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Zusammenfassung

An einem Hadron Beschleuniger wie dem LHC oder dem Tevatron spielt die Prozessklasse der
Produktion eine Photons in Kombination mit einem leptonisch zerfallenden massiven Eich-
bosons eine wichtige Rolle. Die Gründe für die große Bedeutung sind zum einen die klare
Signatur aus einem Photon und zwei Leptonen als auch der direkte Zugang zu den Kopplun-
gen des Photons an die massiven Eichbosonen und damit die Möglichkeit den Eichsektor des
Standard-Modells der Elementarteilchenphysik zu testen.

Um die Präzision der theoretischen Vorhersagen weiter zu erhöhen wurde im Rahmen dieser
Arbeit eine vollständige Berechnung der Korrekturen in nächstführender Ordnung durchgeführt.
Diese umfassen alle Korrekturen der starken Wechselwirkung vonO (αs) sowie die elektroschwa-
chen Korrekturen vonO (α) inklusive aller photon-induzierten Beiträge. Zur Erzeugung von Ma-
trixelementen wurde dabei auf Feynman-Diagramm basierte Methoden zurückgegriffen. Für die
Behandlung der IR-Divergenzen wurde die Dipolesubtraktion verwendet wobei die Separation
von kollinearen Photon–Jet-Konfigurationen mithilfe der Quark-Photon-Fragmentationsfunktion
á la Glover / Morgan oder des Frixione-Kriteriums erfolgte. Außerdem wurden zwei expe-
rimentell motivierte Szenarien für die Behandlung von geladenen Leptonen im Endzustand
berücksichtigt. In einem Fall werden kollineare Photon–Lepton-Paare zu einem Quasiteilchen
zusammengefasst. Dieses Szenario entspricht der experimentellen Behandlung von Elektronen,
die im Falle eines kollinearen Photons im elektromagnetischen Kalorimeter nicht von diesem
getrennt werden können. Im zweiten Szenario werden Myonen und Photonen als experimen-
tell separierbar angenommen, sodass Myon und Photon getrennt von einander im Detektor
rekonstruiert werden können.

Für die Berechnung der Korrekturen wurden alle Beiträge in einem flexiblen Monte Car-
lo Programm implementiert, das neben der Berechnung des totalen Wirkungsquerschnittes
auch die Erzeugung von Histogrammen für verschiedenste experimentell motivierte Observablen
ermöglicht. Neben den typischen großen elektroschwachen Korrekturen bei hohen Transversa-
limpulsen sowie in Bereichen der Resonanzregion von transversaler beziehungsweise invarianter
Masse zeigt sich, dass auch die photon-induzierten Korrekturen in der Größenordnung von ei-
nigen 10% bei hohen Transversalimpulsen beitragen. Die experimentelle Genauigkeit für Vγ
Produktion in Run I mit 7/8 TeV am LHC lag bei etwa 10%. Aufgrund der gesteigerten Lu-
minosität in Run II wird diese Genauigkeit noch weiter verbessert werden, sodass Korrekturen
von ∼ 5% innerhalb der theoretischen Vorhersagen nicht mehr vernachlässigt werden können.
In dieser Arbeit zeigen wir Ergebnisse für den totalen Wirkungsquerschnitt am LHC für 7, 8
und 14 TeV sowie die dazugehörigen Verteilungen für 14 TeV.
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Abstract

At a hadron collider as the LHC or the Tevatron the production of a photon in association
with a leptonically decaying vector boson represents an important class of processes. These
processes stand out due to a very clean signal of a photon and two leptons. Furthermore they
provide direct access to the photon–vector-boson couplings and thus an easy opportunity to
test the gauge sector of the Standard Model.

Within the scope of this work we present a full calculation of the next-to-leading-order cor-
rections which include the O (αs) corrections of the strong interaction as well as the electroweak
corrections of O (α) including all photon-induced contributions. For the creation of matrix ele-
ments we use methods based on Feynman diagrams. The IR singularities are treated with the
dipole subtraction technique. In order to separate photons from jets, a quark-to-photon frag-
mentation function á la Glover / Morgan or Frixione’s cone isolation is employed. Moreover,
two different scenarios for charged leptons in the final state were considered. The first scenario
for dressed leptons assumes that a charged lepton and a photon will be recombined if they are
collinear. In the second scenario for bare muons it is assumed that leptons and photon can be
separated in a detector also if they are collinear.

For our calculation we implemented all corrections into a flexible Monte Carlo program. Be-
sides the computation of the total cross section this program is also able to generate differential
distributions of several experimentally motivated observables. Apart from the expected large
electroweak corrections in the high transverse-momentum regions and sizeable corrections in
the resonance regions of the transverse or the invariant masses we found photon-induced correc-
tions up to several 10% for high transverse momenta. Within run I at the LHC for 7/8 TeV the
experimental accuracy for Vγ production was roughly 10%. Due to the higher luminosity at
run II this accuracy will be reduced to the level of a few percent so that corrections of the same
order within the theoretical predictions might become relevant. In this work we present results
for the total cross section at the LHC for 7, 8 and 14 TeV and the corresponding distributions
for 14 TeV.
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Introduction

With the shutdown of the Large Hadron Collider (LHC) at the end of 2014 one of the most
exciting and successful time frames in particle physics ended. The first run at 7/8 TeV resulted
in the discovery of the Higgs Boson [1] an so the particle content of the Standard Model (SM)
of particle physics was completely approved by experiments. Until now, the SM represents
the most successful theory in elementary particle physics so far. Mathematically it is a gauge
theory of the strong interactions [2–4] and the electroweak (EW) interaction [5–8] including
spontaneous symmetry breaking [9–13]. However, in spite of the success of the SM there are
still open questions where the SM can not give an answer and it is broadly accepted that the
SM is embedded as a low-energy approximation in a more fundamental description of nature.
One important argument for such an approach is the possible unification of the electroweak
and strong interaction or even a description of all four fundamental forces as part of one theory.
Besides the unification of the electroweak and strong force and a potential connection to general
relativity these beyond SM theories usually provide additional heavier particles which might
be found at the LHC. In the summer of 2015 LHC started again with run II with an energy of
13 TeV. Scrutinising the properties of the Higgs boson is the most pressing task in this run but
with the higher centre-of-mass energy the search of new particles beyond the SM is also possible
in an unprecedented energy regime. In search of new physics beyond the SM one possible entry
should be a continued detailed investigation of the EW gauge bosons. Besides the single gauge
boson production in Drell–Yang processes the production of a gauge-boson pair provides an
excellent possibility for various tests of the EW gauge-boson sector in the SM. The simplest
gauge-boson-pair processes are the production of a vector boson in association with a photon

pp→ V + γ +X → f̄1 + f2 + γ +X , V = W,Z , (1)

where the vector boson decays leptonically. Therein the final-state fermions are f1, f2 =
e, µ, νe, νµ, ντ .

The W + γ production process allows for direct tests of the photon coupling to W bosons
and, additionally, it is an important background process to new physics searches. Since W + γ
production has a total cross section in the picobarn range, it has already been measured at the
Tevatron [14,15] and the LHC [16–19]. Therein the experimental accuracies are roughly 12%.

The production of a charged lepton pair and a photon represents the dominant background
to the Higgs-boson decay into a Z boson and a photon. Naturally, the Higgs-boson decay can
only be measured precisely if the background processes are well under control.

The second part of Z+γ production is the process where the Z boson decays invisibly in two
neutrinos. Accordingly, the experimental signature is mono-photon production in association
with missing transverse energy. Such signals are relevant to the search of new physics in many
exotic models (see e.g. Refs. [20–23]) and there are already several experimental analyses at the
Tevatron [24,25] and the LHC [26,27].

Wγ and Zγ production are also important background processes for the search of narrow
heavy resonances [18] that decay to Wγ and Zγ final states and as predicted in various new
physics models (e.g. see Refs. [28,29] for scalar particles and Ref. [30] for vector particles).
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Another possible approach for the investigation of new physics effects in the electroweak
gauge sector is the framework of anomalous triple gauge couplings (aTGCs). Therein the
WWV, ZZV and ZγV vertices are parametrized by a set of new parameters [31]. Besides several
theoretical studies (e.g. in Refs. [32, 33]) the fact that so far no significant deviations between
the measurements and the theoretical predictions in the SM are seen can be directly translated
into limits on these parameters. Several experimental analyses reported such constraints at the
Tevatron [15,34,35] and at the LHC by the experiments ATLAS [17,18] and CMS [16,36]. Due
to the higher energies and luminosities in run II at the LHC an improvement of the theoretical
predictions is more important than ever. Since the expected experimental uncertainties will be
of the order of a few percent and because of the lacking evidence of new physics so far a further
precise investigation of the SM predictions up to percent level is required.

The first calculations for W + γ [37] and Z + γ [38] production were already published
more than 30 years ago. Afterwards the NLO QCD corrections for on-shell (stable) vector
bosons were calculated in Refs. [39,40]. A further improvement due to the inclusion of leptonic
vector-boson decays in narrow-width approximation was then achieved in Refs. [41,42]. In this
approximation the NLO QCD corrections to W + γ and Z + γ production are also available in
the public program MCFM [43]. Since the NLO QCD corrections for W +γ and Z +γ production
are of the order 150% and 50%, respectively, the NNLO QCD corrections are expected to be
sizeable. In Ref. [43] they were estimated to be of the order 5% due to a scale-variation analysis.
The full NNLO QCD corrections for V + γ production were published in Refs. [44] and [45],
respectively. These calculations show a large impact of 19–26% for Wγ and a moderate effect
of 8–18% for Zγ production.

Since many years it is well known that at high energies EW corrections can cause impacts
of several 10%. The origin of these effects is the existence of logarithmically enhanced contribu-
tions, so-called Sudakov logarithms [46–51]. It was shown in Ref. [52] that these EW corrections
for W + γ are negative and of the order 5–20%. In Ref. [53] the NLO EW corrections were
calculated for Z + γ production with on-shell Z bosons and in Ref. [54] results for NLO EW
corrections to Wγ and Zγ production including the decays of the massive vector bosons in pole
approximation were presented.

In this work we push the existing calculations of the EW corrections for pp→ l+νl/l
−ν̄l+γ+

X and pp→ l+l−/ν̄ν+γ+X production to the level of complete NLO EW corrections including
all off-shell effects and including all partonic channels with initial-state photons and we also
rederive the NLO QCD corrections. Since the treatment of collinear singularities connected
with photon emission of final-state leptons depends on the level of inclusiveness in the event
reconstruction we consider two different scenarios. While in one scenario for dressed leptons we
assume that collinear lepton–photon configurations can not be separated in a detector, in the
second case describing final-state muons we suppose that the collinear photon is absorbed in
the electromagnetic calorimeter and the muon is detected in the muon chamber. Finally, both
particles can be separated also if they are collinear. The calculation of photon-induced and QCD
corrections requires the separation of photons and jets in the final state. For an infrared-safe
separation we use the concept of democratic clustering in combination with a quark-to-photon
fragmentation function [55,56] or alternatively the Frixione isolation criterion [57].

In order to calculate the necessary amplitudes in the ’t Hooft–Feynman gauge we use tra-
ditional methods based on Feynman diagrams. We employ the Weyl–van-der-Waerden spinor
formalism as formulated in Ref. [58] for the numerical evaluation of the amplitudes. For the
numerical calculation of the loop integrals the COLLIER library [59] is used, which is based on
the results of Refs. [60–62] and involves two different independent implementations of all one-
loop integrals. The amplitude calculation is based on the program POLE [52], which internally
uses FEYNARTS 3 [63,64] and FORMCALC [65] for the generation of the amplitudes. The numerical
integration is performed by the multi-channel phase-space generator LUSIFER [66] extended to
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use VEGAS [67, 68] in order to optimize each phase-space mapping.

This thesis is organized as follows:

• In Chapter 1 we discuss the theoretical basics required for NLO calculations. We start
with the Lagrangian of the Standard Model of particle physics. Additionally, we outline
the procedure of renormalization. Therein we focus on the complex-mass scheme which
we consistently use in this work. Furthermore, we briefly outline the parton model and
we discuss its extension for the purpose of NLO calulations.

• Chapter 2 contains the definition of the partonic processes for Wγ and Zγ production.
Starting from the leading-order processes and their partonic content we also discuss the
virtual and the real corrections. We show structural Feynman diagrams of the different
types of contributions and we discuss the difficulties of the respective contributions.

• One of the main challenges during a NLO calculation is the treatement of IR divergencies
which appear in the virtual and the real corrections. Since we consistently use the dipole
subtraction formalism in this work we summarize the basic concept of the procedure in
Chapter 3. Therein we discuss the different fermion–photon splittings and list the most
important formulae for the emitter-spectator combinations which are used in this work.
Finally, we outline our strategies for the treatment of collinear photon–jet configurations.

• In Chapter 4 we present the results of our work. First, we introduce the setup in which the
calculation was performed and we define the different classes of QCD and EW corrections.
Afterwards we list results for the total cross section for 7, 8 and 14 TeV. Moreover, we
present several distributions for 14 TeV for Wγ and Zγ production. Additionally, we
discuss the differences between W+γ and the charge-conjugate process W−γ production.
The results of this chapter have been published in Refs. [69] and [70].

• In Appendix A we outline the Monte Carlo method which is used for the numerical
phase-space integration. After summarizing the general procedure we discuss the explicit
phase-space decomposition which was used in all calculations.

• Appendix B contains a short overview about the numerical evaluation of one-loop integrals
as well as the reduction of tensor integrals as it is implemented in the library COLLIER [59]
and which we used in this work.

• In Appendix C we list distributions for W−γ production. The distributions of this charge-
conjugated process show very similar shapes as the ones for W+γ production. As an
addendum we show in the comparison of W+γ and W−γ production for additional ob-
servables.

• Appendix D presents further distributions for the dilepton + photon production which
also might be relevant for experimental analyses.

3



4



Chapter 1

Theoretical background

1.1 The Standard Model of particle physics

Due to its great accordance with experimental measurements the Standard Model (SM) of
particle physics is one of the most established theories so far. It is a relativistic quantum field
theory which describes the strong and electroweak interaction between elementary particles and
it is formulated as a local non-Abelian gauge theory with the underlying gauge group

SU(3)C × SU(2)w × U(1)Y . (1.1)

Therein SU(3)C indicates the gauge group of the strong force whose fundamental theory is
quantum chromodynamics (QCD) [2–4]. It describes the interaction between quarks and gluons
as well as the gluon self-interaction which is a result of the non-Abelian structure of the group.
The group SU(2)w × U(1)Y is the gauge group of the electroweak (EW) interaction which is
the unification of the electromagnetic and the weak forces. The fundamental theory is the
Glashow-Salam-Weinberg (GSW) Model [5,7,8]. The particle content of the SM is summarized
in Table 1.1.

Fermions
Family 1 2 3

Quarks u c t
d s b

Leptons e µ τ
νe νµ ντ

Bosons

g
W±

Z
γ
H

Table 1.1: Particle content of the Standard Model of particle physics. Fermions are divided
in quarks and leptons and are organized in three families. While quarks interact via QCD and
EW interactions the leptons only couple to the gauge bosons of the EW interaction.

The fermionic fields of matter appear in three generations for quarks and leptons where
the number is not predicted by the SM, but from experiments we know that there are exactly
three light neutrinos [71]. The particles of each row only differ in its masses but have the same
quantum numbers. While the masses for the quarks and charged leptons increase from left to
right all neutrinos in high-energy experiments are considered to be massless 1. The gauge boson

1Since in the SM right-handed neutrinos do not exist even with a Yukawa coupling neutrinos remain massless.
However, from the observation of solar neutrinos and their oscillation between the different flavour eigenstates
it is known, that neutrinos have non-vanishing masses. One solution would be to simply add right-handed
neutrinos leading up to usual Dirac mass terms. There is also the possibility that neutrinos fulfil the Majorana
equation resulting in Majorana mass terms which would be an indication for physics beyond the SM.
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fields are the mediator particles of the strong (gluons) and electroweak (W±, Z, γ) interaction.
From experiments it is known that W and Z boson are massive, but the naive introduction

of mass terms for gauge bosons in the Lagrangian would violate the gauge symmetry. Therefore
the generation of gauge-boson masses in the EW sector of the SM is performed by the Higgs–
Kibble mechanism [9–13]. Therein the SU(2)w×U(1)Y gauge symmetry is spontaneously broken
by the introduction of a scalar field with non-vanishing vacuum expectation value whereby an
invariance under the electromagnetic subgroup U(1)em is preserved. According to the Goldstone
theorem [72] three of the four gauge bosons become massive and the remaining massless boson
can be identified with the photon.

In order to generate fermion masses the naive way would be the addition of fermion mass
terms to the Lagrangian. Since such terms are not invariant under SU(2)w×U(1)Y transforma-
tion these terms are forbidden. The generation of fermion masses is implemented by so-called
Yukawa-interaction terms which provide the most general renormalizable interaction between
fermions and the Higgs field. The couplings of the Higgs field with the massive W and Z bosons
are generated automatically by the covariant derivative in LH.

Finally, the EW Lagrangian LEW for the SM is given by

LEW = LYM + LF + LH , (1.2)

where the Yang-Mills part LYM, the fermionic part LF and the Higgs part LH are separately
gauge invariant. Thereby the Yukawa-interaction terms are included in LH. Following the
conventions in Ref. [73] each of the parts will be discussed in one of the following sections.
Note, that the fermion part LF only contains the EW interaction of fermions. The interaction
of quarks and of gluons via QCD is included in LQCD and will be discussed in Section 1.1.5,
separately.

1.1.1 The Yang–Mills sector

The Yang–Mills part LYM describes the kinematical properties of the four gauge fields W a
µ , (a =

1, 2, 3) and Bµ of the gauge group SU(2)w × U(1)Y. Thereby W a
µ denotes the isotriplet of the

weak isospin group SU(2)w with its generators IaW. Bµ indicates the isosinglet of U(1)Y with
the hypercharge YW. The electric charge operator Q is related to I3

W and YW via the Gell-
Mann–Nishijima relation

Q = I3
W +

YW

2
. (1.3)

The corresponding Lagrangian of the Yang–Mills part is given by

LYM = −1

4
(∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν )2 − 1

4
(∂µBν − ∂νBµ)2 , (1.4)

where g2 and εabc are the coupling constant and the total antisymmetric structure constant of
SU(2)w. The covariant derivative reads

Dµ = ∂µ − ig2I
a
WW

a
µ + ig1

YW

2
Bµ , (1.5)

where g1 is the coupling constant of U(1)Y.

1.1.2 The fermionic sector

In the SM weakly interacting left-handed fermions are arranged as isospin doublets Ψ′i =
(Ψ′i,+,Ψ

′
i,−) of the weak isospin group SU(2)w. The index ± is only used to distinguish between

the two entries in the doublet and i indicates one of the three lepton or quark families. Each
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right-handed fermion field is arranged in a one-dimensional trivial representation of SU(2)w.
The prime in our notation at Ψ′ denotes the explicit basis where the covariant derivative (defined
in Eq. (1.5)) is diagonal. In general, the Ψ′ are not mandatory mass eigenstates.

We introduce left-handed and right-handed fermion fields as

Ψ′L =
1

2
(1− γ5)Ψ′ , Ψ′R =

1

2
(1 + γ5)Ψ′ , (1.6)

where left-handed fields live in the fundamental two-dimensional representation of SU(2)w with
the generator IaW = σa/2 and σa denote the Pauli matrices given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.7)

Right-handed fermions are associated with the trivial one-dimensional representation of SU(2)w

with IaW = 0 so that the g2-term in Eq. (1.5) vanishes. The hypercharge is chosen such that
the correct electric charge results from the Gell-Mann–Nishijima relation in Eq. (1.3).

Assuming the common convention where the left-handed doublets for leptons and quarks
are written as

L′Li =

(
ν ′Li
l′Li

)
, Q′Li =

(
u′Li
d′Li

)
(1.8)

and the right-handed singlets are l′Ri , u′Ri and d′Ri the fermionic Lagrangian reads

LF =
∑

i

(
L̄′Li i /DL

′L
i + Q̄′Li i /DQ

′L
i

)

+
∑

i

(
l̄′Ri i /Dl

′R
i + ū′Ri i /Du

′R
i + d̄′Ri i /Dd

′R
i

)
, (1.9)

where we used the common abbreviation /D = γµDµ and i = 1, 2, 3 denotes the generation
index for leptons or quarks.

1.1.3 The Higgs sector

In the previous section we outlined the interaction between gauge bosons and fermions and
we also mentioned before that naive mass terms of these particles are forbidden. In order
to generate masses of gauge bosons and fermions we use the so-called Higgs mechanism to
break the SU(2)w×U(1)Y symmetry in such a way that the electromagnetic symmetry U(1)em

remains. Therefore we introduce a complex scalar weak-isospin doublet, the Higgs doublet.
In order to achieve one neutral component of this doublet the hypercharge has to be YW ± 1
(following directly from Eq. (1.3)). We use the common choice of YW + 1 so that the Higgs
doublet contains a positive and a neutral component

Φ(x) =

(
φ+(x)
φ0(x)

)
. (1.10)

The generation of gauge-boson masses is then implemented through the gauge-invariant cou-
pling of the Higgs doublet with the gauge bosons. Additionally it also couples to the fermion
via Yukawa couplings and creates the masses of all leptons and quarks. The corresponding
Higgs part of the Lagrangian reads

LH = (DµΦ)†(DµΦ)− V (Φ)

−
∑

i,j

(L̄′Li G
l
ijl
′R
j Φ + Q̄′Li G

u
iju
′R
j Φc + Q̄′Li G

d
ijd
′R
j Φ + h.c.) , (1.11)
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where we introduced the Higgs potential

V (φ) =
λ

4

(
Φ†Φ

)2 − µ2Φ†Φ , µ2, λ > 0 , (1.12)

which describes the self-interaction of the scalar Higgs doublet with the coupling λ and the
mass term µ2. The Gf

ij denote the Yukawa coupling matrices of the fermion f and the charged
conjugated Higgs doublet is defined by Φc = iσ2Φ∗ = (φ0∗(x), φ−(x)). The covariant derivative
Dµ was already introduced in Eq. (1.5).

The Higgs self-interaction (see Eq. (1.12)) leads to a non-vanishing vacuum expectation
value (vev)

|〈Φ〉|2 =
2µ2

λ
≡ v2

2
6= 0 . (1.13)

To ensure that after breaking the SU(2)w×U(1)Y symmetry a U(1)em is still preserved the non-
vanishing vev should only appear in the neutral component of the Higgs doublet. Therefore we
demand

QΦ0 =

(
σ3

2
+
YW

2

)
Φ0 =

(
1 0
0 0

)(
φ01

φ02

)
= 0 , (1.14)

with the solution

Φ0 =

(
0
v√
2

)
, (1.15)

where the global complex phase was set to one. The solution Φ0 is neither invariant under
SU(2)w nor under U(1)Y. With the aid of Eq. (1.15) the Higgs doublet in Eq. (1.10) can be
expanded as

Φ(x) =

(
φ+(x)

1√
2
[v + η(x) + iχ(x)]

)
, φ−(x) = [φ+(x)]† . (1.16)

Therein the fields η(x) and χ(x) as well as φ+(x) and φ−(x) have vanishing vev. χ(x), φ+(x)
and φ−(x) are the unphysical degrees of freedom called would-be Goldstone fields which can
be eliminated by choosing the unitary gauge. η(x) represents the physical massive scalar Higgs
particle which is part of the SM particle content.

