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Abstract 
A framework for the optimal sparse-control of the probability density function of a 
jump-diffusion process is presented. This framework is based on the partial inte-
gro-differential Fokker-Planck (FP) equation that governs the time evolution of the 
probability density function of this process. In the stochastic process and, correspon-
dingly, in the FP model the control function enters as a time-dependent coefficient. 
The objectives of the control are to minimize a discrete-in-time, resp. continuous-in- 
time, tracking functionals and its L2- and L1-costs, where the latter is considered to 
promote control sparsity. An efficient proximal scheme for solving these optimal 
control problems is considered. Results of numerical experiments are presented to 
validate the theoretical results and the computational effectiveness of the proposed 
control framework. 
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1. Introduction 

Recently, largely motivated by computational finance applications, there has been a 
growing interest in stochastic jump-diffusion processes. In fact, empirical facts suggest 
that a discontinuous path could be most appropriate for describing the dynamics of 
stock prices; see [1] and references therein. Therefore, in many application models, the 
stock price is modeled by a jump-diffusion stochastic process, rather than by an 
Itô-diffusion process [2] [3]. In this framework, when option pricing models and port-
folio optimization problems are considered, partial integro-differential equations 
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(PIDEs) naturally arise; see [1] [4] and references therein. In the present paper, we fo-
cus on a stochastic jump-diffusion (JD) process, whose jump component is given by a 
compound Poisson process subject to given barriers. Also concerning market models, 
systems driven by Poisson processes have been considered; see, e.g., [5]. 

When one considers decision making issues involving random quantities, stochastic 
optimization problems must be solved. Such problems have largely been examined in 
the scientific literature, because of the numerous applications in, e.g., physics, biology, 
finance, and economy [6]-[8]. In these references, the usual procedure consists of mi-
nimizing a deterministic objective function that depends on the state and on the control 
variables. However, within this approach, statistical expectation objectives must be 
considered, since the state evolution is subject to randomness. 

In this work, we tackle the issue of controlling a stochastic process by following an 
alternative approach already proposed in [9]-[11], where the problem is reformulated 
from stochastic to deterministic. The key idea of this strategy is to focus on the proba-
bility density function (PDF) of the considered process, whose time evolution is mod-
eled by the Fokker-Planck (FP) equation, also known as the Kolmogorov forward equa-
tion. The FP control approach is advantageous since it allows to model the action of the 
control over the entire space-time range of the underlying process, which is characte-
rized by the shape of its PDF. 

In the case of our JD process, the FP equation takes the form of a PIDE endowed 
with initial and boundary conditions. While the Cauchy data must be the initial distri-
bution of the given random variable, the boundary conditions of a FP problem depend 
on the considered model. For the derivation of the FP equation and a discussion about 
boundary conditions, see [12]-[14]. Starting from the controlled stochastic differential 
model, the coefficients of the FP equation and thus the control mechanism are autho-
matically determined and thus an infinite dimensional optimal control problem go-
verned by the FP PIDE related to a JD process is obtained. Since the control variable 
enters the state equation as a coefficient of the partial integro-differential operator, the 
resulting optimization problem is nonconvex. 

Infinite-dimensional optimization is a very active research field, motivated by a 
broad range of applications ranging from, e.g., fluid flow, space technology, heat phe-
nomena, and image reconstruction; see, e.g., [15]-[17]. The main focus of this research 
work has been on problems with smooth cost functionals governed by partial differen-
tial equations (PDEs) with linear control mechanism [16] [17]. However, bilinear con-
trol problems governed by parabolic and elliptic PDEs have been also recently investi-
gated; see, e.g., [9] [18] [19] and references therin. In these references, the purpose is 
often to compute optimal controls such that an appropriate norm of the difference be-
tween a given target and the resulting state is minimized. In the present paper, we con-
sider tracking objectives that include mean expectation values as in [20]. Our frame-
work aims at the minimization of the difference between a known sequence of values 
and the first moment of a JD process, such that our formulation can also be considered 
as a parameter estimation problem for stochastic processes. In the discrete-in-time case, 
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the form of the cost functional gives rise to a finite number of discontinuities in time in 
the adjoint variable and hence of the control. A similar situation has already been con-
sidered in [21]. 

Very recently, PDE-based optimal control problems with sparsity promoting L1-cost 
functionals have been investigated starting with [22]. See [19] for a short survey and 
further references. Such formulation gives rise to a sparse optimal control, and for their 
solution variants of the semismooth Newton (SSN) method [23] have been considered. 
An alternative to such techniques is represented by proximal iterative schemes, intro-
duced in [24] and [25] and further developed in the framework of finite-dimensional 
optimization [26] [27]. Recents works have adapted the structure of these algorithms 
for solving infinite-dimensional PDE optimization problems [19]. Moreover, it has 
been shown in [19] that in infinite-dimensional problems, proximal algorithms have a 
computational performance comparable to SSN methods while they do not require the 
construction of the second-order derivatives. In the present paper, we consider a L1 cost 
functional and apply the proximal algorithm proposed in [19] [28]. One of the novelties 
of our work consists of combining pioneering techniques for nonsmooth problems with 
the control of the PDF of a FP PIDE of a JD process. 

This paper is organized as follows. In the next section, we discuss the functional set-
ting of the FP problem modeling the evolution of the PDF of a JD stochastic process. In 
Section 3, we formulate our optimal control problems. Section 4 is devoted to the for-
mulation of the corresponding first-order optimality systems. In Section 5, we discuss 
the discretization of the state and adjoint equations of the optimality system. In Section 
6, we illustrate a proximal method for solving our optimal control problems. Section 7 
is devoted to presenting results of numerical tests, including a discussion on the ro-
bustness of the algorithm to the choice of the parameters of the optimization problem. 
A section of conclusions completes this work. 

2. The Fokker-Planck Equation of a Jump-Diffusion Process 

In this section, we introduce a JD process and the corresponding FP equation that 
models the time evolution of the PDF of this process. Further, we discuss well-posed- 
ness and regularity of solutions to our FP problem. 

