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Zusammenfassung

Das Thema dieser Doktorarbeit ist die Kombination von topologisch nicht-trivialen (TnT)
Phasen mit Coulomb Wechselwirkungseffekten, die zwischen den Elektronen eines Systems
der kondensierten Materie auftreten. Ein Schwerpunkt wird sowohl auf die sich ergebenen
Vorteile als auch möglichen Nachteile gelegt, z.B. bezogen auf den topologischen Schutz in der
Gegenwart von starker Wechselwirkung.
Die topologischen Effekte in der Physik werden in Kap. 2 vorgestellt. Basierend auf der

topologischen Bandtheorie führen wir die topologischen Materialien ein, inklusive Chern Iso-
latoren, topologischer Isolatoren (TIs) in zwei und drei Dimensionen und Weyl Halbmetallen
(WSMs). Die Formalismen für eine kontrollierte Behandlung der Coulomb Korrelationen wer-
den in Kap. 3 präsentiert, beginnend mit der topologischen Feldtheorie. Die Random Phase
Approximation (RPA) bietet einen störungstheoretischen Ansatz, während im Bereich der star-
ken Wechselwirkung die Theorie des Quanten-Hall-Ferromagnetismus greift. Wechselwirkende
Systeme in einer Dimension sind besonders und werden von uns als Luttinger Flüssigkeit
beschrieben. Das Kapitel endet mit einem Überblick über die zu erwartenden Vorteile und
Möglichkeiten einer Kombination von Topologie und Korrelationen in Kap. 3.3.
Diese Ideen werden im Forschungsteil weiter ausgeführt. In Kap. II beschäftigen wir uns

mit schwach wechselwirkenden, zweidimensionalen (2D) TIs, beschrieben durch das Bernevig-
Hughes-Zhang (BHZ) Modell. Dies ist z.B. anwendbar für Quantentrogstrukturen basierend
auf HgTe/CdTe oder InAs/GaSb. Die Bandstruktur im Volumen ist hier gegeben durch eine
Mischung aus linearen Dirac and quadratischen Schrödinger Fermionen. Wir untersuchen die
Anregungen für kleine Energien mittels RPA und finden ein neues Interbandplasmon, das aus
der Kombination von Dirac und Schrödinger Physik entspringt und in den jeweiligen Grenz-
fällen nicht existiert. Während es bereits im undotierten Fall zu finden ist, konkurriert es bei
endlicher Dotierung mit dem gewöhnlichen Intrabandplasmon. Die gebrochene Teilchen-Loch
Symmetrie in HgTe Quantentrögen ermöglicht eine Trennung der Beiden im Anregungsspek-
trum, für experimentell zugängliche Parameter in der richtigen Größenordnung für Raman-
oder Elektronenspektroskopie. Das wechselwirkende Anregungsspektrum des Bulk zeigt hier
klare Unterschiede zwischen dem topologisch trivialen und nicht-trivialen Regime. Ein noch
deutlicheres experimentelles Signal erwarten wir von der optischen Leitfähigkeit des Systems,
welche somit eine quantitative Möglichkeit bietet, zwischen den topologischen Phasen eines 2D
TIs mittels einer Bulk Messung zu unterscheiden.
In Kap. III untersuchen wir stark-wechselwirkende Systeme, die sich in einem geordneten,

Quanten-Hall-Ferromagnetischen (QHFM) Zustand befinden. Dieser Zustand kann auch in
schwach-wechselwirkenden Systemen in einem starken magnetischen Feld auftreten. In diesem
Fall bilden die Elektronen flache Landau-Niveaus mit minimierter kinetischer Energie aus, so-
dass die Coulomb Wechselwirkung dominiert. Solche Systeme bilden die Klasse der Quanten-
Hall topologischen Isolatoren (QHTIs): TnT Zustände bei endlichem Magnetfeld, deren gegen-
läufige Randzustände nicht durch Zeitumkehr, sondern durch räumliche oder spin Symmetrien
geschützt werden. Infrage kommende Materialien sind 2D TIs wie HgTe Heterostrukturen
oder Graphen. Unsere Analyse fokussiert sich auf die Umgebung des topologischen Phasen-
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übergangs, in der sich das System in dem stark-wechselwirkenden QHFM Zustand befindet.
Hier kann die Physik sowohl des Bulks als auch die der Randzustände mittels des nichtlinea-
ren σ-Modells für den Ordnungsparameter beschrieben werden. Wir zeigen, dass eine effektive,
kontinuierliche U(1) Symmetrie für den topologischen Schutz sorgt. Ist diese Symmetrie erhal-
ten, bleibt die TnT Phase auch für starke Wechselwirkungen bestehen und die Randzustände
bilden eine helikale Luttinger Flüssigkeit. Diese kann durch das magnetische Feld stark beein-
flusst werden, sodass die effektive Wechselwirkungsstärke zwischen schwach wechselwirkend für
vernachlässigbares Feld, K ≈ 1, und stark wechselwirkend am topologischen Phasenübergang,
K → 0, variiert.
Im letzten Kap. IV erforschen wir, ob WSM- and drei-dimensionale TI-Phasen zeitgleich und

am selben Ort existieren können, mit einem hybriden Oberflächenzustand an der gemeinsamen
Grenzfläche. Ein entsprechender Austausch zwischen den Materialien kann durch Coulomb
Wechselwirkung oder eine räumliche Bandüberlagerung realisiert werden. Ein Tunnelkopp-
lungsansatz erlaubt es uns, den hybriden Oberflächenhamiltonian analytisch herzuleiten und
ermöglicht so eine detaillierte Analyse der Oberflächendispersionsrelation. Im Fall von spin-
symmetrischer Kopplung entstehen weitere Diracpunkte aus der Kombination eines einzelnen
Diracpunktes und eines Fermibogens. Bricht man die Spinsymmetrie durch die Kopplung ent-
stehen Bandlücken in der Oberflächendispersion und die ursprünglichen Diracpunkte werden
spinpolarisiert. Wir schlagen experimentelle Umsetzungen dieser hybriden Physik vor, z.B.
kompressiv verspanntes HgTe oder auch Heterostrukturen aus TI and WSM Materialien.
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Summary

The topic of this PhD thesis is the combination of topologically non-trivial (TnT) phases
with correlation effects stemming from Coulomb interaction between the electrons in a con-
densed matter system. Emphasis is put on both emerging benefits as well as hindrances, e.g.
concerning the topological protection in the presence of strong interactions.
The physics related to topological effects is established in Sec. 2. Based on the topological

band theory, we introduce topological materials including Chern insulators, topological insu-
lators (TIs) in two and three dimensions as well as Weyl semimetals (WSMs). Formalisms
for a controlled treatment of Coulomb correlations are presented in Sec. 3, starting with the
topological field theory (TFT). The Random Phase Approximation (RPA) is introduced as a
perturbative approach, while in the strongly interacting limit the theory of quantum Hall fer-
romagnetism (QHFMism) applies. Interactions in one dimension are special, and are treated
through the Luttinger liquid description. The section ends with an overview of the expected
benefits offered by the combination of topology and interactions, see Sec. 3.3.
These ideas are then elaborated in the research part. In Chap. II, we consider weakly inter-

acting two-dimensional (2D) TIs, described by the Bernevig-Hughes-Zhang (BHZ) model. This
is applicable, e.g., to quantum well (QW) structures made of HgTe/CdTe or InAs/GaSb. The
bulk band structure is here a mixture stemming from linear Dirac and quadratic Schrödinger
fermions. We study the low-energy excitations in RPA, where a new interband plasmon
emerges due to the combined Dirac and Schrödinger physics, which is absent in the sepa-
rate limits. Already present in the undoped limit, one finds it also at finite doping, where it
competes with the usual intraband plasmon. The broken particle-hole (p-h) symmetry in HgTe
QWs allows for an effective separation of the two in the excitation spectrum for experimen-
tally accessible parameters, in the right range for Raman or electron loss spectroscopy. The
interacting bulk excitation spectrum shows here clear differences between the topologically
trivial (TT) and TnT regime. An even stronger signal in experiments is expected from the
optical conductivity of the system. It thus offers a quantitative way to identify the topological
phase of 2D TIs from a bulk measurement.
In Chap. III, we study a strongly interacting system, forming an ordered, quantum Hall

ferromagnetic (QHFM) state. The latter can arise also in weakly interacting materials with
an applied strong magnetic field. Here, electrons form flat Landau levels (LLs), quenching
the kinetic energy such that Coulomb interaction can be dominant. These systems define the
class of quantum Hall topological insulators (QHTIs): TnT states at finite magnetic field,
where the counter-propagating edge states are protected by a symmetry (spatial or spin) other
than time-reversal (TTT ). Possible material realizations are 2D TIs like HgTe heterostructures
and graphene. In our analysis, we focus on the vicinity of the topological phase transition,
where the system is in a strongly interacting QHFM state. The bulk and edge physics can be
described by a nonlinear σ-model for the collective order parameter (OP) of the ordered state.
We find that an emerging, continuous U(1) symmetry offers topological protection. If this
U(1) symmetry is preserved, the TnT phase persists in the presence of interactions, and we
find a helical Luttinger liquid at the edge. The latter is highly tunable by the magnetic field,
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where the effective interaction strength varies from weakly interacting at zero field, K ≈ 1, to
diverging interaction strength at the phase transition, K → 0.
In the last Chap. IV, we investigate whether a WSM and a three-dimensional (3D) TI

phase can exist together at the same time, with a combined, hybrid surface state at the joint
boundaries. An overlap between the two can be realized by Coulomb interaction or a spatial
band overlap of the two systems. A tunnel coupling approach allows us to derive the hybrid
surface state Hamiltonian analytically, enabling a detailed study of its dispersion relation. For
spin-symmetric coupling, new Dirac nodes emerge out of the combination of a single Dirac node
and a Fermi arc. Breaking the spin symmetry through the coupling, the dispersion relation is
gapped and the former Dirac node gets spin-polarized. We propose experimental realizations
of the hybrid physics, including compressively strained HgTe as well as heterostructures of TI
and WSM materials, connected to each other, e.g., by Coulomb interaction.
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kB Boltzmann constant, kB = 1.380 . . . · 10−23 J/K

h̄ reduced Planck constant, h̄ = 6.626 . . . · 10−34/(2π) Js, usually set to 1

e positive elementary charge, e = 1.602 . . . · 10−19 As

e Euler number

ε0 dielectric constant, ε0 = 8.854 . . . · 10−12 As/Vm

B magnetic field

lB magnetic length, lB =
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Ek dispersion relation; energy as a function of momentum k

Eµk Eµk = Ek − µ; dispersion relation, normed to chemical potential

G reciprocal lattice vector

a lattice constant, usually set to 1

F Berry curvature

A Berry connection or electromagnetic vector potential

γc Berry phase

Θ time-reversal operator, Θ = e−iπSyK for spinful particles, Θ = −iσyK (Θ = K)
for spin 1/2 (1)

K complex conjugation operator

P spatial inversion operator, eigenvalues ξm of P give the parity

ξm parity eigenvalues

Λa time-reversal invariant momentum

σxy Hall conductance
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χ chirality

n↓, n↑, nM spin and mirror Chern numbers

A (k, ω) spectral function

gs spin degeneracy factor, gs = 2

εr background dielectric constant

α effective Dirac fine-structure constant

χnn density-density response function

χ0 Lindhard response function

ΠR polarization function

Fλ,λ
′

k,k′ overlap function

vq bare Coulomb interaction energy, v (r) = e2

4πε0
1
r , in 2 dimensions vq = e2

2ε0
1
q

A,B, C,D,M parameters of the BHZ model, Eqs. (2.38) and (4.1)

A,B, C,M parameter functions of the Bi2Se3 model, Eqs. (2.57) and (9.1)

q0 = A
|B| BHZ model intrinsic momentum scale

E0 = Aq0 BHZ model intrinsic energy scale

ωp plasma frequency

Ω = ω
E0

dimensionless frequency

X = k
q0

dimensionless momentum

γ imaginary part of the plasma frequency

Γ = γ
E0

dimensionless imaginary part of the plasma frequency

f (E) Fermi-Dirac function, f (E) = 1
eβ(E−µ)+1

β = 1
kBT

inverse temperature

β̄ = E0
kBT

dimensionless inverse temperature

Π polarization function or canonically conjugate momentum to φ in the Luttinger
description

L L Lagrangian and Lagrangian density

S action, S =
∫

dtL

v Luttinger velocity

K Luttinger interaction parameter

γW parameter switches between type I and II Weyl semimetal for |γW | ≶ 1
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Acronyms

TI topological insulator

TCI topological crystalline insulator

NI normal insulator

TT topologically trivial

TnT topologically non-trivial

WSM Weyl semimetal

QSH quantum spin Hall

QH quantum Hall

IQH integer quantum Hall

TTT time-reversal

III inversion

p-h particle-hole

e-h electron-hole

TFT topological field theory

CS Chern-Simons

TRIM time-reversal invariant momentum

QW quantum well

2DEG two dimensional electron gas
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1. Introduction

Two of the most useful concepts in physics are the principles of symmetries and scales. Quite
reasonably, on different length scales different laws of physics dominate, e.g. quantum me-
chanics on the microscopic scale, while general relativity becomes relevant on the cosmological
scale. The breaking of symmetries is directly related to this concept of scales. According
to the Grand Unification Theory and the Standard Model, the universe is expected to have
been in an ultra symmetric state at very high energies shortly after the Big Bang. Due to its
expansion and corresponding lowering of its average energy density, the universe went through
a series of phase transitions in which the symmetries were broken one after the other, arriving
finally in the universe we live in today.
The same concepts can be used in many-body physics, see e.g. Ref. [Vol03] for a comparison

between condensed matter and high-energy physics. The topic of this thesis can be assigned to
the field of mesoscopic physics. Here, we are interested in quantum mechanical effects which
occur not in the nanometer range of the individual atom, but on larger scales, usually in the
range of micrometers. Naturally, this is the length scale of modern electronics, making this
field not only interesting but also very useful for real life applications. One trend is here the
shrinking of existing structures down to the nanometer level. For modern transistors with
their 14 nm gates, the way down to the single-electron transistor does not seem so far fetched
anymore.
In this thesis, we want to consider a different approach, not thinking about the effects that

occur when one shrinks large structures to smaller scales, but consider what happens if one
adds lots of small objects together. The emergent physics, as described by P. W. Anderson
in his article “More Is Different” [And72], can be fundamentally different from the physics of
the single particle. In our everyday life, there are only very few of these emergent physical
effects based on quantum mechanics, that survive on our macroscopic scale. Magnetism,
resulting from the quantum mechanical spin of the particles, is probably the most common
and useful one. Superconductivity also works on large length scales as proven in modern
particle accelerators, but has problems with higher temperatures. Whether there will be
superconducting materials at room temperature and ambient pressure is still an open question.
Both of these effects correspond to a broken symmetry, the magnet breaks rotational symmetry
due to the fixed direction of its magnetization, while the BCS superconductor breaks the
conservation of particles. In this thesis, we will consider topological phases, which might
belong to this exclusive class of macroscopic quantum mechanical effects in the near future.
Interestingly, they do not break symmetries, but actually rely on certain ones, like time-
reversal (TTT ) or inversion (III) symmetry, for their protection.

While the underlying physics of such topological insulators (TIs) is quite profound and
will be elucidated below, there is a straight forward working definition. TIs are phases of
matter with insulating bulk and conducting surface states. The surface has unique properties,
including e.g. spin-momentum locking, see Fig. 1.1, and suppressed backscattering, and has to
exist due to topological reasons. It is protected by the symmetries of the system and the size
of the bulk band gap, such that there is no fundamental reason why such topological materials

1



1. Introduction

Figure 1.1. Two-dimensional TI (Quantum well) with helical edge states. In these channels, the spin
of the electron is correlated with its direction of motion, such that spin-up electrons move clockwise
and spin-down electrons move anti-clockwise along the edge. From Ref. [KWB+07]. Reprinted with
permission from AAAS.

should not work at room temperature. The perfect conduction of the edge channels as well as
their spin polarization could be interesting aspects for the future of information technology.
The physics of TIs and their semimetallic counterparts, the Weyl semimetals (WSMs), is

quite well understood by now. Interestingly, although these topological effects clearly belong
to the emergent physics as described by Anderson, their theoretical description is done on a
single-particle level. In this thesis, we want to extend these theories to include correlation
effects. Such interaction effects in condensed matter are notoriously difficult to treat, as
kinetic and Coulomb energy are often on the same order of magnitude. This makes the field of
correlated topological materials very interesting and challenging. Depending on the considered
material and method, the inclusion of correlation effects results in qualitatively new effects or
in quantitative changes to the physics of the system. But as Marx noted: merely quantitative
differences, beyond a certain point, pass into qualitative changes. In this sense, the combination
of topological and correlation effects bears many possibilities where indeed more is different.

Organizational matters

This thesis is structured into four chapters. Chap. I gives an introduction to topological
and interacting matter and is based on the literature. At the beginning of each section, a
detailed list of the used references is given for further studies. The following Chaps. II-IV are
based on the published articles [JMT14a, JMT14b, KJT16, JT17]. These papers have been
considerably reworked and restructured for this thesis, but were also partly adapted without
extensive reformulation.
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Topological Matter
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The study of topological effects in condensed matter systems is a fruitful endeavor. It began
with the investigation of topological insulator (TI) systems based on non-interacting theories,
but now also includes gapless topological phases as well as correlated topological materials.
Faced with this huge variety, giving a comprehensive description of topological matter is out
of the question. In this introductory chapter we will therefore focus on topics that are of direct
importance for the following main research chapters II-IV. Still, we have to be brief on each
separate topic. For readers interested in additional informations, we always give the specific
references the paragraphs are build on at the beginning of each section.
This chapter comprises two main sections. The first one, Sec. 2, gives an introduction to

topological effects and classification. It is mostly based on the uncorrelated topological band
theory, introducing concepts such as Berry phase, Chern and Z2 invariants. All topological
phases that are relevant for later chapters are established, including two-dimensional (2D) and
three-dimensional (3D) TIs as well as Weyl semimetals (WSMs). Additionally the correspond-
ing low-energy models are derived, which will be used in chapters II-IV.
The second part, Sec. 3, gives an introduction to correlation effects and how to treat them.

The topological field theory (TFT) is introduced as a complementary theory to the topological
band theory, working also in the correlated regime. Theories about how to treat interaction
effects in the electron gas in a controlled fashion are covered, again with a focus on the
formalisms relevant for the later chapters. This section closes by motivating why the connection
of correlation effects with topology is interesting and fruitful. This bridges the gap between
the introductory part of this thesis, Chap. I, and the research part in chapters II-IV.
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2. Topology and Band Theory

Topological concepts form the basis of this thesis, so it is rather natural to start off by examin-
ing how topology enters condensed matter physics. In most of this section, we will rely on the
help of a topological band theory. This may seem rather odd for a thesis entitled “Correlated
Topological Materials”, as band theory, by definition, does not include any correlation effects.
Yet it is an easy and intuitive way to understand the connection of topology and condensed
matter physics in most of its facets. As the majority of topological materials investigated so
far feature only weak or no correlation effects, band theory seems like a reasonable starting
point. Correlation effects will then be introduced in Sec. 3, and their influence on topology is
the central topic of chapters II-IV.
This section is organized as follows. In Sec. 2.1 we introduce topology as the theory of

continuity. We provide examples where topology appears in general life and in physics in
particular. A more mathematically solid definition is provided as well. Topological band
theory is explained in Sec. 2.2. Topology enters band theory through the geometrical Berry
phase. The connection of topology to symmetries and invariants like Chern and Z2 invariants
is highlighted. The effect of bulk topology on the surface physics is explained as well as the
topological classification according to the so-called 10-fold way. The following sections are
then about how these invariants relate to physical effects in real system. Sec. 2.3 explains the
connection of the Chern number to the integer quantum Hall (IQH) effect. Sec. 2.4 introduces
TIs in 2 and 3 spatial dimensions. This includes the quantum spin Hall (QSH) insulator, where
HgTe quantum wells (QWs) serve as the prime example, as well as weak and strong 3D TIs.
Appropriate models are given which will be used in the following chapters. This section closes
with establishing WSMs as a new addition to the zoo of topological matter in Sec. 2.5.

2.1. Topology - Theory of Continuity

Topology is a general concept that goes well beyond its application in condensed matter physics.
In abstract terms, it is the study of properties of a space, that are preserved under continuous
transformations. In condensed matter physics, this space is usually the reciprocal k-space,
described by a (topological) band theory. Yet the tools and concepts needed for classifying
band structures of materials according to their topological properties appear also in very
different contexts. Thus before we dive into the depths of a topological band theory, in this
section, we will first motivate the concept. We begin with a short discussion in Sec. 2.1.1 of
descriptive examples of topological concepts in everyday life. The idea of topology as a theory
of continuity is put on a mathematical basis in Sec. 2.1.2. We close in Sec. 2.1.3 by giving an
overview of where in physics topology plays a role and why it appears in condensed matter
but not in high-energy physics.
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2. Topology and Band Theory

(a) (b)

Figure 2.1. (a) Sphere with g=0. (b) Torus with g=1. Also called unknot. (c) and (d) Trefoil knots,
left- and right-handed.

2.1.1. Examples from Everyday Life
This section has the purpose of providing an intuition about topological classification without
the use of any math. The working principle is the following: two objects are topological
equivalent, if they can be transformed into one another by a smooth transformation. This
sounds a bit vague, but we can certainly state that for example neither cutting nor gluing
are smooth transformations. Equivalent objects have some kind of characteristic feature that
stays unchanged if the object is smoothly deformed. Such a resilient property can usually be
described by an invariant that does not change in the transformation. We will now have a look
at some examples. The section is based on Ref. [FM13] Chap. 1, Sec. 2.1 and Ref. [wik17a].

Sphere and Torus

We begin by taking a bit of modeling clay into our hands and form a sphere out of it like in
Fig. 2.1 (a). Now, by smoothly deforming it, we can form a disk or a bowl out of this sphere.
Yet, to get a doughnut like in Fig. 2.1 (b) one needs to punch a hole into the middle of the
sphere - this is not considered a smooth deformation. So we can conclude that the number
of holes in an object is an invariant that does not change under smooth deformations. In
mathematics, the number of holes is called the genus g. It is related to the Euler characteristic
χ and can be calculated for boundary-less surfaces S with the Gauss-Bonnet theorem

g = 1− 1
2χ, χ = 1

2π

∫
S
KdA (2.1)

as an integral over the Gaussian curvature K.

Annulus and Möbius Strip

As another simple example, take a strip of paper and glue the ends together. After glueing,
the outcome should look like the objects shown in Fig. 2.2. The number of twists that one
introduced into the strip is an invariant - without cutting the strip again it cannot be changed,
just shifted around the loop by smooth deformations.

Unknot and Trefoil Knot

The last example from handicraft work is the tying of knots into a rope. Here actually several
invariants can be defined to classify knots, including the already known to us genus as well as
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Figure 2.2. (left) Annulus B0 with no twist and (right) Möbius strip B1 with a single twist.

(b)

Figure 2.3. (a) Map of the center of Königsberg, indicating the 4 main parts of the city, separated
by the river and connected by seven bridges. (b) Connected graph description of the same problem.
Figure (a) adapted from Ref. [wik17b].

the number of crossings of the rope. An example is the trefoil knot shown in Fig. 2.1 (c) and
(d). It comes in two versions, the left-handed and right-handed one. They are distinguished by
their combinations of over and under crossings and are topological distinct. Such a handedness
will appear again in the topological band theory, e.g. when we talk about helicity in Sec. 2.4.1
or chirality in Sec. 2.5.

Königsberg Bridge Problem

Our last example is the problem of the seven bridges of Königsberg. This notable mathematics
problem was solved by Leonhard Euler in 1736 and can be considered as one of the foundations
of graph theory. This section is based on Ref. [wik17b] and Ref. [Eul35].

The problem considers the city of Königsberg. The Pregel River divides the city into different
parts, including two large islands, which are overall connected by seven bridges, see Fig. 2.3
(a). The question is whether one can take a walk, during which one crosses each bridge once
and only once. Of course, all kinds of cheating, like taking a boat or only half-crossing of
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x f(x)

X Y

f : X → Y

Figure 2.4. Depiction of point x in set X and its image f (x) in set Y . The image of the blue
neighborhood of x fits into the neighborhood of Y, indicated by a black circle.

bridges, is ruled out. The start and end point can be arbitrary.
Euler proved that it is not possible, using topological reasoning for his solution. First, we

note that the precise path we take in the land mass is irrelevant. Only the sequence in which
we cross the bridges is important. Thus one can map the problem to a graph as depicted in
Fig. 2.3 (b), where only the nodes and edges are relevant. Now, for non-endpoints the number
of entering and leaving the node has to be equal, meaning the number of bridges should be
even. For start and end points, we need an additional connection, so here the number of
bridges should be odd. Looking at Fig. 2.3, all parts of the city are connected by an odd
number of bridges - the walk around the city can not be done by crossing each bridge only
ones.

2.1.2. Mathematical Definitions
We now have an intuitive feeling about invariant properties under smooth deformations. In
this section, we complement this feeling with the proper mathematical definitions. It is based
on Ref. [Bud11] Secs. 1.1f and Ref. [wik17a].

Definition of Topology

Topology is the theory of continuity. Interestingly, one does not need a metric for a proper
definition of continuity. We use a neighborhood U to define the continuous function f (x). For
a continuous function f , the image of the neighborhood of point x fits into the neighborhood
U around the image of f(x). If one considers a neighborhood like a small ball around a point,
see Fig. 2.4, this essentially means that a continuous function makes no jumps. A different
definition for continuity relies on open sets. An open set is a set which is a neighborhood of
each of its points. A function is then called continuous, if the preimage of any open set is
open.
With this we come now to the definition of a topology. A topology T on a set X is a family

of sets (set of sets) fulfilling three properties:

1. the empty set and X are elements of T

2. a union of elements of T is an element of T

3. an intersection of finitely many elements of T is an element of T

A topological space is defined by (X,T ). Elements of T are called open sets. Although one
does not need a metric for these definitions, if one has a metric it automatically defines a
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X Y

f :X → Y

Figure 2.5. Continuous function f that maps different points in X to the same point in Y . X can
be divided in disjunct subsets (blue ellipses), covered by neighborhoods (black circles).

topology. So one can think about a topology as a classification of elements of a set. This
classification can be made based on invariants.
Let us have a look at an example for such a topological invariant. Consider Fig. 2.5, where

many configurations in X are mapped by the continuous function f to the same point in Y .
Following our definition of continuity, the preimage of the single point in Y contains an entire
ball in X. Covering X with overlapping balls, we conclude that the function has to be locally
constant. The constant can be different on different disjunct subsets, depicted by dark blue
ellipses in Fig. 2.5. This picture has a direct physical application in the IQH effect, where
the conductance is quantized in multiples of e2

h . As conductivity is a continuous function
of the system parameters, we conclude that it is locally constant, invariant under smooth
changes to the system. The connected regions of parameter space are given by the regions
with a mobility gap (between the Landau levels (LLs)). Outside these regions, and at phase
transitions between them, the conductivity is not quantized.
One can distinguish between two types of maps, on which a decomposition into equivalence

classes can be done:
• homeomorphism: a continuous, bijective map, the inverse map is also continuous. Spaces
that are homeomorphic have the same topology. Example: doughnut to cup of tea.

• homotopy: continuous deformation of one map into another, leaving the boundary of the
domain fixed. It is not necesseraly invertible. Example: a solid sphere can be shrunken
to a point, but this is not invertible, thus not homeomorphic.

As an example, we classify the alphabet according to homeomorphism and homotopy.
• Homeomorphic: {A,R}, {B}, {C,G,I,J,L,M,N,S,U,V,W,Z}, {D,O}, {E,F,T,Y}, {H,K}, {P},
{Q}, {X}

• homotopic: {A,R,D,O,P,Q}, {B}, {C,E,F,G,H,I,J,K,L,M,N,S,T,U,V,W,X,Y,Z}
For classification based on homotopy, only the number of holes of the letter are important.
For the homeomorphic classification, the number of tails is important too, as they can not be
shrunken to a point and back in an invertible fashion. Properties of topological spaces that
are invariant under homeomorphisms are called topological invariants.

Twisted Products and Manifolds

Next we want to apply these concepts to the classification of manifolds. This will be relevant
for the application to physics, as topology enters physics via the underlying space of the wave
functions. This makes it obvious that topology is a global, not local, property of a system.
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U ⊂ R2S2

Ũ

Figure 2.6. Homeomorphic mapping of a region Ũ of a sphere S2 to the flat space U ⊂ R2.

A basic example of a trivial product is a ring S1 × 1 as shown in Fig. 2.2 (a). It is the
trivial product of a unit circle S1, called base manifold, and a unit interval 1, the fiber. The
total space, S1 × 1, is called a fiber bundle. A non-trivial fiber bundle is the Möbius strip,
Fig. 2.2 (b), which contains an additional twist of π, such that it can not be written as a trivial
product of two manifolds. Yet locally it can be parametrized like the trivial ring. Non-trivial
fiber bundles need always a base manifold that is not homotopic to a point, S1 in this example.
Next we have a look at a local parametrization. We take Ũ , a part of S2, and map it

homeomorphically to a flat piece of plane U ⊂ R2, see Fig. 2.6. In order to cover the entire
sphere, several patches are needed, as S2 is not homeomorphic to the plane. The single patches
are trivial fiber bundles. The non-triviality is introduced by transition functions in the overlap
regions. They model the twist by changing the fiber coordinates in a non-trivial fashion. For
the Möbius strip, this corresponds to a flip of the sign of the fiber coordinate.

2.1.3. Physics Overview

Topology has become an interesting part of condensed matter physics. Here we want to give a
brief overview why the study of topological properties of a system is interesting, what are the
most prominent effects and why they are somewhat restricted to condensed matter systems.
This section is based on Ref. [Bud11] Sec. 1, Ref. [FM13] Chap. 1, Sec. 1, Ref. [BH13] Sec. 1 and
Ref. [She13] Secs. 1.1f. It serves as a physical introduction for the following, more technical,
sections.
An important and successful paradigm in condensed matter is the classification of matter

according to its ordered phases. Some phases can be characterized by a local, spontaneous
breaking of symmetries. In these cases one defines a local order parameter, which is finite in
the ordered phase and zero otherwise. A prominent example is the finite magnetization of a
ferromagnetic phase. According to Landau theory of phase transitions, one can expand in the
order parameter as it is supposed to be small around the transition. The different orders in
the parameter then characterize different sorts of phase transitions.
In contrast to this, there are other phases involving no broken symmetries, which makes

them more subtle. An example is the IQH effect, see Sec. 2.3. Its quantized conductance is
insensitive to local fluctuations and smooth changes in material parameters. Only a closing
of the gap can change the conductivity, and we addressed the link to topology already in
Sec. 2.1.2.
This robustness is a key property of topological effects, which makes them interesting for

applications in physics. Topology offers a global characterization of systems as it is a property
of the underlying space of the wave functions. Compared to microscopic theories which depend
on all kinds of material parameters, this provides robustness to topological effects. Topology
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is usually protected by global symmetries and different topological states can be classified by
global invariants, much like in real space as described in Sec. 2.1.1, but now in reciprocal
k-space. This link between topology and global symmetries of a system led to the generation
of a periodic table of topological matter, given in Sec. 2.2.5.
A powerful tool for classification of crystals is the topological band theory, discussed in the

following Sec. 2.2. The topological information is hidden in the geometric phase called Berry
phase associated with each band. This implies that topology is encoded in the eigenstates,
not the energy spectrum, of a crystal. Invariants like Chern numbers and Z2 invariants are
given as integrals over this Berry phase and allow for a classification of insulators according to
preserved symmetries. The trivial insulator serves here as a reference system. It is defined as
an insulator which adiabatically flows into the atomic limit when the hopping is slowly turned
off.
Experimentally relevant are topological effects due to their robustness against local pertur-

bations. A perfectly quantized conductance as a basis for a system of units or error protected
quantum computing based on nonlocal qubits are two of the more prominent ideas for prac-
tical relevance of topology. While the bulk of TIs is still insulating and thus quite boring in
practice, the gapless surface states are what makes TIs interesting for applications.
The presence of edge states can be understood from an important, experimentally verified,

example, the IQH effect, see Sec. 2.3. A strong magnetic field perpendicular to a two dimen-
sional electron gas (2DEG) leads to LLs with quantized energies (n+1/2)ωc, where ωc = eB/m
and m the particle mass. At the edge, the local potential pushes the LLs through the Fermi
energy, which leads to an edge conductance proportional to the number of LLs, the filling factor
ν. The QSH effect, see Sec. 2.4, can be understood on a similar basis. Instead of a magnetic
field, a strong spin-orbit coupling (SOC) is present in the system. Now electrons with different
spin feel different effective magnetic fields. This leads to helical edge states where spin and
momentum are coupled. The consequence thereof can be a finite spin Hall conductance.

As a final remark of this section, we consider the question why all these effects only appear in
condensed matter systems, not in high-energy physics. Thus why is quantum electro dynamics
(QED) always topologically trivial, while condensed matter is sometimes not. Wave functions
are defined up to a phase,

{
eiφψ (x) |eiφ ∈ U (1)

}
at a point x ∈ R4 for QED. R4 is a trivial,

contractible space, which implies that a global gauge can be chosen. In condensed matter, the
wave functions live in k-space in the Brillouin zone (BZ). The BZ is periodic, and thus k-space
is given by a torus T d, which is a non-trivial manifold. Wave functions are made up of the
Bloch functions |uk〉,

{
eiφ|uk〉|eiφ ∈ U (1)

}
. Here the gauge field is given by Berrys connection

Sec. 2.2.2, which can have a non-trivial character.

2.2. Topological Band Theory
In accordance to the idea of classifying matter by its phase, discussed in Sec. 2.1.3, we are
now interested in a topological classification of matter. This is a very complicated task in
general. In this section we restrict ourselves to matter describable by band theory which
simplifies the classification considerably. The drawback is that all systems in which Coulomb
interaction plays a dominant role fall not in this category. For these systems, we will discuss
the complementary TFT in Sec. 3.1.
A band insulator can be described in the independent electron approximation, its ground

state is represented by a Slater determinant. We will see that two insulators are topologically
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equivalent if their Hamiltonians can be changed into one another while the system stays in the
ground state. As an insulator has a band gap, the transformations can always be done slow
enough as not to excite the system. Such a process is called adiabatic. Topological transitions
then need a band closing during the transformation. It is the only way to change topological
properties of a system, within the limitations given by band theory. The band gap also ensures
that weak interaction effects to not alter the topological classification. Interacting states that
can be adiabatically connected to noninteracting electrons have the same topology, as will be
shown in Sec. 3.1. The limitation of band theory to noninteracting electrons are thus not as
severe as one might fear.

We begin in the following with a short repetition of band theory in Sec. 2.2.1. The topological
aspects are introduced in Sec. 2.2.2 via the Berry phase. The presence of time-reversal (TTT )
symmetry deepens the topological classification as discussed in Sec. 2.2.3. Topological systems
have gapless edge states at the boundaries, which follow directly from a change in topology
at interfaces, see Sec. 2.2.4. This section concludes with the classification table of TIs on the
basis of the Altland-Zirnbauer symmetry classes in Sec. 2.2.5.

2.2.1. Band Theory

We recap shortly the basis of band theory, i.e. Bloch theorem. This section is based on
Ref. [FM13] Chap. 1, Sec. 2.2 and Ref. [She13] Secs. 3.1f & 4.1.
As a starting point, the considered physical material is assumed to be crystalline and ef-

fectively noninteracting. It has translational symmetry, which allows for a labeling of single-
particle states by crystal momentum k. Bloch theorem implies that the eigenstates can be
written as

|ψn,k (r)〉 = eik·r|un,k (r)〉. (2.2)

|un,k (r)〉 is a cell periodic eigenstate of the Bloch Hamiltonian H (k) = e−ik·rH (r) eik·r, thus

H (k) |un,k (r)〉 = En,k|un,k (r)〉. (2.3)

The eigenvalues En,k and eigenvectors |un,k (r)〉 define the band structure. These bands are
filled up from the bottom, where the Pauli principle dictates that every state can only be filled
once. Insulators are characterized by an energy gap at the Fermi energy, separating the highest
occupied band, called valence band, and the lowest empty band, called conduction band.
Translational symmetry implies H (k +G) = H (k) with the reciprocal lattice vector G.

Thus crystal momentum is defined in the periodic BZ up to translations by a multiple of G,
k ≡ k + G. This corresponds to the topology of a torus T d in d dimensions. The band
structure can be seen as a mapping from the BZ torus to the space of Bloch Hamiltonians
with an energy gap.
How can one obtain the band structure of a crystal in practice? A powerful method is given

by tight binding calculations. One considers electrons to be almost localized around their
individual atoms in a lattice. Only the outer electron orbits overlap, providing a possibility
for the electrons to jump from one atom to the next, see Fig. 2.7. The overlapping orbitals
can then be described by delocalized bands.
Often one is only interested in the physics close to a special point in the BZ. In this case

it can make sense to derive an effective continuum model based on an expansion in k-space
via the k · p theory. These continuum models capture the essential low-energy physics if the
band structure is gapped and thus effectively inert in the rest of BZ. In this thesis, we will
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Figure 2.7. Red dots depict the positive ions of a lattice, the blue circles the orbits of the outer
electrons. Due to an overlap of the electron orbits, bands form and electrons can jump from one atom
to the next.

rely heavily on these continuum models. An easy way to switch from a continuum model to a
lattice regularized one is the substitution

k → 1
a

sin (ka) , k2 → 2
a2 (1− cos (ka)) (2.4)

with the lattice constant a.
Translational symmetry of a crystal makes it possible to use Bloch theorem. Additional

real space symmetries can greatly facilitate the derivation of effective, low-energy models. By
classifying orbitals according to there type, s, p, ..., and total orbital momentum, group theory
in combination with k · p theory makes it possible to derive continuum models including all
symmetry allowed terms. The free parameters are then determined from a fit to experimental
or ab-initio band structures. Most of the models used in this thesis, see Sec. 2.4.1, Sec. 2.4.2
and Sec. 2.5, were obtained this way.

2.2.2. Berry Phase and the Chern Invariants
We are now in a position to understand where topological arguments enter band theory. This
is done by having a closer look at the phase factors an electron in a Bloch band picks up during
time evolution. We introduce the Berry phase and discuss its quantization in terms of Chern
invariants. This section is based on Ref. [BH13] Secs. 2 & 3.0, Ref. [She13] Sec. 4.2 & App. A
as well as Ref. [FM13] Chap. 1, Sec. 2.4.

A wave function in quantum mechanics is defined up to a phase, such that the substitution
|un,k (r)〉 → eiφ(k)|un,k (r)〉 with the phase φ (k) keeps the eigenenergies, Eq. (2.3), invariant.
The eigenenergies are therefore gauge independent, as observables should be.
Let’s have a look at the time evolution of the system. Consider a Hamiltonian dependent

on one parameter R (t), which follows a slow cyclic evolution from t = 0 to t = T such that
R (0) = R (T ), with T the period. In parameter space this corresponds to a closed path C.
The instantaneous eigenstate basis of H (R (t)) is defined by

H (R (t)) |un (R (t))〉 = En (R (t)) |un (R (t))〉. (2.5)

The phase of the eigenstate is not yet fixed, and it can be R (t) dependent. The phase function
should be smooth and single valued along the path. If this is not possible globally, then we
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2. Topology and Band Theory

have to define it on several overlaying patches. The full time evolution of the quantum state
|Ψ (t)〉 is governed by

ih̄∂t|Ψ (t)〉 = H (R (t)) |Ψ (t)〉. (2.6)
In the adiabatic limit, the system stays in the instantaneous eigenstate. Therefore quantum
state and eigenstate can be related by

|Ψ (t)〉 = eiγc(t) exp
(
− i
h̄

∫ t

0
dt′En

(
R
(
t′
)))
|un (R (t))〉 (2.7)

where the geometric phase γc (t), called Berry phase, is defined by

∂tγc (t) = i〈un (t)|∂t|un (t)〉. (2.8)

It originates from the fact that not only the eigenenergies change under time evolution, but
the instantaneous eigenbasis as well. One can rewrite this as a path integral in k-space like

γc =
∮
C
An · dk =

∫
S
Fn · dS (2.9)

with the vector potential called Berry connection

An = i〈un,k|∇k|un,k〉, (2.10)

the surface S and the Berry curvature Fn = ∇ × An. An changes under a gauge transfor-
mation like An → An −∇kφ (k), but the Berry phase is a gauge invariant quantity, formally
corresponding to a magnetic flux. The Berry curvature is the equivalent magnetic field and
can be written in the gauge invariant form

Fn = i
∑
m 6=n

〈un,k|∇kH (k) |um,k〉 × 〈um,k|∇kH (k) |un,k〉
(En − Em)2 . (2.11)

It follows directly from the anticommutativity of the cross product that the sum of Berry
curvature over all energy levels is 0. The denominator of Eq. (2.11) goes to 0 for degenerate
bands, indicating that the Berry curvature has a monopole in this case.
The physical consequences of the Berry phase depend on the dimension and whether the

system is a metal or insulator. According to Eq. (2.9) the Berry phase can be written as an
integral over a closed curve (one-dimensional (1D) manifold), which is relevant for insulators in
1D and the Fermi surfaces of 2D metals. For the purposes of this thesis, the representation of
the Berry phase as a surface (2D manifold) integral over the Berry curvature is more relevant.
We apply this to insulators in 2D, see Sec. 2.4.1, and the Fermi surfaces of 3D metals. As an
example for the latter case, in InfoBox 2.1 the Berry phase of a 3D Dirac cone is discussed.
One finds that the Chern number, given by

n = 1
2π

∫
S
F · dS (2.15)

for a closed surface S, is always quantized.
The Berry phase is not just an abstract tool, it is straightforward to think about an ex-

perimental setup where it can be directly measured. Consider a beam of particles prepared
in spin state n. The beam is split and runs along two different paths. On one, a constant
magnetic field B is applied. On the other, B is constant in magnitude but slowly varies in
direction, subtending the total angle γc. Combine the beams again, they will have acquired a
phase difference that leads to the diffraction pattern in the intensity of∣∣∣1 + eiγc

∣∣∣2 = 4 cos2 (γc/2) . (2.16)
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2.2. Topological Band Theory

Consider the two level Hamiltonian

H (k) = d (k) · σ. (2.12)

It corresponds to a 3D Dirac cone for d = k. In this case, we have ∇kH = σ and with the
help of Eq. (2.11) we find

FDirac± = ∓ k

2 |k|3
. (2.13)

± stands for the positive and negative energy part of the Dirac cone. This shows that
Dirac points are monopoles of Berry curvature. Integrating over a 3D sphere containing the
monopole gives a Berry phase of

γDiracc = ∓2π (2.14)

such that the Chern number, Eq. (2.15), is an integer.

InfoBox 2.1. Berry phase of a 3D Dirac cone

2.2.3. Time-reversal Symmetry and the Z2 Invariant
Symmetries are essential for the endeavor to classify matter. Besides the spatial symmetries
of a crystal, in this section we have a look at the discrete symmetry of time-reversal (TTT ). It
will prove a key ingredient in the understanding of topological properties of condensed matter
systems. The section is based on Ref. [FM13] Chap. 1, Sec. 5.2 & Chap. 2, Sec. 2.1, Ref. [BH13]
Secs. 4 & 10 & 12 as well as Ref. [She13] Sec. 4.8f & App. B. It provides the basis for the
discussion of TIs in Sec. 2.4.

Time-reversal Symmetry

The operation TTT reverses the arrow of time, t→ −t. The corresponding anti-unitary operator
will be denoted by Θ, and the Hamiltonian of a TTT symmetric system should commute with it,

[H,Θ] = 0. (2.17)

A standard way of breaking TTT symmetry is by applying an external magnetic field B to the
system, which does not reverse its direction under Θ.

In the special case of spin 1 or 1/2 particle, the TTT operator can be represented by the
anti-unitary operator

Θ = K; spin 1
Θ = exp (−iπSy/h̄)K; spin 1/2.

(2.18)

Here Sy is a spin operator and K the complex conjugation operator. Thus spin 1/2 particles
gain an additional rotation of their spin by π around the y-axis. One immediately finds Θ2 = 1
(Θ2 = −1) for spin 1 (1/2) particles. This is due to the fact that one needs a total rotation of
4π to bring back a spin 1/2 particle to its original state. For TTT invariant Bloch Hamiltonians
one finds

ΘH (k) Θ−1 = H (−k) (2.19)

which can be motivated from the substitution k = −ih̄∇. Thus Θ maps the Hamiltonian at k
to the one at −k.
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Figure 2.8. Square lattice examples. (a) In 2D, the BZ has 4 TRIMs Λa. (b) In 3D, 8 TRIMs can
be defined. Due to TTT symmetry, only half of the BZ needs to be considered in each principal direction.

In the BZ, there are special time-reversal invariant momenta (TRIMs) where k = −k
mod G. In these cases, the mapping of Eq. (2.19) leads to the exact same Hamiltonian. For
square lattices, which will serve as an example in the following, these points are k = 0 and
k = ±π/a along each principal axis, see Fig. 2.8. In TTT invariant systems, one needs only to
look at 1/2d of the BZ, as the other part follows from Eq. (2.19).

Kramers Theorem

Kramers theorem states that eigenstates of a TTT invariant Hamiltonian of half-integer spin
particles are at least twofold degenerate. This is the case because the state |χ〉 is different
from state Θ|χ〉. Otherwise one could write Θ|χ〉 = c|χ〉 with constant c, which would lead,
with Θ2|χ〉 = |c|2 |χ〉, to the contradiction |c|2 = −1. Kramer’s partners are usually split
according to Eq. (2.19) into a state at k and one at −k. Only at TRIMs is the spectrum
necessarily degenerate.
Without SOC in the system, Kramer’s theorem corresponds just to the spin degeneracy. Yet

it is also valid with SOC when no clear spin can be defined, which makes it more interesting. As
an immediate consequence of the theorem, scattering between Kramer’s partners is forbidden,
such that

〈Θψ|H|ψ〉 = 0 (2.20)

for a TTT invariant Hamiltonian H. It also follows that a TTT invariant insulator needs at least
four bands for spin 1/2 electrons, as a pair of bands will always be degenerate at the TRIMs
in the BZ.

Z2 Invariant in 2D

All systems with TTT symmetry have zero Chern number n = 0. In these systems, however,
an additional Z2 invariant can be defined that serves as a subdivision of the class of n = 0
systems. As a physical consequence of a finite Z2 = 1, one finds a Kramers pair at the edge of
a finite system, see Sec. 2.2.4.
We now derive a formula for the Z2 invariant in 2D systems. We begin by defining a unitary
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2.2. Topological Band Theory

matrix from occupied Bloch functions like

ωmn (k) = 〈um,k|Θ|un,−k〉. (2.21)

As Θ is anti-unitary with Θ2 = −1, it follows that ωT (k) = −ω (−k). In 2D there are four
special TRIMs, denoted Λa, with k = −k at which ω (Λa) is antisymmetric. The determinant
of an antisymmetric matrix is the square of its pfaffian. The pfaffian itself is gauge dependent
for a U(1) gauge transformation. A gauge invariant quantity can be defined by

δa = Pf [ω (Λa)] /
√
Det [ω (Λa)] = ±1. (2.22)

If we define |um (k)〉 continuously throughout the BZ, which is possible due to the zero Chern
number, the square root can be specified globally. We then define the Z2 invariant ν as

(−1)ν =
4∏

a=1
δa (2.23)

with ν = 0 or ν = 1.
The calculation of ν is much simpler in systems with additional symmetries. For a spin

symmetry where e.g. Sz is conserved, independent Chern numbers n↑ and n↓ for spin up and
down can be defined. TTT symmetry dictates that n↑ + n↓ = 0 and with nσ = (n↑ − n↓) /2 the
Z2 invariant is given by

ν = nσ mod 2. (2.24)

In crystals that have inversion (III) symmetry, another simplification is possible, following
Ref. [FK07]. In such systems, Bloch states are also parity eigenstates at the TRIMs Λa.
Thus for the III operator P one finds P |um,Λa〉 = ξm|um,Λa〉 with eigenvalues ξm (Λa) = ±1.
The product over m Kramers pairs (the two bands in a Kramers pair have the same parity
eigenvalue) of occupied bands

δa =
∏
m

ξm (Λa) (2.25)

can then be used to determine ν via Eq. (2.23).
In all these definitions, SOC has not played an obvious role. Yet it is needed to ensure the

presence of a bulk gap. For an III and TTT invariant system without SOC, the bulk gap needs to
close somewhere in the BZ.

