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Stimulation of soluble guanylyl cyclase protects
against obesity by recruiting brown adipose tissue
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Alexander W.C. Fischer4, Johannes-Peter Stasch5,6, Wilhelm Bloch2, Andreas Friebe7, Joerg Heeren4

& Alexander Pfeifer1,3,8

Obesity is characterized by a positive energy balance and expansion of white adipose tissue

(WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we

show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC),

which produces the second messenger cyclic GMP (cGMP), protects against diet-induced

weight gain, induces weight loss in established obesity, and also improves the diabetic

phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41–8543 enhances

lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the

haeme-containing b1-subunit of sGC severely impairs BAT function. Notably, the sGC

stimulator enhances differentiation of human brown adipocytes as well as induces ‘browning’

of primary white adipocytes. Taken together, our data suggest that sGC is a potential phar-

macological target for the treatment of obesity and its comorbidities.
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O
besity is a worldwide health problem and has reached
pandemic dimensions1. When energy intake constantly
exceeds energy expenditure (EE), the surplus is stored as

lipids in white adipose tissue (WAT) leading to the development
of obesity. Obesity is associated with comorbidities such as type 2
diabetes, metabolic syndrome, cardiovascular diseases and
cancer2. WAT not only serves as the major energy storage but
also has endocrine functions. It secretes adipokines such as leptin
or tumour-necrosis factor-a, which can affect metabolism and
can enhance inflammation3. In contrast to WAT, brown adipose
tissue (BAT) dissipates energy and generates heat by non-
shivering thermogenesis. BAT-dependent energy dissipation
plays a central role in the defense against cold, a process that is
dependent on mitochondrial energy dissipation mediated by
uncoupling protein 1 (UCP1)4–10.

BAT is subjected to an intriguing level of plasticity and the
total number of brown adipocytes (BA) in the body can vary
extensively. In humans, BAT diminishes with age11 and increased
body weight12—a process also known as ‘whitening’13. On the
other hand, cold exposure and several other stimuli including
cGMP signalling14 can induce browning, the appearance of
inducible BA in WAT15–18—so-called beige or brite cells.
Inducible BA share several characteristic features with classical
BAT including multilocular lipid droplets, high mitochondria
content and expression of UCP1, which allows them to consume
energy like classical BA10,16.

Cyclic nucleotides play an important role in the control of
adipocyte function4,7,9,10 and therefore have a high potential to be
exploited in antiobesity therapies. The major focus of BAT
research has been on cAMP, which is a key inducer of
thermogenesis. Cold exposure results in the release of
norepinephrine (NE) from sympathetic nerves in BAT and
subsequent activation of b-adrenergic receptors that couple
via Gs protein to adenylate cylcase, thereby stimulating cAMP
production. Moreover, it has been shown recently that adenosine
is a sympathetic co-transmitter that induces cAMP production
via A2A receptors in BAT19. cAMP-initiated lipolysis results in
the release of free fatty acids and activation of UCP1, which
disrupts the mitochondrial proton gradient and causes the
production of heat instead of ATP4.

Apart from cAMP, the other cyclic nucleotide cyclic GMP
(cGMP) also plays an important role in BAT20,21. cGMP is
produced by soluble and membrane-bound guanylyl cyclases that
are activated by NO and natriuretic peptides, respectively22.
cGMP-dependent protein kinase GI (PKGI) is the major
downstream mediator of cGMP actions and has been shown to
be indispensible for BAT thermogenesis and crucially involved in
browning of WAT20,23. Very recently, it was demonstrated that
dietary nitrate, a NO-releasing compound, can induce browning
in vitro and in vivo24. Natriuretic peptides such as ANP also play
an important role in browning of white adipocytes and can
increase EE on the cellular and whole-body level25.

Given the high medical need for new antiobesity therapies, we
focused on BAT-centred therapies based on the soluble guanylyl
cyclase (sGC)-dependent pathway, which might be used to
regulate BAT plasticity to increase BAT mass. We found that a
pharmacological stimulator of sGC counteracts diet-induced
obesity (DIO) and results in favourable metabolic changes such
as improved glucose tolerance.

