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Abstract

Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in
the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To
simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq,
a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in
interacting pro- and eukaryotic cells without prior fixation or physical disruption of the interaction.

Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion
of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential
expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation
sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression).
Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium

host cells.

strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine
percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of
the host, while 75% of all protein-coding loci are represented in the polyadenylated transcriptomes of human

Conclusions: Dual 3'Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the
advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments.
Additionally, the identified expression patterns of both organisms were validated by gRT-PCR using three
independent biological replicates, which confirmed that RELB along with NFKBT and NFKB2 are involved in
the initial immune response of epithelial cells after infection with S. enterica Typhimurium.

Keywords: Dual 3'Seq, deepSuperSAGE, MACE, Tag-based, Simultaneous, Genome-wide, Gene expression
profiling, Host-pathogen interaction, Transcriptome, Salmonella enterica Typhimurium strain SL1344

Background

Interactions between eu- and prokaryotic cells are fre-
quent, multifaceted events ranging from symbiotic syn-
ergy such as symbiotic nitrogen fixation in legumes or
fermentation by gastrointestinal bacteria to pathogenic
interference, for instance, in the course of salmonellosis.
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This interplay of organisms requires mutual signaling
mechanisms and a continuous adaptation of the metab-
olism of the involved cells to varying environmental
conditions. Consequently, programmed expression pat-
terns have to be induced to continuously readjust the
proteome and metabolome of both cell types. The
characterization of corresponding time-dependent ex-
pression patterns allows for a deeper understanding of
the underlying molecular processes, and was the focus
of numerous studies, but until recently gene expression
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profiling emphasized either the host cell or the prokary-
otic transcriptome [1].

Salmonella represents a genus of Gram-negative and
facultative anaerobic enterobacteria and is closely re-
lated to the genus Escherichia. The human-virulent
pathogen is a model organism for characterization of
host-pathogen interactions, and is associated with a
variety of diseases including gastroenteritis and enteric
fever. One of the first attempts to profile genome-wide
expression changes in host cells during interaction of
pro- and eukaryotes was carried out with S. enterica
and human intestinal epithelial cells [2]. Conversely,
the transcriptome of S. enterica became subject to
several studies of host-pathogen interactions after
completion of the genome sequences of S. enterica
serotype Typhi CT18 [3] and serotype Typhimurium
LT2 [4], which complemented some of the previously
determined host responses [5,6]. In the meantime,
next-generation sequencing (NGS)-coupled transcrip-
tion profiling techniques emerged as the principal
tools to interrogate gene expression, and especially
whole transcriptome shotgun sequencing (RNA-Seq)
has considerably contributed to our understanding of
prokaryotic transcriptomes [7,8]. Nonetheless, simul-
taneous transcription profiling without prior disrup-
tion of the interaction remains technically challenging,
and thus characterization of disease-related expression pat-
terns in interacting eu- and prokaryotic cells is inevitably
linked to comprehensive sequencing efforts [9].

Here we present dual 3'Seq, a tag-based, NGS-coupled
method that allows for simultaneous transcription profil-
ing of interacting pro- and eukaryotes without physical
separation of the interacting cells. Compared to RNA-Seq,
the reduction in complexity of tag-based approaches signifi-
cantly decreases the required sequencing depth for a good
coverage of both the pro- and eukaryotic transcriptomes
[10-12], which is a prerequisite for profiling of low abun-
dant pathogen-derived transcripts. Additionally, only a sin-
gle tag is generated out of each transcript, which facilitates
unequivocal quantification of reads from a specific RNA
without sacrificing qualitative information of pathogen-
derived transcripts, since prokaryotes lack alternative spli-
cing events [13]. DeepSuperSAGE (Serial Analysis of Gene
Expression; see [14-16]) and MACE (Massive Analysis of
¢DNA ends; see [17]) represent two established NGS-
coupled transcriptome profiling techniques that generate
exactly one tag out of the 3" end of every transcript. While
deepSuperSAGE yields a 26 nucleotide tag that is specific-
ally located within the 3" end depending on the presence of
an according restriction site for the employed anchoring
enzyme, MACE generates randomly distributed tags out of
the last hundreds of bases. MACE consequently allows for
preparation of libraries with varying read lengths and pro-
vides additional information regarding transcripts that do
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not possess an according restriction site for anchoring. In
order to assess the respective efficiencies in transcriptome
profiling of cultivated and interacting S. enterica Typhimur-
ium and human host cells, we combined the dual 3'Seq
approach with both protocols. Human epithelial cells
(HeLa-S3) were infected with the invasive pathogen
S. enterica Typhimurium SL1344 (henceforth termed
SL1344), and interacting cells were screened for differ-
entially expressed transcripts at several points of time
post infection to provide an overview of the transcriptional
processes during invasion of the intestinal epithelium as
one of the first steps in emerging salmonellosis. The com-
bination of the published SL1344 transcriptome [18] with
the operon structure identified by differential RNA-seq
(dRNA-Seq; see [19]) allowed for accurate quantification of
polycistronically transcribed genes from the prokaryote,
and the corresponding expression profiles provide a basis
for time-dependent analysis of disease-related transcripts,
despite the fact that transcripts from the pathogen are of
extremely low abundance during interaction.

Results and discussion

Dual 3’Seq of interacting pro- and eukaryotes

In order to reduce the sequencing depth for simultan-
eous characterization of the transcriptomes of interact-
ing pro- and eukaryotic cells without prior separation,
we established the new transcriptome profiling tech-
nique dual 3’Seq (Figure 1). We employed this technique
to identify time-dependent transcription patterns of
interacting HeLa-S3 and SL1344 cells subsequent to in-
fection of the host cells. Total RNA from cultured and
interacting cells was isolated after different points of
time to interrogate the molecular events during early,
mid-level and late interaction stages of infection (0.5, 4,
and 24 hours post infection, respectively). The first
interaction point was chosen as early as technically
possible to capture the initial pathogen responses after
invasion of the host cells, while mid-level and late
interaction allow for investigation of the early and late
host cell response as well as intracellular pathogen
replication.

