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Abstract

Background: Chronic psychological stress is associated with accelerated aging and increased risk for aging-related
diseases, but the underlying molecular mechanisms are unclear.

Results: We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock.
After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not
childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African
American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with
advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these
epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of
epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the
functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA
methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor
agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these
CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment
analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including
coronary artery disease, arteriosclerosis, and leukemias.

Conclusions: Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by
glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking
chronic stress with accelerated aging and heightened disease risk.

Keywords: Aging, Aging-related disease, DNA methylation, Epigenetics, Gene expression, Glucocorticoids,
Psychological stress

Background
The last decades have witnessed a dramatic increase in
life expectancy. As a result, the number of older adults
is predicted to more than double over the next two
decades [1, 2]. While this increase in life expectancy
is undoubtedly one of the biggest achievements of
modern medicine, population aging also brings forth

an unprecedented increase in aging-related diseases,
including cardiovascular disease, cancer, and dementia
[3]. Given that these conditions are currently the
leading causes of morbidity and mortality, it is im-
perative to gain insights into factors that impact healthy
aging and contribute to aging-related diseases.
An important risk factor for accelerated aging and

aging-related diseases is psychological stress. Although
stressors are ubiquitous in nature and necessary for
survival [4], excessive and chronic stress has been associ-
ated with accelerated cellular aging [5, 6] and increased
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risk for aging-related disease phenotypes, including car-
diovascular disease, immune dysregulation, and late-life
neuropsychiatric disorders [7–12]. Furthermore, stressors
occurring during sensitive developmental periods, such as
childhood maltreatment, have been linked with later
development of aging-related diseases [13–15]. Lastly,
stress-related psychiatric disorders, including major de-
pression and post-traumatic stress disorder (PTSD), are
themselves risk factors for such diseases [15, 16]. Despite
these observations, the molecular mechanisms linking
psychological stress with accelerated aging and aging-
related diseases remain largely unknown.
One plausible mechanism that may mediate the ad-

verse effects of stress on the aging process is epigenetic
regulation. Long-term epigenetic changes can be in-
duced by environmental stimuli, including psychological
stressors, and can shape complex phenotypes [17]. The
most studied epigenetic modification in this context is
DNA methylation. Stressors can induce lasting changes
in DNA methylation [18, 19], an effect that is in part
mediated by the genomic effects of glucocorticoids, a
primary molecular effector of the stress response [20].
Glucocorticoids exert actions in essentially every body
organ via activation of the glucocorticoid receptor (GR),
a transcription factor that regulates gene expression by
the binding of its homodimer to glucocorticoid response
elements (GREs) in regulatory regions of target genes
[21]. Beyond regulating gene transcription, GRE binding
can locally induce lasting changes in DNA methylation,
a form of molecular memory that shapes subsequent re-
sponses to glucocorticoids and stressors [17, 18, 22–24].
Therefore, it is plausible that stress and glucocorticoid
exposure throughout the lifetime could impact cellular
aging via cumulative effects on aging-related DNA
methylation sites.
Aging and aging-related diseases are associated with

profound changes in DNA methylation [25–31]. Rec-
ognizing the importance of DNA methylation in the
aging process has led to recent development of several
DNA methylation-based predictors of aging [27, 32–34].
Among these, a composite predictor comprised of 353
Cytosine-phosphate-Guanosine sites (CpGs) across the
genome (‘epigenetic clock’) was shown to strongly correl-
ate with chronological age across multiple tissues in
humans [27], suggesting its usefulness as a biomarker in
aging-related research. Using this predictor, accelerated
epigenetic aging (Δ-age), defined as the difference be-
tween DNA methylation-predicted age (DNAM-age)
and chronological age, has been associated with
aging-related and other phenotypes, including cancer,
obesity, cytomegalovirus infection, Down’s syndrome,
PTSD, physical and cognitive decline, all-cause mortality,
and the presence of higher self-control and lower socio-
economic status [27, 35–41]. However, no studies have

examined the relationship between this predictor and cu-
mulative lifetime stress nor the potential molecular mech-
anisms underlying this relationship.
In the present study, we first show that cumulative

lifetime stress, but not childhood or current stress alone,
is associated with accelerated epigenetic aging in a
cohort of highly traumatized African American individ-
uals. Examining GR signaling as a potential mechanism
underlying this effect, we identify that a high number of
epigenetic clock CpGs are located within functional
GREs and show dynamic methylation changes following
GR activation by exposure to the GR agonist dexametha-
sone (DEX). Lastly, we show that genes neighboring
these CpGs are dynamically regulated by DEX and that
these DEX-regulated genes show enriched association
for aging-related diseases. Taken together, our findings
support a model of stress-induced acceleration of epi-
genetic aging, overall contributing to our understanding
of mechanisms linking chronic stress with accelerated
aging and heightened disease risk.

