
Operators of Higher Order

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Bayerischen Julius – Maximilians – Universität Würzburg

vorgelegt von

Herbert Alexander Baier Saip

aus

Concepcíon (Chile)

Würzburg, 1998

Eingereicht am: 12.02.98
bei der Fakultät für Mathematik und Informatik

1. GUTACHTER: Prof. Dr. Klaus W. Wagner
2. GUTACHTER: Prof. Dr. Gerd Wechsung

Tag der mündlichen Püfung: 02.07.98

I dedicate this thesis to my grandfather,
Pablo Saip, an outstanding and inspiring
person, my good friend. He will always
be with me.

Acknowledgments

I would like to express my sincere acknowledgments to my friends and colleagues,
who in various ways helped me throughout this work:

✌ My advisor, Klaus W. Wagner, for his valuable discussions, interesting ideas, en-
couragement and support throughout this work.

✌ Heribert Vollmer for his helpful discussions and suggestions.

✌ My colleagues, Sven Kosub, Steffen Reith and Heinz Schmitz, for reading this
manuscript.

✌ Gerhard Buntrock, Ulrich Hertrampf, Gisela Hoppe, Sven Kosub, Gundula Nie-
mann, Steffen Reith, Diana Rooß, Heinz Schmitz, Heribert Vollmer and Klaus W.
Wagner for providing me an enjoyable working atmosphere.

This work was supported byCNPq grant 290020/92.1 (Brazil) and in part byDAAD
(Germany).

Danksagung

I

� m

�

o�te gern allen meinen Freunden und Kollegen danken, die zum Gelingen

dieser Arbeit beigetragen haben:

✌ Meinem Doktorvater Klau� W. Wagner f

�

ur intere�ante Disku�ionen und Ideen,

Ermutigung und Unter�

�

u�ung w

�

ahrend dieser Arbeit.

✌ Heribert Vollmer f

�

ur intere�ante Disku�ionen und Vors�l

�

age.

✌ Meinen Kollegen Sven Kosub, Ste�en Reith und Heinz S�mi� f

�

ur da� Lesen de�

Manuskript�.

✌ Gerhard Buntro�, Ulri� Hertrampf, Gisela Hoppe, Sven Kosub, Gundula Nie-

mann, Ste�en Reith, Diana Roo�, Heinz S�mi�, Heribert Vollmer und Klau�

W. Wagner f

�

ur die gute Arbeit�atmosph

�

are.

Diese Arbeit entstand im Rahmen desCNPq-Stipendiums 290020/92.1 (Brasilien) und
wurde teilweise durch denDAAD (Deutschland) unterstützt.

Abstract

Motivated by results on interactive proof systems we investigate the computational
power of quantifiers applied to well-known complexity classes. In special,we are in-
terested in existential, universal and probabilistic bounded error quantifiersranging over
words and sets of words, i.e. oracles if we think in a Turing machine model. In addition to
the standard oracle access mechanism, we also consider quantifiers ranging over oracles
to which access is restricted in a certain way.

We first examine an9-8-hierarchy overPusing words quantifiers as well as two types
of set quantifiers. This hierarchy of classes is called the analytic polynomial-time hierar-
chy. We show that each class of this hierarchy coincides with one of the classes�p

k

and
�

p
k

(k � 0) of the (arithmetic) polynomial-time hierarchy,PSPACE, or one of the classes
�

exp
k

and�exp
k

(k � 1) of the exponential-time alternation hierarchy and vice versa.
We next consider a hierarchy which refines the analytic polynomial-time hierarchy

by considering restrictions on the number of oracle queries, the so called bounded ana-
lytic polynomial-time hierarchy. We characterize classes of this hierarchy by well-known
complexity classes. In particular, we show that each class from this hierarchy having a
certain normal form coincides with one of the classesNP, coNP, PSPACE, �exp

k

or �exp
k

(k � 1) and vice versa. All these characterizations remain valid if the queries are asked
in a nonadaptive form, i.e. in “parallel”.

We also study a hierarchy which can intuitively be interpreted as the analytic polyno-
mial-time hierarchy defined overL instead ofP, i.e. an9-8-hierarchy overL using word
quantifiers as well as two types of set quantifiers. This hierarchy is calledthe analytic log-
arithmic-space hierarchy. We show that every class of this hierarchy can be represented
in a certain normal form and characterize such classes by well-known complexity classes.
In particular, each class whose last quantifier is a word quantifier coincideswith one of
the classesL, �p

k

or�p
k

(k � 1) and vice versa.
Furthermore, we examine probabilistic bounded error quantifiers. For instance, us-

ing the restricted oracle access mechanism we characterize (one prover) interactive proof
systems by an existential set quantifier and a probabilistic bounded error word quantifier
applied toP, and show that a bounded error set quantifier applied toPSPACEcan be
eliminated without changing the class in question.

Finally, we discuss the relativizability of the results.

Zusammenfassung

Angeregt durch die Resultate über interaktive Beweissysteme untersuchen wir Quan-
toren in Anwendung auf bereits bekannte Komplexitätsklassen hinsichtlich ihrerdadurch
gegebenen Berechnungsmächtigkeit. Von besonderem Interesse sind dabei existentielle
und universelle Quantoren sowie Quantoren mit begrenzter Fehlerwahrscheinlichkeit, die
alle über Wörter oder Wortmengen (Orakel im Kontext der Turingmaschinen) quantifi-
zieren. Außer in bezug auf den Standardmechanismus eines Orakelzugriffs werden auch
Quantifizierungen über Orakel, für deren Zugriff gewisse Beschränkungen bestehen, be-
trachtet.

Zuerst beschäftigen wir uns mit einer9-8-Hierarchie überP, wobei sowohl Wortquan-
toren als auch zwei verschiedene Typen von Mengenquantoren verwendet werden. Dieso
entstehende Klassenhierarchie nennen wir dieanalytische Polynomialzeit-Hierarchie. Es
zeigt sich, daß jede Klasse dieser Hierarchie mit einer der Klassen�

p
k

oder�p
k

(k � 1) der
(arithmetischen) Polynomialzeit-Hierarchie, mitPSPACEoder mit einer der Klassen�exp

k

oder�exp
k

(k � 1) der alternierenden Exponentialzeit-Hierarchie zusammenfällt. Auch
die Umkehrung gilt; jede der aufgeführten Klassen läßt sich durch eine der Klassen aus
der analytischen Polynomialzeit-Hierarchie ausdrücken.

Als nächstes wird eine Hierarchie betrachtet, die die analytische Polynomialzeit-Hierar-
chie durch die Einbeziehung von Anzahlbegrenzungen der Orakelfragen verfeinert: die
sogenanntebeschr̈ankte analytische Polynomialzeit-Hierarchie. Wir charakterisieren die
Klassen dieser Hierarchie durch bekanntere Komplexitätsklassen, und zeigen insbeson-
ders, daß jede Klasse der Hierarchie, die einer bestimmten Normalform genügt, einer
der KlassenNP, coNP, PSPACE, �exp

k

oder�exp
k

(k � 1) entspricht. Auch hier ist die
Umkehrung der Aussage ebenfalls richtig. Darüber hinaus bleiben alle Charaktierisierun-
gen gültig, wenn Orakelfragen ausschließlich nicht-adaptiv, also in gewissem Sinne par-
allel gestellt werden können.

Wir studieren auch eine Hierarchie, die intuitiv als analytische Polynomialzeit-Hierar-
chie überL anstelle vonP interpretiert werden kann, d.h. die9-8-Hierarchie überL
sowohl bezüglich der Wortquantoren als auch bezüglich der zwei Typen von Mengen-
quantoren. Diese Hierarchie wird dieanalytische Hierarchiëuber logarithmischem Raum
genannt. Wir zeigen, daß jede Klasse dieser Hierarchie in eine bestimmte Normalform ge-
bracht werden kann, und charakterisieren solche Klassen dann mit Hilfe bereits bekannter
Komplexitätsklassen. Dabei stellt sich heraus, daß jede Klasse, derenletzter Quantor ein
Wortquantor ist, mitL, �p

k

oder�p
k

(k � 1) identisch ist, und umgekehrt.

Weiterhin untersuchen wir Quantoren mit begrenzter Fehlerwahrscheinlichkeit. Beispiel-
sweise ist die Klasse der mittels interaktiven Beweissystemen inPolynomialzeit ent-
scheidbaren Mengen, die KlasseIP, im Kontext polynomieller Zeitressourcen durch einen
Existenzquantor in Verbindung mit einem Quantor mit begrenzter Fehlerwahrscheinlich-
keit ausdrückbar, wenn man den Mechanismus für die Orakelzugriffe einschr¨ankt. Es
zeigt sich, daß ein Mengenquantor mit begrenztem Fehler, angewendet aufPSPACE, eli-
miniert werden kann, ohne die Klasse zu verändern.

Abschließend gehen wir auf die Relativierbarkeit der Resultate ein.

Contents

List of Tables iii

List of Figures v

1 Introduction 1
1.1 A Brief Overview . 1
1.2 Outline of this Thesis . 3
1.3 Related Papers and Interesting Results 4

2 Preliminaries 7
2.1 Basic Notations and Concepts . 7
2.2 Computational Models . 8

2.2.1 Well-Known Computational Models 8
2.2.2 Turing Machines of Type�

1

: : : �

k

. 10
2.3 Complexity Classes . 11

2.3.1 Well-Known Complexity Classes 11
2.3.2 Classes of Type�

1

: : : �

k

. 13

3 The Analytic Polynomial-Time Hierarchy 15
3.1 The Operators and the Hierarchy . 15

3.1.1 The Existential and Universal Operators 16
3.1.2 The Analytic Polynomial-Time Hierarchy 17

3.2 Equivalence Rules and a Normal Form 17
3.2.1 Inclusion and Equivalence Rules 17
3.2.2 A Normal Form Theorem . 23

3.3 Characterizing the ClassesKP(�) and coKP(�) 23
3.4 Characterizing by Well-Known Complexity Classes and an Algorithm . . 28
3.5 Conclusions . 29

4 Bounding Queries in the Analytic Polynomial-Time Hierarchy 31
4.1 Computational Model and Complexity Classes 31
4.2 Bounding Queries in Set Quantifiers and a New Hierarchy 33

4.2.1 Bounding Queries in Existential and Universal Set Quantifiers . . 33
4.2.2 The Bounded Analytic Polynomial-Time Hierarchy and a Normal

Form . 34
4.3 Inclusion and Equivalence Rules . 35

i

ii Contents

4.4 Characterizing the ClassesKP(�) and coKP(�) 37
4.4.1 Characterizing the ClassesKP(�1[r1] : : : �k[rk] ;m) 38
4.4.2 Parallel Queries . 45

4.5 Remainder Complexity Classes . 46
4.5.1 Characterizing the ClassesSTP 47
4.5.2 Open Cases . 57
4.5.3 Parallel Queries . 59

4.6 Conclusions . 59

5 The Analytic Logarithmic-Space Hierarchy 61
5.1 The Operators and the Hierarchy . 61

5.1.1 The Existential and Universal Operators 62
5.1.2 The Analytic Logarithmic-Space Hierarchy 63

5.2 Equivalence Rules and Normal Form . 63
5.2.1 Inclusion and Equivalence Rules 63
5.2.2 A Normal Form Theorem . 67

5.3 Characterizing the ClassesKL(�) and coKL(�) 68
5.4 Characterizing ClassesK2

L(�) and coK2

L(�) 70
5.5 Conclusions . 74

6 Probabilistic Bounded Error Operators 75
6.1 The Probabilistic Bounded Error Quantifiers 75
6.2 Inclusion Rules . 77
6.3 Applications to Well-Known Complexity Classes 79
6.4 The Emergence of the Type 1 Quantifiers 81
6.5 Conclusions . 84

Bibliography 87

Index 91

List of Tables

4.1 Characterization of the classesKP(�1[r1] : : : �k[rk] ;m). 38
4.2 Characterizations of the classesRTQ

pP. 49

iii

iv List of Tables

List of Figures

1.1 Relativized world of classes91K and92K. 5
1.2 Classes9�[r]8�[s] 9pP. 6

2.1 Inputs of type 0, 1 and 2. 10
2.2 Relationships between well-known complexity classes. 14

3.1 Good subtreesS
1

andS
2

. 24
3.2 9

1 and92 applied to classes of the polynomial-time hierarchy. 30

4.1 Encoding function�. 41
4.2 Classes9�[r]8�[s] 9pP. 60

5.1 Simulation of machineM
2

on input(x; up; y) for all y 2 f0; 1g

2

c�logjxj

p(jxj). 72

6.1 Inclusion structure of classes involving BP-quantifiers. 82
6.2 Relativized world of classes91K and92K. 85

v

vi List of Figures

CHAPTER1

Introduction

“Todo esfuerzo que no se
sostiene se pierde.”

Gabriela Mistral

Quantifiers play an important role in the complexity theory. Take for exam-
ple the classes of the (arithmetical) polynomial-time hierarchy, which can be
characterized by polynomial length bounded existential and universal word
quantifiers on the base ofP. The main subject of this thesis is the investigation
of the computational power of quantifiers applied to well-known complexity
classes. In special, we are interested in existential, universal and probabilistic
bounded error quantifiers ranging over words and sets of words (oracles if we
think in a Turing machine model). In addition to the standard oracle access
mechanism, we consider also quantifiers ranging over oracles whose access
is in a certain way restricted.

This chapter is organized as follows: We start giving a brief overview on the
theme of this thesis (x1.1). Then, an outline of the results is exhibited (x1.2).
Finally, we present papers related to this thesis and some interesting results
(x1.3).

1.1 A Brief Overview

Complexity theory is the area of computer science that tries to classify computational
problems in terms of the amount of computational resources needed to solve them. Intu-
itively, this is the field which deals with the reasons why certain problems are hard to be
solved by computers. A traditional way to accomplish this task has been to consider com-
putational structures (normally as computational models) which capture computational
problems and generate complexity classes. Then, properties and relationships among
these complexity classes are investigated. This approach provides a more or less abstract
framework to study the nature of these problems.

Interesting complexity classes can be defined (or characterized) by quantifiers on the
base of some other complexity class. A classical example are the classes ofthe (arith-
metic) polynomial-time hierarchy [SM73, Sto77, Wra77], which are characterized by the
existential and the universal quantifier on the base ofP. These quantifiers vary over words
whose lengths are polynomially bounded in the length of the input.

1

2 1. Introduction

However, quantifiers of higher types, i.e. quantifiers ranging over sets of words, have
also called the attention of the research community. Using the Turing machine model this
means that the quantifiers vary over oracles. To our knowledge, Orponen [Orp83] was the
first who studied in 1983 quantifiers of higher types in complexity theory. He relateda
hierarchy defined by existential and universal set quantifiers on the base of the classPH
with the classes of the exponential-time alternation hierarchy.

In 1988, Fortnow, Rompel, and Sipser [FRS88] characterized the power of multi-
prover interactive proof systems (MIP) by an existential set quantifier on the base of the
polynomial-time bounded error probability classBPP. This characterization ofMIP has
motivated us to answer the question of whether a Fortnow-Rompel-Sipser like result could
also be established for (one-prover) interactive proof systems (IP). In cooperation with
Wagner [BW96] we showed in 1996 that this is possible by restricting the oracle access
mechanism as follows: every query must be an extension of previous query. In other
words, the series of queries in any computation has the formu

1

; u

1

u

2

; u

1

u

2

u

3

; : : : . The
quantifiers varying over oracles with this kind of restricted access arecalled quantifiers
of type 1 whereas quantifiers varying over oracles with unrestricted access are called
quantifiers of type 2. Word quantifiers1 are called quantifiers of type 0. These char-
acterizations ofMIP and IP motivated us to study the set quantifiers of higher order in
more detail. Thus, in the same work [BW96] we continued Orponen’s investigations and
defined a hierarchy overP using all three types of existential and universal quantifiers,
the so called analytic polynomial-time hierarchy. It was shown that each class of this
hierarchy coincides with one of the classes�

p
k

and�p
k

(k � 0) of the (arithmetic) pol-
ynomial-time hierarchy,PSPACE, or one of the classes�exp

k

and�exp
k

(k � 1) of the
exponential-time alternation hierarchy and vice versa. These results tighten up Orpo-
nen’s result on quantifiers of type 2, and we proved relations like9

1coNP = PSPACE
and9191coNP = 9

2coNP = NEXPTIME giving the type of quantifiers in the expo-
nent. Generally, for the classes of the analytic polynomial-time hierarchy two quantifiers
of type 1 are as powerful as one quantifier of type 2. In 1990, Shamir [Sha90] proved
IP = PSPACEand Babai, Fortnow, and Lund [BFL90] showedMIP = NEXPTIME.
Comparing these results with the oracle characterization of interactive proof systems we
get IP = 9

1BPP= 9

1coNP = PSPACEandMIP = 9

2BPP= 9

2coNP = NEXPTIME.
However, theBPPpart of these results is not relativizable [FS88, FRS88] whereas the
coNPpart is valid under every relativization.

In 1992, Arora and Safra [AS92] introduced the notion of probabilistically check-
able proofs (PCP) to “scale down” the Babai, Fortnow, and Lund’s result. The class
PCP(r(n); q(n)) can be defined as an existential set quantifier applied toBPP, where an
underlying machine is allowed to useO(r(n)) random bits for its computation and queries
the oracleO(q(n)) times. Arora and Safra provedNP= PCP

�

logn; (log logn)O(1)

�

and
few weeks later Arora, Lund, Motwani, Sudan, and Szegedy [ALM+92] improved this
result showingNP = PCP(logn;O(1)). In 1997, Vollmer and Wagner [VW97] gave a
detailed discussion of scaling down results in this area.

1In this thesis, we consider word quantifiers ranging over words whoselengths can be polynomially or
logarithmically bounded in the length of the input. Thus, we will further distinguish type 0 quantifiers into
type p and type log, respectively.

1.2. Outline of this Thesis 3

Some constructions in [BW96] result in a bounded number of oracle queries. This
fact and the interesting results obtained in the study of thePCPclasses [AS92, ALM+92],
which limit the number of oracle queries, motivated us to continue the study of the ana-
lytic polynomial-time hierarchy classes but now considering the number of oracle queries
that an oracle machine can ask during its computation. This hierarchy is called bounded
analytic polynomial-time hierarchy. In cooperation with Wagner [BW97] we showed
that each class of this hierarchy having a certain normal form coincides withNP, coNP,
PSPACE, or one of the classes�exp

k

and�exp
k

(k � 1) of the exponential-time alternation
hierarchy and vice versa. In addition, we proved that all these characterizations remain
valid if the oracle machines are allowed to make only parallel queries,i.e. they have to
form a list of all queries before any of them is queried to the oracle. In particular, all
the characterizations for the classes of the analytic polynomial-time hierarchy [BW96]
remain also valid under the parallel queries restriction.

Finally, let us mention that in 1996, Book, Vollmer, and Wagner [BVW96] investi-
gated the power of probabilistic quantifiers of type 2.

1.2 Outline of this Thesis

The aim of this thesis is to investigate complexity classes defined (or characterized) by
existential, universal and probabilistic bounded error quantifiers applied to well-known
complexity classes. We consider word quantifiers and two types of set quantifiers, namely
these of type 1 and 2. Restrictions on the number of oracle queries are also examined.
Next, we present an overview of the organization of this thesis.

Chapter 2: Preliminaries

We introduce basic notations and concepts as well as our computational models. Further-
more, some complexity classes are defined. However, quantifiers will be defined in the
respective chapter as needed.

Chapter 3: The Analytic Polynomial-Time Hierarchy

We investigate a hierarchy defined by existential and universal quantifiers varying over
words and oracles of type 1 and 2 on the base of the classP. This hierarchy, which
extends the (arithmetic) polynomial-time hierarchy, is called theanalytic polynomial-time
hierarchy. It is shown that each class of this hierarchy coincides with one of the classes
�

p
k

and�p
k

(k � 0) of the (arithmetic) polynomial-time hierarchy,PSPACE, or one of
the classes�exp

k

and�exp
k

(k � 1) of the exponential-time alternation hierarchy and vice
versa. These results tighten up Orponen’s result [Orp83] on quantifiers of type 2. An
algorithm is established which allows to find out the corresponding well-known class in
an easy way.

4 1. Introduction

Chapter 4: Bounding Queries in the Analytic Polynomial-Time Hierarchy

We examine a hierarchy which refines the analytic polynomial-time hierarchy by con-
sidering restrictions on the number of oracle queries. This hierarchy is called bounded
analytic polynomial-time hierarchy. We characterize classes of this hierarchy by well-
known complexity classes. In particular, for classes from this hierarchyhaving a certain
normal form we show that each of these classes coincides with one of the classes NP,
coNP, PSPACE, �exp

k

or �exp
k

(k � 1) and vice versa. All these characterizations remain
valid if the queries are asked in a nonadaptive form, i.e. in “parallel”. In special, all the
characterizations for the classes of the analytic polynomial-time hierarchy(Chapter 3)
also remain valid under the parallel queries restriction.

Chapter 5: The Analytic Logarithmic-Space Hierarchy

We investigate a logarithmic-space hierarchy built up by word and set quantifiers of type
1 and 2, which can intuitively be interpreted as the analytic polynomial-time hierarchy
defined overL instead ofP. This hierarchy is called theanalytic logarithmic-space hier-
archy. We show that every class of this hierarchy can be represented in a certain normal
form, where the last quantifier is either a word quantifier or a set quantifier of type2. Fur-
thermore, we characterize classes of this hierarchy by well-known complexity classes. In
particular, it is shown that each class in this normal form, whose last quantifier is a word
quantifier, coincides with one of the classesL, �p

k

or�p
k

(k � 1) and vice versa.

Chapter 6: Probabilistic Bounded Error Operators

We consider probabilistic bounded error quantifiers. We show under which general con-
ditions the type 2 of a bounded error set quantifier can be reduced to type 1. Furthermore,
interesting characterizations are presented. For example, we characterize (one prover)
interactive proof systems by an existential set quantifier of type 1 and a probabilistic
bounded error word quantifier applied toP, and show that a bounded error set quantifier
of type 1 applied toPSPACEcan be eliminated without changing the class in question.
Finally, we discuss the relativizability of results presented so far.

Conclusions

Instead of making a separate chapter for conclusions, we prefer to discuss the results in
the respective chapters.

1.3 Related Papers and Interesting Results

The papers related to this thesis are the following:

(1) The results in Chapter 3 and Theorem 6.15.

☞ H. Baier and K. W. Wagner. The analytic polynomial-time hierarchy. Tech-
nical Report 148, Institut für Informatik, Universität Würzburg, Germany,

1.3. Related Papers and Interesting Results 5

September 1996. To appear in Mathematical Logic Quarterly (formerly:
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik).

(2) A part of the results in Chapter 4 (x4.3 andx4.4).

☞ H. Baier and K. W. Wagner. Bounding queries in the analytic polynomial-
time hierarchy. Technical Report 178, Institut für Informatik, Universität
Würzburg, Germany, August 1997. To appear in Theoretical Computer Sci-
ence.

Finally, Figures 1.1 and 1.2 give us a preview of some of our results.

9

2coRP

9

2P

9

2BPP

NEXPTIME
(not relativizable)

9

2PH

9

2RP

9

2coNP9

2NP

NEXPTIME
(relativizable)

9

2

�

p
2

NP
(relativizable)

9

2

�

p
2

NP
(relativizable)

PSPACE
(not relativizable)

NEXPTIME
(relativizable)

9

1PH

9

1

�

p
2

9

1

�

p
2

9

1NP 9

1coNP

9

1RP 9

1coRP

9

1P

9

1BPP
PSPACE
(relativizable)

Figure 1.1: Relativized world of classes91K and92K, whereK are interesting classes
within the polynomial-time hierarchy.

6 1. Introduction

NEXPTIME

PSPACE

NP

9

�

[2]8

1

[3]9

pP

9

�

[1]8

1

[2]9

pP

8

1

[1]9

pP

8

1

[2]9

pP9

�

[1]8

1

[1]9

pP

8

1

[3]9

pP

9

�

8

1

9

pP

9

�

[1]8

1

9

pP

9

�

[1]8

1

[3]9

pP9

�

[2]8

1

[2]9

pP

9

�

8

1

[3] 9

pP

8

1

9

pP9

�

8

1

[1]9

pP

9

�

8

1

[2]9

pP

9

�

[2]8

1

9

pP

9

�

[2]8

1

[1]9

pP

NEXPTIM
E

PSPACE

coN
EXPTIM

E

NP

8

2

[1]9

pP

8

2

[2]9

pP9

�

[1]8

2

[1]9

pP

8

2

[3]9

pP9

�

[2]8

2

[1]9

pP

9

�

[1]8

2

9

pP

9

�

[1]8

2

[2]9

pP

9

�

[2]8

2

9

pP

9

�

[1]8

2

[3]9

pP9

�

[2]8

2

[2]9

pP

9

�

8

2

[3]9

pP

8

2

9

pP9

�

8

2

[1]9

pP

9

�

[2]8

2

[3]9

pP

9

�

8

2

9

pP

9

�

8

2

[2]9

pP

�

exp
2

Figure 1.2: Classes9�[r]8�[s] 9pP with�; � 2 f1; 2g andr; s : N ! N, such thatr � 0

ands � 1 (the term[�] represents the number of oracle queries allowed). In the left di-
rection we increaser and in the right direction we increases (for short we write8�[s] 9pP
instead of9�[0]8�[s]9pP).

CHAPTER2

Preliminaries

“Se não houver frutos,
valeu a beleza das flores,

se ñao houver flores,
valeu a sombra das folhas,

se ñao houver folhas,
valeu a intenç̃ao da semente.”

Henfil

In this chapter, we present some notations and concepts which are required
throughout this work. Basic familiarity with the most popular complexity
theory notations and concepts is assumed (we refer the reader to standard
textbooks of complexity theory such as [BDG95, Pap94]). Hence, only non-
standard notations and concepts will be covered in detail.

This chapter is organized as follows: We start introducing some basic nota-
tions and concepts (x2.1). Next, we present our computational models (x2.2)
and define some complexity classes (x2.3). Quantifiers will be defined in the
respective chapter as needed.

2.1 Basic Notations and Concepts

We will study classes of languages whose instances consist of word and set of words.
Next, some basic notations and concepts are presented, namely alphabets, words, lan-
guages, sets and functions.

An alphabetis any finite nonempty set� of symbols. Aword over � is a finite
sequence of symbols from�. In particular," represents theempty word, i.e. the word
consisting of zero symbols. Given a wordu over� containingn symbols, we say that the
length ofu, denoted byjuj, isn. For two wordsu andv over�, let uv (and sometimes
u � v) represent the concatenation ofu andv. Given a wordu over� and an integern,
defineu(n) as then-th symbol ofu, andun inductively by:u0 =df " andun =df u �u

n-1

for all n � 1. The set of all words over� including (not including)" is denoted by��

(�+, respectively). Furthermore, define�n (��n) as the set of all words over� of length
n (at mostn, respectively). A subset of�� is also called alanguage over� and sometimes
anoracle over�. Thecomplement of a languageL � �

� is the languageL =df �
�

nL and
thecomplement of a classK of languagesis the class coK =df

�

L : L 2 K

	

.

7

8 2. Preliminaries

Let N denote the set of natural numbers andN
+

the set of natural numbers greater
than0. For a setU, let kUk be the cardinality ofU andP(U) be the power set ofU. The
characteristic function of a setU is the function�

U

defined by

�

U

(v) =df

�

1 if v 2 U,

0 otherwise.

There exists a natural bijection betweenf0; 1g

� andN , when standard lexicographical or-
der is used. Fori 2 N , let lex(i) (lex

n

(i)) be thei-th word off0; 1g� (f0; 1gn, respectively)
in lexicographical order. Thus, for a setU � f0; 1g

� we will also writei 2 U. We then

mean lex(i) 2 U. Furthermore, foru 2 f0; 1g

n let
 -

u 2 f0; 1g

n denote the predecessor of

u in f0; 1g

n in lexicographical order (
 -

0

n is undefined).
For functionsf; g : N ! N we say thatf 2 O(g) if there are positive integersc and

n

0

such thatf(n) � c � g(n) for all n � n

0

. Finally, the symbol� denotes the traditional
composition of functions(f � g)(x) =df f(g(x)). Without loss of generality we restrict
ourselves in this work to the standard alphabet� = f0; 1g.

2.2 Computational Models

Standard Turing machines (x2.2.1) and their variations (x2.2.2) will be our formal com-
putational models to accept languages.

2.2.1 Well-Known Computational Models

The standard Turing machine models are presumed to be known (see [BDG95, Pap94]):
deterministic, nondeterministic, probabilistic, alternating and oracle Turing machines. We
shortly restate these notions. Each non-final configuration of a deterministic Turing ma-
chine has only one successor whereas each non-final configuration of a nondeterministic
Turing machine can have several successors and one of them is guessed. For simplicity,
we suppose that each non-final configuration of a nondeterministic Turing machine has
exactly two successors. A probabilistic Turing machine is similar to a nondeterminis-
tic Turing machine with the difference that in the former the successor configuration is
chosen at random while in the second it is guessed.

An alternating Turing machine is a deterministic Turing machine which has inaddi-
tion two special types of states (configurations): existential and universal.The acceptance
of an alternating machine depends on these special states in the following way. At least
one of the successor configurations of an existential configuration must lead to an accept-
ing configuration, whereas all successor configurations of a universal configuration must
lead to an accepting configuration. Fork � 1, a�

k

-alternating(�
k

-alternating) Turing
machine is an alternating Turing machine starting with an existential (universal, respec-
tively) state and having at mostk- 1 alternations between existential and universal states
on every computation path. By convention the�

0

-alternating and�
0

-alternating Turing
machines are deterministic.

2.2. Computational Models 9

For a Turing machineM on inputx being deterministic, nondeterministic, probabilis-
tic or alternating, itscomputation tree, denoted�

M

(x), is a possibly infinite tree whose
nodes are configurations, the root being the initial configuration, and for any node�, its
sons are those configurations which are immediate successors of�. Note that forM be-
ing deterministic, its computation trees are also paths. ForM not being deterministic,
without loss of generality we assume that the trees are binary, i.e. each non-finalconfigu-
ration (node) has exactly two successors. Anaccepting pathof �

M

(x) is a path in�
M

(x)

which has the same root node and ends in an accepting state. Furthermore, forM being
alternating, agood subtreeof �

M

(x) is a subtree of�
M

(x) which has the same root node
and includes both successors of an universal configuration and exactly one successor of
an existential configuration. Anaccepting subtreeof �

M

(x) is a good subtree of�
M

(x)

which has only accepting paths.

An oracle Turing machine may ask queries to an oracle during its computation inthe
usual way: The machine writes a query on a special tape calledquery tape. When the
machine transfers into a specialquery statethen it switches automatically into a special
state eitheryesor nodepending on whether the current query belongs to the oracle or not.
The oracle is required to be fixed previously to the computation of the machine.

In an interactive proof system (multi-prover interactive proof system) aprobabilistic
Turing machine interacts with a prover (provers, respectively) where every prover tries to
convince the probabilistic Turing machine to accept the input. The input to the protocol
(proof system) is known to the Turing machine and the provers, and the Turing machine
interacts with a prover sending a message and receiving an answer. The provers can not
interact with each other and there are no restrictions on their power [Pap94,pp. 289, 506].

A Turing machineM is calledpolynomial-time(polynomial-space) if there exists a
polynomialp such thatM halts on every path of every instancex in an accepting or
rejecting state using no more thanp(jxj) steps (tape cells, respectively). Furthermore,M

is calledlogarithmic-spaceif there exists a constantc 2 N such thatM halts on every
path of every instancex in an accepting or rejecting state using no more thanc � log jxj
tape cells, andM is calledexponential-timeif there exists a polynomialp such thatM
halts on every path of every instancex in an accepting or rejecting state using no more
than2p(jxj) steps.

