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We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28SiC) and
reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry
of this spin-3=2 color center. These terms give rise to additional spin transitions, which would be otherwise
forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the
photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-

optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100 nT=
ffiffiffiffiffiffi
Hz

p

within a volume of 3 × 10−7mm3 at room temperature and demonstrate that this contactless method is
robust at high temperatures up to at least 500 K. As our approach does not require application of radio-
frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of

3 mm3, the projection noise limit is below 100 fT=
ffiffiffiffiffiffi
Hz

p
.
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I. INTRODUCTION

Vacancy-related color centers in the CMOS-compatible
material silicon carbide (SiC) are promising for chip-scale
quantum technologies [1–9] based on ensembles [10–22]
as well as on single centers [23–28]. Similar to the spin
S ¼ 1 nitrogen-vacancy (NV) defect in diamond—which
has become a standard solid-state system for the application
of quantum sensing under ambient conditions [29–31]—
the silicon vacancy (VSi) in SiC possesses selectively
addressable spin states through optically detected magnetic
resonance (ODMR) [4]. Unlike the spin-1 defects, the
higher half-integer spin S ¼ 3=2 of VSi [13,32] provides
additional degree of freedom [33] and functionality [21],
but these are usually unutilized. A major obstacle is that the
structure of high-spin centers, being far more complicated,
is not yet known. The level fine structure is the key to
understanding spin dynamics and relaxation processes,
which set limits for the performance of potential devices.

Here, we reveal the fine structure of the VSi ground and
excited states (GS and ES, respectively) in external mag-
netic fields. We show that the C3v point group of the VSi
defect gives rise to additional terms in the spin
Hamiltonian, which have not been considered so far.
Particularly, the trigonal pyramidal symmetry of the VSi
defect enables spin transitions with a change of the spin
projection ΔmS ¼ �2. As compared to the commonly
studied spin transitions with ΔmS ¼ �1, they are induced
by counter circularly polarized radiation and their energies
shift with twice the slope in a magnetic field. Moreover, we
observe two GS level anticrossings (LAC) between the
mS ¼ −3=2 and both mS ¼ −1=2 (GSLAC-1) and mS ¼
þ1=2 (GSLAC-2) spin sublevels. The GSLAC-2 can
fundamentally occur for color centers with the spin
S ≥ 3=2 only. We develop a theory of the VSi fine structure,
which precisely takes into account the real atomic arrange-
ment of the vacancy and quantitatively describes the
experimental findings. The photoluminescence (PL) inten-
sity demonstrates resonancelike behavior in the vicinity of
LACs, and the sharpest resonance is detected for GSLAC-
2, determined by the parameters related to the trigonal
pyramidal symmetry of the VSi center. In the following, we
show that this optical phenomenon can be used to measure
dc magnetic fields without the need to apply radio-
frequency (rf) fields and we demonstrate sub-100-nT
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resolution within sub-1000 μm3. The effect is robust up to
at least 500 K, suggesting a simple, contactless method to
monitor weak magnetic fields in a broad temperature range.
Our approach is easily scalable, and for a probe volume

on the order of 1 mm3 with improved efficiency of optical
pumping and light collection, we expect the magnetic field
sensitivity to be about 100 fT per square root of Hz. While
coming close to the sensitivity of other benchmark chip-
scale magnetic field sensors [34,35], this technique relies
neither on rf fields, as for the NV defects in diamond [34],
nor on vapor heating, as for the microfabricated rubidium
cells [35]. Furthermore, the proposed method is not
restricted to magnetic sensing and can potentially be
extended for radio-frequency-free sensing of other physical
quantities, particularly temperature and strain.

II. EXPERIMENT

In natural SiC, the ODMR spectra of the VSi defects are
affected by the hyperfine interaction with the 29Si-isotope
nuclear spin I ¼ 1=2 [13,36]. In order to elude this
interaction, we use isotopically purified SiC with above
99.0% of 28Si nuclei with I ¼ 0. To obtain such a crystal,
we first synthesize polycrystalline SiC with the use of
silicon and carbon powders, the former being enriched with
the 28Si isotope. The polycrystalline substance is then used
as a source for the growth of 4H-28SiC crystals by the
sublimation method in a tantalum container [37]. The
growth is performed in vacuum on 4H-SiC substrates at
a temperature of 2000 °C. The growth rate is approximately
0.25 mm=h. Afterwards, we polish out the substrate,
obtaining the sample with a thickness of about 500 μm.
In order to introduce the silicon vacancies, the sample is
irradiated with neutrons in a nuclear reactor with a fluence
of 1 × 1016 cm−2, resulting in a nominal VSi density of
2 × 1014 cm−3 [27].
To optically address the VSi spin states, we use a 785-nm

laser diode. The optical excitation followed by the spin-
dependent recombination leads to a preferential population
of the mS ¼ �1=2 sublevels along the crystal symmetry
c-axis [1]. The PL from VSi occurs in the near-infrared
spectral range [38], and it is selected and detected using a Si
photodiode and a 900-nm long-pass filter. The PL intensity
is spin dependent: in the case of the VSi center we study
here—the so-called V2 center—it is higher when the
system is in the mS ¼ �3=2 states and lower when the
system is in the mS ¼ �1=2 states [3,16,36]. The laser
beam is focused onto the sample using a 20× optical
objective (N:A: ¼ 0.3), optimized for the near-infrared
light, and the PL is collected through the same objective.
The nominal excitation volume is 330 μm3. To additionally
manipulate the VSi spin states, we apply a rf field, provided
by a signal generator. The rf is then amplified, guided to a
500-μm-thick stripline and terminated with a 50-Ω imped-
ance. A static magnetic field can be applied in an arbitrary

direction, using a 3D coil arrangement in combination with
a permanent magnet. The field direction and strength are
calibrated using a 3D Hall sensor.
In the absence of an external magnetic field, the VSi GS

