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Abstract

Optical antennas work similar to antennas for the radio-frequency regime and

convert electromagnetic radiation into oscillating electrical currents. Charge

density accumulations form at the antenna surface leading to strong and local-

ized near-�elds. Since most optical antennas have dimensions of a few hundred

nanometers, their near-�elds allow the focusing of electromagnetic �elds to vol-

umes much smaller than the di�raction limit, with intensities several orders

of magnitude larger than achievable with classical di�ractive and refractive

optical elements. The task to maximize the emission of a quantum emitter, a

point-like entity capable of reception and emission of single photons, is identi-

cal to the task to maximize the �eld intensity at the position of the quantum

emitter. Therefore it is desirable to optimize the capabilities of focusing optical

antennas.

Radio-frequency-antenna designs scaled to optical dimensions of several

hundred nanometers show already a decent performance. However, optical

frequencies lie near the plasma frequency of the metals used for optical anten-

nas and the mass of electrons cannot be neglected anymore. This leads to new

physical phenomena. Light can couple to charge density oscillations, yielding

a so-called Plasmon. E�ects emerge which have no equivalent in the very ad-

vanced �eld of radio-frequency-technology, e.g. volume currents and shortened

e�ective wavelengths. Additionally the conductivity is not in�nite anymore,

leading to thermal losses. Therefore, the question for the optimal geometry of

a focusing optical antenna is not easy to answer. However, up to now there

was no evidence that there exist better alternatives for optical antennas than

down-scaled radio-frequency designs.

In this work the optimization of focusing optical antennas is based on an

approach, which often proved successful for radio-frequency-antennas in com-

plex applications (e.g. broadband and isotropic reception): evolutionary al-

gorithms. The �rst implementation introduced here allows a large freedom

regarding particle shape and count, as it arranges cubic voxels on a planar,

square grid. The geometries are encoded in a binary matrix, which works as

a genome and enables the methods of mutation and crossing as mechanism of

improvement. Antenna geometries optimized in this way surpass a compara-

ble dipolar geometry by a factor of 2. Moreover, a new working principle can



be deduced from the optimized antennas: a magnetic split-ring resonance can

be coupled conductively to dipolar antennas, to form novel and more e�ec-

tive split-ring-antennas, as their currents add up constructively near the focal

point.

In a next step, the evolutionary algorithm is adapted so that the binary

matrices describe geometries with realistic fabrication constraints. In addi-

tion a 'printer driver' is developed which converts the binary matrices into

commands for focused ion-beam milling in mono-crystalline gold �akes. It is

shown by means of confocal two-photon photo-luminescence microscopy that

antennas with di�ering e�ciency can be fabricated reliably directly from the

evolutionary algorithm. Besides, the concept of the split-ring antenna is fur-

ther improved by adding this time two split-rings to the dipole-like resonance.

The best geometry from the second evolutionary algorithm inspires a funda-

mentally new formalism to determine the power transfer between an antenna

and a point dipole, best termed 'three-dimensional mode-matching'. There-

with, for the �rst time intuitive design rules for the geometry of an focusing

optical antenna can be deduced. The validity of the theory is proven analyti-

cally at the case of a point dipole in from of a metallic nano sphere.

The full problem of focusing light by means of an optical antenna can, thus,

be reduced to two simultaneous mode-matching conditions � on the one hand

with the �elds of a point dipole, on the other hand with a plane wave. There-

fore, two types of ideal focusing optical antenna mode patterns are identi�ed,

being fundamentally di�erent from the established dipolar antenna mode. This

allows not only to explain the functionality of the evolutionary antennas and

the split-ring antenna, but also helps to design novel plamonic cavity anten-

nas, which lead to an enhanced focusing of light. This is proven numerically

in direct comparison to a classical dipole antenna design.

optical antennas, plasmonics, nano optics, LDOS, evolutionary optimiza-

tion, mode matching



Zusammenfassung

Optische Antennen arbeiten ähnlich wie Antennen für Radiowellen und wan-

deln elektromagnetische Strahlung in elektrische Wechselströme um. Ladungs-

dichteansammlungen an der Antennen-Ober�äche führen zu starken und loka-

lisierten Nahfeldern. Da die meisten optischen Antennen eine Ausdehnung von

wenigen hundert Nanometern besitzen, ermöglichen es ihre Nahfelder, Licht auf

ein Volumen weit unterhalb des Beugungslimits zu fokussieren, mit Intensitä-

ten, die mehrere Gröÿenordnungen über dem liegen, was man mit klassischer

beugender und re�ektierender Optik erreichen kann. Die Aufgabe, die Ab-

strahlung eines Quantenemitters zu maximieren, eines punktförmigen Objek-

tes, welches einzelne Photonen absorbieren und emittieren kann, ist identisch

mit der Aufgabe, die Feldintensität am Ort des Quantenemitters zu maximie-

ren. Darum ist es erstrebenswert, den Fokus optischer Antennen zu optimieren

Optimierte Radiofrequenz-Antennen, welche auf Gröÿenordnungen von we-

nigen 100 Nanometern herunterskaliert werden, zeigen bereits eine gute Funk-

tionalität. Jedoch liegen optische Frequenzen in der Nähe der Plasmafrequenz

von den Metallen, die für optische Antennen genutzt werden und die Masse

der Elektronen kann nicht mehr vernachlässigt werden. Dadurch treten neue

physikalische Phänomene auf. Es entstehen gekoppelte Zustände aus Licht und

Ladungsdichte-Schwingungen, die sogenannten Plasmonen. Daraus folgen Ef-

fekte wie Volumenströme und kürzere e�ektive Wellenlängen. Zusätzlich führt

die endliche Leitfähigkeit zu thermischen Verluste. Das macht eine Antwort auf

die Frage nach der optimalen Geometrie für fokussierende optische Antennen

schwer. Jedoch stand vor dieser Arbeit der Beweis noch aus, dass es für opti-

sche Antennen bessere Alternativen gibt als herunterskalierte Radiofrequenz-

Konzepte.

In dieser Arbeit werden optische Antennen auf eine bestmögliche Fokus-

sierung optimiert. Dafür wird ein Ansatz gewählt, welcher bei Radiofrequenz-

Antennen für komplexe Anwendungsfelder (z.B. isotroper Breitbandempfang)

schon oft Erfolg hatte: evolutionäre Algorithmen. Die hier eingeführte ers-

te Implementierung erlaubt eine groÿe Freiheit in Bezug auf Partikelform und

Anzahl, da sie quadratische Voxel auf einem planaren, quadratischen Gitter be-

liebig anordnet. Die Geometrien werden in einer binären Matrix codiert, welche



als Genom dient und somit Methoden wie Mutation und Paarung als Verbes-

serungsmechanismus erlaubt. So optimierte Antennen-Geometrien übertre�en

vergleichbare klassische Dipol-Geometrien um einen Faktor von Zwei. Darüber

hinaus lässt sich aus den optimierten Antennen ein neues Funktionsprinzip

ableiten: ein magnetische Split-Ring-Resonanz kann mit Dipol-Antennen lei-

tend zu neuartigen und e�ektiveren Split-Ring-Antennen verbunden werden,

da sich ihre Ströme nahe des Fokus konstruktiv überlagern.

Im nächsten Schritt wird der evolutionäre Algorithmus so angepasst, so die

Genome real herstellbare Geometrien beschreiben. Zusätzlich wird er um eine

Art �Druckertreiber� erweitert, welcher aus den Genomen direkt Anweisun-

gen zur fokussierten Ionenstrahl-Bearbeitung von einkristallinen Gold�ocken

erstellt. Mit Hilfe von konfokaler Mikroskopie der Zwei-Photonen-Photolumi-

neszenz wird gezeigt, dass Antennen unterschiedlicher E�zienz reproduzierbar

aus dem evolutionären Algorithmus heraus hergestellt werden können. Auÿer-

dem wird das Prinzip der Split-Ring-Antenne verbessert, indem zwei Ring-

Resonanzen zu einer Dipol-Resonanz hinzugefügt werden.

Zu guter Letzt dient die beste Antenne des zweiten evolutionäre Algorith-

mus als Inspiration für einen neuen Formalismus zur Beschreibung des Leis-

tungsübertrages zwischen einer optischen Antenne und einem Punkt-Dipol,

welcher sich als �dreidimensionaler Modenüberlapp� beschreiben lässt. Damit

können erstmals intuitive Regeln für die Form einer optischen Antenne auf-

gestellt werden. Die Gültigkeit der Theorie wird analytisch für den Fall eines

Dipols nahe einer metallischen Nano-Kugel gezeigt.

Das vollständige Problem, Licht mittels einer optischen Antenne zu fokussie-

ren, lässt sich so auf die Erfüllung zweier Modenüberlapp-Bedingungen reduzie-

ren � mit dem Feld eines Punktdipols, sowie mit einer ebenen Welle. Damit las-

sen sich zwei Arten idealer Antennenmoden identi�zieren, welche sich von der

bekannten Dipol-Antennen-Mode grundlegend unterscheiden. Zum einen lässt

sich dadurch die Funktionalität der evolutionären und Split-Ring-Antennen

erklären, zum lassen sich neuartige plasmonische Hohlraum-Antennen entwer-

fen, welche zu besserer Fokussierung von Licht führen. Dies wird numerisch im

direkten Vergleich mit einer klassischen Dipolantennen-Geometrie gezeigt.

Optische Antennen, Plasmonik, Nano-Optik, LDOS, Evolutionäre Optimie-

rung, Moden-Überlapp
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Chapter 1

Introduction and overview

An optical antenna is a device to convert far-�eld radiation into electrical

energy (=currents) at frequencies in the order of 1014 Hz. This is compara-

ble to the widely established radio-frequency (rf) antennas. However, optical

antennas are often realized from noble metals and show for visible light a phe-

nomenon unknown in rf-technology: particle plasmons polaritons (PPPs) or

short plasmons.

search for 'plasmon'
or 'plasmonic'
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Figure 1.1: Publications per

year in the Web of Knowledge for

'plasmon' OR 'plasmonic'. The

2015 value has been retrieved at

Nov. 24th 2015.

Plasmonics is the science of surface or par-

ticle charge density oscillations coupled to

light, of photons and polaritons interacting at

a surface at frequencies close to the materials

plasma frequency νp. In this frequency regime

the inertia of the metal electrons driven by

the impinging light �elds is not negligible any

more [1]. Plasmons and the resultant e�ects

are a research �eld constantly growing over

the last few years (see Fig. 1.1) which has

several reasons: (i) Optical antennas are of-

ten made from noble metals, an easy to han-

dle material � especially gold that degrades

only very slowly in air. Therefore, most ex-

periments can be performed at ambient conditions. (ii) Nanofabrication tools

have developed to commercially available products allowing a decent control

of structuring materials down to feature dimensions of < 10 nm. (iii) Many

v



�ndings and applications of classical optics and rf-antennas also work with

plasmonic structures, e.g. magneto-optical e�ects [2], often even with bene�ts.

(iv) Noble metals show strong plasmon resonances in the optical regime. Vis-

ible light based technologies in general have a large impact in sensing [3] and

a promising future in information technology [4]. (v) Plasmonic resonators

are often much smaller than the free space wavelength at the same frequency,

making them ideal building blocks for tailoring the optical response of novel

materials, opening e.g. the research �eld of optical meta materials [5] and meta

surfaces [6].

Optical antennas are plasmonic resonators which can be used to scatter light

e�ciently [3,7] or to convert light into heat [8�10]. Yet, the plasmon property

applied most often is their capability to concentrate far-�eld electromagnetic

radiation into highly localized near-�eld hot spots [11]. By so-called focusing

optical antennas the di�raction limit of wave optics [12] can be beaten, which

usually poses a strict barrier for the resolution of optical microscopes working

with re�ecting and refracting elements only. The small focal volume can be

used to enhance imaging resolution which is used for scanning near-�eld op-

tical microscopy [13]1. In addition, the �eld strength can be enhanced, which

connects directly to the local density of states (LDOS) [15] and, therefore,

determines the lifetime of excited quantum emitters (QE) [16], point like en-

tities with electronic energy levels absorbing and emitting single photons. It

has been shown that optical antennas can be used to enhance the spontaneous

emission rate of a dye by a factor of more than 1000 [17]. There are already a

lot of applications realized using focusing optical antennas like single molecule

mapping and spectroscopy [18], optical tweezers [19] or e�cient single photon

sources [20].

This work tries to �nd an answer to the question: What is the optimal

focusing optical antenna?

Figure 1.2 shows the processes involved, when a quantum emitter is coupled

to the far-�eld radiation continuum by means of an optical antenna. It is a

two-step process (compare to a similar description in [21]): Far-�eld radiation

is collected by the antenna, transformed into currents and, therefore, into near-

�elds at the antenna boundary. These near-�elds then transport energy to the

1A history of near-�eld microscopy technologies can be found here [14].



Figure 1.2: Entities and steps involved in the process of excitation/emission en-

hancement of a quantum emitter by means of an focusing optical antenna.

quantum emitter, if it is located in the direct vicinity of the optical antenna.

That is why everything depends on the antenna mode, the current pattern

performing both tasks, the near-�eld and the far-�eld coupling. As inspiration

for an optimal focusing optical antenna, designs from rf-antenna technology

seem to be a good source. However, rf-antennas are usually made from thin,

perfectly conducting wires that only support surface currents and are typically

fed by transmission lines connected at in�nitely narrow gaps [22]. For optical

antennas at frequencies near the materials plasma frequency the general oper-

ation conditions deviate substantially: (i) Antenna wire diameters are compa-

rable to the electromagnetic penetration depth into the wire material leading

to volume currents [23] and therefore to a reduced e�ective wavelength of wire

waves [14]. (ii) Feeding (excitation) of optical antennas is mostly realized by

focused laser beams or point quantum emitters. (iii) high-frequency-related

e�ects such as a �nite conductivity (heat generation) and the 'kinetic induc-

tance' [24] become signi�cant. Therefore optical antenna designs inspired from

the rf-regime, like dipole [25], bow tie [26,27] and Yagi-Uda antennas [28], not

necessarily represent 'optimal' geometries at optical frequencies, despite pro-

viding a decent functionality.

This work makes use of evolutionary optimization with the objective of dis-

covering novel geometries for focusing optical antennas. Their analysis should

o�er new insights into the physics of near �eld focusing. Therefore, chapter 2

introduces the basic physical concepts necessary to understand optical anten-



nas. It starts out with Maxwell's equations, as they are su�cient to describe

all involved plasmonic e�ects. Also far �eld focusing as well as single emitter

emission are reviewed, being sources and detectors for electromagnetic near-

and far-�elds. This chapter also gathers important concepts from rf-antenna

theory, as they later help to understand optical antennas by comparing sim-

ilarities and highlighting di�erences. Finally, the reciprocity theorem will be

introduced, which is the basis of understanding the power transfer between

multiple sources of radiation in arbitrary environments.

Optical antennas are described in detail in chapter 3. After discussing the

behavior of metals at optical frequencies, the concept of the plasmon will be

introduced. A generalized de�nition of optical antennas with emphasis on

possible applications will be given before their basic properties will be walked

through at the example of the dipolar two wire antenna. The current state of

scienti�c knowledge about the coupling between optical antennas and QEs will

be reviewed and the chapter will be concluded by detailing the fundamental

di�erences between optical antennas and both the concepts used to describe

radio-frequency technology and cavity physics.

The methods part explains in chapter 4 the numerical methods used for

this work, the �nite-di�erence time-domain algorithm as well as brie�y the

�nite-element method. Also concepts and vocabulary associated to evolution-

ary optimization is introduced, a powerful heuristic tool to �nd good (but not

necessarily the best) solution to complex problems. This method has been ap-

plied in a few works for plasmonic topics until now, which are reviewed. The

fabrication of metal geometries with nanometer-sized features is the focus of

chapter 5, with an emphasis on focused ion beam milling of monocrystalline

gold �akes. Finally, the confocal microscope as means of optical antenna char-

acterization together with the physics of two-photon-photo-luminescence is

presented in chapter 6.

The results are separated into three chapters. The �rst, chapter 7, contains

a numeric-only proof of principle for a novel kind of evolutionary optimization

scheme applied to focusing optical antennas. It is a genetic algorithm work-

ing with a planar 21×21 matrix with binary entries as genome, to describe

arbitrary shapes made from 10 nm cubic gold voxels. The resulting antenna

geometry outperforms a dipolar reference design by a factor of two. As de-



sired, it also provides insights into its working principle, combining a dipolar

with a split-ring mode, which is the fundamental magnetic resonance with

ring-shaped mode currents. The novel antenna mode permits the realization

of split-ring like modes in the optical regime for the �rst time, too, as kinetic

inductance prohibits resonances below 900 nm for plain split-rings [24].

In chapter 8 the evolutionary algorithm is re�ned to describe realistic ge-

ometries. Furthermore, a 'printer driver' is developed, allowing the direct

fabrication of a simulated structure by means of focused ion beam milling

in monocrystalline gold �akes. Confocal two-photon photo-luminescence mi-

croscopy experiments prove the feasibility of fabrication and the validity of

the numerical results. Additionally, the realistic antenna geometries show an

extension of the split-ring antenna working principle, this time with two split-

ring-like currents coupled to a dipolar antenna mode.

Finally, in chapter 9 a novel theoretical framework is developed to describe

the energy transfer between an optical antenna and a QE. It is a formalism

best described as 'three-dimensional mode-matching' which is derived on the

basis of Poynting's theorem combined with reciprocity. After an analytical

prove for a QE near a sphere model, the next step is to add a second mode-

matching condition based on plane wave illumination to optimize also the far-

�eld coupling of a focusing optical antenna (as depicted in Fig. 1.2). Two types

of optimal antennas mode patterns are identi�ed, which can be used as intuitive

design guide lines for optimal focusing optical antennas. One of the novel

modes allows to fully understand the evolutionary antenna geometry resulting

in chapter 8, the second mode pattern is used to devise a novel plasmonic

cavity antenna geometry, surrounding a QE with gold at the full solid angle

of 4π and, thus, outperforming a comparable dipolar antenna design.

In the end it should be noted that in this work the term optical antenna

is used to describe a distinct functionality, not a device nor a geometry. As

one can use a stone as a hammer, though also as a paperweight, a metal

nanosphere can be termed a 'scatterer' � deforming and redirecting far-�eld

electromagnetic waves � or an 'optical antenna', transducing far-�eld radiation

into electric currents leading to localized near-�elds, scattered far-�elds and

heat. Optical antennas can be optimized to one of these three phenomena.

Therefore, the main question answered in this work could also be: Which shape



constitutes a good focusing optical antenna? This has not yet been answered

in a satisfactory way, in contrast to the case of the hammer. However, this

work is a large step in the right direction.



Part I

Theoretical foundations

1





Chapter 2

Classical electrodynamics

This chapter starts with brie�y introducing Maxwell's equations, while the

subsequent sections will look at some of their implications needed to under-

stand optical antennas: After the �elds in a tightly focused beam of light

are described, the physics of a point dipole in arbitrary environments is de-

veloped which is used to represent quantum emitters like e.g. dye molecules.

The last part shortly reviews general radio frequency (RF) antenna theory,

gives a more detailed analysis of one-dimensional RF-antennas and introduces

the reciprocity theorem. For further reading about classical electrodynam-

ics (at the nanoscale) one should rely on comprehensive standard literature,

e.g. [16, 29], while rf-antenna theory is covered in [22,30].

Recent e�orts in theory and simulation [31�34] have explored the conditions

for quantum e�ects to emerge in the �eld of plasmonics: particle distances

shorter than 0.3 nm or particle sizes smaller than 10 nm lead to tunneling

currents and non-local e�ects [35]. First experiments have been performed

in this novel research �eld called quantum plasmonics [36�40]. However, the

optical antennas presented in this work are more coarse metallic nanostructures

and classical electrodynamics is su�cient to describe their plasmonic behavior.

2.1 Maxwell's equations

Since 1861 classical electromagnetism at the macroscopic scale has a closed

theoretical form, describing the wealth of physical e�ects connected to electric

and magnetic �elds in nearly arbitrary materials as well as their dependency

3



4

on their sources, namely electrical charges and currents. James Clerk Maxwell

gathered and completed the knowledge of his time, which today generally is

written in the di�erential formulation of Oliver Heaviside [41]:

∇ ·D (r, t) = ρ (r, t) (2.1a)

∇ ·B (r, t) = 0 (2.1b)

∇× E (r, t) = −∂B (r, t)

∂t
(2.1c)

∇×H (r, t) =
∂D (r, t)

∂t
+ j (r, t) . (2.1d)

Here E and H denote the electric and magnetic �eld respectively, while D

and B represent the electric displacement �eld and magnetic �ux density. ρ

and j are the charge and current density, respectively, sources of electric and

magnetic �elds.

Electromagnetic �elds and �ux densities can be Fourier-transformed to an

in�nite series of harmonic components of angular frequency ω following e.g. the

relation E (r, t) =
∫
E (r, ω) · e−iωt dω. Here E (r, ω) is denoted as phasor.

Maxwell's equations (2.1) in frequency dependent form using phasors are:

∇ ·D(r, ω) = ρ(r, ω) (2.2a)

∇ ·B(r, ω) = 0 (2.2b)

∇× E(r, ω) = iωB(r, ω) (2.2c)

∇×H(r, ω) = −iωD(r, ω) + j(r, ω) . (2.2d)

If not stated di�erently, in this work the phasor-formulation will be used and

the abbreviation E = E(r, ω).

Fields and �ux densities are linked via the material equations:

D = ε0εr(r, ω)E (2.3a)

B = µ0µr(r, ω)H . (2.3b)

The relative electrical permittivity εr and the relative magnetic permeability

µr are in general material, position and �eld strength dependent second order

tensors. In this work only homogeneous, local, isotropic and linear materials

will be considered, described by a �eld strength independent scalar. In vacuum

εr and µr equal unity and only the vacuum values ε0 = 8.8541... · 10−12 As
Vm

and
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µ0 = 4π · 10−7 Hm−1 remain. They are linked to the vacuum speed of light

c = (ε0µ0)−1/2.

Energy conservation is given by Poyntings theorem, written in di�erential

form for non-dispersive media as:

−
〈
∂W

∂t

〉
=

1

2
Re (j∗ · E) +∇Re (S) (2.4)

, with 〈∂W/∂t〉 being the mean temporal change of energy at a given point

in space and time, j∗ · E the power �ow density by means of electric currents

and S = 1
2
(E ×H∗) the Poynting vector, describing the energy transport via

radiation. Therefore the power �ow in free space or non-conductive materials

through a surface A, described by its normal vector n(a), dependent on the

surface position vector a can be calculated by:

〈P 〉 =

∫∫
A

Re (S) · n da . (2.5)

2.2 Waves and the di�raction limit

Maxwell's equations (2.2c) and (2.2d) can be rewritten into two homogenous

Helmholtz equations for E- and B-�elds in free space (εr = µr = 1 as well as

vanishing σ and j): (
∇2 − k2

)
E = 0 (2.6)(

∇2 − k2
)
B = 0 . (2.7)

The simplest solutions in Cartesian coordinates are propagating plane waves:

E (r, t) = E0 e
ik·r (2.8)

B (r, t) = B0 e
ik·r (2.9)

, with the wave vector k ⊥ E ⊥ B pointing in the direction of propagation and

|k| = 2π/λ, where the vacuum wavelength λ is introduced. The wave vector is

connected to the angular frequency via ω = c · |k| = 2πc/λ, which is the linear

free space dispersion relation.

Di�ractive and refractive optical elements like lenses and mirrors are used in

e.g. microscopes to focus collimated (i.e. parallel) plane waves into converging

plane waves meeting in a focal volume (see Fig. 2.1(a)). The electromagnetic
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energy is concentrated and can be used to image and probe e.g. �uorescing

molecules. However, there is a fundamental limit for the minimal dimensions

of the focal volume and, thus, for the resolution of any device relying on

di�ractive or re�ective elements only.

The image generated by a microscope when looking at a perfect point light

source is called point spread function (PSF). It is always blurred as the op-

tics is not able to capture all k-vectors emitted by the point source (see also

chpt. 2.3.1). The resolution ∆r is the minimal distance between two nearby

point sources, where their overlapping PSFs can still be distinguished. This is

described by the Abbe-limit [12]:

∆r ≈ 0.61
λ

NA
(2.10)

, introducing the numerical aperture NA= n · sin θmax, dependent on the re-

fractive index n of the surrounding medium and the maximum light collection

angle θmax (Fig. 2.1(a)). In case of a microscope objective with e.g. NA =

1.4, two radiating point dipoles oriented perpendicular to the optical axis of

the objective are indistinguishable below a distance of ∆r ≈ 0.61/1.4 = 0.44

times the emission wavelength λ. Clustered molecules with dimensions in the

nm-range or below, thus, cannot be resolved by means of visible radiation with

λ ∈ [400, 800] nm. This is one of the main motivations to research nanoanten-

nas, as they can circumvent the limited far-�eld resolution by accessing optical

near-�elds (see chpt. 3).

A full calculation of the vectorial �elds of an objectives focus is beyond

the scope of this work (compare e.g. chapter 3 to 4 in [16]). However, it is

important to note that for large NAs the resulting �elds show non-negligible

polarization components in all three spatial directions (see Fig. 2.1(b)-(d)).

They can be measured by scanning a point like source of linearly polarized

light through the focus (chpt. 9 in [16]). This has to be kept in mind for all

experiments with polarization dependent samples. Within this work it has

been used to check the quality of a home-built confocal microscope.

Finally, it is worth mentioning that there is a di�erence between resolution,

the ability to separate two nearby objects, and localization, the ability to

measure the exact position of one single object. The latter can be performed

with nm precision also for di�raction limited optics, since it depends on the
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Figure 2.1: Properties of far-�eld focusing: a) sketch of a high NA objective sit-

uated in vacuum and illuminated with monochromatic, x-polarized plane waves. F

denotes the focal plane, the inset depicts the polarization of a strongly di�racted

beam gaining z-polarized �eld components. b)�d): Simulated normalized �eld in-

tensity components E2
x, E

2
y and E2

z in the focal plane of a NA = 1 objective in

vacuum, when illuminated with monochromatic light of λ = 650 nm. The y- and

z-components have been scaled up by a factor of 103 and 4.78 respectively.

ability to �t a model function to the measured PSF in space, hampered by

the signal to noise ratio (SNR) only. Numerous methods like e.g. PALM and

STORM represent the class of so-called far-�eld nanoscopy techniques, which

can retrieve the PSF of single molecules even in clusters [42] (chemistry noble

prize 2014).

