
Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

Advances in Deflection
Routing based

Network on Chips

vorgelegt von

Armin Runge
aus

Frankfurt a. M.

Würzburg 2017

Advances in Deflection
Routing based

Network on Chips

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Armin Runge
aus

Frankfurt a. M.

Würzburg 2017

Eingereicht am: 13.02.2017
bei der Fakultät für Mathematik und Informatik
1. Gutachter: Prof. Dr. Reiner Kolla
2. Gutachter: Prof. Dr. Martin Radetzki

Abstract

The progress which has been made in semiconductor chip production in recent years
enables a multitude of cores on a single die. However, due to further decreasing
structure sizes, fault tolerance and energy consumption will represent key challenges.
Furthermore, an efficient communication infrastructure is indispensable due to the high
parallelism at those systems. The predominant communication system at such highly
parallel systems is a Network on Chip (NoC). The focus of this thesis is on NoCs which
are based on deflection routing. In this context, contributions are made to two domains,
fault tolerance and dimensioning of the optimal link width. Both aspects are essential
for the application of reliable, energy efficient, and deflection routing based NoCs.

It is expected that future semiconductor systems have to cope with high fault proba-
bilities. The inherently given high connectivity of most NoC topologies can be exploited
to tolerate the breakdown of links and other components. In this thesis, a fault-tolerant
router architecture has been developed, which stands out for the deployed interconnec-
tion architecture and the method to overcome complex fault situations. The presented
simulation results show, all data packets arrive at their destination, even at high fault
probabilities. In contrast to routing table based architectures, the hardware costs of the
herein presented architecture are lower and, in particular, independent of the number
of components in the network.

Besides fault tolerance, hardware costs and energy efficiency are of great importance.
The utilized link width has a decisive influence on these aspects. In particular, at deflec-
tion routing based NoCs, over- and under-sizing of the link width leads to unnecessary
high hardware costs and bad performance, respectively. In the second part of this thesis,
the optimal link width at deflection routing based NoCs is investigated. Additionally,
a method to reduce the link width is introduced. Simulation and synthesis results
show, the herein presented method allows a significant reduction of hardware costs at
comparable performance.

iii

Kurzfassung

Die Fortschritte der letzten Jahre bei der Fertigung von Halbleiterchips ermöglichen
eine Vielzahl an Rechenkernen auf einem einzelnen Chip. Die in diesem Zusammenhang
immer weiter sinkenden Strukturgrößen führen jedoch dazu, dass Fehlertoleranz und
Energieverbrauch zentrale Herausforderungen darstellen werden. Aufgrund der hohen
Parallelität in solchen Systemen, ist außerdem eine leistungsfähige Kommunikationsin-
frastruktur unabdingbar. Das in diesen hochgradig parallelen Systemen überwiegend
eingesetzte System zur Datenübertragung ist ein Netzwerk auf einem Chip (engl. Net-
work on Chip (NoC)). Der Fokus dieser Dissertation liegt auf NoCs, die auf dem Prinzip
des sog. Deflection Routing basieren. In diesem Kontext wurden Beiträge zu zwei Be-
reichen geleistet, der Fehlertoleranz und der Dimensionierung der optimalen Breite
von Verbindungen. Beide Aspekte sind für den Einsatz zuverlässiger, energieeffizienter,
Deflection Routing basierter NoCs essentiell.

Es ist davon auszugehen, dass zukünftige Halbleiter-Systeme mit einer hohen Feh-
lerwahrscheinlichkeit zurecht kommen müssen. Die hohe Konnektivität, die in den
meisten NoC Topologien inhärent gegeben ist, kann ausgenutzt werden, um den Ausfall
von Verbindungen und anderen Komponenten zu tolerieren. Im Rahmen dieser Arbeit
wurde vor diesem Hintergrund eine fehlertolerante Router-Architektur entwickelt, die
sich durch das eingesetzte Verbindungsnetzwerk und das Verfahren zur Überwindung
komplexer Fehlersituationen auszeichnet. Die präsentierten Simulations-Ergebnisse
zeigen, dass selbst bei sehr hohen Fehlerwahrscheinlichkeiten alle Datenpakete ihr Ziel
erreichen. Im Vergleich zu Router-Architekturen die auf Routing-Tabellen basieren, sind
die Hardware-Kosten der hier vorgestellten Router-Architektur gering und insbesondere
unabhängig von der Anzahl an Komponenten im Netzwerk, was den Einsatz in sehr
großen Netzen ermöglicht.

Neben der Fehlertoleranz sind die Hardware-Kosten sowie die Energieeffizienz von
NoCs von großer Bedeutung. Einen entscheidenden Einfluss auf diese Aspekte hat die
verwendete Breite der Verbindungen des NoCs. Insbesondere bei Deflection Routing
basierten NoCs führt eine Über- bzw. Unterdimensionierung der Breite der Verbindungen
zu unnötig hohen Hardware-Kosten bzw. schlechter Performanz. Im zweiten Teil dieser
Arbeit wird die optimale Breite der Verbindungen eines Deflection Routing basierten
NoCs untersucht. Außerdem wird ein Verfahren zur Reduzierung der Breite dieser
Verbindungen vorgestellt. Simulations- und Synthese-Ergebnisse zeigen, dass dieses
Verfahren eine erhebliche Reduzierung der Hardware-Kosten bei ähnlicher Performanz
ermöglicht.

v

Danksagung

Mit der Abgabe dieser Dissertation endet ein bedeutender Abschnitt für mich und daher
möchte ich mich bei einigen Menschen bedanken, die mich in den letzten Jahren un-
terstützt haben. Zu aller erst gilt mein besonderer Dank meinem Doktorvater Prof. Dr.
Reiner Kolla, der mir schon in einer sehr frühen Phase meines Studiums die Möglichkeit
gab als studentische Hilfskraft und später als wissenschaftlicher Mitarbeiter und Promo-
tionsstudent im Team des Lehrstuhls für Technische Informatik zu arbeiten. Ebenfalls
bedanken möchte ich mich bei Prof. Dr. Martin Radetzki für seine Anregungen und die
Bereitschaft sich als Zweitgutachter für diese Dissertation zur Verfügung zu stellen.

Bedanken möchte ich mich außerdem bei allen aktuellen und ehemaligen Mitarbeite-
rinnen und Mitarbeitern des Lehrstuhls für Technische Informatik. Ich habe die tolle
Arbeitsatmosphäre sowie die unzähligen Gespräche und fachlichen Diskussionen in der
Elektronikwerkstatt, in der hin und wieder auch Kaffee gekocht wurde, sehr genossen.
Insbesondere möchte ich mich bei Isabel Grimm und Johannes Mühr für das Lesen
dieser Arbeit, sowie die hilfreichen Kommentare und Korrekturen bedanken.

Abschließend möchte ich mich noch bei meiner Familie und meinen Freunden be-
danken. Ein besonderer Dank gilt meinen Eltern, die mir das Studium in Würzburg
ermöglicht haben und dadurch den Grundstein für meine weitere wissenschaftliche
Laufbahn gelegt haben. Ein ganz besonderer Dank gilt außerdem meiner Verlobten
Isabel Grimm. Vielen Dank für deine Unterstützung und dein Verständnis in den letzten
Monaten!

vii

Contents

Abstract iii

Kurzfassung v

Danksagung vii

List of Tables xiii

List of Figures xv

Abbreviations & Acronyms xix

Symbols xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline and Scientific Contributions 4

2 Network Basics 7
2.1 Building Blocks and Terminology . 8
2.2 Topology . 11
2.3 Routing . 14

2.3.1 Classification . 14
2.3.2 Routing Algorithms and Turn Model 15

2.4 Buffering and Flow Control . 18
2.4.1 Bufferless Flow Control . 18
2.4.2 Buffered Flow Control . 19
2.4.3 Buffer Availability . 24

2.5 Router Architecture . 24
2.6 Performance . 27

2.6.1 Performance Metrics . 27
2.6.2 Evaluation Methodology . 29

2.7 Conclusion and Existing Interconnection Networks 34

3 Deflection Routing based Router Architectures 37
3.1 Principle of Deflection Routing . 37

ix

Contents

3.2 Pros and Cons of Deflection Routing . 39
3.3 Deflection Routing Implementations . 42

3.3.1 Crossbar based Architectures . 43
3.3.2 Permutation Network based Architectures 46

3.4 Basis Network on Chip and Router Architecture 53
3.4.1 Flit Prioritization Scheme . 54
3.4.2 Routing Algorithm . 55
3.4.3 Summary . 65

4 Fault-tolerant and Deflection Routing based Router Architecture 67
4.1 Motivation and Scope . 68

4.1.1 Fault Tolerance Methods . 69
4.1.2 Fault-tolerant Routing . 71
4.1.3 Conclusion . 73

4.2 Related Work of Chapter 4 . 73
4.3 FaFNoC Router Architecture . 77

4.3.1 Fault Tolerance and Banyan Networks 78
4.3.2 Substitute Benes Networks for Banyan Networks 86
4.3.3 Concept of Fault-aware Flits . 94
4.3.4 Summary and Complete Overview of FaFNoC Router Architecture 99

4.4 Evaluation of FaFNoC Router Architecture 100
4.4.1 Non-fault-tolerant Architecture . 101
4.4.2 Fault-tolerant Architecture . 104

4.5 Summary and Conclusion of Chapter 4 . 111

5 Design of Deflection Routing based Network on Chips 113
5.1 Introduction and Motivation . 113

5.1.1 Effect of the Link Width on Buffered, Packet Switched NoCs . . . 114
5.1.2 Effect of the Link Width on Deflection Routing based NoCs 115

5.2 Related Work . 117
5.3 The optimal Link Width . 119

5.3.1 Effect of the Flit Size on Hardware Costs 119
5.3.2 Effect of the Flit Size on Performance 123

5.4 TwoPhases - An Alternating Transmission Scheme 132
5.4.1 Methodology of TwoPhases . 133
5.4.2 Transmission Methods . 139
5.4.3 Evaluation . 141

5.5 Summary and Conclusion of Chapter 5 . 149

6 Concluding Remarks 151
6.1 Contributions of this Thesis . 151

x

Contents

6.2 Future Work . 153

A Appendix 155
A.1 Fault Situations of Chapter 4 . 155
A.2 Lambert W function . 159

Publications of the Author 161

Bibliography 163

xi

List of Tables

2.1 Metrics for different Network on Chip (NoC) topologies. 14
2.2 Configuration of XST for synthesis. 29
2.3 Bit permutation traffic patterns. 30
2.4 Characteristics of the three herein evaluated PARSEC benchmarks. 32
2.5 Characteristics of the interconnection architectures of real processors. . 35

4.1 Several methods and techniques to enhance the reliability of NoCs. . . . 70
4.2 Possible and impossible routing decisions of different interconnection

architectures. 90

5.1 Simulated link widths, and the consequential number of flits per large
message as well as per small message. 131

5.2 PARSEC simulation results, for seven different link widths / flit sizes. . . 131
5.3 All Pareto optimal link withs for |msg|= 32 and |hd|= 16. 142
5.4 PARSEC simulation results, for three different clock ratios. 146

xiii

List of Figures

1.1 Challenges of many-core processor design. 2

2.1 Three communication infrastructures used in System-on-Chips. 9
2.2 Data units at NoCs. 10
2.3 Flit structure of head, body, and tail flits. 11
2.4 Frequently used direct NoC topologies. 12
2.5 Routing dependent deadlock at a 2D mesh. 16
2.6 The turn model for a 2D mesh topology. 17
2.7 Classification of flow control mechanisms according to [DT04]. 18
2.8 Time-space diagram of a transmission with store-and-forward flow control. 20
2.9 Time-space diagram of a transmission with virtual cut-through flow control. 21
2.10 Time-space diagram of a transmission with wormhole flow control. . . . 22
2.11 Time-space diagram of a transmission with virtual channel flow control. 23
2.12 Block diagram of a typical input queued, virtual channel router, which

uses credit-based flow control, according to [MWM04]. 25
2.13 Three indirect network topologies: 6×6 crossbar, 4×4 Banyan network,

and 4× 4 Benes network. 26
2.14 Typical NoC performance metrics illustrated. 28
2.15 Injection probabilities during the first 50 million clock cycles of the ROI

of three PARSEC benchmarks. 33

3.1 Crossbar based router architecture . 43
3.2 CHIPPER router architecture [FCM10; FCM11] 47
3.3 A possible and an impossible permutation for a Banyan network. 49
3.4 Retransmit-once protocol scheme [FCM10, p. 12] 51
3.5 MinBD router architecture [Fal+11; Fal+12] 52
3.6 2D mesh topology with loop links at the edges of the mesh. 54
3.7 At AVOID_CENTER, the used routing algorithm depends on the routers’

position. 59
3.8 Throughput for all evaluated routing algorithms and eight different in-

jection probabilities. 62
3.9 Statistical values of the flits’ hop count for all evaluated routing algorithms

and eight different injection probabilities. 62

xv

List of Figures

3.10 Statistical values of the flits’ latency for all evaluated routing algorithms
and eight different injection probabilities. 63

3.11 Link utilization at an injection probability of α= 20%. 64
3.12 Statistical values of the flits’ deflections for all evaluated routing algo-

rithms and eight different injection probabilities. 65

4.1 Two fault shapes which are not tolerated by FoN. 75
4.2 Overview of the FaFNoC router architecture. 78
4.3 All one-direction fault situations of a Banyan network. 80
4.4 All three-directions fault situations of a Banyan network. 81
4.5 All unambiguous two-directions fault situations of a Banyan network. . . 82
4.6 All ambiguous two-directions fault situations of a Banyan network. . . . 82
4.7 Two fault situations, the first situation requires a reflection of flits,

whereas reflections create a risk of livelocks at the second situation. . . . 84
4.8 Overview of the FaFNoC router architecture based on a Banyan network. 85
4.9 Return flag handling of FaFNoC-Banyan illustrated. 87
4.10 A 4×4 Benes network with configuration adopted from CHIPPER’s Banyan

network. 88
4.11 FaFNoC’s Benes network, with a changed arrangement of input ports

as well as a changed wiring between the first and the second stage of
switching elements. 89

4.12 All one-direction fault situations of a Benes network. 92
4.13 All two-directions fault situations of a Benes network. 93
4.14 All three-directions fault situations of a Benes network. 94
4.15 Detailed illustration of switching element s5 and fault-status-handler for

north port. 97
4.16 Path of a flit which is routed from Rs to Rd . At Ra, the flit is turned to

region evasion modus, and at Rc , back to normal mode. 98
4.17 FaFNoC’s flit structure for an 8× 8 NoC. 100
4.18 Simulation results for non-fault-tolerant router architectures with differ-

ent interconnection architectures, uniform random traffic, and a variable
injection probability. 102

4.19 Synthesis results for one non-fault-tolerant router, with different deployed
interconnection architectures. 102

4.20 Frequency adjusted average latency for non-fault-tolerant router archi-
tectures. 103

4.21 Simulation results for random traffic and transpose traffic. 105
4.22 Average hop count and percentage of lost flits for full traffic. 106
4.23 Simulation results for two PARSEC benchmarks and a variable number

of random link failures. 108

xvi

List of Figures

4.24 Hardware requirements for the herein compared fault-tolerant router
architectures and four different NoC dimensions. 110

4.25 Achievable frequencies for the herein compared fault-tolerant router
architectures. 110

4.26 Frequency adjusted average latency for fault-tolerant router architectures.111

5.1 Livelock problem of deflection routing based NoCs illustrated. 116
5.2 Permutation network based router architecture 120
5.3 Synthesis results for one router and different flit sizes. 123
5.4 Number of transferred flits per message and a variable link width. 125
5.5 Link width for a variable number of flits per message. 126
5.6 Transmission of three flits between two two-hop neighbors. 126
5.7 Number of transferred flits and transferred messages for a variable flit

size / link width. 128
5.8 Average latency l and average hop count hc for traffic with uniform length.129
5.9 Average latency l and average hop count hc for traffic with non-uniform

length. 130
5.10 Mesh topology with TwoPhases for two consecutive clock cycles. 134
5.11 Transmission of one packet, which is routed with TwoPhases from Rx to

its two-hop neighbor Rz via R y . 136
5.12 Transmission of one packet, which is routed with TwoPhases and a pipelined

router architecture with two stages from Rx to its two-hop neighbor Rz
via R y . 137

5.13 Transmission of one message with Serialization between two-hop neighbors.141
5.14 Avgerage hop count hc and latency l for a variable injection probability α

and different synthetic workloads. 144
5.15 Speedup for all evaluated PARSEC simulations, compared to standard

deflection routing with links that are as wide as the largest packet. . . . 147
5.16 Synthesis results for different router architectures. 148

A.1 First simulated fault situation . 156
A.2 Second simulated fault situation. 157
A.3 Third simulated fault situation. 158

xvii

Abbreviations & Acronyms

ACK ACKnowledgement
ARQ Automatic Repeat reQuest
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface

BE Best Effort
BLESS BufferLESS routing algorithms

CHIPPER CHeap-Interconnect Partially PErmuting Router
CLB Configurable Logic Block
CMOS Complementary Metal-Oxide-Semiconductor
CMP Chip MultiProcessor
CRC Cyclic Redundancy Check

FaF Fault-aware Flits
FaFNoC Fault-aware Flits NoC
FEC Forward Error Correction
fifo first in - first out
flit flow control digit
FPGA Field-Programmable Gate Array

GT Guaranteed Throughput

HWR HardWare Requirement

I/O Input/Output
ID IDentifier
ILP Instruction-Level Parallelism
IP Intellectual Property
ITRS International Technology Roadmap for Semiconductors

LUT LookUp Table

MinBD Minimally-Buffered Deflection
MPSoC MultiProcessor System-on-Chip

xix

Abbreviations & Acronyms

MSHR Miss Status Holding Register
MUX MUltipleXer

NACK Negative-ACKnowledgement
NI Network Interface
NoC Network on Chip

OCP Open Core Protocol

PARSEC Princeton Application Repository for Shared-Memory Computers
PE Processing Element
phit physical transfer digit

REG REGister
ROI Region Of Interest

SEC code Single-Error Correcting code
SECDED code Single-Error Correcting and Double-Error Detecting code
SEU Single Event Upset
SoC System-on-Chip

TDM Time-Division Multiplexing
TMR Triple Modular Redundancy
TSV Through-Silicon Via

VC Virtual Channel
VCI Virtual Component Interface
VHDL Very high speed integrated circuit Hardware Description Language
VLSI Very-Large-Scale Integration

xx

Symbols

α injection probability [flits/clock cycle/node]
λ fault rate, probability that a specific link is defect
θ throughput [flits/clock cycle/node]

bi i-th body flit of a packet

ci i-th network clock cycle

d1(·) Manhattan distance of · to destination [hops]
dst destination address of a flit, field in the flit structure

E port to the east

fi fault information, routers’ input vector with a width of P bit, fij gives
the state of link j

fi flit with ID i
#f number of flits per message
|f | size of a flit [bit]
fs fault status, field in the flit structure, which consists of tDir and tDst
ft flit type, to distinguish between head, body, and tail flits

h head flit of a packet
hc hop count of a flit, field in the flit structure
|hc| size of the hc field [bit]
hd header information of a flit, contains i.a.: flit’s destination address,

flit’s hop count
|hd| size of the header information [bit]

ii i-th input
id id of a flit, field in the flit structure
|id| size of the id field [bit]

L locale port
l latency [clock cycle], time from when a flit enters the network to when

the flit departs the network

xxi

Symbols

|LI| link width [bit]

msgi message with ID i
|msg| size of a message msg [bit]

N port to the north

oi i-th output

P number of ports per router
pi packet with ID i
|p| size of a packet [bit]
phi phit with ID i
#ph number of phits per flit
|ph| size of a phit [bit]
pl payload of a flit, field in the flit structure
|pl| size of the pl field [bit]
pos address of current router

Ri Router with ID i

S port to the south
si switching element / permute block with ID i
src source address of a flit, field in the flit structure

t tail flit of a packet
tejec(·) ejection time of ·
tinjec(·) injection time of ·
tDir turn direction, tDir ∈ {R, L, 0}, field in the flit structure for fault toler-

ance
tDst turn distance, field in the flit structure for fault tolerance

W port to the west

z(·) state of switching element ·, z ∈ {0, 1}

xxii

Chapter 1
Introduction

Contents

1.1 Motivation . 1

1.2 Thesis Outline and Scientific Contributions 4

1.1 Motivation

Technology scaling has been following the self-fulfilling Moore’s law [Moo98] for several
generations of semiconductor chips. According to Gordon Moore’s prediction, the
number of transistors per unit area on integrated circuits doubled every two years.
However, an end of traditional transistor scaling was predicted in the latest International
Technology Roadmap for Semiconductors (ITRS) report [ITR15] for the 2020s, and
also Gordon Moore expects an end of his own prediction, as technology scaling gets
close to the atomic limitation [Cou15]. Nevertheless, chips with billions of transistors
are already commercially available [Saw+11]. Recently, Gordon Moore stated in an
interview:

“But we will be able to make several billion transistors on an integrated
circuit at that time. And the room this allows for creativity is phenomenal.”
[Cou15]

In addition to great opportunities, technology scaling implicates several challenges.
For several decades, Dennard scaling [Den+74], which essentially suggests that power
requirements of a transistor are proportional to its area, has allowed manufactures to
raise clock frequencies without significantly increasing overall circuit power consumption.
Since around 2005-2007, Dennard scaling no longer seems to apply. Current leakage
poses major challenges and a heat up of the chips, which further increases energy
consumption. This leads to an inability to increase clock frequencies significantly and
created a so called power wall.

1

Chapter 1 Introduction

many-
core

design

power
efficiency

fault
tolerance

inter-
connection

programm-
ability

Figure 1.1: Challenges of many-core processor design.

Until recently, the utilization of Instruction-Level Parallelism (ILP) techniques was
another key factor to improve processor performance. However, it became increasingly
difficult to find enough parallelism in a single instruction stream to utilize the capacity
of high-performance single-core processors. This lack of available instruction-level paral-
lelism is called the ILP wall. Therefore, chip manufactures have focused on techniques to
exploit higher levels of parallelism, as multithreading, and finally multi- and many-core
processors.

The trend towards many-core processors is also confirmed by Pollack’s Rule [Bor07].
This rule states that performance increase is roughly proportional to the square root
of the increase in complexity, i.e. area. In contrast, the power consumption increase is
roughly linearly proportional to the increase in complexity. Consequently, this leads to
chips with hundreds or thousands of low-complexity cores, as those chips can provide
more performance than a single complex core1. Indeed, chips with hundreds of cores on
a single die exist and are commercially available nowadays. These chips range from Chip
MultiProcessors (CMPs), which are usually homogeneous, and frequently tile-based, to
heavily customized MultiProcessor System-on-Chips (MPSoCs), which are usually very
heterogeneous.

The design of many-core processors also entails several challenges, as programma-
bility, power efficiency, fault tolerance and interconnection (cf. Figure 1.1). Parallel
programming paradigms are required to be able to utilize the processing power provided
by these systems. Moreover, technology scaling and shrinking manufacturing processes
have several undesirable side-effects, like an increasing variability in performance and
reliability as well as a significant energy consumption [Bor05]. The increasing number
of transistors per chip leads to a power challenge. It is projected that the amount of

1Obviously, the workload has to contain enough parallelism to utilize the performance of all available
cores.

2

1.1 Motivation

dark silicon, i.e. the part of a chip which has to be powered-off to comply with power
constraints, may reach up to 50%− 80% at 8 nm technology [Esm+11]. In addition,
those systems have to cope with highly varying component lifetimes. Hence, fault
tolerance concepts will be required to achieve reasonable operating periods and to
improve yield rate. Furthermore, the increasing number of components on a single die
leads to growing communication requirements. Traditionally deployed communication
infrastructures, like buses, rings, and crossbars, can not provide the required high band-
width, low latency, and energy efficiency, as they do not scale with the high number of
communication participants.

For some of the above mentioned challenges solutions have yet to be found, but
Network on Chips (NoCs) provide a scalable, parallel communication infrastructure.
Thus, they are considered as the dominant interconnection architecture of many-core
processors. They are also complex systems, with a multitude of design parameters.
Indeed, today’s NoCs consume a significant proportion of die area and system power
[Bor07; Bor10]. The NoC of Intel’s 80-Core Teraflops Research Chip, for example,
consumes 17% of die area [Van+08] and 28% of system power [Hos+07]. Most utilized
NoCs are buffered, packet switched networks and a very large part of the area and
the energy is consumed by the networks’ buffers. For instance, 60% die area of the
iMesh NoC of Tilera’s TILE64 many-core system is dedicated to buffering [Wen+07]
and for the TRIPS chip, it is reported that the router’s input buffers even occupy 75% of
the router area [Gra+06]. At Intel’s Teraflops Research Chip, buffer queues consume
22% of the communication power [Van+08]. Consequently, avoiding these buffers can
contribute to reduce the power requirements of NoCs. The main focus of this thesis in
on bufferless deflection routing, which has already been proposed in 1964 by Baran
[Bar64]. At deflection routing, the data units of an NoC are not buffered by routers
of the network, i.e. they can not wait at a router for resource allocation. Instead, if
two data units try to allocate the same path, one data unit is routed along a potentially
non-shortest path, i.e. it is deflected. Comparisons to buffered, packet switched NoCs
demonstrated that bufferless, deflection routing based networks require over 30% less
power and area [FCM10; CMM15].

Besides power efficiency, fault tolerance is an important aspect of many-core systems
and, as such, also of NoCs. Generally, fault tolerance is achieved by adding some kind
of redundancy. Most NoC topologies possess an inherent path redundancy. Thus, it
suggests itself to exploit this redundancy to tolerate failures at the NoC level.

To summarize, power efficient, fault-tolerant NoCs are an important research topic
and key components of future many-core systems. To quote Avinash Sodani, former
Senior Principal Engineer at Intel and Chief Architect of Intel’s Knights Landing Xeon-Phi
processor:

“The developers of the ENIAC, [the earliest electronic general-purpose
computer,] were faced with two challenges, and we are faced with the same

3

Chapter 1 Introduction

challenges today: reliability and interconnection.” [Sod16]

This thesis contributes to the development of reliable and power efficient NoCs by:

1. presenting a fault-tolerant NoC based on a permutation network and addition-
ally on deflection routing. Moreover, a new concept to overcome complex fault
situations is introduced.

2. investigating the effect of the link width on permutation network based router
architectures. In addition, a new concept to reduce the routing overhead of a
specific link width is presented.

1.2 Thesis Outline and Scientific Contributions

This thesis focuses on NoCs which utilize deflection routing and a permutation network
based router architecture. An overview of NoCs, including main building blocks and
terminology used in this context, is given in Chapter 2. The general principle of bufferless
deflection routing is introduced in Chapter 3. Moreover, several existing implementations
of deflection routing based NoCs and the basis router architecture used in this thesis are
presented in Section 3.3 and Section 3.4, respectively. The main scientific contributions
presented in this thesis are divided into two chapters.

Chapter 4 focuses on fault-tolerant and deflection routing based router architectures.
This chapter starts with a brief introduction to fault tolerance at NoCs in Section 4.1.
Existing fault-tolerant router architectures are presented in Section 4.2. Following this
introduction, the FaFNoC router architecture, which has been developed as part of
this thesis, is presented in Section 4.3. This architecture stands out for the utilized
interconnection architecture and the method to tolerate complex fault situations. Most
router architectures use either a crossbar or a 4× 4 Banyan network as interconnection
architecture. Instead, a 4×4 Benes network is utilized at the FaFNoC architecture, which
requires fewer hardware resources than a crossbar and provides significant benefits in
terms of fault tolerance compared to a Banyan network. Moreover, every fault-tolerant
router architecture requires some kind of global fault information to be able to overcome
complex fault situations, as they can arise if several components fail. Existing approaches
are based either on costly routing-tables or fault information of adjacent nodes. These
approaches suffer from poor scalability or limited fault tolerance. Thus, the concept
of Fault-aware Flits (FaF) has been developed, at which the transferred data units are
aware of their encountered fault situation.

Chapter 5 addresses the design of deflection routing based NoCs, and specifically,
the utilized link width. As an introduction and motivation, the effect of the link width
on buffered, packet switched NoCs and bufferless, deflection routing based NoCs is
compared in Section 5.1. The optimal link width and its effect on performance and

4

1.2 Thesis Outline and Scientific Contributions

hardware requirements is considered in Section 5.3. Subsequently, TwoPhases, an
alternating transmission scheme for deflection routing is presented in Section 5.4.
Compared to standard deflection routing, TwoPhases allows a reduction of the routing
overhead by more than half.

Both chapters close with a brief summary and conclusion. Finally, concluding remarks
and an outlook to future work are provided in Chapter 6.

This thesis is based on the following publications:

[Run12a] Armin Runge. Determination of the Optimum Degree of Redundancy
for Fault-prone Many-Core Systems. In: Zuverlässigkeit und Entwurf - 6.
GMM/GI/ITG-Fachtagung. VDE VERLAG GmbH, 2012

[Run12b] Armin Runge. Reliability Enhancement of Fault-prone Many-core Sys-
tems Combining Spatial and Temporal Redundancy. In: 2012 IEEE 14th
International Conference on High Performance Computing and Communica-
tion & 2012 IEEE 9th International Conference on Embedded Software and
Systems. Institute of Electrical & Electronics Engineers (IEEE), June 2012.
DOI: 10.1109/hpcc.2012.233

[Run15a] Armin Runge. FaFNoC: A Fault-tolerant and Bufferless Network-on-
chip. In: Procedia Computer Science 56 (2015), pp. 397–402. DOI: 10.
1016/j.procs.2015.07.226

[Run15b] Armin Runge. Fault-tolerant Network-on-Chip based on Fault-aware
Flits and Deflection Routing. In: Proceedings of the 9th International Sym-
posium on Networks-on-Chip. ACM. Association for Computing Machinery
(ACM), 2015, p. 9. DOI: 10.1145/2786572.2786585

[RK16a] Armin Runge and Reiner Kolla. An Alternating Transmission Scheme for
Deflection Routing Based Network-on-Chips. In: Architecture of Com-
puting Systems – ARCS 2016. Springer International Publishing. Springer
Nature, 2016, pp. 48–59. DOI: 10.1007/978-3-319-30695-7_4

[RK16b] Armin Runge and Reiner Kolla. Consideration of the Flit Size for Deflec-
tion Routing based Network-on-Chips. In: 1st International Workshop on
Advanced Interconnect Solutions and Technologies for Emerging Computing
Systems (AISTECS). Association for Computing Machinery (ACM), 2016,
5:1–5:6. DOI: 10.1145/2857058.2857060

[RK16c] Armin Runge and Reiner Kolla. TwoPhases: A Transmission Scheme to
Reduce the Link Width at Deflection Routing based Network-on-Chips.
In: Journal of Systems Architecture (Dec. 2016). DOI: 10.1016/j.sysarc.
2016.12.001

5

http://dx.doi.org/10.1109/hpcc.2012.233
http://dx.doi.org/10.1016/j.procs.2015.07.226
http://dx.doi.org/10.1016/j.procs.2015.07.226
http://dx.doi.org/10.1145/2786572.2786585
http://dx.doi.org/10.1007/978-3-319-30695-7_4
http://dx.doi.org/10.1145/2857058.2857060
http://dx.doi.org/10.1016/j.sysarc.2016.12.001
http://dx.doi.org/10.1016/j.sysarc.2016.12.001

Chapter 1 Introduction

[RK16d] Armin Runge and Reiner Kolla. Using Benes Networks at Fault Tolerant
and Deflection Routing based NoCs. In: Proceedings of the 10th Interna-
tional Symposium on Networks-on-Chip. Institute of Electrical and Electron-
ics Engineers (IEEE), Sept. 2016. DOI: 10.1109/NOCS.2016.7579325

6

http://dx.doi.org/10.1109/NOCS.2016.7579325

Chapter 2
Network Basics

Contents

2.1 Building Blocks and Terminology 8

2.2 Topology . 11

2.3 Routing . 14

2.3.1 Classification . 14

2.3.2 Routing Algorithms and Turn Model 15

2.4 Buffering and Flow Control . 18

2.4.1 Bufferless Flow Control . 18

2.4.2 Buffered Flow Control . 19

2.4.3 Buffer Availability . 24

2.5 Router Architecture . 24

2.6 Performance . 27

2.6.1 Performance Metrics . 27

2.6.2 Evaluation Methodology . 29

2.7 Conclusion and Existing Interconnection Networks 34

This chapter aims to give an overview of NoCs and introduce typical evaluation criteria
in this field. Towards this end, the main building blocks, as well as the terminology used
in this context, are introduced in Section 2.1. Subsequently, three important aspects
of NoCs are presented in more detail, namely topology in Section 2.2, routing in Sec-
tion 2.3, and flow control in Section 2.4. An overview of a typical virtual channel router
architecture is provided in Section 2.5. Network performance metrics and the herein
used evaluation methodologies are presented in Section 2.6. Finally, this chapter closes
with a conclusion in Section 2.7, which includes an overview of several interconnection
networks of existing processors.

7

Chapter 2 Network Basics

2.1 Building Blocks and Terminology

In general, NoCs provide a communication infrastructure for large systems, which
consist of a huge number of communication participants or components. For such a
high number of components, traditionally deployed communication infrastructures, e.g.
buses and dedicated point-to-point links, do not scale or can not provide the required
area, power, and timing requirements. An illustration of buses, point-to-point links, as
well as an overview of NoCs, is depicted in Figure 2.1. This figure also shows the main
building blocks of NoCs, namely network interfaces (NI), routers (R), and links.

Network interfaces2 connect Intellectual Property (IP) cores, as processors, memories,
or caches, to the network. They implement the conversion of messages, which are
generated and processed by the IP cores, into packets, which can be routed by the
network. Thus, network interfaces decouple computation from communication. A
network interface consists of a front end and a back end. The front end is unaware
of the NoC and usually adheres to a System-on-Chip (SoC) socket standard [BM06, p.
12], which is supported by the connected IP core. Sockets which already have been
implemented in network interfaces include the Open Core Protocol (OCP) [Acc16], the
Advanced eXtensible Interface (AXI) [ARM16], and the Virtual Component Interface
(VCI) of the dissolved Virtual Socket Interface Alliance. The back end handles the
network protocol, which involves, among others, end-to-end flow control handling as
well as assembling and disassembling of packets.

The components of a network are connected by point-to-point links, which are com-
posed of a set of wires. Depending on the definition, a link provides either a full-duplex
or a simplex connection between the two components it connects. In this thesis, it
is assumed that every link provides a simplex connection. However, components are
connected by pairs of links. Thus, two links together enable a full-duplex communication
between the two connected components.

One link can consist of several virtual or physical channels, which allows a parallel
communication over this single link. Herein, every link consists of exactly one physi-
cal channel and potentially several virtual channels. More information about virtual
channels is given in Section 2.4.2.

At most NoC topologies, the number of wires per link, also referred to as link width,
is uniform throughout the NoC. However, network topologies with non-uniform link
widths exist as well, e.g. the fat tree topology. Compared to off-chip networks, wires are
cheap but the packet latency is critical. Therefore, links of NoCs are usually much wider
than links of off-chip networks. Typical link widths of NoCs range from 16 bit to 512 bit.

The core elements of a NoC are routers. They consist of buffers, arbiters, and several
Input/Output (I/O) ports. Routers receive packets from their input ports and forward
them to their output ports. They implement a routing algorithm (cf. Section 2.3), as well

2Network interfaces are also referred to as network adapters [CML12, p. 16].

8

2.1 Building Blocks and Terminology

PE PE PE

I/O MEM

(a) Bus

PE PE PE

I/O MEM

(b) Point-to-point

NoC
NI

NINI

NI

NI

NI

PE

MEMI/O

PE

MEM

PE

RRR

R R

IP core

Network Interface

Link

Router

(c) Network on Chip (NoC)

Figure 2.1: Three communication infrastructures used in System-on-Chips.

9

Chapter 2 Network Basics

Message

Packets
128 bit - 512 kbit

Flits
16 bit to 512 bit

Phits
1 bit to 64 bit

h b1 t

Header Payload

Figure 2.2: Data units at NoCs. The numbers underneath the left labels give ranges of
typical sizes, according to [DT04, p. 225].

as a flow control scheme (cf. Section 2.4). Compared to off-chip networks, resources on
a chip are constrained and routers share area and power budgets with other components.
Consequently, NoC routers typically have limited buffering capacities. An overview of a
typical router architecture is provided in Section 2.5.

Data units at NoCs

As mentioned before, the components of a NoC operate with different data units. An
overview of the data units of NoCs is depicted in Figure 2.2. IP cores send and receive
messages, e.g. cache lines, which can be arbitrarily long. The network interfaces create
packets out of these messages. Packets usually have a restricted length, thus one message
is divided into one or more packets. Additionally, a header is appended to each packet,
which includes routing information. Packets are the basic unit of routing and sequencing,
i.e. channels are allocated to packets. Depending on the switching technique, a packet
may be further divided into flow control digits (flits). A flit is the basic unit of buffer
and bandwidth allocation. The first flit of a packet is referred to as the head flit (herein
denoted by h), which contains the packet’s routing information. Depending on the
packet’s length, a head flit can be followed by several body flits (herein denoted by bi,
i ∈ N) and at most one tail flit (herein denoted by t). As those flits carry no routing
information, they have to follow the route of their head flit. Body and tail flits differ in
that a tail flit deallocates the channel of the packet, which has been allocated by the
head flit. In the case of a very short packet which consist of a single flit the head flit is
also the tail flit. Figure 2.3 shows an example flit structure. Flits can be further divided
into physical transfer digits (phits). A phit is the data unit that can be transmitted across
a link in one clock cycle. Thus, if a flit is transferred as several phits, the flit is serialized

10

2.2 Topology

Head flit: ft=h dst src hc id pl
Body flit: ft=b pl
Tail flit: ft=t pl

Figure 2.3: Flit structure of head, body, and tail flits. All flits contain a flit type field ft
to distinguish between head, body, and tail flits, as well as a payload field pl.
Head flits additionally contain a destination and source address field, dst
and src, a hop count field hc, and an ID field id.

and deserialized at each transmission. In most cases, a flit corresponds to a phit and
hence the flit size equals the link width.

In the following three sections, three essential aspects of NoCs are considered in more
detail.

2.2 Topology

The topology of a NoC defines the network’s structure, i.e. it specifies the way how
routers are connected to each other. Therefore, the deployed topology affects many other
aspects, as routing, achievable performance, reliability, and ease of layout. Topologies
can be classified in different ways, and most of them are orthogonal to each other.

Directness: At direct topologies, the communication participants, referred to as com-
ponents, sit inside the network. Every component is connected to a router and vice
versa. The combination of a router and its connected component is referred to as
a node. Thus, such networks are also known as router-based networks. At indirect
topologies, the components sit outside the network. There, the components are
connected by switches or switching elements, whereby some switches just forward
messages, but they are not connected to any sender or receiver.

This section concentrates on direct topologies, which are most frequently utilized
at NoCs. An overview of several direct topologies is depicted in Figure 2.4. The
interconnection architecture inside a router architecture itself is usually based
on an indirect topology. Thus, several indirect topologies are introduced in
Section 2.5.

Regularity: A regular topology is defined in terms of a regular graph structure, such
as a ring or a mesh. In some textbooks, a topology is defined to be regular if
all nodes are identical in terms of their number of ports, e.g. in [DYL02, p. 14]
and [QS13, p. 335]. Regular topologies are easier to analyze, whereas irregular
topologies can be customized for a specific application. Already utilized irregular

11

Chapter 2 Network Basics

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R

PE

NI

(a) 2D mesh

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) 2D torus

0
1

2

3
4

5

6

7

(c) Ring

0
1

2

3
4

5

6

7

(d) Octagon / spidergon

0

4

1

5

2

6

3

7

(e) 3D hypercube

Figure 2.4: Frequently used direct NoC topologies.

topologies are frequently composed of two regular topologies, e.g. a mesh of rings.
Moreover, an irregular topology can arise if parts of the network fail.

Symmetry: At symmetric topologies, the network looks alike from every node.

Additionally to these fundamental attributes of topologies, they can also be compared
by several theoretical metrics. Some important metrics are listed below.

Number of links: The number of links is usually given as a function of N , whereas N
denotes the number of nodes or routers in the network. Links provide bandwidth
and hence, a higher number of links can increase the throughput and decrease
the latency. On the other hand, a higher number of links increases the costs and
can complicate the layout on-chip.

Radix: The radix denotes a router’s degree, i.e. its number of I/O ports. The costs of a
router increase with its radix, as the number of buffers and arbiters, as well as the
size of the router’s interconnection architecture, increase with the radix.

12

2.2 Topology

Diameter: The diameter of a topology gives the maximum distance between two nodes.
Hence, the diameter is a lower bound of the maximum hop count3.

Average distance: The average distance between two nodes influences the average
hop count.

Bisection bandwidth: The bisection bandwidth gives the number of links which have
to break before the network is cut into two halves. At a higher bisection bandwidth,
the blocking probability inside the network is lower.

Some popular and frequently utilized NoC topologies are briefly introduced below
and pictured in Figure 2.4. The ring topology (cf. Figure 2.4c) requires only as many
links as nodes are present in the network. Due to the small number of links, the average
latency is O (N) and the bisection bandwidth is constant. Thus, rings do not scale with
a high number of nodes. However, hierarchical designs, as well as multi-ring designs,
have been used to address the scalability of rings. The octagon topology (cf. Figure 2.4d)
is another low-cost topology. It is based on a ring with eight nodes and additional links
from each node to its diagonally opposite neighbor node. The spidergon topology is a
generalization to an arbitrary but even number of nodes, which has been developed
by STMicroelectronics [Cop+08]. The 2D mesh topology (cf. Figure 2.4a) is frequently
utilized in commercial NoCs, e.g. in Tilera’s Tile Processor family [Wen+07], as well as
assumed in most scientific NoCs. It is a regular topology, easy to layout on-chip, and
has links of equal length. Furthermore, it maps to the tiled CMP architecture naturally
[BD06]. The path diversity and low average latency of O (

p
N) are additional advantages

of this topology. Meshes are not symmetric on their edges, and thus the center of a
mesh tends to be more congested. As a result, the performance of a node depends on
its position in the network. The 2D torus topology (cf. Figure 2.4b) corresponds to a 2D
mesh topology with additional connections at the edge nodes, which leads to a donut
shape. Thus, a torus provides a higher path diversity and higher bisection bandwidth
than a mesh topology. On the other hand, a torus has higher costs, is harder to layout on-
chip, and has unequal link lengths. However, the latter point can be solved by a folded
torus, at which all links have the same length. The n-dimensional hypercube topology
connects 2n = N nodes and provides a latency of O (ld N). There, two processors are
connected if and only if the binary representation of their labels differ at exactly one bit.
Hypercubes were used in the past, e.g. in the Cosmic Cube [Sei85], as links were more
expensive than routers. Values for the presented metrics and topologies are shown in
Table 2.1.

3The hop count of a packet denotes the number of nodes the packet has traversed.

13

Chapter 2 Network Basics

Ring Spidergona 2D n× n 2D n× n n dim.

mesh torus hypercube

Number of nodes N N = 4n N = n2 N = n2 N = 2n

Number of links N 1.5N 2N − 2n 2N 2n−1n

Router degree / radix 2 3 4 4 ld(N)

Diameter N
2

N
4 2

p
N

p
N ld(N)

Avg. distance N
4

2n2+2n−1
N

2
3

p
N 1

2

p
N ld(N)

2

Bisection bandwidth 2 8
p

N 2
p

N N
2

aThe depicted values correspond to N = 4n. Average distance and bisection bandwidth for N = 4n+ 2
differ slightly from the depicted values. Exact values can be found in [Cop+08, p. 102].

Table 2.1: Metrics for different topologies. Values are given as a function of N , whereas
N denotes the number of nodes in the network.

2.3 Routing

At almost all topologies, several paths between two nodes are available. The routing
algorithm specifies how packets get from their source node to their destination node,
i.e. which path is taken. Therefore, the utilized routing algorithm is a fundamental
characteristic of a NoC, which affects the network’s performance and correctness.

2.3.1 Classification

As topologies, routing algorithms can be classified in different ways and most of them
are orthogonal to each other.

Mechanism: A routing mechanism which allows very simple routers, at the expense of
larger headers, is source based routing. There, a source node specifies a packet’s
complete route throughout the network, which is stored in the packet’s header.

At lookup table based routing, it is the other way round. A routing table is used to
determine the output port for a given destination. This leads to larger routers but
allows small packet headers.

Arithmetic based routing algorithms exploit the regularity of most NoC topologies.
A simple arithmetic is used to determine the route throughout the network, e.g.
approach the destination in x direction first.

Type: If always the same path between a source node and a destination node is chosen, a
routing algorithm is referred to as deterministic routing algorithm. Such algorithms

14

2.3 Routing

are usually very simple and deadlock free, i.e. cycles at resource allocation are
avoided. On the other hand, deterministic algorithms do not exploit the path
diversity efficiently, which could lead to contention.

The goal of an oblivious routing algorithm is to balance the network load. However,
the network state is not considered towards this end. An example is Valiant’s
algorithm [Val82], which randomly chooses an intermediate destination node,
to which a packet is routed first. Thus, Valiant’s algorithm routes packets along
non-minimal paths to balance the network load.

If the algorithm adapts to the state of the network, it is referred to as an adaptive
routing algorithm. Adaptive routing algorithms can be further classified as minimal
or non-minimal algorithms4. Minimal adaptive algorithms use the network state,
e.g. the capacity or utilization of downstream buffers, to select one productive
output port5. Non-minimal adaptive algorithms can additionally misroute packets
to non-productive output ports. The utilization of non-productive output ports can
improve load balancing and network utilization. However, this also necessitates
precautions against livelocks, as otherwise non-productive output ports could be
selected infinitely. For instance, deflection routing (cf. Chapter 3) belongs to the
group of non-minimal adaptive algorithms.

Deadlock avoidance: In general, deadlocks are caused by a circular dependency on
resources. In particular, wormhole flow control (cf. Section 2.4) is susceptible to
routing dependent deadlocks, at which a set of packets obstruct each other. Every
packet of the set waits for a buffer or a link which is already occupied by another
packet of the set. Figure 2.5 shows such a deadlock situation. One solution to
avoid circular dependencies is to restrict the turns a packet can take. Glass and
Ni developed the well-known turn model [GN92], which is briefly introduced
below. Another solution to avoid routing dependent deadlocks is to use Virtual
Channels (VCs). Finally, it is also possible to detect and break deadlocks, however,
this requires buffer preemption.

2.3.2 Routing Algorithms and Turn Model

One of the most frequently deployed NoC routing algorithms, which is very simple,
deterministic, minimal, and deadlock6 free, is dimension order routing. There, packets
are routed to their destination address along one dimension before they are routed along

4More precisely, both deterministic and oblivious algorithms can be minimal as well as non-minimal. How-
ever, all herein considered deterministic routing algorithms are minimal, and all oblivious algorithms
are non-minimal.

5An output port or direction is referred to as productive for a packet if it brings the packet one hop closer
to its destination node.

