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Summary 
 

Wilms tumor protein 1 (WT1) is a suitable target to develop an 

immunotherapeutic approach against high risk acute myeloid leukemia (AML), 

particularly their relapse after allogeneic hematopoietic stem cell transplantation 

(HSCT). As an intracellular protein traversing between nucleus and cytoplasm, 

recombinant expression of WT1 is difficult. Therefore, an induction of WT1-specific T-

cell responses is mostly based on peptide vaccination as well as dendritic cell (DC) 

electroporation with mRNA encoding full-length protein to mount WT1-derived peptide 

variations presented to T cells. Alternatively, the WT1 peptide presentation could be 

broadened by forcing receptor-mediated endocytosis of DCs.  

In this study, antibody fusion proteins consisting of an antibody specific to the 

human DEC205 endocytic receptor and various fragments of WT1 (anti-hDEC205-WT1) 

were generated for a potential DC-targeted recombinant WT1 vaccine. Anti-hDEC205-

WT1 antibody fusion proteins containing full-length or major parts of WT1 were not 

efficiently expressed and secreted due to their poor solubility and secretory capacity. 

However, small fragment-containing variants: anti-hDEC205-WT110-35, anti-hDEC205-

WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were obtained in 

good yields.  

Since three of these fusion proteins contain the most of the known immunogenic 

epitopes in their sequences, the anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and 

anti-hDEC205-WT1324-371 were tested for their T-cell stimulatory capacities. Mature 

monocyte-derived DCs loaded with anti-hDEC205-WT191-138 could induce ex vivo T-cell 

responses in 12 of 16 blood samples collected from either healthy or HSC transplanted 

individuals compared to included controls (P < 0.01). Furthermore, these T cells could 

kill WT1-overexpressing THP-1 leukemia cells in vitro after expansion.  

In conclusion, alongside proving the difficulty in expression and purification of 

intracellular WT1 as a vaccine protein, our results from this work introduce an 

alternative therapeutic vaccine approach to improve an anti-leukemia immune response 

in the context of allogeneic HSCT and potentially beyond.  
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Zusammenfassung 
 

Für die Entwicklung eines immuntherapeutischen Ansatzes zur Behandlung von 

hoch Risikopatienten mit akuter myeloischer Leukämie (AML) und insbesondere zur 

Vorbeugung von Rezidiven nach allogener Stammzelltransplantation (SZT) stellt das 

Wilms-Tumor-Protein 1 (WT1) ein geeignetes Angriffsziel dar. Die rekombinante 

Expression von WT1, welches als Transkriptionsfaktor vom Zytosol in den Zellkern 

transloziert, gestaltet sich äußerst schwierig. WT1-spezifische T-Zellantworten werden 

daher hauptsächlich mittels Peptidvakzinierung oder Transfektion dendritischer Zellen 

(DC) mit mRNA, welche das vollständige WT1-Protein kodiert, herbeigeführt. Letzterer 

Ansatz bietet den Vorteil, dass passierenden T-Zellen eine größere Vielfalt an WT1-

Peptidvarianten präsentiert werden kann. Eine verbesserte Peptidpräsentation kann 

außerdem über eine Optimierung der Rezeptor-vermittelten Endozytose der DCs erzielt 

werden. 

Ziel der folgenden Arbeit war es, ein rekombinantes DC-gerichtetes WT1-Vakzin 

zu entwickeln. Dazu wurden anti-hDEC205-WT1-Fusionsproteine,  bestehend aus einem 

Antikörper gegen den humanen DEC205-Endozytoserezeptor und verschiedenen WT1-

Fragmenten, konstruiert. Während sich Fusionsproteine, die das vollständige WT1-

Protein oder große Teile dessen beinhalteten, aufgrund ihrer schlechten Löslichkeit und 

schwachen Sekretion kaum exprimieren und aufreinigen ließen, lieferte die Produktion 

der Fusionsproteine mit kürzeren WT1-Fragmenten,  anti-hDEC205-WT110-35, anti-

hDEC205-WT191-138, anti-hDEC205-WT1223-273 und anti-hDEC205-WT1324-371, sehr gute 

Ausbeuten. Da letztere drei Proteine die meisten bislang bekannten immunogenen WT1-

Peptide in ihrer Sequenz enthalten, wurde anschließend ihre Fähigkeit zur T-

Zellstimulation untersucht. Dabei konnte in 12 von 16 Blutproben, die entweder von 

gesunden Spendern oder SZT-Patienten stammten, gezeigt werden, dass mit anti-

hDEC205-WT191-138 beladene, reife, aus Monozyten generierte DCs ex vivo signifikant 

stärkere T-Zellantworten auslösen als die jeweils mitgeführten Kontrollen (P < 0.01).  

Nach Expansion waren die so aktivierten WT1-spezifischen T-Zellen sogar in der 

Lage, die WT1-überexprimierende AML-Zelllinie THP-1 in vitro zu lysieren. 

In der vorliegenden Arbeit konnten daher nicht nur die bereits bekannten 

Schwierigkeiten der WT1-Expression und Aufreinigung bestätigt werden, sondern 
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darüber hinaus konnte eine alternative therapeutische Vakzinierungsmethode zur 

Optimierung der anti-leukämischen Immunantwort im Rahmen einer allogenen SZT 

entwickelt werden. 
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Section 1. Introduction 
 

 

1.1. Background 

Haematological malignant diseases are often difficult to be cured due to their 

heterogeneous and complex pathophysiology as well as progressive characters and 

systemic manifestation. On account of advanced treatment options including intensive 

chemotherapy, allogeneic haematopoietic stem cell transplantation (allo-HSCT) and 

molecular targeted therapy, the disease-free (DFS) and overall survival (OS) rates of 

patients suffering from these diseases have been remarkably ameliorated. For instance, 

acute myeloid leukemia (AML), one of the poor prognostic malignancies, is treated now 

with 60-80% of complete remission (CR) and 30-60% of long-term survival rates, not at 

least due to establishing allo-HSCT as a treatment option. However, 20-70% of the allo-

HSC transplanted patients are affected by relapse and only 2-20% of them have a 

possibility to receive second transplantation (Savani et al. 2009). AML patients who are 

not candidate for allo-HSCT because of their age or comorbidities have even poorer 

prognosis. Thus, there is an urgent clinical need to improve the current treatment 

modalities by combining HSCT with other immunotherapy strategies (Barrett and Le 

Blanc 2010).  

The most promising immunotherapeutic strategies for haematological malignant 

disorders are drug-conjugated monoclonal antibodies, T-cell engaging antibody 

constructs, adoptive transfer with chimeric antigen receptor (CAR) T cells, and dendritic 

cell (DC) vaccination (Lichtenegger et al. 2015). Plantinga et al. have recently reviewed 

that the latter strategy is an attractive and effective treatment modality to prime and/or 

stimulate tumor-specific cytotoxic T cells (CTLs) in early phase after allo-HSCT, in a 

setting of a better-predicted immune reconstitution. The selection of specific tumor-

associated antigen (TAA) and manoeuver of antigen loading have a major impact on the 
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priming capacity of the DC (Plantinga et al. 2014). With this work, we contributed to the 

DC vaccination strategy to AML treatment in the context of allo-HSCT using Wilms tumor 

protein 1 (WT1). 

 

 

1.2. State of current knowledge and contribution 

 

 

AML is a heterogeneous clonal disorder of haematopoietic progenitor cells. 

Approximately, four new cases of AML per 100 000 people are diagnosed each year.  

Various genetic alterations have been detected in patients with AML which result in a loss 

of normal regulation of growth, differentiation, and apoptosis of haematopoietic cells.  

This leads to an accumulation of cells (blasts) with uncontrolled proliferative capacity 

and ineffective function in peripheral blood and bone marrow. Consequently, normal 

haematopoiesis is displaced by the abnormal cell expansion. The survival rate is strongly 

dependent on age, comorbidities, disease type and advancement, and response to 

chemotherapy. Other adverse prognostic factors include central nervous system 

involvement with leukemia, systemic infection at diagnosis, elevated white blood cell 

count, therapy-induced AML, and history of MDS or other antecedent haematological 

disorders. The long-term survival rates in adult AML are inversely related to age (Table 1, 

Cancer research UK, statistics based on the data 2008-2012).  

Table 1. The long-term survival rate in patients with AML. 

Age <14 15-24 25-64 65< 

5-year survival 66% 60% 40% 20% 

 

Cytogenetic analysis at the time of diagnosis provides the most important 

prognostic information, predicting outcome after induction chemotherapy, relapse rate, 

and OS (Estey and Dohner 2006). In 2010, recommendations from an international 

expert panel on the diagnosis and management of AML in adults were updated and 

proposed four different genetic groups (Table 2) to standardize reporting system of 

genetic abnormalities  (Dohner et al. 2010). These genetic groups directly correspond to 
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clinical outcomes. Between 10% and 40% of the newly diagnosed patients do not achieve 

an complete remission with intensive induction therapy and are therefore categorized as 

primary refractory or resistant (Thol et al. 2015).  

Table 2. Prognosis for AML patients on the basis of their genetic abnormalities (Dohner et al. 
2010).  

Genetic group Subsets 

Favorable 

t(8;21)(q22;q22); RUNX1-RUNX1T1 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

Mutated NPM1 without FLT3-ITD (normal karyotype) 

Mutated CEBPA (normal karyotype) 

Intermediate-I 

Mutated NPM1 and FLT3-ITD (normal karyotype) 

Wild-type NPM1 and FLT3-ITD (normal karyotype) 

Wild-type NPM1 without FLT3-ITD (normal karyotype) 

Intermediate-II t(9;11)(p22;q23); MLLT3-MLL 

Cytogenetic abnormalities not classified as favorable or adverse 

Adverse 

inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 

t(6;9)(p23;q34); DEK-NUP214 

t(v;11)(v;q23); MLL rearranged 

−5 or del(5q); −7; abnl(17p); complex karyotype 

 

Depending on age and  other prognostic values, patients with AML are treated with 

standard chemotherapy regimens and HSCT as well as salvage therapies. The standard 

chemotherapy treatment is divided into two phases: a remission induction and a post 

remission. To achieve the complete remission, induction of a profound bone marrow 

aplasia is usually necessary with currently used combination chemotherapy regimens. 

The two most effective drugs used to induce remission in patients with AML are 

cytarabine and an anthracycline (mostly daunorubicin). Salvage chemotherapy regimens 

have been tested for different subtypes of the disease. Since the myelosuppression is an 

anticipated consequence of both leukemia and its treatment with chemotherapy, patients 

must be closely monitored during therapy. Antibacterial, antifungal prophylaxis or 

treatment, as well as  haematopoietic growth factors, blood cell fractions (red blood cell 

and platelet), and other supportive care are needed.  
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The postremission therapy is to prolong the duration of the initial remission with 

induction chemotherapy or HSCT. In practice, most patients are treated with an intensive 

chemotherapy after remission is achieved, as only a small subset of the patients have a 

matched-family donor. The most commonly used regimen for postremission 

consolidation is high-dose cytarabine and it improves clinical outcome. Patients of the 

intermediate and adverse genetic groups are candidates for HSCT to benefit from the GvL 

effect and potential cure after significant reduction of leukemia burden as a result of prior 

induction/reinduction therapy. However, even with such advanced treatment options, 

the long-term survival rates of patients are still not satisfactory.  

Thereupon huge research efforts and clinical trials have been carried out for 

refractory/relapsed AML patients since highly effective and standardized treatments for 

this situation are still not available. In this regard, immunotherapy is auspicious, indeed, 

various efforts to achieving to a good clinical outcome have been explored.  

 

 

The most prominent immunotherapy to fight AML is the HSCT. In addition, various 

immunotherapeutic approaches including cytokine therapy, monoclonal antibodies, 

therapeutic vaccines,  chimeric antigen receptors and bispecific antibodies have been 

developed for AML treatment (Figure 1) (Grosso et al. 2015). IL-2 or IFN-monotherapy 

was tested for stimulation of the immune system during the first remission period after 

induction chemotherapy. However, a significant impact of the cytokine therapy on OS and 

DFS was not reached, meaning that cytokine therapy alone is insufficient to the disease 

with complex mechanism of pathogenesis. Various types of monoclonal antibodies 

(mAbs) with or without conjugation of cytotoxic drugs and radioisotopes have been 

evaluated for AML treatment. Among them, Gemtuzumab ozogamicin (GO), a 

recombinant, humanized CD33 mAb has been reported to prolong survival of AML 

patients with favorable cytogenetics. The CD19-targeting bispecific T cell engaging 

(BiTE) antibody, Blinatumomab, was successful to initiate cytotoxic T cell response to 

acute lymphoblastic leukemia. Initial tests with the CD33 targeted BiTE AMG330 

revealed furthermore that AMG330 is able to lyse primary leukemia cells (Krupka et al. 

2014). Chimeric antigen receptor (CAR) T cells are thought to be promising to eliminate 

leukemia cells. CAR is antigen-specific variable heavy and light chain domains 
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constructed on the intracellular signaling domain of the T cell receptor (TCR). T cells 

expressing IL-3 receptor  chain (CD123)-specific CARs have been appreciated by 

preclinical studies and  to be tested in phase I clinical trial (Mardiros et al. 2013).    

 

 

 
 
 
 
 

Figure 1. Current immunotherapeutic approaches to AML.  

mAbs, monoclonal antibodies; 131I-HuM195, iodine-131 labeled humanized monoclonal antibody 
195; CAR, chimeric antigen receptor; LEY, Lewis antigen;  BiTE, bispecific T-cell engager; scFv, 
single chain variable fragment; IFN, interferon; IL-2, interleukin-2; NK, natural killer; WT1, 
Wilms tumor 1; PR3, proteinase 3; CTL, cytotoxic lymphocytes; GM-CSF-granulocyte-
macrophage-colony-stimulating factor; HLA, human leucocyte antigen; miHC, minor 
histocompatibility. (Adapted from Grosso, Hess et al. 2015) 
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1.2.2.1. Haematopoietic stem cell transplantation (HSCT) and Graft-versus-

Leukemia (GvL) effect  

 

It is exactly 60 years after the first human bone marrow grafting programme was 

began by E. Donnal Thomas and his colleagues. As long as it aged, HSCT, the most 

successful of the immune-based therapies, has developed to a standard therapy for AML 

and other haematological malignancies. HSCT is the transplantation of multipotent 

haematopoietic stem cells (HSCs), usually derived from bone marrow, peripheral blood, 

or umbilical cord blood. Depending on the source of HSCs, there are three types of the 

transplantation: autologous, allogeneic, and cord blood. Stem cells are defined as 

undifferentiated cells capable to divide for indefinite periods, to self-renew and to 

generate functional progeny of highly specialized cells. HSCs are the prototype of 

multipotent adult tissue stem cells. In a step-wise differentiation process, HSCs give rise 

to the committed oligopotent progeny of the lymphoid and myeloid lineages and, further 

downstream, to the lineage-restricted unipotent precursors of mature blood cells. It is 

thought that normal stem cells transform to malignant stem cells keeping the mechanism 

for self-renewal. Most leukemic cells have a limited capacity for proliferation and are 

continuously replenished by leukemic stem cells. Normal and malignant stem cells are 

quiescent, therefore insensitive to the chemotherapy which acts mostly on proliferating 

cells. Both normal and malignant stem cells repair DNA efficiently, resist apoptosis, and 

excrete toxic drugs with the help of ATP-binding transporters. Thus, although 

chemotherapy can destroy a tumor almost completely, the stem cells are remained, 

allowing the cancer to recur. Such cells can be eliminated by immunologically active 

donor cells in allogeneic grafts (Copelan 2006). In allo-HSCT, if recipient T cells recognize 

foreign donor antigens, graft rejection may occur, whereas donor T cells recognizing 

recipient antigens may induce graft-versus-host-disease (GvHD) and graft-versus-

leukemia (GvL) effects.  

The GvL effects are mediated by donor derived CD8+ and CD4+ T cells as well as by 

NK cells and macrophages. An important mechanism of the GvL effect is that donor 

immune cells are reactive to recipient major (MHC) and minor (miHC) histocompatibility 

antigens. MHC class I and II molecules on the recipient APCs can be directly recognized 

by allo-T cells. Alternatively, allo-T cells indirectly recognize recipient MHC class II-

derived or other protein-derived peptides presented by donor APCs. Since GvHD and GvL 

https://en.wikipedia.org/wiki/Multipotent_hematopoietic_stem_cell
https://en.wikipedia.org/wiki/Multipotent_hematopoietic_stem_cell
https://en.wikipedia.org/wiki/Autologous_stem_cell_transplantation
https://en.wikipedia.org/wiki/Allotransplantation
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effect are strongly associated with each other, major histocompatibility molecules 

targeted by allo-T cells are able to induce both of them. Minor histocompatibility antigens 

are polymorphic and diversify recipient peptide-HLA complex presented to allo-T cells 

(Figure 2). HA-1, HA-2, HA-8, UGT2B17, HB-1, ACC-1, ACC-2, B8/H-Y, and LRH-1 miHC 

antigens are haematopoietic tissue-restricted, therefore, they are thought to be crucial to 

induce GvL effect against certain type of leukemia (Sprangers et al. 2007). If allo-T cells 

respond to miHC antigens expressed on haematopoietic and epithelial cells, rather a 

development of GvHD occurs. The allo-reactive cells to miHC antigens inhibit the growth 

of leukemic colonies, thus, leukemic stem cells can be eliminated by means of this 

mechanism. The third mechanism of allo-T cell mediated GvL effect is implemented by 

targeting of  tumor associated antigens (TAAs).  

 

 
TAAs are non-polymorphic and aberrantly expressed by tumor cells. WT1, 

proteinase 3, and survivin are known to eliciting anti-leukemia immune responses and T 

cells specific to those TAAs can inhibit leukemic, but not normal colony formation (Gao 

et al. 2000). Therefore, GvL effect can be strengthened by improving the TAA-specific T 

cell response.  

Figure 2. Generation of miHC antigens.  

Minor histocompatibility antigens are generated by gene nucleotide polymorphisms that lead to 
differences in the amino-acid sequences of homologous proteins between donor and recipient 
cells. Polymorphic proteins are degraded within the proteasome. Peptides derived from the 
degraded protein are then transported to the endoplasmic reticulum, where they bind HLA 
glycoproteins. The peptide-HLA complexes travel through the Golgi apparatus to the cell surface, 
where the peptides are recognized as foreign by T cells. Adapted from (Bleakley and Riddell 
2004).  
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1.2.2.2. AML vaccines  

 

In 1977, a cancer vaccine trial with bacilli Calmette-Guerin (BCG) and  irradiated 

autologous leukemia cells reported prolonged remission and survival in the vaccinated 

group (Powles et al. 1977). In 1990, the first donor lymphocyte infusion was performed 

for treatment of leukemic relapse after HSCT (Kolb et al. 1990). These important 

demonstrations of  leukemia-specific T cell responses led to the development of an array 

of AML vaccines in order to support GvL effect in the setting of HSCT and control minimal 

residual disease (MRD) by stimulating anti-leukemic immune responses in high-risk 

patients after HSCT as well as non-HSCT candidates after cytotoxic therapy. There are 

two main directions in the development of AML vaccines: peptide vaccines derived from 

TAAs and DC vaccines.  

1.2.2.2.1. Peptide vaccines:  

Wilms tumor protein 1 (WT1), proteinase 3, mucin 1 (MUC-1) (Kuball et al. 2011) 

and receptor for hyaluranon-mediated motility (RHAMM) (Schmitt et al. 2008) have been 

evaluated as peptide vaccines in AML vaccine strategies. For various TAAs, WT1 was 

prioritized as a vaccine candidate due to its therapeutic impact, immunogenicity, tissue 

restricted expression, and leukemogenic characteristics (Cheever et al. 2009). WT1126-134 

(Keilholz et al. 2009), WT1122-140, WT1331-352, WT1427-445  (Maslak et al. 2010), WT1235-243 

(Tsuboi et al. 2012) peptides were tested for their immunogenic capacities in vitro and in 

vivo. The WT1126-134 peptide vaccine trial by Keilholz et al. showed that at week 18 after 

vaccination, the median frequency of WT1 tetramer positive T cells in the bone marrow 

and peripheral blood of patients increased from baseline frequencies of 0.18 % and 0.12 

% to frequencies of 0.41 % and 0.28 %. Importantly, the increased frequency of WT1-

specific T cells were functional and remained at stable levels for follow up period.  

Rezvani et al. reported that the median value of the absolute number of WT1-specific 

CD3+CD8+ T cells after vaccination were 4-fold higher than that before vaccination (328 

vs 95 cells per mL). Entirely, WT1 peptide vaccine studies demonstrated immunologically 

as well as clinically positive and safe results.  

Common limitations for peptide vaccines are the human leukocyte antigen (HLA) 

restriction and need for prior identification of immunogenic epitopes (Benteyn et al. 

2013). To overcome these limitations, several approaches including transfection of 

dendritic cells (DCs) with WT1-encoding DNA (Chaise et al. 2008) or full mRNA (Van 
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Driessche et al. 2009) as well as treatment with long and polyvalent WT1 peptide (Maslak 

et al. 2010), (Weber et al. 2013), (Brayer et al. 2015) vaccines have been tested. Chaise et 

al. immunized HHD transgenic mice (HLA-A0201* expressing) with three different WT1 

DNA vaccines each encoding one of the HLA-A0201* restricted WT1-derived peptides: 

WT1.37 (VLDFAPPGA), WT1.126 (RMFPNAPYL) and, WT1.235 (CMTWNQMNL). The 

mice received 50 g of DNA by intramuscular injection for CD8+ T cell priming at day 0, 

while at day 28, the same amount of DNA was applied by in vivo electroporation for 

boosting. The DNA vaccination induced functional T cells to the three clinically relevant 

HLA-A0201*-restricted epitopes, in vivo. By injection of the DNA encoding the three 

promising epitopes at different sites, tumor immune escape mechanism could be 

overcome, however, only HLA-A0201*-positive patients could benefit from this 

approach.  

Modifying native peptides to more antigenic peptides by amino acid substitution 

in their sequences (heteroclitic peptides) is considered to be beneficial to improve 

immunity to self-proteins. Maslak et al. reported results of a pilot clinical study using 

polyvalent vaccine consisting of four heteroclitic WT1 peptides (one peptide for CD8+, 

two long peptides for CD4+, and one for both subsets) in nine AML patients at CR status. 

They showed that immune responses of both CD4+ and CD8+ T cell subsets to the peptides 

in seven patients, however, median DFS had not been reached. Notably, median OS of the 

patients were longer than estimated average (35+ months vs 9 months). Similarly, Brayer 

et al. assessed the safety, tolerability, and immunogenicity of vaccination with 

combination of WT1 peptides restricted to different HLA molecules. Three of the 14 

vaccinated patients with AML or MDS showed prolonged relapse-free survival. Weber et 

al. generated multi-TAA-specific T cells from peripheral blood of healthy donors using 

peptide mix covering whole WT1 and other four TAAs. The generated pool of CTLs 

included different specificities and WT1-specific T cells were found within the pool. 

Overall, it is accepted that vaccination strategies using WT1 are safe and have a potential 

to improve immune responses against leukemia. Therefore, in WT1-based vaccination, 

alternatives have been searched to improve the feasibility and effectiveness of this 

approach.    

 

1.2.2.2.2. DC vaccines:  

DC vaccination is another icon to induce strong and sustained CD4+ and CD8+ T-

cell responses in patients with AML. In the context of allo-HSCT, Fujii S. et al. were the 
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first to test DC vaccination. Four patients achieved tumor antigen-specific immunological 

response as a result of tumor cell pulsed HLA-matched allogeneic donor derived DC 

vaccination (Fujii et al. 2001). Subsequently, in this field, DCs  loaded with tumor cell 

lysates or TAA-derived peptides, DCs electroporated with mRNA encoding full-length 

protein antigens, as well as tumor peptide pulsed DC-derived exosomes have been tested. 

DCs can be generated from AML patients in remission and be rendered more antigenic by 

exposure to AML lysates (Galea-Lauri et al. 2002) or fusion with AML blasts (Banat et al. 

2004). Autologous moDCs transfected with mRNA encoding WT1 protein were able to 

induce a broad presentation on HLA class I and II molecules by DCs (Van Tendeloo et al. 

2010). In detail, monocyte-derived DCs were electroporated with the mRNA encoding 

full-length WT1, then injected intradermally at biweekly intervals four times. As a result, 

an immunological response comprising NK and CD8+ T cell activation were induced. 

Moreover, five of ten vaccinated patients with AML achieved molecular remission and in 

the two of those five, incomplete remission converted to complete remission. The fact 

that the achieved effects were transient was probably explained by the lack of CD4+ T cell 

stimulation which is otherwise considered to be necessary for the maintenance of long-

term CD8+ T cell memory. This approach is promising, but it seems to be laborious and 

the transfection efficiency of DCs is variable, thereby, the following effect could be varied.  

Classical prophylactic vaccines are mostly injected intramuscularly or 

subcutaneously where they are captured by various types of APCs. Upon activation, these 

APCs migrate to the lymph nodes to activate T cells. Whereas the concept of direct 

targeting of DC subsets in situ (resident) may overcome the need for cell migration and 

facilitate the instant delivery of antigen to resident DC subsets in the spleen and the 

lymph nodes. To this end, intra- and extracellular receptors expressed by DCs have been 

extensively targeted (Kreutz et al. 2013). Importantly, targeting of antigen directly to DCs 

reduces the required dose of antigen remarkably.  

The most common type of DCs used in DC vaccine studies are autologous moDCs, 

although isolation of mDCs or pDCs from peripheral blood as well as the use of the MUTZ-

3 cell line has been reported. Recently, de Haar et al. reported that cord blood derived 

CD34+ DCs are capable of inducing a WT1-specific T cell response after their 

differentiation, maturation and electroporation with WT1 mRNA (de Haar et al. 2015). 

Important parameters to optimize DC vaccines after HSCT were listed in Table 3. In 

addition, intrinsic characteristics of DCs such as intracellular signaling, antigen 

processing, presentation, and expression of effector molecules seem to be crucial to 
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switch on their immunity-inducing capacity. Finally, interaction of DCs with other cellular 

and soluble factors may have an impact on induction of immune responses to leukemia 

cells, too. Nevertheless, DC vaccination is a virtue of  immunotherapy against various 

tumors including AML. 