is split in two Kramers degenerate spin sublevels mS ¼
�3=2 and mS ¼ �1=2 with the zero-field splitting 2D ¼
70 MHz [16,36]. When an external magnetic field B is
applied parallel to the c-axis, the spin states are further split
and the splitting is linear with Bz (z∥c), as schematically
shown in Fig. 1(a). A resonant rf field induces magnetic
dipole transitions between the spin-split sublevels
ð�1=2 → �3=2Þ, resulting in a change of the PL intensity
(ΔPL). The room-temperature evolution of the ODMR
spectrum (i.e., the rf-dependent ODMR contrast ΔPL=PL)
with the external magnetic field Bz is presented in Fig. 1(b).
We first discuss the case of Bz ¼ 0 [Fig. 1(c)]. At a low rf

power of 9 dBm, we detect a single ODMR line at a
frequency ν0 ¼ 70 MHz, which is equal to 2D in the GS.
At much higher rf power (40 dBm), we detect another
ODMR line at a frequency of 410 MHz. Below, we
establish that it corresponds to the zero-field splitting
2D0 in the ES [Fig. 1(a)]. A similar resonance was observed
previously [16] and ascribed to the Frenkel pair [39].
Upon application of a magnetic field Bz, one of the rf-

driven transitions is ð−1=2 → −3=2Þ with ΔmS ¼ −1, and
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FIG. 1. (a) The GS (2D ¼ 70 MHz) and ES (2D0 ¼ 410 MHz)
spin sublevels of the VSi point defect in external magnetic field
Bz∥c, assuming a weak perpendicular component B⊥ ≪ Bz. The
vertical arrows indicate rf-driven spin transitions, their thick-
nesses mirroring the contrasts of the corresponding ODMR lines.
The magnetic field evolutions of the GS and ES are shown
schematically, i.e., not to scale. (b) Magnetic field versus
frequency evolution of the VSi ODMR signal recorded at room
temperature and at low rf power. The solid and dashed lines are
the positions of the ODMR peaks calculated for the ΔmS ¼ �2
transitions in the GS and ΔmS ¼ �1 transitions in the ES,
respectively. (c) Low-rf-power (9 dBm) and high-rf-power
(40 dBm) ODMR spectra in zero magnetic field.
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the corresponding ODMR line ν1 ¼ jν0 − g∥μBBz=hj
shifts linearly with Bz. Another rf-driven transition is
ðþ1=2 → þ3=2Þ with ΔmS ¼ þ1, and the corresponding
ODMR line ν2 ¼ ν0 þ g∥μBBz=h shifts linearly towards
higher frequencies. These two transitions are indicated by
the thick arrows in Fig. 1(a) and the corresponding ODMR
lines are clearly seen in Fig. 1(b), being in agreement with
the previous results [16,21]. Remarkably, at a magnetic
field BG1 ¼ hν0=g∥μB ¼ 2.5 mT, the frequency of the ν1
ODMR line [Fig. 1(b)] would tend to zero due to the level
crossing in the ideal case. However, there is a gap opening
at the crossing point caused by tiny perturbations of the
transverse magnetic field component and/or nuclear field,
resulting in GSLAC-1 [Fig. 1(a)].
We analyze the relative contrast of the ν1 and ν2 ODMR

lines as a function of Bz and observe two pronounced dips
[Fig. 2(a)]. One of them is at BG1 ¼ 2.5 mT (i.e., exactly at
GSLAC-1) and the other one is at BE1 ¼ 15 mT. The
dashed lines in Fig. 1(b) represent the calculated evolution
of the ODMR spectrum associated with the 2D0 ¼
410 MHz resonance assuming the effective g-factor
g∥ ≈ 2.0. As expected, the ESLAC-1 occurs at BE1. We
hence can reconstruct the ES spin structure, as shown in
Fig. 1(a). It agrees with the conclusion drawn from another
recent experiment [20]. The observation of the dip at 15 mT
in the ν1 rather than in the ν2 ODMR signal unambiguously

determines the order of the spin sublevels in the ES; i.e., the
mS ¼ �3=2 state has higher energy than the mS ¼ �1=2
state (D0 > 0).
The appearance of dips in the ODMR signal of Fig. 2(a) is

explained by modification of the optical pumping cycle in
the vicinity of LACs either in the GS or ES, which, in turn,
results in a change of the PL intensity, as previously reported
for some other systems and techniques [40–45]. This
suggests that LACs can be detected evenwithout application
of rf, simply by monitoring the PL intensity as a function of
Bz. A schematic of this experiment is presented in the inset
of Fig. 2(b). In order to increase the sensitivity, we modulate
the dc magnetic field Bz by additionally applying a small
oscillating field ΔB cosωt from the Helmholtz coils. The
correspondingly oscillating PL signal detected by a photo-
diode is locked in, mirroring the first derivative of the PL on
Bz. The experimental curve, recorded at a modulation
frequency ω=2π ¼ 5 kHz with a modulation depth
ΔB ¼ 83 μT, is presented in Fig. 2(b). Surprisingly, in
addition to the GSLAC-1, we detect a pronounced reso-
nancelike behavior around BG2 ¼ 1.25 mT.
In order to understand the origin of two GSLACs, we

