϕ
def
= {x : ϕ(x) is

defined} is the halting problem, and let M be a machine that computes ϕ. We define ◦ as

follows: For n,m1,m2 ≥ 0 let

0n+11m1 ◦ 0n+11m2 def
=

{
0n+11m1+m2 , if M on n still runs after m1 +m2 steps

1, otherwise,

and for all other x, y ∈ Σ∗ let x ◦ y
def
= 1.

Observe, that ◦ is commutative and ◦ ∈ FP. For associativity let x, y, z ∈ Σ∗. In case

that there are n,m1,m2,m3 ≥ 0 such that x = 0n+11m1 , y = 0n+11m2 , z = 0n+11m3 andM

on n does not stop within m1+m2+m3 we obtain x◦(y◦z) = (x◦y)◦z = 0n+11m1+m2+m3 .

In all other cases we obtain x ◦ (y ◦ z) = (x ◦ y) ◦ z = 1.

Now, ifM on n stops withinm steps, then [0n+111]◦ = {0n+111, 0n+112, . . . , 0n+11m−1, 1}.

If M on n does not stop, then [0n+111]◦ = {0n+111, 0n+112, . . . }. Hence,

n ∈ Dϕ ⇔M on n stops ⇔ 1 ∈ [0n+111]◦ ⇔ (0n+11, 1) ∈ GENs(◦).

❑

6.1.1 Length-Monotonic Polynomial-Time Operations

We have seen that in order to get decidable generation problems we have to restrict the

class of operations. Therefore, we demand that in the generation tree of some z, the lengths

of all intermediate results are bounded by |z|. This is equivalent to saying that we restrict

to operations ◦ that satisfy |x◦y| ≥ max(|x|, |y|). Call such operations length-monotonic. If

|x ◦ y| = max(|x|, |y|), then the operation is called minimal length-monotonic. Generation

trees of such operations can be exhaustively searched by an alternating polynomial-space

machine.

Theorem 6.5. GEN(◦) ∈ EXPTIME for every length-monotonic, polynomial-space com-

putable operation ◦ : Σ∗ × Σ∗ → Σ∗.

Proof. Let ◦ be a length-monotonic, polynomial-space computable operation. GEN(◦) can

be decided by the following alternating algorithm that uses at most polynomial space:

function GEN(m,x[1,1],. . .,x[1,n],x[m,1],. . .,x[m,n],z[1],. . .,z[m])

repeat
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if there is a j such that z[i]=x[i,j] for all 1 ≤ i ≤ m then accept;

if |z[i]| = 0 for an i ∈ {1, . . . ,m} then reject;

existentially choose z[i,1], z[i,2] such that

(z[i,1]◦z[i,2]) = z[i] for all 1 ≤ i ≤ m;

universally choose j from {1,2}

let z[i]=z[i,j] for all 1 ≤ i ≤ m

forever

Since ◦ is computable in polynomial space it is obvious that the above algorithm is an

alternating polynomial-space algorithm. Chandra, Kozen, and Stockmeyer [CKS81] proved

that these can be simulated in deterministic exponential time. ❑

This exponential-time upper bound for length-monotonic, polynomial-space computable

operations is tight, even for polynomial-time computable operations and for the genera-

tion problem with a single carrier. To see this we start with a technical lemma which

simplifies the argumentation. It shows that for certain sets A, we can translate operations

∗ : A × A → A to operations ◦ : Σ∗ × Σ∗ → Σ∗ such that the complexity of the genera-

tion problem with single carriers and other properties are preserved. This is done by an

appropriate encoding of elements from A.

Lemma 6.6. Let A1, . . . , Ak+l be finite sets, A
def
= A∗

1×· · ·×A∗
k×Ak+1×· · ·×Ak+l, and let

∗ : A×A→ A be a polynomial-time computable operation. Then there exists a polynomial-

time computable operation ◦ : Σ∗ × Σ∗ → Σ∗ such that:

1. GENs(∗) ≤
p
m GENs(◦).

2. If ∗ is commutative then ◦ is commutative.

3. If ∗ is associative then ◦ is associative.

4. If ∗ is minimal length-monotonic then ◦ is minimal length-monotonic.

Proof. Let m ≥ 2 be such that |Ai| ≤ 2m for i = 1, 2, . . . , k + l. Let hi : A∗
i → (Σm)∗

be a continuation of a block encoding with block length m for i = 1, 2, . . . , k + l. Let

d : Σ+ → Σ+ be a continuation of the homomorphism defined by d(0)
def
= 00 and d(1)

def
= 11

on all binary words. Let code : A→ Σ∗ be an encoding given by

code(x1, x2, . . . xk+l)
def
= d(h1(x1))01d(h2(x2))01 · · · 01d(hk+l(xk+l)).

Note that |code(u)| = 2m|u| + 2(k + l − 1) and that code is a log-space function. For

w1, w2 ∈ Σ∗, ◦ can be defined as

w1 ◦ w2
def
=

{
code(u1 ∗ u2) if w1 = code(u1) and w2 = code(u2)

0max(|w1|,|w2|) otherwise.

Certainly, since ∗ is computable in polynomial time, so is ◦. Obviously, if ∗ is commutative

then so is ◦, and if ∗ is associative then so is ◦. Now let ∗ be minimal length-monotonic.

If w1 = code(u1), w2 = code(u2), and u1 ∗ u2 = v then we conclude:
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|w1 ◦ w2| = |code(u1 ∗ u2)| = |code(v)| = 2m|v| + 2(k + l − 1)

= 2m·max(|u1|, |u2|) + 2(k + l − 1)

= max(2m|u1| + 2(k + l − 1), 2m|u2| + 2(k + l − 1))

= max(|code(u1)|, |code(u2)|) = max(|w1|, |w2|).

Otherwise, |w1 ◦ w2| = |0max(|w1|,|w2|)| = max(|w1|, |w2|). Hence, ◦ is minimal length-

monotonic.

Finally, by definition of ◦, v ∈ [u1, . . . , um]∗ if and only if code(v) ∈ [code(u1), . . . ,

code(um)]◦. This completes the proof. ❑

Theorem 6.7. There is a commutative, minimal length-monotonic, polynomial-time com-

putable operation ◦ : Σ∗ × Σ∗ → Σ∗ such that GENs(◦) is ≤p
m-complete for EXPTIME.

Proof. We follow an idea of Cook [Coo71] to simulate deterministic exponential-time com-

putations. Without loss of generality, a deterministic exponential-time one-tape Turing

machine M deciding a set A ⊆ Σ∗ can be normalized in such a way that on input

x = a1a2 · · · an it makes 2p(|x|) sweeps where p is a suitable polynomial. For 0 ≤ 2i < 2p(|x|),

the (2i + 1)-st sweep is a right move from tape cell 1 (with the first symbol of x) to tape

cell i+ 2 within i+ 1 steps, and the (2i + 2)-nd sweep is a left move from tape cell i+ 2

to tape cell 1 within i+ 1 steps. Each of the turning points belongs to two sweeps.

sweep 2i−1

sweep 2i

sweep 2i+1

sweep 2i+2

sweep 6

sweep 5

sweep 4

sweep 3

sweep 2

sweep 1

Turing tape
1 i i+2i+12 3 4

Furthermore, let M have the tape alphabet ∆, the set of states S, the initial state s0, and

the accepting state s1. In the case of acceptance the tape of M is empty. If M is in state

s and reads a, then the next state is σ(s, a), and the symbol printed is λ(s, a).

We say that the quintuple (x, i, j, s, a) is correct if during the i-th sweep on input x the

machine M prints the symbol a in tape cell j and leaves that cell with state s. One can

compute a correct (x, i, j, s, a) by knowing only two other correct quintuples, namely the

correct (x, i− 1, j, s′, a′) and the correct (x, i, k, s′′, a′′) where k ∈ {j − 1, j + 1}. The idea

of our operation is as follows: multiply (x, i − 1, j, s′, a′) with (x, i, k, s′′, a′′) and obtain
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(x, i, j, s, a). In an accepting computation of M on x (and only in this case) one generates

finally the correct (x, 2p(|x|), 2, s1,2).

To make this precise, let aj
def
= 2 for all j > n. Furthermore we assume that, in a

quintuple (x, i, j, s, a) where i, j ∈ {0, 1, . . . , 2p(|x|)}, the numbers i and j are given in

binary representation of length exactly p(|x|) + 1. Now define the operation ∗ as follows.

Right sweep, for 1 ≤ 2i < 2p(|x|) and j = 1, 2, . . . , i:

(x, 2i, j + 1, s, a) ∗ (x, 2i+ 1, j, s′, b)
def
= (x, 2i+ 1, j + 1, σ(s′, a), λ(s′, a))

Left sweep, for 1 ≤ 2i+ 1 < 2p(|x|) and j = 1, 2, . . . , i+ 1:

(x, 2i+ 1, j, s, a) ∗ (x, 2i + 2, j + 1, s′, b)
def
= (x, 2i + 2, j, σ(s′, a), λ(s′, a))

New tape cell right, for 1 ≤ 2i+ 1 < 2p(|x|):

(x, 2i+ 1, i + 1, s, a) ∗ (x, 0, 0, s0,2)
def
= (x, 2i + 1, i + 2, σ(s, ai+2), λ(s, ai+2))

Turning point left, for 1 ≤ 2i < 2p(|x|):

(x, 2i, 1, s, a) ∗ (x, 0, 0, s0,2)
def
= (x, 2i + 1, 1, s, a)

Turning point right, for 1 ≤ 2i+ 1 < 2p(|x|):

(x, 2i+ 1, i + 2, s, a) ∗ (x, 0, 0, s0,2)
def
= (x, 2i + 2, i + 2, s, a)

If u∗v is defined in this way then v ∗u is defined in the same way. For remaining products

not yet defined, we define

(x, u, v, s, a) ∗ (x′, u′, v′, s′, a′)
def
= (0max(|x|+|u|+|v|,|x′|+|u′|+|v′|), ε, ε, s0,2).

Obviously, ∗ is polynomial-time computable, minimal length-monotonic, and commuta-

tive. Starting with (x, 1, 1, σ(s0, a1), λ(s0, a1)) and (x, 0, 0, s0,2) exactly the correct quin-

tuples of the form (x, . . . ) together with (0|x|+2p(|x|)+2, ε, ε, s0,2) and (x, 0, 0, s0,2) can be

generated. Hence, M accepts x if and only if

((x, 1, 1, σ(s0, a1), λ(s0, a1)), (x, 0, 0, s0 ,2), (x, 2p(|x|), 2, s1,2)) ∈ GENs(∗),

consequently A ≤p
m GENs(∗). By Lemma 6.6, we obtain a polynomial-time computable,

minimal length-monotonic and commutative operation ◦ : Σ∗ × Σ∗ → Σ∗ such that A ≤p
m

GENs(◦). ❑

6.1.2 Finiteness of Generated Sets: An Excursion

Although this chapter is about the complexity of the generation problem, we want to

examine in this subsection an interesting question that is strongly related to the generation

problem. Namely, we examine, how difficult it is to determine whether or not the sets

generated by a function f from a basic set is finite. It turns out, that this problem is very

difficult. It is undecidable, even for length-monotonic functions. Let us first give a formal

definition of the finiteness problems for functions f ∈ F 2(N).

Problem: Finiteness Problem FIN(f)

Input: A finite B ⊂ N.

Question: Is [B]f finite?
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Theorem 6.8. For all computable f is FIN(f) recursively enumerable.

Proof. Obviously, the set {(A,B) : B ⊆ A = [A]f and A is finite} is decidable. So FIN(f)

is the projection of a decidable set and hence recursively enumerable. ❑

In Theorem 6.4, we show that there is an associative, commutative, polynomial-time com-

putable function f , such that GENs(f) is undecidable. In the proof, a 1 is generated if

and only if the generated set is finite. Hence, the result carries over to FIN(f).

Theorem 6.9. There is an associative, commutative, polynomial-time computable opera-

tion f : Σ∗ × Σ∗ → Σ∗ such that FIN(f) is m-complete for recursively enumerable sets.

However, for length-monotonic, polynomial-space computable functions f , we show in

Theorem 6.5 that GEN(f) is decidable in EXPTIME. This is not true for FIN(f); we even

find f ∈ FP such that FIN(f) is undecidable.

Theorem 6.10. There is a length-monotonic, associative, and commutative function f ∈

FP such that FIN(f) is m-complete for recursively enumerable sets.

Proof. Let a, b, c ∈ {0, 1}2 such that they differ pairwise, let ϕ be a recursive function

where Dϕ is the halting problem, and let M compute ϕ. In the case that M halts on some

input n, let tn be the number of steps M makes until it halts. Let Ln
def
= {anbk : k ∈ N}.

For all n ∈ N we define the functions fn : Ln × Ln → Ln as follows:

fn(a
nbm1 , anbm2)

def
=





anb2tn , if M halts on n and (m1 ≥ tn or m2 ≥ tn)

and m1,m2 ≤ 2tn
anbm1 , if M halts on n and m1 > 2tn and m2 ≤ 2tn
anbm2 , if M halts on n and m2 > 2tn and m1 ≤ 2tn
anbm1+m2 otherwise

Observe, that fn ∈ FP, that fn is length-monotonic and commutative for all n ∈ N. We

will now show that fn is associative for all n ∈ N: If M does not halt on n, then obviously

fn(fn(a
nbm1 , anbm2), anbm3) = anbm1+m2+m3 = fn(a

nbm1 , fn(a
nbm2 , anbm3)), so let there

be an tn such that M halts on input n after tn steps.

Case 1: m1,m2,m3 ≤ 2tn
Then either fn(fn(a

nbm1 , anbm2), anbm3) = anbm1+m2+m3 = fn(a
nbm1 , fn(a

nbm2 , anbm3))

or fn(fn(a
nbm1 , anbm2), anbm3) = anb2tn = fn(a

nbm1 , fn(a
nbm2 , anbm3)).

Case 2: m1 > 2tn, m2,m3 ≤ 2tn
Then fn(fn(a

nbm1 , anbm2), anbm3) = fn(a
nbm1 , anbm3) = anbm1 . On the other side

fn(a
nbm1 , anbm2+m3) = anbm1 = fn(a

nbm1 , anb2tn). Note that the choice of m1 to be

greater than 2tn is arbitrary, since fn is commutative.

Case 3: m1,m2 > 2tn, m3 ≤ 2tn
In this case fn(fn(a

nbm1 , anbm2), anbm3) = anbm1+m2 = fn(a
nbm1 , fn(a

nbm2 , anbm3)).

Case 4: m1,m2,m3 > 2tn
In this case fn(fn(a

nbm1 , anbm2), anbm3) = anbm1+m2+m3 = fn(a
nbm1 , fn(a

nbm2 , anbm3)).
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This finishes the proof of the associativity of fn. Note, that n ∈ Dϕ if and only if [anb]fn is

finite. In the rest of the proof, we will define a length-monotonic, associative, commutative

function f : Σ∗ × Σ∗ → Σ∗ that is a expansion of all fn.

For given k, n1, . . . nk,m1, . . . ,mk ∈ N, i ∈ {1, . . . , k}, let

g(ni)
def
=





ni , if there is no j ∈ {1, . . . , i− 1} with ni = nj

n′i , otherwise, where n′
i

def
= |{(j, o) : 1 ≤ j < o ≤ i ∧ nj = no}|

+max{n1, . . . , nk}

Observe, that g(ni) 6= g(nj) for all i, j ∈ {1, . . . , k} and let g′(an1bm1c . . . cankbmk)
def
=

ag(n1)bm1c . . . cag(nk)bmk . If there are no i, j ∈ {1, . . . , k} with ni = nj, let h(an1bm1c . . .

cankbmk)
def
= ani1 bmi1 c . . . canik bmik such that {ni1 , . . . , nik} = {n1, . . . , nk} and for all

r, s ∈ {1, . . . , k} holds r < s→ nir < nis . For w ∈ Σ∗, let

d(w)
def
=





w , if w = an1bm1c . . . cankbmk for some

k, n1, . . . , nk,m1, . . . ,mk ∈ N

a0b|w| otherwise

and clean(w)
def
= h(g′(d(w))). Observe, that clean(w) = an1bm1c . . . cankbmk such that

k, n1, . . . , nk,m1, . . . ,mk ∈ N and n1 < n2 < · · · < nk. Now, let v
def
= an1bm1c . . . cankbmk

and w
def
= ao1bp1c . . . caolbpl such that l, k, n1, . . . , nk,m1, . . . ,mk, o1, . . . , ol, p1, . . . , pl ∈ N

and n1 < n2 < · · · < nk and o1 < o2 < · · · < ol. Let {w1, . . . , wr} = {aoj bpj :

1 ≤ j ≤ l and there is no i ∈ {1, . . . , k} with ni = oj}. If r > 0, let f ′(v, w)
def
=

v1c . . . cvkcw1c . . . cwr, where

vi
def
=

{
fni

(anibmi , aoj bpj ) , if there is a j ∈ {1, . . . , l} with ni = oj
anibmi otherwise

and f ′(v, w)
def
= v1c . . . cvk, otherwise. Finally, for arbitrary v, w ∈ Σ∗, let f(v, w)

def
=

h(f ′(clean(v), clean(w))). Observe, that f ∈ FP and that it is length-monotonic, commu-

tative, and associative and that for all n ∈ N we have [{anb}]f = [{anb}]fn . ❑

6.1.3 Length-Monotonic Associative Polynomial-Time Operations

We have seen in Theorem 6.7 that, in general, commutativity does not lower the complexity

of the generation problem for length-monotonic, polynomial-time computable operations.

