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Notations

R
+
0 nonnegative real numbers

R
+ positive real numbers

ei i-th standard basis vector in R
d for 1 ≤ i ≤ d

δij Kronecker delta, i.e., δij = 1 if i = j, and δij = 0 if i 6= j

Sd−1 unit sphere in R
d

R
d×d d× d-matrices with real entries

SO(d) special orthogonal matrices in R
d×d, i.e., any R ∈ SO(d) sat-

isfies R⊤R = I and detR = 1

Ω0 reference configuration, Ω0 ⊂ R
d

Ω deformed / current configuration, Ω ⊂ R
d

t time, t ∈ R
+
0

X a material point in the Lagrangian coordinate system, X ∈ Ω0

x a spatial point in the Eulerian coordinate system, x ∈ Ω

v velocity in the Eulerian coordinate system

F̃ deformation gradient in the Lagrangian coordinate system

F deformation gradient in the Eulerian coordinate system

M magnetization (Eulerian coordinate system)

H magnetic (stray) field (Eulerian coordinate system)

B magnetic induction (Eulerian coordinate system)

n outer normal vector to the boundary of Ω

A⊤ the transpose of a matrix A ∈ R
d×d, i.e., (A⊤)ij = Aji

akbk, AikBkj for vectors or matrices the Einstein summation convention is
used throughout this work: summation sign is omitted and the
sum is over all indices which appear twice

a · b defines for a, b ∈ R
d the scalarproduct a · b :=

∑d
i=1 aibi = aibi

on the space of vectors

a⊗ b dyadic product defines for a, b ∈ R
d the matrix (a⊗b)i,j := aibj

a× b cross product defines for a, b ∈ R
3 a vector a× b perpendicular

to a and b such that a, b, a×b define a right-handed coordinate
system; if the cross × is in the very beginning of a line within
an equation or calculation, it simply indicates a multiplication
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A : B defines for A,B ∈ R
d×d the scalarproduct A : B := tr(A⊤B) =∑d

i,j=1AijBij = AijBij on the space of matrices

A⊙B defines for A,B ∈ R
d×d the d × d-matrix (A ⊙ B)i,j :=

(A⊤B)i,j =
∑d

k=1AkiBkj = AkiBkj

∇A
... ∇B defines for A,B ∈ R

d×d the product ∇A
... ∇B :=∑d

i,j,k=1∇kAij∇kBij = ∇kAij∇kBij

skew(A) skew symmetric part skew(A) = 1
2(A−A⊤) of A ∈ R

d×d

W ′(F ) the first derivative with respect to F of W : Rd×d → R, i.e.,

W ′(F ) =
(
∂W (F )
∂Fij

)d
i,j=1

∈ R
d×d

W ′′(F ) the second derivative with respect to F of W : Rd×d → R, i.e.,

W ′′(F ) =
(

∂2W (F )
∂Fij∂Fkl

)d
i,j,k,l=1

∈ R
d×d×d×d

X∗ dual space of any space X

X∗

〈
·, ·
〉
X

duality pairing

Tr f trace of a function f in a Sobolev space

W 1,p(Ω;Rd̃) Sobolev space of order 1, namely {f ∈ Lp(Ω;Rd̃) : ∂xi
f ∈

Lp(Ω;Rd̃) for 1 ≤ i ≤ d}

W 1,p(Rd;Rd̃) Sobolev space of order 1 for functions f : Rd → R
d̃

H1(Ω;Rd̃) W 1,2(Ω;Rd̃)

H1(Rd;Rd̃) W 1,2(Rd;Rd̃)

H1
0(Ω;R

d̃) {f ∈ H1(Ω;Rd̃) : Tr f = 0 on ∂Ω}

H−1(Ω;Rd̃) dual of H1
0(Ω;R

d̃)

H1
n(Ω;R

d̃) {f ∈ H1(Ω;Rd̃) : Tr f · n = 0 on ∂Ω}

H2(Ω;Rd̃) Sobolev space of order 2, namely {v ∈ L2(Ω;Rd̃) :

∂xi
v, ∂xj

∂xi
v ∈ L2(Ω;Rd̃) for 1 ≤ i, j ≤ d̃}

H2(Rd;Rd̃) Sobolev space of order 2 for functions f : Rd → R
d̃

H2
n(Ω;R

d̃)
{
f ∈ H2(Ω;Rd̃) : ∂f

∂n
:= Tr(∇f) · n = 0 on ∂Ω

}

V C∞
0 (Ω;Rd) ∩ {v : ∇ · v = 0}

H closure of V in L2(Ω;Rd)

V closure of V in H1(Ω;Rd)
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1 Introduction

1.1 Aim of this work

Magnetic materials are of great importance in technological applications. In our
work at hand, we consider magnetoelastic materials, which are strongly suscepti-
ble to the phenomenon of converting applied stresses into changes of the magnetic
field and vice versa. These materials are so-called smart materials. In general,
smart materials are constructed materials which have the special property that
they react to applied external stimuli in remarkable ways. Generally, such stim-
uli are, for instance, stresses, temperature, external electric or magnetic fields.
In the case of magnetoelastic materials, as mentioned earlier, elastic effects and
magnetic properties are taken into account and they are coupled.
Due to this coupling effect, magnetoelastic materials have been of interest for a
variety of applications. For instance, they can be found in sensors to measure
torque or force (see, e.g., [BS02, BS04, GRRC11]). Here, magnetoelastic materi-
als convert stresses into changes of the magnetic field, whereat the magnitude of
the changes depends on the strength of the stresses. Finally, the changes of the
magnetic field can be measured and related to the applied force or torque.
Further, magnetoelastic materials are also used in magnetic actuators (see, e.g.,
[SNR10]) and generators for ultrasonic sound (see, e.g., [BV92]). The magnetoe-
lastic effect is used in these applications the other way round compared to the
sensors: changes of applied magnetic fields induce changes of the magnetization
of the material which then, due to the coupling, convert to changes in the defor-
mation of the material body. The resulting motion of the material is then used
for the specific applications.
Our main motivation is to understand magnetic fluids with immersed particles of
a certain intermediate size. Common models consider systems with particles of
homogeneous magnetization, which is an acceptable presumption for very small
particles (5–10 nm; ferrofluids; see, e.g., [BAB+99], [AR09, Section 7]), or rela-
tively large particles (1–10 µm; magnetorheological fluids; see, e.g., [Wer14]). Un-
der applied magnetic fields, ferrofluids stay in the fluid phase, while the viscosity
of magnetorheolocial fluids increases in such a way that they become viscoelas-
tic solids. On the other hand, it is interesting to mathematically describe the
behavior of fluids with intermediate-sized particles, which show micromagnetic
domains. Such micromagnetic fluids might bear a considerable technological po-
tential.
The aim of this work is to start the approach of such magnetic fluids by

• deriving a general mathematical model for a micromagnetic and elastic par-
ticle and by
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• proving existence of weak solutions to systems of partial differential equa-
tions which are deduced from the general model under special assumptions.

Discussing the existence of weak solutions to the resulting highly coupled sys-
tems is not only challenging and interesting on its own but also crucial, e.g., for
numerical analysis to be meaningful.
The derivation of our general model and the model itself has the following fea-
tures, of which the combination cannot be found within the existing mathematical
literature on magnetoelastic materials (see Section 1.2):

• modeling is focused on the interplay between Lagrangian and Eulerian co-
ordinate systems to combine elasticity and magnetism, which are described
on different coordinate systems;

• model is phrased entirely in the Eulerian coordinate system, which makes
it easier to extend the model further in future work;

• framework of micromagnetism is used to allow for a magnetic domain struc-
ture in the materials;

• variational approach is employed, where dissipation mechanisms and time
evolution are included;

• coupling of phenomena on the macroscopic scale (deformation) and the mi-
croscopic scale (magnetization) happen through coupling on the energetic
level as well as transport relations.

We elaborate on these special features of our modeling approach and the model
in the following and highlight their importance.
The transformation of the variables and the energies between Lagrangian and Eu-
lerian coordinate systems is a crucial ingredient in our modeling. Elastic effects
are commonly defined in the Lagrangian coordinate system, i.e., on the refer-
ence configuration; however, the magnetization and other magnetic variables are
usually defined in the Eulerian coordinate system, i.e., on the deformed or cur-
rent configuration. In order to combine elastic and magnetic effects described
on different coordinate systems, we need to make sure that the descriptions fit
together on the same coordinate system. We choose to phrase the model entirely
in the Eulerian coordinate system (see also [LW01]). This is useful, since it is
then unnecessary to assure invertibility of deformations and it allows to incor-
porate fluid-structure interaction for magnetic fluids later. This is what makes
the interplay between Lagrangian and Eulerian coordinate systems so important.
For the importance of invertibility questions in (magneto-)elasticity theory, we
refer to [RL05, KSZ15].
We consider the micromagnetic framework (see Section 2.3 below) to describe
the magnetic properties of the materials. This allows for a heterogeneous mag-
netization across the material and makes the model applicable to richer settings.
Our derivation of the model is based on a variational approach which includes
dissipation mechanisms. This approach goes back to the works of John William
Strutt (Lord Rayleigh) [Str73] and Lars Onsager [Ons31a, Ons31b] and has been

2



applied in the derivation of models for complex fluids in, e.g., [LLZ05, SL09,
WXL13]. For an introduction to this approach we refer also to [For13] and Sec-
tion 2.2 below.
Further advantages of this approach are that energy terms can be established
relatively easily and that forces within the system are not counted twice, among
others. Moreover, using this approach, we can naturally combine effects on dif-
ferent scales (so-called multi-scale modeling) – in our case, elasticity on a macro-
scopic scale and magnetism on a microscopic scale – in a time evolution model
within the framework of complex fluids. It is important to note that time evo-
lution is at the core of our approach. This is vital to understand the dynamical
behavior of materials.
As mentioned before, a meaningful feature is the cross-scale coupling of the mag-
netization on the microscopic scale and the deformation on the macroscopic
scale. Here, we consider coupling on the energetic level in the anisotropy en-
ergy, which connects the easy axes of the magnetization to the actual elastic
deformation. Moreover, the transport plays an important role as it couples the
macroscopic motion to the microscopic variables. For the details, we refer to
Sections 2.3 and 2.4.

1.2 Historical overview and embedding

Next, we give an overview of the history and the development of the theory of
magnetoelasticity as well as the theory of micromagnetism. Moreover, we high-
light the features of our model compared to what has been done before.
The discovery of magnetoelasticity dates back at least to the 19th century (see,
e.g., [Bro66]). It was observed that if a ferromagnetic rod is subject to a mag-
netizing field, the rod changes not only its magnetization but also its length.
Further, the opposite way can also be observed: if the rod experiences tension,
its length as well as its magnetization changes. From such experiments it was
concluded that there exists an interaction between elastic and magnetic effects.
The general term for this class of phenomena is magnetoelastic interaction or
simply magnetoelasticity. More precisely, magnetostriction for the shape change
during magnetization and magnetoelastic effect for the change of magnetization
resulting from a mechanical stress.
The importance of magnetoelasticity has been acknowledged starting with the
modern theory of ferromagnetism. However, until the 1960’s, most of the magne-
toelastic derivations were based on works from the early 1930’s. Unfortunately,
the theory from that time suffered from several flaws (see [Bro66]). Then, in
Brown’s monograph [Bro66], the first rigorous phenomenological theory of mag-
netoelasticity was built, using both Lagrangian and Eulerian coordinate systems
in the description. Practically concurrently with Brown, who gives an overview of
force and energy based methods from the physical point of view in [Bro66], Tier-
sten presented an essentially equivalent theory for magnetoelastic solids in two
papers [Tie64, Tie65]. Both these works consider magnetically saturated media
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undergoing large deformations, phrased in the Eulerian coordinate system. The
first one is from the viewpoint of differential equations, where a ferromagnetic
body is modeled as a superposition of two continua, the lattice continuum and
the electronic spin continuum, which interact by forces and stresses. The second
work by Tiersten is in the form of a variational principle, which yields the same
equations, but does not employ a rational mathematical derivation.
Compared to our ansatz, it lacks dissipation mechanisms and does not include
the theory of micromagnetics, which was developed by Brown in [Bro63]. Despite
the fact that the systematic development of the framework is due to Brown, some
of the main ideas had already been published by Landau and Lifschitz in 1935
[LL35]. Brown’s theory of micromagnetics, however, did not experience general
acceptance until around the year 1990 [JK90]. Pertinent works are consequently
relatively scarce before that time, see, e.g., [MW79, Slo79, Vis85]. However, the
situation changed quickly and the field developed rapidly (see [HS98, KP06]), let
it be physical modeling, mathematical analysis, model validation, reduction or
numerics.
In [DP95], the authors consider evolution equations for liquid crystals and for
magnetostrictive solids and show how to study such apparently different and di-
verse materials within a unified dynamical theory of structured continua. In this
work, the approach is based on modeling with forces, i.e., without an advan-
tageous variational approach. Further, the model does not include micromag-
netism, but the authors employ a similar micromagnetic balance equation as the
Landau-Lifschitz-Gilbert (LLG) equation.
In [DP96], the same authors revisit the models of Tiersten and Brown from the
1960’s and use again a force-based approach to the modeling over an energetic
variational approach. A mathematical analysis including existence of weak so-
lutions of the obtained model (the so-called soft ferromagnets at rest) is then
performed in [BPV01]. This model is a special form of the LLG equation, which
is decoupled from elasticity in that work.
Further prominent works in the field of magnetoelasticity are [DD98] and [DJ02].
In the former article, a model on nonlinear magnetoelasticity is analyzed as a vari-
ational problem using convex integration. The latter article uses micromagnetics
to derive a variational approach for the macroscopic behavior and equilibrium
configurations of materials with high anisotropy. Both articles, however, focus
on static problems in magnetoelasticity. In addition, the work [JK93] is on a
theory on materials with large magnetostriction, it takes anisotropy from lattice
considerations into account and it predicts observed domain structures precisely.
Compared to viewing magnetoelastic materials as a continuum, the article [LJL06]
presents a static problem of magnetic particles within an elastic matrix. The par-
ticles are described by the theory discussed in [DJ02]. One could look at such
magnetostrictive composites basically as a magnetic fluid with dehydrated fluid
material.
In 1935, Landau and Lifschitz [LL35] derived an equation describing the dynamics
of the magnetization. In 1955, it was further improved by Gilbert [Gil55, Gil04]
(notice that the first article is only an abstract, the details were published almost
50 years later in the second article) into what is nowadays known as the Landau-
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Lifschitz-Gilbert (LLG) equation. Detailed reviews of the theory of micromagnet-
ics can be found, for instance, in [HS98, KP06]. Prominent analytical works in
the field of micromagnetics are, for example, [Vis85, JK90, AS92, CP01, CF01].
Moreover, micromagnetics and the LLG equation for thin films are studied in,
e.g., [GJ97, DKMO00, DKMO02, DKMO06, Kur06a, Kur06b, Mel07, Mel10,
CIM14], where Γ-convergence is an important mathematical tool. All the preced-
ing articles treat the magnetic phenomena only, i.e., without magnetoelasticity
and thus lack the coupling to elastic effects.
The evolution of the coupling of micromagnetics with elasticity for magneto-
elastic materials has already been tackled and analyzed from the viewpoint of
existence of solutions, see, e.g., [CISVC09, CEF11]. The former uses an ap-
proximation of the LLG equation, which does not give rise to a gradient flow,
the latter features coupling in the LLG equation through the effective magnetic
field and a stress tensor, which is not derived by means of variational principles.
For a recent numerically-oriented work see, e.g., [BPPR14]. We note that, com-
pared to our approach, the models in all these works lack certain coupling of the
physical quantities through the transport and material derivatives. Moreover,
for recent works from the engineering and experimental point of view see, e.g.,
[MKR11, ESM15, MVT15, MVT16].

1.3 Overview of this work

The main part of this thesis is organized in two chapters with an additional ap-
pendix.
Chapter 2 is dedicated to the modeling of magnetoelastic materials. In the first
part of this chapter we fix the notation and recall several notions and concepts
from continuum mechanics in Section 2.1. In Section 2.2, we outline the ener-
getic variational approach. Then, we use Section 2.3 to give a brief overview of
the theory of micromagnetics. After highlighting the evolution of the variables
describing the material via transport in Section 2.4, we continue with discussing
the energy dissipation law for our model in Section 2.5.
In Section 2.6, we state the main result of this chapter, viz our mathematical
model for magnetoelastic materials. This is a system of partial differential equa-
tions which govern the evolution of the entire material. The equations are highly
coupled due to interactions between the macroscopic scale and the microscopic
scale. The partial differential equations include the equation of motion with
stress and pressure terms as well as a dynamical equation for the magnetization.
Moreover, the law of conservation of mass and the evolution of the deformation
gradient are part of the system of equations. A derivation of this is then provided
in Section 2.7.
We start the mathematical analysis of the obtained system of partial differen-
tial equations by considering a model for a simplified setting. In this setting,
we consider special assumptions on the energy and dissipation terms as well as
on the kinematics of the magnetization and the deformation. In Section 2.8 we
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highlight all the assumptions in this setting and derive the corresponding model
for this case.
In Chapter 3, we then present existence results of weak solutions to the consid-
ered model for the simplified setting. We state the existence results right in the
beginning of Chapter 3: the first one is Theorem 9. This states the existence of
weak solutions to the model for the simplified setting considering gradient flow
dynamics on the magnetization. The second one is Theorem 11 which is the
existence of weak solutions to the model for the simplified setting considering
LLG dynamics for small initial data. For the LLG equation, we also present
Lemma 10 in the beginning of Chapter 3, which shows the property of the LLG
equation to conserve the length of the magnetization and three equivalent forms
of the LLG equation.
Section 3.1 then deals with the proof of Theorem 9. The proof is based on a
Galerkin method discretizing the velocity in the equation of motion and a fixed
point argument and borrows ideas from [LL95].
In Section 3.2, we present the proof of Theorem 11. The proof is based on the
proof presented in Section 3.1 but features special ideas from [CF01] which are
necessary due to the more complicated form of the LLG equation. There, the
three equivalent forms of the LLG equation from Lemma 10 play a crucial role
to obtain uniform a priori energy estimates. Section 3.2 presents the main steps
of the proof and highlights the differences compared to the proof presented in
Section 3.1.
Moreover, the appendix includes further results on special transport as well as
supplementary proofs. We also discuss a version of the model for the simplified
setting in two dimensions there, which can be used as a starting point for the
analysis of special solutions and numerical simulations to gain more insight into
the coupling within the model and to compare the model with experiments in
future work.
Finally, in Section 4, we conclude this thesis with an overview of open prob-
lems. These include analysis of further generalizations of the models discussed
in this work as well as an extension towards fluid-structure interactions. More-
over, numerical analysis and experiments are of big importance to continue the
path towards better understanding of the behavior and properties of magnetic
materials.
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2 Modeling of magnetoelastic materials

In this part of the thesis, we present a model for magnetoelastic materials and
derive it from an energy ansatz within a continuum mechanical setting. In order
to describe the setting properly, we use the following preliminary sections to
explain and fix the notation used in continuum mechanics. Furthermore, we give
an overview of the energetic variational approach used and recall facts from the
theory of micromagnetics.

2.1 Continuum mechanical setting

In the forthcoming analysis, we work in a continuum mechanical setting (see also
[For13, Chapter 2]).

X
x

Ω

x(X, t)

Ω0

Figure 2.1: Deformation mapping between reference configuration Ω0 and de-
formed configuration Ω.

Let t ∈ R
+
0 be the time variable and t∗ a given end time. Let Ω0,Ω ⊂ R

d, d = 2, 3,
be the reference (undeformed) and the deformed configuration of the material,
respectively. If not otherwise stated, we assume that Ω is a bounded domain
with a smooth boundary which has positive and finite Hausdorff measure, 0 <
Hd−1(∂Ω) <∞.
Elasticity is commonly phrased in the Lagrangian coordinate system X ∈ Ω0,
whereas magnetic quantities are usually defined in the Eulerian coordinate system
x ∈ Ω. In our ansatz, we phrase the mathematical model for magnetoelastic
materials entirely in the Eulerian coordinate system. To rewrite elasticity in
Eulerian coordinates, we make use of the deformation or flow map (see also
Section 2.7 and, e.g., [For13, Section 3.3])

x(X, t) : Ω0 × [0, t∗] → Ω (2.1)
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defines the position of particle X ∈ Ω0 at time t in the current configuration.
We assume that X 7→ x(X, t) is a bijective mapping at every time t ∈ [0, t∗].
With the flow map, we define the velocity in the Eulerian coordinate system
v : Ω× [0, t∗] → R

d by

v(x(X, t), t) =
∂

∂t
x(X, t). (2.2)

Moreover, we assume that the deformation gradient F̃ : Ω0 × [0, t∗] → R
d×d

F̃ (X, t) := ∇Xx(X, t) (2.3)

has positive determinant J := det F̃ > 0, i.e., is orientation preserving. We refer
to the coordinates X ∈ Ω0 as Lagrangian coordinates and to x ∈ Ω as Eulerian
coordinates. Note that we also use the notion deformation gradient for the push
forward F : Ω× [0, t∗] → R

d×d which is defined by

F (x(X, t), t) = F̃ (X, t). (2.4)

F̃ (X, t) is a quantity in the Lagrangian coordinate system, whereas F (x, t) is a
quantity in the Eulerian coordinate system.
The general model that we derive in Section 2.7 includes compressible materials.
In Section 2.8, we restrict our analysis to incompressible materials. That is, we
assume

det F̃ ≡ 1 (2.5)

in the Lagrangian coordinate system. This then implies

∇ · v = 0 (2.6)

in the Eulerian coordinate system. For a proof, see, e.g., [For13, Section 2.3].
For the description of the magnetic properties of the material, we introduce the
magnetization

M : Ω× [0, t∗] → R
3.

It is extended by zero to the whole space-time R
d × [0, t∗].

The magnetization then induces a magnetic field H : R3 × [0, t∗] → R
3, the so-

called stray field, through which the different regions of the material interact with
each other over long-ranges. It is given as a solution to Poisson’s equation arising
from Maxwell’s equations for magnetostatics. Details are given in Section 2.3.
Notice that the magnetization is only defined on the magnetic body but takes
always values in R

3, no matter whether d = 2 or d = 3. The induced magnetic
field is defined in the entire R3 with values in R

3, where it does not matter which
value d takes.
In our modeling, we assume to have two scales. On the one hand, the velocity
v and the deformation gradient F define the large scale or macroscopic scale.
On the other hand, the magnetic properties and the magnetization M define the
“fine” scale or microscopic scale. The communication between these two scales
happens through different coupling on the energetic level (see Section 2.3.1) and
transport relations (see Section 2.4). Further, we assume separation of scales
in the sense that everything that happens between microscopic scale and macro-
scopic scale is determined by these two scales, and that we may neglect dynamics
on one scale when treating the other separately.
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2.2 Overview of the energetic variational approach

As already mentioned in the introduction, we apply an energetic variational ap-
proach to obtain the balance of momentum equation for the model describing
magnetoelastic materials. This allows us to derive an evolutionary system of
partial differential equations from a rather easy energy ansatz.
This particular energetic variational approach is used by Chun Liu and coauthors,
an overview can be found in, e.g., [Liu11], [HKL10]. It goes back to the works of
John William Strutt (Lord Rayleigh) [Str73] and Lars Onsager [Ons31a, Ons31b].
The basic concepts of this approach are briefly outlined below: energy dissipation
law, least action principle, maximum dissipation principle, and Newton’s force
balance law. For a more detailed review we refer to [For13].
The starting point of the energy treatment is the energy dissipation law

d

dt
Etotal = −∆E, (2.7)

where Etotal represents the total energy and ∆E denotes the dissipation. The first
is defined as the sum of kinetic and free internal energy; the latter is modeled,
for instance, as a quadratic functional of certain rates, such as velocity. If it
holds that ∆E 6= 0, the system is dissipative. If ∆E = 0, the system is called
conservative or Hamiltonian.
Hamiltonian systems are treated with the least action principle. First, we recall
the definition of the action functional, see, e.g., [LL76, Chapter I, Section 2].
Let L = K−F be the Lagrangian function of a conservative system, where K is
the kinetic energy and F is the free energy, depending on the state variable q(t)
and its derivates. Then, the action functional for this system is defined by

A(q) :=

∫ t∗

0
L(t, q(t), qt(t)) dt. (2.8)

The least action principle then states that the equation of motion for the Hamil-
tonian system follows by taking the variation of the action functional with respect
to q.
In our modeling approach, the kinetic energy and the free energy can be written
in the form of integrals over the domain Ω0. Moreover, the main state variable
is the flow map x(X, t). We express all the quantities, such as the deformation
gradient and the magnetization, by means of x(X, t). To calculate the equation
of motion, we calculate the variation of the action functional with respect to x.
To this end, we consider a variation x(X, t) + εχ̃(X, t) of the minimizing tra-
jectory x(X, t) for ε ∈ (−ε0, ε0), ε0 > 0, and χ̃(X, t) an arbitrary test function
that is smooth and compactly supported on Ω0 × [0, t∗]. The calculation of
d
dε

∣∣
ε=0

A(x + εχ̃) = 0 then leads to the Euler-Lagrange equation or equation of
motion for the system. When we work under incompressibility constraints in
Section 2.8, we need to consider different variations, namely volume preserving
diffeomorphisms, see (2.110).
We also denote the equation of motion for the Hamiltonian system by the notion
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forceconservative. In this case, we formally write

δEtotal = forceconservative · δx,

where δ denotes a virtual change of the respective quantities.
Dissipative systems also satisfy the maximum dissipation principle. This leads
to the dissipative force of the described system. We do this by a variation of the
(scaled) dissipation functional 1

2∆E with respect to the rate. Here, we formally
write

δ

(
1

2
∆E

)
= forcedissipative · δxt.

The final step is to combine these forces with Netwon’s force balance law. The
law states that conservative and dissipative forces are equal (“actio” is equal to
“reactio”)

forceconservative = forcedissipative.

This final force balance equation is the equation of motion for the entire system,
also regarded as balance of momentum.
In our setting of magnetoelastic materials, the free energies are given as integrals
over the domain in Eulerian coordinates of some spatial energy densities. Hence,
the action functional involves not only an integral over time, but also an integral
over the domain. To calculate the variation of the action, we pull back the
integral, i.e., write everything into the Lagrangian coordinate system. At this
point, transport equations come in: they tell us how the quantities evolve and
provide us with information on how to write these quantities in terms of the
Lagrangian coordinate system. Transport equations are discussed in Section 2.4.
Since the starting point of the energetic variational approach is a total energy
together with a dissipation, we set up all considered energies and dissipation
terms in the following. In Section 2.3, we describe the micromagnetic framework
for the magnetic variables and the corresponding energy terms. In Section 2.5, we
combine this together with the elasticity part and the dissipative part to obtain
the total energy dissipation law.
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2.3 Overview of the theory of micromagnetics

In this section, we give a brief introduction to micromagnetics. We refer to
[HS98, KP06] for a more detailed review of micromagnetics.
In our modeling ansatz, we assume a quasi-static setting and work with Maxwell’s
equations for magnetostatics. Moreover, we neglect electric effects and currents
by assuming isolating materials. Maxwell’s equations for magnetostatics (see,
e.g., [Bob00, Kov00]) for the magnetic induction B : R3 → R

3 and the magnetic
field H : R3 → R

3 read

∇ ·B = 0, (2.9)

∇×H = 0, (2.10)

with the constitutive relation

B = µ0(M +H), (2.11)

where the constant µ0 > 0 is the magnetic permeability. Due to Maxwell’s
equation (2.10), we can write

H = −∇ϕ := −∇xϕ(M)(x), (2.12)

where the scalar potential

ϕ(M)(x) = (∇N ∗M)(x) =

∫

R3

(∇N)(x− y) ·M(y) dy (2.13)

is the solution to Poisson’s equation

∆ϕ = ∇ ·M in R
3 (2.14)

arising from (2.9), (2.11) and (2.12) (see, e.g., [HS98, Section 3.2.5]), understood
in the sense of distributions (see, e.g., [Gar07, Section 1], and the weak form (2.71)
below). The solution is subject to the transition condition J∇ϕ ·nK = −M ·n on
∂Ω, where JaK = a+−a− denotes the difference of outer trace a+ and inner trace
a− of the quantity a. Further, N(r) := − 1

4π|r| and (∇N)(r) = 1
4π

r
|r|3

, r 6= 0.

Note that in the case where Ω ⊂ R
2, we use a stray field energy term which was

derived in [GJ97] for thin films. The advantage of this is that we do not need
the stray field explicitly. For details, see Section 2.3.1 below.

2.3.1 Micromagnetic energy

The first ingredient in the theory of micromagnetics is the micromagnetic en-
ergy wµmag, defined on a suitable function space. It reads (see, e.g., [HS98,
Section 3.2])

wµmag(M) = A

∫

Ω
|∇M |2 dx+

∫

Ω
ψ̃(M) dx

+
µ0

2

∫

R3

|H(M)|2 dx− µ0

∫

Ω
M ·Hext dx. (2.15)
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The first term is the exchange energy term with the exchange constant A > 0.
This energy reflects the tendency of the magnetic field to align in one direction.
The second term is the anisotropy energy. It accounts for the dependence of
the energy on the direction of the magnetization relative to the easy axes of the
material. The nonnegative anisotropy energy density ψ̃ : R3 → R

+
0 , M 7→ ψ̃(M)

is usually defined as a polynomial function reflecting the crystal symmetry of the
material [DKMO06]. A simple ansatz for ψ̃ := ψ̃uni models uniaxial anisotropy,
which means that the magnetization prefers one certain direction within the
material. In literature on micromagnetics, e.g., [DKMO06], this ansatz reads
ψ̃uni(M) = 1 − (M · e)2 for a certain unit vector e. This particular anisotropy
energy density penalizes the deviation of the magnetization from the easy axis,
i.e., it becomes small when the alignment of M is parallel to e.
The third term is the stray field energy. The magnetic (stray) field H = H(M)
is induced by the magnetized body and is a solution to Maxwell’s equations of
magnetostatics (2.9)–(2.10) and (2.11). The stray field energy can be rewritten
in the following way [HS98, Section 3.2.5]:

µ0

2

∫

R3

|H(M)|2 dx = −
µ0

2

∫

Ω
M ·H(M) dx. (2.16)

Finally, the last term in (2.15) represents the Zeeman energy due to the externally
applied magnetic field Hext : R

3 → R
3.

We extend the usual definition of the micromagnetic energy in our model to
the magnetoelastic setting in the following way. Firstly, by the transformation
from the Eulerian coordinate system to the Lagrangian coordinate system, we
introduce a coupling of the magnetic quantities and the deformation within the
micromagnetic energy. Moveover, we couple deformation and magnetization in
the anisotropy energy. The usual anisotropy energy in (2.15) does not depend
on the deformation gradient F (see, e.g., [HS98, Section 3.2.7]). However, when
we consider elastic materials, the crystalline structure of the material changes
according to the deformation. So, in order to take this in account, we introduce
the anisotropy energy density

ψ : Rd×d × R
3 → R

+
0 , (F,M) 7→ ψ(F,M),

which now depends on the deformation gradient F in the sense that the easy axes
ei of the materials at rest are changed by F . For instance, one could set Fei to
be the easy axes in the deformed configuration (Cauchy-Born relation, see, e.g.,
[TM11, Section 11.2.2]).
In the following, however, we stick to the general ψ without focusing on specific
materials with specific crystalline structure and dependence on F . Let us assume
that ψ is a smooth function on R

d×d ×R
3.

Moreover, in the case where Ω ⊂ R
2, we use a stray field energy for thin films

which was derived in [GJ97], defined by

µ0

2

∫

Ω
M2

3 dx =
µ0

2

∫

Ω
(M · e3)

2 dx,
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where M3 denotes the third component of M ∈ R
3, and e3 denotes the third

standard basis vector in R
3.

In summary, in our approach, the micromagnetic energy Wµmag, defined on suit-
able function spaces, does depend on the deformation gradient as well and reads

Wµmag(F,M) = A

∫

Ω
|∇M |2 dx+

∫

Ω
ψ(F,M) dx

+

∫

Ω
E

(d)
stray(M) dx− µ0

∫

Ω
M ·Hext dx, (2.17)

where

E
(d)
stray(M) :=





µ0

2
(M · e3)

2 for d = 2,

−
µ0

2
M ·H(M) for d = 3

(2.18)

is the stray field energy density.
A characteristic property of micromagnetic materials is the formation of so-called
domains of magnetization. Typically, under no applied field, the equilibrium
configuration of magnetoelastic materials contains these domains on which mag-
netization is approximately constant (see [HS98]). These domain patterns result
from the competition of crystal structure (reflected in the anisotropy energy) with
long-range magnetic interactions (reflected by the stray field energy). The first
is responsible for existence of preferred crystallographic directions (the so-called
easy axes of magnetization), the latter, however, disadvantages configurations
with uniform magnetization throughout the whole body.

2.3.2 Landau-Lifshitz-Gilbert equation

The second ingredient in the theory of micromagnetics is the Landau-Lifshitz-
Gilbert (LLG) equation, see, e.g., [HS98, Section 3.2.7]. It models the dissipative
dynamical behavior of the magnetization M , and reads

Mt = −M ×Heff + αdampM ×Mt, (2.19)

where Heff := −
δWµmag

δM
represents the effective magnetic field (see, e.g., [KP06,

Section 3.2], [GW07]). The notation δ(·)
δM

denotes the variational derivative with
respect to the magnetization M . The effective magnetic field Heff is calculated in
Section 2.7.2 below. Further, αdamp ≥ 0 is a damping constant. The LLG equa-
tion is usually solved together with the boundary condition, see [GCGE03],

∂M

∂n
= 0 on ∂Ω. (2.20)

Moreover, in micromagnetics, the length of the magnetization is assumed to be
fixed (Heisenberg constraint), i.e., |M | = Ms, where Ms > 0 is the saturation
magnetization (see, e.g., [DKMO06]). For simplicity, we assume Ms = 1, so, we
have the length constraint

|M | = 1 a.e. in Ω. (2.21)
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This constraint enters the variational principle with the help of a Lagrange mul-
tiplier in Section 2.7.1.
The LLG equation is a given equation which we do not obtain from a microscopic
energy ansatz. For a complete energetic picture of the entire system, however, we
derive an energy dissipation law governing the microscopic scale, i.e., the energy
dissipation law related to the LLG equation. We assume separation of scales
in the following sense: when considering the microscopic scale (magnetization
M) in the following calculation and taking the time derivative of the micromag-
netic energy, the macroscopic time scale is fixed, so the dependence of F may
be neglected. To obtain a governing energy dissipation law, we start by taking
the cross product of the LLG equation (2.19) with M . We obtain using the
Graßmann identity a× (b× c) = (a · c)b− (a · b)c for a, b, c ∈ R

3 andM ·M = 1:

M ×Mt = −M × (M ×Heff) + αdampM × (M ×Mt)

= −(M ·Heff)M +Heff + αdampM × (M ×Mt),

which leads to

Heff =M ×Mt + (M ·Heff)M − αdampM × (M ×Mt). (2.22)

Now, we multiply the LLG equation (2.19) scalarly by −Heff =
δWµmag

δM
and

integrate over Ω. Using (2.22), this yields

∫

Ω

δWµmag

δM
·Mt dx = −

∫

Ω
αdamp(M ×Mt) ·Heff dx

= −

∫

Ω
αdamp(M ×Mt) · (M ×Mt + (M ·Heff)M − αdampM × (M ×Mt)) dx

= −

∫

Ω
αdamp|M ×Mt|

2 dx.

In view of (2.17) and the definition of a variational derivative, we have that
d
dtWµmag =

∫
Ω

δWµmag

δM
·Mt dx. So, we can write

d

dt
Wµmag =−

∫

Ω
αdamp|M ×Mt|

2 dx. (2.23)

We regard this as the energy dissipation law for the microscopic variable M .
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2.4 Kinematics and transport

In this section, we present the transport equations for all quantities describing the
system. Transport is the evolution of a quantity from the reference configuration
to the deformed configuration at time t.
The positive and bounded function ρ : Ω×(0, t∗) → R

+ denotes the mass density
of the material. The transport of the mass density is the law of conservation of
mass

ρt +∇ · (vρ) = 0 (2.24)

in its general strong form. However, in the case of incompressibility ∇ · v = 0,
we obtain

ρt + (v · ∇) ρ = 0. (2.25)

The conservation of mass can either be expressed as a partial differential equation
for the density in the Eulerian coordinate system as in (2.24)–(2.25) or as a pull
back formula in the Lagrangian coordinate system. In the compressible case, one
can deduce from (2.24) that

ρ(x(X, t), t) =
1

det F̃ (X, t)
ρ0(X), (2.26)

where ρ0 : Ω0 → R
+ denotes the density of the material in the reference config-

uration. We refer to Appendix A.1 for a proof.
Similarly, in the incompressible case, we see directly from (2.25)

ρ(x(X, t), t) = ρ0(X). (2.27)

Next, we discuss the transport of the deformation gradient. This transport
is described by an equation which follows from the push forward F̃ (X, t) =
F (x(X, t), t), see (2.4). It reads (a derivation can be found in Appendix A.1)

Ft + (v · ∇)F = ∇vF. (2.28)

Finally, we discuss the transport of the magnetization. We assume a weak trans-
port coupling of the magnetic and the elastic variables.
Another transport coupling is discussed in Appendix A.3. The rotational cou-
pling which we find appropriate for magnetic fluids allows for particle rotations
within the carrier fluid. In Appendix A.3, we highlight the corresponding as-
sumption on the transport of the magnetization and the problems and difficulties
which arise in the energetic variatonal approach using these particular assump-
tions.
The weak transport coupling means that we think of the magnetic variable fol-
lowing the elastic deformation by means of a movement of the dipole’s center
of mass and a volume change in compressible materials. Then, the crystalline
structure of the material, changed by the macroscopic deformation, causes the
magnetization to relax and adapt to the new easy axes. In this case of weak
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transport coupling, we assume simple transport of the form (see also [DD98];
this relates to conservation of mass, see (2.26))

M(x(X, t), t) =
1

det F̃ (X, t)
M0(X) (2.29)

in the Lagrangian coordinate system. In the Eulerian coordinate system, we
obtain (see Appendix A.1 for a proof)

Mt :=Mt +∇ · (M ⊗ v) =Mt + (v · ∇)M + (∇ · v)M = 0 (2.30)

in the Eulerian coordinate system.
In a next step, we couple the transport of M with the LLG equation. This
coupling is meaningful in the following sense: the LLG equation represents the
dynamics in the case of no motion by a surrounding elastic body. The transport,
in addition, brings in exactly this macroscopic material movement. So, the simple
time derivative in the LLG equation (2.19) is replaced by the transport equation
(2.30). We obtain

Mt = −M ×Heff + αdampM ×Mt (2.31)

as a microscopic force balance equation.
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2.5 Energy dissipation law

As discussed in Section 2.2, the energy dissipation law reads

d

dt
Etotal = −∆E,

where Etotal is the sum of kinetic and free internal energy. In our model, we
write

Etotal =

∫

Ω

1

2
ρ|v|2 +

1

detF
W (F ) dx+Wµmag(F,M),

where W : Rd×d → R
+
0 is an elastic energy density. The elastic energy density

is usually defined in the Lagrangian coordinate system and we have the integral
transformation (see also [For13, Section 3.3])

∫

Ω0

W (F̃ ) dX =

∫

Ω

1

detF
W (F ) dx. (2.32)

Further, Wµmag(F,M) is the micromagnetic energy introduced in (2.17). Finally,
the total energy reads

Etotal =

∫

Ω

1

2
ρ|v|2 +

1

detF
W (F ) +A|∇M |2 + ψ(F,M)

+ E
(d)
stray(M)− µ0M ·Hext dx, (2.33)

where E
(d)
stray(M) is given by (2.18). Moreover, we introduce a viscosity term

∆E(v) =

∫

Ω
ν|∇v|2 dx (2.34)

as the dissipation on the macroscopic scale, where ν > 0 is a viscosity constant.
For the microscopic scale, represented by the magnetization M , notice that the
LLG equation is dissipative, as discussed in Section 2.3.2. There, we found a
microscopic energy dissipation law (2.23). Following the idea of coupling the
transport with the LLG equation in Section 2.4, we couple the dissipation in
(2.23) with the transport by replacing the simple time derivative with the trans-
port Mt in (2.30). This yields

∆E(Mt) =

∫

Ω
αdamp|M ×Mt|

2 dx (2.35)

as a dissipation on the microscopic scale.
In summary, we obtain for the total energy dissipation law covering the micro-
scopic scale as well as the macroscopic scale

d

dt

(∫

Ω

1

2
ρ|v|2 +

1

detF
W (F )

+A|∇M |2 + ψ(F,M) + E
(d)
stray(M)− µ0M ·Hext dx

)

=−

∫

Ω
ν|∇v|2 + αdamp|M × (Mt +∇ · (M ⊗ v))|2 dx. (2.36)

Note that we introduce a regularization for F later in Section 2.8.2 for mathe-
matical reasons.
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2.6 Summary of equations

Our system of partial differential equations for magnetoelastic materials consists
of the following equations: firstly, we have the equation of motion (2.37) including
the stress tensor (2.39) and the induced pressure term (2.38). These are derived
in Section 2.7.1 below by a calculation of the first variation of the corresponding
action functional with respect to the domain. The equation of motion also in-
cludes the magnetic forces due to the magnetic stray field H(M) (for d = 3; this
force disappears for d = 2) and the externally applied magnetic field Hext. The
form of the force terms is different (∇⊤HM) from what we can find in the liter-
ature on magnetic forces ((M · ∇)H), see, e.g., [Bro66, Sch05, SS09]. However,
due to the form of the stray field as a gradient of a scalar potential (2.12), we
note that the form of the force can be changed from ∇⊤HM to (M · ∇)H and
vice versa, which we highlight in the proof of Theorem 1 on page 26 (see also
[DO14, Section 2.2.5]).
Secondly, we have the microscopic force balance (2.42), i.e., the coupled equation
between the transport of M and the Landau-Lifshitz-Gilbert (LLG) equation.
This coupled equation comes from (2.31). The effective magnetic field Heff (2.43)
which enters the microscopic force balance within the LLG equation is derived
in Section 2.7.2.
Furthermore, we need the conservation of mass from (2.24) and the transport for
the deformation gradient from (2.28), reflected in (2.40) and (2.41), respectively.
The boundary conditions (2.45) and (2.46) together with the initial conditions
(2.47)–(2.50) then complete the system.

̺(vt + (v · ∇)v) +∇pind −∇ · τ = ν∆v + (d− 2)µ0∇
⊤H(M)M

+ µ0∇
⊤HextM (2.37)

pind = −2A∆M ·M −A |∇M |2 + ψM (F,M) ·M + (3− d)
µ0

2
(M · e3)

2

− ψ (F,M) + 3Ψ |M(x, t)|2 −Ψ, (2.38)

τ =
1

detF
W ′(F )F⊤ − 2A∇M ⊙∇M + ψF (F,M)F⊤, (2.39)

ρt +∇ · (vρ) = 0, (2.40)

Ft + (v · ∇)F −∇vF = 0, (2.41)

Mt +∇ · (M ⊗ v) = −M ×Heff + αdampM × (Mt +∇ · (M ⊗ v)), (2.42)

Heff = 2A∆M − ψM (F,M)

+ (d− 2)µ0H(M)− (3− d)µ0(M · e3)e3 + µ0Hext, (2.43)

|M | = 1 a.e. (2.44)

on Ω× (0, t∗), where Ψ is a Lagrange multiplier for the length constraint (2.44),
andH(M) is defined as in equations (2.13)–(2.14) (for d = 3). Further, e3 denotes
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the third standard basis vector in R
3. We impose the boundary conditions

v = 0 on ∂Ω× (0, t∗), (2.45)

∂M

∂n
= 0 on ∂Ω× (0, t∗) (2.46)

and the initial conditions

v(x, 0) = v0(x) in Ω, (2.47)

ρ(x, 0) = ρ0(x) in Ω, (2.48)

F (x, 0) = F0(x) = I in Ω, (2.49)

M(x, 0) =M0(x) in Ω, |M0(x)| = 1 a.e. in Ω. (2.50)
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2.7 Derivation of the model

In the following part, we derive the equation of motion (2.37) together with
the stress tensor (2.39) and the induced pressure (2.38) in Section 2.7.1. The
effective magnetic field Heff (2.43) for the microscopic force balance is derived in
Section 2.7.2.
We prove both Theorem 1 in Section 2.7.1 and Theorem 5 in Section 2.7.2 for
Ω ⊂ R

3 first. Then we comment on the particular changes which occur in the
case where Ω ⊂ R

2: the only change is in the handling of the stray field energy

density E
(d)
stray, all other calculations are the same.

In the derivation of the model, we assume that all the quantities are as smooth
as necessary to justify the calculations.

