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1. Introduction  

The goal of this cumulative thesis is to study host responses to pathogens. 

Biological background (chapter 2), theoretical foundation, material and methods 

are sequentially organized followed by three parts of results and general 

discussion at the end. The chapter 3 ‘Theoretical foundation’ describes modeling 

approaches used in the thesis.  In spite of the complex regulated host immune 

system some pathogens still succeed in invasion. Versatile bioinformatical and 

modeling approaches are applied to understand different cascades of interactions 

in infections. Boolean networks, time step simulations, ordinary differential 

equations (ODEs) with domain and structure analysis are combined to study 

apoptosis, phagosome-lysosome fusion and interactions between host and 

pathogen. All components studied here are involved in different processes 

during pathogen invasion. 

Biological cascades are studied in this thesis at different levels: 

(i) Proteins - recognizing the important interacting surfaces involved in 

protein-protein interactions,  

(ii) Pathway - recognizing different components involved in the pathway 

from literature, the effect of their topology and their role, by performing in silico 

deletions and by comparing with experimental observations.  

(iii) Organelles (phagosome, lysosome) and networks - studying the 

important factors (actin polymerization) directing the fusion, effect of different 

molecules affecting fusion (phospholipids regulate actin polymerization and here 

the effect of combination of phospholipids on actin polymerization is studied).  

(iv) System’s responses – The immunological responses of the host in the 

case of Bordetella infections are studied in detail. Here we analyse the cascade of 

interactions between the virulence factors and the host immunological 

components upon pathogen invasion. 

The results section is divided in to three parts, in part I the apoptosis 

pathway and its relation with a proliferation pathway is studied in detail. In the 
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section part I, chapter 5 and 6 describe the study of protein-protein interactions 

and a model of the apoptosis pathway respectively. Proteins in the apoptosis 

pathway have a set of domains in common collectively called the death domain 

superfamily. In chapter 5 interactions between proteins containing one of these 

domains are studied. Some of these proteins are known to play a role in the 

decision between proliferation/ survival or apoptosis. They are studied using 

phylogenetic, sequence and structural analysis. Some of the important amino 

acids in the interactions are also predicted. In the chapter 6 of part I the complete 

apoptosis pathway of C. elegans, Drosophila melanogaster and Mus musculus is then 

compared and used for qualitative modeling. ODEs are used to develop the 

model which was then used in a dynamic simulation for this purpose; further the 

results from the simulation are compared with experimental observations to test 

the success of the simulation.  

In the second part a model is built to study the fusion between phagosome 

and lysosome. As seen in chapter 2 M. tuberculosis inhibits this fusion making it 

possible to live inside the phagosome. This step of fusion is essential in removal 

of pathogens. In chapter 7 the cascade of phospholipid reactions that take place 

in the phagosome membrane is modeled. It plays an important role in de novo 

actin polymerization. Actin polymerization in particular is known to be inhibited 

by M. tuberculosis. The simulation predicts the effect of the combination of 

phospholipids on the actin polymerization. The predictions of this model are 

checked and used in experiments. Spatial and analytical models are developed in 

chapter 8. These two models try to address the question of optimization of 

energy (ATPs), the effect of diffusion and time. The analytical model 

probabilistically calculates the time necessary for a successful event (fusion), 

taking into consideration the time taken by unsuccessful events. In contrary the 

spatial model actually tries to address the optimal length of F-actin necessary for 

efficient fusion.   
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In part III, chapter 9 a heuristic approach is used to study the host 

pathogen interactions exemplified by mammals and Bordetella species. A 

qualitative simulation is developed using logical operators. The results are 

compared with experiments proving the success of the model. Further the 

dynamic simulation is used to make some predictions about regulatory hot spots 

in immune responses.  Conclusions at the each result chapter briefly discuss and 

summarize the main implications as well as the limitations of the specific 

approaches. 

In the general discussion section the different approaches used in the 

thesis for modeling biologically complex systems are compared with similar 

approaches used by others. This also includes the implications of such work in 

answering biological questions and in drug discovery. We have also mentioned 

the advantages and disadvantages of the approaches.  
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2. Biological Background 

 

2.1 The challenges of infectious diseases 

 About 15 million of 57 million annual deaths worldwide are estimated to 

be related directly to infectious diseases; this figure does not include the 

additional millions of deaths that occur as a consequence of past infections or 

because of complications associated with chronic infections, such as liver failure 

and hepatocellular carcinoma in people infected with hepatitis C or B viruses 

(figure 1). Infections in general can be classified as newly emerging infections, 

reemerging or deliberately emerging infections. Emerging infections (EIs) can be 

defined as "infections that have newly appeared in a population or have existed 

previously but are rapidly increasing in incidence or geographic range (Merrell 

and Falkow, 2004)” 

 

 
Figure 1: Leading causes of death worldwide. About 15 million (>25%) of 57 million 
annula deaths worldwide are the direct result if infectious disease. Figures published 
by the World Health Organization. 
 

Environmentally persistent organisms:  

Infectious agents indirectly transmitted to or between humans by way of 

human-modified environments account for emerging zoonoses, as well as certain 

non-zoonotic diseases. For example, legionnaires' disease is caused by Legionella 
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pneumophila, whose emergence as a human pathogen might not have occurred 

were it not for the environmental niche provided by air-conditioning systems 

(Committee on Emerging Microbial Threats to Health in the 21st Century. 

Microbial Threats to Health in the United States: Emergence). Campylobacter jejuni 

and Shiga-toxin-producing Escherichia coli (E. coli O157:H7 and other agents of 

haemolytic−uraemic syndrome) infect agricultural animals, gaining access to 

humans through food, milk, water or direct animal contact. Other enteric 

pathogens, such as the vibrios causing classical cholera (re-emerging; see below) 

and serogroup O139 cholera, and the zoonotic protozoa Cryptosporidium parvum 

and Cyclospora cayetanensis (Committee on Emerging Microbial Threats to Health 

in the 21st Century. Microbial Threats to Health in the United States: Emergence), 

seem to have come from environmental or animal organisms that have adapted 

to human-to-human 'faecal−oral' transmission through water. 

 

Old microbes cause new diseases: 

Some EIs come from microorganisms that once caused familiar diseases, 

but which now cause new or previously uncommon diseases. Streptococcus 

pyogenes caused a fatal pandemic of scarlet and puerperal fevers between 1830 

and 1900(Katz and Morens, 1992). Scarlet fever, then the leading cause of death 

in children, is now rare, but has been largely supplemented by other 

streptococcal complications such as streptococcal toxic shock syndrome, 

necrotizing fasciitis and re-emergent rheumatic fever (Musser and Selander, 

1990). Although the bases of emergences of new and more severe diseases caused 

by S. pyogenes and H. influenzae biogroup aegyptius are not fully known, in both 

cases complex microbial genetic events are suspected. The distinctive clonal 

variants associated with severe H. influenzae biogroup aegyptius disease have 

been shown by PCR (polymerase chain reaction)-based subtractive genome 

hybridization to contain not only a unique plasmid, but also unique 
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chromosomal regions, some of which are encoded by bacteriophages (Li et al., 

2003).  

 

Microbial agents and chronic diseases: 

Infectious agents that are associated with chronic diseases are one of the 

most challenging categories of newly emerging (or at least newly appreciated) 

infections. Examples include the associations of hepatitis B and C with chronic 

liver damage and hepatocellular carcinoma, of certain genotypes of human 

papillomaviruses with cancer of the uterine cervix, of Epstein−Barr virus with 

Burkitt's lymphoma (largely in Africa) and nasopharyngeal carcinoma (in China), 

of human herpesvirus 8 with Kaposi sarcoma, and of Helicobacter pylori with 

gastric ulcers and gastric cancer (Chang et al., 1994; Sanders and Peura, 2002). 

Some data even suggest infectious aetiologies for cardiovascular disease and 

diabetes mellitus, major causes of death and disability worldwide. Other 

associations between infectious agents and idiopathic chronic diseases will 

inevitably be found. 

 

Re-emerging infections (Tuberculosis): 

Re-emerging and resurging infections are those that existed in the past but 

are now rapidly increasing either in incidence or in geographical or human host 

range. For example Tuberculosis is one of the most deadly re-emerging diseases 

(Figure 1). The discovery of isoniazid and other drugs initially led to effective 

tuberculosis cures, empty sanitoria and the dismantling of public health control 

systems in developed nations. Consequently, by the 1980s, when tuberculosis 

had re-emerged in the era of HIV/AIDS, local and state health departments in 

the United States lacked field, laboratory and clinical staff and so had to reinvent 

tuberculosis-control programmes (Committee on Emerging Microbial Threats to 

Health in the 21st Century. Microbial Threats to Health in the United States: 

Emergence). The remarkable re-emergence of tuberculosis was fuelled by the 
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immune deficiencies of people with AIDS, which greatly increases the risk of 

latent Mycobacterium tuberculosis infections progressing to active disease, and 

being transmitted to others. Inadequate courses of anti-tuberculosis therapy 

compound the problem, leading to the emergence and spread of drug-resistant 

and multidrug-resistant strains (Espinal, 2003), and a need for more expensive 

treatment strategies such as directly observed therapy. It has been known for 

over a century that tuberculosis is a disease of poverty, associated with crowding 

and inadequate hygiene. The continuing expansion of global populations living 

in poverty makes tuberculosis more difficult to control. 

 

2.1.1 Pathogens and introduction to their strategies of invasion and survival  

Wide range of microbe-host relationships can lead to disease. Host and 

pathogens constantly evolve to out-compete each others strategies. Recently two 

most general strategies are described in military term as ‘frontal’ and ‘stealth’ 

assaults(Merrell and Falkow, 2004). Frontal assault strategies require that the 

infecting microbes rapidly replicate, induce disease symptoms that overwhelm 

the innate defenses of the host, and find a new host before engagement of the 

adaptive immune system. The stealth assaults on the other hand, typically 

involve slower infection processes in which microbes subvert the host’s innate 

and adaptive immune systems to set up a chronic or persistent infection. One 

example of the pathogen that uses a frontal assault strategy is Vibro cholerae, a 

potent epidemic adversary in many developing areas of the world. The ability of 

V. cholerae to rapidly cause disease before eliciting productive immune responses 

is shared by many organisms including the most common cause of diarrhoeal 

disease in infants, the rotavirus family, which is responsible for 600,000 deaths a 

year. The understanding of the strategies used by pathogens to set up persistent 

infections remains fairly limited compared with our knowledge of the frontal 

assault strategies discussed above. Some of the known strategies used by bacteria 

with examples are described in table 1. 
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Table 1: An overview of mechanisms used by bacteria to avoid host immune 
responses(Merrell and Falkow, 2004). 
 

 
 
 

2.2 The host defense system an introduction 

Pathogens invade the host and further spread by various routes for 

example through air, food, close contact etc. The host system recognizes the 

virulence factors expressed by pathogens and produce various cytokines in 

response. Cytokines are usually produced by cells which come in contact with 

pathogens for example epithelial cells. The two components of the immune 

system ‘innate’ and ‘adaptive’ immunity are essential for the protection against 

infection. Invasion of pathogens activate innate immune responses which is the 

retort to foreign material. These responses help in elimination or slow the spread 

of the pathogen. The effector mechanisms used by the host to control infection 

include production of pro-inflammatory cytokines and chemokines, recruitment 

of inflammatory cells to the site of infection and activation of lymphocytes and 

natural killer cells. If the pathogen persists, antigen specific adaptive immune 
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responses are activated. The adaptive immunity is further divided in to humoral 

and cellular responses. Humoral immunity refers to the antibody mediated 

responses against pathogen. Cellullar immunity involves activation of 

macrophages and NK cells and the production of various cytokines in response 

to antigen.  

In Humoral immunity B cells are activated by T cell subtype called TH2 

cells. B cells then undergo clonal expansion and produce antigen specific 

antibodies. Some antibodies for example IgG and IgM opsonize pathogens and 

activate classical complement pathway. Antibody opsonized pathogens also go 

through Fc receptor mediated phagocyosis. T cells are activated by interactions 

between dendritic cells and T naïve cells. Depending on the cytokines produced 

during interaction T naïve cells develop in to TH1 cells or TH2 cells. Th1 cells 

produce cytokines that activate large amount of phagocytic cells and especially 

macrophages. Macrophages are very essential phagocytic cells required for 

pathogen removal. 

 

2.3 Microbial countermeasures 

Humans live in harmony with much of the microbial world, thanks to a 

sophisticated immune system. The infiltrators still exist and they make use of the 

loop holes in the very same sophisticated immune system to survive and cause 

infections. Here we discuss microorganisms that survive in phagocytic cells. As 

seen in section 1.2 phagocytic cells actually remove microorganisms from our 

body. They are activated during innate and adaptive immunity.  

Following microbial internalization, the newly formed phagosome 

proceeds through numerous steps of maturation accompanied by continuous 

remodeling of its protein composition. Moreover, the late phagosome is 

characterized by its fusion with late endosomes transporting endocytosed 

materials. Finally, the late phagosome forms a phagolysosome by fusing with 

pre-existing lysosomes. Within the lysosomal vacuoles are potent hydrolytic 
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enzymes that function optimally at acidic pH (4.5-5.0) and are capable of 

degrading microorganisms. The family of acid hydrolases includes nucleases, 

proteases, glycosidases, lipases, phosphatases, sulfatases and phospholipases. 

The degradation of intracellular microorganisms by intralysosomal acidic 

hydrolases constitutes a significant antimicrobial mechanism of phagocytes. In 

addition, the process of microbial degradation by lysosomes results in the 

generation of antigenic peptides suitable for presentation by class II MHC 

molecules and activation of CD4+ T lymphocytes. It appears that the 

antimicrobial activity of the phagolysosome is mediated, at least in part, by the 

degradative function of lysosomal enzymes and/or the direct or indirect effect of 

acidification. However, the precise mechanisms by which the hydrolases and 

acidification mediate antimicrobial activity, as well as the process of acidification 

of the various endocytic compartments, are not completely understood. 

Various microbes exploit distinct intracellular niches for survival and 

proliferation within host cells (Table 1). In this section different microbial evasion 

strategies at different stages of infection will be discussed. 

 

 
(A)      (B) 
Figure 2: To avoid death in the lysosomes, pathogens short-circuit phagosome 
maturation. (A) Mycobacterium tuberculosis stalls maturation of its phagosome and 
replicates within an early endosomal compartment, whereas Toxoplasma gondii 
assembles a vacuole that excludes host trans-membrane proteins. (B) The 
transmissible forms of Leishmania spp., Coxiella burnetii, and Legionella pneumophila 
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establish vacuoles that are separate from the endosomal pathway, but later 
differentiate to replicative forms that thrive in acidic lysosomes. 
 

Inhibition of phagosome-lysosome fusion 

Prevention of phagosome-lysosome fusion (Figure 2A) not only favors 

bacterial viability inside phagosomes, but also avoids antigen presentation and 

stimulation of CD4+ T lymphocytes. In cultivated human macrophage-like cells, 

E. chaffeensis resides in early endosomes that selectively accumulate the 

transferrin receptor and do not fuse with lysosomes, thereby preventing 

exposure to hydrolytic enzymes of the lysosomes (Barnewall et al., 1999). 

Furthermore, ehrlichiae prevent accumulation of vacuolar ATPase, which results 

in relatively high intraphagosomal pH (6.5). This pH is critical for obtaining iron 

from transferrin and for blunting the action of lysosomal hydrolases. Similarly, 

M. tuberculosis (Clemens et al., 2000), L. pneumophila (Clemens et al., 2000), 

Chlamydia psittaci and C. trachomatis occupy unique compartments which are 

distinct from late endosomes or phagolysosomes. The L. pneumophila phagosome 

exists completely outside the endolysosomal pathway, and the M. tuberculosis 

phagosome displays maturational arrest at an early endosomal stage (Sinai and 

Joiner, 1997) and does not fuse with lysosomes. These compartments neither 

acidify nor contain late endosomal markers such as cathepsin D and rab7 

(Clemens et al., 2000). The exclusion of the vacuolar ATPase proton pump from 

phagosomes containing live M. tuberculosis or M. avium provides a mechanism 

for the relative lack of acidification of mycobacterial phagosomes. Similarly, 

Chlamydia spp. resides and replicate in a non-acidic compartment, the inclusion 

body. The localization of these pathogens within the host cell might depend on 

their route of internalization. For example, the intracellular parasite T. gondii 

actively invades its host cell and forms a vacuole that does not fuse with other 

intracellular compartments. However, antibody-opsonized T. gondii is engulfed 

via the FcR without active participation by the parasite and subsequently ends 

up in a phagolysosome (Mordue and Sibley, 1997). 
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Survival in the phagolysosome 

Salmonella, Leishmania, and Coxiella survive and even replicate in the acidic 

and hydrolytic environment of the late endosomal/lysosomal compartments. 

Importantly, the phagolysosomal compartment may provide an essential source 

of nutrients for these organisms. Live Salmonella typhimurium resides in late 

endosomal/phagolysosomal vacuoles characterized by the presence of cathepsin 

L and other late endosomal markers without significant loss in bacterial viability. 

Leishmania amastigotes (Figure 2B) appear to be covered with lipidoglycans that 

are relatively resistant to all hydrolases. In addition, Leishmania parasites have 

nucleotidases on their surfaces that allow them to extract purines from 

autophagosomes in the cell necessary for their survival (Debrabant et al., 2000). 

C. burnetii, the causative agent of Q fever, not only replicates within the 

phagolysosome of host cells, but also can transport and incorporate nutrients at a 

mildly acidic but not at a neutral pH (Howe and Mallavia, 2000). There is 

evidence to suggest, however, that C. burnetii is able to modify its environment. 

Supernatants from disrupted C. burnetii possess acid phosphatase activity that 

inhibits the metabolic burst of formyl-Met-Leu-Phe (fMLP)-stimulated human 

neutrophils. 

 

Escape into the cytosol 

This mechanism of evasion is employed by Listeria, Shigella and Rickettsia. 

Such a strategy not only protects these pathogens from harsh phagolysosomal 

conditions and associated host defense mechanisms, but also provides them with 

a nutrient-rich environment as discussed earlier. L. monocytogenes produces LLO 

that forms pores in the phagosomal membrane, thus allowing access of Listeria to 

the cytosol. Shigella flexneri displays hemolytic activity upon close contact with 

erythrocytes. This contact-mediated hemolytic activity seems to be necessary to 

lyse the phagocytic vacuole and is mediated by IpaB in the invasion- mediating 

protein complex.  
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Rickettsia spp. escape quickly from the phagosome into the host cell 

cytosol, but the mechanism of how this is achieved remains unclear. 

Phospholipase A activity possibly related to cell invasion and escape into the 

cytoplasm is associated with rickettsiae.  

Once in the cytoplasm, the bacteria replicate in the cytosol of host cells. 

Many cytosolically replicating intracellular bacteria seem to possess the ability to 

spread from the primary infected cell into neighboring cells by inducing 

formation of host-derived F-actin tails that propel the bacteria through the 

cytoplasm and the cell membrane of the host cell. By using this cell-to-cell spread 

without extracellular exposure, these bacteria avoid extracellular host defenses, 

such as complement and antibodies.  

During growth in the cytosol, some bacteria can induce or repress the 

expression of specific host genes and can influence pre-existing cytosolic gene 

products. The observed downregulation of host genes involved in the generation 

of MHC class II molecules and of the receptors for IFN-Q and TNF- α by 

cytosolically replicating L. monocytogenes may positively affect cytosolic listerial 

replication under in vivo conditions. Furthermore, activation of NF- κB by 

specific virulence factors produced by the replicating bacteria takes place after 

escape of Rickettsia rickettsii (Clifton et al., 1998) as well as L. monocytogenes (Hauf 

et al., 1997) into the host cell cytosol. NF-κB activation results in inhibition of 

apoptosis, allowing prolonged multiplication of intracellular bacteria in the 

cytosol. 

 

Inhibition of generation of reactive nitrogen and oxygen intermediates 

Many pathogenic microorganisms are known to inhibit generation of O2- 

radicals in neutrophils or monocytes. For example, the human granulocytic 

ehrlichiosis agent, Anaplasma phagocytophila, which is an obligatory intracellular 

bacterium that replicates in neutrophils, subverts the ability of human 

neutrophils to generate O2- in response to both soluble stimuli (e.g., phorbol 
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myristic acid or fMLP) and particulate stimuli (Escherichia coli), which activate the 

NADPH oxidase through different signaling pathways (Mott and Rikihisa, 2000). 

M. tuberculosis produces catalase and superoxide dismutase, two gene products 

capable of degrading reactive oxygen species. Additionally, M. tuberculosis 

avoids host defense through binding to CR1 or CR3, which do not trigger the 

oxidative burst and inflammatory response (Schorey et al., 1997). 

 

Lack of production of proinflammatory cytokines 

Certain intracellular pathogens have the intrinsic ability to down regulate 

the production of proinflammatory cytokines by infected macrophages. For 

example, macrophages infected with E. chaffeensis do not secrete IL-6 or 

granulocyte macrophage colony stimulation factor GM-CSF, and TNF-α 

production is not upregulated (Lee and Rikihisa, 1996). Similarly, different 

intracellular bacteria have varying abilities to stimulate macrophages or immune 

lymphocytes to produce TNF-α. For example, viable Orientia tsutsugamushi, 

although able to grow to high titers in both murine peritoneal macrophages and 

a macrophage-like cell line, does not stimulate the production of detectable TNF-

α by these cells. In contrast, infection of macrophages with R. conorii results in 

production of high levels of TNF-α. 

 

Inhibition of apoptotic cell death 

Cells infected with T. gondii are resistant to both Fas dependent and Fas-

independent CTL-mediated cell death. The ability to extend the life of infected 

host cells would be a substantial advantage to intracellular pathogens for 

enhancing their own survival. 
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2.4 Apoptosis and host homeostasis 

 Apoptosis and cell cycle are highly conserved mechanisms by which 

eukaryotic cells commit suicide and replicate themselves respectively. Apoptosis 

enables an organism to eliminate unwanted and defective cells through an 

orderly process of cellular disintegration that has the advantage of not inducing 

an undesirable inflammatory response (Jacobson et al., 1997). Apoptotic 

elimination of cells occurs during normal development and turnover, as well as 

in a variety of pathological conditions. Improper regulation of apoptosis 

contributes to disorders such as cancer, viral infection, autoimmune diseases, 

neurodegenerative disorders, stroke, anemia and AIDs (Wyllie, 1997). Apoptosis 

can be triggered by a wide number of signals. These include FAS ligand, tumor 

necrosis factor, growth factor withdrawal, viral or bacterial infection, oncogenes, 

irradiation, ceramide and chemotherapeutic drugs (Wyllie, 1997). The 

morphological changes characteristic of apoptotic process are mainly due to 

caspases, a family of cysteine proteases that act as effectors of the cell death 

pathway (Golstein, 1997). Their activation leads to the cleavage of specific 

proteins that include some cell regulators. The process of cell loss and cell gain 

must be homeostatically balanced in order to generate and maintain the complex 

architechture of tissues. One way in which this connection may be achieved is 

through the coupling of cell cycle and programmed cell death, perhaps by using 

or controlling a shared set of factors (King and Cidlowski, 1995). One evidence is 

that apoptosis is regulated by genes that are involved in cell cycle progression. 

Here, in this thesis I study apoptosis inducing ligands, the components of cell 

cycle that are involved in activating or inhibiting apoptosis, the conservation of 

apoptosis pathway in C. elegans, Drosophila melanogaster and M. musculus. Below 

there are some examples of proteins and their regulation studied in this thesis; 

that are affected during diseases.  
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Apoptosis in disease and the responses to disease 

It is evident that apoptosis provides a powerful regulatory mechanism for many 

aspects of normal tissue growth and function. This section extends the discussion to 

describe how apoptosis regulates the responses to disease and how defective regulation 

of apoptosis may be central to the pathogenesis of many important disorders. 

 

Inflammation 

The response to injury or infection has itself considerable potential to 

damage tissue and it is therefore tightly regulated. Neutrophils, eosinophils and 

monocytes die by apoptosis within a relatively short period (e.g. 3-4 days for 

eosinophils in culture), however death can be significantly delayed by 

proinflammatory cytokines such as C5a (neutrophils), IL-1β, TNF-α, IFN-γ 

(monocytes) and IL-5 (eosinophils) (Mangan and Wahl, 1991; Stern et al., 1992). 

In contrast TGF-β and TNF-α accelerate eosinophil and neutrophil apoptosis 

respectively (Alam et al., 1994; Takeda et al., 1993). This suggests a potential 

mechanism in vivo for control of the survival and ultimately the removal of these 

potentially dangerous cells from sites of inflammation when the inflammatory 

stimulus subsides. Defects in these mechanisms or in the clearance of apoptotic 

cells may underlie some chronic inflammatory diseases (e.g. hypereosinophilic 

syndromes) due to inappropriate persistence of inflammatory cells with 

continued release of toxic cellular contents perpetuating tissue injury and 

inflammation. Of interest in this regard is the multifocal inflammatory disease 

and tissue necrosis that occurs in mice without functional TGF β1 (Shull et al., 

1992). 

 

Cytotoxic lymphocyte (CTL) killing  

Cell-mediated cytotoxicity is an integral component of specific host 

defenses, for example against virally infected cells, and apoptosis is believed to 

be the mode of death in a proportion of CTL-induced target cell killing (Squier 



                                                                                   Biological Background 

 25

and Cohen, 1994). Evidence suggests that activation of target cell fas by the CTL 

is an important mechanism for this cell-mediated apoptosis, although 

engagement of target cell TNF receptors may also act to trigger apoptosis in 

some instances (Ratner and Clark, 1993; Rouvier et al., 1993). The finding that 

activation of surface fas on hepatocytes triggers apoptosis(Ogasawara et al., 1993) 

suggests a potential pathogenetic mechanism for viral or perhaps autoimmune 

hepatitis that may have implications for new strategies of therapy. It is of 

relevance to note that CTL can kill by a mechanism that involves perforin 

insertion into target cell membranes and granule exocytosis (Squier and Cohen, 

1994). The relative importance and interactions of these different modes of killing 

is not established. 

 

AIDS  

The gradual depletion of CD4+T cells during HIV infection that leads to 

clinical AIDS is thought to be due to excessive apoptosis (Ogasawara et al., 1993). 

HIV-infected cells express a viral envelope transmembrane gp120-gp41 complex 

which binds the CD4 D1 domain of uninfected T cells and triggers apoptosis 

directly(Ameisen, 1992). Furthermore HIV particles shed gp120 which, although 

unable to trigger apoptosis itself, can bind CD4 and program uninfected T cells 

for apoptosis  (instead of proliferation) in response to subsequent T cell receptor 

stimulation by antigen (Gougeon and Montagnier, 1993). The deletion of naive 

and memory T cell clones on encountering their specific antigen abolishes the 

individual's ability to mount a specific immune response to infections (Gougeon 

and Montagnier, 1993). 

 

Oncogenic viruses  

Oncogenic viruses have developed strategies to prevent host cell 

apoptosis that have shed light on control pathways. The Epstein Barr virus 

BHRFI protein is a bcl-2 homologue, whilst the LMP-1 protein upregulates bcl-2 
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expression and induces the A20 zinc finger protein that confers resistance to 

TNFα cytotoxicity (Henderson et al., 1993; Henderson et al., 1991). The 

adenovirus E1B gene encodes a functional homologue of bcl-2 and a protein that 

inactivates the p53 oncosuppressor (Debbas and White, 1993; White et al., 1992). 

In fact several viruses inhibit p53 function in different ways, including SV40 

(large T antigen), Epstein Barr virus (EBNA 5), human papillomavirus types 16 

and 18 (E6 protein) and hepatitis B virus (HBx protein) (Selter and Montenarh, 

1994). This is a testament to the importance of that molecule in countering 

abnormal cell proliferation. Interestingly, many oncogenic viruses contain genes 

that activate cells from the growth arrested state (SV40 T antigen, adenovirus 

E1A, HPV E7) probably via inactivation of Rb protein, release of transcription 

factor E2F and activation of c-myc. At least some of these changes also imply 

increased susceptibility to apoptosis, as discussed earlier. The combination 

therefore of pro-apoptotic oncogenes with others having anti-apoptotic activity 

appears to be an essential part of the viral strategy to induce cell proliferation 

without also activating cell death. 

 

Cancer therapy implications  

Apoptosis is a physiological process to regulate tissue homeostasis, and a 

defect in its execution may lead to cancer. Moreover, evading apoptosis is 

considered as one of the six steps leading to malignant growth as the ability to 

modify sensitivity to apoptosis through the regulatory pathways has clear 

implications for the treatment of malignancy (Hickman, 1992). Potential 

strategies fall into three categories—direct triggering of apoptosis by cytotoxic 

agents, enhancing susceptibility to apoptosis to increase the efficacy of other 

therapies, and boosting the resistance of normal cells to apoptosis (with survival 

factors). Restoration of function of interrupted apoptotic pathways, e.g. p53-

dependent apoptosis, with consequent self-deletion by tumour cells would be a 

most attractive strategy. Bcl-2 antagonists might likewise be expected to cause 
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regression of follicular lymphomas or at least to increase their radio- or 

chemosensitivity. Induction of a high turnover state (with survival factor 

dependence) or antagonism of tumour survival factors (e.g. antiandrogens for 

prostate carcinoma, tamoxifen for oestrogen receptor-expressing breast 

carcinomas) is other approaches to therapy. Boosting normal cell resistance to 

apoptosis with exogenous survival factors can be used after ablative therapy to 

improve restoration of the normal cell population, (Sachs and Lotem, 1993) 

reducing treatment morbidity and allowing greater frequency of cytotoxic 

treatments. 
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3. Theoretical foundations 

 

3.1 Modeling: From proteomics to systems biology  
 

 
 

Figure 3: Steps of biological modeling using proteomics data. In this figure, 
experimental models include any biologically relevant processes in living systems, 
and are represented by cultured cells as an example. Proteomics is exemplified by 2-D 
gels. Further proteomics datasets have to be acquired and represented in formats that 
are compatible with modeling tools. It is represented by listing information which is 
required for representation of biological data. Proteomics datasets which are 
translated into modeling compatible formats can be then used for modeling. Here, 
modeling is represented by a relation network between TGF β, its receptors (TβR-I, 
TβR-II, TβR-III) and receptor substances (Smad2 and Smad3), and a graph which 
illustrates changes in protein concentrations. The arrows between the main steps are 
double-headed, as modeling tools influence requirements for data deposition and 
representation. Data deposition and representation also affect designing of 
proteomics experiments, and proteomics technologies may affect selection of a 
biological model. 

