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Summary 

Sponges (phylum Porifera) are evolutionary ancient, sessile filter-feeders that harbor a 

largely diverse microbial community within their internal mesohyl matrix. Throughout this 

thesis project, I aimed at exploring the adaptations of these symbionts to life within their 

sponge host by sequencing and analyzing the genomes of a variety of bacteria from the 

microbiome of the Mediterranean sponge Aplysina aerophoba. Employed methods were 

fluorescence-activated cell sorting with subsequent multiple displacement amplification and 

single-cell / ‘mini-metagenome’ sequencing, and metagenomic sequencing followed by 

differential coverage binning. These two main approaches both aimed at obtaining genome 

sequences of bacterial symbionts of A. aerophoba, that were then compared to each other and 

to references from other environments, to gain information on adaptations to the host sponge 

environment and on possible interactions with the host and within the microbial community. 

Cyanobacteria are frequent members of the sponge microbial community. My ‘mini-

metagenome’ sequencing project delivered three draft genomes of “Candidatus 

Synechococcus spongiarum,” the cyanobacterial symbiont of A. aerophoba and many more 

sponges inhabiting the photic zone. The most complete of these genomes was compared to 

other clades of this symbiont and to closely related free-living cyanobacterial references in a 

collaborative project published in Burgsdorf I*, Slaby BM* et al. (2015; *shared first 

authorship). Although the four clades of “Ca. Synechococcus spongiarum” from the four 

sponge species A. aerophoba, Ircinia variabilis, Theonella swinhoei, and Carteriospongia 

foliascens were approximately 99% identical on the level of 16S rRNA gene sequences, they 

greatly differed on the genomic level. Not only the genome sizes were different from clade to 

clade, but also the gene content and a number of features including proteins containing the 

eukaryotic-type domains leucine-rich repeats or tetratricopeptide repeats. On the other hand, 

the four clades shared a number of features such as ankyrin repeat domain-containing proteins 

that seemed to be conserved also among other microbial phyla in different sponge hosts and 

from different geographic locations. A possible novel mechanism for host phagocytosis 

evasion and phage resistance by means of an altered O antigen of the lipopolysaccharide was 

identified. 

To test previous hypotheses on adaptations of sponge-associated bacteria on a broader 

spectrum of the microbiome of A. aerophoba while also taking a step forward in methodology, 

I developed a bioinformatic pipeline to combine metagenomic Illumina short-read sequencing 

data with PacBio long-read data. At the beginning of this project, no pipelines to combine 

short-read and long-read data for metagenomics were published, and at time of writing, there 

are still no projects published with a comparable aim of un-targeted assembly, binning and 

analysis of a metagenome. I tried a variety of assembly programs and settings on a simulated 
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test dataset reflecting the properties of the real metagenomic data. The developed assembly 

pipeline improved not only the overall assembly statistics, but also the quality of the binned 

genomes, which was evaluated by comparison to the originally published genome assemblies. 

The microbiome of A. aerophoba was studied from various angles in the recent years, 

but only genomes of the candidate phylum Poribacteria and the cyanobacterial sequences from 

my above-described project have been published to date. By applying my newly developed 

assembly pipeline to a metagenomic dataset of A. aerophoba consisting of a PacBio long-read 

dataset and six Illumina short-read datasets optimized for subsequent differential coverage 

binning, I aimed at sequencing a larger number and greater diversity of symbionts. The results 

of this project are currently in review by The ISME Journal. The complementation of Illumina 

short-read with PacBio long-read sequencing data for binning of this highly complex 

metagenome greatly improved the overall assembly statistics and improved the quality of the 

binned genomes. Thirty-seven genomes from 13 bacterial phyla and candidate phyla were 

binned representing the most prominent members of the microbiome of A. aerophoba. A 

statistical comparison revealed an enrichment of genes involved in restriction modification 

and toxin-antitoxin systems in most symbiont genomes over selected reference genomes. Both 

are defense features against incoming foreign DNA, which may be important for sponge 

symbionts due to the sponge’s filtration and phagocytosis activity that exposes the symbionts 

to high levels of free DNA. Also host colonization and matrix utilization features were 

significantly enriched. Due to the diversity of the binned symbiont genomes, a within-

symbionts genome comparison was possible, that revealed three guilds of symbionts 

characterized by i) nutritional specialization on the metabolization of carnitine, ii) 

specialization on sulfated polysaccharides, and iii) apparent nutritional generalism. Both 

carnitine and sulfated polysaccharides are abundant in the sponge extracellular matrix and 

therefore available to the sponge symbionts as substrates. In summary, the genomes of the 

diverse community of symbionts in A. aerophoba were united in their defense features, but 

specialized regarding their nutritional preferences. 
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Zusammenfassung 

Schwämme (Phylum Porifera) sind evolutionär alte, sessile Filtrierer, die eine äußerst 

vielfältige mikrobielle Gemeinschaft in ihrer internen Mesohylmatrix beherbergen. Das Ziel 

meiner Doktorarbeit war es, die Anpassungen dieser Symbionten an das Leben in ihrem 

Schwammwirt zu erforschen. Dazu habe ich die Genome einer Vielzahl von Bakterien aus 

dem Mikrobiom des Mittelmeer-Schwammes Aplysina aerophoba sequenziert und analysiert. 

Meine angewandten Methoden waren die fluoreszenzaktivierte Zellsortierung mit 

anschließender so genannter „multiple displacement amplification“ und Einzelzell- / „Mini-

Metagenom“-Sequenzierung und metagenomischer Sequenzierung gefolgt von „differential 

coverage binning“. Diese beiden Ansätze zielten darauf ab, Genomsequenzen von bakteriellen 

Symbionten von A. aerophoba zu erhalten, die dann sowohl miteinander, als auch mit 

Referenzen aus anderen Habitaten verglichen wurden. So sollten Informationen gewonnen 

werden über Anpassungen an ein Leben im Wirtsschwamm und über mögliche Interaktionen 

mit dem Wirt und innerhalb der mikrobiellen Gemeinschaft. 

Cyanobakterien sind häufig Mitglieder der bakteriellen Gemeinschaft in Schwämmen. 

Mein "Mini-Metagenom"-Sequenzierprojekt lieferte drei Genom-Entwürfe von „Candidatus 

Synechococcus spongiarum,“ dem cyanobakteriellen Symbionten von A. aerophoba und 

vieler weiterer Schwämme, die die photische Zone bewohnen. Das vollständigste dieser 

Genome wurden mit anderen Kladen dieses Symbionten verglichen und mit nah verwandten, 

freien lebenden Cyanobakterien-Referenzen in Burgsdorf I *, Slaby BM * et al. (2015; * 

geteilte Erstautorenschaft). Obwohl die vier Kladen von „Ca. Synechococcus spongiarum“ aus 

den vier Schwammarten A. aerophoba, Ircinia variabilis, Theonella swinhoei und 

Carteriospongia foliascens auf der Ebene der 16S-rRNA-Gensequenzen zu etwa 99% 

identisch waren, unterschieden sie sich deutlich auf Genom-Ebene. Nicht nur die 

Genomgrößen waren von Klade zu Klade verschieden, sondern auch der Gengehalt und eine 

Reihe von Merkmalen, einschließlich Proteinen mit genannten „eukaryotic-like domains,“ 

leucinreiche „repeats“ oder Tetratricopeptid-„repeats“. Auf der anderen Seite teilten die vier 

Kladen eine Reihe von Merkmalen wie Ankyrin-„repeat“-Domänen-haltige Proteine, die auch 

in anderen Phyla von Schwammsymbionten in verschiedenen Wirtsschwämmen und aus 

verschiedenen geografischen Orten konserviert zu sein schienen. Ein möglicher neuartiger 

Mechanismus zur Phagozytose-Vermeidung und zur Phagenresistenz mittels eines 

veränderten O-Antigens des Lipopolysaccharids wurde identifiziert. 

Um vorherige Hypothesen über die Anpassung von Schwamm-assoziierten Bakterien 

auf ein breiteres Spektrum des Mikrobioms von A. aerophoba zu testen und gleichzeitig in der 

Methodik voran zu schreiten, entwickelte ich einen bioinformatischen Arbeitsablauf, um 

metagenomische Illumina-„short-read“-Sequenzdaten mit PacBio-„long-reads“ zu 
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kombinieren. Zu Beginn dieses Projektes gab es keine veröffentlichte Methodik zur 

Verknüpfung von „short-reads“ und „long-reads“ für die Metagenomik, und auch jetzt gibt es 

keine veröffentlichten Projekte mit einem vergleichbaren Ziel von nicht-gezieltem 

„Assembly“, „Binning“ und Analyse eines Metagenoms. Ich habe eine Auswahl von 

„Assembly“-Programmen und Einstellungen auf einem simulierten Testdatensatz getestet, der 

die Eigenschaften der realen metagenomischen Daten widerspiegelt. Die entwickelte 

„Assembly“-Methode verbesserte nicht nur die Gesamtstatistik, sondern auch die Qualität der 

einzelnen, „gebinnten“ Genome, die durch Vergleich zu den ursprünglich veröffentlichten 

Genom-Sequenzen evaluiert wurde. 

Das Mikrobiom von A. aerophoba wurde in den letzten Jahren aus verschiedenen 

Blickwinkeln untersucht, aber nur Genome des Candidatus-Phylum Poribakterien und die 

Cyanobakteriensequenzen aus meinem oben beschriebenen Projekt wurden bisher 

veröffentlicht. Durch die Anwendung meiner neu entwickelten „Assembly“-Methodik auf 

einen metagenomischen Datensatz von A. aerophoba bestehend aus einem PacBio-„long-

read“-Datensatz und sechs Illumina-„short-read“-Datensätzen, die für das anschließende 

„differential coverage binning“ optimiert waren, zielte ich darauf ab, eine größere Anzahl und 

Vielfalt von Symbionten zu sequenzieren. Die Ergebnisse dieses Projektes sind derzeit bei The 

ISME Journal in Review. Die Komplementierung von Illumina „short-read“ mit PacBio „long-

read“-Sequenzdaten für das „binning“ dieses hochkomplexen Metagenoms hat die Gesamt-

„assembly“-Statistik sowie die Qualität der „gebinnten“ Genome deutlich verbessert. 

Siebenunddreißig Genome aus 13 Bakterienphyla und Candidatus-Phyla wurden „gebinnt“, 

die die prominentesten Mitglieder des Mikrobioms von A. aerophoba darstellten. Ein 

statistischer Vergleich zeigte eine Anreicherung von Genen, die mit 

Restriktionsmodifikationen und Toxin-Antitoxin-Systemen zusammenhängen, in den meisten 

Symbionten-Genomen im Vergleich zu ausgewählten Referenzgenomen. Beides sind 

Mechanismen zur Verteidigung gegen eindringende Fremd-DNA, die für Schwamm-

Symbionten aufgrund der Schwamm-Filtration und Phagozytose-Aktivität wichtig sein 

können, die die Symbionten hohen Konzentrationen von freier DNA aussetzen. Auch 

mögliche Wirtskolonisations- und Matrixnutzungsmechanismen waren signifikant 

angereichert. Wegen der Vielfalt der „gebinnten“ Symbionten-Genome war ein Genom-

Vergleich innerhalb der Symbionten möglich, der drei Gilden von Symbionten zum Vorschein 

brachte, die gekennzeichnet waren durch i) Ernährungsspezialisierung auf die Metabolisierung 

von Carnitin, ii) Spezialisierung auf sulfatierte Polysaccharide und iii) scheinbaren Nahrungs-

Generalismus. Sowohl Carnitin als auch sulfatierte Polysaccharide sind in der extrazellulären 

Schwammmatrix reichlich vorhanden und stehen so den Schwammsymbionten als Substrat 

zur Verfügung. Die Genome der diversen Symbionten-Gemeinschaft in A. aerophoba waren 

in ihren Verteidigungsmechanismen vereint, aber spezialisiert hinsichtlich ihrer Ernährung.  
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1 Introduction 

1.1 Sponges (phylum Porifera) 

Marine sponges (Porifera) are the oldest extant multicellular animals with a fossil record 

dating back to the Precambrian (Antcliffe et al., 2014; Du et al., 2015; Brain et al., 2012; Gold 

et al., 2016). Throughout Earth history, sponges played an important role as reef builders and 

even dominated reef communities at times (Heckel, 1974). To this day, they are present in a 

variety of marine ecosystems from shallow tropical reefs to the deep-sea, and they still 

dominate the community in specific deep sea regions known as sponge grounds (Maldonado 

et al., 2016). Sponges are highly diverse spanning an estimated number of 15,000 species 

(Hooper, John and Van Soest, 2002). They differ in size from a few millimeters to meters, they 

show a range of shapes from bowl- or vase-shaped to encrusting and branching, and they can 

have a wide variety of colors. Taxonomically, sponges are divided into the four classes 

Demospongiae, Calcarea, Hexactinellida, and Homoscleromorpha that differ in the building 

materials for their spicules, the material – if present – of the exoskeleton, the presence or 

absence of spongin fibers, the cell type and the body form (Hooper, John and Van Soest, 2002; 

Bergquist, 1998). The majority of extant sponges are demosponges (Hentschel et al., 2003). 

Marine sponges are among the structurally simplest multicellular organisms on Earth. 

The sponge body (except for Hexactinellida) possesses two types of barrier-forming cell 

layers, namely pinacoderm and choanodem, that consist of pinacocyte and choanocyte cells, 

respectively (Simpson, 1984). The pinacoderm forms the outer surface of the sponge body and 

lines the aquiferous canal system, while the choanocyte cells are located in choanocyte 

chambers (Ereskovsky, 2010). Between the external pinacoderm and the canal system is the 

mesohyl matrix that is mainly composed of collagen, galectin and glycoconjugates 

(Ereskovsky, 2010). While sponges do not contain organs or tissues, they possess 

nonepithelian, totipotent cells, that are phagocytotically active and amoeboid, i.e. they can 

move freely through the mesohyl (Hentschel et al., 2003). The skeleton of demosponges 

consists either of spongin fibers alone or of spongin fibers and siliceous spicules (Ereskovsky, 

2010). 

Based on the complexity of their canal system, sponges are categorized into three main 

types: asconoid, syconoid, and leuconoid (van Soest et al., 2012). The structurally simplest 

form – only represented in a number of calcareous sponges today – is the ascon type, where 

pores in the thin wall enable waterflow into the central cavity, that is lined with choanocytes 

(Ghiold et al., 1994). Likewise only extant in calcareous sponges, is the sycon type with radial 
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canals formed by folding of the body wall, and small choanocyte chambers (Ghiold et al., 

1994). The most widespread and complex form is the leucon type. Here, the body wall of the 

sponge is thickened and folded into a number of flagellate chambers lined with choanocytes 

and connected by a complex canal system (Ghiold et al., 1994). 

 

 

Figure 1-1 Schematic cross section through a leuconoid demosponge. Blue arrows indicate water flow 
produced by choanocyte cells lining choanocyte chambers (red). The magnifying glass indicates a zoom-
in on the mesohyl, where the totipotent amoeboid cells (turquoise) and the symbiotic bacteria (various 
shapes and colors) are located. The array of flagellated cells (red) at the bottom of the magnification are 
choanocyte cells. Drawing: B. Slaby. 

 

While recently carnivorous sponges were discovered in some deep-sea habitats 

(Hestetun et al., 2016; Dressler-Allame et al., 2016; Maldonado et al., 2016), the vast majority 

of sponges are filter-feeders. They pump up to 24,000 liters of seawater per kg sponge per day 

through inhalant pores (ostia) in their outer pinacoderm layer and through a system of canals 

into choanocyte chambers. Specialized flagellated choanocyte cells create the water current 

for filtration by beating their flagellae and capture food particles out of the water (Figure 1-1) 

(Taylor et al., 2007; Vogel, 1977). The nearly-sterile filtered water is pumped into the central 

cavity and emerges through an exhalant opening (osculum) (Hentschel et al., 2012; Ghiold et 

al., 1994). The food particles are phagocytosed by totipotent archaeocyte cells located in the 

sponge mesohyl matrix (Taylor et al., 2007).  

Sponges reproduce both sexually and asexually. In terms of asexual, clonal 

reproduction, sponges can fragment, bud, or produce gemmules (Webster and Thomas, 2016). 

For sexual reproduction, a sponge individual can possess either both male and female 
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reproductive parts (hermaphroditic) or only one (gonochoristic) (Webster and Thomas, 2016). 

Demosponges can be ovoviviparous, oviparous, and even viviparous: either fertilization and 

embryonic development take place internally in the mesohyl (ovoviviparity and viviparity), or 

– after external fertilization – larvae develop in the environment (oviparity) (Ereskovsky, 

2010). The reproductive strategies are polyphyletic and even mainly oviparous orders like 

Astrophorida include ovoviviparous genera (Vacelet, 1999; Ereskovsky, 2010). 

Sponges engage in a variety of ecological functions in marine ecosystems. They 

compete for space, but also positively interact with other organisms (Aerts, 2000; Rützler, 

1970; Wulff, 2008). In carbonated coral reefs, they consolidate substrate that can then be used 

for corals to grow on, so sponges enhance reef growth (Wulff, 1984). But excavating sponges 

can also hinder reef growth by boring into the reef structure and thereby affecting the corals’ 

structural integrity (Diaz and Rützler, 2001). Sponges create a trophic link between water 

column and benthos by coupling carbon fluxes via their filtering of food particles (Gili and 

Coma, 1998). Additionally, they are able to take up dissolved organic matter (DOM) such as 

carbon and nitrogen, and – by shedding large amounts of cells due to their rapid cell turnover 

rates – make them available to other heterotrophic organisms (de Goeij et al., 2013; Alexander 

et al., 2014). Large amounts of the taken-up DOM derive from other members of the coral reef 

community, namely corals and macroalgae (Rix et al., 2016a, 2016b). This recycling process 

has been termed the ‘sponge loop’ in analogy to the established ‘microbial loop’ and explains 

how the biological hot spots of coral reefs can thrive in such oligotroghic environments (de 

Goeij et al., 2013; Azam et al., 1983). In oligotrophic tropical reef environments as well as the 

deep sea, sponges have been shown to take up dissolved organic matter (DOM) and to create 

detritus by cell renewal and shedding of old cells (de Goeij et al., 2013; Maldonado, 2015; Rix 

et al., 2016b). As the newly formed detritus serves as a food source for the associated fauna, 

sponges play a key role in these otherwise nutrient-poor ecosystems. 

Already in Greek antiquity sponges were used for various purposes from cleaning to 

medical applications (Voultsiadou, 2007). The wound healing properties of sponges was 

already recognized then, a use probably explained today by the vast variety of bioactive 

compounds identified (Mehbub et al., 2014; Flemer et al., 2012; Horn et al., 2015; 

Abdelmohsen et al., 2010). These compounds can have various types of bioactivity, e.g. 

cytotoxicity, antiinfective, or anticancer activity (Belarbi, 2003). Sponges are also interesting 

for biotechnological applications e.g. for tissue engineering due to their natural skeleton 

structure, or for their collagen content, which has a plethora of applications from 

pharmaceutical use to cosmetics (Green et al., 2003; Swatschek et al., 2002). 
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1.2 Sponge-microbe symbiosis 

Microbiomes have been a focus of much research in recent years. A wide variety of 

environments have been explored, from desert sand to permafrost soils (Rivkina et al., 2016; 

Johnson et al., 2017). Also the effects of the microbial communities on their environment, on 

the host in symbioses, and especially on humans have been intensely studied (Afshinnekoo et 

al., 2015; Faist et al., 2016; Heinsen et al., 2016; Schröder and Bosch, 2016). Researchers 

have arrived at the conclusion, that animals and plants cannot be seen as isolated organisms 

any longer, but have to be studied as a holistic system comprising of the host itself and all its 

associated microorganisms, as a ‘holobiont’ (Bordenstein and Theis, 2015; Gordon et al., 

2013; Mayer et al., 2014; Deines and Bosch, 2016; McFall-Ngai et al., 2013). 

1.2.1 Microbial diversity 

In agreement with the holobiont concept, also sponges host highly diverse and distinct 

microbiomes that can constitute up to 40% of sponge volume and may be crucial for their 

evolutionary success (Vacelet, 1975; Easson and Thacker, 2014; Tian et al., 2014; Webster 

and Thomas, 2016). Based on the abundance of microbes, two groups of sponges are observed: 

high microbial abundance (HMA) and low microbial abundance (LMA) sponges (Hentschel 

et al., 2003). The microbial communities of high microbial abundance (HMA) sponges were 

hypothesized to play a crucial role in the sponges’ success e.g. by supplying supplemental 

nutrition to the host (Tian et al., 2014; Erwin and Thacker, 2008b). 16S rRNA gene amplicon 

studies discovered an unusually high phylum-level diversity and stability of microbial 

associations in marine sponges comprising phototrophic as well as heterotrophic symbionts 

(Schmitt et al., 2012b; Thomas et al., 2016; Easson and Thacker, 2014; Webster and Thomas, 

2016). The sponge microbiome spans as many as 52 microbial phyla and candidate phyla with 

the diversity and abundance varying between sponge species (Webster and Thomas, 2016). 

The most dominant symbiont groups belong to the phyla Proteobacteria (mainly Gamma- and 

Alphaproteobacteria), Actinobacteria, Chloroflexi, Nitrospirae, Cyanobacteria, candidatus 

phylum Poribacteria, and Thaumarchaea (Webster and Thomas, 2016). Most of these 

symbionts seem to be sponge species-specific and vertically transmitted to the next generation 

of sponges via the larvae (Schmitt et al., 2012b, 2008; Webster et al., 2010; Usher et al., 2001; 

Oren et al., 2005). A comparison of bacterial community profiles derived from 16S rRNA and 

16S rRNA genes revealed that a large part of the sponge-associated bacterial community is 

not only present, but also metabolically active (Kamke et al., 2010). 

Cyanobacteria are also common members of the sponge microbial community in 

tropical as well as temperate regions (Schmitt et al., 2012b; Thacker and Freeman, 2012). The 
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group of cyanobacterial sponge symbionts is polyphyletic with symbiont species of the orders 

Chroococcales, Prochlorales, and Oscillatoriales, but it comprises mainly clade VI 

cyanobacteria of different Synechococcus spp. (Chroococcales) (Steindler et al., 2005; Honda 

et al., 1999; Usher, 2008). Within this group we find “Candidatus Synechococcus feldmanni” 

that is mainly inhabiting Petrosia ficiformis from the Mediterranean and eastern Atlantic 

oceans (Usher, 2008; Burgsdorf et al., 2014). The more widespread cyanobacterial sponge 

symbiont is “Candidatus Synechococcus spongiarum,” which comprises at least 12 different 

subclades that show up to 99% 16S rRNA gene sequence identity, but could be revealed by 

16S to 23S rRNA internal transcribed spacer (ITS) sequence phylogeny (Erwin et al., 2012a; 

Erwin and Thacker, 2008a). The separation into these clades seems to be driven mainly by 

geographic location and by host phylogeny (Erwin and Thacker, 2008a). This phototrophic 

symbiont has been shown to provide supplemental nutrition to its host sponges (Freeman and 

Thacker, 2011), while profiting from shelter and nutrition provided by the sponge (Erwin et 

al., 2012a). “Ca. Synechococcus spongiarum” resides extracellularly and is vertically 

transmitted to the next generation of host sponges (Usher et al., 2001; Oren et al., 2005; 

Schmitt et al., 2008; Webster et al., 2010). Phylogenetically, it is equidistant from the above-

described Synechococcus/Prochlorococcus subclade that spans marine as well as freshwater 

strains of the genera Synechococcus, Prochlorococcus, and Cyanobium (Gao et al., 2014b; 

Steindler et al., 2005). 

1.2.2 Microbial function 

The microbiome of marine sponges includes autotrophs as well as heterotrophs, which 

are involved in a number interactions with their host in terms of nutrient exchange – a 

supposedly mutualistically beneficial interaction (Webster and Thomas, 2016). The symbionts 

are supplied with nutrients and ammonia from the host, while the sponge benefits from waste 

removal and supplemental nutrition by the symbionts (Webster and Thomas, 2016). 

Cyanobacterial symbionts fix carbon and supply the host with photosynthesis products like 

glycerol (Webster and Thomas, 2016; Taylor et al., 2007). Some sponges were even shown to 

obtain more than half of their required energy from their cyanobacterial symbionts (Wilkinson, 

1983). Ammonia-oxidizing bacteria and archaea are also common members of the sponge 

microbial community, as well as sulfate-reducing and sulfur-oxidizing bacteria, microbes 

producing polyphosphate granules (possibly to store phosphate for times of deprivation), and 

symbionts producing essential vitamins, such as different B vitamins (Bayer et al., 2008a; Fan 

et al., 2012; Tian et al., 2014; Colman, 2015; Thomas et al., 2010). 