Z2 Invariant in 3D

Based on the definitions of the Z2 invariant in 2D from the last section, the next step is to
generalize this to 3D.
Consider 2D planes in the 3D BZ along the principal axis. We denote these planes by xy,

yz and xz. In all of these planes, we look at the effect of TTT on the third momentum. As
an example, we choose kz for the xy plane. Only planes with kz = 0 and kz = ±π/a are TTT
symmetric, as they are projected onto themselves for kz → −kz. Therefore two Z2 invariants
per plane can be defined, which makes 6 in total for the 3 planes. Due to interdependencies, this
can actually be reduced to 4. If an invariant changes between kz = 0 and kz = π/a, the system
is a strong TI, otherwise a trivial insulator or weak TI. Again due to the interdependencies,
the change in ν has to be the same for all three principal directions.
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Figure 2.9. Surface BZ for a (a) weak TI and (b) strong TI. The blue lines denote the Fermi surface.
(c) depicts the Dirac cone spectrum present at every TRIM Λa.

A compact notation for the 4 independent invariants is

(ν0; ν1ν2ν3) . (2.26)

The first one is called the strong index. It states whether there is a change in Z2 invariants
between the two special planes in each direction. Here ν0 = 0 means trivial and ν0 = 1 stands
for topological. The other three are the weak indices. They are the Z2 invariants of the outer
planes in each direction. The corresponding formulas are

(−1)ν0 =
∏

nj=0,π
δn1,n2,n3 , (−1)νi =

∏
nj 6=i=0,π;ni=π

δn1,n2,n3 (2.27)

adapting the TRIM notation from Fig. 2.8 (b) together with Eq. (2.22).
These four invariants have direct physical consequences when we look at the surface BZ,

see Fig. 2.9. At the 4 TRIMs Λ1,2,3,4 the spectrum is Kramers degenerate. Otherwise, SOC
lifts the degeneracy. Thus the TRIMs are Dirac points in the surface BZ. The question is
how they connect to each other. Between any Λa and Λb the surface band structure looks like
Fig. 2.10 (a) or (b). This plot illustrates the number of times the Fermi surface crosses the line
connecting Λa and Λb. The number of crossings can be even or odd, where the odd surface
states are topologically protected. One can distinguish weak and strong TIs, see Sec. 2.4, by
the number of Kramers degenerate Dirac points the surface Fermi circle encloses. Odd for
strong, even for weak TIs. Surface states of a weak TI are not protected by TTT symmetry.

2.2.4. Bulk-boundary Correspondence
The bulk topology, represented by the four Z2 invariants, has direct consequences for the
surface physics as we already saw in the last section. Here we will deepen this bulk-boundary
correspondence. This section is based on Ref. [FM13] Chap. 1, Secs. 2.3 & 3.3 & 4.3 & 5.2.2,
Ref. [BH13] Sec. 8.8 and Ref. [She13] Sec. 2.2.
At interfaces of materials with different Z2 index, the gap has to close for the change in

topology if the underlying symmetry is preserved throughout the system. The surface states
associated with this gap closing at the boundary lie often in the bulk band gap, otherwise they
are not stable due to coupling to the bulk bands. As a physical example, in systems where
two bands have different symmetry, the topologically non-trivial (TnT) setup is related to a
band inversion of these two bands, see. e.g. Sec. 2.4.1 and Sec. 2.4.2. This inversion has to be
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Figure 2.10. Dispersion relation between two TRIMs Λa and Λb. In (a) the surface state crosses the
Fermi energy an even amount of times, in (b) an odd amount of times. The latter case is topologically
protected, as the crossings have to occur due to the continuity of the bands.

undone at the boundary to change the topology to trivial. As the band structure is continuous,
the gap has to close.
Let’s assume boundary states in the bulk band gap as shown in Fig. 2.10. The bands have to

be double degenerate at the TRIMs, but spin-orbit splits them everywhere else. If there is an
odd number of intersections of the Fermi energy with the surface bands, these edge state can
not be eliminated - they are topologically protected by the continuity of the band structure.
After this prelude, we give the bulk boundary correspondence. It relates the number of

Kramers pairs of edge modes NK to the change of Z2 at the boundary like

NK = ∆ν mod 2. (2.28)

As these surface states originate from the bulk bands (they become bulk bands for high k),
they can violate the fermion doubling theorem [WBZ06]. This makes them unique states in
odd dimensions that are not possible without the higher dimensional bulk, see Ref. [QZ11]
Sec. 2.C.3.
Let us have a look at a basic example of a boundary state in 1D. We take the Jackiw-Rebbi

model, which in real space, with the substitution k → −i∂x, is given by

H = −ivσx∂x +m (x)σy. (2.29)

The spectrum is E (k) = ±
√

(vk)2 +m2 and the model is in two different topological phases
for m (x→ +∞) < 0 and m (x→ −∞) > 0. At the boundary of these two phases exists a
zero energy solution, see Fig. 2.11. We construct it by multiplying Eq. (2.29) with iσx, the
solution is then an eigenstate of σz denoted by |z±〉 with eigenvalue ±1. The wave function is
given by

ψ0 (x) = e−
∫ x

0 dx′(−m(x′))/v|z+〉 (2.30)

which is localized around m (x) = 0. The state does not depend on the precise form of m (x),
but just stems from the sign change in m. This makes it topological.

19



2. Topology and Band Theory
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Figure 2.11. Sketch of the mass m(x) and the zero energy solution wave function ψ0(x) as a function
of x for the Jackiw-Rebbi model.

TRS PHS SLS 1D 2D 3D
Standard A (unitary) 0 0 0 - Z -

(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -
AII (symplectic) -1 0 0 - Z2 Z2

Chiral AIII (chiral unitary) 0 0 1 Z - Z
(sublattice) BDI (chiral orthogonal) +1 +1 1 Z - -

CII (chiral symplectic) -1 -1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 -1 0 - Z -

DIII -1 +1 1 Z2 Z2 Z
CI +1 -1 1 - - Z

Table 2.1. Topological classification of matter with TTT symmetry TRS, p-h symmetry PHS and chiral
symmetry SLS. The symmetries can be absent, 0, or their operators can square to ±1. Table adapted
from Refs. [SRFL08, SRF+09].

2.2.5. Altland-Zirnbauer Classes

So far we looked at TTT invariant systems and found that they can be classified by a Z2 invariant.
This connection between preserved symmetries and topological invariants can be made more
general. A topological classification of systems that can have TTT symmetry TRS, particle-
hole (p-h) PHS and chiral/sublattice symmetry, which is given by SLS=TRS×PHS, is discussed
in Ref. [She13] Sec. 12 and Refs. [SRFL08, SRF+09].

Here we just give the resulting classification table 2.1 and discuss some examples out of the
ten possible classes. A representative of class A can be a 2DEG with magnetic field, having
non of the three symmetries. Class AII has the TTT symmetry operator squaring to −1, so an
example would be an electron system with SOC.
Additional symmetries can provide an extended classification with additional edge states pro-

tected by Z2 invariants, see the comprehensive review in Ref. [CTSR16]. For spatial symmetries
like III, see Ref. [vMOS16], these systems are called topological crystalline insulators (TCIs)
and are discussed in Sec. 2.4.3.
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NI

IQHE

Figure 2.12. Sketch of electrons moving on skipping orbits along the edge of an IQH system.

2.3. Chern Insulator and Integer Quantum Hall Effect
The IQH effect was experimentally observed by von Klitzing, Ref. [KDP80], in 1980. It features
a quantized Hall conductance in a 2DEG in a strong, perpendicular magnetic field. Before we
discuss the connection to topology of this quantized response, we give a more straightforward
explanation of the effect. In the magnetic field the electrons form quantized LLs with a flat
dispersion. At the edge, the confining potential pushes the LLs through the Fermi energy.
Thus for n filled LLs, one gets a Hall conductance of

σx,y = n
e2

h
. (2.31)

In a semi-classical picture, the electrons move on skipping orbits along the edge, see Fig. 2.12.
As the magnetic field determines the direction of motion of the electrons, the edge states are
chiral. No backscattering is allowed, as the edge state propagating in the opposite direction is
located on the opposite side of the sample.
We will now make the connection between the IQH effect and the topological framework

discussed to far. This section is based on Ref. [FM13] Chap. 1, Sec. 4, Ref. [BH13] Sec. 3,
Ref. [Bud11] Sec. 1.3 and Ref. [She13] Sec. 4.3.

Integer Quantum Hall Effect and Chern Number

The quantized Hall conductance in a system with finite Chern number can directly be reasoned
from the bulk-boundary correspondence discussed in Sec. 2.2.4. At a junction of a non-trivial
material with finite Chern number and a trivial one with n = 0, the difference in number of
right and left moving modes, NR −NL, is, similar to Eq. (2.28), given by the difference ∆n in
Chern numbers across the interface

NR −NL = ∆n. (2.32)

This analogy can be checked in linear response calculations, done e.g. by Thouless, Kohmoto,
Nightingale, and den Nijs (TKNN) in Refs. [TKNdN82, Koh85]. They reveal the deep connec-
tion between Chern number n and Hall conductance σxy to be

σxy = e2

h
n = e2

h

1
2π

∫ ∫
dkxdkyFxy (k) ,

Fxy (k) = ∂Ay (k)
∂kx

− ∂Ax (k)
∂ky

,

Aj = i
∑

n filled bands

〈un,k|
∂

∂kj
|un,k〉.

(2.33)
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Figure 2.13. (left) BZ of an IQH system. The dots denote the zeros of the first component of the
state |ψ1 (k)〉. (right) The phase around a simple zero.

Chern Number as an Obstruction to Stokes’ Theorem over the whole Brillouin Zone

Apart from a direct transport calculation, the integer quantization of Chern number and Hall
conductance can also be derived from more mathematical reasoning. The Berry curvature is
defined as the curl of the Berry connection A, see Sec. 2.2.2. Stokes’ theorem would give the
Chern number, Eq. (2.15), as the integral of A over the boundary of the BZ. As the BZ is a
torus without a boundary, the Chern number is always 0 following this line of thought, which
is not true. The way out is that A has to be well defined in the whole BZ for Stokes’ theorem
to apply. Thus for a finite Chern number, the Berry connection needs singularities. This is
equivalent to the case that no global gauge can be defined that is continuous and single-valued
over the entire BZ.
We show this now in detail. Let’s define a smooth gauge: we choose a state |ψ1 (k)〉 =

eih(k)|uk〉 by gauging the first component to be real. At some point ks in the BZ the first
component is zero, see Fig. 2.13, thus here the phase is ill defined. Yet the Bloch function
can not be entirely zero. Therefore we define a different state |ψ2 (k)〉 = eig(k)|uk〉 in the
epsilon neighborhood U ε2 around ks. At the boundary, the states are related by the gauge
transformation

|ψ2 (k)〉 = eiχ(k)|ψ1 (k)〉
A2 (k) = 〈ψ2 (k)|∂k|ψ2 (k)〉 = A1 (k) + i∇χ (k)

(2.34)

with χ (k) = g (k)−h (k). Performing the integral over the BZ, one finds the winding number
of the gauge transformation

n = 1
2π

∫
T 2
Fd2k = 1

2π
∑
j

∮
∂Uj

Aj · dk

= 1
2π

∮
∂Uε2

∇χ (k) · dk.
(2.35)

The states |ψ2 (k)〉 = eχ(k)|ψ1 (k)〉 have to be single-valued, so after a rotation of 2π around the
point ks, χ (k) can only have changed by a multiple of 2π in order to keep the state invariant.
We conclude that the Chern number has integer values, and the winding number n counts the
order of the zero at ks.
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Figure 2.14. Sketch of a HgTe QW as a representative of the QSH insulators. The 1D helical edge
states are indicated. The magnetic field B is zero when considering the QW as a 2D TI. A finite B 6= 0
turns the system into a quantum Hall topological insulator (QHTI) as analyzed in Chap. III. Reprinted
figure with permission from Ref. [SMAŽF15]. Copyright (2015) by the APS.

2.4. Topological Insulators

Topological insulators (TIs) differ from normal insulators (NIs) as they have a non-trivial
topology, represented by a finite Z2 invariant, see Ref. [KM05b] and Sec. 2.2.3. This non-
triviality usually stems from and is protected by TTT symmetry. These systems have no Hall
conductance as their Chern number is 0, but feature helical edge states, in which momentum
and spin of the electrons are locked. Besides TTT , also spatial symmetries like III can support
topological states with finite Z2, see the discussion of the TCI in Sec. 2.4.3.
In the following, we will go through the details of TIs in 2D, Sec. 2.4.1, in 3D with a focus

on strong TIs, Sec. 2.4.2, and finish with a short summary on TCI in Sec. 2.4.3. Good reviews
of the different topics can be found in Refs. [HK10, QZ11, And13, BT13].

2.4.1. Quantum Spin Hall Insulator in 2D

The first proposed QSH insulator was graphene, see Ref. [KM05a]. Its topological properties
stem from spin-orbit interaction, which acts in a way as a TTT symmetric version of a magnetic
field, as it switches its sign with the spin. A way of looking at this 2D system is thus an
overlay of two IQH systems with differing spin. This gives a finite Z2 invariant according to
Eq. (2.24). In graphene, one can write the spin-orbit term as HSO = λSOσzτzsz that is TTT
invariant. Here sz = ±1 is for spin up / down and τz (σz) is the valley (sublattice) degree of
freedom. But there is a practical problem: the spin-orbit gap in graphene is very small, on
the order of 10−6 eV. So we take these ideas and look for a different material with stronger
SOC. In this thesis, HgTe QWs will serve as the primary example of a 2D TI, see Fig. 2.14.
The following section is based on Ref. [FM13] Chap. 1, Sec. 5.1 & Chap. 3, Sec. 2, Ref. [BH13]
Secs. 9.3f, Ref. [She13] Secs. 2.5.2 & 6.1f as well as Ref. [Bud11] Sec. 1.4.
Let us consider the edge properties of a QSH insulator. Taking the quantized Hall conduc-

tance of each spin species, the charge part of the edge current cancels. The spin parts on the
other hand add up, thus there is a finite spin current Js = h̄

2e (J↑ − J↓) with spin Hall conduc-
tivity σsxy = e

2π at the edge, see Fig. 2.14. This simplified picture is usually not quite correct,
as in a spin-orbit coupled system the Sz spin component is not conserved. Yet the quantized
Hall conductivity is robust and no backscattering is allowed for preserved TTT symmetry. Due
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to the locking of spin and momentum, these edge states are called helical from the helicity

h = ±p · σ. (2.36)

Left and right movers at the edge are Kramers partners. They can not scatter into one another
which is straightforward to show. We define the states |uk,↑〉 = −Θ|u−k,↓〉, |u−k,↓〉 = Θ|uk,↑〉
and take the TTT symmetry respecting potential V with ΘVΘ−1 = V . We find

〈uk,↑|V |u−k,↓〉 = 0 (2.37)

thus there is no overlap between the Kramers partners for scattering potentials that respect
TTT symmetry. For additional information about the stability of edge states and the allowed
scattering processes, see Refs. [XM06, WBZ06].

HgTe Quantum Wells and the Bernevig-Hughes-Zhang Model

The primary example for 2D QSH insulators in this thesis are HgTe/CdTe QWs, as depicted
in Fig. 2.14, which we now introduce. We follow closely the original theory paper Ref. [BHZ06]
and the experimental counterpart, Ref. [KWB+07].
HgTe and CdTe are II-VI group compound semiconductors with a zinc-blende crystal struc-

ture, forming via sp3 hybridization. The bands near the Fermi energy are s-type (Γ6) and
p-type, where the latter split by SOC into a J = 3/2 band (Γ8) and J = 1/2 (Γ7), see Fig. 2.15
(a). CdTe has a band gap of ≈ 1.6 eV with normal ordering, such that the Γ6 lie above the
p-type bands. In this sense, HgTe has a negative band gap of ≈ −0.3 eV, as the order of
the bands is inverted with Γ6 below Γ8. Actually, due to the degeneracy at k = 0 (Γ-point)
between light- and heavy-hole bands, HgTe is a zero gap material, as shown in Fig. 2.15 (a).
In order to obtain a 2D TI, one builds QW heterostructures by putting a thin layer of HgTe

of thickness d between CdTe layers, see Fig. 2.15 (b). The confinement splits the HgTe bands
into subbands, where we take the stacking direction of the QW to be the z direction. The Γ6
and light-hole Γ8 bands form the new bands En. They hybridize because both have angular
momentum 1/2 along the z direction ([001] direction). The heavy-hole Γ8 bands form subbands
Hn. The energy of the subbands varies with QW thickness d, see Fig. 2.16. En decreases in
energy with increasing width, while the heavy-hole Hn increase in energy. Thus for thin HgTe,
the QW band structure has normal order, for a thick HgTe layer, it is inverted. At the sweet
spot of dc ≈ 6.3 nm the 2D band structure is degenerate.
The goal is now to construct an effective low energy model for such a HgTe QW. As the

basis one takes {|E1+〉, |H1+〉, |E1−〉, |H1−〉} with ± for spin up / down. |E1±〉 and |H1±〉
are two sets of Kramers partners which are spin degenerate. The coupling between |E1±〉 and
|H1±〉 has to be, in lowest order, linear in k due to the different parity of the bands. The
rotational symmetry around the z-axis then dictates the form k± = kx ± iky, such that the
Hamiltonian is given by

HBHZ =
(
h (k) 0

0 h∗ (−k)

)
, h (k) = E (k)12x2 + d (k) · σ (2.38)

with
E (k) = C − D(k2

x + k2
y),

d (k) =
(
Akx, Aky, M (k)

)T
,

M (k) = M − B(k2
x + k2

y).

(2.39)

24



2.4. Topological Insulators

Figure 2.15. (a) Band structure of HgTe and CdTe. (b) Effective band structure of HgTe/CdTe
QWs with different thickness d. From Ref. [BHZ06]. Reprinted with permission from AAAS.

Figure 2.16. Energy of QW subbands En and Hn as a function of the QW thickness dQW . c©[2008]
The Physical Society of Japan, Ref. [KBW+08].
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2. Topology and Band Theory

This Bernevig-Hughes-Zhang (BHZ) model has the parameters A,B, C,D,M which are deter-
mined by the material, depending on the QW geometry. Typical values for Hg(Cd)Te QWs
are given in Sec. 4.4. Besides HgTe, this model can also be applied to QW structures based
on different materials like InAs/GaSb/AlSb, see Refs. [KDS11, LWF+15a].
The BHZ model is block diagonal, such that one can restrict the analysis to one block. The

other one follows from TTT symmetry. The dispersion relation is given by

Ek,± = E (k)±
√
A2
(
k2
x + k2

y

)
+M2 (k). (2.40)

It reproduces experimental band structures well for d close to dc. In contrast to the Dirac
model of graphene, the BHZ model is properly regularized, due to the finite quadratic part for
B 6= 0.

Considering the upper block of Eq. (2.38), one finds the Hall conductance to be

σh = −e
2

h

1
4π

∫
dkx

∫
dkyd̂ ·

(
∂d̂

∂kx
× ∂d̂

∂ky

)

= −1
2 (sgn (M) + sgn (B)) e

2

h

(2.41)

with d̂ (k) = d (k) /|d (k)|. σh is only finite if the inversion condition

M/B > 0 (2.42)

is fulfilled. Usually the mass term M is varied to change between the NI and TI phase, or
explicitly tuned to the critical thickness in order to obtain a gapless Dirac system, as analyzed
in Ref. [BLT+11]. The vector d̂ can be represented by a meron structure close to the Γ-point,
as shown in Fig. 2.17. A meron is half a skyrmion, see Sec. 3.2.3, which are topological objects
that form in (pseudo-)spin space. For larger momenta, the k2 terms dominate and the vector
d̂ points again out of plane. This completes the winding, making the spin structure a full
skyrmion.

The total model consists then of two TTT related copies of the Hamiltonian discussed above,
thus that the finite Z2 invariant according to Eq. (2.24) is given by ν = 1 for fulfilled inversion
condition.
The Hamiltonian (2.38) was derived under the assumption of III symmetry. This symmetry

is slightly broken in HgTe QWs, which can be modeled by a bulk inversion asymmetry (BIA)
term. Up to linear order in k, it is given by

HBIA =


0 0 ∆ek+ −∆z

0 0 ∆z ∆hk−
∆ek− ∆z 0 0
−∆z ∆hk+ 0 0

 . (2.43)

Importantly, it does not close the band gap such that the topological physics remains valid
if one includes it in the analysis. Additional terms that are ignored are due to the crystal
symmetry breaking by forming the QW. These effects can be considered in structural inversion
asymmetry (SIA) terms, which we neglect for simplicity.
The QSH effect has been measured based on transport experiments in 4 and 6 terminal

setups, see e.g. Refs. [KWB+07, KBW+08].
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2.4. Topological Insulators

Figure 2.17. (a) Band structure and (b) meron configuration of the vector d̂ for the NI (left) and
TI phase (right). From Ref. [BHZ06]. Reprinted with permission from AAAS.

2D Topological Insulator in a Magnetic Field

In Chap. III we will study HgTe QWs in a strong magnetic field, see Fig. 2.14, based on the BHZ
Hamiltonian. In this section, we provide the underlying formulas, following Ref. [SMAF12].

The effect of a magnetic field B = Bez in the z direction of HgTe QWs can be taken into
account in the BHZ Hamiltonian, Eq. (2.38), by two additions. The first one is a Zeeman term
µBBge/h/2, with µB the Bohr magneton and ge/h the effective g factor for an electron or a
hole. The second addition is the minimal coupling, which changes the components of the wave
vector to operators, ki → π̂i/h̄, with π̂i = p̂i + eAi (r) the kinetic momentum operators. Here
p̂ are the momentum operators and A (r) = −Byex is the magnetic vector potential from the
magnetic field.

The LLs forming in the bulk are found analytically to be (B > 0 for magnetic field in z
direction)

E↑± (n) = C − 2Dn+ B
l2B

+ ge + gh
4 µBB ±

√√√√2nA2

l2B
+
(
M − 2Bn+D

l2B
+ ge − gh

4 µBB

)2

E↑ (0) = C +M − D + B
l2B

+ ge
2 µBB

(2.44)
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2. Topology and Band Theory

Figure 2.18. (a) Alternating stacking of a 2D TI material with a spacer layer. (b) STM image of
the surface of the layered material. Strongest dI/dV signal at the edge. Adapted by permission from
Macmillan Publishers Ltd: Nature Physics, Ref. [PRK+15], copyright (2015).

and

E↓± (n) = C − 2Dn− B
l2B

− ge + gh
4 µBB ±

√√√√2nA2

l2B
+
(
M − 2Bn−D

l2B
− ge − gh

4 µBB

)2

E↓ (0) = C −M − D − B
l2B

− ge
2 µBB

(2.45)

with lB =
√

h̄
eB the magnetic length. These formulas are the basis for Fig. 7.1. Introducing

edges to the system complicates the picture a lot. We refer for details to Ref. [SMAF12].

2.4.2. 3D Topological Insulator

TIs in 3D can be classified by the 4 Z2 invariants (ν0; ν1ν2ν3) as described in Sec. 2.2.3. ν0 is
called the strong index, as it is 1 for strong TIs and 0 for weak TIs or trivial insulators. The
three weak indices νi, i = 1, 2, 3, determine the surfaces which have topological surface states
in the weak TI case. In the following, we will go into the details of the different types of TIs
in 3D. These sections are based on Ref. [FM13] Chap. 1, Sec. 5.3, Chap. 2, Sec. 2.2, Chap. 3,
Sec. 3 and Ref. [She13] Sec. 7.2.

Weak 3D Topological Insulator

A weak 3D TI can be thought of as a system of stacked 2D QSH insulators, where the layers
are weakly coupled. The effective surface state will be anisotropic, and perpendicular to the
direction of stacking there will be no surface state at all. This is the so called dark surface.
Weak surface states are not protected by TTT symmetry. They exist for clean systems, but
broken translational symmetry can destroy them without a gap closing in the bulk. This can
be modeled by a dimerization of stacked layers.
An example of the stacking approach is the material Bi14Rh3I9 examined in Refs. [RIR+13,

PRK+15], consisting of alternately stacked layers of a 2D TI and a trivial insulator, as sketched
in Fig. 2.18 (a). The surface of this material is dark, but at every step edge there is supposed
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2.4. Topological Insulators

to form a topologically protected edge channel, see Fig. 2.18 (b). We will not go into further
details here, as this thesis focuses on the strong 3D TI, which will be discussed next.

Strong 3D Topological Insulator

The first material experimentally considered as a strong TI was BixSb1−x, see Ref. [HQW+08].
This soon improved to Bi2Se3 with a large band gap of 0.3 eV, see Ref. [XQH+09], but still
facing problems due to significant bulk conductivity. An alternative material is strained 3D
HgTe. Instead of forming QWs out of it as for 2D TIs, the strain opens a band gap between
the light- and heavy-hole Γ8 bands. The strong 3D TI with ν0 = 1 is relevant for Chap. IV of
this thesis, where we will couple it to a WSM.
We will stay with the BiSe family in this section. A low-energy model was derived in

Refs. [ZLQ+09, LQZ+10], which we are now going to recap here. Bi2Se3 forms in a rhom-
bohedral crystal structure with space group D5

3d
(
R3̄m

)
with a quintuple layer structure as

depicted in Fig. 2.19 (a). The energy level structure close to the Fermi energy is shown in
Fig. 2.19 (b). The derivation includes steps (I) to (IV): (I) First the levels of Bi and Se repel
each other, while they hybridize among themselves. (II) The resultant levels are sorted by
parity and form bonding/antibonding states. (III) The crystal field is considered, which splits
pz from px,y. (IV) Finally SOC, HSO = λL ·S, is taken into account. It mixes spin and orbital
angular momentum. Only the total angular momentum is conserved.
At last, one ends up with four states with definite angular momentum close to the Fermi

energy: |P1+
−,

1
2〉, |P2−+, 1

2〉, |P1+
−,−1

2〉, |P2−+,−1
2〉. They are linear combinations of the original

levels, where P1 stands for Bi and P2 for Se. SOC leads to an inversion of the states originating
from Bi and Se, which makes the material topological. The low-energy Hamiltonian up to
quadratic order in k is given by

HBiSe = εk +


M (k) −iB (kz) kz 0 iA(k‖)k−
iB (kz) kz −M (k) iA(k‖)k− 0

0 −iA(k‖)k+ M (k) −iB (kz) kz
−iA(k‖)k+ 0 iB (kz) kz −M (k)

 (2.46)

with εk = C0 + C1k
2
z + C2k

2
‖, M (k) = M0 + M1k

2
z + M2k

2
‖, A(k‖) = A0 + A2k

2
‖, B (kz) =

B0 + B2k
2
z , k2

‖ = k2
x + k2

y and k± = kx ± iky = k‖e±iφk . All free parameters need to be fitted
to experimental or ab-initio band structures. The Hamiltonian is in the inverted, topological
regime for M0Mj < 0, j = 1, 2.

Surface Physics

The surface states are probably the most interesting features of TIs. We will have a closer
look at them with the help of the Bi2Se3 Hamiltonian (2.46). Helpful sources are Ref. [FM13]
Chap. 3, Secs. 5.1f and Ref. [She13] Secs. 7.4f.
The surface Hamiltonian is obtained from the bulk one, Eq. (2.46), following Ref. [LQZ+10].

The authors of Ref. [LQZ+10] find

Hsur
BiSe = C0 + α2M0 + (C2 + α3M2) k2

‖ +A0α1 (σxky − σykx) (2.47)

where the coefficients αi can be determined, for instance, by fits to experimental data. The
surface Hamiltonian shows spin-momentum locking, denoting the rotation of spin with mo-
mentum as depicted in Fig. 2.20. The term spin stands here as a synonym for the total angular
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(a) Quintuple layer

Se1

Bi1
Se2

Bi1’
Se1’

Figure 2.19. (a) Quintuple layer structure of Bi2Se3. (b) Hybridization of Bi and Se energy levels
near the Fermi energy for different considered approximation steps. (I) Repulsion between Bi and Se
levels, orbitals of the two materials hybridize among themselves. (II) Forming of bonding/antibonding
orbitals, (III) including crystal field splitting, (IV) including SOC. Reprinted figure (b) with permission
from Ref. [LQZ+10]. Copyright (2010) by the APS.

momentum.
Such a surface state is quite unique. Dropping all constant and quadratic in k terms, one

obtains the simplest version, a single Dirac cone, as

Hsur = vF (σxky − σykx) . (2.48)

This Hamiltonian describes half of an ordinary metal, as there is no spin degeneracy. The
other half is located on the opposite surface, both obey Kramers degeneracy separately. The
states are called helical because of the spin-momentum locking, resembling the helicity operator
Eq. (2.36).
TTT symmetry protects the gaplessness of the 2D surface state. One can not open a gap by

adding a mass term to Eq. (2.48) in a TTT invariant fashion, which is straightforward to show.
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2.4. Topological Insulators

Figure 2.20. (a) Sketch of the Dirac cone dispersion relation of the surface state of a strong TI,
including the spin texture. (b) Spin structure of the conduction band of the surface state showing
spin-momentum locking. Arrows indicate x − y planar spin polarization, while the color gives the z
component. Red for spin up, blue for spin down. Reprinted figure with permission from Ref. [LQZ+10].
Copyright (2010) by the APS.

Take the TTT operator
Θ = iσyK (2.49)

and let it act on the mass terms
Hmass =

∑
i

miσi. (2.50)

A finite mz 6= 0 would open a gap in the spectrum of Eq. (2.48). One finds ΘHmassΘ−1 =
−Hmass, thus no mass term is allowed, the surface states are necessarily gapless.

We end this section by discussing two interesting properties of these helical edge states. The
first one is that they show weak antilocalization instead of the usual weak localization, see
Fig. 2.21 (b). This can be easily understood. Consider the interference of two time-reversed
scattering paths of an electron in the surface state, as depicted in Fig. 2.21 (a). The eigenstate
solution to Eq. (2.48) is the usual spinor of a spin 1/2 electron. Thus moving the electron
in a circle, rotating it by 2π, gives a π Berry phase contribution to the wave function. This
sign changes the interference of the two paths from constructive to destructive. The increased
conductivity should be visible in experiments on sufficiently clean surfaces.
The second property is the absence of backscattering. Left and right movers in a surface

state are Kramers partners. We define |k, ↑〉 and |−k, ↓〉 = Θ|k, ↑〉, take the TTT symmetry
respecting potential V with ΘVΘ−1 = V , and find

〈−k, ↓|V |k, ↑〉 = 0. (2.51)

Thus electrons in the Dirac cone can not scatter into the state with opposite momentum. Yet
the protection is not as strong as in the 1D edge state discussed in Sec. 2.4.1. Scattering
elsewhere into the cone, where the momentum is not exactly opposite, is allowed in principle,
although with a reduced overlap factor.
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0 0Magnetic field

weak
localization

weak
anti-localizationC

on
du

ct
iv
ity

(a) (b)

Figure 2.21. (a) Backscattering involving two time-reversed paths. (b) Weak localization and anti-
localization in the magnetoconductivity. The dashed line denotes the classical conductivity.

2.4.3. Topological Crystalline Insulators

The usual symmetry that protects TIs is TTT symmetry. More recently, spatial symmetries
moved into the focus of research which as well can support topological phases with finite Z2
invariant. We will give a short overview of the topic in the following. This section is based on
Ref. [FM13] Chap. 1, Sec. 6.1, Ref. [And13] Sec. 4.5, as well as Refs. [SS14, CTSR16, vMOS16].
Spatial symmetries can modify the topological structure of a band theory. While the combi-

nation of TTT and p-h symmetry gives 10 different classes, see Sec. 2.2.5, a complete classification
for all space groups is much more cumbersome. A comprehensive overview of the topic is given
in Refs. [CTSR16, SS14, SSG16]. Insulators with non-trivial topology protected by point-group
symmetries are called topological crystalline insulators (TCIs). Example symmetries include
rotations and mirror symmetry as well as III symmetry, see Refs. [FGB12, LL14]. Also the
combination of TTT with spatial symmetries can lead to new Z2 invariants. This was recently
shown for the combination of III and TTT symmetry in 2D insulators in Ref. [vMOS16]. In the
corresponding system that would be trivial with just TTT symmetry, the inclusion of III symmetry
leads to a non-trivial topology.
Here we consider the example of mirror symmetry, where the corresponding invariant is the

mirror Chern number. As a system we look at graphene, possessing a mirror symmetry under
z → −z. As the mirror operation is inversion times a π rotation, eigenvalues for the spin
1/2 particles are ±i. Therefore the mirror operator is odd under TTT . If one defines the Chern
numbers n±i for the states with mirror eigenvalues ±i, n+i + n−i = 0 is thus needed for TTT
symmetry. The mirror Chern number, defined as nM = (n+i − n−i) /2, is then a topological
invariant, compare to Eq. (2.24), protected by the crystal symmetry.
In order to extend this to 3D TIs, one can define mirror invariant planes in the 3D BZ. The

surfaces perpendicular to them, which retain the mirror symmetry, must have gapless surface
modes. Breaking the mirror symmetry opens a gap in the surface spectrum.
An example material possessing a TCI phase is SnTe. Ab-initio calculations showed a band

inversion at 4 TRIMs in the 3D BZ [HLL+12, TRS+12]. It is predicted to have a non-trivial
mirror Chern number nM = −2, but a trivial Z2 with (0; 000). Due to the mirror Chern
number, a double Dirac cone on the {001} surface was predicted and later experimentally
verified.
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2.5. Weyl Semimetals
The last topological material that we introduce in this thesis is the Weyl semimetal (WSM).
It comprises a gapless bulk band structure which discriminates it from the insulating systems
considered so far. The gaplessness of the bulk as well as the surface states are protected by
topology, as we will see in the following. This section is based on Ref. [FM13] Chap. 1, Sec. 6.2
& Chap. 11, Ref. [HQ13], Ref. [BH13] Sec. 11.1.2, as well as Refs. [YF17, JXH16]. We will use
WSMs later in Chap. IV in conjunction with 3D TIs.
The defining property for a WSM is that the conduction and valence bands touch at so called

Weyl points in the BZ, which are topologically protected. Locally one can expand around these
points and obtain the Weyl Hamiltonian

HWeyl =
∑

i,j∈{x,y,z}
h̄vijσikj , (2.52)

where one defines the chirality of the node as

χ = sgn (det (vij)) . (2.53)

The Chern number is finite and given by n = ±χ for an electron (hole) Fermi surface. This
corresponds to the Berry phase of ±2π of the single Dirac cone already known from InfoBox 2.1
in Sec. 2.2.2.
The existence of Weyl points does not depend on any symmetry, but is a generic feature

in 3 dimensions. The points act as sources and sinks of Berry curvature which makes them
topologically stable. They can only be destroyed by the combination with Weyl points of
opposite chirality. This can be done by either putting them on top of each other or via
inter-cone scattering. Examples are induced superconductivity or the breaking of crystalline
translational symmetry by disorder. The robustness of Weyl points can also be directly inferred
from the Weyl Eq. (2.52). As all Pauli matrices are used, perturbations acting as mass terms
can not open gaps in the spectrum. Therefore protection by TTT symmetry is not needed as it
is in the 2D case discussed in Sec. 2.4.2.
In a system with TTT symmetry, Weyl points are required to come in pairs with momenta ±K,

where the Berry curvature is related like F (K) = −F (−K). Due to this double reversal of
signs, the chirality of both cones is the same, i.e. TTT symmetry relates Weyl cones of the same
chirality to one another. In order to keep the total Chern number of the system fixed as
required from Refs. [NN81, NN83], there thus need to be a multiple of 4 Weyl points in a TTT
symmetric system.
Next we consider III symmetric systems. The symmetry requires F (K) = F (−K), thus it

relates pairs of Weyl nodes with opposite chirality. The minimum number of Weyl points in a
III symmetric system is thus only 2. At least one of the symmetries, TTT or III, has to be broken
in order to get a WSM. Otherwise the spectrum would be at least double degenerate and the
system is then called a Dirac semimetal.
Similar to TIs, WSMs feature interesting surface physics. The surface states are called Fermi

arcs and connect the bulk Weyl points on the surface, see Fig. 2.22. They are guaranteed to
exist due to topological reasons. One way to see this is by slicing the BZ with planes which
effectively describe Chern insulators, as done in Fig. 2.22 (left). Between the Weyl points,
these Chern insulators would have a finite Chern number and thus edge states. The Fermi
arcs are exactly these edge states. They are stable against hybridization with the bulk states
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χ = −1 χ = 1

Figure 2.22. (left) Weyl points, depicted as red and blue dots, are connected on the surface via Fermi
arcs, indicated as red lines. The red vertical plane is penetrated by a finite Berry curvature, while the
blue planes are trivial. (right) Joint dispersion relation of bulk Weyl cones and surface Fermi arc (red
surface), see Sec. 9.1.2 for details. Reprinted right figure with permission from Ref. [JT17]. Copyright
(2017) by the APS.

due to translational symmetry, as long as surface and bulk states do not exist at the same
energy and momentum. This implies that at the Weyl points, see Fig. 2.22 (right), the Fermi
arcs are unstable and become delocalized.

Weyl Semimetal as Intermediate Phase between different Topological Insulator Phases in
3D

Before the WSM became popular as an interesting phase on its own, it was studied as an
intermediate phase between a NI or weak TI and a strong TI, see Refs. [Mur07, MK08, OM14]
and Fig. 2.23. The phase transition can be modeled as driven by a single parameter m, for
example changing the system from a weak TI phase via a TTT symmetric WSM phase to a strong
TI phase. The Fermi arcs always connect two Weyl points of opposite chirality. When these
points annihilate and the system becomes a strong TI, the Fermi arcs join into a Dirac cone.

The Chiral Anomaly

One of the most notable features of a WSM is the chiral anomaly. It results in a current
originating from a node of chirality χ of the form

∇ · jχ = −χ e3

4π2h̄2E ·B. (2.54)

The node with opposite chirality has a current with opposite sign. Thus effectively, the chiral
anomaly leads to an extra current from one Weyl node to the other one for parallel applied
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Figure 2.23. (a) Bulk spectrum for different topological phases, where the parameter m drives the
transition. Transition from a gapped phase (left) via a TTT symmetric WSM phase (middle) to another
gapped phase (right). (b) Phase diagram (left) and surface BZ (right) for a 3D topological material.
The arrow indicates a phase transition between a WSM and a strong TI phase. The Fermi arcs join
together at the phase transition to form the Dirac surface state. (c) 3D plot of the joint dispersion
relation of bulk Weyl points and Fermi arcs. Upper and lower surface dispersion relation plotted.
Figure (a) adapted from Ref. [Mur07]. Reprinted figures (b) and (c) with permission from Ref. [OM14].
Copyright (2014) by the APS.

magnetic and electric fields. The total current j+ + j− is conserved as required from global
current conservation.
One way to understand this is the following: in a magnetic field B electrons form LLs of

degeneracy g = BA⊥
h/e , with A⊥ the cross section transverse to B. The level spectrum of a

single Weyl node becomes

εn = vF sgn (n)
√

2h̄ |n| eB +
(
h̄k · B̂

)2
, n = ±1,±2, ...,

ε0 = −χh̄vFk · B̂
(2.55)

with B = |B| and B̂ = B/B. The corresponding dispersion relation of two Weyl points with
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χ = 1 χ = −1

Figure 2.24. Plot of the LL spectrum around two Weyl points of different chirality. Lowest LLs are
differently occupied due to applied electric field.

Figure 2.25. Measured magneto resistance (MR) as a function of the applied magnetic field. θ = 90◦
corresponds to parallel electric and magnetic field, where the negative MR is expected. For θ = 0 the
fields are perpendicular. Reprinted figure with permission from Ref. [KKW+13]. Copyright (2013) by
the APS.

opposite chirality is depicted in Fig. 2.24. An applied electric field E shifts the momenta by
h̄k̇ = −eE. This produces an effective 1D current, if E is parallel to B. Due to the chirality
one has an effective transport of electrons from one Weyl node to the other. The 1D current is
given by ∂Q1D

χ /∂t = eχLB
∣∣∣k̇∣∣∣ /2π with LB the system size in direction of B. The full current

due to the chiral anomaly is then

∂Q3D
χ

∂t
= g

∂Q1D
χ

∂t
= −V e3

4π2h̄2E ·B (2.56)

with the volume V = A⊥LB.
In experiments, this extra current should show up as a negative contribution to the magneto

resistance, in dependence on the angle of the applied electric and magnetic field. An example
measurement featuring such a negative magneto resistance is plotted in Fig. 2.25. The angle
dependence is clearly visible and considered a smoking gun experimental signature.
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Figure 2.26. Sketch of closed orbital path in a WSM. The electrons on the orbit move along the
Fermi arc at the surface, enter the bulk at the projections of the Weyl points denoted by circles with +
and -, move through the bulk and reach the other surface of the system, moving again along the Fermi
arc. Adapted by permission from Macmillan Publishers Ltd: Nature Communications, Ref. [PKV14],
copyright (2014).

Weyl Orbits

In a WSM, both surface and bulk are gapless. Using this fact, one can define closed paths on
which electrons move along the surface and through the bulk, as sketched in Fig. 2.26. These
Weyl orbits lead to resonances in the density of states (DOS), which can be measured. For
the original proposal and the experimental verification see Refs. [PKV14, MNH+16].

Minimal Model

The derivation and study of minimal models of the WSM phase is an active area of research, see,
e.g., Refs. [OM14, DR16]. We close this section by giving a simple model for an III symmetric
WSM with two Weyl points. It will be used in Chap. IV as a starting point for the study
of combined TI and WSM surface states. It was first proposed in Ref. [YLR11], extended in
Ref. [MKT17] and is given by

HW = vzkzτ3 + vykyτ2 + t(k)τ1 + γW tx
(
k2
x − k2

W

)
τ0 (2.57)

with t(k) = tx
(
k2
x − k2

W

)
+ tyz

(
k2
y + k2

z

)
and the Pauli matrices τ . The two Weyl points

are located at kx = ±kW , and the type of the WSM can be switched from type I to type
II [XZZ15, SGW+15, SGT16] by a finite |γW | > 1. For further details, see Chap. IV.
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3. Correlations and Topological Matter

Taking into account Coulomb interactions beyond the mean-field level in topological matter,
this gives rise to a fundamental problem: in most of Sec. 2 we used band theory to discuss
and classify different topological phases and their properties. Yet band theory does not take
into account correlation effects and is thus not valid in a correlated system. The invariants
based on band theory loose their validity as well. Therefore we will introduce in Sec. 3.1 a
complementary theory that allows for topological classification of systems without restrictions
on the allowed correlations. Before we go into detail, let us consider what changes we could
expect due to interactions, based on Ref. [FM13] Chap. 11, Sec. 2. The classification of phases
could change by merging of prior distinct classes, or by refining an existing class into several
new ones. One can think about it like adding a new axis in a phase diagram. Using this
additional dimension, interactions could make it possible to define a path connecting two
topological phases without going through a discontinuity, thus merging the topological phases.
A classical example thereof are the liquid and vapor phases of water, which merge at high
pressure.
Besides the topological classification of ground states of interacting systems, we are also

interested in the study of their dynamics. For this we need effective theories describing the
correlated electron gas. This is done in Sec. 3.2, where we introduce Fermi liquid theory,
as well as perturbative theories for the weak and strong coupling limit, the Random Phase
Approximation (RPA) and a formalism for quantum Hall ferromagnetic (QHFM) systems. The
section ends with an overview of Luttinger liquid theory characterizing correlated 1D systems.
The last missing piece is then the connection between the introductory Chapter I and the

main research part of this thesis in Chapters II-IV. This link is established in Sec. 3.3 where
the underlying motivation for our research is presented. We consider the possible benefits of
joining topological and interaction effects. This includes the use of interactions as a probe for
topological phases, the idea of topological plasmonics as well as the study of coupled topological
multilayer systems. The symmetry breaking due to interactions and the corresponding possible
destruction or refinement of topological phases is considered as well. This overview should serve
as motivation for the following research chapters.

3.1. Topological Field Theory

In Sec. 2 we classify topological matter with the help of a topological band theory. Is this
classification still well-defined in system with relevant interactions? In order to answer this,
we introduce a complementary theory that is not restricted to non-interacting systems. The
central idea of this topological field theory (TFT) is the following: one classifies a system
purely by its topological properties. These properties are for example the way the system
responses to external electromagnetic fields. Thus TFT could also be called a topological
response theory. All that is needed for the classification are the relevant symmetries of the
system. This section is based on Ref. [FM13] Chap. 4, Secs. 1 & 3.2 and Chap. 2, Secs. 2.3f.
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3. Correlations and Topological Matter

Throughout this section we stick to one example system. It is given by a 2D insulator
with Hamiltonian H

[
ciα, c

†
iα

]
, with i for lattice sites and α for labeling spin and band in-

dices. The details of the Hamiltonian are not important. We study its response to an external
electromagnetic field via a finite Aµ, with µ = x, y, t for space and time indices. The cou-
pling of system and field is determined by the gauge principle, e.g. −tc†ici+x̂ is replaced by
−tc†ici+x̂eiAix with Aix = e

h̄

∫ i+x̂
i Aµdrµ. The Hamiltonian of the coupled system is then de-

noted as H
[
ciα, c

†
iα, Aµ

]
. The action is, using imaginary time, given by

S [ciα (τ) , c̄iα (τ) , Aµ (τ)] =
∫ β

0

∑
i,α

c̄iα∂τ ciα +H

dτ. (3.1)

Here and in the following, we suppress arguments of functions and functionals for brevity. In
order to study only the response of the system, we integrate out the internal fermionic degrees
of freedom. This defines the effective action Seff [Aµ] with

e−Seff [Aµ] =
∫
Dciα (τ)Dc̄iα (τ) e−S[ciα(τ),c̄iα(τ),Aµ(τ)]. (3.2)

The action Seff [Aµ] includes the response of the system to the external electromagnetic field.
Observables can be calculated from it, for example, the average value of the charge current is
given by

〈Jµ [Aµ]〉 = 〈 δH
δAµ
〉 = δSeff

δAµ
. (3.3)

Our goal is the derivation of a general theory not dependent on the specifics of the Hamil-
tonian. A way to achieve this is the expansion of the effective action in orders of Aµ. This
results in

Seff = 1
2

∫
d3x d3x′Πµν

(
x, x′

)
Aµ (x)Aν

(
x′
)

+O
(
A2
)
, (3.4)

where Πµν are the linear response functions of the fermion system. Importantly, the action
has to be consistent with gauge invariance

e−Seff [Aµ] = e−Seff [Aµ+∂µφ] (3.5)

for any gauge transformation φ (x) to every order in the response to Aµ.
We are now in a position to discuss general properties. For a gapped system, all connected

correlation functions are short ranged in space-time. This makes the integration in Eq. (3.2)
well defined. Seff should be local in Aµ (x), thus Πµν (x, x′) needs to be short ranged in
|x− x′|. The typical length scale is l = h̄v/Eg with the gap Eg and the average electron
velocity v.
In the case that one considers the response of the system on a much larger length scale than

l, one can perform a gradient expansion in momentum space

Πµν
(
x, x′

)
=
∫ d3p

(2π)3 eip(x−x′)Πµν (p)

=
∞∑
n=0

Π(n)
µν;τ1τ2...τn

∫ d3p

(2π)3 eip(x−x′)pτ1pτ2 . . . pτn

=
∞∑
n=0

Π(n)
µν;τ1τ2...τn (−i)n ∂τ1∂τ2 . . . ∂τnδ

(
x− x′

)
(3.6)
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3.1. Topological Field Theory

where we assumed translational symmetry. The expansion coefficients are here defined by
Π(n)
µν;τ1τ2...τn = ∂n

∂pτ1∂pτ2 ...∂pτn Πµν |p=0. Each term has to respect gauge symmetry, which gives
e.g. Π(0)

µν = 0. The Maxwell term in 2nd order is usually the lowest contribution that respects
gauge symmetry, translational symmetry and rotation symmetry. It is given by

Π(2)
µν;τ1τ2 = 1

2 (gµνgτ1τ2 − gµτ1gντ2) ,

−1
4

∫
d3xFµνF

µν =
∫

d3x d3x′Π(2)
µν;τ1τ2∂

τ1∂τ2δ
(
x− x′

)
Aµ (x)Aν

(
x′
)
.