measure the evolution of the ODMR spectrum as a function
of Bz with higher precision, in particular, with compensated
transverse components of the geomagnetic field, Bx ≈
By ≈ 0� δb μT. The compensation uncertainty depends
on Bz and is given by the alignment uncertainty δθ ≈ 1° as
δb ¼ Bz sin δθ. For instance, at the GSLAC-2, we have
δb ¼ 22 μT. The zoom-in of the spectral evolution in the
vicinity of GSLAC-1 and GSLAC-2 is shown in Fig. 3(a).
Beside the ν1 line, the ODMR spectrum contains an
additional (ν3) line, corresponding to the spin transition
between themS ¼ þ1=2 andmS ¼ −3=2GSs [sketched by
a thin arrow in Fig. 1(a)]. The turning points of the ν1 and
ν3 lines correspond to GSLAC-1 and GSLAC-2, respec-
tively. The corresponding spectral shifts of the turning
points νAC1 and νAC3 , which are direct measures of the
splitting values, are clearly detectable in Fig. 3(b) for
various perpendicular components B⊥ of the magnetic
field. The level splittings at both GSLAC-1 and
GSLAC-2 grow linearly with B⊥, but with different slopes
[Fig. 3(c)]. We emphasize that the amplitude of the ν3 line
would rapidly tend to zero and the GSLAC-2 would
disappear in an uniaxial model of the defect for magnetic
fields being only slightly misaligned from the c axis and,
hence, should be vanishingly small in the experiment,
assuming this model. Below, we present the exact calcu-
lation of the relative spin transition rates. Contrarily, the ν3
ODMR line is clearly detectable in Fig. 3(a) with the
relative strength of the ODMR transition ΔPL3=ΔPL1 ¼
0.12� 0.02, and the most pronounced feature in Fig. 2(b)
relates to the GSLAC-2.
While the magnetic disorder caused by hyperfine inter-

action with the residual 29Si and 13C nuclei or inaccurate
orientation of the external magnetic field along the c-axis
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FIG. 2. (a) Relative strength of the ν1 and ν2 ODMR transitions
(ΔPL1=ΔPL2) as a function of the magnetic field B applied
parallel to the c axis of 4H-SiC. The arrows indicate the positions
of GSLAC-1 (2.5 mT) and ESLAC-1 (15 mT). The vertical
dashed lines correspond to the expected positions of GSLAC-2
(lower field) and ESLAC-2 (higher field). (b) Lock-in detection
of the PL variation ΔPL=PL as a function of the dc magnetic field
Bz, where ΔPL is caused by the application of an additional weak
oscillating magnetic field ΔB; i.e., Bz þ ΔB cosωt with ΔB ¼
83 μT and ω=2π ¼ 5 kHz. The sharp resonancelike signal at
1.25 mT corresponds to GSLAC-2. Resonant rf field is not
applied. Upper inset: A scheme of the experiment. Lower inset: A
detailed measurement in the magnetic field range corresponding
to ESLAC-2.
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can, in principle, give rise to GSLAC-2 and the ν3 line, we
conclude that they are not responsible for the above effects.
Calculations (see Appendix A) yield that, for the average
nuclear field seen by the VSi centers of about ðh=2μBÞ ×
1 MHz [32,46] or magnetic field misalignment of 1°, the
contrast ratio between the ν3 and ν1 ODMR lines is
estimated to be 10−3, which is by 2 orders of magnitude
lower than that observed in our experiments. Moreover, the
amplitude of the ν3 line is the same in the natural (presented
below) and isotopically purified SiC samples, while the
abundance of the spin-carrying 29Si nuclei differs by a
factor of 5. Considering these results, a whole new
approach to the spin structure of the VSi defect is needed
and is thoroughly assembled below.

III. SILICON VACANCY FINE STRUCTURE

Our findings can be explained in the framework of the
spin Hamiltonian, which precisely takes into account the
real microscopic C3v group symmetry of the defect [47].
The effective Hamiltonian to the first order in the magnetic
field can be presented as a sum of three contributions,

H ¼ H0 þH1∥ þH1⊥; ð1Þ

where H0 is the Hamiltonian in zero magnetic field, and
H1∥ ∝ Bz and H1⊥ ∝ B⊥ ¼ ðBx; ByÞ are the magnetic-
field-induced terms. The Hamiltonians H0, H1∥, and
H1⊥ can be constructed applying the theory of group
representations [48]; see Appendix B for details. In the C3v
group, the magnetic field component Bz and the spin
operator Sz transform under the irreducible representation
A2, the pairs of the in-plane components ðSx; SyÞ and
ðBx; ByÞ transform under the representation E, and the
Hamiltonian must be invariant (representation A1). Using
the multiplication table for the representations, one can
construct all possible invariant combinations of the mag-
netic field components and the first, second, and third
powers of the spin operator components. The fourth and
higher powers of the spin-3=2 operator can be reduced to
the operators of lower powers. Finally, taking into account
that the Hamiltonian must be invariant with respect to the
time reversal and, therefore,H0 is even in S whileH1∥ and
H1⊥ are odd in S, we obtain

H0 ¼ D

�
S2z −

5

4

�
;

H1∥ ¼
�
g∥Sz þ g2∥Sz

�
S2z −

5

4

�
þ g3∥

S3þ − S3−
4i

�
μBBz;

H1⊥ ¼ g⊥μBS⊥ ·B⊥ þ 2g2⊥μB
�
S⊥ · B⊥; S2z −

3

4

�

þ g3⊥μB
fS2þ; SzgBþ − fS2−; SzgB−

2i
: ð2Þ

Here, Sx, Sy, Sz are the spin-3=2 operators, S⊥ ¼ ðSx; SyÞ,
S� ¼ Sx � iSy, B� ¼ Bx � iBy, fA; Bg ¼ ðABþ BAÞ=2
is the symmetrized product, z is parallel to the c axis, x
and y are the perpendicular axes with y lying in a mirror
reflection plane, and μB is the Bohr magneton. The six g-
factors introduced in Eq. (2) are linearly independent in a
structure of the C3v point group. They can be determined
from experimental data, as we do below, or obtained from
ab initio calculations, which is out of the scope of this
paper. The difference g∥ − g⊥ as well as the nonzero values
of D, g2∥, and g2⊥ are due to nonequivalence of the z axis
and the perpendicular axes. The g-factors g3∥ and g3⊥
emerge due to the trigonal pyramidal symmetry of the
defect. The Hamiltonian Eq. (2) can also be presented in the
equivalent matrix form (see Appendix C).
The parameters of the Hamiltonian Eq. (2) can be