Results
Prediction of chronological age using the epigenetic clock
DNAM-age was calculated from peripheral blood from
two independent samples, derived from the Grady
Trauma Project (GTP) and the Max Planck Institute of
Psychiatry (MPIP) cohorts using genome-wide Illumina
HumanMethylation450 BeadChips (450 K), as previously
described [27]. Given that the GTP primarily comprises
(>90 %) African American participants, we excluded
other ethnicities to minimize confounders. This resulted
in a total of 393 participants with DNAM-age data. In
contrast, the MPIP cohort consists only of Caucasian
participants with a total of 124 participants with base-
line DNAM-age data. The mean (SD, range) age was
41.33 years (12.85, range 18 to 77 years) for the GTP
and 39.5 years (14.14, range 21 to 71 years) for the
MPIP. The n (%) of female participants was 278
(70.7 %) for the GTP and 44 (35.5 %) for the MPIP.
To validate the epigenetic clock predictor in our co-
horts, we correlated DNAM-age with chronological
age as previously described [27]. This correlation was
strong for both the GTP (r = 0.90, P <2.2 × 10−16)
(Fig. 1a) and MPIP (r = 0.94, P <2.2 × 10−16) cohorts
(Fig. 1b) and proved robust and similar for both gen-
ders (r = 0.89 for male vs. r = 0.90 for female in the
GTP; r = 0.95 for male vs. r = 0.94 for female in the
MPIP).

Epigenetic age acceleration is associated with cumulative
lifetime stress, but not childhood or current stress alone,
in an urban, African American cohort
We then hypothesized that epigenetic age acceleration
(Δ-age), calculated by subtracting the actual chronological
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age from DNAM-age [27], would be positively associated
with exposure to life stress. This hypothesis was tested in
the highly traumatized GTP cohort. The mean (SD, range)
Δ-age in the GTP was –0.13 years (5.69, range –17.31 to
43.98 years). A total of 304 GTP participants had data
on lifetime stressors assessed by the Stressful Events
Questionnaire (SEQ) and 386 participants had data
on childhood maltreatment assessed by the Childhood
Trauma Questionnaire (CTQ). The individual items
from the SEQ were summed to yield a total score of
lifetime stress exposure (Life Stress), and a similar
total score was generated for the CTQ (Child Stress).
The SEQ additionally assesses stressor exposure over
the last year, and these items were summed to yield a
score of more recent stress exposure (Current Stress).
Linear regression models controlling for sex and age
showed that Life Stress was positively associated with
Δ-age (β = 0.24, SE = 0.08, P = 2.8 × 10−3), and this ef-
fect remained significant after further controlling for
Houseman blood cell counts and technical batch ef-
fects (β = 0.18, SE = 0.08, P = 1.8 × 10−2) (Fig. 2a), life-
style parameters, including body mass index, smoking,

alcohol, cocaine, marijuana, and heroin use (β = 0.31,
SE = 0.11, P = 7.4 × 10−3), as well depressive symptom-
atology, psychiatric treatments, and genome-wide
SNP-based principal components (β = 0.28, SE = 0.13,
P = 2.7 × 10−2).
In secondary analyses, we examined whether the effect

of lifetime stress on age acceleration depends on the
type of stressor and other moderating variables. Based
on previous work distinguishing between life events that
affect the individual directly vs. life events that affect
one’s social network [42], we separately summed SEQ
items assessing personal life events (Personal Life
Stress) and items assessing network events (Network
Life Stress). Δ-age showed a positive and significant
association with Personal Life Stress (β = 0.26, SE = 0.10,
P = 8.7 × 10−3) (Fig. 2b) and a positive but not significant
association with Network Life Stress (P = 1.1 × 10−1)
(Fig. 2c). No significant interactions were noted between
Life Stress or Personal Life Stress and either sex or age.
However, stratification of the GTP by a median split of
age showed that the effect of Personal Life Stress on Δ-age
was marginally stronger in older (β = 0.33, SE = 0.17,
P = 5.3 × 10−2) (Fig. 2d) as compared to younger par-
ticipants (β = 0.15, SE = 0.14, P = 2.8 × 10−1) (Fig. 2e).
On the other hand, Δ-age was not associated with ei-
ther CTQ score (P = 4 × 10−1) or Current Stress alone
(P = 1.3 × 10−1). However, when participants were
stratified based on the severity of childhood maltreat-
ment, only individuals exposed to lower levels (none
or mild) of sexual and physical childhood abuse
(based on respective CTQ subscale scores) showed
significant effects of Life Stress on Δ-age (Fig. 2f ).
This was not a consequence of differential stress
exposure burden between the two groups, since, as
expected, individuals exposed to higher levels of
childhood abuse also had higher levels of Life Stress
with a mean (SD) Life Stress of 12.32 (3.64) as com-
pared to 10.01 (3.76) in individuals with lower levels
of childhood abuse (t299 = 5.38, P = 1.5 × 10−7). Fur-
thermore, the two strata showed similar correlations
between DNAM-age and chronological age (r = 0.91
for higher vs. 0.92 for lower abuse, Fisher z score = 0.6, P =
5.5 × 10−1). Lastly, we found no association between Δ-age
and current stress-related psychiatric phenotypes, including
depressive (P = 3.4 × 10−1) and PTSD symptomatology (P =
7.9 × 10−1) in the GTP. In line with this finding, depression
diagnosis was not associated with Δ-age in the MPIP co-
hort (P = 2.3 × 10−1, n = 72 controls vs. 52 depressed).
Taken together, these findings show that cumulative life-
time stress, but not childhood trauma or current stress
alone, is associated with accelerated epigenetic aging, an
effect that is primarily driven by personal life events, may
be more evident in advancing ages, and is blunted in par-
ticipants exposed to high levels of childhood abuse.

