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Summary

Summary

Host–microbe interactions are the key to understand why and how microbes inhabit specific
environments. With the scientific fields of microbial genomics and metagenomics, evolving
on an unprecedented scale, one is able to gain insights in these interactions on a molecular
and ecological level. The goal of this PhD thesis was to make (meta–)genomic data
accessible, integrate it in a comparative manner and to gain comprehensive taxonomic
and functional insights into bacterial strains and communities derived from two different
environments: the phyllosphere of Arabidopsis thaliana and the mesohyl interior of marine
sponges.

This thesis focused first on the de novo assembly of bacterial genomes. A 5–step protocol
was developed, each step including a quality control. The examination of different assembly
software in a comparative way identified SPAdes as most suitable. The protocol enables
the user to chose the best tailored assembly. Contamination issues were solved by an initial
filtering of the data and methods normally used for the binning of metagenomic datasets.
This step is missed in many published assembly pipelines. The described protocol offers
assemblies of high quality ready for downstream analysis.

Subsequently, assemblies generated with the developed protocol were annotated and explored
in terms of their function. In a first study, the genome of a phyllosphere bacterium,
Williamsia sp.ARP1, was analyzed, offering many adaptions to the leaf habitat: it can
deal with temperature shifts, react to oxygen species, produces mycosporins as protection
against UV–light, and is able to uptake photosynthates. Further, its taxonomic position
within the Actinomycetales was infered from 16S rRNA and comparative genomics showing
the close relation between the genera Williamsia and Gordonia.

In a second study, six sponge–derived actinomycete genomes were investigated for secondary
metabolism. By use of state–of–the–art software, these strains exhibited numerous gene
clusters, mostly linked to polykethide synthases, non–ribosomal peptide synthesis, terpenes,
fatty acids and saccharides. Subsequent predictions on these clusters offered a great variety
of possible produced compounds with antibiotic, antifungal or anti–cancer activity. These
analysis highlight the potential for the synthesis of natural products and the use of genomic
data as screening toolkit.

In a last study, three sponge–derived and one seawater metagenomes were functionally
compared. Different signatures regarding the microbial composition and GC–distribution
were observed between the two environments. With a focus on bacerial defense systems,
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Summary

the data indicates a pronounced repertoire of sponge associated bacteria for bacterial
defense systems, in particular, Clustered Regularly Interspaced Short Palindromic Repeats,
restriction modification system, DNA phosphorothioation and phage growth limitation. In
addition, characterizing genes for secondary metabolite cluster differed between sponge and
seawater microbiomes. Moreover, a variety of Type I polyketide synthases were only found
within the sponge microbiomes. With that, metagenomics are shown to be a useful tool for
the screening of secondary metabolite genes. Furthermore, enriched defense systems are
highlighted as feature of sponge-associated microbes and marks them as a selective trait.
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Zusammenfassung

Zusammenfassung

Mikroben–Wirt Interaktionen sind der Schlüssel, um zu verstehen “Wie?” und “Warum?”
Mikroben in bestimmten Umgebungen vorkommen. Mithilfe von Genomik und Metagenomik
lassen sich Einblicke auf dem molekularen sowie ökolgischen Level gewinnen. Ziel dieser
Arbeit war es, diese Daten zugänglich zu machen und zu vergleichen, um Erkenntnisse auf
taxonomischer und funktionaler Ebene in bakterielle Isolate und bakterielle Konsortien
zu erhalten. Dabei wurden Daten aus zwei verschiedenen Umgebungen erhoben: der
Phyllosphäre von Arabidopsis thaliana und aus der Mesohyl–Matrix mariner Schwämme.

Das Ziel war zunächst, bakterieller Genome de novo zu assemblieren. Dazu wurde ein
Protokoll, bestehend aus 5 Schritten, entwickelt. Durch Verwendung verschiedener Soft-
ware zum Assemblieren konnte SPAdes als am besten geeignet für die gegebenen Daten
herausgearbeitet werden. Durch anfängliches Filtern der Daten konnte erste Kontamina-
tion entfernt werden. Durch das Anwenden weiterer Methoden, welche ursprünglich für
metagenomische Datensätze entwickelt wurden, konnten weitere Kontaminationen erkannt
und von den “echten” Daten getrennt werden. Ein Schritt, welcher in den meisten pub-
lizierten Assembly–Pipelines fehlt. Das Protokoll ermöglicht das Erstellen hochqualitativer
Assemblies, welche zur weiteren Analyse nicht weiter aufbereitet werden müssen.

Nachfolgend wurden die generierten Assemblies annotiert. Das Genom von William-
sia sp. ARP1 wurde untersucht und durch dessen Interpretation konnten viele Anpassungen
an die Existenz in der Phyllosphäre gezeigt werden: Anpassung an Termperaturveränderun-
gen, Produktion von Mycosporinen als Schutz vor UV–Strahlung und die Möglichkeit, von
der Pflanze durch Photosynthese hergestellte Substanzen aufzunehmen. Seine taxonomische
Position wurde aufgrund von 16S rRNA sowie vergleichende Genomik bestimmt. Dadurch
konnte eine nahe Verwandtschaft zwischen den Gattungen Williamsia und Gordonia gezeigt
werden.

In einer weiteren Studie wurden sechs Actinomyceten–Genome, isoliert aus Schwämmen,
hinsichtlich ihres Sekundärmetabolismus untersucht. Mihilfe moderner Software konnten in
zahlreiche Gen–Cluster identifiziert werden. Zumeist zeigten diese eine Zugehörigkeit zu
Polyketidsynthasen, Nichtribosomalen Peptidsynthasen, Terpenen, Fettsäuren oder Sac-
chariden. Durch eine tiefere Analyse konnten die Cluster mit chemischen Verbindungen
assoziiert werden, welche antibakterielle oder fungizide Eigenschaften besitzen.

In der letzten Untersuchung wurden Metagenome von drei Schwämmen sowie Meerwasser
auf funktioneller Ebene verglichen. Beobachtet wurden Unterschiede in deren mikrobiellen
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Zusammenfassung

Konsortien und GC–Gehalt. Schwamm–assoziierte Bakterien zeigten ein ausgeprägtes
Inventar an Verteidigungsmechanismen gegenüber deren Vertretern aus dem Meerwasser.
Dies beinhaltete vor allem: Clustered Regularly Interspaced Short Palindromic Repeats,
das Restriktions-Modifikationssystem, DNA Phosphorothioation, oder Gene, welche das
Wachstum von Phagen hemmen können. Gene für Sekundärmetabolite waren zwischen
Schwamm– und Meerwasser–Metagenomen unterschiedlich stark ausgeprägt. So konnten
Typ I Polyketidsynthasen ausschließlich in den Schwamm–Metagenomen gefunden werden.
Dies zeigt, dass metagenomische Daten ebenso wie genomische Daten zur Untersuchung
des Sekundärmetabolismus genutzt werden können. Des Weiteren zeigt die Anhäufung an
Verteidigungsmechanismen eine Anpassung von Schwamm–assoziierten Mikroben an ihre
Umgebung und ist ein Hinweis auf deren mögliche selektive Eigenschaft.
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Part I. General introduction

The road to –omics

Historical background

“The order of nucleic acids in polynucleotide chains ultimately contains the information

for the hereditary and biochemical properties of terrestrial life. Therefore the ability to

measure or infer such sequences is imperative to biological research.” (Heather and
Chain 2016)

One could consider the year 1869 as the birth of sequencing, when Friedrich Miescher
discovered and isolated “nuclein”, a phosphate–rich substance residing within the cell nuclei,
better known today as desoxyribonucleic acid (DNA). For many years, proteins were believed
to be the inheritable genetic molecules, as they varied more in a physical and chemical way
compared to DNA. Surprisingly, in 1944, Oswald T. Avery, Colin MacLeod and Maclyn
McCarty demonstrated, that DNA, serves as genetic carrier:

“If the results of the present study of the transforming principle are confirmed, then

nucleic acids must be regarded as possessing biological specificity ...” (Avery et al.
1944)

Based on the results obtained by Avery and his colleagues, Alfred Hershey and Martha
Chase conducted experiments on bacteriophages infecting bacterial cells in 1952. Upon this
process, they recognized only DNA entering the cell, whereas proteins did not, confirming
DNA to carry genetic information and thus as responsible for inheratibility:

“This protein probably has no function in the growth of intracellular phage. The DNA

has some function ...” (Hershey and Chase 1952)

Only one year later, James Watson and Francis Crick were able to solve the three-
dimensional structure of DNA supported through the crystallographic data of Rosalind
Franklin and Maurice Wilkins (Watson and Crick 1953; Zallen 2003). They proposed
a double–helical structure consisting of two chains running in opposite directions (i.e.
complementary) with the sugar–phosphate backbones on the outside and the four (nucleo–
) bases — adenine (A), cytosine (C), guanine (G) and thymine (T) — on the inside. Pairwise
bonds between the nucleotides (i.e. nucleobase + sugar + phosphate) are formed to stabilize
the helical structure: A with T, C with G (Watson and Crick 1953). Within the next decade,
reading or even sequencing DNA was impossible, due to its length and double-stranded
appearance (Heather and Chain 2016). However, sequencing of the first transfer RNA
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Part I. General introduction

(tRNA) from Saccharomyces cerevisiae in 1965 (Holley et al. 1965), the coat protein of the
ribonucleic acid (RNA) bacteriophage MS2 and subsequent its complete RNA sequence
(Fiers et al. 1976; Jou et al. 1972) were published. Even the measurement of nucleotide
composition became possible in 1961 (Holley et al. 1961) — but not the order of nucleotides.

Development and impact of sequencing technologies

Only in 1968, Ray Wu and colleagues employed DNA polymerase to sequence the “sticky
ends” of phage � (Wu and Kaiser 1968). With this, they were the first to publish a nucleotide
sequence, consisting of 12 basepairs (Wu and Taylor 1971).

First–generation sequencing commenced in 1975, with the chemical cleavage technique
of Allan Maxam and Walter Gilbert (Heather and Chain 2016). Independently, Frederick
Sanger and Alan Coulson invented their plus andminus system and revolutionized the way
of DNA sequencing presenting the famous dideoxy or chain–termination method (Sanger
and Coulson 1975; Sanger et al. 1977a). Soon after, the 5.3 kbp genome of the bacteriophage
�X174 was released (Sanger et al. 1977b). Technical improvements towards automation,
capillary systems and fluorometric based detection of nucleotides (Heather and Chain 2016),
the use of shotgun sequencing — i.e. DNA is randomly fragmented, cloned and these
fragments/reads are sequenced — and suitable computer programs (Staden 1979) to stitch
obtained reads together (= assembly) led to the first fully sequenced bacterial genome in
1995, Haemophils influenza, with a size of 1.8 Mbp (Fleischmann et al. 1995) and changed
the science of bacteria dramatically (Land et al. 2015). A milestone in sequencing was set
in 2001, when the sequence of the human genome with a length of 3Gbp was presented
(Lander et al. 2001; Venter et al. 2001) a few years ahead of schedule.
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Figure 1. – Development of DNA sequencing costs according to the National Human
Genome Research Institute (NHGRI) (Wetterstrand 2016) for one megabase-
pair and the amount of deposited sequencing data in GenBank (GenBank
2016)
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Part I. General introduction

Concurrent with further advances in large–scale dideoxy sequencing methods, a wave of
next–generation sequencing (NGS) platforms were released (Heather and Chain 2016). In
2005, the first commercially sequencer, the GS20 by 454 Life Sciences became available.
It heralded the era of NGS (Shendure and Ji 2008) as the mass of sequences produced in
parallel within one run was considered a paradigm shift (Margulies et al. 2005). Since its
release, a massive drop in sequencing costs concurrent with increasing throughput took
place (Figure 1). In particular, Illumina has lowered sequencing costs drastically, allowing
the human genome to be sequenced with  1 000 $ (Illumina 2016), which had costs of
1 000 000 $ back in 2001 and have brought the company to near monopoly (Greenleaf
and Sidow 2014). Among the two described NGS technologies, others appeared (and
disappeared) with variable impact, namely Sequencing by Oligonucleotide Ligation and
Detection (SOLiD) (Applied Biosystems) and Ion Torrent (Life Technologies) in 2006 and
2010, respectively. More recently, the third generation of sequencing technologies emerged.
That is, single molecule sequencing (SMS) in real–time without the need for amplification
(Heather and Chain 2016; Liu et al. 2012a). Considered to be the most wideley used
third–generation sequencing platform to date is PacBio (Pacific Biosciences) (Dijk et al.
2014) over nanopore sequencing (Oxford Nanopore Technologies).

Sequencing technologies have changed massively within the last three decades. The overall
throughput has increased from 0.1Mbp using Sanger–seqencing to over 1 000Gbp with
Illumina platforms. Further, there were trends towards smaller read–lenghts using NGS
platforms compared to Sanger–sequencing, but this has changed again to lengths exceeding
1 000 bp using the Third–Generation sequencing technologies (Figure 2).
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Part I. General introduction

As a result of the technological improvements, it was possible to reduce the price for
sequencing projects dramatically. Especially Illumina led to a massive drop to  0.1 $
per megabase (Glenn 2011) (Sanger  400 $ per megabase (Thomas et al. 2012)), and the
availability of benchtop sequencers (e.g. Illumina MiSeq, Roche 454 Junior, Ion Torrent
PGM), has made the sequencing of bacterial genomes (and others) affordable to many
laboratories, but also dropped the impact of a bacterial genome projects from Journals
as Science (Impact factor: 31.477) in 1995 to journals as Standards in Genomic Sciences
(Impact factor: 3.167) nowadays. Whatsoever, the era of NGS and the vast data produced
allows new questions to be asked. It is now possible to sequence multiple species at a time
or even the complete DNA inventory of microbial communities. These endeavours and
developments paved the way for a new scientific field: –omics.

Omics

In molecular biology, the term –omics refers to the suffix –ome to form nouns, which
adresses to the objects of study (e.g. genome — genomics). According to the Oxford
English Dictionary, –omics describing “[a]ll constituents considered collectively” (Oxford
English Dictionary 2016), meaning in science the use of “[l]arge-scale data/information to
understand life summed up in omes” (Yadav 2007) .

Different –omics data types help to understand the inherent relationship between biological
regimes, which can be described by the central dogma of molecular biology (Buescher and
Driggers 2016; Crick 1970; Crick 1958): From DNA, i.e. the blueprint of an organism which
is carried by RNA, describing what actually happens within an organism, to proteins, the
functional products (Buescher and Driggers 2016) (Figure 3).

DNA RNA Protein

T C G C TA

T A G C G A

A U G U C T V L Y I

(Meta-)
Genomics

(Meta-)
Transcriptomics

(Meta-)
Proteomics

Transcription Translation

Figure 3. – The central dogma of molecular biology according to F. Crick (Crick 1970;
Crick 1958) and the connection to –omics

Below, a brief overview of microbial genomics and metagenomics is given, as these are
the main research fields used within this thesis. Further, approaches and challenges using
that kind of data are described.

Genomics – the word was proposed by the geneticist Thomas H. Roderick in early 1986 as
the name of the yet–to–be-published journal Genomics (Kuska 1998). Genomics refers to a
field in genetics and concerns the analyis of an organisms genome within its cells (Lockhart
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Part I. General introduction

and Winzeler 2000). In particular, it describes the determination of DNA sequences, and
subsequent functional analysis. Two decades earlier, this was an extensive process requiring
a lot of time and money, but became — at least for bacterial genomes — a standard
procedure (Land et al. 2015) by use of NGS technologies. The ease of producing genomics
data today is also reflected within the public databases such as The Genomes OnLine
Database (GOLD) (Reddy et al. 2015) or GenBank. The number of registered genome
projects increased dramatically since 2001, in particular for bacterial genomes, but also
increased for eukaryotic ones within the last 5 years (Figure 4). Also GenBank has grown
massively since its invention 1982 (Land et al. 2015) and now harbours amounts of 4 000
eukaryotic, 6 000 viral, and more than 80 000 available bacterial genomes comprising over 50
bacterial phyla (NCBI 2014). This is also due to the drop in sequencing costs (Figure 1) and
initiatives like the 100K Pathogen Genome Project or the Genomic Encyclopedia of Bacteria
and Archaea (GEBA) (Kyrpides et al. 2014) among others. However, the last decades
have not only been about generating sequencing data, but also illuminated functionalities
of genomic data and their coherence to the environment. Indeed, there have been many
projects on eukaryotes like the human genome in 2001 (Lander et al. 2001; Venter et al.
2001), the nematode Caenorhabditis elegans 1998 (Sequencing Consortium 1998) or the
first flowering plant Arabidopsis thaliana in 2000 (Initiative 2000). The next paragraph will
focus on insights and knowledge gained through bacterial genome sequencing.
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Figure 4. – Development of registered DNA sequencing projects in the Genomes Online
Database (GOLD) since 2001 (Genomes Online Database 2016)

The sequencing of the first bacterial genomes in 1995 — H. influenza (Fleischmann et al.
1995) and Mycoplasma genitalium (Fraser et al. 1995) — were non–pathogenic strains. But,
it started a race (Loman and Pallen 2015) to sequence genomes from pathogens as the
white plague Mycobacterium tuberculosis (Cole et al. 1998), model organisms as Bacil-
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Part I. General introduction

lus subtilis and Escherichia coli K–12 (Blattner 1997; Kunst et al. 1997) and extremophiles
as Deinococcus radiodurans (White 1999) or Tropherymawhipplei. Though many of these
strains were hard to study in vitro, it allowed the design of a growth medium for e.g.
T.whipplei through metabolic reconstruction and its subsequent cultivation (Renesto et al.
2003). The availability of genomes from the same genus or species opened the door for
new scientific fields: comparative and evolutionary genomics. It involves the comparison of
genomic features — i.e. DNA sequences and, genes and their order, regulatory elements or
even Single nucleotide polymorphisms (SNPs) — of different organisms (Xia 2013). This
information can be used to define genomic inventories identical/different across genomes,
thus defining homologs/paralogs or origins of genes and species (Nature 2014). With
that background, it was possible to define pan– (an entire gene set) and core–genomes
(genes present in all strains of a taxononomic group) and classify strains using their whole
genomic repertoire (Land et al. 2015) or nucleotide composition infered through average
nucleotide identity (ANI) (Richter and Rosselló-Móra 2009) instead of single marker genes
(e.g. 16S rRNA for bacteria). Using these toolkits, high strain diversity and horizontal gene
transfer (HGT) within E. coli was detected (Welch et al. 2002). This knowledge of gene
transfer and recombination changed the way of understanding genome evolution for microbes
and tree–like structures were found to be inappropriate (Spratt and Maiden 1999) to show
their phylogeny as bacterial cells were designated as individuals. Focussing on human
pathogens and symbionts, a process called genome reduction was observed. Due to sexual
isolation and adaptions to restricted niches as found in Rickettsia (Kurland et al. 1998) or
Mycobacterium (Cole et al. 2001) strains, non–functional genes were created and lost as
they were no longer needed (Darby et al. 2007) when inhabiting a host organism, e.g. genes
responsible for flagellar motility (Maurelli 2007). In addition, within–host genome evolution
was detected when analyzing host–microbe interactions, e.g. insertions and deletions within
noncoding areas of different Burkholderia strains (Romero et al. 2006). This also opened
the “eco–evo perspective” (ecology–evolution). In this context, microbes were recognized
in combination with their lifestyle. They were shown to have the ability to shift from
pathogenic to commensal states and vice versa (Loman and Pallen 2015) as non–pathogenic
strains were found to encode virulence factors, e.g. antimicrobial peptide violacein in the
free–living Chromobacterium violaceum ATCC 12472 (Holden et al. 2004). Beside, the usage
of comparative genomics led to one of the very recent scientific breakthroughs: the detection
of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a prokaryotic
immune system detected in many bacterial genomes (Makarova et al. 2006) and its usage
for genome engineering (Pennisi 2013).

Beside functional and evolutionary genomics, the field can be divided into other research
areas. Functional genomics involves not only genomic data, but also transcriptomics (that
is, the sequencing complete RNA), to describe gene functions, expression and is focussed
on dynamic processes such as transcription, translation, regulation of genes, and their
interactions. Following, forward–engineering of metabolic pathways led to the rerouting
of biosynthetic pathways and production of biodiesel (Steen et al. 2010), gasoline (Choi
and Lee 2013), or even the antimalarial drug artemisinin in 2013 (Paddon et al. 2013). A
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Part I. General introduction

new and emerging field is single cell genomics, using isolated DNA from individual cells
for genomic sequencing (e.g. Kamke et al. 2014; Siegl et al. 2011). It is a promising
tool as it can be used on (bacterial) cells, which can not be cultured. However, it is
technically challenging as cells need to kept viable during enzymatic/mechanical isolation.
Due to whole genome amplifications, artifacts as genome loss, mutations and chimeras may
be introduced (Gawad et al. 2016). But, this approach filled the phylogenetic tree with
reference genomes previously unculutivated and only known by barcodes or even unknown
phyla as TM7 from human mouth or soil (Marcy et al. 2007; Podar et al. 2007), or phyla
as Poribacteria (Siegl et al. 2011), or Tectomicrobia from sponges with high potential for
the synthesis of secondary metabolites (Wilson et al. 2014) as source for novel drugs. To
sum up, genomics can provide insights into genetic mark–ups, functional and metabolic
capabilities, evolution of organisms on a molecular level, resolve phylogenetic patterns, and
can be used for bioprospecting approaches.

The term metagenomics was first coined by Jo Handelsman in 1998 and defined as “[cloning]
and functional analysis of collective microbial genomes” (Handelsman et al. 1998). It is
also refered to as environmental genomics, community genomics or population genomics
(Handelsman 2004). Until today its defintion has modified as the direct sequencing — i.e.
circumvents unculturability — of microbial genomes within an environmental sample.

Classical microbial genome sequencing, except single cell genomics, has the drawback
to rely on culturing the organism of interest. As observed by microscopy, environments
contain millions of microbial cells of different species, but only few of them grow on petri
plates (Amann 1911). The number of culturable microorganisms was estimated  1%
(Hugenholtz 2002). This phenomenon was called the great plate count anomaly (Staley and
Konopka 1985). First attempts by Norman R. Pace focused on the amplification without
“[i]solation of the 16S rRNA or cloning of its gene” (Lane et al. 1985). This lead to the
idea of cloning DNA directly from the environment (Pace et al. 1985). Thanks to the
efforts of Pace and colleagues, extraction of phylogenetic marker genes from environmental
samples became possible (Giovannoni et al. 1990) and opened a world far more complex
than was seen based on morphological features. First limited to non–protein coding genes,
subsequent studies by DeLong and Healy also reported the direct isolation of functional
genes (Healy et al. 1995; Stein et al. 1996). These concepts are in use today to explore
microbial communites through massive parallel sequencing of 16S ribosomal RNA (rRNA)
marker genes (= amplicon sequencing) and might be considered as targeted metagenomics
(Knief 2014). It can also be applied to explore the diversity of functional genes such as
polyketide synthases (PKSs) using distinct primers (Della Sala et al. 2014) and subsequent
identification of the underlying product.

In 2002, whole metagenome shotgun sequencing was invented. In short, DNA is extracted
from all cells in a community sample. Instead of targeting genomic features for amplification,
DNA is sheared into small fragments that are sequenced independently. These DNA
sequences occur from different genomic locations for the various genomes present in the
sample, which includes also non–microbial DNA. Some fragments relate to taxonomically
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informative loci (e.g. 16S rRNA), and others to coding sequences (Sharpton 2014). Hence,
with shotgun metagenomics, one is able to not only answer the question “Who is there?”,
but also “What are they doing?” (Handelsman 2004) as metagenomics give access to the
functional repertoire of microbial communities (Thomas et al. 2012). Functional comparative
metagenomics enabling the reconstruction of metabolic pathways (Escobar-Zepeda et al.
2015), or may be as simple as comparisons of GC–content (Foerstner et al. 2005) or genome
sizes. Moreover, functions of microbial communities can be linked to geographic locations or
explain interactions and adaptions between hosts and microbes. In addition, it is possible
to reconstruct single genomes from metagenomic samples (Albertsen et al. 2013), which
might reveal conditions of yet unculturable strains (Burgsdorf et al. 2015). Metagenomics is
able to connect function to phylogenetic, chemical or other biological traits to characterize
the environment (Thomas et al. 2012). This can be considered an advantage over genomics,
to the expense, generated data is more complex and at higher costs.

Since the first well–analyzed shotgun metagenomic studies as the Acid Mine Drainage
microbial biofilm (Tyson et al. 2004), the Sargasso Sea surface water (Venter et al. 2004), or
the Whale Fall (whale bone) and Minnesota farm soil metagenomes (Tringe et al. 2005), the
number of registered metagenomic projects in GOLD has increased to more than 10 000 by
the end of 2015 (Figure 4). Moreover, consortia for the sequencing of metagenomes have been
launched as the TerraGenome project (Vogel et al. 2009) for soil or the Human Microbiome
Project (HMP) (Human Microbiome Project Consortium 2012). Endeavours in generating
huge amounts of metagenomic data shows its importance to biological sciences, but also
leads to challenges due to their dimensions, sequence diversity and their fragmentation.

With regards to other –omics, both genomics and metagenomics are limited to the
description of functional potential within one or more organisms. To adress questions
as “What genes are expressed?”, “What are the microbes doing at the moment?” or
“Which functions are up– or down–regulated during a specific event?”, techniques as (meta–
)transcriptomics (that is the total set of mRNA sequenced) or (meta–)proteomics (that is,
detecting all proteins in given cells) are necessary. Despite its limitations, metagenomics is
considered one of the “[m]ost remarkable events in the field of microbial ecology” (Thomas
et al. 2012), as it offers functional insights into microbial communities remaining unknown
by culture–depdendent methods based on the blueprint of life — DNA.