The above definitions can be combined. Thus, an oracle Turing machine may be e.g.
deterministic, nondeterministic, probabilistic or alternating. Finally, for a Turing machine
M define

M is deterministic �! L(M) =df fx : �

M

(x) is an accepting pathg
M is nondeterministic�! L(M) =df fx : �

M

(x) contains an accepting pathg
M is alternating �! L(M) =df fx : �

M

(x) contains an accepting subtreeg

as thelanguage accepted byM.

Where no confusion arises we write for simplicity Turing machine instead of deter-
ministic Turing machine.

10 2. Preliminaries

2.2.2 Turing Machines of Type�
1

: : : �

k

Variations of standard Turing machines will also be used to accept languages.
We turn to hierarchies built up by word and set operators (defined by word and set

quantifiers, respectively). Thus, we have to start with suitable classes of languages whose
instances consist of words and sets of words. Oracle Turing machines will be usedto
accept these languages. Every word input is given on a separate input tape and every
set input is given as an oracle. The machines have a special query tape for every oracle.
The oracles can be classified according to the type of queries that can be made by an
oracle machine. An oracle is aninput of type 1(input of type 2) if the query on the
corresponding query tape is not erased (erased, respectively) after each query. Hence, the
next query made to an oracle of type 1 is an extension of the previous query. Note that
formally inputs of type 1 and 2 are the same objects, namely sets of words. We will call a
word aninput of type 0(see Figure 2.1).

Write only

Write only

Oracle

Oracle

Read only

Q u e r y i s e r a s

Q u e r y i s n o t e r a s e d

W o r d

“Yes” / “No”

“Yes” / “No”

Ty
pe

2
Ty

pe
1

Ty
pe

0

T
ur

in
g

m
ac

hi
ne

In
pu

ts

Figure 2.1: Inputs of type 0, 1 and 2.

Fork � 1 and�
1

; : : : ; �

k

2 f0; 1; 2g, we say that a Turing machine is oftype�
1

: : : �

k

if it processes instances of the form(X
1

; : : : ; X

k

), whereX
i

is an input of type�
i

for i =
1; : : : ; k. Such a machine haskfi : �

i

= 0gk ordinary input tapes andkfi : �
i

2 f1; 2ggk

query tapes. Thelength of an instanceX = (X

1

; : : : ; X

k

), denotedjXj, is defined by
jXj =df

P

1�i�k;�

i

=0

jX

i

j, i.e. the sum of the length of the word inputs. In what follows we
assume thatX contains at least one word input.

We define computation trees and accepting paths as inx2.2.1. For a Turing machine
M of type�

1

: : : �

k

on input (X
1

; : : : ; X

k

) being deterministic or nondeterministic (X

i

is an input of type�
i

), its computation tree, denoted�
M

(X

1

; : : : ; X

k

), is a possibly in-
finite tree whose nodes are configurations, the root being the initial configuration, and
for any node�, its sons are those configurations which are immediate successors of�.
Obviously, forM being deterministic, its computation trees are also paths. ForM being
nondeterministic, without loss of generality we also assume here that the trees are binary.
An accepting pathof �

M

(X

1

; : : : ; X

k

) is a path in�
M

(X

1

; : : : ; X

k

) which has the same
root node and ends in an accepting configuration.

2.3. Complexity Classes 11

A Turing machineM of type�
1

: : : �

k

is calledpolynomial-time(polynomial-space)
if there exists a polynomialp such thatM halts on every path of every instanceX =

(X

1

; : : : ; X

k

) in an accepting or rejecting state using no more thanp(jXj) steps (tape cells,
respectively). Furthermore,M is calledlogarithmic-spaceif there exists a constantc 2 N
such thatM halts on every path of every instanceX = (X

1

; : : : ; X

k

) in an accepting or
rejecting state using no more thanc � log jXj tape cells. Note that the space bound applies
also to the length of oracle queries.

Finally, for a Turing machineM of type�
1

: : : �

k

define

M is deterministic:

L(M) =df f(X1; : : : ; Xk) : �M(X

1

; : : : ; X

k

) is an accepting pathg

M is nondeterministic:

L(M) =df f(X1; : : : ; Xk) : �M(X

1

; : : : ; X

k

) contains an accepting pathg

as thelanguage accepted byM.

2.3 Complexity Classes

Complexity classes are now defined using the Turing machine models presented inx2.2.
The corresponding relativized classes can be obtained in a standard way. LetK be a
complexity class defined by a suitable type of Turing machines andA be an oracle. The
complexity classKA is defined as the class of all languages which can be accepted by
Turing machines whose type is the same as for the classK but having in addition access
to the oracleA. For classesK

1

andK
2

, the complexity classKK

2

1

is the union of all classes
K

A

1

with A 2 K

2

.
We will describe the most popular complexity classes intuitively (x2.3.1), and the

nonstandard ones more precisely (x2.3.2).

2.3.1 Well-Known Complexity Classes

The complexity classP (NP) is defined as the class of all languages which can be accepted
by polynomial-time deterministic (nondeterministic, respectively) Turing machines. The
most investigated nondeterministic complexity class isNP, this class contains many im-
portant problems. A good overview of problems in this class can be found in Garey and
Johnson [GJ79].

“Space” classes play also an important role in complexity theory. The complexity
classL (NL) is defined as the class of all languages which can be accepted by loga-
rithmic-space deterministic (nondeterministic, respectively) Turing machines. Another
well-known “space” class isPSPACE, the class of all languages which can be accepted
by polynomial-space deterministic Turing machines. It was shown [Sav70] that theclass
of all languages which can be accepted by polynomial-space nondeterministic Turing
machines coincides withPSPACE.

12 2. Preliminaries

The classes of the (arithmetic) polynomial-time hierarchy, introduced by Meyerand
Stockmeyer [MS72], play an important role in complexity theory. These classesare de-
fined inductively as follows (the classes�p

k

were introduced later by Wagner [Wag90]):

�

p
0

= �

p
0

= �

p
0

=df P

�

p
k

=df L �

p
k-1, �p

k

=df NP�

p
k-1, �p

k

=df coNP�

p
k-1 for k � 1:

Furthermore, definePH as the union of all classes of the polynomial-time hierarchy. It
is well-known [Wag90] that�p

k

[�

p
k

� �

p
k+1

� �

p
k+1

\ �

p
k+1

for all k � 0. An al-
ternative way of looking at these classes is using alternating Turing machines [SM73,
Sto77, Wra77]: Fork � 0, �p

k

(�p
k

) is the class of all languages which can be accepted
by �

k

-alternating (�
k

-alternating, respectively) polynomial-time Turing machines. Let
APTIME be the class of all languages which can be accepted by alternating polynomi-
al-time Turing machines. In [CKS81], “time” and “space” classes wererelated, such
APTIME = PSPACE.

In 1990, Wagner [Wag90] extended the definition of the Boolean hierarchy: For a
functionr : N ! N define

A 2 NP(r)()df there exists a setB 2 NPsuch that�
B

(x; i+ 1) � �

B

(x; i) for all i

and�
A

(x) � maxfi : 1 � i � r(jxj) and(x; i) 2 Bg mod 2

He showed�p
2

= NP
�

n

O(1)

�

.
In 1977, Gill [Gil77] introduced probabilistic classes. LetBPP be the class of all

languages which can be accepted by polynomial-time bounded error probabilistic Turing
machines, i.e. the class of languages recognized by polynomial-time probabilistic Turing
machines whose error probability is bounded above by some positive constant" <

1

2

.
Furthermore, defineRPas the class of all languages which can be accepted by polynomi-
al-time one-sided bounded error probabilistic Turing machines, i.e. the class of languages
recognized by polynomial-time probabilistic Turing machines which have zero error prob-
ability for instances not in the language and error probability bounded by some positive
constant" < 1

2

for instances in the language.
The complexity classEXPTIME (NEXPTIME) is defined as the class of all lan-

guages which can be accepted by exponential-time deterministic (nondeterministic, re-
spectively) Turing machines. Exponential-time hierarchies can be defined in different
ways. Here we adopt the definition which employs alternating Turing machines, theso
called exponential-time alternation hierarchy. Fork � 0, let �exp

k

(�exp
k

) be the class
of all languages which can be accepted by�

k

-alternating (�
k

-alternating, respectively)
exponential-time Turing machines. Furthermore defineEXPH as the union of all classes
of the exponential-time alternation hierarchy. Obviously,EXPTIME = �

exp
0

= �

exp
0

and
NEXPTIME = �

exp
1

.
Finally, letIP (MIP) be the class of all languages which can be accepted by interactive

proof systems (multi-prover interactive proof systems, respectively) with the probabilistic
Turing machine of the protocol being also polynomial-time bounded error. It has been
shown [Sha90, BFL90] thatIP = PSPACEandMIP = NEXPTIME. However, these re-
sults do not remain valid in every relativized world [FS88, FRS88], i.e.there exist oracles
A andB such thatIPA

6= PSPACEA andMIPB

6= NEXPTIMEB.

2.3. Complexity Classes 13

The diagram of Figure 2.2 summarizes the known relationships between the complex-
ity classes presented above. Other important properties about these classes can be found
in [WW86, BDG95, BDG90, Pap94].

2.3.2 Classes of Type�
1

: : : �

k

Next, we define classes which are the starting point for building up hierarchieshere con-
sidered. Fork � 1 and�

1

; : : : ; �

k

2 f0; 1; 2g define

L �

1

:::�

k

=df fL(M) : M is a logarithmic-space deterministic
Turing machine of type�

1

: : : �

k

g

P�

1

:::�

k

=df fL(M) : M is a polynomial-time deterministic
Turing machine of type�

1

: : : �

k

g

NP�

1

:::�

k

=df fL(M) : M is a polynomial-time nondeterministic
Turing machine of type�

1

: : : �

k

g

PSPACE�1:::�k =df fL(M) : M is a polynomial-space deterministic
Turing machine of type�

1

: : : �

k

g

which are calledclasses of type�
1

: : : �

k

. Such a class consists only of languagesL �

f0; 1g

(�

1

)

�� � ��f0; 1g

(�

k

), where we definef0; 1g(0) =df f0; 1g
� andf0; 1g(�) =df P(f0; 1g

�

)

for � = 1; 2 (remember that formally inputs of type 1 and 2 are the same objects, namely
sets of words).

The classes of type�
1

: : : �

k

are the starting point of our research about operators. Ap-
plying operators to these classes we can define and characterize other complexity classes.
This will be treated in the following chapters.

14 2. Preliminaries

BPP

IP = PSPACE= APTIME

L

NL

RP coRP

coNP= �

p
1

�

p
2

�

p
3

�

p
3

�

p
2

EXPTIME = �

exp
0

= �

exp
0

MIP = NEXPTIME = �

exp
1

coNEXPTIME = �

exp
1

�

exp
2

�

exp
2

�

exp
3

�

exp
3

PH

EXPH

P= �

p
0

= �

p
0

NP= �

p
1

�

p
2

�

p
3

Figure 2.2: Relationships between well-known complexity classes.

CHAPTER3

The Analytic Polynomial-Time
Hierarchy

“There are more things in heaven and earth,
than are dreamt of in your philosophy.”

Shakespeare

In the present chapter, we investigate a hierarchy defined by existential and
universal quantifiers varying over words and oracles of type 1 and 2 on the
base of the classP. This hierarchy of classes is called theanalytic polyno-
mial-time hierarchy. It is shown that each class of this hierarchy coincides
with one of the classes�p

k

and�p
k

(k � 0) of the (arithmetic) polynomial-
time hierarchy,PSPACE, or one of the classes�exp

k

and�exp
k

(k � 1) of the
exponential-time alternation hierarchy and vice versa.

An outline of this chapter follows: We first give some more notations and de-
fine the existential and universal quantifiers and the analytic polynomial-time
hierarchy (x3.1). In order to prove our main result (x3.4), the investigation on
the power of the classes of the analytic polynomial-time hierarchy is divided
in two parts:

(a) Using equivalence rules we show that every class of this hierarchy can
be represented in a certain normal form (x3.2).

(b) It is shown that each class in this normal form coincides with a well-
known complexity class (x3.3).

These results make possible to establish an algorithm which allows to find
out the corresponding well-known class in an easy way (x3.4). Finally, we
make some comments about the results (x3.5).

3.1 The Operators and the Hierarchy

Next, we define the existential and universal quantifiers (x3.1.1) and the analytic poly-
nomial-time hierarchy (x3.1.2). But first, let us give some more notations to help us in
the proofs of the results. For every setU � f0; 1g

� and everym 2 N we define the
word hU;mi =df �U(1)�U(11)�U(111) : : : �U(1

m

). Foru 2 f0; 1g

� andU � f0; 1g

�,
define the setunU =df fw : uw 2 Ug. Finally, fora 2 f0; 1g andu 2 f0; 1g

�, define the
encodingsfua =df eu1a (e" =df ") andcua =df buaa (b" =df ").

15

16 3. The Analytic Polynomial-Time Hierarchy

3.1.1 The Existential and Universal Operators

We will examine a polynomial-time hierarchy defined by word and set quantifiers, namely
the existential and universal. The classesP�

1

:::�

k are the starting point for building up this
hierarchy. Next, we define inductively new classes and in parallel the existential and
universal quantifiers. Letk � 1 and�

1

; : : : ; �

k

; � 2 f0; 1; 2g. If K is a class of type
�

1

: : : �

k

� then

For� = 0: 9p
K and8p

K are classes of type�
1

: : : �

k

which are defined as follows

L 2 9

p
K()df there exist anL 0

2 K and a polynomialp, such that

(X

1

; : : : ; X

k

) 2 L ! 9x

�

jxj � p

�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; x) 2 L

0

�

L 2 8

p
K()df there exist anL 0

2 K and a polynomialp, such that

(X

1

; : : : ; X

k

) 2 L ! 8x

�

jxj � p

�

X

�

i

=0

i�k

jX

i

j

�

! (X

1

; : : : ; X

k

; x) 2 L

0

�

(Using simple encoding arguments it is easy to see that one can use equivalently“=”
instead of “�” in these definitions.)

For� = 1; 2: 9�K and8�K are classes of type�
1

: : : �

k

which are defined as follows

L 2 9

�

K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L ! 9X ((X

1

; : : : ; X

k

; X) 2 L

0

)

L 2 8

�

K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L ! 8X ((X

1

; : : : ; X

k

; X) 2 L

0

)

To make clear which type of input is used, for� 2 fp; 1; 2g we also write9�X instead of
9X, and8�X instead of8X.

Now, some abbreviations and definitions are presented. The set of existential and uni-
versal quantifiers is denoted by�p =df

�

9

p
; 9

1

; 9

2

; 8

p
; 8

1

; 8

2

	

. Fork � 0, Q
1

; : : : ; Q

k

2

f9; 8g and�
1

; : : : ; �

k

2 fp; 1; 2g, let �(Q�

1

1

: : :Q

�

k

k

) =df �1 : : : �k be the type of the op-
erator (or quantifier) stringQ�

1

1

: : :Q

�

k

k

, where�
i

= 0 if �
i

= p and�
i

= �

i

otherwise
(i = 1; : : : ; k). ForQ = Q

�

1

1

: : :Q

�

k

k

andX = (X

1

; : : : ; X

k

) we writeQX instead of
Q

�

1

1

X

1

: : :Q

�

k

k

X

k

. Furthermore, we define9 =df 8, 8 =df 9 andQ =df Q
�

1

1

: : :Q

�

k

k

.

Proposition 3.1. Let� 2 f0; 1; 2g

� andQ 2 �

�

p. ThencoQP��(Q)

= QP��(Q).

3.2. Equivalence Rules and a Normal Form 17

Proof. Let L 2 QP��(Q). There exists anL 0

2 P��(Q) such that

X 2 L() QY ((X; Y) 2 L

0

)

where the lengths of the word inputs inY are bounded by suitable polynomials depending
on the length of the word inputs inX. Negating the both sides of the equivalence, we get

X 2 L() :QY ((X; Y) 2 L

0

)

() QY (: (X; Y) 2 L

0

)

() QY

�

(X; Y) 2 L

0

�

SinceP��(Q) is closed under complement, we get the desired result. ❑

3.1.2 The Analytic Polynomial-Time Hierarchy

We are particularly interested in the classes of type 0, i.e. in “ordinary” classes of lan-
guages. In this case, the superscripts toP are omitted, i.e. for quantifier stringQ 2 �

�

p

we defineQP =df QP0�(Q). For k � 0 andQ
1

; : : : ; Q

k

2 f9; 8g, it is well-known that
each of the classesQp

1

: : :Q

p
k

Pcoincides with a class of the (arithmetic) polynomial-time
hierarchy [SM73, Sto77, Wra77] and vice versa. To our knowledge, Orponen [Orp83]
began in 1983 the study of the existential and universal quantifiers of type 2. He related
a hierarchy defined by these quantifiers on the base of the classPH to the classes of the
exponential-time alternation hierarchy.

Theorem 3.2. [Orp83] For everyk � 1 let Q
k

= 9 if k is odd andQ
k

= 8 otherwise.
Then,928292 : : :Q2

k

PH= �

exp
k

.

Next, the analytic polynomial-time hierarchy is defined. For quantifier stringsQ 2 �

�

p,
the classesQPare called the classes of theanalytic polynomial-time hierarchy. The class
APH is defined as the union of all classes of the analytic polynomial-time hierarchy.
Thus, this hierarchy extends the (arithmetic) polynomial-time hierarchy and, aswe will
see (Theorem 3.14), our results tighten up Orponen’s result on quantifiers of type 2.

3.2 Equivalence Rules and a Normal Form

The purpose of this section is to show that every class of the analytic polynomial-time
hierarchy can be represented in a certain normal form (x3.2.2), namely an alternating
sequence of9-8-quantifiers on the base ofP with the set quantifiers appearing left of the
word quantifiers. To establish this result, we will apply equivalence rules(x3.2.1).

3.2.1 Inclusion and Equivalence Rules

We will use inclusion and equivalence rules to relate classes of the analytic polynomial-
time hierarchy. These rules are used in the following sense: ForR; S 2 �

�

p, the inclusion
rule R !P S is valid if the replacement of the quantifier stringR by the stringS in any

18 3. The Analytic Polynomial-Time Hierarchy

context does not diminish the class in question, i.e.RQP��(R)�(Q)

� SQP��(S)�(Q) for
all Q 2 �

�

p and� 2 f0; 1; 2g

�. We say that theequivalence ruleR $P S is valid if the
replacement of the quantifier stringR by the stringS in any context does not change the
class in question, i.e.RQP��(R)�(Q)

= SQP��(S)�(Q) for all Q 2 �

�

p and� 2 f0; 1; 2g

�.
Obviously, we haveR$P S if and only if R!P S andS!P R.

For a ruleR !P S, we will also have to prove “its complement”R !P S. However,
the following proposition shows that only one of them has to be proved.

Proposition 3.3 (Complementation).LetR; S 2 �

�

p. If R!P S thenR!P S.

Proof. LetQ 2 �

�

p and� 2 f0; 1; 2g

�. We conclude

L 2 RQP��(R)�(Q)

=) L 2 coRQP��(R)�(Q)

=) L 2 RQP��(R)�(Q) by Proposition 3.1

=) L 2 SQP��(S)�(Q) by R!P S

=) L 2 coSQP��(S)�(Q) by Proposition 3.1

=) L 2 SQP��(S)�(Q) ❑

The following rules show relations between the existential (universal, respectively)
quantifiers of different types.

Lemma 3.4. The following inclusion rules are valid:

(1) "!P 9
p and "!P 8

p;

(2) 9p
!P 9

1 and 8

p
!P 8

1;

(3) 91 !P 9
2 and 8

1

!P 8
2.

Proof. LetQ 2 �

�

p and� 2 f0; 1; 2g

�.

(1) This is the classical case of introducing a dummy word quantifier.

(2) We prove the first rule, the other follows by complementation. For a language
L 2 9

p
QP�0�(Q) there exist anL

1

2 P�0�(Q) and a polynomialp such that

X 2 L() 9

p
uQY (juj = p(jXj)^ (X; u; Y) 2 L

1

)

() 9

1

UQY ((X;U; Y) 2 L

2

) ;

whereL
2

=df f(X;U; Y) : (X; hU; p(jXj)i ; Y) 2 L

1

g. LetM be a polynomial-time
machine of type�0�(Q) acceptingL

1

. Consider a machineM 0 of type�1�(Q) that
on input(X;U; Y) computesp(jXj) and thenhU; p(jXj)i by asking1, 11, : : : , 1p(jXj)

to the oracleU. Then,M 0 works asM on input(X; hU; p(jXj)i ; Y). Therefore,
L(M

0

) = L

2

andL
2

2 P�1�(Q), i.e.L 2 9

1

QP�1�(Q).

(3) This is obvious since a polynomial-time machine of type�1�(Q) can also be
considered to be a machine of type�2�(Q). ❑

3.2. Equivalence Rules and a Normal Form 19

Next, we show an “equivalence rule” which is valid only in a special context.It says
that a set quantifier is exactly as powerful as the corresponding word quantifier when
applied toP.

Lemma 3.5. Let� 2 f0; 1; 2g

�. Then

9

pP�0

= 9

1P�1

= 9

2P�2 and 8

pP�0

= 8

1P�1

= 8

2P�2

Proof. We prove the first statement, the second follows by complementation. The in-
clusions “�” are valid by Lemma 3.4, thus only92P�2

� 9

pP�0 has to be proved. By
definition L 2 9

2P�2 if and only if there exists anL 0

2 P�2, such thatX 2 L ()

9

2

U ((X;U) 2 L

0

). LetM be a polynomial-time machine of type�2 acceptingL 0, which
on input(X;U) queriesp(jXj) times the oracleU, wherep is a polynomial. Without loss
of generality we assume thatM does not make a query twice. LetM 0 be a machine of
type �0 working on input(X; u) asM on input (X;U) with the following difference:
Instead of the answer ofU to thei-th query ofM the machineM 0 uses thei-th bit of u.
Now, 92U ((X;U) 2 L

0

) () 9

p
u (juj = p(jXj)^ (X; u) 2 L(M

0

)) can be seen by the
following construction:

“u ! U”: Let (X; u) 2 L(M

0

) for a wordu 2 f0; 1g

p(jXj) and define the setU =df

fx : x is thei-th query ofM^ u(i) = 1g. Then(X;U) 2 L

0.

“U ! u”: Let (X;U) 2 L

0 for a setU � f0; 1g

� and define the wordu 2 f0; 1g

p(jXj) as
follows: u(i) = 1 ()df answer to thei-th query ofM is “yes”. Then(X; u) 2
L(M

0

).

Hence,L(M 0

) 2 P�0 andL 2 9

pP�0. ❑

The next result shows how to melt neighboured existential (universal, respectively)
quantifiers.

Lemma 3.6. For �; � 2 fp; 1; 2g the following equivalence rules are valid

9

�

9

�

$P 9
� and 8

�

8

�

$P 8
�

where� = p if � = � = p and� = min f�(9�) + �(9

�

) ; 2g otherwise.

Proof. We prove the first rule, the second follows by complementation. Using Lemma
3.4, it is easy to see that we have to prove only the inclusion rules

(1) 9p
9

p
!P 9

p;

(2) 9p
9

1

!P 9
1 and919p

!P 9
1;

(3) 9292 !P 9
2;

(4) 92 !P 9
1

9

1.

In order to prove these inclusions, letQ 2 �

�

p and� 2 f0; 1; 2g

�.

20 3. The Analytic Polynomial-Time Hierarchy

(1) Let L 2 9

p
9

p
QP�00�(Q). There exist anL

1

2 P�00�(Q) and polynomialsp
1

; p

2

such that

X 2 L() 9

p
u 9

p
vQY (juj = p

1

(jXj)^ jvj = p

2

(jXj)^ (X; u; v; Y) 2 L

1

)

() 9

p
wQY (jwj = 2p

1

(jXj) + 2p

2

(jXj) + 2^ (X;w; Y) 2 L

2

) ;

whereL
2

=df f(X; bu01bv; Y) : (X; u; v; Y) 2 L

1

g. LetM be a polynomial-time ma-
chine of type�00�(Q) acceptingL

1

, and letM 0 be a machine of type�0�(Q) that
on input(X;w; Y) computesu andv fromw =

b

u01

b

v (where it rejects ifw does not
have this form) and then works asM on input(X; u; v; Y). Therefore,L(M 0

) = L

2

andL
2

2 P�0�(Q), i.e.L 2 9

p
QP�0�(Q).

(2) It suffices to prove the first rule, because of the obvious rule9

p
9

1

$P 9
1

9

p. For
a languageL 2 9

p
9

1

QP�01�(Q) there exist anL
1

2 P�01�(Q) and a polynomialp
such that

X 2 L() 9

p
v 9

1

UQY (jvj = p(jXj)^ (X; v;U; Y) 2 L

1

)

() 9

1

WQY ((X;W;Y) 2 L

2

) ;

whereL
2

=df

�

(X;W;Y) :

�

X; hW;p(jXj)i ; 1

p(jXj)+1

nW;Y

�

2 L

1

	

. LetM be a pol-
ynomial-time machine of type�01�(Q) acceptingL

1

, and letM 0 be a machine
of type�1�(Q) that on input(X;W; Y) computesp(jXj) and thenhW;p(jXj)i by
asking1, 11, : : : , 1p(jXj) to W. Then, the machineM 0 works like machineM
on input

�

X; hW;p(jXj)i ; 1

p(jXj)+1

nW;Y

�

with the difference that instead of asking
the queryu to oracle1p(jXj)+1

nW, the query1p(jXj)+1

u is asked toW. Therefore,
L(M

0

) = L

2

andL
2

2 P�1�(Q), i.e.L 2 9

1

QP�1�(Q).

(3) LetL 2 9

2

9

2

QP�22�(Q). There exists anL
1

2 P�22�(Q) such that

X 2 L() 9

2

U 9

2

VQY ((X;U;V; Y) 2 L

1

)

() 9

2

WQY ((X;W; Y) 2 L

2

) ;

whereL
2

=df f(X;W; Y) : (X; 0nW;1nW;Y) 2 L

1

g. Let M be a polynomial-time
machine of type�22�(Q) acceptingL

1

. Consider a machineM 0 of type�2�(Q)

working on input(X;W;Y) asM on input(X; 0nW;1nW;Y) with the difference
that instead of asking the queryw to oracle0nW (oracle1nW), the query0w (1w,
respectively) to oracleW is asked. Therefore,L(M 0

) = L

2

andL
2

2 P�2�(Q), i.e.
L 2 9

2

QP�2�(Q).

(4) Let us first prove the validity of the new rule92 !P 9

1

9

1

8

p. For a language
L 2 9

2

QP�2�(Q) there exists anL
1

2 P�2�(Q) such that for a suitable polynomialp

3.2. Equivalence Rules and a Normal Form 21

X 2 L()9

2

UQY ((X;U; Y) 2 L

1

)

()9

2

U 9

1

W

�

8

p
u 8

p
v

�

juj ; jvj � p(jXj)! (u 2 U$ v01

b

u 2W)

�

^QY

�

(X;U; Y) 2 L(M)

�

�

�

takeW = fv01

b

u : u; v 2 f0; 1g

�

^ u 2 Ug for example, and letM
be a polynomial-time machine of type�2�(Q) acceptingL

1

�

()9

1

U 9

1

W8

p
u 8

p
vQY

�

juj ; jvj � p(jXj)!

�

(u 2 U$ v01

b

u 2W)

^ (X;W;Y) 2 L(M

0

)

��

�

M

0 works on input(X;W; Y) asM on input (X;U; Y) but instead
of askingu to U after queriesu

1

; u

2

; : : : ; u

m

it asks the query
01

b

u

1

01

b

u

2

01 : : : 01

b

u

m

01

b

u to W. Note thatM 0 asksW in a type
1 manner, i.e. it is a polynomial-time machine of type�1�(Q)

�

()9

1

U 9

1

W8

p
u 8

p
vQY

�

juj ; jvj � p(jXj)!

(X;U;W;u; v; Y) 2 L(M

L

)

�

�

M

L

on input(X;U;W;u; v; Y) first asksu 2 U andv01bu 2 W. If
the answers do not coincide, thenM

L

rejects. Otherwise,M
L

sim-
ulatesM 0 on input(X;W; Y) but instead of askingw to W it asks
v01

b

uw toW. Note thatM
L

asksU andW in a type 1 manner, i.e. it
is a polynomial-time machine of type�1100�(Q)

�

This showsL 2 9

1

9

1

8

p
8

p
QP�1100�(Q), i.e. 92 !P 9

1

9

1

8

p
8

p. Now, applying the
rule9p

9

p
!P 9

p (Statement (1)) we get the desire rule92 !P 9
1

9

1

8

p.

Next, we prove the rule92 !P 9

1

9

1. For k � 0, Q
1

; : : : ; Q

k

2 f9; 8g and

�

1

; : : : ; �

k

2 fp; 1; 2g, consider the class92Q�

1

1

: : :Q

�

k

k

P�2�

(

Q

�

1

1

:::Q

�

k

k

).

Case 1. If Q
1

= � � � = Q

k

= 9 we can conclude by Lemmas 3.4 and 3.5, and
Statement (3)

9

2

9

�

1

: : :9

�

kP�2�

(

9

�

1

1

:::9

�

k

k

)

� 9

2P�2

� 9

pP�0

� 9

1

9

1

9

�

1

: : :9

�

kP�11�

(

9

�

1

1

:::9

�

k

k

)

Case 2. If there exists anl 2 f1; : : : ; kg such thatQ
1

= � � � = Q

l-1

= 9 and

22 3. The Analytic Polynomial-Time Hierarchy

Q

l

= 8, then we can conclude

9

2

9

�

1

: : :9

�

l-1

8

�

l

Q

�

l+1

l+1

: : :Q

�

k

k

P�2�

(

Q

�

1

1

:::Q

�

k

k

)

� 9

2

8

�

l

Q

�

l+1

l+1

: : :Q

�

k

k

P�2�

(

Q

�

l

l

:::Q

�

k

k

) by Lemma 3.4 and (3)

� 9

1

9

1

8

p
8

�

l

Q

�

l+1

l+1

: : :Q

�

k

k

P�110�

(

Q

�

l

l

:::Q

�

k

k

) by 92 !P 9
1

9

1

8

p

� 9

1

9

1

8

�

l

Q

�

l+1

l+1

: : :Q

�

k

k

P�11�

(

Q

�

l

l

:::Q

�

k

k

) by (1), (2)
or Lemma 3.4 and (3)

� 9

1

9

1

9

�

1

: : :9

�

l-1

8

�

l

Q

�

l+1

l+1

: : :Q

�

k

k

P�11�

(

Q

�

1

1

:::Q

�

k

k

) by Lemma 3.4

This completes the proof. ❑

Our last rules show that word quantifiers can be eliminated if a set quantifierand at
least one more quantifier follow.

Lemma 3.7. For � 2 f1; 2g and� 2 fp; 1; 2g the equivalence rules

9

p
8

�

9

�

$P 8
�

9

� and 8

p
9

�

8

�

$P 9
�

8

�

are valid.

Proof. We prove the second rule, the first follows by complementation. LetQ 2 �

�

p and
� 2 f0; 1; 2g

�.
Let us first prove the validity of the inclusion rule8p

9

�

!P 9
�

8

p (� 2 f1; 2g). For a
languageL 2 8

p
9

�

QP�0��(Q) there exist anL
1

2 P�0��(Q) and a polynomialp such that

X 2 L() 8

p
u 9

�

VQY (juj = p(jXj)! (X; u;V; Y) 2 L

1

)

Now, we defineL
2

=df f(X;W;u; Y) : (X; u; unW;Y) 2 L

1

g and we prove

X 2 L() 9

�

W8

p
uQY (juj = p(jXj)! (X;W;u; Y) 2 L

2

)

“=)”: For everyu 2 f0; 1g

p(jXj) let V
u

be a set such that(X; u;V
u

; Y) 2 L

1

and define
W =

S

juj=p(jXj)

fuw : w 2 V

u

g. Then(X;W;u; Y) 2 L

2

for everyu 2 f0; 1g

p(jXj).

“(=”: Let (X;W;u; Y) 2 L

2

for everyu 2 f0; 1g

p(jXj). Hence, for eachu 2 f0; 1g

p(jXj)

there exists a setV
u

=df unW such that(X; u;V
u

; Y) 2 L

1

.