2.7.1 Equation of motion: variation with respect to the domain

The result of the derivation is given in

Theorem 1. For a compressible viscoelastic and micromagnetic material subject
to an external magnetic field the equation of motion is given by

̺(vt + (v · ∇)v) +∇pind −∇ · τ = ν∆v + (d− 2)µ0∇
⊤H(M)M

+ µ0∇
⊤HextM in Ω× (0, t∗), (2.51)

where the induced pressure is given by

pind = −2A∆M ·M −A |∇M |2 + ψM (F,M) ·M + (3− d)
µ0

2
(M · e3)

2

− ψ (F,M) + 3Ψ |M(x, t)|2 −Ψ (2.52)

and Ψ denotes the Lagrange multiplier for the constraint |M | = 1, and the total
stress tensor is given by

τ =
1

detF
W ′(F )F⊤ − 2A∇M ⊙∇M + ψF (F,M)F⊤. (2.53)

Proof. Firstly, we consider the conservative part of the energy dissipation law.
We start by discussing the case where Ω ⊂ R

3. The total energy in (2.33) for
d = 3 inserted into the general action (2.8) yields the action functional

Â(v, F,M) =

∫ t∗

0

∫

Ω

1

2
ρ|v|2 −

1

detF
W (F )−A|∇M |2 − ψ(F,M)

+
µ0

2
M ·H(M) + µ0M ·Hext dx dt. (2.54)

We consider the length constraint |M | = 1 as a side condition which we take care
of in the action functional with a Lagrange multiplier Ψ ∈ L2(0, t∗;L2(Ω;R)). To
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this end, we introduce the extended action functional

Âext(v, F,M) =

∫ t∗

0

∫

Ω

1

2
ρ|v|2 −

1

detF
W (F )−A|∇M |2 − ψ(F,M)

+
µ0

2
M ·H(M) + µ0M ·Hext dx

+

∫

Ω
Ψ(|M |2 − 1) dx dt (2.55)

which now takes care of the length constraint on the energetic level. To calculate
the variation with respect to the domain Ω = x(Ω0, t), we use variations of the
form

xε(X, t) := x(X, t) + εχ̃(X, t) (2.56)

with ε ∈ (−ε0, ε0) and χ̃(X, t) = χ(x(X, t), t) smooth and compactly supported
on Ω0 × [0, t∗] and

F̃ ε(X, t) := ∇Xx
ε(X, t). (2.57)

These variations vary the domain Ω in the sense that Ωε := xε(Ω0, t).
Since the variations (2.56) are functions on the Lagrangian coordinate system,
the extended action functional needs to be transformed into the Lagrangian co-
ordinate system. In this transformation, the integrals change according to the
formula

∫
Ω · · · dx =

∫
Ω0

· · · det F̃ dX.
All the variables are expressed in terms of x(X, t) with the help of the transport

relations. Note that in general det F̃ 6= 1 and that we have ρ(x(X, t), t) = ρ0(X)

det F̃

from the conservation of mass (2.26) and M(x(X, t), t) = 1

det F̃
M0(X) by the

transport (2.29). We use these formulas for the transformation between La-
grangian and Eulerian coordinate systems.
Moreover, the gradient changes according to the formula

∇X(·)F̃−1 = ∇x(·) = ∇(·), i.e., ∇Xj
(·)F̃−1

jk = ∇xk
(·) (2.58)

which is a direct consequence of the chain rule (for a proof, see Appendix A.1).
Together with the definition of the elastic energy (2.32) and the push-forward
formula for the deformation gradient F̃ (X, t) = F (x(X, t), t), we obtain

Âext(v, F,M) =

∫ t∗

0

∫

Ω0

1

2
̺0|xt(X, t)|

2 −W (F̃ ) dX dt (2.59)

+

∫ t∗

0

∫

Ω0

−A

∣∣∣∣∇X

(
1

det F̃
M0(X)

)
F̃−1

∣∣∣∣
2

det F̃ dX dt (2.60)

+

∫ t∗

0

∫

Ω0

−ψ

(
F̃ ,

1

det F̃
M0(X)

)
det F̃ dX dt (2.61)

+

∫ t∗

0

∫

Ω0

µ0

2
M0(X) ·H (M) (x(X, t), t) dX dt (2.62)

+

∫ t∗

0

∫

Ω0

(
µ0

1

det F̃
M0(X) ·Hext(x(X, t), t)

+ Ψ

( ∣∣∣∣
1

det F̃
M0(X)

∣∣∣∣
2

− 1

))
det F̃ dX dt (2.63)

=: Aext(x),
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which reflects that the integrands in (2.59)–(2.63) depend on x, xt and ∇Xx

only. In the following, we split the variation of the extended action functional
into multiple parts for better readability. Since the stray field part (2.62) is more
involved, we discuss this part at last.
In the following calculations, we need the formulas

d

dε

∣∣∣∣
ε=0

det F̃ ε = det F̃ tr(∇X χ̃(X, t)F̃
−1), (2.64)

d

dε

∣∣∣∣
ε=0

F̃ ε = ∇X χ̃(X, t), (2.65)

d

dε

∣∣∣∣
ε=0

(F̃ ε)−1 = −F̃−1∇X χ̃(X, t)F̃
−1. (2.66)

For a proof of (2.64) and (2.66), we refer to Appendix A.1.

Variation of the kinetic and purely elastic parts (2.59). With (2.56) plugged
in, we calculate the derivative with respect to ε, using (2.65),

T1 :=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

1

2
̺0|x

ε
t (X, t)|

2 −W (F̃ ε) dX dt

=

∫ t∗

0

∫

Ω0

̺0xt(X, t) · χ̃t(X, t)

−
1

det F̃
W ′(F̃ ) : (∇X χ̃(X, t) F̃

−1F̃︸ ︷︷ ︸
=I

) det F̃ dX dt.

Next, we transform back to the Eulerian coordinate system, using the transfor-
mation formula for the elastic energy (2.32) and the gradient formula (2.58), and
integrate the very first summand by parts with respect to the time t. We obtain

T1 =

∫ t∗

0

∫

Ω
−̺(x, t) (vt + (v · ∇)v)︸ ︷︷ ︸

= d
dt

v(x,t)

·χ(x, t)

−

(
1

detF
W ′(F )F⊤

)
: ∇χ(x, t) dx dt.

In order to apply the fundamental lemma of the calculus of variations (see, e.g.,
[JLJ08, Lemma 1.1.1]), we integrate by parts with respect to the spatial variable
x. We get

T1 =

∫ t∗

0

∫

Ω
−̺(x, t)(vt + (v · ∇)v) · χ(x, t)

+

(
∇ ·

(
1

detF
W ′(F )F⊤

))
· χ(x, t) dx dt. (2.67)
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Variation of the exchange part (2.60). With (2.56) plugged in, we calculate
the derivative with respect to ε, using the product and chain rules, (2.64) and
(2.66),

T2 :=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

−A

∣∣∣∣∇X

(
1

det F̃ ε
M0(X)

)
(F̃ ε)−1

∣∣∣∣
2

det F̃ ε dX dt

=

∫ t∗

0

∫

Ω0

−2A

(
∇X

1

det F̃
M0(X)F̃−1

)
:

(
−∇X

1

(det F̃ )2
det F̃

× tr(∇X χ̃(X, t)F̃
−1)M0(X)F̃−1

)
det F̃

− 2A

(
∇X

1

det F̃
M0(X)F̃−1

)
:

(
−∇X

1

det F̃
M0(X)F̃−1∇X χ̃(X, t)F̃

−1

)

× det F̃

−A

∣∣∣∣∇X
1

det F̃
M0(X)F̃−1

∣∣∣∣
2

det F̃ tr(∇X χ̃(X, t)F̃
−1) dX dt.

In the next step, we transform back to the Eulerian coordinate system, using
again (2.58). We obtain

T2 =

∫ t∗

0

∫

Ω
−2A∇M(x, t) : (−∇(∇ · χ(x, t)M(x, t)))

− 2A∇M(x, t) : (−∇M(x, t)∇χ(x, t))

−A |∇M(x, t)|2 (∇ · χ(x, t)) dx dt.

Then, we integrate by parts with respect to x (twice in the first summand!) in
order to isolate χ(x, t). We get

T2 =

∫ t∗

0

∫

Ω
2A(∇(∆M(x, t) ·M(x, t))) · χ(x, t)

− 2A(∇ · (∇M(x, t)⊙∇M(x, t))) · χ(x, t)

+A∇ |∇M(x, t)|2 · χ(x, t) dx dt. (2.68)

Variation of the anisotropy part (2.61). With (2.56) plugged in, we calculate
the derivative with respect to ε, using the product and chain rules and (2.64)–
(2.66),

T3 :=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

−ψ

(
F̃ ε,

1

det F̃ ε
M0(X)

)
det F̃ ε dX dt

=

∫ t∗

0

∫

Ω0

−ψF

(
F̃ ,

1

det F̃
M0(X)

)
: ∇X χ̃(X, t) det F̃

− ψM

(
F̃ ,

1

det F̃
M0(X)

)
·

(
−

1

det F̃
tr(∇X χ̃(X, t)F̃

−1)M0(X)

)
det F̃

− ψ

(
F̃ ,

1

det F̃
M0(X)

)
det F̃ tr(∇X χ̃(X, t)F̃

−1) dX dt.
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In the next step, we transform back to the Eulerian coordinate system, using
(2.58), to obtain

T3 =

∫ t∗

0

∫

Ω
−
(
ψF (F,M(x, t))F⊤

)
: ∇χ(x, t)

− ψM (F,M(x, t)) ·

(
−∇ · χ(x, t)M(x, t)

)

− ψ (F,M) (∇ · χ(x, t)) dx dt.

Lastly, we integrate by parts with respect to x to find

T3 =

∫ t∗

0

∫

Ω
∇ ·
(
ψF (F,M(x, t))F⊤

)
· χ(x, t)

−∇
(
ψM (F,M(x, t)) ·M(x, t)

)
· χ(x, t)

+∇ψ (F,M) · χ(x, t) dx dt. (2.69)

Variation of the external field and Lagrange multiplier parts (2.63). With
(2.56) plugged in, we calculate the derivative with respect to ε, using the product
and chain rules, (2.64) and (2.65),

T5 :=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

µ0M0(X) ·Hext(x
ε(X, t), t)

+ Ψ

( ∣∣∣∣
1

det F̃ ε
M0(X)

∣∣∣∣
2

− 1

)
det F̃ ε dX dt

=

∫ t∗

0

∫

Ω0

µ0M0(X) · (χ̃(X, t) · ∇)Hext(x(X, t), t)

+ 2Ψ
1

det F̃
M0(X) ·

(
1

(det F̃ )2
det F̃ tr(∇X χ̃(X, t)F̃

−1)M0(X)

)
det F̃

+Ψ

(∣∣∣∣
1

det F̃
M0(X)

∣∣∣∣
2

− 1

)
det F̃ tr(∇X χ̃(X, t)F̃

−1)

)
dX dt.

In the next step, we transform back to the Eulerian coordinate system, using
(2.58), to obtain

T5 =

∫ t∗

0

∫

Ω
µ0(∇

⊤Hext(x, t)M(x, t)) · χ(x, t)

+ 2Ψ

(
M(x, t) ·

(
(∇ · χ(x, t))M(x, t)

))

+Ψ

(
|M(x, t)|2 − 1

)
(∇ · χ(x, t))

)
dx dt.
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Then, we integrate by parts with respect to x. We find

T5 =

∫ t∗

0

∫

Ω
µ0(∇

⊤Hext(x, t)M(x, t)) · χ(x, t)

− 2∇
(
Ψ |M(x, t)|2

)
· χ(x, t)

−∇
(
Ψ |M(x, t)|2 −Ψ

)
· χ(x, t)

)
dx dt. (2.70)

Variation of the stray field part (2.62). At last, we discuss the stray field
H(M) and the stray field energy in the following. Since we work in a quasi-static
setting with Maxwell’s equations of magnetostatics, we drop the explicit time
dependence in the notation. The stray field is defined in the Eulerian coordinate
system in (2.12)–(2.13). Due to this fact, we start our investigation of the stray
field in the Eulerian coordinate system.
The weak form of Poisson’s equation (2.14) defining the stray field reads

∫

R3

∇ϕ(M)(x, t)·∇ψ(x) dx =

∫

Ω
M(x, t)·∇ψ(x) dx ∀ψ ∈ H1(R3;R). (2.71)

Firstly, we are interested in the dependence of the potential ϕ(M)(x, t), when
exposed to a variation of the domain in the inner integral, meaning the integral
of the convolution

ϕ(M)(x, t) =

∫

Ω
(∇N)(x− y) ·M(y, t) dy.

When imposing this variation of the domain, which is a variation xε of the
deformation x, the dependence of the potential ϕ(M)(x, t) on ε is explicit through
the domain, i.e., the domain depends on ε:

ϕ(M)(x, t, ε) :=

∫

Ωε

(∇N)(x− y) ·M(y, t) dy (2.72)

for x ∈ R
3 and Ωε = xε(Ω0, t). We investigate the variation of (2.72) not explic-

itly, but through its defining equation (2.71). From equation (2.71), we obtain
in the Lagrangian coordinate system, using the transport of M and (2.58),

∫

R3

∇ϕ(M)(x, t, ε) · ∇ψ(x) dx =

∫

Ω0

M0(X) · ∇Xψ(x
ε)(F̃ ε)−1 dX (2.73)

for any ψ ∈ H1(R3;R).

In order not to be confused with indices, we use the notation ∂(·)
∂ε

in the following
computations to indicate the partial derivate instead of (·)ε.
We calculate the variation of (2.71) with respect to the domain by taking the
derivative of (2.73) with respect to ε at ε = 0. Note that ϕ ∈ H2(Ω;R3) (this
follows immediately from (2.14) and our assumption on smoothness of all quanti-
ties; in this case, we need that M ∈ H1(Ω;R3)) at least and assume additionally
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ψ ∈ H2(R3;R) to find out that, using product and chain rules and the formula
(2.58),

∫

R3

∇

(
∂

∂ε

∣∣∣∣
ε=0

ϕ(M)(x, t, ε)

)
· ∇ψ(x) dx

=

∫

Ω0

M0(X)k∇Xj

(
∇xl

ψ(x(X, t))χ̃l(X, t)
)
F̃−1
jk

−M0(X)k∇Xj
ψ(x(X, t))F̃−1

jl ∇Xσ χ̃l(X, t)F̃
−1
σk dX

=

∫

Ω
M(x, t)k∇xk

(
∇xl

ψ(x)χl(x, t)
)
−M(x, t)k∇xl

ψ(x)∇xk
χl(x, t) dx

=

∫

Ω
M(x, t)k∇xk

∇xl
ψ(x)χl(x, t) dx. (2.74)

Setting ψ(x) = ∂
∂ε

∣∣
ε=0

ϕ(M)(x, t, ε) in (2.71) and ψ(x) = ϕ(M)(x, t) in (2.74) we
immediately obtain

∫

Ω
M(x, t) · ∇

(
∂

∂ε

∣∣∣∣
ε=0

ϕ(M)(x, t, ε)

)
dx

=

∫

Ω
M(x, t)k∇xk

∇xl
ϕ(M)(x, t)χl(x, t) dx. (2.75)

Finally, we can take the variation of the stray field part with respect to the
domain. With

H(M)(x, t, ε) := −∇ϕ(x, t, ε)

and (2.56) plugged in, we calculate the derivative with respect to ε, using the
product and chain rules and (2.66),

T
(3)
4 :=

d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

−
µ0

2
M0(X) · ∇Xϕ(M)(xε(X, t), t, ε)(F̃ ε)−1 dX dt

=

∫ t∗

0

∫

Ω0

−
µ0

2
M0(X)k

(
∇Xj

(
∂

∂ε

∣∣∣∣
ε=0

ϕ(M)(x(X, t), t, ε)

+∇xl
ϕ(M)(x(X, t), t)χ̃l(X, t)

)
F̃−1
jk

−∇Xj
ϕ(M)(x(X, t), t)(F̃−1

jl ∇Xσ χ̃l(X, t)F̃
−1
σk )

)
dX dt.

In the next step, we transform back to the Eulerian coordinate system, using
(2.58), and apply (2.75) to obtain

T
(3)
4 =

∫ t∗

0

∫

Ω
−µ0Mk(x, t) ∇xk

∇xl
ϕ(M)(x, t)︸ ︷︷ ︸

=∇xl
∇xk

ϕ(M)(x,t)=−∇xl
Hk(M)(x,t)

χl(x, t) dx dt.

Then, we write index notation back into matrix and vector products to find

T
(3)
4 =

∫ t∗

0

∫

Ω
µ0

(
∇⊤H(M)(x, t)M(x, t)

)
· χ(x, t) dx dt. (2.76)
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Finally, we put (2.67), (2.68), (2.69), (2.70), and (2.76) together to obtain the
expression d

dε

∣∣
ε=0

Aext(x
ε). We find out that

0 =
d

dε

∣∣∣∣
ε=0

Aext(x
ε) = T1 + T2 + T3 + T

(3)
4 + T5

=

∫ t∗

0

∫

Ω
−̺(x, t)(vt + (v · ∇)v) · χ(x, t) +

(
∇ ·

(
1

detF
W ′(F )F⊤

))
· χ(x, t)

+ 2A(∇(∆M(x, t) ·M(x, t))) · χ(x, t)

− 2A(∇ · (∇M(x, t) ⊙∇M(x, t))) · χ(x, t)

+A∇ |∇M(x, t)|2 · χ(x, t)

+∇ ·
(
ψF (F,M(x, t))F⊤

)
· χ(x, t)

−∇
(
ψM (F,M(x, t)) ·M(x, t)

)
· χ(x, t)

+∇ψ (F,M) · χ(x, t)

+ µ0

(
∇⊤H(M)(x, t)M(x, t)

)
· χ(x, t)

+ µ0(∇
⊤Hext(x, t)M(x, t)) · χ(x, t)

− 2∇
(
Ψ |M(x, t)|2

)
· χ(x, t)

−∇
(
Ψ |M(x, t)|2 −Ψ

)
· χ(x, t) dx dt.

From here, we deduce that, due to the properties of χ and with the fundamental
lemma of the calculus of variations,

̺(vt + (v · ∇)v) +∇pind −∇ · τ − µ0∇
⊤H(M)M − µ0∇

⊤HextM = 0, (2.77)

where

pind = −2A∆M ·M −A |∇M |2 + ψM (F,M) ·M

− ψ (F,M) + 3Ψ |M(x, t)|2 −Ψ, (2.78)

is the induced pressure and

τ =
1

detF
W ′(F )F⊤ − 2A∇M ⊙∇M + ψF (F,M)F⊤ (2.79)

is the total stress tensor as in (2.53).
In the case where Ω ⊂ R

2, we use the corresponding stray field energy density
from (2.18). Since all other terms stay the same, we just calculate the variation
with respect to the domain of the stray field part of the action.
Due to the simple transport of M , we transform

T
(2)
4 :=

d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ωε

−
µ0

2
(M(x, t) · e3)

2 dx dt

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

−
µ0

2

(
1

det F̃ ε
M0(X) · e3

)2

det F̃ ε dX dt

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

−
µ0

2
(M0(X) · e3)

2 1

det F̃ ε
dX dt.
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Next, we take the derivative with respect to ε, using the formula (2.64) together
with the chain rule. We obtain

T
(2)
4 =

∫ t∗

0

∫

Ω0

µ0

2
(M0(X) · e3)

2

(
1

det F̃ ε

)2

det F̃ tr(∇X χ̃(X, t)F̃
−1) dX dt

=

∫ t∗

0

∫

Ω0

µ0

2

(
1

det F̃ ε
M0(X) · e3

)2

det F̃ tr(∇X χ̃(X, t)F̃
−1) dX dt.

Finally, we transform back to the Eulerian coordinate system, using the transport
of M , the transformation formula of the gradient (2.58) and an integration by
parts with respect to x in the last step. This yields

T
(2)
4 =

∫ t∗

0

∫

Ω

µ0

2
(M(x, t) · e3)

2 tr(∇χ(x, t)) dx dt

=

∫ t∗

0

∫

Ω

µ0

2
(M(x, t) · e3)

2∇ · χ(x, t) dx dt

=

∫ t∗

0

∫

Ω
−
µ0

2
∇(M(x, t) · e3)

2χ(x, t) dx dt.

In view of the calculations from above, this results in a contribution +µ0

2 (M ·e3)
2

to the induced pressure. In summary, with (2.78), this yields the pressure (2.52).

Now, we take care of the viscosity term (2.34) which is the dissipation related
to the macroscopic scale in (2.36). As highlighted in Section 2.2, to derive the
dissipative part of the equation of motion, we use a variation of the form v + εṽ

with ṽ being compactly supported and smooth (see also [For13, Section 3.5]) and
calculate

0 =
d

dε

∣∣∣∣
ε=0

1

2
∆E(v + εṽ) =

∫

Ω

(
−∇ · (ν∇v)

)
· ṽ dx =

∫

Ω

(
−ν∆v

)
· ṽ dx.

At this point, we can again use the fundamental lemma of the calculus of varia-
tions to obtain

−ν∆v = 0. (2.80)

Finally, by the force balance law, we put the conservative part (2.77) and the
dissipative part (2.80) together and, by noting that there is no force term due to
the stray field in the case d = 2, we obtain equation (2.51). This concludes the
proof.

2.7.2 Calculation of the effective magnetic field Heff

This section is dedicated to the calculation of the effective magnetic field Heff .
It is derived as the negative variational derivative of the micromagnetic energy
Wµmag with respect to the magnetization M (see [KP06, Section 3.2] and Sec-
tion 2.3.2, where the effective magnetic field appears in the LLG equation (2.19)).
During the calculation, we need to take care of the nonlocal term that represents
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the stray field H(M) (only for d = 3) induced by the magnetization of the body.
To this end, we apply the following result. The proof of the lemma is based on
a regularization of the Newton potential and the single layer potential and is
provided in Appendix A.4.
Notice that M also depends on time. For the evaluation of Maxwell’s equations
for magnetostatics on the microscopic scale, however, the dependence on time
can be neglected and we drop the time dependence in the notation as well.

Lemma 2. Let Ω ⊂ R
3 be a bounded domain with a smooth boundary of positive

and finite Hausdorff measure 0 < H2(∂Ω) < ∞, let M ∈ W 1,∞(Ω;R3) and

M̂ ∈W
1,∞
0 (Ω;R3). Then, it holds

〈M,H(M̂ )〉L2(Ω;R3) = 〈M̂ ,H(M)〉L2(Ω;R3), (2.81)

where 〈f, g〉L2(Ω;R3) :=
∫
Ω f(x) · g(x) dx.

Remark 3. Notice that we take M̂ with zero trace in Lemma 2. This is because
we use compactly supported test functions in the proof of Theorem 5.

For the next result, we need the definition of a variational derivative, which we
present adapted for our special case.

Definition 4. Let Wµmag be the micromagnetic energy functional as in (2.17).

Further, let M̂ be smooth and compactly supported in space within Ω, and let
M ε = M + εM̂ for ε ∈ (−ε0, ε0). The variational derivative of Wµmag with

respect to M , denoted by
δWµmag

δM
, is defined through

d

dε

∣∣∣∣
ε=0

Wµmag(M
ε) =

∫

Ω

δWµmag

δM
· M̂ dx. (2.82)

Now, with the above lemma, we are able to derive the effective magnetic field
Heff . The result is stated in

Theorem 5. For a compressible viscoelastic and micromagnetic material subject
to an external magnetic field the effective magnetic field Heff is given by

Heff = −
δWµmag

δM
= 2A∆M − ψM (F,M)

+ (d− 2)µ0H(M)− (3− d)µ0(M · e3)e3 + µ0Hext, (2.83)

where Wµmag as in (2.17).

Proof. We start by discussing the case where Ω ⊂ R
3. We calculate the varia-

tional derivative of Wµmag with respect to M according to Definition 4. Then we
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obtain the effective magnetic field as Heff = −
δWµmag

δM
. We obtain

d

dε

∣∣∣∣
ε=0

Wµmag(M
ε)

=
d

dε

∣∣∣∣
ε=0

∫

Ω
A|∇M ε|2 + ψ (F,M ε)−

µ0

2
M ε ·H(M ε)− µ0M

ε ·Hext dx

=

∫

Ω
2A∇M∇M̂ + ψM (F,M) · M̂ −

µ0

2

(
M̂ ·H(M) +M ·

d

dε

∣∣∣∣
ε=0

H(M ε)

)

− µ0Hext · M̂ dx.

We integrate by parts with respect to x the first term and apply (2.13) in the
fourth term to find

d

dε

∣∣∣∣
ε=0

Wµmag(M
ε)

=

∫

Ω
−2A(∇ · ∇M) · M̂ + ψM (F,M) · M̂

−
µ0

2

(
M̂ ·H(M)−M ·

d

dε

∣∣∣∣
ε=0

(
∇

∫

Ω
(∇N)(x− y) ·M ε(y) dy

))

− µ0Hext · M̂ dx

=

∫

Ω
−2A(∇ · ∇M) · M̂ + ψM (F,M) · M̂

−
µ0

2

(
M̂ ·H(M)−M ·

d

dε

∣∣∣∣
ε=0

(
∇

∫

Ω
(∇N)(x− y) ·M(y) dy

+ ε∇

∫

Ω
(∇N)(x− y) · M̂(y) dy

))

− µ0Hext · M̂ dx.

At this point, we can immediately take the derivative with respect to ε due to
the linearity in ε. In the second step we apply Lemma 2 to obtain

d

dε

∣∣∣∣
ε=0

Wµmag(M
ε)

=

∫

Ω
−2A(∆M) · M̂ + ψM (F,M) · M̂

−
µ0

2

(
M̂ ·H(M)−M ·

(
∇

∫

Ω
(∇N)(x− y) · M̂(y) dy

︸ ︷︷ ︸
=−H(M̂)

))

− µ0Hext · M̂ dx

=

∫

Ω
−2A(∆M) · M̂ + ψM (F,M) · M̂ − µ0M̂ ·H(M)− µ0Hext · M̂ dx.

The last expression is equal to

−

∫

Ω

(
2A∆M − ψM (F,M) + µ0H(M) + µ0Hext

)
· M̂ dx,
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from where we immediately deduce that, using (2.82),

Heff = 2A∆M − ψM (F,M) + µ0H(M) + µ0Hext. (2.84)

In the case where Ω ⊂ R
2, only the stray field energy density (2.18) changes.

As before, in the calculation of the equation of motion, all other terms stay the
same, so we only redo the calculation for the stray field energy term We obtain

d

dε

∣∣∣∣
ε=0

∫

Ω

µ0

2
(M ε · e3)

2 dx =
d

dε

∣∣∣∣
ε=0

∫

Ω

µ0

2
((M + εM̂ ) · e3)

2 dx

=

∫

Ω
µ0(M · e3)(M̂ · e3) dx =

∫

Ω
(µ0(M · e3)e3) · M̂ dx.

In view of the calculations from above, this results in a contribution −µ0(M ·e3)e3
from the stray field to the effective magnetic field Heff . In summary, with (2.84),
we obtain the effective magnetic field (2.83). This concludes the proof.
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2.8 The model for a simplified setting

Themodel describing magnetoelastic materials with micromagnetic domain struc-
ture we summarized in Section 2.6 is rather complex to analyze. This is due to
the fact that the resulting system of PDEs has the Navier-Stokes system as a sub-
system and has many highly coupled equations. So, we seek to simplify our model
in order to start the mathematical analysis of the resulting PDE system. To this
end, we propose a simplified version of our model in the following. Prominent
assumptions are a simpler form of the micromagnetic energy and the inclusion
of incompressibility conditions. All assumptions for this model are discussed in
Section 2.8.1. The corresponding energy dissipation law is set up in Section 2.8.2.
Then, the equations are summarized in Section 2.8.3 and Section 2.8.4 contains
derivations necessary to establish these equations. For existence of weak solutions
we refer to Chapter 3, and also to [BFGC+16] for an overview.

2.8.1 Simplifying model assumptions

Incompressibility. We impose incompressibility conditions. These conditions
were already introduced in Section 2.1 and read (see equations (2.5)–(2.6))

J = det F̃ = detF ≡ 1 and ∇ · v = 0 (2.85)

in the Lagrangian coordinate system and in the Eulerian coordinate system,
respectively. This assumption does not affect the transport equation for the
deformation gradient F which reads (see (2.28))

Ft + (v · ∇)F −∇vF = 0. (2.86)

However, conservation of mass translates to

ρt + (v · ∇) ρ = 0 (2.87)

which we recall from equation (2.25). Since this implies that the mass density is
constant along the trajectory, i.e., ρ(x(X, t), t) = ρ0(X), we set, without ambi-
guity, ρ0(X) ≡ 1. This reduces the number of variables as well as the number of
equations in the system. Moreover, the transport of the magnetization changes
to

Mt :=Mt + (v · ∇)M = 0 (2.88)

which implies that M(x(X, t), t) = M0(X). The right-hand side of (2.88) is the
material derivative. Notice that this is similar to the conservation of mass. We
cannot drop this equation just like conservation of mass, because we still consider
certain dynamical behavior of the magnetization, see below.
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Relaxed length constraint on M . We introduce a penalization term in the
micromagnetic energy which punishes the deviation of |M | from 1. We use the
term

1

4µ2

∫

Ω
(|M |2 − 1)2 dx, (2.89)

where µ is a constant to control the strength of the penalization. Such a penal-
ization is used in, e.g., [Kur04, Section 1.2] and [CISVC09]. The effect of the
relaxed length constraint is that there is no need for the Lagrange multiplier any
more.

Special energy terms. We assume that there is no external field present, i.e.,
Hext ≡ 0, and further, we neglect the stray field energy corresponding to long-
range interactions.

Remark 6. A consequence of this simplification is, that we do not model mi-
cromagnetic domain patterns. As mentioned in Section 2.3, the formation of
domains, where the magnetization is approximately constant (see [HS98]), is
considerably influenced by the magnetic stray field: domains result from the com-
petition of crystal structure (anisotropy energy) with long-range magnetic inter-
actions from the stray field.
Moreover, when studying magnetic fluids as some possible extension to this work,
the simplification of dropping the long-range interaction does not seem to be rea-
sonable in the sense that particles immersed in a carrier fluid interact over longer
ranges via the stray field.
Finally, the assumption on neglecting the stray field energy allows us to derive the
model without the need to distinguish between d = 2 and d = 3 in Section 2.8.4.

As for the anisotropy energy, we assume that

ψ(F,M) = 0, (2.90)

so we neglect the anisotropy and the coupling herein. Notice that there is still a
coupling of elasticity and magnetic properties since both effects are described on
different coordinate systems. The change of coordinate systems then introduces a
coupling within the micromagnetic energy (see also Section 2.3.1). The resulting
micromagnetic energy then reads

W simpl.
µmag =

∫

Ω
A|∇M |2 +

1

4µ2
(|M |2 − 1)2 dx. (2.91)

Simplified dynamics of M . We replace the LLG equation by dynamics of gra-
dient flow type (see, e.g., [LS03, LSFY05]). To this end, we set

Mt = −
δW

simpl.
µmag

δM
, (2.92)
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where we couple the left-hand side with the transport (2.88). Hence, we obtain

Mt + (v · ∇)M = −
δW

simpl.
µmag

δM
(2.93)

as the microscopic force balance equation in the simplified case. Notice that the
right-hand side of this equation corresponds to the effective magnetic field.

2.8.2 Energy dissipation law

As before, we work in this simplified setting with the energy dissipation law (2.7).
The total energy Etotal involves the kinetic energy, the elastic energy as in (2.32)
and the micromagnetic energy as in (2.91). We then have

Etotal =

∫

Ω

1

2
|v|2 +W (F ) +A|∇M |2 +

1

4µ2
(|M |2 − 1)2 dx. (2.94)

Next, we introduce a regularizing term for F , namely

∆E(F ) =

∫

Ω
κ|∇F |2 dx,

where κ > 0 is a regularizing constant and |∇F |2 = ∇F
... ∇F .

The motivation of introducing this regularizing term for F is of purely mathe-
matical nature: we then obtain more regularity from the regularized F -equation
later in the existence proofs in Chapter 3. Without this regularization the proof
of existence is even more involved and cannot be done without further assump-
tions on F (see [LLZ05]).
The dissipative term on M (microscopic scale) is given by the gradient flow type
dynamics: assuming again the separation of scales and thus that the micromag-
netic energy does not depend on F when considering the microscopic scale, we
formally obtain the governing energy dissipation law by multiplying equation

(2.92) scalarly with
δW

simpl.
µmag

δM
and integrating over Ω. This yields

d

dt
Wµmag = −

∫

Ω

∣∣∣∣∣
δW

simpl.
µmag

δM

∣∣∣∣∣

2

dx

which we regard as energy dissipation law for the microscopic scale in the sim-
plified setting. In summary, we obtain for the total dissipation

∆E =

∫

Ω
ν|∇v|2 + κ|∇F |2 +

∣∣∣∣∣
δW

simpl.
µmag

δM

∣∣∣∣∣

2

dx. (2.95)

2.8.3 Summary of equations

Our system of partial differential equations for magnetoelastic materials in the
simplified setting consists of the following equations: firstly, we have the equation
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of motion (2.96) including the stress tensor (2.97), both derived in Section 2.8.4
below.
Secondly, there is the microscopic force balance (2.100) (see (2.93)), i.e., the cou-
pled equation of the transport equation of M and the gradient flow dynamics.
In the existence analysis of weak solutions in Chapter 3, we also consider the
model including the LLG equation (2.100’) with initial condition (2.106’) instead
of (2.100) with initial condition (2.106).
Furthermore, we have the transport equation of the deformation gradient (2.86)
in (2.99). For mathematical reasons, we couple this equation to a regularization
term and replace (2.99) by (2.99’) for the existence proofs in Chapter 3.
Moreover, we have the incompressibility conditions from (2.85). Due to the ad-
ditional regularization of F introduced in Section 2.8.2, the solution to the reg-
ularized evolution equation for F (2.99’) is not the deformation gradient which
satisfies the pure transport equation (2.99) without the regularization.
Notice that we dropped the incompressibility condition detF = 1 in the following:
in the case of considering the system including equation (2.99), the incompress-
ibility condition ∇·v = 0 implies that detF = const., and thus detF = 1 directly
follows with appropriate initial conditions on F . On the other hand, if we con-
sider (2.99’), as in Chapter 3, the incompressibility condition detF = 1 cannot
be satisfied any longer, since the solution of (2.99’) is just an approximation of
the actual deformation gradient.
The boundary conditions (2.101)–(2.103) and the initial conditions (2.104)–(2.106)
finally complete the system of equations.

vt + (v · ∇)v +∇p−∇ · τ = ν∆v in Ω× (0, t∗), (2.96)

τ =W ′(F )F⊤ − 2A
(
∇M ⊙∇M

)
in Ω× (0, t∗), (2.97)

∇ · v = 0 in Ω× (0, t∗), (2.98)

Ft + (v · ∇)F −∇vF = 0 in Ω× (0, t∗), (2.99)

Ft + (v · ∇)F −∇vF = κ∆F in Ω× (0, t∗), (2.99’)

Mt + (v · ∇)M = 2A∆M −
1

µ2
(|M |2 − 1)M in Ω× (0, t∗), (2.100)

Mt + (v · ∇)M = −M ×∆M −M × (M ×∆M) in Ω× (0, t∗), (2.100’)

with boundary conditions

v = 0 on ∂Ω× (0, t∗), (2.101)

F = 0 on ∂Ω× (0, t∗), (2.102)

∂M

∂n
= 0 on ∂Ω× (0, t∗) (2.103)
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and initial conditions

v(x, 0) = v0(x), ∇ · v0(x) = 0 in Ω, (2.104)

F (x, 0) = F0(x) = I in Ω, (2.105)

M(x, 0) =M0(x) in Ω, (2.106)

M(x, 0) =M0(x) in Ω, |M0(x)| = 1 a.e. in Ω. (2.106’)

Remark 7. In Section 2.8.4.1, we derive the equation of motion (2.96) based on
the pure transport (2.99’) of the deformation gradient F , and on the incompress-
ibility conditions (2.85), i.e., including the condition detF = 1 which is more
physical. Later, in Chapter 3, we replace equation (2.99) by (2.99’) due to the
aforementioned mathematical reason.

2.8.4 Derivation of the model

In this section, we derive the equation of motion for the system first. Then, the
effective magnetic field and the dissipative term of the deformation gradient are
considered. We note that several steps in the calculations for the following results
are similar to those in Section 2.7 and are therefore shortened.
In the derivation of the model, we assume that all the quantities are as smooth
as necessary to justify the calculations.

2.8.4.1 Equation of motion: variation with respect to the domain

Theorem 8. For an incompressible viscoelastic and micromagnetic material in
the simplified setting described in Sections 2.8.1–2.8.2 the equation of motion is
given by

vt + (v · ∇)v +∇p−∇ · τ = ν∆v in Ω× (0, t∗), (2.107)

where the total stress tensor is given by the formula

τ =W ′(F )F⊤ − 2A
(
∇M ⊙∇M

)
. (2.108)

Proof. We start by considering the conservative part of the energy dissipation
law. In view of (2.8), we obtain from the total energy in (2.94) the action
functional

A(v, F,M) =

∫ t∗

0

∫

Ω

1

2
|v|2 −W (F )−A|∇M |2 −

1

4µ2
(|M |2 − 1)2 dx dt.

(2.109)

We use volume preserving diffeomorphisms xε(X, t) of class C2 with deformation
gradient F̃ ε(X, t) := ∇Xx

ε(X, t) for the variation with respect to the domain
such that

x0 = x and
dxε

dε

∣∣∣∣
ε=0

:= χ̃ and ∀ε : det F̃ ε ≡ 1 (2.110)
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and χ̃ being any compactly supported (with respect to space and time) test
function of class C∞. Here, F̃ = ∇Xx = ∇Xx

ε
∣∣
ε=0

.
The nonlinear constraint leads to a divergence-free condition for the push forward
χ̃(X, t) = χ(x(X, t), t) (see also [For13, Section 3.5]); using (2.58) and (2.64) we
obtain

0 =
d

dε

∣∣∣∣
ε=0

det F̃ ε = det F̃ tr(∇X χ̃(X, t)F̃
−1) = tr (∇xχ(x(X, t), t)) = ∇ · χ.

As for the variation with respect to the domain in the general case in Sec-
tion 2.7.1, the variations xε(X, t) are again functions defined on the Lagrangian
coordinate system, so, the action functional (2.109) needs to be transformed
into the Lagrangian coordinate system. We obtain using the push-forward for-
mula for the deformation gradient F̃ (X, t) = F (x(X, t), t) and the transport
M(x(X, t), t) =M0(X)

A(x) =

∫ t∗

0

∫

Ω0

1

2
|xt(X, t)|

2 −W (F̃ (X, t))

−A|∇XM0(X)F̃−1(X, t)|2 −
1

4µ2
(|M0(X)|2 − 1)2 dX dt. (2.111)

Notice that due to the simple transport of M the last summand in the action
functional does not depend on the variation.
Now, we are ready to take the variation of the action functional with respect to
the domain. To this end, we plug in the volume preserving diffeomorphisms as
described above. We obtain

A(xε) =

∫ t∗

0

∫

Ω0

1

2
|xεt (X, t)|

2 −W (F̃ ε(X, t))

−A|∇XM0(X)(F̃ ε)−1(X, t)|2 −
1

4µ2
(|M0(X)|2 − 1)2 dX dt. (2.112)

We continue the calculation:

d

dε

∣∣∣∣
ε=0

A(xε)

=

∫ t∗

0

∫

Ω0

xt(X, t) ·

(
d

dε

∣∣∣∣
ε=0

xεt (X, t)

)
−W ′(F̃ ) :

(
d

dε

∣∣∣∣
ε=0

F̃ ε

)

− 2A
(
∇XM0(X)F̃−1

)
:

(
−∇XM0(X)F̃−1

(
d

dε

∣∣∣∣
ε=0

F̃ ε

)
F̃−1

)
dX dt.

We assume that the variation xε is at least C2. Hence d
dε

∣∣
ε=0

F̃ ε = ∇X χ̃(X, t)
and thus

d

dε

∣∣∣∣
ε=0

A(xε)

=

∫ t∗

0

∫

Ω0

xt(X, t) · χ̃t(X, t)−W ′(F̃ ) :
(
∇X χ̃(X, t)F̃

−1F̃
)

− 2A
(
∇XM0(X)F̃−1

)
:
(
−∇XM0(X)F̃−1∇X χ̃(X, t)F̃

−1
)

dX dt.
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We integrate by parts with respect to time in the first summand to obtain

d

dε

∣∣∣∣
ε=0

A(xε)

=

∫ t∗

0

∫

Ω0

−
d

dt
xt(X, t) · χ̃(X, t) −W ′(F̃ ) :

(
∇X χ̃(X, t)F̃

−1F̃
)

+ 2A
(
∇XM0(X)F̃−1

)
:
(
∇XM0(X)F̃−1∇X χ̃(X, t)F̃

−1
)

dX dt.

Now, we transform the spatial integral back into the Eulerian coordinate system.
Here, we use (2.58) and the push forward formula χ̃(X, t) = χ(x(X, t), t). We
get

d

dε

∣∣∣∣
ε=0

A(xε)

=

∫ t∗

0

∫

Ω
−(vt(x, t) + (v(x, t) · ∇)v(x, t)) · χ(x, t)− (W ′(F )F⊤) : ∇χ(x, t)

+ 2A∇M(x, t) : (∇M(x, t)∇χ(x, t)) dx dt.

Next, we perform an integration by parts with respect to x to isolate χ. The
details of these calculations are already carried out above in section 2.7.1. This
yields

d

dε

∣∣∣∣
ε=0

A(xε) =

∫ t∗

0

∫

Ω

(
− (vt + (v · ∇)v) +∇ ·

(
W ′(F )F⊤

)

− 2A∇ · (∇M ⊙∇M)

)
· χ dx dt.

We successfully isolated χ. Then, we set d
dε

∣∣
ε=0

A(xε) = 0 and obtain using the
Helmholtz decomposition (see, e.g., [DL00, Chapter IX, Section 1, Propostion 1])
for some p1 ∈W 1,2(Ω,R)

0 = vt + (v · ∇)v +∇p1 −∇ ·
(
W ′(F )F⊤

)
+ 2A∇ ·

(
∇M ⊙∇M

)
.

At this point, we rewrite the result and get

vt + (v · ∇)v +∇p1 −∇ · τ = 0 in Ω× (0, t∗), (2.113)

where

τ =W ′(F )F⊤ − 2A
(
∇M ⊙∇M

)
(2.114)

is the total stress as in (2.108).
We proceed with the dissipative part (2.95). Again, we only have a viscosity
term as a dissipation related to the velocity. The calculation is almost the same
as the one to obtain (2.80) in the general setting. However, since we work under
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incompressibility conditions here, we use a variation v+εṽ with ṽ being compactly
supported, smooth and satisfying ∇ · ṽ = 0:

0 =
d

dε

∣∣∣∣
ε=0

1

2
∆E(v + εṽ) =

∫

Ω

(
−ν∆v

)
· ṽ dx.

At this point, we can again use the Helmholtz decomposition and obtain

−ν∆v = ∇p2 (2.115)

with p2 ∈ W 1,2(Ω,R). Finally, we define the total pressure p := p1 − p2 (see
(2.113), (2.115)) and by the force balance law, we put the conservative part
(2.113) and the dissipative part (2.115) together to obtain equation (2.107). This
concludes the proof.

2.8.4.2 Effective magnetic field Heff and regularization of F

In the following, we derive additional terms for the incompressible viscoelastic
and micromagnetic material in the simplified setting described in Sections 2.8.1–
2.8.2. The first term is the effective magnetic field which is obtained as a varia-
tional derivative with respect to M of the simplified micromagnetic energy from
(2.91), namely

W simpl.
µmag =

∫

Ω
A|∇M |2 +

1

4µ2
(|M |2 − 1)2 dx.

