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Summary 

MYC is a transcription factor, whose expression is elevated or deregulated in many human 

cancers (up to 70%) and is often associated with aggressive and poorly differentiated 

tumors. Although MYC is extensively studied, discrepancies have emerged about how this 

transcription factor works. In primary lymphocytes, MYC promotes transcriptional 

amplification of virtually all genes with an open promoter, whereas in tumor cells MYC 

regulates specific sets of genes that have significant prognostic value. Furthermore, the set 

of target genes that distinguish MYC’s physiological function from the 

pathological/oncogenic one, whether it exists or not, has not been fully understood yet. 

In this study, it could be shown that MYC protein levels within a cell and promoter affinity 

(determined by E-box presence or interaction with other proteins) of target genes toward 

MYC are important factors that influence MYC activity. At low levels, MYC can amplify 

a certain transcriptional program, which includes high affinity binding sites, whereas at 

high levels MYC leads to the specific up- and down regulation of genes with low affinity. 

Moreover, the promoter affinity characterizes different sets of target genes which can be 

distinguished in the physiological or oncogenic MYC signatures.  

MYC-mediated repression requires higher MYC levels than activation and formation of a 

complex with MIZ1 is necessary for inhibiting expression of a subset of MYC target 

genes.   
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Zusammenfassung 

MYC ist ein Transkriptionsfaktor, dessen Expression in vielen humanen Tumoren (bis zu 

70 %) erhöht oder dereguliert ist. Die Tumore, in denen viel MYC hergestellt wird, 

zeichnen sich durch einen geringen Differenzierungsgrad aus und verhalten sich sehr 

aggressiv. Obwohl das biologische Verhalten des MYC Proteins intensiv untersucht wurde, 

sind unterschiedliche Modelle, wie dieser Transkriptionsfaktor funktioniert, entwickelt 

worden. In primären Lymphozyten verstärkt MYC die Expression fast aller Gene mit 

offener Chromatinstruktur, während MYC in Tumorzellen spezifische Gengruppten 

reguliert, deren Expression mit der Prognose von Patienten korreliert. Es ist also unklar, ob 

sich die Zielgene der physiologischen Funktion von Myc von den 

oncogenen/pathophysiologischen Zielgenen unterscheidet und um welche Gene es sich bei 

letzteren handelt.  

In dieser Arbeit konnte gezeigt werden, dass Expressionsniveau  von MYC und 

unterschiedliche Promotoraffinitäten zu MYC (charakterisiert durch den Ebox-Gehalt und 

Interaktionen zu anderen Proteinen) wichtig für die Aktivität des MYC Proteins sind. So 

kann Myc bei niedrigen Konzentrationen ein bestimmtes transkriptionelles Programm 

amplifizieren, das sich aus hochaffinen Promotoren zusammensetzt. Bei hohen 

Konzentrationen hingegen führt MYC zur transkriptionellen Aktivierung und Repression 

bestimmter Zielgengruppen, die sich durch niedrige Affinität zu MYC auszeichnen. Somit 

ist die Promotoraffinität ein Parameter, der physiologische von oncogenen MYC 

Signaturen trennen kann. Darüberhinaus konnte gezeigt werden, dass MYC-vermittelte 

Repression höhere MYC Mengen benötigt, als MYC-vermittelte Transaktivierung und die 

Komplexbildung mit MIZ1 für die Repression einer Gruppe an MYC Zielgenen nötig ist. 
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Chapter 1: 

Introduction 

1.1 The proto-oncoprotein MYC 

The MYC gene was first identified in the late 1970s as a viral oncogene promoting 

myelocytomatosis in chicken (v-myc) (Sheiness and Bishop, 1979). In subsequent years 

homologous proteins were found in vertebrates forming a protein family of 3 members: c-

MYC (hereafter called MYC), N-MYC and L-MYC (Kohl et al., 1983; Nau et al., 1985; 

Vennstrom et al., 1982). MYC is evolutionary highly conserved and it can be found in 

Drosophila melanogaster (Gallant et al., 1996). MYC regulates several cellular functions 

mainly involved in cell growth and proliferation. Furthermore, it is necessary for 

embryonic development since murine embryos bearing homozygous MYC deletion die 

between day 8.5 and 9.5 (Davis et al., 1993).  

1.1.1 Structure of the MYC protein 

The three members of the MYC protein family share a significant structural homology. 

MYC is a 439 amino acids long protein and contains several domains that are important for 

its function and evolutionary conserve. The basic helix-loop-helix/leucine zipper 

(bHLH/LZ) domain is present at the C-terminal part of MYC and is needed for binding to 

DNA and for heterodimerization of MYC with its bHLH/LZ partner MAX (MYC-

associated factor X) (Blackwood et al., 1992). Moreover this domain was shown to be 

responsible for the interaction with MIZ1 (MYC interacting zinc-finger protein 1) in a 

yeast two-hybrid screen   

 

Figure 1. 1: Schematic diagram of the MYC protein. Human c-MYC is a 439 amino acids long protein 

that bears several conserved domains: MYC boxes I-IV (MB I-IV), a basic region (BR), a helix-loop-helix 

motif (HLH) and a leucine zipper (LZ). 
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(Peukert et al., 1997) and p300, an acetyltransferase with a broad range of action 

(Vervoorts et al., 2003).   

The N-terminal region of MYC bears the transactivation domain (TAD) with two highly 

conserved elements, the so-called MYC boxes I and II. These domains are important for 

the transforming functions of MYC (Stone et al., 1987), for the interaction with other 

proteins and for the regulation of MYC stability. Indeed, MYC box I contains two 

residues, threonine 58 and serine 62, that are recognized by the ubiquitin ligase (FBXW7) 

upon phosphorylation, leading to proteasomal degradation of MYC (Sears et al., 2000). 

MYC box II was shown to serve as a binding platform for several proteins involved in 

chromatin modification. MYC, via MYC box II binds to TRRAP (Transformation/ 

Transcription Domain-Associated Protein) that in turn recruits proteins with histone 

acetyltransferase activity such as GCN5 (McMahon et al., 1998, 2000). It is necessary for 

the in vivo interaction with TIP48 and TIP49, which are part of chromatin remodeling 

complexes and have ATPase/helicase motifs (Wood et al., 2000) and to bind to SKP2, an 

ubiquitin ligase that beside signaling the MYC turnover is also a potent activator of its 

transcriptional activity (Kim et al., 2003).  

In the central region of MYC other MYC boxes (IIIa, IIIb and IV) are present. They are all 

important for MYC transforming potential but their functions are less understood. It was 

shown that this central region is involved in the interaction with SMAD 2 and 3 (Feng et 

al., 2002), leading to the inhibition of CDKN2B expression probably also via interaction 

with MIZ1 (Herold et al., 2002). MYC box IIIa interacts with the histone deacetylase 

(HDAC) HDAC3 (Kurland and Tansey, 2008) and MYC box IV is important for binding 

to naked DNA (Cowling and Cole, 2006). More recently it was shown that MYC box IIIb 

directly binds to WDR5, a WD40-repeat protein found for example in H3K4 

methyltransferases, driving the broad association of MYC to target genes (Thomas et al., 

2015).  

The nuclear localization signal (NLS) is localized close to MYC box IV.  

1.1.2 MYC binding to chromatin 

As a transcription factor MYC directly binds to DNA. The target site for MYC binding is 

an hexanucleotide sequence called E-box (Enhancer-box) (Blackwell et al., 1990; 

Blackwood et al., 1992). The canonical sequence for the E-box is CACGTG, but MYC can 

also bind E-boxes where the two central nucleotides are changed (CANNTG) (Blackwell et 

al., 1993). As shown by several studies, the in vitro affinity for MYC binding to canonical 
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E-boxes is about 2.5 fold higher compared to that for binding to non-canonical sequences 

(Hu et al., 2005) and about 200 fold higher compared to any other DNA sequence (Guo et 

al., 2014).  

MYC preferentially binds in the promoter region of genes where histone modifications 

marking the open and accessible chromatin (e.g. H3K4me3 and H3K27Ac) are present 

(Chen et al., 2008; Guccione et al., 2006; Martinato et al., 2008; Zeller et al., 2006). 

Recently, genome wide studies for MYC binding performed using chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) showed that many MYC peaks 

are present in regions far from the gene promoters. Part of these peaks reside in regions 

marked with histone modifications typical of enhancers (high H3K4me1, high H3K27Ac 

and low H3K4me3) arguing that MYC can bind to active enhancers, too (Lin et al., 2012; 

Sabò et al., 2014). Moreover, it was noticed that although MYC binding sites are enriched 

for E-boxes, many of them do not contain any E-box sequence. This observation is 

supported by other genome-wide studies (Seitz et al., 2011; Zeller et al., 2006) 

corroborating the idea that some other DNA elements or proteins bound to the DNA are 

required for MYC binding at these sites (Fernandez et al., 2003; Guo et al., 2014; Lin et 

al., 2012; Nie et al., 2012). Furthermore Uribesalgo and colleagues showed that the MYC-

MAX complex cooperates with RARα (retinoic acid receptor-α) in the repression of genes 

required for differentiation in an E-box-independent manner (Uribesalgo et al., 2011).  

Most of the studies focused on the binding of MYC at RNA polymerase (RNA Pol) II- 

transcribed genes, however MYC also binds to and regulates genes transcribed by the RNA 

polymerases I and III.  

RNA Pol I transcribes genes encoding the ribosomal (r) RNAs, called rDNA. Poortinga 

and colleagues showed that MYC influences the expression of rDNA in NIH3T3 

fibroblasts by regulating the expression of the upstream binding factor (UBF), which is 

essential for RNA Pol I transcription (Poortinga et al., 2004). Moreover, ChIP experiments 

showed that MYC binds to the E-box elements located at the promoters of rDNA in HeLa 

cells and MYC-induced P493 lymphocytes (Arabi et al., 2005; Grandori et al., 2005). In 

contrast to vertebrates, the Drosophila rDNA locus does not contain any canonical E-

boxes, but dMyc is an important regulator of rRNA synthesis as well. dMyc induces 

transcription of genes encoding factors of the RNA Pol I machinery, thereby leading to an 

upregulation of the rRNA synthesis (Grewal et al., 2005). This indirect control of rDNA 

expression by dMyc suggests that the transcriptional control of RNA Pol I is a function of 

MYC acquired in vertebrates (Grewal et al., 2005).  
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RNA Pol III transcribes the tRNAs, the 5S rRNA and other small non-coding RNAs 

(ncRNAs). MYC was shown to be a potent activator of RNA Pol III transcribed-genes and 

interestingly, these genes do not contain E-boxes. Furthermore, regulation of these genes 

by MYC does not depend on heterodimerization with MAX as it was shown in Drosophila 

melanogaster (Steiger et al., 2008). Instead, MYC associates with TFIIIB, an essential 

RNA Pol III factor (Felton-Edkins et al., 2003; Gomez-Roman et al., 2003), and recruits 

GCN5 via interaction with TRAPP (Kenneth et al., 2007). 

1.1.3 The functions of MYC 

MYC is part of a network of proteins comprising MAX and the MAD protein family that 

bind to and regulate overlapping classes of genes. Both MYC and MAD heterodimerize 

with MAX via the bHLH-LZ region and both heterodimers bind to E-box sites competing 

with each other. MAX is an ubiquitously expressed protein (Blackwood et al., 1992), 

whereas expression of MYC and MAD is restricted to certain cellular stages such as 

proliferation and terminal differentiation, respectively (Dang et al., 2006). While the 

MYC/MAX complex is mainly acting as an activator of transcription of genes involved in 

cell growth and division, MAX/MAD dimers repress transcription of target genes via 

recruitment of the chromatin-modifying complex containing HDAC 1 and 2. Thus during 

differentiation a switch from MYC/MAX to MAD/MAX binding usually occurs at target 

genes (Ayer and Eisenman, 1993; Bouchard et al., 2001; Xu et al., 2001).  

MYC, in complex with MAX, is the downstream effector of several mitogenic signaling 

pathways including WNT, NOTCH and receptor tyrosine kinases (e.g. EGFR, IGFR) that 

activate its expression leading to cell growth and proliferation. Accordingly, MYC was 

shown to bind to the promoter of genes encoding cyclin D1 and D2, CDK4, and cyclin B1 

(Bouchard et al., 2001; Fernandez et al., 2003; Hermeking et al., 2000; Menssen and 

Hermeking, 2002). Moreover, via interaction with MIZ1, MYC represses expression of 

CDK inhibitors, such as CDKN1A and CDKN2B, and proteins involved in cell cycle arrest, 

such as GADD45 and GAS1 (Dang et al., 2006).  

Since cell proliferation requires also an increase in the cellular mass, in parallel to regulate 

the expression of genes involved in the cell cycle control, MYC also activates several 

biosynthetic pathway providing ATP and the building blocks for the growing cells. As 

previously described, MYC activates rRNA and tRNA transcription by RNA Pol I and III 

(see 1.1.2). MYC regulates RNA Pol II-mediated transcription of spliceosome factors, 

structural ribosomal protein genes, factors for rRNA processing and ribosome export and 
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translation initiation factors for both CAP-dependent and independent translation (Koh et 

al., 2015; van Riggelen et al., 2010). By regulating all three polymerases, MYC 

orchestrates the balanced expression of factors necessary for protein biosynthesis.  

A variety of studies have also linked MYC to the regulation of the cellular energy 

metabolism. The first evidence was the regulation by MYC of the lactate dehydrogenase A 

(LDH-A) gene expression (Shim et al., 1997). Subsequently it was shown that MYC 

regulates glucose uptake, glycolysis, mitochondrial biogenesis and function. Moreover, its 

ability to coordinately regulate the transcription of the mitochondrial metabolic network is 

required for rapid cell cycle entry (Morrish et al., 2008; Zhang et al., 2007). Cancer cells 

indeed, increase the glucose uptake in order to direct it to the glycolytic pathway to 

produce ATP and the building blocks needed for the growing cells. Accordingly, MYC 

also induces genes involved in glutamine metabolism: MYC suppresses expression of 

miRNAs that in turn downregulate expression of glutaminase (GLS) but it also 

transcriptionally induces expression of glutamine transporters. Glutamine is converted by 

GLS into glutamate which is oxidized in the TCA cycle providing the building blocks for 

macromolecular synthesis (Dang, 2013).  

MYC indirectly regulates nucleotide biosynthesis by increasing glucose and glutamine 

uptake that are both needed for this purpose. Furthermore several enzymes involved in 

nucleotide metabolism are direct targets of MYC and depletion of MYC in melanoma cells 

decreases deoxyribonucleoside triphosphates (dNTPs) levels and inhibites proliferation 

(Mannava et al., 2008). 

Several MYC target genes encode central enzymes for fatty acid metabolism. For example, 

FASN and SCD are both highly responsive to MYC and the encoded proteins catalyze the 

addition of the two carbon atoms of the acetyl-CoA to the growing fatty acid chain and the 

introduction of double bonds in long fatty acid chains, respectively (Zeller et al., 2003). 

Besides controlling several biosynthetic pathways leading to cell growth and proliferation, 

MYC regulates other biological activities such as cell adhesion, angiogenesis and 

apoptosis. MYC represses collagen and integrin genes and enhances anchorage-

independent growth that is a hallmark of cancer cells (Barr et al., 1998; Frye et al., 2003; 

Gebhardt et al., 2006; Yang et al., 1991). It stimulates angiogenesis, both in embryos and 

in tumors, via regulation of the VEGF (Vascular endothelial growth factor) release in the 

microenvironment (Baudino et al., 2002) (Shchors et al., 2006). At supra-physiological 

levels, MYC induces apoptosis as an intrinsic tumor suppression mechanism (Murphy et 

al., 2009). 
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Regulating such a plethora of cellular processes, MYC is able to drive quiescent cells into 

the cell cycle. Additionally, deregulation of MYC expression can result in uncontrolled cell 

proliferation and tumor development. Therefore, it is not surprising to find activation of the 

MYC family genes in a wide range of hematological and solid tumors. The most common 

events driving oncogenic expression of MYC are gene amplification in solid tumors and 

translocation in lymphoma and leukemia, but also point mutations, enhanced translation 

and protein stability (Vita and Henriksson, 2006) (Dang, 1999).   

Its deregulation in about 70% of tumors (Dang, 2012) renders MYC an interesting target 

for tumor therapy. Unfortunately, MYC was described to be untargetable by any available 

drugs given its large surface of contact with DNA and its partner protein MAX (Nair and 

Burley, 2003). Important steps forward in tumor therapy could arise from the 

understanding of which pathways/proteins act upstream of MYC and regulates its activity. 

Additionally, identifying its target genes in order to find druggable targets could expand 

the therapeutic window for treating MYC-driven tumors.        

1.2 MIZ1 – The MYC-interacting zinc finger protein 1 

1.2.1 Structure of MIZ1 

MIZ1 (MYC-interacting zinc finger protein 1) was first identified as a MYC-interacting 

protein in a yeast two-hybrid screen (Peukert et al., 1997). It is a member of the BTB/POZ 

zinc finger transcription factors. At the N-terminus a BTB/POZ domain is located that acts 

as a hydrophobic surface mediating the di- and tetramerization among MIZ1molecules or 

the interaction with other proteins (Bardwell and Treisman, 1994; Stead et al., 2007). The 

C-terminal part of MIZ1 bears the DNA binding domain formed by 12 consecutive 

Cys2His2 zinc fingers and one 13
th

 zinc finger separated by an alpha helix region of 

80amino acids. The latter is needed for the interaction with MYC (Peukert et al., 1997).  

In contrast to other POZ proteins MIZ1 is soluble and mainly found in the nucleoplasm. 

 

Figure 1. 2: Schematic diagram of the MIZ1 protein. MIZ1 consists of 803 amino acids and bears an 

amino terminal BTB/POZ domain and 13 zinc fingers (ZF)  
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1.2.2 MIZ1 functions 

In mice MIZ1 is an essential protein during development since homozygous MIZ1 null 

embryos are severely retarded in early embryonic development and die around day 7.5 

(Adhikary et al., 2003). Furthermore MIZ1 has a central role in regulating cell cycle exit 

during hair growth cycle and epithelial morphogenesis (Gebhardt et al., 2007).  

MIZ1 is a negative regulator of cell proliferation. It is involved in cell cycle regulation and 

TGF-β signaling by binding to the core promoter of genes encoding cyclin-dependent 

kinase inhibitors such as p15
INK4b

 and p21
CIP1

 (Seoane et al., 2001; Staller et al., 2001).  

MIZ1 activity is coordinated with cell growth via a ribosomal protein L23-nucleophosmin 

circuit (both proteins are direct targets of MYC). RPL23 can retain nucleophosmin in the 

nucleolus avoiding its binding to MIZ1 and thus inhibiting MIZ1 activation. Therefore 

high levels of L23, that are associated with efficient translation, restrain the G1 arrest 

induced by MIZ1 (Wanzel et al., 2008).  

MIZ1 interacts with BCL6 forming a repressive complex that inhibits expression of 

CDKN1A (p21
CIP1

) and BCL2 counteracting p53-induced cell cycle arrest and thus 

controlling proliferation and survival of germinal center B-cells (Phan et al., 2005).  

ChIP-seq analysis in neural progenitor cells, which express no or few MYC, showed that 

MIZ1 binds to the core promoter of about 140 genes that are enriched for regulators of 

autophagy and proteins involved in vesicular traffic that are required for autophagy. MIZ1 

activates the expression of these genes by binding to a non-palindromic DNA sequence 

present in their core promoters. Moreover, deletion of the protein in the central nervous 

system leads to a cerebellar neurodegenerative phenotype similar to that obtained with 

knockout of ATG5, an important mediator of autophagy (Wolf et al., 2013). 

MIZ1 interacts with TopBP1 (topoisomerase II binding protein 1), an essential activator of 

ATR kinase. MIZ1 is required for recruitment of TopBP1 to the chromatin protecting it 

from proteasomal degradation in unstressed cells and in the early response to UV 

irradiation. MIZ1 in complex with TopBP1 is implicated in the ATR-dependent signal 

transduction and constitutes a reservoir from which TopBP1 is recruited to stalled 

replication forks (Herold et al., 2008). Moreover, MIZ1/TopBP1 is an inactive complex 

and release of TopBP1 is needed for expression of CDK inhibitors activated by MIZ1 

(Herold et al., 2002).  
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1.3 Regulation of gene expression by MYC and MIZ1 

Several genome wide studies have shown that MYC has a broad range of binding and 

weakly control expression of a large number of genes. As previously described it regulates 

many cellular processes from proliferation to metabolism to apoptosis by both upregulating 

and repressing, typically less than two fold, its target genes (Cole and Cowling, 2008). In 

contrast, MIZ1 strongly regulates expression of fewer target genes involved in cell cycle 

regulation and autophagy (Seoane et al., 2001; Staller et al., 2001; Wolf et al., 2013).  