A (meta–)genomic workflow

Current genome and metagenome projects sequenced on NGS platforms produce high
throughput with usually short reads. Data generation is estimated to be doubled every 7
months (Stephens et al. 2015). According to Moore’s Law, this can no longer be compensated
by computer power, which doubles every 18 months. Consequently, the amount of data
poses bioinformatic challenges when it comes to sequence quality assessments, alignment,
assembly, storage and release (Shendure and Ji 2008) or integration and interpretation.
Below described are the steps towards genomic and metagenomic data. A workflow from
sampling to data storage is illustrated in Figure 5.
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The adequate sampling and its procession is a first and most crucial step to assure high
quality. Especially in the field of metagenomics the sample has to be representative for all
cells (Thomas et al. 2012). For DNA extraction, suitable treatments, e.g. lysis, fractionation
or disruption may be applied to the sample (Figure 5, DNA isolation and fragmentation).
The obtained DNA can then be sequenced on an appropiate platform (see Figure 5 DNA
sequencing). Next steps conduct an extensive quality control (Figure 5 Quality control).
Whereas the quality (PHRED score, length, ambiguous basepairs, throughput) of sequenced
reads can be measured with ease, i.e. using FastQC (Andrews 2016), the quality of a
sequencing project becomes available not until initial processing. For example, within 202
metagenome studies, 145 were found with human contamination of up to 64 % (Schmieder
and Edwards 2011), but also genomic studies are not free of contamination (Merchant et al.
2014). This is a serious concern often overlooked and may lead to erroneous downstream
analysis (Schmieder and Edwards 2011). It also affects the assembly of genomes, i.e. put
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Figure 5. – Simplified flowchart of genomic (left) and metagenomic (right) projects from
sampling to storage. Dashed lines indicate steps only conducted for metage-
nomics.
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together reads of DNA into longer fragments, so called contigs (Figure 5 Assembly and
qualtiy control). This is considered one of the most complex computational tasks in biology
(Baker 2012), and is even more complicated for metagenomes (Sharpton 2014) due to
chimeric sequences, uneven coverage, and the large amount of different species. For analysis
of long genetic elements or genes in genomic proximity as secondary metabolite gene clusters
or CRISPR, it is inevitable to work on assembled sequences rather than separated reads
(Thomas et al. 2012). The assembly process is followed by the prediction of open reading
frames (ORFs) and their functional annotation with available databases such as Clusters
of Orthologous Groups (COG) (Galperin et al. 2015), TIGRFAM (Haft et al. 2013), or
Protein Families (PFAM) (Finn et al. 2016). Several web servers are specialized ressources
and merge the information of several databases for functional annotation and comparison
of genomic and/or metagenomic datasets. Among these prominent ones are RAST and
MG–RAST servers, IMG/M or EDGAR (Aziz et al. 2008; Blom et al. 2016; Markowitz et al.
2012; Meyer et al. 2008). If one is interested in more specialized analysis, e.g. secondary
metabolism, web servers as antiSMASH (Weber et al. 2015) may be conducted. Also, the
use of locally installed and manually set up databases for Basic Local Alignment and Search
Tool (BLAST) or hidden–markov model (HMM) searches may be necessary for a more
specific annotation, but requires great computational ressources (Figure 5 Annotation).
Noteworthy, only around 50% of all sequences may be successfully annotated (Thomas
et al. 2012) as this process is limited to known genes in databases. Interpretation of the
created data hardly depends on the project behind (Figure 5 Analysis and interpretation).
For single genomes, one may conduct analysis on evolutionary genomics by searching for
orthologous or paralogous genes. Also, the creation of core– or pan–genomes is a way to
learn about evolution when looking for absent or present features between close bacterial
strains. Using metagenomic approaches, it is possible to get an overview of a whole bacterial
community and its diversity which can than be associated to their functional composition
(Tringe 2005). Platforms such as NCBI, IMG, RAST/MG–RAST or CAMERA provide
an integrated environment for the analysis, storage, management and allow sharing and
visualization of genomic and metagenomic data (Figure 5 Data storage) (Pavlopoulos et al.
2015).

As biology has become a big data science, the challenges are multilayered, starting with
sampling and data generation generation, over quality control and assembly, analysis, final
interpretation, and finding appropriate software in the plethora of available ones.
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A microbial world

With an estimated number of 1029 prokayrotic cells around the world (Lougheed 2012) exceed
other lifeforms by orders of magnitudes. They can be found in the harshest environments (e.g.
Huber et al. 2000; Tyson et al. 2004) probably due to their metabolic diversity (Kostadinov
2011). First observations by Robert Koch revealed connections between microbes and
diseases in various hosts as humans, plants or other animals (De Kruif 2002) and launched a
generation of “microbe hunters” (Choffnes et al. 2013) sytematically searching for pathogenic
microbes. Around the same time, the question arose, if microorganisms do not only harm,
but also support their respective host (Choffnes et al. 2013), and given rise to the concept of
symbiosis. This can be separated in three relationships between hosts and microorganisms,
which form a continuum: parasitic (=interaction, in which one partner benefits at the
expense of the other) , commensal (=beneficial interaction for one partner without affecting
the other) and mutualistic (=beneficial interaction for both partner) (Little et al. 2008).
However these relationships can not be separated clearly, the definition by Anton de Bary
is used here: “the living together of unlike organisms” (Bary 1878). Microbes were found to
be essential for all life on earth. They produce important compounds as oxygen for the
earths atmosphere through photosynthesis (Pedrós-Alió 2006), are responsible for catalyzing
carbon (Falkowski et al. 1998), nitrogen, oxygen or phosphorus into accessible forms and
make nutrients available to their hosts (Handelsman et al. 2007) — to only name a few
examples among thousands. With that our view on microbies has changed within the last
decades.

We are aware of their real impact, but understanding microbes and the combined activities
within microbial communities is still in its infancy. Modern biology relies not only on
microscopy and the description of microbial phenotypes. These techniques and culturing of
microbes will still be important (Handelsman et al. 2007), but are limited to the visibility
of features. With the discovery of DNA (Watson and Crick 1953), the door was opened for
molecular biology and the research of intrinsic, genotypic features. Tradititional methods,
have in the last few decades, supplemented by the sequencing of DNA, helping to understand
the functional and metabolic repertoire of microbes and determine interactions between
microorganisms and the environment or their hosts.

Below, examples of microbes and their impact — in particular bacteria — are provided
for two different environments: the plant surface and within marine sponges as these were
the main research fields in this thesis. Each starting with an overview of environmental
variables, the microbial community inhabiting the habitat and insights from modern
sequencing approaches.

13



Part I. General introduction

Microbial life in the phyllosphere

The phyllosphere is known as the aerial surfaces of plants (Kembel et al. 2014) and is
dominated by the leaves (Vorholt 2012). It is estimated, that the phyllosphere spans an
area up to 6.4*108 km2. The leaf surface is far from sterile and is considered as a hostile and
short–lived environment for microbes, due to temperature shifts, UV–radiation, fluctuating
humidity and desiccation, limited nutrients (oligotrophic) and their uneven distribution
among leaves (Remus-Emsermann et al. 2011; Remus-Emsermann and Leveau 2010), and
their heterogenity at the micro– and macroscale (Lindow and Brandl 2003; Vorholt 2012).
Also surrounding conditions as the atmosphere, wind and gas exchange have been shown on
lettuce leaves to have an effect on epiphytic bacterial communities (Medina-Martinez et al.
2015) as they might induce stomata closure and reduce nutrient availability (Leveau and
Lindow 2001; Miller et al. 2001). On the one hand, inhabitants encounter antimicrobial
compounds either produced by other microbes or the plant itself (Vorholt 2012) (Figure 6 A
and B). On the other hand, phyllosphere microbes, such as Pseudomonas sp, were also shown
to protect the plant against pathogen invasion (e.g. fungi) by producing plant hormones
(Ritpitakphong et al. 2016) or even support their host plant through drought tolerance (Lau
and Lennon 2012) and disease resistance (Santhanam et al. 2015). Interactions between
plants and their microbiome seem to be mutualistic, thus it is not surprising, that the
planetary population of bacteria – by far the most abundant inhabitants — is as large as
1026 cells in the phyllosphere (Lindow and Brandl 2003) and is assumed to be as high as
106 – 107 cells/cm2 (Lindow and Brandl 2003). Maybe explained, as phyllosphere–bacteria
represent an ancient symbiosis (Partida-Martinez and Heil 2011) in which the bacteria
extend the host phenotype (Wagner et al. 2016).
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Figure 6. – (A) Microbe–microbe and plant–microbe interactions which may occur in
the phyllosphere due to competition through antibiosis for nutrients and best
environmental conditions. (B) Traits which allow and support microbes to
establish and colonize the phyllosphere comprising the production of osmopro-
tectants, auxin, antibiotics or the uptake of photosynthates. Adapted from
Vorholt (2012)

14



Part I. General introduction

Insights into microbial phyllosphere communities have been obtained mostly through
amplification and pyrosequencing of 16S rRNA marker genes (Vorholt 2012). Overall, the
species richness was found to be lower compared to soil, the rhizosphere, costal seawater,
or the human gut (Delmotte et al. 2009; Knief et al. 2012b). Identified dominant bacterial
phyla on different plants are Proteobacteria, Firmicutes, and Actinobacteria (Williams and
Marco 2014), but their proportions vary depending on several traits: Knief et al. (2010)
have shown, that geographic location of a plant has more impact than the plant species, but
only shown for Methylobacterium communites. Redford et al. (2010) concludes communities
do not become more distinct with increasing geographic distance. Instead, they found
“[i]nterspecies variability exceeds intraspecies variability” for 56 tree species. In another
study, the wax composition of A. thaliana leaves was shown to have an effect on bacterial
community composition (Reisberg et al. 2013). Further variations in microbial communities
were linked to season: Firmicutes were dominant in planting of lettuce in june, in august
and october it were Proteobacteria (Williams et al. 2013). Also the genotype of the plant
seems to be an determining factor for communities (Hunter et al. 2010; Knief et al. 2010;
Redford et al. 2010).

Genomic investigations revealed functional adaptions to the phyllospheric habitat as repair
of UV–damaged DNA, uptake of photosynthates (sucrose, fructose) or production of
osmoprotectants such as trehalose or betaine (Horn et al. 2016a; Remus-Emsermann
et al. 2013) (Figure 6B). Deeper insights in plant–microbe interactions on a functional
scale and using cultivation–independet techniques are scarce (Berlec 2012). However,
metaproteogenomic approaches to investigate bacteria on soya bean, A. thaliana, clover
(Delmotte et al. 2009) and rice (Knief et al. 2012b) are outstanding examples. They were
able to identify more than 4 600 proteins, a methanol–based methylotrophy within the
genus Methylobacterium and specific functions as response to reactive oxygen species the
invasion–associated locus B when compared to the rhizosphere. Atamna-Ismaeel et al. (2012)
identified rhodopsins in the microbiome of the Tamarix, A. thaliana and rice phyllosphere
and subsequent light sensing genes in Tamarix as adaption to the leaf habitat using a
metagenomic approach (Finkel et al. 2016). In a recent resarch on 400 draft genomes from
the phyllosphere and rhizosphere of A. thaliana, not only a huge phylogenetic overlap was
detected, but also a large overlap of functionalities was found. An enriched function in
phyllosphere bacteria was carbohydrate metabolism, possibly due to the fact, carbon is
easier accessible in roots htan from the leaves (Bais et al. 2006). Vice versa, root microbial
genomes are enriched in genes to process aromatic compounds. Overally, it was hypothesized,
that functional and phylogenetic diversification is driven by taxonomic affiliation rather
than ecological effects (Bai et al. 2015). Taxonomic identity as a major driver in microbial
community structure have also been found before (Kembel et al. 2014; Redford et al. 2010).
With the use of genome—wide association studys (GWASs), genetic loci varying in plants
were identified leading to different bacterial communities. Based on 196 accessions of
A. thaliana, gene loci responsible for cell wall integritiy and defense were suggested to alter
the bacterial community. Further, genetic variation linked to morphogenesis and trichome
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branching was shown to shape the richness of the inhabiting community (Horton et al.
2014). Comprising, it is assumed that there is more than one single factor playing the key
role in the process of microbial community assembly in the phyllosphere (Finkel et al. 2012;
Hunter et al. 2010; Knief et al. 2010; Redford et al. 2010).

Microbial life within sponges

Sponges (phylum Poriferea) represent one of the oldest metazoans of the extant animal
lineages (Li et al. 1998; Love et al. 2009) with a record dating back 600 million years (Erwin
et al. 2011) reflecting their evolutionary success. Around 15 000 species are estimated
to exist, belonging to three major classes (Hexactinellida, Calcarea, and Demospongiae).
Sponges are widespread among aquatic habitats such as freshwater lakes, the deep sea,
tropical and subtropical oceans as well as polar regions (Hooper and Van Soest 2002). They
are sessile animals with a simple but optimized body–plan towards filter–feeding (Leys and
Hill 2012) which enables them to pump  24 000 liters per day (Vogel 1977) to sequester
nutrients. Due to their pumping performance, they contribute much to the function of
benthic communities, e.g. through carbon or nitrogen cycling (Bell 2008).

Their immobile lifesytle resulted in a well adapted and complex innate immune system
(Müller and Müller 2003) to defend against pathogens and invading parasites. Thus sur-
prising, organisms of all domains of life, Bacteria, Archaea, Eukarya reside within sponges
(Taylor et al. 2007; Wiens et al. 2007). Hence, recognition upon symbiotic or non–symbiotic
microbes is evident (Hentschel et al. 2012). Even more interesting is the high abundance of
microbes, which can make up to 35 % of the sponge biomass (Vacelet 1975) and may exceed
109 cells per sponge tissue (Webster and Hill 2001). Based on these numbers, sponges can
be classified as either low microbial abundance (LMA) or high microbial abundance (HMA)
sponges (Bayer et al. 2014; Gloeckner et al. 2014; Hentschel et al. 2003).

Initially, the diversity of sponge–associated microbes was observed based on microscopy
(Vacelet 1975), but has changed from denaturating gradient gel electrophoresis (DGGE)
and flueorescence in situ hybridization (FISH) to 16S rRNA clone libraries (Hentschel et al.
2006) and direct sequencing of 16S rRNA from environmental samples. Studies recovered
32 different bacterial phyla (Schmitt et al. 2012) in sponges with the most abundant ones
appertaining to the Proteobacteria, Chloroflexi, Actinobacteria, Nitrospirae and the candi-
date phylum Poribacteria (Hentschel et al. 2012). Further phylogenetic analysis showed,
that bacterial phyla fall into sponge–specific clusters, (Hentschel et al. 2002) but with
low abundances in other environements such as sediment or seawater (Taylor et al. 2013;
Webster et al. 2010). Species–specific microbes of sponges have been found to be stable
across geographic distances (Taylor et al. 2005), over different time periods (Friedrich et al.
2001) starvation, antibiotic treatment and transplantation (Friedrich et al. 2001; Thoms
et al. 2003). Latest studies revealed varying richness of sponge microbes ranging from
50 to 3 820 distinct symbionts but with a low variablity between the hosts of the same
species. Further, 41 different phyla were identified with at least 13 of them residing in all 81
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investigated sponge species (Thomas et al. 2016). Thus, sponges show a distinct community
with low abundance in other environments, which is stable within the same host species.

Within the last years, not only the community composition, but also their functional reper-
toire attributing to commensal interactions with the host was investigated. Heterotrophic
microorganisms have been reported many times to be associated with sponges (Hentschel
et al. 2012; Taylor et al. 2007), not surprising as sponges provide a high amount of nutrients,
and thus represeent an ideal environment. Organic carbon assimilation was found to be
mediated by different sponge species and their microbial symbionts (Goeij et al. 2008; Yahel
et al. 2003). The degradation of carbohydrates is performed by the sponge–specific candidate
phylum Poribacteria, and may thus be considered as relevant for symbiosis (Kamke et al.
2013). One carbon metabolism has been reported for methanotrophic bacteria associated
to deep–sea sponges (Vacelet et al. 1995) and Arenosclera brasiliensis (Trindade-Silva et al.
2012). Further examples are the photosynthetic carbon fixation through cynobacteria,
which provide up to 50 % of energy for their respective host (Cheshire and Wilkinson 1991;
Steindler et al. 2002; Wilkinson 1983) or methylotrophy for Gammaproteobacteria revealed
through metatranscriptomics (Moitinho-Silva et al. 2014).

Apart from carbon, nitrogen cycling has been well–investigated, as it is the base for
the synthesis of amino acids and proteins (Taylor et al. 2007). Especially in oligotrophic
environments, such as coral reefs, symbiotic microbes may contribute to the nitrogen level
of sponges through fixation of atmospheric nitrogen (Wilkinson et al. 1999). Moreover,
archaea and bacteria were found to be involved in nitrification processes and relevant
functional genes, such as amoA, (Bayer et al. 2008; Radax et al. 2012) were detected
using several meta–omic approaches (Fan et al. 2012; Liu et al. 2012b; Radax et al. 2012;
Thomas et al. 2010). Specific transport functions between symbionts and their sponge host
were revealed (Liu et al. 2012b), suggesting a close link for this relationship. Notably, not
only the symbionts benefit from the sponge–excreted waste, but also sponges digest their
symbionts (Vacelet et al. 1996) to gain energy and nutrients. Aside these major cycles,
symbionts were shown to be able to degrade halogenates using a metageneomic approach in
Aplysina aerophoba (Bayer et al. 2013), synthesizing vitamins and cofactors (Fan et al. 2012;
Hentschel et al. 2012; Thomas et al. 2010) or protect the sponge and help to respond to
variable environmental conditions by expressing stress protection proteins (Fan et al. 2012;
Liu et al. 2012b). The high abundance of CRISPR in symbionts compared to seawater
microbes (Fan et al. 2012) may further protect the host from phages.

Sponges are a well–known source for diverse secondary metabolites, which are considered
a chemical defense system (Proksch 1994) helping them to defend against harmful microbes
(Taylor et al. 2007) and regulate their numbers. The diverse organic compounds include
terpenoids, peptides, alkaloids (Lejon et al. 2011), PKS, nonribosomal peptide synthetase
(NRPS), showing anti–microbial, anti–fungal or even anti–cancer activity (Abdelmohsen
et al. 2012, 2014c; Blunt et al. 2016). Many of the bioactive compounds have been identified
to be produced by their symbionts rather than the sponge (Piel 2009). In particular,
actinomycetes have been found to be a rich source of secondary metabolites among sponge–
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associated bacteria (Abdelmohsen et al. 2014c; Cheng et al. 2015). As much as 50% of
all bioactive compounds can be traced back to actinomycetes (Abdelmohsen et al. 2014a).
This has drawn much attention to these symbionts. Among the plethora of secondary
metabolites, polyketides are often in focus “[f]rom a drug discovery perspective” (Della Sala
et al. 2014) and due to their diversity and various pharmacological activities. Polyketides
are catalyzed by PKS in a modular fashion. PKS were isolated from metagenomes or
via PCR–approaches from symbionts of different marine sponges (Theonella swinhoei,
Plakortis simplex, A. aerophoba) and shown to produce the antitumor polyketides psymberin
(Fisch et al. 2009), onnamide (Piel et al. 2004) and swinholide A (Bewley et al. 1996).
Among the different PKS classes (cis–AT, trans–AT, FAS–like), two were found to be
sponge exclusive: sup–PKS (symbiont ubiquitous type I PKS) (Fieseler et al. 2007) and Swf
(Della Sala et al. 2014). Both represent mono–modular PKS, and the sup–PKS is predicted
to produce mid-chain-branched fatty acids (Fieseler et al. 2007). Further, the sup–PKS
cluster may be linked to Poribacteria (Hochmuth et al. 2010; Siegl and Hentschel 2010).

The microbial ecology, specifically community structure and function has received much
recent attention. This is driven by the recognition of the holobiont concept – describing
“[a] network of interactions between a host and its symbiotic microbial consortia” (Webster
and Thomas 2016) within an environment (Figure 7). Patterns are independent whether
the host is a plant, an animal or human. This concept allows for overarching questions
to be addressed to understand the function of this kind of association as a whole (Bosch
and Miller 2016). With latest sequencing technologies, insights into functional aspects are

Host
Microbiome

Environment
Holobiont

Figure 7. – The holobiont concept describing the asociation between a host and its micro-
biome in a defined environment.

now possible. Despite the shown efforts and findings, important questions as “How stable
are microbial communities?”, “What are effects on the host?” or “What are functional
drivers of community structure?” remain unanswered. Future directions head towards the
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use of synthetic communities (e.g. (Bodenhausen et al. 2014)) to link observations with
genomic information (Vorholt 2012) and the further integration of meta–omic studies in a
combination with cultivation techniques (Müller and Ruppel 2014) to further clarify the
functional capabilites of the microorganisms. These will help to understand the complex
relationship between hosts and their associated microbes.
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Scope and structure

The overall goal of this thesis was to explore bacterial genomic and metagenomic data
of microbes and microbial comunities associated with different hosts – the leaf surface
of A. thaliana and microbial communities within marine sponges. As metagenomic data
is complex due to its dimensions and amounts of data, this states a challenge. The first
task was to make that data accessible for downstream analysis. In particular, I analyzed
functions contributing to host–microbe interactions, adaptions to the host/environment,
and defense mechanisms. Further, genomes and metagenomes were screened for secondary
metabolite genes. This thesis has four major goals and is structured as follows:

Part I, an overall introduction to sequencing, arised –omics and their terminology and
applications are described accompanied by examples from previous studies on microbes the
phyllsophere and sponge environments. Part II comprises material and methods used in
this thesis. Part III describes the results as follows:

Chapter 1 Investigate, develop and compare methods for bacterial genome as-
sembly. The main focus was on the decontamination and clean–up processes to generate
high–quality draft genomes ready for downstream analysis.

Chapter 2 Generate a draft genome and study the phyllosphere bacterium,
Williamsia sp. ARP1. The genomic sequence was analyzed in terms of adaptions to the
phyllosphere environment. Further, the taxonomic relationship of the genera Williamsia
and Gordonia was explored based on a taxonomic marker and on the genomic level.

Chapters 3–4 Investigate bacterial isolates from sponges for presence of sec-
ondary metabolite genes. The genomes of six bacterial isolates were analyzed in terms
of secondary metabolism (=bioprospecting) and possible natural products using state–of–
the–art software.

Chapter 5 Explore four microbial metagenomes from sponges and seawater to-
wards bacterial defense systems. Metagenomes – originating from three mediterranean
sponges and from seawater – were compared and differences regarding defense systems
comprising CRISPR and restriction modification system (RMS). In addition, the genomic
composition and features as the GC distribution were exposed.

Within Part IV the obtained results are discussed including the limits and potential of
–omics data, and compared to similar studies. In Part V, the results are concluded and an
outlook for future projects is given.
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Material

Samples and sequencing data

All samples were obtained from studies carried out and/or supervised by colleagues of
the Department of Botany II, University of Würzburg, Germany. Described below are
the sampling sites and necessary steps to obtain sequencing data, associated people and
companies.

Samples for genomic sequencing

Bacterial strains were isolated from the phyllosphere of Arabidopsis thaliana in June 2012
in the Botanical Garden of the University of Würzburg, Germany (N 49.765°, E 9.932°) or
from sponges derived from the Mediterranean Sea in Milos, Greece (N 36.767°, E 24.514°),
Rovinj, Croatia (N 27.794°, E 34.215°) in May, 2013. Growth of the strains on substrate was
carried out by Cheng Cheng, Usama Abdelmohsen (Department of Botany II, University of
Würzburg, Germany) or by myself. Christine Gernert did the DNA extraction and PCR
amplification of 16S rRNA for all strains in which I participated.

Library preparation and DNA sequencing on a MiSeq platform (Illumina, Inc, Department
of Human Genetics, University of Würzburg, Germany) was carried out by Wiebke Sickel
and Alexander Keller (both Department of Zoology III, University of Würzburg, Germany)
with a 250 bp paired–end library design and targeted insert size of 400 bp. If necessary, two
libraries were sequenced to reach enough throughput and coverage (Table 1).

Samples for metagenomic sequencing

Sponge samples of Petrosia ficiformis, Sarcotragus foetidus and one seawater sample were
collected on May, 25th 2013 via SCUBA diving in Milos, Greece at a depth of 5–7m
(N36.767°, E 24.514°). DNA extraction was carried out by Lucas Moitinho–Silva ands
Kristina Bayer (both Department of Botany II, University of Würzburg, Germany). Library
construction as well as DNA sequencing of associated microbes was performed at an
external company (GATC Biotech AG, Konstanz, Germany). Libraries were designed using
a paired–end configuration with 250 bp or 300 bp.

The samples for the sponge Aplysina aerophoba were collected on May, 7th 2013 via
SCUBA diving from the Adriatic Sea (northernmost arm of the Mediterranean Sea) in the
Gulf of Piran, Slovenia at a depth of 5 m (approx. N 45.530°, E 13.566°) . DNA extraction was
carried out by Beate Slaby (Department of Botany II, University of Würzburg, Germany),
library design by Tanja Woyke (JGI, Walnut Creek, CA, USA), library construction and
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DNA sequencing of associated microbes was carried out by the Joint Genome Institute
(JGI, Walnut Creek, CA, USA). A total of six libraries (3x pinacoderm, 3x mesohyl) were
sequenced on an Illumina HiSeq 2000/2500 platform (Illumina, Inc., San Diego, CA, USA)
in paired–end configuration and a length of 100 bp with a targeted insert size of 170 bp
(Table 1).

Table 1. – Overview of paired–end sequencing data of used genomic and metagenomic
libraries. Shown are the isolation source, total number of reads, library size,
read length, targeted insert size and relative GC content (average of all libraries)
per sample

Isolate ID
Isolation
source

Sequencing
platform

Raw reads
[#]

Size
[bp]

Read length
[bp]

Insert size
[bp]

GC–content
[%]

Streptomyces
sp. SBT349a HH1

Sponge host: Sarcotragus spinosulus
Milos, Greece

MiSeq 4,094,430 1,023,607,500 2x250 400 71

Nonomuraea
sp. SBT364a HH2

Sponge host: Sarcotragus foetidus
Milos, Greece

MiSeq 7,003,186 1,750,796,500 2x250 400 70

Nocardiopsis
sp. SBT366a HH3

Sponge host: Chondrilla nucula
Milos, Greece

MiSeq 4,231,116 1,057,779,000 2x250 400 69

Williamsia
sp. ARP1

HH6
Plant leaf: Arabidopsis thaliana
Würzburg, Germany

MiSeq 2,608,588 652,147,000 2x250 400 59

Micromonospora
sp. RV043

RV43
Sponge host: Aplysina aerophoba
Rovinj, Croatia

MiSeq 5,900,702 1,475,175,500 2x250 400 71

Rubrobacter
sp. RV113

RV113
Sponge host: Aplysina aerophoba
Rovinj, Croatia

MiSeq 2,206,732 551,683,000 2x250 400 64

Nocardiopsis
sp. RV163

RV163
Sponge host: Dysidea avara
Rovinj, Croatia

MiSeq 4,851,800 1,212,950,000 2x250 400 71

Sample ID
Isolation
source

Sequencing
platform

Raw reads
[#]

Size [bp]
Read length
[bp]

Insert size
[bp]

GC–content
[%]

Microbial
community

-
Sponge host: Petrosia ficiformis
Milos, Greece

MiSeq 41,383,600 10,345,900,000 2x250 - 59.5

Microbial
community

-
Sponge host: Sarcotragus foetidus
Milos, Greece

MiSeq 32,672,426 9,801,727,800 2x300 - 62

Microbial
community

-
Seawater
Milos, Greece

MiSeq 40,505,000 12,151,500,000 2x300 - 42.5

Microbial
communityb -

Sponge host: Aplysina aerophoba
Piran, Slovenia

HiSeq 2000/
2500

945,906,728 283,772,018,400 2x150 170 -

a Sequencing data depends on two paired–end libraries
b Sequencing data depends on six paired–end libraries

Hardware ressources

Main parts of bioinformatic calculations were carried out on a Fujitsu R920 Workstation
(Fujitsu, Germany) running on 64-bit Ubuntu 12.04 (Precise Pangolin) or 14.04 (Trusty
Fahr) as operating systems, dual core Intel® Xeon® CPU E5-2690 @ 2.90GHz × 16 and
256GB of memory (DDR3) and 4 x 2TB local hard drives.