Comparisons between metagenomes of sponge-associated and seawater microbial 

consortia identified gene features that might be of importance specifically to sponge-

associated bacteria (Thomas et al., 2010; Fan et al., 2012; Hentschel et al., 2012; Horn et al., 
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2016). One recurring topic in sponge-microbial symbiosis are mobile genetic elements and 

genetic transfer with specific emphasis on transposases (Fan et al., 2012; Thomas et al., 2010; 

Gao et al., 2014b). The abundance of mobile elements has been interpreted as crucial for 

symbiotic bacterial genome evolution as a means for genome reduction (Moran and Plague, 

2004). Restriction modification systems and CRISPR-Cas systems, on the other hand, might 

be important protection mechanisms against incoming viruses and free DNA for the sponge 

symbionts, as they are hypothesized to be exposed to vastly higher quantities of viral particles 

in comparison to free-living seawater bacteria (Thomas et al., 2010). Further recurring 

findings are metabolic adaptations of the symbionts, e.g. regarding vitamin B12 and 

ammonium assimilation (Kamke et al., 2014; Thomas et al., 2010; Bayer et al., 2008a). 

Several studies have shown metabolic dependencies between sponge host and bacterial 

community (Bayer et al., 2008a; Kamke et al., 2013; Radax et al., 2012a; Hoffmann et al., 

2009). For example, Poribacteria seem to be able to degrade complex carbohydrates produced 

by the host which are abundant in the mesohyl matrix (Kamke et al., 2013). Further probable 

adaptations  are the so-called eukaryotic-like protein domains, repeat proteins like ankyrins, 

that have been found enriched in sponge symbionts (Thomas et al., 2010; Nguyen et al., 2014; 

Liu et al., 2012). These were hypothesized to play a role in the evasion of phagocytosis by the 

host (Thomas et al., 2010). 

1.3 Aplysina aerophoba 

1.3.1 Geographic distribution and physical properties 

This thesis project is divided into multiple parts that all study the host system of the 

marine HMA sponge Aplysina aerophoba SCHMIDT 1862 (class Demospongiae, subclass 

Verongimorpha, order Verongiida, family Aplysinidae), commonly known as ‘gold sponge’ 

(Bayer et al., 2008b) with the aim of gaining genomic information on its microbial symbionts 

with state-of-the-art ‘omics’ and bioinformatics approaches. According to the World Porifera 

Database (www.marinespecies.org/porifera/), the bright yellow A. aerophoba (Figure 1-2) is 

common in the Mediterranean Sea, around the Azores and Cape Verde, the Saharan upwelling 

zone, the South European Atlantic Shelf, and the Southern Gulf of Mexico. The phylogeny of 

the family of Aplysinidae was resolved by ITS-2 and 18S rRNA gene trees, where A. 

aerophoba clusters with Aplysina cavernicola, which is likely due to geographic distribution 

(Schmitt et al., 2005).  

A. aerophoba has been intensely studied regarding its pumping behavior, chemistry, 

metabolism, microbiology, reactions to environmental change, and was even proposed as a 

model sponge (Friedrich et al., 2001; Noyer et al., 2010; Pfannkuchen et al., 2009; Sacristan-
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Soriano et al., 2011; Sacristán-Soriano et al., 2012; Schmitt et al., 2012a). An in situ study 

showed that A. aerophoba is continuously pumping when healthy and undisturbed, 

independent from season and time of day, concluding that the sponge is always well 

oxygenated and that its own waste products are removed (Pfannkuchen et al., 2009). 

Especially the chemistry of A. aerophoba has received attention, as it contains large amounts 

of brominated alkaloids that in turn play an ecological role in predatory protection, competition 

for space, protection against biofouling, and defense against pathogenic microorganisms 

(Sacristan-Soriano et al., 2011; Sacristán-Soriano et al., 2012; Turon et al., 2000). 

 

 

Figure 1-2 Aplysina aerophoba. Photo: B. Slaby 

 

It has been demonstrated that A. aerophoba may take up food bacteria at rates of up to 

2.76 x 106 bacteria per gram sponge wet weight per hour depending on the cell surface 

properties and size of the food bacteria (Wehrl et al., 2007). At the same time, it is capable of 

differentiating between food bacteria and symbionts, taking up symbiont preparations at 

significantly lower rates of around 5.37 x 104 bacteria per g sponge wet weight per hour (Wehrl 

et al., 2007). This supports the hypothesis of phagocytosis evasion mechanisms by the 

symbionts (Thomas et al., 2010). 

1.3.2 The A. aerophoba microbiome 

As a HMA sponge, the microbial community associated with A. aerophoba is not only 

characterized by high numbers of 6.4 ± 4.6 x 108 bacteria per gram sponge tissue (Friedrich et 
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al., 2001), but also by an extraordinary diversity of bacteria. This diversity is already apparent 

at the phylum level: Acidobacteria, Actinobacteria, Chloroflexi, Nitrospira, Proteobacteria, 

Spirochaetae, Bacteroidetes, Cyanobacteria, Deinococcus-Thermus, Firmicutes, 

Gemmatimonadetes, and candidate phyla Poribacteria, OP10, OS-K, SAUL, and TM7 were 

discovered in the bacterial community of A. aerophoba by 16S rRNA gene amplicon 

sequencing (Schmitt et al., 2012a). Quantitative PCR (qPCR) and fluorescence in situ 

hybridization (FISH) revealed the dominance of Chloroflexi and Poribacteria in A. aerophoba 

(Bayer et al., 2014a). The microbial community is very stable, even when exposed to stress 

such as starvation and exposure to antibiotics (Friedrich et al., 2001). 

The functional gene repertoire of the A. aerophoba microbiome was assessed by 

GeoChip revealing increased numbers of nitrification and ammonification-related genes and 

archaeal autotrophic carbon fixation genes in comparison to seawater (Bayer et al., 2014b). 

Stress-related genes, on the other hand, were reduced (Bayer et al., 2014b). Targeting specific 

taxa and genes, evidence for the presence and activity of ammonia-oxidizing bacteria and 

archaea (AOB and AOA, respectively) was collected (Bayer et al., 2007; Cardoso et al., 2013; 

Bayer et al., 2008a). The discovery of natural products is a research field in itself, with sponges 

a known and widely studied source. From A. aerophoba, a number of natural products have 

been described as well that are often produced by its microbial community (Hentschel et al., 

2001; Horn et al., 2015; Bayer et al., 2013; Siegl and Hentschel, 2010; Pimentel-Elardo et al., 

2012). Changes in the microbial as well as the chemical patterns of A. aerophoba were shown 

in diseased specimens (Webster et al., 2008b). 

In summary, a considerable amount of information on the microbiome of A. aerophoba 

has accumulated over the years. Yet, at the beginning of this thesis only a handful of genomes 

of representatives of the candidate phylum Poribacteria had been sequenced (Fieseler et al., 

2004, 2006; Siegl et al., 2011; Kamke et al., 2013, 2014). The microbial community was 

shown to be very stable even under conditions of stress, such as starvation or exposure to 

antibiotics (Friedrich et al., 2001). 

1.4 Sequence-based analyses of microbiomes 

Increasing effort has been placed on gauging the diversity of the Earth’s microbiome 

and we have come to understand that the vast majority of bacteria is still uncultivable, which 

limits our possibilities for determining their roles in the microbial community (Rinke et al., 

2013). The term ‘microbial dark matter’ comprises this large uncultivable part of the microbial 

community and mirrors the analogous ‘dark matter’ of astrophysics, as for both, proxies are 

needed from which to draw conclusions on their behavior and importance (Marcy et al., 2007). 

The great majority of sponge symbionts are as yet uncultivable (Esteves et al., 2016), and 
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therefore culture-independent approaches have to be applied to gain genomic and thereby 

functional information. Research thus far has focused mainly on general patterns by analyzing 

metagenomes, metaproteomes, and metatranscriptomes (Thomas et al., 2010; Fan et al., 2012; 

Liu et al., 2012; Radax et al., 2012b). Recently, via cultivation-independent methods such as 

single-cell genomics and metagenomic binning, a number of symbiont genomes were obtained 

and even new bacterial candidate phyla were described (Siegl et al., 2011; Kamke et al., 2014; 

Liu et al., 2011). Nevertheless, the sequencing of uncultivated microbes is still in its infancy. 

1.4.1 Recent developments in sequencing technologies 

Sequencing technologies have come a long way from the early days of Sanger 

sequencing to USB stick-sized ultra-long read MinION sequencers (Oxford Nanopore 

Technologies, Oxford, UK) (Koren and Phillippy, 2015). Along the way, the diversity of 

uncultivable bacteria has been targeted by 16S rRNA gene diversity, first via polymerase chain 

reaction (PCR) followed by clone libraries and Sanger sequencing (Erwin et al., 2012b), and 

later by amplicon sequencing targeting the same gene with high-throughput sequencing 

methods (Schmitt et al., 2012a). As these approaches were merely delivering information on 

one gene to assess microbial diversity, they did not supply any further functional genomic 

information. Also in genomic sequencing, cultivable bacteria allow production of sufficient 

biomass for sequencing by growing them in culture media, whereas no sufficient biomass – 

and therefore the suitable DNA volume – of an individual bacterial species can be obtained 

for uncultivable bacteria. 

In the early 2000s, new technologies emerged – single-cell genomics and metagenomics 

(Figure 1-3) – the former specifically targeting members of the microbial community after 

isolating them, the latter sequencing the whole microbial consortium at once (Woyke et al., 

2009; Gilbert and Dupont, 2011). To isolate bacteria for single-cell genomics, a variety of 

approaches were applied such as dilution to extinction, micropipetting, and fluorescence-

activated cell sorting (FACS) (Lauro et al., 2009; Macaulay and Voet, 2014). The DNA of the 

single isolated cell was then amplified in a whole genome amplification (WGA) reaction, 

commonly by multiple-displacement amplification (MDA) utilizing the phi29 polymerase 

(Dean et al., 2001), to produce sufficient DNA of the target cell for genome sequencing 

(Woyke et al., 2009). Single-cell genomics is a targeted approach that can be of great 

advantage if information on the target bacterium is at hand that enables or facilitates selective 

sorting, e.g. autofluorescence that can be used for FACS sorting. At the same time, this feature 

can be a disadvantage if no such information is available. In such situations, cells have to be 

isolated and whole genome amplified ‘blindly’ followed by possibly extensive PCR screening 

to identify the target bacterium. Additionally, the WGA reaction has some flaws, such as 
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uneven amplification, chimera formation, and co-amplification of contaminants (Blainey, 

2013).  

 

Figure 1-3 Workflow for metagenomic binning and single-cell genomics for retrieving genomes of sponge 
symbionts. Drawing: B. Slaby. 

 

In metagenomics, the DNA of a microbial consortium is the basis for untargeted high-

throughput sequencing. To obtain genomes from metagenomic data, either the reads or the 

assembled contigs need to be separated bioinformatically and ideally sorted into individual 

genomes by binning algorithms (Alneberg et al., 2014; Albertsen et al., 2013; Kang et al., 

2015). This way, many genomes out of the consortium are sequenced at the same time. But 

there are several flaws also to this approach. Due to the implemented short-read sequencing, 

the sequenced genomes can frequently not be closed but stay draft genomes. While it is rather 

straightforward to bin the dominating members of a bacterial community, increasing 

sequencing depth is required to reach sufficient coverage for bacteria of low abundance, which 

leads to increasing sequencing costs. Also, a metagenomic bin is never the genome of one 

bacterium but always of a community – a bin could be viewed as the genomic content of a 

species or strain at best. 

As single-cell and metagenomics both have advantages and disadvantages, some studies 

have combined them to benefit from both techniques (Mason et al., 2012; Wilson et al., 2014). 

Yet, one common issue the approaches share, are the assembly gaps due to short read lengths. 
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Long-read sequencing has tackled this problem successfully for genomes (Huddleston et al., 

2014; Rhoads and Au, 2015; Koren and Phillippy, 2015; Shibata et al., 2013).  

1.4.2 Why short-reads fall short 

In metagenomics, short-read sequencing (mostly Illumina HiSeq or MiSeq) has been 

the method of choice to obtain sufficient sequencing depth at reasonable costs (Koren and 

Phillippy, 2015). As short-reads cannot resolve repeat sequences that exceed the read length, 

these repeats cause ambiguities and ultimately break up the assembly into multiple contigs 

(Koren and Phillippy, 2015). Thus, genomes assembled from short-reads – binned from 

metagenomes or directly assembled in a genome sequencing project – will not be closed, but 

remain draft genomes. 

This issue could be resolved by long-read sequencing, when the reads exceed the repeat 

sequences in length (Koren and Phillippy, 2015). One commonly used long-read sequencing 

technique is single-molecule real-time (SMRT) sequencing developed by PacBio (Pacific 

Biosciences of California, USA). While an anchored polymerase replicates the template DNA 

by incorporating fluorescent-labeled nucleotides, their emission spectra are recorded in 

sequencing movies that can then be interpreted and translated into a sequence read (reviewed 

in Rhoads and Au 2015). The sequencing template is called a SMRTbell, which is a double-

stranded DNA molecule closed into a single-stranded circular DNA by hairpin adaptors on 

both ends (Rhoads and Au, 2015). Therefore, depending on the lifetime of the polymerase, 

both strands of the template DNA can be sequenced multiple times in a single run, that will 

then be split into so-called subreads at the adaptor sequence locations (Rhoads and Au, 2015). 

While early SMRT reads were still relatively short and had a high error rate, later changes in 

chemistry improved sequencing length to up to 50 kbp and read accuracy to ~87% (Koren et 

al., 2013; Lee et al., 2014). 

The error-prone PacBio reads need to be corrected either with themselves - provided 

sufficient sequencing depth is available, e.g. in the form of subreads - or with (Illumina) short-

reads of far lower error-rate (Hackl et al., 2014; Rhoads and Au, 2015; Koren and Phillippy, 

2015). The combination of PacBio and Illumina sequencing data in hybrid assemblies is able 

to close the described assembly gaps by spanning over long repeats, merge contigs and thereby 

reconstruct the genome architecture. This has even enabled the de novo assembly of closed 

genomes (Liao et al., 2015). 

1.4.3 Long-read sequencing in metagenomics 

In metagenomics, commonly high-throughput short-read sequencing is applied, e.g. on 

an Illumina HiSeq platform. Hybrid assembly projects combining long-reads and short-reads 



Introduction 

25 

for isolate genomes were widely used in isolate genomics as a stand-alone tool or in 

combination with Illumina short-read sequencing (Shibata et al., 2013; Ricker et al., 2016; 

Bashir et al., 2012; Utturkar et al., 2014; Beims et al., 2015). As long-read sequencing has 

become progressively more affordable (Koren et al., 2013), obtaining sufficient sequencing 

depth to improve a metagenomic assembly is now within reach on a manageable budget. 

Considering the large improvements in genome sequencing with greater read-lengths, the 

drawbacks of short-reads in metagenomic assembly, and at the same time the vast 

improvements in bioinformatics in the recent years, the attempt of complementing short-read 

sequences with long-reads also in metagenomics seemed to be the next logical step. 

Yet, no studies on a hybrid assembly for metagenomics were published at the beginning 

of this project. Also at present, only a handful of publications on this topic are available (Frank 

et al., 2016; Tsai et al., 2016; Beckmann et al., 2014). By the time of completion of this thesis 

project, PacBio-Illumina hybrid assembly approaches have been proven useful for a variety of 

applications (Frank et al., 2016; Tsai et al., 2016; Beckmann et al., 2014). In recent targeted 

binning approaches, superior assembly quality has been demonstrated (Frank et al., 2016; Tsai 

et al., 2016). Yet, un-targeted binning and performance for less abundant members of the 

microbial communities have not been assessed. 

To improve a metagenomic dataset already deeply sequenced and optimized for 

differential coverage binning by six Illumina HiSeq datasets, a complementary metagenomic 

PacBio dataset was obtained. Due to the lack of publications on the topic at the time, one of 

my goals in this thesis was the development of an assembly pipeline aiming to combine 

metagenomic Illumina short-read and PacBio long-read data in a hybrid assembly. 
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2 Material and methods 

2.1 Research questions and aims 

This thesis comprised of biological as well as methodological projects in the context of 

sponge-microbial symbiosis: 

 Isolation and single-cell / mini-metagenome sequencing of the cyanobacterial 

symbiont “Ca. Synechococcus spongiarum” from the sponge host A. 

aerophoba, comparison of its genome to other clades of this species and to 

free-living cyanobacterial references, to explore adaptations to a life in 

sponges in general as well as specific adaptations to each host sponge and 

environment. 

 Development of a bioinformatic pipeline for the metagenomic hybrid 

assembly of Illumina short-reads and PacBio long-reads using a test dataset 

of simulated reads and explore to what extent the addition of metagenomic 

long-reads improves the assembly and subsequent binning. 

 Application of the developed assembly pipeline to the metagenome of A. 

aerophoba followed by untargeted binning and comparison of the sponge 

symbiont genomes to selected non-sponge-associated references to explore 

common symbiont-enriched genomic features as well as to identify divisions 

of labor between the symbionts. 

 

Selected contents of this thesis were published in Burgsdorf I*, Slaby BM*, Handley 

KM, Haber M, Blom J, Marshall CW, Gilbert JA, Hentschel U, Steindler L. (2015). Lifestyle 

evolution in cyanobacterial symbionts of sponges. mBio 6: e00391-15. *shared first authorship 

and submitted to The ISME Journal for publication under the reference Slaby BM, Hackl T, 

Horn H, Bayer K, Hentschel U. Metagenomic binning of a marine sponge microbiome reveals 

unity in defense but metabolic specialization. ISME J, in review. All further sequenced “Ca. 

Synechococcus spongiarum” genomes were submitted to Genome Announcements for 

publication under the reference Slaby BM, Hentschel U. Draft genome sequences of 

“Candidatus Synechococcus spongiarum,” cyanobacterial symbionts of the Mediterranean 

sponge Aplysina aerophoba. Genome Announc, accepted. 
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2.2 Sponge collection and enrichment of prokaryotic cells 

Specimens of A. aerophoba were retrieved in May 2013 and 2014 in Piran, Slovenia 

(45°31’ N, 13°34’ E) from a depth of five to seven meters by SCUBA diving by a diver of the 

Marine Biology Station Portorož and Piran, and transported to the laboratory in ambient sea 

water, where they were placed in flow-through aquaria to recover. The sponges of the 2013 

collection were transported to Würzburg in natural sea water at ambient temperature and 

placed in a Mediterranean aquarium for recovery, then sampled within one week upon arrival. 

The sponges of the 2014 collection were processed in the laboratory facilities of the Marine 

Biology Station Portorož and Piran within three days following collection. 

Pinacoderm and mesohyl, visually distinguishable by color due to the pigments of the 

cyanobacterial symbionts concentrated in the outer pinacoderm (Figure 2-1), were separated 

with a sterile scalpel blade. The sponge-associated prokaryotes (SAPs) were enriched for both 

fractions following a previously published protocol (Fieseler et al., 2004). A number of freshly 

prepared pinacoderm SAPs were used for the enrichment of cyanobacterial symbionts by 

fluorescence-activated cell sorting (FACS). SAPs not used for FACS sorting were frozen with 

15% glycerin at -80°C. 

 

 

Figure 2-1 Longitudinal section of A. aerophoba revealing the clearly distinguishable pinacoderm 
(reddish brown) and mesohyl (yellow). Photo: K. Bayer. 
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2.3 Sequencing and analysis of cyanobacterial sponge symbionts 

2.3.1 Laboratory methods: From sample to sequence 

“Ca. Synechococcus spongiarum” cells were enriched by sorting freshly prepared SAPs 

on a FACS Aria III (BD Biosciences, San Jose, CA, USA) of the core facility of the University 

of Würzburg. For cell sorting, a 488nm laser was used to excite the chlorophyll a and 

phycoerythrin autofluorescence of this cyanobacterium. Single-cells were sorted onto 96-well 

plates and multiple cells were bulk sorted into one tube to create an enrichment of the target 

organism (‘mini-metagenome’). The cell sorts were transported on ice and stored at -80°C 

until further processing.  

I simultaneously screened the mini-metagenome for “Ca. Synechococcus spongiarum” 

and tested whether the concentration of cells was high enough to serve directly as a template 

for a PCR by targeting the cyanobacterial 16S-23S ITS region with the primers 16S-1247f and 

ITS-Alar (Rocap et al., 2002) in the following reaction. The PCR was performed in a volume 

of 50µl containing 10ng of each primer (16S-1247f: 5’-CGT ACT ACA ATG CTA CGG-3’, 

ITS-Alar: 5’-CTC TAC CAA CTG AGC TAW A-3’) (Sigma-Aldrich, Merck, Darmstadt, 

Germany), 10nmol total deoxynucleotides (dNTPs), (Fermentas, Thermo Fisher Scientific, 

Waltham, MA, USA), 1.25U DreamTaq (Fermentas, Thermo Fisher Scientific, Waltham, MA, 

USA), and 1x conc. DreamTaq buffer (green, containing MgCl2 and loading dye). The PCR 

was performed three times containing different volumes of template: 2µl, 4µl, and 5µl. In the 

PCR an initial denaturation of 5 minutes at 95°C was followed by 30 cycles of 30 seconds 

denaturation at 95°C, 30 seconds of annealing at 49°C and 1:30 minutes of elongation at 72°C, 

followed by a final elongation of 5 minutes at 72°C. 

To assess the purity of the cell sort in the mini-metagenome, a 16S rRNA gene PCR 

with the universal primers 27f and 1492r (Lane, 1991) (27f: 5’-GAG TTT GAT CCT GGC 

TCA-3’, 1492r: 5’-TAC GGY TAC CTT GTT ACG ACT T-3’) was performed followed by 

a clone library, and RFLP. A choice of PCR products of clones were sent for Sanger 

sequencing based on the RFLP patterns. The concentrations in the PCR mixture were as 

described above with 5µl of mini-metagenome as an insert. In the reaction, an initial 

denaturation of 5 minutes 95°C was followed by 30 cycles of 45 seconds of denaturation at 

95°C, 1 minute of annealing at 54°C and 1:30 minutes of elongation at 72°C, followed by a 

final elongation of 5 minutes at 72°C. The PCR was performed in triplicate, the products were 

pooled and cleaned with the NucleoSpin Gel and PCR Cleanup Kit (Macherey-Nagel, Düren, 

Germany). 

The CloneJET PCR Cloning Kit (Thermo Fisher Scientific, Waltham, MA, USA) was 

used to clone the PCR products of both PCRs described above into competent Escherichia coli 
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cells following the manufacturer’s protocol. In the case of the universal 16S rRNA gene 

primers the clone library served as a contamination screening. For the cyanobacterial 16S-23S 

ITS primers it aimed to confirm that only the target cyanobacterium “Ca. Synechococcus 

spongiarum” was present in the mini-metagenome and no other cyanobacterial symbionts or 

non-symbionts. For the colony PCR, all 12 16S rRNA gene clones were picked, and 50 16S-

23S ITS clones. The colony PCR was performed in 40µl of volume with 8nmol dNTPs, 0.625U 

DreamTaq and 8pmol of each primer (pJET forward and reverse sequencing primers provided 

with the cloning kit). In the PCR reaction 5 minutes of initial denaturation at 95°C were 

followed by 35 cycles of 30 seconds of denaturation at 94°C, 30 seconds of annealing at 60°C 

and 1:20 minutes elongation at 72°C, and a final elongation of 5 minutes at 72°C. 

Clones with an insert at the expected length were assessed in a restriction fragment 

length polymorphism (RFLP) assay using both the MSPI and HAEIII FastDigest restriction 

enzymes (Fermentas, Thermo Fisher Scientific, Waltham, MA, USA). In a total reaction 

volume of 20µl contained 1µl of each restriction enzyme and 5µl of colony PCR product in 

1x concentrated reaction buffer. The mixture was incubated for a minimum of 30 minutes at 

37°C. Based on the fragment pattern, clones were selected for sequencing. For these, three 

colony PCRs were performed as described above, the PCR products were pooled and cleaned 

with the NucleoSpin Gel and PCR Cleanup Kit, and the DNA concentration was measured by 

NanoDrop. If necessary, the DNA was diluted to 20-80 ng/µl, and 5µl of PCR product mixed 

with 5µl of 5µM pJet forward primer were sent for Sanger sequencing at GATC. Low-quality 

ends of the sequences were trimmed with the Chromatogram Explorer Lite v5.0.2 

(http://www.dnabaser.com/download/chromatogram-explorer/) automatically, and the closest 

relative for each sequence was determined by a BLASTn search 

(https://blast.ncbi.nlm.nih.gov) (Altschul et al., 1990).  

For single-cells as well as aliquots of the mini-metagenome, multiple-displacement 

amplification (MDA) was performed with REPLI-g Single Cell Kit (QIAGEN, Venlo, 

Netherlands) following the manufacturer’s protocol with halved reagent volumes. In the case 

of the mini-metagenomes, 2µl of FACS-sorted cells were used as insert for the MDA reaction. 

The MDA products were diluted 1:10 with sterile water. From cell sorting until the end of 

MDA, all work was conducted on a clean bench. 

