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Abstract
Mathematical modelling, simulation, and optimisation are core methodologies for future
developments in engineering, natural, and life sciences. This work aims at applying these
mathematical techniques in the field of biological processes with a focus on the wine
fermentation process that is chosen as a representative model.

In the literature, basic models for the wine fermentation process consist of a system of
ordinary differential equations. They model the evolution of the yeast population number
as well as the concentrations of assimilable nitrogen, sugar, and ethanol. In this thesis,
the concentration of molecular oxygen is also included in order to model the change of
the metabolism of the yeast from an aerobic to an anaerobic one. Further, a more sophis-
ticated toxicity function is used. It provides simulation results that match experimental
measurements better than a linear toxicity model. Moreover, a further equation for the
temperature plays a crucial role in this work as it opens a way to influence the fermen-
tation process in a desired way by changing the temperature of the system via a cooling
mechanism. From the view of the wine industry, it is necessary to cope with large scale
fermentation vessels, where spatial inhomogeneities of concentrations and temperature
are likely to arise. Therefore, a system of reaction-diffusion equations is formulated in
this work, which acts as an approximation for a model including computationally very
expensive fluid dynamics.

In addition to the modelling issues, an optimal control problem for the proposed
reaction-diffusion fermentation model with temperature boundary control is presented
and analysed. Variational methods are used to prove the existence of unique weak solu-
tions to this non-linear problem. In this framework, it is possible to exploit the Hilbert
space structure of state and control spaces to prove the existence of optimal controls.
Additionally, first-order necessary optimality conditions are presented. They characterise
controls that minimise an objective functional with the purpose to minimise the final
sugar concentration. A numerical experiment shows that the final concentration of sugar
can be reduced by a suitably chosen temperature control.

The second part of this thesis deals with the identification of an unknown function
that participates in a dynamical model. For models with ordinary differential equations,
where parts of the dynamic cannot be deduced due to the complexity of the underlying
phenomena, a minimisation problem is formulated. By minimising the deviations of sim-
ulation results and measurements the best possible function from a trial function space
is found. The analysis of this function identification problem covers the proof of the
differentiability of the function–to–state operator, the existence of minimisers, and the
sensitivity analysis by means of the data–to–function mapping. Moreover, the presented
function identification method is extended to stochastic differential equations. Here, the
objective functional consists of the difference of measured values and the statistical ex-
pected value of the stochastic process solving the stochastic differential equation. Using a
Fokker-Planck equation that governs the probability density function of the process, the
probabilistic problem of simulating a stochastic process is cast to a deterministic partial
differential equation. Proofs of unique solvability of the forward equation, the existence of
minimisers, and first-order necessary optimality conditions are presented. The application
of the function identification framework to the wine fermentation model aims at finding
the shape of the toxicity function and is carried out for the deterministic as well as the
stochastic case.
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Zusammenfassung
Mathematische Modellierung, Simulation und Optimierung sind wichtige Methoden für
künftige Entwicklungen in Ingenieurs-, Natur- und Biowissenschaften. Ziel der vorliegende
Arbeit ist es diese mathematische Methoden im Bereich von biologischen Prozessen an-
zuwenden. Dabei wurde die Weingärung als repräsentatives Modell ausgewählt.

Erste Modelle der Weingärung, die man in der Literatur findet, bestehen aus gewöhn-
lichen Differentialgleichungen. Diese modellieren den Verlauf der Populationszahlen der
Hefe, sowie die Konzentrationen von verwertbarem Stickstoff, Zucker und Ethanol. In
dieser Arbeit wird auch die Konzentration von molekularem Sauerstoff betrachtet um den
Wandel des Stoffwechsels der Hefe von aerob zu anaerob zu erfassen. Weiterhin wird
eine ausgefeiltere Toxizitätsfunktion benutzt. Diese führt zu Simulationsergebnissen, die
im Vergleich zu einem linearen Toxizitätsmodell experimentelle Messungen besser repro-
duzieren können. Außerdem spielt eine weitere Gleichung für die zeitliche Entwicklung der
Temperatur eine wichtige Rolle in dieser Arbeit. Diese eröffnet die Möglichkeit den Gär-
prozess in einer gewünschten Weise zu beeinflussen, indem man die Temperatur durch
einen Kühlmechanismus verändert. Für industrielle Anwendungen muss man sich mit
großen Fermentationsgefäßen befassen, in denen räumliche Abweichungen der Konzen-
trationen und der Temperatur sehr wahrscheinlich sind. Daher ist in dieser Arbeit ein
System von Reaktion-Diffusions Gleichungen formuliert, welches eine Approximation an
ein Modell mit rechenaufwändiger Strömungsmechanik darstellt.

Neben der Modellierung wird in dieser Arbeit ein Optimalsteuerungsproblem für das
vorgestellte Gärmodell mit Reaktions-Diffusions Gleichungen und Randkontrolle der Tem-
peratur gezeigt und analysiert. Variationelle Methoden werden benutzt, um die Existenz
von eindeutigen schwachen Lösungen von diesem nicht-linearen Modell zu beweisen. Das
Ausnutzen der Hilbertraumstruktur von Zustands- und Kontrolraum macht es möglich
die Existenz von Optimalsteuerungen zu beweisen. Zusätzlich werden notwendige Opti-
malitätsbedingungen erster Ordnung vorgestellt. Diese charakterisieren Kontrollen, die
das Zielfunktional minimieren. Ein numerisches Experiment zeigt, dass die finale Konzen-
tration des Zuckers durch eine passend ausgewählte Steuerung reduziert werden kann.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Identifizierung einer unbekan-
nten Funktion eines dynamischen Modells. Es wird ein Minimierungsproblem für Mod-
elle mit gewöhnlichen Differentialgleichungen, bei denen ein Teil der Dynamik aufgrund
der Komplexität der zugrundeliegenden Phänomene nicht hergeleitet werden kann, for-
muliert. Die bestmögliche Funktion aus einem Testfunktionenraum wird dadurch aus-
gewählt, dass Abweichungen von Simulationsergebnissen und Messungen minimiert wer-
den. Die Analyse dieses Problems der Funktionenidentifikation beinhaltet den Beweis der
Differenzierbarkeit des Funktion–zu–Zustand Operators, die Existenz von Minimierern
und die Sensitivitätsanalyse mit Hilfe der Messung–zu–Funktion Abbildung. Weiterhin
wird diese Funktionenidentifikationsmethode für stochastische Differentialgleichungen er-
weitert. Dabei besteht das Zielfunktional aus dem Abstand von Messwerten und dem
Erwartungswert des stochastischen Prozesses, der die stochastische Differentialgleichung
löst. In dem man die Fokker-Planck Gleichung benutzt wird das wahrscheinlichkeits-
theoretische Problem einen stochastischen Prozess zu simulieren in eine deterministische
partielle Differentialgleichung überführt. Es werden Beweise für die eindeutige Lösbarkeit
der Vorwärtsgleichung, die Existenz von Minimierern und die notwendigen Bedingungen
erster Ordnung geführt. Die Anwendung der Funktionenidentifikation auf die Weingärung
zielt darauf ab die Form der Toxizitätsfunktion herauszufinden und wird sowohl für den
deterministischen als auch für den stochastischen Fall durchgeführt.
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Chapter 1

Introduction

Biological processes play a central role in food, chemical, and pharmaceutical industry.
During the improvement of the production of goods in such sectors, appropriate mathe-
matical models can have an accelerating effect, as simulating a process on the computer
is often cheaper and faster than performing experimental studies. This thesis deals with
the optimal control of the wine fermentation process, which is chosen as a representative
biological model, and the identification of the involved toxicity function. The modelling
of a general fermentation process is based on ordinary differential equations that describe
the kinetics of the bio-chemical reactions. In [LTPM02], tea fermentation kinetics coupled
with the flow of air through porous media is discussed. Beer fermentation is considered
in [ATGSFB+04, GR88] and also in [RM07], where evolutionary algorithms are used for
optimisation. See [Cho] for a review of some fermentation processes.

Regarding models of wine fermentation, we refer to [DDM+10] and [DDM+11], where
the evolution of the yeast biomass together with the concentrations of nitrogen, sugar, and
ethanol are modelled. In this model, the growth of the yeast population that consumes
nitrogen is governed by a Michaelis-Menten term, which is often used for the description of
enzymatic biological reactions [MM13]. Another kinetic component of this model governs
the conversion of sugar into ethanol, taking into account that high concentrations of
ethanol decelerate the fermentation of sugar, which is modelled by an inhibition term. A
similar model is also presented in [Vel09, Chapter 3.10.2], whereas an advanced model is
proposed in [MFHS04] that also models the necessity of nitrogen for sugar transport in the
yeast cells. Furthermore, in [CMS07] thermal phenomena in the fermentation process as
the production of heat by the yeast and the heat loss to the environment are considered.
In [CDD+10] results of simulations of a fermentation with ordinary differential equations
are presented. A first attempt to formulate wine fermentation optimal control problems
can be found in [Sab09] with the aim to improve energy saving and aromatic profile.

Our contribution to this research effort is the formulation of a refined fermentation
model including space dependent concentrations and variable temperature. Moreover, the
toxic influence of ethanol is included in the equation for the yeast population. Further,
a control strategy for an ideal fermentation profile is sought. In particular, we augment
the diffusion operator with Robin-type boundary conditions for the temperature that
accommodates a control mechanism, which is driven by an external temperature of a
liquid cooling/heating system.

Additionally, we theoretically and numerically investigate this reaction-diffusion model
and discuss a related optimal control problem. The analysis of reaction-diffusion equations
is strongly dependent on the characteristics of the reaction term. For some reaction terms
there may exist an invariant set of the state space such that if the initial values of the
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reaction-diffusion system lie in this region their values will also belong to this set for
all future times [Smo94]. Another approach for investigating reaction-diffusion equations
can be found in [Pao92, Chapter 8]. In this reference, quasi-monotone type reactions are
solved by constructing a sequence of coupled upper and lower solutions that converge
from above and below to the unique solution, respectively. In addition, it is possible
to use the Leray-Schauder fixed-point theorem as in [BG06], where the optimal control
of lambda-omega systems is analysed, and [GV03], where the reaction of two species is
considered. In our proofs, we use the Banach fixed-point theorem [Eva10, Part III 9.2.1]
and prove that the model equations admit a unique solution. Furthermore, this solution
depends continuously on the initial values and the external temperature. These results are
obtained by applying established results for parabolic problems, combined with a cut-off
technique, which is motivated by the fact that the ordinary differential equations model
have the property that the initial values determine a bound for its solutions.

With our fermentation model, we discuss the characteristics of an optimally driven
fermentation process and define a corresponding cost functional that has to be minimised.
The resulting optimal control problem and the characterisation of its solutions by means
of the corresponding optimality system are investigated. In particular, we prove existence
of optimal controls. Further, we discuss the numerical solution of the optimally controlled
fermentation process. An optimal control is calculated by the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) iterative optimisation procedure, which is a gradient-based quasi-Newton
method. Using the adjoint framework, the gradient of the reduced cost functional is
evaluated by solving the forward and backward reaction-diffusion equations appearing in
the optimality system. These equations are discretised by implicit-explicit (IMEX) finite
differences, where the diffusion terms are treated implicitly and the reaction terms are
treated explicitly. We present numerical results, which show that the amount of sugar at
the end of the fermentation process can be considerably reduced by an optimally chosen
boundary temperature profile.

The next aspect treated in this thesis is the identification of an unknown function,
which is participating in a differential equation. The idea for investigating such problems
originates from the situation that the toxic effect of ethanol on the yeast cells cannot be
derived by biological arguments, as the phenomena that are involved are too complex. If
the toxicity could be at least given by a parametrised function, we would use parameter
estimation techniques (see [Bar74, Boc87, BDB86, LOP05]) to find the optimal parameters
for the yeast strain used in a special application. As this is not possible, we formulate a
minimisation problem, where the sought function is an element of a Sobolev space and no
further restrictions on its shape are prescribed. Most problems in optimal control theory
of differential equations consider a distributed or boundary control. Hence, the control
function is dependent on the space and time variable. In contrast, the minimisation
variable in our proposed function identification framework is defined on the range of the
state variable and not on the time interval. In particular, the composition of the unknown
function and the state appear in the differential equation.

We would like to give a short overview of the available publications on the topic of
identifying an unknown function involved in a differential equation from measurement
data. In [Lor82] the author investigates an overdetermined parabolic equation with a
non-linear reaction term to be identified, where both Neumann and Dirichlet boundary
conditions are given. It is proven that from coinciding simulations subject to two in-
stances of the unknown function it follows that the corresponding identified functions
must be equal on the domain of the simulation. Moreover, [Lor82] contains a Hölderian-
type estimate for the dependence of the identified non-linearity with respect to given
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data. Another problem analysed in [EPS14a] is an elliptic equation, where the diffusion
coefficient depends on the solution. In this publication, the authors also prove the iden-
tifiability of the unknown function, whereas in [EPS14b] an additional space-dependent
coefficient is identified simultaneously. Stability of this identification procedure is investi-
gated in [EPS15b]. The identification of non-linearities in a chemotaxis model is carried
out in [EPS15a] by defining a perturbed linear operator and using a standard Tikhonov
H1-regularisation, whereas a stationary transport-diffusion model for crowded motion is
analysed in [BPW13].

In contrast to the afore-mentioned theoretical results on the well-posedness and sta-
bility of identifying a function in a differential equation from some given data, there
are also publications that have a constructive focus. In [OIL08] a boundary element
method is used to identify the non-linear temperature dependent heat transfer coeffi-
cient in a heat equation. The author in [EFP05] regularises the direct calculation of
the non-linearity of the same problem by using simulation results obtained with faulty
measurement data. Besides the two latter publications, the main idea of the following
references is to formulate an optimal control problem where the unknown function acts as
a control. The unknown function is identified by minimising an objective functional that
measures the discrepancy between a simulation subject to a given function and measure-
ment data, where the differential equation is incorporated as a constraint. The optimal
control problem for a temperature dependent heat transfer coefficient is extensively anal-
ysed in [RT92, Rös94, Rös96a, Rös96b, Rös98, Rös02], where unique solvability of the
differential equation, the existence of a minimiser, and the first-order necessary optimal-
ity conditions are shown. Moreover, unique identifiability is also shown for this model and
numerical computations are carried out, where the heat transfer coefficient is discretised
by linear splines. In [Rös96a] the Fréchet differentiability of the forward problem is proven
and in [Rös96b] stability estimates are given. The same results are achieved in [HHTL15]
for a more general transfer coefficient mapping that is also dependent on the boundary
data in a non-linear way. Here, piecewise constant functions are used to approximate
the unknown function. The analysis for a state-dependent non-linear diffusion coefficient
in a semi-linear elliptic equation can be found in [KE02, Küg03], where a Tikhonov-
regularisation is analysed with respect to its convergence for diminishing measurement
errors. In [HLT12, HLSY14] coupled parabolic PDE-ODE systems are the constraints
to the minimisation problem and existence of minimisers and Gâteaux derivatives of the
objective functional are given.

The purpose of our work is to contribute to the theory and numerical solution of
function identification problems as in the latter references. In contrast to the works
mentioned above, no a priori known constraints on the function or its derivative are nec-
essary because of the use of functions in a Sobolev space. Furthermore, we introduce the
“data–to–function” map to analyse the effect of measurement errors on the identified func-
tion. Therefore, it is essential to prove that the regarded minimisation problem admits a
unique solution. Regarding the discretisation of our optimisation problem, the novelty of
our work is to choose radial basis functions (RBFs). This choice is advantageous with re-
spect to other approaches, e.g., splines, because it allows to consider functions defined on
the whole real line and makes possible to generalise the function identification problem
to unknown functions that depend on several variables. This can be done straightfor-
wardly for radially symmetric ansatz functions, whereas splines have to be adjusted to
the dimension of the problem. In multidimensional approximation theory, many classes
of RBFs are available that guarantee the solvability of the approximation of a function on
scattered data. Approximation orders have been shown for approximands in the so-called
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native space; see [Buh03]. In particular, in [Wen95] it is shown that the native space
for Wendland’s compactly supported radial basis function of minimal degree matches the
Sobolev space we use for the function identification method. Therefore, we use this kind
of RBFs.

The last part of this thesis extends the proposed function identification method from
the deterministic world of ordinary differential equations to the probabilistic world of
stochastic differential equations. This is done to overcome the problem of uncertainties
in biological models. In this area, it can happen that the evolution of observed variables
is not only governed by a deterministic mechanism but is perturbed randomly due to the
inhomogeneity of a population. In order to formulate a minimisation problem for the
identification of an unknown function, we use the corresponding Fokker-Planck equation
rather than the stochastic differential equation itself. Fokker-Planck equations have been
successfully used in many different fields, such as physics, chemistry, or electrical engi-
neering. [Ris89] provides a good survey of this topic. Recent publications for the optimal
control of Fokker-Planck equations are given by [AB13a, AB13b, ABMW15], whereas
[RAB16] treats a similar problem as ours.

This thesis is organised as follows. In Chapter 2, we discuss the ordinary differential
equations that govern the wine fermentation process. These equations are extended to
partial differential equations by including a vector Laplace operator that models diffu-
sion of substances. The optimal control of the system of reaction-diffusion equations is
analysed in Chapter 3. Hereby, a review on the theory of parabolic equations settles the
foundation for the proof of the existence of unique weak solutions of the wine fermentation
model. Moreover, the existence of a minimiser is shown and first-order necessary optimal-
ity conditions are presented. These conditions are used in a gradient-based optimisation
procedure to compute an optimal control numerically. Chapter 4 is organised into two
parts. The first one deals with a function identification method for ordinary differential
equation. The corresponding minimisation problem is analysed and supplemented with
two numerical test cases. The second part extends the function identification methods to
stochastic differential equations. Necessary results from the theory of stochastic processes
governed by stochastic differential equations and of the corresponding Fokker-Planck equa-
tion are presented. Besides the theoretical analysis of this framework, the identification
of the toxicity function is carried out numerically. A conclusion in Chapter 5 completes
the exposition of our work.

The results presented in this thesis are partly based on the following publications:

• J. Merger and A. Borzì. Dynamics identification in evolution models using radial
basis functions. Journal of Dynamical and Control Systems, 2016.

• J. Merger, A. Borzì, and R. Herzog. Optimal Control of a System of Reaction-
Diffusion Equations Modeling the Wine Fermentation Process. Optimal Control
Applications and Methods, 2016.

• A. Borzì, J. Merger, J. Müller, A. Rosch, C. Schenk, D. Schmidt, S. Schmidt,
V. Schulz, K. Velten, C. von Wallbrunn, and M. Zänglein. Novel model for wine
fermentation including the yeast dying phase. arXiv:1412.6068, 2014.
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Chapter 2

Wine Fermentation as a
Representative Biological Process

In any process where living organisms participate, microbiological mechanisms play an
important role. Hence, for understanding these processes, it is indispensable to take the
biological phenomena into account. Examples of applications for such processes can be
found in many daily situations. One large area is medicine, where, on one hand, the
human being itself is a very complex system of biological processes and, on the other
hand, it is also influenced by bacteria and other unicellular organisms. Moreover, there
is pharmacy, where medicinal products are often produced by microbes. In addition
to that, the chemical industry manufactures many products by fermentation and other
biologically reactive processes. Those examples are just the beginning of a large list of
applications. Therefore, it is beneficial to pursue the mathematical modelling of such
processes for gaining a deeper understanding and obtaining realistic models that allow
for reliable simulations and predictions. The ability to simulate a process numerically
enables one to analyse many different situations and to compute optimal conditions and
control strategies without costly experiments. This procedure of mathematical modelling,
simulation, and optimisation (MMSO) is applied in a growing number of scientific and
industrial areas and its features makes it a good methodology for future developments.

Models describing biological reactions have some characteristics in common regardless
of the area they arise. Usually a large number of biological species and chemical substrates
are involved and the evolution of their concentrations has to be modelled. Moreover,
biological systems often admit some kind of conservation of chemical amount such that
substances are only transformed into others and do not vanish. Hence, there is also no
infinite source of substrates and, consequently, these models should not exhibit some
kind of blow up behaviour. Without such characteristics a general biological process is
hard to analyse mathematically and its presentation would be unnecessarily complex,
thereby obfuscating the main ideas used in the analysis during the course of this work.
This thesis considers wine fermentation as a representative biological process, which has
a moderate number of participating species and three basic mechanisms that determine
their dynamics. These are the growth of the yeast population, the conversion of sugar to
ethanol, and the death of yeast cell due to toxic ethanol concentrations. The rest of this
chapter is devoted to the description of a wine fermentation model, which will be used
throughout this work.
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Wine Fermentation as a Representative Biological Process

2.1 A Wine Fermentation Model Using Ordinary
Differential Equations

Wine has a long tradition for most cultures in the world. For thousands of years people
have been producing wine and during the production of wine the fermentation is the
last step. Oenologists say that the quality of wine is made in the vineyard by choosing
the right type of grape for the given soil and taking care of the plant. Whereas the
winemakers can only maintain the given quality of the must during the fermentation
step. Nevertheless, one could improve the production of wine in terms of quality and cost
efficiency by developing a good model for the wine fermentation process, to calibrate it
and optimise the fermentation procedure in a desired way.

In the following, we discuss the wine fermentation model, which is used in the suc-
ceeding chapters and is based on the publications [CMS07, Vel09, DDM+10, BMM+14].
In our model the evolution of six relevant quantities is described by the functions X, N ,
O, S, E, and T , which are time dependent in the case of ordinary differential equation
models, see Subsection 2.1.4, and also space dependent in the case of models with partial
differential equations; see Section 2.2 and Section 2.3. We discuss them in detail here.

The reason why fruit juice when left alone changes its taste to sour and alcoholic
is due to unicellular fungi called yeasts, which produce alcohols and acids within their
metabolism. There are many different known yeast strains and the grape skin itself
already contains plenty of different types of such micro-organisms. Nevertheless, these
naturally arising yeast strains are undesirable in professional wine production. They
introduce uncertainties in view of the reactions rapidity and the produced compounds
that influence the taste of the product. Hence, winemakers usually choose a certain yeast
strain, which is cultured for some special properties and is suitable for a desired taste of
the produced wine. In the beginning of the fermentation, this yeast strain is added to
the must. Therefore, we can assume that there is just one yeast strain present as other
strains are unable to compete with the enormous number of cells of the added strain.
The amount of yeast cells that are present at different points in time is important for the
fermentation. Therefore, we must model the evolution of the yeast cell number, which we
denote throughout this thesis by X, the concentration of the one main yeast strain. For
models with partial differential equations X denotes not the total concentration in the
fermenter, but the local concentration at a given point inside the tank.

Measurements during a fermentation process show that the initially added number
of yeast cells rises significantly in the first few days and stagnates at a saturated level
afterwards. This effect can be explained by the limitation of nutrients, which are available
in the must. Hence, we must also track the amount of available nutrients in our model.
Yeast cells need compounds with nitrogen to produce amino acids and build up their
cell structures. Therefore, we collect within the function N the main ingredients for the
growth and reproduction of yeast cells, namely the assimilable nitrogen sources.

Moreover, the available oxygen is of great importance as yeasts can metabolise energy
aerobically or anaerobically. Elementary oxygen is initially solved in the must and as
long as it is available, the yeast metabolism works aerobically, as in this case sugar is
completely decomposed in carbon dioxide and water. This provides the yeast cell with
a lot of energy, which they use for growth and reproduction. After some days, all of
the oxygen is consumed, as the fermenter is usually held closed and no oxygen from
the environment solves into the must. Besides the limited nitrogen sources, this is an
additional reason why the increase of the yeast population stagnates after some days.
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Therefore, we include the concentration of oxygen in our model denoted by the function
O.

To motivate the next variable in our model, we mention that sugar is decomposed not
only during an aerobic metabolism, but also in the absence of oxygen. In the latter case the
yeast is not able to decompose sugar molecules completely into carbon dioxide and water.
During the anaerobic metabolism, ethanol is formed and much less energy is produced
by this conversion. Although this prohibits the yeast strain to reproduce very fast, it is
sufficient for its survival and the population number is maintained. As the wine quality
depends very strongly on both the final ethanol concentration and the consumption rate
of sugar during the fermentation, it is indispensable to model the evolution of sugar and
ethanol concentrations. In the following, the concentration of sugar is denoted by S and
that of ethanol by E. Moreover, the role of ethanol is two-fold. It is not only the product
of the alcoholic fermentation, but also changes the living conditions of the yeast. As
the concentration of ethanol rises, two effects can be observed. On one hand, it inhibits
the consumption of sugar and decreases the reaction rate at which sugar is turned into
ethanol. On the other hand, very high ethanol concentrations are toxic for yeast cells so
that they have to struggle to reproduce, which eventually leads to extinction.

The last relevant factor we consider is the role of the temperature, which is denoted by
T . Most microbiological and chemical reactions happen faster in a warmer environment.
Hence, the temperature of the must influences not only the reaction rates of the yeast
metabolism, which accelerates the growth of its population, but also the sugar consump-
tion rate and production of ethanol. Moreover, the fermentation process is an exothermic
reaction and heat is produced, which accelerates the process. Therefore, the temperature
of the must tends to rise quickly and thus large fermenter usually have some kind of a
cooling system to maintain a temperature that is suitable for the desired aromatic profile
of the produced wine.

After defining the relevant variables of wine fermentation, we describe in the following
subsections how their interaction is modelled.

2.1.1 Yeast Growth
The yeast biomass concentration is a very important factor. A great increase of yeast
cells is observed in the first few days of a wine fermentation. Hence, we give in the fol-
lowing a description of this phenomenon by ordinary differential equations. The simplest
population growth model is given by the following linear equation

dy
dt (t) = µy(t), y(0) = y0, (2.1)

where µ denotes the reproduction rate. The solution to (2.1) is y(t) = y0e
µt and it

exhibits an exponential growth. While for small time scales and moderate population
numbers exponential growth is indeed observed in nature, this model fails as soon as
limited resources such as food or living space occur. Therefore, a reproduction rate that is
dependent on such limitations is more appropriate. In the case of yeast growth, we assume
that it occurs mainly during the aerobic phase and the nutrients that are necessary for
reproduction are the assimilable nitrogen N , oxygen O, and sugar S.

Hence, we define the growth model for the yeast strain used in the fermentation process

Optimal Control and Function Identification in Biological Processes
17



Wine Fermentation as a Representative Biological Process

as follows
dX
dt = a1µ1(N,O, S, T )X, (2.2a)
dN
dt = −a2µ1(N,O, S, T )X, (2.2b)
dO
dt = −a3µ1(N,O, S, T )X, (2.2c)
dS
dt = −a4µ1(N,O, S, T )X, (2.2d)

where ai > 0 (i = 1, . . . , 4) are yield coefficients and µ1 is the reproduction rate of the
yeast, which is dependent on the temperature and the concentrations of nitrogen, oxygen,
and sugar. To ease the notation in (2.2) and the succeeding formulas, we omit to explicitly
denote the time and possibly space dependency of functions. Here, we have a conservation
property as

a1
dN
dt + a1

dO
dt + a1

dS
dt + (a2 + a3 + a4) dXdt = 0

holds. Hence, the linear combination a1(N+O+S)+(a2+a3+a4)X is constant throughout
the fermentation and is determined by the initial concentrations. This is due to the choice
of the right-hand sides of (2.2) as we assume that the loss of nutrient mass is proportional
to the mass of generated yeast cells. Moreover, we assume that the reproduction rate µ1
is not only dependent on the nutrients N , O, and S but also on the temperature T . We
define it as follows

µ1(N,O, S, T ) = (T − b1) N

c1 +N

O

c2 +O

S

c3 + S
. (2.3)

For the nutrients N , O, and S we include the Michaelis-Menten terms N
c1+N , O

c2+O , and
S

c3+S , which are used in [MM13, JG11] for the description of an enzymatic reaction and can
be found in many models in microbiology. They lead to a saturation of the reaction rate for
high concentrations and prohibit a reaction if any nutrient is consumed. The Michaelis
constants ci > 0 (i = 1, . . . , 3) correspond to the concentrations of the corresponding
substance, where the reaction rate equals half the maximal possible reaction rate.

We remark that Michaelis-Menten kinetics usually feature a temperature dependent
maximum reaction velocity V (T ) as a pre-factor, see [GR88] and [Fog10, Appendix C],
which is modelled by the following Arrhenius function V (T ) = V0 exp

(
−e

R(T+273)

)
, where

V0 is the Arrhenius frequency factor, e is the Arrhenius activation energy, and R is the gas
constant. The pre-factor (T − b1) in (2.3) can be seen as a linearisation of V , justified by
the rather narrow temperature regime in which wine fermentation takes place. Clearly,
this limits the applicability of our model. We mention that the inclusion of Arrhenius
terms would not impose any significant mathematical difficulty, but for the sake of nota-
tional convenience and numerical implementation, we work with the linear temperature
dependence of the reaction velocity as given in (2.3).

2.1.2 Sugar Consumption
Next, we focus on the modelling of the conversion of sugar into ethanol by the yeast
culture. During the alcoholic fermentation each sugar molecule is decomposed into two
ethanol molecules. Hence, we can assume that the change of the corresponding concentra-
tions of sugar and ethanol is proportional. Moreover, it is well known that this reaction is
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exothermic and the temperature of the must increases. We consider the following system
of ordinary differential equations as a model for the sugar consumption

dS
dt = −a5µ2(S,E, T )X, (2.4a)
dE
dt = a6µ2(S,E, T )X, (2.4b)
dT
dt = a7µ2(S,E, T )X. (2.4c)

As the production of ethanol is done by each yeast cell, the conversion rate µ2 on the
right-hand side of (2.4) is multiplied by the yeast biomass concentration X. Similarly as
in the growth model (2.2), we have yield coefficients ai > 0 (i = 5, . . . , 7). The conversion
rate µ2 is given by

µ2(S,E, T ) = (T − b2) S

c4 + S

c5

c5 + E
. (2.5)

Similar to the reproduction rate µ1, we assume a linear temperature dependence and
a Michaelis-Menten term S

c4+S for sugar with an analogue argumentation as in Subsec-
tion 2.1.1. Moreover, the inhibition property of ethanol for the sugar consumption is
taken into account by the term c5

c5+E , which yields a lower reaction rate for high ethanol
concentrations. The parameter c5 > 0 is equal to the concentration of ethanol, where the
sugar consumption rate is half as high compared to the case of absent ethanol.

Finally, note that the energy equation (2.4c) can be derived from dT
dt t = k dE

dt t and
(2.4b). The factor k is dependent on the heat capacity and the density of the must as
well as the energy production of the exothermic alcoholic fermentation. See [CMS07] and
references therein for more details.

2.1.3 Ethanol Toxicity
As the reproduction rate in (2.2) is non-negative, the yeast biomass concentration in the
wine fermentation model so far would increase until one of the nutrients is consumed and
remain constant afterwards. But the late stage of a fermentation experiment shows rather
a decline in the yeast population. This can be explained by the toxic influence of high
ethanol concentrations. Hence, this feature must be included in the fermentation model.
Similarly as in the growth equation (2.1), we assume that the yeast concentration declines
with the ethanol dependent death rate Ψ(E) according to

dX
dt = −Ψ(E)X. (2.6)

For the analysis of an optimal control problem of the wine fermentation process in Chap-
ter 3, we use the following term for the toxicity

Ψ(E) =
(

0.5 + 1
π

arctan
(
k1(E − Etol)

))
k2(E − Etol)2. (2.7)

Expression (2.7) represents a trigger function built from the inverse tangent function
arctan, because ethanol acts toxic only above a certain tolerance value Etol. Hence, in
simulations, after an initial growth transient, we can observe a constant yeast population
before an exponential decay of the number of living yeast cells sets in. This behaviour is
in agreement with experimental measurements and is more realistic than a linear model of
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toxicity, e.g. in [Vel09], where the yeast population immediately plunges after the growth
phase is over.