Additionally, minor calculations and writing of manuscripts were performed on a Fujitsu
Esprimo P9900 (Fujitsu, Germany) running on Ubuntu 12.04.3 and Microsoft® Windows
7™ Professional as operating system, Intel® Core™ i5-650 CPU @ 3.20GHz, 4GB of memory
(DDR3) and 2TB of local storage space.
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Databases

In use were the primary major public databases Genbank (Benson et al. 2014) and the
EMBL nucleotide sequence databases (Kulikova et al. 2007; Stoesser et al. 1997). Further
databases were GOLD (Reddy et al. 2015), and the SILVA high quality ribosomal RNA
database (Quast et al. 2013).

Secondary and locally installed databases including PFAM 27.0 (Finn et al. 2016) ,
TIGRFAM 12.0 (Haft et al. 2013), Protein ANalysis THrough Evolutionary Relationships
(PANTHER) 9.0 (Thomas et al. 2003), Simple Modular Architectur Research Tool (SMART)
(Letunic et al. 2012; Schultz et al. 1998), COG(Galperin et al. 2015; Marchler-Bauer et al.
2015; Tatusov et al. 1997), were used. Additional local database to perform annotations
were the NCBI non-redundant protein sequences (NR) (as of September, 2014), the NCBI
nucleotide collection (NT) (as of September, 2014), the 16S Ribosomal RNA sequences for
bacteria and archaea (16S, as of September, 2014), and RMS genes types 1–3 (comprising
restriction endonucleases, methyltransferases and specifity domains) downloaded from The
Restriction Enzyme Database (REBASE) (as of October, 2015).
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Methods

General data processing

The processing of data was performed with the command line or scripts written in perl
5.12 (The Perl Programming Language, https://www.perl.org/), python 2.7.3 (Python
Programming Language, https://www.python.org/) and R 3.0.2 (R Development Core
Team 2014). Writing of scripts was done with the GNOME editor (gedit, https://wiki.
gnome.org/Apps/Gedit), manuscripts and this thesis with either LATEX(Latex Project
Team 2010, https://www.latex-project.org/) or Microsoft® Word™ 2007/2010. As
citation manager Thomson Reuters EndNote™ X7.3 (http://endnote.com/), Mendeley
1.16.1 (https://www.mendeley.com/) and JabRef 3.3 (www.jabref.org) were used. The
manipulation of images and graphics was done with Inkscape 0.91 (https://inkscape.org/
de/) and the GNU Image Manipulation Program 2.8 (GIMP, https://www.gimp.org/).

Bioinformatics

Processing of Sanger–sequenced data

If not stated otherwise, each approach within this section was applied to both, 16S rRNA
sequences and sequences derived from PKS types I–II and NRPS PCR reactions.

Initial quality control

ABI-output files/chromatograms were initially analyzed for suspicious and/or multiple
peaks due to contamination with Sequencher 4.9 (Gene Codes Corporation, Ann Arbor,
Michigan, USA http://www.genecodes.com). ABI files were translated to the fastq/fasta
format (Cock et al. 2010) using seqret from the EMBOSS 6.6.0 package (Rice et al. 2000).
Obtained sequences containing chimeras were removed using Pintail 1.1 (Ashelford et al.
2005). Remaining sequences were quality trimmed with BWA’s dynamic trimming algorithm
(Li and Durbin 2009), removing nucleotides with a Phred quality score (Ewing and Green
1998; Ewing et al. 1998) � 20 (=accuracy � 99 %).

Generation of consensus sequences

If available, reads of foward and reverse strands were merged with either the Contig assembly
programm 3 (CAP3, Huang and Madan 1999) or by using a local alignment calculated
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with MUSCLE 1.3.8.31 (Edgar 2004) including quality scores for the overlapping positions.
Alignments were curated manually if necessary.

Taxonomic and functional assignments

Genus level assignments to 16S rRNA consensus sequences were assigned either using the
RDPclassifier (Wang et al. 2007) or the Silva incremental aligner (SINA, Pruesse et al.
2012) with enabled search and classify option. Additional search against the nt or 16S
ribsomal databases using the BLAST 2.2.28+ (Altschul et al. 1990) revealed closest (type–)
strains, possible species level assignments for 16S rRNA sequences and possible functional
assignments for PKS type I and II or NRPSs sequences.

Multiple sequence alignment and phylogenetic tree construction

For 16S rDNA sequences and closest relatives, multiple alignments were calculated with
SINA (Pruesse et al. 2012) against the expert–based SILVA database with the bacterial
variability profile. Best fitting substitution models for phylogenetic trees were choosen upon
the Akaike information criterion (AIC) implemented in ModelGenerator 0.85 (Keane et al.
2006) – in all cases the generalised time reversible (GTR) model was found. A tree was
constructed with a maximum–likelihood algorithm using RaxML 7.28 (Stamatakis 2006) or
PhyML 3.0 (Guindon et al. 2010). Usually, 1000 bootstrap replicates were performed and
consensus trees generated. All trees were saved in the Newick format.

Tree drawing

Obtained trees were drawn and edited with either TreeGraph 2 (Stöver and Müller 2010)
or the interactive tree of life v2 (iTOL, Letunic and Bork 2011) and saved as portable
document format (PDF) or scalable vector graphic (SVG). If necessary, trees were refined
using Inkscape 0.91.
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Processing of Illumina–sequenced data

If not stated otherwise, each approach within this section was applied to both, genomic
and metagenomic datasets.

Initial quality control

Sequencing quality, overall throughput and integrity of reads was verified using FastQC 0.11.2
(Andrews 2016). Computed statistics as kmer–content, duplication levels, overrepresented
sequences (adapter sequences), N content, GC content, and length distribution were
evaluated and used for subsequent trimming. FastQC was applied to the data before and
after the trimming process for data verification.

Quality trimming of reads

During sample preparation, sequencing libraries are constructed by ligating adapter, im-
portant for flow cell binding and amplification, to fragmented sequences. These adapter
sequences as well as low quality regions have to be trimmed in order enable high–quality
downstream analysis.

Sequences were submitted to Trimmomatic 0.32 (Bolger et al. 2014). Only sequences
were retained, if both of a pair passed the trimming process with (i) trimming basepairs
within a 10 bp window requiring a minimum phred score � 25, (ii) an average phred quality
score (Ewing and Green 1998; Ewing et al. 1998) � 30 (=accuracy 99.9%), and (iii) a
minimum length  50 bp of the initial length.

Taxonomic assignments of metagenomic reads

Trimmed reads were submitted to the Metagenomic Rapid Annotations using Subsystems
Technology (MG–RAST) server 3.3.6 (Meyer et al. 2008). Uploading the reads was done
with default parameters and enabled contamination filter. The taxonomic profiling of
MG–RAST is based on the NCBI taxonomy and the implemented lowest common ancestor
(LCA) method (Huson et al. 2011) was used to assign taxonomic levels to the reads.

Sequence assembly

To analyze genomes and metagenomes for functional properties, their reads have to be
stitched together (=assembled) into contiguous sequences (=contigs) (Nagarajan and Pop
2013) to reconstruct the original genomic sequence/s.

A protocol for the assembly of all genomic samples used within this thesis is given in
Section 1, page 35. The workflow includes all steps, from initial quality control to annotation.
It is focussed on the comparison of different assembler and the decontamination of the
samples.

All paired reads which passed the quality control of the samples P. ficiformis, S. foetidus
and seawater were merged with bbmerge.sh from the bbnorm release (Bushnell 2014).
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Merged and unmerged reads for each sample were then assembled using IDBA–UD 1.1.1
(Peng et al. 2012) with kmer lengths ranging from 10 to 100 and a step size of 10. Reads
obtained from the Integrated Microbial Genomes (IMG) (Markowitz et al. 2012) for the
A. aerophoba sample were normalized with bbnorm (Bushnell 2014), and assembled using
SPAdes 3.5.0 (Bankevich et al. 2012) with kmer sizes of 21,33,55,77,99,127, disabled
mismatch corrector, and enabled single cell option to account for the uneven coverage of
the sample. A. aerophoba was processed by B. Slaby.

Functional annotation

Data normalization In general, the metagenomic datasets were not of the same size,
depth and coverage. In addition, the genes and genomes within these datasets are of
different lengths. To account for these differences, metagenomic samples were normalized
right before annotation. To perform the normalization, reads were mapped against their
respective assembly using bowtie 2.2.24 (Langmead et al. 2009) with enabled very–sensitive
option. For each contig, mapped reads were counted and the coverage for each basepair
was calculated with samtools depth 1.0. The average coverage of a contig was set as the
mean coverage over each position:

average coverage

contig

=
mapped basepairs

contig

length

contig

This coverage was divided by all mapped basepairs and this number was multiplied by
106 to obtain copy numbers per megabase:

copy permegabase =
average coverage

contig

all mapped basepairs

⇤ 106

Each annotated feature was assigned the normalized copy per megabase from its respective
contig.

RNA prediction To annotate tRNA features, contigs were submitted to tRNAscan–SE
1.3.1 (Lowe and Eddy 1997) using default parameters. rRNA was annotated in the same
ways using RNAmmer (Lagesen et al. 2007) searching for small subunit rRNA (16S rRNA
and 18S rRNA) within the kingdom bacteria. Non–coding RNAs (ncRNAs) were searched
by submitting contigs to INFERNAL 1.1 (Nawrocki and Eddy 2013) using prokaryote
covariance models obtained from Prokka/RFAM 11 (Burge et al. 2013; Seemann 2014) and
an e–value threshold of 10-6.

ORF prediction Coordinates of RNA features were masked (replacing nucleotides with X)
within the contig sequences using bedtools (Quinlan 2014) to prevent Prodigal 2.6.1 (Hyatt
et al. 2010) from predicting ORFs within non–coding regions. Prodigal was run with the
following parameters: (i) genes were not allowed to predicted over/within gaps, (ii) genes
were not allowed at the edge of sequences, (iii) using translation table 11 (prokaryotic),
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(iv) in normal mode for single isolates or in anon mode for metagenomic datasets and (v)
ORFs were outputted in nucleotide and protein format.

COG annotation Assignments of COGs was done via Reversed Position Specific BLAST
(RPS BLAST) 2.2.28+ (Altschul et al. 1990). The COG position–specific scoring ma-
trices were downloaded from the NCBI Conserved Domains Database (CDD) (as of
September, 2014, ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/little_endian/Cog_LE.tar.
gz) (Marchler-Bauer et al. 2015). RPS BLAST was run with an e–value of 10-6 and only
top hits were retained for analysis.

Searching multiple protein databases To annotate protein functions of predicted ORFs,
the tool Interproscan 5.18 (Jones et al. 2014) was conducted. It comprises several databases
of which four were used for functional assignments: (i) PFAM 27.0 (Finn et al. 2016),
(ii) PANTHER 9.0 (Thomas et al. 2003), (iii) TIGRFAM 12.0 (Haft et al. 2013) and (iv)
SMART 6.0 (Letunic et al. 2012; Schultz et al. 1998). Only hits with at least 25 % identity
to the target sequences, 70% alignment length and an e–value  10-2 were retained for
bacterial genomes. For metagenomic samples, searches were performed with an e–value of
10-6.

CRISPR and cas–gene annotation For the bacterial genomes, CRISPR arrays were
predicted on contigs with PILER–CR 1.06 (Edgar 2007) and default parameters.

For the metagenomic samples, a multiple–step approach was performed as proposed by
Gogleva et al. (2014). In a first step, CRISPR arrays were predicted with PILER–CR
1.06 and CRT 1.1 (Bland et al. 2007) with direct repeat sizes ranging from 24 bp to 48 bp
according to Haft et al. (2005). In addition, the Interposcan annotation of each contig was
searched for cas–genes. Contigs with a found CRISPR array or cas–gene were validated
with CRISPRFinder (Grissa et al. 2007a). Of these, only arrays with at least two repeats
were retained as true hits.

To explore targets of CRISPR spacer, their sequences were submitted to CRISPRTarget
and compared to four different databases: (i) ACLAME (as of August, 2009), (ii) RefSeq–
Viral, (iii) GenBank–Plasmid and (iv) GenBank–Phage (all as of September, 2015), with
an e–value of 0.1 and gap open costs of -5 (Biswas et al. 2013).

Direct repeats derived from CRISPR arrays were analyzed with CRISPRmap to obtain
their structure and superclasses (Lange et al. 2013). In additon, they were compared to
the CRISPRdb (Grissa et al. 2007b) with an e–value of 0.01 to validate their occurence in
earlier studies.

Detecting genes of the RMS Reference sequences of type I–III RMS (each containing
restriction endonucleases, methyltransferases, and type I additional specifity domains)
were obtained form REBASE. A BLAST database was built for each type of restriction
endonucleases, methyltransferases and specifiy domains. ORFs of the metagenomes were
queried against all databases using blastp 2.2.28 with an evalue of 10-6 and a query coverage
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of � 70 %. If restriction endonuclease and methyltransferase (for type I also specifiy domain)
were in genomic promximity ( 4 ORF apart from each other), a RMS was considered
complete (Oliveira et al. 2014). To avoid double counts, overlapping regions of restriction
endonucleases and methyltransferases of the same type within four genes were combined.

Secondary metabolite genes and possible products To screen for genes, which were
characterizing for secondary metabolite clusters (PKS types I-IV PKS, NRPS, terpenes,
lanthipeptides, bacteriocins, thiopeptides, linaridins, lassopeptides, microcins, proteusins,
beta–lactams, siderophores, ectoines, butyrolactones, indoles, nucleosides, furans, homoser-
ine lactones, phenazines, phosphonates, saccharides and fatty acids) ORFs were submitted
to HMMER3 (Eddy 2009) using e–value cutoofs and HMMs obtained from the antiSMASH
pipeline 3.0 (Weber et al. 2015). To avoid multiple counts, genes belonging to the same
cluster type were joined, if they were found within a range of six ORFs as proposed by
Doroghazi and Metcalf (2013).

For a more detailed view in the metagenomics datasets, contigs containing PKS type I
genes were submitted to the antiSMASH web server to view complete secondary metabolite
clusters and genes in near promximity. Possible products of PKS type I clusters were
revealed by submitting their protein sequences to Natural Product Domain Seeker (NaPDoS)
(Ziemert et al. 2012) using an e–value leq 10-5 for pathway assignments, condensation– and
ketosynthase–domains.

Comparing the functional inventory To compare functional annotations of genes, either
their relative abundance (genomes) or copies per megabase (metagenomes) were used.
Heatmaps were drawn with the heatmap.2 function , Bray-Curtis dissimilarities were
caluclated using the vegdist function from the vegan package (Dixon 2003) and clustered
with the complete linkage method and euclidian distance. Both functions were implemented
in R (R Development Core Team 2014).

ANI and ortholog detection

To compare relatedness among prokaryotic strains, the ANI was calculated with BLAST
as proposed by Goris et al. (2007) and Mummer as implemented in JSpecies (Richter
and Rosselló-Móra 2009). As this measure depends only on contigs split into fragments
of 1020 nucleotides — and therewidth includes also non–coding regions — and two–sided
BLAST searches between bacterial strains, an additional method was used.

Orthologs (=genes that have evolved from common ancestry by speciation) were searched
between strains, based on genes with a valid COG annotation. This procedure was performed
using InParanoid 8 (Sonnhammer and Östlund 2015). A two–sided BLAST was conducted
for each pair of orthologous genes. Their summed up similarities divided by the total
number of orthologs was used as a comparative value to ANI.
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Chapter 1.

De novo assembly protocol for

Illumina–sequenced bacterial genomes

Author: Horn, H.
This chapter describes an unpublished protocol to assemble sequenced bacterial genomes.

The protocol was essential for the results shown in Chapters 2–5.
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Abstract

Sequencing bacterial genomes has become a standard procedure nowadays. Existing
tools focus on automated and fast assembly algorithms, but lack steps of curation. As
a consequence, many of these pipelines may lead to assemblies including errorneous and
contaminated contigs. To enable also biologists untrained in bioinformatics, I developed a
protocol to perform high–quality bacterial assemblies based on Illumina–sequenced data.

With this 5–step–protocol one is able to produce high–quality assemblies of bacterial
isolates. The included decontamination step based on single copy genes, coverage and
GC–content was shown to be able to delineate between real data and contamination in a
non–isolate sample. The usage of multiple assemblers in a competetive way enables the
user to (i) assign the best algorithm to each dataset and (ii) validate the robustness of the
assemblies. Performing all steps of this protocol offers assemblies of high quality and a
starting point for downstream analysis.

Introduction

Since the invention of second-generation sequencing, the costs for sequencing a bacterial
genome has decreased by orders of magnitudes. Contrary, the numbers of sequenced
genomes has increased dramatically and with that the demand for bioinformatic tools and
protocols to analyse them (Howison et al. 2013). Many different sequencing platforms have
been developed so far, comprising 454 pyrosequencing (454 Life Sciences), SOLiD (Applied
Biosystems), Ion PGM (Thermofisher), and PacBio RS II (Pacific Biosciences). The most
prevalent technology is Illumina (Illumina, Inc.) with its HiSeq and MiSeq platforms
generating the short reads for most projects and also the ones described in this thesis.

The assembly of short reads is a complex problem (Koren et al. 2014). Assembly tools
use algorithms (de Bruijn graphs or Overlap Layout Consensus) for generation and varius
heuristics for assembly optimization (Miller et al. 2010). Many de novo assemblers have
been developed so far, comprising SPAdes (Bankevich et al. 2012), IDBA–UD (Peng et al.
2012), MaSuRCA (Zimin et al. 2013), Velvet (Zerbino 2010), SOAPdenovo (Luo et al.
2012), ABySS (Simpson et al. 2009), and more. Many of them were tested and evaluated
on different bacterial datasets within the Assemblathlon (Earl et al. 2011) or the Genome
Assembly Gold-standard Evaluation for Bacteria (GAGE–B) (Magoc et al. 2013) and are
implemented in pipelines such as Computational Genomics–pipeline (CG–pipeline) (Kislyuk
et al. 2010), A5 (Coil et al. 2015), MyPro (Liao et al. 2015), or iMetAMOS (Koren et al.
2014). However, these pipelines focus on fully automated assembly of sequencing data and,
with exception of iMetAMOS, lack validation as likelihood scores (i.e. Clark et al. 2013) or
substantial decontamination of assemblies.

For this purpose, an easy–to–use protocol for the de novo assembly of Illumina–sequenced
prokaryotic genomes is introduced. Other than comparable protocols or pipelines, it makes
use of comprehensive decontamination steps including tools used for metagenomic binning,
incorporating single copy genes, GC–content and coverage information of contigs. Described
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here is the entire process from raw reads processing, quality control, comparison and
competition of different assemblers, refinement of the best assembly and final scaffolding.
This process ends up with a high–quality assembly and basic annotation making it accessible
for downstream analysis.

Material

Isolates

Seven bacterial isolates were assembled to test this protocol. The samples originated
from sponge tissues and the Arabidopsis thaliana phyllosphere and belonged to the phylum
Actinobacteria (Table 2). For collection and pre–processing of samples, see Section II. All of
the isolates are discussed in the following chapters and are published.

Table 2. – Overview of the sequencing data for the used bacterial isolates before and after
application of quality trimming. Read numbers are given as the sum of forward
and reverse reads.

Isolate ID
Sequencing
platform

Raw
reads [#]

Trimmed
reads [#]

DeconSeq
reads [#]

Final
reads [#]

Reference

Streptomyces sp. SBT349a HH1
MiSeq
(2x250bp)

4,094,430 4,044,464 4,003,548 4,003,134 Horn et al. 2015a

Nonomuraea sp. SBT364a HH2
MiSeq
(2x250bp)

7,003,186 6,871,588 6,814,609 6,813,724 Horn et al. 2015a

Nocardiopsis sp. SBT366a HH3
MiSeq
(2x250bp)

4,231,116 4,151,036 4,148,532 4,148,422 Horn et al. 2015a

Williamsia sp. ARP1 HH6
MiSeq
(2x250bp)

2,608,588 2,574,764 2,574,529 2,574,494 Horn et al. 2016a

Micromonospora sp. RV043 RV043
MiSeq
(2x250bp)

5,900,702 3,522,538 - 3,522,538 Horn et al. 2015b

Rubrobacter sp. RV113 RV113
MiSeq
(2x250bp)

2,206,732 1,683,986 - 1,683,986 Horn et al. 2015b

Nocardiopsis sp. RV163 RV163
MiSeq
(2x250bp)

4,851,980 3,944,354 - 3,944,354 Horn et al. 2015b

a Sequencing data depends on two paired–end libraries
- This step was not performed for this isolate

Data deposition

Bacterial isolated of Streptomyces sp. SBT349, Nonomuraea sp. SBT364 and Nocardiopsis sp.
SBT366 were registered under the BioBroject PRJNA280805 and were deposited in GenBank
under the accession numbers LAVK00000000, LAVL00000000, and LAVM00000000

The sequencing project of Williamsia sp. ARP1 was deposited in Genbank under the
BioProject PRJNA272726 and the accession number JXYP00000000.

Bacterial isolated of Micromonospora sp. RV043, Rubrobacter sp. RV113 and Nocar-
diopsis sp. RV163 were registered under the BioBroject PRJNA280805 and were de-
posited in GenBank under the accession numbers LEKG00000000, LEKH00000000, and
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LEKI00000000.

Assembly workflow

Figure 8 details the 5–step–protocol, with the central steps (ii) and (iii), describing an
assembly as a competition between mutliple assemblers and the evaluation of their outcomes.

The initial step was the (i) pre–processing of the raw reads by submitting them
to FastQC for initial screening. Based on these results, reads were subjected to Trim-
momatic 0.32 (Bolger et al. 2014) to remove low–quality regions (sliding window size 4,
average quality � 30) , sequences containing “Ns”, adapters, and deleting subsequent short
sequences (read lengthstart - 50 nt � read lengthend). Next, viral (all NCBI Viral genomes,
ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/) and human (Humane Genome Ref-
erence GRch37, ftp://ftp.ncbi.nlm.nih.gov/genomes/Homo_sapiens/ARCHIVE/BUILD.
37.3) contamination within the quality controlled reads were detected and removed us-
ing DeconSeq 0.43 (Schmieder and Edwards 2011). Remaining reads were subjected to
KmerGenie 1.6213 (Chikhi and Medvedev 2014) to estimate the best k–mer length for
single–kmer genome assemblers (i.e. Velvet and MaSuRCA) and to estimate an expected
genome size. Within step (ii), assembly of quality controlled sequences using five different
tools (A5–miseq, IDBA–UD, MaSuRCA, SPAdes and Velvet (Bankevich et al. 2012; Coil
et al. 2015; Peng et al. 2012; Zerbino 2010; Zimin et al. 2013)) was performed.

Step (iii) comprised the assembly evaluation. First, contigs � 1000 nt were discarded.
Remaining contigs were subjected to several software packages listed below. Their results
upon each assembly can be found in Table 4 and Figure 9. With Quality Assessment
Tool for Genome Assemblies (QUAST) 2.3 assembly statistics as N50, number of contigs,
genome size, and the largest contig (Gurevich et al. 2013) were collected. It was run with
default parameters. All reads were mapped back to their rexpective assembly using bowtie
2.2.24 (Langmead et al. 2009). Mapping statistics such as overall coverage, duplication of
reads and quality of mapped reads were evaluated with Qualimap 2 (Okonechnikov et al.
2016) using the Bam QC mode. An likelihood score for each assembly was calculated with
Assembly likelihood estimator (ALE) (Clark et al. 2013) and the use of the bowtie 2.2.24
output. This measure was based on distance of paired–end reads (insert size), read quality,
sequencing coverage, read orientation, and the frequency of kmers. To calculate single
copy genes per assembly, contigs were subjected to Phylosift 1.1 (Darling et al. 2014) using
the align mode and enabled option for bacterial isolates. The number of assignments to
each single copy gene were calculated, including multiple counts. Blobology was conducted
to explore the assembly data for contamination by using GC content vs coverage plots
including taxon annotations (Kumar et al. 2013) calculated with BLAST against the NCBI
NT database with an evalue  10-6 only retaining top hits

The best assembly is selected upon the ranking of the calculated assembly statistics. For
each metric, a number from best (1) to worst (5) is assigned according to Table 3 to each of
the five assembly algorithms. The assembly with the smallest score after summarizing the
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Figure 8. – Assembly flowchart for prokaryotic genomes. The first stage (i) of the pipeline
checks the quality of incoming reads, performs quality trimming, removes
contaminant reads and calculates a expected genome size. Then the pipeline
assembles (ii) contigs with five different assemlber using the qualitry controlled
reads. These contigs are then evaluated (iii) for length, contiguity and cleaned
up, if necessary. Cleaned contigs are scaffolded (iv) with reads from stage (i).
Finally, the scaffolds are annotated (v).

ranks is used for further refinement as clean–up through the GC–coverage plots (Figure
10) and (iv) scaffolding the contigs using all trimmed reads and SSPACE 3.0 (Boetzer
et al. 2011) with default parameters. In the last step (v), the annotation of features as
tRNA, rRNA, ncRNA and CRISPR was conducted using tRNAscan–SE 1.3 (Lowe and
Eddy 1997), RNAmmer (Lagesen et al. 2007), INFERNAL 1.1 (Nawrocki and Eddy 2013)
with the covariance models obtained form prokka (Seemann 2014), and PILER–CR 1.03
(Edgar 2007), respectively.
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Table 3. – Metrics used for comparison and ranking assemblies produced by different
assembler

Metric Ranking decision Tool
N50 greater is better QUAST
Largest contig greater is better QUAST
Coverage across contigs more even is better Qualimap
Assembly likelihood score greater is better ALE
Place score greater is better ALE
Insert score greater is better ALE
Depth score greater is better ALE
Kmer score greater is better ALE

Single copy genes
closest to 100%
(=37/37 genes)

Phylosift

Single copy genes - duplication level less is better Phylosift

Results and discussion

The application of quality trimming to the reads is mandatory as the existence of low
quality reads or basepairs may lead to unreliable sequences (Del Fabbro et al. 2013) and
influences the downstram analysis. After trimming the reads of the first four genomes, the
use of DeconSeq was cancelled as it had not that great effect on their number (Table 2).
As an assembly is known as a testing problem, several assemblers were used to (i) ensure
robustness (Koren et al. 2014) and (ii) find the algorithm fitting best to the given data.
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Assembly evaluation

For all genomes assembled, SPAdes worked best followed by IDBA–UD and the A5–pipeline
in terms of contiguity as it produced the longest contigs with lowest number shown by the
steepest curves in the QUAST output (Figure 9). Further, the SPAdes assemblies had the
highest N50 values, except for Nonomuraea sp. SBT364 in which the A5–pipeline performed
better (Table 4). Overall, the ALE scores were best (=smallest) for the A5–pipeline and
SPAdes (Table 4), whereas MaSuRCA had the lowest scores for all datasets. With regards
to the number of single copy genes, all assembler performed on the same level. Comparing
the duplication levels of single copy genes, the MaSuRCA assemblies seemed to be more
prone to duplications.