In this subsection we show that associativity does. If we want to generate a number z from a

basic set by repeated application of an associative operation ◦, we do not need to know the

exact structure of a ◦-generation tree for z: Associativity makes all generation trees with

the same sequence of leaves equivalent with respect to the generated element. As we have

seen in Proposition 6.2, this effect carries over to the functions in [◦], which means the the

sequence of substitutions we use to build a function from [◦] is not relevant. We show that



92 6. The Generation Problem

PSPACE is upper bound for all generation problems with associative, polynomial-space

computable operations and that there are even associative, polynomial-time computable

operations such that their generation problem is a lower bound for PSPACE.

Theorem 6.11. GEN(◦) ∈ PSPACE if ◦ : Σ∗×Σ∗ → Σ∗ is length-monotonic, associative,

and polynomial-space computable.

Proof. The following algorithm decides GEN(◦) in polynomial space:

function GEN(m,x[1,1],. . .,x[1,n],. . .,x[m,1],. . .,x[m,n],z[1],. . .,z[m]);

choose an i ∈ {1, . . . , n} nondeterministically;

y[j] := x[j, i] for all 1 ≤ j ≤ m;

while (y[j] 6= z[j] for a j ∈ {1, . . . ,m}) and

(|y[j]| ≤ |z[j]| for all j ∈ {1, . . . ,m}) do begin

choose an i ∈ {1, . . . , n} nondeterministically;

y[j] := y[j] ◦ x[j,i] for all 1 ≤ j ≤ m

end;

if (y[j] = z[j] for all 1 ≤ j ≤ m) then accept else reject

❑

The polynomial-space bound is tight even for a polynomial-time operation ◦ and the

generation problem for a single carrier.

Theorem 6.12. There is a minimal length-monotonic and associative polynomial-time

computable operation ◦ : Σ∗ × Σ∗ → Σ∗ such that GENs(◦) is ≤p
m-complete for PSPACE.

Proof. At the beginning we remark that much of the complexity of the following construc-

tion stems from the possible associativity of the operation. Let L ⊆ Σ∗ be a set that is

≤p
m-complete for PSPACE such that ε /∈ L. By Lemma 6.6, it suffices to prove existence

of a finite alphabet ∆ and a minimal length-monotonic and associative polynomial-time

computable operation ∗ : (Σ∗×∆∗) × (Σ∗×∆∗) → (Σ∗×∆∗) such that L ≤p
m GENs(∗).

Since L ∈ PSPACE, it follows [CF91] that there exists a polynomial-time computable

function f : Σ∗ × N → A5 and a polynomial p such that for all x ∈ Σ∗,

x ∈ L↔ f(x, 0) · f(x, 1) · · · · · f(x, 2p(|x|) − 2) = a0 (6.1)

where (A5, ·) is the group of even permutations on five elements with identity permutation

a0. For x ∈ Σ∗, let Kx
def
= p(|x|) and Mx

def
= 4Kx + 3 (x will always be clear from the

context).

We consider the set

{(x,binKx(i) abinKx(j)) : 0 ≤ i < j < 2Kx , a ∈ A5} ⊆ {x} × (ΣKx ·A5 ·Σ
Kx)

with a multiplication ∗ whose essential idea is given by the following equation:

(x,binKx(i) abinKx(j)) ∗ (x,binKx(j+1) bbinKx(m)) = (x,binKx(i) a·f(x, j)·bbinKx(m)).
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However, we need ∗ to be defined in a more general way; the exact definition follows. From

equation (6.1) we obtain

x ∈ L↔ (x, 0Kxa01
Kx) ∈ [(x,binKx(i)f(x, i)binKx(i+1)) : 0 ≤ i < 2Kx−1]∗.

Since {(x,binKx(i)f(x, i)binKx(i+1)) : i < 2Kx−1} has exponentially many elements (in

the length of x), this cannot be used as reduction function for L ≤p
m GENs(∗). So we have

to generate this set from a few basic pairs. For this we modify ∗ as follows. We use a new

separation symbol # and, to achieve minimal length-monotonicity, a new padding symbol 2.

For u ∈ {0, 1,#}∗, let px(u)
def
= u2Mx−|u| and for w ∈ {0, 1, 2,#}∗ , let w ∈ {0, 1,#}∗ be

the word w without symbols 2. Define the following sets of words:

– Ax
def
= {w ∈ Σ∗ : |w| ≤ Kx}

– Bx
def
= Ax#Ax

– Cx
def
= Ax#ΣKx#Ax

– Dx
def
= {u # binKx(i1) c1 binKx(i2) c2 · · · cs−1 binKx(is) # u′ :

s ≥ 2, u, u′ ∈ Ax, 0 ≤ i1 < · · · < is < 2Kx ,

c1, c2, . . . , cs−1 ∈ A5 ∪ {#}, and

(cj = # ⇒ ij + 1 = ij+1) for j = 1, . . . , s− 1}

– Gx
def
= Ax ∪Bx ∪ Cx ∪Dx

Let ∆
def
= {0, 1, 2,#} ∪ A5 and define gx : ({0, 1,#} ∪ A5)

∗ → ({0, 1,#} ∪ A5)
∗ as follows

1. gx(v)
def
= v if v ∈ Ax ∪Bx ∪ Cx.

2. If v = u#binKx(i1)c1binKx(i2)c2 . . . cs−1binKx(is)#u
′ ∈ Dx then

gx(v)
def
= u#binKx(i1)abinKx(is)#u

′,

where a
def
= b1 ·b2 ·. . .·bs−1 such that bj = cj if cj ∈ A5 and bj = f(x, ij) otherwise.

3. gx(v)
def
= ### in all other cases, i.e., if v /∈ Gx.

Finally, define ∗ on Σ∗ × ∆∗ by

(x, v) ∗ (y, w)
def
=





(ε, 2max{|x|+|v|,|y|+|w|}) , if x 6= y or x = ε or y = ε or one of

v, w is not in (Gx ∪ {###}) ∩ ∆Mx

(x,px(gx(vw))) , otherwise

Observe, that ∗ is minimal length-monotonic, which is basically ensured by the padding

function px(·).

We show the associativity for ∗. For that, let first r
def
= (x, r′), s

def
= (y, s′), t

def
= (z, t′) ∈

Σ∗×∆∗ such that |{x, y, z}| > 1. Then r∗(s∗t) = (ε, 2max{|x|+|r′|,|y|+|s′|,|z|+|t′|}) = (r∗s)∗t.

We obtain the same result, if x = y = z and one of r ′, s′, t′ is not from (Gx∪{###})∩∆Mx.

The remaining cases are such that x = y = z and r ′, s′, t′ ∈ (Gx ∪ {###}) ∩ ∆Mx . Here

it suffices to show
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r ∗ (s ∗ t) = (x,px(gx(r′s′t′))). (6.2)

If one of r′, s′, t′ is equal to ###, this is obvious. The same holds in the case where

s′t′ ∈ Ax∪Bx∪Cx. If s′t′ = ###, then r∗(s∗t) = (x,px(gx(r′s′t′))) = (x,px(###))
def
= α

and we are done.

If s′t′ = u#binKx(i1)c1binKx(i2)c2 · · · cs−1binKx(is)#u
′ ∈ Dx. Then s∗ t = (x, d) where

d = px(u#binKx(i1)abinKx(is)#u
′) as in the second case of the definition of gx. Assume

r′ = v ∈ Ax or r′ = w#v ∈ Bx∪Cx∪Dx. If |vu| > K then r∗(s∗ t) = α = px(gx(r′s′t′)). If

|vu| < K and r′ /∈ Ax then again r∗(s∗t) = α = px(gx(r′s′t′)). If |vu| ≤ Kx and r′ ∈ Ax we

have r ∗ (s ∗ t) = (x,px(vu#binKx(i1)abinKx(is)#u
′)) = (x,px(gx(r′s′t′))). The remaining

cases are where r′ = w#v ∈ Bx ∪ Cx ∪Dx and |vu| = Kx. Since u#binKx(i1) is a prefix

of both s′t′ and gx(s′t′), we have r′gx(s′t′) ∈ Dx if and only if r′s′t′ ∈ Dx. If r′s′t′ /∈ Dx,

then r ∗ (s ∗ t) = α = px(g(r′s′t′)), so let r′s′t′ ∈ Dx. In this case the equivalence (6.2) can

be easily seen for all cases of r′.

The remaining case is where s′t′ /∈ Gx ∪ {###}; we show that r′s′t′ /∈ Gx ∪ {###}.

Obviously, r′s′t′ 6= ###. Suppose that r′s′t′ ∈ Gx. If r′s′t′ ∈ Ax, then s′t′ ∈ Ax.

If r′s′t′ ∈ Bx, then s′t′ ∈ Ax ∪ Bx. If r′s′t′ ∈ Cx, then s′t′ ∈ Ax ∪ Bx ∪ Cx.

Therefore r′s′t′ = u#binKx(i1)c1binKx(i2)c2 · · · cs−1binKx(is)#u
′ ∈ Dx. Since s′t′ /∈ Gx

and r′ ∈ Gx, there is a k such that r′ = u#binKx(i1)c1binKx(i2)c2 · · · ck−1w, s′t′ =

w′ckbinKx(ik+1) · · · cs−1binKx(is)#u
′ where ww′ = binKx(ik), ck−1 = #, and ck ∈ A5.

Hence either s′ or t′ is not in Gx. So if s′t′ /∈ Gx, then r ∗ (s ∗ t) = α = (x,px(gx(r′s′t′))).

This finishes the proof of associativity for ∗.

Observe that (x,px(u#binKx(i)abinKx(j)#v)) is in [(x,px(0)), (x,px(1)), (x,px(#))]∗ if

and only if i < j and f(x, i) · f(x, i+ 1) · · · · · f(x, j − 1) = a. Consequently, we obtain

x ∈ L↔ (x,px(#0Ka01
K#)) ∈ [(x,px(0)), (x,px(1)), (x,px(#))]∗.

❑

Now let us additionally assume ◦ to be commutative. Again, the associativity enables

us to ignore the ◦-generation tree and instead search for a word over {1, . . . , n}. Together

with commutativity, we just have to guess exponents k1, . . . , kn and test whether ak1i,1 ◦· · · ◦

akn

i,n = z for all 1 ≤ i ≤ m. If the operation is computable in polynomial-time, then the

exponentiations are computable in polynomial-time, too (by squaring and multiplying),

which yields the following theorem.

Theorem 6.13. GEN(◦) ∈ NP for all length-monotonic, associative, and commutative

polynomial-time computable operations ◦ : Σ∗ × Σ∗ → Σ∗.

Again, this upper bound is tight, i.e., there exist associative, commutative, and length-

monotonic polynomial-time computable operations whose generation problems are NP-

complete. Even the usual addition on natural numbers has this property.

Theorem 6.14. GENs(+) is ≤p
m-complete for NP, where + is the addition on N.
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Proof. It is known that GENs(+) is NP-complete for the addition on integers [vEB79].

This proof exclusively uses natural numbers. ❑

6.2 Generation Problems for Polynomials

The previous section gave an overview over the complexity of generation problems for

polynomial-time computable operations. Now we want to have a look at the more re-

stricted class of generation problems whose operations are polynomials. The Davis-

Putnam-Robinson-Matiyasevich theorem [Mat70] states that every recursively enumerable

set is range of a polynomial with integer coefficients. Based on this we find polynomials

with multiple variables, where even the generation problem for single carriers is undecid-

able.

The idea is the following: Take a polynomial q with undecidable positive range and

replace every variable x by x2
1 + x2

2 + x2
3 + x2

4. Take another polynomial r that is capable

to generate all negative numbers and negative numbers only. Build a new polynomial out

of q and r with an additional variable x0 such that for x0 = 0 the value of q is calculated,

and for x0 6= 0 the value of r is calculated. In this way it is possible to generate all negative

numbers which in turn allow the generation of the positive range of q. Let us make this

precise.

Theorem 6.15. There is a polynomial p with integer coefficients such that the problem

GENs(p) is undecidable.

Proof. Let M ⊆ N be enumerable but undecidable, such that 0, 1 ∈M , and let q : Zn → Z

such that q(Nn)∩N = M . Without loss of generality we can assume, that q(0, . . . , 0) ≥ 0.

Now, let

α
def
= (x1,1, x1,2, x1,3, x1,4, . . . , xn,1, xn,2, xn,3, xn,4),

β
def
= (

4∑

i=1

x2
1,i, . . . ,

4∑

i=1

x2
n,i),

r(x1, x2, x3, x4)
def
= −1 ·

4∑

i=1

x2
i − 1,

a
def
= q(0, . . . , 0)2,

s(α)
def
=

n∑

i=1

4∑

j=1

x2
i,j, and

p′(α)
def
= q(β)2 − a+ s(α)a+ 1.

Observe that the following holds for all a1,1, . . . , an,4 ∈ Z:
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[{0, 1}]r = −N ∪ {1},

r(a1,1, . . . , a1,4) < 0,

s(a1,1, . . . , an,4) = 0 if and only if a1,1 = · · · = an,4 = 0,

p′(0, . . . , 0) = 1,

p′(a1,1, . . . , an,4) > 0, and

if s(a1,1, . . . , an,4) > 0 then |p′(a1,1, . . . , an,4)| > |q(β)|.

Now define for γ
def
= (x0, y1, . . . , y4, x1,1, . . . , xn,4)

p(γ)
def
= x2

0 · r(y1, . . . , y4) · p
′(α) + (1 − x2

0) · q(β)

and observe that the following holds:

p(γ) =





r(y1, . . . , y4) , if x1,1 = · · · = xn,4 = 0, |x0| = 1

q(β) , if x0 = 0

≤ 0 , otherwise

Therefore we have [{0, 1}]p ∩ −N = −N and [{0, 1}]p ∩ N = q(Nn) ∩ N = M . Therefore a

positive number is in M if and only if it is in [{0, 1}]p. ❑

To obtain this undecidability result, the polynomials must have negative coefficients

and they usually contain a rather large number of variables. Therefore, we concentrate on

bivariate polynomials with positive coefficients. These are always length-monotonic and

hence, the corresponding generation problem is decidable (see Theorem 6.5). We show

that many of them are even in NP and, in the case of GENs, all of them belong to

NTIME-SPACE(2log2 n, n log n). In the case of GEN, all of them, except GEN(x + q(y)),

where q is a non-linear, univariate polynomial, belong to that class. So far we have no

evidence against the conjecture that all these generation problems belong to NP (see also

the discussion in Section 6.3). However, we cannot prove this.

This section has two main results: First, we show that if p is not of the form q(x) + ky

where q is non-linear and k ≥ 2, then the corresponding generation problem belongs to

NP. Second, we prove NP-completeness for polynomials of the form xaybc where a, b, c ≥ 1.

6.2.1 The Main Case

Let us start our investigation with univariate polynomials p, i.e., p(x, y) = q(x) for a

suitable polynomial q.

Theorem 6.16. If p is a univariate polynomial, then GEN(p) is in P.

Proof. Every function in [p] is essentially unary which means that they all have at most

one relevant variable, since p is unary. So, if we get m carrier ai,1, . . . , ai,n, zi (1 ≤ i ≤ m)

as input, either zi = ai,k for a k and all i ∈ {1, . . . ,m} or there is a k such that zi ∈ [ai,k]p
for all i ∈ {1, . . . ,m}.
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Hence, we go through all j ∈ {1, . . . , n} and test whether there is a k such that pk(ai,j) =

zi for all i ∈ {1, . . . ,m}, which can be done in polynomial time: If p(x, y) = q(x) = c, then

we have [ai,j ]p = {ai,j , c}. If p(x, y) = q(x) = x + c, then [ai,j]p = {ai,j + kc : k ≥ 0}. In

all other cases we have q(x) ≥ 2x or q(x) ≥ x2. It follows that [ai,j ]p ⊆ {pk(ai,j) : k =

0, 1, . . . , |bin(zi)| + 1}. ❑

A univariate polynomial p(x) is linear, if there are a, c ∈ N such that p(x) = ax+ c.