1.1.4 Physical fields

The easiest way to determine the particle content of the electroweak SM is to choose the unitary
gauge φ± = 0 and χ = 0 where all unphysical degrees of freedom vanish. In this gauge the
physical ones can be indentified with the eigenstates of mass and charge. Therefore we insert
Φ(x) from Eq. (1.16) using the unitary gauge into the Higgs part of the Lagrangian (1.11)

LH =
1

4
v2g2

2W
−
µ W

+µ +
1

8
v2(g2W

3
µ + g1Bµ)(g2W

3µ + g1B
µ)

+
1

2
(∂µη)(∂µη)− µ2η2 + trillinear and quadrilinear terms

− 1√
2

(v + η)
∑

i,j

(l̄′Li G
l
ijl
′R
j + ū′Li G

u
iju
′R
j + d̄′Li G

d
ijd
′R
j + h.c.) . (1.17)

Hence, we can directly read off from the second term in line 2 the mass of the Higgs boson as
MH =

√
2µ. We used the charge eigenstates W±

µ instead of W
1/2
µ which are defined as

W±
µ =

1√
2

[W 1
µ ∓ iW 2

µ ] . (1.18)
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The physical states of the neutral bosons can be determined by diagonalizing the mass matrix
via (

Aµ
Zµ

)
=

(
cW −sW

sW cW

)(
Bµ

W 3
µ

)
, (1.19)

with the Weinberg angle

cW ≡ cos θW =
g2√
g2

2 + g2
1

, sW ≡ sin θW . (1.20)

Finally, for the masses of the gauge bosons we obtain

MZ =
v

2

√
g2

1 + g2
2 , Mγ ≡MA = 0 , MW = g2

v

2
, (1.21)

where Aµ is massless and can be identified with the photon, Z is the massive neutral gauge
boson with mass MZ and MW denotes the masses of the charged W bosons following directly
from the first term of line 1 in Eq. (1.17).

The generation of fermion masses is also induced by spontaneous symmetry breaking. The
fermion fields f

′L/R
i denote the eigenstates for lepton, up-type quarks and down-type quarks of

the EW interaction. The connection between f
′L/R
i and the physical states is given by

fL
i =

∑

k

U f,L
ik f ′Lk , fR

i =
∑

k

U f,R
ik f ′Rk . (1.22)

Therein U
f,L/R
ik denotes the matrices which diagonalizes the Yukawa couplings Gf

ij so that the
fermion masses are

mf,i =
v√
2

∑

k,m

U f,L
ik Gf

km(U f,R
mi )† . (1.23)

From this equation it follows directly that due to the absence of right-handed neutrinos no
gauge-invariant Yukawa interaction term for neutrinos exists and so in the SM neutrinos remain
massless. Because of that we can choose an arbitrary neutrino matrix U l,L

ik . We employ

νL
i =

∑

k

U l,L
ik ν

′L
k , (1.24)

in such a way that all lepton–W-boson interaction terms are diagonal in LH. In contrast, the
interaction terms between up-type or down-type quarks and W bosons is altered by additional
factors

Vij =
∑

k

Uu,L
ik Ud,L†

kj . (1.25)

This unitary matrix characterizes the mixing between different quark families and is known as
the Cabibbo–Kobayashi–Maskawa (CKM) matrix.

With the relations summarized in this section the parameter set given by g1, g2, λ, µ2, Gl,
Gu and Gd can be transformed into an alternative collection

e, MW, MZ, MH, mf,i, Vij , (1.26)

whose values are directly accessible by experimental measurements. Thereby the electric charge
e is defined as e =

√
4πα and its relation to g1 and g2 is given by

e =
g1g2

g2
1 + g2

2

. (1.27)
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1.1.5 QCD Lagrangian

The gauge group of the SM given in Eq. (1.1) also includes the colour group SU(3)C which de-
scribes the strong interaction between quarks and gluons known as quantum chromodynamics.
Gluons are the gauge bosons of the SU(3)C and quarks transform as triplets in the fundamental
representation. Because of the non-Abelian structure of the group SU(3)C self-interaction of
the gluons exists. The QCD Lagrangian reads

LQCD = −1

4
(∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν)

2 +
∑

q,cc′

ψ̄q,c(i /Dcc′ −mqδcc′)ψq,c′ , (1.28)

where the first term is a Yang-Mills Lagrangian describing the kinematic properties of gluons.
The strong coupling constant gs =

√
4παs is defined analogous to e in Section 1.1.4. fabc denote

the structure constants of the SU(3)C and their generators are the Gell-Mann matrices λa with
a = 1, ..., 8. Furthermore LQCD contains a second term which characterizes the interaction
between quarks and gluons. Therein ψq,c indicates the quark fields with flavour q = u, d, s, c, b, t
and colour index c. The quark mass is labeled by mq and the covariant derivative is defined as

Dµ,cc′ = ∂µδcc′ − i
gs
2
λacc′G

a
µ , (1.29)

where in LQCD we used /Dcc′ = γµDµ,cc′ . Note that since we discuss the QCD and EW La-
grangians separately the partial derivative ∂µ appears two times in Eqs. (1.5) and (1.29). How-
ever, in the total Lagrangian (which combines the EW and the QCD part) it only appears
once.

1.1.6 Gauge fixing, Faddeev-Popov ghosts and quantization

Theoretical predictions in perturbation theory require to define Feynman propagators for gauge
bosons. Therefore we have to choose a specific gauge for the gauge bosons which leads to an
additional gauge-fixing term Lfix in the Lagrangian. In order to ensure the independence of
the specific gauge fixing we follow the procedure introduced by Faddeev and Popov [74] where
a second term LFP is added to the Lagrangian. Then, the effective renormalizable Lagrangian
for EW and QCD are given by

LEW,eff. = LEW + LEW,fix + LEW,FP ,

LQCD,eff. = LQCD + LQCD,fix + LQCD,FP , (1.30)

with LEW and LQCD defined in Eqs. (1.2) and (1.28).

EW theory

Choosing the linear gauge fixing (Rξ-gauge)

F± = (ξW
1 )−

1
2∂µW±

µ ∓ iMW(ξW
2 )

1
2φ± ,

F Z = (ξZ
1 )−

1
2∂µZµ −MZ(ξZ

2 )
1
2χ ,

F γ = (ξγ1 )−
1
2∂µAµ , (1.31)

and the ’t Hooft gauge with ξα1 = ξα2 = 1 leads to the gauge fixing Lagrangian

LEW,fix = −1

2

[
(F γ)2 + (F Z)2 + 2F+F−

]
. (1.32)
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The effects of the LEW,fix will be compensated by the Faddeev–Popov term

LEW,FP = ūα(x)
δF α

δθβ
uβ(x) , (1.33)

where ūα(x) and uβ(x) (α, β = ±,Z, γ) denote the Grassmann-valued ghost fields which are
independent of each other. δFα indicates the variation of the gauge fixing operator under an
infinitesimal transformation δθβ.

QCD

Following the same strategy as for the EW theory we choose a specific gauge fixing

FG = (ξG)−
1
2∂µGµ , (1.34)

with the corresponding Lagrangian

LQCD,fix =
1

2
(FG)2 . (1.35)

The Faddeev–Popov term in QCD is

LQCD,FP = −ūa(x)∂µDab
µ u

c(x) , (1.36)

where we introduced Dac
µ (a, c = 1, ..., 8) as

Dac
µ = ∂µδ

ac − gsfabcGb
µ . (1.37)

1.2 Renormalization

In Section 1.1 we discussed the Lagrangian of the SM which depends on a set of parameters
defined in Eq. (1.26). At tree-level these parameters are directly accessible by experimental
measurements. However, going to next-to-leading order (NLO) this is no longer the case. More
specifically, this means: the original “bare” parameters appearing in the Lagrangian and the
measured values differ by a UV-divergent part and finite contributions depending on the explicit
scheme. In order to make the parameters in the Lagrangian again accessible by experimental
measurements it is necessary to redefine them. This redefinition is called renormalization.

1.2.1 General procedure

A priori, two steps have to be done during the renormalization procedure:

1. redefinition of fields and parameters and

2. solve renormalization conditions

leading to finite propagators and Green’s functions. For the functional relation between the
bare parameter and the renormalized one we use the counterterm approach

P0 = P + δP , (1.38)

where P0 is the original unrenormalized parameter. P is the renormalized one which can be
related to the experimentally measured value and δP denotes the renormalization constant
(counterterm) which contains the UV-divergent component and finite contributions, depending
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on the renormalization scheme. The counterterm will be fixed by a renormalization condition
which relates the bare parameter and the renormalized parameter. In general, this condition can
be chosen in a wide range but the choice of the renormalization condition affects the physical
predictions. Finally, after applying the counterterm approach to all parameters and fields a
renormalized Lagrangian can be deployed via

L0 = L+ δL . (1.39)

Therein L0 and L have the same form but L depends on the renormalized parameters and fields
instead of the unrenormalized ones. δL contains the additional contribution resulting from the
renormalization constants.

1.2.2 The complex-mass scheme

In this thesis we focus on the Wγ and Zγ production processes including the leptonic decay
of the vector bosons so that W and Z bosons only appear as intermediate unstable particles.
Therefore we need a description of particle resonances in perturbation theory. This requires a
Dyson summation of self-energy insertions which automatically leads to a mixing of different
orders in perturbation theory, thus, potentially breaking gauge invariance. For a proper descrip-
tion of the resonant vector-boson propagators we use the complex-mass scheme (CMS) [75–77]
where the masses of the vector bosons are consistently treated as complex quantities

µ2
W = M2

W − iMWΓW , µ2
Z = M2

Z − iMZΓZ , (1.40)

defined as the propagator poles in the complex plane. These complex values will be used in
all propagators and couplings of the Lagrangian. The CMS fully respects gauge invariance and
consequently the underlying Ward identities are fulfilled and no dependence on the gauge fixing
procedure remains. As a consequence of Eq. (1.40) the EW mixing angle becomes complex as
well

c2
W ≡ cos2 θW = 1− s2

W =
µ2

W

µZ2

. (1.41)

The application of the CMS at tree-level by using Eqs. (1.40) and (1.41) in the Born amplitudes
leads to additional terms of O(ΓV/MV) = O(α) (see Ref. [76]) which are formally part of the
NLO contribution.

We now follow the procedure explained in Section 1.2.1. Initially, the real bare parame-
ters of the vector-boson masses are expressed by renormalized complex masses and complex
counterterms

M2
W,0 = µ2

W + δµ2
W , M2

Z,0 = µ2
Z + δµ2

Z (1.42)

and the vector boson fields also are split in a complex field and a complex renormalization
constant

W±
0 = (1 + δZW)W± ,

(
Z0

A0

)
=

(
1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA

)(
Z
A

)
. (1.43)

We outline the renormalization procedure in the CMS for all values which are used in the
explicit calculation of Wγ and Zγ production. Since the renormalization of the Higgs mass,
the Higgs field and the mass of the top quark are not relevant for our needs, we will not discuss
their renormalization. As a first step we introduce the renormalized transverse (T) gauge-boson
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self-energies Σ̂ as

Σ̂W
T (k2) = ΣW

T (k2)− δµ2
W + (k2 − µ2

W)δZW ,

Σ̂ZZ
T (k2) = ΣZZ

T (k2)− δµ2
Z + (k2 − µ2

Z)δZZZ ,

Σ̂AA
T (k2) = ΣAA

T (k2) + k2δZAA ,

Σ̂AZ
T (k2) = ΣAZ

T (k2) + k2 1

2
δZAZ + (k2 − µ2

Z)
1

2
δZZA , (1.44)

where Σ denotes the corresponding unrenormalized self-energy. The photon field is labeled
as A. µ2

W/µ
2
Z and δµ2

W/δµ
2
Z describe the renormalized complex vector-boson masses and the

complex counterterms, respectively, which are defined in Eq. (1.42).
The mass counterterms are fixed by the following renormalization conditions

Σ̂W
T (µ2

W) = 0 , Σ̂ZZ
T (µ2

Z) = 0 , (1.45)

so that the renormalized masses are equal to the location of the propagator poles in the complex
plane of the momenta. The solutions of these conditions are

δµ2
W = ΣW

T (µ2
W) , δµ2

Z = ΣZZ
T (µ2

Z) . (1.46)

The following conditions

Σ̂AZ
T (0) = 0 , Σ̂AZ

T (µ2
Z) = 0 ,

Σ̂
′W
T (µ2

W) = 0 , Σ̂
′ZZ
T (µ2

Z) = 0 , Σ̂
′AA
T (0) = 0 , (1.47)

fix the field renormalization constants. The explicit results are

δZZA =
2

µ2
Z

ΣAZ
T (0) , δZAZ = − 2

µ2
Z

ΣAZ
T (µ2

Z) ,

δZW = −Σ
′W
T (µ2

W) , δZZZ = −Σ
′ZZ
T (µ2

Z) , δZAA = −Σ
′AA
T (0) , (1.48)

where we used the abbreviation Σ
′
T(x) = ∂ΣT/∂p

2|p2=x. δZW applies to W+ and W− fields
because the sign of its imaginary part is fixed by the conditions in Eq. (1.47) and does not
change when going from W+ to W−.

The renormalization of the complex weak mixing angle is applied via

cW,0 = cW + δcW , sW,0 = sW + δsW . (1.49)

From its definition in Eq. (1.41) it can be easily derived that

δsW

sW

= −c
2
W

s2
W

δcW

cW

= − c2
W

2s2
W

(
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

)
. (1.50)

For the renormalization of the fermion fields we use

fσ0 = (1 +
1

2
δZf,σ)fσ , σ = L,R , (1.51)

where the explicit renormalization constants read

δZf,σ = −Σf,σ(m2
f )−m2

f

[
Σ
′f,R(m2

f ) + Σ
′f,L(m2

f ) + 2Σ
′f,S(m2

f )
]
, σ = L,R . (1.52)

Therein the calculation of the self-energies is applied with the complex weak mixing and complex
vector-boson masses from Eqs. (1.41) and (1.40) so that δZf,σ becomes complex itself. In
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Eq. (1.52) the superscripts R, L and S describe the right-handed, left-handed and scalar parts
of the self-energies. Note, that even in the limit m2

f → 0 the second term in Eq. (1.52) leads to

finite contributions due to terms ∝ 1/m2
f in Σ

′f,σ(m2
f ).

For the renormalization of the electric charge we start with

e0 = e+ δe = e
(
1 + δZe

)
. (1.53)

The renormalization constant can be derived from the eeγ-vertex in the Thomson limit (sub-
script α(0)). In CMS it reads

δZe
∣∣
α(0)

=
δe

e

∣∣∣
α(0)

=
1

2
Σ
′AA
T (0)− sW

cW

ΣAZ
T (0)

µ2
Z

. (1.54)

The masses and couplings are treated as complex quantities in the loop integrals and so δZe also
becomes complex. Assuming that the bare value of the electric charge e0 is real the imaginary
part has to vanish and therefore the imaginary part of δZe is directly related to the imaginary
part of the self-energies. While the dominant contributions to Wγ and Zγ production arise
from regions of the phase space where the vector bosons are on their mass-shell the Thomson
limit describes the energy region with p2 → 0. In order to consider the running of α from
this limit to the EW scale p2 = M2

W we have to deal with logarithms of the fermion masses
inducing large corrections proportional to α ln(m2

f/ŝ) (for more details see Ref. [76]). Following
Ref. [76, 78] we use the GF-scheme where α can be derived from the experimental measured Gµ

by

αGµ =

√
2

π
GµM

2
W

(
1− M2

W

M2
Z

)
= α (0) (1 + ∆r) , (1.55)

where we introduce (for details see Ref. [79])

∆r = Σ
′AA
T (0)− c2

W

s2
W

(
ΣZZ

T (µ2
Z)

µ2
Z

− ΣW
T (µ2

W)

µ2
W

)
+

ΣW
T (0)− ΣW

T (µ2
W)

µ2
W

+ 2
cW

sW

Σ
′AZ
T (0)

µ2
Z

+
α

4πs2
W

(
6 +

7− 4s2
W

2s2
W

ln c2
W

)

= ∆α− c2
W

s2
W

∆ρ+ ∆rrem , (1.56)

where ∆α contains the corrections proportional to α ln(m2
f/ŝ), ∆ρ denotes the corrections to

the ρ-parameter which contains corrections ∝ m2
t from a large mass splitting in the top–bottom

isospin doublet. All other terms are represented by the remainder ∆rrem. In our calculation we
then use the modified renormalization constant

δZe
∣∣
α(0)
−→ δZe

∣∣
GF

= δZe
∣∣
α(0)
− 1

2
∆r , (1.57)

which considers the effect of the running α from the Thomson limit to the EW scale.
In this thesis we assume external leptons and quarks as massless stable particles so that we

do not have to renormalize their masses. Since Wγ and Zγ production are purely EW processes
at LO we do not discuss the renormalization of the strong coupling constant αs.

1.3 The parton model

The empiric fact that quarks and gluons can never appear as asymptotic states (colour con-
finement) allows scattering experiments only between colourless external bound states of the
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fa|A(xa) fb|B(xb)

σ̂ab

X

xaPA xbPB

PA

A

PB

B

f

Figure 1.6.: A schematic representation of the hadronic scattering process A+B → f+X, where
f denotes the final-state configuration of interest and X captures any additional
hadronic activity from the hadron remnants.

initiated by two hadrons with momenta PA and PB can be written as the incoherent sum over
all partonic sub-processes that contribute to the final state f under consideration, convoluted
with the respective PDFs (see Fig. 1.6),

σAB(PA, PB) =
∑

a,b

∫ 1

0
dxa

∫ 1

0
dxb f (0)

a|A(xa) f (0)
b|B(xb) σ̂0

ab(pa, pb). (1.93)

The momenta of the partons that participate in the hard scattering are given by pa = xaPA
and pb = xbPB, and σ̂0

ab denotes the partonic cross section at leading order. As pointed out
in the introduction of this section, the PDFs are outside of the perturbative regime of QCD
and have to be extracted from experiment. They are, however, universal in the sense that they
only capture the structure of the hadron, but do not depend on the actual scattering reaction
that probes them. As a result, they can be extracted, e.g. from lepton–nucleon deep-inelastic
scattering (DIS) experiments, and used to calculate predictions for hadron–hadron collisions.

The QCD improved parton model

The critical shortcoming of the naive parton model described so far is the fact that the hadronic
cross section defined through Eq. (1.93) is not IR safe.12 The parton model is devised for
high-energy scattering reactions and is formulated in the limit where all partons are considered
to be massless. In general, this gives rise to IR singularities at higher orders, as was outlined in
Sect. 1.3, and the cancellation of these divergences is ruled by the KLN theorem which requires
the inclusive treatment of all external degenerate states. This requirement of inclusiveness
is, however, not fulfilled in the case at hand because a collinear splitting in the initial-state
will modify the momentum that enters the hard scattering process. What the naive parton
model therefore fails to capture is the degenerate configuration where a parton inside the
hadron undergoes a collinear splitting before entering the hard scattering reaction. As a
consequence, going beyond the leading-order description for the partonic scattering process will,
in general, contain uncancelled divergences of collinear origin in the hadronic cross section given
in Eq. (1.93).
12 For this reason, the partonic cross section in Eq. (1.93) must be restricted to the Born-level prediction σ̂0

ab,
which is guaranteed to be free of any IR singularities.

Figure 1.1: A schematic representation of the hadronic scattering process defined in (1.58),
where f denotes the FS configuration of interest and X captures any additional activity from
the hadron remnants. Image taken from Ref. [82].

strong interaction. The description of the structure of these bound states, called hadrons, is not
possible within perturbation theory and the knowledge about their constituents results from
experimental measurements. However, a theoretical description is provided by the so-called
parton model [80, 81], where hadrons are assumed to be strongly coupled, composite objects.
Their point-like constituents are called partons and can by identified with quarks and gluons.
Theoretical predictions about scattering processes with external hadrons then also require the
precise description of the hard scattering process which defines the perturbatively accessible
interaction between the hadron constituents (quarks and gluons).

1.3.1 Hadronic cross section

In high-energy collisions the masses of the hadrons and the partons can be neglected and
the parton model allows to factorise the hadronic cross section into process-independent non-
perturbative contributions capturing the structure of the hadrons and a partonic cross section
of the hard scattering process which can be calculated with purely perturbative methods. In
order to describe the calculation of the hadronic cross section we start with the following generic
process

A (pA) +B (pB)→ f +X , (1.58)

where the two incoming hadrons A and B with momenta pA and pB are moving fast along the
beam axis so that their transverse momenta are zero. f denotes the final-state (FS) particles of
the hard scattering process and X represents the remnants of the two initial-state (IS) hadrons.
The hadronic scattering process is illustrated in Fig. 1.1.

The momenta of the incoming partons a and b are related to the hadron momenta via

pa = xapA , pb = xbpB , (1.59)

where xa, xb describe the momentum factions xa/b ε [0, 1]. At leading-order (LO) the hadronic
cross section is defined as

dσAB→f (pA, pB) =
∑

a,b

∫ 1

0

dxa

∫ 1

0

dxb

[
f

(0)
a|A(xa)f

(0)
b|B(xb) dσ̂0

ab→f (pa, pb)
]
, (1.60)

where σ̂0
ab→f denotes the Born-level partonic cross section of the process ab → f which is

free of any IR singularities. f
(0)
a|A and f

(0)
b|B represent the non-perturbative parton distribution

functions (PDFs) describing the number density for finding a parton a/b with the momentum
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fraction xa/xb of the corresponding hadron. The PDFs are universal meaning that they are
completely independent of the actual scattering process. They can be extracted e.g. from
lepton–nucleon deep-inelastic scattering (DIS) experiments and then can be used to calculate
theoretical predictions of proton–proton collisions at the LHC. In Eq. (1.60) the integration
over xa/xb is done over the range [0, 1] and the sum

∑
a,b considers all possible pairs {a, b} of

IS partons.