The generated sequencing data from the poly(A)~
fractions comprise between 2.5 and 7.5 million high-
quality and PCR duplicate-free reads, while the number of
reads in the corresponding poly(A)" libraries ranges from
almost 4 million down to ~75,000 reads in the SL1344
library (Figure 2a,b and Additional file 1: Table S1). The
relatively low number of filtered poly(A)" reads from culti-
vated and especially interacting SL1344 cells reflects post-
transcriptional regulation in prokaryotes, where polyadeny-
lation facilitates degradation of RNA [20]. Additionally, the
low abundance of polyadenylated intermediates from the
prokaryote is corroborated by the low ratios of SL1344-
derived transcripts in all interaction stages (<0.2% of all
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Figure 1 Scheme of dual 3'Seq library preparation and bioinformatic processing of the generated sequencing data. (a) Total RNA was size-selected
(Additional file 3) subsequent to DNase | digestion of remaining DNA in the isolate. Following rRNA depletion (Additional file 3), the RNA was split into the
poly(A)" and poly(A)™ fraction by oligo(dT) capture to separate the polyadenylated and functional mRNAs of eukaryotic cells from the non-polyadenylated
transcripts that represent the functional transcriptome of prokaryotes. Ensuing in-vitro polyadenylation of the poly(A)~ fraction, both fractions were
subjected to oligo(dT)-based reverse transcription. The generated cDNA was fragmented according to two established 3' transcriptome profiling
techniques. DeepSuperSAGE tags were generated via cleavage of RNAs by the anchoring enzyme Nilalll and subsequent digestion using EcoP15l, while
MACE involved random fragmentation for generation of tags. 3' fragments were enriched by binding to a streptavidin matrix and ligated to a sequencing
adaptor. Adaptor-ligated fragments were PCR-amplified using GenXPro's TrueQuant technology for PCR-bias free amplification, PAGE-purified, and
sequenced on the lllumina HiSeg2000 platform. (b) Barcoded reads were allocated to their respective library, filtered for PCR-derived reads, and trimmed
for high-quality sequences. Afterwards, reads were annotated to a combined reference comprising the transcriptome and genome sequences of SL1344
and human host cells in a multi-step procedure. Reads uniquely mapped to one of both organisms were combined to three distinct expression matrices
for functional analysis of the poly(A)~ transcriptome from pathogen and host cells as well as the poly(A)" fraction of the host cells. For each expression
matrix, annotated reads were quantified and median-normalized using DESeq, followed by pair-wise, time-dependent comparison of the different
interaction stages. Statistical significance was subsequently corrected for multiple testing according to Benjamini and Hochberg.
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reads), which impedes a functional analysis of this fraction.
Prokaryotic reads in libraries of the poly(A)~ fraction are
about ten times more abundant (~1-2%). Compared to
the ratios of the corresponding poly(A)" libraries, non-
polyadenylated SL1344 reads are about 160-fold, 50-fold
and 10-fold higher from early to late interaction, respect-
ively. This increase in polyadenylated reads during inter-
action suggests an increased turnover of transcripts
probably caused by the growing number of (stressed)
pathogen cells in the confined environment of HeLa
cell culture. Discarding ambiguously annotated poly(A)~
reads that aligned to more than one gene, 4,555 or 89%
of the 5,137 known loci in SL1344 are transcribed in cul-
tivated or interacting cells, while 14,343 or 75% of 19,233
protein-coding loci are represented in the polyadenylated
transcriptomes of human host cells. Over 95% of the

transcripts in human poly(A)* libraries encode proteins,
and mRNAs encoding ribosomal proteins account for a
large proportion of these (Figure 2c). With an mRNA
content ranging from 13% to 20% protein-coding tran-
scripts are much less abundant in the corresponding
poly(A)~ libraries, which mostly comprise small nucleolar
RNAs (snoRNA), small nuclear RNAs (snRNA) and other
non-coding RNAs (ncRNA).

Differential gene expression during interaction

The intersections of unambiguously annotated RNAs
from the poly(A)~ transcriptome of SL1344 cells as
well as both transcriptome fractions of human host
cells reveal distinct overlaps of the expressed genes
(Figure 2d). The four SL1344 libraries comprise ~250
commonly expressed genes, while non-interacting and
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Figure 2 (See legend on next page)
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Figure 2 Annotation statistics for the generated expression matrices and differentially expressed genes of interacting pathogen and host cells.
(a,b) Read numbers annotated to human (green) and pathogen (brown) cells or both (blue) for all sequenced libraries, respectively. The bar
graph shows log;o-transformed numbers, while the original number of reads is depicted in a circle graph. (c) Classification of unambiguously
annotated transcripts from host cells into mRNAs (vermillion), non-coding RNAs (yellow), bivalent transcripts encoding mRNAs and non-coding
RNAs (orange), long non-coding RNAs (purple), histone-encoding mRNAs (reddish purple), and other transcript classes (black) for the poly(A)* and
poly(A)~ transcriptome, respectively. mRNAs encoding cytoplasmic (skyblue) or mitochondrial (blue) ribosomal proteins are depicted individually
for the poly(A)* and combined (bluish green) for the poly(A)~ transcriptome that additionally comprises small nucleolar RNAs (skyblue) and small
nuclear RNAs (blue). Respective abundances are shown for non-interacting (circle graphs) as well as interacting (radial graphs) cells. The different

ordinate, respectively.

interaction stages (early, mid-level, and late interaction) prepared with 3'Seq coupled to deepSuperSAGE (SSage) are depicted from inside
outwards along with the early interaction library that was prepared using MACE (doubled width). (d) Venn diagram showing the number of
commonly expressed genes for all combinations of libraries corresponding to one of the expression matrices. Ambiguously annotated reads are
not included. (e) Pair-wise comparison of differentially expressed transcripts within the expression matrices (black) along with the number of
exclusively expressed transcripts (gray) for each library. Listed are unambiguously annotated reads with a log, fold change stronger than |1.5]
and an FDR-corrected p-value below 0.05. Up- and downregulated transcripts are indicated by corresponding arrows for the library on the

late interacting cells share the highest number with
more than 1,000. Unsurprisingly, cells from early and
mid-level interaction express fewer genes in common
with non-interacting cells than those from the late
interaction stage when infection is well established.
Conversely, the number of commonly expressed genes
in the poly(A)" transcriptome of host cells is highest
between early and mid-level interaction (approxi-
mately 12,000 versus 6,500 common genes in all four
libraries). With 12,350 + 1,300 genes, the numbers of
overlapping genes in the poly(A)~ fraction of host cells
spread notably less than in the poly(A)" fraction,
which suggests a more diverse effect of infection on
the polyadenylated transcriptome of host cells. Al-
though the poly(A)~ fraction of host cells generally
comprises more significantly up and downregulated
transcripts than the poly(A)* fraction (Figure 2e), ex-
pression of polyadenylated transcripts during infection is
more affected, since mRNA degradation naturally leads
to corresponding changes in the non-polyadenylated
transcriptome. In fact, more than 80% of the non-
polyadenylated, significantly differentially expressed
transcripts in all the pairwise comparisons represent
protein-coding mRNAs, even though these RNAs only
constitute up to a fifth of their respective poly(A)~
fractions in total (Figure 2c).