Fig. 1 Correlation between chronological age and age predicted by
DNA methylation-based predicted age in two independent cohorts.
a GTP cohort (n = 393). b MPIP cohort (n = 124)
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Epigenetic clock CpGs and neighboring genes are
regulated by GR activation and show enriched association
with aging-related diseases
The effect of lifetime stress on epigenetic aging prompted
us to examine susceptibility of individual epigenetic clock
CpGs to glucocorticoids, a primary molecular effector of
stress responses, as a potential mechanism underlying this
association. To address this hypothesis, we first examined
whether epigenetic clock CpGs show DNA methylation
changes 3 h after oral exposure to a GR agonist (1.5 mg of
DEX) in the independent MPIP cohort (n = 124). After
correcting for multiple testing, 110 of the 353 CpGs
showed statistically significant methylation changes (false
discovery rate (FDR)-adjusted P <5 × 10−2). Among the
DEX-regulated CpGs, 98 (89 %) showed decrease in
methylation, whereas 12 (11 %) showed increase in
methylation (Additional file 1: Table S1). We next ex-
amined the effect of acute DEX exposure on the epi-
genetic clock by comparing DNAM-age at baseline vs.
3 h after DEX exposure (n = 124). There was no effect

of DEX on DNA methylation-predicted age (baseline
mean DNAM-age = 45.24 vs. post-DEX mean DNAM-
age = 45.15, paired t123 = 0.31, P = 7.6 × 10−1).
Given that GR binding to GREs can exert changes in

DNA methylation, we then examined whether epigenetic
clock CpGs co-localize with GREs. Among the 353 epi-
genetic clock CpGs, 85 CpGs were located within GREs
as defined by CHIP-Seq peaks in a lymphoblastoid cell
line (LCL) (Additional file 1: Table S1). This CpG-GRE
co-localization significantly differed from the one ex-
pected by chance as determined by randomly drawing
1,000 sets (n = 353 CpGs) of CpG sites from all CpGs
present on the 450 K array (expected mean 48.8, SD 6.1,
range 31 to 68, pperm <1 × 10−3) (Fig. 3a). Proximity to
GREs was particularly observed for DEX-regulated CpGs
(Fig. 3b), with 17 of these sites located right within GREs
and 35 within 1 kb distance from GREs. Because the 353
CpGs were originally derived from the 21,369 (21 K)
CpGs that overlap the 27 K and 450 K Illumina arrays
[27], we next examined whether the epigenetic clock

Fig. 2 Cumulative lifetime stress is associated with epigenetic age acceleration in a highly traumatized human cohort derived from the Grady
Trauma Project. Epigenetic age acceleration (Δ-age) was calculated by subtracting chronological age from DNA methylation predicted age. Δ-age
was regressed on cumulative lifetime stress (Life Stress) after adjusting for covariates (fitted stress measures are shown). a Life Stress was positively
associated with epigenetic age acceleration (β = 0.18, SE = 0.08, P = 1.8 × 10−2), and this association remained significant after further controlling for
lifestyle parameters, including body mass index, smoking, alcohol, cocaine, marijuana, and heroin use (β = 0.31, SE = 0.11, P = 7.4 × 10-3), as well
depressive symptomatology, psychiatric treatments, and genome-wide SNP-based principal components (β = 0.28, SE = 0.13, P = 2.7 × 10−2).
Statistically significant association was found for Personal Life Stress (β = 0. 26, SE = 0.10, P = 8.7 × 10−3) (b), whereas the effect of Network
Life Stress was not significant (P= 1.1 × 10−1) (c). Age stratification by a median split showed that the effect of Personal Life Stress on Δ-age was stronger in
older (β = 0.33, SE = 0.17, P = 5.3 × 10−2) (d), as compared to younger participants (β = 0.15, SE = 0.14, P = 2.8 × 10−1) (e). Stratification of the
effect of cumulative life stress on epigenetic age acceleration based on the presence or not of moderate to severe physical or sexual
child abuse showed that Life Stress was positively associated with Δ-age in participants with no or mild physical and sexual child abuse
(β = 0.34, SE = 0.11, P = 2.5 × 10−3, n = 212) but not in those with moderate to extreme child abuse (P = 3.9 × 10−1, n = 174) (f)
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CpG-GRE co-localization differs from the one present in
the 21 K background. Epigenetic clock CpG-GRE co-
localization did not differ from the one expected by
chance when randomly drawing 1,000 CpG sets (n = 353
CpGs) from the 21 K CpG sites (expected mean 3,094,
SD 50.7, range 2,927–3,270, pperm = 9.7 × 10−1). Given
that this lack of enrichment could be the result of high
CpG-GRE co-localization already present in the 21 K, as
a last step we compared the co-localization present in
the 21 K with the 450 K background and we noted sig-
nificantly higher CpG-GRE co-localization in the 21 K
as compared to the 450 K background (pperm <1 × 10−3).
These findings suggest that the increased epigenetic
clock CpG-GRE co-localization is a more general