1.3.1 Transcriptional activation by MYC 

Binding of MYC to activated target genes in general leads to the recruitment of co-

activators. These include TRRAP (Bouchard et al., 2001) that in turn recruits the histone 

acetyltransferases (HAT) GCN5 (McMahon et al., 1998, 2000) and TIP60 (Frank et al., 

2003) which modify histones 3 and 4, respectively, and p400 E1A-binding protein which 

do not have HAT activity (Fuchs et al., 2001), the acetyltransferases p300 and CBP (CREB 

binding protein) (Faiola et al., 2005; Vervoorts et al., 2003) and the SWI/SNF subunit 

BAF47/SNF5 (Cheng et al., 1999). Moreover, USP22, that deubiquitylates H2B and is part 

of the SAGA complex, is recruited to MYC target genes and required for their activation 

(Zhang et al., 2008a). The kinase PIM1 is also recruited by MYC to target genes and is 

important for the activation of about 20% of MYC target genes through the 

phosphorylation of serine 10 of histone 3 (Zippo et al., 2007). 

The recruitment of these co-regulators is thought to mediate histone modifications and/or 

remodel the chromatin leading to a more open structure and nucleosome instability, thus 

enabling transcription of target genes. Indeed, manipulation of MYC levels in the cell leads 

to changes in histone modification distribution that in turn influences RNA Pol 

transcription (Guccione et al., 2006; Knoepfler et al., 2006; Martinato et al., 2008). 

Besides controlling the chromatin state of target genes, MYC also activates transcription 

via mechanisms that do not involve chromatin modifications. The Mediator complex 

interacts with the N-terminus of MYC in vitro (Adhikary and Eilers, 2005) and is recruited 

to MYC target genes in vivo (Bouchard et al., 2004). Mediator is a huge complex of 

proteins that provides a large surface for protein-protein interactions important for the 

basal transcription and for facilitating the communication between transcription factors 

bound to regulatory elements and the pre-initiation complex. It is also crucial for the 
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organization of the genomic DNA in topological domains that enables coordinated 

regulation of cellular transcription (Allen and Taatjes, 2015).  

 

Figure 1. 3: Schematic diagram of transcriptional activation by MYC. MYC activates transcription by 

interacting and recruiting several coactivator complexes and factors modifying directly RNA Pol state. 

Modified from Adhikary and Eilers, 2005. 

TFIIH is also recruited to target genes by MYC (Bouchard et al., 2004; Cowling and Cole, 

2007). It possesses DNA-dependent ATPase, DNA helicase and protein kinase activities 

and it is involved in the formation of the pre-inititation complex (PIC) with RNA Pol II 

and other transcription factors. RBP1, the major subunit of RNA Pol II, has a C-terminal 

domain (CTD) that consists of conserved heptapeptide (YSPTSPS) repeats, 52 in humans. 

The amino acids in these repeats are subject of several posttranslational modifications that 

are specific for different steps of the transcription cycle and function as a code for the 

recruitment and binding of complexes involved in transcription, RNA processing and 

export, as well as chromatin remodeling (Heidemann et al., 2013; Zhang et al., 2012a). 

When RNA Pol II is recruited to the DNA in the PIC, the CTD is hypophosphorylated. 

Transcription initiation is associated with the phosphorylation of serine 5 of the CTD by 

TFIIH, via its cyclin-dependent kinase 7 subunit (CDK7). This leads to the recruitment of 

the histone methyltransferase SET1, that trimethylates histone 3 at lysine 4 (H3K4me3), a 

tag for transcriptional activation, and of the 5′ end capping machinery to the nascent 

mRNA. CDK7 also phosphorylates serine 7 of the CTD but the role of this modification 

remains not well understood (Heidemann et al., 2013). In most cases, after transcription 

initiation, RNA Pol II goes through a pausing phase that involves association with the 

pausing complexes DSIF (DRB-sensitivity-inducing factor) and NELF (Negative 

elongation factor) (Adelman and Lis, 2012). It is not clear whether in this phase RNA Pol 
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II is really stuck 20-50 nucleotides downstream the transcriptional start site (TSS) or 

whether it is just a slow process that, in ChIP-seq experiments for RNA Pol II, leads to 

high signal in this region of the gene as the enzyme was blocked (Core et al., 2012). 

However, in order to continue transcription and start productive elongation, p-TEFb needs 

to be recruited. P-TEFb is a dimeric protein, formed by cyclin T and CDK9 that triggers 

pause release by phosphorylating DSIF, NELF and serine 2 of the CTD. Thereby, DSIF is 

converted into a positive elongation factor that travels with the RNA Pol II till the end of 

the gene (Peterlin and Price, 2006), NELF dissociates from the polymerase (Peterlin and 

Price, 2006) and the serine 2 phosphorylated CTD creates a platform for the interaction 

with RNA processing factors such as splicing and exporting factors and chromatin 

modifying proteins that facilitate productive RNA synthesis (Adelman and Lis, 2012). 

Important evidence shows that MYC is involved in the recruitment of p-TEFb and in 

promoting transcription elongation in addition to c transcription initiation. It was shown 

that MYC recruits p-TEFb at the cyclin D2 promoter (Bouchard et al., 2004) and that the 

MYC-mediated recruitment of p-TEFb at the CAD promoter is needed for stimulating 

transcription elongation (Eberhardy and Farnham, 2002). Moreover, immunoprecipitation 

studies using cell extract showed that MYC or the MYC/MAX complex interacts with p-

TEFb subunits (Gargano et al., 2007; Kanazawa et al., 2003; Rahl et al., 2010). Most 

strikingly, treatment of embryonic stem cells with 10058-F4, an inhibitor of MYC/MAX 

heterodimerization (Yin et al., 2003), caused a reduction of serine 2 phosphorylated RNA 

Pol II but had no effect on serine 5 phopshorylation (Rahl et al., 2010). Moreover, as 

determined by ChIP-seq analysis of RNA-Pol II distribution, 10058-F4 treatment 

decreased the RNA Pol II signal in the gene body and at the termination site but did not at 

the promoter. The same effect was seen by using an shRNA against MYC or  flavopiridol, 

a molecules that inhibits p-TEFb kinase activity (Chao and Price, 2001), supporting the 

idea that MYC is needed for transcription elongation (Rahl et al., 2010).   

1.3.2 MYC as a general amplifier of gene expression 

MYC binds thousand of genomic loci (Eilers and Eisenman, 2008; Guccione et al., 2006) 

and in embryonic stem cells, manipulation of MYC levels affects 1/3 of the expressed 

genes (Rahl et al., 2010). Accordingly, two recent studies suggested that MYC is a general 

amplifier of transcription rather than an on-off specifier of a defined transcriptional 

program(s) (Lin et al., 2012; Nie et al., 2012). Inducible overexpression of MYC in 

primary murine B and T cells and in P493-6 B cell model for Burkitt’s lymphoma 
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amplified the output of the existing gene expression program present in these cells. In cells 

with low levels of MYC, the transcription factor was bound almost exclusively to 

canonical E-boxes in the promoters of genes found in an open chromatin structure 

(H3K4me3 and H3K27Ac). At higher levels, MYC occupied both the promoters and the 

enhancers of all active genes at additional, low affinity E-box sequences. MYC was 

recruited to these sites according to the amount of RNA Pol II pre-loaded at their 

promoters and a positive correlation between the expression levels of the genes and the 

amount of MYC bound was shown. The increased in MYC occupancy led to increase 

transcription elongation by RNA Pol II and increased levels of transcripts per cell. No 

direct repression by MYC was observed in this system. Instead repression would result 

from the induction by MYC of a transcriptional repressor or form a normalization that is 

not based on the number of cells but on the RNA amount (Lovén et al., 2012; Nie et al., 

2012).   

Opposite to what described by the Young’s and Levens’ laboratories, gene expression 

analyses of tumor samples such as medulloblastoma, neuroblastoma and breast cancer,  

identified sets of genes that are specifically up- and downregulated by MYC and have 

significant prognostic value (Brockmann et al., 2013; Horiuchi et al., 2012; Kawauchi et 

al., 2012; Northcott et al., 2011).  

It remains an open question how MYC can act both as general amplifier of gene 

expression, increasing output of all active promoters and as a specifier able to activate and 

repress transcription of defined target genes.        

1.3.3 MYC-mediated repression 

In contrast to MYC-mediated activation, repression by MYC is a less well understood 

mechanism taking place at genes involved in cell adhesion (Gebhardt et al., 2006; 

Inghirami et al., 1990) and inhibition of cell cycle progression (Seoane et al., 2001; Staller 

et al., 2001). It mainly involves MYC binding to transcriptional activators, the 

displacement of activating co-factors and the recruitment of transcriptional repressors. 

Nevertheless, MYC binding to MAX and to the DNA is also important for repression. 

Heterodimerization with MAX is necessary for binding to the CDKN2B promoter and E-

box elements are found in the promoter of many MYC-repressed genes (Mao et al., 2003).   
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Figure 1. 4: Schematic diagram of the transcriptional repression by the MYC/MIZ1 complex. MIZ1 

alone is bound at the core promoter of genes activating their expression. Binding of the MYC/MAX complex 

to MIZ1 hinder the recruitment by MIZ1 of  its coactivators p300 and nucleophosmin (NPM1). Histone 

modifying enzymes (e.g. DNMT3a) are recruited to MIZ1 target genes by MYC/MAX leading to a close 

chromatin structure and to repression. Modified from Herkert and Eilers, 2010. 

The MYC/MIZ1 complex, beside inhibiting the recruitment of nucleophosmin and p300 by 

MIZ1 alone (see 1.3.4), interacts with DNA methyltransferases to repress transcription 

(Brenner et al., 2005; Licchesi et al., 2010). MYC associates with DNMT3a 

methyltransferase and directs its activity to the CDKN1A promoter via binding to MIZ1. 

DNMT3a methylates the CpG dinucleotides leading to the silencing of the gene (Brenner 

et al., 2005). MYC might repress CDKN1A expression also by binding to the 

transcriptional activator SP1 (Gartel et al., 2001). SP1 DNA binding sites are present at 

many MYC-repressed genes indicating that inhibition of SP1 activity might be important 

for MYC-mediated repression (Herkert and Eilers, 2010). Moreover, N-MYC was shown 

to recruit HDAC2 to the SP1 site at the cyclin G2 promoter (Marshall et al., 2010).  

MYC and MIZ1 were found also in a ternary complex with GFI-1 (growth factor 

independence-1) repressor, downregulating transcription of CDKN2B and CDKN1A (Basu 

et al., 2009; Liu et al., 2010). GFI-1 is a nuclear zinc finger transcriptional repressor with 

an important role in hematopoiesis and has been implicated in lymphomagenesis. 

Evidence suggests that at repressed genes MYC recruits histone deacetylases and 

polycomb proteins (Corvetta et al., 2013; Zhang et al., 2012c). In lymphomas, MYC 

associates with the histone deacetyltransferase HDAC3 and EZH2, a core protein of the 

polycomb repressive complex 2 (PRC2). The ternary complex is tethered to the promoter 

region of miR-29 downregulating its expression via histone deacetylation and 
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trimethylation, contributing to aggressive clinical outcome of the MYC-associated 

lymphoma (Zhang et al., 2012c). Recruitment of HDAC3 by MYC was also reported for 

other repressed target genes such as ID2, GADD153 (Kurland and Tansey, 2008) and miR-

15a/16 (Zhang et al., 2012d). Moreover, RNA Pol II is recruited to the GADD153 and 

GADD45a promoters whether MYC is bound or not, suggesting that MYC might repress 

transcription of these genes through a post RNA Pol II recruitment mechanism (Barsyte-

Lovejoy et al., 2004). 

1.3.4 Transcriptional regulation by MIZ1 

The activity of MIZ1 was mainly studied as part of a repressive complex formed with 

MYC that controls transcription of CDK inhibitors such as p15
INK4b

, p21
CIP1

 and p57
KIP2 

(encoded by CDKN2B, CDKN1A and CDKN1C, respectively) (Adhikary et al., 2003; 

Seoane et al., 2001, 2002; Staller et al., 2001). In contrast to other POZ domain proteins, 

MIZ1 is a soluble and strong transcriptional activator and the best-studied mechanism for 

its action is at the promoter of the p15
INK4b

 encoding gene. CDKN2B is a target gene of the 

TBG-β signaling that is activated early in the response and interacts with and inhibits 

CDK4 and CDK6, the two kinases associated with cyclin D activity. Thereby, p15INK4b 

expression inhibits cell cycle progression at the G1 phase (Hannon and Beach, 1994). 

MIZ1 binds to the core promoter of the CDKN2B gene and activates its expression (Staller 

et al., 2001). In epithelial cells, TGF-β signaling activation leads to decreased levels of 

MYC and thus dissociation from MIZ1, and formation of SMAD complex. The SMAD 

complex binds to the promoter of CDKN2B  and interacts with MIZ1 leading to the 

expression of the CKD inhibitor (Seoane et al., 2001). Displacement of MYC from MIZ1 

is required for activation of CDKN2B so that the histone acetyltansferase p300 or the co-

activator nucleophosmin can be recruited by the zinc finger transcription factor (Staller et 

al., 2001; Wanzel et al., 2008). 

MIZ1 -via its POZ domain- heterodimerizes with other POZ domain proteins such as 

BCL6 and ZBTB4. The latter is a transcriptional repressor that binds to MIZ1 at the 

CDKN1A promoter recruiting the SIN3-histone deacetyltransferase complex, thereby 

inhibiting cell cycle arrest in response to p53-activation (Weber et al., 2008).  
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1.4 Aim of the project 

The proto-oncogene MYC is one of the most extensively studied transcription factors. Its 

expression is elevated in many human cancers and this correlates with tumor aggression 

and poor clinical outcome (Dang, 2012). In normal cells, MYC links growth factor 

stimulation with cell growth and proliferation, whereas in tumor cells different kinds of 

events lead to increased MYC levels that uncouple growth factor stimulation and cellular 

growth and proliferation. How MYC control such a broad spectrum of cellular processes 

that are sometimes cell type- or context-specific is not clear yet. Moreover, discrepancies 

exist about whether MYC acts just by enhancing a pre-existing cellular program(s) or 

whether it regulates specific processes via activation and repression of target genes. 

Studies in medullobastoma showed that MYC up- and downregulates target genes that are 

specific and differ from those regulated by N-MYC or pathways that drive other 

medulloblastoma subgroups (SHH and WNT). Moreover, high MYC expression correlates 

with a highly aggressive medulloblastoma tumor that carry very poor prognosis (Kawauchi 

et al., 2012; Northcott et al., 2011). On the other hand, MYC was described by the Levens’ 

and the Young’s laboratories as a general transcription factor that, when overexpressed, 

“invades” all open promoters and enhancers amplifying transcription of all genes having an 

open chromatin structure (Lin et al., 2012; Nie et al., 2012).  

Understanding how MYC works and regulates transcription and how this transcription 

factor can behave so differently depending on the cellular context was the subject of this 

work. By using genome wide binding analysis, gene expression analysis and several 

bioinformatic tools it was investigated what the feature of MYC target genes are and how 

they react to different MYC levels present in the cells.  
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Chapter 2: 

Materials 

2.1 Strains and cell lines 

2.1.1 Human cell lines 

HCT116  Human colorectal carcinoma cell line (ATCC) 

HEK293T  Human embryonic kidney cell line (ATCC) 

HeLa Human cervix carcinoma cell line (ATCC) 

HMLE Human mammary epithelial cell line 

IMECs Immortalized mammary epithelial cells 

MCF10A Human mammary epithelial cell line from fibrocystic disease 

U2OS  Human osteosarcoma cell line (ATCC) 

2.1.2 Bacterial strains 

XL1 blue 

Escherichia coli; recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac [F' proAB 

lacIqZΔM15 Tn10(Tetr)]; for generation and amplification of plasmids 

2.2 Cultivation media and supplements 

2.2.1 Media for mammalian cell culture 

Dulbecco’s Modified Eagle’s Medium (DMEM) containing 584mg/ml L-glutamine was 

purchased by Sigma. Fetal bovine serum (FBS, PAA) was heat-inactivated for 30min at 

56°C. 

Basal medium: DMEM, 10% FBS, 1% penicillin/streptomycin. 

Freezing medium: 90% FBS, 10% DMSO. 

Transfection medium: DMEM, 2% FBS. 
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2.2.2 Antibiotics for mammalian cell culture 

Penicillin/streptomycin (100000U/ml, PAA or Sigma) was used to avoid bacterial 

contaminations. 0.1% Ciprofloxacin (1mg/ml, Sigma) was added to the medium to avoid 

mycoplasma contaminations. 

To select transfected or infected mammalian cells, 2µg/ml puromycin (10mg/ml, 

InvivoGen) or 2.5µg/ml hygromycin (50mg/ml, Life technologies) was added to the 

culture medium. 

2.2.3 Media and antibiotics for bacterial cell culture 

LB medium 

10% bacto tryptone 

0.5% yeast extract 

1% NaCl 

LB agar 

LB medium 

1.2% Bacto-Agar 

Autoclaved, cooled to 50°C before adding specific antibiotics, ~10ml poured into 10cm 

dishes. 

Antibiotics 

100µg/ml ampicillin was added to the medium to select successfully transformed bacteria.  

2.3 Nucleic acids 

2.3.1 Primers 

DNA primers designed with Primer3 and were synthesized by Sigma (f= forward, 

r=reverse). Primers for qRT-PCR are all-intron spanning to avoid genomic DNA 

amplification. 

Name Sequence 5’-3’ Application 

NPM1_f TTCACCGGGAAGCATGG ChIP-qPCR 

NPM1_r CACGCGAGGTAAGTCTACG ChIP-qPCR 
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NCL_f CTACCACCCTCATCTGAATCC ChIP-qPCR 

NCL_r TTGTCTCGCTGGGAAAGG ChIP-qPCR 

HSPBAP1_f ACCACGCAGCTTTGTTTTGA ChIP-qPCR 

HSPBAP1_r GCTAAGGTCCGGGTTAGGTA ChIP-qPCR 

FBXO32_f GAGAGGATCTCAAGCGTTGC ChIP-qPCR 

FBXO32_rev CTCTTCCGGCAACAAAGAGC ChIP-qPCR 

Ctrl_region_ch11_80MB_f TTTTCTCACATTGCCCCTGT ChIP-qPCR 

Ctrl_region_ch11_80MB_r TCAATGCTGTACCAGGCAAA ChIP-qPCR 

MYC_f CACCAGCAGCGACTCTGA RT-qPCR 

MYC_r GATCCAGACTCTGACCTTTTGC RT-qPCR 

CAMKV_f TGATTTGGGACAGGTCATCA RT-qPCR 

CAMKV_r TGGAACTTCTTGCAGGTGTG RT-qPCR 

RGS16_f CTGCGATACTGGGAGTACTGG RT-qPCR 

RGS16_r CCACCCCAGCACATCTTC RT-qPCR 

COL5A1_f GACACCTCCAACTCCTCCAA RT-qPCR 

COL5A1_r TCTCGTCAAGGTTCCGGATC RT-qPCR 

ALDH3B1_f AAGCCATCGGAGATTAGCAA RT-qPCR 

ALDH3B1_r AGCAGCTCTGGTCCACGTAT RT-qPCR 

B2M_f GTGCTCGCGCTACTCTCTC RT-qPCR 

B2M_r GTCAACTTCAATGTCGGAT RT-qPCR 

 

2.3.2 RNA oligonucleotides 

Pool of RNA oligonucleotides against c-MYC were purchased from Dharmacon (ON-

TARGETplus SMARTpool). As control the siCONTROL (ON-TARGETplus Non-

targeting Pool) was used.  

2.3.3 Oligonucleotides for shRNA cloning 

Name Sequence 5’-3’ 

shMIZ1_1 
CCGGGGTGGACGGTGTTCACTTTCTCGAGAAAGTGAACACCGTCC

ACCTTTTTG 

 

2.4 Plasmids 
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2.4.1 Empty vectors 

pLKO: vector for the expression of shRNA in mammalian cells (TRC Consortium) 

2.4.2 Expression vectors 

The following plasmids were already present in the collection of the group. 

pLKO shMIZ1_1: pLKO vector with puromycin resistance and shRNA against MIZ1 

mRNA 

pLKO shMIZ1_2: pLKO vector with puromycin resistance and shRNA against MIZ1 

mRNA 

2.4.3 Packaging plasmids for lentivirus production 

Packaging plasmids for lentivirus production were obtained from Manfred Gessler. 

psPAX2: vector coding for the lentiviral virion packaging system (HIV gag, pol, rev). 

pMD2-VsVg: vector encoding for lentiviral envelop (VSV-G) for a higher virus stability. 

