Operators of Higher Order

Dissertation zur Erlangung des
naturwissenschatftlichen Doktorgrades
der Bayerischen Julius — Maximilians — Universitat Wirzburg

vorgelegt von

Herbert Alexander Baier Saip

aus

Concepabn (Chile)

Wiirzburg, 1998



Eingereicht am: 12.02.98
bei der Fakultat fur Mathematik und Informatik

1. GUTACHTER: Prof. Dr. Klaus W. Wagner
2. GUTACHTER: Prof. Dr. Gerd Wechsung

Tag der mundlichen Pufung: 02.07.98



| dedicate this thesis to my grandfather,
Pablo Saip, an outstanding and inspiring
person, my good friend. He will always

be with me.






Acknowledgments

I would like to express my sincere acknowledgments to my friends and colleagues,
who in various ways helped me throughout this work:

[0 My advisor, Klaus W. Wagner, for his valuable discussions, interesting ideas, en-
couragement and support throughout this work.

[0 Heribert Vollmer for his helpful discussions and suggestions.

[0 My colleagues, Sven Kosub, Steffen Reith and Heinz Schmitz, for reading this
manuscript.

[0 Gerhard Buntrock, Ulrich Hertrampf, Gisela Hoppe, Sven Kosub, Gundula Nie-
mann, Steffen Reith, Diana Rool3, Heinz Schmitz, Heribert Vollmer and Klaus W.
Wagner for providing me an enjoyable working atmosphere.

This work was supported B@NPq grant 290020/92.1 (Brazil) and in part BAAD
(Germany).






Danksagung

& modte gern allen meinen Freunden und Kollegen danfen, die sum Gelingen
diefer Arbeit beigetragen haben:

(I Meinem Ooftorvater Klaus W. Wagner fiir interedante Diffusionen und Fdeen,
Ermutigung und Unterftigung mabrend diefer Arbeit.
O Herivert Vollmer fiir interedante Diffusionen und BVorfdhlage.

(1 Meinen Kollegen Sven Kofub, Steffen Reith und Heing Sdmig fiir das Lefen ded
Manuftripts.

[J Gerhard Duntrod, Ulridy Hertrampf, Gifela Hoppe, Sven Kofub, Gundula Nie-
mann, Stefen Reith, Diana Roo, Heing Shmis, Heribert Vollmer und Klaus
W. Wagner fiir die qute Arbeitsatmofphare.

Diese Arbeit entstand im Rahmen deblIPg-Stipendiums 290020/92.1 (Brasilien) und
wurde teilweise durch deDAAD (Deutschland) unterstitzt.






Abstract

Motivated by results on interactive proof systems we investigate the catgnal
power of quantifiers applied to well-known complexity classes. In spes@lare in-
terested in existential, universal and probabilistic bounded error quantdiggsng over
words and sets of words, i.e. oracles if we think in a Turing machine model. In@utht
the standard oracle access mechanism, we also consider quantifiers ramgingaoies
to which access is restricted in a certain way.

We first examine af-V-hierarchy overlPusing words quantifiers as well as two types
of set quantifiers. This hierarchy of classes is called the analytic polynomelhierar-
chy. We show that each class of this hierarchy coincides with one of the €Ess@ad
Y (k > 0) of the (arithmetic) polynomial-time hierarch SPACE or one of the classes
7P andry™® (k > 1) of the exponential-time alternation hierarchy and vice versa.

We next consider a hierarchy which refines the analytic polynomial-time hierarchy
by considering restrictions on the number of oracle queries, the so called bounded ana-
lytic polynomial-time hierarchy. We characterize classes of this hibyaoy well-known
complexity classes. In particular, we show that each class from thigrbig/ having a
certain normal form coincides with one of the class#% coNP, PSPACE %."® or TT;®
(k > 1) and vice versa. All these characterizations remain valid if the gsietie asked
in a nonadaptive form, i.e. in “parallel”.

We also study a hierarchy which can intuitively be interpreted as the apblyno-
mial-time hierarchy defined ovérinstead ofP, i.e. an3-V-hierarchy ovel. using word
quantifiers as well as two types of set quantifiers. This hierarchy is dakeshalytic log-
arithmic-space hierarchy. We show that every class of this hierarechpeaepresented
in a certain normal form and characterize such classes by well-knowplepity classes.

In particular, each class whose last quantifier is a word quantifier coingitle®ne of
the classes, I or T (k > 1) and vice versa.

Furthermore, we examine probabilistic bounded error quantifiers. For instance, us-
ing the restricted oracle access mechanism we characterize (one€) pnbeeactive proof
systems by an existential set quantifier and a probabilistic bounded error wordfiguanti
applied toP, and show that a bounded error set quantifier applieBSEACEcan be
eliminated without changing the class in question.

Finally, we discuss the relativizability of the results.






Zusammenfassung

Angeregt durch die Resultate Uber interaktive Beweissysteme untersuch&puan-
toren in Anwendung auf bereits bekannte Komplexitatsklassen hinsichtlictdiqwderch
gegebenen Berechnungsmachtigkeit. Von besonderem Interesse sind dabei @iastenti
und universelle Quantoren sowie Quantoren mit begrenzter Fehlerwahrsdiiesitlidie

alle Uber Worter oder Wortmengen (Orakel im Kontext der Turingmaschinen) quantifi
zieren. Aul3er in bezug auf den Standardmechanismus eines Orakelzugriffs \&eaotie
Quantifizierungen tber Orakel, fur deren Zugriff gewisse Beschrankungexhbestbe-
trachtet.

Zuerst beschaftigen wir uns mit einé+v-Hierarchie GiberP, wobei sowohl Wortquan-
toren als auch zwei verschiedene Typen von Mengenquantoren verwendet werdem. Die
entstehende Klassenhierarchie nennen wiadigytische Polynomialzeit-Hierarchi&s
zeigt sich, daB jede Klasse dieser Hierarchie mit einer der KlagsederTT? (k > 1) der
(arithmetischen) Polynomialzeit-Hierarchie, REPACEoder mit einer der Klassex} ®
oderTT;® (k > 1) der alternierenden Exponentialzeit-Hierarchie zusammenfallt. Auch
die Umkehrung gilt; jede der aufgefuhrten Klassen laf3t sich durch eine desét aus
der analytischen Polynomialzeit-Hierarchie ausdriicken.

Als nachstes wird eine Hierarchie betrachtet, die die analytische Poiglzem-Hierar-

chie durch die Einbeziehung von Anzahlbegrenzungen der Orakelfragen verfeigert: di
sogenanntbeschiénkte analytische Polynomialzeit-HierarchM/ir charakterisieren die
Klassen dieser Hierarchie durch bekanntere Komplexitatsklassen, und mesgpeson-
ders, daf} jede Klasse der Hierarchie, die einer bestimmten Normalfarilgigesiner

der Klassen\P, coNP, PSPACE 1. oderTT;® (k > 1) entspricht. Auch hier ist die
Umkehrung der Aussage ebenfalls richtig. Dartiber hinaus bleiben alle Cheasidtian-

gen gultig, wenn Orakelfragen ausschlief3lich nicht-adaptiv, also isgem Sinne par-
allel gestellt werden kdnnen.

Wir studieren auch eine Hierarchie, die intuitiv als analytische PolynaeitaHierar-

chie UberL anstelle vonP interpretiert werden kann, d.h. dieV-Hierarchie tberL
sowohl bezuglich der Wortquantoren als auch beziglich der zwei Typen von Mengen-
quantoren. Diese Hierarchie wird diealytische Hierarchiéber logarithmischem Raum
genannt. Wir zeigen, dal3 jede Klasse dieser Hierarchie in eine bestinomteaNorm ge-
bracht werden kann, und charakterisieren solche Klassen dann mit Hilfeshmskannter
Komplexitatsklassen. Dabei stellt sich heraus, daf3 jede Klasse, ldertan Quantor ein
Wortquantor ist, mit_, ¥ oderTT} (k > 1) identisch ist, und umgekehrt.

Weiterhin untersuchen wir Quantoren mit begrenzter FehlerwahrscheinticBkespiel-
sweise ist die Klasse der mittels interaktiven Beweissystemdpolgnomialzeit ent-
scheidbaren Mengen, die Klagdétim Kontext polynomieller Zeitressourcen durch einen
Existenzquantor in Verbindung mit einem Quantor mit begrenzter Fehlerwahrscheinli
keit ausdrickbar, wenn man den Mechanismus fur die Orakelzugriffe eamd¢hrEs
zeigt sich, dal3 ein Mengenquantor mit begrenztem Fehler, angewend$BACE eli-
miniert werden kann, ohne die Klasse zu verandern.

Abschlie3end gehen wir auf die Relativierbarkeit der Resultate ein.






Contents

List of Tables ili
List of Figures v
1 Introduction 1
1.1 ABriefOverview . . . . . . . . . e 1
1.2 OutlineofthisThesis . . . . . . . . . . . . . . . . . ... 3
1.3 Related Papers and InterestingResults . . . . ... ... ... ...... 4
2 Preliminaries 7
2.1 Basic Notationsand Concepts . . . . . . . ... ... . ... .. ..., 7
2.2 ComputationalModels . . . . . ... ... ... 8
2.2.1 Well-Known Computational Models . . . . ... ... ...... 8
2.2.2 Turing Machinesof Type;...0x . . . . .« o o o oo oo 10
23 ComplexityClasses . . . . . . . . . 11
2.3.1 Well-Known ComplexityClasses . . .. ... .......... 11
232 Classesof TYyp@; ... 0% . « « v v v v v v i i e e e 13
3 The Analytic Polynomial-Time Hierarchy 15
3.1 The Operatorsandthe Hierarchy . . . . .. ... .. .. ......... 15
3.1.1 The Existential and Universal Operators . . . . . ... ... ... 16
3.1.2 The Analytic Polynomial-Time Hierarchy . . . . . ... ... .. 17
3.2 Equivalence Rules and a NormalForm . . . . ... ... ......... 17
3.2.1 Inclusionand EquivalenceRules . . . . . ... .. ... ..... 17
3.2.2 ANormal FormTheorem . ... .. ... ... ... ...... 23
3.3 Characterizing the Class€s(-) and cdCp(-) . . . . . . . .. .. .. .. 23
3.4 Characterizing by Well-Known Complexity Classes and an Algorithm . . 28
3.5 Conclusions . . . . . . . . . 29
4 Bounding Queries in the Analytic Polynomial-Time Hierarchy 31
4.1 Computational Model and Complexity Classes . . . .. ... ... ... 31
4.2 Bounding Queries in Set Quantifiers and a New Hierarchy . . . . . . .. 33
4.2.1 Bounding Queries in Existential and Universal Set Quantifiers . . 33
4.2.2 The Bounded Analytic Polynomial-Time Hierarchy and a Normal

Form . . . . 34
4.3 Inclusionand EquivalenceRules . . . . . ... ... ... ... .... 35



Contents

4.4

4.5

4.6

Characterizing the Class€s(-) and cdCp(-) . . . . . . . . .. .. ...
4.4.1 Characterizing the Class€s(oq[r1]...ox[m],m) . . . . . . ..

442 ParallelQueries. . . . .. .. ... ..

Remainder ComplexityClasses . . . . . .. ... ... ... .....
45.1 CharacterizingtheClass€BP . . . . . ... ... ... ....
452 0penCases . . . . . . e

453 ParallelQueries. . . . . . .. .. ...
Conclusions . . . . . . . ..

5 The Analytic Logarithmic-Space Hierarchy

5.1

5.2

5.3
5.4
5.5

The Operators and the Hierarchy . . . . .. .. ... ... ......

5.1.1 The Existential and Universal Operators . . . . . ... .. ..
5.1.2 The Analytic Logarithmic-Space Hierarchy . . . .. .. ...
Equivalence Rulesand NormalForm . . . . . ... ... ... ....
5.2.1 Inclusion and EquivalenceRules . . . . . . ... ... ....

5.2.2 A Normal Form Theorem . ... ... ... ... ... ....

Characterizing the Class€s(-)and cdCp(-) . . . . . . .. .. .. ...
Characterizing Classé& (-)and cdC7(-) . . . . . .o v v v i oo vt ..

ConclusionsS . . . . . . ..

6 Probabilistic Bounded Error Operators

6.1
6.2
6.3
6.4
6.5

The Probabilistic Bounded Error Quantifiers . . . . .. ... .. ...

InclusionRules . . . . . . . . . . ...

Applications to Well-Known Complexity Classes . . . . .. ... ..

The Emergence of the Type 1 Quantifiers . . . . . ... ... .. ..
Conclusions . . . . . ..

Bibliography

Index



List of Tables

4.1 Characterization of the clasg€g(oq[r] ... oK), m). . ... .. ... 38
4.2 Characterizations of the clas$&BQPP. . . . . . . . . . . . . ... ... 49



List of Tables




List of Figures

11
1.2

2.1
2.2

3.1
3.2

4.1
4.2

5.1

6.1
6.2

Relativized world of classeBK and3?K. . . . . .. ... ... ..... 5
ClasseS°[r] VT [s] IPP. . . . . . . o 6
Inputs of type O, 1and 2. . .. ... ... ... .. ... .. .. ..., 10
Relationships between well-known complexity classes. . . .. ... ... 14
Good subtree$; andS,. . . . . . e 24

3" and3? applied to classes of the polynomial-time hierarchy. . . . . . . 30
Encoding functiorx. . . . . . . ... 41
ClasseS°[r] V' [s] IPP. . . . . . o o e 60

Simulation of machin®1, on input(x, u,,y) forally € {0, 1}26""9‘*‘ p() 79

Inclusion structure of classes involving BP-quantifiers. . . . . . ... .. 82
Relativized world of classeB and=2K. . . . . .. ... .. ... ... 85



Vi

List of Figures




CHAPTER 1

Introduction

“Todo esfuerzo que no se
sostiene se pierde.”

Gabriela Mistral

Quantifiers play an important role in the complexity theory. Take for exam-
ple the classes of the (arithmetical) polynomial-time hierarchy, whiohea
characterized by polynomial length bounded existential and universal word
quantifiers on the base &f The main subject of this thesis is the investigation

of the computational power of quantifiers applied to well-known complexity
classes. In special, we are interested in existential, univerdgdm@babilistic
bounded error quantifiers ranging over words and sets of words (oracles if we
think in a Turing machine model). In addition to the standard oracle access
mechanism, we consider also quantifiers ranging over oracles whose access
is in a certain way restricted.

This chapter is organized as follows: We start giving a brief overview on the
theme of this thesisil.1). Then, an outline of the results is exhibitéd. Q).
Finally, we present papers related to this thesis and some interestintsre

(51.3).

1.1 A Brief Overview

Complexity theory is the area of computer science that tries to classifypuiatonal
problems in terms of the amount of computational resources needed to solve them. Intu-
itively, this is the field which deals with the reasons why certain problare hard to be
solved by computers. A traditional way to accomplish this task has been timleonsm-
putational structures (normally as computational models) which capture coropalati
problems and generate complexity classes. Then, properties and relationsbipg am
these complexity classes are investigated. This approach provides a mese abstract
framework to study the nature of these problems.

Interesting complexity classes can be defined (or characterized) by quardifiéhe
base of some other complexity class. A classical example are the clagbes(afith-
metic) polynomial-time hierarchy [SM73, Sto77, Wra77], which are charaety the
existential and the universal quantifier on the base dthese quantifiers vary over words
whose lengths are polynomially bounded in the length of the input.

1



2 1. Introduction

However, quantifiers of higher types, i.e. quantifiers ranging over sets of wokds, ha
also called the attention of the research community. Using the Turing neaoiodel this
means that the quantifiers vary over oracles. To our knowledge, Orponen [OrpS8jeva
first who studied in 1983 quantifiers of higher types in complexity theory. He retated
hierarchy defined by existential and universal set quantifiers on the base chssefl
with the classes of the exponential-time alternation hierarchy.

In 1988, Fortnow, Rompel, and Sipser [FRS88] characterized the power of multi-
prover interactive proof system#/(P) by an existential set quantifier on the base of the
polynomial-time bounded error probability claB&P. This characterization a/IP has
motivated us to answer the question of whether a Fortnow-Rompel-Sipserdikiecould
also be established for (one-prover) interactive proof systéR)s [n cooperation with
Wagner [BW96] we showed in 1996 that this is possible by restricting the oracéssc
mechanism as follows: every query must be an extension of previous query. In other
words, the series of queries in any computation has the farm;uw;, uyu,us,.... The
guantifiers varying over oracles with this kind of restricted accessalled quantifiers
of type 1 whereas quantifiers varying over oracles with unrestricted a.@escalled
quantifiers of type 2. Word quantifiérsre called quantifiers of type 0. These char-
acterizations ofMIP and IP motivated us to study the set quantifiers of higher order in
more detail. Thus, in the same work [BW96] we continued Orponen’s investigatiohs a
defined a hierarchy ove? using all three types of existential and universal quantifiers,
the so called analytic polynomial-time hierarchy. It was shown that eads @f this
hierarchy coincides with one of the classesandTT} (k > 0) of the (arithmetic) pol-
ynomial-time hierarchyPSPACE or one of the classes;® andTT;® (k > 1) of the
exponential-time alternation hierarchy and vice versa. These resultertigipt Orpo-
nen’s result on quantifiers of type 2, and we proved relationsdik®NP = PSPACE
and3'3'coNP = FcoNP = NEXPTIME giving the type of quantifiers in the expo-
nent. Generally, for the classes of the analytic polynomial-time hierarahytiantifiers
of type 1 are as powerful as one quantifier of type 2. In 1990, Shamir [Sha90] proved
IP = PSPACEand Babai, Fortnow, and Lund [BFL90] show&liP = NEXPTIME.
Comparing these results with the oracle characterization of inteegatoof systems we
getIP = 3'BPP= 3'coNP = PSPACEandMIP = F*BPP = 3?coNP = NEXPTIME.
However, theBPP part of these results is not relativizable [FS88, FRS88] whereas the
coNPpart is valid under every relativization.

In 1992, Arora and Safra [AS92] introduced the notion of probabilistically check-
able proofs PCH to “scale down” the Babai, Fortnow, and Lund’s result. The class
PCRr(n), g(n)) can be defined as an existential set quantifier appli€&2g where an
underlying machine is allowed to u€d r(n)) random bits for its computation and queries
the oracleD(q(n)) times. Arora and Safra provédP = PCHlogn, (loglogn)°") and
few weeks later Arora, Lund, Motwani, Sudan, and Szegedy [ABR] improved this
result showing\P = PCRlogn, O(1)). In 1997, Vollmer and Wagner [VW97] gave a
detailed discussion of scaling down results in this area.

LIn this thesis, we consider word quantifiers ranging over words wieosgghs can be polynomially or
logarithmically bounded in the length of the input. Thus, we wiltther distinguish type 0 quantifiers into
type p and type log, respectively.



1.2. Outline of this Thesis 3

Some constructions in [BW96] result in a bounded number of oracle queries. This
fact and the interesting results obtained in the study oPfifclasses [AS92, ALM92],
which limit the number of oracle queries, motivated us to continue the study of the ana
lytic polynomial-time hierarchy classes but now considering the number of oradlesjue
that an oracle machine can ask during its computation. This hierarchy id tallended
analytic polynomial-time hierarchy. In cooperation with Wagner [BW97] we showed
that each class of this hierarchy having a certain normal form coincideNAticoNP,
PSPACE or one of the classes;® andTT;® (k > 1) of the exponential-time alternation
hierarchy and vice versa. In addition, we proved that all these chaettens remain
valid if the oracle machines are allowed to make only parallel quergsthey have to
form a list of all queries before any of them is queried to the oracle. Incueat, all
the characterizations for the classes of the analytic polynomial-time tingrfiB\W96]
remain also valid under the parallel queries restriction.

Finally, let us mention that in 1996, Book, Vollmer, and Wagner [BVW96] investi-
gated the power of probabilistic quantifiers of type 2.

1.2 Outline of this Thesis

The aim of this thesis is to investigate complexity classes defined (oacteazed) by
existential, universal and probabilistic bounded error quantifiers applied tekm@hn
complexity classes. We consider word quantifiers and two types of set quantiéiersly

these of type 1 and 2. Restrictions on the number of oracle queries are also examined.
Next, we present an overview of the organization of this thesis.

Chapter 2: Preliminaries

We introduce basic notations and concepts as well as our computational models. Further-
more, some complexity classes are defined. However, quantifiers will be di@fitiee
respective chapter as needed.

Chapter 3: The Analytic Polynomial-Time Hierarchy

We investigate a hierarchy defined by existential and universal quantifeyg\g over
words and oracles of type 1 and 2 on the base of the &as§his hierarchy, which
extends the (arithmetic) polynomial-time hierarchy, is calledhiaytic polynomial-time
hierarchy It is shown that each class of this hierarchy coincides with one of theeslass
TP andTT} (k > 0) of the (arithmetic) polynomial-time hierarch2SPACE or one of

the classeg;” andTT,® (k > 1) of the exponential-time alternation hierarchy and vice
versa. These results tighten up Orponen’s result [Orp83] on quantifiers of type 2. An
algorithm is established which allows to find out the corresponding well-knoass ¢h

an easy way.
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Chapter 4: Bounding Queries in the Analytic Polynomial-Time Hierarchy

We examine a hierarchy which refines the analytic polynomial-time hierarchyiby c
sidering restrictions on the number of oracle queries. This hierarchy isldalended
analytic polynomial-time hierarchyWe characterize classes of this hierarchy by well-
known complexity classes. In particular, for classes from this hierdneling a certain
normal form we show that each of these classes coincides with one of thesd3se
coNP, PSPACE £ or TI.® (k > 1) and vice versa. All these characterizations remain
valid if the queries are asked in a nonadaptive form, i.e. in “parall@l’sgecial, all the
characterizations for the classes of the analytic polynomial-time hierg@hgpter 3)
also remain valid under the parallel queries restriction.

Chapter 5: The Analytic Logarithmic-Space Hierarchy

We investigate a logarithmic-space hierarchy built up by word and set geantfi type
1 and 2, which can intuitively be interpreted as the analytic polynomial-tireeichy
defined ovelL instead ofP. This hierarchy is called thenalytic logarithmic-space hier-
archy. We show that every class of this hierarchy can be represented in ancestenal
form, where the last quantifier is either a word quantifier or a set quantifier oRtyiper-
thermore, we characterize classes of this hierarchy by well-known caitypiéasses. In
particular, it is shown that each class in this normal form, whose last ifjearg a word
quantifier, coincides with one of the clasges), or IY (k > 1) and vice versa.

Chapter 6: Probabilistic Bounded Error Operators

We consider probabilistic bounded error quantifiers. We show under which general con-
ditions the type 2 of a bounded error set quantifier can be reduced to type 1. Furthermore,
interesting characterizations are presented. For example, we chiaeagtare prover)
interactive proof systems by an existential set quantifier of type 1 and a prachiabili
bounded error word quantifier applied®and show that a bounded error set quantifier

of type 1 applied taPSPACEcan be eliminated without changing the class in question.
Finally, we discuss the relativizability of results presented so far.

Conclusions

Instead of making a separate chapter for conclusions, we prefer to discussuhe ire
the respective chapters.

1.3 Related Papers and Interesting Results
The papers related to this thesis are the following:
(1) The results in Chapter 3 and Theorem 6.15.

[0 H. Baier and K. W. Wagner. The analytic polynomial-time hierarchy. Tech-
nical Report 148, Institut fur Informatik, Universitat Wurzburg, Germany



1.3. Related Papers and Interesting Results

September 1996. To appear in Mathematical Logic Quarterly (formerly:
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik).

(2) A part of the results in Chapter 44.3 and§4.4).

0 H. Baier and K. W. Wagner. Bounding queries in the analytic polynomial-
time hierarchy. Technical Report 178, Institut fur Informatik, Univetsita
Wirzburg, Germany, August 1997. To appear in Theoretical Computer Sci-

ence.
Finally, Figures 1.1 and 1.2 give us a preview of some of our results.
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Figure 1.1: Relativized world of classe3' K and3*KC, whereK are interesting classes
within the polynomial-time hierarchy.
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CHAPTER 2

Preliminaries

“Se nao houver frutos,
valeu a beleza das flores,
se rio houver flores,
valeu a sombra das folhas,
se rao houver folhas,
valeu a intengo da semente’”

Henfil

In this chapter, we present some notations and concepts which are required
throughout this work. Basic familiarity with the most popular complexity
theory notations and concepts is assumed (we refer the reader to standard
textbooks of complexity theory such as [BDG95, Pap94]). Hence, only non-
standard notations and concepts will be covered in detail.

This chapter is organized as follows: We start introducing some basic nota-
tions and concept$2.1). Next, we present our computational modéksZ)

and define some complexity classé®.8). Quantifiers will be defined in the
respective chapter as needed.