Although the simulation results with a toxicity function defined by (2.7) seem quite
promising, the quadratic behaviour beyond Etol is rather an educated guess and cannot
be underpinned by microbiological arguments. In general, the toxicity function Ψ is
unknown and we present in Chapter 4 a method for the problem of identifying the shape
of an unknown function in differential models.

2.1.4 Combined Model Equations
Having the sub-model equations for yeast growth (2.2), sugar consumption (2.4), and
the ethanol induced death of yeast cells (2.6) at hand, we set up the full system of
ordinary differential equations to describe the wine fermentation process. It combines the
previously discussed features and is given by

dX
dt = a1(T − b1) N

c1 +N

O

c2 +O

S

c3 + S
X −Ψ(E)X, (2.8a)

dN
dt = −a2(T − b1) N

c1 +N

O

c2 +O

S

c3 + S
X, (2.8b)

dO
dt = −a3(T − b1) N

c1 +N

O

c2 +O

S

c3 + S
X, (2.8c)

dS
dt = −a4(T − b1) N

c1 +N

O

c2 +O

S

c3 + S
X − a5(T − b2) S

c4 + S

c5

c5 + E
X, (2.8d)

dE
dt = a6(T − b2) S

c4 + S

c5

c5 + E
X, (2.8e)

dT
dt = a7(T − b2) S

c4 + S

c5

c5 + E
X. (2.8f)

In order to simulate a wine fermentation process, we must solve the initial-value prob-
lem consisting of equations (2.8) and corresponding initial concentrations and temper-
ature. Moreover, the parameters ai (i = 1, . . . , 7), bi (i = 1, 2), and ci (i = 1, . . . , 5)
together with the toxicity function Ψ must be given. This data is different for each yeast
strain and a parameter/function identification is necessary to calibrate the model to a
specific application.

In Figure 2.1 the results of a simulated fermentation with representative parameters
and initial conditions are presented. All previously discussed phenomena can be recog-
nised. The yeast biomass concentration shown in the upper left plot rises in the first few
days by a factor of about 100, stays constant for some days and then declines to zero due
to the toxic ethanol concentrations. Moreover, the concentrations of the initially available
nutrients nitrogen and oxygen rapidly go to zero as the yeast reproduce; see upper plots
in the middle and on the right side. The reproduction stops as soon as the nutrients are
consumed after approximately three days. The constant conversion of sugar into ethanol
can be seen in the left and middle plot on the bottom. This process stops after about 25
days before the sugar in the must is converted completely, as the yeast culture dies out.
The increase of the temperature of the must can be seen in the lower right plot.
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Figure 2.1: Simulation results for the wine fermentation model (2.8).

2.2 Extention by Fluid Dynamics
The wine fermentation model presented so far considers the average concentrations of the
relevant variables in the fermenter and describes their evolution. The larger a fermentation
vessel is the less we can assume that the must is a homogeneous medium. It is more likely
to happen that different local concentrations, e.g., on the bottom and top of the vessel,
arise and the spatial inhomogeneity should be incorporated in the model equations. To
account for this phenomenon, we assume that the functions X, N , O, S, E, and T are
not only dependent on the time variable t, but also on the space variable x ∈ Ω, where
the domain Ω ⊂ R3 represents the interior of the fermenter. Collecting these function in a
vector as y = (X,N,O, S,E, T )> we model the evolution of the local concentrations with
a system of convection-diffusion-reaction equations as follows

∂y

∂t
+ u · ∇y −D∆y = f(y). (2.9)

Here, the differential operators ∂
∂t
, u · ∇, and ∆ = ∑3

i=1
∂2

∂x2
i
are meant to operate

component-wise on the vector y, where the dot denotes the euclidean inner product as
follows u · ∇ = ∑3

i=1 ui
∂
∂xi

. In (2.9), we assume that the time derivative of the considered
variables equals the sum of three terms. The reaction term f(y) on the right-hand side
of the equation locally models the fermentation process as in Subsection 2.1.4, where the
function f : R6 → R6 is given by the right-hand side of the ordinary differential equations
model (2.8). Moreover, we have the term u · ∇y for convection, which models the passive
transport of concentrations and the temperature along the velocity field u of the fluid.
Finally, the diffusion, which originates from the Brownian motion for a discrete model
with particles, is modelled by the Laplace operator D∆y on the continuous level. Here,
D = diag(σ1, . . . , σ6) is a diagonal matrix with diffusion coefficients σi (i = 1, . . . , 6)
corresponding to the six functions X, N , O, S, E, and T , respectively.

The molecular diffusion is a very slow process and the homogenisation of a fluid is
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mainly due to convective transport. Therefore, we focus now on determining the fluid
velocity field u. A model for fluid flow is given by the incompressible Navier-Stokes
equations [LO13], which are as follows

%
∂u
∂t

+ %u · ∇u− µ∆u = −∇p+ %g, (2.10a)

∇ · u = 0. (2.10b)

The momentum equation is given by (2.10a), where % is the density of the fluid, µ is
the dynamic viscosity, p denotes the pressure, and g = (0, 0,−9.81m

s2 ) is the gravitational
acceleration vector. The incompressibility is encoded in the continuity equation (2.10b),
which ensures a conservation of mass.

The density of the fluid, which is the must within the wine fermentation model, is
actually not constant. On one hand, high sugar concentrations in the beginning lead
to a higher density than water. On the other hand, at the end of the process, there is
a lower density than water due to high ethanol concentration. Hence, there is a loss of
mass, which is transported to the environment by leaked carbon dioxide. Nevertheless, we
use the Boussinesq approximation ([Bou03] and [DR04, Chapter 2.7.2]), which assumes a
constant density of the must for the left-hand side of the momentum equation (2.10a) to
be % = %0 and takes density changes only for the volume-force on the right-hand side into
account. Then, the momentum equation (2.10a) can be written as follows

∂u
∂t

+ u · ∇u− ν∆u = − 1
%0
∇p+ %

%0
g, (2.11)

where ν = µ
%0

is the kinematic viscosity. In a non-reactive fluid, the temperature dependent
density % is approximated by the linear relation % = %0 (1 + β(T0 − T )), where β is the
thermal expansion coefficient of the fluid and T0 denotes the reference temperature. As
we also have dissolved substances in the must that change their concentrations, we must
take their impact on the density into account. Therefore, consider a small control volume
V of the must, where yeast biomass with concentration X is solved. The total volume
splits up in the portion occupied by yeast cells VX and the volume of pure must Vm, which
yields V = VX +Vm. The mass of the yeast contained in the control volume is mX = XV ,
but can also be calculated as mX = %XVX , where %X is the density of yeast cells. The
remaining mass mm = %0Vm is the mass of pure must in the control volume. Hence, we
compute

% = mX +mm

V
= XV + %0Vm

V
= X + %0(V − VX)

V

= X + %0

(
1− mX/%X

V

)
= X + %0

(
1− XV/%X

V

)

= %0

(
1 +X

(
1
%0
− 1
%X

))
.

The same argument can also be applied to several numbers of dissolved substances with
different densities. Hence, taking the temperature dependency as well as the concentra-
tions of sugar S and ethanol E into account, we arrive at

% = %0 (1 + β(T0 − T )) (1 + γXX) (1 + γSS) (1 + γEE) , (2.12)

where γC = 1
%0
− 1

%C
for C ∈ {X,S,E}.
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Finally, we arrive at a system of partial differential equations for a model of the wine
fermentation process, which also takes spatial inhomogeneities into account. It is given
by

∂y

∂t
+ u · ∇y −D∆y = f(y), (2.13a)

∂u
∂t

+ u · ∇u− ν∆u = − 1
%0
∇p+ g̃, (2.13b)

∇ · u = 0, (2.13c)

where g̃ = (1 + β(T0 − T )) (1 + γXX) (1 + γSS) (1 + γEE)g is the density related gravi-
tational volume-force. These equations are valid in Ω× (0, tf ), namely the interior of the
fermenter for all times of the time horizon of the simulation, where tf denotes the final
time.

Next, we discuss the boundary conditions. We assume that the fermenter is equipped
with a valve. While formed carbon dioxide is transported to the environment due to an
overpressure, additional oxygen cannot enter the vessel from the outside. Moreover, we
assume that no additional must, nitrogen sources, or yeast strains are added. Therefore,
there is no flux of the substances X,N,O, S, and E across the boundary and we apply
homogeneous Neumann boundary conditions on Γ := ∂Ω as follows

σ1
∂X

∂n
= σ2

∂N

∂n
= σ3

∂O

∂n
= σ4

∂S

∂n
= σ5

∂E

∂n
= 0, (2.14)

where n denotes the outward unit normal to Γ. For the temperature, we must estimate
the heat flux through the fermentation tank wall, which is typically made out of steel for
industrial purposes. According to [VDI02, p. A2, eq. (15)], the heat flux density from
the interior of the fermentation tank is q̇ = −λ∂T

∂n
, with the thermal conductivity λ of

the fluid, namely must. Moreover the heat flux Q̇ = q̇A through the wall of area A of
a heat exchanger is given by Q̇ = kA(Tinner − Touter), where k is the heat transmittance
coefficient; see [VDI02, eq. (1), p. Cb1]. Equating these expressions and dividing the
resulting equation by the density %0 and heat capacity cp one arrives at

σ6
∂T

∂n
= λ

%0cp

∂T

∂n
= k

%0cp
(Touter − T ), (2.15)

where σ6 = λ
%0cp

denotes the thermal diffusivity of the fluid. As the fermentation is
an exothermic reaction, in vessels of industrial size the must has to be cooled down to
prevent too high temperatures. Therefore, cooling mechanisms have to be implemented.
We assume that Γ1 is exposed to the environment, while the other part of the boundary, i.e.
Γ2 := Γ\Γ1, is covered with a cooling cycle. The temperature of the coolant is denoted by
u and can be controlled by the winemaker. Therefore, we impose the following boundary
conditions for the temperature

σ6
∂T

∂n
=

τair(Text − T ) on Γ1 × (0, tf ),
τcoolant(u− T ) on Γ2 × (0, tf ),

(2.16)

where Text is the external temperature. The positive parameters τair and τcoolant represent
the normalised thermal conductivity according to (2.15) of the fermenter wall exposed to
air and coolant, respectively. This possibility to influence the wine fermentation process is
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used in Chapter 3 in order to define an optimal control problem and to compute a control,
which minimises the sugar concentration at the end of the process while keeping the
average temperature as constant as possible. Moreover, we assume that the temperatures
u and Text are homogeneous in space at each time point. Finally, we employ zero slip
boundary conditions for the fluid velocity field u, i.e.

u = 0 on Γ× (0, tf ). (2.17)

For the numerical simulation of the wine fermentation process with spatial inhomo-
geneity and fluid dynamics we have to solve the convection-diffusion-reaction equations
together with the incompressible Navier-Stokes equations (2.13) complemented with ini-
tial conditions for (X,N,O, S,E, T,u) and the boundary conditions (2.14), (2.16), and
(2.17). In Figure 2.2, we can see the results of one such numerical simulation in a two
dimensional domain. The sub-figures show the distribution of the yeast biomass concen-
tration within the fermenter at six different points in time. The initially concentrated
yeast culture at the top of the fermentation vessel induces a flow field due to its higher
density, which transports the biomass to the bottom of the tank. Note that the time
horizon of this simulation is just about seven minutes.

The reason for this short time horizon is that the dimensions of the tank used for the
simulation are 2.5 m in height and 1 m in width and the Navier-Stokes equations for this
problem are computationally very expensive. The stability of a numerical solution to the
Navier-Stokes equations depends on the given mesh, as these equations are highly non-
linear and tend to develop chaotic local behaviour in many situations. A fine resolution of
boundary layers and vortices is inevitable for a stable simulation of convective dominant
flows. Therefore, numerical errors due to too coarse mesh grids propagate quickly and
lead to non-physical blow-ups in the numerical solution. If we pursue a direct numerical
simulation, where no further modelling of turbulence like in the Reynolds-averaged Navier-
Stokes equations or sub-grid models like in large eddy simulations are necessary, we have
to use a very fine mesh. As the distance between neighbouring nodes in a fine mesh is
small, the Courant-Friedrichs-Lewy (CFL) condition demands that the time steps, which
are used for the time integration of the model equations, have to be small, too. These
necessarily small time steps, which are fractions of seconds in the simulation presented in
Figure 2.2, are not only needed for a stable numerical solution, but also for accuracy. The
velocity field and also the concentrations are changing within seconds, which demands for
a high temporal resolution. Consequently, as the time horizon of a fermentation process
is about several days or even more than a month, millions of time steps are necessary
and it is not possible to obtain a simulation result for the whole fermentation process in
a reasonable amount of time.

Besides the fact that the proposed model in this section is computationally very ex-
pensive to solve, the question arises if these costs are paid back with a more accurate
simulation of the wine fermentation process. It can be seen in both simulations and
experiments that the motion of the fluid is very fast compared to the evolution of the
reaction of alcoholic fermentation. Hence, two different time scales are involved. On one
hand, the reactive part of the model needs several days to first produce a high yeast con-
centration and afterwards decompose the sugar. On the other hand, the fluid dynamics
evolve within seconds or minutes, while the fermentation seems to stand still during this
amount of time. Therefore, it is likely that the concentrations are well mixed considering
the time scales, on which the fermentation takes place. We conclude that the computation
of an accurate velocity field is not only very hard to achieve, but is also not relevant for
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Figure 2.2: Evolution of yeast biomass concentration distributed within a 2D tank. Blue
colour corresponds to a zero concentration, whereas high concentration are presented in
red colour.

a good simulation of the fermentation. We rather need a more global idea of the distri-
bution of concentrations and the temperature and present, therefore, a simplification of
the model in the next section.

2.3 Reduction to Reaction-Diffusion Equations
In the present section, we give reason to the reduction of a wine fermentation model
with the Navier-Stokes equations to a model consisting of a system of reaction-diffusion
equations.

From the computational point of view it would be advantageous to leave out the
convection term u ·∇y in (2.13a). On one hand, we would have no CFL-condition, which
demands small time steps for stability reasons. On the other hand, the computationally
very expensive Navier-Stokes equations could be omitted, as there would be no coupling
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to the equations of the fermentation reaction. Nevertheless, by doing so, the spatial
component of the model would be worthless. The reason is that the physical diffusion
coefficients are too small. Assume that we approximate the physical properties of the
must by that of water. In this case, the thermal diffusivity σ6 is approximately 10−7 m/s2;
see [VDI02, p. Db1]. Moreover, the molecular diffusion coefficients σi (i = 1, . . . , 5) have a
scale of about 10−9 m/s2 [NHG10, p. 25]. Without convection, only diffusion is responsible
for the exchange of concentrations or temperature across the fermenter. In simulations
with such small diffusion coefficients there would be almost no equalisation of spatial
inhomogeneities, even during the pretty large time horizon in which the fermentation
process takes place. Hence, diffusion is very slow for mixing substances, which is why often
mixers are used to induce a fluid flow and to accelerate the homogenisation. To conclude,
the convection in the must is an important process, which should not be omitted.

In order to overcome the difficulties that arise when using the Navier-Stokes equations
we model the convection by diffusion. By defining a space dependent and possibly time
dependent diffusion coefficient σi(x, t) (i = 1, . . . , 6) we try to mimic the homogenisation
of concentration induced by convection. Provided that this approximation is valid on
the global scale of the fermenter for large time intervals, the simulation results are only
perturbed insignificantly, because the fermentation is a very slow process. Hence, we use
the following system of reaction-diffusion equation to model the wine fermentation process
for the optimal control problem analysed in Chapter 3:

∂y

∂t
−D∆y = f(y) in Ω× (0, tf ), (2.18a)

D
∂y

∂n
+ Zy = g(u) on Γ× (0, tf ), (2.18b)

y(0) = y0 in Ω. (2.18c)

The diffusivity coefficients D = diag(σ1, . . . , σ6) are functions defined in Ω× (0, tf ). The
fermentation reaction is modelled by the reaction term f(y) that is given by the ordinary
differential equations model (2.8). The matrix Z and function g are defined as follows

Z =

diag(0, 0, 0, 0, 0, τair) on Γ1 × (0, tf ),
diag(0, 0, 0, 0, 0, τcoolant) on Γ2 × (0, tf ),

(2.19)

and

g(u) =

(0, 0, 0, 0, 0, τairText)> on Γ1 × (0, tf ),
(0, 0, 0, 0, 0, τcoolant u)> on Γ2 × (0, tf ).

(2.20)

in agreement with the boundary conditions (2.14) and (2.16) discussed in Section 2.2.
Moreover, the initial conditions y0 in (2.18c) have to be satisfied.

After having defined the equations modelling the wine fermentation process, we dis-
cuss the data that has to be provided for simulating a specific experiment. First, the
parameters ai (i = 1, . . . , 7), bi (i = 1, 2), ci (i = 1, . . . , 5), and the toxicity function Ψ
that define the reaction function f have to be estimated as they are likely to be different
for each yeast strain in use. Moreover, the tank geometry influences the flow behaviour
of the contained must. Hence, the space and time dependent diffusion coefficients σi
(i = 1, . . . , 6) have to be identified for the used fermenter such that they provide a good
approximation of the mixing behaviour of concentrations and the transport of heat to
the fermenter walls. The exchange of temperature at the tank walls is described by the
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normalised thermal conductivity coefficients τair and τcoolant. These parameters are depen-
dent on the wall material and the cooling mechanism that is provided by the fermenter.
The temperatures of the environment Text and the coolant u are comparatively simple to
measure. Finally, the concentrations and the temperature y0 = (X0, N0, O0, S0, E0, T0)>
at the beginning of the wine fermentation process have to be known. See Chapter 3 for
the analysis and numerical simulation of this model.

To conclude this section, we discuss cases in which the model with reaction-diffusion
equations is more favourable compared to a model without spatial resolution. While the
zero dimensional model with ordinary differential equations (2.8) is very simple to solve its
use is limited to cases with a small fermenter size and little must volume. As for small scale
experiments spatial inhomogeneity is unlikely and the temperature is comparable to that
of the environment, the extra computational effort of a three dimensional model (2.18)
is not rewarded by a more accurate simulation. Nevertheless, for parameter and function
identification problems as in Chapter 4, where measured data are obtained by small scale
experiments, the use of a simple ordinary differential equations model is justified. In
contrast, a more refined model with spatial resolution should be used for the computation
of optimal controls of large scale wine production processes as is done in Chapter 3. On
one hand, due to the large volume of an industrial fermenter, a homogeneous medium is
unlikely and the modelling of the distribution of concentrations within the fermentation
vessel is necessary. On the other hand, the temperature is a key factor that influences the
reaction rates and a spatial resolution helps to compute its time evolution with greater
accuracy. Moreover, the simulation of the vessel domain together with its boundary
enables us to describe the cooling control mechanism mathematically in the definition of
the boundary conditions, which is not possible for the model with ordinary differential
equations.
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Chapter 3

Optimal Control Methods for
Reaction-Diffusion Equations

In this chapter, we investigate the properties of the wine fermentation model based on
the reaction-diffusion equations (2.18). Moreover, we define an optimal control problem
governed by these partial differential equation, which is designed to drive the process in a
desired way. Therefore, we define in Section 3.1 the necessary function spaces that are used
as the solution spaces for partial differential equations. Moreover, we collect results for
both linear and non-linear parabolic equations that are used in the succeeding sections. In
Section 3.2 some results in functional analysis, which are important to infinite dimensional
optimisation, are summarised. In Section 3.3 we apply our results to the wine fermentation
model. In particular, the proof for the existence of optimal controls is presented and the
first-order necessary optimality conditions that characterise the solutions of the optimal
control problem are given. Section 3.4 provides the numerical validation of the proposed
framework.

3.1 Analysis of Parabolic Equations
In the following, we present some basic concepts concerning the study of parabolic equa-
tions. These are partial differential equations of first order in time with a second-order
differential operator in space. The basic example for a parabolic equation is the following
heat equation

∂y

∂t
− σ∆y = 0,

which is supposed to model the time evolution of the temperature in a body with a
thermal diffusivity constant σ. The Laplace operator ∆ is defined by ∆y = ∑n

i=1
∂2y
∂x2
i
. A

more general second-order differential operator is given by

Ay :=
n∑

i,j=1

∂

∂xi

(
aij

∂y

∂xj

)
,

where the positive definite matrix of functions aij can be space and time dependent.
Under reasonable assumptions on the operator A the theory works in the same manner
as for a constant diffusion coefficient σ. We present the latter case in the following.

The distribution and diffusion of solved substances in a fluid can also be modelled by
the heat equation [Ein05]. Moreover, there are a lot of applications where these substances
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participate in a chemical or biological reaction. Combining these two features we call a
differential equation of the following type

∂y

∂t
− σ∆y = f(y)

a reaction-diffusion equation, where the possibly non-linear function f models the reaction
dynamics.

3.1.1 Function Spaces
We consider real-valued functions defined in a Lipschitz domain, i.e. a bounded open set
Ω ⊂ Rn with boundary Γ = ∂Ω that is locally a graph of a Lipschitz continuous function.
The results of this section can be found in [AF03, DL92, Trö10].

Lebesgue spaces

We assume that the reader is familiar with the basics of measure theory and the Lebesgue
measure. For 1 ≤ p < ∞ the function space Lp(Ω) consist of equivalent classes of
measurable functions u for which the following integral is finite∫

Ω

|y(x)|pdx <∞.

Here, functions y, v ∈ Lp(Ω) that differ only on a set of measure zero are identified.
Moreover, we say that a statement holds almost everywhere (a.e.) in Ω, if it does not
hold only in a subset of Ω of measure zeros. We use the notation y = v a.e. in Ω. The
space Lp(Ω) equipped with the norm

‖y‖Lp(Ω) =
∫

Ω

|y(x)|pdx
 1

p

,

is a Banach space. For p =∞ the Banach space of measurable functions that are essen-
tially bounded is denoted by L∞(Ω) and the corresponding norm is

‖y‖L∞(Ω) = ess sup
x∈Ω

|y(x)|,

where the essential supremum is defined as follows

ess sup
x∈Ω

|y(x)| = min {K ∈ R; |y(x)| ≤ K a.e. in Ω} .

Note that in a bounded domain Ω each function y ∈ Lq(Ω) is also in the space Lp(Ω)
for 1 ≤ p ≤ q ≤ ∞; see [AF03, Theorem 2.14]. This is proven by the following Hölder
inequality ∫

Ω

|y(x)|p dx ≤
∫

Ω

1 dx
1− p

q
∫

Ω

|y(x)|q dx


p
q

.

In the following, we omit the argument of functions defined in Ω to ease notation.
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Sobolev spaces

Sobolev spaces are used in the theory of elliptic equations. They provide us with the
possibility to cast an elliptic partial differential equation into an operator equation in
the dual space of a Sobolev space. Also in the theory of parabolic differential equations
Sobolev spaces play a crucial role. For the necessary definition of weak derivatives we
denote by L1

loc(Ω) the space of functions that are integrable on every compact set in Ω.

Definition 1 A function y ∈ L1
loc(Ω) is called weakly differentiable with respect to xi,

if the exists a function w ∈ L1
loc(Ω) and∫

Ω

y
∂v

∂xi
dx = −

∫
Ω

wv dx

holds for all functions v ∈ C∞0 (Ω), which is the space of compactly supported functions
that are infinitely many times differentiable. The function w is called weak derivative of
y with respect to xi and is denoted by ∂y

∂xi
.

Definition 2 For 1 ≤ p ≤ ∞ and the integer m ≥ 0 the Sobolev space Wm,p(Ω)
consists of all function u that have weak partial derivatives up to order m, which all
belong to the space Lp(Ω). In particular, for each multi-index α = (α1, . . . , αn) ∈ Nn

0 with
|α| =

n∑
i=1

αi ≤ m we have ∂|α|y
∂x
α1
1 ...∂xαnn

∈ Lp(Ω). Moreover, the space Wm,p(Ω) is a Banach
space with respect to the Sobolev norm

‖y‖Wm,p(Ω) =
 ∑
|α|≤m

∥∥∥∥∥ ∂|α|y

∂xα1
1 . . . ∂xαnn

∥∥∥∥∥
p

Lp(Ω)

 1
p

.

The case p = 2 plays a special role as the corresponding space is also a Hilbert space. We
use the notation Hm(Ω) = Wm,2(Ω).

In order to address boundary conditions, we need to know in which spaces the re-
strictions to the boundary of a function in a Sobolev space are contained. The following
theorem considering traces of Sobolev functions can be found in [Trö10, Theorem 2.1].

Theorem 1 Let Ω be a bounded Lipschitz domain and let 1 ≤ p ≤ ∞. Then there exists
a bounded, linear mapping τ : W 1,p(Ω)→ Lp(Γ) such that for all y ∈ W 1,p(Ω)∩C(Ω̄) the
values of τ(y) and y coincide on Γ.

The following Sobolev embedding theorem examines how the integrability of functions
and their weak derivatives can be improved by reducing the maximal order of differentia-
bility; see [AF03, Theorem 4.12]. An embedding X ↪→ Y for two Banach spaces (X, ‖·‖X)
and (Y, ‖ · ‖Y ) is present, if every element of X is also contained in Y and there exists a
constant C such that

‖x‖X ≤ C‖x‖Y ,
for all x ∈ X.

Theorem 2 Let Ω ⊂ Rn be a Lipschitz domain. For 1 ≤ p < ∞ and the integers j ≥ 0
and m ≥ 1 the following embedding holds

W j+m,p(Ω) ↪→ W j,q(Ω),

where the maximal integrability q can be chosen according to the following three cases:
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1. For mp > n (equality is allowed for p = 1) the space dimension n is low compared
to the integrability and differentiability properties and the embedding holds for

p ≤ q ≤ ∞.

2. For the limit case mp = n infinity is excluded for q as the embedding holds only for

p ≤ q <∞.

3. For mp < n, we have a comparably high space dimension and get less additional
integrability as the embedding holds for

p ≤ q ≤ np

n−mp
.

The analogue for compact embeddings is given by the Rellich-Kondrachov theorem [AF03,
Theorem 6.3]. An embedding is called compact, if the inclusion operator i : X → Y, i(x) =
x is compact, i.e. bounded sets in X are mapped on pre-compact sets in Y .

Theorem 3 Let Ω ⊂ Rn be a Lipschitz domain. For 1 ≤ p < ∞ and the integers j ≥ 0
and m ≥ 1 the following embedding is compact

W j+m,p(Ω) ↪→ W j,q(Ω),

where maximal integrability q can be chosen according to the following two cases:

1. For mp ≥ n
1 ≤ q <∞.

2. For mp < n

1 ≤ q <
np

n−mp
.

Notice that it is sufficient to reduce the integrability parameter q of the target space by
an arbitrarily small ε to render the embedding in Theorem 2 compact.

The Lebesgue and Sobolev spaces defined above take values in R. As we have a system
of equations modelling the wine fermentation process, there are space involved that are
vector-valued. For these spaces we use the notation L2(Ω;Rm) and H1(Ω;Rm), etc., and
a function y : Ω→ Rm is an element of these spaces, if all its components are elements of
the corresponding real-valued function spaces.

Abstract functions and spaces involving time

In the definitions of Lebesgue and Sobolev spaces we consider real-valued functions. Sim-
ilar definitions can be made for functions that take values in some Banach space X.
In the following, functions spaces involving time are defined to address time-dependent
problems; see [DL92, Trö10].

Definition 3 Let X be a Banach space and tf > 0. We call y : [0, tf ] → X an ab-
stract function. The space of continuous abstract functions with values in X is denoted by
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C([0, tf ];X) and its norm is ‖y‖C([0,tf ];X) := max
0≤t≤tf

‖y(t)‖X . Moreover, by defining mea-
surable abstract functions in an analogous way as in the real-valued case the definition of
the Lebesgue spaces for 1 ≤ p <∞ is

Lp(0, tf ;X) :=

y : (0, tf )→ X

∣∣∣∣∣∣∣
tf∫

0

‖y(t)‖pX dt <∞

 ,
which is a Banach space with the corresponding norm. The space of essentially bounded
abstract functions L∞(0, tf ;X) is defined similarly as in the real-valued case.

Parabolic partial differential equations contain the derivative with respect to time. For
the following theory is suffices that the time derivative is a mapping with values in the
dual space of X and not with values in X. Therefore, we define distributional derivatives
[Trö10].

Definition 4 Let y ∈ L2(0, tf ;X). Then we define a vector-valued distribution
T : C∞0 (0, tf )→ X by

T (v) :=
tf∫

0

y(t)v(t) dt,

where the integral is meant in the Bochner sense [HP57, Yos80]. Its distributional
derivative T ′ : C∞0 (0, tf )→ X is defined by

T ′(v) := −
tf∫

0

y(t)v′(t) dt,

and is denoted by dy
dt .

In the following, we describe the idea of a evolution triple that is central for the theory
of parabolic partial differential equations. Assume that V andH are two separable Hilbert
spaces, where V is densely embedded inH. Note that in this case the embeddingH∗ ↪→ V ∗

is also dense. By identifying the space H with its dual H∗ by the Riesz representation
theorem we get the following chain of embeddings, which is called an evolution triple

V ↪→ H ↪→ V ∗.

Definition 5 The space W (0, tf ) is defined as the space of all functions y ∈ L2(0, tf ;V )
with distributional derivative dy

dt ∈ L
2(0, tf ;V ∗).

See [DL92, Chapter XVIII, §1, Proposition 6, Theorem 1, Theorem 2] for a proof of the
following theorem.

Theorem 4 The space W (0, tf ) is a Hilbert space with inner product

(y1, y2)W (0,tf ) =
tf∫

0

(y1, y2)V dt+
tf∫

0

(y′1, y′2)V ∗ dt
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and norm

‖y‖W (0,tf ) =

 tf∫
0

‖y‖2
V dt+

tf∫
0

‖y′‖2
V ∗ dt


1
2

is continuously embedded in C([0, tf ];H) and the following integration by parts formula is
valid for every y1, y2 ∈ W (0, tf )

tf∫
0

〈y′1, y2〉V ∗,V dt = (y1(tf ), y2(tf ))H − (y1(0), y2(0))H −
tf∫

0

〈y′2, y1〉V ∗,V dt.

Moreover, the following holds for all v ∈ V ,

d
dt(y(·), v)H = 〈y′, v〉V ∗,V .

Note that the evaluation of a function in W (0, tf ) at some time point is only possible
due to the embedding W (0, tf ) ↪→ C([0, tf ];H). Hence, we are able to prescribe initial
conditions for parabolic equations.

Moreover, the following theorem due to Aubin and Lions states a compact embedding
result for spaces involving time. It is used to prove the strong convergence of the non-linear
term of the system of reaction-diffusion equations in Subsection 3.3.2.

Theorem 5 Let V0, V1, and V2 be Banach spaces such that V0 and V2 are reflexive.
Moreover, we have that the embedding V0 ↪→ V1 is compact and the embedding V1 ↪→ V2
is continuous. Then for 1 < p, q <∞ the embedding

W (0, tf ) =
{
y ∈ Lp(0, tf ;V0); dydt ∈ L

q(0, tf ;V2)
}
↪→ Lp(0, tf ;V1)

is compact.

The proof can be found in [Aub63, Theorem 5.1], [Lio69, Theorem 12.1], and [Sho97,
Chapter III.1, Proposition 1.3].

3.1.2 Linear Equations
In the following, we give some known results on the theory of linear parabolic equations.
There are several ways to tackle the task of proving the existence of solutions to this kind
of partial differential equations. We could use the theory of semigroups, as the second-
order elliptic operator defines under high regularity assumptions a semigroup, which can
be seen as the flow of a differential equation in Banach space subject to its generator.
The corresponding theory is developed in , e.g., [DL92, Chapter XVII], but we will not
use this theory, as we want to work with time dependent boundary conditions. Hence,
we rely on the variational approach that is described in [DL92, Chapter XVIII], in which
the space W (0, tf ) is used and weak solutions are considered. First, we cite the following
very general theorem and apply it afterwards for our problem.