 

Table 3. Parameters for optimization of DC vaccines (Plantinga et al. 2014). 

Cell sources Type of DCs Maturation Loading 

Bone marrow CD14+ 
monocytes 

Cytokine 

cocktails 

Peptide 

Cord blood Adherent 
monocytes 

TLR agonists Protein 

Mobilized HSCs in 
peripheral blood 

CD34-derived Interferons Cell lysate 

 Primary DCs CD40L Fusion 

  TNF- RNA/DNA 
electroporation 

  Others Endocytic receptor-
specific antibody 

conjugated protein 
 

 

 

Therapeutic antibodies inhibit a target that plays a major role in disease 

progression or cause the cytotoxic death of target cells. Alternatively, antibodies are used 

as carriers to target cytotoxic and imaging agents, such as radioisotopes, toxins, and 

drugs, to the site of a disease. The various clinical applications of antibodies lead to their 

modifications in terms of size, pharmacokinetics, immunogenicity, specificity, valency 

and effector functions. Antibodies have also been expressed as fusion proteins for the 

targeting of diverse cytokines, protein antigens, toxins, and enzymes for therapeutic 

applications (Jain et al. 2007). The first example of antibody engineering was the 

development of the single chain variable fragment (scFv) format of antibody, consisting 

of the variable heavy and light chains linked by a short peptide (Figure 3). The scFv format 

offers several advantages including better tissue penetrance, no binding to Fc receptors, 

avoidance of host antibody response, short serum half-life, and low cost. Another 

example of antibody engineering is the nanobody format, which is derived from the 

variable heavy domains of immunoglobulin, are the smallest antigen binding domains. 
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Multimerization of antibody fragments (miniabody, diabody, triabody) and 

incorporation of two specificities into a single antibody (bispecific antibody) have also 

been developed.  

 

 

Engineered antibodies have  been used for cytokine carriers to tumor tissues 

(Kontermann 2012). For instance, IL-15, IL-2, GM-CSF, IFN-, and death ligands (TNF, 

TRAIL, FasL) have been fused to antibodies with different specificities for various 

therapeutic applications. One of the latest developments in antibody engineering has 

been used for delivery of tumor antigen to APCs in order to facilitate accessibility of the 

antigen by the APCs (Idoyaga et al. 2011).           

 

 

WT1 gene is located at chromosome 11q13 and encodes a Krüppel type zinc finger 

transcription factor that plays an essential role in cell growth and differentiation (Call et 

al. 1990), (Gessler et al. 1990). A continuous shuttling of WT1 protein between nucleus 

and cytoplasm (Niksic et al. 2004) may reflect its complex roles in different cell function 

during both embryogenesis and ontogenesis. In embryonic development, WT1 is mostly 

expressed in the endoderm and mesoderm originated organs: the highest in kidneys and 

gonads as well as heart, lungs, intestines, spleen, peritoneum, pleura, and pericardium. 

Figure 3. Structural scheme of therapeutic antibody (IgG1) and single chain variable fragment 
(scFv) constructs.  

Fab, antigen binding fragment; Fv, variable fragment, Fc, constant fragment; VH, variable 
domain of the heavy and light chains. 
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Its expression is also detected in distinct regions of the brain, spinal cord, and eyes which 

are developed from ectoderm (Armstrong et al. 1993). Thus, the broad expression profile 

of WT1 indicates its essential and universal role in tissue generation and intrauterine 

development of human. Postnatally, the expression of WT1 is strongly restricted to a 

limited set of tissues, including the gonads, uterus, kidneys and mesothelium, and to 

progenitor cells in various types of tissues including haematopoietic stem cells (Park et 

al. 1993, Buckler et al. 1991).  

 

The WT1 gene consists of ten exons flanking huge introns and there are two 

different alternative splices of WT1; exon 5 encoding 17 amino acids and 9 nucleotides 

encoding terminal three amino acids (KTS) of exon 9 (Figure 4) (Haber et al. 1991) 

(Gessler et al. 1992). Due to alternative transcription initiation, alternative pre-mRNA 

splicing, RNA editing and alternative translation initiation, at least 36 different isoforms 

are translated from the same DNA template (Kramarzova et al. 2012). An isoform 

(P19544-1, UniProtKB) consisting of 449 amino acids, has been chosen as canonical 

sequence. It is translated from the first AUG site in exon 1 of the gene and the two splices 

are present. Depending on presence of the two splices, there are four major isoforms of 

WT1: WT1_A (exon5-/KTS-), WT1_B (exon5+/KTS-), WT1_C (exon5-/KTS+), and WT1_D 

(exon5+/KTS+). Consisting of 522 amino acids, WT1_D (P19544-7, UniProtKB) is the 

longest isoform described so far, because its translation is initiated from non-AUG site at 

upstream of the gene.  

 

Figure 4. Scheme structure of WT1 gene (top) and WT1_D protein (bottom).  

Red frames, alternative splices; black triangles, nuclear localization signals; Zn, zinc ion in the 
DNA-binding zinc finger domain. 
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Three functional domains have been defined within WT1 protein: RNA 

recognition and homodimerisation, transcriptional regulatory, and DNA binding (zinc 

finger) domains. The zinc finger domains of WT1 bind to GC-rich sequences, or (TCC)n 

motif of thereby regulating the expression of downstream target genes (Tatsumi et al. 

2015). An array of genes involved in MAPK, Wnt, and TET signaling, epithelial-

mesenchymal transition etc. is supposed to be potential WT1 targets. Moreover, WT1 

function is complicated by its ability to bind RNA (Larsson et al. 1995). In general, several 

opposing functions of WT1: as an activator or repressor in transcriptional processes, a 

role for WT1 in RNA metabolism, and posttranscriptional regulation has been described 

(Hohenstein and Hastie 2006).  

WT1 plays significant roles in human diseases. The WT1 gene was originally 

defined as a tumor suppressor gene in Wilms tumor, a pediatric kidney cancer of 

embryonic origin. Virtually, 10-20 % of Wilms tumor cases have a mutated WT1 gene and 

over 50 % of cases have decreased expression of wild type WT1 (Huff 1998). A mutation 

or deletion affecting WT1 gene induces rare genetic disorders presenting symptoms of 

nephropathy, genitourinary anomaly, Wilms tumor, mental and physical retardation 

(WAGR, Denys-Drash syndromes) in humans. In these diseases, WT1 serves as a tumor 

suppressor gene. In contrast, WT1 gene is able to act as an oncogene in leukemogenesis 

(Sugiyama 2005) (Osaka et al. 1997) (Menke et al. 1998). It is highly expressed in most 

cases of acute myeloid and lymphoid leukemia (Inoue et al. 1997), advanced 

myelodysplastic syndrome (Tamaki et al. 1999), chronic myelogenous leukemia (Inoue 

et al. 1994), and multiple myeloma  (Hatta et al. 2005). Sugiyama et al. conceptualized 

that WT1-expressing progenitor cells can differentiate into tissue-specific cells by down-

regulation of WT1 expression, but if this down-regulation is impaired, the WT1-

expressing progenitor cells continue to proliferate and transform as a result of 

occurrence of secondary, tertiary or further genetic alterations (Sugiyama 2010). 

Consistent with the cell survival and oncogenic roles of the WT1 protein, increased WT1 

levels have prognostic significance and are associated with a poor response to therapy 

(Barragan et al. 2004, Casalegno-Garduno et al. 2015). For AML cases, WT1_D is the most 

predominant from the four major isoforms (Kramarzova et al. 2012, Siehl et al. 2004).  
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Due to the supporting evidences of its oncogenic function, WT1 has been 

extensively targeted for immunotherapy to treat cancer. WT1-derived peptide specific 

cytotoxic CD8+ T cells are induced by stimulation with WT1 peptide pools and efficiently 

kill leukemic cells (Oka et al. 2000), (Gao et al. 2000), (Tsuboi et al. 2002), (Azuma et al. 

2002). In patients with haematological malignancies, serum titers of IgM and IgG, specific  

 

for WT1 have been detected at higher levels than those in healthy donors (Elisseeva et al. 

2002). Importantly, in previous vaccination trials using WT1-peptide loaded or WT1 

mRNA transfected DCs, there were no reports about autoimmunity induced by the 

vaccine (Oka et al. 2004), (Kitawaki et al. 2008), (Van Tendeloo et al. 2010). Van 

Driessche et al. have reviewed early clinical trials targeting WT1 protein for patients with 

haematological malignancies and solid tumors (Van Driessche et al. 2012). Based on the 

WT1 antigen source, the clinical trials can be divided into four groups: (a) human 

leukocyte antigen (HLA)-restricted peptide vaccines, (b) non-HLA restricted long peptide 

vaccines, (c) dendritic cell (DC) vaccines loaded with HLA-restricted peptide and (d) DC 

vaccines loaded with mRNA encoding full-length WT1. These vaccines could elicit WT1-

specific immune responses and exhibited objective clinical responses in up to 64% of 

evaluable vaccinated patients with haematological malignancies. Although several 

antigenic epitopes are known for induction of T cell response, it is still needed to detect 

more antigenic epitopes from WT1. Contributing to this, Doubrovina et al. identified 

clusters of antigenic epitopes in WT1 protein sequence and these epitopes are spread 

mainly in N-terminal and middle part of WT1 (Figure 5) (Doubrovina et al. 2012).  

Because of the strong binding to nucleotide sequences (Hamilton et al. 1995) and 

its complex interactions with posttranscriptional regulators (Ladomery et al. 1999), WT1 

 

Figure 5. Potential antigenic epitopes spread in WT1 protein sequence.  

White, N-terminal extension of WT1_D; blue, canonical sequence of WT1; green, two alternative 
splices; yellow, potential epitopes restricted to HLA class I; pink, epitopes restricted to HLA class 
II. Adapted from (Doubrovina et al. 2012). 
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is assumed to be hardly expressed as a full-length protein (Geng and Carstens 2006). So 

far, using different soluble tags and buffer conditions, full-length human WT1 and its zinc 

finger domain has been expressed and purified  for functional studies (Nurmemmedov 

and Thunnissen 2006) (Fagerlund et al. 2012), but not yet for protein vaccine studies.  

 

 

 

Dendritic cells (DCs) are present in all tissues and involved in the initiation of 

immune responses. They are part of the myeloid lineage of haematopoietic cells and arise 

from a precursor that can also differentiate into monocytes but nor granulocytes. 

Maturation of DCs is dependent on a cytokine called Flt3 ligand, which binds to the Flt3 

tyrosine kinase receptor on the precursor cells. All subsets of human DCs are defined by 

high levels of MHC class II (HLA-DR) and lack of lineage markers (CD11c+HLA-DR+lin- 

cells). Those cells are divided into three classes: myeloid (mDCs), plasmocytoid (pDCs) 

and monocyte derived (moDCs) DCs (Collin et al. 2013). There are also very specialized 

DC  subsets in the skin (Langerhans cells) and the parenchyma of the brain (microglia).  

Immature DCs in extra-lymphoid tissues endocytose foreign proteins. If they are 

activated or matured by various co-stimuli, DCs migrate to the draining lymph nodes and 

present antigenic determinants via HLA class I and II molecules to T cells. By virtue of 

especial cytokines, different types of DCs are able to prime distinct helper T cell subsets 

(Table 4). In the presence of immunostimulatory cytokines IL-12 and IFN-, mature DCs 

prime TH1 cells which provide help in priming CD8+ effector T cells. TH2 cells that drive 

humoral responses are primed with mature DCs secreting IL-4, IL-6, and IL-10. Whereas 

DCs which are either unable to secrete cytokines, or secrete immunosuppressive 

cytokines IL-10, TGF-β can be responsible for regulatory T cells (Treg) (Mays and Wilson 

2011). In the absence of activation signals, immature DCs elicit immunological tolerance 

toward the antigen (Bonifaz et al. 2002). However, in combination with activation signals 

such as CD40 agonists, protective antigen-specific CD4+ and CD8+ T cell responses can be 

stimulated (Bonifaz et al. 2004) (Gurer et al. 2008).  

Usually, antigens derived from intracellular origins are presented by the HLA class 

I presentation system while extracellular antigens are preferentially presented on the 

HLA class II molecules. However, DCs have a unique ability to cross present antigens: 

extracellular antigens on the HLA class I molecules (mediated by cytosolic processing of 
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antigens escaped from endosome) whereas intracellular antigens on the HLA class II 

molecules (mediated by autophagy) (Romao et al. 2013). Antigen cross-presentation by 

DCs is of key importance for the induction of anti-tumor immunity thereby CD8+ 

cytotoxic T cells  specific to tumor derived antigens are primed. Furthermore, it could be 

inevitable to sustain the anti-tumor immunity because tumor cell autophagy-derived 

endogenous antigen presentation on MHC class II molecules by tumor cells activate CD4+ 

T cells which in turn endorse the effector function of cytotoxic T cells.  

Table 4. Cytokines and helper T cell priming of DCs. 

 

The type of receptors on the surface of DCs and their interaction with cognitive 

antigen are involved in the maturation and cytokine secretion of different subsets of 

either immunogenic or tolerogenic DCs. DCs express various C-type lectin receptors such 

as macrophage mannose receptor (MMR), DC-SIGN, DEC205 (Figure 6) which all function 

as endocytic receptors (van Kooyk 2008). The extra-cellular domain of those molecules 

contains a cysteine-rich domain (CysR), a fibronectin type II domain (FNII), and multiple 

C-type lectin-like domains (CTLD). The cytoplasmic domains contain motifs for tyrosine 

(Tyr-) and/or dihydrophobic amino acid-based endocytosis.  

Maturation 
state of DCs 

DC cytokines 
(Signal 3) 

Primed 
helper T cells 

Signature 
cytokines 

Response 

Mature IL-12, IFN- TH1 IFN-g, TNF-a, 
IL-2 

Cytotoxic T cell 
response 

Mature IL-4, IL-6, 
IL-10, low IL-12 

TH2 IL-4, IL-6, 
IL-10, IL-13 

B cells and 
antibody 

Mature or 
semi-mature 

TGF-, IL-10 Treg IL-10, TGF-b Immune 
suppression 

Immature Cytokine 
negative 

  Ignorance, 
Anergy/deletion 
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The DEC205 (CD205, Ly75, 205kDa) receptor was first identified in mice (Jiang et 

al. 1995). Its expression in human  was mainly identified on DCs and thymic epithelial 

cells. Park et al. reported that DEC205 is the only endocytic receptor that has been 

visualized on most DCs in the T cell areas of lymph nodes in humans (Park et al. 2012). 

Similar to other members of C-type lectin receptors, the DEC205 consists of CysR, FNII 

and ten CTLDs. Depending on environmental pH, the 12 extracellular domains undergo 

conformational changes (Figure 7), i.e., form a compact double ring-shaped conformation 

at acidic pH and become linear at basic or physiological pH (~7.4). This pH-dependent 

conformational change of the DEC205 may result in ligand binding and release. The 

DEC205 only binds to apoptotic and necrotic cells at acidic pH, whereas live cells cannot 

be recognized by DEC205 at either acidic or basic conditions (Cao et al. 2015). These 

results suggest that DEC205 is an immune receptor that recognizes apoptotic and 

necrotic cells specifically through a pH-dependent mechanism.    

Figure 6. Structural scheme of C-type lectin receptors on the surface of DCs.                               

MMR, macrophage mannose receptor; CysR, Cysteine rich domain; FNII, Fibronectin type II 
repeat; CTLD, C-type lectin (carbohydrate recognition) domains; TBM, Tyrosine-based motif;  
taaa, triad of acidic amino acids;  DM, Di-leucine motif; TR, tandem repeat. (Adapted from Fidgor 
et al. 2002) 
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The DEC205 has been supposed to be an attractive target for therapeutic antigen 

delivery in the areas of autoimmunity, as well as vaccination strategies for infections or 

tumors (Erbacher et al. 2009). When antigens (for instance, HIV gag-p24 protein) are 

targeted to the DEC205 in vivo (mice and rhesus macaques) by conjugation to a 

monoclonal antibody directed against the DEC205, antigen presentation is significantly, 

100-fold enhanced (Bonifaz et al. 2004). Recently DEC205-targeting has been evaluated 

 

for its efficiency of HLA class I and II antigen presentation  (Reuter et al. 2015). As they 

determined, nearly 80% of surface DEC205 was internalized by both human BDCA-1+ and 

BDCA-3+ DCs within 90 min, with the time to maximum internalization being 30 min. A 

considerably less internalization of antigens targeted to DEC205 ensued under 

conditions of in vivo inflammation, but the efficiency of antigen presentation on the 

molecules of MHC class I and MHC II was not impaired, i.e. “DEC205 continues to elicit 

efficient MHC I and MHC II antigen presentation outcomes in vivo”. This finding is 

important because activation of DCs using inflammatory cytokines is necessary for 

induction of immunity by tumor vaccines.  

 

Figure 7. pH-dependent conformational change of the DEC205 receptor.  

Left: linear “steady”conformation; CysR, cysteine rich domain; FNII, fibronectin II 
domain, CTLD, C-type lectin domain. Right: ring-shaped “active” conformation. (Adapted 
from Cao, Shi et al. 2015).  
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Since DCs initiate specific T cell immunity and harmonize innate and adaptive 

immune response (Banchereau and Steinman 1998, Steinman and Banchereau 2007), it 

is important to test targeting of  WT1 protein to DCs either ex vivo or in vivo. Indeed the 

targeting of several other tumor associated antigens  such as MAGE (Birkholz et al. 2010), 

NY-ESO1 (Tsuji et al. 2011), HER2/neu (Wang et al. 2012) to DCs via antibodies specific 

for the endocytic receptor DEC205 has been studied using in vitro and in vivo models and 

appreciated to induce an improved immune response to tumors expressing these 

antigens. The targeted, matured DCs trigger the specific CD8+ and CD4+ T cell response 

against the antigen processed and presented by the DCs. To initiate stronger anti-tumor 

immune response to haematological malignancies, a highly effective antigen delivery 

system to APCs is important, especially it is essential for protein antigens which are 

usually weak immunogenic.   

 

 

 

T cell responses to tumors are initiated when their antigens are ingested by host 

antigen presenting cells (APCs), particularly DCs. The ingested tumor derived protein 

antigens are processed inside the DCs and peptides from these antigens are then 

displayed bound to MHC class I molecules for recognition by CD8+ T cells (cross 

priming/presentation). DCs express co-stimulators that provide the signals needed for 

differentiation of CD8+ T cells into anti-tumor cytotoxic T lymphocytes (CTLs). Thus, the 

predominant mechanism of adaptive immunity to tumor is stimulation of  the killing 

function of CD8+ T cells that is orchestrated by DCs. Also, MHC class II molecules on the 

surface of DCs may present internalized tumor antigens and activate CD4+ helper T cells. 

As a result of TH1 polarization, helper T cells play a crucial role in establishment of 

sustained anti-tumor immunity by providing cytokines for effective CTL development 

(Figure 8). In addition, helper T cells specific for tumor antigens may secrete cytokines, 

such as TNF and IFN-γ, that can increase the expression of MHC class I molecules by 

tumor cells. Cytolytic CD4+ T cells can exert direct functions against malignancies by 

lysing HLA class II expressing targets, therefore, vaccine strategies should aim to induce 

this subset of cells (Brown 2010). For a sustained T-cell protection, the presence of both 

CD4+ and CD8+ cells has been shown to be essential (Feuchtinger et al. 2010).     
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Figure 8. T cell activation mediated by DCs. 

Signal 1 is the antigen-specific signal that is mediated through T cell receptor triggering by 
MHC class I- or II-associated peptides processed from tumor antigens after internalization 
through endocytosis or pattern recognition receptors. Signal 2 is the co-stimulatory signal, 
mainly mediated by triggering of CD28 by CD80 and CD86 that are expressed by mature DCs. 
Signal 3 is the polarizing signal that is mediated by various soluble or membrane-bound factors, 
such as IL-12, that promote the development of TH1 cells. Adapted from (Mays and Wilson 2011). 
 

T cells reactive to self-proteins, e.g. to WT1 are deleted by the mechanism of 

central and peripheral tolerances. However, WT1-specific CD8+ T cells exist at low 

frequency in healthy donors (Rezvani et al. 2003) and occur with elevated frequency in 

allo-HSC transplanted patients with leukemia  (Rezvani et al. 2005). In healthy donors, 

the frequency of WT1-specific T cells ranges from 10-7 to 10-5 in the CD8+ T cell subset 

and from 10-6 to 10-5 in the CD4+ T cell subset in the natural repertoire (Schmied et al. 

2015). An interesting phenomenon is that during early trimesters of pregnancy, there 

were increased frequencies of WT1-specific T cells to decline after delivery (Lutz et al. 

2015). Due to the rare number in whole T cell repertoire, analyses of WT1-specific T cells 

are performed after enrichment or expansion of the specific T cells.  

With regard to phenotype of WT1-specific T cells and their functional capacity, a 

couple of studies have been performed. Rezvani et al.  showed that central 

(CD45RO+CD27+CD57-) or effector memory (CD45RO-CD27-CD57+) T cells constitute the 

WT1-specific T cell population in leukemia patients received HSCT. Whereas Schmied et 

al. demonstrated that two distinct phenotypes of WT1-specific T cells are present in 

healthy donors: one is CD4+ T cells in the memory pool, the other is CD8+ T cells in the 

naïve population. An early report on the functional capacity of WT1-specific T cells was 

that these T cells recognize leukemic CD34+ cells expressing WT1 and exert anti-leukemia 

immune response (Gao et al. 2000). After vaccination with a combination of WT1 
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(WT1126-134 and WT1235-243 in Montanide adjuvant) peptides, WT1-specific T cells were 

emerged and WT1 mRNA level was declined in responding patients. However, the raise 

of WT1-specific T cells was temporary and did not correlated with disease response. A 

deletion of high avidity T cells by self-tolerance mechanism and short life expectance of 

T cells induced by single peptide stimulation could be an explanation (Uttenthal et al. 

2014). Nevertheless, WT1-specific T cells can be detected in both peripheral blood and 

bone marrow of patients with leukemia and they are supposed to be functional in terms 

of interferon- and granzyme B production (Casalegno-Garduno et al. 2015). Casalegno-

Garduno et al. could also show that WT1-specific T cell presence corresponds to the 

clinical outcome.  

Taken together, very low frequencies of T cells specific to WT1 protein are present 

in both healthy donors and patients. Those T cells are functional, but may be short-lived. 

To analyze the low frequency of WT1-specific T cells without prior enrichment or 

expansion, an improvement of responsiveness of those cells is necessary.  
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Section 2. Central hypothesis,  

aim, and design of the study 
 

 

2.1.  Central hypothesis:  

WT1 involvement in leukemogenesis, overexpression along with disease progress 

and proved GvL effect mediated by WT1-specfic T cells after HSCT render WT1 a 

promising target for immunotherapy. Due to its intracellular localization as well as close 

interaction with nucleotides and proteins, WT1 protein is thought to be not easily 

expressed as s recombinant protein. Therefore, full-length human WT1 has not yet been 

expressed for vaccination studies although its expression for functional studies were 

optimized. The current WT1-based immunotherapies are mainly based on peptide 

vaccination. However, WT1 peptides presented on various HLA alleles are not completely 

defined yet. In addition, a short-lived T cell response to the peptide stimulations hampers 

the effectiveness of WT1 peptide vaccination. It seemed that targeting of WT1 to dendritic 

cells could be a feasible approach to improve DC-mediated WT1-specific T cell response 

either ex vivo or in vivo. A potential experimental approach was the fusion of WT1 to an 

antibody specific to the endocytic receptor DEC205 expressed on DCs. After binding to 

DEC205, the antibody fusion protein is taken up by the DC and processed intracellularly, 

resulting in the better and broader presentation of WT1-derived peptides on MHC 

molecules on the surface of the DCs (Figure 9). This way, an efficiency of WT1 protein 

expression and peptide variety of WT1 to be loaded on HLA class I and II molecules might 

be better and broader. Thereby, T-cell immune responses to WT1-positive tumors could 

be effective and sustainable.  
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2.2.  Aim  

The prior aim of this work was the generation and production of an anti-hDEC205-

WT1 antibody fusion protein as a recombinant vaccine candidate for AML 

immunotherapy. The second aim was the directly ex vivo detection of the anti-hDEC205-

WT1 loaded mature moDC-mediated T cell response. Moreover, we wanted to check 

WT1-specific cytotoxicity function of T cells stimulated with this approach by in vitro 

experiments.  

 

2.3.  Study design 

This work was designed as a two phase sequential study as depicted in Figure 10. 

The first package of the work included molecular cloning of the antibody fusion protein 

and production, purification as well as functional tests of the anti-hDEC205-WT1 

antibody fusion proteins. In the second phase of the work, the immune stimulatory 

capacity of the anti-hDEC205-WT1 were tested ex vivo and in vitro corresponding to the 

aims of the study. Healthy donors and HSC transplanted patients (divided into two 

blocks: healthy and diseased) with AML were randomly selected and blood samples were 

collected for the planned investigations.     

 

Figure 9. Targeting WT1 protein to DCs. 
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Figure 10. Study design 
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Section 3. Materials and methods 
 

 

3.1.  Materials 

 

3.1.1.1. Human primary cells 

Sample types:  Leukoreduction system chambers 

                Buffy coats 

            Peripheral venous blood samples 

Cell types:   PBMCs 

          Monocyte derived dendritic cells (moDCs)  

          CD3+ T cells 

3.1.1.2. Cell lines  

The human cancer cell lines used for this work were available in the Division of 

Molecular Internal Medicine, and Laboratory for Immunotherapy, University Hospital of 

Würzburg. CHO-hDEC205 cells were kindly provided by Professor Dudziak D. (Erlangen, 

Germany). Adherent cells were cultured in a culture flask supplied with RPMI 1640/10 

% FCS/1 % Penicillin and Streptomycin until full confluency and were harvested from 

the flasks by incubation of cells with 1 % trypsin at 37°, 5 % CO2 for one min. Suspension 

cells were cultured in a culture flask supplied with RPMI 1640 GlutaMax/10 % FCS and 

50μg/mL gentamycin at density of 1 x 106 cells per mL. All cells were split at 1:10 or 1:5 

when cell confluency had reached 90-100 %. 
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Table 5. Cell lines 

Cell line Species and cell types 

CHO Chinese hamster ovary 

CHO-hDEC205 h-DEC205 stably expressing CHO 

DG75 Human Burkitt lymphoma 

HEK293 Human embryonic kidney 

HeLa Human cervical carcinoma 

ML2 Human myelomonocytic leukemia 

NALM-6 Human B cell precursor leukemia 

THP1 Human acute monocytic leukemia 

 

3.1.1.3. Prokaryotic cells 

Chemically competent cells were transformed for cloning of the expression 

plasmids.   