For PCR screening, a serial dilution was used as an insert (1:25  1:10  1:5 in PCR 

mix) to obtain a final dilution of 1:12,500 of the MDA product in the PCR. The screening PCR 

was performed in a volume of 50µl containing 10µl of diluted MDA product as insert, 10ng 

of each primer (27f: 5’-GAG TTT GAT CCT GGC TCA-3’, 1492r: 5’-TAC GGY TAC CTT 

GTT ACG ACT T-3’), (Sigma-Aldrich, Merck, Darmstadt, Germany), 10nmol dNTPs, 1.25U 

DreamTaq, and 1x conc. DreamTaq buffer (green, containing MgCl2 and loading dye). In the 

PCR an initial denaturation of 10 minutes at 95°C was followed by 35 cycles of 1 minute 
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denaturation at 95°C, 30 seconds of annealing at 54°C and 1:30 minutes of elongation at 72°C, 

followed by a final elongation of 5 minutes at 72°C. The PCR products were cleaned up with 

the NucleoSpin Gel and PCR Cleanup Kit (Macherey-Nagel, Düren, Germany) and the purity 

and concentration of the DNA was measured by NanoDrop (Thermo Fisher Scientific, 

Waltham, MA, USA). If necessary, the PCR products were diluted to meet the sequencing 

company’s requirements, and 5µl of cleaned PCR product were sent to Sanger sequencing 

with 5µl of 5µM primer (341f: 5’-CCT ACG GGA GGC AGC AG-3’) at GATC Biotech 

(Konstanz, Germany). The 16S rRNA gene sequences were phylogenetically identified by 

BLAST (Altschul et al., 1990). 

Three MDA products of mini-metagenome 15 (L, M, and N) were selected for 

sequencing based on the 16S rRNA gene PCR screening. DNA concentrations were 

additionally measured by Qubit (Thermo Fisher Scientific, Waltham, MA, USA) using the 

high sensitivity assay. The MDA products were sequenced at the DOE JGI on an Illumina 

HiSeq2000 platform (150 bp paired-end reads) with the sample IDs 1033526, 1033529, and 

1033532. 

2.3.2 Bioinformatic methods: From sequencing reads to genome comparison 

The sequencing reads were quality filtered and then de novo assembled with SPAdes 

3.0.0 as part of JGI’s assembly pipeline (Bankevich et al., 2012). Assembly quality was 

assessed with QUAST 3.1 (Gurevich et al., 2013). Decontamination of the assemblies was 

performed with the binning software CONCOCT v. 0.4.0 at default settings (Alneberg et al., 

2014). The bin containing the cyanobacterial target genome was identified with PhyloSift 

v1.0.1 (Darling et al., 2014). A local version of rRNA prediction of WebMGA (Wu et al., 

2011) was used at default settings on the whole assembly to identify the rRNA genes, that 

were then compared to the 16S rRNA gene sequences obtained by Sanger sequencing and then 

added to the genome bin (Ollivier et al., 2008). Open reading frames (ORFs) were called with 

prodigal v2.6.1 (Hyatt et al., 2010) and genome completeness was assessed using a set of 111 

single-copy essential genes (Albertsen et al., 2013) that were annotated with hmmsearch 

against a hmm database of these genes with hmmer 3.1b1 (Eddy, 2009). To assess the 

similarity of the binned genomes, they were aligned with BRIG version 0.95 (Alikhan et al., 

2011) using BLAST+ version 2.5.0 (Altschul et al., 1990). 15L was selected for comparison 

to other clades of “Ca. Synechococcus spongiarum” based on estimated genome completeness. 

Its 16S rRNA gene and 16S-23S ITS sequence was deposited under the GenBank accession 

KP763586, the draft genome sequence was deposited under accession JYFQ00000000. The 

genome sequences of 15M and 15N were deposited under the accession numbers 

MWLD00000000 and MWLE00000000, respectively. 
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Genome 15L was compared to “Ca. Synechococcus spongiarum” SP3, 142, and SH4 , 

from Theonella swinhoei, Ircinia variabilis, and Carteriospongia foliascens, respectively, and 

to selected free-living cyanobacterial references (Burgsdorf et al., 2015; Gao et al., 2014b). 

SP3 and 142 were sampled, sequenced and binned by Ilia Burgsdorf and Laura Steindler of 

the University of Haifa, Israel (see Burgsdorf et al. (2015) for details). SH4 was previously 

published (Gao et al., 2014b). 

To obtain information about genome architecture of the symbiont draft genomes, they 

were aligned to Cyanobium gracile PCC6377 due to its high mean amino acid similarity to the 

symbionts and close relatedness using Mauve version 20120303 (build 645). The contigs were 

reordered by first aligning SP3 to C. gracile PCC6377 with Mauve’s reordering tool, and then 

the other symbiont draft genomes to SP3 with BLASTn and Artemis (Altschul et al., 1990; 

Carver et al., 2005). RAST was used to predict open reading frames (ORFs) and annotate the 

genomes of the four symbionts and six closely related free-living cyanobacteria (Aziz et al., 

2008; Overbeek et al., 2014). In WebMGA, clusters of orthologous groups (COGs) and ‘Kyoto 

Encyclopedia of Genes and Genomes’ (KEGG) pathways were annotated using RPSBLAST 

with an e-value cutoff of 0.001 (Tatusov et al., 2003; Kanehisa et al., 2004; Wu et al., 2011). 

Genome completeness was estimated as described above omitting 11 genes based on 

their absence or presence in multiple copies in the closed reference genomes. The EDGAR 

platform was utilized to obtain genes found in all four symbiont genomes while absent from 

all six reference genomes by a reciprocal best-BLAST-hit approach (Blom et al., 2009). COG 

annotation of this gene set was performed via WebMGA, then the obtained COGs were 

compared to those of the free-living references (Wu et al., 2011). To consider a COG unique 

to “Ca. Synechococcus spongiarum,” it had to be absent from all six analyzed references. If 

no COG annotation was available for an ORF, the KEGG annotation was used. Interactions 

between COGs were predicted with the STRING, member lists of COGs of interest were 

obtained from eggnog version 3.0, and protein domains from NCBI’s refseq_protein database 

(http://blast.be-md.ncbi.nlm.nih.gov/Blast.cgi) (Snel et al., 2000; Powell et al., 2012). 

CRISPRFinder was used to detect clustered regularly interspaced short palindromic repeat 

(CRISPR) arrays (Grissa et al., 2007). CRISPR-Cas modules were identified in the whole-

genome alignments for ‘confirmed CRISPRs’ and associated proteins obtained from SEED 

and COG annotations. 

STAMP v2.0.9 was implemented to create a heatmap of COG class abundance 

accompanied with an average neighbor clustering (UPGMA) dendrogram (Parks et al., 2014). 

With Welch’s t test, statistically significant differences were determined between “Ca. 

Synechococcus spongiarum” and free-living cyanobacteria on COG class level using 

Bonferroni correction for multiple testing and a P value cutoff of 0.05. The EDGAR platform 

was utilized to identify the pangenome of “Ca. Synechococcus spongiarum”, i.e. the sum of 
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all genes in these four genomes, as well as its core genome, i.e. the intersection of genes 

common to all four symbionts (Blom et al., 2009). From the mean percent identity values of 

the core genome genes, the amino acid identity matrix of the symbionts was calculated. A 

phylogenomic tree was additionally constructed by EDGAR based on a core genome of the 

“Ca. Synechococcus spongiarum” genomes and 15 free-living cyanobacterial references. Two 

strains of Synechococcus elongatus were used as an outgroup. First, a reciprocal BLAST 

search with Cyanobium gracile PCC6307 as reference was implemented to determine the 

amino acid sequences of the core genes, then homologous genes were aligned by MUSCLE 

(Edgar, 2004). The alignments were merged into one, which was subsequently used for 

phylogenomic neighbor-joining tree calculation by PHYLIP with 100 bootstrap replications 

using Kimura distance matrix (Blom et al., 2009; Felsenstein, 1995). 

The 16S-23S internal transcribed spacer (ITS) regions of SP3 and 142 were obtained 

with EMIRGE and confirmed by PCR and clone libraries by Ilia Burgsdorf (Burgsdorf et al., 

2015). For 15L, PCR and Sanger sequencing were used to obtain the nucleotide sequence of 

this region as described in 2.2.1. The sequences for SH4 and references were retrieved from 

NCBI (http://www.ncbi.nlm.nih.gov/). From a MUSCLE alignment created in MEGA 6.0, a 

maximum-likelihood tree was constructed with Kimura 2-parameter substitution model with 

gamma-distributed rate variation and a proportion of invariant sites (+G+I) and 1,000 

bootstrap replications (Edgar, 2004; Tamura et al., 2013). 

2.4 Development of a hybrid assembly pipeline for PacBio long-reads 

and Illumina short-reads 

2.4.1 Simulating sequencing reads for a test dataset 

A selection of sequencing data preparation steps in combination with assemblers was 

tested to develop an assembly pipeline that could deal with the uneven coverage of an Illumina 

short-read-sequenced metagenome and at the same time implement PacBio long-reads. A test 

dataset was used that simulated the key conditions of a typical sponge-derived metagenome 

(e.g. uneven sequencing coverage). At the same time, it served as an assembly quality check, 

as the test dataset was composed of known, fully sequenced genomes. The test dataset was 

created by Thomas Hackl by simulating PacBio and Illumina sequencing reads (100bp paired-

end reads with 180bp insert) from nine fully sequenced bacterial genomes: Acidobacterium 

capsulatum ATCC51196, Bacteroides vulgatus ATCC8482, Clostridium thermocellum 

ATCC27405, Desulfovibrio vulgaris DP4, Fusobacterium nucleatum ATCC25586, 

Nitrosomonas europaea ATCC19718, Porphyromonas gingivalis ATCC33277, Sulfolobus 

tokodaii 7, Thermoanaerobacter pseudoethanolicus ATCC33223 at sequencing coverages 
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200, 140, 100, 70, 50, 32, 20, 12, and 8, respectively. The software pbsim-1.0.2 was used to 

simulate PacBio reads (Ono et al., 2013) and art-2.1.8 to simulate Illumina reads (Huang et 

al., 2012). Thomas Hackl corrected the PacBio long-reads with all available Illumina short-

reads using his newly developed tool proovread-meta, a version of proovread that he adapted 

for metagenomic datasets (Hackl et al., 2014; Hackl, 2016). 

2.4.2 Testing assemblers and settings 

At the beginning of this project, no bioinformatic pipeline was published for a hybrid 

assembly of metagenomic long-reads and short-reads. Yet, several assemblers were available, 

some focusing on metagenomics, some on genomics, some accounting for uneven coverage 

of single-cell sequencing projects, and some enabling hybrid assembly of long-reads and short-

reads for genome assemblies. As my aim in this project was not an exhaustive comparison of 

assembly methods but to find a working pipeline to be then tested on real data, I focused on 

three de novo assemblers, namely Omega, IDBA-UD, and SPAdes (Haider et al., 2014; Peng 

et al., 2012; Bankevich et al., 2012). Omega is a metagenomic assembler that uses overlap-

graphs for assembly (Haider et al., 2014). IDBA-UD is optimized for sequencing data of 

uneven depth, namely single-cell and metagenomic datasets (Peng et al., 2012). SPAdes on 

the other hand is specifically programmed for single-cell assemblies and therefore also 

optimized for uneven sequencing depth (Bankevich et al., 2012).  

Testing a variety of assemblers, settings and data preparation steps was necessary to 

develop a pipeline capable of assembling metagenomic long-reads and short-reads together. 

To safe computation time and resources, a test dataset simulating the features of the real A. 

aerophoba data was used consisting of simulated Illumina and PacBio reads from nine fully 

sequenced bacterial genomes at different coverages. The tested de novo assemblers were 

omega v.1.0.2, IDBA-UD of IDBA v.1.1.1 and SPAdes v.3.5.0 at a variety of settings (Haider 

et al., 2014; Peng et al., 2012; Bankevich et al., 2012), and with and without prior Illumina 

sequencing read normalization by the bbnorm algorithm of bbmap v. 34 

(https://sourceforge.net/projects/bbmap/) (Bushnell, 2015) (Figure 2-2). In summary, three de 

novo assembly programs were compared, all programmed to handle uneven sequencing 

coverage, with one optimized for metagenomics, one for single-cell genomics, and one for 

both. I also tested if bbnorm (Bushnell, 2015) could account for the uneven coverage of the 

metagenomic dataset beforehand and thereby improve the assembly or even enable an 

assembler to work with the data.  

In a first step, assemblies of only the Illumina reads were created to assess how well the 

three assembly algorithms handled the uneven metagenomic data. At this step, also the effect 

of read normalization with bbnorm was also tested. Because bbnorm includes a read 
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correction, it may not be necessary to use an additional read correction by SPAdes. Therefore, 

also the differences were assessed when turning off read correction by SPAdes with the –only-

assembler option. In a second step, different PacBio-Illumina hybrid assemblies were 

attempted with SPAdes and IDBA_UD. For SPAdes, possible improvements by assembly with 

longer kmers were also tested, and again the effect of the read correction by SPAdes was 

assessed. Either the read correction was turned off in SPAdes (--only-assembler) or the right 

encoding had to be supplied (--phred-offset 33). As SPAdes emerged superior to omega and 

IDBA_UD very early in the comparison, I only tested the default settings for the latter two 

and rather focused on optimizing the settings for SPAdes. 

2.4.3 Comparing and evaluating of assemblies and bins 

The assemblies were compared with QUAST version 2.3 (Gurevich et al., 2013) and by 

aligning the contigs to the original published assemblies of the nine bacterial genomes by the 

script wgaDrawingPipeline.pl available via AliTV (Ankenbrand et al., 2016). As SPAdes 

produced the best results, further comparisons were made between the Illumina-only assembly 

and the PacBio-Illumina hybrid assembly calculated with this program to assess also a possible 

binning of the genomes from the metagenomic assemblies. Reads were mapped back to the 

contigs with bowtie2 v. 2.2.2 at default settings (Langmead and Salzberg, 2012) and samtools 

v. 0.1.18 (Li et al., 2009) was implemented for sorting, indexing and depth calculation of the 

resulting mapping files. An in-house python script was then used to calculate the average 

coverage of each contig from the depth files 

(https://github.com/bslaby/scripts/avgcov_from_samtoolsout.py). 16S rRNA genes were 

annotated with a local version of rRNA prediction at default settings (Wu et al., 2011) and 

their phylogenetic identity was determined with RDPclassifier (Cole et al., 2014) and BLASTn 

(Altschul et al., 1990). The contigs were manually binned with a previously published R 

pipeline (Albertsen et al., 2013) coloring contigs containing the 16S rRNA genes based on 

their phylogeny when plotted according to their coverage values determined by bowtie2 

mapping and calculated by SPAdes during assembly. The completeness was estimated 

according to a previously published R pipeline based on 111 essential single-copy genes 

(Albertsen et al., 2013) using prodigal v2.6.1 (Hyatt et al., 2010) and hmmer3.1b1 (Finn et al., 

2011). The same completeness estimation was also used on the original references for 

comparison. 
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Figure 2-2 Overview of tested assemblies of 1) only the Illumina reads, and 2) PacBio and Illumina reads. 
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2.5 Apylsina aerophoba metagenomics 

2.5.1 Laboratory methods: DNA extraction and sequencing 

DNA of sponge-associated prokaryotes (SAPs) obtained from either pinacoderm or 

mesohyl tissue (three replicates each) was extracted with the FastDNA SPIN Kit for Soil (MP 

Biomedicals, Santa Ana, CA, USA). Different cell lysis protocols were applied for each 

triplicate to obtain differential sequencing coverage for downstream binning as previously 

described (Albertsen et al., 2013; Alneberg et al., 2014): (i) bead beating, following the 

manufacturer's protocol, (ii) freeze-thaw cycling (3 cycles of 20 minutes at -80 °C and 20 

minutes at 42 °C), (iii) proteinase K digestion for 1 hour at 37°C (TE buffer with 0.5% SDS 

and proteinase K at 100 ng/ml final conc.). Quantity and quality of the extracted DNA were 

assessed by Nanodrop and Qubit high sensitivity assay, and agarose gel electrophoresis, 

respectively. Respective DNA from two exctraction rounds was pooled and metagenomic 

DNA was sequenced on an Illumina HiSeq2000 platform (150-bp paired-end reads) and 

quality filtered at the DOE Joint Genome Institute (Walnut Creek, CA, USA) following the 

JGI sequencing and data processing pipeline (Markowitz et al., 2012). For the PacBio dataset, 

DNA was extracted with the above-mentioned kit following the manufacturer’s protocol (cell 

lysis by bead beating) and sequenced on a PacBio RS II platform using 8 SMRT cells by 

GATC Biotech (Konstanz, Germany). 

2.5.2 Bioinformatic methods: From assembly to annotation 

Illumina reads were coverage-normalized with bbnorm of BBMap v. 34 

(https://sourceforge.net/projects/bbmap/) at default settings. PacBio reads were corrected with 

all (non-normalized) Illumina reads using proovread (Hackl et al., 2014) optimized for 

handling metagenomic data (Hackl, 2016). Only corrected PacBio reads longer than 1 000 bp 

were used for further analyses. To assess the improvement of the assembly by adding PacBio 

long-reads compared to only Illumina short-reads, I assembled two sets of data: i) only the 

Illumina reads (Illumina-only assembly) and ii) Illumina and PacBio reads together (hybrid 

assembly). The two independent assemblies were calculated with SPAdes v. 3.5.0 (Bankevich 

et al., 2012) for kmers 21, 33, 55, 77, 99, and 127 and with the single-cell and only-assembler 

options enabled. Only contigs of at least 1 000 bp length were used for further analyses.  

Binning was performed with CONCOCT v. 0.4.0 at default settings (Alneberg et al., 

2014). Before binning, contigs longer than 20 000 bp were split into sub-contigs of at least 

10 000 bp length with the script cut_up_fasta.py (Alneberg et al., 2014). The non-normalized 

Illumina reads of the six Illumina datasets were mapped to the sub-contigs with bowtie2 v. 

2.2.2 at default settings (Langmead and Salzberg, 2012). The resulting SAM files were 
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converted to BAM, sorted, and indexed with samtools v. 0.1.18 (Li et al., 2009), and duplicates 

were marked according to the script map-bowtie2-markduplicates.sh provided with the 

CONCOCT package (Alneberg et al., 2014). Samtools v. 0.1.18 was also used for sorting, 

indexing, and depth calculation (Li et al., 2009). The in-house python script 

avgcov_from_samtoolsout.py (https://github.com/bslaby/scripts/) was used to calculate the 

average coverage of each sub-contig. The coverage tables for each mapping were merged into 

one for binning with CONCOCT v. 0.4.0 (Alneberg et al., 2014) at default settings. A fasta 

file for each bin was created with the in-house python script mkBinFasta.py 

(https://github.com/bslaby/scripts/). Sub-contigs were merged into the original contigs again. 

If sub-contigs of one contig were assigned to different bins, the contig was placed in the bin 

by majority-vote. Assembly statistics were obtained from QUAST v. 3.1 (Gurevich et al., 

2013). To assess similarity of Illumina-only and hybrid assembly as well as assembly 

improvements by adding of PacBio long-reads on the genome level, the contigs of an Illumina-

only bin were mapped to the contigs of the corresponding hybrid assembly bin with nucmer 

of MUMmer 3.0 (Kurtz et al., 2004) and visualized with AliTV (Ankenbrand et al., 2016). 

Open reading frames (ORFs) were called with prodigal v. 2.6.1 (Hyatt et al., 2010) with 

-m and -p meta options enabled, and the completeness of genomic bins was estimated by 

hmmsearch (HMMER 3.1b1) against a database of 111 essential genes with –cut_tc and –

notextw options (Albertsen et al., 2013; Finn et al., 2011). Only reference genomes > 90% and 

bins > 70% completeness were used in further analyses. 

The Illumina-only and the PacBio-Illumina hybrid assemblies were deposited on MG-

RAST (Meyer et al., 2008) (Table 3-17). Additionally, raw Illumina sequencing data was 

deposited under GOLD Study ID Gs0099546 (Reddy et al., 2014). Uncorrected and corrected 

PacBio reads were deposited on MG-RAST (Meyer et al., 2008) with the IDs mgm4670967.3 

and mgm4670966.3, respectively. The accession numbers for all bins > 70% completeness are 

listed in Table 3-18. The Illumina-only assembly is also deposited on GenBank with the 

accession MKWU00000000. 

2.5.3 Statistical analysis: Comparison to references and within symbionts 

Twenty-seven reference genomes were chosen based on phylogeny and environment. 

Close taxonomic relatedness to the symbiont genomes, closed genomes, as well as marine (or 

at least aquatic) environments were preferably selected. In order to be able to validate the 

binning process, we included the sponge symbiont genomes “Ca. S. spongiarum” 15L 

(Burgsdorf et al., 2015) and “Ca. Poribacterium” WGA3G (Kamke et al., 2013) in the 

analyses. We retrieved nucleic acid fasta files for all selected references from GenBank and 

MG-RAST (Benson et al., 2007; Meyer et al., 2008) which were then processed like the 
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symbiont bins with respect to ORF prediction and annotation. Five additional references were 

added for 16S rRNA gene tree calculation for better phylogenetic resolution. The annotation 

of rRNA genes was performed with a local version of rRNA prediction at default settings (Wu 

et al., 2011). The 16S rRNA genes were taxonomically placed with RDP classifier at a 80% 

confidence cutoff (Wang et al., 2007) and the classification tool of SINA 1.2.11 (Pruesse et 

al., 2012) using the SILVA and Greengenes databases (DeSantis et al., 2006; Quast et al., 

2013). Gap-only sites were removed from the SINA alignment of both, bins and references, in 

SeaView 4.5.2 (Gouy et al., 2010). A Neighbor Joining tree (GTR+G+I), which was 

determined to be the most suitable DNA/protein model for the data, was calculated in MEGA7 

with 100 bootstrap replications (Kumar et al., 2016). Additionally, a concatenated gene tree 

of 29 essential genes was created (see Appendix 3-1 for a list of genes). Alignments for every 

gene individually using the muscle algorithm in MEGA7 (Edgar, 2004; Kumar et al., 2016) 

were merged with a sequence of 20 Ns between the genes. After identifying the most suitable 

DNA/protein model for the data, a maximum likelihood tree (LG+G+I) was calculated in 

MEGA7 with 100 bootstrap replications (Kumar et al., 2016). Bins lacking 16S rRNA genes 

or with an ambiguous classification of this gene were phylogenetically classified according to 

their placement in the concatenated tree. 

ORFs were annotated with rpsblast+ of BLAST 2.2.28+ against a local version of the 

COG database (ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/, download on 2015-05-28) (Tatusov et 

al., 2003; Wu et al., 2011). Only annotations with an e-value ≤ 1e-6 were used for further 

analyses, and only one annotation per ORF was kept ranked by e-value, length and bitscore. 

Because many sponge-symbiont lineages, in some cases whole phyla, are not abundant in 

seawater, we have opted for an approach different from previous publications, where only 

seawater metagenomes were used for comparison (Thomas et al., 2010). We selected reference 

genomes based on phylogenetic similarity and on genome completeness. Marine sources were 

preferred over other sources. 

To discover statistically significant differences between the sponge symbiont genomes 

and reference genomes, Welch’s t-test was performed in STAMP 2.0.9 (Parks et al., 2014) 

with Storey FDR and a q-value cut-off of 0.01. This was performed on the COG class level, 

double-counting COGs that belong to multiple classes, as well as on the COG level. 

Interactions between the significantly sponge-enriched COGs were explored using STRING 

v10 networks (Szklarczyk et al., 2015) and a heatmap was created in R version 3.2.3 

(https://www.r-project.org). The phylo.heatmap function of phytools package version 0.5.30 

(Revell, 2012) was used to complement the heatmap with phylogeny. The phylogenetic tree 

accompanying the heatmap is a simplified version (bins only) of the concatenated gene 

phylogeny. The symbiont genomes were compared by applying a principle component 

analysis (PCA) in R with FactoMineR package version 1.33 (Lê et al., 2008), factoextra 
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package version 1.0.3 (https://cran.r-project.org/web/packages/factoextra/index.html), and 

ggplot2 version 2.2.0 (http://ggplot2.org). 
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3 Results 

3.1 Assessing the genome of the “Ca. Synechococcus spongiarum” group 

3.1.1 Assessment of clade F genomes from A. aerophoba 

3.1.1.1 Cell sort purity assessment 

For sorting, double-positive signals for both types of autofluorescence of “Ca. 

Synechococcus spongiarum” were identified in the sorting plot in the FACS software with the 

chlorophyll a fluorescence in the APC-Cy7-A channel and the phycoerythrin fluorescence in 

the PE-Texas Red-A channel (Figure 3-1). The sorting window was set by hand around the 

cells showing the strongest of both signals. Single cells were sorted onto a total of nine 96-

well plates and multiple cells were bulk sorted into one tube.  