2.1 Basic Notations and Concepts

We will study classes of languages whose instances consist of word and set of words.
Next, some basic notations and concepts are presented, namely alphabets, werds, la
guages, sets and functions.

An alphabetis any finite honempty seX of symbols. Aword over X is a finite
sequence of symbols frol. In particular,e represents thempty word i.e. the word
consisting of zero symbols. Given a wardverX containingn symbols, we say that the
length ofu, denoted byu|, isn. For two wordsu andv overZ, let uv (and sometimes
u - v) represent the concatenationofaindv. Given a wordu over Z and an integen,
defineu(n) as then-th symbol ofu, andu™ inductively by:u® =4 ¢ andu™ =g u-u™"!
foralln > 1. The set of all words oveX including (not including) is denoted by*

(X", respectively). Furthermore, defiaé (Z<") as the set of all words ovér of length
n (at mostn, respectively). A subset af* is also called &anguage ovek and sometimes
anoracle overZ. Thecomplement of a languageC ~*is the languagé =4 <* \ L and
thecomplement of a clas§ of languagess the class ¢ =4 {L: L € K }.

7



8 2. Preliminaries

Let N denote the set of natural numbers axd the set of natural numbers greater
than0. For a sell, let ||U]| be the cardinality ol andP(U) be the power set dfl. The
characteristic function of a sét is the functiony, defined by

oy {1 Tvel
XuVI=dt 90 otherwise.

There exists a natural bijection betwe@n1}* andN, when standard lexicographical or-
deris used. For € N, let lex(1) (lex,, (1)) be thei-th word of{0, 1} ({0, 11", respectively)
in lexicographical order. Thus, for a sdtC {0, 1}* we will also writei € U. We then

mean lexi) € U. Furthermore, forw € {0, 11" let ue {0, 1}" denote the predecessor of

win {0, 1}" in lexicographical order(% is undefined).

For functionsf, g : N — N we say that € O(g) if there are positive integersand
ng such thatf(n) < c - g(n) for all n > ny. Finally, the symbob denotes the traditional
composition of functionsgf o g)(x) =g f(g(x)). Without loss of generality we restrict
ourselves in this work to the standard alphabet {0, 1}.

2.2 Computational Models

Standard Turing machine§2.2.1) and their variationg2.2.2) will be our formal com-
putational models to accept languages.

2.2.1 Well-Known Computational Models

The standard Turing machine models are presumed to be known (see [BDG95, Pap94]):
deterministic, nondeterministic, probabilistic, alternating and oraatan@ machines. We
shortly restate these notions. Each non-final configuration of a deterministigyTaa-
chine has only one successor whereas each non-final configuration of a nondeterministic
Turing machine can have several successors and one of them is guessed. Foitgimpli
we suppose that each non-final configuration of a nondeterministic Turing machine has
exactly two successors. A probabilistic Turing machine is similar to a nendetis-
tic Turing machine with the difference that in the former the successor cortiguia
chosen at random while in the second it is guessed.

An alternating Turing machine is a deterministic Turing machine which hasldin
tion two special types of states (configurations): existential and univ@isalacceptance
of an alternating machine depends on these special states in the following\ilapast
one of the successor configurations of an existential configuration must lead tcept-acc
ing configuration, whereas all successor configurations of a universal configuration must
lead to an accepting configuration. Hoe> 1, a X, -alternating(IT-alternating Turing
machineis an alternating Turing machine starting with an existential (univemsspec-
tively) state and having at mokt— 1 alternations between existential and universal states
on every computation path. By convention thealternating andly-alternating Turing
machines are deterministic.
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For a Turing machin®!1 on inputx being deterministic, nondeterministic, probabilis-
tic or alternating, itscomputation treedenotedB i (x), is a possibly infinite tree whose
nodes are configurations, the root being the initial configuration, and for anyonatie
sons are those configurations which are immediate successerd\ufte that forM be-
ing deterministic, its computation trees are also paths. Ntanot being deterministic,
without loss of generality we assume that the trees are binary, i.e. each norofifigu-
ration (node) has exactly two successors.alnepting pattof 3, (x) is a path inBa (x)
which has the same root node and ends in an accepting state. Furthermdsiebéang
alternating, ggood subtre®f 3 (x) is a subtree op . (x) which has the same root node
and includes both successors of an universal configuration and exactly one successor of
an existential configuration. Aaccepting subtreef 3,1(x) is a good subtree @ (x)
which has only accepting paths.

An oracle Turing machine may ask queries to an oracle during its computatibe in
usual way: The machine writes a query on a special tape calledy tape When the
machine transfers into a spectlery statehen it switches automatically into a special
state eitheyesor nodepending on whether the current query belongs to the oracle or not.
The oracle is required to be fixed previously to the computation of the machine.

In an interactive proof system (multi-prover interactive proof systeproaabilistic
Turing machine interacts with a prover (provers, respectively) whesg/grover tries to
convince the probabilistic Turing machine to accept the input. The input to the protocol
(proof system) is known to the Turing machine and the provers, and the Turing machine
interacts with a prover sending a message and receiving an answer. Thespgran not
interact with each other and there are no restrictions on their power [Pap2B9, 506].

A Turing machineM is calledpolynomial-time(polynomial-spackif there exists a
polynomial p such thatM halts on every path of every instangan an accepting or
rejecting state using no more thafix|) steps (tape cells, respectively). Furthermare,
is calledlogarithmic-spacef there exists a constart € N such thatM halts on every
path of every instance in an accepting or rejecting state using no more thafog|x|
tape cells, andM is calledexponential-timef there exists a polynomigh such thatM
halts on every path of every instancen an accepting or rejecting state using no more
than2r(*) steps.

The above definitions can be combined. Thus, an oracle Turing machine may be e.g.
deterministic, nondeterministic, probabilistic or alternating. Finadlyaf Turing machine
M define

M is deterministic — L(M) =4 {x: Bm(x) is an accepting path
M is nondeterministic — L(M) =4 {x : Bm(x) contains an accepting path
M is alternating — L(M) =4 {x: Bm(x) contains an accepting subtiee

as thelanguage accepted byl.

Where no confusion arises we write for simplicity Turing machine instead tef-de
ministic Turing machine.
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2.2.2 Turing Machines of Typeo; ... oy

Variations of standard Turing machines will also be used to accept languages.

We turn to hierarchies built up by word and set operators (defined by word and set
guantifiers, respectively). Thus, we have to start with suitable dagdanguages whose
instances consist of words and sets of words. Oracle Turing machines will beaused
accept these languages. Every word input is given on a separate input tape and ever
set input is given as an oracle. The machines have a special query tape jooracte.

The oracles can be classified according to the type of queries that can be made by a
oracle machine. An oracle is anput of type 1(input of type 2 if the query on the
corresponding query tape is not erased (erased, respectively) after eachHpnae, the

next query made to an oracle of type 1 is an extension of the previous query. Note that
formally inputs of type 1 and 2 are the same objects, namely sets of words. Véahal

word aninput of type ((see Figure 2.1).

o
(<))
& [wlord]
(] Read only A
.E — e >
% 1 “Yes” / “No”
C |£ o N
€ 1218 [olulel o[ [i[s[ [a[o ] [d 49 & @[OS —>
D | £ Write only A
c
= || —
E ] - “Yes” / “No”
gl [elule[*[L [5[s[ T[4 Jo[oooommols —>
Write only A
G Y =
Figure 2.1: Inputs of type 0, 1 and 2.
Fork > 1andoq,...,ox € {0, 1,2}, we say that a Turing machine istypeo; ... oy
if it processes instances of the fofN,, . . ., Xy ), whereX; is an input of typeo; for i =
1,..., k. Such a machine hdKi: o; = 0}|| ordinary input tapes anf{i: o; € {1,2}}]]

query tapes. Théength of an instanc&X = (Xj,..., Xy), denotedX|, is defined by
XI =dt 2_1<ick.0,—0 IXil, 1.€. the sum of the length of the word inputs. In what follows we
assume thaX contains at least one word input.

We define computation trees and accepting paths §8.thl. For a Turing machine
M of type oy ... 0y On input (X, ..., Xy) being deterministic or nondeterministix;(
is an input of typeo;), its computation treedenoteddy (X5, ..., Xx), IS a possibly in-
finite tree whose nodes are configurations, the root being the initial configuration, and
for any nodex, its sons are those configurations which are immediate successars of
Obviously, forM being deterministic, its computation trees are also pathsMrbeing
nondeterministic, without loss of generality we also assume here that tsateebinary.
An accepting pathof Bm (X, ..., Xy) is a path inBam(Xy, ..., Xx) which has the same
root node and ends in an accepting configuration.
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A Turing machineM of type o; ... oy is calledpolynomial-timgpolynomial-space
if there exists a polynomiagb such thatM halts on every path of every instanke—=
(X1, ..., Xy) inan accepting or rejecting state using no more thi@k|) steps (tape cells,
respectively). Furthermor@/ is calledlogarithmic-spacéf there exists a constante N
such thatM halts on every path of every instanke= (X;,..., Xy) in an accepting or
rejecting state using no more thanlog|X| tape cells. Note that the space bound applies
also to the length of oracle queries.

Finally, for a Turing machiné/ of type o . . . oy define

M is deterministic:
L(M) =g {(X1,...,Xx) : Bm(Xq, ..., Xk) is an accepting path
M is nondeterministic:

L(M) =g {(X1,...,Xx) : Bm(Xq, ..., Xk) contains an accepting path

as thelanguage accepted byl.

2.3 Complexity Classes

Complexity classes are now defined using the Turing machine models presefi2e?l in
The corresponding relativized classes can be obtained in a standard waji Heetd
complexity class defined by a suitable type of Turing machines’abd an oracle. The
complexity classK? is defined as the class of all languages which can be accepted by
Turing machines whose type is the same as for the &asst having in addition access
to the oracleA. For classe&’; and/C;, the complexity clasisi1CZ is the union of all classes

We will describe the most popular complexity classes intuitivgB.3.1), and the
nonstandard ones more precis€)g.68.2).

2.3.1 Well-Known Complexity Classes

The complexity clas® (NP) is defined as the class of all languages which can be accepted
by polynomial-time deterministic (nondeterministic, respectively) Turiragihines. The
most investigated nondeterministic complexity clasAlf% this class contains many im-
portant problems. A good overview of problems in this class can be found in Garey and
Johnson [GJ79].

“Space” classes play also an important role in complexity theory. The caitple
classL (NL) is defined as the class of all languages which can be accepted by loga-
rithmic-space deterministic (nondeterministic, respectively) Turiragmmes. Another
well-known “space” class i®SPACE the class of all languages which can be accepted
by polynomial-space deterministic Turing machines. It was shown [Sav70] thelatbe
of all languages which can be accepted by polynomial-space nondeterministic Turing
machines coincides witRSPACE
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The classes of the (arithmetic) polynomial-time hierarchy, introduced by Mayer
Stockmeyer [MS72], play an important role in complexity theory. These classede-
fined inductively as follows (the class€§ were introduced later by Wagner [Wag90)):

©p = Iy =TTy =at P
OF =4 LTk, £P =4 NP™1 TP =4 coNP™1  fork > 1.

Furthermore, defin®H as the union of all classes of the polynomial-time hierarchy. It
is well-known [Wag90] thatl UTIY C ©},, € £} , NIy, forall k > 0. An al-
ternative way of looking at these classes is using alternating Turing macfsihg/3,
Sto77, Wra77]: Fok > 0, £} (TT?) is the class of all languages which can be accepted
by Xy-alternating [Ix-alternating, respectively) polynomial-time Turing machines. Let
APTIME be the class of all languages which can be accepted by alternating polynomi-
al-time Turing machines. In [CKS81], “time” and “space” classes wetated, such
APTIME = PSPACE

In 1990, Wagner [Wag90] extended the definition of the Boolean hierarchy: For a
functionr : N — N define

A € NP(r) & there exists a sé € NPsuch thatg(x,1+ 1) < xg(x,1) for all i
andxa(x) =max{i: 1 <i<r(]x])and(x,1i) € B} mod2

He showed® = NP(n°).

In 1977, Gill [Gil77] introduced probabilistic classes. LBPPbe the class of all
languages which can be accepted by polynomial-time bounded error probabilistic Turing
machines, i.e. the class of languages recognized by polynomial-time probabilistig T
machines whose error probability is bounded above by some positive constarg.
Furthermore, defin®Pas the class of all languages which can be accepted by polynomi-
al-time one-sided bounded error probabilistic Turing machines, i.e. the clamsgofdges
recognized by polynomial-time probabilistic Turing machines which have zesogawb-
ability for instances not in the language and error probability bounded by some positive
constant < 1 for instances in the language.

The complexity clasEXPTIME (NEXPTIME) is defined as the class of all lan-
guages which can be accepted by exponential-time deterministic (hondetdonneist
spectively) Turing machines. Exponential-time hierarchies can be definedfenedt
ways. Here we adopt the definition which employs alternating Turing machinespthe
called exponential-time alternation hierarchy. For> 0, let £ (IT;) be the class
of all languages which can be acceptedXyyalternating [I,.-alternating, respectively)
exponential-time Turing machines. Furthermore defx#H as the union of all classes
of the exponential-time alternation hierarchy. ObviouSiXPTIME = £35® = T15* and
NEXPTIME = £7°.

Finally, letIP (MIP) be the class of all languages which can be accepted by interactive
proof systems (multi-prover interactive proof systems, respectiveth)tive probabilistic
Turing machine of the protocol being also polynomial-time bounded error. It has been
shown [Sha90, BFL90] thdP = PSPACEandMIP = NEXPTIME. However, these re-
sults do not remain valid in every relativized world [FS88, FRS88]there exist oracles
A andB such thatP?* £ PSPACE* andMIP® - NEXPTIMES®.
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The diagram of Figure 2.2 summarizes the known relationships between the complex-
ity classes presented above. Other important properties about thess cas$e found
in [WW86, BDG95, BDG90, Pap94].

2.3.2 Classes of Type;...ox

Next, we define classes which are the starting point for building up hierarcrescon-
sidered. Fok > 1 andoy,..., 0 € {0,1, 2} define

L% =4 {L(M) : M is a logarithmic-space deterministic

Turing machine of type; ... oy}
pe1--%% =4 {L(M) : M is a polynomial-time deterministic

Turing machine of type; ... oy}
NP % =4 {L(M) : M is a polynomial-time nondeterministic
Turing machine of type; ... oy}

PSPACE" % =4 {L(M) : M is a polynomial-space deterministic
Turing machine of type; ... oy}

which are callectlasses of type; ... ox. Such a class consists only of languages
0, 119 x - .. x {0, 1}'°%), where we defing, 11%) =4 {0, 1)* and{0, 11"} =4 P ({0, 1}")
for o0 = 1, 2 (remember that formally inputs of type 1 and 2 are the same objects, namely
sets of words).

The classes of type;, . . . oy are the starting point of our research about operators. Ap-
plying operators to these classes we can define and characterize other ctynefdsses.
This will be treated in the following chapters.
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MIP = NEXPTIME = £3® CONEXPTIME =TI

EXPTIME = £ =TI5™®

IP = PSPACE= APTIME

PH

Figure 2.2: Relationships between well-known complexity classes.



CHAPTER 3

The Analytic Polynomial-Time
Hierarchy

“There are more things in heaven and earth,
than are dreamt of in your philosophy”

Shakespeare

In the present chapter, we investigate a hierarchy defined by existential and
universal quantifiers varying over words and oracles of type 1 and 2 on the
base of the clasB. This hierarchy of classes is called thealytic polyno-
mial-time hierarchy It is shown that each class of this hierarchy coincides
with one of the classes, andTT? (k > 0) of the (arithmetic) polynomial-
time hierarchyPSPACE or one of the classes;” andTT;® (k > 1) of the
exponential-time alternation hierarchy and vice versa.

An outline of this chapter follows: We first give some more notations and de-
fine the existential and universal quantifiers and the analytic polynomial-time
hierarchy §£3.1). In order to prove our main resu§3(4), the investigation on

the power of the classes of the analytic polynomial-time hierarchy is divided
in two parts:

(a) Using equivalence rules we show that every class of this hierarchy can
be represented in a certain normal for§8.Q).

(b) It is shown that each class in this normal form coincides with a well-
known complexity class;@.3).

These results make possible to establish an algorithm which allows to find
out the corresponding well-known class in an easy w&y4(. Finally, we
make some comments about the resissy).

3.1 The Operators and the Hierarchy

Next, we define the existential and universal quantifiéBsl(1) and the analytic poly-
nomial-time hierarchy§3.1.2). But first, let us give some more notations to help us in
the proofs of the results. For every détC {0,1}" and everym € N we define the
word (U, m) =g xu(1) xu(11) xu(117)...xu(1™). Foru € {0,1}" andU C {0, 1},
define the sett\U =4 {w : uw € U}. Finally, fora € {0,1}andu € {0, 1}", define the
encodingsﬂfd —df ula (E —df 8) andua —df Uaa (/8\ —df 8).

15
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3.1.1 The Existential and Universal Operators

We will examine a polynomial-time hierarchy defined by word and set quantifierslga
the existential and universal. The clas&8s-°« are the starting point for building up this
hierarchy. Next, we define inductively new classes and in parallel theeast and
universal quantifiers. Let > 1 andoy,...,0x, 0 € {0,1,2}. If K is a class of type
07 ...0x0 then

Foro = 0: 3PKC andVPK are classes of type, . . . o, which are defined as follows

L € IPK & there exist ar.’ € K and a polynomiap, such that

Xty X € Lem Be( W <p(3 IXl) A (X, X x) € L)

01 =0
L € VP & there exist ar.’ € K and a polynomiap, such that

Xty X € L vx( W <p(Y 1Xl) = (X1, X %) € L)

0'1":0
i<k

(Using simple encoding arguments it is easy to see that one can use equivaléntly
instead of <" in these definitions.)

Foro =1,2: 3°KC andV° K are classes of type, . . . oy which are defined as follows

L € 3°K &= 4 there exists ah’ € K, such that
(Xq,...,Xx) € Le— IX((Xq,..., X, X) € L")
L € VK &= there exists ah’ € K, such that
(X1,...,Xx) € Le— VX ((Xq,..., X, X) € L")
To make clear which type of input is used, foe {p, 1,2} we also write3*X instead of

X, andv*X instead ofvX.
Now, some abbreviations and definitions are presented. The set of existential-and uni

versal quantifiers is denoted by =4 {3°,3',3* v?, V' v?}. Fork > 0, Q1,...,Qx €
FViandt,...,™ € {p, 1,2}, lett(Q7' ... QL") =a 07 ...0% be the type of the op-
erator (or quantifier) strin@7' ... Qy*, whereo; = 0 if 7, = p ando; = T; otherwise

i=1,...,k. ForQ = Q7'...Q* andX = (Xy,...,Xx) we write QX instead of
Q7' Xy ... Q*X. Furthermore, we defirng =4 V, V =¢ 3 andQ =4 Q7' ... Q*.

* Xk

Proposition 3.1. Letu € {0,1,2}" andQ € I';. ThencoQP+*(Q) = QPHT(Q),
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Proof. LetL € QP*(Q), There exists ah’ € P**(Q) such that
XelL< QY ((X,Y)e L")

where the lengths of the word inputsYrare bounded by suitable polynomials depending
on the length of the word inputs X. Negating the both sides of the equivalence, we get

Xel& —QY((X,Y)eL"
= QY (—(X,Y) el
& QY ((X,Y)eL)

SinceP**(Q) is closed under complement, we get the desired result. O

3.1.2 The Analytic Polynomial-Time Hierarchy

We are particularly interested in the classes of type 0, i.e. in “ordindagses of lan-
guages. In this case, the superscript®tare omitted, i.e. for quantifier strinQ € I'y

we defineQP =4 QP°*Q). Fork > 0 andQy,..., Qx € {3,V}, it is well-known that
each of the classeg . . . Q} Pcoincides with a class of the (arithmetic) polynomial-time
hierarchy [SM73, Sto77, Wra77] and vice versa. To our knowledge, Orponen [Orp83]
began in 1983 the study of the existential and universal quantifiers of type 2. Halrelate
a hierarchy defined by these quantifiers on the base of the eld$s the classes of the
exponential-time alternation hierarchy.

Theorem 3.2. [Orp83] For everyk > 1 let Q,, = 3 if k is odd andQy = V otherwise.
Then,3*v?32 ... QiPH= Zi’(p.

Next, the analytic polynomial-time hierarchy is defined. For quantifier stkihgsI,
the classegf) Pare called the classes of tamalytic polynomial-time hierarchyl he class
APH is defined as the union of all classes of the analytic polynomial-time hierarchy.
Thus, this hierarchy extends the (arithmetic) polynomial-time hierarchy ande asll
see (Theorem 3.14), our results tighten up Orponen’s result on quantifiers of type 2.

3.2 Equivalence Rules and a Normal Form

The purpose of this section is to show that every class of the analytic polynomeal-t
hierarchy can be represented in a certain normal fgy8n2(2), namely an alternating

sequence of-V-quantifiers on the base &fwith the set quantifiers appearing left of the
word quantifiers. To establish this result, we will apply equivalence (§&2.1).

3.2.1 Inclusion and Equivalence Rules

We will use inclusion and equivalence rules to relate classes of the anadyinomial-
time hierarchy. These rules are used in the following senseRF®k I, theinclusion
rule R —p S is valid if the replacement of the quantifier striRgoy the stringS in any
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context does not diminish the class in question, R@.P**(RITQ) C QP (S)T(Q) for
allQ € Iy andyp € {0, 1,2}". We say that thequivalence rulR «p S is valid if the
replacement of the quantifier strifgby the stringS in any context does not change the
class in question, i. QP+ R = QP57 forall Q € I'y andu € {0,1,2)".
Obviously, we hav® «—p S ifand only if R —p S andS —p R.

For a ruleR —p S, we will also have to prove “its complemer®’ —p S. However,
the following proposition shows that only one of them has to be proved.

Proposition 3.3 (Complementation).LetR, S € ;. If R —p S thenR —5 S.

Proof. Let Q € I'y andu € {0, 1,2}". We conclude

L € EQPUT(R)T(Q) :> t c COEQP“T(R)T(Q)

— L e RQP*(RITQ) by Proposition 3.1

— L e SQPHSTQ) byR —p S

— L € coSQPTSITQ) by Proposition 3.1

— L e SQp+SmQ) O

The following rules show relations between the existential (universshecively)
guantifiers of different types.

Lemma 3.4. The following inclusion rules are valid:
(1) e »p3d®* and e —pVP;
(2) I —p3F and VP —pV;
(3) ' —-pF? and V' —p V2.
Proof. LetQ € I'yandp € {0, 1,2}
(1) This s the classical case of introducing a dummy word quantifier.

(2) We prove the first rule, the other follows by complementation. For a language
L € ?PQPHT(Q) there exist arl; € P*T(Q) and a polynomiap such that

XeL e PuQY (ul=p(X) A (X,u,Y) € Ly)
& FUQY((X,U,Y) € Ly),

whereL, =4 {(X,W,Y): (X, (WU, p(X])),Y) € L1}. Let M be a polynomial-time
machine of typei0t(Q) acceptind.;. Consider a machin®l’ of typeul1t(Q) that
oninput(X, U, Y) compute(|X|) and thenU, p(|X|)) by askingl, 11, ..., 171X
to the oraclell. Then,M' works asM on input (X, (U, p(/X])),Y). Therefore,
L(M') =L, andL, € P*Q) je. L € 3QPHTQ),

(3) This is obvious since a polynomial-time machine of typer(Q) can also be
considered to be a machine of typ2t(Q). O
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Next, we show an “equivalence rule” which is valid only in a special contésays
that a set quantifier is exactly as powerful as the corresponding word quantifier whe
applied toP.

Lemma 3.5. Letp € {0,1,2}". Then
PP =3P =FP* and VPO =V P =P

Proof. We prove the first statement, the second follows by complementation. The in-
clusions ‘C” are valid by Lemma 3.4, thus on§*P*? C 3°P*° has to be proved. By
definition L € 32P*2 if and only if there exists ah’ € P“?, such thatX € L <

F2U ((X,U) € L). Let M be a polynomial-time machine of type accepting.’, which

on input(X, U) queriesp(|X|) times the oracl&l, wherep is a polynomial. Without loss

of generality we assume thM does not make a query twice. List’ be a machine of
type n0 working on input(X,u) asM on input (X, U) with the following difference:
Instead of the answer @t to thei-th query ofM the machineM’ uses the-th bit of wu.

Now, F*U ((X,U) € L) &= FPu(jul = p(X)) A (X,u) € L(M')) can be seen by the
following construction:

“u— u” Let (X,u) € L(M') for a wordu € {0, 1}"“X“ and define the satl =g
{x : x is thei-th query ofM Au(i) = 1}. Then(X, U) € L".

“U — u” Let (X,U) € L’ for a setU C {0, 1} and define the word. € {0, 1)’'™ as
follows: u(i) = 1 <= answer to thé-th query ofM is “yes”. Then(X,u) €
L(M").