2.5 Antibodies 

2.5.1 Primary antibodies 

Protein Clone Application Supplier 

MYC 
N262 

ChIP 

Immunoflourescence 
Santa Cruz 

9E10 Immunoblot Group Eilers 

MIZ1 10E2 
ChIP, 

Immunoblot 
Group Eilers 

VINCULIN hVIN-1 Immunoblot Sigma 

ACTIN AC-15 Immunoblot Sigma 

RNA POL II N20 ChIP Santa Cruz 

pSer5 POL II 4H8 ChIP Cavance 

pSer2 POL II ab5095 ChIP Abcam 

BrdU-FITC B44 FACS BD Biosciences 

panAc H3 06-599 ChIP Upstate (Millipore) 

panAc H4 06-866 ChIP Upstate (Millipore) 

H3K4me1 ab8895 ChIP Abcam 

H3K4me3 ab8580 ChIP Abcam 



Chapter 2: Materials 

23 

 

H3K27Ac 07-360 ChIP Upstate (Millipore) 

IgG rabbit ChIP GE Healtcare 

IgG mouse ChIP Sigma 

 

2.5.2 Secondary antibodies 

Name Clone Application Supplier 

Anti-rabbit HRP NA 934 Immunoblot Amersham 

Anti-mouse HRP NA 931 Immunoblot Amersham 

Anti-rabbit Alexa 488 Immunofluorescence Life Technologies 

IRDye
®
 680RD rabbit Immunoblot LI-COR 

IRDye
®
 680RD mouse Immunoblot LI-COR 

IRDye
®
 800CW rabbit Immunoblot LI-COR 

IRDye
®
 800CW mouse Immunoblot LI-COR 

 

2.6 Chemicals 

All chemicals were purchased from the following companies without further purification: 

Sigma, Merck, Roth, Invitrogen and Applichem. 

2.7 Enzymes, standards and kits 

2.7.1 Enzymes 

DNase-free RNase A (Quiagen) 

M-MLV reverse transcriptase (Promega) 

Proteinase K (Roth) 

Restriction endonucleases (Fermentas) 

RNAse-free DNase (Quiagen) 

RNase A (Roth) 

2.7.2  Standards 

PageRuler Prestained Protein Ladder (Fermentas) 
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1 kb DNA Ladder (New England Biolabs) 

2.7.3 Kits 

RNeasy Kit (Qiagen) 

QIAquick PCR Purification Kit (Qiagen) 

QIAquick Gel Extraction Kit (Qiagen)   

SYBR Green qPCR Master Mix (Thermo Fisher Scientific) 

Quant-iT™ PicoGreen® dsDNA assay kit (Life Technologies) 

NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina (New England Biolabs) 

Sera-Mag Oligo(dT)-Coated Magnetic Particles (Thermo Scientific) 

NEBNext
®
 mRNA Library Prep Master Mix Set for Illumina

® 
(New England Biolabs) 

NEBNext
®
 Poly(A) mRNA Magnetic Isolation Module (New England Biolabs) 

NEBNext
®
 Ultra™ RNA Library Prep Kit for Illumina

® 
(New England Biolabs) 

Agencourt
®
 AMPure

®
 XP (Beckman Coulter) 

NEBNext
®
 Multiplex Oligos for Illumina

® 
(index Primers Set 1 and 2) (New England 

Biolabs) 

Experion™ RNA analysis kits and chips (HighSens and StdSens) (BIO-RAD) 

Experion™ DNA 1K kit and chip (BIO-RAD) 

PureLink® HiPure Plasmid Maxiprep Kit (Invitrogen) 

2.8 Buffers and solutions 

Annealing buffer 

10mM Tris pH 7.5 

50mM NaCl 

1mM EDTA 

Blocking solution for PVDF membranes 

5% skim milk powder in TBS-T 

BSA-PBS 

0.5% BSA  

In PBS 
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ChIP lysis buffer 1 

5mM PIPES pH 8.0 

85mM KCl 

0.5% NP-40 

ChIP wash buffer 1 

20mM Tris pH 8.1 

150mM NaCl 

2mM EDTA 

0.1% SDS 

1% Triton-X-100 

ChIP wash buffer 2 

20mM Tris pH 8.1 

500mM NaCl 

2mM EDTA 

0.1% SDS 

1% Triton-X-100 

ChIP wash buffer 3 

10mM Tris pH 8.1 

250mM LiCl 

1% NP-40 

1% SDS 

1mM EDTA 

ChIP elution buffer 

1% SDS 

100mM NaHCO3 

Coomassie staining solution 

25% isopropanol 

10% acetic acid 

0.05% Coomassie G250 
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Coomassie destaining solution 

10% acetic acid 

20% methanol 

DNA loading buffer 

40% saccharose (pH 8.0) 

0.2% bromophenol blue 

0.2% xylene cyanol 

10mM EDTA 

Doxycycline 1mg/ml 

50mg doxycyclin hyclate (Sigma) 

to 50ml water  

PEI 

450µl PEI (10% solution) 

150µl HCl (2N) 

49.5ml water 

Phenol chloroform solution 

25ml Phenol 

24ml Chloroform 

1ml Isoamyl Alcohol 

PBS 

137mM NaCl 

2.7mM KCl 

10.1mM Na2HPO4 

1.76mM KH2PO4 

autoclaved 

Plasmid prep buffer 1 

50mM Tris-HCl (pH 8.0) 

100mM EDTA 

100µg/ml RNase A 
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Plasmid prep buffer 2 

200mM NaOH 

1% SDS 

Plasmid prep buffer 3 

3.1M potassium acetate (pH 5.5) 

RIPA buffer 

50mM HEPES (pH 7.9) 

140mM NaCl 

1mM EDTA 

1% Triton-X-100 

0.1% Sodium deoxycholate 

0.1% SDS 

SDS sample buffer 6X 

1.2g SDS pellet 

6mg Bromophenol blue 

4.7ml Glycerol 86% 

2.1ml water 

0.93g DTT 

SDS running buffer 

25mM Tris Base 

250mM Glycine 

0.1% SDS 

Stripping buffer 

62.5% Tris (pH 6.8) 

2% SDS 

100mM β-mercaptoethanol 

Transfer buffer Tris-Glycin system 

1.9M glycine 

250mM Tris base 
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0.05% SDS 

Adjust pH to 8.0 

TAE 50X 

2M Tris 

5.7% acetic acid 

50mM EDTA 

adjust pH to 8.0 

TBS-T 

0.2% Tween-20 

25mM Tris 

140mM NaCl 

Adjust to pH 7.4 

TE 

10mM Tris 

1mM EDTA 

Adjust to pH 8.0 

Trypsin solution 

0.25% Trypsin 

5mM EDTA 

22.3mM Tris (pH 7.4) 

125mM NaCl 

200X Reduction agent for Bis-Tris system 

1M Sodium bisulfite 

3.5X Bis-Tris buffer 

1.25M Bis-Tris 

Adjust pH 6.7 with HCl 

1X Transfer buffer Bis-Tris system 

50ml 20X transfer buffer 
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700ml water 

250ml methanol 

MES 

50mM MES 

50mM Tris base 

0.1% SDS 

1mM EDTA 

pH 7.3 

20X Transfer buffer Bis-Tris system 

25mM Bicine 

25mM Bis-Tris 

1mM EDTA 

pH 7.2 

2.9 Consumables and equipment 

Consumables such as reaction tubes, cell culture dishes and other plastic products were 

purchased from Eppendorf, Greiner, Nunc, Apllied Biosystems, Sarsted, Millipore and 

Kimberley-Clark, B. Braun, Schleicher and Schuell and VWR international. 

2.9.1 Equipment 

Blotting system 

PerfectBlue Tank Electro Blotter Web S (PEQLAB) 

Cell culture incubator 

BBD 6220 (Heraeus) 

Cell counter 

CASY cell counter (Innovatis) 

Centrifuges 

Galaxy MiniStar (VWR Interantional) 
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Eppendorf 5417 R (Eppendorf) 

Eppendorf 542 (Eppendorf) 

Multifuge 1S-R 

Avanti J-26 XP (Beckman Coulter) 

Chemiluminescence imaging 

LAS-4000 mini (Fujifilm) 

Fluorcytometer 

BD FACS Canto II (BD Bioscences) 

Fluorescence readers 

Odyssey
® 

CLx Infrared Imaging System (LI-COR) 

Infinite 200 PRO Microplate Reader (Tecan) 

Heating block 

Dry Bath System (STARLAB) 

Thermomixer® comfort (Eppendorf) 

Heat Sealing 

ALPS™ 50V (Thermo Fisher Scientific) 

Incubator shaker 

Model G25 (New Brunswick Scientific) 

Microscopes 

Axiovert 40CFL (Zeiss) 

DMI 6000 B (Leica) 

SP5 (Leica) 

Nucleic acid analysis 

Experion
TM 

Automated Electrophoresis (BIO-RAD) 

Mx3000P (Stratagene) 

PCR thermal cycler 
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Mastercycler Pro S (Eppendorf) 

Photometers 

UltrospecTM 3100 pro UV/Visible (Amersham Biosciences) 

NanoDrop 3000 (Thermo Scientific) 

 

Power supply 

PowerPac HC (BIO-RAD) 

PVDF transfer membranes 

Immobilion P and FL Transfer Membranes (Millipore) 

SDS-PAGE system 

Mini-PROTEAN Tetra Cell (BIO-RAD) 

Sequencing equipment 

Illumina Genome Analyzer IIX 

Sonifier 

Digital Sonifier
®

 W-250 D (Branson)  

UV fluorescent table 

Maxi UV fluorescent table (PEQLAB) 

Vortex mixer 

Vortex-Genie 2 (Scientific Industries) 

Water bath 

ED-5M heating bath (Julabo) 

2.10  Software 

ApE M. Wayne Davis 

Acrobat Professional Adobe System, Inc. 

BD FACSDiva 6.1.2 BD Biosciences 
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Bedtools Quinlan & Hall, 2010 

Bowtie Langmead, 2010 

Feature Extraction  Agilent, v10.1.1.1 

GraphPad Prism GraphPad Software, Inc 

GSEA Subramanian et al., 2005 

Illustrator Adobe System, Inc. 

Image Studio™ Lite LI-COR 

Integrated Genome Browser Nicol et al., 2009 

Java Tree View Saldanha, 2004 

MACS Zhang et al., 2008 

Mac OS X Apple Inc. 

Microsoft Office 2008  MacMicrosoft Corporation 

MultiGauge Fujifilm Corporation 

MxPro qPCR Software Stratagene 

Photoshop Adobe System, Inc. 

R R foundation 

Samtools Li et al., 2009 

Seqminer Ye et al., 2011 

Ubuntu Canonical Ltd. 

Windows 7 Microsoft Corporation 

2.11 Online tools and databases 

DAVID http://david.abcc.ncifcrf.gov/ 

Galaxy https://main.g2.bx.psu.edu/ 

GEO http://www.ncbi.nlm.nih.gov/geo/ 

MSigDB http://www.broadinstitute.org/gsea/msigdb/index.jsp 

Primer3 http://frodo.wi.mit.edu/ 

Pubmed http://www.ncbi.nlm.nih.gov/pubmed 

UCSC https://genome.ucsc.edu/ 

http://www.broadinstitute.org/gsea/
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Chapter 3:   

Methods 

3.1 Molecular biology methods 

3.1.1 Bacterial transformation 

Competent cells were thawed on ice and mixed with 1µl of plasmid or the whole ligation 

mix. After 30min of incubation and 45sec heat shock at 42°C, LB medium was added and 

incubated at 37°C for 30min. The suspension was then centrifuged and resuspended in 

100µl of LB medium and plated on LB-agar dishes containing antibiotics.  

3.1.2 Isolation of plasmid DNA from bacteria 

For large scale purification of plasmids the PureLink® HiPure Plasmid Maxiprep kit was 

used following the manufacturer’s instructions. 200ml of bacterial suspension grown 

overnight was pelleted at 8000rpm for 30min at 4°C. Supernatant was discarded and the 

bacterial pellet was resuspended in R3 buffer (with RNase A). 10ml of L7 lysis solution 

was added followed by 10ml of neutralization solution N3. The bacterial lysates was 

centrifuged at 8000rpm for 30min at 4°C and the supernatant was added on specific 

columns previously equilibrated with 30ml equilibration buffer. The columns were washed 

twice with wash buffer W8. DNA was eluted with 15ml elution buffer and then 

precipitated by adding 10ml isopropanol and centrifuging 30min at 800rpm. The DNA 

pellet was washed twice with 5ml 70% ethanol and resuspended in water. The plasmid 

solution was digested with sequence-specific endonucleases to verify if the correct plasmid 

was purified.   

3.1.3 Ligation of DNA encoding shRNA into plasmids 

The cloning of the shRNAs into the plasmids was performed by other member of the 

laboratory as follows. The oligonucleotide couple encoding the shRNA was annealed using 

the annealing buffer and by setting the following program on the thermo cycler: 

95°C 2min 
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to 25°C 1°C/1.5min 

 

dsDNA and plasmids were digested with sequence specific endonucleases and ligated by 

mixing components as follows: 

dsDNA xµl 

plasmid 100ng 

T4 DNA Ligase buffer (Fermentas) 1µl 

T4 DNA Ligase (Fermentas) 1µl 

Total 10µl 

The ligation reaction was incubated overnight at 16°C. 

3.1.4 Agarose gel electrophoresis 

Depending on DNA fragment size, a solution of 1-2% agarose in 1X TAE was prepared. 

The solution was boiled and poured, with the addition of 0.3µg/ml ethidium bromide, into 

a gel chamber with combs. DNA loading buffer was mixed with the samples that were then 

loaded into the wells of the polymerized gel. 10µl of 1kb DNA ladder (NEB) was loaded 

next to the samples and allowed size determination of the DNA. The gel was run at 120V 

for one hour, then the DNA was visualized using a UV transilluminator.  

3.1.5 DNA extraction and purification from agarose gel 

After separation by gel electrophoresis, the fragment DNA of interest was cut out of the gel 

with a scalpel. The DNA was separated from the agarose gel by using the Gel Extraction 

kit (Qiagen) following the manufacturer’s instructions.  

3.1.6 RNA isolation and quantification 

For isolation of total RNA from cultured cells the TriFast™ (peqlab) was used. For cells 

grown on a 10cm dish, 600µl of TriFast was added directly on the dish. The cell 

suspension was then collected in a 1.5ml eppendorf tube and 200µl of chloroform was 

added. The mixture was vortexed thoroughly for 1min and then incubated at room 

temperature for 5min. The tubes were then centrifuged for 5min at 13600rmp and the 

supernatant containing the RNA was transferred into new tubes. RNA was precipitated by 

incubating it for 15min with 1volume of isopropanol and 1µl of GlycoBlue Coprecipitant 

(Life Technologies) and by centrifuging the solution for 15min at 13600rpm at 4°C. The 
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RNA pellet was washed once with 500µl 70% ethanol and then resuspended in 50µl of 

water. The sample were stored at -20°C or -80°C and RNA concentration and purity was 

determined by Nanodrop measurement. 

To quantify the amount of total and mRNA in a cell, total RNA was isolated from a fixed 

number of cells by using the RNeasy Kit (Qiagen) and quantified by NanoDrop 1000 

(peqlab). mRNA was isolated from total RNA by using the Sera-Mag Oligo(dT)-Coated 

Magnetic Particles (Thermo Scientific), was purified by isopropanol precipitation and 

quantified by NanoDrop 1000 (peqlab).   

3.1.7 cDNA synthesis 

Total RNA was transcribed into complementary DNA (cDNA). 2µl of random 

hexanucleotides were added to 2.5µg of RNA diluted in 10µl of water. The mix was heated 

up at 65°C for 3min and then put directly on ice. Afterwards, the following reaction was 

set up for each sample: 

10µl  5X RT buffer (Promega) 

5µl DTT 0.1M 

5µl DNTPs 2.5M 

0.2µl RiboLock RNasea Inhibitor (40U/l, Life Technologies) 

1µl M-MLV Reverse Transcriptase (200U/l, Promega) 

16.8µl water 

Reverse transcription was performed by incubating the samples for 10min at 22°C, 50min 

at 37°C and 15min at 70°C. 

3.1.8 Nucleic acid quantification 

For routine analyses, the concentration of DNA and RNA was measured with NanoDrop 

1000 (peqlab). The purity of the nucleic acids was determined by assessing the ration of 

absorbance at 260nm and 280nm. For pure samples the ratio is about 1.8.     

3.1.9 Quantitative polymerase chain reaction (qPCR) 

cDNA and the recovered DNA were amplified by qPCR to quantify specific mRNA levels 

and ChIP enrichment, respectively. For each sample technical replicates were performed 

and the reactions were set up as follows: 

1µl DNA 



Chapter 3: Methods 

36 

 

1µl primer f+r mix (10µM) 

7µl SYBR Green Mix (Thermo Scientific) 

11µl water 

The measurements were carried out with the Mx3000P qPCR System (Stratagene) using 

the following thermal cycling profile: 

 95°C 15min 

38 cycles 95°C 30sec 

 60°C 20sec 

 72°C 15sec 

1 cycle 95°C 1min 

 60°C 30sec 

 95°C 30sec 

The quantification of the amplified DNA can be determined by fluorescence monitoring in 

every cycle after the end of the elongation step. Calculation of the relative transcript 

amount or DNA enrichment was performed using the ΔΔ-CT method (Applied Biosystems 

User Bulletin 2). For normalization of RNA or ChIP samples, the housekeeping gene β2M 

or the input sample were used, respectively.   

3.1.10  Sample preparation for RNA-sequencing 

For RNA-sequencing (RNA-seq), total RNA was isolated by using the RNeasy kit 

(Qiagen) following the manufacturer’s instruction. For cells grown on a 10cm dish, 600µl 

of Buffer RLT with 1% β-mercaptoethanol were used. Genomic DNA on-column digestion 

was performed. 

The quality and concentration of the isolated RNA was assessed by using the Experion™ 

RNA analysis kits and chips (StdSens) (BIO-RAD) and the Experion™ Automated 

Electrophoresis System (BIO-RAD). Good quality samples have a RIQ above 8. 

Two different procedures were used to prepare the samples for sequencing. 

Protocol 1: isolation of the polyadenylated RNA was performed from 5-10µg of total 

RNA using the Sera-Mag Oligo(dT)-Coated Magnetic Particles (Thermo Scientific) 

following the manufacturer’s instructions. The removal of the rRNA was assessed by 

loading 1µl of samples on the Experion™ RNA analysis kits and chips (HighSens) (BIO-

RAD). mRNA fragmentation, cDNA sysnthesis, end-repair, dA-tailing, adaptor ligation, 

size selection and PCR was performed with the NEBNext
®
 mRNA Library Prep Master 

Mix Set for Illumina
® 

(New England Biolabs), the QIAquick PCR Purification Kit 
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(Qiagen) and the QIAquick Gel Extraction Kit (Qiagen). When required DNA was purified 

using QIAquick PCR Purification Kit (Qiagen). Size selection of the adaptor-ligated DNA 

was performed by loading the samples with 6µl orange sample buffer on a 2% agarose gel 

with ethidium bromide. The gel was run for 1h at 170V and then a small band of gel 

corresponding to the height of 200bp DNA was cut out by using the Ultra Cruz™ 

Disposable Gel Excision tips (6.5x1 mm, Santa Cruz). DNA was isolated from the gel by 

using the QIAquick Gel Extraction Kit (Qiagen) and amplified with 12-15 PCR cycles 

using a different index primer for each sample (NEBNext
®
 Multiplex Oligos for Illumina

® 

(index Primers Set 1 and 2) (New England Biolabs)). 

Protocol 2: from 1µg total RNA, the polyadenylated RNA was isolated using the  

NEBNext
®
 Poly(A) mRNA Magnetic Isolation Module (New England Biolabs) following 

the manufacturer’s instructions. Library preparation, consisting of the same steps as 

protocol 1, was performed with NEBNext
®
 Ultra™ RNA Library Prep Kit for Illumina

® 

(New England Biolabs) following the manufacturer’s instructions. DNA purification and 

size selection were performed using the Agencourt
®
 AMPure

®
 XP (Beckman Coulter) and 

DNA was amplified with 12 PCR cycles using a different index primer for each sample 

(NEBNext
®
 Multiplex Oligos for Illumina

® 
(index Primers Set 1 and 2) (New England 

Biolabs)). 

 

Quality and amount of the generated libraries were assessed using the Experion™ DNA 

1K kit and chips (BIO-RAD).  

All the samples were mixed together at equimolar concentrations and subjected to 

sequencing on an Illumina Genome Analalyzer IIx sequencer.  

3.1.11  Sample preparation for ChIP-sequencing 

For ChIP-seq the same protocol as normal ChIP (see 3.3.9) was used with the following 

modifications. Chromatin isolated form 50-100x10
6
 cells was immunoprecipitated by using 

100µl of Dynabeads protein A and G (Life Technologies) in a 1:1 ratio and 10µg of 

specific antibody.  

Quantification of DNA recovered after the immunoprecipitation was performed using the 

Quant-iT™ PicoGreen® dsDNA assay kit (Life Technologies) following the 

manufacturer’s instructions. Up to 10ng of DNA was then used for library preparation. 

Samples were modified for sequencing using the NEBNext ChIP-Seq Library Prep Master 

Mix Set for Illumina (New England Biolabs) following the manufacturer’s instructions. 
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Briefly, the recovered DNA was end-repaired, dA-tailed, ligated to Illumina adaptors, size-

selected on a 2% agarose gel (band corresponding to 175-225bp fragments was cut out 

using scalpels) and amplified with 18 PCR cycles using a different index primer for each 

sample (NEBNext
®
 Multiplex Oligos for Illumina

® 
(index Primers Set 1 and 2) (New 

England Biolabs)). When needed DNA was purified using QIAquick PCR Purification Kit 

(Qiagen) or QIAquick Gel Extraction Kit (Qiagen). 

 

As for RNA-seq samples, quality and amount of the generated libraries were assessed 

using the Experion™ DNA 1K kit and chips (BIO-RAD).  