1.3.2 Labratory and partonic centre-of-mass frame

Since we choose the beam axis along the x3-direction the four-momenta of the IS hadrons can
be parametrized in the centre-of-mass frame of the hadrons via

pµA =

√
s

2
(1, 0, 0,+1) , pµB =

√
s

2
(1, 0, 0,−1) , (1.61)

where s = (pA + pB)2 denotes the squared hadronic centre-of-mass energy. With the partonic
momenta defined in Eq. (1.59) it follows

pµa = xa

√
s

2
(1, 0, 0,+1) , pµb = xb

√
s

2
(1, 0, 0,−1) . (1.62)

The centre-of-mass frame of the hadrons is also called laboratory (lab) frame and the momenta
in this frame are used for the event selection and the histogram binning. However, usually
the partonic cross section is calculated in the centre-of-mass frame of the partons. In order to
transform the momenta between both frameworks, the lab frame and the partonic centre-of-
mass frame we define the boost parameter

βab =
k3
a + k3

b

k0
a + k0

b

, (1.63)

where ka/b describe the momenta of the partons a and b in the lab frame and the superscript
“0” and “3” indicate the zeroth and third component. The momenta kµi of the FS particles
then can be transformed from the lab frame to the centre-of-mass frame of the partons via

k̂0
i = γab

(
k0
i − βab k3

i

)
,

k̂1
i = k1

i ,

k̂2
i = k2

i ,

k̂3
i = γab

(
k3
i − βab k0

i

)
, (1.64)

where the centre-of-mass momenta are labeled by a hat and γab =
√

1− β2
ab. For the momenta

of the IS partons we find

p̂µa =

√
ŝ

2
(1, 0, 0,+1) , p̂µb =

√
ŝ

2
(1, 0, 0,−1) , (1.65)

where the partonic centre-of-mass energy is defined by ŝ = xaxbs ≡ τs.

1.3.3 Partonic cross section

On the experimental side the differential partonic cross section dσ̂0
ab→f introduced in Eq. (1.60)

can be formulated as a purely phenomenological quantity with

dσ̂ab→f
dOj

=
1

Lin

dnf (Oj)
dOj

, (1.66)
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where Lin represents the luminosity of the incoming particles and the quantity Oj describes an
experimentally well-defined observable derived from the momenta of the FS particles in the lab
frame. nf denotes the number of events per time which is directly related to the integrated
cross section via

nf = Lin

∫
dOj

[
dσ̂ab→f

dOj

]
≡ Lin σ̂ab→f . (1.67)

On the theoretical side the unpolarized integrated partonic cross section can be expressed as

σ̂ab→f (pa, pb) =
1

2ŝ

∫
dΦ(n)(pa, pb; k1, . . . , kn)|Mab→f (p̂a, p̂b; k̂1, . . . , k̂n)|2 F (n)({Oj}) , (1.68)

where ŝ = (pa + pb)
2 denotes the squared partonic centre-of-mass energy. The function F (n)

symbolizes the application of the event selection cuts acting on a set of well-defined observables
{Oj}. It equals one if an event passes the cuts and equals zero otherwise. The phase space
integration (based on the parton momenta in the lab frame) is described by Φ(n) and is usu-
ally performed by Monte Carlo methods (for technical details see Chapter A). In Eq. (1.68)
|Mab→f |2 represents the scattering amplitudes,

|Mab→f |2 =
1

n(ca)n(cb)n(σa)n(σb)

∑

ca,cb

∑

cf

∑

σa,σb

∑

σf

|Mab→f |2 , (1.69)

averaged over colours (ca/b) and helicities (σa/b) of the IS partons and summed over colours and
polarizations of the FS particles. In case that the final state contains m identical particles the
r.h.s. of Eq. (1.69) has to be multiplied by (1/m!).

1.3.4 Parton model for NLO calculations

The naive parton model described so far proceeds on the assumption that all IS partons are
considered to be massless. However, in calculations beyond LO this would lead to IR singu-
larities originating from collinear splittings of IS partons so that the hadronic cross section
defined in Eq. (1.60) with an NLO partonic cross section including IR singularities is not IR-
safe. The cancellation of the IR singularities as specified by the KLN theorem [83,84] requires
an inclusive treatment of all external states. Since in the naive parton model the case where IS
hadrons cause collinear splittings in the initial state is not captured a fully inclusive treatment
is not possible. Accordingly this would result in an incomplete cancellation of singularities with
collinear origin.

The singular structure of IS collinear divergences turns out to be universal, meaning that
they are independent of the specific scattering process. Therefore they can be attributed to the
partonic structure of the hadrons by a redefinition of the PDFs. This procedure is similar to
the renormalization discussed in Section 1.2. The PDFs f 0

a|A introduced in Eq. (1.60) then are
considered to be bare distributions and the collinear singularities are absorbed by a redefinition
f 0
a|A(xa) → fF.S.

a|A (xa, µ
2
F). In order to illustrate the shape of PDFs we show in Fig. 1.2 the

distributions xfa|P (x, µ2
F) for the factorization scale µF = MZ provided by the NNPDF2.3QED

NLO set [85].
The hadronic cross section then can be generalized to

dσAB→f (pA, pB) =
∑

a,b

∫ 1

0

dxa

∫ 1

0

dxb

[
fF.S.
a|A (xa, µ

2
F)fF.S.

b|B (xb, µ
2
F) dσ̂ab→f (pa, pb, µ

2
F)
]
, (1.70)

where “F.S.” indicates the factorization scheme and µ2
F is the factorization scale. The IR-safe

partonic cross section is denoted by σ̂ab→f . It can be derived from the “bare” partonic cross
section via

σ̂ab→f (pa, pb, µ
2
F) = σab→f (pa, pb) + σC

ab→f (pa, pb, µ
2
F) . (1.71)
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36 Chapter 1. Theoretical preliminaries
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Figure 1.7.: The momentum distribution of the partons inside the proton as described by the
NNPDF2.3QED NLO PDF set.

Figure 1.2: The momentum distribution of the parton inside the proton as described by the
NNPDF2.3QED NLO PDF set. Image taken from Ref. [82].

Therein the long-distance contributions σC
ab→f (pa, pb, µ

2
F) caused by IS singularities were re-

moved from the “bare” partonic cross section and absorbed into the redefinition of the PDFs.
The redefinition of the PDFs (fq and fγ) is then given by

fq|P (x)→ fq|P
(
x, µ2

F

)
− αQ2

q

2π

∫ 1

x

dz

z
fF.S.
q|P

(x
z
, µ2

F

)

×
{

ln

(
µ2

F

m2
q

)
[Pff (z)]+ − [Pff (z) (2 ln (1− z) + 1)]+ + CF.S.

ff (z)

}

− 3
αQ2

q

2π

∫ 1

x

dz

z
fγ|P

(x
z
, µ2

F

){
ln

(
µ2

F

m2
q

)
Pfγ (z) + CF.S.

fγ

}
, (1.72)

for quarks and the analogous redefinition for antiquarks. The redefinition of the photon-PDF
reads

fγ|P (x)→ fγ|P
(
x, µ2

F

)
− αQ2

q

2π

∑

a=q,q̄

∫ 1

x

dz

z
fF.S.
a|P

(x
z
, µ2

F

)

×
{

ln

(
µ2

F

m2
q

)
Pγf (z)− Pγf (z) (2 ln (1− z) + 1) + CF.S.

γf (z)

}
. (1.73)

Therein x is the energy fraction carried by the parton coming from a proton, mq and Qq are
the mass and the charge of the quarks, respectively. The splitting functions are defined as

Pff (z) =
1 + z2

1− z , Pfγ (z) = z2 + (1− z)2 , Pγf =
1 + (1− z)2

z
, (1.74)

and [. . .]+ denotes the usual (+)-distribution prescription

∫ 1

0

dx [f(x)]+g(x) =

∫ 1

0

dx f(x)[g(x)− g(1)] , (1.75)
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with g(x) representing a smooth test function. The coefficients CF.S.
ff , CF.S.

fγ and CF.S.
γf define the

factorization scheme. In this work we consistently use the NNPDF2.3QED [85]. Actually the
O(α)-corrected NLO PDF set NNPDF23 is only of LO with respect to QED corrections, i.e.
they do not uniquely define a factorization scheme, but they should be most adequately used
in a DIS-like factorization scheme for QED corrections (see Ref. [86] for arguments), so that

CDIS
ff =

[
Pff (z)

(
ln

1− z
z
− 3

4

)
+

9 + 5z

4

]

+

,

CDIS
fγ = Pfγ (z) ln

1− z
z
− 8z2 + 8z − 1 ,

CDIS
γf = −CDIS

ff . (1.76)
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Chapter 2

Gauge-boson production in association
with a photon at NLO

2.1 Process definitions at LO

The production of a leptonically decaying gauge boson in association with a photon includes
four types of processes. For the W+ production the corresponding partonic LO process is

ui d̄j → l+νl γ , (2.1)

and for the charge conjugated process of W− production we find

ūi dj → l−ν̄l γ . (2.2)

Therein ui, ūi, dj and d̄j indicate up-type quarks and antiquarks and down-type quarks and
antiquarks of the first two generations (i, j = 1, 2). The charged lepton as well as the corre-
sponding neutrino/antineutrino are labeled as l and νl/ν̄l, where l = e, µ. The LO Feynman
diagrams for process (2.1) are shown in Fig. 2.1.

The production of a Z boson in association with a photon includes two types of processes.

qi q̄i → l+l− γ , (2.3)

qi q̄i → ν̄lνl γ . (2.4)

While in process (2.3) the final state contains two charged leptons as decay products of an
intermediate Z boson or photon in process (2.4) the Z boson decays in two neutrinos. qi/q̄i
indicate quarks and antiquarks of the five light quarks qi = u, d, s, c, b. The corresponding LO
Feynman diagrams are shown in Figs. 2.2 and 2.3. While for the process defined in Eq. (2.3)
we assume l = e, µ for the process defined in Eq. (2.4) the final state includes three families of
neutrinos νl = νe, νµ, ντ .
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Figure 2.1: LO Feynman diagrams for the partonic process (2.1).
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Figure 2.2: LO Feynman diagrams for the partonic process (2.3).
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Figure 2.3: LO Feynman diagrams for the partonic process (2.4).

2.2 Virtual corrections

We compute the virtual QCD one-loop contributions to order O(α3αS) and the virtual EW one-
loop diagrams to order O(α4). Technical details about the calculation of the emerging one-loop
integrals will be discussed in App. B. The QCD corrections to the partonic processes defined in
(2.1)–(2.4) include contributions from self-energy, vertex and box (4-point) diagrams only. For
Wγ production as well as for the neutrino process (2.4) there are 10 QCD one-loop diagrams.
The Zγ production process with two charged leptons in the final state includes 26 QCD one-
loop diagrams. The virtual EW one-loop diagrams additionally involve pentagon diagrams.
The structural diagrams for self-energies, vertices and boxes of the EW NLO corrections for
processes (2.1) and (2.3) are given in Figs. 2.4–2.6 and Figs. 2.8–2.10, respectively the pentagons
are shown explicitly in Figs. 2.7 and 2.11.

For the Wγ production processes there are about 280 virtual EW one-loop diagrams. The
Zγ production where the final state contains two charged lepton comprises roughly twice as
much diagrams because for almost all internal Z bosons the identical diagram with an internal
photon exists. Due to the uncharged final state of process (2.4) the number of virtual diagrams
is much lower than for process (2.3). The number of virtual one-loop diagrams for all processes
are summarized in Table 2.1.
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Figure 2.4: Self-energy corrections to the partonic process (2.1).
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Process Self-energy Vertex Box Pentagon Total

Wγ QCD 2 6 2 10
Wγ EW 124 90 50 16 280
Zγ(l+l−) QCD 4 20 4 28
Zγ(l+l−) EW 220 216 81 19 536
Zγ(ν̄ν) QCD 2 8 2 12
Zγ(ν̄ν) EW 60 94 37 6 197

Table 2.1: Number of virtual one-loop Feynman diagrams for the partonic processes defined in
(2.1)–(2.4). We show the total number of virtual diagrams as well as the number of self-energy,
vertex, box and pentagon diagrams separately. Therein triangles with an effective gZγ and
gγγ (which only appears for Zγ(l+l−)) vertex are included in the QCD vertex corrections of
Zγ production. Wγ indicates the W+γ production or the charged conjugated W−γ production
separatly.
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Figure 2.5: Vertex corrections to the partonic process (2.1).
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Figure 2.6: Box corrections to the partonic process (2.1).
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Figure 2.7: Explicit pentagon diagrams for the partonic process (2.1).
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Figure 2.8: Self-energy corrections to the partonic process q q̄ → l+l− γ.
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Figure 2.9: Vertex corrections to the partonic process q q̄ → l+l− γ.
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Figure 2.10: Box corrections to the partonic process q q̄ → l+l− γ.
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Figure 2.11: Explicit pentagon diagrams for the partonic process q q̄ → l+l− γ.

2.3 Photon–photon-induced contribution

The partonic process defined in (2.3) implies the final state l+l− γ which also can be produced
by

γ γ → l+l− γ , (2.5)

which is a pure QED-process and does not include any intermediate vector boson. The Feynman
diagrams for this process are shown in Fig. 2.12. Due to the two photons in the IS the partonic
cross section will be convoluted two times with the small photon-PDFs and these contributions
are expected to be small. For this reason we will give results for its contribution separately
and do not consider NLO EW corrections to this LO process. Since this process only contains
charged leptons as intermediate particle there are no QCD corrections.

2.4 Real corrections

In general, real corrections are induced by the radiation of an additional photon or QCD parton.
For Wγ and Zγ production they can be divided in three sub-contributions: quark–antiquark-
induced EW, photon-induced and QCD corrections.
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Figure 2.12: γγ-induced LO diagrams for the process (2.5).

2.4.1 Real quark–antiquark-induced EW corrections

The quark–antiquark-induced EW corrections are given by the following partonic processes

ui d̄j → l+νl γ γ , (2.6)

qi q̄i → l+l− γ γ , (2.7)

qi q̄i → ν̄lνl γ γ . (2.8)

The corresponding Feynman diagrams for the processes (2.6) and (2.7) are shown in Figs. 2.13
and 2.14. While the production of two charged leptons in 2.7 involves photon emission from IS
and FS radiation the photons in the neutrino production process (2.8) result from IS radiation
only (corresponding to the first six diagrams in Fig. 2.14).

Contributions from the partonic processes (2.6)–(2.8) contain singularities from soft photons
and collinear fermion–photon configurations. The soft divergences completely cancel against
corresponding contributions from virtual corrections. In contrast, the cancellation between
collinear divergences of real and virtual corrections is only partial. As discussed in Section 1.3
remaining collinear singularities from photon radiation off IS partons are absorbed into the
PDFs by a redefinition.

The cancellation of singularities due to photon radiation off FS leptons depends on the event
reconstruction procedure. Hence, two cases should be considered. The first case describes a
FS electron which can not be separated from collinear photons at the LHC because a collinear
electron–photon system will be detected as only one shower in the electromagnetic calorimeter.
In order to simulate this circumstance the electron and the photon will be recombined in the
collinear phase-space region which results in a complete cancellation of the IR singularities
(as specified by the KLN theorem [83, 84]). This case is called the collinear-safe (CS) case.
The second scenario describes a FS muon. While the photon again will be absorbed in the
electromagnetic calorimeter the muon leads to a signal in the muon chamber. Since muon
and photon can be separated also if they are collinear they should not be recombined in the
calculation. This scenario with a separation of “bare” muons and photons is called the non-
collinear-safe case (NCS). Here, the KLN theorem can not be applied and the subtraction
procedure has to be extended. As we will point out in detail in Sections 3.2.3 –3.2.5 this leads
to additional logarithms of the lepton mass which remain in the cross section. The technical
details about the formalism we use to treat the soft and collinear singularities are outlined in
Section 3.2.
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Figure 2.13: Feynman diagrams of the quark–antiquark-induced real EW corrections for the
partonic process u d̄→ l+νl γ.

2.4.2 Real QCD corrections

The real QCD corrections at NLO include quark–antiquark induced and gluon-induced contri-
butions. The corresponding channels for W+γ production are given by

ui d̄j → l+νl γ g ,

ui g → l+νl γ dj ,

d̄j g → l+νl γ ūi (2.9)

and the Feynman diagrams for the quark–antiquark induced partonic process are shown in
Fig. 2.15. The gluon-induced diagrams can be derived via crossing. The partonic processes for
Zγ production with two charged leptons in the final state are

qi q̄i → l+l− γ g ,

qi g → l+l− γ qi ,

q̄i g → l+l− γ q̄i . (2.10)

With the Feynman diagrams for the partonic process q q̄ →→ l+l− γ shown in Fig. 2.16 gluon-
induced diagrams are again related by crossing symmetries. The partonic channels for Zγ with
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Figure 2.14: Feynman diagrams of the quark–antiquark-induced real EW corrections for the
partonic process q q̄ → l+l− γ.

two neutrinos in the final state read

qi q̄i → ν̄lνl γ g ,

qi g → ν̄lνl γ qi ,

q̄i g → ν̄lνl γ q̄i . (2.11)

The Feynman diagrams for the first partonic process in (2.11) results from the diagrams with
intermediate Z bosons in Fig. 2.16 by replacing charged leptons with neutrinos. Since photons
do not couple to neutrinos the corresponding diagrams in Fig. 2.16 do not exist for the neutrino
process. Finally, Zγ production with two neutrinos contains half as much diagrams as the
process with two charged leptons in final state. The diagrams for the gluon-induced can be
derived via crossing symmetries.

For the treatment of IR singularities and its extraction from the real amplitudes the dipole-
subtraction formalism à la Catani–Seymour [87, 88] is applied. All channels of the partonic
processes given in Eqn. (2.9), (2.10) and (2.11) have the similarity that the final state contains
a photon and a jet which potentially can become collinear. Experimentally there is no way
to distinguish if a collinear photon is a result of the partonic process or generated during the
hadronization process. Therefore a well-defined procedure for the handling of photons and
jets is necessary. In this thesis we apply two methods for this aspect, namely, the method of
democratic clustering in combination with a quark-to-photon fragmentation function and the
Frixione isolation scheme. Both methods will be discussed in detail in Section 3.5.
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Figure 2.15: Feynman diagrams of the quark–antiquark-induced real QCD corrections for the
partonic process u d̄→ l+νl γ.
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Figure 2.16: Feynman diagrams of the quark–antiquark-induced real QCD corrections for the
partonic process q q̄ → l+l− γ.

2.4.3 Real photon-induced EW corrections

The real photon-induced EW corrections include the following partonic channels for W+γ
production

ui γ → l+νl γ dj ,

d̄j γ → l+νl γ ūi . (2.12)

For Zγ production contributions from

qi γ → l+l− γ qi ,

q̄i γ → l+l− γ q̄i . (2.13)

respectively

qi γ → ν̄lνl γ qi ,

q̄i γ → ν̄lνl γ q̄i . (2.14)

have to be taken into account. All these channels can be derived from the quark–antiquark
induced EW corrections by crossing one of the photons to the initial state and the quark or
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antiquark to the final state. Since the FS signature for photon-induced corrections is the same
as for the partonic processes of the real QCD corrections the identical treatment of collinear
photon–jet configurations (mentioned in Section 2.4.2 and discussed in detail in Section 3.5) will
be applied. The real matrix elements of the processes (2.12) and (2.14) include singularities from
the splittings discussed in Section 3.2 and collinear splittings γ → ff̄ ∗ discussed in Sections 3.3.
For process (2.13) we additionally have to consider the f → fγ∗ splitting which leads to a
photon entering the LO matrix element as IS particle. However, due to charge conservation
a corresponding LO process with IS photons does not exist for Wγ production and due to
the absence of a photon–neutrino coupling there is also no LO process with IS photons for
pp→ ν̄νγ. The f → fγ∗ splitting is discussed in Section 3.4.
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Chapter 3

Dipole subtraction in NLO calcuations

In this chapter we review the basic concept of the dipole subtraction formalism and summarize
the most important formulae. Therefore, we briefly outline the basic concept of this formalism
in Section 3.1. In Sections 3.2, 3.3 and 3.4 the different types of fermion–photon splittings and
their explicit subtraction functions will be discussed. Section 3.5 is dedicated to the aspect of
collinear photons and jets in the final state. Therein we present two different methods for the
treatment of this issue.

3.1 General strategy

The calculation of real NLO corrections necessitates the computation of the phase-space integral∫
dΦ1 |Mreal|2. The real matrix element |Mreal|2 in general contains soft and collinear singu-

larities which complicate the numerical integration. This difficulty is approached by the dipole
subtraction formalism. The basic idea is the introduction of a subtraction function |Msub|2
with the same asymptotic behaviour in the soft and collinear regions of the phase space as
the real matrix element. The generic procedure where the integral of the auxiliary function is
subtracted and re-added back is given by

∫
dΦ1 |Mreal|2 =

∫
dΦ1

(
|Mreal|2 − |Msub|2

)
+

∫
dΦ1 |Msub|2 (3.1)

where Φ1 indicates the (N + 1)-particle phase space of the full real emission process. The
subtraction term

∫
dΦ1 |Msub|2 has to fulfil two requirements:

1. It completely contains the singular behaviour of
∫

dΦ1 |Mreal|2 so that the first term on
the r.h.s. of Eq. (3.1) is non-singular and can be integrated numerically easily.

2. It is possible to integrate out analytically the phase space of the radiated particle so that
the phase-space integral can be factorized into a non-radiative part

∫
dΦ̃0 and the part of

the additional radiated particle
∫

[d k].

Therewith an analytical cancellation of singularities between the real and virtual corrections is
possible.

If the subtraction function fulfils the upper conditions the phase-space integral in the second
term on the r.h.s of Eq. (3.1) can be factorized in the following way

∫
dΦ1 =

∫
dΦ̃0 ⊗

∫
[d k] , (3.2)

and so finally the integral of the real matrix elements transforms to
∫

dΦ1 |Mreal|2 =

∫
dΦ1

(
|Mreal|2 − |Msub|2

)
+

∫
dΦ̃0 ⊗

(∫
[d k]|Msub|2

)
, (3.3)
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where Φ̃0 denotes the (N)-particle phase space of the non-radiative process. In general, the
subtraction function |Msub|2 is constructed with a LO matrix element |M0|2 and a process-

independent auxiliary function g
(sub)
ff ′ ,

|Msub,ff ′ |2 ∝ g
(sub)
ff ′ · |M0|2 , (3.4)

where the pair of indices ff ′ describes an arbitrary emitter–spectator combination. The emitter
f is the charged particle which radiates the photon and the spectator is denoted by f ′. In
Eq. (3.3) the phase-space integrations

∫
dΦ1 and

∫
dΦ̃0 do not contain any singularities because

the complete singular behaviour is included in g
(sub)
ff ′ . After the analytic integration of

∫
[d k]

the second term on the r.h.s of Eq. (3.3) can be combined with the virtual corrections. Thereby
the corresponding virtual counterparts will compensate the singularities so that we end up with
finite contributions only. Each of them can be easily integrated with numerical methods.

In the following section based on Ref. [89] we provide an overview about the subtraction
procedure for photon radiation off fermions which is needed for the calculation of the quark–
antiquark-induced real EW corrections defined in Eqs. (2.6)–(2.8). We will also summarize
the extension concerning photon radiation off FS fermions to processes with non-collinear-safe
observables worked out in detail in Ref. [90]. Since we will need additional subtraction functions
for the calculation of the photon-induced EW corrections we provide an overview about the
most important formulae for γ → ff ∗ splittings and f → fγ∗ splittings in Sections 3.3 and
3.4. This overview follows Sections 3 and 5 of Ref. [90].