Lemma 6.17. Let p be a bivariate polynomial that is not of the form p(x, y) = kx+ q(y)

or p(x, y) = q(x) + ky where q is non-linear and k ≥ 2. Then p must have one of the

following properties:

1. p(x, y) = x+ q(y) or p(x, y) = q(x) + y for some univariate polynomial q,

2. p(x, y) = ax+ by + c for some a, b, c ∈ N such that a, b ≥ 2, or

3. p(x, y) ≥ x · y for all x, y.

Proof. Assume that the polynomial p has non of the properties 1., 2., and 3.. Since p does

not fulfill 3. there are univariate polynomials q and r such that p(x, y) = q(x)+r(y). Since

x2 + y2 ≥ x · y at least one of the polynomials q and r is linear. Consequently there exist a

univariate polynomial q and an k ≥ 0 such that p(x, y) = kx+ q(y) or p(x, y) = q(x)+ky.

Since p does not fulfill 2., the polynomial q is not linear. Since p does not fulfill 1., we

obtain k ≥ 2. ❑

Lemma 6.18. If p(x, y) = x+q(y) for some univariate polynomial q, then GENs(p) ∈ NP.

Proof. It is sufficient to prove:

[a1, . . . , ar]p = {aj + Σr
i=1αi · q(ai) : j ∈ {1, . . . , r} and α1, . . . , αr ∈ N}.

The inclusion from right to left is obvious. For the other direction, we observe that

{a1, . . . , ar} is included in the right hand side (which is obvious) and that the right hand

side is closed under p. For the latter let αi, βi ∈ N, let s
def
= Σr

i=1(αi · q(ai)), and let

t
def
= Σr

i=1(βi · q(ai)), for 1 ≤ i ≤ r, and j, k ∈ {1, . . . , r}. Then for some c ≥ 0,

p(aj + s, ak + t) = aj + s+ q(ak + t)

= aj + s+ q(ak) + ct (6.3)

= aj + Σr
i=1((αi + cβi) · q(ai)) + q(ak).

To see equality (6.3), observe that by binomial theorem, for all a, b ≥ 0, q(a+b) = q(a)+cb

for some c ∈ N. ❑

So, we can check whether z ∈ [a1, . . . , an]p due to the fact, that for every p-generation tree

(T, β) for z there is another generation tree (T ′, β′) of the following form:
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an

aj
a1

a1

a2

a2

an

α2

αn

α1

We can decide the generation problem for single carriers by guessing j and the αi-

values. However, this “uniform” tree T ′ describes another function than T , in general.

Since the the αi-values depend on {a1, . . . , an}, they may be different for different carriers.

This is why we cannot use this method to decide GEN(p): For that, we need to find

one generation tree that works for all given carriers. Such generation trees can have an

exponential size. Nevertheless, we can decide GEN(p) with an alternating Turing-machine

that uses O(n) space, with an algorithm that is analogous to the one of the proof of

Theorem 6.5. We will see later, that there is a polynomial q such that GENs(x+ q(y)) is

NP-hard. Hence there remains a large gap between a known upper bound and a known

lower bound of GEN(x+ q(y)); we have to leave the exact complexity of this problem as

an open question.

Lemma 6.19. If p(x, y) = ax+ by + c for a, b, c ∈ N and a, b ≥ 2, then GEN(p) ∈ NP.

Proof. We show, that there is an encoding of polynomial size for p-generation trees that

can be used to check in polynomial time whether an element can be generated from a

given base via p.

Let T be a p-generation tree for z. Without loss of generality we can assume that

value 0 occurs only in the leaves of this tree T . Since a, b ≥ 2, the depth of T is bounded

by |bin(z)| + 1.

Let T be an arbitrary binary tree whose leaves have values from {a1, . . . , an}. For a

full path q in T , choose i(q) ∈ {1, . . . , n} such that the leaf of q has value ai(q). We obtain

that z ∈ [a1, . . . , an]p if and only if there exists a binary tree T whose leaves have values

from {a1, . . . , an} such that

z =
∑

q ∈ fpath(T )

ai(q) · a
l(q) · br(q) +

∑

q ∈ ipath(T )

c · al(q) · br(q).

For a binary tree T of depth bounded by d and for i, j ∈ {0, . . . , d} we define the charac-

teristics

sTi,j
def
= #{q : q ∈ ipath(T ), l(q) = i and r(q) = j} and

rTi,j
def
= #{q : q ∈ fpath(T ), l(q) = i and r(q) = j}.
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Note that the rTi,j can be computed from the sTi,j by

• rT0,0 = 1 − sT0,0,

• rT0,j+1 = sT0,j − sT0,j+1 for j ∈ {0, . . . , d},

• rTi+1,0 = sTi,0 − sTi+1,0 for i ∈ {0, . . . , d}, and

• rTi+1,j+1 = sTi,j+1 + sTi+1,j − sTi+1,j+1 for i, j ∈ {0, . . . , d}.





(6.4)

Using these characteristics we obtain that z ∈ [a1, . . . , an]p if and only if there exist

a binary tree T of depth d ≤ |bin(z)| + 1 and a set of natural numbers {ri,j,k : i, j ∈

{0, . . . , d}, k ∈ {1, . . . , n}} such that Σn
k=1ri,j,k = rTi,j and

z =
d∑

i=0

d∑

j=0

n∑

k=1

ri,j,k · ak · a
i · bj +

d∑

i=0

d∑

j=0

sti,j · c · a
i · bj .

Observe that the characteristics sTi,j have the following properties.

• sT0,0 ≤ 1,

• sT0,j+1 ≤ sT0,j for j ∈ {0, . . . , d− 1},

• sTi+1,0 ≤ sTi,0 for i ∈ {0, . . . , d− 1},

• sTi+1,j+1 ≤ sTi+1,j + sTi,j+1, for i, j ∈ {0, . . . , d− 1}, and

• sTi,d = sTd,j = 0 for i, j ∈ {0, . . . , d}.





(6.5)

On the other hand, we can prove the following.

Claim 6.20. Consider an arbitrary set M of natural numbers si,j where i, j ∈ {0, . . . , d}.

If these si,j fulfill (6.5), then there exists a binary tree T such that sTi,j = si,j for i, j ∈

{0, . . . , d}.

Proof: We proof the claim by induction on w(M)
def
= Σd

i=0Σ
d
j=0si,j.

If w(M) = 0, then the tree with only one node fulfills the statement.

If w(M) > 0, then we have s0,0 > 0. Since si,d = sd,j = 0 for i, j ∈ {0, . . . , d} there exists

a pair (i, j) ∈ {0, . . . , d}2 such that si,j > 0 and si+1,j = si,j+1 = 0. Let (i0, j0) be such a

pair. Define M ′ def
= {s′i,j : i, j ∈ {0, . . . , d}} such that s′i0,j0

def
= si0,j0 − 1 and s′i,j = si,j for

all other (i, j) ∈ {0, . . . , d}2. Obviously, M ′ fulfills (6.5) and w(M ′) = w(M) − 1. By the

induction hypothesis, there exists a binary tree T ′ such that sT
′

i,j = s′i,j for i, j ∈ {0, . . . , d}.

To know that there exists a full path q in T ′ such that l(q) = i0 and r(q) = j0 we have to

prove rT
′

i0,j0
> 0. We do this by considering four cases.

If i0 = j0 = 0 then sT
′

0,0 = s′0,0 < s0,0 ≤ 1 and hence sT
′

0,0 = 0.

If i0 = 0 and j0 > 0 then sT
′

0,j0
= s′0,j0 < s0,j0 ≤ s0,j0−1 = s′0,j0−1 = sT

′

0,j0−1.

If i0 > 0 and j0 = 0 then sT
′

i0,0
= s′i0,0 < si0,0 ≤ si0−1,0 = s′i0−1,0 = sT

′

i0−1,0.
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If i0 > 0 and j0 > 0 then sT
′

i0,j0
= s′i0,j0 < si0,j0 ≤ si0−1,j0 +si0,j0−1 = s′i0−1,j0

+s′i0,j0−1 =

sT
′

i0−1,j0
+sT

′

i0,j0−1.

Now choose a full path q in T ′ such that l(q) = i0 and r(q) = j0 and attach two successors to

it. For the binary tree T defined in such a way, we have sTi0,j0 = sT
′

i0,j0
+1 = s′i0,j0 +1 = si0,j0

and sTi,j = sT
′

i,j = s′i,j = si,j for all other (i, j) ∈ {0, . . . , d}2. This completes the proof of

the claim. 2

Together with Proposition 6.2, we obtain that (m,a1,1, . . . , a1,n, . . . , am,1, . . . , am,n,

z1, . . . , zm) ∈ GEN(p) if and only if for d
def
= |bin(z1)| + 1 and i, j ∈ {0, . . . , d} there exist

natural numbers si,j and there exists a set of natural numbers {ri,j,k : i, j ∈ {0, . . . , d}, k ∈

{1, . . . , n}} such that

1. the si,j fulfill (6.5),

2. Σn
k=1ri,j,k = ri,j for i, j ∈ {0, . . . , d} (where the ri,j are computed from the si,j as in

(6.4), and

3. z` = Σd
i=0Σ

d
j=0 (Σn

k=1ri,j,k · a`,k) · a
i · bj + Σd

i=0Σ
d
j=0si,j · c · a

i · bj for all ` ∈ {1, . . . ,m}.

The properties 1. – 3. can be checked deterministically in polynomial time, hence GEN(p) ∈

NP. ❑

The next two lemmas show that GEN(p) ∈ NP, if p(x, y) ≥ x · y for all x, y ∈ N.

Although Lemma 6.21 follows from Lemma 6.23, we prefer to first explicitly prove the

former one, as we can use the construction, that we introduce there, in the proof of the

latter one.

Lemma 6.21. If the polynomial p fulfills p(x, y) ≥ x · y for all x, y, then GENs(p) ∈ NP.

Proof. Let A ⊆ N be finite. Let

A′ def
=

{
A , if c /∈ A

A ∪ {p(0, 0)} otherwise.

Obviously we have [A]p = [A′]p and for every z ∈ [A′]p there is generation tree where no

node has two children with value 0. If for every x ∈ N (resp., y ∈ N),

p(x, 0) ≥ 2x (resp., p(0, y) ≥ 2y) or p(x, 0) ≥ x2 (resp., p(0, y) ≥ y2) or

p(x, 1) ≥ 2x (resp., p(1, y) ≥ 2y) or p(x, 1) ≥ x2 (resp., p(1, y) ≥ y2),

then there is a p-generation tree for z from A′ such that there are at most |z| nodes with

left (resp., right) child that has a value ≥ 2 (∗). Let D be a p-generation tree from A ′

for z. We can assume that there are at most |z| leaves v in D that have a value greater

than 1 and there can at most be |z| nodes having two children with values greater than

1. Furthermore, we can assume that there are at most |z| nodes v in D such that both

children of v are leaves with value from {0, 1} since the value of theses nodes would be
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greater or equal to 2 (if the value of such a node were 0 or 1, the node would not be

necessary). That means that if D has more than polynomially many nodes, then nearly

every node (except polynomially many ones)

• has one child with value ≤ 1 and another one that is no leaf, or

• is a leaf with value ≤ 1, and its parent’s other child is no leaf.

}
(6.6)

We consider four cases:

1. Let there be x1, . . . , x8 ∈ N such that

(p(x1, 0) 6≥ 2x1 and p(x2, 0) 6≥ x2
2 and p(x3, 1) 6≥ 2x3 and p(x4, 1) 6≥ x2

4) and

(p(0, x5) 6≥ 2x5 and p(0, x6) 6≥ x2
6 and p(1, x7) 6≥ 2x7 and p(1, x8) 6≥ x2

8).

Then p(x, y) = xy + d, where d ∈ N. Note, that p(0, y) = p(x, 0) = d. Since d ∈

A′ if 0 ∈ A′, we can assume, that every generation tree has no node with value 0.

Observe, that q(x)
def
= x + d = p(1, x) = p(x, 1) for all x ∈ N. Note that qk(x) =

x+ kd, so k applications of q can be guessed in one step. Using property (6.6), we can

guess a polynomially sized generation tree, where each node either represents a normal

generation step or k ≤ z steps of the above form.

2. Let there be x1, . . . , x4 ∈ N such that for all x ∈ N we have

(p(x, 0) ≥ 2x or p(x, 0) ≥ x2 or p(x, 1) ≥ 2x or p(x, 1) ≥ x2) and

(p(0, x1) 6≥ 2x1 and p(0, x2) 6≥ x2
2 and p(1, x3) 6≥ 2x3 and p(1, x4) 6≥ x2

4).

Then p(x, y) = xky + Σn
i=1bix

i + d where k ≥ 1, n, bi, d ∈ N (1 ≤ i ≤ n). Because

of (∗) there can only be polynomially many nodes in D with a left child that has a

value greater than 1. So, if there are more than polynomially many nodes in D, then

all of them except polynomially many ones have a left child with value ≤ 1 and a right

child that is not a leaf. Observe, that p(0, y) = d. So, if 0 ∈ A′ then d ∈ A′, too, and

we can assume that there are no nodes that have a left child with value 0. Note that

r(y)
def
= p(1, y) = y+Σn

i=1bi+ d and rk(y) = y+ k(Σn
i=1bi + d). Therefore we can guess

a polynomial-sized generation tree for z where each node is either a normal generation

step or k ≤ z subsumed steps of the form p(1, y).

3. Let there be x1, . . . , x4 ∈ N such that for all x ∈ N we have

(p(x1, 0) 6≥ 2x1 and p(x2, 0) 6≥ x2
2 and p(x3, 1) 6≥ 2x3 and p(x4, 1) 6≥ x2) and

(p(0, x) ≥ 2x or p(0, x) ≥ x2 or p(1, x) ≥ 2x or p(1, x) ≥ x2).

Here a symmetrical argumentation holds.

4. Let for all x ∈ N hold
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(p(x, 0) ≥ 2x or p(x, 0) ≥ x2 or p(x, 1) ≥ 2x or p(x, 1) ≥ x2) and

(p(0, x) ≥ 2x or p(0, x) ≥ x2 or p(1, x) ≥ 2x or p(1, x) ≥ x2).

By (∗) there is a polynomial sized p-generation tree from A′ for b that can be guessed

and checked in P.

❑

Corollary 6.22. If p is a bivariate polynomial that is not of the form p(x, y) = kx+ q(y)

or p(x, y) = q(x) + ky where q is non-linear and k ≥ 2, then GENs(p) ∈ NP.

With polynomials p such that p(x, y) ≥ xy, there is a main problem: p is not monotonic

at every point, since p(x, 0) = p(0, x) = d for some constant d, regardless of the size of

x. In the last lemma, we coped with this problem as follows: We eliminated nearly all

occurrences of 0 from the generation tree and replaced them with the value of p(0, 0).

However, if we have to find a generation tree for multiple carriers, we cannot simply

eliminate occurrences of 0, since a leaf that has the value 0 for one carrier does not have

to have the same value for another one. The idea to solve this problem is the following.

We guess an encoding for every carrier as in the previous lemma and mark every leaf v

that is a replacement for an inner node as described above. Then we compare all these

trees and test whether they all share the same “core”, i.e., whether they have the same

structure between the root and marked leaves.

Lemma 6.23. If the polynomial p fulfills p(x, y) ≥ x · y for all x, y, then GEN(p) ∈ NP.

Proof. We have seen in the proof of Lemma 6.21 that we can always guess encodings of

p-generation trees of polynomial size. We showed, that such a generation tree has super-

polynomial size only in chains of nodes v that have children w1, w2 such that w1 is a

leaf (the leaf-nodes of the chain) with value 1 and w2 is not a leaf, i.e., w2 is a node of

the same form as v, again. Hence, we can guess generation-trees (D1, ζ1), . . . , (Dm, ζm)

of polynomial size, and, additionally, functions f1, . . . , fm such that fi maps some nodes

of Di to {1, . . . ,min{z1, . . . , zm}}. We do this with those nodes that represent a chain of

superpolynomial size. These nodes then have to have just one child and they stand for a

chain of length fi(v). What remains to do is to show, that it is easy to test whether these

generation trees are “compatible”, i.e., that we can merge them to one generation tree for

all zi.

For this, consider an instance (m,a1,1, . . . , a1,n, . . . , am,1, . . . , am,n, z1, . . . , zm) of the

generation problem. An index-tree is a triple (D, ζ, f) such that the following holds:

– D is a tree where every node has fan-out ≤ 2. All parents of leaves have fan-out 2. If p

is a polynomial as in Lemma 6.21, case 4, then D has no nodes of fan-out 1.

– For every leaf in D with path w ∈ {l, r}∗ there exists exactly one u ∈ {l, r}∗ such that

w = uv for some v ∈ {l, r}∗, u describes a node with fan-out 2, and ζ(u) ∈ {0, . . . , n}.

If u 6= w, then ζ(u) = 0. For all other w′ ∈ {l, r}∗ holds ζ(w′) =⊥.