 

Proteomics is a large scale technology which provides a global overview 

of proteomes (de Hoog and Mann, 2004; Gorg et al., 2004). Information about 



                                                                                 Theoretical Foundations 

 29

protein expression, rates of synthesis and degradation, enzymatic activities, 

structure, localization and interacting partners can be generated by modern 

proteomics techniques, although with various degree of preciseness. In general 

the study of proteomics can be divided in to (i) quantification of proteins, (ii) 

functional status of proteins (activity and interactions), (iii) localization and (iv) 

the dynamics of proteomes. This information can be used heuristically for 

building and analysis of models of biological processes.  A number of modeling 

tools addresses biological complexity on the level of biochemical reactions and 

cell physiology and evolution (Papin et al., 2005) (Figure 3). The term ‘model’ 

refers to the description of biological processes in the mathematical terms, 

without discrimination of mathematical tools. Consequently modeling is defined 

as “the application of methods to analyse complex, real world problems to make 

predictions about what might happen with various actions”. Modeling tools 

cover a broad range of mathematical methods (Figure 4), from system of 

differential equations to statistical correlation tools. Some tools require detailed 

knowledge about components, For example, to build a system of differential 

equations for modeling of signaling pathway, knowledge of concentration of 

components and kinetic parameters of reactions in this pathway is required. Data 

with less precise information can be analyzed by other tools For example, to 

build a model based on Bayesian network it is sufficient to know relations 

between studied components of a model. However, common for all modeling 

tools is the requirement of information about quantity and identity of 

components of a model, and knowledge of dependencies and dynamics of 

relation between these components (Souchelnytskyi, 2005). Once a model has 

been developed it has to be tested for different parameter to find the best fitting 

parameters. Parameters are many times unknown constants which can be 

standardized by simulations. In many instances the model is tested across time 

such simulations are called dynamic simulations.  
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Figure 4: Application of modeling tools to datasets with various degree of definition. 
Proteomics produces data of various degrees of definition of protein species, e.g., 
various levels of details about absolute or relative concentrations of proteins, their 
activities, localization and dynamics of changes of these proteins. Each set of such 
data can be most efficiently analyzed by modeling tools designed to process data with 
various definitions of details in the description of proteomes as indicated. As 
examples, differential equations, Boolean and Bayesian networks, and statistical 
correlation tools are indicated. They are shown in relation to the required level of 
details about datasets to be efficiently analyzed with those tools. 

 

I will focus here on the categories functional status (ii) and dynamics of 

proteins (iv) from the proteomics section described above as they are important 

for the computational approach used here. In the functional status of proteins 

along with the experimental work for identification of interacting partners, their 

modifications (For example: phosphorylation, methylation etc.) and their 

activity; the bioinformatical approach is essential to predict new interaction 

partners, modification sites and novel interacting surfaces. Various 

bioinformatical approaches mainly include, (i) sequence analysis of whole 

proteins or domains (functional units of proteins): comparison across the species 

in a multiple alignment and (ii) structural analysis: Prediction of structures from 

sequence alignment, comparison of structures of proteins and active sites from 

various organisms and study of evolution of structure. In both of these 

approaches, slow evolving and fast evolving sites are predicted by multiple 
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alignment of sequences. Ofcourse experimental results are necessary to confirm 

these predictions. The data on dynamics of proteins has to be obtained from 

experiments. The timescale of biological processes varies from milliseconds to 

days. The experimental data in such cases includes reaction rates, kinetic 

constants and concentrations in vivo. As mentioned above these details are 

important for qualitative simulations that are many times performed using 

ODEs. Qualitative modeling can be performed without these details, the 

information about relative concentrations of components and relative rates of 

reaction are sufficient.  

Most of the proteins especially proteins associated with cell cycle, 

apoptosis and immune responses to the pathogens are not constitutively 

produced but are induced when necessary.  

 

3.2 Approaches to study biological regulatory networks 

 



                                                                                 Theoretical Foundations 

 32

Figure 5: Iterative process of modeling a biological signaling system. Data are collated 
from literature and experiments, and parameters are estimated where necessary. 
Models are considered to be valid when simulation results match a significant set of 
experimental observations. Finally, the model is used to generate hypothesis, which 
can be experimentally tested (Rajasethupathy et al., 2005). 
 

The process of modeling a biological signaling system begins with 

extensive data mining from literature to obtain parameters (Figure 5). Other 

specific inputs to the model might be: details of key regulatory pathways, known 

interactions with pharmacological agents, tissue specificity, and so on. Often, it is 

necessary to use indirect data or even educated guesses to set a parameter for 

which direct data do not exist. The model is considered valid if it can explain a 

substantial set of experimental observations. Finally, the model is used to 

generate hypotheses that can then be tested. Through this iterative process, one 

gains a better understanding of the biological system and insights into possible 

therapeutic interventions.  

The most traditional approach to study biological networks is to employ 

ODEs such as Michaelis-Menten equations. This approach provides 

mathematically well founded and fine interpretations of biological networks, 

especially for enzyme reactions. Gepasi (Mendes, 1993) is a software package 

based on this approach for modeling biochemical systems and it aims at assisting 

users in translating reaction processes to matrices and ODEs. E-cell (Tomita et al., 

1999) is a system for representation and simulation with a GUI and, with this 

tool, a model of a hypothetical cell with only 127 genes sufficient for 

transcription, translation, energy production and phospholipids synthesis has 

been constructed. Use of ODEs is often restricted due to the need of various rate 

constants.  A Petri net is a stoichiometrical approach, developed by Reisig in 1985 

and was first used in 1993 for modeling metabolic pathways (Reddy et al., 1993).  

 Petri net is a network consisting of place, transition, arc and token. A place 

can hold tokens as its contents. A transition has arcs coming from places and arcs 

going out from transition to some places. A transition with these arcs defines a 
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firing rule in terms of the contents of the places where the arcs are attached. 

Firing speed is given as a function of values in the places in the model. Hybrid 

Petri nets (HPN) (Alla and David, 1998) and hybrid dynamic net (HDN) (Drath, 

1998) and hybrid functional Petri nets (HFPN) (Matsuno et al., 2003) are 

improved versions of original Petri nets. Biological pathways essentially consist 

of discrete parts such as a genetic switch control and continuous parts such as a 

metabolic reaction. These discrete and continuous parts can be represented by 

discrete elements (discrete place and discrete transition) and continuous 

elements (continuous place and continuous transition). Continuous transition 

fires continuously. For example: if discrete place has a token, the protein 

necessary for activating the operator site has bound to the operator that means 

the gene expression is turned on.  

 Another approach to represent metabolic pathway is by a stoichiometric 

matrix m * n where m corresponds to the number of metabolites and n 

corresponds to the number of reactions or fluxes taking place within the 

network. The analysis of such matrix is performed by representation of fluxes by 

basis vectors in the null space (Horiuti and Nakamura, 1957; Reder, 1988). Taking 

in to consideration the irreversibility of the reaction the region of admissible 

steady state flux vectors shrink to a subset of null space. Elementary the mode 

analysis was developed to find basis vectors of this subset which are of interest to 

understand metabolic pathways (Heinrich et al., 2002). In other words the 

elementary mode is a minimal set of enzymes that could operate at steady state, 

with the enzyme weighted by the relative flux they need to carry for mode to 

function. Here the concept of Petri net and elementary mode analysis converge in 

the study of feasible metabolic fluxes. The stoichiometric matrix of a metabolic 

network corresponds to the incidence matrix of Petri net so that the 

stoichiometric coefficients are described by arc weights. The concept of T 

invariants in Petri net is similar to the flux modes and conservations in later 

representation (Zevedei-Oancea and Schuster, 2003). 
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In these models the proportion of fluxes is fixed whereas the magnitudes 

are indeterminate, thus avoiding the need of kinetic data. The methods described 

above have been proven successful in modeling metabolic pathways where 

products can be stoichametrically balanced and proportion of fluxes can be 

decided. These properties can not be formulated in signal transduction 

pathways. Thus the mathematical representations of signal transduction 

pathways are difficult to formulate due to large number of unknown factors such 

as rate constants, concentrations of components etc. But even before such data 

becomes available simulations can enhance our understanding of regulatory 

principles and pinpoint critical behavior and parameters for further experimental 

tests.  

 Though efforts to study the signal transduction pathway are still in early 

stages, some approaches have been developed.  A simple linear cascade of 

protein kinases was mathematically represented to understand the key steps in 

kinase and phosphatase regulation (Heinrich et al., 2002). The approach 

developed analytical solutions to understand the effect limited number of key 

parameters on the regulation. In spite of vigorous mathematical formulations the 

model can describe very simple and linear pathways and further has restricted 

applications. 

 

3.3 Dynamic simulation 

Dynamic modeling (Batt et al., 2005; Bentele et al., 2004; Bhalla et al., 2002; 

Heinrich et al., 2002) is used in this thesis in chapters 6, 7 and 9 for 

understanding biological networks. It inludes two steps, in the first step all the 

interactions are described by a mathematical formalism. In the second step the 

evolution of these interactions is studied in time. Understanding of the system is 

necessary to make a decision about which mathematical formalism to use. 

Further they can evolve continuously or discontinuous in time.  This is often 

dependent on which mathematical formulism is used in the first step, the 
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information available about the rate constants and the development of the 

network (for example: if the network is complete a continuous function can be 

used, but if some of the components in the network are missing then  a 

discontinuous function may be more useful).  

In chapter 6 a Michaelis Menten type simplification is used to describe a 

set of key interactions in the apoptosis pathway. The system evolves as a 

continuous function of time, thus ODEs are used for this purpose. Though 

concentrations are calculated at discrete time steps, the system is based on a 

continuous curve. For example, if: 

X1 and X2 are two components in the pathway and X2 is activated in 

presence of X1, then I can write, 

 
IF  (X1[t]>THRESHOLD) 

dX2/dt= (X1[t]*MAX_UNIT)/( K + X1[t]) 
ELSE  

dX2/dt=0 
  
 X2[t] = X2[t-1] + dX2/dt 
 
 Where X[t], indicates the concentration at time t, K is the Michaelis 

Menten constant. 

In contrast to chapter 6, in chapter 7 and 9 logical operators are used for 

the mathematical formalism of the interactions.  Here the evolution of 

components is the step function of time, which gives discrete values to the 

components (that is 0 or 1) at each time step. For example: 

In the phagosomal membrane, PI4P is activated by PI, so I can write, 

If (PI[t]>Threshould) 

Then, 

PI4P [t+1] = PI [t] 

 where PI4P and PI both take either the value ‘1’ or ‘0’.  
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 Such formalism can be improved by adding weights, for example above 

reaction can be written as, 

If (PI[t]>Threshould) 

Then, 

PI4P [t+1] = K * PI [t] 

By using different values of K the description of biological system can be 

improved and use the biological information as much as possible. 
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4. Material and Methods 

 

4.1 Sequence analysis 

 We searched for all DD containing proteins and retrieved their DD 

(SMART accession number SM00005) sequences in FASTA format according to 

the SMART (Letunic et al., 2004) domain database version 4.0 

(http://smart.embl-heidelberg.de/). This collection is continuously updated 

screening a non redundant database of all major primary databases, a BLAST 

cutoff of 0.01 together with a number of further quality (checks regarding 

conserved residues and motifs as well as hand curation) to include only bona fide 

domains of this type.  We used clustal W (Thompson et al., 1994) for multiple 

sequence alignment and seaview (Galtier et al., 1996) to edit the alignment 

manually taking into consideration structural data. CHROMA (Goodstadt and 

Ponting, 2001) (http://www.lg.ndirect.co.uk/chroma/) was used to format the 

alignment. Further we used PHYLIP 3.62 (phylogeny inference package Seattle, 

WA, USA) (Felsenstein, 1997) (http://evolution.genetics.washington.edu/ 

phylip.html/) which uses a neighbor joining matrix for generating a 

phylogenetic tree.  

TreeView 32 (Page, 1996) (http://taxonomy.zoology.gla.ac.uk/rod/ -

treeview.html/) was used to analyze phylogenetic trees. 

 

4.2 Structure analysis 

 SWISS MODEL (Guex et al., 1999; Guex and Peitsch, 1997) 

(http://swissmodel.expasy.org/), an automated comparative protein modeling 

server was applied to predict structures for DDs which had no resolved structure 

in the PDB database (http://www.rcsb.org/pdb/). SWISS MODEL predicts a 

structure applying a template from the PDB database, this template was 

provided manually. FADD (PDB code 1E3Y, chain A) and P55TNFR1 (PDB code 

http://www.lg.ndirect.co.uk/chroma/
http://evolution.genetics.washington.edu/
http://taxonomy.zoology.gla.ac.uk/rod/
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1ICH, chain A) were used as templates to model TRADD (modeled with 1E3Y 

chain A, RMSD=0.08A°, average pairwise score: 25, Percent target sequence 

length modeled with template: 92.0%), RIP (modeled with 1E3Y chain A, 

RMSD=0.63A°, average pairwise score: 27, Percent target sequence length 

modeled with template: 95.8%), NFκB (modeled with 1ICH chain A, 

RMSD=0.37°; average pairwise score: 32, Percent target sequence length modeled 

with template: 98.7%) and CRADD (modeled with 1E3Y chain A, RMSD=0.11A°, 

average pairwise score: 18, Percent target sequence modeled with template: 

100%, all residues) structures. PDB files of all modeled protein will be available 

upon request to authors. Structures were analyzed manually and by applying the 

docking procedure described below. Structures were viewed by Swiss Pdb 

Viewer version 3.7 and Rasmol version 2.6. 

 

4.3. Docking 

 Best results were obtained by the program 3D-DOCK (Smith and 

Sternberg, 2003) (http://www.bmm.icnet.uk/). This program is composed of 

four routines: The first one is ftdock: Here a global scan of the translational and 

rotational space of possible positions of the two molecules, limited by surface 

complementarity (SCscore) and electrostatic filtering is done. In the second 

routine, rpdock, an empirical scoring of possible complexes using residue level 

pair potentials is performed. In the third one, complexes are filtered using 

biological information such as distance between two interacting proteins in the 

complex or involvement of specific residues in interactions. We did not use the 

filter option in routine 3 as the goal of the study was to look for new interacting 

surfaces. In the fourth one, energy minimization is performed. However, further 

information about conformational changes after interactions is unavailable. To 

avoid bias, energy minimization was thus not taken in to consideration (Weber 

and Vincenz, 2001).  
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For each protein-protein interaction we considered in each case the five 

complexes with highest rpscore obtained from rpdock. Pelle-Tube and FAS-

FADD monomers were docked by the same procedure as a control. Pelle and 

Tube are DD containing proteins found in D. melanogaster, their structure and 

interacting surfaces have been experimentally solved. The predicted complex by 

3D-Dock was in its topological details similar to the actual complex as annotated 

in PDB database (1D2Z) (SCscore: 190 and rpscore: 4.810). The other protein 

complexes were docked in the same order as the interactions follow each other in 

the signal cascade (Figure 6). Docking pairs were: (i) p55TNFRI-TRADD, (ii) 

TRADD-FADD, (iii) TRADD-RIP, (iv) RIP-CRADD or RIP-NFκB. We assumed 

that interaction surfaces involved in one interaction are less likely to be involved 

in the interaction with a protein consecutive in the cascade. We always used the 

highest RPscoring complex consistent with this assumption of partly overlapping 

and consecutively used interaction surfaces. The possible number of complexes 

were minimized by this to decide on important residues for specific complexes in 

the DD of proteins under study. 

The RPscores of the complexes used in this study were as follows: 

p55TNFR1-TRADD: 4.740, TRADD-FADD: 5.240, TRADD-RIP: 5.120 (involved in 

TRADD-RIP-NFκB interaction), 5.080 (involved in TRADD-RIP-CRADD 

interaction), RIP-CRADD: 5.590, RIP-NFκB: 4.860. Each complex was one of the 

three highest RPscoring complexes and always the only one of these three 

offering an interaction surface not yet taken by earlier cascade interactions. 

Alternative docking strategies (Patchdock, Smoothdock, Cluspro) were also 

tested but performed not similar well (see results). 

Further we used Swiss Pdb Viewer version 3.7 to superimpose complexes 

and look for possible steric hindrance and overlapping interaction surfaces. 
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4.4 Experimental methods for study of apoptosis pathway 
Extraction of FASL 

Neuro 2A cells (N2A cells) are cultivated in a media containing 10%FCS. 

After cells are confluent they are starved by changing a media to the one 

containing 10% FCS.   FASL is then harvested after one week. 

 

Fluorogenic Caspase-3 activity assay 

Primary M. musculus hepatocytes were treated with 25% FasL/CHX for 

different time points. Cytosolic extracts were made and aliquots were mixed with 

activity buffer and the fluorogenic Caspase-3 substrate DEVD-AMC The 

fluorescence was measured with a Microplate Fluoroskan Ascent Reader. 

 

Fluorescence activated cell sorting assay 

Primary M. musculus hepatocytes (app. 400.000 cells/well) were seeded 

onto a 6-well plate. Cells were then treated with apoptotic stimuli for different 

time points. The media (with detached cells) were collected in 15ml Falcon tubes. 

The cells still attached to the plate were washed twice in AnnexinV-binding 

buffer. The buffer was then removed and added to the appropriate falcon tube 

containing the detached cells/media. The cells were centrifuged at 700 rpm for 5 

min. The supernatant was removed and the remaining pellet was washed twice 

in AnnexinV-binding buffer. Cells still attached to the plate were labelled with 

500 µl AnnexinV-GFP (diluted 1:500) and Propidium Iodide (5µg/ml, diluted 

1:1000) in Annexin V-binding buffer for max.15-30 min at 37ºC. The plate was 

carefully swayed. After the indicated incubation time, the labelling was not 

thrown away. Instead, it was added to the detached cells obtained in. 

Meanwhile, the attached cells remain in Annexin V-binding buffer. The detached 

cells were incubated for 15-30 min at RT (protect from light). The cells were 

centrifuged at 700 rpm for 5 min, washed twice in Annexin V-binding buffer and 

the pellet was resuspended in 50 µl AnnexinV-binding buffer. The attached cells 
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were washed twice in Annexin V-binding buffer and the supernatant was 

completely removed. The cells were fixed with 500 µl Fixative (formaldehyde 

solution, e.g. 4% PFA) for   5 min at 37ºC. Cells were washed twice in 1x PBS, the 

supernatant was removed. Cells were detached from the plate with 0.375% 

trypsin at 37ºC. The incubation time depends on the detachment of the cells 

(max.15 min). The trypsin was removed and added to the appropriate falcon 

tube. Cells were centrifuged at 700 rpm for 5 min and washed twice in 1x PBS. 

The pellet was resuspended in 200 µl AxV- binding buffer (Note that Annexin V-

binding buffer was added without any Annexin V-GFP or PI at this step) and the 

cells were mixed with detached cells to a final volume of 250 µl.  FACS analysis 

was performed using a FACSCaliburTM machine from BD Biosciences. The data 

were analysed with the Cell-Quest Pro program supplied by the manufacturer. 

 

4.5 Development of the dynamic simulation for apoptosis pthway 

The interaction network of C. elegans and D. melanogaster pathways was 

reconstituted from interaction information after a broad screen of literature. The 

components for the M. musculus apoptosis cascade were first obtained from a 

recent version of KEGG (Kyoto Encyclopedia of Genes and Genomes; release 

36.0, October 2005). Furthermore, for modeling the information for all three 

organisms on positive and negative regulation of components in the cascade is 

essential (and e.g. not available from KEGG). This was retrieved from literature. 

The network was further drawn using SMART DRAW version 7, to depict 

topological differences and functional position (Figure 1). The oval nodes are the 

components playing a role in the apoptosis pathway.  Square node shows the 

consequence of the action of effector components. The arrows indicate activation 

(        ) or inhibition (        ) of the node with an incoming arrow by the node from 

which the arrow is originated.          
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 Table 2: The table describes ordinary differential equations used for the activation 

of all components in Figure 13. 

 

No Ordinary differential equations 

C. elegans 

1 d[egl2]/dt  = ( ( A * MAX_UNIT ) / ( K + A ) ) 

2 d[ced4]/dt = ( ( egl2[t] * MAX_UNIT ) / ( K  + egl2[t] ) ) - ced9[t] 

3 d[ced9]/dt = 0.01*(( A * ced4[t] ) / ( K + A) ) 

4 d[ced3]/dt = ( ( ced4[t] * MAX_UNIT ) / ( 5 + ced4[t] ) ) 

D. melanogaster 

5 d[dapaf]/dt = ( ( A * MAX_UNIT ) / (  K  +  A) ) – BCLXL[t] 

6 d[BCLXL]/dt = 0.1*( (A * dapaf[t] ) / (  K  +  A) ) 

7 d[casp8]/dt = ( ( dapaf[t] * MAX_UNIT ) / (  4  + dapaf[t] ) ) 

8 d[casp]/dt = ( ( dapaf[t] * MAX_UNIT ) / (  4 + dapaf[t] ) ) 

9 
d[casp3]/dt = ( ( casp8[t] * (MAX_UNIT/2) ) / ( 5 + casp8[t] ) ) +  ( ( casp[t] * 

(MAX_UNIT/2) ) / ( 5 + casp[t] ) ) – IAP[t] 

10 
d[casp7]/dt = ( ( casp8[t] * (MAX_UNIT/2) ) / ( 15 + casp8[t] ) ) + ( ( casp[t] * 

(MAX_UNIT/2) ) / ( 15 + casp[t] ) ) – IAP[t] 

11 d[IAP]/dt=((A * (casp3[t]+casp7[t])) /  ( K  +  A)) 

M. musculus 

12 d[FASL]/dt = ( (A* MAX_UNIT ) / (  K   +A) ) 

13 d[TRAIL]/dt = ( (A* MAX_UNIT ) / (  K   +A)) 

14 d[TNFA]/dt = ( (A* MAX_UNIT ) / (  K   +A) ) 
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15 d[IL1]/dt = ( (A * MAX_UNIT ) / ( K  + A) ) 

16 

 

d[FADD]/dt = ( ( TRAILR[t] * (MAX_UNIT/4) ) / (  K  + TRAILR[t] ) ) + ( ( FASR[t] * 

(MAX_UNIT/4) ) / (  K  + FASR[t] ) ) + ( ( TNFAR[t] * (MAX_UNIT/4) ) / (  K  + 

TNFAR[t] ) ) + ( ( ILR[t] * (MAX_UNIT/4) ) / (  K  + ILR[t] ) ) – (prob * FLIP[t]) 

17 
d[TRADD]/dt = ( ( TNFAR[t] * (MAX_UNIT/2) ) / (  K  + TNFAR[t] ) ) +  ( ( ILR[t] * 

(MAX_UNIT/2) ) / (  K  + ILR[t] ) ) 

18 d[sur]/dt = 0.1*(( TNFAR[t] * MAX_UNIT ) / ( ( K  + TNFAR[t] ) )) 

19 d[MYD88]/dt =0.1* ((  ILR[t] * MAX_UNIT ) / ( (K  + ILR[t] ) )) 

20 d[NFKB]/dt =((MYD88[t]+sur[t])*(MAX_UNIT/2))/(K+(MYD88[t]+sur[t])) 

21 d[FLIP]/dt = 0.1*((NFKB[t] * FADD[t] ) / (  K  + NFKB[t] ) ) 

22 
d[casp8]/dt = ( ( FADD[t] * (MAX_UNIT/2) ) / ( 4  + FADD[t] ) ) +  ( ( TRADD[t] * 

(MAX_UNIT/2) ) / ( 4  + TRADD[t]) ) 

23 d[bid]/dt = ( ( casp8[t] * MAX_UNIT ) / ( ( K ) + casp8[t] ) ) 

24 
d[casp3]/dt = ( ( casp8[t] * (MAX_UNIT/2) ) / ( 5 + casp8[t] ) ) + ( ( casp9[t] * 

(MAX_UNIT/2) ) / ( 5 + casp9[t] ) ) - (prob * IAP[t]) 

25 
d[casp7]/dt = ( ( casp8[t] * (MAX_UNIT/2) ) / ( 15 + casp8[t] ) ) + ( ( casp9[t] * 

(MAX_UNIT/2) ) / ( 15 + casp9[t] ) ) - (prob * IAP[t]) 

26 d[apaf]/dt = ( ( bid[t] * MAX_UNIT ) / ( ( K ) + bid[t] ) ) – (prob * BCLXL[t]) 

27 d[casp9]/dt = ( ( apaf[t] * MAX_UNIT ) / ( 408 + apaf[t] ) ) – (prob * IAP[t]) 

28 d[BCLXL]/dt = ( NFKB[t] * apaf[t] ) / ( K + NFKB[t] ) 

29 
d[IAP]/dt = 0.5*(( NFKB[t]* (casp9[t]) ) / (  K  + NFKB[t] ) ) + 0.5*(( NFKB[t]* 

(casp3[t]+casp7[t]) ) / (  K  + NFKB[t] ) ) 
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The model was developed writing ordinary differential equations (Table 

2) for each interaction in the apoptosis cascade assuming Michaelis Menten 

kinetics to simplify complex regulatory interactions. The dynamic simulation 

program implementing all the features of these topological differences was 

developed in C language to study the evolution of this model in time. The 

program was compiled by Borland C++ compiler. Ms Excel was used for plotting 

graphs of compound concentrations. 
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Apoptosis: Analysis of the pathway and its components 

Results and chapter discussion 
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5. Analysis of death domain containing proteins 

 

5.1 Background to death domain containing proteins in the 

apoptosis  pathway. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Scheme of the TNFRI induced pathway. The dotted square represents the 
interactions modeled in the present study. The figure also includes further interactions 
known from the literature (Micheau and Tschopp, 2003).  
 

Death domains (DD) mediate interactions between signaling molecules. 

The DD superfamily includes the death domain (DD), the death effector domain 

(DED) and the caspase-recruitment domain (CARD).  

Apoptosis induction proceeds through two major signaling pathways, the 

extrinsic death receptor and the intrinsic mitochondrial pathway.  

In the extrinsic pathway, after binding FasL, the Fas receptor recruits at its 

intracellular site the adaptor protein FADD (FAS-associating death domain-

containing protein) via a DD-DD interaction (Nagata, 1998; Wajant, 2002). FADD 

in turn binds to the initiator pro-caspases-8 or -10 via DED motifs and thereby 

allows proximity-induced activation of the caspases (Aravind et al., 1999; 
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Kischkel et al., 1995). Subsequent cleavage and activation of the executioner 

caspases-3 and -7 by caspase-8/10 leads to the proteolysis of numerous cellular 

substrates that govern the cell's demise.  

In the intrinsic, mitochondrial pathway, a multimeric complex, called the 

apoptosome is formed via CARD-CARD domain interactions between the 

cytochrome c-activated adaptor Apaf-1 and initiator pro-caspase-9.  

Signals for proliferation and survival are also mediated by DD-containing 

proteins. This is typified by the signaling pathway induced by TNF through the 

TNF receptor I (p55TNFR1). Here, activated p55TNFR1 first assembles a 

survival/proliferation signaling complex via TRADD-TRAF2-RIP (complex I) 

that leads to the activation of NFκB (Figure 6). This complex then dislodges from 

the receptor and either maintains survival signaling by recruiting the competitive 

caspase-8 inhibitor FLIP or, in the absence of FLIP, assembles FADD and 

caspase-8 into the complex for death signaling (Figure 6).  Thus, the TRADD 

protein, essentially known to signal for death, can also signal for survival 

depending on the level of auxiliary molecules. Both TRADD and RIP contain 

DDs for interactions. RIP additionally possesses a serine/threonine protein 

kinase activity.  

Aim of the study: It was interesting to know whether DD domains 

diverge between signaling molecules involved in apoptosis and 

proliferation/survival.  

(i) Sequence analysis was performed of all DD containing proteins in the 

TNF pathway. DD specific features (residues in secondary structure elements) 

were identified for activating and inhibitory adaptors and receptors from these 

phylogenetic sequence comparisons.  

(ii) Key homotypic DD interactions were modeled in the TNF pathway by 

comparing the structures and interaction sequences between the domains. Based 

on the known cascade, the delayed displacement of complex I from p55TNFR1 

was tried to represent and the effect of homotypic DD interactions between DD 
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containing proteins from our results. The models were used to predict and 

identify critical residues involved in these DD mediated interactions. Their 

compatibility with available mutational data from genetics was showed. It 

suggests; how for proliferation key interactions are available and mediated via 

differential binding of RIP to TRADD. The structural complexes modeled lead to 

the hypothesis that depending on how RIP interacts with TRADD, it further 

binds to either NFκB or CRADD downstream in the pathway. 

 
Table 3: Proteins and protein DDs used in our analysis and their functional 
significance in human1. (M: M. musculus, R: Rat, H: Human, C: Chicken, ) 
 
 

Common 
name used 
in the 
analysis 

Identifiers Complete name/ 
standard name 

Functional significance in 
human 

Adaptors: 
M:XP_134502 
R: XP_341672 
H: Q15628 

TRADD 

C: XP_414067 

TNFR1-associated death 
domain protein 

Interacts with P55TNFR1. The 
interaction can signal for cell 
death activation and inhibition. 

M: Q61160 
R: Q8R2E7 

FADD 

H: Q13158 

FAS-associating death 
domain-containing 
protein 

Interacts with FASR via death 
domain and is involved signaling 
for cell death. 

M: Q60855 
H: Q13546 

RIP 

C: Q7ZZX8 

Receptor-interacting 
serine/threonine-protein 
kinase 1 

RIP can interact with FAS, 
FADD, P55TNFR1, TRADD and 
CRADD.  It is involved in cell 
death and survival signaling, but 
the exact mechanism is unknown. 

H: Q9HB75 Pidd 
M: Q9ERV7 

PIDD Induced by p53 and activates 
caspase 2. Caspase 2 is known to 
be activator or inhibitor of cell 
death in different tissues. 

H: P78560 Cradd 
M: O88843 

Death domain containing 
protein CRADD 

Adaptor protein interacting with 
Caspase and RIP. It is involved in 
cell death and inflammation 
signaling. 

M: P25799 
R: Q63369 
H: P19838 

NFκBp105 

C: Q04861 

Nuclear factor NF-kappa-
B p105 subunit 

Interaction partner in cytosol, it 
plays role in survival signaling. 

H: Q00653 NFκBp100/
49 C: P98150 

Nuclear factor NF-kappa-
B p100/p49 subunits 

Interaction partner in cytosol, 
plays role in survival signaling. 
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M: P22366 
R: AAO919 

Myd88 

H: Q99836 

Myeloid differentiation 
primary response protein 

Adapter protein involved in the 
Toll-like receptor and IL-1 
receptor signaling. It is known to 
transfer survival signal. 

H: P53355 Dap 

M: Q80YE7 

Death-associated protein 
kinase 

Calcium/calmodulin-dependent 
serine/threonine kinase which acts 
as a positive regulator of 
apoptosis. 