Hence,L(M') € P* andL € 3PPH°, O

The next result shows how to melt neighboured existential (universal, resggrti
quantifiers.

Lemma 3.6. For 0,1 € {p, 1, 2} the following equivalence rules are valid
3°F" —p3I° and V' «—p VP
wherep = pif o =1 =pandp = min{t(3°) + ("), 2} otherwise.

Proof. We prove the first rule, the second follows by complementation. Using Lemma
3.4, it is easy to see that we have to prove only the inclusion rules

(1) PP —p 3F;
(2) 3P —p 3 and3I'FP —p 37
(3) PP —p
@)  —p 3.

In order to prove these inclusions, Bte I'; andu € {0, 1, 2)".
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(1) LetL € FPIPQP-CTQ) There exist arl; € P*°T(Q) and polynomial$, p,
such that

Xe L PuvQY (ul=pi(IX) AN =p2IXD A (X,1,v,Y) € Ly)
= FPw QY (Iwl = 2p:1(IX) + 2p2(IX]) + 2ZA (X, w, Y) € L),

wherel; =g {(X,u01v,Y): (X,u,v,Y) € L;}. Let M be a polynomial-time ma-
chine of typeu00t(Q) accepting.;, and letM'’ be a machine of type0t(Q) that
on input(X,w, Y) computes. andv fromw = u01v (where it rejects ifv does not
have this form) and then works &4 on input(X,w, v, Y). ThereforeL(M') = L,
andl, € PT(Q) je. L € IPQPHOTIQ),

(2) It suffices to prove the first rule, because of the obvious¥ei#é <, 3'3°. For
a languagd. € P QP1T(Q) there exist arl,; € P*°1(Q) and a polynomiap
such that

XelL&e FPvIUQY (VM =p(X)A(X,v,UY)e L)
= IWQY((X,W,Y) € Ly),

whereL, =g {(X, W,Y): (X, (W, p(X])), 1PXI+*N\WY) € L, }. LetM be a pol-
ynomial-time machine of type01t(Q) acceptinglL;, and letM’ be a machine
of type n1t(Q) that on input(X, W,Y) computesp (|X|) and then(W, p(/X|)) by
asking1, 11, ..., 1°?™X0 to W. Then, the machind1’ works like machineM
on input(X, (W, p(X])) , 1PXIH1\W, Y) with the difference that instead of asking

the queryu to oracle1?™+"\ W the queryl?X)+1y is asked tow. Therefore,
L(M') =L, andL, € P*Q)je.L € I'QPHTIQ),

(3) LetL € 3232QP22(Q), There exists af; € P*2?7(Q) such that

Xel& FUFVQY((X,U,V,Y)e L)
= PWQY ((X,W,Y) e Ly),

wherel, =g {(X,W,Y): (X,0\W,1\W,Y) € L;}. Let M be a polynomial-time
machine of typa1221(Q) acceptingl;. Consider a machin®’ of type u2t(Q)
working on input(X, W, Y) asM on input (X, 0\W, T\W, Y) with the difference
that instead of asking the quenyto oracleO\W (oracle1\W), the queryow (Tw,

respectively) to oracl&V is asked. Thereford,(M') = L, andL, € P**"(Q) j.e.
L e 32QpPwrlQ),

(4) Let us first prove the validity of the new ru# —p, 3'3'vP. For a language
L € 32QP+2(Q) there exists ah; € P*?*(Q) such that for a suitable polynomial
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XelLePUuQy((X,u,yY)eL)

— U 3‘w<vpuvpv(u| WM <plX) = (we U ool e W))

/\QY((x,u,Y) c L(M)))

(takeW = {v0Tt: u,v € {0,1}" Au € U} for example, and leM
be a polynomial-time machine of typt(Q) acceptinng)

e JUTWYPLYPY QY(Iu\ M < p(X) —>((u e U ool e W)

A, W,Y) € L(M')))

(M’ works on input(X, W,Y) asM on input (X, U, Y) but instead
of askingu to U after queriesu;,u,,...,wu, it asks the query
011,011,017 ...011,,011L to W. Note thatM’ asksW in a type
1 manner, i.e. itis a polynomial-time machine of tpr‘Er(Q))

& 3UFWYPLy QY (ful, v < X)) —

(Xv u» W» u,v, Y) € I—(ML))

(Mg on input(X, U, W,u,v,Y) first asksu € U andv0lt € W. If
the answers do not coincide, thém, rejects. OtherwiseM sim-
ulatesM’ on input (X, W, Y) but instead of askingv to W it asks
vOT1uw to W. Note thatM asksU andW in a type 1 manner, i.e. it
is a polynomial-time machine of typel 1OOT(Q))

This showsL € F'F'yPyPQPHI0TQ) e 32 —p F'IVPYP. Now, applying the
rule 3*3° —p 3P (Statement (1)) we get the desire rdfe— p 31 37VP.

Next, we prove the rule> —p 3'3'. Fork > 0, Qi,...,Qx € {3,V} and
T1,...,T € {p, 1,2}, consider the clas®® Q7" .. .QEKP“ZT(Q11 Q)

Case 1.If Q; = --- = Qx = I we can conclude by Lemmas 3.4 and 3.5, and
Statement (3)

323’(1 L aTkPuZT(EIT] ...ﬂik) g EIZPp,Z g EIpPpLO g 31313T1 L aTkPu”T(HT] ...ﬂik)

Case 2. If there exists arl € {1,...,k} such thatQ; = --- = Q, ; = d and
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Q. =, then we can conclude

3231’1 C gneyn QTL+1 o QEKPHZT(QT] Q;k)

C PvnQy ... Qreprar(Q Qi) by Lemma 3.4 and (3)
C TPy Q... QR prIToT(Qrt Q) by 3 —p3'31VP
c 3'3vnQry! Qe pHe(o Q) by (1), (2)

or Lemma 3.4 and (3)
C I FroynQly L QP -QE) by Llemma3.4

+1

This completes the proof. O

Our last rules show that word quantifiers can be eliminated if a set quaatificat
least one more quantifier follow.

Lemma 3.7. For o € {1,2}andt € {p, 1, 2} the equivalence rules
VT —pVoIT and VPIVT p IVT
are valid.

Proof. We prove the second rule, the first follows by complementation.QLet I'; and
we{0,1,2}.

Let us first prove the validity of the inclusion r#@4° —p 3°VP (0 € {1,2}). For a
languagd. € YP3°QPHOT(Q) there exist ar.; € P*°°T(Q) and a polynomiap such that

Xel & YVPua’vQY(u =p(X) — (X,u,V,Y) e L)
Now, we defind_, =4 {(X, W,w,Y): (X,u,u\W,Y) € L;} and we prove
XeL & ITWYPuQY (Jul =p(IX]) = (X,W,u,Y) € L)

“—" For everyu € {0, 1)’ let v, be a set such thdi, u, V,, Y) € L; and define
W = mpix) fuw s w € Vi J. Then(X, Wi, Y) € L, for everyu € {0, 1ppxD,

“e=" Let (X,W,1,Y) € L, for everyu € {0, 1", Hence, for each. € {0, 1P/
there exists a sa&t,, =4 u\W such that{ X, u, V,,Y) € L;.

Let M be a polynomial-time machine of typ®ot(Q) accepting_;, and letM' be a
machine of typai1o0t(Q) working on input(X, W,w, Y) asM on input(X, u, u\W, Y)
with the difference that instead of asking the queryo oracleu\W the queryuw is
asked tow. SinceM asksu\W in a typeoc manner, the machin®1’ does it as well.
Therefore.(M') = L, andL, € P*%TQ) je.L € IoYPQPHo0T(Q)

Now, using this rule and Lemma 3.6 we can conclude theWRteY"™ —p 3°V*. The
rule 3°V" —p VP3°VT is valid by Lemma 3.4. O
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3.2.2 A Normal Form Theorem

Using the equivalence rules presentef3r2.1 we can state the fact that every class of the
analytic polynomial-time hierarchy can be represented in a certain noonmal forl >

1, letQ, =¢ Fif Lis odd andQ, =4 V otherwise. Fok, m > 0 andt;, T2, T3,...,Tx €
{1,2} we define

KP(T1T2T3 e Ty m) =df Jovege . QEkQ£+1Q£+2 . Q£+mP

Theorem 3.8 (Normal Form Theorem). Every class of the analytic polynomial-time hi-
erarchy coincides with one of the clasgesCp(t, m) or cokp(t, m), wheret € {1,2}*
andm > 1.

Proof. Consider an arbitrary class of the analytic polynomial-time hierarchy. dfdlaiss

Is defined without quantifiers, then it# Otherwise it coincides with one of the classes
Kp(T, m) or cokp(t, m) with T € {1,2}" andm > 1. This can be seen as follows: By
Lemma 3.6, we bring the quantifier prefix in a form, where no quantifier substfintj>
orvV™'Vv™ appearst;, 12 € {p, 1, 2}). By Lemma 3.5, we ensure that the last quantifier is a
word quantifier. By Lemma 3.7, we eliminate all word quantifiers which are niavield

by a word quantifier. This last step can generate quantifier substfng® or vV©1v™

(t1 € {p, 1,2} andT, € {1,2}). However, applying repeatedly the rules of Lemmas 3.6
and 3.7 we get the desired result. O

3.3 Characterizing the Classe&p(-) and cofCp(-)

In this section, we characterize the classes having the fostm, m) or coCp(T, m) by
well-known complexity classes, whetec {1,2}" andm > 1. It is well-known that such

a class built without set quantifiers coincides with a class of the (aritbyypetlynomial-

time hierarchy and vice versa, i/6p(e, m) = % and cdCp(e, m) = 15, for m > 0 (see
§3.1.2). Thus, it remains to consider the classes involving set quantifiers. Thkesim
classes of these types are those containing only one set quantifier of type 1 and one word
quantifier, i.e.Xp(1,1) = 3'WPPand cdCp(1,1) = V'3IPP, which turn out to coincide

with PSPACE

Theorem 3.9. 3'VWPP = VY'3PP = PSPACE

Proof. Since PSPACEis closed under complementation, oalyw?P = PSPACEhas to
be proved.

“PSPACEC 3'VPP”: For a languagé. ¢ PSPACHet M be a polynomial-time alternat-
ing machine acceptiny whose computation trees are binary. The machhaccepts an
instancex if there exists an accepting subtree of their computationffgéx).

Since a good subtreeof 3,4 (x) includes both successors of an universal configura-
tion and exactly one successor of an existential configuration (see p. 9), westaibee
S by the seflls of all wordsz corresponding to an existential configuration whose right
successot1 belongs tcS in the following way:z € Us means 21 isin S”andz ¢ Ug
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means 20 is in S” (see Figure 3.1). Note that every déidescribes a good subtrsg of
Bam(x) in this way. Now we can conclude

x € L &= dS(S is an accepting subtree 8§, (x))
&= JU(Sy is an accepting subtree 8§, (x))
& JUVn((mis a path inSy A mis a path iy (x)) — 7 accepting
|7t —1
— au\m(( A (=(1)...7(4) is existential— xu(n(1) ... 7() = n(i+ 1))
i=0

A is a path inBM(x)) — T acceptin§
For fixedU andm, the condition in parenthesis can be checked in polynomial-time

with queries tall which are initial parts of the word. This is a type 1 querying. There-
fore,L € 3'VPP.

V— existential ~ . Q I _ +— accept
/A\— universal S~ 9 -7 -7 —— reject

Figure 3.1: Good subtreeS, andS, with S, being also an accepting subtree, where
US] ={00,01} andusz ={e, 10}.

“JYPP C PSPACE: Let L € J'WPP. There exist arl; € P°'° and a polynomial
p such thatx € L = F'UVPu(ul =p(jx|]) = (x,U,u) € L;). Since deterministic
polynomial-space is as powerful as nondeterministic polynomial-space, it sutfficke-
scribe a nondeterministic polynomial-space machine accejtifthe nondeterminism
will be used to guess the oradl®. Let M’ be a machine of typ@10 acceptingl; with
time boundq whereq is a polynomial. Thus, no query &fl’ on input(x, U, u) to ora-
cle U is longer thang(|x|). It is important that\’ asks for a given inputx, U, ) only
queries from on@racle pathw;, wiwy, ..., Wiw, ... Wq(x). Let M be a machine that
considers “stl)ep by step all these oracle paths in lexicographical order. Rayreale path
e {0, 1}9"7:
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1. The machinéVl guesses the answers of the orddl® the queries on this particular
oracle patht. This has to be made in accordance with the guesses for the previous
path, i.e. the answers to the queries of the common initial paxtasid its prede-
cessor (in lexicographical order) have to be the samerl,.éte this path with the
guessed answers. Note that only this partidfas to be stored which belongs to
the current oracle path.

2. NowM simulatesM’ for all inputs(x, u) asking only queries from the oracle path
mtand uses the oracle answers encoded,irin fact, M simulates\'’ for all inputs
(x,u) and stops such a simulation if a query is asked which is not from the oracle
path7r.

Finally, the machineM accepts if and only if all simulations in item 2, which are
not stopped, end accepting. TherefotéM) = L and M uses polynomial-space, i.e.
L € PSPACE U

The following lemma is a special presentation of the well-known fact tt@BSAT
problem isDLOGTIME-complete forNP. Fora € {0, 1} leta' =4 a anda® =4 1 — a.

Lemma 3.10. A languagel. is in NPif and only if there exist polynomiajs, g and func-
tionsf,g € DLOGTIME, i.e. each bit of the value dfand g can be computed in loga-
rithmic time, such thaf(1™,1,j) € {1,2,...,p(n)}, g(1™,1,5) € {0, 1} and

X€L<:>3(11(12...(1p(|x‘) /\(Cli:X(i))/\

x| p(lxl)
i=1 i=1

3 Ix|

g(1™i)
\/ af(l‘x‘,i,j)
j=1
whereay, az, . .., ay(x) € {0, 15

The remainder classé%(-) and cdCp(-) that we have not already characterized turns
out to coincide with classes of the exponential-time alternation hierardte/néxt theo-
rem shows which classé$o(-) and cdCp(-) contain a level of the exponential-time alter-
nation hierarchy.

Theorem 3.11. For k > 1 the inclusions
TP C Kp(1%,2) N Kp(1%772,1)  and TIP® C coklp(1,2) N cokp(1* 72, 1)
are valid.

Proof. We prove the first inclusion, the second follows by complementation. Consider
the case thak is odd. LetL € I i.e. letL be a language which is accepted by an
exponential-time alternating Turing machine starting with an existestté and having

at mostk — 1 alternations on every computation path. Hence, there exist a language
L; € NPand a polynomiat such that

x €L &= IuViudus.. Vi ((xmz“‘,u],uz, . ,uk,l) c L1>
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where the quantifiers vary over words of lengtr<).
Letn =g x| + 142X andN =g n + (k—1) - 2", By Lemma 3.10, there exist
polynomialsp, g and functionsf, g € DLOGTIME such that

Ix|
xel <:>3LL1V‘U_25|1L3 CYu 1daja; ... ap(N) (/\((1;L = X(l)) VAN ((1|XH_] = ])

i=1

n k—1 27(x] q(N) 3 N
- (IN1))
AN @=0AN A (angnzea=w@E) A AV a?uwn)
i=[x|+2 i=1 i=1 i=1 j=1

where the firsk — 1 quantifiers vary over words of leng®i(*). Obviously, the functions
f'(x,1,j) =g f(IN,1,j) andg’(x,1,j) =g g(1N,1,j) are polynomial-time computable
(the length off’ is polynomial in|x| bounded and the length @f is constant, and we
need polynomial-time to compute each bit of these functions). Now, the idea is to repre-
sent a wordw of length2"®) by the oracleW,, =4 {lex(i) : w(i) = 1}. There exists a
polynomials such that

[x
x €L & U VU,. . YU, auk< (e U o xi) =1 A (x| +1) € Uy)

i=1
AARE AT
i=[x|4+2
k—1 27(x]
A (m+G—1)- 24+ e U = ielly)

3
A A VIR € U o' i) = 1))
&SI YW, . VY U a‘ukvpi<1 <{i< N4 250D
apj (] S J S 3/\ (X,U],UZ,...,Uk,],Uk,i,j) S I—Z))

Where(xvu])UZ)'")ukf])uk)i')j) € LZ <:\>df
I<i<hklo@leUWexA)=1))A(G=x+1)—=iely)
ANlxl+T<i<n—idg Uy
An<i<n4+2™ 5 G(elUe=i—nely))

AmM+2M ci<n42.270 5 Geleoi—n—271 e U,))

An+(k—2)-27M ci<N-os(ieUei—m—(k—2) -2 c U y))
AN <i—= (f'(x,1=N,j) € U < g'(x,i—N,j) =1)) (*)
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It is obvious thatl, can be accepted by a deterministic polynomial-time oracle ma-
chine which, on inputx, Uy, ..., U, 1, Uy, 1,j), queries each of the oraclés, ...,
Uy 1, Uy at most once. Hencé, € PO andL € Kp(1¥,2).

Alternatively, since the quantifiei’j ranges only over the sét, 2, 3}, it can be elim-
inated:

xelLa U VU, . VU azukvpi(1 < i <N+ 2500
(X,U],uz,...,Uk,],Uk,i) S L3>

wherel; is defined ad., but the last line£) has to be modified to

3
/\(N <io Vi Nj) e U o g'lxi Nj)= 1)).

j=1

Obviously, a deterministic polynomial-time oracle machine can adcgept such a way
that on input(x, Uy, Uy, ..., U, 1, Uy, 1) the oraclesl, U,,..., Uy ; are queried at
most once andll, at most three times. Hende; € P°'*'20 andL ¢ Ke(1%72,1).

In the case thakt is even T, C cokp(1%,2) N coKp(1%7'2, 1) can be proved in the
same way which yields the desired result by complementation. O

The following proposition shows which classes having an alternating sequence of e
istential and universal quantifiers of type 2 on the base of the BIS8\CEcoincide with
a level of the exponential-time alternation hierarchy.

Proposition 3.12. For 1 > 1, let Q, =¢ 3 if Lis odd andQ; =4 V otherwise. Then, for
k>1

P2 QIPSPACE? =¥ and V23V2...Q2ZPSPACE?" =™

Proof. We prove the first equality, the second follows by complementation. For the
inclusion32v232 ... Q2PSPACE?" C 1% the idea is to replace the relevant part of
an oracleU (only polynomially length-bounded words are asked) by the exponentially
length-bounded woravy with wy(i) = 1 « lex(i) € U. Hence, a language from
32v2 ... Q2PSPACE?" can be accepted by an alternating exponential-time machine with
k — 1 alternations which starts with an existential state, 332 ... Q2PSPACE?" C

TP, For the other direction, by Theorem 3.11 and Lemma 3.4 follB#5 C Kp(2%, 1)
which is included ird?v23? . .. Q2PSPACE?", since the last quantifier, which is a word
quantifier, can be easily simulated byP& PACEcomputation. O

The next theorem shows which clasgés-) and cdCp(-) are included in a level of
the exponential-time alternation hierarchy.

Theorem 3.13. For k, m > 1 the inclusions
Kp(2%, m) UKp(2¥1,1) C Z7® and cokp(2¥, m) Ucokp(251,1) C TP

are valid.
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Proof. We prove the first inclusion, the second follows by complementationQket
dif kis odd andQy =4 V otherwise.

“Kp(2¥,m) C £®" The inclusionKp(2¥, m) C 32v2 ... QZPSPACE?" is evident,
since the lastn quantifiers, which are word quantifiers, can be easily simulated by a
PSPACEcomputation. Now, using Proposition 3.12 we get the desire result.

“Kp(2€1,1) C ™" Let k be even. The proof off' Y’P C PSPACE(Theorem 3.9)

remains valid if the machines have additionatyoracles of type 2, i.e3'yPPO2"10 C
PSPACE?", and hencel?v?...v23'WPP C F*V2. . . V2PSPACE?" which is included

in £;° by Proposition 3.12. The case of oddis treated analogously on the base of
V3PP C PSPACE U

Combining the above results we can state a complete characterizationadskes
of the analytic polynomial-time hierarchy having the fofga(t, m) or colCp(t, m) for
Te{1,2}" andm > 1.

Theorem 3.14.Letk > 0, m > TandTy,..., T € {1,2}. Then

(5P, if k =0,

PSPACE ifk=1,1x =lTandm =1,
Ke(ti... T, m) = ¢ 27, ifk>2tn=1landm=1,

e ifk>1,1=2andm=1,

|z if k> 1andm > 2.

Proof. The first line is obvious [SM73, Sto77, Wra77]. The second line is valid by The-
orem 3.9, and the remaining lines by Lemma 3.4 and Theorems 3.11 and 3.13. J

3.4 Characterizing by Well-Known Complexity Classes
and an Algorithm

We start this section giving a complete characterization of all clagds® analytic pol-
ynomial-time hierarchy.

Theorem 3.15. Each class of the analytic polynomial-time hierareéhiH coincides with
one of the classes}, TT? (k > 0), PSPACE X, ® or TT;* (k > 1) and vice versa.

Proof. By Theorem 3.8, each class of the analytic polynomial-time hierarchy coincides
either with P or with a class in normal form. Thus, we need only to prove thatrfer
{1,2}" andm > 1, the classCp(T, m) coincides with one of the mentioned classes, since
colCp(t, m) can be treated by complementation @d= £j = TI5. However, this is
exactly Theorem 3.14. O

Next, an algorithm which solves the problem investigated in this chapteesepted.
It summarizes the proofs of Theorems 3.15, 3.8 and 3.14.



3.5. Conclusions 29

Given: A classQPof the analytic polynomial-time hierarchy whegee I
Question: With which well-known complexity clas® P coincides?

Algorithm:
If Q = ¢ thenQP = P. Otherwise repeat the following steps until the foftn =
Kp(ty...T,m) or K = cop(Ty...7,m) forsomek > 0, m > 1 andty,..., T €

{1,2} is established:

1. Eliminate all substrings®3™ andv°V" using the equivalence rulé§3* «p 3° and
VoVT «p VP Wherep = pif o0 =t = p andp = min{t(3°) + t(37) , 2} otherwise
(Lemma 3.6).

2. Replace the rightmost quantifiéf with OP (Lemma 3.5).

3. Foro € {1,2}andT € {p, 1, 2}, eliminate all substringsPv°3* andVvP3°V" using
the equivalence rule®v°d" «p V°3" andVP3°V" «p 3°VT (Lemma 3.7).

Now get (Theorem 3.14)

o if k=0,

PSPACE ifk=1,tw=Tandm =1,
/CP(T] o Tk, m) = exp .

o fk>2,w=Tlandm =1,

e otherwise.

3.5 Conclusions

In §3.4 we gave a complete characterization of all classes of the analytic polyrtomea
hierarchy. An algorithm was also presented which allows to find out thesponeling
well-known class in an easy way. These results tighten up Orponen’s [Ceh8B]cteri-
zationZy® = .-, Kp(25, m) of k-th level of the exponential-time alternation hierarchy
by showingZy® = KCp(1%712,1) = Kp(1¥, 2).

The figure 3.2 give an overview on the results on clas8é&sand3°KX wherek are
classes of the polynomial-time hierarchy.

Now, consider the equalities

FP=NP and F*coNP= NEXPTIME

It is known thatNPis properly included ilNEXPTIME. Couldn’t we conclude from this
that P £ NP? This is surely not true because the equations really raéaft = NP
and 32coNP®? = NEXPTIME from which one can conclude on§®* # NP°%. This
inequality concerns classes whose languages have besides a word input alsceglsgt (or
input. But it is known that there exist even single oracles for wiflemd NPare unequal
[BGS75].

Finally, we emphasize that all the results on the analytic polynomial-tinrariigy
obtained here are valid in every relativized world.
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CHAPTER 4

Bounding Queries in the Analytic
Polynomial-Time Hierarchy

“Wenn einer mit Vergiigen in Reih und Glied zu einer Musik
marschieren kann, dann verachte ich schon; er hat sein groRes Gehirn
nur aus Irrtum bekommen, darfihn das Rickenmark schonolig
geriigen viarde. Diesen Schandfleck der Zivilisation sollte man so
schnell wie mglich zum Verschwinden bringen. Heldentum auf
Kommando, sinnlose Gewalttat und die leidige Vdtederei wie
glihend hasse ich sie, wie gemein undcaebtlich erscheint mir der
Krieg; ich mbchte mich lieber in $Sicke schlagen lassen, als mich an
einem so elenden Tun beteiligerdt&n im Krieg ist nach meiner
Auffassung um nichts besser als géwlicher Mord”

A. Einstein

In this chapter, we investigate a hierarchy which refines the analytic polyno-
mial-time hierarchy §3) by considering restrictions on the number of oracle
queries. This hierarchy is callédunded analytic polynomial-time hierarchy
We characterize classes this hierarchy by well-known complexityedags|
these characterizations remain valid if the queries are asked in a pdada
form, i.e. in “parallel”.

