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CIS      configuration interaction singles 
CIS(D) configuration interaction singles with perturbative doubles correction 
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CM5      charge model 5 
CNDO      complete neglect of differential overlap 
COSMO      conductor-like screening model 
C-PCM      conductor-PCM 
CSF      configuration state function 
CT      charge transfer 
CV-DFT      constricted variational DFT 
D3      Grimme’s dispersion correction D3 
DF      density functional 
DFA      density functional approximation 
DFT      density functional theory 
DFTB      tight-binding DFT 
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DOS      density of states 
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DPP      diketopyrrolopyrrole 
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EOM      equation of motion 
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FCI      full configuration interaction 
GBA      generalized Born approximation 
GGA      generalized gradient approximation 
GLPT      Görling-Levy perturbation theory 
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GUGA-CI      graphical unitary group approach – CI 
HF      Hartree-Fock 
HOMO      highest occupied molecular orbital 
IEF      integral equation formalism 
IMC      image charge method 
INDO      intermediate neglect of differential overlap 
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IP      ionization potential 
IQE      internal quantum efficiency 
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LDA      local density approximation 
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LJ      Lennard-Jones 
LMO-EDA      local molecular orbital energy decomposition analysis 
LR      linear response 
LUMO      lowest unccoupied molecular orbital 
MAE      mean absolute error 
MC      Monte Carlo 
MCRPA      multiconfigurational random phase approximation 
MD      molecular dynamics 
MIM      metal-insulator-metal 
MM      molecular mechanics 
MM3      molecular mechanics 3 
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MO      molecular orbital 
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MS-CASPT2  multistate CASPT2 
MSIE      many-electron self-interaction error 
NDDO      neglect of diatomic differential overlap 
NIR      near-infrared 
OFET      organic field-effect transistor 
OLED      organic light-emitting diodes 
OMx      orthogonalization model x 
OPLS-AA      optimized potentials for liquid simulations – All-Atom 
OPV      organic photovoltaics 
OSC      organic solar cell 
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PES      potential energy surface 
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SS      state specific 
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TDA      Tamm-Dancoff approximation 
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2 Introduction 
The exploitation of solar energy as a renewable, carbon neutral energy resource1 has turned into a 

promising technology to cover a part of the globally increasing energy consumption.2 Compared with 

their inorganic counterparts, organic solar cells stand out due to their low fabrication cost, low weight, 

and mechanical flexibility,3 but have long lagged behind in terms of efficiency. Meanwhile, constant 

progress has brought about device performances beyond the milestone4 of 10%5 that begin to be 

competitive with first-generation silicon-wafer based cells and especially with second-generation 

silicon thin-film photovoltaics.2,6 While long-term stability is still an issue,7,8 encapsulation techniques 

are steadily improving,9 and new device architectures with longer lifetimes have been introduced.10 A 

particular advantage of solution-processed organic solar cells is the possibility of roll-to-roll 

production.11,12 As recently outlined, the large-scale energy production via so-called third-generation 

solar cells seems therefore feasible13 although neither organic solar cells nor the so-called dye-

sensitized solar cells,14,15 which were developed in parallel,1 have reached a noticeable degree of 

commercialization until now.16 Yet, compared with perovskite cells, the most recent solar cell type, the 

environmentally unproblematic composition of organic solar cells offers the opportunity for a truly 

sustainable energy production. In fact, while the perovskite solar cell17 has shown an incredible 

performance increase in only a few years,18 sealing techniques for this cell - due the toxicity of Pb(II), 

a degradation product of its key component [CH3NH3]PbI3 -  still need to be brought to perfection until 

perovskite cells can conquer the market.13,16  

The key process in all solar cells is the generation of charge carriers upon light absorption.5 In contrast 

to traditional silicon-based cells, the crucial charge-transfer step, where an exciton dissociates, occurs 

in organic, dye-sensitized, and perovskite solar cells at an interface. The interface profoundly 

influences the character of the exciton dissociation, the decisive process for overall device 

performances.19 Only in organic solar cells, this interface corresponds to an organic::organic interface. 

While bulk material design has considerably advanced in recent years, the understanding of the 

energetics at organic::organic interfaces is still limited.20 Computational chemistry, which has already 

proven invaluable to shed light on fundamental optoelectronic mechanisms,1 provides tools and 

concepts to fill this gap. 

The organic::organic interfaces in organic solar cells (and in other optoelectronic devices such as 

organic light-emitting diodes) are unique for a number of reasons. Firstly and most importantly, this 

results from the character of the composing, usually π-conjugated small organic molecules and/or 

polymers.20 π-conjugation is known to account for distinct electronic and optical molecular properties, 

but also affects intermolecular interactions.21 Interactions between the π-conjugated systems, and 

therefore also across the interface, are commonly considered to be weak.20 Compared to interfaces 
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between inorganic solids, the discrete nature of the molecules/polymer segments in combination with 

their weak intermolecular interactions give rise to a special alignment of the energy levels at the 

interfaces.22,23 Secondly, the dielectric shielding in organic materials is usually low.19 This implies that 

charge carriers, generated after light absorption in organic solar cells, produce pronounced effects on 

the interfacial energy level alignment. Thirdly, whereas inorganic materials are often conceived as 

being periodic and well-ordered,24 disorder fundamentally determines all transport phenomena in 

organic materials.25 Since an interface generally constitutes a structural inhomogeneity,26 the 

consideration of disorder is intimately linked to any analysis of organic::organic interfaces. 

These particularities of organic::organic interfaces clearly underline that an understanding of all 

interfacial processes requires insight on several description levels, i.e., on a molecular, intermolecular, 

and supramolecular level.27 Firstly, the nature of the individual molecules/oligomers/polymers is 

decisive. Secondly, both the weak intermolecular interactions between the conjugated π-systems and 

the unshielded Coulomb forces need to be taken into account. Thirdly, the structural heterogeneity at 

the interfaces, their disorder and mesoscale morphology28 must be considered. Therefore, a detailed 

computational description of organic::organic interfaces on a molecular, intermolecular, and 

aggregate scale is necessary to fully understand their electronic structure and the optoelectronic 

processes that take place in their vicinity. Such a multi-level description is the central objective of this 

thesis.  

From a computational point of view, this is challenging because different theoretical approaches must 

be used on a molecular, intermolecular, and aggregate level. From the perspective of material science, 

a multi-level description can elucidate the fundamental relationships between molecular, 

intermolecular, and aggregate properties. One aim of this thesis is thus to deliver insight into basic 

structure-property relationships of all optoelectronic processes at organic::organic interfaces in 

organic solar cells. Since small organic molecules have more clear-cut structure-property relationships 

compared with polymers,29 this thesis is entirely dedicated to an analysis of interfaces constructed 

from molecules. Furthermore, using molecules instead of large oligomers/polymers allows for fully 

quantum-chemical calculations on the molecular level, which is computationally unaffordable for 

polymers. 

All investigations in this thesis are of two-fold character. On the one hand, methodological aspects 

are addressed. On the other hand, special attention is always given to the microscopic understanding 

of all fundamental optoelectronic processes at organic::organic interfaces, and on the influence of 

molecular/intermolecular/aggregate properties on these processes. For instance, the electronic 

structure of many π-conjugated molecules employed in organic solar cells is complex, but needs to be 

considered to understand its influence on the interfacial optoelectronic processes (molecular level). 
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This requires a suitable quantum-chemical treatment. Thus a prerequisite for an understanding of 

organic::organic interfaces at the molecular level consists in the identification of accurate – and 

possibly low-cost – methods that properly describe the electronic states of the individual molecules. 

Intermolecular interactions determine aggregate morphologies and couplings, both of which affect 

interfacial charge generation in organic solar cells (intermolecular level).19 Understanding the origin of 

the intermolecular interactions permits both to develop computational approaches to model them and 

to rationally design distinct intermolecular arrangements via molecular-structure modifications. 

Aggregate properties such as disorder are well-known to impact the mechanisms of optoelectronic 

processes,19 but their computational description requires simplifying assumptions and the inclusion of 

the environment. Only a balance between a physically well-grounded and a computationally affordable 

theoretical model to describe aggregate processes allows for meaningful results (aggregate level).  

Therefore, starting at the molecular level, a structurally and electronically diverse set of molecular p-

type semiconductors is selected first. The performance of many ab initio, DFT, and semiempiric 

methods is comprehensively analyzed for ground-, excited- and charged-state properties of these 

molecules. Their intermolecular interactions are subsequently addressed. Both the physical origin of 

the intermolecular interactions and different modeling approaches are discussed. Then, aggregate 

morphologies for organic::organic interfaces composed of the p-type semiconductors and fullerene C60 

are in silico generated. Thereupon, computational models are developed and used to calculate the 

energy profiles as well as the kinetics of the charge separation process at the in silico generated 

interfaces. In contrast to the majority of literature investigations using also experimental data as input, 

the calculations based only on computed input parameters provide a direct unbiased relationship 

between molecular properties and macroscopic transport parameters.30 Finally, the influence of 

disorder is addressed in more detail in QM/MM calculations. 

On the one hand, these investigations provide a fundamental understanding of the accuracy of many 

quantum-chemical methods for different electronic states, weak interactions, and transport 

processes. On the other hand, they deliver a molecular picture of the charge generation mechanisms 

in OSCs and of their molecular and intermolecular dependencies. 
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3 Theoretical Background 
3.1 The quantum-chemical ground-state description  

3.1.1 The Born-Oppenheimer approximation and the electronic Schrödinger equationa 
The first quantum-mechanical postulate states that the wave function Ψ fully describes a quantum-

mechanical system. The wave function can vary with both time and space, Ψ(𝑟, 𝑡), and it is obtained 

as the solution of the general time-dependent Schrödinger equation.31,32 

�̂�(𝑟, 𝑡)Ψ(𝑟, 𝑡) = 𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑟, 𝑡) 

(1) 

The Hamiltonian �̂�(𝑟, 𝑡) is composed of the kinetic energy operator �̂�(𝑟) and the potential energy 

operator �̂�(𝑟, 𝑡). Evidently, as soon as the potential energy does not depend on time, which is the case 

for all systems that are not subject to a time-dependent external potential, the Hamiltonian becomes 

time-independent as well. Separating the variables in Eq. (1) yields the time-independent Schrödinger 

equation with the time-independent wave functions Ψ(𝑟) as its solution.31 

�̂�(𝑟)Ψ(𝑟) = (�̂�(𝑟) + �̂�(𝑟)) Ψ(𝑟) = 𝐸(𝑟)Ψ(𝑟) 
(2) 

For clarity, spin coordinates are omitted and will be neglected throughout the following outline.  

Due to its complexity, directly solving Eq. (2) is not possible (even not for the simplest systems) so that 

further approximations are necessary. The Hamiltonian of any molecule can be expressed as the sum 

of the kinetic energies of the nuclei �̂�𝑁, the kinetic energy of the electrons �̂�𝑒, the nuclei-nuclei-

repulsion �̂�𝑁𝑁, the electron-electron repulsion �̂�𝑒𝑒, and the electron-nuclei interaction �̂�𝑁𝑒. The wave 

function of any molecule thus depends on both nuclear coordinates {�⃗⃗�𝐾} and electron coordinates 

{𝑟𝑖}.31 

�̂�Ψ(�⃗⃗�𝐾 , 𝑟𝑖) = (�̂�𝑁 + �̂�𝑒 + �̂�𝑁𝑁 + �̂�𝑁𝑒 + �̂�𝑒𝑒)Ψ(�⃗⃗�𝐾 , 𝑟𝑖) = 𝐸(�⃗⃗�𝐾 , 𝑟𝑖)Ψ(�⃗⃗�𝐾 , 𝑟𝑖) 
(3) 

Since the nuclei are considerably heavier than the electrons, they move much more slowly, i.e., the 

electron motion is significantly faster. In the Born-Oppenheimer approximation,33 fundamental to all 

quantum-chemical calculations, this fact is utilized to separate variables in the total molecular wave 

function Ψ(�⃗⃗�𝐾 , 𝑟𝑖). Ψ(�⃗⃗�𝐾 , 𝑟𝑖) is then expressed as the product of the nuclear wave function 𝜙(�⃗⃗�𝐾) 

and an electronic wave function ψ(�⃗⃗�𝐾 , 𝑟𝑖), which depends only parametrically on the nuclear 

coordinates. The underlying idea of the parametric dependence is that the fast moving electrons 

instantaneously adapt to changes of the nuclear geometry.  

                                                             
a The following outline can be found in standard textbooks such as 31. 
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Ψ(�⃗⃗�𝐾 , 𝑟𝑖) = 𝜙(�⃗⃗�𝐾)ψ(�⃗⃗�𝐾 , 𝑟𝑖) 
(4) 

The product ansatz for the total wave function (Eq. (4)) is then inserted into the total time-independent 

Schrödinger equation (Eq. (3)). Three terms arise if the nuclear kinetic energy operator �̂�𝑁 (defined in 

Eq. (5)) acts on the total molecular wave function (Eq. (4), (6)).31 

�̂�𝑁 = −
1

2
∑

∇𝑁
2

𝑀𝑁

# 𝑛𝑢𝑐𝑙𝑒𝑖

𝑁

 
(5) 

�̂�𝑁𝜙(�⃗⃗�𝐾)ψ(�⃗⃗�𝐾 , 𝑟𝑖) 

= −
1

2
∑

1

𝑀𝑁
(

ψ(�⃗⃗�𝐾 , 𝑟𝑖)∇𝑁
2 𝜙(�⃗⃗�𝐾)

+2∇𝑁ψ(�⃗⃗�𝐾 , 𝑟𝑖)∇𝑁𝜙(�⃗⃗�𝐾)

+𝜙(�⃗⃗�𝐾)∇𝑁
2 ψ(�⃗⃗�𝐾 , 𝑟𝑖)

)

# 𝑛𝑢𝑐𝑙𝑒𝑖

𝑁

 

(6) 

Compared with the derivative of the nuclear wave function, ∇𝑁𝜙(�⃗⃗�𝐾), the derivative of the electronic 

wave function with respect to the nuclear coordinates, ∇𝑁ψ(�⃗⃗�𝐾 , 𝑟𝑖), is most often considerably 

smaller. This results from the different extent of localization of nuclei and electrons, i.e., the heavier 

nuclei are more localized in space than the electrons.34 Therefore the electron density varies only 

smoothly with the nuclear coordinates, and it usually does not depend on the nuclear kinetic energy. 

Consequently, the second and third term in Eq. (6), the so-called non-adiabatic coupling elements, are 

neglected in the Born-Oppenheimer approximation.b This is a very good approximation for most 

systems of interest to quantum chemistry.31 However, as soon as the nonadiabatic coupling elements 

become significant, i.e., as soon as the electron density varies strongly with the nuclear positions, for 

example at avoided crossings or conical intersections,35 the Born-Oppenheimer approximations breaks 

down.31 

Inserting the product ansatz (Eq. (4)) into the time-independent Schrödinger equation (Eq. (3)) and 

neglecting the non-adiabatic coupling elements (used in the division by the product wave function in 

Eq. (7)) yields two separate equations, the electronic (Eq. (8)) and the nuclear Schrödinger equation 

(Eq. (9)). Mathematically, the electronic energy 𝐸𝑒𝑙(�⃗⃗�𝐾 , 𝑟𝑖) corresponds to the separation constant in 

Eq. (7). It depends “parametrically” on the nuclear coordinates {�⃗⃗�𝐾}.31 

(�̂�𝑒 + �̂�𝑁𝑒 + �̂�𝑒𝑒 + �̂�𝑁𝑁)ψ(�⃗⃗�𝐾 , 𝑟𝑖)

ψ(�⃗⃗�𝐾 , 𝑟𝑖)
= 𝐸(�⃗⃗�𝐾 , 𝑟𝑖) −

�̂�𝑁𝜙(�⃗⃗�𝐾)

𝜙(�⃗⃗�𝐾)
 

(7) 

                                                             
b It should be noted that the diagonal correction is most often also neglected in quantum-chemical calculations. 
31,1008 
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(�̂�𝑒 + �̂�𝑁𝑒 + �̂�𝑒𝑒 + �̂�𝑁𝑁)ψ(�⃗⃗�𝐾 , 𝑟𝑖) = 𝐸𝑒𝑙(�⃗⃗�𝐾 , 𝑟𝑖)ψ(�⃗⃗�𝐾 , 𝑟𝑖) (8) 

(�̂�𝑁 + 𝐸𝑒𝑙(�⃗⃗�𝐾 , 𝑟𝑖)) 𝜙(�⃗⃗�𝐾) = 𝐸(�⃗⃗�𝐾 , 𝑟𝑖)𝜙(�⃗⃗�𝐾) (9) 

Eq. (8), the electronic Schrödinger equation, is the relevant equation for all quantum-chemical 

methods. Its eigenvalues, the electronic energies 𝐸𝑒𝑙(�⃗⃗�𝐾 , 𝑟𝑖), represent the potential energy surfaces 

(PESs) on which the slow nuclei move “adiabatically”. The underlying Born-Oppenheimer 

approximation is therefore sometimes also called the “adiabatic approximation”. The chemical 

concept of potential energy surfaces and molecular structures with well-defined nuclear geometries is 

thus entirely based on the Born-Oppenheimer approximation. It should be furthermore noted that due 

to the Hermitian character of the electronic Hamiltonian, solving Eq. (8) yields a complete set of 

eigenvectors {ψ𝑖(�⃗⃗�𝐾 , 𝑟𝑖)} and eigenvalues {𝐸𝑖
𝑒𝑙(�⃗⃗�𝐾 , 𝑟𝑖)}.31  

(�̂�𝑒 + �̂�𝑁𝑒 + �̂�𝑒𝑒 + �̂�𝑁𝑁)ψ𝑖(�⃗⃗�𝐾 , 𝑟𝑖) = 𝐸𝑖
𝑒𝑙(�⃗⃗�𝐾 , 𝑟𝑖)ψ𝑖(�⃗⃗�𝐾 , 𝑟𝑖) (10) 

The eigenvalues {𝐸𝑖
𝑒𝑙(�⃗⃗�𝐾 , 𝑟𝑖)} are the electronic states of a molecule. To obtain a nuclear wave 

function, for example molecular vibrations, the electronic energies are calculated (either including its 

derivatives with respect to the nuclear coordinates in the harmonic approximation or for several 

nuclear points of the nuclear geometry) and subsequently inserted into the nuclear equation (Eq. (9)), 

which is then solved for nuclear energies and wave functions, again obtained as a complete set. 

Solving Eq. (10) that still cannot be directly solved is the underlying objective of all quantum-chemical 

methods. The methods differ in the approximations that they introduce. Some of these 

approximations will be outlined in the following sections. For clarity, the operator superscript “^“ is 

often omitted. Moreover, the symbol Ψ is used in the following for the electronic part of the wave 

function. 

3.1.2 The Hartree-Fock method and the Roothaan-Hall equationsc 
A simple ansatz for the many-electron wave function of a molecule, the Hartree-Fock method, is to 

represent the wave function as an antisymmetrized product, i.e., as a single Slater determinant 

Φ(�⃗⃗�𝐾 , 𝑟𝑖), of single-particle wave functions, the spin orbitals {𝜒𝑎}. Following the notation of Szabo and 

Ostlund,36 only the trace of the determinant is given. Furthermore, the bracket-notation is adopted. 𝜎 

corresponds to the spin coordinate, 𝑥 will be employed for the combination of spin and spatial 

coordinates. The molecule contains 𝑁 electrons.36 

                                                             
c The derivation can be found in standard textbooks such as 31,36,32. 
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Ψ(�⃗⃗�𝐾 , 𝑟𝑖) ≈ Φ(�⃗⃗�𝐾 , 𝑟𝑖 , 𝜎𝑖) = |𝜒1(𝑥1)𝜒2(𝑥2)𝜒3(𝑥3) … 𝜒𝑁(𝑥𝑁)| (11) 

The Hartree-Fock method consists in finding the determinant that provides the best description of the 

electron density of the system. Due to the variational principle, this amounts to identifying the 

determinant that yields the lowest electronic energy. The expectation value for the electronic energy 

of a Slater determinant 〈E〉 can be represented as sums of one-electron matrix elements ℎ𝑖 (Eq. (13)) 

containing the one-electron kinetic energy and the potential interaction energy of one electron with 

the nuclei and as sums of two-electron terms ⟨𝑎𝑏|𝑎𝑏⟩ and ⟨𝑎𝑏|𝑏𝑎⟩ (Eq. (12)). The spin orbitals 𝜒𝑎 and 

𝜒𝑏 are abbreviated by 𝑎 and 𝑏. The two-electron matrix elements are considered as Coulomb integrals 

𝐽𝑎𝑏 (Eq. (14)) and exchange integrals 𝐾𝑎𝑏  (Eq. (15)). The integrals can also be expressed in terms of 

matrix elements of the Coulomb and the exchange operators 𝐽𝑏  and �̂�𝑏. 𝑀 designates the nuclei and 

𝑍𝑀 their charge, the respective sum runs over all nuclei.36 

〈E〉 = ⟨Φ|�̂�𝑒𝑙|Φ⟩ = ∑ ℎ𝑎

𝑁

𝑎=1

+
1

2
∑ ∑(⟨𝑎𝑏|𝑎𝑏⟩ − ⟨𝑎𝑏|𝑏𝑎⟩)

𝑁

𝑏=1

𝑁

𝑎=1

 
(12) 

ℎ𝑎 = ⟨𝜒𝑎|−
1
2 Δ − ∑

𝑍𝑀
𝑟1𝑀

|𝜒𝑎⟩ = ⟨𝜒𝑎|ℎ|𝜒𝑎⟩ (13) 

𝐽𝑎𝑏 = ⟨𝑎𝑏|𝑎𝑏⟩ = ⟨𝑎𝑏|
1

𝑟12
|𝑎𝑏⟩ = ⟨𝑎|𝐽𝑏|𝑎⟩ (14) 

𝐾𝑎𝑏 = ⟨𝑎𝑏|𝑎𝑏⟩ = ⟨𝑎𝑏|
1

𝑟12
|𝑏𝑎⟩ = ⟨𝑎|�̂�𝑏|𝑎⟩ (15) 

To obtain the lowest-energy determinant, the energy expectation value (Eq. (12)) is minimized by 

varying the underlying spin orbitals with the additional constraint that they are orthonormal (Eq. (16)). 

𝛿𝑎𝑏 corresponds to the Kronecker delta.36 

⟨𝑎|𝑏⟩ = 𝛿𝑎𝑏 (16) 

For the constrained minimization, the Lagrangian ℒ is constructed with the Lagrangian multipliers 

{휀𝑏𝑎}.36 

ℒ[{𝜒𝑎}] = E[{𝜒𝑎}] − ∑ 휀𝑏𝑎(⟨𝑎|𝑏⟩ − 𝛿𝑎𝑏)

𝑁

𝑎,𝑏

 
(17) 

 

Minimizing the energy expectation value of the Slater determinant subject to the constraint of 

orthonormal spin orbitals requires that the variation of the Lagrangian 𝛿ℒ[{𝜒𝑎}] vanishes. 𝐶𝐶 denotes 

the complex conjugate.36 
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𝛿ℒ[{𝜒𝑎}] = ∑⟨𝛿𝜒𝑎|ℎ|𝜒𝑎⟩

𝑁

𝑎=1

+ ∑⟨𝛿𝜒𝑎𝜒𝑏|𝜒𝑎𝜒𝑏⟩ − ⟨𝛿𝜒𝑎𝜒𝑏|𝜒𝑏𝜒𝑎⟩

𝑁

𝑎,𝑏

− ∑ 휀𝑏𝑎⟨𝛿𝜒𝑎|𝜒𝑏⟩

𝑁

𝑎,𝑏

+ 𝐶𝐶 = 0 

(18) 

 

For Eq. (18) to hold for any arbitrary variations 𝛿𝜒𝑎, the remaining parts should be zero. This results in 

Eq. (19). The operator in the brackets of Eq. (19) is the Fock operator. A unitary transformation of Eq. 

(19) that diagonalizes the matrix of Lagrangian multipliers 휀𝑏𝑎  and leaves the Fock operator unchanged 

leads to the standard Fock eigenvalue equation, Eq. (20). Its eigenvectors are the canonical Hartree-

Fock orbitals. The orbitals in Eq. (20) are equivalent, but not equal to the orbitals in Eq. (19). The 

Lagrangian multipliers correspond to the orbital energies. According to Koopmans’ theorem, the 

HOMO energy reflects the ionization potential of the molecule whereas the LUMO energy relates to 

its electron affinity if orbital relaxation effects are ignored. This can be easily shown by taking 

corresponding energy differences. For later-on purposes, it is important to point out that therefore, 

the HF HOMO-LUMO gap represents approximately the fundamental gapd of a molecule, albeit without 

taking relaxation effects into account.36 

[ℎ(𝑥1) + ∑ (𝐽𝑏(𝑥1) − �̂�𝑏(𝑥1))

𝑁

𝑏=1

] 𝜒𝑎(𝑥1) = ∑ 휀𝑏𝑎𝜒𝑎(𝑥1)

𝑁

𝑏=1

 
(19) 

 

[ℎ(𝑥1) + ∑ (𝐽𝑏(𝑥1) − �̂�𝑏(𝑥1))

𝑁

𝑏=1

] 𝜒𝑎(𝑥1) = 휀𝑎𝜒𝑎(𝑥1) 
(20) 

 

Solving the Fock eigenvalue equation (Eq. (20)) for the optimal spin orbitals of the energetically lowest 

Hartree-Fock (HF) determinant necessarily means that the off-diagonal elements of the Fock matrix 

are 0. This has another important implication, the so-called Brillouin theorem. Since an off-diagonal 

element of the Fock operator, which is zero, corresponds to a Hamiltonian matrix element between 

the ground-state determinant and a singly-excited determinant, singly-excited determinants do not 

mix with the HF ground state.36 

In order to actually calculate the orbitals, the Fock eigenvalue problem is expanded into a usually atom-

centered basis set {𝜑𝑖}. The procedure is demonstrated for a closed-shell system in the following. 

Assuming this and integrating over the spin in Eq. (20), the Fock eigenvalue problem for closed-shell 

systems is obtained (Eq. (21)), with 𝜓𝑎(𝑟) being the spatial part of an orbital.36 

                                                             
d The fundamental gap is defined as the difference between the ionization potential and the electron affinity of 
a molecule. It is thus considered as a counterpart to the optical gap of a molecule, i.e., its “bandgap”.160  
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𝑓(𝑟)𝜓𝑎(𝑟) = [ℎ(𝑟) + ∑ (2𝐽𝑏(𝑟) − �̂�𝑏(𝑟))

𝑁/2

𝑏=1

] 𝜓𝑎(𝑟) = 휀𝑎𝜓𝑎(𝑟) 

(21) 

 

𝜓𝑎(𝑟) is expanded into the finite basis composed of 𝐾 basis functions {𝜑𝑖}.36  

𝜓𝑎(𝑟) = ∑ 𝑐𝑖𝑎𝜑𝑖(𝑟)

𝐾

𝑖=1

 
(22) 

𝑐𝑖𝑎 are the expansion coefficients of the molecular orbital 𝑎 in the basis set. The Roothaan-Hall 

equations are a compact way of representing the Fock equations for spatial orbitals as matrix 

equations in this basis set, containing the overlap matrix 𝑆, the Fock matrix 𝐹, the matrix of orbital 

energies 휀, and the matrix of expansion coefficients 𝐶.36 

𝐹𝐶 = 𝑆𝐶휀 (23) 

Since the Fock matrix 𝐹 depends on the expansion coefficients (in the Coulomb and the exchange 

operator), the Roothaan-Hall equations must be solved iteratively until a self-consistent solution is 

obtained. This defines the SCF procedure (self-consistent field). The basis set is orthogonalized to 

transform Eq. (23) into a standard eigenvalue equation. Several procedures exist to orthogonalize the 

basis set that differ in terms of their efficiency or numerical stability, for instance in case of linear 

dependencies.36 

The spin integration leading to Eq. (21) assumed doubly-occupied spatial orbitals, i.e, it requires equal 

spatial orbitals for different spins. Due to this restriction, the resulting formalism is also designated as 

the restricted HF and Roothaan-Hall formalism. The so-called unrestricted HF/Roothaan-Hall 

formalism, i.e., different spatial orbitals for different spin states, is usually employed to describe open-

shell systems with an otherwise unaltered procedure. It is important to note that due the different 

spatial orbitals, unrestricted HF solutions are not eigenvalues of the S²-operator (S-squared). They can, 

however, be expressed as sums over pure spin states of higher multiplicities. These “contaminating” 

higher-spin states induce an erroneouslye increased 〈𝑆²〉𝑈𝐻𝐹 expectation value of the unrestricted HF 

solution, which is obtained from the spatial overlap between the unrestricted spatial orbitals 𝑆𝑖𝑗
𝛼𝛽

, the 

exact value 〈𝑆²〉𝑒𝑥𝑎𝑐𝑡, and the number of β-electrons 𝑁𝛽  (assuming that there are more α-electrons).36  

〈𝑆²〉𝑈𝐻𝐹 = 〈𝑆²〉𝑒𝑥𝑎𝑐𝑡 + 𝑁𝛽 − ∑ ∑ |𝑆𝑖𝑗
𝛼𝛽 |

2
𝑁

𝑗

𝑁

𝑖

 
(24) 

                                                             
e The S²-operator commutes with the electronic Hamiltonian so that the exact electronic solutions are necessarily 
pure spin states. 
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3.1.3 Single-reference correlated ab initio methods 
The HF method is most often employed to calculate the HF reference for higher-level ab initio methods 

since it lacks electron correlation and does not provide sufficiently accurate results in itself. These 

higher-level ab initio methods retrieve electron correlation by additionally including excited 

determinants |Φ𝑖⟩, equally constructed from HF orbitals. Thus the total electronic wave function |Ψ⟩ 

corresponds to a sum of determinants.31,36  

|Ψ⟩ = 𝐶0|Φ0⟩ + ∑ 𝐶𝑖|Φ𝑖⟩

𝑖

 (25) 

The HF determinant is considered as the reference wave function, and all excited determinants are 

therefore classified according to the number of one-electron excitations with respect to this reference 

HF determinant.36 Using a single HF determinant as the reference defines single-reference ab initio 

methods. The single-reference ab initio methods differ only in the way how they select the excited 

determinants and determine their expansion coefficients {𝐶𝑖}. The CI approach (configuration 

interaction)31,36 constitutes probably conceptually the most straightforward correlated method 

because the wave function is simply expressed as a linear combination of singly, doubly, triply, etc. 

excited determinants.31 The expansion coefficients of the determinants 𝐶𝑎 = 𝑎 and the CI state 

energies 𝐸 are obtained from diagonalizing the CI matrix 𝐻, i.e., by solving the CI secular equations 

 𝐻𝑎 = 𝐸𝑎. Full-CI calculations are in principle exact within the basis set, but quickly become 

computationally infeasible due to the size of the CI matrix. A number of truncated CI methods exist, 

most notably CIS (including only singly excited determinants) and CISD (including singly and doubly 

excited determinants). In contrast to the double excitations, which account for large parts of electron 

correlation, the single excitations do not directly contribute to the ground-state CI energy due to 

Brillouin’s theorem. They are nonetheless important because as off-diagonal elements of the Fock 

operator, they are responsible for orbital relaxation in response calculations of excitation energies or 

first-order properties.f They constitute furthermore first approximations for excited states (see below). 

The lowest (or a few low) CISD eigenvalues are usually determined from the secular equation by an 

iterative procedure, i.a., an initial guess for the expansion coefficients is successively refined. The 

Davidson algorithm37 is the most prominent example for such iterative CI solutions. Furthermore, in 

the usually employed so-called direct CI methods,38 the CI matrix is not explicitly calculated. Only the 

two-electron integrals corresponding to the CI matrix elements directly needed for the multiplication 

                                                             
f The system is subject to an external perturbation in response calculations. Ground-state HF orbitals are no 
longer optimal so that the energy gradients with respect to orbital variations, i.e., the off-diagonal elements of 
the Fock operator, become non-zero and thus decisive.31 
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with the expansion coefficients are stored (or calculated).31 Truncating the full-CI expansion in CISD 

comes, however, at the expense of size consistencyg.31,36  

In contrast to the linear expansion of the wave function into excited determinants in CI, coupled cluster 

(CC) wave functions31,39 are based on an exponential expansion in the basis of excited Slater 

determinants (see for instance 31,39 for details). This can be most easily expressed in terms of the 

excitation operator 𝑇, with 𝑇𝑖  generating all i-fold excited determinants with respective amplitudes 𝑡. 

𝑁 is the number of electrons in the system.31 

T = 𝑇1 + 𝑇2 + 𝑇3 + ⋯ + 𝑇𝑁 (26) 

𝑇1|Φ0⟩ = ∑ ∑ 𝑡𝑖
𝑎|Φ𝑖

𝑎⟩

𝑣𝑖𝑟𝑡

𝑎

𝑁

𝑖=1

 
(27) 

|Ψ𝐶𝐶⟩ = 𝑒𝑇|Φ0⟩ = (∑
𝑇𝑛

𝑛!

∞

𝑛=0

) |Φ0⟩ 
(28) 

Due to the exponential expansion in determinants (Eq. (28)), both connected excited determinants 

(generated by applying a certain 𝑇𝑖  once) and disconnected excited determinants (generated for 

instance by applying 𝑇𝑖/2 twice) are included in the total coupled-cluster wave function. The 

disconnected excitations ensure the size consistency of coupled cluster approaches also in truncated 

versions, most notably in CCSD (Coupled Cluster Singles Doubles).31 Coupled-cluster energies (Eq. (29)) 

and amplitudes (Eq. (30)) are usually obtained upon iteratively solving the coupled non-linear matrix 

equations obtained from a similarity transformed Hamiltonian.31  

𝐸𝐶𝐶 = ⟨Φ0|𝑒−𝑇𝐻𝑒𝑇|Φ0⟩ (29) 

⟨Φ𝑖
𝑎|𝑒−𝑇𝐻𝑒𝑇|Φ0⟩ = 0 

⟨Φ𝑖𝑗
𝑎𝑏|𝑒−𝑇𝐻𝑒𝑇|Φ0⟩ = 0 

(30) 

A third way of determining the expansion coefficients in Eq. (25) is Møller-Plesset perturbation 

theory.40 Perturbation theory in general divides the Hamiltonian of a system 𝐻 = 𝐻0 + 𝜆𝑉 into a 

zeroth-order part 𝐻0 with known eigenvalues and eigenvectors and a perturbation 𝑉, with 𝜆 being a 

parameter. When applied in the form of the Rayleigh-Schrödiger perturbation theory to many-body 

problems, the final eigenvalues (Eq. (31)) and eigenvectors (Eq. (32)) of the real many-body system are 

expressed as Taylor series of the parameter 𝜆.31  

                                                             
g Size consistency means that the calculated energies scale linearly with the system size. For instance, the energy 
of a non-interacting dimer is twice the energy of the composing monomers.31 
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𝐸 = 𝐸𝑖
(0)

+ 𝜆𝐸𝑖
(1)

+ 𝜆2𝐸𝑖
(2)

+ ⋯ (31) 

Ψ = Ψ𝑖
(0)

+ 𝜆Ψ𝑖
(1)

+ 𝜆2Ψ𝑖
(2)

+ ⋯ (32) 

All eigenvalues and eigenvectors to the n-th order are then expressed in terms of the zeroth-order 

eigenvalues and of matrix elements of the zeroth-order eigenvectors with the perturbation operator.  

The expressions are obtained by inserting the equations for 𝐸 and Ψ into the full Hamiltonian and 

recollecting terms of equal power of 𝜆 in separate equations.31,36 

In Møller-Plesset perturbation theory,40 the zeroth-order Hamiltonian is defined as the sum of the one-

electron Fock operators. The perturbation operator corresponds to the difference between this sum 

and the true electronic Hamiltonian.31,36 𝑉 is also often designated as the fluctuation potential.31,36 

H = 𝐻0 + 𝜆𝑉 = ∑ 𝑓(𝑟𝑖)

𝑁

𝑖=1

+ 𝜆 ( ∑
1

𝑟𝑖𝑗

𝑁

𝑖,𝑗>𝑖

− ∑ (𝐽𝑗(𝑟𝑖) − 𝐾𝑗(𝑟𝑖))

𝑁

𝑗

) 

(33) 

Zeroth-order energies of Møller-Plesset perturbation theory are thus sums of orbital energies. First-

order Møller-Plesset perturbation theory recovers the HF ground-state energy. Second-order Møller-

Plesset perturbation theory (MP2) is the commonly employed form of perturbation theory, providing 

a second-order correction to the energy and a first-order correction to the wave function. The second-

order energy correction 𝐸0
(2)

 corresponds to sums over two-electron integrals.31,36 

𝐸0
(2)

= ∑
|〈𝑖𝑗 ∥ 𝑎𝑏〉|2

휀𝑖 + 휀𝑗 − 휀𝑎 − 휀𝑏
𝑖<𝑗,𝑎<𝑏

 
(34) 

Similarly, the first-order the wave-function Ψ0
(1)

 is written as31,36 

Ψ0
(1)

= ∑
〈𝑖𝑗 ∥ 𝑎𝑏〉

휀𝑖 + 휀𝑗 − 휀𝑎 − 휀𝑏
𝑖<𝑗,𝑎<𝑏

Φ𝑖𝑗
𝑎𝑏 

(35) 

In contrast to CC and CI-based methods, MP2 (like MPN in general) calculations are non-iterative. As 

stated by the so-called linked-cluster theorem,41 MP2 is size-consistent. It is, however, non-

variational.31,36 

MP2-based methods are very popular, in particular because of their computationally efficient 

implementation compared with other wave-function based methods.31 Procedures such as the so-
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called RI approximation,42 faster convergence in R12-MP2, and local MP2 methods43 contribute to this 

efficiency by speeding up the calculation of the two-electron four-index integrals:h 

⟨𝑎𝑏|𝑟𝑠⟩ = (𝑎𝑟|𝑏𝑠) = ∑ 𝑐𝑎𝑚
∗ 𝑐𝑏𝑛

∗ 𝑐𝑝𝑟𝑐𝑠𝑞⟨𝜑𝑚𝜑𝑛|𝜑𝑝𝜑𝑞⟩

𝑚,𝑛,𝑝,𝑞

 (36) 

RI-MP2 achieves the speedup by decreasing the individual calculation times (Eq. (36)). It should be 

noted that the RI approximation, also called the density fitting procedure,44 is similarly used in DFT 

(density functional theory) calculations with pure functionals31. The RI approximation, which was first 

employed by Feyereisen et al.,45 relies on an expansion of the product density of two atomic orbitals 

|𝜑𝑚𝜑𝑝) in an auxiliary basis set {𝜃𝑖}:44 

|𝜑𝑚𝜑𝑝) = ∑|𝜃𝑖⟩

∞

𝑖

⟨𝜃𝑖|𝜑𝑚𝜑𝑝) = ∑|𝜃𝑖⟩

∞

𝑖

𝐶𝑚𝑝
𝑖  

(37) 

Although Eq. (37) is in principle exact, the approximation results from the (in practice) finite size of the 

auxiliary basis set {𝜃1, 𝜃2, … 𝜃𝑀}. Nevertheless, according to Hättig and coworkers, the error 

introduced by the finite auxiliary basis set is about two orders of magnitude smaller than the usual 

basis set error of MP2.46 With the RI approximation, the two-electron four-index integrals (Eq. (36)) 

can be transformed into two three-index integrals and one two-index integral: 

(𝜑𝑛𝜑𝑞|𝜑𝑚𝜑𝑝) = ∑⟨𝜑𝑛𝜑𝑞|𝜃𝑗⟩⟨𝜃𝑗|𝜃𝑖⟩

𝑀

𝑖𝑗

⟨𝜃𝑖|𝜑𝑚𝜑𝑝) = ∑ 𝐶𝑛𝑞
𝑗

⟨𝜃𝑗|𝜃𝑖⟩

𝑀

𝑖𝑗

𝐶𝑚𝑝
𝑖  

(38) 

This leads to a reduction of CPU times of up to two orders of magnitude. The reduction is basis set-

dependent and becomes more significant for calculations with larger atomic basis sets {𝜑𝑖}.46  

In contrast to the RI approximation, which aims at reducing the computation times for the two-center 

four-index integrals (Eq. (36)), local MP2 methods (LMP2) and R12-MP2 seek to decrease their number.  

In fact, following the reasoning of Pulay,47 using canonical molecular orbitals in the two-electron 

integrals (Eq. (36)) is somewhat inefficient because in contrast to the rather local dynamic correlation, 

canonical molecular orbitals are delocalized over many atoms. Whenever calculating dynamic 

                                                             
h It should be kept in mind that for a system with 𝑁 basis functions, computing two-electron integrals, which is 
the bottleneck of any correlated ab initio calculation, in a procedure similar to Eq. (36) formally scales as 𝑁8. 𝑁4 
integrals in the atomic orbital basis set need to be calculated and are subsequently multiplied with 𝑁4 expansion 
coefficients of the molecular orbitals in the atomic basis set. However, the transformation from atomic to 
molecular orbitals is performed for one index at a time.31 It corresponds therefore to a series of calculations 
scaling with 𝑁5, i.e., the underlying 𝑁4 two-electron integrals in an atomic orbital basis are sequentially 
multiplied with 𝑁 expansion coefficients. The AO-to-MO transformation of the two-electron integrals determines 
the minimal scaling of all correlated wave functions. In contrast, since HF can be directly formulated in an atomic 
orbital basis, it formally scales only as 𝑁4.31,32  
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correlation, many canonical delocalized molecular orbitals need to be included, i.e., according to 

Werner, the latter “destroy the local character of dynamic correlation”.48 The key idea of all local 

correlated methods is to use localized molecular orbitals or intrinsically local atomic orbitals instead of 

canonical molecular orbitals. At a given point of any molecule, only a small number of localized orbitals, 

which does not depend on the overall system size, will contribute to the dynamic correlation. Hence, 

in principle, this allows for linear-scaling correlated MP2 methods.48,49 However, matrix equations in 

terms of the non-orthogonal local orbitals, which do not transform as the irreducible representations 

of the molecular point group symmetry, are more involved. Numerous approaches, for instance by 

Werner and coworker50,51, Schütz and coworkers,52 or by Head-Gordon and coworkers,53,54 exist to 

circumvent these problems. Notably, a variety of local coupled-cluster methods was developed as well 

for example by Neese and coworkers.55,56 They pointed out that apart from the implementation, a 

further general challenge for local correlated methods is the compulsory introduction of threshold 

values for the correlation treatment:57 to fully benefit from the reduced scaling of local methods, not 

all two-electron integrals in the local basis are included, but only those contributing more than a 

predefined energy threshold. Introducing threshold values can generally produce a number of 

problems, such as discontinuities in the course of geometry optimizations.31 

Compared with these local approaches, R12 methods intent to improve the basis set convergence of 

correlated wave functions. Due to the singularity of the electron-electron repulsion operator 1 𝑟12
⁄  at 

𝑟12 = 0, the total wave function possesses a correlation cusp at this point,58 a consequence of the 

more general Kato theorem.59 Wave functions constructed from determinants composed of one-

electron wave functions describe these Kato cusps rather poorly. It can indeed be shown that the 

overall MP2 energy converges approximately with (𝐿 + 1)−3, with 𝐿 being the highest angular 

momentum comprised in the basis set.58 Thus large basis sets are required to obtain converged 

energies with correlated methods, and a significant number of two-electron integrals must be 

calculated. It follows from Kato’s theorem that for short interelectronic distances 𝑟12, the exact wave 

function depends linearly on 𝑟12. To improve the convergence behavior of correlated wave functions, 

the interelectronic distance 𝑟12 is explicitly included in the wave function Ψ.31  

Ψ = Φ0 + ∑ 𝑐𝑎𝑏
𝑟𝑠

𝑎,𝑏,𝑟,𝑠

Φ𝑎𝑏
𝑟𝑠 + ∑ 𝑐𝑎𝑏

′ 𝑟𝑎𝑏

𝑎,𝑏

Φ0 (39) 

Please note that in the more general case, 𝑟12 is replaced by a general function of 𝑟12 often denoted 

as 𝑓12.60 R12 methods are therefore also designated as F12 methods. In combination with density 

fitting procedures, such R12-MP2 approaches become computationally feasible.61 The convergence of 

the wave function with the basis set size reduces to (𝐿 + 1)−7 so that fewer two-electron integrals 

need to be calculated.58 A number of recent investigations, for example of Wang and Hättig et al.62,63,60, 
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Hirata and coworker,64 or of Klopper and coworker,65 demonstrate the interest in the subject. There 

are naturally equivalent R12 extensions of coupled cluster theory, for instance of Hättig, Tew, and 

Köhn,66 of Noga and Tenno and coworkers,67 and of Werner and coworkers.68,69 

Yet another important extension of MP2, which improves its performance without increasing the 

computational cost, is spin-component scaling70 (SCS). The MP2 correlation energy 𝐸𝑐𝑜𝑟𝑟  (Eq. (34)) can 

be separated into contributions from same-spin electrons 𝐸𝑐𝑜𝑟𝑟
𝑠𝑠  and from opposite-spin electrons 

𝐸𝑐𝑜𝑟𝑟
𝑜𝑠 :70 

𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑐𝑜𝑟𝑟
𝑠𝑠 + 𝐸𝑐𝑜𝑟𝑟

𝑜𝑠  (40) 

𝐸𝑐𝑜𝑟𝑟
𝑠𝑠 = ∑

|〈𝑎𝑏 ∥ 𝑟𝑠〉|2

휀𝑎 + 휀𝑏 − 휀𝑠 − 휀𝑟
𝑎<𝑏,𝑟<𝑠

+ ∑
|〈�̅��̅� ∥ �̅��̅�〉|

2

휀𝑎 + 휀𝑏 − 휀𝑠 − 휀𝑟
�̅�<�̅�,�̅�<𝑠̅

 
(41) 

𝐸𝑐𝑜𝑟𝑟
𝑜𝑠 = ∑

|⟨𝑎�̅�|𝑟�̅�⟩|
2

휀𝑎 + 휀𝑏 − 휀𝑠 − 휀𝑟
𝑎,�̅�,𝑟,𝑠̅

 
(42) 

The MP2 correlation between same-spin and between opposite-spin electrons fundamentally differs. 

This results from differences between the same-spin and the opposite-spin correlation in the zeroth-

order wave function, i.e., in the HF determinant. The biased description of correlation phenomena in 

the HF determinant can be only incompletely compensated in the subsequent perturbation treatment. 

Same-spin electrons are - due to the inclusion of the Pauli repulsion in a Slater determinant - already 

correlated in HF. Average distances between same-spin electrons are thus large. Therefore the 

electrons interact mainly via static (long-range) correlation. In contrast, opposite-spin electrons are 

not correlated on the HF level of theory. Their average interelectronic distances are thus smaller and 

can become zero. As a consequence, they interact mainly via short-range (dynamic) correlation, which 

is, due to the biased HF determinant, also underestimated in the subsequent MP2 treatment.70 

Grimme et al. were indeed able to demonstrate the correspondence of same-spin/static correlation 

and of opposite-spin/dynamic correlation by comparing the ratio 
𝐸𝑐𝑜𝑟𝑟

𝑜𝑠

𝐸𝑐𝑜𝑟𝑟
𝑠𝑠⁄  on the one hand to the 

D1-diagnostic in CCSD and on the other hand to the contribution of the triples correction in CCSD(T).43 

The key idea of SCS is thus to correct the imbalanced correlation treatment in MP2 by scaling up the 

opposite-spin and scaling down the same-spin correlation (empirical parameters: 𝑐𝑜𝑠 = 6 5⁄ , 𝑐𝑠𝑠 =

1 3⁄ ):70 

𝐸𝑐𝑜𝑟𝑟 = 𝑐𝑠𝑠𝐸𝑐𝑜𝑟𝑟
𝑠𝑠 + 𝑐𝑜𝑠𝐸𝑐𝑜𝑟𝑟

𝑜𝑠  (43) 

The SCS correction was shown to significantly improve the MP2 prediction of reaction energies,70 

geometries,71 and non-covalent interactions72.43 The latter observation has furthermore channeled the 
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development of several SCS parameterizations specific for non-covalent interactions.73,74,75,76 However, 

it is important to note that the good performance of the different SCS-MP2 variants for weak 

intermolecular interactions, most notably for dispersion, relies on an advantageous error 

compensation.43 Head-Gordon and coworkers pointed out that for large distances between non-

covalently bound subsystems, the spin dependence of the correlation vanishes, and both coefficients 

must add up to 2 (𝑐𝑠𝑠 + 𝑐𝑜𝑠 = 2). This is not the case for the standard parameters, which corresponds 

to a first error of SCS-MP2. Head-Gordon and coworkers enforced the condition 𝑐𝑠𝑠 + 𝑐𝑜𝑠 = 2 by 

scaling the coefficients with a standard range-separation operator.77 They obtained, however, 

deteriorated results for non-covalent interactions. In fact, eliminating the error of the scaling 

coefficients sheds light on the intrinsic incapability of MP2 to correctly describe dispersion, the second 

important error of SCS-MP2. According to an analysis of Cybulski and coworker, the so-called 

uncoupled HF dispersion energy including effects like charge penetration and higher-rank 

polarizabilities explains why MP2 usually overshoots for dispersion energies.78   

Head-Gordon and coworkers proposed a simplified version of SCS, called spin-opposite scaling (SOS). 

It corresponds to considering only the opposite-spin correlation, i.e., the coefficient of the same-spin 

correlation is set to zero. This can be justified by the fact that the same-spin correlation, anyway 

considerably smaller than the opposite-spin correlation, is further downscaled in an SCS treatment. 

Neglecting it completely constitutes only a minor further approximation, which is also reflected in the 

satisfying accuracy of SOS-MP2.79 More importantly, however, neglecting the same-spin correlation 

results in entirely local correlation (Eq. (34)), i.e., the MP2 correlation consists of local Coulomb 

integrals only. SOS-MP2 scales thus as 𝑁4. It is therefore, as stated by Head-Gordon, “an economical 

electronic structure method”.79  

3.1.4 Multi-reference correlated ab initio methods31  
Especially MP2 and coupled-cluster approaches yield very accurate results as long as the underlying 

reference HF determinant provides an adequate first-order description of a system’s electronic 

structure. Only then, converged values for the correlation energy in a subsequent perturbation/cluster 

expansion can be obtained.80 However, a single HF determinant is not always a good first-order 

approximation, e.g., the description becomes unsuitable for near-degeneracies.31 Such systems, where 

a single Slater determinant composed of one-electron wave functions is a poor approximation, are also 

designated as strongly-correlated systems81,82 or as systems with multireference character.31 The latter 

term already implies that a single HF reference cannot capture the electronic character of the systems 

in a qualitatively correct way. Instead, the first-order wave function of such systems can be either 

expressed as a single Slater determinant constructed from two-electron wave functions (Cooper pairs83 

or geminals)82 or as a linear combination of multiple Slater determinants constructed from one-
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electron wave functions (orbitals). In view of the simplicity of a single-determinant wave function, the 

former has recently attracted some research interest.82,84,80 Nevertheless, the second orbital-based 

approach is much more common and well-established. Instead of a single HF determinant, a linear 

combination of determinants is employed as the reference. The most straightforward way to select 

these determinants is to define a certain number of “active orbitals” among which all possible 

configuration state functions are created (CSFs).85 This corresponds to the CASSCF method (complete 

active space self-consistent field). The linear combination of the CSFs forms the reference wave 

function. Both the orbitals, i.e, the coefficients of the molecular orbitals in the atomic orbital basis, and 

the coefficients of the determinants are optimized in the SCF procedure. This explains the significant 

computational effort involved in CASSCF calculations.31 It limits the size of the active space to 14 to 16 

orbitals and has led to the development of a number of algorithms such as the super-CI approach86 to 

compute CASSCF wave functions as efficiently as possible.87 RASSCF (restricted active space self-

consistent field), an extension of CASSCF, allows for larger active spaces by introducing a division of 

the active space into three subspaces. While all possible CSFs are created in the center subspace, only 

CSFs with a predefined maximum number of electrons in the upper subspace and a given maximal 

amount of holes in the lower subspace are included in the ansatz of the RASSCF wave function.88 Similar 

to CI calculations, CASSCF/RASSCF wave functions are obtained as the lowest roots of the CI matrix 

using a procedure analogous to the Davidson algorithm. If several roots are calculated, for instance to 

calculate excitation energies, state-averaged calculations are often performed, i.e., the same set of 

orbitals is used in all roots.89 The orbitals are constructed by averaging the density matrix of the single 

CASSCF wave functions.90 State-averaging has the advantage that resulting CASSCF states are 

orthogonal. Similar to the single HF determinant, the multi-determinant CASSCF wave function is the 

starting point, i.e., the reference, to subsequently take into account dynamic correlation by including 

some of its excited states. Although MRCI (multireference CI) is perhaps the most obvious choice, the 

selection of the excited CASSCF configurations for the CI treatment is not straightforward, and it is 

subject to severe computational limits. Meanwhile, a perturbative inclusion of dynamic correlation in 

CASSCF wave functions has become common practice. The main problem of the perturbative approach 

consists in its practical implementation. By reformulating the definition of the zeroth-order Møller-

Plesset perturbation operator, Roos and coworkers91,92 established the CASPT2 method that adds a 

perturbation correction to the CASSCF wave function. Some problems of CASPT2 are known, most 

notably valence-Rydberg mixing and the failure of CASPT2 for the vicinity of avoided crossings. To 

eliminate this deficiency, Roos and coworkers furthermore developed the multistate (MS) CASPT2 

approaches. An effective Hamiltonian is perturbatively calculated from the state-averaged CASSCF 

wave functions and diagonalized to obtain final MS-CASPT2 energies.93 Further modifications of the 

original CASPT2 method comprise the IPEA shift, which shifts all active orbitals by a slightly modified 
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zeroth-order Hamiltonian,94 and a shift in the energy denominator of the perturbatively included 

excited states. This shift essentially removes the intruder states’ problem of CASPT2.95,96 

3.1.5 Ground-State Density Functional Theory (DFT)97 

3.1.5.1 The Hohenberg-Kohn theorem and the Kohn-Sham formalism 

The Hohenberg-Kohn theorem 

In contrast to wave-function based approaches, density functional theory (DFT)98 uses the only three-

dimensional electron density instead of a multidimensional wave function to describe a molecule’s 

electronic structure. Using only the density is possible due to the first Hohenberg-Kohn theorem,98 

which states that the ground-state energy 𝐸0 (like any other ground-state property) is a unique 

functional of the ground-state density 𝜌0. In other words, since the ground-state energy is defined by 

the Hamiltonian of the system (Eq. (10)) that contains the external potential �̂�𝑁𝑒 as the only system-

specific part, there is a one-to-one correspondence between the external potential and the electronic 

ground-state density.97  

𝜌0(𝑟) ↔ Ψ0({𝑟𝑖}) ↔ 𝐸0[𝜌0(𝑟)] ↔ �̂�𝑁𝑒(𝑟) (44) 

The theorem is based on a proof via reductio ad absurdum.i In this form (Eq. (44)), the first Hohenberg-

Kohn theorem is often considered as a sheer “existence theorem”,32 i.e., it proves only the existence 

of an energy density functional 𝐸0[𝜌0(𝑟)] without further specifications about the calculation of the 

density. However, it implicitly contains more information. The ground-state wave function Ψ0({𝑟𝑖}) 

does not only correspond the ground-state density 𝜌0(𝑟), but according to the variational principle, it 

directly relates 𝜌0(𝑟) also to the minimal ground-state energy 𝐸0[𝜌0(𝑟)].97 

𝐸0[𝜌0(𝑟)] = min
Ψ⟶𝜌0

⟨Ψ|�̂�|Ψ⟩ (45) 

This follows from Eq. (44) because if 𝜌 in the more general Eq. (46) is not the ground-state density 𝜌0, 

the resulting wave function Ψ differs from Ψ0 due to the one-to-one correspondence between the 

density and the wave function (Eq. (44)). The energy of Ψ is consequently not the minimal ground-

state energy 𝐸0.99 

𝐸[𝜌(𝑟)] = min
Ψ⟶𝜌

⟨Ψ|�̂�|Ψ⟩ (46) 

This outlines what is often called the second Hohenberg-Kohn theorem: the ground-state density 

minimizes the energy functional according to the variational principle.32 

                                                             
i It is assumed in a first step that two different Hamiltonians H and H‘ yield the same density. However, since 
different wave functions Ψ and Ψ’ are obtained from different Hamiltonians, this results in a contradiction.31  
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𝐸[𝜌(𝑟)] ≥ 𝐸0[𝜌0(𝑟)] (47) 

Equivalently, in a two-step procedure proposed by Levy100 and summarized by Burke and coworker,101 

the ground-state energy of a system 𝐸0 is calculated by minimizing a universal functional 𝐹[𝜌] over all 

wave functions with a given density (Eq. (48)) and subsequently minimizing over all densities (Eq. (49)): 

𝐹[𝜌] = min
Ψ→𝜌

⟨Ψ|�̂� + �̂�𝑒𝑒|Ψ⟩ (48) 

𝐸0[𝜌0] = min
𝜌→𝜌0

{𝐹[𝜌] + ∫ 𝑑𝑟�̂�𝑁𝑒(𝑟)𝜌(𝑟)} 
(49) 

Thus, according to the Hohenberg-Kohn theorem, (1) the energy is a unique functional of the density 

(Eq. (49), equivalent to Eq. (44)), (2) 𝐹[𝜌] is a universal functional (i.e., only the external potential is 

non-universal99), and (3) the ground-state density 𝜌0 satisfies (equivalent to Eq. (47))101 

𝜕𝐹[𝜌]

𝜕𝜌0(𝑟)
= −�̂�𝑁𝑒(𝑟) 

(50) 

It should be noted that while the proof of the Hohenberg-Kohn theorem via reductio ad absurdum 

excludes that two different external potentials yield the same density, it does not consider the case 

that no external potential exists to generate a given density. This problem is called the v-

representability. Similarly, the Hohenberg-Kohn theorem presupposes that any density can be 

expressed as a wave function, i.e, it assumes N-representability.99 While the latter seems to be 

guaranteed,102,103 the question of the v-representability is more involved.99,104 However, Levy100 and 

Lieb105 independently outlined a constrained-search proof of the Hohenberg-Kohn theorem without 

presupposing v-representability.  

The exchange-correlation energy 

The universal functional 𝐹[𝜌] is often represented as a sum of three terms, the kinetic energy 

functional 𝑇[𝜌], the Coulomb repulsion energy 𝐽[𝜌], and the exchange-correlation energy 𝐸𝑥𝑐
(𝑐)[𝜌].106 

𝐹[𝜌] = 𝑇[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐
(𝑐)[𝜌] (51) 

The functional form of 𝐽[𝜌] is known (Eq. (52)), and 𝐸𝑥𝑐
(𝑐)[𝜌] absorbs the remaining parts of the 

electron-electron interaction, i.e., exchange and correlation. Scuseria et al. designate 𝐸𝑥𝑐
(𝑐)[𝜌] as the 

"conventional" exchange-correlation energy because it is similarly defined to exchange and correlation 

in wave-function based methods.106 

𝐽[𝜌] =
1

2
∫

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
 

(52) 
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The universal functional 𝐹[𝜌] (Eq. (48), (49), (51)) is complicated and not known (except for 𝐽[𝜌], Eq. 

(52)).j,31 It is therefore advantageous to reintroduce orbitals, as suggested by Kohn and Sham in 

1965.107 They imagined a fictitious reference system of non-interacting electrons having the same 

density as the real system. This can be expressed by introducing a parameter 𝜆 into Eq. (48) that 

continuously increases its value from 𝜆 = 0, the non-interacting reference system, to 𝜆 = 1, the real 

system.106  

𝐹𝜆[𝜌] = min
Ψ→𝜌

⟨Ψ𝜆|�̂� + 𝜆�̂�𝑒𝑒|Ψ𝜆⟩ (53) 

For all values of 𝜆, the external potential �̂�𝑁𝑒(𝑟) is adapted so that the density is constant, i.e., 

�̂�𝑁𝑒(𝑟)(𝜆). This implies that the external potential of the non-interacting reference system 𝑣𝑆(𝑟) (𝜆 =

0) is not equal to the �̂�𝑁𝑒(𝑟) of the true, interacting system (𝜆 = 1).31 The exact wave function of the 

non-interacting reference system (𝜆 = 0) would be a Slater determinant Φ𝑆 with the kinetic energy 𝑇𝑆 

calculated from the orbitals (see Eq. (13)). It follows furthermore from Eq. (53) that the universal 

functional of the non-interacting reference system 𝐹𝑆[𝜌] consists only of this orbital-kinetic energy 

term (𝜆 = 0).106 

In the Kohn-Sham approach, the kinetic energy of the non-interacting reference system 𝑇𝑆 is used to 

calculate the universal functional of the real system 𝐹[𝜌]. 𝐹[𝜌] is thus expressed as the sum of the 

orbital-kinetic energy 𝑇𝑆[𝜌], the Coulomb repulsion energy 𝐽[𝜌], and the DFT exchange-correlation 

energy 𝐸𝑥𝑐[𝜌].106,101 

𝐹[𝜌] = 𝑇𝑆[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] (54) 

Compared with Eq. (51), an expression for 𝑇𝑆[𝜌], a large part of the universal function (Eq. (54)), is 

available (as a function of the orbitals). Eq. (54) defines the DFT exchange-correlation energy (see also 

Eq. (51)), which can be expressed as106,101 

𝐸𝑥𝑐[𝜌] = 𝑇[𝜌] − 𝑇𝑆[𝜌] + 𝐸𝑥𝑐
(𝑐)[𝜌] (55) 

Thus the DFT exchange-correlation energy contains in addition to the contributions of the 

“conventional exchange-correlation energy” a kinetic-energy correction.31 

It follows from Eq. (54) that the Kohn-Sham energy is calculated from the kinetic energy 𝑇𝑆[𝜌], the 

nuclei-electron 𝑉𝑁𝑒[𝜌] and the classical electron-electron interaction/Coulomb repulsion energy 𝐽[𝜌], 

                                                             
j Additionally, orbital-free approximations to the kinetic energy functional based on the Thomas-Fermi1009,1010 
model yield very poor results.   
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all of which can be exactly calculated for a Slater determinant, and the introduced DFT exchange-

correlation energy 𝐸𝑥𝑐[𝜌].101 

𝐸0[𝜌] = 𝑇𝑆[𝜌] + 𝑉𝑁𝑒[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] (56) 

A more intuitive expression for the exchange-correlation energy (than Eq. (55)) can be derived from 

Eq. (53)106 and the Hellmann-Feynman theorem.31  

𝜕𝐹𝜆[𝜌]

𝜕𝜆
= ⟨Ψ𝜆|�̂�𝑒𝑒|Ψ𝜆⟩ 

(57) 

“Adiabatic integration” of Eq. (57) yields the adiabatic connection formula (Eq. (59)).108,109,110 

∫ 𝑑𝜆

𝜆=1

𝜆=0

𝜕𝐹𝜆[𝜌]

𝜕𝜆
= 𝐹[𝜌] − 𝐹𝑆[𝜌] = 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] 

(58) 

𝐸𝑥𝑐[𝜌] = ∫ 𝑑𝜆⟨Ψ𝜆|�̂�𝑒𝑒|Ψ𝜆⟩

𝜆=1

𝜆=0

− 𝐽[𝜌] 

(59) 

The adiabatic connection formula is commonly expressed as a function of the exchange-correlation 

hole ℎ𝑥𝑐(𝑟1, 𝑟2).31 The exchange-correlation hole, also written as the sum of an exchange ℎ𝑥(𝑟1, 𝑟2) 

and a correlation hole ℎ𝑐(𝑟1, 𝑟2), is the decrease of the probability to find electron 2 at 𝑟2 if electron 1 

is at 𝑟1, i.e., it corresponds to the (normalized) reduction of the pair density  𝜌(𝑟1, 𝑟2) compared with 

the uncorrelated product density 𝜌(𝑟1)𝜌(𝑟2). 

ℎ𝑥𝑐(𝑟1, 𝑟2) =
𝜌(𝑟1, 𝑟2)

𝜌(𝑟1)
− 𝜌(𝑟2) 

(60) 

Thus it follows from Eq. (59) 

𝐸𝑥𝑐[𝜌] = ∫ 𝑑𝜆 ∫ ∫ 𝑑𝑟1𝑑𝑟2

𝜌𝜆(𝑟1, 𝑟2)

𝑟12

𝜆=1

𝜆=0

−
1

2
∫ ∫ 𝑑𝑟1𝑑𝑟2

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
 

(61) 

𝐸𝑥𝑐[𝜌] =
1

2
∫ 𝑑𝜆 ∫ ∫ 𝑑𝑟1𝑑𝑟2

𝜌(𝑟1)ℎ𝜆
𝑥𝑐(𝑟1, 𝑟2)

𝑟12

𝜆=1

𝜆=0

 

(62) 

Along the adiabatic integration, the density 𝜌(𝑟1) is constant, thus it does not depend on 𝜆.106 Eq. (62) 

is a starting point for many derivations of exchange-correlation functionals.106 

To arrive at the working equations of Kohn-Sham DFT (KS-DFT), the exchange-correlation potential 

𝑣𝑥𝑐(𝑟) as the functional derivative of the exchange-correlation energy with respect to the density is 

defined. 
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𝑣𝑥𝑐(𝑟) =
𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌(𝑟)
 

(63) 

With this exchange-correlation potential (Eq. (63)), the external potential of a single electron 𝑣𝑁𝑒(𝑟) 

(Eq. (65)) and the Hartree potential 𝑣𝑒𝑒(𝑟) (Eq. (66)), an effective one-particle equation is obtained (in 

a procedure similar to HF, i.e., by minimizing the expectation value of the energy functional, Eq. (56), 

as a function of orbital variations) to calculate the Kohn-Sham orbitals {𝜒𝑖(𝑟)} that minimize the energy 

expectation value of Eq. (56), i.e., that define the Kohn-Sham determinant Φ𝐾𝑆 with the lowest 

energy.k,106  

(−
1

2
Δ + 𝑣𝑥𝑐(𝑟) + 𝑣𝑁𝑒(𝑟) + 𝑣𝑒𝑒(𝑟)) 𝜒𝑖(𝑟) = 휀𝑖𝜒𝑖(𝑟) 

(64) 

𝑣𝑁𝑒(𝑟) = − ∑
𝑍𝐴

|�⃗⃗�𝐴 − 𝑟|

𝑛𝑢𝑐𝑙𝑒𝑖

𝐴=1

 
(65) 

𝑣𝑒𝑒(𝑟) = ∫ 𝑑𝑟′
𝜌(𝑟′)

|𝑟′ − 𝑟|
 

(66) 

Since the density and the orbitals of the true and the reference system are equal, Eq. (64) defines the 

external potential of the non-interacting reference system as 𝑣𝑆 = 𝑣𝑥𝑐(𝑟) + 𝑣𝑁𝑒(𝑟) + 𝑣𝑒𝑒(𝑟). This 

potential of the non-interacting reference system in conventional Kohn-Sham was originally entirely 

local. The ansatz for the calculation of the density in Eq. (64) is in principle exact. However, the exact 

form of the exchange-correlation functional (Eq. (55)) is not known, and it must be approximated.101 

Developing improved approximations is the key challenge of KS-DFT. As stated by Cohen, “all of the 

complexity [of DFT] is hidden in one term, the exchange-correlation functional. This term holds the key 

to the success or failure of DFT”.111 In fact, already rather simple approximate versions for the 

exchange-correlation functional perform quite well.111 This results from the fact that the corrections 

subsumed in the exchange-correlation energy (Eq. (55)) are small – as mentioned, they consist in the 

conventional exchange-correlation energy 𝐸𝑥𝑐
(𝑐)[𝜌] and an additional correlation correction of the 

kinetic energy 𝑇 − 𝑇𝑆.106  

To derive functional forms for 𝐸𝑥𝑐[𝜌], it is common practice to divide the exchange-correlation 

functional 𝐸𝑥𝑐[𝜌] into an exchange 𝐸𝑥[𝜌] and a correlation part 𝐸𝑐[𝜌].31  

𝐸𝑥𝑐[𝜌] = 𝐸𝑥[𝜌] + 𝐸𝑐[𝜌] (67) 

                                                             
k All DFT equations are usually formulated for spin densities. For clarity, the spin suffixes are neglected in this 
section. 
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It follows from Eq. (59) that the sum of these parts corresponds to the difference between the exact 

electron-electron interaction ⟨Ψ0|�̂�𝑒𝑒|Ψ0⟩ and the Coulomb repulsion energy 𝐽[𝜌]. Formally, this 

difference can be further subdivided because the exchange energy is defined as the energy 

difference106 

𝐸𝑥[𝜌] = ⟨Φ𝐾𝑆|�̂�𝑒𝑒|Φ𝐾𝑆⟩ − 𝐽[𝜌] (68) 

As a consequence, the remaining energy difference to the exact electron-electron interaction is 

considered as the correlation energyl.106 

𝐸𝑐[𝜌] = ⟨Ψ0|�̂�𝑒𝑒|Ψ0⟩ − ⟨Φ𝐾𝑆|�̂�𝑒𝑒|Φ𝐾𝑆⟩ (69) 

Whereas Eq. (68) looks equivalent to the definition of the (exact) HF exchange, it should be kept in 

mind that KS and HF orbitals are not equal. In fact, Baerends and coworkers could show for diatomic 

molecules that using KS instead of HF orbitals produces pronounced differences in the individual 

energy contributions to the determinantal energy expectation value.112 Hence, generally  𝐸𝑥
𝑒𝑥𝑎𝑐𝑡[𝜌] ≠

𝐸𝑥
𝐻𝐹[𝜌].106 This results also from the different characters of the underlying holes. Since the exchange 

hole in HF is highly nonlocal, the correlation hole, nonlocal as well, needs to compensate to a large 

extent this nonlocal character. In contrast, DFT exchange and correlation holes can be in principle local 

because KS-DFT only aims at reproducing the sum of the exchange and correlation energy correctly.31,97  

Although the exact exchange-correlation functional is not known, a number of properties exist that it 

should fulfill.113 Many of them are intimately related to the exchange-correlation hole,31 and it was 

shown that their importance differs.114 Most notably, the exact exchange-correlation functional must 

be self-interaction free. This requires for the exchange and the correlation energy of a one-electron 

system106 

𝐸𝑐[𝜌] = 0 (70) 

𝐸𝑥[𝜌] + 𝐽[𝜌] = 0 (71) 

While the formulation of equivalent conditions for many-electron systems is more involved, analogies 

exist.111,115,116 In Hartree-Fock, the exchange interaction in a one-electron system elegantly cancels the 

non-physical Coulomb self-repulsion of the single electron (Eq. (71)).31  

Furthermore, upper and lower bounds exist for the exchange-correlation energies, for instance the 

Lieb-Oxford condition117.31,106 Levy et al. derived numerous conditions on coordinate scaling 

                                                             
l The additional correction for the kinetic energy is then included in the correlation energy. 
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transformations of the density.118,119,120,121,122,123,124 Upon coordinate transformation with a linear 

scaling parameter 𝛾, the density expands or contracts while preserving its normalization.106 

𝜌(𝑟) = 𝛾3𝜌(𝛾𝑟) (72) 

From this so-called uniform scaling of the density (Eq. (72)), some restrictions for the scaling behavior 

of the exchange and correlation energy result.106 For instance, the exchange energy depends linearly 

on the scaling parameter (Eq. (73)) whereas the correlation energy must be finite also for infinitely 

contracted densities, i.e., for infinite scaling parameters (Eq. (74)).31 

𝐸𝑥[𝜌𝛾] = 𝛾𝐸𝑥[𝜌] (73) 

lim
𝛾→∞

𝐸𝑐[𝜌𝛾] > −∞ (74) 

Yet another group of restrictions concerns the limiting case of the uniform electron gas. For uniform 

electron densities, the exchange-correlation functional should reduce to the expression for the 

uniform electron gas, i.e., the local density approximation (LDA).106 

𝐸𝑥𝑐[𝜌] = 𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] (75) 

Functional development: models for the exchange-correlation energy 

Among others with regard to these constraints, Scuseria et al. outlined in a recent review six different 

strategies frequently employed to design density functional approximations (DFAs), i.e. to devise 

improved exchange-correlation functionals.106 Some of them are derived from expressions used to 

describe the inhomogeneous electron gas.31 The classification was in fact readily adopted also by 

Truhlar et al.125 Namely, the strategies of Scuseria et al.106 include (1) the LDA, (2) the density-gradient 

expansion, (3) constraint satisfaction, (4) modeling the exchange-correlation hole, (5) empirical fits and 

(6) mixing exact and approximate exchange. Most functionals are constructed employing a 

combination of these strategies.106 

In contrast to wave-function based methods, a systematic improvement of DFT results, for example 

via the inclusion of more higher-order excitations, is not possible. However, the plethora of exchange-

correlation functionals developed with the strategies of Scuseria et al. differ in terms of the quantities 

used to calculate the exchange-correlation energy.106 This results in Perdew’s famous “Jacob’s ladder” 

of DFAs.126 Usually, results of a lower-rung functional improve if a higher-rung functional is used. The 

rungs of the Jacob’s ladder are (1) LDA functionals, (2), GGA (generalized gradient approximation) 

functionals, (3) meta-GGA functionals (additionally including the second derivative of the density ∇2𝜌 
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or the Weizsäcker kinetic energy 𝜏𝑊),31 (4) hybrid functionalsm (including exact exchange), and (5) 

double-hybrid functionals, including exact exchange and MP2-type correlation. Particularly the hybrid 

functionals can be further differentiated. “Conventional” hybrid functionals with a fixed amount of 

exact exchange are also called global hybrids.127 If the fraction of exact exchange 𝑎𝑥,𝐻𝐹(�⃗⃗�) comprised 

in a hybrid functional is position-dependent, so-called „local hybrids“ result.128 Long-range corrected 

functionals form another subgroup of hybrids.129 Instead of a position-dependent Hartree-Fock 

coefficient, a range-separated Coulomb operator 𝑟12
−1 including a range separation parameter 𝜔 is used 

for the calculation of exchange130, i.e., the amount of exact exchange is not determined by the position, 

but by the interelectronic distance.  

1

𝑟12
=

1 − 𝑒𝑟𝑓(𝜔𝑟12)

𝑟12
+

𝑒𝑟𝑓(𝜔𝑟12)

𝑟12
 

 (76) 

The range separation of the Coulomb operator was originally proposed by Savin et al.131 for the 

purpose of combining long-range configuration interaction with short-range DFT. Hirao and coworkers 

adapted it to a GGA functional in order to obtain a range-separated exchange energy with short-range 

DFT exchange and long-range exact exchange.132 A more general expression was introduced by Yanai 

et al.133 where a fixed amount 𝛼 of exact exchange is also included in the short-range limit. The amount 

of HF exchange rises to 𝛼 + 𝛽 in the long-range limit. This defines so called range-separated hybrids. 

For 𝛼 = 0, 𝛽 = 1, standard long-range corrected functionals result.  

1

𝑟12
=

1 − [𝛼 + 𝛽 ∙ 𝑒𝑟𝑓(𝜔𝑟12)]

𝑟12
+

𝛼 + 𝛽 ∙ 𝑒𝑟𝑓(𝜔𝑟12)

𝑟12
 

 (77) 

Double-hybrid functionals are not included among the strategies of Scuseria et al. They are rather 

recent, although modern double hybrids are based on the Görling-Levy perturbation theory 

(GLPT),134,135 an extension of DFT that basically converges with wave-function type perturbation 

theory. In contrast to GLPT, however, KS orbitals of modern double-hybrid functionals are self-

consistently solved only for the underlying hybrid functional. In a non-iterative subsequent step, MP2-

type correlation is calculated and replaces some of the underlying GGA correlation. The KS orbitals do 

not depend on the MP2 correlation.136 This considerably increases the accuracy and computational 

efficiency of the approach.136,137 Double-hybrid functionals are motivated by the idea that not only the 

exchange energy is non-local, a fact recognized when designing hybrid functionals where the exchange 

hole acquires non-local character, but also the correlation energy includes non-local components 

(static correlation,136 medium- to long-range correlation).138  

                                                             
m For a conceptual discussion of hybrids see below. Hybrid functionals result in non-local Kohn-Sham potentials 
because they include a fraction of exact exchange. 
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3.1.5.2 Dispersion in DFT 

Long-range correlation phenomena are also important to correctly assess dispersion interactions (see 

MP2 discussion above). Although an improved description of dispersion by double hybrid functionals 

could be expected,136 dispersion interactions are usually already incorporated via damped interatomic 

potentials of type 𝐶6𝑅−6 into DFAs, yielding very accurate results.139 The currently most popular 

dispersion correction is Grimme’s D3 correction,140 replacing the former D1141 and D2142 versions. The 

dispersion energy 𝐸𝑑𝑖𝑠𝑝 is calculated between all atom pairs 𝐴, 𝐵 using pairwise dispersion coefficients 

𝐶𝑛
𝐴𝐵  (Eq. (78)) and cutoff distances 𝑅0

𝐴𝐵  (Eq. (79)).140   

𝐸𝑑𝑖𝑠𝑝 = ∑ ∑ 𝑠𝑛

𝐶𝑛
𝐴𝐵

𝑟𝐴𝐵
𝑛

𝑛=6,8𝐴𝐵

𝑓𝑑,𝑛(𝑟𝐴𝐵) 
(78) 

𝑟𝐴𝐵
𝑛  is the distance between the atoms. 𝑠𝑛 is a scaling coefficient that is set to 1 for 𝑛 = 6 for all 

functionals except for the double-hybrid functionals, which already include a part of the long-range 

correlation needed to describe dispersion. The 𝑅−8-term is short-range, lying on the same scale as the 

medium-range correlation of the functionals. To avoid double-counting the medium-range correlation, 

𝑠8 is individually adjusted for all functionals. 𝑓𝑑,𝑛(𝑟𝐴𝐵) is a damping function proposed by Head-Gordon 

and Chai143 that prevents singularities of the dispersion energy expression for short interatomic 

distances.  

𝑓𝑑,𝑛(𝑟𝐴𝐵) =
1

1 + 6 (𝑟𝐴𝐵/(𝑠𝑟,𝑛𝑅0
𝐴𝐵))

−𝛼𝑛
 

(79) 

𝑠𝑟,𝑛 is an order-dependent scaling factor that is computed for each functional for 𝑛 = 6, while left 

unscaled for 𝑛 = 8. 𝛼𝑛 determines the “steepness”140 of the damping; it is adjusted manually.140 In 

contrast to the earlier versions, the D3 version relies on parameters mostly obtained from first principle 

calculations. Moreover, dispersion coefficients are specifically adapted to the coordination number of 

an atom.140 However, as equally outlined by Grimme et al., a major disadvantage of a dispersion 

correction like Eq. (78) is that it does not depend on the electron density, ultimately limiting the highest 

achievable accuracy.140 Nevertheless, the error of the underlying DFT calculation should be certainly 

larger.140 

3.1.5.3 Deficiencies of Ground-State DFT 

Indeed, despite its success, ground-state DFT calculations suffer from a number of known 

deficiencies.144 This includes particularly underestimated reaction barriers, overestimated binding 

energies for charge-transfer complexes, wrong ionization potentials and electron affinities, and a poor 

description of the breaking of chemical bonds and of strongly correlated systems.111 All of these errors 

result from two recurrent errors of the approximate exchange-correlation functionals: the 



28 
 

delocalization error and the static correlation error.111 While the first arises from the Coulomb 

repulsion energy that separates electrons too much, the second corresponds to the difficulty of 

describing degenerate states with the electron density. The delocalization and static correlation errors 

can be understood in terms of fractional charges and fractional spins, respectively.111 

Compared with the delocalization error, the static correlation error is less known although static 

correlation is omnipresent. It relies on another constraint that the exact functional must satisfy, the 

so-called constancy condition. In strongly-correlated systems, such as a dissociating hydrogen 

molecule, fractional spin states arise in closed-shell DFT calculations145 (such as half a hydrogen 

molecule, the hydrogen atom, with half a spin-up electron and half a spin-down electron111). These 

fractional spin states should be isoenergetic with the regular ground state with normal spin (two 

hydrogen atoms). While the energy of the exact functional for the fractional spin states is a constant 

and equal to the energy of the degenerate ground state (two hydrogen atoms at the dissociation limit 

of the hydrogen molecule), energies of approximate functionals do not fulfill this constancy 

condition.145 This corresponds to the static correlation error.111 

The delocalization error of DFT, i.e., the artificial spreading of electron density due to the self-

interaction error,111 is more frequently addressed and becomes evident from a DFT treatment 

including fractional charges. Perdew and coworkers extended the Hohenberg-Kohn theorem to partial 

charges by considering statistical averages of systems with different numbers of electrons. They 

outlined that the energy of the exact functional as a function of the (continuous) electronic charge 

must correspond to a series of straight lines with slope discontinuities at each integer.146 For an N-

electron system, the segments (N-1, N) and (N, N+1) have by definition slopes of EA (electron affinity) 

and IP (ionization potential). The discontinuities are thus physically reasonable because the ionization 

potential and electron affinity are not equal.147 Moreover, from the asymptotic decay of the densities 

of finite systems, Almbladh and Barth were able to prove a version of Koopman’s theorem for DFT.n It 

associates the HOMO energy 휀𝐻𝑂𝑀𝑂  with the ionization potential.148 

휀𝐻𝑂𝑀𝑂 = −𝐼𝑃 (80) 

As a consequence, the slope of the (N-1,N) segment corresponds to the HOMO energy. Thus, Janak’s 

theorem is fulfilled “when approaching the integer from below”o.147 In fact, Janak’s theorem149 states 

                                                             
n It should be noted that as demonstrated by Baerends and coworkers, the slopes of all straight-line segments, 
the orbital energies, can be interpreted as approximate ionization potentials.1011 
o As outlined by Kronik et al.,147 this is automatically ensured by the choice of the reference point for the Kohn-
Sham potential. 
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that the eigenvalues of occupied Kohn-Sham orbitals {휀𝑖} are obtained as the derivatives of the total 

energy with respect to the occupation numbers 𝑛𝑖. 

𝜕𝐸

𝜕𝑛𝑖
= 휀𝑖 

(81) 

Yet, Janak’s theorem holds only for occupied orbitals, and the discontinuity at the integer N has 

important implications for the interpretation of the LUMO energy, a virtual orbital, and it is related to 

the delocalization error. It follows from the KS energy expression (Eq. (56)) that the discontinuity can 

only arise from either the kinetic energy or the exchange-correlation energy since the Coulomb energy 

and the external potential energy vary continuously with the density. As outlined by Kronik et al.,147 a 

discontinuous exchange-correlation energy implies that a discontinuity ∆𝑥𝑐  exists for the exchange-

correlation potential, usually called the derivative discontinuity. Indeed, exchange-correlation holes 

and potentials obtained from high-level ab initio calculations150,151 indicated that values of ∆𝑥𝑐 can be 

quite significant.  

Applying Eq. (80) to the N+1 system, neglecting nuclear relaxation effects for the electron affinity and 

recognizing 𝐻𝑂𝑀𝑂(𝑁 + 𝛿) = 𝐿𝑈𝑀𝑂(𝑁 − 𝛿), the slope of the (N,N+1) segment corresponds to147 

휀𝐻𝑂𝑀𝑂(𝑁 + 1 − 𝛿) = −𝐴 = 휀𝐻𝑂𝑀𝑂(𝑁 + 𝛿) = 휀𝐿𝑈𝑀𝑂(𝑁 − 𝛿) + ∆𝑥𝑐  (82) 

The exact exchange-correlation functional satisfies Eq. (80) and (82). This necessarily implies that if the 

HOMO energy corresponds to the ionization potential, the LUMO does cot correspond to the electron 

affinity due to the derivative discontinuity even in exact KS-DFT.147 Moreover, as only the (continuous) 

density and its derivative are used to compute the exchange-correlation energy in LDA and GGA 

functionals, they intrinsically cannot reproduce the derivative discontinuity (unless the discontinuity is 

completely absorbed into the kinetic energy term, which is not the case).147 Their energy as a functional 

of fractional charges is thus not a series of straight lines and slope discontinuities, but rather takes on 

a convex curvature.111 The curvature results because LDA or GGA functionals average over the 

derivative discontinuity. Consequently, as stated by Kronik et al., ionization potentials resulting from 

the orbital energies are underestimated by about ~
∆𝑥𝑐

2⁄  , while electron affinities are overestimated 

by approximately the same amount.147 In general, a convex curvature of the energy dependence on 

the fractional-particle number is equivalent to the delocalization error of DFT.111,152  

3.1.5.4 The Generalized Kohn-Sham Formalism 

In this context, the concepts of the generalized Kohn-Sham theory (GKS) should be briefly mentioned. 

Although GKS is mostly dedicated to calculate accurate quasiparticle energies with DFT, i.e., to 

associate the HOMO and the LUMO energy with the ionization potential and the electron affinity, its 
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concepts are nevertheless intimately related to the delocalization error of DFT: it follows from Eq. (82) 

that the HOMO and the LUMO energy only correspond to the ionization potential and the electron 

affinity if the derivative discontinuity of the exchange-correlation potential vanishes. Similarly, if ∆𝑥𝑐  

is zero and the complete discontinuity is absorbed in the orbitals defined by the universal functional 

𝐹𝑆, the curvature of the energy curve would not necessarily exist. The delocalization error of the HOMO 

and the LUMO is then unnoticeable.  

As demonstrated in a seminal work by Seidl et al.,153 the Kohn-Sham ansatz, i.e., the mapping of the 

density of the real system to a non-interacting reference system with the same density, which is exactly 

described by a single Slater determinant with orbitals obtained from a local potential, is only a limiting 

case of generalized Kohn-Sham theory (GKS). In fact, the density of the true system can in principle be 

mapped to the density of any reference system that can be exactly represented by a single Slater 

determinant. In contrast to conventional Kohn-Sham, however, another reference system - an 

interacting one - does not necessarily result in a strictly localp Kohn-Sham potential.147 The energy of 

the true system is then expressed as the sum of the energy functional of this Slater determinant 𝐹𝑆[𝜌],q 

the external potential 𝑉𝑁𝑒[𝜌], and a remaining term, the general correlation energy 𝐸𝑐
𝐺𝐾𝑆[𝜌] (in the 

general case different from the exchange-correlation energy in standard Kohn-Sham DFT).144  

𝐸0[𝜌] = min
𝜌

[min
Φ→𝜌

⟨Φ|𝐹𝑆|Φ⟩ + 𝑉𝑁𝑒[𝜌] + 𝐸𝑐
𝐺𝐾𝑆[𝜌]] (83) 

Compared with the original Kohn-Sham ansatz, a different reference system changes the definition of 

𝐹𝑆, the universal functional of the reference system. While 𝐹𝑆 includes only the kinetic energy of non-

interacting electrons in conventional KS-DFT (𝜆 = 0) (𝐹𝑆 = ⟨Φ|𝑇|Φ⟩), it might just as well absorb also 

the electron-electron interaction (𝐹𝑆 = ⟨Φ|�̂� + �̂�𝑒𝑒|Φ⟩). As outlined by Kronik et al.,147 this universal 

functional corresponds to a reference system where the electrons interact only via their mean field. 

Therefore, the electronic structure of the reference system can be exactly described by a single Slater 

determinant in the framework of Hartree-Fock. The remaining part, the dynamic correlation not 

included in Hartree-Fock, forms the “exchange-correlation energy” in such a “Hartree-Fock-Kohn-

Sham” case.147 Thus, the HF formalism forms a complementary limiting case of GKS to conventional 

pure functionals. Between these two limiting cases, hybrid functionals arise in a natural way in the GKS 

scheme. Instead of including no or the full electron-electron interaction, a fraction of �̂�𝑒𝑒  is included in 

the functional 𝐹𝑆. This implies that a fraction of the Hartree-Fock potential 𝑣𝐻𝐹 = ∑ (𝐽𝑏(𝑥1) −𝑁
𝑏=1

                                                             
p In fact, when using hybrids or long-range corrected functionals (as outlined above), the non-local exchange 
operator is part of the Kohn-Sham potential. 
q Since the Slater determinant is constructed from orbitals (one-electron wave functions), the energy functional 
𝐹𝑆[𝜌] is defined in terms of the orbitals. 
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�̂�𝑏(𝑥1)) (Eq. (20)) is taken into account in the calculation of the KS orbitals of the “partially interacting” 

reference system. The remainder of the classical Coulomb interaction ∑ 𝐽𝑏(𝑥1)𝑁
𝑏=1 , the remaining 

exchange, and the complete correlation are incorporated into a remainder potential 𝑣𝑐
𝐺𝐾𝑆[𝜌] instead 

of the original exchange-correlation potential.147  

This perspective on hybrid functionals is certainly equivalent to what is commonly outlined as the key 

idea of hybrid functionals: as originally suggested by Becke,154 hybrid functionals are supposed to 

combine advantages of both HF and DFT. However, hybrid functionals in the GKS scheme are defined 

in a formally exact way.153  

Moreover, in view of the delocalization error, it can be readily understood in the framework of GKS 

that a part of the non-local exact exchange is included in the functional 𝐹𝑆[𝜌], i.e., in the orbitals (via 

the non-local potential 𝑣𝑆 that defines them), and not in the correlation functional anymore 𝐸𝑐
𝐺𝐾𝑆[𝜌].  

In other words, some of the derivative discontinuity might already be included in the Fock operator for 

the KS orbitals of the reference system. In the same manner, the discontinuity of the general 

correlation potential 𝑣𝑐
𝐺𝐾𝑆[𝜌] decreases. Therefore, hybrid functionals offer the possibility to reduce 

the derivative discontinuity of their exchange-correlation potential to some extent. Similarly, the 

convex curvature of a fractional-particle energy analysis becomes less severe for hybrid functionals.111 

Moreover, with regard to the quasiparticle energies, the HOMO and the LUMO orbital energies provide 

improved estimates for the ionization potential and the electron affinity of the system compared with 

LDA or GGAs. However, accurate quasiparticle energies are still not obtained since not the complete 

derivative discontinuity is absorbed into the universal function 𝐹𝑆[𝜌].147 Equivalently, excessive charge 

smearing, i.e., the influence of the delocalization error, is still observed.r 

In view of the still not accurate quasiparticle energies, Kronik et al. reasoned that an additional degree 

of freedom compared with global hybrids is required to fully eliminate the excessive charge 

delocalization and the correspondingly underestimated fundamental gap.147 The range separation 

parameter ω (Eq. (76)) constitutes such an additional degree of freedom. According to Kronik, the 

Hamiltonian of the reference system in the GKS framework is composed of the kinetic energy operator 

and the long-range component of the Coulomb operator.147 Consistently, the remainder potential 

𝑣𝑐
𝐺𝐾𝑆[𝜌] includes the short-range Coulomb and exchange operator in addition to the correlation 

potential. It should be kept in mind that range separation does not affect the Coulomb energy, i.e., as 

outlined above, range separation is only applied to exchange. In most range-separated hybrids, the 

range separation parameter is a universal constant,132,133,143,155,156 and its value is often fitted.132,133,143 

                                                             
r In the words of the traditional Kohn-Sham scheme (in contrast to GKS), only a fraction of exact exchange is 
included in hybrids that compensates the self-interaction error only to some extent and not completely. 
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However, Livshits and Baer157 carefully analyzed that the range separation parameter depends on the 

density, i.e. 𝜔 = 𝜔[𝜌]. Furthermore, Baer and coworkers158 showed that 𝜔 is not constant and highly 

system-specific. Since the exact functional must satisfy Koopmans’ theorem,148 Baer et al.157,159 

proposed to enforce Koopmans’ theorem by tuning the range separation parameter 𝜔. This implies 

that 𝜔 is obtained by minimizing the function 𝐽(𝜔)159 

𝐽(𝜔) = |−휀𝐻𝑂𝑀𝑂(𝜔) + {𝐸(𝑁, 𝜔) − 𝐸(𝑁 − 1, 𝜔)}| (84) 

By additionally requiring that Koopmans’ theorem is also satisfied for the (N+1)-electron system, a 

slightly modified target function is obtained if relaxation effects are neglected.147,159,160  

𝐽2(𝜔) = ∑ |−휀𝑖
𝐻𝑂𝑀𝑂(𝜔) + {𝐸𝑖(𝑁, 𝜔) − 𝐸𝑖(𝑁 − 1, 𝜔)}|

2

𝑖=𝑁,𝑁+1

 (85) 

The derivative discontinuity of an optimally tuned long-range corrected functional can be estimated 

from the difference between Eq. (85) and an equivalent expression where the HOMO of the (N+1)-

electron system is replaced by the LUMO of the N-electron system. Doing this for molecules and 

nanosized objects, Livshits and Baer157 showed that for an optimally tuned long-range corrected 

functional, the derivative discontinuity of the exchange-correlation potential becomes negligible. The 

HOMO and the LUMO energies correspond almost exactly with the ionization potential and the 

electron affinity. This goes along with a straight-line behavior of the energy curve of optimally tuned 

hybrids as a function of the fractional charge.147 Thus the delocalization error vanishes. Indeed, Baer, 

Livshits, and Salzner observed that range-separation parameters 𝜔 obtained by either enforcing a 

straight-line behavior of the energy or by imposing Koopmans’ theorem (Eq. (84)) are almost 

identical.144 In fact, it was already demonstrated by Yang and coworkers,152 Perdew et al.161 and Hirao 

and coworkers162 that long-range corrected functionals in general yield much straighter line segments 

in the energy-versus-fractional-charge plot than global hybrids. It should be noted that despite their 

potential to eliminate a central deficiency of DFT – the delocalization error – optimally tuned long-

range corrected functionals lack size consistency (due to the system specificity of ω).144  

3.1.5.5 Constrained DFT (c-DFT) 

Constrained DFT (c-DFT)163 results from a special modification of the ground-state DFT equations. The 

concept of c-DFT is briefly outlined because it has proven to be an invaluable tool for the calculation 

of diabatic states and couplings, such as charge-transfer states and recombination couplings.164,165  

The minimum principle of DFT (Eq. (49)) permits to calculate the ground-state density only. The key 

idea of c-DFT is to calculate non-equilibrium states (charge-transfer states, spin-localized states, etc.) 

as the ground states of another system which is characterized by a different external potential.163 In 

some manner, the charges/spins in the non-equilibrium system are constrained. The different external 
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potential can then be readily identified when constructing the Lagrangian. For instance, as outlined by 

Wu and Van Voorhis, a possible constraint would be to require that a certain number of electrons 𝑁𝐶 

are localized somewhere in the system. By means of a weighting function 𝑤𝐶(𝑟), this can be converted 

into a condition for the density 𝜌(𝑟):163 

∫ 𝑑𝑟𝑤𝐶(𝑟)𝜌(𝑟) = 𝑁𝐶  
(86) 

With the Lagrangian multiplier 𝑉𝐶, a new density functional 𝑊[𝜌] is constructed from the energy 

functional 𝐸0[𝜌] (Eq. (56)).163 

𝑊[𝜌] = 𝐸0[𝜌] + 𝑉𝐶 (∫ 𝑑𝑟𝑤𝐶(𝑟)𝜌(𝑟) − 𝑁𝐶) 
(87) 

This results in a modified one-electron Kohn-Sham equation (Eq. (64)). It differs from the conventional 

form by the constraint potential 𝑉𝐶𝑤𝐶(𝑟). 

(−
1

2
Δ + 𝑣𝑥𝑐(𝑟) + 𝑣𝑁𝑒(𝑟) + 𝑣𝑒𝑒(𝑟) + 𝑉𝐶𝑤𝐶(𝑟)) 𝜒𝑖(𝑟) = 휀𝑖𝜒𝑖(𝑟) 

(88) 

While 𝑤𝐶(𝑟) is predefined (Eq. (86)), the Lagrangian multiplier 𝑉𝐶 needs to be calculated. Since the 

derivatives of 𝑊[𝜌] with respect to 𝑉𝐶 are well defined, it can be shown163 that 𝑊[𝜌] has only one 

stationary point (a maximum) with respect to 𝑉𝐶. Therefore, the optimization of 𝑉𝐶 is integrated into 

each self-consistent iteration of Eq. (93).163 Finally, the internal energy 𝐸 of the system as well as the 

additional energy arising from the constraint 𝑉𝐶𝑁𝐶  are computed.163 

The formalism can be extended to deliver diabatic couplings that are comparable for example to 

Generalized Mulliken Hush theory (GMH).164 These couplings are defined as the off-diagonal elements 

of the Hamiltonian matrix between orthogonal diabatic states.166 By means of c-DFT, the initial and 

final states Ψ𝐷[𝜌𝐷] and Ψ𝐴[𝜌𝐴] of an electron-transfer reaction between a donor and an acceptor can 

be computed. As outlined by Wu and Van Voorhis,164 they are not orthogonal because they correspond 

to different constraint potentials (i.e., equal weighting functions, but different multipliers 𝑉𝐶). The off-

diagonal elements of the Hamiltonian between these states can be simplified as164 

𝐻𝐴𝐵 = ⟨Ψ𝐷|𝐻|Ψ𝐴⟩ = ⟨Ψ𝐷|𝐻 + 𝑉𝑐
𝐴𝑤𝑐 − 𝑉𝑐

𝐴𝑤𝑐|Ψ𝐴⟩ 

≈ (𝐸𝐴 + 𝑉𝑐
𝐴𝑁𝑐)⟨Ψ𝐷|Ψ𝐴⟩ − 𝑉𝑐

𝐴⟨Ψ𝐷|𝑤𝑐|Ψ𝐴⟩ 

(89) 

The Hamiltonian in the constrained (non-orthogonal) basis thus becomes 
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𝐻 = (
𝐸𝐷 𝐻𝐷𝐴

𝐻𝐴𝐷 𝐸𝐴
) (90) 

The average of the off-diagonal elements is used, which differ due the constraint potentials in Eq. (89). 

The eigenvectors 𝐶 of the 𝑤𝑐  matrix are finally employed to obtain an orthogonalized diabatic basis. 

The transformed Hamiltonian 𝐻′ = 𝐶†𝐻𝐶 then provides the transfer couplings as the off-diagonal 

elements that compare well with GMH couplings.164 

3.1.6 Stability of HF- and KS-SCF-orbitalss 
The energy expectation value of a Slater determinant is invariant (to first order) with respect to 

functional variations of the underlying HF/KS spin orbitals. This defines the HF/KS orbitals. However, a 

number of restrictions exist for their functional variations. As outlined by Pople and coworker,167 spin 

orbitals are represented as products of spatial orbitals and a spin function, they are assumed to be 

real, some spin orbitals must have equal spatial orbitals, and a finite basis set is used. This ultimately 

leads to the Roothaan-Hall equations (Eq. (23)). Iteratively solving them in a self-consistent manner 

yields orbitals {𝜒𝑖} optimized in a constrained subspace. The corresponding determinant has a certain 

energy expectation value 𝐸[{𝜒𝑖}]. Upon removing the constraints, i.e., in a larger space, the energy 

expectation value 𝐸[{𝜒𝑖}] (1) can still be a minimum, (2) can be stationary, but not a minimum, (3) can 

be not stationary with respect to  functional variations of the orbitals.167 The latter case constitutes a 

second-order external instability.t In order to identify unstable SCF solutions, Paldus and Čĺžzek derived 

a matrix expression for the second-order correction to the energy Δ𝐸(2)[{𝜒𝑖}] both for closed-shell168 

and simple open-shell169 systems (from the ensemble of excited determinants). It is closely related to 

Casida’s equation (see below for a detailed definition of the A- and B-matrix).167 

Δ𝐸(2)[{𝜒𝑖}] =
1

2
(

𝐷
𝐷∗)

†

(
𝐴 𝐵
𝐵∗ 𝐴∗) (

𝐷
𝐷∗) 

(91) 

Depending on the constrained subspace and the type of constraint (e.g., coincident spatial orbitals, 

real orbitals,…), different conditions for the A- and B-matrix result as a necessary condition for a 

stationary, self-consistent  HF solution.167  

For instance, the most prominent instabilities, the singlet and triplet instabilities, result from the 

constraint of coincident spatial orbitals (RHF).168 𝐴 + 𝐵 needs to be positive definite to preclude such 

singlet and triplet instabilities (only in this case, the HF determinant is stationary). A further 

differentiation into the spin components is possible: upon allowing different orbitals for different spins, 

                                                             
s It should be noted that the following considerations were deduced exclusively for HF. However, they similarly 
apply to KS-orbitals as shown by Ahlrichs and coworker.170 
t If second-order functional variation within the subspace results in lower energy expectation values, the solution 
is internally unstable. 
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four excitations between a single original pair of closed-shell orbitals arise, one singlet and three triplet 

excitations. Singlet instabilities can be identified from negative eigenvalues of 𝐴 
1 + 𝐵 

1  (including only 

singlet excitations) while 𝐴 
3 + 𝐵 

3  (including only triplet excitations) must be positive definite167 to rule 

out triplet instabilities.167 The first eigenvalue of the corresponding matrixes are often indicated as an 

instability measure.170 An additional feature of singlet instabilities is that a lower-energy singlet UHF 

solution exists, i.e., a single Slater determinant is a poor description of any system subject to a singlet 

instability.168 

3.2 The quantum-chemical excited-state description 

3.2.1 CIS-based approaches 
CIS calculations of excitation energies and excited-state properties is conceptually one of the most 

straightforward excited-state approaches.31  

As outlined by Pople et al.,171 an excited-state wave function could in principle be obtained simply by 

replacing any occupied orbital {𝜒𝑖} in the HF determinant by a virtual orbital  {𝜒𝑎}.  

Φ𝑖𝑎 = |𝜒1𝜒2𝜒3𝜒4 … 𝜒𝑎 … 𝜒𝑁| (92) 

However, Pople et al. concurrently pointed out that this has the drawback that (1) the resulting wave 

function is not an eigenfunction to the S²-operator, (2) orbital relaxation is not included, i.e., the wave 

function corresponds to an ionization rather than an excitation, (3) excitations from or to degenerate 

orbitals cannot be described in a single-determinant approach.171 Representing the wave function as a 

linear combination of singly-excited determinants {Φ𝑖
𝑎} with coefficients {a𝑖𝑎} compensates these 

deficiencies to some extent. 

Ψ𝐶𝐼𝑆 = ∑ 𝑎𝑖𝑎

𝑖,𝑎

Φ𝑖
𝑎 (93) 

The coefficients are obtained from diagonalizing the CIS matrix with elements 𝐻𝑖𝑗
𝑎𝑏31 

𝐻𝑖𝑗
𝑎𝑏 = ⟨Φ𝑖

𝑎|�̂�|Φ𝑗
𝑏⟩ = (𝐸𝐻𝐹 + 휀𝑎 − 휀𝑖)𝛿𝑖𝑗𝛿𝑎𝑏 + (𝑖𝑎 ∥ 𝑗𝑏) (94) 

In line with Pople et al., it should be emphasized that the resulting CIS excited-state wave function (1) 

is orthogonal to the ground state, (2) includes orbital relaxation, (3) allows to compute pure-spin states 

and excitations between degenerate orbitals, (4) is size-consistent, (5) is variational and (6) 

differentiable so that excited-state properties are readily accessible.171 In fact, properties other than 

the energy are often obtained as derivatives of the energy.31 For instance, the excited-state dipole 

moment 𝜇 is obtained as the first derivative of the energy 〈𝐸〉𝐶𝐼𝑆 with respect to the electric field 

strength �⃗⃗�.31 
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𝜇 = (
𝜕〈𝐸〉𝐶𝐼𝑆

𝜕�⃗⃗�
)

𝐸=0

 
(95) 

Despite these advantages, any CIS description completely lacks dynamic correlation.172 Head-Gordon 

et al. proposed an extension of CIS called CIS(D)u,173 a size-consistent follow-up version of CIS-MP2.171 

The key idea of both methods is that double excitations with respect to the CIS wave function provide 

the main contribution to dynamic correlation.173 CIS-MP2 is a direct excited-state equivalent of ground-

state MP2. The MP2 correction to the total CIS energy 𝐸𝐶𝐼𝑆−𝑀𝑃2 is composed of contributions from 

singly-excited states of CIS (double excitations of the ground state; no Brillouin theorem for singly 

excited states) and of contributions from doubly-excited states of CIS (triple excitations of the ground 

state).173 

𝐸𝐶𝐼𝑆−𝑀𝑃2 = ⟨Ψ𝐶𝐼𝑆|�̂�|𝑈2Φ𝐻𝐹⟩ + ⟨Ψ𝐶𝐼𝑆|�̂�|𝑈3Φ𝐻𝐹⟩ (96) 

The excitation operators 𝑈2 and 𝑈3 generate doubly and triply excited states with respect to the 

ground state. Yet, they directly include the amplitudes for the energy correction of the excited state 

(and not the ground state). This similarly implies that 𝑈3 includes all possible doubly-excited 

determinants with respect to the CIS wave function. When expressed in terms of spin orbitals, the first- 

and second-order corrections are equivalent to the ground-state MP2 expressions.173 

⟨Ψ𝐶𝐼𝑆|�̂�|𝑈2Φ𝐻𝐹⟩ = −
1

4
∑

|⟨Ψ𝐶𝐼𝑆|�̂�|Φ𝑖𝑗
𝑎𝑏⟩|

2

휀𝑎 + 휀𝑏 − 휀𝑖 − 휀𝑗 − 𝐸𝐶𝐼𝑆
𝑖𝑗𝑎𝑏

 
(97) 

⟨Ψ𝐶𝐼𝑆|�̂�|𝑈3Φ𝐻𝐹⟩ = −
1

36
∑

|⟨Ψ𝐶𝐼𝑆|�̂�|Φ𝑖𝑗𝑘
𝑎𝑏𝑐⟩|

2

휀𝑎 + 휀𝑏 + 휀𝑐 − 휀𝑖 − 휀𝑗 − 휀𝑘 − 𝐸𝐶𝐼𝑆
𝑖𝑗𝑘𝑎𝑏𝑐

 
(98) 

Head-Gordon et al.173 could show that the triples correction (Eq. (98)) is responsible for the observed 

size-inconsistency of CIS-MP2. They reasoned that the triple excitations from the ground-state wave 

function are composed of two parts. This becomes evident from an analysis how the triple excitations 

are produced. In a first step, single excitations lead to the CIS wave function, i.e., the CIS determinants 

in the CIS wave function arise from a single orbital substitution in the underlying HF determinant. This 

can be expressed in terms of the single excitation operator 𝑈1 that generates the CIS wave function as 

a linear combination of singly-excited determinants with suitable amplitudes (defined by the CIS 

secular determinant) from the ground-state HF determinant.  

                                                             
u The notation of the doubles in brackets follows similar designations for triple corrections to the ground state in 
CISD and CCSD.1012 
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Ψ𝐶𝐼𝑆 = 𝑈1Φ𝐻𝐹 (99) 

Any double substitution in the CIS wave function leads then to the triply excited states generated by 

𝑈3: 

 On the one hand, this subsequent double substitution of a CIS determinant can involve only 

orbitals that did not take part in the single substitution.173 These orbitals are to a first 

approximation “spectators” to the electronic excitation, i.e., they are left unchanged. 

Therefore, Head-Gordon suggested to use the ground-state MP2 excitation operator (denoted 

as 𝑇2) defined by the amplitudes in Eq. (35) for this type of double excitations. 𝑈3 is then 

approximated by 𝑇2𝑈1. 

 On the other hand, a double substitution of a CIS determinant can include an orbital that was 

promoted beforehand, i.e., an orbital involved in the underlying single substitution. The net 

result is only a double excitation with respect to the HF ground state. Such double excitations 

are already included in the double correction ⟨Ψ𝐶𝐼𝑆|�̂�|𝑈2Φ𝐻𝐹⟩ (Eq. (96)).  

Thus, Head-Gordon et al.173 proposed to approximate the triples correction as 

𝐸𝐶𝐼𝑆(𝐷) = ⟨Ψ𝐶𝐼𝑆|�̂�|𝑈2Φ𝐻𝐹⟩ + ⟨Ψ𝐶𝐼𝑆|�̂�|𝑇2𝑈1Φ𝐻𝐹⟩  (100) 

The first term in Eq. (100) is called the “direct term” while the second term is designated as the 

“indirect term”. Evidently, only the “spectator”-type triple excitations are included.174  

MP2-type corrections to excited states suffer from the same deficiencies as MP2 ground-state 

corrections. Most importantly, this concerns near-degeneracies of excited states. As also outlined by 

Thiel (see below),175 near-degeneracies are more frequently encountered in excited states than in the 

ground state. The original CIS(D) formalism breaks down for nearly degenerate excited states (in 

underlying CIS). In order to obtain accurate transition energies also for nearly degenerate excited 

states, Head-Gordon proposed a near-degenerate extension of the original CIS(D) method leading to 

the family of CIS(Dn) methods.176 The methods consist in rediagonalizing the CIS matrix to second order 

in the fluctuation potential �̂�. Depending on how accurately the doubles-doubles block in this 

rediagonalization is taken into account, different CIS(Dn) methods are defined. The rediagonalizing 

permits a remixing of nearly degenerate states via second-order correlation effects. The breakdown of 

the subsequent MP2-type correction is thus avoided. While CIS(D0) and CIS(D1) are equivalent to the 

original non-iterative CIS(D) method, the doubles-doubles block in CIS(D∞) is iteratively included.176 

Excitation energies calculated with CIS(D) were shown to be quite accurate.173 Nevertheless, further 

improvement can be obtained by introducing spin-component scaling (see also above). Grimme and 
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coworker originally suggested in a first version of SCS-CIS(D) to scale only the direct term {𝑐𝑇
𝑂𝑆 , 𝑐𝑇

𝑆𝑆} 

using ground-state MP2 parameters.177 Head-Gordon et al. extended the scaling to the indirect term 

{𝑐𝑇′
𝑂𝑆, 𝑐𝑇′

𝑆𝑆} and additionally introduced a damping parameter 𝜆 into the excitation amplitudes (Eq. 

(102)) that was shown to improve the results, especially for 𝜆 = 0.178 

𝐸𝐶𝐼𝑆(𝐷) = ⟨Ψ𝐶𝐼𝑆|�̂�|(𝑐𝑇
𝑂𝑆𝑇2

𝑂𝑆 + 𝑐𝑇
𝑆𝑆𝑇2

𝑆𝑆)Φ𝐻𝐹⟩ 

+⟨Ψ𝐶𝐼𝑆|�̂�|(𝑐𝑇′
𝑂𝑆𝑇′2

𝑂𝑆 + 𝑐𝑇′
𝑆𝑆𝑇′2

𝑆𝑆)𝑈1Φ𝐻𝐹⟩ 

(101) 

𝑇2
𝑂𝑆Φ𝐻𝐹 = − ∑

⟨Ψ𝐶𝐼𝑆|�̂�|Φ𝑖̅𝑗
�̅�𝑏⟩

휀�̅� + 휀𝑏 − 휀𝑖 ̅ − 휀𝑗 − 𝜆𝐸𝐶𝐼𝑆
𝑖̅<𝑗,�̅�<𝑏

Φ𝑖̅𝑗
�̅�𝑏 

(102) 

By including only the opposite-spin excitation operators in Eq. (101), Head-Gordon et al. obtained 

furthermore a SOS-version of CIS(D). Hättig et al. implemented SCS-CIS(D) and SOS-CIS(D) into the 

Turbomole program package,179 using the SCS140-/SOS79-MP2 ground-state parameters for both direct 

and indirect terms.180 In a comprehensive benchmark dedicated to various spin-scaled variants, 

Goerigk and Grimme174 concluded that parameters specifically adapted to excited states are necessary 

to obtain improved performances compared with conventional CIS(D).  

Notably, a CIS(D)-like procedure was adopted by Grimme and Neese181 to enable excited-state 

calculations with double-hybrid functionals. In complete analogy to CIS(D), single excitation amplitudes 

(from a previous TDA/TD-DFT calculation with the underlying hybrid) are employed to compute an 

energy correction (Eq. (101)) that is subsequently scaled (like in double-hybrid ground-state 

calculations) and added to the final transition energy, delivering very accurate results.174 

3.2.2 Addendum: Semiempiric methods in excited-state calculations31,32 
The general basics of semiempiric methods are briefly outlined. They are not specific for semiempiric 

excited-state calculations. However, semiempirics is here discussed in the framework of excited-state 

calculations because it was mostly employed in this area in this work (see Results and Discussion). 