Table 6. Prokaryotic cells. 

Bacterial   
competent cells 

Strain  Manufacturer, Country 

E. Coli 
K12                                        

(NEB 5low competent) 

New England Biolabs, 

Frankfurt, Germany 

E. Coli 
K12                                         

(NEB 5high competent  ) 

New England Biolabs, 

Frankfurt, Germany 

 

 

The expression plasmids for each construct used in this work were derived from 

pCR3 expression plasmid (Invitrogen, Darmstadt, Germany). A scFv:hDEC205 construct 

was encoded in pMA-T plasmid (Life Technologies, Darmstadt, Germany). 

 

Cell culture media were supplemented with 2-10 % FCS and appropriate 

antibiotics prior to use. Cytokines were solubilized and aliquoted in accordance with 

manufacturers’ protocol.   
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Table 7. Culture media and cytokines. 

Culture medium, cytokine Manufacturer, Country 

RPMI 1640  Sigma-Aldrich, Deisenhofen, Germany 

RPMI 1640 GlutaMax Life Technologies, Darmstadt, Germany 

Granulocyte-macrophage colony-

stimulating factor (GM-CSF) 

Miltenyi Biotec, Bergisch Gladbach, 

Germany 

Interleukin-4 (IL-4) R&D Systems, Wiesbaden, Germany 

Interleukin-2 (IL-2, Proleukin)  Novartis, Nürnberg, Germany 

Interleukin-7 (IL-7) Peprotech, Hamburg, Germany  

Interleukin-15 (IL-15) Peprotech, Hamburg, Germany  

TNFα R&D Systems, Wiesbaden, Germany 

 

 

Table 8. Enzymes. 

Enzyme Manufacturer, Country 

T4-Ligase Fermentas, St. Leon-Rot, Germany 

BamHI New England Biolabs, Frankfurt, Germany 

BglII New England Biolabs, Frankfurt, Germany 

EcoRI New England Biolabs, Frankfurt, Germany 

HindIII New England Biolabs, Frankfurt, Germany 

Mfe New England Biolabs, Frankfurt, Germany 

SalI New England Biolabs, Frankfurt, Germany 

Calf Intestinal alkaline Phosphatase 

(SIP) 
New England Biolabs, Frankfurt, Germany 

XbaI New England Biolabs, Frankfurt, Germany 

XhoI New England Biolabs, Frankfurt, Germany 
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Table 9. Antibodies. 

Antibody Source Manufacturer, Country 

Anti-CD3-FITC 
Mouse anti-human CD3 

Clone SK7 

BD Biosciences, 

Heidelberg, Germany 

Anti-CD4-PerCP 
Mouse anti-human CD4 

Clone SK3 

BD Biosciences, 

Heidelberg, Germany 

Anti-CD8-APC 
Mouse anti-human CD4 

Clone SK1 

BD Biosciences, 

Heidelberg, Germany 

Anti-CD137-PE or -APC Mouse anti-human CD137 
BD Biosciences, 

Heidelberg, Germany 

Anti-Interferon-γ-PE Mouse anti-human IFN- 
Beckman Coulter, Krefeld, 

Germany 

Anti-CD14-APC 
Mouse anti-human CD14 

Clone HCD14 
BioLegend, Fell, Germany 

Anti-CD86-PE Mouse anti-human CD86 
BD Biosciences, 

Heidelberg, Germany 

Anti-CD80-PE Mouse anti-human CD80 
BD Biosciences, 

Heidelberg, Germany 

Anti-CD40-APC Mouse anti-human CD40 
BD Biosciences, 

Heidelberg, Germany 

Anti-HLA-ABC-PE 
Mouse anti-human HLA-

ABC 

BD Biosciences, 

Heidelberg, Germany 

Anti-CCR7-APC 

 

Mouse anti-human CCR7 

IgG2A 

 

R&D Systems, Wiesbaden, 

Germany 

Anti-HLA-DR-PerCP 
Mouse anti-human HLA-

DR 

BD Biosciences, 

Heidelberg, Germany 

Anti-CD1a-APC Mouse anti-human CD1a 
BD Biosciences, 

Heidelberg, Germany 

Anti-CD205-PE Mouse anti-human CD205 
Miltenyi Biotec, Bergisch 

Gladbach, Germany 
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Anti-Flag mAb M2 Mouse IgG1 monoclonal 
Sigma-Aldrich, 

Deisenhofen, Germany 

Anti-mouse IRDye 800 

 
Goat, polyclonal 

LI-COR Bioscience, Bad 

Homburg, Germany 

Anti-mouse-HRP 

 
Goat, polyclonal 

Dako-Cytomation, 

Glostrup, Denmark 

Anti-CD16-PE 
Mouse anti-human CD16 

(Leu 11c) 

BD Biosciences, 

Heidelberg, Germany 

Anti-iNKT-PE Mouse anti-human iNKT 
BD Biosciences, 

Heidelberg, Germany 

Anti-CD56-APC 
Mouse anti-human CD56 

Clone HCD56 
BioLegend, Fell, Germany 

Anti-CD107a-APC 
Mouse anti-human 

CD107a 

BD Biosciences, 

Heidelberg, Germany 

Anti-HLA-A2-PE Mouse anti-human HLA-A2 
BD Biosciences, 

Heidelberg, Germany 

Anti-human IFN- 

capture antibody 
Mouse anti-human IFN- 

BD Biosciences, 

Heidelberg, Germany 

Anti-human IFN- 

detection antibody 
Mouse anti-human IFN- 

BD Biosciences, 

Heidelberg, Germany 

Mouse IgG1 isotype 

conjugated FITC, APC, PE, 

or PerCP 

 
BD Biosciences, 

Heidelberg, Germany 

Mouse IgG2A-APC 

 
 

R&D Systems, Wiesbaden, 

Germany 

 

Table 10. Peptide and recombinant protein. 

Peptide Manufacturer, Country 
WT1 peptivator 15-mer peptide pool Miltenyi Biotec, Bergisch Gladbach, 

Germany 
WT1 A24 100018 single peptide University of Tübingen, Germany 
WT1 A02 3181 single peptide University of Tübingen, Germany 
CMV pp65 recombinant protein Miltenyi Biotec, Bergisch Gladbach, 

Germany 
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Table 11. Chemicals and reagents. 

Substance Manufacturer, Country 

1kb DNA-ladder Fermentas, St. Leon-Rot, Germany 

Acetic acid J. T. Baker, Leipzig, Germany 

Acrylamide (30 %) Carl Roth, Karlsruhe, Germany 

Agar Carl Roth, Karlsruhe, Germany 

Agarose Carl Roth, Karlsruhe, Germany 

Ammonium persulfate (APS) AppliChem, Darmstadt, Germany 

Ampicillin Carl Roth, Karlsruhe, Germany 

Anti-Flag M2 agarose beads Sigma-Aldrich, Deisenhofen, Germany 

BCIP/NBT liquid substrate system Sigma-Aldrich, Deisenhofen, Germany 

Bovine serum albumin (BSA) Sigma-Aldrich, Deisenhofen, Germany 

Crystal violet (CV) powder Carl Roth, Karlsruhe, Germany 

Dimethyl sulfoxide (DMSO) Carl Roth, Karlsruhe, Germany 

Ethanol J. T. Baker, Leipzig, Germany 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth, Karlsruhe, Germany 

Fetal calf serum (FCS) Life Technologies, Darmstadt, Germany 

Flag peptide Sigma-Aldrich, Deisenhofen, Germany 

Geneticin disulfate (G418-Sulfate) Carl Roth, Karlsruhe, Germany 

Gentamycin Life Technologies, Darmstadt, Germany 

Lymphocyte separation medium PAA, Pasching, Austria 

Methanol J. T. Baker, Leibzig, Germany 

Midori Green Advance DNA stain 
Intas Science Imaging, Göttingen , 

Germany 

Nonfat dried milk powder Sigma-Aldrich, Deisenhofen, Germany 

Paraformaldehyde Carl Roth, Karlsruhe, Germany 

Penicillin-Streptomycin (100 x) PAA, Pasching, Austria 

Peptone Carl Roth, Karlsruhe, Germany 

Phosphatase inhibitor II Sigma-Aldrich, Deisenhofen, Germany 

Phosphate buffered saline (PBS) PAA, Pasching, Austria 

DPBS Life Technologies, Darmstadt, Germany 
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Polyethylenimine (PEI) Sigma-Aldrich, Deisenhofen, Germany 

Prestained protein marker (broad 

range) 

New England Biolabs, Frankfurt, 

Germany 

Protease inhibitor cocktail Roche, Mannheim, Germany 

Silver gel marker (low molecular 

weight) 

GE Healthcare, Garching, Dassel, 

Germany 

Sodium dodecyl sulfate (SDS) Carl Roth, Karlsruhe Garching, Germany 

Streptavidin-AP (Alkaline Phosphatase) Southern Biotech, Eching, Germany 

Tetramethylethylenediamine (TEMED) Sigma-Aldrich, Deisenhofen, Germany 

Tris Carl Roth, Karlsruhe, Germany 

Triton X-100 Sigma-Aldrich, Deisenhofen, Germany 

Trypsin-EDTA solution (10X) PAA, Pasching, Austria 

Tween-20 Carl Roth, Karlsruhe, Germany 

Yeast extract Carl Roth, Karlsruhe, Germany 

ß-Mercaptoethanol Sigma-Aldrich, Deisenhofen, Germany 

 

Table 12. Kits. 

Kit Manufacturer, Country 

CD3+ pan T cell untouched selection kit Miltenyi Biotec, Bergisch Gladbach, 

Germany 

CD137-PE isolation kit Miltenyi Biotec, Bergisch Gladbach, 

Germany 

Gaussia Luciferase Assay kit New England Biolabs, Frankfurt, 

Germany 

Pierce® Silver Stain kit Fermentas, St. Leon-Rot, Germany 

Pure Yield Plasmid Miniprep/Midiprep 

System 

Promega, Mannheim, Germany 

Kod Hot Start DNA polymerase kit Merckmillipore, Darmstadt, Germany 

PCR clean-up, Gel extraction kit Macherey-Nagel, Düren, Germany 

RNeasy mini kit Qiagen, Hilden, Germany 

QuantiTect Rev. Transcription Kit Qiagen, Hilden, Germany 
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Rapid DNA ligation kit Fermentas, St. Leon-Rot, Germany 

 

 

Table 13. Equipments and disposable  materials. 

Instrument or material/equipment Manufacturer, Country 

96-well ELISA plates (high binding) Greiner, Frickenhausen, Germany 

Black 96-well ELISA plates Greiner, Frickenhausen, Germany 

96-well ELISPOT plates Merckmillipore, Darmstadt, Germany 

Casting chambers for SDS-PAGE PeqLab, Erlangen, Germany 

Cell culture flasks Greiner, Frickenhausen, Germany 

Cell culture petri dishes Greiner, Frickenhausen, Germany 

Cell culture plates Greiner, Frickenhausen, Germany 

Centrifuge Rotana 460R Hettich, Tuttlingen, Germany 

CO2 incubator Heraeus Cell Safe Heraeus, Hanau, Germany 

Dialysing tubes, Viking, MWCO 15kDa Carl Roth, Karlsruhe, Germany 

Cryotubes Greiner, Frickenhausen, Germany 

ELISPOT reader/C.T.L USA 

Eppendorf tubes, 1,5 ml und 2 ml Eppendorf, Hamburg, Germany 

Equibio EasyjecT Plus electroporator PeqLab, Erlangen, Germany 

Flow cytometer FACS Calibur BD Biosciences, Heidelberg, Germany 

Flow cytometry tubes Falcon, Heidelberg, Germany 

Heat block PeqLab, Erlangen, Germany 

LI-COR Odyssey® Infrared Imager LI-COR Biosciences, Lincoln, USA 

Lucy 2 luminometer/ELISA-reader Anthos Labtec, Krefeld, Germany 

MACS LS and MS columns 
Miltenyi Biotec, Bergisch Gladbach, 

Germany 

MACS multistand 
Miltenyi Biotec, Bergisch Gladbach, 

Germany 

Microcentrifuge 5417C Eppendorf, Hamburg, Germany 

Nitrocellulose membranes, 0,2 µM pore 

size 
Whatman, Dassel, Germany 
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PCR-Thermocycle 
Primus MWG Biotech, Ebersberg, 

Germany 

Pipetus 
Hirschmann Laborgeräte, Eberstadt, 

Germany 

Polyallomer tubes Seton, Los Gatos, CA, USA 

Polypropylene tubes Greiner, Frickenhausen, Germany 

Sterile filters (0,2µm) Sarstedt, Nümbrecht, Germany 

Sterile plastic Pasteur pipettes Hartenstein, Würzburg, Germany 

Ultracentrifuge OPTIMA-L70 Beckman Coulter, Krefeld, Germany 

UV-transilluminator PeqLab, Erlangen, Germany 

Well plates for cell culture Greiner, Frickenhausen, Germany 

Wet/tank blotting system PeqLab, Erlangen, Germany 

Whatman papers Hartenstein, Würzburg, Germany 

 

 

Table 14. Preparations and buffers. 

Preparation Prescription 

Assay diluent 
1 x PBS 

10 % (v/v) FCS 

Blot buffer 10x 

 

0,025 M Tris 

0,192 M glycin 

20 % (v/v) methanol 

pH 8,3 

Laemmli lysis buffer (SDS-PAGE, 4 x) 

8 % (w/v) SDS 

10 % ß-Mercaptoethanol 

40 % gycerol 

0,2 M Tris 

0,04 % bromphenol blue 

pH 8 

LB medium 

 

10 g peptone 

5 g yeast extract 
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10 g/l NaCl 

Lysis buffer for immunoprecipitation 

(IP) 

 

1 M Tris-HCl 

pH 7.4 

2M NaCl 

100 % glycerol 

100 % triton 

volume adjusted to 1 L with distilled 

water 

MACS buffer 

1 x PBS 

1 % (w/v) FCS 

2 mM EDTA 

PBST 
1 x PBS 

0,05 % (v/v) tween-20 

Milk in PBST 

 

1 x PBS 

0,05 % (v/v) tween-20 

5 % (w/v) nonfat dried milk powder 

Running buffer 10x (SDS-PAGE) 

 

0,05 M Tris 

0,38 M glycin 

0,004 M SDS 

pH 8,3 

Separating gel buffer (SDS-PAGE) 

 

1,5 M Tris 

0,015 M SDS 

pH 8,8 

Stacking gel buffer (SDS-PAGE) 

 

0,5 M Tris 

0,015 M SDS 

pH 6,8 

TAE buffer 

 

2 M Tris 
1 M acetic acid 
0,1 M EDTA 
pH 8,3 

TBS 

0,02 M Tris 

8 % (w/v) NaCl 

pH 7,6 

ELISPOT detection buffer 
RPMI 1640 

10  FCS 
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3.2.  Methods 

 

3.2.1.1. Cloning of single chain variable fragment of anti-hDEC205 fused to GpL 

(scFv:hDEC205-GpL) and anti-hDEC205 antibody 

 

To clone scFv:hDEC205-GpL, IgG1 isotype (accession number P01857 (heavy 

constant domain), AAA59000 (kappa constant domain)) of anti-hDEC205 antibody, the 

following expression constructs were digested with restriction endonucleases listed in 

the Table 15.  

Table 15. Vectors and inserts for expression constructs encoding scFv:hDEC205-GpL and anti-
hDEC205 antibody. 

 

The digested and dephosphorylated vectors were ligated with the corresponding 

insert DNAs with help of T4 DNA ligase. The ligation mix were then transformed in NEB 

5high competent cells by heat shock at 42°C and plated onto LB agar plates. After 

overnight incubation at 37°C, positive colonies were selected. To replicate the expression 

constructs, the selected colonies were cultured in midi preps overnight. Subsequently, 

the expression constructs were isolated from the microbial host via PureYield Plasmid 

Midiprep system according to the manufacturer’s protocol. The concentration of the 

plasmid DNA yields were measured by spectrophotometer at 260 nm and purities were 

calculated on the basis of A260/A280 ratio. The DNA sequences were proved by an external 

DNA sequencing provider (GATC Biotech., Köln, Germany).  

Construct Vector 
Vector 

digestion 
Insert 

Insert 

digestion 

scFv:hDEC205-

GpL 

Fn14(ed)-2xFlag-

GpL-pCR3 

HindIII 

BamHI 

anti-DEC205(h)-

Mg38-3-pMA-T 

HindIII 

BamHI 

Anti-hDEC205-

VH-heavy const 

chain-IgG1-full 

18D1-VH-heavy-

full(hIgG1)-pCR3 

EcoR1 

BamH1 

VH chain  of anti-

DEC205(h)-Mg38-3-

pMA-T 

EcoRI 

BglII 

Anti-hDEC205-

VL-light-const 

chain-full 

18D1-VL-light chain 

full-pCR3 

EcoR1 

BamH1 

VL chain  of anti-

DEC205(h)-Mg38-3-

pMA-T 

EcoRI 

BglII 
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3.2.1.2.  Cloning of anti-hDEC205-WT1major and anti-hDEC205-WT_Dfull constructs 

 

Of the cDNAs obtained from the indicated leukemia cell lines, four different DNA 

sequences encoding major fragments of WT1 isoform D (WT1_D), so named WT1_D1-227, 

WT1_D217-351,  WT1_D217-487,  WT1_D217-522 were amplified using corresponding primer 

pairs (Table 18). With exclusion of four amino acids, cDNA encoding  the full-length 

WT1_D was cloned by combining WT1_D1-227 with WT1_D217-522 using its internal Xho1 

site. Each of WT1_D major fragments were cloned C-terminally to the heavy chain of the 

anti-hDEC205 antibody to obtain anti-hDEC205-WT1_D1-227, anti-hDEC205-WT1_D217-

351, anti-hDEC205-WT1_D217-487, and anti-hDEC205-WT1_D217-522 expression constructs. 

In addition, the WT1_D major fragments were cloned to the single chain variable 

fragment of anti-hDEC205 (scFv:hDEC205), as well as to the C-terminus of light chain of 

the anti-hDEC205 antibody to identifying better producibility for the antibody fusion 

proteins (Table 16).  

 

Table 16. Overview of cloning of the anti-hDEC205-WT1_Dmajor expression constructs. 

Antibody 
format 

Construct Vector 
Vector 

digestion 
Insert 

Insert 
digestion 

Si
n

gl
e 

ch
ai

n
 v

ar
ia

b
le

 f
ra

gm
en

t 
o

f 
an

ti
-

h
D

E
C

2
0

5
 (

sc
F

v:
h

D
E

C
2

0
5

) 

scFv:2xFlag-
anti-hDEC205-

WT1_D217-487 

scFv:2xFlag-anti-
hDEC205-GpL-

pCR3 

XhoI 
XbaI 

WT1_ D217-487 
XhoI 
XbaI 

scFv:2xFlag-
anti-hDEC205-

WT1_D217-522 

scFv:2xFlag-anti-
hDEC205-GpL-

pCR3 

XhoI 
XbaI 

WT1_D217-522 
XhoI 
XbaI 

scFv:2xFlag-
anti-hDEC205-

WT1_D1-227 

scFv:2xFlag-anti-
hDEC205-GpL-

pCR3 

XhoI 
XbaI 

WT1_ D1-227 
SalI 
XbaI 

scFv:2xFlag-
anti-hDEC205-

WT1_D217-351 

scFv:2xFlag-anti-
hDEC205-GpL-

pCR3 

XhoI 
XbaI 

WT1_ D217-351 
XhoI 
XbaI 

scFv:2xFlag-
anti-hDEC205-

WT1_Dfull 

scFv:2xFlag-anti-
hDEC205-WT1_D1-

222-pCR3 

XhoI 
XbaI 

WT1_D217-522 
XhoI 
XbaI 

A
n

ti
-h

D
E

C
2

0
5

-V
H

-h
ea

v
y 

co
n

st
 I

gG
1

 c
h

ai
n

 f
u

ll
 

Flag-anti-
hDEC205-VH-

heavy const full-
WT1_ D217-487 

scFv:2xFlag-anti-
hDEC205-

WT1_D212-482-pCR3 

HindIII 
XhoI 

anti-
hDEC205-VH-

heavy const 
full 

HindIII 
XhoI 

Flag-anti-
hDEC205-VH-

heavy const full- 
WT1_D217-522 

scFv:2xFlag-anti-
hDEC205-

WT1_D212-517-pCR3 

HindIII 
XhoI 

anti-
hDEC205-VH-

heavy const 
full 

HindIII 
XhoI 

Flag-anti-
hDEC205-VH-

heavy const full-

Flag-anti-hDEC205-
VH-heavy const 

full-WT1_D212-517-

XhoI 
XbaI 

WT1_ D1-227 
SalI 
XbaI 
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WT1_ D1-227 pCR3 
Flag-anti-

hDEC205-VH-
heavy const full-

WT1_ D217-351 

Flag-anti-hDEC205-
VH-heavy const 

full-WT1_D212-517-
pCR3 

XhoI 
XbaI 

WT1_ D217-351 
XhoI 
XbaI 

Flag-anti-
hDEC205-VH-

heavy const full-
WT1_D347-522 

Flag-anti-hDEC205-
VH-heavy const 

full-WT1_D212-517-
pCR3 

XhoI 
XbaI 

WT1_ D347-522 
XhoI 
XbaI 

Flag-anti-
hDEC205-VH-

heavy const full-
WT1_Dfull 

Flag-anti-hDEC205-
VH-heavy const 
full-WT1_D1-222-

pCR3 

XhoI 
XbaI 

WT1_D217-522 
XhoI 
XbaI 

A
n

ti
-h

D
E

C
2

0
5

-V
L

-l
ig

h
t 

k
ap

p
a 

co
n

st
 c

h
ai

n
 f

u
ll

 

Flag-anti-
hDEC205-VL-

light const full- 
WT1_ D217-351 

Flag-anti-hDEC205-
VH-heavy const 

full-WT1_D212-346-
pCR3 

EcoRI 
XhoI 

anti-
hDEC205-VL-

light const 
chain full 

EcoRI 
XhoI 

Flag-anti-
hDEC205-VL-

light const full- 
WT1_D217-522 

Flag-anti-hDEC205-
VH-heavy const 

full- WT1_D217-522-
pCR3 

EcoRI 
XhoI 

anti-
hDEC205-VL-

light const 
chain full 

EcoRI 
XhoI 

Flag-anti-
hDEC205-VL-

light const full- 
WT1_ D1-227 

Flag-anti-hDEC205-
VL-light const full-
WT1_ D217-351-pCR3 

XhoI 
XbaI 

WT1_ D1-227 
SalI 
XbaI 

 

3.2.1.3. Cloning of anti-hDEC205-WT1small constructs:  

 

Different primer pairs (Table 18) were designed for various DNA sequences 

encoding small fragments of the WT1_D protein. Those primers encoded additionally a 

flexible spacer consisting of four amino acids (ASTA). In total, eight different small DNAs 

were amplified and cloned to the carboxyl terminus of the heavy chain of anti-hDEC205 

(Table 17).   

 

Table 17. Overview of cloning of the anti-hDEC205-WT1_Dsmall expression constructs. 

Construct Vector 
Vector 

digestion 
Insert 

Insert 
digestion 

Flag-anti-hDEC205-
VH-heavy const full-

WT1(-73)-53 

Flag-anti-hDEC205-
VH-heavy const full-
TNC-CD70ed-pCR3 

XhoI 
XbaI 

WT1(-73)-53 
SalI 
XbaI 

Flag-anti-hDEC205-
VH-heavy const full-

WT110-35 

Flag-anti-hDEC205-
VH-heavy const full-
TNC-CD70ed-pCR3 

XhoI 
XbaI 

WT110-35 
XhoI 
XbaI 

Flag-anti-hDEC205-
VH-heavy const full-

WT191-138 

Flag-anti-hDEC205-
VH-heavy const full-
TNC-CD70ed-pCR3 

XhoI 
XbaI 

WT191-138 
XhoI 
XbaI 

Flag-anti-hDEC205-
VH-heavy const full-

Flag-anti-hDEC205-
VH-heavy const full-

XhoI 
XbaI 

WT1223-273 
XhoI 
XbaI 
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WT1223-273 TNC-CD70ed-pCR3 
Flag-anti-hDEC205-
VH-heavy const full-

WT1324-371 

Flag-anti-hDEC205-
VH-heavy const full-
TNC-CD70ed-pCR3 

XhoI 
XbaI 

WT1324-371 
XhoI 
XbaI 

Flag-anti-hDEC205-
VH-heavy const full-

WT110-53 

Flag-anti-hDEC205-
VH-heavy const full-
TNC-CD70ed-pCR3 

XhoI 
XbaI 

WT110-53 
XhoI 
XbaI 

Flag-anti-hDEC205-
VH-heavy const full-

WT1144-273 

Flag-anti-hDEC205-
VH-heavy const full-
TNC-CD70ed-pCR3 

XhoI 
XbaI 

WT1144-273 
XhoI 
XbaI 

Flag-anti-hDEC205-
VH-heavy const full-

WT1223-371 

Flag-anti-hDEC205-
VH-heavy const full-
TNC-CD70ed-pCR3 

XhoI 
XbaI 

WT1223-371 
XhoI 
XbaI 

 

 

First, mRNAs were extracted from three different leukemia cell lines (THP-1, ML-

2, NALM-6) by RNA easy extraction kit (Qiagen, Hilden, Germany) according to 

instructions of the manufacturer. The extracted mRNAs were then reversibly transcribed 

to cDNAs by RT-PCR using QuantiTect Rev. Transcription Kit (Qiagen, Hilden, Germany). 