LetM be a polynomial-time machine of type�0��(Q) acceptingL
1

, and letM 0 be a
machine of type��0�(Q) working on input(X;W;u; Y) asM on input(X; u; unW;Y)

with the difference that instead of asking the queryw to oracleunW the queryuw is
asked toW. SinceM asksunW in a type� manner, the machineM 0 does it as well.
Therefore,L(M 0

) = L

2

andL
2

2 P��0�(Q), i.e.L 2 9

�

8

p
QP��0�(Q).

Now, using this rule and Lemma 3.6 we can conclude the rule8

p
9

�

8

�

!P 9
�

8

�. The
rule9�8� !P 8

p
9

�

8

� is valid by Lemma 3.4. ❑

3.3. Characterizing the ClassesKP(�) andcoKP(�) 23

3.2.2 A Normal Form Theorem

Using the equivalence rules presented inx3.2.1 we can state the fact that every class of the
analytic polynomial-time hierarchy can be represented in a certain normal form. Forl �
1, letQ

l

=df 9 if l is odd andQ
l

=df 8 otherwise. Fork;m � 0 and�
1

; �

2

; �

3

; : : : ; �

k

2

f1; 2g we define

KP(�1�2�3 : : : �k;m) =df 9
�

1

8

�

2

9

�

3

: : :Q

�

k

k

Q

p
k+1

Q

p
k+2

: : :Q

p
k+m

P

Theorem 3.8 (Normal Form Theorem). Every class of the analytic polynomial-time hi-
erarchy coincides with one of the classesP, KP(�;m) or coKP(�;m), where� 2 f1; 2g

�

andm � 1.

Proof. Consider an arbitrary class of the analytic polynomial-time hierarchy. If this class
is defined without quantifiers, then it isP. Otherwise it coincides with one of the classes
KP(�;m) or coKP(�;m) with � 2 f1; 2g

� andm � 1. This can be seen as follows: By
Lemma 3.6, we bring the quantifier prefix in a form, where no quantifier substring9

�

1

9

�

2

or8�18�2 appears (�
1

; �

2

2 fp; 1; 2g). By Lemma 3.5, we ensure that the last quantifier is a
word quantifier. By Lemma 3.7, we eliminate all word quantifiers which are not followed
by a word quantifier. This last step can generate quantifier substrings9

�

1

9

�

2 or 8�18�2

(�
1

2 fp; 1; 2g and�
2

2 f1; 2g). However, applying repeatedly the rules of Lemmas 3.6
and 3.7 we get the desired result. ❑

3.3 Characterizing the ClassesKP(�) and coKP(�)

In this section, we characterize the classes having the formKP(�;m) or coKP(�;m) by
well-known complexity classes, where� 2 f1; 2g

� andm � 1. It is well-known that such
a class built without set quantifiers coincides with a class of the (arithmetic) polynomial-
time hierarchy and vice versa, i.e.KP(";m) = �

p
m

and coKP(";m) = �

p
m

form � 0 (see
x3.1.2). Thus, it remains to consider the classes involving set quantifiers. The simplest
classes of these types are those containing only one set quantifier of type 1 and one word
quantifier, i.e.KP(1; 1) = 9

1

8

pP and coKP(1; 1) = 8

1

9

pP, which turn out to coincide
with PSPACE.

Theorem 3.9. 918pP= 8

1

9

pP= PSPACE.

Proof. SincePSPACEis closed under complementation, only918pP = PSPACEhas to
be proved.

“PSPACE� 9

1

8

pP”: For a languageL 2 PSPACEletM be a polynomial-time alternat-
ing machine acceptingL whose computation trees are binary. The machineM accepts an
instancex if there exists an accepting subtree of their computation tree�

M

(x).
Since a good subtreeS of �

M

(x) includes both successors of an universal configura-
tion and exactly one successor of an existential configuration (see p. 9), we can describe
S by the setU

S

of all wordsz corresponding to an existential configuration whose right
successorz1 belongs toS in the following way:z 2 U

S

means “z1 is in S” and z 62 U

S

24 3. The Analytic Polynomial-Time Hierarchy

means “z0 is in S” (see Figure 3.1). Note that every setU describes a good subtreeS
U

of
�

M

(x) in this way. Now we can conclude

x 2 L() 9S(S is an accepting subtree of�
M

(x))

() 9U(S

U

is an accepting subtree of�
M

(x))

() 9U8�((� is a path inS
U

^ � is a path in�
M

(x)) �! � accepting)

() 9U 8�

��

j�j-1

^

i=0

(�(1) : : :�(i) is existential! �

U

(�(1) : : :�(i)) = �(i+ 1))

^ � is a path in�
M

(x)

�

�! � accepting
�

For fixedU and�, the condition in parenthesis can be checked in polynomial-time
with queries toU which are initial parts of the word�. This is a type 1 querying. There-
fore,L 2 9

1

8

pP.

S

2

S

1

+! accept

-! reject

_ __

^ ^

_

_

0

0

0 0 0 0

0

1

1

1111

_! existential

^! universal

1

Figure 3.1: Good subtreesS
1

andS
2

with S

2

being also an accepting subtree, where
U

S

1

= f00; 01g andU
S

2

= f"; 10g.

“918pP � PSPACE”: Let L 2 9

1

8

pP. There exist anL
1

2 P010 and a polynomial
p such thatx 2 L () 9

1

U 8

p
u (juj = p(jxj)! (x;U; u) 2 L

1

). Since deterministic
polynomial-space is as powerful as nondeterministic polynomial-space, it suffices to de-
scribe a nondeterministic polynomial-space machine acceptingL (the nondeterminism
will be used to guess the oracleU). LetM 0 be a machine of type010 acceptingL

1

with
time boundq whereq is a polynomial. Thus, no query ofM 0 on input(x;U; u) to ora-
cleU is longer thanq(jxj). It is important thatM 0 asks for a given input(x;U; u) only
queries from oneoracle pathw

1

, w
1

w

2

, : : : , w
1

w

2

: : :w

q(jxj)

. LetM be a machine that
considers step by step all these oracle paths in lexicographical order. For each oracle path
� 2 f0; 1g

q(jxj):

3.3. Characterizing the ClassesKP(�) andcoKP(�) 25

1. The machineM guesses the answers of the oracleU to the queries on this particular
oracle path�. This has to be made in accordance with the guesses for the previous
path, i.e. the answers to the queries of the common initial part of� and its prede-
cessor (in lexicographical order) have to be the same. Let�

g

be this path with the
guessed answers. Note that only this part ofU has to be stored which belongs to
the current oracle path�.

2. NowM simulatesM 0 for all inputs(x; u) asking only queries from the oracle path
� and uses the oracle answers encoded in�

g

. In fact,M simulatesM 0 for all inputs
(x; u) and stops such a simulation if a query is asked which is not from the oracle
path�.

Finally, the machineM accepts if and only if all simulations in item 2, which are
not stopped, end accepting. Therefore,L(M) = L andM uses polynomial-space, i.e.
L 2 PSPACE. ❑

The following lemma is a special presentation of the well-known fact that the 3SAT
problem isDLOGTIME-complete forNP. Fora 2 f0; 1g let a1 =df a anda0 =df 1- a.

Lemma 3.10. A languageL is in NP if and only if there exist polynomialsp; q and func-
tionsf; g 2 DLOGTIME, i.e. each bit of the value off andg can be computed in loga-
rithmic time, such thatf(1n; i; j) 2 f1; 2; : : : ; p(n)g, g(1n; i; j) 2 f0; 1g and

x 2 L() 9a

1

a

2

: : : a

p(jxj)

0

@

jxj

^

i=1

(a

i

= x(i))^

p(jxj)

^

i=1

3

_

j=1

a

g(1

jxj

;i;j)

f(1

jxj

;i;j)

1

A

wherea
1

; a

2

; : : : ; a

p(jxj)

2 f0; 1g.

The remainder classesKP(�) and coKP(�) that we have not already characterized turns
out to coincide with classes of the exponential-time alternation hierarchy. The next theo-
rem shows which classesKP(�) and coKP(�) contain a level of the exponential-time alter-
nation hierarchy.

Theorem 3.11. For k � 1 the inclusions

�

exp
k

� KP

�

1

k

; 2

�

\ KP

�

1

k-1

2; 1

�

and �

exp
k

� coKP

�

1

k

; 2

�

\ coKP

�

1

k-1

2; 1

�

are valid.

Proof. We prove the first inclusion, the second follows by complementation. Consider
the case thatk is odd. LetL 2 �

exp
k

, i.e. letL be a language which is accepted by an
exponential-time alternating Turing machine starting with an existentialstate and having
at mostk - 1 alternations on every computation path. Hence, there exist a language
L

1

2 NPand a polynomialr such that

x 2 L() 9u

1

8u

2

9u

3

: : :8u

k-1

��

x10

2

jxj

; u

1

; u

2

; : : : ; u

k-1

�

2 L

1

�

26 3. The Analytic Polynomial-Time Hierarchy

where the quantifiers vary over words of length2r(jxj).
Let n =df jxj + 1 + 2

jxj andN =df n + (k - 1) � 2

r(jxj). By Lemma 3.10, there exist
polynomialsp; q and functionsf; g 2 DLOGTIME such that

x 2 L,9u

1

8u

2

9u

3

: : :8u

k-1

9a

1

a

2

: : : a

p(N)

�

jxj

^

i=1

(a

i

= x(i))^ (a

jxj+1

= 1)

^

n

^

i=jxj+2

(a

i

= 0)^

k-1

^

j=1

2

r(jxj

^

i=1

�

a

n+(j-1) 2

r(jxj

+i

= u

j

(i)

�

^

q(N)

^

i=1

3

_

j=1

a

g(1

N

;i;j)

f(1

N

;i;j)

�

where the firstk- 1 quantifiers vary over words of length2r(jxj). Obviously, the functions
f

0

(x; i; j) =df f(1
N

; i; j) andg 0

(x; i; j) =df g(1
N

; i; j) are polynomial-time computable
(the length off 0 is polynomial injxj bounded and the length ofg 0 is constant, and we
need polynomial-time to compute each bit of these functions). Now, the idea is to repre-
sent a wordw of length2r(jxj) by the oracleW

w

=df flex(i) : w(i) = 1g. There exists a
polynomials such that

x 2 L, 9U

1

8U

2

: : :8U

k-1

9U

k

�

jxj

^

i=1

(i 2 U

k

$ x(i) = 1)^ ((jxj + 1) 2 U

k

)

^

n

^

i=jxj+2

(i 62 U

k

)

^

k-1

^

j=1

2

r(jxj

^

i=1

�

(n+ (j- 1) � 2

r(jxj)

+ i) 2 U

k

$ i 2 U

j

�

^

2

s(jxj

^

i=1

3

_

j=1

(f

0

(x; i; j) 2 U

k

$ g

0

(x; i; j) = 1)

�

, 9

1

U

1

8

1

U

2

: : :8

1

U

k-1

9

1

U

k

8

p
i

�

1 � i � N+ 2

s(jxj)

!

9

p
j (1 � j � 3^ (x;U

1

; U

2

; : : : ; U

k-1

; U

k

; i; j) 2 L

2

)

�

where(x;U
1

; U

2

; : : : ; U

k-1

; U

k

; i; j) 2 L

2

()df

(1 � i � jxj! (i 2 U

k

$ x(i) = 1))^ ((i = jxj + 1)! i 2 U

k

)

^ (jxj + 1 < i � n! i 62 U

k

)

^ (n < i � n + 2

r(jxj)

! (i 2 U

k

$ i- n 2 U

1

))

^ (n+ 2

r(jxj)

< i � n + 2 � 2

r(jxj)

! (i 2 U

k

$ i- n- 2

r(jxj)

2 U

2

))

...

^ (n+ (k- 2) � 2

r(jxj)

< i � N! (i 2 U

k

$ i- n- (k- 2) � 2

r(jxj)

2 U

k-1

))

^ (N < i! (f

0

(x; i-N; j) 2 U

k

$ g

0

(x; i-N; j) = 1)) (?)

3.3. Characterizing the ClassesKP(�) andcoKP(�) 27

It is obvious thatL
2

can be accepted by a deterministic polynomial-time oracle ma-
chine which, on input(x;U

1

; : : : ; U

k-1

; U

k

; i; j), queries each of the oraclesU
1

, : : : ,
U

k-1

, U
k

at most once. Hence,L
2

2 P01

k

00 andL 2 KP

�

1

k

; 2

�

.
Alternatively, since the quantifier9p

j ranges only over the setf1; 2; 3g, it can be elim-
inated:

x 2 L, 9

1

U

1

8

1

U

2

: : :8

1

U

k-1

9

2

U

k

8

p
i

�

1 � i �N+ 2

s(jxj)

!

(x;U

1

; U

2

; : : : ; U

k-1

; U

k

; i) 2 L

3

�

whereL
3

is defined asL
2

but the last line (?) has to be modified to

^

�

N < i!

3

_

j=1

(f

0

(x; i-N; j) 2 U

k

$ g

0

(x; i-N; j) = 1)

�

:

Obviously, a deterministic polynomial-time oracle machine can acceptL

3

in such a way
that on input(x;U

1

; U

2

; : : : ; U

k-1

; U

k

; i) the oraclesU
1

; U

2

; : : : ; U

k-1

are queried at
most once andU

k

at most three times. Hence,L
3

2 P01

k-1

20 andL 2 KP

�

1

k-1

2; 1

�

.
In the case thatk is even,�exp

k

� coKP

�

1

k

; 2

�

\ coKP

�

1

k-1

2; 1

�

can be proved in the
same way which yields the desired result by complementation. ❑

The following proposition shows which classes having an alternating sequence of ex-
istential and universal quantifiers of type 2 on the base of the classPSPACEcoincide with
a level of the exponential-time alternation hierarchy.

Proposition 3.12. For l � 1, letQ
l

=df 9 if l is odd andQ
l

=df 8 otherwise. Then, for
k � 1

9

2

8

2

9

2

: : :Q

2

k

PSPACE02
k

= �

exp
k

and 8

2

9

2

8

2

: : :Q

2

k

PSPACE02
k

= �

exp
k

Proof. We prove the first equality, the second follows by complementation. For the
inclusion928292 : : :Q2

k

PSPACE02
k

� �

exp
k

, the idea is to replace the relevant part of
an oracleU (only polynomially length-bounded words are asked) by the exponentially
length-bounded wordw

U

with w

U

(i) = 1 $ lex(i) 2 U. Hence, a language from
9

2

8

2

: : :Q

2

k

PSPACE02
k

can be accepted by an alternating exponential-time machine with
k - 1 alternations which starts with an existential state, i.e.9

2

8

2

: : :Q

2

k

PSPACE02
k

�

�

exp
k

. For the other direction, by Theorem 3.11 and Lemma 3.4 follows�

exp
k

� KP

�

2

k

; 1

�

which is included in928292 : : :Q2

k

PSPACE02
k

, since the last quantifier, which is a word
quantifier, can be easily simulated by aPSPACE-computation. ❑

The next theorem shows which classesKP(�) and coKP(�) are included in a level of
the exponential-time alternation hierarchy.

Theorem 3.13. For k;m � 1 the inclusions

KP

�

2

k

;m

�

[KP

�

2

k

1; 1

�

� �

exp
k

and coKP

�

2

k

;m

�

[coKP

�

2

k

1; 1

�

� �

exp
k

are valid.

28 3. The Analytic Polynomial-Time Hierarchy

Proof. We prove the first inclusion, the second follows by complementation. LetQ

k

=df

9 if k is odd andQ
k

=df 8 otherwise.

“KP

�

2

k

;m

�

� �

exp
k

”: The inclusionKP

�

2

k

;m

�

� 9

2

8

2

: : :Q

2

k

PSPACE02
k

is evident,
since the lastm quantifiers, which are word quantifiers, can be easily simulated by a
PSPACE-computation. Now, using Proposition 3.12 we get the desire result.

“KP

�

2

k

1; 1

�

� �

exp
k

”: Let k be even. The proof of918pP � PSPACE(Theorem 3.9)
remains valid if the machines have additionallyk oracles of type 2, i.e.918pP02

k

10

�

PSPACE02
k

, and hence9282 : : :82918pP � 9

2

8

2

: : :8

2PSPACE02
k

which is included
in �

exp
k

by Proposition 3.12. The case of oddk is treated analogously on the base of
8

1

9

pP� PSPACE. ❑

Combining the above results we can state a complete characterization of theclasses
of the analytic polynomial-time hierarchy having the formKP(�;m) or coKP(�;m) for
� 2 f1; 2g

� andm � 1.

Theorem 3.14. Letk � 0,m � 1 and�
1

; : : : ; �

k

2 f1; 2g. Then

KP(�1 : : : �k;m) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

p
m

if k = 0,

PSPACE if k = 1, �
k

= 1 andm = 1,

�

exp
k-1

if k � 2, �
k

= 1 andm = 1,

�

exp
k

if k � 1, �
k

= 2 andm = 1,

�

exp
k

if k � 1 andm � 2.

Proof. The first line is obvious [SM73, Sto77, Wra77]. The second line is valid by The-
orem 3.9, and the remaining lines by Lemma 3.4 and Theorems 3.11 and 3.13. ❑

3.4 Characterizing by Well-Known Complexity Classes
and an Algorithm

We start this section giving a complete characterization of all classesof the analytic pol-
ynomial-time hierarchy.

Theorem 3.15. Each class of the analytic polynomial-time hierarchyAPH coincides with
one of the classes�p

k

, �p
k

(k � 0), PSPACE, �exp
k

or �exp
k

(k � 1) and vice versa.

Proof. By Theorem 3.8, each class of the analytic polynomial-time hierarchy coincides
either withP or with a class in normal form. Thus, we need only to prove that for� 2

f1; 2g

� andm � 1, the classKP(�;m) coincides with one of the mentioned classes, since
coKP(�;m) can be treated by complementation andP = �

p
0

= �

p
0

. However, this is
exactly Theorem 3.14. ❑

Next, an algorithm which solves the problem investigated in this chapter is presented.
It summarizes the proofs of Theorems 3.15, 3.8 and 3.14.

3.5. Conclusions 29

Given: A classQPof the analytic polynomial-time hierarchy whereQ 2 �

�

p.
Question: With which well-known complexity classQPcoincides?

Algorithm:
If Q = " thenQP = P. Otherwise repeat the following steps until the formK =

KP(�1 : : : �k;m) or K = coKP(�1 : : : �k;m) for somek � 0, m � 1 and�
1

; : : : ; �

k

2

f1; 2g is established:

1. Eliminate all substrings9�9� and8�8� using the equivalence rules9�9� $P 9
� and

8

�

8

�

$P 8
� where� = p if � = � = p and� = minf�(9�) + �(9

�

) ; 2g otherwise
(Lemma 3.6).

2. Replace the rightmost quantifierO� with Op (Lemma 3.5).

3. For� 2 f1; 2g and� 2 fp; 1; 2g, eliminate all substrings9p
8

�

9

� and8p
9

�

8

� using
the equivalence rules9p

8

�

9

�

$P 8
�

9

� and8p
9

�

8

�

$P 9
�

8

� (Lemma 3.7).

Now get (Theorem 3.14)

KP(�1 : : : �k;m) =

8

>

>

>

<

>

>

>

:

�

p
m

if k = 0,

PSPACE if k = 1, �
k

= 1 andm = 1,

�

exp
k-1

if k � 2, �
k

= 1 andm = 1,

�

exp
k

otherwise.

3.5 Conclusions

In x3.4 we gave a complete characterization of all classes of the analytic polynomial-time
hierarchy. An algorithm was also presented which allows to find out the corresponding
well-known class in an easy way. These results tighten up Orponen’s [Orp83]characteri-
zation�exp

k

=

S

m�1

KP

�

2

k

;m

�

of k-th level of the exponential-time alternation hierarchy
by showing�exp

k

= KP

�

1

k-1

2; 1

�

= KP

�

1

k

; 2

�

.
The figure 3.2 give an overview on the results on classes9

1

K and92K whereK are
classes of the polynomial-time hierarchy.

Now, consider the equalities

9

2P= NP and 9

2coNP= NEXPTIME

It is known thatNP is properly included inNEXPTIME. Couldn’t we conclude from this
that P 6= NP? This is surely not true because the equations really mean9

2P02

= NP
and92coNP02

= NEXPTIME from which one can conclude onlyP02

6= NP02. This
inequality concerns classes whose languages have besides a word input also a set (oracle)
input. But it is known that there exist even single oracles for whichPandNPare unequal
[BGS75].

Finally, we emphasize that all the results on the analytic polynomial-time hierarchy
obtained here are valid in every relativized world.

30 3. The Analytic Polynomial-Time Hierarchy

PSPACE

NP

NEXPTIM
E

NP

NEXPTIM
E

9

1

�

p
2

9

1

�

p
2

9

1

�

p
3

9

1

�

p
3

9

1PH

9

2P

9

2NP 9

2coNP

9

2

�

p
2

9

2

�

p
2

9

2

�

p
3

9

2

�

p
3

9

2PH

9

1P

9

1coNP9

1NP

Figure 3.2: 91 and92 applied to classes of the polynomial-time hierarchy.

CHAPTER4

Bounding Queries in the Analytic
Polynomial-Time Hierarchy

“Wenn einer mit Vergn̈ugen in Reih und Glied zu einer Musik
marschieren kann, dann verachte ich schon; er hat sein großes Gehirn

nur aus Irrtum bekommen, da für ihn das R̈uckenmark schon völlig
gen̈ugen ẅurde. Diesen Schandfleck der Zivilisation sollte man so
schnell wie m̈oglich zum Verschwinden bringen. Heldentum auf

Kommando, sinnlose Gewalttat und die leidige Vaterländerei wie
glühend hasse ich sie, wie gemein und verächtlich erscheint mir der
Krieg; ich möchte mich lieber in Stücke schlagen lassen, als mich an

einem so elenden Tun beteiligen! Töten im Krieg ist nach meiner
Auffassung um nichts besser als gewöhnlicher Mord.”

A. Einstein

In this chapter, we investigate a hierarchy which refines the analytic polyno-
mial-time hierarchy (x3) by considering restrictions on the number of oracle
queries. This hierarchy is calledbounded analytic polynomial-time hierarchy.
We characterize classes this hierarchy by well-known complexity classes. All
these characterizations remain valid if the queries are asked in a nonadaptive
form, i.e. in “parallel”.

An overview this chapter follows: We first present our new computational
model comprising restrictions on the number of oracle queries and define
some complexity classes (x4.1). Then, we extend the definition of the9-8-
quantifiers to include also these restrictions, and define the bounded analytic
polynomial-time hierarchy (x4.2). Inclusion and equivalence rules are also
helpful (x4.3). It is shown (x4.4) that each class from this hierarchy having
a certain normal form coincides with one of the classesNP, coNP, PSPACE,
�

exp
k

or �exp
k

(k � 1). After that, remainder classes are considered and the
open cases are presented (x4.5). Finally, we make some comments about the
results (x4.6).

4.1 Computational Model and Complexity Classes

We will extend previous definitions to our new context, i.e. including restrictions on the
number of oracle queries. Limiting the number of queries that a machine can ask to

31

32 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

an oracle (input of type� 2 f1; 2g) during its computation by a functionr : N ! N

depending on the length of the word inputs, i.e. ifn is the length of the word inputs then
at mostr(n) queries can be asked to the oracle, we say that this is aninput of type�[r].

Let � =df f0; 1; 2g [f�[r] : � 2 f1; 2g ; r : N ! N

+

g be the set of input types. For
k � 1 and�

1

; : : : ; �

k

2 �, we say that a Turing machine is oftype�
1

: : : �

k

if it processes
instances of the form(X

1

; : : : ; X

k

), whereX
i

is an input of type�
i

for i = 1; : : : ; k. Such
a machine haskfi : �

i

= 0gk ordinary input tapes andk-kfi : �
i

= 0gk query tapes. Thus,
a machine of type�

1

: : : �

k

on input(X
1

; : : : ; X

k

), whosei-th input is of type�
i

= �[r]

with � 2 f1; 2g, can ask at mostr
�

P

j<i;�

j

=0

jX

j

j

�

queries to the oracleX
i

. Although we

consider new types of set inputs, for the length of the instances (as inx2.2.2) only the
word inputs remain relevant. Thelength of an instanceX = (X

1

; : : : ; X

k

), denotedjXj, is
defined byjXj =df

P

1�i�k;�

i

=0

jX

i

j, i.e. the sum of the length of the word inputs. In what
follows we also assume here thatX contains at least one word input.

Computation trees and accepting paths are defined as inx2.2.2. Letk � 1 and�
1

,
: : : ,�

k

2 �. For a Turing machineM of type�
1

: : : �

k

on input (X
1

; : : : ; X

k

) being
deterministic or nondeterministic (X

i

is an input of type�
i

), itscomputation tree, denoted
�

M

(X

1

; : : : ; X

k

), is a possibly infinite tree whose nodes are configurations, the root being
the initial configuration, and for any node�, its sons are those configurations which are
immediate successors of�. Obviously, forM being deterministic, its computation trees
are also paths. ForM being nondeterministic, without loss of generality we assume that
the trees are binary. Anaccepting pathof �

M

(X

1

; : : : ; X

k

) is a path in�
M

(X

1

; : : : ; X

k

)

which has the same root node and ends in an accepting configuration.

Fork � 1 and�
1

; : : : ; �

k

2 �, a Turing machineM of type�
1

: : : �

k

is calledpoly-
nomial-time(polynomial-space) if there exists a polynomialp such thatM halts on every
path of every instanceX = (X

1

; : : : ; X

k

) in an accepting or rejecting state using no more
thanp(jXj) steps (tape cells, respectively). The space bound applies also to the length of
oracle queries. For a Turing machineM of type�

1

: : : �

k

define

M is deterministic:

L(M) =df f(X1; : : : ; Xk) : �M(X

1

; : : : ; X

k

) is an accepting pathg

M is nondeterministic:

L(M) =df f(X1; : : : ; Xk) : �M(X

1

; : : : ; X

k

) contains an accepting pathg

as thelanguage accepted byM.

In limited nondeterminism we consider Turing machines which make a bounded num-
ber of nondeterministic steps [KF80, GLM96]. Fork � 1, �

1

; : : : ; �

k

2 � and a function
f : N ! N , a Turing machineM of type�

1

: : : �

k

is calledf-nondeterministicif M on
every path of every instanceX = (X

1

; : : : ; X

k

) makes at mostf(jXj) =df f
�

P

�

i

=0

jX

i

j

�

4.2. Bounding Queries in Set Quantifiers and a New Hierarchy 33

nondeterministic steps. Now, fork � 1 and�
1

; : : : ; �

k

2 � define

P�

1

:::�

k

=df fL(M) : M is a polynomial-time deterministic
Turing machine of type�

1

: : : �

k

g

(f)-P�

1

:::�

k

=df fL(M) : M is a polynomial-timef-nondeterministic
Turing machine of type�

1

: : : �

k

g

PSPACE�1:::�k =df fL(M) : M is a polynomial-space deterministic
Turing machine of type�

1

: : : �

k

g

which are calledclasses of type�
1

: : : �

k

. Obviously,L 2 (f)-P�

1

:::�

k if and only if there
exist anL 0

2 P�

1

:::�

k

0 and a polynomialp such that

X 2 L() 9u (juj = min ff(jXj) ; p(jXj)g ^ (X; u) 2 L

0

)

Finally, we define(f)-P=df (f)-P0.

4.2 Bounding Queries in Set Quantifiers and a New Hi-
erarchy

The analytic polynomial-time hierarchy (x3) was defined using9-8-quantifiers varying
over words and oracles of type 1 and 2. We will refine this hierarchy (x4.2.2) considering
also9-8-quantifiers varying over oracles of type 1[r] and 2[r] (x4.2.1).

4.2.1 Bounding Queries in Existential and Universal Set Quantifiers

We will investigate an9-8-hierarchy overP using word quantifiers as well as set quanti-
fiers varying over oracles of type� for � 2 f1; 2g [f�[r] : � 2 f1; 2g ; r : N ! N

+

g. The
previous definitions of the existential and universal quantifiers (x3.1.1) comprised only
quantifiers varying over words and oracles of types 1 and 2. Thus, we will extend these
definitions to include also quantifiers varying over oracles of type 1[r] and 2[r]. The
classesP�

1

:::�

k with �

1

; : : : ; �

k

2 � are the starting point for building up this new hi-
erarchy. Next, we define inductively new classes and in parallel the quantifiers. The
definitions of the word quantifiers and set quantifiers of type 1 and 2 in our new context
are similar to the previous definitions, only the type of the class in question can change.
However, for convenience they are also included. Letk � 1 and�

1

; : : : ; �

k

; � 2 �. If K
is a class of type�

1

: : : �

k

� then

For� = 0: 9p
K and8p

K are classes of type�
1

: : : �

k

which are defined as follows

L 2 9

p
K()df there exist anL 0

2 K and a polynomialp, such that

(X

1

; : : : ; X

k

) 2 L ! 9x

�

jxj � p

�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; x) 2 L

0

�

34 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

L 2 8

p
K()df there exist anL 0

2 K and a polynomialp, such that

(X

1

; : : : ; X

k

) 2 L ! 8x

�

jxj � p

�

X

�

i

=0

i�k

jX

i

j

�

! (X

1

; : : : ; X

k

; x) 2 L

0

�

(Using simple encoding arguments it is easy to see that one can use equivalently“=”
instead of “�” in these definitions.)

For� 6= 0: 9�K and8�K are classes of type�
1

: : : �

k

which are defined as follows

L 2 9

�

K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L ! 9X ((X

1

; : : : ; X

k

; X) 2 L

0

)

L 2 8

�

K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L ! 8X ((X

1

; : : : ; X

k

; X) 2 L

0

)

To make clear which type of input is used, we also write9

�

X instead of9X, and8�X
instead of8X. Furthermore, in what follows we also write9�[r] instead of9�[r], and8�[r]
instead of8�[r].

Now, we translate some abbreviations and definitions fromx3.1.1 to our new context.
ForQ = 9 (Q = 8), the set of existential (universal, respectively) quantifiers is denoted
by �

[p;Q]

=df fQ
�

: � 2 �g and the set of existential and universal quantifiers by�

[p] =df

�

[p;9] [�[p;8]. Fork � 0, Q
1

; : : : ; Q

k

2 f9; 8g and�
1

; : : : ; �

k

2 �, let �(Q�

1

1

: : :Q

�

k

k

) =df

�

1

: : : �

k

be the type of the operator (or quantifier) stringQ�

1

1

: : :Q

�

k

k

, where�
i

= 0 if
�

i

= p and�
i

= �

i

otherwise (i = 1; : : : ; k). ForQ = Q

�

1

1

: : :Q

�

k

k

andX = (X

1

; : : : ; X

k

)

we writeQX instead ofQ�

1

1

X

1

: : :Q

�

k

k

X

k

. Furthermore, we defineQ =df Q
�

1

1

: : :Q

�

k

k

.
The following proposition is evident.

Proposition 4.1. Let� 2 �

� andQ 2 �

�

[p]. ThencoQP��(Q)

= QP��(Q).

Proof. See proof of Proposition 3.1. ❑

4.2.2 The Bounded Analytic Polynomial-Time Hierarchy and a Nor-
mal Form

As for the analytic polynomial-time hierarchy, we are here particularly interested in the
classes of type 0, i.e. in “ordinary” classes of languages. In this case, we will also omit the
superscripts toP, i.e. for quantifier stringQ 2 �

�

[p] we defineQP =df QP0�(Q). Next, the
bounded analytic polynomial-time hierarchy is defined. For quantifier stringsQ 2 �

�

[p],
the classesQP are called the classes of thebounded analytic polynomial-time hierarchy.
Because of

QprefQ
�[r]

QsufP� QprefQ
�

QsufP

4.3. Inclusion and Equivalence Rules 35

whereQpref; Qsuf 2 �

�

[p], Q 2 f9; 8g, � 2 f1; 2g andr : N ! N

+

, the union of all classes
of the bounded analytic polynomial-time hierarchy is alsoAPH. On the other hand, forr
being so large that is not a real restriction we obtain an equality in above inclusion

QprefQ
�[r]

QsufP= QprefQ
�

QsufP

Hence, forQ� is equivalent to takeQ�[r] with r being so large that it is not a real restriction
and vice versa.