Due to the highly fragmented genome sequences calculated with Velvet, it was only
applied to the first four datasets, and so was for MaSuRCA. In addition, MaSuRCA
produced assemblies between 0.3 Mbp and 1 Mbp bigger compared to all other tools. IDBA–
UD was selected over the A5–pipeline for the last three genomic datasets (IDs: RV043,
RV113, RV163), as their performance was similar (Table 4). Mapping statistics between all
assembler did not offer qualitative differences (data not shown).

Surprisingly, MaSuRCA did not work well on the given datasets. In contrast to the GAGE–
B assembler evaluation, where best assemblies (with regards contiguity and assembly errors)
were performed with SPAdes and MaSuRCA based on eight bacterial datasets (Magoc et al.
2013).

Assembly decontamination

During the assembly of bacterial genomes, the removal of contamination is often a forgotten
task and leads to a reduced quality of public databases (Koren et al. 2014). To support
the detection of contamination, the introduced protocol possesses various steps concerning
the reads in the early stage as well as the contigs after the assembly. In the majority of
the samples, the process of removing reads by mapping them against viral and the human
genome had little effect on the number of reads. As a consequence, this step was not applied
to all genomic datasets (Table 2). This process may be more suitable for sequencing projects,
in which host and viral DNA may be extracted and sequenced as well. Thus, DeconSeq
can better be used on metagenomic data, on which it was originally tested (Schmieder and
Edwards 2011)

Two more decontamination steps were carried out on the best assembly. In all cases,
SPAdes had the highest rank based on the chosen metrics (Table 4). In a first step, a
scan for single copy genes of bacterial origin was carried out. Single copy genes occuring
more than once were a sign for contamination. Within the most samples, between 1 and 6
genes were counted multiple times. With regards to sample Micromonospora sp.RV043,
11 and 36 double counts were found and assembly sizes significantly higher than expected
(Table 4), indicating a contaminated sample. The dominant fraction of contigs was as-
signed to the phylum Actinobacteria (Micromonospora), but a large fraction of contigs
(453 contigs, 0.62 Mbps) was assigned to Rubrobacteriales and had significantly less coverage
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Figure 10. – Exemplary blobplot before (A) and after (B) clean–up of the strain Mi-
cromonospora sp. RV043 using SPAdes as assembler. The plot is showing
contig coverage over GC content of each contig with assigned taxonomy
based on BLAST analysis and contig length.

(Figure 10 A). After manual curation and deletion of contigs with low coverage and assign-
ment to Rubrobacterales (Figure 10), the assembly was close to its expected size (Table 4)
and single copy genes with multiple hits were reduced to 2. All other assemblies were also
analyzed using GC content vs coverage plots. This lead to drastically reduced numbers
of duplicated single copy genes of 1 or 2. Together with with a final round of scaffolding,
contig numbers were up to 353 smaller than before (compare Table 4, Table 5).

Table 5. – Final assembly statistics for all used isolates.
Assembly statistics Annotation statisticsa

Organism ID Assembler SCG
Size
[bp]

Contigs
[#]

%GC
N50
[bp]

Largest
contig [bp]

Coverage
[fold]

tRNA
[#]

rRNA
[#]

ncRNA
[#]

CRISPR
repeats [#]

ORF
[#]

Streptomyces
sp. SBT349

HH1
SPAdes

+SSPACE
2 8,064,387 691 71.67 19,800 85,158 100 54 7 136 5 6939

Nonomuraea
sp. SBT364

HH2
SPAdes

+SSPACE
2 9,986,141 361 70.74 50,206 308,714 115 57 7 53 0 9338

Nocardiopsis
sp. SBT366

HH3
SPAdes

+SSPACE
1 5,784,200 177 72.72 60,060 171,199 146 57 8 51 11 5123

Williamsia
sp. ARP1

HH6
SPAdes +
SSPACE

1 4,745,080 50 68.63 140,970 428,355 65 71 5 21 2 4509

Micromonospora
sp. RV043

RV043
SPAdes

+SSPACE
2 8,069,233 376 72.46 35,501 253,928 72 96 3 111 0 7334

Rubrobacter
sp. RV113

RV113
SPAdes

+SSPACE
2 3,187,461 33 65.05 210,704 458,670 146 48 3 32 0 3127

Nocardiopsis
sp. RV163

RV163
SPAdes

+SSPACE
1 6,110,531 348 72.45 30,291 123,006 117 1 58 3 43 2 5320

a Annotation statistics may differ from those calculated by the NCBI prokaryotic pipeline as the underlying software differs from those used in this study
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Comparison to other tools

Published pipelines as the A5–pipeline (Coil et al. 2015), MyPro (Liao et al. 2015), the
CG–pipeline (Kislyuk et al. 2010) and iMetAMOS (Koren et al. 2014) are designed for the
automated assembly of bacterial genomes/metagenomes in contrast to the step–by–step
protocol presented in this study. Even though this might be seen as a disadvantage, it
offers the possibilty for monitoring and the curation of each intermediate result as well as
adaption of parameters.

Whereas the CG–pipeline and the A5–pipeline are limited to one assembler, MyPro
includes 5, iMetAMOS 13, and this protocol also 5. This protocol and iMetAMOS can be
extended by more assemblers according to the users needs. While MyPro focussed on higher
contiguity obtained by the integration of different assemblies by use of Contig Integrator for
Sequence Assembly (CISA) (Lin and Liao 2013), this step was left out within this protocol.
In GAGE–B, it was shown to cause misassemblies and inferior assemblies compared to
individual ones. Moreover, finding assemblies which complement each other is an extensive
process requiering many trials (Magoc et al. 2013). In addition, highest contiguity (i.e.
highest N50 value) does not necessarely reflect the assembly of highest quality (Salzberg
et al. 2012).

The A5–pipeline is targeted towards finding mis–assemblies and split contigs at these
sides or correct them through mapping of reads. In this study, this lead to improved
assemblies reagarding the number of contigs, in 3 of 4 cases better ALE scores compared to
assemblies produced with IDBA–UD. In only two cases, the largest contig was bigger with
A5, due to the misassembly correction. But, SPAdes overally outperformed the A5–pipeline
with the used metrics. However, the use of mis–assembly correction may lead to assemblies
with less errors and was also proposed for the iMetAMOS pipeline through an iterative
process with the tool Recognition of Errors in Assemblies using Paired Reads (REAPR)
(Hunt et al. 2013). Thus, an implementation would be meaningful. Of note, this tool and
also the mis–assembly correction of the A5–pipeline is limited to data with paired–end
information.

Of the named tools, only the here invented protocol and iMetAMOS make use of tools
for comparing assemblies, decontamination and ranking of assemblies. As the protocol
relies on ALE for computing assembly likelihood scores, in iMetAMOS two more tools,
Computing Genome Assembly Likelihoods (CGAL) (Rahman and Pachter 2013) and Log
Average Probability (LAP) (Ghodsi et al. 2013), are included for this purpose. Vice versa,
iMetAMOS lacks analysis of coverage values. Within both approaches, QUAST is used to
obtain assembly statistics.

Whereas the decontamination process in iMetAMOS relies on taxonomic classification
through Kraken (Wood and Salzberg 2014), the approach used here includes taxonomic
classification based on BLAST, but also GC–content and coverage information (Kumar
et al. 2013). The use of such information is widely used in binning (i.e. separating) single
genomes in metagenomic samples (e.g. Albertsen et al. 2013; Seah and Gruber-Vodicka
2015). As taxonomic assignments can not be done for unknown strains or reference genomes
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are may not be available, decontamination on taxonomic classification only is not possible,
thus might not be detected by iMetAMOS. Including GC–content and coverage enables the
identification of contaminant prokaryotic (low coverage) or eukaryotic (low coverage, low
GC–content) contigs as shown in this study (Figure 10).

Conclusions

Overall, this study supports the use of state–of–the–art assemblers such as IDBA–UD and
SPAdes as these performed well on the data produced on Illumina MiSeq platforms. The
use of different assembly algorithms may also be useful for follow–up projects, in which
different data (read length, coverage) is to be assembled. Also the ranking of different
assemblies can be adapted to a users need from high contiguity (high N50) to more errorless
assemblies (low duplication levels of single copy genes) similar to iMetAMOS. The named
pipelines may autmate many of the steps included in this protocol, but lack either the
usage of several assembler or decontamination methods.

The implementation of mis–assembly correction might further improve the presented
protocol. Extensive efforts were taken in the decontamination step by use of GC–content,
coverage and singly copy genes and makes the presented protocol superior in cleaning–up
assemblies compared to other tools.
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SHORT GENOME REPORT Open Access

Draft genome of the Arabidopsis thaliana
phyllosphere bacterium, Williamsia sp.
ARP1
Hannes Horn1,2, Alexander Keller3, Ulrich Hildebrandt1, Peter Kämpfer4, Markus Riederer1 and Ute Hentschel1,2*

Abstract

The Gram-positive actinomycete Williamsia sp. ARP1 was originally isolated from the Arabidopsis thaliana phyllosphere.
Here we describe the general physiological features of this microorganism together with the draft genome sequence
and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our
knowledge, this is only the second reported genome from the genus Williamsia and the first sequenced strain
from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the
phyllosphere habitat.

Keywords: Draft genome, Phyllosphere, Williamsia sp. ARP1, Adaption, Whole genome sequencing, Next
generation sequencing, Assembly, Annotation, Arabidopsis thaliana

Introduction
The genus Williamsia was originally proposed by Kämpfer
et al. in 1999 [1] to accommodate an unusual mycolic-
acid containing actinomycete. Members of the genus
Williamsia are Gram-positive, non-spore forming, and
form round, orange colonies. Their cell shape is coc-
coid- or rod-like [2]. The genus Williamsia forms a
distinct group within actinomycetes of the suborder
Corynebacterineae [3], which also comprises the genera
Corynebacterium, Dietzia, Gordonia, Mycobacterium,
Nocardia, Rhodococcus, Skermania, Tsukamurella and
Turicella. Based on the mycolic-acid profile with car-
bon chain lengths ranging from 50 to 56, the genus
Williamsia is likely to be placed between the genera
Gordonia and Rhodococcus [1]. At the time of writing,
only one other draft genome of Williamsia sp. D3 was
publicly available [4] and nine species of this taxon
were recognized with valid scientific names: Williamsia
deligens [5], Williamsia faeni [6], Williamsia limnetica

[7], Williamsia marianensis [8], Williamsia maris [9],
Williamsia muralis [1], Williamsia phyllosphaerae [10],
Williamsia serinedens [11] and Williamsia sterculiae
[12]. Further this genus has been linked with the
degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine in
soils as a sole nitrogen source [13], the degradation of
carbonyl sulfide in soils [14] and polychlorinated biphe-
nyls in tree habitats [15]. Williamsia was isolated from
various sources, including indoor building material [1],
human blood [5] and following pulmonary infections
[16], oil-contaminated and Antarctic soils [4, 11], ex-
treme environments as glacier ice [17], deep sea sedi-
ments of the Mariana Trench [8], hay meadows [6], and
the rare soil biosphere [18]. Besides, Williamsia was
also reported as an endophyte of grey box eucalyptus
tree roots [19] and as an epiphytic bacterium residing
in the phyllosphere of white clover [20].
The phyllosphere, known as the aerial surface of plant

leaves, is a short-lived environment [21] to diverse micro-
organisms of various taxonomic groups comprising bac-
teria, filamentous fungi, yeasts, viruses and protists. The
phyllosphere presents a challenging environment for mi-
crobial colonizers with respect to climatic conditions, UV
radiation, desiccation, water availability, reactive oxygen
species, and in terms of antimicrobial compounds pro-
duced by the plant or possibly also microbes [21–25].
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Additionally, the wax composition of the cuticle, surface
characteristics such as stomata and veins affect nutrient
availability and leaching, as they are likely to retain more
water [23, 26].
Here, we present a summary, classification and general

physiological features of the strain Williamsia sp. ARP1
together with the genomic sequencing, assembly, anno-
tation, and its putative adaptions to the phyllosphere.

Organism information
Classification and features
The genus Williamsia belongs to the suborder Corynebac-
terineae [3] of actinomycetes owing to the presence of
mycolic acid in the cell wall [2]. Since 2009, it was assigned
to the family Nocardiaceae [27, 28]. Williamsia and other
genera of this family form a distinct clade in a 16S rRNA
phylogenetic tree as well as by using a combination of
phenotypic markers [29]. In order to resolve the taxonomic
position of Williamsia sp. ARP1, a 16S rRNA sequence
(length of 1504 bp) derived from the assembled genome
was compared with the NCBI non-redundant and 16S

microbial database using BLASTn [30]. The five nearest
sequences with the highest identity (all <100 %), the nine
validly described Williamsia species, as well as representa-
tive sequences of the suborder Corynebacterineae – Gordo-
nia, Rhodococcus, Dietzia, Mycobacterium, Tsukamurella
and Turicella - were used for phylogenetic analysis. A strain
of the family Frankineae was chosen as the outgroup. All
16S rRNA sequences were aligned using the SINA web
aligner (variability profile: Bacteria) [31] and the phylogen-
etic tree was assessed using PhyML [32] with a generalised
time reversible (GTR) substitution model, gamma distribu-
tion and 1000 bootstrap replications. All genera formed dis-
tinct clades (except Rhodococcus) and were well supported
by bootstrap values ≥50 %. Williamsia formed two well
supported distinct clades consisting of five and nine se-
quences, respectively. Within these clades, however, boot-
strap values were weaker, due to low variation between 16S
sequences. Closest sequences to Williamsia sp. ARP1 were
Williamsia sp. 7B-582, A2-614 and A2-437 (all three
originating from sediment), and phylogeny in this subclade
could not be resolved better due to a multifurcation (Fig. 1).

Fig. 1 16S rRNA gene based maximum likelihood phylogenetic tree highlighting the position of Williamsia sp. ARP1 within the suborder
Corynebacterineae. The tree is based on 16 s rRNA sequences comprising the genera Williamsia, Gordonia, Mycobacterium, Dietzia, Tsukamurella,
Rhodococcus and Frankia as an outgroup. The Williamsia sp. ARP1 is highlighted in bold text to show its position. The maximum-likelihood
phylogenetic tree was generated using PhyML with the GTR substitution model. Numbers at the nodes are percentages of 1000 bootstrap
replicates. Genbank accession numbers are indicated in parentheses; type strains are tagged with a superscripted T. The scale bar represents
0.06 substitutions per nucleotide position
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All three 16S rRNA gene sequences showed a sequence
identity of 99.93 % for strain 7B-582, 99.93 % for strain A2-
614, 99.64 % for strain A2-437 to Williamsia ARP1. Mini-
mum information about the genome sequence of William-
sia sp. ARP1 (MIGS) is provided in Table 1.
The colonies of Williamsia sp. ARP1 were orange to red

in color on LB agar medium (Fig. 2a). Strain ARP1 was
shown to be Gram-positive by Gram staining (data not
shown). The cells of the strain were coccoid to rod-like
with a diameter of about 1.0–1.5 μm (Fig. 2b). Further, the
strain showed positive oxidase and catalase reaction and
an aerobic respiratory metabolism. Cells were growing at
a temperature range between 4 and 36 °C. Optimal growth
was observed between 25 and 30 °C after 3 days on tryptic
soy agar, Reasoner’s 2A agar, and nutrient agar (all Oxoid).
NaCl tolerance was investigated at different concentra-
tions of NaCl (0.5–8.0 (w/v) %) in tryptic soy broth (TSB,

Oxoid) with the cells growing in the presence of 1.0–6.0 %
NaCl. The strain lacked motility after 3 days of growth in
TSB at 30 °C, as observed under the light microscope. In
agreement with this observation, a flagellum was not ob-
served which is further backed up by the lack of flagellar
genes (i.e., fliX, flgX and motX genes) on its genome.
These findings were consistent with previous descriptions
for this genus.

Genome sequencing information
Genome project history
The organism was selected for sequencing as part of on-
going Arabidopsis phyllosphere microbiology studies [33].
The sequencing project was completed in July 2014 and
sequencing data was deposited as a Whole Genome Shot-
gun (WGS) project in Genbank under the BioProject
PRJNA272726 and the accession number JXYP00000000

Table 1 Classification and general features of Williamsia sp. ARP1 [34]
MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [73]

Phylum Actinobacteria TAS [74]

Class Actinobacteria TAS [3]

Order Actinomycetales TAS [3, 28, 75, 76]

Family Nocardiaceae TAS [3, 28, 75, 76]

Genus Williamsia TAS [1]

Species Williamsia sp. IDA

(Type) strain: ARP1 IDA

Gram stain Positive IDA

Cell shape Coccoid to rod-like IDA

Motility Non-motile IDA

Sporulation Non-sporulating IDA

Temperature range 4–36 °C IDA

Optimum temperature 25–30 °C IDA

pH range; Optimum Not reported NAS

Carbon source organic carbon IDA

MIGS-6 Habitat Phyllosphere IDA

MIGS-6.3 Salinity 1.0–6.0 % IDA

MIGS-22 Oxygen requirement Aerobic IDA

MIGS-15 Biotic relationship Commensal IDA

MIGS-14 Pathogenicity Non-pathogenic NAS

MIGS-4 Geographic location Würzburg, Germany IDA

MIGS-5 Sample collection 2012 IDA

MIGS-4.1 Latitude 49.766556 IDA

MIGS-4.2 Longitude 9.931768 IDA

MIGS-4.3 Depth Plant surface IDA

MIGS-4.4 Altitude 198 m above sea level IDA
aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence
codes are from the Gene Ontology project [77]
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consisting of 50 contigs (≥1000 bp). The genome sequen-
cing was carried out with a MiSeq (Illumina Inc.) located
in-house at our University. A summary of the project in-
formation according to the MIGS version 2.0 is shown in
Table 2 [34].

Growth conditions and genomic DNA preparation
Several plants were collected from a Landsberg erecta
(Ler) population of Arabidopsis thaliana from the Bo-
tanical Garden (University of Würzburg, June 2012).
Leaf washings [35] were used for inoculation of min-
imal media with C16 alkane (Sigma-Aldrich) as the
sole carbon source in order to enrich for bacteria
with the ability to degrade long-chain hydrocarbons.
Aliquots were streaked (in duplicate) on agar plates
prepared with minimal media and supplemented with
C22 alkane (Sigma-Aldrich). This procedure provided a
total of 17 isolates, of which most belonged to the
genus Rhodococcus and two to genus Williamsia [33].

Williamsia sp. ARP1 was grown in 10 ml Luria-
Bertani broth medium (10 g peptone, 5 g yeast extract,
5 g NaCl in 1000 ml demineralized water) for 24 h at
30 °C and rotary shaking at 180 rpm. For genomic
DNA isolation, 2 ml of overnight culture were centri-
fuged at 8000 rpm for 5 min at room temperature. The
pellet was rinsed in 1 ml TNE (1 ml 1 M Tris pH 8,
0.2 ml 5 M NaCl, 2 ml 0.5 M EDTA pH8, and 100 ml
demineralized water) and resuspended in 270 μl TNEx
(TNE, 1 % v/v TritonX-100) and 25 μl lysozyme
(10 mg/ml). After a 30 min incubation at 37 °C, 50 μl
of proteinase K (20 mg/ml) were added. After an incu-
bation of 2 h and 55 °C, 15 μl of 5 M NaCl and 500 μl
of 100 % EtOH were added. The mixture was then cen-
trifuged at 13,000 rpm for 15 min at room temperature,
rinsed with 70 % EtOH, air dried and resuspended in
150 μl TE buffer. The quality and quantity of the ex-
tracted DNA was evaluated by 0.8 % (w/v) agarose gel
electrophoresis, by measuring absorption ratios 260/
280 and 260/230 with a Nanodrop 2000c

Fig. 2 General characteristics of Williamsia sp. ARP1. a The morphology of the colonies after three days of growth on LB-agar at 30 °C. b Image
of Williamsia sp. ARP1 using scanning electron microscopy

Table 2 Project information
MIGS ID Property Term

MIGS 31 Finishing quality Draft genome

MIGS-28 Libraries used One Illumina paired-end library (400 bp insert size)

MIGS 29 Sequencing platforms Illumina MiSeq

MIGS 31.2 Fold coverage 65×

MIGS 30 Assemblers SPAdes 3.0, SSPACE 3.0

MIGS 32 Gene calling method Prodigal 2.6.1

Genbank ID JXYP00000000

Locus Tag TU34

GenBank Date of Release July 1, 2015

GOLD ID Gp0118481

BIOPROJECT PRJNA272726

MIGS 13 Source Material Identifier DSM 46827

Project relevance Phyllosphere, Environmental
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Spectrophotometer (Thermo Fisher Scientific) and an
additional Qubit dsDNA HS assay (Life Technologies).

Genome sequencing and assembly
High molecular weight DNA was cleaned with the
DNA Clean & Concentrator kit (Zymo Research). The
genomic DNA library for the Illumina platform was
generated using Nextera XT (Illumina Inc.) according
to the manufacturer’s instructions. After tagmentation,
size-selection was performed using NucleoMag NGS
Clean-up and Size Select (Macherey-Nagel) to obtain
a library with median insert-size around 400 bp. After
PCR enrichment, the library was validated with a
high-sensitivity DNA chip and Bioanalyzer 2100 (both
Agilent Technologies, Inc.) and additionally quantified
using the Qubit dsDNA HS assay (Life Technologies).
Sequencing was performed on a MiSeq device using
v2 2 × 250 bp chemistry, and the genome was multi-
plexed together with ten other bacterial genomes from
other sources. Multiplexing was done via dual index-
ing, with the official Nextera indices N706 and S503
for Williamsia sp. ARP1.
In total, 1,304,294 (mean length 237.86 bp) raw paired-

end sequences were subjected to the Trimmomatic soft-
ware [36] for adapter and quality trimming (mean
Phred quality score ≥30), filtering of sequences contain-
ing ambiguous bases and a minimum length of 200 bp.
Subsequently, human and viral decontamination was
excluded using DeconSeq [37]. The 1,287,247 (mean
length 236.95 bp) remaining paired-end sequences were
assembled with five different tools: a5-miseq [38], IDBA-
UD [39], MaSuRCA [40], SPAdes [41] and Velvet [42]. In
order to obtain the most reliable contigs, all assemblies
were evaluated with QUAST [43], REAPR [44], ALE [45]
and Feature Response Curves [46]. According to those
evaluations, we have selected SPAdes assembler with en-
abled pre-correction and k-mer sizes ranging from 15 to
125 (step size of 10) as the best assembly. Obtained contigs
were extended with remaining reads where possible.
This led to 50 large contigs (≥1000 bp, N50: 140,970 bp,
longest contig: 428,355 bp) and an overall genome size
of 4,745,080 bp (GC content: 68.63 %). As a final step,
the contigs were ordered according to the nearest re-
lated complete genome by functional content using
Mauve in 12 iterations [47]. As Williamsia sp. D3 was
only available as a draft genome, Gordonia bronchialis
was used for this step.

Genome annotation
Open reading frames were identified using Prodigal [48]
followed by manual correction. The predicted coding se-
quences were translated into amino acid sequences and
searched against COG position-specific scoring matrices
obtained from the Conserved Domains Database [49]

using RPS-BLAST [30]. Comparisons with TIGRFAM,
Pfam, and PANTHER databases were performed with
the InterProScan pipeline [50]. Only matches with an e-
value ≤1 10−2, ≥25 % identity and a minimum of 70 %
alignment length to the target sequence were maintained.
During this run, matches were also mapped to Gene
Ontology terms. Additional gene prediction and functional
annotation was performed with the Integrated Microbial-
Genomes Expert Review [51] and the Rapid Annotation
using Subsystem Technology webserver [52, 53]. Features
as tRNA, rRNA, ncRNA, transmembrane helices, signal
peptides, CRISPR elements and secondary metabolite gene
clusters were predicted using tRNAscan-SE [54], RNAm-
mer [55], INFERNAL [56] and Prokka’s prokaryotic RNA
covariance models [57], TMHMM [58], SignalP [59]
PILER-CR [60] and antiSMASH [61]. Searching for essen-
tial genes [62] was performed using HMMER3 [63]. Ortho-
log detection between Williamsia sp. ARP1 and three other
genomes were carried out with InParanoid [64] whereas
the mean percentage of nucleotide identity among the
found orthologous genes was calculated using BLASTn.
Average nucleotide identities between Williamsia sp. ARP1
and reference genomes were calculated with JSpecies [65].