 

  

Figure 3-1 FACS sorting plot of “Ca. Synechococcus spongiarum” cells with positive APC-Cy7-A / 
chlorophyll a and PE-Texas Red-A / phycoerythrin signals. On the right: Zoom-in on the target signals. 
Two different sorting windows were selected (signals of target cells in blue and red; P1: selection for 
cells with signals in red). The cells for the mini-metagenome derived from the selection shown in red. 

 

To assess the concentration and purity of the mini-metagenomes, a cyanobacterial 16S-

23S ITS region PCR as well as a 16S rRNA gene PCR were performed. For mini-metagenome 

15, three PCRs of the 16S-23S ITS region with different insert volumes were tested, all 

producing an amplification product (Figure 3-2). The mini-metagenome contained a sufficient 

concentration of cyanobacterial cells for PCR amplification. In the next screening step, the 

16S rRNA gene was amplified in a PCR with universal bacterial primers (Figure 3-3). The 

PCR products for each primer pair were pooled and cleaned from PCR buffers and reagents, 

and then cloned into E. coli. 
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A 

 

B 

 

C 

Figure 3-2 Agarose gel pictures of 16S-23S ITS region PCRs on mini-metagenome 15 with positive and 
negative controls in comparison to the 1kb DNA ladder. A) 2µl insert, B) 4µl insert, C) 5µl insert. 

 

Figure 3-3 Agarose gel pictures of three replicates of the 16S rRNA gene PCR on mini-metagenome 15 
(and 10) with positive and negative controls in comparison to the 1kb DNA ladder.  

 

Figure 3-4 Agarose gel pictures of the colony PCR products with the 1kb DNA ladder. A)-C) and clone 
49 in D) derive from the 16S-23S ITS region PCR, clones 3, 11, and 12 in D) from the 16S rRNA gene 
PCR. Only clones with the correct insert size were labeled. 
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The PCR products of clones with the correct insert size were compared to each other in 

a RFLP assay. For the cyanobacterial 16S-23S ITS region, the 14 clones showed five slightly 

different patterns (Figure 3-5). Representatives were selected for each RFLP pattern, namely 

clones number 6, 11, 15, 34, and 41 (Figure 3-4). For the 16S rRNA gene, only two clones had 

the correct insert size, both showing the same RFLP pattern. Both of them were processed 

further. Three more colony PCRs were performed for the selected clones, the PCR products 

were pooled for each clone, cleaned, and Sanger sequenced. The best BLAST hits for the 

sequences are all “Ca. Synechococcus spongiarum” (Table 3-1), confirming the purity of the 

FACS sorted mini-metagenome. Based on these results and on the hypothesis that the ratio of 

contaminating free DNA to target DNA in the mini-metagenome would be smaller than in the 

single cells, I focused MDA and screening efforts on the mini-metagenome. 

 

 

Figure 3-5 RFLP analysis of clones with inserts from the cyanobacterial 16S-23S ITS PCR and the 
universal bacterial 16S rRNA gene PCR . Columns are labeled according to clone numbers in the colony 
PCR (Figure 3-4) and the same RFLP patterns are indicated by the letters below. 

 

Table 3-1 Best BLAST hits for colony PCR products of the clones selected based on the RFLP assay. 

 Description Accession 
Query 
cov. (%) 

Ident 
(%) 

1
6

S
 1

1
 

Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 99 99 
Candidatus Synechococcus spongiarum clone MB031NC3 EU307484.1 99 99 
Candidatus Synechococcus spongiarum clone MB031C3 EU307482.1 99 99 

1
6

S
 1

2
 

Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 100 99 
Candidatus Synechococcus spongiarum clone MB031NC3 EU307484.1 100 99 
Candidatus Synechococcus spongiarum clone MB031C3 EU307482.1 100 99 

IT
S

 6
 Candidatus Synechococcus spongiarum clone MB035C6 EU307487.1 68 99 

Candidatus Synechococcus spongiarum clone MB035C3 EU307486.1 68 99 
Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 68 99 

IT
S

 1
1
 

Candidatus Synechococcus spongiarum clone MB035C6 EU307487.1 99 98 
Candidatus Synechococcus spongiarum clone MB035C3 EU307486.1 99 98 
Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 99 98 

IT
S

 1
5
 

Candidatus Synechococcus spongiarum clone MB035C6 EU307487.1 66 99 
Candidatus Synechococcus spongiarum clone MB035C3 EU307486.1 66 99 
Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 66 99 

IT
S

 3
4
 

Candidatus Synechococcus spongiarum clone MB035C6 EU307487.1 88 98 
Candidatus Synechococcus spongiarum clone MB035C3 EU307486.1 88 98 
Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 88 98 

IT
S

 4
1
 

Candidatus Synechococcus spongiarum clone MB035C6 EU307487.1 99 99 
Candidatus Synechococcus spongiarum clone MB035C3 EU307486.1 99 99 
Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 99 99 
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3.1.1.2 Identification of suitable sequencing candidates 

A total of 15 MDA reactions were performed on 4µl aliquots of the mini-metagenome 

(named 15A-O). By 16S rRNA gene PCR, the MDA products were screened for “Ca. 

Synechococcus spongiarum.” Only candidates with high 16S rRNA gene BLAST identities to 

“Ca. Synechococcus spongiarum” sequences were selected as sequencing candidates (Table 

3-2). Their DNA concentrations were very similar, ranging between 10.2 ng/µl and 10.6 ng/µl, 

and also their absorbance ratios were in similar ranges (Table 3-3). The constant deviation 

from the ideal 260/280 and 260/230 ratios for pure DNA may be due to MDA reagents and 

buffers that are still present in the MDA products. Three candidates (15L, 15M, 15N) were 

chosen for sequencing from the MDA products of the mini-metagenome based on the 16S 

rRNA gene PCR screening. 

Table 3-2 Best BLAST hits for 16S rRNA gene sequences of MDA products 15L-N. 

 Description Accession 
Query 
cov. (%) 

Ident 
(%) 

1
5

L
a
 Candidatus Synechococcus spongiarum clone MB035C3 EU307486.1 100 99 

Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 100 99 
Candidatus Synechococcus spongiarum clone MB031NC3 EU307484.1 100 99 

1
5

L
b
 Candidatus Synechococcus spongiarum clone MB031NC1 EU307483.1 99 99 

Candidatus Synechococcus spongiarum clone MB031NC4 EU307485.1 99 99 
Candidatus Synechococcus spongiarum clone MB031NC3 EU307484.1 99 99 

1
5

M
 Candidatus Synechococcus spongiarum clone 45Fr AY190185.1 100 97 

Candidatus Synechococcus spongiarum clone MB031NC1 EU307483.1 100 97 
Uncultured cyanobacterium clone AnCha232f EF076240.1 100 97 

1
5

N
 Candidatus Synechococcus spongiarum clone 45Fr AY190185.1 100 99 

Candidatus Synechococcus spongiarum clone MB035C3 EU307486.1 100 99 
Candidatus Synechococcus spongiarum clone MB031NC1 EU307483.1 100 99 

 

Table 3-3 DNA concentrations measured by Qubit HS and absorbance ratios measured by NanoDrop 
for the 1:10 dilutions of MDA products 15L-N. 

 15L 15M 15N 

Qubit HS conc. (ng/µl) 10.6 10.2 10.2 
NanoDrop 260/280 1.66 1.62 1.68 
NanoDrop 260/230 1.93 1.85 1.99 

 

 

3.1.1.3 Within-clade F comparison 

The three decontaminated genomes “Ca. Synechococcus spongiarum” 15L-N were of 

very similar quality. They had between 187 and 229 contigs (>= 1000 bp) summing up to 

between 2.2 Mbp and 2.4 Mbp (Table 3-4). Also in N50 values, GC content, and estimated 

genome completeness, the three genomes were very similar. An alignment of the genomes to 

each other showed that they were also largely identical on nucleotide sequence level (Figure 

3-6). This leads to the conclusion that the three datasets in fact represent the same genome of 

“Ca. Synechococcus spongiarum” associated to A. aerophoba. Therefore, no further 

comparisons were carried out between the three datasets, and the most complete genome 15L 
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was chosen for comparison to “Ca. Synechococcus spongiarum” clade genomes derived from 

other marine sponges. 

Table 3-4 Assembly statistics and completeness estimation for “Candidatus Synechococcus 
spongiarum” genomes 15L, 15M, and 15N after decontamination by binning. ESC genes – essential 
single copy genes; est. – estimated.

 15L 15M 15N 

Assembly statistics    
# contigs 229 187 208 
# contigs (>= 1000 bp) 229 187 208 
# contigs (>= 5000 bp) 136 133 147 
# contigs (>= 10000 bp) 79 84 88 
Largest contig (bp) 42,660 69,209 41,605 
Total length (bp) 2,209,101 2,350,399 2,245,489 
N50 (bp) 14,814 19,178 15,402 
N75 (bp) 8,190 11,195 9,164 
GC (%) 59.16 59.25 59.01 

Completeness estimation    
# ESC genes (total: 111) 101 101 98 
# duplicate ESC genes 2 4 2 
# unique ESC genes 99 97 96 
% est. completeness (111 genes) 89.19 87.39 86.49 
Est. Genome size (bp) 2,476,848 2,689,551 2,596,241 

Deposition in public databases 
JGI Project ID 1033525 1033528 1033531 

    

 

   

Figure 3-6 Alignment of 15L, 15M, and 15N to the most complete genome 15L and to the largest genome 
15M. The three genomes are agreeing well with each other. 

3.1.2 Comparison within the “Ca. Synechococcus spongiarum” group and to 

free-living references 

3.1.2.1 Intraspecies phylogeny, genome recovery, and reordering 

The 16S-23S ITS region phylogeny determined, that the compared “Ca. Synechococcus 

spongiarum” genomes from A. aerophoba, I. variabilis, and T. swinhoei belong to different 

clades of this symbiont. For “Ca. Synechococcus spongiarum” from A. aerophoba and I. 

variabilis, 16S-23S ITS sequences were published in earlier studies and the newly sequenced 

symbionts fell into the regarding clades, as expected (Figure 3-7). The remaining two 

phylotypes probably represent novel clades. 
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Figure 3-7 Phylogeny of the 16S-23S ITS region (and partial 16S rRNA gene) of the sponge-associated 
symbiont “Ca. Synechococcus spongiarum.” Names on the tree are those of the host sponge species. 
Black circles mark sequences of genomes analyzed in this study. Maximum-likelihood criteria and 
distance estimates were calculated with the Kimura 2-parameter substitution model (+G+I). Bootstrap 
values at branch nodes derive from 1,000 replications. 

 

The “Ca. Synechococcus spongiarum” draft genomes SP3, 142, and 15L were 

assembled in 117, 327, and 229 contigs representing an estimated completeness of 96%, 91%, 

and 95%, respectively. The previously published genome SH4 reached 89% estimated 

completeness (Gao et al., 2014b). Genome sizes were predicted to range from ~1.9 Mbp for 

SH4 to ~2.5 Mbp for 142 with GC percentages of 63.1% and 58.7%, respectively (Table 3-5). 

Different assembly and binning approaches were used for SH4, SP3, and 142, and a single-

cell sequencing approach for 15L. Also different parts of the sponge (pinacoderm with and 

without mesohyl) were used for DNA extraction. Despite these methodological differences, 

the genomes were very similar in size, contig number, completeness, and GC percentage. 

Methodological approach seemed to have no significant effect on the outcome. 
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Figure 3-8 BLASTp-based alignment of four “Ca. Synechococcus spongiarum” genomes . The genomes 
of SH4, 142, and 15L were aligned to that of SP3, which showed the highest completeness and the 
fewest contigs. 

 

Alignment and reordering of the draft genomes’ contigs to the reference Cyanobium 

gracile PCC6307 slightly increased the number of open reading frames (ORFs) as well as 

annotated SEED subsystems. While this step seemed to have improved the annotation yield, 

the reordering does not necessarily mirror true ordering of the genomes. After initial reordering 

of SP3 against Cyanobium gracile PCC6307, the other three symbiont genomes were aligned 

to SP3 based on BLASTp and BLASTn (Figure 3-8 and Figure 3-9, respectively). A plot of 

reordered genomes SH4, 15L, and 142 against SP3 showed a high degree of gene synteny 

within contigs (Figure 3-10). 
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Figure 3-9 Pairwise BLASTn-based alignment of four draft genomes of “Ca. Synechococcus 

spongiarum.” Bars indicate corresponding regions that are oriented in the same (red) and opposite (blue) 
directions. 

 

 

Figure 3-10 Synteny plot based on reciprocal best BLAST hits between each gene of “Ca. 
Synechococcus spongiarum” SP3 and one of the genomes SH4, 15L, and 142. 
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Table 3-5 General genomic information for the four “Ca. Synechococcus spongiarum” phylotypes 15L, 
SP3, 142, and SH4, and six free-living Synechococcus and Cyanobium species.
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Table 3-6 Amino acid identity matrix. The mean percent identity values were based on BLAST hits 
between orthologous genes of the core genomes. 

 

 



Results 

50 

3.1.2.2 Within-symbiont and symbiont-reference comparison 

Six representative closely related, free-living Synechococcus and Cyanobium species 

were selected for comparison to the four “Ca. Synechococcus spongiarum” genomes 

(reference genomes marked in green in Figure 3-11). “Ca. Synechococcus spongiarum” is in 

the concatenated phylogenetic core genome tree equidistant from the 

Synechococcus/Prochlorococcus subclade consisting of marine and freshwater 

Synechococcus, Prochlorococcus, and Cyanobium, which is in agreement with earlier reports 

(Gao et al., 2014b).  

 

 

Figure 3-11 Concatenated phylogenetic core genome tree calculated by iterative pairwise comparison of 
genomes of the cyanobacteria analyzed here. Bootstrap values at branch nodes derive from 100 
replications (Kimura distance matrix, neighbor joining algorithm). Names in orange and blue are “Ca. 
Synechococcus spongiarum” associated with Red Sea and Mediterranean sponges, respectively; those 
in green are free-living strains used for genomic comparisons. 

 

An amino acid identity comparison between shared orthologous genes showed, that the 

four symbionts were between 91.0% and 92.1% identical regarding these shared genes, while 

they were between 63.6% and 72.5% similar to the six free-living cyanobacteria (Table 3-6). 

The symbionts were most similar to the marine Cyanobium PCC7001 and to the freshwater 

Cyanobium gracile PCC6307 with 72.4% and 72.2% mean amino acid identity, respectively. 
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Figure 3-12 Heatmap of relative abundances of COG classes A to V. Two Mediterranean “Ca. 
Synechococcus spongiarum” genomes (blue), two Red Sea “Ca. Synechococcus spongiarum” genomes 
(orange), and six genomes of free-living cyanobacteria (green) were compared in this analysis. UPGMA 
clustering is presented to the left of the map. 

 

A total of 1,759 COGs were annotated for the “Ca. Synechococcus spongiarum” 

genomes and references. Based on COG class abundances, the four symbionts were more 

similar to each other than to the free-living cyanobacteria, and also clustered by geographic 

location (Figure 3-12). The clear separation of symbionts and references was mainly due to 

six COG categories – three of which were significantly enriched in the symbionts, with three 

others depleted (Figure 3-13). Found in “Ca. Synechococcus spongiarum” at significantly 

higher proportions were COGs of the categories ‘replication, recombination and repair’ (L), 

‘coenzyme transport and metabolism’ (H), and ‘amino acid transport and metabolism’ (E), 

whereas COGs of the categories ‘signal transduction mechanisms’ (T), ‘cell 

wall/membrane/envelope biogenesis’ (M), and ‘inorganic ion transport and metabolism’ (P) 

were depleted compared to the free-living relatives. 

 

Figure 3-13 COG classes with statistically significant differences between “Ca. Synechococcus 
spongiarum” genomes (grey) and genomes of free-living cyanobacteria (green). Error bars indicate 
within-group standard deviations. Presented categories passed a corrected P value of <0.05 in Welch’s 
t test. 



Results 

52 

Table 3-7 COGs unique to “Ca. Synechococcus spongiarum” – i.e. present in at least one of the four 
symbiont genomes but absent in all six free-living cyanobacteria. The 14 COGs present in all four “Ca. 
Synechococcus spongiarum” genomes are in bold. 

#COG SP3 142 15L SH4 COG description 
COG 
class 

COG0003 0 1 0 0 Oxyanion-translocating ATPase P 

COG0067 0 0 0 1 Glutamate synthase domain 1 E 

COG0070 0 0 0 1 Glutamate synthase domain 3 E 

COG0270 1 1 2 1 Site-specific DNA methylase L 

COG0323 0 0 1 0 DNA mismatch repair enzyme (predicted ATPase) L 

COG0338 1 2 1 0 Site-specific DNA methylase L 

COG0423 0 0 1 0 Glycyl-tRNA synthetase (class II) J 

COG0433 1 1 1 0 Predicted ATPase R 

COG0501 0 0 1 0 Zn-dependent protease with chaperone function O 

COG0517 1 1 1 1 FOG: CBS domain R 

COG0609 1 0 1 0 
ABC-type Fe3+-siderophore transport system, 
permease component 

P 

COG0646 0 1 0 0 
Methionine synthase I (cobalamin-dependent), 
methyltransferase domain 

E 

COG0666 4 4 4 4 FOG: Ankyrin repeat R 

COG0675 4 6 7 0 Transposase and inactivated derivatives L 

COG0716 1 1 1 0 Flavodoxins C 

COG0846 0 0 1 0 
NAD-dependent protein deacetylases, SIR2 
family 

K 

COG0849 1 0 0 1 Actin-like ATPase involved in cell division D 

COG0863 5 4 9 3 DNA modification methylase L 

COG1002 0 0 3 2 Type II restriction enzyme, methylase subunits V 

COG1106 3 3 6 0 Predicted ATPases R 

COG1111 0 1 0 0 ERCC4-like helicases L 

COG1120 1 0 1 0 
ABC-type cobalamin/Fe3+-siderophores transport 
systems, ATPase components 

PH 

COG1146 0 1 0 0 Ferredoxin C 

COG1203 0 1 2 1 Predicted helicases R 

COG1204 0 1 1 0 Superfamily II helicase R 

COG1223 0 0 1 0 Predicted ATPase (AAA+ superfamily) R 

COG1304 0 1 1 1 
L-lactate dehydrogenase (FMN-dependent) and 
related alpha-hydroxy acid dehydrogenases 

C 

COG1331 0 0 1 0 
Highly conserved protein containing a thioredoxin 
domain 

O 

COG1336 0 1 0 0 
Uncharacterized protein predicted to be involved 
in DNA repair (RAMP superfamily) 

L 

COG1343 0 1 1 0 
Uncharacterized protein predicted to be involved 
in DNA repair 

L 

COG1360 1 0 0 0 Flagellar motor protein N 

COG1451 1 1 0 1 Predicted metal-dependent hydrolase R 

COG1468 1 0 0 0 RecB family exonuclease L 

COG1476 0 0 0 1 Predicted transcriptional regulators K 

COG1479 0 1 0 1 Uncharacterized conserved protein S 

COG1483 0 2 1 1 Predicted ATPase (AAA+ superfamily) R 

COG1518 1 2 1 0 
Uncharacterized protein predicted to be involved 
in DNA repair 

L 

COG1604 0 1 0 0 
Uncharacterized protein predicted to be involved 
in DNA repair (RAMP superfamily) 

L 

COG1629 3 1 3 1 
Outer membrane receptor proteins, mostly Fe 
transport 

P 
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COG1651 1 1 1 1 Protein-disulfide isomerase O 

COG1743 1 1 2 1 
Adenine-specific DNA methylase containing a 
Zn-ribbon 

L 

COG1744 2 1 1 0 
Uncharacterized ABC-type transport system, 
periplasmic component/surface lipoprotein 

R 

COG1769 0 1 0 0 
Uncharacterized protein predicted to be involved 
in DNA repair (RAMP superfamily) 

L 

COG1879 0 1 0 0 
ABC-type sugar transport system, periplasmic 
component 

G 

COG1893 1 0 1 0 Ketopantoate reductase H 

COG1943 0 1 3 0 Transposase and inactivated derivatives L 

COG2110 1 0 0 0 
Predicted phosphatase homologous to the C-
terminal domain of histone macroH2A1 

R 

COG2141 0 0 1 0 
Coenzyme F420-dependent N5,N10-methylene 
tetrahydromethanopterin reductase and related 
flavin-dependent oxidoreductases 

C 

COG2189 3 1 3 1 Adenine specific DNA methylase Mod L 

COG2241 0 0 1 0 Precorrin-6B methylase 1 H 

COG2253 0 0 0 1 Uncharacterized conserved protein S 

COG2340 1 1 0 0 Uncharacterized protein with SCP/PR1 domains S 

COG2520 0 1 0 0 Predicted methyltransferase R 

COG2608 0 0 1 0 Copper chaperone P 

COG2810 0 0 1 1 Predicted type IV restriction endonuclease V 

COG2832 0 1 0 0 Uncharacterized protein conserved in bacteria S 

COG2856 2 2 2 0 Predicted Zn peptidase E 

COG2910 0 0 1 0 Putative NADH-flavin reductase R 

COG2932 1 0 1 1 Predicted transcriptional regulator K 

COG3041 0 1 2 0 Uncharacterized protein conserved in bacteria S 

COG3064 1 0 1 0 Membrane protein involved in colicin uptake M 

COG3106 1 1 0 0 Predicted ATPase R 

COG3150 1 0 0 0 Predicted esterase R 

COG3290 0 0 1 0 
Signal transduction histidine kinase regulating 
citrate/malate metabolism 

T 

COG3293 4 2 0 3 Transposase and inactivated derivatives L 

COG3337 0 1 0 0 
Uncharacterized protein predicted to be involved 
in DNA repair 

L 

COG3344 0 0 1 0 Retron-type reverse transcriptase L 

COG3392 0 2 1 1 Adenine-specific DNA methylase L 

COG3464 0 0 1 0 Transposase and inactivated derivatives L 

COG3512 0 1 0 0 Uncharacterized protein conserved in bacteria S 

COG3513 0 1 0 0 Uncharacterized protein conserved in bacteria S 

COG3549 1 0 0 1 Plasmid maintenance system killer protein R 

COG3587 0 0 0 1 Restriction endonuclease V 

COG3607 0 0 1 0 Predicted lactoylglutathione lyase R 

COG3668 0 0 0 1 Plasmid stabilization system protein R 

COG3705 1 1 1 1 
ATP phosphoribosyltransferase involved in 
histidine biosynthesis 

E 

COG3727 0 0 1 0 DNA G:T-mismatch repair endonuclease L 

COG3768 1 1 0 0 Predicted membrane protein S 

COG3848 0 1 0 0 Phosphohistidine swiveling domain T 

COG3881 0 0 1 0 Uncharacterized protein conserved in bacteria S 

COG3893 0 0 1 0 Inactivated superfamily I helicase L 

COG3898 0 0 0 1 Uncharacterized membrane-bound protein S 



Results 

54 

COG3950 2 6 4 1 
Predicted ATP-binding protein involved in 
virulence 

R 

COG4122 1 1 2 1 Predicted O-methyltransferase R 

COG4123 0 0 1 1 Predicted O-methyltransferase R 

COG4278 0 0 0 1 Uncharacterized conserved protein S 

COG4422 1 0 2 0 Bacteriophage protein gp37 S 

COG4558 1 0 1 0 
ABC-type hemin transport system, periplasmic 
component 

P 

COG4564 1 0 1 0 Signal transduction histidine kinase T 

COG4623 0 0 1 0 
Predicted soluble lytic transglycosylase fused to 
an ABC-type amino acid-binding protein 

M 

COG4694 0 0 1 0 Uncharacterized protein conserved in bacteria S 

COG4717 0 1 0 1 Uncharacterized conserved protein S 

COG4725 0 0 1 1 
Transcriptional activator, adenine-specific DNA 
methyltransferase 

TK 

COG4733 0 0 1 0 Phage-related protein, tail component S 

COG4748 1 2 1 2 Uncharacterized conserved protein S 

COG4771 0 1 0 0 
Outer membrane receptor for ferrienterochelin 
and colicins 

P 

COG4823 0 0 1 0 
Abortive infection bacteriophage resistance 
protein 

V 

COG4886 3 13 0 1 Leucine-rich repeat (LRR) protein S 

COG4889 1 3 6 2 Predicted helicase R 

COG4923 1 1 0 0 Uncharacterized conserved protein S 

COG4928 0 1 0 0 Predicted P-loop ATPase R 

COG4938 2 4 3 0 Uncharacterized conserved protein S 

COG4942 0 0 1 0 Membrane-bound metallopeptidase D 

COG4978 1 0 1 0 
Transcriptional regulator, effector-binding 
domain/component 

KT 

COG4982 1 0 0 0 3-oxoacyl-[acyl-carrier protein] reductase I 

COG5009 1 0 0 0 
Membrane carboxypeptidase/penicillin-binding 
protein 

M 

COG5011 0 0 1 0 Uncharacterized protein conserved in bacteria S 

COG5244 1 0 0 0 
Dynactin complex subunit involved in mitotic 
spindle partitioning in anaphase B 

D 

COG5395 1 1 1 1 Predicted membrane protein S 

COG5480 0 1 0 0 Predicted integral membrane protein S 

COG5483 0 0 1 1 Uncharacterized conserved protein S 

COG5507 0 0 1 0 Uncharacterized conserved protein S 

 

Approximately one third of the annotated COGs were present in all ten analyzed 

genomes and are thereby interpreted as an essential functional core. The free-living 

cyanobacteria had a total of 581 COGs missing in the symbionts, of which 105 were found in 

all six genomes. On the other hand, the four “Ca. Synechococcus spongiarum” genomes had 

112 COGs missing in their free-living relatives, 14 of which were shared by all four symbionts 

(Table 3-7). Four of these shared symbiont-specific genes were methylases (COG2189, 

COG1743, COG0863, and COG0270) and are assigned to COG class L. Two symbiont-

enriched COGs were ankyrin and leucine-rich repeat proteins (COG0666 and COG4886, 

respectively). While all four “Ca. Synechococcus spongiarum” genomes contained four copies 
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of COG0666 each, they contained COG4886 in different amounts. COG4886 was not 

annotated in 15L. The outer membrane receptor protein COG1629 (K02014) was annotated in 

all four symbionts. This COG and also COG4771 annotated adjacent to it in 142 are related to 

TonB-dependent siderophore receptors. In the reference genomes, this iron-sensing pathway 

(K02014) was absent, whereas the symbionts had the potential for iron-sensing and contained 

large protein conglomerations related to the K02014 pathway (SP3 and 15L) comprising a 

number of ABC-type transport systems (COG4558, COG0609/K02015, and 

COG1120/K02013). The KEGG annotation confirmed the annotation of these genes by COG. 