We consider a time interval 0: , fI t t =    and a stochastic process { }t t I
X

∈
 with 

range in a bounded domain nΩ ⊂  . We assume that the set Ω  is convex with Lip-
schitz boundary. The dynamic of X is governed by the following initial value problem 

( ) ( )
0 0

d , d d d
,

t t t t t

t

X b X t t X W P
X X

σ = + +
 =

                    (1) 

where 0
nX ∈  is a random variable with known distribution. The functions 

: nb IΩ× →   and : n dσ ×Ω→   represent the drift and the diffusion coefficients, 
respectively. We assume that σ  is full rank. Random increments to the process are 
given by a Wiener process dW ∈  and a compound Poisson process nP∈ . The 
rate of jumps and the jump distribution are denoted with λ +∈  and ĝ , respectively.  
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Define : n na ×Ω →  , ( ) ( ) ( )1

1:
2

d
ij ik jkka x x xσ σ

=
= ∑ . Since σ  is full rank, a is posi-  

tive definite, and hence there exists 0ac >  such that 

( ) 2T , for each , a.e. in .n
n

av a x v c v v≥ ∈ Ω                (2) 

In this work, we consider a stochastic process with reflecting barriers. This assump-
tion determines the boundary conditions for the FP equation corresponding to (1), see 
below. Define :Q I= Ω×  and : IΣ = ∂Ω× , and denote with f the PDF of the process 
given by (1). It is known [12] [13] that the time evolution of f is modeled by the 
following FP of PIDE type 

( ) ( ) ( ) ( ), , , , , ,t f x t f x t f x t x t Q∂ = + ∈                  (3) 

where the differential operator   and the integral operator   are defined as follows 

( ) ( ) ( )( ) ( ) ( )( )2

1 , 1
, : , , , ,

n n

i ij
i i j

f x t b x t f x t a x f x t
= =

= − ∂ + ∂∑ ∑           (4) 

and 

( ) ( ) ( ) ( ), : , , d , ,nf x t f y t g x y y f x tλ  = − ∫                (5) 

respectively. The definition of g in (5) takes into account the presence of reflecting bar-
riers and the dependence on the jump amplitude ĝ , as we discuss later. 

Notice that the differential operator   can be rewritten as follows 

( ) ( ), : , ,f x t F x t= ∇ ⋅  

where 

( ) ( ) ( ) ( ) ( ), : , , , .F x t B x t f x t a x f x t= + ∇                  (6) 

and 

( ) ( ) ( )
1

: , ,
n

i j ij i
j

B x a x b x t
=

= ∂ −∑                      (7) 

for each 1, ,i n=  . The function F in (6) represents the flux of the differential opera-
tor L, and −F is known in the literature as the probability current in case of stochastic 
processes without jumps [13]. 

The PDF f of X in (1) in the bounded domain Ω  is obtained by solving (3), en-
dowed by suitable initial and boundary conditions. In our setting, the initial data 0f  
represents the PDF of the initial random variable 0X . The choice of a bounded do-
main with reflecting barriers results in the following zero-flux boundary conditions for 
the FP model 

( ) ( ) ( )ˆ, , 0 for , ,F x t n x t x t⋅ = ∈Σ                     (8) 

where n̂  is the unit outward normal on ∂Ω . 
Notice that the flux F corresponds to the differential part of the FP equation, that is, 

to the drift and diffusion components of the stochastic process. In order to take into 
account the action of a reflecting barrier on the jumps, we consider a suitable definition 
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of the kernel g, which can be conveniently illustrated in the one-dimensional case as 
follows. 

Consider 1n =  and ( ),r sΩ = . The kernel g in (5) takes the following form 

( ) ( ) ( ) ( )
( ) ( )
ˆ ˆ, : 2

ˆ 2 ,

g x y g x y g r x y H r s x y

g s x y H x y r s

= − + − − + − −

+ − − + − −
            (9) 

where H is the Heaviside step function defined by 

( )
1, 0

: 0, 0
1 2, 0

z
H z z

z

>
= <
 =

 

We normalize g and ĝ  such that 

( ) ( )ˆ d , d 1 for all .s r
r s g z z g x y x y−
− = = ∈Ω∫ ∫                     (10) 

The next remark motivates the choice of the boundary conditions (8) and of the con-
dition (10). 

Remark 2.1. Assume (8) and (10). Provided that 0f  is a PDF in Ω , then the 
solution to our FP problem satisfies the following conservation equation 

( ) ( 0
d , d 0 for each , .
d ff x t x t t t

t Ω
= ∈ ∫  

That is, the total probability over the space domain Ω  at each time t I∈  is pre-
served, in the sense that 

( ) ( ) (0 0, d d for each , .ff x t x f x x t t t
Ω Ω

= ∈ ∫ ∫  

Our FP problem is stated as follows 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )

0

, , , for ,
, 0 for 
, , 0 for , .

t f x t F x t f x t x t Q
f x f x x
F x t n x t x t

∂ = ∇ ⋅ + ∈
 = ∈Ω
 ⋅ = ∈Σ


             (11) 

Next, we recall some definitions concerning the functional spaces needed to state the 
existence and uniqueness of solutions to (11). The space ( )0C Ω  refers to the func-
tions that are continuous in Ω  and it is endowed with the supremum norm. Let α  
be a constant, 1 2α > . The space ( )Cα Σ  refers to the functions that are Hölder con-
tinuous on Σ , with Hölder exponent α  with respect to the space variable. The space 

( )L∞ Ω  denotes all the functions that are bounded on Ω , up to a set of zero measure. 
The spaces ( )1H Ω  and ( )2,1H Q  are defined as follows 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 2 2

2,1 2 2 2

: | , 1, , ,

: | , , , , 1, , .

i

t i ij

H v L v L i n

H Q v L Q v v v L Q i j n

Ω = ∈ Ω ∂ ∈ Ω =

= ∈ ∂ ∂ ∂ ∈ =





         (12) 

These spaces are endowed with the following norms 

( ) ( ) ( ) ( )1 2,12 2

1 2

0 2 0
: , : ,i j i

t xH H QL L Qi j i
v v v v

Ω Ω
= + =

= ∂ = ∂ ∂∑ ∑  

where , ni j∈  denote multi-indeces. 
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We assume that the coefficients a and b in (4) satisfy the following conditions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 2, ,

, , ,
i ij

i i j

a x C C a x L C a x L

b x t L Q C b x t L Q

α α

α

∞ ∞

∞ ∞

∈ Ω ∩ ∂Ω ∂ ∈ Ω ∩ ∂Ω ∂ ∈ Ω

∈ ∩ Σ ∂ ∈
   (13) 

for each , 1, ,i j n=  . 
Notice that a and b must be defined on the closure Ω  due to their role in the 

boundary conditions in (11). We assume that the following condition is satisfied 

( ) ( )
2

0d ,
1n

y
g y y C

y
= < ∞

+∫


                 (14) 

with 0 0C >  and ( )1 2
2

1: n
jjy y

=
= ∑  for ny∈ . 