determined from the experimental data. First, from the
ODMR lines in the parallel Bz [Fig. 1(b)] and perpendicular
Bx (Appendix D) magnetic fields, we confirm that to the
second digit accuracy g∥, g⊥ ≈ 2.0, in agreement with
earlier studies [36], and jg2∥j, jg2⊥j ≪ 1. Then, using a
procedure that is independent of the values of g∥ and g⊥, we
estimate the ratios g2∥=g∥ and g2⊥=g⊥ using Eqs. (D3) and
(D5) (see Appendix D).
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FIG. 3. (a) Evolution of the ν1 and ν3 ODMR lines in the
vicinity of GSLACs as a function of the magnetic field Bz. The
perpendicular components of the geomagnetic field are compen-
sated. (b) Same as (a), but measured for nonzero Bx. The vertical
arrows indicate the positions of the turning points νAC1 and νAC3 ,
which are a direct measure of the level splittings at GSLAC-1 and
GSLAC-2, respectively. (c) The GSLAC splittings as a function
of Bx. The solid lines are calculations as explained in the text.
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Furthermore, the Hamiltonian Eq. (2) describes the
opening of spectral gaps due to the perpendicular field
component B⊥ at GSLAC-1 and GSLAC-2. The corre-
sponding splittings Λ1 and Λ2 scale linearly with the
perpendicular field for μBB⊥ ≪ D. Up to linear terms in
g2∥, g2⊥ and quadratic terms in g3∥, g3⊥, the splittings in
small fields are given by

Λ1 ≈
ffiffiffi
3

p �
1þ g2⊥

g⊥
−
g3∥g3⊥
g∥g⊥

−
g23∥
8g2∥

�
g⊥μBB⊥;

Λ2 ≈
ffiffiffi
3

p �
g3⊥
g⊥

þ g3∥
2g∥

�
g⊥μBB⊥: ð3Þ

The GSLAC-2 emerges due to the trigonal asymmetry of
the silicon vacancy, and the corresponding energy splitting
is expected to be smaller than that in the GSLAC-1,
Λ2 < Λ1. Exactly such a behavior is observed in the
experiment of Fig. 3. We fit the positions of the turning
points as hνAC1;3 ¼ ½Λ2

1;2ðBxÞ þ Λ2
0�1=2, where Λ0=h ¼

2.5 MHz accounts for finite ODMR linewidth and inho-
mogeneity. From the best fit [the solid lines in Fig. 3(c)], we
first obtain g3⊥ þ g3∥=2 ¼ 0.5� 0.2 using the data for Λ2

and then estimate the value g3⊥ − g3∥=2 ¼ −0.1� 0.4
using the data for Λ1. All the g-factors of the
Hamiltonian Eq. (2) are summarized in Table I. It is
instructive to compare the results with a high-symmetry
defect of the Td point group, where one expects the relation
g3∥=g3⊥ ¼ 2=3 (see Appendix C).
We are now in a position to explain the appearance of the

ν3 and ν4 ODMR lines in Figs. 1(b), 3(a), and 3(b), even
when B⊥ ¼ 0. It follows from the Hamiltonian Eq. (2) that
the matrix elements of the allowed magnetic dipole
transitions have the form

M∓3=2;∓1=2 ¼
ffiffiffi
3

p

2

�
1þ g2⊥

g⊥

�
g⊥μBB1;σ∓ ; ð4Þ

M∓3=2;�1=2 ¼ −i
ffiffiffi
3

p

2

�
g3⊥
g⊥

þ g3∥
2g∥

�
g⊥μBB1;σ� ; ð5Þ

where B1 is the rf magnetic field and B1;σ� ¼ B1;x ∓ iB1;y.
The transitions ðþ1=2 → −3=2Þ and ð−1=2 → þ3=2Þ,
responsible for the ν3 and ν4 ODMR lines, respectively,
occur due to the trigonal pyramidal symmetry of the spin-
3=2 defect and are induced by the σþ and σ− circularly

polarized rf radiation. There are two microscopic contri-
butions to these transitions: (i) coupling of the mS ¼ þ3=2
and mS ¼ −3=2 states by the longitudinal static field Bz
(parameter g3∥) [49,50] followed by the rf-driven transi-
tions with Δm ¼ �1 and (ii) direct coupling of the mS ¼
þ3=2 and mS ¼ −1=2 as well as mS ¼ −3=2 and mS ¼
þ1=2 states by the transverse rf magnetic field (parameter
g3⊥). Far from LACs, the ratio of the ν3 and ν1 ODMR
line intensities for the linearly polarized rf field is given
by jM−3=2;1=2j2=jM−3=2;−1=2j2 ≈ ðg3⊥ þ g3∥=2Þ2=4. Using
g3⊥ þ g3∥=2 ¼ 0.5 from the fit of νAC3 in Fig. 1(c), we
obtain for the relative intensity 0.06. It is somewhat smaller
than the measured value of ΔPL3=ΔPL1 ≈ 0.1. A detailed
comparison of the experimental and theoretical ODMR
contrasts requires the study of the linewidths and resonance
shapes in the vicinity of GSLACs, which is beyond the
scope of the present paper. Given this uncertainty, we
find the agreement between the theory and experiment
satisfactory.

IV. ALL-OPTICAL MAGNETOMETRY

Having established the fine structure, we propose to use
its unique properties for all-optical magnetometry. The
experimental procedure is straightforward and requires no
rf field. First, we tune our system in the GSLAC-2,
characterized by the narrowest resonance in Fig. 2(b).
We then monitor the PL intensity through the lock-in in-
phase photovoltageUX, which is simply proportional to the
deviation of the measured magnetic field from the bias field
BG2 (provided this deviation is small) [Fig. 4(a)]. By
applying sub-μT magnetic fields, we calibrate the lock-in
signal UX=ðBz − BG2Þ ¼ 39 μV=μT [Fig. 4(b)]. The quad-
rature component UY of the lock-in signal, being

TABLE I. The g-factors in Hamiltonian Eq. (2) which, together
with the zero-field splitting 2D ¼ 70 MHz and g∥ ≈ g⊥ ≈ 2.0,
describe the GS fine structure of the silicon vacancy (V2 center in
4H-SiC) in a magnetic field.