property of the 21 K CpGs used to develop the epigen-
etic clock. Yet the presence of a high number of epigen-
etic clock CpGs within functional GREs is in line with
our hypothesis that these sites may be highly susceptible
to GR activation.
We then assessed whether genes that have transcrip-

tion start sites (TSS) in the proximity of epigenetic clock
CpGs are also dynamically regulated by GR activation.
For this purpose, we used peripheral blood genome-wide
gene expression array data in the MPIP cohort to exam-
ine the DEX-induced changes in the expression of genes
with transcription start sites (TSS) close to epigenetic
clock CpGs based on the 450 K annotation from [43].
Using these criteria, we annotated 344 unique genes. Of
these, 333 genes were present on the gene expression
microarray and a total of 170 genes, corresponding to
220 epigenetic clock CpGs, were expressed above back-
ground in the MPIP cohort (Additional file 2: Table S2).
Transcription of these genes was detected by 216 unique
gene expression array probes. After FDR-based correc-
tion for multiple testing, 167 out of the 216 detected
probes, corresponding to 139 unique genes (81.7 %),
showed significant changes in gene expression following
DEX exposure (FDR-adjusted P values <0.05) (Fig. 4).

Fig. 3 Epigenetic clock CpGs co-localize with functional glucocorticoid
response elements (GREs) and show methylation changes following
GR activation. a Epigenetic clock CpGs co-localize with functional GREs.
GRE peaks were derived from ENCODE NR3C1 ChIP-seq data
from lymphoblastoid cell lines. Among the 353 epigenetic clock
CpGs, 85 CpG sites were noted to be located within GR ChIP-Seq peaks
in a lymphoblastoid cell line (shown with the red dotted line)
(Additional file 1: Table S1). This number significantly differed
(pperm <0.001) from the CpG-GRE overlap predicted by 1,000 randomly
selected sets of CpGs covered by the 450 K array (mean 48.8, SD 6.14,
range 31 to 68). b Epigenetic clock CpGs that are significantly
regulated by DEX exposure are in proximity to GREs. GRE peaks
were derived from ENCODE NR3C1 ChIP-seq data from lymphoblastoid
cell lines. Volcano plot was zoomed for +/− 10 kb distance around the
GRE peaks. The dotted red line in the volcano plot represents the level
of statistical significance (P = 5 × 10−2) after FDR correction for multiple
comparisons. Further details on DEX-regulated CpGs are given in
Additional file 1: Table S1

Fig. 4 Glucocorticoid receptor activation regulates the expression of
genes with transcription start sites (TSS) near epigenetic clock CpGs.
Gene TSS near epigenetic clock CpGs were identified based on the
annotation from [43]. The volcano plot shows DEX-induced fold change
in gene expression plotted against their corrected P values (q values).
The dotted red line represents the corrected level of statistical
significance (q = 5 × 10−2) after FDR correction for multiple comparisons.
Among the 216 unique array probes, 167 probes, corresponding to 139
unique genes, showed significant changes in gene expression following
DEX. Fifty-eight per cent of these probes (n = 97) showed upregulation
and 42 % (n = 70) showed downregulation. The mean (SD, range)
distance of each regulated gene TSS to the corresponding epigenetic
clock CpGs was ±419.3 bp (336.65 bp, range 1 to 1,423 bp). Marked in
red are the probes showing fold changes in gene expression >1.1.
Further details are provided in Additional file 2: Table S2
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Fifty-eight per cent of these probes (n = 97) showed up-
regulation and 42 % (n = 70) showed downregulation.
The mean (SD, range) distance of each regulated gene
TSS to the corresponding epigenetic clock CpGs was
±419.3 bp (336.65 bp, range 1 to 1,423 bp). To rule out
potential bias derived from the 21 K background, we
then asked whether genes neighboring epigenetic clock
CpGs are more responsive to GR activation compared to
genes neighboring the 21 K CpGs. A total of 5,443
unique genes, corresponding to 21,015 21 K CpGs,
showed significant DEX-induced mRNA expression
changes (FDR-adjusted P values <5 × 10−2). The number
of DEX-regulated genes was significantly higher for the
genes with TSS close to epigenetic clock CpGs as com-
pared to 21 K CpGs (Fisher’s exact test P = 6.3 × 10−5).
Taken together, these data demonstrate enhanced
responsivity of genes neighboring epigenetic clock CpGs
to GR activation.
Lastly, we performed disease enrichment analysis in

WebGestalt using the set of unique DEX-regulated genes
(n = 139) as the input for the analysis and the genes
expressed above background in our peripheral blood
gene expression arrays as the reference set of genes.
After FDR correction for multiple testing, this resulted
in enriched association for aging-related diseases, includ-
ing coronary artery disease, arteriosclerosis, and leuke-
mias (FDR-adjusted P <5 × 10−2 each) (Additional file 3:
Table S3).