Results
sGC deficiency impairs BA function. All three functional sGC
subunits26 were detected in mature BA (Supplementary Fig. 1a).
To address the physiological importance and whether sGC might
be a potential drug target against obesity, transgenic mice lacking

the b1 subunit of sGC (sGCb1
� /� )27, which contains the haeme/

NO-binding domain, were analysed. Importantly, addition of
NO increased cGMP only in wild-type (WT) cells, but not in
sGCb1

� /�BA (Fig. 1a), showing that sGCb1 is required for
NO-dependent cGMP formation in BA. Differentiation of
sGCb1

� /� BA was diminished as indicated by reduced Oil
Red-O staining (Fig. 1b) and reduced cellular triglyceride (TG)
content (Supplementary Fig. 1b). Moreover, expression of
adipogenic markers such as peroxisome proliferator-activated
receptor gamma (PPARg) and adipocyte protein 2 (aP2;
Supplementary Fig. 1c,d), as well as of thermogenic markers
such as UCP1, cytochrome c (Cytc), PPAR co-activator 1-alpha
(PGC1a) and mitochondrial DNA content (Supplementary
Fig. 1e–h) were significantly reduced in sGCb1

� /� cells. cGMP
rescued BA differentiation (Fig. 1b, Supplementary Fig. 1b–h).
Basal and NE-induced lipolysis—important parameters for
BA function—was significantly reduced by 46% and 51% in
sGCb1

� /� cells, respectively (Fig. 1c). The specificity of BAY in
BA was confirmed in sGCb1

� /� cells differentiated in the
presence of BAY. In contrast to WT BA, BAY did not increase
expression of the thermogenic markers UCP1, PGC1a and
PPARg (Supplementary Fig. 2a–c).

sGC ablation results in dysfunctional thermogenesis in vivo.
sGCb1

� /� mice displayed reduced BAT-dependent thermo-
genesis and a significantly lower body surface temperature as
analysed with infrared thermographic imaging20 in newborn mice
(Fig. 1d, Supplementary Fig. 2d). Notably, sGCb1

� /�mice
exhibited a significant reduction of BAT mass (� 50%; Fig. 1e).
Ucp1 gene expression in BAT of sGCb1

� /� mice was reduced to
16.5% of the WT level (Fig. 1f). Taken together, these data show
that sGC is essential for BAT differentiation and function.

BA function is increased after sGC stimulation. In order to
stimulate sGC and recruit BAT pharmacologically, BAY 41-8543
(BAY) was used28. BAY (3 mM) significantly increased cGMP
and acted synergistically with NO (Fig. 1g), which is a key
feature of sGC stimulators29. Incubation of BA with BAY during
differentiation enhanced adipogenic differentiation as demon-
strated with Oil Red-O staining (Supplementary Fig. 3a) and
increased intracellular TG content (Supplementary Fig. 3b).
Furthermore, expression levels of markers for the adipogenic
and thermogenic programme were increased (Fig. 1h and
Supplementary Fig. 3c–e). Importantly, BAY-incubated cells
showed increased basal and 1.8-fold higher NE-stimulated
lipolysis (Fig. 1i). Together, these results show that BAY
efficiently stimulates cGMP signalling in BA and recruits BA,
resulting in enhanced function.

sGC stimulation protects against DIO. Next, the role of sGC in
whole-body metabolism was studied. sGC stimulation protected
mice from DIO, resulting in a 37% reduced body mass (Fig. 2a),
with a 15% reduction in relative fat mass when compared with
mice on high-fat diet (HFD) without BAY (Fig. 2b). Weights of
inguinal (WATi) and gonadal WAT depots were 46% and 55%
lower, respectively, in BAY-treated mice (Fig. 2c). Concomitantly,
adipocyte size and hepatic lipid content were significantly
decreased (Fig. 2d–f). BAY-treated mice exhibited improved
glucose tolerance and a 50% reduction in plasma insulin levels
(Fig. 2g,h). Indirect calorimetry revealed increased oxygen
consumption in BAY-treated mice compared with chow control
diet (CD) and HFD-fed mice (Fig. 2i,j), indicating a higher EE in
BAY-treated mice. The difference in EE was most apparent when
mice from all three groups with similar weights were compared
(Fig. 2k). BAY-treated mice took up 1.8-fold more energy than
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mice fed HFD without BAY, but still remained leaner
(Supplementary Fig. 4a). Locomotor activity was not significantly
different between the groups (Supplementary Fig. 4b).