g2∥ g2⊥ g3⊥ þ g3∥=2 g3⊥ − g3∥=2
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FIG. 4. (a) Lock-in detection of the PL variation in the vicinity
of GSLAC-2 (BG2 ¼ 1.25 mT) under application of a weak
oscillating magnetic field, recorded at different temperatures.
(b) The in-phase UX and quadrature UY components of the lock-
in photovoltage (left axis) for different magnetic fields (right
axis), increased in sub-μT steps every 125 s. The horizontal line is
theUY mean value. The maximum field sensitivity is obtained for
the modulation depth ΔB ¼ 200 μT and modulation frequency
ω=2π ¼ 511 Hz. Temperature in (b) is T ¼ 300 K.
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independent of the magnetic field, is used to measure the
noise level. Each data point in Fig. 4(b) corresponds to an
integration time of 4s, and the dc magnetic field sensitivity
is obtained to be δBz ¼ 87 nT=

ffiffiffiffiffiffi
Hz

p
. Indeed, magnetic

fields below 100 nT can be clearly resolved in Fig. 4(b).
We use an isotopically enriched crystal to exclude

possible contributions related to the hyperfine interaction
with 29Si nuclei to the spin Hamiltonian of Eq. (2). Figure 5
demonstrates that the proposed all-optical magnetometry
can also be performed using SiC with natural isotope
abundance. By alignment of the bias magnetic field along
the symmetry axis with an accuracy better that 1° [inset of
Fig. 5(a)], it is possible to clearly separate the spin-carrying
isotope contributions. The GSLAC-2 is generally narrower
and less sensitive to the magnetic field misalignment in
comparison to the GSLAC-1, as can be seen in Fig. 5(b). It
is indeed expected that Δ2 < Δ1 because the peak-to-peak
width Δ, as determined in Fig. 5(a), scales with the LAC
splitting Λ. By inserting the experimentally determined
g-factors of Table I into Eq. (3), one obtains Λ2 < Λ1.
The dynamic range of the proposed magnetometry is

relatively small, several tens of μT. It can be extended by
applying a transverse magnetic field at the expense of
sensitivity. On the other hand, there are many applications
where large dynamic range is not required [51]. We would
like to clarify that the proposed magnetometry is highly
sensitive to one particular orientation of the magnetic field
(Bz) and, therefore, designed for applications where weak
magnetic variations in a certain direction must be measured

with high accuracy. The change of the sensitivity
(∝Δ2) with the nonzero transverse field component B⊥
can be found from the inset of Fig. 5(a). Using θ ¼
arcsinðB⊥=BG2Þ, we empirically obtain for small angles

δBz ¼ δBð0Þ
z ð1þ 7.2B⊥=BG2Þ. Here, δBð0Þ

z is the ideal
sensitivity for a perfectly aligned magnetic field. For B⊥ ¼
22 μT (θ ≈ 1°), the relative change of the sensitivity is 13%.
In order to align the magnetometer, it is necessary to
conduct several preliminary measurements of magnetic
field sweeps around BG2 in differently oriented bias
magnetic fields, until the maximal slope is obtained. An
advantage is that the LAC can be observed even for short
spin lifetimes which occur, e.g., in excited states. The
detection of the ODMR signal in those conditions may be
difficult because it would require the application of
highly intense rf fields. On the contrary, a variation of
the PL intensity at ESLAC when the ODMR signal is
not detectable has been clearly demonstrated using
GaAs=AlGaAs superlattices [42]. Our approach is robust
and can be applied in a broad temperature range up to
520 K [Fig. 4(a)]. A crucial factor for field sensitivity is the
PL intensity and stability of the pump laser. The latter factor
can be compensated using a balanced detection scheme. By
increasing the irradiation fluence, the VSi density can be
increased by more than 2 orders of magnitude [27], and the
projected sensitivity in this case is a few nT=

ffiffiffiffiffiffi
Hz

p
within

the same volume of 330 μm3. Alternatively, one can use
light-trapping waveguides in bigger samples [34]. For a
waveguide of 3 mm × 3 mm × 300 μm with improved
collection efficiency by 3 orders of magnitude [34] and
a VSi density of 4 × 1016 cm−3 [27], we estimate the
projection noise limit to be below 100 fT=

ffiffiffiffiffiffi
Hz

p
. In order

to realize such an extremely high sensitivity, drift-com-
pensation schemes [31,34] and magnetic noise screening
similar to that usually used for optical magnetometry based
on vapor cells [35] are necessary. The use of completely
spin-free samples of high crystalline quality, containing
28Si and 12C isotopes only, can lead to further improvement
due to the suppression of magnetic fluctuations caused by
nuclear spins. In addition, rhombic SiC polytypes (15R)
with even lower magnetic fields corresponding to the
GSLACs [46] may have advantages compared to hexagonal
4H-SiC.
In conclusion, we reconstruct for the first time the fine

structure of the VSi center in 4H-SiC, quantifying its
contributions. The presence and field-dependent behavior
of two GSLACs can now be theoretically described and
predicted. Our results on the spin Hamiltonian as well as
the approach to study the fine structures of localized states
are general. They can be directly applied for other spin-3=2
systems with the trigonal pyramidal symmetry known in
the solid state, such as other color centers in zinc-blende-
type crystals or Γ8-band holes in quantum dots [50]. They
can also be straightforwardly generalized to high-spin
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FIG. 5. (a) Lock-in detection of the PL variation in the vicinity
of GSLAC-2 (BG2 ¼ 1.25 mT), performed in 4H-SiC with
natural isotope abundance. Satellite resonances are due to the
hyperfine interaction with 29Si nuclei. Inset: Variation of the
peak-to-peak width as a function of the magnetic field orienta-
tion. (b) PL variations at GSLAC-1 (at BG1) and GSLAC-2 (at
BG2) for different magnetic field orientations with respect to the
c-axis (polar angle θ). T ¼ 300 K. The nonzero peak-to-peak
width for θ ¼ 0° is ascribed to magnetic fluctuations of the
environment (nuclear spins and paramagnetic impurities) and
magnetic field alignment uncertainty (1°).
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states such as transition-metal impurities in semiconductor
structures of low spatial symmetry.
These findings are directly translated to a working