(3.7)

with the Lorentz metric gµν and the electromagnetic tensor Fµν = ∂µAν − ∂νAµ.

Chern-Simons Term

In 2+1 dimensions there is a special gauge invariant term of lower order than the Maxwell
term. It is called Chern-Simons (CS) term and given by

Π(1)
µν;τ = −σH2 εµντ ,

SCS = −i
∫

d3x d3x′Π(1)
µν;τ∂

τδ
(
x− x′

)
Aµ (x)Aν

(
x′
)

= i
σH
2

∫
d3x εµντA

µ∂νAτ .

(3.8)

It leads to the current, Eq. (3.3), of Jµ = σHε
µντ∂νAτ . The first component is thus Jx = σHEy

and we can identity the CS term as being responsible for the Hall conductivity.
Let us check the gauge invariance of the CS term εµντA

µ∂νAτ . The gauge transformation
Aµ → Aµ + δAµ leads to the variation δ (εµντAµ∂νAτ ) = 2 (δAµ) εµντ∂νAτ − ∂µ (εµντAνδAτ ),
where the second term is a total derivative. If one takes the gauge transformation δAµ = ∂µφ
and φ is single-valued, one finds δSCS = 0 and the gauge invariance is preserved.
We know from Sec. 2.3 that it is not always possible to define a single-valued φ across the

BZ. Having a closer look at the gauge transformation, one actually only needs a single-valued
eiφ(x) to fulfill gauge invariance. In 2+1 dimensions we assume a time-periodic system with
φ (x, y, t+ T ) = φ (x, y, t) + 2πn. The change of the action due to the gauge transformation is
then given by

δSCS = iσH

∫
d2x

∫ T

0
dt ∂µ (εµντφ∂νAτ )

= iσH

∫
S2

d2xFxy (x, y, 0) [φ (x, y, T )− φ (x, y, 0)]

= iσH4π2nm

(3.9)

where we used that the total flux of Fxy on the spatial manifold is always quantized to 2πm,
m ∈ Z.

The CS term is therefore not fully gauge invariant. Yet if one takes σH = k
2π with k an

integer, corresponding to σH = k e
2

h in physical units, it is quantized to a multiple of 2π. That
makes e−SCS gauge invariant and is thus a proof that the Hall conductivity σH needs to be
quantized. This quantization makes the CS term robust as it can not be continuously tuned,
but only changed abruptly if the description used above fails. The latter case corresponds then
to a quantum phase transition.

41



3. Correlations and Topological Matter

Let’s sum up the basic idea of topological response theory considered so far. One introduces
an external field and writes down all topological terms of the external field that are consistent
with gauge invariance and the symmetries of the system. Topological terms are defined by
their quantization and serve as a way to topologically classify the state of the system. Two
states with different discrete terms are adiabatically distinct and belong to different topological
classes. Two states with the same quantized terms can be of the same topology, but this is
not necessarily the case. The states could also differ in some other topological response terms
not considered in the classification.
We close this section by considering some generalizations to the theory presented so far. The

first one is a system that has more than one ground state. In this case, after integrating out
the fermionic degrees of freedom, there will be one additional, low-energy degree of freedom
left, describing the ground state degeneracy. Thus the action has more parameters than Aµ
alone, and the theory is called dynamical topological field theory.
The second generalization is about a higher spatial dimension. The same principles presented

above can be applied to a TTT invariant insulator in 3+1 dimensions. TFT can be used to define
the Z2 invariant and study interesting topological effects like the magneto-electric effect or
axion electrodynamics. We do not go into detail here.

Interaction Effect on Topological Classification

Finally we are in a position to answer the question about the changes in topological classifica-
tion raised at the beginning of this section.
For finite correlation strength, the single-particle states are not well defined. In the response

theory, additional terms appear in the expansion, due to the interaction, and may modify the
response. But there is a way out: one can rewrite the theory in terms of single-particle
Green functions which stay valid in the interacting case. One finds that the coefficients of the
topological terms do not change for finite correlations, as long as no phase transition occurs.
Thus we conclude: any interacting topological state that can be adiabatically connected to a
non-interacting system has the same topology. Interactions need to be strong enough to close
the band gap in order to drive a topological transition. This is a helpful conclusion for our
studies in Chap. II, where we incorporate the effects of interactions perturbatively via RPA.
This TFT analysis is unfortunately not applicable to gapless systems like WSMs. In order

to decide whether these systems are stable under the influence of interactions, one has to
do an analysis on a case to case basis. For WSMs this has been done, with the result that
electron-electron interactions are marginally irrelevant. Thus Weyl points are expected to be
stable against weak disorder and the correlations just renormalize the system parameters, see
e.q. Refs. [GC11, IN12, HPV12, IN13, YN14]. For the gapless BHZ model, we perform this
analysis in Chap. II.

3.2. Methods for Incorporating Interactions

So far, we have considered the topological classification of matter, mostly on a non-interacting
basis in Sec. 2 and in more general terms in Sec. 3.1. In the following section, we will introduce
further concepts related to electron-electron interaction. We discuss methods to consider
correlation effects in a controlled fashion. This serves as the second cornerstone in order to
study correlations in topological matter in Chaps. II-IV.
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kF

Z < 1

kF ω = Eµk ω = Eµk1
ω = Eµk2

k

nk

k

nk

ω

A(k, ω)

ω

A(k, ω)
(a) (b) (c) (d)

Figure 3.1. Occupation number nk in the non-interacing case (a) and for finite interactions (b). The
jump at kF reduces due to interactions. (c) The spectral function A (k, ω) of an excitation is a δ peak in
the non-interacting limt. Including interactions in (d), the peak broadens in dependence to its distance
to the Fermi momentum.

This section is organized as follows. Fermi liquid theory is introduced in Sec. 3.2.1, offering
a general way to consider interactions between electrons in 2 and 3 dimensions by modeling
them as dressed quasiparticles. The dynamics of these quasiparticles is then further studied
perturbatively in the weakly interacting limit in Sec. 3.2.2 using the Random Phase Approx-
imation (RPA). The strongly interacting limit is treated in Sec. 3.2.3, where the system is
assumed to be in a quantum Hall ferromagnetic (QHFM) state. Interactions in one dimension
are special in the sense that they are always dominant. Thus we treat them separately in
Sec. 3.2.4 in a Luttinger liquid description.

3.2.1. Fermi Liquid Theory
Coulomb interaction between the individual electrons in solids is often neither dominant nor
negligible compared to their kinetic energy. This makes correlations inherently difficult to
treat, as perturbation theory is not always justified. Fermi liquid theory can be understood as
one of the fundamental theories tackling this problem in solid state physics, upon many of the
more refined techniques build on. We use Ref. [Gia03] Sec. 1.1 as the source for this section.
Let us begin with a crystal system in D>1 dimensions, neglecting interactions as a start.

The non-interacting electron bands are filled up to the Fermi level µ as discussed in Sec. 2.2.1.
There at µ, or correspondingly at the Fermi wave vector kF (assuming a Fermi circle or sphere),
the occupation number nk jumps from 1 to 0, see Fig. 3.1 (a). Excitations can be considered
by looking at the effect of adding additional electrons. This can be done above the Fermi level,
and the excitations have well defined momentum k and energy Ek. They are eigenstates of
the Hamiltonian and thus have an infinite lifetime. The spectral function A (k, ω) gives the
probability to find a state with frequency ω and momentum k. For these free electrons that
we consider, it is given by

A (k, ω) = δ
(
ω − Eµk

)
(3.10)

with Eµk = Ek − µ, Ek the energy of the particle and µ the chemical potential or Fermi level,
used synonymously in the following. The δ peak is plotted in Fig. 3.1 (c).

As a next step we include interactions. The main idea and result of Fermi liquid theory
is that the interacting case is essentially similar to the free fermion picture. The elementary
particles are now electrons dressed by density fluctuations, forming quasiparticles. These
quasiparticles are basically free spin 1/2 particles, with a definite momentum k and energy
Ek. We elaborate on this in the following.
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3. Correlations and Topological Matter

The occupation number nk in the interacting case is still discontinuous at the Fermi level,
but the jump is given by Z < 1, see Fig. 3.1 (b). Z gives the fraction of particles remaining
in the quasiparticle state, while the rest is in a continuous background without well-defined
structure. The quasiparticles have a well-defined relation between frequency and momentum
given by ω = Eµk . The interaction renormalizes parameters of the system like the electron
mass m, which becomes the quasiparticle mass m∗. The Fermi momentum on the other hand
is unchanged due to the conservation law known as Luttinger theorem.
The low-energy physics of the excitations in this interacting system can be described by the

functional

E [{δnk}] =
∑
k,s

Eµkδnk,s + 1
2V

∑
k,s,k′,s′

f ss
′

k,k′δnk,sδnk′,s′ (3.11)

where δnk,s measures the deviations of the occupation number from the ground state. The
Landau function fss

′
k,k′ contains the interaction or scattering effects between quasiparticles.

These quasiparticles are thus not completely free. Their excitations have a finite lifetime τ ,
resulting in the time dependence

e−iE
µ
k
te−t/τ . (3.12)

This finite lifetime translates into a finite width in the spectral function A (k, ω) as depicted in
Fig. 3.1 (d). It is due to scattering between quasiparticles. As the scattering phase space goes
to zero when approaching the Fermi surface, the lifetime diverges at the Fermi level. In 3D
this happens as τ ∝ 1/

(
Eµk
)2, making the excitations well-defined close to the Fermi surface.

In normal metals, the Fermi level is about 10000 K, so for practical purposes, with temper-
atures of 1− 100 K, one is often close to the Fermi energy. The quasiparticles behave as being
essentially free excitations in this limit.

The validity of the theory summarized above can be established by perturbation theory.
Yet Fermi liquid theory is valid beyond this regime and can also be based on simple and
general phase space arguments. Therefore, this theory is expected to break down only due
to exceedingly strong interactions or special instabilities occurring in the system. The latter
happens e.g. in one dimension, see Sec. 3.2.4.
What we missed so far, these are the additional collective excitations that interactions bring

along. They describe the response of the system to disturbances in the particle or spin density.
Short range interactions, for example, lead to zero sound modes in the charge sector, while
plasmon modes arise due to long range Coulomb interactions. We will study them in more
detail in the next section.

3.2.2. Excitations and Screening in the Random Phase Approximation

We have argued in the last section 3.2.1 that in 2D and 3D the electrons in an interacting
condensed matter system can be described by quasiparticles, which are electrons dressed by
density fluctuations. In this section we are interested in the response of such an electron gas to
perturbations, be it external potentials or the intrinsic electron-electron interaction between
quasiparticles. We present a perturbation theory incorporating these effects, with a focus on
the widely used Random Phase Approximation (RPA). This section is based on Ref. [GV05]
Secs. 3.3, 4, 5 & 6 as well as Ref. [Mah00] Sec. 5.5 and Ref. [FW71] Chaps. 5, 8 & 9. The
presented theory will be used in Chap. II.
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3.2. Methods for Incorporating Interactions

(Proper) Density-density Response Function

Considering linear response theory, the coupling of a time-dependent external potential Vext
to the electron gas can be described by the term∫

Vext (r, t)n (r) dr. (3.13)

Here n (r) =
∑
i δ (r − ri) is the density operator of the electrons. The electron gas reacts

to this perturbation by screening it. This behavior induces a potential Vind and the total,
screened potential is then given by

Vsc (r, t) = Vext (r, t) + Vind (r, t) , Vind (r, t) = e2

4πε0

∫
dr′ n1 (r′, t)
|r − r′|

. (3.14)

The induced density n1 in linear response is defined by

n1 (r, ω) =
∫ ∞
−∞

dt n1 (r, t) eiωt (3.15)

=
∫

dr′ χnn
(
r, r′, ω

)
Vext

(
r′, ω

)
(3.16)

=
∫

dr′ χ̃nn
(
r, r′, ω

)
Vsc

(
r′, ω

)
. (3.17)

Here, we introduced two different response functions. The first one is the density-density
response function

χnn
(
r, r′, ω

)
= − i

h̄

∫ ∞
−∞

dt e(iω−0+)tΘ (t)
〈[
n (r, t) , n

(
r′
)]〉

0 , (3.18)

with the Heavyside step function Θ, and 〈. . .〉0 denotes the averaging over the thermal equilib-
rium ensemble. χnn gives the full response of the electron gas to the perturbation and is thus
the quantity we are interested in. Full response means not only the response to the perturba-
tion, but also the response to the response to the perturbation to all orders. Thus it includes
all self-screening effects, which makes this quantity quiet involved and a bit cumbersome to
compute.

The second response function χ̃nn, defined in Eq. (3.17), is the so called proper density-
density response function. It describes the response of the electron gas as an answer to the
already screened potential. One thus could expect that it is a simpler quantity, as the self-
screening effects are already included in Vsc.
Comparing Eqs. (3.14)-(3.17), this provides the relation between the two response functions

as
χ̃−1
nn

(
r, r′, ω

)
= χ−1

nn

(
r, r′, ω

)
+ e2

4πε0

1
|r − r′|

. (3.19)

For the homogeneous electron liquid, the physics only depends on the relative distance |r − r′|.
In this case, a Fourier transform with respect to r − r′ can simplify the equations. We find

χnn (q, ω) = χ̃nn (q, ω)
1− vqχ̃nn (q, ω) , (3.20)

ε (q, ω) = 1− vqχ̃nn (q, ω) , (3.21)
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χnn(q, ω) χ̃nn(q, ω) χ̃nn(q, ω) χnn(q, ω)= +
q, ω

Figure 3.2. Summation over all orders of the proper response function χ̃nn gives the full response
χnn.

k + q, E + ω

n̂−q

k,E

n̂q
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+ + + ...
q, ω q, ω q, ω

(b)

Figure 3.3. (a) Bubble diagram corresponding to the Lindhard response function (3.23). (b) The
infinite sum of bubble diagrams gives the polarization function in RPA, Eq. (3.24).

where vq is the Fourier transform of the Coulomb interaction. The dielectric screening function
ε (q, ω) relates the screened and unscreened potential like

Vsc (q, ω) = Vext (q, ω)
ε (q, ω) . (3.22)

With the help of the geometric series
∑∞
k=0 q

k = 1
1−q for |q| < 1, one can understand from

Eq. (3.20) that χnn is just the summation of all orders of vqχ̃nn as depicted in Fig. 3.2.
This formalizes our idea that the full response should include not only the response to the
perturbation, but also all orders of self-screening.

Lindhard Response Function and Random Phase Approximation

So far the definitions of the density-density response functions are very general. In order
to calculate them we rely on approximations. A simple yet powerful one is the Random
Phase Approximation (RPA). It is simply given by approximating the proper density-density
response function χ̃nn (q, ω) by the so called Lindhard function

χ0
nn (q, ω) = χ0 (q, ω) =

∑
σ,λ,λ′

∫ dk
(2π)d

Fλ,λ
′

k,k+q

f (Ekσ)− f (Ek+qσ)
h̄ω + Ekσ − Ek+qσ + i0+ . (3.23)

The Fermi-Dirac function f (E) = 1
eβ(E−µ)+1 , with the inverse temperature β = 1

kBT
and kB

the Boltzmann constant, gives the occupation of the state at energy E. The overlap factor
Fλ,λ

′

k,k+q takes into account that scattering between different bands λ and λ′ can be suppressed.
σ = ± considers the spin of the electrons.
The full density-density response function χnn can be calculated in diagrammatic perturba-

tion theory based on Green functions. One finds that the lowest order contributing diagram
is the bubble diagram in Fig. 3.3 (a). It exactly corresponds to the Lindhard function (3.23).
The density-density response function in RPA, ΠRPA, is thus given by the infinite sum of
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bubble diagrams as shown in Fig. 3.3 (b), and the formula

ΠRPA (q, ω) = χ0 (q, ω)
1− vqχ0 (q, ω) , (3.24)

vRPAq = vq
1− vqχ0 (q, ω) , (3.25)

εRPA (q, ω) = 1− vqχ0 (q, ω) . (3.26)

We close this subsection be giving some useful properties and formulas that are needed in
later sections. For χ0 one finds

χ0 (q, 0) ≤ 0, χ0 (−q, ω) = χ0 (q, ω) , −= [χ0 (q,−ω)] = = [χ0 (q, ω)] , (3.27)

and from χ0 (q, 0) < 0 we directly conclude 1/ε (q, 0) < 1. The real and imaginary parts are
connected via the Kramers-Kronig relation

< [χ0 (ω)] = 2
π
P
∫ ∞

0

ν= [χ0 (ν)]
ν2 − ω2 dν (3.28)

where P denotes the principal value part. The response function fulfills a set of sum rules,
of which we only consider one. It is called the f-sum rule which we will denote as f

∑
in the

following. It states that for all valid approximations to χnn the integral

f
∑

(q) = − 2
π

∫ ∞
0

ω= [χnn (q, ω)] dω (3.29)

is always the same. The function is different for each band structure considered, e.g. for a
2DEG it is f

∑
(q) = nq2

m with n the density and m the mass.
The polarization function can be connected to a quantity directly measurable in experiments,

the static structure factor A (q) =
∫∞

0
dω
π A (q, ω). A (q, ω) is the spectral function of the

density operator, where peaks in A (q, ω) correspond to excitations in the density, see also
Sec. 3.2.1. It is connected to χ0 and vq via

A (q, ω) = 1
nvq
=
[
− 1
ε (q, ω)

]
= 1
n

= [χ0 (q, 0)]
= [ε (q, ω)]2 + < [ε (q, ω)]2

(3.30)

with n the particle density and the loss function =
[
− 1
ε(q,ω)

]
.

Single-Particle Excitations and Plasmons

The Lindhard function describes the ability to excite the electron gas. Depending on the
dimensionality and dispersion of the system, this is only possible for certain combinations
of momenta and energies. Fig. 3.4 gives an idea about the possible intraband electron-hole
excitation continuum in an electron gas.
The polarization function in RPA goes beyond this. It does not only describe the single-

particle excitations (SPEs) known from the Lindhard function, but also collective excitations.
For long range Coulomb interactions, these are collective density-density oscillations called
plasmons, sketched in Fig. 3.5. They occur as a divergency of the effective Coulomb interaction
(3.25). Their dispersion can be obtained from

ε (q, ωp − iγ) = 1− vqχ0 (q, ωp − iγ) = 0 (3.31)
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Figure 3.4. The electron-hole continuum of a non-interacting electron gas in 2 dimensions with
quadratic dispersion. The boundaries ω± (q) = h̄q2

2m ± vF q confine the continuum. In one spatial
dimension, the lower region between 0 and 2kf is absent. The plot is further discussed in App. A.
Reprinted figure with permission from Ref. [JMT14b]. Copyright (2014) by the APS.
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Figure 3.5. Plasmons are the quasiparticles of the collective oscillation modes of the electron gas.

with the plasmon frequency ωp. Often single-particle continuum and plasmons occur at the
same energy and momentum. In this case, the plasmons are damped which is modeled by a
finite damping γ in Eq. (3.31). In the limit of weak damping, one can perform an expansion
of Eq. (3.31) in γ. To first order one finds

1/vq = < [χ0 (q, ω)] + γ∂ω= [χ0 (q, ω)] |ω→ωp ,
0 = = [χ0 (q, ω)]− γ∂ω< [χ0 (q, ω)] |ω→ωp

(3.32)

which can be solved for ωp and γ.

3.2.3. Quantum Hall Ferromagnetism and the nonlinear σ-model

The Fermi liquid theory, Sec. 3.2.1, provides the possibility to incorporate interactions by
considering interacting electrons in 2 and 3 dimensions as quasiparticles, dressed by electron-
hole excitations. The RPA, Sec. 3.2.2, describes the dynamics of these quasiparticle based on a
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perturbation theory in the interaction strength. It is thus only valid for weak and intermediate
interaction strength.
Complementary to these quite general theories, in this section, we introduce a theory that

is tailored for a specific class of systems in the strongly interacting limit. The system is
assumed to order in a specific way and one can develop a theory that describes distortions,
thus excitations, to this perfect order. In a way, it is again a perturbative theory like the
RPA, but not around the non-interacting limit, but around the strongly interacting one. This
section is based on Refs. [SKKR93, MMY+95] as well as Ref. [Gir99] Sec. 1.10. It provides
the theory basis for Chap. III. Additional details can be found in Refs. [YMZ+94, YMB+96,
AKL99, YDM06].

Quantum Hall Ferromagnetism Basics

Let us consider a system in a strong magnetic field. The electrons form LLs, with a completely
flat dispersion relation in the bulk. For the effective theory we would like to present, we
consider only two of these levels, which are the highest filled one and the lowest unfilled. We
assume that this two level system is at half filling ν = 1, meaning that there is one electron
per two orbitals and the low lying level is completely filled, while the higher level is empty.
It is convenient to describe the occupation of this two level system by a pseudospin degree

of freedom, where e.g. spin up (down) means level a (b) is occupied. The pseudospin can take
any value on the Bloch sphere, so intrinsically in this description all superpositions of partially
occupied states are included. The nature of the two levels a and b is not important. They
can have different spin, then pseudospin and spin coincide, but they could also correspond to
states in the two layers of a bilayer system.
In the limit of strong interactions between the electrons in different orbitals, one can invoke

Hund’s rule which states that the total system can lower its energy if it (pseudo)spin polarizes.
The reason is that the state with maximum global spin is symmetric under spin exchange,
meaning the spatial wave function is fully antisymmetric. This increases the interparticle
distance and decreases Coulomb repulsion. The developing order is usually counteracted by
the increase in kinetic energy due to the Pauli principle. Yet in a LL system, the kinetic
energy is quenched by the magnetic field such that the LLs have a flat dispersion relation
and are massively degenerate. Therefore there is no increase in kinetic energy and one could
expect a 100% spin polarization. The system is supposed to be in the so called quantum Hall
ferromagnetic (QHFM) ground state.
Due to this full order, the ground state of N electrons is expected to be of simple Slater

determinant form. It can be explicitly written down as

Ψ = ΨV |↑↑↑↑↑↑↑↑↑↑ . . . ↑〉 (3.33)

with the Vandermonde determinant wave function

ΨV = Πi<j (zi − zj) Πk exp
(
− |zk|2 /4l2B

)
(3.34)

with the magnetic length lB =
√

h̄
eB . The two-particle distribution function is

g
(∣∣r − r′∣∣) = 1− e−|r−r′|

2/2l2B . (3.35)
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One can use it to directly calculate the exchange hole that surrounds each particle and lowers
its Coulomb energy by

Ex = 1
2πl2B

e2

4πε0εr

∫
d2r

1
r

[g (r)− 1]

=
√
π

2
e2

4πε0εr

1
lB
.

(3.36)

This puts our argument about using Hund’s rule on a concrete basis.
The explicit wave function (3.33) offers the chance to study the ground state physics ana-

lytically. This is done by projecting all relevant operators of the Hamiltonian onto the two
level system, see Ref. [MMY+95] for details.
In this thesis, we follow a different approach. We focus on deriving an effective model for

the two level system, where the free parameter is the pseudospin degree of freedom. As all
spins are aligned in a QHFM system, the ground state can be represented by the isospin order
parameter

n (r) =
(

sin (θ (r)) cos (φ (r)) , sin (θ (r)) sin (φ (r)) , cos (θ (r))
)T

(3.37)

on the Bloch sphere. The physics can then be cast into a model for this order parameter,
called nonlinear σ-model. This is done in detail for a concrete example in Sec. 7.
Here we conclude this description by shortly discussing the form of excitations of such a

QHFM state, compared to the systems discussed beforehand. Projecting the operators on the
two lowest LLs, one finds a physical interesting property: the spin and charge density operators
do not commute anymore. Spin and charge are entangled in the QHFM state, which becomes
physically observable for the low-energy charge excitations.
In the Fermi liquid, the low-energy excitations are electronic quasiparticles excited above

the Fermi sea, see Sec. 3.2.1. Their dynamics can effectively be described perturbatively,
e.g. in RPA (Sec. 3.2.2) for weak interactions. In the QHFM state, we are in the opposite
limit of strong interactions, where the electrons are strongly correlated. An excitation of a
single electron would have to overcome the exchange energy, Eq. (3.36), which is costly. It
turns out that due to this exchange energy, not electron-hole pairs are the low-energy charge
excitations of the QHFM state, but skyrmions, as calculated in Ref. [MMY+95]. A skyrmion
anti-skyrmion pair costs only half the energy of an electron-hole pair. The energy per skyrmion
is

Es = 1
4

√
π

2
e2

4πε0εr

1
lB

(3.38)

for the state defined in Eq. (3.33).

Skyrmions

Skyrmions are smoothly, on the length scale of lB, varying deformations of the isospin order
parameter n. These spin structures deform in a way that includes an integer amount of
windings nsk around the Bloch sphere. For an overview, see Ref. [NT13]. A simple example
for a skyrmion with a single winding nsk = 1 is shown in Fig. 3.6 (a). The winding marks
skyrmions as topological excitations, with the winding number

nsk =
∫ d2r

4π n · (∂xn× ∂yn) (3.39)
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Figure 3.6. (a) 3D sketch of a skyrmion spin structure. (b) Different skyrmion types for parameters
γ and m defined in Eq. (3.41). The black arrows denote the in-plane spin orientation. Adapted by
permission from Macmillan Publishers Ltd: Nature Nanotechnology, Ref. [NT13], copyright (2013).

being quantized to integer values for skyrmions and half-integer values for merons. Due to the
entanglement of charge and spin in the QHFM state, the topological charge nsk describes also
the electrical charge

Qsk = νnske (3.40)
of the excitation with the filling factor ν.

Skyrmions come in different configurations, of which a few are shown in Fig. 3.6 (b). There,
the parametrization r =

(
r cos (ϕ) , r sin (ϕ)

)T
is used with

φ (ϕ) = mϕ+ γ (3.41)

and n (r) given by Eq. (3.37). We conclude from these sketches that the spin-momentum lock-
ing for Dirac cones, described in Sec. 2.4.2, can be nicely related to skyrmion physics, compare
Fig. 3.6 (b) to Fig. 2.20. Instead of the isospin n it is the vector d̂ from the Hamiltonian
H = d · σ that has a non-trivial winding in this case. The difference is that the winding is
only in the x-y plane in 2D, such that one gets a winding number of ndirac = 1

2 in accordance
to the Berry phase of π found for the 2D Dirac states in Sec. 2.4.2. These objects with half
integer winding are called merons. Another important difference is that for the Dirac cone the
winding happens in momentum space, while in the QHFM systems it is located in real space.
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(b)(a)

Figure 3.7. (a) Electron motion in D ≥ 2 dimensions. (b) Electrons in 1D are always strongly
correlated due to spatial restrictions.

Holon Spinon

(a)

(b)

(c)

Figure 3.8. (a) Antiferromagnetic spin chain with a vacancy. (b) The vacancy moves, which effec-
tively looks like two propagating excitations, a Holon and a Spinon. (c) In 2D, Holon and Spinon are
always bound together by the exchange coupling to the surrounding spin chains.

3.2.4. Interaction in One Dimension: Luttinger Description

We conclude the method section with a brief description of 1D systems. Interaction effects in
1D are special, and the Fermi liquid picture recapped in Sec. 3.2.1 does not apply. Its place
will be taken by the Luttinger liquid, which we introduce in the following. This section is
based on Ref. [Gia03] and Ref. [QZ11] Sec. 2.C.2. The described physics will be relevant for
the strongly interacting edge states considered in Chap. III.

Why interactions in 1D are different

In higher spatial dimensions (D ≥ 2), electrons exist as nearly free quasiparticles according to
Fermi liquid theory. In the following, we show, based on Ref. [Gia03] Secs. 1.2 and 3.2, that
this picture fails in 1D.
Electrons inD ≥ 2 can move around each other in the electron gas, which naturally mitigates

correlations between them. In 1D instead, every individual electron pushes its neighbor due
to electron-electron interaction, see Fig. 3.7. Therefore every excitation of the electron system
is collective and there can be no Fermi liquid theory of weakly interacting quasiparticles.

Let us extend our analysis to particles with spin, depicted as an antiferromagnetic spin
chain in Fig. 3.8 (a). One electron is missing, and this vacancy starts propagating along the
chain. It looks like the single fermionic excitation splits into a charge and a spin collective
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Figure 3.9. (a) Weak nesting condition q = 2kF for circular Fermi surface in 2D. (b) Fermi surface
in 1D consists of two points resulting in perfect nesting. (c) More involved Fermi surfaces in 2D also
lead to nesting conditions for special wave vectors.

excitation moving into opposite directions, see Fig. 3.8 (b). Thus the electron breaks apart into
two elementary excitations, the holon (charge) and the spinon (spin). These spin and charge
density waves have in general different velocities. In 2D systems, these two particles would be
bound together by the exchange coupling to the other chains, see Fig. 3.8 (c). Thus particle
fractionalization (in particular spin-charge separation) is a special feature in 1D systems.
Another way to see that one needs a special theory for 1D systems is looking directly at

the failure of the perturbation theory summed up in Sec. 3.2.2. Assuming linear response
theory works, we look at the density-density correlation function as response to an external
perturbation

Hext =
∫

ddrVext (r, t)n (r) (3.42)

with n the density of the system. The susceptibility measuring the response is the Lindhard
function, given by

χ0 (q, ω) = 1
V

∑
k

f (Ek)− f (Ek+q)
ω + Ek − Ek+q + i0+ (3.43)

with volume V = Ld for systems with linear dimension L and f the Fermi-Dirac function. In
the ω = 0 limit, one expects a divergency if Ek = Ek+q is fulfilled, but due to the integration
over k in Eq. (3.43) it is smoothed out. Especially in higher dimensions only the derivatives
of χ0 (q, 0) are discontinuous, resulting in phenomena like Friedel oscillations.

There is a way for stronger divergencies to occur, which is nesting. It describes the case of
a finite domain of values of k for which Ek = Ek+q is fulfilled. In higher dimensions this is
rarely realized. A circular Fermi surface in 2D has only weak nesting for q = 2kf , see Fig. 3.9
(a), although there are exceptions for more involved Fermi surfaces, e.g. involving electron
and hole puddles as sketched in Fig. 3.9 (c). The 1D Fermi surface on the other hand consists
only of two points, such that Ek = Ek+2kF is fulfilled at the Fermi momentum for inversion
symmetric systems. This results in perfect nesting in 1D. Therefore there is a divergency in
χ0 at q = 2kF and we expect the failure of perturbation theory. The ground state of the
interacting system is thus expected to differ substantially from the non-interacting one.

Is there a simple picture to better describe 1D systems in order to avoid divergencies such as
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we just discussed? Let’s consider, in 1D, a p-h excitation around the Fermi level with energy

Ep,hk (q) = Ek+q − Ek (3.44)

where the state for Ek is supposed to be occupied and the state at Ek+q originally empty.
Expanding around the Fermi momentum for small q, one gets the average energy Ep,h (q) and
dispersion δE (q) of a p-h pair as

Ep,h (q) = vF q,

δE (q) = Ep,h (q)2

mv2
F

(3.45)

with Fermi velocity vF and electron mass m. Similar to the quasiparticles in Fermi liquid
theory in D ≥ 2, p-h excitations are well-defined quasiparticles close to the Fermi energy in
1D systems. Their dispersion goes to zero like energy squared as for the quasiparticles in the
Fermi liquid description. As p-h excitations are bosonic in nature, we can understand this as
a hint that the bosonization of our system will solve the problems occurring in 1D.

Luttinger Liquids

Following the conclusion from the last section, we want to derive an effective theory for the
low-energy excitations of a 1D system. In contrast to the fermionic quasiparticles of Fermi
liquid in D ≥ 2, this Luttinger liquid description is based on bosonic p-h excitations. We
closely follow Ref. [Gia03] Sec. 3.1f & App. D in the derivation. The major results needed in
Chap. III will be the Hamiltonian (3.60) and the action (3.61).
The effective theory will contain two degrees of freedom, the fields φ, where ∇φ is the density

variation and thus linked to Coulomb energy from interactions, and θ. The latter is related to
the particle creation operator and thus linked to the kinetic energy. We rederive the particle
Hamiltonian in this language, which corresponds to bosonization. The described excitations
are bosons as argued before, and φ and θ can be represented by bosonic operators.
We start by writing down the 1D density

ρ (x) =
∑
i

δ (x− xi) (3.46)

with xi the position operator of the ith particle. A labeling field φl can be introduced, which is
continuous and takes the value φl (xi) = 2πi at the position of the ith particle. It constitutes
a unique way of numbering particles, because in 1D particles can be distinctively ordered. So
the field is well defined, and we use it to rewrite the density into

ρ (x) =
∑
i

δ (x− xi) (3.47)

=
∑
n

|∇φl (x)| δ (φl (x)− 2πn) . (3.48)

Imagine φl (x) as an increasing function of x as sketched in Fig. 3.10. Thus we drop the
absolute value, choose a representation of the δ function based on the Poisson summation
formula, and find

ρ (x) = ∇φl (x)
2π

∑
p

eipφl(x) (3.49)
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Figure 3.10. Examples for the labeling field φl (x) for (a) a homogeneous system and (b) one with
spatial deviations.

with p an integer. The actual field of interest φ describes the mean-field fluctuations around
the perfect crystalline lattice solution. The latter is given by φ0

l (x) = 2πρ0x with ρ0 = 1/d
the equilibrium density of particles and d the average distance between particles. φ (x) is then
defined via

φl (x) = 2πρ0x− 2φ (x) . (3.50)
Using this notation, the density becomes

ρ (x) =
[
ρ0 −

1
π
∇φ (x)

]∑
p

ei2p(πρ0x−φ(x)). (3.51)

We look now at the long wavelength limit, at which the terms in Eq. (3.51) oscillating on the
interparticle distance scale d vanish. The averaged or smeared density is thus

ρq≈0 (x) = ρ0 −
1
π
∇φ (x) . (3.52)

The second field θ (x) needed for our rewriting of the Hamiltonian is introduced by expressing
the particle creation operator like

ψ† (x) = [ρ (x)]1/2 e−iθ(x). (3.53)

The (anti-)commutation relations between the operators ψ impose commutation relations be-
tween the density operator and θ (x). For bosons they are given by[

ψB (x) , ψ†B
(
x′
)]

= δ
(
x− x′

)
. (3.54)

Under the assumption that the field θ commutes with itself, [θ (x) , θ (x′)] = 0, a sufficient
condition satisfying Eq. (3.54) is[

ρ (x) , e−iθ(x′)
]

= δ
(
x− x′

)
e−iθ(x′). (3.55)

Again focusing on the long wavelength limit, we assume that the fields φ and θ vary slowly on
the interparticle distance ρ−1

0 . Hence we replace the exact density in Eq. (3.55) by the smeared
one, Eq. (3.52). The commutator is then fulfilled by[ 1

π
∇φ (x) , θ

(
x′
)]

= −iδ
(
x− x′

)
(3.56)
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where higher oscillating terms, not fulfilling the relation, are neglected in the continuum limit.
θ and 1

π∇φ (x) are canonically conjugated, hence an integration by parts leads to

πΠ (x) = ∇θ (x) (3.57)

with Π (x) the canonically conjugate momentum to φ (x). The bosonic creation operator

ψ†B (x) =
[
ρ0 −

1
π
∇φ (x)

]1/2∑
p

ei2p(πρ0x−φ(x))e−iθ(x) (3.58)

follows from Eqs. (3.51) and (3.53).
For fermions one has to fulfill an anticommutation relation instead of Eq. (3.54). The extra

minus sign can be accounted for by the definition of the fermion creation operator

ψ†F (x) = ψ†B (x) ei
1
2φl(x). (3.59)

As φ and Π are canonically conjugated, they can be expressed in terms of bosonic operator bp
and b†p. These bosons represent the small oscillations of the density as p-h excitations.
Applying this newly introduced notation, we consider the dominant contributions to the

many-body Hamiltonian. The interactions
∫

dxρ (x)2 will give the term (∇φ)2 to leading
order, following from Eq. (3.51). The kinetic energy

∫
dx 1

2m(∇ψ† (x)) (∇ψ (x)) adds the part
(∇θ)2. Here, all the terms in the particle operators involving derivatives like ∇φ are considered
as higher order contributions. Due to inversion symmetry which we assume for 1D systems,
there are no cross terms. The energy should be invariant under the substitution x → −x, as
should be the operators ρ and ψ. From the latter condition it follows ∇φ (x) = ∇φ (−x) and
ψ (x) = ψ (−x), so cross terms like ∇ψ∇φ would change sign.
In conclusion, the Luttinger liquid Hamiltonian containing the dominant parts of the energy

of a 1D system is given by

H = h̄

2π

∫
dx
[
vK
h̄2 (πΠ (x))2 + v

K
(∇φ (x))2

]
(3.60)

with πΠ (x) = ∇θ (x) and the Luttinger liquid action is

S/h̄ = 1
2πK

∫
dxdτ

[1
v

(∂τφ)2 + v (∂xφ (x))2
]
. (3.61)

The two parameters v and K completely characterize the low-energy properties of a massless
1D system. v is considered a velocity, while K is the interaction parameter. K = 1 for
non-interacting, 0 < K < 1 for repulsive interactions.

Currents in the system can be directly obtained from the continuity equation ∂ρ
∂t +∇j = 0.

One finds the formula for the current

j = ∂tφ/π. (3.62)

With our topological materials in mind, we define, in a system with left (L) and right (R)
moving electrons, also left and right moving densities, via

∇φ (x) = −π [ρR (x) + ρL (x)] , (3.63)
∇θ (x) = π [ρR (x)− ρL (x)] . (3.64)

This closes the section about ways of treating correlation effects in condensed matter systems.
Next, we give a few examples of connecting interaction effects with topological properties.
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3.3. Interactions and Topology - a Plethora of Possibilities

So far, we have looked separately at the effects of topology and the consequences of interactions
in condensed matter systems. As a prelude for the following chapters II-IV, here, we will
motivate why the combination of the two can be a fruitful endeavor. As this is a boundless
task, we restrict ourselves to the cases relevant for the subsequent chapters. Our examples
include interactions as a bulk probing tool for topology in Sec. 3.3.1, the combination of
plasmonics and topology in Sec. 3.3.2, the study of symmetry breaking by interactions in
Sec. 3.3.3 as well as the consideration of topological multilayer systems in Sec. 3.3.4.

3.3.1. Interactions as a Probing Tool for Topology

The most obvious and measurable difference between topological trivial and non-trivial phases
is the occurence of surface states at the boundary. On the other hand, also trivial surface
states can form, e.g. due to band bending effects. Additionally, pure surface effects could be
hard to detect for experimental tools that are also bulk sensitive.
In contrast to this, one could look for definite topological distinctions in the bulk properties

of a system. This is a much more subtle task. The topology is not encoded in the energy
spectrum, but in the structure of the Berry phase, see Sec. 2.2.2. This is a quantity quite hard
to access experimentally. On the plus side, bulk quantities are generally more accessible in
experiments.
The bulk property we would like to consider is the excitation spectrum of a material. It

depends on the structure of the Berry phase of the involved bands. An example is the spin-
momentum locking in graphene, giving severe limitations to the scattering of electrons in the
bulk bands. A concrete physical quantity where this enters is the Lindhard response function
χ0 (q, ω) defined in Eq. (3.23). Here, the overlap factor Fλ,λ

′

k,k′ directly depends on the Berry
phase structure of the involved bands.
In an interacting systems, the RPA response function ΠRPA, Eq. (3.24), provides insight into

the excitation spectrum. It is directly connected to measurable quantities like the dynamic
structure factor A (q, ω) given in Eq. (3.30). The study of the influence of topology on the
bulk excitation spectrum has been one of the goals of the project presented in Chap. II.

3.3.2. Applications: Plasmonics and Topology

ΠRPA includes both single-particle as well as collective excitations, see Sec. 3.2.2. These
collective charge excitations of the electron gas are called plasmons.
An interesting application of plasmons is in the connection of electronics with optics. Plas-

mons can be used to enhance the coupling between light and electronic degrees of freedom
of the electron gas. This goal results in the name plasmonics for this field of research, from
joining plasmon and photonics. The hope is to integrate photonic systems, which are usually
on the micrometer scale, into electronic chips, where nanometers are the relevant length scale.
See Ref. [Ozb06] for an introduction.
The whole field gained a boost with the advent of graphene, which seems to be an ideal

platform in order to tailor the interaction between light and electrons at will. We consider two
examples from Refs. [KCG11, GPN12] in Fig. 3.11. The first one is a dipole molecule on the
surface of graphene. The coupling of the two is enhanced by a plasmonic resonance, leading
to the possibility of strong light-matter interaction. Practical applications as nanoantennas,
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Figure 3.11. (a) Dipole molecule on the surface of graphene leads to a strong coupling between the
two systems. (b) Incident light can create electron-hole pairs in graphene. (a) reprinted with permission
from Ref. [KCG11]. Copyright (2011) American Chemical Society. (b) adapted by permission from
Macmillan Publishers Ltd: Nature Photonics, Ref. [GPN12], copyright (2012).

gas detectors or for Raman scattering on single molecules come to mind. The second example
is less profound. Due to a plasmonic resonance, incident light can easier create electron-hole
pairs in graphene. This would boost the efficiency of solar cells.

A natural question is now to think about going from graphene to topological Dirac systems
found in TIs, see e.g. Ref. [DOL+13]. The search for topological benefits in the field of
plasmonics is just at the beginning. A comprehensive overview over the results so far is
provided in Ref. [Sta14]. We contributed to it with the project presented in Chap. II.

3.3.3. Stability: Symmetry Breaking due to Interactions

Usually topological properties, like gapless edge states, are guaranteed by the presence of
certain symmetries in the system. Examples for TIs are TTT symmetry, see Sec. 2.2.3, or some
spatial symmetries like inversion, discussed in Sec. 2.4.3.
The presence of interaction can break these symmetries. This can happen explicitly, i.e. the

interaction does not have the symmetries of the underlying non-interacting system. Another
way is spontaneous symmetry breaking. Whether and how topological properties are preserved
or destroyed by interactions was studied by us for a 2D TI, with HgTe QWs in mind, in
Chap. III. The interaction strength in the system can be tuned by changing an applied magnetic
field. The topological properties directly depend both on the assumed spatial symmetry of the
interaction terms as well as their respective strength.
The effect of TTT symmetry breaking is studied in Chap. IV. There we consider the coupling

of a TTT broken WSM to a TI. The surface Dirac cones can still be gapless, even if TTT symmetry
is broken in the combined system.

3.3.4. Multilayer Systems: Interactions as Mediator between Topological Phases

Correlations can both destroy and enrich topological physics as we have argued so far. But
one can also think about Coulomb interaction as a tool to create something new that could
not exist without it. In this section, we talk about topological multilayer systems: (different)
2D topological phases combined together by an interlayer Coulomb interaction. These can be
layers of 2D TIs or surface states of 3D topological systems. Their joint topological properties
will crucially depend on the properties and symmetries of the interlayer interaction.
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Figure 3.12. Double layer system of HgTe QWs. For sufficient strong interlayer Coulomb interaction,
electrons and holes of different layers bind together to form excitons. Reprinted figure with permission
from Ref. [BTM14]. Copyright (2014) by the APS.

The study of multilayer system can be performed on various levels. A simple approach is
the assumptions of δ-layers of 2D systems, coupled only weakly by Coulomb interaction. In
this limit, the extension of a perturbative calculation from one to several layers is manageable,
e.g. done for graphene multilayers in Ref. [PPA+10]. System properties concerning screening
effects and electronic excitations can be easily obtained.
One experimental relevant application of such multilayers systems are drag setups. There

one drives a current through one layer and measures the Coulomb induced current or voltage
in the adjacent layers. For a basic introduction see Ref. [JS93], more detailed linear-response
calculations of Coulomb drag effects are found in Ref. [FHJK95]. As with plasmonics, graphene
is an interesting system in this context, see e.g. Ref. [GGK+12]. Remarkably, plasmons can also
play a role in this context. They enhance the interlayer Coulomb interaction in certain regimes,
strengthening the drag effect. An example calculation for graphene is given in Ref. [SJ14]. A
comprehensive review on drag effects is found in Ref. [NL16].
More recently, drag experiments on TI film surfaces have been studied theoretically, see

Ref. [LLC16]. The newest systems considered are WSMs. In Ref. [BS17], the intrinsically
present Weyl orbits, see Sec. 2.5, are used to create non-local Coulomb drag between two
opposite surfaces of the system.
In order to address the question of topological classification of such a combined system,

instead of transport calculations it is more interesting to find out whether the ground state of
the coupled systems changes. An example for a new ground state of the combined system is
the formation of an exciton condensate. In the case that the interlayer Coulomb interaction is
dominant, a pairing of electrons and holes of different layers occurs, as depicted in Fig. 3.12.
The coupled system is then in a ground state that is inherently different from the one in the
former separated layers. As the interlayer Coulomb interaction is usually weak compared to
other energy scales of the problem, the pairing can be enhanced by quenching the kinetic
energy of the system with a strong magnetic field. Then, the electrons form flat LLs as
already discussed for QHFM systems in Sec. 3.2.3, and Coulomb energy becomes dominant.
Electrons of one layer then bound to vacant states, represented as holes, of the second layer.
For low temperature, the resulting excitons can condensate. For an overview about exciton
condensation in 2D quantum Hall (QH) systems see Refs. [EM04, Eis13].
Whether exciton condensates can also form without the help of LLs in realistic setups is
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still under debate. For graphene it was answered positively in Ref. [MBSM08] and declined in
Ref. [KE08]. Even more interesting for us is the formation of a topological exciton condensate
based on TIs systems, see e.g. Refs. [SMF09, WHFZ12]. For HgTe QWs this is sketched in
Fig. 3.12, based on Ref. [BTM14]. There, the authors find that the topology of the combined
system is explicitly depending on the Coulomb interaction, and can even differ from the topol-
ogy of the former decoupled subsystems. Very recently, also condensates in Weyl bilayers, see
Ref. [MT17], have been discussed.

Our own work in Chap. IV considers the combination of a 3D TI and a WSM system. Special
attention is paid to the emerging hybrid surface states combining properties of Fermi arcs and
Dirac surface states.
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Topological insulators (TIs) are among the most actively investigated systems in condensed
matter physics today. In reality, there is experimental evidence for their existence in two and
three spatial dimensions, see Secs. 2.4.1 and 2.4.2. Due to the bulk-boundary correspondence
discussed in Sec. 2.2.4, non-trivial topological states of matter have edge states at their bound-
aries with peculiar transport and optical properties. For instance, the two-dimensional (2D)
time-reversal (TTT ) symmetric quantum spin Hall (QSH) state, realized in Hg(Cd)Te quantum
wells (QWs), is known to come along with helical edge states that are protected against elastic
backscattering of non-magnetic impurities, see Sec. 2.4.1 for details. The helicity (2.36), i.e.
coupling of momentum and spin degrees of freedom, introduces new interesting phenomena in
this context.

However, not only the edge state physics of these systems is interesting, but also the 2D bulk
physics bears exciting novelties. The low-energy excitations of Hg(Cd)Te QWs are described
by the Bernevig-Hughes-Zhang (BHZ) model, see Sec. 2.4.1, that interpolates between the
limiting cases of Schrödinger and Dirac fermions. This interplay between Schrödinger and
Dirac physics constitutes an opportunity for new, rich phenomena to emerge.
An important aspect of condensed matter physics is also the influence of Coulomb interac-

tion on observables. In the Dirac fermion system graphene, see Refs. [GN07, CGP+09], this
research has been intensified in recent years, Refs. [Shu86, And06, BPBP+07, HD07, WSSG06,
KUP+12], resulting even in the development of plasmon technology, summed up in Sec. 3.3.2.
Plasmons, as described in Sec. 3.2.2, are collective density oscillations commonly occurring at
finite doping in an electronic system. Plasmons in Dirac fermion systems have been experi-
mentally observed in graphene, Refs. [JGH+11, CWS12, FRA+12], as well as on the surface
of three-dimensional (3D) topological insulators (TIs) in Ref. [DOL+13].