Lipid uptake into BAT is increased by sGC stimulation. BAT is
a major sink for circulating TGs with the ability to reduce plasma
lipid concentrations30. Lipid uptake into BAT of BAY-treated
mice was 2.3-fold higher than in HFD-fed mice without BAY
treatment (Fig. 3a). Although overall uptake of lipids into the
muscle and WAT was much lower than in BAT, we observed a
trend for higher lipid uptake in BAY-treated mice also into these
tissues. Consistent with increased lipid shuttling into BAT, low
density lipoprotein (LDL) and TG levels were decreased by 20%
and 25%, respectively (Fig. 3b). Increased lipid uptake in BAT of
BAY-treated mice was accompanied by significantly increased
expression of genes involved in lipid uptake30 (Cd36 and Lpl), as
well as of genes important for mitochondrial biogenesis31,32

(Pgc1a and Nrf1; Fig. 3c). In addition, expression levels of
thermogenic genes4 (Ucp1 and Adrb3) as well as UCP1 protein
were increased compared with control mice (Fig. 3c,d). BAY-
treated mice showed reduced droplet size and increased Vegf

expression in BAT, indicating the reversal of HFD-induced
‘whitening’ (Fig. 3e, Supplementary Fig. 5a). Furthermore, NE-
induced thermogenesis and mitochondrial DNA (mtDNA)
content of BAT were significantly increased in BAY-treated
mice (Supplementary Fig. 5b–e), demonstrating the increased
thermogenic capacity of BAT after BAY treatment. In summary,
these results indicate increased activity of BAT in BAY-treated
mice resulting in enhanced clearance of nutrient lipids from the
circulation.

sGC stimulation induces browning. Enhanced lipid uptake
into the muscle (Fig. 3a) was accompanied by increased
expression of molecules involved in fatty acid30 (Cd36, Lpl and
Slc27a3), glucose uptake (Glut-4) as well as of mitochondrial
biogenesis33 (Pgc1a and Nrf1), mitochondrial oxidative function
(Ucp3 and Atp5g1) and fatty acid catabolism34 (Ppard and Cpt1b;
Fig. 3f). Analysis of oxygen consumption under exercise
conditions revealed that BAY-treated mice had significantly
higher oxygen consumption than untreated HFD-fed mice
indicating higher EE by muscle tissue on BAY treatment during
exercise (Fig. 3g).
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Figure 1 | sGC is crucial for development and function of BAT. (a) Basal and NO-stimulated cGMP content of BA, n¼ 5 independent cell cultures.

(b) Oil Red-O stain of WT and sGCb1
� /� BA differentiated in the presence or absence of 200mM 8-pCPT-cGMP (cGMP), scale bar, 1 cm.

(c) Lipolysis in WT and sGCb1
� /� BA under basal and NE-stimulated conditions, n¼ 5–7 independent cell cultures. (d) Representative thermographic

image of newborn sGCb1
� /� and WT mice. (e) Weight of BAT from newborn WT and sGCb1

� /� mice, n¼8 mice per genotype. (f) Ucp1 gene expression

in BAT of newborn mice, n¼ 6 per genotype. (g) Basal NO- and BAY-stimulated intracellular cGMP levels of WT BA, which were incubated for 15 min with

the indicated compounds, n¼4 independent cell cultures. (h) UCP1 expression of WT BA differentiated in the presence of cGMP, 50mM DETA/NO (NO)

or 3mM BAY, representative western blot (left) and densitometric quantification normalized to loading control tubulin (right), n¼ 3–4 independent cell

cultures. (i) Lipolysis in BA under basal and NE-stimulated conditions, n¼4–5 independent cell cultures. All data were assessed using Student’s t-test and

are presented as means±s.e.m. *Po0.05; ***Po0.005.
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As lipid uptake into WAT was increased in BAY-treated mice
(Fig. 3a), we studied whether browning of WAT was induced by
sGC stimulation. Histological analysis revealed UCP1-positive,
multilocular cells (Fig. 4a). Moreover, BAY increased mito-
chondrial DNA content in WATi of BAY-treated mice
(Supplementary Fig. 5d,e) and induced expression of the BA
genes Ucp1, Pgc1a, Prdm16 and Dio2 and in murine WA
(Fig. 4b). Since BAY stimulates browning of murine WA, we
studied its effects in human adipocytes. Also in human WA, the
sGC stimulator induced browning as indicated by significantly
increased expression of the thermogenic markers UCP1, PGC1a,