Discussion
The present study sought to determine the effect of life
stressors on epigenetic aging, as measured with the epi-
genetic clock [27] in peripheral blood samples. While
previous studies found associations of the epigenetic
clock with several phenotypes [27, 35–41], this is the
first study to use this predictor in a highly traumatized
cohort. As hypothesized, accelerated epigenetic aging
was associated with cumulative lifetime stress burden.
Given that epigenetic effects of the stress response can
be mediated by GR signaling, we further examined the
molecular basis of this association by annotating epigen-
etic clock CpG sites in relation to GREs and examining
the impact of GR activation on these sites. We found
that GREs co-localize with epigenetic clock CpGs and
that glucocorticoid activation can induce dynamic
methylation changes of these sites as well as changes in
the expression of genes neighboring epigenetic clock
CpGs. Taken together, these converging findings support
a model of stress-induced accelerated epigenetic aging,
plausibly mediated by the lasting effects of cumulative
stressor exposure and aberrant glucocorticoid signaling
on the epigenome.
Further examination of the relationship between life

stress and epigenetic aging led us to several interesting

observations. First, this relationship was apparent for
cumulative stress exposure throughout the lifetime,
whereas no significant association was found with child-
hood maltreatment or current stress alone. This finding
is in accordance with a recent study observing no effect
of childhood trauma on epigenetic aging in combat vet-
erans [35] and suggests that cumulative stressors over
the lifetime, rather than time-limited stressors either
during childhood or adulthood, have a stronger or more
lasting effect on epigenetic aging. Nonetheless, it is also
possible that these null findings may be due to lack of
power, the timing of DNA methylation assessments, or
reversibility of epigenetic aging, possibilities that could
be addressed by future longitudinal studies. Second, the
effect of lifetime stress was driven by personal stressors
– affecting the participant directly – rather than network
stressors that occur to someone within the participant’s
network. This is congruent with previous studies show-
ing that personal life events are more strongly correlated
with genetic factors as compared to network events [44].
In line with the effects of lifetime vs. current stress,
these effects were more pronounced in older individuals,
suggesting cumulative epigenetic vulnerability in older
individuals. Lastly, the epigenetic effects of lifetime stress
were blunted in individuals with higher levels of child-
hood abuse. This finding could not be attributed to dif-
ferences in the levels of lifetime stress, since individuals
exposed to higher levels of childhood abuse also had
higher levels of cumulative lifetime stress burden. Thus,
it is possible that early trauma exposure triggers add-
itional mechanisms of risk and resilience that may inter-
fere with subsequent effects of stressors on epigenetic
aging, a hypothesis that remains to be tested by future
studies.
The effects of lifetime stress on epigenetic aging in

peripheral blood are likely mediated by persistent
neuroendocrine alterations induced by cumulative stress
exposure. Stressors and glucocorticoids can drive persist-
ent changes in the expression of glucocorticoid-responsive
genes and concomitant changes in DNA methylation at
CpGs located at or near GREs [17, 18, 22, 45]. Supporting
this hypothesis, we noted that a high number of epigenetic
clock CpG sites are located within functional GREs and
show dynamic methylation changes following DEX ex-
posure. Notably, most of these CpGs show DEX-
induced decrease in methylation, whereas far fewer
sites show increased methylation (98 vs. 12). This is in
accordance with previous studies showing that activa-
tion of the GR results in local demethylation of CpGs
in the proximity of a GRE [18, 22, 23] and that site-
specific decreases in methylation have been implicated
in aging-related phenotypes [46]. CpG demethylation
has been proposed to be potentially mediated by at
least two enzymatic processes, base excision repair and
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oxidation [47, 48]. Examining the role of these pro-
cesses may provide further insights into mechanisms of
stress-induced epigenetic aging. Furthermore, an open
question concerns the sequence of molecular events
that determine whether some stress-induced DNA
methylation changes become embedded and longlast-
ing, while other changes are dynamic and reversible.
Given the low dose and acute exposure to glucocorticoids
in our study, additional experiments with different doses
and more chronic in vitro or in vivo GR activation will be
necessary to better elucidate this mechanism.
An important implication of our findings is the poten-

tial role of stress-induced epigenetic aging in health and
disease. Increasing age and aging-related diseases have
been associated with global and site-specific changes in
DNA methylation [25–30, 39]. The age-related epigenetic
clock CpGs co-localize with genes that show enrichment
for cell growth and survival, organismal development, and
cancer [27]. Furthermore, we show that DEX-regulated
genes neighboring epigenetic clock CpGs show enriched
association for aging-related diseases, including coronary
artery disease, arteriosclerosis, and leukemias. These find-
ings raise the possibility that lifetime stress may contribute
to these diseases via its cumulative impact on epigenetic
regulation of genes implicated in aging-related diseases.
The findings of the present study should be viewed in

the context of its limitations. Although we observe an
association between epigenetic age acceleration and
lifetime stressors in the GTP cohort, the cross-sectional
design of the study limits conclusions regarding the dir-
ection of causality. As discussed above, it is plausible
that epigenetic aging of peripheral blood cells results
from persistent alterations of the neuroendocrine but
also immune milieu induced by repetitive stressor expos-
ure. However, accelerated epigenetic aging might alterna-
tively represent a vulnerability marker that predisposes
individuals to expose themselves to stressful environ-
ments. It is also important to acknowledge that, while
the high levels of traumatic events in the GTP make
this cohort highly suitable for examining the effects
of lifetime stress on the epigenome, they may also
limit generalizability of these findings to other less
traumatized cohorts. Moreover, the present study ex-
amined epigenetic aging in peripheral blood only.
While this tissue is easily accessible and relevant for
biomarker research, other tissues may be more sus-
ceptible to psychological stress and should be exam-
ined in the context of specific diseases. For example,
disease-specific effects on the epigenetic clock have
been demonstrated for liver tissue in the context of
obesity [39]. Another limitation is the use of Chip-Seq
data from lymphoblastoid cell lines to examine epigenetic
clock CpG-GRE co-localization. This cell line represents
the best available proxy for peripheral blood, the source