We have the following theorem [29]. 
Theorem 2.1. Assume 2C∂Ω∈ . Let the coefficients a and b in L in (4) and that g 

satisfy the assumptions (13) and (14), respectively. Then, for given ( )1
0f H∈ Ω , the 

initial-boundary value problem (11) admits a unique solution ( )2,1f H Q∈ . 
Proof. See [29].                                                         
Remark 2.2. Provided that 0f  is also a PDF, it follows by standard arguments [29] 

that ( ), 0f x t ≥  for each ( ),x t Q∈ . 
Consider the following spaces ( )1:V H= Ω , ( )2:H L= Ω . We denote with *V  the 

dual space of V and with *, V V⋅ ⋅  their canonical pairing. We consider the following 
Gelfand triple *V H V⊂ ⊂ , that exploits the natural isomorphism *H H  between 
a Hilbert space with his dual. Each embedding is dense and continuous [17]. 

Given the interval 0 , fI t t =    and an arbitrary Banach space Z, we define the fol-
lowing spaces 

( ) ( ){ }22 ; : such that d
ZI

L I Z y I Z y t t= → < ∞∫                   (15) 

( ) ( ) ( ){ }; : such that lim 0 ,
Zt

C I Z y I Z y y t t I
τ

τ
→

= → − = ∀ ∈        (16) 

which are also Banach spaces [17] equipped with the following norms 

( ) ( )( ) ( ) ( )2

1
2 2

; ;: d and : max ,L I Z C I ZZ ZI t I
y y t t y y t

∈
= =∫  

respectively. We consider the following space 

( ) ( ){ }2 2 *: ; with ; ,tW y L I V y L I V= ∈ ∂ ∈                 (17) 

which is a Hilbert space [17] with respect to the scalar product defined as follows 

( ) ( ) ( ) *, : , , .t tW V VI I
f g f g f g= + ∂ ∂∫ ∫  

With this preparation, we can recall the following theorem [17]. 
Theorem 2.2. The embedding  ( );W C I H  is continuous. Therefore, every 

y W∈  coincides with an element of ( );C I H , up to a set of null measure. 
The following proposition provides a useful a priori estimate of the solution to (11). 
Proposition 2.3. Let ( )1

0f H∈ Ω , 0 0f ≥ , and g satisfies (14). Then if f is a solution 
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to (11), the following inequality holds 

( ) ( ) ( ) ( )2 2 * 20; ; ;
.tL I V L I H L I V Lf f f c f∞ Ω

+ + ∂ ≤              (18) 

Proof. Consider the H inner product of the equation in (11) with f. Exploiting the 
properties of the Gelf and triple, we have 

( ) ( )*, .t V Vf f F f f f
Ω Ω

∂ = ∇ ⋅ +∫ ∫                   (19) 

We make use of the following fact [17], ( ) ( )* 2

21 d,
2 dt V V L

f f f t
t Ω

∂ = . The terms on 

the right-hand side in (19) are recast as follows. 
First, we exploit the zero-flux boundary conditions in (11) and the coercivity of a as 

given in (2). Moreover, we make use of the following Cauchy inequality 
2 2 2

2 ,
22

α β εαβ
ε

≤ +  

which holds for each ,α β ∈  and 0ε > . Integrating by parts and recalling the defi-
nition of F in (6), we have 

( )

( )2

T

T 2 T 2
2

2 .
22 a L

F f fF F f fB f f a f

B Bf f f c f

ν

ε
ε

Ω ∂Ω Ω Ω Ω

ΩΩ Ω

∇ ⋅ = ⋅ ∂ − ⋅∇ = − ⋅∇ − ∇ ∇

∇ ∇
≤ + − ∇

∫ ∫ ∫ ∫ ∫

∫ ∫
 

We choose : 2 acε = , where ac  is defined in (2), and define 

( ) ( )
22

1 1 1: ,n n n
B i j ij ii i jc B a x b x t

= = =∞ ∞
= = ∂ −∑ ∑ ∑ . 

We have Bc < ∞  thanks to (13). 
Therefore we have 

( ) ( ) ( )2

2
.

4
B

L
a

cF f f t
c ΩΩ

∇ ⋅ ≤∫                     (20) 

Recalling the definition of I in (5) and defining :Gc g
∞

= , we have 

( ) ( ) ( ) ( ) ( )2 2

2 2
.G L L

f f c f t f tλ λ
Ω ΩΩ

≤ −∫   

Since Ω  is bounded, we have 

( ) ( ) ( ) ( )1 2 .
L L

f t f t
Ω Ω
≤ Ω  

Therefore, 

( ) ( ) ( )2

2
1 .G L

f f c f tλ
ΩΩ

≤ Ω −∫                    (21) 

Define : 2 1
2

B
G

a

cc c
c

λ= + Ω − . Note that c is a bounded time-dependent function. 

The estimates in (20) and (21) allow us to write (19) as follows 

( ) ( ) ( ) ( )2 2

2 2d .
d L L

f t c f t
t Ω Ω

≤  

By applying the Gronwall inequality, we have 
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( ) ( ) ( )22
0

0
1exp d .
2

t

LL t
f t f c s

ΩΩ

 ≤  
 ∫                    (22) 

Next, we outline how to obtain an upper bound of ( ) ( )2L
f t

Ω
∇ . We integrate (2) 

over Ω  and then recall the definition of F in (6). We have 

( ) ( ) ( ) ( ) ( )

( ) ( )

( )( ) ( )

2

2 T T

T

T ,

a L

t

c f t f a f f F Bf

fF n f F f f B

f f f f f B

Ω Ω Ω

∂Ω Ω Ω

Ω Ω

∇ ≤ ∇ ∇ = ∇ −

≤ ⋅ ∂ − ∇ ⋅ − ∇

≤ ∂ − − ∇

∫ ∫

∫ ∫ ∫
∫ ∫

 

where we used the PIDE and the boundary condition of the FP problem in (11). Pro-
ceeding as above, we obtain 

( ) ( ) ( )22 0 ,LL
f t c f

ΩΩ
∇ ≤  

with 0c > . This last estimate, together with (22), proves that 

( ) ( )2 20; ,L I V Lf c f
Ω

≤  

up to a redefinition of the constant 0c > . The estimates of the other addends in (18) 
follow after some calculation with arguments as in [9] [17].                       