6If not stated otherwise, the term deadlock hereinafter refers to a routing dependent deadlock.

15

Chapter 2 Network Basics

p1

p2

p3

p4

Figure 2.5: Routing dependent deadlock at a 2D mesh with input buffered routers.
Packet p1 occupies right link (upper right router to lower right router) and
needs bottom link. Packet p2 occupies bottom link and needs left link. Packet
p3 occupies left link and needs top link. Packet p4 occupies top link and
needs right link.

the next dimension. At a 2D mesh topology, packets are either routed along the x or the
y direction before they are routed along the remaining direction. Depending on the
direction which is chosen first, such a routing algorithm is referred to as X -first routing
or Y -first routing7. Dimension order routing is deadlock free as the turns which a packet
can take are restricted in a way that cyclic dependencies can not occur. Figure 2.6a
shows all eight possible turns for a 2D mesh topology. These eight turns create two
cycles, one in clockwise direction and one in counterclockwise direction. As shown in
Figure 2.6b and Figure 2.6c, at both X -first routing and Y -first routing only four out of
the eight possible turns are allowed, and thereby, both cycles are broken.

Restricting the number of turns is a simple and cost-effective solution to guarantee
the abstinence of deadlocks. However, prohibiting more turns than necessary restricts
the potential adaptiveness of a routing algorithm. Glass and Ni presented in [GN92] the
well-known turn model. This model is herein explained for a 2D mesh, but the general
concept can be extended to higher dimensional meshes as well as other topologies.
Glass and Ni showed that a deadlock free routing algorithm for a 2D mesh can be
created if exactly one turn in each of both cycles is prohibited. Furthermore, they found
that only 12 ways, of the 16 possible ways to prohibit one turn in each cycle, prevent
deadlocks. If symmetries are taken into account, three unique ways exist, each creating
a deadlock free routing algorithm, as well as one way at which deadlocks can occur.
The algorithms presented by Glass and Ni have in common that the north to west turn
of the counterclockwise cycle is eliminated, as well as one turn in the clockwise cycle.
However, any other turn instead of the north to west would be equally possible. The

7They are also referred to as XY / YX routing as well as XY / YX dimension order routing.

16

2.3 Routing

(a) All eight possible turns (b) X -first routing (c) Y -first routing

(d) West-first routing (e) North-last routing (f) Negative-first routing

(g) Two eliminated turns but deadlocks can occur

Figure 2.6: The turn model for a 2D mesh topology. Figure 2.6a shows all possible turns
of a 2D mesh, Figures 2.6b to 2.6f show the allowed turns of the associated
routing algorithms, and Figure 2.6g shows that not every combination of six
turns results in a deadlock free routing algorithm.

first algorithm of the turn model is west-first routing (cf. Figure 2.6d). There, the south
to west turn is prohibited in addition to the north to west turn. Hence, every packet has
to be routed to the west direction first, as it can not turn to the west after it has turned
to any other direction. The second algorithm is north-last routing (cf. Figure 2.6e), at
which the north to east turn is prohibited in addition to the north to west turn. As a
result, packets can not change their direction after heading to the north, and every
packet has to be routed to any other direction before it is routed to the north. The
third algorithm is negative-first routing (cf. Figure 2.6f). There, the east to south turn
is prohibited in addition to the north to west turn. At negative-first routing, packets
must be routed to the negative directions (the south and the west) first before they can
turn to the positive directions (the north and the east). The fourth turn which can be
eliminated in the clockwise cycle is the west to north turn (cf. Figure 2.6g). However, as

17

Chapter 2 Network Basics

depicted on the right of Figure 2.6g, eliminating this turn does not result in a deadlock
free routing algorithm.

Chiu presented the odd-even turn model in [Chi00], which is an extension of Glass
and Ni’s turn-model. Depending on a router’s position, different turns are prohibited to
break the two cycles. In odd columns, the south to west turn and the north to west turn
are prohibited. In even columns, the east to south turn and the east to north turn are
not allowed. Compared to the original turn-model, the odd-even turn model provides a
more even adaptiveness for different source-destination pairs.

2.4 Buffering and Flow Control

Besides the topology, which specifies the physical interconnection structure, and the
routing algorithm, which specifies the set of paths a packet can follow, buffering and
flow control are two further important aspects of NoCs. In general, buffering and
flow control describes where data is stored within the network, how resources are
allocated to packets traversing the network, and what happens if resources can not be
allocated. Thus, flow control can be regarded as a problem of resource allocation as
well as contention resolution [DT04, p. 221]. The resources to allocate include channel
bandwidth, buffer capacity, and control state. A router’s control state tracks the resource
allocation within the router itself. A classification of NoC flow control mechanisms,
presented by Dally and Towles in [DT04], is shown in Figure 2.7.

2.4.1 Bufferless Flow Control

Bufferless flow control is the simplest form of flow control. As no buffers exist, packets
only have to allocate channel bandwidth and control state, but no buffer capacity.
Consequently, packets can not be buffered in routers, i.e. they can not wait if an allocation

Flow control
mechanisms

Bufferless
flow control

Circuit
switching

Buffered
flow control

Drop packets

Misroute packets

Packet-buffer
flow control

Flit-buffer
flow control

Store-and-forward

Virtual cut-through

Wormhole

Virtual channel

Figure 2.7: Classification of flow control mechanisms according to [DT04].

18

2.4 Buffering and Flow Control

fails. There are two options to deal with a packet whose attempt to allocate its required
resources failed. Such a packet can either be dropped or misrouted. In the case of
packet dropping, packets which are dropped later waste bandwidth. Furthermore, a
retransmission scheme is required. Misrouting does not drop packets, but sends them
to non-productive directions instead. Thus, misrouting is susceptible to livelocks and
a guarantee that every packet gets delivered eventually is needed. Misrouting is also
referred to as deflection routing or hot-potato routing, and has been proposed by Baran
in [Bar64]. Deflection routing is introduced in more detail in Chapter 3.

Circuit switching is considered as a form of bufferless flow control in several textbooks,
yet the packets’ headers are buffered while they allocate channels. This flow control
scheme consists of four phases. In the first phase, a request, i.e. a packet’s head flit,
propagates from its source router to its destination router and allocates the channels
it traverses along the taken route. During this phase, the head flit might be buffered
in routers if the next channel allocation fails. In the second phase, an acknowledge
is transmitted back to the source router, signaling that the circuit is established. In
the third phase, the channels are reserved and an arbitrary number of data packets
can be transmitted without further control. Finally, in the fourth phase, the circuit
is deallocated by a tail flit. Circuit switching has its origins in the analog telephone
network. If primarily short messages are transferred, the latency with circuit switching
can be significant, as the path between the source router and the destination router has
to be traversed three times to deliver a packet. Thus, circuit switching is more suitable
for large messages and steady traffic flows than for short packets.

2.4.2 Buffered Flow Control

At buffered flow control, packets are buffered within the network while they allocate the
required resources in order to advance. Thus, buffered flow control schemes decouple
the allocation of adjacent channels in time. Buffers are either allocated in units of
packets, in case of packet-buffer flow control, or in units of flits, in case of flit-buffer flow
control. At store-and-forward flow control, every router along a packet’s path waits until
the complete packet has been received (stored) and then forwards the packet to the next
router. Thus, a packet-sized buffer, as well as exclusive access to the channel, has to
be allocated to a packet, before this packet can make forward progress. One drawback
of store-and-forward flow control is the high average latency. As every packet has to
be received at one router completely before it can be forwarded to the next router, a
serialization latency occurs at each hop. Figure 2.8 shows a time-space diagram of the
transmission of a packet, which consists of four flits, from router R0 to router R2 with
store-and-forward flow control. During clock cycles c0 to c3, router R0 receives the four
flits of the packet. Only after the complete packet has been received, and the required
resources at the next router are successfully allocated, the packet can be forwarded to
the next router. In the depicted example, a successful allocation is assumed and the

19

Chapter 2 Network Basics

R0

R1

R2

R0

R1

R2

Clock cycle
c0 c1 c2 c3 c4 c5

c6 c7 c8 c9 c10 c11

h h
b

h
b
b

h
b
b
t

h

b
b
t

h
b

b
t

h
b
b

t

h
b
b
t

h

b
b
t

h
b

b
t

h
b
b

t

h
b
b
t

Figure 2.8: Time-space diagram of the transmission of a packet, which consists of four
flits, from router R0 to R2 with store-and-forward flow control. For reasons
of clarity, the links, ports, and buffers are depicted only for the north and
the south.

20

2.4 Buffering and Flow Control

R0

R1

R2

Clock cycle
c0 c1 c2 c3 c4 c5 c6

h

h
b
t

h

b

h

b
t

h
b

b

h
b

t h

b
b

t

h
b
t h

b

b
t

h
b
t

h
b

b

t

h
b
t

h
b
b

t

h
b
t

Figure 2.9: Time-space diagram of the transmission of a blue-colored packet, which
consists of four flits, from router R0 to the south of R2 with virtual cut-
through flow control. Additionally, an orange-colored packet is en route to
the south of R2.

packet is forwarded from R0 to R1 during clock cycles c4 to c7. Finally, the packet is
transmitted from R1 to R2 during clock cycles c8 to c11. Consequently, it takes 12 clock
cycles to transmit the complete packet to router R2.

At virtual cut-through flow control, routers start to forward packets as soon as their
header has been received and the required resources are allocated, without waiting
for the entire packet to be received. Buffer and channel bandwidth are allocated in
units of packets, as the case at store-and-forward. Thus, packet-sized buffers are still
required, but the average latency is significantly reduced compared to store-and-forward
flow control. Without taking contention into account, the latency consists of a single
serialization latency as well as a constant number of cycles per node. A time-space
diagram of the packet transmission with virtual cut-through flow control is depicted in
Figure 2.9. In this example, it is assumed that another (orange-colored) packet is in
transit and buffered at R2, while the new (blue-colored) packet arrives at R0 in clock
cycle c0. In clock cycle c1, the orange and the blue head flit are forwarded, i.e. it is
assumed that they successfully allocated their resources. In clock cycle c2, the orange
body flit is forwarded, but the blue head flit is buffered in R1 as the north input buffer
of R2 is still allocated to the orange packet. In clock cycle c3 and the subsequent clock
cycles, the blue packet can be forwarded to the south of R2.

21

Chapter 2 Network Basics

R0

R1

R2

Clock cycle
c0 c1 c2 c3 c4 c5 c6

h

h
b

t h

b

h

b
t h

b

b

h
b

t h
b

b

t

h
b
t h

b
b

t

h
b
t

h
b

b
t

h
b
t

h
b
b

t

h
b
t

Figure 2.10: Time-space diagram of the transmission of a blue-colored packet, which
consists of four flits, from router R0 to the south of R2 with wormhole flow
control. Additionally, an orange-colored packet is en route to the south of
R2.

In summary, virtual cut-through overcomes the latency problem of store-and-forward,
but still requires packet-sized buffers. The reason for this is that the flow control unit of
packet-buffer flow control schemes is the entire packet. Thus, there are two conflicting
objectives. Packets should be large, to minimize the routing and sequencing overhead,
i.e. the ratio of this overhead to the transmitted payload. On the other hand, large
packets involve large buffering requirements at every router. Thus, small packets are
preferable to enable fine-grained resource allocation and to minimize blocking latency.

Flit-buffer flow control schemes overcome this drawback of packet-buffer flow control.
There, channel bandwidth and buffer space are allocated on the granularity of flits
rather than packets. Consequently, the buffering requirements are a magnitude of order
lower than for packet-buffer flow control schemes. Wormhole flow control operates very
similar to virtual cut-through flow control, but channel bandwidth and buffer space
are allocated on a flit-by-flit basis. Every flit allocates just one flit buffer and one flit
of channel bandwidth, which yields in a more efficient buffer utilization. Additionally,
if a head flit arrives at a router, it allocates a control state for the entire packet. Thus,
the remaining flits of a packet, which follow their head flit, use the already allocated
control states. An allocated control state is released by a packet’s tail flit. Figure 2.10
shows a time-space diagram of the packet transmission with wormhole flow control.

22

2.4 Buffering and Flow Control

R0

R1

R2

Clock cycle
c0 c1 c2 c3 c4 c5 c6

h

h
b

t h

b

h

b
t h

b

b

h
b

t h
b

b

t

h
b
t h

b
b

t

h
b
t

h
b

b
t

h
b
t

h
b
b

t

h
b
t

b
b

t

b
b

t

b
b

t

b
b

t

b
b

t

b
b

t

b
b

t

Figure 2.11: Time-space diagram of the transmission of a blue-colored packet, which
consists of four flits, from router R0 to the south of R2 with virtual channel
flow control. Additionally, an orange-colored packet is en route to the
south of R2, and a green packet, which is blocked, is buffered in R1 and R2.

There, every flit can advance as soon as one flit buffer is available at the input port of
the next router.

The reduced buffering requirements of flit-buffer flow control come at the expense of
a reduced throughput. The reason for this is that buffers are allocated on a flit-by-flit
basis, but channels (and the corresponding control states) are allocated to packets.
If parts of a packet can not advance due to a failed buffer allocation, a channel can
become idle. Other packets can not use this idle channel, even if they need a different
output port, as the channel is allocated to the blocked packet. Thus, the buffers operate
according to a first in - first out (fifo) method. An analogy to road traffic is a road
without left-turn lane, at which left-turning vehicles can block other vehicles behind
them. At wormhole flow control, this limitation is referred to as head of line blocking.

Virtual channel flow control overcomes the blocking problem of wormhole flow control
by allowing to share the available channel bandwidth among multiple packets. To this
end, several virtual channels are associated with every physical channel and each virtual
channel includes flit buffers and a channel state. The general principle of virtual channel
flow control is illustrated in the time-space diagram of Figure 2.11. In this depicted
example, it is assumed that two virtual channels per physical channel exist. Furthermore,
a third (green-colored) packet exists, which is buffered in the right virtual channels

23

Chapter 2 Network Basics

of R2’s and R1’s north input port. It is assumed that this green packet, or rather the
depicted flits of the green packet, can not advance for the entire depicted time period.
Without virtual channels, the physical channel between R1 and R2 would become idle
and no other packet could use this channel. In particular, the blue and orange packets
would not be able to advance. However, as two virtual channels per physical channel
exit, the blue and orange packets can advance and use the available channel bandwidth.

2.4.3 Buffer Availability

Buffered flow control techniques need a method to communicate buffer availability
between adjacent routers. In general, an upstream router has to know if enough buffer
space is available at a downstream router to store the next flit or packet. As the main
focus of this thesis is on bufferless deflection routing, only a subset of these methods is
very briefly introduced herein.

At credit-based flow control, the upstream router counts the number of free flit buffers
in each downstream router. If the upstream router sends a flit to the downstream router,
the corresponding counter is decremented. When the downstream router forwards a flit
to the next router, it sends a credit back to the upstream router, to signal that the buffer
is available again.

At ON/OFF flow control, the downstream router signals the upstream router if free
buffer space is available (ON) or not available (OFF). Thus, the upstream signal is a
single control bit, which is changed only when the available buffer space exceeds or
falls below certain thresholds.

At ACK/NACK flow control, upstream routers send downstream optimistically. If the
downstream router can accept the flit or packet, it sends an ACKnowledgement (ACK)
to the upstream router. Otherwise, the downstream router drops the flit or packet and
sends a Negative-ACKnowledgement (NACK). Thus, the upstream router has to keep
the data in its own buffer until it receives an ACK.

2.5 Router Architecture

In general, routers are capable of receiving packets at their input ports, determining a
destination per received packet, and forwarding the packets to an appropriate output
port. A block diagram of a typical input queued, virtual channel router is depicted in
Figure 2.12. The blocks can be partitioned into a datapath and a control plane. The data
path includes several input ports and an interconnection architecture, e.g. a crossbar.
The control plane includes the remaining blocks, i.e. a route computation block, a virtual
channel allocator, and a switch allocator.

Most modern routers are pipelined and packets proceed through four stages: (1)
route computation, (2) virtual channel allocation, (3) switch allocation, and (4) switch

24

2.5 Router Architecture

VC 1
VC 2

VC n

VC 1
VC 2

VC n

Route
Computation

VC
Allocator

Switch
Allocator

Input Channel

Input Channel

Output
Channel

Output
Channel

Credits

Credits

Credits

Input Port

Input Port

Crossbar

Figure 2.12: Block diagram of a typical input queued, virtual channel router, which uses
credit-based flow control, according to [MWM04].

traversal. Route computation and virtual channel allocation has to be performed only
once per packet. Thus, only head flits proceed through these two stages. At route
computation, one or a set of output virtual channels is determined, to which the packet
can be routed. At virtual channel allocation, an attempt is made to allocate one of the
virtual channels, which has been determined by the route computation. If buffer space
is available at the assigned virtual channel, an input virtual channel can request the
necessary output channel from the switch allocator. The switch allocator also generates
the required crossbar control signals. At switch traversal, flits that have been granted to
traverse the crossbar are forwarded to their appropriate output channel.

Within a router, switching, i.e. establishing a connection between the router’s input
and output channels, is performed by an interconnection architecture. Most frequently,
crossbars are deployed at NoC routers. However, some router architectures do not utilize
a crossbar. In particular, the CHIPPER router architecture [FCM10; FCM11], that served
as a basis of this thesis, uses a multistage logarithmic network instead of a crossbar. This
architecture is introduced in more detail in Chapter 3.

As the utilized interconnection architecture has a huge influence on the performance of
a router architecture, a brief overview and comparison of interconnection architectures
is given in this section. Usually, the interconnection architecture of a router is based on
an indirect topology, at which the components sit outside the network. The components,
which are placed on the edges of a network, are connected by a series of switches

25

Chapter 2 Network Basics

i6

o1

i5

o2

i4

o3

i3

o4

i2

o5

i1

o6

(a) 6× 6 Crossbar

i1 o1

i2 o2

i3 o3

i4 o4

(b) 4× 4 Banyan network

i1 o1

i2 o2

i3 o3

i4 o4

(c) 4× 4 Benes network

Figure 2.13: Three indirect network topologies: 6× 6 crossbar, 4× 4 Banyan network,
and 4× 4 Benes network.

or switching elements at the interior nodes. Data is transmitted from the sending
components, through one or more switches, to the receiving components. Figure 2.13
shows three indirect network topologies, a 6 × 6 crossbar and two 4 × 4 multistage
logarithmic networks, a Banyan network and a Benes network. An N×N crossbar consists
of N2 switches to connect the N inputs to the N outputs. Here, inputs and outputs are
denoted by i1, . . . , iN and o1, . . . , oN , respectively. Crossbars are non-blocking, i.e. the
connection of any permutation of inputs and outputs is supported, which enables a high
throughput. Furthermore, crossbars feature a constant and very low latency of O (1).
On the other hand, crossbars are expensive, scale poorly, and are difficult to arbitrate.
However, as only a small number of inputs and outputs has to be connected within a
router architecture, the desirable characteristics, as low latency and high throughput,
dominate. Thus, crossbars are nevertheless frequently deployed as interconnection
architectures within router architectures.

Another group of indirect topologies, which has also already been used as interconnec-
tion architectures within NoC routers, are multistage logarithmic networks, also referred
to as permutation networks. Several variations of multistage logarithmic networks exist,
as Omega networks, Butterfly networks, Banyan networks (cf. Figure 2.13b), and Benes
networks (cf. Figure 2.13c). These networks are constructed using 2× 2 switching ele-
ments, which are able to swap both inputs, i.e. a packet from the first input is forwarded
to the second output, or pass both inputs to their corresponding outputs. In general,
cost and latency of a multistage logarithmic network are O (N ld(N)) and O (ld(N)),
respectively. If the switching elements use only local information, i.e. their address, and
information of the received packets, the network is referred to as a self-routing network.

An N × N Banyan network consists of ld(N) stages, each with N
2 switching elements.

They provide exactly one path form any input to any output. However, not every
permutation between all inputs and outputs is supported by a Banyan network. For

26

2.6 Performance

instance, at a 4× 4 network as depicted in Figure 2.13b, input i2 can only be connected
to o3 or o4 if i1 is already connected to o1 or o2. Thus, Banyan networks are internal
blocking. Banyan networks are explained in more detail in Chapter 3.

Benes networks, also referred to as dual-Banyan networks, consist of 2·ld(N)−1 stages,
each with N

2 switching elements. Due to the increased number of switching elements,
several paths from any input to any output exist at Benes networks. Furthermore, they
are rearrangeable non-blocking, which means that the network can be rearranged once
the permutation is known. The increased path diversity provides benefits in terms of
fault-tolerance. Benes networks are explained in more detail in Chapter 4.

2.6 Performance

The performance of NoCs is usually described by performance metrics. Some metrics
are primarily topology dependent, and in particular, traffic independent, as bisection
bandwidth and maximum throughput. The focus of this section is on performance
metrics which are influenced by the utilized routing algorithm, flow control mechanism,
and in particular, by the traffic conditions. In Section 2.6.1, several performance metrics
are introduced. In Section 2.6.2, the herein used general evaluation methodology is
presented. This includes an introduction of synthetic traffic models as well as the used
approach of application performance evaluation.

2.6.1 Performance Metrics

Two important performance metrics of NoCs are latency and throughput. They depend
on NoC characteristics, as topology, routing, flow control, and router design. Additionally,
both values are a function of the offered traffic. The traffic offered to a network, either
by a single node or by all nodes of the network, during a certain period of time is
given by the injection probability α. Herein, the injection probability is expressed as the
percentage of the theoretically maximum possible number of injections, at which every
node injects a packet into the network every clock cycle.

The traffic injected into the network is to be contrasted with the traffic ejected from
the network. The rate at which packets are ejected, i.e. delivered by the network to
the nodes, during a time interval is referred to as throughput and denoted by θ . In
this thesis, the throughput is expressed as the number of ejected packets per node per
clock cycle. Typically, throughput is plotted as a function of the offered traffic, i.e. the
injection probability (cf. Figure 2.14a). If the network is not saturated, the number of
ejected packets equals the number of injected packets, and the plot equals a straight
line. If the offered traffic increases beyond the saturation point θ S , the network is not
able to deliver the packets as fast as they are created. This means, once the network is
saturated, some packets can not be injected into the network directly. In this thesis, it is

27

Chapter 2 Network Basics

θ S
Th

ro
ug

hp
ut
θ

Injection probability α

(a) Load-throughput plot

l0

La
te

nc
y

l

Injection probability α

(b) Load-delay plot

Figure 2.14: Typical NoC performance metrics illustrated.

assumed that every node includes an injection queue. If a router is not able to inject a
packet, i.e. there is no idle output link and no empty buffer, the packet is buffered by
the node’s injection queue and injected as soon as possible.

Another important performance metric is the packet latency, denoted by l, which is
the time a packet requires to traverse the network. If latency due to contention with
other packets is ignored, this latency is also referred to as zero-load latency and denoted
by l0. The zero-load latency consists of two components, the head latency and the
serialization latency. The head latency is the time the packet’s head flit requires to
traverse the network. It is determined by the number of hops between the packet’s
source and destination node, as well as the time required to traverse a router and the
corresponding link. If there is no contention, the number of hops between a packet’s
source and destination node correspond to the Manhattan distance between these two
nodes, which is denoted by d1. The serialization latency is the time required for the tail
flit to catch up with the head flit. This latency is defined by the quotient of the packet
size |p| and the channel bandwidth bw. Thus, the zero-load latency is given by:

l0 = lhead + lserial izat ion

= d1 · lrouter+l ink t raversal +
|p|
bw

(2.1)

The zero-load latency represents a lower bound on the packet latency. As throughput,
latency can be plotted as a function of the offered traffic, also referred to as load-delay
plot (cf. Figure 2.14b). Once the offered traffic increases, an increased contention causes
that the average packet latency also increases, as packets must wait for resources. More
precisely, the head latency increases, as the time for router and link traversal rises. If
a non-minimal routing algorithm is used, the number of taken hops from a packet’s
source to destination does no longer correspond to the Manhattan distance of these two

28

2.6 Performance

Name Value

Family: Virtex-6

Device: XC6VLX75T

Optimization Goal: Area

Optimization Effort: Normal

Keep Hierarchy: Yes

Table 2.2: Configuration of XST for synthesis. All other parameters correspond to their
default values.

nodes. Moreover, if the network gets saturated, some packets might have to stay in the
injection queues before they can be injected into the network. Indeed, if the network is
congested, the average time packets spend in an injection queue, which is denoted by
lqueue, can be significantly larger than the average time they spend in the network itself.
Thus, the packet latency is given by:

l= lhead + lserial izat ion + lqueue (2.2)

2.6.2 Evaluation Methodology

All router architectures and general concepts presented in this thesis are implemented
and evaluated in Very high speed integrated circuit Hardware Description Language
(VHDL). This enables the evaluation of performance as well as hardware requirements
with a single implementation. More precisely, the same source code can be used for
simulation and synthesis. Dedicated NoC simulators, as BookSim [Jia+13], Noxim
[Cat+15], and NIRGAM [Jai], allow higher simulation speeds at a higher level of
abstraction. However, if those simulators are used, a separate implementation for
synthesis is required.

All herein presented synthesis results are generated with Xilinx’s XST [Xil15]. Please
note that XST synthesizes a design for Field-Programmable Gate Arrays (FPGAs) and
does not use a standard cell library like Application-Specific Integrated Circuit (ASIC)
synthesis software. In contrast to specifically FPGA tailored NoC designs, as Hoplite
[KG15], however, all herein evaluated implementations are not optimized for FPGAs.
Nevertheless, the synthesis results generated with XST allow a comparison of the
hardware requirements. Table 2.2 shows the herein used configuration of XST. In
general, FPGAs consist of an array of Configurable Logic Blocks (CLBs) and routing
channels. The used Virtex-6 FPGA contains one pair of slices per CLB. Every slice contains
four LookUp Tables (LUTs), eight storage elements (REGs), wide-function multiplexers,
and carry logic. Some slices support additional functions, as storing and shifting data.

29

Chapter 2 Network Basics

Name Pattern

Bit complement: di = si

Bit reverse: di = sb−i−1

Shuffle: di = si−1 mod b

Transpose: di = si+ b
2 mod b

Table 2.3: Bit permutation traffic patterns. Here, si and di denote the i-th bit of the b
bit source address and b bit destination address, respectively.

For more detailed information on Virtex-6 CLBs please refer to [Xil12]. XST reports the
consumption of slices, LUTs, and REGs. In order to compare the hardware requirements
of different designs, the main building blocks of slices are compared in this thesis,
namely LUTs and REGs, as well as the estimated frequencies after synthesis.

The simulation based performance evaluations presented herein are generated with
the open-source VHDL simulator GHDL [GHD15]. GHDL is also a compiler, as it directly
translates VHDL code to machine code. For simulation, the synthesizable network
implementations are extended by a traffic generator, which instantiates the unit under
test, i.e. the NoC, and provides network traffic. Furthermore, every router is equipped
with a wrapper component that logs the router’s traffic for evaluation.

The network traffic used for evaluation significantly influences the generated outcomes.
In general, traffic can be described by its spatial and temporal distribution. Two different
kinds of network traffic, in terms of their spatial as well as temporal distribution, are
used for performance evaluation in this thesis, namely synthetic traffic and application
traffic. Both traffic classes, as well as the accompanying simulation methodologies, are
described below.

Synthetic Traffic

The spatial distribution of synthetic traffic for NoC performance evaluation is frequently
described by traffic patterns. Those patterns are usually based on particular applications,
for instance parallel numerical algorithms or sorting algorithms. The herein used
traffic patterns include random traffic and bit permutation traffic. At random traffic,
the destination d, to which a source s sends a packet, is determined by a uniform
random process. At permutation traffic, every source s sends all of its traffic to a single
destination d. Consequently, the generated network load is not uniformly distributed
over all links of the network. Instead, permutation traffic is used to stress the network.
Bit permutation traffic is a subset of permutation traffic, at which a destination address
is determined by a bit permutation of the binary representation of a source address.
Four bit permutation traffic patterns are listed in Table 2.3. There, it is assumed that the

30

2.6 Performance

nodes are addressed according to their x and y coordinates in a 2D mesh, as depicted
in Figure 2.4a. Furthermore, si and di denote the i-th bit of the binary representation of
the source and destination addresses, respectively, and addresses are b bit wide.

Traffic patterns specify the spatial distribution of network traffic, but not its temporal
distribution. In the herein presented evaluations for synthetic traffic, a uniform random
injection process is used. Furthermore, these evaluations are based on open-loop
simulations, which means that the traffic parameters are controlled independently of
the NoC itself. The network traffic is generated according to a given injection probability
α and is injected into the nodes’ injection queues directly. Injection into these queues
never fails as sufficiently dimensioned queues are assumed8. However, injections from
the queues into the network are only possible if the corresponding routers are able to
accept a packet, i.e. there is an idle output channel or an empty buffer.

Application Traffic

Synthetic traffic is frequently used in the NoC domain to compare networks or individual
sub-aspects of them. However, even if application performance is affected by the
deployed interconnection, it is not linearly correlated to the interconnection performance.
Moreover, the temporal and spatial distribution of application traffic is usually non-
uniformly distributed. Hence, evaluating application traffic allows to draw conclusions
on application performance, i.e. application runtime, as well as the assessment of
network performance under more realistic traffic conditions.

In contrast to simulations with synthetic traffic, application traffic requires closed-
loop simulations, as the network influences the traffic. Real applications are usually
self-throttling, which means that there is a sequential dependency between packets and
new injections depend on previous ejections. For instance, processors usually send only
a limited number of memory requests, and then wait for the responses, before they
create new requests. Thus, to trace pure application traffic and to use this traced traffic
for simulations afterwards allows no conclusions on the resulting runtimes, as traces do
not contain packet dependencies.

In order to evaluate application performance, the herein used VHDL simulator was
connected to the Netrace [HGK10; HK10] library. As Netrace is implemented in C, named
pipes were used for inter-process communication between the simulator and Netrace.
Netrace comes with network packet traces for several Princeton Application Repository
for Shared-Memory Computers (PARSEC) [Bie11] benchmarks, which additionally
include packet dependencies. PARSEC is a benchmark suite composed of multi-threaded
programs. Compared to pure network trace files, Netrace traffic is self-throttling and
enables more accurate performance results. Furthermore, the required simulation

8In fact, an injection queue size of 32 flits was sufficient in the vast majority of executed simulations.

31

Chapter 2 Network Basics

Benchmark: blackscholes canneal x264

Input: simlarge simmedium simsmall

Clock cycles: 5.1× 107 5.6× 107 5.3× 107

Packets: 6.0× 106 4.5× 106 1.0× 106

Large packets: 48% 47% 49%

Small packets: 52% 53% 51%

Table 2.4: Characteristics of the three herein evaluated PARSEC benchmarks.

runtimes9 are considerably lower, compared to full-system simulation.
The PARSEC evaluations presented in this thesis are restricted to three benchmarks,

namely blackscholes, canneal, and x264. The characteristics of these three PARSEC
benchmarks are listed in Table 2.4. They are selected because of their different commu-
nication requirements. Due to the long simulation times, the presented results are based
on approximately 5× 107 clock cycles from the benchmarks’ Region Of Interest (ROI).
The chosen clock cycles correspond to exactly 6× 106 packets, 4.5× 106 packets, and
1× 106 packets for blackscholes, canneal, and x264, respectively. The percentages of
large packets (size of 72 B) and small packets (size of 8 B) are also depicted in Table 2.4.
Figure 2.15 shows the injection probabilities of the three evaluated benchmarks as a
function of execution time. In contrast to the uniformly distributed injection probability
of synthetic traffic, all three benchmarks inject bursts of packets.

9Side note: The herein presented application performance simulations lasted between several hours and
up to two weeks.

32

2.6 Performance

0%

0.5%

1%

1.5%

2%

In
je

ct
io

n
pr

ob
ab

ili
ty
α
[i

nj
ec

te
d

pa
ck

et
s
/

cl
oc

k
cy

cl
es
/

no
de
]

blackscholes

0%

0.5%

1%

1.5%

2%
canneal

0%

0.5%

1%

1.5%

2%

0
1×

10
7

2×
10

7

3×
10

7

4×
10

7

5×
10

7

Execution time [clock cycles]

x264

Figure 2.15: Injection probabilities during the first 50 million clock cycles of the ROI of
three PARSEC benchmarks.

33

Chapter 2 Network Basics

2.7 Conclusion and Existing Interconnection Networks

NoCs are considered as the prevalent interconnection infrastructure for future many-core
systems, as NoCs can meet the demanding communication requirements of these systems.
Due to their modular design and their scalability, NoCs are well suitable to connect this
high number of components. However, NoCs are complex systems themselves and have
a huge design space.

Table 2.5 shows the characteristics of several interconnection architectures of real
processors. As frequently the case at commercial products, information about these
NoCs is publicly available only to a certain extent. Nevertheless, it becomes apparent
that these interconnection architectures are very diverse. Even their underlying data
models vary. Some networks transfer data for the message passing paradigm, e.g.
at Tilera’s TILE64, while other networks transfer cache-coherent data for the shared
memory paradigm, e.g. at Intel’s Knights Corner. For instance, all herein introduced
flow control methods have already been utilized at NoCs. Despite this diversity, there
are also some similarities. For a small number of cores, the ring topology is appropriate.
In contrast, the mesh topology is more scalable, and thus more suitable for a larger
number of cores. Most real NoCs use dimension order routing if they are based on a 2D
mesh, and shortest path routing if a ring topology is utilized. Both topologies are very
simple, deadlock free, and require only few hardware resources.

34

2.7 Conclusion and Existing Interconnection Networks

Processor Topology Routing
Algorithm

Flow
Control

Additional
Information

IBM, Sony,
Toshiba Cell
[KPP06]

four
directional
rings, 12 cores

shortest
path

circuit switching 128 bit wide links

Tilera
TILE64
[Wen+07]

five separate
8× 8 meshes

X -first
routing

DYN: wormhole,
credit-based flow
control / STN:
circuit switching

32 bit links, four
dynamic
networks (DYN)
and one static
network (STN)

Intel
Teraflops
Research
Chip
[Van+08]

8× 10 mesh,
two cores /
node

source
routing

wormhole,
ON-OFF flow
control

39 bit wide links,
two VCs

Intel SCC
[How+10]

6× 4 mesh,
two cores /
node

X -first
routing

virtual
cut-through,
credit-based flow
control

144 bit wide links,
eight VCs

Intel Knights
Corner
[Rah13]

three
bidirectional
rings, up to 61
cores

shortest
path

slotted ring largest ring:
512 bit wide links

Intel Knights
Landing
[Sod+16]

6× 6 mesh,
two cores /
node

Y -first
routing

arbitrate at
injection and at
turn

four separate
networks per chip

Table 2.5: Characteristics of the interconnection architectures of real processors.

35

Chapter 3
Deflection Routing based Router
Architectures

Contents

3.1 Principle of Deflection Routing . 37

3.2 Pros and Cons of Deflection Routing 39

3.3 Deflection Routing Implementations 42

3.3.1 Crossbar based Architectures 43

3.3.2 Permutation Network based Architectures 46

3.4 Basis Network on Chip and Router Architecture 53

3.4.1 Flit Prioritization Scheme . 54

3.4.2 Routing Algorithm . 55

3.4.3 Summary . 65

In this chapter, the general principle of deflection routing is introduced in Section 3.1.
Afterwards, the pros and cons of deflection routing are illustrated in Section 3.2. Optimal
operating conditions of deflection routing are shown, by reviewing several comparisons
of bufferless and buffered router architectures presented in literature. Existing imple-
mentations of deflection routing based NoCs are presented in Section 3.3. In Section 3.4,
the herein used router architecture is introduced, which serves as a basis for Chapters 4
and 5. Finally, as deflection routing is not related to any specific routing algorithm,
several algorithms are evaluated for this basis router architecture.

3.1 Principle of Deflection Routing

Most industrial NoCs, as well as NoCs developed in academia, are packet switched
networks. In such networks, flit buffers are fundamental components, which highly
influence the performance of the interconnection. On the other hand, the energy

37

Chapter 3 Deflection Routing based Router Architectures

consumption of NoCs of today’s generation is substantial and will be a barrier in the
future [Bor07; Bor10]. The NoC of Intel’s 80-Core Teraflops Research Chip, for example,
consumes 28% of system power [Hos+07]. A significant proportion of static and
dynamic energy used for the network is consumed by buffers. Additionally, buffers
require significant chip area. At the Tilera TILE64 processor [Wen+07], the buffer size
is reduced to an absolute minimum required for efficient flow control and no virtual
channels are deployed. Nevertheless, more than 60% of a tile’s die area is consumed by
buffers. For TRIPS-OCN, the interconnection of the TRIPS processor, it is reported that
the input buffers consume 75% of the router area and 10.2% of the tile area [Gra+06].
They used a buffer depth of just two flits and a flit size of 128 bit. This is more than
three times of the area required for the second largest component of a TRIPS-OCN
router, which is the crossbar. Moreover, buffers add complexity and latency to the router
architecture as buffer management logic is required. This includes flow control logic, e.g.
credit management in case of credit based flow control, as well as virtual channel logic
if virtual channels are deployed. To summarize, buffers increase the NoC throughput,
but at the same time, buffers consume energy, require a significant amount of chip area,
and add complexity, as well as latency to the router architecture.

Due to these evident drawbacks of flit buffers, several approaches exist to get com-
pletely rid of buffers, or at least reduce the amount of buffers. Bufferless NoC routers
can either drop [HJL09; Góm+11] or deflect [MM09; Mil02; FCM10; FCM11; Fal+11;
Fal+12] messages in case of collision. Dropped messages have to be retransmitted,
which necessitates ACKnowledgement (ACK) or Negative-ACKnowledgement (NACK)
logic. At deflection routing, retransmissions are avoided by deflecting messages, i.e.
those messages are routed along non-shortest paths.

For the sake of completeness, NoCs which utilize circuit switching or virtual circuits
also require no flit buffers at the routers. The best-known circuit-switched network is
the analog telephone network. At circuit switching, network resources are dedicated
to single communication flows at a time. Hence, circuit switching is well suited for
steady traffic flows, but can not cope with frequently changing and interleaving traffic
as present in many CMPs and MPSoCs. At virtual circuits, network resources are shared
by several traffic flows, but are still reserved for the required time span by using Time-
Division Multiplexing (TDM). The network traffic’s periodicity is exploited to prevent
packet collisions, and hence, also the need for flit buffers [Shp+15]. This also enables
guaranteed service traffic and the compliance of real time requirements. Real-time
NoCs which utilize virtual circuits include Argo [Kas+16], aelite [HSG09], and dAElite
[SMG14].

Deflection routing has already been proposed in 1964 by Baran, who entitled this
communication scheme hot-potato routing [Bar64]. Deflection routing requires no flit
buffers at all, and hence, flits can not be stored in routers. To avoid collisions and packet
dropping, every flit has to be forwarded to a neighbored router as soon as new flits can
arrive. That means, at a single cycle router architecture, flits have to leave the current

38

3.2 Pros and Cons of Deflection Routing

router exactly one network clock cycle after they arrived. At any clock cycle, every
output port can be assigned only to a single flit. If several flits try to arbitrate the same
output port simultaneously, this port is assigned only to the highest prioritized flit. As
the name indicates, all other flits are deflected to idle output ports. A basic prerequisite
of deflection routing is that the number of output ports is greater or equal to the number
of input ports. Hence, it is guaranteed that there is always an idle output port per flit.
The output port, to which a flit is deflected to, does not have to be a productive port.
In case of a non-productive port, the deflected flit takes a detour and is routed along a
non-shortest path between its source and destination. Thus, the links of a deflection
routing based NoC constitute a sort of flit buffers. Due to the costs of optical buffering,
deflection routing has been frequently used in optical NoCs [HLH02].

3.2 Pros and Cons of Deflection Routing

Deflection routing enables to omit flit buffers, and thus, allows area and energy savings.
Besides this, deflection routing has several further desirable characteristics of a NoC.
On the downside, the energy and area efficiency does not necessarily have to hold for
the entire NoC as the saved area and energy can be consumed by other parts of the
router architecture. In this section, the pros (+) and cons (−) of deflection routing
are considered first. Afterwards, it is shown why deflection routing is a viable solution
for NoCs. Lastly, existing comparisons of deflection routing and buffered NoCs from
literature are presented.
+ Local flow control: Omitting flit buffers leads to a simplified router design and

purely local flow control, i.e. no explicit buffer arbitration is required. In contrast,
additional logic as well as wires between adjacent routers are required for the flow
control scheme of buffered NoCs.
+ Adaptivity: Deflection routing is also adaptive, independently from the used

routing algorithm. Flits are routed around highly congested areas as they are deflected
away from their destination if all productive directions are already allocated to higher
prioritized flits. At buffered, packet switched networks, packets can only progress if
buffer space can be allocated in the adjacent router. Otherwise, packets stay in their
current buffer.
+ Abstinence of deadlocks10: In case of wormhole flow control, one packet can

even be distributed over several routers, and hence among several flit buffers. Body and
tail flits can only progress if their head flit can be routed. As flit buffers are a shared
resource, deadlocks can occur if circular dependencies arise. Deflection routing based
router architectures basically calculate a new permutation every network clock cycle.
Flits can not stay in a router, and thus deflection routing is inherently deadlock free.

10If not stated otherwise, the term deadlock refers to a routing dependent deadlock in this thesis.

39

Chapter 3 Deflection Routing based Router Architectures

− Topology restriction: Omitting flit buffers also involves several challenges and
potential drawbacks, of course. First of all, deflection routing requires a topology at
which every router has at least as many output ports as input ports. This prerequisite
is necessary as the routers act as repeaters and all receiving flits have to be able to be
forwarded. For most practical NoC topologies (e.g. ring, torus, mesh) this prerequisite
is fulfilled anyway.
− Livelocks: Even if deadlocks can not occur at deflection routing based NoCs,

precautions against livelocks have to be taken. In other words, a mechanism is required
which ensures that no flit is deflected infinitely. One simple solution, which is used i.a.
in [MM09; Mil02], is the prioritization by age. In this case, a hop count field in the flit
structure is required, which is incremented at every router. If the hop count field of a
flit overflows, the flit is assumed to be undeliverable.

Further solutions are the golden flit scheme [FCM10; FCM11] and silver flit scheme
[Fal+11; Fal+12]. There, at least one golden flit exists, which is prioritized over non-
golden flits. All routers determine the golden flits independently by other routers, based
on the flit’s sender and transaction IDentifier (ID). Further, both the golden flit scheme
and the silver flit scheme ensure that every packet will be golden eventually. Both
prioritization schemes are introduced in more detail in Section 3.3.2.
− Routing overhead: The basic data units at deflection routing are flits, instead of

packets, as deflection routing can not be combined with packet switching. Furthermore,
it can not be guaranteed that two flits which belong to each other, follow the same
path from their source to their destination. This is because of (i), flits can not be stored
in routers and (ii), the highest prioritized flit has to be routed one hop closer to its
destination at every routing decision. Due to (i) and (ii), a new packet, which arrives at a
router at clock cycle c, can cause the separation of head and body flits of another packet,
which arrived before clock cycle c. Hence, every flit has to carry routing information,
or in other words, every flit has to be a head flit. Consequently, at deflection routing,
messages are divided into flits, instead of packets. This problem is illustrated in more
detail in Chapter 5, Figure 5.1. If every flit contains routing information, the routing
overhead can be significant. The routing overhead denotes the non-payload information,
transferred by the NoC. The ratio of routing overhead and payload depends on the flits’
size. In Chapter 5, methods to reduce this ratio are presented and the optimal flit size
for permutation network based router architectures is considered.
− Reassembly buffers: If a message’s size exceeds the link width or flit size, the

message can only be transferred by decomposition into several sub-messages. Each
sub-message must not be larger than a flit’s payload size. As all flits which belong to one
message are routed independently, they can arrive out of order at their destination. A
destination node has to receive all flits of a message to be able to reassemble it. Further,
flits of several messages can be received in an interleaved way, which leads to large
buffering requirements at the receiver side. Too small reassembly buffers can lead to
reassembly buffer deadlocks if a buffer is filled with partial messages. Due to the lack

40

3.2 Pros and Cons of Deflection Routing

of backpressure11 at deflection routing, reassembly buffers have to be dimensioned for
the worst case. Fallin, Craik, and Mutlu proposed to use Miss Status Holding Registers
(MSHRs) as reassembly buffers, which are present anyway in the memory systems
[FCM10]. By this, additional buffers can be avoided. A detailed explanation of this
approach is given in Section 3.3.2, page 50.
− Router latency: Due to the sequential dependency of flits at prioritization and port

allocation, the router latency can even increase compared to buffered, virtual channel
routers. Permutation network based router architectures, like [FCM10; FCM11; Fal+11;
Fal+12] and the herein used basis router architecture, provide a possible solution.
− Reduced bandwidth: Potential energy and area savings of deflection routing are

gained by omitting flit buffers. These buffers, however, also enhance the maximum
bandwidth and throughput of a NoC. Several approaches exist [Fal+12; OWB12a;
Jos+13; Jon+14], which try to reduce the deflection rate by utilizing a small number of
flit buffers.

The presented pros and cons of deflection routing raise the question of the conditions
under which deflection routing is a viable solution for NoCs. Performance wise, the
router latency as well as the deflection rate are two major factors. Permutation network
based router architectures enable a critical path which is comparable to buffered routers
[FCM10], and thus provide a comparable router latency. The deflection rate is highly
correlated to the network load, as deflections can only occur if at least two flits compete
for the same port. Hence, this suggest that deflection routing is suitable for NoCs with
a low network load. Real applications are usually self-throttling, which means that at
some point, new messages are only injected if the responses for previous requests have
been received. Further, it is reported that the typical load of NoCs is below their peak
throughput most of the time [MM09]. Moscibroda and Mutlu compared the deflection
routing based architecture BLESS [MM09] to a baseline buffered router architecture.
They observed a performance degradation of only 0.5% (3.2%) on average (worst-
case) for a set of multiprogrammed SPEC CPU2006 and Windows Desktop applications.
Several drawbacks of BLESS are addressed at CHIPPER [FCM10; FCM11], i.a. the costly
sequential port allocation and the crossbar are replaced by a permutation network. In
[FCM10], CHIPPER is evaluated with five SPLASH-2 applications. They reported that
the average performance with CHIPPER is only 1.8% lower compared to the baseline
buffered router architecture. They noticed very little performance degradation relative
to the buffered router architecture at workloads that are not network intensive. Hence,
they concluded that bufferless routing is an attractive option for low to medium load
cases.

Concerning hardware costs, it has to be ensured that the saved area and energy of

11At buffered NoCs, backpressure is provided by the flow control scheme and avoids packet dropping.
Upstream nodes are informed when they have to stop sending new flits, as all downstream buffers are
occupied [DT04, p. 245].