tissue for our methylation data, but this approach may
also be limited by the tissue specificity of functional GREs
and the altered epigenetic landscapes of immortalized cell
lines. Lastly, although we corrected for several con-
founders that might influence DNA methylation, such as
sex, age, smoking, body mass index, substance abuse,
current psychiatric symptoms and treatments, other fac-
tors not captured by our methods may have confounded
the observed relationships. These limitations may be over-
come in future studies by employing detailed prospective
measurements of lifestyle factors, stressor exposure, DNA
methylation, and incidence of stress-related phenotypes at
different time points throughout the lifetime.

Conclusions
The present study provides evidence that cumulative life
stress exposure is associated with accelerated epigenetic
aging and that these effects may be mediated by gluco-
corticoid signaling. Our findings further suggest that DNA
methylation-based age prediction in peripheral blood may
be a useful molecular marker to incorporate in future stud-
ies examining the effects of life stress exposure. These find-
ings offer novel insights into the molecular mechanisms
linking psychological stress with diseases of the aging.

Methods
Clinical samples
The effect of lifetime stress on epigenetic aging was ex-
amined in the Grady Trauma Project (GTP), a large
study conducted in Atlanta, Georgia, that investigates
the role of genetic and environmental factors in shaping
responses to stressful life events. The GTP includes
more than 7,000 participants from a predominantly
African American, urban population of low socioeco-
nomic status [49, 50]. This population is characterized
by high prevalence and severity of trauma over the life-
time and is thus particularly relevant for examining the
effects of stressors on epigenetic markers. For this pur-
pose, we used a subsample of GTP participants with
genome-wide DNA methylation data. All participants
provided written informed consent and all procedures
were approved by the Institutional Review Boards of
the Emory University School of Medicine and Grady
Memorial Hospital (IRB00002114).
We examined glucocorticoid-induced methylation

changes of epigenetic clock CpGs and responsivity of
genes closest to these CpGs in 297 Caucasian participants
recruited at the Max Planck Institute of Psychiatry
(MPIP). Recruitment strategies and characterization of
participants have been previously described [51, 52].
These consisted of 200 male (83 healthy probands and
117 inpatients with depressive disorders) and 97 female
(48 healthy probands and 49 depressed) individuals. Base-
line whole blood samples were obtained at 18:00 after 2 h
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of fasting and abstention from coffee and physical activity
(baseline). Participants then received 1.5 mg oral dexa-
methasone (DEX) and a second blood draw was
performed at 21:00, 3 h after DEX ingestion (post-DEX).
The study was approved by the local ethics committee
(approval number: 318/00) and all individuals gave written
informed consent. All experimental methods comply with
the Helsinki Declaration.

Psychometric instruments
Childhood trauma was measured in the GTP with the
Childhood Trauma Questionnaire (CTQ), a validated
self-report questionnaire that assesses five types of mal-
treatment during childhood: sexual, physical, and emo-
tional abuse, as well as emotional and physical neglect
[53]. Scores for each type of maltreatment were derived
from participant responses to questionnaire items and
scores from all types were summed to yield a total CTQ
score reflecting overall burden of childhood maltreat-
ment. Moderate to extreme sexual abuse was defined by
a cutoff score of 8 or above in the CTQ sexual abuse
subscale, and moderate to extreme physical abuse was
defined by a cutoff score of 10 or above in the physical
abuse subscale as previously described [54].
Stressful lifetime events in the GTP were assessed with

the Stressful Events Questionnaire (SEQ), a 39-item self-
report instrument that has been described in detail [55].
The SEQ covers a wide range of stressor exposure, ranging
from personal life events, such as divorce, unemployment,
crime, and financial stressors, to network life events,
such as knowing someone who was murdered. Partici-
pants report whether they have experienced these
events either in the past year or at any time in their
life. Although the SEQ assesses life event exposure
throughout the lifetime, it does not include questions
specific for childhood maltreatment. Life events are
summed to yield a total score that reflects the number of
stressors experienced over the last year (Current Stress) or
cumulative number of stressors experienced throughout
one’s lifetime (Life Stress).
Participants underwent the Structured Clinical Inter-

views for DSM-IV defined psychiatric diagnoses. Given
the observed relation between stress-related psychiatric
disorders and accelerated cellular aging, we also exam-
ined major depression and PTSD as variables of interest.
In the GTP, current depressive symptomatology was
assessed with the 21-item validated Beck Depression In-
ventory (BDI) [56, 57] and current PTSD symptomatol-
ogy was assessed with the validated 17-item PTSD
Symptom Scale (PSS) [49, 58].