Usually absent in the undoped limit, intrinsic plasmons have been predicted in graphene
in Refs. [Vaf06, DL13], when the electron and hole gas have a finite density due to thermal
excitations. Additionally, with the inclusion of excitonic effects through ladder-type vertex
corrections in the calculation of the dielectric response function, intrinsic plasmons have been
predicted in Ref. [GFM08]. Yet, the latter result is still under debate due to the neglect
of diagrams of the same order, see, e.g., Ref. [SPM12]. Interestingly, a reduction of the
dimension to 1D gives rise to intrinsic plasmons in metallic armchair nanoribbons, as discovered
in Ref. [BF07]. These situations are physically distinct from our predictions below, where
we show that plasmons, in the intrinsic limit, can appear due to an interplay of Dirac and
Schrödinger physics.
In the following sections, we present a comprehensive analysis of the polarization function

of the BHZ model in the static and full dynamic limit, at zero and finite doping. We study the
screening properties and the collective charge excitations on the basis of the Random Phase
Approximation (RPA), with the application to Hg(Cd)Te QWs in mind.
Continuously tuning the parameters of the BHZ model, we reproduce the limits of pure Dirac

and pure Schrödinger fermions and explore intermediate regimes, in order to understand how
analogies and differences emerge. We support our numerical calculations of the polarization
functions with analytical expressions derived by f-sum rules. In the static limit, we calculate
the screening properties due to the intrinsic system and at finite doping, analyzing the induced
charge density (with Friedel oscillations) in response to a charged impurity. Different to the
Dirac fermion system graphene, where static screening in the intrinsic limit is momentum
independent and can therefore be absorbed into an effective dielectric constant as discussed
in Refs. [WSSG06, HD07], the BHZ model shows a significant momentum dependence that
translates into a finite extent of the induced charge density.
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In the dynamic limit, we pay particular attention to the emergence of a new, intrinsic
interband plasmon in the undoped limit. It results from the interplay between Schrödinger
and Dirac fermion physics, and is absent in both limiting cases of pure Dirac and pure two
dimensional electron gas (2DEG)1 system. We discuss the presence of the plasmons and
their damping rate for varies parameters, including the TI and the normal insulator (NI)
phase as well as experimentally realistic scenarios. Furthermore, we calculate the bulk optical
conductivity, which offers a way to quantitatively resolve between NI and TI phase, following
the ideas presented in Sec. 3.3.1.
At finite doping, under certain conditions specified below, e.g. broken particle-hole (p-h)

symmetry applicable to Hg(Cd)Te QWs, we find a coexistence between the novel interband
plasmon and an ordinary intraband plasmon. Both plasmons can be rather weakly damped
by single-particle excitations (SPEs) and should therefore be observable in experiments. In-
terestingly, the two plasmons respond to the topology of the band structure with a distinctive
behavior. They merge together in a normal insulating phase, while they remain clearly re-
solved when the system realizes a TI. Thus besides the optical conductivity, also the plasmon
spectrum offers ways to distinguish between topological trivial and non-trivial bulk physics.
Generally, RPA is known to provide reliable predictions at large densities and in systems with

a large number of fermionic degrees of freedom. While its validity was indeed questioned for the
intrinsic Dirac limit, where the system is unable to screen the Coulomb interaction and strong
renormalization effects are expected as discussed in Ref. [KUP+12], the RPA has been shown to
yield a quantitative description of many-body effects in graphene in Refs. [BHTD14, HBD14].
It has been widely used for the study of plasmons in the Dirac model, including various forms
of (multilayer) graphene and TI surface states, see Ref. [Sta14] for a comprehensive review.
Closely related to our work, the intraband plasmons of black phosphorous have been studied

on the basis of the RPA and an extended version of the BHZ model including anisotropy in
Ref. [LA14]. A similar study has been done for MoS2 in Ref. [SSS13]. Yet, in both works the
authors restrict themselves to fixed parameters obtained from experiments and simulations.
We on the other hand want to provide a systematic exploration of the parameter space.
This chapter is based on the two publications Refs. [JMT14a, JMT14b], which we reorga-

nized into the following three sections and App. A. In Sec. 4, we introduce the BHZ model
and present the general formalism we employ to calculate the static and dynamical dielectric
function and the induced charge density. The nature of the nontrivial pseudospin, the origin
of possible interband plasmons, experimentally relevant parameters and the different contri-
butions to the f-sum rule are also discussed here. Subsequently, in Sec. 5, we present the static
screening properties, the dynamical excitation spectrum and the f-sum rule in the undoped
regime. Special attention is paid to the new interband plasmon and how to make it visible in
experiments based on Raman or electron loss spectroscopy. In Sec. 6, this analysis is extended
to the case of finite doping where inter- and intraband excitations equally matter. Besides the
ability of the BHZ model to interpolate between Dirac and 2DEG physics, we focus on the
parameter regimes relevant for Hg(Cd)Te QWs as well as on the analysis of the topological
trivial and non-trivial phases. Interestingly, we find that broken p-h symmetry as well as a
large, negative mass make it possible to observe both kinds of plasmons in the same system,
just separated in energy in the interacting excitation spectrum. Finally a conclusion and a
brief outlook are given.

1We use 2DEG synonymously for Schrödinger fermions in the following sections.
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4. Model and Formalism

In this section, we introduce the necessary model and mathematical formalism used in the
following sections 5 and 6. We do this by making the connection to the introductory Chap. I.
While there the focus lay on deriving model and RPA formalism, here, we focus more on the
physics contained in them.
This section is organized as follows. In Sec. 4.1 we introduce the BHZ model. It contains an

intrinsic energy and momentum scale discussed in Sec. 4.1.1, where we compare it to the Fermi
scale. The Lindhard polarization function in these intrinsic coordinates is given in Sec. 4.2.
Special emphasis is put on the examination of the overlap factor. The Coulomb interaction
on the RPA level is introduced in Sec. 4.3. In the subsections we focus on the conditions for
antiscreening to arise, as well as on the static limit important for screening and calculating
induced charge distributions. Experimental parameters for the case of Hg(Cd)Te QWs are
given in Sec. 4.4. We end in Sec. 4.5 with a discussion of the f-sum rule.

4.1. The BHZ Model
The BHZ model is derived for Hg(Cd)Te QWs as a low-energy model around the Γ-point in
Sec. 2.4.1. It is given by

HBHZ =
(
h (k) 0

0 h∗ (−k)

)
, h (k) = E (k)12x2 + d (k) · σ (4.1)

with

E (k) = C − D(k2
x + k2

y),

d (k) =
(
Akx, Aky, M (k)

)T
,

M (k) = M − B(k2
x + k2

y).

(4.2)

Here, σ are the Pauli matrices associated with the band-pseudospin degree of freedom (band
E1 and H1 in Hg(Cd)Te QWs), and the quadratic in k terms are taken to be overall positive,
such that B,D < 0. The described system possesses TTT symmetry and HBHZ is block diagonal
in the Kramers partners or spin degree of freedom. We thus restrict ourselves to the block
h (k), the results can then be extended to the other one by applying the TTT operator. The
model describes a 2D TI for the inversion condition M/B > 0. The block structure is related
to an assumed inversion (III) symmetry. If one considers the bulk inversion asymmetry (BIA)
terms, introduced in Eq. (2.43), the two blocks get coupled.
h (k) describes fermions with intermediate properties between a Dirac and a conventional

2DEG system. The off-diagonal term (A parameter) is typical for a Dirac system, e.g. A =̂h̄vf
in graphene. The Dirac massM gives rise to a gap of 2 |M |. We consider positive and negative
masses, where the latter one corresponds to an inversion of the band structure. The system
is then topologically non-trivial (TnT) with a finite Z2 topological invariant of ν = 1. This
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Figure 4.1. Dispersion relation and pseudospin of (a) a NI phase with ξM = 1
2 , and (b) a TI phase

with ξM = − 1
2 . The bands are separated by an additional 2εX,λ for better illustration of the pseudospin.

Reprinted figures with permission from Ref. [JMT14a]. Copyright (2014) by the APS.

follows directly from the finite Hall conductance of the single block, given in Eq. (2.41). For
simplicity, we restrict ourselves to band structures with extrema at the Γ-point, which limits
the mass to M > −1

2
A2

|B| . This excludes Mexican-hat-shaped band structures.
In analogy to a 2DEG, the diagonal elements in Eq. (4.1) bear kinetic energy elements which

preserve (B parameter) and break (D parameter) p-h symmetry. For Schrödinger fermions with
the quasi-particle mass m this corresponds to −B ∓D =̂ 1

2m .
The eigenstates of Eq. (4.1) are described by the following dispersion relation and pseudospin

Ek,λ = E(k) + λ |d (k)| , λd̂ (k) = 〈k, λ|σ|k, λ〉 (4.3)

with λ = ± for conduction and valence band. Here d̂ is the direction of the d vector, illustrated
in Fig. 4.1. Note that we consider electrons to be perfectly localized in the 2D x-y plane and
therefore we neglect the real shapes of the envelope functions due to the quantum confinement
along the z direction [MPER12].

4.1.1. Energy and Momentum Scales

Examining Eq. (4.1), one finds that the BHZ model is characterized by the intrinsic scales for
momentum and energy

q0 = A
|B|

, E0 = Aq0. (4.4)

They reflect the interpolating character of the model between Dirac (A parameter) and
Schrödinger (B parameter) system. The Fermi momentum kf and chemical potential µ provide
additional, externally tunable momentum and energy scales. They are called Fermi scales in
the following.
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We expect the ratio between Fermi and intrinsic scales to govern the physics of this system.
Thus we define the dimensionless quantities

X = q

q0
, Ω = ω

E0
, Xf = kf

q0
, Ωf = µ

E0
, ξM = M

E0
, ξD = D

|B|
, (4.5)

where we set h̄ = 1 in the following. Ωf is defined to be the energy to the wave vector Xf ,
such that Ωf = ± |ξM | if Xf = 0. The Hamiltonian in Eq. (4.1) can then be brought into the
form

h (k) = E0h (X) = E0

(
ξM + (1− ξD)X2 X−

X+ −
(
ξM + (1 + ξD)X2)

)
(4.6)

with X± = Xx ± iXy and X = |X|. For X ∼ 1, we therefore expect intermediate physics,
while in the limit X,Ω→ 0 (X,Ω→∞) the Dirac (2DEG) physics should be recovered.

4.2. Polarization Function and Overlap Factor
The linear response of a homogeneous system to an externally applied potential is described
by the density-density susceptibility or retarded polarization function ΠR (q, ω). It is exactly
the Lindhard function, Eq. (3.23), introduced in Sec. 3.2.2. This response comprises two main
phenomena. The first one is screening, described by the real part <

[
ΠR (q, ω)

]
. The second

one is dissipation by SPEs, contained in the imaginary part =
[
ΠR (q, ω)

]
.

The retarded polarization function (Lindhard function), written in the intrinsic scales, yields
the expression

ΠR (X,Ω) = gs
|B|

∑
λ,λ′

∫ d2X̃

4π2 F
λ,λ′

X̃,X̃′

f(εX̃,λ)− f(εX̃′,λ′)
Ω + i0+ + εX̃,λ − εX̃′,λ′

. (4.7)

Here we define X̃′ = X̃ +X, 0+ as a positive infinitesimal, gs = 2 for spin degeneracy and
the dispersion relation

εX,λ = Eq0X,λ/E0 = −ξDX2 + λ
√

(ξM +X2)2 +X2. (4.8)

The square root in Eq. (4.8) makes it necessary to calculate ΠR (X,Ω) numerically in most
of the cases considered in the following. The Fermi-Dirac function f (ε) = 1

eβ̄(ε−Ωf )+1
, with

β̄ = E0
kBT

and kB the Boltzmann constant, gives the occupation of the states. In the following
we assume zero temperature, T = 0. Eq. (4.7) implies that |B|ΠR (X,Ω) is only a function
of the reduced dimensionless variables X and Ω. It further parametrically depends on ξM , ξD
and Xf .
The overlap factor is given by

Fλ,λ
′

X,X′ =
∣∣〈k, λ|k′, λ′〉∣∣2 = 1

2
[
1 + λλ′d̂ (q0X) · d̂

(
q0X

′)] . (4.9)

In the massless Dirac limit (B = D = M = 0), the eigenspinors of the Hamiltonian (4.1)
are characterized by their helicity, see Eq. (2.36). Consequently the overlap factor Fλ,λ

′

k,k′ =
1
2 (1 + λλ′ cos θ) only depends on the angle θ between k and k′. It is strictly one (zero) for
states with the same (opposite) helicity.
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Next we consider the influence of the quadratic terms B < 0. In the BHZ model, they have
the effect of turning the pseudospin of the eigenstates out of plane at large X, in opposite
directions for conduction and valence bands as depicted in Fig. 4.1. This results in a decay of
the overlap factor (4.9) down to zero in the limit of a conventional 2DEG system (A → 0 or
X →∞).
A finite mass ξM 6= 0 has a similar effect, but in the limit of small momenta X ≤ |ξM |. Here,

the pseudospin turns in the same direction as for the quadratic term for positive mass, and in
the opposite direction for negative mass, see Fig. 4.1. In the latter case, this directly reveals
the non-trivial winding of the pseudospin, resembling a skyrmion, as discussed in Sec. 3.2.3,
in momentum space.
This turning of the pseudospin has direct consequences for the overlap factor. In the inter-

band case, it is reduced for a NI phase, while for a TI phase it is increased. The winding in
the TI phase ensures that valence and conduction band states with unitary overlap can always
be found for finite X. Thus, the interband overlap factor is enhanced in the region X & |ξM |
with respect to the NI phase. The intraband overlap factor shows the contrary effect. Here, a
positive (negative) mass enhances (diminishes) the overlap. This picture is also confirmed in
Sec. 4.5 by calculating the f-sum rule.

4.3. Coulomb Interaction
The bare 2D Coulomb interaction vq = e2

2ε0q is modified in an electron gas by screening effects.
This results in the effective interaction vRPAq (q, ω) = v(q)

ε(q,ω) from Eq. (3.25). There, screening
is described by the dynamical dielectric function in RPA approximation, where we omit the
superscript RPA in the following. Employing dimensionless units, it acquires the form

ε (X,Ω)
εr

= 1− αg (X,Ω) , (4.10)

where we have introduced the interaction strength parameter α as an effective Dirac fine-
structure constant [KUP+12]. Together with the dimensionless function g (X,Ω) it is given
by

α = 1
A

e2

4πε0εr
, g (X,Ω) = 2π |B|

X
ΠR (X,Ω) . (4.11)

In graphene one finds [GPN12] α = 2.2/εr, while in Hg(Cd)Te QWs it is of the order
α ≈ 4/εr [BLT+11, SNKT09]. Here, εr is the background dielectric constant, accounting
for screening of internal electronic shells, while −αg (X,Ω) gives the dynamic screening due to
the electrons in the bands near the Fermi level. The background screening can be seen just as
an additional screening source, and we added it to Eq. (3.26) in order to arrive at Eq. (4.10).
Zeros of ε (X,Ω) describe a density-density (longitudinal) perturbation of the system that is

able to sustain itself. It forms a collective mode called plasmon, see Sec. 3.2.2, and is defined
by

ε (X,Ωp − iΓ) = 0 (4.12)

with the plasma frequency Ωp. The finite imaginary part Γ = γ
E0

accounts for possible damping
due to SPEs.
The total dissipation in the interacting system, including both SPEs and the plasmon mode,

is then described by the imaginary part of the interacting polarization function ΠRPA (X,Ω) =
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ΠR(X,Ω)
ε(X,Ω) . In order to compare to the non-interacting one, we will plot the normalized functions

ΠIm
rpa ≡ εr=

[
ΠRPA

]
, ΠIm ≡ =

[
ΠR
]
, ΠRe ≡ <

[
ΠR
]

(4.13)

in the following, with εrΠRPA =
α→0

ΠR. A directly related quantity is the loss function

=
[
−1
ε

]
= −2πα |B|

εr

1
X

ΠIm
rpa = 1

εrα

= [g (X,Ω)]
| 1α − g (X,Ω) |2

, (4.14)

which is linked to the dynamic structure factor A (q, ω) given in Eq. (3.30). As loss function
and polarization function ΠIm

rpa are directly proportional, they contain the same physics. The
additional factor 1/X puts an additional emphasis on the long wavelength limit, which we
will see in Sec. 5.3. While the polarization function has units of 1/B, the loss function is a
dimensionless quantity.

4.3.1. (Anti-)Screening and Intrinsic Plasmons

In the RPA, the dielectric function, Eq. (4.10), characterizes the screening of the interac-
tion between two electrons exchanging momentum X and energy Ω. This screening happens
through the creation of electron-hole (e-h) pairs in the electron gas with the energy Ωeh and
same momentum X.

If these pairs are resonant in energy with Ωeh = Ω, they correspond to a physical process
leading to dissipation and a lowering of the Coulomb interaction. This is described by the
imaginary part of the polarization function (4.7). If they are off-resonant, Ωeh 6= Ω, we have
only virtual e-h pairs. They either still screen the interaction, if ΠRe < 0, or they enhance it
(antiscreening effect), if ΠRe > 0.

Thus these effects depend on the energy of the created e-h pair. For Ωeh < Ω one finds
antiscreening, while Ωeh > Ω leads to screening of the bare Coulomb interaction. This can
directly be seen from the definition of the polarization function. For every allowed (by the
Fermi-Dirac functions) p-h excitation in the spectrum, the real part of the integrand in Eq. (4.7)
can be rewritten into

F1,λ
X̃,X̃′

2Ωeh[X̃, X̃′]
Ω2 − Ωeh[X̃, X̃′]2

. (4.15)

Here, λ = 1 (λ = −1) labels intraband (interband) excitations. Therefore every e-h process
with energy less than Ω increases ΠRe. This lowers ε (remember the - sign in Eq. (4.10)) and
thus increases the interaction. This is the antiscreening effect.
In the intrinsic, undoped Dirac system one finds ΠRe = 0 for all energies Ω where e-h

excitations are allowed, see Ref. [Sta14]. Thus the screening effect of virtual excitations with
Ωeh > Ω cancels exactly with the one from excitations with Ωeh < Ω. The only screening then
comes, at least within RPA, from the resonant process Ωeh = Ω.
In the BHZ model with finite B < 0, the high-energy excitations become less likely compared

to the graphene limit. On the one hand, this is due to the decoupling of the electron and the
hole band for large Ω. Additionally, the excitation energy of the pairs is higher as in the Dirac
case for the same momentum X. This provides an additional reduction of their influence on
ΠRe. Furthermore, low-energy excitations become more important, as processes are allowed
that where forbidden in Dirac systems by helicity. This is discussed in detail in Sec. 6.3.
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Combining these effects, one finds the virtual excitations which increase the Coulomb inter-
action, Ωeh < Ω, dominating for larger frequency Ω. As a result, the effective interaction is
increased and there is the possibility of intrinsic plasmons in the BHZ model, see Sec. 5.3.
More mathematically speaking, the described effects alter the high-energy behavior of ΠIm

from a decay like Ω−1 in the Dirac case to a Ω−2 decay in the BHZ model, as is shown in
Sec. 5.2. Rewriting the Kramers-Kronig relation, Eq. (3.28), in intrinsic scales gives

ΠRe (X,Ω) = 1
π

∫ ∞
0

dΩ′ 2Ω′

Ω′2 − Ω2 ΠIm (X,Ω′) . (4.16)

Inserting the different high-energy behaviors, one finds that the real part of the polarization
changes sign for ΠIm ∝ Ω−2, but not for ΠIm ∝ Ω−1.

In more general terms, one can expect intrinsic interband plasmons to appear in all models
for which ΠIm decays faster as Ω−1 for high energies.

4.3.2. Static limit and Screening

The static limit of the polarization function is obtained by sending Ω→ 0 at finite momentum
X in Eq. (4.7). This way we can easily analyze the response of the system to the application
of a static (or sufficiently slowly varying) external potential. An important physical problem
of this kind is the screening of a charged impurity by the electronic system.
The static polarization is a strictly real function, that we define as

Π(X) ≡ ΠR(X, 0) = Π0(X) + Πµ(X). (4.17)

In a multiband system, like the BHZ model, it is useful to separate the contributions to the
static polarization coming from the intrinsic neutral system, Π0(X) obtained for µ = 0, and
the contribution due to a finite charge density, Πµ(X) with finite µ. Correspondingly, the
dielectric function (4.10) can be rearranged into

ε(X) ≡ ε(X, 0) = εr [1− αg0(X)− αgµ(X)] . (4.18)

We will use it in the following to calculate the induced charge density in response to a test
charge Ze placed at the origin. The variation of the electronic charge density in momentum
space is given by Zen(X), where n(X) is defined as

n(X) = 1
ε(X) − 1 = 1

εr[1− αg(X)] − 1

= nr(X) + n0(X) + nµ(X).
(4.19)

This directly follows from Eq. (3.16) or can be taken from Ref. [FW71] Sec. 14.
The induced charge density can be seen as a sum of three contributions of different physical

origin. The first one, nr(X), is due to the background polarization and also called the high-
energy polarization of the system. It stems from the internal electronic shells. The second
contribution is the intrinsic, undoped polarization n0(X) and the third, nµ(X), comes from
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the polarization of the finite charge density in the system. In total, they can be written as

nr(X) = 1
εr
− 1, (4.20)

n0(X) = 1
εr

αg0(X)
1− αg0(X) , (4.21)

nµ(X) = 1
εr

1
1− αg0(X)

αgµ(X)
1− αg(X) . (4.22)

In real space, the density fluctuation, using physical dimensional units, is given by

n(r) = 1
2π

∫
dq q J0(qr)n(q), (4.23)

with J0 the zero-th order Bessel function. It will be closer examined in the undoped limit in
Sec. 5.1 and the doped one in Sec. 6.1. In the latter case, we will find Friedel oscillations with
interesting properties in the intermediate regime between Dirac and Schrödinger.

4.4. Experimental Parameters

Including Coulomb interaction, we now have a 4-dimensional parameter space consisting of
ξM , ξD, Xf and α. This parameter space will be explored systematically in the following
sections 5 and 6.

While the exploration of the different physical behaviors featured by the BHZ model in
different regions of this parameter space has a clear theoretical significance, we want to stress
that our discussion is also relevant for experiments. In particular, realistic parameters for
Hg(Cd)Te QW structures, based on Refs. [BLT+11, SNKT09], are roughly

ξD ≤ −0.5, q0 ≈ 0.4 1/nm, E0 ≈ 140 meV (4.24)

and masses M with absolute values up to several meV. The interaction strength is around
α ≈ 4/εr ≈ 0.3 with an average εr = 15 from the CdTe substrate (εr = 10) and HgTe
(εr = 20).
Considering the experimental acceptable damping rate for plasmons, we refer to experiments

on the surface states of a 3D TI in Ref. [DOL+13]. There, plasmons with a ratio of Γ
Ωp = 0.5

are perfectly resolvable.

4.5. The f-sum Rule

The f-sum rule for the polarization function, Eq. (3.29), provides the total spectral weight of
all excitations in the system. It is identical for the interacting and noninteracting system, as
the interaction conserves the number of particles, and therefore commutes with the electron
density operator, see Eq. (4.25). Thus the sum rule is a powerful tool to check our numerics.
Additionally, it offers a deeper insight concerning the shift of spectral weight between the inter
and intra SPEs as well as the different plasmons in the system.
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Definition and Calculation

Based on Ref. [NP66], the f-sum rule is defined by

f
∑

(q) = − 2
π

∫ ∞
0

dω ω= [Π (q, ω)] = gs
〈

0
∣∣∣[[nq, H0

]
, n†q

]∣∣∣ 0〉 (4.25)

with the density operator n†q =
∑

k Ψ†k+qΨk and the Hamiltonian H0 =
∑

k Ψ†kh (k) Ψk, with
h (k) as defined in Eq. (4.1). Ψk is a spinor associated with the band-pseudospin degree of
freedom, corresponding to band E1 and H1 in Hg(Cd)Te QWs. The real spin degree of freedom
enters via the degeneracy factor gs = 2.
For the calculation we follow the steps outlined in the appendix of Ref. [SNC08], where the

f-sum rule for the Dirac model is obtained. For the BHZ model, the computational steps are
the same, therefore we only present important intermediate results, stressing the differences
to the Dirac limit. The commutator in Eq. (4.25) is given by[[

nq, H
0
]
, n†q

]
=
∑
k

(
Ψ†kH

0
k,qΨk −Ψ†k+qH

0
k+q,qΨk+q

)
− 2q2∑

k

Ψ†k+q (Dσ0 + Bσz) Ψk+q,
(4.26)

where H0
k,q = Aq ·σ−Dq (2k + q)σ0−Bq (2k + q)σz. A simple shift of the momentum sums

in Eq. (4.26) would put the first line to zero, but this is not allowed. In the same way as in
the Dirac system, the operators are unbounded and one has to work with a large momentum
cutoff κ. The momentum shift then results in different cutoffs for the sums. While in the
Dirac limit, one simply finds H0

k,q = Aq · σ and the second line of Eq. (4.26) would be zero,
now the latter gives rise to a contribution depending on the chemical potential, as expected
for a 2DEG.
The sums in Eq. (4.26) are then converted into integrals and explicitly calculated in the

limit of large κ. Care has to been taken when converting the momentum cutoff κ into the
frequency cutoff λ, such that both integrals cover the same phase space.

Formulas

For a pure Dirac system, the authors of Ref. [SNC08] find the f-sum rule∫ λ

0
dω ω= [Π (q, ω)] = −gsq

2λ

16 , (4.27)

where the cutoff λ is needed as the Dirac spectrum is unbounded. In a 2DEG system, the
f-sum rule is given by ∫ ∞

0
dω ω= [Π (q, ω)] = gs

4 (B ±D) k2
fq

2 = −πNq
2

2m (4.28)

with N = gs
4πk

2
f the electron density. As = [Π (q, ω)] 6= 0 only over a finite range of ω, the

integral has a natural cutoff.
Similar to a Dirac system, the BHZ spectrum is unbounded which complicates the evaluation

of the sum rule and makes it necessary to introduce a high-energy cutoff Λ = λ
E0

. We find
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4.5. The f-sum Rule

approximately for large cutoff Λ� 1

f
∑
≡ −

∫ Λ

0
dΩ Ω |B| = [Π (X,Ω)]

= gs
8 X

2
[
−1− 2ξM + 2 |Ωf |+ ln

(
2Λ

1 + 2X2
f (1 + ηξD) + 2ξM + 2 |Ωf |

)

+ 1−X2 + 4ξM
Λ − 2X4 + (1 + 4ξM )2 − 4X2 (2 + 7ξM )

4Λ2

]
+O

(
ξD
Λ2

)
+O

( 1
Λ3

) (4.29)

with η = sgn [Ωf ]. Thus the leading order term diverges logarithmically with the cutoff Λ.
This is due to the fact that = [Π (X,Ω)] decays like Ω−2 for Ω � 1, and not as Ω−1 as for a
Dirac system. The sum rule is exact up to order Λ−1 (Λ−2) for a finite (zero) p-h symmetry
breaking term ξD.
The f-sum rules for BHZ, Dirac and 2DEG models are always proportional to q2 ∝ X2 in

leading order, but otherwise distinct from one another. Taking the limit A → 0 in the BHZ
result, Eq. (4.29), gives the 2DEG case, Eq. (4.28). The same is not possible for the Dirac
limit B → 0, due to the details of the derivation of the analytical expansion in Eq. (4.29).
There, the chosen cutoff Λ = λ |B|A2 would go to zero.

Weight of the Contributions from different Orders O in Cutoff Λ

We begin our discussion of the f-sum rule (4.29) by comparing the contributions from the
different orders O (ln (Λ)) (where we also include the Λ independent terms), O

(
Λ−1) and

O
(
Λ−2). Our aim is to find for the cutoff the right size and functional dependence on X, such

that higher order terms in Eq. (4.29) can be neglected. Of course one could just take the limit
Λ → ∞, but that would not work out well with our goal of comparing the analytical result
Eq. (4.29) to numerical data of Π (X,Ω). The data will be given only over a finite range of Ω,
for cutoffs exceeding this frequency an extrapolation of the data is necessary. This provides a
source for errors.
In the limit of ξM = ξD = Xf = 0 we find

f
∑
O(Λ−1)

f
∑
O(ln(Λ))

= − X2 − 1
Λ (ln (2Λ)− 1) , (4.30)

f
∑
O(Λ−2)

f
∑
O(ln(Λ))

= − 2X4 − 8X2 + 1
4Λ2 (ln (2Λ)− 1) . (4.31)

Therefore, the ratio X2

Λ determines the importance of higher order corrections for X � 1. This
advises us to take

Λ = 2 (βXmax)2 (4.32)

for the cutoff in the following. Already for β = 2 and a maximal momentum Xmax = 6, the
ratio (4.30) is about 2%, and the ratio (4.31) drops down to 0.1%.
We conclude that a modest cutoff Λ = 2 (βXmax)2 with 2 ≤ β ≤ 5 works best for comparing

Eq. (4.29) to numerical data. It is the best compromise between analytical and numerical
accuracy.
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Figure 4.2. (a) Ratio
f
∑

O(ln(Λ))

f
∑ξM=0

O(ln(Λ))

of the lowest order in Λ contributions to the f-sum rule including

mass, over the ones without mass. ξD = 0 and Xf = 0. (b) Ratio
f
∑

O(ln(Λ))

f
∑Xf=0

O(ln(Λ))

of the lowest order in Λ

contributions to the f-sum rule including finite doping, over the ones without doping. Electron doped,
Ωf > 0, as a black, solid line. Hole doped, Ωf < 0, as a red, dashed line. ξM = 0 and finite p-h
asymmetry ξD = −0.5. In both plots we set β = 2 and Xmax = 6, see Eq. (4.32). Reprinted figures
with permission from Ref. [JMT14b]. Copyright (2014) by the APS.

Influence of finite Mass ξM , particle-hole Asymmetry ξD and Doping Xf

Next, we investigate changes to the f-sum rule and therefore to the total spectral weight by
varying the mass. In contrast to graphene, see Ref. [SNC08], a mass term directly enters the
f-sum rule (4.29) in leading order. Thus the influence of a finite gap in the system should be
significant.
We study this in Fig. 4.2 (a) for the undoped, Xf = 0, p-h symmetric, ξD = 0, case.

Evidently, a positive mass lowers the f-sum rule, while a negative mass increases it linearly.
This is a direct consequence from the change of the overlap factor discussed in Sec. 4.2. A
negative mass enhances the coupling between the two bands, while a positive mass diminishes
it, as in the latter case the pseudospins do not match. This is also consistent with the increase
in the optical conductivity observed in the undoped limit with negative mass, see Sec. 5.4
below.
Finally, we consider the effects of finite doping. Again like for a finite mass, doping enters

the f-sum rule (4.29) directly in the leading order term, while for graphene doping has no
influence on the f-sum rule, see Ref. [SNC08]. Physically there are two effects competing here.
On the one hand, a finite doping level blocks interband transitions close to the Dirac point.
Yet due to the small density of states, these transitions carry only a small spectral weight. On
the other hand, doping enables intraband transitions, which carry a large spectral weight due
the combined effects of larger overlap factor, density of states and smaller excitation energies
compared to interband transitions.
Therefore, a finite doping usually increases the f-sum rule, as seen in Fig. 4.2 (b), where we

plot the ratio
f
∑
O(ln(Λ))

f
∑Xf=0
O(ln(Λ))

for positive (black, solid line) and negative (red, dashed line) doping

with ξD = −0.5 and ξM = 0. A finite p-h asymmetry ξD < 0 adds a term ∓gs
4 ξDX

2
fX

2 to
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4.5. The f-sum Rule

the leading order of the f-sum rule, + (−) for positive (negative) doping. It can be seen as an
increased (decreased) contribution from the 2DEG part of the spectrum, Eq. (4.28), and leads
to the slight decrease of the f-sum rule for negative doping in panel (b) of Fig. 4.2.

4.5.1. Judging and Comparing the Spectral Weight of Excitations
In order to compare the importance of different excitations in the system, one should compare
their spectral weight and thus their contribution to the f-sum rule. The latter has the benefit
of being independent of the Coulomb interaction strength and the position of the excitation
peaks, in contrast to the polarization function ΠIm

rpa.
As an example, we assume that the excitation spectrum, ΠIm

rpa, is governed by a single
plasmonic peak, following a Lorentzian shape with width Γ and peak height 1

cΓ . Here c is a
normalization constant that we want to determine below. The f-sum rule is then proportional
to ∫ ∞

0
dΩ Ω1

c

Γ
Γ2 + (Ω− Ωp)2 = Ωp

c

∫ ∞
0

dΩ
Ωp

Ω
Ωp

Γ
Ωp

( Γ
Ωp )2 + ( Ω

Ωp − 1)2 . (4.33)

The value of this integral should be independent of α and thus of the peak position Ωp. This
is fulfilled by setting c ∝ Ωp, such that the peak height of a resonance in ΠIm

rpa naturally has to
scale with 1/Ωp to keep the f-sum rule constant. Therefore peaks at higher energy will appear
less pronounced in ΠIm

rpa as the ones at lower energies, although they carry the same spectral
weight.
We conclude that the importance of a resonance in ΠIm

rpa should be judged by its spectral
weight. The latter can be estimated by multiplying the peak height with its position Ωp. The
relevant width of the peak is given by Γ

Ωp , with Γ being the width of the resonance in ΠIm
rpa:

Peak height : 1
Γ →

Ωp

Γ ,

Peak width : Γ→ Γ
Ωp
.

(4.34)
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5. Undoped System

Our focus in this section is on the intrinsic, undoped limit (µ = 0) of the BHZ model. Therefore
the Fermi level is at the Dirac point or in the middle of the gap, and only interband transitions
can occur in the limit of zero temperature. The most interesting result in this section will be
a new kind of interband plasmons, which are not present in Dirac or 2DEG systems. Only the
merging of the two makes these new collective excitations possible. Another interesting aspect
will be the optical conductivity. We propose it as a bulk quantity that differs strongly in the
topological trivial and non-trivial phase. In the latter, it can even diverge close to the band
gap.
This section is structured as follows. First, we analyze the static polarization function and

the screening properties in Sec. 5.1. Special emphasis is put on the BHZ specific features of the
screening compared to the Dirac and 2DEG limit. Afterwards, we consider the long wavelength
limit of the dynamical polarization function in Sec. 5.2, providing an analytical expansion. The
interacting excitation spectrum, and especially the new interband plasmons, are explored in
Sec. 5.3. The optical conductivity as a bulk quantity that is topology dependent is analyzed
in Sec. 5.4. We close with a short check of our numerics based on the f-sum rule in Sec. 5.5.

5.1. Static Limit and Screening

We begin our analysis of the undoped BHZ system with a focus on the static limit, Ω→ 0. The
physics described by the RPA formalism in this case is the (static) screening of the Coulomb
interaction by the electron gas. We study the polarization function and induced charge density
and find a resemblance to the (massive) Dirac system for small momenta. Yet on scales X & 1
the physics changes qualitatively, crossing over into the 2DEG limit.
In order to set a reference with a closely related and analytically solvable model, we discuss

the static intrinsic polarization of a massive Dirac system. It is given by [KPU08, Pya09]

Π0(q) = − gq

8πA

[
2M
Aq

+
(

1− 4M2

A2q2

)
arctan Aq2M

]
M→0−→ − gq

16A , (5.1)

where the index 0 stands for the intrinsic limit µ = 0 and g = gsgv accounts for possible spin
and band degeneracy. In graphene one has g = 4. In the limit of a massless Dirac system with
M = 0, Π0(q) is a linear function of the momentum q. A finite Dirac mass suppresses the
polarization for q . M/A, where Π0(q) shows a super-linear behavior. In the opposite limit
of q �M/A, the mass is negligible instead and the result of the massless limit is reproduced.

The static polarization function of the BHZ model is simply obtained by direct numerical
evaluation of Eq. (4.7) at zero frequency. In Fig. 5.1, we show Π0(X) calculated for a p-h
symmetric BHZ system with ξD = 0. Note that we obtain the massless Dirac case in the limit
B → 0 and therefore X → 0, where lim

X→0
|B|Π0(X)/X = − gs

16 . A finite B parameter determines
a fundamental qualitative change with respect to the Dirac system. It is responsible for Π0(X)
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Figure 5.1. Static intrinsic polarization function of the BHZ model for different ξM and ξD = 0.
Reprinted figure with permission from Ref. [JMT14b]. Copyright (2014) by the APS.

reaching a maximum at X ≈ 1 and then decaying as 1/X2 for X � 1, as shown in the inset
of Fig. 5.1.
A finite and positive Dirac massM leads to a general suppression of the polarization function

with respect to the massless case. In the region X < 1, where quadratic terms are less
important, Π0(X) resembles the massive Dirac case, with a super-linear increase in the region
X . ξM . This is due to the suppression of the interband overlap factor discussed in Sec. 4.2,
determining a reduction of the polarization at small momentum. For intermediate values
ξM . X . 1, analogously to the massive Dirac limit, Π0(X) is approximatively linear in X.
Considering larger momenta X & 1, the behavior is dominated by the quadratic terms and
the polarization eventually vanishes for X →∞. In general, the interplay of quadratic terms
and a finite Dirac mass shifts the maximum of Π0(X) as shown in Fig. 5.1.

Taking into account a negative Dirac massM < 0, corresponding to the TI phase, we observe
a less pronounced suppression of the polarization for X < ξM with respect to a massive Dirac
system in the NI phase with equal modulus of M . Moreover, Π0(X) is enhanced at large X
with respect to the massless, p-h symmetric limit, or the M > 0 case. This behavior is due to
the enhanced overlap factor between electron and hole bands in the TI phase.
In Fig. 5.2 (a)-(c), we analyze the effects of a finite value of the parameter ξD in the BHZ

model, in combination with different masses ξM = −0.2, 0 and 0.2. A finite ξD breaks p-h
symmetry by changing the effective masses of conduction and valence bands. We only find
minor quantitative changes to Π0(X), which is progressively increased for increasing |ξD|.
Based on this analysis of Π0(q), we proceed to study screening in the BHZ model. Again,

we discuss the massless Dirac limit first. There, the static polarization, Eq. (5.1), is linear in
q, resulting in a constant dielectric function

ε(q) = εr

(
1 + gsgvπ

8 α

)
≡ ε. (5.2)

This is an interesting result, telling us that the contribution coming from the intrinsic polar-
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Figure 5.2. Static intrinsic polarization function of the BHZ model for a finite p-h asymmetry term
ξD. Reprinted figure with permission from Ref. [JMT14b]. Copyright (2014) by the APS.

ization can be absorbed into an effective background dielectric constant ε. As a consequence,
a test charge Ze placed at the origin, see Sec. 4.3.2, induces a screening electronic density of

Ze [n0(q) + nr] = Ze

(1− ε
ε

)
. (5.3)

In real space, this corresponds to a screening image charge

n(r) =
(1− ε

ε

)
δ(r) (5.4)

placed exactly at the same position as the external one. Note that the screening charge
only due to the low-energy electronic system, without background contribution, is a fraction
−(ε− εr)/εεr of the external one.
We move on to finite mass. In a massive Dirac system, the large q behavior of Π0(q)

reproduces the massless limit. Therefore a screening charge given by Eq. (5.4) is also developed
at vanishing distances r (q →∞) in response to an external test charge. However, in the long
wavelength limit q < M/A, Π0(q) has a superlinear behavior and thus n0(0) ∝ lim

q→0
Π0(q)/q =

0. Thus far away from the test charge, one does not feel any induced screening charge arising
from the polarization function, just the part from the background screening. This is due to an
induced charge density of the same sign as the external charge, developed at finite distances
and canceling the one at the origin. See Ref. [KPU08] for details. The canceling charge exactly
sums up to Ze(ε − εr)/εεr, so that the test charge feels only the background screening over
long distances, as expected in an insulator.
For the BHZ model, we find similar to Eq. (5.2)

lim
X→0

ε(X) = εr

(
1 + gsπ

8 α

)
(5.5)
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in the long wavelength limit, but lim
X→∞

ε(X) = εr. We can understand this by discussing the
induced charge density in real space, Eq. (4.23), for the BHZ model. It is given by

n0(r) = η0

∫
dX J0(Xrq0) |B| Π0(X)

1− αg0(X) (5.6)

with η0 = α
εr
q2

0 a natural charge density constant of the model. We note that n0(r) is pro-
portional to q2

0 and α, but n0(r) has an additional dependence on α through its integrand. It
also parametrically depends on ξM and ξD through Π0(X) and g0(X). In Fig. 5.3, we plot the
induced charge density n0(r) in real space for ξD = ξM = 0 with different interaction strengths
α. Opposite to a Dirac system, the induced charge density has a finite extent over a distance
of the order of 1/q0. This is clearly related to the 1/X2 decay of Π0 at large wave vectors,
caused by the presence of quadratic B terms. n0(r) decays at large distances as r−2. Thus an
electron far away from this induced charge, r � 1/q0, does not see the finite extent of it and
therefore experiences the same screening as in the Dirac system. This explains the similarity
of Eqs. (5.2) and (5.5). In the opposite limit, where the electron sits on top of the induced
charge, r � 1/q0, it does not feel the screening cloud at all, resulting in no screening besides
εr.
In the inset of Fig. 5.3, we study the effect of a mass term. With a finite ξM , the induced

density, as in the case of pure Dirac systems, shows a qualitatively different behavior. n0(r)
changes sign for sufficiently large r, ensuring a vanishing total induced charge. From a quanti-
tative point of view, a finite negative (positive) M enhances (suppresses) the features of n0(r),
due to its effect on the interband overlap factor.
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5.2. Long Wavelength Expansion of ΠR (X,Ω) and Plasmon
Dispersion

We proceed to finite frequencies Ω > 0. In general, the polarization function (4.7), and
therefore all related quantities in RPA approximation, can only be calculated numerically.
This is done in the following section 5.3. Here, we look at the limit X � 1, where an analytic
discussion of the polarization function is possible. As we want to extract an analytical formula
of the plasmon dispersion, we focus on the limit of vanishing mass ξM → 0.
An expansion of ΠR (X,Ω) in X for Ω > X gives

ΠR = − gs
8 |B|X

2
[

2
π

Ω−
√

1 + Ω2ArcSinh (Ω)
Ω3 + i

1
Ω(1 +

√
1 + Ω2)

]
+O

(
X4
)

=
Ω�1

− gs
8 |B|

X2

Ω2

[ 2
π

(1− ln (2)− ln (Ω)) + i

]
+O

(
Ω−3

)
+O

(
X4
)
.

(5.7)

One finds in the high frequency limit an Ω−2 behavior with an additional logarithmic correction
for the real part. Calculating the plasmon dispersion is possible by performing an expansion of
the plasmon equation (4.12) as described in Sec. 3.2.2 after Eq. (3.31). Including contributions
up to second order in Γ/Ω, we find in the small frequency regime the linear dispersion

Ωp = 1
8π
(
gsαX + 1

6g
2
sα

2X2
)

+O
(
X3
)
. (5.8)

It is only valid for sufficiently large α, such that the conditions <
[
ΠR (X,Ωp)

]
> 0 (antis-

creening) and Ω > X are fulfilled.
The linearity of the dispersion follows from Eq. (5.7) only by inclusion of the damping via

a finite Γ. Without the substitution Ω→ Ω− iΓ, < [ε (X,Ωp)] = 0 has no sensible solution for
Ωp. The damping ratio in the small frequency limit is given by

Γ
Ω =

Ω�1
1− Ω2

8 +O
(
Ω3
)

(5.9)

underlining the importance of damping in this case. Thus the plasmon is considerably modified
by interacting with the SPE background.
The plasmon is only well defined for a finite Ωp > Ωc, such that the damping ratio (5.9) has

an upper bound c with Γ
Ω

∣∣∣
Ω=Ωc

. c. Here, 0 < c < 1 sets the limit for the detectability of the
plasmons. In recent experiments on the surface of the TI Bi2Se3, reported in Ref. [DOL+13],
c was shown to be of the order 0.5. We insert Eq. (5.8) into Eq. (5.9) and thus translate
this damping restriction into a finite momentum scale q > q0

gsα
8Ωc
π . We identify the intrinsic

plasmon length scale
l0 = gs

α

q0
(5.10)

given by the Coulomb interaction strength times the charge decay length 1
q0
, see Fig. 5.3. We

interpret l0 as the length scale up to which charge separation due to Coulomb interaction can
occur and give rise to the interband plasmons, in an undoped and therefore overall neutral
system.
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In the opposite limit of high frequencies, the term ln (Ω) in Eq. (5.7) spoils a simple
√
X

behavior of the plasmon dispersion. We can extract the analytical form of the damping rate
Γ
Ω =

Ω�1

1
3π

[
3− ln(4Ω2) +

√
3π2 + (ln (4Ω2)− 3)2

]
+O

( 1
Ω

)
=

Ω→∞

π

2 ln (4Ω2) + 3π
2 ln (4Ω2)2 +O

(
1

ln (4Ω2)3

)
+O

( 1
Ω

)
,

(5.11)

yet the plasmon dispersion can only be calculated numerically.
In the following discussion of the different excitation spectra, we will use these analytic

results to check our numerics in the limits of small momenta and low and high frequencies.

5.3. Excitation Spectrum
Now we have a closer look at the excitation spectrum of the undoped BHZ model. We begin
with the non-interacting one, given by ΠIm, and proceed from there by looking for plasmons in
the system. We consider different parameter regimes, like finite mass and broken p-h symmetry.
We conclude that the new interband plasmons we find should be experimentally observable.
The imaginary part of the polarization function, ΠIm, is calculated from Eq. (4.7) by employ-

ing the relation =
[

1
ω+i0+

]
= −πδ (ω). The real part is then obtained by the Kramers-Kronig

relation (4.16). In Fig. 5.4 (a) and (b) we plot ΠR (X,Ω) for ξM = ξD = 0. The imaginary part
in panel (a) is strictly zero below the cut-off frequency Ωmin, where electronic excitations are
forbidden by energy-momentum conservation. In the pure Dirac limit X,Ω → 0, the cut-off
frequency is Ωmin = X where a divergent behavior is observed, as discussed in Ref. [GFM08].
The reason behind this is the linear spectrum that allows for the existence of a divergent
number of p-h excitations satisfying the energy-momentum conditions. In the opposite limit
of X,Ω → ∞, the polarization function goes to zero due to the vanishing overlap factor, as
expected in the 2DEG limit. In this high frequency limit, the imaginary part decays as Ω−2,
while in a pure Dirac system it shows a Ω−1 decay.
In Fig. 5.4 (b) we consider the real part of ΠR. For graphene within RPA, it is always nega-

tive. This is fundamentally different in the BHZ model, where ΠRe changes sign and becomes
positive in the region above Ωmin indicated by the green dashed line. In this antiscreening
region, we can search for solutions to Eq. (4.12), describing plasmonic resonances. Yet, Landau
damping of the plasmon mode by SPE processes can be expected due to the finite value of
ΠIm in the same region.
Next we take into account the effects of broken p-h symmetry. In Fig. 5.4 (c), we plot

line cuts of ΠIm for fixed X = 0.5 with and without a finite ξD. In the latter case, the
polarization strongly changes for small X, as ΠIm goes to zero at Ωmin, instead of exhibiting
the divergency known from the pure Dirac system. Due to the breaking of p-h symmetry,
low-energy electrons from the conduction band are excited close to the Dirac point, where
the density of states goes to zero. Importantly, this reduction of ΠIm greatly diminishes the
Landau damping of plasmons. Therefore we will pay it special attention in Sec. 5.3.2.
Lastly, in Fig. 5.4 (d) line cuts of ΠRe are shown for fixed X = 2 and different Dirac masses.

One nicely sees that a negative mass enhances and a positive mass diminishes the features of
the polarization function with respect to the M = 0 case. Again, this is caused by the changes
in the overlap factor as elaborated in Sec. 4.2. Therefore, in a TnT phase the antiscreening
effect, ΠRe > 0, gets enhanced, which increases the chance of observing plasmons.
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with ξM = − 4

9 , 0 and 4
9 with green triangles, blue dots and black stars, respectively. Reprinted figures

with permission from Ref. [JMT14a]. Copyright (2014) by the APS.

