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Nomenclature

H := {z ∈ C | Im(z) > 0}, the upper half-plane

C the complex plane

D := {z ∈ C | |z| < 1}, the unit disk

Dr := {z ∈ C | |z| < r}, r ∈ (0,∞)

K the field R or C

R the set of real numbers

A(M) the set of functions f : M → C analytic on a domain M ⊆ C

H := {f : H→ H : f schlicht, f(z) = z− c
z
+γ(z), where ∠ limz→∞ z ·γ(z) = 0},

the class of schlicht self-mappings of H with hydrodynamic normalisation

H(T ) := {f : H→ H : f schlicht, f(z) = z− 2T
z

+γ(z), where ∠ limz→∞ z ·γ(z) =

0}, the class of schlicht self-mappings of H with hydrodynamic normalisation
and fixed half-plane capacity

S := {f : D → C : f schlicht, f(0) = 0, f ′(0) = 1}, the class of schlicht
normalised functions

S> := {f : D → D : f schlicht, f(0) = 0, f ′(0) > 0}, the class of schlicht,
bounded, and normalised functions with positive derivative at the origin

S≥ := S> ∪ {0}, the compactification of S>

ST := {f : D → D : f schlicht, f(0) = 0, f ′(0) = e−T}, T > 0, the class of
schlicht, bounded, and normalised functions with fixed derivative at the origin

T := {f : D→ D : f ∈ A(D), f(0) = 0, f ′(0) > 0, Im(f(z)) Im(z) ≥ 0 for all z ∈
D}, the class of analytic, bounded, and normalised typically real functions
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U := {f : D→ D : f schlicht, f(0) = 0, f ′(0) > 0, f has only real coefficients in
its Taylor expansion around 0}, the class of schlicht, bounded, and normalised
functions with real coefficients

R := {f : D→ D : f ∈ A(D), f(0) = 0, f has only real coefficients in its Taylor
expansion around 0}, the class of analytic normalised functions with real co-
efficients

kerA := {x ∈ Zn : Ax = 0}, the kernel of a linear mapping A : Zn → Zm

M o the interior of a set M

S1 := {f : D → D : f schlicht, f(0) = 0}, the class of schlicht, bounded, and
normalised functions

S1(ζ, ω) := {f ∈ S1 : f(ζ) = ω}, the class of schlicht, bounded, and normalised
functions with fixed value at z = ζ, ζ ∈ D



9

Chapter 1

Introduction
and outline of this thesis

Around the turn of the last century, the question of where an analytic function
defined on the unit disc D1 can map points z0 ∈ D was considered for different
classes of such functions2.

A first answer was given in the 19th century, by Hermann Armandus Schwarz, in
what is today known as the Schwarz lemma (see [Boa10] for the interesting history
of this lemma and its name):

Theorem 1.1. Let f : D → D be analytic, with f(0) = 0. Then |f(z)| ≤ |z|
for every z ∈ D, and if equality holds in one z ∈ D, f is a rotation of the Koebe
function, i.e. f(z) = z

(1−ηz)2 with η ∈ ∂D.

Of course, the question of determining the value range of a class of functions
f ∈ A(D) is intrinsically related to the question of the coefficient region of this
class, since f(z) =

∑∞
k=0 akz

k if and only if f (k)(0) = akk!.

Among the most famous questions of this kind is the so-called Bieberbach Conjec-
ture (see [Koe94] for an overview of the history of this conjecture):

Conjecture 1.2 ([Bie16]). Let

f ∈ S := {f : D→ C : f schlicht, f(0) = 0, f ′(0) = 1}
1Since by the Riemann mapping theorem, any simply connected domain Ω which is a proper

subset of C is conformally equivalent to D, we can always limit ourselves to this case.
2For a detailed survey of the history of value ranges see [SS50, Ch. I] or, especially for the

case of bounded functions, [Pro02].



10 CHAPTER 1. INTRODUCTION AND OUTLINE OF THIS THESIS

have Taylor expansion f(z) =
∑∞

k=0 akz
k at the origin. Then

|ak| ≤ k

where strict inequality holds for every n unless f is a rotation of the Koebe function.

The case of k = 2 was proven by Bieberbach himself by applying the area principle
[Gro14]. He did not know about Grönwall’s result and proved it independently in
his paper. He further defined

kn := max{|an| : f(z) = z +
∞∑
j=2

ajz
j, f ∈ S}

(note that this maximum exists since the class S is compact) and tentatively re-
marked: „Vielleicht ist überhaupt kn = n“3.

In the following years, partial results for subclasses of S were proven: Loewner
[Löw17] showed that |ak| ≤ 1 for convex functions f , Nevanlinna [Nev20] proved
the Bieberbach conjecture for starlike functions, Dieudonné [Die31] and Rogosinski
[Rog32] for functions with real coefficients, and Reade [Rea55] for close-to-convex
functions.
The first notable progress in the general question goes back to a revolutionary idea
by Charles Loewner [Löw23], namely, to express schlicht functions as solutions to
a certain differential equation, see chapter 2. Using his method, he was able to
prove that |a3| ≤ 3.

Through Loewner’s equation, it is possible to interpret an optimisation problem
for classes of schlicht functions as the problem of finding a control that steers the
trajectory of a dynamic system to the boundary of its reachable set. Thus, power-
ful tools from the theory of optimal control can be applied to tackle the question
of the value range of functions which can be expressed via the Loewner equation.
In recent years, it became a topic of much interest again after Schramm [Sch00]
introduced the notion of SLE (stochastic or Schramm-Loewner evolution), where
a Brownian motion takes the place of the driving term in Loewner’s equation, and
which has a range of application in statistical physics. Two of the Fields medal re-
cipients of the last years (Werner in 2006 and Smirnov in 2010) have been awarded
for their work in this field.
See also [ABC10] and [BC14] for a survey of the history and ongoing evolution of

3“Perhaps kn = n holds in general”
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Loewner theory.
Large parts of this thesis rely on this technique.

When decades later finally a complete proof of Bieberbach’s conjecture was given
by DeBranges [DeB85] and shortly afterwards a simpler version by FitzGerald and
Pommerenke [FP85], they both relied on Loewner’s results. Both actually proved
the Milin conjecture, which implies the Bieberbach conjecture:

Conjecture 1.3 ([Mil71], proof in [DeB85], [FP85]). Let f ∈ S and define its
logarithmic coefficients ck by

log
f(z)

z
=:

∞∑
k=1

ckz
k.

Then, for n ≥ 1,
n∑
k=1

(n− k + 1)

(
k|ck|2 −

4

k

)
≤ 0.

Another field in the theory of univalent functions was also boosted by Bieberbach’s
conjecture: Garabedian and Schiffer [GS55] proved that the conjecture holds for
the fourth coefficient, i.e. |a4| ≤ 4 by making use of a variation technique4. The
basic idea is very simple: if a function is locally extremal for a real-valued func-
tional, then slight perturbations (or variations) of this function will yield a smaller
value of that functional.
This general idea was already used by Grötzsch [Grö30] and Marty [Mar34], but
the technique could not unfold its full potential until Schiffer [Sch38] developed a
method, his boundary variation, which gives a more systematic approach to con-
structing powerful variation families. He proved that a function that is extremal
in the class S for a real-valued functional satisfies a certain differential equation,
the so-called Schiffer equation.
Goluzin [Gol46] gave a different approach to deriving the same results as Schiffer,
and Schiffer [Sch39], [Sch43] went on to develop his interior variation, which is
based on potential theory.
In general, variational methods yield necessary conditions for functions to be ex-
tremal for a problem. Teichmüller [Tei38] developed a method to prove that these
necessary conditions are sufficient, as well. Since then, Schiffer’s differential equa-
tion has been applied to a wide range of problems for classes of schlicht functions,

4Roth [Rot98, Ch. II.2.2] showed that, in fact, for functions in S, applying the Pontryagin
Maximum Principle to the corresponding Loewner equation is more or less equivalent to using
Schiffer’s equation.
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see [Sch58] for a survey.
The result in Chapter 5 will be mainly based on a variational approach.

In the following, Chapter 2 will give a short overview over one of the most im-
portant techniques used, the Pontryagin Maximum Principle in combination with
Loewner theory, and then introduce complex versions of Pontryagin’s theorem.
Chapter 3 will deal with variants of Rogosinski’s lemma [Rog34] and describe value
sets for bounded functions with interior normalization, i.e. functions D→ D with
certain prescribed Taylor coefficient(s) at z = 0. We will determine the sets

{f(z0) : f ∈ ST},

where

ST := {f : D→ D schlicht, f(0) = 0, f ′(0) = e−T} for T > 0;

the analogue for the inverse functions, and that for typically real (though not
necessarily schlicht) functions, and finally that for functions with real coefficients.
In Chapter 4, we concern ourselves with functions with boundary normalization;
for convenience, we switch from D to the upper half-plane H. We discuss known
results and describe the value sets for symmetric functions.
Chapter 5 discusses value ranges for the derivative of functions from certain classes.
We give a necessary condition for a schlicht function D → D to have extremal
derivative in a point ζ where f(ζ) is fixed.
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Chapter 2

The Pontryagin Maximum Principle

2.1 The PMP and the radial Loewner equation

The Pontryagin maximum principle (or shortly PMP) was developed in the 1950s
by Lev Semyonovich Pontryagin and his group at the Steklov Institute ([Pon78],
cited in [PP09]), although research in the direction was also undertaken in the
United States around the same time (see [PP09] for a historical survey).

We consider a differential equation

ẋ(t) = f(x(t), u(t)) (2.1.1)

and ask for the maximum a functional J can attain over the set of all trajectories
of (2.1.1), i.e. we want to determine

max
x

J(x), where x is a solution to (2.1.1).

The Pontryagin maximum principle then states that for an extremal solution x̃,
i.e.

d

dt
x̃(t) = f(x̃(t), ũ(t)) and max

x
J(x) = J(x̃),

there has to be a so-called adjoint response η̃, i.e. a solution to the equation

η̇(t) = −ηDxf(x̃(t), ũ(t)),

such that the function

H(η̃(t), x̃(t), u(t)) := η̃(t) · f(x̃(t), u(t))

takes its maximum with respect to u at ũ(t) for each t ≥ 0.
Thus, the PMP shifts the problem of finding an extremal trajectory x for J to
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that of finding a driving term u extremal for H, which is often much easier.

Note that the principle only yields a necessary condition for an extremal x; it is
therefore often important to know in the first place that such an optimum exists.
In our setting, we will always deal with continuous functionals and compact sets
so that existence of an extremum is obvious.

Classically, the principle was formulated for problems in Rn, though it has of course
been used in complex settings for decades, especially in connection with the so-
called Loewner differential equation. In his seminal 1923 paper [Löw23], Charles
Loewner (born as Karel or Karl Löwner) introduced his approach to solving the
Bieberbach conjecture and showed that there is a connection between schlicht
functions and control theory. Namely, schlicht functions on D can be approximated
by so-called one-slit functions, that is, functions which map D onto D minus a
simple continuous curve, and slit functions f which fulfil f(0) = 0 and f ′(0) > 0

can be described as solutions to the so-called Loewner differential equation

ḟ(z, t) = −f(z, t)
κ(t)− f(z, t)

κ(t) + f(z, t)
, t ≥ 0, f(z, 0) = z (2.1.2)

where κ : [0,∞)→ ∂D is a measurable function.
Note that the functions w 7→ κ+w

κ−w are the extreme points of the set of Herglotz
functions

P := {p ∈ A(D) : Re p(z) > 0 for z ∈ D, p(0) = 1},

and in fact, general normalised schlicht functions (which do not necessarily map
D onto slit regions) can be expressed as solutions to

ḟ(z, t) = −f(z, t)p(f(z, t), t), f(z, 0) = z, (2.1.3)

where z 7→ p(z, t) ∈ P for almost every t ∈ [0,∞) and t 7→ p(z, t) is measurable
for every z ∈ D, see [Pom75, Th. 6.1].
Denote by M the set of all probability measures on ∂D. Due to the Herglotz
representation [Dur83, section 1.9], we can write p(z, t) for a. e. t ≥ 0 as

p(z, t) = pµt(z) :=

∫
∂D

u+ z

u− z
µt(du), (2.1.4)

for some µt ∈M, i.e., (2.1.3) has the form

ḟ(z, t) = −f(z, t)

∫
∂D

u+ f(z, t)

u− f(z, t)
µt(du), f(z, 0) = z. (2.1.5)
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The reachable set

R := {fT := f(z, T ) : f(z, T ) is a solution to (2.1.3) and T ≥ 0}

of (2.1.3) coincides with the set S> := {f : D→ D : f schlicht, f(0) = 0, f ′(0) >

0}.
Note that for a solution f(z, t) of 2.1.3, f ′(0, t) = e−t holds, and thus

RT = {fT := f(z, T ) : f(z, T ) is a solution to (2.1.3)} =

ST := {f : D→ D univalent, f(0) = 0, f ′(0) = e−T}, T > 0.

The sets RT are obviously compact, but R is not. This is, however, easily remedied
by considering the set S≥ := S> ∪ {0} instead of R: we compactify S≥ by adding
the zero function and keep in mind, when applying the PMP, that the origin might
be a boundary point of the set we want to determine. Every other boundary point
will be in R and thus the PMP can be applied to the trajectory which is steered
into it.

In particular, if one is interested in optimising functionals that evaluate a schlicht
function (or its derivatives) in one point, the problem is equivalent to that of find-
ing an extremal trajectory starting at the given point and being driven by a control
from P .

Roth [Rot98] proved an infinite-dimensional version of the principle, which allows
to consider arbitrary complex differentiable functionals on the sets of holomorphic
functions which can be expressed as reachable sets of a differential equation; how-
ever, for our purposes, a finite-dimensional version will be sufficient.

In the following section we will give the complex versions of the respective real
theorems from [LM86], including a version which includes constraints on the tra-
jectories considered.

2.2 A complex formulation of the Pontryagin
principle

The so-called fixed end time version of the Pontryagin maximum principle on the
reachable set reads as follows:
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Theorem 2.1 ([LM86], Chapter 4, Th. 3). Consider the process in Rn

ẋ = f(x, u) (2.2.1)

with f(x, u) and ∂f
∂x

(x, u) continuous in Rn+m. Let F be the family of all mea-
surable controllers u(t) on 0 ≤ t ≤ T that satisfy the restraint u(t) ⊆ Ω ⊆ Rm

and admit a bound for the response initiating at the point x0. Let u∗(t) have a
response x∗(t) with x∗(T ) in the boundary of the set of attainability RT := {x(T ) :

x is a solution to (2.2.1)}. Then there exists a nontrivial adjoint response η∗(t) of

η̇ = −η∂f
∂x

(x∗(t), u∗(t))

such that the maximal principle obtains, that is,

H(η∗(t), x∗(t), u∗(t)) = M(η∗(t), x∗(t)) almost everywhere.

Furthermore, if u∗(t) is bounded, M(η∗(t), x∗(t)) is constant everywhere.
Here, the Hamiltonian function is

H(η, x, u) := ηf(x, u) = η1f
1(x, u) + · · ·+ ηnf

n(x, u)

and
M(η, x) := max

u∈Ω
H(η, x, u) (wherever it exists).

Note that this can be easily sharpened to the free end time version, the only
difference being a stronger condition on the maximal Hamiltonian (it being zero
a.e. instead of just constant):

Theorem 2.2 (cf. [Lew06], Th. 5.18). Consider the situation of Th. 2.1, but let
u∗(t) have a response x∗(t) with x∗(T ) in the boundary of the free end time set of
attainability RT := ∪0≤t≤TRt. Then there exists a nontrivial adjoint response η̃(t)

of

η̇ = −η∂f
∂x

(x∗(t), u∗(t))

such that the maximal principle obtains, that is,

H(η∗(t), x∗(t), u∗(t)) = M(η∗(t), x∗(t)) almost everywhere.

Furthermore, if u∗(t) is bounded, M(η∗(t), x∗(t)) ≡ 0.
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We formulate the corresponding complex version.
For this purpose, we consider processes

ẇ(t) = F (w(t), κ(t)), w(0) = z0 (2.2.2)

where W is an open subset of Cn, z0 ∈ W , w(t) ∈ W , κ(t) ∈ U ⊆ Cm and
F : W × clU → Cn is continuous on W × U as well as analytic in all components
w1, . . . , wn for any u ∈ clU .
A trajectory of this system is the first component of the pair (w, κ) where κ is
an admissible control, i.e., a measurable function on an interval I ⊆ R such that
t 7→ F (w, κ(t)) is locally integrable for any w ∈ W , and w : I → W satisfies
(2.2.2). We denote by X the set in which admissible controls take their values, i.e.
we have κ(t) ∈ X for every t ∈ [0,∞). For reasons of simplicity and because it is
no restriction in our cases, we will assume that X is compact.
We call

RT := {z ∈ C : z = w(T ) for some trajectory (w, κ) of (2.2.2)}

the reachable set or set of attainability at time T of (2.2.2).

Theorem 2.3. If a control κ∗ is optimal for the process

ẇ = F (w, κ), w(0) = z0

i.e., κ∗ is admissible and the corresponding response w∗ has the property that w∗(T )

is on the boundary of the reachable set RT , then the Hamiltonian H(λ,w, κ) :=

λ · F (w, κ) fulfils

max
κ∈X

ReH(λ∗(t), w∗(t), κ(t)) = ReH(λ∗(t), w∗(t), κ∗(t)) a.e. on [0, T ],

where λ∗ is an adjoint response, i.e. a solution to

λ̇j = − ∂

∂wj
H(λ,w∗, κ∗).

Furthermore, if κ∗ is bounded, then

max
κ∈X

ReH(λ∗(t), w∗(t), κ(t)) ≡ const.

Proof. We write w(t) = x(t)+ iy(t) with x, y : [0, T ]→ Rn and set g := ReF , h :=

ImF . Then (2.2.2) is equivalent to the following system of differential equations
in R2n

ẋj = gj(w, κ),

ẏj = hj(w, κ).
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According to Th. 2.1, if κ∗ is an optimal control, i.e. an admissible control such
that the corresponding trajectory w∗ = (x∗ + iy∗) fulfils w∗(T ) ∈ ∂RT , then there
are adjoint responses η, µ : [0, T ]→ Rn, i.e. functions that fulfil

η̇j = −
n∑
k=1

(
ηk
∂gk
∂xj

+ µk
∂hk
∂xj

)
,

and

µ̇j = −
n∑
k=1

(
ηk
∂gk
∂yj

+ µk
∂hk
∂yj

)
,

respectively, such that the real Hamiltonian

HR(η∗(t),µ∗(t), x∗(t), y∗(t), κ(t)) :=

η∗(t)T · g(x∗(t) + iy∗(t), κ(t)) + µ∗(t)T · h(x∗(t) + iy∗(t), κ(t)) =

=
n∑
j=1

η∗j · gj(w∗, κ) +
n∑
j=1

µ∗j · hj(w∗, κ)

is optimised at κ∗.

Consider the complex functions

λj(t) := ηj(t)− iµj(t), j = 1, . . . , n,

and the complex Hamiltonian

HC(λ(t), w(t), κ(t)) := λ(t) · F (w(t), κ(t)) =
n∑
j=1

ηjgj + µjhj + i (ηjhj − µjgj) .