Receptors: 
M: P25446 
R: Q63199 
H: P25445 
Mn: Q9GK28 
P: O77736 

FAS 

B: P51867 

Tumor necrosis factor 
receptor superfamily 
member 6 

Receptor inducing apoptosis 
signal after binding to FAS 
adaptor. 

P: P50555 
B: O19131 
H: P19438 
M: P25118 

P55TNFR1 

R: P22934 

Tumor necrosis factor 
receptor superfamily 
member 1A 

Receptor that can activate two 
signaling cascades, cell death and 
cell survival signaling.   

M: Q8VD70 DR3 
H: Q99831 

Tumor necrosis factor 
receptor superfamily 
member 25 

Interacts with P55TNFR1, 
Receptor for 
TNFSF12/APO3L/TWEAK. 

DR4 H: O00220 Tumor necrosis factor 
receptor superfamily 
member 10A 

Receptor for the cytotoxic adaptor 
TNFSF10/TRAIL. 

H: O14763 DR5 
M: Q9QZM4 

Tumor necrosis factor 
receptor superfamily 
member 10B 

Receptor for the cytotoxic adaptor 
TNFSF10/TRAIL. 

H: O75509 DR6 
C: Q98SM6 

Tumor necrosis factor 
receptor superfamily 
member 29 

May activate NF-kappa-B and 
JNK and promote apoptosis. 

TVBs1 C: Q9PW79 TVBs1 TNFR related receptor found in 
chicken. 

M: Q9Z0W1 
R: P07174 
H: P08138 

NGF 

C: P18519 

Tumor necrosis factor 
receptor superfamily 
member 16 

Interact with TRAF and transfers 
survival signal. 

 

 

5.2 Phylogeny of death domain sequences 
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(A) 
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(B) 
Figure 7: Phylogeny of A) adaptors with DD and B) receptors with DD, involved 
in apoptosis in humans based on the degree of their sequence homology. This tree 
was constructed using the neighbor-joining algorithm of the program NEIGHBOR 
in the PHYLIP (phylogeny inference package) program (Seattle, WA, USA). 
Bootstrap support out of 100 is indicated.  In A) the divergence of activators of the 
apoptosis pathway from the inhibitors of the pathway is indicated by a line. Death 
associated protein kinase (DAP) is an exception as it is grouped with inhibitors 
though it is known to activate apoptosis. B) describes the receptor phylogeny tree 
and shows the diversion in receptor DDs in correlation with their functional 
categories as described by (Bridgham et al., 2003). 
 

DD proteins which play an important role in the decision between 

caspase-dependent apoptosis and survival/proliferation in death receptor 

signaling are listed in Table 3. We performed sequence and phylogenetic analysis 



                                    PartI: Analysis of death domain containing proteins 

 52

of the DD domains to reveal characteristics of activators and inhibitors of the 

pathway. Phylogenetic analysis of adaptor DDs (Figure 7A/B) shows that DD 

proteins implicated in apoptosis signaling (for example TRADD and FADD) 

diverge from those mediating exclusively inhibition of this pathway or the 

induction of proliferation (for example MYD88 and NFκB). DAP (Death 

associated Serine/ threonine protein kinase) was the only exception of this 

phylogenetic clustering, as it is a kinase that activates apoptosis but groups with 

inhibitory DD containing proteins (Figure 7A). DAP normally localizes to the 

nucleus where it regulates transcription rather than apoptosis. However, for 

apoptosis induction, it has to relocate to the cytoplasm with the help of the pro-

apoptotic protein Par-4 (Preuss et al., 2003). In recent studies ERK (extracellular 

signal regulated kinase), a protein involved in proliferation signaling has been 

shown to interact with DAP through a docking sequence within its DD domain 

(Chen et al., 2004). These observations might explain why DAP is an exception. 

According to our phylogenetic analysis, the DD of apoptosis inhibitors/ 

proliferation activators are thus well diverged from the adaptors that can activate 

apoptosis.  

TRADD is essentially known as an apoptosis activator; however, recently 

there has been speculation about its role in temporarily activating apoptosis 

inhibitory processes (Micheau and Tschopp, 2003). Given such suggestions about 

double roles for DD proteins, a bioinformatics approach is helpful to develop 

new predictions and models. In the following work we concentrated on the 

study of death adaptors in order to identify specific interactions (Figure 7A). For 

the purpose of comparison were-analyzed the death receptor study by Bridgham 

et al (2003) (Bridgham et al., 2003) focusing on DDs involved in the Fas and TNF 

signaling pathways. The DD receptor results confirm the functional sub-

categories for receptors (EDAR-like receptors with DR6 versus non-EDAR like 

such as TNFR1, FAS) (Figure 7B). Our analysis further reveals that DD sequences 

of receptors are more conserved than those of adaptors. The average pairwise 
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score for receptors is 21.49 % (n=23) and for adaptors it is 19.57 % (n=26). The t-

value (1.386814) according to t-statistics indicates for this difference a significant 

trend (p < 0.1).  

 
5.3 Identifying critical residues in death domain 
         α1       α2           α3 
 
 
traddM          -------HGQLVVNRPLTLQDQQTFARSVGLKWRRVGRSLQ(5)LRDPALDSLAYEYERD 
traddR          -------HGQLIVNRPLNLQDQQTFARSVGLKWRRVGRSLQ(5)LRDPALDSLAYEYERD 
traddH          (23)FLFQGQPVVNRPLSLKDQQTFARSVGLKWRKVGRSLQ(5)LRDPALDSLAYEYERE 
traddC          -------QGQQFDNRTLTPDDHQKFAKLVSKKWKQVGRSLQ(5)LRDPVIDNLAHEYDRE 
faddM           ------ATAAPPGEADLQVA-FDIVCDNVGRDWKRLARELK---VSEAKMDGIEEKYPRS 
faddR           ------TTAATPGEADLRVA-FDIVCDNVGRDWKRLARELK---VSEAKIDGIEERYPRS 
faddH           ------AAGAAPGEEDLCAA-FNVICDNVGKDWRRLARQLK---VSDTKIDSIEDRYPRN 
craddH          ------IPSHILNSSPSDRQ-INQLAQRLGPEWEPMVLSLG---LSQTDIYRCKANHPHN 
craddm          ------IPSHILSSSPSDQQ-INQLAQRLGPEWEPVVLSLG---LSQTDIYRCKANHPHN 
ripM            ------QAIFDNTT-SLTDEHLNPIRENLGRQWKNCARKLG---FTESQIDEIDHDYERD 
ripR            ------QAVFANTT-SLTDKHLNPIRENMGKQWKNCARKLG---FTESQIDEIDHDYERD 
ripH            ------QAIFDNTT-SLTDKHLDPIRENLGKHWKNCARKLG---FTQSQIDEIDHDYERD 
ripC            ------TGIFDNNT-VLTKKQLSLVRENLGKQWKHCARELG---FSNSVIEEIDHDYERD 
piddH           -------NLGDAETGFLTQSNLLSVAGRLGLDWPAVALHLG---VSYREVQRIRHEF-RD 
piddM           -------NLGDAETGFLTQSNLLSVASRLGPDWPAVALHLG---MPYHKLQRIRHEF-RD 
nfp100H         ----AGPGLSLGDTALQNLEQLLDGPEA-QGSWAELAERLG---LRSLVD-TYRQT---- 
nfp100C         ----RNHLLSLDTDALQGLEQLLNQYGS-GSDWMELAKRLG---LCSLVE-TYKTT---- 
nfp105M         ----QGDMKQLTEDTRLQLCKLLEIPDP-DKNWATLAQKLG---LGILNN-AFRLS---- 
nfp105R         ----QGDIKQLTEDTRLQLCKLLEIPDP-DKNWATLAQKLG---LGILNN-AFRLS---- 
nfp105H         ----QGDMKQLAEDVKLQLYKLLEIPDP-DKNWATLAQKLG---LGILNN-AFRLS---- 
nfp105C         ----QGPLRELNESSKQQLYKLLETPDP-SKNWSTLAEKLG---LGILNN-AFQLS---- 
dapH            ----DIHASDLNLLTRRKLSRLLDPPDPLGKDWCLLAMNLG---LPDLVAKYNTNNGAPK 
dapM            ----DIHASDLSLLTRRKLSRLLDPPDPMGKDWCLLAMNLG---LPDMVAKHNVNNRASR 
myd88M          ----SIPLVALNVGVRRRLSLFLNPRTPVAADWTLLAEEMG---FEYLEIRELETR---- 
myd88R          ----SLPLVALNVGVRRRLSLFLNPRTTAAADWTSLAEEMG---FEYLEIREFETR---- 
myd88H          ----SLPLAALNMRVRRRLSLFLNVRTQVAADWTALAEEMD---FEYLEIRQLETQ---- 
Consensus/80%   ...........s.p..bp.p.b..h.p..t.pW..ltbpL....b.......bp.p.... 
     .........|.........1.........|.........2.........|.........3 
   
 
    α4          α5         α6 
 
 
traddM          G-LYEQAFQLLRRFMQAEG-RRATLQRLVEALEENELTS-LAEDLLGQA- 
traddR          G-LYEQAFQLLRRFIQAEG-RRATLQRLVEALEENELTS-LAEDLLGQA- 
traddH          G-LYEQAFQLLRRFVQAEG-RRATLQRLVEAL------------------ 
traddC          G-LYEQAYQMLLRFIQSEG-KKATIARLIAALEENGLTS-LSEELLGLH- 
faddM           --LSERVRESLKVWKNAEK-KNASVAGLVKALRTCRLN--LVADLVEEAQ 
faddR           --LSDRVRETLRVWKNVEK-ENASVAGLVKALRACRLN--LVADLVEEAL 
faddH           --LTERVRESLRIWKNTEK-ENATVAHLVGALRSCQMN--LVADLVQEVQ 
craddH          --VQSQVVEAFIRWRQRFG-KQATFQSLHNGLRAVEVDPSLLLHMLE--- 
craddm          --VHSQVVEAFVRWRQRFG-KQATFLSLHKGLQAVEADPSLLQHML---- 
ripM            G-LKEKVYQMLQKWLMREGTKGATVGKLAQALHQCCRID-LLNHLIRAS- 
ripR            G-LKEKVYQMLQKWLMREGTKGATVGKLAQALHQCCRTD-LLNQLIQAS- 
ripH            G-LKEKVYQMLQKWVMREGIKGATVGKLAQALHQCSRID-LLSSLIYVS- 
ripC            G-LKEKVHQMLHKWIMGQGSKGATVGKIAKALFGCRKLD-LLTSLMQMS- 
piddH           D-LDEQIRHMLFSWAERQAGQPGAVGLLVQALEQSDRQD-VAEEVRAVL- 
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piddM           D-LDGQVRHMLFSWAERQTGQPGAVGHLVQALEQSDRRD-VAEEVRAIL- 
nfp100H         ---TSPSGSLLRSY-ELAG---GDLAGLLEALSDMGLEE-GVRLLRGPE- 
nfp100C         ---PSP-ASALRSY-ELPG---GSLGGLLEALDSMGLRG-AVRMLRKPE- 
nfp105M         ---PAPSKTLMDNY-EVSG---GTIKELMEALQQMGYTE-AIEVIQAAF- 
nfp105R         ---PAPSKTLMDNY-EVSG---GTIKELVEALRQMGYTE-AIEVIQAAF- 
nfp105H         ---PAPSKTLMDNY-EVSG---GTVRELVEALRQMGYTE-AIEVIQAAS- 
nfp105C         ---PSPSKTLLDNY-KISG---GTGQELIAAFTQMDHTE-AIEVIQKAL- 
dapH            DFLPSPLHALLREWTTYPE---STVGTLMSKLRELGRRD-AADLLLKAS- 
dapM            DFLPSPVHALLQEWTSYPE---STVGILISKLRELGRRD-AADFLLKAS- 
myd88M          ---PDPTRSLLDAWQGRSG---ASVGRLLELLALLDRED-ILKELKSRI- 
myd88R          ---PDPTRSLLDAWQGRSG---SSVGRLLELLALLDRED-ILYELKDRI- 
myd88H          ---ADPTGRLLDAWQGRPG---ASVGRLLELLTKLGRDD-VLLELGPSI- 
Consensus/80%   ....p.sbphLp.a....s...t*l..LhptLp...bp..hh..lb.... 
       .........|.........4.........|.........5.........| 
 
(A) 
 
         α1     α2      α3 
 
 
FASLH           -ETVAINLSDVDLSK----YITTIAGVMTLSQVKGFVRKNG-VNEAKIDEIKND-NVQDT 
FASLMn          -PETAINLSDVDLSK----YITTIAGAMTLSQVKDFVRKNG-VSEAKIDEIKNH-NVQDT 
FASLP           ---EVPMIKDVDLGK----YITRIAEQMKITEVKDFVRKNG-IEETKIDEIMHD-NPKDT 
FASLB           ---RQLNLTDVDLGK----YIPSIAEQMRITEVKEFVRKNG-MEEAKIDDIMHD-NVHET 
FASLM           ---IPMNASNLSLSK----YIPRIAEDMTIQEAKKFARENN-IKEGKIDEIMHD-SIQDT 
FASLR           ---VPMNVSDVNLNK----YIWRTAEKMKICDAKKFARQHK-IPESKIDEIEHN-SPQDA 
P55P            -HSAPAQLADADP-----ATLYAVVDGVPPTRWKEFVRRLG-LSEHEIERLELQ-NGRCL 
P55B            -PSAPDQLADADP-----ATLYAVVDGVPPSRWKELVRRLG-LSEHEIERLELE-NGRHL 
P55H            -AHKPQSLDTDDP-----ATLYAVVENVPPLRWKEFVRRLG-LSDHEIDRLELQ-NGRCL 
P55M            -SAHPQRPDNADL-----AILYAVVDGVPPARWKEFMRFMG-LSEHEIERLEMQ-NGRCL 
P55R            -AAQPQRLDTADP-----AMLYAVVDGVPPTRWKEFMRLLG-LSEHEIERLELQ-NGRCL 
TNF25M          PAGSPAAVLQPGPQ------LYDVMDAVPARRWKEFVRTLG-LREAEIEAVEVE-ICR-F 
TNF25H          PAGSPAMMLQPGPQ------LYDVMDAVPARRWKEFVRTLG-LREAEIEAVEVE-IGR-F 
TNF10AH         -PANGADPTETLMLF-----FDKFANIVPFDSWDQLMRQLD-LTKNEIDVVRAG-TAG-P 
TNF10BH         -PANEGDPTETLRQC-----FDDFADLVPFDSWEPLMRKLG-LMDNEIKVAKAE-AAG-H 
TNF10BM         -PVNGNDSADDLKFI-----FEYCSDIVPFDSWNRLMRQLG-LTDNQIQMVKAE-TLV-T 
TVBS1C          -PVLGENPIALLHRS-----FNTFVDYVPFPEWKRFGRALD-LQENDLYLAEQH-DRV-S 
TNF29H          GLKKSMTPTQNREKW(8)IDILKLVAAQVGSQWKDIYQFLCNASEREVAAFSNG-YTA-D 
TNF29C          IMKKSTTPTQNREKW(8)IDILKPVAAQVGSQWKDIYQFLCNASEREVAAFSNG-YAA-D 
TNF16M          GNLYSSLPLTKRE------EVEKLLN---GDTWRHLAGELG-YQPEHIDSFTH------E 
TNF16R          GNLYSSLPLTKRE------EVEKLLN---GDTWRHLAGELG-YQPEHIDSFTH------E 
TNF16H          GGLYSSLPPAKRE------EVEKLLNGSAGDTWRHLAGELG-YQPEHIDSFTH------E 
TNF16C          GSLYASLPPSKQE------EVEKLLSSSAEETWRQLAGELG-YKEDLIDCFTR------E 
Consensus/80%   ....s....p..........l..hhs..s.pph+pbhppbs.hpc.cl-.hp........ 
     .........|.........1.........|.........2.........|.........3  
 
     α4   α5   α6 
    
 
FASLH           AEQKVQLLRNWHQLHGK-KEAYDTLIKDLKKANLCTLAEKIQTII--- 
FASLMn          AEQKVQLLRNWYQLHGK-KDACDTLIKGLKTADLCTLAEKIHAVI--- 
FASLP           AEQKVQLLRNWYLYHGK-KDAYCTLIQGLRKAKLSALADKINDIV--- 
FASLB           AEQKVQLLRNWYQSHGK-KNAYCTLTKSLPKA----LAEKICDIV(4) 
FASLM           AEQKVQLLLCWYQSHGK-SDAYQDLIKGLKKAECRRTLDKFQDMV--- 
FASLR           AEQKIQLLQCWYQSHGK-TGACQALIQGLRKANRCDIAEEIQAMV--- 
P55P            REAQYSMLAEWRRRTSRREATLELLGSVLRDMDLLGCLEDIEEAL--- 
P55B            REAQYSMLAAWRRRTPRREATLELLGRVLRDMDLLGCLENIEEAL--- 
P55H            REAQYSMLATWRRRTPRREATLELLGRVLRDMDLLGCLEDIEEAL--- 
P55M            REAQYSMLEAWRRRTPRHEDTLEVVGLVLSKMNLAGCLENILEAL--- 
P55R            REAHYSMLEAWRRRTPRHEATLDVVGRVLCDMNLRGCLENIRETL--- 
TNF25M          RDQQYEMLKRWRQQQP---AGLGAIYAALERMGLEGCAEDLRSRL--- 
TNF25H          RDQQYEMLKRWRQQQP---AGLGAVYAALERMGLDGCVEDLRSRL--- 
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TNF10AH         GDALYAMLMKWVNKTGR-NASIHTLLDALERMEERHAKEKIQDLL--- 
TNF10BH         RDTLYTMLIKWVNKTGR-DASVHTLLDALETLGERLAKQKIEDHL--- 
TNF10BM         REALYQMLLKWRHQTGR-SASINHLLDALEAVEERDAMEKIEDYA--- 
TVBS1C          CEPFYQMLNTWLNQQGS-KASVNTLLETLPRIGLSGVADIIASEL--- 
TNF29H          HERAYAALQHWTIRGPE--ASLAQLISALRQHRRNDVVEKIRGLM--- 
TNF29C          HERAYAALQHWTIRGPE--ASLAQLISALRQHRRNDVVEKIRGLM--- 
TNF16M          ACPVRALLASWGAQDS---ATLDALLAALRRIQRADIVESLCSES--- 
TNF16R          ACPVRALLASWGAQDS---ATLDALLAALRRIQRADIVESLCSES--- 
TNF16H          ACPVRALLASWATQDS---ATLDALLAALRRIQRADLVESLCSES--- 
TNF16C          ESPARALLADWSAKET---ATLDALLVALRKIQRGDIAESLYSES--- 
Consensus/80%   .-..b.bL..W..pps...ssbphLh.sLcch.b..hh-plpp.h... 
        .........|.........4.........|.........5........ 

(B) 

Figure 8: Sequence alignment of death domains of A) adaptors and B) receptors from 
Table 3 were performed separately using the program ClustalW. This analysis was 
performed to understand the differences in receptor and adaptor sequences and their 
consequences for maintaining specificity. The significance of the conserved residues 
obtained from the detailed sequence comparison was studied further in interactions 
with other DDs by structural analysis. The 80% consensus sequence is written at the 
end of each block of the sequence alignment. α helix numbering is shown at the top 
of the alignment block. Underlined are the positions of α helices in the protein 
families which were studied in detail below. Every tenth residue in the alignment is 
denoted by ‘|’ and each twentieth residue is denoted by a number at the end of the 
sequence alignment. Residue key: -negative, * : ser/thr, l: aliphatic, +: positive, t: tiny, 
a: aromatic, c: charged, s: small, p: polar, b: big, h: hydrophobic. 

 

Considering the alignments of our analysis and exploiting the available 

structural information on the sequences of the DDs allows the following findings 

(Figure 8A, 8B; the numbering of helices is indicated by α1 to α5): Three residues 

are completely conserved in the receptor family (L68:α4, W71: α4 C terminal, 

L89: α5) whereas only one residue is completely conserved in adaptors (W33: 

α2). The sequence composition of adaptor DDs is different from that in the 

receptor domains. For example while in adaptors alpha-helix 3 shows large 

sequence variations, in receptors the residues are mostly conserved (helices are 

underlined in sequences of human proteins that are analyzed structurally). This 

helix has been shown to be important in interaction of the Fas receptor with the 

adaptor FADD (Jeong et al., 1999). Moreover, residues S84 or T84 (α5 N 

terminus) are conserved in all adaptors except PIDD and NFκBp100/49, which 

might suggest the possibility of regulation by phosphorylation. Finally, stretches 

of charged residues are well conserved in receptors at three places; in particular 
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the conservation of negatively charged residues at three places (49: α3, 62: α4, 99: 

α6) and positively charged residues at one place (34: α2) indicate the importance 

of electrostatic interactions and the maintenance of specificity through adaptors. 

In receptors and adaptors many stretches of hydrophobic residues are conserved. 

These are results from sequence and structure analysis of individual DD adabtors 

and receptors. They build on our phylogenetic analysis and known, well 

resolved structures of DD (Pelle-Tube (1D2Z: chain A, B, C, D), FAS (1DDF), 

FADD (1E3Y: chain A), p55TNFRI (1ICH: chain A)).   

 
5.4 Structural modeling of death domain interaction surfaces 

Are adaptors responsible for specific interactions and the selection of the 

downstream signaling pathway? In particular, are there DD interaction surfaces, 

of which one can bind to an upstream component that determines the 

downstream component interacting with the other interaction surface?   To 

answer these questions, the structural interactions involved in the TNFR1-

TRADD-RIP pathway leading to survival/proliferation are examined and 

compared it to interaction modules known from Fas-FADD DD interactions. 

Docking was performed to study important interacting surfaces using homology 

models (RIP, TRADD, CRADD, NFκB), known three dimensional structures 

(Pelle, Tube) and known interacting surfaces (FAS, FADD and p55TNFRI, 

TRADD). We have to stress that thus the structure of Pelle / Tube as well as 

interacting residues and surface of FAS/ FADD are known experimentally and 

were used to test the method. In contrast, RIP, TRADD and CRADD as well as 

the complexes they participate in are modeled.  

Choice and reliability of 3D-Dock:  

The interaction partners of the protein complexes docked together are 

thus experimentally verified, but neither their interacting surfaces nor all their 

structures are exactly known. Considering the fact that varied interacting 
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surfaces are known to be used in DD-DD homotypic interactions, we explored 

the possibility of new interfaces involved in the interactions. 3D Dock proved to 

be the most reliable method for this purpose for the following reasons: (i) some 

of the docking programs use complementarity principles (Patchdock). However, 

this can not be applied for docking of homotypic interactions between domains 

of the same type. (ii) Other docking programs are specifically designed to dock 

adaptors on receptors (Smoothdock). This was inappropriate in this case as we 

wanted to dock adaptors with adaptor, DD adaptors are known to interact with 

each other in the cytosol. (iii) we also tested Cluspro (http:// 

nrc.bu.edu/cluster). This program is also designed for receptor-ligand docking, 

but advanced options in the software allowed us to use it for our purpose. 

However, when tested, this server could not predict correctly the known 

interaction surfaces for Pelle-Tube (PDB code of the complex: 1D2Z), FAS-FADD 

(PDB code of the complex: FAS: 1DDF, FADD: 1E3Y) and p55TNFRI-TRADD 

(here only p55TNFR1 is known in its crystal structure 1ICH). (iv) This positive 

control experiment was well passed by 3D-Dock, the interaction surfaces were 

correctly predicted and with high rpscores mentioned in materials and methods. 

The rpscore improved the complex selection procedure, it has been proven to be 

successful in similar tasks before (Lett et al., 2004). Experimental validation will 

be the strongest proof of the results presented here. However,  the success of 3D-

Dock in the correct prediction of homotypic interacting surfaces in the case of 

Pelle-Tube(Xiao et al., 1999), FAS-FADD(Hill et al., 2004; Weber and Vincenz, 

2001) and p55TNFRI-TRADD, the experimental evidence that all binding 

partners examined here do dock to each other in the cell and the strong rpdock 

scores for the complexes presented here support the validity of our predicted 

complexes. Furthermore, the templates used have a high level of similarity to the 

crystal structure: TRADD (modeled with 1E3Y chain A, average pairwise score: 

25, Percent target sequence length modeled with template: 92.0%), RIP (modeled 

with 1E3Y chain A, average pairwise score: 27, Percent target sequence length 
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modeled with template: 95.8%), NFκB (modeled with 1ICH chain A, average 

pairwise score: 32, Percent target sequence length modeled with template: 98.7%) 

and CRADD (modeled with 1E3Y chain A, average pairwise score: 18, Percent 

target sequence modeled with template: 100%, all residues) structures. Moreover, 

several of the interacting residues identified do so robustly even if the docking 

surface is slightly modified, e.g. tilted.  

 

 
Figure 9: Three dimensional complex between the DDs of Pell and Tube proteins 
(Xiao et al., 1999). They are found in D. melanogaster. The complex is obtained from 
RCSB PDB database (1D2Z) and labeled. The complex shows DD of Pelle (chain A 
and C) and DD of Tube (chain B and D) with all visible α helices labeled. 
 

Previous work showed that FAS, FADD, Pelle and Tube contain DD and 

bind to their interaction partner through DD homotypic interactions. FAS-FADD 

complex is involved in apoptosis induction whereas Pelle-Tube complex plays a 

role during D. melanogaster embryogenesis. The dimerization of Pelle and Tube 

(Figure 9) seems to rely on contacts between alpha-helices 4 and 5 of Pelle DD 

with alpha-helices 6 and the unique C-terminal tail of Tube DD (Xiao et al., 1999). 

It has also been found that the DD of FADD engages the DD of Fas with the loop 

surface, the inter-helical loop and adjacent 1 or 2 turns of helices 1 and 2 which 



                                    PartI: Analysis of death domain containing proteins 

 59

was first identified in Tube DD but it extends the surface into helices 2 and 3 on 

the same side of the motif (Hill et al., 2004). Furthermore, Fas and FADD use 

helices 2 and 3 and helices 3 and 4 respectively (type I) (Qin et al., 1999), helices 3 

and 4 and loop connecting helices 4 and 5 (type II) (Xiao et al., 1999) and flexible 

helix 3 (type III) interactions in DISC (Weber and Vincenz, 2001). These 

interactions of Fas/FADD are also found in our models.  

From these previous studies it is apparent that different parts in the DD 

play a role in different interactions. Taking into consideration the phylogenetic 

analysis, thus the possibility of presence of different interaction regions in DD is 

examined. The apparent absence of a conserved interaction surface suggests that 

DDs may associate by a variety of mechanisms. Interestingly the nature of the 

interactions also seems to be different between DD complexes. Electrostatic 

interactions are thought to be a key component in the interaction between FAS 

and FADD DDs (Huang et al., 1996). In contrast, van der Waals and hydrogen 

bond contacts have been shown to be involved in the complex between Pelle and 

Tube DD (Xiao et al., 1999).  

 
5.5 Analysis of predicted interaction surfaces 
Table 4: Residues involved in interactions obtained from 3D-Dock. 
 
Name of 
protein 

Residues important in interaction1 Position 

Complex I 
P55TNFR
1 

EFVRRLGLSD(273-
282)  

VLRDMD (424-429) Helix 2, first 
residue in helix 3/ 
helix 5 and residues 
in following loop 

TRADD SLAYEYEREGLYEQAFQLLRR (251-270) Helix 3, 4 and loop 
in between 

Complex II 
TRADD LDSLAYEYEREG(252-263) Helix 3 and 

following loop 
FADD GKDWRRLAR(109-

117) 
SDTK(122
-125) 

CQMN(16
8-171) 

Helix 2 and 
preceding one 
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residue, helix 3 
initial residues, 
residue in the loop 
between helix 5 and 
6. 

Complex III 
QRGC 
(238-241) 

GRRA 
(277-280) 
 

VEAL (286-289) Loop between helix 
4 and 5, 2 and 3, 
helix 5 (Interaction 
surface for 
NFκBrecruitment) 

TRADD 

SVGLKWRKVGR (225-
235) 
 

LVEA (285-288) 
 

Loop between helix 
1 and 2 , helix 2 
(Interaction surface 
for CRADD 
recruitment) 

DHDY 
(616-619) 

EKVYQMLQKWVM (626-637) Helix 3, helix 4 and 
following 3 
residues 
(Interaction surface 
for NFκB 
recruitment) 

RIP 

DKHL (584-587) 
 

KEKV (625-628) 
 

Residues before 
helix 1, loop 
between helix 3 & 
4 (Interaction 
surface for CRADD 
recruitment) 

Complex IV 
RIP LAQA (649-652) HQCSRIDLLSSLI (654-

666) 
Helix 5 and 6, loop 
in between them 

 WKNCARKL 
(598-605) 

GFTQ 
(606-609) 

IDEI (612-615) Loop between helix 
2 and 3, helix 3, 
helix 2,  

NFκβp105  LEIPDP (823-
828) 

QMGYTE (878-883) Helix 1 and 6 

 
RIP QAIFDNTTSLTDK

HL (573-587) 
VMREGI (636-641) Loop between helix 

4 and 5, N terminal 
15 residues 

NFκβp100 ERLG (793-796) LAGGDL (823-828) Loop between helix 
4 and 5, helix 2 

Complex V 
RIP DHDY (616-619) KEKVYQMLQ (625-633) Helix 3 and 4 
CRADD LSQTDI (140-145) QRF (169-171) Loop between helix 

2 and 3, N terminal 
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of helix 3 and loop 
between helix 4 and 
5 

 

1Underlined: Residues playing key role in interaction, Red residues: conserved in all 
invested organisms. 

 

 
(A) 

 

(B) 
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(C) 

 

(D) 
Figure 10: Using the 3D-Dock docking program the following complexes were 
modeled: A) The P55TNFR1-TRADD-RIP complex which could recruit NFκB p100 or 
NFκB p105; and B) the P55TNFR1-TRADD-RIP complex which could recruit CRADD. 
C) The RIP-NFκB complex. This complex uses an interaction surface different and not 
overlapping from D) the predicted RIP-CRADD complex. The structural elements of 
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the complexes are labeled and are shown as Ribbons. The picture was generated 
using Rasmol. 
 

 

(A) 

 

(B) 
Figure 11: TRADD-RIP complexes obtained from docking program 3D-Dock and 
analyzed by Swiss Pdb-viewer. The figure shows structural details and interacting 
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residues in TRADD-RIP complex A: involved in recruitment of NFκB and B: involved 
in recruitment of CRADD. 
 

