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Accessing topological superconductivity via a
combined STM and renormalization group analysis
Lars Elster1,2,3, Christian Platt4, Ronny Thomale4, Werner Hanke4 & Ewelina M. Hankiewicz1

The search for topological superconductors has recently become a key issue in condensed

matter physics, because of their possible relevance to provide a platform for Majorana bound

states, non-Abelian statistics, and quantum computing. Here we propose a new scheme

which links as directly as possible the experimental search to a material-based microscopic

theory for topological superconductivity. For this, the analysis of scanning tunnelling micro-

scopy, which typically uses a phenomenological ansatz for the superconductor gap functions,

is elevated to a theory, where a multi-orbital functional renormalization group analysis allows

for an unbiased microscopic determination of the material-dependent pairing potentials. The

combined approach is highlighted for paradigmatic hexagonal systems, such as doped

graphene and water-intercalated sodium cobaltates, where lattice symmetry and electronic

correlations yield a propensity for a chiral singlet topological superconductor. We demon-

strate that our microscopic material-oriented procedure is necessary to uniquely resolve a

topological superconductor state.
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T
he search for topological states of matter has recently
generated a flurry of broad activity in the field of
superconductivity (for several paradigmatic directions,

see, refs 1–11). A topological superconductor (SC) is an
unprecedented state of quantum matter, which possesses a full
pairing gap in the bulk but gapless exotic surface states as well as
possibly non-trivial vortex bound states2,6,12. A chiral SC1,2,13

with broken time-reversal symmetry (TRS) may be considered
the superconducting analogue of the quantum Hall phase (as
characterized by a non-trivial Chern number of its Bogoliubov
bands14), whereas a topological SC conserving TRS7 is closely
related to the quantum spin Hall phase (along with its non-trivial
Z2 invariant15). Recently, chiral SCs have enjoyed significant
attention, exhibiting a variety of exotic phenomena based on their
non-trivial topology1, such as hosting Majorana vortex bound
states2,12 and gapless chiral edge modes, that carry quantized
thermal or spin currents (see for example ref. 16). The Majorana
bound states can be interpreted as elusive fermionic particles
equivalent to their own antiparticles, and have potential
applications in fault-tolerant topological quantum computation17.

In view of these striking properties, it would be desirable to
develop guidelines to identify materials with the potential to host
chiral topological SC states. As it turns out, the interplay of the
lattice symmetry, the shape and the size of the Fermi surface
(fermiology), the multi-orbital character and the electron–
electron interactions are decisive for an unconventional chiral
pairing mechanism.

Material-specific research into this direction first concentrated
on the perovskite Sr2RuO4, where experimental evidence points
to a chiral odd-parity p-wave SC state18, as a possible analogue of
superfluid 3He (ref. 19). However, the topologically protected
Majorana edge modes, which should appear in the chiral p-wave
SC when a half-quantum vortex is injected12,20, have—so far—
not uniquely been identified, despite strong experimental
efforts21. It suggests that the odd-parity pairing, along with its
non-trivial spin dependence, induces challenges which in terms of
complexity even overshadow the original task to identify a
material with topological chiral SC.

Therefore, the even-parity topological chiral SC states, like
dþ id topological SC states, are more promising. Although the
edge states in dþ id chiral SC are fermionic (with the Chern
number for the Bogoliubov bands C¼±2 (refs 22–24)), one can
engineer a dþ id SC state using spin–orbit interactions and weak
Zeeman fields to generate a Majorana edge state25–27.

On a square lattice, where most unconventional super-
conductors are found, the difficulty in realizing such a dþ id
singlet state is that the generic fermiology and interactions, which
can yield a d-wave state, favour dx2 � y2 over dxy pairing. This
changes for hexagonal lattices, where the lattice symmetry
protects the degeneracy of the dx2 � y2 -wave and the dxy-wave
SC at the instability level. This then yields a chiral singlet
dx2 � y2 þ i dxy—superconducting state below the critical tempera-
ture, TC, to maximize the condensation energy27,28.

In contrast to pþ ip odd-parity pairing, the singlet character of
the unconventional pairing should make its emergence more
generic, as it stems from electron-mediated pairing where large
wave vector particle-hole fluctuations tend to drive singlet
superconductivity. This has been recently addressed in several
theoretical scenarios of a dþ id state such as for doped
graphene29–35 (for a recent review see ref. 27), water-
intercalated sodium cobaltates36, and the pnictide SC SrPtAs
(ref. 37). Recent experiments38 show that highly doped graphene
close to the van Hove singularity (vHS) can be prepared. Still,
superconductivity in graphene has not yet been experimentally
confirmed. From this perspective, water-intercalated sodium
cobaltates and the pnictide SrPtAs may be more promising

because, in both of these compounds, superconductivity has been
already discovered39,40. Furthermore, some indications of
unconventional SC were observed in Knight shift data on
cobaltates41, as well as in muon-spin rotation/relaxation
measurements and nuclear quadrupole experiments on SrPtAs
(refs 42,43). While no unambiguous experimental confirmation
of chiral d-wave SC for these materials exists so far, further
experimental attention is certainly warranted and could lead to
the first unambiguous identification of chiral topological SC.