 

 

Figure 3-14 Venn diagram comparing the gene inventories of four “Ca. Synechococcus spongiarum” 
genomes computed by EDGAR (Blom et al., 2009) based on reciprocal best BLAST hits of the coding 
sequences predicted by RAST (Aziz et al., 2008). SH4 and SP3 are symbionts of Red Sea sponges, and 
15L and 142 are symbionts of Mediterranean sponges. 

 

The majority (40) of the 105 COGs missing in the symbionts but abundant in the free-

living references belonged to COG classes ‘general function prediction only’ (R) and 

‘unknown function’ (S). Nine, eight, six, and five COGs belonged to the classes ‘replication, 

recombination, and repair’ (L), ‘cell wall/membrane/envelope biogenesis’ (M), ‘inorganic ion 

transport and metabolism’ (P), and ‘translation, ribosomal structure and biogenesis’ (J), 

respectively. STRING networks revealed a possible link between five COGs of class M and 

one of class G encoding for genes involved in the production of L-Rhamnose which is an 

important residue of the O antigen of lipopolysaccharides (LPS) in Gram-negative bacteria 

(Snyder et al., 2009). Also the RAST annotation confirmed the lack of these genes in the 

symbiont genomes. The genomes of the “Ca. Synechococcus spongiarum” clades were also 

characterized by smaller numbers of genes involved in several essential functions such as 

signal transduction (COG0642) or carbohydrate transport and metabolism (COG1175, 

COG9363, COG0366), (Table 3-8). 
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Table 3-8 Reduction in the number of genes related to essential COG functions in four genomes of “Ca. 
Synechococcus spongiarum” compared to six genomes of free-living cyanobacteria and the plastid of 
amoeboid P. chromatophora.  

 Taxona  

COG# 1 2 3 4 5 6 7 8 9 10 11 COG annotation 

COG0642 1 1 1 1 1 8 6 6 5 6 7 Signal transduction histidine kinase 

COG0745 5 5 5 4 3 10 10 9 10 10 10 
Two component system response 
regulator, OMP-R family 

COG0664 2 2 2 1 0 12 8 4 10 9 6 Transcriptional regulator, CPR family 

COG0226 1 1 1 1 1 3 5 4 5 3 4 ABC-type phosphate transport  

COG3239 1 1 1 1 1 5 4 3 3 3 4 
Beta-carotene hydroxylase, 
carotenoid biosynthesis 

COG0845 1 1 1 1 0 3 4 4 3 3 3 Secretion protein, HlyD family 

COG0695 1 1 1 1 0 4 1 2 4 3 2 Glutaredoxin 3 

COG0204 1 1 1 1 2 4 3 2 3 3 2 
1-acyl-sn-glycerol-3-phosphate 
acyltransferase 

COG0415 1 1 1 1 0 3 3 3 3 3 3 Deoxyribodipyrimidine photolyase 

COG1233 1 1 1 1 1 3 3 3 3 3 3 
Carotenoid isomerase, carotenoid 
biosynthesis 

COG0366 1 1 1 1 0 3 4 2 4 2 2 Sucrose phosphorylase 

COG0124 1 1 1 1 2 2 2 2 2 2 2 Histidyl-tRNA synthetase 

COG0042 1 1 1 1 1 2 2 2 2 2 2 tRNA-dihydrouridine synthase A 

COG0229 1 1 1 1 0 2 2 2 2 2 2 
Peptide-methionine (R)-S-oxide 
reductase 

COG0363 1 1 1 1 0 2 2 2 2 2 2 
6-phosphogluconolactonase, Pentose 
phosphate pathway 

COG0459 1 1 1 1 1 2 2 2 2 2 2 
Chaperonin GroEL (HSP60 family), 
RNA degradation 

COG0488 1 1 1 1 1 2 2 2 2 2 2 
ATP-binding protein of ABC 
transporter 

COG0843 1 1 1 1 1 2 2 2 2 2 2 
Cytochrome c oxidase subunit I, 
Oxidative phosphorylation 

COG1175 1 1 1 1 0 2 2 2 2 2 2 
Lactose/L-arabinose transport system 
permease protein, ABC  transporters 

COG1186 1 1 1 1 1 2 2 2 2 2 2 Peptide chain release factor RF-2,  

COG1187 1 1 1 1 1 2 2 2 2 2 2 
Ribosomal small subunit 
pseudouridine synthase A 

COG1622 1 1 1 1 1 2 2 2 2 2 2 
Cytochrome c oxidase subunit II,  
Oxidative phosphorylation 

COG1845 1 1 1 1 1 2 2 2 2 2 2 
Cytochrome c oxidase subunit III, 
Oxidative phosphorylation 

a Taxa: 1 – “Ca. Synechococcus spongiarum” SP3, 2- “Ca. Synechococcus spongiarum” 142, 3 – “Ca. Synechococcus 
spongiarum” 15L, 4 – “Ca. Synechococcus spongiarum” SH4, 5 – P. chromatophora plastid, 6 – C. gracile PCC6307, 
7 – Synechococcus sp. strain WH5701, 8 – Synechococcus sp. strain RCC307, 9 – Synechococcus sp. strain 
RS9917, 10 – Cyanobium sp. PCC7001, 11 – Synechococcus sp. strain WH7803. 

 

While the pangenome of all four symbionts determined with EDGAR spanned 3,746 

genes, their core genome consisted of a mere 972 genes (Figure 3-14), 173 of which were 

absent from the reference genomes. These genes may represent symbiotic features unique to 

“Ca. Synechococcus spongiarum.” In terms of the COG annotation of these genes, only three 

were unique to the symbionts, namely COG5395, COG1651, and COG2932 (Table 3-9). 

COG5395 is a predicted membrane protein of unknown function that belongs to superfamily 

DUF2306. COG1651, encoding a disulfide interchange protein, was annotated in freshwater 

Synechococcus strain JA33. The same gene, according to EDGAR, received different COG 
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annotations in the symbionts: COG2932 for 15L, SP3, and SH4, and COG0681 (signal 

peptidase I) for 142. After filtering out all genes with COG annotations not unique to the 

symbionts, 78 genes remained, 75 of which without COG. Fourty nine of them did also not 

get a KEGG annotation and were hypothetical genes according to SEED. The remaining genes 

contained a tetratricopeptide repeat (TPR, K07280), the phycoerythrin-associated proteins 

K05380 and K05279, the phycocyanobilin:ferredoxin oxidoreductase K05371, 

allophycocyanin subunit K02092, and the nickel-dependent superoxide dismutase EC 

1.15.1.1. 

Table 3-9 Potential symbiotic genes in “Ca. Synechococcus spongiarum” genomes. They were found to 
be orthologous and unique to the four symbiont genomes. Genes are described according to the SEED 
annotation in their respective genomes. NA – not available. 

 15L SH4 142 SP3 COG 

1 
27kDa outer 
membrane 
protein 

27kDa outer 
membrane 
protein 

27kDa outer 
membrane 
protein 

27kDa outer 
membrane 
protein 

COG1651 

2 
membrane 
protein, putative  

hypothetical 
protein  

membrane 
protein, putative  

hypothetical 
protein  

COG5395 

3 
hypothetical 
protein  

hypothetical 
protein  

hypothetical 
protein  

hypothetical 
protein  

COG2932* 

4 
hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

NA 

5 
hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

NA 

6 
hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

NA 

7 

Outer membrane 
receptor proteins, 
mostly Fe 
transport 

TonB-dependent 
receptor 

TonB-dependent 
receptor 

TonB-dependent 
receptor 

NA 

8 
FIG048548: ATP 
synthase protein 
I2 

FIG048548: ATP 
synthase protein 
I2 

FIG048548: ATP 
synthase protein 
I2 

FIG048548: ATP 
synthase protein 
I2 

NA 

9 FOG: TPR repeat FOG: TPR repeat 
hypothetical 
protein 

FOG: TPR repeat NA 

10 

Nickel-dependent 
superoxide 
dismutase (EC 
1.15.1.1) 

Nickel-dependent 
superoxide 
dismutase (EC 
1.15.1.1) 

Nickel-dependent 
superoxide 
dismutase (EC 
1.15.1.1) 

Nickel-dependent 
superoxide 
dismutase (EC 
1.15.1.1) 

NA 

11 

Phycobilisome 
phycoerythrin-
associated linker 
polypeptide 

Phycobilisome 
rod linker 
polypeptide, 
phycocyanin-
associated 

Phycobilisome 
phycoerythrin-
associated linker 
polypeptide 

Phycobilisome 
phycoerythrin-
associated linker 
polypeptide 

NA 

12 
Phycobilisome 
protein 

Phycobilisome 
core component 

Phycobilisome 
protein 

Phycobilisome 
core component 

NA 

13 

Cell division 
protein 
ZipN/Ftn2/Arc6, 
specific for 
cyanobacteria 
and chloroplast 

Cell division 
protein 
ZipN/Ftn2/Arc6, 
specific for 
cyanobacteria 
and chloroplast 

Cell division 
protein 
ZipN/Ftn2/Arc6, 
specific for 
cyanobacteria 
and chloroplast 

Cell division 
protein 
ZipN/Ftn2/Arc6, 
specific for 
cyanobacteria 
and chloroplast 

NA 

14 
hypothetical 
protein 

Sll1884 protein Sll1884 protein 
hypothetical 
protein 

NA 

15 
Mobile element 
protein 

hypothetical 
protein 

Mobile element 
protein 

hypothetical 
protein 

NA 

16 
possible Protein 
phosphatase 2C 

possible Protein 
phosphatase 2C 

possible Protein 
phosphatase 2C 

possible Protein 
phosphatase 2C 

NA 

17 
possible Zinc 
finger, C3HC4 

possible Zinc 
finger, C3HC4 

possible Zinc 
finger, C3HC4 

possible Zinc 
finger, C3HC4 

NA 
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type (RING 
finger) 

type (RING 
finger) 

type (RING 
finger) 

type (RING 
finger) 

18 
putative 
phycobiliprotein 
linker 

putative 
phycobiliprotein 
linker 

Phycobilisome 
rod linker 
polypeptide, 
phycocyanin-
associated 

Phycobilisome 
rod linker 
polypeptide, 
phycocyanin-
associated 

NA 

19 
Rod shape-
determining 
protein MreD 

Rod shape-
determining 
protein MreD 

Rod shape-
determining 
protein MreD 

Rod shape-
determining 
protein MreD 

NA 

20 
Small primase-
like proteins 
(Toprim domain) 

Small primase-
like proteins 
(Toprim domain) 

Small primase-
like proteins 
(Toprim domain) 

Small primase-
like proteins 
(Toprim domain) 

NA 

21 
Two-component 
response 
regulator 

Two-component 
response 
regulator 

Two-component 
response 
regulator 

Two-component 
response 
regulator 

NA 

22 All3116 protein All3116 protein 
hypothetical 
protein 

hypothetical 
protein 

NA 

23 

Chlorophyll a(b) 
binding protein, 
photosystem II 
CP43 protein 
(PsbC) homolog 

Chlorophyll a(b) 
binding protein, 
photosystem II 
CP43 protein 
(PsbC) homolog 

Chlorophyll a(b) 
binding protein, 
photosystem II 
CP43 protein 
(PsbC) homolog 

Chlorophyll a(b) 
binding protein, 
photosystem II 
CP43 protein 
(PsbC) homolog 

NA 

24 
FIG01150038: 
hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

FIG01150038: 
hypothetical 
protein 

NA 

25 
FIG01150241: 
hypothetical 
protein 

FIG01150241: 
hypothetical 
protein 

FIG01150241: 
hypothetical 
protein 

FIG01150241: 
hypothetical 
protein 

NA 

26 

Glycerol 
dehydrogenase 
related protein 
Slr0730 

Glycerol 
dehydrogenase 
related protein 
Slr0730 

Glycerol 
dehydrogenase 
related protein 
Slr0730 

Glycerol 
dehydrogenase 
related protein 
Slr0730 

NA 

27 

Possible 
restriction 
/modification 
enzyme 

Possible 
restriction 
/modification 
enzyme 

Possible 
restriction 
/modification 
enzyme 

Possible 
restriction 
/modification 
enzyme 

NA 

28 
Small GTP-
binding protein 
domain 

Small GTP-
binding protein 
domain 

Small GTP-
binding protein 
domain 

Small GTP-
binding protein 
domain 

NA 

29 
L-lactate 
permease 

hypothetical 
protein 

hypothetical 
protein 

L-lactate 
permease 

NA 

30
-
78 

hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

NA 

 

CRISPR-associated proteins were a common feature of all four “Ca. Synechococcus 

spongiarum” genomes and CRISPR regions were discovered in three of them (15L, 142, and 

SH4). Phylotype 142 had the most CRISPR-associated annotations. Eight CRISPR regions 

were identified including two large modules (Table 3-10). One of them had a spacer region of 

66 spacers (module 1) and another module with three spacer regions each spanning 70 spacers 

(module 2), (Figure 3-15). A gap of more than 7.5 kb separated the two modules. Upstream of 

the CRISPR-associated protein conglomeration, a helicase (COG1200) was annotated with an 

adjacent phage-related regulatory protein cII gene (COG1192). 
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Table 3-10 Classification of CRISPR-associated proteins in 142. The names in brackets were added 
when the annotated gene names differed from those proposed according to the nomenclature by 
Makarova et al. (2011). NA – not available. 

CRISPR-associated protein COG Module Classification 

cas1 COG1518 2 Type I, II and III 

cas1 COG1518 1 Type I, II and III 

cas2 NA 2 Type I, II and III 

cas2 COG3512 1 Type I, II and III 

cas2 COG3512 NA Type I, II and III 

cas3 COG1203 2 Type I 

cas5e (cas5) NA 2 Subtype I-A,B,C,E 

cse1 NA 2 Subtype I-E 

cse2 NA 2 Subtype I-E 

cse3 (cas6e) NA 2 Subtype I-E 

cse4 (cas7) NA 2 Subtype I-A,B,C,E 

cmr3 COG1769 1 Subtype III-B 

cmr4 COG1336 1 Subtype III-B 

cmr5 COG3337 1 Subtype III-B 

cmr6 COG1604 1 Subtype III-B 

TM1812 (csx1) NA 1 Subtype III-U 

Potential CRISPR-associated protein    

ATP-dependent DNA helicase COG1200 2 NA 

phage-related regulatory protein cII COG1192 2 NA 

 

Two CRISPR regions with six spacers each were found in SH4 with the CRISPR-

associated proteins Cse 4,2,1 and Cas1 forming a conglomeration. In contrast to 142, in SH4 

no module was formed by CRISPR regions and CRISPR-associated proteins, which were 

located on different contigs. But as with 142, additional helicases (COG1247) and the phage-

related regulatory protein cII (COG1192) were located upstream of the CRISPR-associated 

proteins. One CRISPR region was found in 15L containing 49 spacers and a conglomeration 

of Cas1, Cas4, Cas2 and two Cas3 proteins. While SP3 did not contain any CRISPR regions, 

a conglomeration of Cas1, Cas4, and two Cas3 proteins was found. The six free-living 

cyanobacteria in this study were devoid of any CRISPR regions or CRISPR-associated 

proteins. 
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Figure 3-15 Schematic representation of the genomic architectures of two CRISPR-Cas of “Ca. 

Synechococcus spongiarum” 142. The number of spacers of the CRISPR regions and the closest 
CRISPR-Cas subtype according to Makarova et al. (2011) are shown. The names of genes are described 
as they were annotated in the analysis (see Materials and Methods). The names in parentheses were 
added when the annotated gene names differed from the nomenclature proposed by Makarova et al. 

(2011). (A) Module 1, consisting of proteins resembling subtype III-B and subtype III-U. (B) Module 2, 
showing proteins resembling subtype I-E. 

 

Table 3-11 KEGG enzymes found to be missing among several distinctive metabolic pathways in “Ca. 

Synechococcus spongiarum” genomes. Enzymes were considered missing only if they were present in 
all six genomes of the free-living reference group. 

KEGG pathway SP3 142 SH4 15L 

Pentose phosphate pathway  4.1.2.4   

Fructose and mannose metabolism 
(biosynthesis of GDP-D-rhamnose) 

4.2.1.47 4.2.1.47 4.2.1.47 4.2.1.47 

Aminosugars metabolism 
3.5.99.6 3.5.99.6 

3.5.1.25a 
3.5.99.6 3.5.99.6 

 

Pyruvate metabolism 
3.6.1.7 3.6.1.7 

4.4.1.5 
3.6.1.7 
4.4.1.5 

3.6.1.7 
4.4.1.5 

Sulfur metabolism 2.7.1.25    

Biosynthesis of dTDP-L-rhamnose 
2.7.7.24 
5.1.3.13 
1.1.1.133 

2.7.7.24 
5.1.3.13 
1.1.1.133 

2.7.7.24 
5.1.3.13 
1.1.1.133 

2.7.7.24 
5.1.3.13 
1.1.1.133 

Glycine and Serine 2.7.1.39a    

Methionine metabolism 

4.1.1.50 
5.3.1.23 
1.13.11.53/4 
4.2.1.109a 

4.1.1.50 
5.3.1.23 
1.13.11.53/4 
4.2.1.109a 

4.1.1.50 
5.3.1.23 
1.13.11.53/4 
4.2.1.109a 
2.5.1.16 
2.4.2.28 
3.3.1.1 

4.1.1.50 
 
1.13.11.53/4 
4.2.1.109a 

afor one or two free-living cyanobacteria not supported by SEED annotation 

 

According to RAST annotation, the key functional pathways were nearly complete in 

all four symbionts including glycolysis, the tricarboxylic acid (TCA) cycle, nitrogen 

metabolism, the pentose phosphate pathway, fatty acid biosynthesis, fructose and mannose 

metabolism, amino sugar metabolism, pyruvate metabolism, amino acid metabolism, sulfur 

metabolism, sucrose metabolism, and photosynthesis. The lack of two genes encoding for the 

enzymes adenosylhomocysteinase (EC 3.3.1.1) and O-acetyl-L-homocysteine acetate-lyase 

(EC 2.5.1.49) previously reported for SH4 was confirmed in this study (Gao et al., 2014b). 

Both genes are part of the L-homocysteine synthesis. EC 2.5.1.49, that is involved in the 
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synthesis of L-homocysteine from L-homoserine, was also found missing in SP3 and 142, but 

EC 3.3.1.1, that is synthesizing homocysteine from S-adenosyl-L-homocysteine, was 

annotated in all three “Ca. Synechococcus spongiarum” draft genomes SP3, 142, and 15L. 

While the methionine salvage pathway was complete in all six free-living cyanobacteria, a 

number of the involved enzymes were missing in the symbionts (Table 3-11). 

Table 3-12 Abundance of photosynthetic genes of PSI and PSII in “Ca. Synechococcus spongiarum” 

and free-living cyanobacterial references based on SEED annotations (and KEGG for PSII). 

psa SP3 142 15L SH4 
PCC 
6307 

WH 
5701 

RS 
9917 

WH 
7803 

RCC 
307 

PCC 
7001 

A 1 1 1 1 1 1 1 1 1 1 

B 1 1 1 1 1 1 1 1 1 1 

C 1 1 1 1 1 1 1 1 1 1 

D 1 1 1 1 1 1 1 1 1 1 

E 1 1 1 1 1 1 1 1 1 1 

F 1 1 0 1 1 1 1 1 1 1 

I 0 0 0 0 0 1 1 1 1 1 

J 1 1 0 0 1 1 1 1 1 1 

K 1 1 1 1 1 1 1 1 1 1 

L 1 1 1 1 1 1 1 1 1 1 

M 0 0 0 0 0 0 0 0 1 0 

Sum 9 9 7 8 9 10 10 10 11 10 

psb SP3 142 15L SH4 
PCC 
6307 

WH 
5701 

RS 
9917 

WH 
7803 

RCC 
307 

PCC 
7001 

A 4 3 1 2 5 4 4 4 4 4 

B 1 1 1 1 1 1 1 1 1 1 

C 2* 2* 1 2* 1 1 1 1 1 1 

D 0 0 0 0 2 2 2 2 2 2 

E 1 1 1 1 1 1 1 1 1 1 

F 1 1 1 1 1 1 1 1 1 1 

H 1 1 1 0 1 1 1 1 1 1 

I 1* 1 0 1* 1 1 1 1 0 1 

J 1 1 1 1 1 1 1 1 1 1 

K 0 1 0 0 1* 1* 1 1 0 1 

L 1 1 1 1 1 1* 1 1 1* 1 

M*** 0 0 0 0 1 1 1 1 1 1 

N 1** 1 1 0 1 1 1 1 1 1 

O 1 1 1* 1 1 1 1 1 1 1 

P 0 0 0 0 1 1 1 1 1 1 

U 1 1 1 1 1 1 1 1 1 1 

X 1 1 1 1 1 1 1 1 1 1 

V 1 1 1 1 1 1 1 1 1 1 

Y 1** 0 0 0 1 1 1 1 1 1* 

Z 1 1 1 1 1 1 1 1 1 1 

27 0 1 1 0 1 1 1 1 1 1 

28 1 1 1 0 1 1 1 1 1 1 

Sum 21 21 16 15 27 26 26 26 24 26 

* only supported by SEED (if multiple genes: only one of the group not supported by KEGG), ** only 
supported by KEGG, *** found by BLAST of the genome sequence 

 

A number of small peptides (psb genes) was lost not only in SH4 in comparison to the 

free-living relatives, as previously reported (Gao et al., 2014b), but also in all three newly 

sequenced “Ca. Synechococcus spongiarum” genomes (Table 3-12). Some genes were only 

annotated by one or two of the three applied annotation methods SEED, KEGG and BLAST, 

e.g. psbM was only detected in the BLAST analysis. The number of oxidative stress resistance-
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related genes was also reduced in “Ca. Synechococcus spongiarum” and glutathione 

peroxidase (EC 1.11.1.9) was completely missing in all four symbionts, while present in all 

references (Table 3-13). 

Table 3-13 Resistance to oxidative stress, based on SEED annotation, is reduced in the genomes of 
“Ca. Synechococcus spongiarum” compared to the free-living cyanobacterial references. 