41

Chapter 3 Deflection Routing based Router Architectures

flit buffers is not consumed by other parts of the router architecture. In [MM09], the
authors observed an energy reduction of ≈ 40% for BLESS compared to a baseline
buffered router architecture. Fallin, Craik, and Mutlu reported in [FCM10] that BLESS
requires ≈ 35% less area than the buffered router architecture. On the other hand, the
critical path of BLESS is ≈ 43% longer than that of the baseline architecture due to the
sequential dependency at port allocation. In [Mic+10], an independent comparison of
BLESS and a buffered router architecture, with empty buffer bypassing, is performed.
They found that BLESS is only up to 1.5% more energy efficient at very light network
loads. Further, they reported that the buffered network provides a lower latency and a
higher throughput per unit power. On the other hand, in [FCM10], it is reported that
CHIPPER, which is a developed version of BLESS, has ≈ 36% lower area requirements
and only an 1.1% longer critical path than the buffered baseline router architecture.

Craik and Mutlu investigated the impact of both BLESS and a buffered router architec-
ture as one component of the memory hierarchy [CM11]. They found, the performance
of the bufferless network can get very close to that of a buffered network if a locality
aware mapping of data to cache slices is used. Such a locality aware data mapping
algorithm can reduce the network utilization, and hence, makes a lower throughput
network potentially more effective. Further, the power advantage of a bufferless design
compared to a buffered one increases if the locality is exploited efficiently.

Nychis et al. showed that BLESS performs similar to a buffered router architecture at
a small number of cores. However, they also observed that the average latency with
BLESS increases significantly, compared to a buffered network, as the size of the CMP
increases. They proposed a source throttling congestion control mechanism, which
enables linear throughput scaling.

Recently, Cai, Mai, and Mutlu compared FPGA and ASIC implementations of bufferless
and buffered router architectures [CMM15]. Their evaluation showed that deflection
routing enables reductions of required area (38%), consumed power (30%), and also
router cycle time (8%).

To summarize, buffers can enhance the performance of NoCs, in particular, if the NoC
is highly utilized. On the downside, buffered routers consume significantly more area
and energy than deflection routing based NoCs. Several enhancements exist for both
bufferless and buffered router architectures. Unfortunately, they can not be compared
completely, due to the large quantity of enhancements. However, the herein presented
comparisons of bufferless and buffered router architectures indicate that deflection
routing is a viable solution for small, fast, and energy efficient router architectures.

3.3 Deflection Routing Implementations

In this section, several existing router architectures which are based on deflection
routing are introduced. Thereby, the design parameters of such a router architecture

42

3.3 Deflection Routing Implementations

alloc

alloc

alloc

alloc

alloc

N

E

S

W

L

N

E

S

W

L

Sorting Network Port Allocator Crossbar

Figure 3.1: Crossbar based router architecture

are illustrated.
Every NoC router consists of several input ports and output ports (I/O ports), which

provide links to neighbored routers as well as local resources. One important design
parameter of NoCs is the number of ports P that a router possesses. This number is
referred to as the radix of a router12. Another crucial design parameter is the topology
of a NoC. All router architectures presented in this section are designed - or at least
support - the 2D mesh topology. This topology allows low radix routers with four I/O
ports and at least one local port.

The physical interconnection of a router’s input ports and output ports is enabled
by an interconnection architecture. At most deflection routing based NoCs, either a
crossbar or a permutation network is deployed. The used interconnection architecture is
a fundamental design decision, in particular, for deflection routing based NoCs. Hence,
the herein presented router architectures are grouped according to their interconnection
architecture.

3.3.1 Crossbar based Architectures

Crossbar based router architectures usually share the same basic structure. They consist
of three major parts: a sorting network, a port allocator, and a crossbar (cf. Figure 3.1).
The sorting network determines the highest prioritized flit, which has to be routed to a
productive direction, in order to avoid livelocks. The sorting network sorts all incoming
flits by their priority. Typical implementations of such networks are odd-even merging
networks or bitonic sort networks [Bat68]. The building block of these networks are
two-input comparison elements. At four inputs, both network types consist of three
stages of comparison elements. The sorting network depicted in Figure 3.1 is an odd-
even merging network. The local port L is not sorted by the sorting network as it is
assumed that a flit from the local port always has the lowest priority. This is the case for

12A port of a router consists of one input port and one output port. Hence, at a 2D mesh topology and a
router architecture with one local port, the radix is P= 5.

43

Chapter 3 Deflection Routing based Router Architectures

several prioritization schemes, e.g. if the flits are prioritized by age. Please note that
a sorting network with two stages of comparison elements is sufficient to identify the
highest prioritized flit out of four flits. However, if a network with just two stages is
used, the other flits might by unsorted. Therefore, a complete sorting network enhances
the quality of the routing decision by taking all flits’ priorities into account.

Even though only low radix topologies, as a 2D mesh, are considered herein, one might
ask how the sorting networks scale with higher radices. Both the odd-even merging
network and the bitonic sort network have a complexity of O (n ld(n)2) and a depth
of O (ld(n)2). The benefit of odd-even merging networks is a slightly lower number of
comparison elements, whereas the benefit of the bitonic sort network is its modularity
[Bat68].

The second major block of a crossbar based router architecture is the port allocator.
The port allocator assigns an output port to every flit, from the highest prioritized flit
to the lowest prioritized flit. The preferred output ports are determined by the flits’
destination addresses and the routing algorithm. For the highest prioritized flit, an
arbitrary output port, out of the five available output ports, is selectable. Then, the
second highest prioritized flit can be assigned to one out of the four unallocated ports,
and so forth. Hence, there is a sequential dependency between each allocation step. If
flits arrive at all input ports, the output port of the lowest prioritized flit is predefined
by the higher prioritized flits.

Even if this greedy port allocation is frequently used in deflection routing based router
architectures, it is not optimal in terms of performance. Let us consider a situation at
which two flits, f1 and f2, arrive at a router. It is assumed that the first flit, f1, has a
higher priority than the second flit, f2. Further, f1 has two productive directions, the
north (N) and the east (E), whereas f2 has only one productive direction, which is also
the north (N). If the first allocator assigns the N output port to f1, the second flit f2
has to be deflected, as the only productive port is already allocated. However, in this
situation, a productive port could have been assigned to both flits if the N output port
had not been assigned to flit f1.

To overcome this drawback of greedy port allocation, the allocator can first identify
all productive ports based on the flits’ destination addresses. In a second step, the actual
routing decision can be performed. The allocator assigns output ports to every flit, e.g.
by minimizing a global function based on all flits preferred output ports. However, also
at this approach, it has to be ensured that the highest prioritized flit gets assigned to
one of its productive directions.

After an output port is allocated for every flit which has arrived, the flits can traverse
the crossbar. The crossbar physically interconnects the I/O ports and enables direction
changes of the flits. As the crossbar does not distinguish from a crossbar of a buffered
router, please refer to Section 2.5 for further details about crossbars.

44

3.3 Deflection Routing Implementations

Nostrum

Nostrum [Mil02; Mil+04b; Mil+04a; Lu+05; PJ06; MJ07; Mil11] is not only a NoC,
it is a communication platform, and it was a research project at KTH Royal Institute
of Technology. The research project lasted from 2001 to 2008, and was headed by
Professor Axel Jantsch. A broad variety of NoC related research topics have already
been investigated on basis of this platform. In [Lu+05], a simulation environment for
Nostrum, called NNSE, is introduced. The Nostrum Backbone, which basically defines
a communication protocol stack, is proposed in [Mil+04a]. Nostrum is also the basis
of several fault-tolerant router architectures (e.g. [Fen+10b; Fen+10a]), which are
introduced in more detail in Chapter 4. The concepts and results presented in this
section are restricted to the basic hardware structure and characteristics to enable a
comparison to other deflection routing based architectures.

The used topology at Nostrum is a 2D mesh [Mil+04a; MJ07]. Routing is split into
three phases. First, a priority is assigned to every flit on basis of the flit’s hop count, i.e.
its age. In the second phase, the flits select their favored output ports. Two different
strategies, uniform and proportional, are implemented for the case that two productive
output ports exist. At uniform, the priorities for both directions are selected uniformly.
At proportional, the priorities are weighted by the distances to the respective destination.
Finally, the actual routing permutation is selected on basis of the weighted priorities.

In contrast to all other deflection routing based NoCs, Nostrum also supports Guaran-
teed Throughput (GT) traffic, besides Best Effort (BE) traffic. The basic idea is to use
container flits, which are routed along predefined routes from source to destination and
back in a closed loop fashion [Mil+04b]. Container flits get loaded at the sender side
and unloaded at the receiver side. To avoid deflections of container flits, their routing
decision is stored in all corresponding routers. Further, the involved routers reserve an
empty slot for these flits.

BLESS

BufferLESS routing algorithms (BLESS) is a set of routing algorithms developed by the
SAFARI research group of Professor Onur Mutlu at Carnegie Mellon University. However,
Moscibroda and Mutlu also proposed a bufferless router architecture in [MM09]. It
is a two cycle router architecture, which consists of a route computation stage and a
switch traversal stage. Their deflection routing based algorithm is called FLIT-BLESS.
For FLIT-BLESS, the router architecture closely resembles the architecture depicted
in Figure 3.1. Flits are prioritized by their age (oldest flit first). They evaluated four
more prioritization schemes, which are closest flit first, most deflections first, round robin,
and mixed policy, at which oldest flit first and round robin are alternated. However,
their evaluation showed that oldest flit first performs best in terms of average latency,
maximum latency, and average number of deflections.

45

Chapter 3 Deflection Routing based Router Architectures

A second algorithm is WORM-BLESS, which combines bufferless routing with ideas
from wormhole routing. There, a message is divided into a packet, or rather a worm,
which consists of one head flit, several body flits, and one tail flit. The authors identified
two major problems which usually prohibit a combination of these two concepts. The
so-called livelock problem occurs as port arbitration is only performed for head flits. If a
head flit of a worm arrives at a router, all productive directions of the worm could already
be allocated to other worms which are currently in transit. However, as mentioned
before, deflecting the highest prioritized flit can lead to livelocks. The second problem
is the so-called injection problem. New flits can be injected into the NoC if at least one
input port is idle, and hence, also one output port. Unfortunately, it is difficult to predict
the state of the input ports. If flits arrive at all input ports during the injection of a worm
from the local port, this injection has to be aborted.

Moscibroda and Mutlu solved both problems by worm truncation. If, for instance, a
higher prioritized worm arrives at a router, the lower prioritized worm might be deflected.
In case of worm truncation, some flits of a worm are separated from their head flit. As
the header contains routing relevant information, every router has to be able to create
new head flits out of body flits. Thus, every router stores the header information of all
worms being in transit, as well as a mapping of output ports to allocated worms. At
WORM-BLESS, header information is transferred by dedicated wires, which are unused
in case of body flits and tail flits. Moscibroda and Mutlu compared the costs of these
additional wires and the costs of additional buffers for packet switching. As mentioned
before, the results showed that bufferless routing enables significant energy and area
savings, while providing similar performance at low network utilization.

3.3.2 Permutation Network based Architectures

One major drawback of router architectures which are based on a crossbar and addi-
tionally on deflection routing is the long critical path. This path is dominated by the
sorting network and the port allocator stage. A permutation network can substitute all
three major components of crossbar based router architectures, which are the sorting
network, the port allocator, as well as the crossbar. Compared to crossbar based designs,
permutation networks enable a shorter router latency as well as a more area and energy
efficient router architecture, as the following results show. On the downside, permuta-
tion networks can be internal blocking, depending on the permutation network’s depth.
Internal blocking means, some permutations between the I/O ports are not supported.

Due to the area and energy efficiency of permutation networks, they complement
bufferless deflection routing, whose main advantages are also area and energy savings.
Furthermore, if it can be guaranteed that the highest prioritized flit can reach every
output port, even the internal blocking characteristic is not a major issue. If a flit can
not be transferred to a certain output port, it is just deflected to an other direction.

In this section, two prominent permutation network based NoCs are introduced in

46

3.3 Deflection Routing Implementations

1

2

3

4

N
S

E
W

L

ejec
kill

ejec
kill

ejec
kill

ejec
kill

N

E

S

W

ejec
arbi

ejec
arbi

ejec
arbi

L

Permutation NetworkInjectionEjection

Figure 3.2: CHIPPER router architecture [FCM10; FCM11]

more detail: CHeap-Interconnect Partially PErmuting Router (CHIPPER) and Minimally-
Buffered Deflection (MinBD). However, apart from these two architectures, several
further architectures exist which use deflection routing and additionally a permutation
network (e.g. [Jos+13; Jon+14; Lee+13b]).

CHIPPER

To the best of my knowledge, CHIPPER [FCM10; FCM11] is the first router architec-
ture which was based on deflection routing and additionally utilized a permutation
network. It is an enhanced version of the BLESS router architecture, and like the BLESS
architecture, it is also developed by researchers of the SAFARI research group (Fallin,
Craik, and Mutlu) at Carnegie Mellon University. CHIPPER consists of three blocks,
an ejection stage, an injection stage, and a permutation network. An overview of this
router architecture is depicted in Figure 3.2.

At CHIPPER, the first two stages handle the local port separately from the other ports.
The ejection stage selects at most one flit which is ejected from the network. This stage
consists of three ejection arbiters, each with two input ports and one output port. These
arbiters compare the destination addresses of both inputs to the router’s own address. If
both flits have reached their destination, the higher prioritized flit is selected for ejection.
Finally, the selected flit is ejected by one of the four ejection kill elements, which also
clears the corresponding input port.

The injection stage allows the injection of a flit from the local port into the network
if at least one port is idle. An injection element is basically just a MUltipleXer (MUX),
which selects either the flit from the local port L or from the corresponding input port.
The MUXs’ control logic is placed in the ejection stage to a large extent (e.g. comparators
to identify an idle input port).

The third stage is a permutation network, which is a 4×4 Banyan network at CHIPPER.

47

Chapter 3 Deflection Routing based Router Architectures

It is build of 2×2 switching elements, or rather permute blocks, hereinafter abbreviated
as s1, . . . , s4. Each switching element si, with i ∈ {1,2,3,4}, is always in one of the
two possible states. At state z(si) = 0, also referred to as the identity permutation, the
element si passes the first input i1 to the first output o1, and the second input i2 to the
second output o2. At state z(si) = 1, also referred to as the cross permutation, si swaps
both inputs and outputs, and hence, i1 is transferred to o2, and i2 to o1. Hereinafter,
the following symbols are used to illustrate the switching elements’ states:

identity permutation: z(si) = 0
i1

i2

o1

o2

cross permutation: z(si) = 1
i1

i2

o1

o2

arbitrary permutation: z(si) = {0,1}
i1

i2

o1

o2

Please note, the most frequently used symbol for a switching element, as well as for
a crossbar, equals the herein used symbol to denote a cross permutation. To indicate
that a switching element can be in an arbitrary state, an overlay of identity and cross
permutation will be depicted in the following.

The switching elements’ states are defined by the used routing algorithm and the
two received flits. As the routing algorithm is implemented in a distributed manner,
the entire permutation network is self routing. This means, each switching element
routes the two received flits independently from the other switching elements, using
only local information. CHIPPER’s exact routing algorithm, i.e. to which direction the
highest prioritized flit is transmitted if two productive directions exist for this flit, is
not mentioned in [FCM10; FCM11]. A Banyan network with four I/O ports is a single
path network, which means that there is exactly one path between an input port and
an output port. Further, it is internal blocking, which means that some permutations
of the Banyan network’s I/O ports are not possible. Figure 3.3 shows one possible and
one impossible permutation. In both situations, the highest prioritized flit arrives at the
first input of the upper left switching element s1. As the destination of this flit is in the
south, the state of this element has to be z(s1) = 0. As a consequence, the second flit,
which arrived at the second input port of s1, is transmitted to the lower right switching
element s4, independently from the second flit’s preferred output direction. Switching
element s4 is connected to the east and to the west. Hence, both flits can be transmitted
to their preferred output direction in the first example. However, in the second example,
the second flit does not reach its destination N, but is deflected as s1 is in state z(s1) = 0.
There is no configuration of the switching elements to transmit both flits of the second
example to their preferred direction. Please note, even if the Banyan network is internal
blocking, it is guaranteed that the highest prioritized flit can always be transfered to its
preferred output port.

48

3.3 Deflection Routing Implementations

1|S
1|S2|W

2|W

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

priority
preferred output port

(a) Possible permutation

1|S
1|S2|N

2|N

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(b) Impossible permutation due to internal
blocking

Figure 3.3: A possible and an impossible permutation for a Banyan network. The number
in the upper left corner of the switching elements denotes their ID.

Due to the internal blocking property of a Banyan network, the arrangement of the
I/O ports highly influences the performance. At CHIPPER, output ports are grouped
by vertical ports and horizontal ports, whereas input ports are connected in compass
direction, i.e. N, E, S, W. The vertical output ports N and S are connected to the upper
right switching element s3. The horizontal output ports E and W are connected to the
lower right switching element s4. This ensures, first, the most frequently routing decision
can be realized by the Banyan network, and second, an efficient implementation of the
routing algorithm. As a Banyan network does not support every permutation between
its I/O ports, it is particularly important to support the most common permutations. At
a frequently used 2D mesh topology, most routing algorithms route the majority of all
packets along the horizontal axis, i.e. E↔ W, or along the vertical axis, i.e. N↔ S,
and the direction of a packet is switched only once [Kim09; FCM10]. The utilized
arrangement of the I/O ports allows that this permutation is supported without any
flit being blocked. Furthermore, this allows an efficient implementation of dimension
order routing. For instance, if x-first routing is used, the switching elements of the
first stage (s1 and s2) just have to compare the highest prioritized flit’s x coordinate
with the router’s x coordinate. If both x coordinates are equal, the flit has reached its
desired x coordinate and is transmitted to s3, which then routes the flit along the y axis.
Otherwise, the flit is transmitted to s4, which routes the flit further towards the desired
x coordinate along the x axis.

Besides the long critical path of prior router architectures based on deflection rout-
ing, the developers of CHIPPER identified two more problems of deflection routing in
[FCM10; FCM11]. Here, the term prior router architectures refers, in particular, to
the BLESS architecture. The first mentioned problem is the expensive flit prioritiza-
tion scheme oldest flit first, which requires a large hop count field in the header, and

49

Chapter 3 Deflection Routing based Router Architectures

additionally large comparators in the arbiters. The authors’ solution for this problem
is the golden packet prioritization scheme. The second drawback is the need for large
reassembly buffers at the receiver side due to the lack of feedback to senders. This
problem is solved by the retransmit-once flow control scheme, as well as the use of the
MSHRs as reassembly buffers.

Golden Packet: The basic idea behind the golden packet prioritization scheme is that
the abstinence of livelocks can be ensured by:

(i) prioritizing a single packet over all other packets for a period which is long enough
to ensure delivery,

(ii) ensuring that every packet gets this status eventually.

This globally prioritized packet is called the golden packet. A flit, which belongs to the
golden packet, is always prioritized over any non-golden flit. However, most of the time,
only non-golden flits arrive at the routers. In this case, every router selects a prioritized
flit pseudo-randomly. In the rare event that two flits arrive at a router which both belong
to the golden packet, the flit with the lower sequence number is prioritized. The authors
indicated that the field of this sequence number is usually only two or three bits large.

The golden packet is selected by an implicit function of time, which is computed by
each router independently. With this function, the ID of the golden packet is specified,
whereas the same packet gets the golden status for a time span, called golden epoch.
The golden epoch encompasses the time period to ensure the delivery of the entire
golden packet. The function rotates through all possible packet IDs, and thus, every
packet receives this status eventually.

Retransmit-Once: As mentioned in Section 3.2, deflection routing is inherently
free of routing dependent deadlocks, but reassembly buffer deadlocks can occur if the
reassembly buffers are too small. The retransmit-once protocol provides deadlock-free
packet reassembly. This protocol is illustrated in Figure 3.4, according to [FCM10, p.
12]. Initially, the requester sends a request flit to the receiver 1 . If no request buffer
is available, as assumed in the depicted example, the receiver is forced to drop this
flit 2 . As soon as buffer space becomes available, the receiver sends a flit back to the
requester to initiate the retransmission. Further, the receiver also reserves the available
buffer space for this transaction 3 . At 4 , the requester retransmits the request. As the
receiver’s buffer space is reserved until the writeback flit is received 5 , this transaction
is guaranteed to be non-blocked and no further retransmission is required. Finally, the
requester sends this writeback flit 6 , and the buffer reservation is released.

To avoid special reassembly buffers, the authors further proposed to use the already
existing MSHRs as reassembly buffers. The main purpose of MSHRs is to keep track of

50

3.3 Deflection Routing Implementations

Requester Receiver
Request Data

Retransmit?

Request Data

Response

Writeback
5

1

4

6

2

3

Figure 3.4: Retransmit-once protocol scheme [FCM10, p. 12]

outstanding cache misses at non-blocking caches [Kro81]. Using the existing buffers
and data-steering logic of the MSHRs allows reassembling of packets, or rather cache
blocks, in-place.

MinBD

The MinBD router architecture [Fal+11; Fal+12] is an enhanced version of CHIPPER
and as such also an enhanced version of the BLESS architecture. As the latter two router
architectures, MinBD is developed by researchers of the SAFARI research group (Fallin et
al.) at Carnegie Mellon University. The main objective of CHIPPER is to make deflection
routing efficiently implementable in hardware. MinBD improves the performance of
CHIPPER, or any router architecture based on a permutation network and on deflection
routing. In order to achieve this improvement, three performance bottlenecks are
identified and eliminated. More precisely, Fallin et al. found that many deflections occur
as two or more flits reach their destination at the same clock cycle, but only one can be
ejected. Further, the golden flit prioritization scheme causes unnecessary deflections,
as only a single packet is globally prioritized in the system. Finally, they propose a
very small side buffer, which temporally stores deflected flits, to reduce the deflection
rate even further. An overview of this router architecture is depicted in Figure 3.5.
Additionally to the components of CHIPPER, MinBD consists of a second ejection stage
as well as a side buffer. The side buffer itself consists of a redirection stage, a buffer
injection stage, a buffer ejection stage, and the actual side buffer.

51

Chapter 3 Deflection Routing based Router Architectures

1

2

3

4ej
ec

ti
on

ej
ec

ti
on

re
di

re
ct

io
n

bu
ff

er
in

je
ct

io
n

in
je

ct
io

n

bu
ff

er
ej

ec
ti

on

side buffer

L L L

N
E

S
W

N
S

E
W

Figure 3.5: MinBD router architecture [Fal+11; Fal+12]

Ejection Bottleneck: Fallin et al. observed that in 8% of all clock cycles, at any given
router, two or more flits reach their destination. Further, the traffic arrives in a bursty
manner. At CHIPPER, only one flit can be ejected at any clock cycle. Hence, the other
flits, which also reached their destination, have to be deflected. This leads to a higher
latency of such flits, and also to a higher traffic volume in the NoC. Therefore, MinBD
consists of two ejection stages, each allowing to eject one flit per node per cycle.

Prioritization Scheme: The golden flit prioritization scheme of CHIPPER globally
prioritizes at most one packet, which is referred to as the golden packet, in the system.
Even if this is sufficient to guarantee the abstinence of livelocks, this leads to unnecessary
deflections. In the common case, a switching element processes only non-golden
flits, which are prioritized pseudo-randomly at CHIPPER. Every flit passes exactly two
switching elements at every router. As the Banyan network is self-routing, both switching
elements operate independently of each other and they both choose a prioritized flit
independently. Hence, their prioritization decisions do not have to be consistent, which
may lead to more deflections than necessary.

To avoid deflections caused by inconsistent prioritization, the silver flit prioritization
scheme is proposed. Every router picks a silver flit pseudo-randomly, which is prioritized
throughout the entire permutation network. The silver flit is indicated by a single control
bit, which exists only within the router itself.

Side Buffer: The key idea of side buffering is to store flits which would be deflected
otherwise. At a later time, the stored flits, hopefully, can be re-injected and routed to a
productive direction.

52

3.4 Basis Network on Chip and Router Architecture

If a specific flit is deflected or not is known after the flit passed the permutation
network. Hence, the buffer ejection stage, which ejects at most one deflected flit, is
placed after the permutation network. It picks one eligible flit pseudo-randomly, which is
then stored in the side buffer, if there is free buffer-space and no flit form the redirection
stage accesses the side buffer. A flit is buffer-eligible if it is not golden and not addressed
to the current node. Flits which have arrived at their destination are not stored in the
side buffer as they are usually deflected back to their destination in the next clock cycle.
Golden flits are not side-buffered as they may not be delivered to their destination
during the golden epoch. However, golden flits could only be deflected if at least two
golden flits arrive at a router, which occurs very rarely.

The buffer injection stage allows to eject a flit from the side buffer and inject it into
the router pipeline if at least one input port is idle. It is placed before the injection stage
to prioritize injections from the side buffer over the local port. However, if all input
ports are occupied, the flits stored in the side buffer can make no forward progress. The
redirection stage is required to avoid side buffer starvation and provide livelock free
delivery for flits stored in the side buffer. If the side buffer has not re-injected any flit for
a given time threshold, the redirection stage ejects an arriving flit pseudo-randomly and
stores it in the side buffer. Thereby, a free slot in the router pipeline for one side-buffered
flit is created.

3.4 Basis Network on Chip and Router Architecture

In this section, the herein used NoC router architecture is described. For the deployed
topology, the widely adopted 2D mesh is assumed. The influence of various topologies on
the performance of deflection routing based NoCs is investigated in [LZJ06b; Fen+11a].
However, the majority of the concepts and results, presented in this work, are not
restricted to 2D meshes. Certain conditions concerning the used topology are given in
the following chapters when necessary. Here, the output ports at the edges of the 2D
mesh are connected to their corresponding input ports by loop links (cf. Figure 3.6). This
enables a homogeneous router architecture, independently from the routers’ positions,
with an equal number of I/O ports. Moreover, links act as a kind of buffer space at
deflection routing based NoC, and hence, the buffer capacity is enhanced.

The local port L of a router is connected to a Network Interface (NI), which in turn is
connected to an IP core or PE. The NIs convert transactions from the IP cores into flits
and packets, which can be routed in the NoC, and vice versa. In all herein presented
simulation results, it is assumed that each NI contains a sufficiently dimensioned injection
queue. Implemented in hardware, the injection queues might be placed in the processors’
MSHRs, as proposed at CHIPPER [FCM10; FCM11]. The term sufficiently dimensioned
injection queues means that injections from the PEs into these queues are never blocked.
As the evaluated injection probabilities are only increased up to the saturation point of

53

Chapter 3 Deflection Routing based Router Architectures

Ru EW

N

S L

Rv EW

N

S L

R y EW

N

S L

Rz EW

N

S L

PE

PE

PE

PE

loop link

injection queue

Figure 3.6: 2D mesh topology with loop links at the edges of the mesh. Each Processing
Element (PE) is connected to an injection queue.

the NoC, an injection queue size of 32 flits was sufficient in the vast majority of executed
simulations. Furthermore, it is also assumed that ejected flits can always be received by
PEs or the corresponding NIs.

The used router architecture is based on CHIPPER to a large extent. CHIPPER is
selected because of its simplicity as well as its area and energy efficiency. These benefits
are primarily achieved by the deployed permutation network, which complements
deflection routing very well. CHIPPER’s clear structure and modularity allows a simple
extension as well as a quick evaluation of new concepts. Hence, the basic composition
is adopted, which comprises the ejection stage, the injection stage, and the permutation
network. At CHIPPER, the MSHRs are used for message reassembly. However, as MSHRs
are part of the memory hierarchy, this requires full-system simulation, or at least large
parts of the memory hierarchy have to be simulated. This would significantly increase
the simulation time, and thus, the reassembly problem is not considered in this work.
As mentioned before, a sufficiently sized injection queue is assumed for the results
presented herein.

3.4.1 Flit Prioritization Scheme

A further contribution of CHIPPER is the golden flit prioritization scheme, which selects
the globally highest prioritized flit. In contrast to CHIPPER, the oldest flit first scheme is
used in this work, due to following reasons:

• Even for an 8×8 NoC, a hop count field of 8 bit is sufficient. The extra costs of 8 bit
comparators, compared to 3 bit comparators plus additional logic to determine
the golden flit ID, should be acceptable.

54

3.4 Basis Network on Chip and Router Architecture

• Prioritization by age achieves a better performance than the golden flit scheme.
The golden flit scheme determines just a single highest prioritized flit, whereas
255 different flit priorities13 exist at oldest flit first with a hop count field of 8 bit.
Furthermore, all existing router architectures compared in Chapter 4 use the oldest
flit first prioritization scheme. Thus, the evaluation results are not influenced by
the chosen prioritization scheme.

• The most important reason is that oldest flit first enables the detection of unde-
liverable flits. In Chapter 4, link and router failures are considered. Some of the
evaluated routing algorithms can not deliver all flits to their destinations, even if
physical paths between all nodes exist. Thus, some kind of livelock resolution is
required. Prioritization by age allows to identify and discard undeliverable flits
efficiently.

Oldest flit first selects a highest prioritized flit at every router. Furthermore, as the imple-
mentation of the prioritization scheme is distributed over all four switching elements of a
router, one higher prioritized flit, denoted by fhp, and one lower prioritized flit, denoted
by flp, exist at every switching element. In the case that two flits arrive at a switch-
ing element and both flits have the same age, the switching element deterministically
prioritizes one of its two input ports.

Even if prioritization by age is frequently applied at deflection routing based archi-
tectures, several further prioritization schemes have been proposed in literature. Lu,
Zhong, and Jantsch investigated three different priority policies in [LZJ06b]. Two of
them (non-priority and straight-through) can not guarantee the abstinence of livelocks.
The third policy, referred to as weighted priority, is based on the flits’ age, distance, and
number of deflections. Weighted priority performed best, however, they did not mention
how livelocks can be resolved. The multipath flit prioritization scheme, introduced in
[OWB12b], is also a multi-criteria scheme. It is based on the flits’ age and number
of productive output ports. Flits with a single productive output port are temporarily
prioritized over flits with multiple productive directions.

3.4.2 Routing Algorithm

Once a switching element has determined the locally highest prioritized flit fhp, it
transmits this flit to its desired output port, i.e. to its productive direction. If two
flits have arrived at a switching element, the lower prioritized flit is forwarded to
the remaining direction. The desired direction of fhp is defined by fhp’s destination
node, abbreviated as fhp(dst), and by the utilized routing algorithm. CHIPPER’s routing
algorithm is not specified in [FCM10; FCM11]. However, independently from the routing
algorithm, three different situations can be distinguished:
13A hop count of 0 indicates an idle link. New flits are injected into the NoC with a hop count of 1. Thus,

only 2|hc| − 1 different priorities are possible, whereas |hc| denotes the length of the hop count field.

55

Chapter 3 Deflection Routing based Router Architectures

(i) There is no productive direction for fhp. This means, fhp has reached its destination
and it is not ejected.

(ii) A single productive direction for fhp exists. In this case, every minimal routing
algorithm14 selects this productive direction as the desired direction.

(iii) Two productive directions exist for fhp.

The latter case is the most interesting one. Two productive directions are always
neighbored, this means one direction is along the vertical axis (N or S) and the other
productive direction is along the horizontal axis (E or W). At dimension order routing,
one of the two axis is preferred deterministically. Hence, the highest prioritized flit
is routed to the correct position along one dimension first, and afterwards along the
remaining dimension. For instance, at Y_FIRST, fhp is routed along the vertical axis
first. Dimension order routing is frequently deployed at packet switched networks,
because of its simplicity and its deadlock freeness. As deflection routing is inherently
routing-dependent deadlock free, the deployed routing algorithm can select the desired
output ports without the risk of cyclic dependencies. For instance, one of the two
productive directions can be picked randomly, which is referred to as RANDOM_FIRST.
This algorithm is also minimal, but non-deterministic, as it randomly switches between
X_FIRST and Y_FIRST. A variety of routing algorithms is imaginable. However, due to the
utilized permutation network, the routing algorithm has to be efficiently implementable
in a distributed manner, as all four switching elements operate independently of each
other.

Obviously, the used routing algorithm influences the performance of the NoC sig-
nificantly. As CHIPPER’s routing algorithm is not specified and routing algorithms of
crossbar based architectures are not implemented in a distributed manner, several differ-
ent routing algorithms are evaluated as a basis for the analysis in the following chapters.
In this section, six different routing algorithms are introduced and examined. In general,
a deflection routing algorithm can be considered as a function which calculates a new
permutation between all input ports and all output ports. More formal, it is a bijection
RT_ALG : {N, E, S, W} → {N, E, S, W}. However, as the algorithms are implemented in a
distributed manner, they actually consist of three different routing algorithm parts:

RT_ALG1,2 : {i1, i2} → {V, H},

RT_ALG3 : {i1, i2} → {N, S},
RT_ALG4 : {i1, i2} → {E, W},

whereas RT_ALGi denotes the routing algorithm implemented in switching element
si, with i ∈ {1,2,3,4} (cf. Figure 3.2). Furthermore, i1 and i2 denote the first and

14A routing algorithm is denoted as minimal if flits are routed only along shortest paths, without considering
deflections.

56

3.4 Basis Network on Chip and Router Architecture

Algorithm 1 Centralized Y_FIRST routing

1: procedure Y_FIRST(f1, f2, f3, f4) // fi , i ∈ {1, 2,3, 4} denotes the input flits

2: fhp← PRIO(f1, f2, f3, f4) // find highest prioritized flit

3: dx← x − fhp(dstx) // hops / distance from router to fhp ’s destination along x

4: dy← y − fhp(dsty) // hops / distance from router to fhp ’s destination along y

5: if dy < 0 then
6: S← fhp // fhp is routed to the south

7: else if dy > 0 then
8: N← fhp // fhp is routed to the north

9: else if dx < 0 then // dy = 0⇒ route fhp along x

10: W← fhp // fhp is routed to the west

11: else // fhp is routed to the east if fhp ’s destination is located in the east . . .

12: E← fhp // . . . or if fhp reached its destination and had not been ejected

13: end if
14: end procedure

second input port, respectively, of the corresponding switching element. The switching
elements of the first stage, s1 and s2, use the same routing algorithm. RT_ALG1,2 selects
between the vertical axis V , i.e. switching element s3, and the horizontal axis H, i.e.
switching element s4. The second stage switching elements, s3 and s4, are connected
only to one axis, either the vertical axis or the horizontal axis. Hence, their routing
algorithm, RT_ALG3 and RT_ALG4, takes only the connected axis into account.

The first herein considered routing algorithm is Y_FIRST. As described before, Y_FIRST
can be listed as one algorithm for the entire permutation network, as depicted in
Algorithm 1.

Furthermore, it can be listed as three separate routing algorithms, Y_FIRST1,2 for s1
and s2, Y_FIRST3 for s3, and Y_FIRST4 for s4. The same algorithm, implemented in this
distributed manner, is depicted in Algorithm 2. As the routing algorithm operates in a
distributed manner in hardware, all herein considered routing algorithms are listed as
three separate routing algorithms. This is not only the more natural way to describe a
routing algorithm of a permutation network, it further simplifies the assessment of the
routing algorithms’ complexity. Besides Y_FIRST (listed in Algorithm 2), the algorithms
considered in this section are:

• RANDOM_FIRST (listed in Algorithm 3),

• KEEP_DIST (listed in Algorithm 4),

• AVOID_CENTER (listed in Algorithm 5),

• FLITID_DEPEND (listed in Algorithm 6), and

• STRESS_VALUE (listed in Algorithm 7).

At RANDOM_FIRST, the first stage switching elements, s1 and s2, randomly select a

57

Chapter 3 Deflection Routing based Router Architectures

Algorithm 2 Distributed Y_FIRST routing
// s1, s2 select between V and H

1: procedure
Y_FIRST1,2(f1, f2)

2: (fhp, flp)← PRIO(f1, f2)
3: dy← y − fhp(dsty)
4: if dy 6= 0 then
5: o1← fhp // fhp→ s3

6: o2← flp // flp→ s4

7: else
8: o2← fhp // fhp→ s4

9: o1← flp // flp→ s3

10: end if
11: end procedure

// s3 selects between N and S

1: procedure
Y_FIRST3(f1, f2)

2: (fhp, flp)← PRIO(f1, f2)
3: dy← y − fhp(dsty)
4: if dy > 0 then
5: o1← fhp // fhp→ N

6: o2← flp // flp→ S

7: else
8: o2← fhp // fhp→ S

9: o1← flp // flp→ N

10: end if
11: end procedure

// s4 selects between E and W

1: procedure
Y_FIRST4(f1, f2)

2: (fhp, flp)← PRIO(f1, f2)
3: dx← x − fhp(dstx)
4: if dx > 0 then
5: o1← fhp // fhp→ E

6: o2← flp // flp→W

7: else
8: o2← fhp // fhp→W

9: o1← flp // flp→ E

10: end if
11: end procedure

Algorithm 3 RANDOM_FIRST routing
1: procedure RANDOM_FIRST1,2(f1, f2)
2: (fhp, flp)← PRIO(f1, f2)
3: dy← y − fhp(dsty)
4: dx← x − fhp(dstx)
5: if dy 6= 0∧ dx 6= 0 then
6: RANDOMROUTING(f1, f2)
7: else
8: Y_FIRST1,2(f1, f2)
9: end if

10: end procedure

1: procedure RANDOMROUTING(f1, f2)
// rand() creates new random value ∈ (0, 1)

2: if rand() > 0.5 then
3: o1← f1
4: o2← f2
5: else
6: o2← f1
7: o1← f2
8: end if
9: end procedure

1: procedure RANDOM_FIRST3(f1, f2)
2: Y_FIRST3(f1, f2)
3: end procedure

1: procedure RANDOM_FIRST4(f1, f2)
2: Y_FIRST4(f1, f2)
3: end procedure

productive output port if exactly two productive output ports exist for the current fhp flit.
If there is only one or even no productive output port for this flit, RANDOM_FIRST does
not distinguish from Y_FIRST. Hence, in particular, RANDOM_FIRST3 equals Y_FIRST3
and RANDOM_FIRST4 equals Y_FIRST4, as at most one productive output port exists at
the second stage switching elements. In contrast to Y_FIRST, it is expected that flits
are less frequently deflected, as two productive output ports exist for a longer period of
time. However, it can also be expected that the hot spot in the center of the network is
intensified with RANDOM_FIRST.

KEEP_DIST, tries to keep both the absolute horizontal distance and the absolute
vertical distance to the flit’s destination as large as possible. This also attempts to
minimize the deflections by keeping two productive directions as long as possible. If
less than two productive directions exist, also KEEP_DIST resembles simple Y_FIRST.

58

3.4 Basis Network on Chip and Router Architecture

Algorithm 4 KEEP_DIST routing
1: procedure KEEP_DIST1,2(f1, f2)
2: (fhp, flp)← PRIO(f1, f2)
3: dy← |y − fhp(dsty)| // absolute y dist.

4: dx← |x − fhp(dstx)| // absolute x dist.

5: if dy > dx then
6: o1← fhp // fhp→ s3

7: o2← flp // flp→ s4

8: else
9: o2← fhp

10: o1← flp
11: end if
12: end procedure

1: procedure KEEP_DIST3(f1, f2)
2: Y_FIRST3(f1, f2)
3: end procedure

1: procedure KEEP_DIST4(f1, f2)
2: Y_FIRST4(f1, f2)
3: end procedure

q1

q2q4

q3

Figure 3.7: At AVOID_CENTER (cf. Algorithm 5), the used routing algorithm depends
on the routers’ position. The routers in the first and third quadrant (q1 and
q3) use X_FIRST, and the routers in the quadrants q2 and q4 use Y_FIRST.
The right graph shows this division for an 8× 8 mesh.

For all routing algorithms introduced so far, the center of the NoC is a hot spot. As
the name suggests, AVOID_CENTER tries to avoid this hot spot. Therefore, the router
plane is divided into four quadrants q1, q2, q3, q4. Figure 3.7 shows this division for
the simulated 8 × 8 2D mesh topology. The routers which belong the quadrants q1
and q3 use X_FIRST. The other routers, which belong to the quadrants q2 or q4 use
Y_FIRST. Hence, all routers transfer flits to the center of the mesh if and only if the flits’
destination address also lies in the center of the mesh.

FLITID_DEPEND uses another method to spread traffic across the network. Depend-
ing on fhp’s ID, which is denoted by fhp(id), either X_FIRST or Y_FIRST is used. Thus,
also for this algorithm, the routing function of the switching elements s3 and s4 does
not distinguish from Algorithm 2.

STRESS_VALUE prefers the less utilized direction, in case of two productive directions.
To achieve this, every router counts the utilization of its four outgoing links during the

59

Chapter 3 Deflection Routing based Router Architectures

Algorithm 5 AVOID_CENTER routing
1: procedure AVOID_CENTER1,2(f1, f2)
2: (fhp, flp)← PRIO(f1, f2)
3: q← QUADRANT() // Get router’s quadrant

4: if q = q2 ∨ q = q4 then
5: Y_FIRST3(f1, f2)
6: else
7: X_FIRST3(f1, f2)
8: end if
9: end procedure

1: procedure AVOID_CENTER3(f1, f2)
2: Y_FIRST3(f1, f2)
3: end procedure

1: procedure AVOID_CENTER4(f1, f2)
2: Y_FIRST4(f1, f2)
3: end procedure

Algorithm 6 FLITID_DEPEND routing
1: procedure FLITID_DEPEND1,2(f1, f2)
2: (fhp, flp)← PRIO(f1, f2)
3: if fhp(id) MOD 2= 1 then
4: Y_FIRST3(f1, f2)
5: else
6: X_FIRST3(f1, f2)
7: end if
8: end procedure

1: procedure FLITID_DEPEND3(f1, f2)
2: Y_FIRST3(f1, f2)
3: end procedure

1: procedure FLITID_DEPEND4(f1, f2)
2: Y_FIRST4(f1, f2)
3: end procedure

last four clock cycles. This value is referred to as the stress value, and the idea is adopted
from the Nostrum router architecture. Routers exchange their four stress values with all
neighbored routers. This allows to identify and avoid highly congested areas during
runtime.

Please note that this is only a subset of the evaluated routing algorithms. For instance,
all presented algorithms only consider the higher prioritized flit fhp. Hence, they all
could be extended by considering the lower prioritized flit if no reasonable routing
decision is possible for the fhp flit.

In order to assess the performance of the presented routing algorithms, they are simu-
lated using our in-house cycle accurate simulator implemented in VHDL. All simulation
results are based on an 8× 8 2D mesh topology and 100.000 clock cycles of simulation
time. The local port of each router is connected to a traffic generator, which is able
to generate different traffic classes. If the traffic generator tries to inject a flit, but the
router has no idle output ports, the flit is stored in an injection queue. For all simulations
presented in this chapter, the injection queues’ size is 16 slots. For injection probabilities
higher than the saturation point of the NoC, the injection queues overflowed. In this
case, the last injected flit which caused the overflow is discarded and never injected
again.

All routing algorithms are evaluated with a multiplicity of synthetic traffic patterns
as well as with different injection probabilities. As this evaluation should only show
the impact of the routing algorithm and justify the algorithm used in Chapter 4 and

60

3.4 Basis Network on Chip and Router Architecture

Algorithm 7 STRESS_VALUE routing
1: procedure STRESS_VALUE1,2(f1, f2)
2: (fhp, flp)← PRIO(f1, f2)
3: dy← y − fhp(dsty)
4: dx← x − fhp(dstx)
5: if dy 6= 0∧ dx 6= 0 then

// Determine stress value of fhp ’s vertical

// and horizontal productive direction

6: τV ← STRESS(PROD_V_DIR(fhp))
7: τH ← STRESS(PROD_H_DIR(fhp))

// Route along direction with lower stress value

8: if τV < τH then
9: Y_FIRST1,2(f1, f2)

10: else
11: X_FIRST1,2(f1, f2)
12: end if
13: else
14: Y_FIRST1,2(f1, f2)
15: end if
16: end procedure

1: procedure STRESS_VALUE3(f1, f2)
2: Y_FIRST3(f1, f2)
3: end procedure

1: procedure STRESS_VALUE4(f1, f2)
2: Y_FIRST4(f1, f2)
3: end procedure

Chapter 5, solely the results for uniform random traffic are shown here. However, the
results are very similar for all evaluated traffic patterns.

Figure 3.8 shows the throughput θ , which is the number of ejected flits per clock cycle
and per node, for eight different injection probabilities α. Up to an injection probability
of 25%, the NoC stays below the saturation point θ S . Hence, the injection queues have to
buffer injected flits only for a very short period. Furthermore, every injected flit is ejected
eventually, and therefore, the same throughput is achieved with all routing algorithms. At
injection probabilities higher than 30%, the network is at least occasionally saturated. For
these high injection probabilities, the routing algorithms affect the maximum throughput.
The highest throughput is achieved with AVOID_CENTER, but also Y_FIRST performs
surprisingly well.

The box-and-whisker plot depicted in Figure 3.9 shows statistical values of the flits’
hop count. The flits’ latency, which is based on the hop count, but further includes the
queue time, is depicted in Figure 3.10. The boxes of the box-and-whisker plots indicate
the lower quartiles and the upper quartiles. The whiskers indicate the minimum values
and maximum values. Further, the medians are plotted as black lines inside the boxes.

Figure 3.9 shows that the highest maximum hop count is achieved with Y_FIRST,
whereas the lowest maximum hop count is achieved with RANDOM_FIRST. However, this
does not hold for the median. The median with RANDOM_FIRST and with KEEP_DIST
is considerably higher than for the rest of the evaluated algorithms, in particular, for
high injection probabilities. The common characteristic of these two algorithms are

61

Chapter 3 Deflection Routing based Router Architectures

0

0.05

0.1

0.15

0.2

0.25

0.3

5% 10% 15% 20% 25% 30% 35% 40%

Th
ro

ug
hp

ut
θ

[fl
it

s/
cy

cl
es
/n

od
e]

Injection probability α

Y_FIRST
RANDOM_FIRST

KEEP_DIST
AVOID_CENTER

FLITID_DEPEND
STRESS_VALUE

Figure 3.8: Throughput for all evaluated routing algorithms and eight different injection
probabilities.

0
5

10
15
20
25
30
35
40
45

5% 10% 15% 20% 25% 30% 35% 40%

H
op

co
un

t
hc

Injection probability α

Figure 3.9: Statistical values of the flits’ hop count for all evaluated routing algorithms
and eight different injection probabilities. Please confer the legend of Fig-
ure 3.8.

62

3.4 Basis Network on Chip and Router Architecture

0
10
20
30
40
50
60
70
80

5% 10% 15% 20% 25% 30% 35% 40%

La
te

nc
y

l[
cl

oc
k

cy
cl

es
]

Injection probability α

100
150
200

Figure 3.10: Statistical values of the flits’ latency for all evaluated routing algorithms
and eight different injection probabilities. Please confer the legend of
Figure 3.8.

frequent changes in direction. This means, flits are continuously routed from the vertical
axis to the horizontal axis, and vice versa. However, the permutation network does
not allow every possible permutation, and it is designed for traffic without direction
changes. Y_FIRST, and also AVOID_CENTER and FLITID_DEPEND, minimize direction
changes by transmitting the flit along one axis until the destination is reached for this
axis.