A characteristic challenge in the search for unconventional
chiral SC is the pronounced competition between different
orders, such as spin-density wave (SDW) and different SC orders,
in particular the TRS-broken dþ id SC state and an f-wave state
with TRS28,44 on the hexagonal lattice. This clearly calls for
methods, that are capable of distinguishing the competing
channels at the instability level, this means at low energies of
the order of the SC gap features. This is the main strength of the
functional renormalization group (fRG) method (for reviews see
refs 28,45), which allows for a systematic connection via
renormalization between a high-energy bare Hamiltonian and a
low-energy effective theory, where the SC channels can be
resolved.

Knowing the precise functional form of the pairing function
from the fRG calculations is of fundamental importance to make
contact with experimental signatures.

Here we demonstrate, that a combination of the microscopic
theory, which is the fRG method, with the theory of scanning
tunnelling spectroscopy (STM) makes this connection between
theory and experiment possible. Although the main task of our
work is to elevate spectroscopic signatures to provide evidence in
favour of a possible singlet chiral topological SC state, for the
role-model systems graphene and cobaltates, our approach can be
straightforwardly extended to other classes of topological SC and
should pave the road to find Majorana fermions in these systems.
The conventional STM theory has been successful in a variety of
situations, where it has been viewed as a phenomenology,
assuming a certain ansatz for an order parameter46–48. Here we
show, that our microscopic material-oriented procedure is
necessary in the case of competing anisotropic SC channels
such as dþ id and f-wave: the phenomenological approach
(including only a single harmonic) yields qualitatively different
spectra from the full microscopic fRGþ STM results, also ruling
out the possibility to distinguish gapped and nodal SC order
parameters on the basis of the out-of-plane STM signal alone.

Results
Combined fRG and STM method for graphene and cobaltates.
A graphene monolayer and water-intercalated cobaltates are
considered as prototypical examples where, as shown in Fig. 1,
the fRG method predicts the possibility of a chiral dþ id SC state.
In this manuscript, we propose the combined fRGþ STM
method as a powerful tool to distinguish between dþ id and
f-wave order parameters in these materials.

Starting with the Hamiltonian for the cobaltates (see Methods)
which only includes on-site electron–electron interactions, the
fRG flow will generate longer-range electron–electron interac-
tions. Since the longer-range electron–electron interactions cause
higher-order harmonics to be induced in the dþ id-wave SC
channel, the in-plane STM signal will show qualitatively new
features in comparison with the phenomenological dþ id SC
channel. This immediately shows the necessity to apply the
fRGþ STM method. Furthermore, the fRGþ STM approach
gives a new methodology, which allows for a reliable distinction
between the topological dþ id and the f-wave SC phase. To fully
appreciate the strength of the fRGþ STM approach, we first
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explain the advantages of the fRG method and how the fRG input
is fed into the material-oriented STM calculations.

In the cobaltates, the fRG starts from a three-orbital model (see
Methods), where a core ingredient is the effect of longer-range
hoppings, shifting the filling of perfect nesting away from the van
Hove filling. The C6v acts as the decisive symmetry which can
yield a chiral d-wave below the critical temperature TC to
maximize the condensation energy.

Several common features as compared to the cobaltate case can
be identified in graphene, such as the role of longer-range
hoppings in providing a distinction between van Hove filling and
the filling of perfect nesting. In particular, we discuss the chiral
d-wave state, which competes with f-wave SC further away from
van Hove filling and turns into a SDW state near van Hove filling
beyond a certain interaction strength. Of all theoretical
approaches, mainly the fRG has been capable of fully describing
such a scenario34,35.

More precisely, in graphene, we illustrate the fRGþ STM
analysis of shorter- and longer-range Hubbard interactions on a
generalized honeycomb tight-binding model up to third-nearest
neighbour hybridization (see Methods). As seen in Fig. 1a, at the
vHS (orange area), chiral dþ id pairing competes with, but wins
over the SDW channel (details for the underlying band structure
and the Hamiltonian are summarized in the Methods). Away
from the vHS (blue area), the critical instability scale LC, LC B
TC drops and whether the dþ id or the competing f-wave
instability is preferred depends on the range of electron–electron
interactions. We show differential conductance plots for graphene
with short-range Coulomb interactions in this article and long-
range Coulomb interactions in Supplementary Fig. 1 and
Supplementary Note 1, because the carrier density and the
corresponding range of electron–electron interactions is different
due to charge screening for the two different doping situations.

At LC, which denotes the critical fRG flow parameter, where
the leading instability starts to diverge, the different channels such
as the SC dþ id and f-wave channels are decomposed into
different eigenmode contributions and the corresponding gap
form factors are obtained (see Methods). They are then used as a
microscopic input into the STM procedure. The black dots in

Fig. 1 denote the phase-diagram points for which the TRS-
breaking dþ id-phase and the TRS-conserving f-phase are
calculated and taken as inputs in the STM scheme. For the
cobaltates (Fig. 1b), the doping has been confined for both dþ id
and f-phases to the value xD0.3, where SC has been observed
experimentally.