SEED annotation SP3 142 15L SH4 
PCC 
6307 

RCC 
307 

WH 
7803 

WH 
5701 

PCC 
7001 

RS 
9917 

Glutathione reductase 
(EC 1.8.1.7) 

1 1 1 1 1 1 1 1 1 1 

Glutathione peroxidase 
(EC 1.11.1.9) 

0 0 0 0 1 1 1 1 1 1 

Glutathione synthetase 
(EC 6.3.2.3) 

1 1 1 1 1 1 2 1 1 1 

Gamma-
glutamyltranspeptidase 
(EC 2.3.2.2) 

0 0 0 0 1 1 1 1 1 0 

Methylhydantoinases 
A, B (EC 3.5.2.14) 

0 0 0 0 0 1 1 0 0 0 

Rubredoxin 2 1 1 2 2 2 1 3 2 2 

Non-specific DNA-
binding protein Dps 

1 0 1 0 1 1 1 1 1 1 

Metallothionein 0 0 0 0 0 0 1 0 0 0 

Alkyl hydroperoxide 
reductase 

2 3 2 1 5 5 4 4 4 4 

Peroxide stress 
regulator 

1 1 1 1 1 1 1 1 1 1 

Transcriptional 
regulator, Crp/Fnr 
family 

0 0 0 0 1 0 0 1 0 1 

Zinc uptake regulation 
protein ZUR 

0 1 0 0 1 1 1 1 1 1 

Ferric uptake regulation 
protein FUR 

1 1 1 1 1 1 1 1 1 1 

Glutaredoxins 2 2 2 3 5 3 3 3 3 3 

Phytochelatin synthase 
(EC 2.3.2.15) 

0 0 0 0 0 0 0 1 0 0 

Superoxide dismutase 
(total) 

2 1 2 1 2 2 2 2 2 2 

Glutathione S-
transferase (total) 

2 2 2 2 6 4 2 7 6 4 

SUM 15 14 14 13 29 25 23 29 25 23 
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3.2 PacBio-Illumina hybrid assembly pipeline development 

3.2.1 Statistics of the tested assembly strategies 

A total of 14 assemblies were created from the test dataset and compared to each other, 

nine of them from only the Illumina reads and five hybrid assemblies of PacBio and Illumina 

reads together (Table 3-14). The two omega assemblies – with and without prior read 

normalization – had the lowest N50 and overall very small contigs. Therefore, no hybrid 

assembly was attempted with this assembler. IDBA_UD and SPAdes performed both well and 

produced similar output regarding contig numbers and lengths. While the prior read 

normalization resulted in higher N50 values for both assemblers, the overall assembly size as 

well as the largest contig were smaller. Also, the GC content of the assemblies of normalized 

reads were higher than the GC content of the assemblies of all reads.  

Table 3-14 QUAST comparison of assemblies of the test dataset at various settings sorted by decreasing 
N50. Only contigs (not scaffolds) were compared and the assemblies do not contain Ns. In bold are the 
two assemblies with the highest N50 in the groups of hybrid assemblies and Illumina-only assemblies. 
Those two are further referred to as ‘hybrid assembly’ and ‘Illumina-only assembly,’ respectively. 

Assembly # contigs 
(>= 1000 bp) 

Total length 
(>= 1000 bp) 

Largest 
contig 

GC 
(%) 

N50 

hybrid_spades-oa_k-127 103 25124367 4127107 47.1 3338481 

hybrid_spades-o33-k-127 111 25082412 4127355 47.12 2741038 

hybrid_spades-oa_k-55 145 24778010 3206856 47.21 1549056 

hybrid_spades-o33_k-55 164 24711857 2571480 47.21 1270551 

bbnorm_spades-oa 1071 21155562 489015 48.12 88639 

bbnorm_spades 1095 21142641 489098 48.12 83307 

bbnorm_idba-ud 1166 21076910 416899 48.12 74357 

not-normalized_spades-oa 2012 27126067 790396 45.73 71332 

not-normalized_spades-sc-oa 2111 27060928 636480 45.73 65744 

hybrid_idba-ud 1276 26304267 534367 46.26 62615 

not-normalized_idba-ud 2213 27109318 416899 45.74 54133 

not-normalized_spades 27 63480 11477 39.67 1451 

bbnorm_omega 194 243917 2618 46.03 612 

not-normalized_omega 198 249488 2618 46 599 

For the hybrid assemblies to run through, the Illumina reads had to be normalized first. 

Therefore, all hybrid assemblies compared here were created with normalized Illumina reads 

(Table 3-14). IDBA_UD seemed not to incorporate the PacBio long-reads well – this assembly 

listed even below the IDBA_UD assembly on the normalized Illumina reads alone. The hybrid 

assemblies created with SPAdes at any of the tested settings were clearly superior to all other 

tested assemblies. Using longer kmers (21, 33, 55, 77, 99, 127) improved the assembly over 

those with default kmer settings (21, 33, 55). The assembly with the highest N50 in the group 
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of Illumina-only assemblies was further compared to the one in the group of PacBio-Illumina 

hybrid assemblies. These two will be hereafter referred to as ‘Illumina-only assembly’ and 

‘hybrid assembly,’ respectively. 

3.2.2 Comparison back to original reference genomes 

Both assemblies were aligned to the nine original, closed assemblies for evaluation. In 

the Illumina-only assembly the genomes remained split up into numerous contigs (Figure 

3-16). The contigs were larger for genomes for which higher read coverage was simulated (e.g. 

200x coverage for the Acidobacterium). In the hybrid assembly on the other hand, the reads 

were merged into large contigs by the addition of the PacBio long-reads (Figure 3-17). The 

Acidobacterium, the Desulfovibrio, and the Nitrosomonas genomes were even assembled into 

a single contig each, and Clostridium and Fusobacterium into two contigs. Also the genomes 

with low simulated read coverage were assembled into considerably larger contigs than in the 

Illumina-only assembly. The hybrid assembly is therefore clearly superior to the Illumina-only 

assembly. 

 

Figure 3-16 Alignment of contigs of the Illumina-only assembly (blue) to the nine original bacterial 
assemblies (red). Matching areas are connected in green. 
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Figure 3-17 Alignment of contigs of the hybrid assembly (blue) to the nine original bacterial assemblies 
(red). Matching areas are connected in green. 

3.2.3 Reference-independent binning 

While the above analysis makes use of the original, closed genomes that this data is 

based on, this assembly pipeline was intended to be applied for metagenomic communities 

with a multitude of unknown members at unknown fractions and therefore read coverages. To 

account for this while testing the assembly pipeline, the 16S rRNA genes were annotated and 

phylogenetically identified with the RDPclassifier. Phylogenetic identity was confirmed by 

BLASTn (Table 3-15). The contigs of both assemblies were plotted according to their 

coverages derived from bowtie2 read mapping and SPAdes (Figure 3-18 and Figure 3-19). 

These kind of plots are commonly used for manual binning of members of the microbial 

community (Albertsen et al., 2013). Plotting the Illumina-only assembly (Figure 3-18), the 

contigs build a line with no clear borders between possible bins, especially in the low-coverage 

regions. Also in regions of high coverage, bins are overlapping: the Desulfovibrio 16S rRNA 

gene-containing contig (pink) plots on top of the contig containing the Acidobacterium 16S 

rRNA gene (red). In the hybrid assembly on the other hand, the bins are more clearly 
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distinguishable also in low-coverage areas (Figure 3-19). This suggests that the assembly into 

larger contigs enabled by the PacBio long-reads also eases, and even enables, binning of single 

members of the microbial community. 

 

Figure 3-18 Contigs of the Illumina-only assembly plotted according to their coverage determined by 
mapping the Illumina reads back to the assembly with bowtie2 (bt2, y-axis) and the coverage determined 
by SPAdes (spades, x-axis). Contigs containing a 16S rRNA gene are colored according to phylogeny. 

 

Figure 3-19 Contigs of the hybrid assembly plotted according to their coverage determined by mapping 
the Illumina reads back to the assembly with bowtie2 (bt2, y-axis) and the coverage determined by 
SPAdes (spades, x-axis). Contigs containing a 16S rRNA gene are colored according to phylogeny. 
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Comparing the genomes recovered by binning from the hybrid assembly to the 

references based on their content of essential single-copy genes (Albertsen et al., 2013) shows 

that genome recovery by binning worked very well for the majority of genomes (Table 3-16). 

Only the two genomes with the lowest sequence coverage, namely Sulfolobus tokodaii and 

Thermoanaerobacter pseudethanolicus could not be sorted into individual bins.  

 

Table 3-15 Phylogenetic identification of hybrid assembly bins determined by a BLASTn search of the 
rRNA genes (preferably 16S; 23S only if no 16S rRNA gene available). 

query gene hit query 
cov 

ident accession 

binA_1.1 16S Acidobacterium capsulatum ATCC 51196 100 100 CP001472.1 

binB_2.6 16S Bacteroides vulgatus ATCC 8482 100 99 CP000139.1 

binB_2.7 16S Bacteroides vulgatus ATCC 8482 100 99 CP000139.1 

binB_2.8 16S Bacteroides vulgatus ATCC 8482 100 99 CP000139.1 

binB_2.9 16S Bacteroides vulgatus ATCC 8482 100 99 CP000139.1 

binB_2.10 16S Bacteroides vulgatus ATCC 8482 100 99 CP000139.1 

binC_4.2 16S Clostridium thermocellum ATCC 27405 100 100 CP000568.1 

binC_8.4 16S Clostridium thermocellum ATCC 27405 100 100 CP000568.1 

binC_8.5 16S Clostridium thermocellum ATCC 27405 100 100 CP000568.1 

binC_8.6 16S Clostridium thermocellum ATCC 27405 100 100 CP000568.1 

binD_3.1 23S Desulfovibrio vulgaris DP4 100 100 CP000527.1 

binD_3.2 23S Desulfovibrio vulgaris DP4 100 100 CP000527.1 

binD_3.3 23S Desulfovibrio vulgaris DP4 100 100 CP000527.1 

binD_3.4 23S Desulfovibrio vulgaris DP4 100 100 CP000527.1 

binD_3.5 23S Desulfovibrio vulgaris DP4 100 100 CP000527.1 

binE_6.6 16S Fusobacterium nucleatum subsp. 
nucleatum ATCC 25586 

100 100 AE009951.2 

binE_6.7 16S Fusobacterium nucleatum subsp. 
nucleatum ATCC 25586 

100 100 AE009951.2 

binE_6.8 16S Fusobacterium nucleatum subsp. 
nucleatum ATCC 25586 

100 100 AE009951.2 

binE_6.9 16S Fusobacterium nucleatum subsp. 
nucleatum ATCC 25586 

100 100 AE009951.2 

binE_6.10 16S Fusobacterium nucleatum subsp. 
nucleatum ATCC 25586 

100 100 AE009951.2 

binF_5.2 16S Nitrosomonas europaea ATCC 19718 100 100 AL954747.1 

binG_47.2 16S Porphyromonas gingivalis ATCC 33277 100 100 AP009380.1 

binH_23.2 16S Sulfolobus tokodaii str. 7 100 100 BA000023.2 

binH_50.3 16S Thermoanaerobacter pseudethanolicus 
ATCC 33223 

100 99 CP000924.1 
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Table 3-16 Comparison of the hybrid assembly bins to the references regarding the single-copy essential 
gene content (Albertsen et al., 2013). 

genome sum #duplicates sum-dupl % of 111 

Acidobacterium capsulatum 

binA 108 3 105 94.59% 
Reference 108 3 105 94.59% 

Bacteroides vulgatus 
binB 101 3 98 88.29% 
Reference 109 3 106 95.50% 

Clostridium thermocellum 
binC 109 4 105 94.59% 
Reference 109 4 105 94.59% 

Desulfovibrio vulgaris 
binD 107 3 104 93.69% 
Reference 107 3 104 93.69% 

Fusobacterium nucleatum 

binE 106 4 102 91.89% 
Reference 107 4 103 92.79% 

Nitrosomonas europaea 

binF 108 3 105 94.59% 
Reference 107 2 105 94.59% 

Porphyromonas gingivalis 
binG 70 1 69 62.16% 
Reference 107 1 106 95.50% 

Sulfolobus tokodaii and Thermoanaerobacter pseudethanolicus 
binH 24 2 22 19.82% 
S. tokodaii 29 0 29 26.13% 
T. pseudethanolicus 108 2 106 95.50% 

3.3 Binning 37 symbiont genomes from the metagenome of A. aerophoba 

3.3.1 Assessment of metagenomic DNA extraction and sequencing 

For Illumina sequencing, metagenomic DNA was extracted from six SAPs of A. 

aerophoba. Three were derived from pinacoderm, and three from mesohyl tissue. For both 

tissue types, the three replicates differed in cell lysis method (bead beating, proteinase K 

digestion, and freeze-thaw cycling). Quality of the extracted DNA was generally high (Figure 

3-20). Concentrations differed between extraction methods (Table 3-17). Highest yields were 

obtained from bead beating as included in the DNA extraction kit. Proteinase K digestion 

delivered comparably high DNA concentrations, and freeze-thaw cycling produced the lowest 

DNA concentrations. 

Metagenomic Illumina HiSeq sequencing resulted in between 82,698,080 and 

111,951,445 reads (Mft and Mpk, respectively). In total, 567,206,927 Illumina reads were 

sequenced. PacBio sequencing delivered 235,016 sequences and read correction with 

proovread resulted in 101,530 corrected PacBio long-reads. 
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Figure 3-20 Agarose gel picture of metagenomic DNA from different extractions. Labeling refers to the 
respective tissue type and cell lysis method: capital M or P for mesohyl or pinacoderm, respectively; bb 
– bead beating, ft – freeze-thaw cycling, pk – proteinase K digestion. 

 

Table 3-17 DNA concentrations of metagenomic DNA from different extractions. Labeling refers to the 
respective tissue type and cell lysis method: capital M or P for mesohyl or pinacoderm, respectively; bb 
– bead beating, ft – freeze-thaw cycling, pk – proteinase K digestion. 

Extraction round Extract Qubit (ng/µl) 

First round 

Mbb 18.6 
Pbb 18.9 
Mft 3.7 
Pft 15.2 
Mpk 16.5 
Ppk 13.1 

Second round 

Mbb 16.1 
Pbb 17.9 
Mft 5.7 
Pft 6.0 
Mpk 16.0 
Ppk 12.3 

 

3.3.2 Comparison of Illumina-only and PacBio-Illumina hybrid assemblies 

Two metagenome assemblies were obtained, one only from Illumina HiSeq short-reads 

(Illumina-only assembly), and one from the same Illumina short-reads set, but combined with 

pre-corrected PacBio long-reads (hybrid assembly). The two assemblies differed notably in 

number of contigs and total size (Table 3-18). The Illumina-only assembly comprised 

>100 000 contigs with a total length of 490 Mbp, the hybrid assembly consisted of >30 000 

contigs with a total length of 301 Mbp. Only contigs >=1 000 bp were considered. The addition 

of the PacBio reads to the assembly increased the N50 value 3.8-fold, from about 9 kbp to 

34 kbp. While the number of highly complete genome bins (> 70% completeness) decreased 

(42 Illumina-only bins vs 37 hybrid bins), the portion of full-length 16S rRNA gene containing 

bins doubled from 16 in the Illumina-only assembly to 32 in the hybrid assembly. To assess if 

contigs from the Illumina-only assembly were reappearing in the hybrid assembly and if the 
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PacBio reads merged them into larger contigs, an Illumina-only bin was mapped to the 

corresponding hybrid bin. This allowed a visual comparison of the assemblies (Figure 3-21). 

This mapping shows that the two assemblies corresponded well because contigs that had been 

constructed out of the Illumina data reappeared upon addition of the PacBio reads. Moreover, 

they were merged into even larger contigs, thus resulting in a higher-quality bin. 

 

Table 3-18 Comparison of Illumina-only and PacBio-Illumina hybrid assemblies 

 Illumina-only 
PacBio-Illumina 
hybrid 

MG-RAST ID mgm4671062.3 mgm4671058.3 

Contig number (≥ 1 000 bp) 110 609 31 187 

Size (Mb) 490 301 

N50 8 958 33 831 

N75 2 873 12 184 

L50 8 886 1 980 

L75 34 979 5 726 

CDSs 509 054 289 685 

Bin number 217 137 

> 90% completeness (with 16S rRNA gene) 25 (12) 26 (22) 

85-90% completeness (with 16S rRNA gene) 12 (4) 6 (6) 

70-85% completeness (with 16S rRNA gene) 5 (0) 5 (4) 
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Figure 3-21 Mapping of Illumina-only assembly bin205 (blue) to PacBio-Illumina hybrid assembly bin20 
(red). Corresponding areas are connected in green. 

 

To obtain short-read data optimized for differential coverage binning, six DNA samples 

from the same sponge specimen were extracted with varied lysis protocols, and deeply 

sequenced on an Illumina HiSeq2000 instrument (see Figure 3-22 of JGI Project ID 1024999 

for additional ribosomal 16S rRNA V4 iTag data of this sequencing project). Although we 

already obtained a large number of high-completeness bins from the Illumina-only assembly, 

only 38% of the binned genomes contained a 16S rRNA gene. Contrasting, in the PacBio-

Illumina hybrid assembly 86% of the bins contained a 16S rRNA gene (Table 3-18). 

Furthermore, with a 3.8-fold higher N50 hybrid assembly was more contiguous. For these 

reasons, all downstream analyses were carried out with the genomes binned from the PacBio-

Illumina hybrid assembly. 
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Figure 3-22 iTag analysis of the six DNA extracts for Illumina sequencing differing in cell lysis. 
Abbreviations: BB – bead beating, PK – proteinase K digestion, FT – freeze-thaw cycles. 

 

3.3.3 Bacterial genomes binned from hybrid assembly 

The 37 binned genomes belonged to 11 bacterial phyla and 2 candidate phyla, which 

are representative of the sponge symbiont consortium: Proteobacteria (Alpha, Gamma, and 

Delta), Chloroflexi, Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, 

Deinococcus-Thermus, Nitrospirae, Nitrospinae, Cyanobacteria, Spirochaetes and the 

candidate phyla Poribacteria and SBR1093 (Table 3-19). The bins varied in total number of 

contigs from 21 to 758. Large numbers of contigs did not correlate with low sequence 

coverage: the bin with lowest coverage (bin18 with 38-times coverage), for example, was 

composed of as few as 83 contigs and was 87% complete. Estimated genome sizes, based on 

total length and estimated genome completeness, ranged from 1.9 Mbp (Alphaproteobacterium 

bin98) to 7.9 Mbp (Acidobacterium bin110). With respect to GC content, the genomes ranged 

from 36% (Bacteroidetes bin25) to nearly 70% (Alphaproteobacterium bin129). Overall, the 

sponge symbionts had genomes of high GC-content: 13 were between 50% and 60%, 17 of 

symbiont genomes comprised >60% of GC-bases. Comparably high average GC contents are 

a known feature of sponge metagenomes (Horn et al., 2016). The N50 values also showed 

variability, with the smallest being 6 974 bp for Alphaproteobacterium bin95 and the largest 

being 309 970 bp for Chloroflexi bin127. The number of coding sequences (CDSs) in the 

symbiont genomes ranged from 1 455 (Alphaproteobacterium bin98) to 6 288 (Ca. 

Poribacterium bin44). The number of COGs annotated for each genome ranged between 490 



Results 

73 

(bin98) and 3 450 (Alphaproteobacterium bin129) which translates to 34% (bin98) and 76% 

(Alphaproteobacterium bin65) CDSs in COGs (see Appendix 3-2 for detailed COG 

annotations). 
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Table 3-19 Binned genomes of PacBio-Illumina hybrid assembly . Only duplicate genes other than 
PF00750, PF01795, and TIGR00436 were counted, as these genes are known to occur in multiple 
copies (Albertsen et al., 2013). 
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Table 3-20 Reference genomes for comparison with binned genomes of the PacBio-Illumina hybrid 
assembly. 
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Figure 3-23 Maximum likelihood (LG+G+I) phylogenetic tree based on the amino acid sequences of 29 
essential genes, calculated in MEGA7 with 100 bootstrap replications. Cyanobacteria were used as 
outgroup, because they were closest to the Archaeal outgroup in the 16S rRNA gene phylogeny (Figure 
3-24). 

In order to resolve the phylogenies of the recovered bins, a concatenated tree (Figure 

3-23) of 29 essential single-copy genes (Table 3-20) as well as a 16S rRNA gene tree were 

constructed (Figure 3-24). Overall, the phylogeny of the binned bacterial genomes reflected 

the major phylogenetic lineages known to inhabit sponges (Thomas et al., 2016). This finding 

suggests that the sequenced lineages are prevalent in A. aerophoba, as more abundant taxa 

were more likely sequenced than rare lineages from this diverse metagenome. Our hypothesis 

that the binned genomes derive from symbionts and not from environmental bacteria was 

further supported by the 16S rRNA gene data. The best BLAST hits for all 34 bin-derived 16S 

rRNA genes were from sponge-associated or sponge/coral-associated bacteria (Appendix 3-

1). As the remaining three bins did not contain a 16S rRNA gene, their identity could not be 

confirmed by BLAST alone. 
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Figure 3-24 Neighbor Joining tree (GTR+G+I) of 16S rRNA genes from hybrid assembly bins and their 
references with 100 bootstrap replications. The following references were added to this tree only for 
better phylogenetic resolution: Dehalococcoidia bacterium SCGC-AB-539-J10 (ARPL01000017.1), 
“Candidatus Entotheonella” sp. TSY1 (KF926817.1), Pyrococcus furiosus (NR_074375.1), 
Hyperthermus butylicus (NR_102938.1), Methanothermobacter marburgensis (NR_028241.1). 

 

The concatenated tree shows the phylogenetic placement of all 37 bins and their 

references which had been selected based on genome completeness, phylogenetic similarity, 

and habitat (marine preferred over other habitats), (Table 3-21). It was in overall agreement 

with the 16S rRNA gene tree regarding the phylogenetic placement of the bins containing this 

gene and furthermore provides placement for the three bins missing the 16S rRNA gene. 
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Table 3-21 Best BLAST hits for the 16S rRNA genes of the PacBio-Illumina hybrid assembly bins. 

 

 

3.3.4 Symbiont-reference comparison 

In order to identify the gene functions that are enriched in the genomes of sponge 

symbionts, we compared the pool of symbiont genomes against the pool of selected reference 

genomes. Significant differences were identified between the symbiont genomes and reference 

genomes on the level of COG classes. While COG classes R (‘General function prediction 

only’), E (‘amino acid transport and metabolism’), L (‘replication, recombination and repair’), 

and Q (‘secondary metabolites biosynthesis, transport, and catabolism’) are enriched in the 



Results 

79 

symbionts, the classes T (‘signal transduction mechanisms’), K (‘transcription’), M (‘cell 

wall/membrane/envelope biogenesis’), and N (‘cell motility’) were depleted in comparison to 

the reference genomes (Figure 3-25). 

 

 

Figure 3-25 Welch’s t test on COG classes with Storey FDR at a q-value cutoff of 0.01 and a confidence 

interval of 95%. 

 

When comparing on the level of individual COGs, 42 symbiont-enriched genes were 

identified (Figure 3-26). Most of these (43%) belonged to COG classes R and S (‘general 

function prediction only’ and ‘function unknown’), a large fraction (19%) belonged to class V 

(‘defense mechanisms’), and five (12%) to class L (‘replication, recombination and repair’). 

According to the STRING database, many of these significantly symbiont-enriched COGs 

were likely interacting (Figure 3-27). At a high confidence cut-off (0.700 minimum required 

interaction score), five networks (A-E) comprising 17, 6, 3, 2, and 2 COGs were obtained. The 

remaining 12 symbiont-enriched COGs did not interact with any other COGs in the list. The 

set includes a restriction endonuclease (COG2810) and a bacteriophage protein gp37 

(COG4422). The largest STRING network was built of sponge-enriched COGs related to 

restriction-modification (RM) with endonucleases, helicases and methylases (cluster A in 

Figure 3-27, see Appendix 3-3 for COG counts). It was present in all sponge symbiont phyla 

in this study (Figure 3-28).  
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Figure 3-26 Welch’s t test on COGs with Storey FDR at a q-value cutoff of 0.01 and a confidence interval 
of 95%. 
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Figure 3-27 STRING network of significantly sponge symbiont-enriched COGs. Colored areas mark 
COGs that belong to the same network (A-E). Colors of the connectors indicate the type of evidence of 
the predicted interaction between the two connected COGs. Only connections of ‘high confidence’ 
(minimum required interaction score: 0.700) are shown. 
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Figure 3-28 Heatmap of significantly sponge symbiont-enriched COGs (absolute counts) in the genomes 
binned from the PacBio-Illumina hybrid assembly. Phylogenetic relationships of the genomes are 
indicated by a simplified version of the tree in Figure 3-23 (only sponge symbionts are shown here). 
Possibly interacting COGs as shown in Figure 3-27 are grouped and colored accordingly and marked by 
the letters A-E. The letters next to each COG indicate the according COG class. 
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All COGs of STRING network B were related to toxin-antitoxin (TA) systems. 

COG3549 and COG3093 form the HigAB TA plasmid maintenance system, and COG1487 

encodes for the toxin in a TA system of the VapBC family (Makarova et al., 2009; Sberro et 

al., 2013). COG4691 is a plasmid stability protein and encodes for a proposed antitoxin of a 

VapBC TA system (Chen, 2007). COG1921 (SelA) and COG3276 (SelB) co-occurred in the 

majority of symbiont bins of various phyla but were missing in the majority of their closely 

related references (Appendix 3-3). STRING network C consists of COG4634 and COG2442, 

two uncharacterized conserved proteins according to the NCBI annotation. COG4634 is 

hypothesized to be a fine-tuning modulator in conjugative plasmid transfer (López-Fuentes et 

al., 2015), and COG2442 is a PIN-associated antitoxin in a widespread TA system most 

abundant in Cyanobacteria and Chloroflexi (Makarova et al., 2009). Furthermore, COG2929 

and COG3514, which are part of network A, were predicted to form a TA system as well 

(Makarova et al., 2009). Both COGs co-localize on a plasmid of the cyanobacterium 

Synechococcus elongatus PCC7942 where this TA system plays a crucial role in plasmid 

maintenance (Chen, 2007). In our dataset, both COGs co-occurred in 16 sponge symbiont bins 

of various bacterial phyla, but only once in the reference group, in the acidobacterium 

Solibacter usitatus.  