For the following discussion, the Fock matrix 𝐹𝜇𝜈  (see also Eq. (23)) in an atomic orbital basis set 

{𝜇, 𝜈, … } is given  using the core Hamiltonian 𝐻𝜇𝜈
𝑐𝑜𝑟𝑒 = ⟨𝜇|ℎ|𝜈⟩ and the density matrix 𝑃𝜆𝜎 .36 

𝐹𝜇𝜈 = 𝐻𝜇𝜈
𝑐𝑜𝑟𝑒 + ∑ 𝑃𝜆𝜎 [(𝜇𝜈|𝜎𝜆) −

1

2
(𝜇𝜆|𝜎𝜈)]

𝜆𝜎

 
(103) 

𝑃𝜆𝜎 = 2 ∑ 𝑐𝜎𝑎
∗ 𝑐𝜆𝑎

𝑁
2⁄

𝑎

 

(104) 
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Semiempiric methods aim generally at reducing the computational cost of the SCF procedure by (1) 

including valence electrons only, (2) employing a minimal basis set, and (3) reducing the number of the 

two-electron integrals.31 The latter reduction results from the central so-called Zero Differential 

Overlap (ZDO) approximation of most semiempiric methods. It consists in setting the product between 

basis functions {𝜇, 𝜈, 𝜆, … } located on different atoms {𝐴, 𝐵, … } to zero 𝜇𝐴𝜆𝐵 = 0.31 The overlap matrix 

(Eq. (23)) thus reduces to the unit matrix, the amount of two-center one-electron integrals decreases, 

three-center one-electron integrals are neglected, and all three- and four-center two-electron 

integrals in the Fock matrix are 0. All remaining integrals are parameterized by fitting results to 

experimental data.31 The fitting procedure allows to fold errors due to the small basis set and the lack 

of correlation into the parameters.182 Without any further approximations, this defines the NDDO set 

of semiempiric methods, relying on the neglect of diatomic differential overlap approximation. In terms 

of Fock matrix elements (Eq. (103)), this implies for diagonal elements of the basis function 𝜇 located 

at atom A:183 

𝐹𝜇𝜇 = 𝐻𝜇𝜇
𝐴 + ∑ 𝑉𝜇𝜇

𝐵

𝐵

+ ∑ 𝑃𝜈𝜈 [(𝜇𝜇|𝜈𝜈) −
1

2
(𝜇𝜈|𝜈𝜇)]

𝐴

𝜈

+ ∑ ∑ 𝑃𝜆𝜎[(𝜇𝜇|𝜎𝜆)]

𝐵

𝜆𝜎𝐵

 
(105) 

It should be noted that the core Hamiltonianv has been further divided:31 

𝐻𝜇𝜇
𝑐𝑜𝑟𝑒 = ⟨𝜇|−

1
2 Δ −

𝑍𝐴
′

|𝑅𝐴 − 𝑟| |𝜇⟩ + ⟨𝜇| ∑
𝑍𝐵

′

|𝑅𝐵 − 𝑟|𝐵 |𝜇⟩ = 𝐻𝜇𝜇
𝐴 + ∑ 𝑉𝜇𝜇

𝐵

𝐵

 
(106) 

Furthermore, the NDDO model implies for Fock matrix elements 𝐹𝜇𝜈  of different basis functions 

{𝜇𝐴, 𝜈𝐴} located on the same atom A:31 

𝐹𝜇𝜈 = ∑ 𝑉𝜇𝜈
𝐵

𝐵

+
1

2
𝑃𝜇𝜈[3(𝜇𝜈|𝜇𝜈) − (𝜇𝜇|𝜈𝜈)] + ∑ ∑ 𝑃𝜆𝜎[(𝜇𝜈|𝜎𝜆)]

𝐵

𝜆𝜎𝐵

 
(107) 

It implies thirdly for Fock matrix elements 𝐹𝜇𝜆  of different basis functions {𝜇𝐴, 𝜆𝐵} located on different 

atoms A and B:183 

𝐹𝜇𝜆 = 𝐻𝜇𝜆
𝑐𝑜𝑟𝑒 −

1

2
∑ ∑ 𝑃𝜈𝜆(𝜇𝜈|𝜎𝜆)

𝐵

𝜎

𝐴

𝜈

 
(108) 

In contrast, INDO (intermediate neglect of differential overlap) additionally neglects all two-center two-

electron exchange integrals (second term in Eq. (108)). Moreover, only symmetric one- and two-

                                                             
v The nuclear charges are reduced since only valence electrons are included.31 
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electron integralsw of type 𝑉𝜇𝜇
𝐵   and (𝜇𝐴𝜇𝐴|𝜆𝐵𝜆𝐵) are included (see Eq. (107)).31,182 The one- and two-

center Coulomb integrals are parameterized as31 

(𝜇𝐴𝜇𝐴|𝜆𝐵𝜆𝐵) = 𝛾𝐴𝐵  (109) 

(𝜇𝐴𝜇𝐴|𝜈𝐴𝜈𝐴) = 𝛾𝐴𝐴  (110) 

While INDO still takes into account one-center four-electron integrals of type ⟨𝜇𝐴𝜈𝐴|𝜅𝐴𝜆𝐴⟩ (Eq. (110)), 

CNDO methods (complete neglect of different overlap) neglect them as well. The Pariser-Pople-Parr 

model184,185,186 is essentially a CNDO-based method applied exclusively to π-electrons.31,32   

Although NDDO should be most accurate among the semiempiric first-generation models, it did 

initially not improve INDO results due to its deficient parameterization182 and lack of rotational 

invariance187. In 1975, however, Dewar and Thiel183 introduced the MNDO method (modified neglect 

of diatomic overlap), which corresponds essentially to a new approach of parameterizing NDDO 

integrals. A key ingredient of the method is to employ a multipole expansion instead of a single 

parameter for all two-center two-electron integrals like in INDO (Eq. (109)). This speeds up the 

calculations compared with the original NDDO methods while still including the electronic 

asymmetry.183 Moreover, the two-center one-electron integrals 𝐻𝜇𝜆
𝑐𝑜𝑟𝑒  (Eq. (108)) are approximated by 

the average of two atomic “resonance” parameters 𝛽𝜇, 𝛽𝜆 and the overlap 𝑆𝜇𝜆  between the basis 

functions.31 

𝐻𝜇𝜆
𝑐𝑜𝑟𝑒 =

1

2
𝑆𝜇𝜆(𝛽𝜇 + 𝛽𝜆) 

(111) 

The fact that the overlap 𝑆𝜇𝜆  is explicitly calculated between the Slater-type basis functions (Eq. (111)) 

explains the name of the methods (modified neglect of diatomic overlap). In fact, including the overlap 

in the two-center one-electron integrals was already introduced in a slightly earlier INDO-based 

version, MINDO/3,188 which requires, however, extensive parameterization because it relies on bond-

specific parameters 𝛽𝐴𝐵 rather than on the atomic parameters in MNDO. One-center one-electron 

integrals 𝐻𝜇𝜈
𝑐𝑜𝑟𝑒  are expressed as a sum31 

𝐻𝜇𝜈
𝑐𝑜𝑟𝑒 = 𝐻𝜇𝜇

𝐴 𝛿𝜇𝜈 − ∑ 𝑍′𝐵(𝜇𝜇|𝜈𝜈)

𝐵

 (112) 

𝑍′𝐵 is the reduced nuclear charge.x Parameters are employed for the two-electron integral (𝜇𝜈|𝜇𝜈) 

(Eq. (112)), similar to all one-center two-electron integrals. A crucial point of all MNDO methods is the 

                                                             
w This implies that the ZDO approximation in INDO-based methods is also applied different basis functions on the 
same atom. 
x The nuclear charge is reduced as the core electrons are not included.  
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core-core repulsion. Due to the approximated two-electron integrals, a balanced description between 

repulsive and attractive forces requires to include such two-electron integrals in the calculation of the 

core-core repulsion as well.182 The original MNDO183 method as well as its most prominent182 

modifications, AM1189 and PM3190, differ in their functional form only in the way how they compute 

the core-core repulsion 𝑉𝑁𝑁(naturally, their parameters differ as well).31 

 MNDO methods calculate 𝑉𝑁𝑁 from a two-electron two-center integral and a correction term 

𝑓𝐴𝐵  including atomic fit parameters 𝛼𝐴, 𝛼𝐵.182,183 

𝑉𝑁𝑁
𝑀𝑁𝐷𝑂 = ∑ 𝑍′𝐴𝑍′𝐵(𝑠𝐴𝑠𝐴|𝑠𝐵𝑠𝐵)

𝐴>𝐵

+ 𝑓𝐴𝐵  (113) 

𝑓𝐴𝐵 = 𝑍′𝐴𝑍′𝐵(𝑠𝐴𝑠𝐴|𝑠𝐵𝑠𝐵)(𝑒−𝛼𝐴𝑅𝐴𝐵 + 𝑒−𝛼𝐵𝑅𝐴𝐵 ) (114) 

 To improve the overestimated MNDO core-core repulsion, another correction term 𝑓′𝐴𝐵  is 

included in the AM1189 model. 

𝑉𝑁𝑁
𝐴𝑀1 = 𝑉𝑁𝑁

𝑀𝑁𝐷𝑂 +
𝑍𝐴

′ 𝑍𝐵
′

𝑅𝐴𝐵
∑(𝑎𝑘𝐴𝑒−𝑏𝑘𝐴(𝑅𝐴𝐵−𝑐𝑘𝐴)2

+ 𝑎𝑘𝐵𝑒−𝑏𝑘𝐵(𝑅𝐴𝐵−𝑐𝑘𝐵)2
)

𝑘

 
(115) 

 The PM3190 method relies on a similar expression for the core-core repulsion (Eq. (115)). 

However, PM3 accuracies are often superior compared with AM1 because Stewart 

implemented and conducted a comprehensive parallel optimization of all parameters.190 

Due to their well-known deficiencies (limited applicability in terms of elements, intermolecular 

interactions, barriers, overestimated stabilities of small rings, erroneous relative stabilities of 

hydrocarbon conformations, etc.),31 all three approaches were continuously improved. Thiel and 

coworker extended the MNDO approach to a broader range of elements, called MNDO/d,191,192 by 

additionally including d-functions. This necessarily multiplies the number of required parameters.  

Furthermore, Kolb and Thiel derived the OMx approach (orthogonalization model) from the underlying 

MNDO methods.193 Via additional orthogonalization corrections, effective core potentials and 

penetration integrals, the one-center one-electron integrals are differently calculated and 

parameterized in OMx-based methods. In fact, Kolb and Thiel193 reasoned that the approximations 

underlying semiempirical NDDO methods can be evaluated by comparison to the matrix elements of a 

Löwdin194 orthogonalized Fock matrix. Ab initio methods solve the Roothaan-Hall equations in an 

orthogonalized basis set {𝜑𝑖
′} (Eq. (23)). 

𝐹′𝐶′ = 𝐶′𝐸 (116) 
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𝐹′ = 𝑆−1 2⁄ 𝐹𝑆1 2⁄  (117) 

Due to the ZDO approximation, semiempiric methods solve directly equations like Eq. (120) as well so 

that no orthogonalization is performed. Therefore, as outlined by Kolb and Thiel,193 their integrals can 

be compared to ab initio calculated integrals in an orthogonalized basis set. This comparison led them 

to the conclusion that especially the one-electron one-center elements of the Fock matrix 𝐻𝜇𝜈
𝑐𝑜𝑟𝑒  

change significantly in the basis set transformation (Eq. (117)), and that they are thus incompletely 

described by Eq. (112). To improve their description, they employed a power series expansion 𝐻𝑐𝑜𝑟𝑒,′ 

in terms of 𝑆−1 2⁄ . The most important terms {Δ𝜇𝜈,𝐵
(𝑆)

, R𝜇𝜈,𝐵
(𝑆)

} of this power series expansion are 

subsequently used as an orthogonalization correction ∑ 𝑉𝜇𝜈,𝐵
𝑜𝑟𝑡

𝐵  in the one-center one-electron matrix 

elements, which uses two additional atomic parameters {𝛾1
𝐴 , 𝛾2

𝐴} and resonance integrals {𝛽𝜆𝜈}y.193 

The orthogonalization correction, which includes three-center terms especially in more recent OMx 

versions, results in stereodiscriminating properties.195 

𝐻𝜇𝜈
𝑐𝑜𝑟𝑒,′ = 𝐻𝜇𝜈

𝑐𝑜𝑟𝑒 + ∑ 𝑉𝜇𝜈,𝐵
𝑜𝑟𝑡

𝐵

 (118) 

𝑉𝜇𝜈,𝐵
𝑜𝑟𝑡 = 𝛾1

𝐴Δ𝜇𝜈,𝐵
(𝑆)

+ 𝛾2
𝐴R𝜇𝜈,𝐵

(𝑆)
 (119) 

Δ𝜇𝜈,𝐵
(𝑆)

= −
1

2
∑(𝑆𝜇𝜆𝛽𝜆𝜈 + 𝛽𝜇𝜆𝑆𝜆𝜈)

𝜆𝐵

 
(120) 

R𝜇𝜈,𝐵
(𝑆)

=
1

8
∑ 𝑆𝜇𝜆𝑆𝜆𝜈(𝐻𝜇𝜇

𝐴𝐵 + 𝐻𝜈𝜈
𝐴𝐵 − 2𝐻𝜆𝜆

𝐴𝐵)

𝜆𝐵

 
(121) 

According to Kolb and Thiel,193 the orthogonalization correction contains some of the repulsive 

contributions to the one-center one-electron integrals that were neglected beforehand (Eq. (112)). To 

preserve the balance between repulsive and attractive forces, OMx-based methods take into account 

the attractive terms of type 𝑉𝜇𝜈
𝐵  (Eq. (106), Eq. (107)) in the one-center one-electron integrals instead 

of approximating them (Eq. (112)). Furthermore, the core-core repulsion is explicitly included as well. 

As the third major modification in OMx-based methods, the repulsion between the core and the 

valence electrons is incorporated via effective core potentials (ECPs).193 Apart from the original OM1193 

method, more recent parameterizations with slightly modified correction terms designated as OM2195 

                                                             
y It should be noted that the resonance integral 𝛽

𝜆𝜈
 in OMx-based methods differs from its original version. The 

original parameters cannot be used because due to the empirical fitting procedure to molecular properties, 
effects owing to the inexistent orthogonalization correction in MNDO-based methods are indirectly incorporated 

into the value of 𝛽
𝜆𝜈

. Kolb and Thiel outlined that a variety of fitting functions for the OMx resonance integral 

provide accurate results. 
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and OM3196 exist. While OM1 includes the orthogonalization correction as outlined only in the one-

center one-electron integrals, OM2195 adds similar corrections to the two-center one-electron 

integrals. OM3196 is a somewhat simplified version of OM2.   

As a further addendum to the underlying MNDO approach and in view of the growing interest in 

semiempiric calculations on large biochemical systems,182 Tuttle and Thiel197 adopted Grimme’s 

dispersion correction DFT-D141 to the OMx-based methods. They simply fitted the scaling coefficient 𝛼 

and the 𝑠6 parameter and added the resulting dispersion energy.197 In fact, this approach can be 

considered as a complementary follow-up version of  AM1-D and PM3-D suggested slightly earlier by 

Hillier and coworker.198 Based on the same version of Grimme’s dispersion correction, they adapted 

the semiempiric parameter and left the dispersion correction unchanged. 

Except for dispersion, semiempiric methods describe also hydrogen bonding poorly, which seriously 

limits their applicability to biochemical problems as outlined by Hobza and coworkersz.199,200 However, 

as also pointed out by Clark and coworkers,201 this seems to be related to the parameters rather than 

to an intrinsic inability of semiempiric methods to describe hydrogen bonds. The broaden the scope of 

semiempiric applications to biochemistry, Hobza et al. developed a combined correction called “DH” 

and “DH2” to integrate hydrogen bonding and dispersion into semiempiric methods.199,200 A DFT-D 

approach of Jurečka et al.202 much alike to the Grimme’s dispersion correction141 was adopted to model 

dispersion. The energies of hydrogen bonds 𝐸𝐻−𝑏𝑜𝑛𝑑  is calculated in a purely electrostatic way. It is 

added as a summand to the final semiempiric energy. The DH energy is calculated from the charges 

𝑞𝐴, 𝑞𝐻  on the atoms, the bond angle 𝜃, and three parameters 𝑎, 𝑏, 𝑐.199 

𝐸𝐻−𝑏𝑜𝑛𝑑 = 𝑎 [
𝑞𝐴𝑞𝐻

𝑅𝐴𝐻
2 ∙ cos 𝜃 + 𝑏 ∙ 𝑐−𝑅𝐴𝐻 ] 

(122) 

In order to account for the full three-dimensional arrangement of a hydrogen bond, the single bond 

angle 𝜃 was replaced by a term containing all three spatial angles 𝜃, 𝜗, 𝜙 in the later-on published DHs 

correction.200 

The so-called Pairwise Distance Directed Gaussian (PDDG) modification proposed by Jorgensen and 

coworkers203 is another correction adapted to both MNDO (PDDG/MNDO) and PM3 (PDDG/PM3) (in a 

similar way as dispersion). Based on the success of the Bond and Group Equivalents Scheme (BGE),204 

it aims at incorporating some functional group and fragment information into MNDO-derived methods 

that rely entirely on only atomic parameters. According to Jorgensen and coworkers, this can be 

                                                             
z Due to its high accuracy and broad applicability, Hobza and coworkers adapted their corrections for 
intermolecular interactions to PM6.199,200  
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achieved by modifying the core-core repulsion of either MNDO or PM3 with a correction term 

𝑃𝐷𝐷𝐺(𝐴, 𝐵) containing pairwise sums over all atoms of the molecule.203 

𝑃𝐷𝐷𝐺(𝐴, 𝐵) = ∑
1

𝑛𝐴 + 𝑛𝐵
[∑ (𝑛𝐴𝑃𝐴𝑖

+ 𝑛𝐵𝑃𝐵𝑗
)

2

𝑖,𝑗

𝑒
(−10Å²(𝑅𝐴𝐵−𝐷𝐴𝑖

−𝐷𝐵𝑗
)

2
)
]

𝐴,𝐵>𝐴

 

(123) 

𝑛𝐴, 𝑛𝐵  are the number of valence electrons located at atoms 𝐴, 𝐵. 𝐷𝐴𝑖
, 𝑃𝐴𝑖

 are atomic parameters. As 

the exponential term in Eq. (123) depends on the interatomic distance as well as on the atomic distance 

parameters 𝐷𝐴𝑖
, the PDDG correction includes some fragment information while still keeping the 

number of required parameters limited.203 The underlying MNDO and PM3 integrals were 

reparameterized. According to Jorgensen, improvements for resulting PDDG/PM3 and PDDG/MNDO 

methods were especially observed for small rings, hydrocarbon isomers, and systems with multiple 

heteroatoms.203 

Among others, Stewart continuously improved PM3-based methods. By optimizing the reference data 

and the fitting procedure and additionally introducing a slightly modified scaling factor 𝑓𝐴𝐵  in the core-

core repulsion term (Eq. (113)), he developed PM6 (parameterization model 6), which was shown to 

provide very accurate energies and geometries.205 Further re-optimizations of the parameters, fitting 

procedures, and another modification of the core-core repulsion resulted in PM7, the most recent 

semiempiric method. DFT-like accuracies were found for example for PM7 reaction barriers.206 In a 

similar way, Simas et al.207 reparameterized AM1, giving rise to the recent RM1 model (Recife Model 

1). 

In contrast to the original NDDO-based approaches, which are rarely used themselves - being only 

employed in their modified MNDO versions – INDO as a representative of the original ZDO methods is 

still used.31,182 Especially its version specifically parameterized for spectroscopic problems, called 

INDO/S, has become very popular.32,208 ZINDO/S,209,210 often denoted simply as ZINDO,aa is similar to 

INDO/S. While the applicability of the original version INDO/S remained initially limited to organic 

compounds as well as boron-containing substances, ZINDO/S includes more elements and could also 

calculate excited states for instance of transition metal complexes.32 From the point of view of the 

parameterization, transition metals are challenging because they require a large number of additional 

parameters due to the variety of metals.211 Moreover, Zerner and coworkers outlined that d-orbital 

specific parameters are required for the calculation of both one- and two-electron integrals (Eq. (109) 

and (111)).211 One-electron core integrals in INDO are obtained from ionization potentials.212   

                                                             
aa It should be noted that ZINDO was a computer program package developed by the group of Michael C. Zerner. 
To his honor, his group renamed the reparameterized version of INDO/S to ZINDO/S.32,182 



45 
 

A particular feature of INDO/S or ZINDO/S excited-state calculations results from the fact that 

excitation energies are usually obtained via CIS (configuration interaction singles). This is consistent 

with the intrinsic approximations of all INDO-based methods (for the two-electron integrals).175 

Compared with the CISDTQ-calculations often used to calculate OMx transition energies,bb the CIS 

calcuations allow for a significant speedup of the calculation.213 In a conventional semiempiric SCF 

calculation, the ground state is computed. Single-orbital replacements are subsequently used to 

construct excited configurations.212 Transition energies and oscillator strengths are obtained from the 

final CIS treatment.211 This CIS formalism restricts the scope of applicability of ZINDO/S to excited states 

that are qualitatively correctly described by a single excited-state determinant.175 Due to the well-

known deficiencies of ZINDO/S or INDO/S calculations for open-shell systems, Voityuk213 developed 

recently an extension of INDO/S for triplet states, the so-called INDO/X method.  

As outlined by Thiel and coworker,175 ZINDO/S is a method dedicated rather to spectroscopy than to 

photochemistry. This results from erroneous ZINDO/S geometries. Indeed, calculating geometries and 

excitation energies with the same set of INDO parameters remains to be problematic since ZINDO and 

INDO/S geometries computed with spectroscopically derived parameters are rather poor.214 Although 

a new INDO/1 approach developed in 2001 aims at removing this deficiency,214 ZINDO and INDO/S are 

still rarely used to calculate geometries.  

The orthogonalization correction in OMx approaches, originally also developed to improve ground-

state results, is particularly beneficial in excited-state calculations.175 In contrast to the CIS excited-

state calculations with ZINDO, a larger number of excited determinants are usually included in excited-

state calculations with MNDO-based methods to retrieve effects from correlation as completely as 

possible.175 In fact, dynamic ground-state correlation is implicitly included in the MNDO parameters. 

However, due to rather common near-degeneracies in excited-state calculations and the resulting 

importance of static correlation, Thiel and coworker reasoned that the inclusion of many excited 

determinants in a suitable active space seems to be necessary.175 Although a full-CI (FCI) treatment 

would therefore certainly be desirable, it becomes quickly computationally unaffordable with 

increasing system size also with semiempiric approaches.175 Comparing semiempiric excitation 

energies of linear polyenes obtained with FCI and CISDTQ using the GUGA-CI (graphical unitary group 

approach) formalism implemented by Koslowski et al.215 in a rather small active space demonstrated, 

however, that CISDTQ delivers excitation energies of almost comparable accuracy to FCIcc while 

                                                             
bb It should be noted that a CIS-OMx treatment is naturally also possible. However, results improve when using 
a CISDTQ framework.175 
cc It should be noted that MR-CISD is computationally even less demanding than CISDTQ. It was still shown to 
provide excitation energies of reasonable accuracy.175 
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keeping the computational cost limited.175 Thus OMx-CISDTQ is currently considered as one of the best 

performing semiempiric methods for both spectroscopic and photochemical problems.216 

3.2.3 Addendum: Tight-Binding DFT (DFTB) 
It should be briefly mentioned that tight-binding density functional theory (DFTB),217 a variant of the 

tight-binding (TB) method dating back to the seminal paper of Slater and Koster,218 and especially its 

SCC-DFTB version (self-consistent charge density DFTB) can be considered as a DFT counterpart of 

semiempiric methods.219 The key idea of DFTB is shortly addressed because it has become increasingly 

important also for biological applications219 and transport220 and excited-state221 calculations217 

although it is not employed in this thesis.  

In the DFTB formalism, a reference density 𝜌0 = ∑ 𝜌𝑎𝑎  is defined that is the sum of the atomic charge 

densities 𝜌𝑎  as if the system consisted of independent atoms.222 The Kohn-Sham energy is then 

expanded in a series of density fluctuations with respect to the reference density 𝛿𝜌 = 𝜌 − 𝜌0.223 The 

first-order terms in 𝛿𝜌 vanish so that only second-order terms remain in a second-order expansion.222 

𝐸𝐾𝑆[𝛿𝜌] = 𝐸𝐾𝑆[𝜌0] +
1

2
∫ ∫ (

𝛿2𝐸𝑋𝐶

𝛿𝜌𝛿𝜌′
+

1

|𝑟 − 𝑟′|
) 𝛿𝜌𝛿𝜌′ 

−
1

2
∫ ∫

𝜌0(𝑟)𝜌0
′(𝑟′)

|𝑟 − 𝑟′|
+ 𝐸𝑥𝑐[𝜌0] + 𝑉𝑁𝑁 − ∫ 𝑉𝑥𝑐[𝜌0]𝜌0(𝑟) 

(124) 

The first term in Eq. (124), 𝐸𝐾𝑆[𝜌0], corresponds to the Kohn-Sham energy of the reference density, 

i.e., of the free atoms. The next two (second-order) terms arise from charge fluctuations (Coulomb 

energy, some exchange-correlation) denoted as 𝐸2𝑛𝑑 . The second line in Eq. (124) is often subsumed 

as the repulsive part 𝐸𝑟𝑒𝑝.222  

Then, three approximations are introduced that allow for a fast computation of Eq. (124).219 Firstly, the 

repulsive energy is represented as the sum of atom-specific two-body potentials 𝑈𝐴𝐵(𝑅).222   

𝐸𝑟𝑒𝑝 = ∑ 𝑈𝐴𝐵(𝑅)

𝐴<𝐵

 (125) 

Secondly, the second order term is simplified. Since the reference state consists of free atoms, the 

density change 𝛿𝜌 can be divided into atomic contributions 𝛿𝜌𝑎, which are approximated by atomic 

charge fluctuations Δ𝑞𝑎. In the SCC-formalism, this is accomplished via a Mulliken population analysis 

(see Eq. (129)).219 The second derivative 𝛿2𝐸𝑋𝐶 and the Coulomb operator are incorporated into an 

atom-specific function 𝛾𝐴𝐵  that depends, among others, on the chemical hardness.219,222  
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𝐸2𝑛𝑑 =
1

2
∑ 𝛾𝐴𝐵Δ𝑞𝐴Δ𝑞𝐵

𝐴𝐵

 
(126) 

Thirdly – the actual tight-binding approximation – the orbitals employed to calculate the Kohn-Sham 

energy 𝐸𝐾𝑆[𝜌0] are assumed to be tightly bound. Thus expanding (only the valence) orbitals 𝜓𝑎  into a 

minimal basis set {𝜑𝜇} is assumed to be sufficiently accurate 𝜓𝑎 = ∑ 𝑐𝜇
𝑎

𝜇 𝜑𝜇.222 The Kohn-Sham energy 

𝐸𝐾𝑆[𝜌0] can then be expressed as a sum over the matrix elements of the Hamiltonian 

{𝐻𝜇𝜈
0 = ⟨𝜑𝜇|𝐻[𝜌0]|𝜑𝜈⟩} in the atomic orbital basis set.dd  

𝐸𝐾𝑆[𝜌0] = ∑ ∑ 𝑐𝜈
𝑎∗𝑐𝜇

𝑎𝐻𝜇𝜈
0

𝜇𝜈𝑎

 (127) 

The matrix elements {𝐻𝜇𝜈
0 } as well as the overlap integrals between the basis functions 𝑆𝜇𝜈 = ⟨𝜑𝜇|𝜑𝜈⟩ 

are tabulated. Using the definition of Mulliken charges to represent Δ𝑞𝑎  in the atomic orbital basis, 

the resulting eigenvalue problem to obtain the DFTB energy and the coefficients {𝑐𝜇
𝑎} can be written 

as219,222 

∑ 𝑐𝜈
𝑎(𝐻𝜇𝜈 − 휀𝑎𝑆𝜇𝜈)

𝜈

= 0 (128) 

𝐻𝜇𝜈 = 𝐻𝜇𝜈
0 +

1

2
𝑆𝜇𝜈 ∑(𝛾𝐴𝐼 + 𝛾𝐵𝐼)Δ𝑞𝐼

𝐼

       𝜇 𝜖 𝐴    𝜈 𝜖 𝐵  
(129) 

As pointed out by Elstner et al.,219 the solution of the eigenvalue problem for the self-consistent charge 

(SCC) Hamiltonian determines the computational cost of the method (and not the evaluation of the 

integrals). Despite the apparent similarity to semiempirics, a few conceptual differences of DFTB exist: 

no orthogonal basis is used, and empirical fitting of the parameters is not necessary as all parameters 

can be obtained from DFT calculations.219,224,225 A plethora of applications of DFTB are available.226 For 

instance, Grimme and coworker recently employed SCC-DFTB and an added dispersion correction to 

determine crystal structures of organic compounds.223 Elstner and Cui and coworkers studied 

hydrolysis reactions by SCC-DFTB.227 Elstner et al. employed DFT also to determine temperature-

dependent transport parameters.228  

3.2.4 Response functions and propagator methods229 
In contrast to CIS calculations where the wave function is directly accessible, excitation energies and 

transition dipole moments with other methods are often obtained via response functions without 

explicitly calculating the excited-state wave function. As defined by Oddershede, a response function 

                                                             
dd It should be mentioned that further approximations such as the neglect of crystal field effects or three-center 
terms are introduced.219 
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describes the reaction of a system to an external perturbation.230 The external perturbation can be 

expressed as a power series. Then, the response of the system corresponds to the sum of a linear, 

quadratic, … response function.230 Not only the excitation energies but also a number of other 

observables can be obtained from response functions.230  

Response functions are intimately related to propagator approaches.231 In fact, response functions are 

sometimes called “polarization propagators”.230 It is, however, important to note that the term 

“propagator method” is not well-defined. “Propagators” are not used synonymously in the literature, 

and they often refer to different kinds of propagators.230 To address the issue, a very short perspective 

on Green’s functions is given first. In a second step, the linear response of a system is analyzed and 

related to the so-called time-retarded propagator. In a subsequent third step, a spectral representation 

of this propagator is derived, which illustrates its properties and the information that it contains. In a 

fourth step, an equation of motion to compute such propagators is determined. The outline follows 

Oddershede et al.229 

Green’s Functions36  

In a certain way, quantum-mechanical propagators can be considered as a particular subgroup of 

Green’s functions. Green’s functions are employed to solve inhomogeneous differential equations.36 

For instance, 𝐻0 is the Hamiltonian operator with known eigenfunctions {𝜓𝑎} and eigenvalues {𝐸𝑎}, 𝐸 

is a parameter, and Φ0(𝑥) is an arbitrary function. The following inhomogeneous equation should be 

solved for Φ𝐹(𝑥).36 

(𝐸 − 𝐻0)Φ𝐹(𝑥) = Φ0(𝑥) (130) 

By means of basis set expansions, it is straightforward to show that the Φ𝐹(𝑥) can be expressed via 

the integration of the product of Φ0(𝑥′) and a Green’s function 𝐺0(𝑥, 𝑥′, 𝐸).36 

Φ𝐹(𝑥) = ∫ 𝑑𝑥′ [∑
𝜓𝑎(𝑥)𝜓𝑎

∗(𝑥′)

𝐸 − 𝐸𝑎
𝑎

] Φ0(𝑥′) = ∫ 𝑑𝑥′𝐺0(𝑥, 𝑥′ , 𝐸) Φ0(𝑥′) 
(131) 

A Green’s function can in general be associated with each operator. The differential equation relating 

the Green’s function and its operator can be for example derived from Eq. (130) and (131) for Φ0(𝑥′) =

𝛿(𝑥 − 𝑥′).36 

(𝐸 − 𝐻0)𝐺0(𝑥, 𝑥′ , 𝐸) = 𝛿(𝑥 − 𝑥′) (132) 

Notably, the poles of the Green’s function 𝐸 = 𝐸𝑎 correspond to the eigenvalues of the operator 𝐻0. 

This implies that the eigenvalues obtained as the poles via complex function analysis231 are accessible 
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from the Green’s function. The numerator of a Green’s function (in its spectral representation) 

contains its so-called residues.36  

If the system is subject to a perturbation 𝑉, a different Green’s function 𝐺(𝑥, 𝑥′ , 𝐸) corresponds to the 

resulting operator 𝐻 = 𝐻0 + 𝑉. It is related to 𝐺0(𝑥, 𝑥′ , 𝐸) via integration. 

𝐺(𝑥, 𝑥′ , 𝐸) = 𝐺0(𝑥, 𝑥′ , 𝐸) + ∫ 𝑑𝑥′′𝐺0(𝑥, 𝑥′′, 𝐸) 𝑉(𝑥′′)𝐺(𝑥′′, 𝑥′ , 𝐸) 
(133) 

The problem of solving the inhomogeneous differential equation of 𝐻 for the eigenvalues is thus 

transformed into an integral equation of 𝐺(𝑥, 𝑥′ , 𝐸) whose poles are the eigenvalues of 𝐻. An example 

for a Green’s function with an additional particularity is the Dyson equation232. 

𝐺(𝑥, 𝑥′ , 𝐸) = 𝐺0(𝑥, 𝑥′ , 𝐸) + ∫ 𝑑𝑥′′𝐺0(𝑥, 𝑥′′ , 𝐸) Σ(𝑥′′, 𝐸)𝐺(𝑥′′, 𝑥′ , 𝐸) 
(134) 

The Dyson equation (Eq. (134)) differs from Eq. (133) by the so-called self-energy Σ(𝑥′′, 𝐸) that is itself 

energy-dependent.ee If 𝐻0 is the sum of the one-electron Fock operators 𝐹, 𝐺0(𝑥, 𝑥′ , 𝐸) is the Hartree-

Fock Green’s function, the one-body Green’s function that is associated with the 𝐹.36 

𝐺0(𝑥, 𝑥′ , 𝐸) = ∑
𝜒𝑖(𝑥)𝜒𝑖

∗(𝑥′)

𝐸 − 휀𝑖
𝑖

 
(135) 

Its poles, the HF orbital energies, are approximations to the electron affinity and the ionization 

potential of the system. The energy-dependent self-energy corresponds thus to the perturbation in 

Eq. (133) that corrects for orbital relaxation and differential correlation. Solving the Dyson equation 

and determining the poles of 𝐺(𝑥, 𝑥′ , 𝐸), a many-body Green’s function, yields the electron affinity 

and the ionization potential of the system. Thus, the poles of 𝐺(𝑥, 𝑥′ , 𝐸) correspond to the 

quasiparticle energies discussed above in the GKS framework. 

The Dyson equation is formally exact and preserves the one-particle HF picture in the calculation of 

properties of the N-particle system (i.e., the quasiparticle concept).36,160 The Dyson equation is often 

represented as a matrix equation.36 

𝐺(𝐸) = 𝐺0(𝐸) + 𝐺0(𝐸)Σ(𝐸)𝐺(𝐸) = ((𝐺0(𝐸))
−1

− Σ(𝐸))
−1

 
(136) 

A particular advantage of all Green’s function approaches is that the size of all matrices (Eq. (136)) is 

equal to the (rather limited) particle number.36 

                                                             
ee The self-energy is often approximated by a perturbation expansion.36  
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Propagators 𝐺(𝑥, 𝑥′ , 𝑡) can be considered as particular Green’s functions that are time-dependent, i.e., 

a Fourier transformation230 relates propagators in their spectral representation to particle-hole 

Green’s functions that propagate the system in timeff.231 Consistently, a propagator is associated with 

a time-dependent perturbation 𝑉(𝑡) and the corresponding time-dependent Schrödinger equation.36 

The Linear Response of a System to an External Perturbation and its Relationship to Propagators229 

Propagator approaches are closely related to linear-response theory. To elucidate the exact 

relationship, the linear response of a system is computed in the first place. The system in the initial 

state Φ0 with 𝐻0|Φ0⟩ = 𝐸0|Φ0⟩ is subject to a time-dependent perturbation energy 𝑉𝑡(𝑟) (𝜖 is 

infinitesimally positive).229  

𝑉𝑡(𝑟) = ∫ 𝑑𝜔𝑉𝜔(𝑟)𝑒−𝑖𝜔𝑡+𝜖𝑡

∞

−∞

 
(137) 

The exact state of the perturbed system is designated with |𝜓⟩ (ℏ = 1 in the following):229  

𝑖
𝜕

𝜕𝑡
|𝜓⟩ = (𝐻0 + 𝑉𝑡(𝑟))|𝜓⟩ = 𝐸(𝑡)|𝜓⟩ 

(138) 

The time evolution of the density operator |𝜓⟩⟨𝜓| for state |𝜓⟩ in the interaction representation 𝜌𝐼 =

𝑒𝑖𝐻0𝑡|𝜓⟩⟨𝜓|𝑒−𝑖𝐻0𝑡  is given by (using Eq.(138)):gg 

𝑖
𝜕

𝜕𝑡
𝜌𝐼 = [𝑉𝑡(𝑡), 𝜌𝐼(𝑡)] 

(139) 

𝑉𝑡′(𝑡) = 𝑒𝑖𝐻0𝑡𝑉𝑡′𝑒
−𝑖𝐻0𝑡 (140) 

Using the initial condition lim
𝑡→−∞

|𝜓⟩⟨𝜓| = |Φ0⟩⟨Φ0| = 𝜌0 = 𝑒𝑖𝐻0𝑡|Φ0⟩⟨Φ0|𝑒−𝑖𝐻0𝑡 = lim
𝑡→−∞

𝜌𝐼, the 

integration of Eq. (139) yields229 

𝜌𝐼(𝑡) = 𝜌0 − 𝑖 ∫[𝑉𝑡′(𝑡′), 𝜌𝐼(𝑡′)]𝑑𝑡′

𝑡

−∞

 
(141) 

                                                             
ff It can be shown, however, that polarization propagators and particle-hole Green’s function have the same 
poles, but not the same residues. 
gg It should be noted that the prime (t’) in Eq. (140) refers to the time dependence of the time-dependent 
interaction operator V, while t refers to the time dependence of the transformation into the interaction 
representation. 
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For small perturbations, Eq. (141) can be solved iteratively using to a first approximation an 

unperturbed density 𝜌𝐼(𝑡′) ≈ 𝜌0. In combination with Eq. (140), the linear response of the density 

operator 𝜌(𝑡) = |𝜓⟩⟨𝜓|  is given in the Schrödinger picture by229 

𝜌(𝑡) = 𝜌0 − 𝑖 ∫[𝑉𝑡′(𝑡′ − 𝑡), 𝜌0]𝑑𝑡′

𝑡

−∞

 
(142) 

The time-dependent expectation value of an operator 𝐴 can be expressed in terms of a complete set 

of eigenfunctions {𝜙𝑖} and the density operator.229 

⟨𝜓|𝐴|𝜓⟩ = ∑⟨𝜓|𝜙𝑖⟩⟨𝜙𝑖|𝐴|𝜓⟩

𝑖

= ∑⟨𝜙𝑖|𝐴|𝜓⟩⟨𝜓|𝜙𝑖⟩

𝑖

= ∑⟨𝜙𝑖|𝐴𝜌|𝜙𝑖⟩

𝑖

≈ ⟨𝜙0|𝐴𝜌|𝜙0⟩ (143) 

Using the time evolution of the density operator (Eq. (142)) provides the time dependence of 〈𝐴〉.229 

⟨𝜓|𝐴|𝜓⟩ = ⟨Φ0|𝐴|Φ0⟩ − 𝑖 ∫ Θ(𝑡 − 𝑡′)⟨𝜙0|[𝐴, 𝑉𝑡′(𝑡′ − 𝑡)]|𝜙0⟩𝑑𝑡′

∞

−∞

 
(144) 

In Eq. (144), Θ(𝑡 − 𝑡′) is the Heaviside step function that is 0 for 𝑡 < 𝑡′.  

〈〈𝐴; 𝑉𝑡′(𝑡′ − 𝑡)〉〉𝑟 = −iΘ(𝑡 − 𝑡′)⟨𝜙0|[𝐴, 𝑉𝑡′(𝑡′ − 𝑡)]|𝜙0⟩ (145) 

The integrand in Eq. (144) is a two-time Green’s function (Eq. (145)), i.e., a two-time retarded Green’s 

function, which is often designated as a propagator (see above): the expectation value of the 

observable corresponding to 𝐴 is the sum of the initial value and the propagation in time.229  

𝑉𝜔(𝑡′ − 𝑡) = 𝑒𝑖𝐻0(𝑡′−𝑡)𝑉𝜔𝑒−𝑖𝐻0(𝑡′−𝑡) (146) 

Using the Fourier transformhh of 𝑉𝑡′(𝑡′ − 𝑡) (Eq. (137)) in Eq. (144) yields the well-known Kubo 

relation.233 Since 𝑉𝑡′(𝑡′ − 𝑡) is periodic in the frequency domain, the linear response of the system 

depends only on 𝑡′ − 𝑡.229  

⟨𝜓|𝐴|𝜓⟩ = ⟨Φ0|𝐴|Φ0⟩ + ∫ 𝑑𝜔 ∫ 𝑑𝑡′

∞

−∞

∞

−∞

〈〈𝐴, 𝑉𝜔(𝑡′ − 𝑡)〉〉𝑟𝑒−(𝜖−𝑖𝜔)𝑡′ 
(147) 

                                                             
hh In the Fourier transform of 𝑉𝑡(𝑡), an infinitesimal positive number 𝜖 is included to ensure that the reference 
state of the system for 𝑡 = −∞ is unperturbed: 𝑉𝑡(−∞) = 0. 
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For the special case of an external electric field, the operators 𝐴 and 𝑉𝜔(𝑡′ − 𝑡) in Eq. (147) correspond 

to the dipole moment operator (the response property, an induced dipole moment) (Eq. (148)) and 

the interaction with the electric field (Eq. (149)) �⃗⃗�, respectively.ii 

𝐴 = �⃗� = 𝑟 (148) 

𝑉𝜔(𝑡′ − 𝑡) = −𝑟(𝑡′ − 𝑡)�⃗⃗�𝜔 (149) 

Components of the molecular dipole moment are designated with 𝑎 while 𝑏 refers to the components 

of the perturbation. Eq. (149) gives the interaction energy corresponding to the perturbation operator 

𝑉. Inserting Eq. (148) and (149) into Eq. (147) yields229 

𝜇𝑎(𝑡) = 𝜇𝑎(0) − ∫ 𝑑𝜔 ∑ ∫ 𝑑𝑡′

∞

−∞𝑏

〈〈�̂�𝑎; �̂�𝑏(𝑡′ − 𝑡)〉〉𝑟𝐸𝜔𝑏𝑒(𝜖−𝑖𝜔)𝑡′

∞

−∞

 
(150) 

Substituting variables in the central integrand 𝑡′ − 𝑡 → 𝑠 yields an expression including the frequency-

dependent polarizability 𝛼(𝜔).229 

𝜇𝑎(𝑡) = 𝜇𝑎(0) − ∫ 𝑑𝜔

∞

−∞

∑ { ∫ 𝑑𝑠

∞

−∞

〈〈�̂�𝑎(0); �̂�𝑏(𝑠)〉〉𝑟𝑒(𝜖−𝑖𝜔)𝑠}

𝑏

𝐸𝜔𝑏𝑒(𝜖−𝑖𝜔)𝑡 
(151) 

𝛼(𝜔) = − ∫ 𝑑𝑡

∞

−∞

〈〈�̂�𝑎(0); �̂�𝑏(𝑡)〉〉𝑟𝑒(𝜖−𝑖𝜔)𝑡 
(152) 

Thus the second term in Eq. (151) corresponds to the induced dipole moment. 

It follows from Eq. (151) and (152) that the Fourier transform of the propagator 〈〈�̂�𝑎(0), 𝑟𝑏(𝑡)〉〉𝑟 is the 

dynamic polarizability.229 Moreover, the quantity in brackets (Eq. (150)) is a number-conserving 

propagator, hence a so-called polarization propagator.229 In its general form, a polarization propagator 

can be expressed in terms of the number-conserving operators 𝐴(𝑡) = 𝑃(𝑡) = ∑ 𝑃𝑖𝑗𝑎𝑖
+(𝑡)𝑎𝑗(𝑡)𝑖𝑗  and 

𝑉(𝑡′) = 𝑄(𝑡′) = ∑ 𝑄𝑖𝑗𝑎𝑖
+(𝑡′)𝑎𝑗(𝑡′)𝑖𝑗  (neglecting the superscript).229 

〈〈𝑃(𝑡); 𝑄(𝑡′)〉〉 = −iΘ(−𝑡′)⟨𝜙0|[𝑃(𝑡), 𝑄(𝑡′)]|𝜙0⟩ (153) 

The propagator for the dynamic polarizability is thus a special case of Eq. (153).229 [𝑃(𝑡), 𝑄(𝑡′)] is a 

correlation function because it correlates the evolution of two variables that both depend on time. If 

𝑃, 𝑄 are different variables, [𝑃(𝑡), 𝑄(𝑡′)] is also referred to as a cross-correlation function. In contrast, 

                                                             
ii It should be kept in mind that atomic units are used. Moreover, indices are employed to distinguish the two 
non-equivalent position operators. 
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if 𝑃, 𝑄 correspond to the same variable (Eq. (152)), the resulting quantity is called an autocorrelation 

function.229 

Expanding Eq. (153) in the complete set of basis functions {𝜙𝑛} of 𝐻0 yields 

〈〈𝑃; 𝑄(𝑡)〉〉 = −iΘ(−𝑡) ∑{⟨𝜙0|𝑃|𝜙𝑛⟩⟨𝜙𝑛|𝑒𝑖𝐻0𝑡𝑄𝑒−𝑖𝐻0𝑡|𝜙0⟩ − ⟨𝜙0|𝑒𝑖𝐻0𝑡𝑄𝑒−𝑖𝐻0𝑡|𝜙𝑛⟩⟨𝜙𝑛|𝑃|𝜙0⟩}

𝑛

 (154) 

〈〈𝑃; 𝑄(𝑡)〉〉 = −iΘ(−𝑡) ∑{⟨𝜙0|𝑃|𝜙𝑛⟩⟨𝜙𝑛|𝑄|𝜙0⟩𝑒𝑖(𝐸𝑛−𝐸0)𝑡 − ⟨𝜙0|𝑄|𝜙𝑛⟩⟨𝜙𝑛|𝑃|𝜙0⟩𝑒−𝑖(𝐸𝑛−𝐸0)𝑡}

𝑛

 (155) 

The spectral representation of the propagator229  

Oddershede et al. outlined that the energy representation, i.e., the Fourier transform, of any 

polarization propagator provides more physical insight.229 

〈〈𝑃, 𝑄〉〉𝐸 = lim
𝜖→0+

∫〈〈𝑃; 𝑄(𝑡)〉〉𝑒𝜖𝑡−𝑖𝐸𝑡𝑑𝑡

∞

−∞

 
(156) 

Using Eq. (155) for the Fourier transformation yields the spectral representation of the operator. It is 

sometimes also designated as the Lehmann representation of the retarded operator.229,234 

〈〈𝑃, 𝑄〉〉𝐸+𝑖𝜖 = lim
𝜖→0+

∑ {
⟨𝜙

0
|𝑃|𝜙

𝑛
⟩⟨𝜙

𝑛
|𝑄|𝜙

0
⟩

𝐸 − 𝐸𝑛 + 𝐸0 + 𝑖𝜖
−

⟨𝜙
0
|𝑄|𝜙

𝑛
⟩⟨𝜙

𝑛
|𝑃|𝜙

0
⟩

𝐸 + 𝐸𝑛 − 𝐸0 + 𝑖𝜖
}

𝑛,𝑛≠0

 
(157) 

Considering only the real part, the dynamic polarizability can be obtained from the propagator 

containing the autocorrelation function of the dipole vector (Eq. (151)):229 

𝑅𝑒(〈〈𝑟; 𝑟〉〉𝐸) = 𝑅𝑒(𝛼𝑎𝑏(𝜔)) = 2 ∑
⟨𝜙

0
|𝑟𝑎|𝜙

𝑛
⟩⟨𝜙

𝑛
|𝑟𝑏|𝜙

0
⟩

(𝐸𝑛 − 𝐸0)2 − 𝐸²
𝑛≠0

(𝐸𝑛 − 𝐸0) 
(158) 

Eq. (158) corresponds to the conventional representation of the dynamic polarizability in a sum-over-

states representation.31 Hence, the real part of the polarization propagator defined for the linear 

response to the perturbation of an electric field corresponds to the dynamic polarizability tensor. Its 

poles are the excitation energies, and its residues {⟨𝜙
0
|𝑟𝑎|𝜙

𝑛
⟩, ⟨𝜙

𝑛
|𝑟𝑏|𝜙

0
⟩} are the transition dipole 

moments.231,229 Therefore, as summarized by Oddershede,229 the properties of the polarization 

propagator in the energy representation (Eq. (158)) underline that this form is most suitable for 

extracting the quantities of interest. Thus it would be desirable to be able to directly calculate 

polarization propagators in the energy representation. An equation of motion for this purpose is 

derived. 
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Equation of motion for the spectral representation of a propagator229 

To calculate the energy-dependent polarization propagator for the two time-dependent operators 

[𝑃(𝑡), 𝑄(𝑡′)], an equation of motion is derived. The Hamiltonian equation of motion in the Heisenberg 

picture can be expressed in terms of the commutator with the time-independent Hamiltonian 𝐻0.229 

𝑖
𝑑𝑃(𝑡)

𝑑𝑡
= [𝑃(𝑡), 𝐻0] 

(159) 

For the (time-dependent) polarization propagator, this yields 

𝑖
𝑑〈〈𝑃, 𝑄(𝑡′)〉〉

𝑑𝑡′
= 𝛿(−𝑡′)⟨𝜙0|[𝑃, 𝑄]|𝜙0⟩ + ⟨𝜙0|𝑃; [𝑄(𝑡′), 𝐻0]|𝜙0⟩ 

(160) 

Inserting the Fourier transform of 〈〈𝑃(𝑡), 𝑄(𝑡′)〉〉 into Eq. (160) delivers an expression for the 

propagator in the energy representation.229 

−𝐸〈〈𝑃; 𝑄〉〉𝐸 = −⟨𝜙0|[𝑃; 𝑄]|𝜙0⟩ − 〈〈𝑃; [𝐻0 , 𝑄]〉〉𝐸 (161) 

The propagator (Eq. (161)) is calculated as the sum of a commutator and another propagator 

〈〈𝑃; [𝐻0 , 𝑄]〉〉𝐸. An equivalent situation to Eq. (133) is obtained. Consecutive higher-order expressions 

for 〈〈𝑃; [𝐻0 , 𝑄]〉〉𝐸 can be iteratively obtained.31,229 

−𝐸〈〈𝑃; [𝐻0 , 𝑄]〉〉𝐸 = −⟨𝜙0|[𝑃, [𝐻0 , 𝑄]]|𝜙0⟩ − 〈〈𝑃; [𝐻0 , [𝐻0 , 𝑄]]〉〉𝐸 (162) 

−𝐸 〈〈𝑃; [𝐻0, [𝐻0, 𝑄]]〉〉𝐸 = − ⟨𝜙0| [𝑃, [𝐻0, [𝐻0, 𝑄]]] |𝜙0⟩ − 〈〈𝑃; [𝐻0, [𝐻0, [𝐻0, 𝑄]]]〉〉𝐸  (163) 

Thus it follows from Eq. (162) and (163) that the polarization propagator in the energy representation 

〈〈𝑃; 𝑄〉〉𝐸 corresponds to the sum of expectation values of commutators over the reference state 𝜙0.31 

The infinite expansion series (Eq. (164)) is also called the moment expansion of the propagator.229 

〈〈𝑃; 𝑄〉〉𝐸 = 𝐸−1⟨𝜙0|[𝑃, 𝑄]|𝜙0⟩ + 𝐸−2⟨𝜙0|[𝑃, [𝐻0 , 𝑄]]|𝜙0⟩ + 𝐸−3 ⟨𝜙0| [𝑃, [𝐻0, [𝐻0, 𝑄]]] |𝜙0⟩ + ⋯ (164) 

To simplify the expression (Eq. (164)), the superoperator space235 is introduced. Matrix elements of 

commutators are abbreviated.31,229 

(𝑃|𝑄) = ⟨𝜙0|[𝑃; 𝑄]|𝜙0⟩ (165) 

Superoperators �̂�𝑛  are employed to shorten the commutator expressions. In contrast to 

“conventional” operators, superoperators act on operators.31,229 

�̂�𝑃 = [𝐻, 𝑃] (166) 
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Using Eq. (165) and (166), the expansion of the polarization propagator is represented with 𝐼𝑄 = 𝑄 by 

〈〈𝑃; 𝑄〉〉𝐸 = 𝐸−1(𝑃|𝐼𝑄) + 𝐸−2(𝑃|�̂�0𝑄) + 𝐸−3(𝑃|�̂�0
2𝑄) + ⋯ =

1

𝐸
(𝑃 |𝐼 + ∑ (

�̂�0

𝐸
)

𝑛

𝑛=1

| 𝑄) 
(167) 

The series expansion of the superoperator in Eq. (167), 
1

𝐸
[𝐼 + ∑ (

�̂�0

𝐸
)

𝑛

𝑛=1 ], can be written as an inverse 

matrix.229 

1

𝐸
[𝐼 + ∑ (

�̂�0

𝐸
)

𝑛

𝑛=1

] = (𝐸𝐼 − �̂�0)
−1

 
(168) 

To arrive at the final working form of the equation of motion, the so-called inner projection of the 

inverse (Eq. (168)) superoperator is used.236 This means that it is projected on a complete set of 

operators {ℎ}. Projecting a superoperator, which acts on operators, on a complete set of operators is 

similar to projecting a “conventional” operator, which acts on states, on a complete set of basis 

functions.31 

〈〈𝑃; 𝑄〉〉𝐸 = (𝑃|ℎ)(ℎ|𝐸𝐼 − �̂�|ℎ)
−1

(ℎ|𝑄) (169) 

The complete set of operators {ℎ} is only complete if all possible states are generated from the 

reference 𝜙0. If the reference is the ground-state Slater determinant, {ℎ} generates all excited 

determinants {ℎ} = {ℎ2, ℎ4, ℎ6, … }. It can be subdivided into operators generating all single 

(de)excitations (ℎ2), double (de)excitations (ℎ4), etc.31,229 It should be noted that reformulating 𝐸𝐼 −

�̂� to 𝐸𝐼 − �̂� = 𝐸𝐼 − �̂� − Σ̂ = �̂�0 − Σ̂ leads to the Dyson equation (Eq. (135)).229 

The equation of motion (EOM) (Eq. (169)) to calculate the polarization propagatorjj and, with this, 

response properties, poles and residues, is exact. Approximate propagators are obtained by truncating 

{ℎ}.31 Additional approximations arise from the reference function, which can be for example a HF 

determinant, an MP2 wave function, or a CC2 wave function. 

Linear-response approaches to calculate excitation energies can be subdivided as a function of these 

approximations used to construct the polarization propagator from Eq. (169). 

Random Phase Approximation (RPA)229 

If the reference wave function is a Hartree-Fock determinant, and only single (de)excitations are 

included, an approximate polarization propagator results. This defines the Random Phase 

Approximation (RPA) (for the polarization propagator).229 

                                                             
jj It should be noted that the derivation remains the same for other two-time operators.  
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The single (de)excitation operator is conventionally divided into an excitation and a deexcitation part 

ℎ2 = {𝑒, 𝑑} defined in terms of creation 𝛼 
+ and annihilation 𝛼𝑖

  operators. {𝑖, 𝑗, … } refer to occupied 

orbitals while {𝑎, 𝑏, … } designate virtual orbitals. Since Eq. (170) and (171) create all possible excited 

determinants, ℎ2 = {𝑒, 𝑑} provides a complete manifold of excited determinants. There exist, 

however, other definitions for ℎ2.229 

𝑒 = ∑ 𝛼𝑎
+𝛼𝑖

 

𝑎,𝑖

 (170) 

𝑑 = ∑ 𝛼𝑖
+𝛼𝑎

 

𝑎,𝑖

 (171) 

Assuming real orbitals, this results with the equation of motion (Eq. (169)) in 

〈〈𝑃; 𝑄〉〉𝐸 = ((𝑃|𝑒) (𝑃|𝑑)) (
(𝑒|𝐸𝐼 − �̂�|𝑒) (𝑒|𝐸𝐼 − �̂�|𝑑)

(𝑑|𝐸𝐼 − �̂�|𝑒) (𝑑|𝐸𝐼 − �̂�|𝑑)
)

−1

(
(𝑒|𝑄)

(𝑑|𝑄)
) 

(172) 

Eq. (172) can be simplified by introducing matrices and vectors. The operators defining the propagator 

are assumed to be real and symmetric (Eq. (174) and (176)).229 

𝑃𝑎𝑖 = (𝑃|𝑒)𝑎𝑖 = ⟨𝜙0|[𝑃, 𝛼𝑎
+𝛼𝑖

 ]|𝜙0⟩ = ⟨𝜙0|𝑃𝛼𝑎
+𝛼𝑖

 − 𝛼𝑎
+𝛼𝑖

 𝑃|𝜙0⟩ = ⟨𝜙0|𝑃𝛼𝑎
+𝛼𝑖

 |𝜙0⟩ = ⟨𝜙
0

|𝑃|𝜙
𝑖
𝑎⟩ (173) 

𝑃𝑖𝑎 = (𝑃|𝑑)𝑖𝑎 = ⟨𝜙0|[𝑃, 𝛼𝑖
+𝛼𝑎

 ]|𝜙0⟩ = ⟨𝜙0|−𝛼𝑖
+𝛼𝑎

 𝑃|𝜙0⟩ = −⟨𝜙𝑖
𝑎|𝑃|𝜙0⟩ = −𝑃𝑎𝑖 (174) 

𝑄𝑎𝑖 = (𝑒|𝑄)𝑎𝑖 = ⟨𝜙0|[𝛼𝑖
+𝛼𝑎

 , 𝑄]|𝜙0⟩ = ⟨𝜙0|𝛼𝑖
+𝛼𝑎

 , 𝑄|𝜙0⟩ = ⟨𝜙𝑖
𝑎|𝑄|𝜙0⟩ (175) 

𝑄𝑖𝑎 = (𝑑|𝑄)𝑖𝑎 = ⟨𝜙0|[𝛼𝑎
+𝛼𝑖

 , 𝑄]|𝜙0⟩ = ⟨𝜙0|−𝑄𝛼𝑎
+𝛼𝑖

 |𝜙0⟩ = −⟨𝜙0|𝑄|𝜙𝑖
𝑎⟩ = −𝑄𝑎𝑖 (176) 

(𝑒|𝐼|𝑒) = ⟨𝜙0|[𝛼𝑗
+𝛼𝑏

 , 𝛼𝑎
+𝛼𝑖

 ]|𝜙0⟩ = 𝛿𝑎𝑏𝛿𝑖𝑗 (177) 

(𝑑|𝐼|𝑒) = ⟨𝜙0|[𝛼𝑏
+𝛼𝑗

 , 𝛼𝑎
+𝛼𝑖

 ]|𝜙0⟩ = 0 (178) 

(𝑒|�̂�|𝑒) = ⟨𝜙0|[𝛼𝑗
+𝛼𝑏

 , 𝐻, 𝛼𝑎
+𝛼𝑖

 ]|𝜙0⟩ = ⟨𝜙0|[𝛼𝑗
+𝛼𝑏

 , 𝐻]|𝜙𝑖
𝑎⟩ − ⟨𝜙0|[𝛼𝑗

+𝛼𝑏
 , 𝛼𝑎

+𝛼𝑖
 ], 𝐻|𝜙0⟩ 

= ⟨𝜙𝑗
𝑏|𝐻|𝜙𝑖

𝑎⟩ − 𝛿𝑖𝑗𝛿𝑎𝑏⟨𝜙0|𝐻|𝜙0⟩ = 𝐴𝑖𝑗
𝑎𝑏  

(179) 

(𝑒|�̂�|𝑑) = ⟨𝜙0|[𝛼𝑗
+𝛼𝑏

 , 𝐻, 𝛼𝑖
+𝛼𝑎

 ]|𝜙0⟩ = ⟨𝜙𝑗
𝑏|[𝐻, 𝛼𝑖

+𝛼𝑎
 ]|𝜙0⟩ − ⟨𝜙0|𝐻, [𝛼𝑗

+𝛼𝑏
 , 𝛼𝑖

+𝛼𝑎
 ]|𝜙0⟩ 

= −⟨𝜙𝑖𝑗
𝑎𝑏|𝐻|𝜙0⟩ = −𝐵𝑖𝑗

𝑎𝑏  

(180) 

(𝑑|�̂�|𝑒) = ⟨𝜙0|[𝛼𝑏
+𝛼𝑗

 , 𝐻, 𝛼𝑎
+𝛼𝑖

 ]|𝜙0⟩ = −⟨𝜙0|𝐻[𝛼𝑏
+𝛼𝑗

 , 𝛼𝑎
+𝛼𝑖

 ]|𝜙0⟩ (181) 
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= −⟨𝜙0|𝐻|𝜙𝑖𝑗
𝑎𝑏⟩ = −𝐵𝑖𝑗

𝑎𝑏  

The matrix elements {𝐴𝑖𝑗
𝑎𝑏} (Eq. (179)) and {𝐵𝑖𝑗

𝑎𝑏} (Eq. (180) and (181)) are traditionally expressed in 

terms of Mulliken two-electron integrals. 

𝐴𝑖𝑗
𝑎𝑏 = 𝛿𝑖𝑗𝛿𝑎𝑏(휀𝑎 − 휀𝑖) + (𝑖𝑎|𝑗𝑏) − (𝑖𝑗|𝑎𝑏) (182) 

𝐵𝑖𝑗
𝑎𝑏 = (𝑖𝑎|𝑏𝑗) − (𝑖𝑏|𝑎𝑗) (183) 

Inserting Eq. (173) to (181) into the equation of motion in a singly-excited subspace (Eq. (172)) yields 

the polarization propagator with the unit matrix 1229 

〈〈𝑃; 𝑄〉〉𝐸 = (𝑃 −𝑃) (𝐸1 − 𝐴 −𝐵

−𝐵 −𝐸1 − 𝐴
)

−1

(
𝑄

−𝑄
) 

(184) 

The excitation energies correspond to the poles of the propagator 〈〈𝑃; 𝑄〉〉𝐸 (Eq. (184)). At these poles, 

the inverse matrix (𝐸1 − 𝐴 −𝐵

−𝐵 −𝐸1 − 𝐴
)

−1

 does not exist because its determinant is 0.229  

𝑑𝑒𝑡 (𝜔1 − 𝐴 −𝐵

−𝐵 −𝜔1 − 𝐴
)

!
=
 

0 
(185) 

This results in an eigenvalue problem (substituting 𝐸 with 𝜔) with eigenvectors (
𝑋
𝑌

)
𝑛

 

(
𝐴 𝐵
𝐵 𝐴

) (
𝑋
𝑌

)
𝑛

= 𝜔𝑛 (1 0

0 −1
) (

𝑋
𝑌

)
𝑛

 
(186) 

The eigenvalues (= excitation energies) are obtained from the determinant 

𝑑𝑒𝑡 |(
𝐴 𝐵
𝐵 𝐴

) − 𝜔 (1 0

0 −1
)| 

(187) 

To obtain the transition moments, the inverse matrix (Eq. (184)) is usually not explicitly calculated. 

Instead, the approximate propagator within the RPA framework, equivalently to the exact polarization 

propagator (Eq. (157)), can be expressed in terms of the eigenvectors 𝑋, 𝑌 of the determinant (Eq. 

(185)) and the matrix representation of the two vectors (𝑃|ℎ) and  (ℎ|𝑄) in the equation of motion 

(Eq. (169)).229 

To derive the expression, at first a diagonal form of the inverse matrix in Eq. (184) is obtained with the 

eigenvectors {(
𝑋
𝑌

)
𝑛

}. The derivation starts with recognizing that only pairwise eigenvectors result.229  
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(
𝐴 𝐵
𝐵 𝐴

) (
𝑌
𝑋

)
−𝑛

= −𝜔𝑛 (1 0

0 −1
) (

𝑌
𝑋

)
−𝑛

 
(188) 

Eq. (186) and (188) can be summarized as 

(
𝐴 𝐵
𝐵 𝐴

) (
𝑋 𝑌
𝑌 𝑋

) = (1 0

0 −1
) (

𝑋 𝑌
𝑌 𝑋

) (
𝜔 0
0 −𝜔

) 
(189) 

The eigenvectors {(
𝑋
𝑌

)
𝑛

} are normalized. 

(
𝑋
𝑌

)
†

(1 0

0 −1
) (

𝑋
𝑌

) = 1 
(190) 

(
𝑌
𝑋

)
†

(1 0

0 −1
) (

𝑌
𝑋

) = −1 
(191) 

This can be summarized in the matrix 

(
𝑋 𝑌
𝑌 𝑋

)
†

(1 0

0 −1
) (

𝑋 𝑌
𝑌 𝑋

) = (
1 0
0 −1

) 
(192) 

An energy-dependent term is added to Eq. (189).229 

(𝐴 − 𝐸1 𝐵

𝐵 𝐴 + 𝐸1
) (

𝑋 𝑌
𝑌 𝑋

) = (1 0

0 −1
) (

𝑋 𝑌
𝑌 𝑋

) (𝜔 − 𝐸1 0

0 −𝜔 − 𝐸1
) 

(193) 

The inverse of Eq. (193) reads 

(𝑋 𝑌
𝑌 𝑋

)
−1

(𝐴 − 𝐸1 𝐵

𝐵 𝐴 + 𝐸1
)

−1

= (𝜔 − 𝐸1 0

0 −𝜔 − 𝐸1
)

−1

(𝑋 𝑌
𝑌 𝑋

)
−1

(1 0

0 −1
) 

(194) 

Multiplying with (
𝑋 𝑌
𝑌 𝑋

) from the left yields 

(𝐴 − 𝐸1 𝐵

𝐵 𝐴 + 𝐸1
)

−1

= (
𝑋 𝑌
𝑌 𝑋

) (𝜔 − 𝐸1 0

0 −𝜔 − 𝐸1
)

−1

(1 0

0 −1
) (

𝑋 𝑌
𝑌 𝑋

)
−1

 
(195) 

Using Eq. (192) delivers 

(𝐴 − 𝐸1 𝐵

𝐵 𝐴 + 𝐸1
)

−1

= (
𝑋 𝑌
𝑌 𝑋

) (𝜔 − 𝐸1 0

0 −𝜔 − 𝐸1
)

−1

(1 0

0 −1
) (

𝑋 𝑌
𝑌 𝑋

)
†

 
(196) 

(𝐴 − 𝐸1 𝐵

𝐵 𝐴 + 𝐸1
)

−1

= (
𝑋 𝑌
𝑌 𝑋

) (𝜔 − 𝐸1 0

0 −𝜔 − 𝐸1
)

−1

(
𝑋 𝑌

−𝑌 −𝑋
)

†

 
(197) 

Inserting Eq. (197) into the total propagator (Eq. (184)) yields 
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〈〈𝑃; 𝑄〉〉𝐸 = (𝑃 −𝑃) (
𝑋 𝑌
𝑌 𝑋

) (𝐸1 − 𝜔 0

0 𝜔 + 𝐸1
)

−1

(
𝑋 𝑌

−𝑌 −𝑋
)

†

(
𝑄

−𝑄
) 

(198) 

Multiplying the matrixes delivers the propagator. 

〈〈𝑃; 𝑄〉〉𝐸 = (𝑃 −𝑃) (
𝑋 𝑌
𝑌 𝑋

) (𝐸1 − 𝜔 0

0 𝜔 + 𝐸1
)

−1

(
𝑋 𝑌

−𝑌 −𝑋
)

†

(
𝑄

−𝑄
) 

(199) 

Reformulating the equation yields 

〈〈𝑃; 𝑄〉〉𝐸 = 𝑃(𝑋 + 𝑌)(𝐸1 − 𝜔)
−1

(𝑋 + 𝑌)†𝑄 + 𝑃(𝑋 + 𝑌)(𝐸1 + 𝜔)
−1

(𝑋 + 𝑌)†𝑄 (200) 

In order to explicitly represent the poles and residues of the operator, Eq. (200) can be expressed as a 

sum of the poles.237 

𝛼(𝜔) = 〈〈𝑃; 𝑄〉〉𝐸 = ∑
𝑃(𝑋𝑛 + 𝑌𝑛)(𝑋𝑛 + 𝑌𝑛)𝑇𝑄

𝜔 − 𝜔𝑛
−

𝑃(𝑋𝑛 + 𝑌𝑛)(𝑋𝑛 + 𝑌𝑛)𝑇𝑄

𝜔 + 𝜔𝑛
𝑛

 
(201) 

The residues can be then represented as a simple product. 

𝑟𝑒𝑠 = ∑ 𝑃𝑖𝑎(𝑋𝑖𝑎,𝑛 + 𝑌𝑎𝑖,𝑛)(𝑋𝑖𝑎,𝑛 + 𝑌𝑎𝑖,𝑛)
𝑇

𝑄𝑎𝑖

𝑖,𝑎

 (202) 

Since {𝑌𝑎𝑖,𝑛} is associated with the deexcitations {𝑄𝑎𝑖}, it summarizes the deexcitation amplitudes. 

Consistently, {𝑋𝑖𝑎,𝑛} refers to the excitations. Transition dipole moments are computed from the trace 

of the excitation and deexcitation vectors for a given excited state 𝑛 with one-electron operators.179 

The three components 𝜇𝑞  of the transition dipole vector 𝑟 = (𝑥, 𝑦, 𝑧), which are included in the P- and 

Q matrices, are accessible from the vectors. 

𝜇𝑞,𝑛 = ∑(𝑋𝑖𝑎,𝑛 + 𝑌𝑎𝑖,𝑛)
𝑇

⟨Φ𝑖
𝑎|𝜇𝑞|Φ0⟩

𝑖𝑎

 (203) 

For the oscillator strengths 𝑓𝑛, this implies 

𝑓𝑛 =
2

3
𝜔𝑛 ∑ (∑(𝑋𝑖𝑎,𝑛 + 𝑌𝑎𝑖,𝑛)

𝑇
⟨Φ𝑖

𝑎|𝜇𝑞|Φ0⟩

𝑖𝑎

)

2

𝑞

 
(204) 

It should be noted that the Thomas-Reiche-Kuhn sum rule is obeyed in an RPA formalism. It was shown 

above that the A-matrix corresponds to matrix elements between singly-excited determinants while 

the B-matrix contains double excitations with respect to the reference. It thus takes into account 

correlation both for the ground state and the excited states (no Brillouin’s theorem for singly-excited 

states, see above). When neglecting the B-matrix, RPA becomes equivalent to CIS. Only the X-vectors 
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are included. These vectors contribute also most to the RPA excitation energies, with the double 

excitations constituting only a minor part.229 

A number of equivalent derivations for RPA exist; and its name comes from the original derivation in 

terms of a diagrammatic construction.238 RPA and TD-HF are often used interchangeably31 although 

RPA is strictly speaking a linearized version of TD-HF, i.e., TD-HF in the limit of “small-amplitude 

deviations”.238 In the above equation-of-motion formalism, this is exploited by limiting the manifold of 

excitation operators {ℎ} to single excitations. The MCRPA (multiconfigurational random phase 

approximation) extends the RPA formalism to multiconfigurational reference wave functions229 

although it is only rarely employed, being mostly replaced with the CASSCF/CASPT2 formalism. 

As outlined by Oddershede et al. and to summarize RPA for the subsequent section,229 it follows from 

the equation of motion that the polarization propagator is the product of  a vector multiplied with an 

inverse matrix and another vector (Eq. (169)). The polarization propagator (Eq.(184)) is therefore 

commonly rewritten as 

〈〈𝑃; 𝑄〉〉𝐸 = 𝑥(𝜔 − 𝐸1)
−1

𝑥 (205) 

𝑥 are the transition amplitudes.239   

Algebraic Diagrammatic Construction (ADC)240 Scheme for the Polarization Propagator229,239 

The ADC family of methods calculates transition energies from approximating the polarization 

propagator as well. Similar to RPA, its poles and residues are computed in the spectral representation 

from the equation of motion.239 The underlying kea idea is to obtain a certain polarization propagator 

with its poles and its residues that are correct to a predefined order of perturbation. 

To derive the ADC approximations, the matrix of the propagator, (𝜔 − 𝐸1)
−1

 (Eq. (205)), is rewritten 

in a non-orthogonal basis. 𝐸 is not a diagonal matrix anymore, but rather a matrix representation 𝑀 

of some effective Hamiltonian, with 𝑓 being the corresponding effective transition amplitudes.239 

〈〈𝑃; 𝑄〉〉𝐸 = 𝑓(𝜔 − 𝑀)−1𝑓 (206) 

Both the transition amplitudes and the effective Hamiltonian are expanded as a perturbation series in 

terms of the perturbation, i.e., the fluctuation potential 𝑉 (see MP2 section). 

𝑀 = 𝑀(0) + 𝑀(1) + 𝑀(2) … (207) 

𝑓 = 𝑓(0) + 𝑓(1) + 𝑓(2) … (208) 
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An analysis of the expansion of 〈〈𝑃; 𝑄〉〉𝐸 (Eq. (206)) provides explicit expressions for 𝑀𝜇𝜈
(𝑛)

 and 𝑓𝜇
(𝑛)

. 

𝜇, 𝜈 refer to excitation types (single, double, etc. excitations). The order 𝑛 of an ADC(n) method 

designates the highest order included in the calculation of 𝑀 and 𝑓 for 〈〈𝑃; 𝑄〉〉𝐸 (Eq. (207), (208)).239 

𝑀 is then calculated and diagonalized, yielding the poles of the polarization propagator and the 

excitation energies of the system. Transforming 𝑓 with the eigenvectors 𝑦 of 𝑀 permits to calculate 

transition dipole moments.239 

The expressions for 𝑀 and 𝑓 are more easily derived by means of the intermediate state 

representation.239 This is equivalent to choosing a different reference wave function and complete 

operator manifold for Eq. (169) than in RPA. In ADC(2), the reference wave function corresponds to a 

ground-state MP2 function 𝜓0. In extension of the above model, it can be, on a more general level, 

represented as the sum of the SCF energy |𝑆𝐶𝐹⟩ and higher-order corrections |0(𝑛)⟩.  

𝜓0 = 𝐶(|𝑆𝐶𝐹⟩ + |0(1)⟩ + |0(2)⟩ + ⋯ ) (209) 

A complete excited-state basis {𝜓𝐽} is obtained by acting with all types of excitation operators (i.e., a 

full manifold) on the MP2 function. Orthogonalizing these wave functions {�̃�𝐽} yields the intermediate 

state representation. The 𝑀 matrix and the 𝑓 vector can then be explicitly defined.239 

𝑀𝐼𝐽 = ⟨�̃�𝐼|�̂� − 𝐸𝑁|�̃�𝐽⟩ (210) 

𝑓𝐼,𝑝𝑞 = ⟨�̃�𝐼|𝛼𝑝
+𝛼𝑞

 |𝜓0⟩ (211) 

Inserting Eq. (210) and (211) into Eq. (206) yields an equation that can be compared to Eq. (169). 

〈〈𝑃; 𝑄〉〉𝐸 = ((𝑃|ℎ2), (𝑃|ℎ4), … ) (
𝑀22(𝐸) 𝑀24(𝐸) …

𝑀42(𝐸) 𝑀44(𝐸) …
⋮ ⋮ ⋱

)

−1

(
(ℎ2|𝑄)

(ℎ4|𝑄)
⋮

) 

(212) 

𝑀22 = ⟨ℎ2|�̂�0 + 𝑉 − 𝐸𝑁|ℎ2⟩ (213) 

Both the perturbation (fluctuation potential) 𝑉 included in the 𝑀-matrix and the order of perturbation 

in the reference wave function contribute to the order 𝑛 of the ADC-scheme for Eq. (207) and (208).229 

For the (𝑃|ℎ𝑖) vector, this implies 

(𝑃|ℎ𝑖) = 𝐶2⟨𝑆𝐶𝐹 + 0(1) + 0(2) … |[𝑃, ℎ𝑖]|𝑆𝐶𝐹 + 0(1) + 0(2) … ⟩ (214) 

Only single excitations contribute to the zeroth-order of 𝑓 = (𝑃|ℎ𝑖). Double and triple excitations 

enter into the first-order correction. 
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(𝑃|ℎ2)0 = 𝐶2⟨𝑆𝐶𝐹|[𝑃, ℎ2]|𝑆𝐶𝐹⟩ (215) 

(𝑃|ℎ𝑖)1 = 𝐶2(⟨𝑆𝐶𝐹|[𝑃, ℎ𝑖]|0(1)⟩ + ⟨0(1)|[𝑃, ℎ𝑖]|𝑆𝐶𝐹⟩)            𝑖 𝜖 {4,6} (216) 

It follows for the zeroth-order polarization propagator. 

〈〈𝑃; 𝑄〉〉𝐸
(0)

= (𝑃|ℎ2)0𝑀22
(0)(ℎ2|𝑄)0 (217) 

𝑀22
(0)

= ⟨𝑆𝐶𝐹|[ℎ2, [𝐸 − 𝐹, ℎ2]]|𝑆𝐶𝐹⟩ (218) 

From Eq. (218), it is evident that the poles of the zeroth-order polarization propagator (Eq. (217)) are 

the orbital energies.229 

The first-order polarization propagator is similarly calculated from the first-order 𝑀22
(1)

 (the 

perturbation/fluctuation potential) and contains no contributions from the excitation vectors.kk 229 

〈〈𝑃; 𝑄〉〉𝐸
(1)

= (𝑃|ℎ2)0𝑀22
(1)(ℎ2|𝑄)0 (219) 

Since the matrix 𝑀22
(1)

 is equivalent to the sum of the zeroth-order Hamiltonian and the perturbing 

fluctuation potential, Eq. (219) is equal to the polarization propagator in RPA, Eq. (172). Thus, a 

hypothetical “ADC(1)” is equivalent to RPA. Similarly, as stated by Oddershede, CIS somewhat 

corresponds to a mixture between the polarization propagator of zeroth- and of first-order. The 

zeroth-order polarization propagator computes excitation energies as orbital energy differences, i.a., 

in a frozen-orbital approximation (see CIS above).229 

It can be shown that the influence of the triple excitations to the second-order contribution of 𝑀 

diminish if ℎ2 and ℎ6 are linearly independent. The inverse matrix (Eq. (212)) then becomes 

𝑀−1 = (
𝑀22 𝑀24

𝑀42 𝑀44
)

−1

= (
𝑃−1 −𝑃−1𝑀24𝑀44

−1

−𝑀44
−1𝑀42𝑃−1 𝑀44

−1+𝑀44
−1𝑀42𝑃−1𝑀24𝑀44

−1) 
(220) 

𝑃(𝐸) = 𝑀22 − 𝑀24𝑀44
−1𝑀42 (221) 

Inserting Eq. (220) into the equation for the propagator in the intermediate-state representation (Eq. 

(212)) yields the polarization propagator to second order.229 

〈〈𝑃; 𝑄〉〉𝐸
(2)

= 𝑇(𝑃, 𝐸)𝑃(𝐸)−1𝑇(𝑄, 𝐸) + (𝑃|ℎ4)𝑀44
−1(ℎ4|𝑄) = 𝑊2(𝐸) + 𝑊4(𝐸) (222) 

The transition matrices 𝑇(𝑃, 𝐸) are defined as 

                                                             
kk It should be noted that the rank of the single-excitation vector is 1. However, the first-order correction in the 
MP2 wave function is of rank 2.229 
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𝑇(𝑃, 𝐸) = (𝑃|ℎ2) − (𝑃|ℎ4)𝑀44
−1𝑀42 (223) 

They provide the transition moments.229 The eigenvalues of 𝑃(𝐸) correspond to the transition 

energies. 𝑊4(𝐸) does not affect transition moments or energies.229 

To obtain an explicit expression of the polarization propagator to second order, the excitation 

operators for ℎ2, ℎ4 are explicitly inserted in Eq. (220) and (222). As outlined by Oddershede, the 𝑀22 

matrix can be represented in terms of A- and B-matrixes (comparable to RPA).229    

𝑀22 = (
𝐸𝑆 − 𝐴 −𝐵

−𝐵 −𝐸𝑆 − 𝐴
) (224) 

However, the reference state is not a HF determinant, but a correlated ground-state function. 

Moreover, second-order terms arise in the A- and B-matrices that are neglected in first-order RPA.229 

𝐴(2) = ⟨0(1)|[𝑞, [𝑉, 𝑞+]]|𝑆𝐶𝐹⟩ + ⟨𝑆𝐶𝐹|[𝑞, [𝑉, 𝑞+]]|0(1)⟩ + ⟨0(1)|[𝑞, [𝐹, 𝑞+]]|0(1)⟩ (225) 

Similar terms are included in the B-matrix. In addition to the unit matrix, S incorporates some second-

order contributions as well.229 

𝑆(2) = ⟨0(1)|[𝑞, 𝑞+]|0(1)⟩ (226) 

Thus, Eq. (221) becomes 

𝑃(𝐸) = (
𝐸𝑆(0,2) − 𝐴(0,1,2) − 𝐶‡(1)(𝐸 − 𝐷(0))

−1
𝐶(1) −𝐵(1,2)

−𝐵(1,2) −𝐸𝑆(0,2) − 𝐴(0,1,2) − 𝐶‡(1)(−𝐸 − 𝐷(0))
−1

𝐶(1)
) (227) 

𝐶(1) = (𝑞+𝑞+|�̂�|𝑞) (228) 

𝐷(0) = (𝑞+𝑞+|�̂�|𝑞𝑞) (229) 

𝐶(1) and 𝐷(0) act on the SCF reference state.229 They correspond to two-particle-two-hole excitations. 

From Eq. (227), it is evident that they lower the excitation energies.229 Including these excitations (i.e, 

the 𝐶(1)(𝐸 − 𝐷(0))
−1

𝐶(1) matrices) corresponds to the second-order polarization propagator 

approximation (SOPPA).31,229  

In contrast to SOPPA, which is correct through second order, in ADC-based approaches, some terms in 

the matrices (Eq. (227) to (229)) are neglected. Wormit and Dreuw illustrate this by means of the 

structure of the ADC(2) matrix. In principle, the matrix includes all single (particle-hole) and double 

(two-particle-two-hole) excitations with respect to an MP2 ground state. Hence its size is identical to 

the CISD matrix of the system. It is well-known that the CISD matrix is composed of blocks between 

the ground-state and all single- and double-excited determinants. Furthermore, from the 
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diagrammatic construction outlined above (Eq. (227)), the matrix elements contain zeroth-, first- and 

second-order contributions. Including all matrix elements between the excitations to the second order 

corresponds to SOPPA. In the ADC(2) variants, several blocks of the ADC matrix are not fully included 

to second order. The strict ADC(2)-s scheme includes the (p-h)-block to second order, the (p-h,2p-2h) 

and (2p-2h,p-h) blocks to first order, and the (2p-2h,2p-2h) block to zeroth order. In comparison, 

including the (2p-2h,2p-2h)-block to first order defines the extended ADC(2)-x scheme. As could be 

expected from Eq. (227), ADC(2)-x excitation energies are usually lower than their ADC(2)-s 

counterparts. While this usually deteriorates the performance, Dreuw and Wormit239 suggest 

employing ADC(2)-x to identify excited states with double-excitation character.241,242  

According to Wormit and Dreuw, simplifications to the ADC(2) scheme exist as well. Starting from an 

SOS-MP2 ground state and including only opposite-spin excitations also in the (2p-2h) blocks 

corresponds to the SOS-ADC(2) approach. Compared with conventional ADC(2), it is more efficient.239 

Even more speedup can be achieved by starting from block-diagonalized ADC matrices. For instance, 

it has been suggested to neglect valence-core couplings to compute computationally challenging core 

excitations.239,243,244,245 As pointed out by Wormit and Dreuw, it is evident from Eq. (210) and (211) that 

in contrast to most other excited-state methods, ADC(2) excited-state properties are directly 

accessible from the intermediate state representation, which provides the excited-state amplitudes 

𝑓𝐼,𝑝𝑞.239 This implies that whenever excited-state properties are required, ADC(2) constitutes a 

computationally efficient approach. 

Finally, it should be noted that the MP2 ground state, the basis of ADC(2), can be problematic due to 

the well-known deficiencies of MP2 (see above).239 In contrast, CC-based approaches rely on a more 

robust ground-state description. They are presented in the following sections. 

Approximate Coupled Cluster to Second Order (CC2) in a Linear Response Formalism246 

CC-based excitation energies obtained in a linear-response formalism or in an equation-of-motion 

approach are identical247 but transition moments and properties might differ. CC2 excitation energies 

are conventionally obtained in a linear-response formalism. Therefore, the linear-response equations 

are given in the following.246,248 As outlined by Christiansen et al.,246 CC2 is an approximation of CCSD. 

As stated above, CCSD includes single and double excitations with respect to the reference wave 

function to an infinite order. CC2 still fully incorporates single excitations because they are decisive for 

orbital relaxation (see above). The double excitations are, however, approximated. They are correct to 

first order in the perturbation. Christiansen et al. pointed out that the original CIS(D) formalism of 

Head-Gordon et al.173 (see above) can be considered as a non-iterative version of CC2.246  
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CC2 is particularly used for excited-state calculations, and it computes excitation energies and 

transition moments as the poles and residues of the linear-response function of a CC2 ground state. In 

CCSD, the CC excitation operator 𝑒𝑇  involves only single and double excitations  𝑒𝑇1+𝑇2 . Eq. (29) and 

(30) for the amplitudes of the CCSD ground-state wave function thus become246 

⟨Φ𝑖
𝑎|𝑒−𝑇1−𝑇2 𝐻𝑒𝑇1+𝑇2|Φ0⟩ = 0 

⟨Φ𝑖𝑗
𝑎𝑏|𝑒−𝑇1−𝑇2 𝐻𝑒𝑇1+𝑇2|Φ0⟩ = 0 

(230) 

With the transformed total Hamiltonian �̂� = 𝑒−𝑇1𝐻𝑒𝑇1 = 𝑒−𝑇1(𝐹 + 𝑉)𝑒𝑇1, these equations yield246 

⟨Φ𝑖
𝑎|�̂� + [�̂�, 𝑇2]|Φ0⟩ = 0 

⟨Φ𝑖𝑗
𝑎𝑏|�̂� + [�̂�, 𝑇2] +

1
2

[[�̂�, 𝑇2], 𝑇2] |Φ0⟩ = 0 

(231) 

In CC2, the single equation is left as is since the singles respond to external perturbations to zeroth-

order246 in 𝑉.ll The doubles are correct only through first order. The singles are used as zeroth-order 

parameters, and they enter the final equations for the CC2 amplitudes (Eq. (232)) via the transformed 

Hamiltonian.246  

⟨Φ𝑖
𝑎|�̂� + [�̂�, 𝑇2]|Φ0⟩ = 0 

⟨Φ𝑖𝑗
𝑎𝑏|�̂� + [𝐹, 𝑇2]|Φ0⟩ = 0 

(232) 

The final CC2 energy expression is closely related to the MP2-one (⟨Φ𝑖𝑗
𝑎𝑏|𝐻 − 𝐻0|Φ0⟩ = 0), but 

integrals are transformed due the single-excitation operator. This does not affect the energy but 

ensures that properties from response functions can be more accurately computed. To derive the CC2 

response function, a time-dependent perturbation 𝑉𝑡  is added. However, 𝐹 remains the zeroth-order 

reference so that the singles are still zeroth-order in 𝑉 and first-order in 𝑉𝑡 .  This yields, via the time-

dependent Schrödinger equation, the equations for the time-dependent amplitudesmm of CC2.246 

⟨Φ𝑖
𝑎|�̂� + [�̂�, 𝑇2]|Φ0⟩ = 𝑖

𝜕𝑡1

𝜕𝑡
 

⟨Φ𝑖𝑗
𝑎𝑏|�̂� + [𝐹 + �̂�, 𝑇2]|Φ0⟩ = 𝑖

𝜕𝑡2

𝜕𝑡
 

(233) 

                                                             
ll This can be explained by the fact that the singles in MP2 enter only in second order if optimized Hartree-Fock 
orbitals are used. Otherwise, i.e., for non-optimized orbitals, they enter in zeroth-order.246 
mm It should be noted that the similarity-transformed Hamiltonian in Eq. (233) differs by the time-dependent 
external potential from the Hamiltonian in Eq. (232) although the same symbols are employed. 
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With these amplitudes, a linear-response function of CC2, a "CC2 propagator" 〈〈𝑃, 𝑄〉〉𝐸  can be 

defined, and with this an equation to compute its poles. A variety of methods exist to derive the CC2 

response function.249 Jørgensen et al. proposed a Lagrangian of the CC quasi-energy.248  

The poles of the CC2 response function can be determined as the eigenvalues of the so-called CC2 

Jacobian.249 The cluster notation is employed for the excitation operators 𝑇, which are divided into the 

amplitudes 𝑡 and corresponding excitation operators 𝜏. {𝜇𝑖} designate excitations of a given type.248 

𝑇 = 𝑡𝜏 = ∑ 𝑡𝜇𝜏𝜇

𝜇

 (234) 

The CC2 Jacobian 𝐴 is defined as 

𝐴𝜇𝑖𝜈𝑗
= (

⟨𝜇1|[�̂�, 𝜏𝜈1
]𝑒−𝑇2

(0)

|𝐻𝐹⟩ ⟨𝜇1|[�̂�, 𝜏𝜈2
]|𝐻𝐹⟩

⟨𝜇2|[�̂�, 𝜏𝜈1
]|𝐻𝐹⟩ 𝛿𝜇𝜈𝜔𝜇2

) 

(235) 

Its eigenvalues {𝜔𝑘} are the excitation energies. 

𝐴𝑆𝑘 = 𝜔𝑘𝑆𝑘 (236) 

The transition moments can be obtained from the residues of the response function.246 Wormit and 

Dreuw239 emphasized that in contrast to ADC-based approaches, approximate CC-matrices are not 

Hermitian. Therefore, CC calculations require in fact two calculations (except for computations of 

energy values only, i.e., of the poles), yielding left and right eigenvectors that form a biorthonormal 

set. Similarly, other properties of CC wave functions are not directly accessible, as it is the case for 

ADC(n). Although formalisms exist to calculate orbital-relaxed properties of the CC wave function from 

the left and right eigenvectors of the CC-matrices, such computations are computationally more 

demanding than comparable ADC-based calculations.239 

Christiansen et al.246 outlined that the CC2 model is intermediate between CCS and CCSD. In the same 

way, CC3 is intermediate between CCSD and CCSDT. They furthermore emphasized that CCn 

approximates the n-tuple excitations to order n-1. The singles take into account orbital relaxation due 

to the fluctuation potential and the external perturbation. The relationship to CIS(D) becomes evident 

from Eq. (233). Only disconnected triple excitations 𝑇1, 𝑇2 are included in the doubles. This is equivalent 

to the "spectator orbital"-type rationalization of Head-Gordon (see above).173 Moreover, by neglecting 

the single contributions (the similarity-transformed Hamiltonian), the CC2 Jacobian can be 

transformed to the CIS(D∞)-Jacobian (A matrix). Symmetrizing it yields the M-matrix of ADC(2).239  

Wormit and Dreuw noted that CC2 and ADC(2) should provide excitation energies of comparable 

accuracy. However, since ADC(2) excitation energies are obtained as the eigenvalues of a Hermitian 
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matrix, they potentially provide a more accurate description of conical intersections.239 Apart from 

that, CC2 and ADC(2) differ mostly in their ground-state description.239,246 While the CC2 ground state 

incorporates the single excitations to infinite order,246 they are not included in MP2 (Brillouin's 

theorem).239  

The linear-response formalism to obtain CC excitation energies was first suggested by Monkhorst.250,251 

The equation-of-motion formalism, which yields equivalent results, is presented in the following 

subsection although it is not directly a response/propagator approach. 

Equation-of-Motion Approach to Coupled-Cluster Excitation Energies252 

Sekino and Bartlett253 demonstrated that an equation-of-motion (EOM) approach constitutes an 

alternative yet equivalent route to the expression of the CC linear response of a system (Eq. (235) and 

(236)). An excitation operator Ω𝑘 acts on the CC ground state Ψ𝐶𝐶  and generates the k-th excited state 

Ψ𝐶𝐶
𝑘 . 

Ω𝑘Ψ𝐶𝐶 = Ψ𝐶𝐶
𝑘  (237) 

The states have energies 𝐸0 and 𝐸𝑘, respectively. 

𝐻Ψ𝐶𝐶 = 𝐸0Ψ𝐶𝐶 (238) 

𝐻Ψ𝐶𝐶
𝑘 = 𝐸𝑘Ψ𝐶𝐶

𝑘  (239) 

The transition energy 𝜔𝑘 is obtained as253 

𝜔𝑘Ω𝑘Ψ𝐶𝐶 = [𝐻Ω𝑘 − Ω𝑘𝐻]Ψ𝐶𝐶 = [𝐻, Ω𝑘]Ψ𝐶𝐶 (240) 

The ground state coupled-cluster wave function is defined as254 (Eq. (28)) 

Ψ𝐶𝐶 = 𝑒𝑇Φ0 (241) 

Since the excitation operators commute, inserting Eq. (241) into Eq. (239) yields an expression 

including the excited-state energies.254 

(𝐻𝑒𝑇 − 𝐸𝑘𝑒𝑇)Ω𝑘Φ0 = 0 (242) 

Excited-state energies can thus be obtained as the eigenvalues of a similarity-transformed Hamiltonian 

�̅� = 𝑒−𝑇𝐻𝑒𝑇 .254,255 

|�̅� − 𝐸1̅| = 0 (243) 



68 
 

The similarity transformation of the Hamiltonian is not unitary. Therefore, each eigenvalue 𝐸 is 

associated with a pair of eigenvectors.254 This is conventionally expressed in a pair of coupled equations 

for the left and the right eigenvectors with 𝐿 = Ω̃𝑘 and 𝑅 = Ω𝑘, respectively.255 

𝐿�̅� = 𝐸𝐿 (244) 

�̅�𝑅 = 𝐸𝑅 (245) 

𝐿 is thus a deexcitation operator. Equivalent expressions to this “bra state” are in fact used to compute 

linear-response CC2 properties as well as CC2 gradients.254,256  

Ψ̃𝐶𝐶
𝑘 = Ψ̃𝐶𝐶𝐿 (246) 

Due to the non-Hermitian character of the EOM expressions, the right and the left eigenvectors are 

not Hermitian conjugates. They form a biorthogonal set and are often additionally chosen to be 

normalized. Due to the intermediate normalization, left and right eigenvectors are not Hermitian 

conjugates even for systems like the dihydrogen molecule where EOM-CCSD is exact.254 

⟨Ψ̃𝐶𝐶
(𝑖)

|Ψ𝐶𝐶
(𝑗)⟩ = 𝛿𝑖𝑗 (247) 

It should be stressed that the equations for the most common EOM-based approach, EOM-CCSD, have 

a form similar to the CI matrix equations (Eq. (243)). However, because of the similarity transformation, 

correlation effects are included in EOM-CCSD, and the approach is furthermore size-consistentnn.255,252 

In its so-called EOM-EE (excitation energy), EOM-CCSD is employed to calculate excitation energies. 

The general excitation operator Ω𝑘 is then a spin-adapted linear combination of hole-particle and two-

hole-two-particle operators.255 As emphasized by Krylov,255 this shape of the excitation operator and 

of its matrix representation, which is comparable to CI, results in good EOM performances for nearly 

degenerate excited states or for excitations subject to pronounced valence-Rydberg mixing. The SF-

EOM methods (spin flip) provide access to accurate energies of biradicals and bond breaking processes. 

The excitation operator is not spin-conserving, and it changes the spin of a high-spin reference, which 

treats all involved (nearly degenerate) orbitals on an equal footing.255,252 In contrast, IP-EOM (ionization 

potential) and EA-EOM (electron affinity), which yield accurate ionization potentials or electron 

affinities, rely on excitation operators that do not conserve the number of electrons comprised in the 

system.257 The reference can still be a closed-shell determinant. The excitation operator Ω𝑘 in IP-EOM 

is composed of particle, two-particle-hole-operators etc. This approach has the advantage that error-

prone open-shell calculations are circumvented. 

                                                             
nn To guarantee size consistency, the excitation operator T must be truncated at a high level compared with R.255  
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The calculation of response properties with time-dependent DFT (TD-DFT) is discussed next. Whereas 

TD-DFT is certainly a linear-response approach, it is addressed in the next section (not as a subsection). 

This is justified by the fact that several additional considerations about the density are required before 

the above-discussed linear-response equations can be readily transferred to DFT. This yields then the 

so-called Casida equation. In fact, Casida’s equation can equally be derived in a linear-response or in 

an equation-of-motion formalism.258 

3.2.5 Time-Dependent Density Functional Theory (TD-DFT)259 
TD-DFT relies on the Runge-Gross theorem,260 the time-dependent extension of the Hohenberg-Kohn 

theorem (Eq. (44), (45)). It states that an exact correspondence between the time-dependent external 

potential 𝑣𝑒𝑥𝑡(𝑟, 𝑡) and the time-dependent density 𝜌(𝑟, 𝑡) up to a mere phase factor exists. 

𝜌(𝑟, 𝑡) ↔ 𝑣𝑒𝑥𝑡(𝑟, 𝑡) (248) 

Similar to the Hohenberg-Kohn theorem, it follows from the Runge-Gross theorem that (if the initial 

state Ψ(𝑟, 0) is defined) the time-dependent density 𝜌(𝑟, 𝑡) contains all the information about the 

system: due to the one-to-one-correspondence to the external potential, the density defines the 

Hamiltonian of the system.261 The excited-state analog of the second Hohenberg-Kohn theorem (Eq. 

(45)) is the quantum-mechanical action integral.259 Due to the Runge-Gross theorem (Eq. (248)), a one-

to-one-correspondence between a time-dependent density 𝜌(𝑟, 𝑡) and a time-dependent wave 

function Ψ(𝑟, 𝑡) exists. The time evolution of wave functions Ψ(𝑟, 𝑡) is in general described by 

stationary points of the action integral.259 

𝐴[Ψ(𝑟, 𝑡)] = ∫ 𝑑𝑡 ⟨Ψ(𝑟, 𝑡)|𝑖ℏ
𝜕
𝜕𝑡 − 𝐻(𝑟, 𝑡)|Ψ(𝑟, 𝑡)⟩

𝑡1

𝑡0

 

(249) 

As Ψ(𝑟, 𝑡) = Ψ(𝑟, 𝑡)[𝜌(𝑟, 𝑡)] and hence 𝐴[Ψ(𝑟, 𝑡)] = 𝐴[ρ(𝑟, 𝑡)], the time evolution of the density can 

be computed by minimizing the action integral.259   

𝛿𝐴[𝜌]

𝛿𝜌
= 0 

(250) 

It should be noted that Eq. (250) holds only for appropriate boundary conditions.261 

Since the exact functional 𝐸[𝜌(𝑟, 𝑡)] is not known, a non-interacting reference system is again used. 

The external potential 𝑣𝑆(𝑟, 𝑡) of the non-interacting reference system is adjusted so that its density 

is equal to the density of the true interacting system.oo The initial state of the non-interacting reference 

                                                             
oo As emphasized and discussed by Maitra,261 this requires “non-interacting v-representability”. For more 
information and references, the reader is referred to 261.  
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system Φ0(𝑟, 0) is usually a Slater determinant composed of orbitals {ϕ𝑖(𝑟, 0)}.261 Their time evolution 

is described by the one-particle time-dependent Schrödinger equation (ℏ = 1).259  

(−
1

2
Δ + 𝑣𝑆(𝑟, 𝑡)) ϕ𝑖(𝑟, 𝑡) = 𝑖

𝜕ϕ𝑖(𝑟, 𝑡)

𝜕𝑡
 

(251) 

Similar to above, the external potential of the non-interactingpp reference system is given by261 

𝑣𝑆(𝑟, 𝑡) = 𝑣𝑒𝑥𝑡(𝑟, 𝑡) + 𝑣𝐻[𝜌](𝑟, 𝑡) + 𝑣𝑋𝐶[𝜌, Φ0](𝑟, 𝑡) (252) 

In TD-DFT, similar to all other excited-state calculations, the approximate DFT ground state Φ0, which 

is usually assumed as the initial state, accounts for the first approximations in the TD-DFT excitation 

energies. Furthermore, as outlined above and emphasized by Maitra,261 the dependence of the one-

to-one correspondence in Eq. (248) on the initial conditions and the mapping to the non-interacting 

reference system introduces a dependence of the exchange-correlation functional on this initial state 

𝑣𝑋𝐶 = 𝑣𝑋𝐶[Φ0] (Eq. (252)). It was additionally discussed262 that the exchange-correlation potential 

𝑣𝑋𝐶[𝜌, Φ0](𝑟, 𝑡) is not only time-dependent, but also depends on earlier times 𝑡𝑖 < 𝑡.263 This 

phenomenon is called memory dependence.261 

As already mentioned, TD-DFT excitation energies are obtained in a linear-response formalism, i.e., 

the response function of the system is calculated. Due to the Runge-Gross theorem (Eq. (248)), the 

response function of the Kohn-Sham system is equal to the exact response function of the true 

interacting system.261 The response function 𝛼𝑆(𝜔) of the non-interacting reference system, where 

the electron-electron interaction is absorbed into a modified external potential (𝑣𝑆(𝑟, 𝑡)), has a similar 

shape like the Hartree-Fock Green’s function (Eq. (135)). In the spectral (Lehmann,) representation of 

the polarization propagator (see above, Eq. (157)), it is equivalent to the zeroth-order polarization 

propagator.  

𝛼𝑆(𝜔) = ∑
𝜓𝑖(𝑟)𝜓𝑎(𝑟)𝜓𝑖(𝑟′)𝜓𝑎(𝑟′)

𝜔 − (휀𝑎 − 휀𝑖)
𝑖𝑎

+ ∑
𝜓𝑖(𝑟)𝜓𝑎(𝑟)𝜓𝑖(𝑟′)𝜓𝑎(𝑟′)

−𝜔 − (휀𝑎 − 휀𝑖)
𝑖𝑎

 
(253) 

However, in contrast to the zeroth-order polarization propagator, Eq. (253) is in principle exact for the 

non-interacting system. The response 𝛼𝑆(𝜔) of the reference system is then mapped to the response 

𝛼(𝜔) of the interacting system. To do so, the definitions of the response functions 𝛼𝑆(𝜔) and 𝛼(𝜔) in 

terms of the density should be kept in mind.264 

                                                             
pp Although the mapping to general interacting systems subject to any non-local potential has not been 
established, an excited-state extension of GKS including non-local exchange exists.147 
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𝛼(𝑟, 𝑡, 𝑟′, 𝑡′) =
𝛿𝜌(𝑟, 𝑡)

𝛿𝑣𝑒𝑥𝑡(𝑟′, 𝑡′)
|

𝑣𝑒𝑥𝑡[𝜌0]

 
(254) 

𝛼𝑆(𝑟, 𝑡, 𝑟′, 𝑡′) =
𝛿𝜌(𝑟, 𝑡)

𝛿𝑣𝑆(𝑟′, 𝑡′)
|

𝑣𝑆[𝜌0]

 
(255) 

It follows from Eq. (254) and (255) that264 

𝛼(𝑟, 𝑡, 𝑟′, 𝑡′) = ∫ 𝑑𝑟′′ ∫ 𝑑𝑡′′
𝛿𝜌(𝑟, 𝑡)

𝛿𝑣𝑆(𝑟′′, 𝑡′′)

𝛿𝑣𝑆(𝑟′′, 𝑡′′)

𝛿𝑣𝑒𝑥𝑡(𝑟′, 𝑡′)
|

𝑣𝑒𝑥𝑡[𝜌0]

 
(256) 

𝑣𝑆(𝑟, 𝑡) = 𝑣𝑒𝑥𝑡(𝑟, 𝑡) + 𝑣𝐻(𝑟, 𝑡) + 𝑣𝑋𝐶(𝑟, 𝑡) (257) 

The so-called time-dependent exchange-correlation kernel 𝑓𝑋𝐶(𝑟, 𝑡, 𝑟′, 𝑡′) is defined as 

𝑓𝑋𝐶(𝑟, 𝑡, 𝑟′, 𝑡′) =
𝛿𝑣𝑋𝐶(𝑟, 𝑡)

𝛿𝜌(𝑟′, 𝑡′)
 

(258) 

Therefore, the derivative on the right-hand side in Eq. (256) can be rewritten as 

𝛿𝑣𝑆(𝑟′′, 𝑡′′)

𝛿𝑣𝑒𝑥𝑡(𝑟′, 𝑡′)
=

𝛿𝑣𝑒𝑥𝑡(𝑟′′, 𝑡′′)

𝛿𝑣𝑒𝑥𝑡(𝑟′, 𝑡′)
+ (

𝛿(𝑡′′ − 𝑡′′′)

|𝑟′′ − 𝑟′′′|
+ 𝑓𝑋𝐶(𝑟′′, 𝑡′′, 𝑟′′′, 𝑡′′′))

𝛿𝜌(𝑟′′′, 𝑡′′′)

𝛿𝑣𝑒𝑥𝑡(𝑟′, 𝑡′)
|

𝑣𝑒𝑥𝑡[𝜌0]

 
(259) 

Inserting Eq. (254) and (255) yields then a Dyson-type equation of TD-DFT.264 

𝛼(𝑟, 𝑡, 𝑟′, 𝑡′) = 𝛼𝑆(𝑟, 𝑡, 𝑟′, 𝑡′) 

+ ∫ 𝑑𝑟′′ ∫ 𝑑𝑡′′ ∫ 𝑑𝑟′′′ ∫ 𝑑𝑡′′′ 𝛼𝑆(𝑟, 𝑡, 𝑟′′, 𝑡′′) (

𝛿(𝑡′′ − 𝑡′′′)

|𝑟′′ − 𝑟′′′|

+𝑓𝑋𝐶(𝑟′′, 𝑡′′, 𝑟′′′, 𝑡′′′)

) 𝛼(𝑟′′′, 𝑡′′′, 𝑟′, 𝑡′) 

(260) 

A Fourier transformation of Eq. (260) provides the energy representation. 

𝛼(𝑟, 𝑟′, 𝜔) = 𝛼𝑆(𝑟, 𝑟′, 𝜔) + ∫ 𝑑𝑟′′ ∫ 𝑑𝑟′′′ 𝛼𝑆(𝑟, 𝑟′′, 𝜔) (

𝑓𝑋𝐶(𝑟′′ , 𝑟′′′ , 𝜔)

+
1

|𝑟′′ − 𝑟′′′|

) 𝛼(𝑟′′′, 𝑟′, 𝜔) 
(261) 

It should be stressed that in contrast to the wave-function based methods, Eq. (260) and (261) are in 

principle exact. If the exact ground-state functional and the exact time-dependent exchange-

correlation kernel were known, exact polarizabilities and, via the poles and residues, exact transition 

energies and moments, could be calculated. However, in a first and very fundamental approximation 

of TD-DFT (except for the approximate ground-state determinant, see above), the exchange-

correlation potential 𝑣𝑋𝐶[𝜌, Φ0](𝑟, 𝑡) is usually replaced with a ground-state potential that depends 

only on the density at time 𝑡. 
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𝑣𝑋𝐶
𝐴[𝜌, Φ0](𝑟, 𝑡) = 𝑣𝑋𝐶

𝑔𝑠[𝜌(𝑡)](𝑟) (262) 

Eq. (262) corresponds to the adiabatic approximation.259 As outlined by Maitra, the adiabatic 

approximation consists actually of two approximations. Firstly, the time and memory dependence of 

the exchange-correlation potential is neglected.qq Secondly, a ground-state functional is employed to 

describe excited-state correlation and exchange.261 In the adiabatic approximation, the exchange-

correlation kernel in Eq. (261) becomes frequency-independent. The time-dependent response of the 

density is thus determined by the response of the non-interacting reference system 𝛼𝑆(𝑟, 𝑟′, 𝜔), which 

is subsequently mapped by the exchange-correlation kernel to the response of the interacting system. 

This exchange-correlation kernel introduces so-called “dynamical effects”.261 Since the exchange-

correlation is assumed to be time-independent in the adiabatic approximation, Eq. (261) takes on the 

shape of the Dyson equation of RPA, Eq. (169). This leads to a completely equivalent propagator-like 

expression (Eq. (184)). The poles (= excitation energies) are given by the Casida equation,265 the analog 

of Eq. (187). 

(
𝐴 𝐵
𝐵∗ 𝐴∗) (

𝑋
𝑌

) = 𝜔 (
1 0
0 −1

) (
𝑋
𝑌

) (263) 

The matrix elements are defined in terms of Kohn-Sham orbitals. 

𝐴𝑖𝑗
𝑎𝑏 = 𝛿𝑖𝑗𝛿𝑎𝑏(휀𝑎 − 휀𝑖) + (𝑖𝑎|𝑗𝑏) + (𝑖𝑎|𝑓𝑋𝐶|𝑗𝑏) (264) 

𝐵𝑖𝑗
𝑎𝑏 = (𝑖𝑎|𝑏𝑗) + (𝑖𝑎|𝑓𝑋𝐶|𝑏𝑗) (265) 

The inability of TD-DFT to describe charge-transfer states becomes evident from Eq. (264) and (265). 

The previously occupied and virtual orbitals barely overlap in charge-transfer states (𝑎𝑖 ≈ 0, 𝑗𝑏 ≈ 0). 

This means that the TD-DFT excitation energy is dominated by the leading term (휀𝑎 − 휀𝑖). The other 

contributions to the A- and B-matrix vanish. This implies that the excitation energy does not include 

any distance-dependent terms that are, however, necessary to encompass the R-1-dependence of the 

charge-transfer energy (R being the separation of the electron and the hole). The exchange-type 

integral in the RPA A-matrix (Eq. (182)) retrieves this dependence. This is the underlying reason why 

hybrids and especially range-separated hybrids are mandatory to correctly describe charge-transfer 

states.259 Similar considerations hold for Rydberg excitations.261 

A considerable part of the above section on ground-state DFT was dedicated to optimally tuned hybrid 

functionals. They are designed to fulfill certain criteria of the exact ground-state functional, such as the 

correct asymptotic decay of the exchange-correlation potential and the related correspondence of 

HOMO energy and ionization potential (Eq. (80)). However, range-separated hybrid functionals are 

                                                             
qq It should be noted that functionals containing exact exchange include some memory dependence.261  
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perhaps most useful in excited-state calculations. When employed adiabatically (Eq. (262)), they are 

responsible for an improved description of charge transfer266 and account for more accurate 

quasiparticle energies,158 i.e., they provide a more suitable description of the fundamental gap of 

compounds since the leading term (휀𝑎 − 휀𝑖) in the 𝐴-matrix is more accurate. Nevertheless, they 

remain ground-state functionals developed in an attempt of constraint satisfaction, one of the 

strategies discussed by Scuseria106 (see above). 

In addition to these constraints for ground-state functionals, according to Maitra,261 several constraints 

specific for TD-DFT exist as well. The so-called “resonance condition” proposed by Fuks et al.,267 which 

states that if the external field is turned off, TD-DFT transition energies should be independent of the 

time when the perturbation is turned off, is violated by most functionals. It thus limits considerably 

the applicability of TD-DFT to problems of time-resolved spectroscopy.261 Apart from that, it has 

generally often been outlined that TD-DFT is unsuitable for the description of non-adiabatic dynamics, 

for instance around conical intersections.268 Indeed, the topology of conical intersections to the ground 

state is poorly described with TD-DFT because the branching space is only one-dimensional.268 This 

results because couplings between the excited state and the reference are 0.269 Nevertheless, this 

failure is not due to excited-state specific errors of the exchange-correlation functionals, but rather 

from the intrinsic inability of DFT to accurately describe static correlation. SF-TD-DFT approach uses a 

high-spin reference and provides a more suitable description of conical intersection.270  

In addition to these problems (charge-transfer and Rydberg excitations, non-linear responses, conical 

intersections), TD-DFT provides also a poor description of double excitations.261 In the non-interacting 

reference system, double excitations naturally require two photons (i.e., two non-interacting electrons 

are separately excited). This implies that double excitations are in principle not included in the linear 

response 𝛼𝑆(𝑟, 𝑡, 𝑟′, 𝑡′). However, it has been shown for simple model systems that the exchange-

correlation kernel strongly depends on the frequency for states with double-excitation character.271 

Therefore, if a time-dependent kernel was used instead of standard ground-state functionals, double 

excitations may still be accurately described with Eq. (261). Consistently, albeit not responsible for 

most TD-DFT failures, the adiabatic approximation of TD-DFT is in fact responsible for its incapability 

of describing double excitations.261 

A simplification of TD-DFT, the so-called Tamm-Dancoff approximation (TDA), was proposed by Hirata 

and Head-Gordon.272 It consists in neglecting the B-matrix in Casida’s equation (Eq. (263)). This yields 

a CIS-like expression for the TDA excitation energies. 

𝐴𝑋 = 𝜔𝑋 (266) 
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The errors introducing by this approximation are usually small, and the computational cost is roughly 

divided by two because the B-matrix is not calculated anymore. Furthermore, TDA, in contrast to 

conventional TD-DFT, does not suffer from triplet instabilities.272 Casida et al. could show that the B-

matrix is responsible for the triplet instabilities.273 

It should be finally noted that equivalent equations to the Casida equation (Eq. (263)) and the Tamm-

Dancoff approximation (Eq. (266)) can be derived in a constricted variational approach proposed by 

Ziegler et al.274 The idea of constricted-variational DFT (CV(n)-DFT) is briefly outlined. It consists 

essentially in directly constructing an excited-state Kohn-Sham determinant Φ𝐸𝑆
𝐾𝑆 =

|𝜙1′𝜙2′𝜙3′ … 𝜙𝑁′|. The orbitals {𝜙𝑖′} of the excited Kohn-Sham determinant are determined from the 

ground-state Kohn-Sham orbitals {𝜙𝑖} by a unitary transformation that is carried out to order 𝑛. 

𝑒𝑈 (
𝜙𝑜𝑐𝑐

𝜙𝑣𝑖𝑟𝑡
) = (∑

𝑈𝑚

𝑚!

𝑛

𝑚

) (
𝜙𝑜𝑐𝑐

𝜙𝑣𝑖𝑟𝑡
) = (

𝜙𝑜𝑐𝑐 ′

𝜙𝑣𝑖𝑟𝑡′
) 

(267) 

The energy of the excited-state determinant Φ𝐸𝑆
𝐾𝑆 is expressed in terms of the elements of the 

transformation matrix {𝑈𝑖𝑎}. Usually, the transformation matrix is expanded to the second order, 

defining CV(2)-DFT. The energy 𝐸[Φ𝐸𝑆
𝐾𝑆] is minimized by variation of the transformation matrix 

elements subject to the constraint that exactly one electron moves from the subspace spanned by the 

occupied ground-state orbitals {𝜙𝑜𝑐𝑐 } to the space spanned by the virtual orbitals of the Kohn-Sham 

ground state {𝜙𝑣𝑖𝑟𝑡}. This is reflected in the constraint275 

∑ 𝑈𝑖𝑎
∗ 𝑈𝑖𝑎 = 1

𝑖𝑎

 (268) 

A constrained optimization using the Lagrangian and subsequent use of the Tamm-Dancoff 

approximation yields an equation identical to Eq. (266).275 

𝐴𝑈 = 𝜆𝑈 (269) 

The transformation matrix 𝑈 to the second order from Eq. (269), yielding CV(2)-DFT excitation 

energies, can then be used to carry out the transformation (Eq. (267)) to infinite order. This provides 

access to CV(∞)-DFT excitation energies.276 If the transformation matrix is additionally optimized for 

each excited staterr in a self-consistent way, SCF-CV(∞)-DFT energies are obtained.275,276,277 The SCF-

CV(∞)-DFT scheme is based on expressions involving natural transition orbitals (NTOs) {𝜙𝑖
𝑜 , 𝜙𝑖

𝑣}.278 The 

final occupied excited-state orbitals (to infinite order) are represented as sums of natural transition 

orbitals.277 

                                                             
rr The transformation matrix is always variationally optimized to the second order (Eq. (269)). 
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𝜙𝑖
′ = cos(𝜂𝛾𝑖 ) 𝜙𝑖

𝑜 + sin(𝜂𝛾𝑖) 𝜙𝑖
𝑣 (270) 

The eigenvalues {𝛾𝑖} are obtained from the transformation matrix.277 

𝑉†𝑈𝑊 = 𝛾1 (271) 

The NTOs are obtained from the matrices 𝑉 and 𝑊. 