In the second step the differential conductance of these quasi
two-dimensional SC is calculated using a normal metal–
insulator–SC (N–I–SC) set-up with the pairing potentials from
the fRG calculation. Such a N–I–SC junction, formulated for a d-
function barrier model46, is known to imitate very well an
experimental STM set-up. This is documented by a variety of
applications, where the pairing potentials have been used as a
phenomenological ansatz for distinguishing different SC
symmetry channels21,46–49. The effective barrier-height is
represented by Z0¼ mH

‘ 2kFN
, where m, kFN and H denote the

electron mass, the Fermi momentum on the normal side, and the
barrier potential, respectively. Both in-plane and out-of-plane set-
ups are considered, where in the first (second) case the STM lies
in (is oriented perpendicular to) the SC plane. Solving, as in
previous phenomenological studies, the Bogoliubov–de Gennes
equations with the appropriate boundary conditions, but now
with the momentum dependent microscopic pairing potentials,
the coefficients (probabilities) for Andreev reflection rA and
normal reflection rN are obtained. Via the Blonder–Tinkham–
Klapwijk (BTK)-formula50, the conductance is given by:

sSðE; yÞ¼ 1þ rAðE; yÞj j2� rNðE; yÞj j2 ð1Þ
for the quasiparticle injection with energy E¼ � eV, where V is
the bias voltage, and y is the incident angle with respect to the
interface (Fig. 2). More details for the calculation of the
normalized differential conductance can be found in the
methods. Here it suffices to note that the conductance contains
two distinct pairing potentials Dþ and D� . They correspond to
the effective pairing potentials for transmitted electron-like
quasiparticles (ELQ) and hole-like quasiparticles (HLQ),
respectively, as shown in Fig. 2. The total conductance is given
by integrating the angle-resolved conductance of equation (1)
over all transverse momenta, which are the independent modes.
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Figure 1 | Schematic phase diagrams obtained from fRG calculations.

The phase diagram for doped graphene (a) and for water-intercalated

sodium cobaltates (b). The competing phases consist of the chiral

superconducting dþ id phase in the singlet channel, the f-wave phase in the

triplet channel as well as the competition with a spin-density wave (SDW)

phase. In the orange area the dþ id superconducting phase and the SDW

compete (dþ id wins near van Hove singularity in graphene or close to

perfect FS nesting in cobaltates), whereas in the blue area the two

superconducting phases compete. The black dots denote the phase-

diagram points for which the TRS-breaking dþ id-phase and the TRS-

conserving f-phase are calculated and taken as inputs in the STM scheme.

For the cobaltates, the doping has been confined for both dþ id and

f-phases to the value xD0.3, where SC has been observed experimentally.
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Figure 2 | Geometry of the STM set-up. (a) Angle definitions for the

normal metal (N)—insulator (I)—superconductor (SC) junction. An

incident electron on the normal side is characterized by the angle yN (with

respect to the surface normal n). On the superconducting side, transmitted

electron-like quasiparticles (ELQ) have the momentum vector kþFS (angle yS

with respect to the surface normal n) and hole-like quasiparticles (HLQ)

have k�FS . The inset shows the set-up: The STM tip can be placed either in-

plane or out-of-plane with respect to the quasi two-dimensional (2D) SC.

(b) Angle definitions for the pair potential. The angle fþ (f� ) for ELQ

(HLQ) is measured with respect to the kx direction of the pair potential, that

can be tilted by an angle a with respect to the surface normal n. Note, that

ELQ and HLQ experience different effective pair potentials.
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Except in the low-barrier (small Z0� ) limit, which is not of
interest here (our choice of Z0¼ 5 corresponds to a high barrier),
the conductance peak corresponds to the Andreev bound-state
energy level, which is formed at the edge of the SC (see Fig. 3 of
ref. 46).

Differential conductance spectra for the in-plane set-up. In the
previous sections a theory for the tunnelling spectroscopy of a
N–I–SC junction, combined with the microscopic fRG derivation
of the underlying pairing potentials, was proposed as a new and
efficient tool for identifying, in particular, a chiral SC state with
broken TRS.

The differential conductance for the in-plane set-up is shown
in polar plots (Figs 3a,d and 4a,d), where the radial axis
is the quasiparticle excitation energy normalized by the super-
conducting energy (gap) scale D, which is a common energy scale

obtained from fRG. a denotes the angle between the interface
normal (n) and the kx direction (Fig. 2). The absolute value of the
pairing potential is also shown in a polar plot to compare it with
the differential conductance. For each phase, cross-sections at
three different angles a are given (Figs 3b,e and 4b,e). The chosen
angles are indicated by black lines in the dI/dV characteristics.