Firstly, we note that

HR = ReHC.

Furthermore, we obviously have

ẇ =
∂

∂λ
HC,
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and

λ̇j = η̇j − iµ̇j = −
(

∂

∂xj
HR(η, µ, x, y, κ)− i ∂

∂yj
HR(η, µ, x, y, κ)

)
=

= −

(
n∑
k=1

(
ηk
∂gk
∂xj

+ µk
∂hk
∂xj

)
− i

n∑
k=1

(
ηk
∂gk
∂yj

+ µk
∂hk
∂yj

))
=

∗
= −

(
n∑
k=1

(
ηk
∂gk
∂xj

+ µk
∂hk
∂xj

)
− i

n∑
k=1

(
−ηk

∂hk
∂xj

+ µk
∂gk
∂xj

))
=

= −

(
n∑
k=1

(
ηk

(
∂gk
∂xj

+ i
∂hk
∂xj

)
+ µk

(
∂hk
∂xj
− i∂gk

∂xj

)))
=

= − ∂

∂xj

n∑
k=1

(ηkgk + µkhk + i (ηkhk − µkgk))

= − ∂

∂xj
HC(λ,w, κ)

∗
= − ∂

∂wj
HC(λ,w, κ),

where the equalities marked with ∗ follow from the Cauchy-Riemann differential
equations, since each Fk = gk + ihk is by assumption analytic in wj = xj + iyj,
j, k = 1, . . . , n.

If κ∗ is bounded, then so are its real counterparts, and thus

max
κ∈X

ReHC = max
κ∈X

HR ≡ const.

Remark 2.4. For the purposes of the Loewner equation (2.1.2), the driving term
κ : [0,∞) → ∂D can easily be translated to a real driving term φ : [0,∞) → R
via κ(t) = eiφ(t). Note that φ can always be assumed to be bounded, to be precise,
|φ(t)| ≤ π. If κ is continuos, then φ is piece-wise continuous.

Many interesting results in the theory of value ranges can be obtained by deter-
mining the boundary of the reachable set of a differential equation in this way.
However, for some applications a version of Pontryagin’s principle is needed which
deals with optimising a so-called cost functional over the set of trajectories of a
control system with boundary conditions:
Let w : [0, T ]→ Cn fulfil the boundary problem

ẇ = F (w, κ), w(0) ∈ S0, w(T ) ∈ S1, (2.2.3)

where
Sj = Φ−1

j ({0}), j = 0, 1,
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with mappings
Φj : Cn → Ckj ,

which are smooth in the sense of being holomorphic in w1, . . . , wn such thatDΦj(w)

is surjective for each w ∈ Φ−1
j ({0}).

We denote by ∆ the set of admissible κ, with κ(t) ∈ X for all t ∈ (0,∞], which
steer the trajectory w from S0 to S1. Note that the time T at which the trajectory
ends in S1 depends on the control κ.

We are searching for an optimal control κ∗, i.e. a driving term κ∗ ∈ ∆ such that

max
κ∈X

Re

∫ T

0

F0(w(t), κ(t)) dt

is taken for κ∗ and the corresponding response w∗.

We introduce the so-called augmented Hamiltonian

ĤC

(
λ̂(t), ŵ(t), κ(t)

)
:= λ̂(t) · F̂ (κ(t), ŵ(t)),

with the augmented state
ŵ(t) = (w0(t), w(t))T

which is the response to the augmented system

ẇ0(t) = F0(w(t), κ(t)),

ẇj(t) = Fj(w(t), κ(t)) for j = 1, . . . , n.

The function λ̂ is the augmented response, i.e. a nontrivial solution to the aug-
mented adjoint equations

λ̇0(t) = 0,

λ̇j(t) = − ∂

∂wj

n∑
k=1

λk(t)Fk(w(t), κ(t)) for j = 1, . . . , n.

The corresponding real version of the PMP (where the hat denotes the augmented
real Hamiltonian, state and adjoint response) is the following:

Theorem 2.5 ([LM86], Chapter 5, Th. 1). Consider the control process in Rn

ẋ = f(x, u)

with bounded measurable controllers u(t) on various intervals 0 ≤ t ≤ t1 in the
restraint set Ω ⊆ Rm. Let ∆ be all admissible controllers that steer some initial
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point of X0 to a final point in the target set X1. For each u(t) on 0 ≤ t ≤ t1 in ∆

with response x(t) let the cost functional be

C(u) =

∫ t1

0

f 0 (x(t), u(t)) dt.

If u∗(t) on 0 ≤ t ≤ t1 is minimal optimal in ∆, with augmented response x̂∗(t) =

(x0∗(t), x∗(t)), then there exists a nontrivial augmented adjoint response η̂∗(t) =

(η∗0, η
∗(t)) such that

Ĥ(η̂∗(t), x̂∗(t), u∗(t)) = max
u∈Ω

Ĥ(η̂∗(t), x̂∗(t), u(t)) almost everywhere,

and

max
u∈∆

Ĥ(η̂∗(t), x̂∗(t), u(t))) ≡ 0 and η∗0 ≤ 0 everywhere on 0 ≤ t ≤ t∗.

Also if X0 and X1 (or just one of them) are manifolds with tangent spaces T0

and T1 at x∗(0) and x∗(t∗), then η̂∗(t) can be selected to satisfy the transversality
conditions at both ends (or just one end)

η∗(0) orthogonal to T0,

η∗(t∗) orthogonal to T1.

Note that the real version is slightly stronger, since it allows the constraint sets
Xj, j = 0, 1 to be arbitrary real manifolds, while, in the complex case, we restrict
ourselves to a special type of manifold; this is, however, sufficient for our purposes.

We now formulate and prove the complex version:

Theorem 2.6. If κ∗ : [0, T ]→ R is an optimal control for the problem

max
κ∈∆

Re

∫ T

0

F0(w(t), κ(t)) dt,

then there is a non-trivial augmented adjoint response λ̂∗, i.e. a function with the
following properties:

(a) λ̂∗ fulfils the adjoint equation
d

dt
λ̂j(t) =

∂

∂wj
Ĥ(λ̂, ŵ∗, κ∗);

(b) λ∗0 ≥ 0;

(c) Re Ĥ(λ̂∗, ŵ∗, κ∗) = maxκ∈X Re Ĥ(λ̂∗, ŵ∗, κ) for almost every t ∈ [0, T ];
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(d) maxκ∈X ReH(λ̂∗, ŵ∗, κ) ≡ 0;

(e) For ξ ∈ ker (DΦj(w
∗(tj))), we have Re〈λ∗(tj), ξ〉 = 0, for j = 0, 1, with t0 = 0

and t1 = T .

Proof. Again, we state the real version of this problem:
Let

xj := Rewj and yj := Imwj.

Then, according to (2.2.3), x, y : [0, T ]→ Rn are solutions to the boundary problem

ẋ = g(x, y, κ) := ReF (w, κ),

ẏ = h(x, y, κ) := ImF (w, κ),

x(0) + iy(0) ∈ S0,

x(T ) + iy(T ) ∈ S1.

The real augmented system thus has the form

ẋ0 = ReF0(x+ iy, κ),

ẋj = gj(x, y, κ), ẏj = hj(x, y, κ), j = 1, . . . , n.

Theorem 2.5 then states that if κ̃ is optimal for the problem

min
κ∈∆

∫ T

0

g0(w(t), κ(t)) dt, g0 := −ReF0,

which is equivalent to solving

max
κ∈∆

∫ T

0

g0(w(t), κ(t)) dt, g0 := ReF0,

then there are augmented responses, i.e. functions η̂ : [0, T ] → Rn+1, µ : [0, T ] →
Rn which fulfil

η̇0 = 0 and η0 ≤ 0,

η̇j = −
n∑
k=0

(
ηk
∂gk
∂xj

+ µk
∂hk
∂xj

)
,

µ̇j = −
n∑
k=0

(
ηk
∂gk
∂yj

+ µk
∂hk
∂yj

)
, j = 1, . . . , n,
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respectively, such that

ĤR(η̂∗, µ∗, x̂∗, y∗, κ) = −η0g0 +
n∑
j=1

ηjgj + µjhj

is optimised at κ = κ∗.
Set

λ0 := −η0,

λj := ηj − iµj for j = 1, . . . , n

and

HC(λ,w, κ) :=
n∑
j=0

λj · Fj.

Then we obviously have

ẇj =
∂

∂λj
HC,

and

λ̇0 = const .,

as well as

λ̇j = − ∂

∂wj
HC,

as in the proof of 2.3. This proves (a) and (b).

Obviously,

Re ĤC(λ,w, κ) = Re (λ0g0 +HC(λ,w, κ)) = −η0g0 +HR(η, µ, x, y, κ),

and thus, Th. 2.5 immediately yields (c) and (d).

To prove (e), let S = Φ−1{0} with a smooth mapping Φ : Cn → Cm, and let

φ : R2n → Rm, φ(x, y) = Re Φ(x+ iy), x, y ∈ Rn,

ψ : R2n → Rm, ψ(x, y) = Im Φ(x+ iy), x, y ∈ Rn.

Then we have x + iy ∈ S0 if and only if φ(x, y) = 0 and ψ(x, y) = 0, i.e. if (x, y)

lies in the real submanifold SR that is defined by

ΦR(x, y) = 0, where ΦR :=

(
φ

ψ

)
.
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Let ξ = τ + iϑ, τ, ϑ ∈ Rn, be in ker (DΦ(w∗)). This means

0 = DΦ · ξ =

(
n∑
j=1

∂Φk

∂wj
· ξj

)
k=1,...,n

∗
=

(
n∑
j=1

(
∂φk
∂xj

+ i
∂ψk
∂xj

)
· (τj + iϑj)

)
k=1,...,n

=

=

(
n∑
j=1

(
∂φk
∂xj

τj −
∂ψk
∂xj

ϑj + i

(
∂φk
∂xj

ϑj +
∂ψk
∂xj

τj

)))
k=1,...,n

=

∗
=

(
n∑
j=1

(
∂φk
∂xj

τj +
∂φk
∂yj

ϑj + i

(
∂ψk
∂yj

ϑj +
∂ψk
∂xj

τj

)))
k=1,...,n

,

where for the equations marked with ∗, we use the Riemann-Cauchy differential
equations.
Thus, we have

n∑
j=1

(
∂φk
∂xj

τj +
∂φk
∂yj

ϑj

)
= 0

and
n∑
j=1

(
∂ψk
∂xj

τj +
∂ψk
∂yj

ϑj

)
= 0

for each k = 1, . . . ,m. This means that (τ, ϑ) lies in the tangent space to SR at
x∗ + iy∗, and by the transversality condition of Th. 2.5, we can choose η and µ

such that

((η∗)T , (µ∗)T ) ·

(
τ

ϑ

)
= 0.

This is equivalent to

0 =
n∑
j=1

η∗j τj +
n∑
j=1

µ∗jϑj.

Hence, we have

Re < λ∗, ξ > = Reλ∗
T · ξ = Re

n∑
k=1

λ∗jξj = Re
n∑
k=1

(η∗j + iµ∗j)(τj − iϑj) =

= Re
n∑
k=1

(ηjτj + µjϑj + i(ηjϑj − µjτj)) =
n∑
k=1

(ηjτj + µjϑj) = 0.
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Remark 2.7. The fact that the augmented response λ̂∗ is nontrivial can be inter-
preted to mean that

λ∗(0) 6= 0 or λ∗0 = 1,

since λ∗(0) = 0 would imply that λ∗ ≡ 0, and thus necessarily λ∗0 6= 0, and since
the adjoint equations remain valid under multiplication with a fixed positive real
number, we may therefore assume that λ∗0 = 1.
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Chapter 3

Value sets for
bounded functions on D

The Schwarz lemma tells us that an analytic mapping f : D → D with f(0) = 0

must map a point z0 into the disk D|z0|. In 1934, Rogosinki ([Rog32], see also
[Dur83, p. 200]) determined the exact value range for such bounded functions
with additional nomalisation for f ′(0) and showed that

{f(z0) : f : D→ D analytic, f(0) = 0, f ′(0) > 0} = ∆(z0),

where ∆(z0) is the closed region that is bounded by the curves

c1(x) := i|z0|2eix, x ∈ [0, π],

c2(x) :=
x+ i|z0|
1 + ix|z0|

z0, x ∈ [0, 1], and

c3(x) :=
x− i|z0|
1− ix|z0|

z0, x ∈ [0, 1].

Roth and Schleißinger investigated the value set under the additional condition
that f be schlicht, and obtained ([RS14, Th. 1.1]) that

{f(z0) : f : D→ D schlicht, f(0) = 0 , f ′(0) > 0} ∪ {0} =

= {|z|eix ∈ D : dD(0, z)− dD(0, z0) ≤ −| arg z0 − x|, x ∈ R},

where dD denotes the hyperbolic distance in D, i.e.

dD(z, w) := log
1 +

∣∣ z−w
1−zw

∣∣
1−

∣∣ z−w
1−zw

∣∣ .
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Figure 3.1: z0 = −0.75 + 0.6i
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Figure 3.2: z0 = −0.6− 0.17i

The boundaries of the value sets for z0 as determined in the lemmata by Schwarz
(blue), Rogosinski (purple) and Roth/Schleißinger (green)

3.1 Schlicht functions with prescribed
derivative f ′(0)

In the next step, it is quite natural to ask what the sets look like if f ′(0) is fixed,
i.e. f ′(0) = e−T with T > 0. Hence, in the following, we will determine the value
set

VT (z0) = {f(z0) : f ∈ ST}, z0 ∈ D \ {0},

where

ST := {f : D→ D univalent, f(0) = 0, f ′(0) = e−T}, T > 0.

The results in this and the following section are published in [KS16].

Note that Grunsky [Gru39] determined the value set {log f(z)
z

: f ∈ S} by ele-
mentary means, and in [GG76], the authors consider the set

{log(f(z0)/z0) : f : D→ C univalent, f(0) = 0, f ′(0) = 1, |f(z)| ≤M, z ∈ D}

for M > 0. Since f ∈ ST if and only if g := eTf is a schlicht function g : D→ DeT

with g(0) = 0 and g′(0) = 1, see also [Rot99, p. 462], the set VT (z0) can in principle
be derived from their results.
However, we use a different and more straightforward approach to explicitly de-
termine the set VT (z0) by applying Pontryagin’s maximum principle to the radial
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Figure 3.3: The sets {log f(z)
z

: f ∈ S, f(D) ⊆ DM} for different values of M

Loewner equation. Finally, we mention that our results are analogous to the re-
sults of Prokhorov and Samsonova [PS15], who study univalent self-mappings of
the upper half-plane having the so called hydrodynamical normalization at the
boundary point ∞, see chapter 4.

For the sake of simplicity, we may assume that z0 ∈ (0, 1); for other values of z0,
we just consider the function z 7→ ei arg z0f (e−i arg z0z) instead of f .

Theorem 3.1. Let z0 ∈ (0, 1). For x0 ∈ [−1, 1] and T > 0, let r = r(T, x0) be the
(unique) solution to the equation

(1 + x0)(1− z0)2 log(1− r) + (1− x0)(1 + z0)2 log(1 + r)− (1− 2x0z0 + z2
0) log r =

(1 + x0)(1− z0)2 log(1− z0) + (1− x0)(1 + z0)2 log(1 + z0)− (1− 2x0z0 + z2
0) log e−T z0

and let

σ(T, x0) =
2(1− z2

0)
√

1− x2
0

1− 2x0z0 + z2
0

(arctanh z0 − arctanh r(T, x0)) .

Furthermore, for fixed T ≥ 0, define the two curves C+(z0) and C−(z0) by

C±(z0) :=
{
w±(x0) := r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, 1]

}
.

Then, if arctanh z0 <
π
2
, VT (z0) is the closed region whose boundary consists of the

two curves C+(z0) and C−(z0), which only intersect at x0 ∈ {−1, 1}.

For arctanh z0 ≥ π
2
, there are two different cases: First assume that T is large

enough that the equation

2(1− z2
0)
√

1− x2

1 + 2xz0 + z2
0

(arctanh z0 − arctanh r(T, x)) = π (3.1.1)
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admits a solution x ∈ [−1, 1]. Then the curves C+(z0) and C−(z0) intersect more
than twice. There is a χ ∈ (−1, 1) such that C̃+(z0) ∪ C̃−(z0) is a closed Jordan
curve, where

C̃±(z0) := {w±(x0) : x0 ∈ [χ, 1]} ,

and an ℵ ∈ (−1, 1) such that Ĉ+(z0) ∪ Ĉ−(z0) is a closed Jordan curve, where

Ĉ±(z0) := {w±(x0) : x0 ∈ [−1,ℵ]} .

Then VT (z0) is the closed region whose boundary is C̃+(z0) ∪ C̃−(z0) ∪ Ĉ+(z0) ∪
Ĉ−(z0).
For smaller T that do not admit a solution to (3.1.1), the set VT (z0) can be de-
scribed exactly as in the case of arctanh z0 <

π
2
.

Figures 3.4 and 3.5 show the evolution of the sets VT (z0) over time. Note that
arctanh z0 = π

2
⇐⇒ z0 = tanh(π/2) ≈ 0.917.

T=0.2

T=0.7
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T=1.7

T=2.2
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Figure 3.4: VT (0.65)
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Figure 3.5: VT (0.95)

The sets VT (z0) for z0 = 0.65, 0.95 and T = 0.2 + 0.5j, j = 0, 1, . . . , 4, and
T = 3.5. The purple curves show the boundaries of the non-fixed end time sets as

determined by [RS14].

Proof. Since ST is compact, so is VT .
Note that for every f ∈ ST there exists a Herglotz function p(z, t) such that the
solution {ft}t≥0 of (2.1.5) satisfies fT = f ; see [Pom75, Ch. 6].
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Thus the description of VT (z0) can be translated into the control theoretic problem
of describing the reachable set RT (z0) of the initial value problem

ẇ(t) = −w(t) ·
∫
∂D

u+ w(t)

u− w(t)
µt(du), w(0) = z0 ∈ D, (3.1.2)

where µt ∈M is a probability measure on ∂D.
Note that the admissible right-hand sides of this equation form, for each fixed w(t),
a disc whose boundary corresponds exactly to the point measures in M. Every
point in this disc can thus be represented as the convex combination of two points
on the circle, i.e. we can consider instead of the differential equation in (3.1.2) the
Loewner equation

ẇ(t) = −w(t) ·
(
s(t)

κ1(t)− w(t)

κ1(t) + w(t)
+ (1− s(t))κ2(t)− w(t)

κ2(t) + w(t)

)
=: −w(t)p (w(t), κ1(t), κ2(t), s(t)) , (3.1.3)

where κj : [0,∞)→ ∂D, j = 1, 2 and s : [0,∞)→ [0, 1] are measurable functions.
We use the notation X := ∂D× ∂D× [0, 1].
For κ1, κ2 ∈ ∂D, s ∈ [0, 1], λ ∈ C and w ∈ D we define the Hamiltonian
H(λ,w, κ1, κ2, s) by

H(λ,w, κ1, κ2, s) = −λ · w · p(w, κ1, κ2, s).