5.3.1. Interband Plasmons

Now, we look for solutions of Eq. (4.12) corresponding to plasmon quasiparticles of definite
energy and momentum, i.e. with limited damping of Γ/Ω < 1. For this purpose, Eq. (4.12) is
expanded up to order O(Γ/Ω)2 as was already done in Sec. 5.2. The results are two equations
for real and imaginary part, from which we obtain the plasmon dispersion and its damping
factor, respectively. We find that the damping ratio Γ

Ω (X,Ω) parametrically depends on ξM
and ξD only, but not on the interaction strength α. This behavior implies that Landau damping
is due to the non-interacting SPEs.
Different from the expansion in Sec. 5.2, in the following we solve numerically for the damping

ratio and plasmon frequency. In Fig. 5.5 (a), Γ
Ω is depicted for a TI phase with ξM = −4

9 .
For frequencies Ω � Ωmin, the system is sufficiently undamped and the expansion in Γ/Ω is
justified. In order to study the plasmon dispersion curve, we look at isolines 1

<[g(X,Ω−iΓ)] = α

for different interaction strengths α. They are shown in Fig. 5.5 (b) as a contour plot of
1

<[g(X,Ω−iΓ)] for ξM = −4
9 . The plasmon dispersion relation has a square root dependence on
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Figure 5.5. (a) Illustration of the damping ratio Γ
Ω and (b) the function 1

<[g(X,Ω−iΓ)] , for ξM = − 4
9 .

(c) Plasmon dispersion together with the loss function =
[
− 1
ε

]
, Eq. (4.14), for ξD = −0.5 and α = 0.4.

(d) Plasmon frequency and damping at X = 0.5 (dashed line in panels (b) and (c)) for ξM ∈
{
− 4

9 ,
4
9
}

and ξD = −0.5 in green triangles, black stars and blue dots, respectively. Reprinted figures with
permission from Ref. [JMT14a]. Copyright (2014) by the APS.

X, known from doped graphene studied in Ref. [HD07] and ordinary 2DEGs, for α → ∞. In
the opposite limit of α→ 0, it shows instead the almost linear dependence from Eq. (5.8) for
small X. A similar flattening has been predicted for intrinsic plasmons in graphene at finite
temperature in Ref. [DL13].
Plasmons are also revealed as peaks in the loss function =

[
−1
ε

]
defined in Eq. (4.14). In

Fig. 5.5 (c) we compare the plasmon dispersion calculated numerically from Eq. (4.12) with
the loss function for an interaction strength of α = 0.4 and broken p-h symmetry term ξD =
−0.5. Evidently, plasmons are easily resolved and in perfect agreement with our analytical
calculation. This is one of the key results of our research: the interplay between Dirac and
Schrödinger fermions leads to a plasmonic excitation, which is absent in the limiting cases of
a pure Dirac or Schrödinger system.
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Indeed, plasmons have been proposed to exist also in intrinsic graphene, yet only under
special circumstances. One is a finite temperature, examined in Refs. [Vaf06, DL13]. The
other are a special kind of higher order diagrams going beyond the RPA, taken into account in
Ref. [GFM08]. The latter result is still under debate, e.g. in Ref. [SPM12]. Hence, the physical
reason for the appearance of plasmons in our case is rather different from the previously
reported ones: The plasmonic solutions found here are due to the mixed Dirac/Schrödinger
nature of the electronic system.
We compare the effect of different masses and the p-h breaking to one another in Fig. 5.5

(d). There, the plasmon frequency and damping as a function of α is plotted at fixed X = 0.5
for a NI and a TI phase with ξD = 0 as well as for the case ξM = 0 and ξD = −0.5.
As the plasmon frequency increases with α, for α → ∞ the damping ratio Γ

Ωp decreases to
values below Γ

Ωp . 0.2. Notably, at large α the TI phase yields a larger plasmon frequency
and is considerably less damped than the NI phase. This behavior directly stems from the
strengthening of the antiscreening region of the polarization function due to the overlap factor
enhancement in the TI phase, see Fig. 5.4 (d). In the opposite limit, α → 0, the excessive
damping leads to a breakdown of our expansion. For finite ξD on the other hand, the plasmon
damping has a minimum around α ≈ 1, which prevails to even smaller interaction strengths.
This behavior is a direct consequence of the smaller ΠIm depicted in Fig. 5.4 (c), leading to
reduced Landau damping for small plasmon frequencies.

5.3.2. Broken particle-hole Symmetry

The broken p-h symmetry with ξD < 0 ensures that the lowest-energy interband excitations
correspond to processes exciting particles from the valence band to the proximity of the Dirac
point. There, however, the density of states is zero and these excitations are prohibited. This
makes the p-h broken regime the most suitable one to observe plasmons, as their damping
by SPEs is suppressed. Therefore we choose this regime to study the polarization function
in further details. The SPE spectrum is given by ΠIm, which we plot in Fig. 5.6 (a) for
ξM = 0 and ξD = −0.5. In contrast to graphene, here ΠIm increases continuously from 0.
The excitation spectrum shows a maximum for small momenta X < 1 which lies beneath the
plasmon dispersion given by the black line, perturbatively calculated from Eq. (4.12) up to
order O (Γ/Ω)2 for α = 0.4.
Considering a finite Coulomb interaction strength, the excitation spectrum is given by ΠIm

rpa
plotted in Fig. 5.6 (b) for α = 0.4 and (c) for α = 10. The maximum of the spectrum
shifts to higher energies compared to the non-interacting one, indicating the formation of
a collective excitation in the system - the plasmon. This is proven by the perturbatively
calculated dispersion plotted as a black line on top of the spectrum. Additionally, the plasmon
dispersion relations based on the long wavelength expansion of ΠR, Sec. 5.2, for Ω � 1 and
Ω� 1 are plotted as gray lines in Fig. 5.6 (c).
The plasmon dispersion relation starts linearly for small q, as one would expect for a neutral

system without doping. At high energies on the other hand, a free-particle behavior could be
expected, leading to the usual √q dispersion known from doped systems. Although Eq. (5.7)
shows that this picture is only partly true due to the logarithmic correction of ΠRe, Fig. 5.6
(c) indicates a qualitative agreement. Comparing ΠIm

rpa to the loss function in Fig. 5.5 (c), both
are clearly in accord with one another. Due to the additional factor 1/X, the loss function
puts a stronger emphasis on the long wavelength part of the excitation spectrum.
The line cuts of ΠIm

rpa shown in Fig. 5.6 (d) are for fixed X = 0.7 with α ∈ {0, 0.2, 0.4, 10}.
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Figure 5.6. Plots of (a) ΠIm and ΠIm
rpa for (b) α = 0.4 and (c) α = 10. (d) shows line cuts for

fixed X = 0.7 with α ∈ {0, 0.2, 0.4, 10} in black solid, red dot-dashed, blue long dashed and green
short dashed lines, respectively. ξM = 0 and ξD = −0.5. Reprinted figures with permission from
Ref. [JMT14b]. Copyright (2014) by the APS.

Additionally, the black vertical lines indicate the plasmon frequency for α ≤ 0.4 (left line) and
α = 10 (right line). For α = 0.2, the maximum of the interacting spectrum lies between the
maximum of the non-interacting spectrum and the plasmon frequency, signifying that single-
particle and collective excitations are equally strong. Increasing the interaction to α = 0.4, the
maximum of the interacting spectrum and the plasmon frequency almost coincide. We conclude
therefore that the plasmon dominates over the SPEs. Finally, at very large interactions α = 10,
the plasmon is the only relevant excitation in the system.
Increasing the Coulomb interaction broadens the plasmon peak and reduces its height as

shown in Fig. 5.6 (d). This seems contrary to the picture of a plasmon as a sharp interaction-
induced charge resonance, suggesting that these interband plasmons may not be well-defined
for high energies. Yet this is a false conclusion. In Sec. 4.5.1 we discussed that the contribution
of the resonance to the f-sum rule is the actual measure of importance of a resonance. Following
Eq. (4.34), the latter can be estimated by multiplying the peak height in ΠIm

rpa by Ωp, while the
relevant peak width is given by Γ

Ωp . The latter is decreasing with Ωp according to Eq. (5.11).
From this normalization of the peak we conclude that the discussed interband plasmons
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fulfill the interpretation as sharp interaction-induced charge resonances. The width Γ
Ωp of the

collective excitation decreases with increasing plasmon frequency, above the critical frequency
Ωc as defined in Sec. 5.2.

5.3.3. Experimental Realization
In Sec. 4.4 we considered the experimentally relevant parameters for Hg(Cd)Te QWs, and
concluded that plasmons with a damping ratio of Γ

Ωp = 0.5 are still observable in experiments.
From Fig. 5.5 (d) we find Γ

Ωp ≈ 0.3 for the interaction strength α ≈ 0.27 and ξD = −0.5. The
wave vector and frequency of the plasmon is extracted from Fig. 5.5 (c) and Fig. 5.6 (b) to be

q ∈ [0.1, 0.6] q0 = [0.04, 0.24] 1/nm,

ω ∈ [0.1, 0.8] E0
h̄

= [14, 112] meV
h̄

= [21, 170] THz,
(5.12)

where the lower bound stems from the merging of plasmon and single-particle background
for X,Ω → 0. This momentum and frequency range is of the right order for experimental
techniques like Raman spectroscopy.

A finite temperature in experiments can lead to doping by thermal excitations, which in
turn can result in the formation of intraband plasmons, studied in Refs. [Vaf06, DL13]. At the
temperature of liquid helium, one finds kBTHe ≈ 0.35 meV with kB the Boltzmann constant.
Thus, the plasmons resulting from thermal excitations occur on an energy and momentum scale
at least two orders of magnitude smaller than the plasmons discussed in this section. This
makes it possible to fully separate them or to suppress them with a small gap kBT < |M |.

We conclude that the plasmonic resonances discussed above are measurable, e.g. with Raman
spectroscopy on Hg(Cd)Te QWs.

5.4. Optical Conductivity
We have seen that plasmons differ for the NI and TI phases, but the difference is of a quan-
titative fashion and probably hard to distinctively detect in experiments. Therefore we still
look for a bulk quantity where topology leads to a clearly measurable signal. The bulk optical
conductivity could be such a quantity.

From the knowledge of the polarization function, we can calculate the bulk optical conduc-
tivity of the system, defined by Ref. [Ste67], as

σ0 (Ω) = lim
X→0

Ω
X2 |B|Π

R (X,Ω) . (5.13)

An analytical calculation yields for the BHZ model

= [σ0 (Ω)] = −
[ 1
W

+ 1 + 4ξM
Ω2

(1 + 2ξM
W

− 1
2

)]
Θ (Ω− 2 |ξM |) , (5.14)

where W = 2
√

1 + 4ξM + Ω2. Notably, σ0 is a universal function depending only on Ω and
ξM . In Fig. 5.7, we plot = [σ0 (Ω)] for the different masses ξM = −4

9 , 0 and 4
9 .

Compared to the massless case, both positive and negative Dirac mass lead to a peak just
above Ωmin = |2ξM |. The signal from the TI phase is much stronger, even diverging for
|ξM | → 1

2 . The latter is the threshold of turning the band structure into a Mexican hat shape.
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Such difference between the trivial and topological phases is emphasized in the inset of Fig. 5.7,
where we plot the ratio R = =[σ0(Ω)]M>0

=[σ0(Ω)]M<0
.

The divergent behavior can be explained by considering the combined effects of the overlap
factor, Sec. 4.2, and the phase space for the excitation processes. In the TI phase of the BHZ
model, the conduction and valence bands flatten for small momenta X < |ξM |, with respect to
the NI phase. This fact enormously increases the number of finite momentum states, available
for an excitation just above Ωmin = |2ξM |. The increased overlap factor leads to an additional
increase of = [σ0] for small and intermediate momenta. This is contrasted with a slight general
decrease of the optical conductivity for positive mass.

We conclude: the increase and divergence of the optical conductivity in the TI phase could
be strong enough as to serve as a distinction mark in experiments. This can be combined with
the increase in the f-sum rule for negative masses, explored in Sec. 4.5.

5.5. F-sum Rule - a Numerics Check
The f-sum rule provides a check for our numerics, as dicussed in Sec. 4.5. In Fig. 5.8 we
plot the ratio

∆num
f
∑

f
∑ , with ∆num

f
∑ = f

∑num−f
∑

being the difference between the numerical
calculated f-sum rule f

∑num and the analytic f
∑

from Eq. (4.29). The deviation is of the
order 10−3, comparable to the analytical uncertainty, see Sec. 4.5, and thus negligible.
The f-sum has to be the same for interacting and non-interacting systems. We find a slight

dependence on the interaction strength α, which could be a numerical artifact, depending on
the cutoff Λ, or a real α dependence like in graphene. In the latter Dirac case, spectral weight
is missing for small frequencies, cf. Eq. (14) in Ref. [SNC08], such that ΠRPA < ΠR ∀q, ω for
the undoped Dirac model. As the observed dependence declines with increasing cutoff Λ, we
conclude that the RPA approximation in the BHZ model misses no spectral weight compared
to the full Coulomb interaction, even in the undoped limit.
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∆num
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∑ , with ∆num

f
∑ being the difference between the numerical and analytical

f-sum rule, Eq. (4.29). Black dots are for the non-interacting spectrum, while blue stars stand for
α = 0.4 and green triangles for α = 10. β = 3, Xmax = 6, ξM = 0 and ξD = −0.5. The deviations
around X & 1 stem from numerical instabilities, which are however negligibly small. Reprinted figure
with permission from Ref. [JMT14b]. Copyright (2014) by the APS.
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6. Doped System
In this section, we extend our analysis of the polarization function of the BHZ model to finite
doping µ > 0, where a net charge density is present in the system. Doping the system has
two effects: one is the Fermi blocking of interband excitations for small X and Ω, represented
by the red arrow in Fig. 6.3 (a). The other one is the appearance of intraband excitations,
indicated by the green arrow in Fig. 6.3 (a), which are absent in the intrinsic limit.
Again, we first study the polarization and screening properties of the system in the static

limit in Sec. 6.1. The discussed Friedel oscillations are relevant, e.g., in the case of scattering
on a charged impurity. Then, we take a look at the dynamic polarization function in the long-
wavelength limit in Sec. 6.2. Here we obtain an analytical expression for the dispersion and
damping of the collective plasmonic modes of the system. Finally we numerically compute the
dynamical polarization function in the full range of momenta and frequencies, considering the
full parameter space of the BHZ model. Its ability to interpolate between the Dirac and 2DEG
limit is explored in Sec. 6.3. The experimental relevant case for Hg(Cd)Te QWs of broken p-h
symmetry and small to negligible mass terms is studied in Sec. 6.4. As in the undoped limit,
Sec. 5.3.2, the interband plasmon is especially strong in this case. Due to a blocking effect, it
is possible to separate inter- and intraband plasmons in the interacting excitation spectrum,
for experimentally relevant interaction strengths α, momenta and energies. We conclude in
Sec. 6.5 by investigating the effect of large mass terms. The topological trivial and non-trivial
excitation spectrum are qualitatively distinct from one another.

6.1. Static Limit and Screening
We begin our discussion again with the static limit of the polarization function. An interesting
feature will be the Friedel oscillations, which change their decay behavior depending on the
doping level of the system.
In Fig. 6.1, we present the static polarization function Π̃(X) = Π(X)/G(µ) at finite doping,

normalized by the density of states (DOS) at the Fermi level G(µ). This normalization stands
out naturally from the long wavelength property of the polarization function

lim
q→0

Π(q) = Πµ(0) = G(µ). (6.1)

For the BHZ model at finite doping, Π̃(X) has a pronounced dependence on the extrinsic
parameter XF = kF /q0. For XF � 1 (XF � 1) the Fermi level falls in a region where locally
the dispersion curve has predominant Dirac (2DEG) character. In a 2DEG system, the static
polarization assumes the known analytic form, cf. Ref. [GV05], of

Π̃(q) = 1−Θ(q − 2kF )

√
q2 − 4k2

F

q
. (6.2)

It is constant up to q = 2kF , where a jump in the first derivative occurs. In the limit of large
momenta, it decays like 1/q2. The Dirac limit is analyzed in Refs. [GGMS02, And06], one
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Figure 6.1. Static polarization function Π̃(X) of the BHZ model, normalized by the DOS G(µ). We
choose the massless, p-h symmetric case ξM = ξD = 0 and vary the doping with different values of
XF . In the inset, details on the value of Π̃(2XF ) as a function of XF are given. Reprinted figure with
permission from Ref. [JMT14b]. Copyright (2014) by the APS.

finds for the normalized polarization

Π̃(q) = 1−Θ(q − 2kF )


√
q2 − 4k2

F

2q − q

4kf
arctan

√
q2 − 4k2

F

2kF

 . (6.3)

It is constant up to q = 2kF as well, but diverges linearly for large momenta as depicted in
Fig. 6.1.
Our own calculations for the BHZ model with ξM = ξD = 0 correctly reproduce the Dirac

and 2DEG limits for XF � 1 and XF � 1, respectively. We note that with a finite B term and
nonzero doping XF , the polarization will always have a decay behavior for q > q0, in contrast
to the divergence of the pure Dirac case. In the 2DEG and Dirac limit one finds Π̃(q) = 1 for
q < 2kF , which seems like a coincidence due to the balancing effect of dispersion curve and
overlap factor. Interestingly, in the BHZ model we observe instead a deviation from unity with
a maximum for XF ≈ 0.5, shown in details in the inset of Fig. 6.1. At the Fermi wave vector
X = 2XF , a discontinuity occurs in the polarization function. In the 2DEG limit, XF � 1,
the first derivative of Π̃(X) has a large jump. Decreasing XF , this discontinuity decreases as
well and finally vanishes in the Dirac limit, where the discontinuity affects only the second
derivative of Π̃(X).
Let us consider the consequences of the described behavior for the screening in the system.

We already analyzed in Sec. 5.1 the intrinsic response of a BHZ system to a test charge,
when no net charge density is present in the system. While the intrinsic response is realized
on the intrinsic scale 1/q0 of the model, the ’metallic’ response at finite electronic density is
characterized by the Fermi wave length π/kF . Therefore it is convenient to express nµ(X) as
a function of dimensionless units X̃ = X/XF = k/kF , due to the presence of the discontinuity
at Πµ(2XF ). The induced charge density in real space follows from Eqs. (4.22) and (4.23) and
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Figure 6.2. Induced charge density in real space for the BHZ model for ξM = ξD = 0 and
α = 0.3, 0.5 and 1. Data in different panels belong to systems with different doping levels
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α = 0.3, 0.5 and 1 are quite close and correspond to similar β parameters, β = 0.01, 0.008 and 0.007,
respectively. Reprinted figure with permission from Ref. [JMT14b]. Copyright (2014) by the APS.

is given by

nµ(r) = ηµ

∫
dX̃ J0(rkF X̃)

1− αg0(X̃XF )
Π̃µ(X̃XF )

1− αg(X̃XF )
. (6.4)

The scaling factor ηµ = η0|B|G(µ)XF = e2kF
4πε0ε2r

G(µ) is directly proportional to the DOS and
the Fermi momentum. We note that the integral explicitly depends on the parameters α and
XF , and naturally on ξM and ξD, when finite.

In Fig. 6.2, we present the radial density, induced by a point-like test charge, for the mass-
less, p-h symmetric BHZ model. Each panel corresponds to a different value of the ratio
XF = kF /q0, and within each panel curves differing by the Dirac fine-structure constant α
are presented. Friedel oscillations appear of period π/kF , which become more pronounced for
larger α. We also note that the density oscillations are more prominent in the intermediate
regime of kF ≈ q0 than in the Dirac (XF � 1) and 2DEG limits (XF � 1). In the 2DEG
limit, the α = 1

A
e2

4πε0εr parameter is ill defined and should be replaced by the more general
parameter

β = e2G(µ)
2ε0εrkF

, (6.5)

characterizing the dielectric response of the system.
We checked that Friedel oscillations reproduce the expected behavior in the Dirac and 2DEG

limits, where oscillations decay as r−3 and r−2, respectively, while for intermediate regimes
they decay as r−p with p ∈ (2, 3). The presence of Friedel oscillations and their asymptotic
behavior are related through the Lighthill theorem, presented in Ref. [Lig58], to discontinuities
in the static polarization function and its derivatives. A detailed discussion can be found, for
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example, in Ref. [BMAVF10]. A discontinuity like |q − 2kF |νΘ (q − 2kf ) in Π (q), with Θ the
Heaviside step function and ν ∈ R, translates into a decay of the oscillations in n (r) with
leading order r−ν−3/2. One finds ν = 1/2 (ν = 3/2) for the leading order discontinuity of
a 2DEG (Dirac) system, such that the first (second) and all higher derivatives of the static
polarization function are discontinuous at q = 2kF . Analyzing the Friedel oscillations for the
BHZ model, one finds a composition of two different contributions with an asymptotic decay
at large distances as r−2 (2DEG contribution) and r−3 (Dirac contribution), respectively.

As a consequence, the discontinuity in the RPA polarization function of the BHZ model
at q = 2kF can be very well approximated by a combination of 2DEG (ν = 1/2) and Dirac
(ν = 3/2) contribution. In the Dirac (2DEG) limit, achieved by low (high) doping, the effect of
the discontinuity in the second (first) derivative becomes predominant and oscillations purely
decay in leading order as r−3 (r−2).

6.2. Long Wavelength Expansion of ΠR (X,Ω) and Plasmon
Dispersion

At finite doping, for small momenta X, the polarization function is governed by intraband
excitations, as the interband excitations are Fermi-blocked. We perform an expansion in this
limit, for Ω > X, in order to gain an analytical insight into the physics at finite doping and
derive an analytical formula for the plasmon dispersion. In particular, intraband plasmons are
expected to be the dominant excitation for small momenta, similarly to the 2DEG and Dirac
case. The obtained solutions will be compared to the full numerics in the following Sec. 6.3.
We expand the polarization function up to order X4

|B| <
[
ΠR (X,Ω)

]
= Π44

X4

Ω4 + Π42
X4

Ω2 + Π40X
4 + Π22

X2

Ω2 + Π20X
2 +O

(
Ω2
)

(6.6)

and use it to solve the plasmon equation (4.12) for the damping coefficient and the plasmon
dispersion. The latter is given by

Ω =
√

2παΠ22
√
X +

Π44

Π
3
2
22

1√
8πα

+
√

2π3α3Π22Π20

X 3
2 (6.7)

with the leading coefficient

Π22 =gs

 X2
f (1 + 2X2

f + 2ξM )

4π
√
X2
f + (ξM +X2

f )2
− ηξD

X2
f

2π

 = gs
1

4π ( |Ωf |+ Πinter (Xf )︸ ︷︷ ︸
−|ξM |<...<|Ωf |

)

=
ξM=0
Xf→0

gs
Xf

4π +O
(
X2
f

)
= gs

|Ωf |
4π +O

(
X2
f

)
(6.8)

=
ξM=0
Xf→∞

gs
X2
f

2π (1− ηξD) +O
(

1
X2
f

)
= gs

|Ωf |
2π +O

(
1
X2
f

)
(6.9)

with η = sgn [Ωf ] and Πinter (Xf ) = X4
f−ξ

2
M√

X2
f

+(ξM+X2
f)

2
− ηξDX

2
f . In the limit of zero mass,

Πinter (Xf ) interpolates smoothly between 0 for Xf → 0 and |Ωf | for Xf → ∞. The former
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case corresponds to the Dirac limit, where one finds the plasmon frequency

ω = A

√
gαkf

2
√
q =

√
ge2µ

8πε0εr

√
q (6.10)

in the literature, cf. Ref. [WSSG06], being identical to Eqs. (6.7) and (6.8). The latter case is
the 2DEG limit, with the plasmon dispersion

ω =

√
e2N

2mε0εr

√
q =

√
ge2µ

4πε0εr

√
q (6.11)

found in the literature, e.g. in Ref. [GV05]. Here, N = g
4πk

2
f is the carrier density and

m = 1
2|B+D| . This is in agreement with Eqs. (6.7) and (6.9). Thus the BHZ model as a

function of its parameters reproduces the plasmon dispersion in the Dirac and 2DEG limits
and smoothly interpolates between them.
We note that for kf → 0 the term Π22 goes to zero and the intraband plasmon disappears. In

this limit, the leading order contribution O
(
X2

Ω2

)
of the intrinsic polarization, Eq. (5.7), takes

the place of Π22. A crucial difference between the extrinsic and the intrinsic polarization is that
the latter has a finite imaginary part of order O

(
X2

Ω2

)
, leading to the linear dispersion (5.8)

of the interband plasmons. Yet for finite kf > 0, these interband plasmons are suppressed
due to the Fermi blockade of the interband excitations. Then they only exist if their plasmon
frequency exceeds both the chemical potential Ωf and the critical frequency Ωc as defined in
Sec. 5.2. This is nicely presented in Fig. 6.5.
Besides the different scaling with momenta in the limit X → 0, also the scaling with the

interaction stength α is different for the inter- and intraband plasmon dispersions, Eqs. (5.8)
and (6.7): linear vs. square root. This will have important consequences in the following when
we discuss how to separate the two different collective excitations in the spectrum.

6.3. Excitation Spectrum of the massless, p-h symmetric BHZ
Model: Interpolation between Dirac and 2DEG Regime

We proceed, with the analytical results at hand, to the full numerical discussion of the polar-
ization function and its related quantities. We begin with the analysis of the doped excitation
spectrum by looking at the limiting results of 2DEG and Dirac system first. This is done in
App. A. From there, we find that we can interpolate between these two limits by changing
the Fermi momentum. Interestingly, by considering the cases of broken p-h symmetry and
large masses, we also discover regimes which are distinct from the Dirac and 2DEG limits in
Secs. 6.4 and 6.5. As an example, these regimes support both inter- and intraband plasmons,
at parameters which are realistic for HgTe QWs.
In all the following plots, the boundaries of the single-particle spectrum will be indicated

by faint black lines, the isolines ΠRe = 0 by red lines. The plasmon dispersions are plotted
as black curves (full result from perturbation theory) and gray curves (expanded result in the
limit X → 0).

We consider first the different possible excitations in the system. For this, the band structure
of the BHZ model without mass and p-h symmetry breaking terms is shown in Fig. 6.3 (a).
The interband SPEs lying lowest in energy are symmetric in momentum as shown by the red
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Figure 6.3. (a) Band structure of the BHZ model with finite chemical potential. The intraband
(interband) transitions are indicated by green (red and black, dashed) arrows. (b)-(d) Boundaries of
the excitation spectrum for Fermi momenta Xf ∈ {0.1, 1, 3}. The interband spectrum in red, intraband
spectrum in blue and mixed area in purple. Reprinted figures with permission from Ref. [JMT14b].
Copyright (2014) by the APS.

arrow in Fig. 6.3 (a), going from −X toX closely above the Fermi level. Due to p-h symmetry,
this leads to nesting and thus we expect these excitations to dominate the interband spectrum.
Another kind of interband excitations are indicated by the dashed, black arrow. They go from
momentum X +Xf to Xf with X‖Xf , and are suppressed due to imperfect nesting of the
different sized electron and hole cones, as well as by a small overlap factor resulting from
opposing pseudospins. The latter can be cured by introducing a large negative mass, as will
be shown in Sec. 6.5. There, these excitations have a considerable influence on the polarization
function for higher energies. They help with the formation of interband plasmons, following
the ideas presented in Sec. 4.3.1. In the pure Dirac system on the other hand, these processes
are completely forbidden by helicity.
The excitation spectrum of the system can be modified by varying the doping level as

presented in Fig. 6.3 (b)-(d). It resembles the spectrum of a Dirac system (Xf � 1), of a
2DEG (Xf � 1), or we can obtain an intermediate behavior for Xf ∼ 1. In the figures we
highlight the boundaries of the excitation spectra, with the red (blue) area corresponding to
the interband (intraband) spectrum. The overlap between the two is indicated by the purple
area. The boundaries of the spectra vary from the linear Dirac behavior to the q2 dependence
of the 2DEG. In general, the mixing of linear (A) and quadratic (B) dispersion relations leads
to an overlap of the inter- and intraband spectrum. This affects the visibility of the interband
plasmons, which can be hidden in this area of parameter space due to the strong single-
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6.3. Excitation Spectrum of the massless, p-h symmetric BHZ Model

Figure 6.4. (a) Imaginary and (b) real part of the polarization function for Xf = 0.1. The red line
indicates ΠRe = 0. Reprinted figures with permission from Ref. [JMT14b]. Copyright (2014) by the
APS.

particle damping. A clear separation of the two regions is possible for broken p-h symmetry,
as discussed in Sec. 6.4.

6.3.1. Weak doping of Xf = 0.1

In the limit of weak doping, the extrinsic (kf ) and intrinsic (q0) momentum scales of the system
are separated by one order of magnitude. As the Fermi surface lies in the almost linear part of
the spectrum, we expect that on the kf scale the physics resembles the one of graphene. On
the q0 scale on the other hand, the excitation spectrum should be more or less untouched by
the doping, and the system will behave as in the intrinsic limit.
We plot ΠR in Fig. 6.4. Comparing panel (a) to Fig. A.2 in App. A, one finds a good

agreement with the Dirac case. The biggest deviation is given by the peak of ΠIm at Ωinter
min ,

which is not symmetric as for a Dirac system due to the overlap of inter- and intraband
spectrum, see Fig. 6.3 (b). The finite quadratic part in the spectrum cures the divergency
formerly occurring in the Dirac limit.
The real part of −ΠR presented in Fig. 6.4 (b) is strongly negative only at the upper

boundary of the intraband spectrum. This indicates that for small interaction strengths, only
one plasmon will dominate the excitation spectrum on the Fermi scale. As we are interested
in the regime where both inter- and intraband plasmons are visible, we look at the interacting
spectrum for interaction strength α = 10.
This is done in Fig. 6.5 by plotting ΠIm

rpa. On the Fermi scale kf , panel (a), the intraband
plasmon absorbs all spectral weight from the intraband spectrum. The plasmon dispersion
agrees well with the perturbative one from the expansion in Eq. (6.7) in the limit X → 0,
plotted as a gray curve. The green, dashed line shows the linear dispersion of the interband
plasmon in the undoped limit, based on Eq. (5.8). On the Fermi scale, it is not obvious
that there is an interband plasmon, although the interacting polarization function develops a
smeared resonance around the perturbative interband plasmon dispersion for high momenta.
Switching to the intrinsic scale, presented in Fig. 6.5 (b), one finds the interband plasmon as

the dominant excitation. It corresponds to the single peak in −ΠIm
rpa, unperturbed by doping
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6. Doped System

Figure 6.5. ΠIm
rpa for Xf = 0.1 with α = 10 on (a) the kf scale and (b) the q0 scale. We add an

artificial damping in the regions of ΠIm = 0 to make the plasmons visible. Reprinted figures with
permission from Ref. [JMT14b]. Copyright (2014) by the APS.

for momenta much larger than kf . Its dispersion is the same as for a plasmon in the undoped
limit, discussed in Sec. 5.3.1. The two black lines near the peak are just the boundaries of the
intraband excitation spectrum, which does not play a role here.
In the limit of X → 0 the interband plasmon dispersion scales linearly with the interaction

strength, Ωp ∝ α, see Eq. (5.8), while the intraband plasmon frequency is proportional to
√
α.

Therefore by lowering the interaction strength we can induce a merging of the two resonances
below some critical α.

6.3.2. Strong doping of Xf = 3

A strong doping of the system significantly increases the total spectral weight, as shown in
Fig. 4.2 (b). This increase results from strengthened intraband excitations, while most of the
interband excitations get Fermi-blocked, leading therefore to an effective decoupling of the two
bands in the BHZ model. Thus we expect the overall spectrum for Xf = 3 to be governed
by intraband excitations and to resemble the excitation spectrum of a 2DEG, as the Fermi
surface lies in the almost quadratic part of the band structure.
The corresponding ΠR is plotted in Fig. 6.6. The single-particle spectrum in panel (a) is

peaked at small momenta and at energies close to the upper bound of the intraband spectrum.
The interband transitions lead only to minor deviations from the 2DEG case, compare with
Fig. A.1 (a).
The real part −ΠR in panel (b) is strongly negative at the upper boundary of the intraband

spectrum, indicating that only a single intraband plasmon will dominate the interacting spec-
trum. Interestingly, the static limit property of the polarization being a constant Π̃(X) = 1
for X < 2XF , discussed in Sec. 6.1, extends also to an area of finite Ω.
The interacting spectrum is shown in Fig. 6.7 by plotting ΠIm

rpa for the interaction strength
α = 10. Even for this strong Coulomb interaction, we only find the intraband plasmon. This
is as expected due to the combined effects of Fermi blocking of interband excitations and
increased spectral weight for intraband transitions. The interband plasmon lies in the large
overlap of inter- and intraband spectrum, cf. Fig. 6.5 (b), and it is therefore damped beyond
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Figure 6.6. The (a) imaginary and (b) real part of the polarization function for Xf = 3. The red
line indicates ΠRe = 0. Reprinted figures with permission from Ref. [JMT14b]. Copyright (2014) by
the APS.

Figure 6.7. Plot of ΠIm
rpa for Xf = 3 and α = 10. We add an artificial damping in the regions of

ΠIm = 0 to make the plasmons visible. Reprinted figure with permission from Ref. [JMT14b]. Copyright
(2014) by the APS.

recognition and not visible in the overall spectrum.

6.3.3. Intermediate Doping of Xf = 1

For intermediate doping levels like Xf = 1, a mixture of Dirac and 2DEG behavior is expected,
due to the similar importance of inter- and intraband excitations. The polarization function
ΠR is presented in Fig. 6.8. Indeed, the single-particle spectrum in panel (a) looks like a
combination of Figs. 6.4 (a) and 6.6 (a). While the shape of the polarization resembles the
one of the 2DEG, the interband spectrum is now more pronounced and even dominating for
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Figure 6.8. (a) Imaginary and (b) real part of the polarization function for Xf = 1. The red line
indicates ΠRe = 0. Reprinted figures with permission from Ref. [JMT14b]. Copyright (2014) by the
APS.

Figure 6.9. Plot of ΠIm
rpa for Xf = 1 with α = 10. We add an artificial damping in the regions of

ΠIm = 0 to make the plasmons visible. Reprinted figure with permission from Ref. [JMT14b]. Copyright
(2014) by the APS.

larger momenta of X > 2Xf . Therefore we could expect both kinds of excitations giving rise
to a plasmon mode. Yet the real part −ΠR in panel (b) shows again just a single minimum,
following the upper boundary of the intraband spectrum. The deviations from the constant
behavior Π̃(X) = 1 for X < 2XF in the case of intermediate doping, analyzed in Sec. 6.1, are
also found for finite Ω.
In Fig. 6.9 we show the interacting spectrum by plotting ΠIm

rpa for an interaction strength of
α = 10. It is dominated by a single resonance, lying above the intraband part of the single-
particle spectrum. For small momenta, this resonance corresponds to the intraband plasmon

100



6.4. Hg(Cd)Te Quantum Wells: BHZ Model with finite ξD

�1 1
X

�1

1

E �E0�

Xin f�Xin f
�f

Figure 6.10. Band structure for ξD = −0.5 and doping to the inflection point. Both low energy
interband excitations (red arrow) and high energy intraband excitations (green arrow) involve the
Dirac point. Reprinted figure with permission from Ref. [JMT14b]. Copyright (2014) by the APS.

as verified by the perturbative plasmon dispersion (gray line). Yet for intermediate momenta,
a comparison with the interband plasmon dispersion in Fig. 6.5 (b) indicates that also the
interband plasmon contributes to the resonance. A clear distinction between the two is thus
not possible anymore.
In summary, doping the system offers the possibility to change the excitation spectrum on

the Fermi scale from a Dirac to a 2DEG type. The interacting spectrum is usually governed
by a single intraband plasmon, while the interband plasmon is hidden in the single-particle
background. Only large interaction strengths offer a possibility to distinguish both plasmons in
the spectrum. In the following, we will now analyze the influence of both broken p-h symmetry,
Sec. 6.4, and finite masses, Sec. 6.5. Both options offer a way to separate the two plasmons
and make them visible in the total excitation spectrum.

6.4. Hg(Cd)Te Quantum Wells: BHZ Model with finite ξD
The BHZ model with a broken p-h symmetry and a small or vanishing mass describes the
experimental relevant case for Hg(Cd)Te QWs. The finite ξD 6= 0 offers the possibility of
blocking the interband SPE spectrum close to the minimal excitation energy Ωinter

min , resulting
in less damped interband plasmons as discovered in Sec. 5.3.2.

6.4.1. Excitation Spectrum

Here, we want to use a similar blocking effect for the intraband excitations in order to separate
the inter- and intraband spectrum as well as the two plasmon modes. The broken p-h symmetry
introduces an inflection point into the band structure, ∂2

∂X2 εX,λ = 0|X=Xinf , with momentum
Xinf and energy Ωinf . For ξD < 0, it lies in the hole part, λ = −1, of the dispersion
relation. With a sufficiently small Fermi momentum, Xf . Xint, the highest-energy intraband
excitations involve the Dirac point for momenta on the order of the Fermi momentum, see
Fig. 6.10. The same is true for the lowest-energy interband excitations. Due to the vanishing
DOS at the Dirac point, both kinds of excitations are suppressed, and therefore the inter- and
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6. Doped System

Figure 6.11. Plot of (a) ΠIm and (b) ΠRe for Xf = 1
2Xinf = 0.185 and ξD = −0.5. The red line

indicates ΠRe = 0. The separation of inter- and intraband excitations and the existence of two possible
plasmon branches is clearly visible. Reprinted figures with permission from Ref. [JMT14b]. Copyright
(2014) by the APS.

intraband SPE spectra are effectively separated in energy and momentum up to the scale of
Xinf .
This effect is demonstrated in Fig. 6.11 (a) and Fig. 6.12 (c)-(e), where the imaginary

part of the polarization goes to zero between inter- and intraband parts of the spectrum,
fully separating them. There, we choose the Fermi momentum Xf = 1

2Xinf and parameters
ξD = −0.5 and ξM = 0. This blocking effect holds for small momenta up to roughly 2Xinf ,
indicated by the black vertical line in Fig. 6.11 at X ≈ 3.2. For larger momenta, the high
energy intraband excitations go from deep in the valence band directly to the Fermi surface
and the blocking effect involving the Dirac point is gone, as depicted by the dashed arrow in
Fig. 6.10.
In Fig. 6.11 (b), ΠRe shows one major and fundamental difference in comparison to the p-h

symmetric case of weak doping in Fig. 6.4 (b). At the border of intra- and interband spectrum,
a strong antiscreening region is formed. A plasmon should exist there for sufficiently small
α, clearly separated from the second antiscreening region at higher Ω. This gives rise to the
possibility of observing both intra- and interband plasmons at the same time.
In order to check this, we plot ΠIm

rpa in Fig. 6.12 for α = 2 (a) and α = 0.4 (b). Panels (c)-(e)
show line cuts for fixed momenta X ∈ {1, 1.4, 3}Xf and different α ∈ {0, 0.2, 0.4, 2}. For large
interaction strength α = 2, the intraband plasmon decays into the interband SPE spectrum,
see panel (a) for X ≈ Xf and the green short dashed line in panel (c). Most of the spectral
weight stays there also for larger momenta, as ΠIm

rpa is close to 0 in the intraband SPE region
and the resonance between inter- and intraband SPE spectrum is weak. The latter can be best
seen in the insets of panels (d) and (e), where the green short dashed line is peaked slightly
above, panel (d), or below, panel (e), the black vertical line separating intra- and interband
SPE regions. Even with the peak being small, it indicates the formation of a slightly damped
plasmon, yet with small spectral weight.
The missing spectral weight is transferred to higher energies into the interband SPE region.

For intermediate momenta, a second plasmon branch forms as can be seen in panel (a) for
Xf < X < 2Xf and from the second peak of the green short dashed line in the inset of panel
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Figure 6.12. Interacting polarization function ΠIm
rpa for Xf = 1

2Xinf = 0.185, ξD = −0.5, ξM = 0
and α = 2 (a) and α = 0.4 (b). (c)-(e) show linecuts for fixed X = Xf , X = 1.4Xf and X = 3Xf ,
respectively, with α ∈ {0, 0.2, 0.4, 2} in black solid line, red dot-dashed line, blue long dashed line and
green short dashed line, respectively. The black, vertical line separates the inter- and intraband SPE
region. Reprinted figures with permission from Ref. [JMT14b]. Copyright (2014) by the APS.
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(d). At even higher momenta, X > 2Xf , the branch overlaps with the forming interband
plasmon leading to a broad charge resonance without clear peak, as represented by the green
short dashed line in panel (e) for Ω > 0.7.
The picture changes for smaller interaction strength. For α = 0.4, the intraband plasmon

decays in the region between inter- and intraband SPE spectrum, indicated by the strong peak
of the blue long dashed line in panel (c). As the SPEs in this region are suppressed due to
the Dirac point, the plasmon leads to a high and narrow peak of ΠIm

rpa. This resonance splits
for higher momenta X > Xf : one part forms an intraband plasmon in the intraband SPE
region, represented by the blue long dashed line peaked slightly below the black vertical line
in panels (d) and (e). The second part stays in the interband SPE region, where it enhances
the SPE peak (black line in the inset of panel (d)) for intermediate momenta Xf < X < 2Xf .
The interband plasmon fully forms for even larger momenta X & 2Xf , as shown in panel (e).
There, the broad single-particle peak (black line) around Ω = 0.6 gets reshaped into a clear
peaked resonance (blue long dashed line) - the interband plasmon.

6.4.2. Experimental Parameters
We take the experimental parameters for HgTe QWs from Sec. 4.4, q0 ≈ 0.4 1/nm and E0 ≈
140 meV. For the plots in Fig. 6.12 this gives the Fermi momentum kf ≈ 0.07 1/nm and the
chemical potential µ ≈ −24 meV = −h̄ · 36 THz. The plot range is therefore

q ∈ [0, 0.74] q0 = [0, 0.3] 1/nm

ω ∈ [0, 1] E0
h̄

= [0, 210] THz
(6.12)

and thus of the right order of magnitude for experimental techniques like Raman spectroscopy
or electron loss spectroscopy. The interaction strength of α = 0.4 is semi-realistic as well.
We compare to the undoped case discussed in Sec. 5.3.3 and find that the scales are the same.

Thus in experiments one could tune the Fermi level through the Dirac point and study the
interband plasmon alone or its interplay with the intraband plasmon at the same momentum
and energy range.

6.4.3. Spectral Weight and the f-sum Rule
The two plasmonic resonances in Fig. 6.12 (b) overlap for X ≈ Xf , before they separate
for higher momenta. Therefore the question arises whether one can really speak of a clear
distinction between inter- and intraband plasmons for larger momenta. In order to answer
this, we want to study the f-sum rule and thus the spectral weight of the different excitations.
As a numerics check, we find the relative deviations of numerical to analytical f-sum rule to
be again of the order 10−3, comparable to the undoped case presented in Sec. 5.5, and thus
negligible.
We begin our investigation by splitting the f-sum rule over different regions in parameter

space. Fig. 6.13 (a) shows the ratio of spectral weight in the interband SPE region for the

interacting over the non-interacting case, f
∑RPA

inter
f
∑0

inter
, and panel (b) the same for the intraband

SPE region. This division excludes the intraband plasmon lying outside of these two regions
for small momenta X < Xf . For cutoffs Λ = 2 (βXmax)2 with β > 1 one usually has f

∑0
inter �

f
∑0

intra. Therefore an absolute transfer of spectral weight from one region to the other one
can lead to quantitatively different relative changes of spectral weight in panels (a) and (b).
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Figure 6.13. (a) The ratio f
∑RPA

inter
f
∑0

inter
of interacting over non-interacting f-sum rule of the interband

excitations. Black dots are for α = 0.2, blue stars stand for α = 0.4 and green triangles for α = 2. (b)

The same for the ratio f
∑RPA

intra
f
∑0

intra
of the intraband excitations. For all plots: Xmax = 4Xf and β = 4.

See Sec. 4.5 for definitions. Reprinted figures with permission from Ref. [JMT14b]. Copyright (2014)
by the APS.

As a key result of Fig. 6.13, we find that there is always spectral weight missing in the
intraband SPE region. For small momenta, X < Xf , the weight goes into the undamped
intraband plasmon. This follows directly from the conservation of the f-sum rule for interacting
and non-interacting systems. At larger momenta, the weight is transferred to higher energies
into the interband SPE region. Yet, the increase there is only about 2% at X & 2Xf . We
therefore conclude that the plasmon forming between the inter- and intraband SPE region is a
pure intraband plasmon with a reduced spectral weight. The plasmon in the interband region
is the interband plasmon we already know from the undoped system, see Fig. 5.6. Here, it
gains additional spectral weight from the intraband SPE region.

6.4.4. A small Gap ξM 6= 0

Deviations in the thickness of Hg(Cd)Te QWs lead to the opening of a small gap in the band
structure, resulting in a topological trivial, ξM > 0, or non-trivial, ξM < 0, system. In the
latter case, one-dimensional (1D) edge states may appear, which we do not want to consider
here. The interplay of edge states with the bulk in a 2D TI is a main topic in Sec. 8. Here,
we focus on the finite density of states at X = 0 generated by a small mass, which works in
opposition to the blocking effect of broken p-h symmetry.
In Fig. 6.14 we plot the non-interacting and interacting spectrum for ξD = −0.5 and a small

mass ξM = 0.01 ≈ 1.4 meV/E0. A comparison with Figs. 6.11 and 6.12 shows that the small
mass has just the effect of an additional separation of the inter- and intraband SPE region.
Thus we conclude that our idea of observing both plasmons simultaneously in experiments

is robust against slight deviations in the mass and therefore the thickness of the Hg(Cd)Te
QWs.
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6. Doped System

Figure 6.14. Plot of (a) ΠIm and (b) ΠIm
rpa with interaction strength α = 0.4. In both cases, we

choose Xf = 0.133 < 1
2Xinf , ξM = 0.01 and ξD = −0.5. Reprinted figures with permission from

Ref. [JMT14b]. Copyright (2014) by the APS.

6.5. Topology: BHZ Model with large Masses

A finite Dirac mass opens a gap in the band structure and changes the pseudospin, and
therefore the overlap factor (4.9), in a non-trivial fashion. Thus we can expect in general a
quite different behavior for positive and negative masses. Yet, for these differences to occur
on the intrinsic scale and thus influence the interband plasmons, |ξM | needs to be of the order
of 1.
In the following, we study such large masses, both negative and positive, with p-h symmetry.

While not experimentally relevant for HgTe QWs, they offer the possibility to study the effects
of topologically distinct band structures on the electronic excitations, including plasmons. We
also note here that the dispersion of the BHZ model becomes purely parabolic for the mass
ξM = −1

4 ,

εX,λ =
ξM=− 1

4

λ

4 +X2 (λ− ξD) . (6.13)

In this limit, the polarization function (4.7) can be calculated analytically.

6.5.1. Topologically non-trivial: Large, negative Mass

We begin with the TnT regime. For the parameters Xf = 0.33 and ξM = −4
9 , Fig. 6.15 (a)

and (b) show the polarization ΠR. The large mass separates intra- and interband SPE regions
for momenta X . 2Xf . Compared to the massless cases of Xf = 0.1, Fig. 6.4, and Xf = 1,
Fig. 6.8, the interband SPE spectrum is enhanced due to the combination of larger overlap
factor and low doping, thus small Fermi blockade. As a result of the flat band structure, the
chemical potential is just barely above the gap even for Xf = 0.33. An interesting consequence
of these strong interband transitions can be seen in panel (b), where we find two distinct areas
where −ΠRe becomes negative. As a consequence, inter- and intraband plasmons will always
be separated, with the intraband plasmon being confined to low energies. This stems from the
fact that the electrons in the conduction band are pseudospin polarized. Intraband excitations
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6.5. Topology: BHZ Model with large Masses

Figure 6.15. (a) Imaginary and (b) real part of the polarization ΠR. The two antiscreening areas
are clearly distinct. (c) and (d) show ΠIm

rpa with α = 10 and α = 2, respectively. The two plasmonic
resonances can be uniquely identified. ξM = − 4

9 and Xf = 0.33 in all plots. Reprinted figures with
permission from Ref. [JMT14b]. Copyright (2014) by the APS.

to much higher momenta and energies, where the pseudospin shows in the opposite direction,
are not possible.
This is confirmed in panels (c) and (d) of Fig. 6.15, where we plot ΠIm

rpa with α = 10 and
α = 2, respectively. All the spectral weight of the intraband SPE region goes into the plasmon,
which, at least for α = 2, follows very well the

√
X law. The interband spectrum is dominated

by the interband plasmon, having of course a much broader peak due to damping (finite ΠIm).
The dashed, green line in the interband spectrum in Fig. 6.15 indicates the energy, at

which excitation processes going from momentum X +Xf in the valence band to Xf in the
conduction band, with X‖Xf , are possible. They are represented by the black, dashed arrow
in Fig. 6.3 (a). Usually suppressed by opposing pseudospins, a large negative mass enhances the
overlap factor of these excitations to near unity for small Fermi momenta. Fig. 6.15 (b) and (d)
show that the interband plasmons mainly occur above this line, indicating that the described
excitation process is important for the collective excitation. As the process is forbidden by
helicity in the pure Dirac system, it is one reason why the BHZ model supports intrinsic
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6. Doped System

Figure 6.16. (a) Imaginary and (b) real part of the polarization ΠR. (c) and (d) show ΠIm
rpa with

α = 10 and α = 2, respectively. ξM = 4
9 and Xf = 0.33 in all plots. Reprinted figures with permission

from Ref. [JMT14b]. Copyright (2014) by the APS.

plasmons while the Dirac model does not.