Theorem 6 Let V ↪→ H ↪→ V ∗ be an evolution triple. Moreover, let the time-dependent
bilinear form a : [0, tf ]× V × V → R satisfy

|a(t, y, v)| ≤M‖y‖V ‖v‖V ,
a(t, y, y) +m1‖y‖2

H ≥ m2‖y‖2
V ,
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for constants M,m1,m2 > 0 and all y, v ∈ V , t ∈ [0, tf ]. Assume that the function
t 7→ a(t, y, v) is measurable for all y, v ∈ V . Further, let y0 ∈ H and F ∈ L2(0, tf , V ∗)
be given. Then there exists exactly one y ∈ W (0, tf ) that satisfies y(0) = y0 and the
variational problem

d
dt(y(·), v)H + a(·; y(·), v) = F (·; v)

for all v ∈ V in the sense of distributions. Moreover, the following stability result holds

‖y‖W (0,tf ) ≤ c
(
‖y0‖H + ‖F‖L2(0,tf ;V ∗)

)
with a constant c > 0 independent of y0 and F .

This theorem and its proof can be found in [DL92, Chapter XVIII, §3, Theorem 1, Theo-
rem 2, Theorem 3], where the approximation of V by an orthonormal basis is used to con-
struct a sequence of functions that satisfy the variational equality in a finite-dimensional
subspace of V . Together with derived energy estimates one proves the convergence of
this sequence to the unique solution of the problem. This method is called Galerkin
approximation.

For the purpose of proving the solvability of the system of reaction-diffusion equations
(2.18) we need results on the following linear second-order differential equation of parabolic
type.

∂y

∂t
− σ∆y + α y = f in Q, (3.1a)

σ
∂y

∂n
+ β y = g on Σ, (3.1b)

y(0) = y0 in Ω, (3.1c)

where the diffusion coefficient σ is a positive real number, the functions α and f are defined
in the space-time cylinder Q := Ω × (0, tf ). Moreover, function β and g are defined in
the parabolic boundary Σ := Γ× (0, tf ) and the initial condition y0 is defined in Ω. The
space and, possibly, time dependency of the afore mentioned function is suppressed in the
following to ease the notation.

In the following, we give some ideas that motivate the definition of weak solutions.
Assume for the moment that all involved functions are regular enough to justify the
computations that follow. Let v be a function defined in Ω. By multiplying the differential
equation (3.1a) with v and integrating over Ω we arrive at∫

Ω

∂y

∂t
v − σ∆y v + α y v dx =

∫
Ω

f v dx.

Applying Green’s identity for the term ∆y v and changing the order of integration and
differentiation with respect to time we get

∂

∂t

∫
Ω

y v dx+
∫
Ω

σ∇y · ∇v + α y v dx =
∫
Ω

f v dx+
∫
Γ

σ
∂y

∂n
v ds.

We substitute the boundary conditions (3.1b) as follows

∂

∂t

∫
Ω

y v dx+
∫
Ω

σ∇y · ∇v + α y v dx+
∫
Γ

β y v ds =
∫
Ω

f v dx+
∫
Γ

g v ds.
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By defining the following time dependent bilinear form

a(t; y, v) =
∫
Ω

σ∇y · ∇v + α(t) y v dx+
∫
Γ

β(t) y v ds (3.2)

and the following linear functional

F (t; v) =
∫
Ω

f(t) v dx+
∫
Γ

g(t) v ds, (3.3)

we conclude that the solution y of the linear parabolic partial differential equation (3.1)
satisfies

d
dt(y(t), v)L2(Ω) + a(t; y(t), v) = F (t; v),

for all v. This set-up fits in the context of Theorem 6 and we present the necessary
details in the following. Note that we explicitly denote the time dependence of relevant
functions, but suppresse the dependence on the space variable x. Moreover, we conclude
that the following setting is sufficient to have all terms of the variational problem well
defined. We choose for the space W (0, tf ) the evolution triple V ↪→ H ↪→ V ∗, where we
define V = H1(Ω), as the gradient of y and v is involved in (3.2) and has to be square
integrable. Further, the time derivative of the L2(Ω) inner product is considered, which
is why we define H = L2(Ω). Note that L2(Ω) is densely embedded in H1(Ω) and we,
indeed, have the evolution triple H1(Ω) ↪→ L2(Ω) ↪→ H1(Ω)∗. For the boundary integrals
we need the domain to have a Lipschitz continuous boundary in order to use Theorem 1
and guarantee their existence. Finally, we define the notion of weak solutions of linear
parabolic equations as follows.

Definition 6 We call y ∈ W (0, tf ) a weak solution of the problem (3.1) if y(0) = y0 holds
in L2(Ω) and

d
dt

∫
Ω

y v dx+
∫
Ω

σ∇y · ∇v + α y v dx+
∫
Γ

β y v ds =
∫
Ω

f v dx+
∫
Γ

g v ds

is valid for all v ∈ H1(Ω) in the sense of distributions.

Now, we can state and prove the following theorem that is used multiple times in Subsec-
tion 3.3.1 to prove existence and uniqueness of solutions of the wine fermentation model.

Theorem 7 If σ > 0, α ∈ L∞(Q), β ∈ L∞(Σ), β ≥ 0 a.e. in Q, f ∈ L2(Q), g ∈ L2(Σ)
and y0 ∈ L2(Ω), then there exists a unique weak solution y ∈ W (0, tf ) for the following
linear parabolic equation

∂y

∂t
− σ∆y + α y = f in Q, (3.4a)

σ
∂y

∂n
+ β y = g on Σ, (3.4b)

y(0) = y0 in Ω. (3.4c)

and there is a constant c independent of f , g, and y0 such that

‖y‖W (0,tf ) ≤ c
(
‖y0‖L2(Ω) + ‖g‖L2(Σ) + ‖f‖L2(Q)

)
.

Furthermore,
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(i) if f ≥ 0, g ≥ 0, and y0 ≥ 0 holds, then y ≥ 0 a.e. in Q.

(ii) if α ≥ 0, f = β = g = 0, y0 ∈ L∞(Ω) and y0 ≥ 0 holds, then

0 ≤ y ≤ ‖y0‖L∞(Ω).

Proof. In order to prove this theorem, we show that for the bilinear form a defined in
(3.2) and the right-hand side F defined in (3.3) all assumption of Theorem 6 are satisfied.
First, we note that the initial conditions y0 is in H = L2(Ω).

Then, we focus on the time dependent bilinear form a : [0, tf ]×H1(Ω)×H1(Ω)→ R
defined in (3.2). This mapping is well defined as α is essentially bounded and the functions
y and v as well as their gradients ∇y and ∇v are in L2(Ω), which has the existence of the
first integral in (3.2) as a consequence. The second boundary integral is also well defined
as the trace of H1(Ω) functions is in L2(Γ) by Theorem 1 and β is essentially bounded.
Moreover, the linearity of a in y and v is clear and the measurability of t → a(t, y, v)
follows from the fact that α and β are measurable functions.

For the necessary estimates in Theorem 6, let y, v ∈ H1(Ω). Then, for almost all
t ∈ [0, tf ], we compute with the aid of the Cauchy-Schwarz inequality the following
estimate

|a(t, y, v)| ≤
∫
Ω

|σ∇y · ∇v + α(t) y v| dx+
∫
Γ

|β(t) y v| ds

≤|σ|‖∇y‖L2(Ω)‖∇v‖L2(Ω) + ‖α‖L∞(Q)‖y‖L2(Ω)‖v‖L2(Ω)

+ ‖β‖L∞(Σ)‖y‖L2(Γ)‖v‖L2(Γ),

which leads to

|a(t, y, v)| ≤
(
|σ|+ ‖α‖L∞(Q) + c2

τ‖β‖L∞(Σ)
)
‖y‖H1(Ω)‖v‖H1(Ω),

where cτ is the norm of the trace operator in Theorem 1. This shows that the bilinear
form a(t, ·, ·) is continuous for almost all t ∈ [0, tf ].

For the coercivity estimate, we have

a(t, y, y) =
∫
Ω

σ∇y · ∇y + α(t) y2 dx+
∫
Γ

β(t) y2 ds

≥σ‖∇y‖2
L2(Ω) − ‖α‖L∞(Q)‖y‖2

L2(Ω)

=σ‖y‖2
H1(Ω) −

(
‖α‖L∞(Q) + σ

)
‖y‖2

L2(Ω),

where the boundary integral disappears because of β ≥ 0 a.e. in Σ.
Finally, we show that F ∈ L2(0, tf ;H1(Ω)∗), which is defined in (3.3). For a fixed

t ∈ [0, tf ] we estimate

|F (t, v)| ≤
∫
Ω

|f(t) v| dx+
∫
Γ

|g(t) v| ds

≤ ‖f(t)‖L2(Ω)‖v‖L2(Ω) + ‖g(t)‖L2(Γ)‖v‖L2(Γ)

≤
(
‖f(t)‖L2(Ω) + cτ‖g(t)‖L2(Γ)

)
‖v‖H1(Ω)

and conclude that the linear, continuous operator v 7→ F (t, v) is an element ofH1(Ω)∗ with
norm ‖F (t, ·)‖H1(Ω)∗ ≤ ‖f(t)‖L2(Ω) +cτ‖g(t)‖L2(Γ). Hence, we prove F ∈ L2(0, tf ;H1(Ω)∗),
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as
tf∫

0

‖F (t, ·)‖2
H1(Ω)∗ dt ≤

tf∫
0

2‖f(t)‖2
L2(Ω) + 2c2

τ‖g(t)‖2
L2(Γ) dt = 2‖f‖2

L2(Q) + 2c2
τ‖g‖2

L2(Σ) <∞

holds. Due to Theorem 6, we know that there exists a unique weak solution y ∈ W (0, tf )
of (3.4) and a constant c such that

‖y‖W (0,tf ) ≤c
(
‖y0‖H + ‖F‖L2(0,tf ;V ∗)

)
≤c

(
‖y0‖H +

√
2‖f‖L2(Q) +

√
2cτ‖g‖L2(Σ)

)
.

Hence, the claimed stability result holds.
In order to prove (i) and (ii) we use the same ideas as in [DL92, Chapter XVIII,

§4.5]. The space H1(Ω) is stable under the mappings v 7→ v+ := max(0, v) and v 7→
v− := min(0, v), i.e., v+, v− ∈ H1(Ω) for all v ∈ H1(Ω); see [DL88, Chapter IV, §7,
Proposition 6]. Note that v(x)v−(x) = (v−(x))2 hold a.e. in Ω. For (i) assume that
f, g, y0 ≥ 0 a.e. in the corresponding domains. We estimate the time derivative of the
negative part of y as follows

1
2
d
dt‖y

−(t)‖2
L2(Ω) = d

dt

∫
Ω

y−(t) y−(τ) dx

∣∣∣∣∣∣
τ=t

= d
dt

∫
Ω

y(t) y−(τ) dx

∣∣∣∣∣∣
τ=t

=
∫
Ω

−σ∇y(t) · ∇y−(τ)− α y(t) y−(τ) + f(t) y−(τ) dx

∣∣∣∣∣∣
τ=t

+
∫
Γ

−β y(t) y−(τ) + g(t) y−(τ) ds

∣∣∣∣∣∣
τ=t

=
∫
Ω

−σ ‖∇y−‖2 − α (y−)2 + f y− dx+
∫
Γ

−β (y−)2 + g y− ds

≤‖α‖L∞(Q)‖y−(t)‖2
L2(Ω),

where we used that the products f y− and g y− are non-positive. Note that we have no
assumptions on the sign of α and, therefore, we use the upper bound ‖α‖L∞(Q) for the
pre-factor −α. Due to ‖y−(0)‖2

L2(Ω) = ‖y−0 ‖2
L2(Ω) = 0 we conclude by the Grönwall lemma,

see Lemma 1 in Subsection 4.1.2, that ‖y−(t)‖2
L2(Ω) = 0 for all t ∈ [0, tf ] and, therefore,

y ≥ 0 a.e. in Q.
We prove claim (ii) by an application of (i) with the function ỹ = ‖y0‖L∞(Ω) − y. In

this case we have the system

∂ỹ

∂t
− σ∆ỹ + α ỹ = α‖y0‖L∞(Ω) in Q,

σ
∂ỹ

∂n
= 0 on Σ,

ỹ(0) = ‖y0‖L∞(Ω) − y0 in Ω,

and we observe that the right-hand sides are non-negative, as we assumed α ≥ 0. Hence,
the application of (i) yields ‖y0‖L∞(Ω) − y ≥ 0, which proves the upper bound for y. The
lower bound for y falls under the assumptions of (i) and is already proven. �
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3.1.3 Semi-linear Equations
The theory of linear parabolic equations presented in the preceding section is not directly
applicable to the wine fermentation model. This results from the non-linearity that the
reaction part introduces. However, the differential operators are still linear and these kind
of equations are often called semi-linear. In this section, we state and prove a theorem
for a class of reaction functions that is used in Subsection 3.3.1 to prove the existence of
unique solutions for the wine fermentation model.

The analysis of reaction-diffusion equations is strongly dependent on the characteristics
of the reaction term. For some reaction terms there may exist an invariant set of the state
space such that if the initial values of the reaction-diffusion system lie in this region the
state values will also belong to this set for all future times [Smo94]. Finding such an
invariant set and proving thereby the existence of solutions is a non-trivial task.

Another approach for investigating reaction-diffusion equations can be found in [Pao92,
Chapter 8]. In this reference, quasi-monotone type reactions are addressed by constructing
a sequence of coupled upper and lower solutions that converge from above and below to
the unique solution, respectively. For this technique one has to find a set of coupled upper
and lower solutions such that the sequence can be initialised and that it converges to the
solution of the reaction-diffusion system. This is dependent on the non-linearity and can
be cumbersome.

Moreover, it is possible to use the Leray-Schauder fixed-point theorem as in, e.g.,
[BG06] and the Banach fixed-point theorem as in, e.g., [Eva10, Part III 9.2.1]. The latter
is used in Subsection 3.3.1 and is presented along with its proof in the following.

Theorem 8 Let fk : Rm → R be Lipschitz continuous, σk > 0, βk ≥ 0, gk ∈ L2(Σ) and
yk0 ∈ L2(Ω) for all 1 ≤ k ≤ m with m being a positive integer. Then the coupled system

∂yk
∂t
− σk∆yk = fk(y) in Q,

σk
∂yk
∂n

+ βkyk = gk on Σ,

yk(0) = yk0 in Ω

has a unique solution y := (y1, . . . , ym) ∈ W (0, tf ).

Proof. A similar theorem is stated in [Pao92, Theorem 9.2] and [Eva10, Part III 9.2.1,
Theorem 2]. In the following, we show the necessary extensions. The basic idea is to use
the Banach fixed-point theorem in the space X = C([0, tf ];L2(Ω;Rm)) with the following
norm

‖v‖ := max
0≤t≤tf

‖v(t)‖L2(Ω;Rm).

Therefore, take a fixed y ∈ X and denote by S(y) = w the solution of the following m
uncoupled linear parabolic equations

∂wk
∂t
− σk∆wk = fk(y) in Q,

σk
∂wk
∂n

+ βkwk = gk on Σ,

wk(0) = yk0 in Ω.
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Notice that, if y ∈ X we know that f(y) ∈ L2(Q;Rm), as f is Lipschitz continuous
with constant L > 0. By Theorem 7, we know that these equations admit a unique
solution wk ∈ W (0, tf ) (k = 1, . . . ,m) and consequently w = (w1, . . . , wm) ∈ X, due to
the embedding W (0, tf ) ↪→ C([0, tf ];L2(Ω)). Hence, the operator S : X → X is well-
defined. In order to show that S is a contraction, provided the time window [0, tf ] is small
enough, let y, ỹ ∈ X be arbitrarily chosen. Then the difference of their images w and w̃
satisfies the following partial differential equations

∂(wk − w̃k)
∂t

− σk∆(wk − w̃k) = fk(y)− fk(ỹ) in Q,

σk
∂(wk − w̃k)

∂n
+ βk(wk − w̃k) = 0 on Σ,

(wk − w̃k)(0) = 0 in Ω.

For a fixed k, we know by Theorem 4 and the zero initial conditions that

1
2‖(wk − w̃k)(τ)‖2

L2(Ω) =1
2

τ∫
0

d
dt‖(wk − w̃k)(t)‖

2
L2(Ω)dt

=−
τ∫

0

∫
Ω

σk‖∇(wk − w̃k)‖2 dx+
∫
Γ

βk(wk − w̃k)2 ds
 dt

+
τ∫

0

∫
Ω

(fk(y)− fk(ỹ))(wk − w̃k) dx dt.

≤
τ∫

0

(1
2‖fk(y)− fk(ỹ)‖2

L2(Ω;Rm) + 1
2‖wk − w̃k‖

2
L2(Ω)

)
dt

≤
τ∫

0

(
L2

2 ‖y − ỹ‖
2
L2(Ω;Rm) + 1

2‖wk − w̃k‖
2
L2(Ω)

)
dt

≤tfL
2

2 max
0≤t≤tf

‖(y − ỹ)(t)‖2
L2(Ω;Rm) + tf

2 max
0≤t≤tf

‖(wk − w̃k)(t)‖2
L2(Ω).

As this is valid for all τ ∈ [0, tf ], we can deduce

max
0≤t≤tf

‖(wk − w̃k)(t)‖2
L2(Ω) ≤ tfL

2‖(y − ỹ)(t)‖2
X + tf max

0≤t≤tf
‖(wk − w̃k)(t)‖2

L2(Ω).

Hence, for tf < 1 it holds that

max
0≤t≤tf

‖(wk − w̃k)(t)‖2
L2(Ω) ≤

tfL
2

1− tf
‖(y − ỹ)(t)‖2

X

and moreover the following is true

‖w − w̃‖2
X ≤

mtfL
2

1− tf
‖y − ỹ‖2

X .

Assume that tf is small enough such that mtfL
2

1−tf
< 1, which corresponds to tf ≤ 1

1+mL2 .
Then, S is a contraction and we can apply the Banach fixed-point theorem, which states
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that a contraction defined in a metric space has a unique fixed-point. This yields a unique
y ∈ X with S(y) = y, which is equivalent to

∂yk
∂t
− σk∆yk = fk(y) in Q,

σk
∂yk
∂n

+ βkyk = gk on Σ,

yk(0) = yk0 in Ω.

Hence, y is a solution of the system of reaction-diffusion equations. If the converse is true
and the final time tf is not small enough. Then, S is not necessarily a contraction and
the Banach fixed-point theorem cannot be applied directly. In this case, we divide the
interval [0, tf ] into small parts and use the argument described above for each subinterval.
We use the final state of the solution in the previous subinterval for the initial condition
in subsequent subintervals. This is possible as the functions in the space W (0, tf ) are
continuous with respect to time in the L2(Ω;Rm) topology. After a finite number of
iterations a unique solution for the whole time interval [0, tf ] is found, which completes
the proof. �

3.2 Selected Results in Functional Analysis for Infi-
nite Dimensional Optimisation

In this section, we collect some results of functional analysis, which are important in the
theory of infinite dimensional optimisation.

Assume that we want to minimise a real-valued function J defined on a normed linear
space X. The Weierstraß theorem states that, if J is continuous in a compact set C ⊂ X,
the minimisation problem

min
x∈C

J(x)

has a solution. Though this also holds for X having infinite dimensions its use is very
limited in this case. In finite dimensional vector spaces bounded and closed sets are
compact due to the Bolzano-Weierstraß theorem. For infinite dimensions this is not the
case anymore as, for example, the unit ball is not compact. Heuristically, one can say
that very often there exist not enough compact sets in the norm induced topology of
an infinite dimensional vector space in order to prove the existence of minimisers by the
Weierstraß theorem. Therefore, the notion of the weak topology was introduced, where
more compact set are available. Nevertheless, the weak topology has less open sets and
this means that there exist less continuous functions. This restriction has been overcome
with the notion of lower semicontinuous functions. This property is enough to show the
existence of solutions of minimisation problems.

Recall that the dual space X∗ of a normed space X contains all linear and continuous
functionals f : X → R. Together with the norm

‖f‖X∗ := sup
06=x∈X

|f(x)|
‖x‖X

,

the space X∗ is a Banach space.

Definition 7 Let xn be a sequence in normed vector space X. We say that xn converges
weakly to x ∈ X, if

f(xn)→ f(x), as n→∞
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holds for all f ∈ X∗. In this case we use the notation xn ⇀ x.

We give some results on weak convergence and its connection to the convergence with
respect to the norm of the vector space, which we call strong convergence.

Theorem 9 Let X be a normed vector space. Then the following holds

• Every strongly convergent sequence is also weakly convergent to the same limit.

• The limit of a weakly convergent sequence is unique.

• A weakly convergent sequence is bounded.

These results are proven in [Cia13, Theorem 5.12-1, 5.12-2] and utilise the Hahn-Banach
theorem and the Banach-Steinhaus theorem.

The following theorem is applied in later sections to the solution operator of a linear
parabolic equation. Hence, we can deduce from the weak convergence of the problem data
also the weak convergence of the solution.

Theorem 10 Let X and Y be normed vector spaces and S : X → Y be linear and
continuous. Then S is sequentially weakly continuous, that is, S(xn) converges weakly to
S(x) in Y for a weakly convergent sequence (xn) ⊂ X with limit x ∈ X.

Proof. Let g ∈ Y ∗ be arbitrary. As S is linear and continuous, we conclude that
f := g ◦ S defined by x 7→ g(S(x)) is an element of X∗. The sequence xn is weakly
convergent in X. Therefore, f(xn) → f(x) as n tends to infinity. As g was chosen
arbitrarily we have proven that g(S(xn)) → g(S(x)) for all g ∈ Y ∗, that is the weak
convergence of S(xn) to the limit S(x). �

The following theorem is used both for the space of controls and also for the solution
space of the differential equations modelling the wine fermentation.

Theorem 11 Let U be a Hilbert space and (un) ⊂ U a bounded sequence. Then there
exists a weakly converging subsequence (unk) ⊂ (un).

Proof. Since U is a Hilbert space, it is a reflexive Banach space due to the Riesz rep-
resentation theorem. We conclude by the Banach-Eberlein-Šmulian theorem, see [Cia13,
Theorem 5.14-4], that bounded sequences in U contain weakly convergent sequences. �

In the case of control constraints, one has to prove that the optimal control, which is
the limit of an objective minimising sequence, is admissible. Therefore, constraints are
often formulated such that the admissible set of controls is closed and convex in order to
use the following theorem.

Theorem 12 Let C ⊂ U be a convex and closed subset of the Hilbert space U . Then the
subset C is sequentially weakly closed, that is, the limit of a weakly convergent sequence
in C is an element of C.
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Proof. This theorem is valid for an arbitrary normed linear space, as the Banach-Saks-
Mazur theorem shows that for a weakly convergent sequence convex combinations of its
members converge strongly to the weak limit. As C is convex, these convex combinations
are elements of C and its strong limit is an element of C, since C is closed in the strong
topology. See [Cia13, Theorem 5.13-1] for more details.

In this work, we use this theorem only in Hilbert spaces and can prove it in an easier
way. Let P denote the projection of a point u ∈ U on the set C, that is the point
P (u) is the element of C with the minimal distance to u. In this case P (u) satisfies
(P (u) − u, v − P (u))U ≥ 0 for all v ∈ C; see [Cia13, Theorem 4.3-1]. Let (un) ⊂ C be a
weakly convergent sequence. Then (P (u)− u, un−P (u))U → (P (u)− u, u−P (u))U as n
goes to infinity. Hence, we have

−‖P (u)− u‖2
U = (P (u)− u, u− P (u))U = lim

n→∞
(P (u)− u, un − P (u))U ≥ 0

and conclude u = P (u) ∈ C. �
Moreover, we define sequential weak lower semicontinuity. This concept is necessary

as the norm is not continuous in the topology induced by weak convergence and it is not
possible to show that the weak limit of a minimising sequence is the minimum of a function.
In functional analysis also lower semicontinuity and sequential lower semicontinuity for
the strong topology is regarded, but we omit these concepts as they are not necessary for
our purpose.

Definition 8 Let U be a topological space. A function J : U → R is called sequentially
weakly lower semicontinuous, if for each weakly convergent sequence un ⇀ u in U
the inequality

J(u) ≤ lim inf
n→∞

J(un)

holds.

Most applications in optimal control theory define the objective functional by the
square of a norm. Therefore, we prove the following theorem that is later applied for the
functional, which is minimised to steer the wine fermentation process in a desired way.

Theorem 13 Let U be a Hilbert space. Then the function J : U → R defined by J(u) =
‖u‖2

U is sequentially weakly lower semicontinuous, that is, weak convergence un ⇀ u in U
implies the inequality

‖u‖2
U ≤ lim inf

n→∞
‖un‖2

U .

Proof. This theorem is proven in [Cia13, Theorem 9.2-3] for an arbitrary convex and
lower semicontinuous function defined in a normed space. For its proof the theorems of
Hahn-Banach, Banach-Steinhaus, and Banach-Saks-Mazur are essential. In the case of U
being a Hilbert space and J defined by J(u) = ‖u‖2

U the proof is simpler, as we compute

J(u) = ‖u‖2
U ≤ ‖un − u‖2

U + ‖u‖2
U = ‖un‖2

U − 2(un, u)U + 2‖u‖2
U = J(un)− 2(un − u, u)U .

As (un) converges weakly, we know that (un − u, u)U tends to zero as n tends to infinity.
Hence, we conclude J(u) ≤ lim inf

n→∞
J(un). �

For completeness, we present the notion of Gâteaux and Fréchet differentiability; see
[Trö10, Section 2.6].
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Definition 9 Let U and V be Banach spaces. The function F : O → V defined in the
open set O ⊂ U is called Gâteaux differentiable at x ∈ O, if the mapping A defined
by

Ax(h) = lim
t↘0

F (x+ t h)− F (x)
t

,

for h ∈ U is well-defined and linear.
Moreover, the function F is called Fréchet differentiable at x ∈ O, if there exists

a linear and continuous operator Ax : U → V such that

‖F (x+ h)− F (x)− Ax(h)‖V
‖h‖U

→ 0, for ‖h‖U → 0

holds.

We present the well-known implicit function theorem, which is used to prove the
differentiability property of the solution operator of the wine fermentation model. See
[Zei95, Chapter 4.8] or [Cia13, Chapter 7.13] for a proof.

Theorem 14 Let U , Y , and V be a normed linear spaces such that Y and V are Banach
spaces. Suppose a point (u∗, y∗) is given in an open subset O ⊂ U × Y . Let the function
F : O → V be continuous in O and have the following properties:

• The point (u∗, y∗) is a zero of F , that is F (u∗, y∗) = 0 holds.

• F is continuously Fréchet differentiable with respect to the second variable for all
(u, y) ∈ O.

• The partial derivative of F with respect to y at the point (u∗, y∗) is continuously
invertible.

Then there exist a continuous function S defined in an open neighbourhoods A of u∗ that
takes values in an open neighbourhood B of y∗ such that A×B ⊂ O and

{(u, y) ∈ A×B;F (u, y) = 0} = {(x, y) ∈ A×B; y = S(u)}

holds. In addition, if F is Fréchet differentiable at (u∗, y∗), then S is Fréchet differentiable
and

S ′(u∗) = − (Fy(u∗, y∗))−1 Fu(u∗, y∗) (3.5)
holds.

The characterisation of optimal controls can be done by means of the first-order neces-
sary optimality conditions. They rely on the following theorem for a general minimisation
problem; see [Trö10, Lemma 2.21].

Theorem 15 Let C be a convex subset of a Banach space U . Further, let f be a real-
valued mapping that is Gâteaux differentiable in an open subset containing the set C. A
solution u of the minimisation problem

min
u∈C

f(u)

satisfies the following variational inequality

f ′(u)(u− u) ≥ 0,

for all u ∈ C.
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Proof. Since C is convex, the linear convex combination u + s(u − u) is in C for all
s ∈ [0, 1] and u ∈ C. Moreover, u is a solution of the minimisation problem and we
conclude that

f(u+ s(u− u)) ≥ f(u)

holds. Therefore, we have

1
s

(f(u+ s(u− u))− f(u)) ≥ 0,

for all s ∈ [0, 1]. Taking the limit s→ 0 we arrive at f ′(u)(u− u) ≥ 0 for all u ∈ C. �

3.3 Optimal Control of the Wine Fermentation Pro-
cess

This section is devoted to the application of the general results on the optimal control of
partial differential equations that are given in the preceding section to the wine fermen-
tation model with reaction-diffusion equations (2.18).

We begin with the analysis of the model equations by proving the unique existence of
solutions and their continuous dependence on the temperature control function. Further,
we define an objective functional in order to steer the fermentation process in a desired
way and prove the existence of minimisers of the corresponding optimal control problem.
The computation of locally optimal controls can be achieved by considering the first-order
necessary optimality conditions that we present. These conditions are in close relation to
the evaluation of the gradient of the reduced functional, which is utilised in the numerical
implementation. Finally, we present numerical results at the end of this section that
validate our theoretical analysis.

3.3.1 Analysis of the Model Equations
For convenience, we state again the fermentation model equations for the vector of con-
centrations and the temperature y = (X,N,O, S,E, T )> described in Section 2.3, which
is as follows

∂y

∂t
−D∆y = f(y) in Ω× (0, tf ) =: Q, (3.6a)

D
∂y

∂n
+ Zy = g(u) on Γ× (0, tf ) =: Σ, (3.6b)

y(0) = y0 in Ω, (3.6c)

where the reaction function is given by

f (y) =



a1(T − b1) N
c1+N

O
c2+O

S
c3+SX −Ψ(E)X

−a2(T − b1) N
c1+N

O
c2+O

S
c3+SX

−a3(T − b1) N
c1+N

O
c2+O

S
c3+SX

−a4(T − b1) N
c1+N

O
c2+O

S
c3+SX − a5(T − b2) S

c4+S
c5

c5+EX

a6(T − b2) S
c4+S

c5
c5+EX

a7(T − b2) S
c4+S

c5
c5+EX


. (3.7)
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Moreover, we have the diffusivity matrixD = diag(σ1, . . . , σ6) and the boundary condition
mappings

Z =

diag(0, 0, 0, 0, 0, τair) on Γ1 × (0, tf ) =: Σ1,

diag(0, 0, 0, 0, 0, τcoolant) on Γ2 × (0, tf ) =: Σ2,
(3.8)

and

g(u) =

(0, 0, 0, 0, 0, τairText)> on Σ1,

(0, 0, 0, 0, 0, τcoolant u)> on Σ2.
(3.9)

In order to guarantee solutions of the fermentation model, we work through the re-
mainder of this chapter under the following assumptions:

1. Ω is a bounded domain with Lipschitz boundary Γ. The control boundary Γ2 ⊂ Γ
is of non-zero measure.

2. The yield coefficients ai (i = 1, . . . , 7), stagnation temperatures bi (i = 1, 2), and
Michaelis constants ci (i = 1, . . . , 5) in (3.7) are positive numbers. Moreover, the
toxicity function Ψ is positive and continuously differentiable.

3. The diffusivity parameters σi (i = 1, . . . , 6) are positive reals.

4. The normalised thermal conductivities τair and τcoolant in (3.8) and (3.9) are positive
numbers. The external temperature Text in (3.9) belongs to L∞(Σ) and satisfies
Text ≥ max(b1, b2) a.e. in Σ.

5. The initial conditions y0 = (X0, N0, O0, S0, E0, T0)> in (3.6c) belong to L∞(Ω;R6).
They are non-negative a.e. in Ω and in addition T0 ≥ max(b1, b2) holds.