CIDEA and DIO2 (Fig. 4c). Furthermore, incubation of a human
BA differentiated from multipotent adipose-derived stem cells
(hMADS)25,35 with BAY significantly increased expression of
thermogenic markers compared with unstimulated control
(Supplementary Fig. 5f). Together, these results imply that
BAY could have the potential to induce or enhance the BA
thermogenic programme in human WA and BA.

sGC stimulation induces weight loss in established obesity. To
assess whether sGC stimulation can be used to induce weight loss
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in a clinically more relevant setting, that is, already established
obesity, mice were fed a HFD for 12 weeks to induce DIO,
followed by treatment of HFD with BAY for additional
6 weeks (Fig. 4d). Obese mice receiving BAY were 12%
lighter than mice receiving HFD without BAY. This was
accompanied by a 37% reduction in WATi mass and a
significant improvement of glucose clearance (Supplementary
Fig. 6a,b). Oxygen consumption of BAY-treated mice fed
a HFD was significantly higher during light and dark
phases compared with control mice on HFD (Supplementary
Fig. 6c).

Finally, we switched obese mice to normal CD with and
without BAY to mimic a conventional weight loss scheme on the

basis of calorie restriction. The switch to CD-normalized body
weight and BAY treatment enhanced weight loss resulting in a
further 7% decrease of body weight (Fig. 4e). BAY treatment
during calorie reduction (BAYþCD) decreased WATi mass by
23% compared with mice receiving CD alone (Supplementary
Fig. 6d). Again, glucose clearance was significantly improved by
sGC stimulation (Supplementary Fig. 6e). In line, BAY also
increased oxygen consumption of mice switched to CD after 12
weeks of HFD compared with control mice (Supplementary
Fig. 6f). Together, these data show that sGC stimulation can be
used to enhance EE in already established obesity leading
to a significant weight reduction even during a continuous
high-calorie diet.
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Discussion
The results of our study show that pharmacological sGC
stimulation protects against DIO and induces weight loss in
already established obesity. The changes in body weight induced
by the sGC stimulator are accompanied by improved overall
metabolic status as indicated by improved glucose tolerance,
decreased liver steatosis, reduced insulin levels and decreased
adipocyte size in WATi, a parameter for healthy expansion of
WAT36. Importantly, EE was increased under basal conditions
and we found significantly increased lipid uptake into BAT.
Previously, it has been shown that active BAT can take up B50%
of nutrient lipids30,37 resulting in increased EE19,38. Moreover,
also muscle and WAT tended to take up more lipids after
treatment with the sGC stimulator and, therefore, could
contribute to the increase in EE.

In this context, it is of interest that EE was increased during
exercise after sGC stimulation and that mitochondrial biogenesis
was increased in muscle of BAY-treated mice. Similar results were
observed in a genetic model of increased downstream cGMP
signalling where mitochondrial biogenesis and EE were increased
in mice overexpressing the cGMP-target PKGI34. These data

indicate that sGC stimulators might be used to enhance weight
loss induced by physical activity.

Mice treated with the sGC stimulator showed ‘browning’ of
WAT, that is, the appearance of inducible BA in WAT, which is
in line with previous studies23,25 that have shown cGMP-
dependent browning of WAT. In addition, we found that HFD-
induced ‘whitening’ of classical, interscapular BAT was reduced
on sGC stimulation. Thus, sGC stimulation recruits BAT and
increases EE with increased uptake of lipids especially into BAT.
Our data might also extend to humans as sGC stimulation
induced thermogenic markers in human WA and BA.

The downstream cGMP pathway is an important regulator of
BAT that mediates the effects of BAY and has been deciphered
earlier9. It consists of the cGMP-producing enzymes sGC and
particulate guanylyl cyclases (NPR-A and NPR-B). PGKI, the
major downstream target of sGC, is indispensible for thermogenic
differentiation of BA in vitro and in vivo and is crucially involved
in browning of WAT20,23. PKGI inhibits RhoA that results in the
release of the RhoA/ROCK-dependent inhibition of the insulin/
IRS-1/PI3K/Akt pathway. In the activated state, the cGMP
pathway results in mitochondrial biogenesis and induction of
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UCP1 (refs 20,21). On the other hand, phosphodiesterases
(PDEs) reduce the levels of cGMP in adipocytes39 and
inhibition of PDE5 results in browning23.