Genome properties
The Williamsia sp. ARP1 draft genome sequence con-
tained a total of 4,745,080 bp distributed over 50 large con-
tigs (≥1000 bp) with an average GC content of 68.63 %. Of

Table 3 Genome statistics
Attribute Value % of total

Genome size (bp) 4,745,080 100.00

DNA coding (bp) 4,347,123 91.61

DNA G+C (bp) 3,256,678 68.63

DNA scaffolds 50

Total genes 4509 100.00

Protein coding genes 4438 98.42

RNA genes 71 1.57

tRNA genes 45 1.00

rRNA genes 5 0.01

rRNA operons 1a

Pseudo genes 0 0.00

Genes in internal clusters NA

Genes with function prediction 3505 77.73

Genes assigned to COGs 2207 48.95

Genes with Pfam domains 1330 29.50

Genes with TIGRFAM domains 793 17.59

Genes with signal peptides 334 7.41

Genes with transmembrane helices 1140 25.28

CRISPR repeats 2 0.04
aOnly one RNA operon appears to be complete
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the 4509 predicted genes, 4438 (98.42 %) were protein-
coding, and 3505 (77.73 %) annotated with putative func-
tion. Pseudogenes were not detected. Genes not linked to a
function were annotated as hypothetical or unknown func-
tion. Of these, 45 belonged to tRNA genes, 21 to ncRNA
genes and five to rRNA genes (Table 3). One operon com-
prising a 16S rRNA, a 5S rRNA and a 23S rRNA gene was
found. However two additional 5S rRNA genes suggest the
presence of at least three rRNA operons. Functional as-
signments using COGs, a total of 2204 (59.59 %) of the
coding sequences were classified into 23 different classes
(Table 4, Fig. 3). Using TIGRFAM or Pfam, 793 (17.59 %)
and 1330 (29.50 %) of the sequences could be classified
(Table 3). For testing the genome completeness, a set of
111 essential gene markers was searched and 106
(=95.50 %) of them were present in Williamsia sp. ARP1.

Except two marker genes (ribosomal proteins bS18 and
bl28), all of them were found only once (Additional file 1).
Within the RAST annotation, 1625 sequences were
assigned to 402 metabolic subsystems. The highest ranking
among the metabolic subsystems are linked to amino acids
and derivatives (8.41 %), cofactors, vitamins and pigments
(6.25 %), carbohydrates (5.77 %), protein metabolism
(5.61 %), fatty acids, and lipids and isoprenoids (4.32 %)
followed by stress response (2.86 %), (Fig. 4).

Insights from the genome sequence
The genome of Williamsia sp. ARP1 was smaller but
displayed a higher CG content (68.63 %) than its nearest
relative genomes (Table 5), thus rendering this genome
more similar to the G. bronchialis and G. polysoprenivor-
ans VH2 (67.00 and 66.96 %) than to Williamsia sp. D3

Fig. 3 Graphical circular map of the Williamsia sp. ARP1 genome. Starting from the outmost circle and moving inwards, each ring of the circle
contains information of the genome: genes on the forward strand (colored according to their COG categories), CDS on the forward strand (blue arrows),
CDS on the reverse strand (blue arrows), genes on the reverse strand (colored according to their COG categories), tRNA and rRNA genes on both strands
(green and orange), GC content (black), GC skew (green and purple) and genome region by kbp
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Table 4 Number of genes associated with general COG functional categories
Code Value % age Description

J 143 3.17 Translation, ribosomal structure, and biogenesis

A 1 0.02 RNA processing and modification

K 183 4.06 Transcription

L 85 1.89 Replication, recombination, and repair

B 1 0.02 Chromatin structure and dynamics

D 0 0.00 Cell cycle control, Cell division, chromosome partitioning

V 31 0.69 Defense mechanisms

T 74 1.64 Signal transduction mechanisms

M 102 2.26 Cell wall/membrane biogenesis

N 11 0.24 Cell motility

U 18 0.40 Intracellular trafficking and secretion

O 79 1.75 Posttranslational modification, protein turnover, chaperones

C 184 4.08 Energy production and conversion

G 125 2.77 Carbohydrate transport and metabolism

E 226 5.01 Amino acid transport and metabolism

F 66 1.46 Nucleotide transport and metabolism

H 118 2.62 Coenzyme transport and metabolism

I 194 4.30 Lipid transport and metabolism

P 154 3.42 Inorganic ion transport and metabolism

Q 141 3.13 Secondary metabolites biosynthesis, transport and catabolism

R 346 7.67 General function prediction only

S 184 4.08 Function unknown

- 2231 49.48 Not in COGs

The total is based on the total number of protein coding genes in the genome

Fig. 4 Metabolic subsystems of Williamsia sp. ARP1 annotated through the RAST webserver
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(64.60 %) (Table 5). Considering the similarity between
16S rRNA sequences and its placement in the phylogen-
etic tree, strain ARP1 was however clearly assigned to
the genus Williamsia (Fig. 1). With respect to ortholo-
gous genes, Williamsia sp. D3 was found to be the most
similar strain to Williamsia sp. ARP1 with an average
nucleotide identity of these orthologs of 75.53 %. Not-
ably, the differences between Williamsia sp. ARP1 and
the Gordonia strains and VH2 (75.17 and 74.84 % iden-
tity, respectively) is similar to the difference between the
two Williamsia strains (75.53 %), (Additional file 2).
Neither the clustering of COG classes nor the average
nucleotide identities (ANI) were discriminative between
the two genera (Fig. 5, Additional file 3). The ANI values
are noticeably lower than the calculated cut-off values
for species level identification (95) [66].

Extended insights

UV radiation UV radiation may impose stress on bac-
teria inhabiting plant leaves. In this context, a cluster of
genes synthesizing mycosporins was found. These sec-
ondary metabolites are known to protect cells by ab-
sorbing UV light without generating reactive oxygen
species (ROS) [67, 68]. Additionally, genes involved in
the repair of UV-damaged DNA were found, which
comprise DNA photolyases, the UvrABC endonuclease
enzyme complex, and the DNA helicase II UvrD of the

UvrABC system. The red color of Williamsia sp. ARP1
might protect it against photo-oxidative stress as pig-
mentation is known to be a common feature of phyllo-
sphere colonizers [69]. All genes of the carotenoid
biosynthetic pathway were found, consisting of a gera-
nylgeranyl diphosphate synthase, a phytoene synthase, a
phytoene desaturase, a carotene desaturase and a lycopene-
β-cyclase. The products of this pathway are lycopene and
β-carotene, both producing orange to red pigments.

Oxidative stress Further adaptions to an epiphytic life-
style are encoded on genes responding to reactive oxygen
species (ROS; e.g. hydrogen peroxide, superoxide, hydro-
peroxil radical), which are products of the plant defense
[70, 71]. Here, two genes encoding for glutathione peroxi-
dases, two superoxide dismutases with copper/zinc or
manganese as active site, two glutaredoxins, three thiore-
doxins, and one catalase were found.

Temperature shifts Regarding temperature shifts, the
heatshock chaperones DnaK, DnaJ and GrpE and the cold
shock protein CspC were identified.

Uptake ABC transporters for the uptake of carbohydrates
such as ribose, glycerol or maltose, amino acids such as
methionine, known plant photosynthates such as fructose,
and enzymes for fructose utilization were identified. Also,
genes mediating the uptake of choline and subsequent

Table 5 Used actinomycete reference genomes in this study
Species Strain Accession number Genome Size [Mbp] G+C content

Williamsia sp. D3 NZ_AYTE000000000.1 5.62 64.60

Gordonia bronchialis CP001802.1 5.21 67.00

G. polysoprenivorans VH2 NC_016906.1 5.67 66.96

Fig. 5 Comparison of COG classes between strain ARP1 and reference genomes. The color keys provide the relative percentage of each COG class
per genome. The dendrogram is based on correlation analysis
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biosynthesis (choline dehydrogenase, betaine-aldehyde de-
hydrogenase) of the osmoprotectant betaine were found.

Desiccation Trehalose is a compatible solute and
known to prevent cells from desiccation and water loss
[72]. Eight genes encoding for the biosynthesis pathway
(Malto-oligosyltrehalose synthase, 1,4-alpha-glucan (gly
cogen) branching enzyme, GH-13-type trehalose-6-
phosphate phosphatase, putative glucanase glgE, malto-
oligosyltrehalose trehalohydrolase, glycogen debranching
enzyme alpha, alpha-trehalose-phosphate synthase, glu-
coamylase) were identified.

Conclusions
The isolate ARP1 was isolated from the Arabidopsis
thaliana phyllosphere. Phylogenetic analysis based on
the 16S rRNA gene confirmed its affiliation to the genus
Williamsia. However genomic properties also showed
close similarities to Gordonia, as derived from GC con-
tent, COGs, and average nucleotide identities. Thus, an
unequivocal delinearization based on the functional
genomics level was not possible, which may be due to
the underrepresentation of genomes from this genus.
The genomic features of strain ARP1 would be consist-
ent with a lifestyle within the phyllosphere, including pu-
tative adaptions to UV radiation, heat and cold shock,
desiccation and oxidative stress. With this study, we pro-
vide novel genomic insights into the rarely sequenced
genus Williamsia and discuss its putative adaptations to
the phyllosphere habitat.
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Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113,
and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed
for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings
demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the
genomic potential of sponge-derived actinomycetes.
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Actinomycetes are known for their unprecedented ability to
produce novel lead compounds of clinical and pharmaceuti-

cal importance (1–4). Among the many actinobacterial genera,
Streptomyces, Micromonospora, Nocardiopsis, and Rhodococcus are
the most prolific producers of secondary metabolites, which dis-
play broad chemical diversity and diverse pharmaceutically and
medically relevant bioactivities (5–8). Recent genomic sequencing
data have revealed the presence of a plethora of putative biosyn-
thetic gene clusters on the genomes of actinomycetes encoding for
secondary metabolites that are not observed under standard fer-
mentation conditions (9–13). In the present study, draft genomes
of three actinobacterial isolates, Micromonospora sp. RV43,
Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had pre-
viously been cultivated from the Mediterranean sponges Aplysina
aerophoba (RV43 and RV113) and Dysidea avara (RV163) (14),
were established.

The genomic DNA of the isolates was extracted from 5-day-old
ISP2 cultures. Paired-end, 2 ! 250-bp libraries were prepared
with the Nextera XT kit (Illumina, Inc.). Sequencing was per-
formed on an Illumina MiSeq device. A total of 5,900,702 raw
reads were produced for Micromonospora sp. RV43, 2,206,732 raw
reads for Rubrobacter sp. RV113 and 4,851,980 raw reads were
delivered for Nocardiopsis sp. RV163. Reads were adapter clipped,
quality trimmed and length filtered (15). Initial contigs were gen-
erated using SPAdes (16) and only contigs !1000 bp were main-
tained. A further clean-up of contigs was performed using G"C-
content, coverage, and taxonomic assignments (17). For ab initio
gene prediction, prodigal was applied (18) and functional anno-
tation of the predicted protein sequences was performed with the
RAST webserver (19). Secondary metabolite gene clusters and
possible encoded compounds were predicted with antiSMASH
(20) and NapDos (21).

A number of 101 (RV43), 33 (RV113), and 82 (RV163) second-
ary metabolite gene clusters were detected with antiSMASH. For

strain RV43, 5 terpene clusters, 4 type 1 PKS clusters, 2 lantipep-
tides, 1 type 2 PKS cluster, 1 siderophore, 1 NRPS cluster, and 1
bacteriocin were found. For strain RV113, 3 terpene clusters, 1
fatty acid, and 1 mixed type 3 PKS-fatty acid cluster were found.
The draft genome sequence of strain RV163 showed homologies
to 7 NRPS clusters, 4 terpene gene clusters, 2 type 1 PKS clusters,
2 ectoines, 2 bacteriocins, 1 phenanzine, 1 butyrolacetone, 1 type 2
PKS, and 1 siderophore.

For Micromonospora sp. RV43, NaPDoS predicted the pres-
ence of gene clusters encoding for compounds such as leinamycin,
kirromycin, aclacinomycin, and tetronomycin. For Nocardiopsis
sp. RV163, compounds such as alnumycin, avermectin, and neo-
carzinostatin were predicted. For Rubrobacter sp. RV113, only
gene clusters encoding for fatty acids synthesis were found. These
results highlight the genomic potential of at least two of three
inspected isolates for natural products discovery.

Nucleotide sequence accession numbers. This whole-genome
shotgun project was deposited in DDBJ/ENA/GenBank under
the accession numbers LEKG00000000, LEKH00000000, and
LEKI00000000. The versions described in this paper are the first
versions LEKG01000000, LEKG01000000, and LEKH01000000.
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Metabolomic analysis has shown the chemical richness of the sponge-associated actinomycetes Streptomyces sp.
SBT349, Nonomureae sp. SBT364, and Nocardiopsis sp. SBT366. The genomes of these actinomycetes were se-
quenced and the genomic potential for secondary metabolism was evaluated. Their draft genomes have sizes
of 8.0, 10, and 5.8 Mb having 687, 367, and 179 contigs with a GC content of 71.6, 70.7, and 72.7%, respectively.
Moreover, antiSMASH 3.0 predicted 108, 149, and 75 secondary metabolite gene clusters, respectively which
highlight themetabolic capacity of the three actinomycete species to produce diverse classes of natural products.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Short introduction

Actinomycetes harbor a wealth of natural products with structural
complexity and diverse biological activities (Abdelmohsen et al.,
2014a; Nett et al., 2009; Li and Vederas, 2009; Abdelmohsen et al.,
2015). Genomic sequence data have revealed the presence of putatively
silent biosynthetic gene clusters in the genomes of actinomycetes that
encode for secondary metabolites, which are not seen under standard
fermentation conditions (Cimermancic et al., 2014). The actinomycete
isolates Streptomyces sp. SBT349, Nonomureae sp. SBT364, and
Norcardiopsis sp. SBT366 were cultivated from marine sponges
Sarcotragus spinosulus, Sarcotragus foetidus, and Chondrilla nucula, re-
spectively. The strains have been deposited in the German Collection
of Microorganisms and Cell Cultures (DSMZ) with accession numbers
DSM 100667 (SBT349), DSM 100666 (SBT364), and DSM 100668
(SBT366). The sponges were collected by SCUBA diving at 5–7 m
depth from offshore Pollonia, Milos, Greece (N36.76612°; E24.51530°)
in May 2013 under the umbrella of the EU-FP7 project entitled
“SeaBioTech: From sea-bed to test-bed: harvesting the potential of
marine biodiversity for industrial biotechnology” that aims to create in-
novativemarine biodiscovery pipelines. Members of the genera Strepto-
myces and Nocardiopsis are widespread in terrestrial environments,
including soil and plants and have also been isolated from the marine
environment, i.e., from marine sponges (Abdelmohsen et al., 2010;

Vicente et al., 2013; Abdelmohsen et al., 2014b; Eltamany et al., 2014).
We report here, to our knowledge for the first time, the isolation of
members of the genus Nonomureae from marine environment. Among
the 50 actinomycetes cultivated from the Milos collection, the organic
extracts of isolates SBT349, SBT364, and SBT366 exhibited rich HPLC-
peak profiles as well as diverse bioactivities including antioxidant,
antitrypanosomal and anticancer, respectively (Cheng et al., 2015).
These isolateswere selected based on their HPLC-peak richness and bio-
activity profile for further genomic sequencing.

2. Data description

Genomic DNA of the actinomycetes was extracted and prepared as
described (Harjes et al., 2014). 250 bp paired-end sequencing was per-
formed on a MiSeq benchtop sequencer (Illumina). Obtained reads
were adapter trimmed as well as quality and length filtered using
Trimmomatic 0.32 (Bolger et al., 2014). Assembly was performed
using SPAdes 3.1.1 (Bankevich et al., 2012) and calculated contigs
were manually filtered due to low coverage. Remaining contigs were
extended and merged wherever possible using SSPACE 3.0. (Boetzer
et al., 2011). The RAST webserver was used for annotation (Aziz et al.,
2008) (Table 1).

The draft genomes were mined using antiSMASH 3.0 (“Antibiotic
and Secondary Metabolites Analysis Shell”) (Weber et al., 2015) and
NapDos (“The natural product domain seeker”) (Ziemert et al., 2012).
Among the three genomes sequenced, Streptomyces sp. SBT349
displayed themost diverse antiSMASH read-out. A total of 108 potential
secondary metabolite gene clusters were predicted, encoding for 23
type I polyketide synthases (PKS), 11 non-ribosomal peptide syn-
thetases (NRPSs), 2 terpenes, 21 saccharides, 3 siderophores, 3
lantipeptides, 1 butyrolactone, 1 bacteriocin, 1 phenazine, 1 ladderane,
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and 1 linaridin, as well as 26 unidentified putative clusters (Table 2).
antiSMASH results showed that strain Streptomyces sp. SBT349 has the
highest potential in comparison to the two other strains to produce
type I polyketides and non-ribosomal peptides which are the major
classes of pharmacologically active natural products as well as the po-
tential to produce linaridins which are post-translationally modified
peptides with interesting biological properties. Furthermore, NaPDoS
predicted the presence of natural products such as nystatin, rapamycin,
rifamycin, epothilone, and tetronomycin. For Nonomureae sp. SBT364,
NaPDoS predicted the presence of gene clusters encoding for rifamycin,
avermectin, avilamycin, concanamycin, and tetronomycin. Thirdly, for
Nocardiopsis sp. SBT366, gene clusters encoding for pikromycin,
alnumycin, amphotericin, andmycinamicin were predicted. In summa-
ry, sequencing genomes of three sponge-associated actinomycete Strep-
tomyces sp. SBT349, Nonomureae sp. SBT364, and Nocardiopsis sp.
SBT366 provided new insights into the genomic underpinnings of acti-
nomycete secondary metabolism, which may deliver novel chemical
scaffolds with interesting biological activities for the drug discovery
pipeline. Future work will include bioassay-guided isolation of the

bioactive natural products based on the genomic information gained
from this study. Minimum Information about the Genome Sequence
(MIGS) is provided in Table 3.

3. Nucleotide sequence accession number

The whole-genome shotgun (WGS) projects were deposited at
GenBank under the Bioproject ID PRJNA280805 with the accession
numbers LAVK00000000, LAVL00000000 and LAVM00000000. The
versions described here are LAVK01000000, LAVL01000000 and
LAVM01000000.
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Many marine sponges are populated by dense and taxonomically diverse microbial
consortia. We employed a metagenomics approach to unravel the differences in
the functional gene repertoire among three Mediterranean sponge species, Petrosia
ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures
were observed between sponge and seawater metagenomes with regard to microbial
community composition, GC content, and estimated bacterial genome size. Our
analysis showed further a pronounced repertoire for defense systems in sponge
metagenomes. Specifically, clustered regularly interspaced short palindromic repeats,
restriction modification, DNA phosphorothioation and phage growth limitation systems
were enriched in sponge metagenomes. These data suggest that defense is an
important functional trait for an existence within sponges that requires mechanisms to
defend against foreign DNA from microorganisms and viruses. This study contributes to
an understanding of the evolutionary arms race between viruses/phages and bacterial
genomes and it sheds light on the bacterial defenses that have evolved in the context
of the sponge holobiont.

Keywords: metagenomes, defense, CRISPR, restriction modification, sponge microbiome, seawater

INTRODUCTION

Marine sponges (Porifera) represent the oldest metazoan phylum with a fossil record dating back
580 million years in time (Li et al., 1998). Many sponges host dense and diverse communities of
unicellular microorganisms within their tissues (Taylor et al., 2007; Hentschel et al., 2012; Thomas
et al., 2016). Based on 16S rRNA gene amplicon sequencing, a recent study observed 1000s of
symbiont lineages [operational taxonomic units (OTUs)] within sponges, which are dominated
by Proteobacteria (mostly Alpha- and Gammaproteobacteria), Acidobacteria, Actinobacteria,

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; MTase, methyltransferase; nt, NCBI
nucleotide database; nr, NCBI non-redundant protein database; REase, restriction endonuclease; RMS, restriction
modification system.
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Chloroflexi, Cyanobacteria, Crenarchaeota, as well as symbionts
of several candidate phyla. Representatives of 41 di�erent phyla
were thus far recovered from sponges with representatives of 13
phyla being shared among all sponge hosts (Thomas et al., 2016).
Sponges are ecologically important in benthic environments
(Bell, 2008). The sponge-associated microorganisms carry out
functions related to nutrient cycling including carbon, nitrogen,
and possibly sulfur and vitamin metabolism (Taylor et al.,
2007; Bayer et al., 2008; Hentschel et al., 2012) as well as
to secondary metabolism and chemical defense (Wilson et al.,
2014). As sessile filter feeders, sponges are capable of pumping
seawater at rates up to 1000s of liters per kilogram of sponge
per day (Vogel, 1977; Weisz et al., 2008). Small particles are
retained from the incoming seawater and transferred into the
mesohyl interior where they are digested by phagocytosis (Bell,
2008; Southwell et al., 2008; Maldonado et al., 2012). Sponges
and their microbial consortia (hereafter referred to as the
sponge holobiont) are thus continuously exposed to incoming
microorganisms, that serve as a food source, but that may also be
harmful (Webster, 2007; Wehrl et al., 2007). Despite considerable
research e�ort and several published sponge genomes (Srivastava
et al., 2010; Ryu et al., 2016), little is known as to how
the sponge holobiont protects itself against potentially harmful
microorganisms, whether eukaryotic, prokaryotic, or viral in
nature.

One major line of prokaryotic defense is based on the
self – non-self-discrimination principle, which recognizes and
targets foreign DNA (Makarova et al., 2013). It comprises
various systems, among them the clustered regularly interspaced
short palindromic repeats (CRISPR). CRISPRs are based on
conserved repeats and variable spacer sequences which are
incorporated into the host genomes upon encounters from
viruses or phages and plasmids and are thus able to memorize
the attack (Horvath and Barrangou, 2010). Hence, it is described
as the adaptive immune system of prokaryotes (Makarova et al.,
2013). Structurally, CRISPRs are associated with cas genes, which
are essential for their function and which are also used for the
CRISPR classification (Makarova et al., 2011). Additional defense
systems are the RMS and the DNA phosphothiolation (DND)
system (Makarova et al., 2013). The RMS is nearly ubiquitous
among bacteria (Vasu and Nagaraja, 2013). RMS can be classified
into types I–IV depending on their subunits, recognition sites,
cleavage positions, and substrate specificities (Roberts et al.,
2003). Both, the RMS and DMD systems, make use of labeling
own DNA, either by methylation or by phosphorothioation, and
recognize and destroy unmodified non-self DNA (Wang et al.,
2007; Vasu and Nagaraja, 2013). The Phage growth limitation
(Pgl) system is another line of defense that allows phage burst
upon initial infection. In Streptomyces coelicolor A(3)2, PgI was
shown to target phage831 and its relatives. Here, the DNA of the
phage progeny was methylated, which resulted in activation and
consequently, in prevention of phage growth through presumed
methyl-specific restriction endonuclease activity (Abedon, 2012;
Hoskisson et al., 2015). The PglZ protein family is a central
element of Pgl, however, the mechanisms of this complex system
are poorly understood (Makarova et al., 2013). Another major
line of defense is based on dormancy or programmed cell death

(Makarova et al., 2013). These can be separated into toxin–
antitoxin (T–A) systems and abortive infection (ABI). In the T–A
system, the protein toxin kills cells above a certain expression
level. The antitoxin component then regulates and/or inactivates
toxin expression and prevents killing of the cell. The ABI system
is also based on cell death or dormancy and it is also based on
two modules (Fineran et al., 2009). The ABI system activates
cell death to prevent viral replication and thereby protects the
bacterial population.

In the present study we aimed to characterize defense
systems of marine sponge-associated microbial consortia.
The microbial metagenomes of three Mediterranean sponges
(Petrosia ficiformis, Sarcotragus foetidus,Aplysina aerophoba) and
seawater were compared toward this goal. Besides insights into
the microbial community composition and overall GC content,
we present defense-related features that consist of the CRISPR
system, restriction modification, phage growth inhibition, and
genes related to DNA phosphothiolation. The results of the
present study are consistent with the concept of “functional
convergence” (Fan et al., 2012) that shows similar functional
profiles in the microbiomes of di�erent sponge species and that
are distinct from those of seawater.

MATERIALS AND METHODS

The sponges P. ficiformis (sample ID: 1Biotec2_S07) and
S. foetidus (sample ID: 1Biotec2_S06) were collected on 25
May 2013, by SCUBA diving in Milos, Greece (N36.76759�

E24.51422�), at 5–7 m depth. Sponge tissues (5 ml each) were
washed with sterile-filtered seawater, passed through a 100 µm
Nitex cloth (Hartenstein, Germany) and transported to the
laboratory in glycerol solution (15% v/v) at �20�C until further
processing. A total of 10 L seawater (sample ID: Biotec_SW) was
collected from the vicinity of the sponges. Within 2–3 h after
collection, seawater was filtered consecutively through 100 µm
Nitex (Hartenstein), 5 µm durapore (Merck-Millipore), and
finally through 0.22 µm durapore membrane filters, which were
then frozen at �20�C.

Sponge samples of A. aerophoba were collected in the
Mediterranean Sea from a depth of 5 m (Piran, Slovenia), on
07 May 2013. Upon transport back to the laboratory, samples
of pinacoderm and mesohyl were separated using a sterile
scalpel blade. One scalpel blade was used per each sample to
prevent cross-contamination between samples. Microbial cells
were enriched from the di�erent sponge tissues by di�erential
centrifugation (Fieseler et al., 2006). Microbes from P. ficiformis
and S. foetidus samples were prepared using the same protocol.
Fractions of sponge-associated prokaryotes (SAPs) were frozen
at �80�C in 15% glycerin.

DNA Extraction and Sequencing
Genomic DNA was extracted from the sponge SAP preparations
of P. ficiformis and S. foetidus and the seawater filters using the
FastDNA Spin Kit for Soil (MP Biomedicals, USA). The quantity
of metagenomic DNA was determined by spectrophotometry
using a NanoDrop 2000c reader (PEQLAB Biotechnologie
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GmbH, Germany). The quality and size were analyzed by visual
inspection on 0.8% agarose gels following electrophoresis.