PCR was performed using Kod Hot Start DNA polymerase kit (Merckmillipore, Darmstadt, 

Germany) according to the manufacturer’s instructions. An array of primer pairs were 

designed for various sequences encoding WT1 protein. The used primer pairs and 

templates for the PCR were listed in Table 18. 
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Table 18. Sequences of the designed primer pairs and templates for PCR. 

Template Forward primers 5’-3’ Reverse primers 3’-5’ PCR product 
Human cDNA (ML2, 
THP-1, NALM-6 cell 
lines) 

ATTCGCAATCAGGGTTACAGCA TCAGAAGGGCTTTTCACTTGTTTTACC WT1_D217-487 

ATTCGCAATCAGGGTTACAGCA TTAAAGCGCCAGCTGGAGTTTGGTCAT WT1_D217-522 

Human cDNA (ML2 cell 
line) 

TTCCTCTTGCTGCAGGACCCGG TTAGAAGGTGACCGTGCTGTAACC WT1_D1-227 

scFv:2xFlag-anti-
hDEC205-WT1_D212-517 

ATTCGCAATCAGGGTTACAGCA TTACGTTGTGTGGTTATCGCTCTCG WT1_D217-351 
GATAACCACACAACGCCCATCC TTAAAGCGCCAGCTGGAGTTTGGTCAT WT1_D347-522 

scFv:2xFlag-anti-
hDEC205-WT1_D1-222 

TTCCTCTTGCTGCAGGACCCGG TTAGCCGCCCAACGACCCGTAAGCC WT1(-73)-53 

GCGCTGCTGCCCGCCGTCC TTACGCCCACTGCGCCGCGCCGCTC WT110-35 

GCCTTCACTGTCCACTTTT TTAGAGGCAGCTGGGCAGGTAGGGC WT191-138 

Flag-anti-hDEC205-VH-
heavy const full-
WT1_D212-517 

AGTGACAATTTATACCAAA TTAGCTCTCGTACCCTGTGCTGTGG WT1223-273 

ATGTGTGCTTACCCAGGCT TTATTTGAGCTGGTCTGAACGAGAA WT1324-371 
scFv:2xFlag-anti-
hDEC205-WT1_Dfull 

GCGCTGCTGCCCGCCGTCC TTAGCCGCCCAACGACCCGTAAGCC WT110-53 

Flag-anti-hDEC205-VH-
heavy const full-
WT1_Dfull 

GCCTTCACTGTCCACTTTT TTAGCTCTCGTACCCTGTGCTGTGG WT1144-273 

Flag-anti-hDEC205-VH-
heavy const full-
WT1_D212-517 

AGTGACAATTTATACCAAA TTATTTGAGCTGGTCTGAACGAGAA WT1223-373 

anti-DEC205(h)-Mg38-
3-pMA-T 

GAGGTGCAGCTGCAGCAGTCTG GCTAGACACTGTCAGGGTTGTGCCC anti-hDEC205-VH 
CAGGCTGTCGTGACCCAGGAAA CAGCACGGTCACTTTGGTGCCG anti-hDEC205-VL 

anti-hDEC205-VH-heavy 
const chain-IgG1-full 

AAGCTTCAAAACATGAACTTCGGCTTCA CTTGCCGGGGCTCAGGCTCAGGGA 
anti-hDEC205-VH-

heavy const full 
Anti-hDEC205-VL-light-
const chain-full 

CAGGCTGTCGTGACCCAGGAAA GCACTCGCCCCGGTTGAAGCTCTTGGTC 
anti-hDEC205-VL-

light const full 
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Gel electrophoresis was performed for qualification of the expression vectors and 

insert DNAs as well as for DNA purification. Depending on the size of DNAs, 1.2-1.8% 

agarose gels were used in this study. To prepare 1.2% agarose gel, 0.7 g of dry agarose 

was mixed with 60 mL of 1x TAE buffer in Erlenmeyer flask. Then the agarose was 

completely dissolved by cooking and swirling the flask. After short cooling down, 4 L of 

Midori Green Advance DNA stain (Intas, Göttingen, Germany) was added into the agarose 

gel to visualize DNAs under ultraviolet (UV) light. The agarose gel was poured into a gel 

tray placed well combs in and incubated at room temperature until its complete 

solidification. Then the gel was placed in an electrophoresis unit filled with 1x TAE  buffer. 

DNA samples mixed with 2 L of the loading buffer and DNA ladder (10L) were loaded 

into wells of the gel and the gel was run at 80-150V until DNA separation was completed. 

DNA bands were then visualized using UV-transilluminator (PeqLab, Erlangen, 

Germany). In cases of DNA purification, the appropriate DNA band was sliced under a 

short exposure of the UV light and melted at 52°C. DNA was purified from the melted gel 

using PCR clean-up, Gel extraction kit (Macherey-Nagel, Düren, Germany) according to 

the manufacturer’s instructions. 

 

For protein production two transient transfection methods were used: 

electroporation and polyethylenimine (PEI) transfection.  

3.2.4.1. Electroporation:  

 

Electroporation is a highly efficient method for the introduction of foreign nucleic 

acids into many cell types, including bacteria and mammalian cells. By applying an 

electrical pulse, cell membranes are temporarily permeabilized resulting in forming tiny 

pores through which DNA can enter into cells (Rols 2008). Approximately 5x107 HEK293 

cells were harvested from the bottom of 175 cm2 cell culture flask by trypsinization. Cells 

were pelleted by centrifugation at 1200 rpm, room temperature (RT) for 4 min and 

resuspended in 1 mL of culture media (RPMI 1640 supplied with 10% FCS and 1% 

penicillin-streptomycin). Then cells were transferred to 4 millimetre electroporation 
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cuvette. After adding 40 µg of expression plasmid (in case of antibody, two plasmids 

encoding light and heavy chains were mixed at 1:1 ratio) to the cuvette, cells were 

electrically pulsed by Easyject Plus equipment with adjustment of 250 V, 1800 µF, 

maximum resistance. The electroporated cells were immediately transferred to 58 cm2 

cell culture dish with 17 mL of serum reduced culture media (2 % FCS)  and cultured at 

37°C, 5 % CO2 for 6-7 days for production.  

 

3.2.4.2. PEI transfection:  

 

Polyethylenimine (PEI) is a stable cationic polymer and condenses DNA into 

positively charged particles, that bind to anionic cell surface.  Consequently, the DNA:PEI 

complex is endocytosed by the cells and the DNA released into the cytoplasm (Longo et 

al. 2013). HEK293 cells were cultured in 58 cm2 cell culture dish at 80-100% confluency. 

Then culture media of cells were replaced by 17 mL of serum-free media (only RPMI 

1640). All reagents, expression plasmids were at RT. Expression plasmid and PEI at 1:3 

ratio (DNA : PEI = 12 µg : 36 µg) were added to 2 mL of RPMI 1640 in Eppendorf tubes 

and mixed well by vortex. After 10 min of incubation at RT, the DNA and PEI mixtures 

were added drop-wise to the cells and left cells at 37°C, 5 % CO2 for overnight. The next 

day, culture media were changed by 17 mL of fresh serum reduced culture media (2 % 

FCS)  and the transfected cells were cultured at 37°C, 5 % CO2 for 6-7 days for production.  

After production period, cell culture supernatants were collected into 50 mL 

conical tube and removed cell debris by centrifugation at 4600rpm, RT for 10 min. The 

culture supernatants were analyzed for their antibody content and kept at -20°C in the 

dark until protein purification.  

 

 

The antibody fusion proteins were purified from culture supernatants of the 

transfected HEK293 cells by column affinity chromatography using anti-Flag M2 affinity 

gel. The anti-Flag M2 affinity gel (Sigma-Aldrich, Deisenhofen, Germany) is a glycerol 

suspension containing a purified murine IgG1 monoclonal antibody covalently attached 

to agarose by hydrazide linkage. Anti-Flag M2 antibody binds to Flag peptide in a calcium 

independent manner. To purify proteins, first, a clean chromatography column and 

column reservoir were assembled. Then 3 mL of anti-Flag M2 agarose beads were 
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transferred to the column and allowed beads to form a bed on the bottom by running 

glycerol through the column. After washing the agarose bed twice with 5 column volumes 

of sterile 1% TBS, 200-400 mL of culture supernatants were loaded onto the assembled 

column without disturbing the agarose bed. A gravitational flow rate was adjusted to 

allow the Flag-tagged antibody fusion proteins in culture supernatants are bound to the 

anti-Flag M2. The column was left at 4°C until whole volume of culture supernatants were 

passed through the agarose bed. Afterwards, unbound proteins within the agarose bed 

were removed by washing with 10 column volumes of 1% TBS. Flag-tagged antibody 

fusion proteins bound to the anti-Flag M2 were eluted by 2-3 column volumes of TBS 

containing 100 µg/mL Flag peptide. The eluted proteins were dialysed against 1% PBS at 

4°C overnight. The next day, the antibody fusion proteins were sterile filtered (200m) 

and stored at -20°C for further usage. The purification quality was evaluated by checking 

contents of antibody fusion proteins in culture supernatant, flow through, elutes, and 

washes before and after elution using SDS-PAGE and western blotting. The used agarose 

beads were extensively washed with 1% TBS and stored in 50% glycerol/TBS buffer 

containing 0.02% sodium azide at -20°C. Protein elutes were pooled depending on 

determined concentration on silver stained gel and stored at -20°C until their use.   

 

 

SDS-PAGE and Western blotting were used for detection and determination of 

concentration of the antibody fusion proteins after production and purification.  

3.2.6.1. SDS-PAGE: The proteins were separated by their size and molecular mass 

using SDS-PAGE. First, 6% stacking gel and 12% resolving gel were prepared and 

solidified in the assembled rack. The gel was placed in electrophoresis unit filled with 1x 

running buffer. All antibody fusion protein samples and standards (Flag-TNF60 fusion 

protein, 3 g/mL) were boiled at 96°C for 3 min in presence of 8 L of 4x Laemmli lysis 

buffer to be converted from complex to primary structures of proteins. After 

centrifugation at RT 14000 rpm for 1 min, the samples, standards and broad range 

protein marker were applied into corresponding wells of stacking gel layered on the top 

of resolving gel. Then the electrophoresis was run at 90-120V and 400mA for 105 min.  

3.2.6.2. Blotting: Proteins separated by SDS-PAGE were transferred to solid 

support, a nitrocellulose membrane using wet blotting and electrophoresis system. The 
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membrane was carefully placed  together with the gel between anode and cathode in a 

sandwich consisting of fiber sponge at each outer side, and filter papers protecting the 

gel and blotting membrane.  Afterwards, the blotting sandwich was placed inside the 

blotting electrophorator filled with transfer buffer. The proteins were electrically (90V, 

400mA) transferred onto the nitrocellulose membrane for 180 min. 

3.2.6.3. Blocking: Blotted membranes were incubated in 5% nonfat milk in 1x PBST 

for 45 min to block a nonspecific binding of detection antibodies to the membrane. Then 

membranes were washed three times with 1x PBST for 5-10 min. 

3.2.6.4. Protein detection: Membranes were incubated with anti-Flag M2 antibody 

(primary antibody) diluted 1:2000 in PBST at 4°C overnight. The next day the membranes 

were washed three times with PBST for 10 min. Then IRDye 800CW-conjugated goat anti-

mouse IgG (secondary antibody) diluted 1:10000 in PBST was added to the membranes 

and incubated at room temperature for one hour. After three times washing with PBST, 

the proteins were detected in the 800 nm channel of the LI-COR Odyssey Imager. 

 

 

Silver staining is the most sensitive method for detection of proteins in 

polyacrylamide gels. Proteins bind silver ions, which are reduced into metallic silver 

under appropriate conditions. This phenomenon develops a visible image in the gel. In 

this study, silver staining was used for quantification of the antibody fusion proteins as 

well as for analysis of purity and integrity of their light and heavy chains. The silver 

staining was performed using Pierce® Silver Stain kit (Fermentas, St. Leon-Rot, 

Germany) according to the manufacturer’s protocol. Briefly, all purified proteins were 

sampled as 100 ng protein in each calculated volume and  boiled at 96°C for 3 min with 5 

L of loading buffer either presence of DTT or not. The protein samples and 10 L of 1x 

silver gel marker were loaded into wells of the gel and separated by SDS-PAGE as 

described in western blot technique. Then gels were fixed with 30% ethanol and 10% 

acetic acid mix for 30 min to remove background signal. Following the sensitization, gels 

were incubated with silver stain to impregnate silver ions to the gel. The stained gels 

were developed until the protein bands clearly visualized. The development was stopped 

by addition of 5 % acetic acid solution. By comparing the intensity of the protein band to 
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the silver gel marker band which has known mass, concentrations of the proteins were 

determined. 

 

 

To check if the purified antibody fusion proteins were contaminated with 

endotoxin of gram-negative bacteria, each batch of the purification were tested for 

endotoxin content using Pierce® LAL Chromogenic Endotoxin Quantitation Kit (Thermo 

Scientific) according to instructions of the manufacturer.   

 

 

Parental and hDEC205-stably expressing CHO cells (CHO-hDEC205, kindly 

provided by Prof. D. Dudziak, Erlangen, Germany) were seeded into wells of a 24-well 

plate at a density of 2x105 cells per well and cultured overnight at 37°C.  

 

3.2.9.1. Equilibrium binding studies  

 

For equilibrium binding studies, a GpL fusion protein of a single chain variable 

fragment (scFv) variant of the anti-hDEC205 antibody (scFv:hDEC205-GpL) was used. 

Supernatants of parental CHO and CHO-hDEC205 cells were pairwise replaced by a 

medium containing increasing concentrations of the scFv:hDEC205-GpL and incubated 

at 37°C for one hour. Unbound scFv:hDEC205-GpL molecules were removed by washing 

the cells 10 times with ice-cold PBS. Cells with bound GpL fusion protein molecules were 

scraped into a 96- -bound 

GpL activity was measured using the Gaussia Luciferase assay kit (NEB) and a Lucy2 

Luminometer according to manufacturers’ instructions. Specific binding values of 

scFv:hDEC205-GpL to hDEC205 were obtained by subtracting parental CHO-derived 

values (non-specific binding) from the corresponding values derived of the CHO-

hDEC205 cells (total binding). In another series of equilibrium binding studies, CHO-

hDEC205 cells were blocked with a constant concentration (2g/mL) of the various anti-

hDEC205-WT1 antibody fusion proteins at 37°C for one hour prior to incubation with 
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increasing concentrations of scFv:hDEC205-GpL for an additional hour to obtain total and 

nonspecific binding to calculate the Kd values.  

 

3.2.9.2. Heterologous competition binding studies 

 

For the heterologous competition binding assay, CHO-hDEC205 cells were 

incubated with mixtures of a constant concentration (50 ng/mL (660 pM, CGpL)) of the 

scFv:hDEC205-GpL and increasing concentrations of the conventional anti-hDEC205 

IgG1 antibody at 37 °C for 1.5 hours. The Ki (Kd) of the antibody was calculated by help of 

the Kd-value of scFv:hDEC205-GpL and IC50 concentration of the anti-hDEC205 antibody 

using following formula: Ki = IC50 / (1 + CGpL / Kd). 

 

 

3.2.10.1. Blood samples 

 

Blood samples from healthy donors were obtained as leukoconcentrate in 

leukoreduction system chamber or buffy coats in blood collection bag after aphaeresis 

procedures from the Department of Clinical Transfusion Medicine and Haemotherapy of 

the University Hospital of Würzburg. Peripheral venous blood samples of haematopoietic 

stem cell transplanted patients with acute myeloid leukemia or myelodysplastic 

syndrome in EDTA-Vacutainers were obtained from the Outpatient Clinic of HSCT unit of 

the University Hospital of Würzburg. All blood samples were collected after written 

informed consent approved by the Institutional Ethical Board of the University of 

Würzburg. 

 

3.2.10.2.  Isolation of the peripheral blood mononuclear cells (PBMCs)  

 

The obtained blood samples were transferred into 50 mL collection tube. 

Leukoconcentrates and buffy coats were diluted with 10-20 mL of D-PBS. Then the blood 

samples were carefully layered onto the 15 mL of Ficoll gradient solution in 50 mL tube 

and centrifuged at 1800 rpm room temperature for 20 minutes to separate blood 

components by their density gradient. PBMCs between plasma and Ficoll solution were 
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isolated by careful pipetting into the 10mL pipette and transferred to 50 mL tube. By 

washing twice with 50 mL of D-PBS and centrifugation at 1500 rpm 4°C for 10 min, 

platelets were removed. The isolated PBMCs were resuspended in 10-20 mL of culture 

microscope with haemocytometer using 0.04 % trypan blue dye. The cell numbers in one 

mL volume were then calculated using a formula:  

Viable cells counted at two diagonal large squares/2 x 10 (dilution factor) x 

104 (volume of one large square) 

 

3.2.10.3. Freezing and thawing of PBMCs 

 

After isolation, PBMCs were used directly or frozen as 1.2-1.8x107 cell aliquots in 

1.5 ml freezing medium at -80°C using Mr. Frosty. The frozen cells were stored at -196°C 

in liquid nitrogen tank unless they were used within 1-2 days. When needed, the 

cryopreserved PBMCs were taken from the liquid nitrogen and quickly thawed in 37°C 

water bath. Surface of the cryovial containing partially thawed PBMCs were desinfected 

with 70% ethanol before opening them under safety cabinet. The half thawed PBMCs 

were transferred into 50 ml conical tube with 15 ml prewarmed media. The PBMCs were 

then centrifuged at 1500 rpm room temperature for 10 min. The cell pellets were 

resuspended in 10 ml of media and rested at 37°C 5% CO2 overnight prior to further 

usage. Avoiding osmotic cell death, the freezing and thawing procedures were carried out 

in cold chain condition as quick as possible. 

 

 

3.2.11.1.  CD14+ cell isolation 

 

CD14+ cells were separated from freshly isolated PBMCs using CD14+ positive 

selection kit according to the manufacturer’s protocol (Miltenyi Biotec). The determined 

number of PBMCs was resuspended in 20 mL MACS buffer (PBS /2mM EDTA/ 0.5 % FCS) 

and centrifuged at 1500 rpm, 4°C for 10 min. After the washing, cells were incubated with 

80 µL MACS buffer and 20 µL CD14 magnetic microbeads per 107 cells at 4°C in the dark 
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for 15 min to magnetically label CD14+ cells. After washing with 20 mL of MACS buffer as 

described above, cells were resuspended in 500 µL MACS buffer and loaded onto LS 

column which was placed in the magnetic field of MACS separator. During gravitational 

flow of the cell suspension, the CD14+ labeled cells were retained in the column. Then the 

column was three times washed with 3 ml of MACS buffer and removed from the 

magnetic field. The positively selected CD14+ cells were eluted in 2 ml MACS buffer and 

cell number were determined.  

 

3.2.11.2. Generation of monocyte derived DCs (moDCs)  

 

Monocytes (CD14+ cells) were suspended in culture medium (RPMI1640 

GlutaMax with 10 % FCS and 50μg/mL gentamycin) supplemented with 100 ng/mL GM-

CSF, 20 ng/mL IL-4  and seeded into a 6-well culture plate at 3x106 cells per well. On day 

two and four, one third of the media was changed with fresh media supplemented with 

GM-CSF and IL-4. Maturation of monocyte-derived DCs (moDCs) was triggered by adding 

10 ng/mL TNF-α on day four and six. On day six, prior to cytokine supplementation, semi-

mature moDCs dedicated for loading with the antibody fusion proteins were harvested 

and seeded into the wells of 96- or 48-well plates. Maturation of moDCs were monitored 

by flow cytometry using  following antibody staining: anti-CD1a-APC, anti-CD86-PE, anti-

CD14-APC, anti-CD80-PE, anti-CD40-APC, anti-HLA-ABC-PE, anti-CD83-APC, anti-HLA-

DR-PerCP (BD Biosciences), anti-CCR7-APC, and anti-CD205-PE (Myltenyi Biotec).  

 

 

CD3+ T cells were selected by depletion of mononuclear cells including monocytes, 

B cells, stem cells, dendritic cells, NK cells and residual granulocytes, erythroid cells using 

flow through fraction of the CD14+ cell selection from PBMCs. First, cell number in the 

flow through was determined and centrifuged at 1500 rpm for 10 min. After decanting 

supernatant, cells were mixed well with 40 µL of MACS buffer and 10 µL of Pan T Cell 

Biotin-Antibody cocktail per 107 cells and incubated at 4°C in the dark for 5 min. Then 

the cells were along incubated with 30 µL of the buffer and 20 µL of Pan T Cell Microbead 

Cocktail per 107 cells for 10 min. MACS separator system was prepared as described in 

9.1. Cells were loaded onto LS column and the column were washed once with 3 ml of 

MACS buffer. Finally, unlabeled CD3+ T cells that passed through the column were 
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collected and counted. The CD3+ T cells were directly cryopreserved after the selection 

until necessary experiments. 

 

 

On day six, 7.5x105 semi-mature moDCs were incubated with 2 µg/mL of the anti-

hDEC205-WT191-138 antibody fusion protein at 37°C for 1.5 hours to allow internalization. 

Then GM-CSF, IL-4 and TNF- were added and cells were further incubated for 20-22 

hours. On day seven, the loaded, fully matured moDCs were washed twice with 2 mL 

RPMI1640 GlutaMax and resuspended in 1 mL media. Parallel to this, autologous CD3+ T 

cells were counted and resuspended at a density of 3x106/mL in media. Then moDCs and 

T cells were mixed in one well of a 24-well culture plate and co-cultured at 37°C. After 

two days co-cultures were supplemented with 5 ng/mL IL-7 and IL-15 (Peprotech). 

Cytokines were then added every 2-3 days when half of the media was replenished. On 

day 12-13, cells were restimulated with 2 μg/mL of the antibody fusion protein for 24 

hours, then CD137 frequencies were assessed by flow cytometry. 

 

 

When frequencies of CD137-expressing cells reached more than 3 % as 

determined by flow cytometry, activated T cells were selected using the CD137 selection 

kit in accordance with the manufacturer’s protocol (Miltenyi Biotec). Parallel to, 

allogeneic PBMC pool prepared from buffy coats of ten different healthy donors were 

thawed and cell division was inhibited by irradiation (35Gy) prior to add them as feeder 

cells to the CD137+ T cells. The CD137+ T cells  and allogeneic irradiated feeder cells were 

seeded into the wells of a 48-well plate at a ratio of 1:10 and supplemented with 1 µg/mL 

PHA-L and 50 IU/mL IL-2. Specific T cells were expanded further for 14-83 days by 

supplementation of IL-2, IL-7 and IL-15 every 2-3 days, together with a half media 

change, and restimulation of autologous moDCs loaded with the antibody fusion protein 

every 14 days.   
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ICS assay was used to detect interferon-γ producing T cells induced by moDCs 

loaded with the anti-hDEC205-WT1 antibody fusion proteins. ICS assay was performed 

as described previously (Lamoreaux et al. 2006) with modifications. Briefly, 1x105 semi-

mature moDCs per well of a 96-well plate were left unstimulated or loaded with 2 µg/mL 

anti-hDEC205 antibody (negative control), 2 µg/mL anti-hDEC205-WT1small antibody 

fusion proteins, 5 µg/mL WT1 peptide pool, or 1 µg/mL CMV pp65 recombinant protein 

(positive control) for 1.5 hours prior to supplementation with GM-CSF, IL-4 and TNF-α. 

After 20-22 hours of incubation at 37°C, cells were washed twice with 200 µL RPMI1640 

and resuspended in 100 µL medium. Then, 4x105 autologous CD3+ T cells were added to 

the corresponding wells. The mixtures of  moDCs and T cells were incubated  at 37°C for 

1 hour, before addition of 10 µg/mL Brefeldin A (Sigma-Aldrich). At the same time, 0.5 

µg/mL PMA and 1 µg/mL Ionomycin were added into a well for the assay control. For 

CD107a degranulation assay, 1 L monensin and 2 L anti-CD107a-APC (both BD 

Biosciences) were added. After 16 hours of co-incubation, cells were harvested and 

stained with the following antibodies: anti-CD3-FITC or -PerCP, anti-CD8-FITC or -PerCP 

or -APC, anti-CD4-APC or -PerCP (BD Biosciences). After surface staining, cells were 

permeabilized with FACS Permeabilizing Solution 2 (BD Biosciences) and stained with 

anti-IFN-γ-PE (Beckman Coulter). Cells were analysed with the FACS Calibur and 

CellQuest software (both from BD Biosciences). 

 

 

Semi-mature moDCs (5 x 104 per well) unloaded or loaded with 2 μg/mL anti-

hDEC205-WT191-138 or control anti-hDEC205 or 5 μg/mL WT1 peptide pool (Miltenyi 

Biotec) were co-incubated with PBMCs (2 x 105 per well) in a 96-well ELISPOT plate 

(Millipore) precoated with anti-IFN-γ capture antibody (BD Biosciences) for 16 hours. 

After co-incubation, cells were removed from the wells and the biotinylated anti-IFN-γ 

detection antibody (BD Biosciences) was added  prior to visualization with Streptavidin-

AP (Southern BioTech) and NBT/BCIP liquid substrate system (Sigma-Aldrich). Spots 

were determined on Immunospot S5 ELISPOT reader (C.T.L).   

    



Materials and methods 
 

51 
 

 VITAL-FarRed assays were performed as described elsewhere (Stanke et al. 2010) 

with modifications. Briefly, 5x106 THP-1 cells were labelled with 5 μM CFSE and the same 

number of DG-75 cells were labelled with 5 μM FarRed (Invitrogen) for 5 min at 37°C. 

Both cell lines were HLA A02 positive. Specific T cells derived from HLA A02 positive 

patients were serially diluted and each dilution of T cells was mixed with 5x104 CFSE+ 

target and 5x104 FarRed+ control cells, resulting in graded effector : target (E:T) ratios. 

After 22 hours of incubation at 37°C in 5 % CO2, the cytotoxicity was assessed on the basis 

of specific lysis of the target cells compared to that of the control cells by flow cytometry 

using previously described method (Stanke et al. 2010).  