 

(A) 

 

(B) 
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Figure 12: Complexes obtained from docking program 3D-Dock and analyzed by 

Swiss Pdb-viewer. A: Complex of p55TNFRI-TRADD-RIP-CRADD showing that 

recruitment of CRADD might play a role in stabilizing the whole complex, B: 

Complex of p55TNFRI-TRADD-FADD showing interacting surface of TRADD DD in 

TRADD-FADD complex overlapping with interaction surface of TRADD DD 

involved in the interaction with p55TNFRI DD. In the figure FADD is shown in red 

and p55TNFRI is shown in blue 

 

To better understand how the p55TNFR1-induced pathway shifts between 

proliferation and apoptosis (Figure 5) we obtained (See Material and Methods 

section 4.4) high scoring complexes of p55TNFR1-TRADD (Figure 10A, 10B), 

TRADD-RIP (Figure 10A, 10B, 11A, 11B), RIP-CRADD (Figure 10D), RIP-NFκB 

(Figure 10C) and TRADD-FADD (Figure 12B) DDs from the 3D-Dock docking 

program (Table 4). The figure 10 and 11 describes the details of structural 

elements and interaction sites of complexes TRADD-RIP which can recruit NFκB 

or CRADD, RIP-NFκB and RIP-CRADD. The high scoring p55TNFR1 interacting 

surface with TRADD correctly identifies the experimentally known interaction 

surface (Telliez et al., 2000). Thus the method of prediction of the interacting 

surface of the first complex in the cascade is experimentally supported in this 

case.  We assumed that the interaction surface in the binding of an upstream 

component of the cascade is less likely to play an important role in recognition 

and interaction with the next, downstream component. Thus for example, 

simultaneous interactions between p55TNFR1-TRADD and TRADD-RIP should 

happen at different interaction faces on TRADD (non overlapping interaction 

surfaces). These non overlapping interacting surfaces are studied in all above 

complexes and obtained key amino acids involved in the interaction by Swiss-

Pdb-Viewer. Sequence analysis of these interacting surfaces produced residues 

conserved in all organisms and residues involved in the interaction but not 

conserved in the organisms.  The conserved residues (Table 4) are probably 

important in general interactions. In contrast, non-conserved residues engaged in 
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the interaction should be responsible to maintain specificity. The extensive 

structural analysis of DD containing complexes led us to propose that sub-

domains are present in DDs, as high scoring complexes often used different 

interacting surfaces. We cannot completely exclude the possibility of the use of 

the same interaction surface in different or successive steps of the cascade, but 

considering the high amount of cascade specificity and the variations observed in 

DDs involved in the apoptosis pathway, particularly in adaptor DDs, it seems 

unlikely that exactly the same interaction surface should be used for the 

interaction of the downstream components.  Two TRADD-RIP complexes which 

use different DD interacting surfaces are obtained (Figure 10A, 11B, details of 

interacting residues in 11A, 11B). These TRADD DD surfaces do not overlap with 

the DD surface interacting with p55TNFR1 DD. The interaction of RIP DD with 

known downstream interactions partners is then examined. Two interesting 

interacting complexes between TRADD-RIP-CRADD DD and TRADD-RIP- 

NFκBp100/p105 DD are identified. The modeled complexes would thus suggest 

that recruitment of CRADD and NFκB is dependent on two different, exclusive 

DD complex conformations observed in the TRADD-RIP DD complex (Figure 

10A, 10B, 11A, 11B). Furthermore, exclusive interaction surfaces identified in our 

study lead either to p55TNFR1-TRADD-RIP-NFκB or to the p55TNFR1-TRADD-

RIP-CRADD complex. The TRADD-RIP-CRADD complex suggests that after 

recruitment, CRADD might play a role in stabilizing the whole complex (Figure 

12A). TRADD DD is known to interact with FADD DD (Micheau and Tschopp, 

2003; Varfolomeev et al., 1996), however, none of the structures has been solved. 

We examined the TRADD-FADD DD interaction as modeled to predict the mode 

of its interaction. The DD surface of TRADD interacting with FADD DD found in 

all high scoring complexes showed large overlap with the interacting surface of 

TRADD DD with p55TNFR1 DD (one of the interacting surface described in 

Table 4, Figure 12B). These data predict that for the FADD DD to interact with 

the TRADD DD, the TRADD DD has to be released from P55TNFR1. The latter 
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has experimentally been observed by Micheau et al. (Micheau and Tschopp, 

2003). This suggests that when TRADD has bound p55TNFRI it induces a 

proliferation signal, and when released it can bind to FADD to induce apoptosis 

(Micheau and Tschopp, 2003). Re-examining the structural data in light of 

available mutation data (Table 5) shows that our models are well compatible 

with the available experimental data. 

Table 5: Effect of mutations on death domain proteins 

a) mutations in FAS and corresponding diseases (Gronbaek et al., 1998; Landowski et al., 
1997).  
Molecular effect: Block of apoptosis 
Position (codon) Mutation Mutation observed in disease 
244 Asp -> VAL Diffuse large B cell lymphoma (DLCB)  
248 ASN -> LYS DLCB, Mucosa associated lymphoid tissue (MALT) 
256 GLU -> LYS Follicle center cell lymphoma 
262 LYS -> PHE DLCB 
283 LYS -> ASN DLCB 
275 TYR -> SER Multiple myeloma 
253 ASP -> TYR Multiple myeloma 
235 LYS -> ARG Multiple myeloma 
264 ASN -> HIS Multiple myeloma 
b) hematological malignancies: 
 
Mutations observed in FAS and TRADD 
No mutations observed in FADD and RIP 
 
c) Detailed mutational analysis in TRADD (Park and Baichwal, 1996) 
Position alanine 
substitution 

Effect due to substitution of alanine 

296-299 (extended DD1) Prevent induction of NFkB reporter  
219-225,245-251,269-271 No effect on binding of TRADD to P55TNFR1 but capable 

of inducing NFkB dependent reporter to normal extent 
240-243 Fail to activate NFkB reporter but could  induce cell death 
1extended DD: We used DD defined by SMART (Letunic et al., 2004) 
(http://smart.embl-heidelberg.de/), the residues 296 to 299 do not belong to DD 
according to those databases. 
 

Our models can provide an essential guideline and will be useful for 

experiments including mutagenesis tests on predicted interactions. The 

http://smart.embl-heidelberg.de/
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modelling approach presented here for DD can be used to unravel further and 

different signalling pathways. 

 

5.6 Conclusions 

Death domain superfamily proteins bind through homotypic interactions. 

Structurally they are composed of an anti-parallel six helical bundle structure 

(Xiao et al., 2002; Xiao et al., 1999).  Our sequence analysis of this superfamily 

extends previous data (Aravind et al., 1999; Bridgham et al., 2003) and shows that 

receptor DDs are more conserved than adaptor DDs. The latter are further 

subdivided into DDs of proteins that can activate or inhibit apoptosis. The 

analysis also points out that only the activator DD DAP (Death associated 

protein kinase) is grouped together with apoptosis inhibitors (Chen et al., 2004). 

Next, several interaction surfaces for DD containing proteins in the p55TNFRI 

pathway are modeled. Their specific forms and shapes are delineated in Figure 

10. RIP’s several interaction possibilities rely on the critical residues that are 

equally distributed in RIP DD and are not concentrated at specific sites.  

Several interaction surfaces have been examined by detailed experiments 

in this superfamily; for example the complex between Apaf-1 and procaspase-9 

(CARD-CARD) involves interactions between faces of proteins mainly formed by 

helices 2 and 3 and helices 3 and 4 respectively (Type I) (Qin et al., 1999). The 

complex (Figure 9) between Pelle and Tube (DD-DD) involves the loops between 

helices 1 and 2, and 5 and 6 as exemplified by the Tube DD. The second surface 

exemplified by Pelle DD, is formed by helices 3 and 4 and the loop connecting 

helices 4 and 5 (Type II) (Xiao et al., 1999). Remarkably, although the DD fold is 

highly conserved, characterization of the homologous domains found in the cell 

death proteins FADD (Bang et al., 2000; Jeong et al., 1999), Fas (Huang et al., 

1996), and TRADD (Park and Baichwal, 1996) all suggested a binding surface for 

their partners that diverges from Pelle and Tube. Taking into consideration the 

available information and our structural modeling the validity of the identified 
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different interaction surfaces in DD is strengthened. In spite of such vigorous 

studies on DDs, the role of these proteins is still not clear in their interaction 

behavior to mediate either proliferation/survival or apoptosis. TRADD and 

FADD DDs  are able to bind to each other effectively and both are capable of 

binding to the DD of RIP stronger than the DDs of FAS and TNFR1 (Varfolomeev 

et al., 1996).  Unlike the FAS FADD interaction which always lead to apoptosis, 

induction of apoptosis through P55TNFR1 TRADD interaction depends on 

successful interaction between TRADD-FADD DD and inhibition of FLIP 

induced by complex I as described by Mischeau et al. (Micheau and Tschopp, 

2003). Studies also demonstrate the role of these proteins in activating the 

proliferation pathway (Hsu et al., 1996; Hu et al., 2000; Kasof et al., 2000; Kataoka 

et al., 2000; Malinin et al., 1997).  

Given the variable nature of DD and their portable co-adaptation with 

specific adaptors (Naismith and Sprang, 1998), We chose here to focus upon 

proteins containing DD that take part in a caspase dependent pathway. RIP 

overexpression results in NFκB translocation, JNK activation and apoptosis 

(Holler et al., 2000; Kasof et al., 2000; Kelliher et al., 1998; Meylan et al., 2002; 

Stanger et al., 1995, ; Thome et al., 1998; Yu et al., 1999) (see also Figure 5). 

Further, RIP is also known to interact with FADD, TRADD (Varfolomeev et al., 

1996), CRADD (Ahmad et al., 1997) and can induce NFκB activation. We 

structurally modeled (Figure 10) all these interactions described in the literature. 

RAIDD/CRADD may also activate caspase 2 (Duan and Dixit, 1997) in a 

complex called the PIDDosome inducing stress induced apoptosis as the DD 

containing protein PIDD is induced by p53(Tinel and Tschopp, 2004). CRADD is 

constitutively expressed in many tissues and may take part in different 

pathways(Ahmad et al., 1997). Caspase 2 is further known to act as a positive or 

negative effector of apoptosis depending on the cell lineage and the stage of 

development (Bergeron et al., 1998). 
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It has been shown that NFκB p105 DD is absolutely required for TNFα 

induced serine 927 phosphorylation by the IKK (IκB kinase) complex and the 

subsequent p105 degradation (Beinke et al., 2002). Recent work also suggests the 

recruitment of  NFκBp100 to P55TNFR1 or FAS receptors via DDs supporting the 

possible interaction between the DD of NFκB and DDs involved in the apoptosis 

pathway (Hacker and Karin, 2002; Wang et al., 2002). The DD of NFκBp105 is at 

the C-terminal half of the protein, which is N-terminal to the IKK 

phosphorylation. Further published data (Beinke et al., 2002) suggest that α helix 

3 of NFκBp105 is involved in binding to the IKK complex. Our docking studies 

suggest the involvement of the opposite face in the interaction with RIP DD, that 

is alpha- helix 1 and 6 of NFκB p105 DD and the loop between helix 4 and 5 

together with starting residues of helix 2 of NFκB p100 are involved. 

Taking the natural limitations of modelling and docking into account, the 

present comparative structural modelling of six protein complexes in the TNF 

mediated pathway lead, however, to the delineation of important interacting 

surfaces in these modeled complexes. This helps to shed light on the mechanism 

by which p55TNFR1 induces formation of different complexes and in turn 

signaling through different cascades. The studied proteins are documented to 

interact with partner proteins (Ahmad et al., 1997; Holler et al., 2000; Kasof et al., 

2000; Kelliher et al., 1998; Meylan et al., 2002; Micheau and Tschopp, 2003; 

Stanger et al., 1995; Thome et al., 1998; Varfolomeev et al., 1996; Yu et al., 1999). 

Scrutinizing their interactions with our models highlighted different possible 

interactions in the pathway such as recruitment of CRADD or NFκB by TRADD-

RIP complex in two different conformations. Thus our bioinformatical models 

suggest that the RIP DD might act as a scaffold to bind to NFκB p105/p100 DD 

which can lead to an easier recruitment of the IKK complex leading to activation 

of the NFκB transcription factor when bound to TRADD DD in one 

conformation. In another conformation we predict that TRADD-RIP interacts 

with CRADD activating the Caspase 2 mediated signaling pathway.   
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6. Discrete time modeling of the apoptosis pathway 

 

6.1 Introduction to modeling the apoptosis pathway 

Programmed cell death or Apoptosis is a conserved mechanism for the 

elimination of unwanted cells from an organism. The core cell death pathway is 

present in nematodes, fruit flies, mice and human. Large scale genome analysis 

has led to the discovery of homologues in all these organisms. The mere presence 

of the homologues might not imply the existence of the same regulation. Thus 

differences in the topology of the network affect the final response. Here in this 

chapter we try to develop a model using ordinary differential equations (ODEs) 

to study differences in responses due to different topologies and complexities in 

the apoptosis pathway. We then used the model in discrete dynamic 

simulation. 

Often mathematical representation and analytical solutions of signal 

transduction pathways are difficult to formulate due to the large number of 

unknown parameters such as rate constants, concentrations of components etc. 

But even before such data become available simulations can enhance our 

understanding of regulatory principles and pinpoint critical behavior and 

parameters for further experimental tests. 

We try to analyze the effect of the length of the pathway, the topology of 

the pathway and how the stability is achieved between the pro- and anti-

apoptotic components activated by identical receptors. Robust systems can 

maintain the functionality at different concentrations of the components (Kitano, 

2004). Stable responses in spite of different concentrations can be achieved by a 

number of strategies such as regulating relative concentrations of activators, 

inhibitors, threshold concentrations (concentrations necessary to activate the next 

component in the pathway) and the amount of specific component necessary for 

activation. However, we show here how to conceptually develop a model for 

apoptosis in spite of unknown parameters such as exact concentrations and rate 
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constants to understand the evolution of complex cascades and their regulation. 

For a comparative qualitative analysis intended here one can actually neglect 

observed concentrations and concentrate on pathway topology and its 

regulation. 

Modeling complex biological cascades by simulations is a powerful 

method in order to understand regulatory principles, complex dynamic 

phenomenon and particularly effects at the systems level. Modeling signal 

transduction pathways is complicated and is at an early stage. Several specific 

pathways and reaction schemes have been analyzed analytically (Brightman and 

Fell, 2000; Huang and Ferrell, 1996; Kholodenko et al., 1999). However, closed 

analytical solutions fail if the system is complex and particularly if one wants to 

integrate molecular and physiological aspects. 

We compare the apoptosis pathways of C. elegans, D. melanogaster and M. 

musculus. The basic network of these pathways was reconstituted from sequence 

analysis, literature and data obtained from KEGG (Kyoto Encyclopedia of Genes 

and Genomes). Simulations for other pathways can be developed in a similar 

way to study different signal transduction pathways. 

 

6.2 Model description 

The initial components necessary for apoptosis pathway activation are 

triggered at each time step in the simulation. All components in the apoptosis 

pathway before activation are set to zero. The different parameters are 

summarized in Table 6. 

 

Table 6: Established model parameters 

Parameter description Symbol Value or range 
Maximum concentration of 
components 

MAX_UNIT For activators:  10 
For inhibitors: 
Sum over (all inhibited 
components) 

Operative concentration of a THRESHOLD 0.05 
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pathway components 
K  
Caspase3/Ced3/Decay 5 
Caspase7/Dcp1 15 
Caspase 9 408 
Caspase 8/Dronc/Dredd 4 

Factor affecting production of 
component 

All other components 10 
Time steps T 500 

 

The specific regulatory components acting on elements of the apoptotic 

pathway are incorporated in the model. Other regulatory machinery (such as 

transcription, feed back regulation, effect of cytokines and growth factors) is 

difficult to explicitly include. To simplify this, the term maximum concentration 

(MAX_UNIT) was included as a limit for every component. It was set at 10 for all 

activators. The MAX_UNIT for inhibitors is the sum of the concentration of 

components that they inhibit at time t. Thus inhibitors are not abundantly 

available but present in an amount enough for effective inhibition, for example 

the equation for the inhibitor IAP is written as: 

 

(1) 

Thus at any time point IAP can not be produced more than the 

concentrations of caspase 3 and 7 together. Further, the previous component in 

the pathway has to be more than 0.05 standard units in order to activate the next 

component in the pathway. This threshold concentration is called THRESHOLD 

and is kept the same for all reactions. 0.05 is chosen for practical reasons to avoid 

activation at very small component concentrations. Bearing this in mind, the 

concentration of a compound (no matter whether activating or inhibiting) in the 

simulation was calculated according to the following equation (in essence the 

following is modeled by a Michaelis Menten type simplification and introduce 

further a threshold and a limit to concentrations to strongly simplify the complex 

cascade): 

 

dIAP/dt= (NFkB[t]*(casp3[t]+casp7[t]))/( K + NFkB[t]) 
IAP[t] = IAP[t-1]+dIAP/dt  
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(2) 

 

X2[t] = X2[t-1]+dX2/dt     (3) 

 

 In the time step simulation, an increase of the component at time t 

depends on the concentration of the previous component in the cascade. The 

total concentration of the component at time t is the addition of its concentration 

at time t and its increase in the concentration at time t. The initial value of the 

first component in the pathway is set to one so that it can activate the next 

component at the first time step. Every component activates the next component. 

The apoptosis cascade is activated depending on the concentration of effector 

caspases. To simplify the model parameters every component activates the next 

one when it is more than 0.05, K is 10 for all components except for caspases 

whose K values are taken from the literature (Garcia-Calvo et al., 1999). The 

published K values were measured in Homo sapiens; we assumed them to be the 

same for corresponding caspases in all three organisms. Actual activation of the 

component in the cascade depends on the random probability of binding with 

previous components. For effector caspases this probability is one in the model 

as they are known to be auto-activating so the probability of effector caspases 

activating the next step is only dependend on its concentration at time t. 

All reactions except proteolytic reactions are reversible, so that half of the 

previous component is formed back in the reaction. Inhibitory components 

reduce the concentration of the component proportional to its own concentration. 

Inhibitors act immediately on components reducing the concentration at that 

time t. Thus the net concentration of the component at time t is given by: 

 

X2[t] = X2[t]-(prob*X2in[t])      (4) 

IF  (X1[t]>THRESHOLD) 
dX2/dt= (X1[t]*MAX_UNIT)/( K + X1[t]) 

ELSE  
dX2/dt=0 
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 where X2in is the inhibitor of X2 and prob is the probability of binding the 

inhibitor to the component. 

In the receptor ligand interaction the ligand concentration will increase as 

a function of time. When a concentration reaches the THRESHOLD it turns the 

receptor on, leading to activation of the receptor. Ligands bind to the receptor 

with random probability. The receptors that also activate apoptosis inhibitory 

components for example TNFAR and ILR activate surviving factor (SUR, 

includes TRADD, RIP1 and TRAF2) and MYD88 respectively with small 

probability 0.1. 

 This simplistic simulation (see following sections) allows not only testing 

the establishment of dynamic stability but also first insights how this is affected 

by different network topologies of the apoptosis cascade. 

 

6.3 Comparison of the topology of apoptosis pathways 
Alignment of apoptosis pathway in C. elegans, D. melanogaster and M. 

musculus: For the comparative analysis of the signaling cascade leading to 

apoptosis in C. elegans, D. melanogaster and M. musculus we aligned the cascade. 

The pathways of C. elegans and D. melanogaster were reconstituted from the 

known interactions in the literature. Most of the apoptosis cascade components 

in M. musculus were retrieved from the KEGG database and activation and 

inhibitory effects of components were assembled from the literature (Figure 13).  
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                       (A) 
 

 

 

 

                            (B) 
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 (C) 
 
Figure 13: Scheme of components in apoptosis used in the model from C. elegans, D. 
melanogaster and M. musculus, showing increased complexity and network topology. 
The pathway was reconstituted from literature and KEGG database. The position of 
activators depicts the level at which components function. For example caspase-8 and 
caspase in D. melanogaster are activated at same time. 
 

In the figure 13, the complexity of the pathway increases from C. elegans to 

M. musculus. The numbers of components regulated are more in the evolved 

systems. In M. musculus depending on the cell type four ligands can activate the 
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cascade by interacting with receptor. FASR and TRAILR then activates only pro-

apoptotic components whereas IL1R and TNFAR can also activate anti-apoptotic 

components (SUR and MYD88). SUR is used here for survival signal which is 

transmitted through TRADD, RIP and TRAF complex. Such ligand-receptor 

reaction is absent in C. elegans and D. melanogaster. FADD and TRADD then 

activate caspase-8. Caspase-8 also activates bid which turns on the intrinsic 

pathway by triggering apaf. Apaf then activates caspase-9 and BCLXL inhibits 

apaf. BCL family of proteins includes pro and anti apoptotic proteins. Proteins 

from this family are highly conserved across the species. One of BCL family 

protein activates apoptosis cascade in D. melanogaster by activating dapaf which 

has high sequence similarity to apaf in M. musculus. dapaf then activates caspase-

8 in D. melanogaster. Caspase-8 then activates caspase-3 and 7 in M. musculus and 

D. melanogaster. Caspase-3, 7 and 9 are inhibited by IAP in M. musculus and D. 

melanogaster. Unless inhibited they execute the death of cell in both organisms.   

The pathway alignment shows that in M. musculus and D. melanogaster 

effector components are regulated in contrast to C. elegans; the obvious question 

is, what is the effect of such a different topology? In M. musculus, some 

components are activated that do not only inhibit apoptosis activating 

components (for example IAP) but also activate components in the proliferation 

pathway (for example MYD88, BCLXL, SUR). Further, the proliferation pathway 

components MYD88, BCLXL and SUR are activated by the same receptor that 

activated apoptosis pathway. Then how apoptosis is successfully achieved? Is it 

because these inhibitors are activated later (in time scale) or they are not effective 

before? 

Considering that the apoptosis signal is induced at time step one, two 

assumptions for inhibitor activation were used: (1) the inhibitors are also induced 

at a lower probability of 0.1 at t=0 that is along with apoptosis activators or (2) 

they are induced after apoptosis activators reach maximum concentration. These 

two hypotheses were checked in the present simulation.  
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The effects of topology of the overall pathway and in particular the 

topology of inhibitors and effector components were compared in our 

simulations. The Michaelis Menten formalism characterizes usually enzyme 

catalyzed reactions. The terms in the equations were efficiently re-modeled in 

our simulation to characterize the behavior of components in the signal 

transduction pathway. The components of highly regulated pathways are 

usually formed in high concentration after its induction and are feed back 

regulated efficiently. The pathway was verified for reachability of signals and its 

robustness.   

 The structure of the processes and parameters is the same in C. elegans, D. 

melanogaster and M. musculus so the differences observed in the results can be 

attributed to the differences in topology and complexity of apoptosis pathway. 

Please note that rate constants of caspases in M. musculus are known, they were 

used in C. elegans and D. melanogaster, as the purpose here was to see the effect of 

topology. 

 

6.4 Signal processing through the apoptosis pathway in the three 

organisms 
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Figure 14: Effector caspase concentrations against time are plotted. The concentrations 
are increased giving a peak at time step 4 in M. musculus and at time step 24 in D. 
melanogaster followed by a decrease in the concentrations. 
 

Simulations with parameters as detailed in section 6.3 model description 

were run for 10 time steps. In a set of simulation experiments, the positive 

apoptosis signal was given at each time step. In spite of continuous activation of 

the receptor the apoptosis could take place only for 6 time steps in M. musculus 

whereas in D. melanogaster for 40 time steps and in C. elegans for 140 time steps 

(at K=10). This can be attributed to the activation of apoptosis inhibitory 

processes by the same receptor signalling in M. musculus and in general better 

regulation of the pathway as complexity increases to avoid unwanted death.  

Please note that apoptosis is assumed to take place when the concentration of 

effector caspases is greater than 0.05. In reality apoptosis might take place only at 

optimal effector caspase concentrations. An increase in the concentrations of 

effector caspases in M. musculus and D. melanogaster mounting to a peak followed 

by a decrease in the concentration (Figure 14) is observed. Please note that D. 

melanogaster and C.elegans inhibitors are also activated with the same probability 

of 0.1 along with activating components. This keeps the topology of the 

inhibitors similar in all three organisms. Moreover, there is lack of exact 

information on the activation of inhibitors. In M. musculus it is known that 
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inhibitors of the pathway are activated due to IL1 and TNFA receptor signaling 

that also lead to stimulation of the pathway (Figure 13).  In C .elegance the effector 

caspase ced-3 increases linearly with time as long as ced-4 (a regulator of ced-3) 

is present (Figure 15). 
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Figure 15: The plot shows that in C .elegance the effector caspase ced-3 increases 
linearly with time as long as ced-4 (a regulator of ced-3) is present. 
 

 A change in the value of K affects the number of time steps for which the 

apoptosis pathway remains active, increasing along with K and keeping the 

graph qualitatively same. The simulation was tested for robustness and 

sensitivity for a wide range of parameters (K: 10 to 100 and MAX_UNIT: 10 to 

100). In all cases the differences in the three organisms were maintained, such as 

longer activation in C.elegans, effector curves (linear in case of C. elegans and 

activation peak in case of M. musculus and D. melanogaster), inhibitor curves 

(sigmoidal and saturation curves). 
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Figure 16: Inhibitors (FLIP, IAP and BCLXL) in M. musculus are plotted against time 
for which apoptosis is active. FLIP concentration is close to zero, increase in the FLIP 
concentration lead to inhibition of apoptosis after 6 time steps. IAP has the sigmoidal 
curve against time. And BCLXL (inhibitor of Apaf) increases till time step 2 and then 
remains stable for the period till apoptosis is active. 
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The plot of Ced-9 against tim e
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(B) 

Figure 17: In the figure inhibitors of the apoptosis pathway in D. melanogaster and C. 
elegans are plotted against time. The figures A and B shows that inhibitors (IAP in D. 
melanogaster and Ced-9 C. elegans) follow sigmoidal curve when plotted against time 
in D. melanogaster and C. elegans respectively. 
 

The curve of inhibitory IAP (in M. musculus (Figure 15) and D. 

melanogaster (Figure 17A)) and ced9 (in C. elegans) is sigmoidal when plotted 

against time (Figure 17B). In M. musculus, there are two more inhibitors with 

different topologies (Figure 16): FLIP remains close to zero as long as apoptosis 

takes place. Increased production of IAP compared to FLIP shows stronger 

regulatory control on effector components (end components of the pathway) 

(Figure 16). This might have evolved to regulate complex networks; as in 

C.elegans inhibition is not at the level of effector component (Ced9 inhibits Ced4 

but not Ced3). Thus the topology of the pathway is critical and has important 

implications for the specific effect in the organism and it is adapted in this way 

also to different levels of multi-cellular complexity.  BCL increases and then 

stabilizes so that apaf is not produced for long time. This also will lead to shut 

down of intrinsic pathway before extrinsic pathway. 
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6.5 Effect of deletion of the intrinsic apoptosis pathway in M. 

musculus 
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(B) 

Figure 18: Model results for the concentration of caspase 8, 3 and 7 are plotted against 
time. (A):  results in the presence of the intrinsic pathway. (B): in the absence of the 
intrinsic pathway. Note that concentration units are arbitrary and are used for the 
comparison.  
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We consider in this section cell types where both intrinsic and extrinsic 

apoptosis pathway take place. Bid connects these two pathways activating 

caspase 9 and in turn caspase 3 and 7. Concentration of caspase 8, 3 and 7 is 

plotted against time in Figure 18A in presence of the intrinsic pathway and in 

Figure 18B in the absence of the intrinsic pathway. The comparison between both 

figures shows that the concentrations of effector caspases namely caspase 3 and 7 

are much lower in the absence of the intrinsic pathway at complementary time 

steps. In contrast, the concentration of caspase 8 is unaffected (at time step 6 the 

concentration is 250 in both graphs). The apoptosis pathway is active for longer 

time (9 time steps) which can be explained by the reduction in concentration of 

effector caspases. An interesting observation is that the peak of caspase 3 and 7 is 

not at the same time step. Further caspase 7 concentration is greater than caspase 

3 concentration at time steps 6 and 7. The pathway is predicted to be and the 

simulation is shown to be sensitive to changes in topology. The observed effect 

can be attributed to the differences in K values of caspase 3 (K=5) and 7 (K=15) 

and the fact that same inhibitor IAP controls the concentrations of both effector 

caspases. IAP concentration in the model depends on concentration of caspase 3 

and 7 as explained before (See model description). Though the rate of caspase 3 

formation is more than for caspase 7, it also leads to a higher activation of IAP at 

a given time reducing its net concentration. Note that when the intrinsic pathway 

is active, caspase3 is formed in large amounts because of its higher rate of 

production and more activating signal. 

 

6.6 Model predictions and experimental validations 
6.6.1 Caspase-3 activity 
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(B) 
Figure 19: Experimental test on the predicted levels of the executioner caspase 3. (A): 
Experimental data: Relative fluorescence units (RFU) measuring the activity of 
caspase-3 in response to FasL is plotted against time after incubation with 25% 
FasL/CHX. (B) Simulation predictions: The predicted values for caspase 3 are are 
plotted against time. Furthermore, polynomial fitting for the time course modeled 
yields the thin continuous line (polynomial fit given in the right corner together with 
correlation to the simulated data) 
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 Whereas these general results at least suggest that our simulations capture 

and predict first features of organismic complexity in apoptosis regarding the 

topology of regulatory control, then to examine to what extent the concentrations 

and time evolvement of compounds simulated agreed qualitatively with 

experimental observations. As a first test we compare the, the caspase 3 activity, 

the major executing enzyme involved in apoptosis and its evolution during time 

with experimental data: fluorogenic caspase-3 activity of primary M. musculus 

hepatocytes (Figure 19A, 19B). Flurorogenic caspase-3 activity was measured 

after the treatment of primary M. musculus hepatocytes with 25% FasL plus 10 

µg/ml CHX. Cytosolic extracts were made an aliquots were mixed with a 

fluoregenic caspase-3 substrate DEVD-AMC. Caspase-3 activity can already be 

observed after 2 hours of treatment with FasL/CHX. The maximum activity 

occurs at 5 hours and 30 minutes, after which the activity decreases in a time-

dependent manner (Figure 19A). The simulation results reproduce the behavior 

of the caspase-3 similar to that observed experimentally when stimulated by 

FasL/CHX. The peak of caspase-3 is observed at 4.5 time steps followed by the 

decrease in the concentration (Figure 19B). This comparison demonstrates an 

experimental test of the predicted compound curves and time scales. Thus the 

time scale used in the model is in hours. The qualitative behavior of the end 

component caspase-3 in the murine apoptosis pathway is well-predicted. Note 

that the DEVD/AMC substrate used in these experiments can be used by both 

caspases 3 and 7. There is no specific substrate for caspase 8, as the caspase 8 

substrate IETD-AMC is also cleaved by caspase 3. Thus experimentally it is only 

possible to estimate combined activity of caspase 3 and 7 as they share substrates. 