For the analytic polynomial-time hierarchy (x3.2.2) we define the normal form classes
KP(�;m) with � 2 f1; 2g

� andm � 0. Obviously, these classes are also classes of the
bounded analytic polynomial-time hierarchy. Next, we extend this definition to comprise
also quantifiers of type1[r] and2[r]. For l � 1, let Q

l

=df 9 if l is odd andQ
l

=df 8

otherwise. Fork;m � 0 and�
1

; �

2

; �

3

; : : : ; �

k

2 � n f0g we define

KP(�1�2�3 : : : �k;m) =df 9
�

1

8

�

2

9

�

3

: : :Q

�

k

k

Q

p
k+1

Q

p
k+2

: : :Q

p
k+m

P

4.3 Inclusion and Equivalence Rules

Inclusion and equivalence rules will be helpful to relate classes of the bounded analytic
polynomial-time hierarchy. These rules will be applied in a similar sense as for “!P” and
“$P”. For R; S 2 �

�

[p], theinclusion ruleR!
[P]

S is valid if the replacement of the quan-
tifier stringR by the stringS in any context does not diminish the class in question, i.e.
RQP��(R)�(Q)

� SQP��(S)�(Q) for all Q 2 �

�

[p] and� 2 �

�. We say that theequivalence
rule R $

[P]

S is valid if the replacement of the quantifier stringR by the stringS in any
context does not change the class in question, i.e.RQP��(R)�(Q)

= SQP��(S)�(Q) for all
Q 2 �

�

[p] and� 2 �

�. Obviously, we haveR$
[P] S if and only ifR!

[P]

S andS!
[P]

R.

For a ruleR!
[P] S, we will also have to prove “its complement”R!

[P] S. However,
as for classes of the analytic polynomial-time hierarchy, the following proposition shows
that only one of them has to be proved.

Proposition 4.2 (Complementation).LetR; S 2 �

�

[p]. If R!
[P] S thenR!

[P]

S.

Proof. The proof is the same as for Proposition 3.3. LetQ 2 �

�

[p] and� 2 �

�. Then

L 2 RQP��(R)�(Q)

=) L 2 coRQP��(R)�(Q)

=) L 2 RQP��(R)�(Q) by Proposition 4.1

=) L 2 SQP��(S)�(Q) by R!
[P] S

=) L 2 coSQP��(S)�(Q) by Proposition 4.1

=) L 2 SQP��(S)�(Q) ❑

In 3.2.1, some rules were proved to relate classes of the analytic polynomial-time
hierarchy. In our new context we add as necessary the terms[r]. Some of the rules
(Lemma 3.4) show relations between the existential (universal, respectively) quantifiers
of different types. They can be restated as follows.

36 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

Lemma 4.3. Let� 2 f1; 2g andr : N ! N . Then

(1) "!
[P]

9

p and "!

[P]

8

p;

(2) "$
[P]

9

�

[0] and "$

[P]

8

�

[0];

(3) 9p
!

[P]

9

� and 8

p
!

[P] 8
�;

(4) 91[r]!
[P]

9

2

[r] and 8

1

[r]!

[P] 8
2

[r].

Proof. The proof of Statement (2) is evident, since no queries are allowed to the oracle.
For the other statements, the proof follows as in Lemma 3.4. ❑

We next restate some rules (Lemma 3.6) showing how to melt neighboured existential
(universal, respectively) quantifiers.

Lemma 4.4. Let� 2 f1; 2g andr; r 0 : N ! N . Then

(1) 9p
9

p
$

[P]

9

p and 8

p
8

p
$

[P] 8
p;

(2) 9p
9

�

[r]!

[P]

9

� and 8

p
8

�

[r]!

[P] 8
�;

(3) 9�[r]9p
!

[P] 9
� and 8

�

[r]8

p
!

[P]

8

�;

(4) 92[r]92[r 0]!
[P] 9

2

[r+ r

0

] and 8

2

[r]8

2

[r

0

]!

[P] 8
2

[r+ r

0

].

Proof. The proof follows as in Lemma 3.6. Note that the proof for� = 2 is the same as
for � = 1. ❑

Some rules show how to reduce the type 2 of a set quantifier, for example the rule
9

2

!P 9

1

9

1

8

p stated in the proof of Lemma 3.6. Following the proof of this rule we
obtain92[r] !

[P] 9
1

[1]9

1

[r+ 1]8

p in our new context. However, in this proof we can
make some refinements and obtain a similar rule requiring less queries in thesecond set
quantifier. This is shown in the following lemma.

Lemma 4.5. Let r : N ! N
+

. Then

(1) 92[r]!
[P]

9

1

[1]9

1

[r- 1]8

p and 8

2

[r]!

[P] 8
1

[1]8

1

[r- 1]9

p;

(2) 92[r]!
[P]

9

1

[r- 1] 9

1

[1]8

p and 8

2

[r]!

[P] 8
1

[r- 1]8

1

[1]9

p.

Proof. We prove the first rule of every statement, since the other follow by complemen-
tation. Because of obvious rule91[1]91[r- 1] !

[P] 9
1

[r- 1]9

1

[1], it suffices to prove
9

2

[r] !

[P] 9
1

[1]9

1

[r- 1]8

p. For r = 1 is evident. Forr � 2 let � 2 �

� andQ 2 �

�

[p],

and letL 2 9

2

[r]QP�2[r]�(Q). There exists anL
1

2 P�2[r]�(Q) such that for a suitable
polynomialp

4.4. Characterizing the ClassesKP(�) andcoKP(�) 37

X 2 L()9

2

UQY ((X;U; Y) 2 L

1

)

()9

2

U 9

1

W

�

8

p
u 8

p
v

�

juj ; jvj � p(jXj)! (u 2 U$ v01

b

u 2W)

�

^QY

�

(X;U; Y) 2 L(M)

�

�

�

takeW = fv01

b

u : u; v 2 f0; 1g

�

^ u 2 Ug for example, and letM
be a polynomial-time machine of type�2[r] �(Q) acceptingL

1

�

()9

1

U 9

1

W8

p
a 8

p
u 8

p
vQY

�

juj ; jvj � p(jXj)!

�

(a = 0! (u 2 U$ v01

b

u 2W))^

(a = 1! (X;U;W;Y) 2 L(M

0

))

��

�

M

0 works on input(X;U;W; Y) asM on input(X;U; Y) but it only
asks the first query toU like M does. Instead of askingu toU after
queriesu

1

; : : : ; u

m

(m � 1) it asks01bu
1

01

b

u

2

01 : : : 01

b

u

m

01

b

u toW.
Note that for every(X; a; u; v; Y), oracleU is asked exactly once and
oracleW is asked at mostr- 1 times in a type 1 manner.

�

This showsL 2 9

1

[1]9

1

[r- 1]8

p
8

p
8

p
QP�1[1]1[r-1]000�(Q) and using the rules of Lemma

4.4,L 2 9

1

[1]9

1

[r- 1]8

p
QP�1[1]1[r-1]0�(Q). ❑

Rules stated in the proof of Lemma 3.7 show how to shift existential and universal
word quantifiers. They can be restated as follows.

Lemma 4.6. Let� 2 f1; 2g andr : N ! N . Then

9

p
8

�

[r]!

[P] 8
�

[r] 9

p and 8

p
9

�

[r]!

[P]

9

�

[r]8

p

Proof. The proof follows as in Lemma 3.7. ❑

Finally, we show an “equivalence rule” which is valid only in a special context. It says
that set quantifiers applied toP are not more powerful than word quantifiers.

Lemma 4.7. Let� 2 �

�. Then

9

pP�0

= 9

1P�1

= 9

2P�2 and 8

pP�0

= 8

1P�1

= 8

2P�2

Proof. The proof follows as in Lemma 3.5. ❑

4.4 Characterizing the ClassesKP(�) and coKP(�)

We will characterize all the classes of the bounded analytic polynomial-time hierarchy
which have the formKP(�1 : : : �k;m) or coKP(�1 : : : �k;m), wherek � 0, m � 1 and
�

1

; : : : ; �

k

2 f1; 2g [f�[r] : � 2 f1; 2g ; r : N ! N

+

g. It is well-known that such a class

38 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

built without set quantifiers coincides with a class of the (arithmetic) polynomial-time
hierarchy and vice versa, i.e.KP(";m) = �

p
m

and coKP(";m) = �

p
m

for m � 0 [SM73,
Sto77, Wra77]. Thus, the interesting cases are those involving set quantifiers. It will turn
out that each of these classes in normal form involving set quantifiers coincideswith one
of the classesNP, coNP, PSPACE, �exp

k

or �exp
k

(k � 1) and vice versa. In what follows
we will state and prove only the results forKP(�). The results for coKP(�) are immediate
consequences.

The Table 4.1 includes the corresponding results for the classesKP(�1 : : : �k;m),
wherek;m � 1 and�

1

; : : : ; �

k

2 f�[r] : � 2 f1; 2g ; r : N ! N

+

g, i.e. for the cases where
there is a restriction to the number of queries for every set quantifier.

m = 1 r

k

= 1 k = 1 KP(�1[1] ; 1) = coNP 4.10, 4.11
k = 2 KP(�1[r1]�2[1] ; 1) = NP 4.13
k = 3 KP(�1[1]�2[r2]�3[1] ; 1) = PSPACE 4.13

KP(�1[r1]�2[r2]�3[1] ; 1) = NEXPTIME (r

1

� 2) 4.13
k � 4 KP(�1[r1] : : : �k-1[rk-1]�k[1] ; 1) = �

exp
k-3

(r

k-2

= 1) 4.13
KP(�1[r1] : : : �k-1[rk-1]�k[1] ; 1) = �

exp
k-2

(r

k-2

� 2) 4.13
r

k

= 2 k = 1 KP(�1[2] ; 1) = PSPACE 4.10, 4.11
k � 2 KP(�1[r1] : : : �k-1[rk-1]�k[2] ; 1) = �

exp
k-1

4.12
r

k

� 3 k = 1 KP(1[r1] ; 1) = PSPACE 4.10
KP(2[r1] ; 1) = NEXPTIME 4.11

k � 2 KP(�1[r1] : : : �k-1[rk-1] 1[rk] ; 1) = �

exp
k-1

4.12
KP(�1[r1] : : : �k-1[rk-1] 2[rk] ; 1) = �

exp
k

4.12
m � 2 r

k

� 1 k � 1 KP(�1[r1] : : : �k[rk] ;m) = �

exp
k

4.9

Table 4.1: Characterization of the classesKP(�1[r1] : : : �k[rk] ;m) with �

i

2 f1; 2g and
r

i

: N ! N

+

. The last column refers to the Theorem(s) which states the corresponding
result.

Obviously, we have in all cases stated in the Table 4.1

KP(�1 : : : �i-1�i[ri] �i+1 : : : �k;m) = KP(�1 : : : �i-1�i[3] �i+1 : : : �k;m)

for �
i

= 1; 2, r
i

� 3 and�
1

; : : : ; �

i-1

; �

i+1

: : : ; �

k

2 f�[r] : � 2 f1; 2g ; r : N ! N

+

g.
Choosingr

i

so large that it is not a real restriction we have also

KP(�1 : : : �i-1�i�i+1 : : : �k;m) = KP(�1 : : : �i-1�i[3] �i+1 : : : �k;m)

Iterating this step we obtain results for allKP(�1 : : : �k;m), wherek;m � 1 and�
1

,
: : : ,�

k

2 f1; 2g [f�[r] : � 2 f1; 2g ; r : N ! N

+

g.
Hence, proving the results of the Table 4.1 we obtain the desire characterizations

(x4.4.1). In addition it is shown that all these characterizations remain valid if the oracle
machines are allowed to make only parallel queries (x4.4.2), i.e. they have to form a list
of all queries before any of them is queried to the oracle.

4.4.1 Characterizing the ClassesKP(�1

[r

1

] : : : �

k

[r

k

] ;m)

Next, the classes having the formKP(�1[r1] : : : �k[rk] ;m) are characterized by well-
known complexity classes fork;m � 1, �

1

; : : : ; �

k

2 f1; 2g andr
1

; : : : ; r

k

: N ! N

+

4.4. Characterizing the ClassesKP(�) andcoKP(�) 39

(the results for coKP(�1[r1] : : : �k[rk] ;m) are immediate consequences). We start with
translating a result fromx3.3 in the language of the bounded analytic polynomial-time
hierarchy. Theorem 3.11 states which classes of the analytic polynomial-time hierarchy
contain a level of the exponential-time alternation hierarchy. In the proof of this result
some remarks on the number of queries to the oracles were made. This can be restated as
follows:

Theorem 4.8. For k � 1 the inclusions

�

exp
k

� KP

�

(1[1])

k

; 2

�

\ KP

�

(1[1])

k-1

2[3] ; 1

�

are valid.

Proof. The proof follows as in Theorem 3.11. ❑

Using previous theorem and a results obtained for the classes of the analytic polyno-
mial-time hierarchy, we obtain that each class containing at least one set quantifier and
at least two word quantifiers coincides with one class of the exponential-time alternation
hierarchy.

Theorem 4.9. Letk � 1, m � 2, �
1

; : : : ; �

k

2 f1; 2g andr
1

; : : : ; r

k

: N ! N

+

. Then

KP(�1[r1] : : : �k[rk] ;m) = �

exp
k

Proof. Direct from Theorems 4.8 and 3.13. ❑

Thus, remains to consider the classesKP(�1[r1] : : : �k[rk] ; 1) with k � 1. The sim-
plest classes of these types are those containing only one set quantifier of type 1 which
turn out to coincide with coNPor PSPACE.

Theorem 4.10. Let r : N ! N . Then

(1) KP(1[1] ; 1) = coNP;

(2) KP(1[r] ; 1) = PSPACEfor r � 2.

Proof. Statement (1): The proof of coNP = 8

pP � 9

1

[1]8

pP = KP(1[1] ; 1) is evident
(Lemma 4.3). Next we prove91[1]8pP � 8

pP. Let L 2 9

1

[1]8

pP. By definition there
exist anL

1

2 P01[1]0 and a polynomialp such that

x 2 L() 9

1

U 8

p
v (jvj = p(jxj)! (x;U; v) 2 L

1

)

whereM is a polynomial-time machine of type01[1] 0 acceptingL
1

is such a way that the
oracleU is queried only once. Letf be a function computable in polynomial-time such
that the machineM on input(x;U; v) queriesf(x; v) to oracleU. Thus, there exist an
L

2

2 P000 and a polynomialq such that

x 2 L() 9

1

U 8

p
v (jvj = p(jxj)! (x; v; c

U

(f(x; v))) 2 L

2

)

() 8

p
u 8

p
v 8

p
w

�

juj � q(jxj)^ jvj = jwj = p(jxj)!

�

(f(x; v) = u! (x; v; 1) 2 L

2

)_ (f(x;w) = u! (x;w; 0) 2 L

2

)

��

40 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

Therefore,L 2 8

p
8

p
8

pP. Now, using Lemma 4.4 we get the desired result.

Statement (2): The inclusion91[2]8pP� 9

1

8

pP is evident and918pP= PSPACEfollows
by Theorem 3.9. Thus, onlyPSPACE� 9

1

[2]8

pP has to be proved. We use Cai and
Furst’s characterization ofPSPACE[CF91]. LetA

5

be the group of even permutations
on [5] =df f0; : : : ; 4g, and let� be the multiplication of this group. Cai and Furst proved
that for every languageL 2 PSPACEthere exist a functionf : f0; 1g

�

� f0; 1g

�

! A

5

computable in polynomial-time and a polynomialp such that

x 2 L() f(x; 1

p(jxj)

) � f(x; 1

p(jxj)-1

0) � : : : � f(x; 0

p(jxj)

)(1) = 1

Consequently,

x 2 L() 9g

�

(g : f0; 1g

�

! [5])^ 8u

�

juj = p(jxj)!

�

�

u = 0

p(jxj)

! f (x; u) (1) = g (u)

�

^

�

u 62

�

0

p(jxj)

; 1

p(jxj)

	

! f (x; u) (g(

 -

u)) = g (u)

�

^

�

u = 1

p(jxj)

! f (x; u) (g(

 -

u)) = 1

�

���

() 9

2

U 8

p
u 8

p
i 8

p
j

�

juj = p(jxj)^ 0 � i; j � 4!

�

�

u = 0

p(jxj)

! (f (x; u) (1) = i$ u0

i

2 U)

�

^

�

u 62

�

0

p(jxj)

; 1

p(jxj)

	

^

 -

u0

i

2 U! (f (x; u) (i) = j$ u0

j

2 U)

�

^

�

u = 1

p(jxj)

^

 -

u0

i

2 U! f (x; u) (i) = 1

�

��

However, for each(x;U; u; i; j) such thatu 62

�

0

p(jxj)

; 1

p(jxj)

	

the two queries
 -

u0

i

andu0j are asked toU which is not a type 1 querying. To overcome this difficulty we
encode the words from

�

f0; 1g

p(jxj)

n

�

1

p(jxj)

	�

� f0g

�4 by an injective function� which

has the property that, for everyu 62
�

0

p(jxj)

; 1

p(jxj)

	

and0 � i; j � 4, either�(
 -

u; 0

i

) is an
initial word of �(u; 0j) or vice versa (take for example the function� of Figure 4.1 with

n = p(jxj) andl = 4). Now instead of querying
 -

u0

i andu0j toU the queries�(
 -

u; 0

i

)

and�(u; 0j) are made to the oracleV =df

�

�(u; 0

i

) : 0 � i � 4^ u0

i

2 U

	

in a type 1
manner. Therefore,

x 2 L() 9

1

V 8

p
u 8

p
i 8

p
j

�

(juj = p(jxj)^ 0 � i; j � 4)! (x; V; u; i; j) 2 L

1

�

where(x; V; u; i; j) 2 L

1

()df
�

u = 0

p(jxj)

! (f (x; u) (1) = i$ �(u; 0

i

) 2 V)

�

^

�

u 62

�

0

p(jxj)

; 1

p(jxj)

	

^ �(

 -

u; 0

i

) 2 V! (f (x; u) (i) = j$ �(u; 0

j

) 2 V)

�

^

�

u = 1

p(jxj)

^ �(

 -

u; 0

i

) 2 V! f (x; u) (i) = 1

�

4.4. Characterizing the ClassesKP(�) andcoKP(�) 41

Obviously,L
1

can be accepted by a deterministic polynomial-time oracle Turing machine
which, on input(x; V; u; i; j), queries the oracleV in type 1 manner and at most two
times. Hence,L

1

2 P01[2]000 andL 2 9

1

[2]8

p
8

p
8

pP. Now, using Lemma 4.4 we conclude
L 2 9

1

[2]8

pP. ❑

u �(u; 0

i

)

0000 �! 0

400400400i

0001 �! 0

400400i

0010 �! 0

400400410i

0011 �! 0

400i

0100 �! 0

400410400i

0101 �! 0

400410i

0110 �! 0

400410410i

0111 �! 0

i

1000 �! 0

410400400i

1001 �! 0

410400i

1010 �! 0

410400410i

1011 �! 0

410i

1100 �! 0

410410400i

1101 �! 0

410410i

1110 �! 0

410410410i

Start

001 010 011 100 101 110

00

0 1

"

000 111

1101 10

Figure 4.1: Encoding function� : (f0; 1g

n

n f1

n

g) � f0g

�l

! f0; 1g

� defined by
�(a

1

: : : a

m

01

n-m-1

; 0

i

) =df 0
l

a

1

0

l

a

2

: : : 0

l

a

m

0

i, where0 � m < n anda
1

; : : : ; a

m

2

f0; 1g. The table shows an example forn = l = 4 with thea
i

’s being represented in
boldface. The tree gives the corresponding encodings words removing the substrings0

4

and the0i whose order is represented by the doted line. The substrings0

l were introduced
in the function� due to the parameter0i.

The next result shows that forKP(�[r] ; 1) a single type 2 quantifier is probably more
powerful than a type 1 quantifier when more than two queries are allowed.

Theorem 4.11. Let r : N ! N . Then

(1) KP(2[1] ; 1) = coNP;

(2) KP(2[2] ; 1) = PSPACE;

(3) KP(2[r] ; 1) = NEXPTIME for r � 3.

Proof. The first statement follows by Theorem 4.10 and the last statement follows by
Theorems 4.8 and 3.13. Next we prove the second statement. By Theorem 4.10 and
Lemma 4.3 followsPSPACE� KP(1[2] ; 1) � KP(2[2] ; 1). Thus, it remains to prove
KP(2[2] ; 1) � PSPACE. Fora 2 f0; 1g let a1 =df a anda0 =df 1 - a, and for a setU
let U1

=df U andU0

=df U. ForL 2 9

2

[2]8

pP there exist polynomial-time computable

42 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

functionsf; g
1

; g

2

and polynomialp such thatf is a 0-1-function (g
i

� thei-th query to
oracle) and

x 2 L() 9U 8u

�

juj = p(jxj)!

_

a;b2f0;1g

f(x;u;a;b)=1

(g

1

(x; u) 2 U

a

^ g

2

(x; u; a) 2 U

b

)

�

() the boolean formula
V

juj=p(jxj)

W

a;b2f0;1g

f(x;u;a;b)=1

(z

a

g

1

(x;u)

^ z

b

g

2

(x;u;a)

) with the

variablesz
0

; : : : ; z

2

q(jxj

is satisfiable (q suitable polynomial)

A simple computation shows that the formula
W

a;b2f0;1g

f(x;u;a;b)=1

(z

a

g

1

(x;u)

^z

b

g

2

(x;u;a)

) is equivalent

to a conjunction of clauses with at most two literals each, though the formula has three
variables. (An easier way to see that is to use Lemma 4.14 which shows that we can
without loss of generality assume that the queries are made in parallel. In this case the
formula has two variables at all and hence its conjunctive normal form has only clauses
with at most two literals.)

Hence,L can be m-reduced to the 2-SAT problem using polynomial space. Because
2-SAT2 NL (see [Pap94, p. 185]) we obtainL 2 PSPACE. ❑

Thus, we have characterized the classes of the bounded analytic polynomial-time hier-
archy having the formKP(�[r] ; 1). To reach our goal in this section it remains to consider
the classes containing at least two set quantifiers followed by one word quantifier. This
will be done in two steps. First we consider the classes where the last set quantifier is not
restricted to one query.

Theorem 4.12. Letk � 1, �
1

; : : : ; �

k

; � 2 f1; 2g andr
1

; : : : ; r

k

; r : N ! N

+

. Then

(1) KP(�1[r1] : : : �k[rk]�[2] ; 1) = �

exp
k

;

(2) KP(�1[r1] : : : �k[rk] 1[r] ; 1) = �

exp
k

for r � 3;

(3) KP(�1[r1] : : : �k[rk] 2[r] ; 1) = �

exp
k+1

for r � 3.

Proof. The last statement follows by Theorems 4.8 and 3.13. For the second statement,
we conclude

KP(�1[r1] : : : �k[rk] 1[r] ; 1) � KP

�

2

k

1; 1

�

� �

exp
k

by Theorem 3.13

� KP(�1[r1] : : : �k[rk] 1[2] ; 1) by Statement (1)

� KP(�1[r1] : : : �k[rk] 1[r] ; 1)

Now, we prove the first statement. It is enough to showKP

�

2

k

2[2] ; 1

�

� �

exp
k

and
�

exp
k

� KP

�

(1[1])

k

1[2] ; 1

�

.

“KP

�

2

k

2[2] ; 1

�

� �

exp
k

”: Let k be even. Note that the proof ofKP(2[2] ; 1) � PSPACE
(Theorem 4.11) remains valid if the machines have additionallyk oracles of type 2, i.e.
9

2

[2]8

pP02

k

2[2]0

� PSPACE02
k

. Hence9282 : : :8292[2]8pP � 9

2

8

2

: : :8

2PSPACE02
k

4.4. Characterizing the ClassesKP(�) andcoKP(�) 43

which is included in�exp
k

by Proposition 3.12. The case of oddk is treated analogously
on the base of coKP(2[2] ; 1) � PSPACE.

“�exp
k

� KP

�

(1[1])

k

1[2] ; 1

�

”: By Theorem 4.8 we obtain�exp
k

� KP

�

(1[1])

k

; 2

�

. Hence,
it is easy to see that we have to prove only9p

8

pP0(1[1])

k

00

� 9

1

[2]8

pP0(1[1])

k

1[2]0. For a
languageL 2 9

p
8

pP0(1[1])

k

00 there exist anL
1

2 P0(1[1])

k

00 and polynomialsq andr such
that

X 2 L() 9

p
u 8

p
w (juj = q(jXj)^ (jwj = r(jXj)! (X; u;w) 2 L

1

))

Fora 2 f0; 1; 2g, u 2 f0; 1g

q(jXj) andw 2 f0; 1g

r(jXj) define the functionf as follows

f(X; uw)(a) =df

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 if a = 1,

2 if a = 0 andw = 0

r(jXj) and(X; u;w) 2 L

1

,

2 if a = 2 andw 6= 1

r(jXj) and(X; u;w) 2 L

1

,

1 if a = 2 andw = 1

r(jXj) and(X; u;w) 2 L

1

,

0 otherwise.

Obviously,f is computable in polynomial-time and

X 2 L() f(X; 1

p(jXj)

) � f(X; 1

p(jXj)-1

0) � : : : � f(X; 0

p(jXj)

)(0) = 1

wherep(jXj) =df q(jXj) + r(jXj) and� is the traditional composition of functions. Now,
the inclusion9p

8

pP0(1[1])

k

00

� 9

1

[2]8

pP0(1[1])

k

1[2]0 follows as the inclusionPSPACE�
9

1

[2]8

pPproved in Theorem 4.10.

X 2 L()9g

�

(g : f0; 1g

�

! f0; 1; 2g)^ 8u

�

juj = p(jXj)!

�

�

u = 0

p(jXj)

! f (X; u) (0) = g (u)

�

^

�

u 62

�

0

p(jXj)

; 1

p(jXj)

	

! f (X; u) (g(

 -

u)) = g (u)

�

^

�

u = 1

p(jXj)

! f (X; u) (g(

 -

u)) = 1

�

���

()9

2

U 8

p
u 8

p
i 8

p
j

�

juj = p(jXj)^ 0 � i; j � 2!

�

�

u = 0

p(jXj)

! (f (X; u) (0) = i$ u0

i

2 U)

�

^

�

u 62

�

0

p(jXj)

; 1

p(jXj)

	

^

 -

u0

i

2 U! (f (X; u) (i) = j$ u0

j

2 U)

�

^

�

u = 1

p(jXj)

^

 -

u0

i

2 U! f (X; u) (i) = 1

�

��

However, for each(X;U; u; i; j) such thatu 62 f0

p(jXj)

; 1

p(jXj)

g the two queries
 -

u0

i

andu0j are asked toU which is not a type 1 querying. To overcome this difficulty we

44 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

encode the words from(f0; 1gp(jXj)

n f1

p(jXj)

g) � f0g

�2 by an injective function� which

has the property that, for everyu 62 f0

p(jXj)

; 1

p(jXj)

g and0 � i; j � 2, either�(
 -

u; 0

i

) is an
initial word of �(u; 0j) or vice versa (take for example the function� of Figure 4.1 with

n = p(jXj) andl = 2). Now instead of querying
 -

u0

i andu0j toU the queries�(
 -

u; 0

i

)

and�(u; 0j) are made to the oracleV =df

�

�(u; 0

i

) : 0 � i � 2^ u0

i

2 U

	

in a type 1
manner. Therefore,

X 2 L() 9

1

V8

p
u 8

p
i 8

p
j

�

(juj = p(jXj)^ 0 � i; j � 2)! (X;V;u; i; j) 2 L

1

�

where(X;V;u; i; j) 2 L

1

()df

�

u = 0

p(jXj)

! (f (X; u) (0) = i$ �(u; 0

i

) 2 V)

�

^

�

u 62

�

0

p(jXj)

; 1

p(jXj)

	

^ �(

 -

u; 0

i

) 2 V! (f (X; u) (i) = j$ �(u; 0

j

) 2 V)

�

^

�

u = 1

p(jXj)

^ �(

 -

u; 0

i

) 2 V! f (X; u) (i) = 1

�

Obviously,L
1

can be accepted by a deterministic polynomial-time oracle Turing machine
which, on input(X;V;u; i; j), queries the oracleV in type 1 manner and at most two
times. Hence,L

1

2 P0(1[1])

k

1[2]000 andL 2 9

1

[2]8

p
8

p
8

pP0(1[1])

k

1[2]000. Now, using Lemma
4.4 we concludeL 2 9

1

[2] 8

pP0(1[1])

k

1[2]0. ❑

Now we consider the case at least two set quantifiers where the last one is restricted
to one query.

Theorem 4.13. Let�
1

; : : : ; �

k

; �; � 2 f1; 2g andr
1

; : : : ; r

k

; r : N ! N

+

. Then

(1) KP(�[r] �[1] ; 1) = NP;

(2) KP(�1[1]�[r] �[1] ; 1) = PSPACE;

(3) KP(�1[r1] : : : �k-1[rk-1]�k[1]�[r] �[1] ; 1) = �

exp
k-1

for k � 2;

(4) KP(�1[r1] : : : �k[rk]�[r] �[1] ; 1) = �

exp
k

for k � 1 andr
k

� 2.

Proof. For l � 1, let Q
l

=df 9 if l is odd andQ
l

=df 8 otherwise. In the proof of
9

�

[1]8

pP� 8

pP (Theorems 4.10 and 4.11) we need to simulate only two times the orig-
inal machine for each worduvw. Therefore, if the machines have additional oracles, the
number of queries to each one of these additional oracles is doubled and the type 1 prop-
erty cannot be guaranteed. Thus, fork � 0 (if k is even, take the base8�[1]9pP� 9

pP)

9

�

1

[r

1

] : : :Q

�

k

k

[r

k

]Q

�

k+1

[r]Q

�

k+2

[1]Q

p
k+3

P� 9

2

[2r

1

] : : :Q

2

k

[2r

k

]Q

2

k+1

[2r]Q

p
k+3

P

� 9

2

[2r

1

] : : :Q

2

k

[2r

k

]Q

p
k+1

P
(4.1)

sinceQ
k+1

= Q

k+3

and by Lemmas 4.4 and 4.7 we can melt these last 2 quantifiers to
one word quantifier. Hence we conclude

4.4. Characterizing the ClassesKP(�) andcoKP(�) 45

Statement (1):

KP(�[r] �[1] ; 1) � KP("; 1) � NP� KP(�[r] �[1] ; 1) by Equation (4.1)

Statement (2):

KP(�1[1]�[r] �[1] ; 1) � KP(2[2] ; 1) by Equation (4.1)

� PSPACE� KP(1[2] ; 1) by Theorems 4.11 and 4.10

� KP

�

(1[1])

3

; 1

�

by Lemmas 4.5 and 4.3

� KP(�1[1]�[r] �[1] ; 1)

Statement (3):

KP(�1[r1] : : : �k-1[rk-1]�k[1]�[r] �[1] ; 1)

� KP(2[2r1] : : : 2[2rk-1] 2[2] ; 1) by Equation (4.1)

� �

exp
k-1

� KP

�

(1[1])

k-1

1[2] ; 1

�

by Theorem 4.12

� KP

�

(1[1])

k+2

; 1

�

by Lemmas 4.5 and 4.3

� KP(�1[r1] : : : �k-1[rk-1]�k[1]�[r] �[1] ; 1)

Statement (4):

KP(�1[r1] : : : �k[rk]�[r] �[1] ; 1)

� KP(2[2r1] : : : 2[2rk] ; 1) by Equation (4.1)

� �

exp
k

� KP

�

(1[1])

k-1

2[3] ; 1

�

by Theorems 3.13 and 4.8

� KP

�

(1[1])

k-1

1[2] 1[1] 1[1] ; 1

�

by Lemmas 4.5 and 4.3

� KP(�1[r1] : : : �k[rk]�[r] �[1] ; 1) ❑

4.4.2 Parallel Queries

Now, we consider oracle machines that during their computations ask the queries ina
parallel manner, i.e. they compute a list of all queries before asking one of them. We will
represent the parallel restriction over an oracle bounded by set quantifierQ

�

[r] byQ�

[

k

r],
whereQ 2 f9; 8g, � 2 f1; 2g andr : N ! N . The following lemma shows equivalences
between classes involving and not involving parallel queries.