– For all inner nodes v of D that have fan-out 1, is f(v) ∈ {1, . . . ,min{z1, . . . , zm}}.
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(D, ζ, f) is called a full index-tree, if for all leaves v in D that have path w, we have

ζ(w) 6=⊥. The full index-trees T
def
= (D, ζ, f) and T ′ def

= (D′, ζ ′, f ′) match if

1. For every leaf v in D that is characterized by the word w ∈ {l, r}∗, either

– there is a leaf v′ in D′ that is characterized by w and ζ(w) = ζ ′(w) or

– ζ(w) = 0 and there is a node v′ in D′ such that w is an initial path in D′ character-

izing v′ (in this case we say T prunes w in T ′),

and vice versa.

2. If w ∈ {l, r}∗ is a path describing inner nodes v from D and v ′ from D′, then f(v) =

f ′(v′).

We can test in P whether or not two full index-trees T and T ′ match. Let

q(x)
def
=

{
p(x, 1) , if p is as in Lemma 6.21, cases 1 or 2

p(1, x) , if p is as in Lemma 6.21, case 3

For i ∈ {1, . . . ,m}, an index-tree T = (D, ζ, f), and a node v from D that is characterized

by w ∈ {l, r}∗ we define

αTi (v)
def
=





ai,ζ(w) , if v is a leaf in D and ζ(w) /∈ {0,⊥}

b0,0 , if ζ(w) = 0 and 0 ∈ {ai,1, . . . , ai,n}

qk(αTi (v1)) , if f(v) = k and v1 is the child of v

p(αTi (v1), α
T
i (v2)) , if v is a node in D with left child v1

and right child v2

Observe, that αTi (Root(D)) is undefined, only if there is a node with path w in D such that

ζ(w) = 0 and 0 /∈ {ai,1, . . . , ai,n}. We say, the index-tree T generates zi if αTi (Root(D)) is

defined and αTi (Root(D)) = zi.

Let T1
def
= (D1, ζ1, f1), . . . , Tm

def
= (Dm, ζm, fm) be full index-trees that generate

z1, . . . , zm respectively. We say T1, , . . . , Tm are functionally equivalent, if they match pair-

wise and the following holds:

(i) Let i, j ∈ {1, . . . ,m}. For every path w such that w characterizes a node v with children

v1, v2 in Dj and Ti prunes w in Tj holds {ζj(v1), ζj(v2)} ∩ {k : ai,k = 0} 6= ∅ and vice

versa.

(ii) Let A ⊆ {1, . . . ,m}. If there is a path w such that there are nodes vj in Dj that are

characterized by w such that ζj(vj) = 0 for all j ∈ A, then there are s, t ∈ {1, . . . , n}

such that aj,s = 0 or aj,t = 0 for all j ∈ A (we explicitly allow s = t).

We can test, whether T1, . . . , Tm are functionally equivalent in P. Hence, we can finish the

proof with the following claim.

Claim 6.24. C
def
= (m,a1,1, . . . , a1,n, . . . , am,1, . . . , am,n, z1, . . . , zm) ∈ GEN(p) if and only

if there are index-trees, T1
def
= (D1, ζ1, f1), . . . , Tm

def
= (Dm, ζm, fm) which have size less or

equal than
∑m

i=1 |zi| such that for all i ∈ {1, . . . ,m} holds Ti generates zi and T1, . . . , Tm
are functionally equivalent.
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Proof: First, let C ∈ GEN(p). Then there is a binary tree D and αi such that (D,αi) is a

p-generation tree for the i-th carrier, as described in Proposition 6.2 for all i ∈ {1, . . . ,m}.

As shown in Lemma 6.21, we can collapse the tree to linear size, by subsuming the long

chains to one node. We build the index-tree Ti by removing the subtrees of nodes v such

that one of the following conditions holds:

– v has two children with value 0.

– p is as in Lemma 6.21, case 2, and v has a left child with value 0.

– p is as in Lemma 6.21, case 3, and v has a right child with value 0.

We set ζi(v)
def
= 0, and for all other leaves w, we set ζi(w)

def
= k, if αi(w) = ai,k. Observe

that Ti generates zi and that the thus constructed index-trees are functionally equivalent.

On the other hand, let T1, . . . , Tm be as claimed. We can build a p-generation tree for

all carriers. For that, we first merge T1 and T2 into a new index-tree T ′ def
= (D′, ζ ′, f ′)

as follows: We start with T1. If T1 prunes w in T2 then we replace the node v with path

w in D1 with the whole subtree under the node with path w of D2. For all leaves u of

such a subtree, we set ζ ′(r)
def
= ζ2(r) where r is the path characterizing u. For all other

paths q to a leaf, we set ζ ′(q)
def
= ζ1(q). For nodes v of fan out 1 of such a subtree, we

set f ′(v)
def
= f2(v), for all other nodes v′ of fan-out 1, we set f ′(v′)

def
= f1(v

′). Observe,

that T ′ generates both, z1 and z2. We merge T ′ with T3, and so on, until all index-trees

are merged into a final index-tree T̂
def
= (D̂, ζ̂, f̂). We build an index-tree T

def
= (D, ζ, f)

from T̂ as follows: If v is the path of a leaf in D̂ such that ζi(v) = 0 for all i in a set

A ⊆ {1, . . . ,m}, then there have to exist s, t as in (ii). We add two children with paths

vl, vr to the leaf and set ζ(vl)
def
= s and ζ(vr)

def
= t. Then for all i ∈ {1, . . . ,m}, the tuple

(D,αTi ) is a p-generation tree from ai,1, . . . , ai,n for zi. 2 ❑

Corollary 6.25. If p is a bivariate polynomial that is not of the form p(x, y) = kx+ q(y)

or p(x, y) = q(x) + ky where q is non-linear and k ≥ 1, then GEN(p) ∈ NP.

6.2.2 GENs(x
aybc) is NP-complete

By Corollary 6.25, generation problems for polynomials of the form Σa,bca,bx
ayb where

a, b ≥ 1 belong to NP. In this subsection, we concentrate on polynomials that consist of

only one term of that sum. For this special case we can show that even GENs(x
aybc) is

NP-complete if c ≥ 1. For a = 1 or b = 1 this is easy to prove with a reduction from the

following problem:

Definition 6.26.

1-IN-3-SAT
def
= {H : H is a 3-CNF formula having an assignment that

satisfies exactly one literal in each clause}

Theorem 6.27 ([Sch78]). 1-IN-3-SAT is NP-complete.
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Proposition 6.28. Let p(x, y) = xa · y · c where a, c ≥ 1 are constants. Then GENs(p) is

≤p
m-complete for NP.

Proof. We reduce 1-IN-3-SAT to GENs(p). Let H be a 3-CNF formula with clauses

C1, . . . , Cm and variables x1, . . . , xn. Let p1, p2, . . . be the prime numbers larger than c.

Define for 2 ≤ i ≤ n:

a1
def
= (pm+1

∏

x1∈Cj

pj)
a,

b1
def
= (pm+1

∏

x1∈Cj

pj)
a,

ai
def
= pm+i

∏

xi∈Cj

pj ,

bi
def
= pm+i

∏

xi∈Cj

pj ,

z
def
= cn−1

m+n∏

i=1

pai , and

g(H)
def
= (a1, . . . , an, b1, . . . , bn, z).

Note that g is polynomial-time computable.

Assume H ∈ 1-IN-3-SAT. Then there is an assignment I : {x1, . . . , xn} → {0, 1} that

satisfies exactly one literal in each clause. Therefore, we obtain
∏m+n
i=1 pai · c

n−1 by a linear

generation tree that has leaf-values cn, . . . , c1 where ci = ai if I(xi) = 1 and ci = bi
otherwise. Hence g(H) ∈ GENs(p).

Assume that g(H) ∈ GENs(p), hence z ∈ [a1, . . . , an, b1, . . . , bn]p. Every prime pi occurs

exactly a times in the factorization of z. Therefore, either ai or bi (and not both) has to

be a leaf-value in the generation tree. If a > 1 then additionally the generation tree has

to be linear and the rightmost leaf has value a1 or b1. If we can build a generation tree

for z that contains each prime for a variable and each prime for a clause exactly a times

it is possible to find an assignment that satisfies exactly one literal in each clause. Hence,

the assignment I such that I(xi) = 1 if and only if ai is a leaf-value in the generation tree

satisfies H in the sense of 1-IN-3-SAT. Therefore H ∈ 1-IN-3-SAT. ❑

Now let us consider GENs(x
aybc) for a, b > 1. In general, the main problem in proving

hardness for generation problems seems to be that various different trees can generate the

same number. In our proofs we force the generation trees to have a specific shape such

that the generation is possible only in a predefined way.

Consider an xaybc-generation tree. Clearly, the generated number is a product that

consists of various multiplicities of c and base elements. As a tool to control these multi-

plicities we introduce (a, b)-weighted trees where we mark each node as follows. If ` is the

number of left turns on the way from the root to a node, and r is the number of respective
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right turns, then we mark the node with a` and br. By controlling the marks of the leaves,

we can force an xaybc-generation tree into the shape of a complete (a, b)-weighted tree.

Definition 6.29. Let D be a binary tree and let a, b > 1. T = (D, g) is called (a, b)-

weighted tree if g is a function that maps the nodes of D to natural numbers such that:

If v = Root(D), then g(v) = 1.

If v ∈ Node(D) has a left and a right successor vl and vr, then g(vl) = a · g(v) and

g(vr) = b · g(v).

T is called balanced if max{g(v) : v ∈ Leaf(D)} ≤ max{a, b} · min{g(v) : v ∈ Leaf(D)}.

T is called complete if max{g(v) : v ∈ Leaf(D)} < max{a, b} · min{g(v) : v ∈ Leaf(D)}.

We immediately obtain the following connection to GENs(x
aybc).

Proposition 6.30. Let a, b > 1. If T = (D, g) is an (a, b)-weighted tree, and (D,α) is an

xaybc-generation tree for z, then

z = α(Root(D)) =
∏

v∈Leaf(D)

α(v)g(v) ·
∏

v∈Node(D)−Leaf(D)

cg(v).

We remark that it is possible to define the notion of (a, b)-weighted trees for a = 1 and

b = 1. However, if a = 1 and b = 1, then complete trees do not exist in contrast to a, b > 1

where complete trees always exist. We show some important properties of (a, b)-weighted

trees.

Proposition 6.31. Let a, b > 1. For every n ≥ 1 there exists a balanced (a, b)-weighted

tree that has n leaves.

Proof. For n = 1 take the tree that consists only of the root.

For arbitrary n > 1, let T = (D, g) be a balanced (a, b)-weighted tree with n − 1 leaves.

Let v0 ∈ Leaf(D) have minimal weight, i.e., g(v0) = min{g(v) : v ∈ Leaf(D)}. Define the

tree D′ by adding in D children vl and vr to v0, and let g′(v)
def
= g(v) for all v ∈ Node(D),

g′(vl)
def
= a · g(v0), and g′(vr)

def
= b · g(v0). This defines an (a, b)-weighted tree T ′ def

= (D′, g′)

with

max{v : v ∈ Leaf(D′)} = max{max{g(v) : v ∈ Leaf(D)},max{g ′(vl), g
′(vr)}}

= max{max{g(v) : v ∈ Leaf(D)},max{a, b} · g(v0)}

= max{max{g(v) : v ∈ Leaf(D)},

max{a, b} · min{g(v) : v ∈ Leaf(D)}}

= max{a, b} · min{g(v) : v ∈ Leaf(D)}

≤ max{a, b} · min{g(v) : v ∈ Leaf(D′)}. (6.7)

Hence T ′ is balanced. ❑
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Now we show that for each n ≥ 1 there exists a complete (a, b)-weighted tree with nearly

n leaves. Note that such a tree is polynomial-time constructible.

Proposition 6.32. Let a, b > 1. For every n ≥ 1 there exists a complete (a, b)-weighted

tree with at least n and at most 2n− 1 leaves.

Proof. Proposition 6.31 gives a balanced (a, b)-weighted tree T with n leaves. If all leaves

have minimal weight, then T is complete. Otherwise, there are k leaves of minimal weight

m (1 ≤ k ≤ n−1). Since T is balanced, the maximal weight is less or equal to m·max{a, b}.

If we add two successors to each of these leaves, then the minimal weight increases, while

the maximum weight remains less or equal to m · max{a, b}. So in inequality (6.7), ≤

changes to < and the resulting tree T ′ is complete. T ′ has n−k+2k = n+k leaves where

n ≤ n+ k ≤ 2n− 1. ❑

Now we show that if the generation tree is not the desired complete tree, then at least one

leaf-value is taken to a power that is too large.

Proposition 6.33. Let a, b > 1. Let T = (D, g) be a complete (a, b)-weighted tree with n

leaves. If T ′ = (D′, g′) is an (a, b)-weighted tree with more than n leaves, then there exists

a v ∈ Leaf(D′) such that

g′(v) > max{g(u) : u ∈ Leaf(D)}.

Proof. Without loss of generality we can assume a ≥ b. Fix a shortest way in terms of

deleting and adding leaves that transforms D to D ′. We have to change at least one leaf

v0 ∈ Leaf(D) to an inner node of D′. Let vl and vr be the children of v0. We obtain

g′(vl) = a · g(v0)

≥ max{a, b} · min{g(u) : u ∈ Leaf(D)}

> max{g(u) : u ∈ Leaf(D)}.

Hence, every v ∈ D′ that for which vl is an ancestor fulfills

g′(v) ≥ g′(vl) > max{g(u) : u ∈ Leaf(D)}.

❑

Next we show that balanced (a, b)-weighted trees have a height which is bounded logarith-

mically in the number of leaves.

Proposition 6.34. Let a ≥ b > 1. Let T = (D, g) be a balanced (a, b)-weighted tree with n

leaves. If d denotes the maximal depth of a leaf of D, then

d ≤ logb(a) · (1 + log2 n)
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Proof. Let m
def
= min{g(v) : v ∈ Leaf(D)}. Hence, D contains a complete binary tree

of depth ≥ logam and therefore log2 n ≥ logam. T is balanced, so bd ≤ am which is

equivalent to d ≤ logb am. Therefore,

d ≤ logb am = logb a · loga am ≤ logb a · (1 + log2 n).

❑

Theorem 6.35. For a, b, c ≥ 1 and p(x, y)
def
= xaybc, GENs(p) is ≤p

m-complete for NP.

Proof. By Proposition 6.28, we can assume a, b > 1. Containment in NP follows from

Corollary 6.22. We reduce 1-IN-3-SAT to GENs(p). Let H be a 3-CNF formula with

clauses C1, . . . , Cm and variables x1, . . . , xn. Let p1, p2, . . . be the prime numbers larger

than c. Define for 1 ≤ i ≤ n,

ai
def
= pm+i

∏

xi∈Cj

pj, and

bi
def
= pm+i

∏

xi∈Cj

pj.

Let T = (D, g) be a complete (a, b)-weighted tree with k leaves where n ≤ k ≤ 2n− 1 and

Leaf(D) = {v1, . . . , vk} (such a tree exists by Proposition 6.32). Furthermore, let d be the

maximal depth of a leaf of D. Define ai
def
= pm+i for i = n+ 1, . . . , k,

B
def
=

{
a′i

def
= a

adbd/g(vi)
i : 1 ≤ i ≤ k

}
∪

{
b′i

def
= b

adbd/g(vi)
i : 1 ≤ i ≤ n

}
, and

z
def
=

∏m+k

i=1
pa

dbd

i ·
∏

v∈Node(D)−Leaf(D)
cg(v).

Proposition 6.34 shows that (B, z) is polynomial-time computable.

IfH ∈ 1-IN-3-SAT, then there is an assignment IH : {x1, . . . , xn} → {0, 1} that satisfies

exactly one literal in each clause. We obtain

∏

IH(xi)=1

ai ·
∏

IH(xi)=0

bi ·
k∏

i=n+1

pm+i =
m+k∏

i=1

pi.

We consider D as a p-generation tree with values

ID(vi)
def
=





a′i , if i = 1, . . . , n and IH(xi) = 1

b′i , if i = 1, . . . , n and IH(xi) = 0

a′i , if i = n+ 1, . . . , k.

By Property 6.30, ID(Root(D)), the value of the root, can be evaluated as follows.
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ID(Root(D)) =
∏

v∈Leaf(D)

ID(v)g(v) ·
∏

v∈Node(D)−Leaf(D)

cg(v)

=
∏

IH(xi)=1

(a′i)
g(vi) ·

∏

IH(xi)=0

(b′i)
g(vi) ·

k∏

i=n+1

(a′i)
g(vi) ·

∏

v∈Node(D)−Leaf(D)

cg(v)

=
∏

IH(xi)=1

aa
dbd
i ·

∏

IH(xi)=0

ba
dbd
i ·

k∏

i=n+1

aa
dbd
i ·

∏

v∈Node(D)−Leaf(D)

cg(v)

=




∏

IH(xi)=1

ai ·
∏

IH(xi)=0

bi ·
k∏

i=n+1

pm+i



adbd

·
∏

v∈Node(D)−Leaf(D)

cg(v)

=

m+k∏

i=1

pa
dbd
i ·

∏

v∈Node(D)−Leaf(D)

cg(v) = z.