More specifically, the differential conductance spectra,
obtained in the in-plane set-up simulating an STM experiment,
are presented for the dþ id- and f-pairing phases of graphene
(Fig. 3) and for water-intercalated sodium cobaltates (Fig. 4).
Comparing the conductance spectra (dI/dV) for the dþ id-
pairing phase (Fig. 3a) with the f-pairing phase (Fig. 3d), it
becomes clear why the fRGþ STM calculation is an ideal tool to
distinguish a dþ id-wave TRS-broken phase from a f-wave TRS-
conserving phase. In graphene, for the chiral dþ id case, the polar
dI/dV intensity plot displays, in addition to the outer structure
(which maps the local density of states with the peaks appearing
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Figure 3 | Differential conductance spectra (dI/dV) and corresponding pairing potentials for graphene. Panels (a), (b) and (d), (e) show the differential

conductance spectra for the dþ id pairing phase and the f pairing phase, respectively. The corresponding pairing potentials are shown in panels (c) and (f)

as a polar plot of the absolute value of the pairing potential. The differential conductance spectra, obtained in the in-plane set-up simulating an STM

experiment (panels (a) and (d)), are plotted as a function of the quasiparticle energy E (radial axis, normalized by the reference bandgap D) and the angle a
between the interface normal and the kx-direction of the pairing potential (polar axis). The differential conductance is normalized by the conductance of a

N–I–N junction in the same geometry. Differences in brightness of the colours are due to the plot style. The black lines indicate angles a, for which the

cross-sections are shown in panels (b) and (e). The cut for a ¼ 0 in (b) was scaled by a factor of 50.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9232

4 NATURE COMMUNICATIONS | 6:8232 | DOI: 10.1038/ncomms9232 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


at the local pairing potentials—compare with the pairing
potential in Fig. 3c) an inner structure for energies smaller than
the superconducting bandgap, which is called sunflower structure
in what follows. It is this inner coloured sunflower structure
which immediately signals the presence of a TRS-broken SC state.
A similar, but even more complicated inner structure for the
cobaltates (below the bandgap E¼ 6.7D) is again the sign of
broken TRS (Fig. 4a).

To understand the physical content of these differential
conductance spectra for the dþ id and f-pairing phases in more
detail, let us summarize what kind of physical quantity the
tunnelling spectroscopy is detecting. The energy level giving the
conductance peak is determined by a quantum condition of the
bound quasiparticles (QPs) in a pseudo-quantum well. This
quantum well is formed by the N–I–SC junction (Fig. 2a), where
an electron injected from the N-side is transmitted into the SC
ejecting an Andreev HLQ. This hole-like quasi-particle with its
wave vector k�FS scatters into an ELQ with kþFS after reflection

from the I–SC interface, with a corresponding change in the
effective pair potentials from D� ¼D k�FS

� �
to Dþ ¼D kþFS

� �
at

the insulator (ref. 46, in particular Fig. 3 therein). The bound
states form at the interface and the tunnelling electrons in the
N–I–SC junction flow via these bound states. These states have
been shown in earlier work by Tanaka et al.51 to converge to the
edge states of the SC (trivial or non-trivial) in the large barrier-
height limit (which is considered here). We use the bulk order
parameters for the matching. However, since we introduce an
interface, the topological edge states for the dþ id pairing phase
appear naturally due to the bulk-edge correspondance (ref. 49).

The analogy with the QP and their Andreev reflection in a
pseudo-quantum well is useful for a transparent physical
understanding of the inner sunflower structure appearing in the
STM spectra of Figs 3a and 4a, as discussed below. The quantum-
well analogy has been suggested by Kashiwaya et al.46 and shows
the equivalence of the bound QP condition of the N–I–SC
junction with that of QPs in a SC–N–SC structure (with thickness
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of N - 0 and no difference of the superconducting phase across
the junction), in which the pair potentials of the two
superconductors are Dþ and D� , respectively. The QPs in the
pseudo-quantum well (normal region N) are confined if their
energies are less than the amplitudes of both pair potentials, this
is Eomin(|Dþ |,|D� |). In the SC–N–SC junction, the bound QPs
travel along a closed path by repeating Andreev reflections at both
N–SC and SC–N interfaces. This is, then, equivalent to the
formation of the Andreev bound states in the N–I–SC junction, as
explained in the paragraph above and in refs 46,49.

The corresponding peak condition for the bound QPs, which
was first reported by Kashiwaya et al 46, is given in equation (7) of
the methods. Here we consider its general properties, which help
to understand the occurrence of the outer peaks and that of the
inner sunflower structure in Figs 3a,d and 4a,d.

For D� ¼ Dþ , the peak condition, given in equation (7), is
fulfilled if the energy E of the injected particle is E¼ |D±|.
Consequently, a peak at the bandgap occurs, which is the outer
structure in Figs 3a,d and 4a,d. We call this peak the local bandgap
peak, since as shown in these figures, the bandgap value depends on
the (local) polar angle j. The polar angle is defined as
f¼ arctan kyðfÞ

kxðfÞ, with kx(f)¼ kF(f) cos f and ky(f)¼ kF(f) sin
f and is given for ELQ by fþ ¼ yS� a and for HLQ by
f� ¼p� yS� a (Fig. 2). a denotes the angle between the interface
normal (n) and the kx-direction and yS is the angle between the
interface normal and the momentum of the ELQ in the SC.