Then (3.1.3) has the form ẇt = ∂
∂λ
H(λ,w(t), κ1(t), κ2(t), s(t)).

Now, if (κ1, κ2, s) ∈ X leads to an extremal solution w(t), i.e. w(T ) ∈ ∂RT (z0),

then (κ1(t), κ2(t), s(t)), w(t) and λ(t) satisfy Pontryagin’s maximum principle (Th.
2.3): Define λ(t) as the solution to the adjoint differential equation

λ̇(t) = − ∂

∂w
H(λ(t), w(t), κ1(t), κ2(t), s(t)), (3.1.4)

with the initial value condition

λ(0) = eiβ, with some β ∈ [0, 2π).

Then, for almost every t ∈ [0, T ], we have

ReH(λ(t), w(t), κ1(t), κ2(t), s(t)) = max
(k1,k2,σ)∈X

ReH(λ(t), w(t), k1, k2, σ), (3.1.5)

and

ReH(λ(t), w(t), κ1(t), κ2(t), s(t)) = const. for almost all t ∈ [0, T ].
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It is easy to see that ReH(λ(t), w(t), κ1(t), κ2(t), s(t)) is maximised for triples
(κ(t), κ(t), 1), i.e. when

H(λ,w, κ1, κ2, s) = −λ · w · κ+ w

κ− w
for some κ ∈ ∂D. Thus, for almost every t ≥ 0,

H(λ(t), w(t), κ1(t), κ2(t), s(t)) = −λ(t) · w(t) · κ(t) + w(t)

κ(t)− w(t)
,

where κ : [0, T ]→ ∂D is measurable and (3.1.3), (3.1.4) become

ẇ(t) = −w(t) · κ(t) + w(t)

κ(t)− w(t)
, w(0) = z0 ∈ D, (3.1.6)

λ̇(t) = −λ(t) · w(t)2 − 2κ(t)w(t)− κ(t)2

(κ(t)− w(t))2
, λ(0) = eiβ. (3.1.7)

We now optimise the Hamiltonian by rewriting

max
κ∈∂D

Re

(
−wλ · κ+ w

κ− w

)
= max

φ∈R
Re(−λw(m+ reiφ)) = r|λw| −mRe(λw),

where

m =
1 + |w|2

1− |w|2
, r =

2|w|
1− |w|2

, eiφ =
w − |w|2κ
|w|κ− w|w|

.

The maximum is then obviously taken at

φ = π − arg(λw) ⇔ κ =
w

|w|
1 + |w|eiφ

eiφ + |w|
= w

|λ| − λw
|λ||w|2 − λw

. (3.1.8)

Inserting this into the phase equation (3.1.3) yields

ẇ = −w
(
m+ reiφ

)
,

or, in polar coordinates,

d

dt
|w| = −|w|(m+ r cosφ) = −|w|

(
1 + |w|2 − 2|w| cos (arg λ+ argw)

1− |w|2

)
,

(3.1.9)
d

dt
argw = −r sinφ = −2|w| sin (arg λ+ argw)

1− |w|2
, (3.1.10)

and the costate equation (3.1.7) reads

λ̇ = λ

(
m+ reiφ + 2|w| |w|+ eiφ(1 + |w|2) + |w|e2iφ

(1− |w|2)2

)
,
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which corresponds to

d

dt
|λ| = |λ|

(
m+ r cosφ+ 2|w| |w|+ (1 + |w|2) cosφ+ |w| cos 2φ

(1− |w|2)2

)
=

= |λ|1− |w|
4 + 2|w|2 − 4|w| cos (arg λ+ argw) + 2|w|2 cos (2 arg λ+ 2 argw)

(1− |w|2)2
,

d

dt
arg λ = r sinφ+ 2|w| |w| sin(2φ) + (1 + |w|2) sinφ

(1− |w|2)2
=

=
4|w| sin (arg λ+ argw)− 2|w|2 sin (2 arg λ+ 2 argw)

(1− |w|2)2
. (3.1.11)

Now we introduce the variable

x := cos (arg λ+ argw) ,

which reduces our system of equations (3.1.9), (3.1.10), (3.1.11) to

d

dt
|w| = −|w|

(
1 + |w|2 − 2|w|x

1− |w|2

)
(3.1.12)

and

d

dt
x = −2|w|(1− x2)

1 + |w|2 − 2x|w|
(1− |w|2)2

= 2
1− x2

1− |w|2
d|w|
dt

(3.1.13)

with the initial value conditions

|w(0)| = z0, x(0) = x0 := cos β. (3.1.14)

For x2
0 6= 1, separation of variables solves (3.1.13), (3.1.14) as

x(t) = Φ−1 (2 arctanh |w(t)| − 2 arctanh z0) ,

where

Φ(y) := arctanh y − arctanhx0,

which means

x(t) = tanh (2 arctanh |w(t)|+ arctanhx0 − 2 arctanh z0) =

=
(1 + |w(t)|2) (x0 − 2z0 + x0z

2
0) + 2|w(t)| (1− 2x0z0 + z2

0)

(1 + |w(t)|2) (1− 2x0z0 + z2
0) + 2|w(t)| (x0 − 2z0 + x0z2

0)
=

=
(1 + |w(t)|2)A+ 2|w(t)|B
(1 + |w(t)|2)B + 2|w(t)|A

(3.1.15)
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with

A := x0 − 2z0 + x0z
2
0 ,

B := 1− 2x0z0 + z2
0 .

Note that, in fact, the denominator in (3.1.15) never equals zero for any x0 ∈
[−1, 1], since we have

(1 + |w|2)B + 2|w|A = 0 ⇔ |w| = −A
B
±
√
A2 −B2

B

= −A
B
±
√

(x2
0 − 1)(1− z2

0)2)

B
,

which only yields real terms for x2
0 = 1, and in this case the only solution is

|w| = −A
B

= ±1 6∈ (0, 1).

Therefore, (3.1.15) is for all x0 ∈ [−1, 1] the solution to the initial value problem
(3.1.13), and thus (3.1.12) can be simplified to

d

dt
|w(t)| = −|w| B(1− |w|2)

B(1 + |w|2) + 2|w|A
, |w(0)| = z0.

The function

Ψ(y) := (A+B) log(1− y)−B log(y)− (A−B) log(1 + y)

is strictly monotonous on the interval (0, 1), since its derivative is zero-free. Hence
it is invertible, and

|w(t)| = Ψ−1(Bt+ Ψ(z0)),

is the solution to the initial value problem (3.1.12), which can be verified by cal-
culation.
To determine the value set RT (z0), we solve the remaining initial value problem
(3.1.10), which now reads

d

dt
argw(t) = ± 2

√
B2 − A2

B(1 + |w(t)|2) + 2A|w(t)|
, argw(0) = 0.

If we write

argw(t) = −G(|w(t)|),
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where G is the solution to

d

d|w|
G(|w|) =

2
√
B2 − A2

B(1− |w|2)
, G(0) = 0,

then

argw(t) =
±2
√
B2 − A2

B
(arctanh z0 − arctanh |w(t)|) .

We can therefore describe candidates for the boundary points of the set RT (z0) as
follows:
For x0 ∈ [−1, 1], let r = r(T, x0) be the (unique) solution to the equation

(1 + x0)(1− z0)2 log(1− r) + (1− x0)(1 + z0)2 log(1 + r)− (1− 2x0z0 + z2
0) log r =

(1 + x0)(1− z0)2 log(1− z0) + (1− x0)(1 + z0)2 log(1 + z0)− (1− 2x0z0 + z2
0) log e−T z0,

(3.1.16)

then ∂RT (z0) consists of a subset of the two curves

C±(z0) =
{
w±(x0) = r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, 1]

}
,

where

σ(T, x0) =
2(1− z2

0)
√

1− x2
0

1− 2x0z0 + z2
0

(arctanh z0 − arctanh r(T, x0)) .

First we consider the function x0 7→ r(T, x0): By solving (3.1.16) for T and then
taking the derivative with respect to x0, we obtain

∂

∂x0

r(T, x0) = −
(1− z0)2r(T, x0)(1− r2(T, x0))

(
log
(

1+r(T,x0)
1−r(T,x0)

)
− log

(
1+z0
1−z0

))
B(B(1 + r2(T, x0)) + 2A r(T, x0))

,

and since the only zeros of this term lie at r(T, x0) = 0, r(T, x0) = ±1 and
r(T, x0) = z0, this immediately shows that x0 7→ r(T, x0) is strictly increasing.
In particular, the curves C+(z0) and C−(z0) do not touch themselves.

Now we consider the first case where z0 < tanh π
2
. Here, the curves never hit the

negative real axis:
As the function

x0 7→
2(1− z2

0)
√

1− x2
0

1− 2x0z0 + z2
0
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reaches its unique maximal value 2 at x0 = 2z0
1+z20

, we have

σ(T, x0) =
2(1− z2

0)
√

1− x2
0

1 + 2x0z0 + z2
0

(arctanh z0 − arctanh r(T, x0)) < 2 · (π/2− 0) = π.

Thus, they intersect only on the positive real axis and, as σ(T, x0) = 0 if and only
if x0 = ±1, this happens exactly at x0 = ±1. Hence, the full set C+(z0) ∪ C−(z0)

forms the boundary of RT (z0). Since RT (z0) is obviously bounded, it has to consist
of the bounded region enclosed by the two curves.

Next assume that z0 > tanh π
2
. We have

∂

∂x0

σ(T, x0) =− 1− z2
0

B
√

1− x2
0

(arctanh z0 − arctanh r(T, x0)) ·

· A(1 + r(T, x0)2) + 2Br(T, x0)

B(1 + r(T, x0)2) + 2Ar(T, x0)
.

The zeros of this term lie clearly at the points x0 6= 2z0
1+z20

with

r(T, x0) =
−B ±

√
B2 − A2

A
.

Since
−B −

√
B2 − A2

A

{
≥ 1 for x0 <

2z0
1+z20

< 0 for x0 >
2z0

1+z20
,

it is clear that this term can be ignored. We focus on the equality

r(T, x0) =
−B +

√
B2 − A2

A
(3.1.17)

and note that here the term on the right-hand side is well-defined for all x0 ∈
[−1, 1], and strictly decreasing on this interval, taking values between −1 and 1.
Therefore, x0 7→ h(x0) := −B+

√
B2−A2

A
− r(T, x0) is continuous on [−1, 1], strictly

decreasing, and we have h(−1) ≥ 0 and h(1) ≤ 0. Thus (3.1.17) has exactly one
solution x0 = x∗ on [−1, 1], and the function x0 7→ σ(T, x0) increases from 0 to
σ(T, x∗) and decreases again to 0.

If T is so small that equation (3.1.1) has no solution, then we are again in the same
situation: the two curves intersect only twice, namely for x0 = ±1, and RT (z0) is
the closed region bounded by the two curves.
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There is a T ∗ such that (3.1.1) admits a solution, but has no solution for any T <

T ∗. At this T ∗, the curves C±(z0) will meet for the first time, i.e. σ(T ∗, x∗) = π.
This means that at x∗, the curves both touch R− at some point z∗, see Figure 3.6,
and RT (z0) (shown in green) is no longer simply connected, since the component
containing the origin can obviously not be part of RT (z0).

For slightly larger T , the curves C±(z0) intersect on R− twice and D \ (C+(z0) ∪
C−(z0)) has four components, see Figure 3.7. We denote by KT (z0) the component
(shown in orange) that arises from the intersection of the two curves near x0 = x∗.

Obviously, the component that contains the origin, as well as the “exterior” com-

Figure 3.6: VT ∗(z0) Figure 3.7: VT ∗+ε(z0)

The evolution of the decomposition of D by C±(z0)

ponent (both shown in white) cannot be part of RT (z0). For reasons of continuity,
the “large interior” component (shown in green) must belong to RT (z0). It remains
to show that KT (z0) also belongs to RT (z0):
Since z∗ = w(T ∗) for a solution w(t) of the Loewner equation (3.3.10), we know
that RT (z0) contains the set RT−T∗(z

∗), which we determined already if T − T ∗

is small enough. In particular, RT (z0) contains infinitely many points of R−. If
KT (z0) was not included in RT (z0), then RT (z0) ∩ R− would consist of only two
points, a contradiction.
For reasons of continuity, the set RT (z0) will have the form described in the theo-
rem for any larger T as well, and this concludes the proof.

Remark 3.2. If w0 ∈ ∂VT (z0), then there exists exactly one control function κ(t)

such that the solution {ft}t∈[0,T ] of (3.3.1) with p(z, t) = κ(t)+z
κ(t)−z satisfies fT (z0) =
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w0. Equation (3.1.8) shows that κ(t) = exp(iϕ(t)) is continuously differentiable.
From [MR05], Theorem 1.1, it follows that f is a slit mapping in this case, i.e. f
maps D conformally onto D \ γ, where γ is a simple curve.

3.2 Inverse functions

As in [PS15], it might also be of interest to determine the corresponding value sets
for the inverse functions.

Firstly, in analogy to [RS14] and the set V(z0), we describe the set

W(z0) := {f−1(z0) : f ∈ S with z0 ∈ f(D)}.

In the following we write dD(0, z), z ∈ D, for the hyperbolic distance between 0 and
z (using the hyperbolic metric with curvature -1), i.e. dD(0, z) = 2 arctanh(|z|) =

log
(

1+|z|
1−|z|

)
.

Theorem 3.3. We have

W(z0) = {f−1(z0) : f : D→ D univalent, f(0) = 0, f ′(0) > 0 with z0 ∈ f(D)}
= {reiσ : dD(0, r) ≥ |σ|+ dD(0, z0), σ ∈ [−π, π]}.

Figure 3.8: The set W(0.4)

Furthermore, we will determine the value set

WT (z0) := {f−1(z0) : f ∈ ST with z0 ∈ f(D)}

for the inverse functions:



3.2. INVERSE FUNCTIONS 39

Theorem 3.4. Let z0 ∈ (0, 1). For x0 ∈ [−1, 1) and T > 0, let r = r(T, x0) be the
(unique) positive solution to the equation

(1− x0)(1− z0)2 log(1− r) + (1 + x0)(1 + z0)2 log(1 + r)− (1 + 2x0z0 + z2
0) log r =

(1− x0)(1− z0)2 log(1− z0) + (1 + x0)(1 + z0)2 log(1 + z0)− (1 + 2x0z0 + z2
0) log eT z0

and let

σ(T, x0) =
2(1− z2

0)
√

1− x2
0

1 + 2x0z0 + z2
0

(arctanh r(T, x0)− arctanh z0) .

If

T < T ∗ := log
(1 + z0)2

4z0

,

then r(T, x0) can be extended continuously to x0 = 1 and we have WT (z0) =

WT (z0) ⊂ D, and WT (z0) is the closed region bounded by the two curves

D±(z0) :=
{
r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, 1]

}
.

Now let T ≥ T ∗ and define the two curves

D̃±(z0) :=
{
r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, 1)

}
.

Here we have two cases: if T is small enough that D̃+(z0) and D̃−(z0) intersect
only at x0 = −1, then WT (z0) intersects ∂D and WT (z0) is bounded by the two
curves D̃±(z0) and by the part of ∂D between the intersection points with the curves
which includes the point 1.

Otherwise, the two curves intersect on R− for the first time for some x0 = χ ∈
(−1, 1) and WT (z0) is the closed region bounded by ∂D and the two curves

D̂±(z0) :=
{
r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, χ]

}
.

In the last two cases we obtain WT (z0) from WT (z0) = WT (z0) ∩ D.

Proofs of Theorem 3.3 and 3.4. The proof of Theorem 3.4 is analogous to that of
Theorem 3.1: we consider the inverse Loewner equation

ẇ(t) = w(t) · p(w(t), t), w(0) = z0 ∈ D, (3.2.1)

where p(z, t) is a Herglotz function.
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Figure 3.9: WT (0.4) for T = 0.15, T ∗, 0.3, 3.

Here, a solution t 7→ w(t) may not exist for all time, i.e. there might be a tmax > 0

such that w(t) ∈ D for all t < tmax but |w(t)| → 1 for t ↑ tmax. In this case, the
(classical) solution to (3.2.1) ceases to exist at tmax. We define the reachable set

R′T (z0) = {w(T ) : w : [0, T ]→ D solves (3.2.1)}.

Note that we assume here that w(t) exists up to t = T and w(T ) ∈ D.
Then WT (z0) = R′T (z0) is closed in the relative topology on D, and we have

WT (z0) = WT (z0) ∩ D.

Since the only difference to the case RT (z0) consists in the sign of the left hand side
of the Loewner differential equation, we can use the exact same ideas as above:
Equation (3.2.1) reduces to

ẇ(t) = w(t) ·
(
s(t)

κ1(t) + w(t)

κ1(t)− w(t)
+ (1− s(t))κ2(t) + w(t)

κ2(t)− w(t)

)
, w(0) = z0 ∈ D,

(3.2.2)

where κ1, κ2 : [0, T ] → ∂D and s : [0, T ] → [0, 1] are measurable. We describe
the boundary ∂R′T (z0) by applying the maximum principle to (3.2.2). Again, it is
obvious that the Hamiltonian

H ′(λ,w, κ1, κ2, s) = λ · w ·
(
s
κ1 + w

κ1 − w
+ (1− s)κ2 + w

κ2 − w

)
will be optimised at triples (κ, κ, 1), so we only need to consider the Hamiltonian

H ′(λ,w, κ) = λ · w · κ+ w

κ− w
.
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The condition (3.1.8) that is satisfied by trajectories leading to boundary points
now corresponds to

φ = − arg(λw),

which means we have to solve the system of equations

d

dt
|w| = |w|1 + |w|2 + 2|w|x

1− |w|2
, |w(0)| = z0, (3.2.3)

d

dt
x = −2

1− x2

1− |w|2
d|w|
dt

, x(0) =: x0 ∈ [−1, 1].

We are left with

x(t) = ∆−1 (2 arctanh |w(t)| − 2 arctanh z0) ,

where
∆(y) = arctanh x0 − arctanh y,

and thus

x(t) = tanh (arctanhx0 + 2 arctanh z0 − 2 arctanh |w(t)|) =

=
(1 + |w|2)G− 2H|w|
(1 + |w|2)H − 2G|w|

,

where

G := x0 + 2z0 + x0z
2
0 ,

H := 1 + 2x0z0 + z2
0 .

Note that, again, this last term for x is valid for any x0 ∈ [−1, 1].
We hence arrive at

d|w|
dt

=
H|w|(1− |w|2)

H(1 + |w|2)− 2G|w|
,

or

|w(t)| = Θ−1 (−Ht+ Θ(z0))

with
Θ(y) = (H −G) log(1− y)−H log y + (G+H) log(1 + y).

The differential equation for the argument of the optimal trajectory w reads

d

dt
argw(t) = ± 2|w|

√
H2 −G2

(1 + |w|2)H − 2G|w|
,
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which means

argw(t) = ±2
√
H2 −G2

H
(arctanh |w| − arctanh z0) .