Hence (B, z) ∈ GENs(p).

Assume (B, z) ∈ GENs(p). Then there exists an (a, b)-weighted tree T ′ = (D′, g′) and

a function α : Node(D′) → N, such that (D′, α) is a p-generation tree from B for z. Each

element of B has exactly one prime factor from pm+1, . . . , pm+k. Since z has all these prime

factors at least once, D′ must have at least k leaves. Assume D ′ has more than k leaves. By

Proposition 6.33, there exists a v ∈ Leaf(D ′) such that g′(v) > max{g(u) : u ∈ Leaf(D)}.

α(v) has exactly one prime factor from pm+1, . . . , pm+k; say pm+i with exponent adbd/g(vi).

Hence

p
(adbd/g(vi))·g′(v)
m+i

is a factor of α(Root(D′)). From (adbd/g(vi)) · g
′(v) > adbd follows that α(Root(D′)) 6= z.

So D′ has exactly k leaves. Each prime pm+1, . . . , pm+k must appear as a factor in a value

of some leaf. Therefore, besides the a′j with n + 1 ≤ j ≤ k, either a′i or b′i is a value

of a leaf (but not both) for i = 1, . . . , n. Define IH : {x1, . . . , xn} → {0, 1} such that

IH(xi) = 1
def
⇔ a′i is a leaf-value of D′. Observe that IH shows H ∈ 1-IN-3-SAT. ❑

6.3 The Generation Problem GEN(xc + ky)

So far, we do not have upper bounds for generation problems with polynomials p(x, y) =

q(x) + ky, where q is non-linear and k ≥ 1. The obvious algorithm guesses and verifies

generation trees. We already mentioned that such trees can have exponential size if k = 1,

although for the generation problem with single carriers, we could work around guessing

such a tree. What is their size if k ≥ 2? To answer this, observe that the trees take a special

shape: When we go from the root to the leaves in y-direction, then in each step, the length

of the value decreases by one bit. When we go in x-direction, then in each step, the length

is bisected. It follows that the size of such trees grows faster than any polynomial, but not

as fast as 2log2 n. Therefore, GEN(p) ∈ NTIME(2log2 n). We do not have to guess complete
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generation trees. If a subtree generates some values b1, . . . , bm, then it suffices to store

these values instead of the whole subtree. We need to store values every time we go in

x-direction. So we need space O(n log n).

Proposition 6.36. GEN(p) ∈ NTIME-SPACE(2log2 n, n log n) if p(x, y) = q(x) + ky

where k ≥ 2 and q is a non-linear polynomial.

Because of the special form of a generation tree for such polynomials, the generation

problem can be solved by special alternating machines: Some z can be generated via p

from A if and only if there exist z1, . . . , zn ≤ z such that n ≤ |z|, z = z1, zn ∈ A, and for

all 1 ≤ i < n, zi = p(yi, zi+1) where yi can be generated via p from A and |yi| ≤
1
2 |zi|.

An alternating machine can check this predicate in polynomial time with a logarithmic

number of alternations. Furthermore, in existential parts the machine guesses polynomially

many bits. In contrast, in universal parts it guesses logarithmically many bits. This works

for one carrier as well as for a finite number of carriers.

This discussion shows that GEN(p) can be solved with quite restricted resources. How-

ever, we do not know whether GEN(p) belongs to NP. Standard diagonalizations show

that there exist oracles A and B such that BPPA 6⊆ NTIME(2log2 n)A and coNPB 6⊆

NTIME(2log2 n)B . Therefore, we should not expect GEN(p) to be hard for any class that

contains BPP or coNP. This rules out many reasonable classes above NP to be reducible

to GEN(p). We consider this as a hint that GEN(p) could be contained in NP, but we do

not have a proof for this. We leave this as an open question.

Nevertheless, in this section we prove lower bounds. The main result, Theorem 6.51,

shows that if p(x, y) = xc + ky where c, k ≥ 1, then GENs(p) is ≤p
m-hard for NP. The

proof is difficult for two reasons which we want to explain for p(x, y) = x2 + 2y.

1. We have to encode NP-computations into generation problems. For this, we need to

construct an instance (B, z) of GENs(p) that represents information about a given

NP-computation. The elements of B must be chosen in a way so that squaring will not

destroy this information. This is difficult, since squaring a number heavily changes its

(binary) representation.

2. We construct (B, z) such that if z can be generated, then x must be chosen always

from B (and is not a generated number). So the generation tree is linear which makes

it easier to control because every value from B has to be taken to the power of c exactly

once. On the other hand, the intermediate result is multiplied by 2 in every step, i.e.,

the number generated so far is shifted to the left. We have to cope with this shifting.

With regard to item 2, our construction makes sure that the size of the linear generation

tree is bounded. So the number of shifts is bounded. For B we choose numbers that are

much longer than this bound such that each number is provided with a unique stamp. The

stamps make sure that there is at most one possible tree that generates z. In particular,

this fixes the sequence of numbers from B that are chosen for x. This keeps the shifting

under control.

The problem in item 1 is more complicated and also more interesting. It comes down

to prove NP-hardness of the following extended sum-of-subset problem.
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SOS2
def
= {(w1, . . . , wn, z) : ∃I ⊆ {1, . . . , n}(Σi∈Iw

2
i = z)}

(In the proof we use a promise problem related to SOS2, but for simplicity we argue with

SOS2 in this sketch.) First we reduce 1-IN-3-SAT to SOS and obtain an SOS instance

w = (w1, . . . , w2n, z). The reduction is such that either w /∈ SOS or there is a selection of

exactly n weights which sum up to z. We choose a base b larger than 2n and 2Σiw
2
i . So

in the system to base b, z and all w2
i fit into one digit. For each wi, define the following

6-digit numbers in the system to base b.

ai
def
= 〈11000wi〉b

ri
def
= 〈10001wi〉b

The set of all ai and all ri build the weights for the SOS2 instance we want to construct.

The intention is to use the weight ai whenever wi is used in the sum that yields z, and to

use ri whenever wi is not used. The squares of ai and ri look as follows with respect to

base b.

a2
i

def
=

〈
1 2 1 0 0 2wi 2wi 0 0 0 w2

i

〉
b

r2i
def
=

〈
1 0 0 0 2 2wi 0 0 1 2wi w

2
i

〉
b

Note that a2
i and r2

i have the same first digit, the same last digit, and the same digit at the

middle position. At all other positions, either a2
i or r2

i has digit 0. In the sum for SOS2, for

every i, either ai or ri is used. Therefore, in system b, the last digit of this sum becomes

predictable: It must be Σiw
2
i . This is the most important point in our argumentation.

Also, we choose exactly n weights ai and n weights ri. With s1
def
= Σiwi, s2

def
= Σiw

2
i , and

z
def
= s1 − z we can easily describe the destination number for the SOS2 instance.

z′
def
= 〈2n 2n n 0 2n 2s1 2z 0 n 2z s2〉b

We obtain the instance (a1, r1, . . . , a2n, r2n, z
′) which belongs to SOS2 if and only if

(w1, . . . , w2n, z) ∈ SOS. This shows NP-hardness for SOS2 and solves the difficulty men-

tioned in item 1.

We inductively use this technique to show that for all c ≥ 1, the following extended

sum-of-subset problem is NP-complete.

SOSc
def
= {(w1, . . . , wn, z) : ∃I ⊆ {1, . . . , n}(Σi∈Iw

c
i = z)}.

We need SOSc as an auxiliary problem for generation problems. However, we feel that this

new NP-completeness result is interesting in its own right.

6.3.1 Notations

We work with pairs (A,B) of disjoint languages (where for example A ∈ NP and B ∈

coNP). Say that pair (A,B) reduces to pair (C,D), ((A,B) ≤pp
m (C,D)), if there exist a

polynomial-time computable function f such that for all x,
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x ∈ A ⇒ f(x) ∈ C,

x ∈ B ⇒ f(x) ∈ D.

We will write (A,A) ≤pp
m (C,D) short for A ≤pp

m (C,D) and (A,B) ≤pp
m C short for

(A,B) ≤pp
m (C,C).

In the proofs below we have to construct natural numbers that contain information

about NP computations. In addition, these numbers have to contain this information in

a way such that exponentiation will not destroy it. For this we need to consider numbers

with respect to several bases b. Therefore, we introduce the following notations. For b ≥ 2

define Ab = {0, . . . , b − 1} to be the alphabet that contains b digits. As abbreviation we

write A instead of A2. For digits a0, . . . , an−1 ∈ Ab, let 〈an−1 · · · a0〉b
def
= Σn−1

i=0 aib
i. This

means that 〈an−1 · · · a0〉b is the number that is represented by an−1 · · · a0 with respect to

base b.

We will consider vectors of weights W = (w1, . . . , w2n) such that certain selections of

these weights sum up to given destination numbers z1, . . . , zc. We group W into pairs

(w1, w2), (w3, w4), and so on. Each pair has a unique stamp u in its binary representation

such that the destination number zc shows the same stamp, but all other pairs have 0’s

at this position. This allows us to argue that if we want to reach zc, then from each pair

we have to use at least one weight. Moreover, in view of generation problems, we need the

stamps still working if the weights are multiplied by small numbers. Therefore, additionally

we demand that the stamp u is embedded in s digits 0. We make this precise:

Definition 6.37. Let W = (w1, . . . , w2n) and Z = (z1, . . . , zc) where n, c ≥ 1. Define

zc
def
= (Σw∈Ww

c) − zc. Let s ≥ 1. We call (W,Z) s-distinguishable if all bin(wci ) have the

same length l where l ≡ 1(mod c), and if for every 0 ≤ j < n there exist t ≥ 1 and u ∈ 1A∗

such that

1. bin(zc),bin(zc),bin(wc2j+1),bin(wc2j+2) ∈ A∗0su0sAt and

2. for all i 6= j, bin(wc2i+1),bin(wc2i+2) ∈ A∗0s0|u|0sAt.

Note that, if c = 1 then l ≡ 1(mod c) is always true and is therefore no restriction on

the length of l.

6.3.2 NP-Hardness of Modified Sum-of-Subset Problems

We want to show that for c, k ≥ 1, the generation problem GEN(xc + ky) is ≤p
m-hard for

NP. The proof is such that the NP-hardness of modified sum-of-subset problems is shown

first, and then this is reduced to the generation problems. Our argumentation for the

modified sum-of-subset problems is restricted to instances that meet several requirements.

Therefore, it is convenient to define these problems as pairs (Lc,s, Rc,s) of disjoint sets.
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Definition 6.38. Let c, s ≥ 1.

Lc,s
def
=

{
(W,Z) : W = (w1, . . . , w2n), Z = (z1, . . . , zc),

(W,Z) is ns-distinguishable, and

(∃I ⊆ {1, . . . , 2n} s.t. for 0 ≤ i ≤ n− 1 holds 2i+1∈I ⇔ 2i+2 /∈I)

(∀m ∈ {1, . . . , c})[Σi∈Iw
m
i = zm]

}

Rc,s
def
=

{
(W,Z) : W = (w1, . . . , w2n), Z = (z1, . . . , zc),

(W,Z) is ns-distinguishable, and

(∀I ⊆ {1, . . . , 2n})(∀m ∈ {1, . . . , c})[Σi∈Iw
m
i 6= zm]

}

Observe that for c, s ≥ 1, Lc,s ∩ Rc,s = ∅, Lc,s ∈ NP, and Rc,s ∈ coNP. We show NP-

hardness for c = 1 first, and then inductively for higher c’s.

Lemma 6.39. For s ≥ 1, (L1,s, R1,s) is ≤pp
m -hard for NP.

Proof. For s ≥ 1, we show that 1-IN-3-SAT ≤pp
m (L1,s, R1,s) via reduction f . Let H be

a 3-CNF formula with clauses C1, . . . , Cm and variables x1, . . . , xn where n ≥ 2. For

0 ≤ i ≤ n− 1 let

a
def
= 0sn10sn,

ai
def
= 0i(2sn+1)a0(n−i−1)(2sn+1) ,

w2i+1
def
= 〈1aici1 . . . cim〉2 , and

w2i+2
def
= 〈1aic̄i1 . . . c̄im〉2

where

cij =

{
0n−11 , if xi is a literal in Cj
0n , otherwise

and

c̄ij =

{
0n−11 , if xi is a literal in Cj
0n , otherwise.

Finally, define the reduction as f(H)
def
= ((w1, . . . , w2n), (z)) and for d

def
= |bin(wi)| − 1 =

n(2sn+ 1) +mn, let

z
def
= n2d +

〈
an(0n−11)m

〉
2
.

Observe, that z = 1
2Σ2n

i=1wi, and therefore z
def
= Σ2n

i=1wi− z = z. Hence, ((w1, . . . , w2n), (z))

is ns-distinguishable.

Let H ∈ 1-IN-3-SAT. Then there exists an assignment Φ : {x1, . . . , xn} → {0, 1} such

that each clause in H is satisfied by exactly one literal. Let

I
def
= {2i+ 1 : 0 ≤ i < n and Φ(xi) = 1} ∪ {2i + 2 : 0 ≤ i < n and Φ(xi) = 0}.
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It follows Σi∈Iwi = z and hence ((w1, . . . , w2n), (z)) ∈ L1,s.

Let H /∈ 1-IN-3-SAT and suppose there exists I ⊆ {1, . . . , 2n} such that z = Σi∈Iwi.

For all i, wi > 2d. Also, z < (n+ 1)2d, since
〈
an(0n−11)m

〉
2
< 2d. Therefore, I contains at

most n elements. On the other hand, wi < 2d+2d−n, for all i. Since (n−1)(2d+2d−n) < n2d

we obtain |I| = n.

Since ((w1, . . . , w2n), (z)) is ns-distinguishable, I must contain exactly one element from

each pair (w2i+1, w2i+2). For every k ∈ {0, . . . ,m− 1} there exists exactly one j ∈ I such

that wj[d − kn + 1] = 1: Otherwise, in bin(Σi∈Iwi) there is a 1 at position kn + t where

1 ≤ t < n. This is impossible. Therefore, if Φ is defined such that Φ(xi) = 1 ⇔ 2i+ 1 ∈ I,

then Φ satisfies exactly one literal in each clause. This contradicts our assumption. Hence,

((w1, . . . , w2n), (z)) ∈ R1,s. ❑

So far we know that (L1,s, R1,s) is NP-hard. This is the induction base of our argumen-

tation. Now we turn to the induction step and show how to reduce hardness to pairs

(Lc,s, Rc,s) where c > 0.

Lemma 6.40. For c, s ≥ 1, (Lc,2s+c, Rc,2s+c) ≤
pp
m (Lc+1,s, Rc+1,s).

Proof. We describe the reduction f on input (W,Z) where W = (w1, . . . , w2n) and Z =

(z1, . . . , zc). Let w = max(W ) and choose l′ ≡ 0(c+1) such that b
def
= 2l

′
> 4n(c+1)! ·wc+1.

All wi belong to Ab. For 1 ≤ k ≤ 2n, define the following weights (where a means accepted

weight and r means rejected weight).

ak
def
= 〈110c0wk〉b

rk
def
= 〈100c1wk〉b

Fix any m such that 1 ≤ m ≤ c + 1. In the following we show how to define the

right destination number ym. After that we define f(W,Z) = (W ′, Z ′) where W ′ =

(a1, a2, r1, r2, a3, a4, r3, r4, . . . , r2n−1, r2n) and Z ′ = (y1, . . . , yc+1). By binomial theorem,

amk =

m∑

i=0

i∑

j=0

(
m

i

)(
i

j

)
wm−i
k · b(c+2)i+j , (6.8)

rmk =

m∑

i=0

i∑

j=0

(
m

i

)(
i

j

)
wm−i
k · b(c+2)j+i. (6.9)

Observe that in (6.8) each term b(c+2)i+j appears uniquely: If (c+ 2)i+ j = (c+ 2)i′ + j′,

then (since j < c+2 and j ′ < c+2) j = j ′ and i = i′. Similarly, in (6.9) each term b(c+2)j+i

appears uniquely. Now the idea is, to let ak(t) denote the coefficient of bt in equation (6.8),

and to let rk(t) denote the coefficient of bt in equation (6.9). First, we define ak(t) and

rk(t) for 0 ≤ t ≤ (c+ 3)m
def
= d and then we show that this definition fits our idea.
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ak(t)
def
=





(m
i

)(i
j

)
wm−i
k , if t = (c+ 2)i+ j for 0 ≤ j < i ≤ m

0 , if t = (c+ 2)j + i for 0 ≤ j < i ≤ m or

if t 6= (c+ 2)i+ j for all 0 ≤ i, j ≤ m
(m
i

)
wm−i
k otherwise, i.e., if t = (c+ 3)i

(6.10)

rk(t)
def
=





0 , if t = (c+ 2)i+ j for 0 ≤ j < i ≤ m or

if t 6= (c+ 2)i+ j for all 0 ≤ i, j ≤ m
(
m
i

)(
i
j

)
wm−i
k , if t = (c+ 2)j + i for 0 ≤ j < i ≤ m

(
m
i

)
wm−i
k otherwise, i.e., if t = (c+ 3)i

(6.11)

Note that ak(t) and rk(t) depend onm. We abstain from takingm as additional index, since

m will always be clear from the context. Observe that the three cases in these definitions

are indeed disjoint. So ak(t) and rk(t) are well-defined. It follows that ak(t) and rk(t) are

the announced coefficients from equations (6.8) and (6.9). Hence

amk = Σd
t=0ak(t) · b

t and

rmk = Σd
t=0rk(t) · b

t.