An overview this chapter follows: We first present our new computational
model comprising restrictions on the number of oracle queries and define
some complexity classe§4.1). Then, we extend the definition of thev-
quantifiers to include also these restrictions, and define the bounded analytic
polynomial-time hierarchys@.2). Inclusion and equivalence rules are also
helpful (§4.3). It is shown §4.4) that each class from this hierarchy having

a certain normal form coincides with one of the clas§&coNP, PSPACE

P or IP® (k > 1). After that, remainder classes are considered and the
open cases are present&d.pb). Finally, we make some comments about the
results §4.6).

4.1 Computational Model and Complexity Classes

We will extend previous definitions to our new context, i.e. including restrictions on the
number of oracle queries. Limiting the number of queries that a machine can ask to

31
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an oracle (input of typer € {1, 2}) during its computation by a function: N — N
depending on the length of the word inputs, i.eviis the length of the word inputs then
at mostr(n) queries can be asked to the oracle, we say that thisiigoan of typeo|r].

Let ® =4 {0,1,2} U{o[r] : 0 €{1,2},7v:N — N, } be the set of input types. For
k > 1andoy, ..., o € @, we say that a Turing machine istypeo; . .. oy if it processes
instances of the formXy, ..., Xy ), whereX; is an input of typeo; fori =1, ..., k. Such
amachine hal{i : o; = 0}|| ordinary input tapes and—||{i : o; = 0}|| query tapes. Thus,
a machine of type; ... oy on input(X;, ..., Xy), whosei-th input is of typeo; = T[r]
with T € {1, 2}, can ask at most(ZKi‘Gi:O \Xj\> gueries to the oracl¥;. Although we

consider new types of set inputs, for the length of the instances (& 2r2) only the
word inputs remain relevant. Thength of an instancX = (X;, ..., Xx), denotedX]|, is
defined byX| =af J_; i<y 6,—0 IXil, I.€. the sum of the length of the word inputs. In what
follows we also assume here thétontains at least one word input.

Computation trees and accepting paths are defined é&.202. Letk > 1 and oy,
...,0x € ®. For a Turing machinéV of type oy ... 0% on input(X;,...,Xy) being
deterministic or nondeterministiX( is an input of type;), its computation treedenoted
Bm (X1, ..., Xy), is a possibly infinite tree whose nodes are configurations, the root being
the initial configuration, and for any node its sons are those configurations which are
immediate successors af Obviously, forM being deterministic, its computation trees
are also paths. Favl being nondeterministic, without loss of generality we assume that
the trees are binary. Aaccepting pattof Bam (Xy, ..., Xx) is a path inBa (X, ..., Xk)
which has the same root node and ends in an accepting configuration.

Fork > 1andoy,...,ox € @, a Turing machinéV of type oy ... oy is calledpoly-
nomial-time(polynomial-spackif there exists a polynomial such thatM halts on every
path of every instanck¥ = (X, ..., Xy) in an accepting or rejecting state using no more
thanp(|X|) steps (tape cells, respectively). The space bound applies also to the length of
oracle queries. For a Turing machiMe of typeo; ... oy define

M is deterministic:
LIM) =g {(Xq,...,Xx) : Bm(Xq,..., Xk) is an accepting path
M is nondeterministic:

LM) =g {(Xq,...,Xx) : Bm(X1,..., Xx) contains an accepting path

as theanguage accepted byl.

In limited nondeterminism we consider Turing machines which make a bounded num-
ber of nondeterministic steps [KF80, GLM96]. Hoe> 1, o4, ..., ox € ® and a function
f : N — N, a Turing machinéV of type o; ... oy is calledf-nondeterministicf M on
every path of every instancé = (X, ..., Xy) makes at most(|X|) =4 (3, _, IXil)
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nondeterministic steps. Now, far> 1 andoy, ..., ox € © define

pPe1--%% —4 {L(M) : M is a polynomial-time deterministic
Turing machine of type; ... oy}
(f)-P° %% =4 {L(M) : M is a polynomial-timef-nondeterministic
Turing machine of type; ... oy}
PSPACE" % =4 {L(M) : M is a polynomial-space deterministic
Turing machine of type; ... oy}

which are calleatlasses of type . .. ox. Obviously,L € (f)-P°' %« if and only if there
exist anL’ € P°'--°x% and a polynomiap such that

X e L& Fu(u=min{f(X]),p(XD}IA (X,u) € L)
Finally, we defingf)-P =g (f)-F°.

4.2 Bounding Queries in Set Quantifiers and a New Hi-
erarchy

The analytic polynomial-time hierarchg3) was defined using-V-quantifiers varying
over words and oracles of type 1 and 2. We will refine this hierarghy?(2) considering
also3-V-quantifiers varying over oracles of typéfland Zr] (54.2.1).

4.2.1 Bounding Queries in Existential and Universal Set Quantifiers

We will investigate ard-v-hierarchy overP using word quantifiers as well as set quanti-
fiers varying over oracles of typefor t € {1,2} U {o[r] : 0 €{1,2},7: N = N, }. The
previous definitions of the existential and universal quantifigdsl(l) comprised only
quantifiers varying over words and oracles of types 1 and 2. Thus, we will exterel thes
definitions to include also quantifiers varying over oracles of type dnd Zr]. The
classesP?' %« with o1,...,0, € @ are the starting point for building up this new hi-
erarchy. Next, we define inductively new classes and in parallel the quemtifihe
definitions of the word quantifiers and set quantifiers of type 1 and 2 in our new context
are similar to the previous definitions, only the type of the class in question cageha
However, for convenience they are also included.lLet 1 andoy, ..., 0,0 € @. If £

is a class of type; . .. oy o then

Foro = 0: 3P andVPKC are classes of type, . . . o, which are defined as follows

L € IPK & there exist ar.’ € K and a polynomiap, such that

(X1, X € Lo Fe(I <p (3 IXil) A (X1, Xi %) € 1)

0'1":0
i<k
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L € VPK & there exist ar.’ € K and a polynomiap, such that

(X1, X € Lo vx( W < p(Y 1Xil) = (X1, X x) € L)
(Using simple encoding arguments it is easy to see that one can use equivaléntly
instead of <” in these definitions.)

Foro # 0: 3°K andV° K are classes of type, . . . o, which are defined as follows

L € 3°K &= there exists ah’ € I, such that
(X],...,Xk) eEL+— 3X((X],...,Xk,X) S L,)
L € V°K &4 there exists af.’ € K, such that

(X1, Xi) € Le— ¥X((Xq,..., X, X) € L)

To make clear which type of input is used, we also wHtX instead ofaX, andV*X
instead of¢X. Furthermore, in what follows we also wriié[r] instead of2°™, andv°|[r]
instead ofy°!".

Now, we translate some abbreviations and definitions f§8rh.1 to our new context.
ForQ = 3 (Q =), the set of existential (universal, respectively) quantifiers is denoted
by I'p,o1 =ar {Q° : 0 € @} and the set of existential and universal quantifierd fy=q
Fpa U Mpy- Fork >0, Q1,...,Qx € {3, ViandTy,..., 7 € @, lett(Q7" ... Q") =ai
o7 ... 0y be the type of the operator (or quantifier) striQq’ ... Q*, whereo; = 0 if
T, = p ando; = 7; otherwise{=1,...,k). ForQ = Q7' ... Qi andX = (X, ..., Xy)
we write QX instead ofQ}'X; ... Q;*Xy. Furthermore, we defin®@ =4 Q}'...Q;*.
The following proposition is evident.

Proposition 4.1. Letp € ®* andQ € T. ThencoQP**(Q) = QP

Proof. See proof of Proposition 3.1. O

4.2.2 The Bounded Analytic Polynomial-Time Hierarchy and a Nor-
mal Form

As for the analytic polynomial-time hierarchy, we are here particularlyé@sted in the
classes of type 0, i.e. in “ordinary” classes of languages. In this case, \aads@ibmit the
superscripts t@, i.e. for quantifier stringQ € ') we defineQP =« QP°"?). Next, the
bounded analytic polynomial-time hierarchy is defined. For quantifier stihgs o
the classe§) Pare called the classes of theunded analytic polynomial-time hierarchy
Because of

Q prefQT[ﬂ qufP g QprefQﬂr qufP
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whereQprer, Qsuf € Moy Q € {3,v}, T € {1,2}andr : N — N,, the union of all classes
of the bounded analytic polynomial-time hierarchy is afgéH. On the other hand, far
being so large that is not a real restriction we obtain an equality in abolesion

Q prefQT[ﬂ qufP - QprefQT qufP

Hence, forQ" is equivalent to tak€® ™™ with r being so large that it is not a real restriction
and vice versa.

For the analytic polynomial-time hierarch§3(2.2) we define the normal form classes
Kp(t, m) with t € {1,2}" andm > 0. Obviously, these classes are also classes of the
bounded analytic polynomial-time hierarchy. Next, we extend this definition to ceapri
also quantifiers of typé[r] and2[r]. Forl > 1, let Q =¢ 3 if Lis odd andQ, =4 V
otherwise. Fok, m > 0 andty, 12, T3,..., T € @ \ {0} we define

Kp(tiT2T3 ... T, m) =g I7V2I% L QFQF Q85 ... QR P

4.3 Inclusion and Equivalence Rules

Inclusion and equivalence rules will be helpful to relate classes of the boundgtiana
polynomial -time hierarchy. These rules will be applied in a similar sea$erd—p’ and

. ForR, S € 'y, theinclusion ruleR —p; S is valid if the replacement of the quan-
t|f|er strlng R by the strlngS |n any context does not diminish the class in question, i.e.

RQPH(RITQ) € SQPSITQ) for all Q € Mol andu € ®@*. We say that thequivalence
rule R «<p S is valid if the replacement of the quantlfler strlﬁg)y the strlngS in any
context does not change the class in questionRi@P**(R) = SQP*S)ITQ) for all

Qelpy andu € @*. Obviously, we hav® «p S if and onIy |fR —p S andS —1p) R.

For aruleR —p S, we will also have to prove “its complemerR”—> S. However
as for classes of the analytic polynomial-time hierarchy, the followmg prapashows
that only one of them has to be proved.

Proposition 4.2 (Complementation). LetR, S € I'f,. If R —p S thenR —p S.

Proof. The proof is the same as for Proposition 3.3. Qe€ I';; andp € ©*. Then

— L € RQP(RITQ) by Proposition 4.1

— L e SQp Q) byR —p S

— L € coSQP5)ITQ) by Proposition 4.1

— Le §quT(S)T(Q) 0

In 3.2.1, some rules were proved to relate classes of the analytic polynomeal-ti
hierarchy. In our new context we add as necessary the téfimsSome of the rules
(Lemma 3.4) show relations between the existential (universal, resplggtguantifiers
of different types. They can be restated as follows.
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Lemma4.3. Lett € {1,2}andr: N — N. Then
(1) e =g P and ¢ —p VP
(2) e = 3701 and e ip VIO
(3) I —p I° and VP —p VT
4) 3] —p ] and V'] —p V2.

Proof. The proof of Statement (2) is evident, since no queries are allowed to the.oracle
For the other statements, the proof follows as in Lemma 3.4. 0

We next restate some rules (Lemma 3.6) showing how to melt neighboured existentia
(universal, respectively) quantifiers.

Lemma4.4. Lett € {1,2}andr,r" : N — N. Then

(1) L =P 3P and VPP P VP,
(2) HPHT[T] —1P] J° and VpVT[T] —[P] V©
(3) =k [T‘] 3P — P =k and V* [T] P —P VT,

(4) F 2] —p Fir+1 and VA1 V] —p V41

Proof. The proof follows as in Lemma 3.6. Note that the prooffor 2 is the same as
fort=1. O

Some rules show how to reduce the type 2 of a set quantifier, for example the rule
F* —p 3'3'VP stated in the proof of Lemma 3.6. Following the proof of this rule we
obtain3?[r] —p 3'[1] 3'[r + 1] VP in our new context. However, in this proof we can
make some refinements and obtain a similar rule requiring less queriessadbed set
guantifier. This is shown in the following lemma.

Lemma4.5. Letr: N — N,. Then

(1) Fr] —=p I I r—11V"  and V2] —p VIV [ — 1] 3P

(2) F[r] =p I —1131VP  and V2[r] —p VI — 1]V[1] 3P
Proof. We prove the first rule of every statement, since the other follow by compleme
tation. Because of obvious rul8[1] 3'[r — 1] —p I'[r — 1] 3'[1], it suffices to prove
Fr] = 3113 [r — 1] VP, Forr = 1is evident. For > 2letp € ®* andQ € e

and letL € F2[r] QPwI(Q) " There exists a.; € PMT(Q) such that for a suitable
polynomialp
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Xel&3PuQY((X,Uu,Y)e L)

<:>32u3‘w<vpuvpv(u| W< pX) — (ue U e volie W))

/\QY((x,u,Y) c L(M)))

(takeW = (V01 :u,v € {0,1} Au € U} for example, and leM
be a polynomial-time machine of type[r] T(Q) accepting_1)

& 3UTWPaVPLPy QY (ful, v < p(X) -
((a:o—> (e U e vl e WA
(a=1— (X,U,W,Y)e L(M'))))

(M’ works on input(X, U, W, Y) asM on input(X, U, Y) but it only
asks the first query tbl like M does. Instead of askingto U after
queriesuy, ..., u, (m > 1) itasks011;011,01...011,,,011 to W.
Note that for everyX, a, u, v, Y), oracleU is asked exactly once and
oracleW is asked at most— 1 times in a type 1 manner.

This showsL € 3'[1] 3" [r — 1] YPyPyPQPHIM1I-110007(Q) and using the rules of Lemma
44,1 € 313 [r — 1] wPQpwiIr—10T(Q), .

Rules stated in the proof of Lemma 3.7 show how to shift existential and unliversa
word quantifiers. They can be restated as follows.

Lemma 4.6. Lett € {1,2}andr: N — N. Then
PV = VI FP and VPIT[r] —p TTr] VP
Proof. The proof follows as in Lemma 3.7. O

Finally, we show an “equivalence rule” which is valid only in a special erntlt says
that set quantifiers applied fare not more powerful than word quantifiers.

Lemma4.7. Lety € ®*. Then
PP =3P =FP and VPO =V'PH =y P

Proof. The proof follows as in Lemma 3.5. U

4.4 Characterizing the ClasseXp(-) and coKp(-)

We will characterize all the classes of the bounded analytic polynomial-tierarchy
which have the forniCp(t; ... T, m) Or cOCp(T; ... T, m), Wherek > 0, m > 1 and
T1,...,Tx € {1,2}U{olr] : 0 €{1,2},r: N — N, }. Itis well-known that such a class
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built without set quantifiers coincides with a class of the (arithmetic) polyabtime
hierarchy and vice versa, i.&€p(e, m) = b and cdCp(e, m) = TTh, for m > 0 [SM73,
Sto77, Wra77]. Thus, the interesting cases are those involving set quantifieitsturn
out that each of these classes in normal form involving set quantifiers coineitttesne
of the classe®VP, coNP, PSPACE £ or TI;® (k > 1) and vice versa. In what follows
we will state and prove only the results k(). The results for cp(-) are immediate
consequences.

The Table 4.1 includes the corresponding results for the classes ... 1, m),
wherek, m > 1 andty,...,x € {o[r] : 0 €{1,2},r: N — N_}, i.e. for the cases where
there is a restriction to the number of queries for every set quantifier.

m=1m=1]k=1]Kplo1[1],1) = coNP 410,411
k=2 }Cp(O’][T]}O'z[H,]):NP 4.13
k=3 /Cp(O'] []]0‘2[1‘2} 0'3“},]) = PSPACE 4.13
Kploq[r1] 02[r2] 03[1],1) = NEXPTIME (r1 >2) 4.13
k>4 | Kelorm]...onalrea] o1, 1) =207, (re2 =1) 4.13
Kploilri]... .o alralo1],1) =20, (12 > 2) 4.13

=2 [ k=1 Kplo112],1) = PSPACE 410,411
k>2 | Kplor[ri]...ox_1lre—] ok2], 1) = 77, 4.12
W S3 k=1 Kp(im].1) = PSPACE Z.10
Kp(2r],1) = NEXPTIME 411
k>2 | Kploylri]...ok_1lre_1] 1l , 1) Z):i)f1 4.12
Kploilril...ox1lr1]2md , 1) =27 4.12
m>2[re>1|k>1][Kplogh]...ox[r ], m) =27 4.9

Table 4.1: Characterization of the classEs(oq([r1]...ox[r], m) with oy € {1,2} and
1. : N = N,. The last column refers to the Theorem(s) which states the corresponding
result.

Obviously, we have in all cases stated in the Table 4.1
Kp(ti... 10 T ..o, m) = Kp(Tr ... Ti103[3] Ty ... T, M)

foro; = 1,2,y > 3andTty,...,Ti 1, Tig1..., T € {or]:0€{1,2},7:N— N, }.
Choosingr; so large that it is not a real restriction we have also

/Cp("f] o Ti10i T - - T, m) = ICP(T1 T 0"1[3] Tit1 ... Tk, m)

Iterating this step we obtain results for &lb(t;...T, m), wherek,m > 1 and Ty,
o e{,2}u{orl:oe{1,2},r: N —= N, L

Hence, proving the results of the Table 4.1 we obtain the desire charactersati
(84.4.1). In addition it is shown that all these characterizations remaid Wahe oracle
machines are allowed to make only parallel querids4.2), i.e. they have to form a list
of all queries before any of them is queried to the oracle.

4.4.1 Characterizing the Classe&p(o1[r1]. .. ox[ry], m)

Next, the classes having the forie(oq[rq]...ox[r], m) are characterized by well-
known complexity classes fa, m > 1, oy,...,0¢ € {1,2}andry,..., 7 : N = N,
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(the results for ckp(oq[r1]. .. oxlrk], m) are immediate consequences). We start with
translating a result frong3.3 in the language of the bounded analytic polynomial-time
hierarchy. Theorem 3.11 states which classes of the analytic polynomial-taraediy
contain a level of the exponential-time alternation hierarchy. In the proof sfrésult
some remarks on the number of queries to the oracles were made. This canted gesta
follows:

Theorem 4.8. For k > 1 the inclusions
I C Kp((111D)%,2) N Kp((1011)%772(3], 1)
are valid.
Proof. The proof follows as in Theorem 3.11. O

Using previous theorem and a results obtained for the classes of the analytic polyno-
mial-time hierarchy, we obtain that each class containing at least ongiaetifier and
at least two word quantifiers coincides with one class of the exponential-tieraation
hierarchy.

Theorem 4.9.Letk > 1, m > 2, 0y,...,0r € {I,2}andry,..., 1« : N —= N,. Then
Kp(oi[m]...ox[rd, m) = ziXp
Proof. Direct from Theorems 4.8 and 3.13. O

Thus, remains to consider the clasgggo;[r]...ox[r], 1) with k > 1. The sim-
plest classes of these types are those containing only one set quantifier of type 1 which
turn out to coincide with cNPor PSPACE

Theorem 4.10.Letr: N — N. Then
(1) Kp(1[1],1) = coNP,
(2) Kp(1[r],1) = PSPACEfor r > 2.

Proof. Statement (1): The proof of &P = VPP C J'[1] VPP = Kp(1[1],1) is evident
(Lemma 4.3). Next we prové'[1] VPP C VPP. LetL € 3'[1]VPP. By definition there
exist anl; € P°'"° and a polynomiap such that

x € L& UV (vl =p(x]) = (x,U,Vv) € L;)

whereM is a polynomial-time machine of tygd [1] 0 acceptind_; is such a way that the
oracleU is queried only once. Left be a function computable in polynomial-time such
that the machinéM on input(x, U, v) queriesf(x,v) to oracleU. Thus, there exist an
L, € P°® and a polynomiaf; such that

x € L& F'UVvPry (v =p(x]) = (x,v,culf(x,Vv))) € Ly)
= VpquvaW(\ul < q(x) Al = wl=p(x]) —

((f(x,v) —u— (v 1) € L)V (fx, w) =u — (x,w,0) € L2)>>
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Therefore L € YPYPYPP. Now, using Lemma 4.4 we get the desired result.

Statement (2): The inclusiofi [2] VPP C 3'VPPis evident andl' VPP = PSPACHollows

by Theorem 3.9. Thus, onlPSPACEC 3'[2] VPP has to be proved. We use Cai and
Furst’s characterization d?PSPACE[CF91]. LetAs be the group of even permutations
on[5] =4 {0,...,4}, and leto be the multiplication of this group. Cai and Furst proved
that for every language € PSPACEthere exist a functior : {0, 1}* x {0,1}" — As
computable in polynomial-time and a polynomgasuch that

x € L= flx, 1P0) o f(x, TP10) o o £, 0P1¥))(1) = 1
Consequently,

el (:)Hg<(g (0,1 = B3] A\m(u — () -
((u — 0P S f(xu) (1) =g (u))
A (wg {070, 1700} £ (x, 1) (W) = g (u))

A (u: 1P £ (x,u) (g(W) = 1)))

N——

& FPU VP YPi VP <|u| =p(x)A0<i,j<4—
((u — 0Py (f(x,u) (1) =1 udt e U))
A (u ¢ {0 TP A0t e U — (F (x,u) (1) = & u0l € u))
A (u: 1P A L0t e U — f (x,u) (i) = 1)))

However, for each{x, U,w,1,j) such thatw ¢ {oP(®) 1r(x)1 the two queriesc0t
andu(’ are asked tdl which is not a type 1 querying. To overcome this difficulty we
encode the words frorf{0, 1)?" \ {1p(x1}) x [01=* by an injective functionx which

has the property that, for evetyg {0P(*) 17(X)1 and0 < 1i,j < 4, eithera(u, 01) is an
initial word of «(u, 0') or vice versa (take for example the functiarof Figure 4.1 with
n = p(|x|) andl = 4). Now instead of querying.0t andu0’ to U the queriesx(u, 0})

ande(u, 0') are made to the orach =q {x(u,0"): 0 <1 <4Auldt e U}inatypel
manner. Therefore,

x €L & EI]VVpquinj<(\u| =p(x) AN0<1,j<4)— (x,V,u,i,j) € L1>
where(x, V,u,1,j) € L1 &g
(u — PN (f (x,w) (1) =1 & alw, 04 € V))
A g {07,170} Aa(W,04) € V = (F(x,w) (i) = © afu, 0) € V)

/\(u — 1P A (W, 0Y) € V = f (x,u) (1) = 1)
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Obviously,L; can be accepted by a deterministic polynomial-time oracle Turing machine
which, on input(x, V,u,1,j), queries the oracl®& in type 1 manner and at most two
times. Hencel; € P°121900 andL e 3'[2] YPYPYPP. Now, using Lemma 4.4 we conclude

L € 3'[2] VPP, O
u o(u,0Y)
0000 — 0%00%00%00¢
0001 — 0*00*00t
0010 — 0%00%00*10!
0011 — 0*00t
0100 — 0%00*10*00t
0101 — 0%00*10
0110 — 0%00%*10*10
0111 — ot
100 — 0*10%00*00*
1001 — 0*10%00
1010 — 0*10%00*10
1011 — 0*10t
110 — 0*10*10%00
1101 — 0*10*10%
1110 — 0*10*10*10

Figure 4.1: Encoding functiono : ({0,1}™ \ {1"}) x {0}=' — {0,1}" defined by
o(ay...an01™ ™1 04 =4 0'a;0'a, ... 0% 0! where0 < m < n anday,...,ay €
{0,1}. The table shows an example far= 1 = 4 with the a;’s being represented in
boldface. The tree gives the corresponding encodings words removing the suti¥trings
and thed' whose order is represented by the doted line. The substingsre introduced

in the function« due to the parametér.

The next result shows that f&s(o|r] , 1) a single type 2 quantifier is probably more
powerful than a type 1 quantifier when more than two queries are allowed.

Theorem 4.11.Letr: N — N. Then
(1) Kp(2[1],1) = coNP,
(2) Kp(212],1) = PSPACE
(3) Kp(2[r],1) = NEXPTIME for + > 3.