Expression of STM2239 and STMI1015 is non-detectable
except for the transcriptome of early interacting SL1344
cells, while the transcripts encoded by gst, ydiN and
STM1029 are only present in mid-level interaction
(Figure 2e). STM2239 is part of Salmonella pathogen-
icity island 12 (SPI-12), and substantially contributes
to bacterial fitness by promoting transcription of SPI-
12 together with ssrB [21]. STM1015 and STM1029
are both encoded within Gifsy-2, a lambdoid prophage
that promotes virulence in addition to the remnant
phage encoded by SPI-12 [22]. The time-dependent
differential expression of all sequenced genes from
the prokaryote reveals characteristic patterns for each

interaction stage (Figure 3a). The expression of many
SPI-encoded and phage-derived transcripts from the
chromosome as well as plasmid-derived transcripts is
induced or repressed in the course of infection, and
analysis of these disease-related expression patterns
allows for dissolving the time-dependent components
of SL1344 gene expression during different stages of
infection.

Time-dependent expression patterns of the prokaryotic
pathogen
Expression of virulence genes from the pathogen is
tightly regulated, depending on the respective environ-
ment, and the SsrB response regulator of the SsrA/SsrB
two-component system represents one of the major
virulence modulators that controls about 4% of the S.
enterica genome including ssrB itself and genes in vari-
ous SPIs [23]. The first two SL1344 pathogenicity islands
(SPI-1 and SPI-2) encode two distinct classical type III
secretion systems [24]. These systems represent needle-
like structures that inject effector proteins into the cyto-
plasm of host cells, which are necessary for invasion and
subsequent proliferation of the pathogen. Expression of
SPI-2 genes is controlled by the SsrA/SsrB along with the
OmpR/EnvZ and PhoP/PhoQ two-component systems
[25]. The SsrB response regulator, however, exhibits the
most direct effect on SPI-2 expression, and is negatively
controlled by ptsN-encoded EITAN", a component of the
nitrogen-metabolic phosphotransferase system that acts on
the SsrB protein at the post-transcriptional level [26]. In
line with this, ptsN and ssrB display a reciprocal time-
dependent expression (Figure 3b). The ptsN mRNA is most
abundant in non-interacting SL1344 cells, absent during
early interaction, and slightly upregulated in the subsequent
course of infection. Conversely, the transcript encoding
SsrB is most abundant during early interaction, but not de-
tectable in non-interacting cells and mid-level interaction.
Fold changes of transcripts expressed from one
of the three plasmids (pSLTS'3%*, pCol1B9%“3*4, and
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Figure 3 (See legend on next page)
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Figure 3 Differential expression of interacting pathogen cells. (a) Circos plot of SL1344 gene expression for chromosomally-encoded genes as
well as plasmid-derived transcripts. The respective coordinates are given in megabases (outmost gray circle) along with the corresponding log,
fold changes of non-interacting and early interacting, early and mid-level interacting, as well as mid-level and late interacting cells (inner to outer
blue circles, respectively). Salmonella pathogenicity islands (SPIs) are highlighted in orange, while other important loci are shown in green. (b,c)
Detailed time-dependent expression profiles of selected SL1344 genes. The median-normalized transcript abundance is shown for non-interacting
cells along with those from the different interaction stages. PtsN is transcribed as polycistronic mRNA from the chromosome that comprises ten
other genes (yrbG, yrbH, yrbl, yrbK, yhbN, yhbG, rpoN, yhbH, yhbJ, and ptsO). The mRNA encoding pefD and the polycistronic mRNA coding for
repA, tap, and repA3 are both transcribed from intracellular plasmid pSLT*""**. (d) K-means clustering of the time-dependent fold changes from
plasmid-encoded transcripts. The corresponding log; fold changes were assigned to one of four clusters based on their time-dependent expression
patterns. The closest centroid (purple) is shown along with the assigned transcripts (gray) for each cluster. Clustering was performed with Pearson
Correlation as distance metric. An accordingly sorted list of the clustered transcripts is provided in Additional file 2: Table S2.

pRSF1010°“3*%) of non-interacting and early interact-
ing, early and mid-level interacting, as well as mid-
level and late interacting SL1344 cells were subjected
to k-means clustering (k=4) to identify transcripts
with similar time-dependent expression patterns (Figure 3d,
Additional file 2: Table S2). Salmonella virulence plasmids
are very stable and present in low copy numbers (1-2 per
chromosome; see [27]). The generated clusters conse-
quently reflect the temporal contribution of plasmid-
encoded genes to the virulence program of SL1344. Tran-
scripts relevant for invasion of host cells and early adaption
of endocytosed SL1344, for instance, are represented in
cluster II. Upregulation of some of these transcripts from
mid-level to late interaction additionally suggests a function
of the encoded proteins in later stages of infection, and
amongst others this cluster includes the mRNA for
plasmid-encoded fimbriae D (PefD). Cluster III, on the
other hand, comprises transcripts that are especially in-
volved in mid-level interaction. In this cluster, the most
upregulated transcript from early to mid-level interaction
represents a polycistronic mRNA encoding the proteins
RepA, Tap, and RepA3 that are required for plasmid repli-
cation. Transcripts less involved in early or mid-level
interaction, but becoming successively more important
with proceeding invasion and infection of host cells are
represented in cluster IV. Amongst others, this cluster
includes the mRNA encoding plasmid SOS inhibition pro-
tein A (PsiA), and the most downregulated and subse-
quently upregulated mRNA, which encodes a putative
transposase (PSL035). With 54 out of 116, cluster I
comprises almost half of the identified plasmid-encoded
transcripts. However, cluster I also displays the least consist-
ent gene expression pattern. Only four of the 54 transcripts
are also found to be expressed in interacting cells indicating
that those transcripts, which could not reliably be quantified
due to insufficient sequencing depth, were grouped into this
cluster. Figure 3c displays the time-dependent expression
profiles of the mRNAs encoding RepA, Tap, and RepA3 as
well as PefD in more detail. The fimbrial chaperone protein
PefD is involved in the F1-G1 short (FGS)-assisted assembly
of thick rigid mono-adhesive pili, which represent adhesive
organelles necessary for bacterial attachment to target cells

[28]. In line with this, pefD expression is not detectable
in non-interacting cells, highly induced in early inter-
action, and non-detectable during mid-level inter-
action again. The transcript encoding RepA, Tap, and
RepA3, on the other hand, is expressed in non-
interacting cells, completely absent during early inter-
action, highly abundant in the course of intracellular
replication during mid-level interaction, and finally less
abundant in late interaction again.

The identified expression patterns of interacting patho-
gen cells reflect previous reports of infection-related gene
expression and function, which corroborates the potential
of dual 3'Seq to reliably assess the transcriptome of pro-
karyotic cells during interaction, including quantification of
polycistronic transcripts.