𝜙𝑖
𝑜 = ∑ 𝑊𝑗𝑖𝜙𝑗

𝑗

 (272) 

𝜙𝑖
𝑣 = ∑ 𝑉𝑎𝑖𝜙𝑎

𝑎

 (273) 

𝑈 to infinite order is varied subject to the constraint275 

∑ sin(𝜂𝛾𝑖 )2 = 1

𝑖

 (274) 

Finally, SCF-CV(∞)-DFT excitation energies are obtained. Since CV(2)-DFT is comparable to linear-

response TD-DFT/TDA, some improvement compared with TD-DFT can be expected already for CV(∞)-

DFT.277 It was indeed shown that higher-order terms of the transformation matrix 𝑈 can be important 

especially for charge-transfer and Rydberg excitations.279 

The NTOs were in fact first proposed by Martin.278 They provide a very compact description of an 

electronic excitation in a molecule in terms of single particle-hole amplitudes. The importance of the 

individual particle-hole excitations 𝑖 for the overall transition is given by a parameter 𝜆𝑖. These 

parameters 𝜆 are obtained as the diagonal elements of the transition density matrix 𝑇, a diagonal 

matrix in the basis of the NTOs. The NTOs are obtained by a unitary transformation of the ground-state 

orbitals (Eq. (272) and (273)). Transformation matrices are in turn obtained as the eigenvectors of 𝑇𝑇† 

and 𝑇†𝑇.278 Therefore, natural transition orbitals are an equivalent to natural orbitals,31 which 

diagonalize the ground-state density matrix. 

In the framework of excited-state calculations with DFT, the GW approximation280 in combination with 

the Bethe-Salpeter equation281 (GW-BSE) should be briefly mentioned because such computations on 

molecules are usually based on the DFT single-particle states, i.e., the Kohn-Sham orbitals. GW 

calculations for molecules are difficult160 but in view of the computational and methodological 

progress, calculating GW-BSE transition energies becomes increasingly feasible.282 Such calculations 

can be conceptually divided into (1) determining quasiparticle energies (electron and hole energies) 

with GW and (2) taking into account the electron-hole interaction via Bethe-Salpeter.283 
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The GW approximation consists in an approximation of the self-energy Σ in the Dyson equation (Eq. 

(134)). It was already mentioned that the generally non-local energy-dependent self-energy is usually 

expanded in a perturbation series. In the GW approximation, the series is truncated after the first-

order term, i.e., the many-particle self-energy is computed as the product of the single-particle Green’s 

function 𝐺0 and the screened Coulomb interaction 𝑊.283 

Σ = 𝑖𝐺0𝑊 (275) 

With the single-particle Green’s function 𝐺0 readily available from the orbitals of the KS determinant 

(Eq. 125)), the many-body Green’s function can in principle be obtained (see above). Similarly, the 

poles of the many-body Green’s function – the quasiparticle energies 𝐸𝑄𝑃 – can then be expressed as 

sums of the single-particle (zeroth-order) quasiparticle energies – the Kohn-Sham energies – and the 

self-energy.283 Kohn-Sham orbital energies are used because they provide the best “zeroth-order 

guess”.284 

𝐸𝑄𝑃,𝑖 = 휀𝑖 + ⟨𝜙𝑖|Σ(𝐸𝑄𝑃,𝑖) − 𝑣𝑋𝐶|𝜙𝑖⟩ (276) 

Using LDA orbitals and subsequently adding the correction (Eq. (276)) to the “frozen orbitals”283 

corresponds to the G0W0 scheme. This is standard for solids.285 Usually, such an LDA@G0W0 yields 

unsatisfying results for molecules.283,286 Resulting quasiparticle energies can be significantly improved 

by employing either hybrids/range-separated hybrids instead of LDA or by conducting the calculation 

in a self-consistent way.283 For instance, Blase et al.287 were able to compute very accurate ionization 

potentials and fundamental gaps of molecules with photovoltaic applications using GW and HF-like 

orbitals. 

The four-point function 𝐿(1,2,3,4) =
𝜕𝐺(1,2)

𝜕𝑣𝑒𝑥𝑡(3,4)
 is the key ingredient of the Bethe-Salpeter equation,283 

which introduces the coupling between the GW quasiparticle excitations.288 

𝐿(1,2,3,4) = 𝐿0(1,2,3,4) + ∫ 𝑑(5,6,7,8)𝐿0(1,2,5,6)𝐾(5,6,7,8)𝐿(7,8,3,4) 
(277) 

As outlined by Blase, the four-point function 𝐿(1,2,3,4) can be considered as a generalization of the 

two-point TD-DFT polarizability.283,284 In fact, the two-point polarizability 𝛼(1,2) is equal to a diagonal 

element of 𝐿, 𝐿(1,2,1,2). In the GW approximation for the self-energy, the Bathe-Salpeter kernel 

𝐾(5,6,7,8) is given by284 

𝐾(5,6,7,8) = 𝜈(5,7)𝛿(5,6)𝛿(7,8) +
𝜕Σ(5,6)

𝜕𝐺(7,8)
 

≈ 𝜈(5,7)𝛿(5,6)𝛿(7,8) − 𝑊(5,6)𝛿(5,7)𝛿(6,8) 

(278) 
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𝜈(5,7) corresponds to the Coulomb potential. Similar to the adiabatic approximation in linear-

response TD-DFT (Eq. (262)), the Bethe-Salpeter kernel is assumed to be time/frequency-

independent.283 𝐿0(1,2,3,4), the initially uncoupled quasiparticles, can be consistently written as an 

uncorrelated product. 

𝐿0(1,2,3,4) = 𝑖𝐺(1,3)𝐺(2,4) (279) 

The similarity of Eq. (277) to Eq. (260), the fundamental TD-DFT Dyson-like equation, is evident. Using 

matrices, this becomes evident from a direct comparison. 

𝐿 = 𝐿0 + 𝐿0𝐾𝐿 (280) 

𝛼 = 𝛼𝑆 + 𝛼𝑆𝑓𝐻𝑋𝐶𝛼 (281) 

Therefore, upon expanding 𝐿 in an electron-hole basis {[𝜙𝑎(𝑟𝑒)𝜙𝑖(𝑟ℎ)]},283,286 a Casida-like matrix 

expression (see Eq. (263)) is obtained for the Bethe-Salpeter equation.284 

(
𝑅 𝐶

−𝐶∗ −𝑅∗) (
[𝜙𝑎(𝑟𝑒)𝜙𝑖(𝑟ℎ)]

[𝜙𝑖(𝑟𝑒)𝜙𝑎(𝑟ℎ)]
) = (

𝜆𝑎𝑖

𝜇𝑖𝑎
) (

[𝜙𝑎(𝑟𝑒)𝜙𝑖(𝑟ℎ)]

[𝜙𝑖(𝑟𝑒)𝜙𝑎(𝑟ℎ)]
) 

(282) 

The matrix 𝑅 describes the resonant coupling between quasi-electrons and -holes. Its matrix elements 

are defined as283 

𝑅𝑖𝑗
𝑎𝑏 = 𝛿𝑖𝑗𝛿𝑎𝑏(𝐸𝑄𝑃,𝑎 − 𝐸𝑄𝑃,𝑖) + 2(𝑖𝑎|𝑗𝑏) − (𝑎𝑏|𝑊|𝑗𝑖) (283) 

As pointed out by Blase, the most important difference between the Bethe-Salpeter transition energies 

(Eq. (283)) and the Casida equation (Eq. (264)) is the leading term. While it corresponds to Kohn-Sham 

orbital energies in TD-DFT, it is the difference between GW quasiparticle energies in GW-BSE. Since 

the quasiparticle energies usually describe the fundamental gap of molecules more accurately (except 

for optimally tuned hybrids158), the Bethe-Salpeter transition energies (Eq. (283)) are more intuitive: 

the interaction between the quasiparticles stabilizes the excitation.284 Especially self-consistent GW-

BSE calculations, which are independent of the starting functional, were shown to provide very 

accurate transition energies also for challenging cases such as charge-transfer excitations or transitions 

to state with multiexcitation character.283 

It should be noted that a plethora of further methods exist to compute quantum-chemical molecular 

ground and excited states, for instance approaches related to the DMRG (density matrix 

renormalization group) algorithm. DMRG approaches constitute a completely different route to 

construct the wave function than the above outlined methods. Without explicitly calculating basis 

functions and matrix elements, the DMRG algorithm relies on the density matrix and divides the Hilbert 

space into subblocks that contain important/negligible many-electron basis functions.289,290  
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However, presenting all methods in detail is beyond the scope of this work. The presented selection is 

necessarily an arbitrary one, and it is motivated by those methods employed in this work (see section 

“Results and Discussion”). 

3.3 The quantum-chemical decomposition of intermolecular interactions 
A number of energy decomposition analyses (EDAs) of intermolecular interactions have been proposed 

although the concept of analyzing the intermolecular interaction energy in terms of its electrostatic, 

dispersion, charge-transfer, etc. contributions is still rather recent.291 As outlined by Skylaris and 

coworkers,291 the existing analyses of intermolecular interactions can be divided into two groups, 

depending on the underlying theory. On the one hand, the interaction energy is decomposed, which 

defines the variational analysis schemes. On the other hand, the interaction is considered as a 

perturbation of the non-interacting individual molecules. This corresponds to methods based on 

perturbation theory.291 Whereas the Morokuma EDA292 introduced for the interaction via hydrogen 

bonds is fundamental to most modern variational EDAs,291 the EDA of Su et al. is presented in the 

following because it can be applied to DFT interaction energies as well.293 The presentation focusses 

on the original version while a more recent adaption of this EDA294 to the GKS formalism (see above) 

exists. This modern version improves the analysis of exchange and correlation contributions. 

SAPT(DFT)295,296,297,298 is discussed as an example for a perturbative analysis of intermolecular 

interactions.  

3.3.1 The energy decomposition analysis (EDA) of Su et al.293 
According to Skylaris and coworkers, any variational EDA constructs a number of “intermediate wave 

functions” that correspond to certain states of the system (for example, one intermediate state 

includes electrostatics but not dispersion while a second includes both etc.). The energy differences 

between these intermediate state wave functions directly yield the energy contribution of a given type 

of interaction (for instance dispersion). As outlined by Skylaris, one of the main differences between 

the different EDA schemes results from the definition of the intermediate wave functions.291  

The LMO-EDA (localized molecular orbital) of Su et al.293 decomposes the intermolecular KS energy 

into contributions from electrostatics, exchange, repulsion, polarization, and dispersion. It provides a 

similar decomposition for HF interaction energies but the dispersion component is obtained from 

correlated ab initio calculations. The following outline follows Su et al.293 The HF expressions are 

presented first because they are required for the subsequent presentation of the KS contributions. 

In an orthogonal basis, the Hartree-Fock energy can be written as  
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𝐸𝐻𝐹 = ∑ ℎ𝑖𝑖 +
1

2

𝛼𝛽

𝑖

∑(𝑖𝑖|𝑗𝑗)

𝛼𝛽

𝑖𝑗

−
1

2
∑(𝑖𝑗|𝑖𝑗)

𝛼

𝑖𝑗

−
1

2
∑(𝑖𝑗|𝑖𝑗)

𝛽

𝑖𝑗

+ 𝑉𝑁𝑁 

(284) 

The Hartree-Fock energy 𝐸𝐻𝐹 can be equally expressed in a non-orthogonal basis. 

𝐸𝐻𝐹 = ∑
ℎ𝑖𝑗

𝑆𝑖𝑗

𝛼𝛽

𝑖𝑗

+
1

2
∑

(𝑖𝑗|𝑘𝑙)

𝑆𝑖𝑗𝑆𝑘𝑙

𝛼𝛽

𝑖𝑗𝑘𝑙

−
1

2
∑

(𝑖𝑘|𝑗𝑙)

𝑆𝑖𝑗𝑆𝑘𝑙

𝛼

𝑖𝑗𝑘𝑙

−
1

2
∑

(𝑖𝑘|𝑗𝑙)

𝑆𝑖𝑗𝑆𝑘𝑙

𝛽

𝑖𝑗𝑘𝑙

+ 𝑉𝑁𝑁 

(285) 

The intermolecular Hartree-Fock energy Δ𝐸𝐻𝐹 is defined as the difference between the HF energy 

𝐸𝐻𝐹(𝑋)  of the supermolecule 𝑋 and the HF energies 𝐸𝐻𝐹(𝐴) of the individual monomers 𝐴. 

Δ𝐸𝐻𝐹 = 𝐸𝐻𝐹(𝑋) − ∑ 𝐸𝐻𝐹(𝐴)

𝐴

= ⟨Φ𝑋|𝐻|Φ𝑋⟩ − ∑⟨Φ𝐴|𝐻|Φ𝐴⟩

𝐴

 (286) 

As mentioned, the intermolecular energy is decomposed as follows 

Δ𝐸𝐻𝐹 = Δ𝐸𝑒𝑙𝑒𝑐 + Δ𝐸𝑒𝑥 + Δ𝐸𝑟𝑒𝑝 + Δ𝐸𝑝𝑜𝑙  (287) 

The non-orthogonal orbitals {𝑖𝑗 … } optimized for the monomer HF determinants {Φ𝐴} (right-hand 

term in Eq. (286)) are used in a first, abridged expression for the energy 𝐸𝐻𝐹(𝑋)(1) of the 

supermolecule. (1) It does not include exchange integrals involving orbitals localized on different 

monomers, and (2) it does not take into account the non-orthogonality of the monomer-derived 

orbitals. These effects are stepwise included when defining 𝐸𝐻𝐹(𝑋)(2) and 𝐸𝐻𝐹(𝑋)(3). 

𝐸𝐻𝐹(𝑋)(1) = ∑ ℎ𝑖𝑖 +
1

2

𝛼𝛽

𝑖

∑(𝑖𝑖|𝑗𝑗)

𝛼𝛽

𝑖𝑗

− ∑ (
1

2
∑ (𝑖𝑗|𝑖𝑗)

𝛼

𝑖𝑗∈𝐴

+
1

2
∑(𝑖𝑗|𝑖𝑗)

𝛽

𝑖𝑗∈𝐴

)

𝐴

+ 𝑉𝑁𝑁,𝑋 

(288) 

𝐸𝐻𝐹(𝑋)(2) = ∑ ℎ𝑖𝑖 +
1

2

𝛼𝛽

𝑖

∑ (𝑖𝑖|𝑗𝑗)

𝛼𝛽

𝑖𝑗∈𝑋

−
1

2
∑ (𝑖𝑗|𝑖𝑗)

𝛼

𝑖𝑗∈𝑋

−
1

2
∑ (𝑖𝑗|𝑖𝑗)

𝛽

𝑖𝑗∈𝑋

+ 𝑉𝑁𝑁,𝑋 

(289) 

𝐸𝐻𝐹(𝑋)(3) = ∑
ℎ𝑖𝑗

𝑆𝑖𝑗

𝛼𝛽

𝑖𝑗

+
1

2
∑

(𝑖𝑗|𝑘𝑙)

𝑆𝑖𝑗𝑆𝑘𝑙

𝛼𝛽

𝑖𝑗𝑘𝑙∈𝑋

−
1

2
∑

(𝑖𝑘|𝑗𝑙)

𝑆𝑖𝑗𝑆𝑘𝑙

𝛼

𝑖𝑗𝑘𝑙∈𝑋

−
1

2
∑

(𝑖𝑘|𝑗𝑙)

𝑆𝑖𝑗𝑆𝑘𝑙

𝛽

𝑖𝑗𝑘𝑙∈𝑋

+ 𝑉𝑁𝑁 

(290) 

To calculate the approximate energy expressions (Eq. (288) to (290)), all orbitals are ascribed to a 

monomer. The energy contributions (Eq. (287)) to the total interaction energy are then defined as 

Δ𝐸𝑒𝑙𝑒𝑐 = 𝐸𝐻𝐹(𝑋)(1) − ∑ 𝐸𝐻𝐹(𝐴)

𝐴

 (291) 

Δ𝐸𝑒𝑥 = 𝐸𝐻𝐹(𝑋)(2) − 𝐸𝐻𝐹(𝑋)(1) (292) 
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Δ𝐸𝑟𝑒𝑝 = 𝐸𝐻𝐹(𝑋)(3) − 𝐸𝐻𝐹(𝑋)(2) (293) 

Δ𝐸𝑝𝑜𝑙 = 𝐸𝐻𝐹(𝑋) − 𝐸𝐻𝐹(𝑋)(3) (294) 

Finally, the dispersion component, which is not covered by HF, is obtained as the difference between 

the HF intermolecular energy and the intermolecular energy obtained with a correlated method 

(CCSD(T)). 

Δ𝐸𝑑𝑖𝑠𝑝 = ∆𝐸𝐶𝐶𝑆𝐷(𝑇)(𝑋) − ∆𝐸𝐻𝐹(𝑋) (295) 

The series of “intermediate wave functions” as outlined by Skylaris and coworkers,291 which is used to 

compute the individual energy contributions, becomes evident from Eq. (291) to (295). It follows from 

Eq. (294) that the polarization energy in the LMO-EDA of Su is defined as the orbital relaxation energy 

since monomer orbitals are used to compute 𝐸𝐻𝐹(𝑋)(3) while supermolecule orbitals are used for the 

calculation of 𝐸𝐻𝐹(𝑋). 

The HF formalism can be readily extended to KS-DFT. For that purpose, the Kohn-Sham energy of a 

system is given for orthogonal orbitals 

𝐸𝐾𝑆 = ∑ ℎ𝑖𝑖 +
1

2

𝛼𝛽

𝑖

∑(𝑖𝑖|𝑗𝑗)

𝛼𝛽

𝑖𝑗

+ 𝐸𝑐[𝜌] + 𝐸𝑥[𝜌] + 𝑉𝑁𝑁  

(296) 

The density 𝜌 in terms of non-orthogonal monomer orbitals {𝜙𝑖} is given by (leaving aside the spin) 

𝜌 = ∑
𝜙𝑖𝜙𝑗

𝑆𝑖𝑗
𝑖𝑗

 
(297) 

Using this definition of the density, the Kohn-Sham energy in a basis of non-orthogonal orbitals can 

then be represented as 

𝐸𝐾𝑆 = ∑
ℎ𝑖𝑗

𝑆𝑖𝑗

𝛼𝛽

𝑖𝑗

+
1

2
∑

(𝑖𝑗|𝑘𝑙)

𝑆𝑖𝑗𝑆𝑘𝑙

𝛼𝛽

𝑖𝑗𝑘𝑙

+ 𝐸𝑐[𝜌] + 𝐸𝑥[𝜌] + 𝑉𝑁𝑁 

(298) 

The Kohn-Sham interaction energy is equivalently to Eq. (286) defined and can be decomposed (Eq. 

(287)). 

Δ𝐸𝐾𝑆 = 𝐸𝐾𝑆(𝑋) − ∑ 𝐸𝐾𝑆(𝐴)

𝐴

= Δ𝐸𝑒𝑙𝑒𝑐 + Δ𝐸𝑒𝑥 + Δ𝐸𝑟𝑒𝑝 + Δ𝐸𝑝𝑜𝑙 + Δ𝐸𝑑𝑖𝑠𝑝 (299) 

In a similar manner to above, the energy of the Kohn-Sham supermolecule is represented as several 

successive approximate energy expressions (Eq. (300) to (303)). 𝜌𝑋
∗  is the density calculated with Eq. 
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(297) and orthonormal monomer orbitals. It should be noted that 𝜌𝑋
∗ ≠ ∑ 𝜌𝐴𝑎  since the overlap matrix 

is not a unit matrix. 

𝐸𝐾𝑆(𝑋)(1) = ∑ ℎ𝑖𝑖 +
1

2

𝛼𝛽

𝑖

∑(𝑖𝑖|𝑗𝑗)

𝛼𝛽

𝑖𝑗

+ ∑(𝐸𝑐[𝜌𝐴] + 𝐸𝑥[𝜌𝐴])

𝐴

+ 𝑉𝑁𝑁,𝑋 

(300) 

𝐸𝐾𝑆(𝑋)(2) = ∑ ℎ𝑖𝑖 +
1

2

𝛼𝛽

𝑖

∑(𝑖𝑖|𝑗𝑗)

𝛼𝛽

𝑖𝑗

+ ∑ 𝐸𝑐[𝜌𝐴]

𝐴
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𝐴

] + 𝑉𝑁𝑁,𝑋 

(301) 

𝐸𝐾𝑆(𝑋)(3) = ∑
ℎ𝑖𝑗

𝑆𝑖𝑗

𝛼𝛽

𝑖𝑗

+
1

2
∑

(𝑖𝑗|𝑘𝑙)

𝑆𝑖𝑗𝑆𝑘𝑙

𝛼𝛽

𝑖𝑗𝑘𝑙

+ ∑ 𝐸𝑐[𝜌𝐴]

𝐴

+ 𝐸𝑥[𝜌𝑋
∗ ] + 𝑉𝑁𝑁 

(302) 

𝐸𝐾𝑆(𝑋)(4) = ∑ ℎ𝑖𝑖 +
1

2

𝛼𝛽

𝑖

∑(𝑖𝑖|𝑗𝑗)

𝛼𝛽

𝑖𝑗

+ ∑ 𝐸𝑐[𝜌𝐴]

𝐴

+ 𝐸𝑥[𝜌] + 𝑉𝑁𝑁  

(303) 

Orthonormal supermolecule orbitals are employed for the calculation of 𝐸𝐾𝑆(𝑋)(4) (Eq. (303)). The 

contributions to the Kohn-Sham interaction energy are defined as 

Δ𝐸𝑒𝑙𝑒𝑐 = 𝐸𝐾𝑆(𝑋)(1) − ∑ 𝐸𝐾𝑆(𝐴)

𝐴

 (304) 

Δ𝐸𝑒𝑥 = 𝐸𝐾𝑆(𝑋)(2) − 𝐸𝐾𝑆(𝑋)(1) (305) 

Δ𝐸𝑟𝑒𝑝 = 𝐸𝐾𝑆(𝑋)(3) − 𝐸𝐾𝑆(𝑋)(2) (306) 

Δ𝐸𝑝𝑜𝑙 = 𝐸𝐾𝑆(𝑋)(4) − 𝐸𝐾𝑆(𝑋)(3) (307) 

Δ𝐸𝑑𝑖𝑠𝑝 = 𝐸𝐾𝑆(𝑋) − 𝐸𝐾𝑆(𝑋)(4) (308) 

As outlined by Su, exchange and dispersion in the KS-formalism are defined by changes in the exchange 

and correlation functionals when changing from the monomer to the supermolecule density. In 

contrast to many other variational EDAs, exchange and repulsion are separated. Furthermore, as 

emphasized by Su, since no charge-transfer contributions are included, the EDA is basis-set insensitive. 

Moreover, calculations with counterpoise corrected monomer orbitals (i.e., using the basis set of the 

supermolecule) are also available.293 

The variational LMO-EDA can be compared to an analysis based on SAPT (symmetry-adapted 

perturbation theory), a perturbational approach presented in the next section. It should be stressed 

that SAPT(DFT) closely follows the underlying SAPT299 approach based on MP2 (or CCSD), which is 

addressed first. In contrast to LMO-EDA, which relies on supermolecule calculations and determines 
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the interaction energy as the difference to monomer energies (Eq. (286), (299)), SAPT directly 

calculates the interaction energy.300 

3.3.2 Symmetry Adapted Perturbation Theory (SAPT) and SAPT with DFT295,296,297,298 
SAPT-MP2 is not only employed to analyze intermolecular interactions,299 but it constitutes also a 

viable route to obtain accurate interaction potentials of CCSD(T)-like quality.298 As outlined by Jeziorski 

et al.,299 the conceptually simplest perturbation treatment of intermolecular interactions is 

polarization theory: Rayleigh-Schrödinger perturbation theory, the starting point for Møller-Plesset 

perturbation theory as well, is adapted to intermolecular interactions. The zeroth-order Hamiltonian 

𝐻0 is defined as the sum of the monomer Hamiltonians 𝐻𝐴 , 𝐻𝐵  (Eq. (309)). Consistently, the zeroth-

order energy E(0) is the sum of the monomer energies 𝐸𝐴, 𝐸𝐵, with the zeroth-order wave function 

Ψ(0) arising as the product of the monomer wave functions. 

𝐻 = 𝐻0 + 𝜆𝑉 = (𝐻𝐴 + 𝐻𝐵) + 𝜆𝑉 (309) 

Ψ(0) = Ψ𝐴Ψ𝐵  (310) 

E(0) = 𝐸𝐴 + 𝐸𝐵 (311) 

The perturbation operator 𝑉 is the sum of all Coulomb interactions between electrons and nuclei. 

According to Jeziorski et al.,299 it is often designated as the intermolecular interaction operator. Higher-

order terms of the energy and the wave function are obtained from the series expansions in 𝜆 (Eq. (31) 

and (32)). These series expansions are often called polarization expansions and polarization 

energies.301 It follows from the basics of Rayleigh-Schrödinger perturbation theory36 that in 

intermediate normalization (Eq. (313), Ψ is the final wave function), the n-th order energy can be 

expressed as a function of the (n-1)th-order wave function. 

E(𝑛) = ⟨Ψ(0)|𝑉|Ψ(𝑛−1)⟩ (312) 

⟨Ψ(0)|Ψ⟩ = 1 (313) 

Similarly, by means of a recurrence formula, the Bloch form,302 the n-th order wave function can be 

derived from the  (n-1)th-order wave function.300 

Ψ(𝑛) = Ψ(0) + 𝑅0(E(𝑛) − 𝑉)Ψ(𝑛−1) (314) 

𝑅0 =
1 − |Ψ(0)⟩⟨Ψ(0)|

𝐻0 − 𝐸0 + |Ψ(0)⟩⟨Ψ(0)|
 

(315) 

The first-order polarization energy can then be written as 
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E(1) = ⟨Ψ(0)|𝑉|Ψ(0)⟩ = ∫ ∫ 𝑑𝑟𝐴𝑑𝑟𝐵

|Ψ𝐴|2|Ψ𝐵|2

|𝑟𝐴 − 𝑟𝐵|
= 𝐸𝑒𝑙𝑒𝑐 

(316) 

Since it corresponds to the Coulomb interaction between the charge densities associated with 

monomers 𝐴 and 𝐵, the first-order polarization energy E(1) can be considered as the electrostatic 

interaction energy 𝐸𝑒𝑙𝑒𝑐.299 

The second-order polarization energy is given by an MP2-like expression. {Ψ𝑚} designates the 

ensemble of excited states of Ψ(0) = Ψ𝐴Ψ𝐵 .  

E(2) = −⟨Ψ(0)|𝑉|Ψ(1)⟩ = − ∑
|⟨Ψ(0)|𝑉|Ψ𝑚⟩|

2

𝐸𝑚 − 𝐸0
𝑚≠0

 
(317) 

The basis of excited states {Ψ𝑚} is further subdivided. On the one hand, the excitations in {Ψ𝑚} can 

be localized on a single monomer, i.e., if the involved excitations belong to the same monomer 

{Ψ𝑚

𝐴→𝐴
𝐵→𝐵}. On the other hand, the excitations can include intermonomer excitations {Ψ𝑚

𝐴→𝐵
𝐵→𝐴}.  

The states {Ψ𝑚

𝐴→𝐴
𝐵→𝐵} correspond to an excited molecule next to a ground-state molecule. As 

comprehensively discussed above and outlined by Szalewizc,303 such a molecular excitation can be 

interpreted as the response of the molecule to the static external charge distribution of the second 

molecule. Thus this part of the second-order polarization energy is defined as the induction 

(polarization) energy.299 

𝐸𝑖𝑛𝑑
(2)

= − ∑
|⟨Ψ(0)|𝑉|Ψ𝑚

𝐴→𝐴
𝐵→𝐵⟩|

2

𝐸𝑚 − 𝐸0
𝑚≠0

 

(318) 

The corresponding expression with intermonomer excitations, i.e, the difference between the total 

second-order polarization energy and the induction energy, is associated with the dispersion energy. 

𝐸𝑑𝑖𝑠𝑝
(2)

= E(2) − 𝐸𝑖𝑛𝑑
(2)

= − ∑
|⟨Ψ(0)|𝑉|Ψ𝑚

𝐴→𝐵
𝐵→𝐴⟩|

2

𝐸𝑚 − 𝐸0
𝑚≠0

 

(319) 

As a purely quantum-mechanical effect, the dispersion does not have a classical interpretation. It 

results from correlated density fluctuations in the monomers.303,296  

In a similar way, the third-order polarization energy can be subdivided into a third-order induction, a 

third-order dispersion, and a coupled induction-dispersion term, depending on where the excitations 

are localized.299 



84 
 

E(3) = 𝐸𝑖𝑛𝑑
(3)

+ (E(3) − 𝐸𝑖𝑛𝑑
(3)

) = 𝐸𝑖𝑛𝑑
(3)

+ 𝐸𝑑𝑖𝑠𝑝
(3)

+ 𝐸𝑖𝑛𝑑−𝑑𝑖𝑠𝑝
(3)

 (320) 

Thus, up to the third order, the polarization energies have a physical interpretation and can be related 

to monomer properties.299 However, among others, Adams outlined that the polarization perturbation 

expansion converges slowly and diverges for systems with more than two electrons.304 Most 

importantly, this results from the definition of the zeroth-order Hamiltonian 𝐻𝐴 + 𝐻𝐵. It ascribes the 

electrons to one of the monomers and thus violates their indistinguishability.299 Consequently, the 

zeroth-order wave function is a poor starting point to describe exchange interactions and resonance 

coupling between the monomers,305,306 which are therefore only retrieved at very high orders of the 

perturbation expansion.299 As a consequence, polarization theory is for instance incapable of 

describing van-der-Waals minima.303 

To eliminate this deficiency, the antisymmetrized zeroth-order wave function Ψ(0) = 𝒜(Ψ𝐴Ψ𝐵) is a 

better starting point (with 𝒜 being the antisymmetrization operator). With this modified zeroth-order 

wave function, the Rayleigh-Schrödinger perturbation formalism can no longer be employed if the 

zeroth-order Hamiltonian 𝐻0 = 𝐻𝐴 + 𝐻𝐵  is maintained, which is indeed the case. This results because 

𝒜(Ψ𝐴Ψ𝐵) is not an eigenfunction to 𝐻0.299 A number of symmetry-adapted perturbation theories 

exist.299 They are now summarized under the common name of SAPT.300 In most SAPT calculations, one 

uses303 usually the conceptually and computationally rather simple symmetrized Rayleigh-Schrödinger 

perturbation theory (SRS).307 It is based on the standard Rayleigh-Schrödinger (RS) expressions for the 

wave function (Eq. (32)). However, when calculating the energies (Eq. (30)), the antisymmetrization 

operator is inserted.307,308 With Eq. (312), (314) and (315), this yields the following general energy 

expression for the n-th order energy 

𝐸(𝑛) =
1

⟨Ψ(0)|𝒜Ψ(0)⟩
[⟨Ψ(0)|𝑉|𝒜Ψ𝑅𝑆

(𝑛−1)
⟩ − ∑ 𝐸(𝑘) ⟨Ψ(0)|𝒜Ψ𝑅𝑆

(𝑛−𝑘)
⟩

𝑛−1

𝑘=1

] 
(321) 

The SAPT exchange energy 𝐸𝑒𝑥
(𝑛)

 is then defined at each order of perturbation 𝑛 as the difference 

between the SRS and the RS energies.307  

𝐸𝑒𝑥
(𝑛)

= 𝐸(𝑛) − 𝐸𝑅𝑆
(𝑛)

 (322) 

The discussion up to this point has assumed that the exact monomer energies are available, which is 

not the case for many-electron systems. Furthermore, it has already been noted that before SAPT with 

DFT came to use, SAPT was most often used in combination with MP2 calculations on the monomers. 

Due to the MP2 partitioning of the monomer Hamiltonians 𝐻𝐴 , 𝐻𝐵  into the Fock operators 𝐹𝐴, 𝐹𝐵 and 

the fluctuation potential, in the following called 𝑊, the ultimate zeroth-order Hamiltonian of SAPT-

MP2 corresponds to the sum of the Fock operators.   
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𝐻 = 𝐻0 + 𝑊 + 𝑉 = (𝐹𝐴 + 𝐹𝐵) + (𝑊𝐴 + 𝑊𝐵) + 𝑉 (323) 

It is evident from Eq. (323) that two perturbation operators exist so that, as stated by Szalewizc,307 

SAPT is a “double perturbation theory”. This is reflected in the fact that the energy contributions 𝐸(𝑖𝑗) 

to the total intermolecular energy 𝐸𝑖𝑛𝑡 have two different orders 𝑖, 𝑗 in 𝑉, 𝑊, respectively. Due to Eq. 

(322), the sum can be further divided into contributions from RS theory and exchange interactions.300 

𝐸𝑖𝑛𝑡 = ∑ ∑ 𝐸(𝑖𝑗)

𝑗𝑖=1

= ∑ ∑ (𝐸𝑅𝑆
(𝑖𝑗)

+ 𝐸𝑒𝑥
(𝑖𝑗))

𝑗𝑖=1

 (324) 

In view of the interpretation of the polarization energies (Eq. (316), (318)-(320)), the energy 

corrections of order 𝑖 in Eq. (324) can be ascribed to the different interaction types from polarization 

theory. Therefore, the exchange energy (Eq. (322)) can be equally related to an energy component. 

According to Szalewicz, the energy components are defined in terms of the SAPT terms as follows:300 

𝐸𝑒𝑙𝑒𝑐 = 𝐸𝑒𝑙𝑒𝑐
(10)

+ 𝐸𝑒𝑙𝑒𝑐,𝑟𝑒𝑠𝑝
(12)

+ 𝐸𝑒𝑙𝑒𝑐,𝑟𝑒𝑠𝑝
(13)

 (325) 

𝐸𝑖𝑛𝑑 = 𝐸𝑖𝑛𝑑,𝑟𝑒𝑠𝑝
(20)

+ 𝐸 
𝑡

𝑖𝑛𝑑,𝑟𝑒𝑠𝑝
(22)

 (326) 

𝐸𝑑𝑖𝑠𝑝 = 𝐸𝑑𝑖𝑠𝑝
(20)

+ 𝐸𝑑𝑖𝑠𝑝
(21)

+ 𝐸𝑑𝑖𝑠𝑝
(22)

 (327) 

𝐸𝑒𝑥 = 𝐸𝑒𝑥
(10)

+ 𝜖𝑒𝑥
(1)(𝑀𝑃2) + 𝐸𝑒𝑥−𝑖𝑛𝑑,𝑟𝑒𝑠𝑝

(20)
+ 𝐸 

𝑡
𝑒𝑥−𝑖𝑛𝑑
(22)

+ 𝐸𝑒𝑥−𝑑𝑖𝑠𝑝
(20)

 (328) 

𝑟𝑒𝑠𝑝 indicates that the calculations are performed with monomer orbitals distorted in the field of the 

second monomer (≈ responding orbitals, coupled HF contributions are included303). 

𝐸 
𝑡

𝑖𝑛𝑑,𝑟𝑒𝑠𝑝
(22)

, 𝐸 
𝑡

𝑒𝑥−𝑖𝑛𝑑
(22)

 recollect all (exchange)-induction components that are not included in the 

calculations with distorted orbitals. 𝜖𝑒𝑥
(1)(𝑀𝑃2) provides the contribution of the intramonomer 

correlation to the total exchange interaction.300 An exemplary calculation can be found in 309. Third-

order expressions for SAPT were also developed.310  

As outlined by Szalewizc,303 the different SAPT terms in Eq. (325) to (328) can also be related to the 

intermolecular interaction energy obtained in a supermolecular approach, for example at the MP2 

level.311 Hence, the HF and MP2 interaction energies Δ𝐸𝐻𝐹 and Δ𝐸𝑀𝑃2 in terms of the above lowest-

order SAPT-MP2 components are given by  

Δ𝐸𝐻𝐹 ≈ 𝐸𝑒𝑙𝑒𝑐
(10)

+ 𝐸𝑒𝑥
(10)

+ 𝐸𝑖𝑛𝑑,𝑟𝑒𝑠𝑝
(20)

+ 𝐸𝑒𝑥−𝑖𝑛𝑑,𝑟𝑒𝑠𝑝
(20)

+ ⋯ (329) 

Δ𝐸𝑀𝑃2 ≈ 𝐸𝑑𝑖𝑠𝑝
(20)

+ 𝐸𝑒𝑥−𝑑𝑖𝑠𝑝
(20)

+ 𝐸𝑒𝑙𝑒𝑐,𝑟𝑒𝑠𝑝
(12)

+ 𝜖𝑒𝑥
(1)(𝑀𝑃2) + ⋯ (330) 

In fact, Eq. (329) is often rearranged, defining the quantity 𝛿𝐸𝑖𝑛𝑡
𝐻𝐹. 
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𝛿𝐸𝑖𝑛𝑡
𝐻𝐹 = Δ𝐸𝐻𝐹 − (𝐸𝑒𝑙𝑒𝑐

(10)
+ 𝐸𝑒𝑥

(10)
+ 𝐸𝑖𝑛𝑑,𝑟𝑒𝑠𝑝

(20)
+ 𝐸𝑒𝑥−𝑖𝑛𝑑,𝑟𝑒𝑠𝑝

(20)
) (331) 

This quantity recollects all higher-order induction and exchange terms and should be small. It is added 

to the sum of the other SAPT expressions ((325) to (328)). However, as emphasized by Szalewicz et al., 

this is an approximation because no direct, theoretically grounded relationship between SAPT 

interaction energies and supermolecular interaction energies exists. It was indeed shown that 𝛿𝐸𝑖𝑛𝑡
𝐻𝐹 

improves interaction energies only for intermolecular potentials between polar or polarizable 

substances.300 

It is important to point out that in contrast to variational EDA approaches and the supermolecule 

interactions in Eq. (329) and (330), SAPT, which relies entirely on monomer calculations, is free of the 

basis set superposition error (BSSE). SAPT computations were indeed employed to validate the quality 

of counterpoise corrections (CPs).307 However, the very high accuracy of SAPT-MP2, which is 

comparable to CCSD(T),303,312,313 comes at the expense of an equivalent CCSD(T)-like scaling behavior 

as 𝑁7. Especially the treatment of the intramonomer MP2 correlation is computationally demanding 

in SAPT-MP2.298 Moreover, it is well-known31 that increasing the accuracy is a two-dimensional 

process. Correlated methods, such as MP2, require therefore large basis sets,307 making the 

computations even more demanding. 

Since correlation is in principle included in DFT, SAPT(DFT), or DFT-SAPT,ss is computationally more 

efficient than SAPT-MP2.303 Chabalowski and coworker314 suggested to replace the HF orbitals in Eq. 

(325) to (328) with Kohn-Sham orbitals. The SAPT interaction energy can then be obtained to second 

order as300 

𝐸 ≈ 𝐸𝑒𝑙𝑒𝑐
(10)

+ 𝐸𝑒𝑥
(10)

+ 𝐸𝑖𝑛𝑑
(20)

+ 𝐸𝑒𝑥−𝑖𝑛𝑑
(20)

+ 𝐸𝑑𝑖𝑠𝑝
(20)

+ 𝐸𝑒𝑥−𝑑𝑖𝑠𝑝
(20)

 (332) 

The double-perturbation treatment thus reduces to a single perturbative step; only the intermolecular 

interaction operator 𝑉 needs to be considered while the zeroth-order Hamiltonian corresponds to the 

sum of the molecular Kohn-Sham operators. This decreases the number of terms required to obtain 𝐸 

and considerably improves the scaling behavior of SAPT(DFT)/DFT-SAPT approaches, which amounts 

to 𝑁5 if density fitting is employed (equivalent to the RI approximation).298,303 

The initial results of Chabalowski and coworker314 were rather poor. However, Misquitta et al.315 

demonstrated that the failure was related to the wrong asymptotic behavior of the exchange-

correlation potential. Therefore, if the monomer exchange-correlation potentials are corrected, for 

                                                             
ss It should be noted that a number of different implementations exist that combine SAPT with DFT. Although 
they are not completely equivalent, their results are almost equal.303 
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instance via IP-tuning of the underlying hybrid functional, very accurate electrostatic, induction, and 

exchange contributions compared with regular SAPT are obtained.300 Different approaches were 

suggested to incorporate dispersion interactions, which are a priori not covered by DFT, into SAPT with 

DFT.300 Misquitta et al. proposed to compute the DFT dispersion energies via the frequency-dependent 

polarizabilities (see above) obtained from TD-DFT calculations.295 Dispersive interactions can readily 

be calculated from polarizabilities.316 This defines the SAPT(DFT) procedure.300 A similar procedure was 

developed by Heßelmann and Jansen.297 

As outlined by Heßelmann, Jansen and Schütz, the components of the SAPT(DFT) energy (Eq. (332)) 

can be directly expressed as a function of the monomer Kohn-Sham determinants (zeroth-order wave 

functions) {Φ0
𝐴, Φ0

𝐵}. Orbitals are often obtained in a dimer-based basis.298 The antisymmetrizer 𝒜 is 

rewritten in terms of the permutation operator 𝒫 = 𝒜 − 1 that permutes all electrons, electron pairs, 

etc. 𝑚, 𝑛 designate the excited states on monomers 𝐴, 𝐵. 𝑖, 𝑎 are occupied and virtual orbitals localized 

on 𝐴 with 𝑗, 𝑏 being the counterparts for 𝐵. Some exchange integrals are approximated via the square 

of the overlap 𝑆2 (Eq. (336)).298 

𝐸𝑒𝑙𝑒𝑐
(1)

= ⟨Φ0
𝐴Φ0

𝐵|𝑉|Φ0
𝐴Φ0

𝐵⟩ (333) 

𝐸𝑒𝑥
(1)

=
⟨Φ0

𝐴Φ0
𝐵| (𝑉 − 𝐸𝑅𝑆

(1)) 𝒫|Φ0
𝐴Φ0

𝐵⟩

⟨Φ0
𝐴Φ0

𝐵|1 + 𝒫|Φ0
𝐴Φ0

𝐵⟩
 

(334) 

𝐸𝑖𝑛𝑑
(2)

= − ∑
|⟨Φ0

𝐴Φ0
𝐵|𝑉|Φ𝑚

𝐴 Φ0
𝐵⟩|

2

𝐸𝑚
𝐴 − 𝐸0

𝐴

𝑚≠0

− ∑
|⟨Φ0

𝐴Φ0
𝐵|𝑉|Φ0

𝐴Φ𝑛
𝐵⟩|

2

𝐸𝑛
𝐵 − 𝐸0

𝐵

𝑛≠0

 
(335) 

𝐸𝑒𝑥−𝑖𝑛𝑑
(2) (𝑆2) = ⟨Φ0

𝐴Φ0
𝐵| (𝑉 − 𝐸𝑅𝑆

(1)) (𝒫 − 𝑆2)|Φ𝑖𝑛𝑑
(1)

⟩ (336) 

𝐸𝑑𝑖𝑠𝑝
(2)

= ⟨Φ0
𝐴Φ0

𝐵|𝑉|Φ𝑑𝑖𝑠𝑝
(1)

⟩ = 4 ∑ 𝑇𝑖𝑎,𝑗𝑏(𝑖𝑎|𝑗𝑏)

𝑖𝑎,𝑗𝑏

 (337) 

𝐸𝑒𝑥−𝑑𝑖𝑠𝑝
(2) (𝑆2) = ⟨Φ0

𝐴Φ0
𝐵| (𝑉 − 𝐸𝑅𝑆

(1)) (𝒫 − 𝑆2)|Φ𝑑𝑖𝑠𝑝
(1)

⟩ (338) 

Φ𝑖𝑛𝑑
(1)

  (Eq. (336)) is defined by 𝐸𝑖𝑛𝑑
(2)

. The amplitudes {𝑇𝑖𝑎,𝑗𝑏} can be obtained from the frequency-

dependent polarizabilities, i.e, the linear-response function. As emphasized by Szalewicz, according to 

Eq. (337), also higher-order multipoles and short-range dispersion effects are included in the 

dispersion component compared with the conventional 𝑅−6-type interaction that relies exclusively on 

induced dipoles.300 Heßelmann et al. similarly point out that the influence of higher-order terms at the 

uncorrelated level can be estimated from 𝛿𝐸𝑖𝑛𝑡
𝐻𝐹 (Eq. (331)) (similar to SAPT-MP2, see above).298   
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SAPT(DFT) provides a very efficient and accurate route to calculate intermolecular energies. Due to its 

favorable cost-accuracy ratio, it can be applied to dimers composed of up to 100 atoms.303 

3.4 Continuum Solvation Models in Quantum-Chemical Calculations 
Depending on whether solvation effects on a ground-state molecule or on an electronic excitation are 

computed, different variants of continuum solvation models can be distinguished that are presented 

in the following. 

3.4.1 Equilibrium solvation in the ground state 
Tomasi et al. define continuum solvation models as models in which a distribution function is employed 

to describe a large number of the degrees of freedom of the composing particles of a system.317 

Continuum solvation models are based on a decomposition of the system into two parts:31 a core part, 

the solute, which is in the focus of the investigation,317 and the environment, the solvent. As outlined 

by Tomasi et al.,317 the Hamiltonian 𝐻𝑡𝑜𝑡 (�⃗⃗�𝑐𝑜𝑟𝑒 , �⃗⃗�𝑒𝑛𝑣) can thus be written as the sum of the 

Hamiltonian of the core subsystem 𝐻𝑐𝑜𝑟𝑒(�⃗⃗�𝑐𝑜𝑟𝑒), the Hamiltonian of the environment 𝐻𝑒𝑛𝑣 (�⃗⃗�𝑒𝑛𝑣), 

and the Hamiltonian for the interaction between the two systems 𝐻𝑖𝑛𝑡 (�⃗⃗�𝑐𝑜𝑟𝑒 , �⃗⃗�𝑒𝑛𝑣).  �⃗⃗�𝑐𝑜𝑟𝑒  recollects 

all degrees of freedom of the core system while �⃗⃗�𝑒𝑛𝑣  includes the degrees of freedom of the 

environment. 

𝐻𝑡𝑜𝑡(�⃗⃗�𝑐𝑜𝑟𝑒 , �⃗⃗�𝑒𝑛𝑣) = 𝐻𝑐𝑜𝑟𝑒(�⃗⃗�𝑐𝑜𝑟𝑒) + 𝐻𝑒𝑛𝑣 (�⃗⃗�𝑒𝑛𝑣) + 𝐻𝑖𝑛𝑡 (�⃗⃗�𝑐𝑜𝑟𝑒 , �⃗⃗�𝑒𝑛𝑣 ) (339) 

In order to reduce the number of degrees of freedom in the system, an effective Hamiltonian is defined 

from Eq. (339). Firstly, the Hamiltonian for the environment 𝐻𝑒𝑛𝑣 (�⃗⃗�𝑒𝑛𝑣) is neglected. Thus the 

environment itself is not explicitly considered. Secondly, the degrees of freedom of the environment 

are eliminated from the interaction Hamiltonian. This is achieved by introducing a continuous solvent 

response function 𝑄(𝑟, 𝑟′) that depends only on a pair of position vectors 𝑟 and 𝑟′. 

𝐻𝑒𝑓𝑓 (�⃗⃗�𝑐𝑜𝑟𝑒 , {𝑟, 𝑟′}) = 𝐻𝑐𝑜𝑟𝑒(�⃗⃗�𝑐𝑜𝑟𝑒) + 𝐻𝑖𝑛𝑡 (�⃗⃗�𝑐𝑜𝑟𝑒 , 𝑄(𝑟, 𝑟′)) (340) 

To specify the response function and thus 𝐻𝑖𝑛𝑡 (�⃗⃗�𝑐𝑜𝑟𝑒 , 𝑄(𝑟, 𝑟′)), the decomposition of the system 

requires a more detailed consideration. A key quantity in all continuum solvation approaches is the so-

called cavity. The solute is placed into a “hole”,31 the cavity, in the solvent environment, which is 

assumed to be isotropic.317,318 As emphasized by Tomasi et al.,317 the cavity should include the solute 

as completely as possiblett to avoid unbalanced results for the interactions with the solvent. Therefore 

                                                             
tt It should be noted that due to the exponential decay of the electronic density of a molecule, it is never 
completely included in the cavity. The remaining parts of the density outside of the cavity are referred to as the 
“outlying charge”.317,1013,1014   
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using spherical or ellipsoidal cavities is strongly discouraged although solute-solvent interactions can 

be analytically calculated for such symmetric cavity shapes. Instead, due to its favorable cost-accuracy 

ratio, a van-der-Waals surface of the solute is most often used in practice to define the cavity.31 Van-

der-Waals surfaces of the solute are obtained by interlocking atomic spheres (placed on all atoms of 

the solute) with radii defined by tabulated van-der-Waals radii. Different tabulations exist, for instance 

by Bondi.319 Nevertheless, as pointed out by Jensen31 and by Tomasi et al.,317 the van-der-Waals surface 

might still contain small “pockets” that are inaccessible to solvent molecules. Thus the concepts of the 

solvent accessible surface (SAS)320 and of the solvent excluded surface (SES)321 were developed that 

slightly modify the van-der-Waals surface.317 To derive these surfaces, a spherical probe that 

represents a solvent molecule rolls on the van-der-Waals surface. The positions of its center of mass 

define the SAS. If the positions of closest contact to the solute are used instead, the SES is obtained.317 

An alternative intuitive approach to model the cavity, proposed by Frisch and Wiberg and coworkers, 

is the isodensity surface: the cavity boundary corresponds to a certain isovalue of the electronic 

density.322 

If the cavity is defined, the interaction Hamiltonian 𝐻𝑖𝑛𝑡 (�⃗⃗�𝑐𝑜𝑟𝑒 , 𝑄(𝑟, 𝑟′)) can in principle be defined. 

To do this, the free energy of solvation ∆𝐺𝑠𝑜𝑙𝑣 is considered. It should be noted that the initial state in 

continuum solvation models is the pure liquid phase. To arrive at the final system, a cavity is created, 

and the solute is placed in the cavity. The “driving force” for this process, i.e., the free energy of 

solvation ∆𝐺𝑠𝑜𝑙𝑣,uu is usually represented as a sum of four terms: an electrostatic term ∆𝐺𝑒𝑙𝑒𝑐 

(including polarization/induction, see above), a dispersion and a repulsion term ∆𝐺𝑑𝑖𝑠𝑝, ∆𝐺𝑟𝑒𝑝 , and the 

free energy required to create the cavity, a cavity formation term ∆𝐺𝑐𝑎𝑣.31 

∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑒𝑙𝑒𝑐 + ∆𝐺𝑑𝑖𝑠𝑝 + ∆𝐺𝑟𝑒𝑝 + ∆𝐺𝑐𝑎𝑣 (341) 

The individual contributions to  ∆𝐺𝑠𝑜𝑙𝑣 can either explicitly depend on the electronic structure of the 

solute, or they can be expressed as empirical/classical formulas containing fit parameters. In the latter 

case, they enter the effective Hamiltonian (Eq. (340)) only parametrically. They are thus simply added 

to the total self-consistent QM energy.317 In the former case, however, they must be included in the 

self-consistent iteration. 

                                                             
uu It should be noted that due to the thermodynamic definition of the free energy, a term for the work 𝑝∆𝑉 
should be actually included in the definition for the ∆𝐺𝑠𝑜𝑙𝑣 (Eq. (341)). When using continuum solvation models 
with ab initio methods, the work is, however, not included. Moreover, the ab initio calculations are usually based 
on the Born-Oppenheimer approximation (Eq. (4)-(6)). In the solvated state, the nuclear degrees of freedom of 
the solute are thus eliminated. However, they are explicitly considered in the reference state (an ideal state 
composed of the pure liquid and the non-interacting electrons and nuclei). This results in an additional 
contribution to  ∆𝐺𝑠𝑜𝑙𝑣 (Eq. (341)).317 
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Most continuum solvation methods differ mainly in the way they include the electrostatic contribution 

∆𝐺𝑒𝑙𝑒𝑐  in the effective Hamiltonian.31 This is to some extent due to historical reasons: in the well-

known Born model based on classical electrostatics, the solvation process is described only with 

electrostatics.323 Several approaches to model ∆𝐺𝑒𝑙𝑒𝑐  will be presented below. In contrast, the 

remaining contributions ∆𝐺𝑑𝑖𝑠𝑝 + ∆𝐺𝑟𝑒𝑝 + ∆𝐺𝑐𝑎𝑣  are most often either neglected or calculated in a 

semiclassical/empirical manner.  

Approaches to calculate the cavity formation energy ∆𝐺𝑐𝑎𝑣  were comprehensively reviewed by Tomasi 

and Persico.318 Meanwhile, computer simulations have proven to be an invaluable tool to get accurate 

reference values for cavity formation energies.317 Cavity formation energies are usually evaluated 

either by statistical mechanics or from the solute surface exposed to the solvent by means of the 

surface tension.324 In fact, since the evaluation of real liquid properties by hard sphere fluids in 

statistical mechanics was problematic, the so-called scaled-particle theory based on statistical 

mechanics is employed to derive ∆𝐺𝑐𝑎𝑣 values.325,326 It relies only on atomic radii and number densities 

of the solvent.  

Although quantum-mechanical expressions for the repulsion term were proposed for example by 

Amovilli and Mennucci,327 thus enabling an inclusion of the repulsion in the effective Hamiltonian (Eq. 

(340)), the repulsion is treated classically in most continuum solvation models. It is usually computed 

from the SAS and empirically fitted parameters.328 Furthermore, the dispersion contribution ∆𝐺𝑑𝑖𝑠𝑝 is 

commonly combined with the repulsion in a similar classical expression, yielding a combined 

dispersion-repulsion contribution. As outlined by Tomasi et al.,317 this procedure is approximate 

especially in view of the different ranges of action of repulsion and dispersion. In order to include the 

dispersion in the quantum-mechanical treatment, it must be expressed as a function of the electronic 

structure of the solute. Based on the above mentioned relationship between dispersion and 

polarizability, several expressions were derived.328 Nevertheless, due to the significantly increased 

computational cost, most implementations of continuum solvation approaches resort to empirical 

expressions of the dispersion interactions.317,329 

Thus, in most applications of continuum solvation models, the combined effect of ∆𝐺𝑑𝑖𝑠𝑝 + ∆𝐺𝑟𝑒𝑝 +

∆𝐺𝑐𝑎𝑣  can be directly – or indirectly via sums over atomic-specific parameters – computed from the 

SAS (𝛽, 𝛾 are fit parameters).31 

∆𝐺𝑑𝑖𝑠𝑝 + ∆𝐺𝑟𝑒𝑝 + ∆𝐺𝑐𝑎𝑣 = 𝛾𝑆𝐴𝑆 + 𝛽 (342) 

As already mentioned, the sum is added as a parameter to the QM energy. In contrast, the electrostatic 

component ∆𝐺𝑒𝑙𝑒𝑐  (Eq. (341)) is treated differently, which is discussed in more detail in the following. 
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In fact, the charge density of the solute, 𝜌𝑆(𝑟), polarizes the surrounding solvent, which results in turn 

in back polarization of the solute.317 Thus, the electrostatic component ∆𝐺𝑒𝑙𝑒𝑐 gives rise to an 

additional term in the effective interaction Hamiltonian (Eq. (340)), an electric potential of the 

surrounding that depends on the charge density of the solute 𝑉𝑅(𝑟).317 Due to the relation to the 

traditional Onsager’s theory,330 this potential is often designated as the “solvent reaction field”.317 A 

non-linear problem results because the equation – via 𝑉𝑅(𝑟) = 𝑉𝑅[𝜌𝑆(𝑟)](𝑟) – depends on its solution 

𝜌𝑆(𝑟). It must be hence solved iteratively.317  

The Poisson equation relates the electric potential 𝑉(𝑟) to the charge distribution 𝜌𝑆(𝑟) and the 

dielectric constant 휀(𝑟). If the dielectric constant 휀(𝑟) does not depend on the position, the Poisson 

equation is given, for all positions {𝑟} inside the cavity, by31,317 

∇2𝑉(𝑟) = ∇2(𝑉𝑆(𝑟) + 𝑉𝑅(𝑟)) = −4𝜋𝜌𝑆(𝑟) (343) 

Outside the cavity, no charge density exists.317 

−휀∇2𝑉(𝑟) = −휀∇2(𝑉𝑆(𝑟) + 𝑉𝑅(𝑟)) = 0 (344) 

The electric potential in Eq. (343) is composed of the potential created by the molecular charge density  

𝑉𝑆(𝑟) and the reaction potential 𝑉𝑅(𝑟).317 Several boundary conditions exist for the potential 𝑉(𝑟), 

i.e., the solution of Eq. (343), most notably the continuous progression of 𝑉(𝑟) and its first derivative, 

the electric field, across the cavity surface Γ.317 Therefore, Tomasi et al.317 designate them as “jump 

conditions”.  

[𝑉] = 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 = 0                                       𝑜𝑛 Γ (345) 

[𝜕𝑉] = (
𝜕𝑉

𝜕�⃗⃗�
)

𝑖𝑛
− 휀 (

𝜕𝑉

𝜕�⃗⃗�
)

𝑜𝑢𝑡
= 0                  𝑜𝑛 Γ  

(346) 

The dielectric constant 휀 inside the cavity is assumed to be 1. �⃗⃗� is the cavity surface vector pointing 

outward. 

From 𝑉𝑅(𝑟) and 𝜌𝑆(𝑟), the electrostatic component of the free energy of solvation and the effective 

interaction Hamiltonian of the solute are readily accessible. 

 ∆𝐺𝑒𝑙𝑒𝑐 =
1

2
∫ 𝑑𝑟𝜌𝑆(𝑟)𝑉𝑅(𝑟) 

(347) 

Tomasi and Persico proposed a classification of continuum solvation models depending on the way 

they proceed in solving Eq. (343) or Eq. (347).318 As also emphasized by Tomasi et al. in a later review317, 

the models can be subdivided into six categories: (1) the apparent surface charges models (ASC), (2) 

the multipole expansion methods (MPE), (3) the generalized Born approximation (GBA), (4) the image 
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charge methods (IMC), (5) the finite element methods (FEM), and (6) the finite difference methods 

(FDM). As only ASC-type models were employed in this thesis, only the first group is presented in more 

detail. It is, however, important to keep in mind that several further conceptually different approaches 

exist to model continuum solvation. 

ASC methods considerably simplify the computation of the three-dimensional reaction field 𝑉𝑅(𝑟) =

𝑉𝑅[𝜌𝑆(𝑟)](𝑟). Firstly it is reduced to a two-dimensional problem that is secondly, via discretization, 

converted into a summation. This is achieved, as already indicated by the name, by means of the key 

ingredient of ASC models, an apparent surface charge on the cavity surface 𝜎(𝑠), 𝑠 ∈ Γ. It follows that 

the potential created by the surface charge 𝑉𝜎(𝑟), which corresponds to the reaction potential 𝑉𝑅(𝑟), 

can be computed as317 

𝑉𝜎(𝑟) = 𝑉𝑅(𝑟) = ∫ 𝑑2𝑠
 

Γ

𝜎(𝑠)

|𝑠 − 𝑟|
 

(348) 

The cavity surface is then subdivided into small finite elements, called tesserae, with surfaces {𝐴𝑘}. 

The surface charges on these tesserae {𝜎𝑘} are then approximately constant so that the reaction field 

potential can be rewritten as317 

𝑉𝜎(𝑟) = 𝑉𝑅(𝑟) ≅ ∑
𝜎𝑘(𝑠𝑘)𝐴𝑘

|𝑠𝑘 − 𝑟|
𝑘

= ∑
𝑞𝑘

|𝑠𝑘 − 𝑟|
𝑘

 
(349) 

It is evident from Eq. (349) that the reaction field 𝑉𝜎(𝑟) is accessible if the surface charge distribution 

is available. Eq. (349) is the common ingredient in all ASC methods.317 They differ, however, in terms 

of their expressions for 𝜎(𝑠). 

The oldest ASC method is PCM, the polarizable continuum model.331 Its original version is nowadays 

called D-PCM (dielectric). The most important follow-up versions are designated as C-PCM332,333 

(conductor) and IEFPCM334 (integral equation formalism), the latter of which is formulated in terms of 

Green’s functions.317 Furthermore, an IPCM exists as well that relies on cavities defined from 

isosurfaces.322 

In order to obtain the fundamental equation of PCM models, it follows from Gauss’s law (i.e., the first 

Maxwell equation ∇(휀0�⃗⃗� + �⃗⃗�) = ∇휀0�⃗⃗� = 4𝜋𝜌) and the boundary condition of the Poisson equation 

(Eq. (346)) that a surface charge 𝜎(𝑠) between two media 𝑖, 𝑗 is given by the difference of the 

polarization vectors 𝑃𝑖 , 𝑃𝑗. �⃗⃗�𝑖𝑗 is a unit vector from medium 𝑖 to medium 𝑗. 

𝜎(𝑠) = −(�⃗⃗�𝑗 − �⃗⃗�𝑖)�⃗⃗�𝑖𝑗 (350) 
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The polarization can readily be expressed in terms of the gradient of the potential ∇𝑉(𝑟), the electric 

field strength.  

�⃗⃗�𝑗 =
휀𝑗 − 1

4𝜋
∇⃗⃗⃗𝑉(𝑟) 

(351) 

Furthermore, the dielectric constant 휀𝑗  of the cavity is assumed to be 1. Thus no polarization exists 

within the cavity (Eq. (351)). Thus, the surface charge is given by 

𝜎(𝑠) =
(휀𝑗 − 1)

4𝜋

𝜕𝑉(𝑟)

𝜕�⃗⃗�
=

(휀𝑗 − 1)

4𝜋

𝜕(𝑉𝑆(𝑟) + 𝑉𝑅(𝑟))

𝜕�⃗⃗�
 

(352) 

For PCM, Eq. (348), (349) and (352) form a pair of coupled equations that can be solved iteratively. As 

pointed out by Tomasi and Persico, an initial guess is created for the surface charge distribution from 

Eq. (352) (assuming for instance 𝑉𝑅(𝑟) ≈ 0). Then, the reaction potential is calculated, which is 

reinserted to obtain revised surface charges.318 According to Tomasi and Persico, a few iterations are 

usually sufficient, hence limiting the computational cost.318 The final self-consistent reaction field 

𝑉𝑅(𝑟) is then used to define the effective Hamiltonian (Eq. (340)). Since the charge density of the 

solute, 𝜌𝑆(𝑟), must be also self-consistent with the reaction field, this version of PCM is sometimes 

considered as a double-iterative procedure.335  

Due to the coupled nature of the equations, an effective surface charge 𝜎′(𝑠) that is ultimately 

determined by the molecular charge density 𝜌𝑆(𝑟), can similarly be expressed in terms of the solvent 

response function 𝑄(휀, 𝑠, 𝑠′).336,337,338 

𝜎′(𝑠) = ∫ 𝑑s⃗′ 𝑄(휀, 𝑠, 𝑠′)𝑉𝑆(𝑠′) 
(353) 

Klamt and Schüürmann proposed an alternative approach to compute the reaction potential, the so-

called conductor-like screening model (COSMO).335 Their key idea is to exploit the simplicity of all 

electrostatic expressions if conductors are considered. Therefore, the dielectric constant of the solvent 

is changed from 휀 to ∞. This implies that the potential at the cavity surface cancels (Gauss’s law applied 

to conductors).317 The surface charges 𝜎∗(𝑠) are thus directly accessible from the potential of the 

molecular charge distribution 𝑉𝑆(𝑟) (for example Eq. (352)). To take into account the finite size of the 

actual solvent permittivity 휀, the surface charges are subsequently scaled with a function 𝑓(휀).317 𝑘 is 

an empirical constant fitted to experimental reference data.335 

𝜎(𝑠) = 𝑓(휀)𝜎∗(𝑠) =
휀 − 1

휀 + 𝑘
𝜎∗(𝑠) 

(354) 

The scaling function is motivated by classical electrostatics where the dielectric screening in media is 

obtained from similar expressions.339,340 It is evident from this outline that the calculation of the surface 
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charges in COSMO is non-iterative. As pointed out by Barone et al. for the related C-PCM model,vv 

COSMO yields equivalent results to the traditional dielectric PCM approaches although it might be less 

intuitive.333 

As already indicated, since the reaction field potential is accessible from either COSMO or PCM, the 

effective Hamiltonian is defined. The electronic-structure problem of the embedded QM system is 

solved by diagonalizing the effective Hamiltonian. To do this, electronic and nuclear degrees of 

freedom of the solute are usually decoupled. This is achieved by dividing the charge density of the 

solute into an electronic and a nuclear component, each inducing a reaction field. The interaction 

Hamiltonian consists of four different terms (two different reaction potentials interacting with two 

different charge distributions). Since the nuclear degrees of freedom are treated parametrically, the 

electronic equations obtain a more compact form. Then, as outlined, the problem is iterated until self-

consistency. This explains the notion of SCRF (self-consistent reaction field).317,318 

3.4.2 Linear response solvation for the excited state 
The presented PCM and COSMO approaches are based on equilibrium conditions between the solute 

and its solvent environment. For electronic excitations, this is not the case anymore.317 Instead, the 

electronic properties of the solute change with time. Consistently, the solute-solvent interactions (Eq. 

(341)) become time-dependent as well. Usually, only the time dependence of the electrostatic solute-

solvent interaction is taken into account.ww 317 

It is well-known that the polarization �⃗⃗�(𝜔) of a medium like a solvent by a time-dependent electric 

field �⃗⃗�(𝜔) (such as an electronically excited dipole moment) is described by its complex dielectric 

constant 휀𝑟(𝜔).317 

�⃗⃗�(𝜔) =
(휀𝑟(𝜔) − 1)

4𝜋
�⃗⃗�(𝜔) 

(355) 

The complex dielectric constant 휀𝑟(𝜔) is represented as the sum of a real part 휀𝑟
′ (𝜔), which accounts 

for the in-phase polarization and corresponds to the static dielectric constant for the limiting case of 

low frequencies, and a complex part 휀𝑟
′′(𝜔).317 

휀𝑟(𝜔) = 휀𝑟
′ (𝜔) + 𝑖휀𝑟

′′(𝜔) (356) 

It is furthermore well-known that 휀𝑟(𝜔) decreases with increasing frequencies. While some 

polarization processes are fast and immediately respond to a changing electric field �⃗⃗�(𝜔), others are 

                                                             
vv It should be noted that C-PCM and COSMO differ, apart from different implementations, only by their constant 
𝑓(휀), namely by the fit parameter 𝑘. 
ww It should be noted that the time dependence of all other contributions to ∆𝐺 is usually neglected. Ground-
state expressions are employed. 
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inertial (such as the orientational polarization of the solvent, i.e., the solvent relaxation, for vertical 

electronic excitations). This implies that given a certain timescale of a process or of �⃗⃗�(𝜔), the 

polarization (Eq. (355)) is composed of a contribution in equilibrium with the solute, the dynamic 

polarization, and a frozen contribution. For instance, it can be assumed that for optical excitations, 

only the electronic polarization of the solvent is in equilibrium with the solute. It is represented by the 

dielectric constant 휀𝑟
′ (𝜔) = 휀𝑜𝑝𝑡

′ (𝜔) = 𝑛2 with 𝑛 being the refractive index.336 The remaining degrees 

of freedom of the solvent are frozen and not in equilibrium. Thus, the polarization (Eq. (355)) as well 

as the effective surface charges can be decomposed into two parts.336 

�⃗⃗�(𝜔) = �⃗⃗�𝑓𝑎𝑠𝑡(𝜔) + �⃗⃗�𝑠𝑙𝑜𝑤(𝜔) (357) 

𝜎′(𝜔) = 𝜎′
𝑓𝑎𝑠𝑡(𝜔) + 𝜎′

𝑠𝑙𝑜𝑤(𝜔) =
휀𝑜𝑝𝑡

′ − 1

휀 − 1
𝜎′(𝜔) +

휀 − 휀𝑜𝑝𝑡
′

휀 − 1
𝜎′(𝜔) 

(358) 

Only the fast polarization contributes to the reaction potential. This is reflected in a reduced surface 

charge (only the first term on the right-hand side of Eq. (358)). In order to actually calculate the 

transition energies, the effective Hamiltonian, which defines the response function, contains only a 

fraction of the reaction potential in equilibrium. From a technical point of view, this is most easily 

represented in terms of the solvent response functions (Eq. (353)). The surface charge 𝜎𝑓𝑎𝑠𝑡(𝜔) is thus 

calculated as336 

𝜎′𝑓𝑎𝑠𝑡(𝑠) = ∫ 𝑑s⃗′ 𝑄(휀𝑜𝑝𝑡 , 𝑠, 𝑠′)𝑉𝑆(𝑠′)

 

Γ

 
(359) 

The electrostatic contribution to the free energy of solution ∆𝐺𝑒𝑙𝑒𝑐  and the electrostatic interaction 

energy (Eq. (347)) are directly related to the surface charges.336 

∆𝐺𝑒𝑙𝑒𝑐 =
1

2
𝐸𝑖𝑛𝑡,𝑒𝑙 =

1

2
∫ 𝜎′𝑓𝑎𝑠𝑡(𝑠)𝑉𝑆(𝑠)𝑑s⃗

 

Γ

=
1

2
∫ ∫ 𝑉𝑆(𝑠)𝑄(휀𝑜𝑝𝑡 , 𝑠, 𝑠′)𝑉𝑆(𝑠′)𝑑s⃗′𝑑s⃗

 

Γ

 

Γ

 
(360) 

It has been already mentioned that the solute potential is usually divided into its electronic and nuclear 

contributions. 

𝑉𝑆(𝑠) = ∫ 𝑑𝑟
𝜌𝑒𝑙(𝑟)

|𝑟 − 𝑠|
+ ∑

𝑍𝑛

|𝑠 − �⃗⃗�𝑛|

𝑛𝑢𝑐𝑙𝑒𝑖

𝑛

 
(361) 
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The equations for the linear-response solvation in the calculation of transition energies will be 

exemplified in the following for the TD-DFT formalismxx.336 Therefore, the electrostatic interaction 

energy is written as a functional of the solute electronic density. 

𝐸𝑖𝑛𝑡,𝑒𝑙[𝜌𝑒𝑙(𝑟)] = ∫ ∫ 𝑉𝑆(𝑠)𝑄(휀𝑜𝑝𝑡 , 𝑠, 𝑠′)𝑉𝑆[𝜌𝑒𝑙(𝑟)](𝑠′)𝑑s⃗′𝑑s⃗

 

Γ

 

Γ

 
(362) 

In the Kohn-Sham operator, this results in an additional contribution, the PCM potential/operator 

𝑣𝑃𝐶𝑀(𝑟).336 

𝑣𝑃𝐶𝑀(𝑟) = ∫ ∫ 𝑉𝑆(𝑠)𝑄(휀𝑜𝑝𝑡 , 𝑠, 𝑠′)
𝜕𝑉𝑆

𝜕𝜌𝑒𝑙(𝑟)
(𝑠′)𝑑s⃗′𝑑s⃗

 

Γ

 

Γ

= ∫ ∫ 𝑑s⃗′ds⃗ 𝑉𝑆(𝑠)𝑄(휀, 𝑠, 𝑠′)
1

|𝑠′ − 𝑟|

 

Γ

 

Γ

 
(363) 

Due to the discretization of the surface charges into tesserae, it can be represented as a sum where 

the continuous cavity surface is discretized into a finite amount of segments 𝐼 with positions {𝑠𝐼}.336 

𝑣𝑃𝐶𝑀(𝑟) = ∑ ∑ 𝑉𝑆(𝑠𝐼)𝑄(휀𝑜𝑝𝑡 , 𝑠𝐼 , 𝑠′𝐽)
1

|𝑠′
𝐽 − 𝑟|

𝐽𝐼

 
(364) 

For the dynamic response of a vertical transition, the solvent response 𝑄(휀, 𝑠𝐼 , 𝑠′𝐽) (Eq. (364)) contains 

only the optical permittivity 휀𝑜𝑝𝑡
′ (𝜔). The PCM potential results in an additional term in the Casida 

equation. Diagonalizing them yields the transition energies in solution.336 An extension of the linear-

response theory for excited states to properties and gradients in solution has also been 

implemented.341  

It should be stressed that in the linear-response formalism, excitation energies and excited-state 

properties are determined from ground-state properties, and no iterative procedure is needed to 

obtain a self-consistent reaction field for the excitation energies. In other words, since the excited 

wave function is not explicitly calculated, no self-consistent reaction field specific for the excited-state 

density is necessary (in contrast to the ground-state case above317). Only the ground-state reaction 

field is iteratively optimized in the underlying ground-state calculation. Hence solvent effects on the 

excitation energies are included via (1) polarized ground-state orbitals and via (2) the equilibrium non-

iterative PCM potential (determined from 휀𝑜𝑝𝑡) in the Casida equation that includes only the optical 

permittivity. 

The inclusion of solvent effects is fundamentally different for excitation energies calculated in the so-

called state-specific approach, i.e., in those cases where the excited-state wave function is explicitly 

                                                             
xx It should be noted that TDHF/CIS/semiempirical calculations can be considered as a limiting case of TD-DFT for 
functionals containing only exact exchange. Expressions are thus equivalent. 
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calculated.317 Then the optical solvent reaction field is self-consistent with the excited-state density, 

i.e., it is variationally optimized in an SCF procedure using 휀𝑜𝑝𝑡 . Additionally, ground-state energies are 

obtained with a self-consistent reaction field based on 휀. Excitation energies are obtained as the 

differences between these iteratively determined absolute state energies. 

It is well-known that excitation energies calculated for gas-phase molecules in a linear-response 

formalism and in a state-specific framework (for instance TDA-TDHF vs. CIS) are equivalent.317 

However, Cammi et al.342 and Corni et al.343 demonstrated that this is not the case if continuum 

solvation models are employed in the calculation of the transition energies.317 Further evidence was 

provided that the linear-response and the state-specific solvation differ mostly in terms of the non-

equilibrium solvation energy or, otherwise stated, in terms of the energy difference between the 

equilibrium (calculated from the static permittivity 휀) and the non-equilibrium free energy of solvation 

(determined with the optical permittivity 휀𝑜𝑝𝑡  (Eq. (341)).344 Improta et al. proposed a state-specific 

solvation approach for TD-DFT excited states that corrects this difference. The equilibrium excited-

state solvation free energy ∆𝐺𝑒𝑙𝑒𝑐,𝑒𝑞  is thus calculated by explicitly calculating the solute potential 

𝑉𝑆,𝜌
𝑒𝑥(𝑠) and the surface charges 𝜎𝑒𝑥(𝑠) with the excited state density (comparison with Eq. (360)).344 

∆𝐺𝑒𝑙𝑒𝑐,𝑒𝑞 =
1

2
∫ 𝜎𝑒𝑥(𝑠)𝑉𝑆,𝜌

𝑒𝑥(𝑠)𝑑s⃗

 

Γ

=
1

2
∫ 𝜎𝑓𝑎𝑠𝑡

𝑒𝑥 (𝑠)𝑉𝑆,𝜌
𝑒𝑥(𝑠)𝑑s⃗

 

Γ

+
1

2
∫ 𝜎𝑠𝑙𝑜𝑤

𝑒𝑥 (𝑠)𝑉𝑆,𝜌
𝑒𝑥(𝑠)𝑑s⃗

 

Γ

 
(365) 

The non-equilibrium free energy ∆𝐺𝑒𝑙𝑒𝑐,𝑛𝑜𝑛−𝑒𝑞 of the excited state is then calculated by taking into 

account the ground-state density via its potential 𝑉𝑆,𝜌
𝑔𝑠(𝑠) as well.344 

∆𝐺𝑒𝑙𝑒𝑐,𝑛𝑜𝑛−𝑒𝑞 =
1

2
∫ 𝜎𝑓𝑎𝑠𝑡

𝑒𝑥 (𝑠)𝑉𝑆,𝜌
𝑒𝑥(𝑠)𝑑s⃗

 

Γ

 

+ ∫ 𝜎𝑠𝑙𝑜𝑤
𝑔𝑠 (𝑠)𝑉𝑆,𝜌

𝑒𝑥(𝑠)𝑑s⃗

 

Γ

−
1

2
∫ 𝜎𝑠𝑙𝑜𝑤

𝑔𝑠 (𝑠)𝑉𝑆,𝜌
𝑔𝑠(𝑠)𝑑s⃗

 

Γ

 

+
1

2
(∫ 𝜎𝑠𝑙𝑜𝑤

𝑔𝑠 (𝑠)𝑉𝑆,𝑓
𝑒𝑥(𝑠)𝑑s⃗

 

Γ

− ∫ 𝜎𝑠𝑙𝑜𝑤
𝑔𝑠 (𝑠)𝑉𝑆,𝑓

𝑔𝑠(𝑠)𝑑s⃗

 

Γ

) 

(366) 

𝑉𝑆,𝜌
𝑒𝑥(𝑠) and 𝑉𝑆,𝜌

𝑔𝑠(𝑠) are calculated from the densities of the solute (Eq. (361)) in the ground/excited 

state. In contrast, 𝑉𝑆,𝑓
𝑒𝑥(𝑠) and 𝑉𝑆,𝑓

𝑔𝑠(𝑠) are the potentials corresponding to the fast solvent polarization. 

𝜎𝑓𝑎𝑠𝑡
𝑔𝑠 (𝑠), 𝜎𝑓𝑎𝑠𝑡

𝑒𝑥 (𝑠) are the corresponding surface charges, with 𝜎𝑠𝑙𝑜𝑤
𝑔𝑠 (𝑠), 𝜎𝑠𝑙𝑜𝑤

𝑒𝑥 (𝑠) being the 

counterparts for the slow solvent degrees of freedom. In state-specific TD-DFT calculations, an iterative 

procedure is proposed similar to ground-state calculations. From the initial gas-phase excited-state 

density, the state-specific reaction potential is estimated. The excited-state density is updated. The 
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procedure is iterated until convergence of the excited-state reaction potential is reached.344 As pointed 

out by Improta et al., the state-specific approach seems to be especially important for polar solvents 

while in most apolar solutions, linear-response and state-specific solvation provide very similar results 

with TD-DFT.344 

It should be noted that several state-specific solvation methods exist. For instance, a different 

approach for state-specific solvation was proposed by Mennucci and coworkers based on the excited-

state reduced density matrix. A state-specific solvent response 𝑄 is computed and used to correct the 

linear-response excitation energies, which yields accurate results.345 

3.5 Molecular Mechanics (MM) 

3.5.1 The description of the electronic energy with force fields 
The following outline closely follows Jensen.31 In contrast to the quantum-chemical picture, molecules 

are described in a simple “ball-and-spring”-model in force fields, the defining feature of molecular 

mechanics. 

Instead of explicitly solving the electronic Schrödinger equation to obtain the electronic energy 𝐸𝑡𝑜𝑡, 

force fields express the electronic energy as a parameteric function of nuclear coordinates {�⃗⃗�}.31 

𝐸𝑡𝑜𝑡 = 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ + 𝐸𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑣𝑑𝑊 + 𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑐𝑟𝑜𝑠𝑠  (367) 

𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ is a function of the bond lengths, 𝐸𝑏𝑒𝑛𝑑 depends on bond angles, 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛  is obtained from 

torsional angles around a bond, 𝐸𝑣𝑑𝑊 designates the van-der-Waals energy and 𝐸𝑒𝑙𝑒𝑐 the electrostatic 

intermolecular energy. A force field description of a molecule does not rely on its nuclei and electrons 

like in QM (Eq. (3)). It rather resorts to atom types as the basic building blocks that compose a molecule. 

This is justified by the observation that distinct structural entities (like C-H bonds, H-O-bonds etc.) 

behave similarly in different molecules. Therefore, the force field approach can be considered as being 

closely related to the notion of functional groups fundamental to organic chemistry.31 

The energy terms of bond stretching and bending, 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ and 𝐸𝑏𝑒𝑛𝑑, can be expanded in a Taylor 

series. Usually, only the harmonic term is used. Yet, results usually improve if higher-order terms are 

included as well (more fit parameters). It should be kept in mind that a Taylor series of the bond 

stretching energy is unable to reproduce the dissociation limit. Thus, force fields are in general only 

reliable for geometries somewhat related to the minimum geometries defined by the zeroth-order 

bond lengths {𝑅0
𝐴𝐵 } and bond angles 𝜃0

𝐴𝐵𝐶  between atoms 𝐴 and 𝐵 and atoms 𝐴, 𝐵 and 𝐶. Although 

these zeroth-order parameters define the energetic minimum conformation, they do not necessarily 

correspond to the equilibrium bond lengths.31  
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By introducing two force constants 𝑘𝐴𝐵 and 𝑘𝐴𝐵𝐶  for the bond stretching and angle bending energies, 

respectively, these energy contributions can be written for bond lengths 𝑅𝐴𝐵  and angles 𝜃𝐴𝐵𝐶  as 

𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝑘𝐴𝐵(𝑅𝐴𝐵 − 𝑅0
𝐴𝐵)

2
 (368) 

𝐸𝑏𝑒𝑛𝑑 = 𝑘𝐴𝐵𝐶(𝜃𝐴𝐵𝐶 − 𝜃0
𝐴𝐵𝐶)

2
 (369) 

For systems with unusual equilibrium values for the bond lengths and angles, such as small rings, 

special atom types are defined.31 It is evident from Eq. (368) and (369) that two stretching and bending 

parameters have to be defined for each distinct bond/angle type (“distinct” refers in this context to 

the combination of atom types): a zeroth-order parameter 𝑅0
𝐴𝐵  (𝜃0

𝐴𝐵𝐶 ) and a force constant 𝑘𝐴𝐵 

(𝑘𝐴𝐵𝐶).31 

In contrast to the stretching and bending motions, torsions are periodic. They are thus written as a 

Fourier series of the torsional/dihedral angle 𝜔𝐴𝐵𝐶𝐷 , i.e., the angle between the bond vector between 

atoms 𝐴 and 𝐵 and the bond vector between atoms 𝐶 and 𝐷. The energetic profile of the rotation 

around an sp3-hybridized carbon atom has three minima (for ethane they are isoenergetic). Thus the 

energetic profile is periodic in dihedral angles of 120°. This implies that the Fourier series for sp3-

hybridized carbon atoms must contain at least a term corresponding to cos 3𝜔. Indeed, most force 

fields describe torsions by introducing three potential energy terms 𝑉1
𝐴𝐵𝐶𝐷 ,  𝑉2

𝐴𝐵𝐶𝐷 , and 𝑉3
𝐴𝐵𝐶𝐷.31 

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =
1

2
𝑉1

𝐴𝐵𝐶𝐷 [1 + cos 𝜔𝐴𝐵𝐶𝐷 ] +
1

2
𝑉2

𝐴𝐵𝐶𝐷[1 − cos 2𝜔𝐴𝐵𝐶𝐷 ] 

+
1

2
𝑉3

𝐴𝐵𝐶𝐷[1 + cos 3𝜔𝐴𝐵𝐶𝐷 ] 

(370) 

If for instance rotation around carbon-carbon double bonds are considered (𝐵, 𝐶 = sp²-hybridized 

carbon), 𝑉3
𝐴𝐵𝐶𝐷  vanishes. It follows from Eq. (370) that for a combination of four atoms 𝐴, 𝐵, 𝐶, 𝐷, 

three parameters {𝑉𝑛
𝐴𝐵𝐶𝐷 } are required.31 

Out-of-plane bending, for instance the pyramidalization of an sp²-hybridized carbon, deserves a special 

treatment in force fields. This results because upon pyramidalization, bond angles and torsions change 

only negligibly. Therefore, the energetic penalty for out-of-plane bending would be significantly too 

small to ensure the planarity of conjugated moieties unless bond angle force constants 𝑘𝐴𝐵𝐶  are very 

large. In order to prevent this unbalanced treatment leading to too stiff bending potentials, two 

alternative possibilities exist to take into account out-of-plane bending. On the one hand, the out-of-

plane angle of a central pyramidalized atom 𝐵 can be described in terms of its distance 𝑑 to the plane 

spanned by its substituents 𝐴, 𝐶, 𝐷. Again, the potential is assumed to be harmonic (𝑘𝐵 force 

constant).31 



100 
 

𝐸𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 = 𝑘𝐵𝑑2 (371) 

On the other hand, out-of-plane bending can be described by defining an “improper” torsion potential 

for the entity 𝐴𝐵𝐶𝐷. It is called “improper” because the torsional potential takes on a shape as if there 

were a bond between atoms 𝐶 and 𝐷 (although both atoms are bonded to atom 𝐴).31 

A number of different expressions exist for the van-der-Waals energy. While its attractive term, the 

attraction between spontaneous induced dipoles, can be classically treated and has an 𝑅−6-distance 

(𝑅 is the interatomic distance), no rigorously derived classical expression for the repulsive component 

exists. Maybe the most popular empirical van-der-Waals potential is the Lennard-Jones potential ({𝐶𝑛} 

are constants).31 

𝐸𝑣𝑑𝑊,𝐿𝐽(𝑅𝐴𝐵) =
𝐶1

(𝑅𝐴𝐵)12
−

𝐶2

(𝑅𝐴𝐵)6
= 휀 [(

𝑅0

𝑅𝐴𝐵
)

12

− 2 (
𝑅0

𝑅𝐴𝐵
)

6

] 
(372) 

The Lennard-Jones potential is often rewritten in terms of the minimum energy distance 𝑅0 and the 

depth of the potential minimum 휀. A related expression for the van-der-Waals energy, the so-called 

buffered 14-7 potential 𝐸𝑣𝑑𝑊,14−7,346 is employed in the Merck Molecular Force Field (MMFF)347 as 

well as in AMOEBA348 (atomic multipole optimized energetics for biomolecular applications).31 

𝐸𝑣𝑑𝑊,14−7(𝑅) = 휀 (
1.07𝑅0

𝑅 + 0.07𝑅0
)

7

(
1.12𝑅0

7

𝑅7 + 0.12𝑅0
7 − 2) 

(373) 

The van-der-Waals distances 𝑅0 and the energies 휀 are defined for atom pairs 𝐴, 𝐵. Many different 

approaches exist to derive these pair-specific values from atomic parameters, such as the one 

proposed by Halgren.346 The van-der-Waals distance 𝑅0
𝐴𝐵  is often determined from the sum of the van-

der-Waals radii of the atoms, 𝑅0
𝐴  and 𝑅0

𝐵 . However, this depends on the force field. For instance, it 

follows from the form of the Lennard-Jones-like potential (Eq. (372)) that the 𝑅0
𝐴𝐵  distances is rather 

calculated as the geometric mean.349 The energies 휀𝐴𝐵  are usually estimated from the geometrical 

means of the atomic parameters 휀𝐴 , 휀𝐵 .31 

The Lennard-Jones potential (Eq. (372)) and the closely related buffered 14-7 potential (Eq. (373)) are 

most often employed because they are computationally very efficient. However, an exponential 

repulsive function would represent the physical repulsive forces more accurately because it reflects 

the exponential decay of the electronic density with increasing distance. This has motivated the 

utilization of a Buckingham-type potential 𝐸𝑣𝑑𝑊,𝐵𝑢𝑐𝑘  (Eq. (374), 𝐴, 𝐵, 𝐶 are constants) and a Morse 

potential350 𝐸𝑣𝑑𝑊,𝑀𝑜𝑟𝑠𝑒  (Eq. (375), 𝐷 is the dissociation energy, 𝛼 depends on the force constant and 

can be considered as the compressability of the bond).31 
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𝐸𝑣𝑑𝑊,𝐵𝑢𝑐𝑘(𝑅) = 𝐴𝑒−𝐵𝑅 −
𝐶

𝑅6
= 휀 [

6

𝛼 − 6
𝑒𝛼(1−𝑅 𝑅0⁄ ) −

𝛼

𝛼 − 6
(

𝑅0

𝑅
)

6

] 
(374) 

𝐸𝑣𝑑𝑊,𝑀𝑜𝑟𝑠𝑒(𝑅) = 𝐷(1 − 𝑒−𝛼(𝑅−𝑅0) 
)

2
 (375) 

A problem of the Buckingham potential (Eq. (374)) arises from the fact that it becomes attractive for 

very short intermolecular distances. The Morse potential is best at reproducing the dissociation profile 

of a molecule.350 It should be noted that it does not feature any attractive 𝑅−6-distance dependence. 

This results because the exponential functional includes also higher-order attractive terms. Some 

phenomena might require separately adjusted van-der-Waals expressions, most notably hydrogen 

bonds and lone pairs. Some force fields scale the position of a hydrogen atom along a bond to an 

electronegative atom to reflect the anisotropy of the hydrogen electronic density. Sometimes, the 

Lennard-Jones potential (Eq. (372)) is modified to take into account the stronger binding energy of 

hydrogen bonds compared with standard van-der-Waals interactions. Moreover, orientational terms 

similar to the DH2 correction for semiempiric methods (Eq. (122)) are employed. Nevertheless, for the 

purpose of computational simplicity and generality of their parameters, most force fields provide a 

purely electrostatic description of hydrogen bonds. Lone pairs can be for instance included via dummy 

atoms, which are still often neglected.31 

The electrostatic interaction energy can be included either by assigning partial charges to all atom 

types or by employing bond dipoles. This implies that a bond dipole moment is ascribed to all distinct 

bonds between atom types 𝐴 and 𝐵. Then, the Coulomb interaction is calculated between the atomic 

charges or bond dipoles. Usually, both approaches yield rather equivalent results. Nevertheless, as 

outlined for example by Stone et al. for water clusters, many-body terms such as higher-order 

induction terms (𝐸𝑖𝑛𝑑
(2)

, see Eq. (326)) are important to obtain accurate intermolecular potentials and 

geometries.351 Intermolecular electrostatic potentials can be improved by either including non-atom-

centered (= “off-center”)) charges as proposed by Dixon et al.352 or higher multipole moments. Stone 

developed an analysis to decompose the electrostatic potential created by a quantum-mechanically 

obtained electron density into atomic multipole moments. It relies on a decomposition of the 

electronic density in terms of products of Gaussian basis functions, which have distinct symmetries. 

For instance, while the products of s-orbitals correspond to pure isotropic charges, products of s- and 

p-orbitals represent – for symmetry reasons – a charge and a dipole. The procedure is designated as 

the Distributed Multipole Analysis (DMA). The resulting atomic multipole moments were shown to 

accurately reproduce the molecular electrostatic potential.353 

To avoid double-counting of intramolecular interactions in the stretching/bending terms and in the 

van-der-Waals/electrostatic interactions, the van-der-Waals energy and the electrostatic energy 
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𝐸𝑣𝑑𝑊, 𝐸𝑒𝑙𝑒𝑐 (Eq. (367)) are only calculated for atom pairs that are separated by at least three bonds. It 

follows that these energy contributions influence torsional potentials, in contrast to bond stretching 

and bending.31 Therefore, an interdependence between the molecular geometry and the 

electrostatic/van-der-Waals energy contributions exists. This is problematic for two reasons. (1) In 

many force fields, the charges/bond dipoles and higher-order multipoles are derived from the 

molecular electrostatic potential, i.e., they aspire to reproduce intermolecular electrostatic 

interactions correctly. Because of their derivation, they are less accurate for intramolecular 

phenomena. Consistently, force-field intramolecular geometries of polar molecules are less reliable, 

especially compared with their apolar counterparts. An unbalanced treatment of different molecules 

results. (2) It is well-known that partial charges depend on the geometry. Due to their interdependence 

with the torsional parameters {𝑉𝑛
𝐴𝐵𝐶𝐷}, this questions the generarility of these parameters that are 

derived from a (necessarily limited) training set/set of reference data.31 This holds in principle equally 

for the van-der-Waals parameters. However, due to their short-range nature, they are, given a certain 

pair of bonds 𝐴 − 𝐵 − 𝐶 − 𝐷 and its torsion 𝜔(𝐴𝐵 − 𝐶𝐷), approximately constant in different 

molecules, in contrast to the electrostatic contribution.31 

It would thus be desirable to include a coupling between the force-field partial charges and the 

molecular geometry. This can be achieved by including polarization.354 In the lowest order, polarization 

is included via induced dipole moments �⃗�𝑖𝑛𝑑 . To calculate an atom-centered induced dipole moment, 

the electrostatic potential 𝜙(𝑟) of the environment is computed from the summation of all 

surrounding charges and higher-order multipole moments. The resulting electric field together with 

the polarizability tensor of the atom 𝛼 yields an induced dipole. 

�⃗�𝑖𝑛𝑑 = 𝛼∇⃗⃗⃗𝜙(𝑟) (376) 

Since all induced dipoles contribute themselves to the electrostatic potential, they must be calculated 

iteratively to self-consistency.31 

Similar to atomic multipole moments, atomic polarizability tensors 𝛼 can in principle be deduced from 

quantum-chemical calculations of the molecular electronic structure. Yet, this involves the challenge 

of separating permanent and induced atomic multipole moments obtained from the quantum-

chemical calculation. Ren and Ponder proposed a scheme to accomplish that. It is based on an analytic 

formula derived from Thole’s polarizability model355 to eliminate effects from intramolecular 

polarization on atomic multipoles.356  

Since the neglect of polarization and higher-order multipoles appeared to be a major bottleneck for 

more accurate force fields, Ren and Ponder developed the so-called AMOEBA force field (atomic 

multipole optimized energetics for biomolecular applications) for water that combines the DMA 
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analysis of Stone353 with atomic polarizabilities. The buffered 14-7 potential from the MMFF force field 

is employed for the van-der-Waals energy.348 Later-on, Ren, Ponder, and coworkers readily broadened 

the scope of applicability of the AMOEBA force field to a wide variety of small organic molecules.357  

As the AMOEBA force field provides very accurate results due to the inclusion of higher-order 

multipoles and polarization, it is sometimes considered as a class III type force field,358 similar to other 

polarizable force fields such as the Drude359 polarizable force field. In contrast, conceptually simple 

force fields like OPLS349-AA360 (optimized potentials for liquid simulations – All-Atom) belong to the 

class I force fields. For instance, OPLS-AA, originally parameterized to simulate proteins in their native 

(aqueous/liquid) environment (OPLS) and later generalized to all small organic molecules (-AA), relies 

on a simple expression for the electrostatic energy calculated from partial charges and a Lennard-Jones 

potential (Eq. (372)). The OPLS-AA electronic energy (similar to the electronic energy of the parent 

AMBER361,362 force field) is calculated as the sum of the independent stretching/bending/torsional/van-

der-Waals and electrostatic contributions, i.e., the cross term 𝐸𝑐𝑟𝑜𝑠𝑠 (Eq. (367)) is neglected. This 

differentiates class I from the more advanced class II force fields, for example the MM3363,364,365 force 

field. They include cross-couplings between the individual degrees of freedom. Such energy 

contributions, for instance for the coupling 𝐸𝑠𝑡𝑟/𝑠𝑡𝑟 between bonds 𝐴 − 𝐵 and 𝐵 − 𝐶, take on shapes 

such as31 

𝐸𝑠𝑡𝑟/𝑠𝑡𝑟 = 𝑘𝐴𝐵𝐶(𝑅𝐴𝐵 − 𝑅0
𝐴𝐵 )(𝑅𝐵𝐶 − 𝑅0

𝐵𝐶 ) (377) 

The parameters {𝑘𝐴𝐵𝐶} (and related ones for different cross-couplings) do not necessarily depend on 

all three involved atoms 𝐴, 𝐵, 𝐶. They may equally be assumed to be specific for the central atom 𝐵 or 

even overall constant. Furthermore, the class II-type MM3 force field can for example also account for 

changes in the zeroth-order bond length 𝑅0
𝐴𝐵  due to the presence of an electronegative atom.366 In an 

extension of the MM3 force field, MM4, the effects of hyperconjugation on equilibrium bond lengths 

are incorporated in a similar manner.367 The cross-coupling terms might also be important in small 

rings and conjugated systems unless additional atom types were defined for these structurally and 

electronically distinct moieties.31 

In order to improve the force field description of conjugated systems without requiring additional atom 

types or a number of cross coupling terms, Allinger and coworkers368 proposed an extension of the 

MM2369 force field to adapt the equilibrium bond lengths, angles and dihedrals in conjugated systems 

in a system-specific way. It is based on a simple Pariser-Pople-Parr calculation (CNDO only for π-

electrons, see above) that is conducted to estimate the π-bond order. Based on this bond order, 

revised equilibrium parameters are obtained from linear extrapolation formulas. In geometry 
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optimizations, this necessitates, however, two iteration cycles because the bond order strongly 

depends on the (initially non-optimized) geometry.31 

Simulation Techniques with Molecular Mechanics  

Before beginning this outline of simulation techniques, it should be noted that simulations are 

definitely not limited to force-field energies and gradients. In fact, both semiclassical and quantum-

mechanical simulation techniques exist.31 However, in view of the later-on results presented in this 

thesis, this outline will mostly refer to simulations based on force-field energies. Nevertheless, some 

other examples will be briefly addressed.  

In general, simulations aim at sampling the conformational space of a system (for example the 

solvation shell in solvents and fluids). From the sampling, they generate ensembles, i.e., the entity of 

relevant conformations that describe the thermodynamic equilibrium of the system.yy Two very 

important simulation techniques are commonly employed in computational chemistry. On the one 

hand, in Monte Carlo (MC) techniques, a new system conformation is randomly produced, for instance 

by a random displacement of any of its atoms. Its energy is calculated. A Boltzmann criterion 

(metropolis sampling) based on this energy is used to decide whether the randomly generated 

conformation is kept or not. Ensemble properties are computed as the average values over all selected 

conformations.31 

Most importantly, as pointed out for example by Nosé,370 MC techniques, which are easily 

implemented and require only the calculation of energy changes, are entirely static, i.e., they are 

unable to describe time-dependent phenomena. This is fundamentally different for the second 

important subgroup of simulation techniques, the molecular dynamic (MD) simulations where 

dynamic quantities are accessible.370 In MD simulations, a set of nuclear coordinates is propagated in 

time by solving their equation of motion.371 MD simulations thus yield trajectories, “series of time-

correlated points in phase space”.31 Average ensemble properties are obtained from these trajectories 

based on the ergodic hypothesis, i.e., they are calculated as time averages.372 However, as MD 

simulations are not static,370 they can be similarly employed to model dynamic processes such as 

protein motions or aggregation phenomena.373,374,375 

To solve the equations of motion for the nuclear coordinates of a system, a set of initial coordinates 

{𝑟𝐴} and velocities {�⃗�𝐴} is needed.31 The propagation is governed by the forces accelerating the nuclei 

that correspond to the derivatives of the intermolecular potential energy 𝜕𝑉({𝑟𝐴})
𝜕𝑟𝐴⁄  of the system 

(with respect to the nuclear coordinates).31 With these quantities, the equations of motion of the 

                                                             
yy It should be noted that other definitions of simulation techniques exist.  
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systems are defined. Solving them provides the time propagation of the nuclei. To do so, a short time 

increment ∆𝑡𝑖  is chosen. Forces are assumed to be constant during this interval.31 MD results can thus 

always be improved by decreasingzz the predefined time increment ∆𝑡𝑖. However, the total MD 

simulation time should at least correspond to the time scale of the process that is simulated (a certain 

total simulation time is equally required for time averaging of ensemble properties to ensure a 

sufficient sampling of the conformational space). Therefore, choosing a shorter time increment 

multiplies the number of required MD steps and the computational demand.31 Nevertheless, to obtain 

reliable results, the maximum time increment must be approximately one order of magnitude smaller 

than the fastest process in the system, usually stretching vibrations including hydrogen. Thus the total 

simulation time is intrinsically limited. Algorithms to freeze the bond lengths involving hydrogen atoms 

were developed, for example the RATTLE376 and the SHAKE377,378 algorithm. 

A variety of standard MD algorithms solve the Newton’s equation of motion. 𝑚𝑎 is the mass of particle 

𝑎. 

−
𝜕𝑉({𝑟𝐴})

𝜕𝑟𝐴
= 𝑚𝑎

𝑑²𝑟𝐴

𝑑𝑡²
 

(378) 

The Verlet algorithm379 solves Newton’s equation (Eq. (378)) numerically. The position 𝑟𝑖+1
𝑎  of a particle 

𝑎 at a later time 𝑡𝑖+1 = 𝑡𝑖 + ∆𝑡𝑖  is obtained from the position 𝑟𝑖
𝑎  and the acceleration �⃗�𝑖

𝑎 at time 𝑡𝑖  

and additionally the position 𝑟𝑖−1
𝑎  at time 𝑖 − 1.31 

𝑟𝑖+1
𝑎 = (2𝑟𝑖

𝑎 − 𝑟𝑖−1
𝑎 ) + �⃗�𝑖

𝑎∆𝑡𝑖
2 = (2𝑟𝑖

𝑎 − 𝑟𝑖−1
𝑎 ) −

1

𝑚𝑎

𝜕𝑉({𝑟𝐴})

𝜕𝑟𝐴
∆𝑡𝑖

2 
(379) 

The Verlet algorithm is correct to third-order of the Taylor expansion of {𝑟𝐴} in 𝑡. However, the Verlet 

algorithm can be numerically unstable: a small number proportional to ∆𝑡𝑖
2 is added to a large number 

(2𝑟𝑖
𝑎 − 𝑟𝑖−1

𝑎 ). It is furthermore evident from Eq. (379) that the velocities {�⃗�𝑖
𝑎} are not explicitly taken 

into account, which is a disadvantage (see below).31 

The leap-frog algorithm, a standard algorithm to numerically solve differential equations, removes 

these deficiencies by including the velocities and eliminating the ∆𝑡𝑖
2-term.31 This improves the 

numerical accuracy.380  

𝑟𝑖+1
𝑎 = 𝑟𝑖

𝑎 + �⃗�
𝑖+

1
2

𝑎 ∆𝑡𝑖  (380) 

                                                             
zz Since it is based on a Taylor expansion, results obtained with the Verlet algorithm are exact in the limiting case 
of a time step of 0. Nevertheless, the accuracy of the MD predictions is then intrinsically limited by the numerical 
error of the calculations.31  
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�⃗�
𝑖+

1
2

𝑎 = �⃗�
𝑖−

1
2

𝑎 −
1

𝑚𝑎

𝜕𝑉({𝑟𝐴})

𝜕𝑟𝐴
∆𝑡𝑖 

(381) 

The explicit calculation of the velocities comes, however, at the expense of introducing half times at 

times 𝑖 +
1

2
 and 𝑖 −

1

2
 so that positions and velocities are never determined at the same time.31  

Employing more general equations of motions than Newton’s equation (Eq. (378)), namely the 

Lagrangian 𝐿 (Eq. (384)) and the Hamiltonian 𝐻 (Eq. (386)), Andersen et al.381 derived a set of equations 

also called the velocity Verlet algorithm because it utilizes simultaneous positions and velocities.  

𝑟𝑖+1
𝑎 = 𝑟𝑖

𝑎 + �⃗�𝑖
𝑎∆𝑡𝑖 −

1

2

1

𝑚𝑎

𝜕𝑉({𝑟𝑖
𝑎})

𝜕𝑟𝑖
𝑎 ∆𝑡𝑖

2 
(382) 

�⃗�𝑖+1
𝑎 = �⃗�𝑖

𝑎 −
1

2𝑚𝑎
{

𝜕𝑉({𝑟𝑖
𝑎})

𝜕𝑟𝑖
𝑎 +

𝜕𝑉({𝑟𝑖+1
𝑎 })

𝜕𝑟𝑖+1
𝑎 } ∆𝑡𝑖 

(383) 

The Lagrangian 𝐿 (and the Hamiltonian 𝐻) can be written as a minimum principle determining the time 

evolution of a system. Compared with Newton’s equation of motion (which requires necessarily spatial 

coordinates), the Lagrangian allows for an easier and more general formulation with regard to the 

coordinates,31 for instance in terms of scaled coordinates. The Lagrange equation of motions can be 

expressed via such a generalized coordinate �⃗� and the corresponding momentum �⃗� = 𝑚
𝜕�⃗�

𝜕𝑡
⁄ . The 

time derivative describes the time evolution of a system.382 

𝐿 = 𝑇 − 𝑉   (384) 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�⃗�
−

𝜕𝐿

𝜕�⃗�
= 0 

(385) 

Similar considerations apply to the Hamiltonian, which is a reformulation of the Lagrangian. 

𝐻 = 𝑇 + 𝑉   (386) 

𝜕𝐻

𝜕�⃗�
+

𝜕�⃗�

𝜕𝑡
= 0                             

𝜕𝐻

𝜕�⃗�
−

𝜕�⃗�

𝜕𝑡
=  0 

(387) 

Defined values for the positions and the velocities at the same time 𝑖 can be significant because 

standard MD simulations give rise to averages of so-called microcanonical ensembles or, equivalently, 

to processes occurring at a constant energy 𝐸, a constant volume 𝑉, and a constant particle number 

𝑁. Microcanonical ensembles are therefore also designated as 𝑁𝑉𝐸-ensembles. It is well-known from 

statistical thermodynamics that further important ensembles exist, most notably the canonical 

ensemble (𝑁𝑉𝑇-ensemble) and the isothermal-isobaric ensemble (𝑁𝑃𝑇-ensemble).31 Since the 

fluctuations of thermodynamic properties differ in different ensembles, it would be desirable to 
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generate also 𝑁𝑉𝑇- and 𝑁𝑃𝑇-ensembles in MD simulations, especially because in all experiments and 

processes, the temperature instead of the energy is constant.31 A number of techniques (velocity 

scaling, Andersen thermostat, Nosé-Hoover thermostat, Berendsen thermostat) are available. Their 

key concepts are briefly outlined in the following. 

A constant temperature or pressure of the ensemble can be achieved by introducing a scaling step, 

i.e., scaling all position vectors by a quotient of the pressure (
𝑃𝑎𝑐𝑡𝑢𝑎𝑙

𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑
⁄ )

1 3⁄

 or all velocity 

vectors by a quotient of the temperature (
𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑇𝑎𝑐𝑡𝑢𝑎𝑙
⁄ )

1 2⁄

.aaa As noted by DiNola et al.,383 such a 

velocity scaling has been common practice to eliminate the thermal drift (fluctuating temperature) in 

MD simulations for canonical ensemble values. For instance, velocity scaling was applied by Schneider 

and Stoll384 to solid-state phase transitions and also by Evans385 who further emphasized the inutility 

of the Verlet algorithm for canonical ensembles (because as mentioned above, the velocities are 

included only implicitly). Although the velocity rescaling seems to provide generally rather reliable 

results, it introduces discontinuities in the dynamics, as outlined by Broughton et al.386 

Andersen outlined a first procedure (for periodic systems) that includes the environment to maintain 

a constant temperature.387 Stochastic collisions with the surrounding constantly redistribute the 

kinetic energy. Due to this stochastic element, the approach mixes aspects of MD and MC. In a related 

expression, the pressure is kept constant by introducing a variable volume in the equation of motion 

that is determined from the internal system-specific and a predefined external pressure. The resulting 

constant temperature and constant pressure MD is considered as a significant breakthrough by 

Nosé.370 The so-called Andersen thermostat is still implemented in current program packages, for 

instance in Tinker.388 A plethora of extensions to it were proposed that consist all in modifying the 

Lagrangian/Hamiltonian.383  

However, one of the two most prominent approaches for constant temperature MDs is the so-called 

Nosé-Hoover389,390 thermostat, i.e., an extended system method, which permits to directly calculate 

canonical ensemble values. The key idea is to include the environment, i.e., the heat reservoir, into the 

system. In the original formulation of Nosé, this is accomplished by introducing an additional variable 

�̃� and its time derivative 𝑑�̃� 𝑑𝑡⁄  that represents the external system, the reservoir.370 The variable �̃� is 

associated with a fictitious mass 𝑄 that determines the coupling between the reservoir and the system. 

The interaction between the two systems is expressed in terms of velocity scaling: the variable �̃� scales 

                                                             
aaa This is based on the fundamental relationship between the pressure and the volume for a constant number 

of particles. Therefore 𝑟~ √𝑉
3

~( √𝑃
3

)
−1

 holds. Furthermore, it follows from statistical thermodynamics that the 

kinetic energy 𝐸𝑘𝑖𝑛 =
3

2
𝑅𝑇. It follows that 𝑣~√𝑇. 
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the velocities of the particles to �̃�𝑖 compared to their real velocities 𝑣𝑖. As stated by Nosé, this 

interdependence of the velocities can be conceived as an exchange of heat.370  

𝑣𝑖 = �̃��̃�𝑖 (388) 

The extended Lagrangian is constructed (simplified in the following for one particle). The potential 

energy 𝑔𝑘𝐵𝑇𝑙𝑛�̃� of the external system is chosen in a way that the ensemble averages of a canonical 

ensemble are later-on recovered.370 𝑔 is the number of independent degrees of freedom of the 

external system.  

𝐿 =
1

2
𝑚(�̃��̃�𝑖)2 − 𝑉 +

1

2
𝑄 (

𝑑�̃�

𝑑𝑡
)

2

− 𝑔𝑘𝐵𝑇𝑙𝑛�̃� 
(389) 

Solving the extended Lagrangian (Eq. (389)) yields the Nosébbb equations of motion.389 Moreover, as 

shown by Hoover,390 a transformation of the coordinates eliminates the fictitious variable �̃�, and a non-

Newtonian equation of motion is obtained. 

�⃗� = −
1

𝑚

𝜕𝑉

𝜕𝑟
− 𝛾�⃗� 

(390) 

The derivative of the “thermodynamic friction”390 coefficient (which is time-dependent) 𝛾 is 

proportional to the kinetic energy. 

𝑑𝛾

𝑑𝑡
=

1

𝑄
(𝑚𝑣𝑖

2 − 𝑔𝑘𝐵𝑇) 
(391) 

It is evident from Eq. (391) that the coupling is smaller for large masses, but the relaxation becomes 

very slow.390 The mass 𝑄 should be therefore carefully chosen. By analyzing the partition function of 

the ensemble defined by the Lagrangian (Eq. (389)), Nosé could show that the Nosé-Hoover thermostat 

generates correct canonical ensembles.370  

The second popular thermostat in MD simulations is the so-called Berendsen thermostat.383 In fact, in 

contrast to all approaches based on a modified Lagrangian, DiNola et al. introduced the concept of 

weak coupling to an external bath.383 Based on a Langevin-type equation with additional stochastic 

terms, the heat transfer rate from the thermostat to the system is derived (𝛼 is a damping constant). 

𝑑𝑇

𝑑𝑡
= 2𝛼(𝑇0 − 𝑇(𝑡)) =

1

𝜏
(𝑇0 − 𝑇(𝑡)) 

(392) 

The resulting equation of motion is then written as 

                                                             
bbb It can be furthermore demonstrated that the artificial variable can be interpreted as a time scaling coordinate 
between the real and the virtual system. 



109 
 

�⃗� = −
1

𝑚

𝜕𝑉

𝜕𝑟
− 𝛾�⃗� 

(393) 

𝛾 = 𝛼 (
𝑇0

𝑇
− 1) 

(394) 

It should be noted that the friction coefficient (and not its derivative) is proportional to the kinetic 

energy (Eq. (394)). The Berendsen thermostat is more strongly damped than the Nosé-Hoover 

thermostat. It is often employed for a first equilibration in MD simulations. In fact, the concept of the 

Berendsen thermostat can be considered as a damped version of the velocity rescaling, i.e. the scaling 

factor 𝜆 of the velocities is controlled. This follows from Eq. (392) for the temperature change ∆𝑇 

during a finite time increment ∆𝑡. 

𝜆 = √1 +
Δ𝑡

𝜏
(

𝑇0

𝑇
− 1) 

(395) 

It is very important to stress that similar to other velocity rescaling schemes, the Berendsen thermostat 

does not generate a correct canonical ensemble. It provides accurate average values but the 

fluctuations are incorrectly reproduced.31 

Albeit being maybe less important, completely analogous procedures exist to generate isobaric 

ensembles, namely the isothermic-isobaric ensemble. An equivalent Berendsen barostat383 and a 

Nosé-Hoover389,390 barostat are defined. While the Nosé-Hoover barostat produces correct ensembles, 

ensembles obtained with the Berendsen barostat are again not totally correct although accurate 

average values are obtained.31  

Periodic boundary conditions permit to conduct simulations also for extended systems such as crystals 

or liquids. Whereas most features of MD simulations can be directly transferred to periodic systems, 

electrostatic interactions, which are of long-range character and thus largely exceed the defined 

boundaries, require a special treatment.31 Simply truncating them results in discontinuities in the 

potential energy surface. Conceptually simple switching functions,391 which reduce the Coulomb 

interaction gradually to zero starting at a threshold distance, or shifting functions, which dampen the 

whole electrostatic interaction, can be employed. Of particular importance are methods based on 

Ewald sums.392,393,394 By introducing opposite charges with Gaussian profiles around each charge that 

consequently screen their interactions, the electrostatic interactions are divided into a near-field and 

a far-field contribution. The near-field contribution corresponds to the interaction between the charge 

and its Gaussian “well”.31 The far-field contribution is, due to the screening, of short-range character. 