The confocal principle In the year 1955 Minsky patented the confocal

microscope [43], which allows imaging with a high SNR by spatially �ltering

the light in the detection path of an optical microscope by means of a pinhole.
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Figure 2.2: The confocal principle: a) The light emitted from a point like sample

S is focused with a lens L onto a pinhole P. Light emitted from b) sources in the

focal plane, but o� the optical axis will be blocked mainly by the plate as well as c)

light originating from sources on the optical axis but o� the focal plane. d) Standard

realization with a point like light source E collimated via a lens and directed to the

sample S by means of a beam-splitter or a dichroic mirror.

The working principle is sketched in Fig. 2.2(a). Light emitted from a point

source S situated in the �rst focal point of the imaging optics L is focused onto

a pinhole P placed at the second focal point of L and, thus, can pass nearly

unattenuated if focal spot and pinhole diameter are about equal. A detector

placed behind the pinhole then registers the photons from the source. Light

not originating from the �rst focal point will be mostly blocked instead (see

Fig. 2.2(b) and (c)). An extended sample cannot be imaged in one shot, but

has to be scanned through the focus. This increases image acquisition times,

but also allows the optical sectioning of a 3D sample into layers perpendicular

to the optical axis, enabling 3D optical microscopy [16].

In addition, illuminating the sample with a di�raction limited spot increases

the resolution of a confocal microscope in x-y-direction by a factor of≈ 1.3 [16],

because the total point spread function PSFtot of the optical system results
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from the multiplication of the excitation and the detection PSF:

PSFtot = PSFexc · PSFdet (2.11)

A possible realization uses a single microscope objective for illumination and

detection as sketched in Fig. 2.2(d) with a beam splitter or dichroic mirror

for separating excitation and detection light path. This setup is comparably

easy to optimize in experiment and allows the insertion of polarizers and �lters

without introducing optical errors, as the light beams between the lenses are

collimated.

The confocal microscopy setup used in this work is described in chapter 6.

2.3 Quantum emitters as classical dipoles

This work focuses on the application of focusing optical antennas for the en-

hancement of quantum emitter (QE) excitation and emission. A QE within this

context is a very small entity that � after excitation by a photon � is capable of

emitting one single photon with a given wavelength via spontaneous emission.

This process can be described by a quantum mechanical two-level system rep-

resenting e.g. atoms, dye molecules, quantum dots and nano-diamonds with

color centers (see Fig. 2.3(a) and chapter 9 in [16]) interacting with the �uc-

tuations of a quantized electrical vacuum �eld in the framework of quantum

electrodynamics (QED).

Fortunately, a QE much smaller than its emission wavelength can be treated

classically as radiating point dipole with respect to emission pattern and emis-

sion power enhancement in inhomogeneous environments [15]. This allows

to calculate the interaction between a single QE and a nanoantenna using

Maxwell's equations (2.1).

2.3.1 Point dipole in free space

A point dipole oscillating with frequency ω and located at r′ can be described

by a source current jp:

jp(r) = −iωpδ (r− r′) (2.12)
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, with p being the dipole moment and δ(r) the Dirac delta function. To yield

the electric �elds originating from a given current distribution in free space,

the scalar Green's function

G0(r, r′) =
eik|r−r

′|

4π |r− r′|
(2.13)

is needed (see e.g. [29]), solving the inhomogeneous Helmholtz equation for a

point perturbation: (
∇2 − k2

)
G0(r, r′) = −δ (r− r′) . (2.14)

The electric �elds resulting from an arbitrary current density j can then be

calculated via:

E(r) = iωµ0µ

∫
V

Ḡ(r, r′) · j dV (2.15)

, where Ḡ(r, r′) is the dyadic Greens function, a second order tensor which can

be derived from the scalar Greens function:

Ḡ(r, r′) =

(
Ī +

1

k2
∇∇

)
G0(r, r′) . (2.16)

Here Ī is the second order unity tensor. For the current density of a point

dipole eq. (2.12) the delta function and the integral in eq. (2.15) cancel each

other, resulting in

Ed = ω2µ0Ḡ · p (2.17)

, as no magnetic materials are considered in this work and therefore µ = 1.

The resulting �elds for a dipole localized at r′ = ~0 are:

Ed(r) =
1

4πε0

eikr

r

{
k2 [(n× p)× n] +

1

r

(
1

r
− ik

)
[3n (n · p)− p]

}
(2.18a)

Bd(r) =
1

4πε0

eikr

r
k2

(
1− 1

ikr

)
n× p (2.18b)

, with r = |r| and n = r/r.

Dipole �elds can be classi�ed depending on the distance from the source:

(i) The far-�eld regime for distances with k · r � 1 is described by the

term proportional to r−1, yielding spherical transverse waves traveling radially

outwards with E⊥H⊥k. They are transporting energy and information over

long distances with the characteristic toroidal shaped far-�eld emission pat-

tern showing vanishing emission power in the directions along the dipole axis



11

Figure 2.3: Properties of quantum emitter: a) Examples of quantum emitters,

which in �rst approximation can be treated as two-level systems (inset: decay from

the excited state |2〉 to the ground state |1〉 leads to the emission of a photon (red)):

dyes, quantum dots or color centers in diamond (missing and/or replaced C-atoms).

b)�d) Direction (green arrows) and normalized log
(∣∣E2

∣∣) (colored) of the �elds in

the x-z-plane originating from a radiating point dipole oriented along the x-axis

in vacuum (white sphere with black arrow pointing in the direction of the dipole

moment). The overall dimensions of the plots are denoted at their top center showing

the far-�eld regime b) with the white dashed line being the planar cross section

through the toroidal shaped emission pattern, intermediate regime c) and near-�eld

regime d).

(Fig. 2.3(b)). These are the �elds collected and analyzed by classical far-�eld

optical microscopy.

(ii) In the intermediate regime with k · r ≈ 1 the �elds are dominated by

the terms proportional to r−2 (Fig. 2.3(c)).

(iii) The near-�eld regime with k · r� 1 is proportional to r−3. In contrast
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to the far-�eld radiation pattern the strongest �elds are concentrated along

the dipole axis (Fig. 2.3(d)):

Bd =
1

4πε0

ik

r2
(n× p) (2.19)

Ed =
1

4πε0

3n (np)− p

r3
. (2.20)

The electric �elds are identical to the �elds of a static dipole multiplied by the

oscillation term eiωt.

The mean power 〈P 〉 radiated by a point dipole situated in free space with

a constantly driven dipole moment is given by [29]:

〈P 〉 =
ω4

12πε0c3
· |p|2 . (2.21)

This result originates from the surface integral eq. (2.5) of the Poynting vector

over a closed spherical surface in in�nite distance.

Quantum mechanically the emission process takes no time. However, the

statistics of the excited states lifetime shows an exponential decay with a char-

acteristic excited state life time τ . It de�nes the emission rate γ = 1/τ , the

amount of photons emitted per time, under the condition that the dipole is

instantaneously re-excited after each emission event. In the classical represen-

tation the total power P0 emitted by an excited point dipole in free space gives

a measure of the time needed to emit all initial energy. Therefore, the emission

rate γ can be directly identi�ed as the damping constant in an undriven clas-

sical oscillator model, where a charge e with mass m oscillates with frequency

ω [15]:
d2

dt2
p(t) + γ

d
dt
p(t) + ω2p(t) = 0 . (2.22)

This �nally leads to:

P0 =
2e2ω3

3c3m
(2.23)

and, therefore, to an excited state life time of τ ≈ 10 ns for a QE in the optical

wavelength regime. This is slow compared to other processes like internal losses

like the generation of phonons and can be also explained by the size mismatch

between QE and free space wavelength (see eq. (2.42)).

As just mentioned, realistic QEs have additional intrinsic decay channels,

originating in e.g. additional energy levels. An additional parameter ηi can be
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p εr
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Figure 2.4: A dipole p emits electric �elds Ed which are scattered by an object

with a dielectric constant ε. The scattered �eld Esc will interact with the dipole and

alter its emission power.

introduced, describing a QEs intrinsic quantum e�ciency

ηi =
P0,rad

P0,rad + P0,nr
(2.24)

, yielding the amount of emitted photons per excitation event. Intrinsic losses

P0,nr due to the existence of additional energy levels, the excited state can relax

non-radiatively to, reduce the radiative power P0,rad reaching the far-�eld. η

can be very small, like ηi ≈ 0.0001 for carbon nanotube �uorescence [44] but

can also be near unity as for semiconductor quantum dots coupled to photonic

crystals [45].

2.3.2 Point dipole in arbitrary environments

If the environment of an excited dipole is inhomogeneous, its emission rate

can change due to constructive or destructive self-interference with the back

scattered �eld Esc as sketched in Fig. 2.4. The �rst theoretical description

of spontaneous emission enhancement was given by Purcell in 1946 for a QE

situated in a resonator cavity [46], theoretical and experimental results for

simple geometries can be reviewed in the work of Drexhage [47].

To describe the in�uence of Esc it can be added to eq. (2.22) as driving

force:
d2

dt2
p(t) + Γ0

d
dt
p(t) + ω2

0p(t) =
e2

m
Esc . (2.25)

This leads to a relative change of the emission power compared to the free

space case [16]:
P

P0

= 1 +
6πε0

|p|2
1

k3
Im [p∗ · Esc(r)] . (2.26)
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Therefore, to realize maximum radiation enhancement the scattered �eld at

the dipole location should be as strong as possible and pointing in the direction

of the emission dipole moment. Equation (2.26) also takes into account the

phase between dipolar moment and scattered �eld ∆φ = φsc − φp, which is

distance dependent [47]. One can write

Im {Esc(rp) · p∗} = |Esc(rp) · p| Im
{
ei∆φ

}
. (2.27)

Quantum mechanically the emission rate γ21 of an excited QE in an arbi-

trary environment is given by Fermi's golden rule [15]:

γ21 ∝ d21 · ρ21(r0, ω) (2.28)

, where d21 denotes the dipole transition matrix element and ρ21(r, ω) the

local density of states (LDOS) de�ned by the environment at the position r0

of the SE for its emission frequency ω. The LDOS includes all �nal states of

photons emitted from the excited QE and is for free space described by the

Rayleigh-Jeans law [48]. The self-interaction in an environment can change the

LDOS on a large scale. Cavities and photonic crystals [49] as well as plasmonic

nanostructures (see chpt. 3.3.3) are the most e�ective means.

In the semi-classical picture it is possible to express the LDOS via the

Green's tensor [16]:

ρ21(r0, ω) = −2ω

π
Im
[
p̂ · Ḡ(r0, r0, ω) · p̂

]
(2.29)

, with p̂ the normalized vector pointing in the direction of the QE's dipolar

moment.

This leads to the total QE emission rate [16]:

γ =
ω3 |p|2

2c2ε
Im
[
p̂ · Ḡ(r0, r0, ω) · p̂

]
(2.30)

, which is formally identical to eq. (2.26). It turns out that the relative emis-

sion power enhancement of a classical dipole equals the relative emission rate

enhancement of a quantum mechanical two level system [15]:

P

P0

=
γ

γ0

. (2.31)

This allows to study the in�uence of e.g. optical antennas on the emission rate

of quantum emitters by solving classical Maxwell's equation and, therefore,

the use of numerical methods (see chpt. 4).
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It is important to note, that eq. (2.30) captures the QEs total emission rate

which further will be transformed into both radiative power, �nally reaching

the far-�eld, and non-radiative power, which adds to the thermal energy of the

environment. Additionally, a non-unity QE quantum e�ciency ηi < 1 changes

with LDOS: as each decay channel has equal probability, additional emission

channels will lower the relative amount of intrinsic decay events.

The Purcell e�ect describes the decreased excited state life time of a QE

by connecting the LDOS with the quotient of a cavities mode volume V and

the quality factor Q = ∆νc/νc of its resonance [46]. The maximum achievable

spontaneous emission enhancement at the cavities resonance frequency νc and

at the point of highest �elds within the cavity is then given by the Purcell

factor:

FP =
P

P0

=
3

4π2

λc
n
· Q
V

(2.32)

, with λc = c/νc the free space resonance wavelength of the cavity and n the

refractive index of the cavity volume. This derivation of the Purcell Factor,

well-established for laser resonators and photonic crystal cavities, works only

for a �nite set of normal cavity modes within the resonator showing no (or in

�rst approximation minimal) losses. Then, the mode volume is not diverging

and is de�ned by

V =
1

ε0n2

∫
V

ε(r) |E(r)|2 dV . (2.33)

2.4 Radiofrequency antennas

More than 120 years ago Heinrich Hertz experimentally discovered the transfer

of energy through air via electromagnetic waves at radio frequencies (rf) [50].

He used two electrically powered devices � nowadays called antennas � that

work as transducers between traveling far-�eld electromagnetic waves and lo-

calized currents/electric �elds. The following review of rf-antenna principles

will help to understand similarities and di�erences to optical antennas in later

chapters.
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2.4.1 General properties

Antennas are made from metal, with free electrons displaceable within their

boundaries. At rf-frequencies metals behave like a perfect conductor with

in�nite conductivity σ → ∞, shielding external �elds instantaneously and

completely. The shape of an antenna de�nes boundary conditions for the

solution of the source-free Helmholtz equation eq. (2.14), leading to a distinct

set of eigenmodes. Linear combinations of these eigenmodes can describe all

possible current density patterns within the antenna geometry. The currents

are sources to electric and magnetic �elds outside the antenna volume, which

can be classi�ed into the three regions near-�elds, intermediate �elds and far-

�elds in dependence of the distance to wavelength ratio, exactly as for point

dipoles (compare to chpt. 2.3).

Antenna modes can be driven by an external voltage or a current applied

directly at the boundary making the antenna work as an emitter. Alternatively,

impinging electromagnetic waves can drive internal electrical currents, which

can be analyzed or used to power a device: the antenna then works as a

receiver. A set of two antennas, one used as emitter and one as receiver, can

thus transmit energy and/or information.

The feeding of an emitting antenna is usually realized by an electric gen-

erator connected via a thin transmission line in two fundamentally di�erent

variations: (i) current feeding: the transmission line is attached to a position,

where the antenna mode has maximum current density. Charges �ow between

the transmission line and the antenna periodically. (ii) voltage feeding: the

transmission line is attached to or ends in close distance to positions of high

charge carrier density of the antenna mode. The charges within the antenna

are only relocated within its volume.

The transmission of energy from an electrical generator to an antenna can

be described by means of impedance (complex resistances) Z = R + iX with

R the real value called resistance and Z the imaginary part called reactance.

It can be modeled with a Thévenin equivalent circuit as depicted in Fig. 2.5

with Zg for the generator impedance and Za the antenna impedance [22]. The

condition for optimal power transmission from generator to antenna, leading

to a minimal back re�ection into the feeding transmission line, is given by [22]:
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Figure 2.5: Thévenin equivalent circuit for an emitting antenna driven by a gener-

ator delivering a voltage Ug and a current Ig. Zg and Za are the complex impedances

of the generator and the antenna respectively.

Xa = −Xg (2.34)

and called impedance matching. The real part of the antenna impedance

describes all power loss channels:

Ra = RΩ +Rrad (2.35)

, with Rrad being the loss of power due to emission of far-�eld radiation and

RΩ being the Ohmic losses generating heat. The later is vanishing for most

rf-applications due to the material being nearly an ideal conductor, but will

become an important quantity for optical antennas.

Rrad and thus the power emitted from a driven antenna can be calculated

via the pointing vector (2.5). The �elds E and H can be derived from the

antennas current distribution ja via the vector potential A(r) [30]:

A(r) = µ0µr

∫
V

ja(r
′)G0(r, r′) dV ′ (2.36)

H(r) = ∇×A(r) (2.37)

E(r) =
1

−iωε
∇×H(r) . (2.38)

Here, G0 is the Green's function eq. (2.13) of the inhomogeneous Helmholtz

equation and V is the volume of the antenna. The radiation is not isotropic,

but shows a radiation pattern p(θ, φ), this is the angle dependent distribution

of radiated far-�eld energy per solid angle at in�nite distance. It holds:

Prad =

∫ π

0

∫ 2π

0

p(θ, φ) sin θ dφ dθ . (2.39)
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Antennas can also be understood as resonators, a combination of a capac-

itance due to charge accumulations at the antenna surface and a inductance

due to oscillating electrical currents �owing along the wire. This allows to rep-

resent an antenna as a RLC-circuit de�ning its antennas impedance Za as well

as its resonance frequency ω0. The damping of the resonance due to radiation

can be described via the quality factor Q [16]:

Q =
ω0

∆ω0

=
Z0

Ra

(2.40)

, with ∆ω0 being the width of the resonance and Z0 =
√
ε0/µ0 being the radi-

ation resistance of vacuum. Therefore, to make an antenna a good resonator

with a sharply de�ned resonance, Ra should be minimal. Neglecting Ohmic

losses and following eq. (2.35), minimizing R will on the other side spoil the

antennas function as emitter/receiver.

2.4.2 Characteristics of 1D antennas

Long, thin and straight wires of metal are easy to fabricate and show very

good coupling to far-�eld radiation, making them the most common form of

antennas. They are mathematically easy to describe since a major simpli�ca-

tion is applicable: since the wire diameter is much smaller than the emitted

wavelength (mm vs. m), the antenna can be described as 1D-system.

Oscillating currents on a straight 1D wire will be re�ected at an open end

with a phase shift of π. Wires with two open ends lead to standing wave

patterns with vanishing currents as well as charge accumulations at the wire

ends. For perfect metals current waves travel with the speed of light c and a

given (rf-)frequency ν therefore leads to a wavelength of λ = c/ν. For a wire

antenna driven at its center in an in�nitely narrow feed gap, maximum current

amplitudes are expected at overall antenna lengths of l = n
2
λ with n ∈ N.

The lowest modes n = 1, 2 are therefore the λ/2- and the λ-antenna. For

the λ/2-antenna the current density amplitude is given as:

j(x) = j0 sin

[
k

(
l

4
− |x|

)]
, |x| ≤ λ

4
(2.41)

, with j0 being the current amplitude at the feed point (resembling current

feeding) and k = 2π/λ being the wave number as depicted in Fig. 2.6(a).
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Figure 2.6: Time independent current density (blue) and charge density (green)

amplitudes for a) a λ/2-antenna and b) a λ-antenna [30]

Figure 2.6(b) shows a λ-antenna, where no current is �owing at the feed point

(voltage feeding). This is the case for most optical antennas comprised of two

particles, as will be described in chapter 3.3.3.

The total emission power Pr can be calculated easily only for a very short

linear antenna with a length of ∆l� λ. In this case it is given by Pr = 1
2
I2 ·Rr,

where I is the driving current �owing through the antenna and Rr is the

radiation resistance given as [30]:

Rr = 80π2

(
l

λ

)2

. (2.42)

This result is quite important, as the dependence of the radiation power to

the antenna length relative to the emission wavelength explains classically the

long excited state life time of quantum emitters (see section 2.3).

The far-�eld radiation patterns of linear antennas show cylindrical symme-

try and are solely dependent on the angle θ between the antenna axis and the

radial radiation direction [22]:

p(θ, ϕ) ∝ cos (kl/2 cos θ)− cos (kl/2)

sin θ
. (2.43)

The results for four antennas with di�erent lengths are plotted in Fig. 2.7

as rotational symmetric cross section and as cylindrical projection of the full

upper half space1. Figure 2.7(a) shows the polar coordinate system used to plot

1Introduced for better comparison with the results of complex shaped antennas without

cylindrical symmetry in chpt. 7.
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Figure 2.7: Far-�eld radiation patterns of linear 1D radio-frequency antennas ori-

ented along the x-axis. a) Visualization of the used polar coordinate system with

colored lines for orientation in the cylindrical projections. b)-d) radiation pattern for

l = λ/2, λ and 3λ/2. The left plot shows the cross section in the x-y-direction, the

right a density plot of a cylindrical projection (see text for discussion). Additionally

in b) the cross section for l = 0.05λ is added as dashed line.
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the 2D-projection of the 3D radiation pattern, which is identical to the Miller

cylindrical projection used for cartographic maps [51]. Figures 2.7(b) and

(c) show the cross sections of the typical doughnut shaped emission pattern

for short dipolar antennas. As the antenna length increases, the maximum

emission perpendicular to the antenna axis is more pronounced, until at l ≈
1.2λ the emission pattern develops additional lobes [30]. This is caused by

multiple dipoles on the antenna wire interfering with each other in the far-

�eld, which is only possible if the antenna length is larger than the radiation

wavelength. For the case of very short antennas � like point dipoles (see

chpt. 2.3) or small metal particles (see chpt. 3.2) � the dashed line in Fig. 2.7(b)

describes the dipolar emission pattern, showing the least directivity D. The

directivity D of an antenna is a measure for the deviation of an antennas

radiation pattern from isotropic spherical radiation into the full solid angle of

4π. It is de�ned as the maximum of the directive gain

D = max (D(θ, ϕ)) with (2.44)

D(θ, ϕ) =

(
4π · p(θ, ϕ)

Prad

)
. (2.45)

Prad is the integrated radiated power, de�ned in eq. (2.39). Where the isotropic

radiator would have D = 1 an ideal thin wire λ/2-dipole antenna has a direc-

tivity of Dλ/2 = 1.64 and a QE has DQE = 1.5. The directivity can also be

written in decibel normalized to the isotropic radiator: D[dBi] = 10 · log10 (D).

2.4.3 Reciprocity theorem

The reciprocity theorem is a powerful tool to describe the power transfer be-

tween two radio-frequency antennas [30] as well as the data acquisition and de-

convolution for scanning optical near-�eld microscopy (SNOM) [52]. The reci-

procity theorem exists in di�erent theoretical formulations [53]. The Lorentz-

lemma is the most concrete, connecting two source currents j1 and j2 in dif-

ferent volumes made from conductive material via their generated electrical

�elds E1 and E2 (see Fig. 2.8):∫
E1 · j2dV =

∫
E2 · j1dV . (2.46)

Together with the de�nition of the electrical power (compare with eq. (2.4)):

Pel = j · E (2.47)
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Figure 2.8: Setting for the reciprocity theorem in this work: Two volumes made

from conductive materials situated in free space and with intrinsic currents j1 and j2

are sources of the respective �elds E1 and E2 which penetrate the other particle. The

environment can incorporate other particles or surfaces with a dielectric constant ε

(�gure originally composed for [54]).

, reciprocity is identical to a symmetry of energy transfer between given current

patterns or modes: P1→2 = P2→1.

For the deduction of the Lorentz-lemma we begin with two source currents

j1,2 and their resulting �elds E1,2 obeying Maxwell's equations :

∇× E1,2 = −iωµH1,2 (2.48)

∇×H1,2 = −iωεE1,2 + J1,2 . (2.49)

These can be used to establish the following relationship:

∇ (E1 ×H2 − E2 ×H1) = E2J1 − E1J2 . (2.50)

By integration over the whole volume containing the currents and applying

the divergence theorem on the left side of the equation, one gets:∮
(E1 ×H2 − E2 ×H1) dS =

∫
(E2J1 − E1J2) dV . (2.51)

This is correct as long as the integration volume contains the two source cur-

rents. By setting its shape spherical and increasing its radius to in�nity r →∞
one can rework the left side of eq. (2.51). Since at in�nity every far-�eld electro-

magnetic wave can be decomposed into spherical waves, it ful�lls the condition:

Eθ = ηHφ and Eφ = ηHθ (2.52)
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, stating that perpendicular E- and B-�elds just di�er by a constant factor η.

The integral on the left side of eq. (2.51) therefore equals zero and one yields

�nally the Lorentz-lemma eq. (2.46).

The Lorentz-Lemma is used within this work to calculate the emission en-

hancement of quantum emitters near an optical antenna, by numerically evalu-

ating the antennas mode under Gaussian excitation. Additionally this version

of reciprocity was applied in a work about quantum emitter detection via single

mode �bers, which will not be presented here [54].

Another version of reciprocity is the Green's function reciprocity:

Ḡ(r1, r2) = Ḡ(r2, r1) (2.53)

, which has in this form �rst been introduced in the text book by Julian

Schwinger [55].

Its derivation starts with the solution of the extended Poisson equation [55],

which describes the electric potential at positions r1/2 of a (quasi-)static point

charge located at r in a medium described by a local ε:

−∇
[
ε(r)∇Ḡ(r, r1)

]
= 4πδ(r− r1) (2.54)

−∇
[
ε(r)∇Ḡ(r, r2)

]
= 4πδ(r− r2) . (2.55)

By subtracting eq. (2.55) from eq. (2.54) after multiplication with Ḡ(r, r1/2)

respectively, one yields:

∇
{
ε(r)

[
Ḡ(r, r1)∇Ḡ(r, r2)− Ḡ(r, r2)∇Ḡ(r, r1)

]}
=

= 4π
[
δ(r− r1)Ḡ(r, r2)− δ(r− r2)Ḡ(r, r1)

]
. (2.56)

The left side of this equation has been obtained using additionally the identity

[55]:

φ∇ · (λ∇ψ)− ψ∇ · (λ∇φ) = ∇ · [λ(φ∇ψ − ψ∇φ)] . (2.57)

In the next step both sides of eq. (2.56) are integrated over the volume of a

large sphere S containing all points r, r1, r2:

1

4π

∮
S

[{
ε(r)

[
Ḡ(r, r1)∇Ḡ(r, r2)− Ḡ(r, r2)∇Ḡ(r, r1)

]}]
dS =

= Ḡ(r1, r2)− Ḡ(r2, r1) (2.58)
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, where the divergence theorem was applied to the left side. For an in�nitely

large integration sphere with R → ∞ the integral vanishes, since the Green's

functions are proportional to 1/R, hence Ḡ∇Ḡ ∝ 1/R3. Therefore, one ob-

tains eq. (2.53).

The Green's function reciprocity will be used in chapter 9 to establish a

novel mode-matching formalism for describing the coupling between an optical

antenna and a quantum emitter.



Chapter 3

Focusing antennas for visible light

The very �rst idea that might come to ones mind who wants to realize optical

antennas working in the visible light regime is to scale down geometries sug-

gested by radio-frequency (rf) antenna theory. This leads to structures with

dimensions of several hundreds of nanometers, which are nowadays established

building blocks for real photonic applications. Yet, optical antennas behave

di�erent to their rf-counterparts due to metals not being ideal conductors in

the optical frequency regime anymore, showing loss and dispersion instead.