Lemma 4.14. Let� 2 �

�. Then, fork 2 N and� 2 f1; 2g

9

�

[

k

k] 8

pP��[

k

k]0

= 9

�

[k]8

pP��[k]0

Proof. The direction “�” is evident. For the other direction letk � 2 (for k 2 f0; 1g it is
obvious) andL 2 9

�

[k]8

pP��[k]0. There exist anL 0

2 P��[k]0 and a polynomialp such
that

X 2 L() 9

�

U 8

p
v (jvj = p(jXj)! (X;U; v) 2 L

0

)

46 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

Let M be a polynomial-time machine of type��[k] 0 acceptingL 0 and, letf; g
1

; : : : ; g

k

be functions computable in polynomial-time such that forM on input(X;U; v) and for
i = 1; : : : ; k, g

i

(X; v; u

1

; : : : ; u

i-1

) is thei-th query ofM to U assumed the answers to
thei- 1 first queries wereu

1

; u

2

; : : : ; u

i-1

, andf(X; v; u
1

; : : : ; u

k

) is the result ofM on
input (X;U; v) if the answers ofU to thek queries areu

1

; : : : ; u

k

. Hence,

X 2 L, 9U 8v

�

jvj = p(jXj)!

_

juj=k

�

(g

1

(X; v) 2 U$ u(1) = 1)^ � � �^

^ (g

k

(X; v; u(1); : : : ; u(k- 1)) 2 U$ u(k) = 1)

^ f(X; v; u(1); : : : ; u(k)) = 1

��

, 9U 8v

�

jvj = p(jXj)!

^

juj=k

�

(g

1

(X; v) 2 U$ u(1) = 0)_ � � �_

_ (g

k

(X; v; u(1); : : : ; u(k- 1)) 2 U$ u(k) = 0)

_ f(X; v; u(1); : : : ; u(k)) = 1

��

, 9U 8v 8u

�

(jvj = p(jXj)^ juj = k)! (X;U; v; u) 2 L

1

�

where(X;U; v; u) 2 L

1

()df juj = k^

�

(g

1

(X; v) 2 U$ u(1) = 0)_ � � �_ (g

k

(X; v; u(1); : : : ; u(k- 1)) 2 U$ u(k) = 0)

_f(X; v; u(1); : : : ; u(k)) = 1

�

Obviously, a deterministic polynomial-time machine of type��[k] 00 can acceptL
1

ask-
ing the k queries to the oracle bounded by the last set quantifier in parallel. Hence,
L

1

2 P��[

k

k]00 andL 2 9

�

[

k

k] 8

p
8

pP��[

k

k]00. ThenL 2 9

�

[

k

k]8

pP��[

k

k]0 follows by
Lemma 4.4. ❑

All the characterizations obtained inx4.4.1 remain valid for the counterpart classes
KP(�) having the parallel queries restriction. This can be seen as follows: For theTheorem
4.9 it is evident, since only one query for each oracle is enough. For the other results with
exception Theorem 4.13, only the number of queries to the oracle bounded by the last set
quantifier is relevant (for each one of the remainder oracles only one query is enough).
Hence and by Lemma 4.14 we have the desired characterization. For Theorem 4.13,
only in the proof of Statement (4) can arise problems. However, observe that theproof
of Theorem 3.11 yields�exp

k

� KP

�

(1[1])

k-1

2[

k

3] ; 1

�

and that the rules of Lemma 4.5
remain valid if we consider the parallel restriction, i.e.9

2

[

k

r]! 9

1

[1]9

1

[

k

(r- 1)]8

p and
8

2

[

k

r]! 8

1

[1]8

1

[

k

(r- 1)]9

p.

4.5 Remainder Complexity Classes

In x3.2.2 was proved a Normal Form Theorem (Theorem 3.8) for the classes of the ana-
lytic polynomial-time hierarchy. It was shown that each class of this hierarchy coincides

4.5. Remainder Complexity Classes 47

with a class in the formKP(�) or coKP(�). Unfortunately, the equivalence rules used in the
proof of this theorem do not preserve the number of oracle queries and cannot be applied
to a chain of quantifiers of a class of the bounded analytic polynomial-time hierarchy.
Otherwise, using the results ofx4.4 we would obtain a complete characterization for the
classes of the bounded analytic polynomial-time hierarchy. Thus, in this section we con-
sider classes of the bounded analytic polynomial-time hierarchy do not having necessarily
the formKP(�) or coKP(�).

By equivalence rule9p
9

p
$ 9

p (8p
8

p
$ 8

p) of Lemma 4.4, we can melt adja-
cent existential (universal, respectively) word quantifiers. Hence and by obvious rule
9

p
9

�

[r] $ 9

�

[r]9

p (8p
8

�

[r] $ 8

�

[r]8

p), in what follows we will assume that in ev-
ery consecutive sequence of existential (universal, respectively) quantifiers of a quantifier
string there exists at most one word quantifier. Furthermore, we will state and prove only
the results forQP with Q 2 �

�

[p], since the results for coQP are immediate consequences.

Finally, let us state again the fact (x4.2.2) that forQ� it is equivalent to takeQ�[r] with r
being so large that it is not a real restriction and vice versa, whereQ 2 f9; 8g, � 2 f1; 2g

andr : N ! N
+

.
ForS 2 �

�

[p] andT 2 �

+

[p;Q]

, whereQ 2 f9; 8g and the quantifierQp, Q1 orQ2 appears
in the chainT, we gave a complete characterization of the classesSTP by well-known
complexity classes (x4.5.1). Then, other classes are considered and the open cases are
stated (x4.5.2). We show in addition that all the results obtained remain valid if the oracle
machines are allowed to make only parallel queries (x4.5.3).

4.5.1 Characterizing the ClassesSTP

Next, we characterize the classes of the bounded analytic polynomial-time hierarchy hav-
ing the formSTP by well-known complexity classes forS 2 �

�

[p] andT 2 �

+

[p;Q]

, where
Q 2 f9; 8g and the quantifierQp, Q1 orQ2 appears in the chainT. Note that the classes
examined inx4.4 are special cases ofSTPwith T being a word quantifier, i.e.T = Q

p.
Since each one of the classes of the bounded analytic polynomial-time hierarchy not con-
taining set quantifiers coincides with one class of the (arithmetic) polynomial-time hierar-
chy [SM73, Sto77, Wra77], it remains to consider the classesSTPcontaining at least one
set quantifier. It will turn out that each one of the these classes involving setquantifiers
coincides with one of the classes�p

k

, �p
k

(k � 1), PSPACE, �exp
k

or�exp
k

(k � 1) and vice
versa. Our first result says that it is enough to consider the classesSQ

pP.

Proposition 4.15. LetQ 2 f9; 8g, S 2 �

�

[p] andT 2 �

+

[p;Q]

. If the quantifierQp, Q1 or Q2

appears in the chainT, thenSTP= SQ

pP.

Proof. By Lemmas 4.3, 4.4 and 4.7 we concludeSTP� SQ

2P� SQ

pP� STP. ❑

Next, a desired form for a quantifier string is defined. Let�; � 2 f1; 2g andr; r 0 :

N ! N . For a chainS 2 �

�

[p], let Norm(S) be an alternate sequence of9-8-quantifiers
with the set quantifiers appearing left to the word quantifiers, which is obtained applying
the following rules overS, where the melt rules have precedence over the shift rules, i.e.
a shift rule is applied if and only if no meld rule can be applied:

48 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

(1) Melt rules (Lemmas 4.3 and 4.4):

9

p
9

p
!

[P] 9
p

9

p
9

�

[r]!

[P] 9
�

9

�

[r] 9

p
!

[P] 9
�

9

�

[r]9

�

[r

0

]!

[P] 9
2

[r + r

0

]

and

and

and

and

8

p
8

p
!

[P] 8
p

8

p
8

�

[r]!

[P] 8
�

8

�

[r]8

p
!

[P] 8
�

8

�

[r]8

�

[r

0

]!

[P] 8
2

[r+ r

0

]

(2) Shift rules (Lemma 4.6):9p
8

�

[r]!

[P]

8

�

[r] 9

p and8p
9

�

[r]!

[P] 9
�

[r]8

p

Obviously, forR; S; T 2 �

�

[p], we haveRSTP� RNorm(S)TPand Norm(S)P is a class
in the formKP(�) or coKP(�). Finally, let FirstSet(S) be 9 (8) if the first set quantifier
appearing inS is an existential (universal, respectively) quantifier (FirstSet(S) =df " if S
does not contain set quantifiers).

The following theorem shows which classes ending in an9-8-alternate sequence of
word quantifiers coincide with a class of the exponential-time alternation hierarchy.

Theorem 4.16. LetS 2 �

+

[p] with FirstSet(S) = 9, andQ 2 f9; 8g be the last quantifier in

S. If k is the number of set quantifiers inNorm(S), thenSQp
Q

pP= �

exp
k

.

Proof. We concludeSQp
Q

pP� Norm(S)Q

p
Q

pP� Norm
�

SQ

p
Q

p
�

Pwhich is included
in the classKP

�

(1[1])

k

; 2

�

= �

exp
k

by Theorem 4.9, andKP

�

(1[1])

k

; 2

�

� SQ

p
Q

pP is
obvious. ❑

Before the remainder characterizations are presented, we state two results to help us in
their proofs. The next proposition shows a result which was already observed in theproof
of Theorem 4.13. ForS 2 �

�

[p], let (S)
2

be the chainS but: If Q�

[r] appears inS then in
(S)

2

we haveQ2

[2r] for � 2 f1; 2g,Q 2 f9; 8g andr : N ! N , i.e. all set quantifiers from
S have type 2 in(S)

2

and if a set quantifier varies over oracles whose number of queries
is bounded by functionr, then this quantifier in(S)

2

varies over oracles whose number of
queries is bounded by function2r.

Proposition 4.17. Let� 2 f1; 2g,Q 2 f9; 8g andS 2 �

�

[p]. ThenSQ�

[1]Q

pP� (S)

2

Q

pP.

Proof. In the proof of9�[1]8pP � 8

pP (Theorems 4.10 and 4.11) we need to simu-
late only two times the original machine for each worduvw (if Q = 8, take the base
8

�

[1]9

pP � 9

pP). Therefore, if the machines have additional oracles, the number of
queries to each one of these additional oracles is doubled and the type 1 property cannot
be guaranteed. Thus,SQ�

[1]Q

pP� (S)

2

Q

pP. ❑

The following result states an “equivalence rule” which shows how to eliminate word
quantifiers.

Proposition 4.18. Letk; l 2 N andY 2 f9

p
; 8

p
g

l. Then, forQ 2 f9; 8g

YQ

2

[2]Q

pP02

k

0

l

2[2]0

= Q

2

[2]Q

pP02

k

2[2]0

= PSPACE02
k

4.5. Remainder Complexity Classes 49

Proof. The proof of92[2]8pP = PSPACE(Theorem 4.11) remains valid if the ma-
chines have additionallyk inputs of type 2 andl inputs of type 0 (ifQ = 8, take
the base82[2]9pP = PSPACE), i.e. 92[2]8pP02

k

0

l

2[2]0

= PSPACE02
k

0

l

. Furthermore,
YPSPACE02

k

0

l

� PSPACE02
k

, since theY word quantifiers can be easily simulate by a
PSPACE-simulation. Hence,

YQ

2

[2]Q

pP02

k

0

l

2[2]0

� YPSPACE02
k

0

l

� PSPACE02
k

� Q

2

[2]Q

pP02

k

2[2]0

� YQ

2

[2]Q

pP02

k

0

l

2[2]0 ❑

Characterizing the classesSQpP

By Proposition 4.15 and Theorem 4.16 it remains to consider the classesSQ

pP, where

� S 2 �

+

[p];

� Q 2 f9; 8g is the last quantifier inS;

� in the last consecutive sequence ofQ-quantifiers inS there exists at least one set
quantifier, i.e. after the last set quantifier inS does not appear the substringQp

Q

p

and;

� in each consecutive sequence of existential (universal, respectively) quantifiers in
the chainS there exists at most one word quantifier.

We will divide the study of theSQpP classes depending on chainS. Let R andT be
quantifier strings such thatRT = S with R = " or the last quantifier ofR being a set
Q-quantifier. Hence,T contains at least one setQ-quantifier. The Table 4.2 shows where
the characterizations of theRTQpPclasses, i.e.SQpPclasses, by well-known complexity
classes can be found.

Theorem(s) ChainR ChainT

4.19, 4.20, 4.21 R = " T 2

�

�

[p;Q]

[

�

Q

p
	�

+

4.22 R 2 �

+

[p] T 2

�

�

[p;Q]

[

�

Q

p
	�

+

such that inT appears a set
quantifier that differs from
Q

1

[1] andQ2

[1]

4.23, 4.24, 4.25 R 2 �

+

[p] T 2

�

Q

1

[1] ; Q

2

[1] ; 9

p
; 8

p
	

+

Table 4.2: Characterizations of the classesRTQpP withR = " or the last quantifier ofR
being a setQ-quantifier.

A function that enable us to specify quantifier strings containing desired properties
will be helpful to us: Fork; l � 0 andQ

1

; : : : ; Q

k

; T

1

; : : : ; T

l

2 �

[p], we define the
functionF(Q

1

; : : : ; Q

k

jT

1

; : : : ; T

l

) as the set of all possible quantifier strings in��
[p], such

50 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

that only the quantifiersQ
1

; : : : ; Q

k

; T

1

; : : : ; T

l

can appear and each one of the quantifiers
Q

1

; : : : ; Q

k

appears once (ifQ
i

= T

j

, then the quantifierQ
i

must appear at least once).
The simplest classesSQpP are those with all set quantifiers being9-quantifiers (8-

quantifiers, respectively). The next result shows that these classes containing a quantifier
of type 1 which is not restricted to one query, turn out to coincide withPSPACEif only
one set appears inS and withNEXPTIME or coNEXPTIME otherwise.

Theorem 4.19. Let� 2 f1; 2g andr; r 0 : N ! N
+

such thatr � 2. Then

(1) S8pP= PSPACEfor S 2 F

�

9

1

[r] j9

p
; 8

p
�

;

(2) S8pP= NEXPTIME for S 2 F

�

9

1

[r] ; 9

�

[r

0

]

�

�

�

[p;9]; 8
p
�

.

Proof. By Theorems 4.10 and 4.11 follows

S8

pP� Norm(S8

p
)P

�

�

9

1

8

pP= 9

1

[2] 8

pP= PSPACE if S 2 F

�

9

1

[r] j9

p
; 8

p
�

,

9

2

8

pP= 9

2

[3] 8

pP= NEXPTIME if S 2 F

�

9

1

[r] ; 9

�

[r

0

]

�

�

�

[p;9]; 8
p
�

,

which is included inS8pP (by Lemma 4.5 follows92[3]8pP� 9

1

[2]9

�

[1]8

pP). ❑

The following theorem shows that a classSQpP, whose set quantifiers are existential
(universal) and one of them is of type 2 not being restricted to one query, turn out to
coincide withPSPACEif 92[2] (82[2]) is the unique set quantifier appearing inS and with
NEXPTIME (coNEXPTIME, respectively) otherwise.

Theorem 4.20. Let� 2 f1; 2g andr; r 0 : N ! N
+

such thatr � 3. Then

(1) S8pP= PSPACEfor S 2 F

�

9

2

[2] j9

p
; 8

p
�

;

(2) S8pP= NEXPTIME for S 2 F

�

9

2

[r]

�

�

�

[p;9]; 8
p
�

[F

�

9

�

[r

0

] ; 9

2

[2]

�

�

�

[p;9]; 8
p
�

.

Proof. We conclude for

Statement (1): By obvious rule92[2]9p
$

[P] 9
p
9

2

[2], there exists an9-8-alternate se-
quenceY of word quantifiers such thatS8p

!

[P]

Y9

2

[2]8

p (remember that after the set
quantifier inS does not appear the substring8p

9

p). Thus, by Proposition 4.18 follows
S8

pP� Y9

2

[2]8

pP� PSPACE� 9

2

[2]8

pP� S8

pP.

Statement (2):

S8

pP� Norm(S8

p
)P� 9

2

8

pP

� 9

2

[3]8

pP= NEXPTIME by Theorem 4.11

� S8

pP

where for the last inclusion we use Lemma 4.5 ifS 2 F

�

9

�

[r

0

] ; 9

2

[2]

�

�

�

[p;9]; 8
p
�

. ❑

Next, we point out how heavily (and nicely) the results for the classesSQ

pP, whose
set quantifiers are existential (universal, respectively) restricted to one query, can depend
on the number of set quantifiers.

4.5. Remainder Complexity Classes 51

Theorem 4.21. Let�; � 2 f1; 2g andU =

S

�2f1;2g

F(9

p
; 9

�

[1] j9

p
; 8

p
). Then

(1) S8pP= �

p
k

for S 2 F(9

�

[1] j9

p
; 8

p
) such that the first word quantifier inS8p is

9

p;

(2) S8pP= �

p
k

for S 2 F(9

�

[1] j9

p
; 8

p
) such that the first word quantifier inS8p is

8

p;

(3) S8pP = PSPACE for S 2 F(9

�

[1] ; 9

�

[1] j9

p
; 8

p
) such that the substring8p

T

does not appear after the first set quantifier inS for all T 2 U;

(4) S8pP= NEXPTIME for S 2 F(9

�

[1] ; 9

�

[1] j9

p
; 8

p
) such that the substring8p

T

appears after the first set quantifier inS for someT 2 U;

(5) S8pP= NEXPTIME for S 2 F

�

9

�

[1] ; 9

�

[1] ; 9

�

[1]

�

�

9

1

[1] ; 9

2

[1] ; 9

p
; 8

p
�

;

wherek- 1 is the number of9-8-alternations of the word quantifiers inS8p.

Proof. We conclude for

Statements (1) and (2): We prove only Statement (1), since the other follows in the same
way. By obvious rule9�[1] 9p

$

[P]

9

p
9

�

[1], there exists an9-8-alternate sequenceY of
word quantifiers such thatS8p

!

[P]

Y9

�

[1]8

p. Thus, by Proposition 4.17 we conclude
S8

pP� Y9

�

[1]8

pP� Y8

pP� �

p
k

� S8

pP.

Statement (3): By assumption if an8p appears after the first set quantifier inS, then no9p

follows this8p. Therefore, by obvious rule9�[1]9p
$

[P]

9

p
9

�

[1] and rules of Section 4.3,
there exists an9-8-alternate sequenceY of word quantifiers such thatS8p

!

[P] Y9
2

[2]8

p.
Hence,

S8

pP� Y9

2

[2]8

pP� PSPACE� 9

2

[2]8

pP by Proposition 4.18

� 9

1

[1]9

1

[1]8

pP by Lemma 4.5

� S8

pP

Statement (4):

S8

pP� Norm(S8

p
)P� 9

2

8

pP

� NEXPTIME = 9

1

[1]8

p
9

pP by Theorems 4.11 and 4.9

� 9

1

[1] 8

p
9

p
8

pP by Lemma 4.3

� S8

pP by assumption

Statement (5):

S8

pP� Norm(S8

p
)P� 9

2

8

pP

� 9

2

[3]8

pP= NEXPTIME by Theorem 4.11

� 9

1

[1]9

1

[1]9

1

[1]8

pP by Lemma 4.5

� S8

pP ❑

52 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

Thus, we have characterized all classesSQ

pP by well-known complexity classes,
whose set quantifiers appearing inS are existential (universal, respectively). Next we
consider the classes containing existential and universal set quantifiers. ForS 2 �

�

[p], let
Last(S) be the last quantifier of the chainS (Last(") =df "). Observe that if Last(S) is a
set quantifier in�

[p;Q] for Q 2 f9; 8g, then Norm(S) contains at most one word quantifier
which isQp (if exists).

If SQpP is a class containing existential and universal set quantifiers, where in thelast
9-8-alternate sequence of set quantifiers there exists one which is not restricted to one
query, thenSQpP coincides with one class of the exponential-time alternation hierarchy.
This is shown in the following theorem.

Theorem 4.22. LetQ 2 f9; 8g andR 2 �

+

[p] with FirstSet(R) = 9 andLast(R) being a
set quantifier in�

[p;Q]. Furthermore, let�; � 2 f1; 2g andr
1

; r

2

; r

3

: N ! N

+

such that
r

2

� 2 andr
3

� 3. Then

(1) RSQpP= �

exp
k-1

for S 2 F

�

Q

1

[r

2

] j9

p
; 8

p
�

[F

�

Q

2

[2] j9

p
; 8

p
�

;

(2) RSQpP= �

exp
k

for S 2 F

�

Q

2

[r

3

]

�

�

�

[p;Q]

; Q

p
�

[F

�

Q

�

[r

1

] ; Q

�

[r

2

]

�

�

�

[p;Q]

; Q

p
�

;

wherek is the number of set quantifiers inNorm(RS).

Proof. For l � 1, letQ
l

=df 9 if l is odd andQ
l

=df 8 otherwise, and letZ =df Q
p if

Norm(R) contains a word quantifier andZ =df " otherwise. Thus,

RSQ

pP� Norm(R)SQ

pP� 9

2

8

2

9

2

: : :Q

2

k-1

ZSQ

pP

Let C =df 9
2

8

2

9

2

: : :Q

2

k-1

ZSQ

pP. We conclude for

Statement (1): ForS 2 F

�

Q

1

[r

2

] j9

p
; 8

p
�

follows

C � 9

2

8

2

9

2

: : :Q

2

k-1

Norm
�

ZSQ

p
�

P� KP

�

2

k-1

1; 1

�

� KP

�

(1[1])

k-1

1[2] ; 1

�

= �

exp
k-1

by Theorem 4.12

� RSQ

pP

Now, consider the caseS 2 F

�

Q

2

[2] j9

p
; 8

p
�

. By obvious ruleQ2

[2]Q

p
$

[P]

Q

p
Q

2

[2],
there is an9-8-alternate sequenceY of word quantifiers such thatZSQp

!

[P]

YQ

2

[2]Q

p.
Hence,

C � 9

2

8

2

9

2

: : :Q

2

k-1

YQ

2

[2]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k-1

PSPACE02
k-1

by Proposition 4.18

� �

exp
k-1

by Proposition 3.12

� KP

�

(1[1])

k-1

2[2] ; 1

�

by Theorem 4.12

� RSQ

pP

4.5. Remainder Complexity Classes 53

Statement (2):

C � 9

2

8

2

9

2

: : :Q

2

k-1

Norm
�

ZSQ

p
�

P� KP

�

2

k

; 1

�

� KP

�

(1[1])

k-1

2[3] ; 1

�

= �

exp
k

by Theorem 4.12

� RSQ

pP

where for the last inclusion we use Lemma 4.5 ifS 2 F

�

Q

�

[r

1

] ; Q

�

[r

2

]

�

�

�

[p;Q]

; Q

p
�

. ❑

Hence, it remains to consider the classesSQ

pPcontaining existential and universal set
quantifiers, where in the last9-8-alternate sequence of set quantifiers all are restricted to
one query. Not all cases are considered in the next theorem, the caseS 2 F

�

Q

�

[1]

�

�

Q

p
�

will be examined in Theorems 4.24 and 4.25.

Theorem 4.23. LetQ 2 f9; 8g andR 2 �

+

[p] with FirstSet(R) = 9 andLast(R) being a set
quantifier in�

[p;Q]. Furthermore, let�; � 2 f1; 2g andU =

S

�2f1;2g

F(Q

p
; Q

�

[1] j9

p
; 8

p
).

Then

(1) RSQpP= �

exp
k-1

for S 2 F(Q

p
; Q

�

[1] j9

p
; 8

p
)

(2) RSQpP = �

exp
k-1

for S 2 F(Q

�

[1] ; Q

�

[1] j9

p
; 8

p
) such that the substringQp

T

does not appear after the first set quantifier inS for all T 2 U

(3) RSQpP = �

exp
k

for S 2 F(Q

�

[1] ; Q

�

[1] j9

p
; 8

p
) such that the substringQp

T

appears after the first set quantifier inS for someT 2 U

(4) RSQpP= �

exp
k

for S 2 F

�

Q

�

[1] ; Q

�

[1] ; Q

�

[1]

�

�

Q

1

[1] ; Q

2

[1] ; 9

p
; 8

p
�

wherek is the number of set quantifiers inNorm(RS).

Proof. For l � 1, letQ
l

=df 9 if l is odd andQ
l

=df 8 otherwise, and letZ =df Q
p if

Norm(R) contains a word quantifier andZ =df " otherwise. We conclude for

Statement (1): By obvious ruleQ�

[1]Q

p
$

[P]

Q

p
Q

�

[1], there exists an9-8-alternate
sequenceY of word quantifiers such thatZSQp

!

[P]

YQ

�

[1]Q

p. Hence,

RSQ

pP� Norm(R)SQ

pP� 9

2

8

2

9

2

: : :Q

2

k-1

ZSQ

pP

� 9

2

8

2

9

2

: : :Q

2

k-1

YQ

�

[1]Q

pP� 9

2

8

2

9

2

: : :Q

2

k-1

YQ

pP by Proposition 4.17

� KP

�

(1[1])

k-1

; 2

�

= �

exp
k-1

by Theorem 4.9

� RSQ

pP

Statement (2): By assumption if aQp appears after the first set quantifier inS, then
no Qp follows thisQp. Therefore, by obvious ruleQ�

[1]Q

p
$

[P] Q
p
Q

�

[1] and rules
of Section 4.3, there exists an9-8-alternate sequenceY of word quantifiers such that

54 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

ZSQ

p
!

[P]

YQ

2

[2]Q

p. Hence,

RSQ

pP� Norm(R)SQ

pP� 9

2

8

2

9

2

: : :Q

2

k-1

ZSQ

pP

� 9

2

8

2

9

2

: : :Q

2

k-1

YQ

2

[2]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k-1

PSPACE02
k-1

= �

exp
k-1

by Propositions 4.18 and 3.12

� KP

�

(1[1])

k-1

1[2] ; 1

�

by Theorem 4.12

� 9

1

[1]8

1

[1]9

1

[1] : : :Q

1

k-1

[1]Q

1

[1]Q

1

[1]Q

pP by Lemma 4.5

� RSQ

pP

Statement (3):

RSQ

pP� Norm
�

RSQ

p
�

P� 9

2

8

2

9

2

: : :Q

2

k

Q

pP

� �

exp
k

� KP

�

(1[1])

k

; 2

�

by Theorems 4.12 and 4.9

� 9

1

[1]8

1

[1]9

1

[1] : : :Q

1

k-1

[1]Q

1

[1]Q

p
Q

p
Q

pP by Lemma 4.3

� RSQ

pP by assumption

Statement (4):

RSQ

pP� Norm
�

RSQ

p
�

P� 9

2

8

2

9

2

: : :Q

2

k

Q

pP

� KP

�

(1[1])

k-1

2[3] ; 1

�

= �

exp
k

by Theorem 4.12

� 9

1

[1]8

1

[1]9

1

[1] : : :Q

1

k-1

[1]Q

1

[1]Q

1

[1]Q

1

[1]Q

pP by Lemma 4.5

� RSQ

pP ❑

Thus, only the caseRSQpPwith S 2 F

�

Q

�

[1]

�

�

Q

p
�

and Last(R) being a set quantifier
in �

[p;Q] remains to be considered. By Lemmas 4.4 and 4.6 followsRSQ

pP= RQ

�

[1]Q

pP.

The classesRQ�

[1]Q

pP will be study in two steps: When Norm(R) does not contain a
word quantifier (Theorem 4.24) and when Norm(R) contains a word quantifier (Theorem
4.25). Note that in these theorems the quantifier stringR is subdivided in three parts,
namelyRST.

Theorem 4.24. Let Q 2 f9; 8g, R 2 �

�

[p] with R = " or Last(R) being a set quantifier

in �

[p;Q], S 2

�

�

[p;Q]

[

�

Q

p
	�

�

with S = " or Last(S) being a set quantifier, andT 2

�

�

[p;Q] [fQ

p
g

�

+

with Last(T) being a set quantifier. Furthermore, letFirstSet(RST) = 9,
�; �; � 2 f1; 2g andr : N ! N such thatr � 2. If Norm(RST) does not contain a word
quantifier then

(1) RSTQ�

[1]Q

pP= NP for R = S = ";

(2) RSTQ�

[1]Q

pP= PSPACEfor S 2 F(Q

�

[1] j9

p
; 8

p
) andR = ";

(3) RSTQ�

[1]Q

pP= �

exp
k-1

for S 2 F(Q

�

[1] j9

p
; 8

p
) andR 6= ";

4.5. Remainder Complexity Classes 55

(4) RSTQ�

[1]Q

pP= �

exp
k

for

S 2 F

�

Q

�

[1] ; Q

�

[1]

�

�

�

[p;Q]

; Q

p
�

[F

�

Q

�

[r]

�

�

�

[p;Q]

; Q

p
�

;

wherek is the number of set quantifiers inNorm(RS).

Proof. For l � 1, letQ
l

=df 9 if l is odd andQ
l

=df 8 otherwise.

Statement (1): We conclude (Q = 8)

RSTQ

�

[1]Q

pP� Norm(T)Q

�

[1]Q

pP� 9

2

8

�

[1]9

pP

� 9

2

9

pP by Proposition 4.17

� 9

pP= NP by Lemmas 4.4 and 4.7

� RSTQ

�

[1]Q

pP

Statements (2) and (3): LetZ =df Q
p if Norm(R) contains a word quantifier andZ =df

" otherwise. Since Norm(RST) does not contain a word quantifier, there is only one
possibility forQp quantifiers to appear inT which is left to theQ-quantifiers, i.e. at begin
of T. LetT 0 be the chainT removing theQp quantifiers. Since Last(S) is a set quantifier
and by obvious ruleQ2

[2]Q

p
$

[P]

Q

p
Q

2

[2], there exists an9-8-alternate sequenceY of
word quantifiers such thatZ (S)

2

Q

p
$

[P]

YQ

2

[2]. Thus,

RSTQ

�

[1]Q

pP� Norm(R)SQ

p Norm(T

0

)Q

�

[1]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k-1

ZSQ

p
Q

2

Q

�

[1]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k-1

Z (S)

2

Q

p
Q

2

Q

pP by Proposition 4.17

� 9

2

8

2

9

2

: : :Q

2

k-1

Z (S)

2

Q

p
Q

pP by Lemmas 4.4 and 4.7

� 9

2

8

2

9

2

: : :Q

2

k-1

YQ

2

[2]Q

pP byZ (S)

2

Q

p
$

[P]

YQ

2

[2]

� 9

2

8

2

9

2

: : :Q

2

k-1

PSPACE02
k-1

by Proposition 4.18

Let C =df 9
2

8

2

9

2

: : :Q

2

k-1

PSPACE02
k-1

. ForR = " (i.e.k = 1), C = PSPACEwhich is
included inQ1

[2]Q

pPby Theorem 4.10, and therefore it is included inRSTQ�

[1]Q

pPby
Lemma 4.5. Now, forR 6= " (i.e.k � 2) we conclude (Q

k

= Q)

C � �

exp
k-1

by Proposition 3.12

� KP

�

(1[1])

k-1

1[2] ; 1

�

by Theorem 4.12

� 9

1

[1]8

1

[1]9

1

[1] : : :Q

1

k-1

[1]Q

1

k

[1]Q

�

[1]Q

pP by Lemma 4.5

� RSTQ

�

[1]Q

pP

56 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

Statement (4): We conclude (Q
k+1

= Q)

RSTQ

�

[1]Q

pP

� Norm(RST)Q

�

[1]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k+1

Q

�

[1]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k+1

Q

pP by Proposition 4.17

� 9

2

8

2

9

2

: : :Q

2

k

Q

pP by Lemmas 4.4 and 4.7

� KP

�

(1[1])

k-1

2[3] ; 1

�

= �

exp
k

by Theorem 4.12

�

�

9

1

[1]8

1

[1] : : :Q

1

k-1

[1]Q

1

k

[1]Q

1

k

[1]Q

�

[1]Q

pP
9

1

[1]8

1

[1] : : :Q

1

k-1

[1]Q

1

k

[2]Q

�

[1]Q

pP
by Lemma 4.5

� RSTQ

�

[1]Q

pP ❑

In the previous theorem, there exists only one possibility for Norm(RST) to contain
a word quantifier: There exists anQp quantifier appearing right to anQ-quantifier inT.
With this observation, we can state the following result which completes the characteri-
zation of the classesSQpP.