Here we focused on sGC as a new target in antiobesity therapy
to modulate cGMP signalling at the level of cGMP production.
Mice lacking the b1-subunit of sGC, which contains the haeme-
binding domain that is critical for activation of sGC by NO and
BAY40,41, show a severe phenotype with reduced BAT-derived
thermogenesis and altered differentiation of BA. Thus, sGC is
essential for normal differentiation of BAT.

This important signalling cascade can be regulated pharmaco-
logically at several levels. Organic nitrates that deliver NO have
been used to treat angina pectoris for more than 100 years42, and
NO has been shown to be involved in mitochondrial biogenesis in
a broad range of cells including BA21. Its volatile nature and
primary action in the vasculature argue against a BAT-specific
effect of NO in a possible therapeutic application of NO in
obesity. Furthermore, nitrate tolerance43 is a major drawback that
develops rapidly making long-term application not applicable,
which would be necessary in antiobesity therapies.

Natriuretic peptides that activate NPR-A and NPR-B have been
shown to increase thermogenic markers in human BA, are
capable of increasing EE in mice with concomitant browning of
WAT25 and have been shown to counteract DIO34. In light of the
positive effects of natriuretic peptides on EE25, it is of special
interest that ablation of sGCb1 has such a profound effect on BA
differentiation and function demonstrating the central role of
sGC-derived cGMP in BAT. Brain natriuretic peptide (BNP) has
been used pharmacologically to treat acute decompensated heart
failure; however, its safety has been questioned44,45 and the use of
BNP might not be feasible in all obesity patients.

Another way to pharmacologically modulate cGMP signalling is
the use of PDE5 inhibitors such as sildenafil, which leads to
increased cGMP levels. Members of this drug class have been used
mainly for the treatment of erectile dysfunction for several years46.
In mice, short-term treatment with sildenafil results in browning
of WAT23 and long-term treatment with sildenafil induced weight
reduction in mice on HFD47. Important side effects of these
drugs including interactions with agents that lower blood pressure
such as nitrates48 or alpha blockers49 and an increased risk for
development of melanoma50 have been reported.

Thus, alternative strategies for enhancing cGMP signalling in
adipocytes at different levels of the cascade are required for
rational therapy. Modulating signalling pathways at different
levels has been proven to be a prerequisite for successful
treatment of multilayered diseases in heterogeneous groups of
patients. For example, the development of several pharmacolo-
gical strategies to regulate the renin–angiotensin–aldosterone
system resulted in different classes of drugs that can be
administered to different subpopulations of patients with
hypertension and renal disorders as well as cardiovascular disease
and provide efficient alternative treatment options.

To increase sGC-dependent cGMP production, we used a
member of the new drug class of sGC stimulators. These
compounds stimulate the native sGC in a haeme-dependent
manner and show a strong synergism with NO (ref. 29). These
characteristics allow sGC stimulators to increase cGMP signalling
even when endogenous NO/cGMP signalling is impaired because
of reduced bioavailability of NO. The compound used in this
study is chemically closely related to riociguat51, which is used for
the treatment of pulmonary hypertension and shows a favourable
safety profile52.

In the clinical trials with the sGC stimulator riociguat, the
included patients had normal body weights52,53. Importantly,
patients with obesity were excluded from the studies. Moreover,
patients suffering from pulmonary hypertension rather tend to

have a lower body because of their severe disease. A significant
change in body weight of the patients who were included was not
observed in the clinical trials with riociguat.

In the light of the results from the Collins laboratory, which
show that natriuretic peptides increase EE and induce browning
in animal models, the concept of natriuretic peptides as
antiobesity drugs seems to be promising25. To our knowledge,
an effect of administered natriuretic peptides on body weight in
clinical trials has not been published so far. Clinical trials
investigating the effects of natriuretic peptides on obesity are
underway54.

In summary, pharmacological stimulation of sGC increases the
function of BA and induces a brown, energy-combusting
phenotype in WA. Importantly, sGC stimulation counteracts
DIO-induced pathologies even in already established obesity via
increased energy utilization. Activation of sGC results in
increased lipid uptake and usage mainly by BAT. Overall, sGC
stimulation leads to reduced body weight and an improved
metabolic phenotype in mice with DIO. sGC stimulation
represents an innovative pharmacological principle and sGC
stimulators are potential candidates for the treatment of obesity
and associated comorbidities.