DNA of A. aerophoba was extracted in triplicates for each
pinacoderm and mesohyl using the FastDNA SPIN Kit for
Soil (MP Biomedicals). In order to maximize DNA yield from
bacteria with di�erent cell properties, the cell lysis step varied
for the three replicates of each tissue type: (i) bead beating,
following the manufacturer’s protocol, (ii) freeze-thaw cycling
(three cycles of 20 min at �80�C and 20 min at 42�C), (iii)
proteinase K digestion (bacterial pellet re-suspended in 567 µl
TE with SDS in a final concentration of 0.5% and proteinase
K in 100 ng/ml final concentration) for 1 h at 37�C. After cell
lysis, the manufacturer’s protocol was followed for all six samples.
Extracted metagenomic DNA from A. aerophoba samples was
sequenced on an Illumina HiSeq2000 platform (150 bp paired-
end reads) and quality filtered at the DOE Joint Genome Institute
(Walnut Creek, CA, USA). Seawater, P. ficiformis and S. foetidus
derived DNA was sequenced at GATC Biotech AG (Cologne,
Germany) on an Illumina MiSeq Personal Sequencer (250 or
300 bp paired-end reads, respectively).

Raw Data Processing and Assembly
The raw reads obtained for the samples of P. ficiformis, S. foetidus,
and seawater were initially analyzed with FastQC 0.11.21 for
adapters, overall quality, length and ambiguous bases. In a
first step, the reads were trimmed using Trimmomatic 0.31
(PE -phred 33 LEADING:3 ILLUMINACLIP:2:30:10) (Bolger
et al., 2014) and then merged using bbmerge2. All reads,
merged and unmerged, were again subjected to Trimmomatic
for further quality trimming and length filtering (SE -phred
33 SLIDINGWINDOW:4:25 MINLEN:150 AVGQUAL:30). The
remaining reads were assembled with IDBA-UD 1.1.1 (-mink
10 -maxk 100) (Peng et al., 2012). Contigs with a length 1000
nt were discarded. The reads obtained for the A. aerophoba
dataset were processed via the IMG/ER webserver (Markowitz
et al., 2012). Quality filtered reads were normalized using
bbnorm and assembled with SPAdes 3.5.0 (-only-assembler, -k
21,33,55,77,99,127, -sc) (Bankevich et al., 2012). Only contigs
�1000 nt were used for further analysis. To remove eukaryotic
contamination, all contigs, that were further analyzed, were
subjected to blastn 2.2.28 (e-value 10e-6 -task blastn) (Altschul
et al., 1990) and searched against the NCBI nucleotide database
(nt, as of September 29, 2015). The blast hits were analyzed with
Krona 2.6 (Ondov et al., 2011). All reads of eukaryotic origin
were removed. Information about the metagenomics datasets is
presented in Tables 1 and 2.

Taxonomic Affiliation of Reads and
Contigs
The processed reads were submitted to MG-RAST with enabled
screening for human contamination and disabled dynamic
trimming (Meyer et al., 2008). Contigs obtained from the
metagenomic assemblies were assigned to taxonomy using blastx
2.2.28 (e-value 10e-6) and the NCBI non-redundant protein

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2https://sourceforge.net/projects/bbmap/

database (nr). All hits were submitted to blast2lca (default
parameters), a last common ancestor algorithm implemented in
MEGAN5 (Huson et al., 2011).

Comparison of GC Content and Average
Genome Sizes
The GC content of all four metagenomes was calculated for
all processed and filtered reads, using an in-house perl script.
In addition, the average genome size per metagenome was
computed with MicrobeCensus 1.0.7 (Nayfach and Pollard,
2015) using the same reads and their average calculated length
(Table 1).

Data Normalization
Processed reads were mapped to their respective assembly using
bowtie2 2.2.4 (very-sensitive) (Langmead and Salzberg, 2012).
The coverage for each position on a contig was calculated with
samtools depth 1.2 (Li et al., 2009). With this data, the coverage
of each contig was set as the mean coverage over each position.
To account for the di�erent sequencing depths, the number of
mapped reads and assembly size, the coverage for each contig was
divided by the total number of mapped basepairs and multiplied
by 106 to obtain copy numbers per megabase (cpm).

Functional Annotation
All contigs were subjected to Prodigal 2.6.0 (-p meta, -c, -g
11) (Hyatt et al., 2010) to predict open reading frames (ORFs).
Clusters of Orthologous Groups (COGs) obtained from the
Conserved Domains Database (CDD) (Marchler-Bauer et al.,
2015) were annotated using rpsblast 2.2.28 (e-value 10e-6).
Protein families (Pfam) and TIGRFAM were assigned with the
InterProScan pipeline 5.17 (Jones et al., 2014) based on the best
hit (e-value 10e-6).

Characterization of CRISPR Arrays,
Repeats, and Spacers
The presence of CRISPR arrays was analyzed with a multiple
tool approach similar as proposed by Gogleva et al. (2014) using
CRT, PILER-CR, and CRISPRFinder (Bland et al., 2007; Edgar,
2007; Grissa et al., 2007b). Cas genes were identified by subjecting
ORFs of CRISPR-containing contigs to TIGRFAM and Pfam
databases using InterProScan. Assignment of CRISPR-Cas types
was accomplished according to Makarova et al. (2011) using the
TIGRFAM and Pfam annotations. Contigs containing CRISPR
arrays found with CRT and PILER-CR or included cas genes

TABLE 1 | Samples analyzed in this study.

Seawater Petrosia

ficiformis

Sarcotragus

foetidus

Aplysina

aerophoba

Sample date 29.05.2013 29.05.2013 29.05.2013 07.05.2013

Location Mediterranean
Sea, Milos,
Greece

Mediterranean
Sea, Milos,
Greece

Mediterranean
Sea, Milos,
Greece

Mediterranean
Sea, Piran,
Slovenia

Depth 5–7 m 5–7 m 5–7 m 5 m

Temperature 20�C 20�C 20�C 18�C
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TABLE 2 | Statistics on the processing of the metagenomics samples from sequencing throughput to analysis.

Seawater Petrosia ficiformis Sarcotragus foetidus Aplysina aerophoba

Sequencing platform Illumina MiSeq (2 ⇥ 300 bp) Illumina MiSeq (2 ⇥ 250 bp) Illumina MiSeq (2 ⇥ 300 bp) Illumina HiSeq (2 ⇥ 150 bp)

Sequenced reads (#) 40,505,000 41,383,600 32,672,426 945,906,728

Sequenced bp 12,151,500,000 10,345,900,000 9,801,727,800 283,772,018,400

Reads after QC (#) 18,273,997 29,213,518 17,525,606 –

Bp after QC 6,240,860,642 7,655,556,186 4,909,483,386 –

Assembly algorithm IDBA-UD IDBA-UD IDBA-UD SPAdes

Assembly size (bp) 216,407,276 226,772,563 190,159,175 489,999,481

Contigs > 1000 bp 116,626 82,740 41,164 110,609

N50 contigs (bp) 1,853 3,381 9,706 8,958

Largest contig 58,177 342,148 369,775 1,056,271

Average %GC 41 63 63 58

Open reading frames 215,442 221,522 175,356 455,396

ORF with COG annotation 129,900 119,914 103,075 203,692

ORF with Pfam annotation 78,569 55,478 29,253 56,643

ORF with TIGRFAM annotation 28,017 17,214 10,675 17,267

Average genome size (bp) 1,347,075.38 3,034,048.52 3,744,502.76 5,165,191.54

Reads mapped to assembly 13,396,184 15,900,219 22,478,672 537,464,688

Bp mapped to assembly 3,642,606,507 3,539,701,337 5,378,691,619 80,619,703,200

Average coverage 16.83 15.61 28.29 164.53

were uploaded to CRISPRfinder and were validated as true hits.
Of these, only confirmed CRISPR with at least two spacers
were retained. Possible targets of spacers were identified by
submitting their sequences to CRISPRtarget using the ACLAME
(as of August, 2009), GenBank-Phage, GenBank-Plasmid and
RefSeq-Viral databases (all as of September, 2015) (gap open -5,
gap extend -2, nucleotide match +1, mismatch �1, e-value 0.1,
word size 7) (Biswas et al., 2013). Direct repeat seqences were
submitted to CRISPRdb (Grissa et al., 2007a) and blasted against
the CRISPRfinder database (e-value 10e-2) and CRISPRmap
(Lange et al., 2013) to examine their superclasses by sequence
and structure and to determine if they were reported before.
The origin of the CRISPR arrays was determined through their
respective contigs as described in Section “Taxonomic A�liation
of Reads and Contigs.”

Analysis of Restriction Modification
Systems
Reference protein sequences of type I [restriction endonucleases
(REase), methyltransferases (MTase), and specificity domains],
type II (REases ant MTases), and type III (REases and MTases)
RMSs) were downloaded from REBASE (as of October 15,
2015) (Roberts et al., 2015). For each type of REases, MTases
and specificity domains, a blast database was built. Predicted
ORFs from all metagenomes were queried against the databases
using blastp 2.2.28 (e-value 10e-6) and only hits with a
coverage �70% were kept. A RMS was considered as being
complete, if its restriction endonuclease and methyltransferase
were at least four genes apart from each other (Oliveira et al.,
2014). Finally, overlapping regions of REases and MTases
(and specificity domains for type I) of the same type within
four genes were combined to one cluster to avoid double
counts.

Deposition of Sequence Data
The sequencing projects were completed in 2013 and sequencing
data was deposited in the Sequence Read Archive (SRA),
metagenome assemblies as a Whole Metagenome Shotgun
(WGS) projects in GenBank under the BioProject PRJNA318959
and the BioSample IDs SAMN04870510, SAMN04870527,
SAMN04870528 and SAMN05860141 for P. ficiformis (SRA:
SRP074318, WGS: LXNJ00000000), S. foetidus (SRA: SRP074318,
WGS: LXNI00000000), seawater (SRA: SRP074318, WGS:
LXNH00000000), and A. aerophoba (WGS: MKWU00000000).
Raw sequencing data of A. aerophoba is available under the
GOLD Study ID Gs00995463 with the GOLD Project IDs
Gp005580–Gp005585 which can be downloaded via the JGI
Genome Portal.

RESULTS

Sample Description
Three samples from the sponges P. ficiformis, S. foetidus,
and A. aerophoba as well as one seawater sample from the
Mediterranean Sea were investigated in this study for functional
di�erences of their associated microbiomes (Table 1). Using
Illumina MiSeq and HiSeq platforms, more than 1,064,000,000
high-quality sequences (⇠310 Gbp) were generated. The
metagenomes had assembly sizes ranging from 190 to 489 Mbp.
The predicted ORFs ranged from 175,356 in S. foetidus up to
455,396 in A. aerophoba. A total of 44.73–60.29% could be
annotated via COGs (Table 2). In order to compare the generated
data, the metagenomes were normalized based on their coverage
which ranged from 15.61- to 164.53-fold.

3https://gold.jgi.doe.gov/biosamples?Study.GOLD%20Study%20ID=Gs0099546
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FIGURE 1 | Barplot showing the relative genomic diversity and associated hierarchical clustering of the metagenomic samples using the Bray–Curtis
dissimilarity and complete linkage. The relative abundance is scaled on the x-axis. Taxonomic assignments are based on MG-RAST annotated phylum and class
level (indicated by (c)). For the groups contributing �5% of relative abundance (Proteobacteria, Bacteroidetes, Firmicutes) class level assignments are given. The
group ‘other’ comprises eukaryotes, viruses, archaea, fungi, bacteria at 1% abundance and unclassified sequences.

Genomic Composition
Based on phylogenetic a�liations using the lowest common
ancestor algorithm (LCA) in MG-RAST, over 95% of the
reads of all four metagenome samples were assigned to 38
bacterial phyla. Proportions of archaea, eukaryotes, viruses and
unclassified sequences were consistently low (each  2.72%)
in all metagenomes and were thus not further analyzed
(Supplementary Figure S1). The genomic composition of
the metagenomes was then analyzed on the phylum and
class level. As indicated by Bray–Curtis dissimilarity, the
metagenomes of P. ficiformis and S. foetidus were closest to
each other (11.18% dissimilarity). Both showed dissimilarities
of 17.01 and 19.46% to A. aerophoba. The seawater sample
displayed dissimilarities of 41.04, 43.55, and 31.26% to
P. ficiformis, S. foetidus, and A. aerophoba, respectively
(Figure 1).

A limited number of sequences (0.15–0.21%) was not
assigned to any known bacterial taxa. The Proteobacteria,
Firmicutes, and Bacteroidetes were the most abundant phyla
in all metagenomes. The Actinobacteria (12.3–22.63% vs.
1.18%) and the Deltaproteobacteria (6.28–7.24% vs. 1.38%)
were more abundant in the sponge samples than in seawater.
In contrast, the Alphaproteobacteria were less abundant in
sponges than in seawater (18.80–31.81% vs. 43.11%), and
so were the Flavobacteria (1.12–2.43% vs. 9.99%) and the
Cyanobacteria (2.49–3.96% vs. 4.98%). Only minor di�erences
between the sponge and seawater samples were found for the
Gammaproteobacteria (10.77–14.48% vs. 19.51%), the Clostridia
(3.75–4.86% vs. 1.25%) and other unclassified Bacteroidetes
(1.38–4.74% vs. 0.43%) according to a principal component
analysis (Supplementary Figure S3). Overall, the sponge
metagenomes were taxonomically distinct from the seawater

metagenome based on taxonomic read assignment using MG-
RAST, Bray–Curtis dissimilarity, and principal component
analysis.

GC Footprint
Higher average GC contents were detected for the assembled
metagenomes of sponges (58–63%) than for seawater (41%)
(Figure 2A; Table 2). The highest GC content was detected for
the metagenome sample of S. foetidus, followed by P. ficiformis,
A. aerophoba, and seawater. Interestingly, a second smaller
seawater peak around 50–55% overlapped with the lower GC
tail ends of the sponge metagenomes. To test whether there is
a correlation between high GC content and genome size, we
calculated the average genome sizes for a bacterial cell within each
metagenome. The calculated average genome sizes in the sponge
sample were considerably higher than those of the seawater
sample (Figure 2B; Table 2).

General Functional Properties
Functional analysis was based on COG assignments. All hits
were normalized to copy number per megabase based on their
contig coverage. We identified 103,075–203,692 COG hits for the
metagenomes which corresponds to 44.73–60.29% of annotated
ORFs (Table 2). This number includes however the general
function (G) and unknown function (S) categories (10.9–21.2
and 5.9–6.9%, respectively). The functional profiles of the sponge
samples were more similar to each other than to seawater, as
reflected by a Bray–Curtis dissimilarity of 10% between sponge
and seawater metagenomes. Overall, many genes relate to the
COG categories general function (G) or unknown function (S),
and most of the COG categories were neither enriched for
sponges nor the seawater metagenomes (“enriched” is defined as
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FIGURE 2 | (A) Plot of metagenomics samples showing the relative distribution of the GC content of filtered reads. (B) Calculated average genome sizes for bacteria
of each metagenomic sample.

>1.5-fold more copies per megabase) (Figure 3). The category
nucleotide transport and metabolism (F) was exceptionally
high in S. foetidus (33.05 cpm), whereas the category of cell
cycle control, cell division, chromosome partitioning (D) was
exceptionally low in P. ficiformis (0.53 cpm) when compared
to the other sponge metagenomes. Only few di�erences were
identified between seawater and sponge metagenomes based on
COG level assignments. The sponge metagenomes showed a
higher number of genes assigned to functions related to defense
mechanisms (V) and the cytoskeleton (Z), suggesting that these
are important functional traits for sponge symbionts. On the
other hand, fewer reads were assigned to translation, ribosomal
structure and biogenesis (O), cell motility (N), and chromatin
structure and dynamics (B) in the sponge sample, marking them
as relevant functional features for free living bacteria.

Defense Mechanisms
COG and Pfam-Annotated Defense Mechanisms
With respect to defense mechanisms, the sponge datasets were
more similar to each other than to seawater according to Bray–
Curtis dissimilarity measure (Figures 4A,B). All comparisons are
based on copies per megabase (cpm). Features were defined as
“enriched” when being >1.5-fold abundant in either the sponge
or seawater metagenome. Transport and e�ux systems for drugs
were found in all samples, and with the exception of a Na+-e�ux
pump and ABC-type multidrug transporter, all related functions
were enriched in the sponge samples over seawater. Furthermore,
all annotations associated to CRISPR were enriched in the sponge
microbiomes, as all (with the exception of one CRISPR-nuclease
(COG3513) were absent from seawater. 11 features related to
CRISPR in S. foetidus and one in P. ficiformis were missing
from the sponge metagenomes, which were mostly related to
the receptor activity-modifying proteins (RAMP) superfamily.

Interestingly, the cas2-gene (COG1343) in S. foetidus may
be substituted by a cas2-homolog (COG3512), which showed
highest cpm within this metagenome. With respect to RMSs,
all genes except one encoding for one endonuclease (COG1403)
were enriched in the sponge datasets. However, one endonuclease
(COG1787) copy was absent in S. foetidus and six were absent
from seawater. The overall cpm’s within the RMS were higher
in sponge metagenomes than in the corresponding seawater
metagenome. Classes A and C beta-lactamases (COG2367,
COG1680) were further enriched in sponge metagenomes. On
the other hand, seawater was enriched for the beta-lactamase class
D (COG2602) and an inductive membrane protein (COG3725).
A couple of genes related to resistance against colicin COG4452),
a growth inhibiting toxin, bacteriophages (COG4823) and the
antibiotic vancomycin (COG2720) were enriched in sponge
metagenomes, whereas a cephalosporin hydroxylase (COG3510)
was more abundant in the seawater metagenome (Figure 4A).

The overall gene copy numbers for DNA phosphorothioation
(DND) and phage growth limitation (Pgl) were higher in the
sponge than in the seawater metagenome (Figure 4B). The
DndG (PF08747) was absent from seawater. With respect to the
Pgl system, two core genes (COG1002, COG4930) and three
additional genes (PF08849, PF10923, COG3472) were missing
from seawater. The overall Pgl gene copy number in sponges was
⇠50% higher in A. aerophoba and S. foetidus than in P. ficiformis
(Figure 4B).

Clustered Regularly Interspaced Short Palindromic
Repeats
We analyzed CRISPR arrays and related components, i.e., direct
repeat sequences separated by spacers and adjacent cas genes
in the four metagenomes. The highest numbers of CRISPR
array containing contigs were found by searching for cas genes.
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FIGURE 3 | Heatmap of COG functional categories for the four analyzed metagenomes. The color scale ranges from 0 (black) to 100 (white) and indicates
copies per megabase metagenome (cpm). Functional dissimilarities (Bray–Curtis) are indicated by the dendrogram on top. The term “enriched feature” relates to
COG classes which are on average at least 1.5-fold higher in seawater (circle) or in sponges (cross) over all sponge samples. COG classes are ordered from high to
low copy numbers.

A. aerophoba showed the highest abundance of validated arrays,
whereas none was identified in the seawater metagenome. The
final number of identified CRISPR arrays was 77 (0.21 cpm), 47
(0.25 cpm), 283 (0.62 cpm), and 0 (0 cpm) for themetagenomes of
P. ficiformis, S. foetidus, A. aerophoba and seawater, respectively
(Table 3; Figure 5). On the domain level, taxonomy was
assigned to 53 of 77 (68.83%) arrays in P. ficiformis, 40 of
47 (85.11%) arrays in S. foetidus and 240 of 283 (84.81%)
arrays in A. aerophoba. Noteworthy, despite the di�erences in
their geographic location and total number of identified arrays,
a large overlap of taxonomic groups was found. The overall
distribution of taxa containing CRISPR-contigs was similar in the
three sponge datasets, with Proteobacteria as the most prevalent
phylum followed byActinobacteria andChloroflexi in the sponges
P. ficiformis and S. foetidus and Firmicutes in A. aerophoba
(Table 3).

Di�erent CRISPR-Cas types were categorized by their
associated cas genes. In the metagenomic datasets, at least 26
(35.06%), 20 (42.55%), and 144 (46.78%) of the CRISPR arrays
were adjacent to cas genes for P. ficiformis, S. foetidus and
A. aerophoba, which indicates that these arraysmight be complete
(Table 3). The cas genes of all known CRISPR-Cas types were
identified. CRISPR-Cas type I was the most abundant, with the
subtypes I-E and I-C as the most prevalent for all metagenomes,
followed by types II and III. Around 50% of cas genes could not

be annotated in more detail (type unknown, Table 3). According
to the number of cas genes per megabase, cas1, cas2 were most
abundant, followed by cas3, cas4 and cas7 in all three sponge
metagenomes. Smallest proportions were detected for cas8 and
cas9 (Figure 5). Even though CRISPR arrays were not identified
in the seawater metagenome, two cas6-genes were detected.

Spacers are the functional part of the CRISPR defense
that recognizes foreign DNA fragments. In the P. ficiformis
metagenome, a set of 1,366 spacers was detected, of which 1,349
were unique (Table 3). The largest CRISPR array in P. ficiformis
contained 112 spacers. For the S. foetidus metagenome, a total
of 723 spacers was identified, of which 714 were unique.
Here, the longest array contained 67 spacers. Thirdly, in the
A. aerophobametagenome, a total of 9,669 spacer sequences were
detected with 125 of these occurring more than once and with
9,547 being unique. The longest array found in A. aerophoba
comprised 169 spacers. None of the spacer sequences were
shared between the metagenomic samples suggesting that the
three sponge microbiomes have their own distinct CRISPR
systems.

With respect to potential targets of the spacers, the number of
hits decreased from unknown targets, to plasmids, phages and to
viruses in all samples (Table 3). Combining these results with the
spacer taxonomy, most spacers originated inAlphaproteobacteria
and Actinobacteria. All taxonomic groups of spacers had hits

Frontiers in Microbiology | www.frontiersin.org 7 November 2016 | Volume 7 | Article 1751

Part III. Results

74



fmicb-07-01751 November 4, 2016 Time: 17:11 # 8

Horn et al. Defense Systems of Sponge Microbiota

FIGURE 4 | Heatmap of defense mechanisms in (A) COG functional categories and (B) additional searches for the phage growth limitation and DNA
phosphorothiotation in the COG and Pfam databases. The color scale ranges from 0 (black) to 2 (white) and indicates copies per megabase metagenome.
Bray–Curtis dissimilarity is indicated by the dendrogram on top. Enriched feature relates to COG classes which are on average >1.5-fold higher in seawater (circle) or
in sponges (cross) over all sponge samples. Similar COG annotations are labeled on the left side of the heatmap and ordered from high to low copy numbers.

in the four target groups, with the largest amount of hits
found for unknown targets. The three sponge metagenomes
were shaped similarly with respect to spacer origins and targets
(Figure 6). The proportion of spacer sequences originating from
Betaproteobacteria was highest in S. foetidus, whereas Gamma-
and Deltaproteobacteria were highest in A. aerophoba. S. foetidus
showed more spacers originating from Firmicutes than the other
sponge samples. Spacers from Spirochaeteswere only found in the
A. aerophoba metagenome. Overall, the distribution of spacers

with assigned taxonomy followed the genomic composition with
correlation coe�cients of 0.64, 0.59, and 0.88 (all p-values 0.05)
for P. ficiformis, S. foetidus, and A. aerophoba, respectively
(Figures 1 and 6). All spacers and direct repeat sequences are
compiled in Supplementary Figures S2 and S3.

The number of unique direct repeats was 67, 40, and 218
for P. ficiformis, S. foetidus, and A. aerophoba, respectively
(Table 3). In the datasets A. aerophoba and S. foetidus, three of
the direct repeat sequences were shared, of which nine between
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TABLE 3 | Raw counts of identified CRISPR arrays and their taxonomic assignments, cas-genes, spacers and direct repeats.

Seawater Petrosia ficiformis Sarcotragus foetidus Aplysina aerophoba

Pilerr-cr 5 90 76 384

CRT 9 108 83 529

Contigs with found Cas-genes 2 124 101 263

CRISPRFinder 0 77 47 290

CRISPR per megabase 0 0.21 0.25 0.62

CRISPR with assigned taxonomy 0 53 40 240

Proteobacteria 0 36 22 169

Actinobacteria 0 9 6 33

Chloroflexi 0 3 4 6

Cyanobacteria 0 1 1 6

Firmicutes 0 1 2 14

Acidobacteria 0 2 1 4

Verrucomicrobia 0 1 2 0

Bacteroidetes 0 0 1 7

Deinococcus–Thermus 0 0 1 3

CRISPR assigned to CAS-genes 0 26 20 144

Type I (A–F) 0 11 10 73

Type II (A–C) 0 1 2 10

Type III (A–B) 0 1 0 6

Type unknown 0 13 8 55

Largest array (# spacer) 0 112 67 169

Total number of spacer 0 1,366 723 9,669

Unique spacer 0 1,349 714 9,547

Spacer with found target 0 278 152 1,642

Phage 0 55 42 255

Virus 0 19 10 146

Plasmid 0 204 100 1,241

Target unknown 0 1,088 581 8,027

Total number of repeats 0 77 47 290

Number of unique repeats 0 67 40 218

Repeats with hits to CRISPRdb 0 55 25 144

CRISPRmap superclass A/B/C/D/E/F 0 – 0/0/0/0/0/0 47 – 1/7/19/2/6/2 21 – 0/6/8/0/5/2 88 – 3/30/36/0/23/7

P. ficiformis and A. aerophoba, suggesting a horizontal transfer
of either CRISPR arrays or bacteria. An amount of 55 (81.09%),
25 (62.5%), and 144 (66.06%) of P. ficiformis, S. foetidus, and
A. aerophoba derived repeats were assigned to known repeat
sequences using CRISPRdb. With respect to the classification
using CRISPRmap, 47 (70.15%), 21 (52.5%), and 88 (41.12%)
direct repeats for P. ficiformis, S. foetidus, and A. aerophoba
were assigned to known superclasses, with the most abundant
classes C, E, and B (Table 3). Notably, the superclasses were
ordered decreasing in their conservation (Lange et al., 2013),
showing a mixture of repeats with a roughly corresponding
structure (superclasses B and C) and little sequence conservation
(superclass E). Overall, 81.09 and 70.15% of all direct repeat
sequences could be classified using CRISPRdb and CRISPRmap,
respectively.

Restriction Modification Systems
We identified a total of 3,057 RMSs in the metagenome
datasets with 432 assigned to type I RMS, 2,379 to type II
RMS, and 246 to type III RMS. A normalization of these raw
counts to copies per megabase (cpm) resulted in a similar

distribution of RMS types I-III in the metagenomes. The sponge
metagenomes showed higher abundances of all RMS types than
seawater (2.48–5.08 cpm in sponges vs. 0.18 cpm in seawater).
Type II was the most prevalent RMS type in the inspected
metagenomes (S. foetidus = 4.03 cpm, A. aerophoba = 3.16 cpm,
P. ficiformis = 2.06 cpm, seawater = 0.17).