Note that we assume constant diffusion parameters σi in Assumption 3 to simplify the
notation. The inclusion of essentially bounded space and time dependent diffusion co-
efficients σi(x, t) ≥ σ > 0 introduce no mathematical difficulties. Assumptions 4 and 5
ensure that the factors (T − b1) and (T − b2) of the reaction rates µ1 in (2.3) and µ2 in
(2.5) remain positive and the reactions are not reversed.

Before we prove the existence of solutions for the fermentation model, we point out
some properties of the reaction function f . In the following theorem, we show that the
state y is component-wise non-negative, which is important, as the right-hand side f in
(3.6) can formally have several singularities, e.g. for N = −c1. Moreover, the derivative
of f is unbounded when its arguments tend to +∞. This is due, on one hand, to the
product TX and, on the other hand, to the general continuously differentiable toxicity
function Ψ. Nevertheless, the entries of the Jacobian f ′(y) are bounded for arguments y
with values in the interval [0,M ]. Hence, the function f is locally Lipschitz continuous
for non-negative arguments, i.e., there exists a constant L(M) > 0 dependent of M such
that

‖f(y1)− f(y2)‖ ≤ L(M)‖y1 − y2‖, (3.10)

for all y1, y2 ∈ {x ∈ R6 : 0 ≤ xi ≤ M, i = 1, . . . , 6}. In fact, the result remains true if we
allow −ε (for some ε > 0) in place of zero as a lower bound, as long as we stay clear of
the singularities N = −c1 etc.; see (3.7). This will be utilised in the proof of Theorem 18.

The assumptions given above together with the results from the previous section on
parabolic partial differential equations enable us to state the existence and uniqueness of
solutions to (3.6).

Optimal Control and Function Identification in Biological Processes
46



Optimal Control Methods for Reaction-Diffusion Equations

Theorem 16 Suppose that u belongs to L∞(0, tf ) and satisfies u ≥ max(b1, b2). Then
there exists a unique solution to (3.6) and this solution satisfies the following estimate

‖y‖W (0,tf ) + ‖y‖L∞(Q;R6) ≤ q
(
‖y0‖L∞(Ω;R6), ‖u‖L∞(0,tf ), ‖Text‖L∞(0,tf )

)
, (3.11)

where the function q depends on the problem data.

Proof. Theorem 8 states the unique solvability of a reaction-diffusion system for reaction
functions that are globally Lipschitz continuous. However, the reaction function f of
our fermentation model (3.6) is only locally Lipschitz continuous for arguments that are
component-wise positive. Nevertheless, we can use this result to prove our theorem by
truncating the state vector such that we have a globally Lipschitz continuous reaction.
Therefore, we define for some M > 0 a truncated reaction term given by

fM(y) := f(max(`,min(y,M))),

where the maximum and minimum is understood component-wise with the constant lower
bound ` = (0, 0, 0, 0, 0,max(b1, b2)) and variable upper bound M in all components. The
truncation renders the function fM globally Lipschitz continuous. Hence, by Theorem 8
there exists, for each M > 0, a unique solution yM ∈ W (0, tf ) of yt − D∆y = fM(y)
subject to the same boundary and initial conditions of (3.6).

In the following, we show that this solution satisfies ` ≤ yM ≤ K, where K is a
constant independent of M . We denote by [XM ], [NM ], [OM ], [SM ], [EM ] and [TM ] the
components of max(`,min(y,M)) and use Theorem 7 to prove the bounds for yM in the
following eight steps.

1. Since yM satisfies the equation yt − D∆y = fM(y), we conclude that the yeast
concentration XM satisfies the following linear equation,

∂XM

∂t
− σ1∆XM − αXM = 0 in Q,

subject to the same boundary and initial conditions as in (3.6), where

α := a1([TM ]− b1) [NM ]
c1 + [NM ]

[OM ]
c2 + [OM ]

[SM ]
c3 + [SM ]

[XM ]
XM

−Ψ([EM ]) [XM ]
XM

belongs to L∞(Q). This can be derived by noting that the fraction [XM ]
XM is zero for

non-positive XM , equals one for 0 < XM < M , and is bounded from above by one
for XM ≥ M , as its value is M

XM in this case. Hence, the essential maximum of the
absolute value of the function α can be bounded by the maximum of this function
in the hypercube defined by ` ≤ y ≤ M . As X0 ≥ 0 holds, Theorem 7 (i) gives
XM ≥ 0.

2. The nitrogen concentration NM satisfies the following linear equation,

∂NM

∂t
− σ2∆NM + αNM = 0 in Q,

subject to the same boundary and initial conditions as in (3.6), where

α := a2([TM ]− b1) [NM ]
NM(c1 + [NM ])

[OM ]
c2 + [OM ]

[SM ]
c3 + [SM ] [X

M ] ≥ 0,
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and α belongs to L∞(Q). For the non-negativity of α it is essential that we make
the exceptional definition of the lower bound for the temperature in `. As the
truncated temperature is greater than the constant b1, the non-negativity of the
factor ([TM ] − b1) is guaranteed. Since N0 ≥ 0 holds, Theorem 7 (ii) yields 0 ≤
NM ≤ ‖N0‖L∞(Ω).

3. By the same argument, we get

0 ≤ OM ≤ ‖O0‖L∞(Ω) and 0 ≤ SM ≤ ‖S0‖L∞(Ω),

for the oxygen and sugar concentrations.

4. The ethanol concentration EM satisfies the linear equation
∂EM

∂t
− σ5∆EM = F in Q, (3.12)

subject to the same boundary and initial conditions as in (3.6), where

F := a6([TM ]− b2) [SM ]
c4 + [SM ]

c5

c5 + [EM ] [X
M ] ≥ 0, (3.13)

and F belongs to L∞(Q). Since E0 ≥ 0 holds, Theorem 7 (i) yields EM ≥ 0.

5. In order to prove an upper bound of XM we consider the system

∂X̃

∂t
− σ1∆X̃ = H in Q,

∂NM

∂t
− σ2∆NM = −H in Q,

subject to the same boundary and initial conditions as in (3.6), where X̃ is an
auxiliary variable and the right-hand side is defined as follows

H := a2([TM ]− b1) [NM ]
c1 + [NM ]

[OM ]
c2 + [OM ]

[SM ]
c3 + [SM ] [X

M ].

Lets assume for the moment that the diffusivity parameters σ1 and σ2 are equal.
Then, for the sum X̃ +NM the following differential equation

∂
(
X̃ +NM

)
∂t

− σ1∆
(
X̃ +NM

)
= 0 in Q

holds. An application of Theorem 7 (ii) yields the upper bound X̃ +NM ≤ ‖X0 +
N0‖L∞(Ω). As we already know that NM ≥ 0, we conclude X̃ ≤ ‖X0 + N0‖L∞(Ω).
The case of non-equal diffusion coefficients σi (i = 1, 2) is far more complicated,
but it is still possible to derive an upper bound X̃ ≤ C, where C is only dependent
on the data of the problem. We refer to [Mas83], where such problems with non-
linearities on the right-hand side that cancel out for a summation of equations are
investigated. Further, we find that the difference X̃ − XM satisfies the following
parabolic problem

∂X̃ −XM

∂t
− σ1∆

(
X̃ −XM

)
= Ψ([EM ])[XM ] ≥ 0 in Q,

with a non-negative right-hand side. As the boundary and initial conditions are
zeros, the application of Theorem 7 (i) yields X̃ − XM ≥ 0. Together with the
upper bound of X̃ we conclude XM ≤ C.
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6. The shifted temperature function T ∗ = TM −max(b1, b2) satisfies the following heat
equation

∂T ∗

∂t
− σ6∆T ∗ = α in Q,

σ6
∂T ∗

∂n
+ βT ∗ = G on Σ,

T ∗(0) = T0 −max(b1, b2) in Ω,

where
α := a6

(
[TM ]− b2

) [SM ]
c4 + [SM ]

c5

c5 + [EM ] [X
M ] ≥ 0

belongs to L∞(Q). Moreover, G ≥ 0 holds, asG = τair(Text−max(b1, b2)) holds on Σ1
andG = τcoolant(u−max(b1, b2)) on Σ2, compare (3.8). Since T0, Text, u ≥ max(b1, b2)
holds, Theorem 7 (i) yields TM −max(b1, b2) ≥ 0 and TM ≥ max(b1, b2) follows.

7. To derive the upper bound of the temperature TM we obtain by three variable
transformations a heat equation with non-negative right-hand sides as follows. The
first transfomation

T ∗ = TM − b2, (3.14)

simplifies the term (T − b2). Moreover, we must take care of two separate sources
that can contribute to an increase of the temperature TM . We use the following
transformation

T ∗∗ = e−a7 C tT ∗, (3.15)

to account for the heat generation of the yeast. Moreover, the following mapping

T ∗∗∗ = γ − T ∗∗, (3.16)

takes care of the boundary and initial conditions with the constant γ, which is
defined later. Note that for the temperature TM , the following parabolic equation
is valid

∂TM

∂t
− σ6∆TM = a7([TM ]− b2) [SM ]

c4 + [SM ]
c5

c5 + [EM ] [X
M ] in Q,

σ6
∂TM

∂n
+ τTM = g6(u) on Σ,

TM(0) = T0 in Ω,

where τ equals τair on Σ1 and τcoolant on Σ2. The last component of the function
g in (3.9) is denoted by g6. The constant b2 vanished when applying differential
operators. Hence, for the shifted temperature T ∗ we arrive at the system

∂T ∗

∂t
− σ6∆T ∗ = a7T

∗ [SM ]
c4 + [SM ]

c5

c5 + [EM ] [X
M ] in Q,

σ6
∂T ∗

∂n
+ τT ∗ = g6(u)− τb2 on Σ,

T ∗(0) = T0 − b2 in Ω.
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During the second transformation the derivative with respect to t gives the extra
term −a7C T

∗∗ on the right-hand side and yields the system

∂T ∗∗

∂t
− σ6∆T ∗∗ = a7T

∗∗
(

[SM ]
c4 + [SM ]

c5

c5 + [EM ] [X
M ]− C

)
in Q,

σ6
∂T ∗∗

∂n
+ τT ∗∗ = e−a7 C t (g6(u)− τb2) on Σ,

T ∗∗(0) = e−a7 C t (T0 − b2) in Ω.

The last transformation renders the system into

∂T ∗∗∗

∂t
− σ6∆T ∗∗∗ + αT ∗∗∗ = a7γ

(
C − [SM ]

c4 + [SM ]
c5

c5 + [EM ] [X
M ]
)

in Q,

σ6
∂T ∗∗∗

∂n
+ τT ∗∗∗ = γ − e−a7 C t (g6(u)− τb2) on Σ,

T ∗∗∗(0) = γ − e−a7 C t (T0 − b2) in Ω,

where α := a7
(
C − [SM ]

c4+[SM ]
c5

c5+[EM ] [X
M ]
)
. Now, we observe that the right-hand

sides of the parabolic differential equation for T ∗∗∗ are non-negative provided that
we define γ as follows

γ := ‖T0‖L∞(Ω) + τ(‖Text‖L∞(Ω) + ‖u‖L∞(Ω)).

Note that we already have proven XM ≤ C and the fractions [SM ]
c4+[SM ] and c5

c5+[EM ]
are bounded from above by one. Finally, the application of Theorem 7 (i) proves
T ∗∗∗ ≥ 0, which subsequently yields T ∗∗ ≤ γ, T ∗ ≤ ea7 C tfγ, and TM ≤ ea7 C tfγ+ b2
after reversing the transformations (3.14)–(3.16).

8. Finally, we find that the right-hand side F in the equation for the ethanol concen-
tration EM , see (3.12) and (3.13), is bounded from above by a6 γ e

a7 C tf C. Using
the transformation E∗ := ‖E0‖L∞(Ω) + t a6 γ e

a7 C tf C − EM , we get the system

∂E∗

∂t
− σ5∆E∗ = a6 γ e

a7 C tf C − F in Q,

σ5
∂E∗

∂n
= 0 on Σ,

E∗(0) = ‖E0‖L∞(Ω) − E0 in Ω.

As the right-hand sides are non-negative, we conclude from Theorem 7 (i) that
E∗ ≥ 0 holds and obtain the following upper bound

EM ≤ ‖E0‖L∞(Ω) + tf a6 γ e
a7 C tf C.

To summarise, we have shown that the concentrations XM , NM , OM , SM , and EM

are bounded from below by zero and the temperature TM is bounded from below by
max(b1, b2). Moreover, we have yM ≤ K, where the upper bound is defined as follows

K := max(C, ‖N0‖L∞(Ω), ‖O0‖L∞(Ω), ‖S0‖L∞(Ω), ‖E0‖L∞(Ω) + tf a6 γ e
a7 C tf C, ea7 C tfγ+b2).

Notice that these bounds depend only on the parameters and the boundary and initial
conditions, but not on M . We therefore conclude that ` ≤ yM ≤ K for all M > 0.
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Consequently, it holds that ` ≤ yK ≤ K, which implies fK(yK) = f(yK), as no truncation
can occur. Thus yK is the unique solution of (3.6), as it satisfies yKt −D∆yK = fK(yK) =
f(yK).

By the previous considerations, we have a boundedness result in the L∞(Q)-norm, i.e.,
there exists a function p such that

‖y‖L∞(Q;R6) ≤ p
(
‖y0‖L∞(Ω;R6), ‖u‖L∞(0,tf ), ‖Text‖L∞(0,tf )

)
holds. For the estimate in the W (0, tf )-norm, we use the boundedness result for the heat
equation of Theorem 7 and obtain the following

‖y‖W (0,tf ) ≤ C
(
‖y0‖L∞(Ω;R6) + ‖u‖L∞(0,tf ) + ‖Text‖L∞(0,tf ) + ‖f(y)‖L2(Q;R6)

)
.

As the function f is locally Lipschitz continuous for non-negative inputs, we conclude
that

‖f(y)‖L2(Q;R6) ≤
√

6 tf |Ω|L(K) ‖y‖L∞(Q;R6);

see (3.10). Hence, there exists a function q that depends on the problem data such that
the desired stability result (3.11) holds. �

Having proven Theorem 16 and the unique solvability of the wine fermentation model
equations (3.6), we can define the mapping S that assigns to each feasible control u ≥
max(b1, b2) in L∞(0, tf ) a function y in the space W (0, tf ) as follows

S : L∞(0, tf ) ⊃ {u ≥ max(b1, b2)} → W (0, tf ),
u 7→ y.

Hence, we can write y = S(u) for the solution of the wine fermentation model.
To close this subsection we mention that the proof of Theorem 16 can be adjusted to a

large set of biological reacting models. The essential features for the reaction function of
the wine fermentation that are exploited in the proof are, on one hand, the conservation
of chemical amount and, on the other hand, the limited nutrient sources. The reaction
stops as soon as nitrogen, oxygen, and sugar are consumed. Hence, for other models that
share the same structure similar results can be obtained.

3.3.2 An Optimal Control Problem and the Existence of Min-
imisers

In this section, we formulate an optimal control problem for the wine fermentation pro-
cess and investigate its solution. To characterise this solution, we discuss the first-order
necessary optimality conditions.

First, we define the goal for the optimisation process. We assume that desired tra-
jectories yd := (Xd, Nd, Od, Sd, Ed, Td)> ∈ L2(Q;R6) for the concentrations and for the
temperature are given. Moreover, we wish to reach a desired final state that is given by
ytf := (Xtf , Ntf , Otf , Stf , Etf , Ttf )> ∈ L2(Ω;R6). In addition, technical restrictions on the
control u are modelled by a set of admissible controls as follows

Uad :=
{
u ∈ L2(0, tf ) : ua ≤ u ≤ ub a.e. in (0, tf )

}
. (3.17)

The bounds are given by ua, ub ∈ L∞(0, tf ). In addition to the assumptions given in the
beginning of Subsection 3.3.1 we assume that ua(x) ≥ max(b1, b2) in order guarantee that
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the temperature dependent terms in our model, T − b1 and T − b2, remain positive and
the reaction kinetics are not reversed; see (3.7).

Our optimal control problem reads as follows

min
u∈Uad

J(y, u) :=
6∑
i=1

(
αi
2 ‖yi − yd,i‖

2
L2(Q) + βi

2 ‖yi(·, tf )− ytf ,i‖
2
L2(Ω)

)
+ λ

2‖u− Text‖2
L2(0,tf )

subject to (3.6), (3.18)

where αi and βi (i ∈ {1, . . . , 6}) are non-negative constants. Further, we assume λ > 0.
The objective functional J in (3.18) penalises control temperatures u, which deviate from
the external temperature Text and therefore it takes into account the energy requirement
of the heat regulation. The following theorem addresses the existence of optimal controls.

Theorem 17 There exists at least one globally optimal solution to the optimal control
problem (3.18).

We prove this theorem following standard arguments [Lio71, Chapter III.15], [Trö10,
Chapter 4.3] and emphasise the weak continuity of the control-to-state operator.

Proof. We denote by y(u) the unique solution to (3.6) for a given u ∈ Uad; see Theo-
rem 16. As J is bounded from below, there exists j := infu∈Uad J(y(u), u) and a sequence
(un) ⊂ Uad such that limn→∞ J(y(un), un) = j. The sequence (un) is bounded in L2(0, tf ),
as Uad is a bounded set. By Theorem 11 there exists a subsequence, which we also denote
by un, with a weak limit u ∈ L2(0, tf ) such that un ⇀ u weakly in L2(0, tf ). Uad is con-
vex and closed in the Hilbert space L2(0, tf ) and therefore sequentially weakly closed by
Theorem 12. Consequently, the limit u ∈ Uad is admissible. Due to Theorem 16, the cor-
responding states yn := y(un) are bounded in the Hilbert spaceW (0, tf ); see (3.11). Again
by Theorem 11, there exists a subsequence of yn that is weakly convergent in W (0, tf ),
where we denote subsequences still by un and yn. We denote the weak limit of yn by
y ∈ W (0, tf ). Further, note that the objective functional J is continuous and convex.
Hence, J is sequentially weakly lower semicontinuous by Theorem 13 and it follows that

J(y, u) ≤ lim inf
n→∞

J(yn, un) = j.

Therefore, u is a global solution of (3.18) provided the state ȳ and the control ū satisfy
the model equations (3.6). This means that it remains to show that y = y(u) holds, which
is done in the following.

We know by Theorem 16 that the sequence of states yn is bounded in L∞(Q;R6).
Hence, the reaction term dn := f(yn) is also bounded in L∞(Q;R6), since the reaction
function f is locally Lipschitz continuous. Moreover, we conclude that dn is also bounded
in L2(Q;R6) and extract by Theorem 11 a weakly converging subsequence with a weak
limit d in that space. The state yn is the solution of the following heat equation

∂yn
∂t
−D∆yn = dn in Q,

D
∂yn
∂n

+ Zyn = g(un) on Σ,

yn(0) = y0 in Ω,

with right-hand sides dn and g(un). The mapping from un and dn onto the unique solution
yn of the heat equation is affine and continuous from L2(0, tf )× L2(Q;R6) into W (0, tf ),
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and hence weakly continuous by Theorem 10. We conclude that the weak limit y is the
unique solution to

∂y

∂t
−D∆y = d in Q,

D
∂y

∂n
+ Zy = g(u) on Σ,

y(0) = y0 in Ω.

It remains to show d = f(y), which has y = y(u) as a consequence.
Next, we show that the states yn converge strongly in L2(Q;R6). Therefore, note that

we have H1(Ω;R6) ↪→ L2(Ω;R6) ↪→ H1(Ω;R6)∗, where the first embedding is compact
due to Theorem 3. As H1(Ω;R6) and its dual are reflexive we conclude by Theorem 5
that the embedding W (0, tf ) ↪→ L2(Q;R6) is compact. The weakly converging sequence
yn is bounded in W (0, tf ). Therefore, the compact embedding yields that it contains a
subsequence that is strongly convergent in L2(Q;R6). We also know from Theorem 16
that the states yn are bounded component-wise by a constantK. Hence, this holds also for
its limit y and we conclude by the local Lipschitz continuity of f that f(y) ∈ L2(Q;R6).
Together with the Lipschitz estimate (3.10) for f we obtain

‖f(yn)− f(y)‖L2(Q;R6) ≤ L(K)‖yn − y‖L2(Q;R6) → 0,

and the strong convergence dn = f(yn)→ f(y) in L2(Q;R6) ensues. But dn has the weak
limit d. As the limit in both topologies must be the same, we find that d = f(y) and
consequently, y = y(u). This completes the proof. �

3.3.3 Differentiability of the Control–to–State Operator and
First-Order Necessary Optimality Conditions

Next, we discuss the characterisation of locally optimal solutions by their first-order nec-
essary optimality conditions. For this purpose, we investigate the differentiability of the
control-to-state operator. We prove the following theorem.

Theorem 18 The mapping S : u 7→ y, given by the solution of (3.6), is Fréchet differen-
tiable from Uad (endowed with the L∞(0, tf ) topology) into L∞(Q;R6). For δu ∈ L∞(0, tf )
the directional derivative δy = S ′(u) δu is given by the unique solution of the following
initial value problem,

∂

∂t
δy −D∆δy = f ′(y) δy in Q,

D
∂

∂n
δy + Zδy = g′(u) δu on Σ,

δy(0) = 0 in Ω,

(3.19)

where y = S(u) is the state of the system corresponding to the control u, and f ′(y) denotes
the Jacobian of f .

Proof. We define the function spaces Y := L∞(Q;R6), U := L∞(0, tf ) and V :=
L∞(Q;R6). For an arbitrary u∗ ∈ Uad Theorem 16 ensures that y∗ := S(u∗) ∈ Y and
y∗ ≥ 0 holds. In order to define a neighbourhood of (u∗, y∗), we choose an arbitrary
open set OU ⊂ U such that u∗ ∈ OU . Moreover, we define OY ⊂ {y ∈ Y : y ≥ −ε},
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where 0 < ε < min{cj|j = 1, . . . , 5}, in order to avoid singularities of f . Hence, the non-
linearity f regarded as a Nemytskii operator for Lebesgue spaces f : OY → L∞(Q;R6) is
continuously differentiable [Trö10, Lemma 4.12].

Similar to the proof in [BJT10] we define SQ : L∞(Q;R6) → L∞(Q;R6), SΣ :
L∞(Σ;R6)→ L∞(Q;R6), and SΩ : L∞(Ω;R6)→ L∞(Q;R6), as the linear and continuous
solution operators for the heat equation

∂y

∂t
−D∆y = f in Q,

D
∂y

∂n
+ Zy = g on Σ,

y(0) = h in Ω,

in the sense that SQ : f 7→ y with g = h = 0, SΣ : g 7→ y with f = h = 0, and SΩ : h 7→ y
with f = g = 0. We refer to [Cas97, Theorem 5.1] for the proof of essentially bounded
solutions to the heat equation for L∞ data.

In the following, we want to apply the implicit function theorem, see Theorem 14, to
the mapping F : OU ×OY → V defined by

F (u, y) := y − SQ(f(y))− SΣ(g(u))− SΩ(y0),

at the point (u∗, y∗). It is F (u∗, y∗) = 0, because y∗ = SQ(f(y∗)) + SΣ(g(u∗)) + SΩ(y0) is
equivalent to the system (3.6). F is continuously differentiable since the same holds for
f and the other mappings involved are affine and continuous.

Next, we show the continuous invertibility of the partial Fréchet derivative

Fy(u∗, y∗) : w 7→ w − SQ(f ′(y∗)w).

To this end, we show that for each v ∈ V there exists a unique element w ∈ Y , such that

v = Fy(u∗, y∗)w, (3.20)

which depends continuously on v. Equivalently, we can search for an r := w − v, as
SQ(f ′(y∗)w) = r equals (3.20). The corresponding parabolic problem for r is given by

∂r

∂t
−D∆r − f ′(y∗)r = f ′(y∗)v in Q,

D
∂r

∂n
+ Zr = 0 on Σ,

r(0) = 0 in Ω,

(3.21)

where we used f ′(y∗)w = f ′(y∗)r + f ′(y∗)v. Since y∗ is the state corresponding to an ad-
missible control, it takes values in a finite interval not including the singularities c1, . . . , c5
of f . Hence, the matrix function f ′(y∗) is bounded, and therefore the initial value prob-
lem (3.21) has a unique solution r in L∞(Q;R6), which depends continuously on the data
v ∈ V . We conclude that the mapping v 7→ r is continuous and bounded. The same holds
true for v 7→ w = r+ v, which shows the continuous invertibility of Fy(u∗, y∗). Therefore,
the assumptions of the implicit function theorem are satisfied and it follows that there
exists a continuously differentiable function S̃ such that{

(u, y) ∈ ÕU × ÕY |F (u, y) = 0
}

=
{

(u, y) ∈ ÕU × ÕY |y = S̃(u)
}

(3.22)
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in some neighbourhoods ÕU of u∗ and ÕY of y∗. Since F (u, S(u)) = 0 holds for all
u ∈ Uad we have S(u) = S̃(u). This shows the continuous Fréchet differentiability of the
control-to-state operator at the arbitrarily chosen point u∗.

In order to derive a formula for the derivative of S, we take into account that all
mappings in the equation

S(u) = SQ(f(S(u))) + SΣ(g(u)) + SΩ(y0), (3.23)

are Fréchet differentiable. As the mappings SQ and SΣ are linear, taking the derivative
with respect to u in (3.23) leads to

S ′(u) δu = SQ(f ′(S(u))S ′(u) δu) + SΣ(g′(u) δu). (3.24)

Due to δy = S ′(u)δu and y = S(u) equation (3.24) is equivalent to the initial value
problem (3.19), which completes the proof. �

Now, the optimal control problem (3.18) is equivalent to minimising the reduced func-
tional J̃(u) := J(S(u), u) over the set of feasible controls Uad. Note that the optimal
control of the wine fermentation process is a non-linear problem and the reduced func-
tional is not convex. Hence, uniqueness of optimal controls cannot be proven. Moreover,
the optimality conditions are also satisfied by locally optimal solutions and numerically
computed results are not necessarily global optimal controls. The following theorem states
the first-order necessary optimality conditions that are also instrumental to compute lo-
cally optimal controls.

Theorem 19 Let u be a solution of the optimal control problem (3.18), y = S(u) be
the corresponding state that solves the forward state equation (3.6), and p ∈ W (0, tf ) be
the adjoint state defined as the solution to the following linear backward in time adjoint
equation

−∂p
∂t
−D∆p = f ′(y)Tp+ α (y − yd) in Q, (3.25a)

D
∂p

∂n
+ Zp = 0 on Σ, (3.25b)

p(tf ) = β (y(tf )− ytf ) in Ω, (3.25c)

where

α = diag(α1, . . . , α6), yd = (Xd, Nd, Od, Sd, Ed, Td)>,
β = diag(β1, . . . , β6), ytf = (Xtf , Ntf , Otf , Stf , Etf , Ttf )>.

Then the variational inequality

tf∫
0

λ (u− Text) +
∫
Γ2

τcoolant p6 ds

 (u− u) dt ≥ 0 for all u ∈ Uad (3.26)

is fulfilled.

Proof. We regard the reduced functional J̃ : Uad → R with respect to the L∞ topology
in Uad. Theorem 18 guarantees that the control-to-state operator S is Fréchet differen-
tiable in Uad. It is even differentiable in an open neighbourhood of Uad, if we assume
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that the lower bound ua in the definition of Uad satisfies max(b1, b2) + ε ≤ ua a.e. in
(0, tf ) with a small number ε > 0. Moreover, the mapping f : L2(Ω) → R defined by
y →

∫
Ω y

2dx is Fréchet differentiable with derivative f ′(y) = (h→ 2
∫

Ω y h dx). The func-
tion f is a fortiori differentiable defined in the smaller space L∞(Ω), where the domain
Ω is bounded. Hence, the composition J̃(u) = J(S(u), u) is differentiable in an open set
containing the convex set Uad. Therefore, a solution u of Equation 3.18 satisfies, according
to Theorem 15, the variational inequality

J̃ ′(u)(u− u) ≥ 0,

for all u ∈ Uad. It remains to show that this is equivalent to (3.26).
Note that we can write the reduced functional as J̃(u) = J1(u) + J2(S(u)), as J is a

sum of terms that are either dependent on u or on y. For the u dependent addend of the
directional derivative of J̃ in the direction δu we conclude by the considerations above
that it is given by

J ′1(u)δu =
tf∫

0

λ(u− Text)δu dt,

which is the first part of (3.26).
Further, we define J̃2(u) = J2(S(u)). In the following, we investigate the derivative of

J̃2 in the direction δu. We define δy = S ′(u)δu and remember that δy is the weak solution
of (3.19). Using the chain rule we have

J̃ ′2(u)δu = J ′2(S(u))δy =
∫
Q

(y − yd)> α δy dx dt+
∫
Ω

(y(tf )− ytf )> β δy(tf ) dx,

where the diagonal matrices α and β are defined in Theorem 19. As the adjoint state p
is a weak solution of (3.25) and by Definition 6 of weak solutions we have

d
dt

∫
Ω

−p> v dx+
∫
Ω

∇p>D∇v − p>f ′(y)> v dx+
∫
Γ

p> Z v ds =
∫
Ω

f> v dx+
∫
Γ

g> v ds

with f = α (y−yd) and g = 0 for all v ∈ H1(Ω). Using v = δy and recalling d
dt
∫
Ω
p> v dx =

〈p′, v〉H1(Ω;R6)∗,H1(Ω;R6) we compute

J̃ ′2(u)δu =
tf∫

0

〈−p′, δy〉H1(Ω)∗,H1(Ω) dt+
∫
Q

∇p>D∇δy − p>f ′(y)> δy dx dt+
∫
Σ

p>Zδy ds dt

+
∫
Ω

p(tf )> δy(tf ) dx

=
tf∫

0

〈δy′, p〉H1(Ω)∗,H1(Ω) dt+
∫
Q

∇δy>D∇p− δy>f ′(y) p dx dt+
∫
Σ

δy>Zp ds dt

=
∫
Σ

(g′(u)δu)> p ds dt,

where we used the integration by parts formula of Theorem 4 and the zero initial condition
for δy. Note that g′(u)δu equals (0, 0, 0, 0, 0, τcoolant δu)> on Σ2 and is zeros elsewhere.
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Hence, we have shown the equality

J̃ ′(u)(u− u) =
tf∫

0

λ(u− Text)(u− u) dt+
∫
Σ

(g′(u)(u− u))> p ds dt

=
tf∫

0

λ (u− Text) +
∫
Γ2

τcoolant p6 ds

 (u− u) dt,

and this completes the proof. �
Note that for differentiable real-valued functions J̃ , defined in a Hilbert space U ,

there exists a gradient ∇J̃ ∈ U such that J̃ ′(u)δu = (∇J̃ , δu)U holds. It is well-known
that the negative gradient is the direction of steepest descent. Therefore, gradient-based
optimisation methods can be applied by searching for a suitable step length and add
to a current approximation of the optimal control the negative gradient multiplied by
the step length. This result due to the Riesz representation theorem cannot be used
in our case as we work with L∞(0, tf ). Hence, the derivative of J̃ is in the dual space
of L∞(0, tf ). Nevertheless, the computations in the proof of Theorem 19 show that the
gradient of J̃ at an arbitrary point in Uad can be represented as J̃ ′(u)δu = (∇J̃ , δu)L2(0,tf ),
where the gradient is given by ∇J̃(u) = λ (u − Text) +

∫
Γ2
τcoolant p6 ds. Assume that

Text ∈ L∞(0, tf ), yd ∈ L∞(Q;R6), and ytf ∈ L∞(Ω;R6), which is not restrictive for the
industrial application of the optimal control framework. Then we obtain an adjoint state
p that is essentially bounded as it is the solution of a linear parabolic problem with L∞
data; see [Cas97, Theorem 5.1]. Hence, we observe that the gradient ∇J̃ is an element of
L∞(0, tf ) and we have with −∇J̃ a direction of steepest descent. These considerations are
used in the following section, where the optimal control of the wine fermentation process
is computed by a quasi-Newton BFGS method.