All the samples were mixed together at equimolar concentrations and subjected to 

sequencing on an Illumina Genome Analyzer IIx sequencer. 

3.2 Cell biology methods 

All cell culture work was performed at sterile workbenches. Cells were grown in 

incubators at 37°C, 95% relative humidity and 5% CO2. 

3.2.1 Passaging, freezing and thawing cells 

For passaging of adherent growing cells, the cultivation medium was removed and cells 

were washed once with PBS. 1-2ml of trypsin solution was added on the dish and 

incubated 5min at 37°C. Trypsin activity was stopped by adding fresh medium, the cell 

suspension was collected in tubes and centrifuged at 1200rpm for 5min. The cell pellet was 

resuspended in fresh medium and a portion of cell suspension was plated in new dishes 

with medium. For S1 cell culture, cell were counted with CASY cell counter, for S2 cell 

number was determined with the Neubauer counting chamber.  

For long-term freezing storage, cell pellet were resuspended in 1ml freezing medium, 

transferred in cryo vials and slowly frozen at -80°C with Mr FROSTY freezing container. 

After 24h cells were stored in a liquid nitrogen storage tank. 

To thaw frozen cells, the cryo vials was quickly heated up at 37°C in a water bath and then 

the cell suspension was transferred in a dish containing fresh medium.      
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3.2.2 Transfection of siRNA 

For transfection of synthetic siRNAs, 1-1.5x10
6
 cells were seeded on a 10cm dish. One 

hour before trasfection the cell medium was exchanged with 6ml transfection medium. 

10µl of siRNA and 10µl Lipofectamine RNAiMAX (Invitrogen) were diluted separately in 

700µl Opti-MEM 1 (Invitrogen). The two solutions were mixed, incubated 20min at room 

temperature and then added to the cells dropwise. 12-16h later, cells were provided with 

fresh medium and if necessary splitted. Cells were harvested 48-72h after transfection.  

3.2.3 Polyethylenimine (PEI) transfection - Lentivirus production 

For production of lentivirus PEI transfection was used. The day before transfection 5x10
6 

HEK293T cells were seeded on a 10cm dish. The day of the transfection, two sets of 1.5ml 

tubes were prepared. In one set 700µl of Opti-MEM 1 (Invitrogen) and 30µl of PEI 

solution were mixed, in the other one 700µl Opti-MEM 1 (Invitrogen), 11.1µg plasmid 

DNA, 2.8µg pPAX2 and 1.4µg pMD2G were mixed. After having incubated 5min at room 

temperature, the two solutions were mixed and incubated 20min. Meanwhile, the medium 

of the HEK293T cells was replaced with 6ml transfection medium. The PEI solution was 

added to the cells overnight and subsequently the cell medium was replaced with 6ml basal 

medium. After 24h medium was collected (1
st
 harvesting of the virus) and replaced with 

6ml new basal medium. Two more harvesting were done each at 12h interval.  

The virus suspension was then filtered with 0.45µm filters, frozen with liquid nitrogen and 

stored at -80°C.  

3.2.4 Infection of cells with lentivirus 

Cells were infected with lentivirus to stably integrate plasmid DNA into their genome. 

The day before infection, 5x10
5
 fast growing cells were seeded in a 10cm dish. Infection of 

f virus was achieved by adding to the cell a solution containing: 2ml viral suspension, 4ml 

normal medium and 6µl polybrene (4µg/ml). The infection was repeated twice at 24h 

interval and then normal medium was added. Appropriate antibiotics were used to select 

infected cells starting 2day after infection. 

3.2.5 Generation of MYC-inducible cell line 

The generation of the MYC-inducible U2OS cell line was performed by Elmar Wolf. 

Briefly, U2OS cells were stably transfected with a doxyciclin-inducible two vector system 
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bearing the coding sequencing of MYC (tet-on, Clontec Laboratories). Positively 

transfected cells were selected with 2.5µg/ml hygromycin (Invitrogen). MYC expression 

was achieved by adding doxycycline to the medium at a final concentration of 1µg/ml. 

3.2.6 Flow cytometry - BrdU/PI FACS 

Cells were labeled with 10µM BrdU for 60min at 37°C. Cells were harvested by 

trypsinization, resuspended in 10ml fresh medium and centrifuged for 5min at 1500rpm. 

Cells were washed once with 10ml ice cold PBS and then resuspended in 1ml ice cold 

PBS. The cells-PBS suspension was added drop-wise in 4ml ice cold 100% ethanol while 

vortexing and incubated overnight at -20°C. Afterwards, the cell suspension was 

centrifuged 10min at 1500rpm at 4°C, the resulting cell pellet was washed with 5ml PBS 

and centrifuged for 5min at 1500rpm at 4°C. The pellet was resuspended in 1ml 2M HCl 

and 0.5% Triton-X-100 solution and incubated 30min at room temperature with gentle 

mixing. Cells were centrifuged 10min at 1500rpm at 4°C and resuspended in 1ml 

0.1Na2B4O7 pH 8.5 buffer. The solution was centrifuged 5min at 2000rpm at 4°C and the 

pellet resuspended in 100µl 1% BSA in PBS-T (0.5% Tween-20 in PBS) and 20µl anti-

BrdU-FITC antibody and incubated 30min at room temperature in the dark. After 

centrifuging 5min at 2000rpm at 4°C, pellet was washed with 200µl 1% BSA in PBS-T, 

resuspended in about 400µl of buffer containing 38mM sodium citrate, 54µM propidium 

iodide and 24µg/ml RNase A and incubated 30min at 37°C in the dark. Cells were 

transferred to a FACS tube, mixed by pipetting and subjected to the FACS measurement 

(PI: FL2-A LIN, BrdU: FL-H Log). 

3.3 Protein biochemistry methods 

3.3.1 Generation of protein lysates 

To isolate proteins, cells grown on a cell culture dish were fist washed twice with ice cold 

PBS, scraped in a 1.5ml tube and then pelleted at 1200rpm for 5min at 4°C. The cell pellet 

was either frozen with liquid nitrogen and stored at -80°C or lysed by adding 50-300µl ice 

cold RIPA buffer with proteinase and phosphates inhibitors (1:1000) and incubating 20min 

on ice. Cellular debris were removed by centrifuging the sample at 13600rpm for 5min at 

4°C and by transferring the supernatant in a new tube. The protein lysate was frozen with 

liquid nitrogen and stored at -80°C. 
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Alternatively, cells were lysed directly on the dish by adding SDS sample buffer and 

collected in a 1.5ml tube. Samples were stored at -20°C or –80°C. 

3.3.2 Protein quantification by Bradford assay 

Protein concentration was determined according to (Bradford, 1976). 

900µl Bradford Dye reagent and 100µl 1.5M NaCl were mixed with 1.5µl samples in a 

1ml cuvette. After vortexing absorbance was measured at 595nm using an appropriate 

reference. The obtained values were compared to a calibration curve to calculate protein 

concentration.  

3.3.3 Protein quantification by bicinchoninic acid assay (BCA) 

After cell lysis, protein concentration was determined by mixing 3µl of protein sample 

with 200µl bicinchoninc acid and CuSO4 (50:1) solution in a 96-weel plate. The solution 

was incubated 30min at 37°Cand the absorption was measured at 550 using an appropriate 

reference. The measured values were compared with a calibration curve to calculate 

protein concentration. 

3.3.4 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Before being loaded on the SDS-PAGE, samples in sample buffer were boiled for 5min at 

95°C. The samples were then loaded in the wells of the gels next to the PageRuler Pre-

Stained Protein Ladder (Fermentas) to assess protein size. Gels were run in SDS running 

buffer or MES, depending on the system used, at 80-110V until the front of the migration 

was out of the gel. 

3.3.4.1 Bis-Tris (Laemmli) gels 

The gels with a variable percentage of polyacrylamide were prepared as follows: 

For 10ml 10% Running gel: 2.86ml 3.5X Bis-Tris buffer 

 3.33ml 30% acrylamide/bisacrylamide 

 3.81ml water 

 50µl 10% APS 

 5µ TEMED 

For 10ml 4% Stacking gel: 2.86ml 3.5 Bis-Tris buffer 

   1.33ml 30% acrylamide/bisacrylaminde 
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   5.81ml water 

   50µl 10% APS 

   10µl TEMED 

3.3.4.2 Tris-Glycine gels 

The gels with a variable percentage of polyacrylamide were prepared as follows: 

Stacking gel: 4% acrylamide/bis-acrylamide 

 125mM Tris HCl pH6.8 

 0.1% SDS 

 0.1% APS 

 0.1% TEMED 

Running gel: 10% acrylamide/bisacrylamide  

 375mM Tris HCl pH 8.8 

 0.1% SDS 

 0.1% APS 

 0.1% TEMED 

3.3.5 Immunoblot 

After proteins were separated according to size by SDS-PAGE, they were transferred on a 

PVDF membrane using a tank blot system. The PVDF membrane of the size of the gel was 

first incubated for 30sec in methanol and then equilibrated in the transfer buffer. Gel and 

membrane were layered on top of each other and fixed between Whatman filter paper in a 

immunoblot transfer chamber filled with transfer buffer (different buffer for Bis-Tris and 

Tris-glycine system). Transfer was carried out for 3h at 300mA. 

The membrane with the immobilized protein was then blocked in blocking solution for at 

least 30min. The membrane or the membrane pieces were incubated overnight with the 

primary antibody diluted in the blocking solution, washed three times with TBS-T, 

incubated with secondary antibody diluted in blocking solution and washed other 3 times 

with TBS-T. Finally, the protein were visualized via chemiluminescence generated by the 

horseradish peroxidase coupled to the secondary antibody and the Western 

Chemiluminescent HRP Substrate (Millipore). Signal was detected with LAS-4000 mini 

(Fujifilm). Alternatively, proteins were detected with the Odyssey
® 

CLx Infrared Imaging 

System (LI-COR) where the secondary antibody is coupled with a fluorophore.   
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3.3.6 Coomassie staining 

To visualize recombinant proteins or to verify the complete transfer of protein from the gel 

to the PVDF membrane, gels were stained with coomassie solution for at least 1 h. To 

eliminate the excess of dye, the gels were incubated with gentle shaking in destaining 

solution until a clear background was visible. 

3.3.7 Stripping membranes 

To remove the antibodies form a PVDF membrane with proteins the membrane was 

incubate 30min at 60°C in stripping buffer. It was then wash 3 times with TBS-T, blocked 

in blocking solution and incubated with the primary antibody as previously described.  

3.3.8 Indirect immunofluorescence 

The cells of interest were grown directly on cover slips. Cells were washed twice with ice 

cold PBS and fixed by incubating them in 3.7% paraformaldehyde for 15min at room 

temperature. They were washed twice with 0.1M glycine-PBS solution (3x 10min), 

permeabilized with 0.1% NP-40 PBS solution (3x10min) and blocked with 5% FBS 

0.1%NP-40 PBS (immunofluo-blocking) solution for 45min at 37°C. The cover slips with 

the cells were moved into a wet chamber and incubated with 40µl primary antibody diluted 

in immunofluo-blocking solution. After 45 min at 37°C, cells were washed 3 times with 

immunofluo-blocking solution and then incubated for 45min at 37°C with 40µl secondary 

antibody in immunofluo-blocking solution and Hoechst nuclear stain (1:5000). After 

washing 3 times with water, the cover slips were mounted on a glass slide using a small 

drop of mounting medium. The slides were stored at 4°C in the dark and analyzed with a 

fluorescence microscope.    

3.3.9 Chromatin immunoprecipitation (ChIP) 

3.3.9.1 Chromatin preparation 

To crosslink proteins to DNA, 1% formaldehyde was added to the cell medium for 10min 

at room temperature. To stop the cross link 1ml 1M glycine was added for 5min. The 

medium was removed and the cells washed twice with ice cold PBS. Cells were scraped 

off the dish in 1ml PBS with proteinase and phosphatase inhibitors (1:1000) and 

transferred in a 15ml tube (up to 10 dishes in one tube). Cells were centrifuged for 5min at 
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1200rpm at 4°C, resuspended in 3ml ChIP lysis buffer I containing protease and 

phosphatase inhibitors (1:1000) and incubated 20min on ice. Afterwards, cells were 

centrifuged 5min at 1200rpm at 4°C and resuspended in 2ml RIPA buffer with protease 

and phosphatase inhibitors (1:1000). After 10min incubation on ice cells were sonicated 

following a specific program depending on the cell type. U2OS cells were sonicated for 

20min (10sec on, 30sec off) at 20%amplitude.    

After sonication, cell lysates were transferred in a new tube and centrifuged at 13600rpm 

for 15min at 4°C. The supernatant was moved into new tubes and stored at 4°C for few 

days or froze with liquid nitrogen and then stored at-80°C.  

3.3.9.2 Check fragment size after sonication 

25µl of sonified cell lysate was added to 475µl TE buffer with 160mM NaCl and 20µg/ml 

RNase A. The chromatin was incubated 1h at 37°C and the 6h to overnight at 65°C to 

revert the crosslink.5mM EDTA and 200µg proteinase K were added to the chromatin and 

incubated 2h at 45°C. To isolate the DNA 500µl of phenol chloroform solution was added. 

After vortexing the samples were centrifuged 5min at 13000rpm and the supernatant was 

transferred in a new 1.5ml tube with 1µl glycoblue, 50µl 3M sodium acetate pH 5.2 and 

1ml 100% ethanol. They were incubated 30min at -20°C and then centrifuged for 30min at 

13600rpm at 4°C. The pellets were washed with 500µl 70% ethanol, centrifuged for 15min 

at 13600rpm at 4°C and resuspended in 50µl water. 10µl of sample were mixed with 4µl of 

DNA loading buffer and loaded on a 2% agarose gel.   

3.3.9.3 ChIP 

For each immunoprecipitation 30µl of dynabeads protein A and G (Life technologies) 1:1 

ratio were used. The beads were washed 3 times with 1ml BSA-PBS (5mg/ml) solution. 

Afterwards, they were incubated 6h – overnight at 4°C on a rotating wheel with 1ml BSA-

PBS and 3µg antibody. Beads were then washed 3 times with BSA-PBS, resuspended in 

30µl BSA-PBS and the appropriate amount of chromatin was added. 1% of chromatin was 

kept as input. After 6h incubation at 4°C on a rotating wheel, the beads with the bound 

chromatin were washed 3 times with ChIP wash buffer 1, 3 times with ChIP wash buffer 2, 

3 times, incubating the beads 5min each time, with ChIP wash buffer 3 and 1 time with TE 

buffer (beads were also moved into new 1.5ml tubes). The chromatin was eluted twice with 

250µl ChIP elution buffer and at the end the two eluates were merged. The reversal of the 
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crosslink and the purification of the precipitated DNA was performed as previously 

described (see 3.3.9.2)   

3.4 Bioinformatics analysis of ChIP-seq data 

3.4.1 Base calling, quality control and filter 

The conversion of the pictures taken by the sequencer’s camera into text files with quality 

indication (base calling) was performed with the RTA package form the Illumina Genome 

Analyzer Data Collection Software (SCS v2.8). Subsequently, fastq files were generated 

using only high quality reads (PF-clusters) via the Casava software. The quality of the 

fastq files and therefore of the sequencing run, was verified using the FastQC application 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

These procedures were performed either by Elmar Wolf or Carsten Ade. 

3.4.2 Reads alignment to the genome 

To determine the position of the sequencing reads on the genome the program Bowtie was 

used. Before performing the alignmen,t the reference human genome hg19 and the 

program were downloaded and installed.  

Command: bowtie –t –S –p 14 hg19 file.fastq file.sam 

The generated sam file was converted into a binary bam file via the program Samtools. 

Command: samtools view –bS –o file.bam file.sam 

3.4.3 Peak calling and visualization 

The enrichment of reads in certain positions of the genome (peaks) was determined using 

MACS.  

Command: macs14 –t treated_file.bam –c control_file.bam --format BAM --name 

output_file_name --wig --space 10 -S  

The program compares the local enrichment of reads in the samples generated using an 

antibody against a specific protein (ChIP sample) and that of a control sample (1% input of 

chromatin).  

For MYC and MIZ1 ChIP-seq samples, the --keep-dup option was used (to keep reads that 

aligns at the same location) and set at 3 and 10, respectively.  
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MACS generates bed files, where information about the peak localization (start and end), 

the peak length and summit (highest point of the peak), the p-value, the enrichment over 

control and the false discovery rate (FDR) are given.    

Wiggle files with a resolution of 10bp (--space option) are also produced and can be loaded 

into the Integrated Genome Browser for visualization. 

3.4.4 Peak annotation and overlap 

In the Bedtools program, the closestBed function was used to annotate the peaks present in 

the bed files generated by MACS. closestBed uses the peak region specified in the bed file 

generated by MACS and assigns it to the nearest transcriptional start site (TSS) present in a 

reference file. The latter contains also the gene names and was obtained from the UCSC 

Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables; human genome: hg19, RefSeq 

or UCSC Genes).   

Command: closestBed –a bed_file.txt –b reference_file.txt –t first > output_file.txt 

With the output file and the IF function of Microsoft Excel the distance of the peak to the 

TSS was calculated taking into account the strand orientation. 

The intersectBed function was used to determine the peak overlap of two data sets. Two 

peaks overlap if they have at least 1bp in common (same chromosomal localization for at 

least 1bp). 

Command: intersectBed –a bed_file_a.txt –b bed_file_b.txt –wa –wb > 

intersect_file.txt 

The –wa and –wb options were used to have the information from both input files in the 

output file. 

3.4.5 Tag density calculation and heatmaps 

The Seqminer program was used to calculate the density of tags in a specific genomic 

region/window. A reference file containing the chromosomal coordinates of the regions of 

interest (TSS or peak summits) is needed as well as bam files containing the sequenced 

reads from specific ChIP-seq samples. The reference file should be a txt file with a specific 

column order: 1) chromosome; 2) TSS or peak summit; 3) TSS+1 or peak summit+1; 4) 

name; 5) name2; 6) strand. The extension of the region to consider is set in the options 

section and varies according to the purpose. The resolution of the analysis (wiggle step) is 

adjusted depending on the extension of the region. 
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For all subsequent analysis the summit of the MYC peaks called in DOX, close to the 

promoter of a gene (-1.5kb +500bp for TSS) were used. 

For calculation of MYC recruitment the extension of the analyzed region was ±100bp from 

the summits of MYC peaks and the wiggle step was 5bp. 

For calculating histone modification and total and Ser5 phosphorylated RNA polymerase II 

changes, the extension region was ±1000 bp (wiggle step 10bp) from the summit of the 

MYC peak and -100+300bp (wiggle step 10bp) form the TSS with a close MYC peak, 

respectively. 

For changes of Ser2 phosphorylated RNA polymerase II the extension was ±1000bp 

(wiggle step 20bp) from the transcription termination site (TES) . 

For heatmaps, showing the binding of a protein at the TSS, the extension region was 

±5000bp form the TSS and the wiggle step was 50bp.  

The output file contains the chromosomal coordinates, the gene name, and the strand from  

the input files and the number of reads present in each wiggle step in the defined window. 

The number of tags of each wiggle step for each condition was summed up to give the 

occupancy of that protein in that specific region. MYC recruitment and histone and RNA 

polymerase II changes were calculated as ratio of the occupancies of the proteins in the 

EtOH and DOX conditions. To avoid 0 tags, 1 tag was added to all occupancies. 

For calculation of MYC binding constant, input background signal was subtracted from  

MYC occupancy in EtOH and DOX, thus 0 could be used as third point. MYC binding 

constant and maximal occupancy at each target promoter was obtained via non-linear 

regression analysis based on Michaelis-Menten model in GraphPad Prism.    

For heatmaps visualization, the output file was sorted according to the preferred condition 

(i.e. MYC binding) and loaded into Java Tree View.  

3.4.6 Functional analysis of target genes 

To functionally annotate genes, the database for annotation, visualization and integrated 

discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) were used. 

For DAVID, the official gene symbol and the default parameters were used. 

GSEA was performed with the C2 or C5 gene sets from the MSigDB. The number of 

permutations was set to 1000, whereas the other parameters were set as default. When the 

GseaPreranked tool was used, the Enrichment Statistic parameter was set to “classical”.  
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3.5 Bioinformatics analysis of RNA-seq data 

3.5.1 Base calling, quality control and filter and reads alignment  

Base calling, quality control and filter was performed by either Elmar Wolf or Carsten Ade 

as previously described (see 3.4.1). 

Reads were aligned to the human reference genome hg19 and bam files were generated as 

previously described (see 3.4.2). 

3.5.2 Identification of differentially expressed genes 

The generated bam files were analyzed in R/Bioconductor. The following packages were 

loaded in R and were needed to identify and annotate differentially expressed genes and to 

perform statistical analysis: Rsamtools, GenomicFeatures, edger, goseq, biomaRt. 