Consequently, this chapter starts describing the response of gold at visible fre-

quencies, as representative for plasmonic materials which is used within this

work exclusively.

Next, plasmon-polaritons � coupled oscillations of electromagnetic waves

and electrons � will be introduced as the physical basis of optical antennas,

which will then be described together with an overview over possible applica-

tions. Essential properties of optical antennas applied for focusing light will be

explained at the example of a linear two-arm geometry. Then, the interaction

between quantum emitters (QEs) and optical antennas is reviewed together

with attempts to model the underlying physics based on the two established

concepts 'impedance' and 'Purcell factor'. Finally the state-of-the art of design

guide lines for optimizing focusing antennas is presented.

25
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3.1 The dielectric function of gold

Despite optical antennas consisting from metallic nanoparticles, the number

of electrons is in many cases su�cient to describe the material response by the

macroscopic semi-classical Drude-Lorentz-bandstructure model [29]. Only for

metal particles with lateral dimensions smaller than 10 nm, extended models

have to be introduced (see e.g. [31,56]), which will not be discussed within this

work.

The description of metals within the framework of Maxwell's equations (2.2)

is realized via the frequency dependent permittivity εr(ω) and permeability

µr(ω) (see eq. (2.3)), the latter being set to unity within this work. For metals

the permittivity, also called dielectric function, is a complex quantity εc(ω) =

ε′(ω) + iε′′(ω). By comparison with the forth Maxwell's equation (2.2d) the

imaginary part can be related to the conductivity σ:

ε′′(ω) =
iσ(ω)

ε0ω
(3.1)

, yielding a simpli�ed version:

∇×H = −iωε0εrE + σE = −iωε0

(
ε− σ

iωε0

)
E

= −iωε0εcE . (3.2)

In the rf-regime εc describes a perfect conductor without any resistance. Charges

always move in surface layers very thin compared to all device dimensions and

can be treated as surface currents. They shield impinging oscillating electro-

magnetic �elds from the bulk material instantaneously.

This is not the case anymore for visible light with frequencies near the metal

plasma-frequency ωp, where the bandstructure-dependent e�ective mass m∗ of

the conduction electrons is not negligible anymore. ωp is de�ned as:

ωp =

√
Ne2

ε0m∗
(3.3)

, where N is the free electron density, e = −1.6022 · 10−19 C the elementary

electron charge and ε0 the vacuum permittivity. Gold has a plasma frequency

of νp = ωp/(2π) = 2.183 ·1015 Hz, which resembles to a near UV wavelength of

λp = 137 nm. In general incident waves with λ > λp will be re�ected by a metal
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while wavelengths λ < λp will be absorbed or transmitted due to the phase

di�erence between photons and oscillating electrons. Therefore, visible light

will be re�ected by Au like rf-waves but the proximity to λp leads to a slightly

delayed response to external �elds and, thus, to an increased penetration depth

as well as to absorption due to Ohmic losses.

A simple way to describe the dielectric function of metals is the Drude

model (described in detail in e.g. [57]), which takes only the free electron gas

into account:

εD(ω) = 1−
ω2
p

ω2 − iγω
(3.4)

, with γ being a damping constant taking into account the mean free electron

path inside the metal. Fitting eq. (3.4) to experimental data of e.g. Johnson

and Christy [58] yields a good representation of the dielectric function from

in�nite wavelengths (= static �elds) down to about λ = 700 nm (upper panel

Fig. 3.1).

Visible light of higher energies can excite interband transitions, lifting bound

electrons from the valence band to unoccupied states in the conduction band.

To describe the resulting additional response one can add a term εL(ω) to the

Drude-model resembling a Lorentz-oscillator with frequency ω0, thus yielding

the Drude-Lorentz-model:

εDL(ω) = εD(ω) + εL(ω) (3.5)

with εL(ω) = 1 +
ω̃2
p

(ω2
0 − ω2)− iγ̃ω

. (3.6)

The valence band electrons are described by a separate plasma frequency ω̃p
and damping constant γ̃. The result for adding a single Lorentz-oscillator with

an energy of 2.64 eV (λ = 470 nm) is depicted in the center of Fig. 3.1. The

�t is improved down to a wavelength of λ ≈ 500 nm.

The Drude-Lorentz-model can �t arbitrary dielectric functions by adding

an in�nite number of Lorentz-oscillators. But this resembles a collection of

�t parameters without underlying physical principles. Instead, Etchegoin et

al. developed a method of critical points, introducing asymmetric Lorentz-

peaks [59]. Their �t of ε is shown in the lower panel of Fig. 3.1. Despite

the original publication presenting slightly incorrect model parameters, it still

provides a quite decent �t which was used in all simulations in this work for
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Figure 3.1: Real and imaginary part of the dielectric function εc(ω) for gold. The

data points are measured values from [58] while the lines show �ts using a simple

Drude-model (top), a Drude-Lorentz-model with a single interband transition at λ0 ≈
470 nm (center) and the Etchegoin model [59] (bottom; see text for explanation).

The blue lines denote λ = 650 nm and 830 nm.
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Figure 3.2: Wavelength-dependent penetration depth of gold (red; modeled after

[60]) and aluminum (black; data from [63]). The red dots are the gold data from

Johnson and Christy [58] for comparison. Also denoted as dashed lines are the

wavelengths of 650 nm (blue) and 830 nm (green) which get important in later

chapters.

full comparability (solid line). The erratum [60] gives better model parameters

and the resulting ε is added as dashed line.

The dielectric function is connected to the complex refractive index ñ =

n+ iκ via:

ε′ = n2 − κ2 and ε′′ = 2nκ (3.7)

, with κ describing the damping of waves inside the material. This allows to

compute the penetration depth d of electromagnetic radiation into the metal,

where the �eld intensity is reduced by a factor of 1/e2:

d =
λ

4πκ(λ)
. (3.8)

The penetration depth of gold is plotted in Fig. 3.2 together with the values for

aluminum (Al). Recent literature proposes Al as a promising future material

for plasmonics in the near UV range (e.g. [61]) due to its high plasma frequency

of νp = 3.57·1015s−1 (λp ≈ 83 nm), when the drawback of oxidation in ambient

conditions is taken into account [62].

It has to be mentioned that for the dielectric function of gold the data set

of Johnson and Christy [58] has been taken as standard for the majority of
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publications. Yet the morphology of thin gold �lms used as fabric for plas-

monic structures can vary drastically, which also changes the e�ective optical

response. Olmon et al. [64] have examined gold surfaces realized by three dif-

ferent methods (evaporation, template stripping and single crystalline growth).

Their results deliver a low error data basis for better material �ts, however,

they do not vary much from Johnson and Christy values. Despite small changes

in resonance positions and quantum e�ciencies, the fundamental discussion of

later results will not be a�ected.

3.2 Plasmons

Solving Maxwell's equations (2.2) for a planar interface separating a metal

from a dielectric yields in addition to free-space radiation another homoge-

neous solution, a surface wave traveling along the boundary plane as sketched

in Fig. 3.3(a). These waves involve not only �elds, but also charge density oscil-

lations of the metal electrons near the surface and are therefore called surface-

plasmon-polariton (SPP). They can be described quantum-mechanically as

coupled state between photons (polariton) and charge density waves (plas-

mons)1. The term plasmonics refers mostly to photonic (information-)technolo-

gy based on surface-plasmon-polaritons.

The metal halfspace is described by a complex dielectric function εm(ω) =

ε′m(ω) + i ε′′m(ω) and the dielectric by a real dielectric function εd(ω), leading

to a solution for the electric �elds given as [1]:

ESPP =


ESPP,x

0

ESPP,z

 eikxx−iωteikzz (3.9)

, where the boundary plane coincides with the x-y-plane and the wave trav-

els in positive x-direction. For a given free space wavelength λ the plasmon

wavelength λSPP = 2π/kSPP is shorter than the free space wavelength:

λSPP =

√
ε′m + εd
ε′m · εd

λ . (3.10)

1In this work we are never considering bulk plasmons which can't couple to free space

photons (read [65] for a limiting case in thin shells). We will from now on use the term

plasmon as a convenient abbreviation of SPP � like in most of the recent literature.
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Figure 3.3: Surface plasmon properties. a) Sketch of surface plasmons wave trav-

eling along an metal-dielectric interface in positive x-direction with a k-vector k.

Fields E are coupled to charge density oscillations built up by the current density j,

which give rise to a con�nement of electromagnetic energy in z-direction. b) Qual-

itative sketch of the plasmon dispersion relation (blue) together with the light line

(black). The dashed line is the surface plasma frequency ωSP, being the asymp-

tote for large k-vectors. The inset shows the imaginary z-component of the �elds,

decaying exponentially with distance from the surface.

This is also visible in the plasmon dispersion relation, which is qualitatively

given in Fig. 3.3(b)2. For low frequencies the linear dispersion of light (light

line � black) and the plasmon dispersion (blue) are nearly identical. For larger

frequencies the plasmon k-vector increases faster, leading to a shortened wave-

length compared to the light line, as the mass of the metal electrons inhibits

the oscillation amplitude. There is a upper limit to the plasmon frequency,

which is material-dependent and is de�ned, where the real part of its dielectric

function becomes ε′m = 1.

The kx-vector of the SPP has a non-zero imaginary part, describing a

damped propagation due to Ohmic losses. The kz-vector is purely imaginary,

describing �elds decaying exponentially perpendicular to the surface called

evanescent waves or near-�elds, which are con�ned to the interface as quali-

tatively illustrated in the inset of Fig. 3.3(b). The decay lengths are 28 nm

/ 328 nm for gold and vacuum respectively at a free-space wavelength of 633

nm.

The qualitative behavior does not di�er, when changing the geometry from

an interface to a thin metal layer or wire. Yet, the plasmon wavelength becomes

2This is simpli�ed to loss-free metals. The implications of lossy metals on the dispersion

will not be discussed here (see chapter 12 in [16]).
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also dependent on the layer thickness or wire diameter a, when a is in the range

of the penetration depth d of the �elds into the material, which is for gold in

the range of 10 � 20 nm (see Fig. 3.2). The charge density accumulations then

interact with each other through the material, and the plasmon wavelength

is getting even shorter compared to the interface case. For wires a linear

relation of SPP-wavelength in dependance of a can be identi�ed for a constant

excitation wavelength λ [66]:

λSPP = n1(a) + n2(a)

(
λ

λp

)
(3.11)

, with λp = (2πc)/ωp being the plasma wavelength of the metal and n1 and n2

being factors with the dimension of a length, dependent on the material and

linearly on a.

3.2.1 Particle plasmons

Solving the homogeneous Helmholtz equation (2.14) for a metallic particle with

dimensions about or smaller than the excitation wavelength yields solutions

describing plasmonic oscillations con�ned in all three dimensions, called par-

ticle plasmon-polaritons (PPP). They show Lorentzian resonances for simple

geometries like spheres or elongated rods with the resonance frequency de-

pendent on material and shape, allowing a broad range of possible resonance

wavelengths from the near UV to the near IR as gathered in Fig. 3.4.

The �rst applications using chemically synthesized colloidal gold nano-

spheres where already realized in the roman empire to foster colored glass

(Lykurgos cup) � despite lacking knowledge of the underlying fundamentals

or of the existence of nanoparticles. Systematic experimental studies started

around 1850 by Michael Faraday [68] and the accompanying theory was de-

veloped as early as 1908 by Gustav Mie [69]. Only in the last 20 years the

research on metallic nanostructures has grown exponentially, and a wide range

of new shapes as well as applications have been developed, yet, the fundamen-

tal interactions between light, metallic nanoparticles and their environment

are still an active research topic, e.g. to understand surface enhanced Raman

scattering (SERS).

The inset of Fig. 3.4 shows a spherical particle building up a dipolar moment

due to a plasmon excited by a plane wave in vacuum. The wave will loose
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Figure 3.4: Properties of particle plasmons. Achievable resonance wavelengths of

particles plasmonic resonances for metallic nanoparticles dependent on shape and

material (reprinted with permission from [67]). Inset: Sketch of current densities j

oscillating in a nanoparticle when excited by an external harmonic �eld E, leading

to charge carrier accumulations at its boundaries. Shown are two snapshots of the

dipolar mode with ∆t = 1/2ω with neither charges nor current vanishing.

energy upon the interaction, therefore, a hypothetical geometric area called

extinction cross section σext is introduced to link incoming power Pinc and lost

power Pext:

Pext =
Pinc
A
· σext (3.12)

, with A denoting the area of the incoming planar wave front. σext is made up

from two components:

σext = σsc + σabs . (3.13)

σsc is the scattering cross section, covering the re-radiation of energy by the

excited particle mode into free space with a change in k-vector direction. σabs is

the absorption cross section, describing the conversion of energy into heat due

to Ohmic losses. Both cross sections are a �gure of merit for the coupling of

energy from far-�eld radiation to energy localized in and near the nanoparticle,

which is maximal for σsc = σabs [70].

The resonance frequency of elongated particles follows a linear scaling law

with respect to the particles reciprocal aspect ratio AR−1 = A/l, which is

the ratio between its geometrical cross section A and its length l. This can
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be understood qualitatively by a Fabry-Perot-resonator model where a trav-

eling wave with diameter dependent e�ective wavelength λe� (see eq. (3.11))

is re�ected on both wire ends and builds up a standing wave. We take a

closer look at a second representation using a mass-spring-model as sketched

in Fig. 3.5(a) [71], which will be described in the following.

The free electron gas is displaced by ∆x under the in�uence of external

�elds. The positive and negative charge surplus at the rod ends are assumed

to sit in a single point, leading to a Coulomb force FC , which is set equal to

a restoring force Fr = ∆x · D of a �ctive spring-mass system with a spring

constant D. The mass m of all moving electrons is given by m = A · l · n ·me

with n being the electron number density andme = 9.109·10−31 kg the electron

mass. FC is derived from the potential energy in dependence of the electron

gas displacement ∆x assuming the charges located in two points:

W (∆x) =
1

4πε0

(ne · A∆x)2

l
(3.14)

, with e = 1.60 ·10−19 C the elementary charge. Derivation with respect to ∆x

yields the force:

F (∆x) = −∂W (∆x)

∂∆x
= − 1

2πε0

(ne · A)2

l
·∆x !

= −D∆x . (3.15)

With D =
√
ωres/m this leads to a resonance frequency of

ωres =
ωp

2
√

2

1

AR
(3.16)

, which is dependent on the plasma frequency ωp of the metal (compare to

eq. (3.3)) and the inverse aspect ratio of the rod. Making a rod thinner thus

leads to higher aspect ratio and the resonance shifts thus to lower frequen-

cies/longer wavelengths.

Figure 3.5(b) shows simulated resonances of �ve cylindrical rods with an

aspect ratio of AR = 8.25 and increasing rod length of 40 � 60 nm in steps of

5 nm. The resonance position in both scattering and absorption cross section

is nearly constant at λ = 720 nm. The small deviations of about 10 nm can

originate from meshing inaccuracies (compare to section 4.1) as well as from

the charge accumulation at the rod ends not being point-like as assumed in

the spring-mass model.
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Figure 3.5: Plasmonic resonances of elongated metal particles. a) Sketch of the

spring-mass model used to explain the resonance shifts dependence on the rod di-

mensions A = r2π (basis area) and length l. ∆x denotes the distance the metal

electron gas is displaced when an external �eld is applied, allowing to calculate the

excess charge q at the rod end. The right part shows the mechanical analogon with

a mass m �xed with a spring with a spring constant D (from [71]). b) Cross sections

of a single rods with a constant aspect ratio of AR = 8.25 and lengths from l = 40

nm to 60 nm in steps of 5 nm.

3.2.2 Quasistatic approximation

For very small particles with dimensions much smaller than the excitation

wavelength d� λexc retardation e�ects won't occur since all electrons within

the particle experience a constant phase. This is called the quasi-static limit

and a particles cross sections are directly linked to its polarizability α. It is

de�ned as the relation between a particles dipole moment p to an impinging

electromagnetic �eld E in a dielectric environment ε:

p = αεE . (3.17)

The polarizability of a spherical nanoparticle with radius R, the external �eld

k-vektor k and R · k � 1 is given as [72]:

α = 4πR3ε0
εm − εd
εm + 2εd

. (3.18)

ε0, εd and εm are the dielectric constant of vacuum, the surrounding dielec-

tric medium and the metal respectively. Larger spheres will lead to an in-

creased polarizability, since more oscillating charges will be separated by a

larger distance. Additionally there is a resonance condition, if the denomina-

tor in eq. (3.18) becomes minimal (Fröhlich condition), which is not dependent

on the particle size but only on the dielectric constants of the particle material
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and the embedding medium. The cross sections depend on the polarizability

as [72]:

σsc =
k4

6πε2
0

|α(ω)|2 (3.19)

σabs =
k

ε0

Im (α(ω)) . (3.20)

Scattering is therefore dependent on R6 and dominates for large particles,

while absorption goes with R3 and dominates for smaller particles. The large

polarizability of metallic nanoparticles at resonance can lead to cross sections

of about one order of magnitude larger than their geometric cross section.

Together with the sensitivity of their resonance to the dielectric constant of

the environment, small spheres are often used as sensors in liquid environments

[73].

For a ellipsoidal particle with three di�erent half-axis a, b, c and the excita-

tion �elds polarized along the x-axis the polarizability is given as:

αx = 4πabc
εm − εv

3εm + 3Lx (εm − εv)
. (3.21)

Since Lx = 2a, the length of the particle a�ects the denominator and the

resonance wavelength of the particle can be tuned by the particle geometry

(see also Fig. 3.4).

Bigger particles will show not only a dipolar mode, but also higher order

modes and cannot be treated within the quasi-static approximation anymore.

Then, a fully time-dependent solution is needed.

3.2.3 Far-�eld radiation patterns

In Fig. 3.6 the radiation patterns of the four lowest energy plasmonic particle

resonances for elongated rods with a rectangluar cross section of 25 × 25 nm

illuminated with monochromatic light of λ = 911 nm are compared with their

corresponding 1D rf-antenna counterpart [71]. The fundamental dipolar res-

onance of the rod is denoted with the amount of current maxima n = 1 and

shows only minor deviations, only the directivity of the plasmonic antenna is

reduced slightly. This originates from the rod length l ≈ λSPP/2 being shorter

than half the free space wavelength, leading to a radiation pattern more similar

to a point dipole as shown in Fig. 2.7(b).
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Figure 3.6: Comparison of antenna far-�eld radiation patterns for di�erent reso-

nance length l = n · λSPP/2. Red lines show the rf case, black lines the case for

optical antennas [71].

The second order resonance n = 2 is not much di�erent from the rf-antenna

case, too. This emission pattern is absent in Fig. 2.7, due to the symmetric

feeding condition. In general all even numbered modes are di�cult to excite

from the far-�eld with illumination perpendicular to the wire due to reciprocity

reasons, as they have vanishing emission power at angles of 90◦ and 270◦.

The plasmonic n = 3 resonance still shows a dipolar emission pattern, now

with large directivity, as its length has not yet surpassed the critical length

of 1.2 λ (see section 2.4). For the rf-antenna radiation pattern for n = 3

additional radiation lobes emerge. Similar arguments explain the plasmonic

rod resonance with n = 4 still behaving qualitatively like a n = 2 antenna,

where its rf-counterpart already emits into twice as many radiation lobes.

This di�erence in the far-�eld radiation pattern has to be taken into ac-

count for far-�eld excitation of plasmonic antennas, again with reciprocity as
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Figure 3.7: A sphere with radius R is centered at the origin of a spherical coordi-

nate system described by coordinates r, ϑ, ϕ (substrate for artistic purposes only).

argument (see section 2.4.3) and a far-�eld radiation pattern maximum also

represents a direction of optimal far-�eld excitation.

3.2.4 Mie scattering

For systems with spherical symmetry obeying Maxwell's equations all electro-

magnetic �elds can be decomposed into an in�nite series of orthogonal spherical

vector wave functions. This is the basis of the analytical calculations published

by Gustav Mie in 1908 [69], explaining the colorful scattering behavior of gold

nanoparticles suspended in water, as observed by Michael Faraday nearly 60

years in advance [68]. The reduced system of a single spherical particle illumi-

nated by a plane wave is su�cient. Here only the fundamentals are presented,

which are needed to understand the later discussion of an emitting dipole po-

sitioned close to a metallic sphere. The complete mathematical derivation and

deeper physical discussion of the topic can be found in [72,74].

The geometry considered is depicted in Fig. 3.7: a sphere with radius R

made from an arbitrary material is situated in the center of a spherical co-

ordinate system with r = (r, ϑ, ϕ) the plane wave impinges from positive x-

direction. The indices 1/2 denote the volume inside and outside the sphere
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respectively. To solve the wave equations (2.6) and (2.7) they can be rewritten:

∇2E + k2E = 0 (3.22)

∇2H + k2H = 0 (3.23)

, with the wave vector k2 = ω2εµ, where ε1/2 = εr,1/2ε0 describes the materials

and µ = µ0, as the material is non magnetic with µr = 1. The surface of the

sphere de�nes the following boundary conditions at R = (R, ϑ, ϕ):

[E2(R)− E1(R)] · n̂ = 0 (3.24)

[H2(R)−H1(R)] · n̂ = 0 (3.25)

The solution for equs. (3.22)�(3.25) is a set of eigenfunctions called spherical

vector wave functions. Their derivation is explained in detail in [72], chapter

4, here only the resulting terms will be presented, which are separable in all

three coordinates:

M(1)
σ,m,n(kr) = ∇× [r yσ,m,n(ϑ, ϕ)jn(kr)] (3.26)

N(1)
σ,m,n(kr) =

∇×M1
σ,m,n(kr)

k
. (3.27)

Several further explanations are necessary:

• M(1) and N(1) are the eigenfunctions inside the sphere which do not

diverge for r = 0. Outside the sphere di�erent functions M(3) and N(3)

facilitate further calculations. The spherical Bessel function of the �rst

kind jn is replaced by the spherical Hankel function (spherical Bessel

function of the third kind) h1
n. They are given as

jn(r) =

√
π

2r
Jn+1/2(r) (3.28)

and

h1
n(r) = jn(r) + i

√
π

2r
Yn+1/2(r) (3.29)

respectively, with J and Y denoting the Bessel-functions of �rst and

second kind.
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• The index σ can take the values e (even) or o (odd). This de�nes the

form of yσ,m,n:

ye,m,n(ϑ, ϕ) = cos(m)Pm
n (cosϑ) (3.30)

yo,m,n(ϑ, ϕ) = sin(m)Pm
n (cosϑ) . (3.31)

The Pm
n denote the associated Legendre polynomials.

• Due to the dependency on k · r the spherical vector wave functions scale
automatically with wavelength and material.

The spherical vector wave functions build the basis of a Hilbert-space.

Therefore, any electric �eld solving (3.22) can be expressed by an in�nite

series of the eigenfunctions:

E =
∑
ν

(ξνNν + ζνMν) (3.32)

, with the abbreviation
∑

ν =
∑

σ

∑
m

∑
n. The expansion coe�cients ξν , ζν

are well-de�ned as the spherical vector wave functions are orthogonal:∫
V

Mν ·Mν′ dV = 0 ,

∫
V

Mν ·Nν′′ dV = 0 ,

∫
V

Nν ·Nν′ dV = 0 (3.33)

for arbitrary ν, ν ′′ and ν ′ 6= ν.

Gustav Mie determined in his work analytical representation of six distinct

'Mie'-coe�cients ξν , ζν by setting up a linear system of equations ful�lling the

boundary conditions eq. (3.24) and eq. (3.25): Aν , Bν for decomposing the

incoming plane wave, aν , bν describing the scattered �elds and cν , dν for the

�eld inside the particle.

The lowest two electric type Mie modes N
(1)
e11 and N

(1)
e12 are depicted in

Fig. 3.8, which are (a) the dipole mode and (b) the quadrupole mode. In the

quasi-static limit only Ne11 can be excited from the far-�eld, since only this

mode shows an overall dipolar moment. The near-�elds intensities are localized

to very small volumes directly at the particles surface and are several orders

larger than the excitation far-�eld. This is one reason for the large interest

in plasmonic resonances, as they allow circumventing the di�raction limit and

are tunable by particle geometry and environment.
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Figure 3.8: Field intensity (color) and direction (arrows) of the fundamental elec-

trical Mie-modes in the cross section plane of a sphere with R = 10 nm at λ = 500

nm. (a) dipolar mode N
(1)
e11. (b) quadrupolar mode N

(1)
e12.

3.2.5 Split-ring resonators and kinetic inductance

A special kind of plasmonic resonator is realized by bending a metallic nanorod

with a fundamental dipolar resonance such that it forms nearly a ring with the

two rod ends pointing to each other, as sketched in Fig. 3.9(a). The left side

shows the ideal geometry of such a split-ring with a spherical shape and a

small slit, the right side shows a square shape [75] often used for very small

split-rings in experiment, where fabrication limits realizable shapes.

Figures 3.9(b) and (c) show the electric and magnetic �elds respectively,

of the fundamental mode for a square split ring made from gold with a side

length of 200 nm and a wire thickness and height of both 50 nm at a resonance

wavelength of λ ≈ 1515 nm. As for a straight rod large electrical near-�elds

emerge due to charges accumulating at the rod ends, which are more prominent

in the gap due to capacitive coupling. The split-ring also produces pronounced

magnetic �eld hot spots at the inner rod bends near the position of maximum

current rotation ∇ × I. These �elds are pointing out of the ring plane and

form a magnetic dipole moment.

This makes split-rings an ideal fundamental building block for metamateri-

als, where electric and magnetic resonators sized below half the wavelength of

the impinging electromagnetic radiation make it possible to tailor the e�ective

permittivity and the e�ective permeability of a material. This allows to create

negative index materials [5] as well as cloaking devices [76], which both will

not be described in greater detail.
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Figure 3.9: Properties of split-ring resonators. a) Typical geometries: Additional

to the capacitance of the two open ends, an inductance is realized by currents with

a non-zero rotation. b) Absolute values of the electric �elds for a square split ring

made from gold with a side length of 200 nm and a wire thickness and height of

both 50 nm at a wavelength of λ ≈ 1515 nm. c) Absolute values of the magnetic

�elds for the identical split-ring. The maximal values are at the inner side of the

split-ring bends, where the rotation of the mode currents are maximal. The green

strokes outline the split-ring geometry.
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It has to be mentioned, that the ideal spherical split-ring designs has a very

small extinction cross section, as the charges gather at a small gap leading to

a very small overall dipolar moment that can couple to far-�eld radiation.