Proof. The first statement follows by Theorem 4.10 and the last statement follows by
Theorems 4.8 and 3.13. Next we prove the second statement. By Theorem 4.10 and
Lemma 4.3 followsPSPACEC Kp(1[2],1) C Kp(2[2],1). Thus, it remains to prove
Kp(2(2],1) € PSPACE Fora € {0,1} leta' =4 a anda® =4 1 — a, and for a setl

let U' =4 U andU® =4 U. ForL € 3?[2] VPPthere exist polynomial-time computable
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functionsf, g1, g» and polynomiab such thatff is a 0-1-function §; ~ thei-th query to
oracle) and

xeLesuvu(iu =pl) >\ (910yw) €U Aga(x,u,a) € UY))

a,be{0,1}
f(x,u,a,b)=1
b ,
< the boolean formula A Voo (25, e N 20, (xa)) With the
ul=p(xl) a,be{0,1}
f(x,u,a,b)=1
variablesz, ..., z,q(x IS Satisfiable ¢ suitable polynomial)
, , b , ,
A simple computation shows that the formulabgO | (Zg, ) \Zg, (xa)) 1S €QUIValENt
a? )
f(x,u,a,b)=1

to a conjunction of clauses with at most two literals each, though the formula has three
variables. (An easier way to see that is to use Lemma 4.14 which shows that we can
without loss of generality assume that the queries are made in parallel. In this case the
formula has two variables at all and hence its conjunctive normal form has only clauses
with at most two literals.)

Hence,L can be m-reduced to the 2-SAT problem using polynomial space. Because
2-SAT € NL (see [Pap94, p. 185]) we obtdine PSPACE O

Thus, we have characterized the classes of the bounded analytic polynomial-time hier-
archy having the fornCp(o[r] , 1). To reach our goal in this section it remains to consider
the classes containing at least two set quantifiers followed by one word quantifier. This
will be done in two steps. First we consider the classes where the last set quantifier is not
restricted to one query.

Theorem 4.12.Letk > 1, 0q,...,0%,0 € {1,2}andr,..., 7, 7: N —= N,. Then
(1) Ke(or[ri]...ox[rnd ol2] 1) = I
(2) Kplor[r1] ... oxlrd 1[r], 1) = 2% for r > 3;
(3) Kplorlm]...oxlrd 2[v], 1) = Ziip] forr > 3.

Proof. The last statement follows by Theorems 4.8 and 3.13. For the second statement,
we conclude

Ke(oq[ri] ... oxlrd 1[r], 1) € Kp(251,1) C 3P by Theorem 3.13
C Kp(oq[r] ...omd 112], 1) by Statement (1)
C Ke(oq[r] ... ox[md 107, 1)

Now, we prove the first statement. It is enough to shiow(2*2[2],1) C £® and
IyP C Ke((11D*1(2], 7).

“Kp(2¥2[2],1) C £7™: Let k be even. Note that the proof #fs(2(2],1) C PSPACE
(Theorem 4.11) remains valid if the machines have additioriattyacles of type 2, i.e.
(2] yPpR2i20 ¢ pSPACE?". Hence3?V2...V232[2] VPP C 32v2. . V2PSPACE?"
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which is included inz}® by Proposition 3.12. The case of oklds treated analogously
on the base of d6p(2[2],1) C PSPACE

“IY® C Kp((101)*1[2],1)" By Theorem 4.8 we obtaity® C Kp((1 [1]) 2) Hence,
it is easy to see that we have to prove ofpyPPO(IN 0 C J12]yppO(IINMIZ0  For g
languagel. € IPvPPO(HIN*0 there exist ar; € PP(M*00 and polynomlaleq andr such
that

X €L FPuvPw (ul = q(X) A (w =7(IX]) = (X,u,w) € Lt))

Fora € {0,1,2}, u € {0, 1) andw € {0, 11" define the functiorf as follows

p

ifa=1,

if a =0andw = 0" and(X,u,w) € L,
if a =2andw # 1"X) and(X,u, w) € L;,
if a =2andw = 1" and(X,u, w) € L,
otherwise.

f(X,uw)(a) =ar

S = N =

Obviously,f is computable in polynomial-time and
X e L (X, 1Py o (X, 1PD=T0) o o f(X, 0PXD)(0) =1

wherep(|1X|) =4 q(|X|) + r(|X|) ando is the traditional composition of functions. Now,
the inclusiongPyPPO(II 00 C J12] wppO(HIN 1210 fgllows as the inclusioPSPACEC
3'[2] VPP proved in Theorem 4.10.

Xel (:)Elg<(g {0, 1} —{0,1,2}) /\Vu<lu =p(IX]) =

(=00 Fix,u) 0) = g )
(u¢{0p|x\ 1p|x|}_>qu)( (W) )>
/\(u:1p(|xl)—>f(X,u )))
= UL (1 =plXI) A< 1] <2
((u — 0P(X) (£ (X, u) (0) =1 ult € U))
A (u ¢ {OPXD TPIXNL A0t e U — (F(X,u) (1) = & ud € u))

/\( — 1P A0 e U — (X, u) (i) = 1)))

However, for eachX, U, u, 1,j) such thatw ¢ {0P(X) 1P(X)} the two queries.0t
andu(’ are asked tdl which is not a type 1 querying. To overcome this difficulty we
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encode the words frorf{0, 1}P(X) \ {1P(XD}) x {01=2 by an injective functionx which
has the property that, for evetyg {0P(X) 1P(X)} and0 < i,j < 2, eithera(u, 01) is an
initial word of oc(u, ) or vice versa (take for example the functiarof Figure 4.1 with
n = p(|X|) andl = 2). Now instead of querying.0* andu0’ to U the queriesx(u, 0})

anda(u, 0’) are made to the orach =q {oc(u,0'): 0 <1 <2Au0' e U}inatypel
manner. Therefore,

Xel e a‘vvpuvapj(uu\ —p(IXDA0<1,j<2)— (X, V,uij)e L1>

where(X, V,u,i,j) € Ly &g

(u — 0P (£(X,u) (0) =i & oufw, 01 € V))
Aw g {00, PO A (04 € V= (F(X,w) (1) = afu, 0) € V)
/\(u — 1P A (W, 04 € V = f (X, u) (i) = 1)

Obviously,L; can be accepted by a deterministic polynomial-time oracle Turing machine
which, on input(X, V,u,1,j), queries the oracl® in type 1 manner and at most two
times. Hencel; € PP(II*1121000 gpd[ e J1[2] yPyPyPPOITIIN 121000 Now, using Lemma

4.4 we concludé. e 3'[2] yppoiiln 120, 0

Now we consider the case at least two set quantifiers where the last ostisted
to one query.

Theorem 4.13.Letoy,...,0x,0,T€ {1,2}andry,..., 7, 7: N — N,. Then
(1) Ke(olr]t[1],1) = NP,
(2) Ke(o1[11 o[ T(1],1) = PSPACE
(3) Kp(oyri]. ..ok qlr sl ox[1] olr] 211, 1) = £7¥ fork > 2;
(4) Kp(oyri]...ox[md ol z[1],1) = £ fork > 1 andm, > 2.

Proof. Forl > 1, let Q, =4 3 if 1is odd andQ, =4 V otherwise. In the proof of

J*[1] VPP C VPP (Theorems 4.10 and 4.11) we need to simulate only two times the orig-
inal machine for each wordvw. Therefore, if the machines have additional oracles, the
number of queries to each one of these additional oracles is doubled and the type 1 prop-
erty cannot be guaranteed. Thus, kor O (if k is even, take the bas&[1] 3PP C PP

3 ry] . Qe md Q1 QR 11 QY P C 2] ... Qil2md Qi 211 Q0 5P

4.1
C F2m]...Qil2r QY P @1

sinceQy1 = Qi3 and by Lemmas 4.4 and 4.7 we can melt these last 2 quantifiers to
one word quantifier. Hence we conclude
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Statement (1):
Kp(olr]t[1],1) C Kp(e, 1) € NPC Kp(o[r] T[1],1) by Equation (4.1)
Statement (2):
Kp(o1[1] o] T[1],1) C Kp(2[2], 1) by Equation (4.1)
C PSPACEC Kp(1(2],1) by Theorems 4.11 and 4.10
C Kp((101])%,1) by Lemmas 4.5 and 4.3
C Kp(on[1 o] T(1],1)
Statement (3):
Kp(oilr]. ..o alreal o [1] ofr] T[], 1)
C Kp(2[214]) ... 212111 2[2] , 1) by Equation (4.1)
C I C ICP((H < '021,1) by Theorem 4.12
C Kp((1[11)**2,1) by Lemmas 4.5 and 4.3
C Kplorm]...oxalrea] o[l ofr] T(1],7)
Statement (4):
Ke(oq[ri] ... oxnd olr] 1], 1)
C Kp(2[214].. Z[ZTk] 1) by Equation (4.1)
C IPPCKp((11)*12[3],1) by Theorems 3.13 and 4.8
C Kp((101D)* ‘1[] 111101,1) by Lemmas 4.5 and 4.3
C Kplorlm] ... ox[rd ofr] (1], 1) 0

4.4.2 Parallel Queries

Now, we consider oracle machines that during their computations ask the queaes in
parallel manner, i.e. they compute a list of all queries before asking one of thewil\W
represent the parallel restriction over an oracle bounded by set qua@fifigeroy Q°[lir],
whereQ € {3,V}, o0 € {1,2} andr : N — N. The following lemma shows equivalences
between classes involving and not involving parallel queries.

Lemma4.14. Letu € ®*. Then, fork € Nando € {1, 2}

F7[IK] VPPHOKO = 39 k] P protkld
Proof. The direction C” is evident. For the other direction l&t> 2 (for k € {0, 1}itis
obvious) and. € 3°[k] YPPHe0 There exist ar.’ € P+ and a polynomiap such
that

Xe L U ([ =p(X]) = (X,Uv) €L
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Let M be a polynomial-time machine of types[k] 0 acceptingl’ and, letf, g;, ..., gk
be functions computable in polynomial-time such thatX¥éron input(X, U, v) and for
i=1,...,k gi(X,v,uy,...,uy 1) is thei-th query ofM to U assumed the answers to
thei— 1 first queries werew;, u,, ..., u; 1, andf(X, v, uy,...,u) is the result oM on
input (X, U, v) if the answers oll to thek queries arey,, ..., u;. Hence,

XEL(:)EIUVv<|v| p(IXI) —>\/(g1X\) cUsul) =1A---A

lul=k
A (ge(X,v,u(1),. ( )eUe=uk) =1)
AFX v, u(l), ... ))

& 3Uv( v =p(X) = A (01X € Ueu(l) =0) V-V

lul=k

Vi (ge(X,v,u(T),...,uk—1)) € U u(k) =0)
VX v u(l), .. u(k) = 1))

& UV (vl = p(IX) Al =T) = (X, Uv,u) € 1))
where(X, U, v,u) € L; &= u| =
(910 v) € U u(1) = 0) V-V (g, v,u(1),...,u(k = 1)) € U &3 u(k) =0)
VX, v, (1), ulk) = 1)

Obviously, a deterministic polynomial-time machine of typ&lk] 00 can accepl; ask-
ing the k queries to the oracle bounded by the last set quantifier in parallel. Hence,
L; € Puolikl0 gnd L e 3°[Ik] YPyPPHeliklo0 - ThenL e 3°[Ik] YPP=el'kI0 follows by
Lemma4.4. U

All the characterizations obtained #d.4.1 remain valid for the counterpart classes
KCp(-) having the parallel queries restriction. This can be seen as follows: Foh#wem
4.9 itis evident, since only one query for each oracle is enough. For the other reshilts wit
exception Theorem 4.13, only the number of queries to the oracle bounded by the last set
quantifier is relevant (for each one of the remainder oracles only one query is enough).
Hence and by Lemma 4.14 we have the desired characterization. For Theorem 4.13,
only in the proof of Statement (4) can arise problems. However, observe thataibie
of Theorem 3.11 yield&™® C Kp((1[11)*'2[I3], 1) and that the rules of Lemma 4.5
remain valid if we consider the parallel restriction, 8&[ir] — 3'[1] 3'[Ii(+ — 1)] V* and
V2[lir] — VY (r — 1)] 3P,

4.5 Remainder Complexity Classes

In §3.2.2 was proved a Normal Form Theorem (Theorem 3.8) for the classes of the ana-
lytic polynomial-time hierarchy. It was shown that each class of this tékyacoincides
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with a class in the forniCpq(-) or coCp(+). Unfortunately, the equivalence rules used in the
proof of this theorem do not preserve the number of oracle queries and cannot be applied
to a chain of quantifiers of a class of the bounded analytic polynomial-time hierarchy.
Otherwise, using the results §4.4 we would obtain a complete characterization for the
classes of the bounded analytic polynomial-time hierarchy. Thus, in this seaiconw

sider classes of the bounded analytic polynomial-time hierarchy do not having ndgessar
the form/Cp(+) or caolCp(+).

By equivalence rulel’3P « 4P (VYPVP « VP) of Lemma 4.4, we can melt adja-
cent existential (universal, respectively) word quantifiers. Hence and \apubrule
IPI0r] « 0] P (VPVOr] « VO[r] VP), in what follows we will assume that in ev-
ery consecutive sequence of existential (universal, respectively) quandifi@ quantifier
string there exists at most one word quantifier. Furthermore, we will statpr@ve only
the results foQPwith Q € Iy, since the results for €@Pare immediate consequences.

Finally, let us state again the fag®(2.2) that forQ~ it is equivalent to take&)™" with r
being so large that it is not a real restriction and vice versa, WReee(3,V}, T € {1, 2}
andr: N — N,.

ForS e I, andT € F[‘F;Q], whereQ < {3, V} and the quantifie€®, Q' or Q2 appears
in the chainT, we gave a complete characterization of the clas3eg3by well-known
complexity classes;8.5.1). Then, other classes are considered and the open cases are
stated §4.5.2). We show in addition that all the results obtained remain valid if théeorac
machines are allowed to make only parallel querids3.3).

4.5.1 Characterizing the ClasseSTP

Next, we characterize the classes of the bounded analytic polynomial-timechieheav-
ing the formST Pby well-known complexity classes f&r € Mol andT € F[‘F;Q], where

Q € {3,V} and the quantifieQP, Q' or Q? appears in the chaif. Note that the classes
examined ing4.4 are special cases 81 Pwith T being a word quantifier, i.el = QFP.

Since each one of the classes of the bounded analytic polynomial-time hierarchy not con-
taining set quantifiers coincides with one class of the (arithmetic) polyndimalhierar-

chy [SM73, Sto77, Wra77], it remains to consider the clas§e3containing at least one

set quantifier. It will turn out that each one of the these classes involvimguseitifiers
coincides with one of the classg§, TIF (k > 1), PSPACE X, or TI;® (k > 1) and vice

versa. Our first result says that it is enough to consider the clag¥s2

Proposition 4.15. LetQ € {3,V}, S € Ty andT € Iy .. If the quantifierQP, Q' or Q*
appears in the chaiit, thenSTP= SQPP.

Proof. By Lemmas 4.3, 4.4 and 4.7 we concl®EPC SQ?*PC SQPPC STP. O

Next, a desired form for a quantifier string is defined. ket € {1,2} andr,r’ :
N — N. For achainS € I'j;, let Norm(S) be an alternate sequence=b¥-quantifiers
with the set quantifiers appearing left to the word quantifiers, which is olataipelying
the following rules oveB, where the melt rules have precedence over the shift rules, i.e.
a shift rule is applied if and only if no meld rule can be applied:
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(1) Meltrules (Lemmas 4.3 and 4.4):

3PP — [P 3P and PP — (P P
HPHG[T] —[P] 3° and vac[r] —[P] Ve
] P —p 3I° and Vo[V —p V°

] T[] —p Flr+11 and V[r] V[ —(p] V2[r + 7]

(2) Shift rules (Lemma 4.6V [r] —p VO [r] I andVP3%[r] —p I°[r] VP

Obviously, forR,S, T € Moy we haveRSTP C RNorm(S) TPand NorniS) Pis a class
in the form Cp(-) or coCp(-). Finally, let FirstSetS) be 3 (V) if the first set quantifier
appearing irS is an existential (universal, respectively) quantifier (FirstSety € if S
does not contain set quantifiers).

The following theorem shows which classes ending irdaralternate sequence of
word quantifiers coincide with a class of the exponential-time alternatioariley.

Theorem 4.16.LetS € F[g] with FirstSetS) = 4, andQ € {3, V} be the last quantifier in
S. If k is the number of set quantifiersorm(S), thenSQPQPP = £.°*.

Proof. We concludesQPQPP C Norm(S) QPQPP C Norm(SQPQP) Pwhich is included
in the classCp((1(11)%,2) = Z7® by Theorem 4.9, and’p((1[11)%,2) C SQPQPPIs
obvious. 0

Before the remainder characterizations are presented, we state tlis tedelp us in
their proofs. The next proposition shows a result which was already observedirotfe
of Theorem 4.13. Fo$ € I'y), let (S), be the chairb but: If Q°[r] appears irb then in
(S), we haveQ?[2r] for o € {1,2}, Q € (3,V} andr : N — N, i.e. all set quantifiers from
S have type 2 in(S), and if a set quantifier varies over oracles whose number of queries
is bounded by functiom, then this quantifier ifS), varies over oracles whose number of
queries is bounded by functian.

Proposition 4.17. Leto € {1,2}, Q € {3,V}andS € I, ThenSQ°[1] QPP C (S), QPP.

Proof. In the proof of3°[1] VPP C VPP (Theorems 4.10 and 4.11) we need to simu-
late only two times the original machine for each wardw (if Q = V, take the base
Vve[1]3PP C 3PP). Therefore, if the machines have additional oracles, the number of
queries to each one of these additional oracles is doubled and the type 1 property cannot
be guaranteed. ThusQ°[1] QPP C (S), QPP. 0

The following result states an “equivalence rule” which shows how toietite word
guantifiers.

Proposition 4.18. Letk, 1 € NandY € {3°,v*}'. Then, forQ € {3,V}

YQZ[Z] QpPOZKOlZ[Z]O — QZ[Z] Qppozkzmo — PSPAC@ZK
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Proof. The proof of 32[2] VPP = PSPACE(Theorem 4.11) remains valid if the ma-
chines have additionally inputs of type 2 and inputs of type 0 (ifQ = V, take
the basev2[2] PP = PSPACH, i.e. 2[2] yPpP2*0'2210 — pSPACEZ*®' . Furthermore,
Y PSPACE?"" C PSPACE?", since theY word quantifiers can be easily simulate by a
PSPACEsimulation. Hence,

YQ?[2] QPPP2*0220 C ¥ pSPACE*
C PSPACE™ C Q*[2] QPpP¥2120
C YQZ[Z] GppozkoLzmo 0

Characterizing the classe$SQPP

By Proposition 4.15 and Theorem 4.16 it remains to consider the clag¥¥3 where
e Sc F[“r:];
e Q € {d,V}isthe last quantifier iiS;

e in the last consecutive sequence(@fquantifiers inS there exists at least one set
quantifier, i.e. after the last set quantifierSrdoes not appear the substriQd QP
and;

e in each consecutive sequence of existential (universal, respectively)feprann
the chainS there exists at most one word quantifier.

We will divide the study of the&sQPP classes depending on chdinLet R andT be
quantifier strings such th&T = S with R = ¢ or the last quantifier oR being a set
Q-quantifier. HenceT contains at least one s@tquantifier. The Table 4.2 shows where
the characterizations of tiRT QPPclasses, i.eSQPPclasses, by well-known complexity
classes can be found.

| Theorem(s) | ChainR | ChainT |
4.19,4.20,421R=¢ [Te (Mpoqu{Q"})"

4.22 ReTh | Te (MpaU {Qr})" such that inT appears a set
quantifier that differs from
Q'[1] andQ2[1]
4.23,424,425 Re T | Te{Q'N,Q1], P, W}~

Table 4.2: Characterizations of the clasREQPP withR = ¢ or the last quantifier ok
being a seQ-quantifier.

A function that enable us to specify quantifier strings containing desired prapertie
will be helpful to us: Fork,1 > 0 and Qy,...,Qx, T1,..., Ty € Ty, we define the
functionF(Qq,..., Q«I|Ty,..., Ty) as the set of all possible quantifier stringﬂg]l such
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that only the quantifier®q, ..., Qx, Ty, ..., Ty can appear and each one of the quantifiers

Q1,..., Qx appears once (Q; = Tj, then the quantifieQ; must appear at least once).
The simplest classe$QPP are those with all set quantifiers beiBgguantifiers -

quantifiers, respectively). The next result shows that these classesaugtaguantifier

of type 1 which is not restricted to one query, turn out to coincide W8PACET only

one set appears thand withNEXPTIME or coNEXPTIME otherwise.

Theorem 4.19.Leto € {1,2}andr, v’ : N — N, such thatr > 2. Then
(1) SYPP= PSPACEfor S € F(3'[r] [2°,¥P);
(2) SYPP= NEXPTIME for S € F(3'[r],3°[*'] |Fpa;, V°).
Proof. By Theorems 4.10 and 4.11 follows
SVYPP C Norm(SYP) P
c {a‘va: I'2] WP = PSPACE  if S e F(3'[r] 3P, W),
| VPP = F[3] VPP= NEXPTIME if S ¢ 7—"(3‘ [r],3°[r'] \r[pa},vp),
which is included irS¥?P (by Lemma 4.5 followsi? (3] VPP C 3'[2] I°[1] VPP). 0

The following theorem shows that a clé&3PP, whose set quantifiers are existential
(universal) and one of them is of type 2 not being restricted to one query, turn out to
coincide withPSPACE(f 32[2] (v#[2]) is the unique set quantifier appearingiand with
NEXPTIME (coNEXPTIME, respectively) otherwise.

Theorem 4.20.Leto € {1,2}andr, v’ : N — N, such thatr > 3. Then

(1) SYPP= PSPACEfor S € F(3*(2] |Z°,VP);

(2) SYPP= NEXPTIME for S € F(F*[r] [Fjp, V*) U F(I°[r'], (2] T3, VP).
Proof. We conclude for

Statement (1): By obvious rulé?[2] 3P «p; IPF2[2], there exists ad-V-alternate se-
quenceY of word quantifiers such th&v® —p; Y3%[2] VP (remember that after the set
quantifier inS does not appear the substrii®g®). Thus, by Proposition 4.18 follows
SWYPP C Y3?[2] VPP C PSPACEC F*[2] VPP C SYPP.

Statement (2):
SVYPP C Norm(SYP) PC 3*vPP
C F*[3] VPP = NEXPTIME by Theorem 4.11
C SYPP
where for the last inclusion we use Lemma 4.5 i 7 (3°[r'] , 32(2] |5 3, VP). O

Next, we point out how heavily (and nicely) the results for the claS§g%, whose
set quantifiers are existential (universal, respectively) restrict®ne query, can depend
on the number of set quantifiers.
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Theorem 4.21.Leto, T € {1,2}andU = | 2 F (3P, 3P0][FP,¥P). Then

pe{l

(1) SWwPP=x} for S € F(3°[1] |3, ¥P) such that the first word quantifier $iv® is
3°;

(2) SWPP=TI for S € F(3°[1]|3P,¥P) such that the first word quantifier $iv® is
vP;

(3) SYPP = PSPACEfor S € F(3°[1],3%[1]|3P,VP) such that the substring®T
does not appear after the first set quantifieSifor all T € U;

(4) SYPP= NEXPTIME for S € F(3°[1],d"[1] |3P,VP) such that the substring’T
appears after the first set quantifier $nfor somerl € U;

(5) SYPP= NEXPTIME for S € F(3°[1],3°[1],3°(11 |3'[1], 3*(1] , =P, ¥P);
wherek — 1 is the number oH-V-alternations of the word quantifiers 8.

Proof. We conclude for

Statements (1) and (2): We prove only Statement (1), since the other folidivs same
way. By obvious ruled®[1] 3P «p; IP3°[1], there exists ad-V-alternate sequencéof
word quantifiers such th&vP — i Y3°[1]VP. Thus, by Proposition 4.17 we conclude
SYPPC YI°[1] VPP C YVPPC XD C SWPP.

Statement (3): By assumption if & appears after the first set quantifielSinthen no3P
follows thisVP. Therefore, by obvious rulg®[1] 3P 5 3P3°[1] and rules of Section 4.3,
there exists aA-v-alternate sequendéof word quantifiers such th&trP? — p; Y32[2] VP.
Hence,

SYPP C Y3*2] VPP C PSPACEC 3*[2] VPP by Proposition 4.18
c I3 vep by Lemma 4.5
C SYPP
Statement (4):

SYPP C Norm(SYP) PC 32vPP

C NEXPTIME = 3'[1]V*3PP by Theorems 4.11 and 4.9
C 3'1] vPIPYPP by Lemma 4.3
C SYPP by assumption
Statement (5):
SYPP C Norm(SYP) PC 3*VPP
C 3*[3] VPP = NEXPTIME by Theorem 4.11
c 33 vee by Lemma 4.5

C SYPP U
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Thus, we have characterized all clas$&3°P by well-known complexity classes,
whose set quantifiers appearingSnare existential (universal, respectively). Next we
consider the classes containing existential and universal set quantifierS. &~6f;, let
LastS) be the last quantifier of the chath(Laste) =4 €). Observe that if La$f) is a
set quantifier in", 5, for Q € {3,V}, then Norn{S) contains at most one word quantifier
which is QP (if exists).