Commands: 

#E= control sample 

#D= treated sample 

>txdb=makeTranscriptDbFromUCSC(genome="hg19",tablename="ensGene") 

>tx_by_gene=transcriptsBy(txdb,"gene") 

>reads_D1=readBamGappedAlignments("../../D1.bam") 

>reads_D1=GRanges(seqnames=rname(reads_D1),ranges=IRanges(start=start(r

eads_D1),end=end(reads_D1)),strand=rep("*",length(reads_D1))) 

>counts_D1=countOverlaps(tx_by_gene,reads_D1) 

>reads_E1=readBamGappedAlignments("../../E1.bam") 

>reads_E1=GRanges(seqnames=rname(reads_E1),ranges=IRanges(start=start(r

eads_E1),end=end(reads_E1)),strand=rep("*",length(reads_E1))) 

>counts_E1=countOverlaps(tx_by_gene,reads_E1) 

 

>toc1=data.frame(E1=counts_E1,D1=counts_D1,stringsAsFactors=FALSE)  

 

># plot and calculate sample sorrelation 

>pdf("../../correlation.pdf") 

>par(mfrow=c(4,3)) 

>plot(log(toc1$E1),log(toc1$D1),pch=20,cex=0.2) 

>dev.off() 



Chapter 3: Methods 

49 

 

>cor(toc1$E1,toc1$D1) 

># 

>norm_factors1=calcNormFactors(as.matrix(toc1)) 

>head(norm_factors1) 

>DGE1=DGEList(toc1,lib.size=norm_factors1*colSums(toc1),group=rep(c("E","D")

,c(1,1))) 

>disp1=estimateCommonDisp(DGE1) 

 

>pdf("../../disp1_Smearplot.pdf") 

>plotSmear(disp1) 

>abline(h=c(-1,1),col="blue")  

>dev.off() 

 

>disp1_data_frame=as.data.frame(disp1$pseudo.counts) 

>head(disp1_data_frame) 

>write.csv(disp1_data_frame, file= "../../disp1_data_frame.csv") 

>tested1=exactTest(disp1)  

># this gives E/D ratio; for D/E ratio write >tested1=exactTest(disp1,pair=2:1) 

>tested1_extract=tested1$table 

>head(tested1_extract) 

>padj=p.adjust(tested1_extract$PValue, method="BH") 

>head(padj) 

>tested1_extract_padjust=cbind(tested1_extract,padj) 

>head(tested1_extract_padjust) 

>ensembl=useMart("ensembl") 

>ensembl=useMart("ensembl",dataset="hsapiens_gene_ensembl") 

>annotated=getBM(attributes=c("ensembl_gene_id","hgnc_symbol","description"),f

ilters="ensembl_gene_id",values=rownames(tested1_extract_padjust), 

mart=ensembl) 

>head(annotated) 

>tested1_extract_padjust_annotated=cbind(tested1_extract_padjust, 

rownames(tested1_extract_padjust)) 

>head(tested1_extract_padjust_annotated) 
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>tested1_extract_padjust_annotated=merge(annotated,tested1_extract_padjust_a

nnotated,by.x="ensembl_gene_id",by.y="rownames(tested1_extract_padjust)") 

head(tested1_extract_padjust_annotated) 

3.5.3 Functional analysis of target genes 

Functional analysis of gene groups was performed via DAVID using official gene symbol, 

default parameters and selecting genes that were significantly regulated (threshold depends 

on the experiment, usually p-adj<0.01). 

GSEA was performed using C2 or C5 gene sets form the MSigDB and the library-size-

normalized read counts of all genes identified in the RNA-seq.   

3.5.4 Heatmaps 

The heatmaps, displaying the regulation of genes in samples where MYC levels were 

manipulated, were done using the gplots package of R. For the siMYC sample and samples 

with increasing DOX concentration changes in gene expression were calculated relative to 

the siCTR or EtOH sample, respectively. The selection of genes shown was done based on 

publically available data sets and based on the expression levels in the RNA-seq 

experiments (logCPM>0 or rpkm>1). 

3.6 Statistics  

All statistic analyses were performed in R or Microsoft Excel.  

Unless stated differently, data are presented as means with standard deviation as error bars. 

To test significant changes in cell size, BrdU-positive cells as well as total and mRNA 

amount Student’s t-tests were applied. 

For binned plots, genes were sorted and grouped in equally sized bins and the median or 

mean of each bin is shown in the plot. Linear regression was used to illustrate the data 

trend and the fitting of the data to the model is given as Pearson’s correlation coefficient (r) 

with the corresponding p-value calculated via a Student’s t-test. Data were median 

normalized if applicable.  

Data distribution and variance were tested using the Shapiro and the F test, respectively. 

Box plots were done using R and the Mann-Whitney test or Student’s t-test were applied to 

statistically test the difference of the samples. 
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Chapter 4: 

Results 

4.1 MYC activation establishes tumor-cell-specific gene 

expression profiles 

4.1.1 Characterization of MYC-induced U2OS  

MYC is an important transcription factor that is deregulated in many tumors (Vita and 

Henriksson, 2006). Although MYC is extensively studied, discrepancies have emerged 

about how this transcription factor regulates its target genes and whether it regulates 

specific processes or acts as a general transcription factor. Indeed, when MYC is 

manipulated in medulloblastoma tumor models, it both activates and represses target genes 

that are specific for MYC’s transcriptional program and have prognostic value (Kawauchi 

et al., 2012; Northcott et al., 2011). On contrary, as shown by two studies in primary B 

cells and in an engineered lymphoma model, MYC overexpression leads to activation of all 

genes that are found in an open chromatin context defining MYC as an general amplifier of 

gene expression (Lin et al., 2012; Nie et al., 2012). 

In order to understand the discrepancies between these models, gene expression and 

binding analyses were performed in an osteosarcoma cell line (U2OS). U2OS were chosen 

since they are a tumor cell line that express lower levels of endogenous MYC than others 

tumor cell lines, such as HeLa and HCT116, comparable to non-transformed cells, such as 

some epithelial cell lines (IMECs, HMLE, MCF10A and HEK293) (Fig. 4.1 A).  

U2OS cells were engineered to express a doxycycline-inducible allele of MYC (by Elmar 

Wolf). By adding doxycycline to the culture medium an about 15 fold induction of MYC 

protein levels and ~100 fold induction of mRNA levels could be reached (Fig. 4.1 B,C). 

Overexpressed MYC was correctly localized in the nucleus, as shown by 

immunofluorescence (Fig. 4.1 D). As expected, MYC overexpression led to an increase in 

the proportion of 5-bromodeoxyuridine (BrdU)-positive cells in a BrdU-PI (propidium 

iodide) FACS analysis indicating that there are more cells in S-phase in the MYC-induced 

situation (Fig. 4.1 F). 
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Figure 4. 1: Overexpression of MYC does not increase cell size and total and mRNA amount.
1
 A. 

Immunoblot showing MYC protein levels in different cell lines. The same number of cells were loaded in the 

                                                 

1
 This figure was published in similar form in (Walz et al., 2014) (see also follwing pages). 
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each well. B. Immunoblot of MYC levels in U2OS cells treated with EtOH (-DOX) or 1ng/µl DOX (+DOX) 

for 30h.Vinculin was used as loading control. C. RT-qPCR analysis showing induction of MYC mRNA in 

U2OS cells treated as in B. D. Immunofluorescence using anti-MYC antibody and Hoechst staining in U2OS 

cells treated as in B. E. Cell size of U2OS cells with and without MYC induction measured by FACS using 

the forward scatter (FSC) in arbitrary units. Error bars show standard deviation (s.d., n=3). F. Percentage of 

BrdU positive cells (right) and FACS analysis (left) of U2OS cells induced or not with DOX. G. Total (left) 

and mRNA (right) amount per cell in U2OS cells before and after MYC induction. Error bars represent 

standard error of the mean (s.e.m., n=4). 

Opposite to what it was observed in B cells (Lin et al., 2012; Nie et al., 2012), MYC 

overexpression in U2OS cells increases neither cell size, as measured by FACS (Fig. 4.1 

E), nor total and mRNA levels within a cell (Fig. 4.1 G).  

The absence of changes in cell size, total and mRNA amount allowed the use of RNA-seq 

to monitor gene expression upon MYC induction. 

4.1.2 MYC overexpression induces stereotypic gene expression changes 

Total RNA was extracted from U2OS cells treated with EtOH (-DOX) or with 1ng/µl 

DOX (+DOX) for 30h to monitor gene expression changes via RNA-seq upon MYC 

induction. To get rid of the rRNA fraction that represents the majority of the RNA present 

in a cell, magnetic beads covered with oligo d(T) were used. Therefore, only the 

polyadenylated fraction of RNA was bound by the beads and the mRNAs were enriched in 

the samples. The isolated mRNAs were fragmented, end-repaired and adaptors were 

ligated to allow the hybridization of the cDNA obtained from the mRNA to the sequencing 

flow cell (Illumina). Three replicates for each condition were sequenced and the resulting 

reads were aligned to the reference human genome hg19 using Bowtie. 

By using the edgeR package of R, 1,358 significantly regulated genes (q-value<0.01, 

log2FC>1 or <-1) were identified (Fig. 4.2 A). Among these, 462 genes were up-regulated 

with a log2FC>1 and 896 down-regulated with a log2FC<-1 upon MYC-induction. 

Gene set enrichment analysis (GSEA) using the normalized reads count of all genes 

identified in the RNA-seq and the C2 curated gene sets collection, showed that MYC-

regulated gene sets in U2OS cells were enriched in genes described as MYC targets in 

previously published studies (Fig 4.2 B). The “Kim MYC amplification targets up” is a 

gene set that includes genes specifically regulated in lung cancer samples with MYC 

amplification compared to non-amplified ones and was also enriched (Fig. 4.2 C) 

validating the U2OS cell system used for the experiment. 
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Figure 4. 2: MYC-induced gene expression changes are stereotypic
1
. A. Plot showing the regulation of 

genes upon MYC induction versus total expression levels. Red dots represent significantly regulated genes 

(q-value<0.01, n=3). B. GSE analysis of genes regulated upon MYC overexpression in the C2 gene sets. C. 

Enrichment plot of one gene set identified in the GSE analysis in B. 

4.1.3 MYC binds to thousand of sites in U2OS cells 

In parallel to gene expression analysis via RNA-seq, ChIP-seq was performed to map 

MYC binding sites. DNA and bound proteins were crosslinked using formaldehyde and the 

crosslinked cells were sonicated to reach nucleosomal size of the DNA fragments. 

Chromatin from cells before and after MYC induction was precipitated by using an anti-

MYC antibody (N262, Santa Cruz) or IgG as control for specific binding. A percentage of 

the input chromatin (1%) was kept as further control and for normalization (in case of 

qPCR). 

As for RNA-seq, the DNA recovered from the immunoprecipitation was quantified, end-

repaired and ligated to adaptors in order to allow hybridization the sequencing surface. 
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The sequenced reads were aligned to the reference human genome hg19 using Bowtie and 

significant peaks were identified with MACS software and filtered according to the false 

discovery rate (FDR<0.1) calculated by the program.  

 

Figure 4. 3: MYC binds to promoter and enhancer regions
1
. A. Heat map of MYC binding in U2OS cells 

with endogenous MYC levels in a region of ±5000bp from the TSS of all genes present in the UCSC 

database. B. Density plot of MYC binding in the + and –DOX conditions. Input was used as control. The 

chromosomal location was used for the x-axis. C. Venn diagram of MYC-detected peaks in the promoters of 

genes (-1.5kb + 500bp from the TSS). 

20,014 MYC binding sites were identified genome-wide in cells non-induced with DOX. 

In this context, MYC binding was highly enriched around the TSS of genes (Fig. 4.3 A). 

When MYC was induced, binding increased genome-wide (Fig. 4.3 B) as well as the 

number of binding sites (45,645 MYC peaks identified in DOX-treated cells). In 

promoters, defined as the region between -1.5kb and +500bp from the TSS, the number of 

detected peaks increased from 8,401 to 14,903 (Fig 4.3 C). The majority of peaks detected 
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in the –DOX condition overlapped the ones identified in DOX-treated cells suggesting that 

the biological noise of the experiment was quite low (Fig 4.3 C). Furthermore, inspection 

of single genes (see Fig. 4.7) showed that the extent of MYC binding and recruitment is 

not the equal among the overlapping peaks. 

4.1.4 Saturation is detected at certain MYC binding sites 

In order to analyze the MYC binding data in a genome-wide manner without focusing on a 

limited number of genes, binned plots were used. For each gene having a MYC peak in the 

promoter (as defined before) in DOX treated cells the number of MYC tags present in a 

region of ±100bp around the summit of the peak (occupancy) was calculated using the 

Seqminer program for the + and –DOX conditions. Furthermore, the relative MYC 

recruitment for each gene was calculated by dividing MYC occupancy in the induced and 

non-induced condition. In this way over 9000 genes were included in the analysis.  

Genes were sorted according to the MYC recruitment and divided in equally-sized bins 

and for each of these bins the mean for MYC recruitment and occupancies were calculated 

and plotted (Fig. 4.4 A).  

In the –DOX condition (cells with endogenous MYC levels), MYC occupancy decreases 

with the increase of MYC recruitment, indicating that genes that are highly occupied by 

MYC recruit less MYC when overexpressed (MYC recruitment of about 1). Vice versa, 

genes that have weak MYC binding recruit more MYC when induced with DOX (Fig 4.4 

A). When looking at the same plot in the +DOX situation, the MYC occupancy seems not 

to change with the recruitment. This suggests that when MYC is induced, it binds all genes 

to the same extent and it tends to fill up former weakly occupied genes. Moreover, the 

slight difference in MYC occupancy at endogenous and exogenous levels for highly 

occupied genes suggests that these genes are saturated for binding already at endogenous 

MYC levels and therefore could not recruit further MYC when overexpressed. To test this 

hypothesis, MYC and MXD6 (MNT) ChIPs and qPCRs were performed at selected genes. 

MNT was chosen since it competes with MYC for binding with MAX and for binding to 

the same DNA sites (Ayer and Eisenman, 1993; Bouchard et al., 2001; Xu et al., 2001). If 

saturation of MYC binding occurs already at endogenous levels, no MNT signal and no 

changes in MYC levels in the + and –DOX conditions should be detected at the same site. 

This was the case of the NPM1 and NCL genes that were both highly bound by MYC. 

Their MYC binding did not change upon overexpression and MNT signal was at 

background levels (comparable to IgG and control region signal) in both conditions 
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indicating the absence of binding (Fig 4.4 B). For other genes, such as HSPBA1 and 

FBXO32, MYC binding highly increased upon MYC overexpression and concomitantly 

MNT signal decreased indicating that these genes were not saturated for MYC binding.  

Figure 4. 4: Saturation occurs at certain MYC binding sites
2
. A. Binned plot of MYC recruitment versus 

MYC occupancy in +DOX and –DOX conditions. Genes were sorted according to recruitment and divided in 

20 equally-sized bins. Each dot represents the average value of 422 genes. B. Bar plot for MYC and MNT 

ChIP experiments followed by qPCR. IgG and a control region were used as controls. Data are shown as 

mean ± standard deviation of technical triplicates.  

                                                 

2
 This figure was published in similar form in (Lorenzin et al., 2016) (see also follwing pages). 
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Figure 4. 5: The number of MYC molecules per cell is compatible with the saturation of binding sites
2
. 

A. Coomassie staining of MYC recombinant protein. B. Immunoblot of MYC recombinant protein and MYC 

detected in U2OS cells treated with 1ng/µl DOX. The same number of cells were loaded for each sample. C. 

Coomassie staining of a gel used for immunoblotting after the transfer of proteins to the PVDF membrane. D. 

Immunoblot (upper panel) of MYC in U2OS treated with siMYC, siCTR, EtOH and different DOX 
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concentrations. Vinculin was used as loading control. After quantification of the immunoblots (lower panel), 

fold change (FC) of MYC levels was calculated relative to siMYC and values are shown as mean with error 

bars representing standard deviation of biological triplicates. E. Table for MYC protein levels calculated as 

fold change (FC), number of molecules per cell and concentration in the nucleus.    

To establish whether the amount of MYC present in a cell was compatible with the 

saturation model proposed, the number of MYC molecules was measured in U2OS cells 

before and after DOX induction. This was achieved by using a recombinant protein 

consisting only of the C-terminal part of MYC (Fig. 4.5 A, provided by Lisa Jung), which 

was immunoblotted together with whole cell lysates from U2OS cells where MYC levels 

were either manipulated or not. To detect the recombinant protein the 9E10 anti-MYC 

antibody was used. Unfortunately this antibody was not sensitive enough to detect MYC in 

lysates from cells with endogenous MYC levels. Therefore the protein lysate obtained 

from U2OS cells treated with the highest DOX concentrations (0.1, 0.2 and 1ng/µl) was 

blotted together with different amounts of the recombinant protein (Fig 4.5 B). Several 

lysates coming from U2OS cells treated with either an siRNA against MYC, a control 

siRNA, EtOH or different DOX concentrations were loaded on an immunoblot and the fold 

change of MYC levels and the number of MYC molecules per cell were calculated relative 

to DOX 0.1, 0.2 or 1ng/µl-treated cells (Fig 4.5 D). Since the recombinant and the cellular 

MYC highly differ in size, to avoid any underestimation of the number of MYC molecules 

per cells, the polyacrylamide gels used for the immunoblots were checked via Coomassie 

staining for residual proteins present after the transfer to the PVDF membranes was 

completed (Fig. 4.5 C). Following this procedure, 85,526 (+/- 11,550) MYC molecules 

where detected to be present in –DOX/EtOH treated U2OS cells and 1,237,532 (+/- 

151,192) in 1ng/µl DOX treated cells, the two conditions used for the ChIP-seq (Fig. 4.5 

E). These calculated values were compatible with the saturation model since the number of 

MYC molecules in EtOH and DOX would be high enough to saturate all the binding sites 

detected via ChIP-seq in the two conditions. By using the nuclear volume of U2OS cells 

(Koch et al., 2014), the concentration of MYC in the nucleus was determined (Fig. 4.5 E). 

4.1.5 At supraphysiological levels, MYC binds to low affinity sites and 

weakly expressed genes 

As previously shown (Fig 4.5), MYC seems to preferentially occupy different genes 

according to its protein levels in the cell.  
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To understand what determines the difference between a site that is occupied already at 

low MYC levels and another one that becomes occupied only at high and 

supraphysiological levels some features that could affect MYC function were examined. 

Among these, it is well established that MYC preferentially binds to specific DNA  sites 

called E-boxes (Blackwell et al., 1990, 1993). Since the E-box CACGTG (canonical) has 

the highest affinity for MYC binding (Blackwell et al., 1993; Hu et al., 2005; Sauvé et al., 

2007), the canonical E-box content was checked in MYC bound genes. Binned plots were 

used and the number of genes having a canonical E-box (CACGTG) in a region of ±100bp 

from the summit of the MYC peak were counted in each bin. Before binning, genes were 

sorted either according to MYC occupancy in -DOX or MYC recruitment. 

Figure 4. 6: E-box content and levels of expression influence MYC binding
2
. A-B. Binned plot for 

number of genes in each bin having a canonical E-box (CACGTG) versus MYC occupancy in EtOH (A) or 

MYC recruitment (B). Each dot represent mean of 422  genes. C-D. Binned plot as in A-B, but the mRNA 

expression of the respective gene (rpkm= reads per kilobases per million mapped reads) is shown. 

By sorting according to endogenous MYC occupancy it could be seen that the genes highly 

bound by MYC have a higher number of canonical E-boxes compared to lowly bound ones 
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(Fig. 4.6 A). This suggests that at physiological levels MYC preferentially binds to high 

affinity binding sites. On the other hand, when sorting by MYC recruitment and therefore 

having a representation of where the overexpressed MYC is mainly bound, the number of 

canonical E-boxes decreases with the recruitment (Fig. 4.6 B). This indicates that at 

supraphysiological levels MYC is preferentially recruited to low affinity binding sites. 

Hence, canonical E-box content is a determinant for MYC binding only at low or 

endogenous MYC levels whereas at higher MYC levels other factors could be important 

and necessary to recruit MYC.  

One of such factor could be the expression levels of the target genes. Indeed, Nie and 

colleagues showed that a positive correlation between the extent at which a gene is 

expressed and the strength of MYC binding exists (Nie et al., 2012). Given that the ChIP-

seq and RNA-seq analyses were performed in parallel in U2OS cells, the expression of a 

specific gene could be correlated to the respective MYC binding. As measurement of the 

expression of a specific gene, the rpkm (reads per kilobases per million mapped reads) 

value was used since it takes the number of sequenced reads from the RNA-seq and 

normalizes them for library size and for the length of the specific transcript. Therefore, the 

overrepresentation of the longer transcripts is avoided. As for the E-box analysis, a positive 

correlation was seen between expression of a gene and MYC occupancy in –DOX, 

whereas a negative correlation was detected between expression and MYC recruitment. 

This argues that at endogenous levels, MYC is bound to highly expressed genes whereas 

upon increasing levels, MYC binds to lowly expressed genes. Therefore the level of 

expression of a certain gene is another feature influencing MYC binding. 