 

 

Data are shown as median with IQR, mean ± SEM, or mean ± SD. Statistical 

significance was analyzed with GraphPad Prism 5.0 (GraphPad Software Inc.) using 

unpaired t test or one-and two-way analysis of variance (ANOVA) followed by Tukey’s 

and Bonferroni’s post hoc test as indicated. p ≤ 0.05 was regarded to be significant.   
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Section 4. Results  

and observations 
 

 

4.1.  Generation of anti-hDEC205-WT1 antibody fusion proteins  

The anti-hDEC205-WT1 antibody fusion protein encoding plasmids were cloned 

in three steps using standard techniques (Figure 11). The final constructs also encoded a 

Flag-tag to facilitate purification and detection of the various recombinant proteins.  

Therapeutic antibodies can be expressed as single chain variable fragments 

(scFvs) or as whole antibodies. As a basis of the anti-hDEC205-WT1 antibody fusion 

proteins, scFv:hDEC205 consisting of the variable heavy and variable light chain domains 

of the anti-hDEC205 clone MG-38.3 (Birkholz et al. 2010) connected by (GGGGS)3-linker 

were designed. The cDNA encoding scFv:hDEC205 was synthesized by GeneArt AG (Life 

Tecnologies Co. Ltd.). Then the scFv:hDEC205 DNA fragment was inserted 5’ into a pCR3-

based (Invitrogen) expression vector encoding Gaussia princeps luciferase (GpL), a highly 

traceable molecule, to obtain a scFv:hDEC205-GpL fusion construct (Figure 12).  

Simultaneously, DNA fragments encoding the variable heavy  and light chain 

domains of anti-hDEC205 were separately amplified by PCR using primers with 

 

4.1.1 Cloning of anti-
hDEC205 antibody

4.1.2 Cloning of WT1 
fragments

4.1.3 Fusion of WT1 
fragments to  anti-

hDEC205 

Figure 11. Cloning workflow of anti-hDEC205-WT1 antibody fusion proteins. 
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restriction sites for later cloning. To construct the heavy and light full-length chain 

encoding expression plasmids, the amplicons were then inserted into another pCR3-

derived expression vectors encoding the human IgG1 constant heavy or kappa light chain 

domains (Figure 12). Concentration and purity of the cloned expression constructs were 

measured at 260nm by spectrophotometer while sequences of the expression constructs 

were proved by DNA sequencing (GATC Biotech, a worldwide provider of DNA 

sequencing). The expression vectors passed all these quality tests were left at -20°C until 

transient transfection. 

 

WT1_D was reported as the dominant WT1 isoform in AML cases (Kramarzova et 

al. 2012). Since it represents the longest isoform, WT1-derived peptide variations to be 

presented to T cells should be maximized with this isoform. For this reason, we intended 

to fuse WT1_D to the anti-hDEC205 antibody. Due to the difficulty in amplifying a cDNA 

for full-length WT1_D from various leukemia cell lines, we generated five different 

WT1_D amplicons covering the whole protein sequence (Figure 13). Then, with an 

exclusion of four amino acids, a full-length WT1_D was cloned by combining WT1_D1-227 

with WT1_D217-522 using an internal Xho1 restriction site (Table 19). 

Figure 12. Scheme of anti-hDEC205 antibody constructs.  

Top: The scFv:hDEC205-GpL single chain variable fragment of anti-hDEC205 consisting of the 
variable heavy and light chains (anti-hDEC-VH and anti-hDEC-VL) was C-terminally fused to 
Gaussia princeps Luciferase and tagged N-terminally by a double Flag epitope. Bottom: Primary 
structure of anti-hDEC205 antibody. The heavy and light chains of the antibody were 
constructed by inserting respective variable heavy and light chain domain into the N-terminus 
of the corresponding constant domains of the human IgG1 isotype. Each chain of the antibody 
was Flag-tagged N-terminally. 
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Each WT1_Dmajor fragment as well as the full-length WT1_D was genetically fused 

to the C-terminus of the heavy chain of anti-hDEC205 antibody to obtain various anti-

hDEC205-WT1 antibody fusion proteins (Figure 14) and expressed by transient 

transfection of HEK293 cells.  

 

 

Western blot analyses of culture supernatants from cells transiently transfected 

with expression plasmids encoding the parental anti-hDEC205 and the aforementioned 

 

Figure 14. Scheme of anti-hDEC205-WT1 antibody fusion proteins.  

The anti-hDEC205-WT1major and -WT1small fusion proteins were constructed by C-terminal 
linking of the respective WT1 fragments to the anti-hDEC205 heavy chain. Small fragments of 
WT1 were fused through a flexible spacer of four amino acids (blue). 

Figure 13. PCR amplification of cDNA encoding three major fragments of WT1_D of the five 
obtained amplicons.  

SM, size marker for DNA; bp, base pairs; cDNA obtained from leukemia cell lines (THP-1, ML-
2, NALM-6) by RT-PCR.  
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anti-hDEC205-WT1_D fusion variants revealed good production of anti-hDEC205 but no 

relevant production of the anti-hDEC205-WT1_D variants. To figure out whether the anti-

hDEC205-WT1_D fusion proteins were not expressed at all or simply not secreted, 

transfected cells were pelleted and analyzed in parallel with the supernatants. In lanes 

loaded with cell lysates there were significant amounts of the WT1 antibody fusion 

proteins, indicating that the fusion proteins were produced but not secreted (Figure 15). 

 

 

 

Cloning to different sites or proteins was expected to be a possible solution to the 

poor secretion of the anti-hDEC205-WT1_D fusion constructs. Thus, we cloned N- and C-

terminal as well as middle parts of WT1_D to the either C-terminus of the light chain of 

anti-hDEC205 or scFv:hDEC205 (Table 19) to test our expectation. As shown in Figure 16, 

these fusion proteins were again not secreted. Collectively, these results suggest that 

large fragments of WT1 interfere with efficient secretion. 

 
Figure 15. Production and secretion characteristics of anti-hDEC205-WT1_D antibody fusion 
proteins by SDS-PAGE and Western blot analysis.  

Proteins were detected with mouse anti-Flag M2 IgG (primary antibody) and goat anti-mouse 
IgG-IRDye 800CW (secondary antibody). S culture supernatant collected from transfected 
HEK293 cells, P lysate of pelleted HEK293 cells mock transfected or transfected with different 
anti-hDEC205-WT1_D antibody fusion proteins. 
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To overcome the insufficient yields due to the poor secretion, we also evaluated 

purification of the intracellularly trapped fusion protein anti-hDEC205-WT1_D1-227 by 

triton extraction and affinity chromatography on anti-Flag agarose. In principle, 

purification of intracellular anti-hDEC205-WT1_D1-227 was possible, but the obtained 

yields were not sufficient for extensive work due to the poor solubility of the antibody 

fusion protein (Figure 17). However, 3 g of the anti-hDEC205-WT1_D1-227 antibody fusion 

protein (at 1g/mL of concentration) could be purified from pellets of 20 x 107 HEK293 

cells. 

 

 

 
Figure 16. Western blot analysis of three different anti-hDEC205-WT1_D217-522 fusion constructs.  

The WT1_D217-522 fragment was cloned to three different cloning sites as indicated HC heavy 
chain, LC light chain, and scFv single chain variable fragment of anti-hDEC205 antibody. Ab 
parental anti-hDEC205 antibody. Black arrow heads indicate expected fusion chains of the anti-
hDEC205 antibody. 

 

 

Figure 17. Extraction of the intracellularly retained anti-hDEC205-WT1_D1-227 antibody fusion 
protein by triton-100 lysis followed by sonication.  

S0 initial yields of protein extract, S1 S2 S3 protein yields in supernatant after  each 
centrifugation, N1 N2 N3 Non-soluble pelleted proteins. Boxes and numbers were used for 
calculation of protein concentrations.   
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Table 19. Summary of all cloned anti-hDEC205-WT1 antibody fusion proteins containing different 
fragments of WT1. 

aa  amino acids; VH-CH  heavy chain and VL-CL light chain of anti-hDEC205 antibody; scFv:single 
chain fragment variable of anti-hDEC205; + cloned, - not cloned;  ┼  four amino acids (aa213-

216:SQPA) were excluded; Bold: WT1 protein sequence with good secretory capacity. Note that 

there is a difference for numbering of amino acid sequences between isoform D and canonical 

isoform of WT1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the large parts of  WT1 protein showed poor secretion, we generated and 

screened a panel of anti-hDEC205 antibody fusion proteins containing different small 

fragments (26-51 aa) of WT1 for efficient secretion. First, small fragments of WT1 cDNA 

were selected on the basis of the encoded immunogenic epitopes that were previously 

published elsewhere (Rezvani et al. 2008), (Kobayashi et al. 2006), (Doubrovina et al. 

2012). Then by primer combinations, more fragments were propagated. Finally, eight 

different anti-hDEC205-WT1small antibody fusion protein constructs were successfully 

generated. This way, we identified four different anti-hDEC205-WT1small (Table 20) 

antibody fusion proteins yielding 2-4,4 g/mL in supernatants of transiently transfected 

HEK293 cells. Out of the four, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and 

anti-hDEC205-WT1324-371 were purified for further analyses. After purification, the anti-

hDEC205-WT1small fusion proteins reached concentrations of 40-400 g/mL with high 

purity and good integrity (Figure 18).  

No 
WT1 isoform D  

(522 aa) 
WT1 canonical 

(449 aa) 
VH-CH VL-CL scFv:  

1 WT1_D1-227 WT1(-73)-154 + + + 
2 WT1_D217-351 WT1144-278 + + + 
3 WT1_D217-487 WT1144-414 + - + 
4 WT1_D217-522 WT1144-449 + + + 
5 WT1_D347-522 WT1274-414 + - - 
6 WT1_D1-522 ┼ WT1(-73)-449 + - + 
7 WT1_D1-126 WT1(-73)-53 + - - 
8 WT1_D83-108 WT110-35 + - - 
9 WT1_D164-211 WT191-138 + - - 

10 WT1_D296-346 WT1223-273 + - - 
11 WT1_D397-444 WT1324-371 + - - 
12 WT1_D83-126 WT110-53 + - - 
13 WT_D217-346 WT1144-273 + - - 
14 WT1_D296-444 WT1223-371 + - - 
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Figure 18. Purity and integrity of anti-hDEC205-WT1small fusion proteins by SDS-PAGE and 
silver staining.  

PM, protein marker; molecular weights in kDa; +, reducing; -, non-reducing condition; DTT, 
dithiothreitol. 
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Table 20. Protein sequence of WT1 small fragments for four secreted anti-hDEC205-WT1 antibody fusion proteins.  ╫not published 

 

Antibody 
fusion 

protein 

Protein sequence of the WT1 cloned to the C-terminus  
of the a-hDEC205 

Sequence of known epitopes 

Anti-hDEC205-
WT110-35 

ALLPAVPSLGGGGGCALPVSGAAQWA GGCALPVSGA 

Anti-hDEC205-
WT191-138 

AFTVHFSGQFTGTAGACRYGPFGPPPPSQASSGQARMFPNAPYLPSCL 
RMFPNAPYL 

QARMFPNAPYLPSCL 

Anti-hDEC205-
WT1223-273 

SDNLYQMTSQLECMTWNQMNLGATLKGVAAGSSSSVKWTEGQSNHSTGYES 
WNQMNLGAT  

CMTWNQMNLGATLKG 
KGVAAGSSSSVKWTE 

Anti-hDEC205-
WT1324-371 

MCAYPGCNKRYFKLSHLQMHSRKHTGEKPYQCDFKDCERRFSRSDQLK 
DFKDCERRF ╫ 

KRYFKLSHLQMHSRKH 
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4.2. Binding capacity of anti-hDEC205-WT1small antibody fusion 

proteins 

 

To confirm the DEC205 receptor-specific binding capacity of the various anti-

hDEC205-WT1 antibody fusion proteins, parental and human DEC205-stably expressing 

CHO cells were incubated with the anti- hDEC205-WT1small proteins.  

 
 

 

 
Then the antibody fusion proteins bound to DEC205 were detected with anti-Flag M2 and 

PE-conjugated anti-mouse IgG antibodies by flow cytometry. The parental anti-hDEC205 

antibody as well as anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-

hDEC205-WT1324-371 bound to human DEC205-expressing CHO cells but not to parental 

CHO cells (Figure 19).  

 

 

 

 

Figure 19. FACS analysis to assess binding capacities of the antibody fusion proteins to human 
DEC205.  

Top: CHO-hDEC205 cells. Bottom: parental CHO cells. Humira, anti-hTNF- antibody served as a 
negative control. 

. 
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4.1.2.1. DEC205 binding specificity of scFv:hDEC205-GpL 

 

To quantify binding of anti-hDEC205 to cell surface expressed hDEC205, we 

performed equilibrium binding studies with scFv:hDEC205-GpL, a highly traceable 

luciferase fusion protein of the single chain variable fragment variant of the hDEC205-

specific antibody clone MG-38.3. CHO-hDEC205 and parental CHO cells were incubated 

with increasing concentrations of the scFv:hDEC205-GpL protein to allow binding of the 

antibody variable fragment luciferase fusion protein to cell expressed hDEC205. After 1 

hour incubation, non-bound scFv:hDEC205-GpL was removed by 10 times washing with 

PBS and GpL activity of the remaining cell-bound molecules was measured with a 

Luminometer. The specific binding of the scFv:hDEC205-GpL was determined by 

subtracting non-specific binding to parental CHO cells from the total binding to CHO-

hDEC205 cells. On the base of the concentration dependent binding data, a non-linear 

regression curve was fitted and the dissociation constant (Kd) was calculated by help of 

the GraphPad Prism 5 software. There was nearly no non-specific binding to parental 

CHO cells (Figure 20). The mean Kd of scFv:hDEC205-GpL was found to be 1445 pM 

(average of 7 experiments).  

 

 

Figure 20. Equilibrium binding study of the scFv:hDEC205-GpL to the cell expressed hDEC205.  

Filled circles total binding values, empty circles nonspecific binding values, and filled rombs 
specific binding values. 
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4.1.2.2. Binding of anti-hDEC205 antibody 

 

The binding of the scFv:hDEC205-GpL to DEC205 on the cell surface can be 

blocked by heterologous inhibitor molecules such as the parental antibody or the various 

anti-hDEC205-WT1 antibody fusion proteins. The rate of the inhibition capacity of 

inhibitors is concentration dependent. The binding capacity of the inhibitor can be 

calculated on the basis of the constant concentration and the Kd value of the 

scFv:hDEC205-GpL molecule and the IC50 of the inhibitor using the formula: Ki = IC50 / (1 

+ CGpL / Kd). By such heterologous competition assay analyses with 660 pM 

scFv:hDEC205-GpL, we obtained an IC50-value of the conventional anti-hDEC205 

antibody of 1175 pM on average (Figure 21). This allowed the Ki calculation of the parental 

anti-hDEC205 antibody which resulted in a value of 810±310 pM. The obtained Ki value 

of the antibody corresponds to an affinity of 8.1 x 10-10 M. 

 

 

 

 

 

 

 

Figure 21. Heterologous competition binding assay.  

RLU, relative light unit; pM, picoMolar. The binding value (Kd) of the scFv:hDEC205-GpL 
interaction with hDEC205 and IC50 of the anti-hDEC205 antibody were calculated by non-linear 
regression using the GraphPad Prism 5.0 software. 
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4.1.2.3. Binding of the anti-hDEC205-WT1small antibody fusion proteins 

 

In equilibrium binding studies, the specific binding of scFv:hDEC205-GpL was 

comparably well blocked by each of the anti-hDEC205-WT1small antibody fusion proteins 

and the parental anti-hDEC205 IgG1 leading to the conclusion that these fusion molecules 

bind to hDEC205 with a similar efficacy (Figure 22).  

 
 

Since binding of the anti-hDEC205 antibody variants was not significantly altered 

by C-terminal extension of the heavy chain with the various WT1small fragments, we 

proved binding to endogenously expressed DEC205 only for the parental antibody using 

human immature moDCs (Figure 23).  

Figure 22. Equilibrium binding study confirming the binding capability of the anti-hDEC205-
WT1small antibody fusion proteins to hDEC205. 

  total binding, specific binding,  non-specific binding of the scFv:hDEC205-GpL by 
blocking with the parental antibody or the respective anti-hDEC205-WT1small fusion proteins: 
anti-hDEC205 antibody (i), anti-hDEC205-WT191-138 (ii), anti-hDEC205-WT1223-273  (iii), anti-
hDEC205-WT1324-371 (iv). 
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4.3. Screening of endotoxin content in the purified anti-hDEC205-

WT1 antibody fusion proteins 

Endotoxins are complex lipopolysacharides found in outer cell membrane of 

gram-negative bacteria and have many biological impacts such as triggering of TLR4 

activation (Gorbet and Sefton 2005). Cell growth and function are both affected by 

endotoxin effects in vitro and in vivo. Therefore, all purified antibody fusion proteins were 

tested for their endotoxin level using the Limulus Amebocyte Lysate (LAL) chromogenic 

assay. This assay is based on the fact that bacterial endotoxin activates a proenzyme in 

the modified LAL. The activated proenzyme leads to release of p-nitroaniline from the 

colorless substrate, Ac-Ile-Glu-Ala-Arg-p-nitroaniline; the activation rate is proportional 

to the endotoxin concentration of the sample considered. The released p-nitroaniline is 

photometrically measured at 405-410nm. The correlation between photo absorbance 

and endotoxin concentration is linear in the 0.1-1.0 endotoxin unit (EU) per mL range. 

The developed color intensity is proportional to the amount of endotoxin present in the 

sample and can be calculated using a standard curve. As showed in Table 1, besides the 

parental antibody, levels of endotoxin in all antibody fusion protein samples were below 

the threshold accepted for preclinical use of recombinant vaccines (Brito and Singh 

2011). The estimated endotoxin levels in cell cultures were ranged between 0.004-1.9 

EU/mL (Table 21). 

 

Figure 23. Specific binding of anti-hDEC205 antibody to DEC205 on immature human monocyte-
derived DCs.  

Left: FACS analysis, Right: equilibrium binding study. 
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Table 21. Endotoxin levels of the purified antibody fusion proteins and cell cultures. 

 

 

4.4. Frequency of DEC205-expressing DCs in PBMCs was not 

sufficient to induce DC-dependent T-cell response ex vivo  

 

At the outset, we stimulated human PBMCs with the anti-hDEC205-WT191-138, 

anti-hDEC205-WT1223-273, anti-hDEC205-WT1324-371 fusion proteins and anti-hDEC205 

antibody alone. However, we could not detect any T cell response ex vivo, which resulted 

from the fact that DEC205-expressing DCs were barely detectable in PBMCs (Figure 24). 

Therefore, priming/activating of T cells ex vivo was performed with moDCs in the 

following experiments. Moreover, the maturation of moDCs was not negatively affected 

by DEC205-targeting (Figure 27). 

 

Antibody fusion protein Concentration of 
stock solution 

Endotoxin 
concentration in stock 

solution 

Endotoxin 
concentration 
in cell culture 

a-hDEC205 Ab 130 μg/mL 127,02EU/mL 1,9 EU/mL 

a-hDEC205-WT191-138 40 μg/mL 12 EU/mL 0,6 EU/mL 

a-hDEC205-WT1223-273 400 μg/mL 0,8 EU/mL 0,004 EU/mL 

a-hDEC205-WT1324-371 200 μg/mL 0,9 EU/mL 0,009 EU/mL 
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Figure 24. Frequency of DEC205+ cells in human PBMCs.  

SSC side scatter; Left: frequency of peripheral blood mononuclear cell subsets: CD14+ monocytes;, 
CD3+ T cells, CD19+ B lymphocytes, CD56+ NK cells, CD1a+ DCs; Right: DEC205 expression on the 
surface of the respective cells. 

 

 

Figure 25 
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4.5. Evaluation of monocyte derived dendritic cells (moDCs)  

 

On day seven of DC generation from CD14+ cells, a maturation state of moDCs were 

checked morphologically on the phase-contrast inverted microscope and phenotypically 

by flow cytometry using anti-CD80, anti-CD83, anti-CD86, anti-CD1a, anti-CD14, anti-

CD40, anti-CD205, anti-HLA-ABC, anti-HLA-DR, anti-CCR7 antibodies conjugated with 

APC or PE fluorescence molecules. On the phase-contrast microscope, the protein loaded 

moDCs showed irregular shapes with cytoplasmic projection (Figure 26).     

 

 

 

By immunophenotyping, the strong expression of CD80, CD86, CD83, CD1a, HLA-

ABC, HLA-DR molecules were detected on the cell surface. The expression of CD40 and 

CCR7 was also upregulated (Figure 27). 

 

 

 

 

Figure 26. Mature moDCs at the beginning of DC-T cell co-culture.  

Cells with large size and more extended dendrites projecting from the cell body are 
moDCs, round small cells are CD3+ T cells.  
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4.6. Evaluation of quality of CD3+ T cells  

 

To accurately check T cell response to the anti-hDEC205-WT1small antibody fusion 

proteins, it is essential to monitor T cell quality. Therefore, CD3+  T cells were monitored 

for their purity after the pan-T cell selection procedure (Figure 28). Specifically, T cells 

were stained with anti-CD3-FITC, anti-CD8-APC, anti-CD4-PerCP, anti-iNKT-PE, anti-

CD56-APC, and anti-CD16-FITC and detected by flow cytometry. As shown in Figure 27, 

the purity of CD3+ T cells in average was 95.8 ± 4.1 %. NK cells were detected at 

frequencies of 0.8-3.3 % in the CD3+ T cell preparation . 

 

 

 
 
 
 
 

Figure 27. The expression of maturation markers on moDCs after the anti-hDEC205-WT1 
antibody fusion protein loading (day seven).   

Empty histograms are isotype controls, filled histograms are the expression of the indicated 
markers on moDCs. 
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4.7. Anti-hDEC205-WT1_D1-227 is able to activate T cells 

 

To test the immunogenic capacity of anti-hDEC205-WT1_D1-227, purified from 

HEK293 cell lysates, we performed interferon- ELISPOT assay. The anti-hDEC205-

WT1_D1-227 antibody fusion protein was used at a concentration of 0.5 g/mL to load  

 

 

mature moDCs, however, the greatest number of IFN- spots were counted (Figure 29). 

This result indicated that the anti-hDEC205-WT1_D1-227 protein might have stronger T 

Figure 28. The purity of CD3+ T cells after pan T cell selection.  

The columns are the mean ± SD obtained from flow cytometry analyses of six different CD3+ T 
cell preparations. 

 

Figure 29. IFN-γ response of DC/T cell co-incubation from one patient assessed by IFN-γ 
ELISPOT assay.  

Actual numbers of IFN-γ spots are shown at the top right. 
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cell stimulatory capacity compared to the smaller fragments contained in anti-hDEC205-

WT1small antibody fusion proteins. Unfortunately, the major fragment bearing antibody 

fusion protein could not be further evaluated due to the insufficient yields after 

inadequate secretion and unsatisfactory purification from the whole cell compartment 

(see 4.1.3.).  

 

 

4.8. WT1-specific T-cells are better detected via anti-hDEC205-

targeted delivery of WT191-138 than non-targeted WT1 peptide 

pool  

 

To investigate T cell responses triggered by anti-hDEC205-WT1 protein loaded 

mature moDCs, we measured the frequency of IFN-+ T cells after stimulation by flow 

cytometry. Unloaded or anti-hDEC205 parental antibody loaded DCs were used as 

negative controls, while 15-mer WT1 peptide pool loaded DCs were used as positive and 

comparison controls. We also considered CMV status of the study subjects, because CMV 

pp65 recombinant protein was used to determine general kinetics of protein uptake and 

 
Figure 30. DC-mediated T cell response to anti-hDEC205-WT1small antibody fusion proteins.  

Compiled data from all individuals (n = 16) analyzed for IFN- T cell responses by ICS. Shown 
are median frequencies with interquartile range (IQR), one-way ANOVA, Tukey’s test **p < 0.01. 
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processing by moDCs. As well as the CMV status was helpful to control the quality of the 

performed assays. Of the three antibody fusion proteins tested, only the anti-hDEC205-

WT191-138 showed a significant T cell stimulatory effect ex vivo (Figure 30). 

The anti-hDEC205-WT191-138 loaded mature moDCs were able to activate freshly 

isolated T cells while treatment of mature moDCs with the parental a-hDEC205 antibody 

or with a WT1 15-mer peptide pool showed no effect (Figure 31). Of note the IFN- 

producing cells induced by anti-hDEC205-WT191-138 loaded mature moDCs were mostly 

CD8+ T cells. It was interesting that the frequency of T cells activated by the targeted self-

antigen WT191-138 stimulation was higher than that of T cells activated by the non-

targeted viral protein CMVpp65 in the shown case. However, the mean frequency of the 

WT1-specific T cells was 2.3-fold lower than the CMVpp65-specific counterparts in total 

number of patients. 

 

 

 
Figure 31. IFN-ICS and FACS analysis of cells from one of the patients (PN2).  

Top: CD3+IFN-γ+ T cell frequencies gated on lymphocytes, Middle and Bottom: frequencies of 
CD3+-gated CD3+CD4+IFN-γ+ (middle) and CD3+CD8+IFN-γ+ T cells (bottom). T cells were co-
incubated with unloaded moDCs (Unstimul.), with moDCs loaded with anti-hDEC205-antibody, 
anti-hDEC205-WT191-138 antibody fusion protein, WT1 peptide pool, or CMV pp65 protein. 
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Table 22. Patient details.  

R recipient, D donor, AML acute myeloid leukemia, CMML chronic myelomonocytic leukemia, MDS 
myelodysplastic syndrome, MRD minimal residual disease, neg negative, pos positive.  