Host cell responses to bacterial infection

Innate immune recognition of microbial components re-
lies on germline-encoded pattern-recognition receptors
(PRRs) that recognize pathogen-associated molecular
patterns (PAMPs) of foreign cells such as bacterial lipids,
lipoproteins, proteins, nucleic acids and lipopolysaccha-
rides (LPSs), the constituents of the outer membrane of
Gram-negative bacteria [29]. Toll-like receptors (TLRs)
represent the most important family of membrane-bound
PRRs, and among the ten functional TLRs in humans
TLR4 is unique in its ability to induce two distinct signaling
pathways controlled by the TIRAP-MyD88 and TRAM-
TRIF pairs of adaptor proteins [30]. Binding of bacterial
LPS to MD2 and TLR4 induces TIRAP-MyD88-dependent
signaling at the plasma membrane, and subsequently acti-
vates the TRAM-TRIF pathway after endocytosis of TLR4.
In HeLa cells, however, the genes encoding MD2 as well as
TLR2 are not transcribed [31] and consequently immune
recognition of the pathogen must involve other PRRs.

The mRNAs encoding several members of the Rel/
NE-kB transcription factor and NF-kB inhibitor family
display a marked response in gene expression upon in-
fection (Figure 4a). Especially, the differential expression
patterns of mRNAs encoding inhibitor proteins (IkBs)
point to an increase in IkBs marked for degradation sub-
sequent to activation of the pathway with the onset of
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Binding of bacterial LPS to TLR4 activates two distinct signaling cascades that lead to expression of inflammatory cytokines via activation of the
Rel/NF-kB transcription factor family. Activation of MyD88 results in signal transmission via interleukin-1 receptor-associated kinases (IRAKs) that in
turn activate TRAF6. This part of the signaling pathway, however, is not functional in Hela cells (gray boxes) because of lacking MD2 expression.
TRAF6 signaling results in activation of the kinase TAK1 complex that phosphorylates NEMO (IKK-y), which in turn leads to phosphorylation of the

RIG--like receptors LGP2 (DHX58), RIG-I (DDX58), and MDAS (IFIHT).

inhibitor subunits of NF-kB (IkBs) via canonical IKK-3. Phosphorylated IkBs are degraded by the ubiquitin-dependent pathway, thereby releasing
NF-kB, which subsequently translocates to the nucleus to function as a transcription factor (dashed arrow). TRIF-dependent signaling is also
stimulated via activation of TLR3 by binding of double stranded RNA, and enhances activation of the kinase TAK1 complex by formation of a
multimeric protein signaling complex comprising TRAF6, TRADD, Pellino-1 (PELIT) and RIPT (RIPKT). (b) Differential expression of other cytosolic
PRRs that modulate the NF-kB response by cross-signaling. Nod-like receptors comprise four subfamilies, and expression profiles of the mRNAs
encoding NAIP (NLRB family), NOD1, and NLRC5 (NLRC family) as well as NLRP8 and NLRP11 (NLRP family) are shown along with those from the

infection. Except for a general trend to downregulation
from mid-level to late interaction, expression levels of
transcripts coding for other members of the TLR4 sig-
naling cascade are largely unaffected in the different
interaction stages, which is in line with the fact that
most of the encoded proteins are not degraded or de-
pleted from a cytosolic pool in the context of signal
transmission. Besides TLR3 and TLR7-9 that are exclu-
sively expressed in intracellular vesicles, host cells harbor
additional classes of cytosolic PRRs, including RIG-I-like
receptors (RLRs) and Nod-like receptors (NLRs) [29]. In
contrast to TLRs, RLRs are present in the cytosol of all cell
types, and activation by viral, but also bacterial nucleic
acids results in induced expression of type I interferon
and cytokines [32]. The transcript encoding LGP2
(DHXS58) is strongly upregulated in the first and last in-
fection stage, while its expression is downregulated
from early to mid-level interaction (Figure 4b). The

differential time-dependent expression of this transcript, in
contrast to other RLR-encoding mRNAs as MDA5 (IFIHI)
and RIG-I (DDX58), suggests a pathogen-induced activa-
tion of LGP2 and points to a functional role of the protein
in early and late responses to infection. The NLR family
comprises more than 20 members for recognition of
various PAMPs, and the identified expression profiles of
corresponding mRNAs differ accordingly. The transcript
encoding NAIP displays the strongest upregulation from
non-interacting to early interacting cells, and is additionally
upregulated from mid-level to late interaction. Time-
dependent expression of this mRNA consequently resem-
bles the pattern of DHXS5S8, again suggesting a functional
implication of the encoded protein in response to infection.

Distinct library preparation of the poly(A)* and poly(A)~
fraction by dual 3'Seq allows for discriminating polyadeny-
lated (pri-miRNA) from non-polyadenylated (pre-miRNA)
microRNA (miRNA) precursors. A previous study of the
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SL1344-induced microRNA response of HeLa cells identi-
fied the let-7 family as an important regulator of major cy-
tokines [33]. In line with this, the host gene encoding
miRNA let-7 g (MIRLET7BHG) is expressed strongest in
non-interacting cells and continuously repressed through-
out the interaction stages (data not shown). While the level
of let-7 g pre-miRNA is relatively stable during interaction,
the pri-miRNA abundance is halved with each point of
time post infection. MiR-210 is involved in the response of
human cells to infection with Leishmania major [34], and
the fact that the pri-miRNA encoded by MIR2I0HG is
most abundant during late interaction of human host and
SL1344 cells (3.3-fold upregulated versus mid-level and
2-fold upregulated versus early interaction in log, scale)
suggests an additional role of this miRNA in the context
of bacterial infection. Taken together, deepSuperSAGE-
coupled dual 3'Seq provides insights into host cell re-
sponses to bacterial infection with minimal sequencing
efforts not only for the protein-coding transcriptome, but
also for ncRNAs such as miRNA precursors.

Validation of time-dependent expression patterns and as-
sessment of the quantification accuracy of dual 3'Seq by
quantitative real-time PCR

The identified time-dependent expression patterns from
pathogen and host cells were confirmed by MIQE-conform
qRT-PCR [35] with three independent biological replicates.
GAPD, B2M and RPLI3A served as reference genes for
normalization of the transcript abundances in host cells.
Out of seven previously determined candidate genes for
normalization of prokaryotic transcript abundances nagD,
ndh, rpoD, and trmA exhibited the highest expression sta-
bilities between pools of reverse-transcribed ¢cDNA from
the three biological replicates of each interaction stage as
well as non-interacting cells and between the three distinct
biological replicates of non-interacting cells (Table 1).

The biological variance of 19 target mRNAs involved
in host cell responses to bacterial infection is relatively
small compared to the variance of 20 target transcripts
from the pathogen (Figure 5a). An exact qRT-PCR-based
quantification of prokaryotic transcripts is apparently
impeded by the high Ct values that are associated with

Table 1 Relative expression stabilities of seven candidate
reference genes from prokaryotic cells according to
Bestkeeper, NormFinder, and GeNorm

Evaluation method Candidate reference gene stability*

Bestkeeper trmA, nagD, ndh, rpoD, ygft, rpsO, rpsT
NormFinder rpoD, ndh, nagD, trmA, ygft, rpsO, rpsT
GeNorm trmA/nagD, ndh, rpoD, ygft, rpsO, rpsT

*Gene stability decreasing from left to right; the employed reference genes for
quantification of the time-dependent expression from prokaryotic transcripts
are indicated by bold letters.