Furthermore, RANDOM_FIRST and KEEP_DIST try to preserve two productive output
ports as long as possible. However, this also stresses the center of the 2D mesh, at least
for random traffic. Figure 3.11 shows the utilization of all output links of the simulated
8× 8 network, an injection probability of α= 20%, for all six routing algorithms.

Another evaluation criterion is the number of deflections, which is depicted in Fig-
ure 3.12. The number of deflections of a flit is defined as the difference between the
flit’s final hop count and the Manhattan distance of the flit’s source and destination
node. As energy is consumed every time a flit is routed, this is an important metric for
energy efficiency. As expected, the number of deflections increases with the network
load. Since the results are based on the same simulations, the statistical values of the
number of deflections and the statistical values of the hop count are highly correlated.
Frequent direction changes lead to more deflections, due to the deployed permutation
network.

To conclude, expensive and hardware-consuming algorithms do not necessarily pay
off. STRESS_VALUE, for instance, requires additional wires and four counters per router,
or FLITID_DEPEND requires comparators for the flits’ IDs. However, both algorithms
do not perform better than AVOID_CENTER, at which each router deterministically
uses either Y_FIRST or X_FIRST, based on its coordinates in the mesh. Even simple

63

Chapter 3 Deflection Routing based Router Architectures

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(a) Y_FIRST
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(b) RANDOM_FIRST

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(c) KEEP_DIST
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(d) AVOID_CENTER

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(e) FLITID_DEPEND
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

(f) STRESS_VALUE

Transferred
flits:

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

LW E

N

S

Figure 3.11: Link utilization at an injection probability of α= 20%.

64

3.4 Basis Network on Chip and Router Architecture

0

5

10

15

20

25

30

35

5% 10% 15% 20% 25% 30% 35% 40%

D
efl

ec
ti

on
s

Injection probability α

Figure 3.12: Statistical values of the flits’ deflections for all evaluated routing algorithms
and eight different injection probabilities. Please confer the legend of
Figure 3.8.

Y_FIRST performs surprisingly well, and in particular, better than RANDOM_FIRST and
KEEP_DIST. The reasons for this are on the one hand the permutation network, which
does not allow every permutation, and on the other hand the congested center of the
network, which leads to more deflections in this area.

3.4.3 Summary

In this chapter, the general principle of deflection routing as well as its strengths and
weaknesses have been presented. Furthermore, four well-known router architectures
which are based on deflection routing have been introduced. In particular, these archi-
tectures differ in their deployed interconnection architectures. Crossbar based router
architectures, as Nostrum and BLESS, sort all arriving flits according to their priority at
the port allocation. This yields in a longer critical path due to the sequential dependence
of the flit sorting. Permutation network based router architectures, as CHIPPER and
MinBD, avoid the crossbar and the corresponding arbitration logic. Every switching
element acts independently from the other switching elements and requires only local
information, which enables a fast and simple router architecture. Thus, a permutation
network is deployed at the basis router architecture used in this thesis. If not stated
otherwise, all herein presented results are based on the following configuration:

• an 8× 8 2D mesh topology

• loop links at the edges of the mesh

• NIs with sufficiently sized injection queues

65

Chapter 3 Deflection Routing based Router Architectures

• permutation network based router architecture

• flit prioritization scheme oldest flit first

• flit structure contains 8 bit hop count field

• flits are discarded if hop count field overflows

• routing algorithm AVOID_CENTER

The foundation of the basis router architecture is CHIPPER. However, the incremental
improvements of MinBD and most other enhanced versions can be easily integrated into
our architecture.

66

Chapter 4
Fault-tolerant and Deflection
Routing based Router Architecture

Contents

4.1 Motivation and Scope . 68

4.1.1 Fault Tolerance Methods . 69

4.1.2 Fault-tolerant Routing . 71

4.1.3 Conclusion . 73

4.2 Related Work of Chapter 4 . 73

4.3 FaFNoC Router Architecture . 77

4.3.1 Fault Tolerance and Banyan Networks 78

4.3.2 Substitute Benes Networks for Banyan Networks 86

4.3.3 Concept of Fault-aware Flits 94

4.3.4 Summary and Complete Overview of FaFNoC Router Architec-
ture . 99

4.4 Evaluation of FaFNoC Router Architecture 100

4.4.1 Non-fault-tolerant Architecture 101

4.4.2 Fault-tolerant Architecture . 104

4.5 Summary and Conclusion of Chapter 4 111

Continued technology scaling enables an ever growing number of resources per chip,
but not without any disadvantages. Shrinking manufacturing processes also lead to an
increasing variability in performance and reliability. Future systems have to be able to
cope with different types of failures, as it is predicted that they will be ubiquitous in these
systems. Hence, the trends, which give rise to NoCs as the dominant communication
infrastructure of VLSI systems, also necessitate fault tolerance concepts. In the field of
NoCs, fault tolerance is a broad research topic, which is addressed in several dedicated
textbooks [YA12; CML12]. Therefore, only a branch of this research topic is considered

67

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

in this chapter, namely fault-tolerant routing at deflection routing based NoCs. Fault-
tolerant routing exploits the inherent path redundancy of most NoC topologies to tolerate
certain fault classes. More precisely, such algorithms can contribute to tolerate link
failures or even the breakdown of complete routers.

This chapter is organized as follows. In Section 4.1, a motivation and an introduction
to fault tolerance and the required terminology is provided. A summary of existing router
architectures, which are fault-tolerant and additionally based on deflection routing,
is given in Section 4.2. In Section 4.3, the Fault-aware Flits NoC (FaFNoC) router
architecture [Run15a; Run15b; RK16d] is introduced, which has been developed as
part of this thesis. A FaFNoC router utilizes a 4× 4 Benes network as interconnection
architecture which consists of one additional stage of switching elements compared
to a more frequently deployed 4 × 4 Banyan network. To demonstrate the benefits
of a Benes network in terms of fault tolerance, the required modifications to avoid
faulty links at the Banyan network based non-fault-tolerant basis router architecture are
shown in Section 4.3.1. In Section 4.3.2, the required modifications to a Benes network
based router architecture are presented. The modifications of Sections 4.3.1 and 4.3.2
ensure that faulty links are avoided, but they are not sufficient to tolerate complex
fault situations, which may arise at higher fault rates. To achieve this, the concept
of Fault-aware Flits (FaF) has been developed, which is introduced in Section 4.3.3.
An evaluation and comparison of the herein presented FaFNoC router architecture to
existing fault-tolerant and deflection routing based architectures is given in Section 4.4.
Finally, this chapter closes with a summary and conclusion in Section 4.5.

4.1 Motivation and Scope

First of all, it is necessary to clarify the terminology used in this chapter. The definitions
of faults, errors, and failures used in this thesis are adopted from [Avi+04]. A failure is
a deviation of the system’s external state from the correct state. In the context of digital
systems, or in particular NoCs, the external state corresponds to the system’s output
ports. The deviation itself is called an error. However, not every error propagates to the
system’s external state and causes a failure. The adjudged cause of an error is called a
fault. Likewise, not every fault causes an error, e.g. a stuck-at-0 fault causes an error
only if the correct logical value was 1. Hence, a fault can be active or dormant, i.e. the
fault causes an error or it does not cause an error, respectively.

Faults can be classified by their temporal occurrence. Transient faults appear only
for a very short period of time, i.e. one or a few clock cycles. They are mainly caused
by environmental conditions such as radiation, and thus, occur more or less randomly.
Intermittent faults last for several clock cycles [YA12, p. 11]. They can occur in bursts
and repeatedly appear at the same location. Such faults can be caused i.a. by voltage
fluctuations or temperature variations, and they can be aggravated by aging hardware.

68

4.1 Motivation and Scope

In case of wear out, intermittent faults can precede permanent faults, which do not
vanish and reflect irreversible damages of the circuit.

Also the physical causes of faults are manifold. Radiation, like neutrons or alpha
particles, can cause soft errors (e.g. Single Event Upsets (SEUs)). Electromagnetic
interference can lead to crosstalk between wires. Permanent faults, which are the focus
of this chapter, are mainly engendered by aging and process variabilities (e.g. material
impurities). Aging of CMOS devices can be caused by electromigration, hot carrier
injection, or dielectric breakdowns [Rad+13]. A more detailed overview of physical
fault mechanisms can be found in [Rad+13]. Several of these physical causes gain in
importance with technology scaling. The ITRS from 2011 states:

“One of the key problems that designers face due to further shrinking of
feature sizes is the increasing variability of design-related parameters, re-
sulting either from variations of fabrication parameters or from the intrinsic
atomistic nature which affects, e.g., channel doping.” [ITR11, p. 39]

Besides increasing probabilities of faults, future systems will have to cope with highly
varying component lifetimes. Hence, it is expected that fault tolerance concepts will be
required for future VLSI systems to achieve reasonable operating periods and improve
yield rate.

4.1.1 Fault Tolerance Methods

Generally, fault tolerance at NoCs is achieved by adding some kind of redundancy to the
network at the appropriate level. Redundancy can be classified as spatial redundancy,
temporal redundancy, and information redundancy [Run12a; Run12b]. The latter class
is characterized by the fact that additional information is transferred, e.g. checksums or
identical information over multiple links. Information redundancy can be used to handle
all fault classes mentioned above. At temporal redundancy, transmissions or samplings
are repeated. For instance, Automatic Repeat reQuest (ARQ) uses acknowledgments
and timeouts to control retransmission. As the same resources could be used continually,
temporal redundancy is applicable for transient as well as intermittent faults, but not for
permanent faults. Spatial redundancy is best suited for permanent faults, as multiple
components are used in parallel.

These three kinds of redundancy can be applied at different levels at NoCs, which
can be classified according to the OSI layer model. Table 4.1 gives an overview over
several fault tolerance methods, categorized according to their OSI layer as well as their
form of redundancy. Some of these methods require dedicated hardware support (e.g.
the techniques at the data link layer), others exploit the inherent path redundancy of
NoCs. Fault-tolerant routing, which is the main focus of this chapter, belongs to the
latter category. As fault-tolerant routing is a broad research topic itself, a more detailed
overview is given in Section 4.1.2.

69

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

OSI
layer

spatial
redundancy

temporal
redundancy

information
redundancy

Data
link
layer

• TMRa to protect im-
portant control sig-
nals (e.g. NACK sig-
nals)

• Spare wires to re-
place faulty wires

• Multi-sampling
(sampling twice to
detect, or sampling
≥ 3 to even correct)

• Hop-to-hop ARQb

• Split-link transmis-
sion to use only in-
tact wires

• Codes (e.g. SEC
codesc) to protect
communication be-
tween routers. Par-
ticularly suitable for
header information

Network
layer

• Fault-tolerant rout-
ing, exploits the in-
herent path redun-
dancy of NoCs

Main focus of this
chapter. More detailed
overview is given in
Section 4.1.2.

Temporal redundancy
techniques operate ei-
ther on the data link
layer or transport layer

• Probabilistic routing
(e.g. flooding, ran-
dom walk, ...), repli-
cated packets are
routed over differ-
ent paths

Trans-
port
layer

• Source routing • End-to-end ARQ be-
tween sender NIs
and receiver NIs

• Codes (e.g. FECd)
to protect end-to-
end communication.
Particularly suitable
for the payload in-
formation

aTriple Modular Redundancy (TMR)
bAutomatic Repeat reQuest (ARQ)
cSingle-Error Correcting code (SEC code)
dForward Error Correction (FEC)

Table 4.1: Several methods and techniques to enhance the reliability of NoCs, according
to [Rad+13]. They are grouped by their form of redundancy as well as their
OSI layer.

70

4.1 Motivation and Scope

4.1.2 Fault-tolerant Routing

Fault-tolerant routing, as part of the network layer, can be achieved by using either
spatial redundancy or information redundancy. Spatial redundancy exploits the inherent
path redundancy of most NoC topologies. Information redundancy based methods utilize
several copies of the same packet. The latter approach can provide tolerance against
transient, intermittent, and permanent faults, as well as low message latencies. However,
depending on the degree of redundancy, both power consumption and network load
increase. Several fault-tolerant routing algorithms for NoCs are based on flooding. At
probabilistic flooding [BDM07; DKM03], received packets are transmitted to all adjacent
routers with probability p, and dropped with 1 − p. Hence, packets are forwarded
regardless of their destination addresses. The factor p, also referred to as the gossip rate,
defines the amount of redundant packets which flood the network. Directed flooding
[Pir+04] exploits the regular structure of most NoC topologies, by favoring productive
directions over non-productive directions. Redundant random walk [Pir+04] also favors
productive directions, but furthermore limits the number of copies to a predetermined
value. There, messages are not dropped and follow non-deterministic paths. Pirretti et al.
compared these three algorithms in [Pir+04] and concluded that flooding algorithms
are only feasible at very low injection probabilities, due to the significant communication
overhead. They reported that the overhead with redundant random walk is an order
of magnitude lower than for the compared flooding algorithms, which are more fault
resistant instead.

Routing algorithms which utilize spatial redundancy exploit the inherent path redun-
dancy of NoCs. These algorithms avoid defect links and routers by choosing an intact
path out of all existing paths. Even if fault-tolerant source routing [KK07] can be ascribed
to the transport layer, most fault-tolerant routing algorithms are part of the network
layer. In the following sections, a fault-tolerant routing algorithm refers to an algorithm
which utilizes spatial redundancy at the network layer.

The kind of fault situations which are tolerable by such an algorithm depend on the
routers’ fault-awareness. Routing algorithms which use global fault information provide
good performance, i.e. good routing decisions and a smaller number of unusable healthy
nodes. However, this is achieved at the expense of an increased complexity, as additional
wires or packets, as well as routing tables, are required to propagate and store fault
information. The other extreme is strictly local fault information, which is optimal
in terms of scale, but allows only non-optimal routing decisions in many cases. Thus,
several routing algorithms use fault information in between these two extremes. There,
local fault information is exchanged between N -hop neighboring nodes. Usually, N is a
small number (N ≤ 2) due to the increasing complexity at higher N .

Another important aspect of routing algorithms, independently from fault tolerance, is
deadlock avoidance. As shown in Section 2.3, most wormhole routing based algorithms
either use VCs or prohibit some specific turns, to guarantee the abstinence of routing

71

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

dependent deadlocks. Fault-tolerant routing algorithms have to be non-minimal adaptive,
i.e. packets may be routed along non-shortest paths and routing decisions are based on
the network’s (fault-)state. Obviously, this complicates deadlock avoidance, as defect
links and routers have to be avoided. Further, those failures can cause that other
links and routers become essential to reach some destinations. Generally, most fault-
tolerant routing algorithms also use VCs or routing restrictions for deadlock avoidance.
Depending on the tolerated fault situations and the present fault information, however,
even fully functional routers and links may have to be deactivated to achieve this.
Deflection routing is a special case, since it is inherently deadlock free. Instead, livelocks
have to be avoided, which is also complicated in case of failures. Section 4.2 gives an
overview of fault-tolerant routing algorithms for NoCs which are based on deflection
routing. Due to the comparatively small number of these algorithms, this overview
is complete, to the best of my knowledge. In contrast, the amount of fault-tolerant
routing algorithms that are not based on deflection routing is voluminous, which makes
a complete overview difficult. Nevertheless, some instances of this category are listed
below.

Wu presented in [Wu03] the extended X-Y routing algorithm. In the fault free case, this
algorithm uses X -first routing. In case of faults, packets are routed in abnormal mode
around the faulty region. To allow this, 2-hop fault information is required. Deadlocks
are avoided in the abnormal mode by prohibiting some turns, based on the odd-even
turn model (cf. Section 2.3.2).

Another fault-tolerant routing algorithm, used in the Vicis NoC [Fic+09b], is intro-
duced by Fick et al. in [Fic+09a]. It uses negative first routing and is based on routing
tables, which are updated in an offline phase. This approach exploits that some turns,
which have been disabled at negative first due to deadlock avoidance, can be reactivated
without engendering cyclic dependencies, i.e. routing dependent deadlocks, if other
links are defect.

NS-FTR [PZ11] is based on the north-last and south-last turn models. At low fault
rates, a single packet is transmitted with north-last. At high fault rates, two copies of a
packet are routed, the original packet with north-last, and the copy with south-last. To
avoid deadlocks, two separate virtual channels are required for the two packet types.
Packets which can not propagate in a valid direction because of faults are dropped.
To compensate this, a fault-free ACK network is assumed. Therefore, only local fault
information is sufficient for this approach.

FT_DyXY [Val+10] tries to surround faulty regions and also requires two virtual
channels for deadlock prevention. It is based on the non-fault-tolerant DyXY algorithm
[LZJ06a], which uses stress values of adjacent nodes. Additionally, FT_DyXY utilizes
local fault information.

72

4.2 Related Work of Chapter 4

4.1.3 Conclusion

Due to the variety of faults which can occur, an holistic approach is required to create
fault-tolerant NoCs. This means, a combination of several fault tolerance methods with
various kinds of redundancy and at different layers should be deployed. However, the
work presented in this chapter is restricted to fault-tolerant routing, with the aim of
tolerating permanent faults at link and router level. This means, fault detection, non-
permanent faults, and faults at a finer granularity than link and router breakdowns are
not considered herein, despite of the importance of these aspects. Nevertheless, the ideas
and concepts presented in this chapter could be integrated in other router architectures,
and existing fault tolerance and fault detection techniques could be integrated into the
herein presented router architecture. A few of these existing methods are introduced in
Section 4.2.

4.2 Related Work of Chapter 4

This section gives an overview of existing fault-tolerant and additionally deflection
routing based router architectures, as well as the therein used routing algorithms. All
these router architectures have in common that Nostrum (cf. Page 45) was chosen as
basis router architecture. Thus, they use a crossbar as interconnection architecture, or
at least they are not specifically designed for permutation networks.

Cost-based [KSR10; KR09; SRK10]: Kohler, Schley, and Radetzki developed a
router architecture which utilizes the remaining functionality of partly defective routers.
This is achieved by a fine grained fault model, an online fault diagnosis method, and a
fault-adaptive routing algorithm. To detect errors, packets are equipped with an 8 bit
Cyclic Redundancy Check (CRC) checksum. The fault diagnosis hardware uses this
checksum to detect faults inside the crossbar, the routing logic, and the links. Initially,
detected faults are considered as transient faults, which are handled by router-to-router
retransmission. If the faults do not disappear, the faulty component is tested with
specific test patterns to identify permanent faults. The fault states of the crossbar and
the adjacent links are used by a fault-tolerant routing algorithm to avoid permanent
faulty components. The routing algorithm itself distinguishes from other deflection
routing algorithms by applying a cost function to find a cost-optimal routing decision
[RK11]. This cost function penalizes deflections by one, reflections by two, and faulty
directions by infinity. In contrast, most routing algorithms based on deflection routing
allocate output ports from the highest prioritized flit to the lowest prioritized flit greedily.
Hence, the existence of multiple productive output directions is not exploited by these
algorithms, resulting in potentially non-optimal routing decisions. Finding cost-optimal
routing decisions requires additional hardware, but also improves the routing decisions’

73

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

quality.
To summarize, in contrast to all other deflection routing based approaches, this

is the only holistic approach, which includes fault diagnosis. The fault model on a
finer granularity enables graceful performance degradation and avoids the immediate
shutdown of defect routers. Furthermore, the cost-based routing improves the routing
decisions’ quality.

FoN [Fen+10b]: Feng et al. presented the Fault-on-Neighbor (FoN) aware deflection
routing algorithm, which uses 2-hop fault information. Compared to the cost-based
approach, the primary focus of FoN is on tolerating more complex fault situations, which
can arise at higher fault rates. Toward this end, adjacent routers exchange their local
fault information. A router’s local fault information consists of 4 bit, representing the
states of the router’s links to the four compass directions. Every router transmits its own
local fault information to every adjacent router and receives their local fault information
in return. Thus, two adjacent routers exchange 8 bit of fault information. The 2-hop
fault information is a compromise between strictly local and global fault information.
FoN’s fault model only considers completely broken or fully functional links and routers.
The basic idea of FoN is to assign packets to a productive output direction, from the
highest prioritized packet to the lowest prioritized packet. If two productive directions
exist, the direction with the lower stress value, i.e. the lower utilized link, is chosen. If
faults prevent a routing decision, the 2-hop fault information is used to determine the
best alternative path towards the destination.

With 2-hop fault information, FoN is capable of tolerating faulty regions which do
not contain two sequential concave points. Here, concave points correspond to 270◦

corners on the boundary of a faulty region. Two fault shapes which both contain such
concave points are depicted in Figure 4.1.

Feng et al. reported that the cost-based approach achieves a slightly higher saturation
throughput than FoN in the fault free case. However, in the case of link failures, the
throughput with FoN is 13% higher on average, due to expanded fault information. The
authors further reported that the maximum frequency of FoN is approx. three times
higher than that of the cost-based approach, whereas the required area or a router is
only ≈ 45% of a cost-based router.

FTDR / FTDR-H [Fen+10a]: The fault-tolerant deflection routing (FTDR) algo-
rithm, also developed by Feng et al., is based on Q-learning. In contrast to FoN, FTDR
is not limited to special fault patterns. Every router is equipped with a routing table
which stores estimated distances, referred to as Q-values, to all other routers in the
network, for all four output directions. The table entries are initialized with Manhattan
distances and infinity for broken links. Further, routers response to received packets
with their own minimum Q-value for the received packet’s destination address. These

74

4.2 Related Work of Chapter 4

(a) H-shape (b) U-shape

Figure 4.1: Two fault shapes which are not tolerated by FoN. Boundaries of the faulty
regions are highlighted in greed. Router which correspond to concave points
are filled with a dotted pattern.

Q-values are transmitted over dedicated wires. Thereby, routers receive a Q-value for
each sent packet and gradually learn the best route to every destination. Additionally
to the routing tables, 2-hop fault information is used, which reduces the average hop
count, compared to just local fault information.

The authors assumed a size of 6 bit for a Q-value, independent of the used NoC
dimension. Thus, the size of each routing table is N · 4 · 6 bit, whereas N denotes the
number of routers in the network. Additionally, 12 bit are required to exchange the
Q-values between a router and one of its neighbored routers. As the routing tables’ size
increases with the NoC dimension, FTDR is only suitable for small and medium-sized
networks. To mitigate the large overhead of the routing tables, the same authors also
developed FTDR-H [Fen+10a], which is an hierarchical version of FTDR. At FTDR-H,
the mesh is divided into several regions of fixed sizes, and each router contains a local
as well as a region routing table. The local routing table is used if a packet’s destination
router is located in the same region as the current router. If this is not the case, the
region routing table is used. The application of a hierarchical routing table reduces

75

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

the required overhead, in particular, for large NoC dimensions, but also impairs the
fault tolerance qualities. FTDR-H can not deal with complex fault situations that span
multiple regions of the region routing tables.

An improved version of FTDR-H, based on differential Q-routing, is presented by
Radetzki in [Rad11a; Rad11b]. Differential Q-routing exploits that the expected minimal
distances (Q-values) correspond to Manhattan distances in the fault free case and that
a 2D mesh topology is deployed. Therefore, it is sufficient to store and exchange only
∆Q-values, which give the deviation of Q-values and Manhattan distances. Furthermore,
the structure of the global and local routing tables is improved. Instead of fixed global
routing tables, the network is individually segmented for each router. Every router is
equipped with a routing table, which contains entries for neighbored routers with a
maximum distance of two hops, as well as entries for the eight compass directions N,
NE, E, SE, S, SW, W, and NW. These improvements enable better performance in case of
faults and additionally 40% of area savings compared to the original FTDR-H algorithm.

FTDR for a 3D mesh based version of Nostrum is presented in [Fen+11b]. Besides
the four ports related to the 2D mesh, every router has two vertical Through-Silicon Via
(TSV) ports to connect adjacent routers in the upper and lower layer. Packets are routed
on the same layer towards their destination first, using the 2D FTDR algorithm. If the
destination’s x and y coordinates are reached, the packet is routed across the layers. In
the case of a faulty TSV link, the current router sets a temporary address field in the
flit structure to route the packet to an intermediate router with a healthy vertical link.
In order to find such an intermediate router, every routers is equipped with two TSV
state vectors, which record the fault state of the up and down links of the corresponding
layer. These two vectors are exchanged between adjacent routers of the same layer, and
thereby, every router learns the fault state of all vertical links of its own layer.

In [Fen+13], Feng et al. extended their FTDR algorithm and the corresponding router
architecture by (1) a link-level error control scheme, (2) an online fault diagnosis
mechanism, and (3) a test process. The fault diagnosis mechanism is based on Single-
Error Correcting and Double-Error Detecting codes (SECDED codes) to distinguish
between transient and permanent faults. Segments of the packets’ head and payload
information are decoded with two and five different SECDED codes, respectively. Hence,
the link-level error control scheme can correct between one and seven single-bit errors
and detect between two and 14 faulty bits. Double-bit errors are solved by retransmission.
If a double-bit error holds for more than one cycle, the link is checked by a test process
to detect permanent faults and deactivated if necessary.

In this section, several fault-tolerant and additionally deflection routing based router
architectures have been introduced. These architectures are designed to tolerate different
fault types. Furthermore, the complexity of tolerable fault situations varies from single
faults to very complex fault situations, which are caused by a combination of several

76

4.3 FaFNoC Router Architecture

faults. The main focus of the FaFNoC router architecture, which is presented in the next
section, is on tolerating permanent faults at link and router level, as well as potentially
arising complex fault situations. The router architectures FON, FTDR, and FTDR-H are
selected for comparisons herein, as these architectures are able to tolerate complex fault
situations.

4.3 FaFNoC Router Architecture

In this section, the fault-tolerant FaFNoC router architecture is introduced, which has
been developed as part of this thesis. An overview of this architecture is depicted in
Figure 4.2. As mentioned in Section 3.4, it is partially based on the non-fault-tolerant
CHIPPER architecture. As such, deflection routing is used and a permutation network is
deployed. In contrast to CHIPPER and the non-fault-tolerant router architecture used
in the rest of this thesis, a Benes network is used instead of a Banyan network and an
additional component for fault tolerance, the fault-status-handler, is deployed. The
utilized 4× 4 Benes network consists of one additional stage of switching elements,
which provides benefits in terms of fault tolerance. More information on the deployed
permutation network can be found in Section 4.3.2.

The herein used fault model takes permanent, bidirectional link failures into account,
which can be caused, for example, by wearout mechanisms. It is assumed that every
router has a 4 bit wide fault information input fi, representing the states of the router’s
links to the four compass directions N, E, S, and W (see Figure 4.2). Even if fault
detection is not considered herein, existing fault detection mechanisms, such as the
mechanisms presented in [KSR10; Fen+13], can be used to obtain this information. Link
failures are considered as bidirectional, as a basic assumption of deflection routing is an
equal number of input and output ports. If a complete router fails, all links connected
to a router are regarded as faulty.

To be able to tolerate permanent link and router failures, two key aspects have to be
ensured:

1. Faulty links have to be avoided.

2. A solution to overcome more complex fault situations and avoid livelocks is
required.

The required adjustments to a permutation network to avoid faulty links are discussed
in the subsequent Sections 4.3.1 and 4.3.2. To overcome complex fault situation, FaFNoC
uses the concept of FaF, which is introduced in Section 4.3.3.

77

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

ej
ec

ti
on

in
je

ct
io

n

fa
ul

t-
st

at
us

-h
an

dl
er

L L fifi fi fi

fi fi fi

2 2 2

2 2 2

4

N
W

S
E

N
S

E
W

Figure 4.2: Overview of the FaFNoC router architecture.

4.3.1 Fault Tolerance and Banyan Networks

The non-fault-tolerant router architecture used in the rest of this thesis utilizes a 4× 4
Banyan network as interconnection architecture. In contrast, the fault-tolerant FaFNoC
architecture uses a 4× 4 Benes network, as depicted in Figure 4.2, which consists of
one additional stage of switching elements compared to a 4× 4 Banyan network. As
a motivation for this design decision, the drawbacks of Banyan networks in terms of
fault tolerance are emphasized in this section. To be able to demonstrate the resulting
consequences for a router architecture, the required adjustments to avoid faulty links at
Banyan network must be known. Thus, the required adjustments are shown first, and
afterwards the resulting consequences are presented.

Compared to a crossbar based router architecture, avoiding faulty links at permutation
networks is more complicated, as prioritization, routing, and allocation are performed
individually by the switching elements. At permutation networks, there is no central
component, like a central switch allocator (cf. Figure 2.12), which allocates the output
ports. Hence, a decentralized implementation of the fault tolerance concept is desirable.

To illustrate the state z(si) of a switching element si which is connected to a faulty
link, the following symbols are used, in addition to the symbols depicted on Page 48:

78

4.3 FaFNoC Router Architecture

Required
permutation

Cause / defect ports State Symbol

1) arbitrary
permutation

one input or one
output is defect

z(si) = {0,1}
i1

i2

o1

o2

2) identity
permutation

i j and o j are defect,
j ∈ {1,2} z(si) = 0

i1

i2

o1

o2

3) cross
permutation

i j and o j mod 2+1 are
defect, j ∈ {1, 2} z(si) = 1

i1

i2

o1

o2

4) arbitrary
permutation

both inputs or both
outputs are defect

z(si) = {0,1}
i1

i2

o1

o2

The first symbol is used if only a single input or a single output of si is defect. In this
case, an arbitrary permutation can be performed, but it has to be ensured that the faulty
input or output is not used. At the second and the third symbol, an identity permutation
and a cross permutation are required to avoid the usage of the faulty input and output,
respectively. The fourth symbol is used if both inputs and/or both outputs are faulty, and
hence, the switching element’s state is irrelevant, as no flits can arrive at this element.
These symbols are used horizontally and/or vertically flipped if i2 is faulty instead of i1
or the outputs are defect instead of the inputs. Hereinafter, a switching element with no
faulty input or output, at least one faulty input or faulty output, and two faulty inputs
or two faulty outputs is denoted as fully functional switching element, partially functional
switching element, and faulty switching element, respectively.

The fault situations which can occur at a 4× 4 permutation network can be catego-
rized by the number of faulty links. As link failures are considered as bidirectional, a
faulty link from router Ra to router Rb always entails an unusable link from Rb to Ra,
regardless of this link’s status. Consequently, links are deactivated pairwise, or rather,
the links of a compass direction are deactivated. In the following, an n-direction(s)
fault situation denotes a situation at which exactly n directions of a router are faulty,
and n ∈ {0,1,2,3,4}. Hence, a zero-direction and a four-directions fault situation
correspond to a fully functional and a faulty router. Both situations are easy to handle,
as either the router operates in normal mode or is completely deactivated. The required
adjustments for the other fault situations are described in the following. Figure 4.3
shows all

�4
1

�

= 4 existing one-direction fault situations of a Banyan network. All these
situations have in common that the state of the two partially functional switching el-
ements has to correspond to an identity permutation, as a faulty link might be used
otherwise. Furthermore, the two remaining switching elements can perform an arbitrary
permutation. The reason for this characteristic will be explained on the example of a
faulty north direction (cf. Figure 4.3a), but the same reasons apply for all one-direction
fault situations. If the north direction is faulty, the switching element s3, i.e. the upper

79

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(a) North direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(b) East direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(c) South direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(d) West direction faulty

Figure 4.3: All one-direction fault situations of a Banyan network.

right element, has only one functional output port, the south. Thus, at any time, at most
one flit is allowed to arrive at s3. However, it has to be expected that one flit arrives from
the fully functional switching element s2, as two flits can arrive at s2 and in this case one
flit has to be forwarded to s3. Hence, the partially functional switching element s1 is not
allowed to transmit a flit to s3. From this follows that the state of s1 has to be 0, i.e. an
identity permutation. Furthermore, the state of s3 also has to correspond to an identity
permutation, as otherwise an arriving flit, which only can be received from s2, would
be transferred to the faulty north direction. In conclusion, at every one-direction fault
situation, the state of both partially functional switching elements has to correspond to
an identity permutation, as otherwise a flit could be transferred to a faulty link.

The
�4

3

�

= 4 three-directions fault situations of a Banyan network are depicted in
Figure 4.4. If three out of four directions are faulty, only a single routing decision
remains: the only functional input port has to be connected to the associated output
port. At the herein used input and output port order of the permutation network, which
has been adopted from CHIPPER, an input port is connected to its associated output
port if and only if the state of all involved switching elements corresponds to an identity
permutation. Hence, all three-directions fault situations have in common, that the state
of the two partially functional switching elements has to be 0, i.e. correspond to an
identity permutation. Furthermore, two faulty switching elements exist which can be in

80

4.3 FaFNoC Router Architecture

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(a) East, south, and west direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(b) North, south, and west direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(c) North, east, and west direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(d) North, east, and south direction faulty

Figure 4.4: All three-directions fault situations of a Banyan network.

an arbitrary state as no flits can arrive at these elements.

In terms of fault tolerance, the two-directions fault situations are more complicated. At
these situations, two routing decisions remain. In total there are

�4
2

�

= 6 two-directions
fault situations. As a Banyan network consists of four switching elements, it is obvious
that at least two out of the six possible two-directions fault situations can not be handled
by a single switching element. This means, some kind of coordination between the
switching elements is required at these two situations. Therefore, all two-directions fault
situations can be divided into unambiguous and ambiguous fault situations. Figure 4.5
shows the four unambiguous fault situations, which all consist of one fully functional
switching element, two partially functional switching elements, and one faulty switching
element. The two partially functional elements have to be in the state for an identity
permutation, due to the same reasons already explained at one-direction fault situations.
Thus, the only fully functional switching element, which can be in an arbitrary state,
decides between the two remaining routing decisions.

The two ambiguous fault situations are depicted in Figure 4.6. At these two situations,
all four switching elements are partially functional, i.e. they are connected to one faulty
input or output. Here, also two routing decisions remain. For instance, if the north
and the west direction are faulty (cf. Figure 4.6a), the two remaining routing decisions

81

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(a) North and east direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(b) North and south direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(c) East and west direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(d) South and west direction faulty

Figure 4.5: All unambiguous two-directions fault situations of a Banyan network.

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(a) North and west direction faulty

1

2

3

4

N

S

E

W

N

E

S

W

V

H

V

H

(b) East and south direction faulty

Figure 4.6: All ambiguous two-directions fault situations of a Banyan network. Two
different configurations exist for these two situations.

82

4.3 FaFNoC Router Architecture

are15 E→ S, S→ E and E→ E, S→ S. Please note that a reflection of flits (e.g. E→ E,
S→ S) can be required to overcome complex fault situations, even if this permutation
seem useless at first glance. Bad routing decisions, which cause that flits are routed into
a wrong direction, have to be reversible. Such routing decisions can not be avoided
without global fault information, and they might require a reflection to undo them.

For both remaining routing decisions, all four switching elements have to be in the
same state, either z(si) = 0 for E→ E, S→ S, or z(si) = 1 for E→ S, S→ E, i ∈ {1, 2, 3, 4}.
If one switching element is in a different state than the other elements, a faulty link
would be used. Thus, these two situations complicate the fault handling, due to the
following reasons: At these two situations, every switching element has to evaluate the
complete fault information fi, whereas local fault information for the two input ports
is sufficient for all other fault situations. Furthermore, every switching element has to
coordinate its routing decision with other switching elements. In particular, s1 has to
consider the state of s2, and vice versa, which increases the critical path of the Banyan
network.

In summary, at all one-direction fault situations, at all three-directions fault situations,
and even at four out of the six possible two-directions fault situations, it is sufficient to set
the state of partially functional switching elements to 0, i.e. to the identity permutation,
to avoid faulty links. This can be implemented in a decentralized manner and every
switching element has to consider just local information. This does not apply to the
two two-directions fault situations of Figure 4.6, which require a coordination between
switching elements.

Besides the requirement for coordination, Banyan networks are internal blocking, i.e.
not every permutation between all input and output ports is possible. In the fault-free
case, the internal blocking characteristic might be acceptable, as a Banyan network
has low hardware requirements and, even more importantly, it is guaranteed that the
highest prioritized flit can be transferred to a productive direction. However, if links
fail, this can not be guaranteed anymore. This aspect is illustrated by means of a short
example. Figure 4.7a shows a 2D mesh of routers and the dashed red lines represent
faulty links. In the depicted fault situation, every path between source router Rs and
destination router Rd includes the north link of router Ra. In particular, every shortest
path between Rs and Rd contains Ra, whereby a flit arrives at Ra from the west and
should be forwarded to the north. Unfortunately, this turn from the west to the north is
not possible, as the link in the south of Ra is faulty. Even if the link in the south is not
required for this transmission, the states of both switching elements s2 and s3 of Ra are
predefined to z(s2) = 0 and z(s3) = 0 (cf. Figure 4.3c), i.e. to the identity permutation,
due to this fault situation. Consequently, flits arriving at Ra from the west can only be
transmitted to the east or be reflected to the west. Nevertheless, every path from Rs to
Rd has to include Ra ’s north link. As this link is only reachable for flits which arrived at

15A→ B means, a flit from input port A is forwarded to output port B.

83

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

Rs

Rd

Ra Rb

(a) Livelock occurs if routers never reflect flits

Rs

Rd

Ra Rb

Rc

(b) Reflections might cause livelocks

Figure 4.7: Two fault situations, the first situation requires a reflection of flits, whereas
reflections create a risk of livelocks at the second situation.

84

4.3 FaFNoC Router Architecture

1

2

3

4

N

E

S

W

V

H

V

H

N

S

E

W

ej
ec

ti
on

in
je

ct
io

n

fa
ul

t-
ha

nd
le

r

fa
ul

t-
st

at
us

-h
an

dl
er

L L fi fi

N
E

S
W

N
S

E
W

4 4
2 2

2 2

Figure 4.8: Overview of the FaFNoC router architecture based on a Banyan network.

Ra from the east, every path has to include router Rb. This means, if Rs transmits a flit
with destination Rd to the north, which is reasonable, as this corresponds to a shortest
path, the flit has to be reflected eventually. Otherwise, the flit would be routed on a
circular path in clockwise direction inside the orange highlighted area, as indicated by
the green arrows in Figure 4.7a. Figure 4.7b shows a second, different fault situation.
However, from Rb ’s perspective, both fault situations depicted in Figure 4.7 do not differ
from each other. At Figure 4.7b, a reflection of flits from Rb back to Ra creates the risk
of livelocks. In this fault situation, solely greedy, destination-oriented routing decisions
are not sufficient to leave the orange highlighted area. Instead, a flit with destination Rd
has to be routed intentionally away from Rd , to reach Rd finally. In conclusion, Banyan
networks require the reflection of flits to overcome some fault situations and avoid
livelocks, since some routing decisions can become impossible due to link failures. On
the other hand, this complicates the design, as reflections in turn can lead to livelocks,
or even the oscillating of flits between adjacent routers.

FaFNoC based on a Banyan network

As mentioned before, a Benes network, instead of a Banyan network, is deployed
as interconnection architecture at FaFNoC. Nevertheless, a Banyan network based
architecture was developed as part of this thesis, to justify the design decision and
to show the resulting benefits and drawbacks. Hereinafter, the Banyan network and
Benes network based versions of FaFNoC are referred to as FaFNoC-Banyan and FaFNoC-
Benes, respectively, where necessary. An overview of FaFNoC-Banyan is depicted in
Figure 4.8. Besides the deployed permutation network, the most significant differences
to FaFNoC-Benes are (1) the fault-handler and (2) the return flag.

Instead of adding complex logic to all four switching elements, a central fault-handler
is deployed, which adjusts the switching elements’ states in case of faulty links. Towards

85

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

this end, the fault-handler has a 4 bit wide fault information input fi, which provides
the functional capability of the links for the four compass directions. Furthermore, the
fault-handler has four 2 bit wide fault control outputs fci, i ∈ {1,2,3,4}, whereas the
output fci controls the behavior of the switching element si. At fci = 00, switching
element si operates according to its routing algorithm (normal operation). At fci = 01,
the state is set to z(si) = 0 and at fci = 10 to z(si) = 1. If at least one faulty link exists,
the fault-handler takes over the routing decision by setting its fault control outputs fci
according to Figures 4.3 to 4.6. This means that the switching elements connected to
a faulty link have to perform an identity permutation, except for the two situations
depicted in Figure 4.6. In those two situations, the fault-handler prevents a reflection of
flits, unless a flit’s return flag is set, as described in the following.

As shown before, reflecting flits can cause livelocks. Nevertheless, FaFNoC-Banyan
requires reflections to overcome some complex fault situations, since the deployed 4×4
Banyan network is internal blocking. To avoid livelocks, the used routing algorithm
avoids reflections, which means that flits are not routed back to their arriving direction.
Nevertheless, if a flit’s productive output direction is occupied by a higher prioritized flit,
the flit can be reflected. Furthermore, the flit structure of FaFNoC-Banyan is extended
by one single bit, referred to as return flag, to allow productive reflections. If a router
R y can not transmit a flit to its healthy productive direction due to a faulty link, as the
case at router Ra in Figure 4.7a, the current router R y sets the flit’s return flag to 1. If
this bit is set, a receiving router Rz tries to reflect the flit back to the sending router
R y . Hence, the flit arrives at router R y again one network clock cycle later, but from
a different direction, which allows to transmit the flit to its productive direction. An
example of the return flag handling is depicted in Figure 4.9. The return flag handling
is implemented in the fault-handler and fault-status-handler. The fault-handler adjusts
the switching elements’ states in case the highest prioritized flit’s return flag is set.
The fault-status-handler, which is explained in Section 4.3.3, sets and clears this bit,
dependent on the switching elements’ states.

4.3.2 Substitute Benes Networks for Banyan Networks

FaFNoC utilizes a permutation network as interconnection architecture, because of
the benefits mentioned in Section 3.4. However, as shown in the last section, Banyan
networks suffer from three problems when it comes to fault tolerance:

1. They are internal blocking, i.e. not every permutation between all input ports and
output ports is supported.

2. Coordination between switching elements is required, e.g. by a central component
like the fault-handler.

3. Link failures can cause that fully functional links are unusable.

86

4.3 FaFNoC Router Architecture

Rx R y Rz

Rx R y Rz

Rx R y Rz

r=0 r=1

r=1

r=0

r=0

r=0

Situation: R y receives a flit from the west,
flit’s destination is located in the north, return
flag is 0. As S direction is faulty, W→ N not
possible.
1) Hence, R y sets return flag to 1 (r=1) and
sends flit to E. Return flag signals Rz to return
the flit immediately.

2) Rz checks return flag of the just arrived flit.
As return flag is set, flit is returned to sender
router R y in the next clock cycle.

3) Flit arrives at R y from the east. E→ N is
possible, even if S direction is faulty. Hence,
flit can be routed to is productive output port
N in this clock cycle.

Figure 4.9: Return flag handling of FaFNoC-Banyan illustrated.

The second problem prevents a decentralized implementation of the permutation net-
work, whereas the other two problems might impair the performance of a faulty NoC.
Non-fault-tolerant router architectures based on a Banyan network, like CHIPPER, are
also internal blocking, which means that some routing decisions are not supported.
However, the influence on the achievable performance of a partially faulty NoC can
be significantly higher than that of a fully functional NoC, as the number of possible
routing decisions, and the number of paths between the routers, is already reduced at a
faulty network. Moreover, the third problem of the list above is a consequence of the
internal blocking characteristic as well as the required adjustments to the states of the
switching elements.

To avoid these three problems of Banyan networks, a Benes network is deployed at
the fault-tolerant FaFNoC router architecture. In this section, it is shown that Benes
networks provide a solution for all three problems of Banyan networks. To this end,
firstly, several important properties of permutation networks are presented, and it is
shown that some properties of CHIPPER’s Banyan network should not be adopted.
Secondly, Banyan networks and Benes networks are compared theoretically. Thirdly, it

87

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

1|S

2|N

1

2

3

4

5

6

N

E

S

W

V

H

V

H

V

H

V

H

N

S

E

W

1|S

2|N

1|S

priority
preferred output port

Figure 4.10: A 4×4 Benes network with configuration adopted from CHIPPER’s Banyan
network. The used configuration is the reason for the depicted deflection.

is demonstrated that the deployed Benes network allows an efficient implementation of
the fault tolerance concept.

Configuration of the deployed Benes network An important property of a permu-
tation network is the arrangement of the switching elements’ I/O directions, hereinafter
referred to as the configuration of a permutation network. Figure 4.10 shows a Benes
network with the same configuration as used at CHIPPER’s Banyan network. There,
the input ports of the permutation network, which are the input ports of s1 and s2, are
arranged according to the compass directions. The output ports of the permutation
network, which are the output ports of s5 and s6, are arranged according to the vertical
axis (s5) and the horizontal axis (s6). According to the compass directions, the vertical
axis consists of N and S, and the horizontal axis consists of E and W. The switching
elements s1, . . . , s4 route flits with a productive direction in the north or in the south
to their first output port V , which is the vertical axis, and flits with a productive direc-
tion in the east or in the west to their second output port H, which is the horizontal
axis. As explained in Section 3.3.2, this particular configuration allows an efficient
implementation of the routing algorithm. Furthermore, this configuration enables that
the most frequent permutation is supported by the Banyan network, even though it is
internal blocking. However, as Benes networks are rearrangeable non-blocking, this
particular configuration might not be necessary. Indeed, at a Benes network, CHIPPER’s
configuration leads to undesirable deflections of flits, as depicted in Figure 4.10. There,
both arriving flits, the orange one and the green one, have a destination along the
vertical axis. Hence, both flits are routed to s3, where they collide. Switching element
s3 can transfer only one flit to the vertical axis, and thus the lower prioritized flit is
deflected to the horizontal axis. Figure 4.11 shows the Benes network which is deployed
at FaFNoC-Benes. An explanation why this configuration was chosen follows after the
next paragraph.

88

4.3 FaFNoC Router Architecture

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

Figure 4.11: FaFNoC’s Benes network, with a changed arrangement of input ports as
well as a changed wiring between the first and the second stage of switching
elements.

Classification and limitations of Benes networks Both Banyan networks and
Benes networks are multistage logarithmic networks. In contrast to Banyan networks,
which consist of ld(N) stages of N

2 switching elements16, Benes networks consist of
2 · ld(N)−1 stages of N

2 switching elements, whereby N denotes the number of I/O ports
[LL04, p. 12]. Specifically, this means that the deployed 4× 4 Benes network consists
of six switching elements, which are arranged in three stages (cf. Figure 4.11). On
account of the additional stages of switching elements, Benes networks are rearrangeable
non-blocking, multi path networks, whereas Banyan networks are internal blocking,
single path networks. At a multi path network, multiple paths between the network’s
I/O ports exist, whereas only one predefined path exists at a single path network. At
a 4× 4 Benes network, there are exactly two different paths between every input port
and every output port. Rearrangeable non-blocking means that the network is capable
of connecting any input port to every free output port, but existing connections may
have to be rearranged to this end. However, at FaFNoC, only single flits are routed
and connections last only one network clock cycle. Hence, there are no connections
which have to be rearranged, as deflection routing is used. On the other hand, the
configuration of a Benes network influences the possible permutations, e.g. S → N,
N→ S is not possible with the configuration depicted in Figure 4.10. Therefore, it has to
be shown that the configuration used at FaFNoC-Benes, which is depicted in Figure 4.11,
is non-blocking, i.e. all 4! = 24 permutations are supported. This can be shown by a
case distinction. At every permutation, two flits destined for the vertical axis, referred
to as V -flits, and two flits destined for the horizontal axis, referred to as H-flits, exist.
In the first case, it is assumed that one V -flit and one H-flit arrive at both switching
elements s1 and s2. In this case, no deflection occurs at s1 and s2, independently of the
flits’ priorities, as both switching elements can route both flits to their V and H output
port. Consequently, at s3 and s4 exactly one H-flit and one V -flit arrive. Thus, also at
these two switching elements no deflection occurs. Hence, both V -flits arrive at s5, and

16Herein, it is assumed that they are constructed using 2× 2 switching elements.