It can be directly computed. The effects of the introducing Gaussian profiles need to be finally 

subtracted, which can be very efficiently done in reciprocal space, i.e., by Fourier transformation.31 
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This efficiency is responsible for the reduced scaling of such Ewald methods. A subdivision of 

electrostatic interactions into near- and far-field contributions forms also the basis for the so-called 

Fast Multipole Moment method (FMM).395 While near-field interactions are explicitly calculated, far-

field interactions are approximated by interactions between electric multipoles. The three-

dimensional space is represented by a sum of boxes, and the electrostatic potential of each box is 

folded into a multipole expansion. An extension of the FMM method, the very Fast Multipole Moment 

method (vFMM), adjusts the size of the multipole expansion to the distance between interacting 

boxes. 31,396 

Although this section is entirely dedicated to molecular dynamic simulations based on classical force 

fields, a short perspective on MD simulations with electronic structure methods is presented, 

especially because of the similarity of the mathematical formulation. The subject is usually denoted as 

ab initio molecular dynamics (AIMD).397 In their seminal analysis, Car and Parrinello398 provided very 

important theoretical foundations in the area by proposing a methodology designated as Car-

Parrinello MD. As outlined by Hutter,397 such simulations were especially until the mid 90’s so popular 

that the notion of Car-Parrinello MD was used synonymously to AIMD. Car and Parrinello recognized 

that the variational principle for electronic-structure problems can be equivalently formulated by 

treating the parameters in the electronic wave function as dynamic variables.399 Using a steepest 

descent approach for Newton’s equation of motion, the electronic-structure problem can be solved. 

Furthermore, Car and Parrinello realized that a fictitious electron mass 𝜇𝑖  can be introduced that 

couples the electron dynamics to the nuclei (comparable to 𝑄 in the Nosé-Hoover thermostat). This 

results in an extended Lagrangian (similar to the Nosé-Hoover thermostat, Eq. (389)) that includes the 

Kohn-Sham/Hartree-Fock orbitalsccc {𝜓𝑖}.399 

𝐿 = ∑
1

2
𝜇𝑖⟨�̇�𝑖|�̇�𝑖⟩

𝑖

+ ∑
1

2
𝑚𝐼𝑣𝐼

2

𝐼

− 𝐸(Ψ0, {𝑟𝐴}) + 𝑐𝑜𝑛𝑠𝑡𝑟. 
(396) 

The constraints (𝑐𝑜𝑛𝑠𝑡𝑟.) refer to the imposed orbital orthonormality. The equations of motions are 

then obtained as the Euler-Lagrange equations from the Lagrangian.399  

𝑚𝐼𝑎𝐼(𝑡) = −
𝜕

𝜕𝑟𝐼
⟨Ψ0|𝐻0|Ψ0⟩ +

𝜕

𝜕𝑟𝐼
{𝑐𝑜𝑛𝑠𝑡𝑟. } 

(397) 

𝜇𝑖𝜓𝑖
̈ (𝑡) = −

𝜕

𝜕𝜓𝑖
∗

⟨Ψ0|𝐻0|Ψ0⟩ +
𝜕

𝜕𝜓𝑖
∗ {𝑐𝑜𝑛𝑠𝑡𝑟. } 

(398) 

                                                             
ccc It should be noted that due to the basis set expansion of the orbitals, the time derivative of the Kohn-Sham 
orbitals is often represented as a time derivative of the orbital coefficients.31 
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The forces on the nuclei (Eq. (397)) are Hellmann-Feynman or Pulay-type forces calculated from the 

electronic density.397 It is obvious from the equation of motion for the dynamic electronic parameters 

(Eq. (398)) that if the artificial orbital kinetic energy (𝜇𝑖𝜓𝑖
̈ (𝑡)) is set to 0 and the nuclear positions are 

constant, the equation reduces to a simple electronic-structure problem.31 This is done to determine 

the initial electronic wave function. In the subsequent dynamic simulations, however, both nuclei and 

electrons freely propagate. The electronic structure is not solved iteratively.399 This implies in turn that 

the electronic wave function is not fully converged in orbital space so that the nuclear forces are not 

totally accurate.31 From the fixed constant total energy of the system, i.e, the constant of motion 

𝐸𝑐𝑜𝑛𝑠𝑡 , it becomes apparent when the incomplete convergence of the electronic wave function in 

orbital space becomes problematic.397 

𝐸𝑐𝑜𝑛𝑠𝑡 = ∑
1

2
𝜇𝑖⟨�̇�𝑖|�̇�𝑖⟩

𝑖

+ ∑
1

2
𝑚𝐼𝑣𝐼

2

𝐼

+ 𝐸(Ψ0 , {𝑟𝐴}) = 𝐸𝑡𝑜𝑡 + ∑
1

2
𝜇𝑖⟨�̇�𝑖|�̇�𝑖⟩

𝑖

 
(399) 

The artificial orbital kinetic energy term ∑
1

2
𝜇𝑖⟨�̇�𝑖|�̇�𝑖⟩𝑖   (Eq. (396)) delivers an unphysical additional 

contribution to the total combined nuclear and electronic energy 𝐸𝑡𝑜𝑡. Thus for physically meaningful 

results, the term should be kept small.397 In fact the orbital kinetic energy is bound by constantly 

transferring kinetic energy from the orbital parameters to the nuclei.31 The amount of this energy 

exchange, i.e., the coupling between the electronic and the nuclear degrees of freedom, is dominated 

by the fictitious electronic masses {𝜇𝑖}. If the masses are sufficiently small, the coupling is weak. 

Correspondingly the orbital kinetic energy is small. The electrons then follow the nuclear motion 

adiabatically, and the system can be considered as two decoupled systems.397 In such a case, thus for 

small masses and hence small kinetic orbital energies, the error introduced by the incomplete 

convergence of the electronic wave function is small.399,400 Nevertheless, the fictitious masses must not 

be too small because the maximal time step of the simulation – and consequently its efficiency – is 

proportional to √𝜇𝑖.397,401 Finally, it should be noted that originally, a general mass parameter 𝜇 was 

defined.398 More flexible MD versions with different mass parameters for different electronic variables 

{𝜇𝑖} (Eq. (396)) were only later-on proposed.397,402 

Although Niklasson403 recently proposed an extended formalism for a Born-Oppenheimer dynamics, 

Car-Parrinello techniques have significantly dominated the area of AIMD – in contrast to the Born-

Oppenheimer dynamics397 that would maybe constitute the more obvious choice. The Lagrangian for 

the nuclear motion in such a Born-Oppenheimer dynamics takes on a slightly modified shape 

compared with the Lagrangian of the Car-Parrinello-MD (Eq. (396)).397  
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𝐿 = ∑
1

2
𝑚𝐼𝑣𝐼

2

𝐼

− 𝐸(Ψ0, {𝑟𝐴}) 
(400) 

The so-called Born-Oppenheimer forces on the nuclei are calculated from the self-consistent electronic 

ground-state energy.404 To guarantee the stability of the simulation, a tight convergence criterion must 

be applied for the electronic SCF cycles, which makes the simulations computationally very 

demanding.397 Otherwise, energies and forces would not be consistent, and the energy conservation 

of the dynamics would be violated.397 This observation contrasts with the Car-Parrinello methodogy 

and explains its widespread use. Car-Parrinello MDs ensure energy conservation even for not 

converged electronic structure via the coupling between the systems, i.e., the reversible energy 

exchange (which is evident from the Lagrangian). They provide – for a suitable choice of the masses – 

only slightly less accurate energy values at a considerably lower computational cost.31,397,405 

3.6 Hybrid Quantum Mechanics – Molecular Mechanics Approaches (QM/MM) 
Since the QM/MM formalism406 is still mostly applied to biochemical407 and explicit solvent408 problems 

and not to material science,ddd it is only briefly outlined in the following. The QM/MM scheme can be 

considered as an extension of the QM/PCM formalism because (usually due to computational 

limitations) only a small part of the system – the QM part – is quantum-chemically treated while 

molecular mechanics is employed to describe the remaining MM part. However, in contrast to 

QM/PCM, the MM part is not considered as a continuum, but it is rather atomistically taken into 

account. While Warshel and Levitt conceptually devised the methodology,406 Karplus and coworkers 

presented a detailed technical survey on the QM/MM treatment.409 

The QM/MM formalism is formally based on a partitioning of the Hamiltonian of the system �̂�𝑡𝑜𝑡 , 

analogously to Eq. (339), into a Hamiltonian of the QM system �̂�𝑄𝑀, a Hamiltonian of the MM system 

�̂�𝑀𝑀, and the Hamiltonian including the interaction.410 

�̂�𝑡𝑜𝑡 = �̂�𝑄𝑀 + �̂�𝑀𝑀 + �̂�𝑄𝑀/𝑀𝑀 (401) 

Eigenvalues of the QM- and the MM-Hamiltonian are obtained with any available quantum-mechanical 

and molecular-mechanical methods.31 According to Rothlisberger and coworker,411 almost all QM/MM 

approaches can be subdivided into two classes, depending on how the total QM/MM energy is 

obtained from �̂�𝑡𝑜𝑡  and these QM and MM energies. In the so-called subtractive scheme, the coupling 

between the systems, via �̂�𝑄𝑀/𝑀𝑀, is classically treated, which is a disadvantage. The total energy 

                                                             
ddd Among others, this results from the predominance of accurate force fields specific for biomolecules in the 
80’s and 90’s.407 However, due to the increase of computer power, the range of application of QM/MM has 
broadened, see for example 560. 
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𝐸𝑄𝑀/𝑀𝑀
𝑠𝑢𝑏  is thus obtained from the QM energy of the QM part 𝐸𝑄𝑀(𝑄𝑀) and the MM energy difference 

between the complete system and the MM part (𝐸𝑀𝑀(𝑄𝑀/𝑀𝑀) − 𝐸𝑀𝑀(𝑄𝑀)). 

𝐸𝑄𝑀/𝑀𝑀
𝑠𝑢𝑏 = 𝐸𝑄𝑀(𝑄𝑀) + (𝐸𝑀𝑀(𝑄𝑀/𝑀𝑀) − 𝐸𝑀𝑀(𝑄𝑀)) (402) 

It follows from Eq. (402) that an MM parameter set is needed for the QM part.410 This can be 

problematic, for instance for excited states.411 The implementation of subtractive QM/MM schemes is 

straightforward. The ONIOM approaches by Morokuma et al.412,413 can be considered as a 

generalization of the subtractive QM/MM scheme to multiple layers.  

In contrast, the coupling between the two parts is included on a quantum-mechanical level of 

description in an additive QM/MM scheme. The total energy is computed as the sum of the QM energy 

of the QM part, the MM energy of the MM part, and an explicit coupling term 𝐸𝑄𝑀/𝑀𝑀(𝐼[𝑄𝑀/𝑀𝑀]) 

for the interface 𝐼[𝑄𝑀/𝑀𝑀].410 

𝐸𝑄𝑀/𝑀𝑀
𝑎𝑑𝑑 = 𝐸𝑄𝑀(𝑄𝑀) + 𝐸𝑀𝑀(𝑀𝑀) + 𝐸𝑄𝑀/𝑀𝑀(𝐼[𝑄𝑀/𝑀𝑀]) (403) 

The key focus of all additive QM/MM schemes is to provide an adequate description for the interaction 

term �̂�𝑄𝑀/𝑀𝑀. As outlined by Senn and Thiel, it is composed of van-der-Waals and electrostatic 

contributions. Moreover, if bonds are cut to define the QM system, additional bonding terms arise.410 

The actual QM/MM method is defined by the way the electrostatic coupling between the QM part and 

the MM part is included in �̂�𝑄𝑀/𝑀𝑀 . In the so-called mechanical embedding, the electrostatic 

interaction between the QM and the MM part is classically treated, i.e., completely alike to the van-

der-Waals interaction, which is always described in a classical framework. An improved description of 

the interface between the QM and the MM part is achieved if the MM charges polarize the QM part, 

i.e., if the electrostatic potential created by their point charges is included in �̂�𝑄𝑀 (Eq. (401)). The 

electrostatic interaction energy is thus treated quantum-mechanically. Although the use of force-field 

charges to describe the electrostatic potential of the environment could be problematic (because 

force-field parameters are only meaningful in their combination and do not have a direct 

interpretation), QM/MM approaches based on an electrostatic embedding procedure yield quite 

accurate results.410 Even more precision is obtained when back-polarization of the MM charges by the 

charge density of the QM part is included. This defines the so-called polarized embedding. Depending 

on whether the back-polarization is included in a “single-shot” way or iteratively, Senn and Thiel 

further subdivide the polarized embedding schemes in two classes.410  

Sometimes, covalent bonds need to be broken to separate the QM and the MM part. Link atoms, 

boundary atoms, or frozen-orbital approaches are employed to treat the QM/MM interface.410 

Especially in these cases, overpolarization of the QM system close to the boundary to the MM part 
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with the MM charges constitutes a major computational challenge. In view of this deficiency of the 

electrostatic embedding, Friesner and coworkers414 reparameterized OPLS-AA Lennard-Jones 

parameter and specifically adapted them for the QM/MM interface so that the van-der-Waals 

interactions counterbalance the electrostatic overpolarization. 

Effective fragment potential (EFP) approaches415 are increasingly used so that they should be at least 

mentioned in this context. The effective fragment potentials are equivalent to a non-empirical 

polarizable force field (composed of multipoles and polarizabilities) that is derived from quantum-

chemical calculations.416 The EFPs consist of a set of one-electron terms for each surrounding molecule, 

for instance a solvent molecule, representing inductive, repulsive, and electrostatic interactions with 

the environment. They are subsequently included in the QM Hamiltonian. They are thus to some 

extent comparable to QM/MM interfaces based on frozen orbitals.417 
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4 Optoelectronic Processes at Organic::Organic Interfaces in Organic 

Solar Cells 

4.1 Fundamentals of Organic Solar Cells (OSCs) 
Solar cells, or equivalently photovoltaic devices, convert the energy of incident light into an electric 

current. OSC devices are usually constructed in a “sandwich-type” arrangement (Figure 1), i.e., the 

semiconducting layers are sandwiched between the anode and the cathode.418  

 

Figure 1: Schematic organic solar cell.  

Compared with inorganic semiconductors, light absorption in the organic semiconducting layers does 

not immediately create free charge carriers. In contrast, due to the low dielectric constant in most 

organic materials, excitons – electron-hole pairs bound by the mutual Coulomb attraction – are 

generated. The excitonic character of light absorption profoundly influences all characteristics of 

OSCs:19 since exciton binding energies in organic materials are considerable and reach values of several 

100 meV,419 exciton dissociation occurs mainly at the so-called donor-acceptor interface of OSCs where 

it is driven by the electrochemical gradient. The heterojunction is therefore the key ingredient of all 

OSCs, which are composed of a p-type (donor) and an n-type (acceptor) semiconducting layer in their 

simplest bilayer architecture.418 In fact, Tang420 obtained efficiencies around 1% with a first planar 

bilayer device composed of a donating phthalocyanine and an accepting perylene layer. However, the 

quite short lifetimes of excitons, combined with the required minimum thickness of OSC layers for 

sufficient light absorption, severely limit the efficiency of exciton dissociation in planar bilayer cells: 

due to their rather short diffusion lengths, most excitons do not reach the interface. In contrast, the 

bulk heterojunction (BHJ) architecture of OSCs,421,422 where the donor and acceptor phases are 

intermixed, minimizes the required amount of exciton diffusion. More excitons can dissociate at some 

point of the very large interfacial area of the BHJ. The process of exciton dissociation is commonly 
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subdivided into two steps. At first, a so-called interfacial charge-transfer state is formed, meaning that 

the electron and the hole are located on adjacent molecules (an acceptor and a donor molecule, 

respectively). In a second follow-up step, the interfacial charge-transfer state breaks up, and a charge-

separated state is formed.19 In contrast to the first two steps of the light-to-energy conversion process 

in OSCs – the exciton formation and diffusion – the mechanism of exciton dissociation and charge 

separation is highly debated.423 It will be addressed in more detail below. The separated charges 

migrate through the semiconducting layers and are eventually recollected at the electrodes.19,424 Due 

to the comparably thin OSC layers compared with inorganic solar cells and the low dielectric screening, 

the built-in voltage (Figure 2) in OSCs results in a significant electric field.425 Charge carrier migration 

in OSCs is thus mostly described by drift (and not diffusion), the more so as charge carrier densities in 

organic semiconductors are usually low.418 

 

Figure 2: Energy alignment in an MIM model of an OSC under open-circuit conditions for a so-called type II 
heterojunction. For more information see text.418 

The energy level alignment in OSCs can be described with a classical metal-insulator-metal model 

(MIM).418 For open-circuit and short-circuit conditions, the energy levels are shown in Figure 2 and 

Figure 3, respectively. The built-in potential 𝑉𝑏𝑖 is defined as the difference of the work functions of 

the electrodes 𝜙𝐴𝑙 , 𝜙𝐼𝑇𝑂 . 𝐼𝑃𝐷 (𝐼𝑃𝐴) and 𝐸𝐴𝐷 (𝐸𝐴𝐴) designate the ionization potential and electron 

affinity of the donor (acceptor). Under short-circuit conditions, the Fermi levels of the electrodes align 

by shifting charge from the cathode to the anode. This results in a vacuum level shift (Figure 3).418 

Furthermore, finite barriers for charge injection exist at both the anode and the cathode. If the 

electrodes provide an infinite reservoir of charge carriers, they are designated as Ohmic electrodes. 

Then, the electrode-semiconductor contacts form Schottky junctions, and OSC currents are space-

charge limited.418 
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Figure 3: Energy alignment in an MIM model of an OSC under short-circuit conditions. For more information see 
text.418 

Two important OSC characteristics, the external quantum efficiency (EQE) and the internal quantum 

efficiency (IQE), are measures for the quantum yield of the light-to-energy conversion process. The 

EQE corresponds to the number of recollected electrons referenced to the number of incident photons. 

It is obtained as the ratio of the short-circuit current density 𝐽𝑠𝑐(𝜆) and the intensity of the incoming 

light 𝐼(𝜆).418  

𝐸𝑄𝐸(𝜆) =
𝐽𝑆𝐶(𝜆)

𝐼(𝜆)

ℎ𝜈

𝑒
 

(404) 

In contrast, the IQE is defined as the ratio of the number of recollected electrons and the number of 

absorbed photons. It is thus calculated from the short-circuit current and the absorption spectrum of 

the cell. 

Several additional figures of merit for the efficiency in OSCs exist that can be determined from the 

current-voltage characteristic of the cell obtained under illumination (Figure 4). Naturally, the current-

voltage characteristic depends on the wavelength 𝜆  of the incident light. 𝐽𝑠𝑐  designates the short-

circuit current, 𝑉𝑜𝑐  the open-circuit voltage. The maximal amount of power 𝑃𝑚𝑎𝑥 that the device 

delivers is indicated by the yellow rectangle in Figure 4. The so-called fill factor 𝐹𝐹 corresponds to the 

ratio of the maximal power 𝑃𝑚𝑎𝑥 and the product of the short-circuit current 𝐽𝑠𝑐  and the open-circuit 

voltage 𝑉𝑜𝑐  (Figure 4). The fill factor, which is easily identified from the current-voltage characteristic, 

is particularly useful to calculate the power conversion efficiency (PCE) 𝜂 of the cell, thus the quotient 

of the maximum power of the OSC and the incident light intensity 𝐼(𝜆).418 
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𝜂(𝜆) =
𝐹𝐹(𝜆) ∙ 𝐽𝑠𝑐(𝜆) ∙ 𝑉𝑜𝑐(𝜆)

𝐼(𝜆)
 

(405) 

Integration of Eq. (405) over all relevant wavelengths yields the PCE of the cell under sunlight 

illumination.418 The efficiency depends on the short-circuit current, the open-circuit voltage, and the 

fill factor. 

 

Figure 4: Current-voltage characteristic of an OSC measured under illumination. For more information see text. 

The efficiency of the light-to-energy conversion process in solar cells is intrinsically limited and cannot 

exceed the so-called Shockley-Queisser limit.426 Based on the principle of detailed balance, Shockley 

and Queisser derived an expression for the maximum efficiency of inorganic cells. Evidently, this 

efficiency depends on the optical gap of the cell, 𝐸𝑔.418 Considering the sun as a black-body radiator, 

the efficiency of an ideal solar cell, which absorbs all incident photons with energies higher than ℎ𝜈𝑔, 

has an upper bound, the so-called ultimate efficiencyeee 𝑢(𝑥𝑔), of 44% for an optimal energy gap of 1.1 

eV.426 Furthermore, Shockley and Queisser determined the steady-state current-voltage characteristic 

by taking into account five processes: the radiative generation of electron-hole pairs, the radiative 

recombination of electron-hole pairs, the non-radiative generation and recombination of electron-

hole pairs, and the recollection of electrons and holes at the electrodes. According to the principle of 

detailed balance, the rate of photon absorption and the rate of radiative recombination are equal, as 

are the rates of non-radiative generation and recombination of electron-hole pairs. The electric current 

density 𝐽(𝑉) under steady-state conditions without illumination is then given by the Shockley 

equation427 (see below). 

𝐽(𝑉) = 𝐽0 (𝑒(
𝑞𝑉
𝑘𝑇

) − 1) = (𝐽𝑟𝑎𝑑 + 𝐽𝑛𝑜𝑛−𝑟𝑎𝑑) (𝑒(
𝑞𝑉
𝑘𝑇

) − 1) 
(406) 

                                                             
eee This results because not all photons are absorbed. Furthermore, the excess energy of high-energy photons is 
“lost”.418 
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𝐽(𝑉) is the current at voltage 𝑉, and 𝐽0, originally the sum of the saturation currents for electrons and 

holes at negative bias, corresponds to the sum of the radiative 𝐽𝑟𝑎𝑑  and the non-radiative 

recombination currents 𝐽𝑛𝑜𝑛−𝑟𝑎𝑑.426  

From the current under illumination, obtained from Eq. (406) and the photocurrent, and the voltage, 

the maximum power of the cell can be derived. Referencing it to the power of the incident light, the 

maximal OSC efficiency 𝜂 according to Shockley and Queisser depends on the ultimate efficiency and 

can be written as a function of four variables 𝑡𝑠, 𝑥𝑔, 𝑥𝑐, and 𝑓. 

𝜂(𝑡𝑠 , 𝑓, 𝑥𝑔 , 𝑥𝑐) = 𝑡𝑠𝑢(𝑥𝑔)𝜈(𝑓, 𝑥𝑔 , 𝑥𝑐)𝑚 (𝑣
𝑥𝑔

𝑥𝑐
⁄ ) (407) 

𝑡𝑠 is the probability that an incident photon with an energy higher than the band gap is absorbed. 𝑥𝑔 

and 𝑥𝑐  are ratios involving the temperature of the cell 𝑇𝑐, the temperature of the sun 𝑇𝑠, and the band 

gap of the cell 𝐸𝑔.  

𝑥𝑔 =
𝐸𝑔

𝑘𝑇𝑠
 

(408) 

𝑥𝑐 =
𝑇𝑐

𝑇𝑠
 

(409) 

𝑓 is a geometric parameter of the cell that actually subsumes a variety of phenomena. It is the product 

of 𝑓𝑐, the fraction of current generation and recombination that is radiative, a geometric parameter 𝑓𝜔  

and of a transmission factorfff 
𝑡𝑠

2𝑡𝑐
⁄ .426 

𝑓 =
𝑓𝑐𝑓𝜔𝑡𝑠

2𝑡𝑐
 

(410) 

𝜈(𝑓, 𝑥𝑔 , 𝑥𝑐) corresponds to the ratio of the open-circuit voltage and the optical gap of the cell 
𝑞𝑉𝑂𝐶

𝐸𝑔
⁄ . 

𝑚 (𝑣
𝑥𝑔

𝑥𝑐
⁄ ), designated as the “impedance matching factor” by Shockley and Queisser, is equal to the 

fill factor of a cell.426 For optimal conditions (𝑡𝑠 = 1, 𝑓 ≈ solid angle of a half sphere; 𝐸𝑔 = 1.34 𝑒𝑉, 

ambient and sun temperatures), the maximal achievable power conversion efficiency of an inorganic 

p-n-junction calculated from the Shockley-Queisser equation is 33.7 %.418 The band gap results from 

the balance of optimizing the open-circuit voltage without sacrificing too much absorption in the NIR 

                                                             
fff In their derivation, Shockley and Queisser considered the thermal equilibrium for a cell surrounded by a black 
radiator with temperature 𝑇𝑐. The probability that a photon emitted by this radiator is absorbed is given by 𝑡𝑐. 
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region where the solar irradiation is maximal. It follows from the Shockley-Queisser equation that in 

an ideal solar cell, all existent recombination is radiative428.ggg  

Since the Shockley equation has already been mentioned (Eq. (406)), it should be noted that it was 

initially derived to describe the current-voltage characteristic of inorganic solar cells (and of any other 

p-n-junctions) in thermal equilibrium. Since charge carrier generation upon photon absorption is not 

field-assisted in inorganic solar cells, the photocurrent 𝐽𝑃ℎ  can simply be added. A non-ideality factor 

of the diode 𝜂 and the series and shunt (parallel) resistance 𝑅𝑠 , 𝑅𝑝  of the real solar cells are taken into 

account.418 

𝐽(𝑉) = 𝐽0(𝑉) (𝑒
(

𝑞(𝑉−𝐽𝑅𝑠)
𝜂𝑘𝑇

)
− 1) + 𝐽𝑃ℎ +

(𝑉 − 𝐽𝑅𝑠)

𝑅𝑝
 

(411) 

Fitting experimental current-voltage characteristics also of OSCs to Eq. (30) (or simulating them with 

Eq. (30)) provides useful information (e.g., about the resistances) for further device 

optimization.429,430,431 

In the Shockley-Queisser limit, i.e., for ideal inorganic solar cells, the open-circuit voltage can be 

directly expressed as a function of the bandgap of the material. At the open-circuit voltage, no net 

current flows so that the recombination current (for ideal cells entirely radiative) compensates the 

photocurrent. 

𝑣(𝑓, 𝑥𝑔 , 𝑥𝑐) =
𝑞𝑉𝑂𝐶

𝐸𝑔
 

(412) 

This contrasts with Scharber's seminal work432 on the open-circuit voltage in organic solar cells. From 

a comprehensive analysis of literature data, an empirical relationship for the open-circuit voltage in 

OSCs was derived. In fact, 𝑉𝑂𝐶 is determined by the difference between the HOMO energy of the donor 

휀𝐻𝑂𝑀𝑂
𝐷𝑜𝑛𝑜𝑟  and the LUMO energy of the acceptor 휀𝐿𝑈𝑀𝑂

𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟 . An additional constant of 0.3 eV was 

empirically found whose exact origin is still under debate. However, it may be interpreted as the 

minimal driving force for the charge-transfer step at the donor-acceptor heterointerface.432 

𝑉𝑂𝐶 =
1

𝑒
(|휀𝐻𝑂𝑀𝑂

𝐷𝑜𝑛𝑜𝑟| − |휀𝐿𝑈𝑀𝑂
𝐴𝑐𝑐𝑒𝑝𝑡𝑜𝑟|) − 0.3 𝑉 

(413) 

These findings already indicate that the excitonic character of OSCs and their heterojunction 

architecture require some modifications of the Shockley-Queisser limit. First of all, in OSCs, absorption 

does not take place into a continuum of states (like in inorganic semiconductors), but into a limited 

                                                             
ggg The radiative recombination results from the finite working temperature of the cell so that also the OSC must 
be considered as a black-body radiator.  
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number of well-separated electronic states. Absorption spectra are broadened by coupling to 

vibrations (“Franck-Condon envelope”), and emission is faster. For instance, for a molecule with one 

excited state in the relevant spectral region, it was shown that  the maximum efficiency of OSCs 

reduces to 29% only due to this different excited-state landscape.433,434 Moreover, the exciton binding 

energy of organic materials needs to be taken into account because Shockley and Queisser initially 

assumed that photon absorption immediately generates free charge carriers.426 As outlined above, the 

considerable exciton binding energies in organic materials require heterojunction architectures, where 

absorption takes place in the donor (acceptor) phase while radiative recombination occurs rather from 

the only weakly-emitting interfacial charge-transfer states. A plethora of experimental evidence for 

such charge-transfer states exist, for instance by Veldman et al. 435,436. Thus, in OSCs, absorption and 

emission occur at different energies which influences their maximum device efficiency. It implies 

furthermore that the interfacial charge-transfer energies need to be considered in some way to 

determine the ultimate efficiency of OSCs.  

In a proof on the reciprocity between electroluminescence and external quantum efficiency of organic 

solar cells, Rau437 and Kirchartz and Rau438 related the photovoltaic efficiency (reverse bias) due to the 

low-energy charge-transfer absorption of a cell, 𝐸𝑄𝐸𝑃𝑉(𝐸), to its electroluminescence efficiency 

(forward bias, i.e., the OSC acts an an OLED), 𝐸𝑄𝐸𝐸𝐿(𝐸).  

𝐽0𝐸𝑄𝐸𝐸𝐿(𝐸) = 𝑞𝐸𝑄𝐸𝑃𝑉(𝐸)𝜙𝐵𝐵(𝐸) (414) 

𝜙𝐵𝐵(𝐸) is the black-body radiation at energy 𝐸, and 𝐽0 is the dark saturation current. 

Using this theoretical framework of Rau, Vandewal et al.439 provided extensive quantitative 

experimental evidence for the dependence of the open-circuit voltage on the charge-transfer state 

energies. On the one hand, they considered experimental values for the open-circuit voltage. On the 

other hand, they calculated values for 𝑉𝑂𝐶 from measured charge-transfer energies. In order to do so, 

Vandewal et al.439 used the Shockley equation to express the injection current 𝐽𝑖𝑛𝑗(𝑉) for the 

electroluminescence in an OSC.439 

𝐽𝑖𝑛𝑗(𝑉) = 𝐽0 (𝑒(
𝑞𝑉
𝑘𝑇

) − 1) 
(415) 

At the open-circuit voltage, the short-circuit current compensates the injection current. Hence 

reformulating the Shockley equation yields the open-circuit voltage as a function of the short-circuit 

current.439 

𝑉𝑂𝐶 =
𝑘𝑇

𝑞
ln (

𝐽𝑆𝐶

𝐽0
+ 1) 

(416) 
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Vandewal et al. furthermore recognized that the saturation current 𝐽0 can be deduced from 

experimentally available quantum efficiencies (integrating Eq. (414)).439 

𝐽0 =
𝑞

𝐸𝑄𝐸𝐸𝐿
∫ 𝐸𝑄𝐸𝑃𝑉(𝐸)𝜙𝐵𝐵(𝐸)𝑑𝐸 

(417) 

The comparison of calculated values to experimentally obtained values was excellent. With respect to 

the relationship between the open-circuit voltage and the charge-transfer states, they concluded that 

since the black-body radiation 𝜙𝐵𝐵(𝐸) depends exponentially on the energy, a blue shift of the charge-

transfer energy (via 𝐸𝑄𝐸𝑃𝑉(𝐸)) results in an exponential decrease of the saturation current. 

Correspondingly, due to the logarithmic dependence of the open-circuit voltage on the saturation 

current, 𝑉𝑂𝐶 rises linearly with the charge-transfer energy.439 While Vandewal et al. employed polymer 

OSCs, Holmes and coworker recently found a similar dependence between the OSC open-circuit 

voltage and charge-transfer state energies for OSCs based on small organic molecules.440 

Based on these considerations on the open-circuit voltage – and on the analytic formula for it, it is 

possible to determine the point of the J-V characteristic where the output power becomes maximal. 

To derive theoretical estimates for a “Shockley-Queisser limit” for OSCs, it is evident from Eq. (416) 

and (417) that some model for the external quantum efficiency, i.e., for the charge-transfer state 

absorption, is required. Kirchartz et al. employed a Gaussian absorption profile and calculated 

efficiencies around 23% for organic polymer::fullerene blends.441 In a similar approach, Vandewal et 

al., based on their earlier investigations, derived a maximal efficiency of 28%, which already decreases 

to 16% only due to the low electroluminescence efficiencies.442,443 Indeed, Vandewal et al. emphasize 

that the maximum efficiency is obtained only for an electroluminescence efficiency of 1 (Eq. (415)). 

However, values of 𝐸𝑄𝐸𝐸𝐿 ≈ 10−9 − 10−6 are commonly encountered for polymer-fullerene cells at 

room temperature.439 Koster et al. modeled the EQE by a simplistic step function and obtained 

efficiency values around 30%, depending on the charge-transfer absorption and energy.428 Finally, in 

an analysis entirely based on thermodynamic arguments (i.e., without requiring certain 

absorption/EQE profiles), Giebink et al. computed maximum efficiencies ranging from 27% to 22% that 

depend on the driving force of the electron transfer (0.3 – 0.5 eV).444 Evidently, despite some 

differences, the Shockley-Queisser limit of OSCs, also called the radiation limit of OSCs, lies somewhere 

around 25%. In contrast, device efficiencies of single-junction OSCs445,446 (and also of tandem 

cells447,448) have only recently reached the 10% landmark. 

Therefore, Scharber and Sariciftci443 stressed that the difference between the maximum efficiency of 

OSCs in the Shockley-Queisser limit and commonly encountered experimental efficiencies is 

significant. Indeed, Thompson and coworker emphasize that the presently limited device efficiencies 

result from a yet unoptimized balance between a “sufficient spectral coverage and augmented energy 



123 
 

level offsets”.449 Since solar irradiation is maximal in the infrared and near-infrared region, compounds 

with band gaps in this spectral range maximize light absorption. Yet, it follows from the relationship of 

Scharber et al. (Eq. (413)) that IR and NIR bandgaps inevitably come at the expense of sacrificing open-

circuit voltage. Balancing these contrasting demands represents the fundamental task of solar cell 

optimization. 

Moreover, due to the complex nature of the exciton dissociation and charge separation processes, it 

has been proposed, for instance by Okhita et al.,450 that additional fundamental limits for a trade-off 

between the open-circuit voltage and the photocurrent exist. This requires a more detailed 

consideration of the exciton dissociation process. Investigations on the mechanism of exciton 

dissociation and charge separation are actually intimately related to the question what drives charge 

separation. In fact, the interfacial charge-transfer state consists of a geminate electron-hole pair with 

the charges separated by approximately 10 Å.435 As a consequence, because of the low dielectric 

screening in organic materials,19 the Coulomb binding energy between these charge carriers is 

significant (several 100 meV) and considerably exceeds the available thermal energy (25 meV at 

298K).435 Nevertheless, as thoroughly discussed by Clarke and Durrant in a comprehensive review,423 

the charge-separated state must be the energetically lowest state in functional OSCs. Therefore, a free 

energy gradient exists (at least in operable OPV devices) that drives the dissociation of the interfacial 

charge-transfer state and the subsequent charge separation. A variety of effects were shown to drive 

charge separation.423,435 A detailed discussion of recent computational investigations is given below. 

While many of the effects contributing to the driving force are system-specific (the energy levels at the 

organic::organic donor-acceptor interface have to be carefully aligned20), others are of more general 

nature. Notably, entropy favors all exciton dissociation events because two separated charge carriers 

are entropically more favorable than a tightly bound interfacial charge-transfer state.451 Deibel et al. 

subdivided contributions to the driving force into “static” and “dynamic” factors.435 “Static” 

contributions directly affect the energy alignment at organic::organic interfaces, i.e., a gradient in the 

energy landscape exists that promotes charge separation. Apart from entropy, disorder,26,452,453 

electrostatic effects454 such as interfacial dipole moments455,456 or the dielectric screening of the 

medium,428 the built-in field,435 and morphological effects457 can provide the required driving force for 

charge separation. In contrast, “dynamic” contributions refer essentially to the role of the excess 

energy of the dissociating exciton in driving charge separation. If the created interfacial charge-transfer 

state does not relax, i.e., if it possesses excess energy, it is considered as a “hot charge-transfer 

state”.435 Hot charge-transfer states were sometimes found to dissociate more easily and to result in 

higher quantum yields.450,458,459 Fully relaxed (= thermalized) charge-transfer states are also designated 

as “cold charge-transfer states”.460 
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As suggested by Okhita et al.,450 it is the potential influence of the excess energy and of the hot exciton 

dissociation, i.e, the “dynamic” contributions,435 that could additionally complicate the simultaneous 

optimization of the open-circuit voltage and the short-circuit current: since “hot” CT states were found 

to dissociate more easily, charge generation efficiencies could be improved when excess energy is 

available in the exciton dissociation process.423,435 This would suggest to lower the charge-transfer 

state energies to increase the amount of available excess energy. Nevertheless, lower charge-transfer 

energies come at the expense of a reduced open-circuit voltage (Eq. (416)).439 However, in a detailed 

discussion of existing literature findings, Deibel et al.435 emphasized that from a mechanistic point of 

view, no fundamental limit for a simultaneous optimization of both the open-circuit voltage and the 

short-circuit current exists, particularly because other factors apart from the excess energy can provide 

sufficient driving force for charge separation. 

Yet, the balance outlined for example by Thompson and coworker between the spectral coverage and 

the open-circuit voltage449 remains to be optimized. Some optimization approaches are discussed in 

the next section. 

4.2 Optimizing Efficiencies of Photovoltaic Devices 
It follows from Eq. (405) that the OSC efficiency can be improved by increasing the fill factor, the short-

circuit current or the open-circuit voltage (see also above).418 From the outlined trade-off between 𝑉𝑂𝐶 

and 𝐽𝑆𝐶 , it is evident that optimizing the power conversion efficiency is not trivial, as also noted for 

instance by Janssen.461  

Optimizing the Fill  Factor  

It is evident from Figure 4 that a high fill factor is obtained if all steps of the light-to-energy conversion 

are field-independent. This concerns mostly the exciton dissociation as well as the charge separation 

and migration steps. Therefore, loosely bound geminate and non-geminate electron-hole pairs that 

already dissociate at the built-in voltage and high charge carrier mobilities are prerequisites for high 

fill factors.418  

As underlined for example by Yu and coworkers462 and by Blom and coworkers,463 balanced electron 

and hole mobilities are especially important to avoid the accumulation of space charges. Since electron 

mobilities in fullerene acceptors are usually higher than hole mobilities in the donor phase, most 

efforts in optimizing mobilities focus on the donor phase. It is well-known that the largest charge 

carrier mobilities can be found in highly-ordered crystalline and pure materials,464 which would suggest 

using aligned pure donor and acceptor layers in OSCs. As already mentioned above, this compromises, 

however, the exciton dissociation yield due to the limited exciton diffusion lengths. Forrest and 

coworkers proposed a hybrid planar-mixed heterojunction OSC that combines the advantages of 



125 
 

planar (high charge carrier mobilities) and mixed (high exciton dissociation yields) heterojunction 

architectures.465 A number of other morphological modifications were introduced to ensure high 

charge carrier mobilities while maintaining the bulk heterojunction cell architecture. They involve 

particularly phase aggregation and crystallinity of the domains in the blend. Well-aggregated 

(crystalline) domains in the BHJ cell allow for tight interchain interactions, larger charge transport 

couplings, and high mobilities.462 Domain aggregation can be for example influenced by side-chain 

modifications of both polymers and molecules.466 For instance, Meager et al. systematically varied the 

branching point of branched alkyl side chains in polymeric diketopyrrolopyrrole donors. They found 

that the crystallinity in OFETs and OSC blends and the resulting charge-transport properties are a 

function of this branching point.467 Another rather recent strategy is to employ fluorinated side chains, 

which often enhance aggregation and crystallinity.462 Indeed, Yang et al. observed higher mobilities for 

different polymers if side chains were fluorinated.468 Aggregation and crystallinity are also critically 

influenced by the fabrication conditions.462 Carefully choosing the solvent for the spin-coating process 

and using supplementary solvent additives results in an improved aggregation behavior.462 With X-Ray 

scattering techniques, Yu, Marks, Chen, and coworkers were able to elucidate the role of solvent 

additives. By selectively solubilizing the acceptor, they allow for a preformation of aggregated donor 

domains already during the spin-coating process.469 For the same purpose, solvent mixtures 

(cosolvents) can be employed in the spin-coating process.470,471 Moreover, thermal annealing472,463 and 

solvent annealing473 are known to significantly improve hole mobilities in polymers commonly 

employed in OSCs by increasing the fraction of well-ordered aggregates in the thin films.  

Optimizing the Short-Circuit Current 

Since the short-circuit current is at a constant intensity of the incident light only proportional to the 

EQE (Eq. (404)), increasing 𝐽𝑠𝑐  amounts essentially to optimizing the quantum efficiencies of the 

individual steps, i.e., of the exciton formation, diffusion, and dissociation, and of the charge separation, 

migration, and recollection.418  

Optimizing Absorption 

Exciton formation, or equivalently light absorption, is maximized if (1) the absorption spectrum of the 

OSC coincides with the emission spectrum of the sun and if (2) the absorption in this energy range is 

strong. To ensure sufficiently strong absorption (point (2)), OSC thin films should be as thick as possible 

without compromising exciton dissociation yields. This implies that thinner films can be employed with 

strongly absorbing molecules. A recent approach to further enhance absorption in OSCs with a given 

film thickness consists in the addition of noble-metal nanoparticles. Via localized surface plasmonic 

resonances, they largely increase the local electric field and, with it, light absorption.464,474,475 The 
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amount of absorbed light is furthermore also influenced by the orientation of the molecules in the thin 

films of OSCs.476,477 Solar concentrators were also found to increase OSC absorption.478 

To maximize the overlap of the absorption with the solar spectrum (point (1)), especially the region 

around ~750 − 850 𝑛𝑚 is important.479 Absorption at even higher wavelengths would deteriorate 

overall efficiencies because of too small open-circuit voltages.464 In view of the discussed aggregation 

phenomena, it should be noted that as stressed by Heremans et al.,479 absorption spectra of organic 

molecules strongly depend on the morphology and the environment. For instance, P3HT in 

regioregular aggregates is known to experience a significant red shift compared to its amorphous 

form.480 Thus, tuning aggregation as outlined above constitutes a viable route to influence absorption 

properties as well. Designing compounds with strong absorption in the near-infrared (NIR) region to 

optimize OSC efficiencies has brought about a diversity of so-called low-band gap polymers and 

molecules.481,482,483 A recurrent structural element in these low-band gap compounds is the donor-

acceptor (D-A) structure that results in low-lying intramolecular charge-transfer states. A fine-tuning 

of the properties of D-A compounds becomes possible by independently varying the donating and the 

accepting moiety.464 It was furthermore shown that strong absorption in the NIR region can also be 

obtained from compounds where quinoid resonance structures are important.484,485 Nevertheless, as 

highlighted by Brabec et al.,4 two major loss mechanisms in OSCs consist firstly in the sub-bandgap 

transmission, which is indeed diminished when using low-bandgap compounds, but secondly in the 

thermalization of hot charge carriers, which is larger when using low-bandgap compounds. Strategies 

were proposed to eliminate this deficiency of low-bandgap OSCs. Using ternary solar cells offers the 

possibility to include NIR absorption properties without sacrificing too much energy to thermalization 

losses.464 Ameri et al. outline the possible mechanisms in ternary OSCs that result in increased device 

efficiencies, for instance cascade charge transfer, parallel charge transfer, or energy transfer.486,487 

Often, ternary blends are composed of a wide-band gap polymer, an acceptor, and a sensitizer that 

can be a low-bandgap molecule/polymer or a nanoparticle.486 As outlined by You and coworkers,487 

the maximum OSC efficiency derived from the Shockley-Queisser limit434 for single-junction cells could 

even be surpassed in such ternary blends by incorporating singlet fission/upconversion compounds as 

one of the components. A complementary approach to ternary blends is the so-called tandem cell, 

which also has a higher ultimate efficiency than conventional single-junction cells.434 In tandem cells, 

two solar cells with complementary absorption profiles are combined.488 As they are usually connected 

in series, an intermediate layer must be inserted that should allow for the alignment of the Fermi levels 

of the top donor and the bottom acceptor layer.488 
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Optimizing Exciton Diffusion 

To obtain high short-circuit currents, exciton diffusion must be sufficiently fast so that the exciton 

reaches the interface within its limited lifetime. Akselrod et al.489 were able to demonstrate in 

tetracene films that, similar to charge transport, exciton diffusion corresponds to a random walk, and 

that it is affected by disorder. Thus the same effects as discussed for optimal charge carrier mobilities 

should be equally advantageous for exciton diffusion. Due to the longer lifetime of triplet states, it was 

suggested to take advantage of triplet exciton diffusion instead of singlet exciton diffusion in OSCs.490 

Triplet exciton diffusion comes, however, at the expense of smaller couplings resulting in smaller 

exciton diffusion velocities. Nevertheless, the longer lifetimes seem to be decisive at least in some 

situations. For example, Heremans et al. demonstrated that the addition of a phosphorescent 

sensitizer, converting all singlet to triplet excitons, can increase the exciton diffusion lengths in 

polymers from 4 nm to 9 nm.479 Podzorov and coworkers even observed triplet exciton diffusion 

lengths in the micrometer regime (2-8 μm) in highly ordered semiconductors.491 

Optimizing Exciton Dissociation and Charge Separation 

In addition to the driving force, the exciton dissociation and charge separation yield is also significantly 

influenced by the blend morphology.418 As outlined by Yang and coworkers, percolation pathways must 

exist in the blend so that the electron and the hole formed upon exciton dissociation can rapidly 

migrate to the respective electrodes.492 Indeed, it has been generally agreed that an intermixed phase-

segregated morphology of the heterojunction with bicontinuous percolation pathways for the 

separating charges ensures optimal exciton dissociation efficiencies.492 Janssen and coworkers were 

able to resolve such percolation pathways in a three-dimensional blend of a hybrid polymer solar 

cell.493 According to Yang and coworkers, by carefully choosing the processing solvents, lateral phase 

separation during the fabrication process, which eventually leads to the interpenetrating network of 

percolation pathways, can often be triggered.492 In some systems, vertical phase separation, induced 

by the different surface energies of the donor and the acceptor component, is additionally observed.494 

Therefore, the so-called inverted architecture was proposed (sometimes with the additional advantage 

of longer lifetimes). In inverted OSCs, ITO forms the cathode and accepts electrons from the fullerene 

layer.492,494 The importance of percolation pathways was also highlighted for example by McGehee and 

coworkers495 who stressed particularly the influence of the percolation pathways on bimolecular 

recombination. According to McGehee and coworkers,495 bimolecular recombination can have an 

efficiency-limiting impact on OSC performances. It can be minimized by ensuring fast and directed 

charge transport of charge carriers produced upon exciton dissociation via the percolation pathways 

to the electrodes. McGehee and coworkers actually found a direct correlation between the 

recombination rates and the thin-film charge mobilities.496 As a final example, in a recent analysis of 
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blend morphologies composed of diketopyrrolopyrrole polymers, Janssen and coworkers found a 

dependence of the short-circuit current on the width of the diketopyrrolopyrrole fibers in the blend, 

i.e., on the width of the percolation pathways for holes. They individually addressed the influence of 

the drying rate, the cosolvent type, the blend ratio, and additives on the fiber widths and came up with 

an empirical nucleation-and-growth model to rationalize the formation of the interpenetrating 

network.497 

High charge carrier mobilities essential for high fill factors are naturally also prerequisites for high 

short-circuit currents (see previous section).498  

Optimizing Charge Recollection at the Electrodes 

Finally, the short-circuit current is also determined by the efficiency of charge extraction at the 

electrodes. The energy transport levels must be aligned with the work functions of the electrodes to 

produce Ohmic contacts.418 Usually, this is achieved by inserting interfacial hole-selective and electron-

selective layers. With the additional layers, so-called multilayer device architectures (in contrast to 

bilayer devices, see above) result.418 The inserted interfacial layers contribute to the stability of the 

device, define its polarity, and minimize charge recombination at the electrodes.464 PEDOT:PSS is most 

commonly used as the hole-selective layer.464 Due to its acidic and hygroscopic nature and its structural 

inhomogeneity, however, it would be desirable to replace it.499 Inorganic layers such as MoO3
500 and 

organic compounds, for instance polyaniline,501 have already been used as alternative hole-selective 

layers. The cathode is usually composed of aluminium, and Ca or LiF are used as the electron-selective 

layers.464 Meanwhile, ZnOx is also frequently employed.502,503 Organic layers as electron-selective layers 

are rather uncommon. However, polyelectrolytes and self-assembled monolayers are sometimes 

inserted to improve the energy alignment of the cathode via the formation of dipole layers.464,503 For 

instance, using such dipole layers in a tandem-cell device, Yang and coworkers fabricated an OSC based 

on small organic molecules with an efficiency exceeding 10%.504 

Optimizing the Open-Circuit Voltage 

With respect to the optimization of the open-circuit voltage (Eq. (405)), it follows from the relationship 

of Scharber et al.432 (Eq. (413)) that a precise energy alignment of the electronic states of the donor 

and the acceptor is essential for high open-circuit voltages. The difference between the donor HOMO 

and the acceptor LUMO (≈ the energy of the interfacial charge-transfer state) should be as large as 

possible while (1) retaining an optical gap (usually of the donor) in the relevant spectral region, (2) 

precluding ground-state electron transfer, and (3) still keeping the driving force for charge-transfer 

sufficiently large to enable exciton dissociation. Saunders and coworker13 outline a number of design 

strategies how to tune the energy levels of the donor and the acceptor by structural modifications. For 
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instance, fluorination is not only a viable tool to improve film aggregation, but stabilizes the HOMO 

energies of donors as well, which has resulted in larger open-circuit voltages.4 Donor-acceptor 

compounds were also widely utilized to optimize open-circuit voltages. Since the HOMO and the LUMO 

of these compounds are largely localized on the individual donor and acceptor moieties,464 separate 

tuning of the energy levels becomes feasible.4 In a combined experimental and theoretical approach, 

Leclerc and coworkers505 were able to systematically vary the open-circuit voltage in a series of 

copolymers. The significance of such modular approaches to obtain high open-circuit voltages was also 

stressed by Li and Janssen and coworkers.506 

Furthermore, the charge-transfer state energies, which are related to the open-circuit voltage as 

pointed out by Vandewal et al.439 and by Deibel et al. (see above),435 are not only influenced by the 

transport energies of the individual components, but also by their Coulomb binding energy. The 

Coulomb binding energy can be reduced by increasing the dielectric constant of the medium, which 

results in higher-lying and more loosely bound charge-transfer states.428 Charge separation proceeds 

more easily from such loosely bound charge-transfer states. In a similar way, Havenith and 

coworkers507 found that permanent dipole moments in the interfacial region can drive charge 

separation by increasing charge-transfer state energies: the additional electric fields arising from the 

permanent dipoles weaken the Coulomb binding energy. Inserting ultrathin ferroelectric layers in the 

interfacial region of OSCs508 or employing ferroelectric donor polymers509 equally reduces the Coulomb 

binding energies of charge-transfer states via additional electric fields.  

It has been often pointed out that the open-circuit voltage is intimately related to the efficiency of 

recombination.435 In fact, Vandewal et al.439 recognized non-radiative recombination processes as a 

major efficiency-limiting factor in OSCs because they directly reduce the open-circuit voltage (Eq. 

(416)).442,443 In the same sense and based on results of Veldman et al.436 and of Vandewal et al.510, 

Deibel et al. explain the difference between the interfacial charge-transfer energies and the measured 

open-circuit voltage with additional non-geminate (bimolecular) recombination losses. Recombination 

losses can be reduced by decreasing the coupling between the donor and the acceptor.439,511 

Moreover, recombination losses equally diminish when the Coulomb binding energies of electron-hole 

pairs decrease (the Coulomb capture radius increases, see below). Indeed, Clarke and Mozer and 

coworker were able to directly relate bimolecular recombination losses (and correspondingly 

decreased open-circuit voltages) to the dielectric constant of the medium.512  

After this outline of device fabrication and optimization, the theoretical description of the microscopic 

molecular transfer processes is discussed in more detail in the next section. In a first step, exciton and 

charge transport are addressed. Subsequently, current microscopic models for charge separation are 

analyzed with a special focus on contributions from computational chemistry. 
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4.3 Exciton and Charge Transport in Organic Materials  
As outlined by Jortner,513 a close analogy exists between non-adiabatic electron transfer described by 

classical Marcus theory and the description of excitation energy transfer or small polaron motion. The 

basics of Marcus theory are therefore briefly presented. Subsequently, exciton and charge transport 

are individually addressed. While doing so, some computational investigations on exciton and charge 

transport in disordered organic materials are mentioned. 

Marcus Theory5 1 4  for Non-Adiabatic Electron Transfer  

According to Jortner,513 non-adiabatic electron transfer can be considered as a non-radiative decay 

process between two vibronic levels of a compound. From first-order perturbation theory (Fermi’s 

Golden Rule), the rate 𝑘𝐸𝑇  is determined by the coupling between the electronic reactant and product 

states 𝜓𝑅 , 𝜓𝑃 , the overlap of the vibrational wave functions Φ𝑅 , Φ𝑃, and the density of states 𝜌 of 

product states at the energy difference 𝐸.515 𝐻 is the Hamiltonian of the system. 

𝑘𝐸𝑇 =
2𝜋

ℏ
|⟨𝜓𝑅|𝐻|𝜓𝑃⟩|2|⟨Φ𝑅|Φ𝑃⟩|2𝜌(𝐸) 

(418) 

While the intermolecular vibrations are often classically treated, the intramolecular vibrations of the 

ground and the excited state are considered as (displaced) harmonic oscillators (force constant 𝑘). It 

is well-known that for a single vibration 𝑖 excited at level 𝑚, the Franck-Condon factor |⟨Φ𝑅,0|Φ𝑃,𝑚⟩|
2
, 

the square of the overlap between the two vibrational wave functions, can then be expressed in terms 

of the Huang-Rhys parameter 𝑆.hhh  

|⟨Φ𝑅,0|Φ𝑃,𝑚⟩|
2

=
𝑆𝑖

𝑚

𝑚𝑖!
𝑒−𝑆𝑖 

(419) 

The Huang-Rhys parameter associates the change in the equilibrium coordinate Δ𝑄 upon absorption 

with the vibrational frequency 𝜔𝑖 .418 It thus describes the effective electron-phonon coupling.435 

𝑆𝑖 =

1
2 𝑘Δ𝑄2

ℏ𝜔𝑖
 

(420) 

The quantity 
1

2
𝑘Δ𝑄2 is defined as the relaxation energy 𝜆 and corresponds to half the reorganization 

energy of classical Marcus theory.418,514 Using only a single effective vibrational mode 𝜔, the final rate 

is then obtained as 

                                                             
hhh The Franck-Condon factor corresponds only to a Poisson distribution if the available thermal energy is small 

compared to the vibrational frequency 𝜔𝑖. 
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𝑘𝐸𝑇 =
2𝜋

ℏ
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1
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𝑒

(
−(𝜆0+𝑚ℏ𝜔+𝐸)2
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)

∞

𝑚=0

 
(421) 

𝜆0 is the reorganization energy of the medium. The second term (
1

4𝜋𝜆0𝑘𝑇
)

1/2

 describes the density of 

states of the classical medium modes.435 The last exponential term refers to the population of 

molecules that have sufficient energy to undergo the electron transfer isoenergetically.515 Eq. (421) 

corresponds to the semiclassical Marcus rate.435 It is also designated as the Levich-Jortner rate.513 

Classical Marcus theory naturally arises from the Levich-Jortner hopping rates in the high-temperature 

limit, i.e., if also intramolecular vibrations can be classically treated. The total reorganization energy 𝜆, 

composed of the external (medium) and the internal reorganization energy, describes the density of 

states.418,515 

𝑘𝐸𝑇 =
1

ℏ
|⟨𝜓𝑅|𝐻|𝜓𝑃⟩|2 (

𝜋

𝜆𝑘𝑇
)

1/2

𝑒
(

−(𝜆+𝐸)2

4𝜆𝑘𝑇
)
 

(422) 

In the original derivation of Marcus on isoenthalpic electron transfer reactions in solution, an electron 

transfer activated515 by thermal fluctuations is considered.514 The reactant and product energies are 

expressed as harmonic functions of a joint solvent-and-solute coordinate. The transition state energy 

is determined from the crossing point of the two parabola and expressed as a function of the 

reorganization energy.514 

The Marcus rate equation as a diabatic model for the weak-interaction limit has been widely used to 

analyze exciton and charge transport phenomena, the subjects of the next two subsections. 

Excitons and Exciton Transport in Organic Materials  

Transport phenomena in OSCs are ultimately determined by the interactions between the 

molecules/polymer segments in thin films. These interactions are most easily derived from effective 

Hamiltonians because the eigenvalues of these effective Hamiltonians correspond to the energy states 

of the assembled molecules.516 

In a first step, a pair of identical molecules 1,2 is considered, which is excited into one of the excited 

dimer states Ψ𝑒𝑥 = 1
√2

⁄ (Ψ1
∗Ψ2 ± Ψ1Ψ2

∗).iii The Hamiltonian of the system 𝐻 is defined by the 

Hamiltonians of the individual molecules 𝐻1 , 𝐻2 and the interaction Hamiltonian 𝑉12, 𝐻 = 𝐻1 + 𝐻2 +

𝑉12. The excited-state energies 𝐸 are given by418 

                                                             
iii It should be noted that the overlap between the wave functions is neglected. 
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𝐸 =
1

2
⟨Ψ1

∗Ψ2 ± Ψ1Ψ2
∗|𝐻1 + 𝐻2 + 𝑉12|Ψ1

∗Ψ2 ± Ψ1Ψ2
∗⟩ 

= 𝐸1
∗ + 𝐸2 + ⟨Ψ1

∗Ψ2|𝑉12|Ψ1
∗Ψ2⟩ ± ⟨Ψ1

∗Ψ2|𝑉12|Ψ1Ψ2
∗⟩ 

(423) 

While the third term in Eq. (423) is an induction/polarization term (see SAPT), the fourth term 

corresponds to the splitting of the excited states in a dimer, i.e., it is the coupling 𝑉 between excitations 

localized on monomer 1 and monomer 2. The transition dipole moment from the ground state to  

Ψ𝑒𝑥  , �⃗�, is simply the sum of the transition dipole moments of the individual monomers �⃗�1, �⃗�2.418  

�⃗� =
1

√2
(�⃗�1 ± �⃗�2) 

(424) 

Depending on the couplings and transition dipole moments, two limiting cases for the excited-state 

splitting can be distinguished. For stacked dipole moments, the coupling is positive. The negative linear 

combination is the lower excited state, and the transition dipole moments mutually cancel. Only the 

higher-lying excited state of the dimer is bright. The coupled molecules form a so-called H-aggregate. 

For linearly aligned molecules, the coupling is negative. Hence, a net transition dipole moment results 

only for the lower excited state. Consistently, the second excited state is dark. The aggregate is 

designated as a J-aggregate.418 Albeit being derived from a dimer Hamiltonian, the classification of J- 

and H-aggregates also holds for higher aggregates (composed of many molecules).  

Yet, in a meaningful Hamiltonian 𝐻 for exciton transport in such supramolecular aggregates, additional 

effects and more molecules than in Eq. (423) have to be included. A model Hamiltonian for exciton 

transport in an aggregate can for example be written (adapted from Troisi and coworkers517) assuming 

only one electronically excited state per site 𝑗.  

𝐻 = ∑ {(𝐸𝑗 + ∆𝐸𝑗) + ∑ 𝑔𝑗
(𝑘)

𝑞𝑗
(𝑘)

𝑘

}

𝑗

|𝑗⟩⟨𝑗| 

+ ∑ {𝐽𝑗 + ∆𝐽𝑗 + ∑ 𝑎𝑗
(𝑘)

(𝑞𝑗
(𝑘)

− 𝑞𝑗+1
(𝑘)

)

𝑘

} |𝑗⟩⟨𝑗 + 1|

𝑗

+ 𝐶𝐶 

+ ∑ ∑ {
1

2
𝑚(𝑘)(�̇�𝑗

(𝑘))
2

+
1

2
𝑚(𝑘) (𝜔(𝑘)𝑞𝑗

(𝑘)
)

2
}

𝑘𝑗

 

(425) 

Vibrations 𝑘 are described by harmonic oscillators. They are defined in terms of their effective masses 

𝑚(𝑘), frequencies 𝜔(𝑘) and nuclear coordinates 𝑞𝑗
(𝑘)

. 𝐽𝑗 couples electronic excitations at sites 𝑗 and 𝑗 +

1. ∆𝐸𝑗 is the disorder of excitonic site energies (static diagonal disorder), ∆𝐽𝑗  the disorder of electronic 

couplings (static off-diagonal disorder).418 𝑔𝑗
(𝑘)

 couples an electronic state and its vibrations at site 𝑗, 
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i.e., it is the local electron-phonon coupling (dynamic diagonal disorder). In contrast, 𝑎𝑗
(𝑘)

 modifies the 

coupling between sites 𝑗 and 𝑗 + 1, which varies due to intermolecular vibrations. Thus 𝑎𝑗
(𝑘)

 constitutes 

the non-local electron-phonon coupling (dynamic off-diagonal disorder).517  

Depending on the relative orders of magnitudes of the couplings/disorder contributions in Eq. (425), 

two regimes of exciton transport can be distinguished. If the electronic coupling 𝐽𝑗 is significantly larger 

than the static disorder ∆𝐻𝑗 , ∆𝐽𝑗 and the dynamic disorder 𝑔𝑗
(𝑘)

, 𝑎𝑗
(𝑘)

, exciton transport is coherent. It 

is then described by band transport. In contrast, if any of the disorder contributions is larger than the 

electronic coupling, exciton transport becomes incoherent. Usually, either the static or the dynamic 

diagonal disorder are responsible for incoherent transport. In fact, Troisi and coworker outlined that 

the non-local electron phonon coupling (dynamic off-diagonal disorder) produces only pronounced 

effects on exciton transport if the latter is coherent.518 Incoherent exciton transport is described in a 

hopping regime. Depending on the relative couplings, it may either be disorder-limited (static diagonal 

disorder dominates) or “reorganization-limited” (dynamic diagonal disorder dominates), or limited by 

a combination of both reorganization and disorder. Compared with coherent transport, incoherent 

random exciton diffusion in the hopping regime is observed in the vast majority of situations.518 As 

already noted by Jortner, it can be described for example with Marcus hopping rates.519 

A further, very common differentiation of incoherent exciton hopping processes is based on the 

dominant coupling mechanism. Using Fermi’s Golden rule (weak coupling limit), the coupling of the 

excited states of a donor-acceptor system where the excitation migrates from the donor (Ψ𝐷) to the 

acceptor (Ψ𝐴) can be expressed as a matrix element of the perturbing Coulomb operator. 

𝑉′ = ⟨𝒜Ψ𝐷
∗ Ψ𝐴|

1
|𝑟| |𝒜Ψ𝐷Ψ𝐴

∗⟩ 

= ⟨Ψ𝐷
∗ Ψ𝐴|

1
|𝑟| |Ψ𝐷Ψ𝐴

∗⟩ − ⟨Ψ𝐷
∗ Ψ𝐴|

1
|𝑟| |Ψ𝐴

∗Ψ𝐷⟩ 

(426) 

𝒜 is the antisymmetrizing operator.  

While the first term in the second line of Eq. (426) corresponds to a Coulomb-type coupling, the second 

term represents an exchange coupling. In the point-dipole approximation, the Coulomb coupling 

constant can be further simplified by introducing the transition dipole moments of the donor and the 

acceptor �⃗�𝐷 , �⃗�𝐴. 𝜅 is an orientational factor. Transport mediated by such dipole-dipole couplings is 

designated as Förster energy transfer.418 

𝑉′~
|�⃗�𝐷||�⃗�𝐴|

𝑅3
𝜅 

(427) 
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Since the transition dipole moments can be related to spectroscopically accessible quantities, this leads 

ultimately to the famous expression for the rate of excitation energy transfer derived by Förster. It 

includes the so-called Förster radius 𝑅0, which depends on the spectral overlap between donor and 

acceptor, and the donor lifetime 𝜏0
𝐷.520 

𝑘𝐸𝑇 =
1

𝜏0
𝐷 (

𝑅0

𝑅
)

6

 
(428) 

Although the Förster-type dipole-dipole coupling usually dominates the long-range behavior of the 

Coulomb coupling, the latter might deviate from the expected 𝑅−3-dependence due to higher-order 

multipoles.521 

In contrast, transport mediated by the exchange coupling (Eq. (426)) is called Dexter transfer.522 Since 

the coupling corresponds essentially to an exchange of electrons, it depends on the wave function 

overlap and is strongly distance-dependent. Therefore, it is significant only at short intermolecular 

distances. Triplet exciton transport is mediated by Dexter-type couplings.490   

It should be noted that the coupling calculated according to Eq. (426) is approximate. As outlined by 

Hsu,166 there are additional contributions, namely an overlap-dependent term, which features an 

exponential dependence on the intermolecular overlap, similar to the exchange coupling of Dexter 

transfer. It results because in the derivation of Eq. (426), the finite overlap 𝑆𝑖𝑓  between the initial and 

final diabatic states 𝒜Ψ𝐷
∗ Ψ𝐴 and 𝒜Ψ𝐷Ψ𝐴

∗ was neglected. In general, the coupling (for electron or 

excitation energy transfer) between two diabatic states (initial and final energies 𝐸𝑖 , 𝐸𝑓) is computed 

as the off-diagonal element of the Löwdin-diagonalized Hamiltonian.166 

𝑉 =
𝐻𝑖𝑓 − (𝐸𝑖 + 𝐸𝑓)𝑆𝑖𝑓/2

1 − 𝑆𝑖𝑓
2  

(429) 

It could be shown that the overlap-dependent term plays a role that is at least as important as the 

Dexter-type coupling. In the short-range limit, it should therefore not be neglected.523 

From a modeling perspective, incoherent exciton transport is often modeled with kinetic Monte Carlo 

(KMC) simulations524,525,526,527 and Marcus-type rates in order to obtain macroscopic accessible 

diffusion lengths. For instance, Lu et al.528 and Köse et al.529,530 simulated exciton diffusion in P3HT, a 

system of particular interest for solar cells.4 Beljonne et al. compared the temperature dependence of 

exciton transport rates in organic oligomers and observed a pronounced decrease of the spectral 

overlap with higher temperatures. As a consequence, diffusion rates obtained from the spectral 

overlap (Fermi’s Golden Rule) decrease more than corresponding Marcus rates.531 Nevertheless, a 
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good accordance between exciton diffusion lengths obtained with KMC and Marcus rates and 

experimental values was found for organic crystals.532 

Before considering charge transport, some microscopic excitonic processes are briefly mentioned that 

change the number of excitons. During singlet fission, a singlet exciton splits into two triplet 

excitons.533,534 This implies, among others, that the singlet excited state must be at least twice as high 

as the triplet excitation. A number of additional prerequisites exist for the couplings between these 

excited states.535,536 Spectroscopic evidence provided by Musser et al. suggest that singlet fission is 

mediated by the same mechanisms as internal conversion, particularly by strong non-adiabatic 

coupling elements.537 The reverse process of singlet fission, triplet-triplet annihilation, can decrease 

the quantum yield of OLEDs (organic light-emitting diodes) based on triplet emitters,538 but is equally 

used to increase the luminescence efficiency539 of OLEDs based on fluorescent dyes. It is actually a 

representative of the more general so-called upconversion processes.434 In upconversion processes, 

lower-energy photons are converted into higher-energy photons.434 Analogously to triplet-triplet 

annihilation, singlet-singlet annihilation is observed as well. Singlet-singlet annihilation can be used to 

convert low-energy excitons from the infrared part of the solar spectrum into higher-energy 

excitons.540 More generally, different types of upconversion processes may be employed in OSCs, 

especially in order to obtain higher open-circuit voltages.541 

Charge transport in Organic Materials 

The Hamiltonian for charge transport in organic materials is completely equivalent to its counterpart 

for exciton transport (Eq. (425)). 

𝐻 = ∑ {(𝐸𝑗 + ∆𝐸𝑗) + ∑ 𝑔𝑗
(𝑘)

𝑞𝑗
(𝑘)

𝑘

}

𝑗

|𝑗⟩⟨𝑗| 

+ ∑ {𝐽𝑗 + ∆𝐽𝑗 + ∑ 𝑎𝑗
(𝑘)

(𝑞𝑗
(𝑘)

− 𝑞𝑗+1
(𝑘)

)

𝑘

} |𝑗⟩⟨𝑗 + 1|

𝑗

+ 𝐶𝐶 

+ ∑ ∑ {
1

2
𝑚(𝑘)(�̇�𝑗

(𝑘))
2

+
1

2
𝑚(𝑘) (𝜔(𝑘)𝑞𝑗

(𝑘)
)

2
}

𝑘𝑗

 

(430) 

𝐸𝑗 and 𝐽𝑗 are the site energies for charge carriers and electronic couplings for charge transfer in a 

perfect crystal, respectively. ∆𝐸𝑗 and ∆𝐽𝑗  are again the diagonal and off-diagonal static disorder at site 

𝑗. 𝑔𝑗
(𝑘)

 is the local electron-phonon coupling (dynamic diagonal disorder), while 𝑎𝑗
(𝑘)

 is the non-local 

electron-phonon coupling (dynamic off-diagonal disorder).418  
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Similar to exciton transport, different regimes for charge transport may be differentiated, depending 

on which coupling element in the Hamiltonian is dominant. If the electronic coupling is significantly 

larger than all other contributions, band transport results. Band transport is particularly characterized 

by its marked temperature dependence of the mobility 𝜇 as 𝜇~𝑇𝑛, 0 < 𝑛 < 3.418 However, even if 

band transport is the dominating transport regime, band widths in organic semiconductors are small, 

resulting from the rather small charge transport couplings due to the comparably weak intermolecular 

interactions.418 Moreover, Troisi464 pointed out that a very high purity of the semiconducting layers is 

an additional prerequisite for band transport because already the existence of some defects can 

convert a band transport into a hopping transport. 

Similarly, if any of the disorder contributions becomes more important than the electron transfer 

coupling in the Hamiltonian, the hopping regime prevails as well. As outlined by Köhler and Bässler,418 

a further subdivision of the hopping transport of charges is possible: alike to exciton transport, the 

charge transport processes may either be limited disorder-limited or limited by coupling to phonons 

(or both). 

Polaronic Transport 

One usually refers to polaronic transport if dynamic disorder is dominant, i.e., if the coupling to 

phonons is strong. The combination of the charge carrier and its lattice deformation is then designated 

as a polaron. Furthermore, since the lattice deformation in organic materials is usually rather localized, 

the polaron is considered as a small polaron.464 The transport of small polarons is often described in 

the diabatic limit, for instance with Marcus rates.464 Small polaron theory was originally proposed by 

Holstein.542,543 Compared with the Hamiltonian in Eq. (430), the Holstein Hamiltonian includes only 

disorder due to the local electron-phonon coupling. If the electronic coupling, which is assumed to be 

weak, is neglected in a first step, the site energies are given by544 

휀𝑗 = 𝐸𝑗 −
1

2
∑ ℏ𝜔𝑗

(𝑘)
|𝑔𝑗

(𝑘)
|

2

𝑘

+ ∑ ℏ𝜔𝑗
(𝑘)

(𝑛 +
1

2
)

𝑘

 
(431) 

The second term in Eq. (431) is called the polaron binding energy 𝐸𝑝𝑜𝑙; it corresponds to the 

intramolecular relaxation energy upon charge transport (see also Eq. (420)).544 Evidently, its expression 

is based on an harmonic approximation for the site energy 𝐸𝑗 as a function of the nuclear coordinates 

𝑞. It can be shown that the activation energy for electron transfer corresponds to half the polaron 

binding energy.jjj Using these zero-order site energy, the Holstein charge transport rates are obtained 

                                                             
jjj Similarly, in Marcus theory, the activation energy corresponds to a quarter of the reorganization energy.  
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from first-order perturbation theory, which yields a Golden rule-like expression. If the vibrations are 

classically treated (high-temperature regime), the Holstein hopping rates are given by418,544 

𝑘𝐸𝑇 =
𝑉²

ℏ
√

𝜋

2𝐸𝑝𝑜𝑙𝑘𝑇
𝑒

−(
𝐸𝑝𝑜𝑙

2𝑘𝑇
)
 

(432) 

For sufficiently strong electron-phonon couplings, the Holstein model predicts a characteristic 

temperature dependence of the charge carrier mobility. With the Einstein equation μkT = eD and the 

dependence of the diffusion coefficient D on the transfer rate D = (1 2⁄ n)kETa² (n is the dimension 

of the system, a the intersite distance), it can be seen that the mobility increases for intermediate 

temperature, while it decreases again in the high-temperature limit.544  

Disorder-Limited Transport 

In the case of disorder-limited transport, variations of site energies ∆𝐸𝑗 and coupling values ∆𝐽𝑗 are 

large compared to the electronic coupling 𝐽 (Eq. (430)).418 A conceptually simple and physically 

grounded model425 to describe transport in disordered organic semiconductors is the Gaussian 

disorder model or, equivalently, the Bässler model.25 The two key elements of the Bässler model are a 

Gaussian-shaped density of states (DOS) and asymmetric hopping rates.425 The Gaussian shape of the 

DOS 𝑔(𝐸) is a consequence of the central limit theorem545 because the energetic distribution of the 

sites arises from the combined effects of a large number of randomly distributed independent 

variables such as intersite distances, polarization energies, equilibrium couplings, etc.418,425 

𝑔(𝐸) =
1

√2𝜋𝜎2
𝑒

−(
𝐸²

2𝜎²
)
 

(433) 

The DOS is characterized by its width σ, the so-called disorder parameter.418 It was observed418 that σ 

is larger if static dipole moments are present in the environment.546 σ characterizes the (static) 

diagonal disorder.425 

Since site energies differ, hopping rates between forward and backward hops are asymmetric. Miller 

and Abrahams547 included this asymmetry simply via a Boltzmann factor in the hopping rate 𝜈𝑖𝑓  

between an initial site 𝑖 with energy 𝐸𝑖 and a final site 𝑓 with energy 𝐸𝑓. The rate 𝜈𝑖𝑓  additionally 

contains a factor 𝜈0, sometimes called the attempt-to-hop frequency,418 and a coupling term. In the 

case of charge transport, the coupling depends on the wave function overlap. Therefore, the coupling 

term is usually approximated as an exponential function of the intermolecular distance. It contains the 

distance 𝑟𝑖𝑓 between the initial and final sites 𝑖, 𝑓 and a parameter 𝛾. The Miller-Abrahams hopping 

rates are therefore defined as418,425 
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𝜈𝑖𝑓 = 𝜈0𝑒−2𝛾𝑟𝑖𝑓 ∙ {𝑒−
𝐸𝑓−𝐸𝑖

𝑘𝑇                                   𝐸𝑖 < 𝐸𝑓  

1                                           𝐸𝑓 < 𝐸𝑖

 
(434) 

The off-diagonal disorder may additionally be included by using a Gaussian distribution for the coupling 

parameter, the exponential term 2𝛾𝑟𝑖𝑓, as well.425 However, as pointed out by Hertel and Bässler,548 a 

Gaussian distribution is physically not as well-grounded for the couplings as for the site energies.  KMC 

simulations based on the Gaussian-shaped DOS and Miller-Abrahams hopping rates were widely 

employed to investigate the effects of disorder (especially, but not only of static disorder) on 

macroscopic transport parameters.418,425  

An important conclusion from the Bässler model is a distinct time and temperature dependence of the 

charge carrier mobility in disordered semiconductors. In fact, after photoexcitation, charge carriers 

relax in the Gaussian DOS to thermal equilibrium following a logarithmic decay law. Due to this time-

dependent energetic relaxation, the charge carrier mobility is initially time-dependent as well. This 

implies that transport is dispersive until thermal equilibrium is reached. Then, charge carrier mobilities 

are time-independent. The equilibrium energy 𝐸𝑒𝑞 of the charge carriers depends on the temperature 

and on the disorder and is given by418,425 

𝐸𝑒𝑞 = lim
𝑡→∞

〈𝐸(𝑡)〉 = −
𝜎2

𝑘𝑇
 

(435) 

Evidently, the equilibrium energy is below the center of the DOS so that charge transport processes 

are thermally activated. Moreover, since the equilibrium energy of charge carriers decreases with 

decreasing temperature, the temperature dependence of the charge transfer rates, and concomitantly 

of the mobility, should deviate from an Arrhenius-type law,418,548 and therefore differs compared with 

polaronic transport (Eq. (432)). The temperature dependence of the mobility for disorder-limited 

transport is usually given by (𝐶, 𝜇0 are constants) 418,425 

𝜇 = 𝜇0𝑒−𝐶(
𝜎

𝑘𝑇
)

2

 
(436) 

It should be furthermore noted that this holds only for low charge carrier densities.544  

In disordered organic semiconductors, it is usually assumed that both disorder-related and polaronic 

effects are important for a complete description of charge transport.418 Different models have been 

proposed to describe the combined effects. Furthermore, from a theoretical point of view and as 

outlined by Andrienko et al., a detailed understanding of the charge transport processes on a molecular 

level is only accessible from simulations with parameters obtained in ab initio calculations, i.e., without 

empirical parameters.30 A variety of investigations based on first-principle calculations exist that 
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combine elements from polaron transport and disorder-limited transport. Usually, the disorder of 

electronic couplings is included as well. In fact, the influence of both types of static disorder was 

particularly addressed by Andrienko et al.549,550,551 and by Gennett et al.552 Furthermore, Li et al. 

calculated mobilities in disordered films of anthracene derivatives,553 and Nelson et al. similarly 

computed electron mobilities in fullerene C60-based transistors.554 Transport parameters were also 

obtained from simulations of discotic mesophases such as phthalocyanines555 and perylene 

derivatives.556  Many investigations, for instance by Andrienko et al.,557,558 by Nelson et al.,559 and by 

Van Voorhis et al.,560 focus on hole mobilities in tris(8-hydroxyquinolinato)aluminium, an important 

amorphous hole transporting material.  

Since charge transport may be additionally affected by the non-local electron-phonon coupling (Eq. 

(430)), this last aspect will be addressed in the next subsection. 

Transport Limited by Non-Local Electron-Phonon Coupling?  

Generally, the non-local electron-phonon coupling (dynamic off-diagonal disorder) can also be 

important for charge transport in organic materials. As outlined by Coropceanu et al., this results 

because the charge transfer couplings strongly depend on small details of the intermolecular 

arrangements. A slight variation, for example of the intermolecular distance, can produce pronounced 

changes of the transfer coupling. Moreover, the (lattice) phonons are energetically low and thermally 

excited.544 If the non-local electron-phonon coupling is dominant, Peierls-type models are employed.544 

For instance, soliton excitations in polyacetylene are described by a model Hamiltonian, the so-called 

Su-Schrieffer-Heeger-Hamiltonian, which includes only the diagonal site energies as well as the non-

local electron-phonon coupling (in contrast to Eq. (430)).561 

In most organic semiconductors, non-local electron-phonon coupling is usually not dominant, but 

certainly on the order of local electron-phonon coupling and of disorder contributions, both of which 

lead to charge carrier localization (see previous paragraphs).544 Troisi and Orlandi analyzed the thermal 

fluctuations of charge transport couplings in crystalline organic semiconductors and found that these 

fluctuations are on the same order as the average coupling values. Therefore, they concluded that due 

to the effect of off-diagonal dynamic disorder alone, a description based on band transport is 

inappropriate for organic crystals.562,563,564 With regard to fullerene systems, Brédas and coworkers 

came to similar conclusions.565 

After this outline on theoretical concepts describing exciton and charge transport in bulk phases, the 

theoretical description of the key process in OSCs, the exciton dissociation, is discussed in the next 

section. While a number of established models for bulk transport phenomena exist, the understanding 

of the exciton dissociation and charge separation process is still not complete.5 
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4.4 Models for the Exciton Dissociation at the Donor-Acceptor Heterointerface 
In spite of some observations of exciton bulk ionization, for instance in the fullerene layer,566 exciton 

dissociation in OSCs is assumed to primarily occur at the donor-acceptor interface via an interfacial 

charge-transfer state.567 As outlined above, the mechanism of exciton dissociation and charge 

generation is closely related to the question what drives charge separation. It should be noted that 

equivalent questions arise when considering molecular doping.568,569  

According to Few and Nelson and coworkers, early models for exciton dissociation often rely on the 

Onsager-Braun concept.567 Due to its historical significance, the key idea of Onsager and Braun is 

shortly outlined. 

The Onsager-Braun Concept for Charge Separation  

The Onsager-Braun concept is based on a classical picture of diffusing molecules and ions, and on the 

consideration of their electrostatic interactions.  

In an earlier version of the model, Onsager assumed that optical excitation of a molecule in an 

electrolyte (permittivity 휀0) generates a pair of bound ions, a geminate pair. The Brownian motion of 

the electron and the hole is influenced by their mutual Coulomb binding energy, the thermal energy, 

and the external electric field. Without any external field, the dissociation yield 𝑝 of the geminate 

electron-hole pair is a simple exponential function including the so-called Coulomb capture radius 𝑅𝐴𝐵  

(Eq. (439)) and the initial electron-hole separation 𝑟0.570 

𝑝 = 𝑒
−𝑅𝐴𝐵

𝑟0
⁄  (437) 

The Coulomb capture radius, sometimes also called the Langevin capture radius,418 is the distance at 

which the thermal energy is equal to the electrostatic interaction energy of the electron-hole pair. It 

was initially defined to describe the rate constant 𝛾 of non-geminatekkk so-called Langevin-type (not 

trap-assisted) recombination of charge carriers in low-mobility media. With the Smoluchowski 

equation571 for bimolecular reactions based on the diffusion coefficients 𝐷𝐴, 𝐷𝐵  of the two charge 

carriers, the Coulomb capture radius (Eq. (439)), and the Einstein relation, Langevin derived an 

expression for 𝛾 (Eq. (440)).418,572 

𝛾 = 4𝜋(𝐷𝐴 + 𝐷𝐵)𝑅𝐴𝐵 (438) 

𝑅𝐴𝐵 =
𝑒²

4𝜋휀0휀𝑟𝑘𝑇
 

(439) 

                                                             
kkk While geminate recombination refers only to those processes where the electron and the hole emerge from 
the same exciton, the charge carriers have not the same precursor in non-geminate recombination.418 
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𝛾 =
𝑒

휀0휀𝑟

(𝜇+ + 𝜇−) (440) 

When the field dependence is additionally taken into account in the early Onsager concept (Eq. (437)) 

(see 418 for more details), a good agreement with experimentally found field dependences of the 

photoconductivity in single-component systems such as anthracene crystals was observed.573 Yet, in 

single-component systems, bulk exciton ionization, instead of exciton dissociation at a donor::acceptor 

interface, leads to charge carrier generation. 

In contrast, for donor-acceptor systems, one fundamental assumption of Onsager does not hold 

anymore. In fact, Onsager required that as soon as the electron and the hole collide, their 

recombination probability is 1. However, at donor-acceptor interfaces, a charge-transfer state is first 

formed. Due to its long-lived character, it may dissociate again in a field-assisted process.418 Braun574 

included the non-negligible dissociation probability of the intermediate charge-transfer state into 

Onsager theory. By means of the joint Onsager-Braun concept, a number of experimental findings 

could be rationalized.567 

Nevertheless, the Onsager-Braun model as well as all of its adaptions, also the recent ones, are entirely 

phenomenological, they provide no atomistic information and understanding about the molecular 

nature of exciton dissociation and charge separation.567 Ab initio and first-principle QM calculations 

are necessary to gain insight into the influence of molecular properties on charge separation. Such 

theoretical investigations of the exciton dissociation and charge generation process, and the 

understanding that they offer, will be the subject of the next subsection. 

First-principle Calculations on Exciton Dissociation and Charge Separation 

Most theoretical investigations describe exciton dissociation and charge separation mainly by 

considering the energy landscapes around the organic::organic interfaces. Electronic-structure 

calculations provide the relevant excitonic/polaronic/charge-transfer states. From these energy 

landscapes and from the couplings between different states, information about the charge generation 

can be obtained. As outlined by Few, Nelson and coworker, many investigations use a single donor-

acceptor pair or an oligomer. Calculated properties and energies are assumed to be representative for 

the whole interface.567  

However, in a recent review, Beljonne et al.,575 similar to Yost et al.,26 point out that complete 

interfacial model systems with atomistic resolution can be used as a starting point for subsequent QM 

calculations as well. Their in silico generation of these interface models is usually based on molecular 

dynamic (MD) simulation techniques. MD is a valuable tool especially for systems composed of 

molecules (compared with polymer OSCs). This results because since the atomistic information in MDs 
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comes at a considerable computational cost, fully atomistic MD simulations are often inapplicable to 

the very large polymers.575 In addition, Muccioli et al.576 indicate the different time scales required for 

molecular compared with polymer rearrangements (see section on molecular dynamics). This implies 

that shorter simulation times are sufficient for molecular aggregates while longer time scales are 

needed to simulate polymer rearrangements.  

A plethora of investigations based on MD simulations to generate disordered bulk aggregate 

structures exists. For more details and examples, the reader is referred to the reviews of Muccioli et 

al.576 and of Beljonne et al.575 Only some representative investigations are briefly addressed. For 

instance, in a combined theoretical and experimental investigation, Andrienko and coworkers556 

rationalized the packing motifs in perylene-based compounds. Using MD simulations, Martinelli et al. 

were able to assess the effects of lattice vibrations in anthracene and perfluoropentacene 

crystals.577,578 As pointed out by Beljonne et al.,575 compared to simulations of bulk phases, simulations 

on organic::organic interface structures are less abundant. Studies exist again from Martinelli et al., 

who investigated the packing motifs of pentacene on top of polymeric dielectric layers. They used the 

generated structures to determine hole mobilities in subsequent quantum-chemical calculations. 

Doing so, they were able to highlight the impact of electrostatic disorder created by the dielectric on 

charge carrier mobilities, a critical point in organic field-effect transistors (OFETs).579 Brédas and 

coworkers studied the intermixing at pentacene-fullerene bilayer interfaces, probably the 

computationally most investigated interface, by means of MD simulations. Depending on the initial 

orientation of the pentacene layer, different degrees of disorder and intermixing were found when 

fullerenes were added.580 

Quantum-mechanical calculations (QM) are subsequently employed to elucidate the electronic states 

at the interface, using either the representative heterodimer or a part of the previously generated 

interface. All investigations address at least to some extent the question why exciton dissociation is 

energetically feasible. Some of them focus additionally on kinetic effects. It was observed, among 

others, by Scholes and coworkers581 that electron transfer in photovoltaic blends may be ultrafast. 

Theoretical models were proposed to explain this observation. 

From a literature survey, existing investigations may be further subdivided into several groups 

depending on which effect is considered to primarily drive charge separation. (1) The main conclusion 

of a large number of investigations is that the nature of the interfacial charge-transfer state, which 

can be “hot”, delocalized, vibrationally excited, etc., enables charge separation. (2) A considerable 

amount of other predictions emphasize the influence of electrostatic effects from the environment on 

interfacial energetics. Electrostatic interactions can lead to a favorable band bending at the interface 

so that no further driving force for charge separation is required.26 (3) Morphology is predicted to be 
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of major importance as well. Distinct structural packing motifs at the interface and in its vicinity were 

found to facilitate/prohibit charge separation. Evidently, because of the interdependence of these 

effects, a clear differentiation is not always possible. However, several representative examples are 

discussed for each group in the following. Many of them are in support or explain experimentally 

observed effects. Yet, in contrast to experiments, which are often interpreted based on postulations 

and simple models, the calculations provide a direct molecular understanding of the charge 

generation process. 

More examples can be found in reviews by Darling and coworker5 and by Yost et al.26  

The role of entropy in driving charge separation (see above), recently again outlined by Gulbinas and 

coworkers,582 is not repeatedly discussed. It should be furthermore noted that some experimental 

investigations are cited in the following as well. The reader is referred to Deibel et al.435 and the above 

discussion for more experimental investigations. 

Charge Separation Via Hot/Delocalized Charge -Transfer States  

A number of theoretical investigations predict that the nature of the interfacial charge-transfer state 

intrinsically allows further dissociation and charge separation. A further subdivision of these 

investigations is possible, depending on whether excess energy is involved (dissociation via hot CT 

states) or not (dissociation via cold CT states). 

Exciton Dissociation via Cold CT States 

The nature of the interfacial charge-transfer state was analyzed in a rather early567 work of Kanai and 

Grossman for the P3HT::C60 system.583 They proposed that exciton dissociation and charge separation 

are mediated by a so-called “bridging” interfacial charge-transfer state where charge density is 

smeared across the whole donor-acceptor pair. Due to the charge delocalization in this “bridging” 

charge-transfer state, no tightly bound geminate electron-hole pair is created, and charge separation 

becomes energetically feasible due to the reduced Coulomb binding energy. Although Kanai and 

Grossman used pure DFT to calculate the charge-transfer states,583 which certainly introduces 

errors,567 their concept of the “bridging” charge-transfer state was readily adopted in the literature.567 

For instance, Liu, Troisi and coworker584 analyzed the influence of the P3HT conformation on the nature 

of such charge-transfer states and found two types of geminate pairs at the P3HT:: C60 system – a 

“bridging” and a “charge-separated” one. The amount of charge delocalization was observed to 

critically influence the rates of the photoinduced charge-transfer step. Few et al. studied the influence 

of chemical modifications at the donor on the nature of bridging charge-transfer states to fullerene 

C60.585 By means of ADC(2) calculations, also Borges and Lischka and coworkers observed delocalized 
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charge-transfer states for other donors and C60.424 They concluded that charge separation seems 

feasible from such delocalized charge-transfer states, which are directly accessible from an internal 

conversion process of bright interchain excitonic states.424 It is important to stress that all of these 

studies consider relaxed charge-transfer states, i.e., cold exciton breakup is energetically possible due 

to the delocalization.  

Many investigations address additionally the kinetics of such relaxed charge-transfer states. All of 

these investigations point out that even if the relaxed charge-transfer state is sufficiently high to allow 

for a cold exciton dissociation, the actual charge generation yield results from the competition 

between the charge separation and recombination dynamics of the charge-transfer state. This kinetic 

control of the charge generation process was also discussed by Thompson and coworker.449 They 

particularly point out that it provides the charge generation yield with a noticeable temperature 

dependence. A few illustrative examples are mentioned. For instance, in a combined experimental and 

theoretical investigation, Baldo, Manca, and Van Voorhis were able to demonstrate for polymer-

fullerene blends that charge separation occurs via relaxed charge-transfer states since excess energy 

did not affect the quantum yields.586 Therefore, they explained existing differences in the quantum 

yields of the polymer-fullerene blends in terms of different (recombination) dynamics of these relaxed 

charge-transfer states.586 In a very recent experimental study of Lu and coworkers,587 the rate of non-

radiative recombination at organic heterojunctions showed a Marcus-inverted behavior as a function 

of the charge-transfer state, which suggests that an energetically high-lying charge-transfer state 

simultaneously enables fast charge separation and disables recombination. Also Rumbles and 

coworkers found in an experimental investigation inverse trends of the separation and recombination 

rates as a function of the charge-transfer state energies. By systematically varying the driving force for 

the interfacial charge-transfer step, they observed that the charge generation yield has a maximum as 

a function of the driving force. With Marcus-type rates, they were able to rationalize that at this point, 

almost no activation energy is required for the photoinduced charge-transfer step (Eq. (422)). 

Recombination losses are in turn effectively suppressed in a kinetically controlled process. Lowering 

the charge-transfer states even more relative to the excitonic states (increasing the driving force) slows 

down the rate of exciton dissociation.588 In addition, Lu and coworkers587 furthermore emphasized the 

importance of small couplings between the relaxed charge-transfer states and the ground state. 

Reducing recombination couplings is also a key element of a cascade energy landscape proposed by 

Tajima and coworkers:589 the energy cascade in the first monolayers around the interface serves to 

drive charges apart and prevents them from recombining.589 Thus, all these investigations have the 

major conclusion in common that while the relaxed charge-transfer states might have sufficient energy 

to allow exciton dissociation, their couplings to other states must be controlled to drive charge 

separation in a kinetically controlled process.  
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Exciton Dissociation Via Hot CT States 

In contrast to the above conclusions and from a combination of time-resolved spectroscopy and non-

adiabatic dynamics, Rossky and Zhu and coworkers outlined that only excess energy of the interfacial 

charge-transfer state can channel charge separation. The excess energy contributes to the 

delocalization of the charge-transfer state, which subsequently dissociates. Thus the time scale of 

charge separation is ultimately determined by the cooling process of the charge-transfer state. Once 

it has cooled, the geminate electron-hole pair localizes and cannot escape from its Coulomb binding 

energy.590 Similar conclusions were drawn by Bakulin et al.591 in a joint computational and experimental 

study on a combination of polymer donors with fullerene derivatives. Bakulin et al.591 showed that IR 

photons can excite bound charge-transfer states into a higher-lying band of delocalized charge-transfer 

states. This directly leads to charge separation.591  

In a seminal experimental investigation on charge-transfer excitons at organic semiconductor surfaces 

and interfaces, Zhu et al. discussed two additional important effects related to hot charge-transfer 

states. Aside from their reduced binding energy, the DOS for higher-lying CT states is larger, and they 

couple more efficiently to the original excitonic states (because they are isoenergetic).455 Both effects 

can assist in driving charge separation. Indeed, also Vázquez and Troisi pointed out that upon exciton 

dissociation, a partially delocalized charge-transfer state is always the first state to be populated 

because according to their calculations, only partially separated higher-lying CT states couple 

sufficiently with the initial bright excitonic state.592 In a similar way, Beljonne and coworkers conducted 

comprehensive calculations on the CT DOS at the P3HT::PCBM interface, and equally came to the 

conclusion that the dark, higher-lying CT manifold is of major importance for the charge separation 

efficiency. Due to their strong coupling with singlet excitons, these higher-lying charge-transfer states 

can even be directly excited.593 The so-called long-range exciton dissociation recently proposed by 

Caruso and Troisi can be considered as a limiting case of strong exciton coupling to delocalized charge-

transfer states. In long-range exciton dissociation, the exciton actually never reaches the interface but 

dissociates, due to the pronounced coupling, directly into a delocalized charge-transfer state.594 Ma 

and Troisi furthermore indicate, similar to Beljonne,593 that while the absorption strength of such 

delocalized charge-transfer states is usually very low (yet increased due to the coupling to excitonic 

states), they might still contribute to the low-energy part of the OSC absorption due to their 

considerable DOS. Therefore, direct optical excitation of long-range charge-transfer states could be 

another pathway that leads, in addition to exciton dissociation, to charge separation.595  

Finally, the role of both intrinsic charge delocalization in the relaxed charge-transfer state and 

vibronically excited states was emphasized by Tamura and Burghardt. They discussed in detail that 

only the combined effect of charge delocalization, which reduces the Coulomb binding energy, and 
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mediation via a vibronically excited charge-transfer state, enable an ultrafast charge-transfer process 

in the sub-picosecond regime at the P3HT/PCBM interface.596 

Electrostatically Assisted Exciton Dissociati on 

It is well-known that the built-in voltage and further electric fields due to ferroelectric/dipolar additives 

assist in charge separation (see above). Yet, electrostatic fields facilitating exciton dissociation can also 

simply arise from the ground-state electronic structure at the interface.567 A number of theoretical 

investigations analyze the influence of such local electric fields, an impact which is difficult to assess 

by experimental means. 

Using the archetypical pentacene::fullerene heterojunction, Heremans and coworkers597 could show 

with microelectrostatic calculations that the energy landscape at the interface is determined by the 

size and orientation of the molecular quadrupole moments of pentacene. In fact, electrostatic 

interactions of the quadrupole moments lead to band bending of the charge transport levels. This band 

bending is produced in a two-fold manner. On the one hand, the quadrupole moments directly interact 

with the generated geminate electron-hole pairs. On the other hand, the discontinuity of the electric 

field across the interface results in interfacial dipole moments that, depending on the orientation, can 

additionally promote/prohibit charge separation (by favorable/unfavorable band bending). Therefore, 

the authors conclude that the orientation of donors with quadrupole moments must be critically 

controlled to obtain efficient devices.597,598 In a more detailed study on the origin of the ground-state 

interfacial dipole moments at the pentacene::fullerene interface, Castet et al. outline that ground-

state charge transfer, compared with polarization due to the asymmetrically distributed quadrupole 

moments, is only of minor importance. More importantly, however, the size and even the orientation 

of these interfacial dipole moments is very sensitive to slight changes in the intermolecular 

arrangements and consistently subject to pronounced variations.456 In fact, an experimental 

investigation highlighting the importance of interfacial dipole moments was provided by Akaike et al. 

for the copper phthalocyanine::fullerene interface. From UPS, X-Ray, and inverse photoemission 

experiments, they were able to deduce the energy band offset at the donor/acceptor phase induced 

by the interfacial dipole moments.599 Beljonne and coworkers observed furthermore considerable 

substituent effects on the interfacial dipole moments and on the type of band bending when replacing 

pentacene with sexithiophene or with dicyanovinyl-substituted sexithiophene donors. While the band 

bending is similar to pentacene in the former case, using acceptor-substituted sexithiophenes inverses 

the bending. Interference effects influencing the transport levels were observed when a quadrupolar 

PTCDA acceptor instead of fullerene was employed.600,601  
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Turning to polymer OSCs, namely to the P3HT::PCBM interface, Castet et al. found that alike to 

pentacene, the quadrupole moments of P3HT contribute to the gradient in the energy landscape that 

drives charge separation. However, they additionally outlined that stabilizing polarization interactions 

of the charge carriers with their environment are larger for a separated electron-hole pair than for a 

geminate one. Polarization facilitates therefore charge separation.602 Brédas already outlined the 

significance of polarization, owing to the nature of the polarizable conjugated systems, for charge-

transport phenomena in all organic materials.603  

The importance of electric fields created by ground-state multipole moments was also underlined by 

QM/MM calculations of Yost and Van Voorhis.460 Using a variety of bilayer OSCs, they observed a 

considerable influence of these molecular multipole moments on the type of band bending, in line 

with Heremans597,598. Nevertheless, they additionally noted the influence of the bulk dielectric 

constant, which changes when going to the interfacial region. If it is lower, for instance due to lower 

packing densities,26 charge carriers are destabilized at the interface.26,460 Therefore, this issue is related 

to the strong variations of the polarization energy of charge carriers at organic::organic interfaces 

compared with the bulk phase, a phenomenon also addressed by Risko and Brédas and coworker for 

organic::vacuum interfaces.604   

Influence of  the Morphology on Charge Separation  

From numerous computational investigations in the recent literature, it follows that different 

morphological effects may favor charge separation. Both morphological disorder and order can in 

principle facilitate the generation of free charges. Moreover, according to many investigations, the 

mutual molecular orientation at the interface plays a very fundamental role. 

Charge Separation Favored by Disorder  

Considering the P3HT::PCBM interface, Troisi and coworkers predicted that the larger amount of 

disorder at the interface has a favorable effect on the energetics of charge separation. In fact, due to 

the increased free volume at the interface, P3HT chains take on more disordered arrangements, which 

induces a blue shift of the absorption, i.e., the energy gap of P3HT increases. Correspondingly, the 

transport gap between the charge transport levels widens. As outlined by Troisi and coworkers, it 

follows that charge carriers are repelled from the interface, which increases the initial charge 

separation and suppresses geminate recombination.457  

Charge Separation Favored by Order  

In contrast, Akaike et al. addressed the influence of disorder on the energy alignment at organic donor-

acceptor interfaces.453 They concluded that the influence of disorder on the energy alignment is 
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complex, yet detrimental. Nayak and Cahen and coworker outlined similar effects in a recent 

perspective. They concentrated particularly on charge carrier mobilities, which must be high to ensure 

efficient charge separation. Disorder is known to deteriorate charge transport properties.452 Similarly, 

Poelking and Andrienko highlighted the fundamental importance of long-range molecular order for 

high charge generation yields, albeit with a focus on electrostatics. Only if long-range mesoscale order 

exists, multipole moments can add up and produce homogeneous electric in-plane fields and 

inhomogeneous out-of-plane fields at the donor::acceptor interface. “Push-out forces” result from the 

out-of-plane fields for certain donor-acceptor mixing ratios and molecular orientations at the 

interface. These forces enable cold exciton dissociation.605 In the same sense, Poelking and Andrienko 

emphasized in another investigation the profound influence of long-range electrostatic interactions 

induced by mesoscale disorder especially on the open-circuit voltage.28 Long-range mesoscopic order 

and aggregation is also found to be of major importance by Chen, Marks, Ratner and coworkers.606 In 

a combined experimental and theoretical investigation, they discussed that particularly fullerene 

cluster sizes and arrangements are decisive for charge separation. In large, well-aggregated fullerenes, 

a number of well-separated charge-transfer states exist that are almost isoenergetic to bright excitonic 

states. By directly coupling to these acceptor states, intermediate tightly bound interfacial charge-

transfer states do not emerge. Yet, the existence of the acceptor states critically depends on fullerene 

crystallinity. The transfer mechanism explains furthermore the ultrafast timescale of exciton 

dissociation. In contrast to other investigations, Chen, Marks, Ratner and coworkers606  concluded that 

exciton delocalization in the donor phase is not significant.606 The profound influence of fullerene 

crystallinity was also stressed in a recent experimental investigation of Hsu et al. They systematically 

varied the fullerene (PC71BM) concentration in P3HT-fullerene blends and observed the highest charge 

generation yields for intermediate fullerene concentrations. This led them to the conclusion that while 

exciton diffusion becomes rate-limiting at high fullerene concentrations (small donor-acceptor 

interface), fullerene crystallinity is compromised by too large donor concentrations. In accordance with 

Chen, Marks, Ratner and coworkers,606 reducing fullerene crystallinity decreases charge delocalization, 

the charge-transfer state energies, and the charge separation yield.607 

Charge Separation Favored by the Intermolecular Orientation 

Rand and coworkers analyzed the influence of the molecular orientation on OSC performances in a 

joint experimental and computational investigation. They highlighted especially the role of the large 

charge-transfer coupling if phthalocyanine donors are orientated face-on on top of the fullerene layer. 

Following their reasoning, the larger charge-transfer couplings are responsible for the higher charge 

dissociation efficiencies encountered for the face-on morphology.608 In addition to the orientation, 

Fréchet and coworkers609 as well as D’Avino610 and coworkers discussed the influence of the initial 
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electron-hole separation on the final charge generation (analogously to Onsager’s theory). By 

introducing steric hindrance via bulky substituents at the donor or with a column mismatch in liquid 

crystals, respectively, initial electron-hole separations are larger. Geminate electron-hole pairs are less 

tightly bound and dissociate more easily. D’Avino et al. furthermore pointed out that a column 

mismatch is a priori unfavorable because couplings decrease, in line with Rand et al.608 Nevertheless, 

the decrease in couplings is apparently overcompensated by the opportunity for isoenergetic charge 

separation due to larger initial electron-hole separations. Experiments in support of this conclusion 

were conducted for example by Holmes and coworker. By inserting an insulating layer at the 

organic::organic interface, they expanded the size of the charge-transfer state and observed via 

electroluminescence measurements a reduction of its binding energy.440 

It follows from this literature perspective that calculations have further elucidated the microscopic 

charge generation mechanisms567 of many of the “static” and “dynamic” effects of Deibel et al.435 Yet, 

to finally extract the macroscopic device quantities from molecular calculations on charge separation, 

extensive KMC simulations on large model systems would be necessary, similar to the pure 

exciton/charge transport. A short outlook is given in the next subsection. 

Outlook: First-Principle Simulations of Devices? 

The holy grail of calculations on OSCs is certainly to obtain macroscopic device properties (J-V 

characteristics, quantum efficiencies, etc.) from KMC simulations using only ab initio calculated 

parameters. As outlined by Groves and Greenham in a review on OSC KMC simulations,611 such 

calculations involve the microscopic simulation of the motions of excitons and charge carriers, the 

generation and recombination of charge-transfer states, and the interaction between pairs of diffusing 

charges as well as their recombination. Moreover, because of the difficulty of experimentally obtaining 

atomistically resolved interface morphologies, the in silico generation of suitable interface structures 

is an additional prerequisite.611  

However, such KMC simulations based on ab initio input parameters are still limited to rather small 

and simple systems due to the large number of needed coupling parameters and site energies.611 

Therefore, only a few investigations using KMC simulations exist that describe the charge separation 

process. The exciton diffusion and dissociation process is usually not included, i.e, the simulations often 

start with a geminate electron-hole pair at the donor::acceptor interface that dissociates under the 

combined influence of the Coulomb binding energy and an electric field. For instance, Linares and Volpi 

et al. analyzed in a procedure based on Marcus hopping rates with ab initio parameters and artificially 

generated interface structures the field dependence of charge separation in different morphologies of 

the hypothetical anthracene::fullerene system.612 
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In contrast, most KMC simulations on OSCs introduce a number of simplifications. Two- or three-

dimensional Cartesian grids are employed to model the cell. Such grids can be generated in silico. 

Hopping sites are often reduced to orbital energies that are sometimes obtained from experimental 

parameters. Time-independent couplings are usually used, which are commonly assumed to be 

isotropic. Values are obtained by fitting to experimental data. Also the disorder is obtained from 

experimental measurements, and the correlation of site-energy disorder613 is often neglected. 

Although Marcus-type rates are sometimes used, the simpler418 Miller-Abrahams and Förster transfer 

rates are frequently employed as well.611 To cite only two examples for such investigations (because 

they further illustrate above-discussed effects), Walker and coworkers analyzed the influence of phase 

segregation on the IQE in the PFB/F8BT system, a system for which Westenhoff and Beljonne614 and 

coworkers carefully investigated the energies of interfacial charge-transfer states. They concluded, in 

line with a number of above mentioned investigations, that the IQE has a maximum at intermediate 

phase separations (of about 20 nm).615 In a similar procedure, albeit with Marcus rates, Marsh et al. 

used such simulations to investigate the influence of the morphology on the charge generation yield. 

Their results similarly underline the importance of phase segregation for high charge carrier mobilities 

and minimal bimolecular recombination.616 

Evidently, as also pointed out by Groves and Greenham, these large and somewhat empirical KMC 

simulations are indeed especially suitable to study implications of such mesoscale morphological 

changes, and also of the dynamics of non-geminate recombination, of the confinement of charge 

carriers in strongly intermixed heterojunctions, and of space charge effect (included by taking state 

filling effects in the DOS617) on the device efficiency.611  Nevertheless, it should be kept in mind that 

they provide no atomistic molecular-specific or mechanistic information. Therefore, simulating devices 

without empirical parameters remains a yet unreached landmark of modern material science. 
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5 Results and Discussion 
5.1 The selection of the molecules  
Since the photovoltaic effect was observed in anthracene single-layer solar cells,618 the spectrum of 

molecules used in organic photovoltaics (OPVs) has enormously broadened.29,619 Traditionally used 

acenes and phthalocyanine pigments like copper or zinc phthalocyanine still play an important role in 

the field,620,621,622 but other compound classes, e.g., squaraine dye molecules623 and, inspired by the 

high performances of polymer organic solar cells (OSCs),462 star-shaped or three-dimensional 

oligomers,624 have been successfully employed in OPVs as well. Fullerenes and functionalized 

derivatives625,626 are the most common acceptors since Sariciftci’s discovery of rapid luminescence 

quenching in organic polymers by fullerene C60,627 and they are combined in OPVs with either 

molecular or polymer donors. Nevertheless, known deficiencies of fullerene acceptors like low open-

circuit voltages628 have recently brought about the development of non-fullerene acceptors.629,630,631,632  

In view of this diversity of donor and acceptor molecules with OPV applications, any selection of 

molecules used in subsequent computational investigations will necessarily be an arbitrary one. The 

selection of molecules for this work (Figure 5) comprises a number of donor molecules and only one 

acceptor.  

The predominance of fullerene acceptors631 justifies the choice to always use fullerene C60 as the 

acceptor. Solubility distinguishes fullerene C60 from its most widely used derivative,633 PC61BM634. This 

is decisive for the fabrication process (evaporation vs. spin-coating)418 and was shown to have 

morphological implications.635 Due to the otherwise very similar optoelectronic properties,636 

conclusions from a computational chemistry study on fullerene C60 can, however, be readily 

transferred to PCBM. Similar considerations apply to the transferability of results for C60 to its less 

symmetric higher homologue, fullerene C70, which differs mostly by its light absorption in the visible 

region from C60,637 and to the PC71BM derivative of C70, which usually leads to more disordered thin 

films apart from otherwise unchanged properties compared to C70 (similar to the C60-PC61BM 

system).565 Using only one acceptor combined with various donors has the additional advantage that 

observed differences in the computational investigations directly relate to the donor component, 

making the establishment of structure-property relationships more straightforward.  
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Figure 5: Employed donor molecules (above) and fullerene C60 as the only acceptor.  
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Donor molecules comprised in this work include compounds from various classes ranging from acenes 

and thiophenes over donor-acceptor-donor dyes like a squaraine and a diketopyrrolopyrrole and 

different three-dimensional triarylamines to highly dipolar merocyanines. References for all molecules 

are given in Table 1. See also 638 for a survey. The structural diversity of the selected donor molecules 

suggests regrouping them into classes of similar compounds to organize the following discussion and 

to systematize conclusions. This could help to reveal and establish structure-property relationships. In 

this context, it should be kept in mind that one of the key focuses of this work is to gain insight into 

fundamental relationships between molecular structures and resulting thin-film and aggregate 

properties, i.e., the relationship between atomistic and nanoscale properties. From numerous 

investigations on transport processes in organic semiconductors, Bässler et al. identified molecular 

polarity as one of the key molecular parameters significantly influencing thin-film properties.25,546,548 

The more polar the individual substances, the more vary polarization energies and resulting site 

energies due to position-dependent electrostatic interactions.425 Site energy variations profoundly 

influence transport processes and nanoscale mobilities and diffusion lengths.639 Würthner et al. 

outlined the important implications of the polarity of molecular organic semiconductors as well,27 also 

in a historic sense because originally the findings of Bässler et al. fueled especially the development of 

apolar semiconductors.640 More polar substances attracted more research attention only later-on, 

triggered by the success of compounds like merocyanines641,27 or intramolecular charge-transfer (i.e., 

low bandgap) polymers482,483. Given this special significance of polarity in the field of organic 

optoelectronics, the donor molecules are organized according to their polarity.  

In contrast to this polarity regrouping motivated by semiconductor physics, computational chemistry 

understands optoelectronic properties of molecular organic semiconductors rather in terms of the 

present chromophores, i.e., carbonyl chromophores or coumarin chromophores,642,643,644 than as a 

result of more or less polar structures. From the point of view of a computational chemist, the 

discussion of the optoelectronic properties of different donor molecules would be best organized as a 

function of the composing chromophores, emphasizing their relationship (i.e., between electronic 

properties and individual chromophores). However, molecular polarity is intimately linked to and 

inseparable from the presence (or absence) of certain chromophores: apolar molecules with no overall 

dipole moment and no local dipole moments like alternating acenes or non-alternating hydrocarbons 

(diindenoperylene (DIP), 3,6-dimethylbenzo[1,2-b:4,5-b′]dithiophene (BDT) donor moiety) contain 

usually only aromatic hydrocarbon or thiophene chromophores. As soon as electron-withdrawing 

carbonyl chromophores or donating electron-rich aromatic rings are introduced, local dipole moments 

arise. The group of intermediate polarity includes such molecules, which either have small overall 

dipole moments (the triphenylamine-based compounds) or large local dipole moments that mutually 

cancel due to symmetry (donor-acceptor-donor dyes). The merocyanines with a large overall dipole 
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moment, an originally unusual property in the field,27 constitute the polar molecules. An equivalent 

classification of these merocyanine dyes within the chromophore framework is equally possible: the 

combination of several electron-withdrawing functional groups yields new accepting chromophore 

structures, which are strongly electron-deficient only via the synergistic combined effects of all 

composing functional groups.645 Hence the polarity classification originated in the physics of organic 

semiconductors and the chromophore approach from computational chemistry are more or less 

equivalent for the given molecules and can be used interchangeably. In the following, however, the 

regrouping of the molecules (Figure 5) will always be referred to as the “polarity classification”.  

Table 1: Employed molecules and references for structure information. Please note that for some molecules, 
very short abbreviations had to be used in some of the figures in the following. 

Molecule Reference 

anthracene 646 

diindenoperylene 

(DIP) 

647 

3,6-dimethylbenzo[1,2-b:4,5-b′]dithiophene  
(dithiophene) 

648 

rubrene 649 

tri(biphenyl-4-yl)amine  

(“triamine”, TBA) 

650 

9-(N,N-dianisylamino)anthracene  

(“triamine-methoxy”, “trimet”, TMA) 

651 

(E)-4-(diphenylamino)cinnamaldehyde 

(“triamine-aldehyde”, “trial”, TAA) 

652 

2,4-bis[4-(N,N-dibutylamino)phenyl]squaraine 

(“squaraine”) 

653 

3,6-bis(5-(benzothiophene-2-yl)thiophen-2-yl)-2,5-bis(2-

ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione 

(“diketopyrrolopyrrole”, DPP) 

654 

HB194 655 

HB238 656 

MD353 655 

 

In the following, the molecules (Figure 5) are presented in more detail. It should be emphasized that 

this outline parallels the discussion in 638. Throughout the following discussion, the interfaces between 
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the organic donor and acceptor phases in OSCs will be designated as donor::acceptor interfaces, with 

the donor and acceptor component being further specified. 

Although acenes are today rather used in OFETs (organic field-effect transistors) and OLEDs (organic 

light-emitting diodes)621, anthracene is included among the model systems because, as mentioned 

above, it was among the first molecules where photoconductivity was observed.618,657 Moreover, the 

anthracene chromophore is still widely used in organic polymers484 and – in functionalized versions – 

as an organic molecular semiconductor621,658,619,620,659 and also in dye-sensitized solar cells.660 As a 

second representative of the acene group, rubrene, a substituted tetracene with very high observed 

hole mobilities661 and bright yellow fluorescence exploited in OLEDS662, is employed. The 

rubrene::fullerene (PCBM) heterostructure was also experimentally investigated.663,511,664 While high 

charge carrier mobilities were observed for crystalline rubrene, which were also comprehensively 

investigated in calculations,464,665,666 rubrene does not readily form crystalline films after evaporation, 

but leads to rather disordered, polymorphic thin films667,668. The DIP::fullerene heterojunction has been 

experimentally thoroughly investigated as well.669,670 In contrast to rubrene, DIP thin films are usually 

crystalline with very favorable transport properties.671 However, due to the perpendicular orientation 

of the transition dipole moments in deposited DIP films with respect to the thin-film surface,672 the 

amount of light absorption is significantly reduced.671 The introduction of substituents has been shown 

to shift the absorption maximum and to induce the formation of amorphous thin films,673 which 

increases light absorption. DIP is comprised in the model set to analyze the energetics and kinetics at 

DIP::fullerene interfaces with different orientations of the DIP molecules with respect to the fullerenes.  