We can now describe the sets R′T (z0):
Let x0 ∈ [−1, 1). Then Θ ((0, 1)) = (−∞,∞) and Θ is strictly decreasing. Thus
there is exactly one solution r = r(T, x0) of the equation

(1− x0)(1− z0)2 log(1− r) + (1 + x0)(1 + z0)2 log(1 + r)− (1 + 2x0z0 + z2
0) log r =

(1− x0)(1− z0)2 log(1− z0) + (1 + x0)(1 + z0)2 log(1 + z0)− (1 + 2x0z0 + z2
0) log eT z0.

(3.2.4)

Furthermore we define the two curves

D̃±(z0) :=
{
r(T, x0)e±iσ(T,x0) : x0 ∈ [−1, 1)

}
,

where

σ(T, x0) =
2(1− z2

0)
√

1− x2
0

1 + 2x0z0 + z2
0

(arctanh r(T, x0)− arctanh z0) .

We take a closer look at the absolute value r(T, x0).
Firstly, the function x0 7→ r(T, x0) is strictly increasing:
By solving (3.2.4) for T and then deriving with respect to x0, we can calculate

∂

∂x0

r(T, x0) =
(1− z0)2r(T, x0)(1− r2(T, x0))

(
log
(

1+r(T,x0)
1+z0

)
− log

(
1−r(T,x0)

1−z0

))
H(H(1 + r2(T, x0))− 2G r(T, x0))

,

and since the only zeros of this term lie at r(T, x0) = 0, r(T, x0) = ±1 and
r(T, x0) = z0, this immediately shows that x0 7→ r(T, x0) is strictly increasing in
x0 for T > 0.
Hence, we can define r(T, x0) also for x0 = 1.

Note that for x0 = 1, (3.2.4) simplifies to

2 log(1 + r)− log r = 2 log(1 + z0)− log z0 − T,

which means that the curves D+(z0) and D−(z0) will hit the boundary of the unit
circle for the first time for

T = T ∗ := log
(1 + z0)2

4z0

.
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Next we take a closer look at the behaviour of the argument σ(T, x0) of the curve.
We calculate

∂

∂x0

σ(T, x0) =
2(1− z2

0) (arctanh r(T, x0)− arctanh z0)

H2
·

·

(
2r(T, x0)

√
1− x2

0(1− z2
0)2

(H(1 + r2(T, x0))− 2G r(T, x0))
− G√

1− x2
0

)
.

Since

H(1 + r2(T, x0))− 2G r(T, x0) ≥ 0 for all x0 ∈ (−1, 1), z0 ∈ (0, 1) and r(T, x0) ≥ z0,

the term is non-negative if and only if

2r(T, x0)(1− x2
0)(1− z2

0)2 ≥ (HG(1 + r2(T, x0))− 2G2 r(T, x0)),

or

H(G− 2H · r(T, x0) +G · r2(T, x0)) ≤ 0,

which is equivalent to

H −
√
H2 −G2

G
≤ r(T, x0) ≤ H +

√
H2 −G2

G
(3.2.5)

The inequality to the right always holds, since

H +
√
H2 −G2

G

{
≤ 0 for x0 < − 2z0

1+z20
,

> 1 for x0 > − 2z0
1+z20

,

and of course
0 < r(T, x0) ≤ 1 for all x0 ∈ [−1, 1).

The curves D̃+(z0) and D̃−(z0) can only intersect on R, i.e. σ(T, x0) = k · π.
Obviously, σ(T, x0) ≥ 0 for all x0 so that k ≥ 0 when the two curves intersect.

Next we show that

∂

∂x0

σ(T, x0) > 0 if σ(T, x0) ≥ π. (3.2.6)

We have

log

(
1 +

2H − 2
√
H2 −G2

G−H +
√
H2 −G2

)
≤ 2H − 2

√
H2 −G2

G−H +
√
H2 −G2

≤ πH√
H2 −G2

,
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for
2(H
√
H2 −G2 −H2 +G2) ≤ π(H

√
H2 −G2 −H2 +HG),

and thus

r(T, x0) > tanh

(
πH

2(1− z2
0)
√

1− x2
0

)
≥ H −

√
H2 −G2

G
.

Hence, (3.2.5) is satisfied in this case and ∂
∂x0
σ(T, x0) > 0.

Now we consider the first case T < T ∗ :

Here, r(T, 1) < 1 and σ(T, x0) is defined also for x0 = 1. Furthermore, σ(T,±1) =

0, i.e. the two curves D+(z0) and D−(z0) intersect for x0 = ±1 on the positive
real axis. Assume that the curves intersect more than twice. As σ(T, x0) > 0

for all x0 ∈ (−1, 1) there must be some ρ ∈ (−1, 1) with σ(T, ρ) = π. This is a
contradiction: the function x0 7→ σ(T, x0) is increasing for x0 ∈ [ρ, 1] because of
(3.2.6), but σ(T, 1) = 0. Thus, the two curves don’t intersect for x0 ∈ (−1, 1).

Consequently, the set R′T (z0) is the closed region enclosed by D+(z0) ∪D−(z0).

Next let T = T ∗. Then R′T ∗(z0) is still the closed region bounded by D+(z0) ∪
D−(z0), but R′T ∗(z0) = R′T ∗(z0) \ {1} is not closed anymore.
In passing we note that it is not difficult to show that the solution w(t) of (3.2.2)
with κ(t) ≡ 1 satisfies limt→T ∗ w(t) = 1 and that this case corresponds to a map-
ping f ∈ ST ∗ that maps D onto D minus the slit [z0, 1].

Now let T > T ∗.
It is easy to see that the function Θ, which defines r(T, x0), is strictly decreasing,
and that therefore, for fixed x0, the term r(T, x0) is strictly increasing with growing
T . Thus we know that we still have

r(T, x0)→ 1 for x0 → 1.

The driving function κ(t) ≡ 1 will now generate a mapping from D onto D \ [a, 1]

with a < z0. From this it is easy to deduce that

L(T ) := lim inf
x0→1

σ(T, x0) > 0.

Furthermore, L(T ) is increasing in T ∈ [T ∗,∞): For a point p = eiα ∈ ∂D
the driving function κ(t) ≡ −eiα has the property that −p · κ(t)+p

κ(t)−p = 0. Thus, if
eiα ∈ R′T (z0), then also eiα ∈ R′S(z0) for all S ≥ T.
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If T is so small that L(T ) ≤ π, then the curves D̃±(z0) do not intersect in D a
second time besides x0 = −1 for the same reason as in the case T < T ∗. Here,
R′T (z0) is the closed region which is bounded by D̃+(z0) and D̃−(z0) and the part
of ∂D which includes the point 1.

Finally, let L(T ) > π. The curves D̃±(z0) will meet at x0 = −1, and then intersect
again on the negative real axis before hitting ∂D. Because of (3.2.6) they don’t
intersect more than twice provided that T > T ∗ is small enough. Hence, in this
case, D \ (D̃+(z0) ∪ D̃−(z0)) has three components, see Figure 3.10.

Figure 3.10: The decomposition of D by D̃±(z0)

There is a simply connected component that is bounded by D̂+(z0) ∪ D̂−(z0) and
does not touch ∂D, and two simply connected components that do touch the
boundary ∂D. We denote by W±

T (z0) the components that touch the points +1

(shown in green), or, respectively, −1 (shown in orange). It is clear that R′T (z0)

has to consist of eitherW+
T (z0), orW−

T (z0), or the union of both. If it were equal to
only one of the sets W±

T (z0), this would imply that R′T (z0) is bounded away from
parts of ∂D, although R′t(z0), with some t < T , already touched these segments
of ∂D – a contradiction. Thus, we must have R′T (z0) = W+

T (z0) ∪W−
T (z0), and

thus R′T (z0) is exactly the closed region bounded by ∂D and (in the interior) by
D̂+(z0) ∪ D̂−(z0).
The same consideration applies as well for the case of more than two intersections
of D̃±(z0) with R, and for reasons of continuity, the inner boundary of R′T (z0) has
to consists of D̂+(z0) ∪ D̂−(z0) in these cases, too.

We lastly show that the case where D̃±(z0) intersect for some x0 ∈ (−1, 1) will
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actually happen:
For

x0 = x∗ :=
−2z0

1 + z2
0

,

(3.2.4) reads

log(1 + r) + log(1− r)− log r = log(1 + z0) + log(1− z0)− log z0 − T =: Y ∈ R,

which means

r =

√
4 + e2Y − eY

2
.

Since r
(
T, −2z0

1+z20

)
increases with growing T , and r

(
T, −2z0

1+z20

)
→ 1 for T → ∞, it

will at some point of time T become so large that

arctanh r

(
T,
−2z0

1 + z2
0

)
=
π

2
+ arctanh z0.

Then σ(T, x∗) = 2 ·(arctanh r(T, x∗)−arctanh z0) = π and consequently the curves
D̃±(z0) intersect on R−.

This concludes the proof of Theorem 3.4.

We finally prove Theorem 3.3 by applying the maximum principle to equation
(3.2.1) in the free end time version. We have

W(z0) = {w(T ) : w : [0,∞)→ D solves (3.2.1), T ∈ [0,∞)}.

If w(t) is a solution with w(T ) ∈ ∂W(z0), then we have the same setting as above
and the additional information that

ReH ′(λ(t), w(t), κ1(t), κ2(t), s(t)) = max
(k1,k2,σ)∈X

ReH ′(λ(t), w(t), k1, k2, σ) = 0

for almost all t ∈ [0, T ], see Th. 2.2.

The optimal driving term corresponding to (3.1.8) thus has to fulfil

cosφ = − 2|w|
1 + |w|2

,

which means

x =
−2|w|

1 + |w|2
,
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and thus (3.2.3) becomes

d

dt
|w| = |w|1− |w|

2

1 + |w|2
, |w(0)| = z0,

which is equivalent to

|w(t)| = −1 + z2
0 +

√
(1− z2

0)2 + 4z2
0e

2t

2etz0

.

We have
d

dt
argw(t) = ± 2|w|

1 + |w|2
,

which yields
d

d|w|
argw = ± 2

1− |w|2
,

or
argw = ±2 (arctanh |w| − arctanh z0) = ±(dD(0, |w|)− dD(0, z0)).

Taking into account our results about the sets WT (z0), we conclude that W(z0) =

W(z0)∩D and thatW(z0) is the closed region bounded by ∂D and the hyperbolic
spirals

S±(z0) = {re±iσ : σ = dD(0, r)− dD(0, z0), σ ∈ [0, π]}.

This concludes the proof.

3.3 Schlicht functions with real coefficients

Another way to refine the result in [RS14] is to admit only schlicht normalised
functions having only real coefficients.
We define

U := {f : D→ D : f schlicht, f(0) = 0, f ′(0) > 0,

f has only real coefficients in its Taylor expansion around 0}.

Note that U is not invariant under rotation, i.e. unlike in the sections before, we
must not assume that z0 ∈ (0, 1).

The following result has been proven in [Pro92]. The proof uses Pontryagin’s max-
imum principle, which is applied to the radial Loewner equation.
An elementary proof of the theorem is given in [Pfr16]. For the reader’s conve-
nience, we include the proof that uses Pontryagin’s maximum principle.
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Theorem 3.5 ([Pro92], [Pfr16]). Let z0 ∈ D \ {0}.
If z0 ∈ R, then VU(z0) ∪ {0} is the closed interval with endpoints 0 and z0.
Define the two curves C+(z0) and C−(z0) by

C+(z0) :=

{
1

2z0

(
et(z0 + 1)2 − 2z0 − et/2(z0 + 1)

√
et(z0 + 1)2 − 4z0

)
: t ∈ [0,∞]

}
,

C−(z0) :=

{
1

2z0

(
et(z0 − 1)2 + 2z0 + et/2(z0 − 1)

√
et(z0 − 1)2 + 4z0

)
: t ∈ [0,∞]

}
.

If z0 6∈ R, then VU(z0) ∪ {0} is the closed region whose boundary consists of the
two curves C+(z0) and C−(z0), which only intersect at t ∈ {0,∞}.

Furthermore, for z0 6∈ R, any boundary point of VU(z0) except 0 can be reached by
only one mapping f ∈ U , which is of the form

f1,t(z) =
1

2z
(et(z + 1)2 − 2z − et/2(z + 1)

√
et(z + 1)2 − 4z)

or
f2,t(z) =

1

2z
(et(z − 1)2 + 2z + et/2(z − 1)

√
et(z − 1)2 + 4z)

with t ∈ [0,∞).
The mapping f1,t maps D onto D \ [2et− 1− 2et/2

√
et − 1, 1] and f2,t maps D onto

D \ [−1,−2et + 1 + 2et/2
√
et − 1].

Proof of Theorem 3.5. As in the proof of Th. 3.1, we consider the radial Loewner
equation

ḟt(z) = −ft(z) · p(ft(z), t) for a.e. t ≥ 0, f0(z) = z ∈ D, (3.3.1)

with a Herglotz function p : [0,∞)×D→ C and note that for almost every t ≥ 0,
we have the Herglotz representation

p(t, z) =

∫
∂D

u+ z

u− z
νt(du), (3.3.2)

for some probability measure νt on ∂D.

If f ∈ U , then one can find a corresponding p(z, t) such that, for a.e. t ≥ 0, the
measure νt is symmetric with respect to the real axis and one can rewrite (3.3.2)
as

p(z, t) = pµt(z) :=

∫
∂D

1/2
u+ z

u− z
+1/2

u+ z

u− z
µt(du) =

∫
∂D

1− z2

1− 2zRe(u) + z2
µt(du).

(3.3.3)
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This is clear if f maps onto D minus two symmetric slits (µt is a point measure
for every t ≥ 0 in this case), and a general f ∈ U can always be approximated by
such slit mappings, see Chapter I.3.8 in [Tam78].

Thus we have to determine the reachable set of the initial value problem

ẇ(t) = −w(t) · pµt(w(t)), w(0) = z0 ∈ D, (3.3.4)

where pµt(z) is a Herglotz function of the form (3.3.3) for a.e. t ≥ 0.

For z0 ∈ R it is easy to see that w(t) ∈ R and that the reachable set is the closed
interval with endpoints 0 and z0. In the following, assume z0 6∈ R.

It is easy to see that the right-hand sides of (3.3.4) form the convex hull of a circle
segment, and that thus any point in this set can be represented as the convex
combination of two point on the circle segment, i.e. the differential equation from
(3.3.4) becomes

ẇ(t) = −w(t)

(
s(t)

1− w2(t)

1− 2w(t) Reκ1(t) + w2(t)
+ (1− s(t)) 1− w2(t)

1− 2w(t) Reκ2(t) + w2(t)

)
=: −w(t)p(w(t), κ1(t), κ2(t), s(t)), (3.3.5)

where κj : [0,∞)→ ∂D, j = 1, 2 and s : [0,∞)→ [0, 1] are measurable functions.
Again, we set X := ∂D× ∂D× [0, 1].
For κ1, κ2 ∈ ∂D, s ∈ [0, 1], λ ∈ C and w ∈ D we define the Hamiltonian
H(λ,w, κ1, κ2, s) by

H(λ,w, κ1, κ2, s) := −λ · w · p(w, κ1, κ2, s)).

Then (3.3.5) has the form ẇt = ∂
∂λ
H(λ,w, κ1, κ2, s).

Now, if (κ1(t), κ2(t), s(t)) ∈ X leads to an extremal solution w(t), i.e. w(T ) ∈
∂VU(z0), then (κ1(t), κ2(t), s(t)), w(t) and λ(t) satisfy Pontryagin’s maximum prin-
ciple, Th. 2.3:
Define λ(t) as the solution to the adjoint differential equation

λ̇(t) = − ∂

∂w
H(λ(t), w(t), κ1(t), κ2(t), s(t)), (3.3.6)

with the initial value condition

λ(0) = eiβ, with some β ∈ [0, 2π).
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Then, for almost every t ∈ [0, T ], we have

ReH(λ(t), w(t), κ1(t), κ2(t), s(t)) = max
(k1,k2,σ)∈X

ReH(λ(t), w(t), k1, k2, σ), (3.3.7)

and

ReH(λ(t), w(t), κ1(t), κ2(t), s(t)) = 0. for almost all t ∈ [0, T ]. (3.3.8)

From (3.3.2) it is easy to see that ReH(λ(t), w(t), k1, k2, s) is maximised only if
k1 = k2 and s = 1, i.e. if

H(λ,w, k1, k2, σ) = λ
w(w2 − 1)

1− 2wx+ w2
(3.3.9)

for some x ∈ [−1, 1]. Thus, for almost every t ≥ 0,

H(λ(t), w(t), κ1(t), κ2(t), s(t)) = λ(t)
w(t)(w(t)2 − 1)

1− 2w(t)κ(t) + w(t)2
,

where κ : [0, T ]→ [−1, 1] is measurable and (3.3.4) becomes

ẇ(t) =
w(t)(w(t)2 − 1)

1− 2w(t)κ(t) + w(t)2
, w(0) = z0 ∈ D. (3.3.10)

For x ∈ [−1, 1], expression (3.3.9) describes a circular arc, provided that w 6∈ R.
As we assumed z0 6∈ R, we have w(t) 6∈ R for any solution of (3.3.10).
For x→ ±∞, (3.3.9) goes to 0. Hence, (3.3.7) and (3.3.8) can only be satisfied if
one of the endpoints of the circular arc lies on the imaginary axis, which implies
κ(t) = 1 or κ(t) = −1 for a.e. t ≥ 0. As the circular arc varies continuously with
t, it follows that κ(t) = 1 for almost all t ≥ 0 or κ(t) = −1 for almost all t ≥ 0.
Solving (3.3.10) for these two cases leads directly to the two curves C±(z0). The
corresponding univalent mappings are given by f1,t and f2,t.

Finally we show that the two curves intersect only for t = s = 0 when z0 6∈ R:
The equality

f1,t(z0) = f2,s(z0)

for s, t ∈ [0,∞) gives

et = es
1 + 2z0 + z2

0

1− 2z0 + z2
0

− 4z0

1− 2z0 + z2
0

.

Both sides of the equation describe a half-line in the complex plane which always
intersect at t = s = 0.

It is clear that for z0 ∈ D \ R there are no further solutions, because 1+2z0+z20
1−2z0+z20

6∈ R
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as a small computation shows:
Write z0 = x + iy ∈ D with y 6= 0. Then Im

(
1+2z0+z20
1−2z0+z20

)
= 0 if and only if

y − x2y − y3 = 0, i.e. x2 = 1 − y2. Thus z0 ∈ ∂D, a contradiction. Hence,
VU(z0)∪{0} is the closed region whose boundary consists of the two curves C+(z0)

and C−(z0).

Finally, if z0 6∈ R, it follows that any boundary point of VU(z0) except 0 and z0

can be reached only by the driving function κ(t) ≡ 1 or κ(t) ≡ −1, i.e. z0 can
be reached by only one mapping from U which is of the form f1,t or f2,t for some
t > 0.

The value set for the inverse functions can be obtained quite similarly:

Theorem 3.6. Let z0 ∈ D \ {0} and define

V ∗U (z0) = {f−1(z0) | f ∈ U , z0 ∈ f(D)}.