 

 

 

 

 

 

 

 

 

 

 

 

PN Age/sex 
Diagnosis, disease 

status 
HLA type 

Post 
Transplant 

time 
(Months) 

CMV status 
R/D 

1 73/F Secondary AML 
A*0201,3201, B*0801,2705 

DRB1*0401,1101 DQB1*0301 
74 neg/pos 

2 58/F CMML, AML 
A*0201, B*4001,5201 

DRB1*1301,1502 
DQB1*0601,0603 

54 pos/pos 

3 57/F AML M5 
A*0201,24 B*1801,3501 

DRB1*0101,0301 
DQB1*0201,0501 

86 pos/pos 

4 43/F AML M4 
A*0201, B*2702,4901 

DRB*1101,1201 DQB*0301 
25 neg/neg 

5 62/F MDS 
A*0101,0201, B*1517,3701 

DRB1*0701,1302 
DQB1*0202,0604 

83 pos/pos 

6 64/M AML M1/M2 
A*0201,0301 B*0702,5701 

DRB1*0407,0701 
DQB1*0301,0303 

10 pos/pos 

7 56/F AML MRD+ 
A*0101,2601 B*2705,3801 

DRB1*0101,1301 
DQB1*0501,0603 

13 pos/pos 

8 62/F AML 
A*0301, 3101 B*0801,5001 

DRB1*0701,1501 
DQB1*0202,0602 

15 neg/neg 

9 56/M AML 
A*0201, 2901 B*1501,4403 

DRB1*0401,0701 
DQB1*0202,0301 

6 neg/neg 

10 68/M CMML 
A*0201,0301 B*0701 

DRB1*0701 DQB1*0202 
24 pos/neg 
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Immunogenicity of the anti-hDEC205-WT191-138 was tested with CD3+ T cells 

derived from 10 patients (Table 22). In eight cases, we detected T cell responses against 

the fusion protein mainly in the CD8+ subset. The median frequencies of CD3+IFN-γ+, 

CD8+IFN-γ+ and CD4+IFN-γ+ cells upon overnight stimulation with anti-hDEC205-WT191-

138 loaded moDCs were 0.44%, 0.45% and 0.05% (Figure 32). 

 
 

The majority of the responders was determined to be HLA A02. However, one 

patient (PN8) was HLA A03 positive but HLA A02 negative, suggesting that WT191-138-

derived peptides can be presented by several HLA alleles. In contrast, only one patient 

showed an IFN-+ T cell response to mature moDCs loaded with a WT1 peptide pool.  

Figure 32. Summary of IFN-γ ICS results from all patients (n = 10).  

Plots show frequencies of IFN-γ+CD3+ (top),  IFN-γ+CD8+ (left bottom) and IFN-γ+CD4+ (right 
botom) T cells. Each data point represents one individual, bars indicate median frequencies with 
IQR, Tukey’s test *p < 0.05. 
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It is broadly accepted that GvL effects after allo-HSCT are mediated by donor 

derived T cells. Therefore, we tested blood samples of healthy individuals as potential 

haematopoietic stem cell donors to evaluate whether DEC205 targeted WT191-138 is able 

to stimulate WT1-specific T cells in healthy donors (Figure 33). A T cell response was 

observed in five of six healthy donors with lower intensities than that of the patient 

derived cells. 

 
 
intensities than that of the patient derived cells. Three of the six healthy donors were HLA 

A02 negative. This suggested again that processed peptides from the WT191-138 fragment 

Figure 33. Summary of IFN-γ ICS results from all healthy individuals (n = 6).  

Plots show frequencies of IFN-γ+CD3+ (top),  IFN-γ+CD8+ (left bottom) and IFN-γ+CD4+ (right 
bottom) T cells. Each data point represents one individual, bars indicate median frequencies 
with IQR, Tukey’s test *p < 0.05;  **p < 0.01. 
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are presented on different HLA alleles. Nevertheless, without prior expansion or 

enrichment, the median frequency of CD3+IFN-γ+ and CD8+IFN-γ+ cells obtained after co-

incubation with anti-hDEC205-WT191-138 loaded moDCs was significantly higher than 

after co-incubation with moDCs treated with the parental antibody or a non-targeted 

WT1 peptide pool in both patients and donors. With regard to CD4+IFN-γ+ cells, there 

seemed to be a minor but not significant shift. Notably, we did not use co-stimulating 

agents such as anti-CD40 for CD4+ T cell activation. 

 

 

 

 

Figure 34. IFN-γ response of PBMCs from one patient assessed by IFN-γ ELISPOT assay.  

Top: triplicate of one representative IFN-γ ELISPOT assay. Bottom: graphical analysis 
of the IFN-γ ELISPOT assay shown above. Shown are means with SEM, unpaired Student 
T test ***p < 0.001. 
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4.9. Activation of T cells in PBMCs by anti-hDEC205-WT191-138-loaded 

moDCs 

 

Since the use of PBMCs is less laborious and more time-saving, compared to the 

use of purified CD3+ T cells, we tested if T cells could be activated without selection from 

the whole PBMCs by this approach. For this, anti-hDEC205-WT191-138 loaded autologous 

mature moDCs and PBMCs from two patients were co-incubated to measure IFN- by 

ELISPOT assay (Figure 34). The average number of IFN-γ spots induced by anti-hDEC205-

WT191-138, was more than 4-fold higher (239.3) than that of the negative controls 

(unstimulated 52.3; parental antibody 49.3). Thus, both purified T cells and unselected T 

cells in PBMCs can be activated by mature moDCs loaded with anti-hDEC205-WT191-138.  

 

 

 

 

 

 

 

 

Figure 35. Cytotoxicity of T cells ex vivo by IFN-
assay. 

  unstimulated,  anti-hDEC205 Ab,  anti-hDEC205-WT191-138, WT1 peptide pool 
stimulation. Shown are means ± SD from five patients including PN 2, 3, 4.  
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4.10.  Cytotoxic activity of T cells activated by moDC-targeted WT191-

138 protein fragment  

 

 The main function of CD8+ CTLs is direct cell-mediated killing of target cells 

presenting cognate antigens which are recognized specifically by the CTL T cell receptors. 

Two distinct mechanisms of killing by effector T cells are known. The first mechanism is 

production of TNF-, Fas ligand (FasL) or TRAIL. These ligands induce multimerization 

of their corresponding receptors on the surface of target cells what leads to apoptotic 

death of the target cells (Peter and Krammer 2003). The second mechanism is the 

activation of diverse lytic pathways in target cells resulting from the release of cytotoxic 

granules comprising a pore-forming toxin, perforin, and granzymes, pro-apoptotic serine 

proteases from cytotoxic effector cells into the immunological synapse assembled 

between effector and target cells (Lieberman 2003). The lipid bilayer surrounding 

cytotoxic granules contains exclusively lysosomal-associated membrane glycoproteins 

 

 

Figure 36. In vitro T cell expansion by co-culturing with mature moDCs loaded with anti-
hDEC205-WT191-138 antibody fusion protein.  

Left: Numbers of T cells obtained from four patients after 12 days of DC/T cell co-culture. Each 
line represents one patient. Right: Summarized data of CD137 expression in co-cultured T cells. 
Shown are means ± SD of data from all four patients. Black, unstimulated; gray, restimulated 
cells. 
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(LAMPs) including CD107a (LAMP-1), CD107b (LAMP-2), and CD63 (LAMP-3). During 

the degranulation process,  lysosomal and cellular membranes are fused, as a 

consequence, LAMPs are exposed to the cell surface. This process is assessed by flow 

cytometry-based CD107a staining (Zaritskaya et al. 2010). Therefore, we used IFN- ICS 

combined with a CD107a degranulation assay for the ex vivo assessment of the cytotoxic 

potential of T cells activated by anti-hDEC205-WT191-138 loaded moDCs. The results of 

five independent assays are summarized in Figure 34. While CD4+ T cells treated with 

anti-hDEC205-WT191-138 showed a slight CD107a degranulation parallel to IFN- 

production, CD8+ T cells displayed a significant cytotoxic profiles directly ex vivo in 

comparison to the included controls (Figure 35). 

Since CD107a degranulation in conjunction with IFN-production was superior to 

CD8+ T cells treated with the anti-hDEC205-WT191-138, it was assumed that they would 

have a potential to lyse WT1 endogenously expressing leukemic cells. To validate this 

assumption T cells of four AML patients that received allo-HSCT were in vitro expanded. 

Autologous CD3+ T cells and the fusion protein loaded moDCs were co-cultured in 

presence of IL-7 and IL-15. In order to avoid an early T cell terminal differentiation, the 

co-cultures were not supplemented by IL-2 until CD137 selection. T cells dominated by 

CD8+ subsets were expanded 1.3 to 2 fold in numbers within 10-14 days (Figure 36). 

Frequencies of CD137+ T cells of the patients on this time point were ranged between 1.6-

10 % (Figure 37). In addition to the CD3+CD8+, CD3+CD4+ subset was also able to express 

CD137 in the cases that they were expanded. Then WT1-specific T cells selected based on 

the CD137 expression were further expanded until number of the specific T cells was 

sufficient to perform cytotoxicity assays. Thus, it seemed to be that the expanded WT1-

specific T cells were composed of the both subsets of T cells. However, unfortunately, the 

expanded T cells were not identified in terms of their subset and phenotype in these 

experiments. 
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The VITAL-FR, a classical cytotoxicity assay, is ideally suited for monitoring T cell-

mediated cytotoxicity for vaccination studies in scientific and diagnostic applications. 

Thus, to test specific lysis of WT1 positive leukemia cells via T cells stimulated with our 

antibody fusion protein, the VITAL-FR assay was performed using expanded CD137+ T 

cells derived from three HLA A02 positive patients. There was HLA A02-restricted lysis 

of THP-1 cells at relatively low effector to target (E : T) ratios indicating that the WT191-

138 specific T-cells possess a strong cytotoxic activity (Figure 38). It is worth mentioning 

that one of three T cell donors in this kind of experiment was patient 4 who showed no 

T-cell response directly ex vivo (Figure 39). Interestingly, expanded T cells from patient 2 

showed an inferior cytotoxicity, although their IFN-+ T cell response was the strongest 

in the ex vivo experiments. 

Figure 37. Representative FACS analysis of CD137 expression on T cells.  

After 12 days of co-culture, T cells were left unstimulated (left) or restimulated (right) with anti-
hDEC205-WT191-138 antibody fusion protein.  
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Taken together, the ex vivo detected cytotoxic capacity of T cells by IFN- ICS 

combined with CD107a degranulation assay (Figure 35) could be confirmed by the VITAL-

FR cytotoxicity test. Specifically, when targeted to DEC205 on mature moDCs, the WT191-

138 fragment is able to activate cytotoxic T cells to lyse WT1-overexpressing THP-1 

leukemia cells. 

 

 

 
 
 
 
 

Figure 38. Cytotoxic effector function of in vitro expanded WT1-specific T cells induced by anti-
hDEC205-WT191-138 loaded mature moDCs.  

VITAL-FarRed cytotoxicity assay. Each experiment was duplicated and each replicate was 
shown from three different patients (PN 2, 3, 4). 
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Figure 39. Representative FACS-plots of the flow cytometry-based VITAL-FR assays (PN4).  

CFSE+ THP-1 (target) and FarRed+ DG-75 (control) cells were gated in R1. The R2-gated 
target cell frequencies were detected compared with constant frequencies of the control cells 
gated through R1 and R3. At each E : T ratio, specific lysis was calculated as described by 
Stanke et al. (2010). 
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Section 5. Discussion 
 

 

5.1.  Actual challenges in AML therapy  

 Acute myeloid leukemia is one of the haematological malignancies which have a 

poor prognosis after conventional therapy. An older age (60<), high numbers of white 

blood cells, existence of prior MDS and previous cytotoxic therapy to treat other diseases 

strongly contribute to the poor prognosis. Only one fourth of the adult AML patients 

survive more than 5 years (NCI 2015). Genetic alterations that play a key role in disease 

development indicate the prognosis and clinical outcome for both, remission and post-

remission therapy. Intermediate and adverse  genetic groups have a high risk of therapy 

resistance and relapse. To date, allo-HSCT in the first or second complete remission phase 

is the only curative treatment option for patients with high risk AML. Unfortunately, not 

all patients achieve complete remission prior to HSCT (Pfrepper et al. 2015), which in 

turn, remarkably increases relapse risk. Correspondingly, relapse remains as a major 

cause of death after HSCT. The therapeutic effect of allo-HSCT is mainly based on GvL 

effect, but partially opposed by treatment-related mortality and loss of quality of life 

caused by acute and chronic GvHD (van Besien 2013). Therefore, strengthening GvL 

effects without provoking GvHD is the major challenge to augment the therapeutic 

efficiency of HSCT. HSCT itself is a complex procedure which starts from finding a suitable 

donor who matches the recipient’s HLA profile, and conditions recipients by an 

aggressive myelo- and immune suppressive therapy etc. Thus, disease course of patients 

is further negatively affected by circumstances like a treatment delay, lack of a suitable 

donor, exclusion from treatment due to an older age or severe comorbidity can occur in 

patients during their disease course. Overall, the aforementioned aspects call for an 

improvement of the current treatment modalities as well as for alternative strategies in 

the field of AML therapy.  
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 As immune cells are able to detect and destroy malignant cells, various 

immunotherapeutic strategies have been developed either to promote immune 

responses against tumors or to counteract tumor immune escape mechanisms. 

Vaccination to induce T cell responses against leukemia, one of the immunotherapeutic 

approaches, seems to be promising to strengthening the GvL effect after HSCT. Moreover, 

effective therapeutic vaccines could be alternative options in an autologous setting for 

patients who are not eligible to HSCT. DCs and TAAs have been thoroughly investigated 

for the vaccination strategies. Within the TAAs, WT1 is prioritized for the therapeutic 

vaccine against cancer due to its oncogenic function, immunogenic capability, tissue 

restricted expression, and progress-dependent abundance in leukemic cells (Cheever et 

al. 2009). Although various WT1 peptide vaccines have been established, their 

therapeutic use is generally limited due to the high diversity of individual immune 

responses. The known WT1-derived peptides are restricted mostly to the HLA A0201 and 

A2401 which reduces their wide clinical application. To expand the clinical application, there 

is a need for prior identification of immunogenic epitopes (Benteyn et al. 2013) in the protein 

sequence. Furthermore, the peptide-elicited immune responses can be short-lived and 

non-functional (Kuball et al. 2011) due to the tolerance mechanisms to WT1 as a self-

protein. To overcome the aforementioned limitations, a proper optimization of WT1-

specific T cell responses in terms of induction, amplitude, and duration is essential.  

The most crucial prerequisites to achieve more effective and sustained T-cell 

responses are variety and immunogenicity of the presented peptides as well as co-

stimulatory signaling, provision of cytokines and direct cell contact by the antigen 

presenting DCs . Thus, the aim of this study was to generate DC-targeted anti-hDEC205-

WT1 antibody fusion proteins as an anti-leukemia vaccine and explore their 

immunogenicity by directly ex vivo and in vitro assays. The main hypothesis was that by 

triggering DEC205 receptor-mediated endocytosis through anti-hDEC205-WT1 antibody 

fusion protein, DCs are stimulated to uptake the WT1. The directly delivered WT1 whole 

protein or longer protein fragments to DCs for intracellular processing should lead to 

MHC class I- and II-mediated presentation of a great diversity of WT1-derived peptides. 

This approach leads to improved WT1-specific T-cell response and gives an opportunity 

for immunotherapy to the broad patient collective independently from ethnic 

background and HLA type.  
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5.2.  Generation and evaluation of the anti-hDEC205-WT1 antibody 

fusion proteins  

A Flag-tagged anti-hDEC205 IgG1 antibody was correctly constructed and 

effectively produced. Production and purification did not affect antibody function. 

Functional characteristics were verified by binding to hDEC205-expressing CHO cells and 

human immature moDCs using flow cytometry. The affinity of the anti-hDEC205 was 

determined by binding studies and found to be high. A N-terminally fused Flag tag exerted 

minimal effects on the structure and function of the anti-hDEC205 antibody as described 

elsewhere (Hopp 1988).  

Since a delivery of the longest sequence of WT1 to DCs was the initial aim of this 

study, obtaining cDNA encoding full-length WT1_D was necessary. As described in the 

introduction (see 1.2.4), more than 36 different isoforms of WT1 are detected in cells as 

a result of alternative transcription, translation initiations, RNA editing, and splice events. 

In particular, a discovery of WT1 longer isoforms including WT1_D by Bruening et al. 

demonstrated that WT1 gene expression is more complex than anticipated, with a non-

AUG translational initiation event producing additional protein isoforms of 54 –56 kDa 

in addition to the known isoforms of 47-49 kDa (Bruening and Pelletier 1996). Due to the 

above mentioned complexities, a cDNA encoding full-length WT1_D could not be cloned 

in one step, hence, we cloned two cDNAs, each encoding the respective other part of 

WT1_D protein. Linkage of the two cDNAs through an internal XhoI restriction site 

resulted in a cDNA encoding the full-length WT1_D protein. After obtaining the WT1-

encoding cDNAs, it was easy to construct anti-hDEC205-WT1 antibody fusion proteins. 

Expression and purification of the full-length canonical isoform of murine and 

human WT1 and its zinc finger domains for functional studies were performed by a 

couple of groups beforehand (Geng and Carstens 2006, Nurmemmedov and Thunnissen 

2006, Fagerlund et al. 2012). To improve the stability and solubility of WT1, which are 

major obstacles in intracellular protein expression, in these studies, various expression 

systems, and buffers as well as soluble tags have been tested. By means of the huge 

efforts, sufficient amounts of WT1 protein were purified from inclusion bodies of E. Coli 

or eukaryotic HEK293T cell lysates. By contrast, we aimed to yield the anti-hDEC205-

WT1 antibody fusion proteins from cell culture supernatant in a soluble and secreted 

form. Proving the aforementioned difficulties, there were certain hindrances in 
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production and purification of our antibody fusion proteins. First, anti-hDEC205 

antibody fusion proteins containing full-length and major fragments of WT1_D were 

produced with different efficiencies. The production of the anti-hDEC205-WT1_D1-227 

was the most superior while the anti-hDEC205-WT1_Dfull showed the less efficiency of 

expression. Second, all constructed anti-hDEC205-WT1_Dmajor antibody fusion proteins 

possessed poor secretory characteristics, namely, these proteins were left largely cell-

associated instead they were secreted into culture supernatants. Next, in principle, 

purification of anti-hDEC205-WT1_D1-227 variant from triton extract of HEK293 cell 

lysates was possible, however, the final yields were reduced significantly due to the 

precipitation/aggregation of the antibody fusion protein, confirming results from 

Fagerlund et al. (Fagerlund et al. 2012).  

Of note, the purified anti-hDEC205-WT1_D1-227  fusion protein was once evaluated 

by IFN- ELISPOT assay. The relatively high number of IFN-spots shown by this assay 

indicated that the DEC205-targeted WT1_D1-227 major fragment could be more potent to 

induce WT1-specific T-cell responses compared to smaller fragments of WT1. Although 

it could not be reproduced by more experiments due to insufficient protein yields, it is 

meaningful to demonstrate a general feasibility of DEC205 targeting approach for WT1.      

In view of the poor secretion of WT1 major fragment containing hDEC205-specific 

antibody fusion proteins, smaller fragments encoding immunogenic epitopes that were 

previously published elsewhere (Rezvani et al. 2008), (Kobayashi et al. 2006), 

(Doubrovina et al. 2012) were screened for efficient expression and secretion. It seemed 

that anti-hDEC205 antibody bearing WT1 fragments of more than 50 amino acids are not 

able to excrete through transfected cells. All four antibody fusion proteins identified with 

sufficient production and secretion compose 26 to 51 amino acids. This could probably 

be explained by the fact that biochemical properties authorizing the intracellular nature 

of the protein may be lost in smaller sequences of WT1 within the antibody fusion 

protein. However, despite the relative shortness of the found WT1small fragments, more 

than ten of variable peptides are possibly be generated by the antigen processing 

machinery of DCs. The finally identified four different fragments of WT1 targeted to DCs 

through anti-hDEC205 antibody are obtainable in sufficient yields by routine protein 

expression and purification system. This would be an advantage for WT1 vaccination 

strategy. Furthermore, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-

hDEC205-WT1324-371 were analyzed for their directly ex vivo T cell stimulatory capacity. 
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It is of importance that all three anti-hDEC205-WT1small antibody fusion proteins were 

functional with respect to antibody integrity and antigen binding.  

The direct stimulation of PBMCs with each of the three antibody fusion proteins 

did not induce IFN- responses in T cells directly ex vivo, probably due to the low 

frequencies of DCs in PBMCs. Therefore, the uptaken amount of antibody fusion proteins 

and the resulting amount of processed and presented peptides in the given time might be 

insufficient to result in an optimal T-cell activation. Moreover, instead of immunity a 

possible tolerance could have been induced, as different APC subtypes in PBMCs undergo 

distinct maturation processes resulting in different functional profiles. Thus, fully 

matured and protein loaded moDCs were used to fairly investigate the T-cell stimulatory 

capacity of the DC-targeted anti-hDEC205-WT1 antibody fusion proteins.  

An effective adaptive immune response to a tumor is mainly triggered/mediated 

by tumor antigen specific cytotoxic CD3+ T cells (Rosenberg et al. 1988, Celluzzi et al. 

1996). To evaluate CD3+ T-cell responses to anti-hDEC205-WT1, we selected CD3+ T cells 

from PBMCs. Purity of the CD3+ T cells tested prior to the antigenic stimulation via mature 

moDCs was 95 % in average, thereby ensuring low variability of the performed ICS and 

ELISPOT assays. Of importance, the results from PBMC/moDC co-incubation experiments 

showed that T cells in PBMCs were able to respond to anti-hDEC205-WT191-138 when the 

loaded moDCs triggered the strong enough stimulation. This indicates an optimized 

priming and/or activation is a crucial factor to induce WT1-specific T cell response 

towards the antigen-expressing cells.    

Patients’ blood samples were drawn between six and 192 months post-

transplantation meaning that patients were in different phases of immune reconstitution. 

However, WT1-specific T cells were detected in freshly isolated T cells from PBMCs of 

most patients indicating a possibility of T cell repopulation driven by encountered tumor 

associated peptides in allo-HSC transplanted patients (Goldrath and Bevan 1999). In this 

context, it was important to investigate T-cell responses of the participants with diverse 

HLA patterns to ensure a variability of moDC-generated and presented peptides derived 

from the WT1 protein fragments.  

Anti-hDEC205-WT191-138 was the only one that improved directly ex vivo T cell 

responses in healthy donors and allo-HSC transplanted AML patients. The contained 

WT191-138 fragment comprises five previously determined epitopes (Doubrovina et al. 
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2012, Kobayashi et al. 2006) with immunogenic potential including the well documented 

WT1126-134 peptide (Oka et al. 2000, Rezvani et al. 2008). Since responders to anti-

hDEC205-WT191-138 stimulation were not exclusively HLA A0201 positive, the good 

immunogenicity of anti-hDEC205-WT191-138 might be explained by relatively broad 

epitope variety presented on different HLA molecules of efficiently targeted DCs.  

It is known that DEC205-targeting protein vaccines strongly enhance cross 

presentation (Bonifaz et al. 2004, Cheong et al. 2010). Accordingly, the strongest T cell 

response was observed for CD8+ T cells, but there was also a tendency for activation of 

CD4+ helper T cells after DEC205-targeted WT191-138 stimulation. This finding confirms 

previous studies showing that a combination of HLA class I and II restricted peptides 

induces both, cytotoxic and helper T-cell responses (Maslak et al. 2010, Koido et al. 2014). 

Due to natural processing by DCs, peptides derived from the endocytosed protein could 

be presented via HLA class I and II molecules resulting in improved T cell responses. 

An important aim that we reached in the study was the detection of an upgraded 

and robust WT1-specific T-cell response directly  ex vivo. T cells responded substantially 

stronger to DEC205-targeted WT191-138 than to a 15-mer WT1 peptide pool, 

demonstrating a successful targeting of the moDCs by the antibody fusion protein. 

However, it is not clear why only one of the three anti-hDEC205-WT1small constructs 

induced a decent response. Previous studies showed that prior T cell enrichment 

(Schmied et al. 2015) or expansion (Krishnadas et al. 2011) using WT1 peptide pool is 

necessary to enhance detection of low frequency of WT1-specific T cells in healthy 

donors. Our results indicate that such rare T cells could be better monitored by targeting 

of the WT191-138 to DCs at least in the context of allo-HSCT.  

Although anti-hDEC205-WT1223-273 and anti-hDEC205-WT1324-371 did not induce 

detectable ex vivo T cell responses, their stimulatory capacity should be further tested by 

in vitro T cell expansion prior to detection. Of note, sequences of the other two antibody 

fusion proteins: anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 also contain 

previously identified HLA class I- and II- restricted epitopes (Oka et al. 2000) (Fujiki et 

al. 2007). Repeated stimulations of T cells by moDCs loaded with these WT1 fusion 

proteins might be an option to increase low or undetectable frequencies of specific T cells. 

Specifically, supplementation of various epitopes may enhance T-cell responses even 

though the single epitopes are only of subdominant character.    
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To augment the therapeutic efficacy of HSCT, strengthening GvL effect 

independently of GvHD progression is essential. The targeting of these small fragments 

of WT1 protein to DEC205 on DCs should be further explored in vivo for its potential to 

support the GvL effect through WT1-specific T cells within an allo-HSCT setting and its 

ability to induce an effective immunity against the underlying disease. Generally, anti-

hDEC205-WT1small antibody fusion proteins may directly reach to DCs in vivo and show 

their immune stimulatory effect in presence of an adjuvant that is indispensable to 

maturing DCs. However, in individuals with insufficient frequency or function of DCs, an 

improvement of the immune response could possibly be achieved by donor-derived 

moDC vaccination loaded with these proteins. This strategy may allow an efficient in vivo 

T cell stimulation even early after allo-HSCT. Of importance, using CMV-derived peptide 

loaded moDCs, Grigoleit et al. previously showed that DC vaccination can be performed 

safely in allo-HSCT setting (Grigoleit et al. 2007).  

The first FDA-approved therapeutic vaccine, Sipuleucel-T (PROVENGE), 

demonstrated that ex vivo activated and matured APCs are able to prime T cells both ex 

vivo and in vivo. Prostate cancer antigen so called prostate acetyl phosphatase (PAP)-

specific T cells then recognize and kill the PAP-positive cancer cells (Cheever and Higano 

2011). Resembling the Sipuleucel-T effect, in this study, the anti-hDEC205-WT191-138-

loaded moDCs were capable to prime and/or activate T cells which were freshly isolated 

from patients with AML. Therefore, it seems likely that such DCs have enough potential 

to prime and activate T cells in vivo as well. Thus, our earliest results confirming WT1-

specific T-cell responses induced by the DC-targeting anti-hDEC205-WT191-138  approach 

could be a basis for a therapeutic vaccine against WT1-expressing malignancies and 

furthermore, be applicable for induction of a WT1-specific immune response to solid 

tumors since WT1 is overexpressed in various cancers (Sugiyama 2010). 