If SQPPiIs a class containing existential and universal set quantifiers, wherelasthe
J-V-alternate sequence of set quantifiers there exists one which is not restociae
query, therSQPP coincides with one class of the exponential-time alternation hierarchy.
This is shown in the following theorem.

Theorem 4.22.LetQ € {3,V} andR € I’[E with FirstSetfR) = J andLastR) being a

set quantifier inl“[p_@. Furthermore, leto, T € {1,2} andr, 2,13 : N — N, such that
r, > 2andr; > 3. Then

(1) RSQPP= 1% for S € F(Q'[ra] |37, VP) U F(Q*[2] [2P, VP);
(2) RSQPP= 1 for S € F(Q2[rs] [Mp.ai, QP) U F(Q°Im], Q7[r2] [Tp.ap, QP);
wherek is the number of set quantifiers Norm(RS).

Proof. Forl > 1, let Q; =¢ 3 if lis odd andQ, =¢ V otherwise, and le¥. =4 QP if
Norm(R) contains a word quantifier arfl =4 ¢ otherwise. Thus,

RSQPPC Norm(R) SQPPC F*v?32... Q2 ,ZSQPP

LetC =g F*V?3... Q% ;ZSQPP. We conclude for
Statement (1): Fo8 € F(Q'[r,] [, V") follows

C C Fv*F...Qr_; Norm(ZSQP) PC Kp(2'1,1)
C Ke((1001)11121,1) = 229 by Theorem 4.12
C RSQPP
Now, consider the casg € F(Q?*[2]|3°,v?). By obvious ruleQ?[2] QP <5 QPQ?[2],
there is ard-v-alternate sequencéof word quantifiers such th&SQP —p YQ?[2] QP.
Hence,

C C IV F...Qr,YQ21 QPP

C Fv*F...Q2_,PSPACE™ " by Proposition 4.18
C by Proposition 3.12
C Ke((1011)'2021,1) by Theorem 4.12

C RSQPP
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Statement (2):

C C FV23%...Qf_, Norm(ZSQP) PC Kp(2%,1)
C Kp((10D)* 12131,1) = 22 by Theorem 4.12
C RSQPP

where for the last inclusion we use Lemma 4.5 i€ F(Q°[r{], Q[r2] |Tpq, QP). O

Hence, it remains to consider the clasS@¥Pcontaining existential and universal set
quantifiers, where in the lastv-alternate sequence of set quantifiers all are restricted to
one query. Not all cases are considered in the next theorem, thé easg&(Q°[1] |QP)
will be examined in Theorems 4.24 and 4.25.

Theorem 4.23.LetQ € {4,V}andR € F[g] with FirstSetR) = 3 andLastR) being a set
quantifier inl’[p‘@. Furthermore, leto, T € {1, 2} andU = Upeﬂ‘z}}'(Qp, QP[1] 3P, vP).
Then

(1) RSQPP =1 for S € F(QP, Q°[1][3P,VP)

(2) RSQPP = %, for S € F(Q°[11, Q¥[1]|3°,vP) such that the substrin@PT
does not appear after the first set quantifieISilfor alTelu

(3) RSQPP = £.® for S € F(Q°[1],Q™[1]|ZP,¥P) such that the substrin@PT
appears after the first set quantifier $nfor somel € U

(4) RSQPP= 13 for S € F(Q°[11, Q°[1], Q*[11|Q'[1] ,3P,WP)
wherek is the number of set quantifiers Norm(RS).

Proof. Forl > 1, let Q; =4 3 if lis odd andQ, =4 V otherwise, and leZ =4 QP if
Norm(R) contains a word quantifier arfl=4 ¢ otherwise. We conclude for

Statement (1): By obvious rul®°[1] QP <y QPQ°[1], there exists aA-V-alternate
sequencd’ of word quantifiers such thzitSQp —p YQ“[ 1 QP. Hence,

RSQPPC Norm(R) SQPPC F*v?32... Q% ,ZSQPP
C FPV*32...Q2 ,YQI1QPPC F*v*3 ... Q2 ,YQPP by Proposition 4.17
C Kp((10)*1,2) = 229, by Theorem 4.9
C RSQPP

Statement (2): By assumption if @ appears after the first set quantifier $n then
no QP follows this QP. Therefore, by obvious rul®°[1] QP «p; QPQ°[1] and rules
of Section 4.3, there exists afV-alternate sequenceé of Word quantlflers such that
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ZSQP —p YQ?[2] QP. Hence,

RSQPPC Norm(R) SQPPC 322 F ... Q7 ,ZSQPP
C V... Q2 ,YQY21 QPP

C V2P ...QF |PSPACE? ' =52 by Propositions 4.18 and 3.12
C Kp((1 [1])“*‘1 [2] 1) by Theorem 4.12
c3I'mv'3 QL 1Q'MIQ'MMIQPP by Lemma 4.5
C RSQPP

Statement (3):

RSQPP C Norm(RSQP) P g V232 ... QiQPP
1 k

CIPC ICP( 2) by Theorems 4.12 and 4.9
cAMVMIIM...Q; ,[MQ'M11QPQPQPP by Lemma 4.3
C RSQPP by assumption
Statement (4):

RSQPPC Norm(RSQP) PC F*v*F ... Q; QPP

C Ke((1011) 12031, 1) =P by Theorem 4.12
c IV Qe NQMMIQMIIQIIQPP by Lemma 4.5
C RSQPP O

Thus, only the casRSQPPwith S € F(Q°[1] |QP) and LastR) being a set quantifier
in I', o remains to be considered. By Lemmas 4.4 and 4.6 folR®G@PP = RQ°[1] QPP.

The cIassesRQ" 1 QPP will be study in two steps: When NorfR) does not contain a
word quantifier (Theorem 4.24) and when NdRn contains a word quantifier (Theorem
4.25). Note that in these theorems the quantifier stRng subdivided in three parts,
namelyRST.

Theorem 4.24.LetQ € {3,V}, R € Mo with R = ¢ or LastR) being a set quantifier
inT,q, S € (MU {QP})” with S = ¢ or Last(S) being a set quantifier, andl ¢

(T U {QP)) " with Last{T) being a set quantifier. Furthermore, [EirstSetRST) = 3,
o,T,p € {I,2} andr : N — N such thatr > 2. If Norm(RST) does not contain a word
guantifier then

(1) RSTQ[1] QPP= NP forR =S = ¢;
(2) RSTQ°[1] QPP = PSPACEfor S € F(Q™[1]|3P,¥P) andR = ¢;

(3) RSTQC[11 QPP =%, for S € F(Q™[1]|3P,VP) andR # &;
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(4) RSTQ°[1] QPP = 5 for

S € F(Q™11, Q°1 | Mp.a, Q°) UF(Q™ Tip, Q) ;

wherek is the number of set quantifiers Norm(RS).

Proof. Forl > 1, let Q, =¢ 3 if Lis odd andQ, =4 V otherwise.
Statement (1): We conclud@(= V)

RSTQC[1] QPP C Norm(T) Q°[1] QPP C F*V°[1] 3PP
C 3PP by Proposition 4.17
C 3PP= NP by Lemmas 4.4 and 4.7
C RSTQ°[11 QPP

Statements (2) and (3): Let =4 QP if Norm(R) contains a word quantifier angél =

¢ otherwise. Since NorfiRST) does not contain a word quantifier, there is only one
possibility for QP quantifiers to appear ifi which is left to theQ-quantifiers, i.e. at begin
of T. Let T’ be the chainl removing theQP quantifiers. Since La&}) is a set quantifier
and by obvious rul€?[2] QP «p; QPQ?[2], there exists af-V-alternate sequendéof
word quantifiers such that(S), QF’ i YQZ[ ]. Thus,

RSTQ°[1] QPP C Norm(R) SQP Norm(T') Q°[1] QPP
C #V*3F ... Q7 ,ZSQPQ*Q 11 QPP
C FV*3F*...Q7 1Z(S), Q°Q*QPP by Proposition 4.17

C FV*F...Q7 4,Z(S), Q°QPP by Lemmas 4.4 and 4.7
C VA3 ...Q7 ,YQ2]1 QPP by Z (S), Q° & p YQ?12]
C Fv22 ... Q2 ,PSPACE?"" by Proposition 4.18

LetC =¢ FV*F ... Q2_;PSPACE?" '. ForR = ¢ (i.e.k = 1), C = PSPACEwhich is
included inQ'[2] QPPby Theorem 4.10, and therefore it is includeRBITQ°[1] QPPby
Lemma 4.5. Now, foR # ¢ (i.e.k > 2) we conclude Qx = Q)

ccC® by Proposition 3.12
C Kp((1 [1])“*‘ 1 [2] 1) by Theorem 4.12
C IV Q11 QLTI Q11 QPP by Lemma 4.5

C RSTQ°[1 QpP
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Statement (4): We conclud€(,; = Q)

RSTQC[1] QPP
C Norm(RST) Q°[1] QPP
C V2 .. QE,Q° QPP

C F*v*3...Q7,,Q°P by Proposition 4.17

C I3 ... QIQPP by Lemmas 4.4 and 4.7

C Ke((101)%1231,1) = £3° by Theorem 4.12
VL. QL1 QLI QLI Qo1 QPP

= { V... QL4 [11QL2I QeI QPP by Lemma 4.5

C RSTQY[1] QPP 0

In the previous theorem, there exists only one possibility for N&S$i ) to contain
a word quantifier: There exists &P quantifier appearing right to aQ-quantifier inT.
With this observation, we can state the following result which complétesharacteri-
zation of the classeSQPP.

Theorem 4.25.LetQ € {3,V}, R € Mol with R = ¢ or LastR) being a set quantifier
inMpon S € (MU {QP})" with S = & or Last(S) being a set quantifier, andl €
]—'(Qp ‘F[py@, Qp> with Last(T) being a set quantifier. Furthermore, [EirstSetRST) =
Jand ifS = e then letR = ¢. If Norm(RST) contains a word quantifier then

(1) RSTQ[1]1 QPP = %P if R = S = ¢, no QP quantifier appears right to a set
guantifier inT and the first word quantifier ift is 3P

(2) RSTQ[1]1 QPP = T} if R = S = ¢, no QP quantifier appears right to a set
guantifier inT and the first word quantifier iff is VP

(3) RSTQ°[1] QPP = £® if S # ¢ and noQP quantifier appears right to a set
quantifier inT

(4) RSTQ°[1] QPP = 1P, if there is anQP quantifier appearing right to a set
quantifier inT

wherel — 1 is the number ofi-v-alternations of the word quantifiers ihQP andk is the
number of set quantifiers Horm(RS).

Proof. We prove Statements (1), (3) and (4), since Statement (2) follows senftat
(2). Forn > 1, let Q,, =¢ 3 if nis odd andQ,, =4 V otherwise. By assumption, there
exists anQP quantifier appearing right to a@-quantifier inT (Norm(RST) contains a
word quantifier).

Statements (1) and (3): L&t =4 QP if Norm(RS) contains a word quantifier arfl=¢ ¢
otherwise, and leY be and-V-alternate sequence of word quantifiers with 2 alterna-
tions, where the first word quantifier fandT coincide. Thus, by assumption follows
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T —1P] Yaz Then,

RSTQ[1] QPP C Norm(RS) YQ?Q°[1] QPP
C IV*F ... QIZYQ*Q[11 QPP
C IVAF ... QIZYQQPP by Proposition 4.17
C IVAF ... QEZYQPP by Lemmas 4.4 and 4.7
Let C =q¢ 3*V?3?...QZZYQPP. ForS = ¢ we haveR = Z = ¢ andC C YQPP C
VPP, .. QPP C X which is included irRSTQ°[1] QPP. Now, for S # & (by assump-
tion, in T must appear the substrifg’QP andQy1 = Q)
C C Kp((1011)%,2) = £3* by Theorem 4.9
C IV N3] QLI QPQPQC11 QPP
C RSTQ°11Q°P

Statement (4): We conclud€( = Q)

RSTQ°[1] QPP C Norm(RST) Q°[1] QPP
C V*F ... Qi ,,QPQ°1]1 QPP

C FV*F ... Q% ,QQPP by Proposition 4.17
C Ke((1011)1,2) = 22 by Theorem 4.9

C IV 113']... QL [11QPQ°(11 QPP

C RSTQ[1] QPP by assumption [

4.5.2 Open Cases

From the results obtained §4.5.1 it remains to characterize the classes of the bounded
analytic polynomial-time hierarchy having the foi$if Pfor Q € {3,V}, S € I'j; and

Te I“[‘;Q], where the quantifier®P, Q' andQ? do not appear in the chaih. Next, we
examine some of these remainder classes. We start showing that eXigtenuersal)
set quantifiers with restriction on oracle queries applie® &we as powerful as the class
(r)-P(co(r)-P, respectively) for some: N — N.

Lemma 4.26.Letk € N, 0q,...,0,. € {1,2},m1,...,n:N—= Nandr=r; +--- + 1.
Then3°1[rq]...3%[r ] P= (7)-P.

Proof. By Lemmas 4.3 and 4.4 follows°' [r;] ...3%[r] P C F*[r] P. Thus, it suffices
to prove(r)-PC 3°'[r]...3%[r] Pand3F*[v] PC (1)-P.
“(r)-PC 3 [1y]...3% 1] P": Let L € (1)-P. There exist ah.; € P°° and a polynomial
p such that
x € L& FPu(jul = min{r(jx]), p(x)} A (x,u) € Ly)
AU T U (x, Uy, .., Uy € L),
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WhereLz —=df {(X, U], Ceny le) : (X, <U],f1 (|X‘)> e (Uk, fk(|X|)>) c L]} andﬂ, e ,fk :
N — N are functions satisfying following propertfesf;(|x|) < ri(|x|]) fori =1,... k
andY ¥, fi(jx|) = min{r(|x|),p(lx|)}. Obviously, the languagk, € P!l je,
LeI'r]... 3 P

“F[r] P C (r)-P”: The proof follows as in Lemma 3.5. By definitidne 3*[r] Pif and
only if there exists a.’ € P°?", such thak € L <= F*U ((x,U) € L'). Next, letM be
a machine of typ@2|[r] acceptind.’ with time boundp wherep is a polynomial. Without
loss of generality we assume thett does not make a query twice. L®t’ be a machine
of type 0 that on inputx guesses a word of length min{r(|x|) , p(|x|)} and then works
asM on input(x, U) with the following difference: Instead of the answerldfto the
i-th query ofM the machineM’ uses the-th bit of w. Hence,M' is a polynomial-time
r-nondeterministic machine angfU ((x,U) € L) & x € L(M’) can be seen as in
Lemma 3.5. Thereford, € (r)-P. O

The previous lemma remains valid if a quantifier strfg I'f; is applied to these

classes, i.e. we haga' [r;] ...3%[r ] P = S (1)-P°*®), Hence, the following result is
evident.

Corollary 4.27. Let S € Mop k € N, o7,...,0¢ € {12, r,...,m« : N —- N and
T=174--+1 ThenS3® [rq]... 3% ] P=ST'[v] P

Thus, only the following cases are still open fore {3,V}, S € I';; andr : N — Ny

(Lemma 4.26 and Corollary 4.278Q"[r] P with Las{S) ¢ Mpg andr being a real
restriction. Next we consider some of these remainder cases.

Proposition 4.28. LetS € I'} 4, 0 € {1,2}andr: N — N,. If the quantifiers", 3 or 3
appears in the chais thenSv°[1]3'[r] P= NP.

Proof. We conclude

SYe[1]3'[v] PC F2v°[1] 3PP by Lemmas 4.3, 4.4 and 4.7
C 3°P= NP by Proposition 4.17 and Lemmas 4.4 and 4.7
C SY°[1]3'[r] P by Lemma 4.3 O

Proposition 4.29. Let S € I'y with FirstSetS) = 3andr : N — N.. If there exist at

least two word quantifiers iNorm(S), thenS3'[v] P = SV'[r] P = £.’®, wherek is the
number of set quantifiers Norm(S).

1Take for example:

p(xl) — X1 (k)i 21 D) < plx) < iy f(x),
0 otherwise.

Ti([x]) if 2}11 5 (Ix]) < pllxl),
fi(lx]) =ar
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Proof. We conclude foQ € {3,V}

SQ'[r] PC SQPPC Norm(S) Q°P by Lemma 4.7
C Kp((101)%,2) = £7° by Theorem 4.9
CSQ'MP O

4.5.3 Parallel Queries

In §4.4.2 we show that all the characterizations obtained for the cl&sgesand cdCp(-)

(84.4.1) remain valid for the counterpart classes having the parallel queriestiest

Next, we show that also the characterization$5.1 and4.5.2 preserve this restriction.
Observe that from proof of Lemma 4.26 and Corollary 4.27 we have already shown

S [r] ... 3% P= ST [IIry] ... 3% [Iry] P=S3'[Iv] P= S (1)-P°*)

Thus, Lemma 4.26 and Corollary 4.27 are also valid for these classes involvaitepa
queries. If we follow the proofs of the other results obtained4rb.1 and$4.5.2, ei-
ther only one query for each oracle is enough or we have a characterization by aclas
the form Cp(-) and optionally we use the rules of Lemma 4.5. However, as we already
observed {4.4.2) all the characterizations of the clas&gé-) remain valid for the coun-
terpart classes having the parallel queries restriction, and the ruleswhéad.5 preserve
this restriction.

Therefore, all the characterizations of the classes of the bounded analytic paymnomi
time hierarchy presented in this chapter remain valid under the paraliébguestriction.

4.6 Conclusions

We characterize classes of the bounded analytic polynomial-time hierajéhy gnd
§4.5). However, the following cases are still open@@e {3,V}, S € I'fyandr : N — N, :
SQ'[r] Pwith Last(S) € lpq» T being a real restriction ansiQ’ [v] P not satisfying the
Propositions 4.28 and 4.29. In additidj (4.2 and;4.5.3), we show that these character-
izations remain valid if the queries are asked in a nonadaptive formni‘parallel”. In
special, all the characterizations for the classes of the analytic polyntimmhierarchy
(§3) also remain valid under the parallel queries restriction.

Finally, in the Figure 4.2 we point out how heavily (and nicely) the results can depend
on the number of queries allowed.
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Figure 4.2: Classesi®[r|V"[s] 3°P witho,t € {1,2} andr,s : N — N, such that > 0
ands > 1. In the left direction we increaseand in the right direction we increaséfor
short we writey™[s] 3PP instead ofi°[0] V*[s] 3°P).



CHAPTER 5

The Analytic Logarithmic-Space
Hierarchy

“Puedo escribir los versos &s tristes esta noche.
Pensar que no la tengo. Sentir que la he perdido.
Oir la noche inmensa, &s inmensa sin ella.
Y el verso cae al alma como al pasto elimc
Que importa que el amor no pudiera guardarla.
La noche est estrellada y ella no eatconmigo.”

Pablo Neruda

Hierarchies defined oveP using quantifiers have been intensively investi-
gated whereas such hierarchies defined over subclas$a®ofain unclear.

In the present chapter, we are interested in the question of whether analytic
polynomial-time hierarchy like result$3) could also be established for a
hierarchy ovet, i.e. an3-V-hierarchy defined over using logarithmically
length bounded word quantifiers as well as set quantifiers of type 1 and 2.
This hierarchy is callednalytic logarithmic-space hierarchy

This chapter is organized as follows: We start defining the existential and uni-
versal quantifiers and the analytic logarithmic-space hierarghiyt). Then,
using equivalence rules we show that every class of this hierarchy can be rep-
resented in a certain normal forr§(2). It turns out that the last quantifier

of a class in this normal form is either a word quantifier or a set quantifier of
type 2. Thus, we divide our study in two parts depending on this last quanti-
fier: Whether it is a word quantifie%.3) or a set quantifier of type 23.4).

It is shown that each class in this normal form, whose last quantifier isé wor
quantifier, coincides wittt. or one of the classes) andTT} (k > 1) of the
(arithmetic) polynomial-time hierarchy and vice ver§&.8). Finally, some
remarks about the results are mage ).

5.1 The Operators and the Hierarchy

We will examine a logarithmic-space hierarchy built up by word and set quastifiich

intuitively can be interpreted as the analytic polynomial-time hierargBydefined over
L instead ofP. Next, we define the existential and universal quantifigssl(1) and the
analytic logarithmic-space hierarch§b(1.2).

61
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5.1.1 The Existential and Universal Operators

We will investigate ard-V-hierarchy ovell using word quantifiers as well as set quan-
tifiers of type 1 and 2. The definitions of the quantifiers are a§3id.1, but the word
guantifiers vary over words whose lengths are logarithmically bounded (insteadyef pol
nomially bounded) in the length of the input. However, to fix our notation we include
these definitions. As usual, we define inductively new classes and in pahnallekisten-

tial and universal quantifiers. L& > 1 andoy,..., 0y, 0 € {0,1,2}. If K is a class of
typeo; ... oo then

For o = 0: 399 andV'°9KC are classes of type, . . . o, which are defined as follows

L € 399K «=4 there existai.’ € K and a constant € N, such that

(X1, %) € Le— Bl < e log( Y Xil) A (X, ..., X x) € L)
75
L € V9K &4 there exista.’ € K and a constant € N, such that

(X1, %) € Lo (I < e log( Y Xil) = (X, X, x) € L)

0'120
i<k

(Using simple encoding arguments it is easy to see that one can use equivaléntly
instead of <" in these definitions.)

Foro =1,2: 3°KC andV° K are classes of type, . . . oy, which are defined as follows

L € 3°K < there exists ai’ € K, such that

(X1,...,Xx) € Le— IX((Xq,..., Xy, X) € L)
L € V°K < there exists ai’ € K, such that

(X1,...,Xx) € Le— VX ((Xq,..., Xy, X) € L)

To make clear which type of input is used, we also whf&x instead ofdx, andv'°9x
instead ofvx.

Following our notation, the set of existential and universal quantifiers is denoted by
Nog =ar {3°9,3',3%,V°9 V' ¥2}. In our new context, we adapt the definition of the
quantifier string function to comprisé® andv'°%: Fork > 0, Qq,...,Qx € {3,V}
andty, ..., € {log, 1,2}, lett(Q7' ... Q") =a 07 ...0x be the type of the operator
(or quantifier) stringQ7' ... Q.*, whereo; = 0 if T, = log ando; = 7; otherwise
i=1,...,k). ForQ = Q7" ...Q andX = (X, ..., Xi) we also writeQX instead of

X ... Qg Xy. Furthermore, we defin@ =4 Q7' ... Q;*. The following proposition
is evident.

Proposition 5.1. Letu € {0,1,2}" andQ € I}, ThencoQL #*(Q) = QL*(Q),
Proof. The proof follows as in Proposition 3.1. U
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5.1.2 The Analytic Logarithmic-Space Hierarchy

As the analytic polynomial-time hierarchy, the analytic logarithmic-spacauttley will
consist of “ordinary” classes of languages, i.e. classes of type 0. In this casell\also

omit the superscripts tb, i.e. for quantifier string) € TI':, we defineQL =4 QL.

Next, the analytic logarithmic-space hierarchy is defined. For quantifier s@ings;,

the classeQL are called the classes of thralytic logarithmic-space hierarchyrinally,

the classALH is defined as the union of all classes of the analytic logarithmic-space
hierarchy.

5.2 Equivalence Rules and Normal Form

We will employ equivalence rule$%.2.1) to show that every class of the analytic loga-
rithmic-space hierarchy can be represented in a certain normal §6téhZ).

5.2.1 Inclusion and Equivalence Rules

We will use inclusion rules to relate classes of the analytic logarittepéze hierarchy
in a similar way that was made for the classes of the analytic polynomialtiigrarchy
(§3.2.1). These inclusion rules mean the following: Ro8 € Ty, theinclusion rule
R —, Sisvalid if the replacement of the quantifier striRdpy the stringS in any context
does not diminish the class in question, RQL 1) € SQL 37 forall Q € I,
andu € {0, 1,2}". We say that thequivalence rul® <, S is valid if the replacement of
the quantifier strin@® by the stringS in any context does not change the class in question,
i.e. RQLH(RITQ) = QL5 for all Q € Iy, andu € {0,1,2}". Obviously, we have
R &, Sifandonly ifR —, SandS —, R.

The complementation observation is also valid for the ruleg™and “«,”.

Proposition 5.2 (Complementation). LetR, S € I, If R —, S thenR — S.
Proof. The proof follows as in Proposition 3.3. O

Again, our first rules show relations between the existential (universgeotively)
quantifiers of different types.

Lemma 5.3. The following inclusion rules are valid:
(1) e —», 9 and e —; V"°9;
(2) 3°9 -, 3" and V"9 —, V';
(3) 3" =, F and V' — V2.
Proof. The proof follows as in Lemma 3.4. L& € Ig,andu € {0, 1, 2)".