Please consult the text for more information.
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the relatively low ratio of pathogen-derived transcripts in
all interaction stages. Clustering of the time-dependent dif-
ferential expression from the 19 human mRNAs either de-
termined by dual 3'Seq coupled to deepSuperSAGE or by
qRT-PCR, on the other hand, reveals a good correlation es-
pecially for the mRNAs encoded by NFKBI, NFKB2,
NFKBIE and RELB (Figure 5b). According to this, the initial
immune response of host cells involves activation of p50
(NFKBI1) and p52 (NFKB2) that act as transcriptional
activators or repressors depending on the respective
dimerization partner, along with I-Rel (RELB), which ex-
hibits the most prominent differential expression of all 19
mRNAs. Since a consistent differential expression of these
mRNAs across all three biological replicates is only present
from early to mid-level and from mid-level to late inter-
action, the initial host cell response to SL1344 infection
seems to occur in between half an hour and four hours post
infection. Principal component analysis of the 19 human
mRNAs demonstrates that the time-dependent differential
expression measured by qRT-PCR of the biological repli-
cates is similar to the respective expression patterns deter-
mined by dual 3'Seq (except for one outlier regarding mid-
level versus late interaction), and allows for discriminating
the different interaction stages from each other (Figure 5c).

Quantification accuracy of dual 3’Seq coupled either to
deepSuperSAGE or alternatively to MACE was assessed
by probe-based qRT-PCR of 23 mRNAs with DNase-
treated and rRNA-depleted total RNA from library
preparation of the early interaction stage. The ratios be-
tween functional mRNAs and their non-polyadenylated
degradation intermediates were determined in one-step
qRT-PCR reactions and plotted against the identified
ratios according to deepSuperSAGE or MACE, respect-
ively (Figure 5d). Even though two of the targets (APOD
and ITGB3) are not present in the sequencing data of
deepSuperSAGE-coupled library preparation, the Pear-
son correlation is better than the correlation of MACE-
based dual 3'Seq (0.68 versus 0.45, respectively). Four
out of the 21 targets captured by deepSuperSAGE ex-
hibit an almost optimal correlation with qRT-PCR, and
especially the transcript encoded by SLC7A11 is found
to be more abundant in the non-polyadenylated tran-
scriptome by both methods.

Conclusions

The identified ratios between human transcripts and
transcripts originating from SL1344 in interacting cells
demand extensive sequencing to sufficiently cover the
transcriptome of interacting pathogen cells without their
prior enrichment. Compared to the eukaryote, reads from
SL1344 exhibit a maximal ratio of 1 to 50. Additionally,
SL1344-derived reads in the poly(A)" fraction are notably
less abundant (between 0.01% and 0.18% of all reads) com-
pared to the corresponding poly(A)~ fraction (with 0.9% up
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Figure 5 Confirmation of time-dependent expression patterns from pathogen as well as host cells and evaluation of dual 3'Seq quantification
accuracy by quantitative real-time PCR. (a) Biological variance of the targeted transcripts across three independent biological replicates. Means
with SD of the ACt values from non-interacting cells (green) and cells from early (vermillion), mid-level (orange) and late interaction (blue) are
shown for 19 mRNAs involved in host cell responsaes to bacterial infection (upper graph) as well as 24 prokaryotic transcripts (lower graph).
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arbitrarily shifted to zero followed by an according normalization of the other values. (b) Heat map of time-dependent log, fold changes and
corresponding AACt values from early and mid-level interacting as well as mid-level and late interacting host cells. The individual expression ratios
determined by gRT-PCR from three biological replicates (QPCR) together with the corresponding ratios identified by deepSuperSAGE (NGS) are
depicted after hierarchical clustering of all samples based on Uncentered Pearson Correlation. Upregulated transcripts are represented in red,
while downregulated transcripts are shown in green. (c) Principal component analysis of the data included in the heat map along with the
corresponding log, fold changes from non-interacting and early interacting cells (green). (d) Scatterplot depicting the relative quantification
accuracy of dual 3'Seq in comparison to probe-based gRT-PCR. The expression ratios of 23 polyadenylated mRNAs and their non-polyadenylated
degradation intermediates in early interacting cells determined either by deepSuperSAGE (SSage) or MACE (y-axis) is plotted against the
respective gRT-PCR-based ratios (x-axis). An optimal correlation is indicated by the diagonal line.

to 2.1%). The latter fraction is crucial for functional analysis  the prokaryote merely represent degradation intermediates.
of differentially expressed transcripts that encode proteins  Distinct library preparation with the poly(A)" and poly(A)~
involved in infection, since polyadenylated transcripts from  fraction of interacting cells via dual 3'Seq preserves the
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relatively high percentages of SL1344-derived transcripts in
the non-polyadenylated fraction of host cells, and conse-
quently permits a more detailed analysis of the functional,
non-polyadenylated prokaryotic transcriptome during inter-
action. In contrast, combined library preparation of both
fractions inevitably leads to a reduced ratio of pathogen
transcripts due to the immense diversity of the polyadeny-
lated host cell transcriptome on the one, and the extremely
small number of polyadenylated intermediates from the
pathogen, on the other hand.

Reciprocal expression of ptsN and ssrB proves that
polycistronic transcripts from the prokaryote were ac-
curately quantified, since ptsN is transcribed as polycis-
tronic mRNA that encodes ten other gene products,
while ssrB is expressed as a monocistronic transcript.
The efficiency of in-silico separation of the two interact-
ing organisms can be assessed through the number of
false positive annotated reads in the libraries of non-
interacting cells (Figure 2b, Additional file 1: Table S1).
Although, the poly(A)" fraction of non-interacting SL1344
cells contains a relatively high percentage of incorrectly
aligned reads (8.3% mapped to the human reference), the
corresponding poly(A)~ fraction only comprises 0.8% of
false positive reads. With 0.03% in the poly(A)* and 0.18%
in the poly(A)~ fraction, libraries from non-interacting host
cells comprise even less incorrectly aligned reads. Thus, the
high ratio of false positive reads in the poly(A)* fraction of
non-interacting SL1344 cells is not representative for the
general efficiency of the employed annotation procedure,
but rather caused by the extremely low coverage of this
library and sequencing of degraded intermediates.