Proposition 2.4. Assume (13) and ( )2
0f L∈ Ω . Then the unique solution to (11) 

belongs to ( ) ( )2 ; ;L I V L I V∞∩ , with ( )2 *;t f L I V∂ ∈ . Moreover, ( );f C I H∈ . 
Proof. The statement follows from the a priori estimates of Proposition 2.3 and 

Theorem 2.2.                                                            
We define ( ){ }0: | 0F f W f f= ∈ = , where 0f  is the initial data in (11). The ini-

tial-boundary value problem (11) can be stated as ( ) 0f = , where the map   is 
defined as follows 

( )
( )

( )
in

:
, on ,

t f F f f Q
f

F f
κ

∂ −∇ ⋅ −= 
Σ


               (23) 

with F and I defined in (6) and (5), respectively. 

3. Two Fokker-Planck Optimal Control Problems 

In this section, we define our optimal control problems governed by (23) and prove the 
existence of at least an optimal solution. 

We consider a control mechanism that acts on the drift function ( ) ( ); ,b b x u b x t= =  
by means of a time-dependent control ( )u u t= ∈ . Therefore we refer to (23) as 
( ), 0f u = . We assume that b is a smooth function of its arguments and that assump-

tion (13) is fulfilled. We remark that a time-dependent control function is a natural 
choice considering that it originates from the stochastic differential model where the 
time is the only independent variable. 

We assume the presence of control constraints given by ,a bu u ∈ , with 
0a bu u< < . We denote 

( )2: L I=                            (24) 
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{ }: : .ad a bu u u u= ∈ ≤ ≤ ⊂                        (25) 

Remark 3.1. The subset ad  is nonempty, closed, and convex. 
Let ν  and γ  be positive constants. We consider the following objective 

( ) ( ) 2

2 1, : .
2

f u D f u uν γ= + +                     (26) 

The term ( )D f  in (26) represents a tracking objective that involves the expecta-
tion value of tX , [ ] ( ): , dtX xf x t x

Ω
= ∫ , and a desired trajectory or a discrete set of 

values (e.g. measurements). We investigate the following two cases. 
1) Given a set of values { } 1

K
k k
ξ

=
 at different times ( )0 ,k ft t t∈ , 1, ,k K∀ =  , we 

have 

( ) ( )( )2

1

1: , d .
K

k k
k

D f xf x t x
K

ξ
Ω

=

= −∑ ∫                    (27) 

2) Given a square-integrable function : Iξ →  , we have 

( ) ( )( )
0

2
: ( ) , d d .ft

t
D f t xf x t x tξ

Ω
= −∫ ∫                   (28) 

The norms in (26) are defined as follows 

( )( ) ( )
1 22

2 1: d and : d .
I I

u u t t u u t t= =∫ ∫  

Remark 3.2. The choice of a bounded time interval I ensures that the L1-norm is 
finite whenever u U∈ . 

Remark 3.3. The functional   is convex and continuous with respect to ( ),f u  in 
the 2L  norm. 

We investigate the following optimal control problem (s) 

( )
( ) ( )

min ,

such that , 0, , .ad

f u

f u f u= ∈ ×



  
               (29) 

In order to discuss the existence and uniqueness of solutions to (29), we consider the 
control-to-state operator : →   , that maps a given u∈  into ( ) :u f= ∈  , 
where ( ),f u  satisfies ( ), 0f u = . Note that the definition of ad  in (25) ensures 
that b satisfies (13). Because of Theorem 2.1, the operator   is well defined. 

The next proposition can be proved by using standard arguments [9] [17]. 
Proposition 3.1. The mapping ( ) ( ): ; ,C I H u f u→ =    solution to (11) is 

Fréchet differentiable and the directional derivative ( ):e u h′= ⋅  satisfies the follow- 
ing initial-boundary problem 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

( )0

for , ,

0 for , ,

, 0 for ,

te F e e fb u h x t Q

F e fb u h n x t

e x t x

 ′∂ = ∇ ⋅ + −∇ ⋅ ∈
 ′− ⋅ = ∈Σ  
 = ∈Ω



           (30) 

where b is the drift in (1) and F is defined in (6). 
The constrained optimization problem (29) can be transformed into an uncon-

strained one as follows 
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( )ˆmin ,
adu

u
∈
                              (31) 

where ( ) ( )( )ˆ ˆ ˆ: : ,u u u u=     is the so-called reduced cost functional. 
The solvability of (31) is ensured by the next theorem, whose proof adapts techniques 

given in [30] [31] and [17]. 
Theorem 3.2. There exists at least one optimal pair ( ),f u  that solves (29), such 

that u  solves (31) and ( )f u=  . 
Proof. The functional ̂  in (31) is bounded from below and therefore we can de-

fine ( )ˆ: inf
adui u∈=   . Let { }n adn

u U
∈

⊂
 be a minimizing sequence, such that 

( )limn nJ u i→∞ = . 
We have that ad  is a convex, closed, and bounded subset of the reflexive Banach 

space  . Hence, ad  is weakly sequentially compact and we can extract a subse-
quence { } { }k nk n

u u
∈ ∈

⊂ 
 such that k adu u ∈  . 

The weakly lower convergent sequence { }k k
u

∈
 gives rise to the sequence 

{ }k k
f F W

∈
⊂ ⊂

, defined by ( ):k kf u=  . Since the embedding  ( )2 ;W L I H  is  
compact, there exists a subsequence { } { }j k kj

f f
∈∈

⊂ 
 and ( )2 ;f L I H∈  such that  

{ }j j
f

∈
 converges strongly to f . The fact f ∈  follows from standard arguments. 

Note that each couple ( ),j jf u  satisfies ( ), 0j jf u =  by definition. Next, we want to  
pass to the limit in ( ), 0j jf u = . 

Thanks to the estimate (18) in Proposition 2.3, the sequence { }t j j
f

∈
∂


 is bounded 

in ( )2 *,L I V  and therefore weakly convergent to t f∂ . Define ( ):B b u= . The boun-
dedness of B as in (7) and the smoothness of b with respect to u together with (18), en-  

sures that ( ){ }j j
f B

∈
∇ ⋅


 and ( ){ }j j

B f
∈

⋅∇


 converge weakly to ( )f B∇ ⋅  and  

( )B f⋅∇ , respectively, where the norm in ( )2 ,L I H  has been considered. The weak 
convergence of { }j j

f
∈




 to f  follows from similar arguments [31]. These observa-
tions lead to the conclusion that the limit f  solves (11), with ( )f u=  . Therefore, 
the constraint ( ), 0f u =  is satisfied. 