Methods
Materials. Antibodies against PPARg and aP2 were purchased from Santa Cruz
Biotechnology, CytC from BD Bioscience, UCP1, b-Actin and sGCa1 from Sigma,
tubulin from Dianova, and sGCb1 and sGCa2 from Cayman and Abcam, respec-
tively. BAY 41–8543 (BAY) was provided by Bayer HealthCare AG.

Primary human and murine adipocyte culture. Stromal vascular fraction
from murine intrascapular BAT was isolated and differentiated as described
previously20. In brief, preadipocytes and mesenchymal stem cells within the
stromal vascular fraction were isolated from the surrounding tissue by collagenase
digestion and immortalized using SV40 large T antigen lentivirus. The cells
were seeded in DMEM containing 10% fetal bovine serum (FBS) and 100 IU
penicillin, 100mg ml� 1streptomycin (P/S). The medium was exchanged
to differentiation medium (DM) containing 20 nM insulin and 1 nM tri-
iodothyronine (T3) every other day. Differentiation was induced by addition of
0.5 mM isobutylmethylxynthine (IBMX) and 1 mM dexamethasone to DM 4 days
after seeding. hMADS were kindly provided under MTA by C. Dani (University of
Nice Sophia Antipolis) and were grown in DMEM supplemented with 2 mM
glutamine, 10 mM Hepes buffer, 1% P/S and 2.5 ng ml� 1 FGF2. To induce
differentiation, the medium was changed to DMEM/Ham’s F12 (50/50) containing
5 mg ml� 1 insulin, 10 mg ml� 1 transferrin, 0.2 nM T3, 1 mM rosiglitazone, 100mM
IBMX and 1 mM dexamthasone. After 3 days, the medium was changed to medium
without IBMX and dexamethasone that was exchanged every other day35. Human
WA were obtained from Promo-Cell and differentiated according to the
manufacturer’s protocols using commercially available premixed media. Murine
WA were differentiated as described55. Briefly, preadipocytes were isolated from
WATi of 8-week-old C57Bl/6 mice and grown in DMEM containing 10% FBS and
1% P/S, and differentiation was induced using DMEM containing 5% FBS, 1% P/S,
0.172 mM insulin, 1 nM T3, 1 mM rosiglitazone, 50 mg ml� 1 L-ascorbate, 1 mM
D-biotin, 17mM panthothenat, 0.5 mM IBMX and 0.25 mM dexamethasone. After 2
days, the medium was changed to a medium without rosiglitazone, IBMX and
dexamethasone and replenished every other day. Cells were incubated with or
without 200mM 8-pCPT-cGMP (Biolog), 3 mM BAY or 50mM DETA/NO (Sigma)
as indicated. Thermogenic marker gene expression was analysed after 8-h
stimulation of mature cells.

Oil Red-O staining was achieved in paraformaldehyde-fixed cells by incubating
the cells in 3 mg ml� 1 Oil Red-O in isopropyl alcohol. Lipolysis and intracellular
TGs were measured using the commercially available Free Glycerol Determination
Kit (Sigma)55. NE (10 nM) was used to maximally induce lipolysis. cGMP levels
were determined using EIA (enzyme immonoassay) (Cayman Chemical) according
to the manufacturer’s instructions.

Western blot and quantification. Protein amount was quantified using the
Bradford assay and concentration was normalized before western blot analysis.
Western blots were carried out using the standard procedures. Band intensity was
quantified using the Quantity One software (Bio-Rad). Background was subtracted
from all data that were normalized to loading controls. Following antibodies were
used: against UCP1 from Sigma diluted 1:500, against PPARg from Santa Cruz
Biotechnology diluted 1:1,000, against sGCa1 from Sigma diluted 1:500, against
sGCa2 from Abcam diluted 1:250, against sGCb1 from Cayman diluted 1:1,000,
against aP2 from Santa Cruz diluted 1:1,000, against Cytc from Santa Cruz diluted
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1:1,000, against tubulin from Dianova diluted 1:1,000, against b-Actin from Sigma
diluted 1:1,000. Full blots of blot sections are shown in Supplementary Fig. 7.