In conclusion, a transplantation-vaccine or -adoptive transfer of leukemia-specific 

T cells to boost GvL effect and reduce relapse after HSCT has been considered as a highly 

effective strategies for the control of high-risk leukemia (Rezvani 2011). WT1 has been a 

real basis for the both strategies to evoke antileukemia T-cell immune responses. 

However, intracellular nature of this TAA is a development barrier to advance such 

promising strategies. With this regard, DC-targeting approaches offer whole potential for 

intracellular antigen-targeted immunotherapy compared to direct T-cell manipulating 

approaches. Despite WT1 mRNA-electroporated DC vaccine, there are no crucial efforts 
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to overcome the barrier in WT1-based vaccine approaches. Raising this issue, we 

developed hDEC205-targeted WT1 antibody fusion proteins as anti-leukemia vaccines 

and explored their immune stimulatory capacity by studies in vitro and directly ex vivo. 

Our approach contributes to overcoming the challenge of poor expression of the 

intracellular tumor associated antigen WT1 and introduces an alternative that could be 

easily translated into clinical practice to improve antileukemia immune response. 

Furthermore, because anti-hDEC205-WT1small antibody fusion proteins are able to 

directly target DCs in vivo, their potential clinical application would need a lower costs 

and less ex vivo manipulation (Sehgal et al. 2014).  

 

 

5.3.  Future outlook 

T cells recognizing peptides derived from TAAs are generally short-lived and of 

low avidity, as most of those antigens are self-proteins. The known explanation is that 

maturing TAA-specific T cells  with high avidity are depleted in the thymus by negative 

selection due to self-tolerance mechanisms. A possible approach to sustain or reestablish 

the usually “undesired” immunity, a frequent vaccination mode could be an option. In this 

case, recombinant therapeutic vaccines with appropriate therapeutic efficacy as well as 

a simple administration and low costs of production are inevitable. The anti-hDEC205-

WT191-138 could be an example of such a recombinant vaccine.  

In addition, the anti-hDEC205-WT1223-273 and anti-hDEC205-WT1324-371 antibody 

fusion proteins could be potential “team players” for improvement of T cell responses 

against relapse of the underlying malignancies. Specifically, leukemia cells that are 

ignored by particular T cells specific for WT191-138 -derived peptides can potentially be 

recognized by T cells specific for epitopes from the other two WT1 protein fragments. 

Thus, the latter two antibody fusion proteins need to be further investigated to reveal 

their immune stimulatory capacity. Furthermore, in vivo tests of anti-hDEC205-WT1 

antibody fusion proteins should be initiated to provide evidence for the immunogenicity 

of these vaccine constructs. Another perspective is the generation of more anti-hDEC205-

TAA antibody fusion proteins using other TAAs (e.g. Bcl-2, MUC-1) to induce multi-

specific T cells against leukemia.       
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Ultimately, two areas of data drive WT1-based vaccination strategies to be 

intensely improved and combined with other treatment options: first, the growing data 

of clinical studies demonstrating that vaccination using WT1-derived peptides is safe and 

feasible for patients with advanced MDS/AML (Di Stasi et al. 2015), and; second, distinct 

data confirming the significant correlation between WT1 overexpression and worse 

clinical outcomes in either hematological (Woehlecke et al. 2015, Yi-Ning et al. 2015) or 

solid tumor patients (Qi et al. 2015). In light of these data, our alternative approach offers 

an attractive perspective to be translated into clinical practice.  
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6.2.  Sequences of antibody fusion constructs 

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Variable heavy chain domain 115-463 39-154 

Constant heavy chain domain of IgG1 469-1453 159-489 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCAAGTCCCTGAGC 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  K  S  L  S  

CTGAGCCCCGGCAAGTAA 

 L  S  P  G  K  *  
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 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Variable light chain domain 115-441 39-147 

Constant light kappa chain domain 463-777 155-259 

 

 

1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCCAGGCTGTCGTGACCCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  Q  A  V  V  T  Q  

GAAAGCGCCCTGACAACCAGCCCTGGCGAGACAGTGACCCTGACCTGCAGATCCTCTACAGGCGCC 

 E  S  A  L  T  T  S  P  G  E  T  V  T  L  T  C  R  S  S  T  G  A  

GTGACCATCAGCAACTACGCCAACTGGGTGCAGGAAAAGCCCGACCACCTGTTCACCGGCCTGATC 

 V  T  I  S  N  Y  A  N  W  V  Q  E  K  P  D  H  L  F  T  G  L  I  

GGCGGCACAAACAACAGAGCACCTGGCGTGCCCGCCAGATTCAGCGGCTCTCTGATCGGAGATAAG 

 G  G  T  N  N  R  A  P  G  V  P  A  R  F  S  G  S  L  I  G  D  K  

GCCGCACTGACCATCACAGGCGCCCAGACCGAGGACGAGGCCATCTACTTTTGCGCCCTGTGGTAC 

 A  A  L  T  I  T  G  A  Q  T  E  D  E  A  I  Y  F  C  A  L  W  Y  

AACAACCAGTTCATCTTCGGCAGCGGCACCAAAGTGACCGTGCTGAGATCCGAAATCAAGCGTACG 

 N  N  Q  F  I  F  G  S  G  T  K  V  T  V  L  R  S  E  I  K  R  T  

GTGGCCGCTCCCAGCGTGTTCATCTTCCCACCTAGCGACGAGCAGCTGAAGTCCGGCACAGCCTCT 

 V  A  A  P  S  V  F  I  F  P  P  S  D  E  Q  L  K  S  G  T  A  S  

GTCGTGTGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAATGCC 

 V  V  C  L  L  N  N  F  Y  P  R  E  A  K  V  Q  W  K  V  D  N  A  

CTGCAGAGCGGCAACAGCCAGGAAAGCGTGACCGAGCAGGACAGCAAGGACTCCACCTACAGCCTG 

 L  Q  S  G  N  S  Q  E  S  V  T  E  Q  D  S  K  D  S  T  Y  S  L  

AGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAAGTGACC 

 S  S  T  L  T  L  S  K  A  D  Y  E  K  H  K  V  Y  A  C  E  V  T  

CACCAGGGCCTGTCTAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGCTAA 

 H  Q  G  L  S  S  P  V  T  K  S  F  N  R  G  E  C  *  

    

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Variable heavy chain domain 85-438 29-146 
Linker 439-474 147-158 

Variable light chain domain 475-801 159-267 
Flag tag 2x 808-861 270-287 

GpL 868-1380 290-460 

 

 

1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGAGGTGCAGCTGCAGCAGTCTGGCCCCGTGCTCGTGAAACCTGGCGCC 

 L  V  P  R  Q  L  E  V  Q  L  Q  Q  S  G  P  V  L  V  K  P  G  A  

TCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACCTTCACCGACAGCTTCATGCACTGGATGAAG 

 S  V  K  M  S  C  K  A  S  G  N  T  F  T  D  S  F  M  H  W  M  K  

CAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATCATCAACCCCTACAACGGCGGCACCTCCTAC 

 Q  S  H  G  K  S  L  E  W  I  G  I  I  N  P  Y  N  G  G  T  S  Y  

AACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTGGACAAGAGCAGCAGCACCGCCTACATGGAA 

 N  Q  K  F  K  G  K  A  T  L  T  V  D  K  S  S  S  T  A  Y  M  E  

CTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCAGAAACGGCGTGCGGTACTAC 



Sequences of antibody fusion constructs 
 

100 
 

111 

397 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

 L  N  S  L  T  S  E  D  S  A  V  Y  Y  C  A  R  N  G  V  R  Y  Y  

TTCGACTACTGGGGCCAGGGCACAACCCTGACAGTGTCTAGCGGCGGAGGAAGCGGAGGCGGATCT 

 F  D  Y  W  G  Q  G  T  T  L  T  V  S  S  G  G  G  S  G  G  G  S  

GGCGGAGGATCTCAGGCTGTCGTGACCCAGGAAAGCGCCCTGACAACCAGCCCTGGCGAGACAGTG 

 G  G  G  S  Q  A  V  V  T  Q  E  S  A  L  T  T  S  P  G  E  T  V  

ACCCTGACCTGCAGATCCTCTACAGGCGCCGTGACCATCAGCAACTACGCCAACTGGGTGCAGGAA 

 T  L  T  C  R  S  S  T  G  A  V  T  I  S  N  Y  A  N  W  V  Q  E  

AAGCCCGACCACCTGTTCACCGGCCTGATCGGCGGCACAAACAACAGAGCACCTGGCGTGCCCGCC 

 K  P  D  H  L  F  T  G  L  I  G  G  T  N  N  R  A  P  G  V  P  A  

AGATTCAGCGGCTCTCTGATCGGAGATAAGGCCGCACTGACCATCACAGGCGCCCAGACCGAGGAC 

 R  F  S  G  S  L  I  G  D  K  A  A  L  T  I  T  G  A  Q  T  E  D  

GAGGCCATCTACTTTTGCGCCCTGTGGTACAACAACCAGTTCATCTTCGGCAGCGGCACCAAAGTG 

 E  A  I  Y  F  C  A  L  W  Y  N  N  Q  F  I  F  G  S  G  T  K  V  

ACCGTGCTGGGATCCGACTACAAGGACGACGACGACAAAGAATTCGACTACAAGGACGACGACGAC 

 T  V  L  G  S  D  Y  K  D  D  D  D  K  E  F  D  Y  K  D  D  D  D  

AAACTCGAGAAACCAACCGAGAATAATGAGGATTTCAACATCGTGGCTGTGGCATCCAATTTTGCT 

 K  L  E  K  P  T  E  N  N  E  D  F  N  I  V  A  V  A  S  N  F  A  

ACCACCGACCTCGATGCCGATCGGGGAAAACTGCCTGGCAAAAAACTGCCCCTGGAAGTGCTGAAA 

 T  T  D  L  D  A  D  R  G  K  L  P  G  K  K  L  P  L  E  V  L  K  

GAGATGGAGGCCAACGCTAGAAAAGCTGGCTGTACTAGAGGATGTCTCATCTGCCTGTCCCACATC 

 E  M  E  A  N  A  R  K  A  G  C  T  R  G  C  L  I  C  L  S  H  I  

AAGTGTACCCCAAAAATGAAAAAATTCATCCCTGGCCGGTGTCACACATACGAGGGCGACAAGGAA 

 K  C  T  P  K  M  K  K  F  I  P  G  R  C  H  T  Y  E  G  D  K  E  

TCTGCTCAGGGCGGAATCGGAGAGGCTATTGTGGATATTCCTGAAATTCCTGGATTCAAGGACCTG 

 S  A  Q  G  G  I  G  E  A  I  V  D  I  P  E  I  P  G  F  K  D  L  

GAGCCTATGGAACAGTTTATCGCCCAGGTGGACCTCTGTGTCGATTGTACAACTGGCTGCCTGAAA 

 E  P  M  E  Q  F  I  A  Q  V  D  L  C  V  D  C  T  T  G  C  L  K  

GGGCTGGCCAATGTCCAGTGTAGTGACCTGCTGAAAAAATGGCTGCCCCAGAGATGTGCCACTTTC 

 G  L  A  N  V  Q  C  S  D  L  L  K  K  W  L  P  Q  R  C  A  T  F  

GCCTCTAAAATTCAGGGCCAGGTCGACAAAATCAAAGGCGCTGGAGGAGACTCTGGAGCTTAA 

 A  S  K  I  Q  G  Q  V  D  K  I  K  G  A  G  G  D  S  G  A  * 

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 39-156 

Heavy chain constant domain of IgG1 475-1468 159-489 

WT1_D1-227 
1469-2148 

At 1812: silent 
mutation C         T 

490-716 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 



Sequences of antibody fusion constructs 
 

101 
 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

1651 

551 

1717 

573 

1783 

595 

1849 

617 

1915 

639 

1981 

661 

2047 

683 

2113 

705 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCAAGTCCCTGAGC 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  K  S  L  S  

CTGAGCCCCGGCAAGCTCGACTTCCTCTTGCTGCAGGACCCGGCTTCCACGTGTGTCCCGGAGCCG 

 L  S  P  G  K  L  D  F  L  L  L  Q  D  P  A  S  T  C  V  P  E  P  

GCGTCTCAGCACACGCTCCGCTCCGGGCCTGGGTGCCTACAGCAGCCAGAGCAGCAGGGAGTCCGG 

 A  S  Q  H  T  L  R  S  G  P  G  C  L  Q  Q  P  E  Q  Q  G  V  R  

GACCCGGGCGGCATCTGGGCCAAGTTAGGCGCCGCCGAGGCCAGCGCTGAACGTCTCCAGGGCCGG 

 D  P  G  G  I  W  A  K  L  G  A  A  E  A  S  A  E  R  L  Q  G  R  

AGGAGCCGCGGGGCGTCCGGGTCTGAGCCGCAGCAAATGGGCTCCGACGTGCGGGACCTGAACGCG 

 R  S  R  G  A  S  G  S  E  P  Q  Q  M  G  S  D  V  R  D  L  N  A  

CTGCTGCCCGCCGTCCCCTCCCTGGGTGGCGGCGGCGGCTGTGCCCTGCCTGTGAGCGGCGCGGCG 

 L  L  P  A  V  P  S  L  G  G  G  G  G  C  A  L  P  V  S  G  A  A  

CAGTGGGCGCCGGTGCTGGACTTTGCGCCTCCGGGCGCTTCGGCTTACGGGTCGTTGGGCGGCCCC 

 Q  W  A  P  V  L  D  F  A  P  P  G  A  S  A  Y  G  S  L  G  G  P  

GCGCCGCCACCGGCTCCGCCGCCACCCCCGCCGCCGCCGCCTCACTCCTTCATCAAACAGGAGCCG 

 A  P  P  P  A  P  P  P  P  P  P  P  P  P  H  S  F  I  K  Q  E  P  

AGCTGGGGCGGCGCGGAGCCGCACGAGGAGCAGTGCCTGAGCGCCTTCACTGTCCACTTTTCCGGC 

 S  W  G  G  A  E  P  H  E  E  Q  C  L  S  A  F  T  V  H  F  S  G  

CAGTTCACTGGCACAGCCGGAGCCTGTCGCTACGGGCCCTTCGGTCCTCCTCCGCCCAGCCAGGCG 

 Q  F  T  G  T  A  G  A  C  R  Y  G  P  F  G  P  P  P  P  S  Q  A  

TCATCCGGCCAGGCCAGGATGTTTCCTAACGCGCCCTACCTGCCCAGCTGCCTCGAGAGCCAGCCC 

 S  S  G  Q  A  R  M  F  P  N  A  P  Y  L  P  S  C  L  E  S  Q  P  

GCTATTCGCAATCAGGGTTACAGCACGGTCACCTTCTAA 

 A  I  R  N  Q  G  Y  S  T  V  T  F  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 39-156 

Heavy chain constant domain of IgG1 475-1468 159-489 
WT1_D217-522 1475-2391 492-797 



Sequences of antibody fusion constructs 
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1 

1 

67 

23 
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45 
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67 
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89 
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463 
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529 
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1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

1651 

551 

1717 

573 

1783 

595 

1849 

617 

1915 

639 

1981 

661 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCAAGTCCCTGAGC 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  K  S  L  S  

CTGAGCCCCGGCAAGCTCGAGATTCGCAATCAGGGTTACAGCACGGTCACCTTCGACGGGACGCCC 

 L  S  P  G  K  L  E  I  R  N  Q  G  Y  S  T  V  T  F  D  G  T  P  

AGCTACGGTCACACGCCCTCGCACCATGCGGCGCAGTTCCCCAACCACTCATTCAAGCATGAGGAT 

 S  Y  G  H  T  P  S  H  H  A  A  Q  F  P  N  H  S  F  K  H  E  D  

CCCATGGGCCAGCAGGGCTCGCTGGGTGAGCAGCAGTACTCGGTGCCGCCCCCGGTCTATGGCTGC 

 P  M  G  Q  Q  G  S  L  G  E  Q  Q  Y  S  V  P  P  P  V  Y  G  C  

CACACCCCCACCGACAGCTGCACCGGCAGCCAGGCTTTGCTGCTGAGGACGCCCTACAGCAGTGAC 

 H  T  P  T  D  S  C  T  G  S  Q  A  L  L  L  R  T  P  Y  S  S  D  

AATTTATACCAAATGACATCCCAGCTTGAATGCATGACCTGGAATCAGATGAACTTAGGAGCCACC 

 N  L  Y  Q  M  T  S  Q  L  E  C  M  T  W  N  Q  M  N  L  G  A  T  

TTAAAGGGAGTTGCTGCTGGGAGCTCCAGCTCAGTGAAATGGACAGAAGGGCAGAGCAACCACAGC 

 L  K  G  V  A  A  G  S  S  S  S  V  K  W  T  E  G  Q  S  N  H  S  

ACAGGGTACGAGAGCGATAACCACACAACGCCCATCCTCTGCGGAGCCCAATACAGAATACACACG 

 T  G  Y  E  S  D  N  H  T  T  P  I  L  C  G  A  Q  Y  R  I  H  T  

CACGGTGTCTTCAGAGGCATTCAGGATGTGCGACGTGTGCCTGGAGTAGCCCCGACTCTTGTACGG 

 H  G  V  F  R  G  I  Q  D  V  R  R  V  P  G  V  A  P  T  L  V  R  

TCGGCATCTGAGACCAGTGAGAAACGCCCCTTCATGTGTGCTTACCCAGGCTGCAATAAGAGATAT 

 S  A  S  E  T  S  E  K  R  P  F  M  C  A  Y  P  G  C  N  K  R  Y  



Sequences of antibody fusion constructs 
 

103 
 

2047 

683 

2113 

705 

2179 

727 

2245 

749 

2311 

771 

2377 

793 

TTTAAGCTGTCCCACTTACAGATGCACAGCAGGAAGCACACTGGTGAGAAACCATACCAGTGTGAC 

 F  K  L  S  H  L  Q  M  H  S  R  K  H  T  G  E  K  P  Y  Q  C  D  

TTCAAGGACTGTGAACGAAGGTTTTCTCGTTCAGACCAGCTCAAAAGACACCAAAGGAGACATACA 

 F  K  D  C  E  R  R  F  S  R  S  D  Q  L  K  R  H  Q  R  R  H  T  

GGTGTGAAACCATTCCAGTGTAAAACTTGTCAGCGAAAGTTCTCCCGGTCCGACCACCTGAAGACC 

 G  V  K  P  F  Q  C  K  T  C  Q  R  K  F  S  R  S  D  H  L  K  T  

CACACCAGGACTCATACAGGTAAAACAAGTGAAAAGCCCTTCAGCTGTCGGTGGCCAAGTTGTCAG 

 H  T  R  T  H  T  G  K  T  S  E  K  P  F  S  C  R  W  P  S  C  Q  

AAAAAGTTTGCCCGGTCAGATGAATTAGTCCGCCATCACAACATGCATCAGAGAAACATGACCAAA 

 K  K  F  A  R  S  D  E  L  V  R  H  H  N  M  H  Q  R  N  M  T  K  

CTCCAGCTGGCGCTTTGA 

 L  Q  L  A  L  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 39-156 

Heavy chain constant domain of IgG1 472-1468 159-489 
WT1_D217-351 1475-1881 492-626 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 
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463 

155 

529 
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595 

199 
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221 

727 

243 

793 
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859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  



Sequences of antibody fusion constructs 
 

104 
 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

1651 

551 

1717 

573 

1783 

595 

1849 

617 

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCAAGTCCCTGAGC 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  K  S  L  S  

CTGAGCCCCGGCAAGCTCGAGATTCGCAATCAGGGTTACAGCACGGTCACCTTCGACGGGACGCCC 

 L  S  P  G  K  L  E  I  R  N  Q  G  Y  S  T  V  T  F  D  G  T  P  

AGCTACGGTCACACGCCCTCGCACCATGCGGCGCAGTTCCCCAACCACTCATTCAAGCATGAGGAT 

 S  Y  G  H  T  P  S  H  H  A  A  Q  F  P  N  H  S  F  K  H  E  D  

CCCATGGGCCAGCAGGGCTCGCTGGGTGAGCAGCAGTACTCGGTGCCGCCCCCGGTCTATGGCTGC 

 P  M  G  Q  Q  G  S  L  G  E  Q  Q  Y  S  V  P  P  P  V  Y  G  C  

CACACCCCCACCGACAGCTGCACCGGCAGCCAGGCTTTGCTGCTGAGGACGCCCTACAGCAGTGAC 

 H  T  P  T  D  S  C  T  G  S  Q  A  L  L  L  R  T  P  Y  S  S  D  

AATTTATACCAAATGACATCCCAGCTTGAATGCATGACCTGGAATCAGATGAACTTAGGAGCCACC 

 N  L  Y  Q  M  T  S  Q  L  E  C  M  T  W  N  Q  M  N  L  G  A  T  

TTAAAGGGAGTTGCTGCTGGGAGCTCCAGCTCAGTGAAATGGACAGAAGGGCAGAGCAACCACAGC 

 L  K  G  V  A  A  G  S  S  S  S  V  K  W  T  E  G  Q  S  N  H  S  

ACAGGGTACGAGAGCGATAACCACACAACGTAA 

 T  G  Y  E  S  D  N  H  T  T  * 

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 39-156 

Heavy chain constant domain of IgG1 475-1468 159-489 
WT1_D347-522 1475-2044 492-682 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  



Sequences of antibody fusion constructs 
 

105 
 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

1651 

551 

1717 

573 

1783 

595 

1849 

617 

1915 

639 

1981 

661 

2047 

683 

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCAAGTCCCTGAGC 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  K  S  L  S  

CTGAGCCCCGGCAAGCTCGAGCACTACACCCAGAAGTCCCTGAGCCTGAGCCCCGGCAAGCTCGAG 

 L  S  P  G  K  L  E  H  Y  T  Q  K  S  L  S  L  S  P  G  K  L  E  

GATAACCACACAACGCCCATCCTCTGCGGAGCCCAATACAGAATACACACGCACGGTGTCTTCAGA 

 D  N  H  T  T  P  I  L  C  G  A  Q  Y  R  I  H  T  H  G  V  F  R  

GGCATTCAGGATGTGCGACGTGTGCCTGGAGTAGCCCCGACTCTTGTACGGTCGGCATCTGAGACC 

 G  I  Q  D  V  R  R  V  P  G  V  A  P  T  L  V  R  S  A  S  E  T  

AGTGAGAAACGCCCCTTCATGTGTGCTTACCCAGGCTGCAATAAGAGATATTTTAAGCTGTCCCAC 

 S  E  K  R  P  F  M  C  A  Y  P  G  C  N  K  R  Y  F  K  L  S  H  

TTACAGATGCACAGCAGGAAGCACACTGGTGAGAAACCATACCAGTGTGACTTCAAGGACTGTGAA 

 L  Q  M  H  S  R  K  H  T  G  E  K  P  Y  Q  C  D  F  K  D  C  E  

CGAAGGTTTTCTCGTTCAGACCAGCTCAAAAGACACCAAAGGAGACATACAGGTGTGAAACCATTC 

 R  R  F  S  R  S  D  Q  L  K  R  H  Q  R  R  H  T  G  V  K  P  F  

CAGTGTAAAACTTGTCAGCGAAAGTTCTCCCGGTCCGACCACCTGAAGACCCACACCAGGACTCAT 

 Q  C  K  T  C  Q  R  K  F  S  R  S  D  H  L  K  T  H  T  R  T  H  

ACAGGTAAAACAAGTGAAAAGCCCTTCAGCTGTCGGTGGCCAAGTTGTCAGAAAAAGTTTGCCCGG 

 T  G  K  T  S  E  K  P  F  S  C  R  W  P  S  C  Q  K  K  F  A  R  

TCAGATGAATTAGTCCGCCATCACAACATGCATCAGAGAAACATGACCAAACTCCAGCTGGCGCTT 

 S  D  E  L  V  R  H  H  N  M  H  Q  R  N  M  T  K  L  Q  L  A  L  

TAA 

 * 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 39-156 

Heavy chain constant domain of IgG1 475-1468 159-489 
WT1_Dfull 1469-3021 490-1007 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  



Sequences of antibody fusion constructs 
 

106 
 

331 

111 

397 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

1651 

551 

1717 

573 

1783 

595 

1849 

617 

1915 

639 

1981 

661 

2047 

683 

2113 

705 

2179 

727 

2245 

749 

2311 

771 

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCAAGTCCCTGAGC 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  K  S  L  S  