Symbiont-enriched STRING networks D and E are related to colonization of the host 

and possibly utilization of the host matrix. COG0145 (hyuA) and COG0146 (hyuB) of network 

D have been hypothesized to play an important role for Helicobacter pylori in the colonization 

of mice (Zhang et al., 2009). The abundance and distribution of network D across various 

phyla of sponge-associated bacteria in our study suggests that it may also be of importance for 

the colonization of sponge hosts. COG1028 (FabG) and COG3119 (arylsulfatase A) of 

network E displayed the highest counts within the sponge-enriched COGs. Arylsulfatase A 

might allow the symbionts to metabolize sulfated polysaccharides from the sponge 

extracellular matrix, where their abundance has been documented (Vilanova et al., 2009; 

Zierer and Mourão, 2000).  

Additional recurring topics in sponge-microbial symbioses are CRISPR-Cas systems 

and eukaryotic-like domains, the former related to bacterial defense against foreign DNA, the 

latter related to host interaction. Both features are enriched in the symbiont group, albeit not 

to a statistically significant degree. More common and also more abundant in sponge 

symbionts are Cas1, Cas2, a Cas2 homolog, Cas3 and a predicted CRISPR-associated nuclease 

(COG1518, COG1343, COG3512, COG1203, and COG3513, respectively). Eukaryote-like 

repeat domain containing proteins, such as Leucine-rich repeat proteins (COG4886) are 

present in 56% of the sponge symbionts and in 12% of the references, with up to 30 copies per 

genome in the symbionts and a maximum of 5 copies in the references. Likewise, ankyrin 

repeats (COG0666) show up to 29 copies per genome in the sponge symbionts and a maximum 
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of 11 copies in the references. Both of these eukaryotic-like proteins are more common and 

more abundant in the symbiont group and therefore likely represent a sponge-symbiosis 

specific feature facilitating escape from phagocytosis by the sponge host (Fan et al., 2012; Liu 

et al., 2012; Thomas et al., 2010). 

3.3.5 Within-symbiont comparison 

In order to compare the symbiont genomes among each other and to identify functional 

groups, a principle component analysis (PCA) was performed. The functional grouping is only 

partly coherent with phylogeny (Figure 3-29). While Gemmatimonadetes cluster closely 

together, Chloroflexi are split up in two groups: i) Caldilineae that built a group with 

Poribacteria and Spirochaetae, and ii) SAR202 clustering with a group of Alphaproteobacteria, 

Deltaproteobacteria, Nitrospinae, and Actinobacteria. 

 

 

Figure 3-29 PCA plot comparing the genomes of the sponge-symbionts to each other based on their 
COG annotation. Phylogenetic affiliation is indicated by font colors (see Table 3-19 for details). The 
symbionts build three groups I-III marked by bacskground color (blue, red, and green, respectively). 



Results 

85 

 

Figure 3-30 The 30 COGs with the strongest influence on the PCA grouping of the sponge symbiont 
genomes. 

 

The 30 COGs with the greatest influence on the functional grouping of the sponge 

symbionts are shown in Figure 3-30. According to this analysis, the COGs enriched in 

symbiont group I are mainly involved in metabolism and energy production. Most enriched in 

this group are COGs related to carnitine metabolism. Carnitine is an organic compatible solute 

that some bacteria can use as a source for carbon, nitrogen, and energy (Meadows and Wargo, 

2015). 

Symbiont group II is characterized by high numbers of arylsulfatase A genes 

(COG3119), various ABC transporters, and dehydrogenases. This phylogenetically 

heterogeneous guild of microorganisms seems to be specialized on the utilization of sulfated 

polysaccharides, as described above for symbiont-enriched COG network E. Inspection of the 

genomic context on the bin-level shows that the arylsulfatase repeatedly clusters with the ABC 

transporters and the dehydrogenase that are likewise enriched in symbiont group II (Figure 

3-31). This further supports our hypothesis that this gene cluster is of importance for sponge 

symbionts, and especially for the members of symbiont group II. 

 

 

Figure 3-31 Typical gene cluster around the arylsulfatase A gene (AslA, shown in red). 
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Figure 3-32 STRING network of the 30 COGs contributing most to the grouping of the sponge-symbionts 
in Figure 3-29. Circles representing the COGs’ position in the network are colored according to the 
symbiont group where they are overrepresented. Colors of the connectors indicate the type of evicence 
of the predicted interactions between the two connected COGs as shown in Figure 3-27. Only 
connections of ‘high confidence’ (minimum required interaction score: 0.700) are shown. 

 

The genomes of symbiont group III did not show an enrichment of any particular COGs. 

They also contained the COGs of symbiont groups I and II, but not in as high numbers. Thus, 

we posit that symbiont group III is not metabolically specialized and may represent a group of 

metabolic generalists. Within the 30 COGs most responsible for the grouping, only COG5048 

(FOG: Zinc-finger) was enriched in bin40 of this group with a total of 159 copies. Zn-fingers 

are small structural protein motifs commonly found in eukaryotes, but also present in 

prokaryotes where they are likely involved in virulence or symbiosis (Malgieri et al., 2015). 

Most COGs of symbiont groups I, II, and III are strongly connected according to a 

STRING network with the COGs enriched in groups I and II clustering on different sides of 

the network (Figure 3-32). The symbionts of group III are able to perform the same metabolic 

pathways as the two specialized groups, however without possessing such high numbers of the 
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corresponding genes (Figure 3-33). They may be considered as nutritional generalists in the 

microbial consortium. 

 

Figure 3-33 Heatmap of the 30 COGs contributing most to the grouping (absolute counts) of the sponge-
symbionts as shown in Figure 3-29. Phylogenetic relationships of the genomes are indicated by a 
simplified version of the tree in Figure 3-23 (only sponge symbionts are shown here). Colors represent 
the symbiont group where the regarding COGs is overrepresented. The letters next to each COG indicate 
the according COG class. 
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4 Discussion 

4.1 “Ca. Synechococcus spongiarum” group – closely related but 

different in gene content 

4.1.1 An optimal candidate for ‘mini-metagenomics’ 

Due to the autofluorescence of “Ca. Synechococcus spongiarum,” FACS sorting was a 

perfectly suitable approach for this cyanobacterial sponge symbiont and a high level of purity 

could be achieved as the screening results showed (Table 3-1, Table 3-2). The purity 

assessment only aimed at the 16S rRNA gene and ITS region. Therefore, other free DNA 

fragments could not be detected before sequencing, which is a common issue in single-cell 

sequencing projects and necessitates decontamination of the genome assembly (Woyke et al., 

2010). Even the MDA reagents themselves have been shown to be possible sources of 

contamination and protocols have been developed to avoid co-amplification of contaminants 

beforehand (Woyke et al., 2011). When symbionts are as abundant in the host as “Ca. 

Synechococcus spongiarum,” genomes of comparable quality could also be retrieved by 

metagenomic binning as it was done for the three other strains in the following comparison 

(Burgsdorf et al., 2015). For low-abundance members of the microbial community, on the 

other hand, FACS sorting may be of great advantage to sort single cells or mini-metagenomes. 

One disadvantage of this approach is that, only if a distinct physical property of the target cell 

– e.g. autofluorescence – is available, is it possible to sort a pure mini-metagenome, because 

the sorting window could not otherwise be set sufficiently narrow just sorting by cell size. The 

right target cell would need to be identified by PCR screening after MDA instead. One way to 

avoid this issue is using in-solution fixation-free fluorescence in situ hybridization (FISH) to 

label the target cells for FACS sorting, if the target cells and the sample are suitable for this 

method (Haroon et al., 2013). A disadvantage of this method is a likely decrease in genome 

quality (Clingenpeel et al., 2014). Given that the MDA comes with flaws such as uneven 

amplification, chimera formation, and co-amplification of contaminants (Blainey, 2013), may 

also be worthwhile to look for ways to avoid this amplification step e.g. by FACS sorting a 

sufficient amount of target cells to be used directly for sequencing. 

In comparison to metagenomic binning and ‘mini-metagenomics’, genomics on real 

single-cells has the advantage of a comparison on the level of individual cells. In this project, 

opting for the mini-metagenomes, I did not take advantage of this aspect and rather focused 

on clade-level and species-level comparisons. Yet, with the advance in knowledge about 

sponge symbionts in general, increasing effort may be put in the study of individual members 

of the microbial community to study genome evolution, niche differentiation, and speciation, 
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as has been conducted in similar fields of research, e.g. for coexisting subpopulations of free-

living marine Prochlorococcus (Kashtan et al., 2014). 

4.1.2 Lifestyle evolution in cyanobacterial symbionts of sponges 

The cyanobacterium “Ca. Synechococcus spongiarum” is a common member of sponge 

microbial communities in a variety of host species and geographic locations. This raises the 

question of how conserved its genome is, taking recent studies into account that have reported 

different productivity and carbon assimilation and transfer abilities for genetically distinct 

“Ca. Synechococcus spongiarum” clades (Freeman et al., 2013). Here, four clades of this 

symbiont species are compared, which are associated to four different host sponge species 

from two geographic locations. Despite a 16S rRNA gene identity above 98.6%, they shared 

only around half of their protein coding genes per genome. The clades may be highly variable 

and adapted to their particular host sponge and environment. This great difference in gene 

content is surprising, considered that two strains (coastal and off-shore) of diazotrophic 

cyanobacterial symbionts (UCYN-A) of prymnesiophyte algae have 96.6% genes in common 

at a 16S rRNA gene identity of 98.7% (Bombar et al., 2014). On the other hand, the average 

amino acid sequence identity between orthologous genes within core genomes is higher among 

the four “Ca. Synechococcus spongiarum” clades (>91%) than between the two UCYN-A 

strains (86%). Interpretation of the significance of this genome divergence is unfortunately 

limited by the high number of genes of unknown function in these sponge symbionts. 

Most of the genomic traits postulated for “Ca. Synechococcus spongiarum” SH4 of Red 

Sea sponge C. foliascens (Gao et al., 2014b) were confirmed for three more clades of this 

symbiont species in this study, and novel, supposedly clade specific features were discovered. 

4.1.2.1 Sponge-specific functional genomic signatures 

Previous metagenomic comparisons of sponge and seawater microbiomes revealed a 

clear separation of the sponge bacterial communities from the surrounding seawater (Thomas 

et al., 2010; Fan et al., 2012; Liu et al., 2012). One of the sponge symbiont-enriched traits 

confirmed for “Ca. Synechococcus spongiarum,” is the significantly higher proportion of 

COGs related to ‘recombination and repair’ (L). This may enable a stable insertion of mobile 

DNA into the symbionts’ chromosomes by repairing the flanking regions of the newly inserted 

DNA (Thomas et al., 2010; Fan et al., 2012). Transposable insertion elements present in high 

numbers in bacterial symbionts have been reported for a variety of host types including the 

intracellular Drosophila melanogaster symbiont Wolbachia pipientis wMel (Wu et al., 2004). 

They may be a driver of microbial adaptation to specific niches (Moliner et al., 2010; Smillie 

et al., 2011). Among the analyzed “Ca. Synechococcus spongiarum” genomes, three of four 

possess the transposase COG3293, that has been reported as enriched in sponge microbiomes 
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over planktonic microbiomes before (Fan et al., 2012). This horizontal gene transfer feature 

and the symbiont-enriched site-specific DNA methylase COG0270 are highly conserved 

sequences within the symbionts, which suggests the importance of horizontal gene transfer for 

sponge symbionts. 

Previous studies have also shown an enrichment in proteins containing eukaryotic-type 

domains like ankyrin and tetratricopeptide repeats (TPR), and leucine-rich repeat (LRR) 

domains for sponge microbiomes in general (Thomas et al., 2010; Fan et al., 2012). Ankyrin 

and TPR repeats are involved in protein-protein interactions in eukaryotes, LRR proteins are 

essential for virulence in the pathogen Yersinia pestis and for host cell invasion by Listeria 

monocytogenes (Thomas et al., 2010; Evdokimov et al., 2001; Marino et al., 1999). In a model 

system resembling sponge amoebocytes, sponge symbiont-derived ankyrin repeat proteins 

have the capacity to modulate phagocytosis of amoebas, when expressed in Escherichia coli 

(Nguyen et al., 2014). Ankyrin repeat protein gene COG0666 was present in four copies in 

each of the four “Ca. Synechococcus spongiarum” genomes, but it was not annotated in any 

of the free-living cyanobacterial references. Also a sulfur-oxidizing bacterial symbiont of 

Haliclona cymaeformis contains a large number of ankyrin repeat domains (Tian et al., 2014). 

This leads to the conclusion that ankyrin repeat domains are likely an obligatory feature also 

for sponge bacterial symbionts, as for other symbiotic systems such as W. pipientis in D. 

melanogaster (Wu et al., 2004). 

CRISPRs have also been identified as an abundant feature of sponge microbiomes in 

previous studies (Fan et al., 2012). Together with their associated proteins they are forming 

adaptive immunity systems that are common among most archaea and many bacteria, acting 

against invading genetic elements like viruses and plasmids (Makarova et al., 2011). Also in 

cyanobacteria, CRISPR-Cas systems have been found in the majority of sequenced genomes 

except the Synechococcus/Prochlorococcus subclade (Cai et al., 2013). It has been 

hypothesized that either its genetic load is too high for the small genomes of the 

Synechococcus/Prochlorococcus subclade, or that the viral diversity outruns the CRISPR-Cas 

immune system (Weinberger et al., 2012). The latter was suggested by a mathematical model 

and currently lacks empirical proof. In this study, CRISPR-Cas systems were present in the 

small-genome-sized and highly phage-exposed “Ca. Synechococcus spongiarum” 142, which 

suggests that the absence of these defense systems in the free-living 

Synechococcus/Prochlorococcus subclade as an alternative explanation. The presence of the 

CRISPR-based immune system may be the ancestral state that the 

Synechococcus/Prochlorococcus ancestor has lost after the divergence from “Ca. 

Synechococcus spongiarum,” or alternatively the sponge symbiont may have acquired it by 

horizontal gene transfer, likely from other sponge symbionts. A high selective pressure for 

acquiring phage resistance inside sponges may serve as an explanation for the prevalent 
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CRISPR-Cas systems in the sponge symbionts. Considering the sponges’ high water pumping 

rates, the associated bacteria, being exposed to approximately 1,000 viral particles per 

bacterial cell per day (Thomas et al., 2010), likely encounter a multiple of the viral particles 

their free-living relatives are exposed to. This may explain the retention of CRISPR-Cas 

systems in sponge symbionts. 

4.1.2.2 Common genomic features  

Like in mitochondria and chloroplasts, genomic streamlining may eventually lead to a 

complete dependence of symbionts on the host and to the evolution of organelles (Tripp et al., 

2010; Kwan et al., 2012). In “Ca. Synechococcus spongiarum,” the reduction of genes 

involved in essential functions is similar to the pattern recently described for the plastid of the 

amoeba P. chromatophora (Nowack et al., 2008). Cytochrome c oxidase, carotenoid 

biosynthesis, and signal transduction regulators, for example, were reduced in all four “Ca. 

Synechococcus spongiarum” genomes as well as the plastid P. chromatophora (Nowack et 

al., 2008) (Table 3-8). It has to be stated that this is only an observed trend, whereas no 

conclusions can be drawn on the basis of missing genes in unclosed genomes. Yet, the trend 

is rather similar among all four different clades of “Ca. Synechococcus spongiarum,” which 

supports this notion. 

A comparably less stable PSII complex has served as explanation for the loss of a 

number of psb genes in SH4 in comparison with free-living cyanobacteria, probably 

representing an adaptation of the photosynthetic system to low-light conditions (Gao et al., 

2014b). This finding was confirmed for three additional “Ca. Synechococcus spongiarum” 

clades. The genes psbD and psbP were absent in all four symbiont genomes (Table 3-12). As 

psbP may optimize the water-splitting reaction, its absence may lead to a decreased efficiency 

of the photosynthetic system and a lower competitive potential (Sveshnikov et al., 2007). In I. 

variabilis, there may be competition between different cyanobacterial species due to the 

abundance of more than one symbiont species (Usher et al., 2006). However, it was shown 

that the different species are spatially separated, “Ca. Synechococcus spongiarum” residing in 

the pinacoderm, and “Ca. Synechococcus feldmanni” and “Ca. Aphanocapsa raspaigellae” in 

the mesohyl matrix (Usher et al., 2006). The gene psbY that was missing in three “Ca. 

Synechococcus spongiarum” genomes, has been shown not to be essential for Synechocystis 

sp. PCC6803 for oxygenic photosynthesis (Meetam et al., 1999). In symbiotic cyanobacteria, 

the loss of nonessential photosynthetic genes may be due to a tradeoff between smaller genome 

sizes and thus a reduction in genome replication cost, which is payed by a reduced competitive 

potential (Larsson et al., 2011; Kwan et al., 2012). 

A byproduct of aerobic metabolism are reactive oxygen species (ROS) that can cause 

oxidative damage to photosynthetic organisms like cyanobacteria, that counter this oxidative 
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stress with antioxidant enzymes (Latifi et al., 2009). Several of these antioxidant enzymes 

were missing in SH4 (Gao et al., 2014b) as well as the three “Ca. Synechococcus spongiarum” 

genomes analyzed here. Due to their location within the sponge, only reduced amounts of light 

radiation, and thereby decreased amounts of ROS may reach the symbionts. Also the 

heterotrophic part of the sponge microbiome in close proximity to the cyanobacteria may 

reduce the amount of ROS in the sponge tissue by respiration of oxygen immediately after 

production by the photosymbionts. 

A loss of genes involved in the formation of the cell wall in SH4 has been reported 

previously (Gao et al., 2014b). Furthermore, also the loss of genes responsible for dTDP-L-

rhamnose production is common to all analyzed “Ca. Synechococcus spongiarum” clades. 

dTDP-L-rhamnose, a residue of the O antigen of LPS, has been found in free-living marine 

Synechococcus (Snyder et al., 2009). A variation of O antigens alters the Gram-negative 

bacterial cell wall. For host-microbe interactions the correct structures of the LPS and its O 

antigen are essential, because they are important to establish disease in pathogens or beneficial 

outcomes in symbiosis (Lerouge and Vanderleyden, 2001). Planktonic cyanobacteria are part 

of the typical sponge diet (Pile et al., 1996). Thus, O antigens like dTDP-L-rhamnose and 

GDP-D-rhamnose may be used for ‘food recognition’ by the sponge. Already in the 1970s, 

studies have proposed mechanisms for differentiation between symbionts and food bacteria by 

the sponge. Either the symbionts would be recognized as such, e.g. via the ankyrin repeats, as 

recently suggested (Nguyen et al., 2014), or they may evade host phagocytosis by using 

masking coatings (Wilkinson, 1978b). The masking hypothesis is supported by in situ feeding 

experiments with potential symbionts isolated from sponges versus free-living seawater 

bacteria in combination with electron radioautography (Wilkinson et al., 1984). Chemical 

compounds surrounding the bacteria functioning as protective capsules were proposed as a 

masking mechanism for the symbionts (Wilkinson et al., 1984). Further evidence for a food-

symbiont discrimination was provided by later studies on A. aerophoba (Wehrl et al., 2007). 

In “Ca. Synechococcus spongiarum,” the missing dTDP-L-rhamnose and GDP-D-rhamnose O 

antigens on the LPS, implied by the absence of the respective biosynthetic genes, may be a 

mechanism of host phagocytosis resistance, as the symbionts may not be recognized as food 

bacteria by the sponge host. Contrasting the previously proposed masking mechanism with a 

protective capsule covering the recognition element on the bacterial cell wall (Wilkinson et 

al., 1984), a lack of the recognition element itself would achieve host evasion. Supporting this 

hypothesis, freshwater S. elongatus PCC7942 mutants that are deficient in O antigen synthesis, 

resist amoebal grazing (Simkovsky et al., 2012). Yet, further experiments are needed to test 

this hypothesis. Additionally, mutations in genes involved in dTDP-L-rhamnose production 

and transport in the marine Synechococcus sp. strain WH7803 have also been shown to be 

responsible for phage resistance (Marston et al., 2012). This suggests a protective function 
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against cyanophages for the lack of the O antigen in “Ca. Synechococcus spongiarum,” a 

potentially important mechanism due to an enrichment of cyanophages resulting from the 

sponge pumping activity. In free-living cyanobacteria, the lack of O antigen promotes 

autoflocculation (Marston et al., 2012), which may not concern a symbiont in the sponge 

mesohyl while selecting against free-living Synechococcus with this characteristic, as they 

may sink into nonphotic zones. 

4.1.2.3 Divergent genomic features 

In all four “Ca. Synechococcus spongiarum” genomes the methionine salvage pathway 

(MSP) was only partially present, through which methionine is recycled from 5-

methylthioadenosine (Albers, 2009). This suggests that methionine is obtained from other, 

external sources such as the sponge host or the heterotrophic fraction of the sponge 

microbiome. In SH4 more MSP genes are missing, which may be explained by the comparably 

lower completeness of the draft genome. An alternative explanation is a higher rate of genome 

reduction for SH4. Additionally, the predicted genome sizes for the four symbionts of different 

“Ca. Synechococcus spongiarum” clades varied between 16% and 25% with SH4 as the 

smallest. This suggests, that the different clades may follow different symbiotic trajectories, 

which leaves them with differing degrees of genomic streamlining and host dependencies. 

The low-molecular-weight compound siderophores are secreted to the environment to 

bind Fe(III) and get transported back into the cell, which is an energy-dependent mechanism 

that can include TonB receptors. An extracellular substrate binding protein, an integral 

membrane protein, and ATPase (ATP hydrolases) build the transport component of ABC-type 

siderophore systems (Köster, 2001). Cyanobium sp. strain PCC7002 is the sole marine 

cyanobacterium reported so far, that harbors genes for siderophore synthesis and transport 

(Hopkinson and Morel, 2009). In cyanobacteria that are phylogenetically distant from “Ca. 

Synechococcus spongiarum,” this iron uptake system is more common, e.g. in the freshwater 

cyanobacteria Synechococcus sp. strain JA23 and Synechocystis sp. strain PCC6803, whereas 

the phylogenetically closer, free-living Synechococcus/Prochlorococcus subclade lacks this 

siderophore transport ability (Hopkinson and Morel, 2009). COG1629, coding for a membrane 

iron receptor likely related to siderophores, is a common gene for all four “Ca. Synechococcus 

spongiarum” genomes. However, all components of an active ABC-type iron transport system 

related to siderophores was only found in SP3 and 15L, suggesting that SH4 and 142 either 

use a nonactive siderophore transport system or that their COG1629 senses a different type of 

available iron. 

Eukaryotic-type domains have been shown to be common features of microbial sponge 

symbionts (Thomas et al., 2010; Fan et al., 2012). In “Ca. Synechococcus spongiarum,” 

ankyrin domain proteins were a typical genomic signature, while other eukaryotic-type 
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domains (e.g. TPR and LRR) varied in number between the different clades. SP3 had 

comparably more proteins with TPR domains, whereas 142 had more proteins containing 

LRRs. A varying number of proteins containing LRR and TPR domains may be a type of host-

specific fingerprint with a certain combination of proteins containing eukaryotic-type domains 

according to their host. Yet, further research is required to shed light on the role of these 

domains and also more genomes of sponge-associated bacteria derived from the same host 

sponge species need to be analyzed to support this hypothesis. 

The presence of CRISPRs in cyanobacteria from the Synechococcus/Prochlorococcus 

subclade was surprising. The genome of 142 had two large CRISPR-Cas modules, the 

genomes of SH4 and 15L harbored dissociated CRISPR-associated proteins and CRISPR 

regions, SP3 only CRISPR-associated proteins. Also alternative antiviral defense mechanisms 

may be available to “Ca. Synechococcus spongiarum.” For example, two unique 

endonucleases (COG2810 and COG3587) were found in SH4. Restriction-modification 

systems or genes preventing phage attachment to the cell surface could be alternative immune 

system features against bacteriophages (Stoddard et al., 2007). The latter may be represented 

by the lack of a typical Synechococcus O antigen on the symbionts’ LPS as discussed above. 

The great differences between “Ca. Synechococcus spongiarum” clades regarding antiviral 

defense mechanisms may be due to the different host sponge associations. A variety of 

parameters such as water pumping behavior of the host along with different levels of exposure 

of the symbionts to incoming water may influence their exposure to foreign free DNA and 

phages. The virus types that the symbionts are exposed to may also differ due to biogeographic 

location. It has been described, that ‘old’ CRISPR sequences are maintained against persistent 

or reemerging viruses (Weinberger et al., 2012). Localized virus-host coevolution may thus 

explain the “Ca. Synechococcus spongiarum” intraspecies genomic divergence. 