application, namely, an all-optical magnetometry with
sub-100-nT sensitivity. This is a general concept of all-
optical sensing without rf fields, as it can be used to measure
various physical quantities, such as temperature and strain,
through their effect on the zero-field splitting and hence on
the magnetic fields corresponding to LACs. An intriguing
possibility is to image the PL from a SiC wafer onto a CCD
camera to visualize magnetic fields with temporal and
spatial resolution. Our results may potentially be applied
for biomedical imaging and geophysical surveying, espe-
cially when rf fields cannot be applied.
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APPENDIX A: SPIN TRANSITIONS
IN THE UNIAXIAL MODEL

In the uniaxial approximation, the effective Hamiltonian
of a spin center has the form

H ¼ D

�
S2z −

5

4

�
þ g∥μBSzBz þ g⊥μBS⊥ · B⊥; ðA1Þ

where g∥ andg⊥ are the longitudinal and transverseg-factors,
Bz and B⊥ ¼ ðBx; ByÞ are the longitudinal and transverse
components of the magnetic field, respectively, and S is the
vector composed of the spin-3=2 operators Sx, Sy, and Sz.
The transverse component of the magnetic field caused

by inaccurate orientation of the external magnetic field
along the c axis and/or originated from hyperfine inter-
action with nuclei couples the þ1=2 and −1=2 spin states
as well as the −1=2 and −3=2 spin states, thereby allowing
the ν3 ODMR line. Straightforward perturbation-theory
calculations show that the ratio between the intensities of
the ν3 and ν1 ODMR lines determined by the corresponding
matrix elements of the transitions has the form

jM−3=2;þ1=2j2
jM−3=2;−1=2j2

¼
�

2D
2D − g∥μBBz

g⊥B⊥
g∥Bz

�
2

: ðA2Þ

The experimental value of the relative OMDR contrast is
about 0.1. To obtain such a contrast, e.g., for g∥μBBz ¼ D,

one has to assume that B⊥=Bz ≈ 0.16, which corresponds
to an angle of approximately 10° between the total
magnetic field acting upon spin centers and the c axis or
B⊥ ≈ 0.2 mT for Bz ¼ 1.25 mT. Such a transverse mag-
netic field is an order of magnitude larger than the average
nuclear field seen by the VSi centers [46]. The precision of
the external magnetic orientation in our experiments is also
by an order of magnitude better [inset of Fig. 5(a)]. For
such a precision, the contrast ratio between the ν3 and ν1
ODMR lines is estimated from Eq. (A2) to be at most
0.001, which is by 2 orders of magnitude lower than the
experimentally determined ratio.

APPENDIX B: EFFECTIVE HAMILTONIAN
FOR THE SPIN-3=2 CENTER OF THE

C3v POINT GROUP

We construct the effective spin Hamiltonian using the
theory of group representations [48]. In the C3v point
group, there are three irreducible representations com-
monly denoted as A1, A2, and E. Accordingly, all physical
quantities can be decomposed into the irreducible repre-
sentations in accordance with their symmetry properties.
The magnetic field components Bα (α ¼ x, y, z) and all
possible linearly independent combinations of the spin
operator components Sα are decomposed into the irreduc-
ible representations as follows:

A1∶ S2z ; Sxð3S2y − S2xÞ;
A2∶ Bz; Sz; S3z ; Syð3S2x − SyÞ;
E∶ ðBx; ByÞ; ðSx; SyÞ; ðSySz;−SxSzÞ; ðSxS2z ; SyS2zÞ;

ðS2x − S2y;−2fSx; SygÞ; ð2fSx; SygSz; ðS2x − S2yÞSzÞ:
ðB1Þ

All other combinations of the spin operator components
can be expressed via the above ones, taking into account the
identity S2x þ S2y þ S2z ¼ 15=4 and the fact that the fourth
and higher powers of the spin-3=2 operator components
can be reduced to the operators of lower powers.
The effective Zeeman Hamiltonian is constructed as the

sum of all possible products of the magnetic field compo-
nents and the spin operator combinations that are invariant
with respect to (i) symmetry operations of the point group
and (ii) time reversal. Each invariant contribution is
multiplied by a prefactor that has a physical sense of an
effective g-factor component. The condition (i) implies that
the invariant products are constructed from quantities
belonging to the same irreducible representation. The
condition (ii) implies that the Zeeman Hamiltonian is
odd in S. Taking both conditions into account, we obtain
six linearly independent contributions to the Zeeman
Hamiltonian, which are given in Eq. (2).
A similar procedure based on the theory of group

representations can be applied to construct the

ALL-OPTICAL DC NANOTESLA MAGNETOMETRY USING … PHYS. REV. X 6, 031014 (2016)

031014-7



Hamiltonian describing the effect of strain on the VSi spin
center, hyperfine interaction, etc. The trigonal pyramidal
symmetry of the defect gives rise to additional terms in the
spin Hamiltonian, which are absent in the uniaxial model.