89

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

Routing decision Banyan Benes crossbar

N→ S, S→ N 3 3 3

N→ S, E→ N 7 3 3

N→ S, E→ S∨W 7 7 3

N→ S, E→ S 7 7 7

Table 4.2: Possible and impossible routing decisions of different interconnection archi-
tectures.

both H-flits arrive at s6. As one of the V -flits is destined for N and the other one for S,
also at s5 no deflection occurs. The same holds for both H-flits which arrive at s6. Thus,
the deployed Benes network supports every permutation according to the assumption
that one V -flit and one H-flit arrive at s1 and s2. In the second case, it is assumed that
the flits arrive not as assumed in the first case, i.e. both V -flits or both H-flits arrive at s1.
Hence, at s2, also two H-flits or two V -flits arrive. As s1 and s2 have one H and one V
output port, only the higher prioritized flit can be routed to its productive direction, and
the lower prioritized flit has to be deflected. However, as s1 transmits flits destined for
the V axis to s3, and s2 transmits such flits to s4, exactly one V -flit and one H-flit arrive
at s3 and s4. Hence, no deflection occurs at these second stage switching elements and
therefore also not at the third stage switching elements. In conclusion, the deployed
Benes network is non-blocking, i.e. it supports every permutation.

Since the deployed Benes network is non-blocking, an increased number of routing
decisions is supported, compared to a Banyan network, which is internal blocking. To
demonstrate the limitations of Benes networks, in particular, compared to crossbars,
Table 4.2 shows several routing decisions and if they are possible with a Banyan network,
a Benes network, and a crossbar. At all four routing decisions, two flits arrive at a router,
and it is assumed that the flit arriving from the north has a higher priority. The first
routing decision is possible with all interconnection architectures, which means that
both incoming flits can be routed to their preferred output port. The second routing
decision is not possible with a Banyan network, as s1 can transfer only one flit to the
vertical axis, and hence, it has to deflect the lower prioritized flit to the horizontal axis.
At the third routing decision, it is assumed that the second flit, which arrives at S, has
two productive output ports, E and W. Switching elements, however, have to select one
of the two productive directions, as they can transmit a flit either to the vertical axis or
to the horizontal axis. Here, it is assumed that the vertical axis is prioritized, i.e. Y -first
routing is used. Unfortunately, this leads to a collision at s5, as a Benes network has
no central controller. The last routing decision is not possible with any interconnection
architecture, as both flits have only one productive output port, which is the same port
for both flits.

90

4.3 FaFNoC Router Architecture

Fault tolerance and Benes networks As Benes networks belong to the group of
multi path networks, several configurations of a 4× 4 Benes network exist which solve
the before mentioned problems of Banyan networks. To justify the used configuration,
some desirable characteristics of a permutation network are shown first. Afterwards, it is
shown how the permutation network is constructed, and that the desirable characteristics
are achieved.

First of all, the permutation network should support as many routing decisions as
possible, in particular, under fault conditions. Furthermore, an efficient implementation
of the routing algorithm should be supported. This includes that no central component,
or coordination between switching elements, is required. The switching elements should
operate completely independently from each other, using only local information, i.e.
using only the two received flits and fault information for the two connected input ports.

The herein used Benes network is constructed as follows:

1. The switching elements’ output port arrangement is adopted from CHIPPER, as
this allows an efficient implementation of the routing algorithm, due to the reasons
explained in Section 3.3.2.

2. The wiring between the first and the second stage of switching elements is changed
to avoid collisions at the second stage (cf. Figure 4.10). This corresponds to a
permutation of the two output ports of s2. Hence, s1 and s2 send flits, with a
destination along the same axis, to different switching elements.

3. The input port direction are arranged in a way that every input port is connected
to its corresponding output port if all switching elements perform an identity
permutation: d → d, ∀d ∈ {N, E, S, W}⇔ z(si) = 0, ∀i ∈ {1,2, 3,4}.

The third point simplifies the required adjustments to avoid faulty links. At a Banyan
network, every switching element which is connected to a faulty link has to perform an
identity permutation, except in the case of the two fault situations depicted in Figure 4.6.
This ensures that a faulty input port, i.e. an input port connected to a faulty link, is
connected to its corresponding output port, and hence, the faulty link can not be used
by flits from other input ports. Since there is only a single path between two arbitrary
input and output ports of a Banyan network, these adjustments are unambiguous. In
contrast, multiple paths between an input port and output ports exist at a Benes network,
as those networks belong to the group of multi path networks. Nevertheless, every
switching element has to determine its state by using only local information to enable a
decentralized implementation of the fault tolerance concept. The third point ensures
that all input ports are connected to their corresponding output ports if all switching
elements perform an identity permutation. Thereby, it is also ensured that an arbitrary

91

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(a) North direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(b) East direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(c) South direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(d) West direction faulty

Figure 4.12: All one-direction fault situations of a Benes network.

input port is connected to its output port if all switching elements associated17 to the
corresponding direction perform an identity permutation. Thus, switching elements can
adjust their states based on solely local fault information, i.e. the fault status of the two
directions associated to the switching element.

To demonstrate that no coordination between the switching elements is required,
Figures 4.12 to 4.14 show all one-direction, two-directions, and three-directions fault
situations of the deployed 4× 4 Benes network. As the case at Banyan networks, one-
direction and three-directions fault situations are easy to handle, as either a single
faulty path or a single functional path exists. However, in contrast to Banyan networks,
the same applies to two-directions fault situations at Benes networks. The deployed
Benes network consists of six switching elements, whereas one fully functional switching
element exists at each of the six possible two-directions fault situations (cf. Figure 4.13).
This means, the fully functional switching element can decide between both remaining
routing decisions, and no coordination between the switching elements is required.

Figures 4.12 to 4.14 show that no faulty link is used if every switching element

17At a Benes network, a switching element si is referred to as associated to a direction d if either si is a
first stage switching element, i.e. it is directly connected to d, or si is connected to d in the case that
z(s j) = 0, whereas s j are switching elements of the preceding stages. For instance, i1 and i2 of s4 are
referred to as associated to S and W, respectively, even if they might be physically connected to other
directions.

92

4.3 FaFNoC Router Architecture

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(a) North and east direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(b) North and south direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(c) North and west direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(d) East and south direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(e) East and west direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(f) South and west direction faulty

Figure 4.13: All two-directions fault situations of a Benes network.

93

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(a) East, south, and west direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(b) North, south, and west direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(c) North, east, and west direction faulty

1

2

3

4

5

6

N

W

S

E

V

H

V

H

V

H

V

H

N

S

E

W

(d) North, east, and south direction faulty

Figure 4.14: All three-directions fault situations of a Benes network.

connected to a faulty direction performs an identity permutation, i.e. their state is 0.
However, even if these predefined states are sufficient to avoid faulty links, they are
not required, as multiple paths exist between any tuple of input port and output port.
For instance, if the north direction is faulty, the north input port could be connected
to the north output port by using s4 instead of s3, which would lead to different states.
Nevertheless, the chosen and depicted states ensure that the fault situations are additive.
This means, the required state changes to avoid two one-direction fault situations
correspond to the required state changes of the resulting two-directions fault situation,
and this also holds for all other combinations of fault situations. Hence, additivity
simplifies a decentralized implementation of the fault tolerance concept, as required
adjustments depend only on local fault information.

4.3.3 Concept of Fault-aware Flits

In Sections 4.3.1 and 4.3.2, adjustments to the permutation network to prevent the
utilization of faulty links have been shown. Unfortunately, these adjustments are
required, but they are not sufficient to guarantee the delivery of flits to their destination.
For instance, if fully functional routers reflect flits back to faulty routers, flits might
oscillate between these routers, which leads to livelock situations. In general, link
failures can cause that the regular structure of a 2D mesh topology disintegrates into

94

4.3 FaFNoC Router Architecture

an irregular one. Hence, routing algorithms which require this regular structure can
not cope with complex fault situations, which can arise if several links fail. Some kind
of global fault knowledge or fault awareness is required to overcome complex fault
situations and avoid livelocks of flits. Existing fault-tolerant and additionally deflection
routing based router architectures use either routing tables (e.g. FTDR, FTDR-H) or
fault information of neighbored routers (e.g. FON). Routing tables in combination with
Q-learning provide good performance as well as high fault tolerance, but the hardware
requirements increase with the network’s size, as the routing tables’ size grows. Thus,
routing algorithms based on tables do not scale with high NoC dimensions. If the
fault information of neighbored routers is used, the hardware requirements per router
are constant, but the fault tolerance is limited as the exchange of fault information is
restricted to a small number of hops. Fault situations which exceed this number of hops
can not be tolerated and therefore this method is only practical for small fault situations.

The non-fault-tolerant CHIPPER architecture excels by its energy efficiency, low
hardware requirements, simplicity, and speed. Thus, these characteristics are preserved
as far as possible at FaFNoC. Deflection routing dispenses with buffers and, instead of
being buffered, flits are deflected in case of collisions. This means, flits are not stored in
routers, but kept on the links instead. The concept of FaF, developed for the FaFNoC
architecture, transfers this approach to the fault-information keeping. Instead of adding
fault awareness to every router, this information is added to the flits. The basic idea
of FaF is adopted from the maze solving algorithm wall follower, at which one follows
either the left wall or the right wall to find a way out of a maze. This means, if a
flit is deflected away from its destination because of a faulty link, the flit is turned to
fault region evasion mode. In this mode, it is attempted to route this flit around the
faulty region by performing either only left turns or only right turns until the region is
overcome.

To this end, the flit structure is extended by two fields for fault tolerance, tDir and tDst.
Both fields together represent a flit’s fault-status, which is denoted by fs. A flit’s turn
direction is stored in tDir ∈ {R, L,−}, whereas R, L, and − denote right turns, left turns,
and no turns (normal mode), respectively. If a flit’s turn direction field is set, i.e. tDir 6= −,
the switching elements route this flit according to the turn direction, and the routing
algorithm is ignored. The second field tDst, stores the flit’s turn distance, which is the
Manhattan distance from the router, at which the flit switched to region evasion modus,
to the flit’s destination. Thus, at an N×N NoC, tDir and tDst require 2 bit and ld(2N)bit,
respectively. These fields are set and cleared by the fault-status-handler, which is the last
component in the data path of the FaFNoC architecture (cf. Figure 4.2). For the sake of
clarity, the fault-status-handler is depicted as a single component, which has I/O ports
for all four compass directions. However, the fault-status-handler in fact consists of four
separate sub-components, and all four directions are handled individually. The pseudo
code of the fault-status-handler is shown in Algorithm 8, and a detailed illustration
of switching element s5 and the fault-status-handler for the north port is depicted in

95

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

Algorithm 8 Fault-status-handler

1: for each flit f arriving from {N, E, S, W} do
// dflctd is true if at least one switching element can not route f to its preferred direction

// This does not mean that f is deflected away from its destination!

2: dflctd← f has been deflected at si , i ∈ {1, 2,3, 4}
3: nDst← Manhattan distance from next router to f (dst) // f (dst) denotes f ’s destination

4: cDst← Manhattan distance from current router to f (dst)
5: if f (tDir) 6= − then // flit is in region evasion modus

6: if dflctd ∨ nDst< f (tDst) then // if flit is deflected or new shortest distance will be reached

7: f (tDir) = − // stop region evasion modus

8: f (tDst) = 0
9: end if

// start region evasion modus if:

// 1) flit has not been deflected by higher prioritized flit,

// 2) flit is routed away from its destination,

// 3) this is due to a faulty link (pDir denotes the flit’s productive direction).

10: else if dflctd ∧ cDst< nDst ∧ f (pDir) is faulty then
11: f (tDst) = cDst

// For instance, a flit routed to N is turned to the left if it has arrived from W. This corresponds to:

// z(s1) = 1∧ z(s3) = 0∧ z(s5) = 0 ∨ z(s1) = 0∧ z(s4) = 1∧ z(s5) = 1

12: if f is turned to the left then
13: f (tDir) = R
14: else if f is turned to the right then
15: f (tDir) = L
16: else if f (dst) on the right then // f is reflected or follows a straight line

17: f (tDir) = R
18: else
19: f (tDir) = L
20: end if
21: end if
22: end for

Figure 4.15.

In general, a flit is turned to fault region evasion modus if the flit is deflected away
from its destination due to a faulty link (cf. Algorithm 8, line 10). In such a case, the
flit’s turn distance field tDst is set to the Manhattan distance from the current router’s
address to the flit’s destination address (cf. line 11), and additionally, the flit’s turn
direction field tDir is set to the appropriate direction to surround the faulty region (cf.
lines 12 to 20). This means, if the flit is deflected away from its destination and a 90◦

turn is performed additionally, only one turn direction is suitable, as the other one can
lead to a livelock. For instance, if a flit f is deflected to the right, f (tDir) has to be set
to L, and f (tDir) = R might lead to a livelock. In case of a reflection, i.e. no turn is
performed, f (tDir) is set to R or L depending on f ’s destination relative to the current

96

4.3 FaFNoC Router Architecture

5
N

dflctdN

S
dflctdS

in1

dflctd1

in2

dflctd2

z5fi

Fault-status-
handlerN

fiz6z5z4z3z2z1

N

N
dflctdN

2 1 4

|f |

1

|f |

1

|f |

|f |

1

|f |

1

Figure 4.15: Detailed illustration of switching element s5 and fault-status-handler for
north port, whereas zi = z(si), i ∈ {1, . . . , 6}.

router. However, this is only a heuristic, which emerged as efficient, and both turn
directions are suitable in case of a reflection.

The flit is turned again to normal mode if the faulty region has been overcome, i.e.
a router which is closer to the destination as tDst has been reached (cf. lines 5 to 9).
Special attention has to be paid if a flit, which is in fault region evasion modus, gets
deflected. The permutation network turns the direction of a flit which is in this mode
whenever possible, in order to route the flit along the faulty region’s boundary. However,
if a flit is deflected, it can be transmitted away from the faulty region. In such a case,
turning the flit whenever possible might lead to a circular path and the flit might never
leave the fault region evasion modus again, i.e. a livelock occurs. Therefore, a flit
is only turned to fault region evasion modus if it is not deflected, and it leaves this
mode immediately if it is deflected. The fault-status-handler, however, can not detect
deflections efficiently. In order to determine if a flit has been deflected by another flit,
the permutation network is extended by one dflctd signal per I/O port, which is set if
the corresponding flit is deflected (cf. Figure 4.15). For instance, dflctdN is set if the flit,
which will be routed to the north, has been deflected by a higher prioritized flit. Please
note that this does not mean that this flit is routed away from its destination. If the
flit is in fault region evasion modus, the flit can be deflected closer to its destination,
however, the flit should have been routed away from its destination according to the
evasion modus.

Figure 4.16 shows an example, at which a flit is routed from its source router Rs
to its destination router Rd . At router Rs, both the north and the west are productive
directions for the flit. Here, it is assumed that the north is chosen, and hence, the flit is
routed to Ra. Unfortunately, Ra can only deflect the flit to the east, as Ra ’s north link
and west link are faulty. As the flit is not deflected by another flit and additionally, it is
deflected away from its destination due to a faulty link, Ra ’s fault-status-handler sets
the flit’s fault-status field fs. The turn direction tDir is set to L, as Ra has turned the flit

97

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

L|3
L|3

−|0

L|7

tDir ∈ {R, L,−}
tDst, Manhattan distance to destination

Rd

Rs

Ra

Rb

Rc

Figure 4.16: Path of a flit which is routed from Rs to Rd . At Ra, the flit is turned to
region evasion modus, and at Rc , back to normal mode.

98

4.3 FaFNoC Router Architecture

to the right, and the turn distance tDst is set to three, which is the Manhattan distance
d1(Ra, Rd). Thus, the next routers along the depicted path try to route this flit in 90◦

to the left. Furthermore, every router checks if the Manhattan distance from the next
router along the flit’s path to Rd is smaller than tDir = 3. By this means, the flit is routed
to Rc, which clears the flit’s fault status, as the next router Rb is only two hops away
from Rd . Finally, the flit is routed in normal mode from Rb to Rd .

4.3.4 Summary and Complete Overview of FaFNoC Router
Architecture

FaFNoC is a fault-tolerant router architecture, which is based on deflection routing and
additionally utilizes a permutation network. To the best of my knowledge, no other
fault-tolerant NoC router architecture exists which is based on a permutation network.
Permutation networks distinguish from crossbars by the fact that flit prioritization, path
arbitration, and routing are performed in a decentralized manner by the switching
elements. Combined with deflection routing, this yields a small, energy efficient, and
fast router architecture. Existing non-fault-tolerant, permutation network based router
architectures, as CHIPPER or MinBD, utilize a 4× 4 Banyan network. In Section 4.3.1,
the drawbacks of Banyan networks in terms of fault tolerance, as well as the necessary
adjustments to avoid faulty links, have been shown. These drawbacks include i.a. the
requirement for coordination between switching elements, as well as unusable, but
healthy links due to faulty links. In Section 4.3.2, it has been shown that a 4× 4 Benes
network requires no coordination between switching elements for fault tolerance, and
it supports more permutations than a 4 × 4 Banyan network. On the other hand, a
4× 4 Benes network consists of one additional stage of switching elements, compared
to a 4 × 4 Banyan network. To demonstrate the benefits of a Benes network based
architecture, both FaFNoC-Banyan and FaFNoC-Benes are compared in Section 4.4.

The adjustments to avoid faulty links, which have been presented in Sections 4.3.1
and 4.3.2, are necessary, but not sufficient to overcome more complex fault situations,
which may arise at higher fault rates. Some kind of fault awareness is required to
overcome those situations, as some flits have to be routed intentionally away from their
destination to reach this destination eventually. Both FaFNoC-Banyan and FaFNoC-
Benes utilize the concept of FaF, which is inspired by the maze solving algorithm wall
follower. There, the flits, instead of the routers, are aware of the encountered fault
situations. To this end, the flit structure is extended by a fault-status field, which in turn
consists of two fields, tDir and tDst. At an 8× 8 NoC, the fault-status field’s size is 6 bit.
Additionally, FaFNoC-Banyan requires one bit, denoted as the return flag, which signals
an adjacent router to reflect a flit immediately. The resulting flit structure is depicted
in Figure 4.17. Please note that the return flag is not required at FaFNoC-Benes. The
fault-status field, as well as the return flag, is set and cleared by the fault-status-handler.
At FaFNoC-Banyan, the required routing decisions, like specific turns or a reflection, are

99

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

Flit structure: dst src hc fs ret pl
x y x y tDir tDst

Size [Bit]: 4 4 4 4 8 2 4 1 128

Figure 4.17: FaFNoC’s flit structure for an 8×8 NoC, consisting of destination and source
address field, hop count field hc, fault-status field fs, which in turns consists
of tDir and tDst, return flag field ret (only required at FaFNoC-Banyan),
and payload field pl.

realized by the central fault-handler, which adjusts the switching elements’ state. At
FaFNoC-Benes, the routing decisions are performed by the switching elements, based
on solely local information, i.e. based on the received flits and the fault information of
the two connected links.

In general, an important aspect of fault-tolerant routing algorithms is guaranteed
delivery, i.e. the abstinence of livelocks. Nevertheless, a formal proof of guaranteed
delivery is omitted herein as the general idea is highly influenced by the well-known
wall-follower algorithm. Instead, the evaluation in the subsequent section is primarily
simulation based. The presented results show, FaFNoC-Benes was able to deliver all flits,
even at high fault rates and different traffic scenarios. Nevertheless, a livelock detection
and resolution approach is required to detect disconnected nodes. Therefore, a FaFNoC
router discards every flit which has reached its maximum hop count of 255.

4.4 Evaluation of FaFNoC Router Architecture

In this section, performance and hardware costs of the FaFNoC router architecture are
evaluated. Further, the results are compared to the existing router architectures FON
[Fen+10b], FTDR [Fen+10a], and FTDR-H [Fen+10a], which are also fault-tolerant
and additionally based on deflection routing. Towards this end, these three router
architectures were reimplemented. All router architectures are simulated for an 8× 8
NoC using an in-house cycle accurate simulator implemented in VHDL. As described in
Section 2.6.2, every router is connected to a traffic generator which is able to generate
different synthetic traffic, or receives the network traffic from Netrace. If a flit could
not be injected due to congestion, the flit is stored in an injection queue and injected
as soon as possible. The flit sizes are chosen to fit 128 bit of payload. Simulations
are executed 5000 clock cycles and ≈ 5× 107 clock cycles for synthetic traffic and
application traffic, respectively. For comparability, every reported value is an average
value of three simulations. Hence, every plot in Figure 4.18 consists of 54 simulations,
and every plot in Figure 4.21 consists of 60 simulations. The location of link failures,
and also traffic in case of random traffic, are generated by a uniform distributed random

100

4.4 Evaluation of FaFNoC Router Architecture

process with the same seed for every router architecture. Only connectivity was ensured
at the link failure placement. The three generated fault situations are depicted in
Appendix A.1.

To evaluate hardware costs, the router architectures are synthesized using Xilinx’s
XST. Please note that XST synthesizes a design for FPGAs and does not use a standard
cell library like ASIC synthesis software. Nevertheless, this enables a comparison of
hardware requirements and achievable speed of the different router architectures.

4.4.1 Non-fault-tolerant Architecture

The fault-tolerant router architectures compared in this section utilize different inter-
connection architectures. A crossbar is deployed at FON, FTDR, and FTDR-H, whereas a
Banyan network and a Benes network are utilized at FaFNoC-Banyan and FaFNoC-Benes,
respectively. Obviously, the interconnection architecture of a router has an impact on
hardware costs as well as on performance. Theoretically, a Banyan network is the most
restrictive interconnection architecture and the crossbar the least restrictive architecture
(cf. Table 4.2). In order to assess the impact of the different interconnection architectures
of a router, the Banyan network of the non-fault-tolerant baseline router architecture is
replaced by a crossbar as well as by a Benes network and various traffic scenarios are
simulated. The simulation results for uniform random traffic with a variable injection
probability are depicted in Figure 4.18. Figure 4.18a shows the average hop count of
all ejected flits, which is limited by 255 hops, as an 8 bit hop count field is used. The
average latency (cf. Figure 4.18b) further considers the queue time, which is theoreti-
cally unlimited. The throughput θ , which is the number of ejected flits per clock cycle
per node, is depicted in Figure 4.18c. These results show, the crossbar based router
architectures achieve the best performance values, i.e. the lowest average hop count
and the lowest average latency, as well as the highest throughput. The worst values
are achieved with the internal blocking Banyan network. As not all permutations are
possible for such a network, this restricts the number of supported routing decisions.
The deployed Benes network is non-blocking, and hence, every permutation between
all I/O ports is theoretically possible. However, in contrast to a crossbar based architec-
ture, a central component which adjusts the permutation network is avoided and the
switching elements are self-routing. This means that all switching elements only use
local information, which is a drawback in terms of achievable routing decision quality
on the one hand, but also a beneficial property that contributes to a fast and energy
efficient router architecture on the other hand.

Figure 4.19 shows the synthesis results, i.e. the required number of LUTs, REGisters
(REGs), and the achievable frequency, for the non-fault-tolerant architectures. The Benes
network based router architecture has slightly higher hardware requirements, as well
as a lower maximum frequency, compared to the Banyan network based architecture,
due to the third stage of switching elements. The crossbar based router architecture

101

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

6
7
8
9

10
11
12
13
14
15
16

5% 10
%

15
%

20
%

25
%

30
%

A
ve

ra
ge

ho
p

co
un

t
hc

Injection probability α

7
8
9

10
11
12
13
14
15

5% 10
%

15
%

20
%

25
%

30
%

A
ve

ra
ge

la
te

nc
y

l
[c

lo
ck

cy
cl

es
]

Injection probability α

50
150
250

0.05

0.1

0.15

0.2

0.25

0.3

5% 10
%

15
%

20
%

25
%

30
%

Th
ro

ug
hp

ut
θ

[fl
it

s/
cy

cl
es
/n

od
e]

Injection probability α

Crossbar
Banyan

Benes

(a) (b)

(c)

Figure 4.18: Simulation results for non-fault-tolerant router architectures with differ-
ent interconnection architectures, uniform random traffic, and a variable
injection probability.

Crossbar

Banyan

Benes

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

LUTs

0
15

0
30

0
45

0
60

0

REGs

0 20 40 60 80

Freq. [Mhz]
Figure 4.19: Synthesis results for one non-fault-tolerant router, with different deployed

interconnection architectures.

102

4.4 Evaluation of FaFNoC Router Architecture

0.10
0.13
0.16
0.19
0.22
0.25

5% 10
%

15
%

20
%

25
%

30
%

Fr
eq

ue
nc

y
ad

ju
st

ed
av

er
ag

e
la

te
nc

y
l a

d
j
[µ

s]

Injection probability α

1.00
3.00
5.00

Crossbar
Banyan

Benes

Figure 4.20: Frequency adjusted average latency for non-fault-tolerant router architec-
tures. The depicted values are based on the average latencies of Figure 4.18
and the maximum clock frequencies of Figure 4.19.

has the highest hardware requirements, mainly because of the sorting and arbitration
logic, which is not required at permutation network based architectures. In summary,
the synthesis results of the Benes network based router architecture lie in between the
values of the crossbar based architecture and the Banyan network based architecture,
just as the performance values.

So far, the average latency has been considered without assuming a specific technology
and is given in units of clock cycles. However, the actually occurring latency is also
affected by the implementation, which is technology dependent. The herein presented
simulation results and synthesis results have shown that the lowest average latency
and the highest maximum frequency are achieved in reverse order. For instance, the
lowest average latency is achieved with a crossbar based router architecture, but this
architecture has the lowest maximum frequency, i.e. the longest critical path. Con-
sequently, the frequency adjusted average latency is another valuable performance
metric, as it combines simulation and synthesis results. Figure 4.20 shows the average
latency of Figure 4.18 adjusted for clock frequencies of Figure 4.19. In contrast to the
solely simulation based average latency, the frequency adjusted average latency of both
permutation network based router architectures is lower than the average latency of the
crossbar based router architecture up to an injection probability of 20%. If the network
is highly congested, i.e. α > 25%, the higher saturation point of the crossbar based
router architecture pays off.

103

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

4.4.2 Fault-tolerant Architecture

In this section, the three existing fault-tolerant router architectures FTDR, FTDR-H,
and FON, are compared to the herein introduced architectures FaFNoC-Banyan and
FaFNoC-Benes. They are evaluated in terms of their fault tolerance, i.e. the impact of
different link failure rates, denoted by λ, and the achievable performance is investigated.
The assumed fault model considers permanent link failures, as caused, among others, by
aging effects (cf. Section 4.1). To this end, the same three evaluation criteria as for the
non-fault-tolerant router architectures are used, i.e. average hop count, average latency,
and throughput. However, the fault tolerance of some of the herein evaluated router
architectures is limited, and thus, some flits might be undeliverable due to complex
fault situations. To prevent that those undeliverable flits stay in the network forever, a
livelock resolution approach is required. Therefore, all evaluated router architectures
discard flits if the flits’ hop count field overflows. Discarded flits are logged as lost
flits, which is the fourth evaluation criteria. In general, a method to deal with lost flits
is required, e.g. those flits have to be detected and retransmitted. However, as only
the networks themselves are simulated and compared herein, discarded flits are never
injected again. Consequently, lost flits do not appear in the plots for hop count, latency,
and throughput.

Synthetic Traffic Performance

Figure 4.21 shows the simulation results for random traffic as well as for transpose
traffic. Even more synthetic benchmarks were simulated, however, as the results are
similar to the depicted results, they are omitted for reasons of clarity. Flits are injected
at every router with an injection probability of α = 10%, which corresponds to ≈ 32000
flits in total per simulation. Four different link failure rates between a healthy NoC, i.e.
λ = 0%, and λ = 30% are simulated. At λ = 30%, the network is saturated and the
achieved throughput decreases with all evaluated router architectures (cf. Figures 4.21g
and 4.21h). This means, the routers inject new flits into their corresponding injection
queue, but not all flits can be injected into the network.

The depicted results show that all router architectures perform similarly at a fault-
free network and at very low injection probabilities (e.g. λ = 10%). However, at
high fault rates, the achieved performances vary significantly, whereby FTDR performs
best, followed by FaFNoC-Benes. FTDR learns the interconnection topology, by using
Q-learning. Thus, FTDR can tolerate even very irregular topologies, as they occur at
high fault rates. FaFNoC-Benes and FaFNoC-Banyan perform second best and third
best, respectively, as these architectures can also tolerate complex fault situations,
but non-shortest paths are used to surround faulty regions. FON as well as FTDR-H
perform significantly worse than the other router architectures, due the their limited
fault tolerance. As FON just uses two-hop fault information, only fault situations which

104

4.4 Evaluation of FaFNoC Router Architecture

FTDR
FaFNoC-Banyan

FTDR-H
FaFNoC-Benes

FON

5
10
15
20
25
30
35
40
45
50
55

A
ve

ra
ge

ho
p

co
un

t
hc

5
10
15
20
25
30
35
40
45
50

A
ve

ra
ge

ho
p

co
un

t
hc

0
200
400
600
800

1000
1200
1400

A
ve

ra
ge

la
te

nc
y

l
[c

lo
ck

cy
cl

es
]

0
100
200
300
400
500
600
700
800

A
ve

ra
ge

la
te

nc
y

l
[c

lo
ck

cy
cl

es
]

0.0%

0.1%

0.2%

0.3%

Lo
st

fli
ts

[%
of

in
je

ct
ed

fli
ts
]

1.0%
2.0%
3.0%

0.0%

0.1%

0.2%

0.3%

Lo
st

fli
ts

[%
of

in
je

ct
ed

fli
ts
]

1.0%

2.0%

0.05

0.06

0.07

0.08

0.09

0.1

0% 10% 20% 30%

Th
ro

ug
hp

ut
θ

[fl
it

s/
cy

cl
es
/n

od
e]

Fault rate λ

0.07

0.08

0.09

0.1

0% 10% 20% 30%

Th
ro

ug
hp

ut
θ

[fl
it

s/
cy

cl
es
/n

od
e]

Fault rate λ

(a) hc for
random
traffic

(b) hc for
transpose
traffic

(c) l for
random
traffic

(d) l for
transpose
traffic

(e) Lost
flits for
random
traffic

(f) Lost flits
for
transpose
traffic

(g) Throughput
for
random
traffic

(h) Throughput
for
transpose
traffic

Figure 4.21: Simulation results for random traffic and transpose traffic, an injection
probability of α= 10%, and a variable number of random link failures.

105

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

FTDR
FaFNoC-Banyan

FTDR-H
FaFNoC-Benes

FON

6
7
8
9

10
11
12
13
14
15
16

0% 10% 20% 30%

A
ve

ra
ge

ho
p

co
un

t
hc

Fault rate λ

0.0%
0.2%
0.4%

0% 10% 20% 30%

Lo
st

fli
ts

[%
of

in
je

ct
ed

fli
ts
]

Fault rate λ

2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%

(a) hc for
full traffic

(b) Lost flits for
full traffic

Figure 4.22: Average hop count and percentage of lost flits for full traffic, an injection
probability of α= 10%, and a variable number of random link failures. At
full traffic, every router sends a flit to every other router in the network.

do not exceed this number are tolerable. FTDR-H utilizes a local-routing-table as well as
a region-routing-table at every router. Thus, complex fault situations, which cause that
the only path between a source and a destination traverses at least two regions, can not
be tolerated with FTDR-H. As a result, a crucial number of flits are lost with FON as well
as with FTDR-H (cf. Figures 4.21e and 4.21f). Lost flits pose a problem, as those flits
have to be retransmitted, whereby a different path should be used at retransmission,
but moreover, they interfere with other flits. As flits stay in the network until they are
ejected or their hop count field overflows, lost flits have a high priority before they are
discarded, which leads to a large number of unproductive deflections.

At both depicted synthetic traffic benchmarks, a relatively small number of flits is
lost with FaFNoC-Banyan at λ= 30%. However, in contrast to FON and FTDR-H, this
is not a systematic problem. There, flits can get lost as they have to be in fault region
evasion mode for a long period of time to reach their destination. However, at this high
fault rate, the network is congested and the flits are deflected repeatedly during their
first time in the network. As a flit’s mode is turned from fault region evasion mode to
normal mode if it gets deflected, flits frequently have to leave this mode before a faulty
region is overcome. Only after a flit is higher prioritized than the remaining flits, i.e.
its hop count is higher, it is not deflected and stays in fault region evasion mode for a
sufficiently long period. At least when a flit’s hop count reaches hc = 255, it is discarded
to avoid a livelock. Thus, flits can get lost if the remaining time, after their priority is
high enough not to be deflected, is not sufficient to reach their destination.

To demonstrate that flit loss at FaFNoC-Banyan is caused by high network load and

106

4.4 Evaluation of FaFNoC Router Architecture

the consequential deflections, whereas flit loss at FON and FTDR-H is caused by their
limited fault tolerance, Figure 4.22 shows the simulation results for full traffic. There,
every router sends a flit to every other router. Additionally, it is ensured that at most one
flit is in the network at every time. This is achieved by waiting 255 clock cycles between
two consecutive injections. Thus, flits can not be deflected by other flits and an injection
queue is not required for this kind of traffic, as a new flit is only injected after the old flit
has been ejected. Therefore, the average latency corresponds to the average hop count
plus one, and the throughput is almost constant and equal for all router architectures
and all fault rates. As an 8× 8 NoC is simulated, exactly 64 · 63 = 4032 flits are injected
into the network, and 4032 flits minus the number of lost flits are ejected. Thus, only
the average hop count and lost flits are depicted in this figure. The results show that no
flits are lost with FaFNoC-Banyan, FaFNoC-Benes, and FTDR. At both FON and FTDR-H,
the percentages of lost flits even increased, compared to random and transpose traffic.
In contrast, the average hop count of FON and FTDR-H seems surprisingly low at first
glance, in particular, at a fault rate of λ = 30%. However, the depicted average hop
counts do not include the lost flits. If lost flits are taken into account, the average hop
count of these two architectures increases significantly. For instance, if an average hop
count of hc = 9 and 10% lost flits are assumed, the average hop count including the lost
flits increases to 9 · 0.9+ 255 · 0.1= 33.6, and the lost flits are still not delivered.

Application Performance

Application performance, in addition to synthetic traffic performance, is valuable to
compare and assess different router architectures. An important metric for such a
comparison is the achieved execution time of the simulated benchmarks. However, some
herein evaluated router architectures are not capable of delivering all messages, and
even retransmission of these undeliverable messages is not sufficient to guarantee their
delivery. Consequently, the simulated execution time is not meaningful. Nevertheless,
evaluation metrics as average hop count, average latency, and lost flits are valuable,
as application traffic has a different temporal and spatial distribution than synthetic
traffic. Thus, two PARSEC benchmarks, blackscholes and canneal, are simulated, as
described in Section 2.6.2. The handling of undeliverable flits does not differ to synthetic
traffic. Those flits are discarded when their hop count field overflows, and they are
never injected again. Furthermore, message dependencies are ignored, as new flits,
which are dependent on undelivered flits, could not be injected otherwise.

Figure 4.23 shows the simulation results for four different fault rates. Every depicted
value is an average of three simulations, which are based on the fault situations of
Appendix A.1. Throughput plots are not shown here, as the total execution times are
determined by the last injection of the benchmark. Thus, the execution times are almost
independent of the simulated router architecture. Furthermore, an equal number of flits
is injected by every simulation, and the same number of flits is ejected, minus the number

107

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

FTDR
FaFNoC-Banyan

FTDR-H
FaFNoC-Benes

FON

5
6
7
8
9

10
11
12
13
14

A
ve

ra
ge

ho
p

co
un

t
hc

5

7

9

11

13

15

17

A
ve

ra
ge

ho
p

co
un

t
hc

6
7
8
9

10
11
12
13
14
15

A
ve

ra
ge

la
te

nc
y

l
[c

lo
ck

cy
cl

es
]

6

8

10

12

14

16

18
A

ve
ra

ge
la

te
nc

y
l

[c
lo

ck
cy

cl
es
]

0.0%
0.1%
0.2%

0% 10% 20% 30%

Lo
st

fli
ts

[%
of

in
je

ct
ed

fli
ts
]

Fault rate λ

1.0%
3.0%
5.0%
7.0%
9.0%

11.0%
13.0%

0.0%
0.1%
0.2%

0% 10% 20% 30%

Lo
st

fli
ts

[%
of

in
je

ct
ed

fli
ts
]

Fault rate λ

1.0%

3.0%

5.0%

7.0%

9.0%

(a) hc for
blackscholes

(b) hc for
canneal

(c) l for
blackscholes

(d) l for
canneal

(e) Lost flits for
blackscholes

(f) Lost flits for
canneal

Figure 4.23: Simulation results for two PARSEC benchmarks, blackscholes and canneal,
and a variable number of random link failures.

108

4.4 Evaluation of FaFNoC Router Architecture

of lost flits. This means, the used injection queues are sufficiently dimensioned to buffer
bursts of injections. At both simulated PARSEC benchmarks, the average injection
probability is relatively low (cf. Figure 2.15), even though temporary bursts of injections
exist. Most of the time, the network is not congested, and therefore, the simulation
results are more similar to those of full traffic than to those of both presented synthetic
traffic benchmarks. In particular, the achieved average hop counts and average latencies
are lower compared to random traffic and transpose traffic, whereas the percentages of
lost flits are higher.

Hardware Costs

Figure 4.24 shows the hardware requirements, i.e. the number of required LUTs and
REGs for a single router, of all herein compared router architectures and four NoC
dimensions. Here, a flit size which corresponds to a payload size of 128 bit is assumed.
It can be seen that the required number of LUTs and REGs for FTDR and FTDR-H
increases with the NoC dimension, due to the deployed routing tables. The three
remaining router architectures require a comparable amount of LUTs and REGs per
router, which is constant for all NoC dimensions. Hence, the required numbers of
LUTs and REGs are only quoted above the rightmost bars of Figure 4.24. In particular,
the synthesis results show, the hardware requirements of the third stage of switching
elements at FaFNoC-Benes are almost offset by the nonexistent fault-handler and the
more efficient fault tolerance logic.

All router architectures require the exchange of fault information between adjacent
routers. At FON, 4 bit per output port are required to transmit the 2-hop fault information.
At FTDR and FTDR-H, additional 6 bit per output port are needed to transmit Q-values,
which are estimated distances between the current router and the flits’ destinations.
At both FaFNoC router architectures, the flit structure is extended by 6 bit for the fault
status field. At FaFNoC-Banyan, one additional bit for the return flag is necessary. A
constant size of the fault status field is used herein, even if a smaller fault status field
would have been sufficient at smaller NoC dimensions, as a constant Q-value size is
used at FTDR and FTDR-H.

Figure 4.25 shows the achievable frequencies, which are similar for the three crossbar
based router architectures (FTDR, FTDR-H, and FON), and slightly higher for FaFNoC-
Banyan and FaFNoC-Benes, which are based on a permutation network.

Frequency Adjusted Average Latency

As it has already been shown for the non-fault-tolerant basis router architecture, the
actually occurring average latency is affected by the implementation of the router ar-
chitecture and, in particular, by the achievable maximum clock frequency. Figure 4.26
shows the frequency adjusted average latencies for both synthetic traffic patterns of

109

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

0

5000

10000

15000

20000

25000
LU

Ts
FTDR

FTDR-H
FON

FaFNoC-Banyan
FaFNoC-Benes

47
15
46

85 56
68
49

65
92

79

59
48

20
80

0

98
92

45
28
51

08
52

15

0
1000
2000
3000
4000
5000
6000
7000

2x2 4x4 8x8 16x16

R
EG

s

10
5
81 39

3
13

1
15

45

46
5

61
53

16
17

8 15 0

Figure 4.24: Hardware requirements for the herein compared fault-tolerant router ar-
chitectures and four different NoC dimensions.

0

10

20

30

40

50

FT
DR

FT
DR-H

FO
N

Fa
FN

oC
-B

an
ya

n

Fa
FN

oC
-B

en
es

Fr
eq

ue
nc

y
[M

hz
]

Figure 4.25: Achievable frequencies for the herein compared fault-tolerant router archi-
tectures.

110

4.5 Summary and Conclusion of Chapter 4

0.1
0.2
0.3
0.4
0.5
0.6

Fr
eq

ue
nc

y
ad

ju
st

ed
av

er
ag

e
la

te
nc

y
l a

d
j
[µ

s]

5.0
15.0
25.0
35.0

0.15
0.20
0.25
0.30
0.35
0.40

Fr
eq

ue
nc

y
ad

ju
st

ed
av

er
ag

e
la

te
nc

y
l a

d
j
[µ

s]

5.00
10.00
15.00
20.00

0.14
0.16
0.18
0.20
0.22
0.24

0% 10% 20% 30%

Fr
eq

ue
nc

y
ad

ju
st

ed
av

er
ag

e
la

te
nc

y
l a

d
j
[µ

s]

Fault rate λ

0.25
0.28
0.31
0.34

0.14
0.16
0.18
0.20
0.22
0.24

0% 10% 20% 30%

Fr
eq

ue
nc

y
ad

ju
st

ed
av

er
ag

e
la

te
nc

y
l a

d
j
[µ

s]

Fault rate λ

0.25
0.30
0.35
0.40
0.45
0.50

FTDR
FaFNoC-Banyan

FTDR-H
FaFNoC-Benes

FON

(a) random
traffic

(b) transpose
traffic

(c) blackscholes
traffic

(d) canneal
traffic

Figure 4.26: Frequency adjusted average latency for fault-tolerant router architectures
and different traffic types. The depicted values are based on the average
latencies of Figures 4.21 and 4.23 and the maximum clock frequencies of
Figure 4.25.

Figure 4.21 as well as the for two evaluated PARSEC benchmarks of Figure 4.23. Com-
pared to the solely simulation based average latencies, the results shift in favor of the
two permutation network based router architectures. At low fault rates, FaFNoC-Banyan
and FaFNoC-Benes achieve a lower average latency than the crossbar based router
architectures. At higher fault rates, the lowest average latency is achieved with FTDR,
despite of its lower maximum clock frequency.

4.5 Summary and Conclusion of Chapter 4

Shrinking manufacturing processes cause that NoCs are frequently deployed, as they
provide a scalable communication infrastructure, but they also necessitate fault tolerance

111

Chapter 4 Fault-tolerant and Deflection Routing based Router Architecture

concepts. A short introduction to fault tolerance has been given in Section 4.1, to enable
a thematic classification of fault tolerance concepts at NoCs. The main focus of this
chapter is on fault-tolerant routing algorithms. Such algorithms exploit the inherent path
redundancy, which is present in most topologies, to avoid faulty components. Several
fault-tolerant and additionally deflection routing based algorithms have been presented
in Section 4.2. In Section 4.3, the FaFNoC router architecture has been introduced,
which was developed as part of this thesis. In this context, the following contributions
have been made:

• The drawbacks of Banyan networks, which are frequently deployed at non-fault-
tolerant router architectures, regarding fault tolerance have been identified.

• Is has been proposed to substitute Benes networks for Banyan networks, as Benes
networks provide a solution for all identified problems of Banyan networks. Within
this scope, the required changes of Benes networks to avoid faulty links have been
presented.

• The concept of fault-aware flits has been developed, which is a viable solution to
overcome complex fault situations without requiring costly routing tables.

Finally, the FaFNoC architecture has been evaluated and compared to existing fault-
tolerant and deflection routing based architectures in Section 4.4. The results have
shown that FaFNoC-Benes requires only slightly more hardware resources compared to
FaFNoC-Banyan, whereas a significantly better performance is achieved. Furthermore,
the results have shown that a significant number of flits is lost if solely local fault
information is used, as the case at FON and FTDR-H. Consequently, FON and FTDR-H
perform far worse than FaFNoC-Benes, at comparable hardware requirements. Only
FTDR performs significantly better, but FTDR’s hardware requirements increase with
the used NoC dimension, which makes it impractical for large networks.

112

Chapter 5
Design of Deflection Routing based
Network on Chips

Contents

5.1 Introduction and Motivation . 113

5.1.1 Effect of the Link Width on Buffered, Packet Switched NoCs . 114

5.1.2 Effect of the Link Width on Deflection Routing based NoCs . . 115

5.2 Related Work . 117

5.3 The optimal Link Width . 119

5.3.1 Effect of the Flit Size on Hardware Costs 119

5.3.2 Effect of the Flit Size on Performance 123

5.4 TwoPhases - An Alternating Transmission Scheme 132

5.4.1 Methodology of TwoPhases . 133

5.4.2 Transmission Methods . 139

5.4.3 Evaluation . 141

5.5 Summary and Conclusion of Chapter 5 149

5.1 Introduction and Motivation

The design space of current NoCs is huge, due to their complexity and the multiplicity
of design parameters.

“NoCs design space is considerably larger when compared to a bus-based
solution, as different routing and arbitration strategies can be implemented
as well as different organizations of the communication infrastructure.”
[CML12, p. 11]

113

Chapter 5 Design of Deflection Routing based Network on Chips

The design parameters affect the performance, the area requirements, and the energy
efficiency of a NoC. However, the determination of optimal values for all design param-
eters can be a challenging task. Models (e.g. ORION [Kah+12; KLN12b]) as well as
simulators (e.g. NNSE [Lu+05], Noxim [Cat+15], NIRGAM [Jai]) can support system
designers in early design stages to determine these values. At deflection routing, some
of the parameters are already predefined or nonexistent, as they are related to buffer
handling and deflection routing is usually bufferless. The number of virtual channels and
the deployed flow control scheme are two of those predefined parameters. Nevertheless,
there are still many design parameters which have to be specified. One very important
parameter of deflection routing based architectures is the link width. To motivate and
demonstrate the significance of this design parameter, the impact of the link width on
buffered and bufferless NoCs is pointed out in the following.

5.1.1 Effect of the Link Width on Buffered, Packet Switched NoCs

As described in Chapter 2, buffered NoCs frequently utilize packet switching or, in
particular, wormhole flow control. Here, messages are decomposed into packets, which
represent the data units for routing and sequencing [DT04]. Packets are further divided
into flits, whereby a flit is the data unit for bandwidth and buffer allocation. Flits can
be in turn divided into phits. A phit is the data unit that can be transferred over a link
within one clock cycle. Thus, the link width equals the phit size (|LI| = |ph|). Frequently,
the flit size |f | equals the phit size |ph| for on-chip networks [SKH08]. This means, flits
are not (de)serialized and a flit is transmitted over a link as a whole. Hence, the link
width equals the flit size in this case (|LI| = |f | = |ph|). An equal link width and flit size
is assumed hereinafter, unless otherwise stated.