The calculations are done analogously to those in Section 2.7.2, so we only give
the result here:

Heff = −
δW

simpl.
µmag

δM
= 2A∆M −

1

µ2
(|M |2 − 1)M. (2.116)

We plug this into the microscopic force balance equation (2.93) to obtain (2.100).
Finally, we treat the regularization on F in (2.95). This is done in an analogous
way to the treatment of the viscosity part (2.115). We obtain κ∆F as the regu-
larizing part which we couple with the pure transport equation (2.99) to obtain
the force balance equation (2.99’).
This establishes the entire system summarized in Section 2.8.3.
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3 Existence of weak solutions

This chapter is dedicated to the existence results of weak solutions to the models
derived in Chapter 2. The notation is the common notation used for Navier-
Stokes equations in [Tem77] and related models in, e.g., [LL95, SL09]. For the
notation of the function spaces used throughout this chapter we refer to page viii
in the beginning of this work.
We start our analysis of the model in the simplified setting for magnetoelastic
materials proposed in Section 2.8.3. In the following, Ω ⊂ R

d for d = 2, 3. For
convenience, we set A = 1

2 to find

vt + (v · ∇)v +∇p−∇ · τ = ν∆v in Ω× (0, t∗), (3.1)

τ =W ′(F )F⊤ −∇M ⊙∇M in Ω× (0, t∗), (3.2)

∇ · v = 0 in Ω× (0, t∗), (3.3)

Ft + (v · ∇)F −∇vF = κ∆F in Ω× (0, t∗), (3.4)

Mt + (v · ∇)M = ∆M −
1

µ2
(|M |2 − 1)M in Ω× (0, t∗) (3.5)

with boundary conditions

v = 0 on ∂Ω× (0, t∗), (3.6)

F = 0 on ∂Ω× (0, t∗), (3.7)

∂M

∂n
= 0 on ∂Ω× (0, t∗), (3.8)

and initial conditions

v(x, 0) = v0(x), ∇ · v0(x) = 0 in Ω, (3.9)

F (x, 0) = F0(x) = I in Ω, (3.10)

M(x, 0) =M0(x) in Ω. (3.11)

Moreover, we assume that the elastic energy density W : Rd×d → R
+
0 satisfies

W (RΞ) = W (Ξ) for all R ∈ SO(d) (and thus W ′(RΞ) = RW ′(Ξ); see also
[LW01]), and the following conditions for some constants C1, C2, C3, a > 0, any
Ξ ∈ R

d×d, and any Ξ1,Ξ2 ∈ H1(Ω;Rd×d)

W ∈ C2(Rd×d;R), (3.12)

C1|Ξ|
2 ≤W (Ξ) ≤ C1(|Ξ|

2 + 1), (3.13)

|W ′(Ξ)| ≤ C2(1 + |Ξ|), (3.14)

W ′(0) = 0, (3.15)

|W ′′(Ξ)| ≤ C3, (3.16)

(W ′′(Ξ1)∇Ξ2)
... ∇Ξ2 ≥ a|∇Ξ2|

2 a.e. in Ω, (3.17)
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where W ′′(Ξ)∇Ξ = ∂2W (Ξ)
∂Ξij∂Ξkl

∇σΞkl, using index notation. Notice that (3.17) is

convexity of W (see, e.g., [GH96, Chapter 4, Section 1.3]) which we assume for
simplicity. In the proofs of Corollaries 20 and 29, we only need a weaker variant
of this condition, namely

∫

Ω
(W ′′(Ξ1)∇Ξ1)

... ∇Ξ1 dx ≥

∫

Ω
a|∇Ξ1|

2 dx. (3.17’)

In Section 3.1, we prove the existence of weak solutions (see Definition 14 in
Section 3.1.1) to this system, summarized in the following theorem:

Theorem 9. Let d = 2, 3. For any T > 0, any v0 ∈ H, F0 ∈ L2(Ω;Rd×d),
M0 ∈ H1(Ω;R3) and W satisfying (3.12)–(3.17), the system (3.1)–(3.11) has a
weak solution (v, F,M) in Ω× (0, T ).

Our approach to the proof of existence is based on the work in [LL95, SL09].
Next to a Galerkin approximation method which is also used for time-dependent
Navier-Stokes equations in [Tem77, Chapter III] we use a fixed point argument
to establish the existence of weak solutions.
In Section 3.2 the model for the simplified setting gets altered in the sense that
the gradient flow dynamics for the magnetization in (3.5) is replaced by the
Landau-Lifshitz-Gilbert (LLG) equation and the length constraint |M | = 1. We
obtain

Mt + (v · ∇)M = −M ×∆M −M × (M ×∆M) (3.18)

for the microscopic force balance equation. Since we do not relax the length con-
straint |M | = 1 here, the effective magnetic field reduces to Heff = ∆M (compare
the simplified micromagnetic energy (2.91) and the resulting effective magnetic
field (2.116), both including a term accounting for the length constraint).
At this point, we need to comment on the different forms of (2.31) and (3.18).
It is a special porperty of the LLG equation that, under certain assumptions on
the form of the effective field Heff , which is the case here, the following lemma
holds true (this idea is also used in [BPV01, CF01]):

Lemma 10. If M solves





Mt + (v · ∇)M = −M ×∆M −M × (M ×∆M) in Ω× (0, t∗),
∂M
∂n

= 0 on ∂Ω× (0, t∗),

M(x, 0) =M0(x), |M0| = 1 a.e. in Ω,

(3.19)

where v is divergence-free and vanishes on ∂Ω, then the length of M is conserved,
i.e., |M | = 1 a.e. in Ω× (0, t∗). Moreover, the following equations are equivalent:

Mt + (v · ∇)M = −M ×∆M −M × (M ×∆M), (3.20)

Mt + (v · ∇)M = −M ×∆M + |∇M |2M +∆M, (3.21)

Mt + (v · ∇)M = −2M ×∆M +M × (Mt + (v · ∇)M). (3.22)
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Proof. Firstly, by multiplying (3.19)1 by M we obtain (up to a constant factor
of 1

2 ) (
|M |2

)
t
+ (v · ∇)|M |2 = 0.

Then, we prove that solutions to

{
θt + (v · ∇)θ = 0 in Ω× (0, t∗),

θ(x, 0) = θ0 a.e. in Ω

are unique. To this end, let θ1 6= θ2 be two solutions. Subtracting the respective
ODEs, multiplying by θ1 − θ2 and integrating over Ω yields

∫

Ω
(θ1 − θ2)t · (θ1 − θ2) dx+

∫

Ω
(v · ∇)(θ1 − θ2) · (θ1 − θ2) dx = 0

⇐⇒
1

2

∫

Ω

(
|θ1 − θ2|

2
)
t
dx+

1

2

∫

Ω
(v · ∇)|θ1 − θ2|

2 dx

︸ ︷︷ ︸
∇·v=0
= 0

= 0

⇐⇒ ‖θ1 − θ2‖
2
L2(Ω)(t) = ‖θ1 − θ2‖

2
L2(Ω)(0) = 0,

which concludes the proof of uniqueness. Since θ(x, t) = |M(x, t)|2 and the
constant solution θ(x, t) ≡ 1 solve this equation, they must be the same a.e.
Thus, |M |2 = 1 a.e., which is equivalent to |M | = 1 a.e.
Knowing this, we apply the Laplace on both sides of |M | = 1 to find out that
M ·∆M = −|∇M |2. Thus, we get with the application of the Graßmann identity
a× (b× c) = (a · c)b− (a · b)c for a, b, c ∈ R

3

(3.20)

⇐⇒Mt + (v · ∇)M = −M ×∆M − (M ·∆M)M +∆M

⇐⇒Mt + (v · ∇)M = −M ×∆M + |∇M |2M +∆M

⇐⇒ (3.21).

The next equivalence is a bit more involved: Since M ×M = 0, we have

(3.20)

⇐⇒Mt + (v · ∇)M = −M ×∆M −M × (−|∇M |2M +M ×∆M︸ ︷︷ ︸
(3.21)
= −(Mt+(v·∇)M)+∆M

)

⇐⇒Mt + (v · ∇)M = −M ×∆M +M × (Mt + (v · ∇)M)−M ×∆M

⇐⇒ (3.22).

This concludes the proof of the lemma.

The proof of existence of weak solutions to the system including the LLG equation
then involves methods from the existence theory used for the LLG equation alone,
i.e., not coupled to elastic behavior in materials. Here, we apply ideas from
[CF01] involving also the results from Lemma 10 in order to adapt the proof
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from Section 3.1 to work for the system with LLG dynamics. In the setting
where we analyze the system including the LLG equation, we consider the case
where d = 2 only. This is due to the estimates (3.187)–(3.190) used in the
proof of Lemma 26 to ensure estimate (3.167) needed to extend the approximate
solution of the magnetization while keeping its H2-regularity, and due to the
Sobolev estimate (3.227), valid only for d = 2. It is applied in the proof of
uniform energy estimates in Corollary 29. The setting is comparable to the
situation in [LLW10], where the authors proof existence and regularity of global
weak solutions for liquid crystals: the domain is also two-dimensional and the
liquid crystals are vectors on S2, the unit sphere in R

3. The governing dynamics
in the liquid crystal case naturally differ from the LLG equation considered in
our magnetic case. The existence result for weak solutions (see Definition 24 in
Section 3.2.1) is summarized in

Theorem 11. Let d = 2. For any T > 0, any v0 ∈ H, F0 ∈ L2(Ω;R2×2),
M0 ∈ H2(Ω;S2) satisfying

‖v0‖
2
L2(Ω) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω) <

1

C(Ω)
(3.23)

for some constant C(Ω) and W satisfying (3.12)–(3.17), the system (3.1)–(3.4),
(3.18), (3.6)–(3.11) has a weak solution (v, F,M) in Ω× (0, T ).

The corresponding proof is presented in Section 3.2.

Remark 12. The smallness condition (3.23) is there to ensure H2-regularity of
the magnetization. Notice that there is also a smallness condition on the initial
data in [LLW10] to ensure regularity.

Remark 13. In the following sections, we focus on the existence of weak solu-
tions. The reconstruction of the pressure p is not in scope of this work.
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3.1 System for simplified setting including magnetic

gradient flow

In this section, we present the proof of Theorem 9. In the entire section, Ω ⊂ R
d

for d = 2, 3.

3.1.1 Definition of a weak solution

At first, we need to define the notion of a weak solution to the system (3.1)–(3.11).
We multiply equations (3.1) and (3.4)–(3.5) by test functions ζ ∈W 1,∞(0, t∗;R)
with ζ(t∗) = 0 and ξ ∈ V, Ξ ∈ H1

0(Ω;R
d×d), ϕ ∈ H1(Ω;R3), respectively,

integrate over time and space and obtain via integrations by parts

∫ t∗

0

∫

Ω
−v · (ζ ′ξ) + (v · ∇)v · (ζξ) +

(
W ′(F )F⊤ −∇M ⊙∇M

)
: (ζ∇ξ) dx dt

−

∫

Ω
v(0) · (ζ(0)ξ) dx = −

∫ t∗

0

∫

Ω
ν∇v : (ζ∇ξ) dx dt, (3.24)

∫ t∗

0

∫

Ω
−F : (ζ ′Ξ) + (v · ∇)F : (ζΞ)− (∇vF ) : (ζΞ) dx dt

−

∫

Ω
F (0) : (ζ(0)Ξ) dx = −

∫ t∗

0

∫

Ω
κ∇F

... (ζ∇Ξ) dx dt, (3.25)

∫ t∗

0

∫

Ω
−M · (ζ ′ϕ) + (v · ∇)M · (ζϕ) dx dt−

∫

Ω
M(0) · (ζ(0)ϕ) dx

=

∫ t∗

0

∫

Ω
−∇M : (ζ∇ϕ)−

1

µ2
(|M |2 − 1)M · (ζϕ) dx dt. (3.26)

Now, we are able to give a definition of the weak solution:

Definition 14. The triple (v, F,M) is called a weak solution to the system (3.1)–
(3.11) in Ω× [0, t∗] provided that

v ∈ L∞(0, t∗;H) ∩ L2(0, t∗;V),

F ∈ L∞(0, t∗;L2(Ω;Rd×d)) ∩ L2(0, t∗;H1(Ω;Rd×d)),

M ∈ L∞(0, t∗;H1(Ω;R3)) ∩ L2(0, t∗;H2(Ω;R3)),

and if it satisfies (3.24)–(3.26) together with the boundary conditions (3.6)–(3.8)
in the sense of traces (see, e.g., [Eva02, Section 5.5]) and the initial conditions
(3.9)–(3.11) in the sense

v(·, t)
w−L2(Ω)
−−−−−−⇀ v0(·), F (·, t)

w−L2(Ω)
−−−−−−⇀ F0(·), M(·, t)

w−H1(Ω)
−−−−−−⇀M0(·) as t→ 0+.
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3.1.2 Galerkin approximation: definition of the approximate problem

In this section, we discretize the PDE for the velocity by means of the Galerkin
method following [LL95]. To this end, we construct solutions to approximate
problems by means of a projection onto finite dimensional subspaces of H.
Let {ξi}

∞
i=1 ⊂ C∞(Ω;Rd) be an orthonormal basis of H and an orthogonal basis

of V satisfying

∆ξi +∇pi = −λiξi (3.27)

in Ω and vanishing on the boundary. Here, 0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · ·
with λm

m→∞
−−−−→ ∞. The functions ξi, i ∈ N, are eigenfunctions of the Stokes

operator (existence of these functions can be shown by means of the Hilbert-
Schmidt theorem, see, e.g., [RR04, Theorem 8.94], with a method similar to the
one used in [Eva02, Section 6.5.1]). The reason why we consider this particular
basis is that the ODE (3.44) below has a linear first term which is due to (3.27).
Now, let

Hm := span{ξ1, ξ1, . . . , ξm} (3.28)

and

Pm : H → Hm (3.29)

be the orthonormal projection. We consider an approximate problem which is
obtained from the original problem, now considered for functions vm ∈ Hm:

(vm)t = Pm

(
ν∆vm − (vm · ∇)vm

+∇ ·
(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

))
in Ω× (0, t∗), (3.30)

vm ∈ Hm =⇒ ∇ · vm = 0, (3.31)

(Fm)t + (vm · ∇)Fm −∇vmFm = κ∆Fm in Ω× (0, t∗), (3.32)

(Mm)t + (vm · ∇)Mm = ∆Mm −
1

µ2
(|Mm|2 − 1)Mm in Ω× (0, t∗), (3.33)

vm = 0 on ∂Ω× (0, t∗), (3.34)

Fm = 0 on ∂Ω× (0, t∗), (3.35)

∂Mm

∂n
= 0 on ∂Ω× (0, t∗), (3.36)

vm(x, 0) = Pm(v0(x)) in Ω, (3.37)

Fm(x, 0) = F0(x) = I in Ω, (3.38)

Mm(x, 0) =M0(x) in Ω. (3.39)
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This system is meant to hold in a weak sense, i.e., boundary and initial conditions
(3.34)–(3.39) hold and the following integral equations are satisfied

∫

Ω
(vm)t · ξ + (vm · ∇)vm · ξ +

(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: ∇ξ dx

=−

∫

Ω
ν∇vm : ∇ξ dx, (3.40)

H−1

〈
(Fm)t,Ξ

〉

H1
0

+

∫

Ω
(vm · ∇)Fm : Ξ− (∇vmFm) : Ξ dx

=−

∫

Ω
κ∇Fm

... ∇Ξ dx, (3.41)

∫

Ω
(Mm)t · ϕ+ (vm · ∇)Mm · ϕ dx

=

∫

Ω
∆Mm · ϕ−

1

µ2
(|Mm|2 − 1)Mm · ϕ dx, (3.42)

for a.e. t, where ξ ∈ V ∩Hm = Hm (the equality holds due to the smoothness
of {ξi}

∞
i=1), Ξ ∈ H1

0(Ω;R
d×d), ϕ ∈ L2(Ω;R3).

3.1.3 Galerkin approximation: existence of weak solutions to the
approximate problem

First, we define the notion of a weak solution to the approximate problem.

Definition 15. We call (vm, Fm,Mm) a weak solution to the system (3.30)–
(3.39) provided that

vm ∈ L∞(0, t∗;H) ∩ L2(0, t∗;V),

Fm ∈ L∞(0, t∗;L2(Ω;Rd×d)) ∩ L2(0, t∗;H1(Ω;Rd×d))

Mm ∈ L∞(0, t∗;H1(Ω;R3)) ∩ L2(0, t∗;H2(Ω;R3))

and that the system (3.30)–(3.39) is satisfied in the weak sense (3.40)–(3.42).

The following theorem states that the approximate problem has indeed a weak
solution.

Theorem 16. For any 0 < T < ∞ and any m > 0, v0 ∈ H, F0 ∈ L2(Ω;Rd×d),
M0 ∈ H1(Ω;R3) and W satisfying (3.12)–(3.17), the system (3.30)–(3.39) has a
weak solution (vm, Fm,Mm) in Ω× (0, T ).

In the following, we prepare the proof of Theorem 16. To this end, we first relate
the approximate equation of motion (3.40) to an ODE system. Since we look for
a solution vm satisfying vm(·, t) ∈ Hm for all t ∈ (0, T ), we write

vm(x, t) =

m∑

i=1

gim(t)ξi(x). (3.43)
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We plug this discretization into (3.40). For its left-hand side we obtain, setting
ξ = ξi which is orthonormal in L2(Ω;Rd) to every ξj, j 6= i,

∫

Ω




m∑

j=1

gjm(t)ξj(x)




t

· ξi(x) dx

+

∫

Ω






m∑

j=1

gjm(t)ξj(x)


 · ∇



(

m∑

k=1

gkm(t)ξk(x)

)
· ξi(x) dx

+

∫

Ω

(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: ∇ξi(x) dx

=

m∑

j=1

d

dt
gjm(t)

∫

Ω
ξj(x) · ξi(x) dx

︸ ︷︷ ︸
=δij

+
m∑

j,k=1

gjm(t)gkm(t)

∫

Ω
(ξj(x) · ∇) (ξk(x)) · ξi(x) dx

+

∫

Ω

(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: ∇ξi(x) dx.

For the right-hand side of (3.40) we obtain, setting ξ = ξi, and using integration
by parts and (3.27),

−

∫

Ω
ν∇vm : ∇ξi(x) dx =

∫

Ω
ν∆vm · ξi(x) dx

=

∫

Ω
ν∆




m∑

j=1

gjm(t)ξj(x)


 · ξi(x) dx

=
m∑

j=1

gjm(t)

∫

Ω
ν ∆ξj(x)︸ ︷︷ ︸
=−∇pj−λjξj

·ξi(x) dx

=−
m∑

j=1

gjm(t)

(∫

Ω
ν∇pj · ξi(x) dx

︸ ︷︷ ︸
∇·ξj=0

= 0

+

∫

Ω
νλjξj · ξi(x) dx

)

=−
m∑

j=1

νλjg
j
m(t)

∫

Ω
ξj(x) · ξi(x) dx

︸ ︷︷ ︸
=δij

= −νλig
i
m(t).

We put both parts together and obtain from there the ODE system

d

dt
gim(t) = −νλig

i
m(t) +

m∑

j,k=1

gjm(t)gkm(t)Ai
jk +Di

m(t), i = 1, . . . ,m, (3.44)
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where

Ai
jk = −

∫

Ω
(ξj(x) · ∇)ξk(x) · ξi(x) dx, (3.45)

Di
m(t) = −

∫

Ω

(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: ∇ξi dx. (3.46)

The first summand on the right-hand side of (3.44) is due to the fact that the ξi
are eigenvectors of the Stokes operator satisfying (3.27). The term ∇pi vanishes
with an integration by parts, since ξi is divergence-free. Moreover, from (3.37)
we obtain the initial condition

gim(0) =

∫

Ω
v0(x) · ξi(x) dx (3.47)

for i = 1, . . . ,m.

3.1.3.1 Weak solutions to the sub-problem

We are not yet able to construct a solution vm. But, for a fixed velocity v the
following lemma provides us with unique weak solutions to the PDEs for the
deformation gradient F and the magnetization M . These solutions are then
used to solve for the velocity in the balance of momentum equation in a next
step.

Lemma 17. For v ∈ L∞(0, t∗;W 2,∞(Ω)) satisfying v = 0 on ∂Ω × (0, t∗) and
v(x, 0) = v0(x) and ∇ · v = 0, there exists a time 0 < t̃ ≤ t∗ such that the system

Ft + (v · ∇)F −∇vF = κ∆F in Ω× (0, t̃),

Mt + (v · ∇)M = ∆M −
1

µ2
(|M |2 − 1)M in Ω× (0, t̃),

F = 0 on ∂Ω× (0, t̃),

∂M

∂n
= 0 on ∂Ω× (0, t̃),

F (x, 0) = F0(x) = I in Ω,

M(x, 0) =M0(x) in Ω

has a unique weak solution such that

‖F‖L∞(0,t̃;L2(Ω;Rd×d)) + ‖F‖L2(0,t̃;H1(Ω;Rd×d)) + ‖Ft‖L2(0,t̃;H−1(Ω;Rd×d)) ≤ C(v),

‖M‖L∞(0,t̃;L2(Ω;R3)) + ‖M‖L4(0,t̃;L4(Ω;R3)) + ‖M‖L2(0,t̃;H1(Ω;R3)) ≤ C,

‖M‖L∞(0,t̃;H1(Ω;R3)) + ‖M‖L2(0,t̃;H2(Ω;R3))

+ ‖M‖
H1(0,t̃;L2(Ω;R3)) + ‖M‖L∞(0,t̃;L4(Ω;R3)) ≤ C(v),

where C(v) = C(‖v‖L∞(0,t̃;W 2,∞(Ω;Rd))) and C is independent of v.
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Proof. Notice that the partial differential equations are decoupled. Consequently,
we can prove existence separately.

Existence of a weak solution to the F -equation. This is again done by a
Galerkin approximation. To this end, let {Ξi}

∞
i=1 ⊂ C∞(Ω;Rd×d) be an orthonor-

mal basis of L2(Ω;Rd×d) and an orthogonal basis of H1
0 (Ω;R

d×d) satisfying

∆Ξi = −µiΞi (3.48)

in Ω and vanishing on the boundary. Here, 0 < µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · ·
with µn

n→∞
−−−→ ∞ (existence of these functions can be shown by means of the

Hilbert-Schmidt theorem, see, e.g., [RR04, Theorem 8.94], with a method similar
to the one used in [Eva02, Section 6.5.1]).
Let

L2
n := span{Ξ1,Ξ2, . . . ,Ξn} (3.49)

and
Pn : L2(Ω;Rd×d) → L2

n (3.50)

be the orthonormal projection. We consider the original problem for functions
in L2

n and show existence of a weak solution to

Ft + Pn

[
(v · ∇)F −∇vF

]
= κ∆F in Ω× (0, t∗), (3.51)

F = 0 on ∂Ω× (0, t∗), (3.52)

F (x, 0) = Pn(F0(x)) = I in Ω. (3.53)

For a fixed n ∈ N, we look for a function Fn : [0, t∗] → L2
n of the form

Fn(x, t) =

n∑

i=1

din(t)Ξi(x). (3.54)

The solution must satisfy (3.41), so, we plug the discretization for Fn into this
equation to obtain for Ξ = Ξi the ODE system (the derivation is similar to (3.44))

d

dt
din(t) = −κµid

i
n(t) +

n∑

j=1

djn(t)Ã
i
j(t), i = 1, . . . , n, (3.55)

where

Ãi
j(t) = −

∫

Ω
(v(x, t) · ∇)Ξj(x) : Ξi(x)− (∇v(x, t)Ξj(x)) : Ξi(x) dx. (3.56)

The initial condition becomes

din(0) =

∫

Ω
F0(x) : Ξi(x) dx (3.57)

for i = 1, . . . , n. We apply Carathéodory’s existence theorem (see Theorem 30 in
Appendix A.2) to obtain a solution din(t) of (3.55).
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Since the first summand on the right-hand side of (3.55) does not depend on t
(looking at t and din as distinct variables) and the second summand is measurable
in t, the entire right-hand side is measurable in t for any din.
Furthermore, the terms on the right-hand side of (3.55) are linear in din, so the
right-hand side is continuous in din for a.e. t.
In addition, for t ∈ [0, t∗] and ‖dn − dn(0)‖ ≤ b̃, where dn = (d1n, . . . , d

n
n), we can

bound the right-hand side of (3.55) by the L1-function

(2b̃+ ‖dn(0)‖)


−κµi +

n∑

j=1

Ãi
j


 .

Finally, Carathéodory’s theorem yields the existence of a value t̃ with 0 < t̃ ≤ t∗

such that the ODE system (3.55) has a unique (since the right-hand side of
the ODE is locally Lipschitz, see Theorem 31 in Appendix A.2) and absolutely
continuous solution {din(t)}

n
i=1 on [0, t̃] satisfying (3.57).

We prepare the passage to the limit as n → ∞ with a priori estimates. To this
end, we first multiply

(Fn)t + (v · ∇)Fn −∇vFn = κ∆Fn (3.58)

by Fn (which is the solution obtained with {din(t)}
n
i=1 from (3.54)) and integrate

over both Ω and [0, t] for t ≤ t̃ to find

1

2

∫

Ω
|Fn|

2 dx

= −

∫ t

0

∫

Ω
(v · ∇)

|Fn|
2

2
dx

︸ ︷︷ ︸
∇·v=0
= 0

ds+

∫ t

0

∫

Ω
∇v : (FnF

⊤
n ) dx ds

−

∫ t

0

∫

Ω
κ|∇Fn|

2 dx ds+
1

2

∫

Ω
|Pn(F0)|

2 dx.

We rearrange and, since |Pn(F0)| ≤ |F0|, we obtain

1

2

∫

Ω
|Fn|

2 dx+

∫ t

0

∫

Ω
κ|∇Fn|

2 dx ds

=

∫ t

0

∫

Ω
∇v : (FnF

⊤
n ) dx ds+

1

2

∫

Ω
|Pn(F0)|

2 dx

≤

∫ t

0

∫

Ω
|∇v : (FnF

⊤
n )| dx ds+

1

2

∫

Ω
|F0|

2 dx

≤ ‖∇v‖L∞(0,T ;L∞(Ω))︸ ︷︷ ︸
≤C(v)

∫ t

0

∫

Ω
|FnF

⊤
n |︸ ︷︷ ︸

=|Fn|2

dx ds+
1

2

∫

Ω
|F0|

2 dx. (3.59)

Applying Gronwall’s inequality yields
∫

Ω
|Fn|

2(t) dx ≤

(
1

2

∫

Ω
|F0|

2 dx

)
e‖∇v‖L∞(0,T ;L∞(Ω))t

≤

(
1

2

∫

Ω
|F0|

2 dx

)
eC(v)t (3.60)
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and then, by taking the supremum over all t ∈ [0, T ] and since t̃ ≤ t∗ is bounded,
we get

sup
0≤t≤t̃

‖Fn‖
2
L2(Ω;Rd×d)(t) ≤ C(v)‖F0‖

2
L2(Ω;Rd×3). (3.61)

This gives us the bound

‖Fn‖L∞(0,t̃;L2(Ω;Rd×d)) ≤ C(v). (3.62)

Moreover, from (3.59) and (3.62) we see that

‖Fn‖L2(0,t̃;H1(Ω;Rd×d)) ≤ C(v). (3.63)

Next, we estimate the time derivative (Fn)t in L2(0, t̃;H−1(Ω;Rd×d)), using
‖Pn(Ξ)‖H1

0(Ω;Rd×d) ≤ ‖Ξ‖
H1

0(Ω;Rd×d) ≤ 1,

sup
‖ζ‖

L2(0,t̃)≤1

‖Ξ‖
H1

0
(Ω;Rd×d)

≤1

∫ t̃

0 H−1

〈
(Fn)t,Ξ

〉

H1
0

ζ dt

= sup
‖ζ‖

L2(0,t̃)≤1

‖Ξ‖
H1

0
(Ω;Rd×d)

≤1

∫ t̃

0 H−1

〈
(Fn)t, Pn(Ξ)

〉

H1
0

ζ dt

= sup
‖ζ‖

L2(0,t̃)≤1

‖Ξ‖
H1

0
(Ω;Rd×d)

≤1

∫ t̃

0

∫

Ω
−(v · ∇)Fn : (ζPn(Ξ)) + (∇vFn) : (ζPn(Ξ))

− κ∇Fn

... (ζ∇Pn(Ξ)) dx dt

Hölder
≤ sup

‖ζ‖L2(0,t̃)≤1

‖Ξ‖
H1

0
(Ω;Rd×d)

≤1

∫ t̃

0
‖v‖L∞(Ω;Rd)‖∇Fn‖L2(Ω;Rd×d×d)|ζ|‖P n(Ξ)‖L2(Ω;Rd×d)

+ ‖∇v‖L∞(Ω;Rd)‖Fn‖L2(Ω;Rd×d)|ζ|‖P n(Ξ)‖L2(Ω;Rd×d)

+ κ‖∇Fn‖L2(Ω;Rd×d)|ζ|‖∇Pn(Ξ)‖L2(Ω;Rd×d×d) dt

Hölder
≤

Young
sup

‖ζ‖
L2(0,t̃)≤1

(
‖v‖L∞(0,t̃;L∞(Ω;Rd))

∫ t̃

0

1

2
‖∇Fn‖

2
L2(Ω;Rd×d×d) +

1

2
|ζ|2 dt

+ ‖∇v‖L∞(0,t̃;L∞(Ω;Rd×d))

∫ t̃

0

1

2
‖Fn‖

2
L2(Ω;Rd×d) +

1

2
|ζ|2 dt

+

∫ t̃

0

κ

2
‖∇Fn‖

2
L2(Ω;Rd×d×d) +

κ

2
|ζ|2 dt

)

(3.63)

≤ C(v).

In summary, we get from the above estimate

‖(Fn)t‖L2(0,t̃;H−1(Ω;Rd×d)) ≤ C(v). (3.64)
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From the preceding estimates, we see that there is a subsequence (never rela-
beled!) satisfying the convergence results below (see Theorem 33 in Appendix A.2).

Fn ⇀ F in L2(0, t̃;L2(Ω;Rd×d)), (3.65)

(Fn)t ⇀ (F )t in L2(0, t̃;H−1(Ω;Rd×d)), (3.66)

∇Fn ⇀ ∇F in L2(0, t̃;L2(Ω;Rd×d×d)). (3.67)

Since the weak solution to the approximate problem is defined using test func-
tions from the projected spaces L2

n, we need to pass to the limit with these
particular test functions (only in space), too. However, for any test function
Ξ ∈ H1

0(Ω;R
d×d) we use the sequence of approximate test functions defined

by Ξn := Pn(Ξ) ∈ L2
n which converges strongly to Ξ in H1(Ω;Rd×d). In the

following, we will use this particular sequence of test functions. Moreover, let
ζ ∈W 1,∞(0, t̃). Then, it is clear that the equation

∫ t̃

0 H−1

〈
(Fn)t,Ξn

〉

H1
0

ζ dt+

∫ t̃

0

∫

Ω
(v · ∇)Fn : (ζΞn)− (∇vFn) : (ζΞn) dx dt

=−

∫ t̃

0

∫

Ω
∇Fn

... (ζ∇Ξn) dx dt

converges to the equation

∫ t̃

0 H−1

〈
Ft,Ξ

〉

H1
0

ζ dt+

∫ t̃

0

∫

Ω
(v · ∇)F : (ζΞ)− (∇vF ) : (ζΞ) dx dt

=−

∫ t̃

0

∫

Ω
∇F

... (ζ∇Ξ) dx dt,

where ζ ∈ L2(0, t̃) and Ξ ∈ H1
0(Ω;R

d×d), as n → ∞. All the integral terms are
linear, so the weak convergences from above together with the strong conver-
gence of the test functions yield the convergence of the entire equation. Thus,
we obtain a weak solution to the system (3.51)–(3.53).
Notice that the estimates (3.62), (3.63) and (3.64) for the approximate solution
obtained above still hold in the limit, since norms are weakly lower semicontin-
uous.
Furthermore, the solution is unique. This can be seen directly from (3.61) and
the linearity of the problem which yields that a solution for initial data being
equal to zero is itself identically zero.

Existence of a weak solution to the M-equation. For the Galerkin approxi-
mation, let {ηi}

∞
i=1 ⊂ C∞(Ω;R3) be an orthonormal basis of L2(Ω;R3) and an

orthogonal basis of H2
n(Ω;R

3) (for details on this space and the basis, including
existence, we refer to Appendix A.6) satisfying

∆2ηi + ηi = µ̃iηi (3.68)
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in Ω and ∂ηi
∂n

= 0 and ∂∆ηi
∂n

= 0 in a weak sense on the boundary. Here, it holds

that 0 < µ̃1 ≤ µ̃2 ≤ · · · ≤ µ̃n ≤ · · · with µ̃n
n→∞
−−−→ ∞.

Let
L̃2
n := span{η1, η2, . . . , ηn} (3.69)

and
P̃n : L2(Ω;R3) → L̃2

n (3.70)

be the orthonormal projection. We consider the original problem for functions
in L̃2

n and finally show existence of a unique weak solution to

Mt = P̃n

[
− (v · ∇)M +∆M −

1

µ2
(|M |2 − 1)M

]
in Ω× (0, t∗), (3.71)

∂M

∂n
= 0 on ∂Ω× (0, t∗), (3.72)

M(x, 0) = P̃n(M0(x)) in Ω. (3.73)

For a fixed n ∈ N, we look for a function Mn : [0, t∗] → L̃2
n of the form

Mn(x, t) =

n∑

i=1

hin(t)ηi(x). (3.74)

The solution must satisfy (3.42), so we plug the discretization Mn into this equa-
tion to obtain for ϕ = ηi the ODE system (the derivation is similar to (3.44))

d

dt
hin(t) =

1

µ2
hin(t) +

n∑

j=1

hjn(t)Â
i
j(t) +

n∑

j,k,l=1

hjn(t)h
k
n(t)h

l
n(t)B̂

i
jkl,

i = 1, . . . , n, (3.75)

where

Âi
j(t) = −

∫

Ω

(
(v(x, t) · ∇)ηj(x)−∆ηj(x)

)
· ηi(x) dx, (3.76)

B̂i
jkl = −

∫

Ω
(ηk(x) · ηj(x))(ηl(x) · ηi(x)) dx. (3.77)

The initial condition becomes

hin(0) =

∫

Ω
M0(x) · ηi(x) dx, i = 1, . . . , n. (3.78)

We apply Carathéodory’s existence theorem again to obtain a solution hin(t) of
(3.75).
Since the first and the third summand on the right-hand side of (3.75) are not
depending on t (looking at t and hin as distinct variables) and the dependence on
t of the second summand is just within a Lipschitz function, the right-hand side
is measurable in t for any hin.
Furthermore, the terms on the right-hand side of (3.75) are linear and cubic in
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hin, so the right-hand side is continuous in hin for any t.
In addition, for t ∈ [0, t∗] and ‖hn −hn(0)‖ ≤ b̂, where hn = (h1n, . . . , h

n
n), we can

bound the right-hand side of (3.75) by the L1-function

(2b̂+ ‖hn(0)‖)


 1

µ2
+

n∑

j=1

Âi
j


+ (2b̂+ ‖hn(0)‖)

3
n∑

j,k,l=1

B̂i
jkl(t).

Finally, Carathéodory’s theorem yields the existence of a value t̃ with 0 < t̃ ≤ t∗

such that the ODE system (3.75) has a unique (since the right-hand side of the
ODE is locally Lipschitz) and absolutely continuous solution {hin(t)}

n
i=1 on [0, t̃]

satisfying (3.78).
Now, we prepare the passage to the limit as n→ ∞ with uniform estimates. To
this end, we first multiply

(Mn)t + (v · ∇)Mn = ∆Mn −
1

µ2
(|Mn|

2 − 1)Mn (3.79)

byMn (which is the solution obtained with {hin(t)}
n
i=1 from (3.74)) and integrate

over both Ω and [0, t] for t ≤ t̃ to find

1

2

∫

Ω
|Mn|

2 dx = −

∫ t

0

∫

Ω
(v · ∇)

|Mn|
2

2
dx

︸ ︷︷ ︸
∇·v=0
= 0

ds−

∫ t

0

∫

Ω
|∇Mn|

2 dx ds

−

∫ t

0

∫

Ω

1

µ2
(|Mn|

2 − 1)|Mn|
2 dx ds+

1

2

∫

Ω
|P̃n(M0)|

2 dx

Young
≤ −

∫ t

0

∫

Ω
|∇Mn|

2 dx ds−
1

µ2

∫ t

0

∫

Ω
|Mn|

4 dx ds

+
1

µ2

∫ t

0

∫

Ω

1

2
+

1

2
|Mn|

4 dx ds+
1

2

∫

Ω
|P̃n(M0)|

2 dx.

We rearrange to obtain

1

2

∫

Ω
|Mn|

2 dx+

∫ t

0

∫

Ω
|∇Mn|

2 dx ds

+
1

2µ2

∫ t

0

∫

Ω
|Mn|

4 dx ds ≤
t |Ω|

2µ2
+

1

2

∫

Ω
|P̃n(M0)|

2 dx.

By taking the supremum over all t ∈ [0, t̃] we get

sup
0≤t≤t̃

‖Mn‖
2
L2(Ω;R3)(t) + 2‖∇Mn‖

2
L2(0,t̃;L2(Ω;R3×d))

+
1

µ2
‖Mn‖

4
L4(0,t̃;L4(Ω;R3))

≤
t̃ |Ω|

µ2
+ ‖P̃n(M0)‖

2
L2(Ω;R3). (3.80)

Since ‖P̃n(M0)‖L2(Ω;R3) ≤ ‖M0‖L2(Ω;R3), this gives us the bound

‖Mn‖L∞(0,t̃;L2(Ω;R3)) + ‖∇Mn‖L2(0,t̃;L2(Ω;R3)) + ‖Mn‖
4
L4(0,t̃;L4(Ω;R3))

≤ C, (3.81)

55



where the constant is depending on Ω, µ and the final time t̃. Next, we multiply
(3.79) by −∆Mn, integrate over both Ω and [0, t] for t ≤ t̃ and use Young’s
inequality to obtain the estimate

1

2

∫

Ω
|∇Mn|

2 dx

=

∫ t

0

∫

Ω
(v · ∇)Mn ·∆Mn dx ds−

∫ t

0

∫

Ω
|∆Mn|

2 dx ds

+
1

µ2

∫ t

0

∫

Ω
(|Mn|

2 − 1)Mn ·∆Mn dx ds+
1

2

∫

Ω
|∇P̃n(M0)|

2 dx

=

∫ t

0

∫

Ω
(v · ∇)Mn ·∆Mn dx ds−

∫ t

0

∫

Ω
|∆Mn|

2 dx ds

−
1

µ2

∫ t

0

∫

Ω

[
|Mn|

2∇Mn +∇|Mn|
2 ⊗Mn

]
: ∇Mn dx ds

−
1

µ2

∫ t

0

∫

Ω
Mn ·∆Mn dx ds+

1

2

∫

Ω
|∇P̃n(M0)|

2 dx

=

∫ t

0

∫

Ω
(v · ∇)Mn ·∆Mn dx ds−

∫ t

0

∫

Ω
|∆Mn|

2 dx ds

−
1

µ2

∫ t

0

∫

Ω
|Mn|

2|∇Mn|
2 + 2 (Mn)k∇j(Mn)k(Mn)i∇j(Mn)i︸ ︷︷ ︸

=
∣∣∣∇ |Mn|2

2

∣∣∣
2

dx ds

−
1

µ2

∫ t

0

∫

Ω
Mn ·∆Mn dx ds+

1

2

∫

Ω
|∇P̃n(M0)|

2 dx.

Further, by Young’s inequality, we obtain

1

2

∫

Ω
|∇Mn|

2 dx

Young
≤

∫ t

0

∫

Ω
|(v · ∇)Mn|

2 +
1

4
|∆Mn|

2 − |∆Mn|
2 dx ds

−
1

µ2

∫ t

0

∫

Ω
|Mn|

2|∇Mn|
2 + 2

∣∣∣∣∇
|Mn|

2

2

∣∣∣∣
2

dx ds

+

∫ t

0

∫

Ω

1

µ4
|Mn|

2 +
1

4
|∆Mn|

2 dx ds+
1

2

∫

Ω
|∇P̃n(M0)|

2 dx

≤

∫ t

0
‖(v · ∇)Mn‖

2
L2(Ω;R3) ds−

1

2

∫ t

0
‖∆Mn‖

2
L2(Ω;R3) ds

−
1

µ2

∫ t

0

∫

Ω
|Mn|

2|∇Mn|
2 + 2

∣∣∣∣∇
|Mn|

2

2

∣∣∣∣
2

dx ds

+
1

µ4

∫ t

0
‖Mn‖

2
L2(Ω;R3) ds+

1

2
‖∇P̃n(M0)‖

2
L2(Ω;R3×d).

56



Moreover, since v ∈ L∞(0, t∗;W 2,∞(Ω;Rd)) , we can estimate

‖∇Mn‖
2
L2(Ω;R3×d)(t) +

∫ t

0
‖∆Mn‖

2
L2(Ω;R3) ds

+
2

µ2

∫ t

0

∫

Ω
|Mn|

2|∇Mn|
2 + 2

∣∣∣∣∇
|Mn|

2

2

∣∣∣∣
2

dx ds

≤ C(v)

∫ t

0
‖∇Mn‖

2
L2(Ω;R3×d) ds

+
2

µ4

∫ t

0
‖Mn‖

2
L2(Ω;R3) ds+ ‖∇P̃n(M0)‖

2
L2(Ω;R3×d), (3.82)

where the constant C(v) depends only on v. Now, we can apply Gronwall’s
inequality to get

sup
0≤t≤t̃

‖∇Mn‖
2
L2(Ω;R3×d)(t)

≤

(
2

µ4
‖Mn‖

2
L2(0,t̃;L2(Ω;R3))︸ ︷︷ ︸

≤‖Mn‖2
L2(0,t∗;L2(Ω;R3))

+‖∇P̃n(M0)‖
2
L2(Ω;R3×d)

)
eC(v)t̃. (3.83)

Since t̃ ≤ t∗ is bounded, the right-hand side of (3.83) is bounded independently
of t̃. This, together with (3.81) and ‖∇P̃n(M0)‖L2(Ω;R3×d) ≤ ‖∇M0‖L2(Ω;R3×d),
tells us that

‖Mn‖L∞(0,t̃;H1(Ω;R3)) ≤ C(v). (3.84)

Furthermore, if we integrate ‖∆Mn‖
2
L2(Ω;R3) over time and use (3.82), (3.84), we

obtain

‖∆Mn‖L2(0,t̃;L2(Ω;R3)) ≤ C(v). (3.85)

From ∂Mn

∂n
= 0, we obtain, using integration by parts

‖∆Mn‖
2
L2(0,t̃;L2(Ω;R3))

=

∫

Ω
∂i∂i(Mn)k∂j∂j(Mn)k dx

=

∫

Ω
∂i∂j(Mn)k∂i∂j(Mn)k dx

= ‖∇2Mn‖
2
L2(0,t̃;L2(Ω;R3×2×2)),

which implies, together with (3.84) and (3.85), that

‖Mn‖L2(0,t̃;H2(Ω;R3)) ≤ C(v). (3.86)

Finally, we test (3.79) with (Mn)t. To this end, we need to verify that (Mn)t is
actually admissible as a test function, i.e., in L2(0, t̃;L2(Ω;R3)), using the fact
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that ‖P̃n(ϕ)‖L2(Ω;R3) ≤ ‖ϕ‖L2(Ω;R3) ≤ 1,

sup
‖ζ‖L2(0,t̃)≤1

‖ϕ‖L2(Ω;R3)≤1

∫ t̃

0

∫

Ω
(Mn)t · (ζϕ) dx dt

= sup
‖ζ‖L2(0,t̃)≤1

‖ϕ‖L2(Ω;R3)≤1

∫ t̃

0

∫

Ω
(Mn)t · (ζP̃n(ϕ)) dx dt

= sup
‖ζ‖L2(0,t̃)≤1

‖ϕ‖
L2(Ω;R3)≤1

∫ t̃

0

∫

Ω
−(v · ∇)Mn · (ζP̃n(ϕ)) + ∆M · (ζP̃n(ϕ))

−
1

µ2
(|M |2 − 1)M · (ζP̃n(ϕ)) dx dt

Hölder
≤ sup

‖ζ‖L2(0,t̃)≤1

‖ϕ‖L2(Ω;R3)≤1

∫ t̃

0
‖(v · ∇)Mn‖L2(Ω;R3)|ζ|‖P̃n(ϕ)‖L2(Ω;R3)

+ ‖∆M‖L2(Ω;R3)|ζ|‖P̃n(ϕ)‖L2(Ω;R3)

+
1

µ2
‖(|M |2 − 1)M‖L2(Ω;R3)|ζ|‖P̃n(ϕ)‖L2(Ω;R3) dt.

Another application of Hölder’s inequality yields

sup
‖ζ‖

L2(0,t̃)≤1

‖ϕ‖L2(Ω;R3)≤1

∫ t̃

0

∫

Ω
(Mn)t · (ζϕ) dx dt

≤ sup
‖ζ‖L2(0,t̃)≤1

(
‖vm‖L∞(0,t̃;L∞(Ω;Rd))‖∇Mn‖L2(0,t̃;L2(Ω;R3×d))‖ζ‖L2(0,t̃)

+ ‖∆M‖L2(0,t̃;L2(Ω;R3))‖ζ‖L2(0,t̃)

+
1

µ2
‖(|M |2 − 1)M‖L2(0,t̃;L2(Ω;R3))‖ζ‖L2(0,t̃)

)

≤ ‖v‖L∞(0,t̃;L∞(Ω;Rd))‖∇Mn‖L2(0,t̃;L2(Ω;R3×d)) + ‖∆Mn‖L2(0,t̃;L2(Ω;R3))

+
1

µ2
‖|Mn|

3‖L2(0,t̃;L2(Ω))︸ ︷︷ ︸
=‖Mn‖3

L6(0,t̃;L6(Ω;R3))

+
1

µ2
‖Mn‖L2(0,t̃;L2(Ω;R3))

≤ C(v) +
1

µ2
‖Mn‖

3
L6(0,t̃;L6(Ω;R3)) ≤ C(v),

where we used the continuous Sobolev embedding H1 ⊂ L6 (valid for d = 2, 3)
and (3.84) in the last step. In summary, we get from the above estimate

‖(Mn)t‖L2(0,t̃;L2(Ω;R3)) ≤ C(v). (3.87)
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Now, we can multiply (3.79) with (Mn)t, integrate over both Ω and [0, t] for t ≤ t̃

and use again Young’s inequality to get
∫ t

0

∫

Ω
|(Mn)t|

2 dx ds+
1

2

∫

Ω
|∇Mn|

2 dx

= −

∫ t

0

∫

Ω
(v · ∇)Mn · (Mn)t dx ds

−

∫ t

0

∫

Ω

(
1

µ2
(|Mn|

2 − 1)Mn

)
· (Mn)t

︸ ︷︷ ︸
=
(

(|Mn|2−1)2

4µ2

)

t

dx ds+
1

2

∫

Ω
|∇P̃n(M0)|

2 dx

≤
1

2

∫ t̃

0
‖(v · ∇)Mn‖

2
L2(Ω;R3) ds+

1

2

∫ t

0
‖(Mn)t‖

2
L2(Ω;R3) ds

−
1

4µ2

∫

Ω
|Mn|

4 − 2|Mn|
2 + 1 dx

+

∫

Ω

(|P̃n(M0)|
2 − 1)2

4µ2
dx+

1

2

∫

Ω
|∇P̃n(M0)|

2 dx.