APPENDIX C: FINE STRUCTURE OF SPIN-3=2
CENTERS OF THE C3v POINT GROUP

The spin Hamiltonian given by Eqs. (1) and (2) can be
rewritten in the equivalent matrix form:

H ¼

0
BBBBBBBB@

Dþ 3
2
ð1þ g2∥

g∥
Þg∥μBBz

ffiffi
3

p
2
ð1þ g2⊥

g⊥ Þg⊥μBB− −i
ffiffi
3

p
2
g3⊥μBBþ −i 3

2
g3∥μBBzffiffi

3
p
2
ð1þ g2⊥

g⊥ Þg⊥μBBþ −Dþ 1
2
ð1 − g2∥

g∥
Þg∥μBBz ð1 − g2⊥

g⊥ Þg⊥μBB− i
ffiffi
3

p
2
g3⊥μBBþ

i
ffiffi
3

p
2
g3⊥μBB− ð1 − g2⊥

g⊥ Þg⊥μBBþ −D − 1
2
ð1 − g2∥

g∥
Þg∥μBBz

ffiffi
3

p
2
ð1þ g2⊥

g⊥ Þg⊥μBB−

i 3
2
g3∥μBBz −i

ffiffi
3

p
2
g3⊥μBB−

ffiffi
3

p
2
ð1þ g2⊥

g⊥ Þg⊥μBBþ D − 3
2
ð1þ g2∥

g∥
Þg∥μBBz

1
CCCCCCCCA
; ðC1Þ

where B� ¼ Bx � iBy ¼ B⊥e�iϕ, with ϕ denoting the
azimuthal angle of B. To derive this matrix, we use the
explicit form of the spin-3=2 matrices:

Sx ¼

0
BBBBBB@

0
ffiffi
3

p
2

0 0ffiffi
3

p
2

0 1 0

0 1 0
ffiffi
3

p
2

0 0
ffiffi
3

p
2

0

1
CCCCCCA
; ðC2Þ

Sy ¼

0
BBBBBB@

0 −i
ffiffi
3

p
2

0 0

i
ffiffi
3

p
2

0 −i 0

0 i 0 −i
ffiffi
3

p
2

0 0 i
ffiffi
3

p
2

0

1
CCCCCCA
; ðC3Þ

Sz ¼

0
BBBBB@

3
2

0 0 0

0 1
2

0 0

0 0 − 1
2

0

0 0 0 − 3
2

1
CCCCCA: ðC4Þ

1. Zeeman splitting of spin sublevels

Application of a magnetic field along the c-axis leads to
the splitting of the spin sublevels. The energies of the states
with the spin projections mS ¼ �1=2 and mS ¼ �3=2 are
given by

E�1=2 ¼ −D� 1

2
g∥;1=2μBBz; ðC5Þ

E�3=2 ¼ D� 3

2
g∥;3=2μBBz; ðC6Þ

where the effective g-factors are

g∥;1=2 ¼ g∥ − g2∥; ðC7Þ

g∥;3=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg∥ þ g2∥Þ2 þ g23∥

q
: ðC8Þ

The spin sublevel mS ¼ −3=2 crosses the spin sublevels
mS ¼ −1=2 and mS ¼ þ1=2 at the magnetic fields

BG1 ¼
4D

ð3g∥;3=2 − g∥;1=2ÞμB
ðC9Þ

and BG2 ¼
4D

ð3g∥;3=2 þ g∥;1=2ÞμB
; ðC10Þ

respectively.
As we describe in the main text, application of a small

additional perpendicular magnetic field B⊥ leads to level
anticrossings, GSLAC-1 and GSLAC-2 [Fig. 1(a)], at BG1
and BG2, respectively.
In a magnetic field applied perpendicular to the c-axis,

B⊥ ¼ ðB2
x þ B2

yÞ1=2 and Bz ¼ 0, the energy spectrum is
given by

E3=2 ¼ � 1

2
ðg⊥ − g2⊥ÞμBB⊥ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2D ∓ ðg⊥ − g2⊥ÞμBB⊥�2 þ 3½ðg⊥ þ g2⊥Þ2 þ g23⊥�μ2BB2⊥

q
;

E1=2 ¼ � 1

2
ðg⊥ − g2⊥ÞμBB⊥ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2D ∓ ðg⊥ − g2⊥ÞμBB⊥�2 þ 3½ðg⊥ þ g2⊥Þ2 þ g23⊥�μ2BB2⊥

q
: ðC11Þ
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Particularly, for small magnetic fields (μBB⊥ ≪ 2D), the
linear-in-B⊥ splitting is described by the effective g-factors:

g⊥;3=2 ¼ 0; ðC12Þ

g⊥;1=2 ¼ 2ðg⊥ − g2⊥Þ: ðC13Þ

2. Relation between g-factors in the Td point group

The spatial arrangement of carbon atoms around the
single silicon vacancy is close to the tetragonal structure,
which is described by the Td point group symmetry. The Td
group symmetry is higher than the real C3v group sym-
metry of the vacancy but properly takes into account the
threefold rotation c axis and allows for nonzero values of
both g3∥ and g3⊥. Thus, one can expect that the relation
between g3∥ and g3⊥ of the Si vacancy is close to that for the
defect of the Td point group.
In the Td point group, the effective Zeeman Hamiltonian

of the spin-3=2 defect in the cubic axes x0∥½100�, y0∥½010�,
and z0∥½001� is described by two linearly independent
parameters g and q and reads [52]

HTd
¼ gμBS ·B

þqμB

�
J3x0Bx0 þJ3y0By0 þJ3z0Bz0 −

41

20
S ·B

�
: ðC14Þ

In order to obtain the Hamiltonian in the axes x∥½11̄0�,
y∥½112̄�, and z∥½111�, relevant to the vacancy orientation,
we use the relation between the components of the vectorB
in two coordinate frames,

Bx0 ¼
1ffiffiffi
2

p Bx þ
1ffiffiffi
6

p By þ
1ffiffiffi
3

p Bz;

By0 ¼ −
1ffiffiffi
2

p Bx þ
1ffiffiffi
6

p By þ
1ffiffiffi
3

p Bz;