3.4 Numerical Validation
In this section, we discuss the numerical solution of the optimality system, consisting of
the forward model (3.6), the adjoint model (3.25), and the variational inequality (3.26).
Specifically, we illustrate a suitable discretisation scheme for the forward and backward
equations, and employ a BFGS quasi-Newton optimisation method to solve this system in
reduced formulation for the wine fermentation model. We follow here an optimise–then–
discretise approach.

The purpose of this section is to explore the potential of temperature controls on the
amount of sugar converted. The numerical examples that are presented in this section
use realistic model parameters. Under these conditions, it turns out that neither the
lower bound (depending on the stagnation temperatures b1 and b2) nor the technological
upper bound for the control became active in the solution. We therefore describe the
BFGS optimisation algorithm for solving the unconstrained problem, for which (3.26) is
replaced by the equation

λ (u− Text) +
∫

Γ2
τcoolant p6 ds = 0 a.e. in [0, tf ].

3.4.1 Discretisation Schemes and Optimisation Algorithm
We discretise the forward equation and the adjoint backward equation with different
schemes. Both numerical discretisations are presented in the following and we give reasons
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for this specific choice. Moreover, the BFGS optimisation algorithm is presented.

Discretisation of the Forward State Equation

We discuss the discretisation of the reaction-diffusion system (3.6). Since these equations
are non-linear, any scheme implicit in time would incur the need to solve non-linear
algebraic equations. On the other hand, it is well known that an explicit scheme is
only conditionally stable and would incur the need to use very small time steps. In
order to avoid both difficulties, we discretise the equation with an IMEX Runge-Kutta
scheme, proposed in [ARS97], whose stability and convergence properties were examined
in [Kot08].

In order to illustrate this scheme in detail, we semi-discretise (3.6) in space by a finite
difference scheme ([JS14]) to obtain

y′ = Lhy + ϕh(u) + fh(y). (3.27)

The matrix Lh contains contributions from the Laplacian and ϕ(u) accounts for the bound-
ary conditions. For the solution of this ordinary differential equation, we divide the time
interval [0, tf ] into M equidistant subintervals and the vector ym represents the approx-
imation of the solution of equation (3.27) at time tm := mδt, where δt = tf

M
. On this

time grid the discretisation of the resulting system of ordinary differential equations by
the IMEX Runge-Kutta scheme can be written with one intermediate step yω as follows

yω = ym + δt ω (Lhyω + ϕh(u(tm + ω δt))) + δt ωf(ym),
ym+1 = ym + δt (1− ω) (Lhyω + ϕh(u(tm + ω δt))) + δt κf(ym)

+ δt ω
(
Lhym+1 + ϕh(u(tm+1))

)
+ δt (1− κ)f(yω),

where ω = 2−
√

2
2 and κ = 1 − 1

2ω . This scheme is second-order accurate in time and
possesses a larger stability region compared to the slightly simpler IMEX trapezoidal
scheme [Kot08].

Discretisation of the Backward Adjoint Equation

At this point, it would seem natural to use the discrete adjoint scheme for the backward
equation. However, numerical tests show that the discrete adjoint scheme results in an
explicit treatment of the reaction part of the adjoint equation, given by

− ∂p

∂t
−D∆p = f ′(y)Tp+ α (y − yd). (3.28)

The resulting scheme is, however, not able to recover the actual behavior, due to large
eigenvalues of the Jacobian f ′(y) of the reaction function. We therefore implement the
(implicit) Crank-Nicolson scheme for (3.28), i.e.,

−p
m − pm−1

δt
= 1

2
(
Lhpm + f ′h(ym)Tpm + α (ym − yd(tm))

)
+ 1

2
(
Lhpm−1 + f ′h(ym−1)Tpm−1 + α (ym−1 − yd(tm−1))

)
.

(3.29)

We remark that this numerical scheme has second-order convergence in time as well [HV03,
Chapter I. 4.2].
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The BFGS Optimisation Algorithm

For the optimisation problem (3.18), we employ the matrix-free quasi-Newton BFGS
scheme; see, e.g., [NW06, Algorithm 7.4] or [BS12, Chapter 4.2.2]. Given a control u, we
evaluate the gradient w.r.t. the L2(0, tf )-topology of the reduced cost functional J̃ at this
point in the following way:

1. Solve the state equation (3.6) for y with the given control u;

2. Solve the adjoint equation (3.25) for the adjoint state p, inserting the state function
y into the reaction part and terminal condition;

3. Compute the gradient ∇J̃ by the following formula,

∇J̃(u) = λ (u− Text) +
∫

Γ2
τcoolant p6 ds ∈ L2(0, tf ). (3.30)

The BFGS optimisation algorithm reads as follows
1: Choose an initial approximation u0 and compute g0 = ∇J̃(u0).
2: Choose tolerance tol and set k = 0
3: while k < kmax do
4: Compute search direction vk = −gk −

k−1∑
i=0

%i [(si, gk) ri − (zi, gk) si].

5: Compute step length αk ≈ min
α>0

J̃(uk + α vk).
6: Stop if ‖αk vk‖L∞(0,tf ) < tol
7: Compute new approximation uk+1 = uk + αk pk and gk+1 = ∇J̃(uk+1).
8: Compute

yk = gk+1 − gk, sk = αkvk = uk+1 − uk, %k = (yk, sk)−1,

zk = yk +
k−1∑
i=0

%i [(si, yk) ri − (zi, yk) si] , dk = 1 + %k(yk, zk), rk = dk sk − zk

9: Set k = k + 1.
10: end while

Notice that the scalar product (·, ·) denotes the L2(0, tf ) inner product. The auxiliary
variables yk, sk, %k, zk, dk and rk in step 8 of the optimisation algorithm are necessary
to calculate the action of the approximate Hessian of J̃ , taken as an operator L2(0, tf )→
L2(0, tf ). This approximation is initialised with the identity.

For the line search in Step 5, we utilise Algorithm 3.5 in [NW06], which generates step
lengths such that the strong Wolfe conditions

J̃(uk + αk vk) ≤ J̃(uk) + δ1 αk(∇J̃(uk), vk) (3.31a)
|(∇J̃(uk + αk vk), vk)| ≥ δ2(∇J̃(uk), vk) (3.31b)

are satisfied. These conditions (3.31) are sufficient to maintain positive definiteness of the
quasi-Newton operator.

Optimal Control and Function Identification in Biological Processes
59



Optimal Control Methods for Reaction-Diffusion Equations

σ1 = 10−9 m2

s
σ2 = 10−9 m2

s
σ3 = 10−9 m2

s

σ4 = 10−9 m2

s
σ5 = 10−9 m2

s
σ6 = 0.144 · 10−3 m2

s

τcoolant = 4 · 10−7 m
s

τair = 8 · 10−4 m
s

a1 = 1 · 10−5 1
Ks

a2 = 5 · 10−8 1
Ks

a3 = 1 · 10−9 1
Ks

a4 = 1 · 10−7 1
Ks

a5 = 1 · 10−6 1
Ks

a6 = 0.511 a5
a7 = 2 a5 b1 = 9 ◦C b2 = 9 ◦C
c1 = 0.05 kg

m3 c2 = 0.001 kg
m3 c3 = 50 kg

m3

c4 = 5 kg
m3 c5 = 34 kg

m3 Etol = 70 kg
m3

k1 = 10 m3

kg
k2 = 6 · 10−9

(
m3

kg

)2 1
s

Text = 12 ◦C

Table 3.1: Parameter values that were used in numerical experiments.

3.4.2 Numerical Results
In this section, we focus on the numerical validation of our optimal control formulation. In
particular, we compare the simulation of the fermentation process with constant control
temperature and with optimised control temperature. For convenience, we choose a two-
dimensional spatial domain Ω = (0, 0.5) × (0, 1), which represents a fermenter of 50 cm
width and 1 m height. We consider tank with a cooling mantle on the lateral boundary.
Therefore, we define the control boundary as Γ2 = {(x1, x2) ∈ Γ : 0.3 ≤ x2 ≤ 0.7}. We
have the following initial conditions

X0 = 0.5 g
l
, N0 = 0.2 g

l
, O0 = 0.004 g

l
,

S0 = 200 g
l
, E0 = 0 g

l
, T0 = 16 ◦C, (3.32)

and integrate the differential equations for tf = 30 days, or 2 592 000 seconds. In our
numerical experiments, whose results are reported in Figure 3.1 and Figure 3.2, we work
on a grid of 41 × 81 points in space and 401 points in time. Further, we choose realistic
diffusion coefficients and reaction parameter values that are shown in Table 3.1. In fact,
these parameters depend strongly on the actual experimental setting, and we have not
applied a parameter estimation for a special yeast culture and fermenter. We rather want
to show the general ability of the optimal control framework presented in this work to
optimise the fermentation process. Therefore, we use parameters that result in qualita-
tively good simulation results (private communication with Dr. Christian von Wallbrunn,
Departments of Microbiology & Biochemistry, Geisenheim University). With this setting
and a constant control temperature u = 16 ◦C, we obtain the fermentation results plotted
in blue color in Figure 3.1. We see that the yeast population cannot consume all of the
sugar before dying out. This phenomenon is called stagnation, and it results in a great
loss of quality of the fermented wine. The reason is that additional yeast cells would have
be added at a very late stage of the fermentation process in order to obtain a dry wine
with almost zero sugar concentration. These additional yeast cultures change the taste of
the wine, and the product will be not as good as desired. Therefore stagnation must be
avoided. Our control objective is to maximise the sugar consumption in the fermentation
process. Moreover, the working temperature T should not deviate too much from an ideal
fermentation temperature of 16 ◦C, as thermal stress applied to the yeast culture results
in compounds that influence the taste in a negative way. Therefore, we set the objective
coefficients in (3.18) to zero except for

αT = 10−5, βS = 10, λ = 10−7.
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Figure 3.1: Space-averaged values of X,N,O, S,E and T over 30 days of fermentation.
The two different control functions u correspond to the dashed lines in the lower right
plot. Results for constant control in blue and for optimised control in red.

Furthermore, we define the following desired trajectory for temperature and final state
for sugar

Td(t) = 16 ◦C, Stf = 0 g

l
.

With this setting, we apply the optimisation scheme starting from an initial guess u =
16 ◦C. The results of the optimisation process are shown in red color in Figure 3.1. We
see that, in the optimally controlled fermentation process, the amount of sugar left after
30 days is significantly lower. Moreover, one can observe that the mean temperature is
near 16 ◦C, except for the late stage of the fermentation process, where the lack of yeast
must be compensated by high temperatures to ensure a sufficiently large reaction rate.

The temperature distribution in the fermenter is shown in Figure 3.2. In the first
stage of the fermentation the yeast produces much heat, and the tank must be cooled.
The temperature within the vessel can differ up to one degree Celsius. In contrast, there
is almost no activity during the last days, and there is a fairly homogeneous temperature.

Furthermore, we want to give some evidence that the proposed optimality system
is correct. We discretise the partial differential equation along with the corresponding
objective functional, which results in a discretised optimisation problem with control u ∈

Optimal Control and Function Identification in Biological Processes
61



Optimal Control Methods for Reaction-Diffusion Equations

T [/C] at t = 7:5 d

0 0.1 0.2 0.3 0.4 0.5
x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
[m

]

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16

16.1

16.2

16.3

16.4

16.5

T [/C] at t = 15 d

0 0.1 0.2 0.3 0.4 0.5
x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
[m

]
18.7

18.8

18.9

19

19.1

19.2

19.3

19.4

19.5

19.6

19.7

T [/C] at t = 22:5 d

0 0.1 0.2 0.3 0.4 0.5
x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
[m

]

18.07

18.08

18.09

18.1

18.11

Figure 3.2: Distribution of temperature at three different time points.

Nx Ny M relative error (eoc)
5 9 201 0.3896
9 17 201 0.1853 (1.07)
17 33 201 0.0875 (1.08)
33 65 201 0.0402 (1.12)
65 129 201 0.0175 (1.20)

Table 3.2: Experimental order of convergence (eoc) of the relative error of the optimise–
before–discretise gradient (3.30) given by ‖∇J̃(u)−∇J̃disc(u)‖L2

δt
/‖∇J̃(u)‖L2

δt
computed

with Nx, Ny and M grid points in x-, y- and t-direction, respectively.

RM+1. The gradient ∇J̃(u) of the reduced functional can be approximated component-
wise by a finite difference approach as follows

(∇J̃disc(u))j := J(u+ α ej)− J(u− α ej)
2α . (3.33)

The j-th unit vector is denoted by ej. Hence, with substantial computational effort
(solving the forward equation 2 (M + 1) times) we can approximate the discrete gradi-
ent ∇J̃disc(u). Afterwards, we solve the forward and backward equation and obtain an
approximation of the gradient ∇J̃(u) by discretising the continuous optimality system.
When refining the mesh, we see in Table 3.2 the difference between these two gradients
at the control u = 16 ◦C decreases to zero and we have a numerical verification that the
derived optimality system for our proposed optimal control problem is correct.

Moreover, we compute the optimal solution on different grids and the difference be-
tween the optimal control, its corresponding state, and adjoint state of two subsequent
grids. The results in Table 3.3 indicate the convergence of the solution of the optimality
system.

Conclusion

The formulation of an optimal control of the wine fermentation process was investigated.
The system of reaction-diffusion equations modelling the wine fermentation process was
theoretically investigated proving existence and uniqueness of solutions. Further, an opti-
mal control problem with thermal boundary control was formulated. Existence of optimal
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Nx, Ny,M 21,41,401 41,81,401 (eoc)
X 8.76 · 10−6 2.44 · 10−6 (1.84)
N 4.29 · 10−5 1.68 · 10−5 (1.35)
O 4.29 · 10−5 1.68 · 10−5 (1.35)
S 5.51 · 10−6 1.39 · 10−6 (1.97)
E 1.98 · 10−6 4.99 · 10−7 (1.99)
T 3.31 · 10−6 1.09 · 10−6 (1.61)
p1 7.65 · 10−5 2.35 · 10−5 (1.70)
p2 9.87 · 10−5 2.87 · 10−5 (1.78)
p3 9.87 · 10−5 2.87 · 10−5 (1.78)
p4 1.15 · 10−5 4.95 · 10−6 (1.21)
p5 2.32 · 10−5 9.72 · 10−6 (1.25)
p6 5.40 · 10−3 1.88 · 10−3 (1.60)
u 7.14 · 10−6 2.46 · 10−6 (1.54)

Table 3.3: Convergence rates of the optimal solution, its state and adjoint state.
The error measures the difference of the solutions of two subsequent grids by ‖Ch −
C2h‖L2

h,δt
/‖C2h‖L2

h,δt
, where the finer grid is specified in the top row of the table. The

mesh width parameter is denoted by h.

solutions and its characterisation as solutions to the corresponding optimality system was
discussed. Results of numerical experiments were presented to demonstrate the effective-
ness of the proposed control framework.
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Chapter 4

A Function Identification Method

Mathematical models of dynamical systems of physical, biological, and chemical nature
usually contain parameters, which describe the dependencies of the state variables and
their time derivatives. These model parameters allow to use one model for many situations
by choosing a different set of parameters, which is calibrated to the desired application. We
can think of, for example, yeast strains that convert sugar into ethanol very fast while other
strains need more time. Hence, the parameters a5, a6, and a7 of the wine fermentation
model (2.8) would be larger in the case of fast fermenting yeast strains. By developing
mathematical models, the relationship between state variables, their time derivatives,
and the parameters is derived by arguments or at least heuristics. But sometimes our
understanding of the underlying process is so poor that a parametrised function cannot be
given for such a relationship. Moreover, the underlying phenomena could be highly non-
linear and have many regimes with different behaviours. In these cases, it is beneficial
to work with a general function with no constraints about its shape. For a specific
application, one has to find an element out of a function space, which fits best in the
current context. Allowing arbitrary variations of a function and not restricting ourselves
to a parametrised shape is the central idea of this chapter.

For clarifying our concept we consider a simple biological model of an enzymatic
reaction [Mur93, Chapter 6.1]. Let y(t) denote the concentration of a substrate at time t,
which is converted to a product with the aid of an enzyme. In [MM13, JG11], the authors
argue that a model that describes the evolution of the function y is given by the following
differential equation

dy
dt = p1

y

p2 + y
.

In this case, we know the shape of the right-hand side function F (y, p1, p2) := p1
y

p2+y and,
by varying the parameter p1 and p2, we can model many different enzymatic reactions.

An example for a model with unknown dynamics function is the process of decaying
yeast cell concentrations in the wine fermentation due to high ethanol concentrations. In
Chapter 2, the following differential equation is given

dX
dt = −Ψ(E)X,

where the shape of the function Ψ is unknown; see (2.6).
Therefore, we investigate the problem of identifying a function that participates in a

dynamical system. We distinguish two cases. First, we discuss the identification problem
with a deterministic model, which is given by the following one dimensional differential
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equation
dy
dt = f(y).

The proposed function identification method is considered for this deterministic case in
Section 4.1.

Further, we consider stochastic models, as uncertainties in biology are very high. The
mathematical framework for stochastic differential equations is discussed later, but to get
the idea behind these concepts one can think of the following differential equation

dy
dt = f(y) + ξ,

where ξ represents a random disturbance for the evolution of the state variable y. The
function identification method for this kind of stochastic models is addressed in Sec-
tion 4.2.

4.1 The Deterministic Case
This section deals with a method for the identification of an unknown function that is
involved in an ordinary differential equation. For this purpose we consider the following
minimisation problem

min
f∈Hm(R)

J(y, f) = 1
2 ‖y − yd‖

2
L2(0,tf ) + λ

2 ‖f − fp‖
2
Hm(R) , (4.1a)

subject to ẏ(t) = f(y(t)) for t ∈ [0, tf ], (4.1b)
y(0) = y0, (4.1c)

where we denote the time derivative of y by ẏ(t). Here, the functional J depends on a
function f in the function space Hm(R) and on the state y of a differential equation. The
minimisation of J is done with an initial value problem as a constraint. The ordinary
differential equation (4.1b) together with the corresponding initial condition (4.1c), where
y0 ∈ R is given, describe the connection between the function f and the state y. We choose
the Sobolev space Hm(R) as the function space where the unknown function f is sought.
With this setting, we can exploit the Hilbert space structure of Hm(R) and adjust the
differentiability properties of f by increasing the degree m.

The differential equation (4.1b) is an example of a dynamical system modelling a
physical, chemical, or biological process, where a part of the dynamics is unknown, namely
the function f . We restrict ourselves to this model problem in order to ease the notation.
Nevertheless, the given proofs in this work are also valid for a more general class of
problems and we apply the proposed method to the wine fermentation model (2.8) in
Subsection 4.1.6.

The motivation for investigating the minimisation problem (4.1) is as follows. We
have a physical system in mind whose state y(t) at time t ∈ [0, tf ] evolves according to
the differential equation (4.1b), where tf > 0 is the final time. We assume that we have
poor a priori knowledge fp of the function f , which describes the relationship between
the state of the system and its change in time ẏ. Given some measurement yd ∈ L2(0, tf )
of the evolving state, we want to identify the function f based on these measurements.
This can be done by minimising the objective functional J , as its first term measures the
deviation of a simulation result y subject to a certain function f from the measurements
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yd. J also includes the Hm(R)–norm of f −fp, as this often used Tikhonov–regularisation
gives us the possibility to prove the existence of a unique minimiser of J provided the
regularisation parameter λ is sufficiently large. Moreover, by minimising ‖f − fp‖2

Hm(R),
we obtain an optimal f ∈ Hm(R) that is close to fp.

This section is organised as follows. First, we comment on the similarities and dif-
ferences of the parameter estimation problem compared to the function identification.
Further, we analyse the mapping that assigns to each trial function f ∈ Hm(R) the solu-
tion y of the initial value problem (4.1b–4.1c). Its differentiability properties are proven
and we present the adjoint operators of its derivatives. Moreover, the minimisation prob-
lem is analysed. We prove its unique solvability and define the mapping that assigns a
measurement set to the optimal function, which reproduces these data as good as possible.
The sensitivity of the identification of the unknown function with respect to deviations
for the given data can be quantified by means of the derivative of the “data–to–function”
mapping. Finally, the proposed identification method is applied to the logistic growth
equation as well as to the toxicity function of the wine fermentation model (2.8). Numer-
ical results for these identification problems are presented.

4.1.1 Similarities and Differences to Parameter Identification
The function identification method is connected to the problem of parameter estimation.
The analogy between these methods is as follows. For the function identification problem
(4.1) we use a set of functions, namely Hm(R), as a trial space to model the dependence
between the state variable y of a differential equation and its time derivative.

For a parameter estimation problem, the shape of the right-hand side of (4.1b) is
known by means of a given parametrised function F (y, a), where a ∈ Rn is a set of
parameters. The corresponding minimisation problem is as follows

min
a∈Rn

J(y, a) = 1
2 ‖y − yd‖

2
L2(0,tf ) + λ

2 ‖a− ap‖
2
Rn ,

subject to ẏ(t) = F (y(t), a) for t ∈ [0, tf ],
y(0) = y0,

where ap is a known good guess of the optimal parameters. See [Bar74, Boc87, BDB86,
LOP05] for more information on the parameter estimation problem.

Note that a similar minimisation problem is obtained, if we exchange the trial space
Hm(R) in (4.1a) by the set {y 7→ F (y, a) |a ∈ Rn}. But there is one very important
difference. The regularisation term in the function identification framework (4.1) measures
the distance of the function f to the guessed optimal function fp in the Hm(R) norm.
Hence, it takes all derivative up to order m into account and enhances the smoothness of
the solution of the minimisation problem.

In contrast, the distance of the parameters to the guess ap is measured in the Euclidean
norm. This means that deviations are counted for each parameter to the same extend,
regardless which impact on the shape of the right-hand side function F (y, a) they have.
This can be very problematic as it is likely the case that some parameters are more
important than others. Moreover, they can differ by several magnitudes, which leads to a
weighting of the corresponding parameters, which has nothing to do with their impact on
the shape of the right-hand side function. Although this can be overcome by the definition
of a different norm for the parameter space, which is then used for the regularisation term,
the choice of a good norm is not obvious and it must be adjusted for different applications.
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In the case of the function identification problem (4.1), the choice of the norm is more
natural, as it is inherited from the infinite dimensional space Hm(R). Moreover, we have
to discretise the space Hm(R) in order to approximate the optimal function numerically
as it is unlikely that this minimisation problem can be solved analytically. Hence, we
exchange the infinite dimensional trial space Hm(R) by suitable chosen finite dimensional
function space Vh. This casts the infinite dimensional minimisation problem to a finite
dimensional one. But now we obtain a norm that is reasonably defined, as it is still the
Hm(R) norm restricted to the approximation space Vh. To summarise, the disretised
function identification problem can be seen as an parameter estimation problem with a
suitably defined norm of the parameter space.

Finally, we mention that the minimisation problem (4.1) is set in an infinite dimen-
sional vector space. Hence, its analysis is more involved compared to the finite dimensional
parameter estimation problem. In the following we present theoretical results concerning
the function identification problem.

4.1.2 The Solution Operator of the Differential Equation
Before we turn our attention to the analysis of the solution operator of the ordinary
differential equation (4.1b), we provide the following Lemma due to Grönwall; see [Eva10,
Appendix B.2.j].

Lemma 1 Let y be a non-negative, absolutely continuous function on [0, tf ], which sat-
isfies for a.e. t the differential inequality

ẏ(t) ≤ α(t)y(t) + β(t),

where α and β are non-negative, integrable functions on [0, tf ]. Then the inequality

y(t) ≤ exp
 t∫

0

α(s) ds
y(0) +

t∫
0

β(s) ds


holds for all 0 ≤ t ≤ tf .

Proof. We compute

d
ds

y(s) exp
− s∫

0

α(x)dx
 = exp

− s∫
0

α(x)dx
 (y′(s)− α(s)y(s))

= exp
− s∫

0

α(x)dx
 β(s)

for a.e. s ∈ [0, tf ]. Hence, we have for each 0 ≤ t ≤ tf

y(t) exp
− t∫

0

α(x)dx
 = y(0) +

t∫
0

d
ds

y(s) exp
− s∫

0

α(x)dx
 ds

≤ y(0) +
t∫

0

exp
− s∫

0

α(x)dx
 β(s) ds

≤ y(0) +
t∫

0

β(s) ds,
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as α is assumed to be non-negative. This completes the proof. �
We investigate the solution operator of the initial value problem (4.1b–4.1c), as we

want to convert the constrained minimisation problem as stated in (4.1) into an uncon-
strained one. Therefore, we prove the next theorem, where differentiability properties of
our model are shown. In contrast to the derivative with respect to time ẏ, we use the
notation f ′(y) = df

dy (y) for elements of Hm(R).

Theorem 20 Assume that m ≥ 2. Then the solution operator S : Hm(R) → L2(0, tf ),
which maps a function f ∈ Hm(R) to the solution y of the initial value problem (4.1b–
4.1c), is well-defined and of class Cm−2.

In particular, the first derivative S ′(f) : Hm(R)→ L2(0, tf ) is given by the solution of

v̇ = f ′(y)v + h(y) for t ∈ [0, tf ], (4.2a)
v(0) = 0, (4.2b)

where y = S(f) and v = S ′(f)h with h ∈ Hm(R).
Moreover, the second derivative S ′′(f) : Hm(R) ×Hm(R) → L2(0, tf ) is given by the

solution of

ẇ = f ′(y)w + f ′′(y)vhvk + h′(y)vk + k′(y)vh for t ∈ [0, tf ], (4.3a)
w(0) = 0, (4.3b)

where y = S(f), vh = S ′(f)h, vk = S ′(f)k, and w = S ′′(f)(h, k) with h, k ∈ Hm(R).

Proof. Notice that due to Theorem 2, we have the embeddings Hm(R) ↪→ Cm−1, 1
2 (R)

and H1(R) ↪→ L∞(R); see [AF03, Theorem 4.12] for the additional results on embeddings
into spaces of continuous functions. Therefore, every function f ∈ Hm(R) has Lipschitz-
continuous derivatives up to order m−2 for which the mean value theorem holds. Hence,
by the Picard-Lindelöf theorem [Hal09, Theorem 3.1], there exists a unique solution y to
the initial value problem (4.1b–4.1c). A fortiori y ∈ L2(0, tf ) holds. We conclude that the
operator S is well-defined. Next, we show the continuity of S.

Denoting y1 = S(f1) and y2 = S(f2) the following initial value problem

ż = f1(y1)− f2(y2),
z(0) = 0,

is solved by z = y1 − y2. Moreover, we estimate

˙|z| ≤ |f1(y1)− f1(y2) + f1(y2)− f2(y2)|
≤ |f ′1(ξ)| |y1 − y2|+ |(f1 − f2)(y2)|
≤ ‖f ′1‖L∞(R) |z|+ ‖f1 − f2‖L∞(R),

where we use the mean value theorem for f1. By Lemma 1, we conclude that

|z| ≤ t‖f1 − f2‖L∞(R) exp
(
t‖f ′1‖L∞(R)

)
holds. Hence, we have the following estimate

‖z‖L2(0,tf ) ≤
√
tf‖z‖L∞(R) ≤ (tf )

3
2 ‖f1 − f2‖L∞(R) exp

(
tf‖f ′1‖L∞(R)

)
.
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Using the embeddings mentioned above and a generic constant C, that does not depend
on f1 and f2, we arrive at the estimate

‖S(f1)− S(f2)‖L2(0,tf ) ≤ C exp
(
C ‖f1‖Hm(R)

)
‖f1 − f2‖Hm(R), (4.4)

and hence we have proven the continuity of S.
In order to show the differentiability of S, we first show that the linear operator S ′(f)

as defined in (4.2) is bounded. As

˙|v| ≤ |f ′(y)||v|+ |h(y)| ≤ ‖f ′‖L∞(R)|v|+ ‖h‖L∞(R)

holds, we conclude by Lemma 1

|v| ≤ t‖h‖L∞(R) exp
(
t‖f ′‖L∞(R)

)
,

which results in
‖S ′(f)h‖L2(0,tf ) ≤ C exp

(
C ‖f‖Hm(R)

)
‖h‖Hm(R). (4.5)

Hence, S ′(f) is bounded.
Next, we show that S ′(f) is the Fréchet derivative of S. Therefore, let f, h ∈ Hm(R)

be arbitrary and define y = S(f + h), y = S(f), v = S ′(f)h, and z = y − y − v. Hence,

ż = (f + h)(y)− f(y)− f ′(y)v − h(y),
z(0) = 0.

We compute

˙|z| ≤ |f(y) + h(y)− f(y)− f ′(y)v − h(y)|
≤ |f ′(y)(y − y − v)|+ |f ′(ξ)(y − y)− f ′(y)(y − y)|+ |h′(ζ)||y − y|
≤ |f ′(y)||z|+ |f ′(ξ)− f ′(y)||y − y|+ |h′(ζ)||y − y|
≤ |f ′(y)||z|+ |f ′′(θ)||y − y|2 + |h′(ζ)||y − y|
≤ ‖f ′‖L∞(R)|z|+ ‖f ′′‖L∞(R)‖y − y‖2

L∞(R) + ‖h′‖L∞(R)‖y − y‖L∞(R)

≤ ‖f ′‖L∞(R)|z|+ C exp
(
C ‖f‖Hm(R)

)
‖h‖2

Hm(R),

where we use (4.4) for the last estimate and the mean value theorem for f and f ′. Due
to Lemma 1, we conclude

|z| ≤ C exp
(
C ‖f‖Hm(R)

)
‖h‖2

Hm(R) exp
(
C ‖f ′‖L∞(R)

)
,

and therefore
lim

‖h‖Hm(R)→0

‖S(f + h)− S(f)− S ′(f)h‖L2(0,tf )

‖h‖Hm(R)
= 0,

which completes the proof for the Fréchet differentiability of S.
In order to estimate the norm of S ′(f1)−S ′(f2) to show the continuity of S ′ we define

y1 = S(f1), y2 = S(f2), and z = v1 − v2 = S ′(f1)h− S ′(f2)h. The function z solves

ż = f ′1(y1)v1 + h(y1)− f ′2(y2)v2 − h(y2),
z(0) = 0.
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Using the mean value theorem, embedding results, (4.4), and (4.5), we estimate

˙|z| ≤ |f ′1(y1)v1 + h(y1)− f ′2(y2)v2 − h(y2)|
≤ |f ′1(y1)v1 − f ′1(y1)v2|+ |f ′1(y1)v2 − f ′2(y2)v2|+ |h′(ζ)(y1 − y2)|
≤ |f ′1(y1)||v1 − v2|+ |f ′1(y1)− f ′2(y2)||v2|+ |h′(ζ)(y1 − y2)|
≤ |f ′1(y1)||z|+ (|f ′1(y1)− f ′1(y2)|+ |f ′1(y2)− f ′2(y2)|) |v2|+ |h′(ζ)(y1 − y2)|
≤ |f ′1(y1)||z|+ (|f ′′1 (ξ)||y1 − y2|+ |(f ′1 − f ′2)(y2)|) |v2|+ |h′(ζ)(y1 − y2)|
≤ ‖f ′1‖L∞(R)|z|+ C‖h‖Hm(R)‖f1 − f2‖Hm(R).

Due to Lemma 1, we conclude

|z| ≤ tC‖h‖Hm(R)‖f1 − f2‖Hm(R) exp
(
t‖f ′1‖L∞(R)

)
,

and therefore

‖S ′(f1)− S ′(f2)‖L(Hm(R),L2(0,tf )) ≤ C exp
(
C ‖f1‖Hm(R)

)
‖f1 − f2‖Hm(R), (4.6)

which proves the continuity of the first derivative of S.
Finally, in order to show that S is k-times continuously differentiable, we need to

assume that, on one hand, the mean value theorem holds for the k-th derivatives of the
elements of the underlying function space and that, on the other hand, we can bound the
L∞(R)-norm of their (k + 1)-th derivative as follows

‖f (k+1)‖L∞(R) ≤ C‖f‖Hm(R).