Then, due to v ∈ L∞(0, t∗;W 2,∞(Ω;Rd)), the bound (3.84) and the assumption
on the initial data M0 ∈ H1(Ω;R3), we obtain

∫ t

0
‖(Mn)t‖

2
L2(Ω;R3) ds+ ‖∇Mn‖

2
L2(Ω;R3×d)(t) +

1

2µ2
‖Mn‖

4
L4(Ω;R3)(t)

≤ ‖(v · ∇)Mn‖
2
L2(0,T ;L2(Ω;R3)) +

∫

Ω

(|P̃n(M0)|
2 − 1)2

2µ2
dx

+

∫

Ω
|∇M0|

2 dx+
1

µ2
‖Mn‖

2
L∞(0,T ;L2(Ω;R3)) + C(Ω)

≤ C(v).

We take the supremum over all t ∈ [0, t̃] to find out that

‖(Mn)t‖
2
L2(0,t̃;L2(Ω;R3)) + sup

0≤t≤t̃

‖∇Mn‖
2
L2(Ω;R3×d)(t)

+ sup
0≤t≤t̃

1

2µ2
‖Mn‖

4
L4(Ω;R3)(t) ≤ C(v).

So, we see that
‖Mn‖H1(0,t̃;L2(Ω;R3)) ≤ C(v) (3.88)

and, furthermore,
‖Mn‖L∞(0,t̃;L4(Ω;R3)) ≤ C(v). (3.89)

Finally, we pass to the limit as n → ∞ to obtain a weak solution to the system
(3.71)–(3.73). We need the convergence results

Mn →M in L4(0, t̃;L4(Ω;R3)), (3.90)

(Mn)t ⇀Mt in L2(0, t̃;L2(Ω;R3)), (3.91)

∇Mn ⇀ ∇M in L2(0, t̃;L2(Ω;R3×d)). (3.92)
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The weak convergence results follow directly from the estimates obtained above
for a subsequence (not relabeled; see Theorem 33 in Appendix A.2). For the
strong convergence (3.90), we have to argue a bit more: From the embeddings

H1(Ω;R3)
c
⊂ L4(Ω;R3) ⊂ L2(Ω;R3) (the first embedding is compact since d < 4,

the second one is continuous), the fact thatMn ∈ L4(0, t̃;H1(Ω;R3)), and (3.88),
we conclude by the Aubin-Lions Lemma (see Lemma 35 in Appendix A.2) the
compact embedding
{
M ∈ L4(0, t̃;H1(Ω;R3)) : Mt ∈ L2(0, t̃;L2(Ω;R3))

} c
⊂ L4(0, t̃;L4(Ω;R3)).

This yields the strong convergence (3.90) (up to subsequence) of {Mn}n.
Again, as the weak solution to the approximate problem is defined using test
functions from the projected spaces L̃2

n, we also need to pass to the limit with
these particular test functions (only in space). However, for any test function
ϕ ∈ H1(Ω;R3) we use the sequence of approximate test functions defined by
ϕn := P̃n(ϕ) ∈ L̃2

n which converges strongly to ϕ in H1(Ω;R3). In the following,
we use this particular sequence of test functions. Moreover, let ζ ∈ L∞(0, t̃).
So, the equation

∫ t̃

0

∫

Ω
(Mn)t · (ζϕn) + (v · ∇)Mn · (ζϕn) dx dt

=

∫ t̃

0

∫

Ω
−∇Mn : (ζ∇ϕn)−

1

µ2
(|Mn|

2 − 1)Mn · (ζϕn) dx dt

converges to the equation
∫ t̃

0

∫

Ω
Mt · (ζϕ) + (v · ∇)M · (ζϕ) dx dt

=

∫ t̃

0

∫

Ω
−∇M : (ζ∇ϕ)−

1

µ2
(|M |2 − 1)M · (ζϕ) dx dt

as n→ ∞. All the integral terms on the left-hand side and the first term on the
right-hand side are linear, so the weak convergences from above together with
the strong convergence of the test functions yield the convergence of these terms.
For the last term, we need the strong convergence of {Mn}n. We proceed by
calculating and add zeroes in the first step in order to factor out neighboring
summands in the second step:
∣∣∣∣∣

∫ t̃

0

∫

Ω
(|Mn|

2 − 1)Mn · (ζϕn)− (|M |2 − 1)M · (ζϕ) dx dt

∣∣∣∣∣

=

∣∣∣∣
∫ t̃

0

∫

Ω
(|Mn|

2 − 1)Mn · (ζϕn)− (|Mn|
2 − 1)M · (ζϕn)

+ (|Mn|
2 − 1)M · (ζϕn)− (|M |2 − 1)M · (ζϕn)

+ (|M |2 − 1)M · (ζϕn)− (|M |2 − 1)M · (ζϕ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ t̃

0

∫

Ω
(|Mn|

2 − 1)(Mn −M) · (ζϕn)

+ (|Mn|
2 − |M |2)M · (ζϕn) + (|M |2 − 1)M · (ζ(ϕn − ϕ)) dx dt

∣∣∣∣
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=

∣∣∣∣
∫ t̃

0

∫

Ω
|Mn|

2(Mn −M) · (ζϕn)− (Mn −M) · (ζϕn)

+ (|Mn|
2 − |M |2)M · (ζϕn)

+ |M |2M · (ζ(ϕn − ϕ))−M · (ζ(ϕn − ϕ)) dx dt

∣∣∣∣

≤

∫ t̃

0

∫

Ω
|Mn|

2|Mn −M | |ζϕn|+ |Mn −M | |ζϕn|

+
∣∣|Mn|

2 − |M |2
∣∣ |M | |ζϕn|

+ |M |2|M |
∣∣ζ(ϕn − ϕ)

∣∣+ |M |
∣∣ζ(ϕn − ϕ)

∣∣ dx dt

Hölder
≤ ‖|Mn|

2‖L4(0,t̃;L2(Ω))︸ ︷︷ ︸
=‖Mn‖2

L8(0,t̃;L4(Ω;R3))
≤C(v)

‖Mn −M‖L4(0,t̃;L4(Ω;R3)) ‖ζϕn‖L2(0,t̃;L4(Ω;R3))︸ ︷︷ ︸
≤C

+‖Mn −M‖L2(0,t̃;L2(Ω;R3)) ‖ζϕn‖L2(0,t̃;L2(Ω;R3))︸ ︷︷ ︸
≤C

+
∥∥|Mn|

2 − |M |2
∥∥
L2(0,t̃;L2(Ω))

‖M‖L∞(0,t̃;L4(Ω;R3))︸ ︷︷ ︸
≤C(v)

‖ζϕn‖L2(0,t̃;L4(Ω;R3))︸ ︷︷ ︸
≤C

+ ‖|M |2‖L4(0,t̃;L2(Ω))︸ ︷︷ ︸
=‖M‖2

L8(0,t̃;L4(Ω;R3))
≤C(v)

‖M‖L4(0,t̃;L4(Ω;R3))‖ζ(ϕn − ϕ)‖L2(0,t̃;L4(Ω;R3))

+‖M‖L2(0,t̃;L2(Ω;R3))‖ζ(ϕn − ϕ)‖L2(0,t̃;L2(Ω;R3))

n→∞
−−−→ 0,

where we used Hölder’s inequality in the expression
∥∥|Mn|

2 − |M |2
∥∥
L2(0,t̃;L2(Ω))

≤
(
‖Mn‖L4(0,t̃;L4(Ω;R3)) + ‖M‖L4(0,t̃;L4(Ω;R3))

)
‖Mn −M‖L4(0,t̃;L4(Ω;R3)).

Thus, we obtain a weak solution to the system (3.71)–(3.73).
Notice that all the estimates for the approximate solution obtained above still
hold in the limit due to the weak lower semicontinuity of norms.
Furthermore, the solution is unique. Let us assume that we have two solutions
M1 6=M2. The difference M1 −M2 then solves

(M1 −M2)t + (v · ∇)(M1 −M2)

= ∆(M1 −M2) +
1

µ2
(M1 −M2)−

1

µ2
(|M1|

2M1 − |M2|
2M2).

This equation we multiply by (M1 −M2) and integrate over Ω to find

1

2

d

dt
‖M1 −M2‖

2
L2(Ω;R3) + ‖∇(M1 −M2)‖

2
L2(Ω;R3×d)

+
1

µ2

∫

Ω
(|M1|

2M1 − |M2|
2M2) · (M1 −M2) dx

︸ ︷︷ ︸
=:I

=
1

µ2
‖M1 −M2‖

2
L2(Ω;R3).

Notice that integration by parts does not yield any boundary terms here, since
the gradients of M1 and M2 both vanish on the boundary. Now, we take care of
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the integral term I. Firstly, we have

|M1|
2M1 − |M2|

2M2 =

∫ 1

0

d

ds

(
|M2 + (M1 −M2)s|

2(M2 − (M1 −M2)s)
)
ds

=

∫ 1

0
|M2 + (M1 −M2)s|

2(M1 −M2)

+ 2|M2 + (M1 −M2)s|
2(M1 −M2) ds

=

∫ 1

0
3|M2 + (M1 −M2)s|

2(M1 −M2) ds.

Then, we obtain

I =
3

µ2

∫

Ω

∫ 1

0
|M2 + (M1 −M2)s|

2 ds|M1 −M2|
2 dx ≥ 0.

This allows us to estimate

1

2

d

dt
‖M1 −M2‖

2
L2(Ω;R3) ≤

1

µ2
‖M1 −M2‖

2
L2(Ω;R3),

where we apply Gronwall’s inequality to find

sup
0≤t≤t̃

‖M1 −M2‖
2
L2(Ω;R3) = 0.

Thus, the solution is unique. This concludes the proof of Lemma 17.

3.1.3.2 Weak solutions to the approximate problem for a short time using a
fixed point argument

The next result yields a weak solution to the approximate problem which ex-
ists only for a certain (short) time t∗0. The main ingredient of the proof is an
application of Schauder’s fixed point theorem.

Lemma 18. For any m > 0 and W satisfying (3.12)–(3.17), there exists a time
t∗0 depending on v0, M0, Ω, and m such that the system (3.30)–(3.39) has a weak
solution (vm, Fm,Mm) in Ω× (0, t∗0).

Proof. In this proof, m > 0 is fixed, which allows us to use the simpler notation
v = vm and ṽ = ṽm, respectively.
We choose t∗1 > 0 and any Galerkin approximation of the velocity v by v(x, t) =
∑m

i=1 g
i
m(t)ξi(x) with gim(0) =

∫
Ω v0(x) · ξi(x) dx and

(∑m
i=1 |g

i
m(t)|2

) 1
2 ≤ N for

any t ∈ [0, t∗1], where N is a suitably large constant which we choose later. Since
v ∈ L∞(0, t∗1;W

2,∞(Ω)), by Lemma 17 we obtain a unique weak solution (F,M)
to

Ft + (v · ∇)F −∇vF = κ∆F,

Mt + (v · ∇)M = ∆M −
1

µ2
(|M |2 − 1)M
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on [0, t∗1] satisfying

‖F‖L∞(0,t∗1 ;L
2(Ω;Rd×d)) ≤ C(v), (3.93)

‖M‖L∞(0,t∗1 ;H
1(Ω;R3)) ≤ C(v). (3.94)

This unique solution (F,M) is used in the following to solve the equation of
motion for v which is rewritten in the ODE system (3.44). To this end, we apply
Carathéodory’s existence theorem again.
From (3.14), (3.93) and (3.94) we directly obtain for Di

m(t) from (3.46)

Di
m(t) ∈ L∞(0, t∗1). (3.95)

Since the first two summands on the right-hand side of (3.44) are independent
of t (looking at t and gim as distinct variables) and the third summand is in
L∞(0, t∗1), the right-hand side is measurable in t for any gim.
Furthermore, the Di

m(t) are independent of gim and the first and second summand
of the right-hand side of (3.44) are linear and quadratic in gim, respectively, so
the right-hand side is continuous in gim for any t.
In addition, for t ∈ [0, t∗1] and ‖gm − gm(0)‖ ≤ b, where gm = (g1m, . . . , g

m
m), we

can bound the right-hand side of (3.44) by the L1-function

−νλi(2b+ ‖gm(0)‖) + (2b+ ‖gm(0)‖)2
m∑

j,k=1

Ai
jk +Di

m(t).

Finally, Carathéodory’s theorem (see Theorem 30 in Appendix A.2) yields the
existence of a value t∗2 with 0 < t∗2 ≤ t∗1 so that the ODE system (3.44) has
an absolutely continuous and unique (since the right-hand side of the ODE is
locally Lipschitz, see Theorem 31 in Appendix A.2) solution {g̃im(t)}mi=1 on [0, t∗2]
satisfying (3.47).
We define the velocity through these time-dependent coefficients by the sum
ṽ(x, t) =

∑m
i=1 g̃

i
m(t)ξi(x). We can get the following estimate for ṽ(x, t)

‖ṽ‖L2(Ω;Rd×d)(t) ≤ ‖v0‖L2(Ω;Rd)+C1(m)+C2(m)t exp(C3(m)‖v‖L∞(0,t∗2 ;L
2(Ω;Rd))t).

Indeed, with

‖∇ṽ‖L∞(Ω;Rd×d)(t) ≤ C(m) max
i=1,...,m

|g̃im(t)|

≤ C(m)

(
m∑

i=1

∣∣g̃im(t)
∣∣2
) 1

2

= C(m)‖ṽ‖L2(Ω;Rd)(t), (3.96)
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we have

d

dt
‖ṽ‖2

L2(Ω;Rd)(t)

= −2

∫

Ω
(ṽ · ∇)ṽ · ṽ dx

︸ ︷︷ ︸
=0

−2ν‖∇ṽ‖2L2(Ω;Rd×d)

− 2

∫

Ω
(W ′(F )F⊤ −∇M ⊙∇M) : ∇ṽ dx

≤ −2

∫

Ω
(W ′(F )F⊤ −∇M ⊙∇M) : ∇ṽ dx

≤ 2C(m)‖ṽ‖L2(Ω;Rd)(t)
(
C + C‖F‖2L2(Ω;Rd×d)(t) + ‖∇M‖2L2(Ω;R3×d)(t)

)
.

Without loss of generality, let ‖ṽ‖L2(Ω) > 0 on [0, t∗2]. Otherwise, if v(T0) = 0 for
some T0 ∈ [0, t∗2], then v(t) = 0 for any t ≥ T0 due to uniqueness which follows
immediately from the local Lipschitz property of the right-hand side of (3.44).
Then,

d

dt
‖ṽ‖L2(Ω)(t) =

d
dt‖ṽ‖

2
L2(Ω;Rd)

(t)

2‖ṽ‖L2(Ω;Rd)(t)

≤ C(m)
(
C + C‖F‖2L2(Ω;Rd×d)(t) + ‖∇M‖2L2(Ω;R3×d)(t)

)
,

from which we can deduce, using the obtained estimates of Lemma 17 and (3.60)
from the lemma’s proof,

‖ṽ‖L2(Ω;Rd)(t)

≤ ‖P (v0)‖L2(Ω;Rd)︸ ︷︷ ︸
≤‖v0‖L2(Ω;Rd)

+C(m)

∫ t

0
C + C‖F‖2

L2(Ω;Rd×d)(s) + ‖∇M‖2
L2(Ω;R3×d)(s) ds

≤ ‖v0‖L2(Ω;Rd) + C1(m) + C2(m)

∫ t

0
exp( ‖∇v‖L∞(0,t∗2 ;L

∞(Ω;Rd×d))︸ ︷︷ ︸
(3.96)

≤ C3(m)‖v‖
L∞(0,t∗

2
;L2(Ω;Rd))

s) ds

≤ ‖v0‖L2(Ω;Rd) + C1(m) + C2(m)t exp(C3(m)‖v‖L∞(0,t∗2;L
2(Ω;Rd))t).

Now, let N = ‖v0‖L2(Ω;Rd) + C1(m) + 1 and let 0 < t∗0 ≤ t∗2 be such that

C2(m)t∗0 exp(C3(m)Nt∗0) ≤ 1.

Then, it holds that if ‖v‖L2(Ω;Rd)(t) ≤ N on (0, t∗0) then also ‖ṽ‖L2(Ω;Rd)(t) ≤ N

on (0, t∗0).
Next, we define a map L : Vm(t∗0) → Vm(t∗0), v 7→ ṽ on the set

Vm(t∗0) =

{
v(x, t) =

m∑

i=1

gim(t)ξi(x) :

(
m∑

i=1

∣∣gim(t)
∣∣2
) 1

2

≤ N for 0 ≤ t ≤ t∗0,

gim continuous, gim(0) =

∫

Ω
v0(x) · ξi(x) dx

}
.
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Notice that, due to the construction above, L maps Vm(t∗0) into itself.
The set V (t∗0) is a closed, convex subset of C([0, t∗0];Hm) ⊂ C([0, t∗0];L

2(Ω;Rd)).
Let us show that L(Vm(t∗0)) is precompact there. Since the dimension of Hm

is finite, boundedness is the same as precompactness, and the ξi, i = 1, . . . ,m,
are bounded in Hm. Next, due to the choice of N , all the gim(t) are uniformly
bounded, and from (3.44) and (3.95) we get

∣∣∣∣
d

dt
gim(t)

∣∣∣∣ =

∣∣∣∣∣∣
−νλig

i
m(t) +

m∑

j,k=1

gjm(t)gkm(t)Ai
jk +Di

m(t)

∣∣∣∣∣∣
≤ CN + C(m)N2 + C ≤ C(N,m), (3.97)

from where we obtain equicontinuity of all the gim(t). Now, the Arzelà-Ascoli
theorem gives us the precompactness of all the gim(t) in C([0, t∗0]). So, in sum-
mary, we have that L(Vm(t∗0)) is a precompact set in C([0, t∗0];Hm), i.e., also in
C([0, t∗0];L

2(Ω;Rd)).
We also show that L is a continuous map on Vm(t∗0) in the topology of the space
C([0, t∗0];L

2(Ω;Rd)). To this end, let {vl}l ⊂ Vm(t∗0) converge to some v ∈ Vm(t∗0)
in the sense

Vm(t∗0) ∋ vl
l→∞
−−−→ v ∈ Vm(t∗0)

⇐⇒ (gim)l
l→∞
−−−→ gim in C([0, t∗0]), i = 1, . . . ,m. (3.98)

Remark 19. Notice that the constants C(v) obtained in Lemma 17 are uniform
over Vm(t∗0) (only depending on the particular m and N) since the time-dependent
coefficients gim(t) are uniformly bounded. Thus, these constants do not depend
on the index l of the sequence {vl}l ⊂ Vm(t∗0) chosen to prove continuity of L.

Now, we show that the solutions Fl and Ml guaranteed by Lemma 17 for vl con-
verge strongly to those for v in L∞(0, t∗0;L

2(Ω;Rd×d)) and L∞(0, t∗0;H
1(Ω;R3)),

respectively.

Convergence of {Fl}l. We obtain from the partial differential equation for F

(Fl−F )t+(vl·∇)(Fl−F )+((vl−v)·∇)F−∇vl(Fl−F )−(∇vl−∇v)F = κ∆(Fl−F ).

By multiplying this equation by (Fl − F ), integrating over both Ω and [0, t] for
t ≤ t∗0, we get the estimate

1

2

∫

Ω
|Fl − F |2(t) dx

=
1

2

∫

Ω
|Fl − F |2(0) dx−

∫ t

0

∫

Ω
(vl · ∇)(Fl − F ) : (Fl − F ) dx ds

−

∫ t

0

∫

Ω
((vl − v) · ∇)F : (Fl − F ) dx ds

+

∫ t

0

∫

Ω
∇vl(Fl − F ) : (Fl − F ) dx ds

+

∫ t

0

∫

Ω
(∇vl −∇v)F : (Fl − F ) dx ds−

∫ t

0

∫

Ω
κ|∇(Fl − F )|2 dx ds.
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An application of Young’s inequality yields

1

2

∫

Ω
|Fl − F |2(t) dx

≤
1

2
‖Fl − F‖2L2(Ω;Rd×d)(0) +

∫ t

0

∫

Ω
κ|∇(Fl − F )|2 +

1

4κ
|(vl)k(Fl − F )ij |

2

+
1

2
|((vl − v) · ∇)F |2 +

1

2
|Fl − F |2 +

1

2
|∇vl(Fl − F )|2 +

1

2
|Fl − F |2

+
1

2
|(∇vl −∇v)F |2 +

1

2
|Fl − F |2 − κ|∇(Fl − F )|2 dx ds

=
1

2
‖Fl − F‖2L2(Ω;Rd×d)(0) +

1

4κ

∫ t

0
‖(vl)k(Fl − F )ij‖

2
L2(Ω;Rd×d×d) ds

+
1

2

∫ t

0
‖((vl − v) · ∇)F‖2L2(Ω;Rd×d) ds+

1

2

∫ t

0
‖∇vl(Fl − F )‖2L2(Ω;Rd×d) ds

+
1

2

∫ t

0
‖(∇vl −∇v)F‖2L2(Ω;Rd×d) ds+

3

2

∫ t

0
‖Fl − F‖2L2(Ω;Rd×d) ds.

Moreover, since vl is smooth in space, we can estimate

‖Fl − F‖2L2(Ω;Rd×d) (t)

≤ ‖Fl − F‖2L2(Ω;Rd×d) (0)

+

∫ t

0
‖((vl − v) · ∇)F‖2L2(Ω;Rd×d) + ‖(∇vl −∇v)F‖2L2(Ω;Rd×d) ds

︸ ︷︷ ︸
non-decreasing

+

∫ t

0
C‖Fl − F‖2L2(Ω;Rd×d)(s) ds, (3.99)

where the constant C depends on Ω, N and κ. Note that, since we have the same
initial data when solving for Fl and F , i.e., Fl(0) = F (0), the first term on the
right-hand side of (3.99) is zero. Now, we can apply Gronwall’s inequality to get

sup
0≤t≤t∗0

‖Fl − F‖2
L2(Ω;Rd×d)(t) ≤

∫ t∗0

0
‖((vl − v) · ∇)F‖2

L2(Ω;Rd×d)

+ ‖(∇vl −∇v)F‖2L2(Ω;Rd×d) ds eCt∗0 . (3.100)

Due to (3.98) we can pass to the limit as l → ∞ to see that

Fl
l→∞
−−−→ F in L∞(0, t∗0;L

2(Ω;Rd×d)). (3.101)

Convergence of {Ml}l. We check the strong convergence of {Ml}l in the space
L∞(0, t∗0;H

1(Ω;R3)). To this end, we first obtain from the partial differential
equation for M

(Ml −M)t + (vl · ∇)(Ml −M) + ((vl − v) · ∇)M

= ∆(Ml −M)−
1

µ2

(
(|Ml|

2 − 1)Ml − (|M |2 − 1)M
)

(3.102)
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or equivalently

(Ml −M)t + (vl · ∇)(Ml −M) + ((vl − v) · ∇)M

= ∆(Ml −M)−
1

µ2
(|M |2 − 1)(Ml −M)−

1

µ2
(|Ml|

2 − |M |2)M. (3.103)

By multiplying equation (3.102) with (Ml −M), integrating over both Ω and
[0, t] for t ≤ t∗0 and using Young’s inequality and the inequality

∫

Ω

(
|y|p−2y − |z|p−2z

)
· (y − z) dx

≥
(
‖y‖p−1

Lp(Ω;Rn) − ‖z‖p−1
Lp(Ω;Rn)

) (
‖y‖Lp(Ω;Rn) − ‖z‖Lp(Ω;Rn)

)

for y, z ∈ Lp(Ω;Rn) (see [Rou13, (2.141), p.76] at (∗), we obtain the estimate

1

2

∫

Ω
|Ml −M |2(t) dx

=
1

2

∫

Ω
|Ml −M |2(0) dx

−

∫ t

0

∫

Ω
((vl − v) · ∇)M · (Ml −M) dx ds

+

∫ t

0

∫

Ω
∆(Ml −M) · (Ml −M) dx ds

−

∫ t

0

1

µ2

∫

Ω

(
|Ml|

2Ml − |M |2M
)
· (Ml −M) dx

︸ ︷︷ ︸
(∗)

≥
(
‖Ml‖

3
L4(Ω;R3)

−‖M‖3
L4(Ω;R3)

)(
‖Ml‖L4(Ω;R3)−‖M‖

L4(Ω;R3)

)
≥0

ds

+

∫ t

0

∫

Ω

1

µ2
|Ml −M |2 dx ds

Young
≤

1

2
‖Ml −M‖2L2(Ω;R3)(0)

+

∫ t

0

∫

Ω

µ2

2
|((vl − v) · ∇)M |2 +

1

2µ2
|Ml −M |2 dx ds

−

∫ t

0

∫

Ω
|∇(Ml −M)|2 dx ds

+

∫ t

0

∫

Ω

1

µ2
|Ml −M |2 dx ds.

Rearranging yields, also since Ml(0) =M(0),

∫

Ω
|Ml −M |2(t) dx

≤

∫ t

0
µ2‖((vl − v) · ∇)M‖2L2(Ω;R3) ds

︸ ︷︷ ︸
non-decreasing

+

∫ t

0

3

µ2
‖Ml −M‖2L2(Ω;R3) ds. (3.104)
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We apply Gronwall’s inequality to obtain

sup
0≤t≤t∗0

‖Ml −M‖2L2(Ω;R3)(t)

≤

(∫ t∗0

0
µ2‖((vl − v) · ∇)M‖2L2(Ω;R3)(s) ds

)
e

3
µ2

t∗0 . (3.105)

Due to (3.98) we can pass to the limit as l → ∞ to see that

Ml
l→∞
−−−→M in L∞(0, t∗0;L

2(Ω;R3)). (3.106)

We are left to prove the convergence of ∇Ml in L
∞(0, t∗0;L

2(Ω;R3×d)). We need
an estimate established with the Gagliardo-Nirenberg interpolation inequality
(see, e.g., [Nir59, Bre11]) for d = 2, 3

‖Ml −M‖2L6(Ω;R3)

Gagliardo-
≤

Nirenberg

(
C1‖∇(Ml −M)‖L2(Ω;R3×d) + C2‖Ml −M‖L2(Ω;R3)

)2

≤ C(Ω)
(
‖∇(Ml −M)‖2

L2(Ω;R3×d) + ‖Ml −M‖2L2(Ω;R3)

+ ‖∇(Ml −M)‖L2(Ω;R3×d)‖Ml −M‖L2(Ω;R3)

)

Young
≤ C(Ω)

(
‖∇(Ml −M)‖2L2(Ω;R3×d) + ‖Ml −M‖2L2(Ω;R3)

)
. (3.107)

Now, by multiplying equation (3.103) with −∆(Ml −M), integrating over both
Ω and [0, t] for t ≤ t∗0, we obtain

1

2

∫

Ω
|∇(Ml −M)|2(t) dx

=

∫ t

0

∫

Ω
(vl · ∇)(Ml −M) ·∆(Ml −M) dx ds

+

∫ t

0

∫

Ω
((vl − v) · ∇)M ·∆(Ml −M) dx ds

−

∫ t

0

∫

Ω
|∆(Ml −M)|2 dx ds

+

∫ t

0

∫

Ω

1

µ2
(|M |2 − 1)(Ml −M) ·∆(Ml −M) dx ds

+

∫ t

0

∫

Ω

1

µ2
(|Ml|

2 − |M |2)M ·∆(Ml −M) dx ds.
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By applying Young’s inequality and the bounds obtained in Lemma 17 (see also
Remark 19), we find

1

2

∫

Ω
|∇(Ml −M)|2(t) dx

Young
≤

∫ t

0

∫

Ω
|(vl · ∇)(Ml −M)|2 +

1

4
|∆(Ml −M)|2

+ |((vl − v) · ∇)M |2 +
1

4
|∆(Ml −M)|2

− |∆(Ml −M)|2

+
1

µ4
(|M |2 − 1)2|Ml −M |2 +

1

4
|∆(Ml −M)|2

+
1

µ4
(|Ml|

2 − |M |2)2︸ ︷︷ ︸
=(|Ml|+|M |)2 (|Ml| − |M |)2︸ ︷︷ ︸

≤|Ml−M|2

|M |2 +
1

4
|∆(Ml −M)|2 dx ds

≤

∫ t

0
‖(vl · ∇)(Ml −M)‖2L2(Ω;R3) ds+

∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3) ds

+

∫ t

0

∫

Ω

1

µ4
(|M |4 − 2|M |2 + 1)|Ml −M |2

+
1

µ4
(|Ml|+ |M |)2|M |2|Ml −M |2 dx ds.

An Application of Hölder’s inequality yields

1

2

∫

Ω
|∇(Ml −M)|2(t) dx

≤

∫ t

0
‖(vl · ∇)(Ml −M)‖2L2(Ω;R3) ds+

∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3) ds

+
1

µ4

∫ t

0
‖M‖4L6(Ω;R3)‖Ml −M‖2L6(Ω;R3) ds

−
2

µ4

∫ t

0

∫

Ω
|M |2|Ml −M |2 dx ds+

∫ t

0
‖Ml −M‖2L2(Ω;R3) ds

+
1

µ4

∫ t

0
‖|Ml||M |+ |M |2‖2L3(Ω)︸ ︷︷ ︸︷ ︸︸ ︷

≤ ‖|Ml||M |‖2
L3(Ω)︸ ︷︷ ︸

≤‖Ml‖
2
L6(Ω;R3)

‖M‖2
L6(Ω;R3)

+ ‖|M |2‖2
L3(Ω)︸ ︷︷ ︸

=‖M‖4
L6(Ω;R3)

+ 2‖|Ml||M |‖L3(Ω)︸ ︷︷ ︸
≤2‖Ml‖L6(Ω;R3)

‖M‖
L6(Ω;R3)

‖|M |2‖L3(Ω)︸ ︷︷ ︸
=‖M‖2

L6(Ω;R3)

‖Ml −M‖2L6(Ω;R3) ds

≤

∫ t

0
‖(vl · ∇)(Ml −M)‖2L2(Ω;R3) ds+

∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3) ds

+

∫ t

0
‖Ml −M‖2L2(Ω;R3) ds

+

∫ t

0
C‖Ml −M‖2L6(Ω;R3) ds.
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Next, using the estimate (3.107), we get

1

2

∫

Ω
|∇(Ml −M)|2(t) dx

≤

∫ t

0
‖(vl · ∇)(Ml −M)‖2L2(Ω;R3) ds+

∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3) ds

+

∫ t

0
‖Ml −M‖2L2(Ω;R3) ds

+

∫ t

0
C(Ω)

(
‖∇(Ml −M)‖2L2(Ω;R3×d) + ‖Ml −M‖2L2(Ω;R3)

)
ds.

Moreover, since {vl}l is uniformly bounded in L∞(0, t∗0;L
∞(Ω;Rd)), we have

‖∇(Ml −M)‖2L2(Ω;R3×d) (t)

≤

∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3)(s) +C‖Ml −M‖2L2(Ω;R3)(s) ds

︸ ︷︷ ︸
non-decreasing

+

∫ t

0
C‖∇(Ml −M)‖2L2(Ω;R3×d)(s) ds, (3.108)

where the constant C only depends on Ω, N , m and µ. We apply Gronwall’s
inequality to get

sup
0≤t≤t∗0

‖∇(Ml −M)‖2
L2(Ω;R3×d)(t)

≤

∫ t∗0

0
‖((vl − v) · ∇)M‖2L2(Ω;R3)(s) + C‖Ml −M‖2L2(Ω;R3)(s) ds eCt∗0 . (3.109)

Due to (3.98) and (3.106) we can pass to the limit as l → ∞ to see that, in
summary,

Ml
l→∞
−−−→M in L∞(0, t∗0;H

1(Ω;R3)). (3.110)

Convergence of the solutions L(vl). We have the continuity of the mapping
W ′ : Lp(0, t∗0;L

2(Ω;Rd×d)) → Lp(0, t∗0;L
2(Ω;Rd×d)) for any 1 ≤ p <∞ by (3.14)

and (3.101) (see, e.g., [Rou13, Theorem 1.43] for Nemytskĭi mappings in Bochner

spaces), which tells usW ′(Fl)
l→∞
−−−→W ′(F ) in Lp(0, t∗0;L

2(Ω;Rd×d)). So, together
with (3.101) and (3.110) we obtain the strong convergence of

{(
Di

m(t)
)
l

}
l
in

Lp(0, t∗0) for any 1 ≤ p < ∞ to the appropriate Di
m(t) which comes from the v

(see (3.46)). We use this to prove the convergence of the solutions to the ODE
(3.44), namely L(vl), in the following. We first write the ODE system in vector
form using the notation

(g̃m)l = ((g̃1m)l, . . . , (g̃
m
m)l),

g̃m = (g̃1m, . . . , g̃
m
m),

(Dm)l = ((D1
m)l, . . . , (D

m
m)l),

Dm = (D1
m, . . . ,D

m
m),

Ai = (Ai
jk)

m
j,k=1 ∈ R

m×m, i = 1, . . . ,m,
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and then subtract the corresponding ODE system (3.44) to obtain

d

dt
((g̃m(t))l − g̃m(t))

= −ν diag(λ1, . . . , λm) ((g̃m(t))l − g̃m(t))

+
(
(A1(g̃m)l) · (g̃m)l, . . . , (A

m(g̃m)l) · (g̃m)l
)

−
(
(A1g̃m) · g̃m, . . . , (A

mg̃m) · g̃m
)

+(Dm(t))l −Dm(t)

= −ν diag(λ1, . . . , λm) ((g̃m(t))l − g̃m(t))

+
(
(A1(g̃m)l) · (g̃m)l, . . . , (A

m(g̃m)l) · (g̃m)l
)

−
(
(A1(g̃m)l) · g̃m, . . . , (A

m(g̃m)l) · g̃m
)

+
(
(A1(g̃m)l) · g̃m, . . . , (A

m(g̃m)l) · g̃m
)

−
(
(A1g̃m) · g̃m, . . . , (A

mg̃m) · g̃m
)

+(Dm(t))l −Dm(t)

= −ν diag(λ1, . . . , λm) ((g̃m(t))l − g̃m(t))

+
(
(A1(g̃m)l) ·

(
(g̃m)l − g̃m

)
, . . . , (Am(g̃m)l) ·

(
(g̃m)l − g̃m

))

+
(
(A1((g̃m)l − g̃m)) · g̃m, . . . , (A

m((g̃m)l − g̃m)) · g̃m
)

+(Dm(t))l −Dm(t).

This expression we integrate in time, take the absolute value (the norm in R
m

and the associated matrix norm) and estimate

|(g̃m(t))l − g̃m(t)|

≤ |(g̃m(0))l − g̃m(0)|︸ ︷︷ ︸
=0

+ν|diag(λ1, . . . , λm)|

∫ t

0
|(g̃m(s))l − g̃m(s)| ds

+

∫ t

0

∣∣∣∣
(
(A1(g̃m)l) ·

(
(g̃m)l − g̃m

)
, . . . , (Am(g̃m)l) ·

(
(g̃m)l − g̃m

))

+
(
(A1((g̃m)l − g̃m)) · g̃m, . . . , (A

m((g̃m)l − g̃m)) · g̃m
)∣∣∣∣ ds

+

∫ t

0
|(Dm(s))l −Dm(s)| ds

≤ C(m)

∫ t

0
|(g̃m(s))l − g̃m(s)| ds

+

∫ t

0
max

i=1,...,m

{∣∣(Ai(g̃m)l) ·
(
(g̃m)l − g̃m

)∣∣}

+ max
i=1,...,m

{∣∣(Ai((g̃m)l − g̃m)) · g̃m
∣∣} ds

+

∫ t

0
|(Dm(s))l −Dm(s)| ds.
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An application of the Cauchy-Schwarz inequality yields

|(g̃m(t))l − g̃m(t)|

≤ C(m)

∫ t

0
|(g̃m(s))l − g̃m(s)| ds

+

∫ t

0
max

i=1,...,m

{ ∣∣Ai
∣∣

︸︷︷︸
≤C(m)

|(g̃m)l|︸ ︷︷ ︸
≤N

|(g̃m)l − g̃m|
}

+ max
i=1,...,m

{ ∣∣Ai
∣∣

︸︷︷︸
≤C(m)

|(g̃m)l − g̃m| |g̃m|︸︷︷︸
≤N

}
ds

+

∫ t

0
|(Dm(s))l −Dm(s)| ds

≤ C(m)

∫ t

0
|(g̃m(s))l − g̃m(s)| ds+ C(N,m)

∫ t

0
|(g̃m)l − g̃m| ds

+

∫ t

0
|(Dm(s))l −Dm(s)| ds

≤ C(N,m)

∫ t

0
|(g̃m(s))l − g̃m(s)| ds+

∫ t

0
|(Dm(s))l −Dm(s)| ds

︸ ︷︷ ︸
non-decreasing

.

We apply Gronwall’s inequality to obtain

∣∣(g̃m(t))l − g̃m(t)
∣∣ ≤

(∫ t

0

∣∣(Di
m(s))l −Di

m(s)
∣∣ ds

)
eC(N,m)t.

Due to the convergence of
{(
Di

m(s)
)
l

}
l
the right-hand side of the inequality tends

to zero as l → ∞, so (g̃m(t))l
l→∞
−−−→ g̃m(t) uniformly. In view of (3.98), this is

equivalent to L(vl)
l→∞
−−−→ L(v). Hence, L is continuous on Vm(t∗0).

Thus, by Schauder’s fixed point theorem, L has a fixed point, denoted by vm,
which is together with the corresponding Fm and Mm a local weak solution to
the system (3.30)–(3.39). This completes the proof of Lemma 18, i.e., of the local
existence of weak approximate solutions.
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3.1.3.3 Energy estimates for short time weak solutions to the approximate
problem

We continue the analysis of the weak approximate solutions with energy esti-
mates. These energy estimates are necessary to extend the solution beyond time
t∗0 while keeping its regularity. We obtain

Corollary 20. Let (vm, Fm,Mm) be the weak solution to the approximate problem
(3.30)–(3.39) in Ω× (0, t∗0) obtained in Lemma 18. Then, we have

sup
0≤t≤t∗0

(∫

Ω
|vm|2 + C|Fm|2 + |∇Mm|2 +

1

2µ2
(|Mm|2 − 1)2 dx

)

+ 2

∫ t∗0

0

∫

Ω
ν|∇vm|2 + aκ|∇Fm|2 +

∣∣∣∣∆Mm −
1

µ2
(|Mm|2 − 1)Mm

∣∣∣∣
2

dx ds

≤ sup
0≤t≤t∗0

(∫

Ω
|vm|2 + 2W (Fm) + |∇Mm|2 +

1

2µ2
(|Mm|2 − 1)2 dx

)

+ 2

∫ t∗0

0

∫

Ω
ν|∇vm|2 + aκ|∇Fm|2 +

∣∣∣∣∆Mm −
1

µ2
(|Mm|2 − 1)Mm

∣∣∣∣
2

dx ds

≤

∫

Ω
|v0|

2 + 2W (F0) + |∇M0|
2 +

1

2µ2
(|M0|

2 − 1)2 dx (3.111)

and, in particular,

vm ∈ L∞(0, t∗0;H) ∩ L2(0, t∗0;V), (3.112)

Fm ∈ L∞(0, t∗0;L
2(Ω;Rd×d)) ∩ L2(0, t∗0;H

1(Ω;Rd×d)) (3.113)

Mm ∈ L∞(0, t∗0;H
1(Ω;R3)) ∩ L2(0, t∗0;H

2(Ω;R3)) (3.114)

uniformly with respect to m > 0.

Proof. Notice that the following calculations are reasonable due to the regularity
obtained in Lemma 17.
We multiply equation (3.30) by vm, equation (3.32) by W ′(Fm), equation (3.33)
by −∆Mm + 1

µ2 (|Mm|2 − 1)Mm and integrate all the equations over both Ω and

(0, t) for t ≤ t∗0. Notice that W ′(Fm) is an admissible test function: W ′(Fm)
is in H1

0(Ω;R
d×d). Indeed, due to (3.14), it holds W ′(Fm) ∈ L2(Ω;Rd×d) if

Fm ∈ L2(Ω;Rd×d), which is guaranteed by Lemma 17. Moreover, since W ′′(·) is
bounded by (3.16), we have that ∇W ′(Fm) = W ′′(Fm)∇Fm is in L2(Ω;Rd×d×d)
if ∇Fm ∈ L2(Ω;Rd×d×d), which is again guaranteed by Lemma 17 where a bound
on Fm in L2(0, t∗0;H

1(Ω;Rd×d)) is obtained. Finally, due to the continuity of the
trace operator and (3.15), we know that W ′(Fm) = 0 on ∂Ω. For the tests, we
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find (after using integration by parts)

∫

Ω

1

2
|vm|2 dx =

∫ t

0

∫

Ω

(
− ν|∇vm|2 − (vm · ∇)vm · vm

+

(
∇ ·
(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

))
· vm

)
dx ds

+

∫

Ω

1

2
|Pm(v0)|

2 dx, (3.115)

∫

Ω
W (Fm) dx+

∫ t

0

∫

Ω
(vm · ∇)Fm :W ′(Fm) dx ds

−

∫ t

0

∫

Ω
(∇vmFm) : W ′(Fm) dx ds

= −

∫ t

0

∫

Ω
κ∇Fm

... ∇W ′(Fm) dx ds+

∫

Ω
W (F0) dx, (3.116)

∫

Ω

1

2
|∇Mm|2 +

1

4µ2
(|Mm|2 − 1)2 dx−

∫ t

0

∫

Ω
(vm · ∇)Mm ·∆Mm dx ds

+

∫ t

0

∫

Ω
(vm · ∇)Mm ·

(
1

µ2
(|Mm|2 − 1)Mm

)
dx

︸ ︷︷ ︸
=
∫
Ω(vm·∇)

(
1

4µ2
(|Mm|2−1)2

)
dx

ds

= −

∫ t

0

∫

Ω

∣∣∣∣∆Mm −
1

µ2
(|Mm|2 − 1)Mm

∣∣∣∣
2

dx ds

+

∫

Ω

1

2
|∇M0|

2 +
1

4µ2
(|M0|

2 − 1)2 dx. (3.117)

Notice that, due to ∇ · vm = 0 and vm = 0 on ∂Ω, we have
∫

Ω
(vm · ∇)vm · vm dx = 0

In addition, we have

∫ t

0

∫

Ω

(
∇ ·W ′(Fm)F⊤

m

)
· vm dx ds = −

∫ t

0

∫

Ω

(
∇vmW

′(Fm)
)
: Fm dx ds

= −

∫ t

0

∫

Ω

(
∇vmFm

)
: W ′(Fm) dx ds

and

∇ ·
(
∇Mm ⊙∇Mm

)
= ∇j

(
∇i(Mm)k∇j(Mm)k

)

= ∇
|∇Mm|2

2
+∇⊤Mm∆Mm

and

(∇⊤Mm∆Mm) · vm = (vm · ∇)Mm ·∆Mm.
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Next, we sum equations (3.115)–(3.117) and with the above calculations obtain

1

2

∫

Ω
|vm|2 + 2W (Fm) + |∇Mm|2 +

1

2µ2
(|Mm|2 − 1)2 dx

+

∫ t

0

∫

Ω

(
∇
|∇Mm|2

2
+∇W (Fm) +∇

(
1

4µ2
(|Mm|2 − 1)2

))
· vm dx ds

+

∫ t

0

∫

Ω
−
(
∇ ·W ′(Fm)F⊤

m

)
· vm +

(
∇⊤Mm∆Mm

)
· vm

− (∇vmFm) :W ′(Fm)− (vm · ∇)Mm ·∆Mm dx ds

=−

∫ t

0

∫

Ω
ν|∇vm|2 + κ∇Fm

... ∇W ′(Fm) +

∣∣∣∣∆Mm −
1

µ2
(|Mm|2 − 1)Mm

∣∣∣∣
2

dx ds

+
1

2

∫

Ω
|Pm(v0)|

2 + 2W (F0) + |∇M0|
2 +

1

2µ2
(|M0|

2 − 1)2 dx.