DNA methylation
Genomic DNA from the GTP cohort (n = 393) and the
MPIP (n = 124) was extracted from whole blood using

the Gentra Puregene Blood Kit (QIAGEN). DNA quality
and quantity was assessed by NanoDrop 2000 Spectro-
photometer (Thermo Scientific) and Quant-iT Picogreen
(Invitrogen). Genomic DNA was bisulfite converted
using the Zymo EZ-96 DNA Methylation Kit (Zymo
Research) and DNA methylation levels were assessed
for >480,000 CpG sites using the Illumina Human-
Methylation450 BeadChip array. Hybridization and
processing was performed according to manufacturer’s
instructions as previously described [59]. Quality
control of methylation data, including intensity read
outs, filtering (detection P value >0.01 in at least
75 % of the samples), cellular composition estima-
tion, as well as beta and M-value calculation was
done using the minfi Bioconductor R package version
1.10.2 [60].
For the GTP cohort, X chromosome, Y chromosome,

and non-specific binding probes were removed [61]. We
also excluded probes if single nucleotide polymorphisms
(SNPs) were documented in the interval for which the
Illumina probe is designed to hybridize. Given that the
GTP cohort includes individuals from different ethnici-
ties, we also removed probes if they were located close
(10 bp from query site) to a SNP which had Minor Allele
Frequency of ≥0.05, as reported in the 1,000 Genomes
Project, for any of the populations represented in the
samples. Technical batch effects were identified by
inspecting the association of the first principal compo-
nents of the methylation levels with plate, sentrix array,
and position (row) and by further visual inspection of
principal component plots using the shinyMethyl
Bioconductor R package version 0.99.3 [62]. This
procedure identified row and slide as technical
batches. The raw methylation data and all related
phenotypes for the GTP cohort have been deposited
into NCBI GEO (GSE72680).
For the MPIP cohort, filtered beta values were reduced

by eliminating any CpG sites/probes on sex chromo-
somes, as well as probes found to have SNPs at the CpG
site itself or in the single-base extension site with a MAF
≥1 % in the 1,000 Genomes Project European population
and/or non-specific binding probes according to [61].
Additionally, we performed a re-alignment of the array
probe sequences using Bismark (doi: 10.1093/bioinfor-
matics/btr167). This yielded a total of 425,883 CpG sites
for further analysis. Using the same procedure for batch
identification as above, we identified processing (experi-
ment) date as technical batch in the MPIP. The data
were then normalized with functional normalization
[63], an extension of quantile normalization included in
the minfi R package and batch-corrected using ComBat.
The raw methylation data and all related phenotypes for
the MPIP cohort have been deposited into NCBI GEO
(GSE74414).
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Gene expression
In the DEX-treated (MPIP) cohort (n = 297, including
the 124 individuals used for the MPIP methylation
analysis), both baseline and post-DEX whole blood
RNA was collected using PAXgene Blood RNA Tubes
(PreAnalytiX), processed as described previously [51, 52].
Samples had a mean RNA integrity number (RIN) of
8 ± 0.51 SD. Blood RNA was hybridized to Illumina
HumanHT-12 v3 and v4 Expression BeadChips (Illumina,
San Diego, CA, USA). Raw probe intensities were
exported using Illumina’s GenomeStudio and further stat-
istical processing was carried out using R. All 29,075
probes present on both microarrays, excluding X and Y
chromosomes as well as cross-hybridizing probes identi-
fied by using the Re-Annotator pipeline (http://dx.doi.org/
10.1101/019596) were first filtered with an Illumina detec-
tion P value of 0.05 in at least 50 % of the samples, leaving
11,994 expressed probes for further analysis. Subse-
quently, each transcript was transformed and normalized
through variance stabilization and normalization (VSN)
[64]. Using the same procedure for batch identification as
for the methylation data, we identified slide, amplification
round, array version, and amplification plate column as
technical batches. The data were then adjusted using
ComBat [65] and have been deposited into NCBI GEO
(GSE64930).

Statistical analyses
All statistical analyses were conducted in R version 3.1.0
(http://www.r-project.org/) [66]. Unless indicated other-
wise, P values are nominal and two-tailed. All correc-
tions for multiple testing were performed using the FDR
method of Benjamini and Hochberg. The level of statis-
tical significance was set a priori at 0.05 (5 × 10−2).
DNA methylation-based age prediction was performed

using the R code and statistical pipeline developed by
Horvath [27]. This predictor was developed using 82
Illumina DNA methylation array datasets (n = 7,844)
involving 51 healthy tissues and cell types [27]. The
raw data were normalized using BMIQ normalization
method [67] implemented in the Horvath DNA
methylation-based age predictor R script [27]. Robust-
ness and reproducibility of the epigenetic age pre-
dictor was tested using 40× technical replicates of an
individual control sample, randomized across microarray
chips and batches used to measure DNA methylation in
the GTP cohort. The average epigenetic age (DNAM-age)
of the control sample (true age = 32 years) was 32.64 (SD:
0.23) years with an average correlation r = 0.97 (0.001).
Age acceleration (Δ-age) was defined (as previously)
as the average difference between DNAM-age and
chronological age. One GTP participant had extreme
Δ-age (43.98 years), and using the Grubbs’ test (http://
graphpad.com/quickcalcs/grubbs2/) was noted to be the