For packet switched networks, there are three types of flits to be distinguished: head
flits, body or data flits, and tail flits. Only head flits contain routing information.
Body and tail flits just follow the path of their head flit towards the destination. This
principle allows the transfer of large messages over much smaller links. Furthermore,
the overhead, i.e. the data which is not payload, is kept at a reasonable level, as one
packet consists of one head flit h, an arbitrary number of body flits bi, and at most one
tail flit t. Whereby, most of the overhead is contained in the head flit h.

Therefore, a reduced link width, or flit size, at a packet switched network leads to just
more flits per packet. As the number of flits increases, the network load also increases,
which in turn leads to an increasing average latency as well as a decreasing throughput,
due to the higher network utilization. On the other hand, hardware costs decrease.
Thus, there is a trade-off between performance and hardware costs. However, there is
still only one head flit and at most one tail flit per packet, assuming that the flit structure
is large enough to fit the complete head information. As a consequence, only the number
of body flits increases, in the case of smaller links.

114

5.1 Introduction and Motivation

5.1.2 Effect of the Link Width on Deflection Routing based NoCs

Unfortunately, the decomposition of a message, as described in Section 5.1.1, is not
possible for deflection routing based NoCs. Such NoCs do not store or discard flits in
case of collisions. Instead, flits are deflected to potentially non-shortest paths. A basic
prerequisite to avoid livelocks at deflection routing is, to transmit the highest prioritized
flit always to a productive port at every router. As there are no flit buffers, a router has
to calculate a new routing decision or permutation if a new head flit is received, as this
head flit could be the highest prioritized flit. This in turn means, if packet switching
is combined with deflection routing, two flits of one packet could be separated from
each other. In particular, it could not be ensured that body and tail flits can follow
their head flit. Hence, at deflection routing every flit has to carry routing information,
or in other words, has to be a head flit. For deflection routing based NoCs, it is not
possible to packetize large messages into packets with many flits. Instead, messages
are decomposed into several independently routed head flits, or into several packets,
whereby each packet consists of exactly one head flit.

Figure 5.1 illustrates this before mentioned problem. Here, it is assumed that packet
switching is combined with deflection routing and packets, which consist of one head
flit h and at least one body flit b, are routed. In this example, the first flit which arrives
at router R y is the orange head flit. As the destination of this orange head flit is in the
north, and the north port is idle, the flit is routed to the north. In the next clock cycle,
the green head flit arrives from the right neighbored router, and additionally the orange
body flit arrives from the left neighbored router. It is assumed that the green packet’s
destination lies also in the north, and the green packet is higher prioritized than the
orange one. Thus, there are two options. The first option is, the orange body flit is
routed to the north, as body flits do not contain any routing information, and hence,
this flit could not follow its head flit otherwise. However, this implies that the green
head flit has to be deflected and the packets’ priority is disregarded. This contradicts to
the prerequisite of deflection routing, that the highest prioritized flit is always routed
to a productive direction. Therefore, this approach would lead to livelocks eventually.
The second option takes the packets’ priorities into account, and the green head flit is
routed to the north. This in turn implies that the orange body flit is deflected instead. In
this case, the body flit is separated from its head flit. Thus, the body flit needs routing
information, or in other words, every flit has to be a head flit, as it is the case for standard
deflection routing.

One simple and obvious solution to transmit data, which exceeds the payload size of
one flit, is the utilization of several independently routed head flits. However, this means
that a reduced link width leads to more flits per message, not per packet, as the case
for a packet switched network. As every flit is a head flit, i.e. every flit contains routing
information, the routing information overhead per message increases significantly.
Further, the flits can arrive out of order, which requires reassembling of the received

115

Chapter 5 Design of Deflection Routing based Network on Chips

Rx R y Rz

Rx R y Rz

Rx R y Rz

b
h

h

b
b

h

h b

b

h

h

bb

Last clock cycle: Orange head flit arrived
from left router, destination is in the north.
This clock cycle: Orange head flit is routed
to the north, as N port is free.
Next clock cycle: Green head flit will arrive,
desination is also in the north and green one
has a higher priority. Additionally, orange
body flit will arrive.

Option 1: As body flits do not contain any
routing information, orange body flit follows
its head flit. Hence, green head flit is de-
flected (e.g. to W). Problem: This contra-
dicts the packets’ priorities.

Option 2: As green head flit has a higher
priority, it is routed to the north. Hence, or-
ange body flit is deflected (e.g. back to W).
Problem: This means, orange body flit has to
contain routing information, i.e. has to be a
head flit.

Figure 5.1: Livelock problem of deflection routing based NoCs illustrated.

flits at the receiver side. To this end, sequencing information, like a flit-ID, is required
for every received flit. This increased overhead for routing information and sequencing
leads to an immense performance degradation (cf. Section 5.3.2). On the other hand,
the deployment of unnecessary wide links and large flits results in high hardware costs
and can even be impossible due to hardware restrictions. Therefore, it is particularly
important for deflection routing based architectures to determine an appropriate flit
size and link width. Please note that an appropriate link width for deflection routing
based NoCs can be significantly higher than for buffered, packet switched NoCs. Due to
the impact of the link width on deflection routing based NoCs, it is important to:

1. identify the effect of this design parameter on the hardware costs as well as on
the performance of a NoC. The link width for permutation network based router
architectures is considered in Section 5.3.

2. investigate if new methods can be developed to route messages that exceed the
link width and additionally mitigate the effects caused by very wide links. A new

116

5.2 Related Work

transmission method that reduces routing overhead is presented in Section 5.4.

5.2 Related Work

Interconnection network simulators can help to evaluate the influence of design and
configuration parameters on the performance of NoCs. BookSim [Jia+13], Noxim
[Cat+15], and NIRGAM [Jai] are among the most frequently used NoC simulators.
However, they are all designed for buffered, packet switched NoCs, and hence, have
to be adapted for bufferless, deflection routing based NoCs. One of the few simulators
which is designed for deflection routing is NNSE [Lu+05].

Power-performance simulators, like ORION [Wan+02], ORION2.0 [Kah+12; Kah+09],
and McPAT [Li+09], enable early design space power-performance tradeoffs. ORION
simulates an interconnection network, whereas McPAT is a modeling framework for
multicore and manycore architectures. McPAT as well as ORION (up to version 2.0)
model the circuit structure of each basic building block. In case of a router, these blocks
include i.a. flit buffers, arbiters, and crossbars. An analytical model for each building
block is used to estimate the power and area of a system. Mismatches between the
actual RTL code of the building blocks and the assumed logic structure can exist, which
may lead to large estimation errors. Hence, at ORION3.0 [KLN12a; KLN12b; KLN15],
the models are derived from post place and route data. As all these power simulators
are developed for packet switched NoCs, the presented models and formulas are not
directly applicable for deflection routing based NoCs.

Most of the more analytical work related to flit size and link width also considers
buffered, packet switched NoCs. Ye, Benini, and Micheli introduced an on-chip commu-
nication power model for MPSoCs in [YBM03]. They quantified the effect of the packet
size on performance as well as on energy consumption. A large packet size leads to
higher miss penalties, but also to a lower cache miss rate. Performance wise, they found
that the optimal packet size is 64 B for all evaluated SPLASH benchmarks. In terms of
energy, a larger packet size reduces the cache and memory energy, but in turn also leads
to a higher network energy. However, a packet size which always achieves the least
energy consumption, independent from the investigated application, was not found.
The authors only considered the packet payload size in this work, and a constant link
width of 64 bit was assumed. Therefore, their approach is orthogonal to the problem of
the optimal link width, which also effects performance and energy consumption.

In [Lee+13a], Lee et al. gave a guideline how the appropriate flit size or link width
for wormhole flow control based router architectures can be determined. The authors
developed models for the cost as well as for the latency and analyzed workload charac-
teristics. They concluded that the links should be as wide as the smallest packet size plus
the header overhead. Their work is similar to our approach, presented in Section 5.3.
However, as they assumed a buffered, packet switch router architecture, their outcome

117

Chapter 5 Design of Deflection Routing based Network on Chips

is not applicable to deflection routing based architectures.
Ogras, Hu, and Marculescu presented equations for bandwidth and latency as func-

tions of the channel width for packet switched NoCs in [OHM05]. They also identified
the optimal channel width as one of eight open research problems of NoC design.
Network channel design was also identified as an outstanding research problem in
[Mar+09].

Investigating the effect of the link width on performance and hardware costs is
important, in particular for deflection routing based NoCs. However, as stated before,
methods or transmission schemes which allow the transfer of messages that exceed the
flits’ payload size are also indispensable. One such transmission scheme is serialization.
There, the flits are serially transferred from router to router. Serialization has been
examined with different emphasis in the past, mainly for buffered NoCs. Serialization
of the costly TSVs, which can be used for interlayer interconnection of 3D chips, is
investigated for packet switched routers in [Ghi+13] and deflection routing in [Lee+13b].
The authors in [CLC12] proposed serialization to preserve partially defect links of packet
switched NoCs.

Moscibroda and Mutlu presented in [MM09] a router architecture which uses the
wormhole principle and is still based on deflection routing. The livelock problem
mentioned in Section 5.1.2 and illustrated in Figure 5.1 is solved in this approach by
worm truncation. In the case of a collision, the lower prioritized worm is truncated,
and thus, the higher prioritized worm can be routed to its productive direction. As
body flits usually do not contain routing information, the first body flit of the truncated
worm’s second part has to become a new head flit. Thus, every router stores the header
information of every packet and additionally a mapping of packets to output ports. With
this information, every router is able to create new head flits out of body flits. The
authors assumed that the header information is transmitted by dedicated wires, which
are only used if a head flit is transferred. A comparison to packet switched, buffered
NoCs is made, by comparing the costs of these additional wires versus flit buffers. In
contrast, herein it is assumed that all available wires are used for payload. This implies
that head flits contain less payload information than body flits. Furthermore, depending
on the frequency of truncations, the performance of their approach degrades to standard
deflection routing, where many flits are routed independently.

Lin, Lin, and Tang also introduced a wormhole-switched NoC, entitled making-a-
stop [LLT12]. Their architecture consists of one additional register array per router,
which has to have the size of the largest packet. If all productive ports of the currently
highest prioritized packet are occupied, the packet is stored in this register array. Hence,
the deflection rate is reduced. If a lower prioritized packet is already stored in the
register array, the lower prioritized packet is evicted and deflected to an idle output
port. Unfortunately, depending on the priorities of the incoming flits, the deflection
rate can be high, despite of the register array. Further, the buffer requirements can be
substantial, as the register array’s size depends on the maximum packet size.

118

5.3 The optimal Link Width

Another bufferless router architecture which utilizes wormhole routing is presented
in [TB11]. They utilized pipeline registers at the channels as storage elements, which
hold the flits until the next output port is ready. Further, they developed the express
flow control scheme to avoid unnecessary stall cycles. There, an additional signal is
added to each input port, which enables that body and tail flits of a packet can follow
their corresponding head flit immediately. Without express flow control, one stall cycle
is required due to the latency of the signal, which indicates an idle register in the
succeeding router. Even if this approach is bufferless, it is not based on deflection
routing. Instead, it resembles to a buffered, wormhole routing based router architecture
with a buffer depth of a single flit.

5.3 The optimal Link Width

As packetization is not possible at deflection routing based NoCs, it is particularly
important to determine the appropriate link width for such NoCs [RK16b]. The link
width has been investigated already for packet switching based NoCs in [Lee+13a], but
not yet for deflection routing. Deflection routing is not linked to any specific router
architecture. However, permutation network based router architectures, like CHIPPER
[FCM10; FCM11] or MinBD [Fal+12; Fal+11], have several advantages compared
to crossbar based architectures in relation to deflection routing (cf. Section 3.3). In
Section 5.3.1, the asymptotic hardware requirements of such a permutation network
based router architecture are analyzed as a function of the flit size |f | and the number
of ports P, which corresponds to the radix of the routers. The results show that the
requirements increase linearly with the flit size and quadratically with the number of
ports. Synthesis results confirm these findings. To demonstrate the effect of the link
width on the performance, results for different synthetic traffic patterns and several
injection probabilities, as well as application performance for three PARSEC benchmarks
are presented in Section 5.3.2.

5.3.1 Effect of the Flit Size on Hardware Costs

An overview of the herein assumed router architecture is depicted in Figure 5.2. It
consists of an ejection stage, an injection stage, and a permutation network. The ejection
stage enables the extraction of flits, which have reached their destination, from the
network to the local port L. Accordingly, the injection stage enables the transmission
of flits from the L port to the network if at least one port is idle. The permutation
network consists of four switching elements s1, . . . , s4 and replaces the commonly used
crossbar. Each switching element si can either swap both inputs or pass the inputs to
the corresponding outputs.

The ejection arbiters, which are the first three depicted components in Figure 5.2, are

119

Chapter 5 Design of Deflection Routing based Network on Chips

1

2

3

4

N
S

E
W

L

ejec
kill

ejec
kill

ejec
kill

ejec
kill

N

E

S

W

ejec
arbi

ejec
arbi

ejec
arbi

L

Permutation NetworkInjectionEjection

co
m

pin1

in2

~0 out

out
in

ejec

out1

out2

in1

in2

Figure 5.2: Permutation network based router architecture

responsible for selecting the flit which is allowed to be ejected to the local port L. The
number of ejection arbiters equals the number of nodes of a perfect binary tree with P

2
leaves. As such a tree consists of P −1 nodes, P −1 ejection arbiters are required. Every
ejection arbiter compares the destination address as well as the hop count field hc of
the two input flits to determine at most one flit that is allowed to eject the router. The
hc is compared, as an oldest flit first prioritization scheme is used. If none of the two
input flits has reached its destination, an empty flit (~0) is passed to the output. Each
arbiter consists of one 3|f |-to-|f | MUX and control logic. This logic sets the select inputs
of the MUX in the following manner:

out =

~0 if in1(dst) 6= pos and in2(dst) 6= pos

in1 if in1(dst) = pos and in2(dst) 6= pos

in2 if in1(dst) 6= pos and in2(dst) = pos

in1 if in1(dst) = pos and in2(dst) = pos and in1(hc)≥ in2(hc)
in2 else

Hence, the logic primarily consists of three comparators. The first two compare the
router’s position pos with the destination dst of flit in1 and in2. The third one compares

120

5.3 The optimal Link Width

both flits’ hop count field hc. For the sake of clarity, these three comparators are depicted
as one joint comparator in the lower left of Figure 5.2. Thus, the control logic’s hardware
requirements depend on the size of the hop count field as well as on the size of the
destination field. However, the hardware costs of the control logic are independent of
the link width |LI| or flit size |f |. Hence, for an increasing flit size, the ejection arbiter’s
hardware requirements are dominated by the MUX.

The second part of the ejection stage are the ejector kill elements, which clear the
wires or bits of an ejected flit. The amount of ejector kill elements equals the number of
ports P. Depending on the used hardware, they consist of |f | logic gates, e.g. AND gates
as depicted in Figure 5.2, or one MUX2|f |:|f |. For the sake of simplicity, one MUX2|f |:|f | is
assumed in the following analysis. A flit will be deleted, or rather the corresponding
bits will be set to 0, if this flit has been selected by the ejection arbiters (signal ejec = 1).
This signal is generated by the ejection arbiters’ control logic, and hence, the hardware
requirements of one ejector kill element just depend on the flit size |f |.

The injection stage allows that one flit can be injected from the local port into the
network. It consists of P injection elements, whereas each element allows the injection
only if the corresponding router port is idle. Hence, a comparator as well as an arbiter,
which avoids multiple injections of the same flit, is required per port. The comparator
checks the idleness of the port. However, only the hc field has to be compared, as the hop
count of every valid flit is greater than zero. To summarize, the hardware requirements
of an injection element are one MUX2|f |:|f |, a comparator, and an arbiter, whereas the
costs of the latter two components are independent of |f |.

In general, the deployed permutation network is a Banyan network, which consists
of 2× 2 permutation blocks or switching elements. Therefore, a router with P ports
requires P

2 · log2(P) switching elements [Pat01]. Every switching element consists of
two MUX2|f |:|f |, one inverter, and control logic to set the selection inputs of the two
MUX2|f |:|f | (cf. lower right of Figure 5.2). In our implementation, the control logic
calculates the productive direction of the higher prioritized flit. As the hop count is used
for prioritization, the hc fields of both input flits have to be compared. The productive
direction is based on the current router’s position pos and the higher prioritized flit’s
destination address. If the comparators in the ejection stage provide greater and lower
signals, no additional hardware is required for the comparison of the destination. In any
case, the control logic’s hardware requirements are constant for one switching element
and independent of the flit size |f |.

121

Chapter 5 Design of Deflection Routing based Network on Chips

Thus, the HardWare Requirements (HWR) of one router are given by:

HWR(router)∝(P− 1) · (MUX3|f |:|f | + CL) // ejection arbiters

+ P ·MUX2|f |:|f | // ejection kill elements

+ P · (MUX2|f |:|f | + CL) // injection stage

+
P
2
· log2(P) · (2 ·MUX2|f |:|f | + INV + CL) // permutation network (5.1)

Here, CL denotes the hardware requirements of the before mentioned parts of the control
logic. The aim of this examination is to figure out an asymptotic course of the hardware
requirements of a permutation network based router architecture as a function of the flit
size |f |. Hence, all components which are independent of the flit size |f | are summed up
as CL. Please note that the hardware requirements of the parts which are independent
of the flit size are negligibly small compared to the costs of the flit size dependent parts.
For a router with four ports (P = 4), as it is the case for the assumed 2D mesh topology,
this leads to

HWR(router)∝ 3 ·MUX3|f |:|f | + 16 ·MUX2|f |:|f | + CL (5.2)

Furthermore, if MUXx|f |:|f | = |f | ·MUXx:1 and MUX3:1 = 2 ·MUX2:1 is assumed, the final
hardware costs of a router are given by:

HWR(router)∝ 3 · |f | ·MUX3:1 + 16 · |f | ·MUX2:1 + CL

∝ 22 · |f | ·MUX2:1 + CL (5.3)

In other words, in contrast to [Lee+13a], these results indicate that the hardware
requirements of one router increase only linearly, and not quadratically, with the flit
size |f |.

Synthesis Results

To get an impression of the real hardware costs, and confirm the theoretical results, the
router architecture depicted in Figure 5.2 was synthesized using Xilinx’s XST [Xil15].
Please note that XST synthesizes a design for FPGAs and does not use a standard cell
library like ASIC synthesis software. Nevertheless, this enables us to compare the
hardware requirements for different flit sizes and link widths. Figure 5.3 shows the
number of required LUTs for one router and different flit sizes / link widths. The two
largest router parts are the permutation network and the ejection arbiter blocks. Both
increase linearly with the flit size, as expected from the theoretical results. The rest
(mainly the ejector kill and injection stage) also increases linearly. The number of
required LUTs for one entire router increases by about 80% if flit size and link width are
doubled.

122

5.3 The optimal Link Width

0

2000

4000

6000

8000

10000

12000

32 64 96 12
8
16

0
19

2
22

4
25

6
28

8
32

0
35

2
38

4
41

6
44

8
48

0
51

2
54

4
57

6
60

8
64

0

LU
Ts

Link width |LI| [bit]

perm. network
ejection arbiter

rest

Figure 5.3: Synthesis results for one router and different flit sizes.

5.3.2 Effect of the Flit Size on Performance

In Section 5.3.1, the hardware costs for different flit sizes have been determined. The
effect of the flit size on performance metrics like throughput and latency is less obvious,
as those values depend on the present network traffic. On the other hand, the calcula-
tion of most statistic measures, as diameter and bisection bandwidth, does not differ
fundamentally between bufferless, permutation network based router architectures and
buffered, crossbar based architectures. Therefore, the performance evaluation in this
section is primarily simulation based.

Link width If the impact of the link width on the network performance is investigated,
all reasonable link widths have to be determined first. Let us assume that the link width
equals the flit size, as it is the case in most NoC implementations. Every flit has to
contain a |hd| wide header, which is required for routing. Furthermore, it contains
|pl| payload bits. If the size of the message to be transferred exceeds the size of the
flits’ payload field, the message has to be divided into several sub-messages. All flits
corresponding to the sub-messages are independently routed from sender to receiver.
Hence, these flits can arrive out of order at their destination, as some may make a detour
because of deflections. As the original message can be distributed over several flits, the
flit structure has to be extended by a flit-ID field id, which determines the sequence of
the flits of one message. The size of the flit-ID field is denoted as |id|. Thus, the link
width and flit size is given by

|LI|= |f |= |pl|+ |hd|+ |id| (5.4)

With Equation (5.4), the lower and the upper limit of the flit size or the link width is

123

Chapter 5 Design of Deflection Routing based Network on Chips

straightforward. Flits have to be at least as large as the header width |hd|, plus one bit
of payload, as every transferred flit should contain any information content, and the
size of the flit-ID, which is required for reassembly. Furthermore, a flit size that exceeds
the maximum message size |msg|max plus the header information does not offer any
advantage. If the links are as wide as the largest message plus the size of the header
information, no flit-ID is required and |id|= 0. Hence, the link width which has to be
considered is limited by:

|LI| ∈ [|LI|min, |LI|max] = [1+ |hd|+ |id|, |msg|max + |hd|]
= [1+ |hd|+ dld(|msg|)e , |msg|max + |hd|] (5.5)

It can be assumed that the message size, as well as the header width, is fixed. Hence,
the flit-ID field, which just stores a sequence number, is the only unknown variable
in Equation (5.4). For |LI|min, exactly one bit of payload is transferred, and hence,
#f = |msg| flits are required to transmit a message msg. This leads to |LI|min = 1 +
|hd|+ ld(|msg|). In general, the size of the flit-ID field depends only on the number
of flits per message #f . This number in turn depends on the size of a message, which
has to be distributed among several flits, and the capacity of the flits’ payload field:
#f · |pl| ≥ |msg|. With Equation (5.4), the number of flits per message, for a fixed |msg|
and |hd|, and a concrete |LI|, is given by:

#f =
¡ |msg|
|pl|

¤

(5.4)
=
¡ |msg|
|LI| − |hd| − |id|

¤

=
¡ |msg|
|LI| − |hd| − dld(#f)e

¤

(5.6)

The number of flits per message #f appears on the left side, as well as in the denomi-
nator, of Equation (5.6). This equation can be transformed (cf. Appendix A.2) with the
Lambert W function to:

#f ≥
−|msg| · ln(2)

W (−|msg| · ln(2) · 2|hd|−|LI|)
(5.7)

Therefore, calculating the number of flits per message for a given link width can
be complex. However, as the computing effort of an iterative program which solves
Equation (5.6) is quite low, such a program was used instead of Equation (5.7). Depicted
in Figure 5.4 is the number of flits per message for a concrete example (|msg|= 32bit,
|hd|= 16bit) and a variable link width. The link width varied between |LI|min = 22 bit
and |LI|max = 48 bit. It can be seen, not every link width in this range is reasonable, i.e.
Pareto optimal, as some link widths lead to the same number of flits per message, and
additionally to more unused link wires. The Pareto optimal link widths are highlighted
in orange. If e.g. the Pareto optimal link width of |LI| = 26 bit is used, this leads to
#f = 4 flits per message, |id|= 2bit, and a payload size of |pl|= 8 bit. The non-optimal
link width of |LI| = 27bit would also lead to the same numbers, but additionally to
more unused link wires.

124

5.3 The optimal Link Width

0
2
4
6
8

10
12
14
16

22 24 26 28 30 32 34 36 38 40 42 44 46 48

Fl
it

s
pe

r
m

es
sa

ge
#

f

Link width |LI| [bit]

Pareto optimal
not Pareto optimal

Figure 5.4: Number of transferred flits per message #f calculated according to Equa-
tion (5.6), for |msg|= 32 bit, |hd|= 16bit, and a variable link width |LI|.

If the number of flits per message has to be calculated, Equation (5.6) can be used.
However, if the main goal is to just determine the Pareto optimal link widths, a less
computationally intensive method exists. Rather than calculating the required number
of flits per message for a given link with, the link width for a given number of flits per
message can be calculated:

¡ |msg|
#f

¤

=|pl|#f = |LI|#f − |hd| − |id|

⇒ |LI|#f =
¡ |msg|

#f

¤

+ |hd|+ ld d#fe (5.8)

Here, |pl|#f and |LI|#f denote the minimum payload size and the minimum link width,
respectively, which are required for a specific number of flits per message. Figure 5.5
shows the required link width for a variable #f ∈ [1, |msg|]. It can be seen, that the
same Pareto set as for Figure 5.4 is achieved. The Pareto optimal values are highlighted
in yellow.

Latency An important performance metric of a NoC is the average latency of all
transferred messages. If deflection routing and several independently routed flits are
used, the latency l of one message is given by the time difference of the last ejected flit
and the injection time of the first flit of this message:

l= max
1≤i≤#f

�

tejec(fi)
�

− tinjec(f1) (5.9)

Here, the ejection time and injection time of a flit fi are denoted as tejec(fi) and tinjec(fi),
respectively. Please note that the last received flit does not necessarily have to be the

125

Chapter 5 Design of Deflection Routing based Network on Chips

20

25

30

35

40

45

50

1 4 8 12 16 20 24 28 32

Li
nk

w
id

th
|L

I|
[b

it
]

Flits per message #f

Pareto optimal
not Pareto optimal

Figure 5.5: Link width |LI| calculated according to Equation (5.8), for |msg| = 32 bit,
|hd|= 16 bit, and a variable number of flits per message #f .

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

flit f1:

flit f2:

flit f3:

inject
&

log
Rx R y Rz

eject
&

log
1

2
3

inject
&

log
Rx R y Rz

eject
&

log4

inject
&

log
Rx R y Rz

eject
&

log

Figure 5.6: Transmission of three flits between two two-hop neighbors.

126

5.3 The optimal Link Width

last injected one. Figure 5.6 shows an example of one message that consists of three flits
being transmitted from switch Rx to its two-hop neighbor Rz . In clock cycle c0, the first
flit is injected (cf. 1 in Figure 5.6) from the core and the log message is printed. In the
next cycle c1, the first flit f1 traverses router Rx and the second flit f2 is injected 2 . In
clock cycle c2, f1 traverses R y , whereas f2 traverses Rx and f3 is injected. In clock cycle
c4, flit f1 is ejected at Rz 3 . It is assumed that flit f2, which has to traverse Rz in this
cycle to follow the shortest path between Rx and Rz, is deflected (cf. 4 in Figure 5.6)
because of contention and arrives only in clock cycle c8. Hence, flit f3 has overtaken the
second flit, as f3 followed the direct path to Rz .

If a sufficiently dimensioned injection queue is deployed, as it is the case in the
simulations presented in the following sections, it can be assumed that flit injections are
never blocked. In other words, flits are deemed as injected as soon as they are stored in
an injection queue. This means, the i-th flit fi of a message msgi is injected i − 1 clock
cycles after the first flit f1 has been injected. Hence, the latency l for a message which
consists of #f flits is given by:

l= max
1≤i≤#f

(li + i − 1) (5.10)

whereas li denotes the latency of the i-th flit.
If there is always an idle input port at every router in every network clock cycle, the

cores can inject new flits directly into the network. In this case, an injection queue is
not required and the latency of a flit is determined by the time the flit spends in the
network. Hence, the latency of a flit f is given by: l f = hc f + 1. With Equation (5.10),
this leads to:

l≥ lno queue = max
1≤i≤#f

(hci + i) (5.11)

If additionally no congestion occurs, and hence, no deflections at all occur, the hop
count of a flit equals the Manhattan distance between the source node and the destination
node of this flit. With Equation (5.11), this leads to:

lno queue ≥ lno deflections = max
1≤i≤#f

(d1(fi) + i) = d1(msg) +#f = lmin (5.12)

Here, the Manhattan distance of a flit fi and a message msg is denoted by d1(fi) and
d1(msg), respectively. Equation (5.12) is also a lower bound of a message’s latency, as
no congestion in the network as well as in the injection queues is assumed.

Simulated Results with Uniform Random Traffic

To evaluate and compare the performance characteristics of different link widths and flit
sizes, an 8×8 NoC is simulated using our in-house cycle accurate simulator implemented
in VHDL. Every router is connected to a traffic generator, which is able to generate

127

Chapter 5 Design of Deflection Routing based Network on Chips

0
5000

10000
15000
20000
25000

24 25 26 27 28 29 30 31 32 33 35 36 38 41 45 50 61 81 14
4

Tr
an

sf
er

re
d

un
it

s

Link width |LI| [bit]

50000
100000
150000
200000
250000

total transferred flits

total transferred messages

Figure 5.7: Number of transferred flits and transferred messages for a variable flit
size / link width.

different types of network traffic. Messages are injected at every router with a given
injection probability, which was set to α= 1% or α= 0.1%. Please note that the real
network load is significantly higher than these low injection probability might suggest.
For the herein used simulation parameters, messages are divided in up to 64 flits. Thus,
the injection probability of a flit is also up to 64 times higher than the message injection
probability. If a flit could not be injected at a certain router due to congestion, the flit is
stored in the injection queue and is injected as soon as possible. A header information
of |hd| = 16 bit and a message size of |msg| = 128bit is assumed. All simulations are
executed for 5000 clock cycles. Hence, the total number of transferred messages varied
between 320 and 3200, for α= 0.1% and α= 1%, respectively.

According to Equation (5.5), the minimum link width is |LI|min = 24bit, and the
maximum link width is |LI|max = 144bit. If 144 bit wide links are used, every message
can be transferred in one single flit. One could assume that exactly 128 flits are
required if 24 bit wide links are utilized. Indeed, Equation (5.8) holds: |LI|#f=128 =
�128

128

�

+ 16+ ld d128e= 24bit. However, if 2 bit of payload per flit are transferred, 64
flits are required and this leads also to |LI|#f=64 =

�128
64

�

+ 16+ ld d64e= 24 bit. Hence,
|LI| = 24 bit, #f = 128 is not a Pareto optimal point. Figure 5.7 shows the number
of transferred flits, as well as the number of transferred messages, for every Pareto
optimal link width between |LI|min and |LI|max, and an injection probability of α= 1%.
As depicted, the number of flits per message increases exponentially for smaller link
widths (e.g. twice as much flits if the link width is reduced from 25 bit to 24 bit) and a
constant number of 3200 transferred packets.

According to Equation (5.12), the minimum latency of a message is restricted by
the Manhattan distance of the message’s source and destination node, and the number

128

5.3 The optimal Link Width

0
10
20
30
40
50

24 25 26 27 28 29 30 31 32 33 35 36 38 41 45 50 61 81 14
4

C
lo

ck
cy

cl
es

Link width |LI| [bit]

500
2500
4500

lα=1%
hcα=1%
lα=0.1%

hcα=0.1%

Figure 5.8: Average latency l and average hop count hc for traffic with uniform length, in-
jection probabilities of α = 1% and α = 0.1%, and a variable link width / flit
size.

of flits per message. Therefore, as #f increases exponentially, also the latency has to
increase in this order of magnitude for smaller link widths. Simulation results for a
variable flit size / link width and uniform random traffic with 128 bit of payload per
message are depicted in Figure 5.8. This figure shows the average latency l, as well
as the average hc, for two different injection probabilities of α = 1% and α = 0.1%.
It can be seen that the average latency increases exponentially for both, α = 1% and
α= 0.1%. The latency is influenced by #f directly, due to the exponentially growing
number of flits per message, as indicated in Equation (5.12). However, the latency is
also influenced by #f indirectly, as a higher number of flits per message also leads to
a higher network load. An increased network load in turn leads to a rising number of
deflections and more frequent detours of flits. In our simulations, the network load
even rose up to the saturation point of the NoC for small flit sizes. If the network is fully
saturated, deflections occur very frequently, but even more importantly, new flits can
only be injected if flits which are already in the network are ejected before. The new
flits have to stay in the injection queue for this period of time. As every flit has a hop
count field of 8 bit, an upper bound for the time a flit stays in the network can be given.
In contrast, no upper bound for the queue time exists. According to Equation (5.11),
the latency of the complete message is lno queue =max1≤i≤#f (hci + i)≤ 255+#f if an
8 bit hc-field and a nonexistent queue time is assumed. However, the difference between
the increase of the latency and the hop count is much higher, as depicted in Figure 5.8.
Hence, the indirect influence of an increased #f on the latency is considerably greater
than the direct influence, due to the unbounded queue time.

In summary, despite the exponential increase of the latency, a reduction of the link

129

Chapter 5 Design of Deflection Routing based Network on Chips

0
5

10
15
20
25
30

24 25 26 27 28 29 30 31 32 33 35 36 38 41 45 50 61 81 14
4

C
lo

ck
cy

cl
es

Link width |LI| [bit]

600
1200
1800

lα=1%
hcα=1%
lα=0.1%

hcα=0.1%

Figure 5.9: Average latency l and average hop count hc for traffic with non-uniform
length, an injection probability α of 1% and 0.1%, and a variable link
width / flit size.

width can be an option for low injection probabilities and short messages. If the link
width is reduced from 144 bit to 61 bit, the injection probability would be three times
higher, but the average latency for an injection probability of 1% would deteriorate only
by 2.3 clock cycles.

Simulated Results with Non-Uniform Random Traffic

A uniform message size of |msg| = 128bit was used for the simulations of Figure 5.8.
However, real traffic for MPSoCs usually does not have a uniform length [YBM03].
Instead, it consists of larger messages (e.g. data fetch or data update packets) as well
as shorter messages (e.g. memory access request packets). As the message size affects
the number of flits #f , which in turn influences the network load, the simulations are
repeated with traffic which is more similar to real MPSoC traffic. For Figure 5.9 half
of the transferred messages have a size of 128 bit and the other packets consist of just
one flit per message. Hence, the number of transferred messages remained equal to
the simulations with a uniform message length, but the total number of transferred
flits is reduced. The factor of reduction depends on the utilized |LI|, or rather #f . For
a link width of |LI| = 24bit, 64 flits per message are required if a uniform message
length of |msg| = 128bit is assumed. For a non-uniform message length of |msg| ∈
{1bit, 128bit}, only 32.5 flits per message are required on average. As the network
load is reduced, the average latency is also improved compared to the simulations with
uniform message length. The maximum average latency, which occurred at a link width
of 24 bit, decreased from 4473 clock cycles to 1580 clock cycles. If, for instance, the
injection probability is 1% and an average latency of 15 clock cycles is tolerable, a link

130

5.3 The optimal Link Width

|LI| [bit] 576 288 144 96 64 32 16
#f large messages 1 2 4 6 9 18 36
#f small messages 1 1 1 1 1 2 4

Table 5.1: Simulated link widths, and the consequential number of flits per large message
as well as per small message.

link width 576 288 144 96 64 32 16

Exec. time
[106 cycles]

blackscholes 50.95 50.95 50.95 50.95 50.95 50.95 50.96
canneal 55.52 55.52 55.52 55.52 55.52 55.52 55.52
x264 52.98 52.99 52.99 53.00 53.00 53.03 53.06

Inj. prob. α
[10−3]∗

blackscholes 1.38 2.04 3.36 4.68 6.67 13.33 26.66
canneal 1.69 2.47 4.05 5.62 7.97 15.95 31.89
x264 0.29 0.44 0.73 1.02 1.45 2.90 5.80

Avg. hc
blackscholes 6.38 6.38 6.39 6.41 6.46 6.70 7.71
canneal 6.78 6.78 6.79 6.82 6.89 7.28 8.81
x264 6.53 6.52 6.55 6.61 6.73 7.31 8.93

Avg. l
[cycles]

blackscholes 7.38 7.87 8.84 9.83 11.32 16.48 28.12
canneal 7.78 8.25 9.21 10.18 11.66 16.98 30.34
x264 7.53 8.03 9.05 10.12 11.76 17.98 42.05

∗Injected flits per clock cycle per node

Table 5.2: PARSEC simulation results, for seven different link widths / flit sizes.

width of 41 bit will be required for uniform traffic length (|msg| = 128 bit) and a link
width of 31 bit will be required for non-uniform traffic (|msg| ∈ {1bit, 128bit}).

Application Performance

In order to assess the impact of a reduced flit size / link width on application performance,
the three PARSEC benchmarks, blackscholes, canneal, and x264, are also simulated. For
further details concerning the benchmarks and the simulation parameters, please refer
to Section 2.6.2. The benchmark traces, which are provided by Netrace [HGK10; HK10],
consist of several message types with two different message sizes. Large messages have
a size of 72B= 576 bit and small messages have a size of 8B= 64bit. Table 5.1 shows
the simulated link widths, and the consequential number of flits per messages for both
message types. The considered link widths ranged from 576 bit, which corresponds to a
single flit per message, to 16 bit, which corresponds to 36 flits per large message and 4
flits per small message.

131

Chapter 5 Design of Deflection Routing based Network on Chips

Simulation results are depicted in Table 5.2. The first considered value is the execution
time. As described in Section 2.6.2, the simulated clock cycles are restricted to approxi-
mately 50 million clock cycles, due to simulation times of up to several weeks. Only with
x264, the execution time increased slightly for lower link widths. With blackscholes,
as well as with canneal, the execution time is almost constant for all link widths. This
can be traced back to two main reasons. First, there is only a short chain of message
dependencies, at least at the end of the simulation time of these two benchmarks.
Second, the average injection probability is quite low, even for |LI| = 16, and hence,
the NoC is not saturated most of the time. Due to the low traffic load, the average
hop count increased also hardly for all simulated link widths. However, the average
latency of the whole message increased significantly for lower link widths. According to
Equation (5.11), the latency of a message which consists of #f flits has to be greater
or equal to lno queue =max1≤i≤#f (hci + i) ≥ hcavg +#f . For instance, the blackscholes
traffic consists of 48% larger messages and 52% smaller messages (cf. Table 2.4). For a
link width of 16 bit, which corresponds to an average hop count of 7.71, this leads to
l ≥ 0.48 · (36+ 7.71) + 0.52 · (4+ 7.71) = 27.07. Hence, the increase of the latency is
dominated by the message fragmentation.

To summarize, the PARSEC benchmark results show, a reduced link width does not
have to affect the execution time if the network is neither congested nor the performance
bottleneck. For higher injection probabilities, e.g. due to an increased ratio of core
frequency to NoC frequency, a performance decrease is to be expected.

5.4 TwoPhases - An Alternating Transmission Scheme

In Section 5.3, the link width and its effect on the performance as well as on the hardware
costs for a permutation network based router architecture have been considered. As
deflection routing based architectures do not allow packet switching, the link width is of
particular importance for such NoCs. Wide links enable high throughputs and prevent
the fragmentation of large messages into too many sub-messages. These advantages
are gained by higher hardware requirements. According to Section 5.3.1, the hardware
costs for one router only increase linearly with the link width or flit size. Nevertheless,
limited hardware resources can prevent a link width equal to the maximum message
size. Besides of hardware limits, there are further reasons for smaller link widths and
router sizes. First, the saved area and energy can be used for other components. Second,
router design and wiring is much simpler, as a high number of wires is difficult to place
and route. For off-chip routing, the limited number of pins plays a further crucial role.
On the other hand, small link widths lead to a significant routing overhead, as every flit
has to be a head flit. Furthermore, costly reassembly of all received flits is required, as
the flits can arrive out of order.

Hence, transmission schemes for deflection routing based NoCs are desirable, which

132

5.4 TwoPhases - An Alternating Transmission Scheme

allow the transmission of messages that exceed the link width and which additionally
mitigate the negative effects caused by very wide links. In this section, an alternating
transmission scheme for deflection routing is presented, called TwoPhases [RK16a;
RK16c], which enables packets that consist of several flits. Thereby, smaller links and a
significant reduction of the routing overhead is achievable. The general methodology
of this transmission scheme, including the prerequisites and an analytical performance
evaluation, is presented in Section 5.4.1. In Section 5.4.2, existing and more obvious
transmission methods are introduced. Finally, these existing approaches are compared
to TwoPhases in Section 5.4.3.

5.4.1 Methodology of TwoPhases

At deflection routing, there is generally no distinction between packets and flits, as every
flit has to carry routing information. This is different at the new transmission scheme
TwoPhases. Here, every packet consists of exactly two flits, at least if a single-cycle router
architecture is assumed. These two flits are one head flit h, which carries the necessary
routing information, and one body flit b, which follows its head flit. Thereby, the ratio
of routing overhead to payload can be improved, as the body flit contains no routing
overhead.

Prerequisites and General Operating Mode

In order to apply TwoPhases, some prerequisites have to be fulfilled. First, as TwoPhases
is based on deflection routing, every router must have at least as many output ports
as input ports. Second, if the routers represent vertices and the links represent edges,
the corresponding graph has to be bipartite. In other words, all routers have to be
divisible into two disjoint sets S0 and S1, so that every router of S0 is only neighbored
to routers of S1 and vice versa. Third, the link width and router width has to be at least
as wide as the header information. Furthermore, a single-cycle router architecture is
assumed. Results for multi-cycle router architectures are presented on Page 138. All
these requirements can be fulfilled for a 2D mesh topology, which is assumed as the
chosen topology. Here, the division into two disjoint sets corresponds to a checkerboard
pattern (cf. Figure 5.10).

As mentioned before, TwoPhases allows the transmission of packets instead of solely
flits, as it is the case for standard deflection routing. These packets consist of exactly
one head flit h and one body flit b. The body flits only contain payload, and in particular,
no routing information. Hence, they have to follow their head flit immediately, in order
to reach their destination. Every network clock cycle, every router alternates between
two different modes. These two modes are the head mode (routers are colored red)
and the body mode (routers are colored blue). In head mode, routers expect only head
flits, and determine new routing decisions based on head flits that have just arrived. In

133

Chapter 5 Design of Deflection Routing based Network on Chips

Ru

Rv

R y

Rz

(a) Clock cycle c0

Ru

Rv

R y

Rz

(b) Clock cycle c1

Figure 5.10: Mesh topology with TwoPhases for two consecutive clock cycles. In clock
cycle c0, routers of S0 (S1) are in head mode (body mode), and thus,
colored in red (blue). In the subsequent clock cycle c1, all routers are in
their alternated mode.

body mode, routers expect only body flits, and merely hold their configuration from the
last clock cycle (e.g. the routing decision as well as the injection and ejection state). As
the routers alternate between these two modes, a router’s mode changes to head mode
(body mode) in the next clock cycle if and only if this router is in body mode (head
mode) in the current clock cycle. An example with two consecutive clock cycles c0 and
c1 is depicted in Figures 5.10a and 5.10b. In general, the mode of an arbitrary router Ri
at clock cycle c j can be expressed as follows 18:

Ri in head mode (colored red)⇔ Ri ∈ S0 ∧ c j mod 2 ≡ c0 ∨
Ri ∈ S1 ∧ c j mod 2 ≡ c1

Ri in body mode (colored blue)⇔ Ri ∈ S0 ∧ c j mod 2 ≡ c1 ∨
Ri ∈ S1 ∧ c j mod 2 ≡ c0 (5.13)

Even if deflection routing is inherently free from deadlocks, livelocks can occur. At
standard deflection routing, livelocks can be avoided if the highest prioritized flit is
always routed one hop closer to its destination, and never deflected away from it. The
livelock problem usually prevents the use of packet switching at deflection routing
based NoC, as shown in Section 5.1.2. However, packets which consist of two flits
are used at TwoPhases. Thus, the abstinence of livelocks has to be shown for this new
transmission scheme. At TwoPhases, data flits just follow their head flits. In particular,
routing computation and the path arbitration takes place only in head mode. Thus,

18c j denotes the j-th clock cycle and, for reasons of clarity, c j , j mod x ≡ y is abbreviated as c j mod x ≡ cy

134

5.4 TwoPhases - An Alternating Transmission Scheme

it is sufficient to show that head flits do not livelock, i.e. every head flit reaches its
destination eventually, to guarantee the abstinence of livelocks. The general operating
mode of TwoPhases in head mode equals the process at standard deflection routing.
Standard deflection routing is livelock free if the highest prioritized flit is routed to a
productive direction, which is also the case at TwoPhases. Thus, it is sufficient to show
that head flits do not leave head mode, i.e. only arrive at routers which are in head
mode in this network clock cycle. The network interfaces inject new flits only if the
corresponding router is in head mode. Therefore, a head flit is always in the correct
mode in its first network clock cycle. Additionally, the bipartite network graph as well
as the alternating router modes ensure that this is maintained until the flit reaches its
destination. Therefore, head flits do not livelock and as a consequence, TwoPhases is
livelock free.

There is one last prerequisite, which does not affect all deflection routing based NoCs.
At some implementations, the output ports of routers, which are placed at the border of
a 2D mesh topology, are fed back to the corresponding inputs ports. This ensures that
the same number of input and output ports are used and the same router architecture
can be deployed, independent of a router’s position. Further, links act as a kind of buffer
space at deflection routing. However, as routers in TwoPhases alternate between head
mode and body mode, a flit which is sent to such a loop link would arrive one clock
cycle later at the same router. A head flit would now arrive in body mode and vice versa.
To prevent this, a simple register has to be inserted in every loop link (cf. Figure 5.10).
These registers delay every flit by one clock cycle. Thus, it is ensured that head flits
(body flits) arrive only if the router is in head mode (body mode).

Performance

In this section, the theoretical performance and the costs of TwoPhases are compared
to standard deflection routing. The network latency for one specific flit with standard
deflection routing is lDR = hc+ 1, whereas hc denotes a flit’s hop count. At TwoPhases,
flits can only be injected if the corresponding router is in head mode, which is the
case in half of the clock cycles. Further, after a head flit has arrived at its destination,
one additional clock cycle is required to transmit the corresponding body flit to its
destination. Thus, the theoretical minimum network latency for one specific flit, which
arrives with a hop count of hc, is given by:

lT P = lDR + 0.5+ 1= hc+ 2.5 (5.14)

Equation (5.14) gives only a lower bound for the latency, as a network without congestion
is assumed. However, if the NoC is congested, flits may not be injectable into the network.
In this case, packets might stay in the injection queue for several clock cycles. Hence, the
latency of a packet consists of the network latency and the queue latency, whereas the

135

Chapter 5 Design of Deflection Routing based Network on Chips

c0 c1 c2 c3 c4 c5 c6 c7

Rx ∈ S0:
R y ∈ S1:
Rz ∈ S0:

inject
&

log

queue Rx : h Rx : b
R y : h R y : b

Rz: h Rz: b

eject
&

log
1 2 3 4 5 6 7

Figure 5.11: Transmission of one packet, which is routed with TwoPhases from Rx to its
two-hop neighbor Rz via R y .

latter can dominate the packet latency if the network is highly congested. Simulation
results are presented in Section 5.4.3.