Since ∇ · vm = 0 and vm = 0 on ∂Ω, the terms on the second line vanish. Notice
that∇W ′(Fm) =W ′′(Fm)∇Fm in the sense∇σW

′(Fm)ij =W ′′(Fm)ijkl∇σ(Fm)kl.
We obtain by using (3.17), simplifying and rearranging

1

2

∫

Ω
|vm|2 + 2W (Fm) + |∇Mm|2 +

1

2µ2
(|Mm|2 − 1)2 dx

+

∫ t

0

∫

Ω
ν|∇vm|2 + aκ|∇Fm|2 +

∣∣∣∣∆Mm −
1

µ2
(|Mm|2 − 1)Mm

∣∣∣∣
2

dx ds

≤
1

2

∫

Ω
|Pm(v0)|

2 + 2W (F0) + |∇M0|
2 +

1

2µ2
(|M0|

2 − 1)2 dx.

We calculate the supremum over all t ∈ [0, t∗0] on both sides of this equality
and, since ‖Pm(v0)‖L2(Ω;Rd) ≤ ‖v0‖L2(Ω;Rd), the second inequality in estimate
(3.111) follows. Applying (3.13), the first inequality follows immediately. The
improved regularities in (3.112) and (3.113) and their uniformity inm are a direct
consequence of the preceding estimate. The regularity result (3.114) follows from
the preceding estimate and an application of Young’s inequality together with
the boundedness of Ω:

‖Mm‖2L2(Ω;R3) =

∫

Ω
|Mm|2 − 1 + 1 dx ≤

∫

Ω

1

2µ2
(|Mm|2 − 1)2 dx+

(
µ2

2
+ 1

)
|Ω|.

This concludes the proof.

3.1.3.4 Weak solutions to the approximate problem by time extension

What remains to prove for Theorem 16 is the extension of the time interval,
where solutions exist. We achieve this task using Corollary 20, thus ultimately
justifying Theorem 16.

Proof. Let 0 < T <∞ be fixed. We first define

C̃ :=

∫

Ω
|v0|

2 + 2W (F0) + |∇M0|
2 +

1

2µ2
(|M0|

2 − 1)2 dx
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to be the right-hand side of (3.111). If (vm, Fm,Mm) is a solution to the system
(3.30)–(3.39) in Ω× (0, t̃) for some 0 < t̃ < t∗0, then

‖vm‖2L2(Ω;Rd)(t̃) + 2

∫

Ω
W (Fm)(t̃) dx

+ ‖∇Mm‖2L2(Ω;R3×d)(t̃) +

∫

Ω

1

4µ2
(|Mm(t̃)|2 − 1)2 dx ≤ C̃

due to (3.111).
Following the proof of Lemma 18, we conclude that there exists a constant δ
which depends only on m and C̃ (due to the L∞-bounds obtained from the
energy estimate (3.111) this δ does not depend on the time t̃) such that the
system (3.30)–(3.39) has a solution (ṽm, F̃m, M̃m) on Ω × [t̃, t̃ + δ] satisfying
(ṽm, F̃m, M̃m)(t̃) = (vm, Fm,Mm)(t̃). We can continue this extension and finally
obtain a solution (vm, Fm,Mm) on Ω× (0, T ).
Notice that, due to the regularity of the solutions, the new initial data have al-
ways the same regularity as before.
Moreover, we have the energy estimate

sup
0≤t≤T

(∫

Ω
|vm|2 + C|Fm|2 + |∇Mm|2 +

1

2µ2
(|Mm|2 − 1)2 dx

)

+ 2

∫ T

0

∫

Ω
ν|∇vm|2 + aκ|∇Fm|2 +

∣∣∣∣∆Mm −
1

µ2
(|Mm|2 − 1)Mm

∣∣∣∣
2

dx ds

≤ sup
0≤t≤T

(∫

Ω
|vm|2 + 2W (Fm) + |∇Mm|2 +

1

2µ2
(|Mm|2 − 1)2 dx

)

+ 2

∫ T

0

∫

Ω
ν|∇vm|2 + aκ|∇Fm|2 +

∣∣∣∣∆Mm −
1

µ2
(|Mm|2 − 1)Mm

∣∣∣∣
2

dx ds

≤

∫

Ω
|v0|

2 + 2W (F0) + |∇M0|
2 +

1

2µ2
(|M0|

2 − 1)2 dx, (3.118)

implying

vm ∈ L∞(0, T ;H) ∩ L2(0, T ;V), (3.119)

Fm ∈ L∞(0, T ;L2(Ω;Rd×d)) ∩ L2(0, T ;H1(Ω;Rd×d)), (3.120)

Mm ∈ L∞(0, T ;H1(Ω;R3)) ∩ L2(0, T ;H2(Ω;R3)) (3.121)

for any m > 0. This concludes the proof of Theorem 16.

3.1.4 Existence of weak solutions to the original problem

In this part, we prove that the approximate solutions have a limit and that this
limit is actually a solution to the original system (3.1)–(3.11). That means, in
the following, we finish the proof of Theorem 9.

Proof of Theorem 9. We start by preparing passing to the limit as m → ∞ to
obtain a weak solution to the original system (3.1)–(3.11). To this end, the
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following convergence results are necessary. Their proof is given in Section 3.1.4.1
below.

vm → v in L2(0, T ;L4(Ω;Rd)), (3.122)

∇vm ⇀ ∇v in L2(0, T ;L2(Ω;Rd×d)), (3.123)

Mm →M in L2(0, T ;L4(Ω;R3)), (3.124)

∇Mm → ∇M in L2(0, T ;L4(Ω;R3×d)), (3.125)

Fm → F in L2(0, T ;L4(Ω;Rd×d)), (3.126)

∇Fm ⇀ ∇F in L2(0, T ;L2(Ω;Rd×d×d)). (3.127)

3.1.4.1 Convergence results for the approximate weak solutions

The weak convergences (3.123) and (3.127) (up to subsequences, not relabeled)
follow directly from the energy estimates (3.119) and (3.120), respectively (see
Theorem 33 in Appendix A.2).
To obtain the strong convergences, we estimate the time derivatives of the re-
spective quantities and rely on the Aubin-Lions Lemma (see Lemma 35 in Ap-
pendix A.2).

Firstly, we show that (vm)t ∈ L
4
3 (0, T ;V∗). Using (3.24) and the fact that

‖Pm(ξ)‖V ≤ ‖ξ‖V ≤ 1, we obtain

sup
‖ζ‖

L4(0,T )≤1

‖ξ‖V≤1

∫ T

0

∫

Ω
(vm)t · (ζξ) dx dt

= sup
‖ζ‖

L4(0,T )≤1

‖ξ‖V≤1

∫ T

0

∫

Ω
(vm)t · (ζPm(ξ)) dx dt

= sup
‖ζ‖

L4(0,T )≤1

‖ξ‖V≤1

∫ T

0

∫

Ω
−(vm · ∇)vm · (ζPm(ξ))

−

(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: (ζ∇Pm(ξ))

− ν∇vm : (ζ∇Pm(ξ)) dx dt.

An application of Hölder’s inequality yields

sup
‖ζ‖L4(0,T )≤1

‖ξ‖V≤1

∫ T

0

∫

Ω
(vm)t · (ζξ) dx dt

= sup
‖ζ‖

L4(0,T )≤1

‖ξ‖V≤1

(∫ T

0
‖vm‖L3(Ω)‖∇vm‖L2(Ω;Rd×d)|ζ| ‖Pm(ξ)‖L6(Ω;Rd)︸ ︷︷ ︸

Sobolev
≤

embedding
C‖Pm(ξ)‖

H1(Ω;Rd)

dt
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+

∫ T

0

(
‖W ′(Fm)Fm‖L2(Ω;Rd×d)︸ ︷︷ ︸

(3.14)

≤ C+‖Fm‖2
L4(Ω;Rd×d)

+ ‖∇Mm‖2L4(Ω;R3×d)

)
|ζ|‖∇Pm(ξ)‖L2(Ω;Rd×d) dt

+

∫ T

0
ν‖∇vm‖L2(Ω;Rd×d)|ζ|‖∇Pm(ξ)‖L2(Ω;Rd×d) dt

)

Hölder
≤ C‖vm‖L4(0,T ;L3(Ω;Rd))‖∇vm‖L2(0,T ;L2(Ω;Rd×d))

+CT + ‖Fm‖2
L

8
3 (0,T ;L4(Ω;Rd×d))

+ ‖∇Mm‖2
L

8
3 (0,T ;L4(Ω;R3×d))

+Cν‖∇vm‖
L

4
3 (0,T ;L2(Ω;Rd×d))

.

From the regularities (3.119)–(3.121) and interpolation inequalities (see Proposi-
tion 34 in Appendix A.2) we get the boundedness of the norms ‖vm‖L4(0,T ;L3(Ω;Rd)),
‖∇Mm‖

L
8
3 (0,T ;L4(Ω;R3×d))

and ‖Fm‖
L

8
3 (0,T ;L4(Ω;Rd×d))

. Moreover, we have that

‖∇vm‖
L

4
3 (0,T ;L2(Ω;Rd×d))

is bounded since [0, T ] is a bounded interval. In sum-

mary, we obtain

(vm)t ∈ L
4
3 (0, T ;V∗) (3.128)

uniformly in m.

From the embeddingsV
c
⊂ V

L4(Ω;Rd)
⊂ V∗, where the first embedding is compact

and the second one is continuous, and the fact that vm ∈ L2(0, T ;H1
0(Ω;R

d)) by
(3.119), we conclude by the Aubin-Lions Lemma (see Lemma 35 in Appendix A.2)
that the embedding

{
v ∈ L2(0, T ;V) : vt ∈ L

4
3 (0, T ;V∗)

}
c
⊂ L2

(
0, T ;V

L4(Ω;Rd)
)

is compact. This yields the strong convergence (3.122) (up to subsequence) of
{vm}m.
For the convergence result (3.125) of the magnetization we apply the same tech-
nique as above. We estimate (Mm)t and obtain from there an estimate on
(∇Mm)t:

sup
‖ζ‖

L4(0,T )≤1

‖ϕ‖L2(Ω;R3)≤1

∫ T

0

∫

Ω
(Mm)t · (ζϕ) dx dt

= sup
‖ζ‖L4(0,T )≤1

‖ϕ‖
L2(Ω;R3)≤1

∫ T

0

∫

Ω
−(vm · ∇)Mm · (ζϕ) + ∆Mm · (ζϕ)

−
1

µ2
(|Mm|2 − 1)Mm · (ζϕ) dx dt.
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An application of Hölder’s inequality yields

sup
‖ζ‖L4(0,T )≤1

‖ϕ‖
L2(Ω;R3)≤1

∫ T

0

∫

Ω
(Mm)t · (ζϕ) dx dt

≤ sup
‖ζ‖

L4(0,T )≤1

‖ϕ‖L2(Ω;R3)≤1

∫ T

0
‖vm‖L4(Ω;Rd)‖∇Mm‖L4(Ω;R3×d)|ζ|‖ϕ‖L2(Ω;R3)

+ ‖∆Mm‖L2(Ω;R3)|ζ|‖ϕ‖L2(Ω;R3)

+
1

µ2
‖(|Mm|2 − 1)Mm‖L2(Ω;R3)|ζ|‖ϕ‖L2(Ω;R3) dt.

By another application of Hölder’s inequality, we get

sup
‖ζ‖L4(0,T )≤1

‖ϕ‖L2(Ω;R3)≤1

∫ T

0

∫

Ω
(Mm)t · (ζϕ) dx dt

≤ sup
‖ζ‖

L4(0,T )≤1

(
‖vm‖

L
8
3 (0,T ;L4(Ω;Rd))

‖∇Mm‖
L

8
3 (0,T ;L4(Ω;R3×d))

‖ζ‖L4(0,T )

+ ‖∆Mm‖
L

4
3 (0,T ;L2(Ω;R3))

‖ζ‖L4(0,T )

+
1

µ2
‖(|Mm|2 − 1)Mm‖

L
4
3 (0,T ;L2(Ω;R3))

‖ζ‖L4(0,T )

)

≤ ‖vm‖
L

8
3 (0,T ;L4(Ω;Rd))

‖∇Mm‖
L

8
3 (0,T ;L4(Ω;R3×d))

+ ‖∆Mm‖
L

4
3 (0,T ;L2(Ω;R3))

+
1

µ2
‖|Mm|3‖

L
4
3 (0,T ;L2(Ω))︸ ︷︷ ︸

=‖Mm‖3
L4(0,T ;L6(Ω;R3))

+
1

µ2
‖Mm‖

L
4
3 (0,T ;L2(Ω;R3))

.

From the regularities (3.119)–(3.121), and interpolation inequalities (see Propo-
sition 34 in Appendix A.2) and the boundedness of the interval (0, T ), we get
that the right-hand side is bounded. Thus,

(Mm)t ∈ L
4
3 (0, T ;L2(Ω;R3)) (3.129)

uniformly in m. This then implies that

(∇Mm)t ∈ L
4
3 (0, T ;H−1(Ω;R3×d)) (3.130)

uniformly in m.

Remark 21. In fact, in general it holds that f ∈ Lp(0, T ;Lq(Ω;Rn)) implies

∇f ∈ Lp(0, T ; (W 1,q′

0 (Ω;Rn×d))∗) = Lp(0, T ;W−1,q(Ω;Rn×d)), for p, q ∈ (1,∞)
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with 1
q
+ 1

q′
= 1, which is a direct consequence of the following calculation:

∫ T

0
‖∇f‖p

W−1,q(Ω;Rn×d)
dt =

∫ T

0
sup

‖ϕ‖
W1,q′≤1

∣∣∣
W−1,q

〈
∇f, ϕ

〉
W

1,q′

0

∣∣∣
p

dt

=

∫ T

0
sup

‖ϕ‖
W1,q′≤1

∣∣∣∣
∫

Ω
f∇ · ϕ dx

∣∣∣∣
p

dt

≤

∫ T

0
sup

‖ϕ‖
W1,q′≤1

‖f‖p
Lq(Ω;Rn)

‖∇ · ϕ‖p
Lq′ (Ω;Rn)

dt

≤

∫ T

0
‖f‖p

Lq(Ω;Rn) dt.

Following the above arguments for the convergence of {vm}m, we obtain the
strong convergence results (3.124) and (3.125) (up to subsequences, respectively).
For the convergence result (3.126) of the deformation gradient, we apply the
same technique once again. To this end, using (3.41), we estimate (Fm)t in

L
4
3 (0, T ;H−1(Ω;Rd×d)):

sup
‖ζ‖

L4(0,T )≤1

‖Ξ‖
H1

0
(Ω;Rd×d)

≤1

∫ T

0 H−1

〈
(Fm)t,Ξ

〉

H1
0

ζ dt

= sup
‖ζ‖L4(0,T )≤1

‖Ξ‖
H1

0(Ω;Rd×d)
≤1

∫ T

0

∫

Ω
−(vm · ∇)Fm : (ζΞ) + (∇vmFm) : (ζΞ)

− κ∇Fm

... (ζ∇Ξ) dx dt

Hölder
≤ sup

‖ζ‖
L4(0,T )≤1

‖Ξ‖
H1

0
(Ω;Rd×d)

≤1

∫ T

0
‖vm‖L3(Ω)‖∇Fm‖L2(Ω;Rd×d×d)|ζ|‖Ξ‖L6(Ω;Rd×d)

+ ‖∇vm‖L2(Ω;Rd×d)‖Fm‖L3(Ω;Rd×d)|ζ|‖Ξ‖L6(Ω;Rd×d)

+ κ‖∇Fm‖L2(Ω;Rd×d×d)|ζ|‖∇Ξ‖L2(Ω;Rd×d×d) dt

Hölder
≤ sup

‖ζ‖
L2(0,T )≤1

(
‖vm‖L4(0,T ;L3(Ω;Rd×d))‖∇Fm‖L2(0,T ;L2(Ω;Rd×d×d))‖ζ‖L4(0,T )

+ ‖∇vm‖L2(0,T ;L2(Ω;Rd×d))‖Fm‖L4(0,T ;L3(Ω;Rd×d))‖ζ‖L4(0,T )

+ κ‖∇Fm‖
L

4
3 (0,T ;L2(Ω;Rd×d×d))

‖ζ‖L4(0,T )

)

≤ ‖vm‖L4(0,T ;L3(Ω;Rd))‖∇Fm‖L2(0,T ;L2(Ω;Rd×d×d))

+ ‖∇vm‖L2(0,T ;L2(Ω;Rd×d))‖Fm‖L4(0,T ;L3(Ω;Rd×d))

+ κ‖∇Fm‖
L

4
3 (0,T ;L2(Ω;Rd×d×d))

.

Again, from the regularities (3.119)–(3.121), and interpolation inequalities (see
Proposition 34 in Appendix A.2) and the boundedness of (0, T ), we get that the
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right-hand side is bounded. Thus,

(Fm)t ∈ L
4
3 (0, T ;H−1(Ω;Rd×d)) (3.131)

uniformly in m. Like above, we obtain the strong convergence (3.126) (up to
subsequences).

3.1.4.2 Convergence to the weak formulations of the original problem

Up to now, we made sure that the solutions to the approximate problems converge
to some limit. In the following, we need to show that the limit also satisfies the
weak formulation of the system (3.1), (3.4), (3.5) in Ω× (0, T ).
To this end, we insert the solutions of the approximate problem and approximate
test functions into the weak formulation (3.24)–(3.26) and pass to the limit as
m → ∞. The boundary conditions (3.6)–(3.8) hold for the limit, since the
approximate solutions are constructed satisfying these conditions and they are
in a closed subspace of the respective spaces for the solutions. The attainment
of the initial data (3.9)–(3.11) is then shown in the final step of the entire proof.
Notice that since the weak solution vm to the approximate problem is defined
using test functions from the projected spaces Hm in (3.24), we also need to
pass to the limit with these test functions (only in space). However, for any test
function ξ ∈ V we immediately find a sequence of approximate test functions
ξm := Pm(ξ) ∈ Hm which converges strongly to ξ. In the following, we will use
this particular sequence of test functions. Moreover, ζ ∈ W 1,∞(0, T ) is a test
function satisfying ζ(T ) = 0.

Convergence of the v-equation (3.24). We need to show that with the conver-
gence results (3.122)–(3.127) the equation

∫ T

0

∫

Ω
−vm · (ζ ′ξm) + (vm · ∇)vm · (ζξm)

+
(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: (ζ∇ξm) dx dt

−

∫

Ω
vm(0) · (ζ(0)ξm) dx = −

∫ T

0

∫

Ω
ν∇vm : (ζ∇ξm) dx dt (3.132)

converges to the equation

∫ T

0

∫

Ω
−v · (ζ ′ξ) + (v · ∇)v · (ζξ)

+
(
W ′(F )F⊤ −∇M ⊙∇M

)
: (ζ∇ξ) dx dt

−

∫

Ω
v0 · (ζ(0)ξ) dx = −

∫ T

0

∫

Ω
ν∇v : (ζ∇ξ) dx dt (3.133)
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as m→ ∞. We examine each term individually; for the first term, we obtain
∣∣∣∣
∫ T

0

∫

Ω
vm · (ζ ′ξm)− v · (ζ ′ξ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
vm · (ζ ′ξm)− v · (ζ ′ξm) + v · (ζ ′ξm)− v · (ζ ′ξ) dx dt

∣∣∣∣

≤

∫ T

0

∫

Ω

∣∣(vm − v) · (ζ ′ξm)
∣∣+ |v · (ζ ′(ξm − ξ))| dx dt

Hölder
≤ ‖vm − v‖L2(0,T ;L2(Ω;Rd)) ‖ζ

′ξm‖L2(0,T ;L2(Ω;Rd))︸ ︷︷ ︸
≤C

+ ‖v‖L2(0,T ;L2(Ω;Rd))︸ ︷︷ ︸
≤C

‖ζ ′(ξm − ξ)‖L2(0,T ;L2(Ω;Rd))
m→∞
−−−−→ 0.

For the second term, we have
∣∣∣∣
∫ T

0

∫

Ω
(vm · ∇)vm · (ζξm)− (v · ∇)v · (ζξ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(vm · ∇)vm · (ζξm)− (v · ∇)vm · (ζξ)

+ (v · ∇)vm · (ζξ)− (v · ∇)v · (ζξ) dx dt

∣∣∣∣

≤

∫ T

0

∫

Ω

∣∣∣
(
vm ⊗ (ζξm)− v ⊗ (ζξ)

)
: ∇⊤vm

∣∣∣ dx dt

+

∣∣∣∣
∫ T

0

∫

Ω
(∇vm −∇v) : (v ⊗ (ζξ))︸ ︷︷ ︸

∈L2(0,T ;L2(Ω;Rd×d))

dx dt

∣∣∣∣

Hölder
≤ ‖vm ⊗ (ζξm)− v ⊗ (ζξ)‖L2(0,T ;L2(Ω;Rd×d)) ‖∇vm‖L2(0,T ;L2(Ω;Rd×d))︸ ︷︷ ︸

≤C

+

∣∣∣∣
∫ T

0

∫

Ω
(∇vm −∇v) : (v ⊗ (ζξ)) dx dt

∣∣∣∣
m→∞
−−−−→ 0.

Considering the third term on the left-hand side for the stress tensor, we look
at all the summands separately. Since we have the continuity of the mapping
W ′ : L2(0, T ;L4(Ω;Rd×d)) → L2(0, T ;L4(Ω;Rd×d)) by (3.14) and (3.120) (see,
e.g., [Rou13, Theorem 1.43] for Nemytskĭi mappings in Bochner spaces), we get
for the F part

∣∣∣∣
∫ T

0

∫

Ω

(
W ′(Fm)F⊤

m

)
: (ζ∇ξm)−

(
W ′(F )F⊤

)
: (ζ∇ξ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω

(
W ′(Fm)F⊤

m

)
: (ζ∇ξm)−

(
W ′(F )F⊤

)
: (ζ∇ξm)

+
(
W ′(F )F⊤

)
: (ζ∇ξm)−

(
W ′(F )F⊤

)
: (ζ∇ξ) dx dt

∣∣∣∣
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≤

∫ T

0

∫

Ω

∣∣∣(W ′(Fm)F⊤
m −W ′(F )F⊤) : (ζ∇ξm)

∣∣∣

+
∣∣∣W ′(F )F⊤ : (ζ(∇ξm −∇ξ))

∣∣∣ dx dt

Hölder
≤ ‖W ′(Fm)‖L2(0,T ;L4(Ω;Rd×d))︸ ︷︷ ︸

≤C

‖Fm − F‖L2(0,T ;L4(Ω;Rd×d))

× ‖ζ∇ξm‖L∞(0,T ;L2(Ω;Rd×d))︸ ︷︷ ︸
≤C

+ ‖W ′(Fm)−W ′(F )‖L2(0,T ;L4(Ω;Rd×d))

× ‖F‖L2(0,T ;L4(Ω;Rd×d))‖ζ∇ξm‖L∞(0,T ;L2(Ω;Rd×d))︸ ︷︷ ︸
≤C

+ ‖W ′(F )F⊤‖L1(0,T ;L2(Ω;Rd×d))︸ ︷︷ ︸
≤C

‖ζ(∇ξm −∇ξ)‖L∞(0,T ;L2(Ω;Rd×d))

m→∞
−−−−→ 0.

We obtain for the M part

∣∣∣∣
∫ T

0

∫

Ω
(∇Mm ⊙∇Mm) : (ζ∇ξm)− (∇M ⊙∇M) : (ζ∇ξ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(∇Mm ⊙∇Mm) : (ζ∇ξm)− (∇M ⊙∇M) : (ζ∇ξm)

+ (∇M ⊙∇M) : (ζ∇ξm)− (∇M ⊙∇M) : (ζ∇ξ) dx dt

∣∣∣∣

≤

∫ T

0

∫

Ω
|(∇Mm ⊙∇Mm −∇M ⊙∇M) : (ζ∇ξm)|

+ |(∇M ⊙∇M) : (ζ(∇ξm −∇ξ))| dx dt
Hölder
≤ ‖∇Mm ⊙∇Mm −∇M ⊙∇M‖L2(0,T ;L2(Ω;Rd×d)) ‖ζ∇ξm‖L2(0,T ;L2(Ω;Rd×d))︸ ︷︷ ︸

≤C

+ ‖∇M ⊙∇M‖L2(0,T ;L2(Ω;Rd×d))︸ ︷︷ ︸
≤C

‖ζ(∇ξm −∇ξ)‖L2(0,T ;L2(Ω;Rd×d))

m→∞
−−−−→ 0.

The last terms on the left-hand side of (3.132) and (3.133) yield

∣∣∣∣
∫

Ω
vm(0) · (ζ(0)ξm)− v0 · (ζ(0)ξ) dx

∣∣∣∣

=

∣∣∣∣
∫

Ω
vm(0) · (ζ(0)ξm)− vm(0) · (ζ(0)ξ) + vm(0) · (ζ(0)ξ)− v0 · (ζ(0)ξ) dx

∣∣∣∣

≤

∫

Ω
|(vm(0)ζ(0)) · (ξm − ξ)|+ |(vm(0)− v0) · (ζ(0)ξ)| dx
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Hölder
≤ ‖v0ζ(0)‖L2(Ω)︸ ︷︷ ︸

≤C

‖ξm − ξ‖L2(Ω;Rd) + ‖vm(0)− v0‖L2(Ω;Rd) ‖ζ(0)ξ‖L2(Ω;Rd)︸ ︷︷ ︸
≤C

m→∞
−−−−→ 0.

Finally, we see that the right-hand side of (3.132) converges, too (we omit the
constant ν):

∣∣∣∣
∫ T

0

∫

Ω
∇vm : (ζ∇ξm)−∇v : (ζ∇ξ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
∇vm : (ζ∇ξm)−∇v : (ζ∇ξm) +∇v : (ζ∇ξm)

−∇v : (ζ∇ξ) dx dt

∣∣∣∣

≤

∫ T

0

∫

Ω
|(∇vm −∇v) : (ζ∇ξm)︸ ︷︷ ︸

∈L2(0,T ;L2(Ω;Rd×d))

|+ |∇v : (ζ(∇ξm −∇ξ))| dx dt

Hölder
≤

∫ T

0

∫

Ω
|(∇vm −∇v) : (ζ∇ξm)| dx dt

+ ‖∇v‖L2(0,T ;L2(Ω;Rd×d))︸ ︷︷ ︸
≤C

‖ζ(∇ξm −∇ξ)‖L2(0,T ;L2(Ω;Rd×d))

m→∞
−−−−→ 0.

Thus, the v-equation (3.24) converges.

Convergence of the F -equation (3.25). We need to prove that with the con-
vergence results (3.122)–(3.127) the equation

∫ T

0

∫

Ω
−Fm : (ζ ′Ξ) + (vm · ∇)Fm : (ζΞ) dx dt−

∫

Ω
Fm(0) : (ζ(0)Ξ) dx

=−

∫ T

0

∫

Ω
κ∇Fm

... (ζ∇Ξ) dx dt (3.134)

converges to the equation

∫ T

0

∫

Ω
−F : (ζ ′Ξ) + (v · ∇)F : (ζΞ) dx dt−

∫

Ω
F0 : (ζ(0)Ξ) dx

=−

∫ T

0

∫

Ω
κ∇F

... (ζ∇Ξ) dx dt (3.135)

as m→ ∞. Notice that we integrated by parts with respect to time, so the dual
pairing becomes an integral. Moreover, the test functions ζΞ are taken from the
same spaces for both the approximate problem and the original problem. Thus,
the third term on the left-hand side of the equation converges since Fm(0) → F0

strongly in L2(Ω) by construction.
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The first term on the left-hand side and the right-hand side of the equation are
linear, so, the convergence is directly provided by the weak convergence of the
sequences.
Estimates for the second term yield

∣∣∣∣
∫ T

0

∫

Ω
(vm · ∇)Fm : (ζΞ)− (v · ∇)F : (ζΞ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(vm · ∇)Fm : (ζΞ)− (v · ∇)Fm : (ζΞ)

+ (v · ∇)Fm : (ζΞ)− (v · ∇)F : (ζΞ) dx dt

∣∣∣∣

≤

∫ T

0

∫

Ω
|((vm − v) · ∇)Fm : (ζΞ)|+ |(v · ∇)(Fm − F ) : (ζΞ)| dx dt

Hölder
≤ ‖vm − v‖L2(0,T ;L4(Ω;Rd)) ‖∇Fm‖L2(0,T ;L2(Ω;Rd×d×d))‖ζΞ‖L∞(0,T ;L4(Ω;Rd×d))︸ ︷︷ ︸

≤C

+ ‖∇Fm −∇F‖L2(0,T ;L2(Ω;Rd×d×d)) ‖v(ζΞ)‖L2(0,T ;L2(Ω;Rd×d×d))︸ ︷︷ ︸
≤C

m→∞
−−−−→ 0.

Thus, the F -equation (3.25) converges. Next, we prove

Convergence of the M-equation (3.26). We need to show that with the con-
vergence results (3.122)–(3.127) the equation

∫ T

0

∫

Ω
−Mm · (ζ ′ϕ) + (v · ∇)Mm · (ζϕ) dx dt−

∫

Ω
Mm(0) · (ζ(0)ϕ) dx

=

∫ T

0

∫

Ω
−∇Mm : (ζ∇ϕ)−

1

µ2
(|Mm|2 − 1)Mm · (ζϕ) dx dt (3.136)

converges to the equation

∫ T

0

∫

Ω
−M · (ζ ′ϕ) + (v · ∇)M · (ζϕ) dx dt−

∫

Ω
M0 · (ζ(0)ϕ) dx

=

∫ T

0

∫

Ω
−∇M : (ζ∇ϕ)−

1

µ2
(|M |2 − 1)M · (ζϕ) dx dt (3.137)

as m→ ∞. Notice that we integrated by parts with respect to time, so, the dual
form becomes an integral. Moreover, the test functions ζϕ are taken from the
same spaces for both the approximate problem and the original problem. Thus,
the third term on the left-hand side of the equation converges sinceMm(0) →M0

strongly in L2(Ω) by construction.
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For the first term we obtain

∣∣∣∣
∫ T

0

∫

Ω
Mm · (ζ ′ϕ)−M · (ζ ′ϕ) dx dt

∣∣∣∣

≤

∫ T

0

∫

Ω
|(Mm −M) · (ζ ′ϕ)| dx dt

Hölder
≤ ‖Mm −M‖L2(0,T ;L2(Ω;R3)) ‖ζ

′ϕ‖L2(0,T ;L2(Ω;R3))︸ ︷︷ ︸
≤C

m→∞
−−−−→ 0.

Estimates for the second term yield

∣∣∣∣
∫ T

0

∫

Ω
(vm · ∇)Mm · (ζϕ)− (v · ∇)M · (ζϕ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(vm · ∇)Mm · (ζϕ)− (v · ∇)Mm · (ζϕ)

+ (v · ∇)Mm · (ζϕ)− (v · ∇)M · (ζϕ) dx dt

∣∣∣∣

≤

∫ T

0

∫

Ω
|((vm − v) · ∇)Mm · (ζϕ)|+ |(v · ∇)(Mm −M) · (ζϕ)| dx dt

Hölder
≤ ‖vm − v‖L2(0,T ;L4(Ω;Rd)) ‖∇Mm‖L∞(0,T ;L2(Ω;R3×d))‖ζϕ‖L2(0,T ;L4(Ω;R3))︸ ︷︷ ︸

≤C

+ ‖∇Mm −∇M‖L2(0,T ;L2(Ω;R3×d)) ‖(ζϕ)⊗ v‖L2(0,T ;L2(Ω;R3×d))︸ ︷︷ ︸
≤C

m→∞
−−−−→ 0.

Next, we see that the first term on the right-hand side of the equation converges,
too, since it is linear and thus the weak convergence directly provides the result.
Finally, we obtain for the second term on the right-hand side of the equation
(again, we omit the constant for brevity)

∣∣∣∣
∫ T

0

∫

Ω
(|Mm|2 − 1)Mm · (ζϕ)− (|M |2 − 1)M · (ζϕ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(|Mm|2 − 1)Mm · (ζϕ)− (|M |2 − 1)Mm · (ζϕ)

+ (|M |2 − 1)Mm · (ζϕ)− (|M |2 − 1)M · (ζϕ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(|Mm|2 − |M |2)Mm · (ζϕ)

+ (|M |2 − 1)(Mm −M) · (ζϕ) dx dt

∣∣∣∣
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≤

∫ T

0

∫

Ω
|(|Mm|+ |M |) (|Mm| − |M |)︸ ︷︷ ︸

≤|Mm−M |

Mm · (ζϕ)|

+ ||M |2(Mm −M) · (ζϕ)|+ |(Mm −M) · (ζϕ)| dx dt

≤

∫ T

0

∫

Ω

∣∣|Mm||Mm −M |Mm · (ζϕ)
∣∣+
∣∣|M ||Mm −M |Mm · (ζϕ)

∣∣

+
∣∣|M |2(Mm −M) · (ζϕ)

∣∣+
∣∣(Mm −M) · (ζϕ)

∣∣ dx dt

Hölder
≤ ‖Mm‖L∞(0,T ;L4(Ω;R3))‖Mm −M‖L2(0,T ;L4(Ω;R3))

× ‖Mm‖L∞(0,T ;L4(Ω;R3))‖ζϕ‖L2(0,T ;L4(Ω;R3))

+‖M‖L∞(0,T ;L4(Ω;R3))‖Mm −M‖L2(0,T ;L4(Ω;R3))

‖Mm‖L∞(0,T ;L4(Ω;R3))‖ζϕ‖L2(0,T ;L4(Ω;R3))

+ ‖|M |2‖L∞(0,T ;L2(Ω))︸ ︷︷ ︸
=‖M‖2

L∞(0,T ;L4(Ω;R3))

‖Mm −M‖L2(0,T ;L4(Ω;R3))‖ζϕ‖L2(0,T ;L4(Ω;R3))

+‖Mm −M‖L2(0,T ;L2(Ω;R3))‖ζϕ‖L2(0,T ;L2(Ω;R3))
m→∞
−−−−→ 0.

Notice that ‖Mm‖L∞(0,T ;L4(Ω;R3)) ≤ C and ‖M‖L∞(0,T ;L4(Ω;R3)) ≤ C due to
(3.121) and the lower semicontinuity of norms. Thus, the M -equation converges.

3.1.4.3 Attainment of initial data for the weak solution to the original
problem

Finally, we are left to prove that the initial data is actually attained by the
solution. We already obtained

(vm)t ∈ L
4
3 (0, T ;V∗),

(Mm)t ∈ L
4
3 (0, T ;L2(Ω;R3)),

(∇Mm)t ∈ L
4
3 (0, T ;H−1(Ω;R3×d)),

(Fm)t ∈ L
4
3 (0, T ;H−1(Ω;Rd×d))

from the estimates in (3.128), (3.129), (3.130), and (3.131), respectively. Now,
we treat the quantities vm, Mm, ∇Mm and Fm together (in the sense that we
omit the target spaces) to establish the attainment result for the initial data.
The regularity results (3.119)–(3.121) provide us with the fact that

vm,Mm,∇Mm, Fm ∈ L4(0, T ;H−1(Ω)).

With the regularities on the time derivatives obtained above and the help of
Gelfand’s triple (see Lemma 36 in Appendix A.2) we get that

vm,Mm,∇Mm, Fm ∈ C0(0, T ;H−1(Ω)).

Now, since it also follows from (3.119)–(3.121) that

vm,Mm,∇Mm, Fm ∈ L∞(0, T ;L2(Ω)),

87



and since L2(Ω) is a reflexive Banach space densely and compactly embedded
into H−1(Ω), we obtain that

vm,Mm,∇Mm, Fm ∈ C0(0, T ;L2
w(Ω)),

where the index w indicates weak topology in L2 (for the general result and a
proof we refer to [Tem77, Chapter III, Lemma 1.4]). Therefore, it makes sense,
to talk about the attainment of initial data. Now, we prove that the initial values
of the solutions coincide with the initial data in the L2-sense.

Attainment for v. We start with the velocity and show that v(0) = v0. We
firstly integrate the first term in (3.132) by parts with respect to time to obtain

∫ T

0
H

−1

〈
(vm)t, ξm

〉
H1

0
ζ dt

+

∫ T

0

∫

Ω
(vm · ∇)vm · (ζξm) +

(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: (ζ∇ξm) dx dt

=−

∫ T

0

∫

Ω
ν∇vm : (ζ∇ξm) dx dt. (3.138)

From the obtained regularity for (vm)t, it is a direct consequence that the first

term in (3.138) converges to
∫ T

0 H
−1

〈
vt, ξ

〉
H1

0
ζ dt, so, with the previous conver-

gence results it is clear that (3.138) converges to

∫ T

0
H

−1

〈
vt, ξ

〉
H1

0
ζ dt

+

∫ T

0

∫

Ω
(v · ∇)v · (ζξ) +

(
W ′(F )F⊤ −∇M ⊙∇M

)
: (ζ∇ξ) dx dt

=−

∫ T

0

∫

Ω
ν∇v : (ζ∇ξ) dx dt. (3.139)

Integrating by parts with respect to t in (3.133) (a new boundary term is showing
up) and comparing the equation with (3.139), we see that (we choose ζ(0) = 1)

∫

Ω
(v(0) − v0) · ξ dx = 0

for any ξ ∈ H1
0(Ω;R

d). This then proves the attainment for v.

Attainment for F . For the deformation gradient F , we show that F (0) = F0.
We integrate the first term in (3.134) by parts with respect to time to obtain

∫ T

0 H−1

〈
(Fm)t,Ξ

〉

H1
0

ζ dt+

∫ T

0

∫

Ω
(vm · ∇)Fm : (ζΞ) dx dt

= −

∫ T

0

∫

Ω
κ∇Fm

... (ζ∇Ξ) dx dt. (3.140)
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From the obtained regularity for (Fm)t it is a direct consequence that the first

term in (3.140) converges to
∫ T

0 H−1

〈
Ft, ξ

〉
H1

0
ζ dt, so, (3.140) converges to

∫ T

0 H
−1

〈
Ft,Ξ

〉

H1
0

ζ dt+

∫ T

0

∫

Ω
(v · ∇)F : (ζΞ) dx dt

= −

∫ T

0

∫

Ω
κ∇F

... (ζ∇Ξ) dx dt. (3.141)

Integration by parts with respect to t in (3.135) (again, an additional boundary
term is showing up) and comparison of the resulting equation with (3.141) leads
to (we choose again ζ(0) = 1)

∫

Ω
(F (0) − F0) : Ξ dx = 0

for any Ξ ∈ H1
0(Ω;R

d×d). This proves the attainment for F .

Attainment for M . Lastly, for M , we show that M(0) =M0. We integrate the
first term in (3.136) by parts with respect to time to get

∫ T

0

∫

Ω
(Mm)t · (ζϕ) + (v · ∇)Mm · (ζϕ) dx dt

=

∫ T

0

∫

Ω
−∇Mm : (ζ∇ϕ)−

1

µ2
(|Mm|2 − 1)Mm · (ζϕ) dx dt. (3.142)

From the obtained regularity for (Mm)t, it is a direct consequence that the first

term in (3.142) converges to
∫ T

0

∫
ΩMt · (ζϕ) dx dt, so, it is clear that (3.142)

converges to

∫ T

0

∫

Ω
Mt · (ζϕ) + (v · ∇)M · (ζϕ) dx dt

=

∫ T

0

∫

Ω
−∇M : (ζ∇ϕ)−

1

µ2
(|M |2 − 1)M · (ζϕ) dx dt. (3.143)

Integrating by parts with respect to t in (3.137) (here, an additional boundary
term is showing up, too) and comparing the equation with (3.143), we see that
(we choose also ζ(0) = 1)

∫

Ω
(M(0)−M0) · ϕ dx = 0

for any ϕ ∈ H1(Ω;R3). This then proves the attainment for M in L2.

Since ∇M(t) converges as t → 0 and we have M(t)
t→0
−−⇀ M0 in L2, we immedi-

ately get that ∇M(t)
t→0
−−⇀ ∇M0. This concludes the proof of Theorem 9.
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3.2 System for simplified setting including LLG

This section is dedicated to the proof of Theorem 11 on page 44. The structure of
the proof is essentially the same as the proof of Theorem 9 from Section 3.1. How-
ever, due to the more complicated form of the Landau-Lifshitz-Gilbert equation
(3.18) compared to the gradient flow (3.5), which reflects in stronger nonlineari-
ties in the LLG equation, we have to use different techniques. The first specialty
is that we need more regularity of the magnetization to obtain a weak solution
to the LLG equation for a fixed velocity, see Lemma 26, which follows ideas from
[CF01]. Further, the energy estimates are more involved and also invoke methods
used in [CF01], where the small data assumption (3.23) is important. In the fol-
lowing, let Ω ⊂ R

2, which we assume in order to apply certain Sobolev estimates
in Lemma 26 and Corollary 29 to ensure H2-regularity of the magnetization.

3.2.1 Definition of a weak solution

We start with the definition of the notion of a weak solution to the simplified
system with LLG.

Definition 22. The triple (v, F,M) is called a weak solution to the system (3.1)–
(3.4), (3.18), (3.6)–(3.11) in Ω× [0, t∗] provided that

v ∈ L∞(0, t∗;H) ∩ L2(0, t∗;V),

F ∈ L∞(0, t∗;L2(Ω;R2×2)) ∩ L2(0, t∗;H1(Ω;R2×2)),

M ∈ L∞(0, t∗;H1(Ω;R3)) ∩ L2(0, t∗;H2(Ω;R3)),

and if it satisfies
∫ t∗

0

∫

Ω
−v · (ζ ′ξ) + (v · ∇)v · (ζξ) +

(
W ′(F )F⊤ −∇M ⊙∇M

)
: (ζ∇ξ) dx dt

−

∫

Ω
v(0) · (ζ(0)ξ) dx = −

∫ t∗

0

∫

Ω
ν∇v : (ζ∇ξ) dx dt, (3.144)

∫ t∗

0

∫

Ω
−F : (ζ ′Ξ) + (v · ∇)F : (ζΞ)− (∇vF ) : (ζΞ) dx dt

−

∫

Ω
F (0) : (ζ(0)Ξ) dx = −

∫ t∗

0

∫

Ω
κ∇F

... (ζ∇Ξ) dx dt, (3.145)

∫ t∗

0

∫

Ω
−M · (ζ ′ϕ) + (v · ∇)M · (ζϕ) dx dt−

∫

Ω
M(0) · (ζ(0)ϕ) dx

=

∫ t∗

0

∫

Ω
−(M ×∆M) · (ζϕ) + |∇M |2M · (ζϕ)−∇M : (ζ∇ϕ) dx dt, (3.146)

where ζ : [0, t∗] → R is any W 1,∞-function with ζ(t∗) = 0 and ξ ∈ V, Ξ ∈
H1

0(Ω;R
2×2), ϕ ∈ H1(Ω;R3), together with the boundary conditions (3.6)–(3.8)

in the sense of traces and with the initial conditions (3.9)–(3.11) in the sense

v(·, t)
w−L2(Ω)
−−−−−−⇀ v0(·), F (·, t)

w−L2(Ω)
−−−−−−⇀ F0(·), M(·, t)

w−H1(Ω)
−−−−−−⇀M0(·) as t→ 0+.
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Remark 23. Notice that the weak form (3.146) of the LLG equation is motivated
by the equivalent versions of the LLG equation from Lemma 10.

3.2.2 Galerkin approximation: definition of the approximate problem

The construction of solutions to an approximate problem starts – just like in the
model for the simplified setting without the LLG equation in Section 3.1.2 – by
projecting the velocity v onto finite dimensional subspaces Hm of H following
[LL95].
We refer to Section 3.1.2 for the details on the Stokes operator (see also (3.27)).
The approximate problem, where the equation for the magnetization is the cou-
pled LLG equation and the initial condition is supposed to satisfy the length
constraint, reads

(vm)t = Pm

(
ν∆vm − (vm · ∇)vm

+∇ ·
(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

))
in Ω× (0, t∗), (3.147)

vm ∈ Hm =⇒ ∇ · vm = 0, (3.148)

(Fm)t + (vm · ∇)Fm −∇vmFm = κ∆Fm in Ω× (0, t∗), (3.149)

(Mm)t + (vm · ∇)Mm = −Mm ×∆Mm

+ |∇Mm|2Mm +∆Mm in Ω× (0, t∗), (3.150)

vm = 0 on ∂Ω× (0, t∗), (3.151)

Fm = 0 on ∂Ω× (0, t∗), (3.152)

∂Mm

∂n
= 0 on ∂Ω× (0, t∗), (3.153)

vm(x, 0) = Pm(v0(x)) in Ω, (3.154)

Fm(x, 0) = I in Ω, (3.155)

Mm(x, 0) =M0(x) in Ω, |M0| = 1 a.e. in Ω. (3.156)

Again, this approximating system is meant to hold in a weak sense, i.e., boundary
and initial conditions (3.151)–(3.156) hold and the following integral equations
are satisfied

∫

Ω
(vm)t · ξ + (vm · ∇)vm · ξ +

(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: ∇ξ dx

=−

∫

Ω
ν∇vm : ∇ξ dx, (3.157)
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H−1

〈
(Fm)t,Ξ

〉

H1
0

+

∫

Ω
(vm · ∇)Fm : Ξ− (∇vmFm) : Ξ dx

=−

∫

Ω
κ∇Fm

... ∇Ξ dx, (3.158)

∫

Ω
(Mm)t · ϕ+ (vm · ∇)Mm · ϕ dx

=

∫

Ω
−(Mm ×∆Mm) · ϕ+ |∇Mm|2Mm · ϕ+∆Mm · ϕ dx, (3.159)

for a.e. t, where ξ ∈ V ∩Hm = Hm, Ξ ∈ H1
0(Ω;R

2×2), ϕ ∈ L2(Ω;R3).