Mapping of 3’ reads with a length of more than 26 nu-
cleotides did not substantially improve the ratio of tran-
scripts that aligned to both the human and the SL1344
transcriptome as can be inferred from the numbers of
reads excluded during multi-step annotation (Figure 2a,
Additional file 1: Table S1). The corresponding percent-
ages of excluded reads from early interaction libraries
prepared either with deepSuperSAGE or MACE are
relatively similar (0.01% vs. 0.03% in the poly(A)”" and
0.15% vs. 0.20% in the poly(A)~ fraction, respectively).
However, generation of tags via deepSuperSAGE de-
pends on the presence of a recognition site for the an-
choring enzyme, while MACE generates a tag out of
every transcript. The comparison of both methods with
qRT-PCR confirms that not all expressed transcripts are
represented in the deepSuperSAGE dataset, but also
that the captured transcripts are quantified accurately
by deepSuperSAGE-coupled dual 3'Seq. Transcriptome
profiling by deepSuperSAGE consequently provides a re-
liable representation of the differential expression from
interacting pro- and eukaryotic cells, but it also involves
a much more elaborate library preparation procedure
compared to MACE. Another advantage of the latter
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technique is its potential to capture the expression of
small ncRNAs, since it does not necessarily involve size-
selection (see Additional file 3). Additionally, MACE can
be adjusted to any desired sequencing length, which al-
lows for identification of alternative polyadenylation sites
in eukaryotes [36].

For functional analysis, the trade-off between sequen-
cing depth and the number of biological replicates for
each condition must be carefully balanced [37]. Conse-
quently, every decrease in the necessary amount of sequen-
cing per sample allows for a more detailed time-dependent
analysis and more biological replicates per condition. Dual
3'Seq employing deepSuperSAGE significantly reduces the
complexity of the involved transcriptomes. Even though the
prokaryotic transcriptome of interacting cells was not com-
pletely covered, our approach provides first insights into
the pathogenicity-related gene expression of SL1344 and
corresponding host cell responses. The time-dependent ex-
pression patterns of SPI and plasmid-encoded transcripts
in interacting SL1344 cells reflect a coordinated activation
of virulence genes in the course of infection, which in turn
elicits corresponding host responses in transcription as ex-
emplarily shown for the signaling cascades leading to ex-
pression of inflammatory cytokines.

Methods

Human cell line and S. enterica strain

Infection assays were carried out with a HeLa-S3 cell
line from LGC standards (ATCC CCL-2.2) to meet the
specifications of the ENCODE project, and the Salmonella
enterica subspecies I serotype Typhimurium strain SL1344
with a chromosomally integrated P:gfp construct (JVS-
3858; see [38]).

Microbiological methods and cell culturing

Culture of HeLa-S3 cells was routinely performed in T-
75 flasks (Corning Inc.) with Dulbecco’s modified Eagle’s
medium (DMEM; Gibco) supplemented with 10% fetal
calf serum (Biochrom), 2 mM L-glutamine (Gibco) and
1 mM sodium pyruvate (Gibco) at 37°C in a humidified
5% CO, atmosphere. For infection assays, cells were
seeded in 6-well plates (Corning Inc.) in a density of
2x10°/well, 2 days prior to infection.

S. enterica Typhimurium SL1344 from a glycerol stock
stored at —80°C was streaked onto Lennox broth (LB)
plates, two days prior to infection of the human host
cells. The plates were incubated overnight at 37°C. The
next day, a single colony was used to inoculate an over-
night culture in 3 ml LB medium. For preparation of the
bacterial inoculum, SL1344 cells were resuspended in
host culture medium (DMEM). Likewise, extracellular
control bacteria were resuspended in DMEM prior to
their lysis and total RNA extraction (mirVana miRNA
Isolation Kit, Ambion).
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Infection assays and harvesting of interacting cells

On the day of infection, host cell density was 1x10°
HeLa-S3 cells per well. Infection assays were performed
as previously described [33], using an MOI of 5. Briefly,
an according concentration of SL1344 cells was added to
each well of pre-seeded HeLa-S3 cells. Subsequently,
plates were centrifuged at 250 x g for 10 minutes in
order to increase the infection efficiency. After 30 mi-
nutes of incubation at 37°C, the medium was replaced
with freshly prepared culture medium containing 50 pg/
ml of gentamicin to eliminate all adhered or suspended
bacteria that did not successfully invade a host cell. Fol-
lowing a second incubation for 30 minutes, the medium
was replaced with culture medium containing 10 pg/ml
gentamicin, and the cells remained in the supplemented
medium during further incubation.

Total RNA was isolated from non-interacting and in-
fected HeLa-S3 cells after several points of time (0.5, 4,
and 24 hours post infection, respectively). Prior to har-
vesting of the cells, all plates were washed with ice-cold
phosphate buffered saline (PBS; Gibco). Then, the cells
were solubilized with 0.25% trypsin (Gibco), subse-
quently washed with 1 ml of fresh culture medium per
well, and centrifuged at 250 x g for 5 minutes. The
obtained pellet was washed once with ice-cold PBS,
followed by another centrifugation at 250 x g for 5 mi-
nutes, and resuspended in lysis buffer (mirVana miRNA
Isolation Kit, Ambion). Cells designated for transcription
profiling of the early interaction were washed with ice-
cold PBS and lysed, immediately after incubation in the
culture medium containing 50 pg/ml gentamicin.

Total RNA isolation and quality control

Isolation of total RNA was performed with the mirVana
miRNA Isolation Kit (Ambion) according to the manu-
facturer’s protocol for isolation of total RNA. The quality
of total RNA was subsequently controlled on the Agilent
2100 Bioanalyzer. Twenty pg of total RNA from each
interaction stage, 15 pg from naive human host cells or
5 pg from extracellular S. enterica Typhimurium, re-
spectively, were subjected to rRNA depletion for subse-
quent library construction (Table 2).

Construction of deepSuperSAGE dual 3'Seq libraries

In general, deepSuperSAGE library preparation was per-
formed according to the high-throughput SuperSAGE
protocol [39,40]. Both the polyadenylated as well as the
non-polyadenylated RNA fraction of a given total RNA
sample were used for construction of dual 3’Seq libraries
to allow for genome-wide transcription profiling of the
host cells and to assess the transcriptome from SL1344
cells. DNA fragments remaining in the total RNA isolate
were digested by DNase I (Baseline-ZERO, Epicentre).
Afterwards, total RNA was size-selected using Agencourt
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AMPure XP beads (Beckman Coulter) to exclude tran-
scripts of less than ~150 nucleotides (Additional file 3).
Ribosomal RNA depletion of the size-selected total RNA
was subsequently carried out with the Ribo-Zero rRNA
Removal Kits (Epicentre) ‘Gram-Negative Bacteria’® and
‘Human/Mouse/Rat’ (Table 2, Additional file 3). Isolates
from infection assays were successively depleted, first with
the kit suited for human total RNA, and then the kit for
Gram-negative bacteria. The size-selected, rRNA-depleted
total RNA was quantitatively precipitated, rehydrated and
hybridized to Dynabeads Oligo dT,5 (Invitrogen) for
enrichment of polyadenylated transcripts. The enriched
fraction was directly eluted from the beads, while the
non-polyadenylated fraction was in vitro polyadenylated
using the Poly(A) Tailing Kit (Ambion) preceded and
followed by quantitative precipitation. The poly(A)*
and poly(A)” RNA fractions were separately subjected
to oligo(dT)-based reverse transcription using Super-
Script III Reverse Transcriptase (Invitrogen) and an an-
chored, 5" biotinylated oligo(dT) primer comprising the
recognition site for EcoP151. 3" ¢cDNA fragments were
enriched through binding to streptavidin-coated para-
magnetic beads (Dynabeads M-270Streptavidin, Invitrogen)
subsequent to cleavage of 5'-CATG sites in the reverse-
transcribed ¢cDNAs by Nlalll (NEB). An adaptor compris-
ing a known barcoding sequence and a second recognition
site of EcoP15I was ligated to the enriched fragments using
T4 DNA Ligase (Fermentas). The adaptor-ligated cDNA
fragments were released from the beads via digestion by
EcoP15I (NEB), end-repaired by KOD DNA Polymerase
(Blunting High Kit, Toyobo), and subsequently ligated to a
second barcoding adaptor using the T4 Ligase reagent pro-
vided with the Ligation high Ver. 2 Kit (Toyobo). Barcoding
sequences of the adaptor-ligated c¢cDNA fragments
were extended during subsequent PCR-amplification
employing Phusion Hot Start High-Fidelity DNA Poly-
merase (Fermentas) according to the manufacturer’s
recommendations to incorporate the respective Illu-
mina sequencing priming sites. Subsequent to PAGE
purification, the amplified cDNA fragments were se-
quenced on the Illumina HiSeq2000 platform with
single-end 50 base pair reads.