Oligo- and polythiophenes with P3HT (poly(3-hexylthiophen-2,5-diyl)) as a particularly prominent 

representative constitute one of the most common classes of organic molecular and polymeric 

semiconductors.674,619,675,676,677 A number of computational studies has already addressed their 

structures, excited-state properties, and charge generation mechanisms in photovoltaic devices with 

fullerene acceptors.424,678,584,583 In contrast, this thesis comprises a small bridged dithiophene that is a 

very common donating moiety (BDT) in donor-acceptor polymers.679,680 The small molecular size 

ensures short computation times. Furthermore, the HOMOs and LUMOs in donor-acceptor polymers 

are generally considered to be largely localized on the donating and accepting moieties, respectively.484 

Therefore, only a small error is introduced when hole transport levels are computed using only the 

donor structure instead of the complete donor-acceptor system. Naturally, absorption energies shift 

considerably when only the donating part of donor-acceptor polymers is taken into account. However, 

the resulting poor overlap of the absorption of the separate donor with the solar spectrum is not 

relevant for a computational chemistry case study while it renders an experimental investigation 
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impossible. The dithiophene is comprised in the set of molecules (Figure 5) as an example for a strong 

electron donor with very high excitation energies.  

In contrast to two-dimensional acenes, oligothiophenes, and related aromatics that readily crystallize, 

three-dimensional triphenylamines are soluble681 and form amorphous films with isotropic and 

homogeneous properties due to the absence of grain boundaries.682,683 Triphenylamines are often used 

as hole-conducting materials (for example as amorphous resists and in conductive coatings) and in 

electroluminescent devices,683,681 but they and their derivatives have only recently come to use in OPV 

as well. In fact, it was found that a finetuning of their properties is possible by means of small structural 

modifications.683,684 The introduction of electron-withdrawing groups in particular shifts the absorption 

to longer wavelengths and ensures high oxidation potentials necessary for high OPV open-circuit 

voltages while simultaneously preserving the good hole-transport properties of triphenylamines.685 

Molecular donor-acceptor semiconductors with a triphenylamine donor were shown to be promising 

candidates for highly efficient OSCs, which results from their low band gap and concomitantly high 

absorption.686 The inclusion of a triphenylamine650 without electron-withdrawing substituents and of 

a triphenylamine with a cinnamaldehyde652 accepting group in the set (Figure 5) permits to analyze the 

influence of electron-accepting groups on the optoelectronic properties. A third spectroscopically 

characterized triphenylamine-based dye is included, disposing a donor-acceptor structure with a 

dianisylamine donor and an anthracene acceptor. Upon electronic excitation of its lowest excited state, 

an intramolecular charge-transfer state, it undergoes a torsional movement resulting in intramolecular 

charge separation.651 Its properties (absorption wave length, processing conditions, etc.) prohibited 

experimental photovoltaic testing.651 However, in view of its interesting excited-state properties, it is 

ideally suited for a computational chemistry case study on its hypothetical optoelectronic behavior in 

OPVs. 

Turning to the dye molecules, a rather small symmetric squaraine was included to keep the calculations 

computationally affordable (Figure 5).653 In general, squaraine dyes have extremely high extinction 

coefficients in the visible and NIR (near infrared) region due to the high electron density in their central 

squaraic acid ring system.623 Similar to other dyes, squaraine thin-film properties are largely 

determined by aggregation caused by strong intermolecular interactions. The aggregation properties 

depend especially on the squaraine substituents and the fabrication conditions.687,688,623,689 

Experimental investigations on the chosen symmetric squaraine revealed that the formation of J-

aggregates favorably influences the photovoltaic performance of the squaraine’s blends with fullerene 

acceptors.623,690 J-aggregation is known to result in bathochromically shifted absorption spectra,418 

which improves the overlap of the squaraine absorption with the solar spectrum and thus increases 

the short-circuit current. Furthermore, larger hole mobilities are observed in squaraine J-aggregates 
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compared with other supramolecular arrangements, owing to larger couplings between the tightly 

packed adjacent squaraine molecules.691 It is of interest to computationally investigate the 

experimentally demonstrated close relationship between the supramolecular structure of this 

symmetric squaraine and its optoelectronic performance and to analyze predicted energetics and 

kinetics of the squaraine::fullerene interface in terms of the aggregation properties.  

Merocyanines are another important class of organic dyes with a pronounced tendency to form J- or 

H-aggregates.29,688 Their high tinctorial strengths and favorable charge-transport properties692,693 in 

combination with their structural diversity, which allows for a finetuning of the HOMO and LUMO 

levels and the absorption maxima,694 form the basis for the experimentally observed high 

performances in all optoelectronic devices692,641 and in OSCs in particular.619 Due to this structural 

diversity and the overall unusual electronic structures of the compounds, three different dyes, 

HB238656, HB194656, and MD353655, all with different donating and accepting moieties as well as with 

different experimental cell performances, are included (Figure 5).  

Finally, a diketopyrrolopyrrole (DPP) is comprised (Figure 5),654 representing a compound class that has 

been used for high-performant dyes and inks for several decades, but has come to use in OSCs only 

recently.695 Due to its profitable optoelectronic properties, the diketopyrrolopyrrole entity is 

frequently employed in low-band-gap polymers as the electron-deficient component.696,483 However, 

the number of advantageous properties equally found for molecular diketopyrrolopyrroles, namely 

their strongly absorbing core moiety, their high mechanical and photochemical stability697 and the 

possibility to modify core substituents to tailor properties698 and thin-film morphologies,699,700 led to a 

variety of performant OPV devices based on molecular diketopyrrolopyrrole donors as well. From a 

theoretical point of view, the optoelectronic properties of diketopyrrolopyrroles are most interesting 

because they are significantly influenced by the bright intramolecular charge-transfer excitations 

found in all diketopyrrolopyrroles. These low-lying excitations result from the DPP donor-acceptor-

donor structure695 that simultaneously gives rise to distinct structural phenomena, for instance an 

intramolecular twisting in the electronic ground state and the formation of specific packing motifs in 

thin films and crystals.506 

As stated in the Introduction (see above), a central objective of this work is to understand how 

molecular properties relate to aggregate morphology and thin-film features and to gain insight into 

nanoscale implications of variations in the molecular structures. This requires a multiscale description 

taking into account the molecular, intermolecular, and aggregate level.  

To this end, the first step to begin with is an understanding of the electronic structures of the individual 

molecules. This occurs in a two-fold objective. (1) The electronic structures of the molecular 
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semiconductors are far from being trivial. Citing only two popular electronic-structure problems widely 

discussed for the compounds comprised in the model set (Figure 5), a correct and computationally 

affordable description of the closely-lying La/Lb excitations in anthracene continues to be a yet 

unreached landmark for excited-state methods.701,172 Similarly, the delicate equilibrium between steric 

strain and electronic delocalization responsible for the twisting of the donating substituents around 

the central diketopyrrolopyrrole moiety in diketopyrrolopyrrole dyes remains to be understood and 

properly described.506 Hence a first objective of this thesis is to understand the molecules’ electronic 

structures. (2) Effectuating a multiscale description necessitates computational methods at hand that 

are applicable to large systems. This requires prior benchmark calculations. Thus the second objective 

is to identify methods that are both efficient and accurate to utilize them later-on in larger-scale 

calculations. The description of the individual molecules will be the focus of the next chapter. 

On a molecular level, optoelectronic processes in OPV include different types of electronic states, i.e., 

ionized states, neutrally excited or charge-transfer states. The natural starting point for a discussion of 

the properties of the individual molecules is their respective ground-state description, which is 

comprehensively discussed in the next section. It should be noted that all benchmark calculations 

presented in the following were carried out only for the molecular donors in Figure 5. 
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5.2 Benchmarking ground-state geometries 
The following data and a similar discussion can also be found in 702. 

5.2.1 Outline of the computational approach 
In this section, ground-state geometries of all molecules comprised in the model set are benchmarked. 

The reference geometries were optimized at the SCS70-MP2703,704/cc-pVTZ705 level of theory. Spin-

component scaling was shown to significantly improve MP2 geometries, especially for difficult cases 

where regular MP2 fails.71 The SCS-MP2 method, as a combination of the improvements of spin-

component scaling43 and the usually robust performance of MP2 with triple-zeta basis sets for 

geometries of organic molecules39, should provide sufficiently reliable ground-state reference 

geometries for all molecules at a reasonable computational cost. For well-converged orbitals, the 

convergence of the SCF cycles and the density convergence were set to 1 ∙ 10−7 𝑎. 𝑢. During the 

optimizations, an energy threshold of 1 ∙ 10−6 𝑎. 𝑢. and a gradient threshold of 1 ∙ 10−3 𝑎. 𝑢. were 

used. 

Geometries of DFT methods, ab initio and semiempiric methods were benchmarked. The cc-pVDZ basis 

sets705 were employed. For a more thorough discussion of basis set effects, see the section 

“Benchmarking vertical excitation energies of molecular semiconductors”. All methods comprised in 

the benchmark are summarized in Table 2. 

Table 2: Wave-function based methods, DFT functionals and semiempiric methods employed to benchmark 
ground-state geometries of the p-type semiconductors.  

method References 

wave-function based methods 

MP2 703,704 

SCS-MP2 70,703,704 

CC2 256 

SCS-CC2 256,180 

HF 706 

density functional based approaches 

BLYP-D3 707,708,709,140 

M06L(-D3) 710,140 

APFD 711 

B3LYP-D3 707,712,713,708,709,140 

SOGGA11X 714 

ωB97X-D 143 
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CAM-B3LYP-D3 133,707,712,713,708,709,140 

B2PLYPD3 137,715,716 

mPW2PLYPD 137 

semiempiric methods 

orthogonalization model 1 (OM1) 193,197 

orthogonalization model 2 (OM2) with dispersion correction (OM2-D3) 197,195 

Modified Neglect of Diatomic Overlap (MDNO/H) 183 

Austin Model 1 (AM1) 189 

Recife Model 1 (RM1) 207 

Parameterization Model 3 (PM3) 717,190 

Parameterization Model 6 (PM6-D3/DH2) 205 

Parameterization Model 7 (PM7) 206 

 

In terms of wave-function based methods, MP2703,704 and CC2256,246 along with their spin-component 

scaled variants70,180 were used.  Geometry differences to the reference geometry arise also from the 

different employed basis sets (cc-pVDZ vs. cc-pVTZ; for SCS-MP2 geometries, geometry differences are 

exclusively due to basis set effects). HF is included as well (see Table 2).  

To assess the reliability of DFT-based approaches, diverse functionals were selected. The set of 

functionals encompasses the long-range corrected functionals CAM-B3LYP133,707,712,713,708,709 and 

ωB97X-D143 and the hybrid functionals B3LYP707,712,713,708,709, SOGGA11X714 and APFD711. As pure 

functionals the local functional BLYP707,708,709 and the meta-GGA Minnesota functional M06-L710 were 

employed. As examples for the upper limit of the Jacob’s ladder126, two different double hybrid 

functionals (B2PLYPD3137,715,716 and mPW2PLYPD3137) were used. The Grimme dispersion correction 

D3140  was added to all functionals without any intrinsic dispersion correction. In all DFT calculations, 

the ultrafine (99,950) grid was used.  

To investigate the accuracy of semiempirical methods, the benchmark encloses the OMx methods with 

and without dispersion correction. 197 Additionally, the performances of AM1, its reparametrized 

variant RM1207, MNDO/H183, an MDNO parameterization with a special focus on hydrogen bonding, 

and of PM6205 and PM7206 are analyzed. In the semiempirical calculations, the SCF convergence was 

set to 1 ∙ 10−6 𝑒𝑉 and the optimization threshold to 1𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, the default values. 

The crystal structure conformations (see Table 1) of the molecules were used as starting structures for 

the geometry optimizations. The Turbomole program package179 was used for the computations with 



161 
 

all correlated wave-function based methods. All DFT and the HF calculations were conducted with the 

Gaussian program package.718 The Mopac program package719 was employed for the PM6 and PM7 

optimizations while all other semiempirical calculations were performed with the MNDO program 

package183. 

A multitude of criteria exists to assess the quality of quantum-chemically optimized geometries, e.g., 

equilibrium bond lengths and frequencies,70 isomerization and atomization energies,720 or energy 

differences to a reference geometry calculated with a reference method332,721,722. In the following, the 

quality of optimized geometries is analyzed in a two-fold manner. (1) RMSD (root mean square 

deviation) values with respect to the reference geometry are calculated (see for example 723 for a 

literature example). In the RMSD calculations only the atoms within the rigid backbones of the 

semiconducting molecules are included. Flexible side chains are not included. Small conformational 

changes in the alkyl side chains would otherwise dominate the RMSD calculations, resulting in an 

imbalanced description of the performance of the methods. (2) MAE (mean absolute error) values are 

calculated for the deviations of distinct geometric parameters such as angles or bond length 

alternations (BLAs) from the benchmark geometry. As also utilized by Mennucci et al.724 who used BLA 

values to evaluate excited-state geometries of conjugated molecules in solution, such geometric 

parameters summarize very effectively the electronic structure and character obtained with a certain 

method. 

5.2.2 Benchmark Results for Ground-State Geometries 
The performance of the different methods for geometries is first discussed by means of RMSD values 

of the geometries. The corresponding results for organic molecular semiconductors of high, 

intermediate, and low polarity as well as the average over all compounds are given in Figure 6. It is 

evident from these data that all methods perform rather well for apolar dyes, while significant 

deviations exist for the molecules of high and intermediate polarity. These deviations are especially 

pronounced for the semiempirical methods (MDNO/H) as well as for HF and BLYP.  

In a first step, polar dyes are considered. Due to their generally large errors, semiempirical results are 

not specifically discussed for the individual molecular groups, but only later-on for their 

average.Compared to the SCS-MP2/cc-pVTZ reference geometry, the geometries of polar dyes are best 

described with the M06-L local functional (RMSD=0.024 Å) and the range-separated hybrid ωB97X-D 

(RMSD=0.025 Å). As already pointed out by Truhlar et al.,725 M06-L-D3 overshoots for dispersion 

interactions so that M06-L performs better without the dispersion correction (RMSD(M06-L-D3)=0.035 

Å). These deviations correspond approximately to half the deviation of SCS-MP2 (RMSD=0.046 Å), 

which results only from the basis set error. CC2 and SCS-CC2 show comparable deviations (0.053 Å and 

0.049 Å, respectively). 
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Figure 6: RMSD values for the molecules optimized with the different methods calculated with respect to the 
SCS-MP2/cc-pVTZ reference geometry. Adapted with permission from 702. © 2015 American Chemical Society. 

Using the smaller cc-pVDZ basis sets, MP2 performs best among the wave function-based methods 

(RMSD=0.035 Å). This holds for all compound classes and indicates an error compensation between 

the basis set error and the somewhat inaccurate ratio between the local same-spin and opposite-spin 

correlation in MP2, which is corrected in the SCS treatment. It becomes evident that compared with 

the wave-function based methods, density functionals apart from BLYP-D3 and HF perform better, 
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with smaller RMSD values ranging from 0.024 Å (M06-L) to 0.044 (B3LYP-D3). These smaller RMSD 

values and the underlying general performance differences between DFT and ab initio methods can be 

explained with basis set effects. The basis set dependence of the RMSD values of DFT optimized 

structures is shown in Figure 7. As no polarity/functional group dependence exists, the values were 

averaged for all molecules. 

 

Figure 7: Change in the RMSD values upon enlarging the basis set, ∆𝑅𝑀𝑆𝐷 = 𝑅𝑀𝑆𝐷(𝑐𝑐 − 𝑝𝑉𝐷𝑍) −
𝑅𝑀𝑆𝐷(𝑐𝑐 − 𝑝𝑉𝑇𝑍). Negative signs indicate that the basis set increase is detrimental. The RMSD values are 
averaged over all molecules. Adapted with permission from 702. © 2015 American Chemical Society. 

While the RMSD values for the SCS-MP2 geometries increase upon decreasing the basis set from cc-

pVTZ to cc-pVDZ (average RMSD of SCS-MP2/cc-pVDZ: 0.044 Å, see Figure 6), the RMSD values for DFT 

geometries decrease by ~ 0.010 Å upon decreasing the size of the basis sets, i.e., DFT geometries 

optimized with smaller basis sets are more similar to the reference geometries. This means that due 

to an error compensation, most density functionals in Figure 7 yield more reliable geometries with 

smaller basis sets. Such a behavior has already been analyzed in more detail for the B3LYP/6-31G(+)-

level of theory by Grimme et al.726 Please note that in the case of BLYP-D3, a larger basis set leads to 

an improved (smaller) RMSD value. In general, however, these results suggest that for large systems 

where high-level ab initio methods with large basis sets are computationally too demanding, DFT 

combined with smaller basis sets provides a better description of molecular geometries than wave-

function based methods employed with the same small basis sets. 

Compared with the polar dyes, the RMSD values are generally higher for the molecules of intermediate 

polarity. In view of the well-known challenging electronic structure of cyanine dyes,727 which is highly 

dependent on correlation effects,728 this is a priori surprising. To some extent, the larger errors for the 

molecules of intermediate polarity might result from their larger size as well as from their enhanced 
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torsional flexibility. The structures of the three-dimensional triphenylamine-based compounds arise 

from a delicate balance between conjugation and steric strain, often leading to shallow torsional 

potentials as pointed out by Gierschner et al.21 Indeed, the huge torsional flexibility of these molecules 

also frequently led to convergence problems in the geometry optimizations. In general, for the dyes of 

intermediate polarity, APFD, a modern functional with an intrinsic dispersion correction, performs best 

(RMSD=0.032 Å), maybe owing to the fact that this functional has been particularly optimized for weak 

interactions such as hydrogen bonding and van-der-Waals interactions in noble-gas clusters.711 Hence 

this local DFT functional incorporates both elements correctly describing conjugation – its DFT 

correlation and exchange part – and steric strain and dispersion between polarizable groups – the 

dispersion correction optimal for noble-gas atoms. Apart from APFD, also ωB97X-D yields reliable 

geometries (RMSD=0.042 Å). The good performance of ωB97X-D is equally in line with the importance 

of a correct description of weak interactions between separate molecular moieties for accurate 

geometries of the dyes of intermediate polarity: it has recently been shown by Grimme et al. that 

ωB97X-D is very reliable for the calculation of host-guest interactions.139 Moreover, for high as well as 

intermediate polarities, the double hybrids yield very accurate results. Grimme et al.138 highlighted 

that double hybrids are constructed in a way to include all important regimes of electron correlation, 

the long-range dispersion, the medium-range correlation, and the short-range (repulsive) 

instantaneous electron-electron correlation. In view of the outlined particular importance of different 

correlation regimes (dispersion vs. conjugation) for the geometries of dyes of polar729 and intermediate 

polarity, the good performance of the double hybrids seems to be consistent.  

Geometries of apolar molecules optimized with different methods differ less than those of the more 

polar molecules, and corresponding RMSD values are small. This originates from the structural rigidity 

of the apolar scaffolds and from the simple electronic ground-state structures of these molecules. 

Considering the mean RMSD values averaged over all molecules (Figure 5, grey bars, Figure 6), ωB97X-

D, APFD, and the double hybrid functionals perform best. Please note that the APFD optimized 

geometries of polar dyes are not as reliable as those of the two less polar substance classes. The good 

performance of ωB97X-D is in line with similar findings in the literature about reliable ωB97X-D 

geometries of various systems with complicated electronic structures like transition metal 

complexes730 or transition states731. Geometries optimized with semiempirical methods are 

significantly less accurate with RMSD values of approximately 0.150 Å. While these semiempirical 

methods perform satisfactorily for apolar dyes, RMSD errors increase for molecules of intermediate 

and high polarity that possess a more complex electronic structure. 

Small RMSD values are one important criterion for the accuracy of a given geometry. Nevertheless, 

there are certain geometric parameters that reflect the electronic ground-state structure predicted by 
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a certain method in a very compact manner. This is most easily explained for the bond length 

alternation (BLA) in merocyanines being a very prominent structural parameter for conjugated systems 

in general.21,732,127 Depending on the amount of (de)localization in the systems, the bond lengths 

indicated in Figure 8 for the merocyanines alternate to a variable extent, which is called the bond 

length alternation. It can be expressed as a single BLA parameter645: 

𝐵𝐿𝐴 =
0.5 ∙ (𝑏𝑜𝑛𝑑 3 + 𝑏𝑜𝑛𝑑 1) − 𝑏𝑜𝑛𝑑 2

𝑏𝑜𝑛𝑑 2
∙ 100 

(441) 

 

The electronic structure of merocyanines in a VB approach is described in terms of the relative 

contributions of a neutral and a zwitterionic resonance structure.645 If both contributions are identical, 

all bond lengths are ideally equal like in perfect smalllll cyanines,728 and the BLA is 0. If the neutral 

resonance structure prevails in the electronic ground state, bond 2 as indicated in Figure 8 is elongated 

while bonds 1 and 3 acquire more double-bond character. The BLA becomes negative. Thus the BLA 

directly mirrors the nature of the electronic ground state. In comparison with RMSD values, this 

provides complementary information: if any method overestimated all bond lengths by a certain 

percentage, RMSD values of its optimized geometries would be large although the method describes 

the electronic character correctly – all bond lengths are equally overestimated. An analysis in terms of 

the BLA, on the other hand, would reveal this. The inverse is also true. Geometries with very accurate 

average bond lengths yield small RMSD values. The BLA and, correspondingly, the electronic character 

might still be flawed, which would be reflected in a too large/too small BLA value. 

 

Figure 8: Designation of the carbon-carbon bonds of the bridge in merocyanines used to calculate the BLA. 

For the merocyanines, MAE (mean average error) values of the BLAs obtained with all methods were 

calculated with regard to the BLA of the SCS-MP2/cc-pVTZ reference geometry. The favorable 

accuracy/cost ratio of the SCS-MP2 method for BLA values was pointed out by Jacquemin et al.733, and 

it was also employed by Sancho-García et al. for a benchmark on BLA values in oligoacetylenes with 

increasing chain length.734 Jacquemin et al. investigated systematic basis set effects on the BLA, albeit 

                                                             
lll Please note that this is only valid for small cyanines since the Peierls distortion results in bond localization for 
larger cyanines above a certain number of polymethine moieties, also called the cyanine limit.1015 
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at the MP2 level, and found the cc-pVTZ basis sets to provide converged results.735 All these findings 

support the reliability of the herein employed SCS-MP2/cc-pVTZ reference BLAs. 

 

Figure 9: MAE values for BLA of merocyanines (left panel) and for different structural parameters of molecules 
of intermediate polarity (right panel). All MAE values were calculated from the optimized ground-state 
geometries using programs implemented in C++. Adapted with permission from 702. © 2015 American Chemical 
Society. 

All MAE values for the BLAs in merocyanines are displayed in Figure 9. The smallest MAE of only 26% 

is found for SCS-MP2 using the cc-pVDZ basis sets. This corresponds to the findings of Jacquemin et al. 

that in MP2 computations the 6-31G(d) basis provides qualitatively similar results to larger basis 

sets.735 In contrast to the RMSD values, applying spin-component scaling or using CC2 instead of MP2 

has pronounced effects on computed BLAs. Among the DFT functionals, CAM-B3LYP delivers the best 

BLAs with an average error of 29%. Also ωB97X-D performs rather well (MAE: 35%). The beneficial 

effects of a long-range correction for computed BLA values were equally analyzed by Jacquemin et al. 

who studied the efficiency of long-range corrected functionals for large organic compounds.736 The 

accuracy improvement due to the long-range correction can be explained by means of the many-

electron self-interaction error (MSIE). Brédas and Körzdörfer et al. outlined that the elimination of the 

MSIE via IP-tuning of long-range corrected functionals results in improved, yet not vanished BLA 

errors.737 In line with this, the MAE errors in Figure 9 are also highly susceptible to the amount of HF 
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exchange included in the functionals. Both pure DFT functionals, i.e., BLYP-D3 (MAE: 137%) and M06-

L (MAE: 147%), and HF (MAE: 128%) yield poor results. Hybrid functionals, especially with a significant 

amount of HF exchange like SOGGA11X, perform better (MAE: 65%). This suggests that adjusting the 

amount of HF exchange to minimize the MSIE ameliorates BLA results. In a similar way, a benchmark 

by Jacquemin et al. using different series of conjugated systems showed that hybrid functionals with 

equal amounts of HF exchange deliver very similar BLA values.732 The double hybrids B2PLYP-D3 and 

mPW2PLYPD yield acceptable errors of 97% and 86%, respectively. However, this contrasts with results 

of Wykes et al. who found very good performances of double hybrids for BLAs, yet employing the cc-

pVTZ basis sets.738 This divergence is presumably due to the larger basis set dependence of the double 

hybrids compared to regular DFT functionals138.  

Hence, while the reduced MSIE owing to the long-range correction is usually exploited to improve 

excitation energies, the CAM-B3LYP and ωB97X-D functionals originally optimized for excited states 

perform best for the BLA (Figure 9). Surprisingly, the same is true for semiempiric methods (but 

certainly not for the same reason). In terms of BLA values, the OMx approaches yield the smallest 

errors among all methods. The very accurate BLA values could be due to the asymmetric HOMO-LUMO 

splitting in OMx-based methods that was shown to particularly improve excitation energies. Moreover, 

the asymmetric splitting could possibly ensure that the OMx methods describe the relative 

contributions of the neutral and the zwitterionic configurations to the merocyanines’ ground state 

accurately because the HOMO-LUMO splitting could translate into a correct energetic separation 

between the configurations. As discussed, this results in reliable BLA values.  

All other semiempirical methods are considerably worse, but stay within the error margin spanned by 

the DFT functionals. This highlights also the above-mentioned importance of consulting MAE in 

addition to RMSD values. Furthermore, it suggests doing a similar evaluation for the dyes of 

intermediate polarity.  

For the molecules of intermediate polarity, a consistent evaluation is more difficult to achieve because 

due to the chemical diversity of these molecules, no single geometric parameter qualitatively reflecting 

their electronic character exists. In four molecules, twisting motions can be taken as parameters 

because, as mentioned above, they are indicative of the balance between steric strain and electron 

delocalization: 

 In the substituted diketopyrrolopyrrole (DPP), the furane substituents twist with respect to the 

plane of the central DPP moiety. This twist is a key feature of the resulting DPPs: 

experimentally, the torsion angle of furane-substituted DPP polymers was shown to influence 
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optoelectronic properties such as absorption and charge transport.739 At the SCS-MP2/cc-pVTZ 

level of theory, the averaged torsion angle equals 9°. 

 In molecules possessing a three-coordinate nitrogen center, electron delocalization and 

resulting electronic properties are determined by the amount of torsion of the phenyl 

substituents around the central nitrogen.21 Moreover, with regard to the relationship between 

molecular properties and aggregate features (see above), the three-dimensional molecular 

shape arising from the torsion has a significant impact on charge transport properties.740 

Please note that the emergence of dye-sensitized cells has additionally channeled structural 

investigations on triphenylamine-based dyes.741,742 Therefore, the torsional angles between 

the planar substituents and the central nitrogen plane are used as structural parameters. 

Apart from these twisting motions, the BLA of the electron-withdrawing cinnamaldehyde moiety in 

the aldehyde-substituted triphenylamine is employed. In the case of the completely planar squaraine, 

the ratio of the averaged C-C bond lengths in the central four-membered ring to the C-O bond lengths 

reflects the donating power of the substituents, the “aromatic” character of the central ring and 

thereby the zwitterionic character of the squaraine. This ratio is used for MAE evaluation of the 

optimized squaraine geometries. All structural parameters for the dyes of intermediate polarity are 

listed in Figure 10. 

 

Figure 10: Structural parameters used for the dyes of intermediate polarity. Torsional angles between planes of 
different molecular entities are designated with bent arrows. Applied scaling factors different from 1: 
tris(biphenyl)amine: 10; squaraine: 100. Adapted with permission from 702. © 2015 American Chemical Society. 

Using several structural parameters for the dyes of intermediate polarity instead of a single one – the 

BLA – for the polar dyes has the drawback that resulting percentaged MAE values have different orders 

of magnitudes. For instance, bond lengths are significantly less flexible than torsional angles. Hence 

MAE values calculated from bond length deviations are much smaller than those from torsional angles. 
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The BLA as a scaled ratio of bond lengths defined in Eq. (1) varies most. This means that the average 

MAE value for the molecules of intermediate polarity would be entirely dominated by the MAEs of the 

BLA and certain torsional angles. In order to avoid this unbalanced treatment, scaling factors are 

applied to ensure that all MAE values have equal magnitudes (Figure 10). This makes averaging of the 

MAEs for all molecules in Figure 10 possible.  

Resulting MAE values are shown in Figure 9. Wave-function based methods yield the best description 

although they are employed with smaller basis sets compared with the reference. As also found for 

the polar dyes, MP2-based methods (MAEs: MP2: 92%; SCS-MP2: 106%) are more accurate than CC2 

methods (CC2: 179%; SCS-CC2: 93%).mmm Spin-component scaling has a pronounced effect, leading 

especially to considerably improved MAE values of SCS-CC2 (MAE of SCS-CC2: 93%) compared to CC2 

(MAE of CC2: 179%). The improvement of SCS-MP2 compared to MP2 is less distinct (SCS-MP2: 106%; 

MP2: 92%). Also Hättig et al. outlined a stronger effect of SCS on CC2 than on MP2.180 The significance 

of SCS for either method is in line with the above discussed importance of different correlation 

regimes. Due to the Pauli repulsion, the average distance between electrons with parallel spin is larger 

than between electrons with opposite spin. Thus dynamic correlation is very important for the 

interaction between electrons with opposite spin, while it is less important for electrons with parallel 

spin, where static correlation becomes an issue. The static correlation between same-spin electrons is 

usually overestimated in MP2 and CC2 because the biased HF reference overshoots for the static (=left-

right) correlation and completely disregards dynamic correlation. Scaling both the same-spin and the 

opposite-spin correlation, i.e., spin-component scaling, essentially removes these deficiencies.43 

Therefore, a pronounced effect of spin-component scaling suggests a considerable importance of the 

relative contributions of dynamic (short-range) and static (long-range) correlation. 

The double hybrid functional mPW2PLYPD provides the most accurate description among all methods 

(MAE: 64%). Surprisingly, the second double hybrid functional comprised in the benchmark – 

B2PLYPD3 – performs significantly worse with an almost doubled error of 121%. Similarly, comparably 

large differences are found for the MAE values of CAM-B3LYP (180%) compared to ωB97X-D (139%), 

the more so as rather similar values were obtained in the case of the polar dyes. HF and pure 

functionals perform particularly poorly with MAE values larger than 200%. As already found for the 

polar dyes, MAE values of the OMx methods are small, even smaller than 100% for OM2. Therefore, 

                                                             
mmm It should be kept in mind that a comparison between the performances of MP2- and CC2-based methods 
could be somewhat biased because SCS-MP2/cc-pVTZ is the reference method. However, similar to the results 
of RMSD values and in contrast to BLA errors, MP2 and not SCS-MP2 performs best in terms of MAE values of 
the dyes of intermediate polarity.  
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the MAE results for dyes of intermediate polarity mirror quite well their counterparts for polar 

molecules, albeit with more pronounced differences between the methods. 

Since apolar dyes possess less complex electronic structures, MAE value analyses of apolar dyes turned 

out to provide no additional information compared to the RMSD evaluation. 

With the objective of understanding the the properties of the individual molecules, this section focused 

on molecular ground states. All molecular semiconductors included in the benchmark possess 

extended π-systems so that their electronic ground-state structures often result from the combined 

effects of conjugation, (de)localization, and steric strain. Hence the simultaneous incorporation of 

different correlation regimes, i.e., dispersion, medium-range correlation and short-range repulsion138, 

was shown to be of major importance to account for these effects. As a consequence, DFT functionals 

and semiempiric methods specifically optimized for correlated systems provide the most accurate 

description of the semiconductors’ ground states. On the one hand, this involves functionals originally 

optimized for excited-state calculations, particularly ωB97X-D that was found to be very accurate. In a 

similar way, reliable BLA values can be obtained with the semiempiric OMx series, parameterized for 

the purpose of excited-state calculations as well. On the other hand, good performances were 

observed for functionals specifically developed to describe weak interactions, most prominently APFD, 

but also the local meta-GGA M06-L(-D3). 

The next logic step to encompass molecular properties is the investigation of vertical excitation 

energies of the molecular p-type semiconductors. 
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5.3 Benchmarking vertical excitation energies of molecular semiconductors 
A benchmark of vertical excitation energies of the comprised molecular semiconductors, which are 

medium- to large-size molecules, faces a number of problems: 

1. Excited states are usually assumed to be more diffuse than the electronic ground state.39 Thus 

for a balanced description of excitation energies, larger basis sets are in principle necessary. 

However, as specifically pointed out above for geometry optimizations, the basis set 

dependence differs for different methods in any kind of calculation so that unequal basis set 

dependencies are to be expected also for different excited-state methods. Given the 

intrinsically high cost of excited-state calculations, it would be thus desirable to identify those 

methods that provide the most accurate excitation energies when employed with a given 

rather small basis set. Such basis set related aspects of excited-state calculations are analyzed 

in the first part of this section. 

2. Any benchmark requires accurate reference values for excitation energies. As outlined by 

Furche et al.743 and discussed by Thiel et al.,744 accurate reference values are not readily 

accessible even if experimental absorption spectra are available. A multitude of extrapolation 

schemes exist to determine vertical excitation energies from spectra.174 Nevertheless, even 

with highly-resolved spectra at hand, some uncertainties still remain (e.g., energy shifts due to 

vibronic couplings, excited-state relaxations, etc.). Therefore, in line with the proceeding of 

Thiel et al.,744 theoretical best estimates from MS-CASPT2 calculations are used to deduce 

reference values of excitation energies for subsequent benchmark calculations. The procedure 

to calculate these theoretical best estimates will be discussed in more detail in the second part 

of this section. 

3. Low-lying excited valence states of organic molecular semiconductors comprise both neutral 

and charge-transfer excitations. While neutral excited states responsible for light absorption 

and the resulting photocurrent are of primary interest in OSCs,479 their interplay with nearby 

charge-transfer states is nonetheless crucial for macroscopic device performances as well. To 

cite only two examples, charge-transfer states in molecular semiconductors were shown to act 

as doorway states for exciton trapping,745 and they play a key role in modulating the rates of 

singlet fission.536 Therefore, a comprehensive understanding of excitonic processes in organic 

thin films presupposes the knowledge of the positions of both types of molecular valence 

excited states. However, due to their different electronic character, a balanced description of 

both types of states might require the utilization of different methods for different states. For 

instance, it is well-known that the description of charge-transfer states particularly in a TD-DFT 

framework can be troublesome.266,259,746 A discussion of high-performing methods as a 

function of the excitation type will be the subject of the third part of this section. 
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4. Both singlet and triplet excitons exist in OSCs. On the one hand, the generation of triplet 

excitons, possibly via fast intersystem crossing in C60,479 has been considered as an OSC energy 

loss channel423, particularly when triplet energies are lower than the interfacial charge-transfer 

states.435 On the other hand, in view of the growing interest in singlet fission533,534 and in 

potentially long triplet exciton diffusion lengths compared to their singlet counterparts,479,490 

research has recently also focused on exploiting benefits from triplet excitons. Therefore, 

profound knowledge of triplet states in molecular semiconductors and, concomitantly, of 

methods reliably predicting triplet excitation energies is mandatory. An evaluation of 

excitation energies for states of different spin multiplicity will be presented in the fourth part 

of this section. 

In the following, the outlined points will be subsequently addressed. 

5.3.1 Basis set dependencies of excited-state methods 

 

Figure 11: Outline of investigations on basis set effects and their influence on excitation energies.  

The presented analysis of the basis set influence on calculated excitation energies is outlined in Figure 

11 (uppermost panel, “Basis set effects”). It is discussed in detail in the following. 

The basis set dependence of excitation energies has already been analyzed in numerous investigations. 

Triple-zeta basis sets were shown to provide converged TD-DFT excitation energies by Grimme,174 
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Furche,743 and Jacquemin747. Thiel et al. demonstrated for coupled-cluster methods744 as well as for 

MS-CASPT2748 that the size of the TZVP basis749, compared with its augmented counterpart, is already 

sufficient for low-lying valence excitation energies, resulting in a maximum systematic overestimation 

of excitation energies of approximately 0.1 eV. In line with these results, Jacquemin et al. found in a 

recent benchmark entirely dedicated to excited-state basis set effects only modest basis set 

dependencies for TD-DFT calculations and a slightly more pronounced basis set dependence of wave-

function based methods, which is, however, very similar for all wave-function based methods.750 This 

data suggests that the cc-pVTZ basis sets can be expected to provide valence excitation energies within 

an error range that results primarily from method deficiencies rather than from basis set limitations. 

Therefore, the cc-pVTZ basis sets will be employed in the following to evaluate method performances 

for the lowest singlet and triplet excitation energies of the molecular semiconductors (Figure 11, left 

green panel). Similarly, reference excitation energies for the lowest singlet and triplet states are 

obtained as theoretical best estimates from calculations on the MS-CASPT2/cc-pVTZ level of theory 

(Figure 11, right green panel).  

Since both neutral and charge-transfer excitations are taken into consideration, a number of excited 

states have to be calculated for each molecule (6 to 8 states per molecule and method). In view of the 

molecular sizes, using the cc-pVTZ basis sets for all excitation energies exceeds computational 

feasibility. Moreover, it is one of the purposes of this section to identify efficient methods that can be 

subsequently used in a multiscale approach. This necessarily precludes using large basis sets because 

large-scale calculations in conjunction with cc-pVTZ or equally large basis sets are computationally 

definitely not affordable.735 Furthermore, it has been already mentioned that different methods might 

perform better with small basis sets than with large basis sets (similar to the results of the geometry 

benchmark), i.e., that an error cancellation occurs. This in turn suggests choosing a specific rather small 

basis set as a tradeoff between accuracy and computational efficiency first. Then, excitation energies 

are benchmarked using always the predefined smaller basis. Due the possibly considerable basis set 

error of the smaller basis sets, high performances in the benchmark can only be attributed to the 

combination of the specific method and the predefined rather small basis set. The cc-pVDZ basis is 

chosen as the smaller basis. Excitation energies obtained with this basis for a number of states will be 

evaluated in the following sections (Figure 11, left purple panel). 

Employing smaller basis sets raises particularly the question about the accuracy of the reference values 

(Figure 11, blue arrow to yellow oval and dashed yellow line). As outlined above, reference values for 

excitation energies are obtained from theoretical best estimates of MS-CASPT2 values. Being the most 

accurate method, MS-CASPT2 is also the computationally most demanding method so that MS-CASPT2 

calculations employing cc-pVTZ basis sets are not feasible for a number of states per molecule and 
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symmetry. Consequently, smaller basis sets have to be also used when deducing CASPT2 reference 

values (Figure 11, right purple panel) although high-level ab initio methods such as MS-CASPT2 possess 

more pronounced basis set dependencies than for example TD-DFT39,750. Hence, resulting reference 

values are necessarily less accurate.748 To account for the reduced accuracy of the reference values, 

errors of the benchmarked methods calculated for a number of excited states are not evaluated with 

respect to the MS-CASPT2 excitation energies themselves, but with respect to a certain interval around 

these excitation energies. This interval will be designated as the “uncertainty interval” in the following 

(green and purple arrows, Figure 11).  

Before quantitatively estimating the uncertainty interval, please note that not only the basis sets 

employed in the actual excited-state calculations influence resulting vertical excitation energies, but 

also the basis sets (and the methods!) used to optimize the underlying geometries. Due to this two-

fold basis set influence, basis set effects are subdivided into direct and indirect effects in Figure 11 

(blue ovals). With regard to the underlying optimized geometries, it is common practice to benchmark 

excitation energies using ground-state geometries that were beforehand optimized with any 

reasonably accurate method.751 In line with most investigations employing MP2 along with triple-zeta 

basis sets,751 optimized SCS-MP2/cc-pVTZ geometries are employed in the following to benchmark 

excitation energies with cc-pVTZ basis sets (red panel in the black dashed panel, Figure 11). 

However, it was found that the use of equal and rather small basis sets for the geometry optimization 

and the subsequent transition energy calculation leads to an error cancelation of direct and indirect 

basis set errors (center blue arrow, dashed blue panel, Figure 11). This error cancelation seems to be 

rather method-independent. It is demonstrated using the example of anthracene (Figure 12), which 

has two extremely close-lying excited states, the so-called La (B2u) and Lb (B3u) state, making it a difficult 

case and a highly sensitive test system (see below for a more detailed discussion of the La and Lb states). 

The sensitivity of the excited-state properties of anthracene is already reflected in the fact that SCS 

induces a reordering of the La and Lb states, i.e., while the Lb state (B3u) is lowest at the SCS-CC2 level 

of theory (Figure 12), CC2 predicts the La (B2u) excitation to be lower than its Lb counterpart. Similarly, 

a comparison of the La (blue lines) and Lb (pink lines) excitations for SCS-CC2 and ωB97X-D shows that 

their relative order is reversed.  

Computing both the ground-state geometry and excitation energies with the cc-pVDZ basis sets (cc-

pVDZ//cc-pVDZ), SCS-CC2 predicts vertical excitation energies of 3.81 eV (1B3u), 3.91 eV (1B2u), and 5.38 

eV (1B1g). These values deviate by only 0.01 eV, 0.07 eV, and 0.03 eV, respectively, from the cc-

pVTZ//cc-pVTZ-values, i.e., upon increasing the basis sets employed in both the geometry 

optimizations and the excited-state calculations, computed excitation energies barely change (red-to-

green arrows, Figure 11).174 If only the basis sets of the ground-state geometry optimizations are 
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increased (cc-pVDZ//cc-pVTZ, Figure 12), all states are shifted to higher energies by 0.08 eV, 0.05 eV, 

and 0.09 eV due to the more contracted ground-state geometry (red right panels, Figure 11).39 

Obviously, the effect is larger than the overall basis set effect observed when simultaneously increasing 

all basis sets (cc-pVTZ//cc-pVTZ, Figure 12). If, on the other hand, only the vertical excitation energies 

are computed with larger basis sets (cc-pVTZ//cc-pVDZ, Figure 12), all excited states are downshifted 

with respect to cc-pVDZ//cc-pVDZ by a similar amount. This downshift results because the electronic 

structures of the excited states are more diffuse than the ground state so that the excited states profit 

more from larger basis sets than the ground state (red left panels, Figure 11). This trend seems to be 

quite general for all methods because a similar proceeding with ωB97X-D yields equivalent results. 

Deviations for ωB97X-D transition energies and geometries are comparable, but slightly smaller. This 

can be expected since the basis set dependence of DFT methods like ωB97X-D/cc-pVDZ is usually 

smaller than the one of wave-function based approaches (see Figure 6).  

The discussed error compensation of direct and indirect basis set effects is highlighted by dashed blue 

lines in Figure 11. 

 

Figure 12: Basis set effects on the excitation energies of anthracene calculated with SCS-CC2 (left panel) and with 
ωB97X-D (right panel). Adapted with permission from 702. © 2015 American Chemical Society. 

Table 3: Basis set effects on the lowest excitation energies calculated at the MS-CASPT2 level of theory.  

Molecule State MS-CASPT2/cc-pVDZ// 

SCS-CC2/cc-pVDZ 

[eV] 

MS-CASPT2/cc-pVTZ//  

SCS-MP2/cc-pVTZ 

[eV] 

Basis set error 

[eV] 

anthracene 1B2u 

1B3u 

3.70 

3.60 

 

3.55 

 

-0.05 
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1B1g 4.90 

rubrene 1Au 

1Bu 

1Ag 

2.70 

3.30 

3.80 

2.65 -0.05 

dithiophene 1Au 

2Au 

3Au 

4.00 

4.60 

5.40 

4.10 +0.10 

DIP 1B3u 

1B1g 

1B2u 

2.60 

3.00 

3.30 

2.75 +0.15 

squaraine 1B3u 

1B3g 

1Ag 

2.60 

2.20 

3.60 

2.55 -0.05 

diketopyrrolo-

pyrrole 

1Bu 

1Ag 

2Ag 

2.50 

3.20 

3.70 

2.50 0.00 

triarylamine 1E 

1A 

4.25 

4.50 

4.10 -0.15 

methoxy-sub. 

triarylamine 

1A 

2A 

1B 

3.15 

3.80 

4.00 

3.15 0.00 

aldehyde-sub. 

triarylamine 

1A 

1B 

4.10 

4.25 

4.10 0.00 

HB194 1Ag 

1Au 

2Ag 

2.90 

3.50 

3.50 

2.90 0.00 

HB238 1Ag 

2Ag 

1Au 

2.80 

3.70 

4.40 

3.00 +0.20 

MD353 1Ag 

2Ag 

1Au 

3.15 

4.50 

4.30 

3.10 -0.05 
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Figure 13: Left panel: Differences (= basis set effects) between excitation energies calculated with cc-pVTZ basis 
sets and SCS-MP2/cc-pVTZ optimized geometries and excitation energies calculated with cc-pVDZ basis sets and 
SCS-CC2/cc-pVDZ optimized geometries. Right panel: Basis set effects for excitation energies calculated with cc-
pVTZ or cc-pVDZ basis sets using always the same SCS-MP2/cc-pVTZ optimized geometry. 

The results in Figure 12 indeed indicate that accurate excitation energies are most likely obtained at 

the cc-pVDZ//cc-pVDZ level if the otherwise optimal cc-pVTZ//cc-pVTZ combination is computationally 

too demanding. To put this result about the relationship between direct and indirect basis set effects 

on a more quantitative footing, direct and indirect basis set effects are evaluated for the excitation 

energies of all molecules comprised in the benchmark (Figure 5). To be consistent with the above-

stated discussion, results are arranged according to molecular polarity. As already mentioned, the basis 

set dependence of both excitation energies and geometries is a method-specific property, and it is 

usually larger for post-HF methods than for DFT or HF.750 Thus, related methods are pooled into groups, 

and average results for basis set effects are presented for the respective groups, i.e., for post-HF 

methods, range-separated hybrids, global hybrids, pure functionals, and HF and CIS.  

The right panel of Figure 13 displays basis set effects for excitation energies calculated with different 

basis sets (cc-pVTZ vs. cc-pVDZ basis) but always with the same geometry (SCS-MP2/cc-pVTZ). Thus 

the right panel shows only direct basis set effects. As discussed above for anthracene, all excitation 

energies decrease when the basis sets employed in the excited-state calculations increase (only 

negative values in the right panel, Figure 13; direct basis set effects, Figure 11). These effects are most 

pronounced for apolar dyes, which is due to the presence of very close-lying low valence excitations in 

anthracene, the dithiophene, and in DIP. This large basis set dependence of excitation energies of 

apolar dyes justifies the above evaluation of basis set effects on anthracene (Figure 12). However, it 

cannot necessarily be anticipated because donor-acceptor dyes are also known to have very 



178 
 

polarizable excited states.752,753 Hence their excitation energies could significantly vary with small 

changes of the theoretical approach, which is however, as can be seen, not the case.  

With respect to different methods (and not different compound classes), post-HF methods indeed 

depend more strongly on the basis sets (error: -0.08 eV) than HF (-0.05 eV) and hybrid functionals (-

0.03 eV), with pure functionals showing the smallest basis set dependence (-0.02 eV). This is again 

found for all molecular groups and their average as well. 

The observed basis set dependencies are compared to basis set effects on excitation energies 

calculated with different basis sets and different ground-state geometries. For this purpose, excitation 

energies with the cc-pVDZ basis sets are calculated for a number of methods using the optimized SCS-

CC2nnn/cc-pVDZ ground-state geometry. Resulting values are compared to the above discussed 

excitation energies obtained employing the cc-pVTZ basis sets and the SCS-MP2/cc-pVTZ optimized 

geometry (left panel, Figure 13). The left panel of Figure 13 thus summarizes combined direct and 

indirect basis set effects. For apolar dyes, these combined basis set effects on excitation energies are 

very similar to purely direct basis set effects (right panel, Figure 13). Excitation energies always 

decrease when using larger basis sets, and they particularly do so for post-HF methods (error: -0.07 

eV). Nevertheless, basis set errors are significantly smaller than those found when using the same 

geometry (-0.11 eV). Except for post-HF methods, the basis set errors of apolar molecules for all other 

methods do not fall below -0.02 eV, i.e., their absolute values are very small. 

Compared with apolar dyes, positive deviations result for dyes of intermediate and high polarity as 

well as for the overall average. This indicates that the decrease of excitation energies due to the less 

contracted ground-state geometries overcompensates their increase induced by the smaller basis sets. 

The effect is especially pronounced for polar dyes where no systematic increase of the deviations from 

post-HF methods to pure functionals is observed. Nevertheless, average basis set errors stay within a 

range of -0.02 eV to 0.02 eV. This corresponds to a four-fold reduction of the basis set errors found 

when using the same geometries (right panel, Figure 13) and underlines the significant error 

compensation between direct and indirect basis set effects. Therefore, SCS-CC2/cc-pVDZ ground-state 

geometries are used whenever a number of excited states are calculated since the cost of calculating 

multiple excitation energies constrains the basis set size of the excited-state calculations to cc-pVDZ 

(see above). Then, errors arising from the limited basis set sizes in both calculations, i.e., direct and 

indirect basis set errors, partially cancel. As soon as only the lowest valence excitations are required, 

larger basis sets like cc-pVTZ become affordable also for the excited-state calculations. Ground-state 

                                                             
nnn Geometries are optimized with SCS-CC2 and not with SCS-MP2 because later-on, similar calculations will be 
performed for optimized excited-state geometries. Hence CC2-based methods have to be used. 
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geometries at the SCS-MP2/cc-pVTZ level are used in these cases. In view of the above discussed 

literature findings, resulting method/cc-pVTZ//SCS-MP2/cc-pVTZ excitation energies can assumed to 

be essentially converged in terms of basis set size (Figure 11, red panels). 

The different underlying geometries are also used in the benchmark MS-CASPT2 calculations, and their 

effects are used to estimate the above introduced “uncertainty interval”. The uncertainty interval, i.e., 

the basis set error of the MS-CASPT2/cc-pVDZ reference excitation energies, is estimated from a 

comparison of MS-CASPT2/cc-pVDZ//SCS-CC2/cc-pVDZ and MS-CASPT2/cc-pVTZ//SCS-MP2/cc-pVTZ 

excitation energies (Table 3). The maximal deviation in Table 3 amounts to 0.20 eV. Therefore, an 

uncertainty interval of ±0.20 eV will be used in the following whenever MS-CASPT2/cc-pVDZ excitation 

energies are used as the reference values. 

Before turning to a description of the MS-CASPT2 calculations, one further phenomenon related to 

basis set effects is briefly addressed. Apart from the mere basis set size, i.e., the ζ-value, its 

composition, namely the inclusion of diffuse functions, may be influential. Although low-lying valence 

excitations are usually not diffuse754, the necessity of augmented basis sets is analyzed for anthracene 

and the aldehyde-substituted triarylamine (Table 4). It should be mentioned that the first excitation 

energy (1EE) of the aldehyde-substituted triarylamine corresponds to a bright intramolecular charge-

transfer excitation. The La excitation of anthracene corresponds in this case to the first excitation 

energy (1EE). It features local charge-transfer character as well (see below). 

Table 4: Influence of augmented basis sets on excitation energies for two different compounds. 

Molecule Method Basis set 1EE [eV] 2EE [eV] 3EE[eV] 

anthracene 

SCS-CC2 

cc-pVDZ 3.91 3.81 5.38 

aug-cc-pVDZ 3.77 3.75 5.36 

difference 0.14 0.06 0.02 

ωB97X-D 

cc-pVDZ 2.72 4.13 4.24 

aug-cc-pVDZ 2.67 4.09 4.26 

difference 0.05 0.04 0.02 

aldehyde-

substituted 

triarylamine 

SCS-CC2 

cc-pVDZ 3.72 3.92 4.13 

aug-cc-pVDZ 3.53 3.90 4.10 

difference 0.19 0.02 0.03 

ωB97X-D 

cc-pVDZ 3.71 3.63 4.28 

aug-cc-pVDZ 3.60 3.69 4.11 

difference 0.11 0.04 0.17 
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It becomes evident from the results in Table 4 that augmented basis functions do not significantly 

influence excitation energies other than charge-transfer excitations, i.e., the first excitation energies 

(1EE) of both compounds. It should be kept in mind that Rydberg excitations are disregarded. The 

impact of diffuse functions on charge-transfer excitations is larger because these states with partially 

separated charges benefit more from the augmented basis than does the ground state. However, such 

diffuse charge-transfer states normally do neither exist in solution755 nor in thin films where solvation 

effects much alike to those in liquids occur due to the comparably amorphous and dense molecular 

packing.756 Instead of that, solvation effects considerably stabilize soluted charge-transfer states and 

lead to rather contracted electron densities because they enable the formation of tight solvation 

shells.340 The pronounced basis set effects of the charge-transfer excitations (Table 4) can thus be 

considered as a gas-phase artifact. Therefore, the results in Table 4 permit to conclude that diffuse 

functions are not necessary for a proper description of the lowest excited valence states of the 

molecular organic semiconductors, which agrees well with other literature findings.757,754 

Having dicussed this last aspect of basis set effects of excited-state calculations, the derivation of the 

MS-CASPT2 values is described in the next part of this section (green and purple boxes, Figure 11). 

Theoretical best estimates for reference excitation energies from MS -CASPT2/cc-pVDZ 

and MS-CASPT2/cc-pVTZ calculations  

As the accuracy of electronically excited states obtained at the MS-CASPT2 level of theory is well 

established,744 MS-CASPT291,92 is ideally suited as a benchmark method for excitation energies. Yet, its 

applicability is limited by its high computational cost, and the molecules comprised in the benchmark 

set (Figure 5) are too large to be directly used in CASPT2 calculations, especially due to their bulky 

substituents. One could be tempted to assume that these bulky substituents (like the butyl side chains 

in the squaraine and in MD353; highlighted in grey in Figure 5) do not significantly influence excitation 

energies anyway. This brings up the questions (1) how much the excitation energies of the molecules 

with (black in Figure 5) and without substituents (grey in Figure 5) actually differ and (2) whether it is 

possible to use the MS-CASPT2 excitation energies of the abridged symmetric systems, for which the 

calculations would be computationally feasible, as reference values for the complete molecules. 

Indeed, test calculations indicated that excitation energies of the molecules with and without 

substituents are related by only small substituent shifts (Table 5, Table 6). Furthermore, the 

substituent-induced shifts were shown to be rather method-insensitive, i.e., all methods predict equal 

shifts for the excitation energies when substituents are added/subtracted (Table 5, Table 6). This 

implies that it should in fact be possible to employ MS-CASPT2 excitation energies obtained for the 

molecules without substituents as reference values for excitations of their completely substituted 

counterparts after adding an approximately method-independent substituent shift. However, an 
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additional problem arises because the subsitutent shifts depend on the type of excitation, i.e., whether 

the latter is neutral or of charge-transfer character. Hence the following approach is chosen702: 

1. MS-CASPT2 calculations are performed on the π-conjugated cores of the molecules without 

substituents. These smaller systems devoid of non-conjugated substituents are highlighted in 

black in Figure 5. The substituents that are cut off are colored in grey.ooo 

2. In order to estimate the influence of the substituents on the CASPT2 energies (method-

independent!), the influence of the substituents is computed with various other methods (see 

below for a detailed discussion) that are computationally less demanding so that excited-state 

calculations on molecules both with and without substituents are possible. Resulting 

substituent shifts are averaged although they are almost constant (Table 5, Table 6). 

3. The averaged substituent corrections are subtracted from the MS-CASPT2 reference values. 

Table 5: Substituent shifts of the first three excited states in all molecules at the cc-pVDZ level of theory. The 
electron-withdrawing group in the aldehyde-substituted triphenylamine was replaced by a nitrile to be able to 
exploit symmetry. Thus, the charge-transfer excitation in this compound changes character. In the case of the 
squaraine, the S3 excitation mixes with a higher-lying excited state in the squaraine. Therefore, the 
corresponding CC2 shift was additionally computed (0.48 eV). 

Molecule Method S1 [eV] S2 [eV] S3 [eV] 

rubrene SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.28 

0.23 

0.26 

0.23 

0.25 

0.14 

0.14 

0.14 

0.14 

0.15 

0.45 

0.29 

0.25 

0.26 

0.35 

squaraine SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.21 

0.15 

0.14 

0.15 

0.20 

-0.04 

-0.02 

-0.02 

-0.03 

0.00 

0.40 

 

 

 

0.40 

diketopyrrolopyrrole SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.12 

0.07 

0.06 

0.06 

0.10 

0.38 

0.44 

0.49 

0.50 

0.45 

0.17 

0.09 

0.22 

0.09 

0.15 

                                                             
ooo All compounds without substituents were optimized both at the SCS-CC2/cc-pVDZ and at the SCS-MP2/cc-
pVTZ levels of theory for subsequent excited-state calculations, similar to their substituted counterparts.  
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triarylamine SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.46 

0.39 

0.43 

0.39 

0.40 

0.14 

0.13 

0.14 

0.13 

0.10 

0.46 

0.39 

0.43 

0.39 

0.40 

aldehyde-substituted 

triarylamine 

SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.45 

0.49 

0.43 

0.46 

0.45 

 0.05 

0.06 

0.06 

0.05 

0.05 

HB194 SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.11 

0.08 

0.09 

0.06 

0.10 

0.13 

0.09 

0.10 

0.05 

0.10 

0.00 

-0.01 

-0.01 

0.01 

0.00 

MD353 SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.17 

0.11 

0.14 

0.12 

0.15 

0.08 

-0.01 

0.02 

0.00 

0.00 

0.12 

0.15 

0.12 

0.16 

0.15 

HB238 SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.24 

0.14 

0.16 

0.14 

0.20 

0.19 

0.11 

0.12 

0.11 

0.10 

0.10 

-0.02 

0.09 

0.01 

0.05 

methoxy-substituted 

triarylamine 

SCS-CC2 

CAM-B3LYP 

LC-ωPBE 

ωB97X-D 

average 

0.04 

0.02 

0.01 

0.02 

0.00 

0.00 

0.02 

0.03 

0.02 

0.00 

0.02 

-0.01 

0.00 

0.00 

0.00 
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Table 6: Substituent shifts for the first singlet and triplet excited state in all molecules at the cc-pVTZ level of 
theory. 

Molecule Method S1 T1 

rubrene SCS-CC2 

ADC(2) 

M06-2X 

SOGGA11X 

ωB97X-D 

average 

-0.27 

-0.30 

-0.23 

-0.36 

-0.36 

-0.35 

-0.15 

-0.15 

-0.20 

-0.19 

-0.20 

-0.20 

squaraine 

SCS-CC2 

ADC(2) 

M06-2X 

SOGGA11X 

ωB97X-D 

average 

-0.22 

-0.27 

-0.18 

-0.17 

-0.15 

-0.25 

-0.04 

-0.07 

-0.04 

-0.04 

-0.03 

-0.05 

diketopyrrolopyrrole 

SCS-CC2 

ADC(2) 

M06-2X 

SOGGA11X 

ωB97X-D 

average 

-0.15 

-0.19 

-0.10 

-0.08 

-0.09 

-0.15 

-0.09 

-0.11 

-0.09 

-0.08 

-0.08 

-0.10 

triarylamine 

SCS-CC2 

ADC(2) 

M06-2X 

SOGGA11X 

ωB97X-D 

average 

-0.15 

-0.19 

-0.24 

-0.26 

-0.19 

-0.25 

-0.34 

-0.37 

-0.41 

-0.41 

-0.46 

-0.40 

aldehyde-substituted 

triarylamine 

SCS-CC2 

ADC(2) 

M06-2X 

SOGGA11X 

ωB97X-D 

average 

-0.47 

-0.52 

-0.51 

-0.57 

-0.47 

-0.55 

-0.53 

-0.54 

-0.58 

-0.59 

 

-0.65 
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HB194 

SCS-CC2 

ADC(2) 

M06-2X 

SOGGA11X 

ωB97X-D 

average 

-0.11 

-0.13 

-0.08 

-0.08 

-0.08 

-0.10 

-0.05 

-0.07 

-0.03 

-0.19 

-0.04 

-0.05 

MD353 

SCS-CC2 

ADC(2) 

M06-2X 

SOGGA11X 

ωB97X-D 

average 

-0.16 

-0.19 

-0.10 

-0.09 

-0.11 

-0.20 

-0.03 

-0.06 

-0.03 

-0.02 

-0.02 

-0.05 

methoxy-sub. 

triarylamine 

SCS-CC2 

ADC(2) 

M06-2X 

SOGGA11X 

ωB97X-D 

average 

-0.06 

-0.06 

-0.04 

-0.04 

-0.03 

-0.05 

-0.01 

-0.02 

-0.01 

-0.01 

0.00 

0.00 

 

The procedure to perform CASPT2 calculations on smaller subsystems and correct for substituents 

afterwards is verified for the three lowest excited states of rubrene/tetracene. The system is chosen 

because due to the high symmetry of rubrene and its still manageable size, MS-CASPT2 calculations 

can be conducted on both rubrene and the underlying tetracene core. Furthermore, rubrene should 

be a very sensitive test system because its phenyl substituents, in contrast to non-conjugating alkyl 

chains, are partly involved in the excitations. Figure 14 shows the results. Vertical [14,14]-MS-CASPT2 

excitation energies of rubrene amount to 2.7 eV (11Au), 3.3 eV (11Bu), and 3.8 eV (11Ag), with slightly 

higher values for corresponding excitations in tetracene (3.0 eV, 3.4 eV, 4.1 eV). Computed substituent 

effects for the first excited state (11Au) are 0.28 eV (SCS-CC2), 0.23 eV (CAM-B3LYP), 0.23 eV (ωB97X-

D), and 0.26 eV (LC-ωPBE). Clearly, all predicted shifts are almost equal. Averaging them yields a shift 

of 0.25 eV for the first excited state (11Au), compared to a difference of 0.3 eV between the CASPT2 

excitation energies for rubrene and tetracene. For the second (11Bu) and third excited state (11Ag), the 

“direct” MS-CASPT2 excitation energies calculated on rubrene and the “indirect” excitation energies 

from MS-CASPT2 calculations on tetracene with subsequent substituent corrections differ by less than 

0.05 eV. Thus the overall approach is rather accurate although the absolute substituent shifts are 
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different (0.15 eV for the second excited state and 0.35 for the third excited state). Therefore, 

excitation energies obtained from this composite MS-CASPT2-and-substituent-correction approach 

should be sufficiently reliable to be used as reference values in subsequent benchmark calculations. 

 

Figure 14: Evaluation of the approach which consists in conducting MS-CASPT2 calculations on smaller systems 
without substituents and successively including substituent effects obtained with other methods. CASPT2 results 
on tetracene are given in green. Blue values indicate CASPT2 results for rubrene. Pink bars correspond to the 
substituent corrections added to the rubrene values for a comparison with the tetracene excitation energies. 
Adapted with permission from 702. © 2015 American Chemical Society. 

MS-CASPT2 reference values (Table 3) were calculated with this procedure for all molecules. More 

details and CASPT2 triplet reference values can be found in 702 and 758. The methods employed to 

calculate substituent effects are shown in Table 7. They differ depending on whether several excited 

states (left-hand side) or only the first excited singlet and triplet state (right-hand side) of the molecules 

are computed. Substituent shifts are given Table 5 in for the calculation of several excited states of all 

molecules. 

Table 7: Methods employed to assess substituent effects on excitation energies. The cc-pVDZ basis sets are used 
if several (singlet) excited states are computed. If only the lowest (singlet and triplet) valence excitations are 
calculated, the cc-pVTZ basis sets are employed in line with the above discussion. 

Calculation of S1 to S5 Calculation of S1 and T1 

Method Reference Method Reference 

SCS-CC2 256,180 SCS-CC2 256,180 

CAM-B3LYP-D3 133,707,712,713,708,709,140 ADC(2) 240,759, 180,760,761,762,703 

ωB97X-D 143 ωB97X-D 143 

LC-ωPBE-D3 156,155,161,140 SOGGA11X 714 

  M06-2X-D3 125,140 
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Different methods are used due to two reasons.  

On the one hand, while the first excited state S1 always corresponds to a bright neutral excitation in 

molecules employed in OPV, this is not the case for the first few excitations S1 through S5. At least one 

charge-transfer or charge-transfer like excitation is among the lowest three excited states for all 

molecules except for the dithiophene. Long-range corrected functionals are needed to properly 

describe charge-transfer excitations,159 but they necessarily raise valence excitation energies.165,763 

Eriksson et al. showed that this can be troublesome for low-lying excitations, i.e., excitations above 

600 nm.764 These findings suggest that long-range corrected functionals deliver more accurate 

excitation energies for sure only if charge-transfer states are involved. Otherwise, (meta) hybrid 

functionals can also be very accurate.765 

On the other hand, as pointed out by Jacquemin et al.,766 the accuracy of DFT functionals for triplet 

excited states depends on the exact nature of the functional. Due to well-known triplet instabilities,273 

especially functionals with large HF amounts like long-range corrected functionals fail for triplet 

excitations.767  

With regard to these two reasons, only long-range corrected functionals are used to assess substituent 

effects of excitation energies including charge-transfer states. CAM-B3LYP, LC-ωPBE, and ωB97X-D are 

utilized. Two hybrid functionals, the hybrid SOGGA11X and the meta hybrid M06-2X, and only one 

long-range corrected functional, ωB97X-D, which performed very well for low-lying valence states 

according to Eriksson,764 are employed to estimate substituent effects on the S1 and the T1 (Table 7). 

SCS-CC2 substituent effects are additionally computed. 

All MS-CASPT2 calculations were conducted using the Molcas program package.768,769,770 Pyramidalized 

substituents were planarized to take advantage of symmetry. In all calculations, the IPEA94 shift option 

(default value: 0.25) and multistate averaging were employed. At least one more state than 

subsequently used was included in the multistate averaging. In the case of intruder states in the 

perturbative treatment of the CASSCF wave function, a level shift of 0.2 was applied.771 Except for 

anthracene and the dithiophene, all molecular π-systems are too large to include all π-electrons in the 

CASSCF computations. Hence series of MS-CASPT2 calculations were performed for all molecules 

where the sizes of the active spaces were stepwise enlarged from [4,4] to [14,14] ([16,16] for molecules 

with D2h symmetry). All active spaces were symmetric. It was checked whether asymmetric spaces are 

required, but converged values in symmetric active spaces were obtained even for charge-transfer 

excitations from in-plane π-orbitals.  

In order to check whether MS-CASPT2 excitation energies are sufficiently converged in a [14,14] active 

space, the changes in excitation energies upon increasing the active space from [12,12] to [14,14] are 
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analyzed. Table 8 displays the three lowest excitation energies for all compounds obtained at the MS-

CASPT2/cc-pVDZ level in a [12,12]- and in a [14,14]-active space. The small changes in excitation 

energies upon increasing the active spaces for the molecules demonstrate that all excitation energy 

values are sufficiently converged in a [14,14] active space. As an additional criterion for the 

convergence of the CASSCF calculations, resulting excitation energies were compared to SCS-CC2 

results. 

Table 8: Dependency of MS-CASPT2/cc-pVDZ excitation energies on the size of the active space. 

Molecule State [12,12]/cc-pVDZ [14,14]/cc-pVDZ 

anthracene 1B2u 

1B3u 

1B1g 

3.69 

3.53 

4.79 

3.77 

3.61 

4.93 

rubrene 1Au 

1Bu 

1Ag 

2.83 

3.44 

3.83 

2.67 

3.42 

3.84 

dithiophene 1Au 

2Au 

3Au 

3.69 

4.60 

5.35 

3.98 

4.61 

5.38 

DIP 1B3u 

1B1g 

1B2u 

2.59 

2.95 

3.22 

2.55* 

2.97* 

3.30 

squaraine 1B3u 

1B3g 

1Ag 

2.48 

2.24 

3.64 

2.59 

2.27 

3.64 

diketopyrrolopyrrole 1Bu 

1Ag 

2Ag 

2.53 

3.17 

3.69 

2.55 

3.11 

3.75 

triarylamine 1A 

1E 

4.35 

4.48 

4.29 

4.52 

„triamine-methoxy“ 1A 

2A 

1B 

3.15 

3.83 

4.01 

3.20 

3.80 

3.91 

„triamine-aldehyde“ 1A 

1B 

4.13 

4.31 

4.07 

4.37** 
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HB194 1Ag 

1Au 

2Ag 

2.86 

3.43 

3.51 

2.93 

3.44 

3.56** 

MD353 1Ag 

2Ag 

1Au 

3.12** 

4.56** 

4.35** 

3.22 

4.42 

4.43 

HB238 1Ag 

2Ag 

1Au 

2.92 

3.66 

4.44 

2.78 

3.85 

4.45 

*calculated in a [16,16] active space 

**calculated in a [10,10] active space 

It should be emphasized that the values in Table 8 refer to MS-CASPT2 reference values obtained with 

cc-pVDZ basis sets and geometries optimized at the SCS-CC2/cc-pVDZ level of theory. Nevertheless, 

[14,14]-MS-CASPT2/cc-pVTZ//SCS-MP2/cc-pVTZ values were found to be converged as well (Table 9). 

Table 9: Dependency of MS-CASPT2/cc-pVTZ excitation energies on the size of the active space. For simplicity, 
the first singlet and triplet excited states are abbreviated by S1 and T1, disregarding symmetry. 

Molecule State [12,12]/cc-pVTZ [14,14]/cc-pVTZ 

anthracene S1 

T1 

3.73 

2.42 

3.63 

2.25 

rubrene S1 

T1 

3.02 

1.75 

2.96 

1.67 

tetracene S1 

T1 

3.02 

1.75 

2.96 

1.67 

pentacene S1 

T1 

2.39 

1.46 

2.41 

1.35 

dithiophene S1 

T1 

4.12 

4.10 

3.09 

3.06 

DIP S1 

T1 

2.72 

1.66 

2.71 

1.66 

squaraine S1 

T1 

2.60## 

1.54## 

2.65 

1.62 

diketopyrrolopyrrole S1 

T1 

2.48 

1.55 

2.34 

1.31 

triarylamine S1 4.23 4.07 



189 
 

T1 3.81 3.66 

„triamine-methoxy“ S1 

T1 

3.14# 

2.36# 

3.14# 

2.34# (2.30) 

„triamine-aldehyde“ S1 

T1 

4.15# 

3.47# 

4.13# (4.14) 

3.40# (3.46) 

HB194 S1 

T1 

2.84 

2.10 

2.90 

2.12** 

MD353 S1 

T1 

3.09 

2.32 

3.10 

2.35 

# calculated with cc-pVDZ 
() uppermost converged value with cc-pVTZ 
** calculated in a [10,10]-active space 
## calculated in a [16,16]-active space 

In the last two sections, the technical details, particularly basis set effects and the determination of 

reference excitation energies for the benchmark, were addressed in detail. It was found that basis set 

errors from the geometry optimization and the excited-state calculation, i.e., direct and indirect basis 

set effects, mutually cancel. MS-CASPT2 reference values are calculated for smaller subsystems 

without substituents. The substituent influence is accounted for by subsequently adding a “substituent 

shift” that is obtained as an average from a number of quantum-chemical calculations. 

With this information at hand, benchmark calculations are presented in the following. In a first step, 

several singlet excitations per molecule are calculated and benchmarked. As outlined above, this is 

done using cc-pVDZ basis sets for geometry optimizations and excited-state calculations. 

5.3.2 Benchmark of several singlet excitation energies per molecule 
Singlet excitation energies obtained with wave-function based methods, DFT functionals, and 

semiempiric methods are benchmarked. All methods as well as their references are listed in Table 10. 

Table 10: Methods employed in the benchmark of excitation energies. 

method References 

wave-function based methods 

(SCS-)ADC(2) 240,759,180,760,761,762,703,46 

SCS-CC2 256,180,760,761,762,703,46 

(SCS-/SOS-)CIS(D) 173, 180,760,761,762,703,46 

HF 706 

CIS 760 

density functional based approaches 
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BLYP-D3 707,708,709,140 

M06L(-D3) 710,140 

APFD 711 

B3LYP-D3 707,712,713,708,709,140 

SOGGA11X 714 

ωB97X-D 143 

LC-ωPBE 156,155,161,140 

CAM-B3LYP-D3 133,707,712,713,708,709,140 

LC-BLYP-D3 707,708,709,140,132 

LC-M06-L-D3 710,140 ,132 

semiempiric methods 

orthogonalization model 1 (OM1) 193,197 

orthogonalization model 2 (OM2)  197,195 

orthogonalization model 3 (OM3)  196 

Austin Model 1 (AM1) 189 

Parameterization Model 3 (PM3) 717,190 

ZINDO (Zerner’s neglect of intermediate differential overlap) 209,210,772 

The semiempiric methods comprised in the benchmark set can be divided into two groups, which has 

important implications for results of later-on excited-state calculations. AM1, PM3, and ZINDO 

correspond to different parameterizations of the MNDO (modified neglect of diatomic overlap) model. 

In contrast, the OMx methods aim to improve especially one underlying assumption of the MNDO 

model, i.e., they correct for the non-orthogonality of the atomic orbital basis, which is assumed to be 

orthogonal in MNDO.773,774 In addition to the different underlying approximations, the employed 

formalism to calculate semiempiric excitation energies differs as well. Excitation energies with ZINDO 

are calculated in a CIS formalism, while GUGA-CI775 calculations are employed in the following for the 

OMx methods as well as for AM1 and PM3. In these multiconfigurational calculations, all triple 

excitations in a [16,16] active space were included (indicated with “OMx-T” in Figure 15, Figure 17 and 

Figure 18).  

All wave-function based calculations were conducted with the Turbomole program package.179 All DFT 

and ZINDO calculations were performed with Gaussian718 while MNDO183 was used for all other 

semiempiric calculations. 
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Figure 15: MAE (mean absolute error) values for the three lowest excitation energies of the molecules. Both 
bright and dark excitations are included. “OMx-T” indicates that all excitations up to triple excitations were 
included in the active space of the OMx GUGA-CI calculations. Adapted with permission from 702. © 2015 
American Chemical Society. 

Mean average errors (MAE) were calculated for the three lowest excitation energies of all molecules 

(Figure 15). Please note that the excited-state order strongly depends on the method. Therefore, the 

three lowest excitation energies vary with the employed method. Hence, the three lowest excitation 

energies used to deduce the benchmark results were defined by the lowest excitation energies of the 

CASPT2 reference. As cc-pVDZ basis sets had to be used to keep the calculation of numerous excited 

states affordable, the above introduced uncertainty interval was included in the MAE calculation. In 

this way, calculated MAE values correspond to deviations from this interval. Apart from accounting for 
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the inaccuracy of the reference method, the benchmark against an uncertainty interval is also justified 

by the user’s point of view that correct trends and a good qualitative agreement of excitation energies 

are more significant than quantitatively correct values. When using the uncertainty interval instead of 

the exact reference values, methods with a constant but rather small offset from the reference values 

would still perform very well. For instance, the errors of two methods that differ by 0.4 eV from each 

other and by 0.2 eV from the reference method would both be zero. 

The performance of DFT approaches is discussed first (Figure 15). Excitation energies of SOGGA11X, 

CAM-B3LYP, and ωB97X-D agree very well with the reference values for all compound classes. Their 

MAE values never exceed 0.05 eV. This is a very small error, but combined with the uncertainty interval 

of ±0.20 eV, the total error amounts to 0.20 eV to 0.30 eV, which is in accordance with commonly cited 

errors of TD-DFT excitation energies (~ 0.20-0.50 eV).751 The very good performance of CAM-B3LYP and 

ωB97X-D has already been outlined by Jacquemin and Adamo et al. who compared capabilities of 

hybrid and long-range corrected hybrid functionals for excitation energies of organic compounds in a 

recent benchmark.763 The accuracy of SOGGA11X excitation energies coincides with findings of Truhlar 

et al.714 Although SOGGA11X is not a long-range corrected functional as opposed to CAM-B3LYP and 

ωB97X-D, its good performance can be readily explained in terms of its considerable amount of exact 

exchange. With 41% of HF exchange, the SOGGA11X HF amount is very similar the one of CAM-B3LYP 

that varies between 19% and 65%. 

In contrast to the polarity-independent performance of SOGGA11X, ωB97X-D, and CAM-B3LYP, the 

performance of Hirao’s long-range correction with pure functionals, i.e., LC-BLYP and LC-M06-L, as well 

as the performance of LC-ωPBE strongly vary with molecular polarity. Very good results are obtained 

for apolar dyes. MAE values only amount to roughly 0.10 eV, and compared to the large errors of the 

underlying pure functionals, i.e., of BLYP (0.66 eV) and M06-L (0.82 eV), a significant improvement is 

found. This does not hold for polar dyes, however. With an error of 0.38 eV for M06-L and of 0.36 eV 

for LC-M06-L, the long-range correction does not ameliorate excitation energies anymore. The effects 

for BLYP/LC-BLYP are less pronounced, but qualitatively similar (BLYP: 0.57 eV; LC-BLYP: 0.34 eV). While 

pure functionals still underestimate excitation energies of polar dyes considerably (similar to apolar 

dyes), long-range corrected functionals with significant amounts of exact exchange overestimate them 

(in contrast to apolar dyes). Reference values are just midway. Also Jacquemin and Truhlar discussed 

for the related cyanine dyes that already hybrid functionals (instead of long-range corrected 

functionals) provide very accurate excitation energies.776 This problem will be discussed in more detail 

below for valence excitations only. The improvements due to the long-range correction for the dyes of 

intermediate polarity are noticeable, but resulting excitation energies are already overestimated 

(similar to polar dyes): the errors of 0.25 eV for LC-M06-L and 0.24 eV for LC-BLYP are considerably 
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reduced with respect to the errors of the underlying pure functionals with 0.50 eV for M06-L and 0.73 

eV for BLYP, but remain significant. In general, by means of the long-range correction, it can be seen 

that method performances systematically vary as a function of molecular polarity. This illustrates that 

the above discussed molecular groups are meaningful also for a computational analysis of molecular 

properties, i.e., it underlines the equivalence of the polarity and the chromophore classification. 

In view of the fact that it is an old semiempiric method, ZINDO performs surprisingly well. The error 

for excitation energies of polar dyes amounts to only 0.11 eV. The good performance for polar dyes in 

particular is in line with earlier findings that hyperpolarizabilities of donor-acceptor dyes computed 

with ZINDO agree nicely with corresponding experimental values.777,778 The overall average error of 

ZINDO is with 0.16 eV also very small, i.e., it is almost equal to the error of LC-ωPBE, a sophisticated 

functional especially optimized for excited states.129 For the purpose of identifying methods applicable 

in a multiscale approach, the very favorable cost-accuracy ratio of ZINDO should be emphasized; it 

makes the method suitable for studying excitations in large molecules and molecular aggregates using 

geometries obtained with other methods. Please note that ZINDO also predicts the correct excited-

state order, in contrast to PM3 and AM1, which – despite tolerable overall errors of 0.19 eV – do not 

provide an accurate description of the lowermost excitation energies of the molecules.  

In this context, it should be pointed out that the picture of the low-lying molecular valence excitations 

delivered by the OMx methods is considerably more reliable than its counterpart obtained with AM1 

and PM3 although the numerical OMx errors are somewhat larger. The OMx excited-state order of the 

lowest excitations mostly coincides with the order predicted by MS-CASPT2, whereas totally different 

states appear among the lowest excitations of AM1 and PM3. Both approaches significantly 

underestimate energies of doubly excited states and do not capture the interplay of neutral and 

charge-transfer valence excitations correctly. The underestimation of excited states with 

predominantly doubly-excited character in semiempiric excited-state GUGA-CI calculations was also 

outlined in more detail by Thiel and coworker. They analyzed performances of semiempiric methods 

for the 1Ag states of linear polyenes,175 the archetypal example where double excitations are 

important.231 Thiel and coworker found significantly underestimated doubly-excited state energies for 

all semiempiric methods but INDO/S, which relies on CIS instead of GUGA-CI.175 The CIS treatment, 

which precludes doubly excited states, is also used for the herein presented ZINDO calculations and is 

certainly partially responsible for the very good performance of ZINDO in contrast to other semiempiric 

methods. Moreover, albeit also relying on a GUGA-CI treatment, the OMx-based methods 

underestimate doubly-excited states less strongly than AM1 or PM3, an observation that might result 

from the nonorthogonality correction, i.e., from the specific inclusion of the Pauli repulsion in the OMx 

methods giving rise to an antisymmetric splitting of bonding and antibonding levels.175 
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To further illustrate this aspect, Figure 16 shows where the three lowest excited states of the 

merocyanine HB194 and the aldehyde-substituted triphenylamine as defined by MS-CASPT2 and SCS-

CC2 are situated in a semiempiric treatment. It becomes evident that the excited-state order is 

correctly reproduced by OM2, albeit with overestimated excitation energies. In contrast, AM1 

performs especially poor for charge-transfer excitations, which are significantly overestimated, and 

positions several double excitations in between the neutral and the charge-transfer singly excited 

states. Please note, however, that the first excitation energy is rather accurately predicted by all 

semiempiric methods. This is well in line with the investigation of Thiel and coworker. For instance, 

they found an average error of 0.40 eV for excitation energies computed with the OMx methods and 

a slight improvement from OM1 over OM2 to OM3.175 Taking into account the uncertainty interval of 

±0.20 eV, this error quantitatively agrees with the results of roughly 0.25 eV presented in Figure 15.  

 

Figure 16: Correlation of the three lowest excitations (defined by the SCS-CC2 and MS-CASPT2 calculations) for 
two different semiempiric approaches. Please note that the third excited state of HB194 corresponds to a charge-
transfer excitation, while the second excited state of the aldehyde-substituted triphenylamine is of charge-
transfer character. The first excited state of the triphenylamine corresponds to a bright intramolecular charge-
transfer like excitation that changed its character upon adding diffuse functions (see above). Adapted with 
permission from 702. © 2015 American Chemical Society. 

Figure 17 and Figure 18 show the MAE values for the bright neutral and dark excited-state energies of 

the molecules, respectively. Most but not all dark excitations correspond to charge-transfer 

excitations. This results because no clear charge-transfer excitations like n-π*-excitations exist for the 

dye molecules of low polarity. Therefore, for the apolar dyes, bright valence states with ungerade-

symmetry are instead distinguished from the dark third excited state of Ag symmetry, existing at least 

in DIP, anthracene, and rubrene. No low-lying dark excitations exist in the dithiophene, which is 

therefore precluded from the analysis in Figure 18. The assignment of the charge-transfer character to 
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the excited states of the dyes of intermediate and high polarity is straightforward because the charge-

transfer excitations present, i.e., n-π*-excitations, can easily be identified.   

Bright neutral excitations are discussed first (Figure 17). As could be expected in view of the 

theoretically challenging description of charge-transfer states,266,231 MAE errors decrease noticeably 

compared to the overall errors (Figure 15) as soon as only neutral excitations are included in the 

averaging. This effect is most pronounced for polar dyes since all wave-function based methods and 

numerous DFT functionals including several hybrids approach the reference values up to an energy 

difference smaller than the uncertainty interval. Among the DFT functionals, the long-range corrected 

functionals show the largest deviations, a point already addressed by Jacquemin et al.763 and discussed 

in detail by Autschbach and coworkers779 in the framework of charge-transfer and charge-transfer-like 

excitations. It was mentioned above that the charge-transfer correction introduced by the splitting of 

the Coulomb operator comes at the expense of systematically increasing all valence excitation 

energies. This can sometimes result in overestimated excitation energies, which is here obviously the 

case. In contrast, as outlined by Truhlar and Jacquemin and coworkers for cyanines, (meta) hybrid 

functionals are perfectly sufficient to describe bright valence excitations.776 In a similar way a recent 

study by Zhang and coworkers benchmarked excitation energies of acridine derivatives by means of 

experimental values. In line with the data in Figure 17 and with Truhlar and Jacquemin, they also found 

that the hybrid functionals PBE0 and B3LYP perform better than M06-2X and notably CAM-B3LYP and 

ωB97X-D, which overestimated excitation energies.780  

Evidently, the performance of hybrid functionals and range-separated hybrid functionals differs 

significantly between polar molecules and dyes of intermediate polarity (Figure 17). While hybrid 

functionals provide the most accurate excitation energies for the merocyanines, range-separated 

hybrids are considerably more precise for excitation energies of dyes of intermediate polarity. This can 

be understood in terms of the different charge-transfer character of the respective low-lying valence 

excitations. Despite the donor-acceptor structure, the valence π-π*-excitations in merocyanines are 

only of moderate charge-transfer character because the involved π- and π*-orbitals are completely 

delocalized and significantly overlap.781 In contrast, the orbitals involved in the valence excitations of 

dyes of intermediate polarity barely overlap because they are localized on different spatially separate 

moieties. Therefore, all valence excitations in the dyes of intermediate polarity, particularly in 

triphenylamines, have a significant charge-transfer character. Hence the wrong asymptotic behavior 

of the exchange-correlation potential of hybrid functionals and the related spurious self-interaction 

error become an issue.159 As a consequence, range-separated hybrids perform better.782,144 This is in 

good accordance with numerous investigations on excitation energies of triphenylamine-based dyes 

that were found to be accurately predicted by long-range corrected functionals. Triphenylamine-based 
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dyes have recently attracted considerable research interest due to their use as photosensitizers in dye-

sensitized solar cells (DSSC).783,784,785 

 

Figure 17: MAE (mean absolute error) values for the neutral excitations among three lowest excitation energies 
of the molecules. “OMx-T” indicates that all excitations up to triple excitations were included in the active space 
of the OMx GUGA-CI calculations. Adapted with permission from 702. © 2015 American Chemical Society. 

The errors of bright valence excitations are largest for apolar dyes (Figure 17). In view of the ongoing 

discussion172 on the La and the Lb excitation in acenes and derivatives (i.e., anthracene, rubrene), this 

is not surprising. According to an analysis of excitation energies in acenes by Grimme and coworker701, 

which he subsequently extended to polycyclic aromatic hydrocarbons in general,786 the nature of the 

La and the Lb excitations differs. While the Lb excitation is a purely neutral transition, its La counterpart 

corresponds rather to a charge-transfer like excitation because local charge-transfer configurations 

were shown to possess a considerable weight in the VB description of the La excited state.701 Due to 

the different charge-transfer character of the two excitations, no single existing functional provides 

accurate values for both excitations since the many-electron self-interaction error (MSIE) differs for 
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the two transitions. Thus different amounts of exact exchange would in principle be required to correct 

for it. It follows that some functionals comprised in the benchmark set provide accurate energies for 

either the La or the Lb excitation but never for both. For instance, LC-BLYP and LC-ωPBE perform very 

well for La excitation energies. For this reason, however, they are necessarily worse for the Lb 

excitation. The reverse is observed for hybrid functionals like B3LYP, which deliver reliable Lb transition 

energies but underestimate La excitations. This implies that with all functionals, considerable errors 

are obtained for at least one low-lying bright excitation of apolar dyes, explaining the large errors 

(Figure 17). 

For all compounds, semiempirical methods yield bright excitation energies with rather satisfying 

accuracy but similar effects as found for the DFT functionals can be observed (Figure 17): errors of 

ZINDO, AM1 and PM3 in particular are negligible for dyes of high polarity and increase with decreasing 

polarity. In contrast, errors of the OMx methods are more uniformly distributed over the different 

molecular classes. In fact, OMx excitation energies are systematically overestimated. Therefore, it is 

certainly possible to deduce qualitatively correct trends from OMx calculations in a multiscale 

approach. The rather constant error of OMx based approaches is furthermore in line with findings of 

Thiel and coworker.175 

Errors of charge-transfer and dark excitations are discussed next (Figure 18). Expectedly, average 

errors are larger. Except for the high-level ab initio methods (SCS-)CC2 and (SCS-)ADC(2), the long-

range corrected functionals ωB97X-D (MAE: 0.05 eV) and CAM-B3LYP (0.06 eV) as well as the hybrid 

functional SOGGA11X (0.05 eV) perform best for all molecules. Surprisingly, B3LYP (0.08 eV) and APFD 

(0.07 eV) perform well for the charge-transfer excitations in dyes of intermediate polarity, i.e., for the 

squaraine and the diketopyrrolopyrrole, although they are not long-range corrected and do not 

contain a significant amount of exact exchange. Their surprisingly good performance highlights again 

the importance of the correct excited-state order for the overall accuracy of the results (see also Figure 

16). In contrast to all other molecules comprised in the benchmark set (Figure 5), the charge-transfer 

excitation and the lowermost bright excitation in the squaraine and the diketopyrrolopyrrole are 

energetically very close-lying. Their relative order depends on the method, and it largely determines 

resulting excitation energies. If the charge-transfer state is lowest, the valence excitation experiences 

a blue shift, whereas it drops considerably when it lies below the charge-transfer state. In contrast to 

other methods (LC-M06-L, M06-L, LC-BLYP, BLYP, etc.), APFD and B3LYP reproduce the MS-CASPT2 

excited-state order which positions the charge-transfer excitation above the bright excitation, in line 

with the experimental data.653,654 The significance of the relative excited-state order has often been 

pointed out, and its importance has been thoroughly studied by both experimental and theoretical 

means for example for host materials of OLEDs.787,788,789 
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In comparison with the bright excitations (Figure 17), errors of semiempiric methods for charge-

transfer states are generally larger (Figure 18). However, their errors (0.30 eV – 0.40 eV) are on the 

order of the errors of functionals with too much exact exchange such as LC-BLYP (0.33 eV) or LC-M06-

L (0.36 eV). Pure functionals like BLYP (MAE: 0.89 eV) and M06-L (0.57 eV) yield larger errors. As 

discussed by Nelson and coworkers,567 semiempiric methods like ZINDO show a correct asymptotic 

behavior for the Coulomb interaction between the electron and the hole in charge-transfer excitations, 

an aspect not included in pure DFT functionals. Therefore, according to Nelson,567 semiempiric 

approaches should provide a more adequate description of charge-transfer excitations than pure DFT 

functionals in spite of their intrinsic neglect of overlap-dependent contributions. This agrees nicely 

with the findings in Figure 18. 

 

Figure 18: MAE (mean absolute error) values for the charge-transfer excitations among three lowest excitation 
energies of the molecules. “OMx-T” indicates that all excitations up to triple excitations were included in the 
active space of the OMx GUGA-CI calculations. Adapted with permission from 702. © 2015 American Chemical 
Society. 
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Overall, Figure 15, Figure 17, and Figure 18 demonstrate that results from wave-function based 

approaches (CC2 and ADC(2)) agree very well with the MS-CASPT2 reference values. Their errors vary 

slightly as a function of the compound class, but never exceed 0.10 eV with respect to the uncertainty 

interval. For bright excitations, CIS(D) performs almost as well as CC2 and ADC(2), but its deviations 

are larger for charge-transfer excitations, especially in dyes of intermediate and low polarity. As can 

already be seen from the errors in Figure 15, Figure 17, and Figure 18, spin-component scaling 

produces pronounced changes in predicted excitation energies. While spin-component scaling is well-

established for CC2, it has not been thoroughly evaluated for ADC(2). To analyze the influence of spin-

component scaling in more detail, Figure 19 displays the improvement of the first excitation energies 

of all compound classes when SCS is added to CC2, ADC(2), and CIS(D). In order to visualize 

performance differences between the methods, the uncertainty interval is not included in this case. 

Errors are calculated with respect to the MS-CASPT2 reference values. With regard to the above-

discussed reduced accuracy of MS-CASPT2/cc-pVDZ reference values, only the first excitation energy 

is used to analyze SCS effects since it is presumably most converged and least diffuse. Irrespective of 

the compound class, spin-component scaling induces a blue shift of excitation energies of 

approximately 0.15 eV (Figure 19). It depends on the underlying method and the compound class 

whether this blue shift increases or decreases the error. While spin-component scaling reduces the 

errors of CC2 excitation energies of compounds of high and intermediate polarity, excitation energies 

of apolar dyes are better reproduced without spin-component scaling. This is based on the fact that 

CC2 excitation energies of dyes of high and intermediate polarity are usually too low, while they 

coincide well with the CASPT2 reference values for apolar molecules. ADC(2) behaves exactly like CC2. 

This improved description of excitation energies upon spin-component scaling is well in line with 

results of Hättig and coworkers for CC2,180 but contrasts with a recent benchmark of Jacquemin and 

coworkers790 who found that the numerical accuracy of CC2 excitation energies is superior to the one 

of SCS-CC2. Furthermore, the findings of the effects of SCS on ADC(2) complement an analysis of SOS-

ADC(2) by Dreuw and Wormit who concluded that SOS, similar to the outlined influence of SCS, leads 

to improved excitation energies.239 
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Figure 19: The differences of the errors of the different methods with respect to the CASPT2 results are 
calculated, i.e., error(CC2)-error(SCS-CC2). When spin-component scaling improves resulting excitation energies, 
the differences are positive. Adapted with permission from 702. © 2015 American Chemical Society. 

Compared with CC2 and ADC(2), Figure 19 provides evidence that CIS(D) behaves differently. The 

perturbative doubles in CIS(D) decrease underlying CIS excitation energies considerably due to the 

inclusion of dynamic correlation.172 Yet, CIS(D) excitation energies are still too high. To some extent, 

this might result from the incomplete treatment of higher excitations in CIS(D) in contrast to CIS(D∞). 

Nevertheless, because of the already overestimated CIS(D) excitation energies, CIS(D) errors 

necessarily increase when additional blue shifts induced by spin-component scaling or spin-opposite 

scaling are introduced. Polar dyes are the only exception where spin-component scaling improves 

CIS(D) excitation energies. This may arise from the fact that correlation effects were shown to be 

especially important in cyanine dyes and derivatives, which is also reflected in the pronounced 

influence of spin-component scaling on cyanine ground-state properties (see above).791 Grimme and 

coworker benchmarked CIS(D) and SCS-CIS(D) as well and found improved excitation energies.174 This 

contrasts with the findings for the majority of the dyes in Figure 19. However, it is important to mention 

that the SCS and SOS parameters used throughout this work were optimized by Hättig and coworkers 

for CC2.180 This possibly explains the differences found when compared to other benchmark 

calculations like the one of Grimme and coworker.174 It should be noted that other SCS and SOS 

parameterizations specifically optimized for ADC(2) or CIS(D) are available such as the SOS parameters 

by Dreuw and coworkers for ADC(2).792 In view of different parameterizations, Grimme and coworkers 

provided an overview over the influence of the spin-component parameters on resulting excitation 

energies, which was found to be nonetheless rather modest.43 



201 
 

The presented results on the lowest excited states in different molecular p-type semiconductors 

suggest that a plethora of methods deliver excitation energies with reasonable accuracy. Among the 

most efficient methods, an important aspect for later-on calculations on large systems, particularly 

ZINDO stands out. The most balanced description of all excitation energies and of all compound classes 

is provided by ωB97X-D, followed by CAM-B3LYP and SOGGA11X. Wave-function based approaches 

certainly yield results of remarkable numerical accuracy, albeit at the expense of a high computational 

effort rendering them unsuitable for large-scale applications. 

The next part of this section gives a more detailed perspective on the lowermost valence excitations 

in p-type molecular semiconductors with a special focus on states with different multiplicities. The low 

valence excitations of these molecules are of special interest because they determine absorption 

properties of resulting OSC devices. As only one excitation energy is required, larger cc-pVTZ basis sets 

are used and the uncertainty interval can be discarded (see above). 
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5.3.3 Benchmark of the S1 and the T1 energies of the molecular p-type semiconductors 
As outlined in detail by Clarke and Durrant, the light-to-energy conversion in OSCs is an energetic 

downhill process.423 All states that are very low in energy, including triplet states,435 constitute possible 

energy loss channels in OSC devices. Already this aspect emphasizes the importance of precisely 

knowing the lowest singlet and triplet excitation energies of any system employed in OSCs. Moreover, 

the growing interest in triplet excitations of organic semiconductors arises also from the possibility to 

potentially double IQE (internal quantum efficiency) values in singlet fission devices, which similarly 

requires the precise alignment of singlet and triplet excited states.533,793 Therefore, singlet and triplet 

excited states are benchmarked in the following with a degree of accuracy that is computationally not 

affordable for several excited states (see previous sections). For further details, the reader is referred 

to 758. 

 

Figure 20: Structures of common singlet fission compounds tetracene (left-hand side) and pentacene (right-hand 
side).  

Singlet fission is known to occur on very fast timescales and can compete with intramolecular 

relaxation.794,795,796 Recent pump-probe-dump investigations by Musser et al. revealed that singlet 

fission is an ultrafast process, much alike internal conversion.537 Therefore, adiabatic and vertical 

singlet and triplet excitation energies have to be taken into account. In the following, they are 

separately evaluated. 

Moreover, as particularly pentacene and also tetracene are the most common systems to study the 

energetics and dynamics of singlet fission by experimental and computational means, they are 

included in this part of the benchmark and the thesis (Figure 20).533,797,536,798,799 HB238 is not further 

analyzed because its optoelectronic behavior was found to be highly similar to MD353. 

The functionals employed in the benchmark calculations for the lowest singlet and triplet excitations 

are listed in Table 11. For the following reasons, they slightly differ from above (Table 10). In a 

benchmark on TD-DFT singlet and triplet excitation energies, Jacquemin and coworkers found 

considerable performance differences between singlet and triplet excitation energies calculated with 

the same functional. They furthermore pointed out that especially the accuracy of predicted triplet 

states strongly depends on the exact form of the exchange-correlation kernel.747 This suggests 

enlarging the scope of functionals employed in the benchmark compared to above (Table 10) in order 

to obtain a more comprehensive survey of singlet and triplet performances. Especially M06-2X and 

PBE0 are frequently used for triplet calculations in the literature so that these functionals are 
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additionally used.723 Moreover, due to the observed very good performance of ωB97X-D in its standard 

version, an IP-tuned version of ωB97X-D individually adjusted for all molecules in a non-empirical 

tuning procedure is additionally included, denoted as ωB97X-D*. In the non-empirical tuning 

procedure, the range-separation parameter was varied in steps of 0.05 Bohr-1 until the ionization 

potential met the HOMO energy. Optimal values can be found in 758. LC-M06-L is not employed 

anymore because the use of range-separated hybrids with large amounts of HF exchange, as ensured 

by Hirao’s LC correction, was shown to be advantageous for singlet excitation energies (see also 

above),129,160 but seems to be less promising for accurate triplet excitation energies as demonstrated 

by Brédas et al.800  

Table 11: Methods employed to benchmark singlet and triplet excitation energies as well as singlet-triplet gaps 
of molecular p-type semiconductors. Their references are given as well. 

method References 

wave-function based methods 

(SCS-)ADC(2) 240,759,180,760,761,762,703,46 

SCS-CC2 256,180,760,761,762,703,46 

(SCS-/SOS-)CIS(D) 173, 180,760,761,762,703,46 

HF 706 

CIS 760 

density functional based approaches 

BLYP-D3 707,708,709,140 

M06L(-D3) 710,140 

PBE-D3 801,802,140 

PBE0-D3 803,801,802,140 

B3LYP-D3 707,712,713,708,709,140 

BHLYP-D3 712, 140 

M06-2X-D3 125,140 

SOGGA11X 714 

ωB97X-D 143 

LC-ωPBE 156,155,161,140 

CAM-B3LYP-D3 133,707,712,713,708,709,140 

LC-BLYP-D3 707,708,709,140,132 
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In contrast to the previous section where only the adiabatic linear-response TD-DFT formalism was 

considered, several different TD-DFT formulations (i.e., Tamm-Dancoff, Δ-SCF) are employed in the 

following. This results mainly from the well-known triplet instabilities of TD-DFT calculations, leading 

to imaginary frequencies for triplet excitations.170,167 Casida et al. concluded from calculations on a 

two-level model system that these instabilities and resulting imaginary TD-DFT frequencies originate 

from symmetry-breaking of the DFT ground state. A linearized273 and thus Hermitian version of the TD-

DFT Casida equations,804 the Tamm-Dancoff approximation (TDA) in the TD-DFT framework proposed 

by Head-Gordon et al.,272 constitutes a possible solution to the instability problem.805 As the B-matrix 

of the original Casida equations is neglected, this comes with the additional advantage of reduced 

computation times.272 Please note that the Tamm-Dancoff approximation of TD-DFT is abbreviated by 

TDA in the following, while “TD-DFT” will always still refer to the adiabatic linear-response TD-DFT 

formulation. Tozer et al. thoroughly demonstrated the usefulness of the TDA scheme for the 

calculation of triplet excitation energies.806 They correlated the existence of triplet instabilities and 

negative triplet excitation energies with the amount of exact exchange of the DFT functionals807 and 

with the charge-transfer character of the excitation767. This led them to the conclusion that the TDA 

scheme is especially important for neutral (in contrast to charge-transfer) triplet excitations, yielding 

very accurate results when used with range-separated hybrids. Apart from the TDA and the adiabatic 

linear-response scheme, the applicability of the Δ-SCF method for calculating triplet energies was also 

discussed by Casida et al.273 Δ-SCF triplet excitation energies are computed as the excitation energy 

differences between the respective ground states. This approach yields values of acceptable accuracy 

for organic molecules according to Nguyen et al.808 In view of this literature perspective, triplet 

excitation energies are in the following not only calculated in a “traditional” adiabatic linear-response 

TD-DFT approach, but also within the TDA approximation and as Δ-SCF excitation energies. 

The same wave-function based methods are used as in Table 10. Semiempiric methods are not 

comprised in the benchmark (Table 11). Their rather weak performance for triplet excited states has 

been already pointed out.175,213 

To avoid redundancies with the above given results for several excitations per molecule and to focus 

more on important trends, mean signed instead of mean absolute errors are used to evaluate singlet 

and triplet excitation energies. In a first step, singlet and triplet excitation energies are discussed for 

DFT and HF. Wave-function methods will be subsequently addressed. Results for the first singlet 

excitation energy are compared to the average values presented in the previous section. 
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Figure 21: Mean signed errors for singlet excitation energies obtained with DFT functionals or HF employing the 
cc-pVTZ basis sets. Green (blue) arrows indicate the HF percentage that is optimal in the TDA (linear-response 
TD-DFT) approach. Reproduced with permission from 758. © 2016 Elsevier B.V. 

The mean signed errors with respect to MS-CASPT2/cc-pVTZ for the singlet excitation energies 

obtained with DFT functionals and HF and the cc-pVTZ basis are shown in Figure 21. Errors for each 

group of molecules (panel 1 – 3, Figure 21) and average errors (panel 4, Figure 21) are given. The error 

of SCS-CC2 indicated as an orange line allows for a comparison with the accuracy of wave-function 

based approaches. The functionals are roughly arranged according to their amount of HF exchange (x-

axis). Evidently, excitation energies systematically decline upon reducing the amount of exact 

exchange in a functional. This dependency forms the basis for the IP-tuning procedure used to obtain 

more accurate fundamental and excitation gaps in organic compounds.160 As already analyzed for 

different TD-DFT formulations by Truhlar et al.809 and by Tozer et al.,767 TDA singlet excitation energies 

are systematically blueshifted compared to standard adiabatic linear-response TD-DFT excitation 

energies. This systematic increase of TDA excitation energies gives rise to the observation that for a 

given molecule, optimal TDA excitation energies are obtained with functionals containing less exact 
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exchange than optimal adiabatic TD-DFT excitation energies. This is visualized by the green arrows 

(optimal TDA excitation energies) and the blue arrows (optimal adiabatic TD-DFT excitation energies) 

in Figure 21. The green arrows (optimal TDA excitation energies) always correspond to functionals 

containing a reduced amount of exact exchange. 

A comparison between the three molecular groups shows a characteristic dependence of the optimal 

amount of exchange on the group, which coincides well with above discussed different performances 

of long-range corrected functionals for the individual compound classes. A comparably high amount 

of exact exchange is required for correct excitation energies of apolar molecules like the acenes, 

rubrene and DIP. Minimal signed errors in the adiabatic TD-DFT/HF formulation are found for HF (0.08 

eV), LC-ωPBE (0.09 eV), and ωB97X-D (-0.12 eV) while SOGGA11X yields very accurate excitation 

energies with an error of only 0.05 eV in the TDA formulation. As already mentioned above, this 

observation of high HF amounts required for the 1La states of linear acenes and other polycyclic 

hydrocarbons has been comprehensively studied by Grimme et al.701,786 and also by Grimme and 

Ziegler et al. in the context of constricted variational DFT.277 Valence-bond arguments highlighted the 

significant contributions of local charge-transfer configurations to the 1La excited states of linear acenes 

(see previous section). This explains the necessity for considerable amounts of HF exchange.701 In line 

with this, Wu et al. found a considerable improvement of 1La excitation energies calculated with hybrid 

functionals employed in the TDA formulation instead of the adiabatic linear-response TD-DFT 

framework (see above).810 These results specific for the charge-transfer like La excitation complement 

nicely above discussed average results for the combined errors of the La and the Lb excitations. 

Compared with the apolar molecules, LC-BLYP and LC-ωPBE considerably overshoot for singlet 

excitation energies of triphenylamines and donor-acceptor-donor compounds. Their errors are around 

0.50 eV. This performance deterioration is well in line with above findings (Figure 15) and contrasts 

with the improved performance of ωB97X-D, its IP-tuned version ωB97X-D*, CAM-B3LYP, M06-2X, and 

SOGGA11X that provide reliable values with errors smaller than ~0.10 eV in both the TDA and the 

linear-response TD-DFT scheme. The average MAE values (Figure 15) did not reveal this small, yet 

important trend of the errors of the long-range corrected functionals, also because slight error 

differences are masked by the above employed uncertainty interval. As pointed out by Autschbach et 

al., the amount of HF exchange required for accurate excitation energies correlates with the excited-

state delocalization. The less HF exchange needed for reliable values, the more delocalized is the 

excited state.782 Thus excited states of the compounds of intermediate polarity are presumably more 

delocalized than those of acenes. These more delocalized structures result in reduced self-interaction 

errors, requiring less correction via exact exchange. The effect becomes even more pronounced for 
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the group of merocyanines, i.e., donor-acceptor push-pull systems, as also found above.ppp While most 

DFT functionals yield too small excitation energies for apolar molecules, they tend to overestimate 

excitation energies of the merocyanines, especially in the TDA approach. The considerable 

overestimation of excitation energies in cyanines by TD-DFT is a well-known problem727 and was 

attributed to a wrong description of the differential correlation between the ground and the first 

excited state.782 As discussed by Autschbach et al., less overestimated excitation energies are to be 

expected as soon as some charge-transfer character is introduced into the first excited state of cyanine 

dyes. Then, an error cancelation between the underestimation of excitation energies due to the partial 

charge transfer and the overestimation typical for cyanines can take place, affording accurate 

excitation energies,791 which is the case for the merocyanines where a number of range-separated and 

hybrid functionals (ωB97X-D, ωB97X-D*, CAM-B3LYP, SOGGA11X, M06-2X) yield very accurate 

excitation energies (Figure 21). This more detailed picture on well-performing methods for the first 

excitation energy in merocyanines is again in accordance with the above presented average results. 

Hence it refines the result from Figure 15 and Figure 17. Nevertheless, it also validates the underlying 

benchmark approach, which relies on considerable approximations with regard to basis set effects. 

Since the amount of optimal HF exchange to be included in the DFT functionals depends on the 

compound class, averaging the signed errors over all compound classes yields a range of functionals 

with different amounts of HF exchange but with similar errors (panel 4, Figure 21).This explains why,  

in line with the previously presented absolute errors, very small signed errors of the first transition 

energy are found for ωB97X-D (-0.01 eV), CAM-B3LYP (-0.05 eV), BHLYP (0.01 eV) and M06-2X (-0.06 

eV). Please note that IP-tuning of ωB97X-D does not result in an improvement for the excitation 

energies (TD-DFT error of ωB97X-D: -0.01 eV; TD-DFT error of ωB97X-D*: -0.09 eV), a phenomenon 

which is sometimes observed. Since the MSIE is minimal in the non-empirically tuned ωB97X-D* 

functional, one should, however, expect higher accuracies for ωB97X-D* excitation energies. As 

thoroughly discussed by Autschbach,779 the fact that further optimizing the ωB97X-D functional via IP-

tuning does not result in a better performance suggests that the original high accuracy of ωB97X-D is 

not necessarily based on a correct description of the physics of the system, for instance on a small 

MSIE. If this was the case, one would otherwise obtain even more accurate values after non-empirical 

IP-tuning. Thus the good performance of ωB97X-D arises rather from some kind of error compensation, 

i.e., ωB97X-D is “right for the wrong reason”. The point that excitation energies with long-range 

corrected functionals are not always obtained “for the right reason” and hence that IP-tuning does not 

                                                             
ppp It should be noted that the different extent of excited-state delocalization is intimately related to the already 
addressed different charge-transfer character of the bright excitations in dyes of high and intermediate polarity: 
the more charge transfer between rather localized orbitals (such as lone pairs, etc.) on spatially separate moieties 
occurs, the more localized the corresponding excited state.  
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always lead to more accurate values has been already addressed by Autschbach et al. in terms of 

charge-transfer and charge-transfer like excitations.779  

 

Figure 22: Mean signed errors for triplet excitation energies obtained with DFT functionals and HF employing the 
cc-pVTZ basis sets (cc-pVDZ basis sets for Tamm-Dancoff, which was shown to be sufficient). Reproduced with 
permission from 758. © 2016 Elsevier B.V. 
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With regard to the performance of hybrid functionals, PBE0 has a very small average error of -0.03 eV 

in the TDA formulation (Figure 21). This is in part due to a cancellation of positive and negative 

deviations; the mean absolute error amounts to 0.22 eV. The very good average performance of the 

meta-hybrid functional M06-2X, the good averaged performance of the hybrid functional PBE0, and 

the fact that M06-L is the best pure functional are in accordance with findings of Gordon et al.811  

The elucidated trends, most notably the dependence of the excitation energies on the amount of HF 

exchange, underline why mean signed errors of the first singlet excitation energies provide a more 

profound understanding than averaged mean absolute errors (Figure 17). However, it should be 

stressed that such mean signed deviations are only meaningful as long as only one excitation per 

molecule is included. Otherwise, signed errors of different excitations per molecule average and 

obscure any trends.  

In a similar way, mean signed errors for triplet excitation energies are given in Figure 22. To avoid 

unbalanced average results, triplet instabilities were calculated for all compounds. Excitation energies 

of systems subject to triplet instabilities were discarded from the analysis. In accordance with the 

investigation of Tozer et al.,806 negative triplet excitation energies due to triplet instabilities are 

especially found for HF and (range-separated) hybrids with significant amounts of HF exchange. 

Moreover, triplet instabilities and corresponding negative excitation energies were particularly 

frequent for apolar, highly symmetric molecules (pentacene, tetracene, etc). Consequently, HF, LC-

BLYP and LC-ωPBE triplet excitation energies of these molecules had to be subsequently excluded. 

Therefore, the largest errors for TD-DFT triplet excitation energies of apolar molecules are not 

obtained for these methods, i.e., for HF, LC-BLYP and LC-ωPBE as it is the case for the dyes of 

intermediate and high polarity. 

In general, pure functionals provide the most accurate triplet excitation energies for all molecules 

within the traditional adiabatic linear-response TD-DFT formalism whereas the best performing 

functional is M06-2X (blue bars, Figure 22). Although it contains 54% of HF exchange, it underestimates 

triplet excitation energies by an average value of only -0.34 eV. This contrasts with the performance of 

BHLYP that possesses a comparable amount of HF exchange, but an almost two-fold error of -0.67 eV. 

This agrees nicely with benchmark results of Jacquemin et al.747 and underlines the above-stated point 

that the existence of triplet instabilities and correspondingly underestimated excitation energies 

critically depends on the exact nature of the functional, namely on the details of its exchange-

correlation part, and not only on the amount of exact exchange. 

With regard to all DFT formulations (adiabatic TD-DFT, TDA, Δ-SCF), the smallest errors are also 

obtained with M06-2X, yet not in the TD-DFT framework. Employing the functional within the TDA 
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formulation yields an average error of -0.12 eV, which further declines to -0.06 eV in the Δ-SCF method 

(Figure 22). Similar to the results for all other functionals, differences between the TDA scheme and 

the Δ-SCF method are rather small. In general, Δ-SCF triplet excitation energies are usually slightly 

higher, resulting in smaller mean signed errors as long as the spin contamination is low. As discussed 

by Van Voorhis et al. in the context of triplet states in TADF (thermally activated delayed fluorescence) 

compounds, the different performance of the Δ-SCF method and the TDA approximation could be due 

to differences in the orbitals. While Δ-SCF-orbitals are specifically optimized for triplet states, ground-

state orbitals are the basis of the TDA framework.812 The more specifically optimized Δ-SCF-orbitals 

could thus be responsible for the somewhat higher accuracy of the Δ-SCF method. Nevertheless, in 

systems with significant spin contamination, the performance of the Δ-SCF method deteriorates, and 

TDA triplet excitation energies are more reliable. 

It follows from the calculations that the same methods that provide the most accurate singlet 

excitation energies also deliver reliable triplet excitation energies within the TDA/Δ-SCF method. Only 

the lowest triplet excited state was considered. Please keep in mind that in accordance with Jacquemin 

et al.,766 this is not true for the adiabatic TD-DFT excitations. The smallest mean signed errors within 

the TDA/Δ-SCF method are obtained with LC-BLYP (-0.18 eV/-0.14 eV), ωB97X-D (-0.20 eV/-0.17 eV), 

CAM-B3LYP (-0.25 eV/-0.21 eV), M06-2X (-0.12 eV/-0.06 eV), and SOGGA11X (-0.20 eV/-0.18 eV). 

Despite these similarities, three major differences between the errors of singlet and triplet excitation 

energies exist: 

1. Calculated triplet excitation energies are systematically too low. 

2. There seems to be no clear dependence of triplet excitation energies on the amount of HF 

exchange. 

3. While signed errors for singlet excitation energies are increasingly positive for molecules of 

increasing ground-state polarity, the opposite is true for triplet excitation energies. The more 

polar the ground state, i.e., the more delocalized the involved states (see above discussion), 

the more underestimated triplet excitation energies and the more negative corresponding 

signed errors. The underestimation of triplet excitation energies of cyanines was thoroughly 

discussed by Autschbach et al.791 With regard to the herein discussed merocyanines, it was 

found that calculated singlet excitations are rather accurate, probably due to an error 

cancelation between the intrinsic overestimation of excitations and an additional 

underestimation due to the charge-transfer character. Apparently, no error cancelation occurs 

for triplet excitation energies since they are too low for both cyanines and merocyanines. 