4.1.6 MYC recruitment determines gene regulation 

To investigate whether the difference in binding properties of MYC upon changes in 

protein levels translates in the regulation of different target genes, MYC binding data were 

correlated with the gene expression data obtained from RNA-seq. By dividing genes in 

activated and repressed, a positive correlation between the strength of the regulation and 

MYC recruitment was observed for both groups (Fig. 4.7 A). Genes that were already 

strongly bound by MYC at endogenous levels and did not recruit further MYC (MYC 

recruitment of about 1) upon overexpression were also weakly regulated by MYC (Fig. 4.7 

A and B, RPL8 as example). 
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Figure 4. 7: Different MYC levels control functionally different cellular processes
1
. A. Binned plot for 
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MYC recruitment and gene expression regulation. 5,063 activated genes and 4,485 repressed genes were 

sorted according to MYC recruitment and divided in 20 equally sized bins. r indicates the Pearson correlation 

coefficient and p-values were calculated using a Student’s t-test. B. Example of gene tracks for MYC 

binding. C. DAVID analysis of non regulated (left) and regulated (right) genes in response to MYC 

induction. D. Binned plot for the number of genes containing canonical and non canonical E-boxes versus 

recruitment. r represent the Pearson correlation coefficient and p-value were calculated using Student’s t-test.  

On contrary, activated and repressed genes showing a high MYC recruitment were more 

strongly regulated upon MYC overexpression (Fig. 4.7 A and B, SNAI1 and ITGB1 as 

examples). DAVID analysis indicated that different functional categories were stratified 

according to MYC recruitment and were therefore differentially regulated by different 

MYC levels. In fact genes with a recruitment fold change of about 1 and weakly regulated 

were functionally enriched for genes encoding proteins involved in mitochondrial function, 

ribosome biosynthesis, RNA processing and protein biosynthesis. On the other hand, genes 

involved in extracellular matrix metabolism, blood vessel development, regulation of cell 

migration, ROS metabolism etc were enriched among genes with high MYC recruitment 

and strongly regulated. 

As shown before, the number of genes containing a canonical E-box in the MYC peak 

present in their promoter decreased with the recruitment whereas the number of genes 

containing a non-canonical E-box (CANNTG other then CACGTG) increased. This 

suggests that at low levels MYC binds to and saturates genes with a high affinity binding 

sites (canonical E-boxes), regulating mainly cell-growth related processes. When MYC 

levels increase, the high affinity binding sites are already fully occupied and MYC binds to 

and regulates expression of genes with low affinity sites (such as non canonical E-boxes), 

controlling processes that could be cell and tumor specific. Moreover, these analyses also 

argue that, since MYC induced-gene expression activation is thought to be direct and the 

same behavior (Fig. 4.7 A and D) was observed for activated and repressed genes, MYC 

also directly represses target genes.  

4.1.7 Promoter affinity for MYC binding stratifies functionally distinct 

processes 

Since it is difficult to determine a single factor that accounts for the affinity of a promoter 

to MYC, a general estimation of the MYC binding affinity to a certain gene was calculated 

by using the nuclear MYC concentrations and the MYC occupancy obtained via ChIP-seq 

and subsequent analysis.  
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The background input signal was subtracted from the occupancy values and thus the 0,0 

value could be used as third point in order to perform the fitting of the data, using the non-

linear regression method. This led to the calculation of two parameters for every gene 

bound by MYC in the promoter region: the maximal occupancy and, borrowing a term 

from pharmacology, the EC50 value that represent the MYC concentration needed to have 

half of the maximal occupancy (Fig. 4.8 A and B). As the Michaelis-Menten constant for 

enzymes and the dissociation constants obtained via other biochemical methods, the EC50 

is a rough estimation of the affinity, in this case, of a certain gene to MYC (Fig. 4.8 A and 

B). 

 

Figure 4. 8: Calculation of promoter binding affinity to MYC
2
. A. Diagram for MYC concentration and 

MYC occupancy in U2OS cells treated with DOX or EtOH. The line was fitted using non-linear regression. 

B. Gene tracks for MYC binding shown in A. Input is showed as control. 

For example EIF2S2 is a gene equally bound by MYC both in + and –DOX conditions and 

thus the calculated value is much lower than VEGFA, whose MYC binding increased 

considerably upon induction.  

Analysis of the distribution of the EC50 values via a density plot showed that the majority 

of the genes had EC50 values between the endogenous MYC concentration in U2OS cells (-

DOX) and the MYC concentration present when MYC was depleted (siMYC). This 

suggests that these genes are close to saturation at low MYC levels (Fig. 4.9). However, 



Chapter 4: Results 

65 

 

many genes have an EC50 higher than the -DOX MYC concentration indicating that these 

genes need higher MYC levels to be highly bound and saturated by MYC (Fig. 4.9).  

Figure 4. 9: Distribution of EC50 values
2
. Density plot of all the EC50 values calculated by using the MYC 

concentrations and occupancies in + and -DOX treated U2OS cells. The dashed lines indicate the nuclear 

MYC concentration calculated in the indicated conditions in U2OS cells. The x-axis is shown in a 

logarithmic scale. 

All MYC bound genes whose fitting could be performed by the Prism program were sorted 

according to the EC50 values and functional analysis was performed. By using the 

GseaPreranked tool the C5 gene set collection was investigated. Genes with low EC50 and 

thus high binding affinity to MYC were enriched in growth-related processes encoding 

structural constituents of ribosome, proteins involved in translation, RNA binding and 

other cellular biosynthetic processes (Fig 4.10 A and B left panel). On the other side, genes 

with high EC50 and thus low affinity for MYC, were enriched for genes encoding for 

proteins involved in processes that could be cancer-related such as activity related to G 

protein-coupled receptors, specific transporters, TGF-β signaling and the response to 

hypoxia (Fig. 4.10 A and B right panel). Taken together these results indicate that 

promoter affinity to MYC stratifies/differentiates different cellular processes. 
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Figure 4. 10: Promoter affinity to MYC stratifies different cellular processes
2
. A. GSE analysis using the 

Preranked tool of 9,500 genes sorted according to the EC50 values. The C5 gene set collection was used. B. 

Example of enrichment plots form the GSE analysis in A. 

4.1.8 Promoter affinity for MYC correlates with differential regulation of 

the corresponding gene 

Genes encoding proteins belonging to functionally different classes are characterized by 

different MYC binding affinity. To show that genes having different EC50 and thus 

different affinity to MYC are actually differentially regulated by changes in MYC levels, 

RNA-seq was performed in U2OS cells at different MYC levels.  

To identify the genes that would respond to endogenous or low MYC concentrations, 

U2OS cells were transfected with a pool of siRNA against MYC or control siRNAs. MYC 

depletion was very efficient (Fig. 4.11 A). RNA-seq was performed and the C5 gene set 

collection containing GO terms was investigated via GSE analysis. Among the genes that 

were most strongly regulated upon MYC depletion, genes encoding for proteins involved 

in ribosome biogenesis, RNA binding and processing and in mitochondrial metabolism 

were enriched (Fig. 4.11 B). Moreover, these genes (structural constituent of ribosome was 
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used as example) were strongly regulated only upon MYC depletion and not upon MYC 

overexpression (Fig. 4.11 C). 

Figure 4. 11: MYC depletion regulates gene sets involved in cellular growth
2
. A. Immunoblot for MYC 

in U2OS cells transfected with siRNA against MYC or control siRNA. VINCULIN was used as loading 

control. B. GSE analysis using the C5 collection of genes identified via RNA-seq of cells used in A. C-D. 

Enrichment plots of one gene set from GSE analysis in B and GSEA from U2OS cells treated with EtOH, as 

control, or DOX to induce MYC. 

The promoter affinity of the gene sets regulated by MYC depletion was compared with the 

one of genes regulated upon MYC overexpression (Walz et al., 2014). Furthermore a set 

containing genes regulated by MYC knockout in 3T9 fibroblasts was also used (Perna et 

al., 2012). Interestingly, also in this system the induced deletion of endogenous MYC 

(CreER-loxP sites system) led to the regulation of cellular-growth-related processes such 

as nucleotide metabolism, ribosome biogenesis and translation, RNA/rRNA/tRNA 

processing etc. (Perna et al., 2012).  

This analysis showed that the EC50 values of the genes regulated by MYC depletion in 

U2OS (Fig. 4.12 dark grey) was comparable to the one of the fibroblast’s gene set (Fig. 
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4.12 black) and lower than the gene sets regulated by MYC overexpression (Fig. 4.12 light 

grey). This argues that the genes regulated by low or physiological MYC levels, mimicked 

in this case by MYC depletion, have higher affinity for MYC than genes regulated only 

when MYC levels increase and that the high affinity genes are enriched for genes encoding 

growth-related proteins.  

Figure 4. 12: Growth-related processes have the lowest affinity for MYC binding
2
. Boxplot summarizing 

the EC50 value distribution for genes sets regulated by MYC in different conditions. In black, the gene set 

obtained by MYC knockout in 3T9 fibroblasts is shown (Perna et al., 2012), in dark grey depicts gene sets 

from GSEA in Fig. 4.11 B and light grey indicates genes from DAVID analysis in Fig. 4.7 C. p-values were 

calculated with the Mann-Whitney-Wilcoxon test. Comparisons were performed using the gene set with the 

broader distribution (i.e. rib nuc comp).  

To further demonstrate that MYC binding affinity determines regulation by different MYC 

levels, RNA-seq was performed in U2OS cells where MYC levels were titrated. U2OS 

cells were treated with different DOX amounts to induce increasing MYC levels (Fig. 4.13 

A). Total and subsequently mRNA was isolated and RNA-seq was performed in biological 

duplicates. Heat maps with the same contrast were used to check the change in expression 

of genes belonging to the gene sets previously identified to have different EC50 and thus 

different MYC binding affinity in the Preranked GSE analysis (Fig. 4.10 A). As an 

example the structural constituent of ribosome, the RNA binding and the substrate specific 
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transporter activity gene sets were chosen. The genes contained in the latter group were 

strongly regulated also by MYC overexpression (Fig. 4.13 B), whereas the other two gene 

sets were not (Fig. 4.13 B). This further validates the hypothesis that MYC regulates 

different cellular processes according to its cellular levels and that promoter affinity 

determines this regulation. 

Figure 4. 13: Increasing MYC levels in U2OS cells regulate only genes with low binding affinity
2
. A. 

Immunoblot for MYC in U2OS cells treated with increasing DOX concentration. VINCULIN was used as 

loading control. B. Heat maps for changes in genes expression induced by titration of MYC levels. 

4.2 Regulation of repressed genes by MYC partially depends 

on MIZ1 

4.2.1 Repressed genes require high MYC levels to be regulated 

To date, a clear mechanism to describe how MYC-dependent repression of gene 

expression is achieved is still missing.  

The MYC titration RNA-seq experiments performed previously (4.1) suggested that high 

levels of MYC were needed to mediate repression of target genes.  
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Figure 4. 14: Higher levels of MYC are needed for repression
2
. A. Plots for MYC induced changes in 

gene expression (log2FC) versus absolute expression of the respective mRNAs (avg. logCPM). Green 

indicates activated genes (bound by MYC, log2FC>1.5 and p-adj<0.01 in DOX 1ng/µl from RNA-seq of Fig. 

4.2 A) and blue repressed genes (bound by MYC, log2FC<-1.5 and p-adj<0.01 in DOX 1ng/µl from RNA-

seq of Fig. 4.2 A). The colored lines represent median values of activated and repressed genes. B. RT-qPCR 

of selected activated or repressed genes. Dashed line represents putative EC50 value. 

Genes activated and repressed to the same extent (note that the dashed lines in the plots 

represent the median of the regulation of the group of genes, Fig. 4.14 A) by the highest 

DOX concentration, thus the highest MYC levels, were instead regulated to a different 
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degree when a lower DOX concentration/MYC levels were present in the cell. Indeed, the 

median value for the activated genes was 0.72 whereas the one of the repressed genes was 

-0.36 indicating that activated genes were more strongly regulated than repressed ones at 

low overexpressed MYC levels. RT-qPCR of few selected activated or repressed genes 

(Fig. 4.14 B) reinforced the hypothesis that repression of gene expression by MYC is 

achieved at higher levels compared to activation. For CAMKV and RGS16 almost full 

activation is reached already at the first DOX concentration (=0.01ng/µl), whereas for 

COL5A1 and ALDH3B1 full repression is achieved only with higher DOX concentrations 

(>0.05ng/µl). 

Figure 4. 15: EC50 of genes activated by MYC is lower than that of repressed genes
2
. Box plots of EC50 

values of genes regulated by MYC overexpression (log2FC>1 or <-1, p-value<0.05 and logCPM>0) or 

depletion (log2FC>1 or <-1, p-value<0.05 and logCPM>0). p-values were calculated using the Mann-

Whitney-Wilcoxon test.  

Investigation of the EC50 of genes repressed or activated by MYC in U2OS cells were 

MYC was depleted or overexpressed showed that genes repressed by MYC depletion 

(siMYC, MYC activated) have higher affinity for MYC binding (lower EC50), than genes 

activated by MYC overexpression (DOX, MYC activated) and repressed by MYC (MYC 

repressed) (Fig. 4.15). This argues that MYC-dependent repression happens at low affinity 
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binding sites and that again genes responding to MYC depletion have higher affinity to 

MYC. 

MIZ1 is one of the proteins shown to be important for MYC-mediated repression. The 

formation of a complex with MIZ1 was shown to be necessary for the repression of the cell 

cycle inhibitors CDKN2B and CDKN1A by MYC (Seoane et al., 2001; Staller et al., 2001). 

To examine whether MIZ1 is involved in MYC-mediated repression in a more general 

manner, depletion of MIZ1 was induced in U2OS cells together with MYC 

overexpresssion and gene expression was analyzed via RNA-seq. MIZ1 depletion was 

achieved by infecting the cells with lentivirus containing pLKO plasmids encoding 

shRNAs against the MIZ1 mRNA. As control the empty vector was used. MYC was 

induced by adding 0.05 ng/µl DOX to the culture medium, concentration lower than that 

used before but high enough to achieve full repression (Fig. 1.14 B). This was done to be 

closer to a stoichiometric concentration of MYC and MIZ1 even in the overexpression 

condition.  

Figure 4. 16: MIZ1 depletion affects a group of MYC-repressed genes. A. Immunoblot of MIZ1 and 

MYC in U2OS cells treated with EtOH or DOX (0.05ng/µl) infected with lentivirus containing empty vector 

(CTR) or 2 different shRNA against MIZ1. ACTIN was used as loading control. * indicates an unspecific 

band. B. Plot of changes in gene expression induced by MYC overexpression (x-axis) and by MYC 

overexpression in absence of MIZ1 (y-axis). In square brackets are the number of genes belonging to each 

category. 

MIZ1 depletion and MYC overexpression were efficient as shown by immunoblotting 

(Fig. 4.16 A).  
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To find out which genes are regulated by MYC and dependent on MIZ1, the changes in 

gene expression of cells overexpressing MYC (CTR+DOX) versus cells with endogenous 

MYC levels (CTR-DOX) were compared with those identified in cells with MYC 

overexpression and MIZ1 depletion (shMIZ1+DOX) relative to cells with endogenous 

levels of MYC and MIZ1 (CTR-DOX) (Fig. 4.16 B). In a plot, genes regulated to the same 

degree by MYC overexpression with or without MIZ1 depletion would appeared around 

the diagonal representing correlation of 1 between the two conditions (dashed grey line in 

the plot of Fig. 4.16 B). Both, genes activated with a log2FC>0 and p-value<0.05 and 

repressed with log2FC<0 and p-value<0.05 were examined and the majority of them 

behaves in this manner (grey dots Fig. 4.16 B), indicating that their regulation is not MIZ1-

dependent. However, a group of repressed genes, containing about 3 times more genes than 

the one of activated genes, was less strongly regulated in the absence of MIZ1 (Fig. 4.16 

B). Precisely, 385/2700 (blue, Fig. 4.16 B) genes were more than 2 fold less strongly 

repressed in absence of MIZ1 and only 129/2808 (green, Fig 4.16 B) genes were more than 

2 fold less activated. This argues that MIZ1 is necessary for the repression of a certain 

group of MYC target genes but not for MYC-dependent activation. 

 

Figure 4. 17: MYC/MIZ1-dependent genes have low affinity for MYC
2
. A. Box plots of EC50 of genes 

regulated by MYC overexpression and MIZ1 depletion. The ribonucleoprotein gene set was used as reference 

for a gene set with affinity for MYC binding. B. Heat map of genes repressed by MYC in a MIZ1-dependent 

manner in the MYC titration experiment. The regulation scale is the same as Fig. 4.13 B.  
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MIZ1 was shown to be mainly an activator of genes involved in autophagy in neuronal 

progenitor cells where very few or no MYC is present (Wolf et al., 2013). It is possible that 

the interaction between MYC and MIZ1 and thus the formation of the complex that leads 

to transcriptional repression occurs only when MYC levels are high. An indirect evidence 

for this was that genes which were less repressed by MYC in the absence of MIZ1 

(derepressed) had an EC50 higher than activated genes and genes found in the 

ribonucleoprotein complex set used as control for genes with a high affinity for MYC 

binding (Fig. 4.17 A). Moreover these genes reacted to MYC overexpression (Fig. 4.17 B), 

suggesting that they are not saturated by endogenous MYC levels in U2OS cells and thus, 

are targets of MYC at high levels.    

Taken together these results indicate that MIZ1 is more important for MYC-dependent 

repression than for MYC-dependent activation and that the MYC/MIZ1 target genes have 

low affinity binding sites. 

4.3 MYC influences RNA polymerase II phosphorylation and 

distribution as well as histone modifications 

4.3.1 Recruitment and pause-release of RNA polymerase II are controlled 

by MYC 

Transcription of a gene follows several discrete steps. First of all, the promoter is bound by 

general transcription factors that in order recruit the RNA Pol II. This enzyme is bound to 

the preinitiation complex (PIC) in a hypophosphorylated form. TFIIH, via its kinase 

subunit CKD7, phosphorylates the CTD of the RNA Pol II at serine 5 and favors the start 

of the transcription with the release of abortive small mRNAs. At this stage RNA Pol II is 

also bound by two complexes that facilitate the pausing of the enzyme: DSIF and NELF. In 

order to start the productive elongation of the mRNAs, pTEF-b is recruited. pTEFb has a 

kinase subunit (CDK9) that phosphorylates the two pausing complexes, leading to the 

release of NELF and to the conversion of DSIF into a positive elongation factor, and the 

CTD of RNA Pol II at serine 2 residues. In this hyperphosphorylated state RNA Pol II 

starts the efficient elongation of the mRNAs till the 3’ of the gene where termination takes 

place.  

As just mentioned, the steps of transcription are characterized by the different 

phosphorylation states of the RNA Pol II and specific antibodies can recognize the enzyme 
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phosphorylated at different residues. Thus, ChIP-seq experiments were performed to check 

which step of transcription is affected by MYC. RNA Pol II distribution and 

phosphorylation was monitored via ChIP-seq in U2OS cells treated with EtOH (-DOX), as 

control, and with 1µg/ml DOX to induce MYC overexpression. For this analysis an 

antibody recognizing the N-terminal part of the RBP1 subunit of RNA Pol II was used to 

estimate RNA Pol II distribution and recruitment. An antibody binding to serine 5 

phosphorylated RNA Pol II was employed to analyze transcription initiation. An antibody 

recognizing the serine 2-phosphorylated RNA Pol II was used to monitor the transcription 

elongation efficiency. As for MYC ChIP-seq, an IgG serum and 1% input of the 

precipitated chromatin were also sequenced and used as controls. 

After sequencing, Seqminer was used to measure the changes in RNA Pol II induced by 

MYC.  The ratio between the occupancy of total RNA Pol II in the promoter region of 

±DOX-treated cells (recruitment) was calculated for all MYC-bound genes. The same was 

done for the occupancy of serine 5 phosphorylated RNA Pol II in the two conditions to 

check if MYC influences TFIIH in the phosphorylation of RNA Pol II and thus 

transcription initiation. To examine whether MYC controls transcription elongation, the 

ratio of the occupancy of serine 2 phopshorylated RNA Pol II in ±DOX-treated cells for 

each gene was calculated around the termination site (±1000bp from the UCSC annotated 

termination site). The calculated ratios were correlated with changes in gene expression 

induced by MYC at target genes and therefore, as shown before (Fig. 4.7 A), indirectly 

with MYC recruitment. Specifically, genes were sorted according to gene expression 

regulation (measured previously via RNA-seq) and divided in 20 equally-sized bins. For 

each bin, median change in gene expression induced by MYC overexpression and median 

change in RNA Pol II occupancy or phosphorylation was calculated and plotted (Fig. 4.18 

B).  

A positive correlation with gene expression regulation by MYC (Fig. 4.18 B) was observed 

for all the modifications analyzed. At activated genes, MYC led to an increase in RNA Pol 

II recruitment at the promoter and to higher phosphorylation of RNA Pol II at serine 5 

(Fig. 4.18 A and B). In contrast, at repressed genes MYC overexpression decreased the 

amount of total and serine 5 phosphorylaed RNA Pol II present at the promoter (Fig. 4.18 

A and B) indicating that MYC suppressed RNA Pol II recruitment and transcription 

initiation at downregulated genes. 
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Since the slope of the line fitting the data was comparable between the two modifications 

(Fig. 4.18 B, mRNA Pol II=0.2089 and mpSer5RNA Pol II=0.2260 ), MYC regulated mainly RNA 

Pol II recruitment and consequently this influenced transcription initiation.   