Construction of MACE dual 3'Seq libraries

Massive analysis of cDNA ends (MACE) was essentially
performed as previously described [17] with minor ad-
justments for dual 3'Seq. Preparation of total RNA was
performed according to the procedure for preparation of
deepSuperSAGE libraries, including separation of the
polyadenylated from the non-polyadenylated transcripts,
and in vitro polyadenylation of the latter fraction. Subse-
quent oligo(dT)-based reverse transcription of both frac-
tions was performed under identical conditions, except
for the use of an anchored, biotinylated oligo(dT) primer
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Table 2 Summary of the rRNA depletion of total RNA from separately cultivated cells and interaction stages

Cells and interaction stages Input amount of total RNA

Applied Ribo-Zero rRNA Removal Kit(s) No. of reactions

SL1344 5ug

Hela-S3 15 pg
Early interaction® 50 ug
Mid-level Interaction 20 ug
Late Interaction 20 ug

Gram-Negative Bacteria 1

Human/Mouse/Rat 3
Human/Mouse/Rat 10
Gram-Negative Bacteria 2
Human/Mouse/Rat 4

Gram-Negative Bacteria 1
Human/Mouse/Rat 4

Gram-Negative Bacteria 1

*Two fifth of the depleted total RNA from early interacting cells were used for preparation of deepSuperSAGE and MACE libraries, respectively. The remaining fifth

was kept for subsequent qRT-PCR validation.

Total RNA from cultivated HelLa-S3 and SL1344 cells was depleted with the correspondent Ribo-Zero rRNA Removal Kit, while RNA derived from infection assays
was successively treated with both kit versions. The number of reactions for each type of kit reflects the depleted amount of rRNA in prokaryotic or eukaryotic
samples. One reaction is sufficient to deplete 5 pg of the designated input total RNA.

comprising a barcoding sequence instead of a recogni-
tion site for EcoP15I. Reverse-transcribed cDNAs were
random-fragmented (Bioruptor, Diagenode) to an average
size of approximately 200 nucleotides, and subsequently
enriched for 3" fragments through binding to streptavidin-
coated paramagnetic beads (Dynabeads M-270 Streptavidin,
Invitrogen). A second barcoding adaptor was ligated to the
enriched 3" fragments, and the adaptor-ligated cDNA frag-
ments were PCR-amplified, PAGE-purified, and sequenced
as described for deepSuperSAGE libraries.

Construction of the operon-structured SL1344
transcriptome

In order to quantify the expression of polycistronically
transcribed genes from the prokaryote via tag-based li-
brary preparation we combined the operon structure
published by Ramachandran and colleagues [19] with
the SL1344 genome from Kroger and co-workers [18].
The genomic locations of SL1344 transcripts with the
respective operon structure were converted into BED
format and subsequently used to extract the correspond-
ing sequences of all generated entries via BEDtools [41]
from the FASTA file of the genome. For polycistronically
transcribed genes, the genomic sequence from the start
of the first gene to the end of the last gene was extracted
in full, thus generating only one entry for co-transcribed
genes from a single operon in the new transcriptomic
reference file.

Processing of raw sequencing reads

Reads were sorted from bulked sequencing data accord-
ing to respective barcodes. Barcodes and adaptor se-
quences were subsequently clipped from both ends of
the sorted reads, and PCR duplicates identified by True-
Quant were excluded from the datasets. All bases de-
tected as a low quality segment (FASTQ Sanger quality
score below 16) indicated by the special Q2 score were
trimmed from both sides of the reads to reduce false

positive alignments due to poor sequencing results.
Trimmed reads comprising less than 15 nucleotides
were excluded from the datasets to further improve
the reliability of annotation.

Mapping, feature annotation, and quantification of
processed reads

Processed reads were mapped to a combined reference
comprising the operon-structured SL1344 reference tran-
scriptome and the human transcriptome (RefSeq) as well as
genome sequence hgl9 from the UCSC table browser [42].
With respect to the dual 3'Seq approach a multi-step anno-
tation procedure was employed to ensure the most reliable
assignment of reads to the corresponding transcript. For
both techniques, reads were first mapped against the
trimmed transcriptome reference comprising the 3" ends of
all transcribed gene loci. The trimmed reference for deep-
SuperSAGE was generated via in silico digestion of the
transcribed sequences by Nlalll, and comprised 26 base
pair sequences corresponding to the last NlallI site for each
transcript, while the last 800 nucleotides of all transcript se-
quences were used for annotation of MACE reads. Un-
mapped reads were subsequently annotated to the full-
length transcriptome reference. Still unmapped reads were
poly(A)-trimmed and re-mapped to the full-length tran-
scriptome, followed by annotation to the genomes. In each
step reads mapping to the references of both organisms
were excluded from re-annotation. DeepSuperSAGE reads
were annotated with Bowtie allowing two mismatches, but
reporting only those alignments with the lowest number of
mismatches (—v2 -strata -best). MACE reads were mapped
using the short read mapper Novoalign v2.07.13 (Novocraft
Technologies) with default parameter settings.

Median-based normalization

Annotated reads in each library were counted, and sub-
sequently combined to three distinct expression matrices
comprising reads from the poly(A)~ fraction of SL1344
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and human host cells as well as the polyadenylated frac-
tion of the host cells, respectively. The three matrices
were separately processed with DESeq [43]. Briefly, a
normalization factor for each library was calculated as
the median of ratios between the counts in the library
and a pseudo reference, which is defined as the geomet-
ric mean of each gene within all libraries. In comparison
to normalization through conversion of read numbers to
tags per million (TPM), median-normalization accounts
for extreme cases, where a few highly differentially
expressed genes reduce the amount of sequencing reads
for other transcripts exceptionally in one of the com-
pared libraries. It might therefore be interpreted as an
outlier-independent average sample, which is especially
important with respect to the varying amount of pro-
karyotic transcripts in the different interaction stages.