All ak(t) and all rk(t) are less than b/4n and therefore belong to Ab. Hence,

amk = 〈ak(d) · · · ak(1)ak(0)〉b and (6.12)

rmk = 〈rk(d) · · · rk(1)rk(0)〉b . (6.13)

Equations (6.10) and (6.11) tell us that these representations to base b differ only at

positions t 6≡ 0(c + 3).

In order to define the destination number ym, we show how to transfer a selection of

weights wk to a corresponding selection of weights amk and rmk . Suppose Σwk = z1 where

the sum ranges over a suitable collection of n weights. Now choose amk for every weight wk
that is used (i.e. k accepted) in the sum Σwk; and choose rmk for every weight wk that is

not used (i.e. k rejected) in this sum. The choice of whether to take amk or rmk only matters

for positions t 6≡ 0(c + 3). By equations (6.10) and (6.11), at these positions, either rmk
has digit 0 and amk has digit

(m
i

)(i
j

)
wm−i
k , or amk has digit 0 and rmk has digit

(m
i

)(i
j

)
wm−i
k

(note that i > 0 since i 6= j). So when we consider the sum of all chosen amk and rmk at

such a position, then either we see digit

(
m
i

)(
i
j

) ∑
k accepted

wm−i
k =

(
m
i

)(
i
j

)
zm−i,

or we see digit (m
i

)(i
j

) ∑
k rejected

wm−i
k =

(m
i

)(i
j

)
zm−i
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where z0
def
= n and zi =

∑
w∈W

wi − zi as defined above. This motivates the following digits

of the destination number ym.

y(t)
def
=





(
m
i

)(
i
j

)
zm−i , if t = (c+ 2)i+ j for 0 ≤ j < i ≤ m

(m
i

)(i
j

)
zm−i , if t = (c+ 2)j + i for 0 ≤ j < i ≤ m

0 , if t 6= (c+ 2)i+ j for all 0 ≤ i, j ≤ m
∑
w∈W

(m
i

)
wm−i otherwise, i.e., if t = (c+ 3)i

Here again we abstain from taking m as index, since m will be clear from the context.

Define the m-th destination number as

ym
def
= 〈y(d) · · · y(1)y(0)〉b .

To finish f ’s definition, let f(W,Z)
def
= (W ′, Z ′) where W ′ = (a1, a2, r1, r2, a3, a4, r3,

r4, . . . , r2n−1, r2n) and Z ′ = (y1, . . . , yc+1).

Claim 6.41. If (W,Z) is (2s + c)n-distinguishable, then f(W,Z) = (W ′, Z ′) is 2ns-

distinguishable.

Proof: Fix m = c + 1 and let d = (c + 3)m. Observe that for every k, ak(d) = rk(d) = 1.

By assumption, b = 2l
′
for l′ ≡ 0(c + 1). Hence one digit from Ab corresponds exactly to

l′ bits. By equations (6.12) and (6.13), for every k, |bin(ac+1
k )| = |bin(rc+1

k )| = d · l′ + 1.

This number is ≡ 1(c+ 1).

We need to understand the structure of yc+1 = (Σw∈W ′wc+1) − yc+1, the complement

of yc+1. For this end, define

y(t)
def
=





(
m
i

)(
i
j

)
zm−i , if t = (c+ 2)i+ j for 0 ≤ j < i ≤ m

(
m
i

)(
i
j

)
zm−i , if t = (c+ 2)j + i for 0 ≤ j < i ≤ m

0 , if t 6= (c+ 2)i+ j for all 0 ≤ i, j ≤ m
∑
w∈W

(m
i

)
wm−i otherwise, i.e., if t = (c+ 3)i.

Observe that for all t, y(t) + y(t) = Σ2n
k=1(ak(t) + rk(t)). Hence

〈y(d) · · · y(1)y(0)〉b + 〈y(d) · · · y(1)y(0)〉b = Σw∈W ′wm

and therefore,

yc+1 = 〈y(d) · · · y(1)y(0)〉b .

Choose any j < n and consider a2j+1 and a2j+2. By assumption, (W,Z) is (2s + c)n-

distinguishable. So there exist t ≥ 1 and u ∈ 1A∗ such that
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1. bin(zc),bin(zc),bin(wc2j+1),bin(wc2j+2) ∈ A∗0(2s+c)nu0(2s+c)nAt and

2. for all i 6= j, bin(wc2i+1),bin(wc2i+2) ∈ A∗0(2s+c)n0|u|0(2s+c)nAt.

If one multiplies a binary number of the form A∗0i
′
u0i

′
At by m = c + 1 ≤ 2c, then this

yields a number of the form A∗0i
′−cu′0i

′−cAt+c where u′ ∈ A|u|+c. So in our case, there

exist t′ ≥ 1 and u′ ∈ 1A∗ such that

1. bin(mzc),bin(mzc),bin(mwc2j+1),bin(mwc2j+2) ∈ A∗02snu′02snAt
′
and

2. for all i 6= j, bin(mwc2i+1),bin(mwc2i+2) ∈ A∗02sn0|u
′|02snAt

′
.

Let ta = c + 2. For all i, ai(ta) = mwci , ri(ta) = 0, y(ta) = mzc, and y(ta) = mzc. So for

t′′ = t′ + l′ · ta,

1. bin(ym),bin(ym),bin(am2j+1),bin(am2j+2) ∈ A∗02snu′02snAt
′′
,

2. for all i 6= j, bin(am2i+1),bin(am2i+2) ∈ A
∗02sn0|u

′|02snAt
′′
, and

3. for all i, bin(rm2i+1),bin(rm2i+2) ∈ A∗02sn0|u
′|02snAt

′′
.

We obtain the analogous three statements for r2j+1 and r2j+2 by looking at the position

tr = 1. Here for all i, ai(tr) = 0, ri(tr) = mwci , y(tr) = mzc, and y(tr) = mzc. Hence

(W ′, Z ′) is 2ns-distinguishable. 2

Claim 6.42. If (W,Z) ∈ Lc,2s+c, then f(W,Z) = (W ′, Z ′) ∈ Lc+1,s.

Proof: By Claim 6.41, (W ′, Z ′) is 2ns-distinguishable. Let I be as in the definition of

Lc,2s+c, and let I
def
= {1, . . . , 2n} − I. Note |I| = |I| = n. We choose all ai such that i ∈ I

and all ri such that i ∈ I. Note that this collection of weights from W ′ is suitable to show

that (W ′, Z ′) belongs to Lc+1,s (i.e., when numbering the weights of W ′ from 1 to 4n,

then the indices of chosen weights form an I ′ where 2i + 1 ∈ I ′ ⇔ 2i + 2 /∈ I ′). Fix any

m ∈ {1, . . . , c+ 1}. Our selection of weights induces the following sum.

z′
def
= Σk∈Ia

m
k + Σk∈Ir

m
k

= Σk∈I 〈ak(d) · · · ak(1)ak(0)〉b + Σk∈I 〈rk(d) · · · rk(1)rk(0)〉b

We have seen that all ak(t) and all rk(t) are less than b/4n. So for every t,

z′(t)
def
= Σk∈Iak(t) + Σk∈Irk(t)

is less than b. This means that if we consider the weights to base b and sum up digit by

digit, then there is no sum that is carried forward. It follows that

z′ =
〈
z′(d) . . . z′(1)z′(0)

〉
b
.

From equations (6.10) and (6.11) we obtain

z′(t) =





(
m
i

)(
i
j

)
Σk∈Iw

m−i
k , if t = (c+ 2)i + j for 0 ≤ j < i ≤ m

(
m
i

)(
i
j

)
Σk∈Iw

m−i
k , if t = (c+ 2)j + i for 0 ≤ j < i ≤ m

0 , if t 6= (c+ 2)i + j for all 0 ≤ i, j ≤ m
(m
i

)
Σw∈Ww

m−i otherwise, i.e., if t = (c+ 3)i.
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So for all t, z′(t) = y(t) and therefore, z ′ = ym. This shows (W ′, Z ′) ∈ Lc+1,s. 2

Claim 6.43. If (W,Z) ∈ Rc,2s+c, then f(W,Z) = (W ′, Z ′) ∈ Rc+1,s.

Proof: By Claim 6.41, (W ′, Z ′) is 2ns-distinguishable. Let us assume (W ′, Z ′) /∈ Rc+1,s,

i.e., there exists Ia and Ir, subsets of {1, . . . , 2n}, and there exists some m ∈ {1, . . . , c+1}

such that

Σk∈Iaa
m
k + Σk∈Irr

m
k = ym. (6.14)

Let ta = (c + 2)(m − 1). For all k, ak(ta) = mwk, rk(ta) = 0, and y(ta) = mz1. In

Equation (6.14), we can consider the weights to base b and can sum up digit by digit

without obtaining a sum that is carried forward. By looking at position ta we obtain

y(ta) = Σk∈Iaak(ta) and hence

z1 = Σk∈Iawk.

So we found a collection of weights from W whose sum is z1. This is a contradiction. 2

This complete the proof of Lemma 6.40. ❑

Corollary 6.44. For c, s ≥ 1, (Lc,s, Rc,s) is ≤pp
m -hard for NP.

Proof. The proof is by induction on c. The induction base is by Lemma 6.39 while the

induction step follows from Lemma 6.40. ❑

Theorem 6.45. For c ≥ 1, the following sum-of-subset problem is ≤p
m-complete for NP.

SOSc
def
= {(a1, . . . , an, b) : ∃I ⊆ {1, . . . , n}(Σi∈Ia

c
i = b)}.

Proof. Clearly, SOSc ∈ NP. For given (W,Z) where W = (w1, . . . , w2n) and Z =

(z1, . . . , zc) let f(W,Z)
def
= (w1, . . . , w2n, zc). Observe (Lc,1, Rc,1) ≤pp

m SOSc via f . So,

by Corollary 6.44, SOSc is NP-hard. ❑

6.3.3 NP-Hardness of GEN(xc + ky)

Starting from Corollary 6.44 we reduce NP-hardness to generation problems. First, we

show this for c > 1 and then we treat GEN(x+ ky) in a separate lemma.

Lemma 6.46. For c ≥ 2, k ≥ 1 and s
def
= 5k2(c+ 5), (Lc,s, Rc,s) ≤

pp
m GEN(xc + ky).

Proof. We describe the reduction f on input (W,Z) where W = (w1, . . . , w2n) and Z =

(z1, . . . , zc). We may assume that all wi and zj are divisible by 2cns. Otherwise, use W ′ =

(2cnsw1, . . . , 2
cnsw2n) and Z ′ = (2cnsz1, 2

2cnsz2, . . . , 2
ccnszc) instead of W and Z. Let l

def
=

|bin(wc1)| and note that l > cns. If k = 1, then we use a = 0 as auxiliary weight. Otherwise,

if k ≥ 2, then we use a = 2(l−1)/c. Observe, that (l−1) is always divisible by c, since (W,Z)

is ns-distinguishable.
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B
def
= {a, 2l−1 + 1} ∪ {w1k,w2k,w3k

2, w4k
2, . . . , w2n−1k

n, w2nk
n} (6.15)

d
def
= kcn(zc + 2l−1 + 1) + ac ·

c−1∑

i=1

ki ·
n−1∑

i=0

kic (6.16)

If n2l−1 ≤ zc < n2l, then f(W,Z)
def
= (B, d), otherwise f(W,Z)

def
= (∅, 0). In the following

we show (Lc,s, Rc,s) ≤
pp
m GEN(xc + ky) via f .

Case 1: Assume (W,Z) ∈ Lc,s. Hence there exist weights x1, . . . , xn ∈ W such that∑n
i=1 x

c
i = zc where x1 ∈ {w1, w2}, x2 ∈ {w3, w4}, and so on. Therefore, n2l−1 ≤ zc < n2l

and so f(W,Z) = (B, d). We describe the generation of d. Clearly, y0
def
= 2l−1 + 1 can be

generated. For j ≥ 1, let

yj
def
= kc · yj−1 + (kjxj)

c + ac ·
c−1∑

i=1

ki. (6.17)

If yj−1 can be generated, then so can yj : For k = 1 this is trivial. For k ≥ 2, start with yj−1

and apply the generation ynew = ac + k · yold for c − 1 times. Then apply the generation

ynew = (kjxj)
c + k · yold (note that kjxj ∈ B). This yields yj. Hence yn can be generated.

From equation (6.17) we obtain

yn = kcn
n∑

i=1

xcj + kcn(2l−1 + 1) + ac ·
c−1∑

i=1

ki ·
n−1∑

i=0

kic.

It follows that d = yn and therefore, (B, d) ∈ GEN(xc + ky).

Case 2: Assume (W,Z) ∈ Rc,s. If zc < n2l−1 or zc ≥ n2l, then f(W,Z) = (∅, 0) /∈

GEN(xc+ky) and we are done. So let us assume n2l−1 ≤ zc < n2l and f(W,Z) = (B, d) ∈

GEN(xc + ky). In the remaining proof we will derive a contradiction which will prove the

lemma.

If k ≥ 2, then from equation (6.16) and zc < n2l we obtain

d = kcn(zc + 2l−1 + 1) + ac ·
c−1∑

i=1

ki ·
n−1∑

i=0

kic

< kcn(n2l + 2l−1 + 1) + ac · kc ·
n−1∑

i=0

kic

= (n2lkcn + 2l−1kcn + kcn) + ac ·
n−1∑

i=0

kckic

< (n+ 1)2lkcn + ac ·
n∑

i=1

kic

< (n+ 1)2lkcn + ackcn+1
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Hence

k = 1 ⇒ d < (n+ 1)2l, (6.18)

k ≥ 2 ⇒ d < 2lkn(c+3). (6.19)

Claim 6.47. There exist m ≥ 1, y0 ∈ B and x1, . . . , xm ∈ B − {0, 2l−1 + 1} such that

d = kmy0 +

m∑

i=1

km−ixci . (6.20)

Proof: We have seen that l > cns. From equations (6.18) and (6.19) it follows that d <

2l+ns−2 < 22l−2. For all x ∈ B − {0}, |bin(xc)| ≥ l. So if z can be generated and is not

already in B, then |bin(z)| ≥ l and therefore z ≥ 2l−1. If we apply the generation rule

xc + ky for x = z and any y, then, since c ≥ 2, we obtain z ′ ≥ 22l−2 > d which cannot be

used to generate d. Similarly, if we apply the generation rule xc + ky for x = 2l−1 + 1 ∈ B

and any y, then we obtain z ′ ≥ 22l−2 > d which cannot be used to generate d. Hence, there

exists a generation of d such that in each step, x is chosen from B − {0, 2l−1 + 1}. From

zc ≥ 2l−1 and equation (6.16) it follows that d ≥ 2lkcn and hence d /∈ B. Therefore, d can

be generated in the following linear way: There exist m ≥ 1, y0 ∈ B, and x1, . . . , xm ∈

B − {0, 2l−1 + 1} such that if yi
def
= xci + k · yi−1 for 1 ≤ i ≤ m, then ym = d. This is

equivalent to the statement in the claim. 2

Claim 6.48. 1. y0 = 2l−1 + 1.

2. If k = 1, then m ≤ 2n.

3. If k ≥ 2, then m = cn.

Proof: First, we show m < ns/k2. Assume m ≥ ns/k2 and k = 1. By Claim 6.47, d >

m2l−1. From equation (6.18) it follows that d > 2l−1ns/k2 ≥ 2l+1 · n(c + 5) > d which

is a contradiction. Assume m ≥ ns/k2 and k ≥ 2. By Claim 6.47, d > 2l−1km−1. From

equation (6.19) it follows that d > 2lk(ns/k2)−2 ≥ 2lk5n(c+3) > d which is a contradiction.

Therefore,

m < ns/k2. (6.21)

Assume y0 6= 2l−1 +1, i.e., y0 ∈ B−{2l−1 +1}. By assumption, all wi and zi are ≡ 0(2cns).