The resonance frequency of a split ring depends on its inductance, which is

for large areas dominated by the well known geometric inductance Lg. How-

ever, it is not possible to decrease the split ring resonance wavelength in�nitely,

as for large frequencies the kinetic inductance Lk is not negligible any more.

As the energy stored in the magnetic �elds decreases with the split ring area,

kinetic energy of the electrons becomes eventually comparable and the kinetic

inductance becomes the lower inductance limit. For a split ring made from a

wire with cross section A and length l, where the metal has an electron number

density of n moving with velocity v comprising a current I = A · n · e · v the

kinetic energy is given by:

Ekin =
1

2
mv2 =

1

2
(me · n · A · l)

(
I

A · n · e

)2

=
1

2

Lk︷ ︸︸ ︷(
m · l

A · n · e2

)
·I2 . (3.34)

Therefore, the fundamental split ring resonance has a lower wavelength limit

of 900 nm [24]. One way to shift magnetic resonances into the optical regime

anyway, is to use rings with multiple cuts [24], a second one will be presented

in chpt. 7.3.

3.3 Optical antennas

3.3.1 De�nition and application

Radio-frequency antennas convert propagating electromagnetic waves into os-

cillating currents or vice versa. This functionality will be used to de�ne the

term optical antenna within this work: a device converting electromagnetic

waves in the visible frequency range into free charge carrier oscillations with

identical frequency. This de�nition excludes geometries purely made from di-

electric materials which are elsewhere often termed as antennas, e.g. [77].

Any geometry made from metal can be termed optical antenna, as well

as any brick of stone can be termed a hammer, too. For both applications

optimized designs are available, but the word 'hammer' triggers a very distinct
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picture of a device. The same might in the future be the case for the term

'optical antenna' after an optimal form has been developed and a certain social

adaption process �lled the term with meaning.

All optical antennas show three e�ects: scattering, localization and heat

generation. Only the their fraction is variable and so optical antennas can be

di�erentiated dependent on their application3. Scattering optical antennas re-

emit received energy into the far-�eld and are used e.g. for bio-sensing [3] and

solar cell enhancement [7]. Heating optical antennas are applied in e.g. can-

cer treatment [8], (waste) water treatment [9], or for assistance in magnetic

recording [10]. Additionally the decay of plasmons into hot electrons can be

used for generating photo-currents [78] or establishing chemical reactions [79].

Finally there are focusing optical antennas, applying plasmonic near-�elds.

Many of their possible applications are depicted in Fig. 3.11: optical trap-

ping [80], electron emission [81], multi-photon physics [82, 83], lithography

[84], solar cell enhancement [7], surface/tip enhanced Raman spectroscopy

(SERS/TERS) [85, 86], magnetic reading and switching [87, 88], waveguide

coupling [89, 90], scanning near-�eld microscopy (SNOM) [91], single photon

sources [92], surface plasmon ampli�cation by stimulated emission of radiation

(SPASER) [93,94].

Focusing optical antennas are experimentally exploited for over thirty years

(for a historical review, read [14]). Research has reached a stadium, where the

fundamental experiments with sharp tips and particles of simple geometries

have been performed numerous times and many reviews are available [21, 71,

95�97]. Furthermore, a �rst book dedicated solely to optical antennas has been

published [98].

3.3.2 The dipolar two-wire antenna

To understand some of the key concepts of focusing optical antennas we take

a closer look at the linear dipolar two-wire nanoantenna. It consists of two

identical metallic nanorods, the antenna arms, aligned along their long axis

and separated by a small gap, forming a structure comparable to a classical

linear antenna.

3The same is true for hammers.
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Figure 3.10: Properties of two wire dipolar optical antennas exited at resonance.

a) Basic geometry consisting of two identical rods of length l with a circular cross-

section of radius r and spherical end caps, separated by a narrow gap with width g.

b) Normalized NFIE of a single rod with l = 100 nm and r = 10 nm, as well as of

two-wire dipolar antennas made from identical rods separated by gaps of 10 and 4

nm. c) induced currents, d) charge density per length and e) NFIE at the resonance

frequency of λ = 830 nm for the antenna with g = 10 nm [99].
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Here, the rods are cylindrical with an overall length l = 100 nm, a cross

section radius r = 10 nm and spherical end caps as sketched in Fig. 3.10(a).

Figure 3.10(b) shows the wavelength dependent near-�eld intensity enhance-

ment (NFIE) spectra close to the end caps of a single rod as well as of two

dipolar antennas with gaps of g = 10 nm and g = 4 nm when illuminated from

the far-�eld with a broadband Gaussian focus of NA = 1. All spectra show

a Lorentzian-shaped resonance peak, the resonance wavelength being shortest

for the single rod and getting longer for the coupled rods, as their gap width

decreases.

Figures 3.10 (c) � (e) show current density, linear charge density4 and NFIE

respectively for the antenna with g = 10 nm at its resonance frequency of

λ = 830 nm. The current density of the dipolar optical antenna resembles to a

voltage-fed λ-antenna leaving each arm overall uncharged (see Fig. 2.6). How-

ever, more charges accumulate at the gap due to capacitive coupling, shifting

also the current maximum to the gap. This e�ect generally occurs at rod dis-

tances of g ≈ 50 nm and smaller, giving rise to a very pronounced NFIE in the

gap volume. Figure 3.10(e) reveals an NFIE of more than 4000-fold compared

to the maximum �eld intensity in the focal spot of the illuminating Gaussian

focus without antenna. As the gap volume is about 10×20×20 nm3, the optical

antenna realizes a much higher �eld con�nement than achievable with far-�eld

optics restricted by di�raction (see section 2.2). The observed resonance shift

to lower energies for coupled rods with decreasing gap size originates in the

reduction of the restoring force, as the complementary charges gathering at

the gap are shielding each other (compare to the spring-mass-model in sec-

tion 3.2.1).

Plasmon resonances of interacting particles follow a hybridization law [100],

resulting in two coupled resonances for two dipolar particle resonances, one

termed 'symmetric' and one one termed 'anti-symmetric', depending on the

�elds of the coupled system. Here, we focus on the anti-symmetric resonance

for the dipolar antenna, which is shifted to lower energies compared to the

single rod resonance. The symmetric resonance (i) is di�cult to excite e�-

ciently from the far-�eld due to a vanishing macroscopic dipolar moment and

(ii) shows no near-�eld enhancement in the center gap, which could later be

4Simulations and data analysis performed by the author.
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l

d

d / nm 30 25 20 15 10

l / nm 90 84 74 61 46

lr / nm 725 729 729 726 729

Dl / nm 58 46 36 29 26

Q-factor 12.5 15.8 20.3 25.0 28

Emax ~2200 ~3100 ~4100 ~4600 ~3600

Table 3.1: Q-factor, resonance width ∆λ, and maximum near-�eld intensity en-

hancement Emax of optical antennas consisting of gold wires with length l separated

by a 10 nm gap with constant resonance wavelength λr but decreasing square cross

section d2 (originating from supplementary material to [102]).

used to couple e�ciently to single emitters [101].

For optical antennas, their thickness d often is only 1 � 2 orders of magni-

tude smaller than the antenna length l, contrary to the rf-antenna case with

quasi 1D-wires. This has two reasons: (i) fabrication of wires thinner than 10

nm is extremely demanding, and (ii) scaling of e�ective plasmon wavelength.

Wires with smaller d lead to shorter rod lengths l resonant at the given fre-

quency (compare with single rods in section 3.2.1). Therefore, the antennas

overall polarizability decreases as does the extinction cross section, impairing

the coupling to far-�eld radiation. This results in an increased quality factor

Q of the antenna resonance (See section 2.3), as Table 3.1 shows for a series

of antennas made from cubiods with decreasing square cross section of edge

length d, tuned in overall length for constant resonance wavelength λr. In

the beginning thinner antennas show, however, higher maximum NFIE, due

to better �eld con�nement in the gap originating in the smaller geometrical

cross section of the rods. For even thinner rods eventually the NFIE decreases

again, due to the aforementioned reduction of polarizability as direct result

of the shortening of the e�ective wave length λSPP (compare with eq. (2.42)).

This shows once again, that an optical antenna has to ful�ll two tasks, cou-

pling to far-�elds and focusing the received energy, which cannot be optimized

independently within structures showing a single mode.
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Figure 3.11: Overview of the possible applications of optical antennas using near-�elds of excited

plasmonic resonances.
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Figure 3.12: The total power output Ptot of an excited quantum emitter (blue)

near a metal nanoparticle is split into two parts: the radiative emission rate Prad,

measurable in the far-�eld, and the non-radiative emission rate Pnrad which is trans-

formed into heat. The sketched volumes can be used to calculate the powers by

integrating the Poynting vector �ux through their surfaces.

3.3.3 Quantum emitter emission enhancement

An excited quantum emitter (QE) placed in close distance to a metallic nano-

particle can have a strongly enhanced decay rate according to eq. (2.26), if it ex-

cites a (resonant) plasmon mode with high intensity near-�elds at its position.

This e�ect has been a research topic in theory and experiment for more than

forty years since it has been identi�ed as the main working principle of surface-

enhanced Raman scattering (SERS), which has been discovered 1974 [103]. In

most of the cases the Raman shift, which is the wavelength change between

excitation and emission, is much smaller than the width of the plasmonic res-

onance. Since reciprocity applies to optical antennas (see section 2.4.3), both

excitation and emission are enhanced in the presence of plasmonic resonances.

The resulting SERS signal enhancements of up to NFIE2 ≈ 1010 [104] increas-

ing the signal to noise ratio by a large margin, enabling measurements of small

analyte amounts. It has been shown on rough metal �lms that surface en-

hanced Raman scattering (SERS) can reach single molecule sensitivity [105],

and tip enhanced Raman spectroscopy (TERS) has already been used to map

molecular sub-structures [18].

Not all the power transferred from the QE to the nanoparticle will reach the
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far-�eld, since plasmonic excitations show Ohmic losses at optical frequencies.

Therefore, the total emission power Ptot of the QE is split into a radiative

part Prad detectable in the far-�eld and a non radiative part Pnrad, heating

the nanoparticle (comparable to cross sections, see section 3.2.1). Figure 3.12

sketches exemplary surfaces for calculating the di�erent powers analytically

and numerically via the Poynting vector in eq. (2.5). The quantum e�ciency

η of a SE-antenna system is then de�ned as

η =
Prad
Ptot

=
Prad

Prad + Pnrad
(3.35)

, where the internal e�ciency of the QE is always ηint = 1.

An analytical solution exists for the case of a SE near a spherical metal

particle [106], which will therefore be used as benchmark system to evaluate

the quality of numerical results (see chpt. 4) and of novel theoretical approaches

(see chpt. 9). In Fig. 3.13 the left column shows the behavior of an excited

dipole with a dipolar moment perpendicular to the surface of a sphere made

from gold with radius R = 10 nm. The top graph row shows always enhanced

radiative power with a maximum at the resonance wavelength of the sphere

at λr ≈ 535 nm. This e�ect gets more pronounced for decreasing distance, in

agreement with eq. (2.26) because the mode �elds of the dipolar sphere mode

(see Fig. 3.8) get stronger close to the surface. However, the center graph shows

the non-radiative power increasing even faster, as the coupling into more and

more higher order non-radiative sphere modes sets in. This is also visible in

the lower left panel, where the quantum e�ciency (green dashed line) drops

signi�cantly for distances lower than 25 nm.

For the dipolar moment parallel to the sphere surface, shown in the right

column of Fig. 3.13, no radiative power enhancement can be realized. The

radiative dipolar mode of the sphere is excited with the wrong phase (compare

with eq. (2.27)). Additionally the quadrupolar and higher order non-radiative

modes are still well excitable, leading to quenching. The total power Ptot of

the QE is increasing at distances of about 20 nm and smaller, however, the

quantum e�ciency is dropping fast.

The emission powers for QEs near arbitrary shaped optical antennas can

only be retrieved by numerical methods, making it di�cult to design antenna

geometries for e.g. optimal Prad. However, there are two closely related �elds
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Figure 3.13: Analytically calculated emission rates of an excited dipole in front

of a gold sphere with radius 10 nm. Left column: dipole moment perpendicular

to sphere surface; right column: dipole moment parallel to sphere surface. Upper

row: radiative emission enhancement spectra for di�erent distances between sphere

and dipole; center row: non-radiative emission enhancement spectra; bottom row:

distance dependent power enhancements Prad, Pnrad and Ptot as well as the quantum

e�ciency (green dashed line; axis right) for a wavelength of λ = 650 nm (calculations

performed using Mathematica 9).
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of physics � rf-antenna technology (see section 2.4) and cavity physics (see

section 2.3.2) � which are often referred to as source for intuitive physical

understanding and antenna design guidelines. Both approaches establish new

�gures of merit and have lead to working plasmonic devices, yet, they delivered

only a few rules-of-thumb for their functionality assessment. They will be

highlighted in the next paragraphs together with the fundamental di�erences

and resulting drawbacks.

Comparison to rf-antenna concepts There are many similarities between

antennas for di�erent wavelength regimes as all are converting electromagnetic

radiation into alternating currents of the same frequency. However, major dif-

ferences can be identi�ed comparing rf-antennas (recall chpt. 2.4) with anten-

nas for optical wavelengths:

The driving mechanism of optical antennas is di�erent. Rf-antennas are

mostly connected to a waveguide, which allows to add and remove charges

from single antenna arms which is called current-feeding. Focusing optical

antennas are driven by quantum emitters via their �eld, which is identical to

voltage feeding. This leads to the fact, that two wire optical antennas cannot

show a λ/2-resonance, when driven by a quantum emitter. Even the recently

published electrically connected antennas [107�109] are designed such that the

leads are not hampering the antenna mode, but to apply constant voltages.

The material of rf-antennas can be described as an ideal metal without

losses. Optical antennas on the other hand always have Ohmic loss channels,

generating heat. This can limit their e�ciency drastically, prohibiting high-Q

plasmonic structures.

Finally the non-negligible electron mass leads to shorter e�ective wave-

lengths λe� for plasmonic waves on metallic structures (see section 3.2). This

allows on the one hand to build resonators much smaller than half the reso-

nance wavelength, but also e.g. decreases the coupling e�ciency to the far-�eld

for metallic nanorods due to a smaller polarizability. Emission patterns of lin-

ear antennas also di�er [23] (recall Fig. 3.6). In addition the penetration depth

of electromagnetic waves in the visible range is in the same order of magnitude

as the thickness of an optical antenna. This leads to volume currents contrary

to the surface currents in rf-antennas.
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It has been tried to adapt the impedance matching concept to optical an-

tennas (compare to section 2.4). For antennas with a clean and de�ned gap,

the change of the antenna resonance by loading the gap with di�erent ma-

terials can indeed be described by an equivalent circuit and, thus, also by

impedance [110, 111]. This approach delivers a set of lumped circuit rules

comparable to rf-technology, yet, the equivalent circuit for general plasmonic

geometries has to be made up anew for each small change in the shape or setup

of the components [112,113]. The impedance of a antenna coupling into a plas-

monic waveguide can also be determined, when their connection geometry is

kept constant [114].

A second approach using impedance has been developed by Gre�et [115].

He was able to identify terms comparable to the circuit power transfer function

when rewriting eq. (2.30). Yet, the prior knowledge of the Green's function,

which is only rarely possible analytically, cannot be circumvented.

Comparison to cavity physics The concept of the Purcell factor FP ∝
Q/V (see section 2.3.2) seems promising for the description of spontaneous

emission enhancement via plasmonic resonators, too. Focusing optical anten-

nas obviously achieve high Purcell factors due to the small dimensions of their

near-�eld hot-spots. Therefore, their mode volume V is smaller than their free

space resonance wavelength, which cannot be achieved with resonators based

on dielectric materials [116]. However, as already discussed the Q-factor is

comparably small, with maximal values in the order of 101 due to high radia-

tion losses for larger optical antennas and increasing Ohmic losses for smaller

ones.

Additionally, it is not straight forward to calculate FP from scratch for

resonators with losses. First the complex resonance frequency ω̃ν = ων − iγν
has to be introduced, with γν = 1/τν being the damping factor of the mode

which is inversely proportional to the mode lifetime τν . Then, the quality

factor can be rede�ned as Q̃ = −Re(ω̃ν)/[2 · Im(ω̃ν)]. The resulting, so-called

quasi-normal modes (QNM) have �elds Ẽν , H̃ν leading to the mode volume

integral (2.33) not to converge, as the free space radiation part of QNMs is

diverging for |r| → ∞. Also the introduction of a cuto� criteria to subtract

the far-�eld part of the QNM does not help [117].



54

Recently, this problem has been solved by two groups [118, 119], using the

concept of perfectly matched layers (PML; see also section 4.1.2) to truncate

the diverging �elds of QNMs without changing the underlying physics, identify-

ing this procedure as a coordinate transformation. Thus, it allows to calculate

the mode volume as usual via integration of mode �elds omitting divergence.

The resulting complex valued mode volume unfortunately is less intuitive

and needs knowledge about the mode �eld distribution by rigorous Green's

function calculation or numerical simulations:

Ṽ =

∫ [
Ẽν ·

∂ (ωε)

∂ω
Ẽν − H̃ν ·

∂ (ωµ)

∂ω
H̃ν

]
d3r

2ε0n2
[
Ẽν(r0) · p̂

]2 . (3.36)

The denominator already includes the dependency on the �eld intensity par-

allel to the dipole moment, while the numerator takes into account dispersion

e�ects. As a direct consequence, the known Purcell formalism is applicable

with only minor changes:

FP =
3

4π2

(
λ0

n

)3

Re

(
Q̃

Ṽ

)
. (3.37)

Finally, it has been shown recently, that both formalisms � antenna impe-

dance and cavity Purcell factor � are identical, when they are derived from the

Green's function of the system [120]. However, the expected simpli�cations,

like lumped circuit rules or intuitive mode volume design guidelines, are not

realized yet, and the tedious task of solving the Green's function is still not

circumvented.

Collection of design rules for optimized QE-antenna coupling De-

spite the di�culties in the theoretical description of optical antennas, some

intuitive optimization rules have been framed in the literature, based on fun-

damental principles of electromagnetism5:

Lightning rod e�ect. As currents �ow into a tip, the charge density is in-

creased, leading to more pronounced near-�eld hot spots it their vicinity.

Capacitive coupling. Opposite charges separated by a small, insurmountable

distance e.g. a gap attract each other increasing their density. This kind of

5Where not speci�ed, all reviews mentioned on page 44 incorporate the rule.
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coupling together with the aforementioned lightning rod e�ect is today the

most used way to achieve the smallest volume highest �eld plasmonic hot

spots. Prominent examples using the �rst two e�ects are bow-tie antennas

and TERS, with an additional metallic substrate.

Resonance tuning. This might sound trivial in the �rst place, but e.g. the

bow-tie antenna has a broad-band resonance, which is for focusing at a given

wavelength not as e�ective as an optimized single resonance dipolar antenna.

Furthermore, the shape of the particle(s) has a strong e�ect on the resonance,

especially the existence of tips and narrow gaps can lead to large resonance

shifts.

Yet, there is an additional way to tune the resonance, not in frequency,

but in wavelength by changing the dielectric function of the direct antenna

environment. Filling material in the gap of an antenna � sometimes referred

to as loading � has been mentioned above, but also putting the antenna on a

substrate (sometimes with an intermediate adhesion layer) shifts its e�ective

plasmon wavelength [121] and thus its resonance to longer wavelengths. Often

this is undesired, as it decreases the particles polarizability.

The inverse case, putting the QE inside a high index material half space

near the surface and the plasmonic antenna near the surface in the vacuum, is a

e�ective measure to enhance the QE to antenna coupling [122], as it decreases

the size mismatch between emission wavelength and QE.

Optimize far-�eld coupling. This is not a real optimization for the coupling

between an antenna and a QE. Yet, this second step of the optical antenna

functionality has also a major impact on the amount of photons reaching the

far-�eld in the end. Else, an QE placed on the surface of a metal sphere can

heat it very e�ciently.

There are two main di�erent strategies: (i) Maximize the overall polariz-

ability of the antenna structure. This increases the overall coupling to the far-

�eld [122]. (ii) Work with/in a high index medium. This reduces the mismatch

between far-�eld radiation and structure dimensions (adapted from [122]).

A third strategy is tailoring the directivity of the antenna by its environ-

ment, which shall be mentioned only brie�y. As in most applications the

far-�eld is accessed via a microscope objective, a large fraction of an optical

antennas dipolar emission is lost. In [77] an environment is introduced, which
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redirects radiation from an QE into the collection angle of a high-NA objective.

This should also work for optical antennas.

There are even more ways to optimize plasmonic focusing, which will be left

aside in this work, as they leave the picture of optically small single particles,

looking on wave-guides or particle ensembles (e.g. Yagi-Uda designs).
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Methods
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Chapter 4

Numerics

Analytical solutions for Maxwell's equations can be derived only for a few

simple geometries. To plan and understand experiments with more complex

geometries, numerical methods are the only viable tool and, thus, many di�er-

ent algorithms are available today to solve electrodynamic problems. In this

work the �nite-di�erence time-domain (FDTD) method has been used most of

the time, as it allows the analysis of transient signals with broadband spectra

in a single simulation and in an intuitive way. In addition quasistatic simula-

tions with rotational symmetry were performed with the �nite element method

(FEM) for fast assessment of novel geometries.

This chapter explains the FDTD algorithm to an extent necessary for the

understanding of later results. For a primal read the extensive groundwork

book from Ta�ove [123] is recommended. All FDTD simulations within this

work were performed with the commercial software FDTD-Solutions from the

company Lumerical Solutions Inc., Canada in versions 5 to 8.7.1.

The FEM method will be introduced only very brie�y, as the relevant ge-

ometries were all re-evaluated with FDTD simulations. The software used was

COMSOL Multiphysics in versions 4.4. and 5.0.

Finally, this chapter introduces evolutionary algorithms, as this method to

�nd solutions to complex non-analytical problems was applied in this work to

optimize focusing optical antennas.

59
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Figure 4.1: a) The Yee-cell as space discretization used in the FDTD algorithm for

solving Maxwell's equations. The electrical �elds E (red) sit on the edge-centers of a

cubic lattice (only one cube is shown). A second lattice is shifted by half the cube size

∆ in all three dimensions and carries the magnetic �elds H (blue). b) Geometric

consequence of the staircasing e�ect for cubic space discretization of a sphere. c)

Resulting near-�eld intensities for a sphere with radius of 10 nm discretized by 1nm

Yee-cells. The green line sketches the sphere surface.

4.1 The �nite-di�erence time-domain algorithm

The FDTD algorithm discretizes space and time by means of the Yee-cell

[124] in order to approximate the derivatives in Maxwell's equations (2.1c) and

(2.1d) as di�erential quotients and, thus, describes the evolution of electric and

magnetic �elds in space and time. The special geometry of the Yee-cell (see

Fig. 4.1(a)) allows to compute the curl of �elds along all three dimensions.

Two cubic lattices with lattice constant ∆ are used to segment space with

the second lattice shifted by ∆/2 in all three dimensions. One lattice is used

to represent the components of the electrical �eld E, which are located at the

center of the cube edges parallel to the respective component. The second

lattice is used in the same way, but represents the magnetic �elds H.

Maxwell's equations (2.1c) and (2.1d) can then be rewritten component-wise
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with i, j, k cyclic ∈ {x, y, z}:

∂Hi

∂t
=

1

µ

(
∂Ej
∂k
− ∂Ek

∂j

)
(4.1a)

∂Ei
∂t

=
1

ε

(
∂Hk

∂j
− ∂Hj

∂k
− σEi

)
. (4.1b)

The partial derivatives are approximated by �rst order di�erential quotients

with l ∈ {x, y, z}:

∂F n(i, j, k)

∂l
=
F n(i+ 1

2
, j, k)− F n(i− 1

2
, j, k)

∆l
+O(∆l2) (4.2)

∂F n(i, j, k)

∂t
=
F n+1/2(i, j, k)− F n−1/2(i, j, k)

δt
+O(δt2) . (4.3)

The indices identify the position in space and time subdivided in steps of

∆/2 and δt = ∆t/2, respectively. FDTD is a leap-frog type algorithm, where

electric and magnetic �eld are calculated alternately in successive half time

steps.

To ensure the stability of the algorithm the following inequality has to be

satis�ed [123]:

vmax∆t ≤
(

1

∆x2
+

1

∆y2
+

1

∆z2

)−1/2

(4.4)

, with vmax being the maximum phase velocity within the simulation volume.

The convergence of the FDTD-algorithm for {∆t,∆x,∆y,∆z} → 0 can be

demonstrated via the de�nition of dispersion [123] :[
1

c∆t
sin

(
ω∆t

2

)]2

=

x,y,z∑
i

[
1

∆i
sin
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=
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i

k2
i . (4.6)

If the simulated geometries have curved surfaces, the discretization of space

leads to staircasing. Figure 4.1(b) shows a sphere, which is discretized by cubic

Yee-cells leading to edges and corners emerging in the representation of the

originally smooth surface. This has a strong in�uence on the near-�elds of

metallic nanostructures close to the surface as depicted for the fundamental

dipolar mode of a 10 nm radius gold sphere in Fig. 4.1(c). Four pixels with

extreme high �eld strength emerge in the cross section view due to the lightning

rod e�ect concentrating charges in edges and corners. Comparing with the
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analytical solution in Fig. 3.8, the �elds behave physically down to very small

distances of a few nm, before staircasing leads to unphysical results. Further

implications for nano-optical simulations will be discussed in section 4.1.3.

The software used in this work delivers frequency dependent results after

a Fourier-transformation of the transient �eld data. This yields physical re-

sults, when the overall simulation time is long enough, so that all power from

radiation sources like plane waves, Gaussian focuses or point dipoles has left

the simulation volume. This is realized by de�ning a shut-o� criterion, which

stops the simulation after the maximum �eld inside the simulation volume has

dropped below a given �eld strength value of typically 10−5 of the maximum

�eld compared to the simulation start. For the broadband simulations within

this work the shut-o� criterion was set to 10−7 or 10−8, instead, to remove arti-

facts from Fourier-transformation. Alternatively there is an apodisation option

that introduces an arti�cial smooth fade out for the �elds in the simulation

volume.