Theorem 4.25. Let Q 2 f9; 8g, R 2 �

�

[p] with R = " or Last(R) being a set quantifier

in �

[p;Q], S 2

�

�

[p;Q]

[

�

Q

p
	�

�

with S = " or Last(S) being a set quantifier, andT 2

F

�

Q

p
�

�

�

�

[p;Q]; Q
p
�

with Last(T) being a set quantifier. Furthermore, letFirstSet(RST) =

9 and ifS = " then letR = ". If Norm(RST) contains a word quantifier then

(1) RSTQ�

[1]Q

pP = �

p
l

if R = S = ", noQp quantifier appears right to a set
quantifier inT and the first word quantifier inT is 9p

(2) RSTQ�

[1]Q

pP = �

p
l

if R = S = ", noQp quantifier appears right to a set
quantifier inT and the first word quantifier inT is 8p

(3) RSTQ�

[1]Q

pP = �

exp
k

if S 6= " and noQp quantifier appears right to a set
quantifier inT

(4) RSTQ�

[1]Q

pP = �

exp
k+1

if there is anQp quantifier appearing right to a set
quantifier inT

wherel- 1 is the number of9-8-alternations of the word quantifiers inTQp andk is the
number of set quantifiers inNorm(RS).

Proof. We prove Statements (1), (3) and (4), since Statement (2) follows as Statement
(1). Forn � 1, letQ

n

=df 9 if n is odd andQ
n

=df 8 otherwise. By assumption, there
exists anQp quantifier appearing right to anQ-quantifier inT (Norm(RST) contains a
word quantifier).

Statements (1) and (3): LetZ =df Q
p if Norm(RS) contains a word quantifier andZ =df "

otherwise, and letY be an9-8-alternate sequence of word quantifiers withl - 2 alterna-
tions, where the first word quantifier ofY andT coincide. Thus, by assumption follows

4.5. Remainder Complexity Classes 57

T!

[P] YQ
2. Then,

RSTQ

�

[1]Q

pP� Norm(RS)YQ

2

Q

�

[1]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k

ZYQ

2

Q

�

[1]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k

ZYQ

2

Q

pP by Proposition 4.17

� 9

2

8

2

9

2

: : :Q

2

k

ZYQ

pP by Lemmas 4.4 and 4.7

Let C =df 9
2

8

2

9

2

: : :Q

2

k

ZYQ

pP. For S = " we haveR = Z = " andC � YQ

pP �

9

p
8

p
9

p
: : :Q

p
l

P � �

p
l

which is included inRSTQ�

[1]Q

pP. Now, for S 6= " (by assump-
tion, inT must appear the substringQp

Q

p andQ
k+1

= Q)

C � KP

�

(1[1])

k

; 2

�

= �

exp
k

by Theorem 4.9

� 9

1

[1]8

1

[1]9

1

[1] : : :Q

1

k

[1]Q

p
Q

p
Q

�

[1]Q

pP

� RSTQ

�

[1]Q

pP

Statement (4): We conclude (Q
k

= Q)

RSTQ

�

[1]Q

pP� Norm(RST)Q

�

[1]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k+1

Q

p
Q

�

[1]Q

pP

� 9

2

8

2

9

2

: : :Q

2

k+1

Q

p
Q

pP by Proposition 4.17

� KP

�

(1[1])

k+1

; 2

�

= �

exp
k+1

by Theorem 4.9

� 9

1

[1]8

1

[1]9

1

[1] : : :Q

1

k+1

[1]Q

p
Q

�

[1]Q

pP

� RSTQ

�

[1]Q

pP by assumption ❑

4.5.2 Open Cases

From the results obtained inx4.5.1 it remains to characterize the classes of the bounded
analytic polynomial-time hierarchy having the formSTP for Q 2 f9; 8g, S 2 �

�

[p] and
T 2 �

+

[p;Q]

, where the quantifiersQp, Q1 andQ2 do not appear in the chainT. Next, we
examine some of these remainder classes. We start showing that existential (universal)
set quantifiers with restriction on oracle queries applied toP are as powerful as the class
(r)-P (co(r)-P, respectively) for somer : N ! N .

Lemma 4.26. Letk 2 N , �
1

; : : : ; �

k

2 f1; 2g, r
1

; : : : ; r

k

: N ! N andr = r

1

+ � � �+ r

k

.
Then9�1 [r

1

] : : :9

�

k

[r

k

]P= (r)-P.

Proof. By Lemmas 4.3 and 4.4 follows9�1 [r
1

] : : :9

�

k

[r

k

]P � 9

2

[r]P. Thus, it suffices
to prove(r)-P� 9

�

1

[r

1

] : : :9

�

k

[r

k

]P and92[r]P� (r)-P.

“(r)-P� 9

�

1

[r

1

] : : :9

�

k

[r

k

]P”: Let L 2 (r)-P. There exist anL
1

2 P00 and a polynomial
p such that

x 2 L() 9

p
u (juj = minfr(jxj) ; p(jxj)g ^ (x; u) 2 L

1

)

() 9

1

U

1

: : :9

1

U

k

((x;U

1

; : : : ; U

k

) 2 L

2

) ,

58 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

whereL
2

=df f(x;U1

; : : : ; U

k

) : (x; hU

1

; f

1

(jxj)i : : : hU

k

; f

k

(jxj)i) 2 L

1

g andf
1

; : : : ; f

k

:

N ! N are functions satisfying following properties1: f
i

(jxj) � r

i

(jxj) for i = 1; : : : ; k

and
P

k

i=1

f

i

(jxj) = min fr(jxj) ; p(jxj)g. Obviously, the languageL
2

2 P01[r

1

]:::1[r

k

], i.e.
L 2 9

1

[r

1

] : : :9

1

[r

k

]P.

“92[r]P� (r)-P”: The proof follows as in Lemma 3.5. By definitionL 2 9

2

[r]P if and
only if there exists anL 0

2 P02[r], such thatx 2 L() 9

2

U ((x;U) 2 L

0

). Next, letM be
a machine of type02[r] acceptingL 0 with time boundp wherep is a polynomial. Without
loss of generality we assume thatM does not make a query twice. LetM 0 be a machine
of type0 that on inputx guesses a wordu of length minfr(jxj) ; p(jxj)g and then works
asM on input(x;U) with the following difference: Instead of the answer ofU to the
i-th query ofM the machineM 0 uses thei-th bit of u. Hence,M 0 is a polynomial-time
r-nondeterministic machine and92U ((x;U) 2 L

0

) () x 2 L(M

0

) can be seen as in
Lemma 3.5. Therefore,L 2 (r)-P. ❑

The previous lemma remains valid if a quantifier stringS 2 �

�

[p] is applied to these

classes, i.e. we haveS9�1[r
1

] : : :9

�

k

[r

k

]P = S (r)-P0�(S). Hence, the following result is
evident.

Corollary 4.27. Let S 2 �

�

[p], k 2 N , �
1

; : : : ; �

k

2 f1; 2g, r
1

; : : : ; r

k

: N ! N and
r = r

1

+ � � �+ r

k

. ThenS9�1[r
1

] : : :9

�

k

[r

k

]P= S9

1

[r]P.

Thus, only the following cases are still open forQ 2 f9; 8g, S 2 �

�

[p] andr : N ! N
+

(Lemma 4.26 and Corollary 4.27):SQ1

[r]P with Last(S) 2 �

[p;Q] and r being a real
restriction. Next we consider some of these remainder cases.

Proposition 4.28. LetS 2 �

�

[p;9], � 2 f1; 2g andr : N ! N
+

. If the quantifier9p, 91 or 92

appears in the chainS thenS8�[1]91[r]P= NP.

Proof. We conclude

S8

�

[1]9

1

[r]P� 9

2

8

�

[1]9

pP by Lemmas 4.3, 4.4 and 4.7

� 9

pP= NP by Proposition 4.17 and Lemmas 4.4 and 4.7

� S8

�

[1]9

1

[r]P by Lemma 4.3 ❑

Proposition 4.29. Let S 2 �

�

[p] with FirstSet(S) = 9 and r : N ! N

+

. If there exist at
least two word quantifiers inNorm(S), thenS91[r]P = S8

1

[r]P = �

exp
k

, wherek is the
number of set quantifiers inNorm(S).

1Take for example:

f

i

(jxj) =df

8

>

<

>

:

r

i

(jxj) if
P

i

j=1

f

j

(jxj) � p(jxj),

p(jxj) -

P

i-1

j=1

f

j

(jxj) if
P

i-1

j=1

f

j

(jxj) < p(jxj) <

P

i

j=1

f

j

(jxj),

0 otherwise.

4.6. Conclusions 59

Proof. We conclude forQ 2 f9; 8g

SQ

1

[r]P� SQ

pP� Norm(S)Q

pP by Lemma 4.7

� KP

�

(1[1])

k

; 2

�

= �

exp
k

by Theorem 4.9

� SQ

1

[r]P ❑

4.5.3 Parallel Queries

In x4.4.2 we show that all the characterizations obtained for the classesKP(�) and coKP(�)

(x4.4.1) remain valid for the counterpart classes having the parallel queries restriction.
Next, we show that also the characterizations ofx4.5.1 andx4.5.2 preserve this restriction.

Observe that from proof of Lemma 4.26 and Corollary 4.27 we have already shown

S9

�

1

[r

1

] : : :9

�

k

[r

k

]P= S9

�

1

[

k

r

1

] : : :9

�

k

[

k

r

k

]P= S9

1

[

k

r]P= S (r)-P0�(S)

Thus, Lemma 4.26 and Corollary 4.27 are also valid for these classes involving parallel
queries. If we follow the proofs of the other results obtained inx4.5.1 andx4.5.2, ei-
ther only one query for each oracle is enough or we have a characterization by a class in
the formKP(�) and optionally we use the rules of Lemma 4.5. However, as we already
observed (x4.4.2) all the characterizations of the classesKP(�) remain valid for the coun-
terpart classes having the parallel queries restriction, and the rules of Lemma 4.5 preserve
this restriction.

Therefore, all the characterizations of the classes of the bounded analytic polynomial-
time hierarchy presented in this chapter remain valid under the parallel queries restriction.

4.6 Conclusions

We characterize classes of the bounded analytic polynomial-time hierarchy (x4.4 and
x4.5). However, the following cases are still open forQ 2 f9; 8g, S 2 �

�

[p] andr : N ! N
+

:
SQ

1

[r]P with Last(S) 2 �

[p;Q], r being a real restriction andSQ1

[r]P not satisfying the
Propositions 4.28 and 4.29. In addition (x4.4.2 andx4.5.3), we show that these character-
izations remain valid if the queries are asked in a nonadaptive form, i.e. in “parallel”. In
special, all the characterizations for the classes of the analytic polynomial-time hierarchy
(x3) also remain valid under the parallel queries restriction.

Finally, in the Figure 4.2 we point out how heavily (and nicely) the results can depend
on the number of queries allowed.

60 4. Bounding Queries in the Analytic Polynomial-Time Hierarchy

NEXPTIME

PSPACE

NP

9

�

[2]8

1

[3]9

pP

9

�

[1]8

1

[2]9

pP

8

1

[1]9

pP

8

1

[2]9

pP9

�

[1]8

1

[1]9

pP

8

1

[3]9

pP

9

�

8

1

9

pP

9

�

[1]8

1

9

pP

9

�

[1]8

1

[3]9

pP9

�

[2]8

1

[2]9

pP

9

�

8

1

[3] 9

pP

8

1

9

pP9

�

8

1

[1]9

pP

9

�

8

1

[2]9

pP

9

�

[2]8

1

9

pP

9

�

[2]8

1

[1]9

pP

NEXPTIM
E

PSPACE

coN
EXPTIM

E

NP

8

2

[1]9

pP

8

2

[2]9

pP9

�

[1]8

2

[1]9

pP

8

2

[3]9

pP9

�

[2]8

2

[1]9

pP

9

�

[1]8

2

9

pP

9

�

[1]8

2

[2]9

pP

9

�

[2]8

2

9

pP

9

�

[1]8

2

[3]9

pP9

�

[2]8

2

[2]9

pP

9

�

8

2

[3]9

pP

8

2

9

pP9

�

8

2

[1]9

pP

9

�

[2]8

2

[3]9

pP

9

�

8

2

9

pP

9

�

8

2

[2]9

pP

�

exp
2

Figure 4.2: Classes9�[r]8�[s] 9pP with�; � 2 f1; 2g andr; s : N ! N, such thatr � 0

ands � 1. In the left direction we increaser and in the right direction we increases (for
short we write8�[s] 9pP instead of9�[0]8�[s] 9pP).

CHAPTER5

The Analytic Logarithmic-Space
Hierarchy

“Puedo escribir los versos ḿas tristes esta noche.
Pensar que no la tengo. Sentir que la he perdido.

Oı́r la noche inmensa, ḿas inmensa sin ella.
Y el verso cae al alma como al pasto el rocı́o.

Que importa que el amor no pudiera guardarla.
La noche est́a estrellada y ella no está conmigo.”

Pablo Neruda

Hierarchies defined overP using quantifiers have been intensively investi-
gated whereas such hierarchies defined over subclasses ofP remain unclear.
In the present chapter, we are interested in the question of whether analytic
polynomial-time hierarchy like results (x3) could also be established for a
hierarchy overL, i.e. an9-8-hierarchy defined overL using logarithmically
length bounded word quantifiers as well as set quantifiers of type 1 and 2.
This hierarchy is calledanalytic logarithmic-space hierarchy.

This chapter is organized as follows: We start defining the existential and uni-
versal quantifiers and the analytic logarithmic-space hierarchy (x5.1). Then,
using equivalence rules we show that every class of this hierarchy can be rep-
resented in a certain normal form (x5.2). It turns out that the last quantifier
of a class in this normal form is either a word quantifier or a set quantifier of
type 2. Thus, we divide our study in two parts depending on this last quanti-
fier: Whether it is a word quantifier (x5.3) or a set quantifier of type 2 (x5.4).
It is shown that each class in this normal form, whose last quantifier is a word
quantifier, coincides withL or one of the classes�p

k

and�p
k

(k � 1) of the
(arithmetic) polynomial-time hierarchy and vice versa (x5.3). Finally, some
remarks about the results are made (x5.5).

5.1 The Operators and the Hierarchy

We will examine a logarithmic-space hierarchy built up by word and set quantifiers, which
intuitively can be interpreted as the analytic polynomial-time hierarchy (x3) defined over
L instead ofP. Next, we define the existential and universal quantifiers (x5.1.1) and the
analytic logarithmic-space hierarchy (x5.1.2).

61

62 5. The Analytic Logarithmic-Space Hierarchy

5.1.1 The Existential and Universal Operators

We will investigate an9-8-hierarchy overL using word quantifiers as well as set quan-
tifiers of type 1 and 2. The definitions of the quantifiers are as inx3.1.1, but the word
quantifiers vary over words whose lengths are logarithmically bounded (instead of poly-
nomially bounded) in the length of the input. However, to fix our notation we include
these definitions. As usual, we define inductively new classes and in parallel the existen-
tial and universal quantifiers. Letk � 1 and�

1

; : : : ; �

k

; � 2 f0; 1; 2g. If K is a class of
type�

1

: : : �

k

� then

For� = 0: 9log
K and8log

K are classes of type�
1

: : : �

k

which are defined as follows

L 2 9

log
K()df there exist anL 0

2 K and a constantc 2 N , such that

(X

1

; : : : ; X

k

) 2 L ! 9x

�

jxj � c � log
�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; x) 2 L

0

�

L 2 8

log
K()df there exist anL 0

2 K and a constantc 2 N , such that

(X

1

; : : : ; X

k

) 2 L ! 8x

�

jxj � c � log
�

X

�

i

=0

i�k

jX

i

j

�

! (X

1

; : : : ; X

k

; x) 2 L

0

�

(Using simple encoding arguments it is easy to see that one can use equivalently“=”
instead of “�” in these definitions.)

For� = 1; 2: 9�K and8�K are classes of type�
1

: : : �

k

which are defined as follows

L 2 9

�

K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L ! 9X ((X

1

; : : : ; X

k

; X) 2 L

0

)

L 2 8

�

K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L ! 8X ((X

1

; : : : ; X

k

; X) 2 L

0

)

To make clear which type of input is used, we also write9

log
x instead of9x, and8log

x

instead of8x.
Following our notation, the set of existential and universal quantifiers is denoted by

�log =df

�

9

log
; 9

1

; 9

2

; 8

log
; 8

1

; 8

2

	

. In our new context, we adapt the definition of the
quantifier string function to comprise9log and8log: For k � 0, Q

1

; : : : ; Q

k

2 f9; 8g

and�
1

; : : : ; �

k

2 flog; 1; 2g, let �(Q�

1

1

: : :Q

�

k

k

) =df �1 : : : �k be the type of the operator
(or quantifier) stringQ�

1

1

: : :Q

�

k

k

, where�
i

= 0 if �
i

= log and�
i

= �

i

otherwise
(i = 1; : : : ; k). ForQ = Q

�

1

1

: : :Q

�

k

k

andX = (X

1

; : : : ; X

k

) we also writeQX instead of
Q

�

1

1

X

1

: : :Q

�

k

k

X

k

. Furthermore, we defineQ =df Q
�

1

1

: : :Q

�

k

k

. The following proposition
is evident.

Proposition 5.1. Let� 2 f0; 1; 2g

� andQ 2 �

�

log. ThencoQL ��(Q)

= QL ��(Q).

Proof. The proof follows as in Proposition 3.1. ❑

5.2. Equivalence Rules and Normal Form 63

5.1.2 The Analytic Logarithmic-Space Hierarchy

As the analytic polynomial-time hierarchy, the analytic logarithmic-space hierarchy will
consist of “ordinary” classes of languages, i.e. classes of type 0. In this case, we will also
omit the superscripts toL, i.e. for quantifier stringQ 2 �

�

log we defineQL =df QL 0�(Q).
Next, the analytic logarithmic-space hierarchy is defined. For quantifier stringsQ 2 �

�

log,
the classesQL are called the classes of theanalytic logarithmic-space hierarchy. Finally,
the classALH is defined as the union of all classes of the analytic logarithmic-space
hierarchy.

5.2 Equivalence Rules and Normal Form

We will employ equivalence rules (x5.2.1) to show that every class of the analytic loga-
rithmic-space hierarchy can be represented in a certain normal form (x5.2.2).

5.2.1 Inclusion and Equivalence Rules

We will use inclusion rules to relate classes of the analytic logarithmic-space hierarchy
in a similar way that was made for the classes of the analytic polynomial-time hierarchy
(x3.2.1). These inclusion rules mean the following: ForR; S 2 �

�

log, the inclusion rule
R!L S is valid if the replacement of the quantifier stringR by the stringS in any context
does not diminish the class in question, i.e.RQL ��(R)�(Q)

� SQL ��(S)�(Q) for allQ 2 �

�

log

and� 2 f0; 1; 2g

�. We say that theequivalence ruleR$L S is valid if the replacement of
the quantifier stringR by the stringS in any context does not change the class in question,
i.e.RQL ��(R)�(Q)

= SQL ��(S)�(Q) for all Q 2 �

�

log and� 2 f0; 1; 2g

�. Obviously, we have
R$L S if and only ifR!L S andS!L R.

The complementation observation is also valid for the rules “!L” and “$L”.

Proposition 5.2 (Complementation).LetR; S 2 �

�

log. If R!L S thenR!L S.

Proof. The proof follows as in Proposition 3.3. ❑

Again, our first rules show relations between the existential (universal, respectively)
quantifiers of different types.

Lemma 5.3. The following inclusion rules are valid:

(1) "!L 9
log and "!L 8

log;

(2) 9log
!L 9

1 and 8

log
!L 8

1;

(3) 91 !L 9
2 and 8

1

!L 8
2.

Proof. The proof follows as in Lemma 3.4. LetQ 2 �

�

log and� 2 f0; 1; 2g

�.

(1) This is the classical case of introducing a dummy word quantifier.

64 5. The Analytic Logarithmic-Space Hierarchy

(2) Only 9log
!L 9

1 has to be proved, since8log
!L 8

1 follows by complementa-
tion. For a languageL 2 9

log
QL �0�(Q) there exist anL

1

2 L �0�(Q) and a constant
c 2 N such that

X 2 L() 9

log
uQY (juj = c � log jXj ^ (X; u; Y) 2 L

1

)

() 9

1

UQY ((X;U; Y) 2 L

2

) ;

whereL
2

=df f(X;U; Y) : (X; hU; c � log jXji ; Y) 2 L

1

g. Let M be a logarithmic-
space machine of type�0�(Q) acceptingL

1

. Consider a machineM 0 of type
�1�(Q) that on input(X;U; Y) computesc � log jXj and thenhU; c � log jXji by
asking1, 11, : : : , 1c logjXj to the oracleU. Then, the machineM 0 works as machine
M on input(X; hU; c � log jXji ; Y). Therefore,L(M 0

) = L

2

andL
2

2 L �1�(Q), i.e.
L 2 9

1

QL �1�(Q).

(3) This is obvious since a logarithmic-space machine of type�1�(Q) can also be
considered to be a machine of type�2�(Q). ❑

The next lemma shows how to melt neighboured existential (universal, respectively)
quantifiers.

Lemma 5.4. For � 2 flog; 1; 2g the following equivalence rules are valid

(1) 9log
9

�

$L 9
� and 8

log
8

�

$L 8
�;

(2) 9�9log
$L 9

� and 8

�

8

log
$L 8

�;

(3) 929� $L 9
2 and 8

2

8

�

$L 8
2;

(4) 9�92 $L 9
2 and 8

�

8

2

$L 8
2.

Proof. The proof follows as in Lemma 3.6. We prove the first rule of every statement, the
other rules follow by complementation. By Lemma 5.3 it is enough to prove the following
inclusion rules

(i) 9

log
9

log
!L 9

log;

(ii) 9

log
9

1

!L 9
1 and919log

!L 9
1;

(iii) 9

2

9

2

!L 9
2.

In order to prove these inclusions, letQ 2 �

�

log and� 2 f0; 1; 2g

�.

(i) Let L 2 9

log
9

log
QL �00�(Q). There exist anL

1

2 L �00�(Q) and constantsc; k 2 N
such that

X 2 L() 9

log
u 9

log
vQY (juj = c � log jXj ^ jvj = k � log jXj ^ (X; u; v; Y) 2 L

1

)

() 9

log
wQY (jwj = 2+ 2 � (c+ k) � log jXj ^ (X;w; Y) 2 L

2

) ;

whereL
2

=df f(X; bu01bv; Y) : (X; u; v; Y) 2 L

1

g. LetM be a logarithmic-space ma-
chine of type�00�(Q) acceptingL

1

, and letM 0 be a machine of type�0�(Q) that
on input(X;w; Y) computesu andv fromw =

b

u01

b

v (where it rejects ifw does not
have this form) and then works asM on input(X; u; v; Y). Therefore,L(M 0

) = L

2

andL
2

2 L �0�(Q), i.e.L 2 9

log
QL �0�(Q).

5.2. Equivalence Rules and Normal Form 65

(ii) It suffices to prove the first rule, because of the obvious rule9

log
9

1

$L 9
1

9

log.
For a languageL 2 9

log
9

1

QL �01�(Q) there exist anL
1

2 L �01�(Q) and a constant
c 2 N such that

X 2 L() 9

log
v 9

1

UQY (jvj = c � log jXj ^ (X; v;U; Y) 2 L

1

)

() 9

1

WQY ((X;W; Y) 2 L

2

) ;

whereL
2

=df

�

(X;W;Y) :

�

X; hW;c � log jXji ; 11+c logjXj

nW;Y

�

2 L

1

	

. LetM be a
logarithmic-space machine of type�01�(Q) acceptingL

1

, and letM 0 be a machine
of type�1�(Q) that on input(X;W; Y) computesc � log jXj and thenhW;c � log jXji
by asking1, 11, : : : , 1c logjXj toW. Then, the machineM 0 works like machineM on
input

�

X; hW;c � log jXji ; 11+c logjXj

nW;Y

�

with the difference that instead of asking
the queryu to oracle11+c logjXj

nW, the query11+c logjXj

u is asked toW. Therefore,
L(M

0

) = L

2

andL
2

2 L �1�(Q), i.e.L 2 9

1

QL �1�(Q).

(iii) Let L 2 9

2

9

2

QL �22�(Q). There exists anL
1

2 L �22�(Q) such that

X 2 L() 9

2

U 9

2

VQY ((X;U;V; Y) 2 L

1

)

() 9

2

WQY ((X;W; Y) 2 L

2

) ;

whereL
2

=df f(X;W;Y) : (X; 0nW;1nW;Y) 2 L

1

g. LetM be a logarithmic-space
machine of type�22�(Q) acceptingL

1

. Consider a machineM 0 of type�2�(Q)

working on input(X;W; Y) asM on input(X; 0nW;1nW;Y) with the difference
that instead of asking the queryw to oracle0nW (oracle1nW), the query0w (1w,
respectively) to oracleW is asked. Therefore,L(M 0

) = L

2

andL
2

2 L �2�(Q), i.e.
L 2 9

2

QL �2�(Q). ❑

The next result shows how to shift a word quantifier followed by a set quantifier with-
out diminishing the class in question.

Lemma 5.5. For � 2 f1; 2g the inclusion rules

9

log
8

�

!L 8
�

9

log and 8

log
9

�

!L 9
�

8

log

are valid.

Proof. The proof is as in Lemma 3.7. We prove the second rule, the first follows by
complementation. LetQ 2 �

�

log and� 2 f0; 1; 2g

�. For a languageL 2 8

log
9

�

QL �0��(Q)

there exist anL
1

2 L �0��(Q) and a constantc 2 N such that

X 2 L() 8

log
u 9

�

VQY (juj = c � log jXj! (X; u;V; Y) 2 L

1

)

Now, we defineL
2

=df f(X;W;u; Y) : (X; u; unW;Y) 2 L

1

g and we prove

X 2 L() 9

�

W 8

log
uQY (juj = c � log jXj! (X;W;u; Y) 2 L

2

)

“=)”: For everyu 2 f0; 1g

c logjXj letV
u

be a set such that(X; u;V
u

; Y) 2 L

1

and define
W =

S

juj=c logjXj

fuw : w 2 V

u

g. Then(X;W;u; Y) 2 L

2

for everyu 2 f0; 1g

c logjXj.

66 5. The Analytic Logarithmic-Space Hierarchy

“(=”: Let (X;W;u; Y) 2 L

2

for everyu 2 f0; 1g

c logjXj. Hence, for eachu 2 f0; 1g

c logjXj

there exists a setV
u

=df unW such that(X; u;V
u

; Y) 2 L

1

.

LetM be a logarithmic-space machine of type�0��(Q) acceptingL
1

, and letM 0 be
a machine of type��0�(Q) working on input(X;W;u; Y) asM on input(X; u; unW;Y)

with the difference that instead of asking the queryw to oracleunW the queryuw is
asked toW. SinceM asksunW in a type� manner, the machineM 0 does it as well.
Therefore,L(M 0

) = L

2

andL
2

2 L ��0�(Q), i.e.L 2 9

�

8

log
QL ��0�(Q). ❑

Combining previous results we obtain the following equivalence rules which show
how to eliminate word quantifiers.

Corollary 5.6. For k � 1, �
1

; �

2

; : : : ; �

k

2 f1; 2g and � 2 flog; 1; 2g the equivalence
rules

9

log
8

�

1

8

�

2

: : :8

�

k

9

�

$L 8
�

1

8

�

2

: : :8

�

k

9

� and

8

log
9

�

1

9

�

2

: : :9

�

k

8

�

$L 9
�

1

9

�

2

: : :9

�

k

8

�

are valid.

Proof. By rules of Lemmas 5.4 and 5.5 we can conclude the rule9

log
8

�

1

: : :8

�

k

9

�

!L

8

�

1

: : :8

�

k

9

�. The rule8�1 : : :8�k9� !L 9
log
8

�

1

: : :8

�

k

9

� is valid by Lemma 5.3. ❑

Next, we prove “equivalence rules” which are valid only in a special context. In the
previous result was shown how to eliminate word quantifiers. Another way to do that is
stated in the following result.

Proposition 5.7. LetQ 2

�

9

log
; 8

log
	

�

and� 2 f0; 2g

�. ThenQL ��(Q)

= L �.

Proof. The inclusion “�” is valid by Lemma 5.3. The inclusionQL ��(Q)

� L � is evi-
dent, since the word quantifiersQ, which vary over words whose lengths are logarithmi-
cally bounded in the length of the input, can easily be simulated by anL-computation. ❑

The next lemma says that a set quantifier of type 1 is exactly as powerful as the corre-
sponding word quantifier when applied toL.

Lemma 5.8. Let� 2 f0; 1; 2g

�. Then

9

logL �0

= 9

1L �1 and 8

logL �0

= 8

1L �1

Proof. We prove the first statement, the second follows by complementation. The in-
clusion “�” is valid by Lemma 5.3, thus only91L �1

� 9

logL �0 has to be proved. By
definition L 2 9

1L �1 if and only if there exists anL 0

2 L �1, such thatX 2 L ()

9

1

U ((X;U) 2 L

0

). LetM be a logarithmic-space machine of type�1 acceptingL 0. With-
out loss of generality we assume thatM does not make a query twice. Since no query
of M on input(X;U) to oracleU is longer thanc � log jXj for suitable constantc 2 N
and this oracle is of type 1,U is queried at mostc � log jXj times. LetM 0 be a machine
of type�0 working on input(X; u) asM on input(X;U) with the following difference:
Instead of the answer ofU to thei-th query ofM the machineM 0 uses thei-th bit of u.
Now, 91U ((X;U) 2 L

0

) () 9

log
u (juj = c � log jXj ^ (X; u) 2 L(M

0

)) can be seen as
in Lemma 3.5. Hence,L(M 0

) 2 L �0 andL 2 9

logL �0. ❑

5.2. Equivalence Rules and Normal Form 67

5.2.2 A Normal Form Theorem

Now, we are ready to state the fact that every class of the analytic logarithmic-space
hierarchy can be represented in a certain normal form. Forl � 1, letQ

l

=df 9 if l is odd
andQ

l

=df 8 otherwise. Fork;m � 0, �
1

; �

2

; �

3

; : : : ; �

k

2 f1; 2g andl
1

; l

2

; l

3

; : : : ; l

k

2

N we define

KL

�

h�

1

i

l

1

h�

2

i

l

2

h�

3

i

l

3

: : : h�

k

i

l

k

;m

�

=df 9
�

1

: : :9

�

1

| {z }

l

1

times

8

�

2

: : :8

�

2

| {z }

l

2

times

9

�

3

: : :9

�

3

| {z }

l

3

times

: : :Q

�

k

k

: : :Q

�

k

k

| {z }

l

k

times

Q

log
k+1

: : :Q

log
k+m

L

and

K

2

L

�

h�

1

i

l

1

h�

2

i

l

2

h�

3

i

l

3

: : : h�

k

i

l

k

;m

�

=df 9
�

1

: : :9

�

1

| {z }

l

1

times

8

�

2

: : :8

�

2

| {z }

l

2

times

9

�

3

: : :9

�

3

| {z }

l

3

times

: : :Q

�

k

k

: : :Q

�

k

k

| {z }

l

k

times

Q

log
k+1

: : :Q

log
k+m

Q

2

k+m+1

L

We also write� instead ofh�i
1

, (h�i
i

)

j instead ofh�i
i

: : : h�i

i

| {z }

j times

and�j instead of� : : : �
| {z }

j times

.