3.2 Photon radiation off fermions

The subtraction function |Msub|2 can be constructed out of the squared Born-level matrix

element |M0|2 and the generic dipole function g
(sub)
ff ′ ,

|Msub(Φ1)|2 = −
∑

f 6=f ′
QfσfQf ′σf ′e

2g
(sub)
ff ′ (pf , pf ′ , k)

∣∣∣M0

(
Φ̃0,ff ′

)∣∣∣
2

, (3.5)

where pf , pf ′ , and k are the emitter, the spectator, and the photon momenta, respectively. Qf

and Qf ′ describe the charges of emitter and spectator and the sign factors σf/f ′ indicate the
charge flows taking the values +1(−1) for incoming (outgoing) fermions or outgoing (incoming)
antifermions. Here, the projection of the (N + 1)-particle phase space Φ1 to the (N)-particle
phase space is denoted as Φ̃0,ff ′ where the additional indices ff ′ describe a specific combination
of emitter f and spectator f ′. For each combination ff ′ in general a different mapping is
necessary. If we denote the momenta of Φ1 by pf , pf ′ , k and {kn} (all remaining momenta) and
the momenta of Φ̃0,ff ′ by p̃f , p̃f ′ and {k̃n} the transition between the two phase spaces obeys

p̃f −→
k→0

pf , p̃f ′ −→
k→0

pf ′ , {k̃n} −→
k→0
{kn} (3.6)

in the soft limit and

p̃i −→
pik→0

pi + k , p̃a −→
pak→0

xapa , p̃f ′ −→
pfk→0

pf ′ , {k̃n} −→
pfk→0

{kn} (3.7)

in the collinear limit. Therein xa is the energy fraction of the IS fermion after photon emission

xa =
p0
a − k0

p0
a

. (3.8)

Here and in the following sections we follow the common convention to use indices a, b only
for IS fermions and indices i, j only for FS fermions. As indicated in Eq. (3.7) IS emitter and
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Figure 3.1: Effective diagrams for photon radiation off fermions.

FS emitter result in different phase-space transitions. The different cases of emitter–spectator
combinations are also illustrated in Fig. 3.1. In this thesis we only take into account light
fermions which means that we neglect their masses whenever it is possible. In the following
sections we summarize the most important formulae for all emitter–spectator combinations.

3.2.1 Initial-state emitter and initial-state spectator

For an IS emitter a and an IS spectator b the schematic diagram is shown in the upper left
part of Fig. 3.1. In this section we strictly follow the conventions and ideas in Ref. [89].

Introducing the abbreviations

xab =
papb − pak − pbk

papb
, yab =

pak

papb
, (3.9)

the dipole functions g
(sub)
ab,τ are defined as

g
(sub)
ab,+ =

1

(pak)xab

[
2

1− xab
− 1− xab

]
,

g
(sub)
ab,− = 0 . (3.10)
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In the singular limits (k → 0) and (pak → 0) we find the following asymptotic behaviour

xab −→
k→0

1 , yab −→
k→0

0 , xab −→
pak→0

xa , yab −→
pak→0

0 . (3.11)

The corresponding integrated counterpart where the phase space of the additional radiated
particle was integrated out analytically is given by

∫
dΦ1 |Msub,ab(Φ1)|2 = − α

2π
QaσaQbσb

×
{∫ 1

0

dxG(sub)
ab,τ (s, x)

[
1

x

∫
dΦ̃0,ab(s, x)

∣∣∣M0

(
p̃a(x), p̃b, {k̃n(x)}

)∣∣∣
2

−
∫

dΦ̃0,ab(s, 1)
∣∣∣M0

(
p̃a(1), p̃b, {k̃n(1)}

)∣∣∣
2
]

+G
(sub)
ab,τ (s)

∫
dΦ̃0,ab(s, 1)

∣∣∣M0

(
p̃a(1), p̃b, {k̃n(1)}

)∣∣∣
2
}
, (3.12)

where we introduced the fine-structure constant α = e2/(4π) and the momenta entering into
the matrix element are related to the momenta in the upper left part Fig. 3.1 with p̃a(x) = xpa
and p̃b = pb. Therein we also indicate that the remaining momenta {k̃n(x)} of the phase

space Φ̃0,ab(s, x) implicitly depend on x. The distributions G(sub)
ab,τ (s, x) and the endpoint parts

G
(sub)
ab,τ (s) read

G(sub)
ab,+ (s, x) = Pff (x)

[
ln

(
s

m2
a

)
− 1

]
, G(sub)

ab,− (s, x) = 1− x , (3.13)

G
(sub)
ab,+ (s) = L(s,m2

a)−
π2

3
+

3

2
, G

(sub)
ab,− (s) =

1

2
, (3.14)

with

L(P 2,m2) = ln

(
m2

P 2

)
ln

(
m2
γ

P 2

)
+ ln

(
m2
γ

P 2

)
− 1

2
ln2

(
m2

P 2

)
+

1

2
ln

(
m2

P 2

)
(3.15)

and the Altarelli–Parisi splitting function Pff (z)

Pff (z) =
1 + z2

1− z . (3.16)

Since the mass singularities for vanishing photon and fermion masses are completely factorized
into G(sub)

ab,+ and G
(sub)
ab,+ and the CM energy s is fixed the convolution with x and the phase-space

integration in Eq. (3.12) can be done numerically.

3.2.2 Initial-state emitter and final-state spectator

As pointed out in Ref. [89] the cases IS emitter / FS spectator and FS emitter / IS spectator
always appear in combination. Since, the treatment of IS emitters and FS emitters strongly
differs in its complexity we first discuss the case of an IS emitter and a FS spectator in this
section and the reverse case in the following section, separately. The corresponding effective
diagram for an IS emitter a and a FS spectator i is shown on the upper right side of Fig. 3.1.

The dipoles are given by

g
(sub)
ai,+ (pa, pi, k) =

1

(pak)xia

[
2

2− xia − zia
− 1− xia

]
,

g
(sub)
ai,− (pa, pi, k) = 0 , (3.17)
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where we introduced the variables

xia =
papi + pak − pik
papi + pak

, zia =
papi

papi + pak
(3.18)

with the asymptotic limits

xia −→
k→0

1 , zia −→
k→0

1 , xia −→
pak→0

xa , zia −→
pak→0

1 . (3.19)

Therein zi is the energy fractions of the FS fermion after the emission of the photon

zi =
p0
i

p0
i + k0

(3.20)

and xa is defined in Eq. (3.8). The numerical evaluable integrated counterpart reads
∫

dΦ1 |Msub,ai(Φ1)|2 = − α

2π
QaσaQiσi

×
{∫ 1

0

dx

[ ∫
dΦ̃0,ia(P

2
ia, x)

1

x
G(sub)
ai,τ (P 2

ia, x)
∣∣∣M0

(
p̃a(x), p̃i(x), {k̃n(x)}

)∣∣∣
2

−
∫

dΦ̃0,ia(P
2
ia, 1)G(sub)

ai,τ (P 2
ia, x)

∣∣∣M0

(
p̃a(1), p̃i(1), {k̃n(1)}

)∣∣∣
2
]

+

∫
dΦ̃0,ab(P

2
ia, 1)G

(sub)
ab,τ (P 2

ia)
∣∣∣M0

(
p̃a(1), p̃i(1), {k̃n(1)}

)∣∣∣
2
}
, (3.21)

where we use

p̃a(x) = xpa , p̃i(x) = xpa − Pia and Pia = pi + k − pa = p̃i − p̃a , (3.22)

to connect the momenta p̃i and p̃a of the phase space Φ̃0,ia(P
2
ia, x) with the momenta pi, pa and

k in the upper right part of Fig. 3.1. With Pff (x) from Eq. (3.16) the explicit distributions
read

G(sub)
ai,+ (P 2

ia, x) = Pff (x)

[
ln

( |P 2
ia|

m2
ax

)
− 1

]
− 2

1− x ln(2− x) + (1 + x)ln(1− x) ,

G(sub)
ai,− (P 2

ia, x) = 1− x (3.23)

and the endpoint parts are

G
(sub)
ai,+ (P 2

ia) = L(
∣∣P 2

ia

∣∣ ,m2
a)−

π2

6
+

3

2
,

G
(sub)
ai,− (P 2

ia) =
1

2
, (3.24)

where L defined in Eq. (3.15). The fermion mass singularities appear in the distribution

G(sub)
ai,+ (P 2

ia, x) as well as in the endpoint part G
(sub)
ai,+ (P 2

ia).

3.2.3 Non-collinear-safe photon radiation of final-state fermions

In order to simulate the experimental setup at the LHC as close as possible we have to consider
two different scenarios for the approach of photon emission off FS fermions. These two scenarios
are called the CS and NCS case and their experimental motivation was given in Section 2.4.1.
In this and the following two sections we follow Ref. [90] and focus on the NCS case because it
is the more general one and it effectively also covers the CS case.
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Since in the NCS case the FS fermion and the photon will not be recombined it is suitable
to define the energy fraction zf of the fermion f produced together with a photon in a fixed
collinear cone as

zf =
p0
f

p0
f + k0

γ

, (3.25)

where p0
f and k0

γ are the energies of the fermion and photon, respectively. Starting from Eq. (3.3)
the information on zf and its analogous variables zff ′ in the individual dipole contributions
should be kept explicitly during the whole subtraction procedure. Technically this means, that
the FS momenta that enter the LO matrix element of the dipole contributions and are used for
the event-selection have to be transformed to an (N+1)-particle phase space with the following
relations

pf = zff ′ p̃
(ff ′)
f , k = (1− zff ′)p̃(ff ′)

f , pf ′ = p̃
(ff ′)
f ′ , {kn} = {k̃n} , (3.26)

where the momentum p̃
(ff ′)
f of the emitter fermion is split into the momenta pf and k of the

collinear fermion and photon. zff ′ indicates the splitting for each individual dipole contribution
with emitter f and spectator f ′ which pass into zf in the collinear limit.

Afterwards the first term in Eq. (3.3) can be written as

∫
dΦ1

[
|Mreal|2Θcut(pf , k, pf ′ , {kn})

−
∑

f 6=f ′
|Msub,ff ′ |2Θcut

(
zff ′ p̃

(ff ′)
f , (1− zff ′)p̃(ff ′)

f , p̃
(ff ′)
f ′ , {k̃n}

)]
, (3.27)

where the application of the event-selection cuts is formalized by introducing the step function

Θcut

(
pf , k, pf ′ , {k̃n}

)
acting on the momenta given in Eq. (3.26). The sum runs over all possible

emitter–spectator pairs with f 6= f ′. The remaining additional particles in the final state are
indicated by {k̃n}. The subtraction function |Msub,ff ′|2 was introduced in Eq. (3.4).

During the analytic integration of the re-added counterpart the dependence on zf also
has to be kept explicit. Since these steps as well as the final result for the integrated dipole
contribution strongly differs between the IS spectator and the FS spectator case we discuss
the technical details and the final formulae in the following two sections, separately. From
Eq. (3.27) it follows directly that the subtraction functions |Msub,ia|2 for the CS and NCS case
are identical so that we can strictly follow Ref. [89]. There is only one difference between both
cases namely the momenta on which the event-selection cuts will be applied. The CS scenario
is already included in the NCS case assuming zff ′ = 1 so that Eq. (3.26) simplifies to

pf → p̃
(ff ′)
f , k → 0 , pf ′ → p̃

(ff ′)
f ′ . (3.28)

For the re-added counterparts we will find additional mass-singular terms α lnmf in the NCS
case which result from an incomplete cancellation of singularities during the subtraction pro-
cedure.

3.2.4 Final-state emitter and initial-state spectator

For a FS emitter i and an IS spectator a the schematic diagram is shown in the lower left part
of Fig. 3.1. Using the abbreviations in Eq. (3.18), the asymptotic behaviour for the soft limits
introduced in Eq. (3.19) as well as the collinear limits

xia −→
pik→0

1 , zia −→
pik→0

zi (3.29)
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the dipoles functions are given by

g
(sub)
ia,+ (pi, pa, k) =

1

(pik)xia

[
2

2− xia − zia
− 1− zia

]
,

g
(sub)
ia,− (pi, pa, k) = 0 . (3.30)

The corresponding counterpart after analytic integration reads
∫

dΦ1|Msub,ia(Φ1)|2 = − α

2π
QiσiQaσa

∫ 1

0

dx

∫
dΦ̃0,ia(P

2
ia, x)

∫ 1

0

dz

×Θcut

(
pi = zp̃i(x), k = (1− z)p̃i(x), {k̃n(x)}

)

× 1

x

{
G

(sub)
ia (P 2

ia) δ(1− x) δ(1− z) +
[
G(sub)
ia (P 2

ia, x)
]

+
δ(1− z)

+
[
Ḡ(sub)
ia (P 2

ia, z)
]

+
δ(1− x) +

[
ḡ

(sub)
ia (x, z)

](x,z)

+

}∣∣∣M0(p̃i(x), p̃a(x), {k̃n(x)})
∣∣∣
2

, (3.31)

where p̃i, p̃a and P 2
ia are introduced in Eq. (3.22) which connects the momenta of the phase space

Φ̃0,ia(P
2
ia, x) with the momenta pi, pa and k in the lower left part of Fig. 3.1. Eq. (3.31) also

includes the CS scenario where the Θ-function has a much simpler structure. After performing
the z-integration only the z-independent terms in line 3 will contribute and the terms in line
4 will vanish. [. . .]+ indicate the usual (+)-distribution defined in Eq. (1.75) The subtraction
procedure is constructed in such a way that for the NCS case in comparison to the CS scenario
we find additional terms (see line 4 of Eq. (3.31)) which can be simply added. These terms
include a (+)-distribution acting on z and a double (+)-distribution defined as
∫ 1

0

dx

∫ 1

0

dy
[
f(x, y)

](x,y)

+
g(x, y) =

∫ 1

0

dx f(x, y)[g(x, y)− g(1, y)− g(x, 1) + g(1, 1)] , (3.32)

where g(x) and g(x, y) denote smooth test functions. The endpoint part G
(sub)
ia (P 2

ia) and the

distribution G(sub)
ia (P 2

ia, x) appearing in line 3 of Eq. (3.31) are given by

G
(sub)
ia (P 2

ia) = L(|P 2
ia|,m2

i )−
π2

2
+

3

2
,

G(sub)
ia (P 2

ia, x) =
1

1− x

[
2 ln

(
2− x
1− x −

3

2

)]
, (3.33)

where L(P 2,m2) is defined in Eq. (3.15). The z-dependent functions from line 4 read

ḡ
(sub)
ia (x, z) =

1

1− x

(
2

2− x− z − 1− z
)
,

Ḡ(sub)
ia (P 2

ia, z) = Pff (z)

[
ln

(−P 2
iaz

m2
i

)
− 1

]
− 2 ln(2− z)

1− z + (1 + z) ln(1− z) + (1− z) , (3.34)

where the splitting function Pff (z) was already defined in Eq. (3.16). The remaining fermion-
mass dependence originating from the incomplete cancellation of collinear singularities is in-
cluded in the function Ḡ(sub)

ia (P 2
ia, z). For a meaningful theoretical prediction the value of this

fermion mass has to be chosen as the physical value of the FS particle.

3.2.5 Final-state emitter and final-state spectator

The effective diagram for the case of a FS emitter i and a FS spectator j is shown in the lower
right part of Fig. 3.1. Introducing the abbreviations

yij =
pik

pipj + pik + pjk
, zij =

pipj
pipj + pjk

, (3.35)
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leads to the dipole functions

g
(sub)
ij,+ (pi, pj, k) =

1

(pik)(1− yij)

[
2

1− zij(1− yij)
− 1− zij

]
,

g
(sub)
ij,− (pi, pj, k) = 0 . (3.36)

With zi from Eq. (3.20) it can be easily checked that the soft and collinear limits are

yij −→
k→0

0 , zij −→
k→0

1 , yij −→
pik→0

0 , zij −→
pik→0

zi . (3.37)

Analytic integration over the phase space of the additional radiated particle ends up in the
following expression for the re-added counterpart

∫
dΦ1|Msub,ij(Φ1)|2 = − α

2π
QiσiQjσj

∫
dΦ̃0,ij

∫ 1

0

dz

×
{
G

(sub)
ij,τ (P 2

ij)δ(1− z) +
[
Ḡ(sub)
ij,τ (P 2

ij, z)
]

+

}

×
∣∣∣M0(p̃i, p̃j, {k̃n})

∣∣∣
2

Θcut

(
pi = zp̃i, k = (1− z)p̃i, pj, {k̃n}

)
, (3.38)

where the phase space Φ̃0,ij is generated by the momenta p̃i, p̃j and {k̃n}. pi, k, pj and {kn} can
be derived by the transformation relation given in Eq. (3.26). The invariant P 2

ij is independent
of z and can be calculated via P 2

ij = (p̃i+ p̃j)
2. The Θ-function again formalizes the application

of the event-selection cuts based on the momenta of the (N + 1)-particle phase space. The first

term of Eq. (3.38) includes the z-independent distribution G
(sub)
ij,τ (P 2

ij) given by

G
(sub)
ij (P 2

ij) = L(|P 2
ia|,m2

i )−
π2

3
+

3

2
, (3.39)

where L was defined in Eq. (3.15). The additional z-dependent term which is only non-zero in
the NCS scenario includes the function

Ḡ(sub)
ij (P 2

ij, z) = Pff (z)

[
ln

(
P 2
ijz

m2
i

)
− 1

]
+ (1 + z) ln(1− z) + (1− z) , (3.40)

with the splitting function defined in Eq. (3.16).

3.3 Collinear singularities of γ → ff̄ ∗ splittings

The photon-induced contributions of Wγ and Zγ production defined in Eqn. (2.12)–(2.14)
include collinear singularities from γ → ff̄ ∗ splittings. Following Section 3 of Ref. [90] we
assume a generic process defined by

γ(k) + a(pa)→ f(pf ) +X , (3.41)

where a is the massles incoming particle and f is an outgoing light fermion. The momenta of
the particles are illustrated in the left part of Fig. 3.2 and are also given in parenthesis. The
asymptotic behaviour of the squared matrix element can be expressed by

∣∣∣Mγa→fX(k, pa, pf )
∣∣∣
2

∼
pfk→0

Q2
fe

2hγf (k, pf )
∣∣∣Mf̄a→X(pf̄ = xk, pa)

∣∣∣
2

, (3.42)

where Qfe indicates the electric charge of the fermion f and x is the energy fraction of the
fermion f̄ in relation to the energy of the incoming photon γ. The matrix element Mf̄a→X
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h
(sub)
γf,a : h

(sub)
ia :

k pf

pa

γ

a

f

f̄

pf p′f

pa

f

a

f

γ

Figure 3.2: Effective diagrams for the collinear γ → ff̄ ∗ splitting (left) and the collinear
f → fγ∗ splitting (right) with IS spectator.

belongs to the LO processes which are defined for Wγ and Zγ production in Eqn. (2.1)–(2.4).
The collinear divergence in the squared matrix element |Mγa→fX(k, pa, pf )|2 appears if the
angle Θf between f and γ becomes small. The complete singular behaviour is included in one
single dipole function hγf (k, pf ) with one arbitrary chosen spectator. Since we have used the
case with IS spectator a in our calculation we discuss the corresponding dipole functions in the
following.

3.3.1 Initial-state spectator

The corresponding effective diagram for the case with an IS spectator is shown in the left part
of Fig. 3.2. Using the splitting function Pfγ(x) defined in Eq. (1.74) and the abbreviation

xf,γa =
pak − pfk − papf

pak
(3.43)

the dipole function hγf,a is given by

hγf,a =
1

xf,γa(kpf )

(
Pfγ(xf,γa) +

xf,γam
2
f

kpf

)
. (3.44)

As worked out in detail in Ref. [90] the expression for the re-added counterpart after analytic
integration then reads

σ
(sub)
aγ→fX(k, pa) = Nc,f

Q2
fα

2π

∫ 1

0

dxHγf,a(s, x)σf̄a→X(pf̄ = xk, pa) , (3.45)

where the function Hγf,a(s, x) is defined as

Hγf,a(s, x) = Pfγ(x) ln

(
s(1− x)2

m2
f

)
+ 2x(1− x) . (3.46)
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3.4 Collinear singularities of f → fγ∗ splittings

As mentioned in Section 2.3 the process pp → l+l−γ includes a LO contribution with two IS
photons. Since this contribution exists the collinear splitting f → fγ∗ (where the photon enters
the LO process) has to be considered for the photon-induced real EW corrections.

Following Section 5 of Ref. [90] we suppose a generic process defined by

f(pf ) + a(pa)→ f(pf ′) +X . (3.47)

Therein a denotes a massless incoming particle and f represents the light fermion which radiates
a photon. The corresponding momenta are given in parenthesis in Eq. (3.47) and are illustrated
in the right part of Fig. 3.2. For our purposes we use the average over the azimuthal angle φ′f
of the f → fγ plane around the collinear axis so that the spin correlation drops out and the
asymptotic behaviour of the squared matrix element is given by

〈
∣∣Mγa→fX(k, pa, pf )

∣∣2〉φ′f ∼
pfp
′
f→0

Nc,f Q
2
fe

2hff (pf , p
′
f )
∣∣Mγa→X(k̃, pa)

∣∣2 . (3.48)

Technical details about the spin correlation and the averaging process of φ′f are discussed in
Ref. [90]. At this point we use the same arguments as already outlined in Section 3.3. Since
the collinear divergence pfp

′
f → 0 can be treated with one specific choice for the spectator we

choose the IS particle a and discuss the related formulae in the following Section.

3.4.1 Initial-state spectator

The case with an IS spectator is illustrated in the right part of Fig. 3.2. Since we define the
the abbreviations

xf,fa =
papf − pfp′f − pap′f

papf
, yf,fa =

pfp
′
f

papf
, (3.49)

in analogy to Eq. (3.9) with the replacements pb → pf , k → p′f and use the splitting function

Pγf (x) from Eq. (1.74) the dipole function hff in Eq. (3.48) reads

hff,a =
1

s xf,fayf,fa

(
Pfγ(xf,fa) +

2xf,fa(1− xf,fa)m2
f

s yf,fa(1− xf,fa − yf,fa)

)
, (3.50)

with the energy squared defined as s = (pf + pa)
2. The part of the re-added cross section is

given by

σ
(sub)
fa→fX(pf , pa) =

Q2
fα

2π

∫ 1

0

dxHff,a(s, x)σγa→X(k̃ = xpf , pa) , (3.51)

where the distribution Hff,a reads

Hff,a(s, x) = Pγf (x) ln

(
s(1− x)2

x2m2
f

)
− 2− 2x

x
. (3.52)

3.5 Collinear photon-jet configurations

The partonic processes for real QCD corrections and photon-induced corrections defined in
Sections 2.4.2 and 2.4.3 include photons and quarks in the final state which can become poten-
tially collinear. Such a situation where a photon is radiated collinear to a FS quark leads to
additional divergences which only would cancel if photon and quarks are treated in the same
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way. However, this would imply that the recombination of photons with QCD partons has to
be included in the jet algorithm and only a combined cross section of W/Z + γ production and
W/Z + jet production would give rise to IR-finite results. Technically, there are two methods
describing a well-defined procedure for the separation of the two upper process classes:

1. a combination of democratic clustering and the use of the quark-to-photon fragmentation
function as it was introduced in Refs. [55,56];

2. the Frixione isolation scheme introduced in Ref. [57].