If z0 ∈ (0, 1), then V ∗U (z0) = [z0, 1), and if z0 ∈ (−1, 0), then V ∗U (z0) = (−1, z0].
Define the two curves C∗+(z0) and C∗−(z0) by

C∗+(z0) :=

{
1

2z0

(
et(z0 + 1)2 − 2z0 − et/2(z0 + 1)

√
et(z0 + 1)2 − 4z0

)
: t ∈ [−∞, 0]

}
,

C∗−(z0) :=

{
1

2z0

(
et(z0 − 1)2 + 2z0 + et/2(z0 − 1)

√
et(z0 − 1)2 + 4z0

)
: t ∈ [−∞, 0]

}
.

Now let Im(z0) > 0. Then VU(z0) is the closed region bounded by the curves C+(z0),
C−(z0) and E := ∂D ∩H. The set VU(z0) is given by VU(z0) = VU(z0) \ E.

Again, it suggests itself to ask what the sets look like if we fix the derivative f ′(0),
i.e. for τ ∈ (0, 1], let

U(τ) = {f ∈ U : f ′(0) = τ}.

The value sets VU(τ) are described in [PS16].
Figure 3.11 shows the set VU(z0) (orange), which lies inside the heart-shaped set
VS>(z0) (blue) that is determined in [RS14], and the set V ∗U (z0) (red, dashed) for
z0 = 0.9eiπ/4.
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Figure 3.11: VU(0.9eiπ/4)

3.4 Typically real functions

Following Rogosinski [Rog32], a holomorphic (not necessarily schlicht) mapping
f : D→ C is called typically real if

Im(f(z)) Im(z) ≥ 0 for all z ∈ D.

We define the set of bounded typically real functions

T := {f : D→ D : f typically real, f(0) = 0, f ′(0) > 0}.

Obviously, U ⊂ T .

We will determine the set

VT (z0) := {f(z0) : f ∈ T }

as well as the sets

VT (τ)(z0) := {f(z0) : f ∈ T (τ)}, τ ∈ (0, 1],

where T (τ) := {f ∈ T : f ′(0) = τ}.

The results in this and the remaining sections of chapter 3 can be found in [KS17].
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From Rogosinski’s work one immediately obtains an integral representation for
typically real mappings, see also [Rob35], Section 2. In order to determine the
value region VT (z0), we will need the following integral representation for bounded
typically real mappings.

Theorem 3.7 ([SS82], Theorem 2.2). Let f ∈ T with f ′(0) = τ > 0. Then there
exists a probability measure µ supported on

B := {(x, y) ∈ R2 : −1 ≤ x ≤ 2τ − 1 ≤ y ≤ 1}

such that

f(z) =

√
gµ,τ (z)− 1√
gµ,τ (z) + 1

,

where we take the holomorphic branch of the square root with
√

1 = 1 and

gµ,τ (z) =

∫
B

(1 + z)2(1− 2(1− 2τ + x+ y)z + z2)

(1− 2xz + z2)(1− 2yz + z2)
µ(dxdy).

Remark 3.8. In order to show U ( T we find a function f0 ∈ T \ U as follows:
Let τ = 1/2 and let µ be the point measure in (τ − 1, τ). Then we obtain

f0(z) =

√
((1 + z)2(1 + z2))/(1 + z2 + z4)− 1√
((1 + z)2(1 + z2))/(1 + z2 + z4) + 1

.

The derivative f ′0(z) has a zero at z = −(1/4)+(i
√

3)/4+1/2
√
−(9/2)− (i

√
3)/2 ∈

D. Hence, f0 6∈ U .

Theorem 3.9. Let z0 ∈ D \ {0} and τ ∈ (0, 1].

The set VT (τ)(z0) is the image of the closed region bounded by the two circular arcs{
1 +

4τz0

1− 2yz0 + z2
0

: y ∈ [2τ − 1, 1]

}
and {

(z0 + 1)2(1 + z0(−4 + 4τ − 2x+ z0))

(z0 − 1)2(1− 2xz0 + z2
0)

: x ∈ [−1, 2τ − 1]

}
under the map w 7→

√
w−1√
w+1

.

Proof. Fix some τ > 0. First we show that the set

A(τ) := {gµ,τ (z0) |µ is a point measure on B}

is convex. To this end, we evaluate the function

(x, y) 7→ s(x, y) :=
(1 + z)2(1− 2(1− 2τ + x+ y)z + z2)

(1− 2xz + z2)(1− 2yz + z2)

on ∂B :
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(i) s(x, y) = (1+z0)2

(z0+1)2−4τz0
when x = 2τ − 1.

(ii) s(x, y) = (1+z0)2

(z0+1)2−4τz0
when y = 2τ − 1.

(iii) s(x, y) = 1 + 4τz0
1−2yz0+z20

when x = −1.

(iv) s(x, y) = (z0+1)2(1+z0(−4+4τ−2x+z0))

(z0−1)2(1−2xz0+z20)
when y = 1.

We see that s(∂B) consists of two circular arcs connecting the points

P (τ) =
(1 + z0)2

(1 + z0)2 − 4τz0

and Q(τ) = 1 +
4τz0

1− 2z0 + z2
0

, (3.4.1)

and the two arcs are given by

s1,τ : [2τ − 1, 1]→ C, s1,τ (y) := 1 +
4τz0

1− 2yz0 + z2
0

,

s2,τ : [−1, 2τ − 1]→ C, s2,τ (x) :=
(z0 + 1)2(1 + z0(−4 + 4τ − 2x+ z0))

(z0 − 1)2(1− 2xz0 + z2
0)

.

Without loss of generality, we restrict to the case Im(z0) ≥ 0.

A short calculations shows that then

d

dy
arg

d

dy
s(x, y) = 4 Im z0

1− |z0|2

|1− 2yz0 + z2
0 |2
≥ 0,

d

dx
arg

d

dx
s(x, y) = 4 Im z0

1− |z0|2

|1− 2xz0 + z2
0 |2
≥ 0.

Furthermore, we have

sx(x, y) :=
d

dx
s(x, y) =

4(2τ − 1− y)z2(1 + z)2

(1− 2xz + z2)2(1− 2yz + z2)
,

sy(x, y) :=
d

dy
s(x, y) =

4(2τ − 1− x)z2(1 + z)2

(1− 2yz + z2)2(1− 2xz + z2)
,

and thus

Im
sx(x, y)

sy(x, y)
=

2(y − (2τ − 1))

2τ − 1− x
1− |z|2

|1− 2xz + z2|2
Im(z) · (y − x) ≥ 0 (3.4.2)

for all (x, y) ∈ B.
This shows that any parallel to either the x- or the y-axis within B is mapped
onto a convex curve, and that whenever we map a path that points inwards in B,
the image also lies in the interior of s(∂B). Therefore, the convex closure of A(τ)
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is equal to the set W (τ) defined as the compact region bounded by the curves s1,τ

and s2,τ .
From Theorem 3.7 it follows that VT (τ)(z0) is the image of

K(τ) := {gµ,τ (z0) : µ is a probability measure on B}

under the map w 7→
√
w−1√
w+1

. The set K(τ) is the closure of the convex hull of A(τ),

i.e. K(τ) = W (τ), which concludes the proof.

Figures 3.12 and 3.13 show the sets VT (τ)(z0).
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Figure 3.12: VT (τ)(−0.7i).
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Figure 3.13: VT (τ)(0.9e
iπ
4 ).

The sets VT (τ)(z0) for z0 = −0.7i, 0.9ei
π
4 and several values of τ . The solid purple

curves show the boundaries of the sets VT (z0); the dashed purple lines are the
boundaries of the set determined by [RS14].

Corollary 3.10. Let z0 ∈ D \ {0}. Then VT (z0) = VU(z0).

Furthermore, if z0 6∈ R, then each w ∈ ∂VT (z0) except 0 can be reached by only
one mapping f ∈ T , which is of the form f1,t or f2,t from Theorem 3.5.

Proof. Again, we denote by W (τ) the image of VT (τ)(z0) under the map z 7→
(1 + z)2/(1 − z)2, the inverse function of w 7→

√
w−1√
w+1

, which is the convex region
bounded by the circular arcs s1,τ (y), y ∈ [2τ − 1, 1], and s2,τ (x), x ∈ [−1, 2τ − 1].

Consider the convex region R bounded by the circular arc

C := {P (τ) : τ ∈ [0, 1]} and the line segment L := {Q(τ) : τ ∈ [0, 1]} , (3.4.3)
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where Q(τ) and P (τ) are defined as in (3.4.1).

Fix τ ∈ (0, 1]. To show that W (τ) is contained in R, assume the opposite. Then
the boundary of W (τ) has to intersect either C or L in some other point besides
P (τ) and Q(τ). However, it is easy to see that each of the following four equations

s1,τ (y) = P (t), y, t ∈ R,
s1,τ (y) = Q(t), y, t ∈ R,
s2,τ (x) = P (t), x, t ∈ R,
s2,τ (x) = Q(t), x, t ∈ R,

has only one solution, namely (y, t) = (1, τ), (y, t) = (2τ − 1, τ), (x, t) = (−1, τ),

and (x, t) = (2τ − 1, τ), respectively. (In all four cases, the second intersection
point between the circles/lines is given by the limit cases y → ∞ and x → ∞
respectively.)

Hence, we have W (τ) ⊂ R for every τ ∈ (0, 1]. Finally, it is clear that every point
contained in R \ {1} (note that P (0) = Q(0) = 1) is contained in some W (τ):
since every W (τ) is convex, the line segment between P (τ) and Q(τ) is always
contained in W (τ).
Consequently, ∪τ∈(0,1]W (τ) = R \ {1}.

Now we apply the function z 7→ (1+z)2/(1−z)2, the inverse function of w 7→
√
w−1√
w+1

,

to the curves C+(z0) and C−(z0) from Theorem 3.5 and we obtain the curves{
(1 + z0)2

(1 + z0)2 − 4e−tz0

: t ∈ [0,∞]

}
and

{
1 +

4e−tz0

(z0 − 1)2
: t ∈ [0,∞]

}
,

which are the very same curves as (3.4.3). Thus, we conclude that VT (z0) = VU(z0).

Finally, assume z0 6∈ R and let w ∈ ∂VT (z0) \ {0}. Then w = P (τ) or w = Q(τ)

for a unique τ ∈ (0, 1] and the proof of Theorem 3.9 shows that there is only one
mapping f ∈ VT (τ)(z0) with f(z0) = w. From Theorem 3.5 it follows that f is of
the form f1,t or f2,t.

3.5 Functions with real coefficients

Finally, we take a look at one further value region, determined by Rogosinski in
[Rog34, p. 111]: Let R be the set of all holomorphic functions f : D → D with
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f(0) = 0 that have only real coefficients in the power series expansion around 0.
Then VR(z0) is the intersection of the two closed discs whose boundaries are the
circles through 1, z0,−z0 and through −1,−z0, z0 respectively.

Let R≥ be the set of all holomorphic functions f ∈ R with f ′(0) ≥ 0 and z0 ∈
D \ {0}. Then we have

VT (z0) ⊂ VR≥(z0) ⊂ VR(z0).

It is clear that VR≥(z0) 6= VR(z0) as the point −z0 belongs to VR(z0) and there is
only one mapping f ∈ R(z0) with f(z0) = −z0, namely f(z) = −z for all z ∈ D.
Furthermore, if z0 6∈ R, we have VT (z0) ( VR≥(z0) which can be seen as fol-
lows: The boundary points of VR(z0) can be reached only by the functions z 7→
±z z−x

zx−1
, x ∈ [−1, 1], see [Rog34, p. 111]. Hence, by Corollary 3.10 we have

∂VT (z0) ∩ ∂VR(z0) = {z0}. For 0 < x < 1, the function f(z) = z z−x
zx−1

satisfies
f ′(0) = x > 0 and f(z0) 6= z0. This gives us z0

z0−x
z0x−1

∈ VR≥(z0) \ VT (z0).

Theorem 3.11. Let z0 ∈ D\{0}. Then VR≥(z0) is the closed convex region bounded
by the following three curves:

A =

{
z0
z0 − x
z0x− 1

: x ∈ [0, 1]

}
, B =

{
z0
z0 + x

z0x+ 1
: x ∈ [0, 1]

}
,

C =

{
z2

0(z0 + 2x− 1)

1 + 2xz0 − z0

: x ∈ [0, 1]

}
.

Proof. Let f ∈ R≥. Then g(z) := (1 + f(z))/(1 − f(z)) maps D into the right
half-plane with g(0) = 1, g has only real coefficients in its power series expansion
around 0 and g′(0) = 2f ′(0) ≥ 0. Due to the Herglotz representation ([Dur83],
Section 1.9) we can write g as

g(z) =

∫
∂D

u+ z

u− z
ν(du), (3.5.1)

for some probability measure ν on ∂D.
As g, and thus ν, is symmetric with respect to the real axis, one can rewrite (3.5.1)
as

g(z) =

∫
∂D

1/2
u+ z

u− z
+ 1/2

u+ z

u− z
ν(du) =

∫
∂D

1− z2

1− 2zRe(u) + z2
ν(du), (3.5.2)

or
g(z) = Gµ(z) :=

∫
[0,π]

1− z2

1− 2z cos(u) + z2
µ(du), (3.5.3)
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where µ is a probability measure on [0, π] that additionally fulfils∫
[0,π]

cos(u)µ(du) ≥ 0, (3.5.4)

as the last integral is equal to g′(0)/2 = f ′(0). Thus we need to determine the
extreme points of the convex set of all measures on [0, π] that satisfy (3.5.4). Ac-
cording to [Win88], Theorem 2.1, this set of extreme points is contained in the set
S that consists of all point measures µ = δφ on [0, π] satisfying (3.5.4) and of all
convex combinations µ = λδφ + (1 − λ)δϕ, with φ, ϕ ∈ [0, π], φ 6= ϕ, λ ∈ (0, 1),

satisfying (3.5.4).

We can now determine VR≥(z0) as follows: Denote by WR≥(z0) the image of
VR≥(z0) under the injective map w 7→ (1 + w)/(1 − w). Then WR≥(z0) is the
closure of the convex hull of the set {Gµ(z0) : µ ∈ S}.

The point measures from S are, of course, all δφ with φ ∈ [0, π/2], and (3.5.3) gives
us the curve

1− z2
0

1− 2z0x+ z2
0

, x ∈ [0, 1], (3.5.5)

a circular arc connecting the points 1−z20
1+z20

and 1+z0
1−z0 . This curve is the image of A

under the map w 7→ 1+w
1−w . The image of B is the line segment

1 + 2xz0 + z2
0

1− z2
0

, x ∈ [0, 1], (3.5.6)

which connects 1+z20
1−z20

to 1+z0
1−z0 .

The other measures have the form λδφ + (1 − λ)δϕ with w.l.o.g. φ ∈ [0, π/2],

ϕ ∈ [0, π], φ 6= ϕ, λ ∈ (0, 1) such that λ cos(φ) + (1− λ) cos(ϕ) ≥ 0. They lead to
the set

λ
1− z2

0

1− 2z0x+ z2
0

+ (1− λ)
1− z2

0

1− 2z0y + z2
0

, (3.5.7)

x ∈ [0, 1], y ∈ [−1, 1], λ ∈ (0, 1), λx+ (1− λ)y ≥ 0.

If we take x = 1, y ∈ [−1, 0] and λ = y
y−1

(which is equivalent to λ+(1−λ)y = 0),
then we obtain

(1 + z0)(1− 2(1 + y)z0 + z2
0)

(1− z0)(1− 2yz0 + z2
0)

. (3.5.8)
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The above expression describes a circular arc connecting the points 1+z20
1−z20

and 1−z20
1+z20

,
and this arc is the image of the curve C under the map w 7→ 1+w

1−w . Note that the
point 1+z0

1−z0 lies on the full circle, which is obtained when y →∞.
Denote by ∆ the closed region bounded by the three curves (3.5.5), (3.5.6) and
(3.5.8). Then ∆ is convex. We are done if we can show that for all other measures
from (3.5.7), Gµ(z0) belongs to ∆. Then we can conclude that ∆ is the closure of
the convex hull of {Gµ(z0) : µ ∈ S}.

First, we consider the points from (3.5.7) for x ∈ [0, 1], y ∈ [−1, 0] and again
λ = y

y−x :

a) For y = 1, we obtain the curve

− (−1 + z0)(1 + z0(2− 2x+ z0))

(1 + z0)(1− 2xz0 + z2
0)

, x ∈ [0, 1]. (3.5.9)

Like the curve (3.5.8), this arc also connects 1+z20
1−z20

and 1−z20
1+z20

. For x → ∞
we obtain 1−z0

1+z0
, which is the second intersection point of the full circles

corresponding to (3.5.5) and (3.5.6) (note that this point is mapped onto
−z0 under w 7→ 1+w

1−w ). We conclude that (3.5.9) is contained in ∆. The
convex set bounded by (3.5.8) and (3.5.9) will be denoted by ∆0, and is, of
course, contained in ∆. (Figure 3.15 shows the image of ∆0 under the map
w 7→ 1+w

1−w .)

b) Now fix x ∈ [0, 1) and (3.5.7) becomes

(−1 + z2
0)(1− 2(x+ y)z0 + z2

0)

(−1 + 2xz0 − z2
0)(1− 2yz0 + z2

0)
, y ∈ [0, 1]. (3.5.10)

This set is a circular arc connecting 1−z20
1+z20

(y = 0) to a point on (3.5.9) (y = 1).

For y → ∞ we obtain the point 1−z20
1−2xz0+z20

, which lies on (3.5.5) and is not
contained in ∆0. We conclude that the arc (3.5.10) lies within ∆0 and thus
in ∆.

Finally, assume there are x ∈ [0, 1], y ∈ [−1, 1], λ ∈ (0, 1) such that λx+(1−λ)y >

0 (i.e. G′µ(0) > 0) and the corresponding point (3.5.7) lies outside ∆. Since it has
nevertheless to lie in VR(z0), the line segment between this point and 1+z0

1−z0 must
intersect the curve (3.5.8). Thus, the set {f(z0) : f ∈ R, f ′(0) > 0}, which does
not contain the curve C, could not be convex, a contradiction.
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Figure 3.14: VT (z0), VR≥(z0), VR(z0).
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Figure 3.15: ∆0.

The sets VT (z0) (orange), VR≥(z0) (red) and VR(z0) (green) are shown in Figure
3.14 for z0 = 1

3
+ i

2
.

Corollary 3.12. Let R0 := {f ∈ R≥ : f ′(0) = 0} and z0 ∈ D \ {0}. Then
VR0(z0) = ∆0, i.e. VR0(z0) is the closed convex set bounded by the circular arcs C
and −C, which intersect at z2

0 and −z2
0 .

Proof. We can proceed as in the proof of Theorem 3.11. Condition (3.5.4) then
has to be replaced by∫

[0,π]

cos(u)µ(du) = 0, which we can also write as (3.5.11)

∫
[0,π]

cos(u)µ(du) ≥ 0 and
∫

[0,π]

cos(u)µ(du) ≤ 0

in order to apply again [Win88], Theorem 2.1. Then we obtain that the image of
VR0(z0) under the map w 7→ (1 +w)/(1−w) is equal to the closure of the convex
hull of the set {Gµ(z0) : µ ∈ S, µ satisfies (3.5.11)}.
The proof of Theorem 3.11 shows that this set is equal to ∆0.