They also have same inhibitor and act at same level in apoptosis. Though time-

scale and peak shape of the main executioner caspase under constant activation 

for the most complex cascade are well agreeing with observations, some other 

observations from experiments help us in scaling our parameters.  
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In vivo concentration of FAS ligand is estimated to be 10 to 50 ng/ml. In 

the model MAX_UNIT is adjusted to 10 which is close to the estimation after the 

asseignment of the unit ng/ml.  

 

6.6.2 Survival of cells and experimental validation 
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Figure 20: Experimental test on the predicted percentage of viable cells. (A) 
Experimental data: FACS assay described in material and methods was used to 
experimentally estimate percentage of viable cells. The percentage is plotted against 
time. The data shows viable cells when caspase-3 was until the caspase-3 is detectable. 
(B) Simulation prediction: The percentage of survival was assumed to be proportional 
to the concentration of Caspase-3. The percentage was calculated as described in 
results. The figure shows the accurate prediction of percent viable cells by the 
simulation. 
 

We used this dynamic simulation to predict the viability of cells (Figure 

20B). The number of cells killed is assumed to be proportional to the 

concentration of caspase-3. Fluorescence activated cell sorting assay was used to 

experimentally observe cell viability. Figure 20A shows the % viability of cells 

against time of incubation with 25% FasL/CHX in hours. This observation could 

be compared to % viability predicted by the simulation.  

                   

 

 

 (5) 

          ti      
     where c3 is a proportionality factor and ∑caspase-3/7= ∑caspase-3/7. 

         t=0 
 

The above formula was used to calculate % viable cells. The data fits exactly 

predicting 49.7% viable cells when highest concentration of caspase-3 is 

observed. Note that experimental studies take into consideration more number of 

time steps this explains why at 6th time step we still see 33.7% viability. 

 

6.7. Activation of inhibitory components in light of experimental data 

 The model was developed with the two assumptions: (i) Apoptosis 

inhibitory components are activated along with apoptosis inducing/ activating 

components. (ii) Apoptosis inhibitors are activated after sensing the higher 

concentrations of the apoptosis inducing/ activating components. The good 

     tmax 
 %viable cells [ti ]= (100 / c3) * (∑  ( ∑cacspase-3/7)– ∑caspase-3/7) 

                t=0 
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approximation of the experimental results guided us to accept the first 

assumption. It has been found that in the TNFAR induced pathway the complex 

we is formed that activates NFKB only before TNFAR undergoes endocytosis 

(Micheau and Tschopp, 2003). Thus ILR and TNFAR are suggested to activate the 

inhibitor protein at a lower probability along with apoptosis activators probably 

as a sensor primarily to activators. Thus our fist assumption is also supported by 

experimental evidence. 

 

6.8. Conclusion 

Qualitative simulation is used in this paper to study the behavior of 

components in the apoptosis pathway. We could analyze the topological effects 

of the pathway due to the comparison between three organisms. Further the 

deletion studies (deletion of intrinsic apoptosis) showed that the simulation is 

sensitive to the component topology and produced logical outputs indicating the 

regulatory hot spots, namely: caspase regulation (see results) and separation 

between regulation of distal and proximal parts of the pathway. The co-relation 

between inhibitor time course and activator time course points to the efficiency 

due to regulation at the level of the effector component in complex networks (in 

D. melanogaster and M. musculus but not in C. elegans).  

For a wide range of parameter settings the difference in response in the 

three organismic variations of the pathway is maintained: Long activation in 

C.elegans, short activation in D. melanogaster and only activation peak in M. 

musculus. In contrast, the inhibitory response builds up during evolution and is 

most stable in M. musculus. Thus the topology of the pathway is critical and has 

important implications for the specific effect in the organism. It can be speculated 

that it is adapted in this way also to different levels of multi-cellular complexity. 
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RESULTS PART II 

 

Phagosome and Lysosome: Signalling and fusion 

Results and chapter discussion 
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7. Modeling of the phospholipid network necessary for actin      

    polymerization in the phagosomal membrane. 

Phogosomes are highly dynamic vesicles that are formed de novo by the 

cell and subsequently mature (Griffiths, 1996). Particles inducing phagocytosis 

induce rapid and massive actin assembly via signal transduction in different cell 

types, allowing phagosome enclosing the particle to be formed (Allen and 

Aderem, 1995; Caron and Hall, 1998; Greenberg et al., 1991; Reaven and Axline, 

1973), subsequently the phagosome fuse with the lysosome. The acquired acid 

hydrolases and vacuolar ATPases, acidify the phago-lysosome lumen and 

facilitate the digestion and removal of the pathogen. Live pathogens such as 

Mycobcterium tuberculosis secrete inhibitory lipids and/ or proteins that are 

released into the phagosome that can block phagosomal membrane function such 

as actin assembly and in turn fusion with lysosomes (Beatty and Russell, 2000; 

Clemens, 1997; Rhoades et al., 2003). Mycobacteria are serious causes of human 

disease. Over 3 million humans die every year from Mycobacterial tuberculosis. 

These microbes survive and grow inside phagosomes and block phagosomal 

membrane signaling processes (Russell, 2001). Many signaling molecules, in 

particular phosphoinositols, play a role in the processes of actin assembly and 

lysosomal fusion (Anes et al., 2003). 

In vitro and in vivo phagosomes containing pathogenic or non-pathogenic 

mycobacterium can be studied using Latex Bead Phagosomes (LBP), due to the 

ease by which these organelles can be isolated in pure form from macrophages 

(Desjardins et al., 1994), (Desjardins and Griffiths, 2003). They represent the 

simplest imaginable membrane system, a single bilayer around a (usually 1µm) 

bead. Thus the experimental observations were made using LBPs and were used 

to test the simulations. 
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7.1 Introduction to phospholipids network 

The response of LBP and phagosomes containing non-pathogenic 

mycobacteria to a variety of lipids was very similar (Anes et al., 2003). When, 

however, the phagosomes enclose live pathogenic mycobacteria, the actin-

polymerizing machinery is switched off, both in vitro and in macrophages (Anes 

et al., 2003). Seven of the lipids that activated LBP phagosome actin assembly 

could activate this process on live mycobacterial phagosomes. The same lipids 

stimulated the maturation of these phagosomes in cells, leading to pathogen 

killing (Anes et al., 2003). The analysis of a defined (and complex) membrane 

function (actin assembly) in the LBP system in vitro is thus likely to reveal 

general properties of membrane signaling networks, especially those relevant for 

host-pathogen interactions. Towards this goal, we compiled detailed 

experimental data on the effects of different lipids and soluble compounds on 

phagosome actin assembly and used these to construct the first network models 

of the signaling cascades operating in the phagosomal membrane.  
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Figure 21: The figure shows the lipid and phospholipid network along with allosteric 
interactions affecting actin polymerization machinery on the phagosomal membrane. 
The red colored component activates actin polymerization at high or low ATP 
concentration. The blue colored components inhibit actin polymerization at high or 
low ATP concentrations. 

 

The major experimental part of this study (the experimental part was done 

in EMBL by the group of Gareth Griffith) involved the addition of different 

compounds, mostly lipids, to the in vitro LBP actin nucleation assay (Defacque et 

al., 2000). The readout of interest was whether a compound stimulated (+), 

inhibited (-), or had no effect (0) on LBP actin assembly (Figure 21). In the 

previous study, positive and negative lipid effectors were identified, but the 
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response varied greatly depending on the concentration of ATP (Anes et al., 

2003). The standard LBP assay operates using low (0.2 mM) ATP whereas 

physiological levels of ATP (5mM) inhibit the system. These two different 

responses appear to represent two different membrane signaling states or 

‘signatures’ (Griffiths, 2004). For example, the addition of sphingosine stimulated 

actin assembly at low ATP but inhibited the process at high ATP, while its down-

stream product, sphingosine-1-phosphate (S1P) behaved in the opposite manner 

(Figure 21; (Anes et al., 2003)).  

Here we have extended this analysis to include a larger number of inter-

connected lipids. Figure 21 shows the signaling network that is linked to the 

phagosome actin assembly process and provides a summary of the effects of the 

main lipids (and IP3) that is modeled. The four different states of the system that 

emerged from our experimental data are shown in the four diagrams at high or 

low ATP, showing activation versus inhibition. 

 

7.2 Dynamic simulation 
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Figure 22: Dynamic modelling of phagosome signaling networks: Shows an overview 
of the algorithm used to model the lipid-based networks dynamically.  
 
 The links between phagosomal ATP synthesis and actin assembly can only 

be addressed comprehensively by considering the detailed network topology 

and dynamics of the membrane signaling networks. The elementary mode 

analysis (EMA) approach (Schuster et al., 2000) provided a good starting point 

in that it allowed to decipher the possible sets of inter-linked metabolic reactions 

that can occur between the 19 lipids that are modelled (Figure 21). The main 

compounds considered in experiments and modeling are lipids and the final 
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reaction achieved is the nucleation of G-actin to F-actin on the phagosomal 

membrane. As all relevant substances are primarily produced and consumed by 

metabolic conversions, a model of the metabolic fluxes involved provides a first 

approximation of this sigaling network. The principal pathways of the signalling 

cascade in the phagosome can be correctly described qualitatively by EMA. 

 A more detailed description considers additional concentration- 

dependent effects such as: (i) the dependence of reaction rates on substrate and 

product levels (ii) allosteric regulation (iii) indirect modulatory effects of 

interacting proteins and lipids. We have developed an extended model (Figure 

22) that considers the quantitative experimental data on the ability of different 

lipids and other effectors to stimulate or inhibit LBP actin assembly relative to 

untreated controls. The model simulates, in discrete time steps the effects of 

adding a pulse of a single lipid, or a combination of lipids, and follows their 

subsequent conversion into further metabolites in the lipid network of the 

phagosomal membranes that regulate the actin assembly process. This model 

considers not only metabolic conversions between lipids but also direct 

interactions of lipids with the actin nucleation machinery and allosteric 

interactions (Shown in Figure 21).  

 

Table 7: Model parameters and their effects 

Name Value Effect 
Type I parameters 
K 0.5 Translates phospholipids concentrations into actin activation 

or inhibition 
Threshold 20 Minimum concentration of lipids required for any action 
sphact 0.30 Stimulates PA formation, DAG kinase and PIP2 formation 

(by stimulating PI4P kinase)proportional  to Sph 
concentration. 

PAact 0.30 Stimulate Sph kinase leading to increase in S1P formation 
Type II parameters 
dagact  Activation of PKC by DAG 
High_act 1.3 Leads to differential effect of phospholipids at high ATP 
actmach 1.5 Activation of CD44 and receptor by PIP2 
F-actin 1 Activation of PLD 
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 All model parameters (Table 7) were determined in many simulations to 

optimize prediction accuracy for single lipids, taking in to consideration the 

present experimental data on individual lipids and phospholipids to stimulate 

(+) or inhibit (-) phagosomal actin assembly. The rate constants and diffusion are 

only simplified modeled by factors to translate lipid concentrations into 

activation and thresholds to mimic diffusion barriers. It is described 

schematically Figure 22.   

Two types of parameters operate on the lipids in the network. The first 

type considers the reactions (Figure 21) which are possible at either high or low 

ATP. Thus the parameter ‘K’ translates individual lipid and phospholipids 

concentrations (taken from the experimental data) into actin activation or 

inhibition at low and high ATP (set at 0.5 for all lipids). ‘Threshold’ (set at 20) is 

the minimum bulk concentration of lipid in micro moles necessary for a reaction 

to take place. From the experimental data activation of actin assembly at low 

ATP generally provides a signal (percentage of positive phagosomes) that is 

about 20% higher than signal at high ATP (which is considered as an inhibition). 

‘Base’ (set at 0.20) simulates this effect in the model. The network topology  

regarding metabolic conversions and allosteric effects is taken into account. For 

example, sphingosine is known to activate the conversion of DAG to PA. Thus a 

factor ‘sphact’ (0.30) activates PA production depending on concentration of 

sphingosine. The weight of the factor (as done for the others given here) is 

optimized for prediction accuracy of network response (activating or inhibiting) 

based on the results of many simulations and using the experimental data on 

single lipids in phagosomal activation assays. 

The second type of parameters is specific for high or low ATP. The effect 

of DAG on PKC activation at high ATP is simulated by the parameter ‘dagact’ 

(set at 2). Different states of the actin polymerization machinery (like 

ezrin/moesin/PIP2 complex which acts as a link between membrane and actin 

monomers) at high and low ATP are taken in to consideration by the parameters 
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‘actmach’ at low ATP (set to 1.5) and ‘high_act’ at high ATP concentration (set to 

1.3). 

 This model also takes into consideration the direct interactions of PIP2 

with the actin nucleation machinery and specific allosteric interactions (Figure 

21). This model (Figure 22) investigates the system out of equilibrium after a 

lipid has been added, using 20 simulation time steps (after which the system has 

reacted and is assumed to be in equilibrium again). It then models in a 

simplified way the complex and (incompletely known) enzyme fluxes. As in the 

real phagosomal membrane, the lipid or lipid combinations added to the 

phagosomal membrane in the model can be converted in several directions of 

the lipid network (Figure 21). If above the conversion threshold, in the 

subsequent time steps half of the resulting metabolite concentration is further 

converted evenly into all these possible directions (including the back-

conversion in a reversible reaction), with each of the resulting lipids adding 

either 'activating' or 'inhibiting' input to the system. The ATP concentration (i.e 

"high ATP", 5 mM or "low ATP", 0.2 mM) was also an input into the model.  

 The final readout is a prediction, not only as to whether the overall 

system will inhibit or activate actin assembly, but also the magnitude of the 

effect. More complex effects such as facilitation of stimulatory or inhibitory 

effects of the lipids by additional interacting molecules, including allosteric 

effects, mediating kinases or phosphatases, and the proposed ATP synthesis, are 

only modelled in a simple, heuristic way in this study. The model still leaves out 

many further, identified, as well as unidentified proteins and lipids and the 

more complex regulatory networks. The analyses presented here can be used to 

give a more detailed model as more kinetic data become available. This would 

allow a more complete, concentration-dependent description in terms of a 

system of coupled differential equations (Heinrich and Schuster, 1996; Alves and 

Savageau, 2000). 
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7.3 Comparison of model results with experimental observations  
 
Table 8: Combinations of phospholipids tested by the Model validating the 
above allosteric interactions 
 
Level of activation 
(predicted) 

Level of activation 
(experimentally tested) 

ATP level 

AA+PC> AA+DAG AA+PC> AA+DAG High ATP 
SM+AA<=AA SM+AA<=AA Low ATP 
SM+AA>AA SM+AA>AA High ATP 
SM+PA<SM SM+PA<SM Low ATP 
SM+PA<SM SM+PA<SM High ATP 
PA+AA PA+AA Low ATP 
 
Legend: Experimental tests involved the addition of various phospholipids and 
assaying the phagosomal activation by phogocytosis of latex beads by murine 
phagosomes and light microscopy. Abbreviations: AA: Arachidonic acid, PC: 
Phosphatidylcholine, DAG: Diacylglycerol, SM: Sphingomyelin, PA: Phosphatidic 
acid 

 

The model can successfully predict the effects of different lipids in 

combination, with respect to inhibitory or activating effects, on phagosomal actin 

assembly (Table 8). Further, We can test and extend the network topology 

modeled and predict effects for different concentrations of lipids or ATP. 

Moreover the predictions for the effects of adding various combinations of lipids 

were in good agreement with the experimental data (Table 8).  
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Figure 23: The figure shows the predicted and experimental ATP dependent switch of 
sphingosine dependent actin nucleation. The effect of sphingosine on actin 
nucleating phagosomes (%) is plotted against ATP concentration. Note that predicted 
activation is plotted in logarithmic scale and correctly estimates the switch at ATP 
concentration 3.05mM. 

 

We extended the above model to predict activation/inhibition of actin 

assembly at any given ATP concentration. For a given lipid, the logarithm of the 

amount of activation/ inhibition) of actin nucleation is plotted against the ATP 

concentration and used to plot a graph, log (activation or inhibition by lipid y) = 

(slope* (concentration of ATP x)) + constant. The logarithm smoothes biases from 

extreme high or low values. This gives a reasonble prediction of the 

concentration of ATP (3.05mM) where sphingosine is neither activating nor 

inhibiting (Figure 23). The topology of the modelled network was also important; 

for example the allosteric reactions shown in Figure 23 were found to be 

necessary for reaching an agreement between predictions and the experimental 

data. 
All model parameters (Table 7) were determined in many simulations to 

optimize the accuracy of prediction for single lipids, or combinations of lipids, 
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taking in to consideration the present experimental data, including the optimal 

concentration of individual phospholipids for their ability to stimulate (+) or 

inhibit (-) phagosomal actin assembly (Table 8). Further experimental data will 

help to model the different parameters more accurately. 

 
Stepwise analysis of our program taking Sphingosine as an example: 

Concentration of starting material phosphoinositide, sphingomyelin and PE is 

set to 200. Thus some amount (internal amount) of phospholipids is always 

formed. These phospholipids and concentrations were again chosen from 

different triple combinations of lipids and picked as they best simulated the 

effect of the internal lipids present in the network. 

1. When 0.1mM of sphingosine (Sph) is put into the program the given 

concentration will be added to the internal pool of lipids present and 

increase the sphingosine concentration. The subsequent steps then follow 

for each reaction in the time step simulation: 

2. Half of the Sph will be converted to sphingosine 1 phosphate (S1P) if the 

concentration of Sph is above the threshold level which is set to 20. The 

time step simulation thus models in a simplified, discrete way, the 

exponential decay of the metabolite given as a pulse to the lipid network. 

Similarly, the thresholds mimic in a simplified way a number of more 

complex effects such as limited diffusion and low enzymatic conversion 

rates at low concentrations 

3. The reaction Sph to S1P is a reversible reaction. When S1P achieves the 

threshold concentration, half of the S1P will be converted again to Sph. 

4. The concentration of specific lipids during the time step simulation will be 

influenced by additional network effects to simulate allosteric effects (e.g. 

from or on PKC). In the example, the effective lipid concentration of PA 

will rise (according to the concentration of Sph) starting from the existing 
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concentration of PA in the phagosomal membrane (bulk lipid 

concentrations-see above). 

5. Corresponding concentrations of downstream and (in the case of 

reversible reactions) upstream lipids will be changed.  

6. At each step the overall activation is calculated by summarizing all 

activating and inhibitory effects of the different lipids and adding this 

paramter to the total levels of activation or inhibition already calculated. 

7. After the 20 time steps have been completed, the final value of activation 

is calculated by dividing the value for the total activation by the level of 

the control. 

 

7.4 Topology tests: Allosteric interactions 

Allosteric interactions were important in fine tuning of the outcome. Their 

importance was systematically tested in different simulations adding or 

removing specific allosteric interactions and testing how well the model could 

then predict the effect of adding individual lipids on the network. These tests 

gave the following results: 

Allosteric interactions which play a role at high ATP are more important 

than those active at low ATP. PKC is included in the model and in accordance 

with experimental data collected so far, its interactions are more important at 

high ATP. Furthermore, the variables dagact and high_ act in the simulation play 

a role at high ATP. High_act (additional activation of PIP2 at high ATP) in 

particular seems to be more important as phospholipids PIP2, PA, PC and Sph 

(that is four out of 14 phospholipids) showed opposite effect on the system when 

high_act was set to 0. When dagact (stimulation of DAG kinase of PKC) was set to 

0 the effect of DAG on the system was less and the lipid network behaviour was 

incorrectly predicted, in that it did not agree with the experimental data. 

 



                                             PartII: Modeling of the phospholipids network  

 104

7.5 Concluding Remarks: the relevance for M.tuberculosis 

The analysis have provided sets the stage for an eventual understanding 

of how pathogens such as M.tuberculosis subvert the phagosomal signaling 

networks that regulate the key functions of phagosome actin assembly and the 

fusion with lysosomes, both of which are inhibited in infected macrophages; as a 

result of these inhibitions the pathogen grows within the phagosome. Although 

the experimental observations and the model have focused exclusively on the 

actin assembly process in their in vitro studies so far, in principle all phagosome 

functions for which one has an assay, including the fusion processes, can be 

subjected to the same approach that is used here for the actin assembly. Using 

these assays in conjunction with bioinformatic modeling, any ‘virulent’ factor 

isolated from a pathogen such as M.tuberculosis that could inhibit a particular 

phagosome function can be addressed with respect to how it affects the 

phagosomal membrane signaling networks.  
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8. Analytical and spatial model of phagosome lysosome fusion 

 

8.1 Introduction to process of the phagosome lysosome fusion 

De novo actin assembly on phagosome membrane is known to occur 

mainly on the cytoplasmic surface of membranes and as a requirement for its 

fusion with the lysosome (Kjeken et al., 2004). Identification of the mechanistic 

details of this crucial cell function has been hampered both by the complexity 

and rapidity of its action, and by the lack of an eukaryotic membrane model 

systems that are suitable for both in vivo and in vitro analyses. In all membrane 

systems examined so far, actin assembles on membranes in a manner that is quite 

different from the better understood microtubules. The later are nucleated within 

defined structures such as the perinuclear microtubule organizing center, and 

grow by addition of tubulin monomers to the end away from the nucleator. In 

contrast actin monomers are inserted at the membrane where the fast growing 

barbed or plus ends of the actin filaments are invariably located (Tilney, 1976), 

(Carlier, 1998). This type of formation might facilitate the transfer of organelle 

bound to actin binding protein (lysosomes) towards the actin nucleating 

organelle (phagosomes) (Kjeken et al., 2004).  

 Phogosomes are highly dynamic vesicles that are formed de novo by 

the cell and subsequently mature (Griffiths, 1996). Particles inducing 

phagocytosis induce rapid and massive actin assembly via signal transduction in 

different cell types, allowing phagosome enclosing the particle to be formed 

(Allen and Aderem, 1995; Caron and Hall, 1998; Greenberg et al., 1991; Reaven 

and Axline, 1973), subsequently the phagosome fuse with the lysosome. The 

acquired acid hydrolases and vacuolar ATPases, acidify the phago-lysosome 

lumen and facilitate the digestion and removal of the pathogen. Live pathogens 

such as Mycobcterium tuberculosis secrete inhibitory lipids and/ or proteins that 

are released into the phagosome that can block phagosomal membrane function 
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such as actin assembly and in turn fusion with lysosomes (Beatty and Russell, 

2000; Clemens, 1997; Rhoades et al., 2003). Mycobacteria are serious causes of 

human disease. These microbes survive and grow inside phagosomes and block 

phagosomal membrane signalling processes (Russell, 2001). Many signalling 

molecules, in particular phosphoinositols, play a role in the processes of actin 

assembly and lysosomal fusion (Anes et al., 2003).The data has led to the 

proposal that one function of phagosomal actin filament assembly is to provide 

tracks for organelles such as lysosomes to move in a myosin dependent fashion 

towards the phagosome, thus facilitating fusion (Jahraus et al., 2001; Kjeken et al., 

2004). Taking into consideration the above points, spatial modeling of actin 

polymerization and regulatory components involved in the process will be very 

interesting in order to understand the process of manipulation of the phagosome 

and its environment by pathogens.  

 Actin binding proteins can bind actin and phosphoinositides on the 

membrane simultaneously. This includes talin, vinculin and 

ezrin/radixin/meosin (ERM) proteins. They are candidates for involvement in 

actin nucleation on membranes (Bretscher, 1999; Gilmore and Burridge, 1996; 

Mangeat et al., 1999; Niggli et al., 1995). The ERM proteins are widely considered 

as mechanical linkers between the membrane and actin filaments (Algrain et al., 

1993; Berryman et al., 1995; Bretscher, 1989; Hanzel et al., 1991). Ezrin/ meosin 

represent the minimal machinery that needs to be recruited by phagosomes from 

the cytoplasm in order for actin assembly to proceed (Defacque et al., 2000). The 

model simulates correctly the observed F-actin morphology on the phagosome 

membrane and a rapid searching behavior as an emergent phenomenon from the 

actin dynamics is represented in the model. 

 

8.2 Description of the analytical model 
Protein polymers in the cell assemble by different processes, here We 

discuss two (i) similar to dynamic instability (DI) (Mitchison and Kirschner, 
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1984a; Mitchison and Kirschner, 1984b) and (ii) Reversible polymerization (RP). 

RP is continuous competition of two processes, assembly and disassembly, 

where the monomer size controls the scale of the length fluctuations. In contrast, 

DI is, at the simplest level of description, a mechanism in which the polymer 

alternates between two distinct states of reversible polymerization. Though 

dynamic instability as defined in case of microtubules is not found in actin 

polymerization all actin binding proteins can (ABP) maintain two distinct states 

of polymerization and de-polymerization. Thus it is believed that both types of 

polymerization are observed in case of actin. Rapid cycles of actin 

polymerization are observed on phagosome membrane(Yam and Theriot, 2004). 

It is still not clear whether actin filaments play role in phagosome lysosome 

fusion and if it does is it an efficient way. To test its role in the fusion with the 

lysosome, here the effect of both (DI and RP) the possibilities of polymerization 

on the fusion in terms of time is tested. For both polymer types the average 

search time is computed.  

Actin polymers are nucleated from the surface of spherical phagosome of 

radius R = 2 µm, they assemble and disassemble till they come into contact with a 

fix target (lysosome). The polymers are considered as rigid rods over distances of 

the order of the cell size, so the direction of the growth is radial and is fixed after 

the nucleation. For simplicity, the number of polymers is assumed to be constant, 

so that when one polymer shrinks to zero length, another re-nucleates and grows 

in a new (randomly chosen) direction.  At the membrane RP will reflect 

instantaneously, while DI stops growing but waits until it has a catastrophe 

before shrinking. The average search time depends on the geometric parameters 

and on the polymerization parameters. 

The F-actin polymerizes (p) and de-polymerizes (dp) on the surface of the 

phagosome with velocity ‘vp’ µm/min and ‘vdp’ µm/min for DI. The growing 

filament depolymerizes with the frequency ‘fdp’ min-1 while growing and its 

rescue frequency is ‘fp’ min-1. The similar simple model for stiff, non interacting 
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polymers, growing in an infinite homogenous medium has been established for 

microtubules. The model makes use of only Vp µm/min, Vdp µm/min, fp min-1, 

and fdp min-1 and does not require any assumption about the molecular 

mechanisms that determine them (Verde et al., 1992). As no molecular 

mechanisms are specified we could use the solution to actin polymerization 

found on phagosome membrane with modifications. The average velocity with 

which a given actin population grows, J is given by: 

J= (fpVp- fdpVdp) /(fdp+fp) --------------------------------------------------(1) 

It can be easily seen from equation (1) that when fpVp > fdpVdp filament 

grows on average (refer to (Holy and Leibler, 1994) for more details). Whereas 

fpVp < fdpVdp filaments do not grow on an average, they tend to disassemble all 

the way back to the phagosome. This gives rise to a steady state and has been 

shown to give a well defined distribution in the case of microtubule length 

(Verde et al., 1992). In the steady state length distribution is exponential with the 

average length d given by, 

d = ( VpVdp)/ (fdpVdp-fpVp)-------------------------------------------------(2) 

Repeated cycles of actin assembly and disassembly are found on the 

phagosome membrane (this phenomenon will be addressed as flashing)(Yam 

and Theriot, 2004). Extending the model to our system of phagosome lysosome 

fusion with polymerization of actin on the phagosome membrane searching for 

the lysosome, we used the case when fp tends to (  ) 0 as this gives the steady 

state. The filaments in this case do not grow on an average as fdp > fp and will 

disassemble displaying flashing behavior. When fp  0, it follows from equation 

(2) d= da = Vp/fdp.  

RP evolve through the competition between assembly and disassembly; 

monomers are added at a rate rp and are lost at a rate rdp. The RP tip executes 

biased random walk, with a step size δ (0.004) equal to monomer size. Search 

time was found to be minimum at roff = ron, so the evolution of polymer is 

dominated by fluctuations rather than by drift. 
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To evaluate the role of actin polymerization and the significance of 

flashing on the fusion of lysosome with phagosome we calculated the search time 

and compared it to the time needed for the fusion of lysosome-phagosome (a) in 

the absence of actin assembly, (b) in constitutive presence of actin assembly and 

disassembly and (c) in the case of actin flashing. The search time is obtained as 

the sum of successful and unsuccessful events each with probability p and 1-p 

respectively. The probability i of signalling is 1 when actin assembly is 

constitutively (model b) present and otherwise i < 1 (model c). 

T= pts + (1-p)p(ts+tu) + (1-p)2p(ts+2tu) + …………. 

T= ts + ((1-p)/p)tu (Holy and Leibler, 1994) ----------------------------(3) 

Where ts is the time required for the successful events and tu is the time required 

for unsuccessful events. If the target is small as in the present case then p<<1, so 

T~ tu/p. Thus we need to estimate p and tu. The probability p depends on two 

events, the polymer has to grow in the direction of the target and should become 

long enough to reach the target before it de-polymerizes completely. Thus p = 

qp*, where q is the probability of growing in the direction of the target and will 

be proportional to angular size of the target. As the phagosome is sphere and we 

assumed that 10 actin can polymerize in one degree. Thus q is calculated as 1/ 

3600 for single polymer searching lysosome which is equal to 0.00028.  p* is the 

probability of reaching length dl before de-polymerizing completely. For DI, p* is 

clearly e-dl/d when fres  0. For RP p* is δ/dl when ron = roff = r. For n polymers 

searching for m lysosome the probability of successful events will be pnm. The 

duration of an unsuccessful search will be of an order of da/v for DI and R/rδ 

for RP. Thus 

TDI ~ (dae-dl/di )/ (qnmv) ----------------------------------------------------------------------(4) 

TRP ~ (Rdl)/(qrδ) --------------------------------------------------------------------------------(5) 

 Though thee mathematical analysis of the system follows closely the 

approach of (Holy and Leibler, 1994) it turns out that the numeric simulations 

now applied to phagosomes now give new results. 
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Figure 24: Average search time as a function of dl to the (Nl=10) lysosomes for a search 
by 100 polymers. The search time required for RP are roughly 103 time more at i=0.5 
than DI at lower dl. Here we have fdp = 2 min-1, da=6 µm. For RP δ=0.004, roff = ron=  
(vp+vdp)/2δ 
 
The figure 24 shows that regarding phago-lysosome fusion as dl, the distance 

between phagosome and lysosome increases the search time T increases too. 