The majority of type I RMS genes were assigned to
Proteobacteria, Actinobacteria, and Deinococcus–Thermus in the
sponge metagenomes, while in seawater, type I RMS was assigned
exclusively to the classes Beta- and Gammaproteobacteria
(Figure 7). The majority of type II RMS in sponge metagenomes
was assigned to Proteobacteria (Alpha- and Gamma-) and
Actinobacteria as well as to a lesser extent, to Bacteroidetes,
Cyanobacteria, and Acidobacteria. The S. foetidus metagenome
contained an unusually high number of type II RMS a�liated
to Actinobacteria. Type III RMS was the most underrepresented
group. Type III RMS in sponge metagenomes was most
represented by Alpha- and Gamma-Proteobacteria as well
as Bacteroidetes and Chloroflexi, while type III in the
seawater sample was only represented by the Alpha- and
Gammaproteobacteria, Bacteroidetes and the Clostridia.
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FIGURE 5 | Barplot showing the abundance of CRISPR arrays and cas genes in the four metagenomes. The x-axis shows their abundance in copy
number per megabase.

DISCUSSION

General Features
We performed the taxonomic assignment of metagenomics
reads by MG-RAST which has been previously attempted
using microbial metatranscriptome data from a low microbial
abundance sponge (Moitinho-Silva et al., 2014). While this
approach o�ers the advantage of using the full metagenome
dataset rather than a single gene marker (i.e., 16S rRNA gene),
it may lose resolution for those phyla and candidate phyla
where references genomes are not available. Our results confirm
previous findings that sponges harbor a distinctmicrobiota which
is di�erent from that of the surrounding seawater. Principal
component analysis of the relative abundance of reads revealed
a clustering of the sponge samples (Supplementary Figure S3).
The sponge metagenomes overlapped in their composition
and they showed a higher proportion of Actinobacteria
and Deltaproteobacteria than seawater based on assignment
of complete metagenomic reads. In contrast, the seawater
metagenome revealed higher abundances ofAlphaproteobacteria,
Flavobacteria, and Cyanobacteria compared to the sponge
metagenomes. With increasing availability of sequence data and
the completion of draft genomes by single cell genomics (Kamke
et al., 2014) or binning approaches (Gao et al., 2014; Burgsdorf
et al., 2015), the assignment of complete reads rather than single
gene markers should become widely acceptable.

The spongemetagenomes displayedmuch higher GC contents
(58–63%) than the seawater metagenome (41%) (Figure 2A).
As has previously been recognized, the prokaryotic GC content
can be highly variable between di�erent environments (Foerstner

et al., 2005; Reichenberger et al., 2015), ranging from 34% for
Sargasso Sea surface water samples to 61% for terrestrial soils. The
GC composition of the spongemetagenomes is much higher than
most other metagenomes, only to be superseded bymetagenomes
from saline ponds and contaminated soils (Reichenberger et al.,
2015). While an explanation for the variation in GC composition
remains wanting, there is increasing evidence that both, the
phylogenetic composition of the samples and the environment
shape the GC composition of the resident microbiota. With
respect to the sponge metagenomes, the GC contents are likely
a result of bacterial community composition. Actinobacteria,
which are known for their high GC content, are much
more prevalent in the sponge metagenomes than in seawater.
Accordingly, S. foetidus displayed the largest abundance of
Actinobacteria (Figure 1) and the highest GC content (Figure 2).
Nonetheless, this cannot be the only explanation, because in
spite of variable abundances of Actinobacteria within the three
sponges (Figure 1), the GC content is very narrow (Figure 2A).
Therefore, we posit that the specific microenvironment within
sponges has some yet to be characterized e�ect on the microbial
GC composition of sponges.

The sponge metagenomes displayed larger calculated average
genome sizes (3.0–5.1 Mb) than that calculated for seawater
(1.35 Mb) (Figure 2B; Table 2). The estimates for sponge
bacterial genomes are on the larger end of genome size estimates
derived from diversemetagenomic data (Giovannoni et al., 2014).
It should however be noted that the comparison of closely
related Synechococcus genomes from sponge symbionts versus
those from seawater did not reflect this pattern (Burgsdorf et al.,
2015). Larger genomes of sponge-associated bacteria may be the
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FIGURE 6 | Plots showing the origin (left side of circles) and targets (right side of circles) of spacer sequences for the three sponge datasets. The two
outermost rings indicate the percentage of target found for each spacer and vice versa. The inner ring indicates the number of spacers connected to the origin and
target, respectively.

evolutionary consequence of a more variable and nutrient-rich
microenvironment within the sponge as opposed to the stable,
nutrient poor seawater. Further the sponge-associated microbial
consortia are constantly exposed to an ample source of free DNA
resulting from the host’s digestion of food bacteria. Whether
and to what extent the mechanisms of horizontal gene transfer
occur in sponges and whether this would then results in larger
symbiont genomes remains to be investigated in future studies.
The high prevalence of transposases and other mobile genetic
elements within sponge microbiomes (Fan et al., 2012) does
suggest that horizontal gene transfer is rampant in the sponge
holobiont.

The overall functional annotation on the level of COG
categories was more similar within the sponge samples than
compared to the seawater sample (Figure 3). The functional

profile of A. aerophoba was more distant to the other sponge
samples, which may have been influenced by a higher functional
diversity as shown in the rarefaction curve (Supplementary
Figure S2). Overall, only two COG categories were enriched in
sponge metagenomes (defense mechanisms; cytoskeleton), while
three COG categories were depleted in sponge metagenome
over seawater (translation, ribosomal structure, biogenesis; cell
motility; chromatin structure and dynamics). The category
cytoskeleton was not pursued further owing to low gene
abundance (<0.6 cpm). These results are somewhat di�erent
from previous data (Thomas et al., 2010), where the metagenome
of the Australian sponge C. concentrica was enriched in two
COG categories (secondary metabolites biosynthesis, transport
and catabolism; replication, recombination, and repair) while
being depleted in three other categories (translation, ribosomal
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FIGURE 7 | Presence of types I–III restriction modification systems in the sponge and seawater metagenomes along with additional taxonomic
assignments on the phylum and class (indicated through the c in brackets) level. The size of each bubble indicates the gene copy number per megabase.
Bray–Curtis dissimilarity for each RMS type is indicated by the dendrograms.

structure and biogenesis; nucleotide transport and metabolism;
energy production and conversion in comparison to seawater).
The only shared feature between these analyses is the depletion
of sponge metagenomes in the category: translation, ribosomal
structure, biogenesis. The category defense mechanisms is
discussed in detail below.

Defense Systems
The overall enrichment of the category defense mechanisms in
sponge metagenomes over seawater metagenome is in agreement
with earlier results, where functions related to viral defense were
found to be enriched in sponges (CRISPR-Cas system, RMS)
over surrounding bacterioplankton (Thomas et al., 2010; Fan
et al., 2012) or in selected bacterial reference genomes (Burgsdorf
et al., 2015). The defense system DNA phosphorothioation was,
even though not functionally complete, also more prevalent
in the sponge metagenomes. Further, genes associated with
phage growth limitation (Pgl) were enriched in the sponge
metagenomes. The microbial consortia within sponges may thus
not only defend themselves against viruses and phages, but may
also be capable of suppressing their growth. Since the Pgl system
is only poorly characterized, further studies are needed to fully
understand its potential impact on microbial communities.

Clustered regularly interspaced short palindromic repeats
arrays were identified through a protocol using three di�erent
tools to avoid false positive hits. The total set of arrays (and
direct repeats) was 77, 47, 283, and 0 for the metagenomes of

P. ficiformis, S. foetidus, A. aerophoba and seawater, respectively.
While the CRISPR arrays in sponge metagenomes (0.21–
0.62 cpm) are below the values described for completely
sequenced genomes (0.72 cpm), they are still an order of
magnitude above the values for seawater metagenomes, such as
derived from the Sorcerer II Global Ocean Sampling expedition
(0.042 cpm) (Sorokin et al., 2010). This value suggests a low
number of CRISPRs in seawater and indeed, we found 0 hits
in our seawater metagenome. The variation in the number
of observed CRISPR arrays between the sponge metagenomic
datasets may be due the fragmentation of generated contigs and
is based on the used sequencing technology and the assembly
algorithms (Gogleva et al., 2014).

The overall taxonomic assignment (>68.83%) was comparable
between the datasets with the largest fraction of CRISPR arrays
a�liated to Proteobacteria followed byActinobacteria,Chloroflexi
and Firmicutes (Table 3). Similar results were observed for the
origin of the spacer sequences (Figure 6). While this finding
supports the presence of similar microbiomes within the di�erent
sponge species, only a small overlap of repeat sequences was
identified. As ⇠30% of direct repeats could not be assigned to
a superclass or known repeats, they may represent novel direct
repeats. The fact that we did not detect any shared spacers
suggests that the acquisition of protospacers may vary between
bacterial individuals (Gogleva et al., 2014). The sponge-associated
bacteria may either be exposed to di�erent types of viruses,
phages or plasmids (Burgsdorf et al., 2015) or to distinct viral
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variations (Fan et al., 2012). With respect to the targets of
the spacer sequences, their number decreased from the group
“unknown” to plasmids, phages and viruses, and they were
uniformly distributed among all identified phyla (Figure 6). The
large fraction of hits to unknown and unique spacer sequences
suggests that a large number of novel and diverse CRISPR targets
and spacers can be expected in marine sponge metagenomes.
The small overlap between spacers and direct repeats of the
CRISPR-Cas systems likely reflects variations within each sponge
metagenome as well as the specific acquisition of spacers from
selected bacteria.

We found only ⇠50% of all CRISPR arrays adjacent to cas
genes, which is likely an e�ect of the fragmentation of the
assemblies. The cas genes were used to classify CRISPR systems
into types and subtypes according to Makarova et al. (2011).
Overall and as was expected, cas1 (an universal marker of all
CRISPR-cas systems) and cas2 were most prevalent. CRISPR-Cas
type I, described via cas3, was the most prevalent in all three
sponge metagenomes followed by types II and III, identified by
cas9 and cas10. The latter two types were only found in very low
abundances, suggesting type I to be the most important CRISPR
type in the spongemicrobiome. Interestingly, type I was alsomost
prevalent in other environments such as the human gut (Gogleva
et al., 2014) or groundwater (Burstein et al., 2016). The most
abundant subtypes I–E showed a strong link to Actinobacteria
(Makarova et al., 2015). In ecological terms, the high prevalence
of CRISPR-Cas systems in sponge microbiomes may be necessary
to defend the sponge-associated bacteria against viral particles
that are drawn into the sponge holobiont by filtration. It has
previously been estimated that the sponge-associated bacteria
may be exposed to as many as 1000 viral particles per day
(Thomas et al., 2010), thus an e�cient defense against viral
onslaught could be essential.

Restriction modification system have previously been shown
to be more abundant in metagenomes from Australian sponges
than in seawater (Fan et al., 2012). We here confirm these
results for the Mediterranean sponges (2.48–5.08 cpm vs. 0.18
for RMS in seawater metagenome). The di�erence might be
explained by the observation that larger genomes tend to have
more RMS than smaller genomes (Makarova et al., 2013), which
is indeed the case for the sponge metagenomes over the seawater
metagenomes (Figure 2B). Among the di�erent types of RMS,
type II was most abundant in the metagenomes (Figure 7) which
is consistent with previous findings for bacterial isolates (Oliveira
et al., 2014). Similar to CRISPR, the RMS aremostly a�liated with
Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria,
and Actinobacteria. Both CRISPR and RMS thus appear as the
first line of defense against foreign DNA, in particular against
attack by viruses or phages.

CONCLUSION

A comparison of microbial metagenomes from di�erent
Mediterranean sponge species versus seawater revealed bacterial
defense systems as the consistently enriched feature in sponge
metagenomes. These defenses include CRISPRs, RMSs, phage

growth inhibition and DNA phosphorothioation as the main
mechanisms to combat foreign DNA from viruses, phages or
other sources. The expanded genomic repertoire for bacterial
defenses is likely the result of an evolutionarily long-standing
adaptation where the resident sponge microbiota is exposed to
free DNA resulting from the immense filtration activities of the
animal host. In support of this, higher GC contents and larger
calculated genome sizes were identified in sponge metagenomes
over seawater. Collectively, our results indicate that the genomes
of sponge microorganisms are/have been subject to horizontal
gene transfer and that defense against foreign DNA is one
prerequisite for an existence within sponges.
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Bioinformatic considerations

Genomic and metagenomic data was the backbone to most of the studies included in this
thesis. In this section, the potential, application as well as advantages and disadvantages of
both methods will be discussed.

Sequencing technologies have evolved fastly in the last decades from time–consuming
methodologies to nearly real–time approaches. Genomic and metagenomic seqencing has
somehow become a standard procedure and has revolutionized the microbiological landscape.
In their simplest form, that is millions of reads, (meta–)genomic data contains a limited
signal for homology searches (Wommack et al. 2008) and annotation is challenged by
the availability of reference genomes. Consequently, this data is assembled into longer
sequences, so called contigs. The assembly of genomic data can be monitored based on
several features as genome size, GC content, single copy genes, orientation of read pairs.
Including decontamination steps, genome assemblies end up in high–quality drafts as it
has been shown here (Chapter 1). The presented pipeline uses all of these quality control
steps. With that, it does not rely on a single metric as the N50 value, which would be a
naive approach, as a single best metric does not exist (Ekblom and Wolf 2014). In addition,
the described workflow can be used with multiple different assemblers to find the best
fitting algorithm for each project or genome. This is an often underestimated issue, as
some assemblers e.g. discard repetitive sequences, misjoin paired–end reads or “[p]erform
beautifully on simulated data but fall down on actual data” (Baker 2012). With that, the
workflow is also prepared for long–read sequencing projects as the assembly software can be
easily exchanged. That is of high importance, as the algorithms are fundamentally different
for short and long reads (Ekblom and Wolf 2014). Hence, genomes of high contiguity
as well as low error rates can be guaranteed with the approach given here, also using
latest technologies from Pacific Biosciences or Oxford Nanopore. However, the assembly
of metagenomic data is much more complex due to the high intrinsic variation (Thomas
et al. 2012). But once accomplished, it leads to full–length coding sequences (or ORF) and
improves functional and taxonomic annotations (Huson et al. 2007). This was especially
useful for the detection of long and complex genetic elemens (Thomas et al. 2012) as
CRISPR (Chapter 5). There are also tools to predict CRISPR from unassembled reads
(Skennerton et al. 2013), but they have been shown to highly underestimate their numbers
(Gogleva et al. 2014).

Another challenge in metagenomic data is the enumeration of annotated coding sequences.
In a single genome, one annotated coding sequence relates to a count of one. For metage-
nomics, there exist several methods to do a normalization of the count data. The easiest

85



Part IV. General discussion

approach is dividing the counts of a specific gene X by all reads used, thus obtaining a
relative abundance. Further, the counts of gene X can be divided by the number of counts
for all 16S rRNA sequences, which is hardly the copy per genome. The last approach is
biased, as 16S rRNA sequences exist in different copy numbers in bacteria (Větrovský and
Baldrian 2013). For six sponge metagenome samples Fan et al. (2012) calculated average
genome sizes based on multiple single copy genes, using this to infer copies per genome
to compare different metagenomic datasets. In this thesis, I normalized the metagenomic
data to copies per megabase. I propose this to be more robust than the method employed
by Fan et al. (2012) as it does not rely on single copy genes which may (or may not) be
uniformly sequenced among different metagenomes. There are also methods to circumvent
normalization. Binning is a process, in which DNA is sorted into groups representing
individual genomes (Thomas et al. 2012). This approach has successfully used before
(Burgsdorf et al. 2015), but also has some drawbacks. Mostly, only the highest abundant
organisms can be detected by binning, thus it is accompanied by loss of information towards
the usage of full metagenomic data. Moreover, this process may not end in single genomes,
but rather a consensus of similar ones. Thus events as HGT may hardly detected in that
kind of data. The use of standard protocols — e.g. as used in the Earth Microbiome Project
for 16S rRNA analysis — from sampling to sequencing would also help comparing different
metagenomic datasets and reduce the need for different normalization steps.

By application of assembly and normalization, four metagenomic datasets were compared
in this thesis for secondary metabolite genes. Further, a genomic–based approach and an
approach based on the amplification with degenerated primer was conducted to detect
and sequence biosynthetic genes. All of the presented methods are homology–based and
circumvent the need for the expression of a biosnythetic gene cluster. The most common
technique is the amplification of genes of interest using degenerated primers. This method
is easy in use, fast in identifying, cataloging and quantifying. This method can be used on
cultivated strains as shown here, but can also be applied to DNA directly isolated from the
environment (Wilson and Piel 2013). Both, the genomic and metagenomic method rely on
in silico predictions of biosynthetic genes and are — as the amplification approach — limited
to the detection of previously known biosynthetic genes based on sequence similarities
(Wilson and Piel 2013). However, genomic and metagenomic mining offer the ability to
investigate the genomic proximity of identified genes and the identification of complete
biosynthetic gene clusters. In addition, an abundance of PKS genes was detected with all
thress methods, with some of them not recognized before. Furthermore, the investigation
of the cultured isolates has shown their biosynthetic potential. In many cases, the isolation
of secondary metabolites is lower compared to the genomic potential. This has been shown
here, but also for well–studied strains as Streptomyces coelicolor A3 (Bentley et al. 2002).
Despite the emergence of many bioinformatic tools and databases, it remains still a challenge
to link biosynthetic genes or even clusters to chemical products. Thus, the complementation
of sequencing methods to obtain genes or gene clusters with their heterologous expression
using vectors can lead to the identification of natural products. Thus, the predictions
obtained from all three approaches here are a good starting point towards this goal. Further,
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the use of transcriptomics aside to genomics in bioactivity screenings may help to not only
identify possible biosynthetic gene clusters, but also which components are active.

The fragmentation of the metagenomic contigs was high within this study due to the
use of Illumina short read technology and the complexity of the sponge microbiome. With
the upcoming technologies by Pacific Biosciences and Oxford Nanopore Technologies,
metagenomic as well as other omic–studies will benefit from longer reads. Biosnythetic gene
clusters may be found on a single reads and single genomes will be closed. In summary, all
analysis demonstrated the high value of genomic and metagenomic data to investigate the
functional roles of microorganisms in the phyllosphere and in sponges.
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Construction of a draft genome for the

phyllosphere bacterium

Williamsia sp. ARP1

Phyllosphere microbial communities are diverse and include many different fungi, yeasts,
protozoa, and different genera of bacteria (Lindow and Brandl 2003). Main research was
initially driven by plant–pathogens as Pseudomonas syringae or Erwinia spp. (Lindow and
Brandl 2003), but also strains as Panotoea agglomerans (Remus-Emsermann et al. 2013)
or different Methylobacteria (Knief et al. 2012a) were investigated and many colonizing
microbes were found to be commensal symbionts (Müller and Ruppel 2014).

Here, strain ARP1 of the genus Williamsia was analysed. Most information about this
genus was based on morphological and chemical features, and only 9 strains were described
with valid names. Since the initial discovery in 1999 (Kämpfer et al. 1999), only two genomic
sequencing studies were published, including the strains D3 and ARP1 (Guerrero et al. 2014;
Horn et al. 2016a). To our knowledge, Williamsia sp.ARP1 is the first sequenced strain
from the phyllosphere. To analyse the genomic potential of this phyllosphere bacterium, a
sequencing approach of a culture isolated from an Arabidopsis thaliana leaf was conducted
in this thesis. The presented study is the first to compare and characterize members of the
genus Williamsia on a genomic level (Chapter 2). Below, I will discuss how the strain was
chosen and the experiments behind, the genomic repertoire, adaption to its phyllospheric
habitat, phylogeny and the contribution of this study to the knowledge about this genus.

Abundance, diversity and sources

Williamsia species have been isolated from various sources, ranging from human blood
(Yassin and Hupfer 2006), glacier ice, deep sea (Pathom-Aree et al. 2006a), hay meadows
(Jones et al. 2010), antarctic soil (Guerrero et al. 2014), building material, the leaf surface
of white clover, and the phyllosphere of Arabidopsis thaliana (Horn et al. 2016a). Despite,
only few cells and sequences were observed using 16S rRNA, metagenomic or culturing
studies, e.g. in a foaming activated sludge community (Guo et al. 2015), in the roots of
wheat (Conn and Franco 2004), the Mariana Trench (Pathom-Aree et al. 2006b), the rare
soil biosphere (Shade et al. 2012), or more recently as “keystone genera” in deep subsurface
fracture fluids (Purkamo et al. 2016) and from a high radiation environment in Chernobyl
(Ruiz-González et al. 2016). Remarkably, the genus seem to be mostly observed in extreme
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environments and may thus be considered versatile in its adaptions to different lifestyles.
These can be described as extremely cold (antarctic and glacier ice), under high pressure
and dark (deep sea, Mariana Trench), under high radation (Chernobyl) or short–lived
(leaf surfaces, phyllosphere). Interestingly, none of the publications describes the genus as
highly abundant, and also within the major databases as NCBI or SILVA, only 453 and
390 nucleotide sequences are deposited related to Williamsia (as of July 11, 2016). On the
data available, the genus can be assumed as low abundant in microbial populations, called
the rare biosphere. Based on 16S rRNA the described strain ARP1 was clearly assigned to
the genus Williamsia. Despite the low amount of sequences in the databases, similarities of
� 99 % to three Williamsia sequences derived from sediment were calculated. But, closest
type strains, Williamsia maris DSM43672 and Williamsia phyllosphaerae C7 exhibited
similarities of only 98.3 % and 98.5 %, indicating a novel species.

Further investigation are needed to reveal abundance patterns of Williamsia species in
different environments, either using deep sequencing strategies or designed primers to target
this genus. This would also be helpful to explore the diversity of this genus along with its
eveness and richness in different habitats. Moreover, marker sequences can be deposited in
the databases. These, in turn, would help to identify Williamsia species in other studies.

Phylogeny and assignment

Since the recognition of microorganisms, scientists tried to classify them in a evolutionary
and phylogenetic context (Clarke 1985). This has proved challenging as a species is
defined as a group of organisms which can interbreed (Mayr 1940), a concept that can
not be applied to asexual bacteria (Varghese et al. 2015). Hence, prokaryotic species have
been defined based on multiple features as morphology, (gram–)staining, and metabolism
(Kitahara and Miyazaki 2013). The first method to evaluate relationships was DNA–DNA
hybridization (DDH) (Richter and Rosselló-Móra 2009) and became the gold standard using.
It was replaced by sequence–based methods using marker genes such as the 16S rRNA
(Stackebrandt and Goebel 1994) and cut–off values of 97 % to define a species. Today, the
genome sequence is seen as the ultimate taxonomic information about a microbial strain
(Kim et al. 2014). Thus, there is potential to replace the aforementioned methods by using
whole–genome similarities such as ANI to circumscribe prokaryotic species. A cut–off in
the range of 95–96 % was proposed to define a species (Richter and Rosselló-Móra 2009).

The obtained strain ARP1 was classified based on 16S rRNA gene phylogeny, ANI and
pairwise best hit similarities using only coding genes with COG annotation. Using the
16S rRNA and the construction of a phylogenetic tree (Chapter 2, Figure 1), the strain was
assigned clearly to the genus Williamsia. The assignment of phylogeny with genome–based
methods led to a mixture with the genus Gordonia. The ANI method revealed a simlarity
of 72.37% between strain D3 and ARP1, but slightly higher similarities between strain
ARP1 and the Gordonia species with 72.95 % and 72.71 % (Chapter 2, Table S1). A pairwise
comparison of orthologous genes offered a similarity of 75.53 % between the two Williamsia
strains. The same analysis comparing them to the Gordonia strains revealed similarities
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between 71.50% and 75.15% (Chapter 2, Figure 5). Thus, a discrepancy between marker
gene and whole–genome analysis was observed. As the 16SRNA gene is not amenable to
HGT (Kitahara and Miyazaki 2013) due to the complexity hypothesis (that is, “[m]aking
horizontal transfer of informational gene products less probable”) (Jain et al. 1999), it is
unlikely to be transfered between species. Consequently, it can be considered to reflect true
phylogeny and origin of a strain or cell. This is also supported by results from a recent
project, in which I participated: strain ARP1 was investigated for its chemotaxonomix
profile (Kämpfer et al. 2016, submitted), including mycolic acids, quinones, and polar lipids.
These were in agreement with the description for the genus Williamsia (Kämpfer et al.
1999). One could think of artifacts due to the small sample size (2 Williamsia genomes) or
low quality of sequencing data and assembly, which led to the low ANI scores and identities
based on orthologs. But, latest studies revealed similarities based on ANI in a range of
75.4 % to 90.6 % for six available type strains of the genus Williamsia (Kämpfer et al. 2016,
submitted). All of them clearly were below the proposed species boundary. Calculating this
score between strain ARP1 and the recently available genome of Williamsia sp. Leaf354, an
identity of 94.1 % is reached. This score and the overall range of ANI scores mostly below
80 % are indicative for a genus, which is diverse on the genomic level, potentially based on
HGT. Moreover, isolates from the same source are more similar (ARP1 and Leaf354 were
both isolated from A. thaliana) than compared to all other isolates. From this, one could
hypothesize a specific gene gain or loss depending on the habitat of a strain in an adaptive
manner.

Genomic functions and adaptations to the phyllosphere

As described, the phyllosphere have to adapt to a harsh environment (Rastogi et al. 2013).
Among different studies, several traits have been proposed that enable bacteria to colonize
this environment. One of the major determinants for leaf colonization is the availability
of nutrients. In particular, carbon compounds are believed to be limited (Lindow and
Brandl 2003). In the presented genome sequence, ABC transporters for the uptake of
ribose, glycerol and fructose were identified. Specifically the photosynthate fructose is
a known compound which is leached from the interior of the plant (Lindow and Brandl
2003). In addition, transporter mediating the uptake of amino acids and maltose were
found. Whereas amino acids suggest the usage of nitrogen from plant–derived compounds,
the latter indicates the utilization of disaccharides and was also detected in Pseudomonas
species from the phyllosphere (Delmotte et al. 2009). The leaves of plants are exposed to
fluctuating temperatures and relative humidity (Lindow and Brandl 2003). Genes enabling
strain ARP1 to react on these shifts were heatshock chaperones, cold shock proteins
as well as genes encoding for the osmoprotectants trehalose and betaine. Pathways for
the biosynthesis of trehalose were also found in Pseudomomnas and Methylobacterium
strains in the phyllosphere of clover and soybean, but not in A. thaliana (Delmotte et
al. 2009). The synhetesis of betaine was also associated with phyllospheric fitness in
bacteria as Pseudomonas syringae and Pantoea agglomerans (Farrer et al. 2009; Remus-
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Emsermann et al. 2013). Other genes reported to be abundant in the bacteria of the
phyllosphere (in comparison to the rhizosphere) (Knief et al. 2012b) were also detected
in Williamsia sp.ARP1. These include genes involved in response to the plant defense as
reactive oxygen species. Phyllosphere bacteria are exposed to sunlight. Strain ARP1 offered
phentoypical adaptions through its red pigmentation (Chapter 2, Figure 1), genomically
supported by detection of all genes in the carotenoid pathway. Moreover, genes for the
synthesis of mycosporins to absorb UV light and DNA repair mechanisms as the UvrABC
system were revealed. Several other adaptions as the production of biosurfactants or flagella
were not identified, but might not be necessary for the investigated strain to survive in the
phyllosphere.