Corollary 3.13. Let R> := {f ∈ R≥ : f ′(0) > 0} and z0 ∈ D \ {0}. Then
VR>(z0) = VR≥(z0) \ C, where C is the curve from Theorem 3.11.

Proof. Obviously, the curves A and B from Theorem 3.11 minus their endpoint z2
0

and −z2
0 belong to VR>(z0). The curve C does not belong to the set VR>(z0), but

it belongs to its closure, which can be seen by approximating the curve by points
from (3.5.7) for λ = y−1/n

y−x , n ∈ N, which means the integral in (3.5.4) is equal to
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1/n in this case.
As VR>(z0) is a convex set, we conclude that VR>(z0) is equal to VR≥(z0) \ C.
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Chapter 4

Self-mappings of the upper half-plane

4.1 Boundary normalisation and the chordal
Loewner equation

The results in the previous chapter have always dealt with functions f : D → D
with normalisation at the origin. Of course, the origin can easily be replaced by
any other point z0 ∈ D by applying a suitable automorphism of the unit disc, but
the situation changes if we wish to use a boundary point z0 ∈ ∂D as our point
of normalisation: we need to assume that the function f can be continued to z0

in the sense that ∠ limz→z0 f(z) exists. For technical reasons, one then usually
considers the upper half-plane H := {z ∈ C : Im z > 0} instead of D (which
is of course perfectly fine, since they are conformally equivalent by the Riemann
mapping theorem).

LetH be the set of all schlicht self-mappings ofH with hydrodynamic normalisation
at infinity, i.e.

H := {f : H→ H : f schlicht, f(z) = z − c

z
+ γ(z)}, (4.1.1)

where hcap(f) := c ≥ 0, which is usually called half-plane capacity, and γ satisfies
∠ limz→∞ z · γ(z) = 0.

Remark 4.1. Let f ∈ H with hcap(f) = c. If we transfer f to the unit disc by
conjugation by the Cayley transform, then we obtain a function f̃ : D→ D having
the expansion

f̃(z) = z − c

4
(z − 1)3 + γ̃(z),

where ∠ limz→1
γ̃(z)

(z−1)3
= 0.
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Pavel Parfenevich Kufarev ([Kuf43], [Kuf47], [KSS68]) transferred Loewner’s ap-
proach to describe schlicht functions on D with normalisation at the interior point
0 to schlicht functions which map H into itself and are normalised at the boundary
point ∞:
A function f ∈ H can be described as a solution to the chordal or Loewner-Kufarev
equation

ḟt(z) =

∫
R

2

ft(z)− u
µt(du) for a.e. t ≥ 0, f0(z) = z ∈ H, (4.1.2)

where µt is a Borel probability measure on R for every t ≥ 0, and the function
t 7→

∫
R

1
u−z µt(du) is measurable for every z ∈ H.

Note that a solution to (4.1.2) fulfils the hydrodynamic normalisation at ∞

ft(z) = z − 2t

z
+ γ(z), ∠ lim

z→∞
z · γ(z) = 0.

In a sense, the half-plane capacity can thus be seen as an analogue to the term
f ′(0) for functions in the reachable set of the radial Loewner equation.

4.2 Schlicht functions and fixed half-plane
capacities

Let z0 ∈ H. From the boundary Schwarz lemma ([Jul18], [Jul20], see also [Boa10],
sec. 5) it is clear that Im(f(z0)) ≥ Im(z0) for any function f : H→ H with hydro-
dynamic normalisation, and Im(f(z0)) = Im(z0) if and only if f is the identity.

Roth and Schleißinger [RS14] proved that the additional condition of schlichtness
does, in contrary to the radial case of functions f : D→ D with interior normali-
sation, not change the value set:

Theorem 4.2 ([RS14] , Th. 2.4).

VH(z0) = {w ∈ H : Im(w) > Im(z0)} ∪ {z0}.

Again, an obvious next step is to ask what the sets look like if, in analogy to 3.1,
we fix the half-plane capacity of a function in H, i.e. we consider the sets

H(T ) := {f : H→ H : f schlicht, f(z) = z−2T

z
+γ(z), where ∠ lim

z→∞
z·γ(z) = 0}.

This question was answered by Prokhorov and Samsonova [PS15] as follows:
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Theorem 4.3 ([PS15], Th. 3). The domain

VH(T )(i) := {f(i) : f ∈ H(T )}, T > 0

is bounded by two curves L1 and L2 connecting the points i and i
√

1− 4T .
Denote by K0(ϕ, T ), T ≥ 0, ϕ ∈ (−π

2
, π

2
), the unique root of the equation

2 cos2 ϕ log(1 + sinϕ) + (1 + sinϕ)2 = 2 cos2 ϕ logK +K2(1− 4T ).

The curve L1 in the complex (u, v)-plane is parameterized by the equations

u(T ) :=
K2

0(ϕ, T )(1− 4T )− (1 + sinϕ)2

2K0(ϕ, T ) cosϕ
,

v(T ) :=
1 + sinϕ

K0(ϕ, T )
, ϕ ∈ (−π

2
,
π

2
),

The curve L2 is symmetric to L1 with respect to the imaginary axis.

Remark 4.4 (see [PS15], p.911). Note that the sets VH(T )(z0) for arbitrary z0 ∈ H
can be obtained from Th. 4.3 by the observation that, for f ∈ H(T ), the function
z 7→ f(z + x)− x, with x ∈ R, lies also in H(T ) and z 7→ rf

(
z
r

)
lies in H(r2t).

T=0.5

T=1.2

T=2.5

T=6

T=11

-4 -2 2 4

1

2

3

4

5

6

Figure 4.1: The sets VH(T )(i) for different values of T

4.3 Symmetric mappings

In analogy to typically real functions in the radial case, we consider functions
which are in a sense symmetric: Let

I := {f ∈ H | f(−z) = −f(z) for all z ∈ H}.

I consists of all f ∈ H such that the image f(H) is symmetric with respect to the
imaginary axis.
We determine

VI(z0) := {f(z0) : f ∈ I}.
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Theorem 4.5. Let z0 ∈ H. If Re(z0) = 0, then VI(z0) = {z0 + it : t ∈ [0,∞)}.
Next, assume Re(z0) > 0 and define the two curves C(z0) and D(z0) by

C(z0) =

{√
z2

0 − 4t : t ∈ [0,∞)

}
=

= {x+ iy ∈ H : x · y = Re(z0) Im(z0), x ∈ (0,Re(z0)]} ,
D(z0) =

{
z0 + ei arg(z0) · t : t ∈ [0,∞)

}
.

Then, the set VI(z0) is the closed subset of H bounded by C(z0) and D(z0), and
VI(z0) = {z0} ∪ VI(z0) \D(z0).

The case Re(z0) < 0 follows from the case Re(z0) > 0 by reflection w.r.t the
imaginary axis.

The value set f−1(z0) for the inverse functions is given in a quite similar way.

Theorem 4.6. Let z0 ∈ H and define

V ∗I (z0) = {f−1(z0) : f ∈ I, z0 ∈ f(H)}.

If Re(z0) = 0, then V ∗I (z0) = {z0 − it : t ∈ [0, Im(z0))}.
Next, assume Re(z0) > 0 and define the two curves C∗(z0) and D∗(z0) by

C∗(z0) =

{√
z2

0 + 4t : t ∈ [0,∞)

}
=

= {x+ iy ∈ H : x · y = Re(z0) Im(z0), x ∈ [Re(z0),∞)},
D∗(z0) =

{
z0 − ei arg(z0) · t : t ∈ [0, |z0|)

}
.

Then, the closure V ∗I (z0) is the closed subset of H bounded by the curves C∗(z0),

D∗(z0) and the positive real axis. The set V ∗I (z0) is given by V ∗I (z0) = {z0} ∪
V ∗I (z0) \ (D∗(z0) ∪ [0,∞)).

The case Re(z0) < 0 follows from the case Re(z0) > 0 by reflection w.r.t the
imaginary axis.

Figure 4.2 shows the curves C(1 + i) and D(1 + i) (dashed), as well as C∗(1 + i)

and D∗(1 + i).

Proof of Theorem 4.5. Without loss of generality we may assume that z0 ∈ Q1 :=

{z ∈ C | Re z ≥ 0, Im z > 0}.

Now consider the chordal Loewner equation

ḟt(z) =

∫
R

2

a− ft(z)
αt(da) for a.e. t ≥ 0, f0(z) = z ∈ H, (4.3.1)
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Figure 4.2: VI(1 + i) and V ∗I (1 + i).

where αt is a Borel probability measure on R for every t ≥ 0, and the function
t 7→

∫
R

1
a−z αt(da) is measurable for every z ∈ H. For every f ∈ H there exists

T > 0 and such a family {αt}t≥0 of probability measures such that the solution
{ft}t≥0 of (4.3.1) satisfies fT = f ; see [GB92], Theorem 5.

Now let fT = f ∈ I. Then we can find a solution {ft}t∈[0,T ] such that ft ∈ I for
all t ∈ [0, T ], which means that αt can be written as αt = 1/2µ∗t + 1/2µt, where
µt is a probability measure supported on [0,∞) and µ∗t is the reflection of µt to
(−∞, 0].

This leads to the symmetric Loewner equation

ḟt(z) =

∫
R

1

a− ft(z)
µt(da) +

∫
R

1

−a− ft(z)
µt(da) =

=

∫
R

2ft(z)

a2 − ft(z)2
µt(da) =

∫
R

2ft(z)

u− ft(z)2
νt(du), (4.3.2)

where we put u = a2 ∈ [0,∞) and νt(A) = µt(
√
A), νt(B) = 0 for Borel sets

A ⊂ [0,∞) and B ⊂ (−∞, 0).

Thus we can consider the initial value problem

ẇ(t) =

∫
R

2w(t)

u− w(t)2
νt(du), w(0) = z0 ∈ H, (4.3.3)

and have
VI(z0) = {w(T ) : w(t) solves (4.3.3), T ≥ 0}. (4.3.4)

Next, we observe that the set IS := {f ∈ I : f(Q1) = Q1 \ γ for a simple curve γ}
is dense in I by a standard argument for univalent functions; see [Dur83, Section
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3.2].
Denote by δx the Dirac measure in x ∈ R. If f ∈ IS, then we can find a continuous
function U : [0,∞)→ [0,∞) such that the measure νt = δU(t) in (4.3.2) generates
f , i.e. fT = f ; see Chapter I.3.8 in [Tam78], which considers the unit disc and the
corresponding symmetric radial Loewner equation; see also [Gor86, §3], [Gor15,
§5,6].

Consider the corresponding initial value problem

ẇ(t) =
2w(t)

U(t)− w(t)2
, w(0) = z0 ∈ H, (4.3.5)

where U : [0,∞)→ [0,∞) is a continuous function. Denote by R(z0) the reachable
set of this equation, i.e. R(z0) := {w(T ) : w(t) solves (4.3.5), T ≥ 0}. Then
VIS(z0) ⊂ R(z0) and because of the denseness of IS in I, we have

R(z0) = VI(z0). (4.3.6)

Now we determine the set VI(z0).

If Re(z0) = 0, it is clear that w(t) ∈ {z0 + is : s ∈ [0,∞)} for all t ∈ [0,∞). The
solution to (4.3.5) for U(t) ≡ 0 is given by w1(t) =

√
z2

0 − 4t. As Im(w1(t))→∞
as t→∞, we conclude that VI(z0) = {z0 + it : t ∈ [0,∞)}.

Now assume that Re(z0) > 0.

Step 1: First, we determine R(z0). We write w(t) = ξ(t) + iη(t) and z0 = ξ0 + iη0;
thus (4.3.5) reads

ξ̇(t) =
2ξ(t)(U(t)− |w(t)|2)

|U(t)− w(t)2|2
, η̇(t) =

2η(t)(U(t) + |w(t)|2)

|U(t)− w(t)2|2
,

ξ(0) = ξ0, η(0) = η0.

As t 7→ η(t) is strictly increasing, we can parametrize ξ and U by η and obtain

dξ

dη
=
ξ(η)

η

U(η)− |w(η)|2

U(η) + |w(η)|2
. (4.3.7)

Since U(η) ≥ 0, we have

−1 ≤ U(η)− |w(η)|2

U(η) + |w(η)|2
< 1
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which yields the inequalities
−ξ
η
≤ dξ

dη
<
ξ

η
.

By solving the equations dξ′

dη
= − ξ′

η
and dξ′

dη
= ξ′

η
with ξ′(η0) = ξ0, we arrive at

η0

η(t)
≤ ξ(t)

ξ0

<
η(t)

η0

(4.3.8)

for all t > 0. We have equality for the left case when U(t) ≡ 0, which leads to the
solution w(t) =

√
z2

0 − 4t, i.e. the curve C(z0). The case ξ
ξ0

= η
η0

corresponds to
the curve D(z0), which does not belong to the set R(z0) \ {z0}.

On the Riemann sphere Ĉ, the two curves Ĉ(z0) = C(z0) ∪ {∞} and D̂(z0) =

D(z0)∪{∞} intersect at z0 and∞, and form the boundary of two Jordan domains.
We denote by J(z0) the closure of the one that is contained in H∪{∞}. Note that
R(z0) ⊂ J(z0) by (4.3.8). We wish to show that R(z0) = {z0} ∪ J(z0) \ D̂(z0).

To this end, consider (4.3.7) with the driving term

U(η) =
1 + x

1− x

(
ξ0

(
η

η0

)2x

+ η2

)
, −1 ≤ x < 1.

This yields
U(η)− |w(η)|2

U(η) + |w(η)|2
≡ x,

and thus
ξ(η) = ξ0

(
η

η0

)x
,

and it is easy to see that

J(z0) \ D̂(z0) =

{
ξ0

(
η

η0

)x ∣∣∣ η ∈ [0,∞), −1 ≤ x < 1

}
⊆ R(z0).

Step 2: Finally, we show that VI(z0) = {z0} ∪ J(z0) \ D̂(z0), which concludes the
proof.
As we already know that R(z0) = VI(z0) (equation (4.3.6)), we only need to prove
that D̂(z0) \ {z0} has empty intersection with VI(z0).

Recall (4.3.4) and let w(t) be a solution to (4.3.3). We write again w(t) = ξ(t) +

iη(t). Then

ξ̇ = 2ξ(t)

∫
R

u− |w(t)|2

|u− w(t)2|2
µt(du) < 2ξ(t)

∫
R

u+ |w(t)|2

|u− w(t)2|2
µt(du),
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and
η̇ = 2η(t)

∫
R

u+ |w(t)|2

|u− w(t)2|2
µt(du).

Again, t 7→ η(t) is strictly increasing, and we parametrize ξ by η to get

dξ

dη
<
ξ

η
,

which yields ξ(t)
ξ0

< η(t)
η0

for all t > 0, hence (D(z0) \ {z0}) ∩ VI(z0) = ∅.

The proof of Theorem 4.6 is completely analogous.
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Chapter 5

Value sets for the derivative

The Schwarz and Schwarz-Pick lemmata give estimates for f(z) and f ′(z). The
former chapters have dealt with refinements of the first estimate; this final chapter
will be dedicated to the latter.

First efforts in that direction were undertaken for (unbounded) functions in the
class S:
Golusin [Gol36] used Loewner theory to find bounds for the argument of f ′(z),
f ∈ S and showed that

| arg f ′(z)| ≤

4 arcsin |z| for |z| ≤ 1√
2
,

π + log z2

1−|z|2 for 1√
2
< |z| < 1.

Grad [Gra50], [SS50, Ch. XV], in a rather involved proof, determined the full
value range

{log f ′(ζ) : f ∈ S}.

His method is based on Schiffer variation as well as extensive calculations1.

In the setting of bounded functions, Dieudonné’s lemma [Die31, Ch. III, p. 340]
described the set

{f ′(ζ) : f : D→ D analytic, f(0) = 0, f(ζ) = ω}

for fixed points ζ, ω ∈ D \ {0} to be the disc with centre ω
ζ
and radius ζ2−|ω|2

|ζ|(1−|ζ|2)
.

1He mentions that Grunsky told him he had found a way to determine the set by means of
Loewner theory; unfortunately, he seems – to my knowledge – to never have published these
results.
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As in the chapters before, it is natural to ask in what way this set changes if we
additionally assume the functions to be schlicht, i.e., we concern ourselves with
the set

R(ζ, ω) := {f ′(ζ) : f ∈ S1(ζ, ω)},

where
S1(ζ, ω) := {f ∈ S1 : f(ζ) = ω}

and
S1 := {f ∈ H(D) : f(D) ⊆ D, f(0) = 0, f schlicht}.

Singh [Sin57] determined the minimal and maximal absolute value that f ′(ζ) can
take for f ∈ S1(ζ, ω), as well as the corresponding extremal functions f : he proved
that the maximal value is taken at the point

ω

ζ

(1− |ζ|)(1 + |ω|)
(1 + |ζ|)(1− |ω|)

,

and the minimal value at
ω

ζ

(1 + |ζ|)(1− |ω|)
(1− |ζ|)(1 + |ω|)

.

The corresponding extremal functions are the Pick functions described by

(1 + |ω|)2ωf(z)

(ω + |ω|f(z))2 =
(1− |ζ|)2ζz

(ζ − |ζ|z)2

and
(1− |ω|)2ωf(z)

(ω − |ω|f(z))2 =
(1 + |ζ|)2ζz

(ζ + |ζ|z)2
,

respectively.

To simplify our problem, we may assume that ζ, ω ∈ R+: otherwise, we consider

g : z 7→ ω

|ω|
f

(
ζ

|ζ|
z

)
with g(|ζ|) = |ω| and note that this transformation simply yields a rotation of
the derivative: f ′(ζ) = ω

|ω|
ζ
|ζ|g
′(|ζ|). Furthermore, the Schwarz lemma tells us that

ω ≤ ζ, and ω = ζ if and only if f = id. Hence, in the following we assume that
ω < ζ.
It is obvious that R(ζ, ω) is symmetric with respect to R, because if f ∈ S1(ζ, ω),
then so is z 7→ f(z).
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Figure 5.1: The Schwarz-Pick, Dieudonné and Singh sets for ζ = 0.65 and ω = 0.4

Figure 5.1 shows the sets determined by Schwarz-Pick (turquoise), Dieudonné (or-
ange) and Singh (purple). It is immediately clear that the set we look to determine
has to be a subset of the one shaded in red.

Theorem 5.1. If f ∈ S1(ζ, ω) is extremal for this problem, i.e. the value f ′(ζ)

lies on the boundary of R(ζ, ω), then there is an angle χ ∈ [0, 2π) such that f
fulfils the equation

F±ω (f(z)) = F±ζ (z) for all z ∈ D,

where

F±y (z) := 2

(
eiχ arctanh

√
z
√
y
± arctanh

(√
z
√
y
))

.

Remark 5.2. For χ ∈ {0, π}, this equation describes a Pick function f , cf.
[Sin57], but it does not for any other value of χ.