Both concepts will be used in our calculations and we will discuss the technical details of them
in the following sections.

3.5.1 Quark-to-photon fragmentation function and democratic clus-
tering of photons and jets

The concept of democratic clustering treats photons and jets on equal footing. If a photon and
a jet become collinear they are clustered to one pseudo-particle. Technically the momenta of
photon and jet are clustered if the rapidity–azimuthal-angle separation

Rγjet =
√

(yγ + yjet)2 + (φγ − φjet)2 (3.53)

with the rapidity

y =
1

2
ln [(E + pL) / (E − pL)] (3.54)

is lower than a certain limit R0. The parameter R0 is called cone size. Using the energy fraction
of the photon

zγ =
Eγ

Eγ + Ejet

, (3.55)

a collinear photon–jet system is defined as a photon if zγ is larger than the cut value zcut,
otherwise the photon–jet system is defined as a jet. Since in this thesis we focus on Wγ and
Zγ production the event will be discarded if a photon–jet system is defined as a jet. The
complementary strategy was applied for W + jet production in Ref. [91] and for Z + jet
production in Refs. [92,93].

The asymptotic behaviour of singularity originating from the collinear photon–quark con-
figuration is given by the following subtraction term

|Msub(Φ1)|2 = Q2
i e

2g
(sub)
il (pi, pl, k)

∣∣∣MW/Z+jet
0

(
p̃i, p̃l, {k̃n}

)∣∣∣
2

. (3.56)

Therein we use the dipole subtraction function for the case of a FS emitter and a FS spectator
from Eq. (3.36). As FS spectator we choose the charged lepton so that we have to do the
replacements yij → yil and zij → zil. In the collinear limit (pik) → 0 these values behave as
yil → 0, zil → zi and zγl = 1 − zil → zγ, where zi is the energy fraction of the quark in the
quark–photon system in the collinear limit

zi =
Ei

Ei + Eγ
= 1− zγ , (3.57)

and zγ is the corresponding energy fraction of the photon. In Eq. (3.56) the momenta p̃i, p̃l and
{k̃n} represent the projected phase space Φ̃0,il. Since we choose a FS spectator no boost has to
be applied and the momenta {k̃n} equal the momenta {kn} of the (N +1)-particle phase space.

41



Process gluon-induced photon-induced

W+jet ui g → l+νl dj ui γ → l+νl dj
d̄j g → l+νl ūi d̄j γ → l+νl ūi

Zjet (l+l−) qi g → l+l− qi qi γ → l+l− qi
q̄i g → l+l− q̄i q̄i γ → l+l− q̄i

Zjet (ν̄ν) qi g → ν̄lνl qi qi γ → ν̄lνl qi
q̄i g → ν̄lνl q̄i q̄i γ → ν̄lνl q̄i

Table 3.1: Gluon-induced and photon-induced partonic LO processes for W+ + jet and Z +
jet production.

|MW/Z+jet
0 |2 denotes the matrix element squared of the corresponding partonic LO processes

for W/Z + jet production. These processes are listed in Table 3.1.
The subtraction procedure then works analogously as described in Section 3.2.3 for the NCS

case. Since we want to cut on zγl we make its dependence explicit by using Eq. (3.57)

∫
dΦ1

[
|Mreal|2Θcut(pi, k, pl, {kn})− |Msub|2Θcut

(
(1− zγl)p̃i, zγlp̃i, p̃l, {k̃n}

)]
, (3.58)

where the application of the event-selection cuts is again formalized by a step function Θcut

acting on the (N + 1)-particle phase space. Following Refs. [90, 94] for the analytic integration
the contribution of the re-added counterpart to the partonic cross section reads

dσ̂sub(zcut,mi) =
1

ŝ

∫
dΦ1|Msub,ij(Φ1)|2

=
αQ2

i

4πŝ
dΦ̃0

∫ 1

zcut

dzγ Ḡ(sub)
il (P 2

il, 1− zγ)

×
∣∣∣MW/Z+jet

0 (p̃i, p̃l, {k̃n})
∣∣∣
2

Θcut

(
pi = (1− zγ)p̃i, k = zγ p̃i, p̃l, {k̃n}

)
, (3.59)

where zcut is defined as the lower limit of zγ and ŝ indicates the centre-of-mass energy squared
of the partonic process. Due to the application of the cut zγ > zcut the limit zγ → 0 is excluded
and Eq. (3.59) does not include any endpoint contribution covering this soft-singular divergence.

The distribution Ḡ(sub)
il is given by Eq. (3.40) with the substitutions z → zi = 1− zγ and j → l.

While the upper subtraction procedure only isolates the singularity but does not remove it,
additional contributions to the total cross section have to be considered. These extra terms are
motivated by the scenario where only a quark is produced in the hard scattering and the collinear
photon is the product of the hadronization process. This effect can be described by using the
non-perturbative quark-to-photon fragmentation function which is defined in Refs. [55,56] and
was experimentally measured by ALEPH [95]. The additional contribution to the cross section
reads

dσ̂frag(zcut) = dσ̂0

∫ 1

zcut

dzγ D
bare
q→γ(zγ) , (3.60)

where dσ̂0 denotes the partonic LO cross section for the process without photon radiation.
The fragmentation function Dbare

q→γ(zγ) describes the probability density for a FS quark which
fragments into a jet containing a photon with energy fraction zγ. The singular contribution
regularized by the infinitesimal quark mass mi can be split off with the following equation [94]

Dbare,MR
q→γ (zγ) =

αQ2
i

2π
Pff (1− zγ)

(
ln
m2
i

µ2
F

+ 2 ln zγ + 1

)
+DMS

q→γ(zγ, µF) . (3.61)
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Therein we introduced the factorization scale µF which separates the perturbative from the non-
perturbative region. The label “MR” indicates the mass regularization. The additional collinear
singularity in Eq. (3.61) now exactly compensates the singularities in the re-added counterpart

which is included in Ḡ(sub)
il . It was worked out in Ref. [94] that the finite non-perturbative

contribution DMS
q→γ is equivalent to the standard MS scheme of dimensional regularization. We

implemented the parametrization used by the ALEPH collaboration [95]

DALEPH,MS
q→γ (zγ, µF) =

αQ2
i

2π

(
Pff (1− zγ) ln

µ2
F

(1− zγ)2µ2
0

+ C

)
, (3.62)

with the parameters set to

µ0 = 0.14 GeV and C = −13.26 (3.63)

and constrained by C = −1 + ln(2µ2
0/M

2
Z). Summing up the contributions for the cross section

from Eq. (3.59) and Eq. (3.60) with DMS
q→γ defined in Eq. (3.61) leads to (see Eq. (4.63) in

Ref. [94])

dσ̂sub(zcut,mi) + dσ̂frag(zcut,mi)

=
αQ2

i

4πŝ
dΦ̃0

∣∣∣MW/Z+jet
0 (Φ̃0)

∣∣∣
2
∫ 1−zcut

0

dzi

(
Dbare,MR
q→γ (1− zi) + Ḡ(sub)

il (P 2
il, zi)

)

=
αQ2

i

4πŝ
dΦ̃0

∣∣∣MW/Z+jet
0 (Φ̃0)

∣∣∣
2
{(

1 + C +
zcut

2

)
(1− zcut)

−
(

1

2
(1− zcut)(3− zcut) + 2 ln(zcut)

)
ln

(
zcut

1− zcut

P 2
il

µ2
0

)

+ 2 Li2(1− zcut) +
3

2
ln(zcut)

}
, (3.64)

which is finite and only depends on the value zcut.

3.5.2 Frixione isolation scheme

An alternative to the concept of democratic clustering in combination with the quark-to-photon
fragmentation function is the Frixione isolation scheme introduced in Ref. [57]. Here, we employ
an additional cut condition which ensures that specific phase-space regions containing potential
IR singularities of the photon–jet system are excluded. Events will be discarded if the rapidity–
azimuthal-angle difference Rγjet (defined in Eq. (3.53)) is smaller than the cone size R0 and the
condition

pT,jet < ε pT,γ

(
1− cos (Rγjet)

1− cos (R0)

)
(3.65)

does not hold. Therein pT,jet and pT,γ indicate the transverse momenta of the jet and the
photon. The parameter ε controls the allowed range of the hadronic energy fraction in the cone
around the photon. This single condition treats singular configurations of photon and jets in
the following way:

• If the photon and the jet become collinear, i.e. Rγjet → 0, relation (3.65) is violated and
the event is discarded.

• If the photon becomes soft or collinear to the beam axis, i.e. pT,γ → 0, relation (3.65) is
violated and the event is discarded.
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• If the jet becomes soft or collinear to the beam axis, i.e. pT,jet → 0, relation (3.65) is
respected and the event is not discarded. This guarantees that IR singularities related to
gluons cancel between real and virtual corrections.

In order to compensate IR singularities from virtual QCD corrections (as predicted by the KLN
theorem [83,84]) Eq. (3.65) ensures that soft or collinear jets are treated inclusively while soft
and collinear photons are excluded.

Since we want to compare the results achieved with quark-to-photon fragmentation function
and Frixione isolation scheme, the parameters of both methods have to matched. Rearranging
Eq. (3.65) results in

pT,γ

pT,γ + pT,jet

>
1

1 + ε
1−cos(Rγjet)

1−cos(R0)

(3.66)

and leads to a relation which is comparable with the definition of the photon energy fraction
in Eq. (3.55). Assuming the same value for the cone size R0 we find

zcut ≈
1

1 + ε
(3.67)

as a matching condition. We will used this relation in Chapter 4 to produce comparable results
for both schemes.
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Chapter 4

Numerical results for V + γ production

In this chapter we present results on total cross sections and distributions in various setups.
First, in Section 4.1 we define the NLO cross section with contributions from QCD and EW
corrections. In Section 4.2 we discuss the relevant input parameters and in Section 4.3 we
outline the event selection and the application of the phase-space cuts. In Sections 4.4–4.7 we
present results for a full NLO calculation to the processes defined in Eqs. (2.1)–(2.4). Each
section includes results for the total cross section and a set of distributions for several kine-
matic observables depending on the explicit process. The results presented in this chapter are
published in Refs. [69] and [70].

4.1 General setup

NLO corrections to W +γ and Z +γ production can be divided in EW and QCD corrections of
the orders O(α) and O(αs), respectively. We denote the LO cross section calculated with LO
PDFs by σLO. The NLO-QCD-corrected cross section is obtained as

σNLO QCD = σ0 + ∆σNLO QCD ,

∆σNLO QCD = σαsreal + σαsvirt + σαscol + σαsfrag , (4.1)

where all contributions, including the LO cross section σ0, are calculated with NLO PDFs.
The real and the virtual corrections are given by σαsreal and σαsvirt, respectively, the contribution
σαscol originates from the redefinition of the PDFs (see Section 1.3), and σαsfrag represents the
contribution from fragmentation of a quark into a photon. All individual parts in the NLO
QCD contribution ∆σNLO QCD are IR divergent and only their sum is IR finite. The separa-
tion between W/Z + γ and W/Z + jet production is evident at LO. Since the final states of
the processes defined in Eqs. (2.9)–(2.11) and Eqs. (2.12)–(2.14) also appear in the real NLO
corrections to W/Z + jet production these processes require special care. The technical details
of this aspect are discussed in Section 3.5.

Analogously to the QCD corrections, the EW corrections are given by

∆σNLO EW
qq = σαqq,real + σαqq,virt + σαqq,col ,

∆σNLO EW
qγ = σαqγ,real + σαqγ,col + σαqγ,frag ,

∆σγγ = σ0
γγ , (4.2)

where the quark–antiquark-induced EW corrections ∆σNLO EW
qq and the photon-induced correc-

tions ∆σNLO EW
qγ are finite, while their individual contributions are IR divergent. Additionally,

for the Zγ production process where the final state contains two charged leptons ∆σγγ describes
the LO contribution from photon–photon-induced diagrams.
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Unlike the quark–antiquark- and the quark–gluon-induced channels in the QCD corrections,
∆σNLO EW

qq and ∆σNLO EW
qγ can (in principle) be distinguished by their final states. Analogously

to the QCD case, in Eq. (4.2) σαij,real and σαqq,virt denote the real and the virtual corrections,
respectively, and ij = qq, qγ. Terms originating from the PDF redefinition furnish σαij,col, and
the fragmentation contribution is described by σαqγ,frag. Note that no fragmentation contribution
is required in the qq channel at NLO EW, because there is no jet in the final state in this order.

We choose to combine QCD and EW corrections using the naive product for QCD and
quark–antiquark EW corrections and we further linearly add contributions from photon-induced
and (if present) photon–photon-induced processes

σNLO = σLO
[
(1 + δQCD) (1 + δEW,qq) + δEW,qγ

(
+ δγγ

)]

= σNLO QCD (1 + δEW,qq) + ∆σNLO EW
qγ

(
+ ∆σγγ

)
, (4.3)

where the relative QCD, EW and photon–photon-induced corrections are defined by

δQCD =
σNLO QCD − σLO

σLO
, δEW,qq =

∆σNLO EW
qq

σ0
,

δEW,qγ =
∆σNLO EW

qγ

σLO
, δγγ =

∆σγγ
σLO

, (4.4)

respectively. While the relative QCD corrections are normalized to the LO cross section σLO,
calculated with LO PDFs, the quark–antiquark-induced EW corrections are normalized to the
LO cross section σ0, calculated with NLO PDFs. By this definition, KQCD = 1 + δQCD is
the standard QCD factor, and the relative quark–antiquark-induced EW corrections δEW,qq are
practically independent of the PDF set.

In order to ensure the accuracy of our results a second independent calculation was per-
formed by Stefan Dittmaier and Markus Hecht. In this calculation the virtual amplitudes are
generated by FEYNARTS 1 [96] and algebraically reduced with an in-house MATHEMATICA pack-
age, automatically transferring the results into a FORTRAN code. For the numerical evaluation
of integrated and differential cross sections the amplitudes are implemented into a FORTRAN

program using the VEGAS algorithm for a proper numerical integration. In case of W/Z + γ
production sharp resonances appear, demanding additional phase-space mappings. Therefore,
analytical Breit–Wigner mappings are introduced in the phase-space parametrization, allowing
for a stable numerical integration by flattening the integrand.

4.2 Input parameters

The relevant SM input parameters are

Gµ = 1.1663787× 10−5 GeV−2, α(0) = 1/137.035999074 , αs(MZ) = 0.119 ,
MH = 125 GeV, mµ = 105.6583715 MeV, mt = 173.07 GeV,
MOS

W = 80.385 GeV, ΓOS
W = 2.085 GeV,

MOS
Z = 91.1876 GeV, ΓOS

Z = 2.4952 GeV,

|Vus| = |Vcd| = 0.225 , |Vud| = |Vcs| =
√

1− |Vus|2 .
(4.5)

All parameters but αs(MZ) in (4.5) are extracted from Ref. [97]. αs(MZ) is provided by the PDF
set. The masses of all quarks but the top quark are set to zero. CKM mixing between the first
two quark generations is taken into account in all partonic cross sections, but mixing to the third
generation is not included, since it is negligible. For Wγ production this implies that there is
no contribution from bottom quarks in the initial state. Since the bb̄ channel for Zγ production
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contributes only about 3% to the LO cross section, we omit the corresponding virtual EW
corrections which we expect to be in the sub per-mille level and therefore negligible. Bottom
quarks in the initial state are taken into account for QCD and photon-induced corrections but
are neglected for the quark–antiquark-induced EW corrections. Additionally, the CKM matrix
drops out in the flavour sum of closed fermion loops, thus, the CKM matrix factorizes from
all amplitudes, so that only one generic amplitude has to be evaluated when convoluting the
squared matrix elements with the PDFs.

Owing to the presence of an on-shell external photon, we always take one electromagnetic
coupling constant α at zero momentum transfer, α = α(0). For the other couplings, e.g. of the
W boson to fermions, we determine the electromagnetic coupling constant in the Gµ scheme,
where α is defined in terms of the Fermi constant (see Eq. (1.55)). Using this mixed scheme the
squared LO amplitude is proportional to α(0)α2

Gµ
. In the relative EW corrections we set the

additional coupling factor α to αGµ , because this coupling is adequate for the most pronounced
EW corrections which are caused by soft/collinear weak gauge-boson exchange at high energies
(EW Sudakov logarithms, etc.).

We apply the complex-mass scheme [75–77] to describe the W-boson and Z-boson resonance
by introducing complex vector-boson masses (see Eq. (1.42)) with constant widths. However,
at LEP and the Tevatron the on-shell (OS) masses of the vector bosons were measured, which
correspond to running widths. The OS masses MOS

W , MOS
Z and widths ΓOS

W , ΓOS
Z have to be

converted to the pole values using the relations [98]

MV = MOS
V /

√
1 + (ΓOS

V /MOS
V )

2
, ΓV = ΓOS

V /

√
1 + (ΓOS

V /MOS
V )

2
(V = W, Z) , (4.6)

leading to

MW = 80.3580 . . . GeV, ΓW = 2.0843 . . . GeV,
MZ = 91.1535 . . . GeV, ΓZ = 2.4943 . . . GeV. (4.7)

Calculating the hadronic cross section, we use theO(α)-corrected NLO PDF set NNPDF23QED,
which includes the two-loop running of αs for five active flavours (nf = 5).

The factorization and the renormalization scales µF, µR are set equal throughout our calcu-
lation. Following Refs. [99,100], we choose the scales as

µ2
F = µ2

R =
1

2

(
M2

V + p2
T,V + p2

T,γ1
+ p2

T,γ2/jet

)
(V = W, Z) , (4.8)

where pT,V is the transverse momentum of the massive vector boson defined by

pT,V = |pT,l/ν + pT,l/ν | , (4.9)

and pT,a = |pT,a| denotes the absolute value of the transverse three-momentum pT,a of particle
a. The photons γ1 and γ2 are assigned so that pT,γ1 > pT,γ2 . In LO the transverse momenta
pT,γ2/jet are zero.

The QCD scale uncertainty of Wγ and Zγ production has already been investigated in
various publications such as in Refs. [32,33]. Varying the scale by a factor of two the scale
dependence is found to be of the order of 10% at NLO in Ref. [33], where the scale is defined
similarly as in our calculation. Imposing a jet veto significantly reduces the scale dependence
as found in both calculations [32, 33] using slightly different jet definitions. Meanwhile NNLO
QCD corrections have been calculated and found to be 19% [101] and 6% [45] for Wγ and Zγ
production, respectively. Consequently, a meaningful estimate of the residual scale dependence
should be performed including the NNLO QCD corrections.
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4.3 Phase-space cuts and event selection

The processes of Wγ and Zγ production require the recombination of final-state (FS) photons
with FS partons and, where appropriate, of FS photons with charged leptons in regimes of
phase space where photon and parton/lepton are collinear. Furthermore, we impose several
cuts to account for the detector acceptance. The phase-space cuts and the event selection are
inspired by the recent ATLAS and CMS papers [16–18] analysing V γ final states.

Recombination

To decide whether a photon and a FS particle need to be recombined we use the Euclidean

distance in the y–φ plane, Rij =
√

(yi − yj)2 + φ2
ij, where y = 1

2
ln [(E + pL) / (E − pL)] denotes

the rapidity. In this equation E is the energy and pL the longitudinal momentum of the
respective particle with respect to the beam axis. The value φij denotes the angle between
the particles i and j in the plane perpendicular to the beams. The recombination proceeds as
follows:

1. If we consider “bare” muons, a photon and a charged (anti)lepton are never recombined.
Otherwise recombination is applied if Rl±γ < 0.1, and the four-momenta of photon and
lepton are added. If the separation in R between the photon and each of the two leptons
is smaller than 0.1 at the same time, the photon is recombined with the lepton that has
a smaller Rlγ separation. In case of two photons in the final state, first the photon with
the smaller Rl±γ is recombined.

2. Two photons are recombined if Rγγ < 0.1.

3. Using the method of democratic clustering a photon and a jet are recombined if the
distance between them becomes Rγjet < R0 = 0.5. After recombination, the energy
fraction zγ = Eγ/ (Eγ + Ejet) of the photon inside the photon–jet system is determined.
Using this value we decide if the event belongs to the process W/Z + γ or W/Z + jet. If
zγ is smaller than the cut value zcut = 0.9 the event is regarded as a part of the process
W/Z + jet and is therefore rejected.

The case where more than two particles are recombined is excluded by our basic cuts. Results
are presented for “bare” muons and for photon recombination with leptons. The latter results
hold for electrons as well as for muons, since the lepton-mass logarithms cancel as dictated by
the KLN theorem [83,84].

If alternatively the Frixione isolation scheme is applied, step 3 has to be replaced as follows:

3’. If Rγjet < R0 = 0.5 the photon and the jet are recombined and the event is only accepted
if it respects the criterion (3.65). Based on Eq. (3.67) we choose ε = 0.11 corresponding
to zcut = 0.9.

Basic cuts

After recombination, we define W + γ events by the following cut procedure:

1. We demand a charged lepton with transverse momentum pT,l > 25 GeV and

2. missing transverse momentum pT,miss > 25 GeV, where pT,miss is equal to the neutrino
transverse momentum.
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3. We demand at least one photon with transverse momentum pT,γ > 15 GeV that is isolated
from the charged lepton with a distance of Rlγ > 0.7.

4. The charged lepton and the photon passing the cuts at step 1 and step 3 have to be
central, i.e. their rapidities have to be in the range |y| < 2.5.

5. Only events with a transverse mass of the lepton pair MT,l+ν > 40 GeV are accepted,
where

MT,l+ν =
√

2pT,l+ pT,miss (1− cos (∆φl+,miss)) (4.10)

and ∆φl,miss is the azimuthal-angle separation between the directions of the charged lepton and
the missing transverse momentum.

For a Z + γ event where the final state contains two charged leptons the basic cuts are:

1. We demand two charged leptons with transverse momentum pT, l > 25 GeV.

2. At least one photon with transverse momentum pT,γ > 15 GeV has to be isolated from
the two charged leptons with a distance of Rlγ > 0.7.