This means that for f ∈ Hm(R) we can at least prove that S is of class Cm−2.
In order to compute the governing differential equations for derivatives of S one must

take derivatives of (4.1b) with respect to f taking into account that y is also dependent
on f . Let us denote by Dh the directional derivative operator with respect to f in the
direction h ∈ Hm(R). Define v := Dh(y) = Dh(S(f)) = S ′(f)h. For the time derivative
of v, we compute by exchanging the order of differentiation the following

v̇ = d
dtDh(y) = Dh(ẏ) = Dh(f(y)) = f ′(y)Dh(y) + h(y) = f ′(y)v + h(y).

For the second summand, we use fact that for a function w that is independent of f
the operator f 7→ f(w) is linear and we have Dh(f(w)) = h(w). Hence, we have shown
(4.2a). Moreover, denoting w = Dk(Dh(y)), vh = Dh(y), vk = Dk(y) for h, k ∈ Hm(R),
we compute

ẇ = d
dtDk(Dh(y)) = Dk

(
d
dtDh(y)

)
= Dk (v̇h) = Dk (f ′(y)vh + h(y))

= Dk(f ′(y))vh + f ′(y)Dk(vh) +Dk(h(y))
= (k′(y) + f ′′(y)Dk(y))) vh + f ′(y)w + h′(y)Dk(y)
= f ′(y)w + f ′′(y)vkvh + h′(y)vk + k′(y)vh,

which shows (4.3a). �
The first derivative of S is a linear operator between Hilbert spaces. Hence, there

exists an adjoint operator. As we use this adjoint operator in the next section, we present
the following theorem, which provides a computational formula for this operator and its
derivative.
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Theorem 21 Let m ≥ 4. For a fixed f ∈ Hm(R), the adjoint operator
S ′(f)∗ : L2(0, tf )→ Hm(R)

maps an element x ∈ L2(0, tf ) on the Riesz representative S ′(f)∗(x) of the Hm(R)–
functional

k 7→
tf∫

0

p k(y)dt for k ∈ Hm(R), (4.7)

where y = S(f) and p solves the following adjoint equation
−ṗ = f ′(y)p+ x for t ∈ [0, tf ], (4.8a)

p(tf ) = 0. (4.8b)
Moreover, given a fixed x ∈ L2(0, tf ) the first derivative of the adjoint operator

S ′(·)∗(x) : Hm(R)→ Hm(R)
with respect to f in the direction h is given by the Riesz representative [S ′(f)∗(x)]′h of the
Hm(R)–functional

k 7→
tf∫

0

z k(y) + p k′(y) v dt for k ∈ Hm(R), (4.9)

where y = S(f), v = S ′(f)h, p solves (4.8), and z solves the following terminal value
problem

−ż = f ′(y)z + (f ′′(y)v + h′(y)) p for t ∈ [0, tf ], (4.10a)
z(tf ) = 0. (4.10b)

Proof. First, note that the terminal value problem (4.8) is a linear problem and its
solution is given by

p(t) = −
tf∫
t

exp
 s∫
t

f ′(y(τ))dτ
x(s) ds.

As x ∈ L2(0, tf ) and f ′ ∈ L∞(R) holds, we have p ∈ L∞(0, tf ) ↪→ L2(0, tf ) and conclude
that the mapping x 7→ S ′(f)∗(x) is well-defined. Moreover, the linear mapping (4.7) is
bounded, as ∣∣∣∣∣∣∣

tf∫
0

p k(y) dt

∣∣∣∣∣∣∣ ≤ tf‖p‖L∞(0,tf )‖k‖L∞(R) ≤ C‖p‖L∞(0,tf )‖k‖Hm(R) (4.11)

holds.
Further, for arbitrary k ∈ Hm(R) and x ∈ L2(0, tf )

(S ′(f)∗(x), k)Hm(R) =
tf∫

0

p k(y) dt =
tf∫

0

p (v̇ − f ′(y)v) dt

=
tf∫

0

(−ṗ− f ′(y)p) v dt+ p(tf )v(tf )− p(0)v(0)

=
tf∫

0

x v dt = (x, S ′(f)k)L2(0,tf ) ,
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where we used integration by parts, v(0) = p(tf ) = 0, and k(y) = v̇−f ′(y)v for v = S ′(f)k.
This shows that (4.7) together with (4.8) is indeed the adjoint mapping.

In order to prove the differentiability of the adjoint mapping, we take a closer look on
the second derivative of S. Fixing the first argument of this bilinear mapping it becomes
the linear, bounded operator k 7→ S ′′(f)(h, k), where h ∈ Hm(R) is given. Hence, there
exists an adjoint operator

[S ′′(f)(h, ·)]∗ : L2(0, tf )→ Hm(R).

Now, consider the following computation

(x, S ′′(h, k))L2(0,tf ) =
tf∫

0

xw dt =
tf∫

0

(−ṗ− f ′(y)p)w dt

=
tf∫

0

p (ẇ − f ′(y)w) dt =
tf∫

0

p (f ′′(y)vhvk + h′(y)vk + k′(y)vh) dt

=
tf∫

0

(−ż − f ′(y)z) vk + p k′(y) vh dt =
tf∫

0

z (v̇k − f ′(y) vk) + p k′(y) vh dt

=
tf∫

0

z k(y) + p k′(y) vh dt =
(
[S ′(f)∗(x)]′ h, k

)
Hm(R)

.

It follows that
[S ′′(f)(h, ·)]∗ (x) = [S ′(f)∗(x)]′ h. (4.12)

Finally, for a fixed x ∈ L2(0, tf ), the estimate∣∣∣∣(S ′(f + h)∗(x)− S ′(f)∗(x)− [S ′(f)∗(x)]′ h, k
)
Hm(R)

∣∣∣∣
=
∣∣∣(x, S ′(f + h)k − S ′(f)k − S ′′(f)(h, k))L2(0,tf )

∣∣∣
≤ ‖x‖L2(0,tf ) ‖S

′(f + h)− S ′(h)− S ′′(f)(h, ·)‖L(Hm(R),L2(0,tf )) ‖k‖Hm(R)

≤ C ‖k‖Hm(R) ‖h‖
2
Hm(R)

proves that the mapping corresponding to (4.9) is the derivative of f 7→ S ′(f)∗(x). �

4.1.3 Existence and Uniqueness of Minimisers
The existence of a solution to the minimisation problem (4.1) is addressed in the follow-
ing. In the corresponding proof, we show that the states of a minimising sequence are
converging not only weakly but also strongly. This is proven by utilising the following
theorem. It states the necessary and sufficient conditions for a bounded set in an Lp space
to be pre-compact and can be found in [AF03, Theorem 2.32].

Theorem 22 Let Ω ⊂ Rn be an open set and further let 1 ≤ p < ∞. A bounded subset
C ∈ Lp(Ω) is pre-compact in Lp(Ω) if and only if for every number ε > 0 there exists a
δ > 0 and a compact subset G of Ω such that for every y ∈ C and h ∈ Rn with ‖h‖2 ≤ δ
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the following inequalities hold:∫
Ω

|y(x+ h)− y(x)|pdx ≤ εp,

∫
Ω\G

|y(x)|pdx ≤ εp,

where y(x+ h) is defined to be zero for x+ h /∈ Ω.

The following theorem states the existence of a solution to problem (4.1). The proof of
the uniqueness of a minimiser cannot be given for an arbitrary regularisation parameter
λ, but only for a λ that is large enough; see Theorem 25.

Theorem 23 Let yd ∈ L2(0, tf ), fp ∈ Hm(R), m ≥ 2 and λ > 0 be given. Then there
exists a solution to the constrained minimisation problem (4.1).

Proof. The objective functional J is bounded from below by zero. As the norms of y and
f are included in J , a pair of minimising sequences (yn) and (fn) exists and is bounded in
L2(0, tf ) and Hm(R). Hence, there exists a bound M > 0 such that ‖yn‖L2(0,tf ) ≤M and
‖fn‖Hm(R) ≤ M holds for all n ∈ N. Moreover, we have yn = S(fn). Bounded sequences
in a Hilbert space contain weakly convergent subsequences due to Theorem 11. Hence,
we have yn ⇀ y in L2(0, tf ) and fn ⇀ f in Hm(R), where use the same notation for sub-
sequences. Recall that J is sequentially weakly lower semicontinuous due to Theorem 13.
Hence, we have J(y, f) ≤ lim inf

n→∞
J(yn, fn) and it remains to show that y and f satisfies

the constraint of the minimisation problem (4.1), which can be written as y = S(f).
First, we show that the sequence (yn) converges even strongly in L2(0, tf ). The state

yn is a solution for the initial value problem (4.1b–4.1c) with right-hand side function fn
and we conclude that

yn(t) = y0 +
t∫

0

fn(yn(s))ds

holds. Hence, we conclude

|yn(t)| ≤ |y0|+ t‖fn‖L∞(R) ≤ |y0|+ tfM,

and, therefore, ‖yn‖L∞(0,tf ) ≤M ′ holds for M ′ = |y0|+ tfM .
We use Theorem 22 in order to prove that the set {yn|n ∈ N} ⊂ L2(0, tf ) is pre-

compact in L2(0, tf ). Therefore, let ε > 0 be arbitrary. First, we choose δ := ε√
tfM

and
compute

tf∫
0

|yn(t+ h)− yn(t)|2 dt =
tf∫

0

∣∣∣∣∣∣
t+h∫
t

fn(yn(s)) ds

∣∣∣∣∣∣
2

dt ≤
tf∫

0

∣∣∣h ‖fn‖L∞(R)

∣∣∣2 dt
≤ tf h

2M2 ≤ ε2,

for all |h| ≤ δ. Further, we choose G := [ ε2

2M ′2 , tf −
ε2

2M ′2 ], which is a compact interval in
[0, tf ], and compute∫

(0,tf )\G

|yn(t)|2 dt ≤
∫

(0,tf )\G

‖yn‖2
L∞(0,tf ) dt ≤

ε2

M ′2‖yn‖
2
L∞(0,tf ) ≤ ε2.
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Both proven inequalities hold for all n ∈ N. Hence, we conclude by Theorem 22 that
the set {yn|n ∈ N} is pre-compact in L2(0, tf ) and there exists a strongly convergent
subsequence, which we again denote by (yn). Due to Theorem 9 the strong limit of the
sequence (yn) is its weak limit y.

Further, we show that the sequence of the states yn converges point-wise to y∗ defined
by

y∗(t) = y0 +
t∫

0

f(y(s)) ds.

We have

|yn(t)− y∗(t)| =

∣∣∣∣∣∣
t∫

0

fn(yn(s))− f(y(s)) ds

∣∣∣∣∣∣
≤

t∫
0

|fn(yn(s))− f(yn(s))|ds+
t∫

0

|f(yn(s))− f(y(s))|ds

≤ t‖fn − f‖L∞(R) +
t∫

0

|f ′(ξk)||yn(s)− y(s)|ds

≤ tf‖fn − f‖L∞(R) + ‖f ′‖L∞(R)

 t∫
0

1ds


1
2
 t∫

0

|yn(s)− y(s)|2ds


1
2

≤ tf‖fn − f‖L∞(R) + ‖f ′‖L∞(R)
√
tf‖yn − y‖L2(0,tf ),

where we use the mean value theorem and the Cauchy-Schwarz inequality. The derivative
of f ∈ Hm(R) is essentially bounded for m ≥ 2; see Theorem 2. Moreover, (fn) converges
strongly to f in L∞(R), as the embedding Hm(R) ↪→ Hm−1(R) is compact and the
embedding Hm−1(R) ↪→ L∞(R) is continuous; see Theorem 3 and Theorem 2. Recall that
{yn} converges strongly to y in L2(0, tf ). Hence, we conclude yn(t)→ y∗(t) as n tends to
infinity for all t ∈ [0, tf ]. As y is the limit of {yn} in L2(0, tf ), we have

y(t) = y∗(t) = y0 +
t∫

0

f(y(s)) ds,

which proves y = S(f) and completes the proof. �
In order to prove also uniqueness of solutions to the minimisation problem (4.1), we

omit the constraint by using the solution operator S of the previous section and define
the following reduced objective functional

J̃(f) = 1
2 ‖S(f)− yd‖2

L2(0,tf ) + λ

2 ‖f − fp‖
2
Hm(R) . (4.13)

The next theorem states the differentiability properties of J̃(f) and gives the explicit form
of the first and second derivative.
Theorem 24 Assume that m ≥ 4. Then, the reduced functional J̃ is of class Cm−2.
In particular, its gradient J̃ ′(f) ∈ Hm(R) and the second derivative J̃ ′′(f) : Hm(R) →
Hm(R) are given by

J̃ ′(f) = S ′(f)∗(S(f)− yd) + λ (f − fp) , (4.14a)

J̃ ′′(f) = [S ′(f)∗(x)]′
∣∣∣∣∣
x=S(f)−yd

+ S ′(f)∗S ′(f) + λI, (4.14b)
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where I is the identity operator in Hm(R).

Proof. In every Hilbert space X the function x 7→ ‖x‖2
X is of class C∞, where the first

derivative is given by x̃ 7→ 2(x, x̃)X . Hence, as S is of class Cm−2 the same is true for
J̃ . The explicit form (4.14) is easily computed by utilising the linearity of the adjoint
operator of S ′, Theorem 20, and Theorem 21.

Let us mention that the first Fréchet derivative of the operator J̃ : Hm(R)→ R is an
element of the dual space Hm(R)∗. Hence, the second derivative of J̃ at the point f is
a linear operator between the spaces Hm(R) and Hm(R)∗. By identifying Hm(R)∗ with
Hm(R) due to the Riesz respresentation theorem we consider J̃ ′′(f) as a linear operator
from Hm(R) to Hm(R). �

Note that the adjoint state p defined by (4.8), which is often defined in optimal control
problems, is not equal to S ′(f)∗(S(f)− yd) as it is an element of the space L2(0, tf ) and
not Hm(R). Hence, it is not possible to just sum the adjoint state p and the function
f−fp in order to get the derivative of J̃ as it is done for the optimal control problem of the
wine fermentation process in Theorem 19. We rather have to find the Riesz representative
of the functional (4.7) corresponding to p in order to compute J̃ ′.

In preparation for the next section, we prove that the reduced functional J̃ has a
unique global minimum.

Theorem 25 Provided that λ > 0 is big enough, there exists a unique global minimiser
f of the reduced functional J̃ given by (4.13) and the following estimate holds

∥∥∥f − fp∥∥∥
Hm(R)

≤ 1√
λ
‖yp − yd‖L2(0,tf ) , (4.15)

where yp = S(fp).

Proof. We know that min
f∈Hm(R)

J̃(f) ≤ J̃(fp) = 1
2 ‖yp − yd‖

2
L2(0,tf ). Hence, we conclude

that the global minimum - if it exists - must be inside the ball Br(λ) with center fp with
radius r(λ) = 1√

λ
‖yp − yd‖L2(0,tf ), as for all f /∈ Br(λ) the following holds

J̃(f) ≥ λ

2 ‖f − fp‖
2
Hm(R) >

λ

2 r(λ)2 = J̃(fp).

Therefore, we conclude (4.15) for all global minima of J̃ .
In the following, we show that J̃ is strictly convex in Br(λ) provided that λ is big

enough. Convexity together with continuity of J̃ yields its sequential weak lower semi-
continuity; see [Cia13, Theorem 9.2-3]. Choose a minimising sequence (fn) of J̃ . It is
bounded and has due to Theorem 11 a weakly converging sequence f ∈ Hm(R). Hence,
we have

J̃(f) ≤ lim inf
n→∞

J̃(fn) = min
f∈Hm(R)

J̃(f),

and the existence of a minimiser follows. Strict convexity guarantees the uniqueness of
the minimiser, as for two global minimisers f 1 and f 2 the following

J̃
(1

2f 1 + 1
2f 2

)
<

1
2 J̃(f 1) + 1

2 J̃(f 2) = min
f∈Hm(R)

J̃(f)

holds. This contradicts the assumption that f1 and f2 are global minima.
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In order to prove strict convexity of J̃ in Br(λ), we show that J̃ ′ is strictly monotone
in Br(λ); see [Kos10, Theorem 3.12.1]. For arbitrary f1, f2 ∈ Br(λ), we have(

J̃ ′(f1)− J̃ ′(f2), f1 − f2
)
Hm(R)

= (S ′(f1)∗(S(f1)− yd), f1 − f2)Hm(R) + λ(f1 − fp, f1 − f2)Hm(R)

− (S ′(f2)∗(S(f2)− yd), f1 − f2)Hm(R) − λ(f2 − fp, f1 − f2)Hm(R)

=λ ‖f1 − f2‖2
Hm(R) + (S(f1)− yd, (S ′(f1)− S ′(f2))(f1 − f2))L2(0,tf )

+ (S(f1)− S(f2), S ′(f2)(f1 − f2))L2(0,tf ) .

On one hand, we estimate with a generic constant C the following∣∣∣(S(f1)− yd, (S ′(f1)− S ′(f2))(f1 − f2))L2(0,tf )

∣∣∣
≤‖S(f1)− yd‖L2(0,tf ) ‖S

′(f1)− S ′(f2)‖L(Hm(R),L2(0,tf )) ‖f1 − f2‖Hm(R)

≤
(
‖S(f1)‖L2(0,tf ) + ‖yd‖L2(0,tf )

)
C exp

(
C ‖f1‖Hm(R)

)
‖f1 − f2‖2

Hm(R)

≤
(
C exp

(
C ‖f1‖Hm(R)

)
+ ‖yd‖L2(0,tf )

)
C exp

(
C ‖f1‖Hm(R)

)
‖f1 − f2‖2

Hm(R) ,

where we use (4.4) and (4.6). Note that ‖f1‖Hm(R) ≤ ‖fp‖Hm(R) + r(λ) is decreasing for
an increasing parameter λ. Therefore, we have∣∣∣(S(f1)− yd, (S ′(f1)− S ′(f2))(f1 − f2))L2(0,tf )

∣∣∣ ≤ K1(λ) ‖f1 − f2‖2
Hm(R) ,

where K1 is a non-negative, decreasing function. On the other hand, we estimate with a
generic constant C∣∣∣(S(f1)− S(f2), S ′(f2)(f1 − f2))L2(0,tf )

∣∣∣
≤‖S(f1)− S(f2)‖L2(0,tf ) ‖S

′(f2)(f1 − f2)‖L2(0,tf )

≤C exp
(
C ‖f1‖Hm(R)

)
exp

(
C ‖f2‖Hm(R)

)
‖f1 − f2‖2

Hm(R) ,

where we use (4.4) and (4.5). Hence, there is a non-negative, decreasing function K2 such
that ∣∣∣(S(f1)− S(f2), S ′(f2)(f1 − f2))L2(0,tf )

∣∣∣ ≤ K2(λ) ‖f1 − f2‖2
Hm(R)

holds.
We conclude that there exists a λ∗ > 0 such that(

J̃ ′(f1)− J̃ ′(f2), f1 − f2
)
Hm(R)

≥ (λ−K1(λ)−K2(λ)) ‖f1 − f2‖2
Hm(R) > 0,

for all λ > λ∗ and f1, f2 ∈ Br(λ). This proves the strict convexity of J̃ in Br(λ) and
therefore the existence of a unique minimiser of J̃ . �

Remark 1 The functions K1 and K2 depend on the data yd. Nevertheless, one can easily
prove that there exists an λ∗ > 0 such that J̃ corresponding to λ > λ∗ and data yd in a
bounded neighbourhood of a fixed yD ∈ L2(0, tf ) has a unique minimiser. From now on
we will assume that the regularisation parameter λ is big enough and the minimisation
problem (4.1) has a unique global solution for all data yd in an open neighbourhood.

Optimal Control and Function Identification in Biological Processes
77



A Function Identification Method

4.1.4 Sensitivity with Respect to Measurements
We have seen in Subsection 4.1.3 that the minimisation problem (4.1) has a unique solu-
tion. In this section, we are interested in the dependence of the minimiser f on the data
yd ∈ L2(0, tf ). Therefore, we choose an λ > 0 big enough such that (4.1) has a unique
solution for all measurement data from an open neighbourhood U of a fixed yd ∈ L2(0, tf )
and define the mapping

H : U → Hm(R) (4.16a)
ỹd 7→ f (4.16b)

that assigns to measurements ỹd ∈ U the optimal right-hand side function f ∈ Hm(R),
which is the unique solution of (4.1).

Theorem 26 Let m ≥ 4. Provided that the regularisation parameter λ > 0 is big enough,
the mapping H is Fréchet–differentiable and its derivative H ′(yd) is given by

H ′(yd) =
[
J̃ ′′(H(yd))

]−1
S ′(H(yd))∗. (4.17)

Its image h = H ′(yd)ỹd for ỹd ∈ L2(0, tf ) is the solution of the variational problem

(S ′′(f)(h, k), y − yd)L2(0,tf ) + (S ′(f)h, S ′(f)k)L2(0,tf ) + λ (h, k)Hm(R)

= (ỹd, S ′(f)k)L2(0,tf ) ,
(4.18)

for all k ∈ Hm(R), where f = H(yd) and y = S(f).

Proof. To prove this theorem, we will employ the implicit function theorem; see Theo-
rem 14. Therefore, we define the mapping

F : L2(0, tf )×Hm(R)→ Hm(R)
(yd, f) 7→ S ′(f)∗(S(f)− yd) + λf.

F is linear in yd and equals J̃ ′ for a fixed yd ∈ L2(0, tf ). Hence, due to Theorem 24 F is of
class Cm−3. Let yd ∈ L2(0, tf ) be given. We define f = H(yd) and conclude F (yd, f) = 0,
as f is a minimum of J̃ and F is its gradient.

Moreover, we prove that ∂F (yd,f)
∂f

is self-adjoint as follows
(
∂F (yd, f)

∂f
h, k

)
Hm(R)

=
(
J̃ ′′(f)h, k

)
Hm(R)

=
[S ′(f)∗(x)]′

∣∣∣∣∣
x=S(f)−yd

h+ S ′(f)∗S ′(f)h+ λh, k


Hm(R)

=
(
S(f)− yd, S ′′(f)(h, k)

)
L2(0,tf )

+
(
S ′(f)h, S ′(f)k

)
L2(0,tf )

+ λ (h, k)Hm(R)

=
(
h,
∂F (yd, f)

∂f
k

)
Hm(R)

,

where we use (4.12) and the symmetry of S ′′(f).
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Next, we prove that, provided λ is big enough, there exists a δ > 0 such that(
∂F (yd, f)

∂f
h, h

)
Hm(R)

≥ δ ‖h‖2
Hm(R) (4.19)

holds for all h ∈ Hm(R). Therefore, we estimate with a generic constant C∣∣∣∣(S(f)− yd, S ′′(f)(h, h)
)
L2(0,tf )

∣∣∣∣
≤
∥∥∥S(f)− yd

∥∥∥
L2(0,tf )

∥∥∥S ′′(f)(h, h)
∥∥∥
L2(0,tf )

≤
(
C
∥∥∥f∥∥∥

Hm(R)
+ ‖yd‖L2(0,tf )

)
C exp

(
C
∥∥∥f∥∥∥

Hm(R)

)
‖h‖2

Hm(R)

≤
(
C(‖fp‖Hm(R) + r(λ)) + ‖yd‖L2(0,tf )

)
C exp

(
C(‖fp‖Hm(R) + r(λ))

)
‖h‖2

Hm(R) ,

where we use (4.4), the estimate (4.15) for the minimiser, and the boundedness of S ′′(f),
which can be proven in a similar fashion as (4.6). Hence, we arrive at(

∂F (yd, f)
∂f

h, h

)
Hm(R)

≥ (λ−K(λ)) ‖h‖2
Hm(R) +

∥∥∥S ′(f)h
∥∥∥2

Hm(R)
,

where K is a non-negative, decreasing function. We conclude the existence of λ∗ > 0
and δ > 0 such that for all λ ≥ λ∗ the inequality (4.19) holds. Hence, we conclude as
a consequence of the Banach closed range theorem, see [Cia13, Problem 5.11-5]), that
∂F (yd,f)

∂f
is bijective. Furthermore, it has a bounded inverse, which is shown by using

k =
(
∂F (yd,f)

∂f

)−1
h and (4.19) as follows

‖h‖Hm(R)

∥∥∥∥∥∥
(
∂F (yd, f)

∂f

)−1

h

∥∥∥∥∥∥
Hm(R)

≥

h,(∂F (yd, f)
∂f

)−1

h


Hm(R)

=
(
∂F (yd, f)

∂f
k, k

)
Hm(R)

≥ δ ‖k‖2
Hm(R)

= δ

∥∥∥∥∥∥
(
∂F (yd, f)

∂f

)−1

h

∥∥∥∥∥∥
2

Hm(R)

,

which is equivalent to ∥∥∥∥∥∥
(
∂F (yd, f)

∂f

)−1

h

∥∥∥∥∥∥
Hm(R)

≤ 1
δ
‖h‖Hm(R) .

Finally, we apply the implicit function theorem and conclude that there is an implicit
function that must be equal to H such that

F (ỹd, H(ỹd)) = 0,

for all ỹd in a neighborhood of yd. Furthermore, H is differentiable and
∂F (yd, H(yd))

∂f
H ′(yd) + ∂F (yd, H(yd))

∂yd
= 0

holds, which is equivalent to (4.17). Finally, (4.18) follows by using the adjoint operators
and (4.12). �
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Remark 2 Although (4.18) is difficult to compute, we can restrict h and k to a finite-
dimensional subspace of Hm(R) and this variational problem reduces to a system of linear
equations, which is uniquely solvable for a regularisation parameter λ that is large enough.

Remark 3 The results of Theorem 26, in particular (4.17) and (4.18), are not only valid
for a global minimum, but also for a local minimum and for arbitrary λ as long as the
second derivative of J̃ is strictly positive at this point. Hence, also in this situations it is
possible to compute the sensitivity of the identified function f with respect to measurement
errors.

4.1.5 Discretisation with Radial Basis Functions
In this section, we approximate the infinite dimensional function space Hm(R) by a finite
dimensional subspace Vh ⊂ Hm(R) that depends on a discretisation parameter h. All
theorems and computations done up to now are still valid for f ∈ Vh, as functions in
this subspace have the same differentiability properties as functions in Hm(R). It is in
general not clear how a good approximation of an infinite dimensional function space can
be constructed. For our purpose the range of the optimal state y is important, as we have
only information of the function to be identified in this interval. Hence, the approximation
of a function f ∈ Hm(R) by the finite dimensional space Vh should be reasonably good in
this interval. Radial basis functions are appropriate for this task, as we show next.

Radial basis functions have been originally analyzed in the context of multivariate
interpolation problems, where values of an unknown function f are given for finitely
many points and one seeks to construct an interpolant. In particular, given finitely many
nodal points xi ∈ Rd (i = 1, . . . , N) and corresponding values f(xi) ∈ R, the interpolant
s should satisfy the equalities

s(xi) = f(xi), for 1 ≤ i ≤ N. (4.20)

Now, consider a shape function ϕ : [0,∞)→ R and define the radially symmetric, multi-
variate function

Φ(x) : Rd → R,
x 7→ ϕ(‖x‖2),

which is called radial basis function. Next, we use shifts of Φ to construct the RBF
interpolant as follows

s(x) =
N∑
j=1

ujΦ(x− xj). (4.21)

The conditions (4.20) translate to the following system of linear equations
N∑
j=1

ujΦ(xi − xj) = f(xi), for 1 ≤ i ≤ N. (4.22)

For a wide class of shape functions ϕ, it has been proven that the system matrix
(Φ(xi − xj))i,j is invertible for an arbitrary distribution of distinct nodal points xi. Hence,
there is a unique interpolant. For further information and an introduction to the theory
of radial basis functions see [Buh03] and references therein.

For our purpose, we want to mention that most results on the convergence order of
this interpolation are valid only for functions f contained in the so-called “native space”
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corresponding to the shape function ϕ. It has been shown that this space is smaller for
smooth shape functions and vice versa, as it is defined via the Fourier transform of Φ.
Hence, for our work, we must choose such a shape function whose native space coincides
with Hm(R), where we search for the unknown right-hand side function of the differential
equation. Fortunately, Wendland’s piecewise polynomial, positive definite, and compactly
supported radial functions of minimal degree ϕd,k, see [Wen95], have exactly this property,
which is shown in [Wen98]. Within their support r ∈ [0, 1] they are defined as follows

ϕd,k(r) =
k∑

n=0
βn,kr

n(1− r)l+2k−n, (4.23)

where d is the space dimension, l = bd/2c+ k + 1, and the coefficients βn,k are computed
by the recursion formula

βi,j+1 =
j∑

a=max{i−1,0}
βa,j

(i+ 1)a−i+1

(l + 2j − a+ 1)a−i+2
for 0 ≤ i ≤ j + 1,

with β0,0 = 1 and the Pochhammer symbol (q)k = q(q+1) . . . (q+k−1). Φd,k = ϕd,k(‖·‖2)
is 2k-times continuously differentiable with compact support and, therefore, belongs at
least to H2k(Rd).

According to [Wen98] the native space for ϕd,k is Hk+ d+1
2 (Rd). Hence, we will use

ϕ1,m−1 in our work as we minimise in Hm(R). We cite from [Wen98] the following theorem
regarding the convergence order of the interpolation problem.

Theorem 27 Let m = k + d+1
2 and k ≥ 1 for d = 1, 2. For every f ∈ Hm(Rd) and

every compact subset Ω ⊂ Rd satisfying a uniform interior cone condition the interpolant
s defined by (4.21) and (4.22) on {x1, . . . , xN} ⊂ Ω using ϕd,k satisfies the estimate

‖f − s‖L∞(Ω) ≤ C ‖f‖Hm(Rd) h
m− d2 , (4.24)

provided h = sup
x∈Ω

min
1≤i≤N

‖x− xi‖2 is sufficiently small.

Next, we define the finite dimensional subspace Vh. Let yd ∈ L2(0, tf ) and a sufficiently
large regularisation parameter λ > 0 be given. Then there is a unique minimiser f of
(4.1). Its relevant domain I = y([0, tf ]) is given by the range of the corresponding state
y = S(f). As y is continuous, its range is an interval I = [a, b]. For h > 0 we define
xi = a + i h for 0 ≤ i ≤ N = d b−a

h
e. Using these nodal points the finite dimensional

subspace is defined as follows

Vh = span
{
x 7→ Φi(x) = ϕ1,m−1(|x− xi|)

∣∣∣∣∣ 0 ≤ i ≤ N

}
.

By Theorem 27, we know that there is a function s ∈ Vh such that

|s(x)− f(x)| ≤ C
∥∥∥f∥∥∥

Hm(R)
hm−

1
2 ,

for all x ∈ I. Though we only have the above estimate on I, we can show with a small
change in the proof of the continuity of S that∥∥∥S(s)− S(f)

∥∥∥
L2(0,tf )

≤ C exp
(
C ‖s′‖L∞(I)

)
‖s− f‖L∞(I)

≤ C exp
(
C
∥∥∥f∥∥∥

Hm(R)

)
hm−

1
2 ,
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where ‖s′‖L∞(I) is replaced by
∥∥∥f∥∥∥

Hm(R)
. This can be done, as

∥∥∥(s− f)′
∥∥∥
L∞(I)

≤ C
∥∥∥f∥∥∥

Hm(R)
hm−

3
2

holds by the results of [WS93], where a similar estimate as in (4.24) are given also for
the derivatives up to order m− 1. As one expects the convergence order reduces by 1 for
each further derivative. We summarise these consideration in the following

Theorem 28 There exists a family of functions sh ∈ Hm(R) with sh ∈ Vh for h > 0 such
that the corresponding simulation results yh = S(sh) converge to y = S(f) in L2(0, tf ),
i.e.