Figure 4. 18: MYC controls RNA Pol II recruitment and phosphorylation
1
. A. Gene tracks of MYC 

binding, total RNA Pol II (Pol II), phosphorylated serine 5 RNA Pol II (pSer5 Pol II) and phosphorylated 

serine 2 RNA Pol II (pSer2 Pol II) distribution in U2OS cells treated with EtOH (-DOX) as control, or 1ng/µl 

DOX to induce MYC overexpression. Two examples of MYC target genes are shown. Input was used as 

control. B. Binned plots of MYC-induced changes in gene expression (x-axis) versus changes in total RNA 

Pol II and pSer5 RNA Pol II at the promoter and pSer2 RNA Pol II around the termination site at each MYC 

target. m indicates the slope of the lines fitting the data. Each dot represents the median of 365 genes.  

Looking at the serine 2 phosphorylated RNA Pol II around the termination site and having 

an estimation of the transcription elongation efficiency (Fig. 4.18 A and B), it can be seen 

that on repressed genes the extent of the regulation was highly comparable with the one 

seen for total RNA Pol II (Fig. 4.18 B). This indicates that at repressed genes MYC only 

influences RNA Pol II recruitment. On the other hand, at activated genes the degree of 
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change of serine 2 phosphorylated RNA Pol II occupancy induced by MYC was higher 

than that induced on total RNA Pol II (Fig. 4.18 B), suggesting that at these genes, beside 

inducing recruitment, MYC also stimulates transcription elongation. The effect that MYC 

exerted on the transcription elongation of the activated genes was additive to the one it had 

on RNA Pol II recruitment. A possible interpretation of these results suggests that MYC 

might control mainly RNA Pol II recruitment at all target genes and the changes in 

phosphorylation at serine 5 (and serine 2 for repressed genes) might be a consequence of 

this regulation. Only at activated genes MYC additionally controls RNA Pol II 

phosphorylation at serine 2 and thus transcription elongation.  

4.3.2 MYC controls histone modification deposition at target genes 

A possible mechanism by which MYC controls RNA Pol II recruitment, and additionally 

transcription elongation, could be the recruitment/interaction of MYC with histone 

modifying enzymes that specifically modify histones and alter the chromatin state of MYC 

target genes. In general high acetylation of histones 3 and 4 is associated with transcription 

activation whereas low acetylation of the same comes along with inactive transcription 

(Eberharter and Becker, 2002). Furthermore, previous studies have shown that MYC 

influences the chromatin state of target genes by indirectly altering the distribution of 

histone modifications (Guccione et al., 2006; Knoepfler et al., 2006; Martinato et al., 

2008).  

To investigate the changes in histone modifications induced by MYC in U2OS cells and 

whether they correlate with the MYC-dependent regulation of gene expression, pan-

acetylation of histones 3 (pan-AcH3) and 4 (pan-AcH4) was checked. ChIP-seq was 

performed in U2OS cells treated with EtOH (-DOX) or 1ng/µl DOX using antibodies that 

recognize pan-AcH3 and pan-AcH4. IgG ChIP-seq and 1% input samples were included as 

controls. As for RNA Pol II analysis, Seqminer was used to calculate the amount of 

acetylation around (±1000bp) the summit of the MYC peaks in the two conditions. 

Subsequently, the ratio between the two occupancies was calculated for each MYC-bound 

gene, genes were sorted according to regulation and divided in equally sized-groups. For 

each group the median of gene expression regulation and the median change in acetylation 

was calculated and plotted. 

Both for pan-AcH3 and pan-AcH4, there was a positive correlation between gene 

expression regulation and changes in histone acetylation. At MYC-activated genes, the 

increase in gene expression was accompanied by an increase in acetylation of histone 3 and 
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4 in the promoter region. Vice versa, at repressed genes the extent of the acetylation 

decreased with the intensity of the regulation. In agreement with previous studies, this 

suggests that regulation of gene expression by MYC is associated with changes in histone 

acetylation. Furthermore, since gene expression regulation correlated with MYC 

recruitment, changes in histone modifications indirectly correlated with MYC recruitment, 

arguing that recruitment of MYC and not occupancy influences acetylation of H3 and H4. 

Figure 4. 19: MYC-dependent gene regulation is associated with changes in histone acetylation
1
. A. 

Binned plot for MYC-induced changes in gene expression (x-axis) versus changes induced by MYC in 

acetylation of histone 3 (y-axis). 9614 genes were divided in 20 equally-sized-bins. Each dot represents 

median of the bin. r is the Pearson correlation coefficient of the line fitting the data and the p-value for r was 

calculated using a Student’s t-test. B. Binned plot as in A but acetylation of histone 4 is shown. 

Histone modifications can also be used to identify enhancers. Particularly, enhancers are 

defined as regions with high monomethylation of the lysine 4 of histone 3 (H3K4me1), 

high acetylation of lysine 27 of histone 3 (H3K27Ac) and low tri-methylation of lysine 4 

of histone 3 (H3K4me3) (Calo and Wysocka, 2013; Creyghton et al., 2010; Lin et al., 

2012). Moreover, enhancer activation and usage are very cell type specific and data sets 

generated from one cell type or tissue cannot usually be used for another one (Heinz et al., 

2015).  

Previous papers have shown that MYC binds to enhancers in primary B and T cells and in 

a human lymphoma model, reinforcing its role as a general amplifier of gene expression 

(Lin et al., 2012; Nie et al., 2012).  



Chapter 4: Results 

79 

 

To investigate whether this is the case also in U2OS cells, ChIP-seqs for histone 

modifications to identify enhancers were performed in parallel to MYC binding analysis.  

As for promoter regions, MYC binding was present at enhancers and increased with MYC 

overexpression (Fig 4.20). Further analysis on this data set was performed by Susanne 

Walz and showed no correlation between MYC recruitment at enhancers and the regulation 

of gene expression induced by MYC (Walz* and Lorenzin* et al., 2014). This indicates 

that, although MYC binds to enhancers, the changes in MYC binding at enhancers did not 

influence expression of the neighboring genes in U2OS cells. New more accurate methods 

to define enhancers, which have been developing in the last years (Dekker et al., 2002; Wit 

and Laat, 2012), might lead to different results. 

 

Figure 4. 20: ChIP-seq traces for MYC binding and for histone modifications that were used to define 

enhancers (high H3K4me1 and H3K27Ac, low H3K4me3)
1
. The arrow indicates the putative enhancer of 

the TRIP13 gene.     
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Chapter 5:  

Discussion 

MYC expression is elevated or deregulated in up to 70% of all human cancers (up to 70%) 

and is often associated with aggressive and poorly differentiated tumors. Several studies in 

transgenic mouse models of human tumors showed that deregulated expression of MYC 

proteins promotes tumorigenesis and that established tumors depends on elevated MYC 

levels (Dang, 2012; Gabay et al., 2014; Soucek et al., 2013).  

Genetically targeting MYC has been revealed to be a successful way of treating tumors in 

mice but therapies targeting MYC proteins are still far away from entering the clinics 

(Soucek et al., 2008, 2013). It has been difficult to target MYC activity directly with small 

molecules given the large surface the protein has to interact with the DNA and with its 

partner protein MAX (Nair and Burley, 2003; Yin et al., 2003). However, proteins acting 

upstream of MYC, that regulate its stability or important for regulating expression of its 

target genes, have been already targeted by several developed drugs leading to tumor 

regression in mouse models (Brockmann et al., 2013; Delmore et al., 2011; Mertz et al., 

2011; Peter et al., 2014).  

Since MYC exerts its functions via the regulation of transcription (Eilers and Eisenman, 

2008), new ways of targeting tumors could come from the identification of genes that are 

cancer specific and regulated by MYC only at oncogenic levels. This could lead to the 

design of drugs that target proteins expressed or activated only in tumors and thus affect 

cancer but not normal cells, opening a therapeutic window to treat tumors with deregulated 

MYC expression.  

With the development of the microarray and next generation sequencing technologies 

many studies have identified MYC target genes (Coller et al., 2000; Mao et al., 2003; 

Menssen and Hermeking, 2002; Perna et al., 2012; Schuhmacher et al., 2001; Zeller et al., 

2003, 2006). These studies identified a core set of processes that are regulated by MYC 

including ribosome biogenesis, protein translation, several biosynthetic metabolic 

pathways, cell adhesion and cytoskeleton. Although thousands of MYC responsive genes 

have been identified, only a minority of target genes are regulated or bound by MYC in all 

studies with the differences coming from the cellular system (cell type or species) and the 
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kind of technology used. Furthermore, the set of target genes that distinguish MYC 

physiological function from the pathological/oncogenic one, whether it exists or not, has 

not been fully understood yet. Indeed, deregulation of MYC could, not only activate and 

repress MYC physiological targets, but also regulate expression of genes that are not its 

targets under physiological conditions (Dang et al., 2006).  

During the recent years, discrepancies have emerged about how MYC recognizes its target 

genes (Blackwell et al., 1993; Guo et al., 2014) and whether it regulates a pre-existing 

cellular program(s) amplifying expression of all genes with an open promoters (Lin et al., 

2012; Nie et al., 2012) or it activates and represses expression of specific sets of genes 

(Brockmann et al., 2013; Horiuchi et al., 2012; Kawauchi et al., 2012; Northcott et al., 

2011) (“amplifier” vs. “specifier” model). 

In order to shed light onto these topics genome-wide binding analysis and gene expression 

analysis in U2OS cells having endogenous/physiological or supraphysiological MYC 

levels were performed. 

The osteosarcoma U2OS cell line was chosen as cellular system for this work since it is a 

tumorigenic cell line that has relatively low levels of endogenous MYC, as compared with 

other tumor cell lines and with un-transformed epithelial cell lines (Fig. 4.1 A). Analysis of 

MYC targets in this setting could reveal the role of MYC at physiological levels, although 

in an oncogenic environment. Supporting this view, depletion of MYC by siRNA affected 

the same processes as knockout of MYC in serum stimulated fibroblasts (Fig. 4.11 B and 

Perna et al., 2012). Expression of genes encoding for proteins involved in ribosome 

biogenesis, RNA processing, nucleotide metabolism and mitochondrial matrix was 

dowregulated both in U2OS and fibroblast upon MYC depletion/knockout.  

In order to investigate oncogenic MYC function, U2OS were engineered to overexpress 

MYC in an inducible manner. Prolonged overexpression of MYC in this system induced 

apoptosis, indicating the expression of a functional protein (data not shown) (Walz* and 

Lorenzin* et al., 2014). Moreover, GSE analysis showed that among the gene sets 

regulated by MYC overexpression, the “Kim MYC amplification targets up” gene set was 

enriched (Fig. 4.2 C). This indicated that by overexpressing MYC in the U2OS tumor cell 

line, that have physiological levels of MYC, there is the activation of a oncogenic MYC 

signature and validated further the cellular system and set up used for the experiments.  

Estimation of the number of MYC molecules expressed by U2OS cells showed that 

approximately 85,500 molecules of endogenous MYC are present in these cells and this 

number rises to about 1x10
6
 upon treatment with 1µg/ml doxycyline (Fig. 4.5). Previous 
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estimates found that three different human tumor cell lines express between 110,000 and 

880,000 molecules of MYC per cell (Lin et al., 2012), confirming that U20S cells express 

relatively low levels of endogenous MYC and that MYC levels reached upon doxycycline 

induction can be found in human tumor cells.  

5.1 Several factors shape transcriptional amplification by 

MYC 

B-cells proliferate slowly in absence of MYC and the activation of its expression (via LPS 

stimulation of naïve cells or overexpression) induces massive cell growth and finally  cell 

division (Lin et al., 2012; Nie et al., 2012; Sabò et al., 2014). Moreover, activation of B-

cells from the naïve state increases synthesis of all macromolecules that are required to 

satisfy such rapid growing cells, in particular the transcription machinery and other 

components that are needed to activate gene expression. In this context, MYC invades 

promoters and enhancers, even with low binding affinity, and directly amplifies 

transcription of all open promoters but not to the same extent. Enhancers and promoters 

differ in their affinity for MYC and this dictates differences in the response (Wolf et al., 

2014). Moreover, in B cells MYC activation is accompanied by an increase of 2-3 folds in 

total and mRNA levels. By using experimental and data normalization methods for gene 

expression analysis that do not account for the increase in RNA content of one sample 

compare to the others, genes that are strongly amplified would appear as activated, 

whereas genes that are left behind (weakly regulated) would appear as repressed by MYC. 

In order to avoid this problem, normalization based on the number of cell used and/or on 

spike-in standards should be used (Lin et al., 2012; Lovén et al., 2012; Nie et al., 2012; 

Sabò et al., 2014). 

Beside direct transcription amplification induced by MYC binding to promoters and 

enhancers, MYC can also indirectly amplify transcription by inducing GCN5, that 

acetylates histones causing a global opening of the chromatin, and PRPS2 

(phosphoribosyl-pyrophosphate synthetase 2), which promotes the already enhanced 

nucleotide biosynthesis (Cunningham et al., 2014; Knoepfler et al., 2006; McMahon et al., 

2000). Therefore, in B cells MYC can clearly induce amplification of gene expression as 

result of direct MYC binding to promoters and enhancers and indirect activation of 

chromatin remodeler genes.   
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U2OS cells differ from B-cells. They did not increase cell size in response to MYC 

overexpression, rather it decreased (Fig. 4.1 E), and their total and mRNA amount did not 

change upon MYC overexpression (Fig. 4.1 F and G). Therefore, the same amount of RNA 

from the different samples could be used to perform gene expression analysis via RNA-

seq. This led to the identification of a set of genes that is activated by MYC and a set that 

is repressed (Fig. 4.2 A), confirming that in this cellular system MYC does not amplifies 

all open promoters. Parallel binding analysis via ChIP-seq showed that about half of the 

genes activated and ¼ of the genes repressed were also directly bound by MYC. Moreover, 

there was a correlation between MYC recruitment and gene expression changes for both 

activated and repressed genes, further supporting a direct role of MYC in mediating 

activation but also repression of transcription.  

As shown by analyzing the U2OS data, saturation for MYC binding occurred at several 

genes (Fig. 4.4 and 4.8) and promoter affinity stratified cellular processes that are regulated 

by different MYC levels (Fig. 4.7 C, 4.10 A, 4.12 and 4.13). Moreover, repressed genes 

seemed to require higher levels to be regulated and accordingly, had also a higher EC50 and 

thus lower affinity for MYC binding (Fig. 4.14 and 4.15).  

This might suggest that in a cellular system that goes from resting/quiescent state, with 

very low levels of MYC, to proliferation, the function of MYC is to activate transcription 

and amplify expression of genes necessary for cellular growth, such as those involved in 

ribosome biogenesis, translation, RNA processing etc. (Schuhmacher et al., 2001). These 

are the genes with the highest affinity for MYC, highly enriched for canonical E-box in 

their promoters and thus are the first to be occupied. This would be consistent with the role 

of MYC in Drosophila melanogaster. In flies, MYC binds to E-boxes (CACGTG) and 

activate transcription of target genes encoding proteins involved in RNA and protein 

biosynthesis (Gallant et al., 1996; Johnston et al., 1999; Orian et al., 2003). Consistently, 

dMYC stimulates cell growth, but not proliferation. Moreover, MYC binding and gene 

expression analysis after weak MYC overexpression in breast epithelial cells, that have 

low levels of endogenous MYC (Fig. 4.1 A), showed that MYC only activates target genes 

involved in cellular growth  and no direct MYC-mediated repression was detected (von 

Eyss et al., 2015; Jaenicke et al., 2015).  

In other biological conditions, such as embryonic development, regeneration of 

compromised tissues, wound healing, or at specific stages of tumor development, MYC 

levels could increase above those needed for cellular growth. If this happens, the high 

affinity binding sites would already be saturated and MYC would spill over to other free 
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sites that have low affinity. These are present in the promoter of genes involved in the 

regulation of angiogenesis, cell migration, extracellular matrix and in the response to 

hypoxia (Fig. 4.7), processes that may be needed only in these particular conditions. 

Consistently, MYC repressed genes have low affinity sites in their promoters (Fig. 4.7 

and4.14) and are enriched for genes involved in cell adhesion and extracellular matrix 

(data not shown and Gebhardt et al., 2006; Inghirami et al., 1990).    

MYC could have evolved from a transcription factor that only activates and amplifies 

expression of genes involved in cellular growth, as in flies and in cells that have low levels, 

to one that via interaction with low affinity sites, and probably via low affinity protein-

protein interactions, both activates and represses transcription.  

Different factors could explain how MYC can amplify gene expression in one system and 

specifically activate and repress transcription in another one.  

The amount of MYC protein present in the cells, beside a pre-established transcriptional 

program, is important to determine the MYC induced-transcriptional output. Indeed, breast 

epithelial cells and naïve B-cells have low levels of MYC compared to U2OS (for breast 

epithelial cells see Fig. 4.1 A, naïve B-cells have 13,000 MYC molecules per cells (Lin et 

al., 2012) compared to 85,526 of U2OS).  

Protein-protein interactions are crucial for MYC function. It was shown that MYC, mainly 

via MYC box II but also via its C-terminal part and other MYC boxes, recruits many co-

activators. Moreover, MYC was shown to have thousand of binding sites in the genome 

and to be recruited at genes where histone marks for open chromatin are present. This 

would be consistent with a general role of MYC in activating transcription and amplifying 

expression of a preexisting transcriptional program present in the cell, which is marked and 

recognized by MYC via specific histone modifications. This is probably the case for B-

cells, where stimulation via LPS or MYC overexpression leads to a global opening of the 

chromatin with amplification of expression of all genes that have an open promoter (Lin et 

al., 2012; Nie et al., 2012; Sabò et al., 2014). In U2OS cells instead, although thousands of 

MYC binding sites are detected (Fig. 4.3 C) and a correlation between MYC binding sites 

and histone modifications, such as H3K4me3, is found (data not shown and Walz et al., 

2014), no amplification of transcription but specific up- and downregulation of selected 

target genes was detected. This could be explained by saturation of binding sites (see 

above) and by the interaction of MYC with MIZ1.  
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MIZ1 alone is a transcriptional activator that in neuronal progenitor cells binds few 

hundreds of promoters found in genes involved in autophagy and in the control of the 

vesicular trafficking required for autophagy (Wolf et al., 2013). Moreover, MIZ1 is a 

negative regulator of cell cycle progression and participates in the TGF-β signaling by 

binding and activating expression of CDK inhibitors (CDKN2B, CDKN1A and CDKN1C) 

(Adhikary et al., 2003; Seoane et al., 2001, 2002; Staller et al., 2001). At these genes, the 

formation of the ternary complex MAX/MYC/MIZ1 represents one of the best studied 

examples of MYC mediated-repression. MYC can be recruited with MAX, to the promoter 

of target genes by interaction with MIZ1 (Herold et al., 2002; Mao et al., 2003). This 

hinders the recruitment by MIZ1 of other transcriptional co-activators, such 

nucleophosmin and p300 acetyltransferase (Staller et al., 2001; Wanzel et al., 2008) and 

thus inhibits gene expression. Furthermore, MYC directs DNMT3a methyltransferase 

activity to MIZ1 target genes (Brenner et al., 2005). 

Neuronal progenitor cells do not express MYC and in these cells MIZ1 only occupies few 

binding sites, which contain the direct MIZ1-binding sequence (Wolf et al., 2013). ChIP-

seq analysis for MYC and MIZ1 in tumor cells, such as HeLa cells, T-cell lymphoma and 

pancreatic tumor, showed that MYC heavily influences MIZ1 binding to DNA, and 

increasing levels of MYC proteins correspond to increase amount of MIZ1 bound to the 

DNA (Walz et al., 2014). Furthermore, inspection of MYC and MIZ1 binding at wide 

genomic regions showed that the binding sites of the two proteins highly correlates, 

suggesting a broader role of MIZ1 in MYC-mediated regulation of transcription, than 

anticipated. At these sites, MYC and MIZ1 binds in a ternary complex with MAX (Walz et 

al., 2014).  

In U2OS cells MIZ1 depletion by shRNA affects MYC-mediated repression but not 

activation. Indeed, a part of genes that were repressed after MYC overexpression, were de-

repressed by two fold or more in absence of MIZ1 (Fig. 4.16 B) indicating that MIZ1 is 

required for the repression of a part of, but not all, MYC target genes. Overexpression in 

U2OS cells of a mutant form of MYC, MYC(V394D), led to the same results (Walz et al., 

2014). MYC(V394D) is a single point mutant of MYC where the valine residue at position 

394 in the helix-loop-helix domain is mutated to aspartic acid. It was previously shown 

that this region of MYC is important for interaction with MIZ1 (Peukert et al., 1997) and 

indeed substitution of one amino acid with a negative charge blocked interaction with 

MIZ1 but retained the ability to bind to MAX and to activate transcription (Herold et al., 

2002). Accordingly, for all MYC-repressed genes detected after MYC overexpression in 
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U2OS cells, the extent of the de-repression by depletion of MIZ1 correlated with their 

enhanced expression in cells overexpressing MYC(V394D) instead of MYC (Walz et al., 

2014). Transcriptional activation by MYC(V394D) was mostly unaffected. These supports 

further the idea that the formation of a MYC/MIZ1 complex can alter MYC function and 

shape/restrict the general amplifier activity of MYC. The in vivo relevance of the complex 

formation between MYC and MIZ1 was shown by van Riggelen and colleagues. They 

revealed that forming a MYC/MIZ1 repressive complex is important for MYC to induce 

development of and maintain T-cell lymphoma by antagonizing the ability of TGF-β 

pathway to suppress proliferation and induce senescence (Van Riggelen et al., 2010).  