6.5.2. Topologically trivial: Large, positive Mass

We switch now to the case of a large, trivial mass term. For the parameters Xf = 0.33 and
ξM = 4

9 we plot the polarization function in Fig. 6.16 (a) and (b). Compared to the case of
negative mass, the interband spectrum is much weaker. This is a result of the lower overlap
factor, partly decoupling the two bands, as well as of the higher chemical potential. The band
structure is not as flat as in the TI phase, thus for the same Fermi wave vector Xf = 0.33 one
gets a stronger Fermi blockade. For the real part of the polarization, this has the effect that
the two former distinct areas of sign reversal, see Fig. 6.15, now almost merge. The interband
excitations are so weak that the minimum −ΠRe always lies closely above the intraband SPE
region - indicating that the latter is the main source for plasmons.
Taking a look at the interacting excitation spectrum, in Fig. 6.16 panel (c) for α = 10 one can

identify both inter- and intraband plasmon. Interestingly, the polarization is clearly higher
in the pure interband SPE region than in the mixed inter- and intraband SPE spectrum,
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6.5. Topology: BHZ Model with large Masses

suggesting that the latter one serves as an additional damping for the interband plasmon.
Going to the smaller interaction strength α = 2 in panel (d), one finds just a single resonance
following the upper boundary of the intraband SPE spectrum.
Thus we conclude that the interacting spectrum for moderate interaction strengths is gov-

erned by just the intraband plasmons. The interband excitations are too weak to support an
additional plasmon but for very high interactions - a consequence of the effective decoupling
of the bands by the overlap factor.

109



6. Doped System

Conclusion
We have analyzed the dynamical and static polarization properties of the BHZ model based
on RPA, with the experimental realization of Hg(Cd)Te QWs in mind. In the static undoped
limit, due to the presence of quadratic terms in the model and hence to the natural charge
decay length 1/q0 = |B| /A, the induced charge density in response to a test charge has a
finite spatial extent. This is in contrast to the point-like screening charge obtained with the
continuous Dirac model of graphene. In the doped regime, we have observed Friedel oscillations
with an intermediate decay behavior between the Dirac (r−3) and the 2DEG (r−2) limits.

The discussion of the full dynamical polarization function has been focused on the appear-
ance of new interband plasmons due to the interplay of Dirac and Schrödinger physics. In
principle, we expect these plasmons to appear in all multiband systems where the imaginary
part of the polarization function decays faster with energy than the one in the Dirac case (ω−1).
For the BHZ model, with a decay as ω−2, this is fulfilled. These plasmons appear already in
the undoped system at experimentally relevant parameters, but it is also possible to observe
them in the doped regime, where they coexists with the usual intraband plasmons. This is
favored by broken p-h symmetry in the BHZ model, which allows for the presence of both a
Dirac point and an inflection point in the band structure, giving rise to a crucial blocking of
the SPEs. These new plasmons should appear for momenta and energies on the right order of
magnitude for experimental techniques like Raman spectroscopy or electron loss spectroscopy
on Hg(Cd)Te QWs.
The behavior of these two collective modes is also influenced by the topology of the band

structure. The two plasmons tend to merge into one another in a trivially gapped insulator,
while they remain distinct resonances, separated in energy, in the TI phase. Thus the plasmons
are a bulk quantity that directly depends on the topological state of the system. Furthermore,
we have predicted that a measurement of the optical conductivity at finite frequency, above
the bandgap of Ω = |2ξM |, yields an additional and more direct way to distinguish between
the two topological phases of Hg(Cd)Te QWs.
The wide range of parameters considered in this chapter, including the regime of topological

trivial and non-trivial insulators, should make our results applicable to all kinds of materials
described by phenomenological models interpolating between Dirac and Schrödinger fermion
physics.
Throughout this chapter, we have only discussed bulk excitations of this peculiar 2D system.

Hence, we have totally ignored the influence of edge states in the TnT regime of the model
in the presence of physical boundaries. This will change in the next chapter III, where in
the quantum Hall ferromagnetic (QHFM) regime both 2D bulk and 1D edge will be treated
together on the same footing.
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Quantum Hall Ferromagnetism in 2D
Topological Insulators
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Most of the materials to date that have been experimentally established as topological in-
sulators (TIs), such as HgTe/CdTe, BiSb, or BiSe compounds as discussed in Sec. 2.4, are
rather weakly interacting due to efficient screening of the Coulomb interactions. These cor-
relation effects can thus be treated perturbatively as we did based on the Random Phase
Approximation (RPA) in the last Chapter II. Nevertheless, strongly interacting topological
systems are currently an active area of research, see Ref. [HA13] for a comprehensive review.
Of particular interest are the situations, when interactions change the single-particle picture
in a qualitative way and lead to effects not present in the non-interacting system. Theoretical
proposals of such a non-trivial behavior include a “topological Mott insulator” presented in
Ref. [PB10], a “topological Kondo insulator” discussed in Refs. [DSGC10, DXGC16] and dif-
ferent interaction-induced topological phases in graphene, analyzed in Refs. [LAF12, CTV12].
First-order topological phase transitions driven by interactions are investigated by the authors
of Ref. [ABC+15], and the stability of one-dimensional (1D) (helical) edge channels with respect
to different scattering mechanisms in the presence of disorder is the topic of a number of pub-
lications [XM06, WBZ06, SJJ10, SRvOG12, BDRT12, CBD+12, LOB12, GCT14, KGCM14].

Usually these predictions require sufficiently strong electron interactions and were made for
strongly correlated materials. With respect to the naturally weakly interacting established
TIs, it is thus desirable to expand the range of possibilities to attain the regime of strong
effective interactions in topological systems. Even better, we would like to be able to tune
the strength of interactions by experimentally feasible means. In the following sections, we
identify a class of topological systems in which these conditions can be realized even for weak
bare interactions, by applying an orbital magnetic field.
In these quantum Hall topological insulators (QHTIs), the interactions are tunable by the

magnetic field and their strength is controlled by the proximity to the topological phase transi-
tion. The vicinity of the transition is automatically the regime of strong effective interactions,
in which Coulomb interactions are crucial for both bulk and edge properties and lead to a
non-trivial interplay of topological and interacting phenomena.
An important theoretical advantage of such a system is that it can be analyzed in a well-

controlled way. In particular, this allows us to determine the symmetry requirements for
topological protection in this system, which is one of the key questions raised in the studies
of interacting topological systems. Based on the nonlinear σ-model formalism, we analyze
the bulk and edge properties and establish that an effective continuous U(1) symmetry with
respect to uniaxial isospin rotations must be preserved. In this case, the topologically non-
trivial (TnT) phase persists and the edge is a helical Luttinger liquid with highly tunable
effective interactions. However, U(1) symmetry may be broken, either spontaneously or by
U(1)-asymmetric interactions. In either case, interaction-induced transitions occur to the
respective topologically trivial (TT) phases with gapped edge charge excitations.
The work presented in the following two sections has been published by us in Ref. [KJT16].

In Sec. 7, a general introduction to the considered system class of QHTIs is given and the
effective low-energy nonlinear σ-model is derived. Sec. 8 focuses then on the physics contained
in the model. Starting from a discussion of the bulk, the edge is introduced and the excitations
of the combined system are analyzed. For preserved U(1) symmetry, the σ-model is mapped to
a helical Luttinger liquid Hamiltonian, in which the interaction parameter K is tunable by the
magnetic field applied to the system. Special attention is paid to the role of the U(1) symmetry
offering topological protection in this highly interacting phase with broken time-reversal (TTT )
symmetry.
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7. Setup and Mapping to nonlinear σ-model
This section introduces the system class of QHTIs in Sec. 7.1, which are TnT states in the
presence of a strong magnetic field. In the forming Landau levels (LLs), the kinetic energy is
quenched and the system is in a highly ordered quantum Hall ferromagnetic (QHFM) ground
state, see Sec. 3.2.3 for an introduction. The Hamiltonian projected onto these LLs is dis-
cussed in Sec. 7.2, where we identify the important symmetries responsible for the topological
protection of the system. We close in Sec. 7.3 with the derivation of the low-energy theory for
this QHFM state, on which the physics discussion in Sec. 8 is built on.

7.1. Quantum Hall Topological Insulators
The two-dimensional (2D) electron systems we consider in the following have zero Chern
number n = 0 at finite magnetic field B, but can still be TnT and exhibit helical edge states.
We call this class of systems QHTIs. Since the TTT symmetry is broken by the magnetic field,
the TnT phase must be protected by some other symmetry. A few possible examples were
already discussed when we looked at topological crystalline insulators (TCIs) in Sec. 2.4.3.
In a system with considerable spin-orbit coupling (SOC), such a symmetry is some spatial
symmetry like inversion (III), reflection, or rotation. In the case that SOC is negligible, an
axial spin rotation symmetry can also play the role of such a symmetry. We will refer to this
symmetry, responsible for the topological protection of a non-interacting QHTI, as the physical
symmetry. In contrast to it, we will demonstrate that for an interacting system the effective,
emergent U(1) symmetry is of central importance.
A possible type of LL structure of a QHTI is plotted in Fig. 7.1. Due to the TnT phase, a

crossing of two LLs at some value B∗ of the magnetic field occurs. The band inversion ensures
that one LL, labeled a, originates from the valence band and moves upwards with increasing
B, while the other LL, labeled b, originates from the conduction band and moves downwards.
The crossing of the two levels marks the point of the topological phase transition of a QHTI.
It separates the TnT phase with counter-propagating edge states at lower B < B∗ from the
TT phase with gapped edge states at higher B > B∗, see Fig. 7.2. Other variants of the LL
structure in QHTIs are also possible.
A number of previously studied theoretical models and real physical systems are relevant to

the class of QHTIs. The single-particle behavior depicted in Figs. 7.1 and 7.2 has been identified
in the BHZ model for an applied magnetic field perpendicular to the 2D structure, as indicated
in Fig. 2.14. This behavior is likely to have a topological origin and we expect it to be protected
by a spatial symmetry. The BHZ model is directly relevant to HgTe/CdTe and InAs/GaSb
heterostructures, see Sec. 2.4.1, which are established 2D TIs at zero magnetic field, protected
by TTT symmetry. Other likely QHTI systems are single- and multi-layer structures of graphene.
Non-interacting graphene exhibits counter-propagating edge states at finite magnetic field due
to the spin splitting by the Zeeman field and its semimetallic character, see Ref. [ALL06]. It
can be seen as a QHTI protected by the continuous axial spin rotation symmetry, as proposed
in Ref. [YSYH+13]. Although directly relevant, graphene also has a few peculiarities and its
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Figure 7.1. One possible type of LL structure of a QHTI. At the point of the single-particle topo-
logical phase transition, LLs of different symmetry, labeled a (red) and b (blue), cross. The spectrum
shown is calculated for the BHZ model with a perpendicularly applied magnetic field, see Sec. 2.4.1 for
formulas and references. In this case, LLs a and b are distinguished by the spatial III parity, even and
odd. Reprinted figure with permission from Ref. [KJT16]. Copyright (2016) by the APS.

LL structure differs from that in Fig. 7.1. In the following, we focus on QHTIs with a spectrum
of the type drawn in Fig. 7.1.
We emphasize that according to the above definition, QHTIs are not necessarily new topo-

logical systems symmetry-wise, in regard to the existing classifications discussed in Secs. 2.2.5
and 2.4.3. The key requirement here is the explicitly present orbital magnetic field, with the
system being in the quantum Hall (QH) regime. This leads to physical phenomena stemming
mainly from the flat-band property of the LL spectrum in the bulk (Fig. 7.2), that are specific
to the QH regime and may hardly be realized otherwise.

7.1.1. Quantum Hall Ferromagnet at the Topological Phase Transition

The QHTIs with the LL structure as in Fig. 7.1 are particularly appealing for the study of the
interplay of interactions and topology. Due to the near degeneracy of the two LLs in vicinity
of the single-particle topological phase transition point B∗, electron interactions become the
dominant effect driving the physics there. Thus, the effective interactions in QHTIs are tunable
through the magnetic field, making the regime of strong effective interactions experimentally
accessible even in a system with weak bare interactions. We thus investigate in the following
sections the effect of electron interactions on the topological properties of a QHTI with the LL
structure as shown in Fig. 7.1. Particular attention is paid to the regime of strong effective
interactions in the vicinity of the single-particle topological phase transition.
We follow the quantum Hall ferromagnetism (QHFMism) reasoning laid out in Sec. 3.2.3.

The zero Chern number n = 0 corresponds to half-filling of the two crossing LLs a and b, with
an average of one electron per two states. At such a commensurate filling factor, interactions
make the electron system particularly prone to polarization in the 2D ab space, analogous to
the Hund exchange mechanism in atoms. This results in the formation of a ferromagnetic
ground state as sketched in Fig. 7.3. The electrons in each orbital occupy exactly the same
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Figure 7.2. (a) Half-infinite sample occupying the region x ≤ 0. (b) and (c) Schematics of the edge
spectrum of a QHTI in the Landau gauge, including only the two intersecting LLs a and b of interest,
see Fig. 7.1. The single-particle states are labeled by the conserved 1D momentum p in the y direction.
The states located in the bulk and at the edge correspond to the values p . 0 and p & 0, respectively.
In the TnT phase at lower fields B < B∗ (b), the edge states cross and are gapless. In the TT phase at
higher fields B∗ < B (c), the edge states do not cross and are gapped. Reprinted figure with permission
from Ref. [KJT16]. Copyright (2016) by the APS.

�n�

p

Figure 7.3. QHFM state realized at the crossing of LLs at half-filling. For each momentum p, one
electron occupies the state |n〉 with isospin n, see Eqs. (7.1) and (7.2) and Fig. 7.4. Reprinted figure
with permission from Ref. [KJT16]. Copyright (2016) by the APS.

state
|n〉 = χa(n)|a〉+ χb(n)|b〉,

χ(n) =
(
χa(n)
χb(n)

)
=
(

e−
i
2ϕ cos θ2

e
i
2ϕ sin θ

2

)
.

(7.1)
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Figure 7.4. The isospin n in the 2D space spanned by the LLs a and b, Eqs. (7.1) and (7.2), on the
Bloch sphere. The north and south poles, |+nz〉 = |a〉 and |−nz〉 = |b〉, correspond to the occupation
of the a and b LLs, respectively. Any other state is a coherent superposition of the two. Reprinted
figure with permission from Ref. [KJT16]. Copyright (2016) by the APS.

The latter is characterized by the unit-vector isospin order parameter (OP)

n = (nx, ny, nz) = (sin θ cosϕ, sin θ sinϕ, cos θ), n2 = 1, (7.2)

|n〉〈n|= 1
2(τ0 + τ · n), (7.3)

depicted on the Bloch sphere in Fig. 7.4. Throughout this chapter, τ0 and τ = (τx, τy, τz)
denote the unity and Pauli matrices in the ab space.
Exactly at the crossing point of the two LLs, if we approximate all interactions in the ab

space to be SU(2)-symmetric, the isospin n can be completely arbitrary. Thus fixing the state
|n〉 describes the spontaneous breaking of this SU(2) symmetry. This phenomenon is referred
to as QHFMism, as introduced in Sec. 3.2.3. All the bulk single-particle and interaction
effects responsible for the deviation from this fully degenerate SU(2)-symmetric situation, as
well as the effect of the edge, can be taken into account within a low-energy field theory.
Such a nonlinear σ-model for the isospin OP n(r; t), here developed for configurations slowly
varying in time and space, will be derived in the following. Crucially, the effect of the edge
is incorporated as a boundary condition for the OP. This approach allows us to study most
properties of interest analytically.

7.2. Projected Hamiltonian

We begin the derivation by considering all terms in the Hamiltonian relevant for our two LLs
a and b. The σ-model for the OP n is then deduced from this reduced Hamiltonian in Sec. 7.3.
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7.2. Projected Hamiltonian

7.2.1. Restricted Hilbert Space of two intersecting Landau Levels
In the following, we take into account only the two intersecting LLs a and b in Fig. 7.1,
neglecting all other LLs. This is a standard approximation for QH systems, justified for weak
Coulomb interactions. In this limit, the energy separation between the LLs of interest and
other LLs is much larger than the interaction energy scale

e2
∗

lBz
= e2

4πε0εr

1
lBz

(7.4)

set by the Coulomb energy. Here, e∗ is the electron charge screened by the dielectric environ-
ment with the constant εr, and

lBz =
√

h̄

eBz
(7.5)

is the magnetic length with Bz the component of the magnetic field perpendicular to the sample
plane, B2 = B2

z +B2
‖ . The magnetic field can be arbitrarily orientated relative to the quasi 2D

sample. We work in the Landau gauge, in which the single-particle states are characterized by
the 1D momentum p along the edge y direction. The two single-particle states of the LLs of
interest are

|ap〉 and |bp〉, (7.6)
where we assume no discrete degeneracies, such as valleys, of these LLs. The 2D sample
under consideration is half-infinite with x < 0, see Fig. 7.2. The states with p . 0 are
then the bulk states, for which the usual coordinate-momentum correspondence holds, while
the states with p & 0 correspond to the edge states, localized over lBz near the edge. The
corresponding electron annihilation operators are denoted as cap and cbp, which we join into
the two-component spinor

ĉp =
(
cap
cbp

)
(7.7)

for compactness.

7.2.2. U(1)-symmetric projected Hamiltonian
We first consider the following many-body projected Hamiltonian, operating within the states
(7.6) of the intersecting LLs:

Ĥ = Ĥ1◦ + Ĥedge
1◦ + Ĥ2� + Ĥ2◦, (7.8)

Ĥ1◦ = −hz
∑
p

ĉ†pτz ĉp, (7.9)

Ĥedge
1◦ =

∑
p

ε(p)ĉ†pτz ĉp, (7.10)

Ĥ2� = 1
2

∑
p1+p2=p′1+p′2

V (0
0|
p1p′1
p2p′2

) : [ĉ†p1 ĉp′1 ][ĉ†p2 ĉp′2 ] :, (7.11)

Ĥ2◦ = 1
2

∑
p1+p2=p′1+p′2

∑
α=x,y,z

V (αα|
p1p′1
p2p′2

) : [ĉ†p1ταĉp′1 ][ĉ†p2ταĉp′2 ] :, V (xx|
p1p′1
p2p′2

) = V (yy|
p1p′1
p2p′2

). (7.12)

The labels 1 and 2 designate single-particle and two-particle interaction terms, while ◦ and
� denote U(1)-symmetric and SU(2)-symmetric terms, respectively. The part (7.9) describes
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the energy spacing of 2hz between the two LLs of interest. The energy hz(B) is a function of
the magnetic field B, as can be expected from Figs. 7.1 and 7.2. It decreases monotonically
with increasing magnetic field, starting from positive values in the TnT regime and changing
to negative values at the crossing point B = B∗. Close to the transition, one may expand it
to linear order as

hz(B) ≈ −|∂Bhz(B∗)|(B −B∗). (7.13)

Next, the single-particle effect of the edge is described by the term (7.10). The dispersion
function ε(p) > 0 is shown schematically in Fig. 7.2. It has a plateau ε(p) ≈ 0 in the bulk
(p . 0), but grows monotonically at the edge p & 0. This forces the bands at the edge into the
normal, TT order. The two branches at the edge do not have to be exactly particle-hole (p-h)
symmetric, so an additional energy term ε0(p)τ0 could be added. Yet it would produce only a
trivial, n-independent term in the σ-model derived below, thus we neglect it.
The single-particle spectrum ±[−hz + ε(p)] of Ĥ1◦ + Ĥedge

1◦ describes two LLs with counter-
propagating edge states for 0 < hz (TnT phase) and a fully gapped spectrum, both in the bulk
and at the edge, for hz < 0 (TT phase). Crucially, due to the assumed topological protection
by the physical symmetry, the Hamiltonians Ĥ1◦ + Ĥedge

1◦ do not couple the |ap〉 and |bp〉
states. As a result, the single-particle Hamiltonian possesses U(1) symmetry with respect to
continuous rotations about the isospin z axis. This can be described by the matrix

D̂(φ) =
(

e−iφ2 0
0 eiφ2

)
(7.14)

acting on the spinor (7.1) in the ab space as

D̂(φ)χ(θ, ϕ) = χ(θ, ϕ+ φ). (7.15)

Here, θ and ϕ are the angles of the spherical parametrization of the isospin given in Eq. (7.1).
As we will find in Sec. 8, this effective continuous U(1) symmetry is central to the properties of
the edge charge excitations of the interacting system and the associated topological properties.
Following this reasoning, we consider in Eqs. (7.11) and (7.12) the two-particle interactions

that preserve this U(1) symmetry. They can be split into a SU(2)-symmetric part Ĥ2� and the
SU(2)-asymmetric U(1)-symmetric part Ĥ2◦. Terms with the structure 1̂ ⊗ τz are also U(1)-
symmetric, but get discarded in the following. They would only lead to an inconsequential
shift of the position of the single-particle transition point in the σ-model. The exact form of
the matrix elements V (αα|

p1p′1
p2p′2

) with α = 0, x, y, z will not matter for our considerations, only
the presented structure of the terms in the isospin space is important. The central condition we
assume is that the U(1)-asymmetric terms are much smaller than the SU(2)-symmetric ones,
in order to make the low-energy field theory a controlled expansion. The SU(2)-symmetric
interactions have the typical scale of the Coulomb energy, given by

∑
p2

V (0
0|p1p2
p2p1) ∼ e2

∗
lBz

. (7.16)

The total Hamiltonian Ĥ, Eq. (7.8), thus possesses U(1) symmetry. We now consider possible
U(1)-asymmetric terms.
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7.2.3. U(1)-asymmetric Terms

The mechanisms of (non-spontaneous) U(1) symmetry breaking can be grouped into two cat-
egories according to an important symmetry distinction between them.
1) In the first category, already the physical symmetry responsible for the topological protec-

tion of the non-interacting system is violated. Consequently, the U(1) symmetry is then broken
directly at the single-particle level. The corresponding terms have the form of an isospin Zee-
man field acting in the xy plane, thus coupling the a and b LLs, with the Hamiltonian

Ĥ1∅ = −h⊥
∑
p

ĉ†p(τx cosϕ1∅ + τy sinϕ1∅)ĉp. (7.17)

The orientation of this field in the xy plane, set by the angle ϕ1∅, depends on the choice of
the relative phase factor between the |ap〉 and |bp〉 states and is largely arbitrary.
2) In the second category, the physical symmetry is preserved. Here, no single-particle

terms breaking U(1) symmetry are allowed. However, interactions that preserve the physical
symmetry but break U(1) symmetry can be present, described by

Ĥ2∅ = 1
2

∑
p1+p2=p′1+p′2

∑
α1α2

∅
V (α1

α2 |
p1p′1
p2p′2

) : [ĉ†p1τα1 ĉp′1 ][ĉ†p2τα2 ĉp′2 ] : (7.18)

where the sum
∑∅
α1α2 contains only U(1)-asymmetric terms. The structure of such interactions

depends on the specific physical symmetry, providing some constraints on the matrix elements
V (α1

α2 |
p1p′1
p2p′2

). Yet for most physical symmetries such U(1)-asymmetric interactions are allowed.
For the σ-model approach we employ, however, the detailed knowledge of their structure is
not necessary. Only the corresponding anisotropy function is required, which is derived in
Sec. 7.3.3 using symmetry considerations.

7.3. Low-energy nonlinear σ-model
Now, we derive from the Hamiltonian (7.8) an effective model for the isospin OP n, that will
form the basis of our analysis in Sec. 8.

7.3.1. Quantum Hall Ferromagnet

Close to the crossing point hz = 0 of the LLs, the SU(2)-symmetric part Ĥ2� of the electron
interactions is the dominant term in the total Hamiltonian (7.8). Its typical scale e2

∗/lBz
exceeds the energies of all other terms. Following Sec. 3.2.3 and the references therein, it
is then straightforward to show that, at half-filling of the two LLs |ap〉 and |bp〉, the Slater
determinant state

Ψ(n) =
∏

bulk p
c†np|0〉, c†np = χa(n)c†ap + χb(n)c†bp (7.19)

is an exact eigenstate of Ĥ2�. Here, |0〉 is the vacuum state with both LLs empty and c†np
is the operator creating an electron in the state |n〉, defined in Eq. (7.1), with the isospin n.
The latter is visualized by means of the Bloch sphere in Fig. 7.4. The isospin at the poles
n = ±nz (θ = 0, π) corresponds to pure |nz〉 = |a〉 or |−nz〉 = |b〉 states, while any other
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7. Setup and Mapping to nonlinear σ-model

state with −1 < nz < 1 (0 < θ < π) is a coherent superposition of |a〉 and |b〉. For a wide
class of repulsive interactions, one can expect this eigenstate to be an exact ground state by
the Hund-rule argument. This is the main assumption of the QHFM theory, introduced in
Sec. 3.2.3. Importantly, the many-body wave-function Ψ(n) is an eigenstate of Ĥ2� for any
choice of the isospin n. It thus describes the state with spontaneously broken SU(2) symmetry.
The unit vector n represents the OP of a family of degenerate ground states.

7.3.2. U(1)-symmetric nonlinear σ-model
The effects of all other, SU(2) symmetry breaking, terms on the QHFM ground state and
its excitations can be taken into account within a low-energy field theory, the σ-model. As
long as the energy scales of these terms are much smaller than the Coulomb scale (7.16) of
the SU(2)-symmetric interactions, the σ-model presents a controlled, systematic low-energy
expansion about the exact ground state (7.19) of Ĥ2�. For the Hamiltonian given by Eqs. (7.8),
(7.17), and (7.18), the derivation of the σ-model is rather standard and follows the general
recipe, see references in Sec. 3.2.3. The new aspect is incorporating the effect of the edge with
counter-propagating states into the real-space σ-model, which we perform at the end of this
section. For this, one generalizes the homogeneous and static isospin OP n of the state (7.19)
to configurations n(r; t) that vary slowly in time and space. The constraint n2(r; t) = 1 is
then satisfied locally.
The low-energy dynamics and energetics of the system is described by the Lagrangian func-

tional. For the bulk part, i.e. all terms except Ĥedge
1◦ , of the U(1)-symmetric Hamiltonian

(7.8), it has the form

L[n] = K[n]− E[n] =
∫ d2r

s
L[n], L[n] = K[n]− E[n], (7.20)

K[n] =
∫ d2r

s
K[n], K[n] = ϕ̇

2 cos θ, (7.21)

E[n] =
∫ d2r

s
E[n], E[n] = ρ

2(∇n)2 + E(nz), (7.22)

E(nz) = u

2n
2
z − hznz = u

2 cos2 θ − hz cos θ. (7.23)

As usual, the Lagrangian L[n] is given by the difference of the kinetic K[n] and energy E[n]
terms. The spatial integration

∫
d2r . . . is performed over the half-space x < 0, where we

introduce the normalization factor
s = 2πl2Bz (7.24)

equal to the area threaded by one magnetic flux quantum. 1/s is the electron density per one
LL. This way, the respective densities L[n], K[n], E[n] are defined per area s and have the
dimension of energy.
The kinetic term K[n] contains a time derivative and can be written explicitly in terms of

the spherical angles θ and ϕ parameterizing the isospin (7.2). The form of K[n] is not unique,
but defined up to a full time derivative, resulting in an inconsequential constant contribution
to the action S =

∫
dtL[n]. The energy functional E[n] (7.22) consists of the gradient term

ρ
2(∇n)2 and the energy function E(nz) (7.23). The former describes the energy cost of a
spatially inhomogeneous configuration. In leading order, the stiffness

ρ =
l4Bz
4
∑
p2

V (0
0|p1p2
p2p1)(p1 − p2)2 (7.25)
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can be expressed in terms of the SU(2)-symmetric Ĥ2� interactions (7.11). The effect of all
bulk terms Ĥ1◦ + Ĥ2◦ with a symmetry lower than SU(2) is taken into account by the energy
function E(nz). It is derived by taking the expectation value

E(nz) = 1
N
〈Ψ(n)|Ĥ1◦ + Ĥ2◦|Ψ(n)〉 (7.26)

of the corresponding terms with respect to the state Ψ(n) (7.19). The normalization factor
N =

∑
p 1 =

∫ d2r
s 1 is the number of orbital states, equal to the number of flux quanta

threading the sample. The most relevant anisotropy term we consider, arising from the SU(2)-
asymmetric two-particle interactions Ĥ2◦, is the quadratic-in-n contribution u

2n
2
z. The corre-

sponding energy equals

u = uz − u⊥, u⊥ ≡ ux = uy,

uα =
∑
p2

[V (αα|p1p1
p2p2)− V (αα|p1p2

p2p1)], α = x, y, z. (7.27)

We consider in the following the more interesting case of positive, easy-plane anisotropy energy

u > 0, (7.28)

where the energy u
2n

2
z alone is minimized by the isospin nz = 0 lying in the plane.

The last missing term from the U(1)-symmetric Hamiltonian (7.8) is Ĥedge
1◦ , describing the

edge. We take it into account by an effective boundary condition for the order parameter
n(r; t). As the edge states are half-filled, one electron per two states, the filling factor remains
the same for both bulk (p . 0) and edge (p & 0) states. Thus the occupation of the edge can
be described by the same isospin OP as the bulk. At such momenta p that the edge potential
ε(p) is much greater than the energies u and hz of the SU(2)-asymmetric terms, electrons will
always occupy the hole branch of the edge spectrum. This corresponds to the normal, TT
order with the states |bp〉 of negative energy −ε(p) filled, leading to the OP of n = −nz.
While the edge states with p & 0 are localized at spatial scales ∼ lBz near the edge x = 0 of
the sample, n(r; t), by assumption, varies at much larger scales. Hence, the effect of the edge
may be described in real space by the boundary condition

n(x = 0, y; t) = −nz, nz = (0, 0, 1). (7.29)

It pins the OP in the state that corresponds to the occupation of the hole branch of the edge
spectrum.
Equations (7.20)-(7.23) for the Lagrangian and Eq. (7.29) for the boundary condition con-

stitute the closed-form low-energy σ-model in the coordinate space for the considered QHFM
system with an edge. Naturally, the model inherits the U(1) symmetry of the Hamiltonian
(7.8) and is thus invariant under the rotations of the isospin

ϕ(r; t)→ ϕ(r; t) + φ (7.30)

about the z axis. The additional terms in the σ-model originating from the U(1)-asymmetric
terms (7.17) and (7.18) in the full Hamiltonian, and thus breaking this invariance, are consid-
ered next.
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7. Setup and Mapping to nonlinear σ-model

7.3.3. U(1)-asymmetric Terms
We begin with the single-particle term Ĥ1∅ (7.17) of the first type, that breaks U(1) symmetry
by violating the physical symmetry directly. It produces an additional contribution

E1∅(n) = 1
N
〈Ψ(n)|Ĥ1∅|Ψ(n)〉 = −h⊥(nx cosϕ1∅ + ny sinϕ1∅)

= −h⊥ sin θ cos(ϕ− ϕ1∅)
(7.31)

to the energy function E(nz) (7.23).
The structure of the anisotropy energy function arising from the U(1)-asymmetric two-

particle interactions Ĥ2∅ (7.18) depends on the specific physical symmetry. It can be derived
via group-theoretical considerations without using any information about the interaction ma-
trix elements of Ĥ2∅. As an example, we consider the III symmetry, where the LL states a
and b are characterized by opposite III parities + and −. Therefore, the isospin components
transforming according to |n〉〈n| in Eq. (7.3) as nx,y ∼ |a〉〈b| and nz ∼ |a〉〈a|−|b〉〈b| have −
and + parities, respectively. The anisotropy function arising from two-particle interactions is
a quadratic function of n. It must be invariant under III, i.e., have + parity. All quadratic
functions with + parity are

{n2
z, n

2
x, 2nxny, n2

y}. (7.32)

The most general form of the anisotropy function is then an arbitrary linear combination of
these terms. It is convenient to choose the basis functions as

{n2
x + n2

y + n2
z, n

2
z − n2

x − n2
y, n

2
x − n2

y, 2nxny}. (7.33)

Here, the combination n2
x + n2

y + n2
z = 1 preserves SU(2) symmetry and is n-independent due

to the constraint n2 = 1 in Eq. (7.2). The next combination n2
z − n2

x− n2
y = 2n2

z − 1 preserves
U(1) symmetry and depends only on nz. These two functions produce, up to a constant, the
U(1)-symmetric anisotropy function u

2n
2
z in E(nz). An arbitrary linear combination

E2∅(n) = 1
2[u+(n2

x − n2
y) + u×2nxny]

= 1
2u2∅ sin2 θ cos 2(ϕ− ϕ2∅)

(7.34)

of the two remaining functions represents the U(1)-asymmetric contribution to the anisotropy
function in case of III as the physical symmetry.
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We proceed with the analysis of the obtained σ-model, with the focus on the properties of the
edge excitations. The reduction of the effect of the edge to the boundary condition (7.29) in
the coordinate space will prove advantageous in the analysis of the problem. It enables us to
obtain explicit analytical expressions for many quantities of interest in the following.
The approach we use to study the edge excitations follows that developed in Refs. [FI99,

FB06, MSF14, MSF16, TSFM16], where the authors mainly focus on the n = 0 QH state in
graphene with armchair-type boundaries. There, the transition between the ferromagnetic (F)
and canted antiferromagnetic (CAF) phases, see Refs. [Her07, Kha12c, Kha12a, Kha12b] for
details, can be seen in analogy to our TnT to TT phase transition. Thus although graphene
has a few additional peculiarities, like the presence of valley degrees of freedom which makes
the QHFM physics richer, there are mathematical and physical similarities to our model.
Another related system is a QH bilayer with an inverted band structure, studied theoretically
in Ref. [PSH16]. While the Hamiltonian considered there essentially coincides with the U(1)-
symmetric part of our model, the focus and methods of this analysis differs from ours in several
aspects. We point out the analogies between our and these two systems as we move along.
As originally recognized in Ref. [FB06] for the ν = 0 state in graphene, the physics of the

edge in the QHFM state is governed by the fact that the order favored at the edge due to
the propagating edge states may be different from that favored in the bulk. This leads to a
spatially inhomogeneous OP texture at the edge, called domain wall in the following, which
connects the bulk and edge orders and determines the properties of the edge excitations. Here,
we also mention Refs. [FB97, LKS99, HKLN99, KLS99] on QHFM systems with chiral edge
states and the recent Ref. [BZY+17] on bilayer graphene with double counter-propagating edge
states.
The central result we find in this section is that the topological properties of our interacting

many-body system, the QHTI, are directly tied to its effective symmetry. The U(1) symmetry
with respect to rotations about the isospin z axis is responsible for the topological protection.
We demonstrate that if U(1) symmetry is preserved, the single-particle TnT phase with fully
filled |a〉 LL, corresponding to n = nz = (0, 0, 1) isospin in the QHFM formalism, remains
TnT in the presence of interactions in most of the range 0 ≤ B < B∗. The edge excitations
stay gapless, but take the form of collective excitations described by the helical Luttinger
liquid. We obtain explicit analytical expressions for its parameters, and find that the effective
interactions in this Luttinger liquid are highly tunable. They are weak at small magnetic fields
B � B∗, with the interaction parameter K ≈ 1, see Sec. 3.2.4, but strong (K � 1) in the
QHFM regime in the vicinity of the single-particle phase transition at B∗.
Here, preserved U(1) symmetry means that both the bulk ground state and the many-

body Hamiltonian are U(1)-symmetric. Violating one of these conditions, we identify two
mechanisms of U(1) symmetry breaking, which lead to the loss of topological protection and
the eventual transition to the TT phases. First, U(1) symmetry can be broken spontaneously.
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8. Quantum Hall Ferromagnet and Helical Luttinger Liquid

This is done by increasing B until a second-order phase transition from the TnT phase n = nz
to the phase with broken symmetry occurs. The gap in the edge excitation spectrum of this
broken U(1) symmetry phase grows monotonically upon further increasing B, starting from
the zero value at the phase transition. Interestingly, upon approaching this phase transition
from the TnT phase, the edge Luttinger liquid becomes infinitely strongly interacting with
K → 0.
The second possibility is a U(1)-asymmetric many-body Hamiltonian. Here, the interaction

terms may fully respect the physical symmetry, responsible for the topological protection of
the non-interacting system, but break U(1) symmetry. Such terms transform the Luttinger
liquid model for the edge into the sine-Gordon model, see Ref. [Gia03] for details. As B is
increased, this results in a phase transition to the state with broken U(1) symmetry at the
edge and gapped edge excitations.
In either of the scenarios, the phase transitions from the TnT to the TT phases occur at

the magnetic fields B lower than the single-particle phase transition point B∗ and are thus
interaction-induced topological quantum phase transitions.

These presented results are derived in the following sections, which are structured as follows.
In Sec. 8.1, we obtain the phase diagram of the bulk alone. The edge is added in Sec. 8.2 and
the ground state configurations of the whole system are analyzed. Special attention is paid to
the edge charge excitations, which we study in Sec. 8.3. In the TnT phase, the σ-model can
be mapped to a Luttinger liquid model for the edge excitations. This is derived in Sec. 8.4.
We finish in Sec. 8.5 by establishing the U(1) symmetry as the requirement for topological
protection.

8.1. Bulk Phase Diagram
We begin our analysis of the derived U(1)-symmetric σ-model, given in Eqs. (7.20)-(7.23) and
(7.29). As a start, we neglect the edge and obtain the mean-field phase diagram of the bulk
alone. This is done by minimizing the energy function E(nz) (7.23). The minimum isospin
configuration is denoted as n∞ and referred to as the bulk ground state. The corresponding
minimal energy is defined by

E∞ ≡ E(n∞z = cos θ∞) = min
nz
E(nz). (8.1)

In the case u > 0 of the easy-plane anisotropy we consider, minimizing E(nz) within the
interval −1 ≤ nz ≤ 1 gives the phases

n∞ = nz = (0, 0, 1), u < hz, (8.2)
n∞ = n∗(ϕ0) = (sin θ∗ cosϕ0, sin θ∗ sinϕ0, cos θ∗), −u < hz < u, (8.3)
n∞ = −nz = (0, 0,−1), hz < −u, (8.4)

plotted in Fig. 8.1. The respective energy minima are

E∞ = E(nz = +1) = u

2 − hz, u < hz,

E∞ = E(n∗z) = −h
2
z

2u, −u < hz < u,

E∞ = E(nz = −1) = u

2 + hz, hz < −u.

(8.5)
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8.1. Bulk Phase Diagram

Figure 8.1. Bulk phase diagram for the U(1)-symmetric σ-model obtained by minimizing the energy
function E(nz) (7.23). The dependence n∞z (h̄z) of the optimal isospin projection on the normalized
field h̄z = hz/u is shown. The color code represents the weight of the a (red) and b (blue) LL states.
The Bloch spheres depict the corresponding isospin orders (8.2), (8.3), and (8.4). Reprinted figure with
permission from Ref. [KJT16]. Copyright (2016) by the APS.

The phases n∞ = ±nz in the limits u < hz and hz < −u are fully polarized along the z
direction of the field hz. Following from the definition of the isospin in Eqs. (7.1) and (7.2),
these two cases correspond to the occupation of either the |+nz〉 = |a〉 or |−nz〉 = |b〉 LL.
The corresponding Slater-determinant ground state Ψ(n) (7.19) is thus the same as in the
non-interacting system.
In the intermediate phase n∞ = n∗(ϕ0) for −u < hz < u, the isospin has the optimal

projection
n∗z = cos θ∗ = h̄z (8.6)

on the z direction and arbitrary orientation in the xy plane, parameterized by the angle ϕ0.
Here we introduced the dimensionless field

h̄z = hz
u

(8.7)

normalized by the anisotropy energy u. Thus, electrons are in a coherent superposition

|n∗(ϕ0)〉 = e−iϕ0
2 cos θ

∗

2 |a〉+ eiϕ0
2 sin θ

∗

2 |b〉 (8.8)

of the two LL states in this intermediate phase. Its appearance is the first important distinction
from the non-interacting picture. The U(1) symmetry is therefore preserved in the n∞ = ±nz
phases, but spontaneously broken in the intermediate n∞ = n∗(ϕ0) phase. The corresponding
phase transitions are of second order, the transition points hz = ±u correspond to the values

B∗ ∓ δBu, δBu ≡
u

|∂Bhz(B∗)|
(8.9)

of the magnetic field, respectively.
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8. Quantum Hall Ferromagnet and Helical Luttinger Liquid

Comparing to the literature, an analogous phase diagram was obtained in Ref. [PSH16] for
a double-layer system. Additionally, the region 0 ≤ hz reproduces the phase diagram of the
ν = 0 state in graphene discussed in Refs. [Her07, Kha12c, Kha12a], where the n∞ = nz and
n∞ = n∗(ϕ0) phases correspond to the F and CAF phases, respectively. In this analogy, the
isospin n would correspond to the spin polarization of one of the sublattices of the honeycomb
crystal lattice of graphene.

8.2. System with an Edge: Ground States
Next, we take the effect of the edge into account and obtain the ground state configurations of
the OP n(r) for the combined system. Such configurations, denoted by n0(r), minimize the
energy functional (7.22),

E[n0] = min
n

E[n], (8.10)

under the boundary condition constraint (7.29). n0(r) is a stationary point of the energy
functional, fulfilling the stationary-point equations

δE[θ, ϕ]
δθ

= ρ[−∇2θ + 1
2 sin 2θ(∇ϕ)2] + ∂θE(θ) = 0, (8.11)

δE[θ, ϕ]
δϕ

= −ρ∇(sin2 θ∇ϕ) = 0 (8.12)

written in terms of the spherical angles θ and ϕ defined in Eq. (7.2). Throughout, we will
denote the energy dependence E(θ) = E(nz = cos θ) on θ and nz by the same function. In the
presence of the edge, the translational symmetry along y direction is still preserved. Hence,
the ground state configuration is y-independent, n0(x, y) ≡ n0(x). Changes of the isospin with
y would only result in the rise of the gradient energy. Away from the edge, in the asymptotic
limit x→ −∞, the ground state configurations must approach the constant value

n0(x→ −∞) = n∞ (8.13)

of the bulk ground state order n∞. Depending on hz, this is one of the orders (8.2), (8.3),
or (8.4) that minimize E(nz), as obtained in the previous section. Therefore, whenever n∞
differs from the boundary order (7.29)

n0(x = 0) = −nz, (8.14)

n0(x) is a spatially inhomogeneous domain-wall configuration along x that connects these two
orders. Due to the U(1) symmetry of the energy function E(nz) and boundary condition (7.29),
the angle ϕ(x) ≡ ϕ0 in the spherical parametrization (7.2) of n0(x) is arbitrary and constant.
Any spatial change in ϕ would result in an additional rise of the gradient energy. Therefore
any constant ϕ automatically satisfies the stationary point equation (8.12).
In conclusion, the ground state configuration has the form

n0(x|ϕ0) = (sin θ0(x) cosϕ0, sin θ0(x) sinϕ0, cos θ0(x)). (8.15)

For these angles θ(x), dependent only on x, and the constant ϕ0, the energy functional E[n]
(7.22) per unit length in the y direction reduces to

E1D[θ(x);u, hz] =
∫ 0

−∞

dx
s
Ex[θ], Ex[θ] = ρ

2(∇xθ)2 + E(θ). (8.16)

126



8.2. System with an Edge: Ground States

The ground state configuration θ0(x) minimizes this functional and thus satisfies its stationary
point equation

− ρ∇2
xθ + ∂θE(θ) = 0, θ(x = −∞) = θ∞ and θ(x = 0) = π, (8.17)

which we supplemented by the boundary conditions following from Eqs. (8.13) and (8.14),
where θ∞ is the angle of the bulk order n∞.

We solve this boundary problem by noticing the analogy of Eq. (8.17) with the Newton
equation for a point particle in one dimension, where θ and x play the roles of coordinate and
time, respectively. The equation has an integral of motion

ρ

2(∇xθ)2 − E(θ) = −E∞, (8.18)

equivalent to the total energy of the effective particle. It can be obtained by multiplying
Eq. (8.17) by ∇xθ and integrating once over x. The gradient term ρ

2(∇xθ)2 in Eq. (8.18) plays
the role of the kinetic energy, while −E(θ) corresponds to the potential energy. The value of
this integral of motion is set by its value −E∞ (8.5) in the bulk, where ∇xθ → 0. An additional
integration of Eq. (8.18) produces an implicit dependence of θ0(x) on x, given by

− x =
∫ π

θ0

dθ√
2
ρ [E(θ)− E∞]

. (8.19)

The functional form (7.23) of E(nz) allows for explicit integration of Eq. (8.19) in terms of
elementary functions and subsequent inversion. We find the explicit solutions

θ0(x) = arccos

1− 2(h̄z − 1)

h̄z cosh2
(√

h̄z − 1x̄
)
− 1

 , u < hz, (8.20)

θ0(x) = 2 arctan


√

1− h̄z
1 + h̄z

1

tanh
(
−
√

1−h̄2
z

2 x̄
)
 , −u < hz < u, (8.21)

θ0(x) = π, hz < −u, (8.22)

which are plotted in Fig. 8.2. Here, h̄z is the dimensionless field defined in Eq. (8.7) and

x̄ = x

lu
, lu =

√
ρ

u
(8.23)

is the dimensionless coordinate, normalized by the length scale lu set by the anisotropy energy
u. The solutions, therefore, have the scaling form θ0(x) = θ0(x;u, hz) = θ0

(
x̄; h̄z

)
. They min-

imize the functional E1D[θ] (8.16), while the respective isospin configurations n0(x|ϕ0) (8.15)
minimize the functional E[n] (7.22) in the presence of the edge, described by the boundary
condition (8.14).
As shown in Fig. 8.2, in the n∞ = nz and n∞ = n∗(ϕ0) phases, θ0(x) grows monotonically

from the bulk value θ∞ at x = −∞ to π at the edge x = 0. In the n∞ = −nz phase on the
other hand, the bulk and edge orders are the same and θ0(x) ≡ π is a constant. The solutions
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Figure 8.2. The angle functions θ0(x) = θ0(x̄, h̄z) (8.20), (8.21), and (8.22) for the ground state
solution (8.15) of a system with an edge. Three cases according to the three phases (8.2), (8.3), and
(8.4) are shown. At x → −∞, the solutions approach the values θ∞(h̄z) for the bulk ground state,
while at x = 0, they satisfy the boundary condition (8.17) imposed by the edge. The functions are
color-coded according to the nz = cos θ0(x) projection, depicting the weight of the a (red) and b (blue)
LL states. Reprinted figure with permission from Ref. [KJT16]. Copyright (2016) by the APS.