FDTD Solutions works with a more sophisticated implementation of the

Yee-cell, allowing not only cubic, but generalized cuboid cell geometries. There-

fore, it is possible to de�ne areas with di�ering cell sizes, which is highly ben-

e�cial for the simulation of plasmonic structures. For propagating far-�eld

radiation the mesh size should be ∆ ≤ 0.1λmin with λmin being the shortest

wavelength within the simulation volume. When metals are involved this rule

breaks down, as the near-�elds of plasmon resonances show a strong fall-o� in

a range of tens of nanometers. The optimal Yee-cell size can be determined

by a convergence test with subsequent smaller meshing or by a comparison

with a representative analytical solution (see section 4.1.3). The possibility

to de�ne regions with di�erent mesh sizes for plasmonic problems reduces for

many single particle problems simulation time and used disc space by a large

margin to a level manageable by commercially available work stations.

4.1.1 Meshing of cubes touching at edges

The convergence of FDTD-simulations of antennas consisting of perfect 10 nm

sized gold cubes (see chpt. 7) was tested, with the center of a cube in the

coordinate origin. The meshing was forced to be symmetric and the Yee-cell

size reduced from 1 nm to 0.5 nm, obtaining the results shown in Fig. 4.2.
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c)b)

10 nm

a)

Figure 4.2: In�uence of bad meshing on complex antenna simulations [125]. a)

Index monitor data showing 10 nm Au cubes arranged egde-to-edge with meshing of

1 nm (top) and 0.5 nm (bottom). b) shift of optimized EA-antenna resonance when

changing the meshing from 1 nm to 0.5 nm. c) comparison of near-�elds at λ = 650

nm of the structure with meshing of 1 nm (top) and 0.5 nm (bottom).

In panel (a) data from the material index monitor shows small gaps oc-

curring between cubes which were originally meant to touch at their edges,

decreasing with smaller mesh size. Due to the strong capacitive coupling be-

tween highly concentrated charge carrier accumulations at gaps (compare with

section 3.3.2) small gap deviations lead to big changes in resonance and near-

�eld strength.

This leads to a change in the antenna resonance wavelength of > 25 nm as

shown in Fig. 4.2(b). Also the antennas near-�eld patterns at the optimization

wavelength of 650 nm changed (Fig. 4.2(c)). There is a clear reduction of �eld

intensity in the very center as well as a strong enhancement in the holes at the

upper-right antenna area and a large �eld strength drop in the very lower left

corner of the geometry, impeding the original functionality of the 1 nm meshed

antenna. To avoid this problem, the mesh has to be shifted by half a mesh cell

in all three dimensions. This has been done in all numerical results presented

in this work, introducing a way to keep distances constant while changing the

Yee-cell size.
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4.1.2 Materials for FDTD-simulations

Optical parameters of simulated materials can be de�ned in multiple ways. For

dielectric materials with low dispersion, e.g. glass and indium tin oxide (ITO),

�xed values from literature were retrieved from an online database [126].

For gold a critical point �t of the values from Johnson and Christy [58] as

published in [59] (see section 3.1) has been used to generate 801 data points

in the frequency range between 200 and 1000 nm. These data points were

imported in 'FDTD Solutions' as basis of a polynomial �t.

Perfectly matched layer

FDTD simulations are performed in a closed cuboid volume terminated by

six intersecting planes, which should emulate an in�nite continuation of the

truncated space. This includes outgoing radiation not to be re�ected as well

as not to be just removed, as both actions will alter the �elds inside the

simulation volume. Therefore, an anisotropic material has to be introduced,

which dampens an impinging electromagnetic wave while turning its k-vector

parallel to its surface and thus avoids re�ection. This perfectly matched layer

(PML) [127] has permittivity and permeability tensors given as

¯̄ε =


a 0 0

0 a 0

0 0 b

 ¯̄µ =


c 0 0

0 c 0

0 0 d

 . (4.7)

Ten layers of PML ( = 10 Yee cells) are su�cient to dampen a perpendicular

impinging plane wave by a factor of 100 dB before it re-enters the simulation

volume. Stronger back re�ections occur in edges and corners of the simulation

volume, where electromagnetic waves have larger impinging angles, but due to

scattering from one PML to the next PML, a thickness of 12 layers is su�cient

for all simulation tasks with no material penetrating the PML. This is the

standard setting within FDTD Solutions and has not been changed in any

simulation (a test can be found in [128]). The PML does not dampen near-

�elds, so it is important to place it at least in a distance of λSim/2 from any

metallic material, with λSim being the largest wavelength occurring within the

simulation [123].
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Figure 4.3: Comparison between the analytical solution (solid lines) and numerical

results (symbols) for the case of a dipole emitting at λ = 830 nm near the surface of

a sphere (radius = 10 nm) with orientation perpendicular (left) or parallel (right) to

the surface.

4.1.3 Comparison to analytical solution

Since the central topic of this work is the coupling between a quantum emit-

ter (QE) and an optical antenna, an analytically solvable system is used as

benchmark for numerically investigating the emission power enhancement of a

QE (see section 2.3). Figure 4.3 shows analytical results (based on [106]) and

numerical data for the radiative and non-radiative power enhancements for the

cases of a QE dipolar moment perpendicular and parallel to the surface of a

gold sphere with radius r = 10 nm emitting at λ = 830 nm dependent on the

distance. A full discussion of the involved physics can be found in section 3.3.3.

The meshing was set to 1 nm in the volume containing the sphere and the

dipole plus additional 5 nm in all directions. The overall simulation volume

was set to (1000 nm)3 to ensure the recommended distance between structure

and PML of λ/2.

The simulated data reproduce the analytical solution very well down to

dipole-sphere distances of about 4 nm for both radiative and non-radiative

power. For 2 nm the simulated non-radiative power gets too large, since stair-

casing deforms the near-�elds. In addition, the non-radiative part deviates

strongly for large distances, as the absolute values approach zero. This orig-

inates in FDTD Solutions performing the numerical calculations only with

single precision, leading to large relative numerical inaccuracies for such small

numbers, which are further exaggerated by the logarithmic plot. However, this

is no problem as its absolute value is negligible.
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Figure 4.4: Properties of quasistatic COMSOL simulations of a dipolar two rod

antenna with a gap of 10 nm, arm length of 50 nm and a cross section radius of 7.5

nm. a) Central part of the meshing of the quarter simulation cross section, when

the maximum �nite element edge length is set to 2 nm. b) Absolute value of the

electric �elds obtained from the quasistatic FEM solution. c) Near-�eld intensity

enhancement (NFIE) spectra of both FEM (blue) and FDTD (black) simulations

(Inset: Full dipolar antenna geometry).

4.2 The �nite element method

The �nite element method (FEM) is used in nearly every �eld of physics and

engineering which deals with complex volumes and surfaces. COMSOL is

using FEM for the solution of di�erential equations connected to mechanics,

acoustics, heat transport, electrical properties, etc. and, of course, optics.

The method has some advantages compared to FDTD, the most prominent

being the discretization of surfaces and volumes as triangles and tetrahedrons.

Figure 4.4(a) shows an antenna arm meshed with minimal element dimensions

of 2 nm without a visible staircasing e�ect.

The second big advantage is the possibility to compute rotational symmetric

geometries, by calculating a two-dimensional plane only. This can be combined

with an additional symmetry plane at z = 0 and in the end only one quar-

ter of the 2D cross section has to computed. However, this does not allow
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anymore the implementation of a plane wave or Gaussian focus source, which

would be necessary for realistic experimental conditions. Antenna modes and

the NFIE can still be retrieved and compared relatively with each other by

solving the geometry quasi-statically if the dimensions are small compared to

the excitation wavelength. A constant �eld of 1 V/m is applied on the outer

borders of the simulation. Figure 4.4(b) shows the near-�elds resulting from

the rotation-symmetric quasi-static FEM simulations, looking similar to the

mode �elds from a FDTD simulation as plotted in Fig. 3.10(b).

To prove the viability of this approach, a two rod antenna with a 10 nm

gap, an arm length of 50 nm and a radius of 7.5 nm was chosen as reference

with a resonance at λ = 650 nm. As the thickness of the antenna rod is much

smaller than the excitation wavelength, the quasistatic approach is viable.

The resulting NFIE spectra for both quasistatic rotational symmetric FEM

simulations and FDTD simulations in the very antenna center is shown in

Fig. 4.4(c).

There are slight di�erences, as the resonance of the quasistatic simulation

is shifted by 3 nm to shorter wavelength and has a smaller FWHM. The latter

can be explained by the absence of staircasing, which increases Ohmic losses of

an antenna and thus reduces its Q-factor. The resonance peak shift can have

mainly two reasons, on the one hand less coupling across the gap due to missing

staircasing near-�eld hot spots will shift the resonance to shorter wavelength,

on the other hand the e�ective thickness of the rod can be larger, also leading

to a resonance shift to higher energies. Both e�ects can be explained with the

omission of staircasing.

The main advantage is simulation time: while a single FDTD simulation

takes about 20 � 40 min, the complete quasistatic wavelength sweep takes only

about 50 s. This makes it a viable tool for testing more complex geometries for

general functionality, before the �nal data are retrieved with full wave FDTD

simulations.
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4.3 Evolutionary optimization

Nowadays, it is consensus that life on earth has developed to the actual state

with algae and trees, frogs and birds and humans by means of evolution, be-

ginning with the humble starting condition of self-replicating amino acid com-

plexes [129]. The concept of encoding properties of single individuals in a

genome which then can be mutated and recombined with other individuals

genomes is obviously a powerful method for adapting life to a enormous vari-

ation of environmental boundary conditions.

Therefore, it is not especially surprising that in computer science biologi-

cal evolution inspired a variety of approximation algorithms. These generate

'good' solutions to very complex problems, which can either only been solved

exactly with extreme computation time, might have no analytical solution

(yet) or are even not fully understood, thus making it impossible to de�ne the

properties of an optimal solution. But whenever it is possible to de�ne an

environment represented by a �tness function, evolutionary algorithms (EA's)

are a good choice to �nd a good, but most likely not the best solution to the

posed problem in an acceptable time.

The seminal work for the application of genetic algorithms (GA's) - a special

case of EA - was published in 1975 by John H. Holland [130]. Today GA's are

used to solve problems in many aspects of our lives e.g. automobile design [131],

robotics [132] or �nancial trading [133].

4.3.1 De�nitions and working principle

The terminology for evolutionary algorithms is derived from biology, despite

some changes due to introducing countable quantities for the work within a

computer program:

individual: Single entity S representing a possible solution to the given prob-

lem.

environment: Originally, the setting where an individual has to be able to

survive and outperform other individuals. Generalized, this is the de�-

nition of the problem to be solved.
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�tness function and �tness: The �tness function is a mathematical rela-

tion F (S)→ fS which assigns to an individual S a real-value �tness fS.

The �tness is a measure for the performance in the given environment

and therefore for the quality of the solution S to the posed problem. For a

given problem an in�nite number of �tness functions exist and its choice

is crucial as it has not only to represent the posed problem correctly

but also ensure the e�cient selection of more sophisticated structures as

parents of the next generation.

genome: Complete representation of an individual. In computer applications

a genome is mostly a linear (binary) string g consisting of '1' an '0'. The

use of a genome within an evolutionary algorithm de�nes it as a more

specialized genetic algorithm.

generation: Set of individuals Gn, which exist at the same time and com-

pete for the right to pass on their genomes to the next generation. The

individuals of generation Gn are children of Gn−1 and parents to Gn+1

population: In this work every individual of any generation belongs to the

(ever growing) population, contrary to the case of only the actual/last

generation being the population. The solution of a GA is the best in-

dividual of the population after a given number of generations or after

ful�lling an abort condition.

inheritance: This is the core mechanism of any GA. By mutation and cross-

ing of parent genomes the individuals of consecutive generations are build

from the individuals of the preceding generations, but with random alter-

ations or mixed from two parents to �nd new and even better individuals.

In general only the �ttest individuals of one generation are allowed to

pass on their properties, thus, realizing a continuous improvement of

�tness.

4.3.2 Evolution for plasmonics - previous work

While in radio-frequency (rf) antenna research many di�erent optimization

algorithms have been applied with success [89,134], until now1 only a few pub-

1August 2015
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a) b)

c) d)

Figure 4.5: Examples of evolutionary algorithm approaches for optimization of

plasmonic nanoparticles. a) An evolutionary optimized ultra-short laser pulse is

used to excite a complex structure with several resonances. The control of the

near-�eld hot-spot position is shown in the inset, where the red square marks the

illumination area and the green square the desired place of the hot spot (reprinted

with permission from [135]). b) Multiple cylindrical gold patches are positioned and

scaled to achieve a high near-�eld enhancement for a given frequency (left: SEM;

right: simulation; reprinted with permission from [136]. Copyright 2012 American

Chemical Society). c) Parameters of an analytically describable complex shaped wire

cross-section are optimized to guide plasmonic modes of a desired frequency [137]. d)

The shape of a single nanoparticle is changed within geometric constraints feasible for

nanofabrication to maximize a plasmon resonance at a given wavelength (reprinted

with permission from [138]. Copyright 2011 American Chemical Society). c) and d)

are numeric only studies.

lications exist combining evolutionary optimization with plasmonic structures

for optical frequencies. Basically three di�erent concepts have been employed,

all limited in the geometrical con�guration space. Fig. 4.5 shows an overview

over the di�erent EA approaches.
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Panel (a) shows the excitation optimization by means of coherent control

[135,139]. The amplitude and phase of the spectral components building up a

very short laser pulse are altered to get maximum control of near-�eld spatial

and temporal behavior in complex plasmonic geometries. Originally applied to

in�uence chemical reactions, the pulse forming itself via liquid-crystal cells is

optimized by means of evolutionary algorithms for a given plasmonic structure.

This allows to steer light through a forking waveguide made from cylindrical

constituent particles, localize near-�elds in space and time for e.g. a �sun-

shaped� heptamere (depicted) and to enhance near-�eld localization in rough

and random metal thin �lms [140]. This approach does not deliver antenna

geometries for speci�ed applications, but can be used to foster the fundamental

understanding of e.g. SERS.

Another type of EA either works with a given regular grid of particles, which

can be switched 'on' and 'o�' [141, 142] or with a given amount of particles

with free choice of position and size [136] (Fig. 4.5(b)). The goal of the opti-

mization is a high near-�eld enhancement for broad-band and single frequency

applications, respectively. Both works do not change the geometry of the single

particles but stay with spheres and cylinders, examining the response to plane

wave excitation. The result is, that scattering structures gather energy from

the far-�eld, re-routing incoming light with the correct phase for constructive

interference to the central parts of the structures responsible for near-�eld lo-

calization. The center shows gaps as small as the restrictions of the algorithm

allow.

The last type of algorithms takes the shape of individual structures as vari-

able: The propagation properties of a metallic nanowire with a complex shaped

cross section has been optimized in [137] (Fig. 4.5(c)). The geometry can be

described analytically, but only within narrow constraints. A comparable ap-

proach for 3D particles based on the geometries described by Gielis superfor-

mula has been used in [143] to optimize the incoupling of solar light to solar

cells. More �exible is an approach, which allows the shape of a single, point

symmetric particle to change freely, under the restriction of curvatures feasible

for fabrication [138] (Fig. 4.5(d)). It has been shown, that the scattering cross

section can be optimized for a given wavelength.

All these approaches have major restrictions in geometry and applicability.
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This work will introduce a more general approach to an EA for optimization of

plasmonic geometries in chpt. 7, which is then adapted to geometries feasible

for FIB structuring in chpt. 8. Finally, a new theoretical approach to explain

the coupling between single emitter and optical antennas will be presented in

chpt. 9, able to explain the functionality of the geometries yielded by the EA.



Chapter 5

Fabrication

The fabrication of nanometer sized metal structures is laborious and often

involves expensive devices like the recently developed helium ion microscope

[144,145] together with some amount of craftsmanship or highly sophisticated

chemical recipes, using even DNA-origami [146]. There are two main ap-

proaches to achieve controlled nanopatterning: top-down and bottom-up. The

�rst section will present examples of these approaches representing the state

of the art of plasmonic structure production. The second and third section

will introduce a relatively new approach combining both bottom-up and top-

down strategies: monocrystalline gold-�akes created by means of wet chemical

synthesis are treated by focused-ion-beam (FIB) milling to carve the desired

geometries.

5.1 State of the art

Top-down fabrication is starting with a volume or a thin �lm of a basic raw

material to be shaped by means of eroding tools. This allows the fabrica-

tion of highly sophisticated structures on large areas with nearly arbitrary

shapes [147]. Bottom-up fabrication, on the other hand, uses basic building

blocks with a simple geometry. These mainly chemically grown components are

then assembled to larger and more complex structures by means of nanoma-

nipulation or self organization. Both approaches had large impact on the big

success story of recent plasmonics research, but have both pros and cons, which

will be discussed at the example of realizing sub-nanometer gaps in gold.

73
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a) b)

Figure 5.1: Examples of sub-nanometer gaps in plasmonic structures. a) STEM

images of a bow-tie antenna with a gap of ≈0.5 nm realized via electron-beam-

lithography of evaporated gold (reprinted with permission from [36]. Copyright

2012 American Chemical Society). b) Cavity with gap ≈ 0.5 nm obtained via self-

organization of chemically grown gold nanorods (reprinted with permission from

[148]. Copyright 2012 American Chemical Society). In both panels the upper part

shows SEM-pictures, the lower parts TEM-measurements for gap size determination.



75

Figure 5.1(a) shows a bow-tie antenna made from gold realized by means

of electron-beam-lithography. A thin layer of resist is deposited on top of a

thin layer of evaporated gold, which is exposed to controlled electron beam

radiation. Depending on the resist, the (un-)exposed areas are removed chem-

ically and the remaining material serves as mask in the �nal etching process.

The limits of this method are dependent on the resist material, as the electron

beam always develops more material than expected by its nominal beam diam-

eter due to scattering and secondary electron generation. The direct writing

of lines with a width of 10 nm seems to be the resolution limit for HSQ as

resist [149]. However, using the proximity e�ect allows to fabricate smaller

gaps, if they are quasi-zero-dimensional. For example, two very close, yet not

touching triangles can be created in the pattern generator. Due to the e-beam

having a �nite diameter, the resist is also developed in the 'non touching area',

which allows to surpass the nominal resolution. This recipe also works for FIB

milling.

The gold material for the bow-tie antenna is a thin �lm evaporated via

electron-beam-deposition, resulting in polycrystalline raw material. Each crys-

tallite has a di�erent orientation and, therefore, a slightly di�erent etching

rate. This makes the fabrication not fully controllable in the length scale of

the polycrystallinity and de�ned small gaps are a matter of luck. One has to

produce many similar structures to realize a few with the desired geometry.

The single crystallites are distinguishable in Fig. 5.1(a), however, gaps sizes

below 1 nm could be realized. This approach breaks down, when the desired

overall geometry gets more complex (compare to Fig. 5.4(e)).

Figure 5.1(b) shows a cavity realized by self assembly of two chemically

grown gold nanorods. The gold of these single rods is monocrystalline, yet the

'structuring' is quite uncontrolled: the length and thickness of the single rods

is not monodisperse, but follows a statistical distribution and the positioning

of the structure is performed by dropcasting a solution with an optimized

rod concentration. This approach delivers in addition to dimers many singular

rods as well as trimers and higher order clusters. In general structures resulting

from bottom-up approaches have a supreme material quality but the building

blocks are only available in simple shapes as spheres, cubes, rods, . . . , and

are di�cult to position. This makes it extremely di�cult until today to build
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large area structures like e.g. long wave guides with corners with a bottom-up

approach. At least the positioning problem can be tackled to some extent by

means of DNA origami [146].

5.2 Focused ion-beam milling with Ga

Milling with a focused beam of accelerated gallium ions (FIB milling) has

proven to be a viable material erosion tool, capable to work very controlled

also in complex environments, e.g. on AFM-tips, when other techniques like

electron beam lithography cannot be applied. The only requirement is the

sample to be conductive, so that it does not charge during treatment, which

would distort the ion beam. The working principle of an ion column is com-

parable to a scanning electron microscope, except the ion source being a cone

with a sharp tip pointing downwards covered with a thin layer of liquid gallium

(Ga). A strong electrical potential applied at the cone ionizes Ga-atoms at the

tip apex, which then get repelled by electrostatic forces and leave the liquid.

This works as a point-like source of Ga-ions which are accelerated further,

focused and spatially controlled by electron optics.

Accelerated Ga-ions have multiple e�ects on hitting the target material,

which are depicted in Fig. 5.2. The simplest and also the desired behavior for

structuring is a Ga-ion being re�ected back into the vacuum chamber after

depositing a fraction of its kinetic energy in the top layer of the target, sput-

tering atoms. By steering the ion beam in a controlled path over the target,

complex structures can be carved from the material. The Ga-ions can also

penetrate the target material, leading to (i) doping of the target (also called

implantation), which is a major problem for structuring semi-conductors and

(ii) amorphisation, where the crystal structure of the target is broken up by

the kinetic energy of the decelerating Ga-ions. Finally a fraction of the ablated

target atoms redeposit at the target surface nearby the patterning position. In

all these interactions also electrons are set free, which can be used for imaging.

All FIB-milling in this work was performed with a Helios NanoLab Dual-

beam system from FEI, capable of performing combined SEM and FIB within

the same vacuum chamber. The acceleration voltage for the Ga-ion beam was

always 30 kV to ensure maximal resolution, which is nominally 4 nm. For the
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Figure 5.2: Impact of accelerated Ga-ions on a gold substrate. The various e�ects

are discussed in the text.

structuring of plasmonic geometries the beam current was always set to the

minimal value of Ibeam = 1.5 pA, to avoid beam widening due to electrostatic

repulsion of the ions. Soft materials (like gold), sample drift and charging ef-

fects reduce the resolution further, making it necessary to optimize parameters

for each material/acceleration voltage/beam current combination.

5.3 Monocrystalline gold �akes

The ideal basis for nanostructuring would be a thin, yet large area monocrys-

talline metal �lm for further treatment with top-down approaches. The wet-

chemically synthesis of nearly monocrystalline �akes in a bottom-up process

provides such a substrate made from gold. These �akes can easily be drop-

casted from a solution, and, thus, replace evaporated gold as two-dimensional

raw material of high quality [150].

The recipe to grow gold �akes in solution is illustrated in Fig. 5.3: An

aqueous solution of hydrogen tetrachloroaurate (HAuCl4 · 4H2O) is heated to

50◦C and then reduced via addition of ethylene glycol. After a few seconds

small gold crystal seeds have grown and aniline is added, which will cover the
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Figure 5.3: Recipe for the chemical syntheses of monocrystalline gold �akes: the

gold salt HAuCl4 is reduced by means of ethylene-glycol. Aniline is added after a few

seconds to cover the (111) surface of the emerging gold crystal seeds prohibiting their

growth in one dimension, ensuring two-dimensional monocrystalline �ake growth

(repainted [151]).

(111)-surface of the crystallites and thus prevent further gold atoms to attach

at this crystal facet. Therefore, further growth is only possible perpendicular

to the (111)-surface and the resulting crystals have the shape of thin platelets.

After 48h at constant temperature of 50◦C the reaction is stopped and the

resulting �akes are cleansed by multiple solvent exchanges to ethanol. The

�akes have a side length of up to 100 µm showing shapes from triangular to

hexagonal, and thicknesses between 40 and 80 nm, constant within one �ake.

A more detailed study revealed the existence of a few planar defects parallel

to the (111)-plane in probably every �ake [152].

Figure 5.4(a) shows monocrystalline gold �akes as drop-casted on an ITO

covered glass substrate. Panel (b) shows a close-up of a small rectangle milled

into a �ake. The �ake as well as the milling edges are smooth within the SEM

resolution, while an evaporated 30 nm thick Au �lm shows a rough surface

due to it consisting of crystallites with di�erent orientations (Fig. 5.4(c)). A

transmission electron microscope (TEM) analysis reveals minor irregularities

of a FIB cut edge as depicted in Fig. 5.4(d). While the crystallinity keeps

intact, redeposited particles lead to a roughness of about 2 nm. Figures 5.4(e)

and (f) show SEM images of an elongated two-wire transmission line, fabri-
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Figure 5.4: Properties of chemically grown gold �akes [150]. a) Stack of �akes

as drop-casted direct on ITO-covered glass (SEM; scale bar 5 µm). b) Zoom in

of the surface of a gold �ake with FIB-milled rectangle (SEM; scale bar 200 nm)

c) Rough surface of evaporated gold on the identical substrate (SEM; scale bar

200 nm). d) High-resolution image TEM of a FIB-cut �ake edge. The arrow points

at a redeposited particle (scale bar 2 nm). e) and f) Comparison between two-wire

transmission-lines with 25 nm center trench build from di�erent substrates: e) 30 nm

of electron beam evaporated gold. f) gold �ake polished to a height of 30 nm (scale

bar 500 nm).
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cated in evaporated gold and in monocrystalline gold �akes, respectively. For

evaporated gold the center gap is very irregular and at some points shortcut.

This will hamper the desired functionality, leading to highly damped plasmon

propagation. However, with �akes as substrate plasmonic nanostructures with

geometric features of high aspect ratio can be built reproducibly, enabling

sophisticated waveguide geometries [90,153].

5.4 Sample preparation

For fabrication of plasmonic structures, which are optical accessible through

the substrate as well as conductive for imaging by means of SEM and treat-

ment by means of FIB, the following recipe was used: Microscope cover slips

(Menzel, 24 × 24 mm2, 0.17 nm thick) were covered with 200 nm of sput-

tered ITO. A gold marker structure was evaporated and processed by means

of optical lithography. Wet-chemically grown gold �akes were drop-cast and

the resulting sample was plasma cleaned for 60 s in a 30 W low pressure oxy-

gen plasma. Then selected areas of the gold �akes were polished down to the

desired thickness of 30 nm by means of FIB milling

Polishing As the thickness of chemically grown gold �akes is statistically

distributed between about 40 to 80 nm, the desired height of a future nanos-

tructure has to be prede�ned by polishing an area of the �ake. For this an

ion current of 48 pA was chosen, allowing the ablation of more material per

time as resolution is no issue in this step. First the milling depth has to be

calibrated, since the prede�ned material milling parameters of the machine

are only guidelines and the aperture of the machine is subject to degradation

over time due to constant ion damage, leading to an ion current increase over

time. Atomic force microscopy (AFM - see next chapter) measurements of the

ablation rate lead to a calibration curve as depicted in Fig. 5.5(a). A linear �t

intersecting with the origin delivers a scaling factor between the set value and

the �nal value, e.g. of 1.396± 0.015.