(1) Thisis the classical case of introducing a dummy word quantifier.
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(2) Only3°9 —, 3' has to be proved, sin¢é®® —, V' follows by complementa-
tion. For a languagé € 3°9QL *°*(Q) there exist ari; € L*°*(Q) and a constant
¢ € N such that

XeLe F% QY (ul=c-logX|A (X,u,Y) e L)
— FUQY((X,U,Y) € L,),

wherel, =q {(X,W,Y): (X, (U,c-log|X]),Y) e L;}. Let M be a logarithmic-
space machine of type0t(Q) acceptingl;. Consider a machind1’ of type
ult(Q) that on input(X, U, Y) computesc - log|X| and then(U,c - log|X]|) by
askingl, 11, ..., 1¢°9XI to the oracldl. Then, the machin®1’ works as machine
M on input(X, (U, c - log|X|),Y). ThereforeL(M') = L, andL, € L*"Q) je.
Le3'QLQ,

(3) This is obvious since a logarithmic-space machine of fype Q) can also be
considered to be a machine of typ2t(Q). O

The next lemma shows how to melt neighboured existential (universal, respectively)

guantifiers.

Lemma 5.4. For o € {log, 1, 2} the following equivalence rules are valid

(1) 3993° 5, 3% and V9 5, V°;
(2) 3°F°9 >, 3° and VOV9 s, VO,
(3) F3° =, F and VYV . V2
(4) 3°F? -, F and VOV o, V2

Proof. The proof follows as in Lemma 3.6. We prove the first rule of every statement, the
other rules follow by complementation. By Lemma 5.3 it is enough to prove the following
inclusion rules

(i) Jlog5log . alog;
(i) F°93" —, 3" and3'F°9 —, I';

iii) 3232 -, I
(iif)

In order to prove these inclusions, I8te g, andp € {0, 1,2},

(i) Let L € F09309Q[ v0(Q) There exist arl.; € L*°T(Q) and constants, k € N
such that

X e L& 399 3% QY (lu| =c - log[X| A [v| = k - log | X| A (X,u,v,Y) € L)
& 9 QY (W =2+2-(c+k)-loglX|A (X,w,Y) € Ly),

whereL, =g {(X,u01v,Y): (X, u,v,Y) € L;}. Let M be a logarithmic-space ma-
chine of typeu00t(Q) accepting.;, and letM'’ be a machine of type0t(Q) that
on input(X,w, Y) computesa. andv fromw = 101v (where it rejects ifv does not
have this form) and then works &4 on input(X,w, v, Y). ThereforeL(M') = L,
andl, € L*07Q) je. L € 309QL Hot(Q),
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(ii) It suffices to prove the first rule, because of the obvious Bf&F' «, 3139,
For a languagé. € 3'°93'QL*017(Q) there exist ari.,; € L*°'(Q) and a constant
c € N such that

XelLe F%IFUQY (v =c-logX| A (X,v,l,Y) e L;)
& FWQY ((X,W,Y) € L,),

whereL, =¢ {(X,W,Y): (X, (W,c-log[X[), 1"+caX\WY) € ;}. LetM be a
logarithmic-space machine of typ®1t(Q) acceptind.;, and letM’ be a machine
of typenlt(Q) that on input X, W, Y) computeg - log [X| and then'W, c - log |X])

by askingl, 11, ..., 1¢/°9XI to W. Then, the machin®’ works like machinév on
input (X, (W, c - log X[y , 1< 29X\ W Y) with the difference that instead of asking
the queryu to oracle1'*¢ °9X\ W/ the queryl'+c 109Xy is asked tdV. Therefore,
L(M") =L, andL, € L¥*Q je.L € FQLHTQ,

(i) Let L € 32F2QL*2*"Q), There exists ah; € L*??*(Q) sych that

Xel& FUFVQY((X,U,V,Y)e L)
— PWQY ((X,W,Y) e L,),

wherel; =4 {(X,W,Y): (X,0\W, \W,Y) € L;}. Let M be a logarithmic-space
machine of typeu22t(Q) acceptingl;. Consider a machin®1’ of type u2t(Q)
working on input(X, W, Y) as M on input (X, 0\W, T\W, Y) with the difference
that instead of asking the quenyto oracleO\W (oracle1\W), the queryow (1w,
respectively) to oracl®V is asked. Thereford,(M’) = L, andL, € L**"Q j.e.
L e FQLMQ), 0

The next result shows how to shift a word quantifier followed by a set quantifier with-
out diminishing the class in question.

Lemma 5.5. For o € {1, 2} the inclusion rules
3%y —, v°3*%9 and V3% — 3V
are valid.

Proof. The proof is as in Lemma 3.7. We prove the second rule, the first follows by
complementation. Le® € s andu € {0,1,2)". For a languagé € V'°93°QL #0o™(Q)
there exist ari; € L"°°7(Q) and a constant € N such that

Xel e V9% 3VQY (lul=c-log|X — (X,u,V,Y) € L;)
Now, we defind, =4 {(X, W, 1, Y): (X,u,u\W,Y) € L;} and we prove
X e L& ITWY%U QY (Jul =c - log|X| — (X, W,u,Y) € L,)

“—" For everyu € {0, 1}°'°9 |et v, be a set such thaX, u, V,, Y) € L; and define
W = U e ogx (4w : w € Vi ). Then(X, W,1,Y) € L, for everyu € {0, 1)° logiX|
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“e=" Let (X, W,1,Y) € L, for everyu € {0,119 Hence, for eaclw € {0, 1}¢ "9
there exists a sat,, =4 u\W such that{ X, u, V., Y) € L;.

Let M be a logarithmic-space machine of typ@ot(Q) accepting.;, and letM’ be
a machine of type.o0t(Q) working on input(X, W, u, Y) asM on input(X, w, u\W, Y)
with the difference that instead of asking the queryto oracleu\W the queryuw is
asked toW. SinceM asksu\W in a typec manner, the machin®l’ does it as well.
ThereforeL(M’') = L, andL, € L*°07Q) je.L € 3oV09Q L 1o0t(Q), 0

Combining previous results we obtain the following equivalence rules which show
how to eliminate word quantifiers.

Corollary 5.6. For k > 1, 07,07,...,0¢ € {I,2} andt € {log, 1,2} the equivalence
rules

J09yo1yo2 | \yORTT ) YOO | yOkTT gnd
V09501302 | JokyT () 301392 HOkyT
are valid.

Proof. By rules of Lemmas 5.4 and 5.5 we can conclude the fy°' .. . vo<3* —,
Vo . VoRTT, The rulev® .. .vox3" —, J9y° | vo<I%isvalid by Lemma5.3. [

Next, we prove “equivalence rules” which are valid only in a special context. In the
previous result was shown how to eliminate word quantifiers. Another way to do that is
stated in the following result.

Proposition 5.7. LetQ € {3°9,¥°9}" andp € {0,2})". ThenQL*" Q) = L *,

Proof. The inclusion 0" is valid by Lemma 5.3. The inclusio@®L**Q) C L* is evi-
dent, since the word quantifie€®, which vary over words whose lengths are logarithmi-
cally bounded in the length of the input, can easily be simulated lhy@mputation. [

The next lemma says that a set quantifier of type 1 is exactly as powerful as the corre-
sponding word quantifier when appliedo

Lemma5.8. Letp € {0,1,2}". Then
Fo9L0 =F'LH and VOOLH =v'LM

Proof. We prove the first statement, the second follows by complementation. The in-
clusion “C” is valid by Lemma 5.3, thus onlg’ L*! C 399 “0 has to be proved. By
definiton L € 3L+ if and only if there exists al.’ € L*!, such thatX € L &
U ((X, U) € L'). LetM be a logarithmic-space machine of typkaccepting.’. With-

out loss of generality we assume thddt does not make a query twice. Since no query
of M on input (X, U) to oracleU is longer tharc - log |X| for suitable constant € N
and this oracle is of type 1/ is queried at most - log|X| times. LetM’ be a machine
of type n0 working on input(X, 1) asM on input(X, U) with the following difference:
Instead of the answer @t to thei-th query ofM the machineM’ uses the-th bit of w..
Now, F'U ((X,U) € L) & F% (ju| =c - log|X| A (X,u) € L(M')) can be seen as
in Lemma 3.5. Hencd,(M’) € L*° andL € 3°9[ »0, 0
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5.2.2 A Normal Form Theorem

Now, we are ready to state the fact that every class of the analyticittoga-space
hierarchy can be represented in a certain normal forml Bofl, let Q, =4 3 if L is odd

andQ; =4 V otherwise. Fok, m > 0, 71,712, T3,..., T € {1,2}andly, 15, 15,..., i €
N we define
KL (<T1>11 <T2>12 <T3>13 S <Tk>1k ,m)
lo lo
=g 37 ... UYLV IR L TR Q. QYK Qk?—] ...QkﬁmL
7 7 7 S—mm
11 times 12 times 13 times Lk times
and
2
ICL (<T]>11 <T2>12 <T3>13 ctt <Tk>1k ‘m)
o T T log log 2
=grd L. UYLV TR QK QY Qi - Qi Qi L
7 7 7 S—m—
11 times 12 times 13 times Lk times

We also writet instead of(t),, ((t),)’ instead of(t), ... (1), and7 instead of. ...
NI 7 N———

j times
Theorem 5.9 (Normal Form Theorem). Every class of the analytic logarithmic-space
hierarchy ALH coincides with one of the classeskC, (T, m), cok, (T, m), K7 (t,n) or
cok?(t,n), wheret € ({2U{(1),:1>1})", m > Tandn > 0.

j times

Proof. Let us first prove the chain for € ({2} U {(1), : 1 > 1})". Consider an arbitrary
class of the analytic logarithmic-space hierarchy. If this class is defwmbdut quanti-
fiers, then it isL. Otherwise it coincides with one of the clasgédq t, m), cofC, (T, m),
K#(t,n) or coZ(t,n) with t € ({2ZJu{(1);:1>1})", m > 1 andn > 0. This can
be seen as follows: By Lemma 5.4, we bring the quantifier prefix in a form, where no
quantifier substring™ 32 or Y'V*2 appears withry, 1, € {log, 1,2} and eitherr; # 1
ort, # 1,i.e.3'3" or V'V!, can appear. By Lemmas 5.8 and 5.4 a quantifier string
3'... 3" orVv'...V! can be replaced by the corresponding word quantifier when applied
to L. Hence, we ensure that after the last alternation in the sequent¥-guantifiers
only either a word quantifier or a set quantifier of type 2 occurs. By Corollary 5.6, we
eliminate all word quantifiers which are followed by a set quantifier not beiny e
2 applied toL. This last step can generate quantifier substrifgs™ or V7'V with
T1 € {log, 1,2}, 7, € {1,2} and eithert; # 1 or T, # 1. However, applying repeatedly
the rules of Lemma 5.4 and Corollary 5.6 we get the desired result.

Now, we show that it is enough to considee ({2} U {(1),:1 > 1))*. We conclude

Kile,m)=L by Proposition 5.7
and

Ki(2,1) if niseven
cokC, (2,1) if nisodd
C Ki(e,n) by Proposition 5.7 a

K#(e,m) C { by Lemmas 5.5, 5.4 and 5.3
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5.3 Characterizing the Classe&’, () and coCy (-)

We will characterize the classes having the fdtpit, m) or cofC (T, m) by well-known
complexity classes, wheree ({2} U{(1),:1> 1" andm > 1. The simplest classes

of these types are those containing only one set quantifier of type 1 and one word quan-
tifier, i.e. KC (1,1) = V9L and cdC,(1,1) = V'I°9L. In a personal communication,
Allender pointed out that these classes coincide Wwith

Theorem 5.10. [All97] V9L = V1309 = [,

Proof. SincelL is closed under complementation, o{¥'°9L = L has to be proved.
The inclusion ©” is validated by Lemma 5.3. For the other inclusion, the idea is the
following: If we follow the proof of3'vPP C PSPACETheorem 3.9) we can conclude
3'V°9L C NL. However, Allender pointed out that the guesses of the madwine

the answers of the oracléd on pathrt can be replaced by a double recursion. Hence,
Jhvles C L. U

We next define a problem which BLOGSPACEcomplete forZ?. Let By be the
following problem:

Given: A boolean expressiof with boolean variables partitioned inksetsX;, . . ., Xg.
Question: Is the expressioAX;VX;3X5 ... Qi Xk (d(Xq, Xz, ..., Xx) = 1) true?

where, as usual), =4 3 if Lis odd andQ, =4 V otherwise, andiX; (VX;) means there
exists an (for all, respectively) assignment for the variableg in

Lemma 5.11. [Wra77] The By problem isDLOGSPACEcomplete fors} with the ex-
pressiond being in conjunctive normal-form ¥ is odd and in disjunctive normal-form
otherwise.

It turns out that the remainder clasg€g(-) and cdC, (-) which we have not already
been characterized coincide with classes of the (arithmetic) polyndimalhierarchy.
The following theorem shows which classes of the analytic logarithmic-dpacarchy
contain a level of the (arithmetic) polynomial-time hierarchy.

Theorem 5.12. For k > 1 the inclusions

SRk (12)nK (17 (1), 1) nKL(1%7'2,1)  and
T, C cok, (1%,2) ncokC, (1477 (1),, 1) ncokc, (14772, 1)
are valid.
Proof. We prove the first inclusion, the second follows by complementation. Consider

the case that is odd.

“I% C K. (1%,2)" We will prove By € 3'V! ... 3hyloggleg) 01500 (| emma 5.11). Leth
be a boolean expression with boolean variables partitionekis&isX;, ..., Xy ($ isin
a conjunctive normal-form). The idea is the following: Tihth oracle contains a variable
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u of setX; if and only if “w is true”. Thus, for each claus&-(vord quantifier) it will be
verified if there exists a literabBfword quantifier) which makes this clause true. Formally,
let M be a machine of typ@1*00 working on input(¢, Uy, ..., Uy, u, w) as follows (if

¢ is not in a conjunctive normal-form thewl rejects the input)M checks whether the
literal w or w appears in thei-th clause, rejects the input in a negative case and accepts
the input if both appear in the-th clause. Otherwise (i.e. either or w appears in the
u-th clause), choosee {1, ..., k} such thaww € X;. Then,M accepts the input if and
only if w appears in thet-th clause andv € U; or w appears in thei-th clause and

w ¢ U;. Therefore,

¢ € B & U VU, ... 33U V% F9%% (b, Uy, Uy, ..., U, u, w) € L(M))

andL(M) € Lo je. By € K, (1%,2).

“I¥ C K (1% (1),,1)" Consider a machine\’ of type 01%"'0 working on input
(b, U, ..., U, u) as follows: First, it asksi0', u0?,...,u0"9™ to Uy, wheren
is the number of boolean variablesdn Letw be the sequence of answers avidbe
the machine of the previous case. Thdr works asM on input(d, Uy, ..., Uy, w, w).
Therefore,

Cb € Bk — a'lul Vle . -alukzlluk-‘r] vlogu((d)vuhulv .. .,Uk_H,u) € I—(M,))

andL(M') € Lo, i.e. B, € K, (1571 (1),,1).

“If C K (1%7'2,1)™ By the previous inclusion and Lemmas 5.3 and 5.4 it follows that
Zi - ICL(]ki] <1>2 , 1) - ICL(‘Iki]Z, ])

In the case that is even [T} C cok’, (1%,2) ncokC, (1577 (1),, 1) NcokC, (1712, 1)
can be proved in the same way which yields the desired result by compleimentat]

The next theorem shows which classes of the analytic logarithmic-spacechieeae
included in a level of the (arithmetic) polynomial-time hierarchy.

Theorem 5.13. For k > 1 andm > 0 the inclusions
Kr(2%m) UK (251,1) € £f and cokC (2%, m) U cokC, (251,1) C IR
are valid.

Proof. We prove the first statement, the second follows by complementatiori. dr,
let Q, =4 Jif Lis odd andQ, =4 V otherwise. By replacing oracle queries by consuming
inputs bits, the following inclusion is evident (see Proposition 3.12)

FV2F . QIL C VPP QP (5.1)

Hence,
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“Kr (2%, m) C £} We conclude

P2F L QEQYY, ... QY L CIVIF QAL by Proposition 5.7
C PVPIP. .. QPP by Equation (5.1)
cry

“K(2%1,1) C ™ The proof of 3'V°9L C L (Theorem 5.10) remains valid if the
machines have additionalkyoracles of type 2, i.e3'1°9[ 0210 C | ©2* Therefore,

PV2F .. QIQL QY%L C FWIF . LQAL
C PV ... QRP by Equation (5.1)
c 1

where we use the bas@3'°9 C L if k is odd. 0

The following theorem summarizes the results showing a complete chazatters
for the classe&C, (T, m) or co, (T, m) by well-known complexity classes, whetec
((2Zu (1), :1>1)"andm > 1.

Theorem 5.14.Letk, m > 1 andty,..., 7« € 2} U {(1);: 1 > 1}. Then

(

L fk=1,tw=Tandm =1,

o, ifk>2,m=landm=1,
Kilti...t,,m) =< 2P ifk>1,1m=(),1>2andm=1,
i ifk>1,1=2andm=1,

o ifk>Tandm > 2.

\

Proof. The first line is valid by Theorem 5.10. By Lemmas 5.3 and 5.4 it follows that a
substring of existential (universal) quantifiers of type 1 can be replaced byisterdial
(universal, respectively) quantifier of type 2 without diminish the class intquredHence,

the remaining lines follow by Lemma 5.3 and Theorems 5.12 and 5.13. 0

5.4 Characterizing ClassesC? (-) and cokK# ()

In this section, we characterize classes having the 6fiir, n) or coC? (T, n) by well-
known complexity classes, whetec ({2} U{(1);:1> )" andn > 0. The simplest
classes of these types are those containing-sralternate sequence of two set quanti-
fiers where the first is of type 1 and the second is of type 2Ki#¢1,0) = 3'v2L and
coK7(1,0) = V'L, which turn out to coincide with ddPand NP, respectively.

Theorem 5.15.3'V2L = coNP and V'3%L = NP,

Proof. We prove the first statement, the second follows by complementation. By Theore
5.12 and Proposition 5.7 follows 8 C V23'°9L C V2L which is include in3'V2L by
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Lemma 5.3. Thus, it remains to pro#év?L C coNP. Let L € 3'V2L. There exists an
[; € L% such thatx € L & F'UV*W ((x,U,W) € L;). Let M, be a logarithmic-
space machine of typ®l 2 acceptingl;. Therefore, no query a¥l; on input(x, U, W)
to oraclesll andW is longer thart - log|x| for a suitable constant For a given input
(x, U, W), itis important thatVl; asks the oraclél only queries from oneracle pathu,
Wiy, ..., W2 ... Ue jogxl- LEEM be a machine of typ@000 that on input(x, up, wa, z)
works asM; on inputx, U, W) with the following differences:

(a) When the machinkl; asks a query to oraclé from oracle path., thenM uses
the oracle answer encodedin. The machinéV stops the simulation if a query is
asked td.l which is not from the oracle path,.

(b) Instead of the answer &V to queryw of M, the machinéV uses the-th bit of
z, wherew = lex(1).

The machinéVl accepts if and only if the simulation is stopped in (a) or the simulation of
M, ends accepting. Obviously(M) € P°° and for a suitable polynomial

x € L &= V%, 399, WPz (Jup| = ¢ - log x| — ([ual = c - log|x|
Azl = (X)) = (x,up, ua, 2) € L(M))))
= V%, YPy ((fupl = ¢ - log x| A [yl = 2619 p(|x])) — (x,y) € L(M,))
whereM,; is a machine of typ@00 working on input(x, w,, y) as follows (cdVPis closed

underV and/\): M, considers step by step the wordgin lexicographical order. For
eachu, € {0, 1)°'°9™ (see Figure 5.1):

(1) Choosé such thatu, = leX. ogy(i) and letz be thei-th fragment of sizey (|x/)
of the wordy.

(2) Now M, simulatesM on input(x, u,, us, z). If the simulation ends accepting,
thenM, accepts the input.

If M, has not accepted the input in (2), then the input is rejected. This Shewg*9vPP
which is included in c/P. U

The following result shows which classes of the analytic logarithmic-space hierarchy
whose last set quantifier is of type 2 contain a level of the (arithmetic) polynomial-time
hierarchy.

Theorem 5.16. For k > 2 the inclusions
R CK7(1%22,0) and T, C cok;(1%7%2,0)
are valid.

Proof. We prove the first inclusion, the second follows by complementation. Consider
the case that is even. We will proveBy, € 3V .. V322101 *22 (Lemma 5.11). Let
¢ be a boolean expression with boolean variables partitionedkisetsXy, ..., Xy (b
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ze{0,1)P ze{0,1}P (X! 2e(0,1yP (¥
+
+ Tj“; + _}—{U—aA
e S|+ T+
= |t § _}7ua3 } +
_Up | Uay 7|+ + 2| pta
| | I+ -
= n
+ Tj“; + _}—{U—aA
— 22 S|+ T+
: L)y s |+ -
_» accepts E|_ | Yaa .
t_> rejecfs " = n R

Figure 5.1: Simulation of machinéMl, on input(x, up,y) for ally € {0, 17 P,

For short we writau,; instead ofex g (1).

is in disjunctive normal-form). The idea is similar to the proof of Theorem 5.12: The
i-th oracle contains a variabie of setX; if and only if “u is true”. We will construct
a machine which may query for two or more variables of aXgefthat is not a type 1
querying). To overcome this difficulty, the oracle bounded byZhquantifier will also
reflect thek — 2 first oracles, i.e. the oracles of type 1. Formally, Mtbe a machine
of type 01%222 working on input(¢, Uy, ..., Uy) as follows (if ¢ is not in disjunctive
normal-form thernM rejects the input):

“1 € Uy”: M checks whethetl, ; reflects thek — 2 first oracles. Let. be the sequence
of answers oll, to the queried?, 13, ..., 11*ll9nl ‘wheren is the number of boolean
variables ing. Then,M accepts the inputifand only iffar=1,... k— 2

uel Hlex( )0Tu € Uy ;4

“1 ¢ Uy”: M checks whether a clause dnis satisfiable. The machinel accepts the
input if and only if there exists a clausg A --- A1, ) in ¢ suchthatfoj =1,...,m

|eX( )O]LL Q/ Uy If lj =1,

. Oou e Uy Iflj:u,
i=k — . _
OugZUk Iflj:u,

]§i<k_>{lex( D0lu e Uy if =1,

wherel; = u or|; = u for a variableuw in ¢, andi € {1, ..., k} such thatw € X;.
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Hence, the oracled,, ..., U, , are queried in a type 1 manner and

$ € By &= AU V' Uy ...V Uy o F Ui 1 VAU ((, Uy, Uy, ..., Uy) € L(M))

ThereforeL(M) € L9722 j.e. By € K7(1%722,0).
In the case thakt is odd,TT} C cokf (1%22,0) can be proved in the same way which
yields the desired result by complementation. O

The next theorem shows which classes of the analytic logarithmic-spacechierar
whose last set quantifier is of type 2 are included in a level of the (arithyypetignomi-
al-time hierarchy.

Theorem 5.17.For k > 1 the inclusions
Ki(2*1,0) € 2§ and cokKf(21,0) C 1T}
are valid.

Proof. We prove the first statement, the second follows by complementatiori. Xdr,

let Q. =¢ 3 if Lis odd andQ, =4 V otherwise. By replacing oracle queries by consuming
inputs bits (see Proposition 3.12), the proofiéf?L C VPP (Theorem 5.15) remains valid

if the machines have additionalkyoracles of type 2 and polynomially length bounded
word quantifiers, respectively, i.8!V2L 9212 C yPp"0_ Therefore,

Ki(21,0) € 3?3 ... QiQur iyl
C FVPF ... QLQL P

C PP, QPP by Lemma 3.6
cry
where we use the basé3?L C 3PPif k is odd. O

Next, we characterize classes having the fépit, n) or caCZ (1, n) by well-known
complexity classes, wheree ({2} U {(T),:1> 1" andn > 0.

Theorem 5.18.Letk > 1, 1y,..., 7 € {2} U{(1);: 1L > T} andn > 0. Then

b ifnisodd,

coNP ifn=0,k=Tandt, =1,
o, ifn=0k>2andt =1,
%, ifnisevenand = 2.