θ0(x) approach the asymptotic bulk value θ∞ exponentially over the length scales

lu√
h̄z − 1

=
√

ρ

hz − u
, u < hz, (8.24)

lu√
1− h̄2

z

=
√

ρu

u2 − h2
z

, −u < hz < u. (8.25)

At both phase transitions hz = ±u, these length scales become infinite, changing the effec-
tive asymptotic scaling behavior. Exactly at the hz = u phase transition, e.g., the solution
approaches the bulk value θ∞ = 0 as a power law θ0(x) ≈ −2/x̄, which follows from the form

θ0(x) = 2 arctan
(
−1
x̄

)
, hz = u, (8.26)

obtained from both Eqs. (8.20) and (8.21) in the limits hz → u± 0+. We emphasize that even
exactly at the phase transition hz = u, the domain wall has the spatial scale lu, although the
bulk asymptotic value is approached according to a power law, and not exponentially. Close
to the other transition at hz = −u, the bulk value θ∞ is close to π, and the solution simplifies
to

θ0(x) = π −
√

2(1 + h̄z) tanh

−
√

1 + h̄z
2 x̄

 , hz = −u+ 0+. (8.27)

Next, we consider the topological properties of the obtained solution. Here, the ϕ degeneracy
of the isospin solutions n0(x|ϕ0) (8.15) will be most important. In accordance to the possible
bulk phases (8.2), (8.3), and (8.4), we have the following three cases:
1) In the n∞ = nz phase realized for u < hz, the ground state solution n0(x|ϕ0) is degenerate

according to the arbitrary angle ϕ0. Yet in the bulk for n∞ = nz, ϕ0 is undefined and the U(1)
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Figure 8.3. The ground state geodesic paths n0(x|ϕ0) (8.15) on the isospin Bloch sphere for the
n∞ = nz (left) and n∞ = n∗0(ϕ0) (right) phases, realized for u < hz and −u < hz < u, respectively.
Reprinted figures with permission from Ref. [KJT16]. Copyright (2016) by the APS.

symmetry is not spontaneously broken there. Thus, this degeneracy occurs (at the mean-field
level) in the domain wall at the edge, not in the bulk.
2) In the n∞ = n∗(ϕ0) phase realized for −u < hz < u, the ground state configuration

n0(x|ϕ0) is degenerate again. Here, the arbitrary angle ϕ0 is the same as the one of the
asymptotic bulk configuration n∗(ϕ0). This degeneracy describes therefore the spontaneous
breaking of U(1) symmetry in the bulk and there is no extra degeneracy at the edge.
3) In the n∞ = −nz phase realized for hz < −u, the bulk and edge orders are exactly the

same. The ground state solution for the system with an edge is a constant n0(x) ≡ −nz and
thus nondegenerate, as ϕ0 is undefined.
These properties can also be illustrated with the help of the Bloch sphere, see Fig. 8.3.

The ground state domain wall configurations n0(x|ϕ0) can be visualized as geodesic paths
connecting the bulk n∞ and edge −nz orders, parameterized by the coordinate x. In the
n∞ = nz phase, the bulk and edge orientations are exactly opposite, and there is an infinite
number of geodesics, distinguished by their angle ϕ0. This is different in the n∞ = n∗(ϕ0)
phase. Here, for a given angle ϕ0 in the bulk, the geodesic connecting n∗ and −nz is unique:
it is a path in the vertical plane of the constant ϕ0. As we show in the next Sec. 8.3, these
degeneracy properties of the ground state solutions are key to the properties of the charge
edge excitations.

8.2.1. Domain-wall Energy

We end this section with an explicit calculation of the ground state energy of the system with
an edge. It is convenient to split this energy in a contribution of the asymptotic bulk and one

129



8. Quantum Hall Ferromagnet and Helical Luttinger Liquid

from the domain wall. We thus define the energy quantities

dE1D[θ(x);u, hz] ≡
∫ 0

−∞

dx
s
dEx[θ(x);u, hz] = E1D[θ(x);u, hz]− E1D∞(u, hz),

dEx[θ(x);u, hz] ≡ Ex[θ(x);u, hz]− E∞(u, hz),

E1D∞(u, hz) ≡
∫ 0

−∞

dx
s
E∞(u, hz)

(8.28)

in terms of E1D[θ(x);u, hz] (8.16). The corresponding ground-state energy per unit length in
the y direction equals

dE1D
0 (u, hz) ≡ min

θ(x)
dE1D[θ(x);u, hz] = dE1D[θ0(x;u, hz);u, hz] (8.29)

and can be referred to as the domain-wall energy. It is not extensive in the x direction
and describes the energy associated only with the domain-wall isospin texture at the edge.
Exploiting the integral of motion (8.18), the domain-wall energy can be expressed as

dE1D
0 (u;hz) = 2

∫ 0

−∞

dx
s

[E(θ0(x))− E∞] (8.30)

and calculated explicitly using the expressions (8.20) and (8.21) for the ground state solutions.
For the n∞ = nz phase (the same can be done for the n∞ = n∗0(ϕ) phase), we obtain

dE1D
0 (u, hz) = 2 lu

s
uF (h̄z), (8.31)

where

F (h̄z) = −F2(h̄z) + h̄zF1(h̄z) = h̄z arcsin 1√
h̄z

+
√
h̄z − 1, u < hz, (8.32)

F2(h̄z) = 1
2

∫ 0

−∞
dx̄ sin2 θ0(x̄) = h̄z arcsin 1√

h̄z

−
√
h̄z − 1, (8.33)

F1(h̄z) =
∫ 0

−∞
dx̄ [1− cos θ0(x̄)] = 2 arcsin 1√

h̄z

(8.34)

are dimensionless functions of the normalized field h̄z. The latter two arise from the anisotropy
u
2 (n2

z− 1) and Zeeman −hz(nz− 1) contributions to E(θ0(x))−E∞, respectively. The function
F (h̄z) is plotted in Fig. 8.4. Importantly, as we will see below in Secs. 8.3.1 and 8.4, the
dependence (8.31) of the domain-wall energy on parameters u and hz defines not only the
ground state, but also the properties of the low-energy edge excitations of the n∞ = nz phase.

8.3. System with an Edge: Charge Excitations

Having established the properties of the ground states of the system with an edge, we now
turn to the analysis of its charge excitations. As discussed in Sec. 3.2.3, QHFM systems
support charge excitations which are described by the configurations of the OP with nonzero
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Figure 8.4. The function F (h̄z) (8.32), which determines the dependence of the ground state domain-
wall energy dE1D

0 (u, hz) (8.31) on the normalized field h̄z = hz/u in the n∞ = nz phase for u < hz.
Reprinted figure with permission from Ref. [KJT16]. Copyright (2016) by the APS.

topological charge, equal to the electric charge. For our QHTI system with an isospin-1
2 OP,

the charge density of a configuration n(r) is given by

κ[n](r) = 1
4π (n · [∇xn×∇yn])

= 1
4π sin θ(∇xθ∇yϕ−∇yθ∇xϕ).

(8.35)

The total net charge of the configuration is then calculated by the integral

q[n] =
∫

d2r κ[n](r). (8.36)

This topological charge is the invariant of the mapping realized by n(r) from the coordinate
space of r to the 2D Bloch sphere. It can be visualized as the number of times the sphere is
wound as the space of r is explored. In the following, we will be interested in the excitations
with integer charge q, whose boundary values are the same as in the ground state. In prin-
ciple, excitations with non-integer charge q are also possible, if the ground state has broken
continuous symmetry. This is indeed the case for the intermediate phase n∞ = n∗(ϕ0), but
beyond the scope of our analysis here. We define the difference

δE[n] ≡ E[n]− E[n0] (8.37)

between the energy of a configuration n(r) and of the ground state n0(x) as the excitation
energy of n(r). The configuration nq(r) of charge q will be designated with a superscript.
Among all of these charge-q configurations, nq0(r) is the one that minimizes the energy (7.22),

E[nq0] = min
nq

E[nq]. (8.38)

Clearly, the ground state configuration n0(x|ϕ0) has zero charge, as the charge density κ[n0] ≡
0, and hence n0 = nq=0

0 . The excitation energy (8.37) of the minimal-energy configuration
nq0(r),

∆q ≡ min
nq

δE[nq] = δE[nq0] = E[nq0]− E[n0], (8.39)
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will be called the gap of charge-q excitations. The minimum

∆ = min
q 6=0

∆q (8.40)

among all q 6= 0 defines the gap of excitations of any charge. Typically, ∆q is a growing
function of q, and therefore the unit-charge q = ±1 excitations, for which the Bloch sphere
is covered once, determine the gap, ∆ = ∆q=±1. The minimal-energy charge-q configurations
nq0(r) satisfy the same stationary-point Eqs. (8.11) and (8.12) as the ground state n0(x|ϕ0),
since they describe a local minimum in the configuration space. In order not to contain exten-
sive contributions to the excitation energy (8.39), proportional to the size of the system, the
configurations nq0(r) must asymptotically approach the ground state configuration n0(x|ϕ0),

nq0(x, y → ±∞)→ n0(x|ϕ0), nq0(x→ −∞, y)→ n∞. (8.41)

The finite-size region where most of the winding of the Bloch sphere occurs, nq0(r) clearly
differs from n0(x|ϕ0) and the charge density κ[nq0](r) is located, can be referred to as the core
of the charge excitation.
For our QHTI system with an edge, one should distinguish between bulk and edge excita-

tions. In the bulk, skyrmions are the low-energy charge excitations, as introduced in Sec. 3.2.3.
Their core is located deep in the bulk, away from the domain wall at the edge, such that its
effect can be neglected. For the edge excitations on the other hand, the core is located in
the domain wall. This makes it clear, on a qualitative level at least, that the energy of the
edge charge excitation will generally be smaller than that of the bulk skyrmion. Since in the
ground state n0(x|ϕ0) some changes in the isospin orientation are already present, less ad-
ditional changes are required for nq0(r) to wind the whole Bloch sphere. Hence, the smaller
energy cost. As the general properties of bulk skyrmions are well-understood, see references
in Sec. 3.2.3, we concentrate on the edge excitations in the following.

8.3.1. Gapless Edge Excitations of the n∞ = nz Phase

Let us begin with the n∞ = nz phase with preserved U(1) symmetry in the bulk. According
to Sec. 8.2, the bulk isospin orientation in this phase is exactly opposite to the edge isospin.
There is an infinite number of geodesics n0(x|ϕ0), parameterized by the angle ϕ0, connecting
these two orientations, as depicted in Fig. 8.3. This degeneracy allows us, following Refs. [FI99,
FB06], to construct a charge excitation by winding the angle ϕ0 in the y direction along the
edge. The corresponding ansatz (θ(x), ϕ(y)) for n(r) decouples the stationary point equations
(8.11) and (8.12), where the latter reduces to

−∇2
yϕ(y) = 0. (8.42)

We introduce sample boundaries along the y direction at y = ±Ly
2 and impose the periodic

boundary conditions
n(x, y = +Ly

2 ) = n(x, y = −Ly2 ). (8.43)

The solution to Eq. (8.42) is then given by

ϕq0(y) = ϕ0 + 2πq y
Ly
, ∇yϕq0 = 2πq

Ly
, u < hz, (8.44)
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where q is an integer. This q is indeed the topological charge of the configuration, as can be
confirmed from either the geometric considerations or explicit calculation using Eqs. (8.35)
and (8.36). The energy functional then becomes

E[θ(x), ϕq0(y)] = Ly

∫ 0

−∞

dx
s

{
ρ

2
[
(∇xθ)2 + sin2 θ(∇yϕq0)2

]
+ E (θ(x))

}
= Ly

{
dE1D

[
θ(x);u− ρ(∇yϕq0)2, hz

]
+ E1D∞

}
.

(8.45)

We notice that the gradient term ρ
2 sin2 θ(∇yϕq0)2 has the shape of the anisotropy energy

u
2 (n2

z − 1). Therefore the functional (8.45) has the same form as the one for the ground state,
Eq. (8.16), with the redefined anisotropy energy u− ρ(∇yϕq0)2 and can be expressed in terms
of the quantities in Eq. (8.28). The functional (8.45) is thus minimized by the modified ground
state configuration

θq0(x) = θ0(x;u− ρ(∇yϕq0)2, hz), u < hz, (8.46)

and the gap (8.39) of charge-q edge excitations of the n∞ = nz phase is expressed as

∆q = Ly
[
dE1D

0 (u− ρ (2πq/Ly)2 , hz)− dE1D
0 (u, hz)

]
, u < hz, (8.47)

in terms of the domain-wall energy (8.31). The corresponding isospin configuration has the
form

nq0(x, y) = (sin θq0(x) cosϕq0(y), sin θq0(x) sinϕq0(y), cos θq0(x)), u < hz, (8.48)

and is shown in Fig. 8.5 for q = 1. The gap (8.47) is finite only due to the finite size Ly of the
sample in the y direction. It thus vanishes in the limit Ly → ∞, where the phase n∞ = nz
supports gapless edge charge excitations, similar to the findings of Refs. [FI99, FB06]. The
leading term in the large-size limit Ly →∞ can be obtained as an expansion

∆q ≈ −Ly∂udE1D
0 (u, hz)ρ

(
2πq
Ly

)2

= (2πq)2 lu
Ly
F2(h̄z)ε� ∼ q2 lu

Ly
ε�, u < hz,

(8.49)

where the energy

ε� ≡
ρ

s
∼ e2

∗
lBz

(8.50)

is associated with the gradient term. It is due to the SU(2)-symmetric interactions and thus set
by the Coulomb energy. The leading order in equation (8.49) can also be obtained in a simpler
way by just ignoring the effect of the winding on θq0(x), thus setting θq0(x) ≈ θ0(x;u, hz). The
isospin OP is then nq0(r) ≈ n0(x|ϕq0(y)) and the gap contains only the gradient term

∆q ≈
∫ d2r

s

ρ

2 sin2 θ0(x)(∇ϕq0(y))2, (8.51)

which agrees with Eq. (8.49).
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Figure 8.5. The unit-charge isospin configuration n1
0(r) in the TnT n∞ = nz phase with preserved

U(1) symmetry, obtained numerically for h̄z = 1.02. The numerical solution agrees well with the exact
analytical expressions (8.44), (8.46), and (8.48). The arrows depict the 2D components (nx(r), ny(r)),
while the red-blue color code represents nz(r), in accord with Figs. 8.1 and 8.2. The paths on the Bloch
sphere for varying −∞ < x ≤ 0 and several constant values of y are shown in Fig. 8.3 (left). Reprinted
figure with permission from Ref. [KJT16]. Copyright (2016) by the APS.

8.3.2. Gapped Edge Excitations of the n∞ = −nz and n∞ = n∗(ϕ0) Phases

The above construction of the gapless charge excitations in the n∞ = nz phase is possible due
to two conditions realized in the ground state n0(x|ϕ0). They are 1) preserved U(1) symmetry
in the bulk and 2) continuous degeneracy of the ground state solution at the edge. In the
other two phases we discuss now, one of these conditions is violated. In the intermediate
phase n∞ = n∗(ϕ0), the U(1) symmetry is spontaneously broken in the bulk and, for a given
bulk order characterized by the angle ϕ0, the ground state solution n0(x|ϕ0) is unique. In the
n∞ = −nz phase, on the other hand, the U(1) symmetry is preserved in the bulk, but the bulk
and edge orientations are exactly the same and the ground state solution is just a constant
n0(x) ≡ −nz. These crucial differences in the ground state edge configurations of the phases
are visualized in Fig. 8.3. As a result, the ground state solution is unique in both phases
for a given bulk order and an analogous construction of the gapless charge excitations is not
possible. The edge charge excitations are therefore gapped. In the intermediate n∞ = n0(ϕ0)
phase, the typical edge charge configuration n1

0(r) has the form shown in Fig. 8.6, see Sec. 8.3.4
for details on the numerical calculations.
Let us consider the size of the gaps. For the phase n∞ = −nz, the lowest energy integer-
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Figure 8.6. The isospin unit-charge configuration n1
0(r) in the TT n∞ = n∗(ϕ0) phase with sponta-

neously broken U(1) symmetry at −u < hz < u, obtained numerically for h̄z = 0.5. (left) The arrows
depict the 2D components (nx(r), ny(r)), while the red-blue color code represents nz(r). (right) The
paths on the Bloch sphere n1

0(x, y) for varying −∞ < x ≤ 0 and several constant values of y. Reprinted
figures with permission from Ref. [KJT16]. Copyright (2016) by the APS.

charge excitations are the bulk skyrmions, with the core infinitely far away from the edge. This
is due to the fact that the bulk skyrmions are the minimal-energy configurations in an infinite
sample among all charged configurations with the constraint n(r → ∞) = −nz. For our
considered half-infinite sample where the boundary condition n(x = 0, y) = −nz, Eq. (7.29),
is imposed, the possible set of configurations is additionally constrained. This can only result
in an increase of the excitation energy compared to that of the bulk skyrmions, for which such
a constraint is absent. Thus placing the core closer to the edge can only lead to energetically
less favorable configurations. As a result, in the n∞ = −nz phase the charge excitations have
the largest energy among all three phases, given by that of the bulk skyrmion,

∆q = ∆q
sk, hz < −u. (8.52)

In the σ-model we study, the term describing the Coulomb self-interaction of the charge density
κ[n](r) (8.35) is neglected, as it is of higher order in the gradients. For this approximation,
the skyrmion energy is given by

∆q
sk = 4πε�|q| (8.53)

and its size is formally zero due to the presence of the energy E(nz) of the SU(2)-asymmetric
terms, as found in Ref. [SKKR93].
Lastly, we consider the intermediate n∞ = n∗(ϕ0) phase. Its gap ∆q(hz) of the edge

charge excitations, Eq. (8.39), can be qualitatively understood from a continuity argument.
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Since the second-order transitions at hz = ±u are continuous and the intermediate phase
continuously interpolates between the n∞ = nz and n∞ = −nz phases, ∆q(hz) monotonically
and continuously grows upon decreasing hz in the range −u < hz < u, starting from zero at
hz = u and reaching its maximal value of ∆q

sk for hz = −u. As the bulk phase is controlled
solely by the normalized dimensionless field h̄z (8.7), the gap has the scaling form

∆q(hz) = ε�∆̄q(h̄z) (8.54)

with ∆̄q(h̄z) a dimensionless function of h̄z.
An analogous continuous growth of the edge excitation gap was earlier predicted for the

CAF phase of the ν = 0 state in graphene, originally employing a similar continuity ar-
gument in Ref. [Kha12a] and within a simplified picture of single-particle edge excitations
in Ref. [Kha12b]. The corresponding transport behavior, well consistent with the presented
scenario, was shortly after observed in both bilayer [MDY+13] and monolayer [YSYH+13]
graphene. More recently, an analytical estimate for the edge excitation gap of the CAF phase
was obtained in Ref. [MSF14] within a low-energy theory approach analogous to the one em-
ployed by us. The estimate we make below is in accordance with that result.

8.3.3. Intermediate Phase close to the Phase Transition hz = u: Analytical
Estimates

In the intermediate phase n∞ = n∗(ϕ0) close to the phase transition hz = u, the gap ∆̄q(h̄z)�
1 is small and can be estimated analytically. Analogous to the construction for the n∞ = nz
phase, we consider for the intermediate phase the configuration n0(x|ϕq(y)) obtained from
the ground state configuration (8.15) and (8.21) by slowly winding, at scales much larger
than the domain-wall width lu, the angle ϕq(y) q times as the y direction is spanned. The
concrete shape of ϕq(y) is to be optimized. The excitation energy δE[n0(x|ϕq(y))] of such
a configuration would contain only the gradient contribution, analogous to the expansion
Eq. (8.49). However, unlike the n∞ = nz phase, the bulk asymptotic angle θ∞ = θ∗ 6= 0 (8.6)
is nonzero in the intermediate phase. Thus the integral

∫ 0
−∞ dx . . . would not be constrained

to the domain-wall region of size lu, but also contain an extensive contribution proportional
to the size of the sample in the x direction. Additionally, due to the winding of ϕq(y), the
asymptotic value n0(x = −∞|ϕq(y)) = n∗(ϕq(y)) would differ from nq(x = −∞, y) = n∗(ϕ0)
of the bulk ground state. Qualitatively, the charge-q configuration nq(r) must have the form
shown in Fig. 8.6 for q = 1.

Nonetheless, for a given ϕq(y), the energy in the domain-wall region is minimized well by
the configuration n0(x|ϕq(y)). Thus to obtain a global solution, the configuration in the bulk
needs to be modified. The proximity to the phase transition allows us to efficiently separate
the domain-wall and bulk contributions as follows. First, we define the deviation

δh̄z = δhz
u

= h̄z − 1, δhz = hz − u, (8.55)

which is negative and small, |δh̄z|� 1, in the considered regime. There, the asymptotic bulk
order n∞ = n∗(ϕ0) deviates only a little from nz. Using Eq. (8.6), the optimal angle in the
bulk ground state is given by

θ∗2 ≈ 2|δh̄z|� 1. (8.56)
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In regions where the isospin n(r) is close to nz, such that its angle θ(r) . θ∗, the energetics
is governed by this smaller scale |δhz|� u. The associated spatial scale

lδhz ≡
√

ρ

|δhz|
= lu√

|δh̄z|
� lu (8.57)

follows from Eq. (8.25) and is much larger than the domain-wall width lu. We choose a length
scale x0 in between,

lδhz � x0 � lu, (8.58)
such that the ground state configuration n0(x = −x0|ϕ0) at x = −x0 is already close to its
bulk asymptotic value, θ0(x = −x0) ≈ θ∗. We emphasize that even exactly at the phase
transition hz = u, the domain wall width is lu, only the bulk value is approached as a power
law and not exponentially, see Eq. (8.26).
Now we come to the separation. For the sought charge-q configuration nq(r), we consider

the above ground state configuration with the adiabatically changing angle ϕq(y) only in the
region up to the distance x0 from the edge:

nq(r) ≈ n0(x|ϕq(y)), −x0 < x ≤ 0. (8.59)

Due to the condition lδhz � x0, the contribution to the excitation energy from the region
−x0 < x < 0 is not extensive and can be approximated as

δE[nq](−x0,0) =
∫
−x0<x<0

d2r

s
(E[nq]− E[n0])

≈ #ε�lu
∫ +∞

−∞
dy [∇yϕ(y)]2.

(8.60)

Here and below, # indicates undetermined numerical factors that are beyond the accuracy of
the considered approximation.

In the remaining bulk region x < −x0, the configuration nq(r) has to connect the boundary
values nq(x = −∞, y) = n∗(ϕ0) and nq(x = −x0, y) = n0(x|ϕq(y)) ≈ n∗(ϕq(y)). In the whole
region between, the isospin nq(r) is close to nz and therefore varies over spatial scales on the
order of lδhz or greater. The connection is made by trapping a vortex of charge q in this bulk
region x < −x0, as depicted by the red dot in Fig. 8.6 (left). On the one side of the vortex,
closer to the edge, the phase ϕq(x, y) winds q times along the x = −x0 boundary, while the
angle θ ≈ θ∗ remains almost constant. On the other side, the winding is gone. The leading
contribution to the energy of such a vortex configuration comes from the region outside of its
core, where the latter is defined as the area where the isospin covers the solid angle θ . θ∗. This
contribution is logarithmic; to obtain it, we consider the radial form θ(r, φ) = θ∗, ϕ(r, φ) = qφ,
where r = r(cosφ, sinφ), relative to the center of the vortex in the bulk region x < −x0, given
by the point at which nq0(r) = nz in Fig. 8.6. We find for the energy

δE[nq](−∞,−x0) =
∫
x<−x0

d2r

s
(E[nq]− E[n0]) ≈

∫
rdr dφ
s

ρ

2 sin2 θ(∇ϕ)2

≈
∫ l

|q|lδhz

2πrdr
s

ρ

2θ
∗2 q

2

r2 = 2πρ
s
|δh̄z|q2ln l

|q|lδhz
.

(8.61)

The lower limit is determined by the size |q|lδhz of the vortex core. The upper limit l� |q|lδhz
is, in our case, set by the distance from the vortex core to the edge. The same scale l has to
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match the extent of the winding region of ϕq(y) in the domain wall along the y direction. We
estimate ∇yϕq(y) ∼ q/l and add the domain-wall (8.60) and bulk (8.61) contributions. The
excitation energy of this constructed configuration is then given by

δE[nq] = δE[nq](−∞,−x0) + δE[nq](−x0,0)

≈ ε�q2
(

2π|δh̄z|ln
l

|q|l|δhz |
+ # lu

l

)
.

(8.62)

The dimension l is the only remaining variational parameter, which we use to minimize this
energy. The leading terms of the asymptotics expansion are then

∆̄q(h̄z → 1− 0+) = πq2|δh̄z|ln
C

q2|δh̄z|
+O(|δh̄z|) (8.63)

for the gap of charge edge excitations in the intermediate phase n∞ = n∗(ϕ0) close to the
phase transition hz = u. The minimum (8.63) of Eq. (8.62) is reached at the optimal length

l∗ ≡ lu

|δh̄z|
= lδhz√

|δh̄z|
. (8.64)

The numerical factor C ∼ 1 cannot be determined within the accuracy of the considered
logarithmic approximation. For unit charge q = ±1, the estimate (8.63) agrees with that of
Ref. [MSF14].

8.3.4. Numerical Calculations
We complement the analytical studies from above by explicit numerical calculations of the
unit-charge q = 1 edge excitations. The configurations n1

0(r) with the energy minimum (8.38)
within the q = 1 sector are found by solving the discretized version of the stationary-point
Eqs. (8.11) and (8.12). For this we use a variant of the multi-grid relaxation methods for
boundary value problems presented in Ref. [WHPF92]. Our relaxation scheme preserves the
topological charge of the configuration, such that the initial trial configuration of a given charge
converges to the minimal-energy configuration within that charge sector. The calculations are
performed for a finite-size system (x, y) ∈ (−Lx, 0)× (−Ly

2 ,+
Ly
2 ) with dimensions Lx and Ly.

For all sizes Ly indicated in Fig. 8.7, except the largest one (Lx, Ly) = (120, 160)
√

2lu, we used
square samples with Lx = Ly. The gap ∆̄1(h̄z) is then calculated using a discretized version
of Eq. (8.39).
In Fig. 8.7, we plot the gap ∆̄1(h̄z) as a function of the normalized field h̄z for several different

system sizes Lx,y/lu. In the region u < hz of the n∞ = nz phase, the numerically calculated
gap ∆̄1(h̄z) accurately agrees with the exact analytic dependence (8.47) on h̄z and Ly. This
confirms that the edge charge excitations are gapless in the infinite-size limit Ly → ∞. The
typical edge charge configuration n1

0(r) in the n∞ = nz phase has the form shown in Fig. 8.5,
in full agreement with the analytical expressions (8.44), (8.46), and (8.48).
In the region −u < hz < u of the intermediate phase n∞ = n∗(ϕ0), the gap becomes

independent of the sample dimensions Lx,y, as the size of the configurations shrinks with
decreasing h̄z and is at some point smaller than Lx,y. Close to the transition point hz =
u in the intermediate phase, for large enough Lx,y/lu, the numerical data points fit to the
analytical estimate (8.63). We obtain for the largest-size sample (Lx, Ly) = (120, 160)

√
2lu,
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Figure 8.7. (left) The dependence of the gap ∆̄1(h̄z), Eq. (8.54), of the edge charge excitations n1
0(r)

on the normalized field h̄z, calculated numerically for various sample sizes. The black solid lines in the
1 < h̄z region are the exact gap dependencies (8.47) for a finite-size system. The black horizontal solid
line for h̄z < −1 is the analytical value (8.53) of the gap, given by the energy of a free skyrmion. The
black dashed line in the −1 < h̄z < 1 region shows the asymptotic gap dependence (8.63) with the fitted
parameter lnC = 4.27. (right) Zoomed-in region around the phase transition point h̄z = 1. Reprinted
figures with permission from Ref. [KJT16]. Copyright (2016) by the APS.

�8 �6 �4 �2

Θ0
1
�x,y�0,hz�

Π

�Π

x

hz
1
0.75
0.28
�0.13
�0.45

�Π Π

�
Ly
2

Ly
2
y

�0
1
�0,y,hz�

Figure 8.8. The angle functions θ1
0(x, y = 0) and ϕ1

0(x = −0, y) of the unit-charge edge configurations
n1
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Reprinted figure with permission from Ref. [KJT16]. Copyright (2016) by the APS.

hence with the smallest size effects, lnC = 4.27 by fitting to the data points (h̄z, ∆̄1(h̄z)) =
(0.955, 1.058), (0.920, 1.715), (0.875, 2.484). Considering the opposite phase transition point
hz = −u, the available numerical data for ∆̄1(h̄z) visually extrapolates well to the value
∆̄1(h̄z = −1) = 4π, Eqs. (8.52) and (8.53), of the bulk skyrmion.
The typical edge charge configuration n1

0(r) in the n∞ = n∗(ϕ0) phase is shown in Fig. 8.6.
The corresponding angle functions θ1

0(x, 0) and ϕ1
0(x = −0, y) of such a n1

0(r) are plotted for
various h̄z in Fig. 8.8. The regions where these functions vary determine the size of the charge
excitation. As hz decreases in the range −u < hz < u, this size monotonically decreases,
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8. Quantum Hall Ferromagnet and Helical Luttinger Liquid

becoming smaller than lu and approaching zero for hz → −u + 0+. These behaviors of the
gap and the size of the excitation with decreasing hz in the −u < hz < u region are in accord
with the general arguments of Sec. 8.3.2. For our considered model with neglected Coulomb
self-interaction of the charge density (8.35), skyrmions in the n∞ = −nz phase for hz < −u
have size zero.
As a closing remark, we point out that while the properties of the edge excitations of the

three phases are different, their bulk charge excitations are qualitatively the same. The bulk
charge gap is finite in all three phases and never closes during the transformation from the
TnT n∞ = nz to the TT n∞ = −nz phase with decreasing hz. As rigorous mathematical
definitions of topological phases in interacting systems are currently an actively researched
subject, we adopt an intuitive nomenclature, referring to the phases with gapless and gapped
edge excitations as TnT and TT phases, respectively.

8.4. Helical Luttinger Liquid
In the previous Sec. 8.3, it was demonstrated that the n∞ = nz phase at u < hz is characterized
by gapless charge edge excitations. Their dynamics can be described by an effective low-energy
theory, the Helical Luttinger Liquid, which we now derive.

8.4.1. Derivation
The nondegenerate bulk ground state n∞ = nz has a gapped excitation spectrum. The low-
energy theory for the edge is then valid at energies below this gap hz − u, i.e, as long as the
bulk is not excited. This criterion will be established more rigorously below. The gapless edge
excitations originate from the degeneracy of the (mean-field) ground state solution n0(x;ϕ0)
at the edge, characterized by an arbitrary angle ϕ0. In order to model the dynamics of these
excitations, we now include slow variations of the angle ϕ0 in space and time and perform a
gradient expansion. As in the original Lagrangian L[θ, ϕ] (7.20)-(7.23) the variables ϕ(r; t)
and θ(r; t) are coupled, also the dynamics of θ(r; t) needs to be considered. However, the
deviations from the ground state configurations due to a slowly varying ϕ(r; t) will be small,
and so we expand the Lagrangian L[θ, ϕ] in deviations δθ(r; t) about θ0(x),

θ(r; t) = θ0(x) + δθ(r; t), δθ(x = 0, y; t) = 0, (8.65)

with the appropriate boundary condition at the edge. As a start, we assume a general, but
slow, dependence of ϕ(r, t) on r and t. As we are interested in the leading order in gradients
of ϕ(r; t), it is sufficient to expand all terms to the lowest necessary order in δθ(r; t). For the
kinetic term (7.21), this gives

K[δθ, ϕ] = ϕ̇

2 [cos θ0 + δθ∂θ cos θ0 +O(δθ2)]→ ϕ̇

2 δθ∂θ cos θ0. (8.66)

The term ϕ̇
2 cos θ0 is an inconsequential full time derivative and we drop it. For now, the

derivative ∂θ cos θ0 = − sin θ0 is kept as it is. Considering the gradient term in Eq. (7.22),
ρ

2 sin2 θ(∇ϕ)2 = ρ

2 [sin2 θ0(x) +O(δθ)](∇ϕ)2 → ρ

2 sin2 θ0(x)(∇ϕ)2, (8.67)

keeping only the zero-order term is sufficient. The remaining terms∫ d2r

s

{
ρ

2(∇θ)2 + E(θ)
}

=
∫ d2r

s

{
E[n0] + 1

2δθÛ [δθ] +O(δθ3)
}
→
∫ d2r

s

1
2δθÛ [δθ] (8.68)
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in Eq. (7.22) do not depend on ϕ(r; t) and need to be expanded to quadratic order in δθ(r; t).
Here, we dropped the zero-order ground state energy E[n0] and defined

Û = −ρ∇2
y + Ûx, Ûx = −ρ∇2

x + ∂2
θE(θ0(x)), ∂2

θE(θ) = −u cos 2θ + hz cos θ. (8.69)

Collecting these leading terms (8.66), (8.67), and (8.68), we approximate the initial Lagrangian
as

L[θ, ϕ]→ L′[δθ, ϕ] =
∫ d2r

s
L′[δθ, ϕ],

−L′[δθ, ϕ] ≡ − ϕ̇2 δθ∂θcos θ0 + 1
2δθÛ [δθ] + ρ

2 sin2θ0(∇ϕ)2.

(8.70)

Its structure allows for further approximations. First, we observe that in both terms containing
the ϕ(r; t) variable, the function sin θ0(x) is present, constraining them to the domain-wall
region of size lu. This makes it reasonable to split the field into an x-independent average
Φ(y; t) ≡ 〈ϕ(x, y; t)〉x and fluctuations δxϕ(x, y; t) along x like

ϕ(x, y; t) = Φ(y; t) + δxϕ(x, y; t), (8.71)

with 〈δxϕ(x, y; t)〉x = 0. There is a certain freedom in the definition of the used average. Since
the parametrization by the spherical angles becomes degenerate at θ = 0, π, a meaningful
average requires a weight function that takes this into account. We choose for the latter
sin θ0(x) and define the average as

〈f(x)〉x ≡
∫ 0

−∞
dx sin θ0(x)f(x). (8.72)

Other choices could also be used, and the exact definition of the average will not be essential
in the following. At low energies, ϕ(x, y; t) varies over spatial scales exceeding the domain wall
size lu. Thus the fluctuations of the field ϕ(x, y; t) in the x direction across the domain wall,
described by δxϕ(x, y; t), will produce a parametrically smaller contribution than those in the
y direction along the domain wall, described by Φ(y; t). To the leading order we therefore
neglect δxϕ(x, y; t) and the field

ϕ(x, y; t)→ Φ(y; t) (8.73)

may be approximated by a quasi-1D field Φ(y; t). The corresponding gradient term becomes
(∇ϕ)2 → (∇yΦ)2.
Next, we analyze the properties of the operator Ûx in Eq. (8.69). It has the form of the

Hamiltonian for a Schrödinger particle in 1D with the potential energy ∂2
θE(θ0(x)), plotted in

Fig. 8.9, and the hardwall boundary condition from Eq. (8.65). In the bulk,

∂2
θE(θ0(x = −∞) = 0) = hz − u > 0, (8.74)

which represents the mass of the isospin wave in an infinite system. The minimum

∂2
θE(θ0(0) = π) = −hz − u < 0 (8.75)

is reached at the edge and is negative. This potential energy ∂2
θE(θ0(x)) curve has a well in

the region of the domain wall, and for hz < 4u it also has a barrier, as depicted in Fig. 8.9.
From this analogy with the quantum-mechanical problem, we conclude that the operator Ûx
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Figure 8.9. The function ∂2
θE(θ0(x)), which serves as an effective potential energy in the operator

Ûx defined in Eq. (8.69). The latter describes the quadratic fluctuations δθ about the ground state
configuration θ0(x) (8.20) in the n∞ = nz phase for u < hz. The operator Ûx has only a continuous
spectrum, marked by the shaded region, that starts at the bulk asymptotic value ∂2

θE(θ0(x = −∞)) =
hz − u, equal to the gap of the bulk isospin wave excitations. There are no discrete bound states.
Reprinted figures with permission from Ref. [KJT16]. Copyright (2016) by the APS.

has a continuous eigenvalue spectrum in the energy range (hz − u,+∞). It could also have
discrete levels in the range (−hz − u, hz − u), corresponding to states bound within the well.
However, we have checked numerically that there are no such discrete eigenvalues. In fact,
only the positive range (0, hz − u) requires a check for bound states, as negative eigenvalues
are prohibited. Since Ûx is a quadratic form of the expansion about the minimum-energy
configuration, it is a positive-definite operator.

Thus, Ûx has only a continuous “massive” eigenvalue spectrum that starts from hz − u > 0.
The eigenfunctions are extended and can be viewed as bulk isospin waves, modified at the
edge. Due to these properties, the operator −ρ∇2

y in Û (8.69) may be neglected compared to
Ûx,

Û = −ρ∇2
y + Ûx → Ûx. (8.76)

The approximations (8.73) and (8.76) allow us to further simplify the Lagrangian (8.70) as

L′[δθ, ϕ]→ L′′[δθ,Φ] =
∫ d2r

s
L′′[δθ,Φ],

−L′′[δθ,Φ] ≡ − Φ̇
2 δθ∂θcos θ0 + 1

2δθÛx[δθ] + ρ

2 sin2θ0(∇yΦ)2.

(8.77)

This Lagrangian (8.77) is a second-order functional polynomial in δθ(r; t). We consider the
configuration δθ0[Φ](r; t) that minimizes −L′′[δθ,Φ] with respect to δθ(r; t) for a given Φ(y; t).
It satisfies the stationary-point equation

− δ

δ(δθ)

∫
dtL′′[δθ,Φ] = − Φ̇

2 ∂θcos θ0 + Ûx[δθ] = 0. (8.78)

This is a pure differential-in-x equation, and its solution can thus be formally written as

δθ0[Φ](r; t) = ∂θ0(x)Φ̇(y; t)
2 , ∂θ0(x) = Û−1

x [∂θcos θ0]. (8.79)
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In terms of this minimum configuration and the deviation δθ̃(r; t) = δθ(r; t)−δθ0[Φ](r; t) from
it, the Lagrangian (8.77) can be rewritten identically as

−L′′[δθ0[Φ] + δθ̃,Φ] = −1
2

(
Φ̇
2

)2

∂θ0(x)∂θcos θ0(x) + ρ

2 sin2 θ0(x)(∇yΦ)2 + 1
2δθ̃Ûx[δθ̃]. (8.80)

Essentially, this procedure amounts to completing the square of the quadratic polynomial in
the functional sense, decoupling the field Φ(y; t) and the variable δθ̃(r; t) of the operator Ûx.
Since the latter has a gap hz−u, the contribution of δθ̃(r; t) can be neglected below this energy
scale. Thus by setting δθ̃(r; t)→ 0 in Eq. (8.80), we find the 1D effective Lagrangian

L1D[Φ] ≡ L′′[δθ0[Φ],Φ]. (8.81)

The y-dependent 1D field Φ(y; t) is the only remaining variable. This allows us to separate the
integrals over x and y and write the final Lagrangian for the edge excitations of the n∞ = nz
phase in the form

L1D[Φ] =
∫

dy L1D[Φ], L1D[Φ] = 1
8πK

[1
v

Φ̇2 − v(∇yΦ)2
]
. (8.82)

We recognize in Eq. (8.82) the Lagrangian of a Luttinger liquid, compare to Eqs. (3.60) and
(3.61) in Sec. 3.2.4, with the phase field Φ(y; t) at the edge being the collective bosonic variable.
The parameters v and K are given by

1
8πKv ≡

lu
su
Ft(h̄z), Ft(h̄z) ≡

u

8

∫ 0

−∞
dx̄ ∂θcos θ0(x)∂θ0(x), (8.83)

v

8πK ≡
ρlu
s
Fy(h̄z), Fy(h̄z) = 1

2

∫ 0

−∞
dx̄ sin2θ0(x̄; h̄z). (8.84)

Due to the scaling form θ0(x) = θ0(x̄; h̄z) of the ground state solution (8.20), the parameters
can be expressed in terms of the dimensionless functions Ft,y(h̄z). We recognize that Fy(h̄z) =
F2(h̄z) defined in Eq. (8.33), yet without additional insights, calculating Ft(h̄z) would require
first finding the solution ∂θ0(x) to the differential equation (8.78) and then calculating the
integral in Eq. (8.83). Instead, below we provide a more elegant and streamlined way of deriving
the low-energy model (8.82). It not only allows us to obtain the explicit expression for Ft(h̄z),
but also uncovers the origin of the low-energy model in the degenerate ground state solution.
The above derivation is nonetheless useful for justifying the employed approximations.

A more elegant Derivation

We make two crucial observations about the general structure of the Lagrangian (7.20)-(7.23).
First, the kinetic term ϕ̇

2 cos θ in Eq. (7.21) has the same structure as the isospin Zeeman
term −hz cos θ, such that ϕ̇

2 plays the role of an additional, time- and coordinate-dependent,
Zeeman field. Secondly, as already noticed in Sec. 8.3.1, the gradient term ρ

2 sin2 θ(∇ϕ)2 has
the form of the anisotropy u

2 (n2
z − 1), so −ρ(∇ϕ)2 can be seen as an additional anisotropy

energy. These two observations allow us the rewrite the Lagrangian density (7.20) identically
as

−L[θ, ϕ;u, hz] = E[θ, ϕ;u, hz+ ϕ̇

2 ] = dEx[θ;u−ρ(∇ϕ)2, hz+ ϕ̇

2 ]+ ρ

2(∇yθ)2+E∞(u, hz), (8.85)
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using the definitions from Eq. (8.28). We perform the two key approximations (8.73) and (8.76)
from above of considering only-y-dependent configurations ϕ(r; t)→ Φ(y; t) and neglecting the
gradient terms ∇yθ. The Lagrangian density per unit length in the y direction

−
∫ dx

s
L[θ, ϕ;u, hz]→ dE1D[θ;u− ρ(∇yΦ)2, hz + Φ̇

2 ] + E1D∞(u, hz) (8.86)

then becomes equivalent to the functional (8.16) for the ground state with modified parame-
ters. This functional (8.86) is minimized with respect to θ(r; t) by the modified ground state
configuration θ0(x;u − ρ(∇yΦ)2, hz + Φ̇

2 ) given in Eq. (8.20). The minimum relative to the
total ground state energy

− L̃1D[Φ] = dE1D
0

(
u− ρ(∇yΦ)2, hz + Φ̇

2

)
− dE1D(u, hz) (8.87)

can be expressed in terms of the domain wall energy (8.31). Its expansion up to quadratic
order in the derivatives yields the form

−L̃1D[Φ] ≈ −∂udE1D
0 (u, hz)ρ(∇yΦ)2 + ∂hzdE

1D
0 (u, hz)

Φ̇
2 + 1

2∂
2
hzdE

1D
0 (u, hz)

(
Φ̇
2

)2

= −L1D[Φ] + ∂hzdE
1D
0 (u, hz)

Φ̇
2

(8.88)

of the Luttinger liquid Lagrangian (8.82). As in Eq. (8.66), the term linear in Φ̇ is an incon-
sequential full time derivative and will be dropped. This allows us to express the parameters

1
8πKv = −1

8∂
2
hzdE

1D
0 (u, hz),

v

8πK = −ρ∂udE1D
0 (u, hz) (8.89)

of the Luttinger liquid in terms of the derivatives of the domain-wall energy and thus calculate
the coefficients (8.83) and (8.84) explicitly as

Ft(h̄z) = −1
4∂

2
h̄z
F (h̄z) = 1

8
1

h̄z

√
h̄z − 1

, (8.90)

Fy(h̄z) = F2(h̄z) = h̄z arcsin 1√
h̄z

−
√
h̄z − 1. (8.91)

The functions are plotted in Fig. 8.10. Their asymptotic expressions at the transition point
and at large hz are

Ft(h̄z) = 1
8


1√
h̄z−1

, hz → u+ 0+,

1

h̄
3
2
z

, hz � u,
Fy(h̄z) =

{ π
2 , hz → u+ 0+,
2
3

1√
h̄z
, hz � u. (8.92)

As a side remark, we find that the function δθ0[Φ](r; t), Eq. (8.79), can be identified as the
linear term of the expansion of θ0(x;u, hz + Φ̇

2 ) in Φ̇
2 . We thus have ∂θ0(x) = ∂hzθ0(x;u, hz),

and inserting this form into Eq. (8.83) for Ft(h̄z), we see that the integrand is a full derivative
with respect to hz. Thus the coefficient

Ft(h̄z) = 1
8

∫ 0

−∞
dx̄ ∂h̄zcos θ0(x̄; h̄z) = −1

4∂h̄zF1(h̄z), (8.93)
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Figure 8.10. The functions Ft(h̄z), Eqs. (8.83) and (8.90), and Fy(h̄z), Eqs. (8.84) and (8.91). They
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Ref. [KJT16]. Copyright (2016) by the APS.

can alternatively be expressed in terms of F1(h̄z) (8.34).
This more elegant method of derivation of the Luttinger liquid model (8.82) as an expansion

of the modified domain-wall energy also allows us to determine the restrictions on the allowed
magnitude of fluctuations. The domain-wall energy dE1D

0 (u, hz) (8.31) contains a nonanalytic
square-root dependence

√
h̄z − 1. As a result, the power expansion (8.88) is valid as long as

the fluctuation energies
Φ̇, ρ(∇yΦ)2 � hz − u (8.94)

are much smaller than the deviation hz − u from the transition point. This deviation hz − u
is exactly the gap of the neutral bulk excitations, given by isospin waves. In this regard, we
caution about using the unexpanded functional (8.87) at fluctuation energies Φ̇ and ρ(∇yΦ)2

comparable to hz − u. The approximations made in the derivation of this expression amount
to neglecting other isospin configurations, such as bulk excitations, which become relevant at
energies ∼ hz − u.
In the next Sec. 8.4.2, we analyze the main properties of the obtained Luttinger liquid model.

8.4.2. Analysis
The Luttinger liquid model (8.82) describes the edge excitations of the n∞ = nz phase, realized
for u < hz. Its collective variable is the angle Φ(y; t) varying with time t and coordinate y along
the edge. In leading order, the isospin texture associated with Φ(y; t) can be approximated
by the deformed ground state configuration n0(x|Φ(y; t)) as defined in Eqs. (8.15) and (8.20).
The field Φ(y; t) thus corresponds to the polarization in the xy isospin plane. Simultaneously,
this edge isospin texture carries electric charge. According to Eq. (8.35), the charge density
per unit length in the y direction reads

κ1D[Φ](y; t) ≡
∫ 0

−∞
dxκ[n0(x|Φ(y; t))] = 1

4π

∫ 0

−∞
dx sin θ0(x)∇xθ0(x)∇yΦ(y; t)

= 1
2π∇yΦ(y; t).

(8.95)
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The associated electric current in the y direction equals

j1D[Φ](y; t) = − 1
2π Φ̇(y; t), (8.96)

as follows from the continuity equation

κ̇1D +∇yj1D = 0. (8.97)

Therefore, the single field Φ(y; t) carries both isospin and charge degrees of freedom, locked
to each other, and the Luttinger liquid (8.82) represents an isospin helical liquid. For further
reading on interacting 1D edge channels, see Refs. [XM06, WBZ06, SJJ10, SRvOG12, BDRT12,
CBD+12, LOB12, GCT14, KGCM14].
The low-energy edge theory is fully characterized by two parameters: the velocity v of the

linear gapless excitation spectrum ω = vk, and the dimensionless parameter K describing the
effective strength of interactions, see Sec. 3.2.4 for details and references. In a generic Luttinger
liquid, K = 1 corresponds to a non-interacting system. 0 < K < 1 is the range of repulsive
interactions, the stronger the interactions, the smaller K, and 1 < K is the range of attractive
interactions (irrelevant for the considered system), the stronger the interactions, the larger K.
From Eqs. (8.83) and (8.84), these two parameters are expressed in terms of the functions
Ft,y(h̄z) (8.90) and (8.91) as

v(h̄z) = √ρu

√√√√Fy(h̄z)
Ft(h̄z)

, K(h̄z) = u

8πε�
1√

Ft(h̄z)Fy(h̄z)
. (8.98)

Their asymptotic expressions at the phase transition point hz = u and at large hz follow from
Eq. (8.92) as

v(h̄z) = √ρu


√

4π(h̄z − 1)
1
4 , hz → u+ 0+,√

16
3

√
h̄z, hz � u,

(8.99)

K(h̄z) = u

8πε�

{ √
16
π (h̄z − 1)

1
4 , hz → u+ 0+,√

12 h̄z, hz � u.
(8.100)

The dependence of the parameters v(h̄z) and K(h̄z) on the normalized field h̄z is plotted in
Fig. 8.11 and results from the behavior of the functions Fy(h̄z) and Ft(h̄z) as shown in Fig. 8.10.
Both the velocity v(h̄z) and interaction parameter K(h̄z) are growing functions of the field h̄z,
i.e., they increase as the magnetic field B decreases. Sufficiently far from the phase transition
hz = u, their scaling given in Eqs. (8.99) and (8.100) is simply

v ∼
√
ρhz ∼ e2

∗

√
hz
ε�
� e2

∗, K ∼ hz
ε�
� 1. (8.101)

These estimates are correct in the whole range where the QHFM theory is valid. There, the
energy scales u, hz � ε� of the SU(2)-asymmetric terms are much smaller than ε� (8.50) of
the SU(2)-symmetric interactions. Thus, the interaction parameter K � 1 is small and the
Luttinger liquid is strongly interacting. Moreover, both the velocity v ∼ √ρu(h̄z−1)

1
4 and the

interaction parameter K ∼ u
ε�

(h̄z − 1)
1
4 approach zero at the transition point, hz → u + 0+.
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Figure 8.11. The velocity v(h̄z) and interaction parameter K(h̄z), Eq. (8.98), of the Luttinger liquid
model (8.82) for the edge excitations of the TnT n∞ = nz phase. The asymptotic functions (8.99)
and (8.100) at the transition point h̄z = 1 and at large h̄z � 1 are indicated. Reprinted figures with
permission from Ref. [KJT16]. Copyright (2016) by the APS.