Figure 5.5(b) shows an AFM image of a �ake with pristine, polished and

patterned areas containing the �nal optical antenna geometries. The pristine

�ake has a thickness of 48±1 nm (area marked green) and the polished area is
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Figure 5.5: a) Calibration of FIB-polishing: for a given ion current of 48 pA

and acceleration voltage of 30 kV the set depth values are compared with AFM

measurements, yielding a linear calibration factor. b) AFM measurement used for

the determination of optical antenna thickness. The green and blue marked areas

were used to evaluate height histograms.
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reduced in height by 20±1 nm (area marked blue). This results in a measured

optical antenna thickness of 28 ± 2 nm, which is only slightly less than the

intended 30 nm.

It has to be mentioned, that polishing �akes on glass with the given beam

properties deposits a lot of heat in the gold, leading to the formation of bubble-

like surface deformations, when the refresh-time � the time between two FIB

milling passes � is not set to a very large value of 500 ms. This leads to very

long structuring times, which can be avoided by using a substrate with better

heat conductivity (e.g. Si), or by decreasing the ion acceleration voltage to

10 kV. Then monocrystalline gold layers with thicknesses down to 10 nm can

be realized [152].



Chapter 6

Characterization

Optical characterization of plasmonic nanostructures is not straight forward, as

their geometrical features are often smaller than the di�raction limit. Scanning

near-�eld optical microscopy seems to be the method of choice and has been

employed with great success. Today it is possible to map plasmonic mode-�elds

in a three-dimensional volume [154,155]. However, also far-�eld techniques like

confocal microscopy can be used to examine simple optical antennas, as non-

linear processes deliver information about modal near-�eld patterns dependent

on the excitation position [101].

This work relies on far-�eld detection only. Therefore the �rst section of this

chapter introduces the physical principles of two-photon photo-luminescence

(TPPL), which is a non-linear process used to retrieve information about the

near-�eld concentration within plasmonic structures. The confocal microscopy

setup used within this work is then described in the second section.

6.1 Two-photon photo-luminescence

Illuminating a metal with monochromatic light with energy su�cient to excite

a valence (= d-band) electron into an unoccupied conductance band state (=

sp-band), gives rise to a broadband photo-luminescence (PL) response due to

non-radiative relaxation prior to re-emission of a lower energy photon [156].

The PL-spectrum can be used to examine the band structure of metal �lms

[157], but can also reveal resonance positions of plasmonic nanostructures [148].

For pulsed illumination with high peak power, the photon density is su�-

83
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Figure 6.1: Bandstructure of gold with the photon induced electron transitions

involved in TPPL [99]. The sp-band (conduction band) is sketched red crossing the

Fermi energy EF , the d-band (valence band) is sketched blue. The abscissa denotes

the position within the Brillouin-Zone.

cient to give rise to two-photon photo-luminescence (TPPL), where two pho-

tons are absorbed consecutively. TPPL allows the imaging of plasmonic modes

for large geometries [158] and the discrimination between modes for simple ge-

ometries smaller than the di�raction limit, when prior knowledge about the

involved modes is available [101].

Figure 6.1 shows the band structure of gold together with the involved

processes for TPPL. A �rst photon excites an intraband transition in the sp-

band (step (1) in Fig. 6.1). The hole starts to relaxate to the Fermi level in a

time scale of ≈ 1 ps [99]; in the meantime a second photon is able to perform

an intraband excitation from the d-band into the hole (step (2)). Finally, the

�rst excited electron and the second excited hole recombine, emitting a photon

with a maximum energy of the two photons.

TPPL can be used to experimentally probe the relative change of near-�eld

intensity enhancement (NFIE) of optical antennas with a high signal-to-noise-

ratio [101]. Since TPPL is a two-photon process, its emission intensity ITPPL
scales with the squared excitation �eld intensity. Thus, numerical results of

optical antennas allow to calculate the TPPL signal in good approximation

via the integral of the forth power of the electrical �eld E within the volume
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of the antenna Vant [159]:

ITPPL ∝
∫
V

E4 dVant . (6.1)

Yet, the TPPL process is dipole forbidden and needs strong �eld gradients

introduced by the curvature of the nanostructures, leading also to vanishing

signal at �at metal �lms. Due to its proportionality to E4 inside the material

the vast majority of the TPPL signal emitted by focusing optical antennas

originates from the volume near the hotspot, providing an integrated measure

for the relative amount of NFIE present in an individual antenna. However, a

given NFIE can be realized by di�erent geometries using varying amounts of

material, leading to di�ering TPPL signals. Thus, the comparison of TPPL

signals of di�erent optical antennas is only meaningful, when the geometry at

the volume of highest near-�eld concentration is very similar.

As �nal remark, it is important to distinguish TPPL from second harmonic

generation (SHG), where two photons are absorbed simultaneously [160,161].

6.2 Scanning confocal microscopy

All optical measurements were performed with a self-built confocal microscope

setup (see section 2.2 for the working principle) capable of imaging and spec-

troscopy (full setup sketched in Fig. 6.2). Together with the option to use mul-

tiple light sources, di�erent �lter sets and an atomic force microscope (AFM),

this setup is able to analyze multiple parameters of optical antennas. Only the

parts used for the measurements presented in this work will be described in

detail.

The excitation for the TPPL scans is realized with a frequency coupled

femtosecond-pulsed Ti:Sapphire laser (Coherent Mira 900) at λ = 830 nm

with a pulse length directly after the laser of 150 fs. After a single mode �ber

used for spatial �ltering and creating a point light source the pulse length is

about 1 ps (measured with a CARPE auto-correlator; A.P.E., Berlin), which is

su�cient for the desired TPPL excitation of gold (see previous section). After

collimation of the beam its polarization was linearized with a broadband λ/2-

plate (FocTec; 700 � 1000 nm). A neutral density �lter allows excitation power

adjustment and a 50:50 non-polarizing cube-beam-splitter separates excitation
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and detection beam path. The excitation light enters the back of a NA=1.4

oil immersion objective (Nikon 100x Plan-Apochromat) which is attached on

a PIFOC (Physical Instruments) for focusing. The sample is �xed on a closed-

loop x-y-piezo stage (Physical Instruments, 100 µm × 100 µm scan range) for

scanning through the focus.

In the detection light path after the 50:50 beam-splitter a holographic

830 nm notch-�lter (OD > 6.0; Kaiser Optical Systems) blocks the direct re-

�exion of the excitation beam. Two additional shortpass-�lters (both Semrock;

SP785 & SP680) ensured that only the TPPL-signal arrives at a single photon

counting module (Perkin-Elmer SPCM-AQR 14). Additional polarizers can be

inserted in both excitation and detection beam path to analyze polarization

dependencies of optical antennas. For comfortable sample positioning a �ip

mirror allows to image the sample with a CCD camera.

Atomic force microscopy All information about the topology of gold �akes

and optical antennas was acquired by atomic force microscopy (AFM) under

ambient conditions with tapping mode operating at a resonance frequency of

240�280 kHz and a scanning rate of 0.2 Hz (DMLS scanning head, Nanoscope

IIIa, Digital Instruments).
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Chapter 7

Evolutionary optimization of 2D

focusing optical antennas

A checkerboard-type implementation of an evolutionary algorithm (EA) start-

ing with random geometries will be introduced to optimize plasmonic nanos-

tructures for focusing far-�eld radiation in a single near-�eld hot spot. The

�ttest (=best) resulting structure surpasses a classical dipole reference an-

tenna by a factor of 2. It can be reduced to a simpli�ed geometry resembling

a split-ring-two-wire antenna hybrid. By shifting the n=1 split-ring resonance

into the optical regime it outperforms optical antenna designs inspired by rf-

technology1.

For the vocabulary used to describe evolutionary optimization as well as for

an overview on previous application in plasmonics, see section 4.3.

7.1 Algorithm

A genetic representation of complex-shaped thin-�lm nanoantennas is realized

by composing structures (matrix antennas) from discrete gold cubes with �xed

dimensions (10×10×11 nm3) positioned on a 21×21 square matrix in vacuum.

The genetic information is represented in a unique binary code, where matrix

elements are set to '1', if occupied by a gold cube and to '0' when empty (see

Fig. 7.1(a)). An example showing a bow-tie antenna represented in a 5×5 array
is depicted in Fig. 7.1(b). The resulting con�guration space of about 4·10132

1Most of this chapter has been published nearly identically in [102].
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Figure 7.1: Binary encoding and simulation of evolutionary plasmonic nanostruc-

tures: a) Translation of '0' to a cube of background material and of '1' to a cube of

gold. b) Example 5×5 matrix and its corresponding matrix antenna. c) Side view of

the simulation setup, a Gaussian focus illuminating the �oating matrix antenna. d)

Size of the evolutionary antenna (yellow) compared to the Gaussian focus (greytones)

in the antenna plane [102].

di�erent individual structures ensures geometrical variety but is impossible to

explore by brute force methods, since the evaluation of an individual structure

takes about 20 minutes.

As �tness parameter we choose the normalized near-�eld intensity enhance-

ment (NFIE) in the focus of an illuminating Gaussian beam (λ = 647 nm,

NA= 1, 4.3 fs pulse duration, 144 nm bandwidth) centered on the antenna as

illustrated in Fig. 7.1(c). The size of the focal spot and the area occupied by

the gold cube matrix are comparable (see Fig. 7.1(d) and section 2.2), ensuring

that the whole matrix antenna area in�uences its �tness.
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Figure 7.2: Scheme of the evolutionary algorithm. After an initialization step, all

individuals of a generation are evaluated by means of FDTD-simulations and ranked

by the �gure of merit. The best �ve are then taken to generate the individuals for

the next generation (see [102] - Suppl. Material).

The evolutionary algorithm as depicted in Fig. 7.2 is implemented in Mat-

Lab2. It is a (5,20/30)-strategy, which means it uses generations consisting

of 20 or 30 individual matrix antennas selecting the �ve �ttest structures as

parents for the next generation.

The very �rst generation is �lled with random individuals, with a �lling

factor of 0.7, which delivers faster progress in the evolution in the �rst few

generations. With carefully chosen mechanisms for crossover and mutation

of the genomes, consecutive generations constantly improve in the sense that

their maximum �tness parameter increases. To create descendants in a �rst

step one of the �ttest �ve parents is selected by roulette wheel selection with

a probability that is proportional to its �tness (parent A). Three methods are

then applied until a total of 20 (or 30) new individuals have been generated for

the next generation. The three di�erent mechanisms to generate individuals

for generation n+ 1 after evaluation of generation n are:

2The code is available online [162]
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p    0.1

a)

c)

b)

Figure 7.3: Methods used for creating individuals for generation n+ 1 after gen-

eration n has been evaluated. a) Mutation: Each block is eventually toggled with

a given probability. b) and c): Crossing of the genomes of two parents which are

divided into b) left and right parts (linear crossing) or into c) inner and outer parts

(spiral crossing). Not depicted is the generation of complete random new structures

( [102] - Suppl. Material).

(i) Random: Completely random structures are generated with a 70%

chance of each block being gold or void. These structures are independent

of the parent pool and intended to introduce diversity into the genetic mate-

rial.

(ii)Mutation: Each block of parent A is toggled between gold and void with

a chance of 10% (reddish blocks in Fig. 7.3(a)). This allows good structures

to enhance further without intermixing with other genomes.

(iii) Linear and spiral crossing: The line-by-line (spiral-) encoded genomes

(see Fig. 7.3(b) and (c)) of two parents, A and B, are crossed by combining the

�rst half of the genome of A with the second half of the genome of B preserving
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the overall genome length. The point at which the individual genomes are split

is chosen randomly. This method allows the combination of the left (inner)

part of parent antenna A with the right (outer) part of a second parent B

(reddish areas in Fig. 7.3(b) and (c)).

Each method to generate a subsequent individual is applied with equal

probability. Method (iii) requires a second parent B that also is chosen from

the pool of the remaining four �ttest individuals in the same way as A. The new

individuals are checked if they or a physically redundant structure already has

been simulated and are replaced in that case with newly generated individuals

(see appendix A).

To reduce the computational e�ort, simulations were terminated after 35 fs,

when more than 98% of the excitation power has left the simulation volume.

Although such a short simulation is not su�cient to reach a very high absolute

accuracy, it is still possible to determine the relative hierarchy of simulated an-

tennas in terms of �tness parameters such as near-�eld intensity. Considering

that a full FDTD simulation of an antenna structure generally takes 70 � 80 fs

to fully converge, the overall simulation time is cut by about a factor of two.

The best individuals after termination on the GA are re-simulated until full

convergence in order to obtain physically accurate results.

After a su�cient amount of generations has been simulated, a so called

toggle plot analysis is performed, which consists of running 21x21 simulations

in which every block is toggled individually (see Fig. 7.4). Color-coding the

block positions according to the magnitude of the �tness change associated

with the individual toggle event shows the relative importance of single blocks,

the potential for further improvement of a matrix antenna, and also eventually

produces new individuals with enhanced �tness. This is in principle the brute

force realization of a hill climber algorithm on the described setup, neglecting

pair- and higher-order correlations.

7.2 Results

Only the EA yielding the very best antenna geometry will be presented here.

More information about test runs with di�erent parameters and geometries can

be found in the master's thesis of Markus Kiunke [125] and Oleg Selig [163].
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Figure 7.4: Explanation of the toggle plot: a) original antenna structure with

a given �tness, de�ning the 100% level. b) single toggle of a gold block to void,

increasing the �tness. c) Toggle of a single void space into a gold block, decreasing

the �tness. d) Map of e�ect of all matrix element toggles, called Toggle Plot (values

are �ctious; adapted from [163]).

Figure 7.5 displays the progress of the evolutionary optimization as a func-

tion of generation number. Panel a) shows the NFIE in the gap of all 2000

simulated individuals of the �rst run. It is important to note, that the individ-

uals have only been simulated for 35 fs and therefore their �tness parameter

is underestimated typically by 10�20%. The �rst generation contained 20 ran-

dom individuals with �eld enhancements between 0.2 and 43.8. Figure 7.5(b)

shows, to the very left, the probability of each matrix space of the best 10

structures of the �rst generation to be occupied with gold (Gen: 1). The low

saturation re�ects the randomness of each single matrix position. While the

algorithm develops, the NFIE gradually increases and surpasses the enhance-

ment of the reference antenna in generation 42.

The probability plots in Fig. 7.5(b) clearly illustrate the development of

structural features: left of the gap a small arm with 40×20 nm size evolves,

while on the right side a more triangular structure emerges. On the way

to a better structure the individuals in a single generation get more similar

within the �rst 10 generations and show only small di�erences henceforth.

The development of some important features leads to a jump in the maximum

�tness of a generation, when they are established the �rst time. The �rst such

feature is a gap, which ensures the minimal possible distance of charge carriers

to the optimization position. Then the areas next to the gap are getting more

solid, to establish currents and supply the gap with a larger surface charge

density. The �rst big jump in the �tness originates from the removal of the

block directly above the center, opening the gap.
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Figure 7.5: Overview over the evolution process. a) shows the development of the

NFIE as the number of generations progresses. Twenty simulations make up one

generation. Number 1, 34, 55, and 88 are denoted by grey bars for further discussion

in b). The red curve shows the maximal obtained enhancement, the orange the mean

enhancement of a generation respectively. The black dashed horizontal line marks

the �eld enhancement of the reference dipolar antenna. b) shows the probability

of each 21×21-matrix position for hosting a gold cube for the 10 best structures of

the respective generation. The blue spot at the center marks the "gap", where the

optimization took place and thus always was set empty.
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The �tness also occasionally reduces, which may occur, when a local maxi-

mum of the con�guration space was found and among the o�spring structures

there is not yet an individual that includes a new key feature. As crossing

will not produce o�spring with a novel geometry, more and more individuals

will be generated by mutation, thus eventually lowering the �tness in the next

generation but also create new features, which will �nally lead to the formation

of new structural elements that will �nally generate even better structures.

In the following we discuss the �ttest evolutionary antenna (FEA) obtained

by running the EA for 100 generations with 20 individuals each (as shown in

Fig. 7.5), a subsequent toggle plot analysis and further 30 generations with

30 individuals each, starting with combinations of the best �ve structures

obtained from the toggle plot analysis.

The excitation wavelength of λ = 650 nm coincides with the resonance of a

linear dipole nanoantenna consisting of two end-to-end aligned 46×30×11 nm3

gold rods (width = 3 cubes, height = 1 cube) separated by a 10 nm gap

(Fig. 7.6(a), top panel) which serves as a reference structure. It exhibits a

resonant normalized NFIE of about 1800 in the center of its feed gap. Other

geometries, such as bow-tie antennas, were also tested but showed no higher

�tness.

The FEA (Fig. 7.6(a), lower panel) exhibits a remarkably high �tness, as

indicated by its near-�eld spectrum in Fig. 7.6(b) which is recorded in the

optimization point (indicated as blue dot in (a)) after a broadband excitation.

Its maximal NFIE of 3500 is nearly twice as high as that of the reference

antenna. Both spectra show single, nearly Lorentzian peaks with Q-factors of

Q=20 and 23, respectively.

According to the reciprocity theorem (see chpt. 2.4.3) the FEA should also

improve the radiative properties of a quantum emitter positioned in the spot of

highest �eld enhancement. Indeed for the reference antenna we �nd a radiation

enhancement of 2126 and a radiation e�ciency of 0.255, while for the FEA the

radiation enhancement is 4271 with a radiation e�ciency of 0.268.

Surprisingly, the directivity of the FEA remains very similar to that of the

reference antenna despite its complex shape as shown in Fig. 7.7. The refer-

ence antenna shows a symmetrical dipolar radiation pattern with a directivity

(de�ned in eq. (2.45)) of Dref = 2.09 dBi which is only slightly smaller than
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Figure 7.6: Comparison of a resonant linear dipole nanoantenna build from two 10

nm separated rectangular arms of 46x30x11 nm3 with the FEA obtained from the

EA as described in the text. (a) shows the geometry of both structures from the

+z direction. The blue spot denotes the position of the near-�eld optimization by

the EA. The spectra in (b) are taken at this marked position during a broadband

Gaussian excitation. (c) shows the logarithmic near-�eld intensities at λ =647 nm

when the structures are illuminated by a monochromatic Gaussian focus with NA

= 1. The scales are normalized and not comparable. In (d) the the change of NFIE

at the optimization position is shown for each single block, when it is toggled. (e) is

a zoom of the center part of the EA antenna, showing strength and direction of the

currents [102].
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Dλ/2 = 2.15 dBi of an ideal thin wire half wave dipole (compare with Fig. 2.7).

The radiation pattern of the FEA deviates only slightly from the reference

antennas radiation pattern, yet, it exhibits a more pronounced radiation in z-

direction. Considering reciprocity, its enhanced directivity of DEA = 2.31 dBi

re�ects the optimization to irradiation by a directed gaussian beam. However,

the deviation is not large, which is attributed to the FEA being smaller than

λres/2. Multipole excitations within these small area are only able to interfere

very weakly with each other since the phase di�erences of the constituting

dipoles can not add up to signi�cant values.

The FEA exhibits three noticeable geometrical features:

(i) a small gap in the center between two compact rod(-like) structures,

being slightly displaced in y-direction with respect to the point of optimization.

(ii) a single gold block directly below the gap which creates a current path

connecting the rod-like structures and

(iii) a seemingly random arrangement of gold blocks further away from the

center.

It is important to note that the optimal structure found by the EA depends

on both the available primitive elements as well as on possible boundary con-

ditions. Using a di�erent block size or imposing boundary conditions, e.g.

limiting the gap width, would lead to di�erent �ttest structures.

We now consider the NFIE maps of both reference and FEA in Fig. 7.6(c).

The small displacement of the rod-like structures increases the NFIE by a small

factor because of the proximity of the corners of the rod-like structures to the

point of optimization. However, this alone by far cannot explain the observed

increase of the NFIE. The achievable enhancement by displacing the reference

antenna in a similar way amounts to a factor of 1.1.

The result of a toggle plot analysis is displayed in Fig. 7.6(d). It indicates

that changing individual blocks does not yield considerable additional NFIE,

but rather a severe reduction. We therefore believe that the structure's �tness

is close to a (local) maximum in the con�guration space. The by far strongest

reduction of �tness occurs when toggling gold blocks near the center. This

indicates that the compact structure in the proximity of the gap is dominating

the �eld enhancement and is most critical for achieving the observed perfor-

mance. Assuming that it is excited at an eigenmode, this also explains the
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Figure 7.7: Radiation patterns of reference antenna and FEA. a) De�nition of

spherical coordinates θ and ϕ with respect to the antenna orientation. A point

dipole emitter emitting at the resonance wavelength λres = 650 nm is placed at the

position of highest NFIE. Since the structures are symmetrical in z-direction, only

the radiation power in the upper half space needs to be evaluated. The colored

markings (red, blue, green) denote particular constant-coordinate lines. b) shows

geometry and normalized dipolar radiation pattern in cylindrical projection for the

reference antenna. c) shows geometry and radiation pattern of the FEA normalized

to the reference antenna (compare with Fig. 2.7; [102] - Suppl. Material).
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single narrow Lorentzian resonance. As apparent from the toggle plot, the

random structures far away from the center do hardly in�uence the �eld en-

hancement in the gap. Nevertheless, it is possible that collective e�ects of the

peripheral blocks do in�uence the �tness of the structure to some extend which

due to the inherent complexity could not be discussed in further detail.

Of particular interest is the single gold block below the gap. It provides

a current path via the cube edges between the two rod-like structures that

form the gap as can be observed by taking a closer look at the currents in the

central part of the FEA in Fig. 7.6(e). Surprisingly, we �nd that removing

this block severely lowers the �tness of the resulting matrix antenna instead

of increasing it. Closer inspection reveals two particular current paths, one

located in the rod-like structures corresponding to a bonding linear dipolar

nanoantenna mode, but also a second one, which �ows from one upper gap edge

through the connecting gold block to the other upper gap edge, corresponding

to a fundamental split ring mode.

7.3 The split-ring antenna

In order to better understand the e�ects that lead to the increased NFIE, in

the following we study a reduced model system, i.e. a mixture of a split-ring

and a linear two-wire antenna called split-ring antenna (SRA) that retains the

important features of the FEA but can be described by a small number of freely

tunable parameters. Its geometry is depicted in Fig. 7.8(a). The structure can

be interpreted either as linear two-wire antenna with an asymmetric short

circuit, a split-ring resonator with attached wires or a long single nanowire

that is deformed in a particular way.

For a proof of principle we started with the reference antenna de�ned by

g = h = 10 nm and w = 30 nm, and linked the two arms with a connection

as would be possible within the EA and set lc = 30 nm and wc = 10 nm

as depicted in Fig. 7.8(a). The antenna length l had to be re-optimized for

resonant behavior at λ = 650 nm and the resulting antenna had lSRA = 108 nm

compared to the original antenna with l = 102 nm (see Fig. 7.8(b) and (c)).

The NFIE of the SRA in the center plane is depicted in Fig. 7.8(b), showing

a strong �eld concentration towards the open side of the SRA gap as it was
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Figure 7.8: The split-ring antenna (SRA). a) General geometry of a split ring

antenna. l is the overall length, lc the length of the conductive connection. w the

width of the antenna arms and wc the width of the connection. h de�nes the height

of the overall structure and g the extension of the center gap. b) Near-�eld intensity

of the SRA as described in the text, showing the very concentrated �elds in the open

end of the gap. The blue dot denotes the the point of measurement for the spectrum

�gured in c). The Q ≈ 25 for the SRA (red) is comparable to the reference antenna

(black). d) is an overlay of the current intensities (blue) and direction (arrows) inside

the material, as well as the magnetic near-�elds (green) outside the structure (b) �

d) from [102]).
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Figure 7.9: Wavelength shift of the extinction cross section resonance for the com-

bined two-wire antenna and the n = 1 split ring resonance, as a conductive link

between two antenna rods and a split ring (see inset) increases in thickness (marked

thick dashed). Also visible are the bonding and anti-bonding n = 3-modes, which

also shift slightly into the blue and get very weak (marked thin dashed). The sketches

at the bottom show the geometries of the fully disconnected and fully connected

structures together with the position and sign of their mode's charge density max-

ima [102].

already observed in the FEA. Figure 7.8(c) compares the spectra of the reso-

nances of a SRA with a non short-circuited dipolar antenna of identical arm

cross section, gap size and resonance frequency. Both spectra were obtained at

the point of highest NFIE along the y-axis. Also in the present model system

the split-ring antenna surpasses the classical dipole antenna design in terms of

maximum NFIE by a factor of 2.

The current pattern of the SRA can be decomposed into a fundamental

(n=1) split-ring mode (see chpt. 3.2.5) and a dipolar mode current in each

antenna arm which is running 180◦ out-of-phase to the current in the short

circuit (Fig. 7.8(d)), adding to the charge accumulation in the upper part of the

gap and thus increasing the NFIE. Since the resonance is in the optical regime,

the SRA is a way to circumvent the limitation of pure split-ring resonances to

wavelengths longer than 900 nm due to kinetic inductance (see chpt. 3.2.5).

The SRA represents a magnetic dipole in the visible, showing magnetic �elds

(Fig. 7.8(d)), which are only by a factor of 2.5 weaker than those of the isolated

split-ring resonator at its resonance wavelength of 908 nm.
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To con�rm the shift of the fundamental split-ring mode from the infrared

into the visible spectral range, we place two gold bars (35×30×11 nm3) sep-

arated by a 5 nm non conductive gap from the plain split-rings ends. The

extinction cross section is examined while connecting the gold bars with the

split-ring via successively thicker gold bridges at the center of the gap (see

Fig. 7.9 and inset). In the unconnected geometry the fundamental split-ring

resonance is shifted into the red to about 1200 nm due to the capacitive cou-

pling across the gap (compare with the dipolar antenna in Fig. 3.10(b)). As

the connection grows thicker (increasing d), the fundamental split-ring mode

is shifted by more than 500 nm from the infrared into the visible. The shift of

the resonance is of similar origin as the emergence of a charge transfer mode

for a dipolar antenna with a conductive bridge [164]. However, here the funda-

mental split-ring mode is not disappearing but its phase is inverted (compare

the charge distributions sketched in the lower panel of Fig. 7.9). For very thin

conductive bridges both modes exist simultaneously (see also [164]) and cancel

out each other, leading to a dip in the extinction cross section.