Theorem 5.9 (Normal Form Theorem). Every class of the analytic logarithmic-space
hierarchyALH coincides with one of the classesL, KL(�;m), coKL(�;m), K2

L(�; n) or
coK2

L(�; n), where� 2 (f2g [fh1i

l

: l � 1g)

+, m � 1 andn � 0.

Proof. Let us first prove the chain for� 2 (f2g [fh1i

l

: l � 1g)

�. Consider an arbitrary
class of the analytic logarithmic-space hierarchy. If this class is definedwithout quanti-
fiers, then it isL. Otherwise it coincides with one of the classesKL(�;m), coKL(�;m),
K

2

L(�; n) or coK2

L(�; n) with � 2 (f2g [fh1i

l

: l � 1g)

�, m � 1 andn � 0. This can
be seen as follows: By Lemma 5.4, we bring the quantifier prefix in a form, where no
quantifier substring9�19�2 or 8�18�2 appears with�

1

; �

2

2 flog; 1; 2g and either�
1

6= 1

or �
2

6= 1, i.e. 9191 or 8181, can appear. By Lemmas 5.8 and 5.4 a quantifier string
9

1

: : :9

1 or 81 : : :81 can be replaced by the corresponding word quantifier when applied
to L. Hence, we ensure that after the last alternation in the sequence of9-8-quantifiers
only either a word quantifier or a set quantifier of type 2 occurs. By Corollary 5.6, we
eliminate all word quantifiers which are followed by a set quantifier not being oftype
2 applied toL. This last step can generate quantifier substrings9

�

1

9

�

2 or 8�18�2 with
�

1

2 flog; 1; 2g, �
2

2 f1; 2g and either�
1

6= 1 or �
2

6= 1. However, applying repeatedly
the rules of Lemma 5.4 and Corollary 5.6 we get the desired result.

Now, we show that it is enough to consider� 2 (f2g [fh1i

l

: l � 1g)

+. We conclude

KL(";m) = L by Proposition 5.7

and

K

2

L("; n) �

�

KL(2; 1) if n is even

coKL(2; 1) if n is odd
by Lemmas 5.5, 5.4 and 5.3

� K

2

L("; n) by Proposition 5.7 ❑

68 5. The Analytic Logarithmic-Space Hierarchy

5.3 Characterizing the ClassesKL(�) and coKL(�)

We will characterize the classes having the formKL(�;m) or coKL(�;m) by well-known
complexity classes, where� 2 (f2g [fh1i

l

: l � 1g)

+ andm � 1. The simplest classes
of these types are those containing only one set quantifier of type 1 and one word quan-
tifier, i.e.KL(1; 1) = 9

1

8

logL and coKL(1; 1) = 8

1

9

logL. In a personal communication,
Allender pointed out that these classes coincide withL.

Theorem 5.10. [All97] 918logL = 8

1

9

logL = L.

Proof. SinceL is closed under complementation, only918logL = L has to be proved.
The inclusion “�” is validated by Lemma 5.3. For the other inclusion, the idea is the
following: If we follow the proof of918pP � PSPACE(Theorem 3.9) we can conclude
9

1

8

logL � NL. However, Allender pointed out that the guesses of the machineM to
the answers of the oracleU on path� can be replaced by a double recursion. Hence,
9

1

8

logL � L. ❑

We next define a problem which isDLOGSPACE-complete for�p
k

. Let B
k

be the
following problem:

Given: A boolean expression�with boolean variables partitioned intok setsX
1

; : : : ; X

k

.

Question: Is the expression9X
1

8X

2

9X

3

: : :Q

k

X

k

(�(X

1

; X

2

; : : : ; X

k

) � 1) true?

where, as usual,Q
l

=df 9 if l is odd andQ
l

=df 8 otherwise, and9X
i

(8X
i

) means there
exists an (for all, respectively) assignment for the variables inX

i

.

Lemma 5.11. [Wra77] TheB
k

problem isDLOGSPACE-complete for�p
k

with the ex-
pression� being in conjunctive normal-form ifk is odd and in disjunctive normal-form
otherwise.

It turns out that the remainder classesKL(�) and coKL(�) which we have not already
been characterized coincide with classes of the (arithmetic) polynomial-time hierarchy.
The following theorem shows which classes of the analytic logarithmic-spacehierarchy
contain a level of the (arithmetic) polynomial-time hierarchy.

Theorem 5.12. For k � 1 the inclusions

�

p
k

� KL

�

1

k

; 2

�

\ KL

�

1

k-1

h1i

2

; 1

�

\ KL

�

1

k-1

2; 1

�

and

�

p
k

� coKL

�

1

k

; 2

�

\ coKL

�

1

k-1

h1i

2

; 1

�

\ coKL

�

1

k-1

2; 1

�

are valid.

Proof. We prove the first inclusion, the second follows by complementation. Consider
the case thatk is odd.

“�p
k

� KL

�

1

k

; 2

�

”: We will prove B
k

2 9

1

8

1

: : :9

1

8

log
9

logL 01

k

00 (Lemma 5.11). Let�
be a boolean expression with boolean variables partitioned intok setsX

1

; : : : ; X

k

(� is in
a conjunctive normal-form). The idea is the following: Thei-th oracle contains a variable

5.3. Characterizing the ClassesKL(�) andcoKL(�) 69

u of setX
i

if and only if “u is true”. Thus, for each clause (8-word quantifier) it will be
verified if there exists a literal (9-word quantifier) which makes this clause true. Formally,
letM be a machine of type01k00 working on input(�;U

1

; : : : ; U

k

; u;w) as follows (if
� is not in a conjunctive normal-form thenM rejects the input):M checks whether the
literalw orw appears in theu-th clause, rejects the input in a negative case and accepts
the input if both appear in theu-th clause. Otherwise (i.e. eitherw or w appears in the
u-th clause), choosei 2 f1; : : : ; kg such thatw 2 X

i

. Then,M accepts the input if and
only if w appears in theu-th clause andw 2 U

i

or w appears in theu-th clause and
w 62 U

i

. Therefore,

� 2 B

k

() 9

1

U

1

8

1

U

2

: : :9

1

U

k

8

log
u 9

log
w ((�;U

1

; U

2

; : : : ; U

k

; u;w) 2 L(M))

andL(M) 2 L 01

k

00, i.e.B
k

2 KL

�

1

k

; 2

�

.

“�p
k

� KL

�

1

k-1

h1i

2

; 1

�

”: Consider a machineM 0 of type 01k+10 working on input
(�;U

1

; : : : ; U

k+1

; u) as follows: First, it asksu01; u02; : : : ; u0dlogne to U
k+1

, wheren
is the number of boolean variables in�. Let w be the sequence of answers andM be
the machine of the previous case. ThenM

0 works asM on input(�;U
1

; : : : ; U

k

; u;w).
Therefore,

� 2 B

k

() 9

1

U

1

8

1

U

2

: : :9

1

U

k

9

1

U

k+1

8

log
u ((�;U

1

; U

2

; : : : ; U

k+1

; u) 2 L(M

0

))

andL(M 0

) 2 L 01

k+1

0, i.e.B
k

2 KL

�

1

k-1

h1i

2

; 1

�

.

“�p
k

� KL

�

1

k-1

2; 1

�

”: By the previous inclusion and Lemmas 5.3 and 5.4 it follows that
�

p
k

� KL

�

1

k-1

h1i

2

; 1

�

� KL

�

1

k-1

2; 1

�

.

In the case thatk is even,�p
k

� coKL

�

1

k

; 2

�

\ coKL

�

1

k-1

h1i

2

; 1

�

\ coKL

�

1

k-1

2; 1

�

can be proved in the same way which yields the desired result by complementation. ❑

The next theorem shows which classes of the analytic logarithmic-space hierarchy are
included in a level of the (arithmetic) polynomial-time hierarchy.

Theorem 5.13. For k � 1 andm � 0 the inclusions

KL

�

2

k

;m

�

[KL

�

2

k

1; 1

�

� �

p
k

and coKL

�

2

k

;m

�

[coKL

�

2

k

1; 1

�

� �

p
k

are valid.

Proof. We prove the first statement, the second follows by complementation. Forl � 1,
letQ

l

=df 9 if l is odd andQ
l

=df 8 otherwise. By replacing oracle queries by consuming
inputs bits, the following inclusion is evident (see Proposition 3.12)

9

2

8

2

9

2

: : :Q

2

k

L � 9

p
8

p
9

p
: : :Q

p
k

P (5.1)

Hence,

70 5. The Analytic Logarithmic-Space Hierarchy

“KL

�

2

k

;m

�

� �

p
k

”: We conclude

9

2

8

2

9

2

: : :Q

2

k

Q

log
k+1

: : :Q

log
k+m

L � 9

2

8

2

9

2

: : :Q

2

k

L by Proposition 5.7

� 9

p
8

p
9

p
: : :Q

p
k

P by Equation (5.1)

� �

p
k

“KL

�

2

k

1; 1

�

� �

p
k

”: The proof of 918logL � L (Theorem 5.10) remains valid if the
machines have additionallyk oracles of type 2, i.e.918logL 02

k

10

� L 02

k

. Therefore,

9

2

8

2

9

2

: : :Q

2

k

Q

1

k+1

Q

log
k+2

L � 9

2

8

2

9

2

: : :Q

2

k

L

� 9

p
8

p
9

p
: : :Q

p
k

P by Equation (5.1)

� �

p
k

where we use the base819logL � L if k is odd. ❑

The following theorem summarizes the results showing a complete characterizations
for the classesKL(�;m) or coKL(�;m) by well-known complexity classes, where� 2
(f2g [fh1i

l

: l � 1g)

+ andm � 1.

Theorem 5.14. Letk;m � 1 and�
1

; : : : ; �

k

2 f2g [fh1i

l

: l � 1g. Then

KL(�1 : : : �k;m) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

L if k = 1, �
k

= 1 andm = 1,

�

p
k-1

if k � 2, �
k

= 1 andm = 1,

�

p
k

if k � 1, �
k

= h1i

l

, l � 2, andm = 1,

�

p
k

if k � 1, �
k

= 2, andm = 1,

�

p
k

if k � 1 andm � 2.

Proof. The first line is valid by Theorem 5.10. By Lemmas 5.3 and 5.4 it follows that a
substring of existential (universal) quantifiers of type 1 can be replaced by an existential
(universal, respectively) quantifier of type 2 without diminish the class in question. Hence,
the remaining lines follow by Lemma 5.3 and Theorems 5.12 and 5.13. ❑

5.4 Characterizing ClassesK2

L(�) and coK2

L(�)

In this section, we characterize classes having the formK

2

L(�; n) or coK2

L(�; n) by well-
known complexity classes, where� 2 (f2g [fh1i

l

: l � 1g)

+ andn � 0. The simplest
classes of these types are those containing an9-8-alternate sequence of two set quanti-
fiers where the first is of type 1 and the second is of type 2, i.e.K

2

L(1; 0) = 9

1

8

2L and
coK2

L(1; 0) = 8

1

9

2L, which turn out to coincide with coNPandNP, respectively.

Theorem 5.15.9182L = coNP and 8

1

9

2L = NP.

Proof. We prove the first statement, the second follows by complementation. By Theorem
5.12 and Proposition 5.7 follows coNP � 8

2

9

logL � 8

2L which is include in9182L by

5.4. Characterizing ClassesK2

L(�) andcoK2

L(�) 71

Lemma 5.3. Thus, it remains to prove9182L � coNP. Let L 2 9

1

8

2L. There exists an
L

1

2 L 012 such thatx 2 L () 9

1

U 8

2

W ((x;U;W) 2 L

1

). LetM
1

be a logarithmic-
space machine of type012 acceptingL

1

. Therefore, no query ofM
1

on input(x;U;W)

to oraclesU andW is longer thanc � log jxj for a suitable constantc. For a given input
(x;U;W), it is important thatM

1

asks the oracleU only queries from oneoracle pathu
1

,
u

1

u

2

, : : : , u
1

u

2

: : : u

c logjxj

. LetM be a machine of type0000 that on input(x; up; ua; z)

works asM
1

on input(x;U;W) with the following differences:

(a) When the machineM
1

asks a query to oracleU from oracle pathup thenM uses
the oracle answer encoded inua. The machineM stops the simulation if a query is
asked toU which is not from the oracle pathup.

(b) Instead of the answer ofW to queryw of M
1

the machineM uses thei-th bit of
z, wherew = lex(i).

The machineM accepts if and only if the simulation is stopped in (a) or the simulation of
M

1

ends accepting. Obviously,L(M) 2 P0000 and for a suitable polynomialp

x 2 L() 8

log
up 9

log
ua8

p
z

�

jupj = c � log jxj! (juaj = c � log jxj

^ (jzj = p(jxj)! (x; up; ua; z) 2 L(M)))

�

() 8

log
up 8

p
y

��

jupj = c � log jxj ^ jyj = 2

c logjxj

� p(jxj)

�

! (x; y) 2 L(M

2

)

�

whereM
2

is a machine of type000working on input(x; up; y) as follows (coNP is closed
under_ and^): M

2

considers step by step the wordsua in lexicographical order. For
eachua 2 f0; 1g

c logjxj (see Figure 5.1):

(1) Choosei such thatua = lex
c logjxj

(i) and letz be thei-th fragment of sizep(jxj)
of the wordy.

(2) NowM

2

simulatesM on input(x; up; ua; z). If the simulation ends accepting,
thenM

2

accepts the input.

If M
2

has not accepted the input in (2), then the input is rejected. This showsL 2 8

log
8

pP
which is included in coNP. ❑

The following result shows which classes of the analytic logarithmic-space hierarchy
whose last set quantifier is of type 2 contain a level of the (arithmetic) polynomial-time
hierarchy.

Theorem 5.16. For k � 2 the inclusions

�

p
k

� K

2

L

�

1

k-2

2; 0

�

and �

p
k

� coK2

L

�

1

k-2

2; 0

�

are valid.

Proof. We prove the first inclusion, the second follows by complementation. Consider
the case thatk is even. We will proveB

k

2 9

1

8

1

: : :8

1

9

2

8

2L 01

k-2

22 (Lemma 5.11). Let
� be a boolean expression with boolean variables partitioned intok setsX

1

; : : : ; X

k

(�

72 5. The Analytic Logarithmic-Space Hierarchy

ua;3

z2f0;1g

p(jxj

ua;2

ua;3

z2f0;1g

p(jxj

z2f0;1g

p(jxj

accepts

rejects

up ua;1

ua;4

ua;4

ua;2

ua;4

ua;4

M

(

x

;

u

p

;

u

a;
1

;

z

)

M

(

x

;

u

p

;

u

a;
2

;

z

)

M

(

x

;

u

p

;

u

a;
2

;

z

)

M

(

x

;

u

p

;

u

a;
3

;

z

)

M

(

x

;

u

p

;

u

a;
3

;

z

)

Figure 5.1: Simulation of machineM
2

on input(x; up; y) for all y 2 f0; 1g

2

c�logjxj

p(jxj).
For short we writeua;i instead oflex

c logjxj

(i).

is in disjunctive normal-form). The idea is similar to the proof of Theorem 5.12: The
i-th oracle contains a variableu of setX

i

if and only if “u is true”. We will construct
a machine which may query for two or more variables of a setX

i

(that is not a type 1
querying). To overcome this difficulty, the oracle bounded by the9

2 quantifier will also
reflect thek - 2 first oracles, i.e. the oracles of type 1. Formally, letM be a machine
of type01k-222 working on input(�;U

1

; : : : ; U

k

) as follows (if� is not in disjunctive
normal-form thenM rejects the input):

“1 2 U

k

”: M checks whetherU
k-1

reflects thek- 2 first oracles. Letu be the sequence
of answers ofU

k

to the queries12, 13, : : : , 11+dlogne, wheren is the number of boolean
variables in�. Then,M accepts the input if and only if fori = 1; : : : ; k- 2

u 2 U

i

 !

\lex(i)01u 2 U

k-1

“1 62 U

k

”: M checks whether a clause in� is satisfiable. The machineM accepts the
input if and only if there exists a clause(l

1

^ � � �^ l

m

) in � such that forj = 1; : : : ;m

1 � i < k �!

�

\lex(i)01u 2 U

k-1

if l
j

= u,
\lex(i)01u 62 U

k-1

if l
j

= u,

i = k �!

�

0u 2 U

k

if l
j

= u,

0u 62 U

k

if l
j

= u,

wherel
j

= u or l
j

= u for a variableu in �, andi 2 f1; : : : ; kg such thatu 2 X

i

.

5.4. Characterizing ClassesK2

L(�) andcoK2

L(�) 73

Hence, the oraclesU
1

; : : : ; U

k-2

are queried in a type 1 manner and

� 2 B

k

() 9

1

U

1

8

1

U

2

: : :8

1

U

k-2

9

2

U

k-1

8

2

U

k

((�;U

1

; U

2

; : : : ; U

k

) 2 L(M))

Therefore,L(M) 2 L 01

k-2

22, i.e.B
k

2 K

2

L

�

1

k-2

2; 0

�

.
In the case thatk is odd,�p

k

� coK2

L

�

1

k-2

2; 0

�

can be proved in the same way which
yields the desired result by complementation. ❑

The next theorem shows which classes of the analytic logarithmic-space hierarchy
whose last set quantifier is of type 2 are included in a level of the (arithmetic) polynomi-
al-time hierarchy.

Theorem 5.17. For k � 1 the inclusions

K

2

L

�

2

k

1; 0

�

� �

p
k

and coK2

L

�

2

k

1; 0

�

� �

p
k

are valid.

Proof. We prove the first statement, the second follows by complementation. Forl � 1,
letQ

l

=df 9 if l is odd andQ
l

=df 8 otherwise. By replacing oracle queries by consuming
inputs bits (see Proposition 3.12), the proof of9

1

8

2L � 8

pP(Theorem 5.15) remains valid
if the machines have additionallyk oracles of type 2 andk polynomially length bounded
word quantifiers, respectively, i.e.9182L 02

k

12

� 8

pP00

k

0. Therefore,

K

2

L

�

2

k

1; 0

�

� 9

2

8

2

9

2

: : :Q

2

k

Q

1

k+1

Q

2

k+2

L

� 9

p
8

p
9

p
: : :Q

p
k

Q

p
k+2

P

� 9

p
8

p
9

p
: : :Q

p
k

P by Lemma 3.6

� �

p
k

where we use the base8192L � 9

pP if k is odd. ❑

Next, we characterize classes having the formK2

L(�; n) or coK2

L(�; n) by well-known
complexity classes, where� 2 (f2g [fh1i

l

: l � 1g)

+ andn � 0.

Theorem 5.18. Letk � 1, �
1

; : : : ; �

k

2 f2g [fh1i

l

: l � 1g andn � 0. Then

K

2

L(�1 : : : �k; n) =

8

>

>

>

<

>

>

>

:

�

p
k

if n is odd,

coNP if n = 0, k = 1 and�
k

= 1,

�

p
k-1

if n = 0, k � 2 and�
k

= 1,

�

p
k+1

if n is even and�
k

= 2.

74 5. The Analytic Logarithmic-Space Hierarchy

Proof. For l � 1, letQ
l

=df 9 if l is odd andQ
l

=df 8 otherwise. For the first line, we
conclude (ifn is odd, thenQ

k

= Q

k+n+1

)

K

2

L(�1 : : : �k; n) � 9

2

8

2

9

2

: : :Q

2

k

Q

log
k+1

: : :Q

log
k+n

Q

2

k+n+1

L by Lemmas 5.3 and 5.4

� 9

2

8

2

9

2

: : :Q

2

k

Q

2

k+n+1

Q

log
k+1

L by Lemmas 5.4 and 5.5

� 9

2

8

2

9

2

: : :Q

2

k

Q

log
k+1

L by Lemma 5.4

� �

p
k

by Theorem 5.13

� KL

�

1

k

; 2

�

by Theorem 5.12

� K

2

L(�1 : : : �k; n) by Lemma 5.3

The second line is valid by Theorem 5.15. For the remaining lines the direction� is valid
by Lemmas 5.3, 5.4 and 5.5 and Theorems 5.17 and 5.13. The direction� is valid by
Lemma 5.3 and Theorems 5.12 and 5.16. ❑

5.5 Conclusions

In x5.2 we showed that every class of the analytic logarithmic-space hierarchy can be
represented in a certain normal form, where the last quantifier is either aword quantifier or
a set quantifier of type 2. Next, we showed that each class in this normal form, whose last
quantifier is a word quantifier, coincides withL or one of the classes�p

k

and�p
k

(k � 1)
of the (arithmetic) polynomial-time hierarchy and vice versa (x5.3). The classes in this
normal form, whose last quantifier is a set quantifier of type 2, were examined inx5.4.
However, the following cases are still open fork � 1, �

1

; : : : ; �

k-1

2 f2g [fh1i

l

: l � 1g

andn � 0 being even (see Theorem 5.18):K2

L(�1 : : : �k; n) and coK2

L(�1 : : : �k; n) such
thatn � 2 andt

k

= 1, or t
k

= h1i

l

with l � 2.
We have proved9182L = coNP (Theorem 5.15). However, the class919182L (an

open case) is probably more powerful. This is shown in the following simple observation.

Proposition 5.19.�p
2

� 9

1

9

1

8

2L � �

p
2

.

Proof. The last inclusion follows by Lemmas 5.3 and 5.4 and Theorem 5.13. Thus, it
remains to prove�p

2

� 9

1

9

1

8

2L. We use Wagner’s characterization of�

p
2

= NP
�

n

O(1)

�

[Wag90]. For a languageL 2 �

p
2

there exist anL 0

2 NP and a polynomialp such that
(x; j+ 1) 2 L

0

! (x; j) 2 L

0 for all j and

x 2 L() maxfi : 1 � i � p(jxj) and(x; i) 2 L

0

g � 1 mod 2

The max-function returns ani such that(x; i) 2 L

0 and(x; i) 62 L

0. Furthermore,(x; k) 2
L

0 for all 1 � k � i and (x; l) 62 L

0 for all l > i. Thus, giving ani we can verify
if it is the maximum by an (NP^ coNP)-computation. By Lemma 5.3, Proposition 5.7
and Theorem 5.12 followNP � 9

1

9

1

8

logL and coNP � 8

2L. Therefore,NP^ coNP �

9

1

9

1

8

logL ^ 8

2L � 9

1

9

1

8

log
8

2L � 9

1

9

1

8

2L (Lemma 5.4). Sincei can be encoded in
a logarithmically length bounded word, then�p

2

� 9

log
9

1

9

1

8

2L � 9

1

9

1

8

2L (Lemma
5.4). ❑

CHAPTER6

Probabilistic Bounded Error Operators

“O amor nasce do conhecimento mútuo e se
fortalece na compreensão das diferenças.”

G. Marques

In the present chapter, we consider probabilistic bounded error quantifiers.
We show under which general conditions the type 2 of a bounded error set
quantifier can be reduced. Furthermore, interesting characterizations are pre-
sented. For example, we characterize (one prover) interactive proof systems
by an existential set quantifier of type 1 and a probabilistic bounded error
word quantifier applied toP, and show that a bounded error set quantifier of
type 1 applied toPSPACEcan be eliminated without changing the class in
question. We also discuss the relativizability of the results.

An outline of this chapter follows: We start defining the probabilistic bounded
error quantifiers and giving some more notations (x6.1). Inclusion rules are
also shown (x6.2). Then, we examine classes obtained by applying existen-
tial, universal or probabilistic bounded error quantifiers to well-known com-
plexity classes (x6.3). Results on interactive proof systems are presented in a
separate section (x6.4). Finally, we make some remarks about the results and
discuss the relativizability of results presented so far (x6.5).

6.1 The Probabilistic Bounded Error Quantifiers

We start with relating languages with infinite words. Letf0; 1g

! denote the set of infinite
binary words. We also write!-word instead of infinite word. Using lexicographic order-
ing of f0; 1g�, we identify as usual languages overf0; 1g with binary!-words (see proof
of Proposition 3.12).

We will define probabilistic quantifiers varying over infinite objects, namely set of
words. The following probability field is used: DefineC

u

=df u�f0; 1g
! as the set of all bi-

nary!-words prefixed byu 2 f0; 1g

�, a so called cylinder set. LetC �U =df fCu

: u 2 Ug

andK =df fC �U : kUk <1g, and let�(K) be the least�-algebra containingK. Thus,
(f0; 1g

!

; �(K) ; �) is a probability field, where� : �(K) ! [0; 1] is the probability mea-
sure which is uniquely generated by�(C

u

) = 2

-juj for all u 2 f0; 1g

�. It is well-known
that it is equivalent to take the product measure� : 2

f0;1g

!

! [0; 1] based on the mea-
sure�

0

: 2

f0;1g

! [0; 1] which is defined by�
0

(f0g) = �

0

(f1g) =

1

2

. For brevity, if�

75

76 6. Probabilistic Bounded Error Operators

is a predicate taking binary!-words as instance, then�U(� (U)) is written instead of
� (fU : � (U)g).

Following previous quantifier definitions, we define inductively new classes and in
parallel the probabilistic bounded error quantifiers. Letk � 1 and �

1

; : : : ; �

k

; � 2

f0; 1; 2g. If K is a class of type�
1

: : : �

k

� then

For� = 0: BPp
K, Rp

K andRp
K are classes of type�

1

: : : �

k

which are defined as follows

L 2 BPp
K()df there exist anL 0

2 K and a polynomialp, such that

(X

1

; : : : ; X

k

) 2 L!prob

z : jzj = p

�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; z) 2 L

0

�

� 2=3

(X

1

; : : : ; X

k

) 62 L!prob

z : jzj = p

�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; z) 2 L

0

�

� 1=3

L 2 Rp
K()df there exist anL 0

2 K and a polynomialp, such that

(X

1

; : : : ; X

k

) 2 L!prob

z : jzj = p

�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; z) 2 L

0

�

� 2=3

(X

1

; : : : ; X

k

) 62 L!prob

z : jzj = p

�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; z) 2 L

0

�

= 0

L 2 Rp
K()df there exist anL 0

2 K and a polynomialp, such that

(X

1

; : : : ; X

k

) 2 L!prob

z : jzj = p

�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; z) 2 L

0

�

= 1

(X

1

; : : : ; X

k

) 62 L!prob

z : jzj = p

�

X

�

i

=0

i�k

jX

i

j

�

^ (X

1

; : : : ; X

k

; z) 2 L

0

�

� 1=3

wherez 2 f0; 1g

p

(

P

i�k �

i

=0

jX

i

j

) is randomly chosen under uniform distribution.

For � = 1; 2: BP�K, R�

K andR�

K are classes of type�
1

: : : �

k

which are defined as
follows

L 2 BP�K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L!�X((X

1

; : : : ; X

k

; X) 2 L

0

) � 2=3

(X

1

; : : : ; X

k

) 62 L!�X((X

1

; : : : ; X

k

; X) 2 L

0

) � 1=3

6.2. Inclusion Rules 77

L 2 R�

K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L!�X((X

1

; : : : ; X

k

; X) 2 L

0

) � 2=3

(X

1

; : : : ; X

k

) 62 L!�X((X

1

; : : : ; X

k

; X) 2 L

0

) = 0

L 2 R�

K()df there exists anL 0

2 K, such that

(X

1

; : : : ; X

k

) 2 L!�X((X

1

; : : : ; X

k

; X) 2 L

0

) = 1

(X

1

; : : : ; X

k

) 62 L!�X((X

1

; : : : ; X

k

; X) 2 L

0

) � 1=3

Following our notation, the set of probabilistic bounded error quantifiers is denoted
by �%p =df

�

BPp
;BP1;BP2;Rp

;R1

;R2

;Rp
;R1

;R2

	

. Next, we extend the definition of the
quantifier string function to comprise also probabilistic bounded error quantifiers:For
k � 0, Q

1

; : : : ; Q

k

2

�

BP;R;R; 9; 8
	

and�
1

; : : : ; �

k

2 fp; 1; 2g, let �(Q�

1

1

: : :Q

�

k

k

) =df

�

1

: : : �

k

be the type of the operator (or quantifier) stringQ�

1

1

: : :Q

�

k

k

, where�
i

= 0 if
�

i

= p and�
i

= �

i

otherwise (i = 1; : : : ; k). ForQ = Q

�

1

1

: : :Q

�

k

k

andX = (X

1

; : : : ; X

k

)

we also writeQX instead ofQ�

1

1

X

1

: : :Q

�

k

k

X

k

. Furthermore, we defineBP =df BP,

R =df R andQ =df Q
�

1

1

: : :Q

�

k

k

. The following proposition is evident.

Proposition 6.1. Let� 2 f0; 1; 2g

� andQ 2 (�%p [�p)
�. ThencoQP��(Q)

= QP��(Q).

Proof. The proof follows as in Proposition 3.1. ❑

6.2 Inclusion Rules

We start observing that the rules “!P” and “$P” (x3.2.1) and the “equivalence rule” of
Lemma 3.5 remain valid when applied to the classes BP�

QP���(S) and R�QP���(S) for
� 2 f0; 1; 2g

� and quantifier stringQ 2 �

+

p . Now, we define inclusion rules to relate
classes involving existential, universal or probabilistic bounded error quantifiers applied
to P. These rules are applied following our standard sense: ForR; S 2 (�%p [�p)

�, the
inclusion ruleR!%P S is valid if the replacement of the quantifier stringR by the stringS
in any context does not diminish the class in question, i.e.RQP��(R)�(Q)

� SQP��(S)�(Q)

for all Q 2 (�%p [�p)
� and� 2 f0; 1; 2g

�. Obviously, the complementation observation is
also valid for “!%P” rules.

Proposition 6.2 (Complementation).LetR; S 2 (�%p [�p)
�. If R!%P S thenR!%P S.

Our first rules show relations between probabilistic bounded error quantifiers of dif-
ferent types.

Lemma 6.3. The following inclusion rules are valid:

(1) "!%P BPp and "!%P Rp;

(2) BPp
!%P BP1 and Rp

!%P R1;

(3) BP1 !%P BP2 and R1

!%P R2.

78 6. Probabilistic Bounded Error Operators

Proof. The proof follows as in Lemma 3.4. LetQ 2 (�%p [�p)
� and� 2 f0; 1; 2g

�.

(1) This is the classical case of introducing a dummy word quantifier.

(2) We prove the first rule, the other follows in the same way. For a languageL 2

BPp
QP�0�(Q) there exist anL

1

2 P�0�(Q) and a polynomialp such that

X 2 L!probfz : jzj = p(jXj)^QY ((X; z; Y) 2 L

1

)g � 2=3

X 62 L!probfz : jzj = p(jXj)^QY ((X; z; Y) 2 L

1

)g � 1=3

wherez 2 f0; 1g

p(jXj) is randomly chosen under uniform distribution. Now, define
L

2

=df f(X;U; Y) : (X; hU; p(jXj)i ; Y) 2 L

1

g. Obviously, for eachX we have

probfz : jzj = p(jXj)^QY ((X; z; Y) 2 L

1

)g = �U(QY ((X;U; Y) 2 L

2

))

Let M be a polynomial-time machine of type�0�(Q) acceptingL
1

. Consider a
machineM 0 of type �1�(Q) that on input(X;U; Y) computesp(jXj) and then
hU; p(jXj)i by asking1, 11, : : : , 1p(jXj) to the oracleU. Then,M 0 works as
M on input (X; hU; p(jXj)i ; Y). Therefore,L(M 0

) = L

2

andL
2

2 P�1�(Q), i.e.
L 2 BP1QP�1�(Q).

(3) This is obvious since a polynomial-time machine of type�1�(Q) can also be
considered to be a machine of type�2�(Q). ❑

Evidently, a bounded error quantifier is at least as powerful as an one-sided bounded
error quantifier of same type. This is shown in the following simple observation.

Proposition 6.4. For � 2 fp; 1; 2g the inclusion rulesR�

!%P BP� andR�

!%P BP� are
valid.