3. The charged leptons and the photon have to be central, i.e. their rapidities have to be in
the range |y| < 2.5.

4. Only events with an invariant mass of the charged lepton pair Ml+l− > 40 GeV are
accepted, where

Ml+l− =
√

(p0
l+ + p0

l−)2 − (pl+ + pl−)2 . (4.11)

A Z + γ event, where the Z boson decays in two neutrinos, is defined by the following cuts:

1. We demand a missing transverse momentum pT,miss > 90 GeV, where pT,miss is defined as

pT,miss = |pT,ν1 + pT,ν2| . (4.12)

2. At least one photon has to be central with |yγ| < 2.5 and has to possess transverse
momentum pT,γ > 100 GeV.

3. We demand the photon passing step 2 has to fulfil ∆φmiss,γ > 2.6, with the azimuthal-
angle difference

∆φmiss,γ = acos

(
pT,γ · pT,miss

pT,γ pT,miss

)
. (4.13)

For all processes we present results with and without applying a jet veto. Applying a jet veto
means that all events including a FS jet with pT,jet > 100 GeV are discarded. Experimentally
a jet is required to lie in the rapidity range |y| < 4.4. However, in our calculation we do not
restrict the rapidity range of the vetoed jets, since the impact on the cross section is very small
and lies within the theoretical error.

4.4 Results for p p → l+ νl γ + X

4.4.1 Results on total cross section

In Table 4.1 we present the LO cross sections σLO for different pp centre-of-mass energies
√
s

and the different types of relative corrections δ defined in Eq. (4.4). For the EW corrections
resulting from the quark–antiquark channels we show results for CS and NCS observables.
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√
s/TeV 7 8 14

σLO/ fb 846.40(12) 940.20(14) 1448.00(23)

δNCS
EW,qq/% −3.14 −3.14 −3.12

δCS
EW,qq/% −1.94 −1.94 −1.95

δfrag
EW,qγ/% 1.28 1.35 1.62

δveto, frag
EW,qγ /% 0.90 0.94 1.05

δFrix
EW,qγ/% 1.29 1.36 1.63

δveto,Frix
EW,qγ /% 0.91 0.95 1.06

δfrag
QCD/% 121.90(13) 128.00(14) 153.90(15)

δveto, frag
QCD /% 112.00(17) 116.80(17) 135.90(19)

δFrix
QCD/% 123.50(23) 129.90(21) 156.40(25)

δveto,Frix
QCD /% 113.70(23) 118.70(21) 138.70(25)

Table 4.1: Integrated cross sections and relative corrections for W+γ production at different
LHC energies. The EW corrections to the quark–antiquark annihilation channels are provided
with (CS) and without (NCS) lepton–photon recombination. EW corrections from the photon-
induced channels and QCD corrections are shown with a jet veto (veto) as well as without a
jet veto using democratic clustering and fragmentation function (frag) or the Frixione isolation
criterion (Frix) to separate photons and jets. The numbers in parentheses denote the integration
error in the last digits. This error is negligible for the relative EW corrections at the given
accuracy.

Results for the EW corrections originating from photon-induced channels and for the QCD
corrections are listed with and without a jet veto. Furthermore, we present results obtained by
applying democratic clustering in combination with a quark-to-photon fragmentation function
and the Frixione isolation scheme indicated by “frag” and “Frix”, respectively. The different
relative corrections depend only weakly on the collider energy. By far the largest effect (∼
120−150%) comes from the QCD corrections, even in case of a jet veto. About two thirds of
the relative QCD corrections are due to gluon-induced channels. The results obtained with the
fragmentation function and the Frixione isolation scheme differ by 2− 3% and 0− 1% in case
of the QCD and the photon-induced EW corrections, respectively. The EW corrections to the
quark–antiquark channels are about −2% and −3% for the CS and the NCS case, respectively.
The photon-induced corrections contribute between 0.7% and 1.3% with and without a jet
veto. Summing up, the total EW corrections to the integrated cross section are small and
not significant for the most-recent experimental cross-section measurements. However, larger
corrections show up in differential distributions, as demonstrated in the next sections.

4.4.2 Results on transverse-momentum distributions

In the following we present the distributions including EW and QCD corrections for various
observables in separate plots for a centre-of-mass energy of 14 TeV. For each distribution we
also show the relative EW corrections of the qq̄ for the CS and the NCS case and qγ channels
as well as the QCD corrections with and without a jet veto. Since the difference between the
quark-to-photon fragmentation function and the Frixione isolation scheme is of the order of
2%, we only present results obtained with the fragmentation function in the following. Note
that diminishing the cut on the energy fraction of the photon inside a jet to zcut = 0.7 doubles
the difference between the two methods.
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Figure 4.1: Distributions in the transverse momentum pT of the photon (left) and the charged
lepton (right), including EW (top) and QCD corrections (bottom). For all corrections absolute
(upper box) and relative corrections (lower boxes) are shown.
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In Fig. 4.1 we show results for transverse-momentum distributions. Focusing on the pT,γ dis-
tribution of the photon (within cuts) with the highest transverse momentum we can see
(Fig. 4.1, left, bottom) that the QCD corrections without a jet veto reach 650% for large
transverse momenta (scaled down by a factor 10 in Fig. 4.1). This is due to the fact that
new production channels occur (q g → l ν γ q) at NLO QCD causing large corrections (550%
for large pT,γ). However, these large corrections come from events with hard jets, meaning
that they should better be considered as part of W + jet rather than W + γ production. For
this reason we also present results for the case of a jet veto, where all events with jets with
pT,jet > 100 GeV are discarded. In this case the QCD corrections become small for large pT,γ,
since the jet veto suppresses the contribution of the real QCD corrections and especially of the
gluon-induced channels.

Owing to the so-called EW Sudakov logarithms the EW corrections (Fig. 4.1, left, top)
contribute with large negative corrections in the high-pT range, though one order of magnitude
smaller than the QCD corrections. The CS and the NCS cases hardly differ in the pT distribu-
tion of the hardest photon, since the recombination of another photon collinearly emitted off
the lepton only marginally effects the pT of the hard photon.

The photon-induced corrections are positive and become surprisingly large for large trans-
verse momenta, reaching the same order of magnitude as the QCD corrections. In fact in the
discussion of the relative impact of the photon-induced corrections it would be more appro-
priate to normalize to the NLO QCD cross section, which is dominated by the new channels
for hard jet emission at high scales. With this normalization the qγ channels still contribute
some tens of percent at high pT,γ with a rising tendency for growing pT,γ, which can be un-
derstood by the increasing γ/g PDF ratio for high Bjorken-x (see Fig. 1.2) and the decrease
in the strong coupling constant driven by the dynamical renormalization scale. Note, how-
ever, that the photon PDF at large Bjorken-x suffers from huge uncertainties of up to 100%,
so that we have to conclude that the high-pT tail of the pT,γ distribution in the TeV range
is plagued by PDF uncertainties which are of the size of the qγ contribution itself. Similarly
to the huge QCD corrections, the large impact of the photon-induced corrections at high pT,γ

is reduced to the level of 10−15% by a jet veto, showing that those large effects are caused
by hard jet emission. The jet veto, thus, helps to suppress the impact of the qγ contribution
and the corresponding large uncertainties in the high-pT regime. After applying the veto, in
fact the quark–antiquark-induced EW corrections become the dominating corrections for large
transverse momenta.

In case of the pT distribution of the charged lepton (Fig. 4.1, right) the QCD corrections
without jet veto are large in the small-pT range and become small for large transverse momenta.
In contrast the EW corrections become sizeable in the region of large transverse momenta. The
corrections are roughly 5% smaller in the CS case than in the NCS case. Collinear photon
emission reduces the lepton momentum, so that events with large pT,l+ before the emission
migrate to smaller pT,l+ , leading to negative corrections on the falling distribution in pT,l+ .
Photon recombination damps this effect upon shifting the major part of these migrating events
back to the pT,l+ value before photon emission. For the case without jet veto the quark–
antiquark and photon-induced EW corrections are of the same order of magnitude, but of
opposite sign, and accidentally compensate each other to a large extent. In case of a jet veto the
QCD corrections become large and negative for large pT,l+ . The large negative corrections result
from the quark–antiquark-induced channels, while the corrections due to the gluon-induced
channels remain small also for a jet veto. This fits well to the fact that the photon-induced
corrections become negligible everywhere.
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4.4.3 Results on transverse-mass distributions

The transverse mass of the W boson is defined in Eq. (4.10) and the transverse three-body
mass of the W-decay products and the photon by

MT,l+νγ =

√(√
M2

l+γ +
∣∣pT,l+ + pT,γ

∣∣2 + pT,miss

)2

−
∣∣pT,l+ + pT,γ + pT,miss

∣∣2 , (4.14)

where Ml+γ is the invariant mass of the charged lepton and the photon, defined analogous to
Eq. (4.11). The corresponding distributions are shown in Fig. 4.2. The smaller peak in the
MT,l+ν distribution at 60 GeV appearing already at LO originates from events where the three-
body invariant mass MT,l+νγ lies in the resonance region and the photon is radiated by the
charged FS lepton shifting the peak to smaller transverse masses. Since events with photons
close to the FS lepton are discarded, a dip appears above the lower peak. As can be seen in
Fig. 4.2, the QCD corrections are dominating the MT,l+ν distribution with and without a jet
veto. At the W-mass peak, the EW corrections reach −4% with photon recombination and
−8% in the NCS case, where the photon radiated collinear to the charged lepton carries away
energy, shifting more events to regions of smaller transverse mass, where those events posi-
tively contribute to the EW corrections below the W-boson resonance. The photon-induced
corrections are negligible with and without a jet veto. We note in passing that previous cal-
culations [52, 54] of EW corrections to W + γ production, which treat the W boson in pole
approximation, cannot predict the range in MT,l+ν exceeding MW which forces the W boson
to go off its mass shell, while our calculation covers resonant and non-resonant regions in NLO
accuracy.

We turn to the MT,l+νγ distribution analysed experimentally in Ref. [18]. While the QCD
corrections are dominating the region of small transverse masses, the EW and photon-induced
corrections are small and have opposite signs there. In the high-MT,l+νγ region the situation
is different. Here the QCD corrections reduce to 50% and in case of a jet veto almost tend to
zero. In contrast, the EW and the photon-induced corrections without a jet veto are about
20%, but accidentally compensate each other partly. However, imposing a jet veto reduces the
photon-induced corrections to 5%. As a result, the EW corrections are not compensated by
the photonic corrections anymore, becoming the dominant contribution.

4.4.4 Results on rapidity and angular distributions

In Fig. 4.3 we show the rapidity distributions of the photon and the charged lepton. In both
distributions the relative EW corrections are small and almost constant over the whole range,
and thus essentially given by the corrections to the total cross section. The photon-induced
contributions are of comparable magnitude, but have opposite sign so that they partially cancel
the EW corrections. The QCD corrections amount to 100−180% for the rapidity distribution
of the photon and to 140−160% for the one of the charged lepton and lead to sizeable shape
distortions. EW corrections are completely swamped by QCD uncertainties in these observ-
ables.

In Fig. 4.4 we present the distributions in rapidity and the azimuthal-angle difference be-
tween the charged lepton and the photon. Note that the shape of the LO rapidity-difference
distribution is highly sensitive to the chosen phase-space cuts. A potential dip at ∆yl+γ = 0
indicating the radiation zero [33, 37, 102] is not present in the setup described in Section 4.3,
but becomes visible for cuts pT,γ > 20 GeV or pT,miss > 40 GeV (not shown explicitly). The
kink around 40° in the ∆φl+γ distribution is a result of the isolation cut Rl+γ > 0.7 which sup-
presses the phase-space region with small azimuthal angle between charged lepton and photon.
The EW and photon-induced corrections in Fig. 4.4 are at the level of 5% and affect the shape
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Figure 4.2: Distribution in the transverse mass MT,l+ν of the charged lepton and neutrino
pair (left) and distribution in the transverse three-body mass MT,l+νγ of the charged lepton, the
neutrino, and the hardest photon (right), including EW (top) and QCD corrections (bottom).
For all corrections absolute (upper box) and relative corrections (lower boxes) are shown.
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Figure 4.3: Distributions in the rapidity yγ of the photon (left) and the rapidity yl+ of the
charged lepton (right), including EW (top) and QCD corrections (bottom). For all corrections
absolute (upper box) and relative corrections (lower boxes) are shown.
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difference ∆φl+γ (right) of the charged lepton and the photon, including EW (top) and QCD
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pp→ l−ν̄l γ + X
√
s/TeV 7 8 14

σLO/ fb 620.00(10) 707.50(12) 1200.00(21)

δNCS
EW,qq/% −3.01 −3.01 −3.01

δCS
EW,qq/% −1.85 −1.85 −1.86

δfrag
EW,qγ/% 1.34 1.39 1.56

δveto, frag
EW,qγ /% 0.98 1.00 1.06

δFrix
EW,qγ/% 1.35 1.40 1.57

δveto,Frix
EW,qγ /% 1.00 1.02 1.07

δfrag
QCD/% 139.80(14) 145.70(9) 167.00(11)

δveto, frag
QCD /% 130.90(14) 135.50(9) 150.40(11)

δFrix
QCD/% 143.30(14) 149.30(9) 171.10(10)

δveto,Frix
QCD /% 134.40(14) 139.00(9) 154.50(10)

Table 4.2: Integrated cross sections and relative corrections for W−γ production at different
LHC energies. The EW corrections to the quark–antiquark annihilation channels are provided
with (CS) and without (NCS) lepton–photon recombination. EW corrections from the photon-
induced channels and QCD corrections are shown with a jet veto (veto) as well as without a
jet veto using democratic clustering and fragmentation function (frag) or the Frixione isolation
criterion (Frix) to separate photons and jets. The numbers in parentheses denote the integration
error in the last digits. This error is negligible for the relative EW corrections at the given
accuracy.

of the distributions at the level of a few per cent, whereas the QCD corrections cause large
shape distortions and reach 200% in the ∆yl+γ and 300% in the ∆φl+γ distribution. The shape
distortion in the ∆yl+γ distribution originates essentially from the gluon-induced corrections,
which do not have a radiation zero. Especially in the rapidity-difference distribution, effects
of anomalous couplings are expected to be visible as pointed out in Ref. [33]. Similarly to the
rapidity distributions discussed before, the EW corrections are overwhelmed by QCD effects
and the corresponding uncertainties here.

4.5 Results for p p → l− ν̄l γ + X

4.5.1 Results on total cross section

Besides the W+γ production with the final state l+νlγ, the charge-conjugate process of W−γ
production with the final state l−ν̄lγ is also accessible at the LHC. In Table 4.2 we present
the LO cross sections σLO for different pp centre-of-mass energies

√
s for the charge-conjugate

process of W−γ production. We use again the definitions of relative corrections δ from Eq. (4.4).
Due to the different PDF factors the LO cross section for W−γ production is smaller than for
W+γ production. The results on relative corrections look very similar to the ones for W+γ
production, discussed in Section 4.4.1.
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4.5.2 Results on transverse-momentum and transverse-mass distri-
butions

In this section we discuss qualitative similarities and differences in the distributions for the two
processes W+ + γ and W− + γ production. In Fig. 4.5 we present the pT distribution of the
charged lepton and the transverse-mass distribution of the W boson. In this plots we show
results for W+ + γ and W− + γ production together and we focus on the NCS case without a
jet veto.

The pT,l distribution (Fig. 4.5, left) shows characteristic differences between the two pro-
cesses. While the shape of relative electroweak corrections for the quark–antiquark-induced
channels is almost identical for both W+γ and W−γ production, for photon-induced correc-
tions the shape of the relative corrections clearly differs. Whereas for W+γ production these
corrections increase slightly from 20% at 200 GeV to 50% at 1500 GeV the growth for W−γ is
much larger and reaches 120% at 1500 GeV. Also for the QCD corrections differences are visi-
ble. In the W+γ case the relative corrections show a maximum of about 500% around 100 GeV
and decrease almost to zero at large transverse momenta. For W−γ on the other hand, we find
a maximum of approximately 1000% near 200 GeV and a decline to 200% at 1500 GeV. While
the shapes of the relative QCD corrections from the quark–antiquark-induced contributions for
W+γ and W−γ look very similar those from gluon-induced contributions differ significantly.
This difference can be understood as follows: For large pT,l the cross section receives a large
contribution from the partonic processes qg → q′Wγ. As pointed out in Ref. [103], in the
related process qg → q′W the W+ and W− bosons are primarily polarized left-handed with an
increase of this polarization for higher pT,W. The W+ boson emits the left-handed neutrino
preferentially parallel to its flight direction and the right-handed positron antiparallel. On av-
erage, this results in a larger transverse momentum of the neutrino and a smaller transverse
momentum of the positron leading to an enhancement in the pT,miss distribution of the neutrino
and a reduction in the pT distribution of the positron. For the W− boson the situation is vice
versa. A left-handed electron is emitted forward and a right-handed anti-neutrino backward
with respect to the W− momentum so that the pT distribution of the electron is enhanced
and the pT,miss distribution is reduced (for a detailed explanation see Refs. [103,104]). This
behaviour also appears in the large photon- and gluon-induced corrections to W+γ production
and causes the observed differences between W+ + γ and W− + γ production.

In the distribution of the transverse mass of the W boson (Fig. 4.5, right) the situation is
different. In the quark–antiquark-induced relative electroweak corrections there is no qualitative
difference between the processes W+γ and W−γ visible. For the QCD and the photon-induced
corrections the only difference between W+γ and W−γ is in the size of the maximum near
40 GeV. Apart from this, the shapes of the relative photon-induced and QCD corrections are
quite similar for the two different processes.

We have also considered other differential distributions, but show only the two distributions
with the largest and smallest discrepancies between the two processes in Fig. 4.5. The differ-
ences are mostly small where the cross sections are sizeable. Differences of the same size as for
the pT,l distribution are, however, also found for the pT,γ distribution.

Figs. C.1– C.4 list further distributions for W− + γ production including the CS case and
the corrections with the application of jet veto. The comparison between W+ + γ and W− + γ
production for other observables can be found in Figs. C.5– C.7.

4.6 Dilepton + photon production: p p → l+ l− γ + X

In Table 4.3 we present the LO cross sections σLO for different pp centre-of-mass energies
√
s

and different types of relative corrections δ defined in (4.4) for pp→ Z/γ∗+ γ → l+l−+ γ+X.
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Figure 4.5: Comparison of W+γ and W−γ production in the transverse-momentum distribu-
tion of the charged lepton (left) and the transverse-mass distribution of the charged lepton and
the neutrino (right), including EW (top) and QCD corrections (bottom). For all corrections
absolute (upper box) and relative corrections (lower boxes) are shown.
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pp→ l−l+ γ + X
√
s/TeV 7 8 14

σLO/ fb 728.90(7) 818.40(8) 1317.00(14)

δγγ/% 0.27 0.26 0.22

δNCS
EW,qq/% −5.50 −5.49(7) −5.43

δCS
EW,qq/% −3.46 −3.46(7) −3.43

δfrag
EW,qγ/% 0.03 0.03 0.04

δveto, frag
EW,qγ /% 0.01 0.02 0.02

δFrix
EW,qγ/% 0.05 0.05 0.06

δveto,Frix
EW,qγ /% 0.04 0.04 0.04

δfrag
QCD/% 61.47(5) 62.78(5) 67.91(7)

δveto, frag
QCD /% 58.67(5) 59.63(5) 63.17(7)

δFrix
QCD/% 60.57(5) 61.92(5) 67.18(7)

δveto,Frix
QCD /% 57.77(5) 58.76(5) 62.44(7)

Table 4.3: Integrated cross sections and relative corrections for pp→ l+l−γ +X at different
LHC energies. The EW corrections to the quark–antiquark annihilation channels are provided
with (CS) and without (NCS) lepton–photon recombination. Contributions from the photon-
induced channels and QCD corrections are shown with a jet veto (veto) as well as without a
jet veto using democratic clustering and fragmentation function (frag) or the Frixione isolation
criterion (Frix) to separate photons and jets. The numbers in parentheses denote the integration
errors in the last digits. This error is omitted if it is negligible at the given accuracy.

For the EW corrections resulting from the quark–antiquark-induced channels we show re-
sults for the CS and NCS scenarios. Results for the EW corrections originating from photon-
induced channels and for the QCD corrections are listed with and without a jet veto. Fur-
thermore, we present results obtained by applying democratic clustering in combination with a
quark-to-photon fragmentation function and the Frixione isolation scheme indicated by “frag”
and “Frix”, respectively. The different relative corrections are not particularly sensitive to the
collider energy. The largest variation (∼ 60−68%) occurs in the QCD corrections. A jet veto al-
lowing a maximal jet transverse momentum of 100 GeV does not diminish the QCD corrections
considerably, since energy scales dominating the integrated cross section are much lower for our
setup, which allows for photons (leptons) down to transverse-momentum values of 15 (25) GeV.
The gluon-induced channels (not separately shown) contribute only about a tenth to the QCD
corrections at an energy of 14 TeV and even less at lower collider energies. The results obtained
with the fragmentation function and the Frixione isolation scheme differ by 0.5−1% for the QCD
corrections. The EW corrections to the quark–antiquark channels are about −3.4% and −5.5%
for the CS and the NCS case, respectively. The quark–photon-induced corrections contribute
less than 0.06% with and without a jet veto and, thus, are phenomenologically negligible. The
photon–photon-induced channel contributes with ∼ 0.25%.

In summary, the quark–antiquark-induced EW corrections to the integrated cross sections
are small compared to the NLO QCD corrections. Nevertheless, they might become relevant
in future analyses, since they are of the order of several percent, i.e. larger than the residual
scale uncertainty of the NNLO QCD corrections. The photon-induced EW corrections are at
the per-mille level and not significant for experimental cross-section measurements. However,
larger effects appear in differential distributions, as demonstrated in the following. Besides the
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observables which will be discussed in detail in the following further distributions are listed in
Figs. D.1– D.3.

4.6.1 Results on transverse-momentum distributions

In the following we present differential distributions including QCD and EW corrections to
pp→ Z/γ∗+ γ → l+l−+ γ+X for a pp centre-of-mass energy of 14 TeV. For each distribution
the relative EW corrections of the qq, qγ, and γγ channels as well as the QCD corrections
with and without a jet veto are shown. Since the difference between Frixione isolation and the
quark-to-photon fragmentation function is of the order of 1% for the integrated cross section
and distributions, and therefore not very significant, we only show results obtained with the
quark-to-photon

In Fig. 4.6 we show results on the transverse-momentum distributions of the hardest photon
(within cuts) and of the Z boson (defined in Eq. (4.9)). Both distributions receive large QCD
corrections in the region of high transverse momenta. This is due to the fact that at NLO
QCD new channels appear (qg → l+l−γq) causing large corrections, especially in the high-
pT tails. However, these large corrections originate from events with hard jets. These events
should preferably be considered as part of Z + jet rather than Z + γ production. Therefore
we additionally show distributions for the case of a jet veto discarding events with pT, jet >
100 GeV. The jet veto suppresses the large QCD corrections at high transverse momenta. The
pT distributions of the photon and the Z boson receive large negative EW corrections, which
predominantly originate from so-called EW Sudakov logarithms. In case of the pT,γ distribution
the CS and the NCS cases hardly differ, since the recombination of the second photon and a
collinear lepton hardly influences the transverse momentum of the hardest photon. In contrast,
the CS and the NCS cases differ in the pT,Z distribution. This is due to the fact that the
transverse momentum of the Z boson is reconstructed from the momenta of the charged leptons
which are sensitive to the recombination with a collinearly radiated photon. The quark–photon-
induced corrections are below 10% in both distributions and almost vanish in case of a jet veto.
The photon–photon-induced corrections grow up to 4% at pT,Z = 1 TeV. They are not affected
by the jet veto, since there is no jet in the final state. In summary, the EW corrections are
much smaller than the QCD corrections if no jet veto is applied, but sizeable. In case of a jet
veto they even become the leading corrections in the high-transverse-momentum tails.