The zero-energy Andreev bound state (ZEBS) with E¼ 0 occurs
if the phase difference of the pair potentials Dþ and D� , denoted
by Fþ �F� (where D±¼ |D±|exp(iF±)), in equation (7) is ±p.
F± simplifies to F±¼f±, if kF does not depend on f and a dþ id
pair potential with equal mixing of dx2 � y2 and dxy on the square
lattice is considered. The novel aspect of more harmonics and an
angle dependent kF leads to a more complicated peak structure in
the differential conductance curves (see Figs 3 and 4 and
Supplementary Fig. 1). One possibility to fulfil Fþ �F� ¼±p
is Dþ ¼ �D� for purely real pair potentials. The resulting ZEBS
are seen in our fRGþ STM calculations for the f-pairing phase in
Fig. 3d, as well as in Fig. 4d.

However, for a complex dþ id pairing potential, the condition
Dþ ¼ �D� is not sufficient. This is exactly the situation
encountered for the inner sunflower structure of the dþ id
order parameter shown in Fig. 3a: Since Dþ ¼Dx2 � y2 yS� að Þþ
iDxy yS� að Þ and D� ¼Dx2 � y2 p� yS� að Þþ iDxy p� yS� að Þ,
the phase difference between the two pair potentials is not
restricted to multiples of p. Thus, the peak position moves
between 0 and min(|Dþ |,|D� |), depending on the relation of
Dþ , D� and the angle a. This peak is also called double-split
peak, since the zero energy conduction peak is split into two
peaks positioned symmetrically at positive and negative finite
energies. This confirms the usefulness of the analogy with
the pseudo quantum well and implies that indeed the QP in the
quantum well are only confined if their energies are less than the
amplitudes of both pair potentials.

Our differential conductance for the full (fRGþ STM)
calculations of the dþ id order parameter on the honeycomb
lattice is very different from what is usually done in a
phenomenological STM approach. There, one considers only
the first harmonic in the superconducting gap, in other words one
assumes only short-range (nearest-neighbour) electron—electron
interactions entering the pairing (gap) function. The ‘phenom-
enological’, nearest-neighbour, dI/dV plot is shown in
Supplementary Fig. 2 for the in-plane set-up (Supplementary
Note 2) and is even qualitatively different from the one obtained
in Fig. 4a of this manuscript for the realistic dI/dV signal, here for
cobaltates. The difference between realistic material-oriented and
phenomenological approaches comes from the fact that although

the high-energy Hamiltonian (for the cobaltates, equation (3) of
the Methods) includes only on-site electron–electron interactions,
the fRG flow will induce longer-range electron–electron pairings
beyond nearest-neighbours in the pairing channel. Therefore, the
full (fRGþ STM) calculations include additionally also these
higher-order interactions (higher harmonics). They give rise to a
quite complex ‘sunflower’ structure of the dþ id order parameter.
Therefore, the fRG procedure provides qualitatively new insight
into the differential conductance and is obviously essential if one
wants to uniquely resolve a topological SC state.

In contrast to the conductance curves of the dþ id pairing
phases, that reveal clear signatures of broken TRS, the
conductance curves of the f pairing phases contain zero energy
peaks, which are present due to conserved TRS. These zero energy
peaks are seen in the cuts (Figs 3e and 4e, Supplementary Fig. 1e
for a zoom for small quasiparticle energies, displaying the ZEBS
in white). As discussed already above, these peaks originate from
an antisymmetric pairing Dþ ¼ �D� . Further, the differential
conductance is rotated with respect to the order parameter. The
physical reason for this effect is a lack of inversion symmetry for
the f order parameter with respect to the origin of the kx–ky plane
(let us mention that this inversion is preserved for both real and
imaginary parts of the dþ id order parameter). This lack of
inversion symmetry and the corresponding rotation of the f order
parameter can be easily understood, considering for example
graphene (Fig. 3d) at an angle a¼ p

6. Then, ELQ exhibit a pair
potential of Dþ ¼D yS� p

6

� �
and HLQ of D� ¼D 5p

6 � yS
� �

.
Using the pair potential (the signs of the pair potentials
for a phase difference of p are opposite in Fig. 3f), we find
Dþ ¼ �D� , giving rise to a zero energy peak, which is indeed
found in the conductance spectrum at a¼ p

6.
Let us add a few more details, concerning the results in Figs 3

and 4. Figure 3 shows the differential conductance spectra and the
pairing potentials for dþ id and f pairing phases of graphene with
short-range Coulomb interactions at the vHS where the screening
is very effective. Corresponding dI/dV characteristics for a larger
doping x¼ 0.15 (long–range Coulomb interactions) are presented
in Supplementary Fig. 1 (see also Supplementary Note 1).

A given a direction corresponds to a specific surface, which can
be expressed with Miller indices. Cross-sections for a¼ 0 and
a¼ p

6 correspond to Miller indices (1,� 1,0) and (1,0,0) for
cobaltates and, respectively, (1,� 1) and (1,0) for graphene.