Adiabatic singlet and triplet excitation energies are shown in Figure 23. For excited-state optimizations, 

only cc-pVDZ basis sets were affordable. Since SCS-CC2 provides very accurate vertical excitation 
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energies (see below), adiabatic SCS-CC2/cc-pVDZ values were used as the reference. All trends 

discussed for vertical excitation energies are also reflected in the adiabatic excitations. Errors of both 

vertical and adiabatic triplet excitation energies differ less than corresponding singlet excitation energy 

errors. This could result from the more contracted nature of the triplet state,813,490 which permits only 

small variations of the electron density as a function of the method. As it was the case for vertical 

singlet excitation energies, a linear dependence between adiabatic singlet excitation energies and the 

amount of exact exchange is found. Moreover, in a similar way to vertical excitations, deviations of 

adiabatic singlet excitations become increasingly negative with increasing ground-state polarity. In 

most cases, adiabatic TDA singlet excitation energies are larger than TD-DFT energies by approximately 

0.20 eV. The smallest average errors in the TD-DFT/TDA framework are obtained with M06-2X (-0.12 

eV/0.11 eV), ωB97X-D (-0.04 eV/-0.19 eV), CAM-B3LYP (-0.09 eV/0.14 eV), and SOGGA11X (-0.20 

eV/0.00 eV). This agrees with Mennucci et al.724 who found that M06-2X and CAM-B3LYP provide very 

accurate adiabatic excitation energies of solvated organic molecules. Minimal signed errors for triplet 

energies in the Δ-SCF/TDA framework are encountered with the same functionals, but much alike 

vertical triplet excitation energies, a systematic underestimation is found (M06-2X: -0.07 eV/-0.11 eV; 

ωB97X-D: -0.22 eV/-0.15 eV; CAM-B3LYP: -0.20 eV/-0.19 eV; SOGGA11X: -0.20 eV/-0.17 eV). Moreover, 

the systematic underestimation becomes more pronounced with increasing polarity of the systems so 

that the largest errors are found for the most polar molecules, i.e, for the merocyanines. 

Jacquemin et al. also highlighted the systematically underestimated adiabatic triplet excitation 

energies of TD-PBE0 in a recent benchmark on triplet excited-state geometries.723 In accordance with 

the results in Figure 23, they found that the underestimation was alleviated when using M06-2X 

instead of PBE0. Durbeej et al. raised the question whether errors for vertical singlet excitation 

energies significantly differ from their adiabatic analogs.814 According to their benchmark results, this 

is not the case, which is also reflected in the findings for singlet excitations in Figure 23 and Figure 21: 

as already mentioned, vertical and adiabatic singlet excitation energies show similar trends and errors. 

Furthermore, the existence of only small differences between vertical and adiabatic excitation energies 

is equally found for triplet excitation energies (Figure 23, Figure 22). 
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Figure 23: Mean signed errors for adiabatic singlet and triplet excitation energies obtained with DFT 
functionals/HF and cc-pVDZ basis sets. The black and grey deviations for M06-2X triplet excitations are positive. 
Reproduced with permission from 758. © 2016 Elsevier B.V. 

Since singlet fission is known to occur on an ultrafast timescale,537 both vertical and adiabatic singlet-

triplet gaps, i.e., the vertical and adiabatic S1-T1 energy difference, can influence its energetic 

feasibility: only if the singlet energy is at least twice as high as the triplet, singlet fission is possible.533 

A selection of promising candidates based on computations thus requires accurately predicted gaps. 

Vertical singlet-triplet gaps are obtained from the calculated singlet and triplet excitation energies. 

They are discussed next (Figure 24). Because of the existence of several formulations (TD-DFT, Δ-SCF, 

TDA), different protocols are employed to compute vertical singlet-triplet gaps. Most obviously, 

singlet-triplet gaps can be calculated as difference between adiabatic linear-response TD-DFT 
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excitation energies. Results are indicated with “lr-lr” (=linear response) in Figure 24 (blue error bars). 

If TDA or Δ-SCF triplet excitation energies are employed instead of TD-DFT triplet excitations, resulting 

gaps are denoted either with “lr-TDA” (green error bars, Figure 24) or with “lr-gs” (gs: ground state; 

pink error bars, Figure 24). Finally, also TD-DFT singlet excitation energies can be replaced by their 

corresponding TDA values, yielding the “TDA-TDA” protocol for which TDA triplet excitation energies 

are used (black error bars, Figure 24). The performance of a variety of functionals with these different 

protocols has yet not been investigated. 

As could be expected from the above discussed accuracies of singlet and triplet excitation energies, 

M06-2X, ωB97X-D, CAM-B3LYP, and SOGGA11X provide reliable singlet-triplet gaps when TD-DFT 

singlet excitation energies are used in conjunction with either TDA or Δ-SCF triplet energies (M06-2X: 

0.19 eV/0.17 eV; ωB97X-D: 0.23 eV/0.21 eV; CAM-B3LYP: 0.25 eV/0.21 eV; SOGGA11X: 0.19 eV/0.19 

eV). Since TDA singlet excitation energies become less accurate, i.e. more overestimated, with 

increasing ground-state polarity, the quality of “TDA-TDA” singlet-triplet gaps deteriorates in this 

direction. For the same reasons, the TDA-TDA protocal is rather reliable for singlet-triplet gaps of 

apolar substances as can be seen from “TDA-TDA” average errors that are generally smaller than 0.20 

eV for all local and hybrid functionals, a point addressed to some extent by Wu et al. who calculated 

TDA singlet-triplet gaps of several hydrocarbons.810 For all protocols, errors are largest for polar 

substances. This is to be expected from the above outlined particularly severe underestimation of 

triplet excitation energies for polar substances. 

Error differences between different functionals are smaller for singlet-triplet gaps than for individual 

singlet/triplet excitation energies. For instance, the error for the singlet-triplet gap in the “lr-TDA” 

scheme of M06-2X amounts to 0.19 eV, whereas it is 0.28 eV for M06-L. However, the error of M06-

2X triplet excitation energies in the TDA scheme is 0.16 eV, whith M06-L triplet excitation energies 

having an almost three-fold error of 0.40 eV. In a similar way, the errors of singlet excitation energies 

of M06-2X and M06-L are -0.06 eV and -0.51 eV, respectively. 

These smaller performance differences of different functionals for singlet-triplet gaps arise from error 

cancelations if TD-DFT singlet excitation energies are combined with TDA or Δ-SCF triplet energies. 

Pure functionals with too small singlet excitation energies259 usually underestimate triplet excitation 

energies as well. Therefore, the respective errors mutually cancel when taking differences, and mean 

singlet-triplet errors increase by only 0.10 eV when passing from hybrid to pure functionals. 

Furthermore, few differences exist among different hybrid functionals, which becomes evident from a 

comparison of PBE0 and B3LYP errors with results obtained with SOGGA11X (errors of the TDA/Δ-SCF 

protocol: PBE0: 0.20 eV/0.20 eV; B3LYP: 0.21 eV/ 0.23 eV; SOGGA11X: 0.19 eV/0.19 eV). The 

compensation of errors is even more pronounced for adiabatic singlet-triplet gaps. These findings 
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coincide well with the investigations of Nguyen et al. who simply used B3LYP to calculate singlet-triplet 

gaps of chromophores with nonlinear absorption properties and obtained values in good accordance 

with experimental data.808 

 

Figure 24: Mean absolute error for vertical singlet-triplet gaps obtained with DFT functionals/HF employing cc-
pVTZ basis sets (TDA: cc-pVDZ). The “S-T error” refers to the averaged error for the singlet-triplet gap. 
Reproduced with permission from 758. © 2016 Elsevier B.V. 
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Before analyzing the failure of DFT for triplet excitation energies and corresponding singlet-triplet gaps 

in more detail, a brief overview over results obtained with wave-function based approaches is given 

(Figure 25). Mean signed errors for vertical singlet and triplet energies are shown in the first and 

second panels, respectively. The third panels dispose signed errors for singlet-triplet gaps while 

absolute errors can be found in the fourth panels. An analysis specific for the compound classes is 

given on the left-hand side whereas average values are shown on the right. All values are obtained 

within the linear-response formalism.  

 

Figure 25: Mean signed errors of wave-function based methods for vertical singlet excitation energies (first 
panels), vertical triplet excitation energies (second panels), and vertical singlet-triplet gaps (third panel). Mean 
absolute errors for vertical singlet-triplet gaps are shown in the fourth panels. The cc-pVTZ basis sets were 
employed in all linear-response calculations. The error cancelation between singlet and triplet excitation energy 
errors is highlighted. To stress the fundamentally different behavior of CIS, its performance is colored in blue. 
Adapted with permission from 758. © 2016 Elsevier B.V. 
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Equal trends are found for singlet and triplet excitation energies. In order to emphasize only these 

important trends, arrows were inserted into Figure 25. As discussed above,702 spin-component scaling 

decreases the errors of CC2 and ADC(2) while it deteriorates results for CIS(D)-based methods. This 

applies also to the SOS treatment of CIS(D) excitation energies. This effect is indicated with green 

arrows for both singlet and triplet excitation energies (Figure 25). Furthermore, another point already 

addressed above recurs: singlet and triplet excitation energies computed with CC2 are larger than 

corresponding ADC(2) values, emphasized by red arrows in Figure 25. While CC2 and ADC(2) methods 

deliver rather accurate excitation energies, all values are blue-shifted in CIS(D). However, as CIS(D) 

errors for excitations with different multiplicity are almost equal, errors cancel for singlet-triplet gaps 

that are consequently very accurate. Purple boxes in Figure 25 underline this error compensation. 

ADC(2) and CC2 singlet-triplet gaps are also very accurate which is, however, not the result of a 

fortuitous error compensation but rather relies on correct individual singlet and triplet excitation 

energies. The fact that highly similar errors for singlet-triplet gaps are obtained with all wave-function 

based methods is marked with ocher boxes in Figure 25. Moreover, most notably and in contrast to 

DFT, errors of wave-function based methods for different compound classes are almost equal. This 

indicates that the wave-function based approaches provide a balanced and unbiased description of 

singlet-triplet gaps for all molecular classes. An essentially correct description of singlet-triplet gaps, 

yet only in cyanines, by wave-function based approaches was also found by Le Guennic and 

Jacquemin.727  

It becomes most evident from the analysis of the results in Figure 25 that all wave-function methods 

behave very similarly with the exception of CIS. Large signed errors of 0.65 eV are obtained for CIS 

singlet excitation energies. In contrast, CIS triplet excitation energies are too low with a signed error 

of almost -0.30 eV, which gives rise to severely overestimated singlet-triplet gaps with an absolute 

average error of 0.92 eV.  

In a recent investigation on low-lying π-π* excitations in organic π-conjugated molecules, Corminbœuf 

and Jacquemin and coworkers suggested to use CIS and CIS(D) excitation energies to identify singlet 

excited states where differential correlation – included in CIS(D) via the perturbative doubles and left 

aside in CIS – is significant.172 Assuming that this similarly applies to triplet states, a comparison of CIS 

and CIS(D) suggests that the implications of the inclusion of dynamic correlation qualitatively differ for 

excited states of different spin multiplicity. Whereas CIS and CIS(D) errors of singlet excitation energies 

have equal signs and are of the same order of magnitude at least for apolar substances (CIS(D): 0.21 

eV; CIS: 0.43 eV), corresponding errors of triplet excitation energies are larger and of opposite sign 

(CIS(D): 0.31 eV; CIS: -0.46 eV). The concept that a correct description of the dynamic correlation is of 

major importance for accurate singlet-triplet gaps is further supported by the high accuracy of those 
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methods that are known to efficiently cover dynamic correlation phenomena,172 i.e., by CC2 and 

ADC(2) methods. 

 

Figure 26: Hybrid and meta hybrid functionals constructed by Truhlar et al. and B3LYP. The DFT exchange 
(changes indicated with red arrows), correlation (changes indicated with green arrows) and the HF exchange 
(changes indicated with blue arrows) are varied in a systematic manner. Starting from MPWB1K (center top) the 
modified part is indicated in bold. For references see 815 for an overview and 707,712,816 (BB1K), 712,817,816 (MPWB1K), 
817,818 (MPW1K), 707,712 (B1B95), 712,817,816 (MPW1B95), 712,819,820,821,822 (MPWCIS1K), 708,817,816 (MPWLYP), 
712,819,820,821,822 (MPWCIS). 

Keeping these conclusions from wave-function based approaches in mind, the erroneous singlet-triplet 

gaps of DFT are analyzed more in detail since the situation for DFT seems to be more complicated. As 

outlined above, exact exchange has clear-cut effects on singlet excitation energies, but triplet 

excitations vary unsystematically with the amount of exact exchange and are often underestimated. 

To gain more insight, singlet and triplet excitation energies are calculated for all molecules with a series 

of hybrid and meta hybrid functionals of Truhlar and coworker815 where the amount of DFT and HF 

exchange and the DFT correlation is systematically varied (Figure 26). A color code is employed to 

underline this systematics, i.e., blue arrows and colors indicate modifications of the amount of exact 

exchange, red arrows and colors highlight changes of the DFT exchange functional, and green arrows 

and text stand for the replacement of the DFT correlation functional. See reference815 for more 

information on the functionals.  

The influence of the amount of exact exchange on singlet and triplet excitation energies is analyzed 

first. TDA singlet and triplet excitation energies calculated with all functionals from Figure 26 are 

correlated with the amount of exact exchange included in the respective functionals. The correlations 

are displayed for two representative compounds, anthracene and MD353, in Figure 27. All other 

correlations can be found in 758. They dispose similar tendencies. It is evident from the plots that a 

linear dependence between the singlet excitation energies and the amount of exact exchange exists 

(blue lines, Figure 27). As stated above, this very clear-cut correlation between the HF amount of a 
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functional and its excitation energies is widely exploited in IP-tuning.127,160 Moreover, it simultaneously 

implies that since singlet excitation energies depend linearly on the amount of exact exchange of 

functionals constructed from different exchange and correlation parts (coefficients of determination = 

R²-value > 95%), they necessarily cannot significantly depend on the exact form of these exchange and 

correlation parts. 

 

Figure 27: Correlation of singlet and triplet excitation energies with the amount of exact exchange (TDA 
formulation). The TDA formalism is used due to its computational efficiency. For a demonstration that the same 
correlations are found for TD-DFT, see Figure 28 and text. Reproduced with permission from 758. © 2016 Elsevier 
B.V. 

In contrast, the dependence of the triplet excitation energies on the amount of exact exchange differs 

as a function of the molecule (Figure 27): on the one hand, triplet excitation energies in anthracene do 

not systematically vary with the amount of exact exchange (pink line, left panel, Figure 27, R²-value: 

7%). On the other hand, a linear dependence on the amount of HF exchange is found for triplet 

excitation energies in MD353 (pink line, right panel, Figure 27; R²-value: 98%), similar to the one 

observed for singlet excitation energies (blue line).  

To further illustrate this point, the amount of exact exchange of a given functional is systematically 

varied (instead of employing different functionals to vary the amount of HF exchange). Using the B3LYP 

functional in a first step, Figure 28 displays the evolutions of singlet and triplet excitation energies with 

increasing HF exchange of anthracene (upper left panel), the diketopyrrolopyrrole (lower left panel), 

MD353 (upper right panel), and HB194 (lower right panel). Different DFT formalisms (TD-DFT, TDA, Δ-

SCF) are used for anthracene. A comparison of resulting TDA and adiabatic linear-response TD-DFT 

singlet excitation energies (upper left panel, Figure 28) shows that the dependence on the amount of 

exact exchange does not differ for different DFT formulations. This similarly holds for triplet excitation 

energies, for which TDA and Δ-SCF results are given. Please keep in mind that adiabatic TD-DFT triplet 

excitation energies are negative for larger amounts of HF exchange due to the existing triplet 

instabilities.  
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Figure 28: Correlation of singlet excitation energies (blue lines) and triplet excitation energies (pink lines) with 
the amount of exact exchange using functionals constructed from B3LYP for four different molecules. For 
additional comparison, the linear-response singlet and the Δ-SCF triplet excitation energies for anthracene are 
given, disposing equal tendencies. 

With regard to the influence of the amount of exact exchange, similar effects to the Truhlar functionals 

in Figure 27 are observed:qqq singlet excitation energies linearly depend on the amount of exact 

exchange included in the underlying B3LYP-based functional. The extent of changes induced when 

increasing the exact exchange is molecule-specific. Increasing the amount of HF exchange by 60% 

increases the lowest π-π*-transition energy by 0.6 eV (anthracene), 0.4 eV (diketopyrrolopyrrole), 0.3 

eV (MD353), and 0.8 eV (HB194). The merocyanines’ triplet excitation energies equally depend in a 

linear way on the amount of exchange, albeit less strongly (smaller slopes of pink lines). In contrast, 

TDA triplet excitation energies for anthracene and the diketopyrrolopyrrole do not increase with more 

exact exchange included in the functional. The evolution of the pyrrole’s triplet transition energy 

essentially corresponds to a flat line, while a slightly descending line is obtained for anthracene, which 

might, however, result from approaching triplet instabilities. Altogether, this perfectly mirrors the 

above observations for the Truhlar functionals (Figure 27). 

                                                             
qqq It is worth emphasizing that these findings are not completely equivalent because several parameters (HF 
exchange, DFT exchange, DFT correlation) are varied for the Truhlar functionals (Figure 27) whereas in Figure 28, 
only the HF amount of B3LYP is modified. The DFT exchange-correlation part remains the same. 
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Apart from directly changing the amount of exact exchange in conventional hybrid functionals, 

adjusting the range-separation parameter ω in range-separated hybrids constitutes another route to 

systematically vary the exact exchange comprised in functionals.782,823 As outlined by Baer and 

coworkers, this strategy is of large utility to describe optoelectronic effects in a DFT framework.160 In 

contrast to the amount of HF exchange of a hybrid that offers no direct interpretation, the range-

separation parameter is, as already mentioned, intimately related to the delocalization of the electron 

density:782 its reciprocal value can be interpreted as the length scale of the state’s charge-transfer 

character. The progression of ωB97X-D singlet and triplet excitation energies with increasing range 

separation parameter (i.e., the charge-transfer length scale is shortened) is shown in Figure 29. Overall, 

effects are equivalent to those observed for hybrids with a variable amount of exact exchange (Figure 

29 vs. Figure 27/Figure 28). Singlet excitation energies (blue lines) of the two molecules expose slightly 

different tendencies. Whereas a threshold value for the range separation parameter exists above 

which the singlet excitation energy of anthracene saturates, this is not the case for MD353. However, 

more importantly and in contrast to their triplet counterparts, the singlet excitation energies for both 

molecules experience a considerable blue shift for larger values of ω. The behavior of triplet excitation 

energies as a function of ω is again molecule-specific. While the triplet excitation energy of MD353 

systematically increases with increasing ω, this is not the case for anthracene. Its triplet excitation 

energy barely changes, with a slight blue shift for small ω values followed by a red shift for larger ω 

values. With regard to the excited-state delocalization that is reflected in ω, the different dependence 

of triplet excitations on ω suggests that fundamental differences exist between the molecules’ triplet 

excited-state (de)localization.  

 

Figure 29: Correlation of singlet excitation energies (blue lines) and triplet excitation energies (pink lines) with 
the range-separation parameter of ωB97X-D for two different molecules. 

Hence, two important conclusions can be drawn from the results presented in Figure 27 to Figure 29: 
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1. All singlet excitation energies rise if the amount of exact exchange of a functional increases. 

This applies both for different functionals differing among other things in their amount of exact 

exchange and for tuned functionals where only the percentage of exact exchange is varied. 

2. Triplet energies show for some molecules a linear dependence on the amount of exact 

exchange of a functional as well. For others, they do not increase with the amount of exact 

exchange at all. Upon increasing the amount of exact exchange, they spread randomly for 

functionals with different exchange-correlation kernels, and they give rise to flat lines for a 

given exchange-correlation functional. 

To further elucidate the molecule-specific behavior of triplet excitation energies, an electronic-

structure parameter is identified on the basis of literature findings that is related to triplet energies 

and resulting singlet-triplet gaps. It will be used to organize the following discussion. According to Michl 

and coworker, the MO exchange integral between the HOMO and the LUMO of a system contributes 

most to the stabilization of a triplet state compared to the corresponding singlet state.533 This exchange 

integral is large if the HOMO and LUMO densities are localized on the same atoms. Therefore, it 

increases whenever the product density between the HOMO and the LUMO increases. As a first 

approximation, this product density can be employed to estimate the stabilizing exchange interactions. 

The product density 𝑆𝐻∙𝐿 can be expressed in terms of expansion coefficients {𝑐𝑖} of the molecular 

orbitals {𝜑𝑖}  in the atomic basis set and overlap integrals 𝑆𝑖𝑗  between two basis functions 𝑖 and 𝑗: 

𝑆𝐻∙𝐿 = ∫ 𝑑𝑟1𝜑𝐻∙𝐿(𝑟1)𝜑𝐻∙𝐿(𝑟1) = ∑ ∑(𝑐𝑖
𝐻𝑂𝑀𝑂𝑐𝑖

𝐿𝑈𝑀𝑂)(𝑐𝑗
𝐻𝑂𝑀𝑂𝑐𝑗

𝐿𝑈𝑀𝑂)𝑆𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 
(442) 

 

Calculations of 𝑆𝐻∙𝐿 were implemented with C++ using the ouput of Gaussian09718. 

The product density 𝑆𝐻∙𝐿 will be used as the electronic-structure parameter to organize the following 

discussion. Since it quantifies the amount by which the HOMO and the LUMO charges overlap, it will 

be designated as the charge overlap density in the following. Although it will be used to analyze the 

molecule-dependent behavior of triplet energies, it is important to keep in mind that it was derived to 

estimate singlet-triplet gaps. In this context, it should be noted that other rationales for singlet-triplet 

gaps based on the absolute overlap824 or on the overlap between natural transition orbitals278,825 exist 

as well. 
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Figure 30: Calculated M06-2X charge overlap densities for all molecules arranged with decreasing size (upper 
panel) and correlation with the MS-CASPT2/cc-pVTZ singlet-triplet gaps (lower panel). Reproduced with 
permission from 758. © 2016 Elsevier B.V. 

Before continuing the analysis of triplet excitation energies, it should be verified whether the charge 

overlap densities indeed correlate with corresponding singlet-triplet gaps. For this purpose, charge 

overlap densities calculated for all molecules with M06-2X-D3/cc-pVDZ are given in Figure 30. To rule 

out any functional-specific influence, BLYP-D3/cc-pVDZ values for 𝑆𝐻∙𝐿 were calculated for comparison 

(Table 12), but the influence of the functional turned out to be negligible. 

Table 12: Comparison of BLYP-D3 and M06-2X charge overlap densities.  

molecule BLYP-D3/cc-pVDZ M06-2X-D3/cc-pVDZ 

anthracene 0.0364 0.0363 

pyrrole 0.0140 0.0131 

DIP 0.0112 0.0104 

dithiophene 0.0177 0.0178 

HB194 0.0166 0.0162 

MD353 0.0232 0.0217 

pentacene 0.0293 0.0298 

rubrene 0.0305 0.0323 

squaraine 0.0110 0.0137 

tetracene 0.0322 0.0324 

"triamine" 0.0060 0.0058 

"trial" 0.0094 0.0080 

"trimet" 0.0041 0.0063 
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Figure 30 shows that the charge overlap densities vary in a characteristic way as a function of the 

molecular structure, giving rise to a rearrangement of the employed compounds (Figure 5) into five 

different groups (colored boxes, first panel, Figure 30). Moreover, the correlation between the 

computed charge overlap densities and the MS-CASPT2 singlet-triplet gaps (second panel, Figure 30) 

demonstrates that the charge overlap densities are indeed related to the size of the singlet-triplet 

gaps. Alternant linear acenes possess the largest charge overlap densities, which are smaller for non-

alternant hydrocarbons. Similarly, particularly large singlet-triplet gaps are obtained for acenes, while 

DIP and the dithiophene compound possess smaller gaps. Rather large charge overlap densities and, 

concomitantly, rather high singlet-triplet gaps are also obtained for the merocyanines, which could be 

considered as “polarized polyenes”. In fact, some polyene-like structures are known to undergo 

singlet-fission, which requires large exchange interactions in the triplet excited state. Large singlet-

triplet gaps are necessary to fulfill the most fundamental condition for singlet fission, i.e., 𝑆1 ≥ 2𝑇1.826 

The donor-acceptor-donor-type compounds have smaller, yet still noticeable charge overlap densities, 

while the latter almost completely diminish for triphenylamine-based compounds. This arises from the 

three-dimensional structure of the triphenylamine moiety, resulting in barely overlapping orbitals. This 

goes along with vanishing singlet-triplet gaps in triphenylamine-based molecules and slightly larger 

gaps in donor-acceptor-donor compounds (second panel, Figure 30). In addition to the charge overlap 

density, these five groups (highlighted in Figure 30) are used to organize the following discussion. It 

should be kept in mind that the regrouping is equivalent to the above introduced polarity classification 

(Figure 5), but further differentiates it.  

 

Figure 31: Correlation between the R² values from the relationship between triplet excitation energies and HF 
exchange for the series of functionals of Truhlar and coworker and the calculated charge overlap density. 
Reproduced with permission from 758. © 2016 Elsevier B.V. 

The molecule-dependent influence of the amount of exact exchange on the triplet excitation energies 

can be quantified by means of the coefficients of determination of the correlation, the R²-value. These 

R²-coefficients for the correlation between triplet excitation energies obtained with the Truhlar 
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functionals (similar to Figure 27) and the amount of exact exchange are calculated for all molecules 

and plotted versus the charge overlap density in Figure 31. It becomes evident (Figure 31) that the 

charge overlap density determines the influence of the amount of HF exchange on the triplet excitation 

energy. Whenever the HOMO and the LUMO barely overlap, i.e., if they localize on different molecular 

entities, the amount of HF exchange becomes decisive. Therefore, singlet-triplet gaps can be tuned by 

adjusting the amount of HF exchange/the range-separation parameter for the limiting case of small 

charge density overlaps. This result is in line with numerous investigations where IP-tuning was 

successfully employed to calculate singlet-triplet gaps of TADF compounds, for example by Brédas et 

al.827, Adachi et al.828 and Gierschner et al.829 Small charge overlap densities are a common feature of 

all employed TADF compounds because a prerequisite for the occurrence of TADF is precisely a small 

spatial HOMO-LUMO overlap (although the decisive role of the small spatial HOMO-LUMO overlap for 

the applicability of IP-tuning was not pointed out in these investigations).830 

In contrast, no clear-cut relationship between the amount of exact exchange and the triplet excitation 

energies is observed for all compounds with large charge overlap densities, i.e., for substances where 

the HOMO and the LUMO are predominantly situated on the same molecular entities. The R² 

coefficients are smaller than 50% especially for acenes, but also for non-alternating hydrocarbons and 

substances with a donor-acceptor-donor structure. This agrees nicely with an investigation of Niehaus 

et al.831 who did not find a systematic improvement of triplet excitation energies with tuned 

functionals. They concluded from a detailed orbital analysis that different functionals result in different 

localization behaviors of the triplet states.831 This conclusion parallels the results from Figure 29. Please 

note that in Figure 31, the merocyanine MD353 does not fit into the general trend, wherefore it is 

circled in red. This could be due to above-addressed intrinsic errors of DFT for cyanine dyes and related 

compounds.791 

To further understand these molecule-specific effects of an increase in exact exchange, spin densities 

of the triplet states of all molecules are analyzed. They are calculated with HF and the pure BLYP 

functional, i.e., a functional without any exact exchange. Furthermore, difference densities (i.e., 

∆𝜌𝑠𝑝𝑖𝑛 = 𝜌𝑠𝑝𝑖𝑛(𝐻𝐹) − 𝜌𝑠𝑝𝑖𝑛(𝐵𝐿𝑌𝑃)) are calculated. Results are shown in Figure 32. 
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Figure 32: HF spin densities (left), BLYP spin densities (center, and difference densities (right) for all molecules. 
Rubrene behaves identically to tetracene. Reproduced with permission from 758. © 2016 Elsevier B.V. 

The first three rows (Figure 32) illustrate HF and BLYP spin densities as well their difference density for 

the acenes. Please note that rubrene behaves exactly like tetracene. While the BLYP spin densities are 
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more evenly spread across all atoms, HF tends to localize the total spin on the center atoms of the 

acenes (see the larger HF coefficients for anthracene, tetracene, and pentacene in the center rings 

compared to BLYP). Similarly, the difference density between the two spin densities is always located 

on these center atoms. This shows that an increase in exact exchange leads to a localization of the 

spins of the triplet states in the center regions of acenes. This triplet-state localization is in line with 

the above-observed saturation of triplet excitation energies when increasing the range-separation 

parameter ω (Figure 29). Upon reaching a certain threshold, a further localization of the triplet is not 

possible so that its density and energy cannot noticeably change anymore. 

For non-alternant hydrocarbons, the situation is qualitatively similar. Peak HF spin densities in the 

dithiophene are found on the central benzene ring, while BLYP attributes slightly more spin density to 

the outer thiophene rings. Nevertheless, from the spin difference density of the DIP molecule, it can 

already be seen that HF tends to localize the spin more on the periphery of the perylene core. Since 

no spin density is found for either method on the outer rings (although the HOMO and LUMO of the 

neutral molecule are non-zero in this region), it can be concluded that HF tends to localize the spin in 

the center region of the molecules, albeit to a smaller extent than in the acenes. 

This picture changes progressively when passing to donor-acceptor-donor molecules (the squaraine 

and the diketopyrrolopyrrole) and donor-acceptor molecules. Comparing the HF and BLYP spin 

densities of the diketopyrrolopyrrole, it is evident that HF predicts a significant amount of spin density 

on the outermost benzofurane moieties, while the spin is more or less delocalized across the central 

diketopyrrolopyrrole scaffold according to BLYP. Also in the squaraine, the HF spin density is 

significantly more pronounced on the outer aniline substituents. In line with this, the spin difference 

densities for the diketopyrrolopyrrole and the squaraine are spread over the complete molecules and 

possess pronounced peaks on the outer donating groups. The different localization behavior of the 

triplet states, also observed by Niehaus et al.,832 can be rationalized in this case by the fact that due to 

the donor-acceptor-donor structure, the triplet states acquire local charge-transfer character. This 

means that the parallel spins are situated on different moieties of the molecules. Correspondingly, 

static correlation, i.e., left-right correlation, becomes an issue. Evidently, it is somewhat included in 

the unrestricted Kohn-Sham formalism. Moreover, it has been pointed out that DFT exchange – and 

not DFT correlation – is response for static correlation, and that a fraction of exact exchange is useful 

to accurately include static correlation.112,833,834 As a pure functional with a completely local exchange 

hole, BLYP does not properly describe static correlation. Thus due to the absence of non-local 

exchange, it seems to be incapable of describing the distribution of the spin density over remote 

moieties. Consequently, it is found that for triplet states with charge-transfer character, HF possesses 

a more widely spread spin density while still localizing the individual spins to a larger extent 
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(contracting the density). An analysis of the spin densities of the merocyanines leads to the same 

conclusions. Differences become even more distinct. The BLYP spin density of HB194 is delocalized 

over the bridge between the donating and the accepting moiety. In contrast, most spin density is found 

for HF on both the donor and the acceptor, and no HF spin density smearing in the bridge occurs. 

Similar effects are observed for MD353. Hence functionals with more HF exchange describe the triplet 

states in merocyanines in terms of two separate barely interacting spins (except for static correlation). 

Considering only the spin separation, the HF triplet state is more delocalized. 

Such delocalized HF triplet states are most pronounced for the triphenylamine-based compounds. 

While the BLYP spin density is centered on the central nitrogen atom and its vicinity, it spreads across 

all substituents for HF. No BLYP spin density is observed on the outer benzene rings of the biphenyl 

substituents in the triphenylamine, where the HF spin density reaches its maximum values. This applies 

also to the methoxy-substituted phenyl rings of the donor-substituted triphenylamine and to the 

conjugated-aldehyde moiety of the acceptor-substituted triphenylamine. 

The presented analysis of the spin densities allows for the conclusion that the amount of exact 

exchange changes the triplet description in a way that depends on 𝑆𝐻∙𝐿, i.e., on the spatial HOMO-

LUMO overlap. If the latter is significant, HF describes the triplet states as being more localized in the 

center regions of the molecule than BLYP. With decreasing spatial HOMO-LUMO overlap, i.e., with 

increasing charge-transfer character, static correlation becomes an issue. It is well-known that DFT 

exchange, possibly with some amount of exact exchange,112,833,834 accounts for static correlation.97 

Therefore, the individual spins separate more with an increasing amount of HF exchange, while they 

still tend to be localized in the same molecular regions in a BLYP treatment – albeit being smeared due 

to the intrinsic tendency of pure functionals to delocalize charges. 

The observed different localization/delocalization behavior of the triplet states readily explains the 

different influence of exact exchange on their energies. As mentioned above, the energetic 

stabilization of triplet states arises predominantly from favorable exchange interactions between the 

parallel spins. On the one hand, if more HF exchange delocalizes the spins, i.e., positions them on 

different molecular entities as it is the case for molecules with small charge overlap densities, the 

exchange contribution to the triplet state diminishes. As a consequence, triplet energies rise. It is worth 

noting that additional destabilizing energy contributions result from the more contracted wave 

functions as described with HF.835,836 On the other hand, with larger amounts of exact exchange, the 

parallel spins in acenes are increasingly situated within the same molecular regions. This increases 

stabilizing exchange interactions. However, destabilizing energy contributions from the more 

contracted wave function counterbalance the exchange stabilization, leading to more or less 

unchanged triplet energies.  
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After this analysis of exchange, the role of correlation is tackled next. A possible influence of dynamic 

correlation on triplet energies was already suggested above from the differences between CIS and 

CIS(D) singlet-triplet gaps. The influence of differential correlation on excited-state energies is a 

research area of ongoing discussions. As mentioned above, according to Autschbach,782,791 

underestimated triplet energies in cyanines result from a wrong treatment of the differential 

correlation combined with overshooting exchange interactions. In view of this deficiency, Grimme and 

Neese136,181 outlined that the DFT description of differential correlation can be improved by including 

MP2-type correlation into double hybrid functionals. To test whether this different treatment of 

differential correlation influences triplet excitation energies, triplet excitation energies (Δ-SCF) were 

calculated with two double hybrids, B2PLYPD3137,715,716 and mPW2PLYPD137 in combination with the cc-

pVTZ basis sets. Figure 33a shows the relationship between triplet excitation energies obtained with 

the double hybrid functionals and the MS-CASPT2 reference energies (upper plots). It becomes evident 

that these triplet excitation energies correlate very well with the reference values with coefficients of 

determination larger than 99% for most compounds summarized as “normal” compounds. The only 

exceptions are three push-pull systems (MD353, aldehyde- and methoxy-substituted triphenylamine), 

indicated as “charge-transfer compounds”. As MD353 was already an outlier in previous discussions 

(Figure 31), the error might result from an intrinsically wrong DFT description of these compounds. 

Apart from that, the double hybrid functionals deliver very accurate triplet excitation energies for all 

other compounds rather than systematically underestimated values as found for other functionals.  

To further illustrate this aspect, Figure 33b shows a comparison of B2PLYPD3 triplet excitation energies 

with values obtained with BHLYP. B2PLYPD3 triplet excitation energies are always considerably larger 

than their BHLYP counterparts (Figure 33b). Because of the very similar amounts of HF exchange 

(BHLYP: 50% vs. B2PLYPD3136: 53%) and the same DFT exchange part of the functionals, the differences 

in excitation energies necessarily result from differences in the differential correlation treatment. This 

suggests that many DFT functionals predict too low excitation energies because they provide an 

inadequate description of the differential correlation between the ground and the triplet excited 

states. 
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Figure 33: a) Comparison of triplet excitation energies with double hybrid functionals to MS-CASPT2 reference 
values. The offset for the charge-transfer compounds could be due to the intrinsic “cyanine error” of DFT. b) 
Assessing the contribution of the MP2 correlation energy to triplet excitation energies by comparing BHLYP and 
B2PLYPD3 Δ-SCF triplet energies. Reproduced with permission from 758. © 2016 Elsevier B.V. 

Local correlation in the correlation part of DFT functionals is usually included in a spin-dependent 

manner, and different functionals cover the same-spin and the opposite-spin correlation in different 

manners.837,838,839 For instance, local same-spin correlation is ignored in the LYP correlation 

functional,708 while the B95 correlation functional712 accounts for both the same- and the opposite-

spin correlation. Perdew and Burke outlined that the differences in the description of local same-spin 

and opposite-spin correlation have among others important implications for the description of spin 

polarization and localization.840 Differences between the local same-spin and opposite-spin correlation 

are also introduced by the SCS correction in wave-function based methods that was shown to improve 

ADC(2) and CC2 results for triplet excitations (see above). 761,71 An equivalent of the SCS coefficients 

has recently been successfully incorporated into DFT functionals to improve the performance of 

double hybrid functionals.43,841,842  

In a similar way and in view of the potential impact of differential correlation on triplet energies, it 

would be interesting to analyze how scaling the amount of same-spin and opposite-spin local 

correlation affects calculated singlet and triplet energies. As a first step, equal scaling coefficients for 
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both correlation effects are employed. This implies that the scaling coefficient of the total local 

correlation is increased. 

 

Figure 34: Dependence of the TDA singlet excitation energies (dashed lines and squares) and TDA triplet 
excitation energies (continuous lines and triangles) for anthracene on the local correlation coefficients. 
Reproduced with permission from 758. © 2016 Elsevier B.V. 

The data in Figure 34 reveal the general trend that increasing local correlation coefficients raises triplet 

energies and leaves singlet energies largely unchanged. On the one hand, this indicates that local 

correlation is similar between the ground state and singlet excited states, i.e., between states of the 

same multiplicity. On the other hand, local correlation obviously differs considerably between the 

singlet ground state and excited triplet states. This agrees well with the above-discussed results that 

the incomplete treatment of differential correlation between the singlet ground state and triplet 

excited states accounts for underestimated DFT and CIS triplet excitation energies. As soon as more 

local correlation is included, either via the inclusion of double excitations in double hybrids and CIS(D) 

or via an upscaling of the local correlation, triplet energies raise.  

Finally, this raises the question whether it is possible to design functionals accurately describing both 

singlet and triplet excitation energies. In view of the observations that variations of the amount of local 

correlation influences triplet excitation energies while adjusting the amount of exact exchange 

primarily affects primarily singlet excitation energies, this seems feasible. Therefore, varying both 

parameters (i.e., the amount of HF exchange and the local correlation coefficient) independently can 

be expected to yield functionals reliably predicting singlet and triplet excitation energies and, with this, 

singlet-triplet gaps. To design such functionals, DFT excitation energies were fitted to the MS-CASPT2 

benchmark values using the local correlation coefficient and amount of exact exchange/the range-

separation parameter as the two fit parameters. In the fitting procedure, both fit parameters were 
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independently varied in steps of 0.5 (local correlation coefficient) or 2.5% (HF exchange)/0.025 Bohr-1 

(range-separation parameter). Depending on the nature of the functional, i.e., on the nature of the 

correlation part, different scaling factors for the amount of local correlation were obtained (Table 13). 

As ωB97X-D and BHLYP provide rather accurate singlet excitation energies, the amount of HF exchange 

was left unchanged. The fit parameters, i.e., the local correlation coefficients and the amount of exact 

exchange, are shown in Table 13. Optimal values differ slightly for different molecules.  

Table 13: Optimal fit parameters for the range separation parameter ω to obtain optimal singlet (S) and triplet 
(T) TDA excitation energies, for the HF amounts, and for the local correlation coefficients c(corr) as a function of 
the molecules. “ni” indicates that tuning the range-separation parameters or the amount of exact exchange does 
not improve (“ni” = “not improved”) the corresponding excitation energies. The coefficient for the local 
correlation in standard functionals is 1. The reader is referred to 758 for more details. 

 ωB97X-D PBE0 B3LYP BHLYP BP86 BLYP 

molecule 
ω(S) 

[Bohr-1] 

ω(T) 

[Bohr-1] 

c(corr) 

 

HF(S) 

[%] 

HF(T) 

[%] 

c(corr) 

 

HF (S) 

[%] 

HF (T) 

[%] 

c(corr) 

 

c(corr) 

 

c(corr) 

 

c(corr) 

 

anthracene 0.125 ni 1.50 38 ni 3.00 35 ni 2.50 2.50 3.50 3.50 

tetracene 0.125 ni 2.00 45 ni 4.00 45 ni 4.00 3.00 5.00 5.00 

pentacene 0.125 ni 2.00 50 ni 4.00 45 ni 3.50 3.00 4.50 4.50 

rubrene 0.100 ni 2.00 35 ni 3.50 35 ni 3.00 3.00 4.00 4.00 

DIP 0.150 ni 1.50 55 ni 4.50 45 ni 5.00 2.50 7.50 8.00 

thiophene 0.100 ni 2.00 33 ni 4.00 30 ni 3.00 2.50 6.50 6.50 

HB194 0.150 0.500 3.00 43 65 7.00 35 65 8.00 2.50 ni ni 

MD353 ni 0.900 8.00 25 ni 10.00 ni 85 8.00 5.00 ni ni 

DPP 0.125 ni 2.50 40 ni 5.00 35 ni 4.50 3.00 7.50 7.50 

squaraine ni ni 5.00 na ni 5.00 ni ni 5.00 3.50 6.50 7.00 

„triamine“ 0.125 0.200 1.00 40 67.5 4.50 35 ni 5.00 1.50 ni ni 

„triamine-

methoxy“ 
0.200 ni 3.50 55 ni 6.00 50 ni 7.50 4.00 ni ni 

„triamine-

aldehyde“ 
0.125 ni 2.75 38 ni 8.50 35 ni 10.00 3.25 ni ni 

 

Values are separately averaged for “normal” and “charge-transfer compounds” (ωB97X-D: “normal 

compounds”: c(corr)=2.0; “charge-transfer compounds”: c(corr)=3.0; BHLYP: c(corr)=3.5 for all 

compounds; B3LYP: “normal compounds”: HF=20%, c(corr)=3.5; “charge-transfer compounds”: 

HF=40%; c(corr)=7.0; PBE0: “normal compounds”: HF=25%, c(corr)=4.5; “charge-transfer compounds”: 

HF=35%; c(corr)=6.5). The adjusted functionals are used to compute singlet and triplet excitation 

energies. Resulting errors are compared to errors of the original functionals and to the best-performing 

standard functional, M06-2X (Figure 35).  

From the data, a net improvement of the performance of all functionals becomes evident. The final 

error range of the fitted functionals is very small. Even more importantly, the remaining errors of the 
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fitted functionals are nearly independent from the exact nature of the functional and lie below the 

“chemical accuracy of excited states”843 of 0.1 eV. Of course, due to the non-empirical tuning and fitting 

using the same set of molecules, errors naturally decline. Nevertheless, such a systematic decrease for 

all molecules and all functionals could not be expected a priori. Therefore, this allows for the 

conclusion that by scaling the same-spin/opposite-spin correlation and the amount of HF exchange, 

functionals efficiently predicting triplet excitation energies and singlet-triplet gaps with a very high 

accuracy can be obtained. 

 

Figure 35: Mean absolute errors for singlet and triplet excitation energies and resulting singlet-triplet gaps of 
tuned functionals with an optimized amount of HF exchange and optimal local correlation coefficients. Linear-
response adiabatic TD-DFT singlet excitation energies and TDA triplet energies were employed. The asterisk * 
refers to optimally fitted functionals, while standard functionals are indicated without an asterisk. Reproduced 
with permission from 758. © 2016 Elsevier B.V. 

To summarize the presented detailed analysis of different excitation energies of molecular p-type 

semiconductors, a few key conclusions can be drawn that complement existing literature data: 

1. For large-scale excited-state calculations, the investigated basis set dependence is of major 

importance. An unprecedented error cancelation between the basis set error of the geometry 

optimization and of the excited-state calculation was found and rationalized. It can be utilized 

to keep high-level ab initio calculations of a number of excitations as well as excited-state 

optimizations computationally affordable. 

2. The ADC(2) and CC2 methods were shown to provide reliable singlet excitation energies 

(irrespective of the amount of charge transfer) and triplet states (irrespective of the exact 

molecular structure). Spin-component scaling improves the accuracy of both methods for all 

states. In contrast to CC2 and ADC(2), the herein employed SCS parameters deteriorate the 

performance of CIS(D) approaches, which usually overestimate singlet and triplet excitation 

energies. The further blue shift induced by SCS increases average errors.  

The reliability of SCS-CC2 was already indirectly exploited when SCS-CC2 adiabatic excitation 

energies were employed as benchmark values for adiabatic singlet and triplet transitions. 
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Moreover, SCS-CC2 excited-state geometries should be reasonably accurate to be employed 

in multiscale approaches whenever excited-state monomer geometries are of interest. 

3. Especially ωB97X-D, but also CAM-B3LYP and SOGGA11X provide very accurate singlet 

excitation energies. Moreover, when employed in conjunction with TDA, errors of resulting 

triplet excitation energies are also rather small. As a standalone functional, M06-2X performs 

best for triplet excitation energies, especially within a Δ-SCF treatment. M06-2X singlet 

excitation energies are also satisfyingly accurate although they tend to be too high due to the 

large amount of HF exchange.   

Singlet-triplet gaps are also most accurately predicted with M06-2X, using TD-DFT singlet 

excitation energies and Δ-SCF triplet energies. Yet, also ωB97X-D delivers very accurate gaps 

in a TD-DFT/TDA protocol for singlet/triplet energies. 

4. ZINDO delivers very accurate neutral singlet excitation energies. This is very important because 

the very low computational effort could allow for a broad application of ZINDO excited-state 

calculations to large systems. 

Ground-state geometries and excitation energies were benchmarked in the last two sections. In the 

next section, a different way of conceptualizing adiabatic transition energies, i.e. via exciton 

reorganization energies, is briefly addressed. Adiabatic excitation energies and exciton reorganization 

energies are in a certain sense equivalent because they both require excited-state optimizations. They 

thus depend both on the quality of the underlying excited-state gradients. However, while exciton 

reorganization energies are calculated as energy differences between optimized ground- and excited-

state geometries both in either the ground or the excited state, adiabatic excitation energies 

correspond to energy differences between these geometries in different states.  
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5.4 Benchmarking exciton reorganization energies 
Usually, in order to calculate macroscopic transport properties in a multiscale approach, several 

molecular quantities are required as input parameters, such as reorganization energies for exciton or 

charge transport.844 While many investigations on charge reorganization energies exist (see also 

below),666,845 exciton reorganization energies have hardly been directly addressed. While this 

represents certainly an important gap in the literature that should be filled, it could result to some 

extent from the fact that exciton reorganization energies correspond to energy differences between 

absorption and fluorescence energies, both of which have been comprehensively analyzed from a 

theoretical perspective.844,724,846,847,848 In a similar way, an extensive investigation of vertical and also of 

adiabatic transition energies was presented in detail in the last section (“Benchmarking vertical 

excitation energies of molecular semiconductors”).  

Nevertheless, it is illustrative for a number of reasons to briefly reexamine some of the presented 

results from the point of view of exciton reorganization energies. (1) While adiabatic excitation 

energies take into account only the excited-state relaxation, exciton reorganization energies are 

composed of the excited-state and the ground-state relaxation that a migrating exciton induces.rrr In 

view of the rather complex electronic ground-state structures of many molecular semiconductors (see 

Section “Benchmarking ground-state geometries”), the additional description of the ground-state 

relaxation indirectly reflected in the exciton reorganization energies seems worth analyzing. (2) The 

dimensions of adiabatic excitation energies and exciton reorganization energies differ. Whereas 

adiabatic transition energies in most molecular semiconductors amount to several eV, typical values 

for exciton reorganization energies are around a few hundred meV.532 This arises from the fact that 

exciton reorganization energies are calculated as differences between two electronic transition 

energies (absorption and fluorescence) while adiabatic excitation energies correspond to the 

difference between the large absorption energy and the comparably small excited-state relaxation. 

Additional factors might determine exciton reorganization energies, i.e., transition energy differences, 

compared with those decisive for transition energies themselves. The latter were found to essentially 

dominate adiabatic excitation energies (see Figure 23). (3) It should be always kept in mind that 

reorganization energies enter exponentially into the Marcus rate equation (see below, also for a 

discussion of the relevance of the Marcus equation for the hopping process). Therefore, slightly 

different reorganization energies produce pronounced differences in the corresponding hopping rates.  

                                                             
rrr Please note that the terms ground-/excited-state “relaxation” and ground-/excited-state “reorganization” are 
both used in the literature. “Relaxation” is certainly the more general notion as it does not only refer to the 
intramolecular electron/hole/excitation-“phonon” coupling, but rather includes a number of phenomena of 
nuclear relaxation upon a change in electronic structure. Nevertheless, the two terms will be used 
interchangeably in the following. 
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Exciton reorganization energies are discussed for selected functionals listed in Table 14. Because of 

the significant computational cost of excited-state optimizations, only methods with good 

performances for vertical and adiabatic singlet excitation energies were employed (see previous 

section). Therefore, the three best performing functionals for the computation of several excited states 

per molecule, i.e., SOGGA11X, CAM-B3LYP, and ωB97X-D, are used. Additionally, LC-BLYP and TD-HF 

are included (Table 14) since TD-HF in particular was shown to yield correct trends for excited-state 

properties.849 From a user’s point of view, correct trends are often even more important than 

numerical accuracy. The same is true for LC-BLYP, which, similar to TD-HF, reliably reproduces the 

excited-state order in spite of generally overestimated excitation energies (see previous section).763  

As for the adiabatic excitation energies (Figure 23), SCS-CC2 is used to compute the benchmark values. 

The cc-pVDZ705 basis was used for the SCS-CC2 and DFT calculations to keep them computationally 

feasible (see above). A dispersion correction was added to CAM-B3LYP and to LC-BLYP, using the S6 

and S8 parameters for BLYP in the latter case. An ultrafine grid was employed, and all calculations were 

conducted in the gas phase. The Gaussian program was used for the DFT calculations.718 Exciton 

reorganization energies for SCS-CC2 and HF were calculated with the Turbomole179 program package. 

Table 14: Methods employed to calculate exciton reorganization energies. Due to the good performance for 
vertical excitation energies, SCS-CC2 is employed as the benchmark method. 

method References 

reference values 

SCS-CC2 256,180,760,761,762,703,46 

benchmarked methods 

HF 706 

SOGGA11X 714 

ωB97X-D 143 

CAM-B3LYP-D3 133,707,712,713,708,709,140 

LC-BLYP-D3 707,708,709,140,132 

 

Figure 36 shows the errors of computed exciton reorganization energies. Absolute percentaged errors 

(upper panel), signed percentaged errors (center panel), and signed errors in eV (lower panel) are 

compared. As always, average errors as well as errors for each compound class are given. Moreover, 

it has been investigated both theoretically645,850 and experimentally851,852 that merocyanines can 

undergo an excited-state torsional motion. Naturally, this excited-state torsion significantly increases 

total exciton reorganization energies, which consequently attain sizes of 1-2 eV. When calculating 
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average errors, either for polar dyes or for all compounds, these exciton reorganization energies would 

therefore dominate the averaging. In order to avoid this, only exciton reorganization energies of 

merocyanines that do not spontaneously twist in the excited state, i.e., of HB194, are included in the 

average over all compounds. Furthermore, errors of the exciton reorganization energies of all 

merocyanines and only of HB194 are separately indicated in Figure 36. Errors for HB194 are highlighted 

with an asterisk (“high polarity*”), in contrast to averages for all merocyanines denoted with “high 

polarity”. 

 

Figure 36: Errors of exciton reorganization energies. Please note that some merocyanines may undergo an 
excited-state torsion upon photoexcitation (see text), which is correctly reproduced in the SCS-CC2 calculations, 
but neither in all DFT functionals nor in TD-HF computations. The excited-state torsion results in both large 
exciton reorganization energies and large errors. HB194 does not twist upon electronic excitation so that its 
exciton reorganization energies and the deviations between different methods are smaller. In contrast to the 
other merocyanines, its errors are therefore on the same order as those for all other compounds. Hence, to avoid 
overemphasizing the impact of the excited-state torsion of the merocyanines on resulting error bars, the errors 
for exciton reorganization energies of HB194 only are additionally given and indicated as “high polarity*”. 
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Figure 36 illustrates that especially ωB97X-D performs very well, having the smallest percentaged 

absolute errors (first panel), the smallest percentaged signed errors (second panel) as well as the 

smallest overall signed errors (third panel) among all functionals. In average, percentaged errors of 

ωB97X-D are below 20% for all compounds. Larger errors are found for LC-BLYP and particularly for 

TD-HF. Percentaged absolute and signed errors of LC-BLYP amount to 60%, with corresponding average 

errors attaining 100% for TD-HF (Figure 36). However, these errors are almost constant and uniformly 

distributed over all compound classes. Therefore, despite a reduced numerical accuracy, LC-BLYP and 

TD-HF provide a balanced description of the exciton reorganization energies of all compounds. This 

mirrors the literature findings.849,532 

CAM-B3LYP and SOGGA11X yield errors of an intermediate size in between the errors of ωB97X-D and 

TD-HF/LC-BLYP. Especially the performance of SOGGA11X depends on the compound class. It provides 

accurate exciton reorganization energies of apolar semiconductors and of dyes of intermediate 

polarity. However, its description of the exciton reorganization energies in merocyanines is rather poor 

since it is incapable of assessing both the excited-state torsion and the inversion of the bond length 

alternation (BLA) patternsss in the merocyanines’ excited state.645 The completely incorrect excited-

state BLA explains furthermore why the SOGGA11X errors for exciton reorganization in HB194, which 

does not twist, are rather significant as well. These failures of SOGGA11X could resort from the missing 

long-range correction that, according to investigations of Jacquemin, is important to properly describe 

electron correlation and BLA values (see above).732,736,733 In contrast, CAM-B3LYP performs reasonably 

well but its performance differs also for different types of compounds. On the one hand, it correctly 

predicts excited-state torsions in merocyanines. Concomitantly, it yields correct exciton reorganization 

energies for these molecules. On the other hand, as already discussed above, its performance is slightly 

weaker for the dyes of intermediate polarity, maybe because the different correlation regimes 

important for the dyes’ geometries are somewhat incompletely included in CAM-B3LYP. This, in turn, 

would suggest that the slightly limited accuracy of CAM-B3LYP for exciton reorganization energies 

results mainly from errors already present in the ground-state description of the molecules. The 

interpretation that CAM-B3LYP actually performs well for excited states but suffers in some cases from 

an inaccurate ground-state treatment is supported by investigations of Mennucci and coworkers. In a 

benchmark on excited-state geometries of organic molecules in the gas phase and in solution, they 

found that CAM-B3LYP performs well for excited-state geometries while other functionals like B3LYP 

and PBE0 can be more accurate for ground-state structures.724 A benchmark study of wave-function 

and TD-DFT approaches on the uranyl(IV) cation by Réal et al. led to equivalent conclusions.853  

                                                             
sss Please note that none of the employed functionals (Table 14) correctly captures the excited-state inversion of 
the bond length alternation in merocyanines. However, SOGGA11X performs particularly poorly. 
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The results in Figure 36 raise the question to what extent the presented analysis of exciton 

reorganization energies differs from the discussion of adiabatic transition energies, i.e., for which 

additional insight it allows. A few aspects are outlined. Since exciton reorganization energies have not 

been investigated, all of these conclusions are new. 

1. The ωB97X-D functional performs very well for both adiabatic transition energies and exciton 

reorganization energies. These findings rely on the one hand on the very accurate ground-

state geometries of ωB97X-D (see Section “Benchmarking ground-state geometries”) and on 

the other hand on the reliable ωB97X-D vertical excitation energies (see Section 

“Benchmarking vertical excitation energies of molecular semiconductors”). Moreover, ωB97X-

D excited-state gradients and structures have to be essentially correct because otherwise, no 

accurate exciton reorganization energies could be obtained. For later-on large-scale 

computations, the promising accuracy of ωB97X-D for diverse molecular properties suggests 

using this functional whenever computationally feasible. 

2. Similar to their overestimation of transition energies, LC-BLYP and TD-HF overshoot for exciton 

reorganization energies. However, the size of the error of exciton reorganization energies does 

not depend on the compounds, in contrast to the systematically varying error of transition 

energies.  

3. SOGGA11X was found to be quite accurate for excitation energies as well as for ground-state 

geometries (see previous sections). However, its performance deteriorates apparently as soon 

as excited-state gradients and excited-state structures are involved. This result becomes 

evident only from the analysis of exciton reorganization energies (Figure 36) and not from the 

results on adiabatic excitation energies (Figure 23). In the latter case, the SOGGA11X deficiency 

for excited-state gradients is presumably obscured by its rather accurate excitation energies. 

These accurately predicted excitation energies largely dominate adiabatic transition energies 

and contribute considerably more than the excited-state relaxation. 

4. CAM-B3LYP yields reliable excitation energies. However, the reduced accuracy of CAM-B3LYP 

for ground-state geometries of the dyes of intermediate polarity is reflected in slightly less 

accurate exciton reorganization energies of these dyes. It is still rather accurate for exciton 

reorganization energies of merocyanines, which could be due to the long-range correction. In 

a previous section (“Benchmarking ground-state geometries”), the long-range correction was 

found to be important for correct structures and BLAs in merocyanines. 

This summary illustrates that (1) accurate ground-state geometries (in contrast to CAM-B3LYP), (2) 

accurate excitation energies (in contrast to LC-BLYP and TD-HF) and (3) accurate excited-state 

gradients (in contrast to SOGGA11X) are needed to calculate exciton reorganization energies as 
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accurately as possible. All these conditions are only fulfilled by ωB97X-D. The presented analysis of 

exciton reorganization energies has especially clarified the importance of the first and the third 

condition, which were not evident from the discussion of adiabatic excitation energies.  

After having discussed ground- and excited-state properties of molecules in the last sections, an 

analysis of cationic energies and structures of the molecular p-type semiconductors is the next 

consequential step. It should be kept in mind that fullerene C60 will always be employed as the electron 

acceptor. Furthermore, to fully assess molecular properties in preparation of multiscale calculations 

on aggregates, charge reorganization energies should be also analyzed in addition to exciton 

reorganization energies. 
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5.5 Benchmarking charge reorganization energies 
The following discussion parallels 854. 

Similar to exciton transport (see previous section), charge transport in amorphous organic thin films is 

usually assumed to proceed via a succession of random hopping processes between individual hopping 

sites. Rates for the hopping steps are calculated with the classical Marcus rate equation. While Marcus 

rates depend on the square of the electronic coupling between the initial and the final hopping sites, 

they are largely determined by the charge reorganization energy,524,855 which enters exponentially. As 

already mentioned for exciton reorganization energies, the reorganization energy is a molecular 

property. It is used as an input parameter in multiscale computations of macroscopic quantities of 

organic materials. In order to accurately predict macroscopic charge-transport properties of these 

organic materials, using correct charge reorganization energies as input parameters is absolutely 

mandatory. Please note that charge reorganization energies are also experimentally investigated. They 

are thus furthermore of utility to understand experimentally observed charge-transport phenomena 

and to establish structure-property relationships.856,857,858,859  

Like exciton reorganization energies, charge reorganization energies can be subdivided into an internal 

(intramolecular) and an external (intermolecular) contribution.645 Liu and Troisi860 as well as Solà and 

Voityuk861 and coworker discussed effects and errors arising from the external contribution in more 

detail. Analogous investigations on DNA bases were conducted by Newton and Rösch.862 They all 

pointed out that the predicted values for external reorganization energies are extremely method- and 

model-dependent. A combined experimental and theoretical study of Kocherzhenko et al. revealed in 

addition that among others, static disorder plays a major role in determining the size of the external 

charge reorganization energy.863 The fact that static and dynamic disorder would have to be included 

further underlines the difficulty of correctly predicting external reorganization energies. However, as 

this section is entirely concerned with molecular quantities, only intramolecular charge reorganization 

energies are computed and discussed in the following. Moreover, they seem to be considerably more 

important because it was found for oligoacenes that the internal contribution to the total 

reorganization energy is much larger than the external one.855,603,864  

From a computational perspective, the calculation of charge reorganization energies can be 

troublesome because it requires energy calculations and geometry optimizations of radical species. 

Although multi-reference methods are very accurate for radical species,865 they cannot be employed 

for molecules as large as most molecular p-type semiconductors. High-level ab initio methods cannot 

be used either because they are based upon a HF reference wave function which usually suffers from 

spin contamination. Therefore, DFT is almost always employed in the literature to compute charge 

reorganization energies.845,862,565,866 However, also DFT charge reorganization energies can be 
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erroneous since all DFT calculations are subject to the above-discussed MSIE (many-electron self-

interaction error), which differs for states with different numbers of electrons. This might reduce the 

reliability of DFT charge reorganization energies, and underlines the need for a DFT benchmark of 

(internal) charge reorganization energies because no comprehensive benchmarks on the accuracy of 

different DFT functionals for charge reorganization energies exist in the literature. Therefore, to obtain 

as accurate values for them as possible for later-on multiscale applications, the ability of different DFT 

functionals to compute charge reorganization energies of molecular p-type semiconductors is carefully 

benchmarked in this section. The benchmarked functionals are given in Table 15. Two long-range 

corrected functionals, i.e, ωB97X-D and LC-BLYP, three hybrid functionals – B3LYP, SOGGA11X, and 

PBE0 – and three pure functionals – BLYP, PBE, and the meta-GGA M06-L – are included (Table 15). 

Apart from the functionals that were shown to provide were accurate ground-state geometries 

(ωB97X-D, SOGGA11X, M06-L, see Section “Benchmarking ground-state geometries”), this involves the 

standard functionals PBE0, PBE, B3LYP, and BLYP along with its long-range corrected counterpart LC-

BLYP. It is worth noting that more exact exchange in DFT calculations on open-shell systems is 

necessarily accompanied by an increasing amount of spin contamination. However, S²-values of the 

radical species evaluated in the following never exceed 0.80.  

Table 15: Functionals employed in the benchmark of charge reorganization energies.  

method References 

reference values 

IP-EOM-CCSD 255 

benchmarked methods 

ωB97X-D 143 

LC-BLYP-D3 707,708,709,140,132 

B3LYP-D3 707,712,713,708,709,140 

PBE0-D3 803,801,802,140 

SOGGA11X 714 

BLYP-D3 707,708,709,140 

PBE-D3 801,802,140 

M06-L-D3 710,140 

 

The two long-range corrected functionals (ωB97X-D and LC-BLYP) are employed both in their standard 

version and in their empirically-tuned version, which is indicated as “(IP)”. Empirical tuning instead of 

non-empirical tuning is used because it was found to yield very good results. In the empirical tuning 
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procedure, the range separation parameter in ωB97X-D and in LC-BLYP is adjusted (in steps of 0.02 

Bohr-1) so that the molecular HOMO energy of each molecule corresponds to its ionization potential 

obtained in high-level ab initio IP-EOM-CCSD255 calculations. IP-EOM-CCSD is known to deliver very 

accurate ionization potentials.255 IP-EOM-CCSD calculations are based on a closed-shell reference and 

the coupled-cluster expansion to the second order. Due to their considerably computational demand, 

the molecules in Figure 5 have to be further reduced in size to allow for the IP-EOM-CCSD calculations. 

The abridged model systems in Figure 37 are created and used for the benchmark of DFT charge 

reorganization energies. 

 

Figure 37: Molecules and abridged model systems for the IP-EOM-CCSD benchmark calculations. HB238 contains 
two polarizable aromatic ring systems including sulfur atoms. Since these polarizable aromatic moieties with no 
counterpart in MD353 or HB238 could affect charge reorganization energies, HB238 is again considered in this 
part of the benchmark section. 
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Table 16: Ionization potentials obtained for all molecules comprised in the test set (Figure 37) using the SCS-
CC2/cc-pVDZ optimized geometry (“SCS-CC2”) or the SCS-MP2/cc-pVTZ optimized geometry (“SCS-MP2”). 

 IP-EOM-CCSD [eV] 

Molecule SCS-CC2 SCS-MP2 

anthracene 7.02 7.00 

diketopyrrolopyrrole 6.75 6.75 

Dip 6.65 6.65 

dithiophene 7.02 7.00 

HB194 7.63 7.67 

HB238 7.15 7.18 

MD353 7.66 7.70 

rubrene 6.59 6.59 

squaraine 6.41 6.41 

triamine 6.91 6.92 

triamin-aldehyde 7.37 7.38 

triamine-methoxy 6.49 6.48 

 

Vertical IP-EOM-CCSD ionization potentials (IPs) calculated for the empirical tuning procedure are 

compared in Table 16 for two different geometries of the abridged model systems (Figure 37), namely 

for the SCS-CC2/cc-pVDZ256,180 and the SCS-MP2/cc-pVTZ70,703,704 optimized geometry. Table 16 

demonstrates that the geometry influences resulting IPs only in a limited way. For the tuning, the 

average of the values in Table 16 is used together with the DFT-optimized geometry. 

High-level ab initio IP-EOM-CCSD ionization potentials (instead of measured IPs) have to be used to 

tune ωB97X-D and LC-BLYP because experimental gas-phase values are not available for all molecules. 

Nevertheless, IP-EOM-CCSD ionization potentials compare well with experimental counterparts of 

those molecules with existing experimental data. To cite only two examples, the experimental 

ionization potential in Rydberg absorption measurements in anthracene was found to be 7.15 eV,867 

which is very close to the IP-EOM-CCSD value of 7.00 eV. Similarly, the predicted ionization potential 

of 6.91 eV for the diphenylamine fragment (Figure 37) agrees nicely with the experimentally 

determined value of 7.19 eV.868 It should be furthermore emphasized that whenever several 

experimental values for the ionization potential of a given molecule exist, they tend to significantly 
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deviate from one another.869 This underlines that using experimental reference values for the empirical 

tuning is somewhat problematic. 

Grimme’s dispersion correction140 was added to the DFT functionals if available. All calculations were 

conducted in the gas phase with the Gaussian program package.718 Similar to above, the cc-pVDZ basis 

sets are employed.705 The NWChem program package is used for all IP-EOM-CCSD calculations.870  

The limited range of methods applicable to open-shell calculations on the medium- to large-size 

molecules raises the question how to obtain accurate benchmark values for the charge reorganization 

energies. IP-EOM-CCSD,255 already used in the IP-tuning procedure, was shown to provide accurate 

energies and geometries for charge-localized and delocalized radical species at a comparably moderate 

computational cost.871,872 Yet, IP-EOM-CCSD geometry optimizations on the medium-size molecular 

organic semiconductors in Figure 37 still largely exceed computational feasibility although the abrdiged 

systems are already considerably smaller than the underlying complete systems (Figure 5). Therefore, 

geometries optimized with optimally-tuned long-range corrected functionals are used instead of 

geometries optimized at the IP-EOM-CCSD level of theory. IP-EOM-CCSD single-point calculations on 

these DFT-optimized structures are subsequently carried out to deduce benchmark values. The latter 

aspect, however, presupposes that geometries obtained with IP-tuned functionals are essentially 

correct. Otherwise, wrong DFT geometries could spoil the benchmark values.  

A number of literature results indeed suggest that IP-tuned range-separated hybrids provide quite 

accurate geometries. Findings by Brédas and coworkers indicate that IP-tuned functionals deliver 

reliable geometries even for the limiting case of computationally very challenging mixed-valence 

compounds.835 In line with this, Jacquemin and Autschbach also proposed that IP-tuned functionals 

offer an efficient way to obtain accurate excited-state geometries.823,873 According to an investigation 

on the crystal structure of rubrene by Sherrill and Brédas and coworkers, IP-tuned functionals correctly 

predict the interplay between intra- and intermolecular interactions in crystalline rubrene. As a 

consequence, they yield very accurate rubrene conformations resulting from this interplay.665  

 

Figure 38: Small model systems used to compare geometries obtained from optimizations with IP-EOM-CCSD 
and with IP-tuned functionals.  
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Although these literature results imply that geometries optimized with optimally tuned hybrids can be 

very reliable, three small model systems are introduced (Figure 38) to evaluate the quality of the 

geometries obtained with the herein employed ωB97X-D(IP) functional specifically tuned for each 

molecule. The model systems are chosen so that geometry optimizations with IP-EOM-CCSD are 

computationally affordable. Hence IP-EOM-CCSD//IP-EOM-CCSD and IP-EOM-CCSD//DFT(IP) (and in 

addition DFT(IP)//DFT(IP)) charge reorganization energies can be compared, as shown in Table 17. 

Please note that only cc-pVDZ basis sets are affordable in combination with the demanding IP-EOM-

CCSD calculations. 

Table 17: Comparison of charge reorganization energies calculated for the three small model systems and IP-
tuned functionals and/or IP-EOM-CCSD calculations. 

model system ωB97X-D(IP)// 

ωB97X-D(IP)  

[eV] 

IP-EOM-CCSD// 

IP-EOM-CCSD  

[eV] 

IP-EOM-CCSD// 

ωB97X-D(IP)  

[eV] 

naphthalene 0.23 0.22 0.23 

R_BH2 0.47 0.47 0.47 

R_CO 0.47 0.48 0.47 

 

Table 17 shows that charge reorganization energies obtained from IP-EOM-CCSD single-point 

calculations using geometries optimized at the same level of theory and from IP-EOM-CCSD single-

point calculations and geometries optimized with IP-tuned functionals are equal up to 0.01 eV. This 

underlines the reliability of geometries obtained with IP-tuned functionals, in line with the outlined 

literature results. Furthermore, it justifies using charge reorganization energies obtained from IP-EOM-

CCSD single-point calculations on DFT(IP)-optimized geometries as benchmark values in the following. 

For a first overview, Figure 39 displays the charge reorganization energies of the complete molecules 

calculated with the functionals listed in Table 15. As in the last sections, the functionals are 

approximately arranged according their amount of exact exchange (see top row of Figure 39). For each 

molecule, computed charge reorganization energies vary in a characteristic way with the employed 

functionals. Functionals with large amounts of HF exchange yield large charge reorganization energies, 

while the smallest charge reorganization energies are obtained with pure GGAs. Differences in the 

charge reorganization energies often amount to 0.2-0.3 eV. Due to the exponential dependence of the 

charge transport rates on the charge reorganization energies, such deviations are quite significant 

because they can result in a ten-fold increase/decrease of corresponding hopping rates. Since the 

charge reorganization energies of all molecules depend in a similar manner on the amount of exact 
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exchange, predicted trends among the molecules remain the same for all functionals. For instance, 

irrespective of the exact functional, the diketopyrrolopyrrole always possesses a rather large charge 

reorganization energy. In contrast, charge reorganization energies of the triphenylamine-based 

compounds are somewhat smaller, in line with the expectations.682,683 However, it is worth noting that 

the ratios of charge reorganization energies calculated with different functionals for a given molecule 

change when a different molecule is considered. In a similar way, ratios of charge reorganization 

energies for different molecules calculated with a given functional are not constant either when a 

different functional is employed in the calculation.  

 

Figure 39: Charge reorganization energies in eV calculated with different functionals (no IP-tuning) for the 
molecular p-type semiconductors. The complete molecules (not abridged) are used. As already mentioned, since 
it contains sulfur, HB238 is again included in this part of the benchmark section. 
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Figure 40: Correlation of charge reorganization energies with the ionization potentials for a given molecule. All 
reorganization energies and ionization potentials are calculated with the functionals in Table 15. The complete 
molecules (not abridged) are used. Adapted with permission from 854. © 2016 Wiley Periodicals, Inc. 

It is well-known in DFT that in any finite-sized object, the calculated fundamental gap144,160 and with 

this the quasi-particle eigenvalues160,874 such as the ionization potential depend on the amount of HF 

exchange in the employed functional. Please keep in mind that despite the nonconstant ratios, the 

charge reorganization energies in Figure 39 also depend in a qualitatively systematic manner on the 

amount of exact exchange. Therefore, since both the ionization potentials and the charge 

reorganization energies correlate with the exact exchange, they necessarily also mutually correlate 

(Figure 40). Pure functionals yield both small charge reorganization energies and ionization potentials, 

while considerably larger values are obtained with functionals with a significant amount of exact 

exchange (Figure 40). The correlation between charge reorganization energies and the amount of HF 

exchange arises from the changing description of the electron density with more exact exchange. The 

more HF exchange, the more localized the charges. A highly localized charge induces more structural 

reorganization when it is created via ionization than a smeared charge which – due to its delocalization 

and correspondingly small partial charges on individual atoms – barely affects molecular moieties.  

As discussed in detail by Baer et al.,160,147 the ionization potential is intimately linked to the MSIE of 

DFT. DFT ionization potentials are usually too low, which is more pronounced for GGAs compared to 

hybrid functionals. According to the rationalization of Baer et al., the underestimation of ionization 

potentials results from the spurious repulsion of an electron with itself, favoring charge extraction.147 

The self-interaction error can be systematically reduced and even eliminated via non-empirical IP-

tuning.782 Since the ionization potential of a molecule and its reorganization energy calculated with a 

given functional are obviously related (Figure 40), IP-tuned functionals could therefore possibly yield 

also more accurate charge reorganization energies. It is assumed that this holds to some extent for 
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empirical tuning as well (the HOMO energy is enforced to correspond to a very accurately determined 

ionization potential). 

As described above, benchmark values for the charge reorganization energies are obtained from IP-

EOM-CCSD single-point calculations using geometries optimized with empirically tuned functionals 

(LC-BLYP, ωB97X-D). To obtain these benchmark values, the geometry optimizations are performed in 

a first step, which directly yields charge reorganization energies calculated with IP-tuned functionals. 

Before conducting the IP-EOM-CCSD single-point calculations, the charge reorganization energies 

obtained with ωB97X-D(IP) and with LC-BLYP(IP) are compared to analyze to what extent they deviate 

from one another. Although the validity of geometries obtained with IP-tuned functionals was verified 

above (Table 17), strong differences between geometries optimized with different IP-tuned functionals 

and between resulting charge reorganization energies would make the choice of the suitable geometry 

for subsequent IP-EOM-CCSD calculations difficult. Deducing benchmark values for charge 

reorganization energies would be barely feasible. The chosen model would thus be questionable.  

Figure 41 displays the charge reorganization energies for all molecules obtained with two different IP-

tuned functionals, i.e., with LC-BLYP(IP) and with ωB97X-D(IP). Equal ionization potentials were 

enforced in the IP-tuning procedure. Please note that in all calculations for the benchmark values 

presented in the following, the abridged model systems were employed (Figure 37). It is evident from 

Figure 41 that charge reorganization energies calculated with different IP-tuned functionals are almost 

equal. They usually barely deviate with average differences of 0.01-0.02 eV. Larger differences of 0.05 

eV are only found for the squaraine and the aldehyde-substituted triarylamine. The good coincidence 

of the charge reorganization energies suggests that underlying geometries are rather similar. 

Moreover, to further analyze differences between these geometries optimized with different IP-tuned 

functionals, RMSD values were calculated. Resulting values averaged over both functionals between 

all neutral and all cationic geometries amount to only 0.020 Å and 0.016 Å, respectively. This 

corresponds to an approximate five-fold decrease of the RMSD values compared to the values 

between the standard ωB97X-D and LC-BLYP functionals. The decrease underlines the fact that the 

nice agreement between the charge reorganization energies (Figure 41) obtained with different tuned 

functionals is at least in parts due to highly similar geometries. This implies (1) that similar and probably 

reliable geometries can be obtained with tuned range-separted hybrids and (2) that furthermore IP-

tuned functionals could constitute a general route to predict accurate charge reorganization energies 

(see below). 
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Figure 41: Charge reorganization energies obtained with an empirically tuned version of ωB97X-D (“ωB97X-
D(IP)”) and of LC-BLYP (“LC-BLYP(IP)”). It should be noted that the abridged model systems were employed 
(Figure 37). Adapted with permission from 854. © 2016 Wiley Periodicals, Inc. 

To obtain benchmark values of the charge reorganization energies, IP-EOM-CCSD single-point 

calculations are performed in a second step using the geometries obtained with the optimally tuned 

long-range corrected functionals. Figure 42 shows the results. Additionally, the deviations to the pure 

DFT(IP) charge reorganization energies (given in Figure 41) are displayed in Figure 42. It is evident that 

deviations between charge reorganization energies only obtained with IP-tuned functionals on the one 

hand and with IP-EOM-CCSD single-point calculations on DFT(IP)-optimized geometries on the other 

hand are very small (Figure 42, shaded bars). The maximal errors amount to 0.05 eV for MD353 and 

the aldehyde-substituted triarylamine (“trial”), which corresponds to a six-fold decrease compared to 

deviations among the standard functionals (in this case, ωB97X-D and PBE). The good coincidence 

between the DFT(IP) and IP-EOM-CCSD single-point calculations implies that not only geometries of IP-

tuned functionals (see above), but also DFT(IP) energies of open-shell species are essentially correct. 

Therefore, the values in Figure 42 obtained with IP-EOM-CCSD single-point calculations and DFT(IP)-

optimized geometries can be used as benchmark values to evaluate the quality of standard DFT 

functionals for the prediction of charge reorganization energies. 
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Figure 42: Charge reorganization energies from IP-EOM-CCSD single-point calculations using geometries 
optimized with IP-tuned long-range corrected functionals. Errors of the pure DFT(IP) charge reorganization 
energies are indicated with shaded bars. The IP-EOM-CCSD calculation for HB238 did not converge. It should be 
noted that the abridged model systems were employed (Figure 37). Adapted with permission from 854. © 2016 
Wiley Periodicals, Inc. 

For the following statistical analysis of the errors of the charge reorganization energies, the average of 

the IP-EOM-CCSD values in Figure 42 is used as the reference. The MAE values of all default functionals 

(Table 15) compared to these average reference values are shown in Figure 43 as a function of polarity. 

Errors are given in percent to provide a balanced description of all molecules. As always, overall 

average values as well as polarity-specific deviations are indicated. Moreover, for comparison, the 

errors of the charge reorganization energies obtained with the IP-tuned functionals (Figure 41) with 

respect to the reference values, deduced from subsequent IP-EOM-CCSD single-point calculations 

using the same geometries (Figure 42), are given (“ωB97X-D(IP)”, “LC-BLYP(IP)”). It is worth 

emphasizing that since geometries of the IP-tuned functionals were used to calculate the reference 

values, errors of the default functionals in Figure 43 are not directly comparable to the errors of their 

IP-tuned counterparts. Errors of the latter only arise from inaccuracies of the energy calculations 

whereas potentially erroneous geometries additionally contribute to the overall errors for all other 

functionals.  
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Figure 43: Mean absolute errors [%] of charge reorganization energies calculated with different default DFT 
functionals benchmarked against the average of IP-EOM-CCSD/cc-pVDZ//ωB97X-D(IP)/cc-pVDZ and IP-EOM-
CCSD/cc-pVDZ//LC-BLYP(IP)/cc-pVDZ. It should be noted that the abridged model systems were employed 
(Figure 37). Adapted with permission from 854. © 2016 Wiley Periodicals, Inc. 

It is evident from the errors (Figure 43) that ωB97X-D, with the default range-separation parameter, 

and SOGGA11X provide the most accurate charge reorganization energies. ωB97X-D performs twice 

as well as SOGGA11X. Errors of the default ωB97X-D and the tuned ωB97X-D(IP) functional are very 

similar and both very small because the default range separation parameter amounts to 0.20 Bohr-1,143 

which is almost equal to tuned values ranging mostly between 0.16 Bohr-1 and 0.18 Bohr-1. To complete 

the description of charge reorganization energies, absolute values in eV are given in Table 18. 

Table 18: Absolute values of charge reorganization energies in eV calculated for the model systems in Figure 37 
with diverse functionals. 

Molecule B3LYP BLYP M06-L PBE  PBE0 SOGGA11X ωB97X-D 

anthracene 0.13 0.10 0.11 0.10 0.14 0.18 0.19 

DPP 0.32 0.22 0.25 0.22 0.33 0.41 0.47 

DIP 0.15 0.10 0.11 0.10 0.15 0.19 0.22 

dithiophene 0.16 0.12 0.14 0.11 0.16 0.20 0.21 

HB194 0.23 0.16 0.19 0.16 0.24 0.29 0.32 

HB238 0.23 0.14 0.16 0.13 0.25 0.33 0.42 

MD353 0.29 0.20 0.24 0.21 0.30 0.36 0.40 

rubrene 0.11 0.08 0.08 0.07 0.12 0.15 0.17 

squaraine 0.24 0.16 0.18 0.16 0.25 0.31 0.37 
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„triamine“ 0.13 0.10 0.12 0.10 0.13 0.15 0.15 

„trial“ 0.40 0.30 0.43 0.29 0.42 0.54 0.52 

„trimet“ 0.27 0.22 0.24 0.21 0.28 0.32 0.32 

 

It is worth emphasizing again that only small energetic differences in the charge reorganization 

energies result in significantly diverging rates (Table 18). For instance, the rate for charge transport in 

the diketopyrrolopyrrole as predicted by PBE-D3 is twenty times faster than the rate computed with 

ωB97X-D (assuming equal coupling constants). Figure 43 illustrates that all GGAs underestimate 

reorganization energies considerably with respect to the IP-EOM-CCSD reference, which could be due 

to some excessive charge smearing imposed by the GGA description.737 The underestimation of 

approximately 60% gives rise to two- to six-fold overestimated hopping rates. It could furthermore 

partially account for the general overestimation of predicted charge carrier mobilities based on Marcus 

hopping rates.855,532 As trends in charge reorganization energies of different molecules are rather 

similar for all functionals (Figure 39), this is also in line with the observation that despite a general 

overestimation of mobilities, trends predicted with Marcus theory are essentially correct.855  

A comparison of the compound classes with different polarity in Figure 43 shows that all functionals 

except for the IP-tuned versions perform best for the dyes of intermediate polarity. The Minnesota 

hybrid functional SOGGA11X delivers the most accurate charge reorganization energies for dyes of low 

polarity but it is slightly outperformed by ωB97X-D for dyes of intermediate and high polarity. 

Consequently, ωB97X-D yields the most reliable average charge reorganization energies with a mean 

error of 5.3%. This perfectly agrees with the above findings for exciton reorganization energies, which 

were also most accurate when calculated with ωB97X-D.  

As stated above, abridged model systems without substituents were used for the benchmark 

calculations presented in Figure 43 to render the calculations computationally feasible. This raises the 

question whether charge reorganization energies change significantly when going from the smaller 

model systems to the complete molecules. Deviations between the abridged and the complete 

molecules averaged over all functionals are given in Figure 44. Their generally very small sizes indicate 

that substituents do not significantly influence charge reorganization energies. Internal charge 

reorganization energies are largely determined by structural changes in the molecular cores and π-

conjugated backbones. Therefore, it seems reasonable to assume that all above discussed findings for 

the smaller model systems can be readily transferred to the complete molecular semiconductors. 

Despite this general observation, Figure 44 shows that there exist significant deviations in charge 

reorganization energies for three different molecules, HB194, MD353, and the aldehyde-substituted 
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triarylamine. A comparison between the model systems and the complete molecules for these three 

systems suggests that this results from considerable changes in the electronic character when these 

three model systems are created from the complete underlying molecules (Figure 38, Figure 37). For 

instance, the complete aldehyde-substituted triarylamine is propeller-shaped, whereas its model 

system rather corresponds to a push-pull system. This naturally affects all electronic properties, i.e., 

also the charge reorganization energy. Similarly, the donating character of the nitrogen “push moiety” 

in MD353 and HB194 gains in strength as the aromatic indoline motif is removed upon creating the 

model systems. This is also reflected in the bond length alternations of HB194 and MD353 which are 

significantly larger in the model systems compared to the original molecules. Although this questions 

the transferability of the charge reorganization energies calculated for these specific model systems to 

the corresponding complete systems, it is not necessarily contrary to the conclusion that benchmark 

results for the smaller model systems are equally valid for complete molecules, the more so as the 

reorganization energies of all other compounds coincide, i.e., are transferable. 

 

Figure 44: Differences in eV between charge reorganization energies of the abridged model systems and the 
complete molecules averaged over all functionals included in the benchmark set. Adapted with permission from 
854. © 2016 Wiley Periodicals, Inc. 

To summarize the presented benchmark results, the need for a detailed analysis of DFT charge 

reorganization energies was underlined by considerable differences between calculated charge 

reorganization energies computed with different functionals. The observation that calculated charge 

reorganization energies correlate with computed ionization potentials suggests that the reorganization 

energies are somewhat related to the MSIE. Hence, optimally tuned hybrid functionals with range 

separation parameters designed to essentially eliminate the MSIE were employed. Benchmark 

calculations on small model systems indeed showed that charge reorganization energies with different 

IP-tuned functionals and with IP-EOM-CCSD calculations agree very well. Subsequent benchmark 
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calculations on model systems constructed from the molecular semiconductors furthermore 

demonstrated the usefulness of optimally-tuned range-separated hybrids to calculate accurate charge 

reorganization energies. Among default functionals, SOGGA11X and ωB97X-D with its standard range 

separation parameter yielded accurate charge reorganization energies. The reliability of the values 

depends only little on the compound class. Altogether, this suggests using ωB97X-D for the calculation 

of monomer charge reorganization energies in a later-on multiscale approach, also because its errors 

are most uniformly distributed among the compound classes. 

Moreover, in a more general context, the results suggest that charge reorganization energies 

calculated with common GGAs and hybrid functionals like BLYP, PBE or B3LYP are usually too low. This 

offers a possible explanation why Marcus rates and derived transport parameters were found to be 

often overestimated for organic semiconductors while exposing correct trends.855 

For the purpose of later-on use in a multiscale approach, the four last sections were entirely dedicated 

to a precise assessment of molecular properties, which include ground-state geometries, excitation 

energies, exciton reorganization energies and excited-state geometries, and charge reorganization 

energies and cationic-state geometries. It was outlined in line with Meerholz and Würthner27 that an 

understanding of optoelectronic processes at the interfaces of organic solar cells involves insight at 

several levels, with the individual molecules being the most basic level. Starting from single molecules, 

the natural next higher level is the intermolecular level, i.e., an investigation of the intermolecular 

interactions between individual molecular semiconductors. This will be the subject of the next section. 
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5.6 Interactions between the π-systems of molecular organic semiconductors 
The results presented in the following are also found in 875. 

It is well-known that intermolecular interactions favor specific orientations of the molecular organic 

semiconductors relative to one another in organic thin-film devices such as OSCs.876 A detailed 

understanding of these intermolecular interactions is particularly important because the resulting 

orientations between the semiconducting molecules critically determine the efficiencies of all 

optoelectronic processes in OSCs such as exciton and charge transport. For instance, Fink et al. 

highlighted the outstanding impact of changes in intermolecular configurations for the efficiency of 

exciton trapping in perylene-based dyes.745,877,878 

With regard to this profound influence of intermolecular interactions, an analysis specific for molecular 

semiconductors is definitely necessary before proceeding with calculations on aggregates. Prior to 

turning to the results on intermolecular interactions, it is, however, worth discussing several literature 

findings since a considerable amount of scientific research has been dedicated to phenomena related 

to π-π-interactions and π-stacking. More detailed perspectives than the herein presented summary 

were provided by Iverson and coworkers879 and by Diederich et al.880 in a review article with a more 

biochemical focus.  

Traditionally, in the very popular Hunter model, the interactions between π-conjugated molecules and 

between aromatic π-systems in particular were described as electrostatic interactions between the 

molecular quadrupole moments.881 Since quadrupole moments are a special feature of organic π-

systems – a consequence of their electronic anisotropy – the Hunter model suggests the existence of 

a special kind of interaction between π-systems, often denominated in the literature as “π-π-

interactions” or “π-stacking”.879 However, modern SAPT (symmetry-adapted perturbation theory) 

calculations by Sherill and coworker882 and CCSD(T) calculations by Lee et al.883 attribute the 

energetically most important contributions to the total “π-π-interactions” to dispersion rather than to 

electrostatics, which can play a conformation-determining role only for conformations that are 

similarly favored by dispersion.882 In this sense and in line with Iverson,879 Grimme challenged the 

physical soundness of the frequently employed notion of “π-π-interactions” because albeit being 

strong, interactions between π-conjugated molecules are nevertheless equivalent to “standard” 

dispersion forces. According to Grimme, the dispersion forces between organic π-systems are certainly 

stronger than average dispersion forces between aliphatic counterparts. However, this strength results 

rather from the close intermolecular contacts between π-conjugated molecules enabled by their 

structural planarity than from some special nature of the forces.884 Furthermore, Wheeler and Houk 

demonstrated in DFT-D calculations on substituted aromatic systems that electrostatics can be very 

important. Yet, substituents interact usually directly through space and not indirectly via inducing 
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changes in molecular quadrupole moments, which alters resulting quadrupole-quadrupole 

interactions.885,886 

Although the conclusions might be transferable to molecular organic semiconductors, benzene and 

substituted derivatives were used in most investigations. In contrast, this investigation includes a 

number of compounds with polarized π-systems (Figure 5), i.e., compounds with large local dipole 

moments in the conjugated cores that result from the incorporation of heteroatoms and electron-

withdrawing moieties in the systems. It is possible that the energy contributions of dispersion and 

electrostatics to the total intermolecular interaction energies change when molecules with these 

structural features are considered instead of substituted aromatics. This raises the question whether 

electrostatic interactions dominate intermolecular potentials between such polar organic π-systems 

and their resulting transport properties, as outlined by Würthner and Meerholz.27  

Moreover, it should be noted that the global energy minimum is the main point of concern of most 

literature investigations.879 In contrast, the global energy minimum is not of primary interest for thin-

film structures because the static disorder548,425 present in all amorphous thin films leads essentially to 

a distribution of conformations over many local energy minima.552 Therefore, to gain insight into the 

number of local energy minima in the following, potential energy surfaces (PES) are calculated along 

different internal coordinates of dimers composed of organic semiconductors. To focus exclusively on 

interactions between the π-systems, non-conjugating three-dimensional substituents were cut off, and 

only two-dimensional planar molecules are employed. Thus some molecules from the original 

compound set had to be excluded. Furthermore, for an in-depth analysis of the Hunter model and the 

implications of electrostatics in general, it seems necessary to include some electron-poor aromatic 

systems, i.e., some n-type semiconductors. For this purpose, PBI and perfluorinated acenes 

(naphthalene and anthracene) are additionally taken into account. The slightly modified set of 

compounds employed for the calculation of intermolecular interactions is given in Figure 45. 

PES scans were calculated with high-level SAPT calculations,887,296,888 the local molecular orbital energy 

decomposition analysis (LMO-EDA) by Su et al.,293 DFT-D surface scans, and different force-field 

approaches. SAPT(DFT) calculations were shown to be very accurate for intermolecular 

potentials,889,890 but due to their considerable computational cost, they can be employed only for small 

systems. Therefore, computationally less sophisticated LMO-EDA analyses were additionally used. 

Force-field approaches play an important role in modern computational material sciences because 

they provide an efficient route to do calculations on large systems.891 This makes them attractive for 

the targeted multiscale approach, but requires that their applicability is thoroughly evaluated 

beforehand. Except for these advantages from a user’s point of view, modeling calculated 
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intermolecular interactions obtained with ab initio methods also provides insight and understanding 

of these interactions. 

 

Figure 45: Selection of molecular semiconductors with different degrees of polarization in the conjugated 
systems. Molecules with names in blue are analyzed in more detail. For more details on the fragments of HB238, 
HB194, and MD353, see Würthner et al.656,655 

Like in all other benchmark calculations, optimized SCS-MP2/cc-pVTZ geometries obtained with the 

Turbomole program package179 were employed for the molecules in Figure 45. Their ESP (electrostatic 

potential) charges using the Merz-Singh-Kollman scheme892,893 were computed at the MP2/cc-pVTZ 

level of theory with Gaussian.718 All SAPT calculations were performed with the tuned PBE0 

functional802,801 and the Molpro program package.894,895 Augmented basis sets (aug-cc-pVDZ) were 

employed in the SAPT computations.896,897 All LMO-EDA calculations were conducted with the 

GAMESS-US program package using ωB97X-D/6-31G898 densities. LMO-EDA was shown to be basis set 

insensitive.293 DFT-D surface scans were performed either with ωB97X-D/cc-pVDZ or with PW6B95-

D3815,140/def-TZVP749. Sure and Grimme outlined in a recent benchmark that these two functionals 

provide reliable intermolecular potentials.139 The MM3,363,365,364 OPLS-AA,360,349 and AMOEBA388,356,348 
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force fields were chosen for the calculations. These force fields were selected because they include 

electrostatic interactions in complementary ways: via bond dipoles (MM3), via atomic charges (OPLS-

AA) or via distributed multipoles and induction (AMOEBA). Default parameters were used for MM3 

and OPLS-AA while Stone’s generalized multipole distribution analysis353 (GDMA) was carried out to 

generate AMOEBA parameters using ωB97X-D densities. The Tinker program package899 was employed 

for all force-field calculations. 

All presented PES scans are referenced to their energetic minimum. They are performed either at the 

equilibrium distance of stacked monomers (vertical displacement between the π-systems, i.e., 

distance between the monomer planes: 3.3 Å) or in the slightly repulsive regime (vertical displacement 

between the π-systems: 3.0 Å). Investigations of energy decompositions in the slightly repulsive regime 

allow deducing more clear-cut trends because all energy contributions are larger. It was checked 

beforehand that the relative contributions hardly change when going from the equilibrium distance to 

the slightly repulsive regime. The potential energy scans can be subdivided into horizontal longitudinal 

(x-direction) and lateral (y-direction) scans (exemplified with naphthalene in Figure 46). Depending on 

the direction of the scan, one of the stacked monomers is displaced with respect to the other. In line 

with previous results, both coordinates were employed to analyze intermolecular PESs.900,901 

 

Figure 46: Illustration of the x-horizontal and the y-horizontal shift/scanning coordinate. Due to their positions 
with respect to the molecular axes, they are also called the longitudinal and lateral displacement. 

5.6.1 Analysis of basis set effects and related phenomena on intermolecular potentials  
In a first step, basis set effects on DFT-D surface scans are analyzed for both longitudinal and lateral 

displacements. The evolution of the surface scans upon increasing the basis set size from cc-pVDZ over 

aug-cc-pVDZ, cc-pVTZ, aug-cc-pVTZ to cc-pVQZ705 is shown in Figure 47 for the naphthalene 

homodimer. It becomes evident that the increase of the basis sets does not change the characteristics 

of the intermolecular potential (Figure 47). However, for small vertical displacements (blue line), the 

basis set superposition error (BSSE) leads to too small values around the minimum x-/y-horizontal 

displacement of 0 Å. This corresponds to overestimated binding energies. The overbinding in dimers is 

a characteristic of the BSSE. Consistently, upon increasing the basis set and thereby decreasing the 

BSSE, larger intermolecular potential energies are obtained around 0 Å. Nevertheless, the BSSE varies 

only smoothly with the displacement. Therefore, it has no impact on the characteristic features of the 

potential. Local potential energy minima are thus left unchanged. The BSSE furthermore falls off 
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quickly with increasing vertical distance between the π-conjugated systems. In a certain way, it 

therefore compensates the errors introduced from scanning in the slightly repulsive regime, which 

artificially decreases the binding energy. 

 

Figure 47: Basis set effects on horizontal displacements within a naphthalene dimer for different vertical 
displacements using ωB97X-D and various basis sets. 

In addition to changes induced by systematically increasing the basis sets, the BSSE can also be 

assessed using counterpoise-corrected energies.31 Results of counterpoise-corrected902,903 ωB97X-

D/cc-pVDZ calculations for the naphthalene homodimer and the perfluoronaphthalene homodimer 

are given in Figure 48 (left panels and right panels, respectively). From the energy difference of 

standard ωB97X-D/cc-pVDZ calculations, the BSSE can be directly computed. It is indicated with green 

lines in Figure 48. 

As already discussed for the results in Figure 47, the BSSE values in Figure 48 clearly indicate that the 

BSSE is approximately constant along the longitudinal and lateral shift coordinates as well as for 

rotations of two monomers stacked on top of each other (i.e., on of the stacked monomers forming 
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the dimer is rotates while the position of the other is kept unchanged). Nevertheless, it is not small 

and amounts to ~ 10 kcal/mol for the naphthalene homodimer and even exceeds 20 kcal/mol for the 

dimer composed of two fluorinated naphthalene molecules. As could be expected, it smoothly falls off 

with increasing vertical displacement between the planar π-systems.  

Altogether, the results in Figure 47 and Figure 48 underline that as long as absolute energy values are 

not interpreted, the BSSE does not change the characteristics of the intermolecular potentials. Hence 

using the cc-pVDZ basis with ωB97X-D or, in line with Sure and Grimme,139 the def-TZVP with PW6B95-

D3 should be completely sufficient to obtain a qualitatively correct overview over typical progressions 

of intermolecular PESs.  

 

Figure 48: Results for different coordinates of the PES of the naphthalene homodimer (left panels) and the 
perfluoronaphthalene homodimer (right panels) calculated with ωB97X-D/cc-pVDZ and ωB97X-D/cc-pVDZ with 
counterpoise correction. The energy differences between both calculations yield the BSSE. In a rotation, on of 
the face-on stacked monomers is rotated while the position of the second is kept constant. 

Given that the BSSE of DFT calculations is only of minor importance, the question arises how accurately 

DFT-D surface scans actually describe intermolecular potentials between molecular organic 

semiconductors. A comparison of the PESs calculated with SAPT(DFT), ωB97X-D and PW6B95-D3 is 
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given in Figure 49. While the right-hand side of the two graphs displays the actual energy curves, the 

left-hand side illustrates the differences between the DFT-D and the SAPT(DFT) values. The two PESs 

are calculated for a slightly repulsive vertical displacement of 3.0 Å; the equilibrium distance was 

determined to be 3.75 Å (Figure 48). Nevertheless, the characteristic features of the energy 

progressions remain the same for the repulsive regime compared with the equilibrium distance (see 

also Figure 47). Moreover, the slightly repulsive regime is still relevant in thin films where a distribution 

of conformations around the energy minimum is obtained.   

 

Figure 49: PESs for the x-horizontal and the y-horizontal displacements within a naphthalene homodimer. As 
discussed above, the scan was calculated for a slightly repulsive vertical displacement of 3.0 Å. It should be kept 
in mind that the potential energy of each scan was referenced to the minimal point of the respective scan. 
Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 

The small energy differences between DFT-D and SAPT(DFT) and the good mutual coincidence of the 

two DFT-D curves clearly indicate that DFT-D curves provide reliable intermolecular potentials, as also 

outlined by Grimme and coworker.139 According to all three methods, conformational energy minima 

exist for edge-on conformations (Figure 50) with x- and y-displacements of ±1.5 Å. Further energy 

minima are situated at larger displacements of ±4.0 Å. Similarly, the global maximum of all three 

methods is given by the face-on conformation. Additional local energy maxima can be found at x-/y-

horizontal displacements of ±2.5 Å. Deviations from the SAPT reference values for ωB97X-D/cc-pVDZ 

energies in particular are most pronounced for large displacements. This arises from the BSSE that 

deteriorates the quality of the DFT-D values while SAPT results are counterpoise-corrected. The BSSE 

was found to be constant for the center regions of the scans, but alters relative energies between small 

and large displacements. This explains the good accordance between DFT-D and SAPT(DFT) for regions 
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with constant BSSEs and increasing deviations when comparing dimer geometries with different BSSEs. 

However, as outlined above, the BSSE does not change the characteristic features of the curves, which 

is again reflected in the PESs in Figure 49.  

It should be noted that both PW6B95-D3/def-TZVP and ωB97X-D/cc-pVDZ energy profiles were 

calculated for all scans that will be presented in the following. They always agree very well as it was 

already the case in Figure 49. Therefore, only ωB97X-D/cc-pVDZ energy profiles are given. 

 

Figure 50: Face-on and edge-on conformation of stacked aromatic systems illustrated at the example of benzene. 

 

Figure 51: Comparison of DFT-D energy profiles and SCS-MP2 energy profiles for the naphthalene homodimer 
(left panels) and the dimer composed of two fluorinated naphthalene molecules (right panels). The distance 
between the π-system was set to 3.0 Å.  

It is well-known in computational chemistry that MP2 cannot be used to properly describe 

intermolecular interactions other than hydrogen bonding,76 as for example emphasized by Grimme 

and coworker.139 Numerous studies exist that outline the characteristic overshooting of MP2 for 

dispersion-like interactions.904,905,78 Nevertheless, it is instructive to compare SCS-MP2/cc-pVTZ 

intermolecular potentials to the DFT-D energy profiles (Figure 51). From the PESs given in Figure 51, it 
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can be seen that SCS-MP2 energy profiles show all characteristic features of the DFT-D curves and, 

with this, also of the SAPT reference values (Figure 49). Still, the characteristic overbinding becomes 

evident from the PESs of both dimers. For instance, the energetic minimum for the edge-on 

conformation of the naphthalene homodimer (upper left panel) is most pronounced for SCS-MP2. This 

indicates that the SCS-MP2 predicts the largest, i.e, an overestimated binding energy for the 

naphthalene homodimer, in line with the findings of Grimme and coworker.139 Furthermore, SCS-

MP2/cc-pVTZ PESs for the perfluoronaphthalene dimer resemble the ωB97X-D/cc-pVDZ profiles more 

than the PW6B95-D3/def-TZVP in spite of the contrary employed basis sets. Apparently, the 

overbinding of MP2-based methods produces artificial binding interactions similar to the BSSE. 

5.6.2 Energy decomposition analyses of homo- and heterodimers composed of π-

conjugated organic molecules  
In a next step, results from SAPT(DFT) and from LMO-EDA are compared. For this purpose, Figure 52 

displays SAPT(DFT) results for the energy decomposition of the intermolecular energy of the 

naphthalene homodimer and the corresponding LMO-EDA results. Before turning to a detailed 

interpretation of the presented energy decomposition, it should be discussed how to compare the 

individual energy contributions from SAPT(DFT) and LMO-EDA. SAPT(DFT) to the second order 

decomposes intermolecular interaction energies into contributions from electrostatics, exchange-

repulsion, induction, and dispersion, leaving aside higher-order terms.890 The LMO-EDA delivers 

contributions from electrostatic, polarization, exchange-repulsion, and dispersion. While an exact 

mapping of the SAPT and LMO-EDA contributions is not possible,293 contributions arising from 

electrostatics, exchange-repulsion, and dispersion are directly comparable,906,907 i.e., all terms except 

for the induction term from SAPT and the LMO-EDA polarization. A direct comparison between those 

two terms is not possible because LMO-EDA polarization includes induction and ground-state charge-

transfer906 whereas the SAPT induction evidently does not account for charge-transfer contributions.293 

Head-Gordon and coworkers proposed a slightly modified version of LMO-EDA, namely ALMO-EDA 

(absolutely localized molecular orbital EDA), where the more general LMO-EDA polarization is further 

subdivided into composing induction and charge-transfer contributions.908  

Comparable energy contributions from SAPT and LMO-EDA are equally colored in Figure 52. While the 

exchange-repulsion is further subdivided for LMO-EDA, only the sum is given for SAPT. Albeit being 

non-equivalent, the LMO-EDA polarization and the SAPT induction are indicated with blue lines. From 

a comparison of the panels in Figure 52, it becomes evident that energy contributions from SAPT and 

LMO-EDA are very similar. Also the total energy (pink) is almost equal. The only difference remains the 

polarization/induction component where large deviations exist especially for large displacements. The 

LMO-EDA induction contribution is larger in terms of absolute values than SAPT polarization, but it 



264 
 

largely parallels the progression of the electrostatic energy. This is in line with the fact that charge-

transfer contributions are included in the LMO-EDA induction so that it acquires some characteristics 

of the electrostatic stabilization. However, the generally equivalent results in Figure 52 are most 

important because this similarity allows using LMO-EDA also for larger systems where SAPT becomes 

inapplicable due to computer limitations. 

 

Figure 52: Comparison of SAPT (left) and of the LMO-energy decomposition (right) analysis for the x- and y-
horizontal shift of two naphthalene monomers (vertical displacement of the molecules: 3.0 Å). Reproduced with 
permission from 875. © 2016 Wiley Periodicals, Inc. 

Since both energy decomposition schemes were shown to be equivalent, SAPT results for naphthalene 

are discussed more thoroughly in the next step. To do so, different sums of individual energy 

contributions are compared to the overall SAPT results in Figure 53. As already mentioned above, the 

x-horizontal displacement contains more distinct features. Therefore, it will be discussed in more detail 

in the following. Stabilizing contributions are indicated with dashed lines. 
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A comparison of the total energy (pink line, Figure 53) to the various energy contributions suggests 

that the characteristic progression of the intermolecular potential energy results mainly from 

variations in the exchange-repulsion component (black line, Figure 53). 

 

Figure 53: SAPT analyses for the x-horizontal (upper panel) and y-horizontal (lower panel) displacement within a 
naphthalene homodimer. Solid lines correspond to repulsive (positive) contributions while dashed lines 
correspond to attractive (negative) contributions. All energy contributions were referenced to zero. Reproduced 
with permission from 875. © 2016 Wiley Periodicals, Inc. 

Contrary to the exchange-repulsion, the induction is an attractive energy contribution (dashed line in 

Figure 53). Although it shows also some characteristic features along the displacement coordinate, its 

overall energy contribution is considerably too small to account for significant variations in the total 

intermolecular potential. Moreover, its progression does not parallel the evolution of the total 
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intermolecular energy, but rather opposes it, particularly around the global energy maximum (x-

displacement: 0.0 Å). Both the total energy (pink line) and the induction component (blue dashed line) 

reach maximal values for this conformation. However, it is important to keep in mind that the induction 

is most stabilizing while the total energy is most repulsive for an x-horizontal displacement of 0.0 Å. 

This indicates that the energetic contribution from induction does not considerably influence the shape 

of the intermolecular PES. Moreover, a comparison of the total energy (pink line, Figure 53) with the 

sum of all energy contributions apart from the induction (orange line, Figure 53) indicates that the 

overall stabilizing contribution of induction is almost negligible. 

In contrast, pronounced stabilization to the total intermolecular potential is contributed by the 

electrostatic and dispersion components. Yet, these energy contributions are rather unspecific and do 

not expose any characteristic features along the x-coordinate (Figure 53). Therefore, the existing 

specific features of the total intermolecular energy arise from the combined effects of an unspecific 

stabilization from dispersion and electrostatics and highly specific and localized destabilizing repulsion 

forces. The fact that these site-specific repulsion forces show a maximum for the symmetric face-on 

conformation is reflected in the maximum of the total intermolecular energy. Consequently, as 

outlined above, SAPT calculations predict the edge-on conformations to be most stable. Although this 

matches the predictions of the Hunter model, the results presented in Figure 53 suggest that the 

Hunter model is right for the wrong reason. Otherwise stated, according to the SAPT calculations, 

repulsion forces rather than unspecific long-range electrostatic interactions are responsible for the 

formation of distinct energetic minima along the PES. 

So far, naphthalene was employed as an example to discuss intermolecular potentials of organic π-

systems. In order to verify how general the above-stated conclusions are and whether they are 

transferable to larger molecular organic semiconductors, an LMO energy decomposition analysis is 

conducted for the x-horizontal displacement within the perylene dimer (Figure 54). It should be noted 

that SAPT calculations were computationally not feasible for the perylene dimer. Alike to the PES of 

the naphthalene dimer, the PES of the perylene dimer is equally characterized by a succession of 

numerous local energy maxima and minima. The features of the total intermolecular energy again 

coincide with features of the LMO-EDA exchange-repulsion term, indicating that the energy 

progression as well as local energetic minima and maxima are determined by the exchange-repulsion 

contributions. The total shape of the PES results when these localized repulsive forces are combined 

with the smoothly varying attraction arising from dispersion and electrostatics (light blue and orange 

lines in Figure 54).  
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Figure 54: LMO-EDA of the intermolecular potential of a perylene dimer. Please note that the perylene dimer is 
the scaffold for many molecular semiconductors such as DIP, PBI, and PTCDA. The intermolecular distance 
between the π-systems was set to 3.0 Å. Extensive theoretical investigations on such perylene-based dimers 
were conducted by Settels et al. (745 and references therein). Reproduced with permission from 875. © 2016 Wiley 
Periodicals, Inc. 

For the naphthalene and the perylene dimer, the edge-on conformations (Figure 50) are energetically 

lowest according to SAPT, which is in line with the Hunter model, albeit for the wrong reason. However, 

the Hunter model furthermore predicts that face-on conformations become energetically increasingly 

favorable when electron-rich and electron-poor aromatics are combined. This is again rationalized with 

electrostatic arguments. According to the Hunter model, the quadrupole moment is reversed in 

electron-poor aromatics. The electrostatically based model then predicts favorable quadrupole-

quadrupole interactions for the face-on stacked dimers. To gain further insight into the relationship 

between above presented SAPT results and the electrostatic Hunter model, heterodimers composed 

of one “regular” and one fluorinated acene were analyzed. 

In a first step, quadrupole moments were computed for acenes and fluorinated acenes, both at the 

SCS-MP2/cc-pVTZ and at the ωB97X-D level of theory (Table 19). The inversion of the quadrupole 

moments is reproduced for all molecules, with both methods yielding very similar results. 

To verify whether underlying quadrupole-quadrupole interactions are important for the 

intermolecular potential of heterodimers, SAPT(DFT) and LMOEDA results for the naphthalene:: 

fluorinated naphthalene heterodimer are compared in Figure 55. As for the naphthalene homodimer, 

Figure 56 shows SAPT results and sums of specific energy contributions in more detail. 
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Table 19: Inversion of the quadrupole moments of acenes upon fluorination (quadrupole moments in Debye-Å). 

 ωB97X-D/cc-pVDZ SCS-MP2/cc-pVTZ 

molecule Q(x,x) Q(y,y) Q(z,z) Q(x,x) Q(y,y) Q(z,z) 

anthracene 5.33 6.14 -11.48 7.07 6.68 -13.75 

fluoroanthracene -3.65 -6.35 10.00 -6.25 -8.94 15.19 

naphthalene 4.30 3.96 -8.26 5.12 4.94 -10.06 

fluoronaphthalene -2.93 -4.43 7.36 -4.66 -6.30 10.96 

tetracene 8.13 6.64 -14.78 9.15 8.37 -17.52 

fluorotetracene -4.81 -7.98 12.79 -8.53 -11.15 19.67 

pentacene 10.29 7.88 -18.17 10.00 11.40 -21.39 

fluoropentacene -9.29 -6.55 15.83 -12.84 -11.74 24.58 

 

The comparison of SAPT and LMO-EDA results in Figure 55 shows that both energy decompositions 

agree nicely also for the heterodimer, again with the exception of the induction/polarization 

component. The total energy of SAPT or LMO-EDA is rather similar and differs only for large 

displacements where the BSSE of ωB97X-D underlying the LMO-EDA calculations becomes noticeable. 

If electrostatic contributions were dominant as in the Hunter model, the inversed computed 

quadrupole moments (Table 19) in the heterodimer would result in a face-on type minimum-energy 

conformation. This contrasts with the energetic minima found for SAPT and LMO-EDA that still predict 

the edge-on conformation to constitute the global minimum structure (Figure 55, Figure 56). 

Comparing electrostatic contributions in the homodimer (Figure 53) and the heterodimer (Figure 56) 

certainly demonstrates the increased stabilization due to more favorable quadrupole-quadrupole 

interactions in the heterodimer – stabilizing electrostatic interactions rise from 60 kJ/mol to more than 

80 kJ/mol for zero x-horizontal displacement (±0.0 Å). However, the electrostatic stabilization varies 

smoothly without any features and is not site-specific. In contrast, the evolution of the exchange-

repulsion component shows pronounced variations along the displacement coordinate. Combining 

these features with the smoothly varying electrostatic contributions results in a minimum energy 

conformation that is still of edge-on character. Nevertheless, this edge-on conformation shifts to a 

smaller x-horizontal displacement (±1.0 Å instead of ±1.5 Å) because the unspecific stabilization arising 

from favorable quadrupole-quadrupole interactions is larger in the heterodimer (Figure 56) compared 

with the homodimer (Figure 53). 



269 
 

  

Figure 55: Comparison of SAPT (left) and LMO-energy decomposition (right) analysis for the x- and y-horizontal 
shift of a naphthalene molecule and a fluorinated naphthalene molecule (vertical displacement of the molecules: 
3.0 Å). Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 

Altogether, the presented SAPT and LMO-EDA analyses of intermolecular energies in naphthalene 

dimers as well as the LMO-EDA results for the perylene dimer indicate that localized strongly 

destabilizing energy contributions due to the exchange-repulsion are somewhat smoothened by 

unspecific stabilizing electrostatic and dispersion contributions. The relative sizes of these energy 

contributions determine to what extent the monomers are shifted with respect to each other in the 

edge-on minimum energy conformation. This naturally includes the face-on energetically minimal 

conformation as a limiting case for very large stabilizing energy contributions from dispersion and/or 

electrostatics. 
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Figure 56: SAPT analyses for the x-horizontal (upper panel) and y-horizontal (lower panel) displacement within a 
naphthalene::perfluoronaphthalene heterodimer. Solid lines correspond to repulsive (positive) contributions 
while dashed lines correspond to attractive (negative) contributions. All energy contributions were referenced 
to their minimum. Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 

To further illustrate this point, PESs are calculated for dimers of the next higher homologue of the 

acenes, i.e., for the homodimer and heterodimer of anthracene and its fluorinated counterpart using 

ωB97X-D/cc-pVDZ single-point calculations. In order to provide more insight, two-dimensional PESs 

are computed, i.e., the vertical separation between the anthracene molecules is varied in addition to 

their x-horizontal displacement. Figure 57 displays the results for the homodimer (upper panel) and 

the heterodimer (lower panel). It becomes evident that in accordance with the stated conclusion, the 

larger yet unspecific electrostatic stabilization in the heterodimer combined with more or less 
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unchanged destabilizing exchange-repulsion contributions lead to an energetically most favorable 

heterodimer conformation with a smaller x-displacement compared with the minimum energy 

conformation of the homodimer (compare center of pink circles in upper and lower panel in Figure 

57). It follows that in contrast to the Hunter model, the type of conformation between stacked 

aromatic systems is not determined by quadrupole-quadrupole interactions. 