Noteworthy, other environments offer similar conditions in terms of temperature and
dessiccation (Lindow and Brandl 2003), UV radiation or nutrient avaliability. Thus, many
of the found adaptions may also be transferred to other habitats. But, the number of
found traits and the overlap to other studies implies them to be important for the leaf
colonization and subsequent survival. If the genomic inventory of Williamsia sp. ARP1 was
adapted over the years towards the phyllospheric lifestyle or if it can be considered the core
genome of Williamsia remains open. Sequencing more genomes of this genus would help to
investigate their genomic content and shed light on shared genes between strains from the
same or different habitats, identifying such specific adaptions. Also, a core genome may be
determined and the phylogenetic position of the genera Williamsia and Gordonia will be
clarified. Following, the discrepancy between single marker genes and the whole genome
can be explored and the phylogenomic position of genus Williamsia can be revisited.
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Genomic mining of sponge-associated

bacterial isolates

The search for new secondary metabolites and natural products is in focus for medical
treatment as pathogenic microorganisms are considered a major global challenge for public
health (Machado et al. 2015; Weber and Kim 2016). Historically, they have been the main
source for antibiotics, but are also of interest in anti–cancer research, for insecticides, or
crop protection among others (Weber and Kim 2016). So far, � 80 000 natural products
have been isolated from microorganisms (Bérdy 2012) and screening was mostly focused
on soil microbes, in particular Streptomyces species (e.g. Li and Walsh 2010; Yu et al.
2013). In recent years, other environments were investigated and the marine habitat
was found to be an underexplored ressource for novel compounds and chemical classes
(Machado et al. 2015; Xiong et al. 2013) produced by microbes from different habitats
as molluscs, algae and sponges. Mainly, the new identified natural products are mostly
isolated from sponge–associated actinomycetes (Abdelmohsen et al. 2014a, 2015) and are
produced either by PKS or NRPS (Xiong et al. 2013). Further, secondary metabolites
from sponges or their associated microorganisms are known to mediate microbe-host as
well as microbe-microbe interactions (Cimermancic et al., 2014;Hardoim and Costa, 2014).
But, despite developments in combinatorial chemistry, novel drugs were not provided in
expected percentage (Newman and Cragg 2007). In recent years, studies on the discovery
of new molecules have benefited from the development in DNA sequencing technologies and
led to publicly available genomic and metagenomic data and their subsequent screening
using ever new bioinformatic tools (Weber and Kim 2016 and cited references).

Using culture–dependent sequencing, the whole genomic repertoire of single strains
is available, thus making the identification of genes related to secondary metabolism a
straightforward process. Presented in this thesis are six genomes belonging to the phylum
Actinobacteria, isolated from different sponge species (Chapter 3 and 4). They were screened
using antibiotics & Secondary Metabolite Analysis SHell (antiSMASH) (Weber et al. 2015)
and NaPDoS (Ziemert et al. 2012) in a complementary way. The analysis revealed numbers
of 4 to 42 diverse biosynthetic gene clusters for the six genomes. The results are in accordance
with earlier studies, which revealed 2 to 20 for marine gram–negative bacteria (Machado
et al. 2015) and between 1 and 70 cluster in actinomycetes from different habitats and are
mostly distributed among Type I PKS, NRPS and terpenes (Doroghazi and Metcalf 2013).
Isolate Micromonospora sp. RV43 exposed with 20 different gene cluster the highest diversity,
followed by Streptomyces sp. SBT349 with 14, Nonomuraea sp. SBT364 with 11, the two
Nocardiopsis strain with each 10 and Rubrobacter sp. RV113 with 2. Complemented with the
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abundance of gene clusters among the genomes, Micromonospora and Streptomyces offered
again highest numbers. This is consistent with earlier studies (Doroghazi and Metcalf 2013)
and as both genera were massively sampled and investigated, a discovery of biosynthetic
gene cluster is more likely compared to all others. Noteworthy, in all six isolates two to five
clusters associated to terpenes were detected. It was hypothesized, that terpenes may act
as communication and defense mechanism or “safeguard for organsims in the marine world”
(Paul et al. 2011). Similarly, Type I PKS, NRPS, lantipeptide and siderophore cluster
were abundant in all but one genome: Rubrobacter sp, RV113. Siderophore–dependent iron
transport is a feature linked to sponge–associated bacteria (Burgsdorf et al. 2015) and can
be considered an adaption to their lifestyle.

Possible products for the gene cluster were predicted. Identified compounds were nystatin,
rapamycin, epothilone, tetronomycin and rifamycin among others, but overall with similari-
ties ranging between 26% to 85% and only based on single ketosynthase domains rather
than complete gene cluster. From another genome mining study, it has been concluded,
that results infered from homology searches like BLAST can be misleading, as parts of a
gene cluster (e.g. domains) can be shared between different clusters. Thus, it is necessary to
know investigate the complete architecture of a biosynthetic gene cluster (Aleti et al. 2015).
But, using a genomic approach offers the possibility to scan genomes for their capabilities
towards secondary metabolism and can highlight strains, which can be of biotechnological or
pharmaceutical interest. Overall, this method can pave the way for future, bioassay–guided
methods to isolate natural products.
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Metagenomic mining of

sponge-associated bacterial consortia

The composition of microbes is defined as their identity and relative abundance in an
ecosystem (Reed and Martiny 2013). The knowledge of their distribution among different
environments will help to understand these organisms and underlying processes shaping
their community structure. Further, it helps to explain the symbiosis between a host
and its associated microbes. Marine sponges are known to be inhabited by dense and
diverse microorganisms (Hentschel et al. 2012) such as viruses, protozoa, archaea, fungi,
and bacteria (Webster and Taylor 2012). Bacterial phyla in HMA sponges have been found
to be the most prevalent organisms with the most common of these being Proteobacteria,
Cyanobacteria, Nitrospirae, Actinobacteria and Chloroflexi (Hentschel et al. 2012). Usually,
amplicon sequencing of a hypervariable region of the 16S rRNA gene is the applied approach
to infer community composition, its organisation or spatiotemporal patterns (Sinclair et al.
2015). In this thesis, metagenomic sequencing and subsequent analysis of all obtained reads
via the MG–RAST platform was performed. Therefore, this analyis is refered to as genomic
composition rather than community composition.

All three investigated sponge samples, Petrosia ficiformis, Saroctragus foetidus and
Aplysina aerophoba, are examples of HMA sponges. Their genomic composition is, with
some exceptions, comparable to taxonomic profiles of microbial sponge–communities (see
Thomas et al. 2016). Chloroflexi and Cyanobacteria are found to be more abundant,
Firmicutes and Actinobacteria to be less abundant in community analysis compared to our
metagenomes. In both studies, seawater samples exhibited highest abundances for Alpha–
and Gammaproteobacteria. Also, the other phyla seem to be in congruence, but, Bac-
teroidetes had higher abundances in our study. Despite differences in the used approaches,
there are overlaps in the composition. Variations may be explained by the fact, that the
metagenomic analysis incorporates all reads and thus the genome sizes of the underlying
organisms, thus highlighting the Actinobacteria in the S. foetidus sample with an relative
abundance � 20%. Both, the 16S rRNA and the metagenomic approach are biased by
several sources comprising introduced by sequencing errors (regardless of technology), the
error rates of polymerases or the formation of chimeras in heterogenous samples (Schloss
et al. 2011). In a recent study, several tools, including MG–RAST, were tested for their
capability to infer taxonomic composition by use of metagenomic reads, but all of them
differed significantly from the original data (Lindgreen et al. 2016). Also, the assignment of
taxonomy to reads is influenced by the tool used (Peabody et al. 2015) and so is for the
analysis of 16S rRNA sequences (Schmidt et al. 2015).
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The presented data may not reflect the true taxonomic composition. However, metage-
nomics is not limited to a single marker gene. Highly diverged microbes and also non–
microbes may be missed by 16S rRNA studies (Sharpton 2014). Metagenomic analysis has
the power to show the genomic contribution of different taxa in a microbial community as
a function of their genome sizes. As a consequence, their real impact is depicted as genome
sizes directly infer the number of genes, an thus functionality.

Screening for secondary metabolites

The number of genes characterizing secondary metabolite gene cluster was surprisingly
high in seawater and renders them not as an adaptive or selective trait or necessary defense
system for bacteria to inhabit a sponge. The overall composition was similar between both
environments (Figure 11), but offered differences in their taxonomic assignment. Similar to
the defense systems, most genes in the sponge datasets were affiliated to Proteobacteria and
Actinobacteria, whereas the seawater metagenome was dominated by the Proteobacteria and
Cyanobacteria, reflecting the genomic composition. Overall, the high number of detected
genes might reflect the true number of secondary metabolites in both environments, but
may also be a product of short sequences/contigs, especially in the seawater dataset. This
could lead to a high fragmentation of cohesive gene clusters and thus to an overestimation.
As described, the composition of indicator genes for secondary metabolites was similar,
with the exception of Type I PKS (Figure 11). PKS are phylogenetically classified into two
groups, which differ mainly by the presence (cis) or absence (trans) of the acyl–transferase
(AT) domain in the extender modules (Helfrich and Piel 2016). Here, none of the Type I
ketosynthases was affiliated to trans–AT PKS, hybrid NRPS–PKS or cis–AT PKS families,
which are usually involved in the biosynthesis of natural products, which is in concordance of
the data published by Fieseler et al. (2007), in which only 8 % of ketosynthases were assigned
to one of the named families. 111 of the 120 validated Type I ketosynthase sequences were
grouped into the sponge symbiont ubiquitous PKS (supA) group which reflect the high
abundance of the microbial community containing the supA genes. Previous studies have
reported the supA group as specific and exclusively found in sponges (Hochmuth and Piel
2009). This group describes small monomodular and unusual polyketide synthases, which
might be responsible for the biosynthesis of mid–chain–branched fatty acids for which HMA
sponges are a rich source (Della Sala et al. 2014; Fieseler et al. 2007; Hochmuth et al. 2010).
Closest hits to our found PKS sequences were found in symbionts of A. aerophoba and
T. swinhoei in earlier studies (Fieseler et al. 2007; Piel et al. 2004), thus suggesting the
distribution of either similar Type I PKS systems or bacterial symbionts in different sponge
species in different geographic locations. All found ketosynthases were assigned to symbionts
with unknown taxonomic origin. Results with a lower e–value offered hits to the genus
Mycobacterium, which belongs to the Actinobacteria. In a previous study focusing on the
sponge Arenosclera brasiliensis (Trindade-Silva et al. 2013), 16 % of 235 PKS sequences were
found to be of actinobacterial origin, with some of them assigned as Mycobacteriummarinum.
The genus Mycobacterium was also found to be a rich source of highly conserved PKS gene
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clusters (Doroghazi and Metcalf 2013)). Thus, it could be hypothesized, that supA are
hosted by Actinobacteria in sponges, which are a well–known source for bioactive compounds
(Subramani and Aalbersberg, 2012;Abdelmohsen et al., 2015;Cheng et al., 2015) and found
in high abundance in our samples. Supporting this, only one ketosynthase was found in the
seawater sample assigned to Achromombacter xylosoxidans, a Betaproteobacterium, and
only a small abundance (1.06%) of Actinobacteria. This ketosynthase was classified in
the cis–AT PKS, and therewith confirms, that most sponge–associated PKS are distinct
from PKS in free–living or non–sponge–associated microbes (Hochmuth and Piel 2009)
(Chapter ??, Figure 12). Moreover, the large variety of found type I PKS enzymes reflects
the potential of metagenomics to be used as a backbone for novel polyketide natural product
research.

Secondary metabolite genes

The most abundant secondary metabolite marker genes belonged to the groups of saccha-
rides, bacteriocins, terpenes and fatty acids (� 0.1 cpm). Other indicator genes of secondary
metabolism – linaridin, lantipeptides, ectoines, phosphonates, proteusin, polyketide syn-
thases, nucleosides, microcins, siderophore or homoserine lactones - were only found in
low copy numbers ( 0.02 cpm). Interestingly, while siderophores and homoserine lactone
hits were only identified in seawater, lantipeptides, linaridines, and Type I Polyketide
synthases – with the exception of one Type I PKS in seawater - were only found in the
sponge metagenomes. In agreement with the calculated Bray–Curtis Dissimilarity based on
genomic content (Chapter 5, Figure 1), the seawater sample is most dissimilar to all sponge
samples with at least 21.03 % (Figure 11).

Homoserine lactone
Siderophore
Microcin
Nucleoside
Type I PKS
Type II PKS
Type III PKS
Type IV PKS
Proteusin
Phosphonate
Ectoine
Lantipeptide
Linaridin
Fatty acid
Terpene
Bacteriocin
Saccharide

Characterizing genes

0 252015105

Copy / Mb
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Petrosia 
ficiformis

Sarcotragus 
foetidus

Aplysina 
aerophoba

Seawater

Dissimilarity [%]

Figure 11. – Barplot of characterizing secondary metabolite genes for the four analyzed
metagenomes. The x–axis indicates the copy per megabase metagenome
for all characterizing genes. Functional dissimilarities (Bray–Curtis) are
indicated by the dendrogram
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Type I PKS phylogenetic tree

A total of 120 Type I PKS genes were identified in the three sponge metagenomes, 23 derived
from P. ficiformis, 36 from S. foetidus, 1 from seawater and 60 from A. aerophoba. The
sequence found in seawater was assigned to the cis-AT type I PKS system and the bacterial
strain Achromobacter xylosoxidans, a betaproteobacterium. Phylogenetic analysis assigned
the majority (109/120) to the symbiont ubiquitous supA-type PKS group. Most similar
sequences from the sponge metagenomes according to the phylogenetic tree (Figure 12A)
were previously discovered and found to be bacterial symbionts associated to the sponges
Theonella swinhoei, Aplysina aerophoba and Discodermia dissoluta(Theonella swinhoei
bacterial symbiont clone pSW1H8 (ABE03935), Aplysina aerophoba bacterial symbiont
clone pAPKS18 (ABE3915) and pAE27P20 (ABE3895), symbiont of Discodermia dissoluta
(AAY0025-0027)). Further taxonomic analysis using blastp affiliated the supA-type PKS
mostly to the genus Mycobacterium (Supplementary file 7). Only 11 non-supA-type PKS
sequences were identified which fell into a FAS-like PKS cluster and were most similar to
symbionts from the sponge Plakortis simplex (bacterium symbiont of P. simplex pPSA11D7
and pPS11G3 (aGH13590, aGH13577)). Nearest similar classifications indicated the
Actinobacterium Sciscionellamarina (WP020497474) as a possible host for the FAS-like
PKS. Adding functions and possible products to the found PKS, we submitted them to
NaPDoS. Most of the polyketide synthases in the supA clade of the tree resulted in a hit
to epothilone, but with sequence identities ranging from only 38% to 62%. Despite the
variance of possible products in the FAS-like PKS clade, the order of the genes surrounding
the polyketide synthase was highly conserved (Figure 12B).

Defense systems

Phages have a far–reaching impact, ranging from food industries to human health and
nutrient cycling. Wherever we can find bacteria, there will also be phages (Seed 2015).
Considered the most powerful driving force in evolution is the arms race between phages
and their respective host (Stern and Sorek 2011), also considered a “struggle for existence”
(tenOever 2016). Thus not surprising, many different defense systems have evolved in
bacteria requiring large parts of their genomes (Makarova et al. 2011). A review by Makarova
et al. (2013) has expanded our view and knowledge of these defense systems which are
considered analogs to the adaptive and innate immunity in eukaryotes. In Chapter 5,
the metagenomes of three sponges — P. ficiformis, S. foetidus, A. aerophoba — and from
seawater were investigated towards the genomic inventory of bacterial defense systems. A
broad range of genes mediating immunity were detected and found to be higher abundant
in sponge microbiomes than in the seawater microbiome. Below, different immune systems
will be shortly explained and discussed.

The CRISPR system is build of an array comprising spacer sequences (25 bp – 70 bp)
alternating with direct repeats (24 bp – 48 bp). Spacer sequences are integrated sequences
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analysed metagenomes and added reference sequences obtained from NCBI.
Labels are colored according to their origin, possible products are marked as
colored nodes. (B) Conserved structure of the FAS-like PKS cluster found
in the three sponge samples

of foreign DNA. Further, it includes cas–genes (Gogleva et al. 2014), which encode proteins
(helicases, polymerases, nucleases) important for the activity and upon which different
CRISPR types can be distinguished (Makarova et al. 2015). A CRISPR array is transcribed
completely as a precursor RNA and subsequent cleaved into fragments (cnRNA), each
containing a spacer sequence. These fragments are used as guide RNA to recognize and
cleave incoming viruses (Koonin and Makarova 2009).

The final sets of CRISPR arrays was 77 (0.21 copies per megabase (cpm)), 47 (0.25
cpm), 283 (0.62 cpm) and 0 (0 cpm) for the metagenomes of P. ficiformis, S. foetidus,
A. aerophoba and seawater, respectively (Chapter 5, Table 3, Figure 5). A considerable
fraction was found adjacent to cas genes and indicates these arrays as complete with
counts of at least 26 (35.06 %), 20 (42.55 %) and 138 (46.78 %) for P. ficiformis, S. foetidus,
A. aerophoba. Interestingly, not a single array was validated for the seawater dataset which
is in accordance to the metagenomic study by Fan et al. (2012). Based on the cas genes,
Type I was identified as the most abundant, followed by Type II and III for all sponge
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metagenomes. Similar results were found in three human gut metagenomes (Gogleva et al.
2014) and for most bacterial and archaeal genomes deposited in NCBI (Burstein et al. 2016).
Thus, the distribution of CRISPR types seems to follow a similar pattern among different
bacterial organisms and environments. Despite the high number of associated spacer
sequences, none of them was shared between the microbiomes. This effect was also observed
in two geographically distant sludge bioreactors for which no spacer sequences overlapped
(Kunin et al. 2008). They concluded, that the investigated bacterial strains are able to
disperse globally, but have to adapt to local phage pressure. For the sponge microbiome,
this suggests an individual acquisition of spacer between bacterial cells (Gogleva et al. 2014)
and/or massive differences in the local virome of the sponges (Fan et al. 2012). This concept
would also apply to the distribution of spacer origins as they were found to be similar
for all three metagenomes, decreasing from Proteobacteria to Actinobacteria, Chloroflexi
and Firmicutes. These are the major lineages within the metagenomes suggesting an even
distribution of CRISPR in the different phyla, but again with variations based on the
local virome. Targets of spacer sequences were explored and the majority was assigned to
unknown targets followed by plasmids and phages/viruses, implying that spacer sequences
were mostly novel or unseen. This can be explained, as little to no studies focus on viral
communities or even metagenomes. Comparable to the spacer sequences, only a few (up to
nine) direct repeat sequences were shared between all three sponge microbiomes, despite
the close geographic proximity at least for the samples of P. ficiformis and S. foetidus.

Due to the scarce overlap of spacer and repeat sequences, CRISPR arrays can be consid-
ered to be fast evolving and highly adaptive. Moreover, the absence of CRISPR arrays in
seawater marks this system as an inevitable adaption to the host–sponge and demonstrate
the potential of the CRISPR system to observe the co–evolution between bacteria and their
attacking phages.

The RMS is an important component of the prokaryotic defense mechanimsms. Its activity
is based on two enzymes: a restriction endonuclease and a methyltransferase. Whereas the
methyltransferase is responsible for discrimination of self and nonself DNA by methylation
of the own DNA, the restriction endonuclease cleaves foreign – non–methylated – DNA
(Vasu and Nagaraja 2013). The RMS can be classified based on cleavage position, cofactor
requirements, recognition sides and subunit composition (Roberts et al. 2003). Investigated
here (Chapter 5) were RMS Type I (protein complex with methylation and restriction activ-
ity), Type II (separated methylation and restriction subunits), and Type III (heterotrimer
or heterotetramers of methylation and restriction subunits).

In accordance to previous studies comparing sponge–associated to seawater or free–living
relatives (Fan et al. 2012; Tian et al. 2016), the RMS was higher abundant in the sponge
datasets compared to seawater. Type II was found to be most abundant. This is not
surprising, as this type is the most widely studied (Vasu and Nagaraja 2013) and most
common in prokaryotes (Oliveira et al. 2014). Whereas the RMS in seawater seems to be
restricted to a few phyla, nearly all phyla contain Types I–III RMS in the sponge microbiota.
Their distribution is in concordance with the genomic composition and, as for the CRISPR
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system, suggesting an even distribution of this system among sponge–associated bacteria.
Burstein et al. (2016) reported the presence of the RMS in phyla lacking the CRISPR system
due to little viral predation. Vice versa, Dupuis et al. (2013) showed the co–occurence
of both systems as our study did, but may be due to high viral abundances in sponges.
Thus, the two defense systems seem to work in a synergistic way complementing each other,
hypothesizing, both are adaptive traits towards the sponge as a habitat. Further, the RMS
has evidence to be involved in genome rearrangements and evolution of endosymbionts
(Rocha et al. 2001) and might play a role in the co–evolution of phages and bacteria.

In this study, two more defense mechanisms were identified: the phage growth limitation
(PGL) and the DNA phosphorothioation (DND) system. The DND works similar to the
RMS, whereas PGL may be capable of inhibiting phage growth and avoid their proliferation
(Makarova et al. 2013). Phages and bacteria controlling each others numbers: phages by
constantly attacking, and bacteria by strategies to resist and thus maintain a dynamic
equilibrium (Seed 2015) in their ongoing warfare. The diversity of at least four different
defense mechanisms in sponge–associated microbiota suggests them an important trait.
Possibly, they are functionally coupled making them more effective against phage attacks
or work as a “backup solution” if one system fails. Even more defense systems are known
for prokaryotes, including the toxin–antitoxin system or abortive infection and subsequent
cell death. Also, many of the genes mediating defense are found in genomic proximity, so
called genomic islands (Makarova et al. 2013). A property, which was not investigated due
to the fragmentation of contigs in the underlying metagenomes. Whatsoever, this study
gives deep insights on the interplay between baceria and phages and the possible obligate
adaptions of bacteria to the sponge host. It is also a starting point for studies including
the viral metagenome and the sponge to explore the whole system from a holobiontic side.
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Overall, genomics and metagenomics are useful in detecting a high diversity of biosynthetic
genes which can be used in expression experiments. Genomics may not always answer all
questions, but may also raise new issues, for example, the phylogenetic discrepancy between
16S rRNA genes and whole genome sequences in Williamsia strains. But, genomics helped
to understand adaptions to the phyllosphere environment and gave insights into the rare
genus Williamsia. Metagenomics have been shown to be a powerful tool to detect adaptions
to the sponge and surrounding seawater, thus giving a direction for subsequent studies.
The complementation of –omics studies with an experimental framework, e.g. modulating
the microbial community, even more insights into general properties of host–microbe and
microbe–microbe interactions can be gleaned. Further studies on –omics data may be
supported by these concepts. Perspective from my thesis are as follows:

State–of-the–art sequencing technologies and comparable protocols The use of Third–
Generation sequencing technologies as established by Pacific Biosciences or Oxford Nanopore
Technologies an its very long reads combined with Second–Generation sequencing of high
quality may circumvent the need for assembly or at least simplify this process. With
this, closed genomes will be available. Also, the binning of complete single genomes from
metagenomic data are possible. The usage of these technologies in combination with
sampling, library preparation and sequencing based on identical protocols will help to make
the comparison of such data easier in the future.

The analysis of more Williamsia genomes In addition to the 2 published Williamsia
genomes (strains ARP1 and D3), the genome of Williamsia phyllosphaerae C7 was sequenced
and analyzed, in which I participated. Even more are registered within the databases (e.g
strain Leaf354). A comparative study would help to define the core genome of this genus
and determine factors important for specific habitats as they were isolated from different
sources. Further, the phylogenetic position of the genus Williamsia may be better resolved.

Multi–omics approaches for secondary metabolite discovery in combination with ex-
periments Genomic approaches can solve many biological problems and are the base layer
of –omic research. But, they depend on static data and thus can not represent the actual
metabolism of an organism. For this reason I propose the use of multi–omics studies to
cover not only the “building plan” of organisms, but also their transcriptome along with
their proteome and metabolome, to investigate, what really happens. This can also help to
better explore the primary and secondary metabolism and support the hunt for bioactive
compounds and drug discovery. Also many of the found gene cluster within genomes
and metagenomes relate to putative ones, saccharides or fatty acids and possibly are no
secondary metabolites. Tools for finding these gene clusters are permanently updated and
help finding interesting organisms. But, a cluster of genes may not be representative for
specific compounds, as the synthesis of secondary metabolites is not straightforward but
iterative. Thus, I suggest the use of –omic data alongside to elicitation or heterologous
expression experiments to create a link between gene clusters and produced compounds.
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Further investigation of the P. ficiformis, S. foetidus and A. aerophoba microbiomes
The named microbiomes have been found to be rich in defense mechanisms as CRISPR,
restriction modification and phage growth limitation among others. A sampling and
extraction approach with adapted protocols may unveil also the virome within these
sponge hosts. Subsequent, targets of the defense system can be revealed, which would
help understand the microbe–microbe interactions. Further, these results can be used in
experiments to uncover the adaption of the CRISPR system towards viral cells. Finally, it
is estimated, only 1x10-22 % of the total DNA on earth is sequenced so far (Microbiol 2011):

0.00000000000000000001 %

A number, which can be considered close to zero, thus leaving still more room for upcoming
sequencing projects.
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