4.1.2.4 Conclusions 

Despite nearly identical 16S rRNA gene sequences, the “Ca. Synechococcus 

spongiarum” group is characterized by a number of intraspecies genomic differences, such as 

different genome sizes, gene content, immune system mechanisms, methionine de novo 

synthesis patterns, and eukaryotic-type domain-containing proteins (LRR and TPR). Ankyrin 

repeats, on the other hand, seem to be a conserved feature that is common among different 

sponge microbial phyla in a variety of sponge host species and geographic locations. This 

suggests, that ankyrin domain proteins may be involved in sponge bacterial recognition as 

symbionts.  

Enriched and depleted functions in the genomes of “Ca. Synechococcus spongiarum” 

in comparison to the phylogenetically closest free-living cyanobacterial relatives are 

summarized in Table 4-1. COGs assigned to class ‘replication, recombination and repair’ (L) 
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are represented at significantly higher proportion in the symbionts, which matches well with 

earlier findings from metagenomic studies and likely relates to horizontal gene transfer. COG 

class ‘signal transduction mechanisms’ (T) is represented in lower proportions than in the free-

living relatives, which may reflect a more stable environment provided by the sponge host in 

comparison to the surrounding seawater. The type of the O antigen of the LPS in “Ca. 

Synechococcus spongiarum” will be affected by the lack of biosynthesis genes for dTDP-L-

rhamnose, which possibly represents a novel mechanisms for host phagocytosis evasion and 

phage resistance in a niche characterized by possibly largely elevated phage pressure. 
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Table 4-1 Functions enriched and depleted in “Ca. Synechococcus spongiarum” compared to members 
of the closely related free-living marine Synechococcus/Prochlorococcus subclade. 
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4.2 PacBio-Illumina hybrid assembly pipeline development 

The aim of this study was the development of an assembly pipeline that would be able 

to combine Illumina HiSeq short-reads and PacBio long-reads in a metagenomic assembly 

thereby improving the outcome over an Illumina-only assembly. The test dataset consisted of 

reads simulating the features of the real A. aerophoba metagenomic data to be assembled in 

the next step. As sponge microbiomes consist of unknown taxa that are expected to be rather 

different from their closest sequenced relatives on a genome basis, reference-independent de 

novo assembly and binning should be applied. My comparison revealed that a hybrid assembly 

of corrected PacBio reads and normalized Illumina reads created in SPAdes 3.5.0 with the 

only-assembler option enabled and with a kmer range of 33 to 127 was superior to all other 

tested assemblers and settings. Assembly statistics as well as bin quality was greatly improved 

by incorporating the PacBio long-reads. 

At the beginning of the project, no publications were available on metagenomic hybrid 

assemblies of long-reads and short-reads. By the end of the project, a few approaches have 

been published. Beckmann and colleagues developed a tool for the detection of epigenetic 

motifs in bacterial genomes at low coverage and metagenomic settings (Beckmann et al., 

2014). As in my project, they simulated PacBio and Illumina read data from fully sequenced 

genomes to test their approach. Yet, for their aim, a metagenome of very low complexity 

consisting of only three bacterial genomes was sufficient. They used Meta-Velvet and Velvet 

for assembly (Namiki et al., 2012; Zerbino and Birney, 2008). Details about which reads were 

assembled with which algorithm were not provided and the focus of the article clearly lies on 

the developed tool rather than the quality of the assembled metagenome(s) (Beckmann et al., 

2014).  

Frank and colleagues compared a number of assembly approaches to each other: 

Illumina HiSeq only, PacBio circular consensus sequencing only, and a hybrid assembly using 

both read types (Frank et al., 2016). They used different assembly strategies based on sample 

complexity and read type, and co-assembled only phylotypes-specific reads in a hybrid 

assembly, that were extracted by mapping after binning of the initial assemblies and focusing 

only on the two dominant phylotypes (Frank et al., 2016). 

Tsai and colleagues also aimed only for a dominant bacterium of the human skin 

microbiome and its bacteriophage in their long-read short-read hybrid approach (Tsai et al., 

2016). They compared a PacBio-only assembly, an Illumina-only assembly, and a hybrid 

assembly to each other. Similar to my approach, they used SPAdes-3.5.0 (Bankevich et al., 

2012) for a de novo hybrid assembly. Then, they focused on their target bacterium for further 
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mapping and re-assembly steps taking advantage of an available reference genome (Tsai et al., 

2016). 

In summary, the three studies had approaches very different to each other and also to 

my un-targeted and reference-independent approach. Yet, all come to the same conclusion, 

that the integration of PacBio long-reads in a metagenomic assembly provided clear 

advantages for each respective project (Beckmann et al., 2014; Frank et al., 2016; Tsai et al., 

2016). As my project aimed for no specific member of the microbial community and tested 

the implications for un-targeted genome binning, it added an entirely novel approach to the 

recently emerging series of pipelines for the integration of PacBio long-reads into 

metagenomic projects. Also in this un-targeted approach, the addition of PacBio long-reads 

proved valuable for overall assembly statistics, bin reconstruction, and phylogenetic 

identification. 

4.3 Metagenomic bins from the microbiome of A. aerophoba reveal unity 

in defense but metabolic specialization 

4.3.1 Breaking new ground in assembly strategy and choice of references 

Complementing six datasets of Illumina short-read data optimized for differential 

coverage binning with PacBio long-read data in a metagenomic assembly enabled the fully 

automated, un-targeted binning of 37 high-quality bacterial genomes from a highly diverse 

and complex sponge microbiome. The genomes derive from 13 bacterial phyla, two of which 

are candidate phyla, and represent the microbial community typically found to be abundant in 

A. aerophoba (Schmitt et al., 2012a). The approach was validated by including two A. 

aerophoba-derived symbiont genomes in the analysis that were sequenced in previous studies 

by single-cell genomics (Poribacterium WGA3G) and ‘mini-metagenomics’ (cyanobacterium 

“Ca. Synechococcus spongiarum” 15L) after fluorescence-activated cell sorting (Kamke et al., 

2013; Burgsdorf et al., 2015). 

The choice of reference genomes differed from previous studies, taking advantage of 

the (now) known identity of the symbionts enabled by the binning approach. On the one hand, 

this decision was at the expense of comparability to previous studies which used seawater 

microbiomes as references. On the other hand, seawater metagenomes do not offer the 

microbial diversity that is abundant in the sponge microbiome and thus seemed no suitable 

comparison when using this binning approach. Yet, it has to be noted that the similarity of the 

results to previous studies, comparing sponge to seawater microbiomes, is remarkable in many 

aspects, e.g. TA and RM systems, and possible matrix utilization. Thus, the statistical signal 

proves to be a strong one only underlining that these frequently encountered features 
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discovered with very different approaches at different times and places truly play a biological 

role within the sponge microbiome. 

4.3.2 Unity in defense 

In a comparison of the 37 binned bacterial sponge symbionts and two previously 

published symbionts with closely related references from other environments, we revealed 

networks of COGs involved in a number of symbiont-enriched functions. RM as well as TA 

systems are significantly enriched in sponge symbionts. RM systems represent one major line 

of defense against incoming, foreign DNA, a feature frequently referred to as bacterial 

immunity (Vasu and Nagaraja, 2013). RM systems are also known to play a role in symbioses 

(Zheng et al. 2016) and have recently also been described in sponge symbionts (Gauthier et 

al., 2016; Horn et al., 2016; Tian et al., 2016). Many of the COGs of network A in Figure 3-27 

were previously described as sponge-enriched (Burgsdorf et al., 2015; Fan et al., 2012; Gao 

et al., 2014b; Thomas et al., 2010). This recurring finding of RM in symbionts of a variety of 

sponges from different geographic locations, and the abundance of RM in all 13 bacterial phyla 

in our dataset underscore the apparent significance for sponge symbioses. TA systems 

supposedly play a role in phage defense, stress response, and programmed cell death (Sberro 

et al., 2013). The abundance and distribution of multiple RM and TA systems in the genomes 

of A. aerophoba symbionts suggests that defense against foreign DNA is an important feature 

of sponge symbionts confirming the previously stated concept of their convergent evolution 

(Fan et al., 2012; Thomas et al., 2010). Defense mechanisms such as RM and TA were 

previously found to be enriched in sponge symbionts (Fan et al., 2012; Horn et al., 2016) and 

are possibly a necessary countermeasure against the exposure to free DNA resulting from the 

sponge’s extensive filtration and phagocytosis activity (Reiswig, 1974). 

A second commonly sponge symbiont-enriched feature is the hyuA-hyuB gene pair 

(COG0145 and COG0146) that likely enables H. pylori to colonize its mouse host (Zhang et 

al., 2009). This gene pair is significantly enriched in sponge symbionts in a variety of bacterial 

phyla suggesting a significance also for sponge host colonization. Furthermore, genes are 

symbiont-enriched, that are likely involved in the metabolization of components of the sponge 

extracellular mesohyl matrix, confirming a hypothesize previously published for the candidate 

phylum Poribacteria (Kamke et al., 2013) and extending it to diverse members of the sponge 

microbiome.  

CRISPR-Cas systems as well as eukaryotic-like protein domains have both been 

hypothesized to play crucial roles for sponge symbionts in previous studies (Thomas et al., 

2010; Fan et al., 2012; Liu et al., 2012; Barrangou et al., 2007; Burgsdorf et al., 2015; Horn 

et al., 2016). Both features were more common and also more abundant in the sponge symbiont 
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group, although not at statistically significant levels. This is likely due to the approach of 

choosing reference genomes primarily by phylogenetic relatedness. Thus, the references 

derive from a multitude of environments including other ‘dense’ bacterial communities where 

those defense mechanisms may be comparably important. Additionally, CRISPR-Cas systems 

and eukaryotic-like proteins in general do not show as high gene counts as other symbiont-

enriched features. Therefore, a statistically significant effect is less likely to be reached. 

4.3.3 Metabolic specialization 

While defense mechanisms emerged as the main topic when comparing sponge 

symbionts to references, metabolic specialization was the main driver for a grouping within 

the symbionts. Three symbiont guilds were observed, one specialized on carnitine metabolism, 

one on the catabolism of sulfated polysaccharides, and one group of generalists. Carnitine is 

produced by most eukaryotes including sponges (Fraenkel, 1954) and we posit that it may be 

taken up by symbiotic bacteria from the readily available sponge-derived detritus consisting 

largely of shed sponge cells  (Alexander et al., 2014; de Goeij et al., 2009). Uptake of carnitine 

by bacteria can also serve as protection against environmental stressors, such as variation in 

water content, salinity, or temperature (Meadows and Wargo, 2015). Sulfated polysaccharides 

are likely metabolized utilizing arylsulfatase A. While this enzyme was enriched in the 

symbionts over the references in general and is distributed across a variety of symbiont phyla, 

it is largely enriched in symbiont group II together with a number of ABC transporters. Both 

carnitine and sulfated polysaccharides are possibly components of the extracellular matrix of 

the sponge and/or components of cells shed by the sponge as a consequence of cell renewal 

(Alexander et al., 2014; de Goeij et al., 2009; Fraenkel, 1954; Vilanova et al., 2009; Zierer 

and Mourão, 2000). The members of symbiont group III also possessed many of the COGs 

that are enriched in groups I and II, but in far lower numbers. We thus posit, that same 

metabolic pathways are utilized but less extensively, and that group III represents a group of 

metabolic generalists. 

4.3.4 Conclusions 

The complementation of Illumina short-read with PacBio long-read sequencing for 

metagenomic binning of highly complex environmental samples greatly improves the overall 

assembly statistics. It also improves the quality of binned genomes and eases, and often newly 

enables phylogenetic classification of the binned genomes. The statistical comparison revealed 

an enrichment of genes related to RM and TA systems in most symbiont genomes over the 

reference genomes. This implies that the defense against incoming foreign DNA is of high 

importance for a symbiotic existence within the sponge mesohyl. This finding is particularly 
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relevant in the context of the extensive animal’s filtration and phagocytosis activities, with the 

resultant ample exposure of the symbionts to free DNA. Secondly, host colonization and host 

matrix utilization were identified as significantly enriched features in sponge symbionts. The 

within-symbiont genome comparison revealed a nutritional specialization, where one guild of 

symbionts appears to metabolize carnitine, while the other appears to metabolize sulfated 

polysaccharides, both of which are abundant molecules of the sponge extracellular matrix. We 

hypothesize that the sponge symbionts feed on the sponge cells that are shed as part of the cell 

turnover, and on components of the sponge extracellular matrix. A third guild of symbionts 

may be viewed as nutritional generalists, whose precise function within this consortium 

remains to be identified. The unprecedented resolution of the genomic repertoire was enabled 

by binning of a metagenomic hybrid assembly of hitherto unprecedented depth for sponge 

symbioses.  

4.4 General conclusions and future directions 

In recent years, methodology has developed significantly in the field of microbiology, 

both in the areas of technology as well as bioinformatics. With increasing interest in and 

acknowledgement of the role of the microbiome of the Earth and its inhabitants 

(http://www.earthmicrobiome.org; The MetaSUB International Consortium 2016), major 

efforts have begun to shed light on the ‘microbial dark matter,’ the yet uncultivable, but major 

fraction of most microbial communities (Rinke et al., 2013; Marcy et al., 2007). Metagenomic 

approaches have developed from targeting just one gene, first by PCR and clone libraries 

(Ahlgren and Rocap, 2006; Rotthauwe et al., 1997; Webster et al., 2008a), and later by 

amplicon sequencing (Bourne et al., 2013; Schmitt et al., 2012b; Vik et al., 2013; Thomas et 

al., 2016). Next in line were methodologies for the interpretation and comparison of the 

genomic content of whole microbial communities (Pimentel-Elardo et al., 2012; Li et al., 

2015; Martín-Cuadrado et al., 2007; Thomas et al., 2010). Now, the field has arrived at the 

point where binning genomes of single community members from the metagenomic data is 

possible (Albertsen et al., 2013; Gauthier et al., 2016; Gao et al., 2014b). 

Sequencing technologies themselves have also improved and greatly reduced in cost, 

thereby allowing them to aid in presenting genomics and metagenomics as widely available 

standard methodologies (Koren et al., 2013). The most recent developments in the realm of 

sequencing have aimed at improving assembly contiguity by increasing read length (Koren et 

al., 2013; Koren and Phillippy, 2015). While hybrid assemblies of short-reads and long-reads 

have become a standard procedure in genomics in the last years (Bashir et al., 2012; Madoui 

et al., 2015; Liao et al., 2015), the implementation of long-reads in metagenomics is still in its 

infancy. A number of metagenomic studies have applied long-reads for targeted approaches, 
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e.g. binning a specific dominant taxon (Frank et al., 2016; Tsai et al., 2016), but so far, no 

studies on un-targeted hybrid assembly and binning approaches have been conducted. In 

contrast to this upcoming technology, single-cell genomics has become a standard procedure 

for genomic studies of uncultivable bacteria (Woyke et al., 2009; Kamke et al., 2014; Yoon et 

al., 2011). Automation of laboratory procedures and even assembly and decontamination have 

enabled high-throughput single-cell sequencing (Rinke et al., 2013; Tennessen et al., 2015; 

Swan et al., 2013; Lasken and McLean, 2014). As of today (February 10, 2017), as many as 

1,267 contamination-screened single cell genome analysis projects are listed in the Genomes 

OnLine Database (GOLD, https://gold.jgi.doe.gov). 

This thesis aimed not only at answering specific biological questions, but also on 

methodological development. A multitude of approaches were applied to eventually obtain 

genomes from different members of the uncultivable microbial community of the marine 

HMA sponge A. aerophoba (Figure 4-1). One of the target symbionts was the cyanobacterium 

“Ca. Synechococcus spongiarum,” which was – due to its autofluorescence – perfectly suited 

for FACS sorting followed by single-cell genomics. The amplification reactions did not 

contain real single-cells as an insert but aliquots of FACS sorted cell enrichments, termed 

‘mini-metagenomes.’ Here, contrasting the original definition of ‘mini-metagenomes’ 

describing pools of randomly sorted single cells (McLean et al., 2013), the aim was a pure cell 

enrichment of the target cells. With this approach I aimed to increase the overall yield by 

balancing low-coverage amplification regions from one cell by the amplification products 

from another cell. Additionally, I expected lower fractions of contaminants than in ‘true’ 

single-cells. The JGI single-cell pipeline has incorporated an automated decontamination step 

(Tennessen et al., 2015) that is rather strictly filtering out any possible contamination, thereby 

also elimination genes acquired by horizontal gene transfer, phages, and other potentially 

interesting genomic features leaving only a core likely free of any contaminants (Dr. Tanja 

Woyke, DOE JGI, personal communication). As this decontamination method would likely 

also exclude features previously hypothesized as sponge symbiont-specific or –enriched, such 

as horizontal gene transfer features or eukaryotic-like protein domains (Thomas et al., 2010), 

I discarded this step and replaced it with the above-described less radical binning approach. 

The most complete genome from this single-cell amplification approach was comparable in 

quality to genomes binned from the metagenomes of other sponges, also varying in 

methodology (Burgsdorf et al., 2015; Gao et al., 2014b). The similarity of the results from 

fundamentally different approaches leads to the conclusion that methodology did not 

essentially influence the outcome in this study.  
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Figure 4-1 Overview of the applied sequencing and bioinformatics strategies to obtain genomes of 
sponge symbionts. 
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My second major project aimed at binning as many sponge-symbionts as possible from 

the metagenome of A. aerophoba, utilizing PacBio long-read data complementing Illumina 

short-read data optimized for differential coverage binning. As there was no assembly pipeline 

published to achieve this, I developed an assembly pipeline combining simulated PacBio long-

reads and Illumina short-reads of a test dataset reflecting the most prominent properties of the 

real metagenomic data such as uneven coverage and sequencing errors according to the 

respective sequencing machine. I then applied the developed assembly pipeline to the real A. 

aerophoba dataset and compared the results to an assembly consisting of only the Illumina 

data to evaluate the improvement by addition of PacBio long-reads. 

One issue working with uncultivated bacteria is that in many cases only the 16S rRNA 

gene or no information at all is available beforehand (Lasken and McLean, 2014). A common 

issue in single-cell sequencing projects is the lack of this gene due to amplification bias or 

primer mismatches (Clingenpeel et al., 2015). With “Ca. Synechococcus spongiarum” as the 

only cyanobacterial symbiont of A. aerophoba a later addition of this gene to the genome was 

possible. In contrast, for an unknown bacterium isolated with less restrictive sorting 

approaches, e.g. FACS sorting by cell size, or a symbiont binned from a metagenome, a later 

addition of the right 16S rRNA gene to the genome would not be possible. Without the 16S 

rRNA gene information and in most cases no sequenced reference at hand, a taxonomic 

classification of the genome would not be possible. Considering that the first genomes for 

whole bacterial candidate phyla were often sequenced from yet uncultivable representatives 

(Lasken and McLean, 2014), such discoveries may be missed entirely, solely due to the lack 

of information to identify them as such. This highlights the improvement of the metagenomic 

assembly and subsequent binning by the addition of PacBio long-reads. Although, in the 

presented study, many genomes were binned at high completeness from the Illumina data only, 

just 38% of them contained a 16S rRNA gene. In the hybrid assembly, in contrast, 86% of the 

>70%-completeness bins contained this gene (Table 3-18). Assuming that 16S rRNA gene 

phylogeny was the only means to phylogenetically place a certain bin, the implementation of 

long-reads greatly improved the portion of ‘usable’ bins. 

A great volume of knowledge has been collected on sponge-microbe symbioses since 

the 1970s/80s (Reiswig, 1974; Wilkinson, 1978a, 1980; Wilkinson et al., 1984). Symbiont-

enriched features have been discovered, such as horizontal gene transfer, restriction 

modification systems, CRISPR-Cas systems, ammonium assimilation, eukaryotic-like 

domains, and metabolic adaptations possibly enabling the symbionts to metabolize parts of the 

sponges’ extracellular mesohyl matrix (Thomas et al., 2010; Fan et al., 2012; Kamke et al., 

2014; Bayer et al., 2008a; Kamke et al., 2013).  

One focus of this thesis was the cyanobacterial symbiont “Ca. Synechococcus 

spongiarum.” Although the genomic content of this symbiont species differed largely between 
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clades – despite nearly 99% 16S rRNA gene sequence identity, a number of the previously 

hypothesized sponge symbiont-specific features were confirmed in this species in comparison 

to free-living relatives. Horizontal gene transfer features, such as transposable insertion 

elements and COGs involved in recombination and repair, were enriched, as well as 

eukaryotic-type ankyrin repeat domains that may be obligatory in sponge symbionts to evade 

host phagocytosis. Also CRISPR-Cas systems were enriched likely due to phage pressure 

caused by the sponges’ pumping activity. ABC-type iron transport system features may 

represent an ancestral function retained by the symbionts, while it was lost in the free-living 

relatives. On the other hand, a number of features were depleted in the symbionts which can 

be interpreted as symbiotic minimalism. Those features were cell wall biogenesis, signal 

transduction mechanisms, transcriptional regulation and (post)translational modification 

genes, ABC-type phosphate transport, and carbohydrate transport and metabolism. Another 

possible means of defense against phagocytosis and phages was an altered O antigen of the 

LPS. A reduction in antioxidant enzymes and in peptides of photosystem II and carotenoid 

biosynthesis was due to the reduced, and more stable light radiation within the sponge tissue. 

As also genes involved in methionine salvage were depleted in the symbionts, they may obtain 

methionine from external sources. 

In the large-scale, un-targeted binning approach, the list of A. aerophoba-associated 

symbiont genomes was expanded by 37 genomes from the 13 bacterial phyla and candidate 

phyla Proteobacteria (Alpha, Delta, and Gamma), Nitrospinae, Nitrospirae, candidate phylum 

SBR1093, Acidobacteria, candidate phylum Poribacteria, Bacteroidetes, Gemmatimonadetes, 

Spirochaetae, Actinobacteria, Deinococcus-Thermus, Cyanobacteria, and Chloroflexi.  This 

dataset thereby provides genomes of nearly all main symbiont phyla known for A. aerophoba 

(Schmitt et al., 2012a). This enabled an analysis at unprecedented resolution, comparing these 

not only to the bulk reference community of e.g. seawater, as in previous studies (Thomas et 

al., 2010), but to selected references of the regarding phyla. As the statistical comparison 

confirmed an enrichment of defense features in the symbionts, this only underlines the 

importance of this feature in the sponge host environment, that has now been identified via a 

multitude of very different approaches (Thomas et al., 2010; Gao et al., 2014a; Burgsdorf et 

al., 2015; Horn et al., 2016). Also host colonization and matrix utilization features were 

symbiont-enriched (Figure 3-27). 

Due to the diversity of the binned symbiont genomes, for the first time, also a within-

symbiont genome comparison was possible, which revealed three guilds of symbionts that did 

not necessarily coincide with phylogeny (Figure 3-29). These three guilds were characterized 

by enrichments – or lack of enrichment – of certain genes involved in nutrition. While one 

group seems to be specialized on the metabolization of carnitine, the second group apparently 
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specializes on sulfated polysaccharides, and the third on no particular metabolism (Figure 

3-33). The members of this third group thus seem to be nutritional generalists.  

The microbiome of A. aerophoba has been the focus of this thesis. A great number of 

bacterial genomes have been added to the pool of available sponge symbiont genomes and 

methods have been developed to improve the yield in binning approaches. Future studies 

should consider the findings of this thesis and test them in experimental approaches. 

Perspectives are: 

 Further analyses of the sequenced symbiont genomes focusing on specific taxa 

within the microbial community to discover taxon-specific adaptations like 

nutritional mode, defense strategies, dependencies on microbial partners and 

the host sponge 

 Application of imaging techniques to localize and quantify symbionts in the 

host sponge, construct networks and reveal interactions between symbionts and 

with the host 

 Targeted cultivation efforts implementing information deducted from the 

genomic information and interaction networks 

 Application of the developed sequencing and binning strategy to other sponge 

species to obtain more symbiont genomes and test if the features discovered in 

A. aerophoba reflect a general pattern in sponge microbiomes
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6 Appendix 

The following appendices are submitted on a CD attached to this thesis: 

Appendix 3-1 Genome completeness estimation based on 111 single-copy essential genes 

(Albertsen et al., 2013). Only genes abundant in at least one bin are shown. Printed in bold are 

genes that can occur in duplicates. Genes marked with an asterisk were used for the 

concatenated gene phylogeny in Figure 3-23. 

Appendix 3-2 COG annotations for sponge symbionts and references after filtering: only 

annotations with an e-value ≤ 1e-6 were kept, and only one annotation per ORF was kept 

ranked by e-value, length and bitscore. 

Appendix 3-3 Overview table of COG annotations of sponge symbiont and reference 

genomes. 
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