Bz0 ¼ −
2ffiffiffi
6

p By þ
1ffiffiffi
3

p Bz; ðC15Þ

and similar equations for the components of the spin
operator S. This yields

HTd
¼ μB

0
BBBBBBBBB@

ð3
2
g − 1

5
qÞBz

ffiffi
3

p
2
ðgþ 1

5
qÞB− −

ffiffi
3
8

q
iqBþ − 1ffiffi

2
p iqBzffiffi

3
p
2
ðgþ 1

5
qÞBþ ð1

2
gþ 3

5
qÞBz ðg − 3

10
qÞB−

ffiffi
3
8

q
iqBþffiffi

3
8

q
iqB− ðg − 3

10
qÞBþ −ð1

2
gþ 3

5
qÞBz

ffiffi
3

p
2
ðgþ 1

5
qÞB−

1ffiffi
2

p iqBz −
ffiffi
3
8

q
iqB−

ffiffi
3

p
2
ðgþ 1

5
qÞBþ −ð3

2
g − 1

5
qÞBz

1
CCCCCCCCCA
: ðC16Þ

Comparing the Hamiltonians Eqs. (C1) and (C16), we
obtain that g3∥ and g3⊥ are related to each other by

g3∥=g3⊥ ¼ 2=3 ðC17Þ

for a defect of the Td group symmetry.

APPENDIX D: EXTRACTING THE FINE
STRUCTURE PARAMETERS

To obtain the value of g2∥, we use the ODMR spectra,
recorded in the magnetic field applied parallel to the c-axis.
The linear shift of the ODMR lines is given by

ν1;2 ¼ ν0 �
�
3

2
g∥;3=2 −

1

2
g∥;1=2

�
μBBz=h

≈ ν0 � ðg∥ þ 2g2∥ þ 3g23∥=4g∥ÞμBBz=h; ðD1Þ

ν3;4 ¼ ν0 �
�
3

2
g∥;3=2 þ

1

2
g∥;1=2

�
μBBz=h

≈ ν0 � ð2g∥ þ g2∥ þ 3g23∥=4g∥ÞμBBz=h; ðD2Þ

where ν0 ¼ 2D=h. The experimentally measured ratio of
the magnetic fields corresponding to the GSLAC-2 and
GSLAC-1 points, BG2=BG1 ¼ 0.503� 0.005, independent
of the magnetic field calibration, allows us to extract the
value of g2∥=g∥ using the formula

BG2

BG1
≈
1

2
þ 3g2∥

4g∥
þ 3g23∥
16g2∥

: ðD3Þ

For the first iteration we neglect the term ∝ g23∥.
To determine g2⊥, we exploit the evolution of the

ODMR spectrum in the magnetic field B⊥ applied
perpendicular to the c axis, presented in Fig. 6(a). From
Eq. (C11), we obtain the positions of the ν1 and ν2 ODMR
lines up to B2⊥:
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ν1;2 ¼ ν0 ∓ ðg⊥ − g2⊥Þ
μBB⊥
h

þ 3½ðg⊥ þ g2⊥Þ2 þ g23⊥�
2ν0

�
μBB⊥
h

�
2

: ðD4Þ

One can represent the quadratic shift ðν2 þ ν1Þ=2 versus the
Zeeman splitting ν2 − ν1 ¼ 2ðg⊥ − g2⊥ÞB⊥=h, using the
theoretical expression

ν2 þ ν1
2

− ν0 ¼
3½ðg⊥ þ g2⊥Þ2 þ g23⊥�

8ðg⊥ − g2⊥Þ2
ðν2 − ν1Þ2

ν0

≈
�
1þ 4g2⊥

g⊥
þ g23⊥

g2⊥

�
3ðν2 − ν1Þ2

8ν0
: ðD5Þ

From the linear fit of the experimental data in Fig. 6(b), we
obtain the value of g2⊥=g⊥. Again, for the first iteration we
neglect the term ∝ g23⊥.
Finally, we use the GSLAC-1 and GSLAC-2 splittings,

described by Eq. (3) to determine the values of g3∥ and g3⊥.
By iterating the described procedure, we obtain the values
of the g-factors, as presented in Table I.

APPENDIX E: ELECTRON SPIN RESONANCE

The spin transition rates induced by the rf magnetic field
B1 are determined by the matrix elements of Hamiltonian
Eq. (C1). For a static magnetic field B∥z, the matrix
elements of the transitions up to linear in g2∥, g2⊥, g3∥, and
g3⊥ terms are given by Eqs. (4) and (5) in the main text, and
the full expressions have the form

M−3=2;−1=2 ¼
ffiffiffi
3

8

r �
ðg⊥ þ g2⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g∥ þ g2∥

g∥;3=2

s
þ g3∥g3⊥ffiffiffiffiffiffiffiffiffiffiffig∥;3=2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g∥ þ g2∥ þ g∥;3=2
p �

μBðB1;x þ iB1;yÞ; ðE1Þ

M3=2;1=2 ¼
ffiffiffi
3

8

r �
ðg⊥ þ g2⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g∥ þ g2∥

g∥;3=2

s
þ g3∥g3⊥ffiffiffiffiffiffiffiffiffiffiffig∥;3=2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g∥ þ g2∥ þ g∥;3=2
p �

μBðB1;x − iB1;yÞ; ðE2Þ

M−3=2;1=2 ¼ −i
ffiffiffi
3

8

r �
g3∥ðg⊥ þ g2⊥Þffiffiffiffiffiffiffiffiffiffiffig∥;3=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g∥ þ g2∥ þ g∥;3=2

p þ g3⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g∥ þ g2∥

g∥;3=2

s �
μBðB1;x − iB1;yÞ; ðE3Þ

M3=2;−1=2 ¼ −i
ffiffiffi
3

8

r �
g3∥ðg⊥ þ g2⊥Þffiffiffiffiffiffiffiffiffiffiffig∥;3=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g∥ þ g2∥ þ g∥;3=2

p þ g3⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g∥ þ g2∥

g∥;3=2

s �
μBðB1;x þ iB1;yÞ: ðE4Þ

The matrix element for ð−1=2 ↔ þ1=2Þ has the form
M1=2;−1=2 ¼ ðg⊥ − g2⊥ÞμBðB1;x − iB1;yÞ, while the spin
transition ð−3=2 ↔ þ3=2Þ is forbidden for B∥z.
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