 

Figure 57: Potential energy surface scans for the anthracene homodimer (upper panel) and the 
anthracene::fluorinated anthracene heterodimer (lower panel) calculated with ωB97X-D single-point 
calculations. Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 

One could assume that in contrast to the findings for apolar molecules like naphthalene or perylene, 

intermolecular interactions between strongly polarized π-systems, i.e., molecules like squaraines or 

cyanines, are still dominated by electrostatic contributions rather than by local repulsive forces. To 

analyze to what extent the importance of these local repulsive forces changes when considering 

strongly polarized instead of non-polarized π-systems, the intermolecular potential of a dimer 

composed of dipolar HB238 monomers (Figure 45) is investigated in more detail. This system is chosen 

because it contains on the one hand very polarizable sulfur atoms – allowing for pronounced dispersion 

and repulsion interactions – and on the other hand a very polarized push-pull π-system.656 Therefore, 

the interplay between dispersion, repulsion, and electrostatics can be studied at this system. 

Electrostatic interactions between the polarized HB238 π-systems can be directly calculated as charge-

charge interactions between the atomic charges generated in a ωB97X-D/cc-pVDZ ESP fit of the HB238 

monomer. These charge-charge interactions do not include, however, polarization effects between the 

two HB238 molecules that change the atomic charge distributions within the monomers. In contrast, 
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using atomic charges generated in ωB97X-D/cc-pVDZ ESP fits of the HB238 dimer conformations 

instead of monomer ESP charges accounts for the additional changes of atomic charges induced by the 

intermolecular polarization. Charge-charge interactions from monomer ESP atomic charges 

(“charges”, black line in Figure 58) and from polarized dimer charges (“polarized charges”, green line 

in Figure 58), which were obtained with a C++-script using the output of the Gaussian program 

package, are compared to the total DFT-D energy line (Figure 58). In principle, electrostatic interactions 

between strongly dipolar27,641,909 systems could also be calculated as dipole-dipole interactions 

between the molecular dipole moments. Such calculations were in effect conducted for the HB238 

dimer but results are rather poor because the point dipole approximation is not valid for short 

intermolecular distances.340 

 

Figure 58: Intermolecular potential energies obtained for a parallel longitudinal shift of the HB238 monomers 
with respect to each other for a vertical distance of 3.5 Å between the planar π-systems. This distance 
corresponds approximately to the equilibrium distance, but is still in the slightly repulsive regime. It is larger than 
the above used distances because HB238 contains large polarizable sulfur atoms. Reproduced with permission 
from 875. © 2016 Wiley Periodicals, Inc. 

From the calculated charge-charge interactions between charges or polarized charges (Figure 58), it 

becomes evident that the electrostatic energy does not show any characteristic features, in contrast 

to the total intermolecular potential energy. Much alike to the above discussed results for naphthalene 

and perylene, the electrostatic component varies rather smoothly as a function of the nuclear 

coordinates. To gain more insight into the interferences between the different intermolecular energy 

contributions in the HB238 dimer, the SAPT decomposition is given in Figure 59. It is furthermore 

compared to LMO-EDA results. Again, it is found that SAPT and LMO-EDA coincide nicely also for 

interactions between rather polarized organic π-systems like dipolar merocyanines. Moreover, a 
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comparison between the exchange-repulsion (black line, Figure 59) and the total intermolecular 

energy (pink line, Figure 59) demonstrates that characteristic features of both curves coincide, 

indicating that the energy progression again results from pronounced variations of the exchange-

repulsion. Similar to the electrostatic energy calculated from charge-charge interactions between 

atomic ESP charges (Figure 58), the SAPT electrostatic energy varies in an unspecific way and does not 

possess any features. This results from the long-range 
1

𝑟
-dependence of charge-charge interactions. As 

a consequence, charge-charge interactions vary only slowly with increasing distance, i.e., with the 

coordinate. Such slow energy variations do not favor specific dimer conformations, in contrast to 

exchange-repulsion forces, which, via sharp fluctuations, distinguish between slightly different 

conformations.   

 

Figure 59: SAPT results (upper panel) and LMO-EDA results (lower panel) for the decomposition of the 
intermolecular energy in a HB238 dimer. The vertical distance between the π-systems was set to 3.5 Å. 
Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 
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Similar conclusions can be also drawn from the LMO-EDA analyses of homodimers composed of 

squaraine and diketopyrrolopyrrole molecules, i.e., of two organic π-systems with significant local 

dipole moments. Results are shown in Figure 60. Please keep in mind that the polarization component 

is differently interpreted in LMO-EDA. The polarization shows some features along the coordinates for 

both the squaraine and the diketopyrrolopyrrole, similar to the SAPT induction component in the 

naphthalene homodimer. Nevertheless, most variations arise from the exchange-repulsion component 

(Figure 60). Its pronounced features contrast with the continuous energy progressions of the 

dispersion and the electrostatic components. Hence the results clearly indicate that the exchange-

repulsion component is decisive for the formation of local energy minima and maxima irrespective of 

the degree of polarization of the π-systems. 

 

Figure 60: LMO-EDA for a dimer composed of squaraine molecules (upper panel) and of diketopyrrolopyrrole 
molecules (lower panel). It is worth noting that only the repulsion component varies in a pronounced way as a 
function of the nuclear coordinates. The vertical distance between the π-systems was set to 3.5 Å for both dimers. 
Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 
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This allows for the general conclusion that the positions of the local minima in the intermolecular PESs 

of organic π-systems result from a combination of dispersion and electrostatics providing the needed 

driving force and highly localized short-range repulsive forces that specifically favor distinct 

conformations while destabilizing others. This interpretation is in accordance with the investigations 

of Sherrill and coworkers882 and Iverson et al.879 However, they considered only much smaller and 

simpler model systems, notably substituted benzenes, and did not take into account the stacking 

behavior characteristic for molecular organic semiconductors. In a similar way, compared to the 

Hunter model, it has a different focus and does not attach much importance to electrostatics other 

than some unspecific energetic stabilization. 

While insights into the physical origin of intermolecular interactions between molecular organic 

semiconductors are important to understand such π-π-interactions, modeling them accurately is even 

more essential from a user’s point of view. DFT-D surface scans were shown to provide correct 

intermolecular potentials, but for the purpose of understanding optoelectronic processes near the 

organic::organic interfaces in OSCs, i.e., for multiscale approaches, even larger systems must be 

described. This can be achieved with force-field calculations that are widely used due to their 

computational efficiency.910 Therefore, three different force fields are analyzed in the following with 

respect to their abilities to describe intermolecular interactions between organic π-systems.  

5.6.3 Force-field description of interactions between organic π-systems 
For a number of reasons, the intermolecular potential of the DIP dimer is used to investigate the 

outcome of force-field calculations. Firstly, DIP, a derivative of perylene, is one of the most common 

and most widely studied molecular organic semiconductors.671,911,912,913,914 Secondly, due to its 

considerable size, the intermolecular potential of DIP dimers has many characteristic features. Thirdly, 

extensive data on force field calculations with DIP exist, and in a recent investigation, the crystal 

structure of DIP could not be reproduced with standard force fields.745  

In order to deduce approaches to model intermolecular interactions, it is of particular interest to 

identify those force-field energy contributions that are responsible for the shape of the PES. It should 

be nevertheless kept in mind that force fields are developed so that only total force-field energies are 

physically meaningful. 

The intermolecular potential calculated with ωB97X-D/cc-pVDZ possesses a global energy minimum at 

±3.0 Å and two additional minimum energy conformations between ±3.0 Å and ±7.0 Å (blue line, Figure 

61). Results for three different force fields, i.e., energies and energy decompositions for MM3, OPLS-

AA, and AMOEBA, are given in Figure 62 for a vertical distance of 3.0 Å. A comparison to the force field 

decompositions for a larger vertical distance of 3.3 Å shown in Figure 63 demonstrates the advantages 
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of using the slightly repulsive regime for force-field scans: all features are more pronounced for shorter 

intermolecular distances. Moreover, numerous features even disappear for larger intermolecular 

distances, making a clear-cut interpretation of the force field energy decompositions impossible. 

 

Figure 61: Intermolecular potential energy of the DIP dimer and the model potentials calculated with molecular 
quadrupoles. The vertical displacement between the molecules was set to 3.0 Å. Reproduced with permission 
from 875. © 2016 Wiley Periodicals, Inc. 

 

Figure 62: Energy decompositions of force field energies for the intermolecular potential of the DIP dimer. The 
vertical distance was set to 3.0 Å. Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 

Comparing force field energies (Figure 62) to the DFT-D potential energy (Figure 61) reveals 

considerable deviations. The AMOEBA force field reproduces most features correctly but some local 

energy minima are still missing. Only two energy minima exist according to MM3, one of which actually 
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corresponds to the global DFT-D energy minimum. In contrast, no stable conformations are predicted 

by OPLS-AA. Still, some kinks and variations in the total intermolecular energy progression exist. 

 

 

Figure 63: Energy decompositions of force field energies for the intermolecular potential of the DIP dimer. The 
vertical distance was set to 3.3 Å. While the minimum of the DFT-D curve is well reproduced, many of its kinks 
and characteristic features are still missing. Yet, the force-field description should be sufficient to describe 
qualitatively accurate aggregate interactions. Reproduced with permission from 875. © 2016 Wiley Periodicals, 
Inc. 

The force field energy decompositions permit to compare force field energy contributions responsible 

for the characteristic features of the intermolecular potential to the above discussed SAPT results that 

particularly highlighted the role of the exchange-repulsion. It is evident from Figure 62 that the force 

field energy contributions responsible for the shape of the total intermolecular energy depend on the 

force field. The MM3 van-der-Waals contribution roughly parallels the progression of the total 

intermolecular energy. The same holds for OPLS-AA. Corresponding features between the van-der-

Waals term and the total energy exist also for AMOEBA but additional local variations in the 

electrostatic energy emerge. These fluctuations of the electrostatic interaction energy also coincide 

with the progression of the total energy. While the dominant influence of the van-der-Waals energy 

on the shape of the potential mirrors the importance of the exchange-repulsion predicted by SAPT, 

additional electrostatic contributions from atomic multipoles as found for AMOEBA are rather in line 

with the Hunter model. 

Approaches to model intermolecular interactions between organic π -systems 

In this sense, it is often stated that molecular quadrupole moments are required to correctly describe 

intermolecular energies between organic π-systems with force fields.915 This contrasts with the SAPT 
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results that rather emphasize the significance of exchange and repulsion. As already outlined by 

Tafipolsky and Engels,889 correct total force field energies do not necessarily rely on an accurate 

decomposition into correct individual energy contributions. In fact, the fitting process to generate 

force field parameters rather results in a somewhat arbitrary decomposition of the total force field 

energy into its individual energy components. These individual force field terms consequently depend 

on each other and are only physically meaningful in the sum. This is accepted because force field 

calculations are usually conducted to efficiently obtain energies and geometries where total energies 

are significantly more important than individual components. Nevertheless, the AMOEBA energy 

decomposition (Figure 62) suggests that characteristic features of intermolecular energies can in 

principle also be modeled with multipole-multipole interactions. Although this is not physically 

grounded according to the SAPT results, it is analyzed in the following whether quadrupole-quadrupole 

interactions actually predict correct intermolecular potentials, in line with common claims.915 The DIP 

dimer is again used as an example. The Hunter model is transferred to the DIP molecule, and each 

aromatic ring is described in terms of a quadrupole moment (Figure 64). Please note that this contrasts 

with most force fields including higher-order electric moments because they rather utilize atom-

centered multipole moments.348  

 

Figure 64: Quadrupole moments used to model intermolecular energies via quadrupole-quadrupole interactions. 
The DIP molecules are colored in blue. Positive charges are positioned in the elongation of the C-H-bonds and 
are colored in green. Negative charges corresponding to the π-electron densities are situated above and below 
the molecular planes and are colored in red. Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 

To generate quadrupole moments for all aromatic rings, positive charges are positioned in the 

elongation of the C-H-σ-bonds in the plane of the aromatic system. Out-of-plane negative charges are 

placed above and below the center of each ring. By tuning their out-of-plane displacement, the 

anisotropy of the quadrupole moment can be modified. Values for the out-of-plane displacement of 

the negative charges, for the exact position of the positive in-plane charges, and for the sizes of 

negative and positive charges are obtained by minimizing the difference between the quadrupole-

quadrupole interaction energy and the DFT-D energy. Quadrupole-quadrupole interactions were 

conducted using a C++-program. More information and values can be found in 875. The resulting 

quadrupole-quadrupole interaction energy is shown in Figure 61 (green line, “quadrupoles”). 
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Obviously, it is possible to reproduce all characteristic features of the intermolecular potential energy, 

which arise from exchange and repulsion, with quadrupole-quadrupole interactions. If one 

subsequently adds a smoothly varying and entirely stabilizing dispersion-type interaction to the 

quadrupole-quadrupole interaction, the resulting energy almost totally coincides with the DFT-D 

intermolecular potential (pink line, “quadrupoles+dispersion”, Figure 61). Local minima in the PES are 

correctly reproduced. This suggests that as long as some kind of destabilizing short-range contribution 

is combined with a long-range stabilizing energy component, π-π-interactions can be correctly 

modeled. Nevertheless, this should not imply that a correct description of the underlying physics of 

the interactions is not important. To demonstrate this, the parameters fitted above for a vertical 

distance of 3.0 Å between the DIP molecules are employed to calculate the intermolecular potential 

energy for a larger vertical distance of 3.3 Å. Results are shown in Figure 65. They indicate that although 

the features are still correctly reproduced by means of quadrupole-quadrupole interactions, the 

agreement between the DFT-D and the quadrupole-quadrupole energies decreases. This is due to the 

different distance behavior of the exchange-repulsion on the one hand and of the quadrupole-

quadrupole interactions on the other hand. In the following, it will be briefly discussed that the correct 

distance dependence represents a serious problem for a multitude of model potentials for 

intermolecular interaction energies. 

 

Figure 65: Comparison of ωB97X-D profile and quadrupole-quadrupole interaction energies for a larger vertical 
displacement of 3.3 Å in the DIP dimer. 

According to SAPT, the intermolecular potential energy between organic π-systems results from a 

balance between stabilizing yet unspecific dispersion contributions and destabilizing and very specific 

repulsion interactions. Hence it could be similarly possible to use empirical van-der-Waals potentials 

like in force fields to model π-π-interactions, especially by tuning the repulsion term. The qualitatively 

satisfying performance of MM3 (Figure 62) demonstrates that such potentials should indeed be 

capable of reproducing the intermolecular DFT-D PESs.  

To verify this assumption, a number of empirical potentials presented in the following were 

implemented in C++. More more information, the reader is referred to 875. 
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In the OPLS-AA force field, a traditional Lennard-Jones potential is used to obtain van-der-Waals 

interaction energies 𝐸𝑣𝑑𝑤, which are calculated from the distances 𝑅𝑖𝑗  between two atoms 𝑖 and 𝑗 and 

the corresponding van-der-Waals parameters folded into the coefficient 𝐶𝑖𝑗: 

𝐸𝑣𝑑𝑤 = ∑ ∑
𝐶𝑖𝑗

𝑅𝑖𝑗
12 − 𝑎 ∙

𝐶𝑖𝑗

𝑅𝑖𝑗
6

𝑁

𝑗=1

𝑁

𝑖=1

 

 

(443) 

 

𝑎 is a constant that equals 1 in the regular Lennard-Jones potential.340 Increasing its value, however, 

changes the ratio of stabilizing and destabilizing energy contributions in the total van-der-Waals 

energy. In view of the entirely repulsive Lennard-Jones energy in Figure 62, an upscaling of stabilizing 

contributions could improve the OPLS-AA performance. Setting 𝑎 to 1.3 and scaling the complete van-

der-Waals energy with a similar scaling factor of 1.3 yields the energy profile (green line) shown in 

Figure 66. Compared to the original OPLS-AA Lennard-Jones potential, it constitutes a significant 

improvement. Nevertheless, the fit parameters are distance-dependent, and the good agreement is 

not found for larger vertical displacement anymore (upper panel, Figure 67). 

The buffered 14-7 potential used in the AMOEBA force field behaves similarly. The van-der-Waals 

energy is again expressed in terms of the interatomic distance 𝑅𝑖𝑗  and the van-der-Waals parameters 

휀𝑖𝑗, 𝑅𝑖𝑗
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𝜌𝑖𝑗 is the quotient 𝜌𝑖𝑗 =
𝑅𝑖𝑗

𝑅𝑖𝑗
0 . Although the regular AMOEBA 14-7 van-der-Waals energy delivers the 

correct characteristics of the energy (Figure 62), differences between minima and maxima are not 

sufficiently pronounced. Using the numbers in the buffered 14-7 potential as parameters and 

minimizing the energy difference to the DFT-D potential (by separately varying the parameters875) 

yields a set of modified parameters and a potential energy with essentially correct features (green line, 

second panel, Figure 66; parameters: 1.07 → 1.12; 1.12 → 1.32; 0.12 → 0.08; 2 → 2.48).  
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Figure 66: Different adapted van-der-Waals potentials to model the intermolecular potential of the DIP dimer. 
The ratio of attractive and repulsive forces is scaled in the OPLS-AA and the AMOEBA energy expressions (first 
and second panel). The Buckingham and the Morse potentials (third and fourth panel) are fitted to the DFT-D 
energy. The vertical displacement is set to 3.0 Å. Reproduced with permission from 875. © 2016 Wiley Periodicals, 
Inc. 
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Figure 67: Using the fit parameters of the above given fits, intermolecular potentials are calculated for larger 
intermolecular distances of 3.3 Å. Reproduced with permission from 875. © 2016 Wiley Periodicals, Inc. 

Equivalent fitting procedures were applied to obtain Morse and Buckingham-type potentials340 in good 

accordance with the DFT-D potential (second, third panel, Figure 66). The fitted Buckingham potential 

𝐸𝑏𝑢𝑐𝑘𝑖𝑛𝑔ℎ𝑎𝑚 is composed of a potential dispersion and an exponential repulsion contribution, and it 

depends on a polarizability-like parameter 𝛼:  
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The parameters 휀𝑖𝑗 and  𝑟𝑖𝑗 were obtained from the standard AMOEBA parameters as follows: 

휀𝑖𝑗 = √휀𝑖 ∙ 휀𝑗  (446) 
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Similar parameters were also employed for the Morse potential 𝐸𝑀𝑜𝑟𝑠𝑒 , which corresponds to using 

exponential functionals for both dispersion and repulsion. Fitting to the DFT-D PES yields the following 

potential: 
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However, the problem that the parameters optimized for a certain vertical distance are not readily 

transferable to other distances (Figure 67) remains the same for all presented empirical van-der-Waals 

potentials, a fact already pointed out for the OPLS-AA Lennard-Jones potential. The potentials in 

conjunction with the fitted parameters (i.e., fitted for a given distance) do not satisfactorily reproduce 

the features of the intermolecular energy at other distances (Figure 67). This severly restricts the 

usefulness of these potentials. It should be furthermore noted that the fitting procedure becomes 

troublesome for molecules containing multiple different atom types such as squaraines or 

diketopyrrolopyrroles.   

In view of the lack of generality of the empirical potentials and their parameters and the intrinsic 

technical problems of multiparameter fits, one would like to have a physically grounded model, which 

naturally results in a correct distant-dependent behavior as well as more generality. On the basis of 

fundamental investigations of Stone and others,916,917,918 an approach based on the overlap of atomic 

p-orbitals that correctly captures the underlying physics was developed by Walter.919 For more 

information see 875. 

To summarize this section, a detailed analysis of intermolecular interactions between organic π-

systems with a special focus on the underlying physics was presented. PESs of the intermolecular 

potentials between the molecular organic semiconductors calculated with DFT-D approaches are 

always characterized by a distinct succession of local energy minima and maxima. SAPT and LMO-EDA 



284 
 

analyses underlined the major importance of the exchange-repulsion interaction in determining these 

local energy minima and maxima while the overall binding energy is rather provided by contributions 

from dispersion and electrostatics. Empirical electrostatic and van-der-Waals approaches were 

employed to model the characteristics of the PESs. However, severe limits exist to the accuracy of such 

empirical approaches, most notably the lack of generality and a wrong distance dependence. 

Moreover, energy differences between different conformations are frequently underestimated. 

In view of these findings, the question arises how to include intermolecular interactions in a multiscale 

approach as completely as possible. Since all force-field approaches are error-prone, they should be 

employed with care. This implies using DFT-D and other quantum-chemical based approaches instead 

of force fields as much as possible. Hence all details of the intermolecular potentials should be (if 

possible) included in subsequent QM single-point calculations using only parts of the MM generated 

geometries. Therefore, accurate equilibrium distances are the most important result from force-field 

calculations for multiscale approaches. Nevertheless, for equilibrium distances, force-field approaches 

differ only slightly (Figure 63). They generally underestimate these equilibrium distances but the effect 

is least pronounced for OPLS-AA (completely repulsive potential in Figure 62). Therefore, the repulsive 

character of OPLS-AA for short intermolecular distances and its accurate prediction of the equilibrium 

distance suggests using this force field in the following, the more so as it has been specifically optimized 

for fluids,360,349 which are somewhat related to amorphous thin-film aggregates. Moreover, OPLS-AA 

calculations are efficient and low cost (type I force field), in contrast to AMOEBA (type III force field; 

and also to MM3, type II force field), which frequently encounters convergence problems864 and comes 

at the additional expense of considerably higher calculation times due to the iterative inclusion of 

polarization.  

Taking advantage of these key results on intermolecular interactions specifically analyzed for the π-

systems of molecular organic semiconductors, the discussion continues with a description of aggregate 

morphologies and properties in the next section. It describes the generation of interfacial model 

structures for organic::organic interfaces in OSCs. 
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5.7 MM (Molecular Mechanics) Generation of Interface Structures 
Some of the results discussed in the following can be also found in 638. 

Understanding optoelectronic processes at organic::organic interfaces requires realistic model 

aggregates of the interfacial morphologies. In this section, the generation of interfacial model systems 

using molecular dynamic (MD) simulations and the OPLS-AA force field is described. In contrast to 

coarse-graining approaches, force fields like the herein employed OPLS-AA have the advantage of 

providing results with atomistic resolution.575 Molecular dynamics (MD) in conjunction with force fields 

was shown to yield suitable interface model structures,575,26 and numerous investigations on interfacial 

morphologies920,580 and the resulting energy alignment460,456 employing different variants of MDs exist. 

It is well-known that the MD starting structure plays a very important role26 because a complete 

sampling of the conformational space of large systems is not possible.921,922 Furthermore, large barriers 

cannot be overcome in MD simulations due to the limited available thermal energy.31 

The aligned donor and acceptor crystal structures are often used as the starting structures for 

subsequent MD simulations where they are equilibrated. 26,923,457 This approach is also adopted for the 

herein generated interfacial model systems, and it is slightly adapted to mimic the experimental 

coevaporation/spin-coating process. This is achieved with a succession of MD simulations (Figure 68). 

The starting point is a single crystalline monolayer of the molecular p-type semiconductor. Vacancies 

are created (i.e., roughly a third of the molecules is removed) to enable some degree of structural 

rearrangement during the simulations. As it is the case in the experimental process, kinetic control is 

assumed so that the last frame of a subsequent short MD simulation (~100 ps) is used for further build-

up of the interfacial structure (Figure 68, “starting point”). The last MD frame should in fact be rather 

disordered. Then, all coordinates are frozen. In the following step (“generation of disordered p-type 

semiconducting layer”, Figure 68), a second crystalline slice composed of molecular p-type 

semiconductors with artificially created vacancies is placed several angstroms above the frozen and 

disordered first slice. In the subsequent MD simulation, a harmonic potential (force constant 2 kcal/Å 

starting at a threshold distance of 7 Å from the first slice; no potential acts below that threshold) is 

applied between the two slices that accelerates the molecules of the second crystal slice toward the 

disordered interface composed by the frozen first slice. This leads to the deposition of a second 

disordered layer of molecular p-type semiconductors. All coordinates are again frozen, and the next 

crystal slice is added. The whole cycle is repeated four to five times. A similar procedure is adopted for 

the fullerenes (“addition of fullerenes” in Figure 68) that are deposited on top of the disordered 

molecular p-type semiconductors. Single crystalline slice with created vacancies are placed above the 

disordered p-type semiconducting layer. The following MD step along with an applied harmonic 

potential simulates their deposition. The cycle is repeated several times for the fullerenes as well. 
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Figure 68: Illustration of the adopted method to generate disordered interfacial model systems. A single crystal 
slice is the starting point (top view in the first panel). Vacancies are subsequently created. A succession of MD 
simulations is used to stepwise construct the final interfacial structure.  

In order to ascertain that the conformational space, which cannot be completely sampled (see above), 

is investigated at least at several complementary positions, the simulation described in Figure 68 is 

applied to crystalline slices taken from the three basis crystallographic planes, i.e., (001), (010), (100), 

of the crystal structures of the molecular p-type semiconductors. It should be noted that these planes 

are identical for the fullerene crystal structure because it is face-centered cubic (fcc).924 Cleavage 

planes in face-centered cubic crystal structures usually correspond to the (111) crystal face and not to 

the crystallographic planes (001), (010), and (100).925 However, diverse experimental investigations 

have shown that the crystallographic orientation of deposited fullerenes C60 critically depends on the 

substrate.926,927 Therefore, in the MD simulations, the loosely added fullerenes should be able to freely 

rearrange to the correct orientation (“vacancies”, Figure 68). Moreover, using the crystallographic 

planes instead of the cleavage planes has the additional advantage that the system is more flexible 

since the cleavage plane (111) in fcc structures corresponds to the crystal face with the densest packing 

and, correspondingly, the least spatial flexibility.    
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Hence, the different crystallographic planes of the crystalline molecular p-type semiconductors are 

aligned with the same crystalline slice of fullerene C60. The dimensions of the aligned slices are 

determined by the least common multiple of the dimensions of the unit cell axes of the crystal 

structures of the molecular donors and of C60. More details and values can be found in 638. For each of 

these orientations, the procedure described in Figure 68 is repeated. Ultimately, this yields three 

different interfacial model systems per molecular p-type semiconductor. The generated structures are 

used for all later-on calculations of thermodynamic and kinetic data. Hence, they profoundly influence 

all final results.  

The quality of these structures depends on the underlying force field (OPLS-AA, see above). Hence, a 

thorough investigation of the quality of the force-field parameters is required. It is well-known that 

molecules with complicated electronic structures cannot be suitably described by force fields if they 

are not included in the training set of the force field parameters. This presumably holds also for some 

of the herein included conjugated systems like squaraines, diketopyrrolopyrroles, and 

triphenylamines. To prevent an erroneous force-field description from spoiling morphologies and with 

this the results of later-on calculations, force-field monomer geometries are directly discarded. 

Instead, quantum-chemically optimized monomer geometries are superposed onto all force-field 

molecules. A three-point criterion is used for the superposition, i.e., the plane defined by three atoms 

in the molecular backbone is used to map high-quality QM geometries to the MM ones. A program 

implemented in C++ is used for the superposition. It is worth emphasizing that due to this procedure, 

all molecular geometries of resulting interfacial model systems are equal. Static disorder created by 

possibly position-dependent intramolecular relaxation processes and dynamic disorder arising from 

vibrations are not included in any of the later-on presented calculations. Nevertheless, replacing all 

MM geometries with optimized QM ones reduces the amount of required evaluation of the force-field 

parameters because all intramolecular force-field parameters, i.e., bond lengths and potentials, angles, 

torsions, and out-of-plane torsions, do not directly enter subsequent calculations. In view of the 

electronic complexity of the employed molecular semiconductors, it would be questionable anyway 

whether suitable parameters could be defined at all.ttt Therefore, only intermolecular force-field 

parameters, the atomic charges and the van-der-Waals parameters that determine the intermolecular 

arrangements in the interfacial model systems, remain to be evaluated. 

In the previous section (“Interactions between the π-systems of molecular organic semiconductors”), 

standard van-der-Waals parameters of the OPLS-AA force field were used to calculate diverse 

                                                             
ttt Structural phenomena resulting from electron correlation, namely the bond length alternation, electron 
delocalization, or substituent-dependent distortions (in triphenylamines or diketopyrrolopyrroles), are difficult 
to incorporate into a classical MM treatment. 
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intermolecular potentials with an acceptable accuracy (see for instance Figure 63). The same van-der-

Waals parameters were applied to atom types in different molecules. This suggests that, as commonly 

assumed when using force fields, van-der-Waals parameters are not molecule-specific. This 

assumption is quite general and fundamental to all MM calculations, and it was similarly utilized for 

MM3 and AMOEBA computations in the previous section. Therefore, the employed standard OPLS-AA 

van-der-Waals parameters will not be evaluated in detail in the following.  

The use of atomic charges is, however, not as straightforward at least with the OPLS-AA force fielduuu 

because overall charge neutrality of the molecules needs to be ensured. The following approach is 

chosen to deduce suitable atomic charges. Standard OPLS-AA parameters of distinct structural 

moieties (DNA bases, anthracene, naphthalene, benzamide, acetaladehyde, diphenylamine) were 

used to parameterize the molecules in a first step. In a second step, excess positive or negative charges 

were evenly redistributed so that the net molecular charge vanishes. This proceeding is certainly 

approximate and requires evaluation. To do so, the morphologies resulting from these charge 

parameters are compared to morphologies obtained with other charge parameters and otherwise 

unaltered simulation settings. For the comparison, three different molecules – DIP, MD353, and the 

squaraine – were used. Apart from the OPLS-AA charges, Mulliken, Hirshfeld,928 CM5,929 and ESP 

charges892 obtained in B3LYP-D3/cc-pVDZ calculations were employed in separate MD simulations. 

Please note that in these separate simulations, each atom and not each atom type carries a different 

charge. The amount of disorder in resulting aggregates was analyzed because, as discussed above, MD 

simulations were only used to generate intermolecular disorder, with intramolecular effects being 

disregarded. Therefore, the intermolecular rearrangements are the only later-on used aspect where 

the force-field parameterization enters.  

To put the analysis of disorder on a quantitative footing, a disorder parameter needs to be defined. 

The mutual orientations of the π-conjugated planes of the molecules are most decisive for 

subsequently calculated couplings, state energies, and rates.745 These mutual orientations are 

reflected in the tilting angles of the planar molecular π-systems with respect to a reference plane 

(Figure 69; the tilting angles are defined as the angles between the normal vectors of the planar π-

systems and the reference plane). The interfacial plane can be readily used as a reference plane in this 

case. The triphenylamine-based compounds do not have a clear-cut molecular plane so that the plane 

spanned by the three α-carbon atoms vicinal to the central nitrogen is used instead. In ordered 

crystalline systems, all molecules are equally oriented with respect to each other so that all tilting 

angles are exactly the same. No disorder exists, and the standard deviation of the distribution of tilting 

                                                             
uuu It should be noted that MM3 employs bond dipoles to describe electrostatic interactions between the 
molecules. This has the advantage that since only dipoles are employed, the overall charge is automatically 0.  
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angles is zero. In contrast, in amorphous systems tilting angles vary. Their distribution is marked by a 

non-zero standard deviation. The broader the spread in tilting angles, i.e., the more the orientations 

of individual π-conjugated molecules vary, the larger the standard deviation. Hence the standard 

deviation can be taken as a measure of the disorder present in any aggregate composed of π-

conjugated molecules.  

 

Figure 69: Illustration of the tilting angles (blue arrow) of the planar molecular π-systems (red rectangles) with 
respect to the interfacial plane (grey plane). Each tilting angle is defined as the angle between the normal vectors 
of the reference plane and the planar π-system. A C++-program was used to calculate and average all tilting 
angles. 

The amount of disorder, i.e., the standard deviation of tilting angles, was calculated for aggregates 

obtained with the MD simulations using the different sets of charge parameters (standard OPLS-AA, 

Hirshfeld, CM5, ESP, Mulliken). It is nevertheless important to emphasize that the outcome of MD 

simulations does not only depend on the force-field parameters, but also on the trajectory itself. 

Although MD simulations are in principle deterministic, they are non-deterministic in practice 

especially for long simulation times due to the summation of the numerical error. Therefore, the 

disorder in aggregates generated with the same force-field parameters also varies because of the non-

deterministic nature of the simulation. To differentiate both effects, two additional simulations with 

the original OPLS-AA were conducted. In the following tables (Table 20 to Table 22), the standard 

deviations of the tilting angles, i.e., the amount of disorder in the systems, are listed for DIP (Table 20), 

the squaraine (Table 21), and MD353 (Table 22). The first row of all tables indicates the methods 

employed to deduce the set of atomic charges. The three separate simulations conducted with the 

same OPLS-AA parameter set are indicated as “OPLS-1”, “OPLS-2”, and “OPLS-3”. To rule out that the 

influence of the force-field charges depends on the crystallographic plane, the analyses were 
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performed for all crystallographic orientations, as indicated in the first columns of the tables (Table 20 

to Table 22).  

Table 20: Standard deviation of tilting angles, i.e., the amount of disorder, in DIP thin films generated in MD 
simulations using different sets of atomic charges (column 2 – column 6). The generated disorder due to the non-
deterministic MD character is estimated from separate MD simulations employing the same parameters (column 
6 – column 8). 

charges Mulliken Hirshfeld CM5 ESP OPLS-1 OPLS-2 OPLS-3 

a-b [°] 18 20 18 16 15 17 11 

a-c [°] 38 52 29 36 33 37 40 

b-c [°] 51 48 45 47 43 53 50 

Mean [°] 35 40 31 33 31 36 34 

 

Table 21: Standard deviation of tilting angles, i.e., the amount of disorder, in squaraine thin films generated in 
MD simulations using different sets of atomic charges (column 2 – column 6). The generated disorder due to the 
non-deterministic MD character is estimated from separate MD simulations employing the same parameters 
(column 6 – column 8). 

charges Mulliken Hirshfeld CM5 Esp OPLS-1 OPLS-2 OPLS-3 

a-b [°] 43 50 47 39 60 50 57 

a-c [°] 40 41 33 28 31 30 41 

b-c [°] 51 48 42 59 57 35 58 

Mean [°] 45 46 40 42 49 38 52 

 

Table 22: Standard deviation of tilting angles, i.e., the amount of disorder, in MD353 thin films generated in MD 
simulations using different sets of atomic charges (column 2 – column 6). The generated disorder due to the non-
deterministic MD character is estimated from separate MD simulations employing the same parameters (column 
6 – column 8). 

charges Mulliken Hirshfeld CM5 ESP OPLS-1 OPLS-2 OPLS-3 

a-b [°] 16 19 17 18 38 38 38 

a-c [°] 27 28 29 29 28 38 22 

b-c [°] 36 28 27 34 46 38 44 

Mean [°] 26 25 24 27 37 38 35 

 

It is evident from the standard deviations given in the Table 20 to Table 22 that morphology differences 

arising from the non-deterministic character of the MD simulations are nearly as large as those owing 

to the usage of different sets of atomic charges. For instance, the standard deviations for the 
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orientation of the squaraine molecular planes (Table 21) vary between 38° and 52° for different MD 

simulations with the same parameters. In contrast, variations range from 40° to 46° with different 

parameters. This clearly indicates that charge parameters are not necessarily decisive for the outcome 

of the simulations, i.e., for the final disorder. To conclude from the evaluation of the force-field 

parameters, the presented results suggest that in view of the inherent inaccuracies of the method and 

the limited influence of the parameters, resulting morphologies calculated with the OPLS-AA force field 

can be assumed to be sufficiently reliable, the more so as only the amount of intermolecular 

rearrangement and disorder will be subsequently used. 

The Tinker program package899 was used for all MD simulations. A time step of 1.0 fs and a total 

simulation time of 0.1 ns were employed. For the NPT-ensemble, a pressure of 1 bar was applied. The 

temperature was set to 500 K to facilitate sufficient intermolecular motion. To accelerate the 

dynamics, a cutoff of 12 Å for van-der-Waals-interactions and of 16 Å for electrostatic interactions was 

added. 

Overall, this section presented an approximate scheme employed to obtain disordered 

organic::organic model interfaces. Inspired by the experimental manufacturing process, the scheme 

relies on force-field calculations. With regard to the difficulty of describing electronically complex 

molecular semiconductors with classical force fields, the influence of the force-field parameters is kept 

as small as possible. An evaluation in support of this was carried out.  

A comparison of the resulting model systems reveals that few differences exist among the interfaces 

composed of different donors along with fullerene C60. Tight stacks, which exist especially in the crystal 

structures of DIP, anthracene, rubrene, and of the diketopyrrolopyrrole, possess the most pronounced 

influence on the final morphology because they barely change during the MD simulations. Smaller 

molecules allow for a stronger intermixing of the donor phase with the fullerenes. Apart from the size, 

molecular properties did not show any significant influence on the interface morphology. This results 

probably from the fact that the apolar spherical fullerenes C60 undergo similarly weak interactions to 

all donors. Pictures of some of the model interfaces can be found in 930. 

It should be always kept in mind that this thesis aims at describing optoelectronic processes at 

organic::organic interfaces in a multiscale approach. So far, molecular properties were 

comprehensively discussed on the one hand. On the other hand, intermolecular interactions and 

resulting aggregate morphologies were addressed. To finally accomplish the multiscale description, 

thermodynamic and kinetic properties of the organic::organic model interfaces are analyzed in the 

following.  
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5.8 Energetics of the exciton dissociation and charge separation processes in the 

vicinity of the organic::organic interfaces 
To organize the discussion of the properties of the interfacial model systems, thermodynamic and 

kinetic aspects are separately treated. Moreover, for the purpose of improving OSC efficiencies, a 

special focus lies particularly on thermodynamic and kinetic loss mechanisms. In a first step, this 

section is entirely dedicated to the thermodynamics at organic::organic interfaces, i.e., to the 

energetics of the exciton dissociation and charge separation process. Similar information can be found 

in 638. 

5.8.1 The importance of loss channels for OSC efficiencies 
The light-to-energy conversion in OSCs can be subdivided into several steps.931 In the first step, an 

exciton is created upon photon absorption (Step 1: light absorption).424,5 It is usually assumed that light 

absorption takes place in the donor phase,5 which is only a negligible approximation particularly with 

regard to the poor absorption of the herein employed C60 acceptors. The created exciton diffuses in a 

second step through the donor phase (Step 2: exciton diffusion). If it reaches the interface within its 

limited lifetime,452 it can dissociate in a photoinduced charge-transfer step into an interfacial charge-

transfer state (Step 3: exciton dissociation/breakup). Please note that the designation of this state is 

ambiguous in the literature, and various notions are frequently employed.5 In the following, the term 

“charge-transfer state” refers to the interfacial geminate electron-hole pair that, depending on 

numerous environmental parameters, may or may not be bound. As soon as the electron and the hole 

escape from their mutual Coulomb attraction and move independently from one another, a charge-

separated state is formed (Step 4: charge separation/transport). Finally, the electron and the hole may 

reach in successive charge transport steps the corresponding electrodes where they are recollected 

(Step 5: charge recollection).  

For well-performing OSC devices, each step of the light-to-energy conversion should be as efficient as 

possible.423,459 This requires a detailed atomistic understanding of all elementary processes. However, 

especially the exciton dissociation and charge separation mechanisms are still under debate,423,586 and 

contrasting findings exist in the literature.452 Furthermore, it has been pointed out436 that energy 

dissipation channels (=energy loss channels) severely limit efficiencies of the individual processes, 

thereby restricting final device performances. As this thesis focusses entirely on processes in the 

vicinity of organic::organic interfaces, only Step 2 through Step 4 and corresponding energy dissipation 

channels are addressed in the following discussion. Nevertheless, these three steps are subject to a 

number of prominent loss mechanisms. Before presenting the results on interfacial energetics, these 

loss mechanisms are briefly outlined. 



293 
 

The BHJ cell architecture is conceived to shorten exciton diffusion lengths to increase the percentage 

of created excitons that actually dissociate.462 Nevertheless, also in BHJ OSCs, excitons are quenched 

at impurities493 or other quenching agents.932 They may as well undergo exciton self-trapping.745,877,878 

Exciton trap states are energetically low-lying tail states in the excitonic DOS (density of states). If an 

exciton reaches such a tail state, its excess energy is dissipated into the environment, whereupon the 

exciton remains confined to the trap site because any further diffusion would be an energetic up-hill 

process. Thereby, exciton trapping reduces the OSC EQE (external quantum efficieny) and IQE (internal 

quantum efficiency) and, as a consequence, the short-circuit current423,459 and the total PCE ot the 

device. 

It is often outlined that in contrast to inorganic solar cells, the usually rather low dielectric constant in 

organic materials results in a significant Coulomb attraction within a geminately formed electron-hole 

pair.26,452 Otherwise stated, the considerable Coulomb attraction in organic thin films gives rise to 

energetically very low-lying interfacial charge-transfer states. Once a dissociating exciton relaxes at the 

interface to such a low-lying charge-transfer state, i.e., once its excess energy is dissipated, the exciton 

cannot undergo charge separation anymore. EQE/IQE values decrease. Concomitantly, it was shown 

that the moderate addition of dopants at the donor-acceptor interface, which fill such low-lying 

interfacial charge-transfer states, i.e., tail states in the DOS, improves charge separation and IQE/EQE 

values.933 Apart from limiting the quantum efficiencies, a number of spectroscopic investigations 

revealed furthermore that interfacial charge-transfer states are also intimately linked to the OSC open-

circuit voltage.439,934 Hence, these trap states deteriorate device performances in a two-fold manner 

by reducing both the short-circuit current and the open-circuit voltage. 

Like in pristine organic semiconductors,464 charge trapping occurs also in OSC devices. Tail states in the 

DOS of the charge transport levels result from oxidizing agents and disorder.935,544 Similar to exciton 

trapping, once a charge has populated such a tail state, it stops migration and does not contribute to 

the current anymore. Organic semiconductors can be doped to increase charge carrier densities and 

resulting conductivies. Much alike to the effects of doping at interfaces, one of the beneficial side 

effects of doping in bulk phases is to fill these DOS tail states, i.e., to simultaneously improve charge 

carrier mobilities.936 

To obtain a detailed understanding of many of these outlined loss mechanisms, the energetics of Step 

2 through Step 4 is simulated in the following using the dimer method in combination with an effective 

epsilon and electric fields. Using dimers instead of monomers as the quantum-mechanical system has 

the advantage that the delocalization of excitons or charge carriers, which causes both a shift and a 

splitting of underlying monomer energies, is included. Moreover, the intermolecular interactions are 

quantum-mechanically treated.745 In view of the results on intermolecular interaction energies (see 
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the section “Interactions between the π-systems of molecular organic semiconductors”), this can be 

expected to considerably improve the accuracy of the results. Employing the dimer method instead of 

monomer-based models contrasts with most literature investigations.452 It would be certainly desirable 

to perform calculations on larger oligomers to study delocalization effects in even more 

detail.536,567,575,26 However, such oligomer calculations are computationally not affordable. Moreover, 

in contrast to crystalline systems, the large amount of static disorder in amorphous thin films promotes 

exciton and charge localization so that delocalization across several monomers becomes less 

important for an accurate description of thin-film phenomena. 

To capture the essential energetics of the interfaces, energetic profiles, i.e., diagrams with all relevant 

excitonic, charge-transfer, and charge carrier energies, are calculated. Please note that in the 

following, the terms “charge carrier” and “polaron” will be used interchangeably. By means of these 

diagrams, the energetic changes that an exciton undergoes on its way to a charge-separated state can 

be retraced. Since the interplay of the individual processes becomes evident from the diagrams, this 

allows for an identification of the most important efficiency-limiting loss processes. Moreover, 

structure-property relationships can be defined from a comparison of profiles of different molecular 

p-type semiconductors. Nevertheless, before addressing these aspects, the adopted theoretical 

approach is described in more detail. 

5.8.2 Composite embedded dimer approach to calculate energetic profiles of 

organic::organic interfaces 
Calculating the energy landscapes in the vicinity of organic::organic interfaces is computationally 

demanding because a large number of calculations is required. Additionally, environmental effects 

need to be included in the calculations since they are particularly decisive for energies of polaronic and 

charge-transfer states.460,26 As already mentioned, keeping the calculations computationally 

manageable, quantum-mechanically treated dimers are embedded into an environment modeled with 

continuum solvation models and electric fields. Three types of dimers exist in the interfacial model 

systems (Figure 70). There are dimers composed of two molecular p-type semiconductors, dimers 

composed of two fullerene molecules, and dimers composed of one molecular donor and one fullerene 

C60. Heterodimers are used to compute interfacial charge-transfer energies while the transport levels 

for charge carrier (polaron) transport and exciton diffusion are calculated using homodimers 

composed of either molecular p-type semiconductors or fullerenes C60. Dimers are cut out from the 

interfacial model systems based on a distance criterion: all next-neighbor dimers where the distance 

between the centers of mass does not exceed a certain threshold value are used as QM systems in 

subsequent calculations.vvv All threshold values can be found in 638. As described in the previous 

                                                             
vvv It should be noted that double-counting of dimers was avoided. 
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section, quantum-chemically optimized geometries are superimposed onto the dimers extracted from 

the MM aggregates. Using optimized ionized-state or excited-state geometries instead of ground-state 

geometries for the superpositions permits to estimate effects arising from intramolecular relaxation, 

i.e., to assess excitonic and polaronic effects. All energetic profiles are referenced to the neutral ground 

state of the system.  

 

Figure 70: Possible QM dimer systems when the dimer method is applied to the interfacial model systems.  

Calculations of excitons localized on dimers are straightforward since they are directly accessible from 

a dimer excited-state calculation. However, computing energies of both interfacial charge-transfer 

states (= geminate electron-hole pairs) formed upon exciton breakup at the interface and of charge-

separated states is less clear-cut. It has been emphasized that the Coulomb binding energy between 

the geminately formed electron and hole profoundly influences the charge transport levels in the 

vicinity of organic::organic interfaces, underlining the necessity to incorporate it in the energy 

calculations.423,5  

With regard to the computation of the charge transport levels, it is thus not sufficient to consider 

isolated embedded dimers. Instead, pairs of dimers are employed. This is illustrated in Figure 71 where 

the black circles highlight a given pair of dimers (left panel). In addition to the energies of the electron 

and the hole located on the respective dimers, their mutual Coulomb attraction needs to be taken into 

account. Therefore, the energy 𝐸𝑐ℎ𝑎𝑟𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  for an electron-hole pair with the electron situated 

on a fullerene dimer and the hole located on a donor dimer is calculated as the difference between 

the ionization potential of the embedded donor dimer 𝐼𝑃𝑝−𝑡𝑦𝑝𝑒 (the energy of the hole in the p-type 

semiconductor) and the electron affinity of the fullerene dimer 𝐸𝐴𝑛−𝑡𝑦𝑝𝑒 (the energy of the electron 

in the fullerene phase) plus their Coulomb attraction 
𝑒2

4𝜋𝜀0𝜀|�⃗�|
. The electron-hole separation |𝑟| needed 
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for the calculation of the Coulomb energy is estimated from the distance between the centers of mass 

of the corresponding dimers. 

𝐸𝑐ℎ𝑎𝑟𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 𝐼𝑃𝑝−𝑡𝑦𝑝𝑒 − 𝐸𝐴𝑛−𝑡𝑦𝑝𝑒 −
𝑒2

4𝜋휀0휀|𝑟|
 (449) 

 

Selecting pairs of corresponding dimers in the donor and acceptor phase requires several further 

approximations, which are illustrated in Figure 71. First of all, only pairs of donor and acceptor dimers 

are used to calculate charge transport energies as in Eq. (449) if the distances between the donor or 

acceptor dimers and the original geminate electron-hole pair are approximately equal. The underlying 

physical assumption is that important charge-transfer/-separated states are symmetric with respect 

to the interfacial plane (blue distances in the left panel of Figure 71) because balanced electron and 

hole mobilities would be ideal for OSC efficiencies (see section on optoelectronic processes). 

Furthermore, for efficient charge separation, displacements of holes and electrons perpendicular to 

the interfacial plane are particularly decisive, i.e., motions away from the interface toward the 

electrodes. Therefore, only dimers are included to calculate energies of geminate electron-hole pairs 

(Eq. (449)) that are situated at similar perpendicular distances from the interfacial plane (red distances 

in the left panel of Figure 71). The right panel in Figure 71 contains two examples for pairs of dimers 

that would be selected to calculate energies of geminately formed and already partially separated 

electron-hole pairs. The interfacial plane is calculated as the middle plane between the centers of mass 

of all molecular p-type semiconductors and the centers of mass of all fullerenes. Its orientation is given 

by the underlying crystallographic faces (see previous section).  

 

Figure 71: Description how the dimers are selected for the calculation of the charge transport energies (left-hand 
side) and examples (right-hand side). Notably, the coordinates were rotated compared with Figure 70.  

Please note that interfacial charge-transfer states are calculated in a completely equivalent procedure. 

Yet, individual heterodimers are used so that the ionization potential 𝐼𝑃ℎ𝑒𝑡𝑒𝑟𝑜 and the electron affinity 
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𝐸𝐴ℎ𝑒𝑡𝑒𝑟𝑜  are calculated for the same heterodimer. The electron-hole separation |𝑟| is approximated 

by the distance between the centers of mass of the monomers. With these modifications, the equation 

to calculate the interfacial charge-transfer states 𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  on heterodimers reads: 

𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝐼𝑃ℎ𝑒𝑡𝑒𝑟𝑜 − 𝐸𝐴ℎ𝑒𝑡𝑒𝑟𝑜 −
𝑒2

4𝜋휀0휀|𝑟|
 (450) 

 

This procedure to calculate the interfacial charge-transfer states might seem counterintuitive because 

the ionization potential and electron affinity of the total heterodimer are used in addition to the 

Coulomb binding energy between the individual monomers. Nevertheless, the soundness of the results 

from Eq. (450) was evaluated by comparing them to c-DFT calculations (constrained density functional 

theory) of charge-transfer energies at the anthracene::fullerene interface, which is the only interface 

where a large number of c-DFT calculations were computationally affordable due to the small size of 

the anthracene donor. Results can be found in 638. Furthermore, it is well-known from the design of 

donor-acceptor polymers that the ionization potential is usually exclusively determined by the 

donating moiety (because the HOMO is localized on the donor) while the electron affinity and the 

corresponding LUMO are dominated by the acceptor.462,484,13 This similarly holds for the donor-

acceptor pairs at the interfaces, as further verified by visual inspection of the HOMOs and LUMOs of 

the heterodimers. It follows that the ionization potential (electron affinity) calculated for the total 

heterodimer corresponds essentially to an ionization (electron attachment) of the donor (acceptor). 

Additionally, some delocalization effects are taken into account. 

It should be pointed out that the large number of dark states in fullerene C60 prohibits the direct 

calculation of the charge-transfer state energies as excitation energies. Nevertheless, excitonic states 

of the heterodimers, i.e., heterodimer excitations mostly localized on either the donor component or 

on the fullerene C60, can be nonetheless obtained from excited-state calculations of the heterodimers. 

Resulting excited states correspond predominantly to an excited donor molecule next to a fullerene/to 

an excited fullerene next to a donor molecule. Computed excitation energies are influenced by the 

respective neighboring molecule. These excitation energies are designated as “interfacial excitations” 

in the following. 

Modeling a complex anisotropic environment with a continuum solvation model, i.e., an effective 

epsilon, was shown to provide an acceptable description of intermolecular interactions even in polar 

bulk phases. 26,937,938,645 However, the environmental discontinuity present at the interface gives rise to 

regions with varying polarizabilities. This requires the usage of different effective epsilon values for at 

least three different regions: for the bulk phase of the molecular p-type semiconductor, for the bulk 

fullerene phase, and for the imminent vicinity of the interface. The measured permittivity of fullerene 
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C60 is used to describe the acceptor phase,939 and, if experimental data are available, measured values 

for ε are used for the donor phase as well. Otherwise, ε values of structurally similar substances are 

used instead. Compared with the bulk phases, the presence of intermixed molecules with different 

polarizabilities26 and the less dense packing around the interface457 explain why an adequate 

description of the imminent interfacial vicinity with a single effective epsilon value cannot be physically 

grounded. It has been furthermore discussed that the energies of interfacial charge-transfer states 

critically depend on the choice of the epsilon value.26,560 In order to describe the environment in the 

interfacial region as completely as possible while simultaneously maintaining computational efficiency, 

a two-fold procedure is adopted. It is illustrated in Figure 72.  

 

Figure 72: Illustration of the adopted approach to describe the environment in the vicinity of organic::organic 
interfaces. ε1 was used for all interactions between homodimers composed of donor molecules. ε2 was used for 
the fullerene phase. ε3 was used for interactions across the interface between geminate pairs located on pairs of 
homodimers, i.e., between a hole on a donor homodimer and an electron on a fullerene dimer. If the Coulomb 
binding energy of the electron-hole pair situated on a single heterodimer was calculated, ε3 was further reduced. 

In a first step, the average value of the effective epsilons of the two adjacent bulk phases is used as an 

effective epsilon for interactions across the interface, i.e., between the geminate pairs (dashed arrow 

in Figure 72, Eq. (449)). The decrease (increase) of the epsilon at the interface compared to the bulk 

phase models the intermixing with molecules characterized by a smaller (larger) effective epsilon in 

their respective bulk phase. Please note, however, that whenever the electron and the hole are located 

on adjacent molecules, i.e., on a single heterodimer, this epsilon value is decreased because no 

shielding takes place. This is important for the calculation of interfacial charge-transfer states as in Eq. 

(450). All epsilon values can be found in 638. 

In the calculation of the interfacial excitations, a mean electric field is applied perpendicular to the 

interfacial plane in a second step in addition to the polarizable continuum environment. Spectroscopic 
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investigations as well as computations revealed the existence of interfacial dipoles and local electric 

fields at organic::organic interfaces that can promote or impede charge generation (see also the 

Background Section).454,455 Such local electric fields result from the combined effects of ground-state 

charge transfer, differing degrees of polarization in the adjacent phases,26 and the anisotropic 

distribution of molecular multipole moments across the interface456. In the following, the locally 

varying electric fields and interfacial dipole moments are folded into a single average electric field. Its 

electric field strength is calculated as follows. From an electrostatic potential fit (ESP fit) of a gas-phase 

heterodimer situated at the interface and the centers of mass of its composing monomers, a dipole 

moment can be calculated. Since the dipole moment is obtained from a potential fit of the density, it 

contains all effects influencing the density such as ground-state charge transfer or polarization. Such a 

dipole moment can be attributed to each heterodimer located at the interface. Hence, the interface 

can be interpreted as an electrical double layer, in analogy to classical electrochemistry.940 Alike to a 

plate condenser, the electric field inside a double layer is accessible via its capacitance, which can be 

computed from simple geometric quantities as well as from the dipole charges. Therefore, charges on 

each monomer of the heterodimer were summed to a total charge 𝑄. As the dimer is neutral, the 

charges on the respective monomers are equal, but of opposite sign. This yields a surface charge 

distribution at both sides of the interface. According to classical electrostatics (see 940), the electric field 

�⃗⃗�  resulting from a surface distribution of charges 𝑄 at both plates of a plate condenser is given by 

�⃗⃗� =
𝑄

휀0휀𝑟�⃗�
 

(451) 

 

�⃗� is the surface area occupied by one dipole moment. It is thus determined by the packing density. As 

the packing density is governed by the sterically demanding fullerene C60 molecules, the surface area 

for one dipole moment, i.e., one heterodimer, is estimated from the cross section of C60. The length of 

the three crystallographic axes of the fullerene fcc crystal structure is 𝑙 = 14.04078 Å.924 

Consequently, the surface area of charges can be approximated by: 

|�⃗�| = 15Å ∙ 15Å = 225 ∙ 10−20𝑚2 (452) 

 

Similar to Castet et al.456 who outlined that the individual dipole moments of the pairs vary 

considerably, significant differences between different heterodimers are found. It is, however, 

computationally not affordable to calculate all individual dipole moments. Therefore, performing this 

type of calculation for several heterodimers and averaging resulting electric field strengths yields a 

mean field strength associated with a specific interfacial structure. It was included in the QM 

Hamiltonian. The electric mean field strength completely ignores the considerable variations of the 
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interface dipoles, which were shown to sometimes inverse their directions,456 but in combination with 

the averaged permittivity, the approach constitutes a computationally very efficient and intuitive route 

to model the influence of the changing environment at the interface.  

Before stating actual results, the computational details are briefly described. Optimized SCS-

CC2256,180/cc-pVDZ705 ground- and excited-statewww geometries and ωB97X-D143/cc-pVDZ705 cationic 

and anionic geometries are used to replace the force-field geometries. The reliability of SCS-CC2 

especially for excited-state geometries was addressed above in the framework of adiabatic excitation 

energies and exciton reorganization energies (section “Benchmarking vertical excitation energies of 

molecular semiconductors”, “Benchmarking exciton reorganization energies”). In the benchmark of 

charge reorganization energies, ωB97X-D showed a remarkable performance (see section 

“Benchmarking charge reorganization energies”). In view of the favorable cost-accuracy ratio of 

ZINDO,209,210,772 which was comprehensively outlined above for the individual monomers (section 

“Benchmarking vertical excitation energies of molecular semiconductors”), it was employed for all 

excited-state calculations, i.e., for the computation of all excitation energies of both homo- and 

heterodimers. Interfacial charge-transfer states and pairwise charge-transport levels of geminate 

electron-hole pairs were calculated at the RI941,942-BLYP707,708,709-D3140/cc-pVDZ705 level of theory 

including the MARIJ943 approximation. Using a pure GGA functional is advantageous since particularly 

calculations on the anionic species of fullerene C60 are prone to spin contamination because of the 

three-fold degenerate LUMO. For the ESP fits, the same level of theory was used. All SCS-CC2 and BLYP 

calculations were conducted with the Turbomole program package.179 The Gaussian program package 

was used for all ZINDO and ωB97X-D calculations.718 Depending on the program package, either 

COSMO335 (Turbomole179) or IEFPCM317 were used as a continuum solvation model (although its use 

would have been more consistent with COSMO, C-PCM was not employed instead of IEFPCM because 

initially, calculations were conducted with an anisotropic epsilon and IEFPCM). All state energies are 

referenced to the energy of the neutral ground-state system. A complete tabulated survey of the state-

energy calculations can be found in the Supporting Information of 638. C++ programs were employed 

to cut out the dimers from the interfacial model systems and to superpose quantum-chemically 

optimized geometries. Bash scripts were used to prepare and evaluate the large number of calculations 

(~ 50 000).  

After the presentation of all computational details, the results are discussed. To do so, in a first step, 

differences between the dimer- and the monomer-based approach and the general features of the 

                                                             
www As discussed in a previous section (“Benchmarking exciton reorganization energies”), merocyanines undergo 
an excited-state torsion in the gas phase that is disabled by steric strain in the solid state. Therefore, instead of 
using the completely twisted excited-state structure of MD353, the same structure (i.e., with an inversed BLA) 
but without twisting was employed for the superposition to subsequently calculate relaxed excitonic energies. 
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energetics in the vicinity of interfaces are illustrated at the profile of the anthracene::fullerene 

interface. Then, various loss mechanisms are successively addressed. Starting with exciton trapping, 

charge traps as well as the influence of molecular orientation, molecular size, and polarity on interfacial 

charge-transfer states are subsequently discussed. Structure-property relationships are defined. 

As described in the previous section on the MM generation of interfaces, all interfacial model systems 

exist in three different orientations resulting from the underlying orthogonal crystallographic faces. In 

the following, the crystallographic orientation is always indicated, and several orientations are only 

discussed if they are in some way influential.  

5.8.3 General aspects of calculated energetic profiles: the anthracene::fullerene interface 
The rather simple anthracene::fullerene interfacial system is discussed first. Its energetic profile, i.e., 

the relative energetic positions of excitonic, polaronic, and charge-transfer states, is given in Figure 73 

for dimer calculations while Figure 74 shows corresponding results obtained with a monomer 

approach. The horizontal axes in Figure 73 and Figure 74 are orientated perpendicular to the 

interfacial plane that is located at approximately -7 Å. The origin (0 Å) corresponds to the surface of 

the first underlying p-type semiconducting crystalline layer. The overall size orthogonal to the interface 

amounts to roughly 50 Å, which is on the order of typical exciton diffusion lengths.944 It can be thus 

expected that the system size is sufficient to incorporate most of the important processes in the vicinity 

of organic::organic interfaces. As outlined above, the horizontal dimensions of the cells are determined 

by the least common multiple of the unit cell dimensions of the underlying crystal structures, the 

fullerene C60 crystal structure and the donor crystal structure. Horizontal dimensions of the 

anthracene::fullerene-(b-c)-system (Figure 73 and Figure 74) are 45 Å times 45 Å. Energies are 

displayed in eV at the ordinate.  

 

Figure 73: Anthracene::fullerene interface (b-c-plane) obtained with a dimer-based approach. Solid lines serve 
as a guide to the eye. The background is only a schematic representation of a general interface. 
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Figure 74: Anthracene::fullerene interface (b-c-plane) obtained with a monomer-based approach. Solid lines 
serve as a guide to the eye. The background is only a schematic representation of a general interface. 

The employed symbols are clarified in Table 23. The computational approach employed to calculate 

the different states is repeated in curly brackets. Three different types of states are distinguished: 

excitons (= excitations), polarons (= charges), and charge-transfer states. Depending on its position, an 

excitation is further subdivided into a bulk excitation or an interfacial excitation (Table 23). An 

interfacial excitation is localized on a heterodimer. Moreover, vertical and relaxed states are obtained 

as a function of the underlying monomer geometry. Please note that both vertical and relaxed states 

are denoted as “excitons” or “polarons” although the lattice deformation accompanying excitations 

and charge carriers and resulting in the actual excitons and polarons is included only in relaxed states. 

In the following figures as well as in Figure 73 and in Figure 74, projections of the positions of all dimers 

onto the normal vector of the interfacial plane are used to indicate the position of the corresponding 

dimer energies (x-axis). It should be kept in mind that each symbol given in Table 23 refers to the center 

of mass of a dimer. 

Table 23: Symbols used to designate different states in the following figures. If not stated otherwise, symbols 
refer to states in the donor phase, i.e., of the p-type semiconducting materials. 

State Symbol 

bulk excitations 

bulk exciton (vertical)   

{ZINDO on homodimers with ground-state monomer geometries} 

 

bulk exciton (relaxed)   
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{ZINDO on homodimers with excited-state monomer geometries} 

interfacial excitations 

interfacial exciton (vertical) 

{ZINDO on heterodimers with ground-state monomer geometries} 

 

interfacial exciton (=donor) (relaxed) 

{ZINDO on heterodimers with excited-state monomer geometries} 

 

interfacial excited fullerene 

{ZINDO on heterodimers with ground-state monomer geometries} 

 

polarons 

polaron (vertical) 

{BLYP on pairs of homodimers with ground-state monomer geometries} 

 

polaron (relaxed) 

{BLYP on pairs of homodimers with charged-state monomer geometries} 

 

interfacial charge transfer 

charge-transfer state (vertical) 

{BLYP on heterodimers with ground-state monomer geometries} 

 

charge-transfer state (relaxed) 

{BLYP on heterodimers with charged-state monomer geometries} 

 

 

Light absorption in the donor phase (right-hand side in Figure 73 and Figure 74) leads to the formation 

of excitons (light and dark red circles). Vertical singlet excitations are indicated with dark red circles 

(“bulk exciton (vertical))”, Table 23). When dimers are employed as the quantum-mechanical systems, 

several relaxation mechanisms for a vertical exciton can be distinguished, in contrast to monomer-

based approaches where only the following one exists: 
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1. The coupling of the excitation to intramolecular vibrations leads to intramolecular 

reorganization, resulting in an energetic relaxation of ~ 0.10 eV (light red circles, Figure 73, 

“bulk exciton (relaxed)”, Table 23). As this coupling mechanism is confined to a single 

monomer, it is naturally also included in monomer-based approaches (Figure 74). It is evident 

from the Marcus rate equation that the amount of internal reorganization induced by a 

diffusing exciton profoundly impacts the diffusion rate.532 This has been discussed in detail in 

the context of exciton reorganization energies (see section “Benchmarking exciton 

reorganization energies”).  

Additionally, in dimer-based approaches, underlying monomeric excitations split. This gives rise to two 

additional relaxation mechanisms that are not included in the monomer picture. 

2. Especially in H-aggregates, the second (=bright) Frenkel state is excited. Upon exciton 

relaxation, the exciton may undergo internal conversion to the lowest Frenkel state (Kasha’s 

rule).418 This implies that the additional energetic relaxation due to the coupling of monomer 

excitations in a dimer is given by the Davydov splitting of dimer excitations. This Davydov 

splitting is displayed as vertical red bars on all excitonic state energies (Figure 73).  

3. Moreover, it is evident from a comparison of Figure 73 and Figure 74 that the lowest dimer 

excitation energies spread energetically while excitation energies calculated with the 

monomer-based approach constitute flat lines. The variations of the first excitation energies 

of the dimers result from their different arrangements, i.e. from the structural disorder at the 

interface.5 The disordered dimer states cover an energy interval of approximately 0.15 eV. In 

such a disordered excitonic DOS, spectral diffusion548 occurs: excitons relax over time to dimers 

with particularly low energies. As discussed above, such low-lying excitonic states act as trap 

states because once an exciton has relaxed to these sites, its further diffusion is energetically 

hampered. Experimentally, the population of such trap states has been observed as a spectral 

shift of luminescence spectra.548 

Exciton diffusion is influenced by all outlined relaxation mechanisms (intramolecular reorganization, 

H-aggregation, disorder). Nevertheless, an exciton diffusing through the donor bulk phase (right-hand 

side, Figure 73) may still reach the interface where it begins feeling the neighboring C60 molecules. 

Energies of interfacial excitons slightly shift compared with bulk excitons (red and dark red bars, Figure 

73, “interfacial exciton (vertical)”, “interfacial exciton (relaxed)”, Table 23).xxx Furthermore, the energy 

range covered by excitonic states broadens, i.e., the energetic disorder increases. Tail states in the 

                                                             
xxx It is again noted that these interfacial excitons are calculated from ZINDO excited-state calculations on 
heterodimers. 
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excitonic DOS have energies around 2.80 eV, whereas the high-energy limit lies at 3.40 eV. Van Voorhis 

et al. discussed several types of band bending occurring at organic::organic interfaces, among others, 

a spread in energies due to the existence of vacancies and density variations.26 In line with this 

reasoning, unsystematic changes of band energies are found for the anthracene::fullerene system, 

contrasting with other literature findings.601 Band bending is not incorporated in monomer-based 

approaches. Excitons reaching the vicinity of the interfaces only feel changes in the electrostatic 

description of the environment (Figure 74). As can be seen from Figure 74, the environmental influence 

on excitonic energies is rather weak. 

Once the exciton has reached the interface, a number of possible follow-up processes exist. First of all, 

Förster transfer of the excitation energy to a fullerene is possible, leading to an excited fullerene 

adjacent to a ground-state anthracene. This type of state is given as grey bars in Figure 73 (“excited 

interfacial fullerene”, Table 23). In contrast, the exciton could also dissociate into a geminate electron-

hole pair, i.e., an interfacial charge-transfer state composed of a hole located on an anthracene 

molecule and an electron situated on a neighboring fullerene (“charge-transfer state (vertical)”, Table 

23, white bars, Figure 73; calculated with Eq. (450)). Again, intramolecular reorganization – local 

electron-phononyyy coupling – leads to corresponding relaxed states (“charge-transfer states 

(relaxed)”, Table 23, black bars, Figure 73).  

As stressed by Clarke and Durrant,423 the light-to-energy conversion in OSCs is an energetic down-hill 

process. This means that the charge-separated state should be the energetic minimum of the system, 

and that no other thermodynamic sinks should exist that prevent the system from reaching this 

energetic minimum. In the anthracene::fullerene system, the interfacial charge-transfer states are 

energetically more stabilized than interfacial excitations on fullerene molecules (Figure 73). This is a 

prerequisite for efficient charge generation. Otherwise, excitation energy transfer from the donor to 

the fullerene, then the thermodynamically most favorable process, will rather occur than exciton 

dissociation. In this case, no significant charge generation takes place.945 It should be furthermore 

emphasized that as long as the charge-transfer state is the energetically lowest-lying state at the 

interface, it constitutes the major thermodynamic sink even if excitation energy transfer is kinetically 

more favored. Under these conditions, the incoming exciton would probably first hop to a fullerene 

C60 molecule (= excitation energy transfer). In a subsequent step, however, it can still dissociate into 

an interfacial charge-transfer state via hole back transfer to the donor phase. Such a situation was 

                                                             
yyy Please note that by definition, a „phonon“ as a lattice vibration cannot be local. However, the coupling to 
intramolecular vibrations leading to nuclear reorganization upon ionization/excitation is nonetheless often 
referred to as the “local electron-phonon coupling”.418 



306 
 

investigated by Brédas, Beljonne, Janssen and coworkers for an oligophenylene-vinylene::fullerene 

derivative dyad.946  

Charge-transfer states obtained with the monomer-based approach (Figure 74) can be compared to 

the discussed dimeric charge-transfer states (Figure 73). Monomeric charge-transfer states are 

computed from the ionization potential of anthracene, which is constant aside from an 

environmentally induced change in the direct vicinity of the interface, the fullerene electron affinity, 

which is also constant, and the mutual Coulomb attraction between the electron and the hole, 

featuring an r-1 dependence. The Coulomb attraction, the only position-dependent contribution to 

monomeric charge-transfer energies, results in an exact r-1 dependence of total charge-transfer 

energies (Figure 74). The markedly different and much more disordered behavior of dimer interfacial 

charge-transfer energies (black and white bars, Figure 74) underlines the importance of including 

delocalization effects. 

After exciton dissociation, the generated geminate electron-hole pair breaks up and the electron and 

the hole begin to separate. The charge transport (= polaron) levels describe the energetics of the 

charge separation process. Vertical polaron states are indicated with black circles in Figure 73 

(“polaron (vertical)”, Table 23). Including intramolecular relaxation yields the relaxed polaron states 

(black diamonds, “polaron (relaxed)”, Table 23). The amount of reorganization in the ionized states 

corresponds to the difference between vertical and relaxed polaron states. Close to the interface, the 

Coulomb attraction between the dissociating electron and the hole is still considerable. Its decrease 

with increasing charge separation results in an r-1 dependence of the polaron transport levels. The 

Coulomb attraction is somewhat reduced by the dielectric screening in the environment (Figure 72). 

Polaron transport levels become a flat line only for larger distances from the interface. These distances 

are above the Coulomb capture radius from classical Onsager theory.5 At the Coulomb capture radius, 

the Coulomb attraction drops below the available thermal energy so that the charges are not bound 

anymore. Then, they represent independent, freely migrating charges that may or may not be 

eventually recollected at the electrodes. As already observed for exciton diffusion, monomer-based 

approaches (Figure 74) do not capture local disorder in the polaron transport levels, which are 

consequently entirely determined by the Coulomb attraction between the oppositely charged 

polarons. It is well-known that disorder significantly affects charge transport properties in organic thin 

films.418  

It has been outlined above that tail states in the DOS of excitons, polarons, and charge-transfer states 

induce trapping and limit OSC quantum efficiencies as well as device performances. Nevertheless, it 

becomes evident from Figure 73 that there are barely any systematic trap states in the 

anthracene::fullerene system. All state energies are located within rather small energy ranges. Other 
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problems of this donor::acceptor combination are responsible for its inexistence in optoelectronic 

devices. These include notably the poor overlap of the anthracene absorption with the solar spectrum 

and the high tendency of photoexcited anthracene molecules to undergo cycloaddition reactions.947 

Moreover, two further general aspects might additionally account for the absence of the 

anthracene::C60 OSCs, namely a potentially disadvantageous mechanism of charge generation imposed 

by the interfacial energetics and energy-dissipating triplet states in the fullerene layer. These two 

aspects are briefly discussed before turning to other employed systems and their energy loss channels.  

As already mentioned above, the mechanisms for charge generation in OSCs is a research area of 

intense debate. One differentiates between the cold and the hot exciton breakup, depending on 

whether excess energy plays an important role or not. In hot exciton breakup, an exciton dissociates 

at the interface into higher-lying “hot” charge-transfer states that are electronically/vibrationally 

excited and more delocalized. The excess energy and excited-state delocalization assist in driving 

charge separation. In contrast, according to the cold mechanism, a fully relaxed charge-transfer state 

undergoes further dissociation and final charge separation.26 The driving force is provided by other 

existing gradients in the free energy landscapes, for instance entropy.451 A plethora of both 

experimental and computational investigations is dedicated to the further elucidation of the 

mechanism of charge generation in OSCs.590,591,455,586 As kinetic aspects are disregarded in this section 

of the thesis, the energetic profiles focusing exclusively on thermodynamic data only allow for a 

statement whether cold exciton breakup is in principle feasible, not whether it actually takes place. It 

can be seen from Figure 73 that rather low-lying relaxed interfacial charge-transfer states exist in the 

anthracene::fullerene system (black bars). On the one hand, they arise from the low dielectric constant 

of the medium that shields charge-charge interactions only to a minor extent. On the other hand, the 

small size of the anthracene molecule is also to some extent responsible because it enables close 

contacts between geminately formed electron-hole pairs and gives rise to very short initial charge 

separations: in average, the electron and the hole are separated by only 7 Å in the interfacial charge-

transfer states, a value that compares well with experimental ones ranging from 5 Å to 10 Å.423 The 

decisive influence of the initial charge separation for the outcome of the charge generation process is 

already included in the classical Onsager theory.5 Because of the low-lying interfacial charge-transfer 

states at the anthracene::fullerene interface, the charge-separated states (black circles and squares, 

Figure 73) are significantly higher in energy by about 0.20 eV to 0.50 eV, which considerably exceeds 

the available thermal energy. These findings suggest that in hypothetical anthracene::fullerene OPV, 

only hot exciton breakup would be possible. 

Turning to the triplet states in the anthracene::fullerene system, it should be kept in mind that the 

charge generation process in OSCs must be energetically down-hill.423 So far, only singlet states were 
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considered but it has been already mentioned (see section “Benchmarking vertical excitation energies 

of molecular semiconductors”) that the energetic positions of triplet states are also fundamental to 

functional OSCs.423 Triplet states can act as traps, effectively quenching especially polarons.948,949 

Furthermore, depending on their energies, they might be thermodynamic sinks in the system, leading 

to energy dissipation. The energy of the lowest fullerene C60 triplet state has been experimentally 

determined to be 1.6 eV.950 As a result of the high ionization potential of anthracene,621 the energies 

of charge-separated states in the anthracene::fullerene system considerably exceed this value. 

Therefore, the energetically lowest state of the system does not correspond to the targeted charge-

separated state, but to a fullerene triplet state, which thereby constitutes a potentially significant 

energy loss channel. 

 

Figure 75: Energetic profile along the rubrene::fullerene interface (a-b-crystallographic plane). For an explanation 
of the symbols see Table 23. 

Altogether, a number of reasons for the inexistence of operative anthracene::fullerene systems were 

outlined, i.e., the poor overlap of the anthracene absorption with the solar spectrum, the susceptibility 

of photoexcited anthracene to cycloadditions, energetically low-lying interfacial charge-transfer states 

at the anthracene::fullerene interface, and the possibility of triplet quenching. With these at the back 

of one’s mind, the rubrene::fullerene system is considered next (Figure 75). In contrast to the 

anthracene::fullerene system, resulting OSCs based on rubrene are quite well-performing.511 First of 

all, the larger overlap of the rubrene absorption with the solar spectrum certainly contributes to this 

improved photovoltaic performance. Moreover, photoinduced cycloadditions of rubrene are not a 

problem either. Nevertheless, two additional aspects might be also significant: 
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1. The charge-separated states indeed constitute energetically very low-lying states of the 

fullerene::rubrene system (Figure 75). In contrast to their counterparts in the 

anthracene::fullerene system, the charge-separated states are furthermore lower in energy 

than all fullerene triplet states. This results mainly from the lower ionization potential of 

rubrene compared with anthracene. Charge generation is thus thermodynamically favorable. 

2. The larger size of rubrene together with its bulky phenyl substituents account for larger initial 

electron-hole separations in the interfacial charge-transfer states. This raises corresponding 

charge-transfer energies because the Coulomb binding energy between the geminate electron 

and hole decreases. No interfacial charge-transfer trap states exist at the rubrene::fullerene 

interface anymore, and the open-circuit voltage should be higher. In fact, You and coworkers951 

experimentally measured side-chain effects on the open-circuit voltage in polymer::fullerene 

OSCs. They found a pronounced influence of polymer side chains, which could be possibly 

explained by side-chain induced shifts of the interfacial charge-transfer states. Apart from the 

higher open-circuit voltage, the energetically less stable interfacial charge-transfer states in 

the rubrene::fullerene system suggest furthermore that cold exciton breakup should be 

feasible.  

After this analysis of general aspects of the interfacial energetics and a brief discussion of the 

rubrene::fullerene system, energy loss mechanisms are discussed for a number of systems in the 

following. The discussion begins with exciton trapping in DIP::fullerene OSCs. 

5.8.4 Exciton traps in the p-type semiconducting layer 
Due to the distinct tendency of DIP to crystallize, crystalline DIP aggregates exist in thin-films OSCs, as 

demonstrated by X-ray diffraction measurements.671 Therefore, similar to the pure DIP crystals where 

exciton diffusion lengths sometimes exceed 60-70 nm,952 favorable exciton and charge transport 

properties671 result for the DIP::fullerene OSCs, also explaining their usually high device efficiencies.671 

In contrast to the very effective exciton diffusion in DIP, exciton diffusion lengths are considerably 

shorter (22 nm)745 in crystals of the structurally and electronically related PTCDA compound. The 

divergence was explained by the existence of an exciton self-trapping mechanism via an intermolecular 

rearrangement within a PTCDA/DIP dimer745 that is possible in PTCDA crystals, but disabled by steric 

strain in DIP crystals. The intermolecular rearrangement results in a specific PTCDA dimer 

conformation with a very low exciton energy. From Figure 76, it can be seen that in amorphous 

DIP::fullerene systems, equivalent DIP dimer conformations with very low exciton energies exist. Such 

DIP conformations constitute deep tail states in the excitonic DOS and certainly cause exciton trapping. 

Moreover, in contrast to PTCDA crystals, no further intermolecular rearrangement is necessary for 

exciton trapping to occur in amorphous DIP phases. Apparently, already the structural diversity of 
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existing DIP dimer conformations results in a broad distribution of excitonic energies. Among the 

existing dimer conformations, the conformation corresponding to a self-trapped exciton is included. It 

can be seen from Figure 76 that tail states in the excitonic DOS lie by up to 0.30 eV in energy below 

the average exciton transport levels. This largely exceeds the available thermal energy so that any 

exciton relaxing on such sites is trapped (deep red circles, Figure 76). The trapping enabled by the 

amorphous DIP environment explains the experimentally observed shorter exciton diffusion lengths in 

amorphous DIP films and the reduced device performances of OSCs based on amorphous DIP 

derivatives.671  

 

Figure 76: Energetic profile along the DIP::fullerene interface (a-c-crystallographic face). The DIP molecules are 
orientated almost flat and face-on on top of the fullerene phase – a lying conformation. Please note that the 
Davydov splitting is depicted as small bars. For an explanation of the symbols see Table 23. 

 

Figure 77: “Triamine-methoxy”::fullerene system (a-b-crystallographic plane). It is worth emphasizing that some 
energetically low-lying relaxed singlet excitons exist. For an explanation of the symbols see Table 23. 
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A different mechanism for exciton trapping can be found in the bulk phases of the triphenylamine-

based compounds. To illustrate this, Figure 77 displays the energetic profile of the “triamine-

methoxy”::fullerene system, while Figure 78 shows the corresponding profile for the 

“triamine”::fullerene system. Evidently (Figure 77), there exist tail states in the excitonic DOS of the 

bulk phase of “triamine-methoxy”. Analyzing these low-energy excitations reveals that they possess 

the characteristics of excimers, i.e., of intermolecular charge-transfer complexes. The methoxy-

substituted triphenylamine-based compound features an intramolecular charge-transfer excitation. 

Such an excitation is quite typical for the underlying donor-acceptor structure where a considerable 

molecular backbone or scaffold separates the donating from the accepting moiety. If such a donor-

acceptor compound forms a thin film, it can happen that donating and accepting moieties belonging 

to different molecules are in closer contact than the corresponding moieties within a single molecule. 

In this case, charge separation in an intermolecular charge-transfer process is smaller than in the 

intramolecular one so that the former becomes energetically favorable. An excimer results. Since such 

excimers are energetically very stable, they often constitute exciton traps. Generally, the intimate 

relationship between intra- and intermolecular charge-transfer states in donor-aceptor compounds 

similar to the “triamine-methoxy” compound has already been experimentally addressed.953,954 

Furthermore, as described above, a particularity of the methoxy-substituted triphenylamine is the 

excited-state torsion that it undergoes upon photoexcitation. It is evident from Figure 77 that more 

exciton trap states exist for the relaxed excited-state geometry. This implies that the excited-state 

torsion in the methoxy-substituted triphenylamine contributes to the trapping and promotes excimer 

formation. 

 

Figure 78: “Triamine”::fullerene system (a-b-crystallographic plane). It is worth emphasizing that some 
energetically low-lying relaxed singlet excitons exist. In contrast, charge transport levels are very narrow. For an 
explanation of the symbols see Table 23. 
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A comparison of the polaronic states in the bulk phase of “triamine-methoxy” (Figure 77) with the DIP 

results (Figure 76) reveals that the polaronic states in “triamine-methoxy” dispose a rather narrow 

energetic distribution. The energy range covered by polaronic states in the “triamine” compound 

(Figure 78) is even narrower. This suggests that charge transport is efficient because it is subject to an 

only small amount of static disorder. Yet, similar to the “triamine-methoxy” compound, exciton traps 

also exist in the “triamine” bulk phase (red circles, Figure 78), thereby limiting exciton diffusion. These 

results for triphenylamines, i.e., efficient charge and poor exciton transport, mirror the fact that few 

functional OSC devices based on triphenylamine derivatives exist685 although the latter are widely 

employed as hole conductors.682,683 Moreover, as triphenylamines have approximatively spherical 

three-dimensional shapes, their properties can be expected to be rather isotropic. In line with this 

expectation, all discussed findings (Figure 77, Figure 78) were shown to be independent of the 

crystallographic orientation. The reader is referred to the Supporting Information of 638 for a 

comparison of the energetic profiles in different crystallographic orientations. Diverse experimental 

results were already explained with the isotropic and homogeneous properties682,683 of 

triphenylamines. Properties and energetic profiles of other molecules such as DIP depend significantly 

on the morphology, as discussed below. 

Other than the poor overlap between the solar spectrum and the absorption of many triphenylamine 

derivatives,zzz the rather low-lying interfacial charge-transfer states at the interfaces of 

triphenylamines with fullerene C60 are incompatible with good device performances because they lead 

to low open-circuit voltages.440,439 The calculated interfacial charge-transfer state energies of around 1 

eV at the interface between the “triamine-methoxy” (Figure 77) or the “triamine” (Figure 78) 

compound to fullerene C60 are certainly very low-lying. Low ionization potentials of most 

triphenylamines are one of the underlying reasons for such energetically deep interfacial charge-

transfer states. It was shown that the drawbacks of triphenylamines - high excitation energies and low 

ionization potentials - can be eliminated to some extent by attaching conjugating electron-withdrawing 

groups to the triphenylamine-based scaffolds.624 Resulting donor-acceptor compounds feature red-

shifted intramolecular charge-transfer absorption bands as well as higher ionization potentials. A 

comparison of the energetic profiles of the “triamine” and the “triamine-methoxy” compound to the 

corresponding profile of an aldehyde-substituted triphenylamine (Figure 79) supports these general 

findings, particularly with regard to the charge-transfer states. Relaxed interfacial charge-transfer 

states at the “triamine-aldehyde”::fullerene interface (black bars) are about 0.50 eV higher in energy 

than corresponding states in the other two systems. Notably, since the aldehyde-substituted 

                                                             
zzz In line with Figure 77 and Figure 78, absorption energies of triphenylamine-based compounds are too high 
compared with the solar spectrum. 
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triphenylamine system is smallest, shorter electron-hole separations and thus increased Coulomb 

binding energies of geminate electron-hole pairs result at first. However (Figure 79), this increase in 

stabilization of the charge-transfer states is apparently overcompensated by the higher ionization 

potential of the underlying “triamine-aldehyde”, which destabilizes them. Leaving aside the interfacial 

charge-transfer states, all remaining energetic aspects of the “triamine-aldehyde”::fullerene system, 

i.e., charge transport levels and the excitonic DOS, are quite similar to those already discussed for its 

larger relatives, the “triamine” and the “triamine-methoxy” compound. 

 

Figure 79: “Triamine-aldehyde”::fullerene system (b-c-crystallographic face). For an explanation of the symbols 
see Table 23. 

5.8.5 Polaron traps in the p-type semiconducting layer 

 

Figure 80: Squaraine::fullerene interface (a-b-crystallographic plane). Please note that a singlet exciton in the 
squaraine bulk phase is energetically below a fullerene singlet exciton. For an explanation of the symbols see 
Table 23. 
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Figure 80 shows the energetic profile of the squaraine::fullerene interface. It indicates that 

pronounced differences between exciton and polaron transport exist in the squaraine bulk phase. The 

excitonic DOS is very narrow (red circles, Figure 80). Furthermore, intramolecular relaxation is virtually 

negligible. This results because the rigid electron-rich squaraine core, where the excitation is localized, 

shows hardly any excited-state reorganization.623 Thus exciton diffusion through the squaraine thin 

film can be expected to be efficient, which is indeed reflected in experimental findings about fast 

exciton transport in squaraine-based devices.690 Moreover, narrow and red-shifted absorption 

properties due to the tight J-aggregation of squaraine molecules also in thin-film environments were 

experimentally found.691,690 This is in line with the absence of trap states and disorder in the excitonic 

DOS in Figure 80. 

The energetically very narrow exciton transport levels in the squaraine system (Figure 80) contrast 

with the polaronic states that spread considerably in energy. The latter are thus subject to a significant 

amount of disorder, which usually results in rather poor hole transport properties. Indeed, comparably 

low hole mobilities were experimentally found in squaraine thin films.653,691 According to the 

calculations and the subsequent visual inspection of squaraine dimers with different polaronic 

energies, the disorder of the polaronic states is due to the quite strong charge-charge interactions 

between individual squaraine molecules in the tightly packed but slightly disordered J-aggregate. In 

squaraine crystals, charge-charge interactions between the adjacent aggregated squaraine molecules 

are equal because all sites are equivalent. However, in the subsequent MD simulations used to 

generate the interfaces, adjacent squaraine molecules were somewhat shifted with respect to each 

other. Then, upon ionization, they may experience differently stabilizing or destabilizing interactions 

with neighboring charges, leading to variations of polaronic transport energies.  

5.8.6 Interfacial charge-transfer traps 
Numerous investigations have addressed the intimate relationship between the open-circuit voltage 

of the device and the charge-transfer state energies at the underlying donor-acceptor 

interface.439,955,934,956,440 It has been already analyzed in the literature how individual molecular 

properties like the polarity and the orientation of molecular aggregates profoundly influence these 

interfacial charge-transfer states.26,454 Nevertheless, especially the interplay of the individual molecular 

properties has to be taken into account to understand in detail their impact on the charge-transfer 

energies at the interface. For this purpose, the combined influence of molecular orientation, polarity, 

and size is discussed in the following. 

The relationship between the orientation of DIP aggregates, either standing/tip-on or lying/face-on 

with respect to the interface, and resulting charge-transfer states at the donor-acceptor interface was 

thoroughly experimentally studied, among others, by Brütting et al.,957 by Barrena et al.,958 and by Chen 
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et al.959 As already addressed by Beljonne and Heremans and coworkers597 for the pentacene::fullerene 

interface, larger couplings and rates are found for the face-on orientation. However, the tip-on/edge-

on orientations result in energetically higher charge-transfer states and, concomitantly, in higher open-

circuit voltages. 

 

Figure 81: Energetic profile of the DIP::fullerene interface (a-b-crystallographic orientation). DIP molecules are 
orientated tip-on with respect to the fullerene interface. There are exciton self-trapping sites in the bulk DIP 
phase (see low-lying red points). 

Figure 81 shows the energetic profile of the DIP::fullerene interface where the DIP molecules take on 

a standing orientation with respect to the fullerenes C60. The lowermost interfacial charge-transfer 

states are found at energies around 1.40 eV. This contrasts with minimal charge-transfer state energies 

of approximately 1.20 eV for the lying DIP orientation on C60 molecules (Figure 76). It has been 

emphasized that the numerical values of the charge-transfer state energies cannot be directly 

translated into an open-circuit voltage, which is influenced by additional parameters such as the 

minimal driving force required for exciton dissociation. Nevertheless, the decrease of 0.20 eV in the 

interfacial charge-transfer states (Figure 81 vs. Figure 76) compares well with an equal morphology-

dependent decrease of the open-circuit voltage of 0.20 eV observed by Brütting et al.957 In the 

calculations, the dependence of the interfacial charge-transfer energies on the morphology at the 

DIP::fullerene interface results from a two-fold effect: 

1. As stated above, couplings are larger for the lying orientation (= face-on). This induces a larger 

ground-state charge transfer in the face-on heterodimer, thereby decreasing the structural 

and electronic differences between the ground state and the excited charge-transfer state. 
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2. The electron-hole separation between the geminate electron and the hole is smaller in the 

lying orientation because it allows for a closer contact between the DIP molecule and fullerene 

C60. This increases the Coulomb binding energy and consistently lowers the overall charge-

transfer energy. 

In addition to its morphology dependence, the initial electron-hole separation is also a function of the 

molecular size. Lower Coulomb binding energies and higher charge-transfer energies can be expected 

for larger molecules that enforce higher initial electron-hole separations. This size effect becomes 

already apparent from the energetic profile of the squaraine molecule (Figure 80). Due to its long linear 

shape, the squaraine molecules guarantee large initial electron-hole separations and small Coulomb 

binding energies. In line with this, no deep interfacial charge-transfer states are found at the 

squaraine::C60 interface although the ionization potential of the squaraine molecule is rather low. The 

average energy of 1.0 eV for the interfacial charge-transfer states in the squaraine system should be 

compared to the energies found for triphenylamine-based compounds, which are considerably lower 

(TBA: 0.9 eV; TAM: 0.6 eV). This results from the smaller, spherical shapes of the triphenylamine 

molecules. These compact molecular shapes lead to small electron-hole separations and comparably 

high Coulomb binding energies of the interfacial charge-transfer states. Please note that additionally, 

in the squaraine::fullerene system, the rather high-lying interfacial charge-transfer states are not lower 

in energy than the polaronic transport levels (black circles and squares, Figure 80). This implies that 

cold exciton dissociation should be possible at this interface, at least from an energetic point of view. 

Throughout the previous sections, a plethora of results has given proof of the structurally and 

electronically similar behavior of the diketopyrrolopyrrole and the squaraine, the two donor-acceptor-

donor compounds comprised in the set of model compounds (Figure 5). In accordance with this 

observation, the comparable molecular shape and electronic structure of DPP result in an interfacial 

energetics of the diketopyrrolopyrrole::fullerene system much alike to the squaraine system (Figure 

82). No interfacial charge-transfer traps exist. Since the interfacial charge-transfer states are almost 

isoenergetic with the polaronic transport states in the DPP bulk phase, cold exciton breakup could 

occur. Again, this is among others a consequence of the large and linear molecular shape of DPP, 

ensuring large initial electron-hole separations with an average value of 14 Å. In comparison with the 

anthracene::fullerene system (average initial electron-hole separation: 7 Å), electron-hole pairs at the 

DPP::fullerene interface experience consequently only half the Coulomb binding energy. It is worth 

emphasizing that in the DPP bulk phase, both excitonic and polaronic transport levels are rather 

narrow. This results from the small amount of structural disorder in the tight DPP aggregates. 

Moreover, in contrast to squaraine disposing large atomic charges, local electron density variations 
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are smaller in DPP, resulting in reduced interactions of an ionized molecule with its environment and 

narrower polaronic levels. 

 

Figure 82: Energetic profile of the diketopyrrolopyrrole::fullerene interface (a-b-crystallographic plane). 

It has already been pointed out in several investigations that molecular polarity is crucial for the 

energetics at a donor::acceptor interface. According to Vandewal, McGehee, and Neher et al.,960 well-

performing OSCs are obtained whenever the process from interfacial charge-transfer states to 

complete charge separation is isoenergetic. An isoenergetic character is guaranteed by high-lying 

charge-transfer states that are only weakly bound and thus readily dissociate into separate charges. 

As also pointed out by Koster428 in an extension of Scharber’s seminal work on the open-circuit 

voltage,432 a high effective epsilon of the environment screens charge-charge interactions. It reduces 

the Coulomb binding energy of geminate electron-hole pairs, raises consequently charge-transfer 

energies and thereby reduces/removes possible barriers to complete charge separation. Seki et al.599 

outlined further benefits if a generally high effective epsilon in the bulk phases is accompanied by a 

lower epsilon at the interface. In such a case, the low dielectric constant destabilizes charges and 

electron-hole pairs selectively at the interface. The charge carriers become in turn more stable 

whenever they migrate into bulk phase areas with a larger effective epsilon. The combination drives 

charge separation.  

Merocyanines are a class of particularly polar molecular semiconductors.27 In fact, the effective epsilon 

for the bulk phase of merocyanines was predicted to be quite high.645 Furthermore, compared with 

the typical range of 휀 = 3 − 4 for most organic semiconductors,418 the highly polarizable fullerene 

phase possesses also a rather large effective epsilon.939,961 Because of the less dense packing at the 

interface between the merocyanine and the fullerene phase, the effective epsilon can be expected to 
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drop to a minimum in the interfacial region. Therefore, the donor-acceptor system composed of a 

merocyanine donor and fullerene C60 exactly corresponds to the dielectric environment discussed by 

Seki et al.599 

 

 

Figure 83: Energy profiles of the interfaces of two different merocyanines (a-b-crystallographic planes). First 
panel: HB194; second panel: MD353. 

Figure 83 shows the energetic profiles of interfaces between two merocyanines, HB194 and MD353, 

and fullerene. They reflect nicely the effects outlined by Seki et al. because the transition from an 

interfacial charge-transfer state (black bars) to separate charges (black circles and squares) is 

isoenergetic. Moreover, the Coulomb attraction between the separating charges is effectively 
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screened by the highly dipolar environment so that the polaronic states do not feature any r-1 

dependence. Therefore, charge separation should be efficient, and cold exciton breakup is definitely 

possible from an energetic point of view. Furthermore, a more detailed comparison of the positions of 

the interfacial charge-transfer states (black bars, Figure 83) of the HB194 and MD353 systems reveals 

that almost no interfacial trap states are to be expected for HB194 whereas some trap states exist in 

MD353 – a few charge-transfer states at the MD353::fullerene interface are situated clearly below the 

polaronic transport levels. From these calculations, one would assume higher device performances for 

HB194, which is actually the case. The experimentally determined power conversion efficiencies 

amount to 0.87%655 (MD353) and to 2.49%962 (HB194). These findings could additionally explain the 

surprisingly high device performances of optoelectronic devices based on merocyanine dyes, which 

actually contrast with predictions of the Bässler model548 of charge transport. The high efficiencies 

have so far been mainly rationalized by the dimerization of merocyanine dyes to centrosymmetric 

dimers in the solid state, resulting in a zero net dipole moment.27 Consequently, following the rationale 

of Würthner and Meerholz, no dipolar disorder exists for the bulk phases of merocyanines so that 

efficient charge transport is again possible within the Bässler model.27 However, this rationale is not 

totally in line with the calculated results (Figure 83). As already found for squaraine aggregates (Figure 

80), some charge trap states exist in the polaronic transport levels of merocyanines. In fact, the 

formation of centrosymmetric dimers cannot completely remove the efficiency limits to charge 

transport set by the dipolar environment. Even if all merocyanines formed perfect dimers in 

amorphous thin films, considerable quadrupole moments of these centrosymmetric dimers would still 

create a certain amount of dipolar disorder. Consequently, in line with Bässler et al.,548 charge 

transport properties deteriorate, and charge trap states necessarily emerge. Nevertheless, with regard 

to the observed high device efficiencies, this underlines the possible significance of the above-

described efficient exciton dissociation even more. 

To conclude from this section, the dimer method combined with a continuum solvation approach and 

local electric fields was employed to study the charge generation mechanism in OSCs from a 

thermodynamic perspective. The good accordance of the results with a number of experimental 

findings, for instance the exciton self-trapping in perylene-based dyes,745 high hole mobilities in 

triphenylamine-based compounds,682 efficient exciton diffusion in squaraines,623 excimer formation in 

donor-acceptor compounds,953,954 and the morphology-dependent open-circuit voltage957 in devices 

based on DIP, suggests that the ansatz is sufficient to cover many important effects. The energetic 

profiles highlight the influence of diverse loss mechanisms on the charge generation process in OSCs.  
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A comparison of the existing loss mechanisms for molecules of different shape and electronic structure 

allows to identify important structure-property relationships. Exciton traps, interfacial charge-transfer 

traps, and charge traps can be distinguished. 

1. Exciton self-trapping occurs in amorphous thin films of DIP. Various dimer conformations exist 

in such disordered films. For specific dimer arrangements, very low-energy excitonic states 

result so that dynamic relaxation like in PTCDA or PBI crystals is not necessary for exciton 

trapping anymore. In bulk phases of medium to large-size triphenylamines, excimer formation 

is responsible for trapping. J-aggregation effectively prevents the formation of exciton traps. 

Hence, exciton diffusion should be most efficient in the bulk phases of squaraines, 

diketopyrrolopyrroles, and merocyanines. 

2. In contrast to these favorable effects of J-aggregation on exciton diffusion, it simultaneously 

tends to impede charge transport. The tightly packed squaraine and merocyanine molecules 

with significant atomic charges on their donating and accepting moieties lead to disordered 

polaronic levels and trap states. Charge transport becomes less efficient. Charge traps are on 

the contrary almost inexistent in isotropic thin films composed of less polar molecules, most 

notably in phases of triphenylamine-based compounds. 

3. It was discussed in detail that for high open-circuit voltages and efficient charge separation, 

interfacial charge-transfer states should be isoenergetic with the polaronic transport levels. 

The dielectric properties at the interface, the molecular size and shape, and the morphology 

are decisive for the energies of these interfacial charge-transfer states. While the dielectric 

properties of the environment determine to what extent the Coulomb binding energy of the 

initially formed geminate electron-hole pair is screened, the electron-hole separation in the 

geminate pair is similarly decisive for its binding energy and depends on the molecular size and 

morphology. Large and polar molecules, tip-on orientated if possible, most efficiently prevent 

the formation of interfacial charge-transfer trap states. 

As a summary, final structure-property relationships defined for the herein treated molecules are given 

in Table 24. 

Table 24: Summary of the importance of identified trap mechanisms for the selected molecular p-type 
semiconductors (green bars: no trap states; yellow crosses: some trap states; red crosses: many trap states). 

compound  

class 

 

polarity model compound trap states particularities 

exciton 
traps 

interfacial 
charge-
transfer 
traps 

polaron 
traps 

aromatic  anthracene    no functional OSC 
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hydrocarbons 

 

 

no local/no net 
dipole moments 

 

 

 

low polarity 

DIP − + − exciton self-trapping 

interfacial traps depend on 
morphology 

rubrene − − − influence of bulky 
substituents (vs. anthracene) 

triphenyl 

-amines/ 

D-A-D  

compounds 

 

no net but local 
dipole moments 

 

 

 

 

 

 

intermediate 
polarity 

TBA 

„triamine“ 

+ − − excimer formation: exciton 
traps 

isotropic efficient polaron 
transport 

TAM 

„triamine-
methoxy“ 

+ − − excimer formation: exciton 
traps 

isotropic efficient polaron 
transport 

TAA 

„triamine-
aldehyde“ 

+ − + higher interfacial charge-
transfer states due to 
accepting groups 

squaraine − − + polaron traps in aggregates 

very efficient exciton 
transport 

diketopyrrolo-
pyrrole 

− − + polaron traps in aggregates 

isoenergetic charge 
separation (large size) 

mero- 

cyanines 

large net dipole 
moments 

 

high polarity 

HB194 − − + polaron traps in aggregates 

isoenergetic charge 
separation (polarity) 

MD353 − − + polaron traps in aggregates 

few interfacial trap states 
(close contact) 

 

After analyzing thermodynamic aspects of the optoelectronic processes in the vicinity of 

organic::organic interfaces in this section, the next section complements the discussion by addressing 

kinetic effects. 
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5.9 Kinetics of the exciton dissociation and charge separation processes in the 

vicinity of the organic::organic interfaces 
The following discussion parallels 930. 

Kinetic aspects of the light-to-energy conversion process in OSCs are complementarily investigated to 

the above discussed energetics. The same five-step process is reused to organize the discussion.424 For 

reasons of completeness, it is briefly repeated: 

1. Light absorption: Upon photon absorption, an exciton is created. In view of the poor 

absorption of fullerene, it is usually assumed that light absorption takes place in the donor 

phase only.5 

2. Exciton diffusion: The created exciton diffuses through the donor phase and may reach the 

interface. 

3. Exciton dissociation: Upon exciton dissociation at the interface in a photoinduced charge-

transfer step, an interfacial charge-transfer state, i.e., a (bound) geminate electron-hole pair 

is created. In the following, cold exciton breakup is assumed to be the only relevant mechanism 

for exciton dissociation (see previous section “Energetics of the exciton dissociation and 

charge separation processes in the vicinity of the organic::organic interfaces”).460 

4. Charge separation: If a gradient in the free energy landscape exists,26 the geminate electron-

hole pair dissociates to form separate charges. 

5. Charge recollection: The freely migrating charges are finally recollected at the electrodes. 

Only Steps 2-4 are addressed in this thesis as they are intimately related to the nature of the 

organic::organic interface (see above). To investigate kinetic aspects, kinetic Monte Carlo (KMC) 

simulations employing Marcus hopping rates obtained from quantum-chemical calculations are used 

to model the steps in the vicinity of the organic::organic interfaces. While many “macroscopic” KMC 

simulations using fit parameters from experiments exist,963 combined simulations of all interfacial 

processes with rates and further input parameters obtained from ab initio calculations are rare. 

Moreover, the computational approach chosen to generate the interfacial model systems  

 permits to investigate the influence of different amorphous thin-film morphologies on the rates of 

Steps 2-4. In contrast, most literature investigations focus entirely on crystallographic 

morphologies,456,575 which might be insufficient to describe the interplay between morphology, 

disorder, and kinetics. Furthermore, the diverse set of molecular p-type semiconductors (Figure 5) is 

employed along with the fullerene C60 acceptor, allowing for comparisons between different donors 

and the identification of structure-property relationships.  
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The simulations comprise not only exciton diffusion and dissociation at the interface, but also the 

subsequent charge separation up to the point where the migrating charges have almost overcome 

their mutual Coulomb binding energy. As loss mechanisms, fluorescence, exciton trapping, and 

recombination of interfacial charge-transfer states are taken into account. Due to the limited size of 

the interfacial model systems, pure charge transport phenomena of completely independent charges 

are not included, but ample literature investigations964,965,464 on charge transport in organic 

semiconductors exist. Please note that this discussion focusses entirely on the rates, i.e., energetic 

restrictions to the processes are not taken into account. 

It should be emphasized that some approximations are intrinsic to the chosen approach, i.e., KMC 

simulations based on Marcus hopping rates. Marcus theory is an equilibrium theory so that 

contributions from vibrationally591/electronically593 excited states as well as coherence phenomena are 

necessarily disregarded.5 Exciton delocalization across oligomeric aggregates fundamental to 

mechanisms like long-range exciton dissociation is not included either.966,594   

Table 25: Color code used to indicate the positions of the p-type semiconductors and the fullerenes 
(corresponding to the grid of the KMC simulations) and the exciton couplings and rates. The same color code is 
used for the corresponding charge couplings and rates. 

Position Symbol 

centers of mass of p-type semiconductors  

centers of mass of fullerenes  

Coupling/Rate Symbol 

exciton transport coupling/rate 

Excitons diffuse in the p-type semiconducting phase. 

 

hole transport coupling/rate 

Holes are transported in the p-type semiconducting phase. 

 

electron transport coupling/rate (fullerene) 

Electrons are transported in the fullerene phase. 

 

photoinduced charge-transfer coupling/rate 

An exciton dissociates at the interface into a geminate 
electron-hole pair. 

 

recombination coupling/rate 

An electron-hole pair at the interface recombines to the 
ground state. 
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All simulated processes are summarized in Table 25. In the following figures, they are indicated with 

the displayed symbols (Table 25). It should be noted that the same symbols are used to designate both 

exciton and charge transport in the bulk donor phase. 

The discussion of the kinetic aspects is organized as follows. In a first step, the underlying theoretical 

approach is presented in detail. Then, results are discussed for selected donor molecules. They are 

additionally compared to available experimental data, which furthermore permits to critically evaluate 

the physical soundness of the adopted approach. Finally, all obtained results are summarized to 

deduce structure-property relationships and to elucidate important trends. 

5.9.1 Description of the Theoretical Approach 
Figure 84 presents an overview of the adopted approach. It was implemented in C++ using the input 

extracted from Gaussian718 by bash scripts. A large number of approximations has to be introduced. 

This certainly questions the numerical predictability of the results. Yet, the aim of the approach is 

rather to gain insight and understanding of the microscopic charge generation processes than 

quantitatively accurate results. 

In a first step, the methods to calculate the rates (red box, “Rates”, grey boxes, Figure 84) are discussed. 

Marcus transfer rates 𝑘𝑖𝑓  between an initial state 𝑖 and a final state 𝑓 are obtained from the coupling 

𝑉𝑖𝑓 between the two diabatic states, the reorganization energy 𝜆 (see above), and the driving force 

Δ𝐺: 

𝑘𝑖𝑓 =
𝑉𝑖𝑓

2

ℏ
√

𝜋

𝜆𝑘𝐵𝑇
∙ 𝑒

−
(𝜆+∆𝐺)2

4𝜆𝑘𝐵𝑇  
(453) 

 

ℏ is the Planck constant, T the (ambient) temperature and 𝑘𝐵  the Boltzmann constant. In hopping 

processes between localized hopping sites in organic thin films, the initial and final states correspond 

to two adjacent monomers. Next-neighbor dimers were cut out based on a threshold value for the 

distance between their centers of mass. The reader is referred to 930 for detailed values. Couplings 

were calculated between the monomers. In line with literature investigations,532 no dielectric shielding 

was included in the calculation of the couplings (because these couplings between next-neighbor 

monomers can be assumed to be unaffected by the bulk permittivity/dielectric shielding). Exciton 

couplings between adjacent monomers 𝑉𝑒𝑥  were calculated from the adiabatic splitting519,166 of the 

first two excitations {𝐸1, 𝐸2} of the dimer. Using ZINDO209,210,772 excitation energies shown to be both 

reliable and low-cost (see section “Benchmarking vertical excitation energies of molecular 

semiconductors” for an evaluation of monomer excitations),702 these exciton couplings were 

calculated as: 
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𝑉𝑒𝑥 =
1

2
(𝐸2 − 𝐸1) (454) 

 

In a similar procedure, charge transport couplings between neighboring monomers for hole (𝑉ℎ𝑜𝑙𝑒) 

(electron (𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛) ) transport are obtained as the adiabatic splitting of the orbital energies of the 

HOMO 휀𝐻𝑂𝑀𝑂  and the HOMO-1 휀𝐻𝑂𝑀𝑂−1 (the LUMO 휀𝐿𝑈𝑀𝑂  and the LUMO+1 휀𝐿𝑈𝑀𝑂+1) of the neutral 

dimer:166,967 

𝑉ℎ𝑜𝑙𝑒 =
1

2
(휀𝐻𝑂𝑀𝑂 − 휀𝐻𝑂𝑀𝑂−1) (455) 

 

𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 =
1

2
(휀𝐿𝑈𝑀𝑂+1 − 휀𝐿𝑈𝑀𝑂) (456) 

 

 

Figure 84: Adopted theoretical approach for the analysis of the interfacial kinetics using diverse molecular p-type 
semiconductors in heterojunction with fullerene C60. KMC simulations based on Marcus hopping rates are 
conducted. 
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As discussed by Coropceanu et al.,544 using INDO968 for the calculation of the orbital energies delivers 

sufficiently accurate charge transport couplings. It is, however, very important to keep in mind that 

obtaining exciton/charge transport couplings as the adiabatic splitting of dimer excitations/orbital 

energies is only physically justified as long as the excitations/orbital energies are well-separated in the 

underlying monomers.166 Although this is the case for almost all molecules included in the calculations, 

it does not hold for the “triamine” compound, possessing a degenerate HOMO, and for fullerene C60, 

which has a three-fold degenerate LUMO due to its icosahedral symmetry. In order to still determine 

coupling values for these two molecules from the adiabatic splitting method, an approximate scheme 

illustrated for fullerene C60 in Figure 85 is adopted. Instead of using individual excitation/orbital 

energies for the calculations of the couplings (Eq. (454), (455), (456)), average values are used. This 

naturally deteriorates the accuracy of the results. Resulting uncertainties represent only a small 

problem for fullerene C60 because it is used in all interfaces. Errors can be expected to be equal in all 

simulations. Results for the “trimaine”::fullerene interface are, however, more error-prone and should 

be discussed with caution. 

 

Figure 85: Approximate scheme to determine charge transport couplings from the orbital splitting in fullerene 
C60 dimers. 

In addition to exciton and charge transport couplings, charge-transfer and recombination couplings 

are required as input parameters for the KMC simulations. Utilizing the generalized Mulliken-Hush 

formalism,969,970 couplings for photoinduced charge transfer 𝑉𝐶𝑇 (recombination) are obtained from 

the energies of the excited and the charge-transfer state {𝐸𝑖} (the charge-transfer state and the ground 

state), their dipole moments {𝜇𝑖} and the transition dipole moment 𝜇12: 
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𝑉𝐶𝑇 =
𝜇12(𝐸2 − 𝐸1)

√(𝜇2 − 𝜇1)2 + 4𝜇12
2

 (457) 

 

In line with most applications of the generalized Mulliken-Hush theory,971,972 only the projection of the 

transition dipole moment onto the dipole difference vector is employed to eliminate all locally excited 

components. The calculation of the excitation energies {𝐸𝑖} in Eq. (457) is somewhat problematic 

because, as discussed above, the calculation of charge-transfer states is computationally challenging 

(see Section “Benchmarking vertical excitation energies of molecular semiconductors”).159 Nelson and 

coworkers567 pointed out that semiempiric methods are intrinsically unable to capture overlap-

dependent contributions to charge-transfer states, while they correctly describe the electrostatic 

component and reliably incorporate the full Coulomb interaction between the electron and the hole. 

The inverse is true for TD-DFT,266 which performs well for overlap-dependent contributions but fails 

for the electrostatic parts. According to the reasoning of Nelson and coworkers, electrostatic 

contributions are more important than overlap-dependent terms in most charge-transfer states.567 

Thus ZINDO was employed to extract the excitation energies and transition dipole moments for the 

calculation of photoinduced charge-transfer couplings (Eq. (457)). ZINDO excited-state dipole 

moments are, however, not directly accessible with Gaussian. Therefore, the dipole moment of a 

geminate electron-hole pair situated on the heterodimer, i.e. of a donor+-acceptor--pair, is calculated 

with classical electrostatics and used to approximate the excited-state dipole and, assuming a 

comparably negligible ground-state dipole moment, the difference dipole vector. The electron is 

assumed to be fully localized on the fullerene while the donor component carries the hole, i.e., the 

complete positive charge. The electron-hole separation is estimated from the distance between the 

centers of mass of the underlying monomers.   

In line with Brédas and coworkers,973 reorganization energies 𝜆 and driving forces Δ𝐺 for photoinduced 

charge transfer and recombination were obtained from monomer calculations at the ωB97X-D143/cc-

pVDZ705 level of theory. The ωB97X-D functional was shown to yield reliable ground-state, excited-

state, and ionized-state energies (see previous sections). The effects of Coulomb interactions between 

the charged monomers on the overall driving forces were disregarded at this point because they were 

included in the later-on KMC simulations. It should be noted that only internal reorganization energies 

can be obtained from isolated-monomer calculations. As already mentioned above with regard to 

external reorganization energies, Troisi et al.860 and Voityuk et al.861 presented detailed surveys that 

the sizes of the external reorganization energies strongly vary with the adopted computational 

approach to calculate them. Moreover, external reorganization energies are usually approximately one 

magnitude smaller than internal reorganization energies.575,864 Therefore, they can be neglected to a 

first approximation, and their influence is only indirectly included via Δ𝐺 (see below).  
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The yellow boxes (“Loss mechanisms”) in Figure 84 indicate that two loss mechanisms in addition to 

the recombination of charge-transfer states are included in the simulations. Fluorescence rates, i.e., 

radiative decay rates 𝑘𝑟𝑎𝑑 , were estimated from a simplified version of the Strickler-Berg relationship 

that approximates the radiative decay rate from the oscillator strength 𝑓, the refractive index of the 

medium 𝑛, and the wave number �̃� (assuming equal wave numbers for absorption and 

fluorescence):974,418 

𝑘𝑟𝑎𝑑 = 𝑛3�̃�2𝑓 (458) 

Oscillator strengths and wave numbers for the monomer absorption were calculated again at the 

ωB97X-D/cc-pVDZ of theory because TD-DFT is known to obey the Thomas-Reiche-Kuhn sum 

rules975,259. To treat all molecules on an equal footing, only absorption wave lengths were used because 

some compounds undergo as gas-phase monomers an excited-state torsion disabled by steric strain in 

thin films.645 Such an excited-state torsion results in differing absorption and fluorescence wave 

lengths. All fluorescence rates (= radiative decay rates) can be found in 930. 