So all elements in B − {2l−1 + 1} are ≡ 0(2ns) (if k ≥ 2, then a = 2(l−1)/c ≥ 2ns).

From Claim 6.47 we obtain d ≡ 0(2ns). However, equation (6.16) says that d ≡ kcn(2ns).

Since 0 < kcn < 2kcn < 2ns we have d 6≡ 0(2ns). This is a contradiction and we obtain

y0 = 2l−1 + 1.

We have seen that all elements in B − {2l−1 + 1} are equivalent to 0 modulo 2ns. By

Claim 6.47, d ≡ km(2ns). By equation (6.16), d ≡ kcn(2ns). By equation (6.21), km ≤

2km < 2ns and kcn < 2ns. Therefore, if k ≥ 2, then m = cn. If k = 1, then by Claim 6.47,

d ≥ (m+ 1)2l−1. So by equation (6.18), m ≤ 2n. 2

Claim 6.49. For every j, 1 ≤ j ≤ n, there exists exactly one i such that xi ∈

{w2j−1k
j, w2jk

j}. If k ≥ 2, then this i is determined by i = jc.
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Proof: Fix j. By assumption, (W,Z) is ns-distinguishable. So there exist t ≥ 1 and

u ∈ 1A∗ such that bin(zc),bin(wc2j−1),bin(wc2j) ∈ A∗0nsu0nsAt and for all i 6= j,

bin(wc2i−1),bin(wc2i) ∈ A∗0ns0|u|0nsAt. Let r
def
= 2ns + |u| + t. In the following calcula-

tion we are mainly interested in the lower r bits of all xci . If α
def
= 〈u〉2, then

(wc2j−1 mod 2r) = α2ns+t + β1 and (6.22)

(wc2j mod 2r) = α2ns+t + β2, (6.23)

where β1, β2 < 2t. We partition the set of indices {1, . . . ,m}.

J1
def
= {i : 1 ≤ i ≤ m ∧ xi = w2j−1k

j}

J2
def
= {i : 1 ≤ i ≤ m ∧ xi = w2jk

j}

J3
def
= {1, . . . ,m} − (J1 ∪ J2)

From equation (6.20) we obtain

d =
∑

i∈J1

km−i(w2j−1k
j)c +

∑

i∈J2

km−i(w2jk
j)c +

∑

i∈J3

km−ixci + kmy0. (6.24)

Now we study equation (6.24) modulo 2r. We start with the first two sums and consider

wc2j−1 and wc2j modulo 2r. By equations (6.22) and (6.23), these terms consist of an upper

part (i.e., α2ns+t) and of a lower part (i.e., β1 or β2). Let e1 (resp., e2) denote the sum of

the upper (resp., lower) parts:

e1
def
=

∑

i∈J1

km−ikjc · α2ns+t +
∑

i∈J2

km−ikjc · α2ns+t (6.25)

e2
def
=

∑

i∈J1

km−ikjcβ1 +
∑

i∈J2

km−ikjcβ2 (6.26)

Moreover, let e3 denote the sum (this time modulo 2r) of the last two terms in equa-

tion (6.24):

e3
def
= ((

∑

i∈J3

km−ixci + kmy0) mod 2r) (6.27)

Clearly, d ≡ e1 + e2 + e3 (2r). We argue that (d mod 2r) = e1 + e2 + e3.

For all i ∈ J3, either xci = ac 6= 0 or xci = x′kci
′

where bin(x′) ∈ A∗0ns0|u|0nsAt and

1 ≤ i′ ≤ n. Therefore, for all i ∈ J3,

(xci mod 2r) < 2tkcn. (6.28)

Moreover, (y0 mod 2r) = 1. Equations (6.27) and (6.28) allow an estimation of e3.

e3 ≤
∑

i∈J3

km−i2tkcn + km
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If k = 1, then by Claim 6.48, e3 ≤ 2n2t + 1. If k ≥ 2, then e3 ≤ cn2tkcnkm + km and

m = cn. So for all k,

e3 < 2ns+t−1. (6.29)

Estimate e2 with help of equation (6.26) and Claim 6.48:

e2 ≤ mkm−1kjc2t ≤ 25knc+t < 2ns+t−1 (6.30)

Together with (6.29) this yields

e2 + e3 < 2ns+t. (6.31)

Finally we turn to e1. Equation (6.25) can be written as

e1 = α2ns+tkjc
∑

i∈J1∪J2

km−i. (6.32)

Therefore, e1 < 2|u|+ns+t+5knc ≤ 2r−1. Together with (6.31) we obtain e1 + e2 + e3 < 2r

and hence

(d mod 2r) = e1 + e2 + e3. (6.33)

By equation (6.16), d ≡ kcn(zc + 1) (2r). Recall that bin(zc) ∈ A∗0nsu0nsAt. Therefore,

(zc mod 2r) = α2ns+t+γ where γ < 2t. Observe kcn(α2ns+t+γ+1) < 2kcn2|u|2ns+t+1 ≤ 2r.

This yields

(d mod 2r) = α2ns+tkcn + kcn(γ + 1). (6.34)

Compare equations (6.33) and (6.34). The terms e1 and α2ns+tkcn are divisible by 2ns+t,

while the terms e2 + e3 and kcn(γ + 1) are less than 2ns+t (see Equations 6.29 and 6.30).

It follows that e1 = α2ns+tkcn and therefore, by equation (6.32),

∑

i∈J1∪J2

km−i = kc(n−j). (6.35)

For k = 1 this implies |J1∪J2| = 1, while for k ≥ 2 this implies |J1∪J2| ≥ 1. Assume k ≥ 2

and let i′ be the maximum of J1∪J2. The left hand side of (6.35) is ≡ knc−i
′
(knc−i

′+1). So

it must be that kc(n−j) < knc−i
′+1 and therefore, knc−i

′
= kc(n−j). Hence J1 ∪ J2 = {jc}.

This proves Claim 6.49. 2

Assume k = 1. By Claims 6.47, 6.48, and 6.49, there exist xi ∈ {w2i−1, w2i} such that

d = (2l−1 + 1) +
n∑

i=1

xci . (6.36)

Together with equation (6.16) this shows zc =
∑n

i=1 x
c
i . So (W,Z) /∈ Rc,s which contradicts

our assumption.

Assume k ≥ 2. By Claim 6.49, for every j, xjc = xj · k
j where xj ∈ {w2j−1, w2j}.

Moreover, it follows that for every i, if i 6≡ 0(c), then xi = a. So equation (6.20) can be

written as:
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d = kmy0 +

n∑

j=1

km−jcxcjc +
∑

i∈{1,...,m},
i6≡0(c)

km−ixci (6.37)

= knc(ac + 1) + knc
n∑

j=1

xcj + ac
∑

i∈{1,...,nc},

i6≡0(c)

knc−i (6.38)

Observe that the right-most sum in (6.38) can be written as

c−1∑

i=1

ki ·
n−1∑

i=0

kic.

So we can continue to transform d.

d = knc(ac + 1) + knc
n∑

j=1

xcj + ac ·
c−1∑

i=1

ki ·
n−1∑

i=0

kic

Together with equation (6.16),

zc =
n∑

j=1

xcj .

So again (W,Z) /∈ Rc,s which contradicts our assumption. ❑

Lemma 6.50. If p(x, y) = x+ ky where k ≥ 1 then GENs(p) is ≤p
m-complete for NP.

Proof. We have already seen the upper bound (Lemma 6.18) and the lower bound for the

case k = 1 in Theorem 6.14, so let us focus on the lower bound for k ≥ 2. We ≤pp
m -reduce

(L1,2k, R1,2k) to GENs(x + ky). Let W
def
= (w1, . . . , w2n), Z

def
= (z) such that wi, z ∈ N

(1 ≤ i ≤ 2n). Let `
def
= |bin(kΣ2n

i=1wi)| and G
def
= 2`+1. Define

v1
def
= k(G+ w1),

v2
def
= k(G+ w2),

vi
def
= G+ wi, for 3 ≤ i ≤ 2n, and

z′
def
= k(nG+ z).

Now let (W,Z) ∈ L1,2k. Then there is an I = {i1, . . . , in} ⊆ {1, . . . , 2n} such that for

all i ∈ {0, . . . , n − 1} exactly one of {2i + 1, 2i+ 2} is in I and Σi∈Iwi = z. Assume that

ij < it if j < t. Then p(p(. . . p(p(vi1 , vi2), vi3), . . . , vin−1), vin) = k(G+wi1 )+kΣ
n
j=2G+wij =

k(nG+ z) = z′.

Now let (W,Z) ∈ R1,2k and assume that (v1, . . . , v2n, z
′) ∈ GENs(p). Observe that

vi ≥ G for all i ∈ {1, . . . , 2n}. Let T be a generation tree for z ′ from {v1, . . . , v2n} with m

leaves. Then obviously z ′ ≥ Σq ∈ fpath(T )k
r(q)G. Since for every leaf in T except one there

is a path q with r(q) ≥ 1 we have nkG+G > nkG+kz = z ′ ≥ (m−1)kG+G and therefore
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m ≤ n. Suppose there is an i ∈ {0, . . . , n− 1} such that neither v2i+1 nor v2i+2 is a value

of a leaf in T . We know that (W,Z) is 2kn distinguishable. Adding G to a wj (1 ≤ j ≤ 2n)

and nG to z does not interfere with the distinguishing gaps of the values by the choice of

G. Multiplying some of the values with k, decreases the size of the distinguishing gaps by

at most blog k+1c. Hence there is a u ∈ 1A∗ and a t ≥ 1 such that bin(z ′) ∈ A∗0knu0knAt

and for all j 6= i, both bin(v2j+1) and bin(v2j+2) are in A∗0kn0|u|0knAt. Since in every

step of the generation the size of the distinguishing gap is reduced by at most blog k + 1c

and since there are at most n − 1 steps in the whole generation process, z ′ can not be

generated. Hence for all i ∈ {0, . . . , n− 1} exactly one element of {v2i+1, v2i+2} is a value

of a leaf in T and m = n. If there were a path q in T with r(q) > 1 then

nkG+G > z′ ≥ k2G+ (n− 2)kG +G ≥ nkG+G (6.39)

would hold. Therefore fpath(T ) = {ln−1} ∪ {lir : 0 ≤ i ≤ n − 2}. Since v1, v2 ≥ kG the

value of the leaf with the path ln−1 has to be one of {v1, v2} otherwise again Equation 6.39

would hold. So there are {i1, . . . , in} such that i1 ∈ {1, 2} and

z′ = p(p(. . . p(p(vi1 , vi2), vi3), . . . , vin−1), vin)

= k(G+ wi1) + kΣn
j=2G+ wij

= k(nG+ Σn
j=1wij )

= k(nG+ z)

and therefore Σn
j=1wij = z which is a contradiction. Hence (v1, . . . , v2n, z

′) /∈ GENs(p). ❑

We combine the auxiliary results proved so far and formulate the main result of this section

that follows from Corollary 6.44 and Lemmas 6.46 and 6.50.

Theorem 6.51. For c, k ≥ 1, GENs(x
c + ky) is ≤p

m-hard for NP.

6.4 A Summary for the Generation Problem

We summarize our results on the complexity of GENs(f) in the following table. Every

lower bound is given by the fact that there exists an f from the considered class of op-

erations whose generation problem is complete for the respective class. All operations are

polynomial-time computable.

The complexity of the more general problem GEN(f) is the same in nearly all cases.

However, in the case of a polynomial p where p(x, y) = x+ q(y) for some univariate poly-

nomial q, we found an NP upper bound for GENs(p) which we cannot prove for GEN(p).

The best upper bound we can give for this case is the rather obvious ASPACE(O(n)) and

it is an open question whether GEN(p) ∈ NP.
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operation lower bound Thm upper bound Thm

arbitrary recursively 6.4 recursively 6.3

enumerable enumerable

length-monotonic EXPTIME 6.7 EXPTIME 6.5

length-monotonic EXPTIME 6.7 EXPTIME 6.5

and commutative

length-monotonic PSPACE 6.12 PSPACE 6.11

and associative

length-mon., assoc., NP 6.14 NP 6.13

and commutative

all Polynomials NP 6.14 NP 6.25

6= q(x) + ky

x+ y NP 6.14 NP 6.13

x · y NP 6.28 NP 6.13

xaybc NP 6.35 NP 6.22

all Polymomials NP 6.50 NP / ATIME(O(n)) 6.18

= q(x) + y

all Polynomials NP 6.51 NTIME(2log2 n) 6.36

= q(x) + ky (k ≥ 2)

xc + ky NP 6.51 NTIME(2log2 n) 6.36

The gap between NP and NTIME(2log2 n) in the last rows of the table below calls the

attention to another interesting open question: Does GEN(q(x) + ky) or GENs(q(x) + ky)

belong to NP if q is non-linear and k ≥ 2? Since the generation trees for these polynomials

may be of super-polynomial size, the obvious algorithm of guessing and verifying the tree

is not applicable. Also, we could not find more compact representations as in Lemma 6.18.

There are generation trees where almost all nodes take different values. Therefore it may be

possible that we really have to calculate all of them. A possibility to solve the problem could

be to have a closer look at the restricted alternating machines we describe in Section 6.3.

What are the exact capabilities of these machines?
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[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,

part II: Constraint satisfaction problems. ACM-SIGACT Newsletter, 35(1):22–

35, 2004.
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[Pös79] R. Pöschel. Funktionen- und Relationenalgebren. Birkäuser Verlag, Basel,
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Notations

2A 13 Power set {B : B ⊆ A} of A.

A∗ 13 Set of all words over the set A.

A+ 13 Set of all words over the set A with length ≥ 1.

Ac 13 Set of all words of length c over the set A where c ∈ N is a constant.

α[i] 13 If α = (a1, . . . , an), then α[i] = ai for 1 ≤ i ≤ n.

And 18 Boolean function“and”with And(x, y) = 1 if and only if x = y = 1; formula:
x ∧ y, x · y, xy.

ANDm 42 Relation ANDm = {(a1, . . . , am) ∈ {0, 1}m : Σm
i=1ai = m}.

∧n 76 Boolean function with ∧n(x1, . . . , xn) = 1 if and only if Σn
i=1xi = n.

A × B 13 Cross product {(a, b) : a ∈ A and b ∈ B} of A and B.

AUDIT(B) 51 Auditing problem for B-circuits.

BF 31 Clone of all Boolean functions.

bin(x) 14 Binary encoding of x, i.e., bin(x) = binn(x) where n = blog x + 1c if x > 0
and n = 1 if x = 0.

binn(x) 14 The n-ary binary encoding of x, i.e., the word wn−1 . . . w0 ∈ {0, 1}n with
Σn

i=0wi2
i = x.

Ξp
k 60 If k is odd, then Ξp

k = Σp
k, and Ξp

k = Πp
k otherwise.

[A]Ω 15 Closure of A under Ω, i.e., the smallest set containing A and being closed
under Ω.

[B]+fict 77 Set B that is derived from the set of unary functions B by adding functions
that are modified versions of those from B but with fictive variables.

coK 22 coK = {Ā : A ∈ K}

conc(x, y) 74 Concatenation function for binary inputs.

CF(Γ) 36 Set of relations that are describable by Γ-constraint formulas.

C ⊕ K 22 C ⊕ K = {A4B : A ∈ C and B ∈ K}

CSAT(B) 47 Satisfiability problem for B-circuits.

CSAT 47 Satisfiability problem for Boolean circuits.

CSP 37 Constraint satisfaction problem.

DIAG 28 Diagonalizaton of relation R with DIAG(R) = {(a1, . . . , an−1) :
(a1, . . . , an−1, an−1) ∈ R}.

Dϕ 14 Domain {x : ϕ(x) is defined} of ϕ.

DP 22 Second level of the Boolean hierarchy over NP: DP = NP ⊕ NP.

dp(A) 52 The function dp builds a DP-complete set from an NP-complete set A:

dp(A)
def
= (A × Σ∗)4(Σ∗ × A).

DSPACE(K) 21 Class of sets A for which there is a function f ∈ K such that A can be
decided by a deterministic Turing machine with space f .
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DTIME(K) 21 Class of sets A for which there is a function f ∈ K such that A can be
decided by a deterministic Turing machine in time f .

dual(A) 34 Set {dual(f) : f ∈ A}, if A is a set of Boolean functions.

dual(f) 34 Dual function of f , i.e., dual(f)(x1, . . . , xn) = ¬f(x̄1, . . . , x̄n).

DUP 42 Relation DUP = {0, 1}3 − {(0, 1, 0), (1, 0, 1)}.

D 34 Clone of all self-dual Boolean functions.

ECSP 38 Constraint satisfaction problem for existentially quantified constraints.

∃FV(B) 50 Existential frozen variable problem.

encn,k 14 Bijection between {0, . . . , k − 1}n and {0, . . . , kn − 1} with
encn,k(an−1, . . . , a0) =

Pn−1
i=0 aik

i.

EQCF(Γ) 37 Set of relations describable by existential quantified Γ-constraint formulas.