Differential expression and statistical testing

Statistical significance was determined by y* tests based
on the original read count [44], and differential expres-
sion in the course of infection by pair-wise comparison
of the normalized read numbers. For calculation of the
x°—values, original library sizes were adjusted with a
median-based normalization factor for each comparison
to account for potential outliers. The calculated p-values
were subsequently adjusted for multiple testing with the
procedure described by Benjamini and Hochberg [45].
Normalized read counts of zero were adjusted to 0.05 to
allow for calculation of fold changes even if a given tag
was only present in one of the compared libraries.

Evaluation of dual 3'Seq expression ratios of selected
mRNAs and their degradation intermediates by
probe-based gRT-PCR

Quantification accuracy of dual 3’Seq coupled either to
deepSuperSAGE or alternatively to MACE was assessed
with the remaining 10 pg DNase-treated and rRNA-
depleted total RNA from library preparation of the
early interaction stage (see Table 2). The poly(A)" and
poly(A)~ fractions corresponding to 10 pg of original
total RNA were filled up to 100 pul volume, respectively,
to restore the original equilibrium between both frac-
tions. 23 mRNAs previously confirmed as expressed dur-
ing early interaction with at least one of both library
preparation techniques were subsequently quantified by
real-time PCR on the StepOne Real-Time PCR System
(Applied Biosystems). Amplification reactions were car-
ried out in 12 pl volume using the One Step PrimeScript
RT-PCR Kit (Perfect Real Time) from TaKaRa comple-
mented by specific forward and reverse primers in a final
concentration of 200 nM each and a dual-labeled (5" FAM
reporter and 3" BHQ-1, DDQ-1, or TQ2 quencher) probe
in a final concentration of 133 nM (Additional file 4: Table
S3). The equivalent of 100 ng total RNA prior to rRNA
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depletion and fractionation into the poly(A)* and poly(A)”
RNA (one pl out of the 100 pl volume for each fraction)
served as template for each reaction. Initial reverse
transcription, denaturation and subsequent cycling
followed the recommendation of the manufacturer,
with a slightly prolonged annealing and elongation
step. Subsequent to reverse transcription for 5 minutes
at 42°C initial denaturation was performed at 95°C for
10 seconds, followed by 40 cycles of 5 seconds at 95°C
and 30 seconds at 60°C. Target mRNAs were quanti-
fied in triplicates for each template to calculate the
AC;s between the target mRNAs and their degradation
intermediates using arithmetic means. Normalization
using a reference gene was not possible, due to the
varying abundance of degradation intermediates, and
fractionation into the poly(A)" and poly(A)” RNA im-
peded the use of spike-ins for this purpose. For com-
parison of the AC, values with the expression ratios
identified by dual 3’Seq, human reads from the
poly(A)" and poly(A)~ libraries generated with the two
different 3" profiling techniques were separately TPM-
normalized and log,-transformed. The ratios between
the functional, polyadenylated mRNAs and their non-
polyadenylated degradation intermediates were subse-
quently determined analogous to the AC; calculation
employed for qRT-PCR.

Quantitative real-time PCR-based validation of
time-dependent expression profiles determined by

dual 3'Seq using deepSuperSAGE

Time-dependent expression of candidate genes from the
prokaryotic as well as eukaryotic cells was validated
using three independent biological replicates that were
prepared in the same way as described above including
DNase I digestion, but omitting the size selection and
rRNA depletion step. Subsequent to quantification of
total RNA (Qubit, Life Technologies) the isolates were
reverse-transcribed with SuperScript III Reverse Tran-
scriptase (Invitrogen). All amplification reactions were
carried out in 12 pl volume with the 5x HOT MOLPol
EvaGreen qPCR Mix (ROX) from Molegene, comple-
mented by the respective forward and reverse primers in
a final concentration of 250 nM each (Additional file 5:
Table S4). Initial denaturation was performed at 95°C for
15 minutes, followed by 40 cycles of 15 seconds at 95°C,
20 seconds at 65°C and 30 seconds at 72°C. A final
elongation step at 72°C for 5 minutes allowed the poly-
merase to complete all unfinished strands. Subsequently,
a melting curve analysis was performed to verify exclu-
sive amplification of the expected products. Reverse-
transcribed cDNA corresponding to 40 ng total RNA in
each amplification reaction on the StepOne Real-Time PCR
System was used for quantification of the eukaryotic ex-
pression patterns, while the cDNA equivalent of 20 ng total
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RNA from non-interacting pathogen cells and 100 ng total
RNA from interacting pathogen cells served for validation
of the prokaryotic expression profiles.

Relative transcript abundances between the different
points of time were calculated according to the AACt
method using the geometric mean of three and four
(host and pathogen cells, respectively) previously deter-
mined reference genes. All target and reference mRNAs
were quantified in duplicates for all biological replicates,
respectively. The arithmetic mean of each duplicate was
then used to calculate AACt values between the samples.
GAPD, B2M and RPLI13A were employed as reference
genes for normalization of the transcript abundances in
host cells [46], while seven candidate reference genes
from the pathogen were previously screened for their
relative expression stability across the different replicates
and interaction stages according to Bestkeeper [47],
NormFinder [48], and GeNorm [46].

Supporting data

The adaptor-sorted and PCR duplicate-free raw sequencing
data is available at GEO (Accession number: GSE61730)
along with the three expression matrices that contain the
median-normalized values for the respective samples after
full processing of the raw data. Raw read counts are add-
itionally provided for the two libraries generated by MACE.

Additional files

Additional file 1: Table S1. Annotation statistics of dual 3'Seq libraries
prepared with deepSuperSAGE (top) and MACE (bottom). The number of
reads mapped to human, SL1344 or both references in each step of the
sequential annotation procedure is given for sense and antisense (AS)
annotated transcripts, respectively. Pre-processed reads were first annotated
to a trimmed and full-length transcriptome reference, and finally
aligned to the complete genome of both organisms. The number of
reads mapped to intronic/intergenic regions is additionally listed for
the genomic annotation step.

Additional file 2: Table S2. List of clustered, plasmid-encoded transcripts

from SL1344. Gene symbols are listed along with the respective log; fold
changes for each of the four clusters in a separate worksheet.

Additional file 3: Supplementary notes and figures.
Additional file 4: Table S3. List of targeted mRNAs along with the

respective primer and probe sequences used for evaluation of dual 3'Seq
quantification accuracy.

Additional file 5: Table S4. Primer sequences used for qRT-PCR
quantification of selected mRNAs from host and pathogen cells.
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