Note that TDI < TRP roughly by the order of 103, for dl ~ da. When dl is large TDI > 

TRP. In the figure 24 the model c is depicted, the time difference between DI and 

RP are of the same order for model b, but the search time for model c (i<1) is less 

than model b (i=1). The phenomenon of flashing is clearly the characteristic of 

probability of signaling i and the frequency of de-polymerization fdp.  
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Figure 25: The plot of TDI against fdp shows that when i<1 the search time is reduced. 
Further at lower dl search time TDI reduces with fdp.  
 

The Figure 25 shows that as the frequency of de-polymerization increases 

the search time T decreases at lower dl. fdp corresponds to the frequency of 

flashing and at dl <= da search time decreases with fdp.  When dl increases (dl > 

da) the search time first decreases and then increases at higher fdp. This is because 

at higher fdp the probability p* of reaching the length dl decreases. This leads to 

higher search times. This can be seen in following figure 24 where the average 

distances moved by the tip da, decreases as the function of fdp. 
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Figure 26: In the graph da is plotted against fdp showing that as fdp increases the average 
distance da moved by the tip decreases decreasing the probability of covering the distance dl. 

 

Thus as dl increases search time TDI also increases with increase in fdp 

(Figure 25). 
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Figure 27: The plot of TDI against fdp at higher dl shows that search time increases with 
the increase in the fdp as the probability p* of filament covering the distance dl 
decreases. 

We can then compare the time TDI from the above results to the time 

necessary for the lysosome to diffuse to phagosome for fusion without actin 

(Figure 22). With the diffusion constant D = 0.01 µm2/min, which is 

approximately greater by the order of 104 than the search time TDI (when dl ~ da ) 

and by the order of 101 than the search time TRP.  

Thus actin dynamics on the phagosome membrane and intermittent 

signaling decreases the search time increasing the efficiency of the fusion. At an 

optimum DI parameters da ~ dl and fp  0 the search time TDI is less than in case 

of other two models. TRP is less than time required to diffuse lysosome to 

phagosome. We can conclude that model b and c needs less search time than 

model a. Thus it is highly probable that the actin flashing observed on 

phagosome membrane is in search of lysosome in the cytosol and will definitely 

reduce the search time leading to quicker fusion. 
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8.3 Description of spatial model 

 The analytical model gave the concrete results on the general behavior, for 

example mechanism of actin polymerization, its importance in the fusion and 

optimum parameters (da ~ dl and fp  0) when search time is minimum. We next 

wanted to investigate dynamics of individual fusion events for this the spatial 

model was necessary. 

 

Table 9: Parameters of the simulation. 
 
Parameter description Symbol Value or range 
Observation field  30 by 30 µm 
Phagosome diameter  1 to 5 µm 
Lysosome diameter  1 to 4 µm2 
Number of actin filaments filno 2 to 8 
Expected length of actin 
filament 

Expactlen 4 to 25 

Time steps for 
depolymerization 

timesteps 4 

 
 

The components of the model are positioned in a 30 by 30 µm square grid 

at the beginning of the simulation, which will be referred as the observation field 

that represents the cytosol. Actin monomers bound to ATP and profilin are 

distributed randomly in the observation field. The square dimensions are 

basically used to decide position of molecules at the beginning of simulation. The 

square dimensions do not inhibit any process, for example if lysosomes move 

outside the square they will appear on the other side. The position of actin 

monomers and all other components in the plane is decided by their co-

ordinates. Thus for example the diameter of actin monomers is assumed to be 4 

nm and its position is decided by the co-ordinates of the center of the circle. The 

sphere with diameter 4 μm represents the phagosome and is placed in the center. 

Four spheres with 2µm diameter represent lysosomes are placed randomly in the 

observation field. Thus this square mimics the part of the macrophage interior. 
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The position of the phagosome is fixed in the center. Lysosomes are constantly in 

Brownian motion.  

 The signal is generated randomly on the membrane of the phagosome. 

The signal can be generated by two ways: (i) by random generation and (ii) by 

continuous generation of the signal where the signal at a specific position 

increases the probability of the generation of a second signal closer to the first 

one. The analytical model lead us to select previous possibility explaining that in 

the cell a random generation of signals will be beneficial when the position of the 

lysosome in the cytosol is uncertain, thus it will increase the probability of 

finding the lysosome in the cytosol. The signal will decide the point at which 

polymerization of actin will start. One signal will lead to formation of only one F 

actin. However, actin monomers start accumulating from the neighboring area at 

the site of the signal induction. The actin length increases with velocity 0.2 

μm/sec.  

Actin tracker model implementation: F-actin grows randomly. If a F-actin 

filament hits the lysosome further polymerization of F actin and signal induction 

is stopped. The lysosome moves towards phagosomes in four steps along the F 

actin. F actin is depolymerized as the lysosome moves forward. If it does not find 

the lysosome till the filament length is equal to the optimum actin filament 

length, then they are depolymerized in four time steps. Depolymerized actin 

monomers are again distributed randomly in the square and are in turn bound to 

ATP and profilin. The time necessary to find certain number of lysosomes were 

analysed. New signals are formed if the lysosome is not found in the first cycle; 

actin nucleation is then initiated at a different place and in a different direction.  

 F actin can be formed from any point on spherical phagosome membrane 

upon signal induction. The direction of polymerization is also decided randomly. 

Interestingly, this increases the probability of finding the lysosome.  

 The main parameters that affect the probability of successful lysosome 

phagosome fusion are the actin length and number of F-actin filaments formed 
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(filno) divided by the number of signals. The actin filament length will be 

variable depending on the probability of binding to the lysosome (and myosin). 

The maximum length of F-actin that is formed before depolymerzation is a 

constant in the model and called as expected actin length (variable name 

expactlen). This decides the length achieved by F-actin in search of the lysosome, 

if the lysosome is not found when the length of F actin is equal to the expected 

actin length then the F actin is depolymerized. Biologically this is a critical 

parameter as actin polymerization is an energetically expensive process. It will be 

a waste of energy for the cells to form F actin in wrong direction with respect to 

lysosome position. The formation of an optimum number of F-actin filaments is 

also necessary for optimal conservation of energy.  

 

8.4 Comparison of model results with experimental observations 

Model considerations: The model is developed to simulate the formation 

of F-actin on the phagosome membrane and further to study its role in the fusion 

of phagosome and lysosome (Figure 28). The model and results were checked 

and developed in the progaming language C on the Windows workstation by 

Juilee Thakar. To actually visualize dynamics an openGL front end was written 

by Chunguang Liang, the output is shown in figure 28. 
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(A) 

 

(B) 
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Figure 28: The figure A and B shows the actin polymers emanating from the 
phagosome (bigger sphere) which is positioned in the center. The smaller spheres are 
lysosomes distributed randomly in the space. In figure A we can see how F-actin 
searches for the lysosome and figure B shows the fusion process of phagosome and 
lysosome.  

 

The simple model takes into consideration all fundamental steps in actin 

polymerization to generate the co-ordinates of lysosome, phagosome and F-actin.  

Actin is implicated in membrane fusion, but the precise mechanisms remain 

unclear. It has been shown using electron microscopy and biochemistry that 

membrane organelles catalyze the de novo assembly of F-actin that then facilitates 

the fusion between latex bead phagosome and a mixture of early and late 

endocytic organelles. Early endosomes fail to nucleate actin polymer on the 

membrane. Thus these experimental results leads us to build a hypothesis that 

actin assembled by the phagosome provide tracks for fusion with organelles such 

as the lysosome to move towards them via membrane bound myosins (Anes et 

al., 2003; Defacque et al., 2000; Jahraus et al., 2001; Kjeken et al., 2004). This is 

implemented as a sequential model. Studies have been performed to understand 

the role of actin in fusion. Actin nucleation takes place only on late endosomes/ 

phagosome which s dependent on membranes (Kjeken et al., 2004). Other 

evidence based assumptions listed below are made for simplicity of the model. 

1. All lysosomes are bound to actin binding proteins such as myosin. 

Note that myosin inhibitors such as 2, 3-butanedione monoxine 

inhibit the fusion (Kjeken et al., 2004). 

2. Depolymerization of F.actin takes place in four steps. 

3. Signal induction represents the activation of the Ezrin/ moesin 

machinery that is the minimal requirement for actin assembly to 

proceed as mentioned above (Defacque et al., 2000). 

4. Signal induction is random on the phagosome membrane and there 

is an optimum number of signals induced. 

5. There is an optimum length of F-actin necessary for efficient fusion. 
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Parameter variation: All parameters tested are summarized in Table 9. 

The factors that affect phagosome-lysosome fusion are number of actin filaments, 

the length of actin filaments and the speed of the lysosome in the cytosol. Further 

Phagosomes and lysosome can be modeled in varying dimensions (Phagosome: 1 

to 5 µm diameter, Lysosome: 1 to 4 µm diameter). These dimensions were 

approximated from experimental observations.  
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Figure 29: The plot shows that number of lysosomes found increases as expected actin 
length goes on increasing. 

 

In the simulation we varied the values for the optimum length of the actin 

filament (4 µm to 25 µm), number of signals (actin filament number) and 

phagosome as well as lysosome dimensions. In each case we measured the time 

necessary for an actin filament to find the lysosome. At the beginning of the 

program the phagosome is placed in the center and lysosomes are placed 

randomly in the observation field. When the phagosome diameter was 4µm and 

the lysosome diameter was 2µm lysosome and phagosome fusion was achieved 

in minimum time. Thus these dimensions were used for further analysis. Signals 

were then randomly generated on the phagosome membrane. We then varied the 

number of signal and found that four signals are necessary to find the lysosome. 

Experimental observations show that around 50 or more actin polymers are 
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formed on phagosome membrane during active state (when signals are induced). 

Thus we used 50 actin polymers. The figure 29 shows that as expected actin 

length increases number of lysosomes found also increases. At the site of 

generation of signals nucleation of F-actin takes place, leading to polymerization. 

In reality, phagosomes have been observed to move, for the convenience of 

modeling we fixed our coordinate system within a phagosome. 

The effect of the distance between lysosome and phagosome on the time 

required to find the ysosome was studied next keeping the actin length constant. 
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Figure 30: Effect of distance between phagosome and lysosome on the fusion time is 
plotted at different F-actin lengths. The plot shows that the relation is linear till F-
actin length 12 and then follows the saturation curve. 

 

The graph shows that the time increases as the distance between 

phagosome and lysosome increases. At an actin length 12 the time increases 

linearly with the distance between lysosome and phagosome. For an actin length 

20, time increases linearly till the distance 20μm and then stabilizes. 
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It has been observed that within about 20 seconds there is the actin 

“blinking” of an actin plaque, and then it disappears again, next the plaque 

occurs within long time (minutes) at a completely different place(Yam and 

Theriot, 2004). However, the myosin tracking takes place within a second so that 

any phagosome-lysosome fusion process is difficult to observe. In our model the 

formation of actin polymers at random places followed by de-polymerization 

and re-polymerization at completely random (different) places agrees well with 

the observations. 

 

8.5 Conclusions 

Here in this chapter we have developed a model to study the collective 

behavior of lysosome, phagosome and actin in the cytosol. Although the 

situation studied is very simple compared with that in a cell, we take in to 

consideration fundamental characteristics of each component in the cytosol of a 

macrophage to develop a global model of lysosome-phagosome fusion. Further 

from these models emanate basic mechanisms followed by the cell to develop 

energetically less expensive means for the fusion of two organelles. We take into 

consideration the searching behavior of the actin filament necessary in order to 

find the lysosome in the cytosol, the thickness (bushy and individual 

morphology) and the length of the actin filaments.  

Many processes in nature can be explained by continuous stochastic 

interactions at the molecular level. To describe and understand these processes in 

qualitative terms, there is a need for new tools allowing the analysis of collective 

behavior of organelles and molecules. The study of microtubule and actin 

filament dynamics is of central importance to the organization of cytoskeleton. 

Actin filaments have diverse functions, for example: cell motility, formation of 

contractile ring, stress fibers etc.  The organization of actin filaments in all cases is 

varied, and plays a central role in its function.  
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In the analytical model three possibilities of actin polymerization are 

checked. The search time for the dynamic instability model (DI) is less by the 

order of 105 than in absence of actin polymers. The search time is calculated 

based on the probabilities. Similar approach has been successfully implemented 

in case of chriomosome searching by microtubules. This clearly shows that   actin 

polymers play essential role in fusion of phagosome-lysosome. In DI the 

equilibrium is when fp  0 (fp approaching zero) and the search time is 

minimum when da~dl (da approaximately equal to dl).  

In vivo actin polymerization and fusion takes place in seconds, which 

make it highly impossible to understand the system. Analytical model strongly 

supported the importance of actin polymers during fusion. The model is 

developed based on probability hence we developed the simulation where we 

could actually change the actin length, phagosome dimentions, etc to see the 

effect of individual components on fusion. We found that the number of 

lysosomes found increases linearly with increasing actin length except for actin 

length 12 and 14. In the next plot (Figure 30) it is clear that the relation between 

time and the distance between lysosome-phagosome takes saturation curve as 

actin length increases above 12μm. Phagosome and lysosome dimensions also 

affected their fusion probability. The optimum diameter of the phagosome was 

found in the simulations to be 4μm and lysosomes were 2µm.  

Some models are already published for the polymerization of actin 

monomers. These models take into consideration the role of actin dynamics in 

protrusion associated with cell motility or endocytosis (Bottino and Fauci, 1998; 

Carlier et al., 2003; Mogilner and Edelstein-Keshet, 2002). Often those parameters 

are dependent on diffusion, viscocity and velocity of protrusion of the cell. These 

are often difficult to estimate in living cells and tend to make predictions that 

differ substantially from in vivo systems (Mogilner and Edelstein-Keshet, 2002). 

Microscopic studies contribute to spatial and temporal organization of actin 

filaments and motility due to actin myosin complex formation (Nakayama et al., 
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1998; Ponti et al., 2003; Verkhovsky et al., 2003). The theoretical model by Kruse 

and Julicher, 2003 (Kruse and Julicher, 2003) describe bundle formation due to 

cross linking molecules in polar filaments. Experimental evidence also proves the 

role of cross linking molecules in actin filament organisation, futher they also 

comment on persistence of membrane bound cross linked bundles (Tilney et al., 

2003). Counter-ion is also shown to affect actin filament organization (Yu and 

Carlsson, 2003). We use here a system biology approach to study the behavior of 

many components of the cell.  

Though the situation studied in this simulation model is simple the 

assumptions are testable. Further distinct steps in the fusion of phagosome and 

lysosome are described and modeled in the simulations. Inhibitors can be 

studied blocking particular steps. As a further extension, we can also estimate the 

percentage of signals inhibited by M. tuberculosis, and the percentage of signals 

necessary for efficient fusion of phagosome and lysosome. 

Despite recent advances, there remain a number of puzzling questions 

about actin polymerization on phagosome membranes and its role in fusion with 

the lysosome. First, because the searching behavior is highly directional, actin 

filaments must be assembled in a directional manner and at a precise time and 

place. It is unclear whether an Arp2/3-like process drives F-actin assembly or if a 

completely separate mechanism is responsible. Whether filament turnover is due 

to a highly active actin-depolymerizing factor or to unusual polymerization 

kinetics is also uncertain. How myosins are anchored to the underlying 

cytoskeleton and how their motor activity is regulated are areas for further 

investigation. Here in this model we try to study some of these questions. We 

develop a completely new approach to study the phagosomal system in the light 

of the limited kinetic data available. In this model we have made for the first time 

an attempt to simulate searching behavior of actin filament and comment on the 

best strategy for the cell to get rid of an intracellular pathogen.  Further we could 

also observe different patterns according to the intensity of the signal induction 



                                           PartII: Modeling of phagosome-lysosome fusion 

 123

and compare it with microscopic observations. The input parameters show 

specific effects, and the results are testable. The time step simulation established 

model specific parameters which can be correlated to observations.  

Our analytical and spatial resolution model of the phagosome shows as 

emergent phenomena (i) an active searching for the lysosome based on an actin 

tracker model (ii) a stepwise process of actin polymerization and lysosome 

fusion. Blocking of critical steps will allow testing of the model and is predicted 

to be implicated in the survival of pathogens. Model step length, number of 

signals involved in actin polymerization and detailed parameters are given for 

further experimental testing. Experimental observations confirm predicted 

lengths of actin filaments, phagosome and lysosome size, velocity of actin 

polymerizations and time course (Defacque et al., 2000; Griffiths, 1996; Kjeken et 

al., 2004). 
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9. Immune responses to Bordetellae species. 

 

9.1  Introduction to Bordetellae pathology 

The two components of immune system ‘innate’ and ‘adaptive’ immunity 

are essential for the protection against infection. Invasion of pathogens activate 

innate immune responses, a response to foreign material that help in eliminating 

or slowing the spread of the pathogen. The effector mechanisms used by the host 

to control infection include production of pro-inflammatory cytokines and 

chemokines, recruitment of inflammatory cells to the site of infection and 

activation of lymphocytes and natural killer cells. If the pathogen persists, 

antigen-specific adaptive immune responses are activated. The adaptive 

immunity can be divided into humoral and cellular responses. Humoral 

immunity refers to the antibody-mediated responses against pathogen, while 

cellullar immunity involves activation of macrophages and NK cells and the 

production of various cytokines in response to antigen.  

Bacteria have also evolved strategies to counteract host defense. These 

strategies include evasion of humoral and cellular immunity by antigenic 

variation, interference with antigen processing or presentation, and subversion of 

phagocytosis and killing by cells of the innate immune system (Mills and Boyd). 

Many pathogens achieve this by increasing the production of anti-inflammatory 

or immunosuppressive responses, which normally function to control or 

terminate the protective effector immune responses of the host (Mills, 2004). This 

interplay between pathogen and host results in a complex dynamical behavior 

whose ultimate outcome is persistent disease or recovery. 

 The Bordetellae are examples of pathogens which persist in mammals 

proving their successful strategies to overcome host defenses. Members of the 

Bordetella genus are small, gram-negative coccobacilli that colonize the 

respiratory tracts of their hosts, adhering to ciliated epithelia and spreading via 
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respiratory droplets.  Three species B. bronchiseptica, B. parapertussis and B. 

pertussis are very closely related, but have different host ranges and cause 

different diseases in their host. B. bronchiseptica infects wild and domesticated 

animals including leopards, koala bears, cows, sheep, dogs, cats, rabbits, rats and 

mice.  Symptoms of infection range from mild to severe, typified by atrophic 

rhinitis in pigs and kennel cough in dogs.  B. bronchiseptica infections can be 

persistent and last for the life of the animal. B. pertussis is highly infectious in 

humans and is endemic in much of the world.  The pertussis (whooping cough) 

disease is acute, with severe coughing illness that can progress to become 

spasmodic, and in some cases leads to death.  B. parapertussis also infects humans 

and causes a coughing illness nearly indistinguishable from that of B. pertussis 

except for the lack of lymphocytosis associated with pertussis toxin that is 

expressed only by the latter.  

It appears likely that B. pertussis and B. parapertussis independently 

adapted from B. bronchiseptica-like progenitors, perhaps present in domesticated 

animals, to become human pathogens (Preston et al., 2004). Although the human 

pathogens do not cause persistent infection, like B. bronchiseptica, the rapid 

spread of these organisms within relatively dense and mobile human 

populations is apparently sufficient to allow transient infections to circulate on 

an ongoing basis and to persist within a population.  Here we study differences 

in these highly similar species in order to better understand the immune 

responses of the host to these organisms with the following questions in mind: 

What are the regulatory hot spots, the most important virulence factors and 

immune mechanisms that determine the dynamical outcome of the Bordetella 

infection? What are the common elements and differences in strategies used by 

different Bordetellae?  

The genomes of B. pertussis and B. parapertussis  are substantially smaller 

than those of B. bronchiseptica, due in part to the loss of numerous sizable 

multigenic regions.  For example, B. pertussis has apparently lost a genomic 
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region of at least 22 Kb that is required for O-antigen assembly in both B. 

bronchiseptica and B. parapertussis. Interestingly, there appears to be a number of 

other genes that are present in all three but are expressed in only a subset of 

these species (see Table 10).  These include genes expressed by only B. 

bronchiseptica, such as those encoding the type III secretion system (TTSS) and 

flagella, and those expressed by only B. pertussis, including those encoding 

pertussis toxin and its accessory genes as well as a number of genes designated 

vrg (virulence repressed genes) .  The overwhelming majority of known 

virulence factors are similarly expressed by all of the bordetellae, including 

adhesins (filamentous hemagglutinin, pertactin and fimbria) or toxins (adenylate 

cyclase toxin, dermonecrotic toxin and tracheal cytotoxin).  

 
Table 10: Virulence factor of three closely related Bordetella species: 
 
 B. pertussis B. 

parapertussis 
B. 
bronchiseptica 

Adhesins P P P 
Filamentous hemagglutinin P P P 
Pertactin P P P 
Fimbriae P P P 
Tracheal colonization factor P A A 
Serum resistance protein (Brk) P ? ? 
    
Toxins    
Pertussis toxin P A A 
Adenylate cyclase toxin P P P 
Dermonecrotic toxin P P P 
Tracheal cytotoxin (only non 
protein) 

P P P 

LPS/ Endotoxin P P + O-Ag P + O-Ag 
    
Secretion system    
TTSS A ? P 
P: present A: absent 

 
Bordetellae are mostly classified as external pathogens but some times 

they have been observed live in macrophages. Infection by any of the three 
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species induces innate and adaptive responses including cellular and humoral 

immunity. M. musculus infection models have been established with the 

bordetellae and used extensively in the analysis of various parameters of 

infection, reproducing those of human disease in most regards.  Colonization is 

very efficient, and all three Bordetellae increase in numbers rapidly over the first 

few days postinoculation.  The inflammatory infiltrate, leukocytosis, gradual 

generation of antibody and T cell responses and delayed bacterial clearance all 

mimic aspects of human disease. Cytokines produced during the course of 

infection and their regulation by bacterial virulence factors play an essential role 

in shaping the immune response. Thus cytokines, antibodies, inflammatory 

responses are important in pathology (Mattoo et al., 2001). 

The immune responses to the pathogen include the sequence of processes 

that are activated directly by the sensing of bacteria or by a preceding signal. In 

the following study we started with the available data from the literature and 

experiments to construct a network model of these processes. The network is 

further developed by filling information by making educated guess in case of 

instances where the direct information is unavailable. The network then is used 

as a substrate for a discrete dynamic simulation. The results of the simulation are 

validated by comparison with experimental results and then used for 

predictions. As there is much less info on the infection time course in B. 

parapertussis we will focus on B. bronchiseptica and B. pertussis. 

 

9.2  Network model of immune responses to Bordetellae 

 
9.2.1 Comparison of immune responses to B. bronchiseptica and B. pertussis 

The chief mode of Bordetella transmission is by aerosols. After entry, 

bacteria undergo a phase change to activate the BvgA/S two component system 
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and a set of virulence genes, leading to the expression of adhesins and toxins 

(Table 10).  

The first immune mechanisms that respond to bacteria are Toll like 

receptor 4 (TLR4) mediated signaling and the alternative complement pathway. 

All three species express lipopolyssacharide (LPS) that is recognized by TLR4 

receptors on macrophages and dendritic cells. TLR4 receptor mediated signaling 

in response to pathogen-associated-molecular-patterns activates transcription 

factors to induce formation of cytokines in different cells. Some of these 

cytokines, for example IL-1, 6, TNF-α, β are pro-inflammatory and recruit 

polymorphonuclear leukocytes (PMNs) at the site of infection (Mann et al., 2004). 

PMNs activated by sensing of complement-coated bacteria initiate phagocytosis. 

PMNs also produce cytokines which in turn recruit more PMNs. Naïve dendritic 

cells (DCs) present at the site of infection are also activated in response to 

bacteria. 

DCs then present antigen to naïve T cells (these DCs are also called 

antigen presenting cells). APCs then produce set of cytokines which lead to 

differentiation of T0 cells into Th1 cells (for example IL12) or into Th2 cells (for 

example, IL 4, IL10). We will denote the cytokines inducing differentiation of T0 

cells to Th1 (Th2) cells and cytokines produced in turn by Th1 (Th2) cells as Th1 

(Th2) related cytokines. These cytokines are mutually inhibitory, i.e. Th1 (Th2) 

related cytokines inhibit the production and function of Th2 (Th1) related 

cytokines. Thus the balance between Th1 and Th2 related cytokines play an 

important role in the immune response.  

Th2 cells activate B cells, which produce antibodies against those antigens 

presented by APCs. Opsonization by complement fixing antibodies produced by 

antigen-stimulated B cells leads to the activation of the classical complement 

pathway. Activated PMNs express Fc receptors which recognize the Fc region of 

antibodies bound to antigens. Thus adaptive immunity enables new mechanisms 

of PMN activation and phagocytosis (Pishko et al., 2004).  
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Th1 cells produce a set of cytokines, IFN-γ, TNF-β, IL2 which activate 

resident macrophages to phagocytose bacteria. Pro-inflammatory cytokines and 

Th1 related cytokines also attract more macrophages by chemotaxis, which then 

phagocytose bacteria. Indeed, both in B. bronchiseptica and B. pertussis recovery 

from the infection is associated with the development of pathogen specific Th1 

cells (Mills et al., 1993; Ryan et al., 1997) and these cells play critical role in 

clearance of the bacteria (Mahon et al., 1997; Mills et al., 1993; Mills et al., 1998). 
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Figure 31: The consensus network of immunological steps and processes 
activated upon invasion by Bordetella species. In the network nodes denote 
immunological steps connected by edges. 

 
Not all interactions and processes shown in this consensus picture (Figure 

31) are active at the same time, thus we need to complete this static picture with 

information on the time course of the infection.  

The time course of immune responses can be divided into three stages: 

innate (B. bronchiseptica: 0 to 7 days, B. pertussis: 0 to 7 days), Th2 responses 

leading to the generation of antibodies (B. bronchiseptica: 7 to 28 days, B. pertussis: 

7 to 14 days) and Th1 responses leading to clearance (B. bronchiseptica : 28 – 70 

days, B. pertussis: 15 to 28 days) (Figure 32).  

 
 

  
 
 
Figure 32: Time course of the infection showing three phases in the course of 
infection of (A) B. bronchiseptica (B) B. pertussis(Byrne et al., 2004). phase I: 
Innate immune responses, phase II: Activation of Th2 related responses and 
inhibition of Th1 related responses and phase III: Commencement of Th1 
related responses and clearance. 
 

9.2.2 Specific virulence mechanisms of B. bronchiseptica and B. pertussis 

B. bronchiseptica and B. pertussis share high degree of genotypic and 

phenotypic relatedness which facilitates comparative studies of pathogenesis. In 

BALB/c mice unlike B. pertussis infections of humans, B. bronchiseptica typically 



                                          PartIII: Immune responses to Bordetellae species  

 132

persists in upper respiratory tracts of its hosts. B. bronchiseptica infections are 

often asymptomatic whereas B. pertussis causes acute disease. The comparative 

studies of two strains B. bronchiseptica  RB50 and B. pertussis  Tohoma I show that 

RB50 grows to higher numbers in the nasal cavity and persists there indefinitely. 

Tohama I, in contrast, grows to higher numbers in lungs but is cleared from all 

sites by day 50. Histological examination of respiratory tract tissue shows that 

RB50 induces considerably greater lung pathology than Tohama I, mostly due to 

infiltration of neutrophils. Vigorous antibody response to RB50 has been 

observed compared to Tohama I (Harvill et al., 1999). Thus these and many more 

differences can be attributed to following specific virulence mechanisms. 

During the early innate responses, LPS is recognized by host receptors. 

The structure of LPS is different in these species, containing a complex 

trissacharide in B. pertussis, a trissacharide plus an O-Ag in B. bronchiseptica and 

altered trissacharide plus O-Ag in B. parapertussis. O-Ag  of B. bronchiseptica 

causes the inhibition  (or significantly reduced activation) of alternate 

complement pathway (Burns et al., 2003). BrkA protein confers resistance to 

classical complement dependent killing in B. pertussis, however they are sensitive 

to alternative complement dependent killing (Harvill et al., 1999). Early 

recruitment of PMNs is inhibited in the presence of pertussis toxin and thus 

PMNs activation and antibody mediated phagocytosis is delayed.B. bronchiseptica 

has a type III secretion apparatus (TTSS). TTSS has also been observed to induce 

apoptosis in PMNs (Yuk et al., 2000), dead PMNs further produce more pro-

inflammatory cytokines giving positive feedback.  

Both pathogens have evolved a number of strategies to circumvent 

adaptive immune responses (Mills, 2001) leading to severe suppression of 

antigen specific Th1 responses during the acute phase of infection (McGuirk et 

al., 1998). 

TTSS inhibits NFkB, a transcription factor with essential role in cytokine 

production, affecting Th1 /Th2 ratio. TTSS specifically inhibits the generation of 
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IFN-g by splenocytes on day 7, thus inhibits the differentiation of naïve T cells 

into Th1 cells. IFN-g is shown to facilitate clearance unlike IL-10 which is 

necessary for activation of Th2 responses. TTSS leads to the shift in the balance 

towards Th2 cells as IL-10 producing splenocytes are generated before IFN-g 

producing splenocytes  

B. pertussis also has developed similar but more subtle mechanisms for the 

suppression of Th1 related responses. IL-10 is produced in early stages through 

TLR4 signalling giving peak at 24 hours (Higgins et al., 2003). Filamentous 

hemagglutinin  (FHA) (McGuirk et al., 2002) (figure 33) and Adenylate Cyclase 

toxin (Ross et al., 2004) in association with LPS stimulates IL-10 production by 

dendritic cells and macrophages and promotes development of Tr1 and Th2 cells. 

Thus earlier peak of IL-10 transiently inhibits IL-12 and Th1 responses and 

promotes development of Tr1 and Th2 cells (Higgins et al., 2003).  Tr1 cells have 

been shown to suppress B. pertussis specific Th1 responses in vitro and in vivo, 

thus Tr1 cells may represent invasion strategy by pathogen to subvert Th1 

responses. They might also play a role in limiting immunopathology in the lungs 

(McGuirk et al., 2002).  Later increased recruitment of Natural killer (NK) is 

observed which might be because of presence of persistent pathogen. NK cells 

stimulate IFN-g secretion by activating IL-12 and IL-23 production by dendritic 

cells, this shifts the balance from Th2 responses to Th1 responses(Byrne et al., 

2004). 

 

9.2.3 Specific time course of the infection and immune responses in B. 

bronchiseptica and B. pertussis 

The network consists of nodes and two types of directed edges. Nodes 

represent immunologically significant steps in the cascade and the edges 

describe the relation between nodes.  Incoming arrows describe the activation 

( ) / inhibition (         ) of the node. In some cases the relation described by the 

arrows/edges are the immunological processes activating the next step for 
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example the incoming edge to the node TH2 cells from T0 cells describes the 

process of differentiation from T0 cells to Th2 cells. The arrow anchoring the 

edge describes that such process is induced by the node from which this arrow 

leaves. 