3.2.3 Galerkin approximation: existence of weak solutions to the
approximate problem

We start by defining the notion of a weak solution to the approximate problem.

Definition 24. We call (vm, Fm,Mm) a weak solution to the system (3.147)–
(3.156) provided that

vm ∈ L∞(0, t∗;H) ∩ L2(0, t∗;V),

Fm ∈ L∞(0, t∗;L2(Ω;R2×2)) ∩ L2(0, t∗;H1(Ω;R2×2))

Mm ∈ L∞(0, t∗;H1(Ω;R3)) ∩ L2(0, t∗;H2(Ω;R3))

and that the system (3.147)–(3.156) is satisfied in the weak sense (3.157)–(3.159).

The following result states the existence of a weak solution to the approximate
problem.

Theorem 25. For any 0 < T < ∞ and any m > 0, v0 ∈ H, F0 ∈ L2(Ω;R2×2),
M0 ∈ H2(Ω;S2) satisfying

‖v0‖
2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3×2) <

1

C(Ω)
(3.160)

for some constant C(Ω) and W satisfying (3.12)–(3.17), the system (3.147)–
(3.156) has a weak solution (vm, Fm,Mm) in Ω× (0, T ).

We prepare the proof of Theorem 25. The approach is – as in Section 3.1.3 –
to convert the PDE for the velocity v, i.e., the balance of momentum equation
(3.147), to an ODE system. From the very same discretization of the velocity
(3.43), we obtain for ξ = ξi also the same ODE system which was derived in
Section 3.1.3

d

dt
gim(t) = −νλig

i
m(t) +

m∑

j,k=1

gjm(t)gkm(t)Ai
jk +Di

m(t), i = 1, . . . ,m, (3.161)
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where

Ai
jk = −

∫

Ω
(ξj(x) · ∇)ξk(x) · ξi(x) dx, (3.162)

Di
m(t) = −

∫

Ω

(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

)
: ∇ξi dx, (3.163)

and the initial condition

gim(0) =

∫

Ω
v0(x) · ξi(x) dx (3.164)

for i = 1, . . . ,m.

3.2.3.1 Weak solutions to the sub-problem

The following lemma mimics Lemma 17 in the model without the LLG equation.
This yields unique weak solutions to the PDEs for the deformation gradient F
and the magnetization M for fixed velocity v. However, the crucial difference is
that we need to obtain more regularity to converge the LLG equation. As for
the solution to the equation for F , there is no difference in the proof compared
to Lemma 17.

Lemma 26. For v ∈ L∞(0, t∗;W 2,∞(Ω;R2)) satisfying v = 0 on ∂Ω×(0, t∗) and
v(x, 0) = v0(x) and ∇ · v = 0, there exists a time 0 < t̃ < t∗ such that the system

Ft + (v · ∇)F −∇vF = κ∆F in Ω× (0, t̃),

Mt + (v · ∇)M = −M ×∆M + |∇M |2M +∆M in Ω× (0, t̃),

F = 0 on ∂Ω × (0, t̃),

∂M

∂n
= 0 on ∂Ω × (0, t̃),

F (x, 0) = F0(x) = I in Ω,

M(x, 0) =M0(x) in Ω

has a unique weak solution such that

‖F‖L∞(0,t̃;L2(Ω;R2×2)) + ‖F‖L2(0,t̃;H1(Ω;R2×2))

+ ‖Ft‖L2(0,t̃;H−1(Ω;R2×2)) ≤ C(v), (3.165)

‖M‖L∞(0,t̃;H2(Ω;R3)) + ‖M‖L2(0,t̃;H3(Ω;R3)) + ‖Mt‖L∞(0,t̃;L2(Ω;R3))

+ ‖∇Mt‖L2(0,t̃;L2(Ω;R3×2)) ≤ C(v,M0), (3.166)

where the constants are given by

C(v) = C(‖v‖L∞(0,t̃;W 2,∞(Ω;R2))),

C(v,M0) = C(‖v‖L∞(0,t̃;W 2,∞(Ω:R2)), ‖M0‖H2(Ω;R3)).
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Moreover, it holds that

‖∆M‖2L2(Ω;R3)(t)

≤ ‖∆M0‖
2
L2(Ω;R3) + C(v)

∫ t

0

(
‖∇M‖8L2(Ω;R3×2)

+
(
1 + ‖∇M‖2L2(Ω;R3×2)

)
‖∆M‖4L2(Ω;R3)

)
ds (3.167)

for any 0 ≤ t ≤ t̃.

Proof. The proof of existence for the equation for F works as before. Hence, for
this, we refer to the first part of the proof of Lemma 17.

Existence of a weak solution to the M-equation. For the Galerkin approxi-
mation, let {ηi}

∞
i=1 ⊂ C∞(Ω;R3) be an orthonormal basis of L2(Ω;R3) and an

orthogonal basis of H2
n(Ω;R

3) (for details we refer to Appendix A.6) satisfying

∆2ηi + ηi = µ̃iηi (3.168)

in Ω and ∂ηi
∂n

= 0 and ∂∆ηi
∂n

= 0 in the weak sense on the boundary. Here,

0 < µ̃1 ≤ µ̃2 ≤ · · · ≤ µ̃n ≤ · · · with µ̃n
n→∞
−−−→ ∞.

Let
L̃2
n := span{η1, η2, . . . , ηn} (3.169)

and
P̃n : L2(Ω;R3) → L̃2

n (3.170)

be the orthonormal projection. We consider the original problem for functions
in L̃2

n and show existence of a weak solution to

Mt = P̃n

[
− (v · ∇)M −M ×∆M + |∇M |2M +∆M

]
in Ω× (0, t∗∗), (3.171)

∂M

∂n
= 0 on ∂Ω× (0, t∗∗), (3.172)

Mn(x, 0) = P̃n(M0(x)) in Ω. (3.173)

For a fixed n ∈ N, we look for a function Mn : [0, t∗∗] → L̃2
n of the form

Mn(x, t) =

n∑

i=1

hin(t)ηi(x). (3.174)

The solution must satisfy (3.159), so we plug this discretization into (3.159) to
obtain for ϕ = ηi the ODE system

d

dt
hin(t) =

n∑

j=1

hjn(t)Â
i
j(t) +

n∑

j,k=1

hjn(t)h
k
n(t)B̂

i
jk +

n∑

j,k,l=1

hjn(t)h
k
n(t)h

l
n(t)Ĉ

i
jkl,

i = 1, . . . , n, (3.175)
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where

Âi
j(t) = −

∫

Ω

(
(v(x, t) · ∇)ηj(x)−∆ηj(x)

)
· ηi(x) dx, (3.176)

B̂i
jk = −

∫

Ω
(ηj(x)×∆ηk(x)) · ηi(x) dx, (3.177)

Ĉi
jkl =

∫

Ω
(∇ηj(x) : ∇ηk(x))(ηl(x) · ηi(x)) dx. (3.178)

The initial condition becomes

hin(0) =

∫

Ω
M0(x) · ηi(x) dx, i = 1, . . . , n. (3.179)

We also apply here Carathéodory’s existence theorem (see Theorem 30 in Ap-
pendix A.2) to obtain a solution hin(t) of (3.175).
Since the second and the last summand on the right-hand side of (3.175) are not
depending on t (looking at t and hin as distinct variables) and the dependence on
t of the first summand is just within a Lipschitz function, the right-hand side is
measurable in t for any hin.
Furthermore, the terms on the right-hand side of (3.175) are linear, quadratic
and cubic in hin, respectively, so the right-hand side is continuous in hin for any
t.
In addition, for t ∈ [0, t∗] and ‖hn −hn(0)‖ ≤ b̂, where hn = (h1n, . . . , h

n
n), we can

bound the right-hand side of (3.175) by the L1-function

(2b̂+ ‖hn(0)‖)nÂ+ µ̃n(2b̂+ ‖hn(0)‖)
2

n∑

j,k=1

B̂i
jk + (2b̂+ ‖hn(0)‖)

3
n∑

j,k,l=1

Ĉi
jkl,

where we can choose the constant Â in such a way that it is independent of v,
which then makes the above function independent of v.
Finally, Carathéodory’s theorem yields the existence of a value t∗∗ (independent
of v) with 0 < t∗∗ ≤ t∗ such that the ODE system (3.175) has a unique (since
the right-hand side of the ODE is locally Lipschitz) and absolutely continuous
solution {hin(t)}

n
i=1 on [0, t∗∗] satisfying (3.179).

Now, we prepare the passage to the limit as n→ ∞ with uniform estimates. To
this end, we first multiply (3.171) by Mn and integrate over Ω to find out that

d

dt
‖Mn‖

2
L2(Ω;R3) + 2‖∇Mn‖

2
L2(Ω;R3×2) = 2

∫

Ω
|∇Mn|

2|Mn|
2 dx

Hölder
≤ 2‖Mn‖

2
L∞(Ω;R3)‖∇Mn‖

2
L2(Ω;R3×2). (3.180)
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Next, we multiply (3.171) by ∆2Mn (notice that P̃n(∆
2Mn) = ∆2Mn by (3.168))

and integrate over Ω to obtain

1

2

d

dt
‖∆Mn‖

2
L2(Ω;R3) + ‖∇∆Mn‖

2
L2(Ω;R3×2)

=

∫

Ω
−(v · ∇)Mn ·∆2Mn − (Mn ×∆Mn) ·∆

2Mn + |∇Mn|
2Mn ·∆2Mn dx

≤

∫

Ω
|(∇v∇⊤Mn) : ∇∆Mn|+ |(v · ∇)∇Mn : ∇∆Mn| dx

︸ ︷︷ ︸
=:I1

+

∫

Ω
|(∇Mn ×∆Mn) : ∇∆Mn| dx

︸ ︷︷ ︸
=:I2

+

∫

Ω
|(2Mn ⊗ (∇Mn∇

2Mn)) : ∇∆Mn|+ |∇Mn|
2|∇Mn : ∇∆Mn| dx

︸ ︷︷ ︸
=:I3

.

(3.181)

We need to estimate the integrals I1, I2, and I3 separately. To do so, we utilize
some estimates also used in [CF01]: there is a constant C > 0 such that for all
M ∈ H2

n(Ω;R
3)

‖M‖H2(Ω;R3) ≤ C
(
‖M‖2L2(Ω;R3) + ‖∆M‖2L2(Ω;R3)

) 1
2
, (3.182)

‖∇M‖H1(Ω;R3×2) ≤ C
(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

) 1
2
, (3.183)

‖M‖L∞(Ω;R3) ≤ C
(
‖M‖2L2(Ω;R3) + ‖∆M‖2L2(Ω;R3)

) 1
2
, (3.184)

‖∇M‖L6(Ω;R3×2) ≤ C
(
‖M‖2L2(Ω;R3) + ‖∆M‖2L2(Ω;R3)

) 1
2
, (3.185)

and that for all M ∈ H2
n(Ω;R

3) ∩H3(Ω;R3)

‖∇2M‖L3(Ω;R3×2×2)

≤ C

((
‖M‖2L2(Ω;R3) + ‖∆M‖2L2(Ω;R3)

) 1
2

+
(
‖M‖2L2(Ω;R3) + ‖∆M‖2L2(Ω;R3)

) 1
4
‖∇∆M‖

1
2

L2(Ω;R3×2)

)
. (3.186)
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Moreover, since Ω ⊂ R
2, we also have

‖∇M‖L4(Ω;R3×2) ≤ C‖∇M‖
1
2

L2(Ω;R3×2)

×
(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

) 1
4
, (3.187)

‖∇M‖L6(Ω;R3×2) ≤ C‖∇M‖
1
3

L2(Ω;R3×2)

×
(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

) 1
3
, (3.188)

‖∇M‖L∞(Ω;R3×2) ≤ C‖∇M‖
1
2

L2(Ω;R3×2)

×
(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3) + ‖∇∆M‖2L2(Ω;R3×2)

) 1
4
, (3.189)

‖∆M‖L4(Ω;R3) ≤ C‖∆M‖
1
2

L2(Ω;R3)

×
(
‖∆M‖2L2(Ω;R3) + ‖∇∆M‖2L2(Ω;R3×2)

) 1
4
. (3.190)

We start to estimate the term I1 and get, since v ∈ L∞(0, t∗;W 2,∞(Ω;R2)),

I1
Hölder
≤ ‖∇v‖L3(Ω;R2×2)‖∇Mn‖L6(Ω;R3×2)‖∇∆Mn‖L2(Ω;R3×2)

+ ‖v‖L6(Ω;R2)‖∇
2Mn‖L3(Ω;R3×2×2)‖∇∆Mn‖L2(Ω;R3×2)

(3.185)

≤
(3.186)

C(v)
(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

) 1
2
‖∇∆Mn‖L2(Ω;R3×2)

+ C(v)
(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

) 1
4
‖∇∆Mn‖

3
2

L2(Ω;R3×2)
. (3.191)

For the integral term I2, we obtain

I2
Hölder
≤ ‖∇Mn‖L6(Ω;R3×2)‖∆Mn‖L3(Ω;R3)‖∇∆Mn‖L2(Ω;R3×2)

(3.185)

≤
(3.186)

C
(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)
‖∇∆Mn‖L2(Ω;R3×2)

+ C
(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

) 3
4
‖∇∆Mn‖

3
2

L2(Ω;R3×2)
. (3.192)

We estimate the integral term I3 and find out that

I3
Hölder
≤ 2‖Mn‖L∞(Ω;R3)‖∇Mn‖L6(Ω;R3×2)

× ‖∇2Mn‖L3(Ω;R3×2×2)‖∇∆Mn‖L2(Ω;R3×2)

+‖∇Mn‖
3
L6(Ω;R3×2)‖∇∆Mn‖L2(Ω;R3×2)

(3.184)

≤
(3.185)

(3.186)

C
(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

) 3
2
‖∇∆Mn‖L2(Ω;R3×2)

+C
(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)
‖∇∆Mn‖

3
2

L2(Ω;R3×2)
. (3.193)
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Summing (3.191)–(3.193), we obtain from (3.181) and an iterative application of
Young’s inequality that

d

dt
‖∆Mn‖

2
L2(Ω;R3) + 2‖∇∆Mn‖

2
L2(Ω;R3×2)

≤ C(v)

(
1 +

(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

) 3
2

)
‖∇∆Mn‖

3
2

L2(Ω;R3×2)
. (3.194)

Next, we sum (3.180) and (3.194) and apply (3.182), (3.184) and Young’s in-
equality to find

d

dt

(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)

+ 2‖∇Mn‖
2
L2(Ω;R3×2) + 2‖∇∆Mn‖

2
L2(Ω;R3×2)

(3.182)

≤
(3.184)

C(v)

(
1 +

(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

) 3
2

)
‖∇∆Mn‖

3
2

L2(Ω;R3×2)

+C
(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)2

Young
≤ C(v)

27C(v)3

256

(
1 +

(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

) 3
2

)4

+‖∇∆Mn‖
3
2
· 4
3

L2(Ω;R3×2)
+ C

(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)2·3
+C(Ω)

Young
≤ C(v)

(
1 +

(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)6)
+ ‖∇∆Mn‖

2
L2(Ω;R3×2).

Finally, we obtain

d

dt

(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)

+ 2‖∇Mn‖
2
L2(Ω;R3×2) + ‖∇∆Mn‖

2
L2(Ω;R3×2)

≤ C(v)

(
1 +

(
‖Mn‖

2
L2(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)6)
. (3.195)

In the next step, we make use of the following classical comparison lemma (see,
e.g., [CF01, Lemma 2.4]) which we state without a proof:

Lemma 27. Let f : R×R → R be C1 and nondecreasing in its second variable.
Assume further that y : I ⊂ R → R is a continuous function satisfying the
inequality y(t) ≤ y0 +

∫ t

0 f(s, y(s)) ds for all t > 0. Let z : I → R be the solution
of z′(t) = f(t, z(t)), z(0) = y0. Then, it holds y(t) ≤ z(t) for all t > 0.

From (3.195) and Lemma 27 we deduce the existence of a time 0 < T ∗ ≤ t∗∗ and
a constant C(v,M0) = C(‖M0‖H2(Ω;R3), ‖v‖L∞(0,t∗;W 2,∞(Ω;R2))) which is indepen-

dent of n, such that for any t̃ < T ∗

sup
0≤t≤t̃

‖Mn‖
2
H2(Ω;R3)(t)

+

∫ t̃

0
2‖∇Mn‖

2
L2(Ω;R3×2)(t) + ‖∇∆Mn‖

2
L2(Ω;R3×2)(t) dt ≤ C(v,M0),
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which tells us that

‖Mn‖L∞(0,t̃;H2(Ω;R3)) + ‖Mn‖L2(0,t̃;H3(Ω;R3)) ≤ C(v,M0). (3.196)

Moreover, we need to multiply (3.171) by (Mn)t and −∆(Mn)t and integrate
over Ω. To do so, we have to verify that the time derivatives of the temporal
coefficients of Mn are in L2(0, t̃). This we obtain directly from the LLG equation
(3.171): the temporal part of the entire right-hand side is at least in L2(0, t̃),
since the temporal coefficients of Mn are continuous. So, the time derivatives of
the temporal coefficients of Mn are also in L2(0, t̃).
Now, we are able to continue the estimates and multiply (3.171) by (Mn)t and
integrate over Ω to obtain, using Young’s inequality,

‖(Mn)t‖L2(Ω;R3)

=

∫

Ω
−(v · ∇)Mn · (Mn)t − (Mn ×∆Mn) · (Mn)t

+ |∇Mn|
2Mn · (Mn)t +∆Mn · (Mn)t dx

Young
≤ 2

∫

Ω
|(v · ∇)Mn|

2 + |Mn ×∆Mn|
2 + |∇Mn|

4|Mn|
2 + |∆Mn|

2 dx

+
4

8

∫

Ω
|(Mn)t|

2 dx.

From there, we get

‖(Mn)t‖L2(Ω;R3)

Hölder
≤ 4

(
‖v‖L∞(0,t∗;L∞(Ω;R2))‖Mn‖

2
L2(Ω;R3) + ‖Mn‖L∞(Ω;R3)‖∆Mn‖

2
L2(Ω;R3)

+ ‖∇Mn‖
4
L4(Ω;R3×2)‖Mn‖

2
L∞(Ω;R3) + ‖∆Mn‖

2
L2(Ω;R3)

)
,

where we take the supremum over all t ∈ [0, t̃] to find, using (3.196),

sup
0≤t≤t̃

‖(Mn)t‖L2(Ω;R3) ≤ 4
(
‖v‖L∞(0,t∗;L∞(Ω;R2))‖Mn‖

2
L∞(0,t̃;L2(Ω;R3))

+ ‖Mn‖L∞(0,t̃;L∞(Ω;R3))‖∆Mn‖
2
L∞(0,t̃;L2(Ω;R3))

+ ‖∇Mn‖
4
L∞(0,t̃;L4(Ω;R3×2))

‖Mn‖
2
L∞(0,t̃;L∞(Ω;R3))

+ ‖∆Mn‖
2
L∞(0,t̃;L2(Ω;R3))

)

≤ C(v,M0).

This gives us the bound

‖(Mn)t‖L∞(0,t̃;L2(Ω;R3)) ≤ C(v,M0). (3.197)

Next, we multiply (3.171) by −∆(Mn)t and integrate over both Ω and [0, t]
for t ≤ t̃ to find out that, since ‖P̃n(M0)‖H2(Ω;R3) ≤ ‖M0‖H2(Ω;R3), and using
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integration by parts with respect to x in the second step,

∫ t

0
‖∇(Mn)t‖

2
L2(Ω;R3×2) ds+

1

2
‖∆Mn‖

2
L2(Ω;R3)

=
1

2
‖∆M0‖

2
L2(Ω;R3) +

∫ t

0

∫

Ω
(v · ∇)Mn ·∆(Mn)t + (Mn ×∆Mn) ·∆(Mn)t

− |∇Mn|
2Mn ·∆(Mn)t dx ds

=
1

2
‖∆M0‖

2
L2(Ω;R3)

+

∫ t

0

∫

Ω
−(∇v∇⊤Mn) : ∇(Mn)t − (v · ∇)∇Mn : ∇(Mn)t

− (∇Mn ×∆Mn) : ∇(Mn)t − (Mn ×∇∆Mn) : ∇(Mn)t

+ (2Mn ⊗ (∇Mn∇
2Mn)) : ∇(Mn)t

+ |∇Mn|
2∇Mn : ∇(Mn)t dx ds

Young
≤

1

2
‖∆M0‖

2
L2(Ω;R3) +

6

12

∫ t

0
‖∇(Mn)t‖

2
L2(Ω;R3×2)

+3

∫ t

0

∫

Ω
|∇v∇⊤Mn|

2 + |(v · ∇)∇Mn|
2

+ |(∇Mn ×∆Mn)|
2 + |Mn ×∇∆Mn|

2

+ 4|Mn ⊗ (∇Mn∇
2Mn)|

2 + |∇Mn|
6 dx ds.

An application of Hölder’s inequality yields

∫ t

0
‖∇(Mn)t‖

2
L2(Ω;R3×2) ds+

1

2
‖∆Mn‖

2
L2(Ω;R3)

≤
1

2
‖∆M0‖

2
L2(Ω;R3) +

1

2

∫ t

0
‖∇(Mn)t‖

2
L2(Ω;R3×2)

+3
(
‖∇v‖L∞(0,t∗;L∞(Ω;R2×2))‖∇Mn‖

2
L2(0,t̃;L2(Ω;R3×2))

+ ‖v‖L∞(0,t∗;L∞(Ω;R2))‖∇
2Mn‖

2
L2(0,t̃;L2(Ω;R3×2×2))

+ ‖∇Mn‖L∞(0,t̃;L4(Ω;R3×2))‖∆Mn‖L2(0,t̃;L4(Ω;R3))

+ ‖Mn‖
2
L∞(0,t̃;L∞(Ω;R3))

‖∇∆Mn‖
2
L2(0,t̃;L2(Ω;R3×2))

+ 4‖Mn‖
2
L∞(0,t̃;L∞(Ω;R3))

‖∇Mn‖L∞(0,t̃;L4(Ω;R3×2))

× ‖∇2Mn‖L2(0,t̃;L4(Ω;R3×2×2))

+ ‖∇Mn‖
6
L6(0,t̃;L6(Ω;R3×2))

)
.

Taking the supremum over all t ∈ [0, t̃] and using (3.196), we get the bound

‖∇(Mn)t‖L2(0,t̃;L2(Ω;R3×2)) ≤ C(v,M0). (3.198)

Next, we estimate the integral terms in (3.181), using (3.187)–(3.190). This is
necessary to extend the solution in time in Section 3.2.3.4. We start with the
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term I1 and obtain, since v ∈ L∞(0, t∗;W 2,∞(Ω;R2)),

I1
Hölder
≤ ‖∇v‖L4(Ω;R2×2)‖∇Mn‖L4(Ω;R3×2)‖∇∆Mn‖L2(Ω;R3×2)

+ ‖v‖L∞(Ω;R2)‖∇
2Mn‖L2(Ω;R3×2×2)‖∇∆Mn‖L2(Ω;R3×2)

(3.183)

≤
(3.187)

C(v)‖∇Mn‖
1
2

L2(Ω;R3×2)

(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

) 1
4

× ‖∇∆Mn‖L2(Ω;R3×2)

+ C(v)
(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

) 1
2

× ‖∇∆Mn‖L2(Ω;R3×2). (3.199)

For the term I2, we find out that

I2
Hölder
≤ ‖∇Mn‖L4(Ω;R3×2)‖∆Mn‖L4(Ω;R3)‖∇∆Mn‖L2(Ω;R3×2)

(3.187)

≤
(3.190)

C‖∇Mn‖
1
2

L2(Ω;R3×2)
‖∆Mn‖

1
2

L2(Ω;R3)

×
(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

) 1
4

×
(
‖∆Mn‖

2
L2(Ω;R3) + ‖∇∆Mn‖

2
L2(Ω;R3×2)

) 1
4

× ‖∇∆Mn‖L2(Ω;R3×2). (3.200)

We estimate the term I3 and get

I3
Hölder
≤ 2‖Mn‖L∞(Ω;R3)‖∇Mn‖L∞(Ω;R3×2)

× ‖∇2Mn‖L2(Ω;R3×2×2)‖∇∆Mn‖L2(Ω;R3×2)

+‖∇Mn‖
3
L6(Ω;R3×2)‖∇∆Mn‖L2(Ω;R3×2)

(3.183)

≤
(3.188)

(3.189)

C‖Mn‖L∞(Ω;R3)‖∇Mn‖
1
2

L2(Ω;R3×2)

×
(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3) + ‖∇∆Mn‖

2
L2(Ω;R3×2)

) 1
4

×
(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

) 1
2
‖∇∆Mn‖L2(Ω;R3×2)

+C‖∇Mn‖L2(Ω;R3×2)

×
(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

)

× ‖∇∆Mn‖L2(Ω;R3×2). (3.201)

Summing (3.199)–(3.201), we obtain from (3.181), an iterative application of
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Young’s inequality, and an integration over [0, t] for 0 ≤ t ≤ t̃ that

‖∆Mn‖
2
L2(Ω;R3) +

∫ t

0
‖∇∆Mn‖

2
L2(Ω;R3×2) ds

≤ ‖∆M0‖
2
L2(Ω;R3)

+

∫ t

0
C(v)‖∇Mn‖L2(Ω;R3×2)

(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

) 1
2

+ C(v)
(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

)

+ C‖∇Mn‖
2
L2(Ω;R3×2)‖∆Mn‖

2
L2(Ω;R3)

(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

)

+ C‖Mn‖
4
L∞(Ω;R3)‖∇Mn‖

2
L2(Ω;R3×2)

(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

)2

+ C
(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

)

+ C‖∇Mn‖
2
L2(Ω;R3×2)

(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆Mn‖

2
L2(Ω;R3)

)2
ds. (3.202)

We continue this estimate after passing to the limit as n → ∞ to finally prove
(3.167). Now, we pass to the limit as n → ∞ to obtain a weak solution to the
system (3.171)–(3.173). We need the convergence results

Mn →M in Lp(0, t̃;H2(Ω;R3)), 1 < p <∞, (3.203)

Mn ⇀M in L2(0, t̃;H3(Ω;R3)), (3.204)

Mn
∗
−⇀M in L∞(0, t̃;H2(Ω;R3)), (3.205)

(Mn)t ⇀Mt in L2(0, t̃;H1(Ω;R3)). (3.206)

The weak (and weak-∗) convergence results follow directly from the estimates
obtained above for a subsequence (not relabeled; see Theorems 32 and 33 in
Appendix A.2). The strong convergence (3.203) we obtain from an applica-
tion of the Aubin-Lions lemma and Hölder’s inequality: from the embeddings

H3(Ω;R3)
c
⊂ H2(Ω;R3) ⊂ H1(Ω;R3) (the first embedding is compact since

d < 4, the second one is continuous), the fact that Mn ∈ L2(0, t∗;H3(Ω;R3)),
and (3.197), (3.198), we conclude by the Aubin-Lions Lemma (see Lemma 35 in
Appendix A.2) the compact embedding

{
M ∈ L2(0, t̃;H3(Ω;R3)) : Mt ∈ L2(0, t̃;H1(Ω;R3))

} c
⊂ L2(0, t̃;H2(Ω;R3)).

This yields the strong convergence of {Mn}n in L2(0, t̃;H2(Ω;R3)) (up to a sub-
sequence). The final step is to combine the result with Hölder’s inequality and
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(3.205):

‖Mn −M‖p
Lp(0,t̃;H2(Ω;R3))

=

∫ t̃

0
‖Mn −M‖p

H2(Ω;R3)
dt

=

∫ t̃

0
‖Mn −M‖2

H2(Ω;R3)‖Mn −M‖p−2
H2(Ω;R3)

dt

≤

∫ t̃

0
‖Mn −M‖2

H2(Ω;R3)

(
‖Mn‖H2(Ω;R3) + ‖M‖H2(Ω;R3)

)p−2
dt

≤
(
‖Mn‖L2(0,t̃;H2(Ω;R3)) + ‖M‖L2(0,t̃;H2(Ω;R3))

)p−2

︸ ︷︷ ︸
≤C(v,M0)

‖Mn −M‖2
L2(0,t̃;H2(Ω;R3))

n→∞
−−−→ 0.

This proves the strong convergence (3.203).
Again, as the weak solution to the approximate problem is defined using test
functions from the projected spaces L̃2

n, we also need to pass to the limit with
these particular test functions (only in space). However, for any test function
ϕ ∈ H1(Ω;R3) we use the sequence of approximate test functions defined by
ϕn := P̃n(ϕ) ∈ L̃2

n which converges strongly to ϕ ∈ H1(Ω;R3). In the following,
we use this particular sequence of test functions. Moreover, let ζ ∈ L∞(0, t̃).
So, the equation

∫ t̃

0

∫

Ω
(Mn)t · (ζϕn) + (v · ∇)Mn · (ζϕn) dx dt

=

∫ t̃

0

∫

Ω
−(Mn ×∆Mn) · (ζϕn) + |∇Mn|

2Mn · (ζϕn)−∇Mn : (ζ∇ϕn) dx dt

converges to the equation

∫ t̃

0

∫

Ω
Mt · (ζϕ) + (v · ∇)M · (ζϕ) dx dt

=

∫ t̃

0

∫

Ω
−(M ×∆M) · (ζϕ) + |∇M |2M · (ζϕ)−∇M : (ζ∇ϕ) dx dt

as n→ ∞. All the integral terms on the left-hand side and the last term on the
right-hand side are linear, so the weak convergences from above together with the
strong convergence of the test functions are sufficient to obtain the convergence
of these terms. The two remaining terms, viz the first and the second on the
right-hand side, are converged with the help of the strong convergence (3.203):
it follows directly from Hölder’s inequality and the fact that we have strong
convergence for each factor in Lp(0, t̃;H2(Ω;R3)) for a suitable 1 < p < ∞,
keeping the Sobolev embedding H2(Ω) ⊂ L∞(Ω) in mind. Thus, we obtain a
weak solution to the system (3.171)–(3.173).
Notice that all the estimates for the approximate solution obtained above still
hold in the limit due to the weak lower semicontinuity of norms.
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Furthermore, the solution is unique. Let us assume that we have two solutions
M1 6=M2. The difference M1 −M2 then solves

(M1 −M2)t + (v · ∇)(M1 −M2)

= −(M1 −M2)×∆M1 +M2 × (∆(M1 −M2))

+
(
|∇M1|

2 − |∇M2|
2
)
M1 + |∇M2|

2(M1 −M2) + ∆(M1 −M2).

We multiply this equation by (M1 −M2), integrate over Ω and use the identity
(a× b) · c = (b× c) · a to find out that

1

2

d

dt
‖M1 −M2‖

2
L2(Ω;R3) + ‖∇(M1 −M2)‖

2
L2(Ω;R3)

=

∫

Ω

(
M2 × (∆(M1 −M2))

)
· (M1 −M2)

+
(
|∇M1|

2 − |∇M2|
2
)
M1 · (M1 −M2) + |∇M2|

2|M1 −M2|
2 dx

=

∫

Ω

(
(∆(M1 −M2))× (M1 −M2)

)
︸ ︷︷ ︸

=∇·
(
(∇(M1−M2))×(M1−M2)

)
·M2

+ ((∇M1 −∇M2) · (∇M1 +∇M2))M1 · (M1 −M2)

+ |∇M2|
2|M1 −M2|

2 dx

=

∫

Ω
−
(
(∇(M1 −M2))× (M1 −M2)

)
: ∇M2

+ ((∇M1 −∇M2) : (∇M1 +∇M2))M1 · (M1 −M2)

+ |∇M2|
2|M1 −M2|

2 dx
Young
≤

∫

Ω

1

2
|∇(M1 −M2)|

2 +
1

2
|M1 −M2|

2|∇M2|
2

+
1

2
|∇(M1 −M2)|

2 +
1

2
|∇M1 +∇M2|

2|M1|
2|M1 −M2|

2

+ |∇M2|
2|M1 −M2|

2 dx
Hölder
≤ ‖∇(M1 −M2)‖

2
L2(Ω;R3×2) +

3

2
‖M1 −M2‖

2
L2(Ω;R3)‖∇M2‖

2
L∞(Ω;R3×2)

+
1

2
‖∇M1 +∇M2‖

2
L∞(Ω;R3×2)‖M1‖

2
L∞(Ω;R3)‖M1 −M2‖

2
L2(Ω;R3).

We then integrate over [0, t] for t ≤ t̃ and obtain employing M1(0) =M2(0) and
the regularity (3.196)

‖M1 −M2‖
2
L2(Ω;R3)(t)

≤

∫ t

0

(
3‖∇M2‖

2
L∞(Ω;R3×2) + ‖∇M1 +∇M2‖

2
L∞(Ω;R3×2)‖M1‖

2
L∞(Ω;R3)

)

︸ ︷︷ ︸
∈L1(0,t̃)

× ‖M1 −M2‖
2
L2(Ω;R3) dt,

where we apply Gronwall’s inequality to find

sup
0≤t≤t̃

‖M1 −M2‖
2
L2(Ω;R3) = 0.
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Thus, the solution is unique.
Finally, we converge the inequality in (3.202). Since norms are lower semicon-
tinuous, since we have the strong convergence (3.203), and since it holds that
|M | ≡ 1 in the limit, we obtain from (3.202)

‖∆M‖2L2(Ω;R3)(t) +

∫ t

0
‖∇∆M‖2L2(Ω;R3×2) ds

≤ ‖∆M0‖
2
L2(Ω;R3)

+

∫ t

0
C(v)‖∇M‖L2(Ω;R3×2)

(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

) 1
2

+ C(v)
(
‖∇Mn‖

2
L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

)

+ C‖∇M‖2L2(Ω;R3×2)‖∆M‖2L2(Ω;R3)

(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

)

+ C‖M‖4L∞(Ω;R3)‖∇M‖2L2(Ω;R3×2)

(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

)2

+ C
(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

)

+ C‖∇M‖2L2(Ω;R3×2)

(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

)2
ds. (3.207)

Applying Young’s inequality, we find out that

‖∆M‖2L2(Ω;R3)(t) +

∫ t

0
‖∇∆M‖2L2(Ω;R3×2) ds

≤ ‖∆M0‖
2
L2(Ω;R3) + C(v)

∫ t

0
1 +

(
‖∇M‖8L2(Ω;R3×2)

+
(
1 + ‖∇M‖2L2(Ω;R3×2)

)
‖∆M‖4L2(Ω;R3)

)
ds,

(3.208)

which then implies (3.167).This concludes the proof of Lemma 26.

3.2.3.2 Weak solutions to the approximate problem for a short time using a
fixed point argument

From the next result, we obtain a weak solution to the approximate problem.
This is the counterpart to Lemma 18 for the system without LLG. The solution
also exists only for a certain short time t∗0 and its existence is also proven using
Schauder’s fixed point theorem.

Lemma 28. For any m > 0 and W satisfying (3.12)–(3.17), there exists a time
t∗0 depending on v0, M0, Ω, and m such that the system (3.147)–(3.156) has a
weak solution (vm, Fm,Mm) in Ω× (0, t∗0).

Proof. The reasoning in this proof is the same as in the proof for Lemma 18.
The first obvious difference is that we look at the LLG equation

Mt + (v · ∇)M = −M ×∆M + |∇M |2M +∆M (3.209)
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on [0, t∗1] satisfying

‖M‖L∞(0,t∗1 ;H
2(Ω;R3×2)) ≤ C(v,M0). (3.210)

This ensures the applicability of Carathéodory’s existence theorem to the ODE
for v.
After choosing the time t∗0 accordingly, we need to prove the continuity of the
solution operator L. This is done in exactly the same way, with the only difference
that the convergence of Ml to M has to be shown using the LLG equation and
the higher regularity obtained for the magnetization in Lemma 26.

Convergence of {Ml}l. We check the strong convergence of {Ml}l in the space
L∞(0, t∗0;H

1(Ω;R3)). To this end, we first obtain from the LLG

(Ml −M)t + (vl · ∇)(Ml −M) + ((vl − v) · ∇)M

= −(Ml −M)×∆Ml +M × (∆(Ml −M))

+
(
|∇Ml|

2 − |∇M |2
)
Ml + |∇M |2(Ml −M) + ∆(Ml −M). (3.211)

By multiplying equation (3.211) with (Ml−M), integrating over both Ω and [0, t]
for t ≤ t∗0 and using Young’s inequality and the identity (a × b) · c = (b × c) · a
we find out that, since Ml(0) =M(0),

1

2

∫

Ω
|Ml −M |2(t) dx+

∫ t

0

∫

Ω
|∇(Ml −M)|2 dx ds

=

∫ t

0

∫

Ω
−((vl − v) · ∇)M · (Ml −M) + (M × (∆(Ml −M))) · (Ml −M)

+
(
|∇Ml|

2 − |∇M |2
)
Ml · (Ml −M)

+ |∇M |2(Ml −M) · (Ml −M) dx ds

=

∫ t

0

∫

Ω
−((vl − v) · ∇)M · (Ml −M)− (∇(Ml −M)× (Ml −M)) : ∇M

+ ((∇(Ml −M)) : (∇Ml +∇M))Ml · (Ml −M)

+ |∇M |2|Ml −M |2 dx ds

Young
≤

∫ t

0

∫

Ω

1

2
|((vl − v) · ∇)M |2 +

1

2
|Ml −M |2

+
1

2
|∇(Ml −M)|2 +

3

2
|Ml −M |2|∇M |2

+
1

2
|∇(Ml −M)|2 +

1

2
|∇Ml +∇M |2|Ml|

2|Ml −M |2 dx ds

Hölder
≤

∫ t

0

1

2
‖((vl − v) · ∇)M‖2L2(Ω;R3) +

1

2
‖Ml −M‖2L2(Ω;R3)

+ ‖∇(Ml −M)‖2L2(Ω;R3×2) +
3

2
‖Ml −M‖2L2(Ω;R3)‖∇M‖2L∞(Ω;R3×2)

+
1

2
‖∇Ml +∇M‖2L∞(Ω;R3×2)‖Ml‖

2
L∞(Ω;R3)‖Ml −M‖2L2(Ω;R3) ds.
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We deduce with the regularity (3.196) that

∫

Ω
|Ml −M |2(t) dx ≤

∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3) ds

︸ ︷︷ ︸
non-decreasing

+

∫ t

0

(
1 + 3‖∇M‖2L∞(Ω;R3×2) + ‖∇Ml +∇M‖2L∞(Ω;R3×2)‖Ml‖

2
L∞(Ω;R3)

)

︸ ︷︷ ︸
∈L1(0,t∗0)

× ‖Ml −M‖2L2(Ω;R3) ds, (3.212)

where we apply Gronwall’s inequality to find

sup
0≤t≤t∗0

‖Ml −M‖2L2(Ω;R3)

≤

(∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3) ds

)
eC(v,M0)t∗0 . (3.213)

Due to the convergence of the velocities vl to v (3.98) we can pass to the limit
as l → ∞ to obtain

Ml
l→∞
−−−→M in L∞(0, t∗0;L

2(Ω;R3)). (3.214)

We are left to prove the convergence of ∇Ml in L
∞(0, t∗0;L

2(Ω;R3×2)). To this
end, we multiply equation (3.211) with −∆(Ml −M), integrating over both Ω
and [0, t] for t ≤ t∗0 and using Young’s inequality and the bounds obtained in
Lemma 26, we obtain

1

2

∫

Ω
|∇(Ml −M)|2(t) dx

=

∫ t

0

∫

Ω
(vl · ∇)(Ml −M) ·∆(Ml −M)

+ ((vl − v) · ∇)M ·∆(Ml −M)

+ ((Ml −M)×∆Ml) ·∆(Ml −M)

+
(
|∇Ml|

2 − |∇M |2
)
Ml ·∆(Ml −M)

+ |∇M |2(Ml −M) ·∆(Ml −M)− |∆(Ml −M)|2 dx ds

Young
≤

∫ t

0

∫

Ω

5

4
|(vl · ∇)(Ml −M)|2 +

1

5
|∆(Ml −M)|2

+
5

4
|((vl − v) · ∇)M |2 +

1

5
|∆(Ml −M)|2

+
5

4
|(Ml −M)×∆Ml|

2 +
1

5
|∆(Ml −M)|2

+
5

4
| ((∇(Ml −M)) : (∇Ml +∇M))Ml|

2 +
1

5
|∆(Ml −M)|2

+
5

4
|∇M |4|Ml −M |2 +

1

5
|∆(Ml −M)|2 − |∆(Ml −M)|2 dx ds.
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By applying Hölder’s inequality, we find

1

2

∫

Ω
|∇(Ml −M)|2(t) dx

≤
5

4

∫ t

0
‖(vl · ∇)(Ml −M)‖2L2(Ω;R3) + ‖((vl − v) · ∇)M‖2L2(Ω;R3)

+ ‖Ml −M‖2L6(Ω;R3)︸ ︷︷ ︸
≤C(Ω)

(
‖∇(Ml−M)‖2

L2(Ω;R3×2)
+‖Ml−M‖2

L2(Ω;R3)

)
‖∆Ml‖

2
L3(Ω;R3)

+ ‖∇(Ml −M)‖2L2(Ω;R3×2)‖∇Ml +∇M‖2L∞(Ω;R3×2)‖Ml‖
2
L∞(Ω;R3)

+ ‖∇M‖4L∞(Ω;R3×2)‖Ml −M‖2L2(Ω;R3) ds.

Since {vl}l is uniformly bounded in L∞(0, t∗0;L
∞(Ω;R2)), we obtain

‖∇(Ml −M)‖2L2(Ω;R3×2) (t) ≤
5

2

∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3) ds

︸ ︷︷ ︸
non-decreasing

+
5

2

∫ t

0

(
C + C(Ω)‖∆Ml‖

2
L3(Ω;R3) + ‖∇M‖4L∞(Ω;R3×2)

)
‖Ml −M‖2L2(Ω;R3) ds

︸ ︷︷ ︸
non-decreasing

+

∫ t

0

(
C + C(Ω)‖∆Ml‖

2
L3(Ω;R3) + ‖∇Ml +∇M‖2L∞(Ω;R3×2)‖Ml‖

2
L∞(Ω;R3)︸ ︷︷ ︸

=:g(t)∈L1(0,t∗0)

)

× ‖∇(Ml −M)‖2L2(Ω;R3×2)(s) ds, (3.215)

where we apply Gronwall’s inequality to find out that

sup
0≤t≤t∗0

‖∇(Ml −M)‖2L2(Ω;R3×2)(t) ≤ e
∫ t∗0
0 g(t) dt

(
5

2

∫ t

0
‖((vl − v) · ∇)M‖2L2(Ω;R3)

+
(
C + C(Ω)‖∆Ml‖

2
L3(Ω;R3) + ‖∇M‖4L∞(Ω;R3×2)

)
‖Ml −M‖2L2(Ω;R3) ds

)
.

(3.216)

Due to (3.98) and (3.214) we can pass to the limit as l → ∞ to see that, in
summary,

Ml
l→∞
−−−→M in L∞(0, t∗0;H

1(Ω;R3)). (3.217)

This ensures the continuity of the operator L and the applicability of Schauder’s
fixed point theorem.