The cross-sections of dI/dV characteristics in Figs 3e and 4e
show that the width of the zero energy peaks is maximal in the
maximum bandgap directions of the pairing potential (given by
a¼ ð2nþ 1Þp

6 , n 2 Z), in which the condition of antisymmetric
pairing is fulfilled for all incident angles y (angle between the
incident momentum and the interface normal, see Methods). In
general, the height of the peaks depends on how many incident
angles y contribute to the resonance for a given a direction. In the
case of the cobaltates, the gap is very anisotropic and more
harmonics contribute than for graphene. Consequently, the
number of incident angles contributing to a resonance is smaller,
giving a smaller peak height.

Summarizing, the in-plane set-up is sensitive to the magnitude
and the phase of the pair potential, and allows to distinguish
the different pairing phases (dþ id and f). While the f-wave
pairing phase gives zero energy peaks typical for order para-
meters with conserved TRS, the signature of broken TRS can be
clearly seen in the sunflower structure in the differential
conductance spectrum of the dþ id paring phase of our
prototypical examples.

Differential conductance spectra for the out-of-plane set-up.
Figure 5 shows the differential conductance obtained in the
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out-of-plane set-up for the dþ id and f pairing phases of graphene
and the cobaltates. The out-of-plane set-up shows only the density
of states features since the information about the phase and the in-
plane angle dependence of the pairing potential is integrated out.
The density of states induces peaks at energies that match the
maximum pairing potential, causing maximal Andreev reflection
and a peak in the dI/dV characteristics. For the dþ id pairing phase
of graphene there is only one peak at the maximum pairing
potential (8D). On the other hand, the differential conductance
curve of the dþ id pairing phase of the cobaltates displays a
number of peaks, each one corresponding to a local maximum (or
saddle point) of the pairing potential. This signature is again a
manifestation of the strongly anisotropic dþ id pairing phase of the
cobaltates.

Since the f pairing potentials are nodeless in some specific
directions, the dI/dV curves for the f-phases grow with the
excitation energy until the peak for the maximal pairing potential
is reached. For the dþ id pairing phase, a kink is observed at the
minimum pairing potential value, because Andreev reflection
occurs for some directions in momentum space.

Furthermore, for the dþ id pairing phases, there is no
conductance observed below the minimum pairing potential
value, because normal electron reflection is the only process in
this regime. This region of zero conductance, in many cases, is a
signature of a gapped phase, that allows to distinguish between
gapless and gapped pairing potentials. In our role-model system
cobaltates (TC¼ 5 K39), however, as shown in Supplementary
Fig. 3a,b (differential conductance curves as a function of
temperature for the out–of-plane STM configuration) this is not
the case for temperatures of the order of a few Kelvins
(0.25DrkBTokBTC). This originates from the fact that the
out–of-plane set-up is only sensitive to the density of states, and
the temperature broadening is of the order of the small dþ id SC
gap. In contrast, in the in-plane STM set-up (Supplementary
Fig. 3c,d and Supplementary Note 3), the Andreev bound states in
the dþ id order parameter are robust against temperature
smearing. That is exactly the reason why one needs not only
the out-of-plane but also the in-plane STM set-ups to identify
topological superconductivity in realistic materials.

Discussion
Our results show that the combination of the fRG pairing input
with the STM spectroscopy analysis allows for an unambiguous
characterization of the SC state and its pairing symmetry, starting

from a microscopic, in principle a priori description of the
interacting Hamiltonian.

The relevance of this combination becomes especially clear
when considering the possibility of unconventional SC on
hexagonal lattices. In many layered compounds, which are
candidates for electronically driven (high TC) SC, the atoms
form a square lattice. For the intensively studied square-lattice
material classes, such as the cuprates and pnictides, experimental
evidences and theoretical descriptions have already provided a
rich picture. A celebrated example is, of course, the d-wave
symmetry of the SC state in the cuprates, by which its momentum
profile of the SC gap points directly to the decisive role of
electronic correlations for the pairing mechanism. The situation is
rather different for unconventional SC in hexagonal systems. In
only a few hexagonal materials, the origin of SC can so far be
assigned unambiguously to electronic interactions, partly due to
the often occurring lattice distortions, which make a phonon-
driven scenario of SC more likely. (It can even be such that
electronic correlations strengthen phonon-induced pairing52.)

However, there are also compounds, where strong correlations,
in combination with a hexagonal lattice symmetry are very likely
to induce unconventional SC53. Bechgaard salts are certainly
candidates for organic unconventional superconductors54,55. As
mentioned before, the pnictide compound SrPtAs has recently
attracted substantial attention: it is a multi-layer compound,
where Pt and As atoms are arranged in honeycomb rings.
Preliminary evidence for a TRS-broken SC phase stems from m-
SR data37,42. Another relevant material class on the triangular
lattice are the water-intercalated sodium cobaltates39, which are
discussed in detail here as one example for the strength of the
fRGþ STM method. Another promising avenue towards
hexagonal Fermi surface (FS) instability may be related to the
emerging possibility of creating hexagonal optical lattices with
fermionic isotopes56,57 of ultra-cold atomic gases, provided that
the limit ToTC, T/TFoo1, where TF is the Fermi temperature,
can eventually be reached.