EQ(B) 52 Circuit equivalence problem for B-circuits.

C1 ≡ C2 18 Two Boolean circuits C1, C2 are equivalent (C1 ≡ C2) if and only if they
describe the same Boolean function.

F1 ≡ F2 37 Two constraint formulas F1 and F2 are equivalent (F1 ≡ F2) if and only if
they describe the same relation.

Eq 18 Boolean equivalence function with Eq(x, y) = 1 if and only if x = y; formula:
x ↔ y.

eqA 13 For a set A is eqA = {(a, a) : a ∈ A}, the equality relation on A.

EVENm 42 Relation EVENm = {(a1, . . . , am) ∈ {0, 1}m : Σm
i=1ai is even}.

EXPTIME 21 Class of sets that can be decided deterministically in time 2P , where P is
the set of polynomials.

FCPSB 73 Set of functions computable by circuits of polynomial size.

FDSPACE(K) 20 Set of functions f such that there is a g ∈ K and f is computable by a
deterministic Turing machine with space g.

FDTIME(K) 20 Set of functions f such that there is a g ∈ K and f is computable by a
deterministic Turing machine in time g.

FL 20 Set of functions that are computable in logarithmic space.

fpath 84 Set of paths leading to a leaf in a binary tree T .

FPSPACE 20 Set of functions that are computable in polynomial space and produce out-
puts of polynomial size.

FP 20 Set of functions that are computable in polynomial time.

fm∗ 14 Given the m-ary function f : Am → A, the function fm∗ : (An)m → An is
the coordinate-wise application of f on n-tuples.

Fn(A) 13 Set {f : f : An → A} of n-ary functions on A.

F (A) 13 Set {f : there is a n such that f : An → A} of functions on A.

FV(B) 50 Frozen variable problem.

f : An → A 13 An n-ary function from An to A.

f−1 13 The inverse function of f .

GAPPg 78 Set of functions all of which are in FP and have (g, k)-gaps.

GENs(g) 84 Generation problem for single carriers.

GEN(g) 84 Generation problem.

LVF 27 Identification of the last variables in a function. For an n-ary function f
holds LVF(f)(x1, . . . , xn−1) = f(x1, . . . , xn−1, xn−1).

id 14 Unary identity function with id(x) = x for all x.
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In
i 14 Short for IA,n

i , if A is clear from the context.

IA,n
i 14 The n-ary identity function on A at position i with IA,n

i (a1, . . . , an) = ai for
all a1, . . . , an ∈ A.

idk(x) 74 Identity functions of arity n with idk = In
m, where m = min{k, n}.)

Imp 18 Boolean implication function with Imp(x, y) = 0 if and only if x = 1 and
y = 0; formula: x → y.

FVR 28 Introduction of a fictive variable in a relation. For an n-ary relation R over
A holds FVR(R) = {(b, a1, . . . , an) : b ∈ A and (a1, . . . , an) ∈ R}

Inv(B) 28 Set {R : for all f ∈ B holds f ∼ R} of relations invariant to all functions
from B.

ipath(T ) 84 Set of paths leading not to a leaf but to an inner node in the binary tree T .
F

Y 15 Join operation in a lattice: The minimum of the set of upper bounds of Y .

a t b 15 Short for
F
{a, b}: The minimum of the set of upper bounds of {a, b}; the

join of a and b.

K(k) 22 The k-th level of the Boolean hierarchy over K with K(k) = K ⊕ · · · ⊕ K
| {z }

k

L(A) 16 Lattice of algebras below the algebra A.

ld(i, n) 66 Multiple applications of log: ld(0, n) = n and ld(i, n) = lg ld(i − 1, n).

Leaf(T ) 84 Set of leaves of a binary tree T .

|w | 13 Length of word w.

|x | 14 Length of the binary representation of x ∈ N, i.e., |x |=|bin(x) |.

≤ae 14 If f(x) ≤ g(x) for all but finite x ∈ N, then f ≤ae g.

A ≤log
m B 25 Logarithmic space, many-one reduction. A ≤log

m B if and only if there is an
f ∈ FL such that for all x holds: x ∈ A if and only if f(x) ∈ B.

≤p
m 25 Polynomial-time, many-one reduction. A ≤p

m B if and only if there is an
f ∈ FP such that for all x holds: x ∈ A if and only if f(x) ∈ B.

≤pp
m 111 Reduction of disjoint pairs.

α ≤ β 34 If α, β ∈ {0, 1}n, then α ≤ β if and only if α[i] ≤ β[i] for all 1 ≤ i ≤ n.

f ≤ g 14 If f(x) ≤ g(x) for all x ∈ N, then f ≤ g.

lg(x) 66 Expansion of log to all natural numbers with lg(0) = 0 and lg(x) = log x, if
x ≥ 1.

log 14 Logarithm log2 to the base of 2.

ltnn
i 66 Tower of logarithms multiplied with n: ltnk

i (n) = n · ltk
i (n).

ltn
i 66 Tower of logarithms with ltk

i (n) = tpk(ld(1, n), ld(2, n), . . . , ld(i, n), 1).

L 34 Clone of all linear Boolean functions.

L 21 Class of sets that can be decided deterministically in logarithmic space.

l(q) 84 Number of left turns in a path q to a node in a binary tree.

FY 15 Meet operation in a lattice: The maximum of the set of lower bounds of Y .

a u b 15 Short for F{a, b}: The maximum of the set of lower bounds of {a, b}; the
meet of a and b.

MODp 76 Boolean function with MODp = {¬} ∪
S

n∈N
{modn

p ,∨n,∧n}.

modn
p 76 Boolean function with modn

p (x1, . . . , xn) = 1 if and only if Σn
i=1xi ≡

0(mod p).

modp 76 Boolean function with modp(y) = modm
p (a1, . . . , am).
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M 34 Clone of all monotonic Boolean functions.

NAE-3-SAT 39 Not all equal 3-SAT problem.

NAEm 42 Relation NAEm = {0, 1}m − {(0, . . . , 0), (1, . . . , 1)}.

Nand 18 Boolean function “nand” with Nand(x, y) = 0 if and only if x = y = 1;
formula: nd(x, y).

NANDm 42 Relation NANDm = {(a1, . . . , am) ∈ {0, 1}m : Σm
i=1ai 6= m}.

n-IN-m 42 Relation n-IN-m = {(a1, . . . , am) ∈ {0, 1}m : Σm
i=1ai = n}.

NL 21 Class of sets that are decidable nondeterministically with logarithmic space.

Node(T ) 84 Set of nodes of a binary tree T .

Nor 18 Boolean function “nor”with Nor(x, y) = 1 if and only if x = y = 0; formula:
nr(x, y).

NORm 42 Relation NORm = {(a1, . . . , am) ∈ {0, 1}m : Σm
i=1ai = 0}.

Not 18 Boolean negation function with Not(x) = 1 if and only if x = 0; formula:
x̄, ¬x.

NP 21 Class of sets that are decidable nondeterministically in polynomial time.

NSPACE(K) 21 Class of sets A for which there is a g ∈ K such that A is decidable nonde-
terministically with space g.

NTIME(K) 21 Class of sets A for which there is a g ∈ K such that A is decidable nonde-
terministically in time g.

ODDm 42 Relation ODDm = {(a1, . . . , am) ∈ {0, 1}m : Σm
i=1ai is odd}.

Or 18 Boolean function “or” with Or(x, y) = 0 if and only if x = y = 0; formula:
x ∨ y.

ORm 42 Relation ORm = {(a1, . . . , am) ∈ {0, 1}m : Σm
i=1ai > 0}.

∨n 76 Boolean function with ∨n(x1, . . . , xn) = 1 if and only if Σn
i=1xi > 0.

path(T ) 84 Set of paths leading to nodes in a binary tree T .

Pol(B) 28 Set {f : f ∼ R for all R ∈ B} of polymorphisms of B.

PE 27 Presence of the equality relation. A 0-ary operation on the set of relations
with PE = eq.

PI 27 Presence of identity. A 0-ary operator on functions with PI = I21.

f ∼ R 15 For all α1, . . . , αn in the m-ary relation R holds fm∗(α1, . . . , αn) ∈ R.

PRO 28 Projection of a relation. For an n-ary relation R over A holds PRO(R) =
{(a1, . . . , am−1) : there is a b ∈ A such that (b, a1, . . . , am−1) ∈ R}.

PSPACE 21 Class of sets that can be decided with polynomial space.

P 21 Class of sets that can be decided deterministically in polynomial time.

QSATk(Γ) 60 Quantified Boolean constraint satisfaction problem.

R0 34 Clone of all 0-reproducing Boolean functions.

R1 34 Clone of all 1-reproducing Boolean functions.

Rn(A) 13 Set {B : B ⊆ An} of n ary relations over A.

R(A) 13 Set {B : there is a n with B ⊆ An} of relations with finite arity over A.

rgbg(k, `) 77 Right gap bound in a gap-defining function.

Rnae 39 Relation Rnae = {0, 1}3 − {(0, 0, 0), (1, 1, 1)}.

Root(T ) 84 Root of a binary tree T .

RF 27 Rotation of variables in a function. For an n-ary function f holds
RF(f)(x1, x2, . . . , xn) = f(x2, . . . , xn, x1).



RR 27 Rotation of variables in a relation. For an n-ary relation R is RR(R) =
{(a2, . . . , an−1, a1) : (a1, . . . , an−1, an) ∈ R}.

r(q) 84 Number of right turns in a path q to a node in a binary tree.

SAT∗(B) 48 Satisfiability with exception of (1, . . . , 1).

SAT 47 Satisfiability problem for propositional formulas.

SelectSAT(B) 47 Satisfiability problem with selected exceptions.

SUBP 81 Set of functions computable in subpolynomial time.

SUB 27 Substitution of functions. If f is an m-ary function and g is n-ary function,
then SUB(f, g)(x1, . . . , xm−1, y1, . . . , yn) = f(x1, . . . , xm−1, g(y1, . . . , yn)).

[A] 27 Superposition closure [A] = [A]SUP.

〈B〉 28 Relational superposition closure of B; 〈B〉 = [B]SUPR
.

SUPR 28 Set of relational superposition operators SUPR = {PE, RR, TR, FVR, PRO,
∩}.

SUP 27 Set of superposition operators SUP = {PI, RF, TF, LVF, SUB}.

tp 66 Short for tp1.

tpk(a1, . . . , an) 66 Tower of Powers: tpk(a1, . . . , ai) = ka
ka ...

kai

2

1 .

C1
M,∗
−→ C2 19 Turing machine M transforms configuration C1 to configuration C2 in a

finite number of steps.

C1
M,n
−→ C2 19 Turing machine M transforms configuration C1 to configuration C2 in n

steps.

TF 27 Transposition of the last variables in a function. For an n-ary function f
holds TF(f)(x1, . . . , xn−1, xn) = f(x1, . . . , xn, xn−1).

TR 28 Transposition of the last variables in a relation. For an n-ary relation R
holds TR(R) = {(a1, . . . , an, an−1) : (a1, . . . , an−1, an) ∈ R}.

UL-uniform 24 A family of circuits (Cn)n∈N is UL-uniform, if there is a function f ∈ FL
such that f(1n) = Cn for all n ∈ N.

UNIQUE-SAT(B) 50 Unique satisfiability problem.

w[i] 13 If w = w1 . . . wn is a word, then w[i] = wi for 1 ≤ i ≤ n.

Xor 18 Boolean function “xor” with Xor(x, y) = 1 if and only if x 6= y; formula:
x ⊕ y.
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(a, b)-weighted tree, 106
– balanced, 106
– complete, 106
Ω-algebra, 15

algebra, 15
almost everywhere, 14
ancestor, in a generation tree, 17
arity
– of a function, 13
– of a relation, 13
assignment
– for a Boolean circuit, 18
atomar lattice, 16
auditing problem for B-circuits, 51

base, with respect to Ω, 15
binary function, 13
binary tree, 84
Boolean circuit, 18
Boolean function, 17
– a-reproducing, 34
– a-separating, 34
– – of degree m, 34
– linear, 34
– monotonic, 34
Boolean hierarchy over NP, 22

carrier, of a function, 83
characteristic function, 21
characteristic string
– of a Boolean function, 17
– of a Boolean relation, 35
child, 17
circuit
– B-circuit, 17
– – with multiple outputs, 23
– Boolean circuit, 17
– satisfiability problem, 47
– – with selected exceptions, 47
clone, 27
– generated by a set, 27
clone of functions, 27
closed set
– under a function, 14

– under a set of functions, 15
closure, with respect to Ω, 15
co-clone, 28
– generated by a set, 28
complementive relation, 39
complete bases, 15
complete sets, 25
computable function, 20
computation
– of function, 20
– in time f , 20
– with space f , 20
configuration
– accepting, 20
– of a Turing machine, 19
– rejecting, 20
constant, 13
constraint
– a-valid, 37
– affine, 38
– anti-Horn, 38
– bijunctive, 38
– Boolean, 35
– Horn, 38
– Schaefer, 38
constraint formula, 35
constraint satisfaction problem, 37
– existentially quantified, 38
correspond, Boolean function to Boolean relation,

35
cross product, 13

databases, 50
deciding a set, 21
– with a nondeterministic Turing machine, 21
decision-complexity classes, 21
depth
– of a Boolean circuit, 23
– of a graph, 17
– of a node, 17
describe, a circuit describes a Boolean function, 18
diagonalization, 28
domain, of a function, 14
dual
– Boolean function, 34
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– Boolean relation, 41
dual-atom, 16
– of L(BF), 34
dual-atomic, 16

edges, of a graph, 17
equality relation, 13
equivalence problem for B circuits, 52
equivalent
– Boolean circuits, 18
– constraint formulas, 37
essentially unary, 14
existential frozen variable problem for B-circuits,

50
existentially quantified constraint formula, 37

family of Boolean circuits, 23
fan-in, 17
fan-out, 17
finitely Ω-generated closure, 15
finitely generated algebra, 15
frozen set of variables, 50
frozen variable, 50
frozen variables problem for B circuits, 50
full path, 84
fully quantified Γ-formula, 60
function, 13
– from An to A, 13
– on a set, 13
– total, 14
function-complexity classes, 20

Galois correspondence, 29
gap-defining function, 77
gaps, a function has, 78
gate, of a Boolean circuit, 17
generation problem
– for a set of carriers, 84
– for a single carrier, 84
generation tree, 84
Graph, 17
– acyclic, 17
– connected, 17
– cyclic, 17
– directed, 17

hardness of sets, 25

identification of the last variables, 27
identity, 14
identity function, 14
initial path, 84
initial state, 19
introduction of a fictive variable
– in a relation, 28
invariant
– set of, with respect to a set of functions, 28

invariant relations, 15

join, 15

label, of a node in a generation tree, 85
lattice, 16
– complete, 16
leaf, 17
length monotonic operations, 86
– minimal, 86
linear normal form of a linear Boolean function, 34
log-space reducibility, 25
log-space uniform families of circuits, 24
lower bound, of a poset, 15

maximum, of a poset, 15
meet, 15
minimum, of a poset, 15

nodes, of a graph, 17

operators, 15
order
– of a clone, 27
– of a co-clone, 28
– of a set of functions, 27
– of a set of relations, 28
output node, of a Boolean circuit, 17

pairing
– closed under, 70
– function, 70
parent, 17
partial order, 15
partially ordered set, 15
path, 17
polymorphism, 14
– set of, with respect to a set of relations, 28
polynomial (un)necessary, 73
polynomial, linear univariate, 97
polynomial-time hierarchy, 22
poset, 15
Post’s lattice, 31
power set, 13
precomplete, 16
predecessor, in a poset, 16
presence of the equality relation, 27
presence of the identity, 27
preservation of a set, 14
projection
– as function, 14
– operation on relations, 28
propositional formula, 18

quantified Boolean Constraint Satisfaction
Problem, 60

quantifier function, 62
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recursive function, 20
recursively enumerable, 20
reduction, 25
reduction, of disjoint NP pairs, 111
relation, 13
relational superposition, 28
root (node), 17
rotation of variables
– in a function, 27
– in a relation, 27

satisfy, a constraint formula, 36
set
– a-separating, 34
– – of degree m, 34
size
– of a Boolean circuit, 23
– of a graph, 17
space, needed in a computation, 20
sub-algebra, 15
sub-polynomial time, 81
substitution, 27
successor, 17
successor, in a poset, 16
superposition, 27

transformation of configurations, 19
transposition of the last variables
– in a function, 27
– in a relation, 28
tree, 17
– binary, 17
Turing machine, 19
– alternating, 20
– deterministic, 20
– nondeterministic, 20

unary function, 13
uniform family of circuits, 24
unique satisfiability problem for B-circuits, 50
universal pair of functions, 69
universe, 15
upper bound, 15

value, of a node in a generation tree, 85

weak co-clone, 36
working alphabet, 19
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