Moreover, the convexity of   ensures that 

( ) ( )liminf , ,j jj
i f u f u= ≥   

and therefore the pair ( ),f u  is a minimizer for the problem (29). 

Remark 3.4. The uniqueness of the control u  can not be stated a priori since ̂  
is non convex. 

4. Two First-Order Optimality Systems 

We follow the standard approach [17] [23] [32] of characterizing the solution of our 
optimal control problem as the solution to first-order optimality conditions that con-
stitute the optimality system. 

Consider the reduced problem (31) and write the reduced functional ̂  as 

1 2
ˆ := +   , :i

+→   , 1, 2,i =  where 
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( ) ( )( ) 2
1 2: ,

2
u D u uν

= +   

( )2 1: .u uγ=                                (32) 

Remark 4.1. The functional 1  is smooth and possibly nonconvex, while 2  is 
convex and nonsmooth. 

The following definitions are needed in order to determine the first-order optimality 
system. If ̂  is finite at a point u, the Fréchet subdifferential of ̂  at u is defined as 
follows [32]. We have 

( ) ( ) ( )*

2

ˆ ˆ ,ˆ : : lim inf 0 ,
v u

v u v u
u

v u
ϕ

ϕ
→

 − − − ∂ = ∈ ≥ −  

 
           (33) 

where *  is the dual space of  . Any element ( )ˆ uϕ ∈∂  is called a subgradient. 
In our framework, we have 

( ) ( ) ( )1 2
ˆ ,u u u∂ = ∇ + ∂    

since 1  is Fréchet differentiable at u; this follows from standard arguments [17] [30]. 
Moreover, for each 0α > , it holds that ( )ˆ ˆα α∂ = ∂  ; see [26]. 

The following proposition gives a necessary condition for a local minimum of ̂ . 
Proposition 4.1. If 1 2

ˆ = +   , with 1  and 2  given by (4.1), attains a local 
minimum in adu ∈ , then 

( )ˆ0 ,u∈∂  

or equivalently 

( ) ( )1 2 .u u−∇ ∈∂   

Proof. Since ad  is convex, ( ) adu v uθ+ − ∈ , for each adv∈  and ( ]0,1θ ∈ . 
Since u  is a local minimum, we have 

( ) ( )( )ˆ ˆ ,u u v uθ≤ + −   

for v sufficiently close to u . Exploiting the convexity of 2 , we have 

( )( ) ( ) ( ) ( )( )1 1 2 2 0.u v u u v uθ θ+ − − + − ≥     

Dividing by θ  and considering the limit 0θ → , we obtain 

( ) ( ) ( )2 2 1 , 0.v J u u v u− + ∇ − ≥                   (34) 

Dividing by 2v u−  and considering the following limit 

( ) ( ) ( )2 2 1

2

,
liminf 0,

v u

v u u v u
v u→

− + ∇ −
≥

−

  
 

we conclude that ( ) ( )1 2u u−∇ ∈∂  , according to the definiton in (33). 
By using results in [22] [32], we have that (34) implies that each ( )2 uλ ∈∂ , with 

u  a local minimum, satisfies the following inequality 
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( )1 , 0 for each .adu v u vλ∇ + − ≥ ∈                 (35) 

Moreover, recalling the definition of 2  in (32) and exploiting the isomorphism 
*U U , the inclusion ( )2 uλ ∈∂  gives the following 

( ){ }2: : a.e. on .l I l Iγλ γ∈Λ = ∈ ≤                  (36) 

A pointwise analysis of (35), which takes into account the definition (25) of the ad-
missible controls, ensures the existence of two nonnegative functions *,a bλ λ ∈  that 
play the role of Lagrange multipliers [17]. The previous considerations lead to the fol-
lowing proposition, that states the optimality system for the reduced problem (31). 

Proposition 4.2. The optimal solution u  of the minimization problem (31) with 

1 2
ˆ = +    defined in (32), is characterized by the existence of ( ) * *, ,a b γλ λ λ ∈Λ × ×   

such that 

( )

( ){ }
( ){ }
( ){ }

1 = 0

0, 0, , 0

0, 0, , 0

a.e. on : 0

a.e. on : 0

a.e. on : 0

a b

b b b b

a a a a

u

u u u u

u u u u

t I u t

t I u t

t I u t

λ λ λ

λ λ

λ λ

λ γ

λ γ

λ γ

∇ + − +


≥ − ≥ − =


≥ − ≥ − =


= ∈ >
 ≤ ∈ =
 = − ∈ <



                 (37) 

We refer to the last three conditions in (37) for the pair ( ),u λ  as the complemen-
tarity conditions. 

The differentiability of  , 1  and   with respect to f  and u  allows us to 
compute ( )1 u∇  in (37) within the adjoint approach. By definition, for each u∈ , 
we have 

( ) ( )( ) ( )( )*
1 .u u u D uν ′ ′∇ = +    

By considering the total derivative of ( )( ), 0u u =  , we have 

( )( ) ( ) ( )( ), , = 0.f uu u u u u′ +      

Therefore, we obtain 

( ) ( )( ) ( )( )( ) ( )( )
1* *

1 , , .u fu u u u u u D uν
−

′∇ = −       

Defining the adjoint variable p as the solution to the following adjoint problem 

( )( ) ( )( )*
, ,f u u p D u′= −                      (38) 

we obtain the following reduced gradient 

( ) ( )*1 , .uu u f u pν∇ = +                      (39) 

After some calculation, we have that (38) can be rewritten as the following adjoint 
system 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )

2

, 1
, ; , , , , on

, 0 on

, , 0 on

, , , on , for each 1, , ,

n

t ij ij
i j

f

k k

p x t b x u p x t a x p x t p x t x t Q

p x t

p x t n x t I

p x t p x t x k k K

α

β

=

− +

−∂ = ∇ + ∂ + +

 = Ω
∇ ⋅ = ∂Ω×
 = + Ω =

∑ 





  (40) 

where α  and β  depend on the choice of D in (27) and (28). When D is given by 
(27), ( ), 0x tα =  and ( ) ( )( ), 2 , dk kx k x sf s t sβ ξ

Ω
= − − ∫ , for each 1, ,k K=  . On 

the other hand, when D is given by (28), ( ) ( ) ( )( ), 2 , dx t x t sf s t sα ξ
Ω

= − ∫  and 
( ), 0x kβ = . 
The operator   is defined as follows 

( ) ( ) ( ) ( ) ( ), : , , d , for each , .p x t p y t g y x y p x t x t Qλ
Ω

 = − ∈ ∫  

The terminal boundary-value problem (40) admits a unique solution ( )2,1p H Q∈  
thanks to the assumptions (13) and (14), following the same arguments as in Theorem 
2.1 [29]. 