RNA isolation and gene expression analysis using qRT–PCR. Total RNA was
extracted from tissue or cells using InnuSolv (AnalytikJena). RNA (500 ng) was
reverse-transcribed with the Transcriptor First Strand synthesis kit (Roche) using
random hexamer primers20. qRT–PCR was performed with SYBR-Green (Roche,
Life Technologies) on a HT7900 instrument (Applied Biosystems) or ViiA7
instrument (Applied Biosystems). Using relative quantification methods, fold
changes were calculated with human glyceraldehyde 3-phosphate deydrogenase or
murine hypoxanthine guanine phosphoribosyltransferase as internal controls.
Primer sequences are listed in Supplementary Tables 1 and 2.

Analysis of mitochondrial DNA. Genomic DNA was isolated and qRT–PCR
was performed. The amount of mtDNA was normalized to the amount of chromo-
somal (H19) DNA20. Primer sequences are listed in Supplementary Table 3.

Animal studies. Six-week-old male C57Bl/6J mice were purchased from Charles
River. HFD (60% of calories from fat, D12492) and chow CD (D12450B) were
purchased from Ssniff GmbH, Germany. BAY (300 mg kg� 1) were directly
added to the diet as indicated. Mice were maintained on a daily cycle of 12 h light
(0600–1,800) and 12 h darkness (1,800–0600), at 24±1 �C, and were allowed free
access to diets and water.

During the studies mice were weighed weekly. All animal studies were
conducted according to the German animal welfare law and permitted by the
Landesamt für Natur, Umwelt und Verbraucherschutz (LANUV) Nordrhein-
Westfalen, Germany.

Thermography. Infrared thermography on newborn mice was performed at
ambient temperature using a hand-held infrared camera (IC060, Trotec GmbH),
and images were analysed using the IC-Report software 1.2 (Trotec GmbH)20.

Body composition. Body composition in conscious mice was determined with the
use of a benchtop NMR device Minispec (Bruker Corporation).

Immunohistochemistry. Five-micrometre paraffin-embedded BAT and WAT
sections were incubated with an antibody against UCP1 (Sigma), diluted at 1:50, at
4 �C overnight followed by 1 h incubation with the secondary antibody (SignalStain
Boost IHC, Cell Signaling) at room temperature and visualization using a com-
mercially available DAB kit (Vector Laboratories)19. Haematoxylin was used for
counterstaining. Haematoxylin and eosin staining was performed on 5-mm
paraffin-embedded WATi sections following the standard procedures. Adipocyte
diameter was measured using ImageJ.

Glucose tolerance test. Animals were fasted for 5 h before intraperitoneal
injection of 8 ml g� 1 body weight of a glucose solution (0.25 g ml� 1). Glucose was
measured before and 30, 60, 90 and 120 min post injection in blood drawn from the
tail vein using dip sticks (Roche)19.

Indirect calorimetry. Individual oxygen consumption (VO2) and CO2 production
(VCO2) were measured using a Phenomaster device (TSE systems) at ambient
temperature56. During measurement, mice had ad libitum access to food and water.
The resting metabolic rate was measured at 30 �C, and NE-induced respiration was
measured at 23 �C after subcutaneous injection of 1 mg kg� 1 NE (Arterenol,
Sanofi). Exercise conditions were induced by increasing speed by 2 m min� 1,
starting at a velocity of 8 m min� 1. EE was calculated using the following equation:
EE (kJ h� 1)¼ {4.44þ 1.43� (VO2/VCO2)}�VO2 (ml O2 h� 1)� 360.

Plasma parameters. Insulin was measured using a commercially available ELISA
following the manufacturer’s instructions (Crystal Chem). LDL and TGs were
measured using a Cobas device (Roche).

TG levels in vivo. TGs were measured in minced liver samples using the Free
Glycerol Determination Kit (Sigma) and normalized to wet weight.

Lipid uptake. Mice were fed CD, HFD or HFDþBAY for 8 weeks and intra-
peritoneally injected with 1 mg kg� 1 BAY or vehicle to guarantee high plasma
levels. Lipid uptake into tissues was performed as described previously30. In brief,
radiolabelled triolein was administered by oral gavage. Mice were killed 2 h post
injection and organs were harvested. Radioactivity was counted in solubilized
organs by scintillation counting.

Statistics. Two-tailed Student’s t-tests or analysis of variance with Bonferroni post
hoc tests for multiple comparisons were used where appropriate. P values below

0.05 were considered significant. Statistical analysis was performed with the
GraphPad prism 5 software. All data are represented as mean±s.e.m. The sample
size was chosen based on our previous metabolic studies19,55.
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