The proof of Th. 5.1 is based on a sort of Lagrange multiplier theorem which was
proven for the class S by Hummel [Hum77]. Since we need families of variations for
the class S1 instead of the unbounded class S, we need to make a few adjustments,
but the general idea of the proofs in the paper can be transferred to our case one-
to-one.
We will proceed in several steps: Firstly, we will introduce the variations suitable
for our case. In the next step, we prove the bounded analogon to Hummel’s
multiplier theorem. Then, we consider the quadratic differential we obtain from
this theorem and deduce the equation from Th. 5.1.
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Figure 5.2: ζ = 0.65, ω = 0.4
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Figure 5.3: ζ = 0.9, ω = 0.4

Numerical evaluations of the set R(ζ, ω): every red point corresponds to the
value f ′(ζ) for a one-slit function f ∈ S1(ζ, ω).

5.1 Bounded variation families

We introduce the bounded equivalents of the variations used by Hummel:
Just like in his case, we firstly use a rotational variation: Let

1fρ(z) := f
(
eiρz

)
, ρ > 0.

Taylor expansion at ρ = 0 yields

1fρ(z) = f(z) + iρzf ′(z) +O(ρ2),

where the rest term is uniform on compact subsets of S1.
We will need a second variant, namely

2fρ(z) := eiρf (z) , ρ > 0,

or
2fρ(z) = f(z) + iρf(z) +O(ρ2).

We also use a variant of the Loewner variation, but observe that we need to drop
the factor that fixes the derivative at 0 in order to preserve boundedness:
Let ρ > 0 and

gρ(z) := k−1
ρ

(
1

1 + ρ
kρ(z)

)
,



5.1. BOUNDED VARIATION FAMILIES 75

where
kρ : D→ D, kρ(z) :=

z

(1 + ρz)2
, ρ ∈ ∂D

is a rotation of the Koebe function. Our third variation family then consists of
functions

3fρ(z) := f(gρ(z)) = f(z)− ρzf ′(z)
ρ+ z

ρ− z
+O(ρ2).

We replace the Schiffer variation by the Tammi-Schiffer variation for bounded
functions2, cf. [ST69], i.e.

4fρ(z) = f(z) + ρ (a0T0(z) + a0U0(z)) +O(ρ2),

where a0 ∈ ∂D, z0 ∈ D, and

T0(z) :=
f(z)

f(z0)− f(z)
− q(z0)

2f(z0)

z + z0

z − z0

zf ′(z)− zf ′(z)

2f(z0)
,

U0(z) :=
f 2(z)

1− f(z0)f(z)
+

(
q(z0)

2f(z0)

)
1 + z0z

1− z0z
zf ′(z) +

zf ′(z)

2f(z0)
,

and

q(z0) = − f 2(z0)

z2
0f
′2(z0)

.

Lastly, we replace the Marty variation by a version of the above Tammi-Schiffer
variation: assume that the interior of D\f(D) is non-empty. Then, for w0 ∈
(D\f(D))o, the variation

wρ = w +
ρa0w

w0 − w
+

ρa0w
2

1− w0w

has no poles on D, so we end up with the variation family

5fρ(z) = f(z) + ρ

(
a0

f(z)

w0 − f(z)
+ a0

f 2(z)

1− w0f(z)

)
+O(ρ2), a0 ∈ ∂D.

If the continuous functional J has the complex derivative Λ, i.e.

J(f + εg) = J(f) + εΛ(f ; g) + o(ε),

where Λ = Λ(f ; g) is a continuous linear functional of g, then we get the following
relations for our variation families:

2for a full derivation of the variation, see the appendix
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In full analogy with section 3 in [Hum77], we set

C :=Λ (f ; zf ′(z)) ,

D :=Λ (f ; f(z))) = J(f),

1A(w0) :=Λ

(
f ;

f(z)

w0 − f(z)

)
,

2A(w0) :=Λ

(
f 2(z)

1− w0f(z)

)
,

E(z0) :=Λ

(
f ; zf ′(z)

z + z0

z − z0

)
,

B(z0) :=
1

2

(
E(z0) + E

(
1

z0

))
.

and obtain

J
(

1fρ
)

=J(f) + iρC +O(ρ2), (5.1.1)

J
(

2fρ
)

=J(f) + iρD +O(ρ2), (5.1.2)

J
(

3fρ
)

=J(f)− ρE(η) +O(ρ2), (5.1.3)

J
(

4fρ
)

=J(f) + ρa01A (f(z0))− ρ a0

2f(z0)
(q(z0)E(z0) + C)

+ ρa02A (f(z0))− ρ a0

2f(z0)

(
q(z0)E

(
1

z0

)
− C

)
+O(ρ2), (5.1.4)

J
(

5fρ
)

=J(f) + ρ (a0 · 1A (f(z0)) + a0 · 2A (f(z0))) +O(ρ2). (5.1.5)

Taking the real part in (5.1.4), since a0 is arbitrary and C ∈ R by (5.1.1), we
obtain

1A (f(z0)) + 2A (f(z0))− q(z0)

f(z0)
B(z0) = 0,

which means we must have
w(1A(w) + 2A(w))dw2

w2
= −B(z)dz2

z2
, (w = f(z)). (5.1.6)

Furthermore, B(η) = 1
2

(
E(η) + E(η)

)
is real for η ∈ ∂D, and since (5.1.3) yields

that ReE(η) ≥ 0, we have

B(η) ≥ 0 for η ∈ ∂D. (5.1.7)

From (5.1.5) it is clear that there cannot be a w0 ∈ (D \ f(D))o, together with
(5.1.7) this means that f has to map D onto D minus analytic slits along the
trajectories of the right hand side of (5.1.6).
Note that (5.1.2) yields that Im J(f) = 0.



5.2. A LAGRANGE-STYLE MULTIPLIER THEOREM 77

5.2 A Lagrange-style multiplier theorem

In complete analogy to Th. 2 in [Hum77], we will now prove the following

Theorem 5.3. Let J1, J2 be continuous linear functionals on S1 which have com-
plex derivatives. Let

M := {f ∈ S1 : J1(f) = 0}

and

T := {J2(f) : f ∈M}.

If f ∈M is such that J2(f) is a boundary point of T and that J1(f) is an interior
point of the set {J1(g) : g ∈ S1} with respect to the Tammi-Schiffer variation, i.e.
J1(f) is an interior point of {J1(h) : h is a Tammi-Schiffer variation of f}, and
if all functions corresponding to J1 and J2 in (5.1.1) to (5.1.5) are rational and
non-constant, and the functions 1A1,2A1,1A2 and 2A2 are linearly independent,
then there exist complex numbers λ1, λ2 such that

(i) λ1C1 + λ2C2 ∈ R;

(ii) λ1D1 + λ2D2 ∈ R;

(iii) λ1 1A1 (f(z)) + λ1 2A1 (f(z)) + λ2 1A2 (f(z)) + λ2 2A2 (f(z))

=
q(z0)

f(z0)

(
B̂1(z) + B̂2(z)

)
,

where B̂j(z) := 1
2

(
λjEj(z) + λjEj

(
1
z

))
for j = 1, 2;

(iv)
(
B̂1 + B̂2

)
(z) ≥ 0 for z ∈ ∂D;

(v) the interior of D \ f(D) is empty

holds, where the terms Cj, kAj, and Ej, j, k = 1, 2, are defined in analogy with
(5.1.1) to (5.1.5).

Proof. We closely follow the proof of Th. 2 in [Hum77]: Let Cj, . . . , Bj, be the
terms corresponding to those in (5.1.1) to (5.1.5) for the functionals Jj, j = 1, 2.
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Next, we write all variations involved in real coordinates: For j = 1, 2, let

[Cj] :=

(
cj1
cj2

)
, cj1 + icj2 = iCj,

[Dj] :=

(
dj1
dj2

)
, dj1 + idj2 = iDj,

[Ej(z0)] :=

(
ej1
ej2

)
, ej1 + iej2 = −Ej(z0),

[Sj] :=

(
sj1 + tj1 −(sj2 − tj2)

sj2 + tj2 sj1 − tj1

)
, sj1 + isj2 = 1A(w0), tj1 + itj2 = 2A(w0),

[Qj] :=

(
qj1 + rj1 −(qj2 − rj2)

qj2 + rj2 qj1 − rj1

)
,

where
qj1 + iqj2 = 1Aj (f(z0))− 1

2f(z0)
(q(z0)Ej(z0) + Cj)

and
rj1 − irj2 = 2Aj (f(z0)) +

1

2f(z0)

(
q(z0)Ej

(
1

z0

)
+ Cj

)
.

We define

Vj(fρ) :=

(
Re (Jj(fρ)− Jj(f))

Im (Jj(fρ)− Jj(f))

)
and obtain

Vj(
1fρ) =1ρj[Cj] +O(ρ2), (5.2.1)

Vj(
2fρ) =2ρj[Dj] +O(ρ2), (5.2.2)

Vj(
3fρ) =3ρj[Ej(η)] +O(ρ2), (5.2.3)

Vj(
4fρ) =[Qj]

(
x

y

)
+O(ρ2), (5.2.4)

Vj(
5fρ) =[Sj]

(
x̂

ŷ

)
+O(ρ2), (5.2.5)

where x + iy = ρa0 in (5.1.3) and x̂ + iŷ = ρa0 in (5.1.4). Let ρ := max{kρj, |x +

iy|, |x̂+ iŷ|}.
In the next step, we combine our variations on one single vector; for example,
if we choose m points z1, . . . , zm ∈ D and consider the corresponding xk, yk for
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k = 1, . . . ,m, the complete Tammi-Schiffer variation (5.2.4) we consider reads

V (4fρ)(x1, y1, . . . , xm, ym) = [Q](z1, . . . , zm) ·X +O(ρ2),

where

[Q](z1, . . . , zm) :=

(
[Q1](z1), . . . , [Q1](zm)

[Q2](z1), . . . , [Q2](zm)

)
, X :=


x1

y1

...
xm
ym

 , (5.2.6)

and ρ := max{|xk|, |yk|}.
It is easy to see that [Q] is the derivative of V (4fρ) at the origin and that, in fact,
V (4fρ) is differentiable in a neighbourhood of the origin.
If m = 2 and [Q](z1, z2) is of full rank, i.e. non-singular, for some choice of z1, z2,
we can thus use the inverse function theorem to show that V (4fρ) can be inverted
locally, and hence, J2(f) cannot lie on the boundary of T .
Since J1(f) is assumed to be an interior point of {J1(f) : f ∈ S1} with respect to
the Tammi-Schiffer variation, there must be a z1 ∈ D such that the matrix [Q1](z1)

is non-singular and therefore has rank 2. Thus, for this choice of z1, the matrix
[Q] has to be of rank 2 or 3.

Case 1: If there is a z2 ∈ D such that [Q](z1, z2) has rank 3, then its columns span
a three-dimensional subspace of R4, and there is a unique (up to multiplication
with a scalar) non-trivial vector v ∈ R4 which is orthogonal to this subspace. Let
λ1 := v1−iv2 and λ2 := v3−iv4. Then λ2 6= 0, or we would arrive at a contradiction
to the fact that [Q1](z1) has rank 2.
Furthermore, if we consider any matrix [Q](z1, z2, z3) obtained by enhancing the
matrix [Q](z1, z2) by adding a pair of columns corresponding to [Q](z3), then these
new columns also have to be orthogonal to v: Else, the 4×6-Jacobian [Q](z1, z2, z3)

of V (4fρ) : R6 → R4 would contain a 4× 4-matrix of full rank, and (possibly after
a permutation of variables) we could apply the implicit function theorem to show
that there exist a neighbourhood U of (x1, y2, x2, y2), a neighbourhood V of (x3, y3),
and a differentiable function f : U → V such that

V (4fρ) (x1, y1, x2, y2, f(x1, y1, x2, y2)) ≡ const.

holds for all (x1, y1, x2, y2) ∈ U . Considering that the mapping associated with
[Q](z1, z2, z3) corresponds to applying the Tammi-Schiffer variation three times,
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this means that there is a 4fρ such that J(4fρ) covers a neighbourhood of J(f) –
a contradiction to the assumption that J2(f) is a boundary point of T .

In other words, for the qj1, qj2, rj1, rj2 associated with the 4× 2-matrix [Q](z3), we
must have

(q11 + r11)v1 + (q12 + r12)v2 + (q21 + r21)v3 + (q22 + r22)v4 = 0 and

(r12 − q12)v1 + (q11 − r11)v2 + (r22 − q22)v3 + (q21 − r21)v4 = 0,

or, equivalently,

Re
(
λ1(q11 + iq12) + λ2(q21 + iq22) + λ1(r11 + ir12) + λ2(r22 + ir22)

)
= 0 and

− Im
(
λ1(q11 + iq12) + λ2(q21 + iq22) + λ1(r11 + ir12) + λ2(r22 + ir22)

)
= 0.

Since z3 is arbitrary, we obtain (iii) by dividing by |λ2|.

To prove (i) and (ii), we augment [Q](z1, z2) by the columns(
[C1]

[C2]

)
or

(
[D1]

[D2]

)
,

respectively, and keep in mind that this enhanced matrix can still only have rank
3. Thus, the additional columns need to be orthogonal to v, and this yields

− Im(λ1C1 + λ2C2) = − Im i (λ1(c11 + ic12) + λ2(c21 + ic22)) =

= v1c11 + v2c12 + v3c21 + v4c22 = 〈v,

(
[C1]

[C2]

)
〉 = 0,

as well as
Im(λ1D1 + λ2D2) = 0.

Again, division by |λ2| 6= 0 yields (i) and (ii).

Also in complete analogy to Hummel’s case, statement (iv) needs a slightly more
subtle proof since we only admit ρ > 0. We follow his lead and consider the
4× 6-matrix (

Q1(z1) Q1(z2) [E1](ξ1) [E1](ξ2)

Q2(z1) Q2(z2) [E2](ξ1) [E2](ξ2)

)
corresponding to applying two Tammi-Schiffer variations and then two Loewner
variations.
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The columns of this matrix span the three-dimensional subspace of R4 that is
orthogonal to v and the positive cone generated by the four-dimensional vectors
[E](ξ1) and [E](ξ2). Note that, for ξ ∈ ∂D,

〈v, [E](ξ)〉 = v1e11+v2e12+v3e21+v4e22 = Re (λ1(e12 + ie12) + λ2(e21 + ie22) = B̂(ξ).

If there are ξ1, ξ2 such that

〈v, [E](ξ1)〉 > 0, and 〈v, [E](ξ2)〉 < 0,

the span of the columns of the matrix in (5.2) would cover the whole of R4, and we
could, exactly as in Hummel’s proof, introduce a new real variable that depends
on the restricted ones but can take any real value, and thus construct a variation
that is differentiable and invertible in a neighbourhood of the origin, which would
imply that J2(f) 6∈ ∂T , a contradiction. Thus, B̂(z) cannot change sign on ∂D.

For the remaining statement (v), note that, since 1A1(w), 1A2(w), 2A1(w), and
2A2(w) are by assumption linearly independent and λ2 6= 0, the combination

Â := λ11A1 + λ12A1 + λ21A2 + λ22A2

is a non-constant rational function. If the interior of D \ f(D) were non-empty,
we would find a w̃ ∈ (D \ f(D))o such that Â(w̃) 6= 0 – again a contradiction to
J2(f) ∈ ∂T .
Case 2: If [Q] has rank 2 for all possible values of z2, the proofs apply more or less
in the same way, except that there is not one, but two linearly independent vectors
v, v′ ∈ R4 that are both orthogonal to the two-dimensional subspace spanned by
the columns of the matrix [Q] in (5.2.6). This leads to two sets λ1, λ2 and λ′1, λ

′
2

defined as above; in particular, λ2 6= 0 6= λ
′
2. It is clear that (iii) and (v) then hold

for both of these.
If one (or both) of the column vectors(

[C1]

[C2]

)
and

(
[D1]

[D2]

)
are linearly independent of the columns of the matrix [Q], the augmented matrix(

[Q1](z1) Q1(z2) [C1] [D1]

[Q2](z1) Q2(z2) [C2] [D2]

)
will have rank 3 (since its rank has to be smaller than 4 to make sure that the
associated variation does not admit an inverse, see above) and there is only one
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of the vectors v, v′ left that is orthogonal to the corresponding three-dimensional
subspace. The λs associated with this vector will then, by the same arguments
as above, applied to the enhanced matrix instead of [Q], satisfy the remaining
conditions (i), (ii), and (iv).

If (
[C1]

[C2]

)
and

(
[D1]

[D2]

)
both lie in the span of the columns of [Q], then (i) and (ii) both hold for both sets
λ1, λ2 and λ′1, λ

′
2, and only (iv) remains to be shown for at least one of these sets

of λs . To this end, assume the contrary to be true, i.e. that there are four values
ξ1, ξ2, ξ3, ξ4 ∈ ∂D such that

〈v, [E](ξ1)〉 > 0, 〈v, [E](ξ2)〉 < 0,

〈v, [E](ξ3)〉 > 0, 〈v, [E](ξ4)〉 > 0.

Then the positive cone generated by the vectors [E](ξ1), [E](ξ2), [E](ξ3), and
[E](ξ4) covers the two-dimensional subspace of R4 that is orthogonal to that gen-
erated by v and v′ so that the direct sum of these two is again the whole of R4.
The rest of the argument is completely analogous to the one in case 1.

5.3 Applying Theorem 5.3

In our case, we have J1(f) = f(ζ) − ω and J2(f) = f ′(ζ). Their derivatives are
Λ1(g; f) = f(ζ) and Λ2(g; f) = f ′(ζ) for any g, f ∈ S1.
Thus, the corresponding variational terms are

C1 :=ζf ′(ζ),

D1 :=ω,

1A1(w0) :=
ω

w0 − ω
,

2A1(w0) :=
ω2

1− w0ω
,

E1(z0) :=ζf ′(ζ)
ζ + z0

ζ − z0

,

B1(z0) :=
1

2

(
ζf ′(ζ)

ζ + z0

ζ − z0

− ζf ′(ζ)
1 + ζz0

1− ζz0

)
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and

C2 := (f ′(ζ) + ζf ′′(ζ)) ,

D2 :=f ′(ζ),

1A2(w0) :=
w0f

′(ζ)

(w0 − ω)2 ,

2A2(w0) :=
ωf ′(ζ)(2− ωw0)

(1− ωw0)2
,

E2(z0) :=
(ζ2 − 2ζz0 − z2

0)f ′(ζ) + (ζ2 − z2
0)ζf ′′(ζ)

(ζ − z0)2
,

B2(z0) :=
1

2

(
(ζ2 − 2ζz0 − z2

0)f ′(ζ) + (ζ2 − z2
0)ζf ′′(ζ)

(ζ − z0)2
−

(1 + 2ζz0 − ζ2z2
0)f ′(ζ) + (1− ζ2z2

0)ζf ′′(ζ)

(1− ζz0)2

)
It is clear that the jAk, j, k = 1, 2, are linearly independent, and that all terms
are non-constant rational functions. To make sure that all conditions of Theorem
5.3 are fulfilled, we need to check whether 0 = J1(f) is an interior point of the
set {J1(g) : g is a Tammi-Schiffer variation of f}. If this is not the case, J1(f)

is a boundary point and Th. 2 in the one-dimensional form (cf. [Hum77, Th.
1]) applies: By (ii), there is a λ 6= 0 such that λω = λD ∈ R, and thus, since
ω ∈ (0, 1), λ ∈ R. Hence, from (i), or λζf ′(ζ) = λC ∈ R, we immediately obtain
f ′(ζ) ∈ R. From (iii), we obtain that f fulfils the differential equation

λ
ω

f(z)− ω
+ λ

ω2

1− ωf(z)
=

q(z)

2f(z)

(
λζf ′(ζ)

ζ + z

ζ − z
− λζf ′(ζ)

1 + ζz

1− ζz

)
,

and in the light of (ii) and (i), this is equivalent to

f ′2(z)

f(z)

ω(1− ω2)

(ω − f(z))(1− ωf(z))
= f ′(ζ)

ζ(1− ζ2)

z(ζ − z)(1− ζz)
.