The reduced gradient in (39), for given u, f, and p, takes the following form 

( ) ( ) ( )1
ˆ .uu u f p bν

Ω
∇ = + ∇ ⋅ ∂∫                    (41) 

The complementarity conditions in (37) can be recast in a more compact form, as 
follows. We define : a bµ λ λ λ= − + . For each k +∈ , we define the following quantity 

( ) ( ){ } ( ){ }
( ){ } ( ){ }

, : max 0, min 0,

max 0, min 0, .b a

E u u u k u k

u u k u u k

µ µ γ µ γ

µ γ µ γ

= − + − − + +

+ − + − + − + +
 

The complementarity conditions in (37) and the inequalities related to the Lagrange 
multipliers aλ  and bλ , together with the requirement γλ ∈Λ , are equivalent to 
( ), 0E u µ = ; see, e.g., [22]. 
The previous considerations can be summarized in the following propositions. 
Proposition 4.3. (Optimality system for a discrete-in-time tracking functional) 
A local solution ( ), adf u ∈ ×   of (29) with D given by (27) is characterized by 

the existence of ( ) ( )2,1 *,p H Qµ ∈ ×  , such that the following system is satisfied 

( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )

0

2

, =1

0 a.e. in 

, , , for ,

, 0 for 
, , 0 for ,

, ; , , , for ,

, 0 for 

, , 0 for ,

, , 2 ,

u

t

n

t ij ij
i j

f

k k k

u f p b I

f x t F x t f x t x t Q

f x f x x
F x t n x t x t

p x t b x u p x t a x p x t p x t x t Q

p x t x

p x t n x t x t

p x t p x t x sf s

ν µ

ξ

Ω

− +

Ω

+ ∇ ⋅ ∂ + =

∂ = ∇ ⋅ + ∈

= ∈Ω
⋅ = ∈Σ

−∂ = ∇ + ∂ + ∈

= ∈Ω

∇ ⋅ = ∈Σ

= − −

∫

∑

∫







( )( )
( )

d for , 1, ,

, 0 a.e. in .
kt s x k K

E u Iµ
















∈Ω =


=



(42) 
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Proposition 4.4. (Optimality system for a continuous-in-time tracking functional) 
A local solution ( ), adf u ∈ ×   of (29) with D given by (28) is characterized by 

the existence of ( ) ( )2,1 *,p H Qµ ∈ ×  , such that the following system is satisfied 

( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
( )

( )
( ) ( ) ( )
( )

0

2

, 1

0 a.e. in 

, , , for ,

, 0 for 
, , 0 for ,

, ; , , ,
for ,

2 , d

, 0 for 

, , 0 for ,
, = 0 a.e.

u

t

n

t ij ij
i j

f

u f p b I

f x t F x t f x t x t Q

f x f x x
F x t n x t x t

p x t b x u p x t a x p x t p x t
x t Q

x t sf s t s

p x t x

p x t n x t x t
E u

ν µ

ξ

µ

Ω

=

Ω

+ ∇ ⋅ ∂ + =

∂ = ∇ ⋅ + ∈

= ∈Ω
⋅ = ∈Σ

−∂ = ∇ + ∂ +
∈

+ −

= ∈Ω

∇ ⋅ = ∈Σ

∫

∑

∫







in .I



















  (43) 

5. Numerical Approximation of the Optimality Systems 

In this section, we discuss the discretization of the optimality systems given in (42) and 
(43). For simplicity, we focus on a one-dimensional case with ( ): ,r sΩ = ⊂  . We de-  

fine :
1

s rh
N
−

=
−

, N ∈ , 1N > , and 0: ft t
t

M
δ

−
= , M ∈ . The space and time grids  

are defined as follows 

( ){ }: 1 , 1, , ,h jx r j h j NΩ = = + − =   

{ }0: , 0, , .t nI t t n t n Mδ δ= = + =   

Notice that a cell-centered space discretization is considered with cells midpoints at 

jx , 1, ,j N=  , and cell faces at 2j hx ± . 
The approximation of the forward and backward FP PIDEs is based on a discretiza-

tion method discussed in [33], where a convergent and conservative numerical scheme 
for solving the FP problem of a JD process is presented. This discretization scheme is 
obtained based on the so-called method of lines (MOL) [34]. The differential operator 
in (11) is discretized by applying the Chang-Cooper (CC) scheme [35] [36]. Setting  

( ) ( )1 1
2 2

:j j j
w t hB t a

+ +
= , and ( ) ( ) ( ){ }( ): 1 1 exp 1j j jt w t w tδ = − − , the discretization  

of the differential operator is carried out as follows 

( )
( ) ( )1 1

2 2, , 1, , ,
j j

x j

F t F t
F x t j N

h
+ −

−
∂ ≈ =   

where 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1
1 1 1 1
2 2 2

1 .j j
j j j jj j j

f t f t
F t B t t f t t f t a

h
δ δ +

+
+ + +

−
 = + − +   

The zero-flux boundary conditions are implemented referring to the points 1
2

x  and 
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1
2

N
x

+
. The integral addend is approximated by the midpoint rule. After spacial discreti-

zation, the forward FP PIDE problem takes the following form 

( ) ( ) ( ) ,f t f t′ = +                         (44) 

where ( ) Nf t ∈ . The matrices   and   correspond to the CC scheme and to the 
quadrature rule, respectively. The time integration of (44) is carried out with the com-
bination of the Strang-Marchuk (SM) splitting scheme [37] [38] together with a pre-
dictor-corrector scheme [39]. We refer to [40] for a detailed introduction to splitting 
methods. With this choice, the numerical scheme solving (11) is second-order conver-
gent both in space and time with respect to the 2

,h tL δ  norm. Notice that the chosen 
numerical method for the FP problem must ensure that the PDF solution is nonnega-
tive and that the total probability remains constant along the time evolution. See [33] 
for all details and numerical analysis results. 