The cobaltates, very much like our other example graphene, for
which the FS instability study is transferred from the triangular
lattice of the cobaltates to the honeycomb lattice, constitute
typical examples, where the fRG provides us with an approach to
obtain the unbiased phase diagrams of the FS instabilities in all
parquet channels.

The combination with the STM then elevates the microscopic
theory, the fRG, to a new level directly accessible in scanning
tunnelling microscopy experiments.

This brings us finally to the discussion how to distinguish
experimentally between different pairing phases using scanning
tunnelling microscopy. While one expects a gap in the dI/dV
characteristics for the dþ id phase (zero differential conductance
until the minimal pairing potential is reached), the differential
conductance increases continuously with energy from zero for the
gapless f-pairing phase. However, the resolution in an STM
experiment is mainly limited by the temperature. For realistic
temperatures of 3–4 KoTC (for cobaltates), the resolution is
typically around 0.25–0.3 meV. If the superconducting energy
scale D is of the order of 1 meV, as expected from a rough
estimate within fRG, it might be already very difficult to
distinguish between dþ id and f wave pairing phases for
cobaltates in the out-of-plane STM set-up (see Supplementary
Fig. 3a,b). However, for the small gap of the highly anisotropic
dþ id pairing potential, a careful analysis of, additionally, the in-
plane STM set-up should help resolving all ambiguities. Here for
both the cobaltates and graphene, one can clearly see the zero-
energy peaks for the TRS-preserving SC state, in contrast to the
dþ id pairing phase where the characteristic inner sunflower
structure is a fingerprint of the chiral SC state.
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Figure 5 | Differential conductance (dI/dV) for the out-of-plane set-up at

zero temperature. The differential conductance is normalized by the

conductance of a N–I–N junction in the same geometry and shown as a

function of the quasiparticle energy E normalized by the reference bandgap

D. The curves of the dþ id and f pairing phases are given for graphene and

the cobaltates.
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Methods
Details of the fRG calculations. The strength of the fRG technique is evidenced
in both graphene and cobaltate examples: both display near-nested Fermi sur-
faces34,36, where SC has to compete with SDW and charge-density wave
instabilities. The emergent orders are then determined in an unbiased manner by
the renormalization group flow of the corresponding susceptibilities and of the
related interaction channels to low energies at the instability level, which is BkBTC

in the SC channel28.
The high-energy starting point is given by the Hamiltonian

H¼H0 þHint; ð2Þ

which is accurately determined for the band structure part H0 (typically taken from
a fit to an a priori density functional theory calculation) and for the interaction Hint

(taken for example from a constrained random phase approximation). Details of
the parameter choices can be found in ref. 28.

For the cobaltates, the Hamiltonian includes three hybridized orbitals per site
(dxy, dyz, dzx) and reads58

Heff ¼
X
hi;ji;a;b;s

tþ t0da;bþDdij
� �

cyiascjbs þ h:c:
� �

þ m
X
i;a;s

nias þU1

X
i;a

nia"nia#

þ 1
2

X
i;a 6¼ b

U2

X
s;n

niasnibn þ JH

X
s;n

cyiascyibnciancibs

 

þ JPcyia"c
y
ia#cib"cib#

�
;

ð3Þ

where cyias denotes the electron creation operator with spin s¼m, k and orbital
a at site i. The occupation number is defined as nias¼ cyiascias . In addition,
t represents the hopping mediated by Opz orbitals and t0 corresponds to a direct
Co-Co-hopping, D is the crystal-field splitting, and m the chemical potential.
These parameters are set to t¼ 0.1 eV, t0 ¼ � 0:02eV and D¼ 0.10 eV. The
parameters U1¼ 0.37 eV and U2¼ 0.25 eV are intraorbital and interorbital
Coulomb interactions, respectively. The remaining interaction parameters are
JH¼ Jp¼ 0.07 eV for Hund’s rule coupling JH and pair hopping Jp.

In graphene, the tight-binding Hamiltonian H0 is

H0 ¼ t1

X
hi;ji;s

cyi;scj;s þ t2

X
hhi;jii;s

cyi;scj;s þ t3

X
hhhi;jiii;s

cyi;scj;s þ h:c:

2
4

3
5�mn; ð4Þ

where n¼
P

i;s ni;s¼
P

i;s cyi;sci;s . cyi;s is the creation operator for an electron with
spin s at site i, m denotes the chemical potential, and t1?3 is the hopping strength
for nearest neighbour (1), second nearest neighbour (2) and third nearest
neighbour (3) hopping. Coulomb interaction is included by a long-range Hubbard-
type Hamiltonian Hint with

Hint ¼U0

X
i

ni;"ni;# þ
1
2

U1

X
hi;ji;s;s0

ni;snj;s0 þ
1
2

U2

X
hhi;jii;s;s0

ni;snj;s0 ; ð5Þ

where U0?2 gives the Coulomb repulsion scale from on-site (0) to second nearest
neighbour (2) interactions, respectively.