An example for one packet transmission is depicted in Figure 5.11. Here, a packet
is transmitted from Rx to its two-hop neighbor Rz. In clock cycle c0, the head flit h is
injected and the core prints the log message (cf. 1 in Figure 5.11). In the subsequent
cycle c1, the flit has to stay in the queue 2 , as Rx ∈ S0 and routers of S0 can only accept
head flits in clock cycles with c j mod 2 ≡ c0. In cycle c2, the head flit h traverses the
router Rx 3 and h will arrive at R y at the subsequent clock pulse edge. Please note, for
clock cycles c2, . . . , c5, the flits as well as the modes of all three routers are depicted.
Router Rx , R y , and Rz are depicted in the first, second, and third row, respectively (cf.
left of Figure 5.11). In cycle c3, the body flit b traverses Rx and h traverses R y 4 . In
cycle c4, b traverses R y , whereas h traverses Rz 5 . In cycle c5, the body flit traverses Rz ,
whereby the complete packet has arrived at Rz 6 . Finally, the packet is ejected 7 and
the receiving core prints the log message in cycle c6.

Even if the average latency may increases compared to standard deflection routing, the
header overhead decreases by more than half. For a link width of |LI| bits and |hd| header
bits, only |LI| − |hd| payload bits can be transmitted per flit with standard deflection
routing. In contrast, 2 · |LI| − |hd| payload bits per packet are possible with TwoPhases.
Therefore, the link width and also the width of all internal router architecture parts can
be reduced, which allows resource and energy savings. If the same link width is used,
the throughput can be increased compared to standard deflection routing. In general,
if a message of |msg| bits and additionally |hd| bits of header information should be
transmitted with TwoPhases, the required link width is given by:

|LI|=max
§ |msg|+ |hd|

2
, |hd|

ª

(5.15)

The benefits of TwoPhases compared to standard deflection routing gain in importance
if small flits, and therefore small link widths and router widths, are deployed. For such
small flit sizes, which can be necessary due to resource constraints, the header overhead
is particularly significant.

136

5.4 TwoPhases - An Alternating Transmission Scheme

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

R1
x :

R2
x :

R1
y :

R2
y :

R1
z :

R2
z :

inject
&

log

queue h b1

h
b2

b1

h

b3

b2

b1

h

b3

b2

b1

h

b3

b2

b1

h

b3

b2

b1

b3

b2 b3

eject
&

log

Figure 5.12: Transmission of one packet, which is routed with TwoPhases and a pipelined
router architecture with two stages from Rx to its two-hop neighbor Rz via
R y .

Optimality of Decomposition into Flits

TwoPhases enables the use of packets which consist of exactly two flits, one head flit and
one data flit. The head flits arbitrate the paths, whereas the body flits follow their head
flits. Legitimately, one may ask why not more than two flits are used. Unfortunately,
it is not possible to split packets into more than two flits at deflection routing based
NoCs, which are based on single-cycle router architectures. This can be proved by a
counter-example.

We consider two neighbored routers Rx and R y . It is assumed that these routers have
a single-cycle router architecture and packets consist of at least three flits, a head flit
h and at least two flits b1, b2. To avoid livelocks, head flits may only arrive at clock
cycles at which the receiving router is in head mode. This assumes that only head flits
and no body flits are allowed to arrive at the input ports of router Rx in clock cycle c0.
As Rx could transmit one of those head flits to router R y , R y expects only head flits in
clock cycle c1. At the same time, router Rx processes the first body flit b1, which follows
its head flit h. Now, it is possible that R y decides to transmit one of the just received
head flits to Rx . It is even possible that the head flit h, which was sent from Rx to R y ,
is reflected back to Rx . This is the case if all other output ports of R y are occupied by
higher prioritized flits. In cycle c2 (when Rx should process the second body flit b2, as
all packets consist of at least three flits, following the adoption), a head flit arrives at
router Rx again. However, this is not allowed, as in every clock cycle at every router
solely head flits or solely body flits are permitted. Therefore, a decomposition of packets
into more than two flits is not possible here.

137

Chapter 5 Design of Deflection Routing based Network on Chips

Pipelined Router Architectures

For single-cycle router architectures, packets can not consist of more than two flits.
This is not the case if the router architecture is pipelined. At pipelined routers with n
stages, it takes exactly n cycles to transmit a flit from an input port to an output port.
Therefore, a head flit will arrive at a router of the same set exactly after 2n clock cycles.
Thus, packets consist of 2n flits, one head flit h and 2n− 1 body flits b1, . . . ,b2n−1. In
contrast to single-cycle router architectures, a head flit is processed just by one pipeline
stage of a router within one clock cycle, not by the complete router. Accordingly, the
concept of a router’s mode has to be adapted. If a router is stated to be in head mode,
the first pipeline stage is in head mode and the router can receive new head flits from
its neighbored routers.

The division into S0 and S1 remains unchanged. Routers of S0 are in head mode at
clock cycles c j mod 2n ≡ c0 and routers of S1 at clock cycles c j mod 2n ≡ cn. Accordingly,
the routers of S0 and S1 are in body mode at clock cycles c j mod 2n 6≡ c0 and c j mod 2n 6≡
cn, respectively. In contrast to TwoPhases for single-cycle router architectures, two
neighbored routers can be in body mode simultaneously, but never can be in head mode
at the same time. At a single-cycle router architecture, two adjacent routers are always
in different states. The abstinence of livelocks is still guaranteed, as in every network
clock cycle at every router either head flits or body flits arrive.

An example for a packet transmission from router Rx to its two-hop neighbor Rz
via R y is depicted in Figure 5.12. A router architecture with n = 2 pipeline stages is
assumed for this example. Hence, it takes two clock cycles to transmit a flit from one
router to another router. Packets consist of one head flit h, and three body flits b1,
b2, and b3. It is assumed that Rx , Rz ∈ S1, and R y ∈ S0. Thus, Rx is in head mode at
clock cycles c2, c6, c10, and in body mode at the remaining depicted clock cycles. As
mentioned above, a router is in head mode if the first pipeline stage of this router is
in head mode. The first and second pipeline stage of router Rx are denoted as R1

x and
R2

x , respectively. Please note, the six pipeline stages are depicted on the left side of
Figure 5.12. These labels correspond to the processed flits and router modes depicted
for clock cycle c2, . . . , c10.

In summary, for a pipelined router architecture, the header overhead can be reduced
even more. At n pipeline stages, 2n flits per packet and 2n · |LI| − |hd| payload bits per
packet are possible. However, the average latency of a packet may increase as well. In
general, the latency of a packet which has been routed with a n-cycle pipelined router

138

5.4 TwoPhases - An Alternating Transmission Scheme

architecture is given by:

lT Ppipelined
=

2n−1
∑

i=1
i

2n
+ hc · n+ (2n− 1) + 1

=
(2n−1)·2n

2

2n
+ (hc+ 2) · n= (hc+ 3) · n− 0.5 (5.16)

As the case for single-cycle router architectures, the injection of new head flits is only
possible if the router is in head mode, which is the case in 1

2n of all clock cycles. Hence,
the average queue time is given by the first term of Equation (5.16). Every router
requires n clock cycles to transmit a flit to the next hop. Thus, hc · n clock cycles are
required to transmit the head flit to its destination. As 2n flits per packet exist, 2n− 1
additional clock cycles are required to eject the rest of the packet. Finally, one more
clock cycle is required to process the packet at the destination and print the log message.

5.4.2 Transmission Methods

In this section, an overview of existing methods to transmit messages which exceed the
link width is given, and their performance characteristic is shown.

MultiFlit

The most obvious method to transmit data which exceeds the size of one flit is the
transmission in multiple portions, hereinafter referred to as MultiFlit. For MultiFlit, the
message to be transferred is divided into as many flits as necessary, whereas all flits
are routed from sender to receiver independently. This transmission method has been
assumed in Section 5.3 and the performance of MultiFlit has already been investigated
in 5.3.2. Hence, only the performance characteristics are briefly summarized here.

The main advantage of this method is that the number of flits is variable. However,
these flits can arrive out of order at their destination, as they are routed independently
from each other and some may make a detour because of deflections. Thus, all flits
which belong to one message have to be received to be able to reassemble the complete
message. Further, the flit structure has to be extended by a flit-ID field, which determines
the sequence of the flits of one message, as the original message is distributed over
several flits. As every flit has to carry routing information, and additionally the flit-
ID field has to be appended, the overhead (transmitted data, which is not payload)
can be significant, depending on the flit size. The transferred overhead is given by:
#f · (|hd|+ |id|). Further, the links have to be as wide as the flits (|LI|= |f |).

139

Chapter 5 Design of Deflection Routing based Network on Chips

Serialization

Another method to transfer large amounts of data over small links and additionally
avoid the separation into several flits, is the serialization and deserialization of flits.
For buffered NoCs, this method has been investigated extensively [Ghi+13; CLC12;
HNJ12; YKH10]. Unfortunately, the results for buffered NoCs can not be transferred to
bufferless, deflection routing based NoCs. For buffered, wormhole flow control based
NoCs, the routing decision can be calculated as soon as the routing information and,
in particular, the destination address of the packet has arrived at a router. In case of a
successful buffer arbitration, even the data transfer to the next router can be performed
immediately. This is not possible for deflection routing, at least not without major
adaptions of the router architecture [MM09]. Bufferless, deflection routing based router
architectures merely permute all inputs and outputs. There is no arbitration of buffer
space. Instead, it is exploited that flits stay in a router for just one clock cycle, and
hence, routers can receive new flits every clock cycle. Therefore, at Serialization, every
flit is indeed transmitted in several phits, but the routing decisions will nevertheless be
calculated synchronously by all routers of the NoC in the same clock cycle. Thereby the
abstinence of livelocks is guaranteed, as the highest prioritized flit always gets assigned
to its preferred direction.

At Serialization, the link width |LI| equals the phit size |ph|, whereas the router
width corresponds to the flit size |f |. Every flit is divided into #ph=

|f |
|LI|

£

phits of |LI|
bits, which are serially transferred over the links. The router architecture has to be
extended by additional buffers at every input and control logic, which controls the phit
transmission and the sorting into the correct buffer space. The buffer width has to be
|f | − |LI| as all phits except the last one must be stored. This method allows a reduction
of the link width up to 1 bit, but the router architecture is still based on the complete
flit size. Hence, the link width is limited by:

|LI| ∈ [|LI|min, |LI|max] = [1, |msg|max + |hd|] (5.17)

However, the router architecture size can even increase for smaller link widths, due to
additional buffers and control logic (cf. Section 5.4.3). In general, if a message size of
|msg|, a header width of |hd|, and #ph phits per message are assumed, the required link
width is given by:

|LI|#ph =
¡ |msg|+ |hd|

#ph

¤

(5.18)

Figure 5.13 shows the transmission of one packet sent from router Rx to Rz via R y
which consists of four phits ph4, . . . , ph1. In clock cycle c0, the whole packet is injected
and the core prints the log message 1 . As all routers operate synchronously and the
last phit ph1, which completes the whole packet, is expected at clock cycles c j mod 4 ≡ c0,
the packet can not be transmitted to router Rx immediately. This is why the packet

140

5.4 TwoPhases - An Alternating Transmission Scheme

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

inject
&

log

queue
time

Rx R y Rz eject
&

log

ph4 ph3 ph2 ph1 ph4 ph3 ph2 ph1
1

2

3 4 5

6

Figure 5.13: Transmission of one message with Serialization between two-hop neigh-
bors.

stays in the queue 2 until the fourth clock pulse edge. In the fourth clock cycle, the
whole packet traverses Rx 3 , but only one phit can be transmitted to R y at the next
clock pulse edge. All four phits are transmitted to R y after the eighth clock pulse edge.
During clock cycle c8, the packet traverses R y 4 and the phit transmission to Rz begins.
In clock cycle c12, the whole packet has arrived at Rz 5 and the packet can be ejected 6

in clock cycle c13.
In general, the theoretical minimum latency of one packet, which arrived with a hop

count of hc and consists of #ph phits, is given by:

lSER =#ph · (hc− 1) + 2+
#ph− 1

2
(5.19)

=#ph · (hc− 0.5) + 1.5

The last term in Equation (5.19) gives the average queue time, as new flits can be
injected only every #ph clock cycles. Please note that this queue time must not be
confused with the queue time due to network congestion. The constant 2 is added as
it takes one clock cycle to traverse the last router and one clock cycle to transmit the
flit to the core and print the log message. The most significant term for the majority
of the flits is the first term, which gives the serialization and deserialization time. As
the packet is serialized at every router, except the router which receives the packet, this
takes #ph · (hc− 1) clock cycles.

5.4.3 Evaluation

In this section, TwoPhases is evaluated and compared to the transmission schemes
introduced in Section 5.4.2. One may ask, how the three transmission methods cope
with small links. Table 5.3 shows all Pareto optimal link widths for all three methods,
a message size of |msg|= 32bit, and a header width of |hd|= 16bit. The same values
have been used for the example depicted in Figures 5.4 and 5.5 in Section 5.3.2. Hence,

141

Chapter 5 Design of Deflection Routing based Network on Chips

Method Pareto optimal link widths
MultiFlit 48 33 29 26 25 24 23 22
TwoPhases 24
Serialization 48 24 16 12 10 8 7 6 5 4 3 2 1

Table 5.3: All Pareto optimal link withs for |msg|= 32 and |hd|= 16.

the values of MultiFlit are taken from there. At Serialization, the header information
is transmitted only once and can be distributed over several phits. Therefore, the
minimum link width is a single bit and the Pareto optimal link widths are determined
by means of Equation (5.18). The link width for #ph= 1 is always Pareto optimal and
all other Pareto optimal link widths are found by iterating from 2 to |LI|max. A Pareto
optimal point is found if |LI|#ph=i−1 > |LI|#ph=i . For TwoPhases, there is only one Pareto
optimal link width, which is 24 bit, according to Equation (5.15). Of course, TwoPhases
could be combined with MultiFlit or Serialization to enable a further reduction of the
link width. This means, for instance, several independently routed flits can be used,
which would correspond to TwoPhases combined with MultiFlit. However, as this would
significantly increase the design space, pure TwoPhases is compared to MultiFlit as well
as to Serialization, whereas similar conditions are used for all of them. Thus, exactly
two independently routed flits per message are used for MultiFlit and two phits per
message for Serialization.

One advantage of MultiFlit, compared to both other transmission schemes, is that
the number of flits per message #f does not have to be constant. With Serialization as
well as with TwoPhases, all messages have to have a uniform length, as it is the case for
standard deflection routing. However, real network traffic can have a non-uniform length
[YBM03], i.e. it can consist of larger messages (e.g. data fetch and data update packets)
as well as shorter messages (e.g. memory access request packets). Therefore, the three
transmission methods are compared to a fourth one, MultiFlit50:50. For MultiFlit50:50,
half of the messages consist of two flits and the other messages consist of only one flit.

Synthetic Traffic Performance

All transmission schemes are simulated for an 8×8 NoC using our in-house cycle accurate
simulator implemented in VHDL. Every router is connected to a traffic generator, which
is able to generate different synthetic workloads. At every router, messages are injected
with a given injection probability. If a message could not be injected at a certain router
due to congestion, the corresponding flit is stored in the injection queue and is injected
as soon as possible. The injection probability α is varied from 0.1% up to the saturation
point of the NoC. Simulations are executed for 5000 clock cycles and every message
consists of 128 bit payload and 16 bit header information. As mentioned before, two

142

5.4 TwoPhases - An Alternating Transmission Scheme

flits per message are used for MultiFlit and two phits per message for Serialization.
Thus, for TwoPhases as well as for Serialization, every flit, or rather packet in case of
TwoPhases, has a length of 144 bit and 72 bit wide links are used. As MultiFlit uses
several independently routed flits to transmit larger messages, every flit has to carry
routing information and a flit-ID field for sequencing. At these simulations, every flit has
a length of 64+ 16+ 1bit, whereas the last bit is required to store the flit-ID. Therefore,
the links are 81 bit wide for MultiFlit and exactly two flits are transmitted per message.

Figure 5.14 shows the average hop count hc as well as the average latency l for all
four transmission methods and four different synthetic traffic benchmarks, as described
in Section 2.6.1. Please note that all vertically stacked plots share a common x-axis,
which denotes the injection probability. The displayed injection probabilities specify the
likelihood of a message injection. As a message consists of two flits (in case of MultiFlit
and TwoPhases) or two phits (in case of Serialization), the real injection probabilities
are up to two times higher.

MultiFlit has the highest average hop count in most simulations (cf. left plots of
Figure 5.14) as the deflection rate is higher due to the increased number of independently
routed flits. This effect increases with the injection probability and occurs for all four
evaluated workloads. The lowest average hop count is achieved with MultiFlit50:50,
because of the lower network load. For instance, MultiFlit50:50 is the only transmission
scheme that allows an injection probability higher than 10% with bit-complement traffic
(cf. Figure 5.14 (e)).

Even more important than the average hop count of the flits is the message latency.
The latency of a message can differ significantly from the hop count of the messages’
flits, due to the queue time. Furthermore, at MultiFlit, all independently routed flits of a
message have to be received before the data can be processed. The average latencies
which were determined by our simulations are depicted in Figure 5.14 (b), (d), (f),
and (h). Please note the broken y-axis for plots (b), (d), and (f). The theoretical
minimum average latencies for all four transmission methods, which are based on
Equations (5.11), (5.14) and (5.19) are also depicted (smaller point sizes and a brighter
color). A zero queue time, and hence, a NoC which is not congested, is assumed for
these theoretical lower bounds. At TwoPhases and Serialization, the difference between
the measured latency and the theoretical latency is the queue time. This does not apply
for MultiFlit, as the herein depicted theoretical latency is based on Equation (5.11). At
MultiFlit, two flits per message are routed independently and the last injected flit does
not have to be the last ejected flit, due to deflections. Hence, the difference between the
theoretical latency and the measured latency includes the queue time (due to network
congestion) as well as the time caused by varying arrival times of the two flits. The
results show, for low injection probabilities, Serialization has a higher latency than
the other approaches, due to the serialization and deserialization time, and MultiFlit
and TwoPhases perform equally well. However, at higher injection probabilities, the
latency with MultiFlit increases significantly due to the increased network congestion.

143

Chapter 5 Design of Deflection Routing based Network on Chips

6

8

10

12

14

16
A

ve
ra

ge
ho

p
co

un
t

hc

8
10
12
14
16
18
20
22
24

A
ve

ra
ge

la
te

nc
y

l 30
50

4

6

8

10

12

14

16

A
ve

ra
ge

ho
p

co
un

t
hc

6
9

12
15
18
21
24
27

A
ve

ra
ge

la
te

nc
y

l 30
80

8

10

12

14

16

18

20

A
ve

ra
ge

ho
p

co
un

t
hc

10
15
20
25
30
35
40

A
ve

ra
ge

la
te

nc
y

l 60
110

6

8

10

12

14

16

0% 2% 4% 6% 8% 10
%

12
%

A
ve

ra
ge

ho
p

co
un

t
hc

Injection probability α

6
10
14
18
22
26
30
34

0% 2% 4% 6% 8% 10
%

12
%

A
ve

ra
ge

la
te

nc
y

l

Injection probability α

Serialization
TwoPhases

MultiFlit50:50
MultiFlit

(a) (b)

(c) (d)

(e) (f)

(g) (h)

hc for
random
traffic

l for
random
traffic

hc for
shuffle
traffic

l for
shuffle
traffic

hc for
bitcomp
traffic

l for
bitcomp
traffic

hc for
transpose
traffic

l for
transpose
traffic

Figure 5.14: Avg. hop count hc and latency l for a variable injection probability α and
different synthetic workloads. Please note the common x-axis for all plots.

144

5.4 TwoPhases - An Alternating Transmission Scheme

In particular, this applies for the measured latency of MultiFlit, which is considerably
higher than the corresponding theoretical latency, due to the above mentioned reasons.

Application Performance

In order to evaluate application performance, three PARSEC benchmarks are simulated
additionally, as described in Section 2.6.2. These benchmarks are simulated with
TwoPhases, Serialization, MultiFlit, as well as with standard deflection routing. For
TwoPhases and Serialization, all messages are transferred by two flits or two phits,
respectively. At MultiFlit, the larger messages are transmitted by two independently
routed flits, and the smaller messages require only a single flit. At standard deflection
routing, which is the performance baseline, the link width is doubled compared to
TwoPhases and Serialization. Hence, large messages as well as small messages are
transferred by a single flit.

Table 5.4 shows the simulation results for three different clock frequency ratios. More
precisely, it shows the execution time, which is the number of clock cycles that are
required to transmit the predetermined number of messages. Further, the injection
probability is depicted, which is the number of injected messages per clock cycle per
node. Finally, the average hop count of all flits as well as the average latency of the
complete messages is shown.

As the network has not been congested in almost all clock cycles (cf. the low injection
probabilities in Table 5.4), the messages’ latencies are dominated by the time the
messages spend in the network. In contrast to the simulations with synthetic traffic,
the average queue time, which can arise due to network congestion, is close to zero
for these simulations. Hence, the time difference between the average latency and
the average hop count is caused by message fragmentation. At MultiFlit, for instance,
both independently routed flits have to be ejected to be able to reassemble the original
message. For standard deflection routing, the average latency l equals the average
hop count hc plus one, which is the lower bound for the latency, as every message is
transmitted by a single flit.

Figure 5.15 illustrates the speedup of TwoPhases, Serialization, and MultiFlit compared
to standard deflection routing for all three evaluated benchmarks. In the first plot of
Figure 5.15, an equal core and network frequency (clock ratio CR = 1) is assumed.
Due to the halved link width, also a reduction of the performance is to be expected.
However, as depicted in Table 5.4, the execution times are very close to each other
(less than 100 clock cycles at a runtime of ≈ 5× 107 clock cycles), even if the average
latencies are slightly different. Hence, the NoC is not the performance bottleneck in
these configurations.

To increase the network load, the simulations were repeated with two decreased NoC
clock frequencies, but an unchanged core frequency. The two reduction factors are
64 and 128, denoted as clock ratio CR = 64 and CR = 128, respectively. Please note,

145

Chapter 5 Design of Deflection Routing based Network on Chips

TwoPhases
Serial-
ization

MultiFlit
Deflection

routing
cl

oc
k

ra
ti

o
C

R
=

1

Exec. time
[106 cycles]

blackscholes 50.95 50.95 50.95 50.95
canneal 55.52 55.52 55.52 55.52
x264 52.99 52.99 52.99 52.98

Inj. prob. α
[10−3]

blackscholes 1.38 1.38 1.38 1.38
canneal 1.69 1.69 1.69 1.69
x264 0.29 0.29 0.29 0.29

Avg. hc
blackscholes 6.40 6.39 6.38 6.38
canneal 6.82 6.79 6.78 6.78
x264 6.69 6.55 6.52 6.53

Avg. l
[cycles]

blackscholes 8.94 13.74 7.87 7.38
canneal 9.83 14.87 8.25 7.78
x264 11.66 16.18 8.03 7.53

cl
oc

k
ra

ti
o

C
R
=

64

Exec. time
[106 cycles]

blackscholes 1.54 1.75 1.48 1.46
canneal 2.16 2.42 2.01 1.93
x264 1.75 2.05 1.58 1.54

Inj. prob. α
[10−3]

blackscholes 45.57 40.19 47.52 48.29
canneal 43.37 38.38 46.13 48.60
x264 8.92 7.72 9.90 10.16

Avg. hc
blackscholes 7.67 6.98 7.43 7.00
canneal 8.57 7.76 7.82 7.39
x264 7.34 6.93 6.90 6.76

Avg. l
[cycles]

blackscholes 10.85 14.04 9.14 8.00
canneal 12.38 15.32 9.56 8.39
x264 16.18 19.91 8.52 7.76

cl
oc

k
ra

ti
o

C
R
=

12
8

Exec. time
[106 cycles]

blackscholes 1.05 1.18 0.98 0.91
canneal 1.44 1.60 1.35 1.25
x264 1.16 1.26 1.09 1.09

Inj. prob. α
[10−3]

blackscholes 66.65 59.82 71.67 76.91
canneal 63.42 57.34 69.67 75.20
x264 13.43 12.45 14.34 14.40

Avg. hc
blackscholes 8.78 7.84 8.14 7.15
canneal 10.67 10.53 9.69 8.39
x264 7.69 7.06 7.14 6.87

Avg. l
[cycles]

blackscholes 12.33 15.82 10.04 8.16
canneal 14.65 18.18 12.22 9.44
x264 16.78 19.56 8.80 7.87

Table 5.4: PARSEC simulation results, for three different clock ratios.

146

5.4 TwoPhases - An Alternating Transmission Scheme

TwoPhases Serialization MultiFlit

0.5

0.6

0.7

0.8

0.9

1

Sp
ee

du
p

fo
r

CR
=

1

0.5

0.6

0.7

0.8

0.9

1

Sp
ee

du
p

fo
r

CR
=

64

0.5

0.6

0.7

0.8

0.9

1

blackscholes canneal x264

Sp
ee

du
p

fo
r

CR
=

12
8

Figure 5.15: Speedup for all evaluated PARSEC simulations, compared to standard
deflection routing with links that are as wide as the largest packet. The
upper, middle, and lower plot shows the results for a clock ratio of CR = 1,
CR= 64, and CR= 128, respectively.

147

Chapter 5 Design of Deflection Routing based Network on Chips

TwoPhases
128,72,72

Serialization
128,72,144

Deflection routing
64,81,81

Deflection routing
128,144,144

0
50

0
10

00
15

00
20

00
25

00

LUTs

0
20

0
40

0
60

0
80

0
10

00

Registers

0 20 40 60 80

Freq. [Mhz]

Figure 5.16: Synthesis results for different router architectures. The numbers under-
neath the labels on the left indicate the used payload size, link width, and
router width, respectively.

Netrace ensures that inter-message dependencies are still met. Hence, the resulting
injection probabilities increased by a factor lower than 64 or 128 (cf. Table 5.4). Further,
the increase of injection probabilities varied between benchmarks and transmission
methods. The highest injection probability with TwoPhases and CR= 1, for instance, is
achieved for canneal. However, if the network clock frequency is reduced, the injection
probability for blackscholes is higher than for canneal. Due to the higher network
load, also the execution times for the four evaluated transmission times varied. The
middle plot of Figure 5.15 shows the speedup compared to standard deflection routing
and a clock ratio of CR = 64. All transmission methods suffer from a performance
decrease compared to standard deflection routing. This result was expected, as also
the link width is reduced by half for TwoPhases and Serialization, and by almost half
for MultiFlit. A more detailed evaluation of the hardware costs is presented in the
next section. The best performance is achieved with MultiFlit, as larger packets and
smaller packets are approximately equally probable, which corresponds to MultiFlit50:50.
However, even if the resulting average injection probability with CR = 64 is much higher
compared to CR= 1, it is below 5% for all simulations. From the results for synthetic
traffic patterns, it is to be expected that the performance gap increases for even higher
injection probabilities.

Hardware Costs

To evaluate the hardware cost, all router architectures were synthesized using Xilinx’s
XST [Xil15]. As described in Section 2.6.2, a Virtex-6 XC6VLX75T FPGA was selected

148

5.5 Summary and Conclusion of Chapter 5

as target device and the synthesis parameters were changed to optimize for area with
normal effort. Figure 5.16 shows the number of required LUTs and the number of
registers for a single router. The achievable frequencies are based on the synthesis
results for a NoC of dimension 8× 8. The comma separated numbers underneath the
labels on the left indicate the required payload size, link width, and router width for the
corresponding transmission schemes. Thus, these values are set to transmit 128 bit of
payload, or rather 64 bit in case of MultiFlit. With TwoPhases for instance, each packet
consists of 128 bit payload, the link width is 72 bit and the internal router structures also
have a width of 72 bit. It can be seen that TwoPhases has the least hardware requirements
of all presented transmission methods, as both, the link width and router width is smaller
compared to the other architectures. Further, only small hardware modifications are
required for TwoPhases, compared to standard deflection routing. Every router is just
extended by a simple one bit state machine, which controls the router’s mode, and
several registers, which store the router’s state when the router switches from head
mode to body mode. Serialization has the highest demands, because of the additional
hardware for serialization and deserialization. In particular, the number of required slice
registers is substantially higher than for the other transmission schemes, as additional
buffers are required for deserialization. Hence, input buffers as well as output buffers
are needed at Serialization. Nevertheless, the achievable frequency is the lowest, due
to the before mentioned serialization and deserialization hardware. The requirements
for a NoC with standard deflection routing, as the case for MultiFlit, are depicted in
blue. It can be seen that MultiFlit has higher hardware requirements than TwoPhases, as
wider links (81 bit instead of 72 bit) have to be deployed to transmit the same amount
of payload. The last bar in this plot shows the hardware requirements for a NoC with
routers which are able to transmit 128 bit payload in solely one flit. Hence, this can be
considered as an upper bound for the reasonable hardware requirements.

5.5 Summary and Conclusion of Chapter 5

The utilized link width is an important design parameter of NoCs, as it influences the
hardware costs directly and may affect the performance of the network. Usually19,
the link width equals the flit size. However, at standard deflection routing, there is no
distinction of packets and flits, and every flit contains routing information. Thus, the
link width is of particular importance for deflection routing based NoCs.

The effect of the link width on hardware costs and performance has already been
investigated for crossbar based, packet switched networks, but not yet for permutation
network, deflection routing based NoCs. In Section 5.3, the hardware requirements of
permutation network based architectures have been considered, and the theoretical
results have been confirmed by synthesis results. Further, equations for performance

19If flits are not serialized and deserialized

149

Chapter 5 Design of Deflection Routing based Network on Chips

influencing values, as the expedient link widths, have been developed, and performance
results for synthetic traffic as well as PARSEC applications have been presented. The
outcomes can help system designers to identify the optimal link width and have shown,
that a link width determined by the maximum message size does not have to be the
most appropriate choice.

Finally, TwoPhases, a method to reduce the routing overhead of transferred messages
by more than half has been introduced in Section 5.4. Performance and hardware
requirement comparisons for TwoPhases and existing approaches have shown that
TwoPhases is efficiently implementable and outperforms the existing approaches in case
of a uniform message length. At non-uniform message lengths, MultiFlit benefits from a
varying number of flits per message.

150

Chapter 6
Concluding Remarks

Contents

6.1 Contributions of this Thesis . 151

6.2 Future Work . 153

Reliable and power efficient NoCs are of vital importance for the development of future
many-core processors. Deflection routing based NoCs constitute a promising approach,
as the amount of power consuming flit buffers can be significantly reduced. Further
advantages of deflection routing are a low router latency and an inherent abstinence of
routing dependent deadlocks. However, bufferless deflection routing also poses several
challenges and issues related to the design and application of such NoCs.

6.1 Contributions of this Thesis

In this thesis, the following two key problems related to the design of reliable, power
efficient, and deflection routing based NoCs are addressed:

Fault tolerance Future systems have to be able to cope with different types of failures,
as it is predicted that they will be ubiquitous in these systems. In Chapter 4, the fault-
tolerant FaFNoC router architecture has been introduced. This architecture stands out
for the deployed interconnection architecture, which is a Benes network, and the used
method to tolerate complex fault situations, which is the concept of FaF.

Permutation networks enable a short router latency, as flit prioritization, route compu-
tation, and path allocation are implemented in a decentralized manner. At all existing
router architectures based on deflection routing, the utilized permutation networks
correspond to Banyan networks. However, these architectures are non-fault-tolerant.
In this thesis, several major problems of Banyan networks in terms of fault tolerance
have been identified. Furthermore, it has been proven that Benes networks provide a

151

Chapter 6 Concluding Remarks

solution for all identified problems of Banyan networks. Compared to Banyan networks,
Benes networks require more hardware resources but support more routing decisions.
A complete router architecture for both permutation networks has been implemented
and evaluated. Synthesis results have shown that the hardware requirements of both
router architecture versions are almost equal, as the Banyan network based architecture
requires an additional component which controls the switching elements’ behavior in
case of link failures. In terms of performance, the Benes network based architecture
outperforms the Banyan network based architecture significantly.

If several links fail, complex fault situations can arise which are hard to overcome.
Existing fault-tolerant and additionally deflection routing based NoC architectures utilize
either routing tables or fault information of adjacent routers. However, routing tables
do not scale with a high number of nodes, and fault information of adjacent routers
provides only limited fault tolerance. In this thesis, a scalable alternative to these
two approaches has been presented, namely the concept of FaF. There, flits which are
deflected due to faulty components try to surround the faulty region. Towards this end,
a fault status field is added to the flit structure and the router architecture is extended
by the fault-status-handler. This component sets a flit’s fault status field to start the fault
region evasion modus and clears the field if the faulty region is overcome.

To assess performance and hardware requirements, simulation results for different
types of traffic as well as synthesis results have been shown. FaFNoC-Benes outperforms
most existing router architectures and, in particular, all flits are delivered to their desti-
nation, even at extremely high fault rates. The only router architecture which performs
better than FaFNoC-Benes utilizes routing tables, which causes that hardware require-
ments depend on the number of nodes in the network. The hardware requirements
of the FaFNoC router architecture are independent of the number of nodes. Thus, the
herein presented FaFNoC architecture provides a scalable solution which is appropriate
for NoCs with a huge number of nodes.

Design of Deflection Routing based NoCs The application of deflection routing
is linked to a number of challenges. One of these challenges is a proper dimensioning of
the link width, which usually corresponds to the flit size. Compared to packet-switched
networks, the appropriate link width can be significantly larger, as packet switching and
deflection routing can not be combined and every flit has to contain routing information.
Furthermore, oversizing and undersizing the link width are not an option, due to the
constrained resources on a chip and the importance of a short message latency.

To identify an optimal link width, the effect of the link width on performance and on
hardware costs of a permutation network based router architecture has been investigated
in Chapter 5. In addition to theoretical performance metrics and formulas for the
expected hardware requirements, simulation and synthesis results have been presented.
The results have shown that a link width determined by the maximum message size

152

6.2 Future Work

does not have to be the most appropriate choice.
Furthermore, TwoPhases, an alternating transmission scheme for deflection routing

based architectures has been developed. TwoPhases allows a reduction of the routing
overhead to payload ratio by transmitting packets which, in its simplest form, consist of
one head flit and one data flit. Comparisons to existing transmission schemes, which
enable a reduction of the link width, have shown that TwoPhases performs better in case
of a uniform message length. At non-uniform message lengths, a transmission scheme
which is based on several independently routed flits performs best.

6.2 Future Work

The design of fault-tolerant and deflection routing based NoCs is an important research
area, which is even gaining in importance due to ongoing advances in technology and
manufacturing processes. Several encouraging results in this area have been achieved
and presented in this thesis. Nevertheless, there are pending issues and interesting
research opportunities in both areas, the design of fault-tolerant NoCs and the design of
deflection routing based NoCs.

The focus of the herein presented FaFNoC router architecture is on tolerating per-
manent faults at the link and router level. However, as manufacturing processes are
shrinking, non-permanent faults, i.e. transient and intermittent faults, also will become
more frequent. An holistic approach, which includes several fault tolerance methods
with various kinds of redundancy and which operates at different layers, is required to
develop fault-tolerant NoCs. Moreover, fault detection is not considered herein. Both
tolerating non-permanent faults as well as fault detection are topics of current research.
However, an integration of these methods and techniques into a permutation network
based router architecture, like FaFNoC, has not been investigated so far.

The appropriate link width is an important parameter of deflection routing based
NoCs, yet there are some further pending issues. Several drawbacks of deflection routing
have been mentioned in Chapter 3. One of these drawbacks is the reassembly problem,
which is also related to the design of network interfaces. The only existing approach
which addresses this issue is restricted to certain types of many-core systems, since
MSHRs are used as reassembly buffers. Consequently, an approach which is applicable
if MSHRs are not available is still missing.

Finally, the herein presented evaluations and findings offer potential for future expan-
sions. In this thesis, the frequently deployed 2D mesh topology was assumed. Various
3D integration schemes have been developed recently, which necessitate 3D intercon-
nections. Depending on the used technology and interconnection method, a 2D mesh
might soon no longer be the appropriate topology and routers with a higher radix are
required. At permutation networks, this would increase the hardware requirements and,
in particular, decrease the maximum frequency of the router architecture.

153

Chapter 6 Concluding Remarks

Furthermore, there is still room for improvement in the herein used evaluation
methodology. Power consumption is a key factor of future many-core systems. Thus,
the evaluation would benefit from static and dynamic power analysis as well as ASIC
synthesis results.

154

Appendix A
Appendix

A.1 Fault Situations of Chapter 4

In Chapter 4, the fault tolerance of five different router architectures has been evaluated.
All reported simulation results are averages of three different fault situations. These
three fault situations are depicted in Figures A.1 to A.3. For every fault situation, the
following four fault probabilities have been evaluated: λ = 0%, λ = 10%, λ = 20%,
and λ= 30%, whereby the faults of λ1 are a subset of the faults of λ2 if λ1 ≤ λ2. For
instance, at λ = 30%, the link failures depicted in yellow, orange, red are faulty. At
λ= 20%, only the link failures depicted in yellow and orange are faulty.

155

Appendix A Appendix

R0,0

R0,1

R0,2

R0,3

R0,4

R0,5

R0,6

R0,7

R1,0

R1,1

R1,2

R1,3

R1,4

R1,5

R1,6

R1,7

R2,0

R2,1

R2,2

R2,3

R2,4

R2,5

R2,6

R2,7

R3,0

R3,1

R3,2

R3,3

R3,4

R3,5

R3,6

R3,7

R4,0

R4,1

R4,2

R4,3

R4,4

R4,5

R4,6

R4,7

R5,0

R5,1

R5,2

R5,3

R5,4

R5,5

R5,6

R5,7

R6,0

R6,1

R6,2

R6,3

R6,4

R6,5

R6,6

R6,7

R7,0

R7,1

R7,2

R7,3

R7,4

R7,5

R7,6

R7,7

Figure A.1: First simulated fault situation. The link failures depicted in yellow, orange,
and red correspond to λ= 10%, λ= 20%, and λ= 30%, respectively.

156

A.1 Fault Situations of Chapter 4

R0,0

R0,1

R0,2

R0,3

R0,4

R0,5

R0,6

R0,7

R1,0

R1,1

R1,2

R1,3

R1,4

R1,5

R1,6

R1,7

R2,0

R2,1

R2,2

R2,3

R2,4

R2,5

R2,6

R2,7

R3,0

R3,1

R3,2

R3,3

R3,4

R3,5

R3,6

R3,7

R4,0

R4,1

R4,2

R4,3

R4,4

R4,5

R4,6

R4,7

R5,0

R5,1

R5,2

R5,3

R5,4

R5,5

R5,6

R5,7

R6,0

R6,1

R6,2

R6,3

R6,4

R6,5

R6,6

R6,7

R7,0

R7,1

R7,2

R7,3

R7,4

R7,5

R7,6

R7,7

Figure A.2: Second simulated fault situation. The link failures depicted in yellow, orange,
and red correspond to λ= 10%, λ= 20%, and λ= 30%, respectively.

157

Appendix A Appendix

R0,0

R0,1

R0,2

R0,3

R0,4

R0,5

R0,6

R0,7

R1,0

R1,1

R1,2

R1,3

R1,4

R1,5

R1,6

R1,7

R2,0

R2,1

R2,2

R2,3

R2,4

R2,5

R2,6

R2,7

R3,0

R3,1

R3,2

R3,3

R3,4

R3,5

R3,6

R3,7

R4,0

R4,1

R4,2

R4,3

R4,4

R4,5

R4,6

R4,7

R5,0

R5,1

R5,2

R5,3

R5,4

R5,5

R5,6

R5,7

R6,0

R6,1

R6,2

R6,3

R6,4

R6,5

R6,6

R6,7

R7,0

R7,1

R7,2

R7,3

R7,4

R7,5

R7,6

R7,7

Figure A.3: Third simulated fault situation. The link failures depicted in yellow, orange,
and red correspond to λ= 10%, λ= 20%, and λ= 30%, respectively.

158

A.2 Lambert W function

A.2 Lambert W function

If the two ceiling functions of Equation (5.6) are omitted, i.e. with the inequations
depicted in Equation (A.1), Equation (5.6) can be solved with the Lambert W function:

|msg|
|LI| − |hd| − ld(#f)− 1

+ 1> #f ≥
|msg|

|LI| − |hd| − ld(#f)
(A.1)

#f =
|msg|

|LI| − |hd| − ld(#f)

⇔
|msg|
#f

= |LI| − |hd| − ld(#f)

⇔
−|msg|

#f
− ld(#f) = |hd| − |LI| |+ ld(#f) | · (−1)

⇔ e
−|msg|

#f −ld(#f) = e|hd|−|LI|

⇔ (e
−|msg|

#f −ld(#f))ln(2) = (e|hd|−|LI|)ln(2)

⇔ e
−|msg|

#f ·ln(2)−
ln(#f)
ln(2) ·ln(2) = e(|hd|−|LI|)·ln(2) | with (ax)y = ax ·y

⇔ e
−|msg|

#f ·ln(2)−ln(#f) = 2|hd|−|LI| | with ax = bx ·logb(a)

⇔ e
−|msg|

#f ·ln(2) · e− ln(#f) = 2|hd|−|LI| | with ax+y = ax · a y

⇔ e
−|msg|

#f ·ln(2) · eln(1
#f) = 2|hd|−|LI|

⇔ e
−|msg|

#f ·ln(2) ·
1

#f
= 2|hd|−|LI| | with eln(x) = x

⇔ e
−|msg|

#f ·ln(2) ·
−|msg| · ln(2)

#f
= −|msg| · ln(2) · 2|hd|−|LI| | · (−|msg| · ln(2))

⇔
−|msg| · ln(2)

#f
=W (−|msg| · ln(2) · 2|hd|−|LI|) | Lambert W function

⇔ #f =
−|msg| · ln(2)

W (−|msg| · ln(2) · 2|hd|−|LI|)
(A.2)

159

Publications of the Author

[RK16a] Armin Runge and Reiner Kolla. An Alternating Transmission Scheme for
Deflection Routing Based Network-on-Chips. In: Architecture of Comput-
ing Systems – ARCS 2016. Springer International Publishing. Springer Na-
ture, 2016, pp. 48–59. DOI: 10.1007/978-3-319-30695-7_4 (cit. on
pp. 5, 133).

[RK16b] Armin Runge and Reiner Kolla. Consideration of the Flit Size for Deflec-
tion Routing based Network-on-Chips. In: 1st International Workshop on
Advanced Interconnect Solutions and Technologies for Emerging Computing
Systems (AISTECS). Association for Computing Machinery (ACM), 2016,
5:1–5:6. DOI: 10.1145/2857058.2857060 (cit. on pp. 5, 119).

[RK16c] Armin Runge and Reiner Kolla. TwoPhases: A Transmission Scheme to
Reduce the Link Width at Deflection Routing based Network-on-Chips.
In: Journal of Systems Architecture (Dec. 2016). DOI: 10.1016/j.sysarc.
2016.12.001 (cit. on pp. 5, 133).

[RK16d] Armin Runge and Reiner Kolla. Using Benes Networks at Fault Tolerant
and Deflection Routing based NoCs. In: Proceedings of the 10th Interna-
tional Symposium on Networks-on-Chip. Institute of Electrical and Electron-
ics Engineers (IEEE), Sept. 2016. DOI: 10.1109/NOCS.2016.7579325
(cit. on pp. 6, 68).

[Run12a] Armin Runge. Determination of the Optimum Degree of Redundancy
for Fault-prone Many-Core Systems. In: Zuverlässigkeit und Entwurf - 6.
GMM/GI/ITG-Fachtagung. VDE VERLAG GmbH, 2012 (cit. on pp. 5, 69).

[Run12b] Armin Runge. Reliability Enhancement of Fault-prone Many-core Sys-
tems Combining Spatial and Temporal Redundancy. In: 2012 IEEE 14th
International Conference on High Performance Computing and Communica-
tion & 2012 IEEE 9th International Conference on Embedded Software and
Systems. Institute of Electrical & Electronics Engineers (IEEE), June 2012.
DOI: 10.1109/hpcc.2012.233 (cit. on pp. 5, 69).

[Run15a] Armin Runge. FaFNoC: A Fault-tolerant and Bufferless Network-on-
chip. In: Procedia Computer Science 56 (2015), pp. 397–402. DOI: 10.
1016/j.procs.2015.07.226 (cit. on pp. 5, 68).

161

http://dx.doi.org/10.1007/978-3-319-30695-7_4
http://dx.doi.org/10.1145/2857058.2857060
http://dx.doi.org/10.1016/j.sysarc.2016.12.001
http://dx.doi.org/10.1016/j.sysarc.2016.12.001
http://dx.doi.org/10.1109/NOCS.2016.7579325
http://dx.doi.org/10.1109/hpcc.2012.233
http://dx.doi.org/10.1016/j.procs.2015.07.226
http://dx.doi.org/10.1016/j.procs.2015.07.226

Publications of the Author

[Run15b] Armin Runge. Fault-tolerant Network-on-Chip based on Fault-aware
Flits and Deflection Routing. In: Proceedings of the 9th International Sym-
posium on Networks-on-Chip. ACM. Association for Computing Machinery
(ACM), 2015, p. 9. DOI: 10.1145/2786572.2786585 (cit. on pp. 5, 68).

162

http://dx.doi.org/10.1145/2786572.2786585

Bibliography

[Acc16] Accellera. Open Core Protocol Specification. Ed. by Accellera. 2016. URL:
http://accellera.org/downloads/standards/ocp (cit. on p. 8).

[ARM16] ARM. AMBA Specifications. Ed. by ARM. 2016. URL: https://www.arm.
com/products/system-ip/amba-specifications (cit. on p. 8).

[Avi+04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic Concepts and Taxonomy of Dependable and Secure Computing.
In: IEEE Trans. Dependable Secur. Comput. 1.1 (Jan. 2004), pp. 11–33. DOI:
10.1109/TDSC.2004.2 (cit. on p. 68).

[Bar64] Paul Baran. On distributed communications networks. In: IEEE trans-
actions on Communications Systems 12.1 (Mar. 1964), pp. 1–9. DOI: 10.
1109/tcom.1964.1088883 (cit. on pp. 3, 19, 38).

[Bat68] K. E. Batcher. Sorting Networks and Their Applications. In: Proceedings
of the April 30–May 2, 1968, Spring Joint Computer Conference. AFIPS
’68 (Spring). Atlantic City, New Jersey: ACM, 1968, pp. 307–314. DOI:
10.1145/1468075.1468121 (cit. on pp. 43, 44).

[BD06] James Balfour and William J. Dally. Design Tradeoffs for Tiled CMP On-
chip Networks. In: Proceedings of the 20th Annual International Conference
on Supercomputing. ICS ’06. Cairns, Queensland, Australia: ACM, 2006,
pp. 187–198. DOI: 10.1145/1183401.1183430 (cit. on p. 13).

[BDM07] Paul Bogdan, Tudor Dumitraş, and Radu Marculescu. Stochastic Commu-
nication: A New Paradigm for Fault-Tolerant Networks-on-Chip. In:
VLSI design 2007 (2007), pp. 1–17. DOI: 10.1155/2007/95348 (cit. on
p. 71).

[Bie11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis.
Princeton University, Jan. 2011 (cit. on p. 31).