‖yh − y‖L2(0,tf ) → 0 as h→ 0.

Remark 4 The great benefit of radial basis functions is that they can be used in each
space dimension. Hence, a generalisation of (4.1) to a function identification in a system
of ordinary differential equations is possible and the results given here are still valid.

4.1.6 Numerical Application
In this section, we first apply our results on the logistic equation and identify its right-hand
side function for computationally generated data. Afterwards, we identify the toxicity
function in a system of ordinary differential equations modelling the wine fermentation
process using real-life measurements. For both problems, we use the shape function
ϕ1,3(r) = (1− r)7(21r3 + 19r2 + 7r+ 1) for the radial basis functions and its native space
H4(R) in the definition of the minimisation problem (4.1). Hence, the resulting mappings
S and J̃ are of class C2.

Identifying a growth dynamic

Consider the following logistic equation [Mur93, Chapter 1.1]

ẏ = ry
(

1− y

K

)
. (4.25)

It models the evolution of the population number of a species. For small populations the
dynamic in (4.25) exhibits an exponential growth. The greater the population becomes,
the smaller the reproduction rate r

(
1− y

K

)
gets, due to resource restrictions and a higher

death probability. Therefore, the solution of (4.25) converges to the stable population
number K.

Fixing the parameters as r = 0.1, K = 1, and the initial value as y(0) = 0.1 the exact
solution of (4.25) is given by yd(t) = 1 − 9

9+et/10 . Moreover, we set the prior knowledge
as fp = 0, the regularisation parameter as λ = 10−6, and the final observation time as
tf = 8. We generate three different measurements yd,j(t) = yd(t) + ỹj(t), t ∈ [0, tf ],
j ∈ {1, 2, 3}, by adding to the exact solution yd error functions ỹj(t), j ∈ {1, 2, 3}. These
error functions ỹj(t) are linear interpolations of uniformly distributed errors with mean
zero at 50 equally spaced sampling points. The magnitude of the error is taken from
{0, 0.1, 0.2}. They are shown as dashed lines in the upper plot of Figure 4.1. The optimal
function f j = H(yd,j) subject to these three different measurements were computed with
the BFGS optimisation algorithm, see Subsection 3.4.1, and can be seen in the lower plot
of Figure 4.1. Despite the errors in the measurements, the resulting optimal functions
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Figure 4.1: Three different measurements yd,j (top) are used to find optimal right-hand
side functions f j = H(ydj) (bottom) such that the corresponding simulations yj = S(f j)
(top) match them as good as possible. Circles (bottom) indicate the nodal points xi of the
radial basis functions in use. The image I of yd,1 is indicated by the red dashed vertical
lines (bottom).

are in a good agreement with the exact function fex(y) = ry
(
1− y

K

)
(crosses) within

the interval of the measurements indicated by the two dashed vertical lines. For the
finite dimensional subspace Vh of H4(R) we use the linear span of the RBFs defined in
Subsection 4.1.5, where the nodal points are given by xi = −1 + 0.1 i (i = 0, . . . , 30) and
can be seen as circles in the lower plot of Figure 4.1. As the range of the optimal state is
a priori unknown, we discretise with xi a large interval that contains the measurements
values. Also the corresponding simulation results yj = S(f j) follow the exact trajectory
yd quite well; compare the solid lines in the upper plot of Figure 4.1.

The quality of the resulting f j can be estimated by the use of the derivative of the
“data–to–function” mapping H at yd as follows. The best approximation to the exact
right-hand side function fex is given by f 1 = H(yd,1), as yd,1 = yd is the solution of (4.25)
with respect to fex and we have no measurement errors. We estimate its distance of the
identified functions f j (j = 2, 3), where measurement errors are present as follows∥∥∥f 1 − f j

∥∥∥
Hm(R)

= ‖H(yd)−H(yd + ỹj)‖Hm(R)

≤ ‖H ′(yd)‖L(L2(0,tf ),Hm(R)) ‖ỹj‖L2(0,tf ) +O
(
‖ỹj‖2

L2(0,tf )

)
.

Moreover, as we are now dealing with the finite dimensional space Vh, there are func-
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j
∥∥∥f j∥∥∥Hm(R)

∥∥∥f 1 − f j
∥∥∥
Hm(R)

‖H ′(yd)‖L(L2(0,tf ),Hm(R)) ‖ỹd,j‖L2(0,tf )

1 30.77 0 0
2 39.42 17.40 ≤ 58.1
3 34.09 13.25 ≤ 118.7

Table 4.1: Comparison between the distances of f j and its estimate based on the derivative
of H.

tions zi in L2(0, tf ) such that

H ′(yd)ỹd =
N∑
i=0

(zi, ỹd)L2(0,tf ) Φi.

This is due to the fact that restricting the linear mapping H ′(yd) to the one dimensional
subspace span{Φi} yields a linear bounded functional, where Φi are the RBFs that we
use. Hence, there exists a Riesz representative zi. Therefore, we can estimate

‖H ′(yd)‖L(L2(0,tf ),Hm(R)) = sup
ỹd∈L2(0,tf )

‖H ′(yd)ỹd‖Hm(R)

‖ỹd‖L2(0,tf )

= sup
ỹd∈L2(0,tf )

(
N∑

i,j=1

(
tf∫
0
ziỹddt

)(
tf∫
0
zj ỹdds

)
(Φi,Φj)Hm(R)

) 1
2

‖ỹd‖L2(0,tf )

= sup
ỹd∈L2(0,tf )

(
tf∫
0

tf∫
0

(
N∑

i,j=1
(Φi,Φj)Hm(R) zi(s)zj(t)

)
ỹd(s)ỹd(t)dsdt

) 1
2

‖ỹd‖L2(0,tf )

≤

 tf∫
0

tf∫
0

 N∑
i,j=1

(Φi,Φj)Hm(R) zi(s)zj(t)
2

dsdt


1
4

,

where we use the Cauchy–Schwarz inequality.
Computing the Riesz representatives zi and evaluating the double integral in the case

of the logistic equation we get the estimate

‖H ′(yd)‖L(L2(0,tf ),Hm(R)) ≤ 443.44 . . . (4.26)

and can compare the distance between optimised function f ∗j with respect to different data
yd,j as well as its estimate. We can see in Table 4.1 that the norm of H ′(yd) multiplied
by the norm of the data yd is an upper bound of the actual norm of f ∗1 − f ∗j .

Identifying a toxicity function

In the second part of this section, we apply the proposed function identification technique
to a more complex model. We identify the toxicity function for the wine fermentation
model (2.8) on the basis of measurements of a fermentation experiment. We cordially
thank Dr. Christian von Wallbrunn and his team at the Departments of Microbiology
& Biochemistry of the Geisenheim University, Germany for providing us measured con-
centrations of yeast cell numbers, sugar, and ethanol for a fermentation process that was
performed at 17 ◦C.
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As the experimental conditions were isothermal, we discard both the temperature
equation and the factors (T −b1) and (T −b2) in the fermentation model (2.8). Therefore,
we consider the following system of five coupled ordinary differential equations

Ẋ = a1
N

a7 +N

O

a8 +O

S

a9 + S
X −Ψ(E)X, (4.27a)

Ṅ = −a2
N

a7 +N

O

a8 +O

S

a9 + S
X, (4.27b)

Ȯ = −a3
N

a7 +N

O

a8 +O

S

a9 + S
X, (4.27c)

Ṡ = −a4
N

a7 +N

O

a8 +O

S

a9 + S
X − a5

S

a10 + S

a11

a11 + E
X, (4.27d)

Ė = a6
S

a10 + S

a11

a11 + E
X, (4.27e)

as a model for the wine fermentation experiment. This model contains eleven unknown
parameters aj and the unknown function Ψ : R → R, that models the toxic influence of
ethanol on the reproduction rate of the yeast.

The toxicity function Ψ is of special interest as it is not known how its shape can
be parametrised. Therefore, we define the following minimisation problem in order to
identify the toxicity function Ψ. We have

min
Ψ∈H4(R), a∈R11

J(y,Ψ, a) =
5∑
i=1

λi
2 ‖yi − yi,d‖

2
L2(0,tf ) + λΨ

2 ‖Ψ‖
2
H4(R) + λa

2 ‖a− ap‖
2
R11 ,

subject to (4.27) and y(0) = y0, (4.28)

where we collect the model variables as y = (X,N,O, S,E)>. The measurements are
represented by the vector yd = (Xd, Nd, Od, Sd, Ed)>. Note that the parameters for the
specific yeast strain in use are unknown and we have to estimate them during the function
identification. In this case, the objective function J includes also a regularisation term
for the parameter vector a ∈ R11, where ap ∈ R11 is an a priori known guess. The non-
negative weights λi (i = 1, . . . , 5), λΨ, and λa can be used to change the importance of
the corresponding terms in the objective functional.

We can write the system (4.27) also in the form

ẏ = F (t, y,Ψ(y), a). (4.29)

Note that the results given in this chapter can be generalised to differential equations of
the form (4.29) with mild assumptions on F .

Figure 4.2 shows the results of the simultaneous parameter and function identification,
where measured cell numbers of the yeast population Xd and the concentrations of sugar
Sd and ethanol Ed of a wine fermentation experiment are used. As it can be seen in the
left and middle plot of Figure 4.2, the simulation results with respect to the identified
optimal parameters and optimal toxicity function Ψ coincide with the measurements quite
well. The deviations are due to the measurement errors. They are most severe for the
cell numbers, as it is a difficult task to count all yeast cells in a small portion of the
must and to extrapolate for the whole fermentation vessel. Errors of up to 30 % are usual
in this case. The right plot of Figure 4.2 shows the identified toxicity function Ψ. It
seems that the toxic influence of the ethanol on the yeast cells is such that it is negligible
for concentrations below approximately 40 g

l
, increases rapidly up to a value of about
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Figure 4.2: Experimental data for yeast cell numbersXd (left) and sugar Sd and ethanol Ed
concentrations (middle) compared to simulation results X, S, E subject to the identified
optimal parameters and optimal function Ψ (right).

0.06 1
d
, and stays nearly constant at this value for increasing ethanol concentrations. This

behaviour in the interval of measurement values, which is indicated by the vertical dashed
lines in the right plot of Figure 4.2, can be described by a smoothed step function. Hence,
our identification scheme allows us to identify the shape of the unknown toxicity function.
Our results suggest that it would be convenient to model toxicity functions for different
yeast strains by a parametrised step function.

Conclusion

The problem of identifying an unknown function from given measurement data was dis-
cussed. A framework was established, where this identification problem was formulated
as a minimisation problem in an infinite dimensional function space. The analysis of the
reduced problem was carried out by proving that for a regularisation parameter that is
bigger than a threshold there is a unique function that minimises the objective. With
this result, it was possible to define the “data–to–function” mapping and compute its
derivative in order to estimate the dependence of the identified function subject to mea-
surement errors. Furthermore, Wendland’s compactly supported radial basis functions of
minimal degree were used to discretise the infinite dimensional space to be able to use
this framework for real-life applications. The proposed function identification method was
applied to a representative dynamical model and to a system of ODEs modelling the wine
fermentation process.
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4.2 The Stochastic Case
In contrast to the previous section, where the identification of a function involved in
an ordinary differential equation is presented, we now turn our attention in this section
to models with stochastic differential equations. Mathematical modelling with stochastic
differential equations is being applied for physical or biological system. Whenever a system
is disturbed by effects that cannot be described in detail and appear to be random, a
stochastic model is appropriate as a first modelling attempt. One example could be the
changing environment for an organism in a biological model. In this case the exponential
growth of the population of a species, which is observed for small population numbers,
undergoes a stochastic disturbance, as the environmental conditions are varying. Hence,
we aim to extend the wine fermentation model by stochastic perturbations in order to
cope with uncertainties. Therefore, we analyse the problem of identifying a function
belonging to a stochastic differential model. Hereby, we assume that this function is
included in the deterministic part. Likewise in Section 4.1, we restrict the presentation of
the proposed function identification method with stochastic differential equations to the
one dimensional case. Nevertheless, the extension to higher dimensions in straightforward.

We proceed as follows. In Subsection 4.2.1, we introduce the concept of stochastic
differential equations of Itô type. This includes the definition of the Itô integral and the
presentation of Itô’s lemma. In Subsection 4.2.2, we present how the Fokker-Planck equa-
tion, which under certain assumptions describes the statistics of the solution of a stochastic
differential equation, is derived. Moreover, the unique solvability of the Fokker-Planck
equation and its continuous dependence on the data is presented. In Subsection 4.2.3, we
state the minimisation problem, which we solve in order to identify the unknown function.
Further, the existence of a solution to this problem is proven. In Subsection 4.2.4, we
derive the optimality system that characterises local minima of the objective functional.
In Subsection 4.2.5, the Chang-Cooper finite difference scheme for the discretisation of
a Fokker-Planck equation is presented. Following a discretise–before–optimise approach
we also compute the gradient of the discretised reduced objective functional. Finally,
we apply in Subsection 4.2.6 the discussed framework to the problem of identifying the
toxicity function of the wine fermentation model and present numerical results.

4.2.1 Stochastic Differential Equations
In the following, we introduce the necessary terminology to discuss stochastic differential
equations and to derive the corresponding Fokker-Planck partial differential equation.
This exposition is mainly based on [Gar83, Chapter 4].

Itô Calculus

We assume in the following that the reader is familiar with the basics of probability theory.
In order to define stochastic differential equations, we need the definition of the Wiener
process.

Definition 10 A real-valued stochastic process on a probability space (Ω,F ,P) is a col-
lection of real-valued random variables Xt for t ∈ [0, tf ]. The Wiener process Wt is a
continuous stochastic process with the following properties:

• W0 = 0 with probability 1,
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• for every 0 ≤ t0 < t1 < . . . < tn ≤ tf the random variables Wt1 − Wt0, . . . ,
Wtn −Wtn−1 are stochastically independent,

• for every 0 ≤ t < s ≤ tf the random variable Ws −Wt is normally distributed with
mean 0 and variance s− t.

The existence of a Wiener process is shown in [KS91, Chapter 2.2] and goes beyond the
scope of this thesis.

Stochastic differential equations are defined as integral equations, where the non-
deterministic part is given by an integral with respect to the Wiener process. Therefore,
we define such an integral, which is called Itô integral.

Definition 11 Let Xt be a stochastic process. The Itô integral of Xt is defined as

t∫
0

XsdWs = ms-lim
n→∞

n−1∑
i=0

Xti

(
Wti+1 −Wti

)
, (4.30)

where 0 = t0 < t1 < . . . tn = t is a partition of [0, t].

The right-hand side in (4.30) is a mean square limit ms-lim
n→∞

Xn = X, which exists if

lim
n→∞

E[(Xn −X)2] = 0

holds.

Remark 5 The definition of the Itô integral (4.30) uses the left end ti of the subinterval
[ti, ti+1] to evaluate Xt for the partial sums. This is consistent with the definition of a
Markov process. The value of the integral is not independent of the choice of the inter-
mediate point τi ∈ [ti, ti+1]. Choosing the midpoint τi = 1

2 (ti + ti+1) corresponds to the
integral called Stratonovich integral. Nevertheless, stochastic differential equations defined
with the Stratonovich integral instead of the Itô integral can be reformulated as stochas-
tic differential equations of Itô type. Moreover, there is also a correspondence between
the derived Fokker-Planck equations with respect to the different definitions of a stochas-
tic integral. See [Gar83, Chapter 4] for more information. Therefore, we restrict our
presentation to stochastic differential equation of Itô type.

It can be shown that the Itô integral exists provided Xt is continuous and non-
anticipating, that is Xs is stochastically independent of Wτ −Ws for all s, τ such that
0 ≤ s < τ ≤ t; see [Arn74, Chapter 4.3]. Moreover, we conclude that the mean of the
Itô integral of a non-anticipating function Xt is zeros. Note that Xti and Wti+1 −Wti are
independent. Hence, we compute

E

 t∫
0

XsdWs

 = ms-lim
n→∞

n−1∑
i=0

E [Xti ]E
[
Wti+1 −Wti

]
= 0, (4.31)

as the mean of Wti+1 −Wti is zero.
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Stochastic Differential Equations

As indicated at the beginning of this chapter, we aim to extend an ordinary differential
equation

dy
dt = f(y)

by a random disturbance ξ, which results in a formal differential equation of the form

dy
dt = f(y) + ξ.

This equation is known as the Langevin equation; see [Gar83]. A rigorous mathematical
definition is given by a stochastic differential equation of Itô type. We are changing now
the notation in order to adapt it to that usually used for stochastic differential equations.
In the following, the stochastic process Xt, which is the state of a stochastic differential
equation, is the analogue for the state y(t) of an ordinary differential equation, which is
analysed in Section 4.1. Moreover, the unknown function we seek to identify is denoted by
f in Section 4.1. As f is usually use for the probability density function in stochastics, we
denote in this section by b the unknown function for the stochastic function identification
method.

Let b : R × [0, tf ] → R, which is called drift, and σ : R × [0, tf ] → R, which is called
diffusion, be given. Then the stochastic process Xt is a solution of the following stochastic
differential equation

dXt = b(Xt, t) dt+ σ(Xt, t) dWt, (4.32)
if Xt satisfies the following integral equation

Xt = X0 +
t∫

0

b(Xs, s) ds+
t∫

0

σ(Xs, s)dWs, (4.33)

where the initial value X0 is a given random variable independent of Wt. It is known
that a stochastic differential equation admits exactly one strong solution, if the functions
b and σ are measurable in R× [0, tf ] and there exists a K > 0 such that

|b(x, t)− b(y, t)|+ |σ(x, t)− σ(y, t)| ≤ K|x− y|

and
|b(x, t)|2 + |σ(x, t)|2 ≤ K(1 + |x|2)

holds for all t ∈ [0, tf ] and x, y ∈ R. See [Arn74, Chapter 6.2] for the proof, where an
iteration based on the integral equation (4.33), which is similar to the one used in the
proof of the Picard-Lindelöf theorem, is defined and its convergence to the solution is
shown.

The next theorem states the so-called Itô formula. For a stochastic process Xt that
satisfies a stochastic differential equation we define a second stochastic process by a func-
tional relationship h(Xt, t), where h is a known function. The question arises whether
h(Xt, t) satisfies also a stochastic differential equation and how it looks like. The following
theorem answers this question and is used to derive the Fokker-Planck equation later.

Theorem 29 Let the function h : R× [0, tf ]→ R, (x, t) 7→ h(x, t) be continuously differ-
entiable up to order 1 with respect to the time variable t and up to order 2 with respect to
the space variable x. Let Xt be the solution of the stochastic differential equation (4.32).
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Then the stochastic process h(Xt, t) is the solution of the following stochastic differential
equation

dh(Xt, t) =
(
∂h

∂t
(Xt, t) + b(Xt, t)

∂h

∂x
(Xt, t) + 1

2σ(Xt, t)2∂
2h

∂x2 (Xt, t)
)
dt

+ σ(Xt, t)
∂h

∂x
(Xt, t)dWt,

with the initial value h(X0, 0).

The proof is given in [Arn74, Chapter 5.3]. A heuristic argument can be carried out by
expanding the differential dh(Xt, t) in a Taylor series and discard all terms, which have
a higher order that dt. Hereby, the stochastic differential dWt is treated like

√
dt, as the

equality
t∫

0

Xs [dWs]2 =
t∫

0

Xs ds

can be proven.

4.2.2 Derivation and Analysis of the Fokker-Planck Equation
Let Xt be a stochastic process, which satisfies the stochastic differential equation (4.32).
Denote by f(x, t) the probability density function of the process to be at the point x at
time t. In the following, we derive a partial differential equation that governs the evolution
of f . As the probability density f describes the process Xt completely, this casts the
stochastic problem of solving a stochastic differential equation to a deterministic problem
of solving a partial differential equation.

Let h : R → R be an arbitrary function that is smooth enough to guarantee the
following computations. We compute the time derivative of the expected value of h(Xt)

d
dtE[h(Xt)] = d

dt

∫
R

h(x)f(x, t) dx =
∫
R

h(x)∂f
∂t

(x, t) dx,

where we exchange integration and differentiation. Using Theorem 29 and the fact that
the expected value of an Itô integral is zero, see (4.31), we have

d
dtE[h(Xt)]

= d
dtE

h(X0) +
t∫

0

b(Xs, s)h′(Xs) + 1
2σ(Xs, s)2h′′(Xs)dt+

t∫
0

σ(Xs)h′(Xs)dWs


= E

[
b(Xt, t)h′(Xt) + 1

2σ(Xt, t)2h′′(Xt)
]

=
∫
R

(
b(x, t)h′(x) + 1

2σ(x, t)2h′′(x)
)
f(x, t) dx

=
∫
R

h(x)
(
− ∂

∂x
(b(x, t)f(x, t)) + ∂2

∂x2

(1
2σ(x, t)2f(x, t)

))
dx,

where we use integration by parts for the last equality. As h was arbitrarily chosen, we
identify the following partial differential equation for the probability density function f

∂f

∂t
(x, t)− ∂2

∂x2

(1
2σ(x, t)2 f(x, t)

)
+ ∂

∂x
(b(x, t) f(x, t)) = 0,
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which is know as the Fokker-Planck or forward Kolmogorov equation.
For diffusion functions σ that are bounded from below by a positive constant it can

be shown that the probability density function has global support on the whole real
line R. Moreover, also an initial condition with range R causes a non-compact support
of f . Therefore, one has to solve the Fokker-Planck equation on the whole real line R.
Another approach is to assume that the process approximately stays in a bounded domain
Ω ⊂ R and to describe what happens when the process touches the boundary. The most
often boundary conditions used in literature are absorbing and reflecting boundaries; see
[Gar83, Chapter 5.2.1]. We stick to the concept of reflecting boundary conditions, where
the probability flux across the domain boundary is zero. Note that initial conditions are
often prescribed to be Gaussian and, therefore, its probability density function tends to
zero very quickly for x → ±∞. Hence, the computational solution of a Fokker-Planck
equation with reflecting boundary conditions in a large domain containing the initial
probability density is a good approximation for the case of an unbounded domain, as in
this case the probability at the boundary is below machine precision.

For the identification of an unknown function b in a stochastic differential equation we
consider the following Fokker-Planck equation. It is stated in a bounded domain Ω and
for the time horizon [0, tf ] and is given by

∂f

∂t
− 1

2
∂2

∂x2

(
σ2 f

)
+ ∂

∂x
(b f) = 0 in Q = Ω× [0, tf ], (4.34a)

F = 0 on Σ = Γ× [0, tf ], (4.34b)
f(0) = f0 in Ω, (4.34c)

where the flux at the boundary Γ = ∂Ω is defined by F = 1
2
∂
∂x

(σ2 f) − b f . The initial
distribution f0 is the probability density of the stochastic process at time t = 0.

In order to formulate a minimisation problem whose solution aims to identify the drift
function b, we have to guarantee that the Fokker-Planck equation has a unique solution
for each possible choice for b. Hence, we present the following theorem, where a right-hand
side functional is included, as this will be necessary later to prove the differentiability of
the solution operator.

Theorem 30 Assume that σ2 is differentiable and is bounded from below by σ̄2 > 0.
Further, assume that σ2, ∂σ

2

∂x
, b ∈ L∞(Ω). Moreover, let f0 ∈ L2(Ω) and g ∈ L2(Q). Then

the following weak formulation of the Fokker-Planck equation (4.34) with right-hand side
g

d
dt

∫
Ω

fv dx+
∫
Ω

1
2σ

2∂f

∂x

∂v

∂x
+
(

1
2
∂σ2

∂x
− b

)
f
∂v

∂x
dx =

∫
Ω

g
∂v

∂x
dx (4.35)

for all v ∈ H1(Ω) and almost all t ∈ [0, tf ] with the initial condition f(0) = f0 has a
unique weak solution f ∈ W (0, tf ) and the following holds

(i) If f0 ≥ 0 and g = 0, then f ≥ 0 holds.

(ii) If
∫
Ω
f0(x) dx = 1 and g = 0, then for all t ∈ [0, tf ] it holds that

∫
Ω
f(x, t) dx = 1.

(iii) There exists a function q such that

‖f‖2
W (0,tf ) ≤ q(‖b‖L∞(Ω))

(
‖f0‖2

L2(Ω) + ‖g‖2
L2(Q)

)
holds.
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Proof. Note that for g = 0 and strong solutions of the Fokker-Planck equation (4.34)
the above given variational problem is satisfied, as we have

∫
Ω

(
−1

2
∂2

∂x2

(
σ2 f

)
+ ∂

∂x
(b f)

)
v dx = −

∫
Ω

(
−1

2
∂

∂x

(
σ2 f

)
+ b f

)
∂v

∂x
dx,

due to vanishing boundary integrals because of the zero flux condition. In contrast to the
results of Theorem 7 for diffusion equations there is a convection term present in (4.34)
now. Defining the bilinear form a by

a(t, f, v) =
∫
Ω

1
2σ

2∂f

∂x

∂v

∂x
+
(

1
2
∂σ2

∂x
− b

)
f
∂v

∂x
dx,

we prove that it is continuous as follows

|a(t, f, v)| ≤1
2
∥∥∥σ2

∥∥∥
L∞(Ω)

∥∥∥∥∥∂f∂x
∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∂v∂x
∥∥∥∥∥
L2(Ω)

+
1

2

∥∥∥∥∥∂σ2

∂x

∥∥∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

 ‖f‖L2(Ω)

∥∥∥∥∥∂v∂x
∥∥∥∥∥
L2(Ω)

≤

1
2
∥∥∥σ2

∥∥∥
L∞(Ω)

+ 1
2

∥∥∥∥∥∂σ2

∂x

∥∥∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

 ‖f‖H1(Ω) ‖v‖H1(Ω) .

Moreover, we have the following estimate

a(t, f, f) ≥1
2 σ̄

2
∥∥∥∥∥∂f∂x

∥∥∥∥∥
2

L2(Ω)
−

1
2

∥∥∥∥∥∂σ2

∂x

∥∥∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

 ‖f‖L2(Ω)

∥∥∥∥∥∂f∂x
∥∥∥∥∥
L2(Ω)

≥1
4 σ̄

2
∥∥∥∥∥∂f∂x

∥∥∥∥∥
2

L2(Ω)
− 1
σ̄2

1
2

∥∥∥∥∥∂σ2

∂x

∥∥∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

2

‖f‖2
L2(Ω)

≥1
4 σ̄

2 ‖f‖2
H1(Ω) −

 1
σ̄2

1
2

∥∥∥∥∥∂σ2

∂x

∥∥∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

2

+ 1
4 σ̄

2

 ‖f‖2
L2(Ω) ,

(4.36)

where we use the Cauchy inequality ab ≤ a2

4ε + εb2 for ε = 1
4 σ̄

2. Finally, we define

G(t, v) :=
∫
Ω

g
∂v

∂x
dx,

and conclude |G(t, v)| ≤ ‖g(t)‖L2(Ω)‖v‖H1(Ω) and, hence, G ∈ L2(0, tf ;H1(Ω)∗). There-
fore, we can use Theorem 6 to prove the existence of a unique weak solution in W (0, tf )
and we have

d
dt

∫
Ω

f(x, t)v(x) dx+ a(t; f(t), v) = G(t, v)

for all v ∈ H1(Ω).
In order to prove (i) and (ii) assume that G = 0. By choosing the test function

v as f− := min(0, f), we prove the non-negativity of solutions for non-negative initial
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conditions as follows
1
2
d
dt

∫
Ω

(
f−
)2

dx ≤ −a(t, f−, f−)

≤− 1
2 σ̄

2
∥∥∥∥∥∂f−∂x

∥∥∥∥∥
2

L2(Ω)
+
1

2

∥∥∥∥∥∂σ2

∂x

∥∥∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

∥∥∥f−∥∥∥
L2(Ω)

∥∥∥∥∥∂f−∂x
∥∥∥∥∥
L2(Ω)

≤ 1
2σ̄2

1
2

∥∥∥∥∥∂σ2

∂x

∥∥∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

2 ∥∥∥f−∥∥∥2

L2(Ω)
,

where we use the Cauchy inequality with ε = 1
2 σ̄

2. By the Grönwall inequality, see
Lemma 1, we get

∥∥∥f−(t)
∥∥∥2

L2(Ω)
≤ exp

 1
σ̄2

1
2

∥∥∥∥∥∂σ2

∂x

∥∥∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

2

t

∥∥∥f−(0)
∥∥∥2

L2(Ω)
,

and the prove of (i) is complete, as ‖f−(0)‖2
L2(Ω) = 0 holds.

In order to prove (ii), we choose v ≡ 1 in the weak formulation and deduce that
a(t, f, v) = 0 holds. Therefore, we have

d
dt

∫
Ω

f(x, t) dx = 0,

and (ii) follows.
In literature, estimates as in (iii) are proven for a fixed second-order elliptic operator

with given diffusion coefficients and convection term; see [Eva10, DL92]. Notice that,
the dependence on its coefficients is not explicitly described, but is hidden in a generic
constant. As in our case the dependence on the drift function b is important, we present
the necessary estimates.

The first estimate is done in the C([0, tf ];L2(Ω)) norm. From (4.36), we deduce

1
2
d
dt ‖f‖

2
L2(Ω) = −a(t, f, f) +G(t, f) ≤ θ1

2 ‖f‖
2
L2(Ω) + ‖g‖L2(Ω) ‖f‖L2(Ω)

≤ θ1 + 1
2 ‖f‖2

L2(Ω) + ‖g‖2
L2(Ω) ,

where θ1 =
(

2
σ̄2

(
1
2

∥∥∥∂σ2

∂x

∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω)

)2
+ 1

2 σ̄
2
)
. The Grönwall inequality yields

‖f(t)‖2
L2(Ω) ≤ exp ((θ1 + 1) t)

‖f0‖2
L2(Ω) +

t∫
0

2 ‖g(s)‖2
L2(Ω) ds

 ,
which proves

‖f‖2
C([0,tf ];L2(Ω)) ≤ exp ((θ1 + 1) tf )

(
‖f0‖2

L2(Ω) + 2 ‖g‖2
L2(Q)

)
.

For the estimate in the L2(0, tf ;H1(Ω)) norm, we integrate

1
2
d
dt ‖f‖

2
L2(Ω) + 1

4 σ̄
2 ‖f‖2

H1(Ω) ≤
θ1 + 1

2 ‖f‖2
L2(Ω) + ‖g‖2

L2(Ω)
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from 0 to tf and obtain

‖f(tf )‖2
L2(Ω) + 1

2 σ̄
2
tf∫

0

‖f(s)‖2
H1(Ω) ds

≤ (θ1 + 1)
tf∫

0

‖f(s)‖2
L2(Ω) ds+ 2 ‖g‖2

L2(Q) + ‖f0‖2
L2(Ω)

≤ (θ1 + 1)
tf∫

0

exp ((θ1 + 1) s)
(
‖f0‖2

L2(Ω) + 2 ‖g‖2
L2(Q)

)
ds+ 2 ‖g‖2

L2(Q) + ‖f0‖2
L2(Ω)

≤
(

(θ1 + 1)exp ((θ1 + 1) tf )− 1
θ1 + 1 + 1

)(
‖f0‖2

L2(Ω) + 2 ‖g‖2
L2(Q)

)
.

We deduce

‖f‖2
L2(0,tf ;H1(Ω)) ≤

2
σ̄2 exp ((θ1 + 1) tf )

(
‖f0‖2

L2(Ω) + 2 ‖g‖2
L2(Q)

)
.