Conclusion By using the method of evolutionary optimization in a large

parameter space, high-�tness plasmonic antennas can be found within a rea-

sonable amount of time. Besides directly yielding optimized structures, a care-

ful analysis of the working principles of the resulting geometries may provide

new design strategies for high-performance plasmonic nanostructures. In the

present example, an increase of the NFIE by nearly a factor of 2 compared

to a dipolar antenna design can be obtained, caused by the intriguing coop-

eration of a fundamental split-ring mode and dipole antenna resonance. This

novel antenna design additionally exhibits very large magnetic �elds at optical

frequencies. In particular, the fundamental split- ring resonance is shifted into

the visible spectral range because of the formation of a charge-transfer-like

hybrid resonance with two rods of a dipolar antenna. The method can be fur-

ther adapted to include geometrical constraints imposed by microfabrication

and therefore lead to structures that can directly be implemented in practical

applications, which will be shown in the next chapter.
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Chapter 8

Evolutionary optimization of

realistic optical antennas

The results from the previous chapter proofed evolutionary optimization of

optical antennas with a two dimensional binary matrix as genome to be fea-

sible as well as instructive. Yet it is purely simulation work and the resulting

geometries are unlikely to be realized in experiment.

This chapter presents the results of the next logical step, improving and

adapting the evolutionary algorithm (EA) to realistic structure dimensions and

rounded geometric features. For this the capabilities of high-detail focused ion

beam (FIB; see section 5.2) fabrication using monocrystalline gold-�akes as

substrates (see section 5.3) are evaluated. Then the EA is adapted to the min-

imal reproducible dimensions without changing the optimization goal, to max-

imize the near-�eld intensity enhancement (NFIE) at a single point in space.

The �ttest evolutionary antenna is investigated for its working principle, as its

shape again is not comparable to any known radio-frequency antenna design.

Afterwards, the resulting geometries are fabricated directly from the genomes,

which are translated into FIB milling commands by a 'printer driver' MatLab

script1. An experimental study by means of two-photon-photo-luminescence

confocal microscopy successfully reproduces the numerical results2.

1All the mentioned code can be accessed online [165]
2This work was published in very similar form here: [166]
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8.1 Algorithm adaption

Figure 8.1 illustrates the encoding and geometrical interpretation of the planar

antenna structures used to adapt the EA to realistic geometries. Antennas are

assumed to consist of 30 nm thick gold on top of 200 nm indium tin oxide (ITO)

on top of a glass substrate, corresponding to later experimental conditions. The

high transparency and the good conductivity of the substrate are ideal for ion

beam milling, SEM imaging, as well as optical characterization. The genome

is a two dimensional square matrix with binary entries (see Fig. 8.1(b)). Each

'1' denotes a cylindrical hole which approximates the structural primitive of

FIB fabrication. As the antenna center is meant to be the area of maximum

NFIE, the matrix center is always set to '1'. Figure 8.1(c) illustrates, how

the topology of possible hole arrangements is converted to a realistic geometry

that can be fabricated by FIB milling: adjacent holes are connected, leading

to geometries as the one sketched in Fig. 8.1(d).

To identify the minimal parameters for the hole radius rh and center-to-

center hole distance dh resulting in reproducible patterns when FIB milling

a 30 nm thick single crystalline gold �ake (see chpt. 5.3), an 11×11 matrix

test pattern (see Fig. 8.2(a)) was developed. It includes all relevant structural

primitives, such as e.g. isolated gold islands, individual missing pixels (holes)

as well as solid gold rims and corners. Figure 8.2(b) shows an SEM picture of

the structure with the �nal dimensions with holes of radius rh = 11 nm and a

center-to-center distance of dh = 30 nm.

The evolutionary algorithm was run using also an 11×11 square array with

the determined dimensions. In the simulations the antenna is excited using a

Gaussian focus (NA = 1.4; λexc = 830 nm) at normal incidence, centered onto

the structure. The resulting overall antenna area of 330 nm×330 nm �ts the

FWHM of the Gaussian focus of ≈ 390 nm. (comparable to the situation in

Fig. 7.1(d)).

Contrary to chapter 7 the realistic EA was performed without the addi-

tion of random structures each generation, since they have no bene�t in late

generations. We proved, that the algorithm is still capable of leaving local max-

ima (see appendix B). Each new individual is generated via mutation with a

probability of 0.4 or crossing with a probability of 0.6. Mutation happens by
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Figure 8.1: Genome and topological constraints. a) 3D sketch of an exemplary

geometry on top of an ITO layer covering a glass substrate. The rounded features

emulate constraints due to FIB milling. b) binary 5×5 genome of a small optical

bow-tie-like antenna, where '1' denotes the positions at which the gold will be re-

moved. c) Rules for replacing neighboring hole arrangements by structures that can

be fabricated by FIB. rh: hole radius, dh: center-to-center hole distance. d) top view

of the structure resulting from the genome in b) after applying the rules sketched in

c). r0 denotes the point of optimization for the NFIE.
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Figure 8.2: 11×11 test pattern design for FIB benchmarking. a) Sketch of geom-

etry. b) SEM picture of the resulting structure produced by FIB milling in 30 nm

thick monocrystalline gold (scale bar = 100 nm).

switching each bit of the binary genome with a probability p� = 0.01, result-

ing in an average of
∑n

i=0 p�(1 − p�)i = 0.7 �ips for n = 120 matrix elements

(112−1; center spot is always free). We increased the amount of individuals to

30 per generation and took the 8 �ttest structures as parents for building sub-

sequent generations. The �rst generation again consisted of random structures

with a �lling factor of 0.7.

8.2 Result of evolution

As in the previous chapter, only the EA yielding the very best antenna geome-

try � called �ttest evolutionary antenna (FEA) � will be presented here. More

information about test runs with di�erent parameters and geometries can be

found in the Masters thesis of Oleg Selig [163].

The evolution (see Fig. 8.3) started favorable with a single individual in

the �rst random generation with a �tness of over 300, being most likely the

parent of all subsequent generations due to the implemented roulette wheel

mechanism (see section 7.1). After a phase of rapid progress around generation

15 the �tness gain per generation seems to decrease exponentially towards a

�nal value, which is, why we decided to stop the EA after generation 58.

Another reason was our experience from the theoretical algorithm, that the

center part of the antenna responsible for the near-�eld concentration will not

change any more in later generations.

The FEA is a compact asymmetric structure with a high �lling factor of

65 % with an L-shaped gap in the very center (see lower part of Fig. 8.4(a)).

We compare its �tness to a dipolar antenna with corresponding geometrical
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Figure 8.3: Development of the realistic EA. Each dot represents the �tness pa-

rameter of a single individual. Also the best �tness per generation (red) as well as

the mean �tness per generation (orange) are shown.

constrains (depicted in Fig. 8.4(a), top), its arm dimensions being 112× 38×
30 nm3 with a gap of 22 nm optimized via its arm length to exhibit a NFIE

in the gap at λ = 830 nm.

The NFIE spectra of both antennas show a Lorentzian-shaped resonance

with a maximum of 1100 at λFEA = 832 nm for the FEA and of 640 at λres =

835 nm for the reference antenna (see Fig. 8.4(b)) with a full width at half

maximum of ∆λFEA = 74 nm compared to ∆λref = 105 nm. This corresponds

to a Q-factorQFEA = λFEA/∆λFEA = 11.2 for the FEA andQref = λref/∆λref =

8.0 for the reference antenna, respectively. As a higher Q-factor originates from

lower combined radiative and Ohmic losses (see chpt. 2.4), the far-�eld coupling

of the FEA is reduced in comparison to the reference antenna. Nevertheless,

the FEA exhibits an 1.7-fold higher NFIE in the antenna center, which further

highlights its improved energy concentration mechanism.

The asymmetry of the FEA geometry originates from the still too coarse

discretization provided by the antennas primitive elements: changing antenna

dimensions in steps of 30 nm results in large shifts of resonance frequency

making it di�cult to perfectly match the optimization frequency with a sym-

metric geometry. The importance of individual FEA building blocks for the
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Figure 8.4: Properties of the �ttest evolutionary antenna (FEA): a) 3D sketch of

the reference dipolar antenna (top) and the FEA (bottom) on substrate. b) Near-�eld

intensity enhancement (NFIE) spectrum at the very center of the reference antenna

(black) and the FEA (red). c) Toggle plot of FEA (for details see text). d) NFIE

and current direction (white arrows) in the center plane of the FEA. e) Model for

the operation principle of the FEA constructively combining current patterns from

two split-ring resonators and two rod antennas. All scale bars are 100 nm.
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obtained NFIE can be assessed using a toggle plot (Fig. 8.4(c); explained in

chpt. 7.1). It clearly demonstrates that the pixels close to the center play the

most important role for the antenna performance. Some green areas indicate

that the FEA structure does not correspond to the absolute global maximum

in the con�guration space of the EA and a slight increase of NFIE up to 3 %

can be achieved by switching single elements in the periphery.

To understand the working principle of the FEA we analyze the NFIE dis-

tribution (color coded in Fig. 8.4(d)) and a temporal snapshot of the current

pattern (white lines and arrows). The near-�eld intensity at the optimization

point (marked with circle) yields a 1100-fold normalized enhancement which

is nearly fully x-polarized. The current pattern suggests an accumulation of

charges at positions close to the optimization point within the antenna even in

the absence of tip-like structures. Only the kink of the L-shaped central void

contributes to the enhancement by means of the lightning rod e�ect.

The FEA current pattern can be described by a constructive superposition

of two fundamental modes (see Fig. 8.4(e)): (i) dipolar antenna currents com-

parable to the lowest order bonding-mode current pattern of linear two-wire

antennas (compare to Fig. 3.10(b)) with the well-known bene�ts of good far-

�eld coupling as well as accumulation of opposite charges at either side of the

gap as well as; (ii) the current pattern of fundamental split-ring like modes

(see chpt. 3.2.5) above and below the gap, leading to additional charge accu-

mulations at the center and resulting in a larger NFIE as for a plain dipolar

antenna. This is the logical extension of the split-ring antenna concept from

chpt. 7.3.

8.3 Experiment

The generation of the FIB pattern from the binary matrix involves a specialized

algorithm [165] written in MatLab, which transforms the '1' entries into poly-

gons. These are connected like the structures in the simulations, but with all

rectangular edges. The round shapes are created automatically by the limited

resolution of the ion beam. Finally all polygons, still with scales discretized

by the 30 × 30 nm2 grid, are decreased in extension by 3 nm. This yields after

fabrication the dimensions as simulated representing a "printer driver" for the
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FIB machine. Special care had to be taken for single holes, as the machine-

intern milling algorithm results in smaller or even incompletely milled holes

for the optimized settings of the bigger polygons. We automatically adjusted

the milling depth for single holes by a factor of 1.4, which was determined by

empirical tests. This pattern was written four times, each pass with a di�erent

direction (top to bottom, left to right, ...) to ensure the milled features being

regularly shaped. Milling in only one direction leads to undesired redeposition

e�ects.

The FEA as well as �ve antenna structures from earlier generations with a

decreasing �tness were fabricated using the 'printer driver' (see Fig. 8.5(a)).

To evaluate the reproducibility, each structure was fabricated six to eight times

in a row, the �rst row denoted #1 containing the FEA. The thickness of the

structures after FIB milling has been measured by AFM to be 28 ± 2 nm,

closely matching the intended 30 nm. To account for the small deviation in

thickness all geometries were re-simulated with decreased thickness of 28 nm

resulting in a slightly reduced �tness for all geometries, while preserving the

hierarchy of relative �tness, except for a slight increase for structure #5 (see

appendix C).

Two-photon-photo-luminescence (TPPL) is used to experimentally probe

the relative change of near-�eld intensity enhancement of the fabricated an-

tenna structures (see chpt. 6.1). In good approximation the intensity ITPPL
of the TPPL signal is proportional to the integral of the forth power of the

electrical �eld E within the volume of the antenna Vant:

ITPPL ∝
∫
V

E4 dVant . (8.1)

Equation (8.1) allows to numerically calculate the relative changes of emitted

TPPL signal based on simulated antenna modes.

The vast majority of the signal originates from the volume near the antenna

hot spots, where the �eld gradients are largest. The fabricated EA antennas

show nearly identical geometries around the central hot spot. They can there-

fore be compared reliably by means of TPPL, which provides a measure for

the relative NFIE, assuming ITPPL ∝ I2
x(r0). The gap of the reference antenna

strongly deviates in shape from the EA antennas and their TPPL signals can-

not be compared quantitatively.
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Figure 8.5: Experimental realization of evolutionary antennas: a) Fitness, sketches

and SEM image of the EA antenna array realized by means of FIB milling. Each row

contains eight times the similar structure sorted by �tness from top to bottom. b)

TPPL map of the fabricated array. The insets show detailed maps of one of the very

best and of the worst antenna geometry. c) evaluation of the TPPL data (black dots)

together with simulated values for the �tness (NFIE - red line) and the simulated

TPPL value (integrated forth power of the electric �eld inside the metal - blue line).

TPPL of the fabricated antennas is recorded by scanning confocal mi-

croscopy using a 300 fs Ti:Saph laser at a center wavelength of 830 nm (see

chapter 6). Figure 8.5(b) shows the resulting TPPL map. The antennas are

clearly distinguishable and the trend of decreasing signal for antennas with

lower �tness is obvious.

Figure 8.5(c) shows the comparison between experimental and numerical

results. The experimental data points are acquired by integrating the TPPL

count rates over the area of the individual antennas. Mean value and standard

deviation are calculated and normalized to the value of the FEA. As numerical

results both the �tness parameter as well as the simulated TPPL signal (equa-

tion (8.1)) for 28 nm thick antennas are plotted, each also normalized to the

respective value of the FEA. There is good agreement for the relative changes

of measured TPPL signal, simulated �tness and simulated TPPL signal. The

trend of increasing error bars with increasing �tness can be explained by the in-

�uence of di�erent hole sizes due to fabrication inaccuracies. The NFIE of the

antennas depends heavily on the central area geometry due to the capacitive

coupling across the width of the center gap (see appendix C).
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Figure 8.6: Near-�eld spectra of the evolutionary antennas in the point of opti-

mization. The dark blue dashed line denotes the excitation wavelength of 830 nm,

while the light blue area shows the wavelengths contributing to the TPPL signal in

the experiment.

For the two antennas with lowest �tness the measured normalized count

rates are consistently higher than the simulated relative signal strengths. This

maybe due to di�erent e�ects: i) the simulated broadband spectra (see Fig. 8.6)

show an additional small resonance peak at about λ = 670 nm for those two

geometries, which will lead to an enhancement of the TPPL signal compared

to the other antennas [167]. ii) antennas #5 and #6 do not show a single

central peak in the TPPL map. This most probably originates in the existence

of multiple or higher order modes, not included in the simulations with the

excitation focus being �xed in the very center of their geometries. Both e�ects

were not considered.

Conclusion In the end an evolutionary algorithm describing realistic planar

optical antenna geometries was realized with feature sizes of ≈ 22 nm that

can be directly printed via FIB milling. The �ttest antenna resulting from an

optimization of near �eld intensity enhancement is a rather compact, yet com-

plex geometry which exhibits a surprisingly clean Lorentian resonance. The

responsible mode can be described by a superposition of a dipolar antenna

resonance and split ring resonances. Comparison of experimental two-photon

photo luminescence data and corresponding numerical simulations show good

agreement and prove the possibility to establish a direct link between evo-
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lutionary optimization and fabrication of optimized structures which indeed

display the expected high performance.

In the next chapter a novel theoretical framework will be developed that

explains the outstanding functionality of the antenna mode of the FEA on a

more fundamental level.
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Chapter 9

Modematching for optical

antennas

In this chapter Poynting's theorem is combined with reciprocity to derive a

novel description of quantum emitter (QE) emission enhancement mediated by

a focusing optical antenna (FOA) that is similar to mode matching [54,168]. Its

validity is proven analytically at the case of a point dipole in front of a sphere.

By introducing a second mode-matching condition for the coupling of the FOA

to the far-�eld two optimal FOA mode patterns are identi�ed. This allows to

re-asses the functionality of plasmonic structures resulting from the previous

two chapters. Furthermore, from one of the optimal mode patterns a plasmonic

cavity antenna (PCA) geometry is devised and numerically investigated. The

presented PCA design is not fully optimized, but as similar as possible to an

established dipolar two-wire antenna geometry, which it surpasses clearly1.

9.1 Theory

We consider a classical point dipole p with a dipolar moment p, emitting

photons at frequency ω, which is situated at rp. The dipole represents a QE

without intrinsic losses whose emission rate depends on ρ(rp, ω), the partial

LDOS at the QE position rp parallel to its dipole moment p (compare with

1This chapter is very similar to a paper that was in preparation at the time the thesis

was handed in and can now be found here: [169].
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Figure 9.1: (color online) General setup of a dipole p situated at rp = (0, 0, rp)

with an oscillating dipole moment p being the source of electromagnetic �elds Ep.

In its environment a metallic nanoparticle is situated with a single excitable mode ν

leading to scattered �elds Ed/ν originating from source currents jd/ν .

chpt. 2.3.2):

γ =
πω2

12ε0

|p|2 ρ(rp, ω) (9.1)

, with ε0 being the dielectric constant of vacuum. Classically the emitted power

P of a dipole in arbitrary environment depends on the Green's tensor Ḡ of the

system as introduced in eq. (2.16). The enhancement of QE emission power in

an inhomogeneous environment can be calculated based on Poynting's theorem

as already introduced in eq. (2.27):

γ

γ0

=
P

P0

= 1 +
6πε0

|p|2
1

k3
Im {Esc(rp) · p∗} . (9.2)

, with

Im {Esc(rp) · p∗} = |Esc(rp) · p| Im
{
ei∆φ

}
. (9.3)

Here k is the wave vector, Esc the �eld scattered by the environment and

∆φ = φsc − φp the phase between dipolar moment and scattered �eld.

We take a closer look on a radiating dipole positioned on the z-axis at

rp = (0, 0, rp) with a dipolar moment of p = (0, 0, 1) de�ning the current

jp(r) = −iωpδ (r− rp) in close proximity to a FOA with k · rp � 1, as shown

in Fig. 9.1. The FOA is a single metallic nano particle or a collection of these

with its center of mass in the coordinate origin. It shows a set of linearly

independent plasmonic eigenmodes at the emission wavelength of the QE. In

the following we assume without loss of generality the MNP showing a single
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mode ν which can be excited at ω. The scattered �eld in equation (9.3) can

then be expressed as:

Esc(rp) = iωµ0

∫
Vν

Ḡ0(rp, r
′)jν(r

′) d3r′ (9.4)

, where Ḡ0(rp, r
′) is the Green's tensor for a point dipole at position r′ acting

on position rp, and jν is the mode current being the source of the scattered

�eld.

For a FOA made from a local, dispersive and lossy material like gold, which

is described by the dielectric function ε(ω), the reciprocity theorem eq. (2.53)

implies a symmetry of the Green's tensor:

Ḡ(rp, r
′) = Ḡ(r′, rp) . (9.5)

Inserted into eq. (9.4) the scattered �elds at r0 now depend on the Green's

function of the emitting dipole at rp evaluated inside the FOA:

Esc(rp) = iωµ0

∫
Vν

Ḡ0(r′, rp)jν(r
′) d3r′ (9.6)

Exciting the FOA at resonance in a quasistatic system leads to ∆φ = π/2

everywhere and thus to Im
{
ei∆φ

}
= 1. Entering this and eq. (9.6) into a

slightly rearranged eq. (9.3) leads to:

γ

γ0

=
P

P0

= 1 +
6πε0

|p|2
1

k3
· ωµ0

∫
Vν

∣∣Ḡ0(r′, rp)pjν(r
′)
∣∣ d3r′(rp) (9.7)

Using Ep(r) = ω2µ0Ḡ(r, rp) · p the main result of this paper is derived:

Ptot
P0

= 1 +
6πcε0

k4

∫
Vν

|Ep(r
′) · jν(r′)| d3r′ (9.8)

, with c the speed of light in vacuum.

9.2 Dipole in front of sphere

To prove the derived formalism we look at the analytically solvable case of

a dipole in front of a sphere with radius R, which was treated already in

section 3.2.4. A generalized term for the emission power enhancement for

small spheres based on their polarizability is derived in [170], which we will

reproduce here.
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We start with rewriting the mode current in terms of the OA mode �elds:

jν = iωε0(ε(ω)− 1)Eν (9.9)

leading to

P

P0

= 1 +
6πε2

0

k3
· · Im

{
(ε(ω)− 1)

∫
Vν

|Ep(r
′) · Eν(r

′)| d3r′
}
. (9.10)

The dipolar �elds inside the sphere volume are:

Ep(r, ω) =
∑
ν

Dν

[
pνM

(1)
ν (kr) + qνN

(1)
ν (kr)

]
(9.11)

M
(1)
ν and N

(1)
ν are the spherical vector wave functions, as de�ned in chap-

ter 3.2.4 for a given set of control variables ν = n,m, σ with n ∈ N,m ≤ n ∈ N
and σ = odd or even, Dν = ξ[(2n+ 1)(n−m)!]/[4n(n+ 1)(n+m)!] with ξ = 1

if m = 0 or ξ = 2 if m > 0, and

pν =
ik3

ε0π
M(3)

ν (kr0) · p (9.12)

qν =
ik3

ε0π
N(3)
ν (kr0) · p (9.13)

being prefactors originating from the Greens tensor as given in [171].

The sphere mode �elds are2:

Esph(r) =
∑
ν

Dν

[
fνM

(1)
ν (k1r) + gνN

(1)
ν (k1r)

]
(9.14)

, with k1 = k ·
√
ε(ω), and the factors

fν = αnpν ; gν = βnqν (9.15)

, where αn and βn are complex valued Mie-like coe�cients which are derived

from the boundary conditions for electric �elds at the sphere surface [106].

For spheres with vanishing radius and small distances R � rp � λ we

can restrict our calculation to the emission power enhancement due to the

fundamental dipolar sphere mode N
(1)
1,0,odd = Np leading to:∫

Vsph

Ep · Eν dV =

∫
Vsph

(D1q1,0,oddNp(kr)) · (D1βq1,0,oddNp(k1r)) dV . (9.16)

2Ruppin [106] missed the prefactor Dν , which is correctly included in the work of Kerker

[171]
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Here we made use of the fact that the spherical vector wave functions are

eigenfunctions of a Hilbert space with∫
Vsph

Aν ·B∗µ dV = 0 (9.17)

for A,B ∈ N(1),M(1) with A 6= B and arbitrary ν, µ.

In the limit of small spheres the terms of the integral can be developed

into series of kR and krp respectively, which leads with h1 being the Hankel

function of the �rst kind to the following intermediate results:

q1 =
ik3

πε0

2

krp
· h1(krp) (9.18)

with h1(krp) = eikrp
(

1

krp
− i

(krp)2

)
(9.19)

β =
3

ε(ω) + 2
+O(k2R2) (9.20)

∫
Vsph

Np(kr
′) ·Np(k1r

′) d3r′ =
16

27
πR3 +O(R5) (9.21)

Putting the integral together with D1 = 3/8 and inserting it into eq. (9.10)

leads to the �nal result:

P

P0

= 1 +
3k3

2π
· Im

{
α0(ω)e2ikrp

[
1

(krp)4
− 2i

(krp)5
− 1

(krp)6

]}
(9.22)

, which is identical to the result in [170], yet with α0 = 4πR3(ε(ω)−1)/(ε(ω)+

2) being the quasi-static polarizability of a small sphere. Taking more terms

of β into account the same result can be derived for the e�ective polarizability

including also radiative losses [172].

9.3 Revisiting the split-ring-antenna

In chapter 7 an antenna type called split-ring-antenna (SRA; sketched in

Fig. 9.2a) was introduced. It has been shown that it outperforms a comparable

two-wire dipolar nano antenna, reasoned by the additional current from the

shortcut across the antenna gap enabling a split-ring like mode, which adds

up constructively with the dipolar antenna currents for charge accumulation

at the gap. With the mode matching formalism we now can understand, that
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a)

b)

Figure 9.2: Evaluation of a split-ring antenna (SRA) via the mode-matching

method. a) geometry of SRA as introduced in [102]. b) Near-�eld intensity dis-

tribution in the center x-y-plane. The green and blue dot represent the center of

the antenna and the position of highest �elds along the y-axis, respectively (adapted

from [102]; more information in text).

the short cut adds a current path resembling dipolar �elds in the very center

of the SRA.

We use the SRA for a numerical test of the mode-matching theory, as it

shows only the excitable antenna mode depicted in Fig. 9.2(b). We chose two

positions for the dipole, one in the very center of the gap (green circle), one in

the point of highest �elds along the y-axis in 11 nm distance from the center

(blue circle). The ratio of mode near-�eld at the given positions is evaluated by

illuminating the antenna with a normalized Gaussian of NA= 1 and λ = 650

nm, yielding a power ratio of Prel = Emax/Ecenter = 1.441.

To check the validity of eq. (9.8), it is integrated numerically to retrieve

mode-matching power enhancement Pmm:

Pmm =
P

P0

∝
∑
r

Eν(r) · Edip(r) . (9.23)

Here r is indexing all Yee-Cells within the antenna volume. The antenna

shows a �eld enhancement, large enough to omit the contribution of the dipole

emission directly into vacuum. Eν was calculated with the above mentioned

Gaussian excitation, the two Edip with a dipole source at a center frequency

λdip = 650 nm and a pulse length of ≈ 4 fs at the respective positions and

a subsequent Fourier-transformation to retrieve the quasi-static �elds. The
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ratio Pmm,max/Pmm,center = 1.451 di�ers from Prel only by a factor of 0.007

which is within any error margin and most probably originates in numerical

inaccuracies due to using di�erent light sources.

9.4 Intelligent design of nanoantennas

The integral in eq. (9.8) over the product of dipolar �elds and mode currents

within the FOA volume is comparable to mode matching formalisms used to

determine coupling e�ciencies between propagating modes at surfaces [54,168].

Here, however, the three-dimensional volume of the FOA has to be considered.