The transverse-momentum distributions of the two charged leptons are shown in Fig. 4.7.
The QCD corrections turn out to be of the order of 150% at 100 GeV and decrease to 50%
at 1 TeV if no jet veto is applied. In case of a jet veto the corrections are still large (100%)
in the low pT-range and drop to −50% at 1 TeV. The transverse-momentum distribution of
each charged lepton receives large negative weak corrections originating from the Sudakov loga-
rithms, reaching −15% at 1 TeV. The difference between the CS and the NCS EW corrections is
roughly 6%. The collinear radiation of photons off FS charged leptons shifts the lepton trans-
verse momentum to smaller values, causing negative corrections. Recombining the charged
lepton with the collinear photon partly compensates this effect, which is why the CS correc-
tions are smaller. The quark–photon-induced corrections are below 5% and almost vanish in
case of a jet veto. The photon–photon-induced correction grows up to more than 10% at 1 TeV.
Note, however, that at large Bjorken-x the photon-PDF carries large uncertainties of the order
of 100%. We see that in the high-pT tail the EW corrections are of the same order of magnitude
as the QCD corrections with and without a jet veto. The transverse-momentum distributions
of the two charged leptons and the corresponding corrections do not differ significantly.
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Figure 4.6: Distributions in the transverse momentum pT of the hardest photon (left) and
the Z boson (right), including EW (top) and QCD corrections (bottom). The upper boxes show
absolute predictions, the lower ones relative corrections.
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Figure 4.7: Distributions in the transverse momenta pT,l± of the two charged leptons, includ-
ing EW (top) and QCD corrections (bottom). The upper boxes show absolute predictions, the
lower ones relative corrections.
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4.6.2 Results on invariant-mass distributions

The invariant mass of the Z boson, Ml+l− , is defined in (4.8), and the invariant three-body mass
of the Z-decay products and the photon is defined by

Ml+l−γ =

√
(pl+ + pl− + pγ)

2 , (4.15)

where pl+ , pl− , and pγ are the four-vectors of the charged leptons and the hardest photon,
respectively. We always take the momentum of the hardest photon if there are two photons.
The corresponding distributions are shown in Fig. 4.8.

The invariant-mass distribution of the two charged leptons exhibits two peaks already at
LO. The larger one corresponds to the Z resonance originating from the propagator that is
resonant in the invariant mass of the two charged leptons Ml+l− at Ml+l− = MZ. The smaller
one comes from the resonance in the invariant three-body mass Ml+l−γ, where the photon is
radiated by one of the FS charged leptons leading to a shift of the peak. The location of the
smaller peak mainly depends on the cut on the transverse momentum of the photon. With
decreasing values of the cut on pT,γ the peak becomes less pronounced and moves towards the
larger peak until they fuse. The QCD corrections are the leading corrections in this distribution.
They are particularly large at low invariant masses and below the resonance with and without
a jet veto. This is to some extent a result of our basic cuts, which allow invariant masses Ml+l−

down to 40 GeV, but at the same time demand transverse momenta pT,l± > 25 GeV. At LO,
this leads to a strong suppression of the cross section at low Ml+l− , but at NLO QCD a jet
recoil (with intermediate pT,jet < 100 GeV) in the real QCD corrections can lift such events
over the cuts on pT,l± , leading to particularly large positive QCD corrections there. In the
resonance region the EW corrections coming from the qq channel reach 20% in the CS and 40%
in the NCS cases. Without photon recombination the shape distortion of the Z resonance is
larger, since more events appear where the photon carries away energy and shifts events from
higher to lower energies. The quark–photon-induced EW corrections are almost zero for low
invariant masses and reach 1% at 300 GeV. In case of a jet veto they are well below one percent
everywhere. The photon–photon-induced corrections are also tiny for invariant masses below
100 GeV, but grow up to 5% at 300 GeV.

Focusing on the invariant three-body mass we see that the QCD corrections are the domi-
nating contribution in the region of low invariant masses, but decrease with and without a jet
veto to 50% and 0%, respectively, for Ml+l−γ = 2 TeV. In this region, the Ml+l−γ distribution
receives large negative corrections between −23% and −28% from the EW corrections for the
CS and the NCS case, respectively. The quark–photon-induced EW corrections are of the order
of 1–2% and practically vanish in case of a jet veto, while the photon–photon-induced correc-
tions reach 10% at 2 TeV. At high invariant mass the EW corrections are of the same order of
magnitude as the QCD corrections and become the leading corrections in case of a jet veto.

4.6.3 Results on rapidity and angular distributions

In the following we present some rapidity and angular distributions along with the corresponding
NLO corrections. As for the integrated cross section the QCD corrections yield typically the
largest contributions and in most cases a jet veto has no sizeable impact. We only show the
most interesting distributions in this section. Further distributions are listed in Appendix D.

Although the distributions in the rapidity differences ∆yZγ and ∆yl+γ shown in Fig. 4.9 are
different in their absolute values, the relative QCD and EW corrections are very similar in the
two cases.

The QCD corrections are about 50% at zero rapidity distance and grow to 110% at |∆y| = 4.
The quark–antiquark-induced EW corrections amount to roughly −3% in the CS case and vary
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Figure 4.8: Distribution in the invariant mass Ml+l− of the charged leptons (left) and distri-
bution in the invariant three-body mass Ml+l−γ of the charged leptons and the hardest photon
(right), including EW (top) and QCD corrections (bottom). The upper boxes show absolute
predictions, the lower ones relative corrections.
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Figure 4.9: Distributions in the rapidity difference ∆yZγ between the hardest photon and the
Z boson (left), and the rapidity difference ∆yl+γ between the charged lepton and the hardest
photon (right), including EW (top) and QCD corrections (bottom). The upper boxes show
absolute predictions, the lower ones relative corrections.
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between −4% and −6% in the NCS case. The photon-induced corrections stay below 1% and
are phenomenologically unimportant.

Next we focus on the rapidity difference and the azimuthal-angular difference between the
charged leptons shown in Fig. 4.10. Starting with the rapidity difference we see that the EW
corrections to the qq̄ channel have a minimum at zero rapidity difference and increase up to
−12% and −14% at |∆yl+l− | = 4 in the CS and the NCS case, respectively. The corrections
from the qγ channels are below 4% and 2% with and without a jet veto, respectively. The
photon–photon-induced corrections are below 5% for |∆yl+l− | < 2 and increase steeply to 30%
for |∆yl+l−| ∼ 4. However, in this region the cross section is very small.

The azimuthal-angular difference between the charged leptons has a peak around 160◦. This
peak is caused by the cut on the transverse momentum of the photon which eliminates events
with back-to-back leptons in the transverse plane. Increasing this cut shifts the peak to smaller
azimuthal angles. The NLO QCD corrections cause a very significant broadening of the peak,
because jet recoil effects strongly influence the angle between the leptons when the decaying
Z bosons receives a boost. The effect is strongest in the limit where the leptons are nearly
collinear, a region that is rarely populated at LO, but receives large contributions from hard
jet emission where the jet recoil and the boost of the Z boson are strongest. This also explains
the sensitivity of this region to the jet veto. The EW corrections from the qq̄ channels are of
the order of −6% and −7% in the CS and the NCS cases, respectively, in the region of small
angle differences and decrease at larger ones. The photon-induced corrections lie below about
1% and are phenomenologically unimportant.

In summary, in angular and rapidity distributions the EW corrections are suppressed with
respect to the QCD corrections.

4.7 Invisible Z + γ production: p p → ν̄ ν γ + X

4.7.1 Results on total cross section

In Table 4.4 we present the LO cross sections σLO for different pp centre-of-mass energies
√
s

and different types of relative corrections δ defined in (4.4) for pp→ Z + γ → ν̄ν + γ +X.
Recall that we sum over all three lepton generations. Similar to the results in Table 4.3

we find that the relative corrections only marginally vary for the different collider energies.
Here again the QCD corrections give the dominant contributions with ∼ 40−50%, but with
26% the amount of the gluon-induced channels is much larger than for l+l−γ production.
Owing to the neutral final state the dominant contribution inside the quark–antiquark-induced
EW corrections results from pure weak corrections with −4.5% and the photonic corrections
only contribute 0.3%. Again the quark–photon-induced corrections are phenomenologically
negligible.

4.7.2 Results on transverse-momentum distributions

In the following we present differential distributions including QCD and EW corrections to
pp → Z + γ → ν̄νγ + X for a pp centre-of-mass energy of 14 TeV. In Fig. 4.11 we show
distributions in the transverse-momentum of the photon and the missing transverse momentum.
First we notice that the two distributions as well as the corresponding corrections are almost
identical.

Since the photon neither couples to the Z boson nor to the neutrinos, the photon and the
Z boson are always back to back in their centre-of-mass frame at LO. Corrections from the real
radiation of jets or photons off the initial-state partons hardly distinguish between the produced
Z boson or the hard photon, so that even the NLO corrections (both QCD and EW) almost
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Figure 4.10: Distributions in the rapidity difference ∆yl+l− (left) and the azimuthal-angle
difference ∆φl+l− (right) of the charged leptons, including EW (top) and QCD corrections
(bottom). The upper boxes show absolute predictions, the lower ones relative corrections.
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Figure 4.11: Distributions in the transverse momentum pT of the photon (left) and the
missing transverse momentum (right), including EW (top) and QCD corrections (bottom).
The upper boxes show absolute predictions, the lower relative corrections.
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pp→ ν̄ν γ + X
√
s/TeV 7 8 14

σLO/ fb 74.93(1) 91.03(1) 185.30(2)

δEW,qq/% −4.15 −4.26 −4.68

δfrag
EW,qγ/% 0.03 0.03 0.03

δveto, frag
EW,qγ /% 0.02 0.02 0.02

δFrix
EW,qγ/% 0.03 0.03 0.03

δveto,Frix
EW,qγ /% 0.02 0.02 0.02

δfrag
QCD/% 46.24(3) 46.91(3) 51.46(4)

δveto, frag
QCD /% 42.46(3) 42.52(3) 44.05(4)

δFrix
QCD/% 45.42(4) 46.08(3) 50.71(3)

δveto,Frix
QCD /% 41.63(4) 41.69(3) 43.31(3)

Table 4.4: Integrated cross sections and relative corrections for pp→ ν̄νγ+X at different LHC
energies. Contributions from the photon-induced channels and QCD corrections are shown with
a jet veto (veto) as well as without a jet veto using democratic clustering and fragmentation
function (frag) or the Frixione isolation criterion (Frix) to separate photons and jets. The
numbers in parentheses denote the integration error in the last digits. This error is omitted if
it is negligible at the given accuracy.

coincide for the pT,Z (which is equivalent to pT,miss) and pT,γ distributions. Furthermore the
NLO corrections closely resemble the ones shown in Fig. 4.6 (left) for the pT,γ distribution for
the l+l−γ final state. The QCD corrections are similar, because they only affect the IS quarks
and do not depend on the final state. The EW corrections corresponding to the qq̄ channel
are identical with the weak corrections including the large Sudakov logarithms and turn out
to be of similar size quite independent of the final state. The photonic corrections, which
only involve the IS quarks, are negligible for ν̄νγ production, i.e. they are almost completely
absorbed into the PDFs. The quark–photon-induced corrections roughly differ by a factor of
two in the cases of l+l−γ and ν̄νγ production, since they depend on the FS particles: In the
visible decay channel the IS photon (discussed in Section 4.6) can also couple to the FS charged
leptons, whereas in the invisible decay channel it can only couple to the IS quarks.

4.7.3 Results on transverse-mass distributions

The transverse three-body mass of the neutrinos and the photon is given by

MT, ν̄νγ =

√
(pT,miss + pT,γ)

2 − (pT,miss + pT,γ)
2 , (4.16)

where we always take the hardest photon if there are two. The corresponding distribution
is shown on the left side of Fig. 4.12. Comparing this with the invariant three-body mass of
the charged leptons and the photon given in Fig. 4.8, we see that the QCD corrections are
flat and have the same trend in both distributions. This can be explained with the same
argument as in case of the transverse-momentum distributions, since the QCD corrections only
act on the IS quarks and do not depend on the FS leptons. Note that in the invisible decay
channel the distribution only starts at 190 GeV at NLO and at 200 GeV at LO owing to the
larger pT cuts. The EW corrections to the qq̄ channel are considerably larger in the invisible
channel which is due to the fact that we consider the transverse three-body mass instead of
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Figure 4.12: Distribution in the transverse three-body mass MT,ν̄νγ of the neutrino pair
and the hardest photon and the rapidity yγ of the hardest photon, including EW (top) and
QCD corrections (bottom). The upper boxes show absolute predictions, the lower relative
corrections.
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the full three-body mass. If the latter gets large, there is still the possibility that all transverse
momenta are moderate or small. By contrast a large transverse three-body mass requires some
large transverse momenta, so that the kinematical configuration is closer to the Sudakov regime
where all Minkowski products of momenta are large and EW corrections are strongly enhanced.
The corrections from the quark–photon channel are below 1% with and without jet veto and
therefore negligible.

4.7.4 Results on rapidity distributions

The rapidity distribution of the hardest photon is shown on the right side of Fig. 4.12. It receives
large QCD corrections between 30% and 60%. The jet veto diminishes the QCD corrections
by 5−10%. The EW corrections to the qq̄ channel mainly originating from the purely weak
corrections are of the order of −5% and almost flat and therefore reflecting the corrections to
the integrated cross section. The EW corrections are small compared to the QCD corrections,
but not completely negligible.
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Conclusions

The production of a photon in association with a massive vector boson including the leptonic
decays is one of the simplest processes to probe the EW gauge sector of the SM. As a part of
the gauge-boson pair production processes it is of great interest in several phenomenological
studies at a hadron collider as the LHC. W + γ production allows direct access to the coupling
of the photon to the W boson and facilitates the investigation of deviations from the standard
form of the WWγ vertex. The production of a charged lepton pair and a photon constitutes
the main background process for the Higgs decay into a Z boson and a photon and is also used
for the study of non-standard effects resulting in ZZγ and Zγγ couplings. The sub-process of
Z + γ production where the Z boson decays invisibly in two neutrinos is an important signal
within the searches of many exotic new-physics models.

In this work we presented a full calculation of QCD and EW NLO corrections for W+ + γ
production and for the charge-conjugated process of W− + γ production as well as for Z + γ
production. This calculation includes the leptonic decay of the vector bosons, and all off-shell
effects of the intermediate states have taken into account by using the complex-mass scheme.
Each of the V + γ production processes includes quark–antiquark-, gluon- and photon-induced
channels. Additionally, the dilepton plus photon production involves contributions with two
initial-state photons. A detailed discussion of the partonic channels can be found in Chapter 2.
For the treatment of IR singularities we have applied the dipole subtraction formalism. Within
the calculation of quark–antiquark-induced EW corrections we are faced with final-state photon
radiation off fermions where we have considered two different scenarios. In one case we assume
that a collinear photon–lepton system can not be separated in a detector so that such a config-
uration is treated as one quasi-particle. In a second scenario mimicking final-state muons we
proceed from the assumption that the photon will be absorbed in the electromagnetic calorime-
ter of the detector and the muon is measured in the muon chamber. In that case photon and
muon can be separated also if they are collinear. The final states of the partonic processes
for photon-induced and QCD corrections contain photons and jets. For the actual distinction
between hard photons and hard jets in their overlap region we applied two different implemen-
tations. We used the concept of democratic clustering in combination with a quark-to-photon
fragmentation function or the Frixione isolation scheme. The details of the applied techniques
are outlined in Chapter 3. For the QCD corrections we found large corrections which result
from the appearance of new production channels (gluon-induced contributions). However, these
large corrections come from events with hard jets, meaning that they should better considered
as part of V + jet production rather than V + γ production. For this reason we also calculated
these contributions including the application of a jet veto.

Focussing on W+ + γ production we found that the QCD corrections give the dominating
contribution ∼ 150% to the total cross section. The EW corrections only contribute with
2 − 3% and around 1% for the qq̄ and qγ channel, respectively, and partially compensate
each other. However, in several distributions the picture is different. Reflecting the general
features of EW corrections we found that in the TeV range (Sudakov logarithms) the qq̄ channel
contributes with several 10% and significant corrections appear in the resonance region of the
transverse mass distribution of the lepton pair. Additionally, the qγ channel also contributes
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with several 10% in case of no jet veto and, thus, partially compensates the QCD corrections.
The application of a jet veto reduces the qγ channel to almost zero but also the QCD corrections
so that the EW quark–antiquark-induced corrections become the dominant contributions.

For the charge-conjugated process of W−+γ production we found very similar results. While
the difference in total cross section at leading-order originates from the different PDF factors due
the charge-conjugated initial state, the numerical values of the relative EW and QCD corrections
to the total cross section are almost identical. In most oft the studied distributions we found
no significant deviations in the shape of the distributions. However, in the pT distributions of
the charged leptons and the photon a difference is visible.

For the dilepton production in association with a photon we observe that again the QCD
corrections of O (60%) give the dominant contribution to the total cross section. The quark–
antiquark-induced EW corrections contribute with around −3% and −5% for the case of dressed
leptons and final-state muons, respectively. Here, the contributions from the qγ and γγ channels
are negligible. In some of the distributions the qγ channel contributes up to a few percent
but can not compensate the QCD corrections in the same order of magnitude as for W +
γ production. The γγ channel is negligible in the regions of large cross section. However,
one should remember that the interpretation of photon-induced and, especially, double-photon
induced contributions should be treated with caution due to the large uncertainties ∼100% of
the photon PDFs at large Bjorken-x.

The Z + γ production process where the Z boson decays invisibly in two neutrinos has a
much smaller total cross section at LO due the strong cuts on pT,miss and pT,γ. The QCD
corrections around 50% give the dominant contribution. The quark–antiquark-induced EW
corrections are found to be of the order −5%. The qγ channel is again negligible in the total
cross section and also in the distributions it contributes less than 1%.

The numerical results presented in Chapter 4 of this thesis push the existing calculation of
EW corrections to the level of complete EW NLO calculations for V+γ production including the
leptonic decays of the vector bosons and all off-shell effects. The contributions from all channels
with initial-state photons are also included. The calculation of NLO corrections presented in
this work have been implemented in a highly flexible Monte Carlo program which allows to
calculate predictions for total cross sections and also arbitrary distributions in the form of
histograms.
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Appendix A

Monte Carlo phase-space integration

In this work we mostly discussed the partonic cross section, the PDFs and the treatment of
various types of singularities inside them. In the end, the calculation of the hadronic cross
section defined in Eq. (1.70) requires an integration which (due to the complicated structure of
the integrand) can not be worked out analytically. For the numerical evaluation of the integrand
we use the so-called Monte Carlo method. In this chapter we outline the technical details about
this method and its application to the phase-space integration. In Section A.1 we summarize
the basic strategy and present the global formulae which are applied and in Section A.2 we
discuss the explicit parametrization of the phase space.

A.1 Basic concept

The basic idea of the Monte Carlo method is based on the law of large numbers. This law says
that for a large set of n randomly created numbers ui the sum of function values for a function
f divided by N converges to the expectation of the function f

1

n

N∑

i=1

f (ui)→
1

b− a

∫ b

a

du f (u) , (A.1)

so that the integrals can be calculated by a discrete finite sum. A rather detailed overview
about the theory and practical applications of the Monte Carlo method can be found e.g. in
Ref. [105].

In order to apply the Monte Carlo method to the calculation of the total cross section we
start with the definition of the hadronic cross section at NLO (as introduced in Eq. (1.70)) for
an general process A (pA) +B (pB)→ f +X

dσAB→f =
∑

a,b

∫ 1

0

dxa

∫ 1

0

dxb

[
fa|A(xa)fb|B(xb) dσ̂ab→f (xaxbS)

]
. (A.2)

Therein we omit arguments since they are not relevant for the phase-space integration. σ̂ab→f
represents the IR-safe partonic cross section where all IR singularities are already treated with
dipole subtraction or absorbed to the PDFs via a redefinition. σ̂ab→f is defined as

dσ̂ab→f =
1

2xaxbS

∫
dΦ |M (Φ) |2 , (A.3)

where S is the hadronic centre-of-mass energy which is related with the partonic energy via
ŝ = xaxbS. Φ represents the generic phase space and the various contributions from squared
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amplitudes are denoted by |M|2. In summary, two different types of integrations dxa/dxb and
dΦ have to be performed.

The integration over the parton energy fractions xa/xb leads to a complication: From the
so-called flux factor 1/(xaxbS) in Eq. (A.3) it follows directly that the hadronic cross section
shows a peak at the low-energy limits xa/b → 0. This peak can be avoided by introducing a
lower cut ŝmin on the level of the partonic centre-of-mass energy ŝ. In order to illustrate the
consequences of this cut we introduce the following substitutions

xa → τ = xaxb =
ŝ

S
, xb → x = xb , (A.4)

so that Eq. (A.2) transforms to

dσAB→f =
1

2S

∑

a,b

∫ 1

τmin

dτ

τ

∫ 1

τ

dx

x

[
fa|A

(τ
x

)
fb|B (x) dσ̂ab→f (τS)

]
. (A.5)

Therein the cut on the lower energy is included in τmin = ŝmin/S. Choosing a non zero value
for ŝmin and so for τmin directly excludes the singular regions xa = xb = 0. In Eq. (A.5) we end
up with the factor 1/(τx) in the integrand leading to a non-flat structure. The flattening of
this factor is done by a specific choice for the mapping between a generated random number r
and x or τ , respectively. In order to derive this mapping we start with the x-integration which
can be rewritten as ∫

dx

x
=

∫
dr

dx(r)

dr

1

x(r)
. (A.6)

In order to flatten the singularity 1/x we suppose the following relation for the mapping

dx(r)

dr
∝ x(r) . (A.7)

Assuming the boundary conditions x(0) = τ and x(1) = 1 (defined by the integration limits in
Eq. (A.5)) this relation can be fulfilled by

x(r1) = τ 1−r1 , gx(x) =

(
dx(r1)

dr1

)−1

= − 1

x log τ
, (A.8)

where gx(x) denotes the inverse Jacobian related to the substitution x → r1. Here we use the
random number r1 instead of the generic r to indicate that the random numbers for the x- and
τ -mapping are different. The mapping x(r1) is chosen such that the Monte Carlo integration
is achieved over a flat integrand.