Following the further reasoning from the proof of Lemma 18, we complete the
proof of Lemma 28, i.e., of the local existence of weak approximate solutions to
the LLG system.
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3.2.3.3 Energy estimates for short time weak solutions to the approximate
problem

We continue the analysis of the weak approximate solutions with the establish-
ment of energy estimates. These energy estimates are necessary to extend the
solution beyond time t∗0 while keeping certain regularity. For the system includ-
ing the LLG equation, we need two energy laws ensuring all necessary regularity.
The smallness condition (3.220) is crucial at this point to obtain H2-regularity
for the magnetization. We obtain

Corollary 29. Let (vm, Fm,Mm) be the weak solution to the approximate problem
(3.147)–(3.156) in Ω× (0, t∗0) obtained in Lemma 28. Then, we have

sup
0≤t≤t∗0

(
‖vm‖2L2(Ω;R2) + C‖Fm‖2L2(Ω;R2×2) + ‖∇Mm‖2L2(Ω;R3×2)

)

+

∫ t∗0

0
‖(Mm)t + (vm · ∇)Mm‖2L2(Ω;R3) ds

+ 2

∫ t∗0

0
ν‖∇vm‖2L2(Ω;R2×2) + aκ‖∇Fm‖2L2(Ω;R2×2×2) ds

≤ sup
0≤t≤t∗0

(
‖vm‖2L2(Ω;R2) + 2‖W (Fm)‖L1(Ω) + ‖∇Mm‖2L2(Ω;R3×2)

)

+

∫ t∗0

0
‖(Mm)t + (vm · ∇)Mm‖2L2(Ω;R3) ds

+ 2

∫ t∗0

0
ν‖∇vm‖2L2(Ω;R2×2) + aκ‖∇Fm‖2L2(Ω;R2×2×2) ds

≤‖v0‖
2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3). (3.218)

and, moreover,

sup
0≤t≤t∗0

(
‖vm‖2L2(Ω;R2) + 2‖W (Fm)‖L1(Ω) + ‖∇Mm‖2L2(Ω;R3×2)

)

+ 2

∫ t∗0

0
ν‖∇vm‖2L2(Ω;R2×2) + aκ‖∇Fm‖2L2(Ω;R2×2×2)

+

(
1− C1(Ω)

(
‖v0‖

2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω)

+ ‖∇M0‖
2
L2(Ω;R3)

))
‖∆Mm‖2L2(Ω;R3) ds

≤C2(Ω)
(
‖v0‖

2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3×2)

)2
t∗0

+
(
‖v0‖

2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3×2)

)

(3.219)

as long as the initial data satisfies the condition

‖v0‖
2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3×2) <

1

C1(Ω)
(3.220)
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for some constant C1(Ω). Then, in particular,

vm ∈ L∞(0, t∗0;H) ∩ L2(0, t∗0;V), (3.221)

Fm ∈ L∞(0, t∗0;L
2(Ω;R2×2)) ∩ L2(0, t∗0;H

1(Ω;R2×2)) (3.222)

Mm ∈ L∞(0, t∗0;H
1(Ω;R3)) ∩ L2(0, t∗0;H

2(Ω;R3)) (3.223)

for any m > 0.

Proof. The calculation of the energy estimate with an LLG type equation is based
on the ideas used in [CF01].
Notice that the following calculations are reasonable due to the regularity ob-
tained in Lemma 26.
We multiply equation (3.147) by vm, equation (3.149) by W ′(Fm) (to see that
this test function is admissible, we refer to the proof of Corollary 20), equation
(3.150) by −∆Mm and integrate all the equations over both Ω and (0, t) for t ≤ t∗0
to find (after using integration by parts)

∫

Ω

1

2
|vm|2 dx

=

∫ t

0

∫

Ω

(
− ν|∇vm|2 +

(
∇ ·
(
W ′(Fm)F⊤

m −∇Mm ⊙∇Mm

))
· vm

)
dx ds

+

∫

Ω

1

2
|Pm(v0)|

2 dx, (3.224)

∫

Ω
W (Fm) dx−

∫ t

0

∫

Ω
(∇vmFm) :W ′(Fm) dx ds

= −

∫ t

0

∫

Ω
κ∇Fm

... ∇W ′(Fm) dx ds+

∫

Ω
W (F0) dx, (3.225)

∫

Ω

1

2
|∇Mm|2 dx−

∫ t

0

∫

Ω
(vm · ∇)Mm ·∆Mm dx ds

= −

∫ t

0

∫

Ω
|∇Mm|2Mm ·∆Mm︸ ︷︷ ︸

=−|∇Mm|2

dx ds−

∫ t

0

∫

Ω
|∆Mm|2 dx ds

+

∫

Ω

1

2
|∇M0|

2 dx. (3.226)

Next, we sum equations (3.224)–(3.226). Since vm is divergence-free and vanishes
on the boundary and due to the identities

∫ t

0

∫

Ω

(
∇ ·W ′(Fm)F⊤

m

)
· vm dx ds = −

∫ t

0

∫

Ω

(
∇vmFm

)
: W ′(Fm) dx ds

and

∇ ·
(
∇Mm ⊗∇Mm

)
= ∇

|∇Mm|2

2
+∇⊤Mm∆Mm,
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we obtain

1

2

∫

Ω
|vm|2 + 2W (Fm) + |∇Mm|2 dx

+

∫ t

0

∫

Ω
ν|∇vm|2 + κ∇Fm

... ∇W ′(Fm) + |∆Mm|2 dx ds

=

∫ t

0

∫

Ω
|∇Mm|4 dx ds+

1

2

∫

Ω
|Pm(v0)|

2 + 2W (F0) + |∇M0|
2 dx.

Since Ω ⊂ R
2, we have the following Sobolev estimate (see, e.g., [CF01, Section 5,

Equation (5.6)])

‖∇M‖L4(Ω;R3×2)

≤ C(Ω)‖∇M‖
1
2

L2(Ω;R3×2)

(
‖∇M‖2L2(Ω;R3×2) + ‖∆M‖2L2(Ω;R3)

) 1
4
. (3.227)

Thus, we obtain, using also the identity ∇W ′(Fm) =W ′′(Fm)∇Fm (which reads,
using index notation, ∇σW

′(Fm)ij =W ′′(Fm)ijkl∇σ(Fm)kl) and (3.17),

1

2

(
‖vm‖2L2(Ω;R2) + 2

∫

Ω
W (Fm) dx+ ‖∇Mm‖2L2(Ω;R3×2)

)

+

∫ t

0
ν‖∇vm‖2L2(Ω;R2×2) + aκ‖∇Fm‖2L2(Ω;R2×2×2) + ‖∆Mm‖2L2(Ω;R3) ds

≤

∫ t

0
C(Ω) ‖∇Mm‖2L2(Ω;R3×2)

(
‖∇Mm‖2L2(Ω;R3×2) + ‖∆Mm‖2L2(Ω;R3)

)
ds

+
1

2

(
‖Pm(v0)‖

2
L2(Ω;R2) + 2

∫

Ω
W (F0) dx+ ‖∇M0‖

2
L2(Ω)

)
.

Rearranging yields the first LLG energy estimate

1

2

(
‖vm‖2L2(Ω;R2) + 2

∫

Ω
W (Fm) dx+ ‖∇Mm‖2L2(Ω;R3×2)

)

+

∫ t

0
ν‖∇vm‖2L2(Ω;R2×2) + aκ‖∇Fm‖2L2(Ω;R2×2×2)

+
(
1− C(Ω) ‖∇Mm‖2L2(Ω;R3×2)

)
‖∆Mm‖2L2(Ω;R3) ds

≤

∫ t

0
C(Ω) ‖∇Mm‖4L2(Ω;R3×2) ds

+
1

2

(
‖Pm(v0)‖

2
L2(Ω;R2) + 2

∫

Ω
W (F0) dx+ ‖∇M0‖

2
L2(Ω;R3×2)

)
. (3.228)

To continue, we create another energy estimate by using the equivalent forms of
the LLG equation from Lemma 10, which can be used for Mm since the initial
datum M0 has also length 1.
We multiply (3.20) (with vm and Mm plugged in) by ((Mm)t + (vm · ∇)Mm) and
(3.22) by −∆Mm, integrate the equations over both Ω and (0, t) for t ≤ t∗0 to
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find

∫ t

0

∫

Ω
|(Mm)t + (vm · ∇)Mm|2 dx ds

= −

∫ t

0

∫

Ω
(Mm ×∆Mm) · ((Mm)t + (vm · ∇)Mm) dx ds

−

∫ t

0

∫

Ω
(Mm × (Mm ×∆Mm)) ·

(
(Mm)t + (vm · ∇)Mm

)
dx ds, (3.229)

and

∫

Ω

1

2
|∇Mm|2 dx−

∫ t

0

∫

Ω
(vm · ∇)Mm ·∆Mm dx ds

= −

∫ t

0

∫

Ω
(Mm × ((Mm)t + (vm · ∇)Mm)) ·∆Mm dx ds

+

∫

Ω

1

2
|∇M0|

2 dx. (3.230)

The last term on the right-hand side of (3.229) can be rewritten using the Graß-
mann identity a× (b× c) = (a · c)b− (a · b)c for a, b, c ∈ R

3

−

∫ t

0

∫

Ω
(Mm × (Mm ×∆Mm)) ·

(
(Mm)t + (vm · ∇)Mm

)
dx ds

= −

∫ t

0

∫

Ω
(Mm ·∆Mm)Mm · ((Mm)t + (vm · ∇)Mm)︸ ︷︷ ︸

=
(

|Mm|2

2

)

t
+(vm·∇) |Mm|2

2
=0

dx ds

−

∫ t

0

∫

Ω
−∆Mm · ((Mm)t + (vm · ∇)Mm) dx ds

= −

∫

Ω

1

2
|∇Mm|2 dx+

∫

Ω

1

2
|∇M0|

2 dx

+

∫ t

0

∫

Ω
(vm · ∇)Mm ·∆Mm dx ds.

Now, summing up (3.229) and (3.230) with 2·(3.224) and 2·(3.225) and using the
identity (a× b) · c = −(a× c) · b we obtain

∫

Ω
|vm|2 + 2W (Fm) + |∇Mm|2 dx+

∫ t

0

∫

Ω
|(Mm)t + (vm · ∇)Mm|2 dx ds

+ 2

∫ t

0

∫

Ω
ν|∇vm|2 + aκ|∇Fm|2 dx ds

≤

∫

Ω
|Pm(v0)|

2 + 2W (F0) + |∇M0|
2 dx,

112



or, equivalently

‖vm‖2L2(Ω;R2) + 2

∫

Ω
W (Fm) dx+ ‖∇Mm‖2L2(Ω;R3×2)

+

∫ t

0
‖(Mm)t + (vm · ∇)Mm‖2L2(Ω;R3) ds

+ 2

∫ t

0
ν‖∇vm‖2L2(Ω;R2×2) + aκ‖∇Fm‖2L2(Ω;R2×2×2) ds

≤ ‖Pm(v0)‖
2
L2(Ω;R2) + 2

∫

Ω
W (F0) dx+ ‖∇M0‖

2
L2(Ω;R3×2). (3.231)

This second LLG energy estimate proves the second inequality in estimate (3.218)
(as ‖Pm(v0)‖L2(Ω;R2) ≤ ‖v0‖L2(Ω;R2)); the first inequality follows from an appli-
cation of (3.13). Moreover, (3.231) helps the first LLG energy estimate (3.228)
to become

1

2

(
‖vm‖2L2(Ω;R2) + 2

∫

Ω
W (Fm) dx+ ‖∇Mm‖2L2(Ω;R3×2)

)

+

∫ t

0
ν‖∇vm‖2L2(Ω;R2×2) + aκ‖∇Fm‖2L2(Ω;R2×2×2)

+

(
1− C1(Ω)

(
‖v0‖

2
L2(Ω;R2) + 2

∫

Ω
W (F0) dx

+ ‖∇M0‖
2
L2(Ω;R3×2)

))
‖∆Mm‖2L2(Ω;R3) ds

≤ C2(Ω)

(
‖v0‖

2
L2(Ω;R2) + 2

∫

Ω
W (F0) dx+ ‖∇M0‖

2
L2(Ω;R3×2)

)2

t

+
1

2

(
‖v0‖

2
L2(Ω;R2) + 2

∫

Ω
W (F0) dx+ ‖∇M0‖

2
L2(Ω;R3×2)

)

for small initial data satisfying

‖v0‖
2
L2(Ω;R2) + 2

∫

Ω
W (F0) dx+ ‖∇M0‖

2
L2(Ω;R3) <

1

C1(Ω)
.

We take the supremum over all t ∈ [0, t∗0] on both sides of this equality and the
estimate (3.219) together with the condition (3.220) follows. The improved regu-
larities in (3.221) and (3.222) and their uniformity in m are a direct consequence
of the preceding estimates.
The regularity result (3.223) follows from the preceding estimates on the gradient
of the magnetization and from the uniformly conserved length |Mm| = 1, which
yields Mm ∈ L∞(0, t∗0;L

2(Ω;R3)).

3.2.3.4 Weak solutions to the approximate problem by time extension

In order to prove the existence of weak solutions to the approximate problem,
it remains to show the extension of the time interval, where solutions exist. We
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achieve this task using Corollary 29, together with an estimate derived from
(3.167), thus ultimately proving Theorem 25.
Before we head to the proof of the theorem, owing to estimate (3.167), we
strengthen the estimate Mm ∈ L2(0, t∗0;H

2(Ω;R3)) from (3.223) in the sense,
that, albeit not uniformly in the Galerkin variable m, it is L∞ in time, which is
then sufficient to extend the approximate solution in time.
Indeed, notice that since ‖∇Mm‖2

L2(Ω;R3×2)(t) is bounded uniformly by the initial

data on (0, t∗0) through (3.218), we may rewrite (3.167) as

‖∆M‖2L2(Ω;R3)(t) ≤ ‖∆M0‖
2
L2(Ω;R3)

+ C(v, ‖v0‖
2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3))

×

∫ t

0

(
1 + ‖∆M‖4L2(Ω;R3)(s)

)
ds,

whence we obtain by Gronwall’s inequality, since
∫ t∗0
0 ‖∆M‖2

L2(Ω;R3)(s)ds is bounded

by (3.219), that for all t ∈ [0, t∗0)

‖∆M(t)‖L2(Ω;R3)

≤ C(v, ‖v0‖
2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3))

× (‖∆M0‖L2(Ω;R3) + T ), (3.232)

where 0 < T < ∞ is the end time given in Theorem 25. Now, we continue with
the proof of this theorem.

Proof of Theorem 25. Let 0 < T <∞ be fixed. We first define

C̃ := ‖v0‖
2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3×2)

to be the right-hand side of (3.218). If (vm, Fm,Mm) is a solution to the system
(3.147)–(3.156) in Ω× (0, t̃) for some 0 < t̃ < t∗0, then

‖vm‖2L2(Ω;R2)(t̃) + 2‖W (Fm)‖L1(Ω)(t̃) + ‖∇Mm‖2L2(Ω;R3×2)(t̃) ≤ C̃

due to (3.218).
Following the proof of Lemma 28, we conclude that there exists a constant δ
which depends only on m and C̃ (due to the L∞-bounds obtained from the
energy estimate (3.218) this δ does not depend on the time t̃) such that the
system (3.147)–(3.156) has a solution (ṽm, F̃m, M̃m) on Ω × [t̃, t̃ + δ] satisfying
(ṽm, F̃m, M̃m)(t̃) = (vm, Fm,Mm)(t̃). Moreover, due to (3.232), we can assure
that Mm(t̃) is bounded in the H2-norm by a constant that only depends on m
and the initial data.
Then, we can continue this extension and finally obtain a solution (vm, Fm,Mm)
on Ω× (0, T ).
Notice that, due to the regularity of the solutions, the new initial data has the
same regularity as before. Moreover, if the initial data satisfies the smallness
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condition (3.220) then so does the solution at any following time. Thus, we have
the energy estimates

sup
0≤t≤T

(
‖vm‖2L2(Ω;R2) + C‖Fm‖2L2(Ω;R2×2) + ‖∇Mm‖2L2(Ω;R3×2)

)

+

∫ T

0
‖(Mm)t + (vm · ∇)Mm‖2L2(Ω;R3)

+ 2ν‖∇vm‖2L2(Ω;R2×2) + 2aκ‖∇Fm‖2L2(Ω;R2×2×2) ds

≤ sup
0≤t≤T

(
‖vm‖2L2(Ω;R2) + 2‖W (Fm)‖L1(Ω) + ‖∇Mm‖2L2(Ω;R3×2)

)

+

∫ T

0
‖(Mm)t + (vm · ∇)Mm‖2L2(Ω;R3)

+ 2ν‖∇vm‖2L2(Ω;R2×2) + 2aκ‖∇Fm‖2L2(Ω;R2×2×2) ds

≤‖v0‖
2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3×2). (3.233)

and

sup
0≤t≤T

(
‖vm‖2L2(Ω;R2) + 2‖W (Fm)‖L1(Ω) + ‖∇Mm‖2L2(Ω;R3×2)

)

+ 2

∫ T

0
ν‖∇vm‖2L2(Ω;R2×2) + aκ‖∇Fm‖2L2(Ω;R2×2×2)

+

(
1−C1(Ω)

(
‖v0‖

2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω)

+ ‖∇M0‖
2
L2(Ω;R3×2)

))
‖∆Mm‖2L2(Ω;R3) ds

≤ C2(Ω)
(
‖v0‖

2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3×2)

)2
T

+
(
‖v0‖

2
L2(Ω;R2) + 2‖W (F0)‖L1(Ω) + ‖∇M0‖

2
L2(Ω;R3×2)

)
. (3.234)

From here we directly deduce that

vm ∈ L∞(0, T ;H) ∩ L2(0, T ;V), (3.235)

Fm ∈ L∞(0, T ;L2(Ω;R2×2)) ∩ L2(0, T ;H1(Ω;R2×2)), (3.236)

Mm ∈ L∞(0, T ;H1(Ω;R3)) ∩ L2(0, T ;H2(Ω;R3)) (3.237)

uniformly for any m > 0. This concludes the proof of Theorem 25.

3.2.4 Existence of weak solutions to the original problem

Finally, we prove that the limit of the Galerkin approximations is a solution
to the original system (3.1)–(3.4), (3.18), (3.6)–(3.11). So, in the following we
provide the final step of the proof of Theorem 11.
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Proof of Theorem 11. We prepare passing to the limit as m → ∞. To establish
this, we need the following convergence results

vm → v in L2(0, T ;L4(Ω;R3)), (3.238)

∇vm ⇀ ∇v in L2(0, T ;L2(Ω;R2×2)), (3.239)

Fm → F in L2(0, T ;L4(Ω;R2×2)), (3.240)

∇Fm ⇀ ∇F in L2(0, T ;L2(Ω;R2×2×2)), (3.241)

Mm →M in L2(0, T ;L4(Ω;R3)), (3.242)

∇Mm → ∇M in L2(0, T ;L4(Ω;R3×2)), (3.243)

∆Mm ⇀ ∆M in L2(0, T ;L2(Ω;R3)), . (3.244)

3.2.4.1 Convergence results for the approximate weak solutions

The convergence results for the velocity (3.238)–(3.239) and the convergence
results for the deformation gradient (3.240)–(3.241) are established in exactly the
same way as for the system without the LLG equation in Section 3.1.4.1. For this
reason, we omit these details here and only take care of the convergence results
for the magnetization (3.243)–(3.244). We rely on the Aubin-Lions Lemma (see
Lemma 35 in Appendix A.2) to obtain the strong convergence (3.243). To this

end, we estimate (Mm)t in L
4
3 (0, T ;L2(Ω;R3)) which then leads to an estimate

on the time derivative of ∇Mm:

sup
‖ζ‖L4(0,T )≤1

‖ϕ‖
L2(Ω;R3)≤1

∫ T

0

∫

Ω
(Mm)t · (ζϕ) dx dt

= sup
‖ζ‖

L4(0,T )≤1

‖ϕ‖L2(Ω;R3)≤1

∫ T

0

∫

Ω
−(vm · ∇)Mm · (ζϕ)− (Mm ×∆Mm) · (ζϕ)

+ |∇Mm|2Mm · (ζϕ) + ∆Mm · (ζϕ) dx dt

Hölder
≤ sup

‖ζ‖L4(0,T )≤1

‖ϕ‖L2(Ω;R3)≤1

∫ T

0
‖vm‖L4(Ω;R2)‖∇Mm‖L4(Ω;R3×2)|ζ|‖ϕ‖L2(Ω;R3)

+ ‖Mm‖L∞(Ω;R3)‖∆Mm‖L2(Ω;R3)|ζ|‖ϕ‖L2(Ω;R3)

+ ‖∇Mm‖2L4(Ω;R3×2)‖Mm‖L∞(Ω;R3)|ζ|‖ϕ‖L2(Ω;R3)

+ ‖∆Mm‖L2(Ω;R3)|ζ|‖ϕ‖L2(Ω;R3) dt

Hölder
≤ sup

‖ζ‖L4(0,T )≤1

(
‖vm‖

L
8
3 (0,T ;L4(Ω;R2))

‖∇Mm‖
L

8
3 (0,T ;L4(Ω;R3×2))

‖ζ‖L4(0,T )

+ ‖Mm‖L∞(0,T ;L∞(Ω;R3))‖∆Mm‖
L

4
3 (0,T ;L2(Ω;R3))

‖ζ‖L4(0,T )

+ ‖Mm‖L∞(0,T ;L∞(Ω;R3))‖∇Mm‖
L

8
3 (0,T ;L4(Ω;R3×2))

‖ζ‖L4(0,T )

+ ‖∆Mm‖
L

4
3 (0,T ;L2(Ω;R3))

‖ζ‖L4(0,T )

)
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≤ ‖vm‖
L

8
3 (0,T ;L4(Ω;R2))

‖∇Mm‖
L

8
3 (0,T ;L4(Ω;R3×2))

+ ‖Mm‖L∞(0,T ;L∞(Ω;R3))‖∆Mm‖
L

4
3 (0,T ;L2(Ω;R3))

+ ‖Mm‖L∞(0,T ;L∞(Ω;R3))‖∇Mm‖
L

8
3 (0,T ;L4(Ω;R3×2))

+ ‖∆Mm‖
L

4
3 (0,T ;L2(Ω;R3))

.

From the regularities (3.235)–(3.237), and interpolation inequalities (see Propo-
sition 34 in Appendix A.2), the boundedness of (0, T ), and the length constraint
of M we get that the right-hand side is bounded. Thus, we obtain

(Mm)t ∈ L
4
3 (0, T ;L2(Ω;R3)) (3.245)

uniformly in m. This then implies that (see Remark 21)

(∇Mm)t ∈ L
4
3 (0, T ;H−1(Ω;R3×2)) (3.246)

uniformly in m.

From the embeddings H1(Ω;R3)
c
⊂ L4(Ω;R3) ⊂ H−1(Ω;R3) and H1

n(Ω;R
3×2)

c
⊂

L4(Ω;R3×2) ⊂ H−1(Ω;R3×2), where the first embedding is compact and the sec-
ond one is continuous, respectively, and the fact that Mm ∈ L2(0, T ;H1(Ω;R3))
and ∇Mm ∈ L2(0, T ;H1

n(Ω;R
3×2)), we conclude by the Aubin-Lions Lemma (see

Lemma 35 in Appendix A.2) the compact embeddings

{
M ∈ L2(0, T ;H1(Ω;R3)) : Mt ∈ L

4
3 (0, T ;L2(Ω;R3))

}
c
⊂ L2(0, T ;L4(Ω;R3))

and
{
∇M ∈ L2(0, T ;H1

n(Ω;R
3×2)) : (∇M)t ∈ L

4
3 (0, T ;H−1(Ω;R3×2))

}

c
⊂ L2(0, T ;L4(Ω;R3×2)),

respectively. This yields the strong convergence results (3.242) and (3.243) (up
to subsequence) of {Mm}m and {∇Mm}m. The convergence (3.244) is a direct
consequence of the regularity (3.237) and the convergence of {∇Mm}m.

3.2.4.2 Convergence to the weak formulations of the original problem

After having made sure that the solution to the approximate problem converges,
we have to prove that the limit also satisfies the weak formulation of the system
(3.1), (3.4), (3.18) in Ω× (0, T ).
To establish this, we insert the solutions of the approximate problem and ap-
proximate test functions into the weak formulation (3.144)–(3.146) and pass to
the limit as m → ∞. The boundary conditions (3.6)–(3.8) hold for the limit,
since the approximate solutions are constructed satisfying these conditions. The
attainment of the initial data (3.9)–(3.11) is then shown in a final step of the
entire proof.
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Notice that, since the weak solution vm to the approximate problem is defined us-
ing test functions from the projected spacesHm in (3.144), we also need to pass to
the limit with the test functions (only in space). But for any test function ξ ∈ V

we use the sequence of approximate test functions ξm := Pm(ξ) ∈ Hm which
converges strongly to ξ. In the following, we will use this particular sequence of
test functions. Moreover, ζ ∈W 1,∞(0, T ) is a test function with ζ(T ) = 0.

Convergence of the v-equation (3.144) and the F -equation (3.145). Since
these equations do not differ substantially from the corresponding ones in the
system without LLG, the reasoning here is the same as in Section 3.1.4.2. The
difference is that the approximate solution for the magnetization has two indices
m and n, but this does not affect the argument. In detail we prove

Convergence of the M-equation (3.146). Here, we need to show that with the
convergence results (3.238)–(3.241) the equation

∫ T

0

∫

Ω
−Mm · (ζ ′ϕ) + (v · ∇)Mm · (ζϕ) dx dt−

∫

Ω
Mm(0) · (ζ(0)ϕ) dx

=

∫ T

0

∫

Ω
−(Mm ×∆Mm) · (ζϕ)

+ |∇Mm|2Mm · (ζϕ)−∇Mm : (ζ∇ϕ) dx dt (3.247)

converges to the equation
∫ T

0

∫

Ω
−M · (ζ ′ϕ) + (v · ∇)M · (ζϕ) dx dt−

∫

Ω
M0 · (ζ(0)ϕ) dx

=

∫ T

0

∫

Ω
−(M ×∆M) · (ζϕ) + |∇M |2M · (ζϕ)−∇M : (ζ∇ϕ) dx dt (3.248)

as m → ∞. Notice that we integrated by parts with respect to time, so the
dual form becomes an integral again. The third term on the left-hand side of the
equation converges since Mm(0) → M0 strongly in L2(Ω;R3) by construction.
For the first and the second term on the left-hand side of the equation we obtain
the convergence immediately from the strong convergence results (for details on
the convergence of these two terms which are the same as in the gradient flow
equation, we refer to Section 3.1.4.2).
Next, we see that the last term on the right-hand side of the equation converges,
too, since it is linear and thus the weak convergence directly provides this result.
For the first term on the right-hand side, we get

∣∣∣∣
∫ T

0

∫

Ω
(Mm ×∆Mm) · (ζϕ)− (M ×∆M) · (ζϕ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(Mm ×∆Mm) · (ζϕ)− (M ×∆Mm) · (ζϕ)

+ (M ×∆Mm) · (ζϕ)− (M ×∆M) · (ζϕ) dx dt

∣∣∣∣
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≤

∫ T

0

∫

Ω
|((Mm −M)×∆Mm) · (ζϕ)|

+ (M × (∆Mm −∆M)) · (ζϕ) dx dt
Hölder
≤ ‖Mm −M‖L2(0,T ;L4(Ω;R3))‖∆Mm)‖L2(0,T ;L2(Ω;R3))‖ζϕ‖L∞(0,T ;L4(Ω;R3))

+

∫ T

0

∫

Ω
((ζϕ) ×M)︸ ︷︷ ︸

∈L2(0,T ;L2(Ω;R3))

·(∆Mm −∆M) dx dt

m→∞
−−−−→ 0.

Finally, we obtain for the second term on the right-hand side of the equation
(again, we omit the constant for brevity)

∣∣∣∣
∫ T

0

∫

Ω
|∇Mm|2Mm · (ζϕ)− |∇M |2M · (ζϕ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
|∇Mm|2Mm · (ζϕ)− |∇M |2Mm · (ζϕ)

+ |∇M |2Mm · (ζϕ)− |∇M |2M · (ζϕ) dx dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
(|∇Mm|2 − |∇M |2)Mm · (ζϕ)

+ |∇M |2(Mm −M) · (ζϕ) dx dt

∣∣∣∣

≤

∫ T

0

∫

Ω
|(|∇Mm|+ |∇M |) (|∇Mm| − |∇M |)︸ ︷︷ ︸

≤|∇Mm−∇M |

Mm · (ζϕ)|

+ |∇M |2(Mm −M) · (ζϕ) dx dt

≤

∫ T

0

∫

Ω

∣∣|∇Mm||∇Mm −∇M |Mm · (ζϕ)
∣∣

+
∣∣|∇M ||∇Mm −∇M |Mm · (ζϕ)

∣∣
+ |∇M |2|(Mm −M) · (ζϕ)| dx dt

Hölder
≤ ‖∇Mm‖L2(0,T ;L4(Ω;R3×2))‖∇Mm −∇M‖L2(0,T ;L4(Ω;R3×2))

× ‖Mm‖L∞(0,T ;L4(Ω;R3))‖ζϕ‖L∞(0,T ;L4(Ω;R3))

+‖∇M‖L2(0,T ;L4(Ω;R3×2))‖∇Mm −∇M‖L2(0,T ;L4(Ω;R3×2))

× ‖Mm‖L∞(0,T ;L4(Ω;R3))‖ζϕ‖L∞(0,T ;L4(Ω;R3))

+ ‖|∇M |2‖
L2(0,T ;L

3
2 (Ω))︸ ︷︷ ︸

=‖∇M‖2
L4(0,T ;L3(Ω;R3×2))

‖Mm −M‖L2(0,T ;L4(Ω;R3))‖ζϕ‖L∞(0,T ;L12(Ω;R3))

m→∞
−−−−→ 0.

Notice that the right-hand side is bounded due to (3.237), interpolation in-
equalities (see Proposition 34 in Appendix A.2) and the conservation of the
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length. Moreover, we have ϕ ∈ H1(Ω;R3) ⊂ L12(Ω;R3) (in fact, it holds that
ϕ ∈ H1 ⊂ Lp for any p ∈ [2,+∞)) since Ω ⊂ R

2. Thus, the M -equation con-
verges.

3.2.4.3 Attainment of initial data for the weak solution to the original
problem

Finally, we have left to prove that the initial data is actually attained by the
solution. The arguments are again the same as in Section 3.1.4.3 for the system
without the LLG equation. Notice that the different form of the LLG equation
compared to the gradient flow equation does not affect the reasoning: this is due
to the fact that only the time derivative is investigated during the analysis of the
attainment of the initial data. This concludes the proof of Theorem 11.
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4 Conclusion

In Chapter 2 of this work, we derived models for magnetoelastic materials. This
was done by utilizing variational principles in a continuum mechanical setting.
We included elasticity as well as the theory of micromagnetics in our models. Our
approach features the interplay between Lagrangian and Eulerian coordinate sys-
tems, which is important to combine elasticity, usually described in Lagrangian
coordinates, and magnetism, usually described in Eulerian coordinates, into mod-
els for magnetoelasticity. Further, we coupled these effects both on the energetic
level within the anisotropy energy and through transport relations.
In Chapter 3 we proved existence of weak solutions to models for a specific set-
ting obtained in Chapter 2. One model includes gradient flow dynamics on the
magnetic variable. The proof of existence for this model is based on a Galerkin
method and a fixed point argument and uses ideas from [LL95]. The second
model handles the more involved Landau-Lifshitz-Gilbert (LLG) equation in-
stead of the gradient flow. The proof of existence for the model including the
LLG equation additionally borrows special ideas from [CF01] which are needed
to analyze the more complicated form of the LLG equation. In the following, we
highlight open problems and present further possible research directions that go
beyond the results of this work.
At first, the models, derived in Section 2.8 and then mathematically analyzed
in Chapter 3, are based on simplifying assumptions. Open problems are to get
rid of these assumptions to get closer to the full model presented in Section 2.6.
We

1. neglect the stray field energy and the anisotropy energy in the full micro-
magnetic energy (2.17), and

2. incorporate the regularizing term κ∆F in the transport equation of the
deformation gradient F (2.99’).

3. Further, we set Hext = 0 in this work. The problem where Hext 6= 0 is
discussed in [BFLS16].

The first assumption results in the fact that the long-range interactions are not
considered. However, these are a key feature in magnetic effects, nonetheless, es-
pecially in micromagnetics, where the domain patterns result from the interaction
of the crystal structure (easy axes of magnetization), reflected in the anisotropy
energy, with the long-range magnetic effects. To be also able to describe mag-
netic domains, stray field energy and anisotropy energy should be considered in
an extension to this work. There is also a mathematical theory for the stray field
around, see, e.g., [JK90, CF01], which one could try to extend to the setting of

121



magnetoelasticity. Further, the crystal anisotropy, coupling the magnetic vari-
able M to the elastic variable F , can be incorporated, for instance, in the form
of a polynomial function as suggested in Section 2.3.1.
The second assumption is very strong as it basically destroys the character of the
solution to the non-regularized F -equation (2.99) in the sense that the solution
is no longer the actual deformation gradient. To overcome this, one has to set
κ = 0 and see, whether it is possible to obtain solutions to the system without the
regularization. As mentioned in Section 2.8.2, the proof of existence is then more
involved and can not be done without further assumptions on F (see [LLZ05]),
so this is a demanding open problem.
As highlighted in the introduction, the models we derived in this work set the ba-
sis for future work on magnetic fluids with immersed intermediate-sized particles:
this is the reason why we phrased the model entirely in the Eulerian coordinate
system. This way, it is possible to introduce a phase field parameter to model
the fluid-structure interaction in the Eulerian coordinate system which is com-
monly used in fluid dynamics. Another point in the case of magnetic fluids is
the rotational transport which allows for particle rotations. Some results on the
variational approach using the rotational transport are stated in Appendix A.3.
Finally, a physical verification of our mathematical model is a meaningful topic
for future discussions. On the one hand, from the analytical point of view, the
analysis of special solutions in two dimensions can give insight on the strength of
the coupling of deformation and magnetism within the partial differential equa-
tions, for instance. Regarding these special solutions, we already started the
discussion with Carlos Garćıa-Cervera and Chun Liu within the joint DAAD
project with my advisor Anja Schlömerkemper. On the other hand, numerical
simulations are left for future research. Numerical results are very important to
compare the model with actual experiments. Then, one could again achieve a
big leap forward towards better understanding of magnetoelastic materials.
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A Appendix

A.1 On special calculations and formulas

This part of the appendix is devoted to details on formulas needed in the modeling
part in Chapter 2.

Conservation of mass in the Lagrangian coordinate system. Conservation of
mass for compressible materials in the Eulerian coordinate system is given by
equation (2.24). We want an explicit formula for the push-forward of the mass
density, i.e., ρ(x(X, t), t) in terms of the mass density ρ0(X) in the reference
configuration and the deformation gradient F̃ (see also [For13, Section 2.4]). To
this end, we consider the mass contained within a subdomain ω0 ⊂ Ω0 given by

m0 = m(0) =

∫

ω0

ρ0(X) dX.

Since the mass is conserved, the mass of any deformed configuration ω ⊂ Ω ⊂ R
d

must be equal to m0. Thus, we obtain

∫

ω0

ρ0(X) dX =

∫

ω

ρ(x, t) dx.

Next, we transform into the Lagrangian coordinate system on the right-hand side
and get ∫

ω0

ρ0(X) dX =

∫

ω0

ρ(x(X, t), t) det F̃ dX.

This is equivalent to

∫

ω0

(
ρ0(X)− ρ(x(X, t), t) det F̃

)
dX = 0.

Since this is true for all subbodies ω0 of Ω0, it must be satisfied pointwise
(Lebesgue-Besicovitch differentiation theorem [EG92, Section 1.7.1]), thus

ρ(x(X, t), t) =
ρ0(X)

det F̃ (X, t)
.
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Transport equation of the deformation gradient F . We derive the transport
of the deformation gradient from the push forward F̃ (X, t) = F (x(X, t), t), see
(2.4). We calculate the time derivative on both sides, then an application of the
chain rule and (2.2)–(2.3) lead to

d

dt
F (x(X, t), t) =

∂

∂t
F (x(X, t), t) + (v(x(X, t), t) · ∇)F (x(X, t), t)

and, assuming enough regularity,

d

dt
F̃ (X, t) =

d

dt
(∇Xx(X, t)) = ∇X

(
∂

∂t
x(X, t)

)
= ∇Xv(x(X, t), t)

= ∇v(x(X, t), t)∇Xx(X, t) = ∇v(x(X, t), t) · F̃ (X, t).

In view of the push forward formula F̃ (X, t) = F (x(X, t), t), we write everything
in the Eulerian coordinate system to find out that

Ft + (v · ∇)F = ∇vF.

Transport equation of the magnetization M . We derive the (simple) trans-
port equation of the magnetization in the Eulerian coordinate system from the
proposed transport in the Lagrangian coordinate system (2.29), i.e.

M(x(X, t), t) =
1

det F̃ (X, t)
M0(X). (A.1)

Taking the total time derivative of (A.1), we find with the formula

d(det F̃ )

dF̃
= (det F̃ )F̃−T (A.2)

(a proof of this basic formula can be found in, e.g., [For13, Appendix A.3])

Mt(x(X, t), t) + (v(x(X, t), t) · ∇)M(x(X, t), t)

= −
1

(det F̃ )2
det F̃

(
F̃−T :

d

dt
∇Xx(X, t)

)
M0(X)

= −
1

(det F̃ )2
det F̃ tr

(
F̃−1 d

dt
∇Xx(X, t)

)
M0(X)

= −
1

det F̃
tr

(
n∑

k=1

∂Xk

∂xi
∂x

j
t

∂Xk

)
M0(X)

= −
1

det F̃

(
∇ · v(x(X, t), t)

)
M0(X)

= −(∇ · v(x(X, t), t))M(x(X, t), t).

This is equivalent to

Mt + (v · ∇)M + (∇ · v)M = 0

in the Eulerian coordinate system and can also be rewritten in the form

Mt +∇ · (M ⊗ v) = 0.
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Gradient transformation formula. We derive a formula which allows to trans-
form gradients with respect to x in the Eulerian coordinate system into gradients
with respect to X in the Lagrangian coordinate system.
To this end, let Q(x, t) be some quantity in the Eulerian coordinate system,
which may be scalar-, vector-, or matrix-valued (even higher order tensors are
fine). By inserting the deformation x(X, t) from (2.1), we obtain a quantity in
the Lagrangian coordinate system Q(x(X, t), t). Next, we calculate the gradient
of this with respect to X. We obtain, using the chain rule and the definition of
the deformation gradient (2.3),

∇XQ(x(X, t), t) = ∇xQ(x(X, t), t)∇Xx(X, t) = ∇xQ(x(X, t), t)F̃ .

Since it is important to get the dimensions right, we use the index notation to
find out that

∇Xj
Q(x(X, t), t) = ∇xk

Q(x(X, t), t)∇Xj
xk(X, t) = ∇xk

Q(x(X, t), t)F̃kj .

This form is particularly convenient when Q is a higher order tensor.
Finally, we multiply both equations by the inverse of F̃ to get

∇XQ(x(X, t), t)F̃−1 = ∇xQ(x(X, t), t) = ∇Q(x(X, t), t)

and
∇Xj

Q(x(X, t), t)F̃−1
jk = ∇xk

Q(x(X, t), t).

A formula for d
dε

∣∣
ε=0

det F̃ ε. We use the definitions (2.56)–(2.57) and (A.2).
We obtain by an application of the chain rule

d

dε

∣∣∣∣
ε=0

det F̃ ε = (det F̃ )F̃−⊤ :

(
d

dε

∣∣∣∣
ε=0

F̃ ε

)

= (det F̃ )F̃−⊤ : ∇X χ̃(X, t)

= (det F̃ )t̃r(∇X χ̃(X, t)F̃
−1).

A formula for d
dε

∣∣
ε=0

(F̃ ε)−1. We start from the identity

I = (F̃ ε)−1F̃ ε, (A.3)

which holds true for every ε ∈ (−ε0, ε0). We calculate the derivative with respect
to ε at ε = 0 on both sides of (A.3), using the product rule, to find

0 =
d

dε

∣∣∣∣
ε=0

I =
d

dε

∣∣∣∣
ε=0

(
(F̃ ε)−1F̃ ε

)
=

d

dε

∣∣∣∣
ε=0

(F̃ ε)−1F̃ + F̃−1 d

dε

∣∣∣∣
ε=0

F̃ ε.

Finally, we rearrange this, multiply by F̃−1 from the right and apply the defini-
tions (2.56)–(2.57) to get

d

dε

∣∣∣∣
ε=0

(F̃ ε)−1 = −F̃−1∇X χ̃(X, t)F̃
−1.
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A.2 Supplementary results from the literature

In this part of the appendix, we list some important results needed in this thesis.
For proofs, we refer to the cited literature.

Theorem 30. (Carathéodory’s existence theorem) [Fil88, Chapter 1, Theorem 1]
For t0 ≤ t ≤ t0+a, a > 0, and ‖x−x0‖ ≤ b, b > 0 let the function f(t, x) satisfy
the Carathéodory conditions:

• let f(t, x) be defined and continuous in x for almost all t;

• let f(t, x) be measurable in t for each x;

• |f(t, x)| ≤ m(t), the function m(t) being L1 (locally, if t is unbounded in
the domain of definition D of f(t, x)).

Then, on a closed interval [t0, t0 + d], where d > 0, there exists a solution of the
problem

d

dt
x = f(t, x), x(t0) = x0. (A.4)

In this case, one can take an arbitrary real number d which satisfies the inequal-
ities

0 < d ≤ a, φ(t0 + d) ≤ b, where φ(t) :=

∫ t

t0

m(s) ds.

Theorem 31. [Fil88, Chapter 1, Theorem 2] Let (t0, x0) ∈ D and let there exist
an L1-function l(t) such that for any points (t, x), (t, y) ∈ D it holds

|f(t, x)− f(t, y)| ≤ l(t)|x− y|.

Then, in the domain D there exists at most one solution of the problem (A.4).

Theorem 32. (Banach-Alaoglu-Bourbaki) [Bre11, Theorem 3.16] Let X be a
Banach space and X∗ be its dual space. The closed unit ball

BX∗ := {f ∈ X∗ : ‖f‖X∗ ≤ 1}

is compact in the weak-∗ topology, i.e., every sequence in BX∗ has a weakly-∗
converging subsequence.

Theorem 33. [Bre11, Theorem 3.18] Let X be a reflexive Banach space and let
{xn}n be a bounded sequence in X. Then there exists a subsequence {xnk

}k that
converges in the weak topology.

Proposition 34. (Interpolation in Bochner spaces) [Rou13, Proposition 1.41]
Let I ⊂ R be a bounded interval. Let p1, p2, q1, q2 ∈ [1,+∞], λ ∈ [0, 1], and
f ∈ Lp1(I;Lq1(Ω)) ∩ Lp2(I;Lq2(Ω)). Then

1

p
=

λ

p1
+

1− λ

p2
and

1

q
=

λ

q1
+

1− λ

q2

implies that
‖v‖Lp(I;Lq(Ω)) ≤ ‖v‖λLp1 (I;Lq1 (Ω))‖v‖

1−λ
Lp2 (I;Lq2 (Ω)).
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Lemma 35. (Aubin-Lions) [Rou13, Lemma 7.7] Let I ⊂ R be a bounded interval.
Let V1, V2 be Banach spaces, and V3 be a metrizable Hausdorff locally convex

space, V1 be separable and reflexive, V1
c
⊂ V2 (a compact embedding), V2 ⊂ V3 (a

continuous embedding), 1 < p < +∞, 1 ≤ q ≤ +∞. Then

{f ∈ Lp(I;V1) : ft ∈ Lq(I;V3)}
c
⊂ Lp(I;V2)

is a compact embedding.

Lemma 36. (Gelfand’s triple) [Rou13, Lemma 7.3] Let I ⊂ R be a bounded
interval. Let H be a Hilbert space identified with its own dual space H ≡ H∗.
Let the embedding V ⊂ H be continuous and dense (it follows that the embedding
H ⊂ V ∗ is continuous and dense). Let p′ = p

p−1 be the conjugate exponent to p.
Then {

f ∈ Lp(I;V ) : ft ∈ Lp′(I;V ∗)
}
⊂ C(I;H)

is a continuous embedding.
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A.3 On the rotational transport of magnetization and its

coupling to elasticity

In this part of the appendix, we discuss the strong rotational coupling of the
magnetic and the elastic variables already mentioned in Section 2.4. We find this
transport coupling appropriate for magnetic fluids with immersed particles. In
our model for magnetoelastic materials derived in Chapter 2, we have a single
particle in mind, without a surrounding fluid, where the particle can move and
rotate. Thus, we do not need such kind of transport in our setting. This ro-
tational transport is important for fluids with immersed particles, which could
be studied in a possible extension to this work. We understand the rotational
transport and the underlying coupling in the following way.
When the particles are moved and deformed within the fluid, the magnetization
follows the motion instantaneously. The magnetic dipoles are attached to the
particles, so the center of mass of the dipoles follow the particle’s motion, and,
moreover, the angle of the dipoles are also changed. However, since the mag-
netization is supposed to be of unit length within the theory of micromagnetics
which we involve in our modeling (see Section 2.3), the dipoles should not be
stretched. Thus, the transport we find to be suitable takes the form

M(x(X, t), t) = RM0(X) (A.5)

in the Lagrangian coordinate system, where R = R(x(X, t), t) is a field of rota-
tions. To satisfy the condition that R is indeed a field of rotations, we have to
assume that

Ṙ = Rt + (v · ∇)R = ΩvR (A.6)

holds for R, where Ωv =
∇v−∇⊤v

2 denotes the skew-symmetric velocity gradient.
Notice that the justification would work for any skew-symmetric matrix. In
our case, however, Ωv is chosen in accordance to molecular transport (see, e.g.,
[SL09, WXL12] and [For13, Remark 26]).
Then, we take the total time derivative of (A.5), and with (A.6) we find

Mt := Mt + (v · ∇)M︸ ︷︷ ︸
center of mass moving

−ΩvM︸ ︷︷ ︸
accounts for rotation

= 0 (A.7)

in the Eulerian coordinate system. Equivalently, one can also multiply (A.6) by
M0(X) and use (A.5) to find (A.7).