If we follow the optimize-before-discretize (OBD) approach, the optimality system 
has already been computed on a continuous level as in (42) and (43) and subsequently 
discretized. As a consequence, the OBD approach allows one to discretize the forward 
abd adjoint FP problems according to different numerical schemes. However, the OBD 
procedure might introduce an inconsistency between the discretized objective and the 
reduced gradient; see [15] and references therein. For this reason, the DBO (discret-
ize-before-optimize) approach could be preferred and we pursue it in this work. 

The DBO approach results in the following approximations 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1
1, 1 i i i i

x j j j
p t p t p t p t

p x t t t
h h

δ δ− +
−

− −
∂ ≈ − +  

( ) ( ) ( ) ( )1 12
2

2
, i i i

xx j
p t p t p t

p x t
h

+ −− +
∂ ≈  

together with the midpoint quadrature formula applied to   in (40). We have the 
following semi-discretized system 

( ) ( ) ( ) ( )T T , .Np t p t p t′− = + ∈                     (45) 

The time integration of (45) is carried out with the combination of the SM splitting 
with a predictor corrector scheme, as in (44). 

6. A Proximal Optimization Scheme 

In this section, we discuss a proximal optimization scheme for solving (31). This 
scheme and the related theoretical discussion follow the work in [19] [27]. Proximal 
methods conveniently exploit the additive structure of the reduced objective, and in our 
framework, we have that the reduced functional ̂  is given by the sum of a noncon-
vex smooth function 1  and a convex nonsmooth function 2  as in (32). 

For our discussion, we need the following definitions and properties. 
Definition 6.1. Let Z be a Hilbert space and l a convex lower semi continuous 

function, :l Z →  . The proximity operator :lprox Z Z→  of l is defined as follows 
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( ) ( ) 21: arg min , .
2l Z

w Z
prox z l w z w z Z

∈

 = + − ∈ 
 

 

Proposition 6.1. Let Z be a Hilbert space and l a convex lower semi continuous 
function, :l Z →  , with proximity operator lprox . The following relation holds 

( ) ( ) ,lp prox z z p l p= ⇔ − ∈∂                     (46) 

where l∂  is the subdifferential defined in (33). 
Proof. See [27]. 
Proposition 6.2. The solution u  of (31) satisfies 

( )( )2 1 .u prox u uα α= − ∇                       (47) 

for each 0α > . 
Proof. From Proposition 4.7 and by using (46), we have 

( ) ( ) ( )
( )( ) ( )

( )( )2

1 2

1 2

1

solves 3.8u u u

u u u u

u prox u uα

α α

α

⇒ −∇ ∈∂

⇔ − ∇ − ∈ ∂

⇔ = − ∇

 

 


              

  

The relation (47) suggests that a solution procedure based on a fixed point iteration 
should be pursued. We discuss how such algorithm can be implemented. 

In the following, we assume that ( )1 u  in (32) has a locally Lipschitz-continuous 
gradient 1∇  as follows 

( ) ( )1 1 ,u v L u v∇ −∇ ≤ −                     (48) 

for each v∈ , ad⊂   neighborhood of u, with L a Lipschitz continuity constant. It 
is shown in [28] that (48) implies the following inequality 

( ) ( ) ( ) 2
1 1 1 , ,

2
Lu v v u v u v≤ + ∇ − + −    

for each v∈ , and hence 

( ) ( ){ } ( ) ( ) ( ) 2
1 2 1 2 1min min , .

2ad adu u

Lu u u u v u v u v
∈ ∈

 + ≤ + + ∇ − + − 
  

       (49) 

Inequality (49) is the starting point for the formulation of a proximal scheme, whose 
strategy consists of minimizing the right-hand side in (49). One can prove the following 
equality 

( ) ( ) ( )

( ) ( )

2
1 2 1

2

2 1

min ,
2

1min .
2

ad

ad

u

u

Lu u v u v u v

Lu u v v
L

∈

∈

 + + ∇ − + − 
 
   = + − − ∇  

   





  

 
           (50) 

Recall the definition of 2  in (32). The following lemma gives an explicit expres-
sion for the right-hand side in (50). 

Lemma 6.3. Let ad  be as in (25). Then 
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( )2

1

1arg min for each ,
2

ad

adu
u u w w wττ

∈

 + − = ∈ 
 




  

where the projected soft thresholding function ad
τ
  is defined as follows 

( )
{ } ( ){ }

( ){ }
{ } ( ){ }

min , on :

: 0 on :

max , on : .

ad

b

a

w u t I w t

w t I w t

w u t I w t
τ

τ τ

τ

τ τ

 − ∈ >
= ∈ ≤


+ ∈ < −

  

Proof. See [19].                                                        
Based on this lemma, we conclude the following 

( ) ( ) ( )
2

2 1 1
1 1arg min ,

2
ad

adu L

Lu u v v v v
L Lγ

∈

     + − − ∇ = − ∇    
     




    

which can be taken as starting point for a fixed-point algorithm as follows 

( )1 1
1 ,ad

k k k
kL

u u v
Lγ+

 
= − ∇ 

 
                     (51) 

where kL  is the local Lipschitz continuity constant defined in (48). Such method has 
been investigated in [19] [25] [27]. In this work, we apply an extension of (51), which 
takes for each iteration k the following form 

( ) ( )1 1 1
1 ,ad

kk L k k k k k
k

u u u u u
Lγ θ+ −

 
= − ∇ + − 

 
               (52) 

with ( )0,1kθ ∈ . This method has been proposed in [28]. Our inertial proximal method 
is summarized in the following algorithm. 

Algorithm 1 (Inertial proximal method). 
Input: initial guess 0u , 0i = , maxi , ( )0,1iθ ∈ , tolerance tol, Lipschitz constant L. 
1) While maxi i≤ , do: 
(a) Evaluate ( )1 iu∇  according to Algorithm 2. 
(b) Update i iL Lη=  until 

( ) ( ) ( ) 2
1 1 1 ,

2i u i i i
Lu u u u u u u≤ + ∇ − + −      

where 

( ) ( )1 1
1 .ad

iL i i i i i
i

u u u u u
Lγ θ −

 
= − ∇ + − 

 


   

(c) Set 1iu u+ =  . 
(d) Compute E according to (42) or (43). 
(e) If E tol< , break. 
(f) 1i i= + . 
Remark 6.1. The backtracking scheme in Algorithm 1 provides an estimation of the 

upper bound of the Lipschitz constant in (48), since it is not known a priori. The initial 
guess for L is chosen as follows. Given a small variation ε  of u, we have 
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( ) ( ) ( ) ( )1 1 1 12 2