only outlier (Z = 3.80, P <5 × 10−2). Although primary ana-
lyses were conducted without this outlier, inclusion of this
individual did not substantially alter the reported results.
Generalized linear regression models tested the relation-
ship of Δ-age with stressors and stress-related phenotypes
(GTP cohort). Because DNAM-age is calculated from raw
beta values (before Combat correction for batches), tech-
nical batches identified for the GTP (row and slide) and
the MPIP cohort (processing date) were tested as potential
confounders in the respective regression models. In the
GTP, models were further adjusted for age, sex, House-
man cell counts, body mass index, smoking, alcohol,
current substance abuse, and the principal components
from population stratification checks. In the MPIP, models
were adjusted for gender, age, body mass index, and
Houseman cell counts.
To determine if methylation signals or gene expression

levels are significantly different before and after DEX
stimulation in the MPIP cohort, likelihood ratio tests
accounting for gender, age, body mass index, disease
status, and estimated cell-type counts were applied to
each CpG site (n = 353) and expression array probe
(n = 11,994), respectively. DNA methylation and gene
expression changes were corrected for multiple com-
parisons using FDR. The 353 epigenetic clock CpGs
were annotated to a total of 344 genes. Among these,
170 genes were detected in peripheral blood by 216
gene expression array probes (163 genes were expressed
below background and 11 genes were not covered by the
gene expression arrays).
To account for population stratification due to dis-

crepancies between self-reported and actual race in the
GTP, we used genome-wide SNP data that were available
for 382 participants. Of the 700 k SNPs present on the
Omni Quad and Omni express arrays, 645,8315 auto-
somal SNPs were left after filtering with the following
criteria: minor allele frequency of >1 %; Hardy-Weinberg
equilibrium of 0.000001; and genotyping rate of >98 %.
The samples were clustered to calculate rates of identity
by descent (IBD). We then ran multidimensional scaling
analysis on the IBD matrix using PLINK2 (https://
www.cog-genomics.org/plink2) and plotted the first ten
axes of variation against each other. No outliers were de-
tected. The first two principal components were used as
covariates in regression models to adjust for population
stratification.
To identify whether epigenetic clock CpG sites are

co-localized with GREs, we used ENCODE NR3C1
ChIP-Seq data from lymphoblastoid cell lines (acces-
sion: ENCSR904YPP) for which no aligned tracks are
currently available. Initial filtering was performed using
FASTX Toolkit (v. 0.0.14, http://hannonlab.cshl.edu/
fastx_toolkit/index.html) and Prinseq (v. 0.20.3) [68] to
eliminate artefacts and low quality reads. Alignment on
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hg19 was performed using BWA (v. 0.7.10) [69] allowing
only uniquely mappable alignments with an alignment
quality of above 20. Reads from both ChIP-Seq and both
control libraries were pooled leading to 46,453,650 and
68,227,580 used reads, respectively. Peak-calling was car-
ried out by MACS14 (v. 1.4.2) [70] using default settings,
resulting in approximately 23,000 annotated signals. The
average length of ChIP-Seq signal as defined by the peak
calling was 746.3 bps (SD: 370.6). We generated 1,000 sets
(n = 353 CpGs) of randomly drawn CpG sites (without re-
placement) from the set of all CpGs present on the 450 K
BeadChip array (excluding X and Y chromosomes). For
every set we counted the percentage of CpG sites within a
GRE ChIP-Seq signal (+/− 0 bp). On this basis we
constructed the null distribution and compared it to the
observed percentage of clock CpG sites within a GRE
ChIP-Seq signal to measure the enrichment statistics.
Disease enrichment analysis was performed using the

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt;
http://bioinfo.vanderbilt.edu/webgestalt/) [71, 72]. This
was performed by using as input the set of unique DEX-
regulated genes neighboring epigenetic clock CpGs
(n = 139) and as reference the set of genes expressed
above background in our peripheral blood gene ex-
pression arrays. The minimum number of genes for
the enrichment analysis was set at 5, the statistic
performed was hypergeometric test, and results were
corrected for multiple testing using FDR.

Additional files

Additional file 1: Table S1. Location of epigenetic clock CpGs in
relation to the nearest glucocorticoid response element (as shown by
within GR ChIP-Seq peaks in a lymphoblastoid cell line) and their
methylation changes in response to the glucocorticoid receptor
agonist dexamethasone. (DEX). (XLSX 68 kb)

Additional file 2: Table S2. Annotation of genes with transcription
start sites (TSS) near epigenetic clock CpGs and their expression changes
in response to DEX. Gene annotation was based on [43]. (XLSX 26 kb)

Additional file 3: Table S3. WebGestalt Disease enrichment analysis of
the set of unique DEX-regulated genes (n = 139) with TSS near epigenetic
clock CpGs. For the primary analysis, we used as reference the set of
genes expressed above background in our peripheral blood gene
expression arrays. This analysis was repeated using a more condensed
background comprised only of the genes neighboring 21 K CpGs that
showed DEX-induced mRNA expression changes (n = 5,443). While this
post-hoc analysis yielded no statistically significant results after correction
for multiple testing (P values presented in the last column), the top 10
diseases were very similar (with higher but nominally significant P values
for the top three hits) with the analysis using the broader reference set
of genes. (XLSX 10 kb)
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