Ki(ty...1,n) =
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Proof. Forl > 1, let Q =¢ 3 if Lis odd andQ, =g V otherwise. For the first line, we
conclude (ifn is odd, themQy = Qwint1)

Kty ...m,n) € 3PV?F ... Q2QY,...Q%, Q%,..,L bylLemmas5.3and5.4
C V2., QEQ2Z, .. QY L by Lemmas 5.4 and 5.5
C V2. QEQY, L by Lemma 5.4
cxy by Theorem 5.13
C KL(1%2) by Theorem 5.12
C Kt ...T,m) by Lemma 5.3

The second line is valid by Theorem 5.15. For the remaining lines the directisnalid
by Lemmas 5.3, 5.4 and 5.5 and Theorems 5.17 and 5.13. The directiowalid by
Lemma 5.3 and Theorems 5.12 and 5.16. O

5.5 Conclusions

In §5.2 we showed that every class of the analytic logarithmic-space hieraachipec
represented in a certain normal form, where the last quantifier is eithendequantifier or
a set quantifier of type 2. Next, we showed that each class in this normal fédrosedast
quantifier is a word quantifier, coincides withor one of the classes, andTT} (k > 1)
of the (arithmetic) polynomial-time hierarchy and vice verga ). The classes in this
normal form, whose last quantifier is a set quantifier of type 2, were examinggd4n
However, the following cases are still openfor> 1, 11,..., 71 € {2JU{(T);: 1> T}
andn > 0 being even (see Theorem 5.18)#(t; ... T, n) and cdC#(Ty ... T, n) such
thatn > 2 andt, =1, ort, = (1), with 1 > 2.

We have proved'V?’L = coNP (Theorem 5.15). However, the clasdsd'v2L (an
open case) is probably more powerful. This is shown in the following simple wdutsem.

Proposition 5.19. ©5 C 3'3'v2L C 55,

Proof. The last inclusion follows by Lemmas 5.3 and 5.4 and Theorem 5.13. Thus, it
remains to prov@®$ C 3'3'v2L. We use Wagner's characterization@} = NP(n°)
[Wag90]. For a language € @Y there exist ari.’ € NPand a polynomiap such that
(x,j+1) e L' — (x,j) € L' forall j and

xelemax{i:1 <i<p(lx|) and(x,i) € L'} =1 mod2

The max-function returns arsuch thatx, i) € L' and(x, 1) ¢ L'. Furthermore(x, k) €
L'forall1 < k <iand(x,l) ¢ L' foralll > i. Thus, giving ani we can verify

if it is the maximum by an P /\ coNP)-computation. By Lemma 5.3, Proposition 5.7
and Theorem 5.12 followWP C 3'3'V'°9L and cdVP C V2L. Therefore/ NP A coNP C
139 A V2L C F1FNV9y2 L C F1TV2L (Lemma 5.4). Sincé can be encoded in
a logarithmically length bounded word, th&@ C 3°93'3'v2L C F'3'V2L (Lemma
5.4). O



CHAPTER 6

Probabllistic Bounded Error Operators

“O amor nasce do conhecimentditoo e se
fortalece na compreefs das diferencas”

G. Marques

In the present chapter, we consider probabilistic bounded error quantifiers.
We show under which general conditions the type 2 of a bounded error set
quantifier can be reduced. Furthermore, interesting characterizationgare pr
sented. For example, we characterize (one prover) interactive proof system
by an existential set quantifier of type 1 and a probabilistic bounded error
word quantifier applied té, and show that a bounded error set quantifier of
type 1 applied taAPSPACEcan be eliminated without changing the class in
guestion. We also discuss the relativizability of the results.

An outline of this chapter follows: We start defining the probabilistic bounded
error quantifiers and giving some more notatiof& ). Inclusion rules are
also shown §6.2). Then, we examine classes obtained by applying existen-
tial, universal or probabilistic bounded error quantifiers to well-known com-
plexity classesy6.3). Results on interactive proof systems are presented in a
separate sectior§§.4). Finally, we make some remarks about the results and
discuss the relativizability of results presented so §&rg).

6.1 The Probabilistic Bounded Error Quantifiers

We start with relating languages with infinite words. [&t1}“ denote the set of infinite
binary words. We also writev-word instead of infinite word. Using lexicographic order-
ing of {0, 1}*, we identify as usual languages ovey 1} with binary w-words (see proof
of Proposition 3.12).

We will define probabilistic quantifiers varying over infinite objects, namelyas
words. The following probability field is used: Defig, =4 u-{0, 1} as the set of all bi-
nary w-words prefixed by € {0, 1}", a so called cylinder set. L&-U =4 {C, : u € U}
andK =4 {C-U: ||U|| < oo}, and leto(K) be the leastr-algebra containindl. Thus,
({0, 1}, o(K), u) is a probability field, wherex : o(K) — [0, 1] is the probability mea-
sure which is uniquely generated pyC,,) = 2™ for all u € {0, 1}*. It is well-known
that it is equivalent to take the product measure 2" — [0, 1] based on the mea-
surepo : 29" — [0, 1] which is defined byuo({0}) = po({1}) = 3. For brevity, ifTT

75
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is a predicate taking binary-words as instance, thedl(TT (U)) is written instead of
p({U:TT(W)}).

Following previous quantifier definitions, we define inductively new classes and in
parallel the probabilistic bounded error quantifiers. ket> 1 andoy,..., 04,0 €
{0,1,2}1. 1If Kis aclass of type; ... oxo then

Foro = 0: BPPKC, RPK andRPK are classes of type, . . . o which are defined as follows

L € BPPK &= there exist ai.’ € K and a polynomiap, such that

(X1, .., %) GL—)prob{z:\zlzp(Z Xi) A (X, ..., Xy 2) eL'} >2/3

L € RPK & there existar.’ € K and a polynomiap, such that

(X1, X eLeprob{z:\zI:p(Z Xi) A (X1, .., X 2) eL'} > 2/3

0'1":0
i<k

(X1, %) € Loprob{z: 2l =p( 3 X)) A (X, Xi2) € L'} =0

=0
L € RPK <= there exist ai.’ € K and a polynomiap, such that

(X1, X EL—)prob{z:\zlzp(Z Xi) A (X1, -, X, 2) eL'} — 1
%
(X1, .., %) ¢L—)prob{z:\z|:p(z Xi) A (X, ..., Xy 2) eL'} <1/3

0'120
i<k

wherez € {0, 1}‘9(Zisk oi-0Xil) g randomly chosen under uniform distribution.

Foro = 1,2: BPK, R°K andR°K are classes of type; ... o which are defined as
follows

L € BP°K &4 there exists ah’ € K, such that

(X1,...,Xx) € L = uX((Xq,..., X, X) e L) >2/3
(Xh---)Xk) gL_)HX((Xh)Xk)X) € I—I) S 1/3
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L € R°K &4 there exists afi’ € K, such that

(X],...,Xk) EL—)LLX((X1,...,Xk,X) EI_I) 22/3
(X])"')Xk) %LHHX((XU)XK)X) EI—I) =0

L € R°K =4 there exists ah’ € I, such that

(X1,..., X)) €L —=uX((X1,..., X, X) e L) =1
(Xh»Xk) ¢L_>HX((X1)>XK>X) GI—I) S ]/3

Following our notation, the set of probabilistic bounded error quantifiers is denoted
by Iy =ar {BP?, BP',BP* R?,R',R*, R*, R" R?}. Next, we extend the definition of the
quantifier string function to comprise also probabilistic bounded error quantifiens:
k>0,Q1...,Qce {BP,RR 3V} andt,..., 1 € {p, 1,2}, lett(Q7" ... Q") =q
oy ... 0y be the type of the operator (or quantifier) striQg' ... Q.,*, whereo; = 0 if
T, = p ando; = T; otherwise{=1,...,k). ForQ = Q7' ... Qi andX = (X, ..., Xy)
we also writeQX instead of Q7' X; ... Qi*Xy. Furthermore, we definBP =4 BP,

R =4 RandQ =4 Q' ... Q;*. The following proposition is evident.

Proposition 6.1. Letp € {0,1,2}" andQ € (I, U Tp)*. ThencoQP*(R) = Qprr(Q),

Proof. The proof follows as in Proposition 3.1. U

6.2 Inclusion Rules

We start observing that the rulesss” and “—p" (§3.2.1) and the “equivalence rule” of
Lemma 3.5 remain valid when applied to the classeS@P°*5) and RQP*™S) for

u € {0,1,2}" and quantifier string) € I’;. Now, we define inclusion rules to relate
classes involving existential, universal or probabilistic bounded error quaspplied

to P. These rules are applied following our standard senseRF®re (I, U )", the
inclusion ruleR —,p S is valid if the replacement of the quantifier striRdpy the stringS

in any context does not diminish the class in questionRi@P+*R*7(Q) C SQpHr(SITQ)
forall Q € (I U Tp)* andu € {0, 1, 2}". Obviously, the complementation observation is
also valid for “—,,p’" rules.

Proposition 6.2 (Complementation).LetR, S € (Fyp U Ip)*. If R —54p S thenR —yp S.

Our first rules show relations between probabilistic bounded error quantifiers-of dif
ferent types.

Lemma 6.3. The following inclusion rules are valid:
(1) ¢ —yp BP? and ¢ —,p RP;
(2) BPP —,,BP' and RP —,pR';
(38) BP' —,,pBP* and R! —,pR%.
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Proof. The proof follows as in Lemma 3.4. L& € (I, U T,)* andp € {0, 1, 2)".
(1) This s the classical case of introducing a dummy word quantifier.

(2) We prove the first rule, the other follows in the same way. For a language
BPPQPHOT(Q) there exist arl; € P*(Q) and a polynomiap such that

X € L —prob{z: |zl = p(IX) AQY ((X,z,Y) € Ly)} > 2/3
X¢gL—=probiz: |zl =p(X)AQY((X,z,Y)e L1)} <1/3

wherez € {0, 1"'¥ is randomly chosen under uniform distribution. Now, define
L =g {(X, W, Y): (X, (U, p(IX])),Y) € Ly}. Obviously, for eaciX we have

prob{z : [z = p(IX]) AQY ((X,z,Y) € L)} = ul(QY ((X,U,Y) € L2))

Let M be a polynomial-time machine of type)t(Q) acceptingl;. Consider a
machineM’ of type ult(Q) that on input(X, U, Y) computesp(|X|) and then

(U, p(IX])) by askingl, 11, ..., 17X to the oraclel. Then, M’ works as
M on input (X, (U, p(|X))},Y). Therefore,L[(M') = L, andL, € P*7Q je.
L € BP'QPHIT(Q),

(3) This is obvious since a polynomial-time machine of typer(Q) can also be
considered to be a machine of typ2t(Q). O

Evidently, a bounded error quantifier is at least as powerful as an one-sided bounded
error quantifier of same type. This is shown in the following simple observation.

Proposition 6.4. For ¢ € {p, 1, 2} the inclusion rulek°® —,,» BP* andR® —,,» BP® are
valid.

Proof. Directly from definition of the quantifiers. U

The following rules show how to reduce the type 2 of a probabilistic bounded error
guantifier.

Lemma 6.5. The following inclusion rules are valid:
(1) BP =, BP'3'V and BP? —,,» BP'Y'3P;
(2) R 54, R'I'VP  and R? —,p RV
(3) R? 5,pR'IVP  and R? —,p R'VIZP.

Proof. The proof follows as in Lemma 4.5. We prove the first rule of every statement,
since the other follows by complementation. ket ®*, Q € (I, UT)*. For alanguage
L € BP2QP**(Q) there exists afi; € P***(Q) such that for allX

XelL-pulUQY (X, W,Y)ely)) >2/3
X¢gL-pulUQY (X, W,Y)ely)) <1/3
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However, for eaclX and a suitable polynomial

_ uu(EI]WVpquv<u| M <pX) — (ue U e volt e W))

/\QY((X,u,Y) c L(M)))

(takeW = {01 :u,v € {0,1}" Au e U} for example, and lem be a pol-
ynomial-time machine of typg2t(Q) accepting_1)

_ uu(a‘vaavpuvpv QY (I, vl < p(X) -
((a:o—> (uwe U &0l e WA

(a=1- (X, U,W,Y)e L(M')))))

(M’ works on input(X, U, W,Y) asM on input(X, U, Y) but it only asks
the first query tol like M does. Instead of asking to U after queries
U, ..., Uy (m > 1) itasks011;011,01 ... 011,011 to W. Note that for
every(X, a,u,v,Y), the oracledl andW are asked in a type 1 mann)er.

This showsl. € BP'3'yPyPyPQPr11000t(Q) - Opserve that the inclusion ruf@3P° —p 3P
proved in Lemma 3.6 remains also valid in our new context, i.e. we A& —,p 3P,
Hence,L € BP'3'yPQPH110T(Q),

The proof of R —,,» R'3'VP andR? —,,» R'3'vP follow in the same way. O

6.3 Applications to Well-Known Complexity Classes

We will examine classes of type 0, i.e. “ordinary” classes of languages. If no ¢onfus
can arise, in this case the superscripts to the base complexityClagsomitted, i.e. for
quantifier stringQ € (N U I,)* we defineQK =¢ QK Q). In a fundamental paper,
Schoning [Sch89] introduced the word BP-quantifier and gave a more general definition of
probabilistic complexity classes. This allows him to generalize masuite Probabilistic
quantifiers of type 2 have been studied in [BVW96]. Next, we state previous results
probabilistic bounded error quantifiers and prove other ones. It is well-known that whe
applied toPthe probabilistic bounded error word quantifiers yield as results the classical
probabilistic complexity classes.

Lemma 6.6. [Sch89, BDG90] BPP= BPP and RPP = RP

In 1994, Nisan and Wigderson showed that a probabilistic bounded error set quantifier
Is exactly as powerful as the corresponding word quantifier when applied tossotlde
(arithmetic) polynomial-time hierarchy.

Theorem 6.7. [NW94] Letk > 0. ThenBP?L) = BPPL} and BP*TT} = BPPTT},
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In 1989, Schoning generalized Sipser’s [Sip83] and Lautemann’s [Lau83] inclusion
BPPC 15 nT1Y showing under which conditions a BRuantifier can be simulated by an
3P quantifier followed by aw® quantifier. As the most important special case he proved:

Theorem 6.8. [Sch89]Letk > 1. ThenBPPL} C TT%., and BPIT, C ¥ ;.

Applying standard translational arguments to the previous result, we obtain the fol-
lowing result involving quantifiers of type 2.

Corollary 6.9. Letk,m > 1. Then,
BPKp(2¥, m) C L, and BP’cokp(2%, m) C I37,

Proof. We prove the first inclusion, the second follows by complementation. The proof
of Kp(2¥, m) C £® (Theorem 3.13) remains valid if the machines have additionally
an oracle of type 2 (the exponential-time machine queries this oracle for wordsytifile
bounded by wherep is a polynomial) and in [BVW96] it was shown that the quanti-
fier BP> can be replaced equivalently by a word BP-quantifier which varies over words
of length29™ for some polynomial;. Let BP?® be this new word quantifier. Hence,
BP*Kp(2%, m) C BP*PL®. Thus, the assumption follows by applying standard transla-
tional arguments to Theorem 6.8. O

The next result shows that a type 1 probabilistic bounded error quantifier applied to
PSPACEcan be eliminated without changing the class in question.

Lemma 6.10. BP' PSPACE= PSPACE

Proof. The inclusionPSPACE C BP'PSPACEis evident. For the other inclusion let
L € BP' PSPACE There exists afi; € PSPACE" such that

xeL-opul((x,U)ely)>2/3
xZL—-oul((x,U)ely) <1/3

Let M’ be a machine of typ@l acceptind_; with space boung wherep is a polynomial.
Without loss of generality we assume thdt does not make a query twice. Since no
qguery of M’ on input(x, U) to oraclell is longer tharp(|x|) and this oracle is of type 1,
thenl is queried at mogt (|x|) times. Itis important that!’ asks for a given inpux, U)
only queries from oneracle pathwy, wiyw,, ..., Wiw, ... wy(). Let M be a machine
that considers step by step all these oracle paths. For each oracle gatfo, 17
and each possible answere {0, 1P M simulatesM’ on inputx querying only
gueries from the oracle pathand uses the oracle answers encoded ithe machinévl
stops such a simulation if a query is asked which is not from the oraclempdtmally,

the machineM accepts if and only if the number of simulations, which are not stopped,
ending in an accepting state is greater than the number of simulations, whictotar
stopped, ending in an rejecting state. Therefardyl) = L and M uses polynomial-

space, i.elL. € PSPACE O
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In 1996, Book, Vollmer and Wagner investigated the power of the probabilistic set
quantifiers of type 2. They showed relationships betwdeMOST classes and classes
defined by BP quantifiers. LefC be a relativized class. Then

L € ALMOSTK &=q nU(L € £Y) =1
Theorem 6.11. [BVW96] ALMOST-PSPACE= BP*PSPACEC =5 N TIS®.

The following result shows relations between the classAEPACEand classes de-
fined by set BP-quantifier on the base of classes of the analytic polynomial-tiraechig

Lemma 6.12. BP?PSPACE= BP*3'vPPN BP?Y' 3PP C BP'32vPPN BP'V23PP.

Proof. We prove BRPSPACE= BP*3'vPP C BP'3?VvPP, since the other part follows
by complementation. The proof #SPACE= 3'vPP(Theorem 3.9) remains valid if the
machines have additionally an oracle of type 2, i.e?B&PACE= BP*3'vPPwhich is
included in BR3'vP3'vPP by Lemma 6.5. Now, using the rules of Lemmas 3.7 and 3.6
we obtain the desired result. O

It turns out that type 2 bounded error quantifiers are not more powerful than the cor-
responding type 1 quantifier when applied to classes of the analytic polynomial-time hi
erarchy, whose first quantifier is of type 2.

Lemma 6.13. Leto € {1,2}" andm > 1. Then, fork € {Kp(20, m), cop(20, m)}
BP’K =BP'K and R*K =R'K

Proof. We prove BRKX = BP'K for K = Kp(20, m), the other equalities follow in the
same way. We conclude

BP’Kp(20, m) C BP'I'WPKp(20, m) by Lemma 6.5
C BP'Kp(20, m) by Lemmas 3.7 and 3.6
C BP’Kp(20, m) by Lemma 6.3 0

Combining the above results we obtain an inclusion structure which is repedsant
the Figure 6.1.

6.4 The Emergence of the Type 1 Quantifiers

In 1989, Fortnow, Rompel, and Sipser characterized the power of multi-praeeactive
proof system@&/IP by the class defined by an existential set quantifier (type 2) on the base
of the polynomial-time bounded error probability cla&BP

Theorem 6.14. [FRS88, BFL90H*BPP= F?coRP= MIP.

This characterization oMIP has motivated us to answer the question of whether a
Fortnow-Rompel-Sipser like result could also be established for (one+plioteractive
proof systemdP. This is possible by using the quantifigt. So we started the study of
the quantifiers of type 1.
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) =BP'KCp(22,1)

BP’coCp(2?,1) =BP'coKp(2%,1) BP*Kp(2%,1
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BP*3*vPP = BP'3*VPP
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Figure 6.1: Inclusion structure of classes involviBdP-quantifiers.
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Theorem 6.15.3'BPP= 3'coRP= IP.

Proof. By definition, L € IP if and only if there exists a polynomial-time probabilistic
verifier V such that

x € L — 3 ProverP (prob(V accepts with P) > 2/3)

6.1
x ¢ L — V ProverP (prob(V acceptx with P) < 1/3) (6.1)

Here aproveris a functionP : £* x (Z*)* — X* which determines for a given input
and a sequence of querias, . . ., uy of the verifier the answelP (x, uy,...,uy) to the
queryu,. Now, in the same way define the cldg% with the difference that for words in
the language the verifier is convinced with probability 1, i.ez IP’ if and only if there
exists a polynomial-time probabilistic verifi&f such that

x € L — d ProverP (prob(V acceptsx with P) = 1)

6.2
x ¢ L — V ProverP (prob(V acceptx with P) < 1/3) (6.2)

Without loss of the generality l&t ask the prover only for one-bit answer.
The theorem’s assumption is proved showing the following chain of inclusions:

3'BPPC IP C PSPACEC IP' C 3'coRPC 3'BPP

The inclusionsIP C PSPACEC IP' have been shown in [Sha90] and the inclusion
3'coRP C 3'BPPfollows by Proposition 6.4. Thus, it remains to pra¥e&8PPC IP and
IP' C 3'coRP.

“3'BPPC IP": Let L. € 3'BPP, There exist ai.’ € P°1° and a polynomiap such that

x € L =»3"U (prob{z: |z| = p(x|) A (x, U, z) € L'} > 2/3)
x ¢ L—=Y'U (probiz: |zl = p(x]) A (x,U,z) € L'} < 1/3)

Ix[)

wherez € {0, 1P™ is randomly chosen under uniform distribution. Lt be a pol-
ynomial-time machine of type 010 acceptihg and letV be a verifier that on input
and pathz works asM on input(x, U, z) with the difference that if the machine asks
the querywu to U and the previous query was, then the verifielV asks the queries
u(1),u(2),...,u(lul) to the prover, ignores the answersuol ), w(2),...,u(ju/ — 1),
and uses the answerwof|u|) in the same way tha¥l uses the answer ofu € U. Hence,
V is a probabilistic polynomial-time machine and for each

1. LetU C {0,1}" and definePy(x, a1, ..., ax) =4 xula:...ax) forall k € N and
all aj,...,ax € {0,1}. Hence,V acceptsx with Py on pathz if and only if M
accepts the inputx, U, z). Therefore,

prob(V acceptsc with Py) = prob{z : |z| = p(|x]) A (x,U,z) € L'}
2. LetP be a prover and define
Up =gt {a7...ax: ke NAay,...,ax € {0,1}AP(x,a;,...,ax) =1}

Hence,M accepts the inpuix, Up, z) if and only if V acceptsc with P on pathz.
Therefore, proliz : |z| = p(x]) A (x, Up,z) € L'} = prob(V accepts with P).
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Thus, for every

mlgxprob(v acceptsc with P) = muaxprob{z Szl =p(x]) A (x,U,z) € L'}

Therefore,V satisfies (6.1) and consequently [P.

“IP' C 3'coRP”: Let L € IP' and letV be a verifier satisfying (6.2). Consider a machine
M of type 010 working on inputx, U, z) as the verifie? on inputx and pathz with

the difference that if the verifier has already asked the quesigs ., w1 and asks then
the queryuy to the prover, therM asks the queryi;01u,01...011y to the oraclel
and proceeds with the answer of the oracle in the same waivaigh the answer of the
prover. Hencel (M) € P°1°, and for a suitable polynomial and eachx:

1. LetP be a prover and defindp =g {1101 ...01y : P(x,uq,...,u) = 1}. Thus,
M accepts the inputx, Up, z) if and only if V acceptsc with P on pathz. There-
fore, prob{z : |z| = p(Ix|) A\ (x, Up,z) € L(M)} = prob(V acceptsc with P).

2. LetU C {0,1}" and definePy(x,u1, ..., ux) =g xu(1;01...011U). Hence,V
acceptsc with Py, on pathz if and only if M accepts the inpui, U, z). Therefore,
prob(V acceptx with Py) = prob{z : |z| = p(|x]) A (x, U, z) € L(M)}.

Thus, for every

mliaxprob{z zl =p(x) A (x,U,z) € L(M)} = mPaxprob(V acceptsc with P)

Hence,

x € L =3"U (prob{z: |z = p(X) A (x,U,z) €e L(M)} = 1)

x ¢ L —=V'U (prob{z: z| = p(jx]) A (x,U,z) € L(M)} < 1/3)
Therefore € 3'coRP. 0

6.5 Conclusions

In §6.3 we examined classes obtained by applying BP-quantifiers to well-known complex-
ity classes and classes of the analytic polynomial-time hierarchy. Figusaigarizes
these results. 1§6.4 we presented the results which motivated us to study type 1 quan-
tifiers. A further interesting investigation on this theme could be a @etatudy of the
3-V-BP-hierarchy ovePusing word quantifiers as well as set quantifiers of type 1 and 2.

Finally, let us note that for the classesRf® BPPand cdVP we get the same result
when applying the quantifie& and3?:

3'coRP= 3'BPP=3'coNP= PSPACE by Theorems 6.15 and 3.9, and [Sha90]
F?coRP= 3*BPP= F*coNP = NEXPTIME by Theorems 6.14 and 3.14, and [BFL90]

However, with respect to relativizability these results are of cetepy different quality:
Whereas the resulfs'coRP = PSPACE 3'BPP = PSPACE 3*coRP = NEXPTIME,
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and3?BPP= NEXPTIME are not valid in every relativized world [FS88, FRS88].6.1)
the resultsd' coNP = PSPACEand3*coNP = NEXPTIME are valid in every relativized
world. The Figure 6.2 gives an overview on the results on clag¥ésind3?X wherek
are interesting classes within the polynomial-time hierarchy.

' U~ NEXPTIME

RSN \ - _ (relativizable)
/ N\

S N \ PSPACE
71 )
3 NP H‘BPP' =) CONP (relativizable)

\ A/ \ /PSPACE

. 3'RP"; 3'coRP

N\

NP
. 3\,P (relativizable)

(not relativizable)

-"PPH *~._ NEXPTIME

P //// \ . (relativizable)

/ \
2y P 277P
‘\3 Z2 3 HZ \\

IHZNP N EIZBPP' ) * F°coNP l

\ KN\

_PRPY. PooR B NEXPTIME

\ / (not relativizable)

NP
. FP relativizable)

Figure 6.2: Relativized world of classes$ KC and3?*K.
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