CTGAGCCCCGGCAAGCTCGACTTCCTCTTGCTGCAGGACCCGGCTTCCACGTGTGTCCCGGAGCCG 

 L  S  P  G  K  L  D  F  L  L  L  Q  D  P  A  S  T  C  V  P  E  P  

GCGTCTCAGCACACGCTCCGCTCCGGGCCTGGGTGCCTACAGCAGCCAGAGCAGCAGGGAGTCCGG 

 A  S  Q  H  T  L  R  S  G  P  G  C  L  Q  Q  P  E  Q  Q  G  V  R  

GACCCGGGCGGCATCTGGGCCAAGTTAGGCGCCGCCGAGGCCAGCGCTGAACGTCTCCAGGGCCGG 

 D  P  G  G  I  W  A  K  L  G  A  A  E  A  S  A  E  R  L  Q  G  R  

AGGAGCCGCGGGGCGTCCGGGTCTGAGCCGCAGCAAATGGGCTCCGACGTGCGGGACCTGAACGCG 

 R  S  R  G  A  S  G  S  E  P  Q  Q  M  G  S  D  V  R  D  L  N  A  

CTGCTGCCCGCCGTCCCCTCCCTGGGTGGCGGCGGCGGCTGTGCCCTGCCTGTGAGCGGCGCGGCG 

 L  L  P  A  V  P  S  L  G  G  G  G  G  C  A  L  P  V  S  G  A  A  

CAGTGGGCGCCGGTGCTGGACTTTGCGCCTCCGGGCGCTTCGGCTTACGGGTCGTTGGGCGGCCCC 

 Q  W  A  P  V  L  D  F  A  P  P  G  A  S  A  Y  G  S  L  G  G  P  

GCGCCGCCACCGGCTCCGCCGCCACCCCCGCCGCCGCCGCCTCACTCCTTCATCAAACAGGAGCCG 

 A  P  P  P  A  P  P  P  P  P  P  P  P  P  H  S  F  I  K  Q  E  P  

AGCTGGGGCGGCGCGGAGCCGCACGAGGAGCAGTGCCTGAGCGCCTTCACTGTCCACTTTTCCGGC 

 S  W  G  G  A  E  P  H  E  E  Q  C  L  S  A  F  T  V  H  F  S  G  

CAGTTCACTGGCACAGCCGGAGCCTGTCGCTACGGGCCCTTCGGTCCTCCTCCGCCCAGCCAGGCG 

 Q  F  T  G  T  A  G  A  C  R  Y  G  P  F  G  P  P  P  P  S  Q  A  

TCATCCGGCCAGGCCAGGATGTTTCCTAACGCGCCCTACCTGCCCAGCTGCCTCGAGATTCGCAAT 

 S  S  G  Q  A  R  M  F  P  N  A  P  Y  L  P  S  C  L  E  I  R  N  

CAGGGTTACAGCACGGTCACCTTCGACGGGACGCCCAGCTACGGTCACACGCCCTCGCACCATGCG 

 Q  G  Y  S  T  V  T  F  D  G  T  P  S  Y  G  H  T  P  S  H  H  A  

GCGCAGTTCCCCAACCACTCATTCAAGCATGAGGATCCCATGGGCCAGCAGGGCTCGCTGGGTGAG 

 A  Q  F  P  N  H  S  F  K  H  E  D  P  M  G  Q  Q  G  S  L  G  E  

CAGCAGTACTCGGTGCCGCCCCCGGTCTATGGCTGCCACACCCCCACCGACAGCTGCACCGGCAGC 

 Q  Q  Y  S  V  P  P  P  V  Y  G  C  H  T  P  T  D  S  C  T  G  S  

CAGGCTTTGCTGCTGAGGACGCCCTACAGCAGTGACAATTTATACCAAATGACATCCCAGCTTGAA 

 Q  A  L  L  L  R  T  P  Y  S  S  D  N  L  Y  Q  M  T  S  Q  L  E  



Sequences of antibody fusion constructs 
 

107 
 

2377 

793 

2443 

815 

2509 

837 

2575 

859 

2641 

881 

2707 

903 

2773 

925 

2839 

947 

2905 

969 

2971 

991 

TGCATGACCTGGAATCAGATGAACTTAGGAGCCACCTTAAAGGGAGTTGCTGCTGGGAGCTCCAGC 

 C  M  T  W  N  Q  M  N  L  G  A  T  L  K  G  V  A  A  G  S  S  S  

TCAGTGAAATGGACAGAAGGGCAGAGCAACCACAGCACAGGGTACGAGAGCGATAACCACACAACG 

 S  V  K  W  T  E  G  Q  S  N  H  S  T  G  Y  E  S  D  N  H  T  T  

CCCATCCTCTGCGGAGCCCAATACAGAATACACACGCACGGTGTCTTCAGAGGCATTCAGGATGTG 

 P  I  L  C  G  A  Q  Y  R  I  H  T  H  G  V  F  R  G  I  Q  D  V  

CGACGTGTGCCTGGAGTAGCCCCGACTCTTGTACGGTCGGCATCTGAGACCAGTGAGAAACGCCCC 

 R  R  V  P  G  V  A  P  T  L  V  R  S  A  S  E  T  S  E  K  R  P  

TTCATGTGTGCTTACCCAGGCTGCAATAAGAGATATTTTAAGCTGTCCCACTTACAGATGCACAGC 

 F  M  C  A  Y  P  G  C  N  K  R  Y  F  K  L  S  H  L  Q  M  H  S  

AGGAAGCACACTGGTGAGAAACCATACCAGTGTGACTTCAAGGACTGTGAACGAAGGTTTTCTCGT 

 R  K  H  T  G  E  K  P  Y  Q  C  D  F  K  D  C  E  R  R  F  S  R  

TCAGACCAGCTCAAAAGACACCAAAGGAGACATACAGGTGTGAAACCATTCCAGTGTAAAACTTGT 

 S  D  Q  L  K  R  H  Q  R  R  H  T  G  V  K  P  F  Q  C  K  T  C  

CAGCGAAAGTTCTCCCGGTCCGACCACCTGAAGACCCACACCAGGACTCATACAGGTAAAACAAGT 

 Q  R  K  F  S  R  S  D  H  L  K  T  H  T  R  T  H  T  G  K  T  S  

GAAAAGCCCTTCAGCTGTCGGTGGCCAAGTTGTCAGAAAAAGTTTGCCCGGTCAGATGAATTAGTC 

 E  K  P  F  S  C  R  W  P  S  C  Q  K  K  F  A  R  S  D  E  L  V  

CGCCATCACAACATGCATCAGAGAAACATGACCAAACTCCAGCTGGCGCTTTAA 

 R  H  H  N  M  H  Q  R  N  M  T  K  L  Q  L  A  L  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Variable heavy chain domain 85-438 29-146 
Linker 439-474 147-158 

Variable light chain domain 475-801 159-267 
Flag tag 2x 808-861 270-287 

WT1_D217-522 869-1785 290-595 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

 ATGAACTTCGGCTTTCGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  R  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGAGGTGCAGCTGCAGCAGTCTGGCCCCGTGCTCGTGAAACCTGGCGCC 

 L  V  P  R  Q  L  E  V  Q  L  Q  Q  S  G  P  V  L  V  K  P  G  A  

TCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACCTTCACCGACAGCTTCATGCACTGGATGAAG 

 S  V  K  M  S  C  K  A  S  G  N  T  F  T  D  S  F  M  H  W  M  K  

CAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATCATCAACCCCTACAACGGCGGCACCTCCTAC 

 Q  S  H  G  K  S  L  E  W  I  G  I  I  N  P  Y  N  G  G  T  S  Y  

AACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTGGACAAGAGCAGCAGCACCGCCTACATGGAA 

 N  Q  K  F  K  G  K  A  T  L  T  V  D  K  S  S  S  T  A  Y  M  E  

CTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCAGAAACGGCGTGCGGTACTAC 

 L  N  S  L  T  S  E  D  S  A  V  Y  Y  C  A  R  N  G  V  R  Y  Y  

TTCGACTACTGGGGCCAGGGCACAACCCTGACAGTGTCTAGCGGCGGAGGAAGCGGAGGCGGATCT 

 F  D  Y  W  G  Q  G  T  T  L  T  V  S  S  G  G  G  S  G  G  G  S  

GGCGGAGGATCTCAGGCTGTCGTGACCCAGGAAAGCGCCCTGACAACCAGCCCTGGCGAGACAGTG 

 G  G  G  S  Q  A  V  V  T  Q  E  S  A  L  T  T  S  P  G  E  T  V  

ACCCTGACCTGCAGATCCTCTACAGGCGCCGTGACCATCAGCAACTACGCCAACTGGGTGCAGGAA 

 T  L  T  C  R  S  S  T  G  A  V  T  I  S  N  Y  A  N  W  V  Q  E  

AAGCCCGACCACCTGTTCACCGGCCTGATCGGCGGCACAAACAACAGAGCACCTGGCGTGCCCGCC 

 K  P  D  H  L  F  T  G  L  I  G  G  T  N  N  R  A  P  G  V  P  A  

AGATTCAGCGGCTCTCTGATCGGAGATAAGGCCGCACTGACCATCACAGGCGCCCAGACCGAGGAC 

 R  F  S  G  S  L  I  G  D  K  A  A  L  T  I  T  G  A  Q  T  E  D  

GAGGCCATCTACTTTTGCGCCCTGTGGTACAACAACCAGTTCATCTTCGGCAGCGGCACCAAAGTG 

 E  A  I  Y  F  C  A  L  W  Y  N  N  Q  F  I  F  G  S  G  T  K  V  

ACCGTGCTGGGATCCGACTACAAGGACGACGACGACAAAGAATTCGACTACAAGGACGACGACGAC 

 T  V  L  G  S  D  Y  K  D  D  D  D  K  E  F  D  Y  K  D  D  D  D  

AAACTCGAGATTCGCAATCAGGGTTACAGCACGGTCACCTTCGACGGGACGCCCAGCTACGGTCAC 



Sequences of antibody fusion constructs 
 

108 
 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

1651 

551 

1717 

573 

1783 

595 

 K  L  E  I  R  N  Q  G  Y  S  T  V  T  F  D  G  T  P  S  Y  G  H  

ACGCCCTCGCACCATGCGGCGCAGTTCCCCAACCACTCATTCAAGCATGAGGATCCCATGGGCCAG 

 T  P  S  H  H  A  A  Q  F  P  N  H  S  F  K  H  E  D  P  M  G  Q  

CAGGGCTCGCTGGGTGAGCAGCAGTACTCGGTGCCGCCCCCGGTCTATGGCTGCCACACCCCCACC 

 Q  G  S  L  G  E  Q  Q  Y  S  V  P  P  P  V  Y  G  C  H  T  P  T  

GACAGCTGCACCGGCAGCCAGGCTTTGCTGCTGAGGACGCCCTACAGCAGTGACAATTTATACCAA 

 D  S  C  T  G  S  Q  A  L  L  L  R  T  P  Y  S  S  D  N  L  Y  Q  

ATGACATCCCAGCTTGAATGCATGACCTGGAATCAGATGAACTTAGGAGCCACCTTAAAGGGAGTT 

 M  T  S  Q  L  E  C  M  T  W  N  Q  M  N  L  G  A  T  L  K  G  V  

GCTGCTGGGAGCTCCAGCTCAGTGAAATGGACAGAAGGGCAGAGCAACCACAGCACAGGGTACGAG 

 A  A  G  S  S  S  S  V  K  W  T  E  G  Q  S  N  H  S  T  G  Y  E  

AGCGATAACCACACAACGCCCATCCTCTGCGGAGCCCAATACAGAATACACACGCACGGTGTCTTC 

 S  D  N  H  T  T  P  I  L  C  G  A  Q  Y  R  I  H  T  H  G  V  F  

AGAGGCATTCAGGATGTGCGACGTGTGCCTGGAGTAGCCCCGACTCTTGTACGGTCGGCATCTGAG 

 R  G  I  Q  D  V  R  R  V  P  G  V  A  P  T  L  V  R  S  A  S  E  

ACCAGTGAGAAACGCCCCTTCATGTGTGCTTACCCAGGCTGCAATAAGAGATATTTTAAGCTGTCC 

 T  S  E  K  R  P  F  M  C  A  Y  P  G  C  N  K  R  Y  F  K  L  S  

CACTTACAGATGCACAGCAGGAAGCACACTGGTGAGAAACCATACCAGTGTGACTTCAAGGACTGT 

 H  L  Q  M  H  S  R  K  H  T  G  E  K  P  Y  Q  C  D  F  K  D  C  

GAACGAAGGTTTTCTCGTTCAGACCAGCTCAAAAGACACCAAAGGAGACATACAGGTGTGAAACCA 

 E  R  R  F  S  R  S  D  Q  L  K  R  H  Q  R  R  H  T  G  V  K  P  

TTCCAGTGTAAAACTTGTCAGCGAAAGTTCTCCCGGTCCGACCACCTGAAGACCCACACCAGGACT 

 F  Q  C  K  T  C  Q  R  K  F  S  R  S  D  H  L  K  T  H  T  R  T  

CATACAGGTAAAACAAGTGAAAAGCCCTTCAGCTGTCGGTGGCCAAGTTGTCAGAAAAAGTTTGCC 

 H  T  G  K  T  S  E  K  P  F  S  C  R  W  P  S  C  Q  K  K  F  A  

CGGTCAGATGAATTAGTCCGCCATCACAACATGCATCAGAGAAACATGACCAAACTCCAGCTGGCG 

 R  S  D  E  L  V  R  H  H  N  M  H  Q  R  N  M  T  K  L  Q  L  A  

CTTTGA 

 L  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 139-156 

Heavy chain constant domain of IgG1 472-1471 156-490 
WT1_D10-35 1492-1571 497-522 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

177 

595 

 ATGAACTTCGGCTTCAGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  S  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 



Sequences of antibody fusion constructs 
 

109 
 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTG 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  Q  K  S  L  

AGCCTGAGCCCCGGCAAGCTCGAGGCTAGTACAGCTGCGCTGCTGCCCGCCGTCCCCTCCCTGGGT 

 S  L  S  P  G  K  L  E  A  S  T  A  A  L  L  P  A  V  P  S  L  G  

GGCGGCGGCGGCTGTGCCCTGCCTGTGAGCGGCGCGGCGCAGTGGGCGTAA 

 G  G  G  G  C  A  L  P  V  S  G  A  A  Q  W  A  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 139-156 

Heavy chain constant domain of IgG1 472-1471 156-490 
WT1_D91-138 1492-1634 497-544 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

177 

595 

 ATGAACTTCGGCTTCAGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  S  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 



Sequences of antibody fusion constructs 
 

110 
 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTG 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  Q  K  S  L  

AGCCTGAGCCCCGGCAAGCTCGAGGCTAGTACAGCTGCCTTCACTGTCCACTTTTCCGGCCAGTTC 

 S  L  S  P  G  K  L  E  A  S  T  A  A  F  T  V  H  F  S  G  Q  F  

ACTGGCACAGCCGGAGCCTGTCGCTACGGGCCCTTCGGTCCTCCTCCGCCCAGCCAGGCGTCATCC 

 T  G  T  A  G  A  C  R  Y  G  P  F  G  P  P  P  P  S  Q  A  S  S  

GGCCAGGCCAGGATGTTTCCTAACGCGCCCTACCTGCCCAGCTGCCTCTAA 

 G  Q  A  R  M  F  P  N  A  P  Y  L  P  S  C  L  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 139-156 

Heavy chain constant domain of IgG1 472-1471 156-490 
WT1_D223-273 1492-1634 497-547 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

 ATGAACTTCGGCTTCAGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  S  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 



Sequences of antibody fusion constructs 
 

111 
 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTG 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  Q  K  S  L  

AGCCTGAGCCCCGGCAAGCTCGAGGCTAGTACAGCTAGTGACAATTTATACCAAATGACATCCCAG 

 S  L  S  P  G  K  L  E  A  S  T  A  S  D  N  L  Y  Q  M  T  S  Q  

CTTGAATGCATGACCTGGAATCAGATGAACTTAGGAGCCACCTTAAAGGGAGTTGCTGCTGGGAGC 

 L  E  C  M  T  W  N  Q  M  N  L  G  A  T  L  K  G  V  A  A  G  S  

TCCAGCTCAGTGAAATGGACAGAAGGGCAGAGCAACCACAGCACAGGGTACGAGAGCTAA 

 S  S  S  V  K  W  T  E  G  Q  S  N  H  S  T  G  Y  E  S  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 139-156 

Heavy chain constant domain of IgG1 472-1471 156-490 
WT1_D324-371 1492-1634 497-544 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

 ATGAACTTCGGCTTCAGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  S  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 



Sequences of antibody fusion constructs 
 

112 
 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTG 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  Q  K  S  L  

AGCCTGAGCCCCGGCAAGCTCGAGGCTAGTACAGCTATGTGTGCTTACCCAGGCTGCAATAAGAGA 

 S  L  S  P  G  K  L  E  A  S  T  A  M  C  A  Y  P  G  C  N  K  R  

TATTTTAAGCTGTCCCACTTACAGATGCACAGCAGGAAGCACACTGGTGAGAAACCATACCAGTGT 

 Y  F  K  L  S  H  L  Q  M  H  S  R  K  H  T  G  E  K  P  Y  Q  C  

GACTTCAAGGACTGTGAACGAAGGTTTTCTCGTTCAGACCAGCTCAAATAA 

 D  F  K  D  C  E  R  R  F  S  R  S  D  Q  L  K  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 139-156 

Heavy chain constant domain of IgG1 472-1471 156-490 
WT1_D144-273 1479-1868 493-622 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

 ATGAACTTCGGCTTCAGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  S  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 



Sequences of antibody fusion constructs 
 

113 
 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

1651 

551 

1717 

573 

1783 

595 

1849 

617 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTG 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  Q  K  S  L  

AGCCTGAGCCCCGGCAAGCTCGAGATTCGCAATCAGGGTTACAGCACGGTCACCTTCGACGGGACG 

 S  L  S  P  G  K  L  E  I  R  N  Q  G  Y  S  T  V  T  F  D  G  T  

CCCAGCTACGGTCACACGCCCTCGCACCATGCGGCGCAGTTCCCCAACCACTCATTCAAGCATGAG 

 P  S  Y  G  H  T  P  S  H  H  A  A  Q  F  P  N  H  S  F  K  H  E  

GATCCCATGGGCCAGCAGGGCTCGCTGGGTGAGCAGCAGTACTCGGTGCCGCCCCCGGTCTATGGC 

 D  P  M  G  Q  Q  G  S  L  G  E  Q  Q  Y  S  V  P  P  P  V  Y  G  

TGCCACACCCCCACCGACAGCTGCACCGGCAGCCAGGCTTTGCTGCTGAGGACGCCCTACAGCAGT 

 C  H  T  P  T  D  S  C  T  G  S  Q  A  L  L  L  R  T  P  Y  S  S  

GACAATTTATACCAAATGACATCCCAGCTTGAATGCATGACCTGGAATCAGATGAACTTAGGAGCC 

 D  N  L  Y  Q  M  T  S  Q  L  E  C  M  T  W  N  Q  M  N  L  G  A  

ACCTTAAAGGGAGTTGCTGCTGGGAGCTCCAGCTCAGTGAAATGGACAGAAGGGCAGAGCAACCAC 

 T  L  K  G  V  A  A  G  S  S  S  S  V  K  W  T  E  G  Q  S  N  H  

AGCACAGGGTACGAGAGCTAA 

 S  T  G  Y  E  S  *  

 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 139-156 

Heavy chain constant domain of IgG1 472-1471 156-490 
WT1_D223-371 1492-1935 497-645 

 

 
1 

1 

67 

 ATGAACTTCGGCTTCAGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  S  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 



Sequences of antibody fusion constructs 
 

114 
 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

1651 

551 

1717 

573 

1783 

595 

1849 

617 

1915 

639 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTG 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  Q  K  S  L  

AGCCTGAGCCCCGGCAAGCTCGAGGCTAGTACAGCTAGTGACAATTTATACCAAATGACATCCCAG 

 S  L  S  P  G  K  L  E  A  S  T  A  S  D  N  L  Y  Q  M  T  S  Q  

CTTGAATGCATGACCTGGAATCAGATGAACTTAGGAGCCACCTTAAAGGGAGTTGCTGCTGGGAGC 

 L  E  C  M  T  W  N  Q  M  N  L  G  A  T  L  K  G  V  A  A  G  S  

TCCAGCTCAGTGAAATGGACAGAAGGGCAGAGCAACCACAGCACAGGGTACGAGAGCGATAACCAC 

 S  S  S  V  K  W  T  E  G  Q  S  N  H  S  T  G  Y  E  S  D  N  H  

ACAACGCCCATCCTCTGCGGAGCCCAATACAGAATACACACGCACGGTGTCTTCAGAGGCATTCAG 

 T  T  P  I  L  C  G  A  Q  Y  R  I  H  T  H  G  V  F  R  G  I  Q  

GATGTGCGACGTGTGCCTGGAGTAGCCCCGACTCTTGTACGGTCGGCATCTGAGACCAGTGAGAAA 

 D  V  R  R  V  P  G  V  A  P  T  L  V  R  S  A  S  E  T  S  E  K  

CGCCCCTTCATGTGTGCTTACCCAGGCTGCAATAAGAGATATTTTAAGCTGTCCCACTTACAGATG 

 R  P  F  M  C  A  Y  P  G  C  N  K  R  Y  F  K  L  S  H  L  Q  M  

CACAGCAGGAAGCACACTGGTGAGAAACCATACCAGTGTGACTTCAAGGACTGTGAACGAAGGTTT 

 H  S  R  K  H  T  G  E  K  P  Y  Q  C  D  F  K  D  C  E  R  R  F  

TCTCGTTCAGACCAGCTCAAATAA 

 S  R  S  D  Q  L  K  *  

 
 

http://www.fr33.net/translator.php?modus=2&codon=TNC


Sequences of antibody fusion constructs 
 

115 
 

 Nucleotide Amino acid 
Leader 1-78 1-26 

Flag tag 85-109 29-36 
Heavy chain variable domain 116-468 139-156 

Heavy chain constant domain of IgG1 472-1471 156-490 
WT1_D10-53 1492-1621 497-540 

 

 
1 

1 

67 

23 

133 

45 

199 

67 

265 

89 

331 

111 

397 

133 

463 

155 

529 

177 

595 

199 

661 

221 

727 

243 

793 

265 

859 

287 

925 

309 

991 

331 

1057 

353 

1123 

375 

1189 

397 

1255 

419 

1321 

441 

1387 

463 

1453 

485 

1519 

507 

1585 

529 

 ATGAACTTCGGCTTCAGCCTGATCTTCCTGGTGCTGGTGCTGAAGGGCGTGCAGTGCGAAGTGAAG 

 M  N  F  G  F  S  L  I  F  L  V  L  V  L  K  G  V  Q  C  E  V  K  

CTGGTGCCCCGGCAATTGGACTACAAGGACGACGACGACAAAGAATTCGAGGTGCAGCTGCAGCAG 

 L  V  P  R  Q  L  D  Y  K  D  D  D  D  K  E  F  E  V  Q  L  Q  Q  

TCTGGCCCCGTGCTCGTGAAACCTGGCGCCTCCGTGAAGATGAGCTGCAAGGCCAGCGGCAACACC 

 S  G  P  V  L  V  K  P  G  A  S  V  K  M  S  C  K  A  S  G  N  T  

TTCACCGACAGCTTCATGCACTGGATGAAGCAGAGCCACGGCAAGAGCCTGGAATGGATCGGCATC 

 F  T  D  S  F  M  H  W  M  K  Q  S  H  G  K  S  L  E  W  I  G  I  

ATCAACCCCTACAACGGCGGCACCTCCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGTG 

 I  N  P  Y  N  G  G  T  S  Y  N  Q  K  F  K  G  K  A  T  L  T  V  

GACAAGAGCAGCAGCACCGCCTACATGGAACTGAACAGCCTGACCAGCGAGGACAGCGCCGTGTAC 

 D  K  S  S  S  T  A  Y  M  E  L  N  S  L  T  S  E  D  S  A  V  Y  

TACTGCGCCAGAAACGGCGTGCGGTACTACTTCGACTACTGGGGCCAGGGCACAACCCTGACAGTG 

 Y  C  A  R  N  G  V  R  Y  Y  F  D  Y  W  G  Q  G  T  T  L  T  V  

TCTAGCAGATCCTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTAGCAGCAAG 

 S  S  R  S  S  S  A  S  T  K  G  P  S  V  F  P  L  A  P  S  S  K  

AGCACATCTGGCGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGACTACTTTCCCGAGCCCGTGACA 

 S  T  S  G  G  T  A  A  L  G  C  L  V  K  D  Y  F  P  E  P  V  T  

GTGTCCTGGAACTCTGGCGCCCTGACAAGCGGCGTGCACACCTTTCCAGCCGTGCTGCAGAGCAGC 

 V  S  W  N  S  G  A  L  T  S  G  V  H  T  F  P  A  V  L  Q  S  S  

GGCCTGTACTCTCTGAGCAGCGTCGTGACTGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATC 

 G  L  Y  S  L  S  S  V  V  T  V  P  S  S  S  L  G  T  Q  T  Y  I  

TGCAACGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAGAGCTGCGAC 

 C  N  V  N  H  K  P  S  N  T  K  V  D  K  K  V  E  P  K  S  C  D  

AAGACCCACACCTGTCCCCCTTGTCCTGCCCCTGAACTGCTGGGCGGACCTTCCGTGTTCCTGTTC 

 K  T  H  T  C  P  P  C  P  A  P  E  L  L  G  G  P  S  V  F  L  F  

CCCCCAAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGAT 

 P  P  K  P  K  D  T  L  M  I  S  R  T  P  E  V  T  C  V  V  V  D  

GTGTCCCACGAGGACCCTGAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC 

 V  S  H  E  D  P  E  V  K  F  N  W  Y  V  D  G  V  E  V  H  N  A  

AAGACCAAGCCCAGAGAGGAACAGTACAACAGCACCTACCGGGTGGTGTCCGTGCTGACAGTGCTG 

 K  T  K  P  R  E  E  Q  Y  N  S  T  Y  R  V  V  S  V  L  T  V  L  

CACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCCCCC 

 H  Q  D  W  L  N  G  K  E  Y  K  C  K  V  S  N  K  A  L  P  A  P  

ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCCGCGAACCCCAGGTGTACACACTGCCTCCC 

 I  E  K  T  I  S  K  A  K  G  Q  P  R  E  P  Q  V  Y  T  L  P  P  

AGCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCTCC 

 S  R  D  E  L  T  K  N  Q  V  S  L  T  C  L  V  K  G  F  Y  P  S  

GATATCGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTG 

 D  I  A  V  E  W  E  S  N  G  Q  P  E  N  N  Y  K  T  T  P  P  V  

CTGGACAGCGACGGCTCATTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAG 

 L  D  S  D  G  S  F  F  L  Y  S  K  L  T  V  D  K  S  R  W  Q  Q  

GGCAACGTGTTCAGCTGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTG 

 G  N  V  F  S  C  S  V  M  H  E  A  L  H  N  H  Y  T  Q  K  S  L  

AGCCTGAGCCCCGGCAAGCTCGAGGCTAGTACAGCTGCGCTGCTGCCCGCCGTCCCCTCCCTGGGT 

 S  L  S  P  G  K  L  E  A  S  T  A  A  L  L  P  A  V  P  S  L  G  

GGCGGCGGCGGCTGTGCCCTGCCTGTGAGCGGCGCGGCGCAGTGGGCGCCGGTGCTGGACTTTGCG 

 G  G  G  G  C  A  L  P  V  S  G  A  A  Q  W  A  P  V  L  D  F  A  

CCTCCGGGCGCTTCGGCTTACGGGTCGTTGGGCGGCTAA 

 P  P  G  A  S  A  Y  G  S  L  G  G  *  
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