 After the bacterial invasion due to recognition of the virulence factors 

innate immune responses are activated in first 7 days. On 7th day the bacterial 

number reach the peak in both species, followed by the decline. Epithelial cells 

lining the lungs are the first cells to sense pathogens leading to TLR4 signaling 

inducing pro-inflammatory cytokines this takes place in first 24 hours. 

Neutrophil infiltration then reaches its peak between 10 to 14 days in B. pertussis 

whereas in B. bronchiseptic, earlier recruitment is observed during first 7 days 

starting at 12 hours. As mentioned previously TTSS induces apoptosis of PMNs 

inducing higher amounts of PICs and in turn increase PMNs recruitment till 3rd 

day (Figure 33A,B). Two times DC infiltration is observed in B. pertussis during 4 

to 7 days and 15 to 21 days. TH2 cells are observed in B. bronchiseptica between 7 

to 28 days (Figure 34A), because of the inhibition of Th1RC production by TTSS. 

As Th1RCs are also inhibited till 14 days by FHA/ACT (Figure 34B), first DC 

infiltrate leads to differentiation to TH2 cells during 7 to 14 days. TH2RC inhibits 

the recruitment of PMNs in B. bronchiseptica resulting in delayed phagocytosis. 

TH2 cells activated B cells followed by antigen specific antibody production. 

These responses lead to the decrease in the bacterial number thus the 

concentrations of virulence factors is decreased. We also assumed that the 

virulence factors undergo chemical decay. This leads to the shift in balance from 

TH2 cells to Th1 cells during 15 to 35 days in 28 to 70 (Figure 37A) and B. 

pertussis (Figure 37B) days in B. bronchiseptica . NK cells are known to reach a 

peak on 15th day in B. pertussis , which produce large amount of IFNg assisting 

the shift in T cell subtypes. Th1RC signaling further recruits more macrophages 

and PMNs leading to Ab/ complement mediated phagocytosis and clearance. 
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 B. bronchiseptica  usually grows to higher numbers in nasal cavity and 

lungs (Harvill et al., 1999). TLR4 signalling is necessary to limit growth of B. 

bronchiseptica  but not of B. pertussis . LPS of B. bronchiseptica  is more stimulatory 

than B. pertussis  LPS, resulting in higher cytokines and greater pathology due to 

large number of neutrophil recruitment in case of B. bronchiseptica  (Harvill et al., 

2000).  Thus in phase I of B. bronchiseptica  greater pathology and higher 

concentration of bacteria is observed whereas in phase II the PMNs recruitment 

is inhibited by Th2RC which will result in maintaining the higher number of 

bacteria, this can be the reason for extended phase II and phase III in B. 

bronchiseptica . 

 

 
(A) 
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(B) 
Figure 35: Innate immune responses leading to activation of dendritic cells, 
phagocytic cells and pro-inflammatory cytokines. (0 to 7 days in B. 
bronchiseptica and B. pertussis) A) Phase I of B. bronchiseptica B) Phase I of B. 
pertussis depicting innate immune responses to the bacterial invasion. 
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(A) 
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(B) 
Figure 36: A) Phase II of B. bronchiseptica B) Phase II of B. pertussis depicting 
Th2 related responses. 
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(A) 
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(B) 
Figure 37: A) Phase III of B. bronchiseptica B) Phase III of B. pertussis 
depicting Th1 related responses. 

 

9.3 Dynamic model 

Each node has two states 1 and 0. The states of the node can change in 

time according to the Boolean function that describes the node. The Boolean 

function of the node is written as a statement with logical operators 

“AND”,”OR”,”NOT” which describe the inputs to the node. 

 There are total 18 nodes common in B. bronchiseptica and B. pertussis; 2 

species specific nodes in B. bronchiseptica (O Ag and TTSS) and 1 (Pertussis Toxin 

(PTX) and filamentous hemagluttinin, Adenylate cyclase toxin (FHA/ACT)) in B. 
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pertussis. The Boolean interaction functions are constructed from interactions in 

nodes described in the network (Figure 35, 36 and 37).  The main network (Figure 

31) was divided into figure 35, 36 and 37 according to time course described in 

section 9.2.2. 

All processes are described here by a step function so that each node has a 

specific activator and inhibitor. One node can activate or inhibit another node 

only if they are connected by an edge and have value 1 or 0 respectively. The 

inhibitors are assumed to be dominant over the activators. 

The states of the nodes evolve in discrete time steps. The state of next time step of 

a node is decided by the Boolean function F of the nodes that are connected by 

edges to the node under examination. If X and X1 are connected by an edge and 

X1[t-1] is the state of the node X1 at time t-1, then the state of X at time t in most 

of the cases  is written as X[t]=F(X[t-1]). In remaining cases this time delay was 

removed to mimic the results from literature, such possibilities are described in 

detail later. This defines a discrete dynamical system whose iteration determines 

the evolution of the state of nodes. For example, antigen-antibody complexes are 

formed by antibodies (either complement-fixing or complement-independent) 

bind to the surface of bacteria, thus 

 
Ag-Ab complex[t] =Bacteria[t-1] AND (Other Ab[t-1] OR Complement fixing Ab[t-1]) 
 

Similarly relation between all nodes is written using Boolean function (Table 11). 

 

Table 11: Boolean functions used in the model 

Node  Boolean Function 
  
(Common in  
B. 
bronchiseptica 
and B. 
pertussis) 
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Bacteria                                 4 
Bacteria [t]=NOT ∑  AND Phagocytosis[t-i] AND Bacteria[t-1] 
                               i=0 

Epithelial cells Epithelial cells[t] =bacteria[t-1] 
Complement Complement[t] =Bacteria[t-1] OR (Ag-Ab complex[t-1] AND 

Complement  fixing Ab[t-1]) 
Ag-Ab complex Ag-Ab complex[t] =Bacteria[t-1] AND (Other Ab[t-1] OR 

Complement fixing Ab[t-1]) 
Complement 
fixing Ab 

Complement fixing Ab[t] = B cells[t-1] OR  Complement fixing 
Ab[t-1] 

Other Ab Other Ab[t] =B cells[t-1] or Other Ab[t-1] 
B cells 
(Antibody 
producing) 

B cells[t] =TH2 Cells[t-1] 

Pro-
inflamatory 
cytokines (PIC) 

PIC[t] =Bacteria[t-1] OR  ActPhagCells [t-1]  AND NOT    
Th2RC [t-1] AND NOT PIC[t-decayt] 

Th1 related 
cytokines 
(Th1RC) 

Th1RC[t] =(TH1 cells[t-1] OR (DC[t-1] AND T0cells[t-1]))  
AND NOT Th2RC [t-1]  AND NOT  Th1RC[t-decayt] 

Th2 related 
cytokines 
(Th2RC) 

Th2RC [t]=(TH2 cells[t-1] OR (DC[t-1] AND T0cells[t-1])) AND   
NOT Th1RC [t-1]  AND NOT Th2RC [t-decayt] 

Recruited 
PMNs 

Recruited PMNs[t] = PIC [t-1]  

Activated 
phagocytic cells 
(ActPhagCells) 

ActPhagCells[t] = (Recruited PMNs[t] AND (Complement[t-1] 
OR Ag-Ab complex[t-1])) OR macrophages[t-1] 

Macrophages Macrophages[t] =PIC [t-1] OR Th1RC[t-1] 
T0 cells T0 cells[t] =DC[t-1] 
TH1 cells TH1 cells[t] =DC[t-1] AND T0cells[t-1] AND  Th1RC [t-1]  
TH2 cells TH2 cells[t] =DC[t-1] AND T0cells[t-1] AND  Th2RC [t-1]  
Dentritic cells 
(DC) 

DC [t]= Th1RC[t-1] OR Th2RC[t-1] OR PIC[t-1] OR bacteria[t-1] 

Phgocytosis Phgocytosis[t] = (ActPhagCells [t] OR  Macrophages[t-1]  ) and 
Bacteria[t-1] 

  
(B. 
bronchiseptica  
specific 
description) 

 

  
TTSS TTSS[t]=Bacteria[t] AND NOT  TTSS[t-decayt] 



                                          PartIII: Immune responses to Bordetellae species  

 143

OAg OAg[t]= Bacteria[t] AND NOT OAg[t-decayt] 
Dead PMNs Dead PMNs[t]= Recruited PMNs[t-1] AND TTSS[t-1] 
TH1 cells TH1 cells[t-1]= DC[t-1] AND (T0cells[t-1] AND Th1RC[t-1]) 

AND NOT TTSS[t-1]  
Th1 related 
cytokines 
(Th1RC) 

Th1RC[t] =(TH1 cells[t-1] OR (DC[t-1] AND T0cells[t-1]))  
AND NOT  Th2RC [t-1] AND NOT  TTSS[t-1] AND NOT 
Th1RC[t-decayt] 

Th2 related 
cytokines 
(Th2RC) 

Th2RC [t]=(TH2 cells[t-1] OR (DC[t-1] AND T0cells[t-1]) OR  
TTSS[t-1]) AND NOT  Th1RC [t-1]  AND NOT Th2RC[t-
decayt] 

Complement Complement[t-1] =Bacteria[t-1] OR (Ag-Ab complex[t-1] AND 
Complement  fixing Ab[t-1]) AND NOT  OAg[t-1] 

  
(B. pertussis 
specific 
description) 

 

  
Pertussis toxin 
(PTX) 

PTX[t]= Bacteria[t]  AND NOT  PTX[t-decayt] 

 FHA/ACT FHA/ACT[t]= Bacteria[t]  AND NOT  FHA/ACT[t-decayt] 
Recruited 
PMNs 

Recruited PMNs[t] = PIC [t-1] AND NOT PTX[t-1] 

TH1 cells TH1 cells[t-1]= DC[t-1] AND (T0cells[t-1] AND Th1RC[t-1]) 
AND NOT FHA/ACT[t-1]  

Th1 related 
cytokines 
(Th1RC) 

Th1RC[t] =(TH1 cells[t-1] OR (DC[t-1] AND T0cells[t-1]))  
AND NOT  Th2RC [t-1] AND NOT   FHA/ACT [t-1]  AND 
NOT Th1RC[t-decayt] 

Th2 related 
cytokines 
(Th2RC) 

Th2RC [t]=(TH2 cells[t-1] OR (DC[t-1] AND T0cells[t-1]) OR   
FHA/ACT [t-1]) AND NOT  Th1RC [t-1]  AND NOT Th2RC[t-
decayt] 

 

In B. bronchiseptica and in B. pertussis, based on the experimental results we 

included two more conditions that control the states of cytokines and toxins: As 

cytokines and toxins are not everlasting components we included decay of these 

components. Cytokines node in the model is divided in to Th1 related cytokines 

(Th1RC), Th2 related cytokines (Th2RC) and Pro-inflammatory cytokines (PIC). 

Anti-inflammatory cytokines is the subset of Th2 related cytokines. Considering 

the time scale for which cytokines are detectable during the infection PIC decay 
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rate (decayt=3 time steps) is greater than Th1 and Th2 related cytokines. In other 

words PIC will be removed (degraded) if it is present for 3 continuous time steps 

and its reappearance will depend on the next activation signal. Dynamic 

simulation of this system guided us to another condition: Th1RC decay rate 

(decayt=7 time steps) should be greater than Th2RC (decayt=12 time steps) 

resulting in the tight association between clearance of bacteria and activation of 

antigen specific Th1 responses as observed during the course of infection. Thus 

the resulting conditions are, 

 
PIC[t] =Bacteria[t-1] OR  ActPhagCells [t-1]  AND NOT  Th2RC [t-1] AND NOT  

PIC[t-decayt]                 
 

Th1RC[t] =(TH1 cells[t-1] OR (DC[t-1] AND T0cells[t-1])) AND NOT Th2RC [t-1]  
        AND NOT  Th1RC[t-decayt] 
 

Th2RC [t]=(TH2 cells[t-1] OR (DC[t-1] AND T0cells[t-1])) AND  NOT Th1RC [t-1]   
        AND NOT Th2RC [t-decayt] 

 
Similarly antigens ‘O Ag’ (decayt = 3 time steps), ‘TTSS’ (decayt = 12 time 

steps), ‘PTX’ (decayt = 3 time steps) and ‘FHA/ACT’ (decayt = 12 time steps) also 

decay after continuous presence of antigen for specified number of time steps. 

These time intervals were decided according to the known role of antigens from 

literature in the particular phase and the time interval of the phase in the 

simulation. We will correlate the time intervals to the days of infection by 

analyzing the time required for the each immunological process.Thus the 

resulting conditions are, 

 

OAg[t]= Bacteria[t] AND NOT OAg[t-decayt] 
TTSS[t]=Bacteria[t] AND NOT  TTSS[t-decayt] 
PTX[t]= Bacteria[t]  AND NOT  PTX[t-decayt] 
FHA/ACT[t]= Bacteria[t]  AND NOT  FHA/ACT[t-decayt] 
 
As phagocytosis in the first phase (during innate immunity) is not 

sufficient for the clearance of bacteria (that is why adaptive immunity is 
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activated and clearance of Bordetellae needs three phases) we modified the 

condition so that the phagocytosis is effective in clearing only when it takes place 

continuously for five time steps.  Thus the resulting condition is, 

       4 

The ∑ depicts that the present (i=0) as well as past four (i>0) states of  

      i=0 

phagocytosis decides the present state (presence (1) or absence (0)) of Bacteria at 

time t.       

     

      In the presence of antibodies and/ or complement recruited PMNs are 

activated instantaneously which then phygocytose the bacteria. Thus there is no 

time delay between recruitment of PMNs, its activation and phagocytosis by 

PMNs (table 11). 

 

9.4 Systemic effects of deletions  

The initial states of all nodes are 0, except the state of node “Bacteria”. 

 

Wild type 

The resulting model succeeded in reproducing a time course similar to 

that is observed (see section 9.2.2 and figure 32) during the infection in the 

dynamic simulation, 

• Innate immune responses leading to activation of dendritic cells, 

phagocytic cells and pro-inflammatory cytokines. (two time steps) 

• Activation of antigen specific Th2 responses and inhibition Th1 

responses. (12 time steps) 

                                   4 
Bacteria [t]= (NOT ∑  AND Phagocytosis[t-i] )AND Bacteria[t-1] 
          i=0 
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• Activation of antigen specific Th1 responses leading to recovery of 

the infection and clearance of bacteria. (9 time steps in B. pertussis 

and 11 time steps in B. bronchiseptica ) 

When bacteria are present pro-inflammatory cytokines are produced and 

alternative complementary pathway is activated in B. pertussis. O antigen of B. 

bronchiseptica inhibits alternative complementary pathway. Pertussis toxin 

inhibits recruitment of PMNs in response to PIC. At third time step Th2 related 

cytokines are produced, TTSS in B. bronchiseptica and FHA/ACT in B. pertussis 

inhibits Th1 related cytokines. Thus presence of Th2RC activates differentiation 

of naïve T cells to Th2 cells which in turn activate antibody production by B cells. 

At time step 10 in B. pertussis and 12 in B. bronchiseptica Th1RC is produced 

leading to activation of macrophages, released inhibition of PIC leading to 

clearance of bacteria at time step 24 and 23 respectively (Figure 38A(I) ,B(I)). We 

have to note that the time scale of the dynamic model does not correspond to the 

one in experimentations. Specific processes will need different duration in 

different hosts. Comparison with the experimentally observed time course 

(Figure 32) also shows that observed quantitative differences can not be 

reproduced in present qualitative model. 

For the evaluation of the model we deleted some components and 

analyzed the outcome. Comparison of these deletions with experimentally 

studied mutants (references are given at respective places) proved the reliability 

of the model regarding its topology.  

 

9.4.1 Systemic effects of deletions and comparison with experimental 

observations 
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(A)                 (B) 
Figure  38: Comparison of patterns of key nodes in (A) B. bronchiseptica and 
(B) B. pertussis in following cases i) Wild type ii) O Ag deletion / pertussis 
toxin deletion iii) TTSS deletion / FHA/ACT deletion iv) B cell deletion v) 
naïve T cell deletion vi) treatment with antibodies prior to infection. 
 
 Effect of individual components was tested by deletion of the component 

in the simulation. We compared the following responses, 

1. The Time step at which bacteria were cleared which can be correlated to 

the number of days infection persists in the host. 
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2. Length and the shape of the plateau of recruited PMNs as sign of lethality 

or virulence of the infection. 

3. Complement activation 

 

Deletion of virulence factor O antigen:  

 The membrane distal repeated carbohydrate structure of LPS is O-Ag. The 

genes of wbm locus are required for the assembly of O-Ag in B. bronchiseptica. B. 

pertussis  lacks these genes and thus a number of characteristics associated with 

O-Ag in other organisms. The O antigen mutant (∆wbm) in B. bronchiseptica is 

sensitive to complement mediated killing. The mutant has shown no defect in 

colonization of trachea and lung. It is interesting that ∆wbm mutation does not 

cause significant change in the course of infection in B. bronchiseptica  and B. 

pertussis  naturally lacks this gene(Burns et al., 2003). Deletion of O Ag in our 

dynamic simulation (Figure 38A(II)) shows alternative complement pathway 

activation. It also otherwise has no effect on course of infection in B. 

bronchiseptica. The bacteria are cleared at 23rd time step similar to the wild type 

infection. Although O-Ag is likely to be most prevalent antigenic structure on the 

bacterial surface, it does not affect generation of anti- B. bronchiseptica antibodies 

since wild type and ∆wbm mutant strains of B. bronchiseptica  induced similar 

antibody titers. Thus observed normal course of infection in case of mutant can 

be justified. 

 

Deletion of pertussis toxin (PTX): 

 Pertussis toxin plays its role in phase I, it inhibits neutrophil recruitment 

by modulating cytokine production by epithelial cells and macrophages or 

directly interfering with receptor signaling. This inhibition can be the reason for 

delayed response to antibodies observed in B. pertussis , by a mechanism that 

involves neutrophils and Fc receptors, suggesting that neutrophils phagocytose 

antibody opsonized bacteria via Fc receptors. PTX deletion (Figure 38B(II)) does 
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not lead to the earlier clearance (clearance 24th time step) in our simulation. 

PMNs are recruited earlier and there are more peaks of recruited PMNs. The 

plateau of peak of recruited PMNs is larger in the absence of PTX, thus the 

infection pathology is severe. This can be an evolutionary strategy to reduce host 

defense allowing the pathogen to persist. The data also proves (unpublished data 

from Eric Harvill’ group in Pennsylvania state university USA) that higher 

proportion of recruited PMNs are observed in lungs in case of B. pertussis ∆ptx 

mutants.  

 

Deletion of virulence factors TTSS and FHA/ACT: 

TTSS in B. bronchiseptica and FHA/ACT in B. pertussis inhibit production 

of Th1RC; switching the balance between Th1 and Th2 cells leading to 

differentiation of naïve T cells to Th2 cells. This ability of FHA(McGuirk et al., 

2002) and ACT(Ross et al., 2004) can be attributed to their ability of binding to 

CD11b/CD18 expressed on DCs. LPS of B. pertussis  is also shown to enhance this 

function of ACT(Ross et al., 2004). TTSS is absent in B. pertussis , whereas in B. 

bronchiseptica TTSS mediates cytotoxicity, disrupts cell signaling and is required 

for persistence in the trachea. TTSS inhibits IFN-g shifting the balance between T 

cell subtypes and is also responsible for decreased antibody mediated clearance 

in B. bronchiseptica . Th2 cells though activate clonal expansion of B cells both 

processes are not sufficient for the clearance. Deletion of TTSS (Figure 38A(III)) 

leads to the clearance of bacteria at 7th time step and FHA/ACT (Figure 38B(III)) 

leads to the clearance of bacteria at 13th time step. Deletion of TTSS leads to 

earlier activation of phase III components followed by increased activated 

phagocytic cells and macrophages. In case of B. pertussis delayed clearance is due 

to inhibited recruitment of PMNs by PTX. Thus earlier production of Th1RC has 

less effect in B. pertussis due to presence of PTX.  

 

Deletion of Bcells: 
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B cells deletion that leads to absence of antibody production does not lead 

to difference in the clearance timescales in B. bronchiseptica (Figure 38A(IV)) and 

B. pertussis (Figure 38B(IV)). Experimentally it has been shown that in B cell 

deficient MuMT mice that are defective in B cells shows persistent presence of 

bacteria in nasal cavity, trachea and lungs(Kirimanjeswara et al., 2003). In case of 

B. pertussis, though the bacterial number decrease, no clearance is 

observed(Kirimanjeswara et al., 2003). Closer look to these results and course of 

infection proves that antibodies are important for the decrease in bacterial 

number around day 7. As this discrete model can not take in to account this 

relative decrease we failed to show the effect of B cell deletion in the model. 

These results also proves that a decrease in the bacterial number at the same time 

results in a decrease in the concentration of bacterial virulence factors at day 7 is 

essential step in the bacterial clearance. Thus the assumption that the 

concentration of bacterial virulence factors decreases is supported. 

 

Absence of adaptive immunity: 

Deletion of naïve T cells (Figure 38A(V), B(V)) in the model leads to the 

absence of Th1 and Th2 cells. This leads to persistent bacterial number. 

Experiments with SCID and Rag-/- mice indicated that adaptive immunity is 

required to clear both organisms from the lower respiratory tract(Harvill et al., 

1999). Though there are no T and B cells, the immune system remains active. 

Complement is activated in B. pertussis constitutively, but it is intermittently 

active (with period of 6) in B. bronchiseptics due to inhibition by O antigen. PIC, 

recruited PMNs, activated phagocytic cells and macrophages are produced with 

period 6. DCs are constitutively present. Phagocytosis also takes place with 

period of 6. Thus though innate immunity components are responsive to the 

presence of bacteria at all time steps, they are not sufficient for the bacterial 

clearance. 
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Treatment with antibodies prior to infection: 

Antibody treatment prior to infection can be a profilaxis, hence we studied 

its effect. When the initial value of the node ‘antibodies’ was 1 and ‘bacteria’ 

node was turned ON at t equal to 3 bacteria were cleared on 8th time step in case 

of B. bronchiseptica. But similar study in B. pertussis leads to no early clearance. In 

experimental study, adoptive transfer of serum antibodies has shown to clear  B. 

bronchiseptica (Figure 38A(VI)) but not B. pertussis ((Figure 38B(VI))) 

(Kirimanjeswara et al., 2003). The earlier treatment with antibodies results in 

opsonization of bacteria as soon as they invade the host. This will lead to 

increased phagocytosis of antibody opsonized bacteria through Fc receptors in B. 

bronchiseptica . PTX in B. pertussis inhibits the recruitment of PMNS, thus though 

Ag-Ab complexes are present they can not be phagocytosed due to absence of 

activated phagocytic cells. 

 

9.4.2 Miscellaneous systemic effects of deletions 

Epithelial cells are necessary for production of PIC in phase I. Deletion of 

epithelial cells delays PIC production till phase III where Th1RC signaling 

recruits PMNs and macrophages. The bacteria are sensed by DCs which activates 

adaptive immunity. The deletion of epithelial cells leads to one step delay in 

clearance of B. bronchiseptica , but B. pertussis  are cleared at 24th time step as in 

wild type. It has been shown that initial epithelial TLR4 signaling is essential in 

limiting the growth of B. bronchiseptica but not of B. pertussis. Recruitment of 

PMNs is inhibited by PTX in B. pertussis  but epithelial TLR4 signaling and 

resulting higher amounts f cytokines is necessary for recruitment of PMNs in B. 

bronchiseptica .  

Deletion of other components delineated individual components that are 

an essential for the clearance and other components that assist in the clearance. 

Macrophages are essential in clearance of B. bronchiseptica and B. pertussis , as 

there is no clearance in the the absence of macrophages.The plateau of the peak 
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of activated phagocytic cells is not sufficient to keep phagocytosis active for 

essential number of time steps. Absence of PMNs or PIC lead to one step later 

clearance in B. bronchiseptica, as described in section 2 PMNs plays less role in B. 

pertussis clearance in concurrence there is no early clearance in B. pertussis. Single 

deletion of complement and antibodies does not lead early clearance, as they 

may assist in decrease in the bacterial number in transition from phase I to phase 

II and this effect can not be shown in this qualitative model. B. bronchiseptica 

actually inhibits complement in phase I so it may not be very essential in the 

clearance. Double removal of complement and antibodies delays the B. 

bronchiseptica clearance by one time step, thus as mentioned in section 2 limiting 

B. bronchiseptica numbers in phase I is essential step towards clearance. Deletion 

of PMNs, antibodies and complement decreases the plateau of activated 

phagocytic cells in phase I and III in B. bronchiseptica compared to wild type. 

Deletion of DCs gives similar results as the deletion of adaptive immunity 

as they are essential for maturation and differentiation of naive T cells. The node 

Th1RC is essential for the clearance of B. pertussis whereas deletion of nodes TH1 

cells and Th1RC extends phase II in B. bronchiseptica resulting in the clearance on 

23rd time step. In case of B. pertussis sufficient activated phagocytic cells can not 

be formed in the absence of Th1RC. Absence of TH1 cells and TH2 cells though 

lead to clearance at time step similar to wild type the plateaus of Th1RC and 

Th2RC are reduced respective cases. Thus though it does not affect clearance in 

case of single invasion, under multiple invasions of pathogen TH1 cells will be 

essential to enhance the production of Th1RC , in turn to increase the plateau of 

recruited PMNs and macrophages in phase III.  In the absence of Th2RC species 

are cleared on 21st time step as phase III is activated earlier. In the double 

deletion of PIC and Th1RC both species can not be cleared suggesting the 

importance of these cytokines in the bacterial clearance. 
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9.5 Conclusion 

The recent Bordetella genome project shows that B. bronchiseptica  has 

larger gene repertoire, and probably colonizes more habitats than the other two 

species (Preston et al., 2004).  Scrutinizing the question why B. bronchiseptica 

rarely found associated with humans raises the possibility of B. pertussis having 

essential genes and/or mechanisms for infecting humans. The genome project 

identified 23 genes that are present in B. pertussis but are absent in B. 

bronchiseptica. However preliminary analysis of microarray mediated genotyping 

data (Cummings et al., 2004) indicates that all of these genes might be present in 

other strains of B. bronchiseptica . Apart from the genetic regulation that will affect 

the expression the data strengthens the possibility of differences at the level of 

immunological regulation.  

In the present heuristic study we have modeled the differences in the host 

immunological regulation and virulence mechanisms of B. bronchiseptica and B. 

pertussis. In the simulation we could reproduce basic time course of the infection 

including activation of components in specific phases of the infection. Further it 

is easily possible to delete certain components and observe the effect of deletion 

on the bacterial clearance and/or activation or inhibition of immunological 

components. The results were counterchecked by experiments stongly support 

the success of the simulation. The simulation uses logical operators to describe 

the interactions between immunological components and bacterial virulence 

factors.  

The exact time scale of processes in the dynamic model does not 

correspond to the one in experimentations. Phase II and III are approximately of 

same time scale in dynamic model where as of larger duration in B. bronchiseptica 

experiments. Specific processes need different duration in different hosts. Further 

experiments are performed usually on mice; mice are the natural hosts of B. 

bronchiseptica but not of B. pertussis. It is hence essential to identify these 

differences from the inherent differences in the pathogenic strategies of these 
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species. Comparison with the experimentally observed time course (sections 2.2 

and 2.3) also shows bacterial numbers are usually higher in B. bronchiseptica, the 

pathological effects observed are also greater as compared to B. pertussis. Further 

LPS of B. bronchiseptica induce higher cytokines production than B. pertussis. 

These species specific quantitative differences can not be reproduced in the 

present time step model.  

Virulence factors change the course of innate and adaptive immune 

responses. O-Ag and PTX inhibits early immune responses allowing the bacterial 

multiplication and survival. The shift from Bvg- to Bvg+ phase results in either a 

decrease in O-Ag substitution or a decrease in O-Ag chain length (van den 

Akker, 1998). It has been speculated(Burns et al., 2003) that decreasing the 

proportion of LPS molecules containing long O-Ag repeats increases the 

accessibility to host tissues of other Bvg+ phase factors, such as adhesions, or 

facilitates secretion oth toxins or immunomodulatory proteins while allowing 

bacteria to express a basal level of O-Ag for the protection against host defenses 

such as complement mediated killing. B. pertussis whereas naturally lacks the O-

Ag which then can increase the accessibility to host tissues. On the other hand 

inhibitory effect of PTX on neutrophil recruitment is two fold; it allows B. 

pertussis to evade innate immunity early in colonization and also provides a 

means to resist the effect of serum antibodies in the lungs.  

Filamentous hemaglutinin (FHA) and adenylate cyclase toxin (ACT) is 

present in both species(Preston et al., 2004). There are some differences in the 

length of proteins and number of repeats in FHA and ACT. The antibodies 

against ACT and the treatment with purified ACT in B. bronchiseptica  and B. 

pertussis  shows differences in the course of infection (Novotny et al., 1985). With 

this little knowledge about these two virulence factors it is not known how these 

both factors are responsible for the differences observed. Though B. pertussis does 

not secrete TTSS as B. bronchiseptica, B. pertussis has evolved with mechanisms to 
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modulate adaptive immunity possibly with lesser activation of immune 

components (see section 9.2).  

It is apparent that adaptive immunity is essential for bacterial clearance. 

Though antibody production is not sufficient for clearance it is necessary to 

reduce the number. Deletion of adaptive immunity can not clear bacteria and all 

other components of the immune system remains active in the simulation. Prior 

treatment with antibodies in the simulation and the adoptive transfer of 

covalescent-phase serum is sufficient to rapidly clear B. bronchiseptica but not 

human pathogen B. pertussis. These results are compatible with human clinical 

trials, in which serum antibody titers could not be correlated with against B. 

pertussis (Giuliano et al., 1998; Morris and McDonald, 1957). It is also well 

established that B. bronchiseptica  induces higher serum antibody titers than B. 

pertussis  in the M. musculus model (Harvill et al., 1999).  

The model is mainly developed by using the logical description of the 

system (Table 10) and does not use many parameters thus it is highly robust. We 

define only qualitative relations for the decay of toxins ans cytokins (see section 

9.3). Further non-trvivial deletions did not give early clearance, for example 

deletion of Th1 cells but not Th2 cells in the model lead to early clearance of the 

pathogen. 