It is no surprise that the power transfer from the QE to the FOA is the basis

of the overall emission power enhancement, since the dipole is the only energy

source in the given system. However, contrary to eq. (9.2) the mode-matching

formalism eq. (9.8) allows to draft intuitive qualitative rules that optimize the

LDOS enhancement at the QE position:

P

P0

∝
∫
Vν

Em ·︸︷︷︸
(i)

jν︸︷︷︸
(ii)

dV︸︷︷︸
(iii)

(9.24)

has to be maximal. This can be achieved by:

1. Aligning dipolar and mode �eld as good as possible. The particles sur-

face de�nes the current direction of its supported modes which can be

adjusted as well as the distortion of the single emitter �eld due to the

angle between �eld and metal surface.

2. Maximizing the mode current strength at each point inside the plasmonic

antenna. This is mainly a material issue as j = σ · Eν depends on the

conductivity σ.

3. Maximizing the overall volume of the overlap integral.

Rules number (ii) and (iii) suggest that the established two particle geometries

are not the optimum for focusing by means of plasmonic resonances. Instead, a

FOA should fully enclose the QE, which we propose the term plasmonic cavity

antenna (PCA) for.

However, a FOA has to be optimized for two tasks (compare to [21]): In

addition to providing a maximal LDOS it also has to couple e�ciently to
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propagating far-�elds. For small particles within the quasistatic limit this

is achieved by maximizing its polarizability, which links the overall dipolar

moment to impinging plane waves (see chpt. 3.2.2). Therefore, we extend the

setting and add a plane wave at the position of the QE-FOA system which

is polarized along the QE dipole moment. This results in a second mode-

matching criterion for optimizing the far-�eld coupling of FOAs in addition

to its near-�eld coupling to the QE. The optimal mode �eld pattern to ful�ll

both mode-matching criterion is a linear combination of quasi-static dipolar

�elds:

Ed =
1

4πε0

3n (np)− p

r3
(9.25)

, now with p = x̂ aligned alon the x-axis and a constant �eld pointing along

the QE dipole moment:

Em = Ed + a · x̂ . (9.26)

The scalar factor a can be positive or negative, leading to two fundamentally

di�erent optimal focusing antenna mode patterns as illustrated in Fig. 9.3(a),

which we will denote 'n-type' mode (left) and 'p-type' (right) mode. In the very

center of these modes dipolar �elds dominate. As the distance gets larger, the

dipolar �eld falls o� with 1/r3 and the homogeneous �eld starts to dominate.

This leads to points with zero �eld strength on the x-axis for the n-type mode

and on a ring in the y-z-plane for the p-type mode (marked with white dashed

circles).

Figure 9.3(b) is a reprint of Fig. 8.4(b). With the here presented mode-

matching formalism it is now possible to recognize the current pattern of this

evolutionary optimized FOA as a p-type mode (areas with vanishing �elds

marked with white dashed circles) and understand its working principle. The

antenna center is surrounded with gold, realizing the 2D-equivalent of an PCA.

The currents switch direction as one moves from the antenna center along the

y-axis to match the needs for optimal far-�eld coupling.

Figure 9.3(c) introduces a PCA geometry in three dimensions demonstrating

the n-type mode, which to our knowledge has not yet been realized in an

OA until now. Its rotational symmetric geometry is based on a reference

antenna (RA) in the shape of a two wire dipolar antenna with a 10 nm gap,

15 nm wire diameter with spherical end caps and an overall length l = 110

nm made from gold (see small black cross section in Fig. 9.3(d)). The RA
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Figure 9.3: (color online) Plasmonic antenna modes with double mode-matching.

(a) x-y-cross section of the linear combination of quasistatic dipolar �eld and constant

�eld pointing in x-direction as described by equation (9.26) for a < 0 (left) and

a > 0 (right). The white dashed circles mark point of vanishing �elds for better

orientation in panel (b), showing the near �eld intensity enhancement (color scale)

and the current direction (white arrows) of a planar antenna geometry optimized

an evolutionary algorithm for maximum �elds in the center (marked by small circle;

scale-bar 100 nm) [166]. (c) Antenna design carrying a resonant mode resembling

panel (a) left. The originally rotational symmetric geometry is shown with a 90Â◦

cutaway for improved visualization. Additionally the near-�eld intensity (color) as

well as the current direction (green arrows) are overlay for a quarter cross section.

The small orange dot marks the center, where a QE is to be placed. (d) Near-�eld

intensity enhancement spectra at the green point in panel (c) (blue) as well as at the

center of a two wire dipole reference antenna, with identical end cap radius (black).

The small insets show a x-y-plane cross section of both geometries.
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is optimized for being resonant at λ = 650 nm (black graph, Fig. 9.3(d)).

To realize the PCA, interconnects were attached between the antenna arms

to allow additional current paths, surrounding the QE with gold at the full

solid angle of 4π. The length of the PCA was tuned to be again resonant at

λ = 650 nm resulting in a slightly reduced length of l = 104 nm, 5.5% shorter

than the RA. This is predicated on the PCA being a single particle showing a

λ/2-resonance contrary to the RAs λ-resonance (compare with sections 2.4.2

and 3.3.2), which is visible in the inset of Fig. 9.3(c)3. In the arms of the PCA

the mode exhibits areas of vanishing �elds along the x-axis, as expected for a

n-type PCA mode.

Figure 9.3(d) shows broad band near �eld intensity enhancement (NFIE)

spectra with λ = 550−750 nm at the antenna center of both the PCA and the

RA when illuminated by a Gaussian focus with a numerical aperture of NA = 1.

Both antenna spectra show a Lorentzian resonance shape peaking at λ = 650

nm with NFIEPCA,max = 2.79 · 103 and NFIERA,max = 2.08 · 103 exhibiting

Q-factors Q = λ/∆λ of QPCA = 22.0 and QRA = 27.1. The PCA spectrum

shows a second shallow peak at 570 nm, which originates in a mode comparable

to the RA where the current density in x-direction does not change direction

within the antenna volume. QPCA is 19% lower compared to QRA, pointing out

more loss channels. An analysis of the antenna cross sections under plane wave

illumination at λ = 650 nm results for the PCA in an absorption cross section

of σPCA,abs = 4.17 ·104 nm2 and a scattering cross section of σPCA,sc = 1.77 ·104

nm2, yielding a scattering e�ciency of ηPCA = σPCA,sc/(σPCA,abs + σPCA,sc) =

0.298. The numbers for the RA are σRA,abs = 2.34 · 104 nm2 and σRA,sc =

0.362 · 104 nm2, instead, leading to a 55% lower ηRA = 0.134 compared to

the PCA. For particles small compared to the impinging wavelength the best

coupling to the far-�eld is achieved, when σsc = σabs ⇒ η = 0.5 [70], so the

PCA seems not only to optimize the near-�eld coupling, but also the far-�eld

coupling. This originates in the PCA mode currents on the outer antenna

surface resembling that of a λ/2-antenna, which is in general more e�cient

than a lambda-antenna.

3The mode and the spectra were numerically acquired in Lumerical FDTD Solutions,

with a λ = 550 − 750 nm broadband Gaussian focus illumination (NA=1, 3.9 fs pulse

length). The gold material was implemented as introduced in section 3.1
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9.5 p-type mode PCA

To realize a plasmonic cavity antenna (PCA) with cylindrical symmetry and

an p-type mode on basis of the reference antenna (RA), its inner ends have to

be shortcut in a shape resembling the dipole �eld loops. To asses the optimal

thickness of such a geometry we examined the simplest realization: a spherical

shell. Figure 9.4 shows the near-�eld intensity enhancement in the center of

spherical shells for an incoming plane wave with λ = 650 nm, while radius r

and shell thickness d are varied (compare also to [173]).

For small radii with dimensions of typical optical antenna gaps, the reso-

nance shell thickness has to be comparably thin, between 1 and 3 nm. This

can be understood by an e�ective wavelength argument: The geometry in

Fig. 9.3(b) realizes the gap shortcut in a planar gold sheet with 30 nm thick-

ness via two wires with a 'rectangular' cross section. To transform it into a

spherical shell while keeping the overall shortcut cross section area about con-

stant, the 'height' of the wire increases and its width shrinks. This keeps the

e�ective plasmon wavelength roughly constant and thus conserve the resonance

peak position [14].

Simply combining a plasmonic dipolar antenna with a 10 nm gap with a

spherical shell of r = 10 nm and d = 1 nm results in the desired mode in

quasi-static simulations. Yet, it was not possible to validate it by means of

full wave FDTD simulations, as down to a center volume mesh size of 0.25 nm

the stair-casing e�ect of the thin spherical shell leads to a severe mode shift

and therefore to di�erent NFIE spectra. Finer meshing was not feasible due to

large simulation times. Anyway, this geometry is of pure academic value, as a

1 nm spherical gold shell �lled with air is far from an experimental realization

at the moment.

9.6 Discussion and Conclusion

The PCA design in Fig. 9.3(c) is only one possible realization and most prob-

ably not the best. The presented design guidelines are not su�cient to fully

de�ne the optimal antenna geometry. Instead, additional constraints like the

e�ective wavelength, minimal curvature radii for fabrication should be given.
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Figure 9.4: Resonances of sphere shells. (a) Sketch of an air �lled metal shell, with

cutaway for better visibility of the dimensions r, the inner radius and d, the shell

thickness. (b) Normalized electric �elds in the very center (white circle) of a gold

nanoshell for a quasi-static excitation at λ = 650 nm for changing shell radius and

thickness.

For larger antenna geometries the emergence of higher order modes with bad

far-�eld mode-matching as well as retardation e�ects have to be kept in mind.

Also the distortion of the �elds as they penetrate the antenna surface at arbi-

trary angles is not taken into account in the optimal mode �elds in Fig. 9.3(a).

Finally the optimal magnitude of a in eq. (9.26) is still to be �gured out.

Nevertheless, we have shown, that a combination of reciprocity with Poynt-

ings theorem can be used to develop a three-dimensional mode-matching frame-

work for describing optimal coupling between a quantum emitter and a plas-

monic optical antenna. An analytically solved problem was used to prove the

validity of the relation, which then allowed the development of new and supe-

rior geometries, so-called plasmonic cavity antennas on the basis of an already

resonant two wire dipolar antenna. We also showed that the antenna coupling

to the far-�eld can be tackled by mode-matching, leading to the important

insight that the current pattern of a λ/2-antenna should be realized at the

outer antenna surface.

The proposed n-type PCA geometry is for sure not the best possible real-

ization of the new antenna concept, as it has been designed to show as few

changes as possible to a dipolar basic antenna for direct comparison. This

framework can be generalized to more �exible antenna geometries and we be-

lieve it will help to optimize e.g. TERS-tips, leading to novel complex and

surprising geometries as e.g. already shown in [174, 175]. To make use of the
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full solid angle of 4π a combination of TERS tip and SERS substrate can be

optimized together to realize plasmonic cavity antennas in experiment, which

are not relying on the gap only.

Both near-�eld and far-�eld coupling tasks of an optical antenna can be

modi�ed to e.g. a larger volume for light concentration to e.g. optimize charge

carrier excitation in semi-conductor nano structures, or to di�erent and more

complex excitation �elds e.g. for non-perpendicular or radially polarized illu-

mination as used in many TERS setups [176]. Finally this framework can be

extended to multi-particle multi-mode systems, where several double mode-

matching evaluations give the the overall far-�eld to near-�eld conversion e�-

ciency. This might be a step to a better understanding of complex and large

scale SERS-active substrates [177].
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Chapter 10

Summary & Outlook

Optical antennas are powerful tools to enhance light-matter-interaction at the

nano-scale as they can focus far-�eld radiation down to sub-di�raction-limited

volumes by means of plasmon-mediated localized near-�elds. They also can

enhance the �eld intensity by several orders of magnitude when a plasmonic

resonances is involved. Theory has made substantial progress in the last year

describing the involved physics, e.g. the the mode volume of an optical antenna

has been de�ned despite its non-negligible losses. However, an intuitive set of

design rules more than 'smallest possible gaps' and 'sharpest possible tips' was

missing. This is due to the necessity of solving the Green's function for a given

system, which is rarely possible analytically. So the question was still open, if

the regularly used antenna shapes inspired by radio-frequency technology are

optimal, as plasmonic resonances introduce novel physical e�ects like volume

currents and Ohmic losses as well as unusual driving schemes like the coupling

to a quantum emitter.

A few groups already identi�ed the focusing by means of a plasmonic struc-

ture as an optimization problem, using the heuristic approach of evolutionary

optimization to �nd unexpected geometries. However the parameter space was

always very limited, and no novel working principles had been discovered. In

this work a novel genetic algorithm has been developed, �xing neither particle

shape nor number. It is capable to describe complex planar geometries based

on a binary matrix as genome encoding the positions of gold voxels in a plane.

In the �rst implementation the best solution of the evolutionary algorithm

surpasses every radio-frequency inspired design by a factor of 2 within the

133
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con�guration space of a 21× 21 matrix of perfect 10 nm gold cubes at 650 nm

excitation wavelength.

The second implementation was adapted to realistic geometries with roun-

ded features originating from any fabrication method with a limited resolution.

After identifying the minimal reproducible dimensions of an focused ion beam

machine, an evolutionary antenna described by an 11x11 matrix representing a

(330 nm)2 area with 30 nm thickness surpassed comparable rf-designs, too, at

830 nm excitation wavelength. Additionally, a 'printer driver' was developed

that allowed the direct fabrication of any genome as antenna from a polished

monocrystalline gold �ake. The hierarchy of six evolved structures was repro-

duced in experiment when measuring the two-photon-photo-luminescence by

means of confocal microscopy.

More interestingly, the shapes of the evolutionary antennas were not intu-

itive at �rst sight. A systematic examination allowed to derive novel underly-

ing physical principles. Currents resembling fundamental split-ring resonator

modes can be added to the well-known dipolar antenna modes to enhance

the concentration of charge density at the gap of a nanoantenna. This setup

also allows to drive the fundamental magnetic dipole mode of a split-ring at

frequencies not possible for single rings due to kinetic inductivity.

A closer look to the mode current pattern of the best realistic evolutionary

antenna spawned the idea that the split-ring-like mode currents might resemble

�eld lines of a point dipole. As a matter of fact a three-dimensional mode-

matching formalism for the antenna mode and the dipole �elds inside an optical

antenna could be derived from �rst principles, which is able to describe the

energy transfer from an excited quantum emitter to an optical antenna. An

analytical prove for the case of a dipole in front of a sphere has been given.

From the mode-matching formalism a new set of intuitive design rules was

derived for focusing to a single point in space by means of an optical antenna.

In addition, by adding a second mode-matching condition to optimize far-�eld

coupling, two di�erent optimal mode patterns could be identi�ed, di�ering

in the phase between radiation �elds and dipolar near-�elds. One of these

patterns �ts to the modes found within the evolutionary antennas.

From the second optimal mode pattern an enhanced focusing optical an-

tenna, a so-called plasmonic cavity antennas, could be devised on the basis of a
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reference dipole antennas, proving the existence of these modes in rotationally

symmetric geometries and their potential for optimized focusing. Surprisingly,

is seems that the coupling to the far-�eld was a limiting factor for the dipolar

antennas, too, as the novel modes suggest an ideal optical antenna to show a

λ/2-mode current instead of a λ-mode current at its outer surface.

Do we have an answer to the question, how the optimal focusing antenna

should look like? Unfortunately not yet. The journey is not over. But a

substantial progress has been made and the direction of the next steps seems to

be clear. At least three paths for further research at focusing optical antennas

are available:

(I) Experimental realization: The possibilities of the split-ring antenna

can be explored further. It has already some applications due to its com-

parably simple shape. It has been shown, that the incoupling into two-wire

waveguides can be optimized (unpublished results, together with Peter Geisler

and Florian Bauer) and that SERS can be enhanced in mass fabricated ar-

rays [178]. Unfortunately, the SRA with the dimensions shown in this work is

not very useful as meta-material building block, as its absorption is to large

(unpublished work). Larger variations with better far-�eld coupling might still

be useful, which still has to be checked.

Furthermore, the fabrication of fully three-dimensional structures is desir-

able, to realize plasmonic cavity antenna geometries derived from the mode-

matching formalism. Therefore, a combination of topographically structured

metal surfaces with a structured metal AFM-tip could be used to combine two

half antennas and realize a complete new class of plasmonic nano structures.

The fabrication by means of FIB milling with a Ga-ion-beam limits the

miniaturization of reproducible feature sizes to about 20 nm. Since a few

years, also Helium ions can be used for microscopy (HIM) as well as for nano-

fabrication [144]. At the University of Bielefeld the test pattern introduced in

chapter 8 has been milled in gold-�akes by means of HIM. Since the machine

was quite new, the milling parameters were not optimized to maximum extend.

Still Fig. 10.1 shows the feasible dimensions being reduced by a factor of 6.
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a) b)

100 nm

Figure 10.1: Minimal reproducible dimensions for ion-beam-milling with a) Ga-

ions; b) He-ions.

(II) Evolutionary algorithm: The simplest advancement is the adaption

of the evolutionary algorithm the new minimum dimensions, enabled by milling

with He-ions. This will allow to optimize planar antennas further.

But the evolutionary approach is very �exible. Other optimization goals can

be e.g. broadband focusing or directed scattering for photovoltaics, magnetic

switching in small volumes and optimized second-harmonic generation. With

extended numerical approaches to solve multi-physics problems incorporating

also mechanics, heat transport, etc. the possible applications are enormous. An

extreme case could be the optimization of electrodes for solar-fuel synthesis,

where the optical behavior of metal and semi-conductor nano-structures is

only one �gure of merit. In addition heat generation in�uences chemical rate

equations, which are further altered by the catalytic properties of di�erent

electrode materials. Also the generation of charge carriers in semi-conductors,

their di�usion and recombination on surfaces plays an important role, not to

forget the material transport of the solar-fuel educts and products in liquids.

(III) Mode-matching formalism: Until now there is still no simple recipe

to retrieve the shape of an optimized antenna for the simple setup described

within this work (Fig. 9.1). The next step is not to stick to geometries similar

to a reference antenna, but to constrain e.g. only the minimum feature curva-

ture. The overlap integral formalism might also allow the application of other

optimization schemes, like variational principles.

The double mode-matching criterion can also be applied for other experi-

mental environments e.g. di�erent tip-enhanced Raman spectroscopy setups,

depending on the illumination direction (side or annular) [176] and the polar-

ization to be detected (in-plane or out-of-plane). The presented framework can
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easily be extended to dielectric particles or more complex experimental condi-

tions and might open a way to understand the working principles of complex

shaped metal nano-devices e.g. substrates used for surface enhanced Raman

spectroscopy (SERS) [177]. For large scale plasmonic devices an extension of

the mode-matching formalism to capture retardation e�ects is desirable.

Finally, it seems that there are still many steps to go until an optimal shape

of a focusing optical antenna has been de�ned, which might be in a few decades

automatically recognized, the same way as the shape of a hammer is recognized

today. But to be realistic, there might be too many di�erent applications for

only one optical antenna shape to become canonical. For example in the �eld

of SERS a large area is illuminated and the substrate should provide multiple

hot spots. Most likely there will not be a single most e�ective geometry. How-

ever, the mode-matching framework might help to understand and improve the

working principle behind the most e�ective geometries, for SERS and many

other applications.
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Appendix A

Number of non redundant binary

odd-sized square matrices with

one symmetric and one

antisymmetric axis

Given is a binary n×n-matrix A with odd n, Ax,y ∈ [0, 1] and A(n+1)/2,(n+1)/2 =

0. It describes a plasmonic nano structure which is oriented in the x-y-plane

centered on the z-axis and thus to the optical axis of the system. The linear ex-

citation polarization is oriented along the x-axis resulting in electric �elds, that

are symmetric with respect to the x-z-plane and antisymmetric with respect

to the y-z-plane. Consequently, structures that di�er among each others only

by a respective symmetry operation will result in the same physical behavior,

although the matrix apparently changes. For matrix sizes with n→∞ one can

estimate that about 3/4 of the possible structures are physically redundant.

Considerable computational e�ort can therefore be avoided by checking each

newly generated structure for redundancy with already simulated structures.

First we calculate the number of structures with special symmetries within

the set of all matrices as de�ned above.

141



142

c) axial & rotation
    symmetry

b) point symmetrya) axial symmetry

Figure A.1: At the example of 5 × 5 matrices, the necessary areas to describe

structures with given symmetry axes (grey) are marked in red.

Axial symmetry

In the case of axial symmetry the values in one row containing the center (n−1

elements) and a half matrix (rectangle of n·(n−1)/2 elements; see Fig. A.1(a))

completely de�ne a structure. The overall number NA of independent struc-

tures is thus:

NA = 2(n−1)+n·n−1
2 = 2(n−1)(n2 +1) (A.1)

Point symmetry

In the case of point symmetry, the values in half a row ((n − 1)/2 elements)

and half a matrix completely describe the structures (see Fig. A.1(b)), yielding

NP = 2
n−1
2

+
n(n−1)

2 = 2
n2−1

2 (A.2)

di�erent con�gurations.

Point and axial symmetry

Every matrix, which is symmetric to both axis is also point symmetric, and

every matrix which is symmetric to the origin and to one axis, is also symmetric

to the other axis. Thus only one overlapping set of all three single symmetry

sets has to be computed. It is de�ned by a quarter matrix including the on-axis
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elements and excluding the center block (see Fig. A.1(c)):

NAP = 2(n+1
2 )

2
−1 (A.3)

Counting

Each matrix, which does not have one of the described symmetries can be

transformed into three physical identical matrices by mirroring at the x- and

y-axis. Thus the number of non physically redundant non symmetric structures

is their complete number NNS divided by four. NNS can be computed as the

number of all possible structures N∞ = 2n
2−1 minus all symmetric structures.

As there are two mirror axes, the number of axis symmetric matrices NA has

to be subtracted twice and the number of point symmetric structures once.

The set of both point- and axis-symmetric matrices has then been subtracted

three times and is re-added 2 times therefore. This leads to:

NNS =
N∞ − 2NA −NP + 2NAP

4
(A.4)

Each axis and point symmetric structure can be mirrored into exactly one

physical redundant but geometrical di�erent structure. So to get the num-

ber of physical unique matrices, their number has to be divided by two after

subtracting the structures with both symmetries.

NA,P =
2 ·NA +NP − 3 ·NAP

2
(A.5)

The structures with axes and point symmetry have to be counted com-

pletely, since no symmetry operation changes them neither geometrically nor

physically.

The resulting complete number N of physically unique square matrices with

odd side length n is:

N = NNS +NA,P +NAP (A.6)

⇒ N =
1

8

(
2n

2

+ 2
1
2(n2+1) + 2

1
2(n2+n+2)

)
(A.7)

An evaluation of this formula for increasing matrix sizes is depicted in

Fig. A.2. It shows, that for matrix sizes of 5 and bigger 75 percent of all struc-

tures are redundant. A considerable speed enhancement of the evolutionary
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algorithm is achieved by checking newly generated matrices for redundancies

with already evaluated structures.

2 3 4 5 6 7 8 9 1 0 1 1
0 , 2 4
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Figure A.2: Amount of non redundant structures for the setup described in the

text. For larger matrix sizes the limit of the fraction of not physically redundant

square matrices is 0.25 (blue dashed line).



Appendix B

Local con�guration space maxima

in experimental EA

Fig. B.1 shows a exemplary run of the realistic evolutionary algorithm as de-

scribed in detail in chapter 8, getting into and leaving a local maximum in

con�guration space.
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Figure B.1: Left: Near-�eld intensity (NFI) enhancement for all individuals (red

dots) together with mean NFI enhancement per generation (blue bars) of one evo-

lutionary run. Right: Origin of single individuals sorted after generation and after

�tness within one generation. The �rst generation is generated from random matri-

ces with a �lling factor of 0.7 (blue), the rest is inherited via mutation (green), spiral

crossing (red) and linear crossing (orange).

The left part shows the improvement of each consecutive generation, except

of a major dip in the mean �tness per generation (blue bars) at generations 26
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to 28. The right part shows the origin of each single individual (see caption

for legend) and the fraction of individuals per generation is normaly �xed to

0.4 mutation, and 0.3 for each crossing. However, in generation 27 a greater

fraction is generated by mutation compared to crossings.

This originates in the implemented test for redundant structures (see also

appendix A) which is performed after each crossing step and starts a new

crossing try if a redundant structure was generated. This only is done 200

times to eliminate in�nity loops and thus replaced by mutation.

Having lots of mutation-generated antennas in generation 27 together with

the drop in the �tness is a clear sign of a local maximum in con�guration space,

which has been explored nearly completely by the algorithm. No new geome-

tries with similar features and comparable or better �tness can be generated via

crossings and thus mutation is the only way to create new and non-simulated

antennas. This will eventually lead to a worse antenna �tness �rst, but will

by chance introduce new structural features which can �nally lead to further

enhancement as can be seen already in the very last generation.

We have observed this behavior in many di�erent runs of the EA and data

can be made public after request.



Appendix C

Fitness changes in realistic

evolutionary antennas due to

fabrication inaccuracies.

To assess the e�ect of a decreased thickness on the �tness of the evolutionary

antennas, simulations of the six fabricated geometries were performed and the

results plotted in Fig. C.1(a). The �tness is reduced for thinner antennas, as

the resonance shifts into the red [71], away from the wavelength of optimiza-

tion. Except for antenna #5 the �tness hierarchy is maintained which van

be explained with the spectra of all antennas (Fig. 8.6). Antenna #5 is the

only one with a relative blue shift with respect to the optimization wavelength,

therefore being the only antenna optimized by the red shift.

The fabrication of the holes and lines needed to realize the evolutionary

antennas has a uncertainty of ±1 nm. The in�uence of such a deviation in

the geometry on the �tness all six fabricated antennas has been simulated by

increasing as well as decreasing all hole diameters by 1 nm. The results in

Fig. C.1(b) show nearly no in�uence of this parameter on the relative �tness

hierarchy. The large absolute �tness increase for smaller hole sizes � which

is about 100 nm−1 � originates from the enhanced capacitive coupling in the

center gap, when the accumulating charges are less separated. This observation

also explains the error bar within the TPPL measurements for all structures.
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Figure C.1: a) Change in �tness of evolutionary antennas for di�erent layer thick-

nesses. The best four antennas decrease in near-�eld intensity enhancement as their

thickness is reduced, the last two behave not systematically. b) Change in �tness of

evolutionary antennas dependent on the hole diameter / line width. As the width

gets smaller, the near-�eld intensity enhancement increases by a large margin.
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