For the L2(0, tf ;H1(Ω)∗) norm of d
dtf we estimate with an arbitrary v ∈ H1(Ω) as

follows ∣∣∣∣∣∣
〈
d
dtf, v

〉
H1(Ω)∗,H1(Ω)

∣∣∣∣∣∣ = |a(t, f, v)|+ |G(t, v)|

≤θ2 ‖f‖H1(Ω) ‖v‖H1(Ω) + ‖g(t)‖L2(Ω) ‖v‖H1(Ω) ,

where θ2 = 1
2 ‖σ

2‖L∞(Ω) + 1
2

∥∥∥∂σ2

∂x

∥∥∥
L∞(Ω)

+ ‖b‖L∞(Ω) and conclude

∥∥∥∥∥ ddtf
∥∥∥∥∥

2

L2(0,tf ;H1(Ω)∗)
≤2θ2

2 ‖f‖
2
L2(0,tf ;H1(Ω)) + 2 ‖g‖2

L2(Q)

≤2θ2
2

2
σ̄2 exp ((θ1 + 1) tf )

(
‖f0‖2

L2(Ω) + 2 ‖g‖2
L2(Q)

)
+ 2 ‖g‖2

L2(Q) .

Finally, we have proven that (iii) holds for

q(‖b‖L∞(Ω)) :=
(
2θ2

2 + 1
) 4
σ̄2 exp ((θ1 + 1) tf ) + 2,

where we suppressed the quadratic and linear dependence of θ1 and θ2 on the norm of the
drift ‖b‖L∞(Ω), respectively. This completes the proof. �

4.2.3 Identification of the Drift of a Fokker-Planck Equation
In the following, we describe a function identification method for a stochastic differen-
tial equation. We assume that some measurements of a stochastic process Xt, which is
governed by the stochastic differential equation

dXt = b(Xt) dt+ σ(Xt, t) dWt,

are available. In our case we assume that the time independent drift b is unknown and
the diffusion σ is known. In particular, let (τl, ξl) for l = 1, . . . , L be given such that a
realisation of Xt takes the value ξl at time τl.
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We define the same objective functional as in [GSAB] and the corresponding minimi-
sation problem is used to identify a suitable approximation of the unknown function b in
the Sobolev space H1(Ω). We have

min
b∈H1(Ω)

J(f, b) =
L∑
l=1

1
2

∫
Ω

x f(x, τl) dx− ξl

2

+ λ

2 ‖b‖
2
H1(Ω) , (4.37a)

subject to (4.34). (4.37b)

The objective functional J defined in (4.37a) measures the distance between the mean
value of the stochastic process Xt at time τl and the measured value ξl. The mean value
is evaluated by solving a Fokker-Planck equation that governs the probability density
function f of the stochastic process Xt.

Note that in a one dimensional domain, we have the embedding H1(Ω) ↪→ L∞(Ω)
and, hence, the Fokker-Planck equation admits a unique solution due to Theorem 30.
For a generalisation to higher dimensional stochastic processes, we need to enlarge the
differentiability degree m such that we obtain a similar embedding Hm(Ω) ↪→ L∞(Ω).

Theorem 31 Let σ2 be differentiable, bounded from below by σ̄2 > 0, and assume that
σ2, ∂σ

2

∂x
∈ L∞(Ω) holds. Moreover, assume f0 ∈ L2(Ω) and λ > 0. Then the minimisation

problem (4.37) admits a solution.

Proof. The functional J : W (0, tf )×H1(Ω)→ R is bounded from below and takes the
norm of b into account. Hence, there exists a bounded minimising sequence bn and the
corresponding state fn exists and is bounded in W (0, tf ) due to Theorem 30. Exploiting
the Hilbert space structure of W (0, tf ) and H1(Ω) we can assume that these sequences
have a weak limit f and b in W (0, tf ) and H1(Ω), respectively. The functional J is
sequentially weakly lower semicontinuous, as it is convex and continuous. Hence, (b, f) is
a solution of (4.37), provided it is feasible. Hence, it remains to show that f is the solution
of (4.34) with respect to the drift b. First, we observe that fn converges strongly to f in
L2(0, tf ;L2(Ω)), as W (0, tf ) is compactly embedded in this space due to Theorem 5. For
fixed v ∈ H1(Ω) and t ∈ [0, tf ] the bilinear form (b, f)→

∫
Ω
b f(t) ∂v

∂x
dx fromH1(Ω)×L2(Ω)

to R is continuous due to the embedding H1(Ω) ↪→ L∞(Ω). As bn is weakly convergent
and fn is strongly convergent in L2(0, tf ;L2(Ω)) we have

∫
Ω

bn fn(t) ∂v
∂x

dx→
∫
Ω

b f(t) ∂v
∂x

dx

for all t ∈ [0, tf ] and v ∈ H1(Ω) due to [Cia13, Theorem 5.12-4 (c)]. Moreover, we know
that d

dtfn converges weakly to d
dtf in L2(0, tf ;H1(Ω)∗). Hence, we can apply the limit to

all terms in

d
dt

∫
Ω

fn v dx+
∫
Ω

1
2σ

2∂fn
∂x

∂v

∂x
+
(

1
2
∂σ2

∂x
− bn

)
fn
∂v

∂x
dx = 0

and conclude that f solves the Fokker-Planck equation (4.34) with respect to b. This
completes the proof. �

Optimal Control and Function Identification in Biological Processes
95



A Function Identification Method

4.2.4 Differentiability of the Solution Operator and the Opti-
mality System

Having established a proof for the existence of a solution for the minimisation problem
(4.37), we are now interested in the first-order necessary optimality conditions that char-
acterise locally optimal solutions. For preparation, we state the next theorem.

Theorem 32 The solution operator S : H1(Ω)→ W (0, tf ) of the Fokker-Planck equation
(4.34) is Fréchet differentiable and the directional derivative y = S ′(b)h for h ∈ H1(Ω) is
given by the solution of

∂y

∂t
− 1

2
∂2

∂x2

(
σ2 y

)
+ ∂

∂x
(b y) = − ∂

∂x
(h f) in Q, (4.38a)

F = h f on Σ, (4.38b)
y(0) = 0 in Ω, (4.38c)

where f = S(b).

Proof. Note that for the strong formulation (4.38) the corresponding weak formulation
is given by (4.35) with g = −h f . Due to the embedding H1(Ω) ↪→ L∞(Ω) the product h f
is an element of L2(Q). Hence, we conclude by the use of Theorem 30 that (4.38) admits
a unique solution. Denote f1 = S(b + h), f2 = S(b), y = S ′(b)h, and z = f1 − f2 − y.
Then z solves the corresponding weak formulation of the following equation

∂z

∂t
− 1

2
∂2

∂x2

(
σ2 z

)
+ ∂

∂x
(b z) = − ∂

∂x
(h(f1 − f2)) in Q,

F = h(f1 − f2) on Σ,
z(0) = 0 in Ω.

Hence, by Theorem 30 we conclude the following

‖z‖2
W (0,tf ) ≤ q(‖b‖L∞(Ω))‖h(f1 − f2)‖2

L2(Q).

Moreover, we argue that

‖f1 − f2‖2
L2(Q) ≤ C‖f1 − f2‖2

W (0,tf ) ≤ Cq(‖b‖L∞(Ω))‖hf1‖2
L2(Q),

as f1 − f2 solves a Fokker-Planck equation with drift b, zero initial conditions, and right-
hand side g = −hf1. Here, C denotes the embedding constant of W (0, tf ) ↪→ L2(Q).
Finally, we combine the latter two estimates to prove

‖z‖2
W (0,tf ) ≤ q̃(‖b‖L∞(Ω))‖h‖2

H1(Ω),

with an h independent function q̃. This proves the Fréchet differentiability of S. �
Note that due to the above theorem, the reduced objective functional J̃(b) = J(S(b), b)

is also Fréchet differentiable, as the mapping f 7→
∫

Ω x f(x, τl) dx is linear, the real-
valued function x 7→ x2 is differentiable, and the square of the norm b 7→ ‖b‖2

H1(Ω) is also
differentiable. Finally, we are now able to prove the following theorem that characterises
the local minima of the minimisation problem (4.37).
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Theorem 33 Let b ∈ H1(Ω) be a locally optimal solution of the function identification
problem (4.37). Let the corresponding state f = S(b) be given by the solution of (4.34)
and the corresponding adjoint state be given by the following adjoint equation

−∂p
∂t
− 1

2σ
2 ∂

2p

∂x2 − b
∂p

∂x
= 0 in Q, (4.40a)

∂p

∂n
= 0 on Σ, (4.40b)

p(tf ) = 0 in Ω, (4.40c)

p(x, τl) = p(x, τ+
l ) +

∫
Ω

x f(x, τl) dx− ξl

x for l = 1, . . . , L,

(4.40d)

where p(x, τ+
l ) = lim

t↘τl
p(x, t). Then the following holds true

λ
(
b, h

)
H1(Ω)

−
∫
Q

h f
∂p

∂x
dx dt = 0, (4.41)

for all h ∈ H1(Ω).

Proof. First, we define the following functional

j : H1(Ω)→ R

b 7→ 1
2

(∫
Ω
x f(x, τ) dx− ξ

)2
,

where f = S(b) is given by (4.34), and show that a corresponding optimality condition
as (4.41) is satisfied. The gradient of j at b ∈ H1(Ω) applied to an arbitrary h ∈ H1(Ω)
is given by

(∇j(b), h)H1(Ω) =
(∫

Ω
x f(x, τ) dx− ξ

) ∫
Ω
x y(x, τ) dx,

where y = S ′(b)h. Let p be defined on Ω × [0, τ ] by the solution of the following adjoint
equation

−∂p
∂t
− 1

2σ
2 ∂

2p

∂x2 − b
∂p

∂x
= 0 in Ω× [0, τ ],

∂p

∂n
= 0 on Γ× [0, τ ],

p(τ) =
∫

Ω

x f(x, τ) dx− ξ
x in Ω.

The existence of a unique weak solution for this problem given by the following variational
equality

− d
dt

∫
Ω

p v dx+
∫
Ω

1
2σ

2 ∂p

∂x

∂v

∂x
+
(

1
2
∂σ2

∂x
− b

)
∂p

∂x
v dx = 0
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is shown with slight adjustments of the proof for Theorem 30. Using the terminal condition
of p, we compute

(∇j(b), h)H1(Ω) =
∫
Ω

p(x, τ) y(x, τ) dx

=
τ∫

0

〈
dp
dt , y

〉
H1(Ω)∗,H1(Ω)

+
〈
dy
dt , p

〉
H1(Ω)∗,H1(Ω)

dt,

where we use the zero initial condition y(x, 0) = 0. As y and p are weak solutions of the
corresponding parabolic problems, we have that for the test functions p and y, respectively,
the following equalities〈

dy
dt , p

〉
H1(Ω)∗,H1(Ω)

=−
∫
Ω

1
2σ

2 ∂y

∂x

∂p

∂x
+
(

1
2
∂σ2

∂x
− b

)
y
∂p

∂x
dx+

∫
Ω

−h f ∂p
∂x

dx,
〈
dp
dt , y

〉
H1(Ω)∗,H1(Ω)

=
∫
Ω

1
2σ

2 ∂p

∂x

∂y

∂x
+
(

1
2
∂σ2

∂x
− b

)
∂p

∂x
y dx

hold. Hence, we arrive at

(∇j(b), h)H1(Ω) = −
τ∫

0

∫
Ω

h f
∂p

∂x
dx dt.

In the case of the general objective functional

j(b) = 1
2

L∑
l=1

(∫
Ω
x f(x, τl) dx− ξl

)2
,

we define pl by the corresponding terminal values problem in [0, τl] with respect to ξl.
Furthermore, extend pl on the interval [0, tf ] by zero for t > τl. Then the following holds
true

(∇j(b), h)H1(Ω) = −
tf∫

0

∫
Ω

h f
∂p

∂x
dx dt.

for p =
L∑
l=1

pl. Note that in this case p satisfies (4.40), as the adjoint equation is linear in
p.

Finally, we note that λ(b, h)H1(Ω) equals the derivative of b 7→ λ
2‖b‖

2
H1(Ω) applied to h.

Hence, we conclude that the left-hand side of (4.41) equals the derivative of the reduced
functional J̃ applied to h. Due to Theorem 15, a local minimum b of J̃ satisfies the
condition J̃ ′(b)h = 0 for all h ∈ H1(Ω), which is equivalent to (4.41). This completes the
proof. �

Theorem 33 enables us to compute candidates for the solution of the minimisation
problem (4.37). On one hand, it is possible to discretise the whole optimality system and
compute its solutions in order to identify the unknown function. On the other hand, it
is now clear how the action of the gradient of the reduced functional J̃ at an arbitrary
point b ∈ H1(Ω) on an arbitrary function h ∈ H1(Ω) can be evaluated. This can be used
to compute ∇J̃(b) by solving the following Laplace equation in weak formulation∫

Ω

∂∇J̃(b)
∂x

∂h

∂x
+∇J̃(b)h dx = λ (b, h)H1(Ω) −

∫
Q

h f
∂p

∂x
dx dt for all h ∈ H1(Ω).
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Therefore, gradient-based optimisation algorithms can be applied in order to find the
minimum. These two options follow the optimise–then–discretise approach, which is also
applied in Chapter 3 and Section 4.1. For the stochastic function identification method, we
decide to follow the discretise–then-optimise approach and describe in the next subsection
the necessary considerations.

4.2.5 Discretisation of the Stochastic Function Identification
Problem

In this subsection, we discuss the discretisation of the minimisation problem (4.37). In
contrast to Section 3.4 we use here the discretise–before–optimise approach. Therefore,
we first present the discretisation of the infinite dimensional minimisation problem and
cast it to a finite dimensional one.

For the discretisation of a Fokker-Planck equation, the scheme of Chang and Copper,
see [CC70], appears to be a very good choice. This numerical method has the property
that it conserves the positivity of the solution for positive initial conditions. Moreover,
the probability mass is also conserved. See [MB15, GAB] for the numerical analysis of
this scheme. We briefly present the formulas for the implementation.

Using the method of lines, we first discretise the partial differential equation (4.34) in
space for Ω = [xmin, xmax]. The probability density f is approximated on an equidistant
grid in the space variable at the points xi = xmin + i h (i = 0, . . . , N), where h = xmax−xmin

N

and N is a natural number. By defining B = 1
2
∂σ2

∂x
− b and C = 1

2σ
2 the flux can be

written as F = B f +C ∂f
∂x

and the Fokker-Planck equation is given in flux form as follows

∂f

∂t
= ∂F

∂x
.

The derivative of the flux F is discretised by a central difference, where F is evaluated at
intermediate grid points as follows

d
dtfi = 1

h

(
Fi+ 1

2
− Fi− 1

2

)
.

While the derivative of f in the definition of the flux F is also discretised by a central
difference, the intermediate value fi+ 1

2
has to be interpolated by a convex combination.

We have
Fi+ 1

2
= Bi+ 1

2

(
δi+ 1

2
fi + (1− δi+ 1

2
)fi+1

)
+ Ci+ 1

2

fi+1 − fi
h

.

Chang and Cooper observed that with the choice δ := 1
w
− 1

ew−1 , where w := hB
C
, stationary

solutions of a Fokker-Planck equation are conserved. Moreover, we have 1−δ = ew

ew−1−
1
w
.

For the space dependent function B and C we define Bi+ 1
2

= B(xi + 1
2h) and Ci+ 1

2
=

C(xi + 1
2h). The same convention is used for variables defined by B and C such as δ, w,

V , and W . Therefore, we arrive at

d
dtfj = 1

h

[(
B
(

ew

ew − 1 −
1
w

)
+ 1
h
C
)
i+ 1

2

fi+1 −
(
B
( 1
w
− 1

ew − 1

)
− 1
h
C
)
i+ 1

2

fi

]

−1
h

[(
B
(

ew

ew − 1 −
1
w

)
+ 1
h
C
)
i− 1

2

fi −
(
B
( 1
w
− 1

ew − 1

)
− 1
h
C
)
i− 1

2

fi−1

]

= 1
h2

(
Wi+ 1

2
fi+1 −

(
Vi+ 1

2
+Wi− 1

2

)
fi + Vi− 1

2
fi−1

)
,
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where we use the identity B
w
− C

h
= 0 and the definitions V := C w

ew−1 and W := C −w
e−w−1 .

We arrive at the following N + 1 dimensional system of ordinary differential equations

d
dtf = M f ,

with the state vector f = (f0, . . . , fN)> and the N + 1 dimensional system matrix M
given by

Mi,i−1 = Vi− 1
2

for i = 2, . . . , N,
Mi,i = −Wi− 1

2
− Vi+ 1

2
for i = 2, . . . , N − 1,

Mi,i+1 = Wi+ 1
2

for i = 1, . . . , N − 1,

and zero elsewhere. We incorporate the zero flux boundary condition by defining F− 1
2

=
FN+ 1

2
= 0, which results in M0,0 = −V 1

2
and MN,N = −WN− 1

2
.

Introducing a temporal grid tm = mδt, where δt = tf
Q+1 , and approximating the values

of f(tm) by fm, we solve the system of ordinary differential equations by the implicit Euler
scheme, which is defined by

fm − fm−1

δt
= Mm fm for m = 1, . . . , Q.

Note that for a time-dependent drift b and diffusion σ the functions B and C are time-
dependent and, therefore, the matrix M is also dependent on the time variable t. In this
case we have Mm := M(tm). The initial value f 0 is obtained by evaluating the initial
condition f 0

i := f0(xi); see (4.34c).
Next, we discretise the objective functional. We use the trapezoidal rule for numerical

integration for computing the expected value used in the definition of J ; see (4.37a).
Similarly as in Subsection 4.1.5, we discretise the infinite dimensional space H1(Ω) by
radial basis functions as follows

b(x) =
K∑
1
ukΦk(x).

Hence, a discrete analogue to the objective functional J is given by

Jd(u,f) :=
L∑
l=1

1
2
(
x> T fml − ξl

)2
+ λ

2 u>Su,

where the indexml is defined such that τl = tml holds and the vector fml is an approxima-
tion of f(·, τl). Moreover, we have x> = (x0, . . . , xN). The matrix T defines the discrete
analogue of the L2 inner product and is given by

T = diag
(
h

2 , h, . . . , h,
h

2

)
.

Hence, the term x> T f l is an approximation of the expected value at time τl. The
symmetric positive-definite matrix S defined by Si,j = (Φi,Φj)H1(R) maps the H1 inner
product to the finite dimensional vector space RK . The coefficients of the radial basis
functions are collected in the vector u> = (u1, . . . , uK).

Optimal Control and Function Identification in Biological Processes
100



A Function Identification Method

Finally, we use the following finite-dimensional minimisation problem as an approxi-
mation to (4.37). It is given by

min
u∈RK

Jd(u,f) =
L∑
l=1

1
2
(
x> T fml − ξl

)2
+ λ

2 u>Su (4.43a)

subject to fm − fm−1

δt
= Mm(u) fm for m = 1, . . . , Q. (4.43b)

Note that we explicitly denote the dependence of the transition matrix M on the coeffi-
cients u of the radial basis functions discretisation of the drift b.

As f is uniquely determined by u, we introduce the reduced functional J̃d(u) =
Jd(u,f(u)). We apply the Lagrange approach to find the gradient ∇J̃d(u) and define

L(u,f ,p) := Jd(u,f)−
Q∑

m=1

(
(I − δtMm(u)) fm − fm−1

)>
T pm−1,

where I is the N + 1 dimensional identity matrix. Note that we use the discrete L2 inner
product for the constraint and the Lagrange multiplier pm, as the resulting equations for
the Lagrange multiplier form in this case a special disretisation of the adjoint equation
(4.40). It is well-known that

∇J̃d(u) = ∇uL(u,f ,p)

holds, where f and p are given by

∇fL(u,f ,p) = 0, (4.44a)
∇pL(u,f ,p) = 0. (4.44b)

Notice that (4.44b) is equivalent to the Chang-Cooper discretisation (4.43b) of the
governing Fokker-Planck equation. Moreover, we compute, for m = 1, . . . , Q,

∇fmL(u,f ,p) = δm
(
x> T fm − ξl

)
T x− (I − δtMm(u))> T pm−1 + T pm, (4.45)

where pQ is defined to be zero. To account for the observations ξl defining the objective
functional, we define δm = 1 if there exists an index l ∈ {1, . . . , L} such that the equality
τl = tm holds. Otherwise, we set δm = 0 and the first term on the right-hand side in
(4.45) vanishes. Hence, (4.44a) is equivalent to

− p̃m − pm−1

δt
= Mm(u)> pm−1, (4.46a)

p̃m = pm + δm
(
x> T fm − ξl

)
x, (4.46b)

for m = 1, . . . , Q. Compare (4.46) to the adjoint equation (4.40) of the continuous
problem. As one expects that the optimality system of a discretised minimisation problem
converges to the continuous optimality system, the transition matrixMm(u)> can be seen
as a special discretisation of the adjoint second-order differential operator −1

2σ
2 ∂2

∂x2 − b ∂∂x
together with homogeneous Neumann boundary conditions.

Further, the derivative of the Lagrange function L with respect to the minimisation
variable u is given by

∇uL(u,f ,p) = λS u + δt
Q∑

m=1
(∇uM

m(u)fm)> T pm−1,
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where the derivative of the transition matrix Mm(u) with respect to u is computed by
considering the definitions of the Chang-Cooper scheme and the following formulas

dV
duk

= C
ew − 1− w ew

(ew − 1)2
dw
duk

= ew − 1− w ew
(ew − 1)2 h

dB
duk

,

dW
duk

= C
1− e−w − w e−w

(e−w − 1)2
dw
duk

= 1− e−w − w e−w
(e−w − 1)2 h

dB
duk

.

Moreover, as B = 1
2
∂
∂x
σ2 −

K∑
k=1

ukΦk holds, we have dB
duk

= −Φk.
Finally, we present the following algorithm the evaluate the gradient of the reduced

discrete objective functional J̃d
1: Given u ∈ RK .
2: for m = 1, . . . , Q do
3:

fm − fm−1

δt
= Mm(u) fm

4: end for
5: for m = Q, . . . , 1 do
6:

− p̃m − pm−1

δt
= Mm(u)> pm−1,

p̃m = pm + δm
(
x> T fm − ξl

)
x

7: end for
8: Evaluate

∇J̃d(u) = λS u + δt
Q∑

m=1
(∇uM

m(u)fm)> T pm−1

Therefore, any gradient-based optimisation algorithm can be used to solve the discre-
tised minimisation problem and identify the drift of a Fokker-Planck equation, which
corresponds to the dynamics function of a stochastic differential equation.

4.2.6 Numerical Results for the Identification of the Toxicity
Function

In this subsection, we apply the discussed theoretical and computational framework to
the identification of a toxicity function. We use the same measurements of yeast biomass,
sugar, and ethanol concentrations as in the case of the deterministic model; see Sub-
section 4.1.6. In order to reduce the computational effort, we do not extend the full
fermentation model (2.8) to a system of stochastic differential equations, as this would
lead to a five-dimensional Fokker-Planck equation. Therefore, we consider only the equa-
tions for the yeast and ethanol concentration. Moreover, in order to isolate the process
of yeast death we start the simulation of the fermentation process after the growth of the
yeast has ended and the extinction of yeast cells starts. The following system of stochastic
differential equations models this late stage of the wine fermentation, where the growth
term for the yeast equation is neglected. We consider

dXt = −Ψ(Et)Xt dt+σ1 dW (1)
t , (4.47a)

dEt =a1
S(t)

a2 + S(t)
a3

a3 + Et
Xt dt+σ2 dW (2)

t , (4.47b)

Optimal Control and Function Identification in Biological Processes
102



A Function Identification Method

in order to identify the toxicity function Ψ. The Wiener processes W (1)
t and W

(2)
t are

assumed to be stochastically independent and the diffusion is chosen to be constant with
values σ1 and σ2, respectively. Moreover, the time dependent sugar concentration S in
(4.47b) is given by a liner interpolation of the measurement values and is therefore known.
Note that we apply our results to a multi-dimensional model and the formulas for the
Fokker-Planck equation and the corresponding minimisation problem have to be extended
correspondingly.

Let ξX,l denote the measurement of the yeast concentration at time τX,l for l =
1, . . . , LX and correspondingly let ξE,l be the measurement of the ethanol concentration
at time τE,l for l = 1, . . . , LE. We formulate the following minimisation problem

min
Ψ∈H1(R),a∈R3

J(f,Ψ, a) =
LX∑
l=1

λX
2

∫
Ω

x1 f(x, τX,l) dx− ξX,l

2

+
LE∑
l=1

λE
2

∫
Ω

x2 f(x, τE,l) dx− ξE,l

2

+ λΨ

2 ‖Ψ‖
2
H1(R) + λa

2 ‖a− ap‖
2
R3 ,

(4.48a)

subject to

∂f

∂t
− 1

2σ
2
1
∂2f

∂x2
1

+ ∂

∂x1
(−Ψ(x2)x1 f)

− 1
2σ

2
2
∂2f

∂x2
2

+ ∂

∂x2

(
a1

S(t)
a2 + S(t)

a3

a3 + x2
x1 f

)
= 0.

(4.48b)

Similarly as in Subsection 4.1.6, we have to identify the model parameters a = (a1, a2, a3)>
simultaneously and therefore we include the vector a in the minimisation problem with
a regularisation term, where ap is an a priori guess of the optimal parameters. Now,
the Fokker-Planck equation (4.48b) governs the probability density function f of the
stochastic process (Xt, Et), which is the solution of the stochastic differential equation
(4.47).

For the numerical solution of (4.48) we apply the results of Subsection 4.2.5 and
discretise the Fokker-Planck equation by the Chang-Cooper scheme. Therefore, we use
Ω = [−30, 70] × [0, 200] as the computational domain and 51 equally spaced grid points
in each space dimension. We simulate the fermentation process between day 8 and day
29 of the wine fermentation experiment and discretise the interval [8, 29] with 211 time
points. For the initial condition, we assume that (X0, E0) is distributed with a Gaussian
probability density function as follows

f0(x1, x2) = 1
2πσXσE

exp
(
−(x1 − µX)2

2σ2
X

− (x2 − µE)2

2σ2
E

)
,

where µX and µE are the measured values of yeast and ethanol at day 8, respectively.
We choose the variances as σX = σE = 3. Moreover, the diffusion parameters are chosen
constant as σ1 = σ2 = 1, and we use the following regularisation parameters

λX = 1, λE = 1, λΨ = 500, λa = 10.

For the discretisation of the toxicity function, we use, similarly as in Subsection 4.1.6,
30 shifted versions of Wendland’s piecewise polynomial, positive definite, and compactly
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Figure 4.3: Expected values of the stochastic process (Xt, Et) with respect to the optimal
toxicity function Ψ (right) in comparison with measured values for the yeast cell numbers
ξX,l (left) and for the ethanol concentration ξE,l (middle).

supported radial basis functions of minimal degree with nodal points that are equally
distributed between 0 and 200.

The results of the toxicity function identification are obtained by a BFGS optimisation
algorithm and can be seen in Figure 4.3 and Figure 4.4. The probability density function
is used to calculate the expected values of the stochastic process as follows

E[Xt] =
∫
Ω

x1f(x, t) dx, E[Et] =
∫
Ω

x2f(x, t) dx.

The expected values for the yeast cell number and ethanol concentration can be seen in
the left and middle plot of Figure 4.3, respectively. In comparison, the experimentally
measured values ξX,l and ξE,l that are used for the identification procedure are visualised
by blue and purple crosses in the same plots, respectively. We observe that the expected
values of the simulation evolve such that its distance to the measured values is as small as
possible. Moreover, the right plot of Figure 4.3 shows the identified toxicity function. The
measured values of ethanol concentration are contained in an interval that is indicated
by red vertical lines. In this regime, we have information about how the system evolves
and we can expect to identify the toxicity function only in this interval. Note that we
have now a smaller interval compared to the identification in Subsection 4.1.6 due to the
smaller set of measured values. Hence, we cannot identify the toxicity for lower ethanol
concentrations than approximately 45 g

l
, which is supposed to be around zero by the

results of the deterministic function identification. For the interval of interest between
approximately 45 g

l
and 90 g

l
, we observe a plateau at a value of about 0.1 1

d
. This peak is

higher than the one in the corresponding identification process for the deterministic case,
see Figure 4.2, and this discrepancy can have many reasons. On one hand, we have here a
stochastic differential equation and many different realisations for the wine fermentation
process are taken into account, where only the mean value is used for the identification
process. On the other hand, we have a smaller system of equations and simulate only the
second part of the fermentation process. A further aspect that attracts attention is that
the toxicity declines for higher ethanol concentrations, which seems unrealistic at a first
glance. Nevertheless, we have assumed a time independent toxicity function that is valid
for the whole process of the wine fermentation. This assumption is arguable, as the yeast
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cell can also adapt to the new environment with a higher ethanol concentration. Hence,
this decline can be a hint on the fact that yeast cell are exposed to such high ethanol
concentrations only at the end of the fermentation process and have possibly already
adopted to the change in the environmental conditions.

Finally, we can track the evolution of the probability density function f that is calcu-
lated with respect to the optimal toxicity function and optimal parameters in Figure 4.4.
The probability mass that is centred around the point (µX , µE) ≈ (32.8, 45.8) at the be-
ginning of the simulation. In the course of the simulation, this mass is transported in
the direction of lower yeast cell numbers and higher ethanol concentration. Hereby, the
initially symmetric distribution is smeared especially in the direction of the ethanol axis.

Conclusion

In this subsection, we presented one possible extension of the function identification
method for ordinary differential equation presented in Section 4.1. Therefore, we intro-
duced stochastic differential equations and their corresponding Fokker-Planck equations.
We formulated and analysed a minimisation problem that aims to fit the average values
of the stochastic process by choosing the correct representative of the unknown function
from a function space. This enabled us to apply this method to the identification of the
toxicity function for the wine fermentation process. The results of this identification are
comparable to those in the deterministic case with ordinary differential equations. Nev-
ertheless, it is desirable to have more experimental data in order to investigate the toxic
influence of high ethanol concentrations on yeast cells further. Moreover, in this case it
could be possible to evaluate whether a deterministic approach is sufficient for a good
identification procedure or a stochastic model provides better results.
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Figure 4.4: Evolution of the probability density function f computed with respect to the
optimal toxicity function and optimal parameters. Blue colour corresponds to a value of
zero, while red colour indicates high values.
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Chapter 5

Summary

In the context of mathematical modelling, simulation, and optimisation, this thesis pre-
sented various results for the wine fermentation process as a representative biological
model.

First, a refined model for the wine fermentation was described, which takes further as-
pects into account compared to the state-of-the-art models in the literature. In particular,
the dependence of yeast growth on oxygen availability, a sophisticated modelling of the
toxic influence of ethanol, and the spatial inhomogeneity by a system of reaction-diffusion
equations were regarded.

Further, the optimal control of the fermentation process was considered. Therefore,
the minimisation of a suitably defined objective functional subject to the reaction-diffusion
equations modelling the wine fermentation was used to find control temperature profiles.
On one hand, they minimised the remaining sugar at the end of this process and, on the
other hand, a moderate temperature within the fermentation vessel was maintained. In
order to justify the computational approach carried out for this optimal control problem a
rigorous mathematical analysis of the fermentation model and the corresponding infinite
dimensional optimisation problem was presented.

Another aspect discussed here was the identification of an unknown function par-
ticipating in a dynamical model. In the deterministic case, a minimisation problem was
treated subject to an ordinary differential equation, whereas a stochastic differential equa-
tion or rather the corresponding Fokker-Planck equation was regarded in the stochastic
case. In both cases, the differentiability properties of the reduced objective functional
were proven and the existence of minimisers was shown. The unknown function was
discretised by radial basis functions, as this choice offers a simple generalisation for the
treatment of multivariate functions. The proposed function identification method was
applied to the unknown toxicity function of the wine fermentation model and numerical
results were reported both in the deterministic as well as in the stochastic case.

Having gained experience with a biological model with moderate complexity the results
presented in this thesis can be applied to more complex models. One example, which is
worth for consideration, is the optimisation of the fermentation of biogas, as this additional
environmentally friendly source of energy is gaining more and more attention in recent
years.
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