It is a straightforward calculation to prove that with the assumed PDE (A.6) the
field R(x(X, t), t) is a field of rotations. (A.6) implies

d

dt
(R⊤R) = Ṙ⊤R+R⊤Ṙ = −R⊤ΩvR+R⊤ΩvR = 0
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and since it holds true that d
dt(detA(t)) = detA(t) tr(A⊤(t)At(t)) (see, e.g.,

[For13, A.1–A.2]), we obtain

d

dt
(detR) = detR

(
R : ΩvR

)
=

1

2
detR

(
R : (∇v −∇⊤v)R

)

=
1

2
detR

(
R : (∇vR)−R : (∇⊤vR)

)

=
1

2
detR

(
R : (∇vR)− (∇vR) : R

)
= 0.

Since it is natural to set

R(x(X, 0), 0) = I,

as the deformation at time t = 0 is simply the identity, we obtain that R⊤R ≡ I

and detR ≡ 1 along the trajectory. Hence R(x, t) ∈ SO(3) is a rotation for any
(x, t) ∈ Ω× (0, t∗).
In the following, we present mainly two different approaches to derive the equa-
tion of motion for the system including the rotational transport. For this pre-
sentation, we neglect the stray field term in the micromagnetic energy and the
purely elastic term. The remainder is sufficient to highlight the problems which
arise.

A.3.1 Principal of virtual work

We discuss in this part an application of the principal of virtual work (see
[DE88, FSL00]). This method is applied in the context of complex fluids in,
e.g., [YFLS05, BLQS14]. When applying this method, we calculate the stress
and pressure terms by means of the variation δW of the internal free energy

W =

∫

Ω

1

2
A|∇M |2 + ψ(F,M) dx (A.8)

without the need to transform the integral with respect to x:

δW =

∫

Ω
A∇M : δ∇M + ψF (F,M)δF + ψM (F,M)δM dx. (A.9)

The goal is to obtain some expression (force term) multiplied by δx = vδt

[YFLS05, BLQS14] within the integral
∫
Ω · · · dx, where δx represents a virtual

displacement or the variation of x.
In order to obtain δx in the equation, we need to substitute the expressions δ∇M ,
δF , and δM .
From the transport equation for M (A.7) and the chain rule for F (2.28), we
obtain an equation relating the above mentioned expressions with the variation
of x by applying δ(·) = ((·)t) δt + (δx · ∇)(·) from [YFLS05, Section 2.3] or
δ(·) = ((·)t) δt from [BLQS14, Section 2], where the latter is a formal multiplica-
tion by δt.
It is not clear a priori which approach is correct. However, the latter seems to
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be most consistent with the definition δx = vδt. The difference strongly reminds
us of the difference between temporal and material derivative and different coor-
dinate systems. We use the latter ansatz in the following calculations. Since it
has the additional convection term, we can easily track what happens to those
terms and compare the outcome for both definitions.
From (A.7), we obtain

δMi = −(δx · ∇)Mi +
∇kδxi −∇iδxk

2
Mk. (A.10)

Differentiating (A.7), we get

∇j(Mt)i = −∇j(u · ∇)Mi − (u · ∇)∇jMi +
∇j∇kui −∇j∇iuk

2
Mk

+
∇kui −∇iuk

2
∇jMk

and hence

δ∇jMi = −
(
∇j(δx · ∇)

)
Mi − (δx · ∇)∇jMi +

∇j∇kδxi −∇j∇iδxk

2
Mk

+
∇kδxi −∇iδxk

2
∇jMk. (A.11)

From the chain rule for the deformation gradient, we obtain

δFij = −(δx · ∇)Fij +∇kδxiFkj. (A.12)

We plug (A.7), (A.11) and (A.12) into (A.9) to find

δW =

∫

Ω
A∇M : δ∇M + ψF (F,M)δF + ψM (F,M)δM dx

=

∫

Ω
A∇jMiδ∇M

(
−
(
∇j(δx · ∇)

)
Mi − (δx · ∇)∇jMi

+
∇j∇kδxi −∇j∇iδxk

2
Mk +

∇kδxi −∇iδxk

2
∇jMk

)

− (ψF )ij(δx · ∇)Fij + (ψF )ij∇kδxiFkj

− (ψM )i(δx · ∇)Mi + (ψM )i
∇kδxi −∇iδxk

2
Mk dx.

The next step is to isolate δx with the help of integration by parts:

δW =

∫

Ω
A∇j

(
∇kMi∇jMi

)
δxk −A(δx · ∇)

|∇M |2

2

+
A

2
(∇k∇j(∇jMiMk))δxi −

A

2
(∇k∇j(∇jMkMi))δxi

−
A

2
∇k(∇jMi∇jMk)δxi +

A

2
∇i(∇jMi∇jMk)δxk

︸ ︷︷ ︸
=0

− (δx · ∇)ψ(F,M) −∇k

(
(ψF )ijFkj

)
δxi

+
1

2
∇k

((
(ψM )kMi

)
−
(
(ψM )iMk

))
δxi dx
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=

∫

Ω
A
(
∇ ·
(
∇M ⊙∇M

))
· δx−A(δx · ∇)

|∇M |2

2

+A (∇ · skew(∆M ⊗M)) · δx

− (δx · ∇)ψ(F,M) −
(
∇ ·
(
ψFF

⊤
))

· δx

+∇ ·
(
skew

(
M ⊗ ψM

))
· δx dx.

This results in the total stress tensor according to the definition from [YFLS05,
BLQS14]

τtotal = −A∇M ⊙∇M +A
|∇M |2

2
I −A skew(∆M ⊗M)

+ ψ(F,M)I + ψFF
⊤ − skew

(
M ⊗ ψM

)
,

where we define the elastic part of the total stress by

τelastic = −A∇M ⊙∇M −A skew(∆M ⊗M) + ψFF
⊤ − skew

(
M ⊗ ψM

)
,

and the isotropic part by

τisotropic =

(
A
|∇M |2

2
+ ψ(F,M)

)
I.

The latter can be absorbed into the pressure. A difference of an isotropic stress
tensor is still comparable according to [DE88, p.71], where it is stated that two
stresses are regarded as equal, if the difference is an isotropic stress tensor.
However, notice that if we used the definition of the variation from [YFLS05,
Section 2.3], namely δ(·) = ((·)t) δt + (δx · ∇)(·), then the outcome would not
only lack the entire isotropic part of the stress tensor – which would still be
a comparable result – but also the first summand of the elastic stress would
vanish.
Moreover, if we applied this method with the definition of the variation from
[YFLS05, Section 2.3] in the case of weak coupling and used the simple transport
for the magnetization, the stress tensor would reduce to τtotal = ψFF

⊤, so there
would be no magnetic contribution in the stress tensor at all.
To conclude this investigation, we state that it is not clear, which approach is
the correct one for the principle of virtual work. This principle is often used, but
there seems to be some ambiguity related to this approach.

A.3.2 Variation with respect to the domain: classical variation

In this part, we look at the variation with respect to the domain by a classical
variation. Hereby, we mean the way of applying the least action principle as
described in Section 2.2.
Since we need to transform the spatial integrals into the Lagrangian coordinate
system, we use the transport (A.5) to express the magnetization M in terms of
the Lagrangian coordinate system. It follows directly that

∇M(x(X, t), t) = (∇R(x(X, t), t))M0(X), (A.13)
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where ∇R(x(X, t), t) is a third order tensor and ∇ denotes the spatial gradient
with respect to x.
We denote as above the reference configuration by Ω0 and the deformed config-
uration by Ω and consider the exemplary action functional

A =

∫ t∗

0

∫

Ω

1

2
ρ|u|2 −

1

2
A|∇M |2 − ψ(F,M) dx dt

=

∫ t∗

0

∫

Ω0

1

2
ρ0|xt|

2 −
1

2
A
∣∣∇X(RM0)F

−1
∣∣2 − ψ(F,RM0) dX dt, (A.14)

where the first term is the kinetic energy, and the second and third term are the
exchange energy term and the anisotropy term from the micromagnetic energy
(2.17), respectively.
We calculate the variation of the action with respect to the flow map using volume
preserving diffeomorphisms xε(X, t) (due to incompressibility, see (2.110)) with
d
dε

∣∣
ε=0

xε = χ̃ and χ̃(X, t) = χ(x(X, t), t) being compactly supported with respect
to space and time and smooth. We obtain, using (2.64) and (2.66) to find

d

dε

∣∣∣∣
ε=0

A(xε)

=
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

1

2
ρ0|x

ε
t |
2 −

1

2
A
∣∣∣∇X(R(xε, t)M0) (∇Xx

ε)−1
∣∣∣
2

− ψ (∇Xx
ε,R(xε, t)M0) dX dt

=

∫ t∗

0

∫

Ω0

ρ0xt · χ̃t −A
(
∇X(RM0)F

−1
)
:
(
∇X((∇Rχ̃)M0)F

−1

+∇X(RM0)
(
−F−1∇X χ̃F

−1
))

− ψF : ∇X χ̃− ψM · (∇RM0χ̃) dX dt.

The next step is to transform the integral and the variables to the Eulerian
coordinate system and to pull out χ from all the summands in the last step. We
get

d

dε

∣∣∣∣
ε=0

A(xε)

=

∫ t∗

0

∫

Ω
−ρ

d

dt
u · χ−A (∇M) : (∇((∇M)χ)−∇M∇χ)

− ψFF
⊤ : ∇χ− ψM · (∇Mχ) dx dt

=

∫ t∗

0

∫

Ω
−ρ

d

dt
u · χ−A (∇M) : (∇∇Mχ)

− ψFF
⊤ : ∇χ− ψM · (∇Mχ) dx dt

=

∫ t∗

0

∫

Ω

(
−ρ

d

dt
u−A∇

|∇M |2

2
+∇ · (ψFF

⊤)−∇⊤MψM

)
· χ dx dt.

We find that the first term is the acceleration term and the third term has
divergence form similar to the stress term. The second term is a total gradient
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and can thus be absorbed into the induced pressure term.
However, the last term has neither divergence form nor is it a total gradient. This
seems to indicate that the handling of the rotational transport is not correct.
Moreover, there is no contribution to the stress from the microscopic variable M
here. This does not seem to be physical as the microscopic variable should lead
to a stress contribution. Hence, (2.29) seems to be the most reasonable choice.
Note that this is also used in, e.g., [DD98].

A.3.3 Further investigation of the field of rotations

In a further attempt to tackle the problem with the rotation, we try to investigate
the field of rotations in more detail. We calculate the variation of the action with
respect to the flow map using volume preserving diffeomorphisms xε(X, t) (due
to incompressibility, see (2.110)) with d

dε

∣∣
ε=0

xε = χ̃ and χ̃(X, t) = χ(x(X, t), t)
being smooth and compactly supported with respect to space and time. We
define Rε(t) = Rε(x

ε(X, t), t) as a solution to

{
Ṙε = ΩvεRε t > 0

Rε(0) = Rε(x
ε(X, 0), 0) = I t = 0,

(A.15)

where Ωvε = skew(∇vε) and vε = (xε)t.
We define S := d

dε

∣∣
ε=0

Rε. Since (if we assume that Rε is at least of class C2)

d

dt

d

dε
Rε = Ωvε

d

dε
Rε +

d

dε
ΩvεRε, (A.16)

we have
Ṡ = ΩvS +ΩuR0, (A.17)

where u = yt and R0 = R is the non-perturbed rotation matrix.
For S, we consider the ansatz

S(t) = R(t)A(t) (A.18)

for some quadratic and time-dependent matrix A(t). For this matrix, we try to
find a solution. We have

Ṡ(t) = Ṙ(t)A(t) +R(t)Ȧ(t) = ΩvR(t)A(t) +R(t)Ȧ(t)

= ΩvS(t) +R(t)Ȧ(t) (A.19)

and, together with (A.17), we obtain

d

dt
A(t) = Ȧ(t) = R(t)−1ΩuR(t), (A.20)

where we can integrate to get

A(t) =

∫ t

0
R(s)−1Ωu(s)R(s) ds+A(0). (A.21)
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We plug this into (A.18) and find

S(t) = R(t)

∫ t

0
R(s)−1Ωu(s)R(s) ds+R(t)A(0). (A.22)

Since by (A.18) it holds that A(0) = S(0) and by (A.15) we have at least for-
mally

S(0) =
d

dε

∣∣∣∣
ε=0

Rε(0) =
d

dε

∣∣∣∣
ε=0

I = 0,

the solution for S simplifies to

S(t) = R(t)

∫ t

0
R(s)−1Ωu(s)R(s) ds. (A.23)

This solution is used in the variation of the action. The problem we run into is
that the test function χ(x, t) remains within a time integral, so there is no isola-
tion of the variation possible. We further simplify the energy terms by neglecting
the anisotropy. However, the calculations are presented for the compressible case,
which does not affect the problem. We define Jε = detF ε. This results in

d

dε

∣∣∣∣
ε=0

A(xε) =
d

dε

∣∣∣∣
ε=0

∫ t∗

0

∫

Ω0

∣∣∣∇X(RεM0) (∇Xx
ε)−1

∣∣∣
2

det (∇Xx
ε) dX dt

=

∫ t∗

0

∫

Ω0

(
2∇X(RM0)F

−1 : ∇X(SM0)F
−1

+ 2∇X(RM0)F
−1 : ∇X(RM0)

d

dε

∣∣∣∣
ε=0

F−1
ε

)
J dX dt

+

∫ t∗

0

∫

Ω0

∣∣∇X(RM0)F
−1
∣∣2 d

dε

∣∣∣∣
ε=0

Jε dX dt.

We plug in the solution for S and apply differentiation rules for the inverse and
the determinant of a matrix. With the formula χ(x(X, t), t) = χ̃(X, t) and the
transport R(s)M0 =M(x(X, s), s), this yields

d

dε

∣∣∣∣
ε=0

A(xε)

=

∫ t∗

0

∫

Ω0

(
2∇X(RM0)F

−1 : ∇X

(
R(t)

∫ t

0
R(s)−1Ωu(s)R(s) dsM0

)
F−1

− 2∇X(RM0)F
−1 : ∇X(RM0)F

−1∇X χ̃F
−1

)
J dX dt

+

∫ t∗

0

∫

Ω0

∣∣∇X(RM0)F
−1
∣∣2 tr(∇X χ̃F

−1)J dX dt

=

∫ t∗

0

∫

Ω0

2∇M : ∇

(
R(t)

∫ t

0
R(s)−1Ωu(s)M(x, s) ds

)
dX dt (A.24)

−

∫ t∗

0

∫

Ω0

2∇M : ∇M∇χ dX dt+

∫ t∗

0

∫

Ω0

|∇M |2 ∇ · χ dX dt.
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Since the second and third integral are straightforward to calculate, we continue
with the first integral. This we denote by I and transform it into the Lagrangian
coordinate system. Then, we obtain with the notation ∇̃M = ∇X(RM0)F

−1

I =

∫ t∗

0

∫

Ω0

∇̃M : ∇X

(
R(t)

∫ t

0
R(s)−1

(
∇X χ̃tF

−1

−
(
∇X χ̃tF

−1
)⊤
)
R(s) dsM0

)
F−1J dX dt

=

∫ t∗

0

∫

Ω0

∇̃M : ∇X

(
R(t)

[∫ t

0
R(s)−1∇X χ̃tF

−1R(s)M0 ds

−

∫ t

0
R(s)−1

(
∇X χ̃tF

−1
)⊤

R(s)M0 ds

])
F−1J dX dt.

From here, we proceed with integration by parts with respect to time within the
inner integrals (since χ̃ is assumed to be compactly supported and smooth, also
the derivatives and gradients are compactly supported, thus the boundary terms
vanish) and the help of the chain rule:

I =

∫ t∗

0

∫

Ω0

∇̃M : ∇X

(
R(t)

[∫ t

0
R(s)−1∇X χ̃tF

−1R(s)M0 ds

−

∫ t

0
R(s)−1

(
∇X χ̃tF

−1
)⊤

R(s)M0 ds

])
F−1J dX dt

=

∫ t∗

0

∫

Ω0

∇̃M : ∇X

(
R(t)

[
−

∫ t

0

d

ds
R(s)−1∇X χ̃F

−1R(s)M0

+R(s)−1∇X χ̃
d

ds
F−1R(s)M0

+R(s)−1∇X χ̃F
−1 d

ds
R(s)M0 ds

+

∫ t

0

d

ds
R(s)−1

(
∇X χ̃F

−1
)⊤

R(s)M0

+R(s)−1

(
∇X χ̃

d

ds
F−1

)⊤

R(s)M0

+R(s)−1
(
∇X χ̃F

−1
)⊤ d

ds
R(s)M0 ds

])
F−1J dX dt.
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Next, we apply the derivative of an inverse of a matrix field (see (2.66) and [For13,
Appendix A.5]), the transport of F (2.28) and the ODE (A.15) to obtain

I =

∫ t∗

0

∫

Ω0

∇̃M : ∇X

(
R(t)

[
−

∫ t

0
−R(s)−1 d

ds
R(s)R(s)−1∇X χ̃F

−1R(s)M0

−R(s)−1∇X χ̃F
−1 d

ds
FF−1R(s)M0

+R(s)−1∇X χ̃F
−1Ωv(s)R(s)M0 ds

+

∫ t

0
−R(s)−1 d

ds
R(s)R(s)−1

(
∇X χ̃F

−1
)⊤

R(s)M0

−R(s)−1

(
∇X χ̃F

−1 d

ds
FF−1

)⊤

R(s)M0

+R(s)−1
(
∇X χ̃F

−1
)⊤

Ωv(s)R(s)M0 ds

])
F−1J dX dt

=

∫ t∗

0

∫

Ω0

∇̃M : ∇X

(
R(t)

[
−

∫ t

0
−R(s)−1Ωv(s)R(s)R(s)−1∇X χ̃F

−1R(s)M0

−R(s)−1∇X χ̃F
−1∇xuFF

−1R(s)M0

+R(s)−1∇X χ̃F
−1Ωv(s)R(s)M0 ds

+

∫ t

0
−R(s)−1Ωv(s)R(s)R(s)−1

(
∇X χ̃F

−1
)⊤

R(s)M0

−R(s)−1
(
∇X χ̃F

−1∇xuFF
−1
)⊤

R(s)M0

+R(s)−1
(
∇X χ̃F

−1
)⊤

Ωv(s)R(s)M0 ds

])
F−1J dX dt.

Then, we simplify the terms in each line and finally transform the integral back
to the Eulerian coordinate system in the last step. We get

I =

∫ t∗

0

∫

Ω0

∇̃M : ∇X

(
R(t)

[
+

∫ t

0
R(s)−1Ωv(s)∇X χ̃F

−1R(s)M0

+R(s)−1∇X χ̃F
−1∇xvR(s)M0

−R(s)−1∇X χ̃F
−1Ωv(s)R(s)M0 ds

−

∫ t

0
+R(s)−1Ωv(s)

(
∇X χ̃F

−1
)⊤

R(s)M0

+R(s)−1
(
∇X χ̃F

−1∇xv
)⊤

R(s)M0

−R(s)−1
(
∇X χ̃F

−1
)⊤

Ωv(s)R(s)M0 ds

])
F−1J dX dt
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=

∫ t∗

0

∫

Ω0

∇xM : ∇

(
R(t)

[∫ t

0
R(s)−1Ωv(s)∇χM(x, s)

+R(s)−1∇χ∇xvM(x, s)

−R(s)−1∇χΩv(s)M(x, s) ds

−

∫ t

0
+R(s)−1Ωv(s) (∇χ)

⊤M(x, s)

+R(s)−1 (∇χ∇xv)
⊤M(x, s)

−R(s)−1 (∇χ)⊤Ωv(s)M(x, s) ds

])
dX dt,

where we used a coordinate transformation back into the Eulerian coordinate
system in the last step.
A next step would be integration by parts with respect to the spatial variable
x to isolate the test function χ. However, the problem that χ is still within the
third integral

∫ t

0 · · · ds still remains.
Another idea could be to go back and continue at equation (A.24). One could
use there the fundamental theorem of calculus to pull (∇χ̃ − ∇⊤χ̃) out of the
integral

∫ t

0 · · · ds. However, this does not seem to be doable.
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A.4 Proof of Lemma 2

Since M is supported on Ω, we can use integration by parts to rewrite the scalar
potential (2.13). We obtain

ϕ(M)(x) =

∫

Ω
N(x− y)(∇ ·M)(y) dy +

∫

∂Ω
N(x− y) (M · n) (y) dσy, (A.25)

where dσy denotes the surface measure. We use the following abbreviations:

V(M)(x) :=

∫

Ω
N(x− y)(∇ ·M)(y) dy, (A.26)

S(M)(x) :=

∫

∂Ω
N(x− y) (M · n) dσy, (A.27)

where V is called Newton potential and S is called single layer potential (see,
e.g., [Sch08]).

Proof of Lemma 2 on page 29. For preciseness, we mark the gradient with the
corresponding variable as an index, i.e., we write ∇x and ∇y instead of just ∇
in both cases.
Firstly, we introduce regularizations Nδ(x − y) and (∇N)δ(x − y) of the kernel
N(x − y) and its gradient, respectively, as done in [Sch08]. To this end, let
η : [0,∞] → R be a smooth function such that η(r) = 0 if 0 ≤ r ≤ 1

2 and η(r) = 1
if r ≥ 1. Then, we set

Nδ(x− y) := η

(
|x− y|

δ

)
N(x− y).

It is clear that Nδ ∈ C∞(R3) ∩ L∞(R3). Now, we define

Vδ(M)(x) :=

∫

Ω
Nδ(x− y)(∇ ·M)(y) dy.

and

Sδ(M)(x) :=

∫

∂Ω
Nδ(x− y) (M · n) (y) dσy.

Secondly, we look at the convergence of Vδ(M)(x). It follows from [Sch08, Sec-
tion 2] that |Vδ(M)(x)−V(M)(x)| ≤ cδ2 and thus Vδ(M)(x) converges uniformly
to V(M)(x).

Moreover, since ∇ ·M,∇ · M̂ ∈ L∞(Ω), we obtain that Vδ(M)(x)
(
∇x · M̂

)
(x)

converges uniformly to V(M)(x)
(
∇x · M̂

)
(x) as δ → 0. The same holds if we
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exchange M and M̂ . Hence, we obtain
∣∣∣∣
∫

Ω

∫

Ω
Nδ(x− y)

(
∇y · M̂

)
(y)
(
∇x ·M

)
(x) dy dx

−

∫

Ω

∫

Ω
N(x− y)

(
∇y · M̂

)
(y)
(
∇x ·M

)
(x) dy dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

∫

Ω
Nδ(x− y)

(
∇y · M̂

)
(y) dy

(
∇x ·M

)
(y) dx

−

∫

Ω

∫

Ω
N(x− y)

(
∇y · M̂

)
(y) dy

(
∇x ·M

)
(x) dx

∣∣∣∣

=

∣∣∣∣
∫

Ω
Vδ(M)(x)

(
∇x ·M

)
(x) dx−

∫

Ω
V(M)(x)

(
∇x ·M

)
(x) dx

∣∣∣∣

=

∣∣∣∣
∫

Ω
Vδ(M)(x)

(
∇x ·M

)
(x)− V(M)(x)

(
∇x ·M

)
(x) dx

∣∣∣∣

≤

∣∣∣∣
∫

Ω
[Vδ(M)(x)− V(M)(x)]

∥∥∇x ·M
∥∥
L∞(Ω)

dx

∣∣∣∣

≤ |Ω| · cδ2 ·
∥∥∇x ·M

∥∥
L∞(Ω)

δ→0
−−−→ 0, (A.28)

where |Ω| denotes the volume of Ω. This convergence is necessary in the calcu-

lation of the product 〈M,H(M̂ )〉L2(Ω;R3).
Moreover, since H2(∂Ω) < ∞ and M · n ∈ L∞(∂Ω) by M ∈ W 1,∞(Ω) and the
trace theorem, see, e.g., [Bre11, Corollary 9.14]), we can prove in an analogous
manner that

lim
δ→0

∫

∂Ω

∫

Ω
Nδ(x− y)

(
∇y · M̂

)
(y)
(
M · n

)
(x) dy dσx

=

∫

∂Ω

∫

Ω
N(x− y)

(
∇y · M̂

)
(y)
(
M · n

)
(x) dy dσx.

Next, we look at the convergence of ∇Sδ(M). Since ∇Sδ(M) −→ ∇S(M) in

L1(Ω) as δ → 0 (see [Sch08, Proposition 3.1] for a proof) and M̂ ∈ L∞(Ω), we
obtain ∣∣∣∣

∫

Ω
∇Sδ(M)(y) · M̂(y) dy −

∫

Ω
∇S(M) · M̂(y) dy

∣∣∣∣

=

∣∣∣∣
∫

Ω

(
∇Sδ(M)(y) −∇S(M)

)
· M̂ (y) dy

∣∣∣∣

≤ ‖∇Sδ(M)(y)−∇S(M)‖L1Ω ‖M̂‖L∞(Ω)
δ→0
−−−→ 0.

Finally, we calculate 〈M,H(M̂ )〉L2(Ω;R3), using integration by parts and the con-

vergence results (A.28). We get, since M̂ ∈W
1,∞
0 (Ω;R3),

〈M,H(M̂ )〉L2(Ω;R3)

=

∫

Ω
M(x) ·H(M̂)(x) dx

(2.12)
=

∫

Ω
−M(x) · ∇xϕ(M̂ )(x) dx

(A.25)
=

∫

Ω
−M(x) · ∇x

∫

Ω
N(x− y)

(
∇y · M̂

)
(y) dy dx.
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Then, integration by parts with respect to x yields

〈M,H(M̂ )〉L2(Ω;R3)

=

∫

Ω

(
∇x ·M

)
(x)

∫

Ω
N(x− y)

(
∇y · M̂

)
(y) dy dx

+

∫

∂Ω

∫

Ω
N(x− y)

(
∇y · M̂

)
(y) dy

(
M · n

)
(x) dσx

=

∫

Ω

∫

Ω
lim
δ→0

Nδ(x− y)
(
∇y · M̂

)
(y)
(
∇x ·M

)
(x) dy dx

+

∫

∂Ω

∫

Ω
lim
δ→0

Nδ(x− y)
(
∇y · M̂

)
(y)
(
M · n

)
(x) dy dσx

(A.28)
= lim

δ→0

∫

Ω

∫

Ω
Nδ(x− y)

(
∇y · M̂

)
(y)
(
∇x ·M

)
(x) dy dx

+ lim
δ→0

∫

∂Ω

∫

Ω
Nδ(x− y)

(
∇y · M̂

)
(y)
(
M · n

)
(x) dy dσx.

Next, we use Fubini’s Theorem (see [Bre11, Theorem 4.5]) to exchange the in-

tegrals. This is possible since, by the regularity assumptions on M and M̂ ,

the functions x 7→ (∇x ·M) (x) and y 7→
(
∇y · M̂

)
(y) are in L2(Ω). Because

both functions do not depend on the other variable y and x, resp., and be-
cause Ω is bounded, we obtain that both functions (x, y) 7→ (∇x ·M) (x) and

(x, y) 7→
(
∇y · M̂

)
(y) are elements of L2(Ω × Ω). Then, due to Hölder’s in-

equality and the fact that Nδ(x − y) ∈ L∞(Ω × Ω), we get that the function

(x, y) 7→ Nδ(x− y)
(
∇y · M̂

)
(y)
(
∇x ·M

)
(x) is in L1(Ω× Ω).

We can argue similarly for the double integral involving the boundary ∂Ω. Note
that M · n ∈ L∞(∂Ω) by the trace theorem, see, e.g. [Bre11, Corollary 9.14].

Hence, the function (x, y) 7→ Nδ(x− y)
(
∇y · M̂

)
(y)
(
M ·n

)
(x) is in L1(∂Ω×Ω).

So, we obtain, using N(−r) = N(r),

〈M,H(M̂ )〉L2(Ω;R3)

= lim
δ→0

∫

Ω

∫

Ω
Nδ(y − x)

(
∇y · M̂

)
(y)
(
∇x ·M

)
(x) dx dy

+ lim
δ→0

∫

Ω

∫

∂Ω
Nδ(y − x)

(
∇y · M̂

)
(y)
(
M · n

)
(x) dσx dy

=

∫

Ω

∫

Ω
lim
δ→0

Nδ(y − x)
(
∇y · M̂

)
(y)
(
∇x ·M

)
(x) dx dy

+ lim
δ→0

∫

Ω

∫

∂Ω
Nδ(y − x)

(
M · n

)
(x) dσx

︸ ︷︷ ︸
=Sδ(M)(y)

(
∇y · M̂

)
(y) dy

=

∫

Ω

(
∇y · M̂

)
(y)

∫

Ω
N(y − x)

(
∇x ·M

)
(x) dx dy

+ lim
δ→0

∫

Ω
Sδ(M)(y)

(
∇y · M̂

)
(y) dy.
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Next, integration by parts with respect to y before and after the limiting process
yields, since M̂ ∈W

1,∞
0 (Ω;R3),

〈M,H(M̂ )〉L2(Ω;R3)

=

∫

Ω
−M̂(y) · ∇y

∫

Ω
N(y − x)

(
∇x ·M

)
(x) dx dy

+ lim
δ→0

∫

Ω
−∇ySδ(M)(y) · M̂(y) dy

=

∫

Ω
−M̂(y) · ∇yV(M)(y) dy +

∫

Ω
−∇yS(M)(y) · M̂(y) dy

=

∫

Ω
−M̂(y) · ∇yϕ(M)(y) dy

(A.26)
=

(A.27)

∫

Ω
M̂(y) ·H(M)(y) dy

= 〈M̂,H(M)〉L2(Ω;R3).

This concludes the proof.
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A.5 On the model for the simplified setting in 2D

(magnetic gradient flow)

This appendix is dedicated to a special 2D (meaning d = 2 and target space
of the magnetization is R

2) version of our model for the simplified setting in
3D (meaning target space of the magnetization is R

3) which has gradient flow
dynamics on the magnetization and a regularized transport equation for the
deformation gradient, and is summarized in Section 2.8.3.
The purpose of this dimension reduction is to get started with the mathematical
analysis of special solutions in a possible extension to this work.
In the following, we derive this 2D version of our model and we obtain a set
of decoupled scalar equations for the deformation gradient F ∈ R

2×2 and the
magnetization M ∈ R

2.
The derivation uses ideas from [LLZ05], where the authors derive a 2D system
for viscoelastic materials.
In this 2D case, we make a special choice for the elastic energy density, i.e., we
set W (F ) = σel

2 |F 2|. As a result, we have W ′(F )F⊤ = σelFF
⊤ in the stress

tensor (2.97).
For the derivation of the two dimensional system, we assume that all functions
are smooth, so all the calculations are justified. We start by setting

M = (cos θ, sin θ)⊤, (A.29)

where θ = θ(x, t) is the angle of the magnetization. It is clear that this vector
satisfies the length constraint. Thus, the penalization term 1

µ2 (|M |2 − 1)M in

the microscopic force balance equation (2.100) drops out.
If we plug in M into equation (2.100), we obtain using the chain rule and the

identity M
⊥
= (− sin θ, cos θ)⊤

(
(cos θ, sin θ)⊤

)
t
+ (v · ∇)(cos θ, sin θ)⊤ = 2A∆(cos θ, sin θ)⊤

⇐⇒ θtM
⊥
+
(
M

⊥
⊗∇θ

)
v = 2A

(
∆θM

⊥
− |∇θ|2M

)

⇐⇒ θtM
⊥
+
(
(v · ∇)θ

)
M

⊥
= 2A

(
∆θM

⊥
− |∇θ|2M

)
.

Multiplying this equation with M
⊥
, we obtain

θt + (v · ∇)θ = 2A∆θ in Ω× (0, t∗),

which is the microscopic force balance for the angle of the magnetization vector.
The special property is that this equation is just one dimensional. We also seek
to derive a corresponding condition for the angle θ from the boundary condition
(2.103). To this end, we plug in the form of M to find

0 =
∂M

∂n
= (∇M)n =

(
M

⊥
⊗∇θ

)
n = (∇θ · n)M

⊥
=

(
∂θ

∂n

)
M

⊥
.
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Multiplying this expression with M
⊥
, we get

∂θ

∂n
= 0 on ∂Ω

as the boundary condition for the magnetic variable.
Now, we investigate the form of the deformation gradient in two dimensions. At
first we prove that

(∇ · F⊤)t + (v · ∇)(∇ · F⊤) = 0. (A.30)

Indeed, we obtain from the transport of F (2.28) (without the regularizing term
κ∆F ) by taking the divergence on both sides of the transposed equation, by
using the summation convention and exchanging some indices,

∇ · (F⊤)t +∇ ·
(
(v · ∇)F⊤

)
= ∇ · (F⊤∇⊤v)

⇐⇒ ∇j(Fji)t +∇j (vl(∇lFji)) = ∇j(Fki∇kvj)

⇐⇒ ∇j(Fji)t +∇jvl(∇lFji) + vl(∇j∇lFji) = (∇jFki)∇kvj + Fki ∇j∇kvj︸ ︷︷ ︸
=∇k(∇jvj)=0

⇐⇒ ∇j(Fji)t +∇kvj(∇jFki) + vl(∇j∇lFji) = (∇jFki)∇kvj

⇐⇒ ∇j(Fji)t + vl∇l(∇jFji) = 0

⇐⇒ ∇ · (F⊤)t + (v · ∇)(∇ · F⊤) = 0.

Since the initial condition F (x, 0) = I satisfies ∇ · F (x, 0)⊤ = 0, we have that
∇ · F⊤ ≡ 0 (this actually holds true in the case where d = 3 as well).
Next, let f⊤1 , f

⊤
2 ∈ R

2 be the columns of F =
(
f⊤1 , f

⊤
2

)
. We find

∇ · F⊤ = ∇ ·

(
f1
f2

)
=

(
∇ · f1
∇ · f2

)
=

(
∇1f11 +∇2f12
∇1f21 +∇2f22

)
= 0. (A.31)

We look at the (two dimensional) curls of f⊥1 = (−f12, f11)
⊤ and f⊥2 = (−f22, f21)

⊤.
We obtain

curl f⊥1 = ∇1f11 −∇2(−f12), (A.32)

curl f⊥2 = ∇1f21 −∇2(−f22), (A.33)

where we see that these expressions vanish due to (A.31). Thus, we can represent
f⊥1 and f⊥2 as gradients of scalar-valued functions, i.e.,

f⊥1 = ∇φ1 and f⊥2 = ∇φ2. (A.34)

This yields a representation of F in terms of φ1, φ2. To this end, we have to get
back to f1, f2 by (notice that (·)⊥ rotates a vector by π

2 and to get back we have
to rotate by −π

2 )

f1 = −(∇φ1)
⊥ and f2 = −(∇φ2)

⊥, (A.35)

143



so we finally obtain (see [LLZ05, Section 2])

F =

(
−∇2φ1 −∇2φ2
∇1φ1 ∇1φ2

)
. (A.36)

It is clear that Φ := (φ1, φ2)
⊤ is volume preserving since det∇Φ = detF = 1 and

the last equality holds by assumption (this is only true without the regularizing
term κ∆F ).
A further step is to look how the transport equation for F (2.28) translates to
the variables φ1, φ2. We plug (A.36) in the transport equation and obtain for the
first column

(
−∇2(φ1)t − v1∇1∇2φ1 − v2∇

2
2φ1 +∇1v1∇2φ1 −∇2v1∇1φ1

∇1(φ1)t + v1∇
2
1φ1 + v2∇2∇1φ1 +∇1v2∇2φ1 −∇2v2∇1φ1

)

=

(
−∇2

[
(φ1)t + v1∇1φ1 + v2∇2φ1

]

∇1

[
(φ1)t + v1∇1φ1 + v2∇2φ1

]
)

+




∇2v1∇1φ1 + ∇2v2∇2φ1 +∇1v1∇2φ1︸ ︷︷ ︸
=0, since ∇1v1+∇2v2=∇·v=0

−∇2v1∇1φ1

−∇1v1∇1φ1−∇1v2∇2φ1 +∇1v2∇2φ1︸ ︷︷ ︸
=0

−∇2v2∇1φ1




=




−∇2

[
(φ1)t + v · ∇φ1

]
+∇2v1∇1φ1 −∇2v1∇1φ1︸ ︷︷ ︸

=0

∇1

[
(φ1)t + v · ∇φ1

]
−∇1v1∇1φ1 −∇2v2∇1φ1︸ ︷︷ ︸
=0, since ∇1v1+∇2v2=∇·v=0




=

(
−∇2

[
(φ1)t + v · ∇φ1

]

∇1

[
(φ1)t + v · ∇φ1

]
)

= ∇⊥
[
(φ1)t + v · ∇φ1

]
= 0.

For the second column, we get analogously

(
−∇2(φ2)t − v1∇1∇2φ2 − v2∇

2
2φ2 +∇1v1∇2φ2 −∇2v1∇1φ2

∇1(φ2)t + v1∇
2
1φ2 + v2∇2∇1φ2 +∇1v2∇2φ2 −∇2v2∇1φ2

)

= ∇⊥
[
(φ2)t + v · ∇φ2

]
= 0.

From these calculations, we see that for i = 1, 2 the term (φi)t + v · ∇φi is equal
to a constant that may be time-dependent, i.e.,

(φi(x, t))t + v(x, t) · ∇φi(x, t) = ci(t) ∀x ∈ Ω, i = 1, 2. (A.37)

We are allowed to set ci(t) ≡ 0 by the following argument: due to the special form
(A.36) of F , addition of time-dependent constants to the φi’s does not matter,
i.e., we generate the same F with φ̃i = φi + c̃i(t). We plug φ̃i into (A.37) and
obtain

(φ̃i(x, t))t + c̃′i(t) + v(x, t) · ∇φ̃i(x, t) = ci(t) ∀x ∈ Ω, i = 1, 2. (A.38)

Here, we can set c̃′i(t) = ci(t) or equivalently (up to a constant) c̃i(t) =
∫ t

0 ci(s) ds.
In other words, we are able to find a time-dependent constant c̃i(t) that cancels
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ci(t). Thus, we can set ci(t) ≡ 0.
Finally, the transport equations for φi read

(φi)t + v · ∇φi = 0 i = 1, 2. (A.39)

Next, we look at the regularization term κ∆F . Again, we use the representation
(A.36) and obtain for the Laplace term

∆F =

(
−(∇2

1∇2φ1 +∇3
2φ1) −(∇2

1∇2φ2 +∇3
2φ2)

∇3
1φ1 +∇2

2∇1φ1 ∇3
1φ1 +∇2

2∇1φ1

)

=

(
−∇2(∇

2
1φ1 +∇2

2φ1) −∇2(∇
2
1φ2 +∇2

2φ2)
∇1(∇

2
1φ1 +∇2

2φ1) ∇1(∇
2
1φ1 +∇2

2φ1)

)

=

(
−∇2∆φ1 −∇2∆φ2
∇1∆φ1 ∇1∆φ2

)

=
(
∇⊥∆φ1 ∇⊥∆φ2

)
. (A.40)

From this calculation and the fact that addition of time-dependent constants to
the φi does not affect ∆F , too, we see that the same arguments as above can
be applied to the regularized transport equation (2.99’) for F . So, we get the
regularized transport equations for φi

(φi)t + v · ∇φi = κ∆φi i = 1, 2. (A.41)

Now, we calculate the stress tensor (or its divergence) in terms of the variables
θ, φ1 and φ2. We first plug (A.29) into the first part of the stress tensor (2.97)
and obtain

∇M ⊙∇M

=

(
sin2 θ(∇1θ)

2 + cos2 θ(∇1θ)
2 sin2 θ(∇1θ∇2θ) + cos2 θ(∇1θ∇2θ)

sin2 θ(∇1θ∇2θ) + cos2 θ(∇1θ∇2θ) sin2 θ(∇2θ)
2 + cos2 θ(∇2θ)

2

)

=

(
(∇1θ)

2 ∇1θ∇2θ

∇1θ∇2θ (∇2θ)
2

)

= ∇θ ⊗∇θ. (A.42)

For the second part of the stress tensor (2.97) we rewrite ∇ · (FF⊤) at first (c.f.
[LLZ05]):

∇ · (FF⊤)

= ∇ ·

(
(∇2φ1)

2 + (∇2φ2)
2 −∇2φ1∇1φ1 −∇2φ2∇1φ2

−∇2φ1∇1φ1 −∇2φ2∇1φ2 (∇1φ1)
2 + (∇1φ2)

2

)

= ∇ ·

((
(∇2φ1)

2 −∇2φ1∇1φ1
−∇2φ1∇1φ1 (∇1φ1)

2

)
+

(
(∇2φ2)

2 −∇2φ2∇1φ2
−∇2φ2∇1φ2 (∇1φ2)

2

))

= −∇ · (∇φ1 ⊗∇φ1 +∇φ2 ⊗∇φ2) . (A.43)

So, we can rewrite the equation of motion based on the previous calculation as
follows:

vt + (v · ∇)v +∇p+ 2A∇ · (∇θ ⊗∇θ)

+ σel∇ · (∇φ1 ⊗∇φ1 +∇φ2 ⊗∇φ2) = ν∆v. (A.44)
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At this point, we summarize the model for the simplified setting in two dimen-
sions. The equations read

vt + (v · ∇)v +∇p+ 2A∇ · (∇θ ⊗∇θ)

+ σel∇ · (∇φ1 ⊗∇φ1 +∇φ2 ⊗∇φ2) = ν∆v, (A.45)

∇ · v = 0, (A.46)

(φi)t + v · ∇φi = κ∆φi, i = 1, 2, (A.47)

θt + (v · ∇)θ = 2A∆θ, (A.48)

in Ω× (0, t∗) ⊂ R
2 × R with boundary conditions (Φ = (φ1, φ2)

⊤)

v = 0 on ∂Ω× (0, t∗), (A.49)

Φ = 0 on ∂Ω× (0, t∗), (A.50)

∂θ

∂n
= 0 on ∂Ω× (0, t∗) (A.51)

and initial conditions

v(x, 0) = v0(x), ∇ · v0(x) = 0 in Ω, (A.52)

Φ(x, 0) = Φ0(x) in Ω, (A.53)

θ(x, 0) = θ0(x) in Ω. (A.54)

We obtain the following existence result of weak solutions for the above two-
dimensional system:

Theorem 37. For any T > 0, v0 ∈ H, Φ0(x) ∈ H1(Ω;R2) and θ0 ∈ H1(Ω;R)
the system (A.45)–(A.54) has a weak solution (v, φ1, φ2, θ) in Ω× (0, T ).

Proof. The proof of Theorem 37 follows from the proof of Theorem 9 presented
in Section 3.1.

We note further, that the 2D model (A.45)–(A.54) is important to study spe-
cial solutions. We already started the discussion on these special solutions with
Carlos Garćıa-Cervera and Chun Liu within the joint DAAD project with Anja
Schlömerkemper, which we highlighted as an open problem in Chapter 4.
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A.6 On an L2 basis in the Galerkin approximation for the
magnetization

In this appendix, we give some more details about the basis used in the proofs
of Lemma 17 and Lemma 26.
We have that {ηi}

∞
i=1 ⊂ C∞(Ω;R3) satisfies





∆2ηi + ηi = µ̃iηi in Ω,
∂ηi
∂n

= 0 on ∂Ω,
∂∆ηi
∂n

= 0 on ∂Ω,

for 0 < µ̃1 ≤ µ̃2 ≤ · · · ≤ µ̃n ≤ · · · with µ̃n
n→∞
−−−→ ∞. This set of func-

tions is an orthonormal basis of L2(Ω;R3), which can be shown by means of the
Hilbert-Schmidt theorem (see, e.g., [RR04, Theorem 8.94]), similar to [Eva02,
Section 6.5.1].
Furthermore, {ηi}

∞
i=1 is an orthogonal basis of H2

n(Ω;R
3), which is a closed sub-

space of H2(Ω;R3). We equip it with the scalar product

((f, g)) := (f, g)L2(Ω) + (∆f,∆g)L2(Ω) :=

∫

Ω
f · g dx+

∫

Ω
∆f ·∆g dx.

The induced norm ‖| · ‖| is equivalent to the usual norm ‖ · ‖H2 .
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[Gar07] C.J. Garćıa-Cervera, Numerical micromagnetics: a review, Bol. Soc.
Esp. Mat. Apl., S~eMA 39 (2007), 103–135.
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hosting me several times at PSU, PA, USA, and UCSB, CA, USA, respectively,
for precious discussions and their ongoing help during our project.
Moreover, I thank Prof. Dr. Chun Liu for being the second reviewer of this
thesis, for which he established the basis during his Giovanni Prodi professorship
in summer 2012 at the University of Würzburg.
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