[BM06] Tobias Bjerregaard and Shankar Mahadevan. A Survey of Research and
Practices of Network-on-chip. In: ACM Computing Surveys 38.1 (June
2006), 1–es. DOI: 10.1145/1132952.1132953 (cit. on p. 8).

[Bor05] Shekhar Borkar. Designing Reliable Systems from Unreliable Compo-
nents: The Challenges of Transistor Variability and Degradation. In:
IEEE Micro 25 (6 Nov. 2005), pp. 10–16. DOI: 10.1109/MM.2005.110
(cit. on p. 2).

163

http://accellera.org/downloads/standards/ocp
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/tcom.1964.1088883
http://dx.doi.org/10.1109/tcom.1964.1088883
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/1183401.1183430
http://dx.doi.org/10.1155/2007/95348
http://dx.doi.org/10.1145/1132952.1132953
http://dx.doi.org/10.1109/MM.2005.110

Bibliography

[Bor07] Shekhar Borkar. Thousand Core Chips - A Technology Perspecitve. In:
DAC. Association for Computing Machinery (ACM), 2007. DOI: 10.1145/
1278480.1278667 (cit. on pp. 2, 3, 38).

[Bor10] Shekhar Borkar. Future of Interconnect Fabric: A Contrarian View. In:
Proceedings of the 12th ACM/IEEE International Workshop on System Level
Interconnect Prediction. SLIP ’10. ACM, 2010, pp. 1–2. DOI: 10.1145/
1811100.1811101 (cit. on pp. 3, 38).

[Cat+15] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Noxim: An
open, extensible and cycle-accurate network on chip simulator. In:
2015 IEEE 26th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). July 2015, pp. 162–163. DOI: 10.
1109/ASAP.2015.7245728 (cit. on pp. 29, 114, 117).

[Chi00] Ge-Ming Chiu. The Odd-Even Turn Model for Adaptive Routing. In: IEEE
Transactions on Parallel and Distributed Systems 11.7 (July 2000), pp. 729–
738. DOI: 10.1109/71.877831 (cit. on p. 18).

[CLC12] Changlin Chen, Ye Lu, and Sorin D Cotofana. A Novel Flit Serialization
Strategy to Utilize Partially Faulty Links in Networks-on-Chip. In: Net-
works on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium
on. IEEE. Institute of Electrical & Electronics Engineers (IEEE), May 2012,
pp. 124–131. DOI: 10.1109/nocs.2012.22 (cit. on pp. 118, 140).

[CM11] Chris Craik and Onur Mutlu. Investigating the Viability of Bufferless
NoCs in Modern Chip Multi-processor Systems. Tech. rep. SAFARI Tech-
nical Report, TR-SAFARI-2011-004, Carnegie Mellon University, 2011 (cit.
on p. 42).

[CML12] Érika Cota, Alexandre de Morais Amory, and Marcelo Soares Lubaszewski.
Reliability, Availability and Serviceability of Networks-on-chip. Springer
Science & Business Media, 2012. DOI: 10.1007/978-1-4614-0791-1
(cit. on pp. 8, 67, 113).

[CMM15] Yu Cai, Ken Mai, and Onur Mutlu. Comparative evaluation of FPGA and
ASIC implementations of bufferless and buffered routing algorithms
for on-chip networks. In: Quality Electronic Design (ISQED), 2015 16th
International Symposium on. IEEE. 2015, pp. 475–484 (cit. on pp. 3, 42).

[Cop+08] Marcello Coppola, Miltos D. Grammatikakis, Riccardo Locatelli, Giuseppe
Maruccia, and Lorenzo Pieralisi. Design of Cost-Efficient Interconnect
Processing Units: Spidergon STNoC. 1st. Boca Raton, FL, USA: CRC
Press, Inc., Sept. 2008. DOI: 10.1201/9781420044720 (cit. on pp. 13,
14).

164

http://dx.doi.org/10.1145/1278480.1278667
http://dx.doi.org/10.1145/1278480.1278667
http://dx.doi.org/10.1145/1811100.1811101
http://dx.doi.org/10.1145/1811100.1811101
http://dx.doi.org/10.1109/ASAP.2015.7245728
http://dx.doi.org/10.1109/ASAP.2015.7245728
http://dx.doi.org/10.1109/71.877831
http://dx.doi.org/10.1109/nocs.2012.22
http://dx.doi.org/10.1007/978-1-4614-0791-1
http://dx.doi.org/10.1201/9781420044720

Bibliography

[Cou15] Rachel Courtland. Gordon Moore: The Man Whose Name Means Progress.
In: IEEE Spectrum SPECIAL REPORT: 50 Years of Moore’s Law 30 (2015)
(cit. on p. 1).

[Den+74] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and
Andre R LeBlanc. Design of ion-implanted MOSFET’s with very small
physical dimensions. In: IEEE Journal of Solid-State Circuits 9.5 (Oct.
1974), pp. 256–268. DOI: 10.1109/JSSC.1974.1050511 (cit. on p. 1).

[DKM03] Tudor Dumitraş, Sam Kerner, and Radu Mărculescu. Towards on-chip
fault-tolerant communication. In: Proceedings of the 2003 Asia and South
Pacific Design Automation Conference. ACM. Association for Computing
Machinery (ACM), 2003, pp. 225–232. DOI: 10.1145/1119772.1119817
(cit. on p. 71).

[DT04] William James Dally and Brian Patrick Towles. Principles and practices
of interconnection networks. Elsevier, 2004 (cit. on pp. 10, 18, 41, 114).

[DYL02] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Net-
works: An Engineering Approach. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2002 (cit. on p. 11).

[Esm+11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark Silicon and the End of Multicore Scal-
ing. In: ACM SIGARCH Computer Architecture News 39.3 (July 2011),
pp. 365–376. DOI: 10.1145/2024723.2000108 (cit. on p. 3).

[Fal+11] Chris Fallin, Gregory Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarung-
nirun, and Onur Mutlu. MinBD: A Minimally-Buffered Deflection Router
Approaching Conventional Buffered-Router Performance. Tech. rep.
2011-008. Carnegie Mellon University, Sept. 2011 (cit. on pp. 38, 40,
41, 51, 52, 119).

[Fal+12] Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarung-
nirun, and Onur Mutlu. MinBD: Minimally-Buffered Deflection Routing
for Energy-Efficient Interconnect. In: Networks on Chip (NoCS), 2012
Sixth IEEE/ACM International Symposium on. IEEE. Institute of Electrical &
Electronics Engineers (IEEE), May 2012, pp. 1–10. DOI: 10.1109/NOCS.
2012.8 (cit. on pp. 38, 40, 41, 51, 52, 119).

[FCM10] Chris Fallin, Chris Craik, and Onur Mutlu. CHIPPER: A Low-complexity
Bufferless Deflection Router. Tech. rep. 2010-001. Carnegie Mellon Uni-
versity, Dec. 2010 (cit. on pp. 3, 25, 38, 40–42, 47–51, 53, 55, 119).

165

http://dx.doi.org/10.1109/JSSC.1974.1050511
http://dx.doi.org/10.1145/1119772.1119817
http://dx.doi.org/10.1145/2024723.2000108
http://dx.doi.org/10.1109/NOCS.2012.8
http://dx.doi.org/10.1109/NOCS.2012.8

Bibliography

[FCM11] Chris Fallin, Chris Craik, and Onur Mutlu. CHIPPER: A low-complexity
bufferless deflection router. In: 2011 IEEE 17th International Symposium
on High Performance Computer Architecture. Institute of Electrical & Elec-
tronics Engineers (IEEE), Feb. 2011, pp. 144–155. DOI: 10.1109/HPCA.
2011.5749724 (cit. on pp. 25, 38, 40, 41, 47–49, 53, 55, 119).

[Fen+10a] Chaochao Feng, Zhonghai Lu, Axel Jantsch, Jinwen Li, and Minxuan Zhang.
A reconfigurable fault-tolerant deflection routing algorithm based on
reinforcement learning for network-on-chip. In: Proceedings of the Third
International Workshop on Network on Chip Architectures. NoCArc ’10.
Atlanta, Georgia: ACM, 2010, pp. 11–16 (cit. on pp. 45, 74, 75, 100).

[Fen+10b] Chaochao Feng, Zhonghai Lu, Axel Jantsch, Jinwen Li, and Minxuan
Zhang. FoN: Fault-on-Neighbor aware routing algorithm for Networks-
on-Chip. In: SOC Conference (SOCC), 2010 IEEE International. IEEE. 2010,
pp. 441–446 (cit. on pp. 45, 74, 100).

[Fen+11a] Chaochao Feng, Jinwen Li, Zhonghai Lu, Axel Jantsch, and Minxuan Zhang.
Evaluation of deflection routing on various NoC topologies. In: 2011
9th IEEE International Conference on ASIC. IEEE. Institute of Electrical &
Electronics Engineers (IEEE), Oct. 2011, pp. 163–166. DOI: 10.1109/
asicon.2011.6157147 (cit. on p. 53).

[Fen+11b] Chaochao Feng, Minxuan Zhang, Jinwen Li, Jiang Jiang, Zhonghai Lu,
and Axel Jantsch. A Low-overhead Fault-aware Deflection Routing Al-
gorithm for 3D Network-on-Chip. In: VLSI (ISVLSI), 2011 IEEE Computer
Society Annual Symposium on. IEEE. Institute of Electrical & Electronics En-
gineers (IEEE), July 2011, pp. 19–24. DOI: 10.1109/isvlsi.2011.42
(cit. on p. 76).

[Fen+13] Chaochao Feng, Zhonghai Lu, Axel Jantsch, Minxuan Zhang, and Zuocheng
Xing. Addressing Transient and Permanent Faults in NoC With Efficient
Fault-Tolerant Deflection Router. In: IEEE Trans. VLSI Syst. 21.6 (June
2013), pp. 1053–1066. DOI: 10.1109/tvlsi.2012.2204909 (cit. on
pp. 76, 77).

[Fic+09a] David Fick, Andrew DeOrio, Gregory Chen, Valeria Bertacco, Dennis Sylvester,
and David Blaauw. A highly resilient routing algorithm for fault-tolerant
NoCs. In: Proceedings of the Conference on Design, Automation and Test in
Europe. DATE ’09. Nice, France: European Design and Automation Associa-
tion, Apr. 2009, pp. 21–26. DOI: 10.1109/date.2009.5090627 (cit. on
p. 72).

166

http://dx.doi.org/10.1109/HPCA.2011.5749724
http://dx.doi.org/10.1109/HPCA.2011.5749724
http://dx.doi.org/10.1109/asicon.2011.6157147
http://dx.doi.org/10.1109/asicon.2011.6157147
http://dx.doi.org/10.1109/isvlsi.2011.42
http://dx.doi.org/10.1109/tvlsi.2012.2204909
http://dx.doi.org/10.1109/date.2009.5090627

Bibliography

[Fic+09b] David Fick, Andrew DeOrio, Jin Hu, Valeria Bertacco, David Blaauw, and
Dennis Sylvester. Vicis: a reliable network for unreliable silicon. In:
Proceedings of the 46th Annual Design Automation Conference. DAC ’09. San
Francisco, California: ACM, 2009, pp. 812–817. DOI: 10.1145/1629911.
1630119 (cit. on p. 72).

[GHD15] GHDL. GHDL. Ed. by Tristan Gingold. 2015. URL: http://ghdl.free.
fr/ (cit. on p. 30).

[Ghi+13] Yan Ghidini, Matheus Moreira, Lucas Brahm, Thais Webber, Ney Calazans,
and Cesar Marcon. Lasio 3D NoC vertical links serialization: Evalua-
tion of latency and buffer occupancy. In: Integrated Circuits and Systems
Design (SBCCI), 2013 26th Symposium on. IEEE. Institute of Electrical &
Electronics Engineers (IEEE), Sept. 2013, pp. 1–6. DOI: 10.1109/sbcci.
2013.6644891 (cit. on pp. 118, 140).

[GN92] Christopher J. Glass and Lionel M. Ni. The Turn Model for Adaptive
Routing. In: ACM SIGARCH Computer Architecture News 20.2 (June 1992),
pp. 278–287. DOI: 10.1145/146628.140384 (cit. on pp. 15, 16, 18).

[Góm+11] Crispín Gómez, María E. Gómez, Pedro López, and José Duato. How to
Reduce Packet Dropping in a Bufferless NoC. In: Concurr. Comput. :
Pract. Exper. 23.1 (Jan. 2011), pp. 86–99. DOI: 10.1002/cpe.1606 (cit.
on p. 38).

[Gra+06] Paul Gratz, Changkyu Kim, Robert McDonald, Stephen W Keckler, and
Doug Burger. Implementation and evaluation of on-chip network ar-
chitectures. In: 2006 International Conference on Computer Design. IEEE.
Institute of Electrical & Electronics Engineers (IEEE), Oct. 2006, pp. 477–
484. DOI: 10.1109/iccd.2006.4380859 (cit. on pp. 3, 38).

[HGK10] Joel Hestness, Boris Grot, and Stephen W. Keckler. Netrace: Dependency-
driven Trace-based Network-on-chip Simulation. In: Proceedings of the
Third International Workshop on Network on Chip Architectures. NoCArc ’10.
Atlanta, Georgia, USA: ACM, 2010, pp. 31–36. DOI: 10.1145/1921249.
1921258 (cit. on pp. 31, 131).

[HJL09] Mitchell Hayenga, Natalie Enright Jerger, and Mikko Lipasti. SCARAB: a
single cycle adaptive routing and bufferless network. In: Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 42. New York, New York: Association for Computing Machinery
(ACM), 2009, pp. 244–254. DOI: 10.1145/1669112.1669144 (cit. on
p. 38).

167

http://dx.doi.org/10.1145/1629911.1630119
http://dx.doi.org/10.1145/1629911.1630119
http://ghdl.free.fr/
http://ghdl.free.fr/
http://dx.doi.org/10.1109/sbcci.2013.6644891
http://dx.doi.org/10.1109/sbcci.2013.6644891
http://dx.doi.org/10.1145/146628.140384
http://dx.doi.org/10.1002/cpe.1606
http://dx.doi.org/10.1109/iccd.2006.4380859
http://dx.doi.org/10.1145/1921249.1921258
http://dx.doi.org/10.1145/1921249.1921258
http://dx.doi.org/10.1145/1669112.1669144

Bibliography

[HK10] Joel Hestness and Stephen W. Keckler. Netrace: Dependency-Tracking
Traces for Efficient Network-on-Chip Experimentation. Technical Re-
port TR-10–11. Tech. rep. The University of Texas at Austin, May 2010
(cit. on pp. 31, 131).

[HLH02] Ching-Fang Hsu, Te-Lung Liu, and Nen-Fu Huang. Performance analysis
of deflection routing in optical burst-switched networks. In: INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE. Vol. 1. IEEE. Institute of Electrical
& Electronics Engineers (IEEE), 2002, pp. 66–73. DOI: 10.1109/infcom.
2002.1019247 (cit. on p. 39).

[HNJ12] Robert Hesse, Jeff Nicholls, and Natalie Enright Jerger. Fine-Grained
Bandwidth Adaptivity in Networks-on-Chip Using Bidirectional Chan-
nels. In: 2012 IEEE/ACM Sixth International Symposium on Networks-on-
Chip. IEEE. Institute of Electrical & Electronics Engineers (IEEE), May 2012,
pp. 132–141. DOI: 10.1109/nocs.2012.23 (cit. on p. 140).

[Hos+07] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz Mesh
Interconnect for a Teraflops Processor. In: IEEE Micro 27.5 (Sept. 2007),
pp. 51–61. DOI: 10.1109/MM.2007.4378783 (cit. on pp. 3, 38).

[How+10] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Fi-
nan, Gregory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Gerhard
Schrom, et al. A 48-core IA-32 message-passing processor with DVFS
in 45nm CMOS. In: 2010 IEEE International Solid-State Circuits Conference-
(ISSCC). IEEE. Institute of Electrical and Electronics Engineers (IEEE), Feb.
2010, pp. 108–109. DOI: 10.1109/isscc.2010.5434077 (cit. on p. 35).

[HSG09] Andreas Hansson, Mahesh Subburaman, and Kees Goossens. aelite: A
flit-synchronous network on chip with composable and predictable
services. In: Proceedings of the conference on design, automation and test in
Europe. European Design and Automation Association. Institute of Elec-
trical & Electronics Engineers (IEEE), Apr. 2009, pp. 250–255. DOI: 10.
1109/date.2009.5090666 (cit. on p. 38).

[ITR11] ITRS. The International Technology Roadmap for Semiconductors, De-
sign. 2011 (cit. on p. 69).

[ITR15] ITRS. International Technology Roadmap for Semiconductors 2.0 2015
Edition Executive Report. 2015 (cit. on p. 1).

[Jai] Lavina Jain. NIRGAM (cit. on pp. 29, 114, 117).

168

http://dx.doi.org/10.1109/infcom.2002.1019247
http://dx.doi.org/10.1109/infcom.2002.1019247
http://dx.doi.org/10.1109/nocs.2012.23
http://dx.doi.org/10.1109/MM.2007.4378783
http://dx.doi.org/10.1109/isscc.2010.5434077
http://dx.doi.org/10.1109/date.2009.5090666
http://dx.doi.org/10.1109/date.2009.5090666

Bibliography

[Jia+13] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogian-
nakis, and J. Kim. A detailed and flexible cycle-accurate Network-on-
Chip simulator. In: Performance Analysis of Systems and Software (ISPASS),
2013 IEEE International Symposium on. official ref for booksim. Apr. 2013,
pp. 86–96. DOI: 10.1109/ISPASS.2013.6557149 (cit. on pp. 29, 117).

[Jon+14] Gnaneswara Rao Jonna, John Jose, Rachana Radhakrishnan, and Madhu
Mutyam. Minimally buffered single-cycle deflection router. In: Proceed-
ings of the conference on Design, Automation & Test in Europe. European
Design and Automation Association. EDAA, 2014, p. 310. DOI: 10.7873/
date.2014.323 (cit. on pp. 41, 47).

[Jos+13] John Jose, Bhawna Nayak, Kranthi Kumar, and Madhu Mutyam. DeBAR:
Deflection based adaptive router with minimal buffering. In: Design,
Automation Test in Europe Conference Exhibition (DATE), 2013. EDAA, Mar.
2013, pp. 1583–1588. DOI: 10.7873/DATE.2013.322 (cit. on pp. 41,
47).

[Kah+09] Andrew B Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. ORION 2.0:
a fast and accurate NoC power and area model for early-stage design
space exploration. In: Proceedings of the conference on Design, Automation
and Test in Europe. European Design and Automation Association. Institute
of Electrical & Electronics Engineers (IEEE), Apr. 2009, pp. 423–428. DOI:
10.1109/DATE.2009.5090700 (cit. on p. 117).

[Kah+12] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. ORION
2.0: A Power-Area Simulator for Interconnection Networks. In: IEEE
Trans. Very Large Scale Integr. Syst. 20.1 (Jan. 2012), pp. 191–196. DOI:
10.1109/TVLSI.2010.2091686 (cit. on pp. 114, 117).

[Kas+16] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Müller, K. Goossens, and
J. Sparsø. Argo: A Real-Time Network-on-Chip Architecture With an
Efficient GALS Implementation. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 24.2 (Feb. 2016), pp. 479–492. DOI: 10.1109/
TVLSI.2015.2405614 (cit. on p. 38).

[KG15] Nachiket Kapre and Jan Gray. Hoplite: Building austere overlay NoCs
for FPGAs. In: 2015 25th International Conference on Field Programmable
Logic and Applications (FPL). IEEE. Institute of Electrical and Electronics En-
gineers (IEEE), Sept. 2015, pp. 1–8. DOI: 10.1109/fpl.2015.7293956
(cit. on p. 29).

[Kim09] J. Kim. Low-cost router microarchitecture for on-chip networks. In:
Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on. Association for Computing Machinery (ACM), Dec. 2009,
pp. 255–266. DOI: 10.1145/1669112.1669145 (cit. on p. 49).

169

http://dx.doi.org/10.1109/ISPASS.2013.6557149
http://dx.doi.org/10.7873/date.2014.323
http://dx.doi.org/10.7873/date.2014.323
http://dx.doi.org/10.7873/DATE.2013.322
http://dx.doi.org/10.1109/DATE.2009.5090700
http://dx.doi.org/10.1109/TVLSI.2010.2091686
http://dx.doi.org/10.1109/TVLSI.2015.2405614
http://dx.doi.org/10.1109/TVLSI.2015.2405614
http://dx.doi.org/10.1109/fpl.2015.7293956
http://dx.doi.org/10.1145/1669112.1669145

Bibliography

[KK07] Y. B. Kim and Y. B. Kim. Fault Tolerant Source Routing for Network-on-
chip. In: 22nd IEEE International Symposium on Defect and Fault-Tolerance
in VLSI Systems (DFT 2007). Institute of Electrical & Electronics Engineers
(IEEE), Sept. 2007, pp. 12–20. DOI: 10.1109/DFT.2007.14 (cit. on
p. 71).

[KLN12a] Andrew B Kahng, Bill Lin, and Siddhartha Nath. Comprehensive model-
ing methodologies for NoC router estimation. Tech. rep. CS2012-0989.
UCSD, Sept. 2012 (cit. on p. 117).

[KLN12b] Andrew B Kahng, Bill Lin, and Siddhartha Nath. Explicit Modeling of
Control and Data for Improved NoC Router Estimation. In: Proceed-
ings of the 49th Annual Design Automation Conference. ACM. Association
for Computing Machinery (ACM), 2012, pp. 392–397. DOI: 10.1145/
2228360.2228430 (cit. on pp. 114, 117).

[KLN15] Andrew B. Kahng, Bill Lin, and Siddhartha Nath. ORION3.0: A Compre-
hensive NoC Router Estimation Tool. In: Embedded Systems Letters, IEEE
7.2 (June 2015), pp. 41–45. DOI: 10.1109/LES.2015.2402197 (cit. on
p. 117).

[KPP06] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell Multiprocessor
Communication Network: Built for Speed. In: IEEE Micro 26.3 (May
2006), pp. 10–23. DOI: 10.1109/mm.2006.49 (cit. on p. 35).

[KR09] A. Kohler and M. Radetzki. Fault-tolerant architecture and deflection
routing for degradable NoC switches. In: Networks-on-Chip, 2009. NoCS
2009. 3rd ACM/IEEE International Symposium on. Institute of Electrical &
Electronics Engineers (IEEE), May 2009, pp. 22–31. DOI: 10.1109/NOCS.
2009.5071441 (cit. on p. 73).

[Kro81] David Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organiza-
tion. In: Proceedings of the 8th Annual Symposium on Computer Architecture.
ISCA ’81. Minneapolis, Minnesota, USA: IEEE Computer Society Press,
1981, pp. 81–87. DOI: 10.1145/285930.285939 (cit. on p. 51).

[KSR10] Adán Kohler, Gert Schley, and Martin Radetzki. Fault Tolerant Network
on Chip Switching With Graceful Performance Degradation. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
29.6 (June 2010), pp. 883–896. DOI: 10.1109/tcad.2010.2048399
(cit. on pp. 73, 77).

[Lee+13a] J. Lee, C. Nicopoulos, S. J. Park, M. Swaminathan, and J. Kim. Do we need
wide flits in Networks-on-Chip? In: 2013 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). Institute of Electrical & Electronics Engineers

170

http://dx.doi.org/10.1109/DFT.2007.14
http://dx.doi.org/10.1145/2228360.2228430
http://dx.doi.org/10.1145/2228360.2228430
http://dx.doi.org/10.1109/LES.2015.2402197
http://dx.doi.org/10.1109/mm.2006.49
http://dx.doi.org/10.1109/NOCS.2009.5071441
http://dx.doi.org/10.1109/NOCS.2009.5071441
http://dx.doi.org/10.1145/285930.285939
http://dx.doi.org/10.1109/tcad.2010.2048399

Bibliography

(IEEE), Aug. 2013, pp. 2–7. DOI: 10.1109/ISVLSI.2013.6654614 (cit.
on pp. 117, 119, 122).

[Lee+13b] Jinho Lee, Dongwoo Lee, Sunwook Kim, and Kiyoung Choi. Deflection
routing in 3D network-on-chip with limited vertical bandwidth. In:
ACM Transactions on Design Automation of Electronic Systems (TODAES)
18.4 (Oct. 2013), p. 50. DOI: 10.1145/2505011 (cit. on pp. 47, 118).

[Li+09] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore Architec-
tures. In: Proceedings of the 42Nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture. MICRO 42. New York, New York: ACM, 2009,
pp. 469–480. DOI: 10.1145/1669112.1669172 (cit. on p. 117).

[LL04] Guy Lemieux and David Lewis. Design of Interconnection Networks for
Programmable Logic. Norwell, MA, USA: Kluwer Academic Publishers,
2004, pp. 1–8. DOI: 10.1007/978-1-4757-4941-0_1 (cit. on p. 89).

[LLT12] Jing Lin, Xiaola Lin, and Liang Tang. Making-a-stop: A new bufferless
routing algorithm for on-chip network. In: Journal of Parallel and Dis-
tributed Computing 72.4 (Apr. 2012), pp. 515–524. DOI: 10.1016/j.
jpdc.2012.01.001 (cit. on p. 118).

[Lu+05] Zhonghai Lu, Rikard Thid, Mikael Millberg, Erland Nilsson, and Axel
Jantsch. NNSE: Nostrum Network-on-Chip Simulation Environment.
In: Proceedings of Swedish System-on-Chip Conference, Stockholm, Sweden,
April 2005. 2005 (cit. on pp. 45, 114, 117).

[LZJ06a] Ming Li, Qing-An Zeng, and Wen-Ben Jone. DyXY: a proximity congestion-
aware deadlock-free dynamic routing method for network on chip. In:
Proceedings of the 43rd annual Design Automation Conference. DAC ’06. San
Francisco, CA, USA: ACM, 2006, pp. 849–852. DOI: 10.1145/1146909.
1147125 (cit. on p. 72).

[LZJ06b] Zhonghai Lu, Mingchen Zhong, and Axel Jantsch. Evaluation of on-chip
networks using deflection routing. In: Proceedings of the 16th ACM Great
Lakes symposium on VLSI. GLSVLSI ’06. Philadelphia, PA, USA: ACM, 2006,
pp. 296–301. DOI: 10.1145/1127908.1127977 (cit. on pp. 53, 55).

[Mar+09] Radu Marculescu, Umit Y. Ogras, Li-Shiuan Peh, Natalie Enright Jerger, and
Yatin Hoskote. Outstanding Research Problems in NoC Design: System,
Microarchitecture, and Circuit Perspectives. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 28.1 (Jan. 2009),
pp. 3–21. DOI: 10.1109/tcad.2008.2010691 (cit. on p. 118).

171

http://dx.doi.org/10.1109/ISVLSI.2013.6654614
http://dx.doi.org/10.1145/2505011
http://dx.doi.org/10.1145/1669112.1669172
http://dx.doi.org/10.1007/978-1-4757-4941-0_1
http://dx.doi.org/10.1016/j.jpdc.2012.01.001
http://dx.doi.org/10.1016/j.jpdc.2012.01.001
http://dx.doi.org/10.1145/1146909.1147125
http://dx.doi.org/10.1145/1146909.1147125
http://dx.doi.org/10.1145/1127908.1127977
http://dx.doi.org/10.1109/tcad.2008.2010691

Bibliography

[Mic+10] George Michelogiannakis, Daniel Sanchez, William J Dally, and Christos
Kozyrakis. Evaluating bufferless flow control for on-chip networks. In:
Proceedings of the 2010 Fourth ACM/IEEE International Symposium on
Networks-on-Chip. IEEE Computer Society. 2010, pp. 9–16 (cit. on p. 42).

[Mil+04a] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The Nostrum
backbone-a communication protocol stack for Networks on Chip. In:
VLSI Design, 2004. Proceedings. 17th International Conference on. 2004,
pp. 693–696. DOI: 10.1109/ICVD.2004.1261005 (cit. on p. 45).

[Mil+04b] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guar-
anteed Bandwidth Using Looped Containers in Temporally Disjoint
Networks within the Nostrum Network on Chip. In: Proceedings of the
conference on Design, automation and test in Europe - Volume 2. DATE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 20890–. DOI:
10.1109/date.2004.1269001 (cit. on p. 45).

[Mil02] Mikael Millberg. The Nostrum Protocol Stack and Suggested Services
Provided by the Nostrum Backbone. Tech. rep. TRITA-IMIT-LECSR02:01.
Draft v 0.1.48. Stockholm, Sweden: Institute of Microelectronics and In-
formation Technology, Royal Institute of Technology (KTH), Nov. 2002
(cit. on pp. 38, 40, 45).

[Mil11] Mikael Millberg. Architectural Techniques for Improving Performance
in Networks on Chip. PhD thesis. KTH Royal Institute of Technology, 2011
(cit. on p. 45).

[MJ07] Mikael Millberg and Axel Jantsch. Increasing NoC performance and
utilisation using a Dual Packet Exit strategy. In: Digital System Design
Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Confer-
ence on. IEEE. Institute of Electrical & Electronics Engineers (IEEE), Aug.
2007, pp. 511–518. DOI: 10.1109/dsd.2007.4341516 (cit. on p. 45).

[MM09] Thomas Moscibroda and Onur Mutlu. A case for bufferless routing in on-
chip networks. In: Proceedings of the 36th annual international symposium
on Computer architecture. ISCA ’09. Austin, TX, USA: ACM, 2009, pp. 196–
207. DOI: 10.1145/1555754.1555781 (cit. on pp. 38, 40–42, 45, 46,
118, 140).

[Moo98] G. E. Moore. Cramming More Components Onto Integrated Circuits.
In: Proceedings of the IEEE 86.1 (Jan. 1998), pp. 82–85. DOI: 10.1109/
JPROC.1998.658762 (cit. on p. 1).

172

http://dx.doi.org/10.1109/ICVD.2004.1261005
http://dx.doi.org/10.1109/date.2004.1269001
http://dx.doi.org/10.1109/dsd.2007.4341516
http://dx.doi.org/10.1145/1555754.1555781
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1109/JPROC.1998.658762

Bibliography

[MWM04] Robert Mullins, Andrew West, and Simon Moore. Low-Latency Virtual-
Channel Routers for On-Chip Networks. In: ACM SIGARCH Computer
Architecture News 32.2 (Mar. 2004), p. 188. DOI: 10.1145/1028176.
1006717 (cit. on p. 25).

[Nyc+12] George P. Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and Srini-
vasan Seshan. On-chip networks from a networking perspective: con-
gestion and scalability in many-core interconnects. In: Proceedings of
the ACM SIGCOMM 2012 conference on Applications, technologies, archi-
tectures, and protocols for computer communication. Vol. 42. SIGCOMM
’12 4. Helsinki, Finland: ACM, Sept. 2012, pp. 407–418. DOI: 10.1145/
2377677.2377757 (cit. on p. 42).

[OHM05] Umit Y Ogras, Jingcao Hu, and Radu Marculescu. Key research prob-
lems in NoC design: a holistic perspective. In: Proceedings of the 3rd
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis. CODES+ISSS ’05. ACM, 2005, pp. 69–74. DOI: 10.
1145/1084834.1084856 (cit. on p. 118).

[OWB12a] Gadi Oxman, Shlomo Weiss, and Yitzhak (Tsahi) Birk. Buffered Deflection
Routing for Networks-on-chip. In: Proceedings of the 2012 Interconnection
Network Architecture: On-Chip, Multi-Chip Workshop. INA-OCMC ’12. ACM,
2012, pp. 9–12. DOI: 10.1145/2107763.2107766 (cit. on p. 41).

[OWB12b] Gadi Oxman, Shlomo Weiss, and Yitzhak (Tsahi) Birk. Streamlined Network-
on-chip for Multicore Embedded Architectures. In: Proceedings of the
25th International Conference on Architecture of Computing Systems. ARCS’12.
Springer-Verlag, 2012, pp. 238–249. DOI: 10.1007/978-3-642-28293-
5_20 (cit. on p. 55).

[Pat01] Achille Pattavina. Interconnection Networks. In: Switching Theory, Archi-
tectures and Performance in Broadband ATM Networks. John Wiley & Sons,
Ltd, 2001, pp. 53–90. DOI: 10.1002/0470841915.ch2 (cit. on p. 121).

[Pir+04] Matthew Pirretti, Greg M Link, Richard R Brooks, Narayanan Vijaykrishnan,
Mahmut Kandemir, and Mary Jane Irwin. Fault tolerant algorithms for
network-on-chip interconnect. In: IEEE Computer Society Annual Sympo-
sium on VLSI. IEEE. Institute of Electrical & Electronics Engineers (IEEE),
2004, pp. 46–51. DOI: 10.1109/isvlsi.2004.1339507 (cit. on p. 71).

[PJ06] Sandro Penolazzi and Axel Jantsch. A High Level Power Model for the
Nostrum NoC. In: Proceedings of the 9th EUROMICRO Conference on Digital
System Design. IEEE Computer Society, 2006, pp. 673–676. DOI: 10.1109/
DSD.2006.9 (cit. on p. 45).

173

http://dx.doi.org/10.1145/1028176.1006717
http://dx.doi.org/10.1145/1028176.1006717
http://dx.doi.org/10.1145/2377677.2377757
http://dx.doi.org/10.1145/2377677.2377757
http://dx.doi.org/10.1145/1084834.1084856
http://dx.doi.org/10.1145/1084834.1084856
http://dx.doi.org/10.1145/2107763.2107766
http://dx.doi.org/10.1007/978-3-642-28293-5_20
http://dx.doi.org/10.1007/978-3-642-28293-5_20
http://dx.doi.org/10.1002/0470841915.ch2
http://dx.doi.org/10.1109/isvlsi.2004.1339507
http://dx.doi.org/10.1109/DSD.2006.9
http://dx.doi.org/10.1109/DSD.2006.9

Bibliography

[PZ11] Sudeep Pasricha and Yong Zou. NS-FTR: a fault tolerant routing scheme
for networks on chip with permanent and runtime intermittent faults.
In: Proceedings of the 16th Asia and South Pacific Design Automation Confer-
ence. ASPDAC ’11. Yokohama, Japan: IEEE Press, Jan. 2011, pp. 443–448.
DOI: 10.1109/aspdac.2011.5722231 (cit. on p. 72).

[QS13] Muhammad Yasir Qadri and Stephen J Sangwine. Multicore Technology:
Architecture, Reconfiguration, and Modeling. Ed. by Stephen Sangwine.
CRC Press, July 2013. DOI: 10.1201/b15268 (cit. on p. 11).

[Rad+13] Martin Radetzki, Chaochao Feng, Xueqian Zhao, and Axel Jantsch. Meth-
ods for Fault Tolerance in Networks on Chip. In: ACM Computing Surveys
1 (2013), p. 35 (cit. on pp. 69, 70).

[Rad11a] M. Radetzki. Fault-Tolerant Differential Q Routing in Arbitrary NoC
Topologies. In: Embedded and Ubiquitous Computing (EUC), 2011 IFIP 9th
International Conference on. Institute of Electrical & Electronics Engineers
(IEEE), Oct. 2011, pp. 33–40. DOI: 10.1109/EUC.2011.36 (cit. on
p. 76).

[Rad11b] Martin Radetzki. Fehlertolerantes differentielles Q-Routing für On-Chip-
Verbindungsnetzwerke mit beliebiger Topologie. In: Zuverlässigkeit und
Entwurf - 5. GI/GMM/ITG-Fachtagung. 2011 (cit. on p. 76).

[Rah13] Rezaur Rahman. Intel R© Xeon PhiTM Coprocessor Architecture and
Tools: The Guide for Application Developers. Springer Nature, 2013.
DOI: 10.1007/978-1-4302-5927-5 (cit. on p. 35).

[RK11] Martin Radetzki and Adán Kohler. Cost-Based Deflection Routing for
Intelligent NoC Switches. In: Solutions on Embedded Systems. Ed. by Mas-
simo Conti, Simone Orcioni, Natividad Martínez Madrid, and E.D. Ralf
Seepold. Dordrecht: Springer Netherlands, 2011, pp. 77–90. DOI: 10.
1007/978-94-007-0638-5_6 (cit. on p. 73).

[Saw+11] Shankar Sawant, Utpal Desai, Gururaj Shamanna, Lokesh Sharma, Mandar
Ranade, Anil Agarwal, Sampath Dakshinamurthy, and Rajagopal Narayanan.
A 32nm Westmere-EX Xeon R© enterprise processor. In: 2011 IEEE In-
ternational Solid-State Circuits Conference. Institute of Electrical and Elec-
tronics Engineers (IEEE), Feb. 2011, pp. 74–75. DOI: 10.1109/ISSCC.
2011.5746225 (cit. on p. 1).

[Sei85] Charles L Seitz. The cosmic cube. In: Communications of the ACM 28.1
(Jan. 1985), pp. 22–33. DOI: 10.1145/2465.2467 (cit. on p. 13).

174

http://dx.doi.org/10.1109/aspdac.2011.5722231
http://dx.doi.org/10.1201/b15268
http://dx.doi.org/10.1109/EUC.2011.36
http://dx.doi.org/10.1007/978-1-4302-5927-5
http://dx.doi.org/10.1007/978-94-007-0638-5_6
http://dx.doi.org/10.1007/978-94-007-0638-5_6
http://dx.doi.org/10.1109/ISSCC.2011.5746225
http://dx.doi.org/10.1109/ISSCC.2011.5746225
http://dx.doi.org/10.1145/2465.2467

Bibliography

[Shp+15] Alexander Shpiner, Erez Kantor, Pu Li, Israel Cidon, and Isaac Keslassy. On
the Capacity of Bufferless Networks-on-Chip. In: Parallel and Distributed
Systems, IEEE Transactions on 26.2 (Oct. 2015), pp. 492–506. DOI: 10.
1109/allerton.2012.6483296 (cit. on p. 38).

[SKH08] Erno Salminen, Ari Kulmala, and Timo D Hamalainen. Survey of network-
on-chip proposals. In: white paper, OCP-IP (2008), pp. 1–13 (cit. on
p. 114).

[SMG14] Radu Andrei Stefan, Anca Molnos, and Kees Goossens. dAElite: A TDM
NoC Supporting QoS, Multicast, and Fast Connection Set-Up. In: IEEE
Transactions on Computers 63.3 (Mar. 2014), pp. 583–594. DOI: 10.1109/
tc.2012.117 (cit. on p. 38).

[Sod+16] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu.
Knights Landing: Second-Generation Intel Xeon Phi Product. In: IEEE
Micro 36.2 (Mar. 2016), pp. 34–46. DOI: 10.1109/mm.2016.25 (cit. on
p. 35).

[Sod16] Avinash Sodani. Knights Landing Intel Xeon Phi CPU: Path to Paral-
lelism with General Purpose Programming. keynote speech at 29th In-
ternational Conference on Architecture of Computing Systems (ARCS)
2016. Nuremberg, Apr. 4, 2016 (cit. on p. 4).

[SRK10] Gert Schley, Martin Radetzki, and Adán Kohler. Degradability Enabled
Routing for Network-on-Chip Switches. In: it-Information Technology
52.4 (Jan. 2010), pp. 201–208. DOI: 10.1524/itit.2010.0592 (cit. on
p. 73).

[TB11] A. T. Tran and B. M. Baas. Design of Bufferless On-Chip Routers Provid-
ing In-Order Packet Delivery. In: SRC Technology and Talent for the 21st
Century (TECHCON). Sept. 2011, S14.3 (cit. on p. 119).

[Val+10] Mojtaba Valinataj, Siamak Mohammadi, Juha Plosila, and Pasi Liljeberg. A
fault-tolerant and congestion-aware routing algorithm for Networks-
on-Chip. In: Design and Diagnostics of Electronic Circuits and Systems
(DDECS), 2010 IEEE 13th International Symposium on. IEEE. Institute
of Electrical & Electronics Engineers (IEEE), 2010, pp. 139–144. DOI:
10.1109/ddecs.2010.5491798 (cit. on p. 72).

[Val82] Leslie G. Valiant. A Scheme for Fast Parallel Communication. In: SIAM
Journal on Computing 11.2 (May 1982), pp. 350–361. DOI: 10.1137/
0211027 (cit. on p. 15).

175

http://dx.doi.org/10.1109/allerton.2012.6483296
http://dx.doi.org/10.1109/allerton.2012.6483296
http://dx.doi.org/10.1109/tc.2012.117
http://dx.doi.org/10.1109/tc.2012.117
http://dx.doi.org/10.1109/mm.2016.25
http://dx.doi.org/10.1524/itit.2010.0592
http://dx.doi.org/10.1109/ddecs.2010.5491798
http://dx.doi.org/10.1137/0211027
http://dx.doi.org/10.1137/0211027

Bibliography

[Van+08] Sriram R Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard
Wilson, James Tschanz, David Finan, Arvind Singh, Tiju Jacob, Shailendra
Jain, et al. An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS.
In: IEEE Journal of Solid-State Circuits 43.1 (Jan. 2008), pp. 29–41. DOI:
10.1109/jssc.2007.910957 (cit. on pp. 3, 35).

[Wan+02] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and S. Malik. Orion: a
power-performance simulator for interconnection networks. In: Mi-
croarchitecture, 2002. (MICRO-35). Proceedings. 35th Annual IEEE/ACM
International Symposium on. 2002, pp. 294–305. DOI: 10.1109/MICRO.
2002.1176258 (cit. on p. 117).

[Wen+07] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Ed-
wards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III,
and Anant Agarwal. On-Chip Interconnection Architecture of the Tile
Processor. In: IEEE Micro 27.5 (2007), pp. 15–31. DOI: 10.1109/MM.
2007.89 (cit. on pp. 3, 13, 35, 38).

[Wu03] Jie Wu. A Fault-Tolerant and Deadlock-Free Routing Protocol in 2D
Meshes Based on Odd-Even Turn Model. In: IEEE Trans. Comput. 52.9
(Sept. 2003), pp. 1154–1169. DOI: 10.1109/tc.2003.1228511 (cit. on
p. 72).

[Xil12] Xilinx. Virtex-6 FPGA CLB User Guide. Ed. by Xilinx. 2012. URL: https:
//www.xilinx.com/support/documentation/user_guides/
ug364.pdf (cit. on p. 30).

[Xil15] Xilinx. ISE WebPACK Design Software. [Online; accessed 22-June-2016].
2015 (cit. on pp. 29, 122, 148).

[YA12] Qiaoyan Yu and Paul Ampadu. Transient and Permanent Error Control
for Networks-on-Chip. Springer Science & Business Media, 2012. DOI:
10.1007/978-1-4614-0962-5 (cit. on pp. 67, 68).

[YBM03] Terry Tao Ye, Luca Benini, and Giovanni De Micheli. Packetized on-chip
interconnect communication analysis for MPSoC. In: Design, Automa-
tion and Test in Europe Conference and Exhibition, 2003. IEEE. Institute
of Electrical & Electronics Engineers (IEEE), 2003, pp. 344–349. DOI:
10.1109/DATE.2003.1253632 (cit. on pp. 117, 130, 142).

[YKH10] Zhiyao Joseph Yang, Akash Kumar, and Yajun Ha. An area-efficient dy-
namically reconfigurable spatial division multiplexing network-on-
chip with static throughput guarantee. In: 2010 International Conference
on Field-Programmable Technology. IEEE. Institute of Electrical & Electron-
ics Engineers (IEEE), Dec. 2010, pp. 389–392. DOI: 10.1109/fpt.2010.
5681443 (cit. on p. 140).

176

http://dx.doi.org/10.1109/jssc.2007.910957
http://dx.doi.org/10.1109/MICRO.2002.1176258
http://dx.doi.org/10.1109/MICRO.2002.1176258
http://dx.doi.org/10.1109/MM.2007.89
http://dx.doi.org/10.1109/MM.2007.89
http://dx.doi.org/10.1109/tc.2003.1228511
https://www.xilinx.com/support/documentation/user_guides/ug364.pdf
https://www.xilinx.com/support/documentation/user_guides/ug364.pdf
https://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://dx.doi.org/10.1007/978-1-4614-0962-5
http://dx.doi.org/10.1109/DATE.2003.1253632
http://dx.doi.org/10.1109/fpt.2010.5681443
http://dx.doi.org/10.1109/fpt.2010.5681443

Affidavit

I hereby confirm that my thesis entitled Advances in Deflection Routing based Net-
work on Chips is the result of my own work. I did not receive any help or support
from commercial consultants. All sources and / or materials applied are listed and
specified in the thesis.

Furthermore, I confirm that this thesis has not yet been submitted as part of another
examination process neither in identical nor in similar form.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, die Dissertation Advances in Deflection Routing based
Network on Chips eigenständig, d.h. insbesondere selbständig und ohne Hilfe eines
kommerziellen Promotionsberaters, angefertigt und keine anderen als die von mir
angegebenen Quellen und Hilfsmittel verwendet zu haben.

Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form
bereits in einem anderen Prüfungsverfahren vorgelegen hat.

Würzburg, 2017

(Armin Runge)

177

	Abstract
	Kurzfassung
	Danksagung
	List of Tables
	List of Figures
	Abbreviations & Acronyms
	Symbols
	Introduction
	Motivation
	Thesis Outline and Scientific Contributions

	Network Basics
	Building Blocks and Terminology
	Topology
	Routing
	Classification
	Routing Algorithms and Turn Model

	Buffering and Flow Control
	Bufferless Flow Control
	Buffered Flow Control
	Buffer Availability

	Router Architecture
	Performance
	Performance Metrics
	Evaluation Methodology

	Conclusion and Existing Interconnection Networks

	Deflection Routing based Router Architectures
	Principle of Deflection Routing
	Pros and Cons of Deflection Routing
	Deflection Routing Implementations
	Crossbar based Architectures
	Permutation Network based Architectures

	Basis Network on Chip and Router Architecture
	Flit Prioritization Scheme
	Routing Algorithm
	Summary

	Fault-tolerant and Deflection Routing based Router Architecture
	Motivation and Scope
	Fault Tolerance Methods
	Fault-tolerant Routing
	Conclusion

	Related Work of Chapter 4
	FaFNoC Router Architecture
	Fault Tolerance and Banyan Networks
	Substitute Benes Networks for Banyan Networks
	Concept of Fault-aware Flits
	Summary and Complete Overview of FaFNoC Router Architecture

	Evaluation of FaFNoC Router Architecture
	Non-fault-tolerant Architecture
	Fault-tolerant Architecture

	Summary and Conclusion of Chapter 4

	Design of Deflection Routing based Network on Chips
	Introduction and Motivation
	Effect of the Link Width on Buffered, Packet Switched NoCs
	Effect of the Link Width on Deflection Routing based NoCs

	Related Work
	The optimal Link Width
	Effect of the Flit Size on Hardware Costs
	Effect of the Flit Size on Performance

	TwoPhases - An Alternating Transmission Scheme
	Methodology of TwoPhases
	Transmission Methods
	Evaluation

	Summary and Conclusion of Chapter 5

	Concluding Remarks
	Contributions of this Thesis
	Future Work

	Appendix
	Fault Situations of Chapter 4
	Lambert W function

	Publications of the Author
	Bibliography