Some of the observations lead to early clearance of human pathogen B. 

pertussis in the simulation. When PIC was ON at t=0 leads to earlier clearance 

(22nd time step) in ∆PTX. The inhibition of Th2RC and deletion of FHA/ACT 

lead to early clearance, thus these observations can help in directing the study of 

drugs against the disease and identify important parts of the network studied. 
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10. General Discussion 

 

10.1. Exploring network data and creating network models 

The first part of this general discussion explores the implications of 

pathway analysis and its use in drug discovery, followed by a more specific 

discussion on the different modeling strategies used in the thesis in the second 

part. 

 

10.1.1 Biological implications of analyzing pathways 

A wide range of modeling techniques have been developed that use 

pathway data of varying detail to answer specific biological questions. 

Qualitative and quantitative modeling of biological systems facilitates addressing 

questions outside of the direct capacity of the human brain, using software on 

powerful computers as exemplified in this thesis.  

Questions such as ’What are the fundamental design patterns in the 

system?’, ‘What are the key relationships between system components?’ and 

‘What are the physiological effects of system perturbation?’ can be answered 

using quantitative and qualitative modeling. Quantitative modeling, such as 

representing a dynamic chemical process using a system of differential rate 

equations, requires highly detailed pathway information, such as kinetic 

constants, initial concentrations and clear connectivity of reactions (Bhalla et al., 

2002). 

Qualitative models (Li et al., 2004) can discover system properties not 

apparent in static pathway data as exemplified by the simulation of phagosome 

and lyosome. The effect of many different parameters could be analysed in such 

a simulation.  

Evolution-focused questions, such as ‘Which biological processes are 

homologous?’ can be answered using techniques that identify common 
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functional motifs and design principles, for example, through species 

comparison performed in the study of apoptosis cascade.  

Basic questions, such as ‘What are the functions of some genes?’ are still 

vitally important, since the majority of genes in most genomes have no known 

function. Examining genes in the network context can help answer this question. 

For example, a protein of unknown function connected to a set of proteins 

involved in the same biological process is likely to function in that process as 

well (Lee et al., 2004; Schwikowski et al., 2000). Less-detailed pathway data, such 

as proteomics-based protein– protein interactions, can be used to answer 

questions like ‘What network patterns allow prediction of new interactions?’ For 

example, structural and sequence analysis of DDs have been used to hypothesize 

that certain DD containing proteins mediate proliferative signals and to predict 

new interactions (Thakar et al., 2005).  

Finally, questions such as, ”what biologically relevant patterns are found 

in normal and disease state?” The patterns of immunological responses similar to 

figure 38 in response to normal and disease state can be formed. They will be 

vitally important for clinical health research. Similarly transcriptionally active 

regions in an integrated pathway network that correlate with disease state have 

been used to predict active pathway components that play a role in disease 

progression (Ideker et al., 2002; Pradines et al., 2004). 
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10.1.2. Systems modeling applied to drug discovery 

 

 
Figure 40: Computational methods in Therapeutics. A listing of in silico methods 
used to complement and advance conventional drug discovery. Further details can be 
in references mentioned in the figure (Rajasethupathy et al., 2005). 
  

There are some noteworthy challenges facing the pharmaceutical industry 

today where modeling might play a key role. Firstly, modeling enables 

systematic integration of the overwhelming amount of relevant information that 

has accumulated from high throughput screening methods. Further, models help 

in establishing a mechanistic understanding of the disease and of drug action, 

which is a marked shift from traditional ‘black-box’ approach to drug discovery. 

Finally systems modeling help in predicting probable side effects, and finding 

optimal dosages and treatment schedules.  

 Three levels of cellular responses can serve as possible nodes for drug 

targeting: signal reception, intracellular responses, and intercellular 

communication. 
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Signal reception: Cells receive inputs from different signaling molecules, 

which are often recognized by receptor proteins. At least 70% of drugs in 

development today target such receptors(Lundstrom, 2005). Cell-signal modeling 

can help elucidate the mechanisms of receptor responses to pharmacological 

interventions. Signaling models such as apoptosis activation through various 

receptors are being used to understand the mechanism of many other receptor–

ligand interactions with therapeutic importance. For instance, exploring different 

possibilities of signal processing followed by p55TNFRI receptor can be useful in 

cancer therapy to explore the ways to induce apoptosis in malignant cells 

(Thakar et al., 2005). Preliminary success of apoptosis cascade modeling also 

opens new doors to study the side effects of different drugs (Thakar et al.). 

Similar modeling techniques have been used to explore how dimerization of G-

protein-coupled receptors affects receptor localization, signaling and 

internalization in diseased states (Woolf and Linderman, 2004). 

Intracellular responses: Once an external stimulus has been 

communicated to the cell interior, it is amplified and diversified through the 

activation of various signaling and metabolic pathways. Here, we see the 

beginnings of signaling complexity and the need to have a systems-level 

understanding of information processing and convergence. Cross-talk amongst 

the various pathways may yield switching, oscillations and other emergent 

properties that are not characteristic of the individual pathways themselves 

(Bhalla and Iyengar, 1999; Kitano, 2002). In the phospholipids network studied 

here a cross-talk between sphingosine and DAG activated PA show activating or 

inhibitory effect on actin polymerization depending weather sphingosine is 

phosphorylated or not (Figure 21) (Kühnel et al.). In a therapeutic context, 

modeling this cross-talk can reveal non-intuitive drug targets and show possible 

side effects. Haugh et al. (Haugh et al., 2000) have developed a model of the 

phospholipase C (PLC) pathway, a key signaling pathway shown to be essential 
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for cell motility and directionality (Wells, 2000). It has been implicated in cancer 

growth and metastasis and is a prospective target for cancer therapeutics. 
Further a qualitative characterization of signaling networks can be very 

useful in addressing toxicity issues and side effects. For instance, it has been 

suggested that the toxic effects of pyrazinamide, a drug used for treating 

tuberculosis, could have been predicted using pathway analysis based on the 

literature available at the time of approval (Bugrim et al., 2004). 

Intercellular communication: Cells do not function in isolation. Many 

physiological effects and diseases arise from synergistic interactions between 

multiple cells. For instance interaction between phagosome and lysosome is 

crucial in the removal of pathogens. This interaction is inhibited by M. 

tuberculosis and thus they successfully survive in phagosomes. Experimental 

study of this interaction is not possible as it takes place in a fraction of second in 

vivo. Modeling approach has been successfully used which points out important 

factors in this interaction (Thakar et al., b). It can be useful in targeting new 

drugs.  

The model is developed to study intercellular communication during 

Bordetellae infection. Its validation by experimental observations opens the 

possibility to use this model in drug targeting (Thakar et al., c). Similar model for 

Asthama has been developed (Musante et al., 2002) which describes the complex 

interactions of airway physiology with the inflammatory response. This model 

simulated asthmatic symptoms in response to exposure to an allergen. Contrary 

to what animal studies had shown, the model predicted that anti-interleukin-5 

(IL-5) treatment would be ineffective in treating airway obstruction observed in 

asthma. Results of anti-IL-5 clinical trials lent credence to the model (Leckie et al., 

2000). 

Conclusion: Qualitative and quantitative modeling strategies have been 

successful in modeling. Qualitative models help trace non-linear flow of 

information, and in so doing, can predict counter-intuitive effects of perturbing a 
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system. Detailed quantitative models can additionally provide a mechanistic 

basis for the failure of certain treatment paradigms, and explore alternative drug 

targets. The extent to which a model can be predictive increases as one tightens 

the kinetic constraints on a system. 

 

10.2 Specific strategies used for modeling in this thesis 

In the 21st century the study and analysis of systems at a global level 

becomes important with large amounts of data that is constantly collected with 

new experimental and computational techniques. It is impossibile to discuss here 

all research activities in these important directions of bioinformatic modeling. 

Some of them which are related to the work presented here in a broad context 

are:  

- Postgenomic bioinformatics (Heinrich and Schuster, 1996; Hofestad, 2000) 

- Prediction and analysis of pathways (Heinrich et al., 2002; Robubi et al., 

2005a; Robubi et al., 2005b) 

- Modelling cellular processes (Kitano, 2002; Tomita et al., 1997) 

- Systems biology (Stelling et al., 2002) 

Instead the following discussion puts emphasis on selected examples from 

other work which we consider particularly near to our approaches detailed in the 

results. 

We used different methods to study biological networks (protein 

interactions, interactions between components of the pathways, organelle 

interactions and interactions between components of the system). For studying 

protein interactions sequence analysis depicting conserved and non-conserved 

residues which is further extended into structural analysis was used. The present 

comparative structural modeling in chapter 5 of six protein complexes in the 

TNF mediated pathway leads to the delineation of important interacting surfaces 

in these modeled complexes. This helps to shed light on the mechanism by which 

p55TNFR1 induces formation of different complexes and in turn signaling 
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through different cascades. Our models highlight different possible interactions 

in the pathway such as recruitment of CRADD or NFκB by TRADD-RIP complex 

in two different conformations.  

A similar docking approach was also used to model the FAS-FADD DD 

interaction by (Weber and Vincenz, 2001). The arrangement of FAS and FADD 

was determined by them using the interaction modes of Pelle-Tube and Apaf-1-

Procaspase-9. The proposed model reveals that both interactions can be 

accommodated in a single multimeric complex. The Weber model is built with 

the preconception that interacting surfaces in FAS-FADD are similar either to 

Pelle-Tube or Apaf-1-Procaspase-9. Our docking models are developed without 

any preconceptions. In contrast, we used multiple sequence alignment and 

phylogenetic analysis to build our hypothesis.  

We then used a new model and approach applying ODE (Ordinary 

Differential Equations) in the qualitative analysis in chapter 6. The model could 

reproduce the caspase-3 shape of response curve and the percentage of viable 

cells across time. ODEs are often used for modeling kinetics of pathway. To 

address the complexity of CD95 induced apoptotic signaling sensitivity analysis 

within the mathematical model has been performed by Bentele, et al (Bentele et 

al., 2004) for the identification of critical system parameters. The mathematical 

model is based on biochemical reaction equations and the temporal behavior is 

described by a system of ODE. The approach based on biochemical reactions 

requires large amounts of kinetic data, as such information was unavailable they 

used sensitivity analysis to reduce the parameters. On the contrary our novel 

mathematical formlism is based on the Michaelis Menten assumption and 

requires as a consequence only few parameters. This approach assumes a 

saturation curve for all component concentrations. However, this is indeed 

observed in most of the signaling pathways, yet with different slopes of the 

curves.   
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A simple qualitative approach based on Boolean functions and additive 

rules was used for analyzing phospholipid networks essential for activation or 

inhibition of actin polymerization on phagosome membranes. Interestingly, we 

could also use this simulation for prediction of ATP concentration at which a 

switch takes place (see chapter 7). An analytical model based on probability 

allowed us to test the hypothesis about the role of F-actin in phagosome-

lysosome fusion. This was further developed into a simulation to test specific 

effects in chapter 8. The first approach has already been used in case of the 

interaction of chromosome and microtubules (Holy and Leibler, 1994). These 

both approaches are more theoretical and are best used for systems where in vivo 

observations are difficult to make. Such models can be developed on known data 

to predict unknown processes. Though similar analytical and spatial modeling 

approaches have been used in case of microtubule polymerizations (Verde et al., 

1992), centrosome formation (Mitchison and Kirschner, 1984b) and chromosome 

searching (Holy and Leibler, 1994), their exploration in actin function is highly 

limited. Goshima, et al (Goshima et al., 2005) have used a similar approach to 

explain self assembly of microtubules and the role of dynein in the assembly.  

The analytical model used by us is probabilistic and does not allow to 

analyze individual parameters. It explains nicely the system at equilibrium but 

fails to give an explanation otherwise. In the spatial model we could analyse i) 

the effect of the distance between lysosome-phagosome, ii) dimensions of 

organelles and iii) the effect of F-actin length if fres does not tend to 0 (or when d 

is not equal to da). 

Last but not least we used a Boolean formalism (Rene and Richard, 1990) 

which was then developed into dynamic simulation for immune responses to 

Bordetellae.  The network constructed by data mining allowed us to put all known 

information into the time frame of the progression of infection. The model could 

correctly predict much mutation data observed by experiments. 
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The approach used for modeling phospholipid networks in chapter 7 and 

interactions between Bordetellae and host immunity in chapter 9 is based on 

logical modeling of the systems. Both models use Boolean rules for the 

description of nodes. In the Bordetellae model the nodes are active (and have the 

value ‘1’) or inactive (and have the value ‘0’). In contrast, in the Phospholipid 

network we use an additive rule. The additive rule can be explained as a function 

similar to memory. In the later case there exist many phospholipids at the same 

time and the effect on actin polymerization is the additive effect of all these 

individual phospholipids. So the simulator remembers the individual response 

and produces the total response (effect on actin polymerization) as a result of 

individual responses of Phospholipid. Similar logical formalism has been used to 

develop the tool Genetic Network Analyzer (GNA). This tool was then 

successfully implemented for the analysis of the network controlling the 

nutritional stress response in Escherichia coli (Batt et al., 2005). This tool is 

essentially used for the analysis of a genetic network where the genes active at 

time step t express the protein at time step t+1.  The activation of genes is the 

function which uses Boolean operators. Such tools can be used for simple genetic 

networks, but can not be used at a systems level or for simulations of specific 

signal transduction networks or phospholipids networks which include allosteric 

interactions and metabolic transformations at the same time. The later networks 

need to be analyzed individually considering system specific parameters, 

however, the additive rule (Rene and Richard, 1990) allows already better 

qualitative description of the systems behavior. 

All these approaches can be used in the presence of limited kinetic data 

and can be applied to predict mutation data, important parameters and 

regulatory hotspots.  The approaches used in this work are essentially novel and 

try to address fundamental biological questions such as: ‘How pathways are 

regulated?’ ‘At which places?’ The success of these models highly depends on 

time scale used and their interpretation. For example from the experimental 
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observations we could estimate the time scale used in the model corresponding 

to 1.3 hours. For shorter time scales the predictions are better. More kinetic data 

obviously lead to better predictions. Such data nevertheless are difficult to get in 

many instances. The parameters used have to be modified with new 

experimental observations. Apart from these considerations it is necessary to 

remember that these models highly depend on the understanding of systems and 

the construction of correct networks.  
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11. Summary 

 

 In this century new experimental and computational techniques are 

adding an enormous amount of information, revealing many biological 

mysteries. The complexities of biological systems still broach new questions.  Till 

now the main approach to understand a system has been to divide it in 

components that can be studied. The upcoming new paradigm is to combine the 

pieces of information in order to understand it at a global level.  

 In the present thesis we have tried to study infectious diseases with such a 

global ‘Systems Biology’ approach. In the first part the apoptosis pathway is 

analyzed. Apoptosis (Programmed cell death) is used as a counter measure in 

different infections, for example viral infections.  The interactions between death 

domain containing proteins are studied to address the following questions: i) 

How specificity is maintained - showing that it is induced through adaptors,   ii) 

how proliferation/ survival signals are induced during activation of apoptosis – 

suggesting the pivotal role of RIP. The model also allowed us to detect new 

possible interacting surfaces (Thakar, et al, “RIP death domain structural 

interactions implicated in a TNF-mediated proliferation and survival” in press in 

Protein: Structure, Function and Bioinformatics). The pathway is then studied at 

a global level in a time step simulation to understand the evolution of the 

topology of activators and inhibitors of the pathway. Signal processing is further 

modeled in detail for the apoptosis pathway in M. musculus to predict the 

concentration time course of effector caspases. Further, experimental 

measurements of caspase-3 and viability of cells validate the model (Juilee 

Thakar, Dorothee Walter, Christoph Borner and Thomas Dandekar, “Discrete 

time modeling of apoptosis pathway: comparison of topology and significance of 

critical components” (submitted to PLoS computational biology)). 

 The second part focuses on the phagosome, an organelle which plays an 

essential role in removal of pathogens as exemplified by M. tuberculosis. Again 
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the problem is addressed in two main sections: i) To understanding the processes 

that are inhibited by M. tuberculosis; we focused on the phospholipid network 

applying  a time step simulation in section one, which plays an important role in 

inhibition or activation of actin polymerization on the phagosome membrane. 

(Mark Philipp Kühnel, Elsa Anes, Juilee Thakar, Evelyne Bos, Sezgin Erdogan, 

Katia Zanier, Michael Sattler, Roland Schwarz, Daniela Holzer, Britta Bruegger, 

Vladimir Rybin, Stefan Schuster, Jens Georg Reich, Thomas Dandekar and 

Gareth Griffiths, “Latex bead phagosomes - a system for the gobal analysis of 

membrane signaling networks”, in preparation for Nature Biotechnology). ii) 

Furthermore, actin polymers are suggested to play a role in the fusion of the 

phagosome with lysosome. To check this hypothesis an in silico model was 

developed; we find that the search time is reduced by 5 fold in the presence of 

actin polymers. Further the effect of length of actin polymers, dimensions of 

lysosome, phagosome and other model parameter is analyzed. (Juilee Thakar, 

Chunguang Liang, Mark Philipp Kühnel, Gareth Griffith and Thomas Dandekar, 

“Spatial resolution model for phagosome- lysosome fusion”, in preparation for 

BMC cell biology) 

 After studying a pathway and then an organelle, the next step was to 

move to the system. This was exemplified by the host pathogen interactions 

between Bordetella pertussis and Bordetella bronchiseptica. The limited availability 

of quantitative information was the crucial factor behind the choice of the model 

type. A Boolean model was developed which was used for a dynamic simulation. 

The results predict important factors playing a role in Bordetella pathology 

especially the importance of Th1 related responses and not Th2 related responses 

in the clearance of the pathogen. Some of the quantitative predictions have been 

counterchecked by experimental results such as the time course of infection in 

different mutants and wild type mice (Juilee Thakar, Mylisa Pilione, Eric Harvill 

and Réka Albert, “Modeling the interplay between Bordetellae and host 

immunity” in preparation for PLoS pathogens).   
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 All these computational models have been developed in presence 

of limited kinetic data. The success of these models has been validated by 

comparison with experimental observations. Comparative models studied in 

chapters 6 and 9 can be used to explore new host pathogen interactions. For 

example in chapter 6, the analysis of inhibitors and inhibitory paths in three 

organism leads to the identification of regulatory hotspots in complex organisms 

and in chapter 9 the identification of three phases in B. bronchiseptica and 

inhibition of IFN-γ by TTSS lead us to explore similar phases and inhibition of 

IFN-γ in B. pertussis. Further an important significance of these models is to 

identify new components playing an essential role in host-pathogen interactions. 

In silico deletions can point out such components which can be further analyzed 

by experimental mutations. 
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12.  Zusammenfasung 

 

 In diesem Jahrhundert haben neue experimentelle Techniken und 

Computer-Verfahren enorme Mengen an Information erzeugt, die bereits viele 

biologische Rätsel enthüllt haben. Doch die Komplexität biologischer Systeme 

wirft immer weitere neue Fragen auf. Um ein System zu verstehen, bestand der 

Hauptansatz bis jetzt darin, es in Komponenten zu zerlegen, die untersucht 

werden können. Ein neues Paradigma verknüpft die einzelnen Informationsteile, 

um sie auf globaler Ebene  verstehen zu können. In der vorgelegten Doktorarbeit 

habe ich deshalb versucht, infektiöse Krankheiten mit globalen Methoden 

(„Systembiologie“) bioinformatisch zu untersuchen. 

Im ersten Teil wird der Apoptose-Signalweg analysiert. Apoptose 

(Programmierter Zelltod) wird bei verschiedenen Infektionen, zum Beispiel bei 

Viruserkrankungen,  als Abwehrmaßnahme eingesetzt. Die Interaktionen 

zwischen Proteinen, die ‚death’ Domänen beinhalten, wurden untersucht, um 

folgende Fragen zu klären: i) wie wird die Spezifität der Interaktionen erzielt? –

sie wird durch Adapter erreicht, ii) wie werden Proliferation/ Überlebenssignale 

während der Aktivierung der Apoptose eingeleitet? – wir fanden Hinweise für 

eine entscheidende Rolle des RIP Proteins (Rezeptor-Interagierende 

Serine/Threonine-Proteinkinase 1). 

Das Modell erlaubte uns, die Interaktions-Oberflächen von RIP 

vorherzusagen (Thakar et al., “RIP death domain structural interactions 

implicated in a TNF-mediated proliferation and survival”, im Druck in „Protein: 

Structure, Function and Bioinformatics“). Der Signalweg wurde anschließend auf 

globaler Ebene mit Simulationen für verschiedene Zeitpunkte analysiert, um die 

Evolution der Aktivatoren und Inhibitoren des Signalwegs und seine Struktur 

besser zu verstehen. Weiterhin wird die Signalverarbeitung für Apoptosis-

Signalwege in der Maus detailliert modelliert, um den Konzentrationsverlauf der 

Effektor-Kaspasen vorherzusagen. Weitere experimentelle Messungen von 



                                                                                                        Summary  

 170

Kaspase-3 und die Überlebenskurven von Zellen bestätigen das Modell (Juilee 

Thakar, Dorothee Walter, Christoph Borner und Thomas Dandekar, “Discrete 

time modeling of the apoptosis pathway: comparison of topology and 

significance of critical components” (eingeicht bei PLoS computational biology). 

 Der zweite Teil  der Resultate konzentriert sich auf das Phagosom, eine 

Organelle, die eine entscheidende Rolle bei der Eliminierung von 

Krankheitserregern spielt. Dies wird am Beispiel von  M. tuberculosis 

veranschaulicht. Die Fragestellung wird wiederum in zwei Aspekten behandelt: 

i) Um die Prozesse, die durch M. tuberculosis inhibiert werden zu verstehen, 

haben wir uns auf das Phospholipid-Netzwerk konzentriert, das bei der 

Unterdrückung oder Aktivierung der Aktin-Polymerisation eine große Rolle 

spielt. Wir haben für diese Netzwerkanalyse eine Simulation für verschiedene 

Zeitpunkte ähnlich wie in Teil eins angewandt. (Mark Philipp Kühnel, Elsa Anes, 

Juilee Thakar, Evelyne Bos, Sezgin Erdogan, Katia Zanier, Michael Sattler, 

Roland Schwarz, Daniela Holzer, Britta Bruegger, Vladimir Rybin, Stefan 

Schuster, Jens Georg Reich, Thomas Dandekar und Gareth Griffiths, “Latex bead 

phagosomes - a system for the gobal analysis of membrane signaling networks”, 

in Vorbereitung für Nature Biotechnology). ii) Es wird vermutet, dass Aktin-

Polymere bei der Fusion des Phagosoms mit dem Lysosom eine Rolle spielen. 

Um diese Hypothese zu untersuchen, wurde ein in silico Modell von uns 

entwickelt. Wir fanden heraus, dass in der Anwesenheit von Aktin-Polymeren 

die Suchzeit für das Lysosom um das Fünffache reduziert wurde. Weiterhin 

wurden die Effekte der Länge der Aktin-Polymere, die Größe der Lysosomen 

sowie der Phagosomen und etliche andere Modellparameter analysiert (Juilee 

Thakar, Chunguang Liang, Mark Philipp Kühnel, Gareth Griffith und Thomas 

Dandekar, “Spatial resolution model for phagosome- lysosome fusion”, in 

Vorbereitung für BMC cell biology). 

Nach der Untersuchung eines Signalwegs und einer Organelle führte der 

nächste Schritt zur Untersuchung eines komplexen biologischen Systems der 
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Infektabwehr. Dies wurde am Beispiel der Wirt-Pathogen Interaktion bei 

Bordetella pertussis /Mensch und Bordetella bronchiseptica / Maus dargestellt. Die 

geringe Menge verfügbarer quantitativer Daten war der ausschlaggebende 

Faktor bei unserer Modellwahl. Für die dynamische Simulation wurde ein selbst 

entwickeltes Bool’sches Modell verwendet. Die Ergebnisse sagen wichtige 

Faktoren bei der Pathologie von Bordetellen hervor, besonders die Bedeutung 

der Th1 assoziierten Antworten und dagegen nicht der Th2 assoziierten 

Antworten für die Eliminierung des Pathogens. Einige der quantitativen 

Vorhersagen wurden durch Experimente wie die Untersuchung des Verlaufs 

einer Infektion in verschiedenen Mutanten und Wildtyp-Mäusen überprüft 

(Juilee Thakar, Mylisa Pilione, Eric Harvill und Réka Albert, “Modeling the 

interplay between Bordetellae and host immunity” in Vorbereitung für PLoS 

pathogens).   

Die begrenzte Verfügbarkeit kinetischer Daten war der kritische Faktor 

bei der Auswahl der computer-gestützten Modelle. Der Erfolg unserer Modelle 

konnte durch den Vergleich mit experimentellen Beobachtungen belegt werden. 

Die vergleichenden Modelle in Kapitel 6 und 9 können zur Untersuchung neuer 

Wirt-Pathogen Interaktionen verwendet werden. Beispielsweise führt in Kapitel 

6 die Analyse von Inhibitoren und inhibitorischer Signalwege aus drei 

Organismen zur Identifikation  wichtiger regulatorischer Zentren in komplexen 

Organismen und in Kapitel 9 ermöglicht die  Identifikation von drei Phasen in B. 

bronchiseptica und der Inhibition von IFN-γ durch den Faktor TTSS die 

Untersuchung ähnlicher Phasen und die Inhibition von IFN-γ in B. pertussis. Eine 

weitere wichtige Bedeutung bekommen diese Modelle durch die mögliche 

Identifikation neuer, essentieller Komponenten in Wirt-Pathogen Interaktionen. 

In silico Modelle der Effekte von Deletionen zeigen solche Komponenten auf, die 

anschließend durch experimentelle Mutationen weiter untersucht werden 

können. 
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membrane signaling networks” in preparation for Nature Biotechnology. 
 

Juilee Thakar, Mylisa Pilione, Eric Harvill and Réka Albert “Modeling interplay 
between Bordetellae and host immunity” submitted for PLoS pathogens 

 
Juilee Thakar, Mark Kühnel, Gareth Griffith and Thomas Dandekar “Spatial 
resolution model for Phagosome-Lysosome fusion” in preparation for BMC cell 
biology. 
 

Juilee Thakar, Karin Schleinkofer, and Thomas Dandekar “RIP death 
domain structural interactions implicated in TNF-mediated proliferation 
and survival” Proteins: Structure, Function and Bioinformatics, in press 
(accepted 2005 November) 
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Prior publications 

 

Juilee Thakar, Krushnamegh Kunte, Anisha Chauhan and Milind Watve 
“Nectarless flowers: Ecological correlates and evolutionary stability” 
Oecologia 136:4,565-70 (2003). 

 
Anand Gole, Juilee Thakar and Murli Sastry “Protein diffusion in to thermally 
evaporated lipid films: role of protein charge/mass ratio.” Colloids and surfaces 
B: Biointerfaces  28(2-3):209-214 (2002). 
 
Milind Watve, Juilee Thakar, Abhijit Kale, Shweta  Puntambekar, Imraan 
Shaikh, Kaustubh Vaze,  Maithili Jog, Paranjape S  “Bee-eater (Merops orientalis) 
respond to what a predator can see” Animal cognition, 5:4, 253-259 (2002). 
 
B. Smitha, Juilee Thakar, Milind Watve “Do bee-eaters have a theory of mind?” 
Current Science 76:4, 574-577 (1999).  
 
Conferences contributions 
 

1. “BMBF status seminar – Network System Biology HepatoSys”, Berlin, 
Germany (November 2005) Poster presented “Mathematical modeling of 
the Fas/CD95-induced signaling pathway in primary mouse hepatocyte” 
D. Walter, J. Tharar, C. Kreutz, S. McNelly, R. Nitschke, F. von 
Weizsäcker, J. Timmer, T. Dandekar and C. Borner. 

 
2. “7th International EMBL PhD Student Symposium: Biology at work”, 

Heidelberg, Germany (December 2005) Poster presented “Crucial death 
domain interactions in life and death” J. Thakar, K. Schleikofer, C. Borner 
and T. Dandekar. 

 
3. “International Society for Computational Biology”(ISMB), Detroit, 

Michigan, USA (June 2005) Poster presented  “Spatial resolution model 
for actin polymerization and fusion of lysosome phagosome.” J. Thakar, 
M. Kuehnel, G. Griffiths, and T. Dandekar. 

 
4. “Systems of Life- System biology meeting”, Heidelberg, Germany. (April 

2005) Poster presented “Mathematical modeling of the Fas/CD95-induced 
signaling pathway in primary mouse hepatocytes.” D. Walter, J. Thakar, 
C. Kreutz, K. Neubert, S. McNelly, F. Weizsäcker, J. Timmer, T. Dandekar 
and C. Borner. 

http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235234%232002%23999719997%23395161%23FLA%23display%23Volume_28,_Issues_2-3,_Pages_83-238_(25_April_2002)%23tagged%23Volume%23first%3D28%23Issues%23first%3D2%23last%3D3%23spans%3D2%23Pages%23first%3D83%23last%3D238%23date%23(25_April_2002)%23&_auth=y&view=c&_acct=C000032339&_version=1&_urlVersion=0&_userid=616166&md5=47b81648f2df95ddb327ec06d4e5a56f
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5. “International conference on systems biology”, Heidelberg, Germany. 

(October 2004): Poster presented “Modelling Fas ligand-induced 
apoptosis in primary mouse hepatocytes”, L. Egger, C. Kreutz, J. Thakar, 
J. Timmer, T. Dandekar and C. Borner. 

 
6. “Discussion meeting on behavioral ecology”, University of Mysore, 

Karnataka, India. Convener by Prof R Gadagkar, and Prof H.A 
Ranganathan. (July 1999) (By invitation) 

 
Distinctions 
 

1. Fellowship awarded by BMBF (German ministry of science and 
technology) initiative in Systems Biology “HepatoSys”, Germany from 
2004 - 2006. 

2. Fellowship awarded by the Pennsylvania state university, Department of 
Physics, for summer internship in 2005. 

3. Fellowship awarded by the University of Leeds, Department of 
Biochemistry, for summer internship in 2002. 

4. Scholarship awarded by the Association for the Study of Animal Behavior 
(ASAB), Edinburgh, UK, for “Follow up study of ‘Theory of mind’ in bee-
eaters (Merops orientalis)” in 2001. 

 
Language Skills 
 
 English, Marathi, Hindi (fluent) 
 German (Studied till intermediate level) 
 
Interests 
 

Wild life and nature conservation activities with environmental 
organizations: 

1. Life Research Foundation, Pune (2001-2003): Newsletter editor. 
2. World Wide Fund (WWF) for Nature India, New Delhi, Pune branch 

(1999 - 2003). 
3. Bombay Natural History Society (BNHS), Mumbai (1995 - 2003). 
4. “Nisargavedha” (Nature lover’s organization), Pune (1995 - 2003). 
5. Bhumata, (Nature lovers organization), Pune (1991 - 2003). 
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