The near-degeneracy between SC and density-wave orders is strongly
influenced by a subtle interplay between deviations from perfect nesting (taken into
account in H0 of equations (3) and (4) via longer-ranged hopping terms) and the
absolute interaction scale. Similarly, the near-degeneracy between TRS-breaking
dþ id SC order and TRS-preserving f-wave SC order is affected both by the Fermi
surface topology and by the interaction terms. For example, in graphene at the
vHS, we assume perfect screening and consider a Hubbard-type of Hamiltonian
with on-site interaction U0¼ 10 eV. Here a dþ id SC phase is found (Fig. 1a).
Away from the vHS (x¼ 0.125), we take longer-ranged Coulomb interactions into
account (U1/U0¼ 0.45, U2/U0¼ 0.15). The latter interactions determine, in
particular, whether the competing f-wave SC instability is preferred. Using the
above Hamiltonian (equation (2)), we then employ the fRG and study how the
renormalised interaction evolves under integrating out high-energy fermionic
modes. At weak to moderate electron–electron interactions, this flow is accurately
described by the fRG method, where one considers the flow of a function f
(instead of a parameter) such as the interaction vertex, depending on four
momenta28. The renormalised interaction vertex (the 4-point function) is
VL(k1,k2,k3,k4), where the flow parameter L corresponds to the effective or low-
energy scale temperature and ki label the incoming and outgoing momenta and the
associated band indices. The starting conditions of the renormalization group are
given by the bare interactions as contained in equations (3) and (5), at an energy
scale of the order of the bandwidth. Following the flow (we are using the
temperature-flow fRG59) of the 4-point function (4PF) VL down to low energies,
the diverging channels at LC then signal the nature of the instability, with LC

providing an upper bound for TC. At this low-energy scale, the flow has to be
stopped and the remaining modes be treated with a different approach. We resort
to a mean-field scheme, where the effective interaction determines the SC gap
function. This is a standard procedure, which has been used in many applications
(for example, ref. 28).

The phase diagram for graphene is plotted in Fig. 1a. It displays the critical
instability scale LC B TC as a function of doping. The phase diagram for the water-
intercalated sodium cobaltates is presented in Fig. 1b as a function of doping and
interaction ratio. We note that, when the nesting of the FS is optimal, singlet dþ id
SC competes with, but wins over strong SDW fluctuations. On the other hand, in
the proximity of ferromagnetic fluctuations (which appear in the cobaltate case in
Fig. 1b for large interaction ratios U1/U2, where the large density of states (DOS) at
the vHS promotes fluctuations with zero-momentum transfer), triplet SC with a
f-wave gap form factor is dominant.

The 4PF VL(k,� k,q, � q) in the Cooper channel is, then, decomposed into
different eigenmode contributions28 as

WL;SCðk; pÞ¼
X

i

wSC
i ðLÞf SC

i ðkÞ
�f SC

i ðpÞ; ð6Þ

where i is a symmetry decomposition index. The leading instability of that channel
corresponds to an eigenvalue wSC

i ðLÞ first diverging under the flow of L. f SC
i ðkÞ is

the SC form factor of pairing mode i, which tells us about the SC pairing symmetry
and hence gap structure associated with it. In the fRG, from the final Cooper
channel 4PFs, this quantity is computed along the discretized FSs. f SC

i ðkÞ is the gap
function which enters the BTK formula (equation (1)) for the conductance (as an
example the harmonics for graphene with the short-range electron–electron
interactions are shown in Supplementary Methods).

Details of the STM calculations. For the STM-part of the calculation, we use the
N–I–SC junction set-up and solve the Bogoliubov–de Gennes equations for the
normal and the superconducting parts. The insulator is modelled by a delta-Dirac
potential barrier with strength H (ref. 46). We apply the approximation, that the
quasiparticle excitation energy E and the maximum absolute value of the pairing
potential max{|D|} are much smaller than the Fermi energy EF. Consequently, the
pairing is only relevant close to the Fermi surface. Within these approximations,
the wave function obtained by solving the Bogoliubov–de Gennes equations
(Supplementary Methods) is independent of the dispersion relation of the material
(we assume to have a quadratic term in the dispersion). We use the continuity
of the wave function at the interface and the matching of the derivative of the
wave functions of the normal and the superconducting side to obtain the coeffi-
cients for Andreev (rA) and normal (rN) reflection. The total conductance of the
N–I–SC junction is obtained by integrating the BTK conductance over all inde-
pendent contributions, which is integrating over all ky in our in-plane set-up.
We normalize the conductance by the conductance of a N–I–N junction in the
same geometrical set-up.

A peak in the conductance spectrum is obtained, if the following condition, first
reported by Kashiwaya et al.46 is fulfilled

GþG� ¼ ei Fþ �F�ð Þ; ð7Þ
where G� ¼ E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � D�j j2
p

D�j j , F±¼ arg(D±) and E denotes the quasiparticle
excitation energy. In general, F±af± because kF depends on f. However, for the
generic dþ id pair potential, F±¼f±.
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