From Eqs. (A.5) and (A.8) it follows directly that the integrand of the τ -integration includes
the form (log τ)/τ . Applying the same procedure as described for x we find for the τ -mapping

τ = τ
√

1−r2
min , gτ (τ) =

(
dτ(r2)

dr2

)−1

= − 2

log2(τmin)

log τ

τ
, (A.9)

where τmin = ŝmin/S and gτ (τ) represents the corresponding inverse Jacobian. Finally, the
random numbers r1 and r2 can be translated to xa and xb with

xa =
τ(r2)

x(r1)
, xb = x(r1) , (A.10)

and the phase-space density

gx,τ (xa, xb) =
2

log2(τmin)

1

xax2
b

, (A.11)
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which is the product of the inverse Jacobians in (A.8) and (A.9) expressed in terms of xa and
xb.

The mapping discussed so far reflects the easiest choice to flatten the flux-factor in Eq. (A.3).
However, in order to optimize the convergence of the numerical integration there are possibilities
to adapt the mapping to the corresponding partonic process. In case of vector-boson production
in association with a photon the dominant contribution to the total cross section arise from
events related to the energy region around the mass of the vector boson. Finally, we use the
knowledge about the shape of the cross section in addition to the mapping discussed in this
section. Therewith we are able to achieve a concentration of events to the phase-space region
where the integrand contributes most.

A.2 Generic phase-space decomposition

In general, the calculation of scattering amplitudes necessitates the calculation of several Feyn-
man diagrams. These diagrams have various propagator structures which peak in different
regions of the phase space. As it is worked out in detail in Appendix C of Ref. [106] the various
phase-space parametrizations which are necessary to ensure a proper numerical integration can
be constructed by the use of universal building blocks. This procedure will be outlined in the
following.

In order to describe the construction of the phase space we consider a generic 2→ n partonic
scattering process described by

a(pa) + b(pb)→ c1(k1) + . . .+ cn(kn) , (A.12)

where the momenta of the incoming particles pa, pb and the momenta of the outgoing particles
ki, i = 1, 2, . . . , n were given in parenthesis. In four dimensions the corresponding differential
phase space is defined by

dΦ(2→n) = (2π)4−3n

[
n∏

i=1

d4ki δ
(
k2
i −m2

i

)
θ
(
k0
i

)
]
δ(4)

(
pa + pb −

n∑

i=1

ki

)
, (A.13)

where the IS particles are assumed to be massless and the masses of the FS particles are denoted
by mi =

√
k2
i . The phase-space integral

∫
dΦ(2→n) then can be constructed by three different

types of building blocks:

1. The phase-space integration over invariant where a resonant propagator occurs in the
s-channel.

2. The phase-space integration of a particle decay: i(p12)→ f1(k1) + f2(k2).

3. The phase-space integration of a t-channel 2→ 2 scattering process:
i1(p1) + i2(p2)→ f1(k1) + f2(k2).

For a partonic process with an intermediate vector boson decaying in the s-channel the squared
amplitude has the following Breit–Wigner structure

|M|2 ∝ 1

(p2 −M2
V)2 +M2

VΓ2
V

. (A.14)

Starting from the generic phase-space integration in Eq. (A.3) we introduce a generic map-
ping h (r) transforming a set of random numbers r with 0 < ri < 1 and i = 1, . . . , 3nf − 4 to
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the phase-space elements in Φ

∫
dΦ |M (p (Φ))|2 =

∫ 1

0

3nf−4∏

i=1

dri
|M (p (h (r)))|2
g (p (h (r)))

. (A.15)

Therein we made the dependence of the particle momenta from the phase-space elements Φ
or the random numbers r explicit. In case of a multidimensional function h (r) the general
transformation of the variables reads

∫
dh

h
=

∫
dr

∣∣∣∣
dh (r)

dr

∣∣∣∣
1

h (r)
, (A.16)

where | . . . | denotes the determinant. Therewith the density in Eq. (A.15) is given by

g (p (h (r))) =

∣∣∣∣
dh (r)

dr

∣∣∣∣
−1

. (A.17)

For our purposes we choose the following specific mapping

hprop (r) = MVΓV tan [y1 + (y2 − y1)r] +M2
V , (A.18)

where we introduce the abbreviations

y1/2 = arctan

(
p2

min/max −M2
V

MVΓV

)
. (A.19)

The values pmin and pmax describe the limits of the phase-space integration. The mapping
hprop (r) chosen in Eq. (A.18) results in the phase-space density

gprop(hprop (r) , p2 (r)) =
MVΓV

(y2 − y1)[(p2 (r)−M2
V)2 +M2

VΓ2
V]

(A.20)

which will exactly cancel the denominator in (A.14) so that the total integrand in Eq. (A.15) is
flat. Finally, this mapping ensures is that during the Monte Carlo phase-space integration most
of the random numbers will be sampled in regions of the phase space where the propagator
becomes resonant and which give the dominant contribution to the total cross section.

For the description of the decay of particle i we first introduce the total energy squared of the
decay products

s12 = (k1 + k2)2 . (A.21)

Therewith the particle decay is described in the rest frame of i by the use of the polar angle φ̂
and the azimuthal angle θ̂ (the hat indicates: rest frame of i). The phase-space integral then
reads
∫

dΩd

(
s12, k

2
1, k

2
2

)
=

∫
d4k1

∫
d4k2 δ

(
k2

1 −m2
1

)
θ
(
k0

1

)
δ
(
k2

2 −m2
2

)
θ
(
k0

2

)
δ(4) (p12 − k1 − k2)

=
λ1/2 (s12, k

2
1, k

2
2)

8s12

∫ 2π

0

dφ̂

∫ 1

−1

d cos θ̂

=
1

gd (s12, k2
1, k

2
2)

∫ 1

0

dr1

∫ 1

0

dr2 , (A.22)
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where the first line shows the differential phase space derived from Eq. (A.13). In line 2 we
introduce the integration values φ̂ and cos θ̂ and we use the Kaellen function

λ (x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) . (A.23)

The integration of the values φ̂ and cos θ̂ is then transformed to an integration of random
numbers in line 3. The application of the Monte Carlo method (as discussed at the beginning
of Section A.1) uses the simple mappings

φ̂ = 2πr1 , cos θ̂ = 2r2 − 1 , (A.24)

where r1/2 ε [0, 1] represent two different random numbers. Therewith the corresponding density
gd (s12, k

2
1, k

2
2) is given by

gd
(
s12, k

2
1, k

2
2

)
=

2s12

πλ1/2 (s12, k2
1, k

2
2)
. (A.25)

The momenta of the decay products are then defined as

k̂µ1 =
(
k̂0

1, k̂1

)
, k̂µ2 =

(
k̂0

2, k̂2

)
, (A.26)

where the energy k̂0
1/2 and the absolute value of the three-momentum |k̂1/2| are given by

k̂0
1 =

s12 + k2
1 − k2

2

2
√
s12

, |k̂1| =
λ1/2 (s12, k

2
1, k

2
2)

2
√
s12

,

k̂0
2 =

s12 + k2
2 − k2

1

2
√
s12

, |k̂2| =
λ1/2 (s12, k

2
2, k

2
1)

2
√
s12

, (A.27)

with s12 defined in Eq. (A.21). Since the momenta k̂1/2 are calculated in the rest frame of
particle i they have to be boosted to the laboratory frame. This boost is described by the
matrix B (Q0,Q) transforming an arbitrary four-vector kµ to the rest frame of Qµ and its
inverse transformation B (Q0,−Q) is then used for the Lorentz transformation from rest frame
to laboratory frame

k0 = γk̂0 + bk̂ , k = k̂ + b
bk̂

1− γ + bk̂0 , (A.28)

where we introduce b = Q/m, γ = Q0/m and m =
√
Q2. Since the decay of the particle i is

isotropic the coordinate system can be chosen arbitrarily. If we choose the flight direction of
particle f1 as the x3-axes the momenta of the decay products f1 and f2 are given by

k1 = B
(
p0

12,−p12

)
R
(
φ̂, cos θ̂

)




p212+k21−k22
2
√
p212

0
0

λ1/2(p212,k21 ,k22)
2
√
p212



, k2 = p12 − k1 , (A.29)

in the laboratory frame. Therein the rotation matrix R
(
φ̂, cos θ̂

)
is given by

R
(
φ̂, cos θ̂

)
=




1 0 0 0

0 cos φ̂ sin φ̂ 0

0 −sin φ̂ cos φ̂ 0
0 0 0 1







1 0 0 0

0 cos θ̂ 0 sin θ̂
0 0 1 0

0 −sin θ̂ 0 cos θ̂


 . (A.30)
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For the description of the 2 → 2 scattering process mentioned in point 3 two particle with
momenta p1 and p2 transform in two particles with momenta k1 and k2. The phase-space
integration can be parametrized by an integration of the polar angle φ̂ and the Mandelstam
variable t = (p1 − k1)2 in the rest frame of p12 = p1 + p2. The x3-axes is chosen in p1 direction
so that the momenta are given by

p̂1/2 =




p212+p21−p22
2
√
p212

0
0

±λ1/2(p212,p21,p22)
2
√
p212



, k̂1 = R

(
φ̂, cos θ̂

)




p212+k21−k22
2
√
p212

0
0

λ1/2(p212,k21 ,k22)
2
√
p212



, (A.31)

and k̂2 = p̂1 + p̂2 − k̂1. The integral then reads

∫
dΩp

(
p1, p2, k

2
1, k

2
2

)
=

∫
d4k1

∫
d4k2 δ

(
k2

1 −m2
1

)
θ
(
k0

1

)
δ
(
k2

2 −m2
2

)
θ
(
k0

2

)
δ(4) (p12 − k1 − k2)

=
1

4λ1/2 (s12, p2
1, p

2
2)

∫ 2π

0

dφ̂

∫ tmax

tmin

dt , (A.32)

where the variable t is defined as

t = k2
1 + p2

1 −
(s12 + k2

1 − k2
2)(s12 + p2

1 − p2
2)− λ1/2 (s12, k

2
1, k

2
2)λ1/2 (s12, p

2
1, p

2
2) cos θ̂

2s12

(A.33)

and exclusively depends on the azimuthal angle θ̂. s12 is defined Eq. (A.21). The integration
limits tmax/min reflecting the values cos θ̂ = ∓1 read

tmax/min = k2
1 + p2

1 −
(s12 + k2

1 − k2
2)(s12 + p2

1 − p2
2)± λ1/2 (s12, k

2
1, k

2
2)λ1/2 (s12, p

2
1, p

2
2)

2s12

. (A.34)

In analogy to Eq. (A.28) the momenta of the FS particles f1 and f2 in the laboratory frame
can be derived from the momenta in the rest frame with a Lorentz boost and a rotation

k1/2 = B
(
p0

12,−p12

)
R
(
−φ̃, cos θ̃

)
k̂1/2 , (A.35)

where the angles φ̃ and θ̃ have to be calculated from the boosted incoming momentum p̃1 =
B (p0

12,p12) p1 with the following relations

φ̃ =





arctan
(
p̃21
p̃11

)
if p̃1

1 > 0

π + arctan
(
p̃21
p̃11

)
if p̃1

1 < 0
, cos θ̃ =

p̃3
1

|p̃1|
. (A.36)

The tilde indicates the rest frame of p = p1 + p2.
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Appendix B

Loop integrals

In this chapter we discuss the numerical evaluation of one-loop integrals used for the calculation
of virtual QCD and EW corrections to the processes defined in Eqs. (2.1), (2.3) and (2.4).
In Section B.1 we introduce the common conventions to describe one-loop integrals and in
Section B.2 we outline the technical details of the reduction of tensor integrals.

B.1 General structure of tensor integrals

The calculation of one-loop diagrams with M external legs requires the computation of N -point
tensor integrals with N ≤ M . The general form of a N-point tensor integral with rank P is
given by [61]

TN,µ1...µP (p1, . . . , pN−1,m0, . . . ,mN−1) =
(2πµ)4−D

iπ2

∫
dDq

qµ1 . . . qµP

D0D1 . . . DN−1

, (B.1)

where the momenta p1, p2−p1, p3−p2, . . . , pN−2−pN−1 indicate the incoming external momenta
(see Fig. B.1). The denominator factors are defined as

Dk = (q + pk)
2 −m2

k + iε , k = 0, 1, . . . , N − 1 , p0 = 0 . (B.2)

Therein pk and mk indicate the momentum and the mass of the particle of the k-th loop
propagator. The tensor integrals are totally symmetric in the Lorentz indices µk and they are
invariant under permutations of the propagators Dk. iε (where ε > 0) is an infinitesimally small
imaginary part which is used for regularising singularities of the integrand. The tensor integrals
are defined with an analytical continuation in D = 4 − 2ε dimensions which is necessary to
allow regularization of the UV divergences. In order to conserve the correct mass dimension of
the integral this necessitates the introduction of the mass scale µ.

The 1-, 2-, 3-, 4- and 5-point functions which appear in the calculation of one-loop ampli-
tudes for a general 2→ 3 process are commonly labeled with T 1 = A, T 2 = B, T 3 = C, T 4 = D
and T 5 = E. The case P = 0 in Eq. (B.1) defines the scalar N -point integral TN0 where no
integration momenta appear in the numerator of the loop integral.

Due to Lorentz covariance a tensor decomposition of the following structure is possible

TN,µ1...µP (p1, . . . , pN−1,m0, . . . ,mN−1) =
N−1∑

i1,...,iP=0

TNi1···P pi1µ1 . . . piPµP , (B.3)

the tensor coefficients TNi1···P are totally symmetric. The correct terms depending on the external
momenta pi and the metric tensor gµν can be derived from Eq. (B.3) in the following way: we
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reject all term with an odd number of p0’s and we replace products with even numbers of p0

according to the following scheme

p0µ1p0µ2 −→ gµ1µ2
p0µ1p0µ2p0µ3p0µ4 −→ gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 . (B.4)

2.3 Einschleifen-Integrale 22

Standardisierte Einschleifen-Integrale

Allgemeines N-Punkt-Tensorintegral:
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Figure B.1: General N-point tensor integral.

Therewith the decompositions for the lowest order integrals are

Bµ = p1µB1 ,

Bµν = gµνB00 + p1µp1νB11 ,

Cµ =
2∑

i=1

piµCi ,

Cµν = gµνC00 +
2∑

i,j=1

piµpjνCij ,

Cµνρ =
2∑

i=1

(gµνpiρ + gνρpiµ + gµρpiν)Ci00 ,

+
2∑

i,j,k=1

piµpjνpkρCijk . (B.5)

B.2 Explicit calculation of tensor integrals

For the explicit calculation of one-loop integrals we use the fortran-library COLLIER [59]. The
applied method for the reduction of tensor integrals and the calculation of scalar integrals
depends on the number of external momenta of the one-loop integral.

For the numerical evaluation of 1-point and 2-point functions we use explicit analytical
expressions from Refs. [61,107]. For N = 3, 4 the tensor integrals will be reduced via Passarino–
Veltman algorithm [107] to integrals with lower rank P and integrals with lower N which
formally can be written as

∆TN,µ1...µP = [TN,µ1...µP−1 , TN,µ1...µP−2 , TN−1,µ1...µP ] , (B.6)
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where on the r.h.s. a linear combination of reduced tensor integrals is indicated by [. . . ] and
∆ = det(Z) denotes the the determinant of the Gram matrix

Z =




2p1p1 . . . 2p1pN−1
...

...
2pN−1p1 . . . 2pN−1pN−1


 . (B.7)

The system of linear equations given in Eq. (B.6) can be solved by calculating the inverse of the
determinant ∆. In regions of the phase space where ∆ becomes small this leads to instabilities.
Finally, it would result in a linear dependence of the equations. Since this linear dependence
appears even for the scalar integrals this issue also persists for other reduction methods. For
critical phase-space points where the determinant of the Gram matrix is small the strategy of
solving the system of linear equations is the following: we substitute the rank in Eq. (B.6) by
P → P + 1 which results in

∆TN,µ1...µP+1 = [TN,µ1...µP , TN,µ1...µP−1 , TN−1,µ1...µP ] . (B.8)

Note, that tensor integral TN,µ1...µP now arises on the l.h.s. At zeroth order we neglect terms
of O(∆) and then Eq. (B.8) simplifies to

0 = [TN,µ1...µP , TN,µ1...µP−1 , TN−1,µ1...µP ] , (B.9)

where TN,µ1...µP can be calculated from integrals of lower rank P and integrals with a lower
number of external legs N . For higher precision the expansion in ∆ then can be enhanced to
O(∆k) which necessitates the calculation of tensor integrals with higher rank up to TN,µ1...µP+k .
Various expansion methods were proposed in Ref. [61] and all of them are implemented in
COLLIER.
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Appendix C

Distributions for p p → l−ν̄l γ + X

In this chapter we list distributions in various observables for the W− + γ production at a
collider energy of 14 TeV. For each observable we show absolute plots for complete NLO and
NLO QCD corrections (large boxes). The corresponding cross sections are defined in Eqs. (4.3)
and (4.1), respectively. We also show relative EW corrections for the qq̄ and the qγ channel
as well as relative QCD corrections (small boxes). The relative corrections are defined in
Eq. (4.2). For the quark–antiquark-induced correction we show results for the collinear-safe
and the non-collinear-safe case. For photon-induced and QCD corrections we present results
with and without a jet veto at 100 GeV.

We show distributions in the transverse momenta of the hardest photon and the charged
lepton in Fig. C.1. Fig. C.2 displays distributions in the transverse mass of the charged lepton
and the neutrino and the transverse three-body mass of the charged lepton, the neutrino and
the hardest photon. In Figs. C.3 and C.4 we present various distributions on rapidity y and
the azimuthal-angle φ. While the absolute values for the differential cross section for W+γ
(presented in Section 4.4) and W−γ differ due to different PDF factors the shape of the relative
corrections look very similar.

In order to illustrate the explicit difference in the relative corrections between W+γ and
W−γ production we compared in Section 4.5 the distributions of the transverse momentum for
the charged lepton and the transverse mass of the lepton–neutrino-pair. These two distributions
demonstrate the largest and smallest deviation between W+γ and W−γ production. In addition
to Fig. 4.5 we show in Figs. C.5–C.7 the comparison of both processes for further observables.
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Figure C.1: Distributions in the transverse momentum pT of the photon (left) and the
charged lepton (right), including EW (top) and QCD corrections (bottom). For all corrections
absolute (upper box) and relative corrections (lower boxes) are shown.
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Figure C.2: Distribution in the transverse mass MT,l−ν of the charged lepton and neutrino
pair (left) and distribution in the transverse three-body mass MT,l−νγ of the charged lepton, the
neutrino, and the hardest photon (right), including EW (top) and QCD corrections (bottom).
For all corrections absolute (upper box) and relative corrections (lower boxes) are shown.

87



2 1 0 1 2
300

400

500

600

700

800

d
σ
/d
y γ

 [f
b]

pp → l−ν̄l γ (γ/jet)

σNLO QCD

σNLO
NCS

σNLO QCD
veto

σNLO
NCS,veto

2 1 0 1 2
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

δ E
W
,q
q [

%
]

δNCS
EW,qq δCS

EW,qq

2 1 0 1 2
yγ

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

δ E
W
,q
γ
 [%

]

δEW,qγ δ veto
EW,qγ

2 1 0 1 2
300

400

500

600

700

800

d
σ
/d
y l
−

 [f
b]

pp → l−ν̄l γ (γ/jet)

σNLO QCD

σNLO
NCS

σNLO QCD
veto

σNLO
NCS,veto

2 1 0 1 2
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

δ E
W
,q
q [

%
]

δNCS
EW,qq δCS

EW,qq

2 1 0 1 2
yl−

0.5
1.0
1.5
2.0
2.5

δ E
W
,q
γ
 [%

] δEW,qγ δ veto
EW,qγ

2 1 0 1 2
100

200

300

400

500

600

700

800

d
σ
/d
y γ

 [f
b]

pp → l−ν̄l γ (jet)

σLO

σNLO QCD

σNLO QCD
veto

2 1 0 1 2
yγ

100
120
140
160
180
200

δ Q
C

D
 [%

]

δQCD δ veto
QCD

2 1 0 1 2
300

400

500

600

700

800

d
σ
/d
y l
−

 [f
b]

pp → l−ν̄l γ (jet)

σLO

σNLO QCD

σNLO QCD
veto

2 1 0 1 2
yl−

100
120
140
160
180
200

δ Q
C

D
 [%

]

δQCD δ veto
QCD

Figure C.3: Distributions in the rapidity yγ of the photon (left) and the rapidity yl− of the
charged lepton (right), including EW (top) and QCD corrections (bottom). For all corrections
absolute (upper box) and relative corrections (lower boxes) are shown.
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Figure C.5: Distributions in the transverse momentum pT of the photon (left) and the
transverse three-body mass MT,lνγ of the charged lepton, the neutrino, and the hardest photon
(right), including EW (top) and QCD corrections (bottom). For all corrections absolute (large
box) and relative corrections (small boxes) are shown.
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Figure C.6: Distributions in the rapidity yγ of the photon (left) and the rapidity yl of the
charged lepton (right), including EW (top) and QCD corrections (bottom). For all corrections
absolute (large box) and relative corrections (small boxes) are shown.
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Figure C.7: Distributions in the rapidity difference ∆ylγ (left) and the azimuthal-angle
difference ∆φlγ (right) of the charged lepton and the photon, including EW (top) and QCD
corrections (bottom). For all corrections absolute (large box) and relative corrections (small
boxes) are shown.
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Appendix D

Distributions for p p → l+ l− γ + X

In this chapter we list further distributions in various observables for pp→ l+l−γ at a collider
energy of 14 TeV. For each observable we show absolute plots for complete NLO and NLO QCD
corrections (large boxes). The QCD NLO cross section and the complete NLO cross section are
defined in Eqs. (4.3) and (4.1), respectively. In addition, we also present relative corrections for
EW and QCD corrections. Due to the different final state of the qq̄ and the qγ channel we show
these contributions apart from each other. The relative corrections are defined in Eq. (4.2). In
case of the quark–antiquark-induced correction we show results for the collinear-safe and the
non-collinear-safe case. For photon-induced and QCD corrections results are presented with
and without the application of a jet veto at 100 GeV
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Figure D.1: Distributions in the rapidity y of the hardest photon (left) and the Z boson
(right), including EW (top) and QCD corrections (bottom). The upper boxes show absolute
predictions, the lower relative.
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Figure D.2: Distributions in the rapidities yl± of the two charged leptons, including EW
(top) and QCD corrections (bottom). The upper boxes show absolute predictions, the lower
relative.
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Figure D.3: Distributions in the azimuthal-angle differences ∆φl±γ between the charged
lepton and the hardest photon, including EW (top) and QCD corrections (bottom). The upper
boxes show absolute predictions, the lower relative.
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