Proof. Directly from definition of the quantifiers. ❑

The following rules show how to reduce the type 2 of a probabilistic bounded error
quantifier.

Lemma 6.5. The following inclusion rules are valid:

(1) BP2 !%P BP1918p and BP2 !%P BP1819p;

(2) R2

!%P R1

9

1

8

p and R2

!%P R1

8

1

9

p;

(3) R2

!%P R1

9

1

8

p and R2

!%P R1

8

1

9

p.

Proof. The proof follows as in Lemma 4.5. We prove the first rule of every statement,
since the other follows by complementation. Let� 2 �

�,Q 2 (�%p[�p)
�. For a language

L 2 BP2QP�2�(Q) there exists anL
1

2 P�2�(Q) such that for allX

X 2 L!�U(QY ((X;U; Y) 2 L

1

)) � 2=3

X 62 L!�U(QY ((X;U; Y) 2 L

1

)) � 1=3

6.3. Applications to Well-Known Complexity Classes 79

However, for eachX and a suitable polynomialp

�U(QY ((X;U; Y) 2 L

1

))

=�U

�

9

1

W8

p
u 8

p
v

�

juj ; jvj � p(jXj)! (u 2 U$ v01

b

u 2W)

�

^QY

�

(X;U; Y) 2 L(M)

�

�

�

takeW = fv01

b

u : u; v 2 f0; 1g

�

^ u 2 Ug for example, and letM be a pol-
ynomial-time machine of type�2�(Q) acceptingL

1

�

=�U

�

9

1

W 8

p
a 8

p
u 8

p
vQY

�

juj ; jvj � p(jXj)!

�

(a = 0! (u 2 U$ v01

b

u 2W))^

(a = 1! (X;U;W;Y) 2 L(M

0

))

��

�

�

M

0 works on input(X;U;W;Y) asM on input(X;U; Y) but it only asks
the first query toU like M does. Instead of askingu to U after queries
u

1

; : : : ; u

m

(m � 1) it asks01bu
1

01

b

u

2

01 : : : 01

b

u

m

01

b

u toW. Note that for
every(X; a; u; v; Y), the oraclesU andW are asked in a type 1 manner.

�

This showsL 2 BP1918p
8

p
8

p
QP�11000�(Q). Observe that the inclusion rule9p

9

p
!P 9

p

proved in Lemma 3.6 remains also valid in our new context, i.e. we have9

p
9

p
!%P 9

p.
Hence,L 2 BP1918p

QP�110�(Q).
The proof of R2 !%P R1

9

1

8

p andR2

!%P R1

9

1

8

p follow in the same way. ❑

6.3 Applications to Well-Known Complexity Classes

We will examine classes of type 0, i.e. “ordinary” classes of languages. If no confusion
can arise, in this case the superscripts to the base complexity classK are omitted, i.e. for
quantifier stringQ 2 (�%p [�p)

� we defineQK =df QK
0�(Q). In a fundamental paper,

Schöning [Sch89] introduced the word BP-quantifier and gave a more general definition of
probabilistic complexity classes. This allows him to generalize many results. Probabilistic
quantifiers of type 2 have been studied in [BVW96]. Next, we state previous resultson
probabilistic bounded error quantifiers and prove other ones. It is well-known that when
applied toP the probabilistic bounded error word quantifiers yield as results the classical
probabilistic complexity classes.

Lemma 6.6. [Sch89, BDG90] BPpP= BPP and RpP= RP.

In 1994, Nisan and Wigderson showed that a probabilistic bounded error set quantifier
is exactly as powerful as the corresponding word quantifier when applied to a class of the
(arithmetic) polynomial-time hierarchy.

Theorem 6.7. [NW94] Letk � 0. ThenBP2�p
k

= BPp
�

p
k

and BP2�p
k

= BPp
�

p
k

.

80 6. Probabilistic Bounded Error Operators

In 1989, Schöning generalized Sipser’s [Sip83] and Lautemann’s [Lau83] inclusion
BPP� �

p
2

\�

p
2

showing under which conditions a BPp quantifier can be simulated by an
9

p quantifier followed by an8p quantifier. As the most important special case he proved:

Theorem 6.8. [Sch89]Letk � 1. ThenBPp
�

p
k

� �

p
k+1

and BPp
�

p
k

� �

p
k+1

.

Applying standard translational arguments to the previous result, we obtain the fol-
lowing result involving quantifiers of type 2.

Corollary 6.9. Letk;m � 1. Then,

BP2KP

�

2

k

;m

�

� �

exp
k+1

and BP2coKP

�

2

k

;m

�

� �

exp
k+1

Proof. We prove the first inclusion, the second follows by complementation. The proof
of KP

�

2

k

;m

�

� �

exp
k

(Theorem 3.13) remains valid if the machines have additionally
an oracle of type 2 (the exponential-time machine queries this oracle for words of length
bounded byp wherep is a polynomial) and in [BVW96] it was shown that the quanti-
fier BP2 can be replaced equivalently by a word BP-quantifier which varies over words
of length2q(n) for some polynomialq. Let BPexp be this new word quantifier. Hence,
BP2KP

�

2

k

;m

�

� BPexp
�

exp
k

. Thus, the assumption follows by applying standard transla-
tional arguments to Theorem 6.8. ❑

The next result shows that a type 1 probabilistic bounded error quantifier applied to
PSPACEcan be eliminated without changing the class in question.

Lemma 6.10. BP1PSPACE= PSPACE.

Proof. The inclusionPSPACE� BP1PSPACEis evident. For the other inclusion let
L 2 BP1PSPACE. There exists anL

1

2 PSPACE01 such that

x 2 L!�U((x;U) 2 L

1

) � 2=3

x 62 L!�U((x;U) 2 L

1

) � 1=3

LetM 0 be a machine of type01 acceptingL
1

with space boundpwherep is a polynomial.
Without loss of generality we assume thatM

0 does not make a query twice. Since no
query ofM 0 on input(x;U) to oracleU is longer thanp(jxj) and this oracle is of type 1,
thenU is queried at mostp(jxj) times. It is important thatM 0 asks for a given input(x;U)

only queries from oneoracle pathw
1

,w
1

w

2

, : : : ,w
1

w

2

: : :w

p(jxj)

. LetM be a machine
that considers step by step all these oracle paths. For each oracle path� 2 f0; 1g

p(jxj)

and each possible answer� 2 f0; 1g

p(jxj): M simulatesM 0 on inputx querying only
queries from the oracle path� and uses the oracle answers encoded in�. The machineM
stops such a simulation if a query is asked which is not from the oracle path�. Finally,
the machineM accepts if and only if the number of simulations, which are not stopped,
ending in an accepting state is greater than the number of simulations, which are not
stopped, ending in an rejecting state. Therefore,L(M) = L andM uses polynomial-
space, i.e.L 2 PSPACE. ❑

6.4. The Emergence of the Type 1 Quantifiers 81

In 1996, Book, Vollmer and Wagner investigated the power of the probabilistic set
quantifiers of type 2. They showed relationships betweenALMOST classes and classes
defined by BP2 quantifiers. LetK be a relativized class. Then

L 2 ALMOST-K()df �U
�

L 2 K

U

�

= 1

Theorem 6.11. [BVW96] ALMOST-PSPACE= BP2PSPACE� �

exp
2

\ �

exp
2

.

The following result shows relations between the class BP2PSPACEand classes de-
fined by set BP-quantifier on the base of classes of the analytic polynomial-time hierarchy.

Lemma 6.12. BP2PSPACE= BP2918pP\ BP2819pP� BP1928pP\ BP1829pP.

Proof. We prove BP2PSPACE= BP2918pP � BP1928pP, since the other part follows
by complementation. The proof ofPSPACE= 9

1

8

pP (Theorem 3.9) remains valid if the
machines have additionally an oracle of type 2, i.e. BP2PSPACE= BP2918pP which is
included in BP1918p

9

1

8

pP by Lemma 6.5. Now, using the rules of Lemmas 3.7 and 3.6
we obtain the desired result. ❑

It turns out that type 2 bounded error quantifiers are not more powerful than the cor-
responding type 1 quantifier when applied to classes of the analytic polynomial-time hi-
erarchy, whose first quantifier is of type 2.

Lemma 6.13. Let� 2 f1; 2g

� andm � 1. Then, forK 2 fKP(2�;m) ; coKP(2�;m)g

BP2K = BP1K and R2

K = R1

K

Proof. We prove BP2K = BP1K for K = KP(2�;m), the other equalities follow in the
same way. We conclude

BP2KP(2�;m) � BP1918p
KP(2�;m) by Lemma 6.5

� BP1KP(2�;m) by Lemmas 3.7 and 3.6

� BP2KP(2�;m) by Lemma 6.3 ❑

Combining the above results we obtain an inclusion structure which is represented in
the Figure 6.1.

6.4 The Emergence of the Type 1 Quantifiers

In 1989, Fortnow, Rompel, and Sipser characterized the power of multi-prover interactive
proof systemsMIP by the class defined by an existential set quantifier (type 2) on the base
of the polynomial-time bounded error probability classBPP.

Theorem 6.14. [FRS88, BFL90]92BPP= 9

2coRP= MIP.

This characterization ofMIP has motivated us to answer the question of whether a
Fortnow-Rompel-Sipser like result could also be established for (one-prover) interactive
proof systemsIP. This is possible by using the quantifier91. So we started the study of
the quantifiers of type 1.

82 6. Probabilistic Bounded Error Operators

P

BPP= BPpP�

p
1

BP2�p
1

= BP1�p
1

= BPp
�

p
1

�

p
1

BP2�p
1

= BP1�p
1

= BPp
�

p
1

�

p
3

�

p
3

PH

PSPACE= BP1PSPACE

�

p
2

�

p
2

BP2�p
2

= BP1�p
2

= BPp
�

p
2

BP2�p
2

= BP1�p
2

= BPp
�

p
2

�

exp
1

�

exp
1

�

exp
2

�

exp
2

�

exp
3

�

exp
3

EXPH

BP2coKP

�

2

2

; 1

�

=BP1coKP

�

2

2

; 1

�

BP2KP

�

2

2

; 1

�

=BP1KP

�

2

2

; 1

�

BP2928pP= BP1928pP BP2829pP= BP1829pP

BP2PSPACE=ALMOST-PSPACE

Figure 6.1: Inclusion structure of classes involvingBP-quantifiers.

6.4. The Emergence of the Type 1 Quantifiers 83

Theorem 6.15.91BPP= 9

1coRP= IP.

Proof. By definition,L 2 IP if and only if there exists a polynomial-time probabilistic
verifierV such that

x 2 L!9 ProverP (prob(V acceptsx with P) � 2=3)

x 62 L!8 ProverP (prob(V acceptsx with P) � 1=3)

(6.1)

Here aprover is a functionP : �

�

� (�

�

)

!

! �

� which determines for a given inputx
and a sequence of queriesu

1

; : : : ; u

k

of the verifier the answerP(x; u
1

; : : : ; u

k

) to the
queryu

k

. Now, in the same way define the classIP0 with the difference that for words in
the language the verifier is convinced with probability 1, i.e.L 2 IP0 if and only if there
exists a polynomial-time probabilistic verifierV such that

x 2 L! 9 ProverP (prob(V acceptsx with P) = 1)

x 62 L! 8 ProverP (prob(V acceptsx with P) � 1=3)

(6.2)

Without loss of the generality letV ask the prover only for one-bit answer.
The theorem’s assumption is proved showing the following chain of inclusions:

9

1BPP� IP� PSPACE� IP0

� 9

1coRP� 9

1BPP

The inclusionsIP � PSPACE� IP0 have been shown in [Sha90] and the inclusion
9

1coRP� 9

1BPPfollows by Proposition 6.4. Thus, it remains to prove91BPP� IP and
IP0

� 9

1coRP.

“91BPP� IP ”: Let L 2 9

1BPP. There exist anL 0

2 P010 and a polynomialp such that

x 2 L!9

1

U (probfz : jzj = p(jxj)^ (x;U; z) 2 L

0

g � 2=3)

x 62 L!8

1

U (probfz : jzj = p(jxj)^ (x;U; z) 2 L

0

g � 1=3)

wherez 2 f0; 1g

p(jxj) is randomly chosen under uniform distribution. LetM be a pol-
ynomial-time machine of type 010 acceptingL 0, and letV be a verifier that on inputx
and pathz works asM on input(x;U; z) with the difference that if the machineM asks
the querywu to U and the previous query wasw, then the verifierV asks the queries
u(1); u(2); : : : ; u(juj) to the prover, ignores the answers tou(1); u(2); : : : ; u(juj - 1),
and uses the answer ofu(juj) in the same way thatM uses the answer ofwu 2 U. Hence,
V is a probabilistic polynomial-time machine and for eachx:

1. LetU � f0; 1g

� and defineP
U

(x; a

1

; : : : ; a

k

) =df �U(a1 : : : ak) for all k 2 N and
all a

1

; : : : ; a

k

2 f0; 1g. Hence,V acceptsx with P

U

on pathz if and only if M
accepts the input(x;U; z). Therefore,

prob(V acceptsx with P
U

) = probfz : jzj = p(jxj)^ (x;U; z) 2 L

0

g

2. LetP be a prover and define

U

P

=df fa1 : : : ak : k 2 N ^ a

1

; : : : ; a

k

2 f0; 1g ^ P(x; a

1

; : : : ; a

k

) = 1g

Hence,M accepts the input(x;U
P

; z) if and only ifV acceptsx with P on pathz.
Therefore, probfz : jzj = p(jxj)^ (x;U

P

; z) 2 L

0

g = prob(V acceptsx with P).

84 6. Probabilistic Bounded Error Operators

Thus, for everyx

max
P

prob(V acceptsx with P) = max
U

probfz : jzj = p(jxj)^ (x;U; z) 2 L

0

g

Therefore,V satisfies (6.1) and consequentlyL 2 IP.

“ IP0

� 9

1coRP”: Let L 2 IP0 and letV be a verifier satisfying (6.2). Consider a machine
M of type 010 working on input(x;U; z) as the verifierV on inputx and pathz with
the difference that if the verifier has already asked the queriesu

1

; : : : ; u

k-1

and asks then
the queryu

k

to the prover, thenM asks the querybu
1

01

b

u

2

01 : : : 01

b

u

k

to the oracleU
and proceeds with the answer of the oracle in the same way asV with the answer of the
prover. Hence,L(M) 2 P010, and for a suitable polynomialp and eachx:

1. LetP be a prover and defineU
P

=df fbu101 : : : 01buk : P(x; u

1

; : : : ; u

k

) = 1g. Thus,
M accepts the input(x;U

P

; z) if and only ifV acceptsx with P on pathz. There-
fore, probfz : jzj = p(jxj)^ (x;U

P

; z) 2 L(M)g = prob(V acceptsx with P).

2. LetU � f0; 1g

� and defineP
U

(x; u

1

; : : : ; u

k

) =df �U(bu101 : : : 01buk). Hence,V
acceptsx with P

U

on pathz if and only ifM accepts the input(x;U; z). Therefore,
prob(V acceptsx with P

U

) = probfz : jzj = p(jxj)^ (x;U; z) 2 L(M)g.

Thus, for everyx

max
U

probfz : jzj = p(jxj)^ (x;U; z) 2 L(M)g = max
P

prob(V acceptsx with P)

Hence,

x 2 L!9

1

U (probfz : jzj = p(jxj)^ (x;U; z) 2 L(M)g = 1)

x 62 L!8

1

U (probfz : jzj = p(jxj)^ (x;U; z) 2 L(M)g � 1=3)

Therefore,L 2 9

1coRP. ❑

6.5 Conclusions

In x6.3 we examined classes obtained by applying BP-quantifiers to well-known complex-
ity classes and classes of the analytic polynomial-time hierarchy. Figure 6.1summarizes
these results. Inx6.4 we presented the results which motivated us to study type 1 quan-
tifiers. A further interesting investigation on this theme could be a detailed study of the
9-8-BP-hierarchy overPusing word quantifiers as well as set quantifiers of type 1 and 2.

Finally, let us note that for the classes coRP, BPPand coNP we get the same result
when applying the quantifiers91 and92:

9

1coRP= 9

1BPP= 9

1coNP= PSPACE by Theorems 6.15 and 3.9, and [Sha90]

9

2coRP= 9

2BPP= 9

2coNP= NEXPTIME by Theorems 6.14 and 3.14, and [BFL90]

However, with respect to relativizability these results are of completely different quality:
Whereas the results91coRP = PSPACE, 91BPP = PSPACE, 92coRP = NEXPTIME,

6.5. Conclusions 85

and92BPP= NEXPTIMEare not valid in every relativized world [FS88, FRS88] (x2.3.1)
the results91coNP= PSPACEand92coNP= NEXPTIME are valid in every relativized
world. The Figure 6.2 gives an overview on the results on classes9

1

K and92K whereK
are interesting classes within the polynomial-time hierarchy.

9

2coRP

9

2P

9

2BPP

NEXPTIME
(not relativizable)

9

2PH

9

2RP

9

2coNP9

2NP

NEXPTIME
(relativizable)

9

2

�

p
2

NP
(relativizable)

9

2

�

p
2

NP
(relativizable)

PSPACE
(not relativizable)

NEXPTIME
(relativizable)

9

1PH

9

1

�

p
2

9

1

�

p
2

9

1NP 9

1coNP

9

1RP 9

1coRP

9

1P

9

1BPP
PSPACE
(relativizable)

Figure 6.2: Relativized world of classes91K and92K.

86 6. Probabilistic Bounded Error Operators

Bibliography

[All97] E. Allender. 918logL = 8

1

9

logL = L. Personal communication, 1997.

[ALM +92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri-
fication and hardness of approximation problems. In33rd Symposium on
Foundations of Computer Science, pages 14–23, 1992.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs; a new character-
ization of NP. In33rd Symposium on Foundations of Computer Science,
pages 2–13, 1992.

[Bai97] H. Baier. Operatoren höherer Ordnung in der Komplexitätstheorie. In
H. Vollmer, editor, Komplexiẗatstheorie: Maschinen und Operatoren,
pages 85–95. Cuvillier Verlag, Göttingen, 1997.

[Bar86] D. Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC1. In 18th ACM Symposium on the
Theory of Computing, pages 1–5, 1986.

[BDG90] J. L. Balcázar, J. Dı́az, and J. Gabarró.Structural Complexity II. Springer-
Verlag, 1990.

[BDG95] J. L. Balcázar, J. Dı́az, and J. Gabarró.Structural Complexity I. Springer-
Verlag, second edition, 1995.

[BFL90] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time
has two-prover interactive protocols. In31st Symposium on Foundations
of Computer Science, pages 16–25, 1990.

[BG81] C. H. Bennett and J. Gill. Relative to a random oracleA, PA 6= NPA 6=

co-NPA with probability 1. SIAM Journal on Computing, 10:96–113,
1981.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of theP = ?NP question.
SIAM Journal on Computing, 4(4):431–442, December 1975.

[BLW94] R. V. Book, J. H. Lutz, and K. W. Wagner. An observation on probability
versus randomness with applications to complexity classes.Mathematical
Systems Theory, 27:201–209, 1994.

87

88 Bibliography

[BOGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In20th ACM
Symposium on the Theory of Computing, pages 113–131, 1988.

[BVW96] R. V. Book, H. Vollmer, and K. W. Wagner. On type-2 probabilistic quan-
tifiers. In 23rd International Colloqium on Automata, Languages and
Programming, volume 1099 ofLecture Notes in Computer Science, pages
369–380. Springer Verlag, 1996.

[BW96] H. Baier and K. W. Wagner. The analytic polynomial-time hierarchy. Tech-
nical Report 148, Institut für Informatik, Universität Würzburg, Germany,
September 1996. To appear in Mathematical Logic Quarterly (formerly:
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik).

[BW97] H. Baier and K. W. Wagner. Bounding queries in the analytic polynomial-
time hierarchy. Technical Report 178, Institut für Informatik, Universität
Würzburg, Germany, August 1997. To appear in Theoretical Computer
Science.

[CF91] J. Cai and M. Furst. PSPACE survives constant-width bottlenecks.Inter-
national Journal of Foundations of Computer Sciences, 2(1):67–76, 1991.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation.Journal of
the Association for Computing Machinery, 28(1):114–133, January 1981.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In3rd ACM
Symposium on the Theory of Computing, pages 151–158, 1971.

[FRS88] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover inter-
active protocols. In3rd Structure in Complexity Theory Conference, pages
156–161, 1988.

[FS88] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP lan-
guages?Information Processing Letters, 28:249–251, 1988.

[Gil77] J. Gill. Computational complexity of probabilistic complexity classes.
SIAM Journal on Computing, 6:675–695, 1977.

[GJ79] M. R. Garey and D. S. Johnson.Computers and Intractability - A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[GLM96] J. Goldsmith, M. A. Levy, and M. Mundhenk. Limited nondeterminism.
SIGACT (ACM press), 27(2):20–29, 1996.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof-systems. In17th ACM Symposium on the Theory of
Computing, pages 291–304, 1985.

Bibliography 89

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wag-
ner. On the power of polynomial time bit-reductions. In8th Structure in
Complexity Theory Conference, pages 200–207, 1993.

[HO94] L. A. Hemaspaandra and M. Ogihara. Universally serializable computa-
tion. Technical Report 520, University of Rochester – Computer Science,
1994.

[HU79] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley Publishing Company Inc,
1979.

[KF80] C. M. R. Kintala and P. Fischer. Refining nondeterminism in relativized
polynomial-time bounded computations.SIAM Journal on Computing,
9:46–53, 1980.

[KSW87] J. Köbler, U. Schöning, and K. W. Wagner. The difference and truth-table
hierarchies for NP.Theoretical Informatics and Applications, 21:419–435,
1987.

[Lau83] C. Lautemann. BPP and the polynomial hierarchy.Information Processing
Letters, 17:215–217, 1983.

[LP82] H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded compu-
tation. Theoretical Computer Science, 19:161–187, 1982.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regu-
lar expressions with squaring requires exponential space. In13rd IEEE
Symposium on Switching and Automata Theory, pages 125–129, 1972.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness.Journal of Com-
puter and System Sciences, 49:149–167, 1994.

[Ogi94] M. Ogihara. On serializable languages.International Journal of Founda-
tions of Computer Sciences, 5:303–318, 1994.

[Orp83] P. Orponen. Complexity classes of alternating machines with oracles.
In 10th International Colloqium on Automata, Languages and Program-
ming, volume 154 ofLecture Notes in Computer Science, pages 573–584.
Springer Verlag, 1983.

[Pap85] C. H. Papadimitriou. Games against nature.Journal of Computer and
System Sciences, 31:288–301, 1985.

[Pap94] C. H. Papadimitriou.Computational Complexity. Addison-Wesley Pub-
lishing Company Inc, 1994.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities.Journal of Computer and System Sciences, 4:177–192,
1970.

90 Bibliography

[Sch85] U. Schöning. Robust algorithms: A different approach to oracles.Theo-
retical Computer Science, 40:57–66, 1985.

[Sch89] U. Schöning. Probabilistic complexity classes and lowness.Journal of
Computer and System Sciences, 39:84–100, 1989.

[Sha90] A. Shamir. IP=PSPACE. In31st Symposium on Foundations of Computer
Science, pages 11–15, 1990.

[Sim77] J. Simon. On the difference between one and many. In14th International
Colloqium on Automata, Languages and Programming, volume 52 ofLec-
ture Notes in Computer Science, pages 480–491. Springer Verlag, 1977.

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In15th ACM
Symposium on the Theory of Computing, pages 330–335, 1983.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time. In 5th ACM Symposium on the Theory of Computing, pages 1–9,
1973.

[Sto77] L. J. Stockmeyer. The polynomial-time hierarchy.Theoretical Computer
Science, 3:1–22, 1977.

[VW97] H. Vollmer and K. W. Wagner. On operators of higher types. In12th
Annual IEEE Conference on Computational Complexity, pages 174–184,
1997.

[Wag86] K. W. Wagner. Some observations on the connection between counting
and recursion.Theoretical Computer Science, 47:131–147, 1986.

[Wag90] K. W. Wagner. Bounded query classes.SIAM Journal on Computing,
19:833–846, 1990.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy.Theoretical
Computer Science, 3:23–33, 1977.

[WW86] K. W. Wagner and G. Wechsung.Computational Complexity. VEB
Deutscher Verlag der Wissenschaften, 1986.

Index

Symbols
kUk . 8
P(U) . 8
�

U

. 8
�

U

(v) . 8
� . 8, 40
(f � g)(x) . 8
O(g) .8
A

5

. 40
[5] . 40
unU . 15
N . 8
N

+

. .8
a

0 .25, 41
a

1 .25, 41
U

0 . 41
U

1 . 41
C

u

. .75
C �U . 75
�U(� (U)) . 75

� . 7
�

� . 7
�

+ . 7
�

n . 7
�

�n .7
f0; 1g

! . 75

" . 7
uv . 7
u � v . 7
u

n . 7
u(n) . 7
juj . 7
e

u . 15
b

u . 15
hU;mi . 15
lex(i) . 8

lex
n

(i) . 8
 -

u . 8

X .10, 32
jXj .10, 32
(X

1

; : : : ; X

k

)10, 32
� . 32

�

M

(x) .9, 23
�

M

(X

1

; : : : ; X

k

)10, 32

L . 7
L(M) . 9, 11, 32
B

k

. 68

coK .7
K

A . 11
K

K

2

1

. 11

P . 11
NP . 11
NP(r) . 12
�

p
k

. .12
�

p
k

. 12
�

p
k

. 12
PH . 12
APTIME . 12
(f)-P. .33
BPP. 12
RP. .12
DLOGTIME . 25
DLOGSPACE. 68
L . 11
NL . 11
PSPACE. 11
EXPTIME . 12
NEXPTIME . 12
�

exp
k

. .12
�

exp
k

. 12

91

92 Index

EXPH . 12
IP . 12,83
IP0 .83
MIP . 12
APH .17, 35
ALH . 63

P�

1

:::�

k .13, 16, 33
(f)-P�

1

:::�

k . 33
NP�

1

:::�

k . 13
L �

1

:::�

k . 13
PSPACE�1:::�k13, 33
QP. .17, 34
QL . 63
QK . 79
KP(�1 : : : �k;m) 23, 35
KL(�1 : : : �k;m) 67
K

2

L(�1 : : : �k;m) 67

9

p . 16, 33
9

log . 62
9

1 . 16, 34, 62
9

1[r] . 34
9

1[kr] . 45
9

1
[r] . 34

9

1
[

k

r] . 45
9

2 . 16, 34, 62
9

2[r] . 34
9

2[kr] . 45
9

2
[r] . 34

9

2
[

k

r] . 45
9 . 16
8

p . 16, 33
8

log . 62
8

1 . 16, 34, 62
8

1
[
r] . 34

8

1[kr] . 45
8

1
[r] . 34

8

1
[

k

r] . 45
8

2 . 16, 34, 62
8

2[r] . 34
8

2[kr] . 45
8

2
[r] . 34

8

2
[

k

r] . 45
8 . 16

BPp . 76
BPexp . 80
BP1 . 76
BP2 . 76
BP. .77
Rp . 76
R1 . 76
R2 . 76
Rp . 76
R1 . 76
R2 . 76
R . 77
ALMOST- . 81

�p. .16
�

[p] . 34
�

[p;9] . 34
�

[p;8] . 34
�log . 62
�%p .77
�(Q

�

1

1

: : :Q

�

k

k

) 16, 34, 62, 77
F(Q

1

; : : : ; Q

k

jT

1

; : : : ; T

l

) 49
Norm(S) . 47
FirstSet(S) . 48
Last(S) . 52
(S)

2

. 48

!P . 17
!

[P] . 35
!L . 63
!%P . 77
$P . 18
$

[P] . 35
$L . 63

A
�-algebra. .75
alphabet . 7

standard . 8

C
class

ALMOST . 81
complement . 7
ordinary.17, 34, 63, 79
type�

1

: : : �

k

. . . . 13, 16, 33, 62, 76

Index 93

type 0 17, 34, 63, 79
computational model 8
cylinder

set . 75

F
function

characteristic.8
composition . 8
operator

first set . 48
last . 52
normal form 47
type string 16, 34, 62, 77

quantifier
first set . 48
last . 52
normal form 47
type string 16, 34, 62, 77

G
group

even permutation 40
multiplication 40

H
hierarchy

exponential-time12
alternation 12

logarithmic-space
analytic 4, 61,63

polynomial-time
analytic 2, 3, 15,17
arithmetic12, 17, 79
bounded analytic 3, 4, 31,34

I
input

set . 10
type 0 . 10
type 1 . 10
type 1[r] . 32
type 2 . 10
type 2[r] . 32
word . 10

instance . 9–11, 32

length . 10, 32

L
language . 7

accepted by a machine 9, 11, 32
complement . 7

lexicographical order 8

N
f-nondeterministic 32
normal form. 17, 23, 63, 67

O
operator

bounded error
type 1 . 76
type 2 . 76
type p . 76

existential . 16
type 1 16, 34, 62
type 1[r] . 34
type 1[kr] . 45
type 2 16, 34, 62
type 2[r] . 34
type 2[kr] . 45
type log . 62
type p.16, 33

one-sided bounded error
type 1 . 76
type 2 . 76
type p . 76

restrict
logarithmically 62
polynomially.62

set . 10, 16, 61
type 0 . 2
type 1 . 2
type 2 . 2
type log . 2
type p . 2
type string 16, 34, 62, 77
universal . 16

type 1 16, 34, 62
type 1[r] . 34
type 1[kr] . 45
type 2 16, 34, 62

94 Index

type 2[r] . 34
type 2[kr] . 45
type log . 62
type p.16, 33

word 10, 16, 61
oracle . 7, 9, 10

path . 24, 71, 80
type 1 . 10
type 1[r] . 32
type 2 . 10
type 2[r] . 32
type of queries 10

P
parallel queries45, 59
path

accepting 9, 10, 32
probability

field . 75
measure . 75

problemB
k

. 68
proof system

interactive . 9
multi-prover interactive 9
prover . 9,83

protocol . 9

Q
quantifier

bounded error
type 1 . 76
type 2 . 76
type p . 76

existential . 16
type 1 16, 34, 62
type 1[r] . 34
type 1[kr] . 45
type 2 16, 34, 62
type 2[r] . 34
type 2[kr] . 45
type log . 62
type p.16, 33

one-sided bounded error
type 1 . 76
type 2 . 76

type p . 76
restrict

logarithmically 62
polynomially.62

set . 10, 16, 61
type 0 . 2
type 1 . 2
type 2 . 2
type log . 2
type p . 2
type string 16, 34, 62, 77
universal . 16

type 1 16, 34, 62
type 1[r] . 34
type 1[kr] . 45
type 2 16, 34, 62
type 2[r] . 34
type 2[kr] . 45
type log . 62
type p.16, 33

word 10, 16, 61

R
relativized

class .11, 81
world .12, 85

rule
equivalence 18, 35, 63
inclusion 17, 35, 63, 77

S
set

all words . 7
lengthn . 7
length at mostn 7

cardinality . 8
characteristic function 8
input types. .32
natural numbers 8

greater than0 8
operators 16, 34, 62, 77

existential 34
strings. .49
universal . 34

power . 8

Index 95

quantifiers 16, 34, 62, 77
existential 34
strings. .49
universal . 34

subtree
accepting.9, 23
good .9, 23

T
tree

binary9, 10, 32
computation9, 10, 23, 32

Turing machine 8, 9
alternating . 8, 9
�

k

. 8
�

k

. 8
existential . 8
universal .8

deterministic.8, 9
exponential-time 9
logarithmic-space 9
nondeterministic 8, 9
oracle . 8–10

query tape 9, 10
polynomial-time 9
polynomial-space 9
probabilistic 8, 9

bounded error 12
one-sided bounded error 12

state
existential . 8
no. .9
query. 9
universal .8
yes . 9

type�
1

: : : �

k

.10, 32
logarithmic-space 11
polynomial-time11, 32
polynomial-space11, 32

W
word . 7

concatenation 7
empty . 7
infinite . 75

length . 7
n-th symbol . 7
!-word . 75