The formation of a MYC/MIZ1 repressive complex is thought to happen when 

supraphysiological MYC levels are present and, probably, the transcriptome amplification 

induced by MYC needs to be limited. Consistently, as previously described, MYC and 

MIZ1 broadly associate on chromatin in tumor cells with high levels of MYC (Walz et al., 

2014). The genes repressed by this complex have higher EC50, and thus lower affinity for 

MYC binding, than MYC-activated genes or genes involved in ribosome biogenesis (Fig. 

4.17) indicating that higher levels of MYC needs to be present in order for the transcription 

factor to strongly bind these genes. 

The direction of the transcriptional response to MYC and/or MIZ1 binding depends on the 

ratio of the two proteins bound at a given promoter (Walz et al., 2014). Analysis of MYC 

and MIZ1 binding in HeLa cells and in MYC-driven T-cell lymphoma model showed that 

the MYC/MIZ1 ratio present at each promoter determines activation or repression of the 

gene: genes with high MYC/MIZ1 ratio – highly bound by MYC – are MYC-activated 

target genes. Genes with low MYC/MIZ1 ratio – highly bound by MIZ1 – are MIZ1-

activated genes. Genes with a ratio of about 1 are MYC/MIZ1 repressed genes (Walz et al., 

2014).    

Beside MYC levels, other proteins affect MYC/MIZ1 complex formation.  

The ubiquitin ligase HUWE1 was shown to associates both with MYC and with MIZ1 and 

is required for growth of colorectal cancer cells in culture and in xenograft models. 

Inhibition of HUWE1 via small molecules inhibits MYC-dependent transactivation by 

stabilization of MIZ1. MIZ1 accumulates at MYC bound promoters, blunts activation and 

enhances repression (Inoue et al., 2013; Peter et al., 2014). 

The expression of the ARF tumor suppressor protein is induced by supraphysiological 

levels of MYC and the encoded protein interacts with MYC and inhibits MYC-dependent 
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transactivation  (Qi et al., 2004; Zindy et al., 1998). Furthermore, ARF also binds to and 

inhibits HUWE1 promoting association of MIZ1 with MYC (Chen et al., 2005; Herkert et 

al., 2010). 

 

Determination of whether transcriptional amplification by MYC occurs in tumors still 

needs further investigation. Although one of the two studies that identified MYC as a 

general amplifier of gene expression focused the analysis on a human lymphoma model, 

the evidence to support this model came mostly from the transition of B-cells from a 

resting to a proliferating state in response to stimulation (Lin et al., 2012; Nie et al., 2012). 

B-cells reacted in an exaggerated way to their induction increasing size and RNA content. 

It is hard to envision that in a solid tumor, a cell could allow itself to increase heavily cell 

size and to direct all the available energetic resources to transcription amplification, 

considering the limited nutrients present in the tumor microenvironment and the tissue 

homeostasis. Moreover, to show that tumor cells with MYC amplification bear elevated 

RNA content compared to non MYC-amplified cells, small cell lung cancer cells were 

analyzed coming from two different patients, having therefore a different genetic 

background (Lin et al., 2012). On the other hand, the analysis performed in U2OS cells, 

where no MYC induced-amplification was observed, relies on an induction of MYC 

expression that might lead to secondary effects, among which transcriptional repression. 

5.2 MYC binding to DNA 

MYC as a helix-loop-helix transcription factor, heterodimerizes with MAX and binds to 

specific DNA sequences called E-boxes. CACGTG is the canonical E-box sequence bound 

by the MYC/MAX complex, but the two central nucleotide can also change (non canonical 

E-boxes) retaining the ability to bind the complex (Blackwell et al., 1990, 1993; 

Blackwood and Eisenman, 1991).  

Although the dissociation constant (KD) values for MYC binding to canonical E-boxes 

change a lot depending on the experimental setup used (from 0.1 to 2.12 to 90.5nM) 

(Fieber et al., 2001; Guo et al., 2014; Hu et al., 2005), several in vitro studies showed that 

MYC binding affinity to canonical E-boxes is higher than that to non canonical E-boxes or 

other DNA sequences. Indeed, Hu and colleagues showed that the MYC/MAX complex 

has 2.5fold more binding affinity for the canonical E-box sequence CACGTG than to the 

non canonical sequence CAGGTG (Hu et al., 2005). Instead, MYC/MAX binds with 
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200fold more affinity the canonical E-box than other DNA, represented by the sequence 

ATCTAG (Guo et al., 2014). These observations, together with a large number of studies 

focusing on the effect of MYC on specific genes, led to the prevailing model that MYC, in 

conjunction with MAX, binds to E-box sequences and regulates transcription of RNA Pol 

II and I (Dang, 2012; Eilers and Eisenman, 2008; Lüscher and Vervoorts, 2012). However, 

the discovery that MYC acts globally regulating all expressed genes hint that MYC 

recruitment might be less sequence-dependent. 

Canonical E-boxes are also enriched in the MYC binding sites in the U2OS system (Fig. 

4.6 A and 4.7 D). However, only one third of all genes bound by MYC bear in their 

promoter a canonical E-box. Furthermore,  mathematical modeling of MYC/MAX binding 

suggested that the sole binding to the DNA backbone is not sufficient to account for the 

wide chromatin binding of MYC at sites where no E-boxes are present (Uwe Benary and 

Jana Wolf personal communication).  This indicates that other factors could contribute to 

recruitment of MYC. 

Non canonical E-box sequences, with low affinity binding for MYC, play a role in 

recruiting MYC at high levels, at which canonical and high affinity binding sites are 

already occupied and saturated (Fig. 4.7 D). These sequences are also enriched in the 

enhancers bound by MYC in P-493 cells (Lin et al., 2012). 

Specific histone modification could also play a role in recruiting MYC. MYC binding 

indeed highly correlates with histone modifications that are present at open promoters and 

are associated with active transcription. Specifically, MYC is present at promoters of genes 

marked with H3K4me3, H3K27Ac, and it has been proposed that histone 3 lysine 4 and 79 

methylation is required for MYC to engage target genes (Guccione et al., 2006; Martinato 

et al., 2008; Nie et al., 2012; Sabò et al., 2014; Zeller et al., 2006). Enhancers that have, 

beside high H3K4me1 and low H3K4me3, acetylation of lysine 27 of histone 3, a marker 

for active enhancers, are also bound by MYC. Moreover, MYC binding correlates with pan 

histone 3 and 4 acetylation (Fig. 4.19 and Martinato et al., 2008; Nie et al., 2012). Since 

MYC binding correlates also with RNA Pol II distribution and the expression level of  

genes (Fig. 4.6 C and Guo et al., 2014; Nie et al., 2012), is unknown whether the histone 

marks required for MYC or present at its bound sites are recognized by specific epigenetic 

readers or are just associated with the accessibility of the DNA in modified nucleosomes. 

Nevertheless, MYC does not have domains to interact directly with the histone 

modifications, but via contact with its numerous interactors it could be recruited to these 
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sites. For example a recent study showed that MYC interacts with WDR5 which promotes 

target gene recognition and tumorigenesis by MYC (Thomas et al., 2015). WDR5 is a 

WD40-repeat-containing protein that assembles into chromatin regulatory complexes 

including MLL/SET methyltransferases (methylates H3K4) and MOF/NLS histone 

acetyltransferases (H4Ac) (Thomas et al., 2015).  

MYC can also interact directly with the basal transcription machinery and thus could be 

recruited to the DNA independently of E-boxes. As previously shown MYC interacts with 

TFIIH and pTEF-b (Bouchard et al., 2004; Cowling and Cole, 2007; Eberhardy and 

Farnham, 2002; Gargano et al., 2007; Kanazawa et al., 2003; Rahl et al., 2010), important 

proteins for promoting transcription initiation and elongation. Moreover, MYC interacts 

with TFIIIB and is recruited to RNA Pol III genes via this interaction (Felton-Edkins et al., 

2003; Gomez-Roman et al., 2003). rDNA genes that are transcribed by RNA Pol III do not 

have E-boxes.  

A possible role for E-boxes at MYC target sites could be to stabilize MYC binding once 

the transcription factor is recruited by other means.    

5.3 Consequences of MYC binding  

Upon binding at target genes, MYC controls their expression in several ways. 

As shown earlier by several studies and by ChIP-seq of histone modifications upon 

induction of MYC in U2OS cells, MYC controls acetylation of histones (Guccione et al., 

2006; Martinato et al., 2008). At repressed genes acetylation of histone 3 and 4 decreases, 

whereas at activated genes it increases (Fig. 4.19). MYC does this by recruiting histone 

modifying enzymes (see 1.3.1 and 1.3.3). The augmented acetylation, besides leading to a 

more open chromatin, could also recruit other co-activators that favor transcription. For 

example, the BET protein family employs tandem bromo domains to recognize specific 

acetylated lysines in the N-terminal of histones (Wu and Chiang, 2007). One member of 

this family is BRD4, which plays an important role in regulating expression of growth-

related genes by recruiting p-TEFb (Moon et al., 2005; Yang et al., 2005, 2008). BRD4-

mediated recruitment of p-TEFb was shown to be important for expression of the MYC 

gene itself, and inhibition of BRD4 via JQ1 suppresses expression of MYC-dependent 

genes (Delmore et al., 2011; Filippakopoulos et al., 2010; Venkataraman et al., 2014). 
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Although no evidence showed that MYC binding associates with BRD4 recruitment, MYC 

could induce acetylation that in turn enhances the recruitment of p-TEFb via BRD4, 

providing an indirect and druggable mechanism by which MYC induces gene expression. 

Yet, MYC was shown to directly interact with p-TEFb leading to increase phopshorylation 

of serine 2 residues of the CTD of RNA Pol II enhancing transcription elongation 

(Bouchard et al., 2004; Eberhardy and Farnham, 2002; Gargano et al., 2007; Kanazawa et 

al., 2003; Rahl et al., 2010). ChIP-seq of RNA Pol II phosphorylated at serine 2 in U2OS 

cells also showed the presence of an increase amount of serine 2 phosphorylated RNA Pol 

II in the gene body in cells overexpressing MYC compared to cells with endogenous MYC 

levels (Fig. 4.18). Two scenarios could lead to this result: on one hand, MYC binding 

could enhance the activity of the RNA Pol II that is ready and fully-equipped for the 

efficient transcription of the nascent mRNA. On the other hand, MYC recruitment could 

prematurely push RNA Pol II into elongation of the mRNA getting the enzyme stuck as 

transcription proceeds. Indeed, the recruitment of splicing factors and proteins for the 

export of the mRNA is necessary to remove the mRNA from the template DNA and to 

ensure its correct elongation. Depletion in human cells of THOC1, a subunit of the 

THO/TREX complex which mediates the export of the mRNA to the cytoplasm (Rondón 

et al., 2010), reduces transcription elongation, RNA export and leads to formation of RNA-

DNA hybrids (R-loops) which cause genome instability (Domínguez-Sánchez et al., 2011). 

Interestingly, an shRNA screen looking for genes that are required for MYC function 

identified THOC1 as gene whose knockdown prevent cells to undergo MYC-induced 

apoptosis (Popov et al., 2007). This indicates that in order for MYC to fulfill its function, 

the transcription apparatus and its co-factors need to be available and in proximity of the 

transcription site. 

Accumulation of the RNA Pol II in the gene body could also be due to the depletion of the 

nucleotide pool needed for the transcription. Although MYC enhances the nucleotide 

biosynthetic pathways (Liu et al., 2008; Mannava et al., 2008), it cannot be excluded that 

the increase in transcription of several hundred genes upon MYC overexpression consumes 

the available nucleotides causing the stalling of the RNA Pol II while it is transcribing.  

To discriminate whether the RNA Pol II accumulated in the gene body of MYC target 

genes is actually efficiently transcribing or it is stalled because of missing substrates or/and 

co-factors, techniques that can determine whether RNA Pol II is only DNA-bound or 

effectively engaged in transcription should be employed. For example the global run-on-

sequencing (GRO-seq) assay enables to map and quantify transcriptionally engaged 
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polymerase genome wide (Core et al., 2008). This assay is based on a nuclear run-on 

assay, where nascent RNAs that are associated with transcriptionally engaged RNA Pol are 

elongated in conditions where new initiation is prohibited. To specifically recognize newly 

elongated RNA, the ribonucleotide analog 5-bromouridine 5′-triphosphate (BrUTP) and an 

antibody against it are used. The BrU-tag nascent RNAs are then sequenced and mapped to 

the corresponding genome allowing the identification of genes that are actively transcribed 

at a specific time or in a defined condition (Core et al., 2008, 2012).   

Recent studies showed that high levels of MYC are associated with invasion by MYC of 

all open promoter and enhancers (Lin et al., 2012; Sabò et al., 2014). The analysis 

performed in U2OS cells also detected MYC binding at enhancer regions, albeit no 

correlation with gene expression regulation was present (Walz et al., 2014). The detection 

of MYC binding at enhancers could be considered either as an off target effect of the ChIP-

seq cross-linking procedure or could have a functional meaning. Since enhancers are 

usually placed at sites far away from the target gene(s), the role of MYC could be that, via 

its numerous binding partners, it helps to organize and bring together enhancers with the 

corresponding genes. Indeed, preliminary results in the lab showed that MYC (mainly N-

MYC) interacts and colocalizes on chromatin with proteins that are involved in the 

organization of topologically associated domains (TADs; Anne Carstensen personal 

communication). TADs are linear fragments of chromatin that fold as three-dimensional 

structures favoring internal chromatin interactions and joining genes with their regulatory 

elements (Ciabrelli and Cavalli, 2015). 

5.4 Model for MYC-mediated regulation of transcription        

The use of the U2OS cell line as model system provided a good strategy to study MYC 

diverse cellular effects and to determine which factors could account for the different role 

of MYC at physiological and supraphysiological levels (Fig. 5.1).   

At low and physiological levels, MYC binds to and regulates sets of genes that are highly 

involved in regulating cell growth, such as ribosome biogenesis, protein translation, 

mitochondrial functions etc. The genes belonging to these sets have high affinity binding 

sites for MYC in their promoter. Sorting of the genes bound by MYC according to their 

EC50 values for MYC binding, although calculated using only two experimental points, and 

functional annotation analysis showed that cellular growth-related processes have indeed 
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low EC50 and thus high affinity for MYC (Fig. 4.10). E-box sequences are enriched in most 

promoters of these genes.  

Surprisingly, a specific class of genes with high affinity promoters does not have E-boxes 

in their promoters. Bioinformatics analysis of the promoter region of genes encoding for 

the structural components of the ribosomes  (RPL and RPS proteins of the large and small, 

respectively, ribosomal subunit) showed that they do not contain any E-box sequences 

(Elmar Wolf and Susanne Walz personal communication). However, these sites are highly 

occupied by MYC and are among the most enriched gene sets that react to MYC depletion. 

Binding motifs for SP1, GABP and YY1 were enriched in the promoter of the ribosomal 

genes indicating that protein-protein interactions could be relevant for recruiting MYC at 

these sites (Elmar Wolf and Susanne Walz personal communication). 

At physiological levels of MYC, cellular growth-related genes are fully occupied 

(“saturated”) by MYC, whereas low affinity binding sites are almost completely 

unoccupied. When MYC levels increase, the high affinity binding sites cannot recruit more 

MYC and therefore MYC “spill over” to the low affinity binding sites that are free to be 

occupied. These low affinity binding sites are not enriched for processes that directly 

control cellular growth, but for processes that allowed the cells to react at conditions that 

could compromise their survival and might be considered to be more cancer-related. 

Among these are angiogenesis or blood vessel development, cell death, response to 

hypoxia and substrate specific transporter activity (Fig. 4.10 and 4.12). The binned plot for 

occupancy of MYC at endogenous and supraphysiological levels showed that MYC 

occupies high and low affinity site to the same extent (Fig. 4.4 A). However, MYC ChIP 

followed by qPCR found that at certain genes MYC bind less even when it is 

overexpressed (Fig. 4.4 B). This does not compromise the analysis but change the 

interpretation of the plot. High and low affinity binding sites are not occupied equally but 

the gap in MYC binding between them is reduced indicating that overexpressed MYC is 

mainly recruited to low affinity sites. 
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Figure 5.1: Model for MYC function in normal and cancer cells. 

Determination of whether the levels of MYC, responsible for the saturation of high affinity 

binding sites and therefore for the specific regulation of cellular processes that do not 

belong to the core set of processes regulated by MYC at physiological levels, are reached 

in vivo still need further investigation. Analysis of MYC binding and related changes in 

gene expression via ChIP-seq and RNA-seq during embryonic development, the wound 

healing process or the tissue regeneration could provide important evidence. These are all 

processes that require spatial and temporal coordination between cellular growth, 

proliferation, migration and signaling. By tuning MYC protein levels, the cells could 

differentially or uniformly regulate these cellular processes.  

The gene expression and the MYC binding analyses performed in U2OS suggested that 

MYC recruitment and not MYC occupancy is important for the regulation of gene 

expression when high MYC levels are present in the cell. Indeed, comparison between 

MYC recruitment and the fold change in expression induced by MYC overexpression 

showed a significant correlation between these two parameters (Fig. 4.7 A). Furthermore, 

other mechanisms could be important for the MYC-dependent regulation of transcription. 

For example, ubiquitination of MYC and the control of its turnover were shown to 

influence MYC transcriptional activity. Many ubiquitin ligases have been shown to modify 
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MYC, in most of the cases, at the MYC transcriptional activation domain, underlining the 

importance of MYC ubiquitination in the control of transcription by MYC (Muratani and 

Tansey, 2003). SCF(SKP2) ubiquitin ligase ubiquitinates MYC at MYC box II, thereby 

promoting its turnover and stimulating expression of several target genes (Kim et al., 2003; 

Von Der Lehr et al., 2003; Zhang et al., 2012b). Moreover, HUWE1 and FBXO28 

ubiquiting ligases promotes MYC ubiquitination and its transcriptional function (Adhikary 

et al., 2005; Cepeda et al., 2013). Several others ligases modify MYC and have a negative 

impact on MYC activity, however it was recently shown that ubiquitin-dependent turnover 

of MYC at the promoter of target genes is required to drive productive transcription 

elongation by RNA Pol II (Jaenicke et al., 2015).  

Other modifications could impact on MYC activity at the promoter of target genes, such as 

phosphorylation and acetylation. MYC contains in the MYC box I two amino acids, T58 

and S62 that can be phosphorylated. Phosphorylation of both residues is recognized by the 

SCF(FBW7) ubiquitin ligase and lead to proteasomal degradation of MYC (Welcker et al., 

2004; Yada et al., 2004; Yeh et al., 2004). Phosphorylation of S62 alone, induces the 

PIN1-mediated isomerization of MYC, which stimulates the recruitment of p300, GCN5 

and p-TEFb (Farrell et al., 2013).  

Several residues in the MYC protein are also the substrates of enzymes with 

acetyltransferase activity (Faiola et al., 2005; Patel et al., 2004; Vervoorts et al., 2003). 

GCN5 and p300 were shown to acetylates MYC increasing its protein stability (Faiola et 

al., 2005; Patel et al., 2004; Vervoorts et al., 2003), but the acetylated lysines could serve 

also as a docking site for other proteins (Vervoorts et al., 2006).     

5.5 Conclusions 

This work could show that promoter affinity and MYC protein levels are important factors 

that influence MYC activity in the regulation of functionally distinct groups of genes.  

At low levels, MYC binds preferentially to genes with high binding affinity. These genes 

encode for ribosomal components, factors involved in ribosome biogenesis and in general 

for proteins implicated in cellular growth. They are not regulated at oncogenic MYC levels 

because they are already fully saturated. On contrary, genes with low affinity binding sites 

are regulated when MYC in further expressed in proliferating cells. In tumor cells that 

express high and oncogenic MYC levels, processes with low affinity for MYC binding are 

for example angiogenesis, cell migration and specific substrate uptake.  
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Signaling pathways, which control MYC protein levels within the cell, can tune MYC 

activity in order to achieve regulation of specific genes having different promoter affinity 

(Fig. 5.2). 

 

Figure 5. 2: Model for MYC-regulated processes. 

The identification of processes that have low affinity binding sites for MYC and are 

regulated only in cells with oncogenic MYC levels could open a therapeutic window to 

treat tumors. Drugs targeting these processes could be design so that only cancer but not 

normal cells are affected. Following this direction, a dominant negative allele of MYC, 

OMOMYC, have been developed (Soucek et al., 1998). The use of OMOMYC for 

treatment of tumor mouse models has been successful (Soucek et al., 2004, 2013) and 

recent finding showed that OMOMYC competes with MYC at low affinity sites, 

exclusively inhibiting MYC tumor specific gene expression profile while preserving its 

physiological functions (Lisa Jung personal communication).  
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