2 2

max , .
u u u u

L
ε ε

ε ε

 ∇ −∇ + ∇ −∇ − =  
  

   
 

Algorithm 2 (Evaluation of the gradient). 
Input: iu , initial value 0f  at time 0t , terminal value fp  at time ft . 
1) Compute if , given 0f  and iu . 
2) Compute ip . 
3) Evaluate ( )1 iu∇  according to (41). 
Next, we discuss the convergence of our algorithm, using some existing results [28] 

[41]. 
Proposition 6.4. The sequence { }k k

u
∈

 generated by (52) satisfies the following 
properties. 
• The sequence ( ){ }k k

J u
∈

 converges in  . 
• There exists a weakly convergent subsequence { } { }

jk k kj
u u

∈∈
⊂ 

. 
Definition 6.2. The proximal residual r is defined as follows 

( ) ( )( )1: .adr u u u uγ= − −∇                       (53) 

Proposition 6.12 tells us that ( ) 0r u =  in ( )2L I  whenever u solves (31). The next 
proposition establish a connection between the condition ( ) 0r u =  and the solution 
provided by Algorithm 1; see, e.g., [19]. 

Proposition 6.5. Let { }k k
u

∈
 be the sequence generated by Algorithm 1. Then the 

following holds 

( ) ( )2

20
min 1 .kk K

r u K
≤ ≤

=  

7. Numerical Experiments 

In this section, we present results of numerical experiments to validate the performance 
of our optimal control framework. Our purpose is to determine a sparse control 

( )u u t=  such that the expected value of the process X defined by (1) minimizes the 
quantity defined by (27) and (28). 

We implement the discretization scheme and the algorithm described in Section 5. 
We take ( )100,100Ω = −  and [ ]0 , 0,1ft t  =  , and assume that the initial probability 
density function 0f  is given, ( )0 ~ 0,10f  . The compound Poisson process corres-
ponds to the choice 3λ =  and ( )~ 0,0.04g  . We take ( ) ( ), :b x u x u t= −  and 
( ) 50xσ = . In case of (27), we consider [ ]5, 20,0,10, 10,0, 5, 20ξ = − − − . In the case of 

(28), we take ( ) ( )20sin 10t tξ = . We choose 300N =  and 200M = . 
In the first series of experiments, we consider the setting with 810ν −=  and 0γ =  

in (32). Further, we do consider constraints on the control. Corresponding to this 
choice and to the discrete-in-time tracking functional (27), we report in Figure 1 and 
Figure 2 the solution for the state and the adjoint variables, respectively. On the other 
hand, using the continuous-in-time tracking functional (28), we obtain the state and 
the adjoint variables depicted in Figure 3 and Figure 4, respectively. 

Also for the case 0γ =  and both tracking functionals, we report in Table 1 and 
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Figure 1. State variable in the case of the discrete-in-time tracking functional defined in (27), 
with 0γ = . 
 

 
Figure 2. Adjoint variable in case of the discrete-in-time tracking functional defined in (27), with 

0γ = . 
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Figure 3. State variable in the case of the continuous-in-time tracking functional defined in (28), 
with 0γ = . 

 

 
Figure 4. Adjoint variable in case of the continuous-in-time tracking functional defined in (28), 
with 0γ = . 
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Table 2 the values of the tracking error for different values of the weight ν . As ex-
pected, the tracking improves as the value of this optimization parameter becomes 
smaller. In Figure 1 and Figure 3, we can see that the optimal control u drives the ex-
pected mean value of the PDF towards the mean values given by kξ  and ( )tξ , re-
spectively. 

Next, we investigate the behavior of the optimal solution considering the full opti-
mization setting, that is, the case when the L1-cost actively enters in the optimization 
process, i.e. 0γ > , and the control is constrained by the bounds 10, 10a bu u= − =  in 
(25). For simplicity, we discuss only the case with 210ν −= . 

In Figures 5-7, we depict the optimal controls for three different choices of values of 
γ  and considering the discrete-in-time tracking functional given by (27). In Figures 
8-10, we show the optimal controls for three different choices of values of γ  and con-
sidering the continuous-in-time tracking functional given by (28). In both cases, we can 
clearly see that increasing the value of the parameter γ  significantly increases the 
sparsity of the solution, as expected. 

Finally, in the Table 1 and Table 2, we also report values of the tracking error when 
both the L2- and L1-costs are considered. For a direct comparison with the first series of 
experiments, we consider an unconstrained control. We find that already with a small 
value of γ , the tracking ability of the optimization scheme worsen for both choices of 
the tracking functional. 
 
Table 1. Tracking error of the discrete-in-time functional ( )D f  given by (27). 

( )D f  ν  γ  

52.02 10−×  10−10 0 

52.49 10−×  10−6 0 

21.34 10−×  10−4 0 

21.12 10−×  10−10 10−4 

21.27 10−×  10−6 10−4 

22.61 10−×  10−4 10−4 

 
Table 2. Tracking error of the continuous-in-time functional ( )D f  given by (28). 

( )D f  ν  γ  

47.78 10−×  10−10 0 

31.05 10−×  10−6 0 

21.71 10−×  10−4 0 

27.96 10−×  10−10 10−4 

11.38 10−×  10−6 10−4 

11.23 10−×  10−4 10−4 
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Figure 5. Optimal control with 1 2γ =  and tracking objective given by (27). 

 

 
Figure 6. Optimal control with 3γ =  and tracking objective given by (27). 
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Figure 7. Optimal control with 5γ =  and tracking objective given by (27). 
 

 
Figure 8. Optimal control with 1 2γ =  and tracking objective given by (28). 
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Figure 9. Optimal control with 3γ =  and tracking objective given by (28). 
 

 
Figure 10. Optimal control with 5γ =  and tracking objective given by (28). 
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8. Conclusion 

A framework for the optimal control of probability density functions of jump-diffusion 
processes was discussed. In this framework, two different, discrete-in-time and conti-
nuous-in-time, tracking functionals were considered together with a sparsity promot-
ing L1-cost of the control. The resulting nonsmooth minimization problems governed 
by a Fokker-Planck partial integro-differential equation were investigated. The exis-
tence of at least an optimal control solution was proven. To characterize and compute 
the optimal controls, the corresponding first-order optimality systems were derived and 
their numerical approximation was discussed. These optimality systems in combination 
with a proximal scheme allowed to formulate an efficient solution procedure, which 
was also theoretically discussed. Results of numerical experiments were presented to 
validate the computational effectiveness of the proposed method. 
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