As outlined in the section “Energetics of the exciton dissociation and charge separation processes in 

the vicinity of the organic::organic interfaces”, exciton self-trapping mechanisms were investigated for 

a number of compounds,745 most notably for perylene-based dyes such as DIP in this thesis. To 

incorporate self-trapping into the simulations, a self-trapping rate of 1012 𝑠−1 was deduced from the 

time scales found for trapping in PBI (215 fs878) and PTCDA (~ 400 fs745). Exciton trapping in 

merocyanines due to a photoinduced torsion645 was also included. Laser-spectroscopic investigations 

showed that the photoinduced torsion in merocyanines occurs on femtosecond time scales of 

approximately 100 fs851, which translates into an estimated trapping rate of 5 ∙ 1012 𝑠−1. It is thereby 

assumed that the trapping rate is equal for all merocyanines. Furthermore, it is worth emphasizing 

that although a full torsion of merocyanines is not necessarily possible in a thin-film environment due 

to steric strain,645 some twisting around the carbon backbone of merocyanines is already sufficient to 

effectively prevent further exciton diffusion. 

As a suitable description of the environment is decisive for accurate results,26 (green box, 

“Environment”, Figure 84) a three-fold procedure is adopted to take into account environmental 

effects:  

1. Structural disorder is inherently included since disordered interfacial model systems are 

employed for the simulations. The disordered model systems translate into a KMC grid with 

varying distances between adjacent grid points.  

2. The polarizability of the environment, particularly fundamental to the energetics and kinetics 

of the charge separation process575,601 because it is responsible for the screening of the 
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Coulomb attraction between migrating electrons and holes, has to be incorporated. The 

approach already adopted to model effects of the environmental polarizability on energetics 

– the polarizable continuum model – is also employed for the KMC simulations (Figure 72).  

3. Static disorder425 of site energies, arising from locally varying electric fields and a site-specific 

polarization and delocalization, needs to be included because it considerably influences the 

driving forces Δ𝐺. Since resulting rates depend exponentially on these driving forces, static 

disorder could have a pronounced influence on the outcome of the simulations. In order to 

take it into account, a Gaussian disorder parameter σ is included in the calculation of driving 

forces, in line with the Bässler model of disorder.546,548 All excitonic, polaronic, and charge-

transfer state energies are assumed to be normally distributed, distributions which are 

characterized by this disorder parameters σ. The parameters σ are extracted from the 

previously conducted dimer calculations (Section “Energetics of the exciton dissociation and 

charge separation processes in the vicinity of the organic::organic interfaces”; the disorder 

parameters are calculated as the standard deviations of the distributions of dimer energies). 

Dimer calculations are perfectly capable of providing an estimate for static disorder because 

they include variations due to delocalization and intermolecular interactions.745 The final 

driving forces are then obtained as sums of the gas-phase ωB97X-D values and contributions 

from static disorder. These contributions are computed from normally distributed random 

numbers that are generated with the calculated Gaussian disorder parameters σ. However, it 

should be noted that the disorder parameters σ for excitonic and polaronic states are assumed 

to be constant throughout the complete donor/acceptor phase, which is an approximation. 

Van Voorhis and coworkers460 thoroughly discussed that the amount of disorder in the direct 

vicinity of the organic::organic interface can be larger. 

The KMC implementation follows Houili et al.976 (red center box, Figure 84). The centers of mass of the 

fullerenes and molecular p-type semiconductors of the underlying disordered interfacial model 

systems constitute the grid points of the KMC simulations (blue box, Figure 84). A particle, an exciton 

or polaron, reaching the boundary of the interfacial model systems is reflected, i.e., no periodic 

boundary conditions are used for the disordered systems. At least 15 to 20 starting points were chosen 

from where an exciton starts diffusing. 100 trajectories were calculated per starting point. To obtain 

comparable results for all model systems that differ in size, all simulations were conducted with a fixed 

number of steps, i.e., a fixed number of steps per trajectory was employed. This number was calculated 

from the number of p-type molecule dimers 𝑒 and fullerene dimers 𝑓 for which couplings were 

computed, i.e., which were selected based on the distance criterion. This has the advantage that the 

size of the systems and its dimensionality, i.e., its intermixing and interpenetration, is implicitly 

included in the number of MC steps per trajectory #𝑠𝑡𝑒𝑝(𝑀𝐶). 
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#𝑠𝑡𝑒𝑝(𝑀𝐶) = 400 + 2 ∙ (𝑒 + 𝑓) (459) 

To investigate the influence of the number of steps on the KMC results, the simulations were repeated 

with 1400 instead of 400 steps in Eq. (459) and a higher prefactor of 10, i.e., the number of steps was 

increased by a factor larger than 6. The resulting changes turned out to be insignificant. This shows 

that the KMC outcome is generally not predominantly determined by the predefined number of steps. 

To guarantee the significance of the results and the limited influence of the KMC input parameters 

(blue box, Figure 84), KMC simulations were additionally conducted for each system and each 

crystallographic orientation using a slightly larger interfacial model systems.  

Figure 86 illustrates further KMC input parameters listed in the blue box of Figure 84. As already 

mentioned, it is assumed that excitons are only created in the donor phase, with the extinction 

coefficient of fullerene C60 being very low.977 To be able to also analyze the efficiency of exciton 

diffusion and its interplay with exciton dissociation and charge separation, no excitons created in the 

immediate vicinity of the interface are included in the simulations. Instead of this, excitons are 

randomly generated only in the red box on the right-hand side of Figure 86. This enforces that some 

exciton diffusion prior to dissociation has to occur. The position of the red box is adjusted to the system 

size so that it always contains approximately 30% of the donor phase. Notably, since exciton generation 

occurs randomly and the randomly generated excitons are at first uniformly distributed in the red box, 

additional effects around exciton creation arising from morphological dependencies or anisotropic 

light absorption are not considered in the simulations.978,979 Furthermore, events such as direct 

excitations of an interfacial charge-transfer states960 or long-range exciton dissociation584,457 are 

disregarded. 

To evaluate the results, “KMC quantum yields” are calculated (purple box, Figure 84). The overall KMC 

quantum yield corresponds to the percentage of generated excitons that successfully dissociate into a 

charge-separated state575, thus a quantity intimately related to the experimentally accessible IQE. As 

above, an electron-hole pair is considered as separate as soon as the Coulomb binding energy has 

considerably dropped. In fact, it has decreased by at least 80% as soon as the hole has reached the red 

box in Figure 86 (blue arrow). To clarify the interplay between the individual processes like exciton 

diffusion, dissociation, and charge transport, and to identify how molecular and aggregate properties 

influence these processes, quantum efficiencies for all individual processes are additionally calculated 

(purple box, Figure 84). For instance, fluorescence, recombination, and exciton self-trapping losses can 

significantly deteriorate the overall quantum yield (green ovals, Figure 86). Nevertheless, a migrating 

exciton can also simply continue diffusing instead of reaching the interface and dissociating (“exciton 

migration”, green oval, Figure 86). To define the possible bottleneck of the overall light-to-energy 

conversion, quantum efficiencies for all these processes and others like charge separation and exciton 
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dissociation are calculated. This allows furthermore to study possible interferences between the 

processes. For example, if direct and fast exciton diffusion toward the interface is guaranteed, 

fluorescence and exciton self-trapping become less frequent. In contrast, if random exciton diffusion 

occurs over long distances, these loss mechanisms can be quite significant. Electron transport in the 

fullerene phase is not evaluated in detail because fullerene C60 is employed in all interfacial model 

systems. Moreover, the electron transport couplings in the fullerene phase are only approximately 

estimated (Figure 85). Hence, all mechanisms relying on a predominant role of the fullerenes, such as 

electron delocalization over fullerene aggregates, are ignored in the simulations. This contrasts for 

example with investigations of Ratner et al. who suggested an “unequal partnership” between donors 

and acceptors because electron delocalization in the fullerene phase may play a key role in driving 

charge separation.606 

 

Figure 86: Demonstration of additional parameters used to evaluate the KMC results. The approximated 
interfacial plane is the center plane between the centers of mass of the p-type semiconducting molecules and 
the fullerenes. 

To gain further insight, effective exciton and charge velocities were calculated for each successful 

trajectory, i.e., for each successful exciton dissociation or charge separation. In addition to the 

quantum yields, i.e., the efficiencies of the processes, they provide information about their rates. The 

velocities are called “effective” because they refer to only one coordinate, i.e., to an “effective” 

coordinate perpendicular to the interfacial plane. The effective velocity for excitons |𝑣|𝑒𝑥,𝑒𝑓𝑓  is defined 

as: 
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|𝑣|𝑒𝑥,𝑒𝑓𝑓 =
|𝑧𝑎𝑏𝑠 − 𝑧𝐶𝑇|

𝑡𝑒𝑥
 (460) 

 

𝑧𝑎𝑏𝑠  designates the position (perpendicular to the interfacial plane) where absorption took place, i.e., 

where the exciton was generated. 𝑧𝐶𝑇  denotes the position of the interfacial charge-transfer state, and  

𝑡𝑒𝑥  is the time between exciton generation and dissociation. The effective charge velocity |𝑣|𝑐ℎ,𝑒𝑓𝑓  is 

equivalently defined: 

|𝑣|𝑐ℎ,𝑒𝑓𝑓 =
|𝑧𝐶𝑇 − 𝑧𝑠𝑒𝑝|

𝑡𝑐ℎ
 (461) 

 

𝑧𝑠𝑒𝑝  is the position of charge-separated state, i.e., the position of the hole as soon as it has reached 

the red box in Figure 86. 𝑡𝑐ℎ  corresponds to the time between the photoinduced charge-transfer step 

and charge separation. Notably, no electric field is applied in the simulations. This implies that charge 

carriers move by diffusion, and not by drift. While it is usually assumed that charge transport in organic 

semiconductors corresponds mostly to drift,418 applying a constant electric field in all simulations 

would not change the qualitative trends.  

Averaged effective exciton/charge velocities can be in principle compared to macroscopic, 

experimentally accessible counterparts. However, Andrienko and coworker558 discussed thoroughly 

that transport parameters obtained from simulations on finite disordered systems suffer from so-

called finite-size effects980 and are thus usually considerably overestimated. Numerous extrapolation 

schemes980 exist to correct for finite-size effects. In this thesis, effective velocities and resulting 

transport parameters, most notably the mobilities, refer exclusively to transport in only one direction. 

It is well-known that diffusion depends on the square of the average displacement, 𝑥².418 It is therefore 

assumed that the error due to finite-size effects scales with the square of the dimensions of the system. 

Thus to extrapolate from the calculated mobilities 𝜇𝑐𝑎𝑙𝑐 in model interfaces of a thickness 

𝐿𝑚𝑜𝑑𝑒𝑙 𝑠𝑦𝑠𝑡𝑒𝑚  to mobilities in a thin-film OSCs with a thickness 𝐿𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 of 50 nm, 𝜇𝑠𝑜𝑙𝑎𝑟 , a similar 

quadratic scaling is assumed: 

𝜇𝑠𝑜𝑙𝑎𝑟 = 𝜇𝑐𝑎𝑙𝑐 ∙ (
𝐿𝑚𝑜𝑑𝑒𝑙 𝑠𝑦𝑠𝑡𝑒𝑚

𝐿𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙
)

2

 (462) 

 

Average effective velocities are employed to deduce theoretical estimates for transport parameters. 

However, as pointed out by Troisi et al.,584 average rates are only meaningful if the underlying 

individual rates have a similar order of magnitude. Otherwise, macroscopic observables (transport 

parameters) are entirely governed by only the fastest rates. Experiments of Yan et al. led to similar 
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conclusions.981 Therefore, the variations of effective charge and exciton velocities were checked before 

averaging, but they turned out to be rather limited, in contrast to charge-transfer and recombination 

rates that frequently deviate by several orders of magnitude. Averaging effective exciton and charge 

velocities should consequently deliver physically meaningful quantities that can be compared to 

experimental transport parameters. 

The same monomer geometries as in the previous section (“Energetics of the exciton dissociation and 

charge separation processes in the vicinity of the organic::organic interfaces”) were used to replace 

the force-field monomer geometries: ground- and excited state geometries optimized at the SCS-

CC2256,180/cc-pVDZ705 level of theory and charged geometries obtained with ωB97X-D143/cc-pVDZ705. An 

ultrafine grid was employed for all DFT calculations, including the computations of driving forces and 

radiative decay rates. ZINDO was employed to compute excitonic, charge-transfer and recombination 

couplings. As outlined above, INDO was used for charge transport couplings unless no parameters were 

available, for instance for sulfur-containing molecules. Then, ZINDO was used instead. For the 

calculation of recombination and charge-transfer couplings, the fullerene C60 electrons were frozen. 

The Gaussian program package was used.718 Please note that whenever kinetically feasible, 

endothermic steps are allowed in the simulation to differentiate between purely energetic and purely 

kinetic effects. 

In view of the large number of introduced approximations, it should be kept in mind that the aim of 

this approach is mainly to gain qualitative insight into the charge generation process and to elucidate 

important trends.  

 

5.9.2 Discussion of Kinetic Aspects of Organic::Organic Interfaces Obtained From KMC 

Simulations 
The following discussion of the key results on the interfacial kinetics is organized as follows. In a first 

step, general features of kinetics are discussed on the DIP::fullerene interface system. Three possibly 

efficiency-limiting kinetic effects are defined that are in a second step generalized by extending the 

concepts to other molecules. In a third step, to evaluate the reliability of the predictions, transport 

parameters and quantum efficiencies are compared to available experimental data, i.e., to mobilities 

and IQE/EQE values. EQE values are only used if IQE data are not available.  
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General features of interfacial kinetics: the DIP::fullerene interface 

 

Figure 87: KMC quantum yields (see previous section) for KMC simulations on three different morphologies of 
the DIP::fullerene interface. 

Composite pie charts (Figure 87) display the efficiencies of all processes for the three different 

morphologies of the DIP::fullerene interface. Left charts illustrate quantum efficiencies up to the 

process of exciton dissociation whereas right charts refer to processes succeeding exciton dissociation. 

The efficiencies are referenced to the number of generated excitons, i.e., to the number of KMC 

trajectories. Values in brackets on the right-hand side are normalized to the number of dissociated 

excitons instead of the number of generated excitons. It becomes evident from Figure 87 that 28% of 

the generated excitons reach the interface and dissociate for the a-b-morphology (pink, Figure 87). 

The remaining 72% of the excitons decay radiatively (“fluorescence”, 6%), become trapped 

(“trapping”, 14%) or continue diffusion in the p-type semiconducting phase (“exciton migration”, 52%). 

Turning to the right-hand side, only 36% of the dissociated excitons accomplish the charge separation 

process for the a-b-morphology (“charge separation”) while most of the charges remain bound (64%, 

“charge migration”). This implies that only 10% of the generated excitons would contribute to the 

photocurrent. Results differ significantly for the two other morphologies. More excitons dissociate 

(56% and 79%, respectively), which comes along with fewer radiative decay and trapping processes 

and a reduced percentage of exciton migration (26% and 9%, respectively). Apparently, fast exciton 

diffusion and dissociation especially enabled by the b-c-morphology outperforms competing loss 

channels. Slightly less pronounced differences compared with the a-b-morphology exist also for the 

number of charge-transfer states (= dissociated excitons) that undergo final charge separation. While 
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64% of the charge-transfer states formed at the a-b-interface remain bound, this number decreases to 

14% at the a-c- and 22% at the b-c-interface.  

A more profound understanding for the morphology-dependent efficiencies (Figure 87) is provided by 

the spatial distributions of the computed couplings and rates for all processes in the vicinity of the 

three different DIP::fullerene interfaces (Figure 88 - Figure 90). The figures correspond to two-

dimensional projections of the three-dimensional interfaces. In all figures in the following, exciton 

couplings (red arrows) and the couplings of  the excitons to interfacial charge-transfer states (= charge-

transfer couplings, blue arrows) are shown in the upper left panels, whereas corresponding charge 

transport (red arrows) and recombination (blue arrows) couplings are displayed in the upper right 

panels (see Table 25). Corresponding rates that depend on the driving forces and the reorganization 

energies in addition to the couplings are given in the lower panels. The widths of the arrows indicate 

the strength of the coupling (linear relationship) and the size of the rates (logarithmic relationship). 

 

Figure 88: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (a-b)-DIP::fullerene 
interface (standing orientation of DIP molecules on fullerene C60). To calculate charge-transport rates, an image 
charge on the opposite side of the interface was employed. Moreover, it should be kept in mind that the 
representations of the interfaces in all figures are two-dimensional projections of the three-dimensional 
interfacial model systems. Therefore, some molecules might appear closer than they actually are. 
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Figure 89: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (a-c)-DIP::fullerene 
interface (lying orientation of DIP molecules on fullerene C60). 

 

Figure 90: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (b-c)-DIP::fullerene 
interface (lying orientation of DIP molecules on fullerene C60). 

Differences in the rates of the three DIP::fullerene morphologies (Figure 88 - Figure 90) directly account 

for the observed trends in the KMC efficiencies (Figure 87). DIP molecules are standing on top of the 

fullerene surface in the a-b-morphology. This implies that the exciton and polaron transport along the 
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stack, which is often very fast, goes parallel to the interface (Figure 88, lower panels). In contrast, 

rather small couplings between adjacent DIP stacks (Figure 88, upper panels) allow only for rather 

small inter-stack transport. Both other morphologies favor transport rather toward and away from the 

interface than in parallel directions (Figure 89, Figure 90). This results because in the a-c- as well as in 

the b-c-morphology, DIP stacks are lying on top of the fullerene phase so that maximum couplings and 

consequently the fastest transport processes are found toward/away from the interfacial plane. 

Nevertheless, it should be noted that irrespective of the exact morphology, charge transport in the 

direct vicinity of the interface seems to be considerably hampered (Figure 88 to Figure 90, lower right 

panels). In the following, these regions with reduced charge transport rates will be considered as 

“charge transport depletion zones”. The charge transport depletion zones result from the considerable 

Coulomb attraction between the geminately formed electron-hole pair. Due to the usually low 

dielectric constant in organic semiconductors,418 the charge-charge interactions are only incompletely 

screened. Moreover, due to its r-1-dependence, the Coulomb attraction between adjacent sites varies 

most (1) in the immediate vicinity of the organic::organic interface and (2) in hopping processes 

perpendicular to the interfacial plane. Variations in the Coulomb attraction between the initial and 

final site account for considerable, endothermic driving forces ΔG for some charge separation 

pathways. Although thermodynamic aspects are disregarded in the KMC simulations, positive values 

for ΔG become noticeable via their influence on hopping rates, i.e., they significantly reduce the charge 

transport rates. As soon as a charge transport depletion zone forms in the vicinity of an 

organic::organic interface, cold exciton dissociation is also kinetically disabled, and 

vibrationally/electronically excited states must be involved to drive charge separation.567  

A comparison of the charge transport depletion zones for the different morphologies (Figure 88 to 

Figure 90) underlines that the depletion zone is least pronounced for the a-b-DIP::fullerene interface. 

This goes along with the above described finding that no interfacial charge-transfer traps exist for the 

a-b-morphology where most DIP molecules stand on top of the fullerene layer. This orientation ensures 

rather large initial electron-hole separations so that the charge separation efficiency is not as 

inefficient as could be expected from the rather small charge transport coupling values (upper right 

panel, Figure 88). Moreover, the smaller charge transport depletion zone in the a-b-morphology also 

accounts for the smaller differences between the morphologies in terms of charge separation 

efficiency compared to exciton dissociation efficiency. This implies that the effects of driving forces 

and couplings partially compensate for different morphologies of the DIP system.  

In contrast to the largely anisotropic hole transport in the DIP phase, electron transport in the fullerene 

layer is mostly isotropic for all interfacial model systems. This arises, among others, from the spherical 
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shape of the icosahedral fullerene molecule, as already discussed by Ratner et al.606 and by Nelson et 

al.567 

Significant differences between the different DIP morphologies exist also in terms of the photoinduced 

charge-transfer rates. In the photoinduced charge-transfer step, an exciton dissociates at the 

organic::organic interface into a geminate electron-hole pair (Table 25). At first view, the largely 

deviating photoinduced charge-transfer rates are surprising because underlying couplings do not differ 

as much (blue arrows, Figure 88 to Figure 90). However, it should be kept in mind that the rates depend 

on the square of the couplings, i.e., slightly differing coupling values can translate into considerably 

differing rates. Photoinduced charge-transfer rates are especially small for the a-b-morphology where 

they become noticeable only in one region of the organic::organic interface (lower left panel, Figure 

88). Analyzing this region by visual inspection reveals that slip-stacked conformations of DIP molecules 

on fullerene C60 exist that give rise to the non-negligible coupling strengths and larger rates. Standing 

orientations of DIP on fullerenes dominate all other parts of the interface, leading to very low rates. 

This agrees nicely with findings of Heremans et al.568 who investigated the crystalline 

pentacene::fullerene interface and predicted only very low charge-transfer rates for an edge-on 

orientation of pentacene on top of the fullerene layer. In contrast to the a-b-morphology, considerably 

more pathways for fast photoinduced charge-transfer processes exist for the a-c- and the b-c-

morphology (see the number of blue arrows in the lower left panel of Figure 89 and Figure 90). The 

very limited number of fast photoinduced charge-transfer trajectories along the interface of the a-b-

morphology can also in parts explain the poor exciton dissociation quantum yield of this system (Figure 

87). 

It is worth emphasizing that large charge-transfer couplings do not necessarily induce very high charge-

transfer rates. This results from the additional influence of the driving force on the rates and becomes 

evident from the distribution of couplings and rates for both the a-c- and the b-c-morphology (Figure 

89, Figure 90). Couplings for the photoinduced charge-transfer process are largest for heterodimers 

with a very close contact between the DIP molecule and the fullerene acceptor. As was discussed in 

the previous section “Energetics of the exciton dissociation and charge separation processes in the 

vicinity of the organic::organic interfaces”, low-lying interfacial charge-transfer states, i.e., trap states, 

are found precisely on these heterodimers because their conformations ensure a small initial electron-

hole separation and a correspondingly high Coulomb binding energy. As a consequence, the driving 

force for the photoinduced charge-transfer step to such a low-lying charge-transfer state is so high 

that the step is situated in the Marcus inverted region. It is thus kinetically hampered in spite of large 

coupling strengths. This result is quite significant also from a device perspective: it suggests that the 

influence of interfacial charge-transfer might not be as decisive as one could assume. If Marcus theory 
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applies, i.e., in the weak coupling limit,601 the population of deep interfacial charge-transfer state is 

kinetically unfavorable, which limits their negative impact. 

For all DIP::fullerene interfaces, recombination rates virtually vanish (Figure 88 to Figure 90), being 

always smaller than 5 ∙ 107𝑠−1. Recombination rates are often inferior to corresponding charge-

transfer rates, a fact already discussed by Troisi et al.584 and by Castet et al.601 In a Marcus-based 

description, this is again a direct consequence of the Marcus-inverted region where the majority of the 

usually very exothermic recombination processes are located. There is also experimental evidence982 

for the Marcus-inverted behavior of recombination processes. In line with these literature results, the 

driving force for most recombination processes along the DIP::fullerene interface exceeds 1-1.5 eV, 

which explains the negligible rates. 

Please note that disorder of site energies σ was not included in the visual representation of the rates 

in Figure 88 through Figure 90 to provide a balanced description of all rates (evidently, the disorder of 

site positions was taken into account). It was, however, taken into account in the computation of the 

KMC quantum efficiencies (Figure 87). In general, increasing the disorder parameter in the KMC 

simulations deteriorates exciton dissociation and charge separation efficiencies. Consistently, effective 

charge and exciton velocities decrease. Moreover, Gennett and coworkers552 outlined that the effects 

of disorder are especially pronounced for intrinsically slow rates. Fast processes are naturally also 

affected by disorder. However, in contrast to them, slow processes can be effectively suppressed 

because due to the additional deceleration exerted by disorder, they become so small that other 

competing processes take over.  

To summarize this discussion of general aspects of interfacial kinetics, three important kinetic effects 

were defined at the DIP::fullerene system: 

1. Random exciton and charge migration can effectively prevent the completion of exciton 

dissociation or charge separation processes. Certain morphologies of the DIP::fullerene system 

were shown to favor random exciton/charge migration due to the intrinsically anisotropic 

transport. If fast transport pathways parallel the interface, efficient exciton diffusion toward 

and fast charge separation away from the interface are improbable. 

2. In the immediate vicinity of organic::organic interfaces, “charge transport depletion zones” are 

formed, i.e., areas with slow charge transport rates. The slow rates result from the significant 

Coulomb attraction between the geminate electron-hole pair that gives rise to a large 

endothermic contribution to the overall driving force of charge separation. As Marcus charge 

transport rates depend exponentially on the driving force, they significantly decrease. 
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Although it is well-known that charge separation can be an energetic uphill process,423 the 

kinetic implications of the endothermic nature of the process were mostly disregarded. 

3. Loss mechanisms like fluorescence or exciton self-trapping only become competitive if 

alternative processes are slow. Since charge-transfer steps at the DIP::fullerene interface are 

sometimes kinetically hampered, fluorescence can outcompete exciton dissociation and 

becomes noticeable for long exciton diffusion times. 

In the following sections, these aspects will be generalized by analyzing the charge generation kinetics 

at interfaces of fullerene C60 with other molecular p-type semiconductors.  

Random exciton migration caused by fast exciton/charge transport rates combined with slow charge-

transfer steps 

If exciton/charge transport is anisotropic and follow-up processes like exciton dissociation/charge 

separation are slow, charge generation can be effectively suppressed. Instead, excitons (charges) 

migrate randomly in the donor phase (donor and acceptor phases). To illustrate this, in a first step, two 

different morphologies, the a-b- and the b-c-orientation, of the rubrene::fullerene system are 

compared. The KMC yields for the a-b-system are given in Figure 91. Notably, the probability for 

exciton dissociation is unity. In contrast, barely any excitons dissociate at the b-c-interface (not shown), 

with 0.3 % being the corresponding quantum yield for exciton dissociation. Moreover, no charge 

separation occurs for this b-c-morphology. No losses due to radiative decay were found in either 

system. 

 

Figure 91: KMC quantum yields for the KMC simulations on the (a-b)-rubrene::fullerene morphology.  

To understand these contrasting findings, the distribution of rates and underlying couplings is given in 

Figure 92 for the a-b-morphology and in Figure 93 for the b-c-morphology. It is well-known from a 

plethora of experiments983,489 that exciton diffusion is fast in pristine rubrene crystals. In line with this, 

fluorescence cannot compete with the high exciton diffusion rates in the KMC simulations so that it is 

quasi-inexistent within the simulation time scales (Figure 91). Similar to the different morphologies of 

the DIP::fullerene-donor-acceptor system, the spatial distribution of exciton and charge transport rates 

differs for the two rubrene::fullerene morphologies (Figure 92 and Figure 93). However, the 
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pronounced differences in KMC yields (Figure 91) arise primarily from the combination of the very 

efficient exciton diffusion in rubrene and morphology-dependent, different photoinduced charge-

transfer rates. Considerable charge-transfer rates resulting from high couplings and small absolute 

driving forces are observed for the a-b-orientation (Figure 92). In contrast, in spite of non-negligible 

charge-transfer couplings in the b-c-system (Figure 93), corresponding charge-transfer rates decline 

due to the contributions of the driving forces. It is worth emphasizing that these charge-transfer rates 

are not exceptionally low, but they are very small compared with the fast exciton diffusion processes. 

Therefore, instead of dissociating, an incoming exciton rather continues diffusing. 

 

Figure 92: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (a-b)-rubrene::fullerene 
interface (face-on orientation of rubrene molecules on fullerene C60). 

Endothermic driving forces due to the significant Coulomb binding energy between geminate electron-

hole pairs also account for the low charge separation efficiencies in the a-b-system, which amount to 

only 9% (Figure 91). It is evident from Figure 92 that despite considerable charge-transport couplings 

(upper right panel), corresponding rates vanish particularly in the immediate vicinity of the 

organic::organic interface because of the rate-limiting effect of endothermic driving forces. Similar to 

the DIP::fullerene system, a charge-transport depletion zone is formed that is more pronounced for 

the face-on orientation of donors (Figure 92) on the fullerene layer than for the edge-on orientation 

(Figure 93). This area of low charge-transport rates impedes efficient charge separation. Furthermore, 

also alike to the DIP::fullerene systems, the influence of anisotropic transport due to the presence of 

stacks is demonstrated by the spatial distribution of rates at the b-c-interface (Figure 93): fast exciton 

and charge transport take place along the stack. This means for the b-c-orientation that fast transport 
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parallels the interfacial plane, thereby prohibiting directed exciton/charge transport toward/away 

from the interface. Therefore, even if excitons were split at the b-c-interface, final charge separation 

would be highly improbable due to the unfavorable anisotropy of charge-transport rates. 

 

Figure 93: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (b-c)-rubrene::fullerene 
interface (edge-on orientation of rubrene molecules on fullerene C60). 

Influence of molecular characteristics on the charge transport depletion zone 

It was outlined above that a “charge transport depletion zone” arises in the vicinity of organic::organic 

interfaces, i.e., an area of very slow charge-transport processes. Its extension is critically influenced by 

molecular properties, as demonstrated in the following for the HB194::fullerene and the 

squaraine::fullerene system. 

 

Figure 94: KMC quantum yields for the KMC simulations on the (a-c)-HB194::fullerene morphology. 

The KMC efficiencies for the (a-c)-HB194::fullerene system are shown in Figure 94. The vast majority 

of generated excitons (72%) dissociate at the HB194::fullerene interface (Figure 94). Some random 
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exciton migration occurs (22%) that is comparable with the amount of exciton migration calculated for 

the (a-c)-DIP::fullerene system (26%). It is particularly noticeable from Figure 94 that the 

HB194::fullerene system shows unusually high charge separation efficiencies, amounting to 68% when 

referenced to the number of generated excitons and to 94% when referenced to the number of 

dissociated excitons. These numbers even exceed corresponding yields for the (b-c)-DIP::fullerene 

system where 86% of the dissociated excitons accomplish charge separation. The very high efficiencies 

for the HB194::fullerene system are in good accordance with high experimental device 

performances.962 

 

Figure 95: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (a-c)-HB194::fullerene 
interface.  

To gain more insight, Figure 95 displays the rates and couplings of the HB194::fullerene system. In 

contrast to a significantly anisotropic distribution of rates in the DIP and rubrene systems, rates are 

rather uniformly spread for HB194. The fact that no specific direction of exciton diffusion is favored 

explains why some exciton migration occurs. High exciton dissociation efficiencies are to some extent 

due to comparably fast charge-transfer processes (blue arrows, lower left panel, Figure 95). The latter 

ensure that exciton dissociation occurs with a sufficient probability compared with the competing 

further diffusion. This contrasts with findings for the rubrene::fullerene system. Nevertheless, above 

all the quasi-inexistence of a charge-transport depletion zone, the most obvious feature of the 

HB194::fullerene system (lower right panel, Figure 95), contributes to the high efficiency of charge 

separation. The endothermic driving forces of charge separation due to the significant Coulomb 
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binding energy in the DIP and rubrene systems were responsible for the formation of charge-transport 

depletion zone. At the HB194::fullerene interface, the rates change only to a minor extent, which 

results from the more efficient screening of the Coulomb attraction by the polar environment. This 

leads to less pronounced variations of the Coulomb binding energy between different hopping sites 

and, concomitantly, to a smaller value of the driving force for a given charge transport process. This 

implies that the polarity of the merocyanine bulk phase does not only reduce the number of interfacial 

charge-transfer trap states, but it prevents also the formation of a charge-transport depletion zone in 

the vicinity of the organic::organic interface. Rather fast charge transport processes are possible also 

in the immediate surroundings of the interface, thereby allowing for fast charge separation and 

explaining the high charge dissociation yields in Figure 94. These effects could also be partially 

responsible for the good performances of OSCs based on merocyanine dyes. 

 

Figure 96: KMC quantum yields for the KMC simulations on the (a-b)-squaraine::fullerene morphology. 

The squaraine::fullerene system behaves similarly to the HB194::fullerene system (Figure 96, Figure 

97). Strong exciton couplings, correspondingly high exciton transport rates and significant charge-

transfer rates result in high exciton dissociation efficiencies (86%, Figure 96). With 81% when 

referenced to the number of generated excitons or 94% when referenced to the number of dissociated 

excitons, charge dissociation efficiencies are also very high (Figure 96). Similar to the HB194::fullerene 

system, this can be explained by the near-absence of a charge transport depletion zone at the 

squaraine::fullerene interface (Figure 97). On the one hand, this results from the comparably high 

effective epsilon in a polar and polarizable squaraine environment, which reduces the Coulomb binding 

energy. On the other hand, the charge separation process is further promoted by the long linear 

molecular shape of the squaraine molecule that guarantees rather large initial electron-hole 

separation irrespective of the exact heterodimer conformation. As already discussed, a large initial 

electron-hole separation decreases the Coulomb binding energy and also its variation along the charge 

separation pathway. It should be noted that the molecular shape of rubrene is also rather linear and 

longitudinal. The fact that charge separation efficiencies for the rubrene::fullerene system are low 

despite this seemingly favorable molecular shape underlines the profound influence of the screening 

ability of the environment. 
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Figure 97: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (a-b)-squaraine::fullerene 
interface. 

Structure-property relationships for further loss mechanisms such as fluorescence  

Donor-acceptor systems composed of fullerene C60 and triphenylamine-based compounds are 

analyzed to gain further insight into the importance of loss mechanisms such as fluorescence and 

exciton trapping. Figure 98 shows the KMC quantum yields for the “triamine-methoxy”::fullerene 

system while Figure 99 displays the spatial distribution of the underlying couplings and rates 

(“triamine-methoxy”=TAM). It becomes evident from the KMC quantum yields (Figure 98) that 

fluorescence occurs surprisingly often (23%). This fluorescence efficiency is considerably larger than 

all previously found values although the absolute radiative decay rate in “triamine-methoxy” is on the 

same order as other fluorescence rates. Furthermore, the overall exciton dissociation efficiency (30%, 

Figure 98) is rather poor, the more so as almost half of the generated excitons continue diffusing 

through the p-type semiconducting layer (50% of exciton migration, Figure 98). Moreover, simulation 

times are long. Please keep in mind that the number of KMC steps was predefined, not the simulation 

time.  



346 
 

 

Figure 98: KMC quantum yields for the KMC simulations on the (a-b)-“triamine-methoxy”::fullerene morphology.  

 

Figure 99: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (a-b)-“triamine-
methoxy”::fullerene interface. 

As charge-transfer rates (lower left panel, Figure 99) are not particularly small, they are not responsible 

for the low exciton dissociation efficiencies. The latter result rather from slow exciton transport rates, 

which are reflected in the comparably high fluorescence yields as well. As discussed above, 

fluorescence can only compete with exciton diffusion if exciton diffusion is slow or if diffusing excitons 

do not reach the interface, and long diffusion times result. It was discussed in the section “Energetics 

of the exciton dissociation and charge separation processes in the vicinity of the organic::organic 

interfaces” that excimers are formed in the bulk “triamine-methoxy” phase because the molecular 

structure promotes intermolecular charge transfer. In fact, it becomes apparent from the distribution 

of rates and couplings (Figure 99) that strongly coupled dimers exist in the “triamine-methoxy” layer 

that barely interact with their surroundings. Any exciton localized on such a dimer hops back and forth 

between the underlying monomers, while its probability to hop further to a neighboring monomer is 

almost negligible. As a consequence, the exciton remains for long times on the same dimer, and at 
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some point in time in long simulations, fluorescence becomes competitive with the ongoing back and 

forth hops. This explains the high fluorescence yields. Furthermore, disorder is significant in the 

“triamine-methoxy”::fullerene system because, albeit slowing down all rates, it suppresses inter-dimer 

hops that become diminishingly small and are successively outperformed by fluorescence, in 

accordance with the above-addressed analysis Gennett et al.552 Although exciton dissociation 

efficiencies were poor for some DIP/rubrene::fullerene systems as well, fluorescence is not 

competitive with fast exciton diffusion in these systems, even in the presence of disorder. 

 

Figure 100: KMC quantum yields for the KMC simulations on the (a-b)-“triamine-aldehyde”::fullerene 
morphology. 

 

Figure 101: Couplings for excitons (upper left panel) and charges (upper right panel) and the corresponding rates 
for exciton transport (lower left panel) and charge transport (lower right panel) for the (a-b)-“triamine-
aldehyde”::fullerene interface. 
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Since relative rates rather than absolute rates are important for high quantum yields, high exciton 

dissociation efficiencies can also be achieved in systems with rather low exciton transport couplings as 

long as fluorescence is slower and exciton dissociation is sufficiently rapid so that excitons reaching 

the donor-acceptor interface dissociate immediately. The “triamine-aldehyde”::fullerene system 

represents such a scenario (“triamine-aldehyde”=TAA). Its quantum yields are shown in Figure 100 

with the corresponding rates and couplings displayed in Figure 101. The high exciton dissociation 

efficiency of 82% (Figure 100) contrasts with rather low diffusion rates (Figure 101, lower left panel). 

Furthermore, the efficiency for final charge separation of almost 50% (Figure 100) is quite satisfying. 

These good results compare well with experiments demonstrating the sound optoelectronic 

performances of related acceptor-substituted star-shaped oligomers.685,624 The results in Figure 101 

imply that the electron-withdrawing groups are not only important for an improved overlap of the 

donor absorption with the solar spectrum,984 but also for aligned transport levels.684,985 The aligned 

transport levels ensure that the photoinduced charge-transfer is almost isoenergetic or only slightly 

exothermic so that corresponding charge-transfer rates are very fast. High exciton dissociation 

efficiencies result. Moreover, the more polar environment due to the introduction of the accepting 

groups (compared with simple triphenylamines) increases the screening of Coulomb interactions, 

facilitating charge separation. These results are well line with experimentally found improved EQE 

values upon introducing accepting groups into triphenylamine derivatives.685 

Comparison of effective charge and exciton velocities obtained in KMC simulations and resulting 

transport parameters to macroscopic experimental data 

In the last subsections, the impact of kinetics on the quantum yields of exciton dissociation and charge 

separation was investigated for a number of systems, and three general kinetic effects were defined 

(random exciton migration due to anisotropic transport and slow follow-up processes, formation of a 

“charge transport depletion zone”, fluorescence losses and similarly further trapping processes like in 

DIP). The analysis focused on the molecular and aggregate scale, and a number of molecular and 

aggregate properties were found to be somewhat influential. Nevertheless, from a device perspective, 

it would be desirable to identify individual molecular or aggregate properties that, when optimized, 

result in improved device performances. To do so, transport parameters calculated from the KMC 

effective velocities are compared with macroscopic device properties, most notably, with hole 

mobilities. This permits also to critically evaluate the adopted approach, which relies on numerous 

approximations. Effective exciton and charge velocities computed in the KMC simulations are listed in 

Table 26 for the largest employed model interface per donor-acceptor combination. Although 

velocities for the same donor-acceptor combination in different morphologies differ quantitatively, no 

significant qualitative differences were found.   
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Table 26: Simulated velocities for the discussed systems in heterojunction with fullerene C60. It should be kept in 
mind that charge velocities refer only to positive charges in the p-type semiconducting layer. Furthermore, all 
velocities include transport in only one, i.e, the effective direction.  

 
exciton velocity [cm/s] charge velocity [cm/s] 

HB194 451.25 95.55 

squaraine 2501.07 107.41 

rubrene 98.05 1.01 

DIP 38.65 8.20 

MD353 95.15 56.39 

DPP (= diketopyrrolopyrrole) 712.47 118.84 

TAM („triamine-methoxy“) 1.57 0.90 

TAA („triamine-aldehyde“) 28.10 8.72 

 

Evidently, charge velocities are in the order of 1 − 100
𝑐𝑚

𝑠
 (Table 26). This compares well with 

frequently encountered experimental values, having maximum values of 106 𝑐𝑚

𝑠
 as addressed by Karl 

et al.986,987 , but ranging usually around 1 − 10³
𝑐𝑚

𝑠
. The good accordance justifies the approach 

although it is certainly surprisingly good, especially with regard to the introduced approximations. 

Standard device parameters, i.e. a built-in voltage of 0.5 V988,989 and a thin-film thickness of 50 nm990 

are used to convert calculated effective charge (drift) velocities into experimentally accessible hole 

mobilities of blends. It should be kept in mind, however, that no electric field was applied in the 

simulation, i.e., the charge carriers move by diffusion rather than drift. 

 The hole mobility 𝜇 can be obtained from the charge drift velocity �⃗�𝐷 and the electric field �⃗⃗�: 

𝜇 =
|�⃗�𝐷| 

| �⃗⃗�|
 

 

(463) 

 

Resulting hole mobilities are correlated with experimental counterparts in Table 27. Please note that 

if experimental reference data were not available for blends, bulk mobilities are instead employed. 
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Table 27: Experimental values for hole mobilities. Amorphous/average values are used. 

 
hole mobility [104 cm²/Vs] Source 

squaraine 1.90 690 

rubrene 0.08 991 

DIP 0.30 986 

large variations911 

DPP 2.50 654 

 

The correlation is displayed in Figure 102. Expectedly and in line with the findings of Andrienko,992 

predicted values are overestimated compared with experimental data. More importantly, however, is 

the rather accurate prediction of the trends, with a coefficient of determination R² of almost 1. This 

provides further support for the adopted model. 

 

Figure 102: Correlation of experimental and simulated hole mobilities.  

Taking the average of the exciton velocities in Table 26 (100
𝑐𝑚

𝑠
) together with an average exciton 

lifetime in the nanosecond regime (5𝑛𝑠) yields an approximate exciton diffusion length of 5𝑛𝑚, which 
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certainly constitutes a reasonable estimate for disordered organic thin films.952 Therefore, also exciton 

velocities in Table 26 seem to be plausible.  

Upon comparing exciton and charge velocities in Table 26, it becomes evident that exciton velocities 

are about one to two orders of magnitudes larger than corresponding charge velocities. This arises 

from the isoenergetic nature of exciton diffusion where disorder represents the only source for non-

zero driving forces. In contrast, the Coulomb binding energy dominating driving forces and rates for 

charge transport is responsible for the generally lower rates because it significantly decreases charge 

velocities notably in the direct vicinity of the organic::organic interfaces. 

The short-circuit current in OSCs depends on the EQE, which is in turn the product of the efficiencies 

of the individual processes.418 Therefore, the short-circuit current should be dominated by the least 

efficient process, i.e., by the rate-limiting step of the outlined multistep light-to-energy conversion. 

The discussed results suggest that the most efficiency-limiting process corresponds to slow charge 

transport near the organic::organic interface. Thus if charge transport is indeed efficiency-limiting, its 

efficiency should correlate with experimental open-circuit currents. To verify whether this holds, 

experimental short-circuit currents listed in Table 28 are correlated with the computed charge 

velocities (Figure 103).aaaa 

Table 28: Experimental values for OSC short-circuit currents. Either fullerene C60 or PCBM were used as acceptors 
in the experimental devices.  

 
short-circuit current   [mA/cm²] Source 

HB194 8.24 656 

MD353 4.00 655 

squaraine 6.48 690 

rubrene 2.35 511 

DIP 0.80 671 

DPP 9.85 654 

 

                                                             
aaaa Please keep in mind that thermodynamic considerations were disregarded. 
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Figure 103: Correlation of simulated charge drift velocities with experimental short-circuit currents. 

The rather large R²-value (88%) in Figure 103 underlines that experimental short-circuit currents are 

indeed somewhat related to the simulated charge velocities. This effectively implies that slow charge 

transport processes at organic::organic interfaces could constitute a major bottleneck for overall 

device efficiencies, and that high charge carrier mobilities are absolutely mandatory to obtain high 

short-circuit currents and good device performances. This key outcome of the presented results is 

completely in accordance with conclusions from macroscopic simulation models employed for 

example by Blom et al.,993 Dyakonov et al.,994 Riede et al.,990 Albrecht et al.498 and Resendiz et al.995  

Experimental data providing further support of the importance of charge carrier mobilities was 

delivered among others by Nguyen et al.996 and by Samuel et al.997 

To conclude from this section, KMC simulations with Marcus hopping rates obtained from ab initio 

calculations were used to model the light-to-energy conversion process in the vicinity of organic donor-

acceptor interfaces. KMC quantum yields and velocities were computed that compare well with 

experimental findings although a number of significant approximations had to be introduced to set up 

the simulations.  

The analysis of the quantum efficiencies and of the spatial distribution of rates and couplings led to 

the identification of three very important kinetic effects. (1) The significant Coulomb attraction within 

geminate electron-hole pairs does not only affect the energetics of the charge separation process, but 

also reduces the rates of the underlying successive charge transport steps. In addition to the energetic 

penalty, it gives therefore also rise to a considerable kinetic barrier for charge separation. (2) Random 

exciton and charge migration impede high exciton dissociation and charge separation efficiencies. Both 

a morphologically imposed unfavorably anisotropy of exciton/charge transport and slow rates of 
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potential follow-up processes of exciton transport can explain the existence of random exciton/charge 

migration. For instance, especially in materials where exciton transport is fast, photoinduced charge 

transfer needs to be fast as well. Otherwise, exciton dissociation becomes highly improbable compared 

with ongoing exciton diffusion. (3) Loss channels such as radiative decay, exciton trapping, and 

recombination can only be competitive if alternative exciton or charge transport processes are 

exceptionally slow. Radiative decay (recombination) is therefore less important (negligible). 

It has already been mentioned in this and in the last section (“Energetics of the exciton dissociation 

and charge separation processes in the vicinity of the organic::organic interfaces”) that disorder 

profoundly influences both the energetics and the kinetics of all optoelectronic processes around the 

interface. The Gaussian disorder parameters σ were calculated from the energetic distributions of 

dimer energies, which take into account variations in delocalization and intermolecular interactions. 

However, the environment was included in the dimer calculations only in an average way, i.e., by an 

effective epsilon combined with local electric fields. Therefore, the computed Gaussian disorder 

parameters do not incorporate any effects arising from different interfacial morphologies or 

environmental discontinuities at the interface if these do not translate into differences at the stage of 

dimers. However, Yost and van Voorhis pointed out that precisely such interface-related phenomena 

significantly affect the disorder at organic::organic interfaces so that the interfacial disorder is most 

accurately modeled by explicitly considering the atomistic details of the surrounding interface.460,26 

Therefore, a more thorough discussion of disorder around organic::organic interfaces is presented in 

the following section. 
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5.10 QM/MM Calculations Combined With the Dimer Approach to Investigate the 

Static Disorder at Disordered Donor-Acceptor Interfaces  
This section presents a more detailed analysis of the disorder in the vicinity of organic::organic 

interfaces. The environment is atomistically taken into account to include as many interface-related 

phenomena that might affect the disorder as possible. Such phenomena comprise among others the 

environmental discontinuity between the donor and the acceptor phase or the looser packing density 

around the interface. It should be noted that the Bässler model has shaped the notion of disorder as 

employed in the following.  

In the Bässler model, charge transport in disordered organic semiconductors is described with 

successive hopping processes between energetically distributed sites. The model assumes that the 

underlying DOS (density of states) has a Gaussian shape. Like any other normal distribution, the DOS 

can be characterized by its standard deviation, i.e., by the Gaussian disorder parameter σ.425 The 

Bässler model was extensively employed to explain experimental field- and temperature-dependent 

charge carrier mobilities.548 Albeit originally derived for charge transport, it was equally applied to 

exciton transport. In support of the model, ample experimental evidence was especially provided for 

the  Gaussian shape of the excitonic DOS, for example by means of optical probing of excitonic 

transitions545 and time-resolved measurements of dispersive exciton transport.998,999  

The disorder parameter σ, which governs transport efficiencies, was shown to be related to the polarity 

and the polarizability of the transport material.546,548 To further optimize transport properties, more 

detailed structure-property relationships would still be desirable. Moreover, it has been outlined 

above that charge carrier mobilities in the vicinity of organic::organic interfaces profoundly influence 

resulting device performances, and that the probability for exciton dissociation depends considerably 

on the rates for exiton diffusion. Both charge carrier mobilities and exciton diffusion can be critically 

influenced by disorder. Therefore, the extent of disorder at the interfaces seems to be quite decisive, 

and the interfacial parameters σ might differ from their corresponding bulk values.460,26 While 

experimental measurements of disorder parameters at interfaces are problematic, an in silico 

extension of the disorder concept to the interfacial region and direct computations of the 

corresponding parameters σ are straightforward. 

To investigate the disorder in the vicinity of organic::organic interfaces in more detail, QM/MM 

calculations are presented in this section. Excitonic/polaronic states in the donor phase, their DOSs 

and corresponding Gaussian disorder parameters σ are calculated. The discussion of the approach and 

the results is organized as follows. In a first step, the theoretical approach is outlined. Then, DOSs of 

state energies (ground, excited, cationic states) and state energy differences (ionization potentials, 

excitation energies) are presented. It is verified whether the DOSs have Gaussian shapes and whether 
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these are sufficiently broad so that transport is disorder-limited (which is usually assumed).548 Only 

then, the Gaussian disorder parameters σ are physically meaningful. In a third step, computed disorder 

parameters are correlated with molecular properties, and several structure-property relationships are 

identified. 

5.10.1 Theoretical Approach 
The generated disordered interfacial model systems are again used. It should be noted that these 

model systems are disordered even for molecules like anthracene or DIP that experimentally readily 

crystallize.671 Hence later-on computed disorder parameters σ constitute an upper bound to the actual 

disorder present at the interfaces. 

 

Figure 104: a) Construction of the supercell of sufficient size from the generated disordered interface models 
highlighted in pink in the supercell. b) Dimers cut out from the center cell. Only one dimer is highlighted, but the 
procedure was repeated for all dimers of the underlying original model system. c) Definition of layers for the 
decomposition of the computed MM interaction energy. 

It is well-known that charge-charge interactions are of long-range character (see also Section 

“Interactions between the π-systems of molecular organic semiconductors”).340 Hence large model 

systems are needed to obtain converged values for charge-charge interactions. Therefore, the 

disordered interface structures are used to construct supercells (Figure 104a). All possible homodimers 

composed of donor molecules are cut out in the underlying original disordered interface part (Figure 

104b, similar procedure to the previous two sections). These dimers are used as the QM parts of 
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subsequent QM/MM calculations, thereby incorporating the above discussed advantages of dimer 

calculations (see Section “Energetics of the exciton dissociation and charge separation processes in the 

vicinity of the organic::organic interfaces”).745 

The supercell construction process is further illustrated in Figure 105. The underlying disordered 

interfacial model system is replicated, and resulting identical cells are aligned. Moreover, only the 

disordered donor (acceptor) phase of the underlying disordered model system is used to extend the 

supercell in a perpendicular direction above (below) the interfacial plane (Figure 105). The resulting 

system (100 000 – 400 000 atoms) is too large to be equilibrated in subsequent MD simulations. 

Therefore, the displacements between the replicas (highlighted in blue, green, and orange in Figure 

105) are a very critical point of the supercell construction process. To analyze how much they influence 

final results, three different values for each displacement were used. It turned out that they do not 

significantly impact results as long as steric strain does not occur. 

 

Figure 105: Demonstration of the supercell construction process.  

In a subtractive QM/MM scheme, the QM system, i.e., the dimer, is electrostatically embedded into 

the environment.410 The dimer interacts with the partial charges on all molecules in the surrounding 

MM part that were beforehand calculated in ESP fits892 using the ωB97X-D/cc-pVDZ electronic density. 

This has the major advantage that the electrostatic interaction energy of a given dimer with its 

environment is treated quantum-mechanically, which is important because the polarization of the 

electron densities of the organic π-systems by the surrounding charges might be significant.645 Back-
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polarization is naturally not taken into account in an electrostatic embedding scheme. Due to its 

acceptable accuracy for the interactions between organic π-systems (see Section “Interactions 

between the π-systems of molecular organic semiconductors”), the AMOEBA force field is employed 

to calculate all remaining contributions to the interaction energy of the QM dimer with the 

environment, most notably the van-der-Waals component.  

In the subtractive scheme, final energies 𝐸𝑄𝑀/𝑀𝑀  are calculated from the dimer QM energies 

𝐸𝑄𝑀(𝑑𝑖𝑚𝑒𝑟) (which include the electrostatic interaction energies with the environment) and the 

difference of the force field energies of the total system and the QM system 𝐸𝑀𝑀(𝑡𝑜𝑡𝑎𝑙) −

𝐸𝑀𝑀(𝑑𝑖𝑚𝑒𝑟) without the otherwise double-counted electrostatic force field interaction energy 

𝐸𝑀𝑀,𝑒𝑙(𝑡𝑜𝑡𝑎𝑙) − 𝐸𝑀𝑀,𝑒𝑙(𝑑𝑖𝑚𝑒𝑟). 

𝐸𝑄𝑀/𝑀𝑀 = 𝐸𝑄𝑀(𝑑𝑖𝑚𝑒𝑟) + (𝐸𝑀𝑀(𝑡𝑜𝑡𝑎𝑙) − 𝐸𝑀𝑀(𝑑𝑖𝑚𝑒𝑟) − (𝐸𝑀𝑀,𝑒𝑙(𝑡𝑜𝑡𝑎𝑙) − 𝐸𝑀𝑀,𝑒𝑙(𝑑𝑖𝑚𝑒𝑟))) (464) 

 

To analyze whether long-range charge-charge and charge-quadrupole are sufficiently converged in the 

supercells and to keep the calculations computationally feasible, the constructed supercells are 

subdivided into layers (Figure 104c) that naturally arise from the construction process. Interaction 

energies between the QM dimer and each individual layer are separately calculated and subsequently 

added. This comes at the expense of not correctly including three-body interactions, namely 

polarization and induction. However, the induction and polarization components were found to be 

negligible, in line with above-discussed results (see Section “Interactions between the π-systems of 

molecular organic semiconductors”). Furthermore, the layer-by-layer calculations of interaction 

energies reveal that the interaction energy between the QM dimer and the outermost fullerene/donor 

layer is always smaller than 0.1 kcal/mol, (Table 29) thus considerably smaller than the accuracy of the 

method. These results allow for the conclusion that the sizes of the supercells are sufficient to obtain 

converged charge-charge interactions. It should be noted that these findings contrast with results of 

Andrienko et al.28 who concluded that correct charge transport bands cannot be obtained when using 

a cutoff for charge-quadrupole interactions. 

Table 29: Change of the total intermolecular potential energy when the outermost layers – either the third donor 
layer (“monomer layer 3”) or the second fullerene layer (“fullerene layer 2”) are taken into account. Please note 
the abbreviations used for the triphenylamine-based compounds in the following. 

Change intermolecular potential energy due to inclusion of additional layers [kcal/mol] 

Molecule monomer layer 3 fullerene layer 2 

anthracene 0.05 0.10 

diketopyrrolopyrrole -0.11 -0.28 
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DIP 0.04 0.14 

dithiophene 0.04 0.26 

HB194 0.00 -0.01 

MD353 -0.02 -0.10 

rubrene 0.01 0.11 

squaraine -0.03 -0.21 

TBA 

„triamine“ 
0.01 0.00 

TAA 

„triamine-aldehyde“ 
0.00 -0.02 

TAM 

„triamine-methoxy“ 
0.00 -0.05 

 

The GDMA analysis of Stone353 was employed to generate AMOEBA parameters that were used in the 

QM/MM calculations for all MM molecules and – in ground-state calculations – for the QM part as 

well. It should be noted that this is somewhat inconsistent with the ESP charges employed to polarize 

the QM system. Nevertheless, including all multipole moments in the QM calculations was 

computationally not feasible. It is assumed that the effects of the ESP charges or the multipole 

moments on the QM system differ little. Due to the adopted subtractive scheme, additional AMOEBA 

parameters for cationic and excited dimers are required. It is often assumed that interactions between 

neutrally excited states (contrary to charge-transfer excitations) and the environment are similar to 

corresponding interactions of the ground state with the environment. To analyze whether this 

assumption holds, solvent shifts for the ground and the first excited state in different solvents are 

calculated for all molecules at the ωB97X-D/cc-pVDZ level of theory using the state-specific solvation 

model by Improta et al.344,1000 and the perturbative state-specific solvation of Mennucci et al.1001 Please 

note that the ground-state energy difference between the gas-phase and solvated monomer is 

designated as the “solvent shift”. Results are shown in Table 30. Aside from a few exceptions, solvent 

shifts for the ground and the first excited state are almost identical. To further elaborate this aspect, 

two different parameter sets are generated for HB194, a push-pull dye for which ground-state and 

excited-state solvent shifts differ (Table 30). One parameter set is the “regular” set of ground-state 

parameters. The other set is obtained from GDMA analyses separately conducted for the excited-state 

electron density of each individual dimer. Interaction energies calculated with each parameter set 

barely differ. Therefore, ground-state force-field parameters can also be employed for excited states, 

in line with other investigations.745  
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Table 30: Solvent shifts (= energy differences) of ground states (GS) and excited states (ES) when a gas-phase 
monomer is solvated in DMSO (dimethylsulfoxide).  

gas phase 

DMSO 

solvent shift 

 (perturbative, 
Mennucci1001) 

solvent shift 

(state-specific, Improta344,1000)  

Molecule GS [eV] ES [eV] GS [eV] ES [eV] 

anthracene 0.15 0.15 0.15 0.15 

DIP 0.30 0.30 0.30 0.29 

diketopyrrolopyrrole 0.36 0.34 0.36 0.33 

HB194 0.45 0.55 0.46 0.66 

MD353 0.61 0.65 0.61 0.63 

rubrene 0.26 0.26 0.26 0.27 

squaraine 0.56 0.57 0.56 0.57 

TBA 0.31 0.35 0.31 0.39 

TAA 0.29 0.44 0.32 0.62 

TAM 0.31 0.40 0.31 0.58 

 

Table 31: Solvent shifts (= energy differences) of ground states (GS) and cationic states (CS) when a gas-phase 
monomer is solvated in DMSO (dimethylsulfoxide).  

gas phase 

DMSO 

solvent shift 

 (linear response317) 

solvent shift 

(state-specific, Improta344,1000)  

Molecule GS [eV] CS [eV] GS [eV] ECS [eV] 

anthracene 0.15 1.75 0.15 0.89 

DIP 0.30 1.33 0.30 0.81 

diketopyrrolopyrrole 0.36 1.33 0.36 0.71 

HB194 0.45 1.79 0.45 1.09 

MD353 0.61 1.85 0.61 1.14 

rubrene 0.26 1.34 0.26 0.67 

squaraine 0.56 1.40 0.56 0.95 

TBA 0.32 1.51 0.32 0.83 
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TAA 0.30 1.78 0.30 1.04 

TAM 0.31 1.46 0.31 0.77 

 

In contrast, interactions of a cationic compound with its environment can be expected to deviate 

considerably from the interactions of the corresponding ground state with the environment. This is 

also reflected in the state-specific solvent shifts of cationic compounds that largely differ from their 

ground-state counterparts (Table 31). For comparison, linear-response solvent shifts are listed as well 

in Table 31. In order to still be able to calculate interaction energies of cationic compounds with the 

environment, electron densities of all ionized dimers were calculated using ωB97X-D/cc-pVDZ. As the 

amount of charge delocalization is different for all dimers, GDMA analyses were individually conducted 

for all cationic dimers. Dimer-specific force field parameters of the cationic states were obtained and 

subsequently used to calculate QM/MM energies. 

Only one interfacial model system was selected among the generated three different morphologies. 

In all QM/MM calculations, all site energies are referenced to their joint energy minimum, i.e., they 

are referenced to 0. All force field calculations were performed with the Tinker program package.899 

No cutoff for van-der-Waals or electrostatic interactions was used. Monomer geometries optimized at 

the ωB97X-D/cc-pVDZ level of theory were superimposed onto the force field geometries. Dynamic 

disorder is hence not included. ωB97X-D/cc-pVDZ was also used for the computations of ESP charges, 

polarizabilities, excitation energies, and ionization potentials. Relaxed dipole moments for the 

molecular ground states were obtained with SCS-MP2/cc-pVTZ70,703,704,705. Excited-state dipole 

moments were computed using SCS-CC2/cc-pVDZ256,180,705. All quantum-mechanical DFT calculations 

were conducted with the Gaussian program package.718 Turbomole was used for the calculation of 

molecular properties.179  

5.10.2 Analyses of Computed QM/MM DOS  
Ground-, excited- and cationic-state DOSs of the electrostatically embedded dimers are presented. 

Although all DOSs were calculated for all molecules, only the computed ground-state DOSs of three 

representative molecules, a triphenylamine (“triamine-aldehyde” = TAA), a merocyanine (MD353), and 

a traditional molecular semiconductor (DIP) are shown in Figure 106. It is evident that they have 

approximately Gaussian shapes, similar to cationic and excited-state DOSs (not shown). The diamonds 

in Figure 106 correspond to the energy distributions obtained from the QM/MM calculations that are 

discretized for the representation. Solid lines are Gaussian fits of the discretized distributions. 
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Figure 106: Distribution of QM/MM ground-state energies (squares). Gaussian normal distributions obtained 
from the mean and the standard deviation of the ground-state energies (solid lines). 

 

Figure 107: Gaussian distribution of ionization potentials (left) and excitation energies (right). Squares are 
QM/MM energies, the solid lines correspond to Gaussian fits. 

Furthermore, excitonic and polaronic DOSs are calculated, i.e. the distribution of excitation energies 

and ionization potentials. These distributions of ionization potentials (polaronic states) and excitation 

energies (excitonic states) are equally Gaussian-shaped (Figure 107), which is to be expected since 

energy differences between Gaussian distributions are normally distributed as well. 
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The findings indicate that state energies and their differences are normally distributed even in the 

presence of an environmental discontinuity such as an organic::organic interface. Therefore, two 

important conclusions result from the computed DOSs in Figure 106 and Figure 107: 

1. As all DOSs have approximately Gaussian shapes, the definition of the disorder parameter σ 

for the following analysis can be left as is. 

2. The profiles are broad so that resulting disorder parameters are large. The latter are in fact on 

the order of the previously discussed intramolecular reorganization energies (“Benchmarking 

exciton reorganization energies”, “Benchmarking charge reorganization energies”). Transport 

is therefore certainly also disorder-limited. Understanding and eliminating the origin of this 

disorder is thus important to improve transport properties. 

The effects responsible for the broadening of ground-state, excited-state, and cationic-state energies 

are discussed next. 

5.10.3 Structure-Property Relationships for Energetic Broadening of Ground-State, Excited-

State, and Cationic-State Energies 
A comparison of the ground-state DOS (Figure 106) with the polaronic and excitonic DOS (Figure 107) 

clearly shows that the distribution of ground-state energies is significantly broader. Especially packing 

density fluctuations and resulting variations in the van-der-Waals energies are responsible for the 

spread in ground-state energies. It was thoroughly discussed above (see Section “Interactions between 

the π-systems of molecular organic semiconductors”) that van-der-Waals energies are extremely 

distance-dependent compared with their electrostatic counterparts. They thus show stronger 

variations as soon as the packing density fluctuates. In contrast to the bulk phases, local packing 

density fluctuations exist particularly in the interfacial region: there are still spatially confined areas 

with dense molecular packing but grain boundaries, vacancies, and defects accumulate as well. Local 

packing density fluctuations are illustrated in Figure 108 for two anthracene dimers. Concomitantly, 

due the different packing, the dimers undergo considerably different interactions with their 

environment. While the first anthracene dimer is rather stable (left-hand side, Figure 108), the second 

one (right-hand side, Figure 108) experiences only a much reduced van-der-Waals stabilization – being 

located just on top of the fullerene layer where the packing is less dense. This dimer is in fact located 

at the high-energy limit of the DOS. 
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Moreover, van-der-Waals interaction energies constitute the main part of total potential 

intermolecular interaction energies and of the overall site energies as well. To illustrate this, AMOEBA 

intermolecular interaction energies are decomposed, and corresponding van-der-Waals contributions 

in percent are given in Figure 109 for potential intermolecular energies of dimers at the DIP::fullerene 

interface (left panel) and at the HB194::fullerene interface (right panel). The values underline that van-

der-Waals interactions contribute approximately 90% to the total interaction energies of ground-state 

dimers and nearly as much (70% - 80%) to potential intermolecular energies of cationic dimers. Due to 

this dominance of van-der-Waals interactions (Figure 109), their variations similarly determine 

variations of total intermolecular potential energies and resulting ground-state energies, producing 

the considerable amount of disorder σ. Since underlying packing density fluctuations are a distinctly 

interfacial effect, one can furthermore assume that broad ground-state DOSs are a distinctly interfacial 

effect as well. In line with this, it has been often pointed out that the less dense packing in the vicinity 

of organic::organic interfaces profoundly influences the interfacial energy landscapes.457,26 

 

Figure 109: Decomposition of the AMOEBA potential intermolecular energies of dimers along the DIP::fullerene 
interface (left panel) and the HB194::fullerene interface (right panel). The contribution of the van-der-Waals 
energy is indicated on the right axis while the fullerene contribution is additionally given on the left axis. The 

              

Figure 108: Anthracene dimer stabilized by intermolecular interactions (left-hand side) and a second  higher-
energy dimer. The intermolecular interaction energy differs by 31 kcal/mol. 
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decline of the influence of the fullerene phase on the site energies is visualized by an exponential fit that serves 
as a guide to the eye. 

 

Figure 110: Crystalline supercell for the DIP::fullerene interface. The underlying crystalline interfacial model 
system is created by aligning a number of crystalline DIP and fullerene unit cells. This number is calculated as the 
least common multiple of the crystallographic axes of the two crystal structures.  

 

Figure 111: Two different DIP dimers (red, purple) in the crystalline supercell of the DIP::fullerene system (Figure 
108). The potential intermolecular energy of the red dimer is 41 kcal/mol lower than the one of the purple dimer. 
This results from the position of the purple dimer at the interface. 

It is worth emphasizing that the ground-state energy broadening due to variations of the van-der-

Waals interactions is not directly related to the existence of disorder in the vicinity of the 

organic::organic interfaces. This becomes evident when crystalline supercells are created, simply by 

aligning crystalline slabs of fullerene C60 and the p-type semiconductor, and used instead of disordered 

ones. This is illustrated in Figure 110, which shows a crystalline supercell of the DIP::fullerene system. 

Similar to the disordered supercells (Figure 105), intermolecular interaction energies are calculated for 

all DIP dimers. In pristine crystals, all DIP dimers have exactly equal intermolecular potential energies. 

Yet, as soon as the interface is created, albeit without any additional disorder, intermolecular energies 

of the DIP dimers differ. Figure 111 presents two DIP dimers with potential intermolecular interaction 

energies that differ by 41 kcal/mol. The pronounced difference in intermolecular interaction energies 

arises again primarily from the position of the purple dimer directly on top of the fullerene layer, i.e. 

at the surface of the crystalline DIP layer. At this position, i.e., at the edge of the DIP layer, the dimer 

undergoes fewer stabilizing van-der-Waals interactions with its environment. Although it interacts 

with the fullerenes, intermolecular distances are not as optimal as those to other DIP molecules in the 

crystal structure. As a consequence, the intermolecular potential energy of the purple dimer rises 

compared with dimers occupying a more central position within the DIP layer (like the red dimer, 

Figure 111). 
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The energetic disorder of the excited states is considered next. It differs from the ground-state disorder 

due to the influence of electrostatics on the excitation energies. Disorder parameters σ calculated for 

the QM/MM excited dimer states are correlated in Figure 112 with corresponding ground-state values 

for σ (upper panel). The large coefficient of determination (R²: 88%) underlines the relationship 

between the two disorder parameters. Similar to the ground-state disorder, the large excited-state 

disorder arises from local variations in the van-der-Waals interaction energies. This follows also from 

the fact that the same AMOEBA van-der-Waals parameters were used in ground- and excited-state 

calculations. It is nevertheless usually assumed that empirical parameterizations for van-der-Waals 

interactions are rather state-independent,1002 and this assumption was shown to be quite reasonable 

at least for valence excited states.1003 

 

Figure 112: Upper panel: correlation of disorder parameters σ for excited- and ground-state DOSs. Lower panel: 
dependence of the excited-state disorder parameters on the molecular polarizability.  

The dependence of the ground-state and excited-state disorder of dimer states in the vicinity of 

organic::organic interfaces on variations of the van-der-Waals interactions can be put on a more 

quantitative basis. It is well-known from London’s theory of dispersion forces1004 that stabilizing van-

der-Waals interactions (and with this also their variations) are related to the molecular polarizability. 

Hence as could be expected, the ground-state disorder (not shown) and the excited-state disorder 
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(lower panel, Figure 112) correlate with the molecular polarizability. Molecular polarizabilities were 

calculated with ωB97X-D/cc-pVDZ. One common assumption is that the molecular polarizability 

depends on the number of electrons and thus on the system size.1005 In line with this assumption, large 

molecules like the diketopyrrolopyrrole and the squaraine in particular possess very disordered 

ground- and excited-state DOSs (Figure 112). From a molecular perspective this seems reasonable 

because a large molecule surrounded by a diffuse electron density has a larger probability of feeling 

local packing density variations at the interfaces and responds more strongly than smaller molecules. 

 

Figure 113: Correlation of the disorder parameters σ of the cationic DOSs with the ground-state dipole moment. 

Due to the considerable van-der-Waals contribution to the total intermolecular potential energies of 

cationic dimers (Figure 109), cationic DOSs naturally also depend on molecular polarizabilities, much 

alike to ground states and excited states (Figure 112). However, the net charge of cationic dimers 

additionally increases the importance of electrostatic interactions with the environment at least for 

some interface systems. In line with this, Figure 113 establishes a clear-cut relationship (R²: 93%) 

between the width of the cationic DOS and the size of the molecular ground-state dipole moments 

present in the environment, the MM part. Only molecules with significant ground-state dipole 

moments are included in the analysis, whereas all other molecules are averaged. Evidently, the larger 

the dipole moments in the environment, the larger the disorder of cationic energies, this is, the 

broader the cationic DOS (Figure 113) and the larger the parameter σ. This agrees nicely with the 

findings of Bässler and coworkers548 who argued that environmental dipole moments engender varying 

local electric fields that affect ground and excited states only to a small extent, but significantly 

influence cationic states. Furthermore, Bässler et al.548 similarly concluded from different experiments 

that more polarizable molecules/polymers also increase the disorder of the DOS. 
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After this discussion of the DOS of dimer ground, excited, and cationic states, ionization potentials and 

excitation energies are addressed in the next subsection. 

5.10.4 Analysis of The Disorder of Excitation Energies and Ionization Potentials 
For exciton and charge transport, the disorders of excitation energies and ionization potentials are 

decisive.552 Although intramolecular relaxation (local electron-phonon coupling) processes are 

disregarded in this QM/MM investigation, an excitation (hole) accompanied by the surrounding lattice 

polarization can be still considered as an exciton (a polaron). It seems thus consistent to use the notions 

“excitation energies” and “(vertical) excitons” as well as “ionization potentials” and “(vertical) 

polarons” interchangeably (see also Table 23). Doing so highlights the intimate relationship between 

exciton/polaron transport and the disorder of the system, i.e., the fact that disorder considerably 

deteriorates transport efficiencies.425 Furthermore, as comprehensively discussed in the previous 

section (“Kinetics of the exciton dissociation and charge separation processes in the vicinity of the 

organic::organic interfaces”), efficient exciton and charge transport processes are particularly 

important in the interfacial region because only then exciton dissociation within the limited exciton 

lifetime and charge separation can occur.452 Table 32 shows the disorder parameters σ for ionization 

potentials and excitation energies in the donor phase in the vicinity of the interface with fullerene 

C60.bbbb At first view, it might be surprising that these disorder parameters are considerably smaller 

than those found for ground-state, excited-state, and cationic-state DOSs (Figure 112, Figure 113). 

However, this results from the above-discussed effects that (1) the disorder parameters σ of ground-

state, excited-state, and cationic-state DOSs are dominated by variations of van-der-Waals 

interactions, and that (2) these van-der-Waals variations are state-independent. Consequently, they 

cancel for state-energy differences. This implies that depending on the position of a given dimer, all of 

its states are either equally stabilized or equally destabilized by van-der-Waals interactions with the 

surrounding. Hence, the disorder of exciton and polaron transport levels (of excitation energies and 

ionization potentials) originates from effects other than local density variations and varying van-der-

Waals energies. This result is important because in numerous experimental investigations, percolation 

pathways were shown to significantly improve OSC charge separation efficiencies504,1006 although they 

necessarily introduce considerable differences in the local packing density. This is thus necessarily 

accompanied by variations of van-der-Waals energies and significant disorder parameters σ for 

ground, excited, and cationic states. 

                                                             
bbbb It should be kept in mind that the disorder parameters σ were calculated from the energies of all dimers 
contained in the original interfacial model system, i.e., the dimensions of the original model system defines the 
“vicinity of the interface”. 
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An average disorder σ(EE) of 53 meV is found for excitation energies (Table 32) while ionization 

potentials spread more with a mean disorder parameter σ(IP) of 227 meV. Both parameters σ(EE) and 

σ(IP) reach maximal values at the HB194::fullerene interface, with 169 meV for the excitonic DOS and 

656 meV for the polaronic DOS. These maximum values agree well with calculated disorder parameters 

of 660 meV for the hole DOS in polar polymers.552 However, most experimentally determined values 

in semiconducting bulk phases are usually in the order of 50-150 meV,548 which implies that predicted 

disorder parameters for organic::organic interfaces (Table 32) are on the high-end side of the 

experimental range. On the one hand, polar push-pull molecules like HB194, MD353, and TAM are 

certainly to some extent responsible for the rather high predicted disorder parameters but large values 

are on the other hand also obtained for traditional molecular semiconductors640 like DIP (σ(IP) = 348 

meV). This suggests that especially the disorder σ of polaron transport levels can be considerable in 

the vicinity of organic::organic interfaces, in line with common assumptions.26 As a number of recent 

investigations highlight the importance of long-range order and interfacial charge delocalization for 

efficient charge generation,452,596,591 the findings indicate that the potentially significant polaronic 

disorder at organic::organic interfaces can be an efficiency-limiting parameter. 

Table 32: Disorder parameters σ calculated for excitation energies EE (exciton transport levels) and ionization 
potentials IP (polaron transport levels) in the vicinity of the interfaces composed of fullerene C60 and a p-type 
molecular semiconductor. 

molecule σ(EE) [meV] σ(IP) [meV] 

anthracene 49 129 

rubrene 2 82 

DIP 53 348 

HB194 169 656 

MD353 108 306 

TBA 9 82 

TAA 56 155 

TAM 61 264 

diketopyrrolopyrrole 17 178 

squaraine 7 71 

average 53 227 
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Figure 114 shows the correlation of σ(EE) with σ(IP). Molecules are subdivided into structurally similar 

groups (Figure 5) to reveal possible structure-property relationships in the vicinity of the 

organic::organic interfaces. It is again evident that the polaronic disorder is considerably larger than 

the excitonic disorder: σ(IP) is roughly four times larger than σ(EE). It should be furthermore noted 

that in contrast to findings about the disorder of ground, excited, and cationic states, excitonic and 

polaronic disorder parameters for highly polarizable molecules like the squaraine or the 

diketopyrrolopyrrole are comparably small (Figure 114).   

QM/MM energies can be decomposed into the energy of the QM part and its interaction energy with 

the MM environment. In electrostatic embedding, electrostatic interactions are already included in 

the QM energy. Comparing this QM energy to the QM energy calculated for the same QM system, i.e., 

for the same dimer, yet in the gas-phase, delivers the contribution of the electrostatic energy to the 

final QM/MM energy. Moreover, gas-phase QM energies provide an estimate of how much energies 

can already vary solely due to the variations in delocalization and intermolecular dimer interactions. 

To gain further insight, the disorder of excitonic/polaronic QM/MM energies (Figure 114) is 

decomposed into these contributions (Figure 115): 

 The disorder already present in the excitonic/polaronic DOS of gas-phase dimers, which 

results from different intermolecular interactions and a dimers-dependent exciton/polaron 

delocalization, is indicated as the “QM disorder (delocalization, dimer interaction)” in Figure 

115. 

 Additional disorder is created if the dimer is placed in a point-charge environment, which is 

denoted as the “electrostatic contribution” in Figure 115. 

 Including the interactions with the MM part yields the overall disorder, shown as the total “IP 

disorder” or “EE disorder” in Figure 115. As identical force-field parameters are used for 

dimer ground and excited states, the QM/MM disorder does not differ from the electrostatic 

disorder for excitonic states. 

 The excitonic disorder is addressed first (right-hand side, Figure 115). To elucidate structure-

property relationships, the molecules are again arranged into molecular subgroups (see also 

Figure 114). For the majority of molecules, the total amount of excitonic disorder (grey bars, 

Figure 115) basically corresponds to the excitonic disorder already found in gas-phase dimers 

(ruby bars, Figure 115). Values are almost equal (anthracene: 49 meV//54 meV; rubrene: 2 

meV//2meV; DIP: 53 meV//49 meV; MD353: 108 meV//106 meV; TBA: 9 meV/7meV; DPP: 

17 meV//16 meV; squaraine: 7 meV//10 meV). This implies that (1) electrostatics does not 

significantly contribute to excitonic disorder and that (2) exciton delocalization is the main 

source of excitonic disorder in most systems. The degree of exciton delocalization depends 
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on the precise details of the dimer conformation.166 It can vary significantly, thus causing a 

potentially broad distribution of excitation energies (see section “Energetics of the exciton 

dissociation and charge separation processes in the vicinity of the organic::organic 

interfaces”). 

 

Figure 114: Upper panel: Correlation of the disorder of ionization potentials σ(IP) with the disorder of excitation 
energies σ(EE). Lower panel: Correlation of the disorder of ionization potentials and excitation energies 
calculated for gas-phase dimers. Their energetic distributions result only from differences in delocalization and 
intermolecular interactions. 
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Figure 115: Analysis of the physical origin of the disorder of ionization potentials σ(IP) and of excitation energies 
σ(EE). 

In contrast, electrostatics produces a noticeable increase of the excitonic disorder for three molecules, 

namely HB194 and the substituted triphenylamines TAA and TBA (checkered bars, Figure 115, HB194: 

107 meV; TAA: 14 meV; TAM: 48 meV). To understand this result, Table 33 lists relaxed ground- and 

excited-state dipole moments of the three molecules and additionally of MD353. 

Table 33: Ground- and excited-state dipole moments calculated as relaxed properties on the SCS-CC2256,180/cc-
pVDZ705 level of theory. The corresponding values for MD353 are additionally given. Please note that its excited-
state dipole moment is smaller than the ground-state one. 

 
ground-state dipole moment [D] excited-state dipole moment [D] 

HB194 8.32 13.75 

TAA 5.37 16.54 

TAM 0.50 9.68 

MD353 11.56 6.66 
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Obviously, the molecular dipole moments of HB194, TAA, and TAM significantly increase upon 

electronic excitation (Table 33). This behavior is frequently observed for molecules featuring a low-

lying intramolecular charge-transfer excitation, and it is reflected in the comparably high solvent shifts 

of precisely those three molecules as well (Table 30, especially for the state-specific solvation by 

Improta et al.344). Hence the change of the molecular dipole moment upon electronic excitation 

explains why excited dimers of HB194, TAA, and TAM interact differently with their environment 

compared with the corresponding ground states. This accounts for the additional electrostatic 

contribution to excitonic disorder. Albeit being also a push-pull dye, the excitonic DOS of MD353 is not 

affected by electrostatics, potentially because electronic excitation induces a dipole moment decrease. 

In a similar way, corresponding solvent shifts of excitation energies are small for MD353 (Table 30). In 

contrast to these molecules and as addressed above, electronic excitation does not induce pronounced 

density rearrangements in most organic compounds, which results in a limited disorder contribution 

of electrostatics (Figure 115). 

Contrary to this observation on excitonic disorder, electrostatics leads to a quite significant additional 

amount of polaronic disorder (Figure 115, left-hand panel) at most interfaces, especially at the 

interface of DIP, HB194, MD353, TAA, TAM, and of DPP with fullerene C60. This fully agrees with the 

expectation that as soon as a dimer with a net charge forms, the structurally disordered amorphous 

thin film gives rise to locally varying electrostatic interactions that broaden the distribution of polaron 

transport levels. No direct correlation between the molecular structure and the influence of 

electrostatics is found. However, in general, the disorder of the polaronic transport levels is larger for 

polar molecules (HB194, MD353, TAA, TAM) compared with their apolar counterparts. This is well in 

line with findings of Bässler.25 

Nevertheless, apart from electrostatics, a varying degree of polaron delocalization (ruby bars, Figure 

115) plays a role in the formation of the overall polaronic disorder as well. Its average contribution 

amounts to 90 meV. The lower panel in Figure 114 correlates the contribution of exciton delocalization 

to the excitonic disorder σ(EE) with the amount of polaronic disorder σ(IP) caused by variations of 

polaron delocalization. Interestingly, the correlation is poor (R²: 26%). Consequently, the same gas-

phase dimers result in different disorder parameters for excitons and charges. It seems thus possible 

that, leaving aside electrostatic effects, a given morphology results in a rather ordered excitonic DOS 

and a considerably disordered polaronic DOS and vice versa. To further elaborate this aspect, exciton 

and polaron transport levels are calculated for 20 arbitrarily chosen gas-phase dimers of MD353 and 

DIP located in the vicinity of the interfaces (Figure 116). It becomes evident from the results that 

variations of excitation energies/exciton transport levels do not necessarily parallel corresponding 

variations of ionization potentials/polaronic transport levels. 
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Figure 116: Exciton transport levels (excitation energies, blue bars) and polaron transport levels (ionization 
potentials, pink bars) for 20 randomly selected gas-phase dimers of MD353 (upper panel) and DIP (lower panel).  

Yet, these findings (Figure 116) can be readily understood in terms of the different underlying coupling 

mechanisms between exciton/polarons that determine the amount of exciton/polaron delocalization. 

Charge transport couplings855 primarily depend on the overlap between the relevant orbitals (i.e., 

either the HOMOs or the LUMOs).1007 In contrast, the long-range component of singlet excitation 

energy coupling corresponds essentially to a dipole-dipole interaction between the transition dipole 

moments.166 Evidently, a given dimer arrangement may allow for large charge transport couplings due 

to a significant orbital overlap while simultaneously disabling exciton coupling by impairing the 

underlying dipole-dipole interaction. The excitation energy/exciton transport levels deviate for such a 

dimer due to the small coupling only little from the monomer value. In contrast, the ionization 

potential/polaron transport levels considerably split. Naturally, the inverse situation is also possible. 

Figure 116 contains numerous examples. Furthermore, while the two energy intervals covered by 

excitonic and polaronic states are very similar at the MD353::fullerene interface (~ 0.5 eV), they 

considerably differ for DIP (~ 0.1 eV for excitonic states, ~ 0.25 eV for polaronic states). This implies 

that for some reason, at the DIP::fullerene interface, DIP conformations that result in energetically 
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broad polaron transport levels and narrower exciton transport states are especially frequent. 

Otherwise stated, existing DIP conformations at the interface allow for larger variations of the 

couplings and the resulting delocalization of polarons compared with excitons. This results in more 

disordered polaronic transport levels.  

It is well-known that the disorder parameter σ for transport in disordered organic semiconductors 

depends on the morphology.548,552 However, the presented results in Figure 114 and Figure 116 suggest 

that a further specification is required as the disorders of excitonic and polaronic states differ for the 

same morphology. Nevertheless, it should be kept in mind that the dominant electrostatic disorder 

contribution dampens the impact of delocalization effects on the final polaronic disorder to a certain 

extent. Therefore, the effect is less obvious for overall disorder parameters. 

To summarize the results on static disorder from the QM/MM approach, it was found that ground, 

excited, and cationic states indeed possess broad Gaussian-shaped densities of states (DOSs) and that 

the distribution of the relevant transport levels, i.e. of ionization potentials and excitation energies, 

are also broad (i.e., on the order of the intramolecular reorganization energy) and of similar Gaussian 

shapes.548 The energetic distributions of all states and transport levels can thus be described in terms 

of the Gaussian disorder parameter σ. Variations in van-der-Waals interaction energies resulting from 

differences in the local packing density account for the spread of ground-, excited-, and cationic-state 

energies. Molecular polarity is especially important for cationic-state energies, and also influences 

polaronic transport levels that are consistently more disordered in thin films composed of polar 

semiconductors. Excitonic disorder is dominated by delocalization phenomena, which are also 

significant for the disorder of polaronic states. Due to the different underlying coupling mechanisms, 

polaron and exciton delocalization might differ for the same morphology. Expectedly, electrostatics 

delivers the dominant contribution to the overall polaronic disorder.  

From a device perspective, the presented results emphasize especially the importance of specifically 

optimizing charge transport in the interfacial region because the polaronic DOS can be subject to a 

significant amount of disorder, which could reduce the charge generation efficiency. Nevertheless, 

very well-defined structure-property relationships in terms of individual molecular properties could 

not be identified. The final excitonic and polaronic disorder parameters σ seem to result rather from 

the combined effects of molecular, intermolecular, and aggregate properties. They are thus highly 

specific for a given donor-acceptor combination and morphology. 
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6 Conclusion 
Describing the light-to-energy conversion in OSCs requires a multiscale understanding of the involved 

optoelectronic processes, i.e., an understanding from the molecular, intermolecular, and aggregate 

perspective.27 This thesis presents such a multiscale description to provide insight into the processes 

in the vicinity of the organic::organic interface, which are crucial for the overall performance of OSCs. 

Light absorption, exciton diffusion, photoinduced charge transfer at the donor-acceptor interface, and 

charge separation are included. In order to establish structure-property relationships, a variety of 

different molecular p-type semiconductors are combined at the organic donor-acceptor 

heterojunction with fullerene C60, one of the most common acceptors in OSCs. Starting with a 

comprehensive analysis of the accuracy of diverse ab initio, DFT, and semiempiric methods for the 

properties of the individual molecules, the intermolecular, and aggregate/device stage are 

subsequently addressed. At all stages, both methodological concepts and physical aspects in OSCs are 

discussed to extend the microscopic understanding of the charge generation processes. 

The molecular perspective: ground-, excited- and charged-state description 

From the molecular perspective, the light-to-energy conversion is described in terms of individual 

molecules undergoing light absorption and charge transfer. Intramolecular relaxation processes need 

to be taken into account, and electronically excited and charged states of the molecules are involved.19 

Suitable methods are required that accurately predict the complex electronic structure of these 

molecular states and relaxation processes. 

Using ground-state geometries optimized at the SCS-MP2/cc-pVTZ level of theory as the reference, a 

comprehensive benchmark of molecular ground-state geometries obtained with diverse DFT, ab 

initio, and semiempiric methods was conducted. To identify methods that are both reliable and 

efficient, cc-pVDZ basis sets were employed. In contrast to most literature investigations, the 

evaluation of the quality of the geometries was based on a two-fold criterion. RMSD values were used 

on the one hand, while MAE values of important geometric parameters such as torsional angles or 

bond length alternations were employed on the other hand. It was shown that especially long-range 

corrected functionals, in particular ωB97X-D, predict very accurate ground-state geometries. The good 

performance of long-range corrected functionals was found to result especially from their reduced 

basis set sensitivity compared with high-level ab initio methods and from their capability to correctly 

treat different electron correlation regimes, in contrast to simpler DFT functionals or semiempiric 

methods. In fact, although all of the herein employed molecular semiconductors feature extended π-

systems, the computational investigation of their electronic ground-state density revealed that the 

extent of ground-state electron delocalization, particularly the importance of long- and intermediate-

range electron correlation, still deviates considerably among the molecular semiconductors. This result 
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explains the observed unprecedented importance of the long-range correction for accurate electronic 

ground-state geometries.702  

Singlet excitation energies obtained with a variety of ab initio, first principle, and semiempiric methods 

were evaluated with respect to MS-CASPT2 reference values. To keep the calculations of the reference 

values also for large molecules computationally feasible, a composite approach based on MS-CASPT2 

calculations with smaller model systems and a subsequent correction for substituent effects was 

proposed. The benchmark results led to the conclusion that similar to the ground-state delocalization, 

the charge-transfer character of the (always bright) first excited state varies significantly among the 

molecular semiconductors. This has important implications for its computational description. While ab 

initio methods always deliver quite accurate values, the performance of DFT functionals depends 

critically on their amount of exact exchange. Therefore, long-range corrected functionals like LC-BLYP 

or LC-ωPBE are required in some cases, whereas hybrid functionals like SOGGA11X or even B3LYP are 

sufficient in others. Very pronounced performance differences were observed for semiempiric 

methods, a fact largely disregarded in the current literature. In fact, compared with AM1, PM3, and 

the OMx methods, ZINDO yielded excitation energies of DFT-like quality at an almost negligible 

computational cost. In average, it was demonstrated that ωB97X-D and CAM-B3LYP deliver the most 

accurate excitation energies, especially if higher-lying excited states of the molecules including some 

full charge-transfer states are taken into account in the evaluation.702 

In contrast to singlet excited states, the energetic positions of triplet excitations are not predominantly 

influenced by their partial charge-transfer character. A decisive role is rather ascribed to the correct 

computation of the differential correlation between the triplet excited states and the ground state. It 

was discussed that this special significance of correlation for accurate triplet excitation energies leads 

to different errors of DFT functionals containing a comparable amount of exact exchange. It was 

furthermore demonstrated that DFT triplet excitation energies are usually underestimated, especially 

within the standard adiabatic linear-response TD-DFT treatment (also due to triplet instabilities). Both 

the Δ-SCF method and the Tamm-Dancoff approximation were shown to be more accurate alternatives 

although they tend to provide too low excitation energies as well. Moreover, in the Δ-SCF or the Tamm-

Dancoff framework, either hybrid functionals with a significant amount of exact exchange or long-

range corrected functionals performed well. However, general guidelines for the computation of 

accurate triplet excitation energies with DFT are not as clearcut as those for singlet excited states. In 

contrast, all correlated ab initio methods yielded quite accurate triplet excitation energies, potentially 

because, as commonly outlined, they accurately cover differential correlation. The possibility to 

calculate both singlet and triplet excitation energies with several DFT schemes (Δ-SCF, TDA, standard 

TD-DFT) leads to a number of different protocols (for instance TD-DFT singlets and Δ-SCF triplets) when 
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calculating singlet-triplet gaps, i.e., the S1-T1 difference, to identify promising singlet fission 

candidates. The first comprehensive evaluation of these protocols was presented, including an 

approach to obtain very accurate singlet-triplet gaps with DFT functionals where the amount of exact 

exchange and local correlation had been fitted beforehand to a set of reference data.758 

Since Marcus hopping rates depend exponentially on molecular reorganization energies, methods are 

needed that predict exciton and charge reorganization energies to a very high degree of precision. 

Alike to triplet excitations, somewhat unsystematic performances of different DFT functionals were 

found for exciton and charge reorganization energies. A particular challenge in the benchmark of 

charge reorganization energies consists in the choice of the reference method, which could explain 

why no benchmark investigations exist in the literature. In this thesis, a combination of high-level IP-

EOM-CCSD single-point calculations and geometries optimized with IP-tuned functionals was proposed 

to obtain benchmark values for charge reorganization energies. It was revealed that charge 

reorganization energies, similar to singlet excitation energies, are very sensitive to the amount of exact 

exchange included in a functional. This suggests that the self-interaction error of DFT functionals 

influences the description of intramolecular relaxation processes induced by ionization. Consistently, 

only long-range corrected functionals provided charge reorganization energies of acceptable accuracy. 

Owing to the well-known excessive charge smearing of pure functionals and hybrids, significantly 

underestimated charge reorganization energies were obtained with these types of functionals.854 

Using SCS-CC2/cc-pVDZ reference values, exciton reorganization energies were furthermore analyzed 

because corresponding investigations are also missing in the literature. The analysis particularly 

highlighted the accuracy limits of long-range corrected functionals. Indeed, while these functionals still 

performed best, they were not always reliable in terms of excited-state structures.  

The intermolecular perspective: intermolecular interactions between the π-systems of 

organic semiconductors  

From the intermolecular perspective, the precise details of the conformations between the molecular 

semiconductors, i.e., their relative orientations with respect to each other, determine coupling 

pathways as well as underlying excitonic and polaronic transport energies. For a rationally guided 

device design, it is desirable (1) to understand which physical effects lead to the formation of distinct 

dimer conformations and (2) to have tools at hand to model them. While a plethora of computational 

investigations exist that discuss intermolecular interactions in general and/or propose approaches to 

model them, no analysis specifically dedicated to molecular semiconductors has been conducted. By 

means of SAPT and LMO-EDA calculations, it could be shown that although dispersion contributes most 

to intermolecular binding energies, it does not specifically favor distinct dimer conformations. In 

contrast, spatially constrained short-range repulsion forces were found to determine the details of 
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intermolecular potentials between molecular organic semiconductors irrespective of the exact nature 

of the semiconductors. These short-range repulsion forces account for the preferential existence of 

some dimer conformations while simultaneously inhibiting the occurrence of others. Many DFT-D 

scans using different intermolecular coordinates of stacked homodimers composed of diverse 

semiconducting molecules were presented in support of this interpretation. While particularly the 

exchange-repulsion constitutes the short-range repulsion, the latter can still be folded into 

electrostatic quadrupole-quadrupole interactions. Alternatively, a number of empirical van-der-

Waals potentials with beforehand generated parameters reproduced the intermolecular potentials 

quite accurately.875 The similarity of the results obtained with these conceptually different modeling 

approaches has not been discussed in detail in the literature. 

The aggregate/device perspective: energetics and kinetics of the charge generation 

process  

From the aggregate or device perspective, the charge generation at organic::organic interfaces in OSCs 

can be understood only from the combination of energetic and kinetic effects. Suitable atomistic model 

systems of the organic::organic interfaces are a prerequisite. In this thesis, an in silico MM procedure 

was developed to generate such model systems in a number of successive MD steps. In order to 

analyze the energetic and kinetic effects based on these interfacial model systems, a three-fold 

approach was chosen. The energetics in the vicinity of organic::organic interfaces was analyzed by 

means of dimers that are embedded into a polarizable continuum environment with additional local 

electric fields, i.e., the dimer method745 was adapted to the interfacial region.638 A model of the 

transport processes in the vicinity of the interface based on KMC simulations and Marcus hopping rates 

without empirical parameters was proposed and implemented to investigate the kinetics of the 

optoelectronic processes.930 QM/MM calculations with electrostatic embedding provided insight into 

the amount of interfacial disorder of excitonic and polaronic transport levels. All these investigations 

are dedicated to provide qualitative insight and understanding of the charge generation mechanisms 

at the interfaces in OSCs. Yet, despite a variety of introduced approximations, many results were found 

to agree nicely with experimental findings, which emphasizes the soundness of the theoretical models 

and approaches. 

From the energetic profiles retracing the exciton dissociation and charge separation processes at the 

in silico generated model interfaces, important energy loss channels could be identified that do not 

exist if excitons are assumed to be localized on isolated molecules. Exciton losses in the donor phase 

result from excimer formation and exciton self-trapping, whereas charge trapping was found to be 

rather disorder-driven, i.e., it occurs in the energetically broad landscapes of polaron levels 

characteristic for some donor phases. The occurrence and energies of interfacial charge-transfer traps, 
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which are responsible for reduced open-circuit voltages,435 critically depend on the dielectric screening 

of the environment, on the molecular size, and on precise details of the interfacial morphology.638  

Nevertheless, although the impact of these trap states on the energetics of charge generation might 

appear rather profound, their population is often kinetically hampered. For instance, the driving forces 

to reach energetically deep interfacial charge-transfer states are usually so high that the corresponding 

rates lie in the Marcus-inverted region. Similarly, whereas exciton trapping certainly limits the 

efficiency of exciton diffusion, it was observed to be only significant when the competing ongoing 

exciton transport processes are slow. In contrast, the kinetic investigations complementary to the 

energetic profiles suggest that slow charge transport processes in the vicinity of the organic::organic 

interfaces are a major device efficiency-limiting parameter. The predicted charge transport parameters 

at the interfaces, which are in accordance with several experimental measurements, arise mainly from 

slow rates due to the formation of interfacial “charge transport depletion zones”, i.e. of regions with 

only very slow charge transport rates also due to the significant Coulomb attraction between the 

geminately formed electron and the hole.930 The additional QM/MM investigations on the disorder of 

polaronic and excitonic transport levels demonstrated furthermore that the disorder of the charge 

transport levels at organic::organic interfaces is considerable and results especially from electrostatic 

interactions as well as from a varying degree of delocalization of the charge carriers. In contrast, 

excitonic transport is only subject to a much smaller degree of disorder.  

Hence, as the concluding combined statement from these investigations, a large amount of evidence 

was provided that slow charge transport in the vicinity of organic::organic interfaces is a major 

efficiency-limiting process that requires further optimization.498  
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7 Zusammenfassung 
Um die Umwandlung von Licht zu Strom in organischen Solarzellen zu verstehen, müssen die 

beteiligten optoelektronischen Prozesse sowohl auf molekularem als auch auf intermolekularem und 

auf dem Aggregatniveau beschrieben werden.27 Diese Arbeit stellt eine solche mehrstufige 

Beschreibung dar, um zum grundlegenden Verständnis derjenigen Prozesse am 

organisch::organischen Interface beizutragen, die für die finale Gesamtleistung der Zelle 

ausschlaggebend sind. Dabei werden die wesentlichen Schritte von der Lichtabsorption und 

Exzitonendiffusion über den photoinduzierte Charge-Transfer-Schritt am Donor-Akzeptor-Interface bis 

hin zur endgültigen Ladungstrennung berücksichtigt. Um auf Struktur-Eigenschafts-Beziehungen 

rückschließen zu können, wurden verschiedene molekulare p-Halbleiter in der heterojunction mit 

Fulleren C60 kombiniert, einem der gängigsten Akzeptoren in organischen Solarzellen. Nach einer 

umfangreichen Bewertung der Eignung verschiedener ab initio und semiempirischer Methoden sowie 

diverser DFT-Funktionale für die Beschreibung der molekularen Eigenschaften wurden 

intermolekulare und Aggregataspekte diskutiert. Auf allen Ebenen, d.h. auf der molekularen, 

intermolekularen und auf der Aggregatebene, stehen sowohl methodische Ansätze als auch 

grundlegendende photophysikalische Überlegungen im Mittelpunkt, um das mikroskopische 

Verständnis der Ladungsträgererzeugung in organischen Solarzellen zu erweitern.  

Die molekulare Perspektive: eine Beschreibung des Grundzustands und der angeregten 

und geladenen elektronischen Zuständen  

Aus molekularer Hinsicht werden während der Stromerzeugung in organischen Solarzellen einzelne 

Moleküle elektronisch angeregt. Zudem entstehen durch die Ladungstransferprozesse Kationen und 

Anionen. An allen Prozessen sind intramolekulare Relaxationsprozesse beteiligt. Daher werden 

geeignete Methoden benötigt, die die komplexe elektronische Struktur der beteiligten elektronischen 

Zustände und die Relaxationsprozesse richtig beschreiben. 

In einem umfangreichen Benchmark gegenüber SCS-MP2/cc-pVTZ-Referenzgeometrien wurde die 

Genauigkeit der Grundzustandsgeometrien evaluiert, die mit DFT-Funktionalen oder mit 

semiempirischen und wellenfunktionsbasierten Methoden erhalten wurden. Um diejenigen 

Methoden zu identifizieren, die sowohl verlässlich als auch effizient sind, wurde ein eher kleiner 

Basissatz (cc-pVDZ) verwendet. Zwei verschiedene Kriterien dienten als Maß für die Qualität der 

Geometrien. Einerseits wurden RMSD-Werte verwendet, während andererseits absolute 

Abweichungen wichtiger molekularer Parameter wie Torsionswinkel oder die Bindungslängen-

alternanz in konjugierten Systemen hinzugezogen wurden. Die Ergebnisse zeigten, dass Funktionale 

mit long-range correction, insbesondere ωB97X-D, sehr gute Grundzustandsgeometrien liefern. Das 

folgt vor allem aus ihrer geringen Basissatzabhängigkeit, die sie von wellenfunktionsbasierten 
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Methoden unterscheidet, aber auch aus ihrer Fähigkeit, die verschiedenen Dimensionen von 

Elektronenkorrelation vollständig zu erfassen, was reinen Funktionalen und semiempirischen 

Methoden nicht auf vergleichbarem Niveau gelingt. Obwohl nämlich alle verwendeten molekularen 

Halbleiter aus großen konjugierten π-Systemen bestehen, zeigte sich im Rahmen der Rechnungen, dass 

sich das Ausmaß der Elektronendelokalisierung im Grundzustand – und damit einhergehend die 

Bedeutung von lang- bis mittelreichweitiger Elektronenkorrelation –  von Molekül zu Molekül 

nichtsdestotrotz erheblich unterscheidet. Das erklärt die unerwartete und bislang eher vernachlässigte 

Bedeutung der long-range correction für richtige Grundzustandsgeometrien.702 

Singulettanregungsenergien, die ebenfalls mit ab initio-, semiempirischen und DFT-Ansätzen 

berechnet wurden, wurden anhand von MS-CASPT2-Referenzwerten evaluiert. Um den 

Rechenaufwand der Referenzrechnungen auch für große Moleküle im Rahmen zu halten, wurden in 

einem neuen Ansatz zunächst die MS-CASPT2-Rechnungen an kleineren Modellsystemen 

durchgeführt. Daraufhin wurde der Substituenteneinfluss durch eine nachträgliche Korrektur der 

Anregungsenergien berücksichtigt. Das Benchmark zeigte, dass analog zur Elektronendelokalisierung 

im Grundzustand auch der Charge-Transfer-Charakter des (immer hellen) ersten angeregten Zustands 

der molekularen Halbleiter stark variiert. Für die theoretische Beschreibung dieses Zustands hat das 

wichtige Konsequenzen. Während die verwendeten ab initio-Methoden fast immer sehr akkurate 

Anregungsenergien liefern, hängt die Genauigkeit von DFT-Funktionalen für 

Singulettanregungsenergien entscheidend von ihrem Hartree-Fock-Anteil ab. Deshalb sind manchmal 

Funktionale mit long-range correction wie LC-BLYP oder LC-ωPBE nötig, während Hybridfunktionale, 

etwa B3LYP oder SOGGA11X, in anderen Fällen bereits ausreichen. Signifikante Unterschiede in der 

Genauigkeit wurden auch bei den semiempirischen Methoden beobachtet. Im Vergleich zu AM1, PM3 

und den OMx-Methoden waren ZINDO-Anregungsenergien bei vernachlässigbaren Rechenzeiten fast 

ebenso gut wie DFT. Insgesamt waren die Anregungsenergien von ωB97X-D und CAM-B3LYP am 

genauesten, insbesondere wenn zusätzlich höherangeregte Zustände wie unter anderem einige 

richtige Charge-Transfer-Zustände berücksichtigt wurden.702 

Im Gegensatz zu den angeregten Singulettzuständen werden die Energien von Triplettanregungen 

nicht vorwiegend durch deren partiellen Charge-Transfer-Charakter beeinflusst. Eine entscheidende 

Rolle scheint eher der richtigen Beschreibung der differenziellen Korrelation zwischen den angeregten 

Triplettzuständen und dem Grundzustand zuzukommen. Diese besondere Bedeutung der 

differenziellen Korrelation erklärt auch, warum sich die Fehler von DFT-Funktionalen mit ähnlichem 

Hartree-Fock-Anteil teilweise stark unterscheiden. Als weiteres wichtiges Ergebnis wurde gezeigt, dass 

DFT Triplettanregungsenergien normalerweise erheblich unterschätzt, vor allem im Rahmen des 

Standard-adiabatic linear response TD-DFT-Formalismus. Das folgt natürlich teilweise auch aus den 
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bekannten Triplettinstabilitäten. Es stellte sich heraus, dass sowohl die Δ-SCF-Methode als auch die 

Tamm-Dancoff-Näherung zuverlässiger sind, obwohl auch sie latent zu niedrige Anregungsenergien 

ergeben. Die besten Werte lieferten sie für Hybridfunktionale mit einem erheblichen Hartree-Fock-

Anteil oder für Funktionale mit long-range correction und einem nur moderaten range-separation 

parameter. Insgesamt sind die Richtlinien für die genaue Berechnung von Triplettanregungsenergien 

mit DFT verglichen zu den Singuletts allerdings weit weniger klar. Im Gegensatz zu den DFT-Ansätzen 

waren ab initio-Triplettenergien fast immer sehr genau, möglicherweise weil alle ab initio-Methoden 

die differenzielle Korrelation sehr ausgewogen beschreiben. Die Möglichkeiten, die zur Berechnung 

von Singulett- und Triplettanregungsenergien offen stehen (TD-DFT, Tamm-Dancoff, etc.), führen bei 

der Berechnung von Singulett-Triplett-Gaps, d.h. von S1-T1-Energiedifferenzen, zu einer Reihe von 

Kombinationen (TD-DFT-Singuletts + Δ-SCF-Tripletts, etc.). Ein erstes umfangreiches Benchmark ihrer 

Genauigkeit zeigte das Potenzial auf, in silico vielversprechende singlet-fission-Moleküle auszuwählen, 

insbesondere weil sehr genaue Singulett-Triplett-Gaps mit DFT-Funktionalen erhalten wurden, in 

denen sowohl der Hartree-Fock-Anteil als auch der Koeffizient der lokalen Korrelation gegenüber 

einem Referenzdatensatz gefittet wurden.758  

Weil Marcus-Raten exponentiell von molekularen Reorganisationsenergien abhängen, braucht man 

Methoden, die Exzitonen- und Ladungsreorganisationsenergien sehr genau vorhersagen. Ähnlich wie 

bei den Tripletts wurden unsystematische Fehler für verschiedene DFT-Funktionale gefunden. Beim 

Benchmark der Ladungsreorganisationsenergien stellt die Wahl der Referenzmethode eine besondere 

Herausforderung dar, was auch erklären könnte, warum es in der Literatur keine derartigen 

Benchmarks gibt. In dieser Arbeit wurden Referenzwerte für Ladungsreorganisationsenergien aus 

einer Kombination von aufwändigen IP-EOM-CCSD-Energieberechnungen und Geometrien bestimmt, 

die mit IP-getunten Funktionalen berechnet wurden. Es zeigte sich, dass die Werte der 

Ladungsreorganisationsenergien analog zu den Singulettanregungsenergien sehr stark vom Hartree-

Fock-Anteil der verwendeten DFT-Funktionale abhängen. Das legt die Schlussfolgerung nahe, dass der 

Selbstwechselwirkungsfehler von DFT die Beschreibung der beteiligten intramolekularen 

Relaxationsprozesse beeinflusst, die durch Ionisierung induziert werden. Daher lieferten nur 

Funktionale mit long-range correction Ladungsreorganisationsenergien von akzeptabler Genauigkeit. 

Im Gegensatz dazu waren entsprechende Werte von Hybridfunktionalen und reinen Funktionalen viel 

zu klein, was auf deren intrinsisch überschätzte Ladungsdelokalisation zurückzuführen ist.854 

Exzitonenreorganisationsenergien, für die ebenfalls keine Benchmarkdaten vorliegen, wurden 

gegenüber SCS-CC2/cc-pVDZ-Referenzwerten evaluiert. Dabei machten sich vor allem die Grenzen der 

Genauigkeit der Funktionale mit long-range correction bemerkbar: Obwohl diese immer noch die 

besten Werte lieferten, waren die optimierten Geometrien der angeregten Zustände weit weniger 

verlässlich. 
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Die intermolekulare Perspektive: eine Beschreibung de r intermolekularen 

Wechselwirkungen zwischen den π-Systemen der organischen Halbleiter  

Die genauen intermolekularen Konformationen zwischen molekularen organischen Halbleiter sind 

ausschlaggebend für Kopplungen und Energien von Exzitonen- und Ladungstransport. Um bestimmte 

intermolekulare Konformationen gezielt zu erzeugen, wäre es wünschenswert, (1) die zugrunde 

liegenden physikalischen Effekte zu verstehen, die zur Ausbildung bestimmter Dimerorientierungen 

führen, und (2) Ansätze zu entwickeln, wie man die Wechselwirkungen modellieren/simulieren kann. 

Obwohl sehr viele Literaturuntersuchungen existieren, die intermolekulare Wechselwirkungen 

allgemein diskutieren oder Ansätze für ihre Berechnung vorstellen, sind Analysen, die sich spezifisch 

molekularen Halbleitern widmen, nicht bekannt.  

Mit Hilfe von SAPT- und LMO-EDA-Rechnungen konnte gezeigt werden, dass die Dispersion zwar den 

Hauptteil zur intermolekularen Bindungsenergie beiträgt, dabei aber nicht bestimmte Dimerkon-

formationen spezifisch begünstigt. Im Gegensatz dazu scheinen vor allem sehr lokalisierte, 

kurzreichweitige Abstoßungskräfte, die zudem nicht von den molekularen Eigenschaften der 

Halbleiter abhängen, für die Details der intermolekularen Potenzialflächen verantwortlich zu sein. 

Diese kurzreichweitigen Abstoßungskräfte begünstigen manche Dimerkonformationen energetisch, 

während sie andere stark destabilisieren. Zahlreiche DFT-D-Potenzialflächen von verschiedenen 

intermolekularen Dimerkoordinaten in diversen gestackten Homodimeren stützen diese 

Interpretation. Während vor allem der Austausch-Repulsions-Term die kurzreichweitige Abstoßung 

darstellt, kann letztere dennoch durch elektrische Quadrupol-Quadrupol-Wechselwirkungen 

simuliert werden. Alternativ kann auch eine Reihe von empirischen van-der-Waals-Potenzialen mit 

zuvor generierten Parametern verwendet werden, um die intermolekularen Potenzialflächen recht 

genau zu reproduzieren.875 Die Ähnlichkeit dieser konzeptionell unterschiedlichen Modellansätze 

wurde in diesem Detail in der Literatur noch nicht diskutiert. 

Die Aggregatebene: eine Beschreibung der  Energetik und Kinetik der Ladungs-

trägererzeugung  

Auf der Aggregat-/Zellenebene kann die Ladungsträgererzeugung an den organisch::organischen 

Interfaces in organischen Solarzellen nur als Kombination von energetischen und kinetischen Aspekten 

verstanden werden. In dieser Arbeit wurde eine in silico-MM-Methode entwickelt, um geeignete 

Modelle der Interfaces in einer Reihe von Molekulardynamikschritten zu erzeugen. Ein dreistufiger 

Ansatz wurde gewählt, um die energetischen und kinetischen Aspekte anhand dieser Interface-

Modellsysteme zu analysieren. Die Dimermethode745 wurde auf die Interfaces angepasst, so dass mit 

Hilfe von Dimeren in einem polarisierbaren Kontinuum und zusätzlichen lokalen elektrischen Feldern 
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der energetische Verlauf der Ladungstrennung berechnet wurde.638 Ein Modell der 

Transportprozesse am Interface wurde auf der Grundlage von kinetischen Monte-Carlo-Simulationen 

und Marcusraten ohne empirische Inputparameter entwickelt und implementiert, um die Kinetik der 

optoelektronischen Prozesse zu untersuchen.930 QM/MM-Berechnungen mit electrostatic embedding 

ermöglichten weitere Rückschlüsse über die Unordnung der Exzitonen- und Ladungstransportniveaus 

am Interface. Insgesamt sollte im Rahmen dieser Berechnungen vor allem ein qualitatives Verständnis 

der Mechanismen zur Ladungsträgererzeugung an den Interfaces in organischen Solarzellen entwickelt 

werden. Trotz zahlreicher Näherungen stimmten dennoch etliche Vorhersagen auch quantitativ gut 

mit experimentellen Werten überein, was unterstreicht, dass die Modelle die wesentlichen Effekte 

ausreichend berücksichtigen.  

Mit Hilfe der energetischen Profilen, die den Prozess von der Exzitonendiffusion bis hin zur 

Ladungstrennung an den in silico erzeugten Interface-Modellen darstellen, konnten wichtige 

Energiedissipationsmechanismen identifiziert werden, die nur im Aggregatansatz sichtbar werden. 

Exzitonenverluste in der Donorphase sind vor allem auf Exzimerbildung und Exzitonenselbsttrapping 

zurückzuführen, während Ladungsträgertrapping vorwiegend durch energetische Unordnung in den 

Ladungstransportniveaus hervorgerufen wird. Sehr breite Zustandsdichten der 

Ladungstransportniveaus sind für einige Donorphasen charakteristisch. Trapzustände an der 

Grenzfläche, die insbesondere für niedrige open-circuit voltages verantwortlich sind, hängen stark von 

der Permittivität der Umgebung, der Größe der beteiligten Moleküle und der Morphologie am 

Interface ab.638  

Obwohl der Einfluss dieser Energiedissipationsmechanismen auf den energetischen Verlauf der 

Ladungstrennung gravierend erscheint, ist die Population von Trapzuständen kinetisch oft gehemmt. 

Häufig liegen die Raten vor allem für den photoinduzierten Ladungsübertrag auf Trapzustände am 

Interface im Marcus-invertieren Bereich. Ebenso ist die Existenz von Exzitonentrapzuständen nur dann 

entscheidend, wenn die Exzitonendiffusion ohnehin langsam ist. Die kinetischen Untersuchungen 

legten komplementär zur Energetik eher die Schlussfolgerung nahe, dass langsame 

Ladungstransportprozesse am Interface ein wesentlicher, limitierender Prozess für die gesamte 

Zellleistung ist. Die simulierten Ladungsträgermobilitäten am Interface, die gut mit experimentellen 

Werten übereinstimmen, sind die Folge einer „charge transport depletion zone“ am Interface, d.h. 

eines Bereichs, in dem alle Ladungstransportprozesse under anderem aufgrund der Coulomb-

Anziehung zwischen den Ladungsträgern sehr langsam sind.930 Hinzu kommt, dass die QM/MM-

Rechnungen sehr ungeordnete Ladungstransportniveaus vorhersagen, was vorwiegend durch 

elektrostatische Wechselwirkungen und ein unterschießliches Ausmaß von Ladungsträger-
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delokalisation hervorgerufen wird. Die Zustandsdichte der Exzitonentransportniveaus ist hingegen 

energetisch weit weniger breit. 

Insgesamt deuten die Rechnungen darauf hin, dass vor allem langsamer Ladungstransport in der 

Umgebung organisch::organischer Interfaces ein limitierender Parameter für die Gesamtleistung 

organischer Solarzellen ist, so dass an dieser Stelle Optimierungsbedarf besteht. 
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