This differential equation cannot describe a function which maps D onto D minus
a slit (since we would need to have f ′(z) = 0 at the turning point of such a slit,
but the right hand side of the equation has no zeros on ∂D).
But, by (v), the interior of D \ f(D) is empty – a contradiction since, as ω < ζ,
f cannot be a rotation of D. Therefore, J1(f) has to be an interior point, and all
assumptions of Th. 2 are fulfilled.
We note that we may divide the terms in Th. 5.3 (i) to (v) by |λ2| > 0 without
changing the statements. We may thus assume λ2 = eix with some x ∈ R, and
relabel λ := λ1/|λ2|.
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By condition (i), we then have

λζf ′(ζ) + eix (f ′(ζ) + ζf ′′(ζ)) = λC1 + eixC2 ∈ R,

and by (ii), we obtain

λω + eixf ′(ζ) = λD1 + eixD2 ∈ R.

Thus, condition (iii) reads

f ′2(z)

f(z)

P (f(z))

(f(z)− ω)2(1− ωf(z))2
= − Q(z)

z(z − ζ)2(1− ζz)2
, (5.3.1)

where

P (f(z)) =

− ω
(
Ω(1− ω2)−Θ

)
+

+
(
Ω(1− ω4)− 4ω2 Re

(
eixf ′(ζ)

))
f(z)−

− ω
(
Ω(1− ω2)−Θ

)
f 2(z)

and

Q(z) =

ζ
(
Ψ(1− ζ2)− Ξ

)
−

−
(
Ψ(1− ζ4)− 4ζ2 Re

(
eixf ′(ζ)

))
z+

+ ζ
(
Ψ(1− ζ2)− Ξ

)
z2

with the notations

Ξ := e−ixf ′(ζ) + ζ2eixf ′(ζ),

Θ := e−ixf ′(ζ) + ω2eixf ′(ζ),

Ψ := λζf ′(ζ) + eixf ′(ζ) + eixζf ′′(ζ),

Ω := λω + eixf ′(ζ).

Lastly, Th. 5.3, (iv) means that the unit circle is a trajectory of the quadratic
differential at the right hand side of (5.3.1), which, together with condition (v),
implies that f maps D onto D minus a slit which is a trajectory of the left hand
side of (5.3.1).
In particular, the term

P (f(z))

(f(z)− ω)2(1− ωf(z))2
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cannot change its sign on ∂D, which means that P has to have an even number of
zeros on f(∂D).
The polynomial Q can be written as

Q(z) = ζ
(
Ψ(1− ζ2)− Ξ

)
(z − b1)(z − b2),

where

b1b2 =
Ψ(1− ζ2)− Ξ

Ψ(1− ζ2)− Ξ

and

−b1 − b2 = −Ψ(1− ζ4)− 4ζ2 Re eixf ′(ζ)

ζ(Ψ(1− ζ2)− Ξ)
.

Since Q must have at least one zero on ∂D, but cannot change its sign, we must
hence have one double zero b := b1 = b2 ∈ ∂D, and we can solve for Ψ and obtain

Ψ := ±2ζ|f ′(ζ)|
1− ζ2

.

We write
P (w) = −ω(Ω(1− ω2)−Θ)(w − a1)(w − a2).

Since P must also have an even number of zeros on f(∂D), and has to have at
least one zero, we conclude that a1 = a2 =: a ∈ ∂D.
In the same way as above, we obtain

Ω := ±2ω|f ′(ζ)|
1− ω2

.

With the notation
χ := arg eixf ′(ζ)

we can then compute that a has to take one of the values

a− :=
eiχ + ω

1 + ωeiχ
or

a+ := − eiχ − ω
1− ωeiχ

,

and b one of the values

b− :=
eiχ + ζ

1 + ζeiχ
,

b+ := − eiχ − ζ
1− ζeiχ

.
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It is hence clear that f has to be a one-slit function where the point a corresponds
to the starting point of the slit on ∂D, and b corresponds to the pre-image of its
tip.
Thus, (5.3.1) reads

f
′2(z)

f(z)

ω (ω − f(z)± eiχ (1− ωf(z)))
2

(ω − f(z))2(1− ωf(z))2
=
ζ (ζ − z ± eiχ (1− ζz))

2

z(ζ − z)2(1− ζz)2
, (5.3.2)

where the signs on both sides are a priori independent of each other.

Since

d

dz

(
±2

(
eiχ arctanh

√
z√
ζ
± arctanh

(√
z
√
ζ
)))

= ±
√
ζ(ζ − z ± eiχ(1− ζz))√
z(ζ − z)(1− ζz)

,

where any combination of signs is possible, we can solve (5.3.2) by separation of
variables: Let

F±±ζ (z) := ±2

(
eiχ arctanh

√
z√
ζ
± arctanh

(√
z
√
ζ
))

,

and
F±±ω (z) := ±2

(
eiχ arctanh

√
z√
ω
± arctanh

(√
z
√
ω
))

.

Then F±±ζ and F±±ω are analytic on D \ [0, 1), and F±±ζ (0) = F±±ω (0) = 0. We use
the principal branch of all multi-valued functions involved.
The extremal function f thus has to be a solution to

F±±ω (f(z)) = F±±ζ (z) for all z ∈ D \ {ζ},

and it is easy to see that, in fact, the equation can be extended to z = ζ as well,
as long as the first signs of F±±ζ and F±±ω coincide. This concludes the proof of
Th. 5.1.
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Appendix: the Tammi-Schiffer equation

We derive the Tammi-Schiffer variation by following Golusin’s method [Gol46] as
outlined in [Pom75, ch. 7].
For w ∈ D, we consider the basic variation

wρ = w +
ρa0w

w0 − w
+

ρa0w
2

1− w0w

with w0 ∈ D, a0 ∈ ∂D.
Obviously,

Re

(
a0

w0 − w
+

a0w

1− w0w

)
= 0

holds for w ∈ ∂D, and therefore, as in [Tam78], we have

|wρ| = |w|
∣∣∣∣1 + ρ

(
a0

w0 − w
+

a0w

1− w0w

)∣∣∣∣ =

= |w|

√
1 + 2ρRe

(
a0

w0 − w
+

a0w

1− w0w

)
+ ρ2

∣∣∣∣ a0

w0 − w
+

a0w

1− w0w

∣∣∣∣2
= |w|

(
1 +O(ρ2)

)
.

It is hence clear that the variation preserves boundedness (as well as analyticity and
standardisation at z = 0). Besides, the function w 7→ a0w

w0−w+ a0w2

1−w0w
is meromorphic

in D with a simple pole at w = w0, so [Pom75, Lemma 7.3] states that this
generates a univalent variation family.
We construct this family by assuming w0 ∈ f(D) and applying the procedure
outlined in [Pom75, ch. 7] to

gρ(z) = f(z) + ρ

(
a0f(z)

f(z0)− f(z)
+

a0f
2(z)

1− f(z0)f(z)

)
,

where z0 ∈ D is the unique point with f(z0) = w0.
We obtain

d

dρ
gρ(z)

∣∣
ρ=0

=
a0f(z)

f(z0)− f(z)
+

a0f
2(z)

1− f(z0)f(z)
:= zf ′(z)h(z)

and calculate for z0 6= 0

res (h(z); z0) = res

(
a0

f(z)

zf ′(z)

1

f(z0)− f(z)
; z0

)
= −a0

f(z0)

z0f ′2(z0)
= a0q(z0)

z0

f(z0)
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with
q(z0) := − f 2(z0)

z2
0f
′2(z0)

.

Note that
lim
z0→0

q(z0) = −1,

and that for z0 = 0, we also have w0 = 0, and thus

res (h(z); 0) = res

(
a0

f(z)

zf ′(z)

1

(−f(z))
; 0

)
= − a0

f ′(0)
= lim

z0→0
a0q(z0)

z0

f(z0)
.

We can thus drop the assumption that z0 6= 0.

For |z| > |z0|, we have

a0

f(z0)
q(z0)z0

1

z − z0

=
a0

f(z0)
q(z0)

∞∑
k=1

(z0

z

)k
.

Thus, for |z0| < |z| < 1,

h(z) =
a0

f(z0)
q(z0)

∞∑
k=1

(z0

z

)k
+

a0

f(z0)
q(z0) + h(0) +

∞∑
k=1

ckz
k with some ck ∈ C.

Note that
h(0) =

a0

f(z0)
.

This yields, according to [Pom75, Th. 7.3], the bounded variation family

fρ(z) = f(z) + ρzf ′(z)

(
h(z)− a0

f(z0)
q(z0)z0

1

z − z0

+
a0

f(z0)
q(z0)

z0z

1− z0z
−

i Im

(
a0

f(z0)
q(z0) +

a0

f(z0)

))
+O(ρ2),

or, equivalently,

fρ(z) = f(z) + ρ (a0T0(z) + a0U0(z)) +O(ρ2),

where a0 ∈ ∂D, z0 ∈ D, and

T0(z) :=
f(z)

f(z0)− f(z)
− q(z0)

2f(z0)

z + z0

z − z0

zf ′(z)− zf ′(z)

2f(z0)
,

U0(z) :=
f 2(z)

1− f(z0)f(z)
+

(
q(z0)

2f(z0)

)
1 + z0z

1− z0z
zf ′(z) +

zf ′(z)

2f(z0)
.
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SM , Mathematics collection (Russian), Izdat. “Naukova Dumka”, Kiev,
1976, pp. 242–246.

[Gra50] A. Grad, A. The region of values of the derivative of a schlicht function,
Proceedings of the National Academy of Sciences, 36(3)(1950), 198–202.

[Gro14] T. H. Gronwall, Some remarks on conformal representation, Ann.of Math.
16 (1914–1915), 72–76.

[Grö30] H. Grötzsch, Über ein Variationsproblem der konformen Abbildung,
Leipziger Berichte, 82 (1930), 251–263.

[Gru39] H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe
Funktionen, Math. Z. 45(1939), 29–61.

[Hum77] J. A. Hummel, Lagrange Multipliers in Variational Methods for Univalent
Functions, Journal d’Analyse Mathématique 32.1 (1977), 222–234.

[Jul18] G. Julia, Mémoire sur l’itération des fonctions rationnelles, J. Math.
Pures Appl. (8) 1(1918), 47–245.

[Jul20] G. Julia, Extension nouvelle d’un lemme de Schwarz, Acta Math.
42(1920), 349–355.

[KS16] J. Koch and S. Schleißinger, Value ranges of univalent self-mappings of
the unit disc, J. Math. Anal. Appl. 433 (2016), no. 2, 1772–1789.

[KS17] J. Koch and S. Schleißinger, Three Value Ranges for Symmetric Self-
mappings, Proc. Amer. Math. Soc. 145 (2017), 1747–1761.

[Koe94] W. Koepf, Von der Bieberbachschen Vermutung zum Satz von de Branges
sowie der Beweisvariante von Weinstein, Jahrbuch Überblicke Mathe-
matik 1994, Vieweg, Braunschweig/Wiesbaden, 175–193.



BIBLIOGRAPHY 91

[Kuf43] P. P. Kufarev, On one-parameter families of analytic functions, Rec.
Math.[Mat. Sbornik] N.S. 13(55) (1943), 87–118.

[Kuf47] P. P. Kufarev, Theorem on solutions to some differential equation,Tomsk.
Gos. Univ. Učenye Zapiski, 5(1947), 20–21.

[KSS68] P. P. Kufarev, V. V. Sobolev, and L. V. Sporysheva, A certain method of
investigation of extremal problems for functions that are univalent in the
half-plane, Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 200 (1968), 142–164.

[LM86] E. B. Lee and L. Markus, Foundations of optimal control theory, second
ed., Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1986.

[Lew06] A. Lewis, The Maximum Principle of Pontryagin in control and in
optimal control, Lecture notes from a course held in the Department of
Applied Mathematics in the Polytechnic University of Catalonia, May
2006, http://www.mast.queensu.ca/˜andrew/teaching/pdf/maximum-
principle.pdf (access date: 12 October 2016)

[Löw17] K. Löwner, Untersuchungen über die Verzerrung bei konformen Abbil-
dungen des Einheitskreises |z| < 1, die durch Funktionen mit nicht ver-
schwindender Ableitung geliefert werden, Verh. Sächs. Ges. Wiss. Leipzig
69 (1917), 89–106.

[Löw23] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des
Einheitskreises, I, Mathematische Annalen 89 (1923), no. 1, 103–121.

[MR05] D. E. Marshall and S. Rohde, The Loewner differential equation and slit
mappings, J. Amer. Math. Soc. 18 (2005), no. 4, 763–778.

[Mar34] F. Marty, Sur le module des coefficients de MacLaurin d’une fonction
univalente, CR Acad. Sci. Paris 198(1934), 1569–1571.

[Mil71] I. M. Milin, Univalent functions and orthonormal systems, Moscow, 1971;
English transl. Transi. Math. Monos., 50 (1977), Amer. Math. Soc, Prov-
idence, R.I., 1977

[Nev20] R. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Öfvres.
Finska Vet. Soc. Förh 53(1920–1921), 1–21.

[PP09] H. J. Pesch, M. Plail, and D. Munich, The maximum principle of optimal
control: a history of ingenious ideas and missed opportunities, Control
and Cybernetics, 38(4A) (2009), 973-995.



92 BIBLIOGRAPHY

[Pom75] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht,
1975.

[Pon78] L. S. Pontryagin, A Short Autobiography of L. S. Pontryagin, (in Russian),
Uspekhi Matematicheskikh Nauk 33, 7–21. Russian Mathematical Surveys
33 (1978), 7–24.

[Pfr16] D. Pfrang, Der Wertebereich typisch-reeller schlichter beschränkter Funk-
tionen, Master thesis, University of Würzburg, 2016.

[Pro92] D. V. Prokhorov, The set of values of bounded univalent functions with real
coefficients, Theory of functions and approximations, Part 1 (Russian)
(Saratov, 1990), Izdat. Saratov. Univ. (1992), 56–60.

[Pro02] D. V. Prokhorov, Bounded univalent functions, in: R. Kühnau, Handbook
of Complex Analysis, 1, Elsevier, Amsterdam, 2002, 207–228.

[PS15] D. Prokhorov and K. Samsonova, Value range of solutions to the chordal
Loewner equation, J. Math. Anal. Appl. 428 (2015), no. 2, 910–919.

[PS16] D. V. Prokhorov and K. Samsonova, A Description Method in the Value
Region Problem, Complex Analysis and Operator Theory (2016).

[PV06] D. Prokhorov, and A. Vasil’ev, Univalent Functions and Integrable Sys-
tems, Comm. Math.Phys. 262 (2006), pp. 393-410.

[Rea55] M. O. Reade, On close-to-convex univalent functions, Mich. Math. J. 3
(1955), 59–62.

[Rob35] M. S. Robertson, On the coefficients of a typically-real function, Bull.
Amer. Math. Soc., Volume 41, 8 (1935), 565–572.

[Rog32] W. Rogosinski, Über positive harmonische Entwicklungen und typisch-
reelle Potenzreihen., Math. Z. 35 (1932), 93–121.

[Rog34] W. Rogosinski, Zum Schwarzschen Lemma., Jahresber. Dtsch. Math.-Ver.
44 (1934), 258–261.

[Rot98] O. Roth, Control Theory in H(D), Ph.D. thesis, University of Würzburg,
1998.

[Rot99] O. Roth, A remark on the Loewner differential equation, series in approx-
imations and decompositions, 11(1999), 461–470.



BIBLIOGRAPHY 93

[RS14] O. Roth and S. Schleißinger, Rogosinski’s lemma for univalent functions,
hyperbolic Archimedean spirals and the Loewner equation, Bull. Lond.
Math. Soc. 46 (2014), no. 5, 1099–1109.

[SS50] A. C. Schaeffer and D.C. Spencer, Coefficient Regions for Schlicht Func-
tions, Colloquium publications 35, American Mathematical Society, 1950.

[Sch38] M. M. Schiffer, A method of variation within the family of simple func-
tions, Proc. London Math. Soc. (2) 44 (1928), 432–449.

[Sch39] M. M. Schiffer, Sur la variation de la fonction de Green de domaines plans
quelconques, C.R.Acad. Sci. Paris 209(1939), 980–982.

[Sch43] M. M. Schiffer, Variation of the Green function and theory of the p-valued
functions, Amer. J. Math. 65(1943), 341–360.

[Sch58] M. M. Schiffer, Extremum problems and variational methods in confor-
mal mapping, Proc. International Congress of Mathematicians, Edinburgh
1958, 211–231.

[ST69] M. Schiffer and O. Tammi, On the Coefficient Problem for Bounded Uni-
valent Functions, Transactions of the American Mathematical Society
140(1969), 461–474.

[Sch00] O. Schramm, Scaling limits of loop-erased random walks and uniform
spanning trees, Israel J. Math. 118 (2000), 221–288.

[Sin57] V. Singh, Interior Variations and Some Extremal Problems for Certain
Classes of Univalent Functions, Pacific J. Math. Volume 7, 3 (1957), 1485–
1504.

[SS82] M. Szapiel and W. Szapiel, Extreme points of convex sets. IV. Bounded
typically real functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982),
no. 1-2, 49–57.

[Tam78] O. Tammi, Extremum Problems for Bounded Univalent Functions,
Springer, Berlin-New York, 1978.

[Tei38] O. Teichmüller, Ungleichungen zwischen den Koeffizienten schlichter
Funktionen, Sitzungsberichte der Preussischen Akademie der Wis-
senschaften (1938), 363–375.



94 BIBLIOGRAPHY

[Win88] G. Winkler, Extreme points of moment sets, Math. Oper. Res. 13 (1988),
no. 4, 581–587.


	Contents
	Nomenclature
	Introduction and outline of this thesis
	The Pontryagin Maximum Principle
	The PMP and the radial Loewner equation
	A complex formulation of the Pontryagin principle

	Value sets for bounded functions on D
	Schlicht functions with prescribed derivative f'(0)
	Inverse functions
	Schlicht functions with real coefficients
	Typically real functions
	Functions with real coefficients

	Self-mappings of the upper half-plane
	Boundary normalisation and the chordal Loewner equation 
	Schlicht functions and fixed half-plane capacities
	Symmetric mappings

	Value sets for the derivative
	Bounded variation families
	A Lagrange-style multiplier theorem
	Applying Theorem 5.3
	Appendix: the Tammi-Schiffer equation

	Bibliography