The Luttinger liquid therefore becomes infinitely strongly interacting at the transition point.
We note though that the energy window of applicability of this low-energy theory narrows
accordingly, see Eq. (8.94). For larger fluctuations, the Luttinger liquid model becomes invalid.
The Luttinger liquid models for the edge excitations in the form of Eq. (8.82) were obtained

in Ref. [PSH16] for the double-layer system with inverted band structure and in Ref. [TSFM16]
for the F phase of the ν = 0 state in graphene. However, in Ref. [PSH16] the expression for
the coefficient Ft(h̄z) of the time-derivative term does not diverge at the phase transition
hz → u + 0+. This divergence is physical and to be expected, since the 1D model should
fail at the phase transition, where the bulk modes become gapless. In Ref. [TSFM16], only
the scaling of the parameters Ft,y(h̄z), v(h̄z), K(h̄z) at the phase transition hz → u+ 0+ was
determined, which does agree with our asymptotic results. We additionally obtain explicit
analytical expressions (8.83), (8.84), and (8.98) for them at all u < hz.
The helical Luttinger liquid model for the edge excitations above was derived in a controlled

way in the QHFM regime, realized in the vicinity of the topological phase transition at B =
B∗. However, the single-particle TnT phase is present in the whole range 0 ≤ B < B∗

of magnetic fields. It is safe to argue that if the Luttinger liquid persists in the region of
strong effective interactions near the transition point, it also exists in the whole range 0 ≤
B < B∗ − δBu of magnetic fields. Let us consider the bare velocity v0(B) of the counter-
propagating single-particle edge states at the crossing point of their energy curves, ε(p) = hz,
in Fig. 7.2. It is largest at zero field B = 0 and monotonically decreases down to zero v0(B →
B∗−0+) = 0 at the single-particle phase transition point, as shown schematically in Fig. 8.12.
The effective strength of the interactions at the edge can be characterized by the dimensionless
parameter e2

∗/v0(B), which is roughly equivalent to the ratio ε�/hz characterizing the strength
of interactions in the bulk. The effective strengths of interactions in the bulk and at the edge
are thus in accord with each other.
Our basic assumption of weak bare Coulomb interactions, see Sec. 7.2.1, can be formulated

as v0(B = 0)� e2
∗. Thus, at zero or small fields B � B∗, the edge states are weakly interacting

and the corresponding low-energy theory for collective excitations can be derived using the
standard bosonization procedure, see Ref. [Gia03], and will have the form of a Luttinger liquid.
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Figure 8.12. Schematic plots of the magnetic-field dependencies of (a) the velocity v(B) and (b)
the interaction parameter K(B) of the helical Luttinger liquid describing the edge excitations of the
TnT phase of a QHTI for U(1)-symmetric interactions with easy-plane anisotropy u > 0. At small
fields B � B∗, the effective interactions are weak, K(B) ≈ 1, and the velocity v(B) ≈ v0(B) is close
to its bare value. In the QHFM regime close to the single-particle topological phase transition, the
effective interactions are strong, K(B) � 1. The effective interactions are thus highly tunable. (c)
Summarized properties of the edge excitations. The TT phase with gapped edge excitations ensues at
lower magnetic fields upon switching on the interactions and lowering their symmetry. Reprinted figure
with permission from Ref. [KJT16]. Copyright (2016) by the APS.
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8.4. Helical Luttinger Liquid

The velocity v(B = 0) ≈ v0(B = 0) of the collective excitations will be close to the bare velocity
and the interaction parameter K ≈ 1 will be close to unity, corresponding to weak effective
interactions. In the QHFM regime on the other hand, the effective interactions in the Luttinger
liquid are strong, with v(B)� e2

∗ and K(B)� 1 from Eq. (8.101). The regime of intermediate
effective interaction strength with v(B) ∼ e2

∗ and K(B) is close to neither 0 nor 1, occurs at
the verge of the QHFM regime, at fields B = B∗ − δBε� with

δBε� ≡
ε�

|∂Bhz(B∗)|
, (8.102)

where hz(B) ∼ ε�(B). In this intermediate-strength regime, the weakly and strongly inter-
acting Luttinger liquids must continuously connect.
We thus conclude that the helical Luttinger liquid describing the edge excitations of a QHTI

persists in almost the whole range of the non-interacting TnT phase, 0 ≤ B < B∗−δBu, and is
highly tunable. The magnetic field allows one to adjust the effective interactions between weak
at lower B and infinitely strong at higher B, close to the topological transition at B = B∗−δBu.
The corresponding behavior of the velocity v(B) and interaction parameter K(B) in the whole
range is plotted schematically in Fig. 8.12 (a) and (b). However, we remind that the derived
Luttinger liquid theory for the edge was obtained under the specific assumption of U(1) isospin
symmetry, defined in Eqs. (7.14) and (7.15), of the many-body Hamiltonian Ĥ (7.8). This U(1)
symmetry is inherited by the Lagrangian (8.82) of the Luttinger liquid, which is invariant under
rotations of the angle field

Φ(y; t)→ Φ(y; t) + φ. (8.103)

We now turn to the analysis of the effects that break U(1) symmetry, introduced in Secs. 7.2.3
and 7.3.3.

8.4.3. Broken U(1) Symmetry

As we discussed in Sec. 7.2.3, there are two categories of U(1)-asymmetric terms. One directly
breaks the physical symmetry and exists already at the single-particle level, given by the term
E1∅(n) in Eq. (7.31). The other one preserves the physical symmetry and can arise only from
interactions, described by E2∅(n) in Eq. (7.34). If small, both can be incorporated into the
Luttinger liquid model (8.82).

Broken physical Symmetry: Single-particle Effect

Proceeding along the same line as in Sec. 8.4.1, we expand the term

E1∅(n) =− h⊥[sin θ0(x) +O(δθ)] cos(ϕ− ϕ1∅)
→− h⊥ sin θ0(x) cos(ϕ− ϕ1∅)

(8.104)

of the first category about the ground state, see Eq. (8.65), and keep only the zero-order
term in δθ. Due to the constraining function sin θ0(x), the approximation ϕ(x, y; t)→ Φ(y; t),
Eq. (8.73), may then be used. This yields the contribution

− L1D
1∅[Φ] = −h1D

⊥

∫
dy cos(Φ(y; t)− ϕ1∅), (8.105)
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to the 1D Lagrangian of the edge excitations, where

h1D
⊥ = h⊥lu

s
F⊥(h̄z), F⊥(h̄z) =

∫ 0

−∞
dx̄ sin θ0(x̄; h̄z) = ln

√
h̄z + 1√
h̄z − 1

. (8.106)

The Lagrangian L1D[Φ] +L1D
1∅[Φ] describes the sine-Gordon model, the properties of which are

well-studied, see Ref. [Gia03] for details. Its excitation spectrum is gapped at

K < 2, (8.107)

i.e., including all repulsive interactions 0 < K < 1, the non-interacting case K = 1, and the
range 1 < K < 2 of attractive interactions. Thus, if the physical symmetry is broken, there is
no topological protection already at the single-particle level K = 1. As a result, in the presence
of repulsive interactions K < 1, the system is in a TT phase with broken U(1) symmetry and
gapped edge excitations for all magnetic fields B ≥ 0.

Preserved physical, but broken U(1) Symmetry: Interaction Effect

Similarly, we expand the term of the second category about the ground state and keep only
the zeroth-order term in δθ like

E2∅(n) =1
2u2∅[sin2 θ0(x) +O(δθ)] cos 2(ϕ− ϕ2∅)

→1
2u2∅ sin2 θ0(x) cos 2(ϕ− ϕ2∅).

(8.108)

After the substitution ϕ(x, y; t)→ Φ(y; t), we obtain the contribution

− L1D
2∅[Φ] = u1D

2∅

∫
dy cos 2(Φ(y; t)− ϕ2∅), u1D

2∅ = u2∅lu
s

Fy(h̄z), (8.109)

to the 1D Lagrangian of the edge excitations. Therefore, for preserved physical symmetry
(considering inversion as an example), the edge is described by the Lagrangian L1D[Φ]+L1D

2∅ [Φ].
This is also a sine-Gordon model, but Eq. (8.109) differs from Eq. (8.105) by the numerical
factor 2 instead of 1 in the cosine argument. As a result, the edge ground state breaks U(1)
symmetry (the field acquires a finite expectation value 〈Φ〉 6= 0) and the edge excitations
become gapped in a different range of interaction strength, namely already for

K < 1
2 . (8.110)

According to Sec. 8.4.2, the quantum phase transition at the field B2∅ ∼ B∗− δBε� such that
K(B2∅) = 1

2 occurs at the verge of the QHFM regime, where hz(B2∅) ∼ ε�(B2∅). The system
has gapless edge excitations for lower fields B < B2∅ and gapped excitations for all higher
fields B > B2∅.

8.5. Role of U(1) Symmetry for Topological Protection
One of the key questions raised in the studies of topological systems is how interactions affect
the topological properties. A common understanding is that a non-interacting TI is generally
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not guaranteed to remain such in the presence of interactions. Our presented results allow
us to specify the symmetry requirements for the topological protection in the presence of
interactions. The QHTIs we consider are protected by some physical symmetry, see Sec. 7.1.
Due to this symmetry, two relevant LLs, plotted in Fig. 7.1, have different transformation
properties and are thus not coupled at the single-particle level. As a result, the projected
single-particle Hamiltonian within these two LLs possesses U(1) symmetry with respect to
uniaxial isospin rotations, see Eqs. (7.2) and (7.15).

Summarizing the results of Secs. 8.3 and 8.4, we conclude that this effective continuous
U(1) symmetry is responsible for the topological protection in the presence of interactions in
this QHTI class of systems. As long as the U(1) symmetry is preserved, the TnT phase with
gapless edge charge excitations persists for any effective strength of interactions, even in the
strongly interacting QHFM regime, realized in the vicinity of the single-particle topological
phase transition.
However, we find that the physical symmetry alone is generally not sufficient to protect the

TnT phase in the presence of interactions. The interactions preserving the physical symmetry
can still break U(1) symmetry and thereby destroy the TnT phase for strong effective interac-
tions. “Preserved U(1) symmetry” means here that both (i) the bulk ground state and (ii) the
interacting projected Hamiltonian are U(1)-symmetric. Accordingly, the two mechanisms by
which U(1) symmetry can be broken correspond to violation of one of these conditions:
1) First, as demonstrated in Sec. 8.1, even the U(1)-symmetric interactions (condition (ii)

satisfied) with the “right” properties, like easy-plane anisotropy, can result in a bulk ground
state with spontaneously broken U(1) symmetry (condition (i) violated): the n∞ = n∗0(ϕ0)
phase. As shown in Sec. 8.3, this phase has gapped edge charge excitations and is thus TT.
2) Secondly, as analyzed in Secs. 7.2.3 and 7.3.3, interactions can (depending on the physical

symmetry) contain terms that preserve the physical symmetry, but break the effective U(1)
symmetry (condition (ii) violated). These terms result in a phase transition to the TT phase
with broken U(1) symmetry at the edge and gapped excitation spectrum, see Sec. 8.4.3 for
details. At the same time, the U(1)-symmetric bulk ground state n∞ = nz may still persist
beyond this transition (condition (i) satisfied).
We mention that similar types of interactions have earlier been considered in the studies of

helical Luttinger liquids for the edge of 2D TIs protected by TTT symmetry, see Refs. [XM06,
WBZ06, SJJ10, SRvOG12, BDRT12, CBD+12, LOB12, GCT14, KGCM14]. The transition
from the TnT phase to either of these TT phases occurs upon increasing the magnetic field B,
as the single-particle phase transition point B∗ is approached and the effective interactions get
stronger. Yet the transition point is at fields lower than B∗, namely at B∗ − δBu [Eq. (8.9)]
and B2∅ ∼ B∗ − δBε� [Eq. (8.102)], respectively, as summarized in Fig. 8.12(c). Thus, these
are interaction-induced topological quantum phase transitions, enabled by the tunability of the
effective interactions by the magnetic field as presented in Sec. 8.4.2.

Conclusion

In this Chap. III, we studied the effect of electron interactions on the topological properties
of QHTIs. Due to the crossing of LLs at the single-particle topological phase transition, its
vicinity is automatically the regime of strong effective interactions. As an appealing theoretical
aspect, such a system can be studied in a controlled way within the framework of QHFMism.
We found that the properties of the charge excitations of the phases n∞ = ±nz with
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Figure 8.13. Sketch of the LL structure of a QHTI, based on Fig. 7.1 for HgTe QW parameters,
modified by the U(1)-symmetric Coulomb interactions. The bulk charge excitation gap between the
states |a〉 and |b〉 never closes. The edge states, depicted by the purple line, are gapless up to magnetic
fields of B∗ − δB, where the interaction driven topological phase transition occurs and the edge states
gap out. For even larger magnetic fields, the bulk and edge charge excitation gaps coincide. Beware:
the gap for neutral bulk excitations, see Eq. (8.94), is different from the one sketched here.

preserved U(1) symmetry remain qualitatively the same in the presence of strong interactions.
The TnT phase n∞ = nz has gapless edge excitations, while the TT phase n∞ = −nz
is gapped at the edge. However, collective charge excitations of the interacting system are
microscopically quite different from the single-electron excitations. Spontaneous breaking of
the U(1) symmetry leads in the intermediate phase n∞ = n∗(ϕ0) to a controlled opening of
the gap for the edge charge excitations. While the properties of the edge excitations of the
three phases are different, their bulk charge excitations are qualitatively the same. The bulk
charge gap is finite in all three phases and never closes during the transformation from the
TnT n∞ = nz to the TT n∞ = −nz phase with increasing Bz, see Fig. 8.13.
Particular attention was paid to establishing the requirements for the topological protection

in this interacting system. We find that this question is ultimately related to the effective
symmetry of the system: the continuous U(1) symmetry is a necessary condition for the TnT
phase to persist in the regime of strong effective interactions. If U(1) symmetry is preserved,
the edge of the TnT phase is described by the helical Luttinger liquid. The effective interactions
of this Luttinger liquid are highly tunable by the magnetic field B. They are weak (for weak
bare Coulomb interactions) at small B and grow as B is increased, becoming strong in the
QHFM regime in the vicinity of the single-particle topological phase transition.
The U(1) symmetry may be broken, however, either spontaneously or by the interactions

that are explicitly U(1)-asymmetric. In either scenario, this eventually results in a phase
transition to a TT phase with gapped edge excitations, which can be achieved by tuning the
interaction strength via the magnetic field.
The tunability of interactions, the accessibility of the regime of strong effective interactions

even in a system with weak bare interactions, and the possibility to realize interaction-induced
topological phase transitions are among the properties that make QHTIs an attractive class
of systems for investigating the interplay of interactions and topology, both theoretically and
experimentally.
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Part IV.

Hybrid Systems of Weyl Semimetals
and 3D Topological Insulators
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The study of topological properties in a semiconductor environment has become a strong
and flourishing field in condensed matter physics. Topological insulators (TIs) are the stan-
dard materials in this context, well studied both theoretically and experimentally by now, see
Sec. 2.4 for an introduction. Our own research in Chaps. II and III focused on weakly and
strongly interacting two-dimensional (2D) TIs. Now, we widen our scope and also consider
their semi-metallic counter-part, the Weyl semimetal (WSM), as introduced in Sec. 2.5.
WSMs were proposed to exist in condensed matter systems decades ago [NN81, NN83,

Mur07]. However, only very recently with the prediction of concrete material realizations
[WTVS11, WFF+15, HXB+15] the field has seen an enormous growth. The experimental
proof of the existence of Weyl points and their corresponding surface states, called Fermi
arcs, followed soon afterwards [XAB+15, LWF+15b, LXW+15, YLS+15, XDW+15, LWY+15].
Yet both for fundamental research and application purposes these “early” WSMs, such as
the TaAs family of non-centrosymmetric monopnictides, are too complicated with many Weyl
points (24 for TaAs) in the Brillouin zone (BZ). Simpler materials with eight [CXS+16,
RJY+16, RAHM15, RJZ+16, SWY15, HMO+16, DWD+16, TWC+16, JJL+16, XAC+16] and
four [KKE+16, BYS+16] Weyl points have been predicted and observed, where the latter is
the minimal number of Weyl points for a system with time-reversal (TTT ) symmetry. WSM
materials with broken TTT symmetry are more scarce, an example is YbMnBi2 analyzed in
Ref. [BEG+15]. They could realize the absolute minimum of two Weyl points, but here only
theoretical proposals [BHB11, Cho11, XWW+11, BLQ14, WACB16] exist so far. Most of them
rely on magnetically doped TIs or TI heterostructures.
TI and WSM are both topological phases that can be directly connected to each other

through quantum phase transitions, as explained in Sec. 2.5 and the references therein. Here,
we want to go a step further and study the question whether a system can be both in the TI
and WSM phase at the same time, or at least support both corresponding surface states, 2D
Dirac surface states and Fermi arcs, on the same surface.
Such a combined phase might exist in HgTe with applied compressive strain. The strain

pushes the Γ8 bands into one another, see Fig. 2.15, creating Dirac points. These are then
split by breaking of inversion (III) symmetry through bulk inversion asymmetry (BIA) terms
[RJY+16]. At the same time, the topological band inversion between the Γ8 and the Γ6 bands
remains, leading to the conjecture that this system could have topological Dirac states and
Fermi arcs on its surface. A different way to create such a hybrid surface state is placing a
TI and WSM spatially adjacent to each other, possibly separated by a small, topologically
trivial (TT) buffer layer. The separate surface states of TI and WSM will interact, e.g.
by Coulomb interaction or tunneling due to a small overlap of wave functions, forming the
hybrid surface dispersion relation. Previous related research on adjacent TI and WSM phases,
presented in Ref. [GVB15], suggest that at such a shared surface both Dirac states and Fermi
arcs can exist. However, they were found in different areas of k-space, mutually excluding one
another such that they do not hybridize at all. Our approach differs from the one chosen in
Ref. [GVB15] by considering only a small, perturbative coupling between the two phases. This
ensures that both TI and WSM surface states survive and can interact with each other.
We focus in this chapter on an analytical study of the combined surface states generated

from the hybridized TI and WSM. A simplified ansatz offers the possibility to calculate
the surface Hamiltonian analytically, allowing for a detailed analysis of the surface physics.
Depending on the symmetry of the assumed couplings, the surface dispersion relation shows
quite different behavior. In the case of spin symmetry, two shifted Dirac nodes may emerge
out of the combination of a single Dirac node and a Fermi arc. For spin-asymmetric coupling,
the Fermi arc gaps out and spin-polarizes the former Dirac node.
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9. Exotic Surface States

The research presented in this Sec. 9 and the corresponding Apps. B and C is published in
Ref. [JT17]. We begin with a recap of the effective models for the separate phases of TIs
and WSMs, see Secs. 2.4.2 and 2.5, and analyze their symmetry properties and surface states
in Sec. 9.1. The coupling of the two Hamiltonians and the analytic form of the combined
surface state is discussed in Sec. 9.2. Sec. 9.3 focuses on the different ways to influence and
tune the hybrid surface dispersion relation. We end with the proposal of possible experimental
realizations in Sec. 9.4.

9.1. Separate Models

The Hamiltonian (2.46) of the three-dimensional (3D) TI phase we will use was originally
derived for the Bi2Se3 family of materials in Ref. [ZLQ+09, LQZ+10]. It contains four bands
and serves as a minimal, but general, TI model. The Weyl Hamiltonian (2.57) considered in
the following originates from Refs. [YLR11, MKT17]. It contains two bands and models an III
symmetric type I or II WSM with two Weyl points. We simplify the models as far as possible
without losing too much versatility. It is important to retain terms quadratic in momentum
for the introduction of the surface in the z direction. This is done via hardwall boundary
conditions on a half space z ≤ 0 or z ≥ 0.

9.1.1. Topological Insulator

The effective Hamiltonian for a 3D TI is given by the 4x4 matrix

HTI =
(
M(k)τ3 + Bkzτ2 + Cτ0 iAk−τ1

−iA∗k+τ1 M(k)τ3 + Bkzτ2 + Cτ0

)
(9.1)

withM(k) = M0 + M1(k2
‖ + k2

z), k2
‖ = k2

x + k2
y and k± = kx ± iky = k‖e

±iφk . In the original
derivation for Bi2Se3, the Pauli matrices τ describe an orbital degree of freedom. HTI is
written in a spin-up/down basis, represented by the Pauli matrices σ in the following. The
coupling A = |A| eiφA can in principle be complex, with the angle φA. For fulfilled inversion
condition M0M1 < 0, the model is in the strong TI phase.
We define the III operator PTI = σ0⊗τ3 and TTT operator TTI = iσ2⊗τ0K with K the complex

conjugation operator. HTI is symmetric under both operations, fulfilling

P †TIHTI (−k)PTI = HTI (k) , T †TIHTI (−k)TTI = HTI (k) . (9.2)

The bulk dispersion relation is double degenerate and given by

ETI = C ±
√
|A|2 k2

‖ + B2k2
z +M(k)2. (9.3)
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Based on the method described in App. B, the surface states can be calculated analytically.
We assume opposite surfaces to be well separated, which offers the possibility to treat them
individually. Thus in the calculation we only consider one of them via hardwall boundary
conditions at z = 0. The surface wave function is then given by

Ψ (z) = 1√
2

(
eikz,1z − eikz,2z

)( ± iηAk−
|A|k‖

ψη

ψη

)
(9.4)

with the vector ψη = 1√
2 (1, η)T and the inverse localization length of ik

z,12
= 1

2M1

[
− ηB ±√

4M1(M0 +M1k2
‖) + B2

]
. The sign η = ± depends on the surface, η = −sgn(B/M1) (upper

surface) or η = sgn(B/M1) (lower surface). The existence condition for the surface state, see
App. B, is

M1(M0 +M1k
2
‖) < 0 (9.5)

stressing the importance of being in the inverted regime.
The surface Hamiltonian (dispersion relation) is obtained from HTI by projecting out the

orbital (orbital & spin) degrees of freedom with the help of ψη (Ψ (z)). We find the usual Dirac
form

Hsur
TI =

(
C iηAk−

−iηA∗k+ C

)
, EsurTI = C ± |A| k‖, (9.6)

experiencing spin-momentum locking, with the angle φA+ ηπ
2 between the spin projection and

momentum vector in the x-y plane. The combined dispersion relations of the bulk and surface
of the TI are shown in Fig. 9.1 (left).

9.1.2. Inversion symmetric Weyl Semimetal
A WSM exists in different flavors. On the one hand, one distinguishes type I and type II
depending on preserved or broken Lorentz invariance at the Weyl points [XZZ15, SGW+15,
SGT16]. Secondly, either TTT or III symmetry has to be broken to get from a Dirac to a Weyl
semimetal. For all these phases minimal models have been proposed in the literature, see
Sec. 2.5.
For simplicity, we focus on the model with broken TTT and preserved III symmetry, as it has

the minimal number of one pair of Weyl points. The Hamiltonian is

HW = t(k)τ3 + vzkzτ2 + vykyτ1 + γW t (k2
x − k2

W )τ0 (9.7)

with t(k) = t (k2
‖ + k2

z − k2
W ) and the parameters t, vy,z, γW and kW . The degree of freedom

described by the Pauli matrices τ can be orbital, spin or a combination of the two, depending on
the specific material realization. For the concrete form of the symmetry operations considered
in the following we assume a spinless system, as it is done in Ref. [MKT17]. The two Weyl
points are specified by kx = ±kW , and the parameter γW leads to a tilting of the dispersion
relation at the Weyl points. For |γW |< 1 one has a type I, otherwise a type II WSM. Expanding
HW around kx = ±kW yields a Hamiltonian with linearized Weyl form

H lin
W = vykyτ1 + vzkzτ2 ± 2t kWkx (τ3 + γW τ0) . (9.8)

The Hamiltonian HW (9.7) fulfills the symmetry conditions

P †WHW (−k)PW = HW (k) , T †WHW (−k)TW 6= HW (k) (9.9)
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9.1. Separate Models

Figure 9.1. (left) Bulk and surface dispersion relations, Eqs. (9.3) and (9.6), of the TI model. The
surface band is plotted in cyan. Parameters: C = 0, M0 = −1, M1 = 1, A = 1, B = 1, kz = 0. (right)
Bulk and upper surface band structure, Eqs. (9.10) and (9.13), of the Weyl model. The surface band
is colored in red. Parameters: γW = 1

4 , kW = 1, t = 1, vy = 1, vz = 1, kz = 0. Reprinted figures with
permission from Ref. [JT17]. Copyright (2017) by the APS.

with the III operator PW = τ3 and TTT operator TW = τ0K with K the complex conjugation
operator. Hence, parity is preserved and TTT symmetry broken. The bulk dispersion relation is
then given by

EW = γW t (k2
x − k2

W )±
√
v2
yk

2
y + v2

zk
2
z + t(k)2. (9.10)

The surface states can be calculated analytically based on the method discussed in the App. B.
This results in the wave function

Ψ (z) =
(
eikz,1z − eikz,2z

)
ψη (9.11)

with ψη = 1√
2 (1, η)T and inverse localization length ik

z,12
= 1

2t

[
−ηvz ±

√
4t2(k2

‖ − k
2
W ) + v2

z

]
.

The sign η = ± depends on the surface; η = −sgn (vz/t) (upper surface) or η = sgn (vz/t)
(lower surface). The existence condition for the surface state is

k2
‖ < k2

W (9.12)

such that Fermi arcs can only exist between the Weyl points. Hence, the surface dispersion
relation yields the known Fermi arc spectrum

EsurW = γW t (k2
x − k2

W ) + ηvyky. (9.13)

The combined dispersion relations of the bulk and surface of the WSM are shown in Fig. 9.1
(right).
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9.2. Coupled System
The Hamiltonians and surface wave functions of the TI and WSM phases discussed in Sec. 9.1
are very similar. Thus, we conjecture that also the combined system may have surface states
which can be calculated by the simplified method described in App. B. This will allow us to
discuss the surface physics analytically. In this section, we define the combined Hamiltonian
and discuss the couplings allowed by symmetry under the assumptions that certain symmetries
are preserved. The surface state Hamiltonian and wave function are derived and the limitations
due to the approximated calculation method are discussed.

The combined Hamiltonian of the TI and WSM phases is defined by

HWTI =
(
HTI HC

H†C HW

)
(9.14)

with the coupling HC . Such a coupling can be regarded as a tunneling Hamiltonian approach
where HC (weakly) couples the two entities HTI (9.1) and HW (9.7). A similar approach has
been considered in Ref. [BPF+15] to combine topological systems of different kinds with each
other and study their emerging physics. The combined symmetry operator for III symmetry is
now given by

PWTI =
(
PTI 0

0 PW

)
. (9.15)

As TTT symmetry is already broken in the subsystem of the WSM, it will also be absent in the
combined system. The study of the effect on the TI of such a breaking of TTT symmetry via
coupling, applicable e.g. in the setup of spatially separate Weyl and TI phases as depicted in
Fig. 9.7 (b), is one of the goals of this paper. The stability of gapless edge states to TTT sym-
metry breaking perturbations such as magnetic fields [MCW+15] and considerable Coulomb
interaction, see Chap. III about quantum Hall topological insulators (QHTIs), is an active
research topic and has been experimentally observed in 2D. It is proposed that crystalline
symmetries such as III or rotational symmetries protect the gapless edge states in the absence
of TTT symmetry, as discussed in Sec. 2.4.3 for topological crystalline insulators (TCIs). Since III
symmetry is preserved in our system, we conjecture that the use of the gapless TI model can
be justified even in a TTT breaking environment.

Applying the III operator to the Hamiltonian, following Eqs. (9.2) and (9.9), yields restric-
tions for the allowed couplings, in the assumption that this symmetry is not broken. As the
symmetry operator is block-diagonal, these restrictions do not depend on HW or HTI . For an
III symmetric system, the couplings proportional to τ3 and τ0 have to be even in momentum,
while the ones proportional to τ2 and τ1 have to be odd in momentum. We choose the following
representation

HC,IS =
(
Hc,IS

H̃c,IS

)
, Hc,IS = d(k‖)τ3 + c1k+τ2 + b1k+τ1 + a(k‖)τ0, (9.16)

where d(k‖) = d0 + d2k
2
‖ and a(k‖) = a0 + a2k

2
‖. H̃c,IS has the same structure. This choice

ensures the preservation of parity for the combined system. The size of the terms depends on
the concrete experimental realization, where the best candidate materials for our proposal have
yet to be identified. In the case of two spatially separate Weyl and TI systems, as depicted in
Fig. 9.7 (b), the coupling parameters can be calculated from the overlap of the wave functions
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of the different materials. As an example, this is done in Ref. [MPER12] for a bilayer HgTe
quantum well (QW) system by fitting a k·p model to experimentally obtained band structures.
In general, all symmetry allowed couplings can be relevant for the following discussion.
In our analysis below however, coupling terms proportional to kz are not considered, for

simplicity. This is a physically reasonable assumption at least for the surface states, if one
assumes them to be 2D, perfectly localized in the z-direction. Close to the Weyl points or
the TI bulk band edge, where the surface states delocalize, a kz dependent coupling should be
taken into account. The ansatz we will consider is thus

Ψ (z) =
(
eikz,1z − eikz,2z

) L1 (k±)ψηTI
L2 (k±)ψηTI
L3 (k±)ψηW

 (9.17)

with ψη = 1√
2 (1, η)T. This is a special case of the general form of the surface wave function

Ψg (z) =
∑
j aje

ikz,jzψ (k±, kz,j), j ∈ {1, ..., 6}. Its choice is motivated by the ability to obtain
analytical solutions for the surface states. Physically it means that we only consider solutions
were the TI and WSM surface states have the same exponential localization with the same
localization length. This implies that phase transitions of the subsystems, such as normal
insulator (NI) to TI or NI to WSM, can not be discussed separatly in this treatment. However,
for a system deep in the TI and WSM phase, the simplification should not alter the essential
physics. We have checked numerically that small differences in the localization lengths of the
subsystems do not alter the surface dispersion relations in a qualitative way, see App. C.
Projecting the Hamiltonian (9.14) on the surface, the eigenvalue equation separates into

simpler problems

Hsur
WTI

 L1
L2
L3

 = EsurWTI

 L1
L2
L3

 , Hkz
WTI

 L1
L2
L3

 = 0 (9.18)

with the Hamiltonians

Hsur
WTI =

 C iηAk− a(k‖) + ηb1k+
−iηA∗k+ C ã(k‖) + ηb̃1k+

a(k‖)∗ + ηb∗1k− ã(k‖)∗ + ηb̃∗1k− γW t
(
k2
x − k2

W

)
+ ηvyky

 , (9.19)

⇒
part. diag.

 C + |A| k‖ 0 H̃c + eiφ
A
k Hc

0 C − |A| k‖ H̃c − eiφ
A
k Hc

H̃∗c + e−iφ
A
k H∗c H̃∗c − e−iφ

A
k H∗c γW t

(
k2
x − k2

W

)
+ ηvyky

 , (9.20)

Hkz
WTI =

 M (k)− iηBkz 0 d(k‖)− iηc1k+
0 M (k)− iηBkz d̃(k‖)− iηc̃1k+

d(k‖)∗ − iηc∗1k− d̃(k‖)∗ − iηc̃∗1k− t (k)− iηvzkz

 (9.21)

for η = ηTI = ηW . In Eq. (9.20), we partially diagonalize the Hamiltonian and define φAk =
φk−φA−η π2 , Hc = a(k‖)+ηb1k+ and H̃c = ã(k‖)+ηb̃1k+. This will help in the interpretation
of the surface dispersion relation in terms of coupled Dirac cone and Fermi arc. In the case of
η = ηTI = −ηW , one has to replace in Eqs. (9.19) - (9.21) a(k‖)↔ d(k‖), b1 ↔ ic1, vy → −vy
and vz → −vz. We will focus in the following on the former, ηTI = ηW , case.

Taking ( L1 L2 L3 )T as the same eigenvector in Eq. (9.18), the latter can only be fulfilled
by further restrictions on the parameters. We choose a locking between some of the TI and
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9. Exotic Surface States

the WSM parameters, i.e. t(k) = ζM(k) and vz = ζB with ζ a constant (set to 1 in the
following). This ensures the same localization length for the two subsystems. Additionally,
the couplings c1 and d(k‖) are set to be 0 for simplicity. Therefore the total coupling does not
change the original orbital character of the TI and WSM surface states, being eigenstates of
the τ1 matrix with fixed eigenvalue + or −. With regard to these restrictions, we have checked
that the neglected couplings can be considered numerically with only quantitative changes to
the surface dispersion relations, see App. C.
In total, this leads to the same quadratic equation for kz as in the pure TI case, ik

z,12
=

1
2M1

[
−ηB ±

√
4M1(M0 +M1k2

‖) + B2
]
. The existence condition is again

M1
(
M0 +M1k

2
‖

)
< 0 (9.22)

and the (unnormalized) eigenvectors are given by L1
L2
L3

 =

 (EsurWTI − C)Hc + iηAk−H̃c

(EsurWTI − C) H̃c − iηA∗k+Hc

(EsurWTI − C)
2 − |A|2 k2

‖

 . (9.23)

The eigenenergies EsurWTI are too lengthy to state them here, but can also be derived analytically.
The obtained solution leads to the possibility to tune bulk and surface dispersion relations

rather independently. Parameters Mi and B influence the surface dispersion relation only
indirectly via the existence condition and finite γW parameter, while they strongly influence
the bulk band structure as will be shown in the next section. Tuning the coupling constants vy,
A, a(k‖), b1 and their relative phases will still provide a rich parameter space to be explored
below.

9.3. Surface Dispersion Relation
In this section, we discuss the influence of the different coupling parameters on the combined
surface states of TIs and WSMs. Depending on the choice of symmetries of the coupling,
observed phenomenas are the generation of additional Dirac points in the dispersion relation
or the spin polarization of certain surface bands.

9.3.1. Uncoupled Scenario
Beginning with the uncoupled case, HC,IS = 0, the dispersion relations of the surface and
bulk states are shown in Fig. 9.2. The black lines denote the bulk dispersion relation, cyan
(from blue (green) for spin up (down)) and red stand for the TI and WSM surface states,
respectively. The two black dots give the position of the bulk Weyl points. We note that the
surface states originate at the bulk states, but cross them unaffectedly. Together with the fact
that one can tune the bulk gap M0 without changing the surface dispersion relation (aside
from the existence condition), we find the possibility to discuss the bulk and surface dispersion
relations rather separately from each other. It will always be possible to increase the bulk
gap and the distance between the two Weyl points such that the interesting surface physics
happens in regions of the BZ where no bulk state is located. Therefore, we will focus in the
following on tuning of the surface dispersion relation only. In numerical calculations, see App.
C, purely exponentially decaying surface states do not coexist with bulk states at the same
energy and momenta. This is due to finite hybridization between the bulk and surface states.
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Figure 9.2. (a) and (b) Bulk and upper surface dispersion relations of the uncoupled TI and WSM
models. Color code: Black lines for the bulk states, red for WSM character and cyan for the TI character
of the surface states. (c) 3D plot of the surface dispersion relation. The two black dots denote the
position of the bulk Weyl points. Parameters: C = 1

2 , M0 = −1, M1 = 1, B = 1, kz = 0, γW = − 1
4 ,

A = 1, vy = 1, a(k‖) = b1 = 0, Hc = H̃c. Reprinted figures with permission from Ref. [JT17].
Copyright (2017) by the APS.

9.3.2. Real, spin-symmetric Coupling: Creation of additional Dirac Points

A straight-forward way to couple TI and WSM is a real and spin-symmetric coupling via
a(k‖) > 0 or b1 > 0 with Hc = H̃c. This kind of coupling leads generally to two Dirac points in
the combined surface dispersion relation, as plotted in Fig. 9.3. One Dirac point is just shifted
by the coupling to the Weyl surface state. The other one is created out of the Weyl and
Dirac states along a momentum direction where there is no coupling between these two bands.
Under the assumption that both spin species couple equally strong to the WSM, |H̃c|= |Hc|,
there is always such a momentum direction φk where one part (hole or electron) of the Dirac
cone is not coupled to the WSM surface state, while the other part is maximally coupled, see
Eq. (9.20) above. For the lower, hole-like cone, using the parameters in Fig. 9.3, this direction
is φk = −π

2 , thus the negative ky axis with kx = 0. The dispersion relation is then E = C+Aky
corresponding to the cyan line in Fig. 9.3 (a) which crosses the other two straight lines.
Considering finite couplings b1 6= 0 instead of a0 6= 0 gives only quantitative differences in

the dispersion relations (not shown). The Dirac point generation is unaffected, except for the
special case where the Dirac point and Fermi arc cross only at kx = ky = 0. As in this case
the coupling for b1 6= 0 is absent in this point, no second Dirac point is generated.

A perturbative calculation can provide some insight into both kinds of Dirac points. We
take the surface Hamiltonian, Eq. (9.19), and treat one band as a perturbation to the other
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Figure 9.3. (a) Bulk and upper surface dispersions relation of the TI and WSM model with real,
spin-symmetric coupling. Color code: Black lines for the bulk states, red for WSM character and cyan
for the TI character of the surface states. (b) 3D plot of the surface dispersion relation. Two Dirac
points are visible. Parameters: C = 1

2 , M0 = −1, M1 = 1, B = 1, kz = 0, γW = − 1
4 , A = 1, vy = 1,

a(k‖) = 1
4 , b1 = 0, Hc = H̃c. Reprinted figures with permission from Ref. [JT17]. Copyright (2017) by

the APS.

two. For the shifted Dirac point one directly finds in 2nd order perturbation theory in the
coupling

H1
D =

(
C iηAk−

−iηA∗k+ C

)
+ 1
C − γW (M0 +M1k2

x)− ηvyky

(
|Hc|2 HcH̃

∗
c

H̃cH
∗
c |H̃c|2

)
. (9.24)

Evidently, a difference in the absolute values of the coupling between the Weyl system and the
different spin species of the TI system will open a gap. In the limit of spin degeneracy, where
Hc = H̃c, we insert the coupling from Eq. (9.16), expand Eq. (9.24) for small momenta and
find

H1
D =

(
C iηAk−

−iηA∗k+ C

)
+ |a0|2

C − γWM0

(
1 1
1 1

)
+O (k±) , (9.25)

corresponding to a Dirac cone shifted in energy and momentum by the coupling. For real A,
the shift occurs in the ky direction as shown in Fig. 9.3.
The creation of the second Dirac point can be understood from a similar calculation. The

perturbative Hamiltonian for this Dirac point is given by

H2
D =

 C − |A| k‖ 1√
2Hc(1− eiφ

A
k )

1√
2H
∗
c (1− e−iφAk ) γW

(
M0 +M1k

2
x

)
+ ηvyky − |Hc|2

1+cos(φAk )
C+|A|k‖−γW (M0+M1k2

x)−ηvyky

 .
(9.26)

The off-diagonal elements vanish along the momentum direction φk = φA + η π2 . Thus, Weyl
and Dirac surface states are uncoupled in one point. This point becomes the new Dirac point,
and setting the diagonal elements of Eq. (9.26) equal, this gives its precise value kD. For
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Figure 9.4. (a) Bulk and upper surface dispersion relations of the TI and WSMmodel with a coupling
that changes sign. Color code: Black lines for the bulk states, red for WSM character and cyan for the
TI character of the surface states. (b) 3D plot of the surface dispersion relation. Four Dirac points are
visible. Parameters: C = 1

2 , M0 = −1, M1 = 1, B = 1, kz = 0, γW = − 1
4 , A = 1, vy = 1, a0 = 1

4 ,
a2 = − 1

2 , b1 = 0, Hc = H̃c. Reprinted figures with permission from Ref. [JT17]. Copyright (2017) by
the APS.

the parameters used in Fig. 9.3, the Dirac point kD is on the negative ky axis, with the
corresponding Hamiltonian

H2
D =

 C +A (kD + ky) 1√
2kx

(
b1 + i a0

kD

)
1√
2kx

(
b1 − i a0

kD

)
C +A (kD − ky) + 2fdi(kx, ky)

 (9.27)

including the distortion fdi(kx, ky) = (A− vy) ky + 2b1(a0kx−x1kDky)+AkDky(A−vy)
C−(A−vy)kD−γWM0

and kD =
vy(C−γWM0)−

√
2a2

0(A2−v2
y−2b21)+(A2−2b21)(C−γWM0)2

A2−v2
y−2b21

. The Dirac point is stable for any real com-
bination of spin-symmetric couplings. A finite distortion fdi 6= 0 tilts the Dirac cone but does
not open a gap.
The number of Dirac points in the surface dispersion relation can be extended further by a

coupling that changes sign as a function of kx and ky, e.g. by setting a0 > 0 and a2 < 0 or a
combination of a0 6= 0 and b1 6= 0. The positions in k-space where the coupling is zero and TI
and WSM surface state intersect will then harbor additional Dirac points, see Fig. 9.4.

9.3.3. Spin-asymmetric Coupling: Creation of Gaps & Spin Polarization

The spin-up and spin-down TI bands do not need to have the same coupling to the WSM. If the
absolute values are different, |Hc| 6= |H̃c|, the Dirac points in the surface dispersion relation are
gapped out, see Eq. (9.24) and Fig. 9.5. This leaves the bulk Weyl points, however, unaffected.
The resulting surface bands are partly spin polarized, as shown in Fig. 9.5. The weaker coupled
spin-up electrons form a band with the Weyl surface state at intermediate energies, while the
stronger coupled spin-down electrons are pushed into the upper and lower bands. The resulting
surface dispersion relation is still, overall, gapless.
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Figure 9.5. (a) Bulk and upper surface dispersion relations of the TI and WSM model with a spin-
asymmetric coupling. Color code: Black lines for the bulk states, red for WSM character and blue
(green) for the TI spin up (down) character of the surface states. (b) Character of the three surface
bands, shifted for clarity. (c) 3D plot of the surface dispersion relation. All Dirac points are gapped.
Parameters: C = 1

2 , M0 = −1, M1 = 1, B = 1, kz = 0, γW = − 1
4 , A = 1, vy = 1, a(k‖) = 1

4 , ã(k‖) = 2
4 ,

b1 = b̃1 = 0. Reprinted figures with permission from Ref. [JT17]. Copyright (2017) by the APS.

Considering a finite b1 6= 0 instead of an a0 coupling, only the lower Dirac point will split.
As the upper one is located at kx = ky = 0 for a pure momentum dependent coupling, the
effective coupling between the WSM and TI surface states is zero here.

9.3.4. Phase-shifted Coupling: Moving Dirac Points, tilting Dispersion Relation

Including complex coupling constants, this offers additional ways to alter the bulk and surface
spectrum. In general, the dispersion relation will look much less symmetric compared to the
previous, real couplings. Assuming H̃c = Hc, one can directly conclude from the Hamiltonian
in Eq. (9.20) that a complex coupling A = i will lead to two Dirac points lying on the kx,
rather than on the ky axis as discussed in Sec. 9.3.2. This is confirmed in Fig. 9.6. One also
sees that the bulk Weyl points lie not on the kx axis, but are rotated by the complex coupling.
Yet the rotation is much smaller than the π/2 rotation of the surface Dirac points.
The same effect is obtained by a complex phase difference between the couplings Hc and

H̃c. It can even undo the rotation induced by A = i. Note also that in the spin-symmetric
case, already for real and finite a(k‖) and b1 the Weyl points are rotated away from the kx
axis. Here, the effective coupling is complex, with a phase changing with k±. Supplementing
this with a complex a(k‖), this can again lead to points where the effective coupling is zero,
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Figure 9.6. (a) and (b) Bulk and upper surface dispersion relations of the TI and WSM model with
a complex coupling. Color code: Black lines for the bulk states, red for WSM character and cyan for
the TI character of the surface states. (c) 3D plot of the surface dispersion relation. Two Dirac points
on the kx axis are visible. Parameters: C = 1

2 , M0 = −1, M1 = 1, B = 1, kz = 0, γW = − 1
4 , A = i,

vy = 1, a(k‖) = 1
4 , b1 = 0, Hc = H̃c. Reprinted figures with permission from Ref. [JT17]. Copyright

(2017) by the APS.

resulting in additional Dirac points like in Sec. 9.3.2.
In conclusion, the four parameters vy, A, a(k‖) and b1 offer almost endless possibilities to

tune and control the surface band structure, of which we presented only the most basic ones
above. Especially in the combination of the parameters lies still uncharted potential.

9.4. Experimental Realization

We propose two ways to realize the physics of hybrid TI and WSM phases in an experimental
setup. First, a material that naturally is in this combined phase will have corresponding surface
states, as depicted in Fig. 9.7 (a). Compressively strained HgTe is here a candidate material:
the compressive strain pushes the Γ8 bands against each other creating Weyl points [RJY+16].
In addition, the topological band inversion between the Γ8 and Γ6 bands prevails, see Fig. 2.15
for a plot of the band structure. A difference to our calculation is the preserved TTT symmetry,
leading to eight Weyl points in HgTe instead of two. However, if HgTe is doped with Mn, the
number of Weyl points could be reduced by a (partial) magnetic ordering.
The second realization consists of a WSM in contact with a 3D TI, possibly separated by

a thin buffer layer as depicted in Fig. 9.7 (b). This should lead to a hybrid surface state
at the joint boundary. The finite coupling HC could be provided by tunneling or Coulomb
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Figure 9.7. Possible experimental realizations. (a) Bulk materials being in the combined 3D TI and
WSM phase will naturally have hybrid surface states. (b) A heterostructure where TI and WSM phases
are adjacent to each other will exhibit hybrid surface states for finite coupling HC 6= 0, provided e.g.
by Coulomb interaction or tunneling.

interaction. While this surface state is not exactly of the form of the ansatz in Eq. (9.17), the
surface Hamiltonian, Eq. (9.19), should still be valid with the modification η = ηTI = −ηW . As
several proposals of TTT -symmetry-broken WSM with two Weyl points are based on magnetically
doped 3D TI materials [BHB11, Cho11, XWW+11, BLQ14], the fabrication of the described
hybrid system should be technically feasible.

Conclusion
We have analyzed a hybrid system composed of a 3D TI coupled to an III symmetric, TTT -
symmetry-broken WSM. In the spirit of a tunnel coupling approach between the two topolog-
ical phases, the use of a simplified ansatz made it possible to find an analytical solution for the
surface states. The resulting surface Hamiltonian, Eq. (9.19), is a major result of this paper.
The dispersion relation of the hybrid system shows different phenomena depending on the

assumed coupling between WSM and TI. Preserved spin symmetry, e.g., leads to the creation
of additional Dirac points in the surface dispersion relation. Breaking of spin symmetry on the
other hand, this opens gaps and induces spin polarization in the former Dirac surface cone.
As an experimental realization we have presented both strained HgTe, which might naturally

be in the discussed hybrid phase, and a heterostructure of TI and WSM. In the latter case,
the joint boundary would harbor the interesting hybrid surface state.
There are several directions how to proceed with this research. Looking for measurable

consequences, e.g. in transport or spectroscopy, of the new hybrid surface states should be
the most immediate one. We expect, for instance, that different Dirac points will give rise
to different minima in the conductivity, similar to the graphene case [Kat06, TTT+06]. An
extension to TTT symmetric WSM is another one. For this, one should use a 4x4 Hamiltonian
for the WSM, which offers the possibility of more involved Fermi arcs on the surface, e.g.
including spin polarization along the arcs [LMQ+15, XWW+16]. TaIrTe4 [KKE+16, BYS+16]
with its four Weyl points could be a candidate material for a hybrid system of this kind.
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We began our analysis of interacting topological systems in Chap. II, where we have examined
the influence of Coulomb interaction on a 2D TI. The system there is described by the
Bernevig-Hughes-Zhang (BHZ) model, applicable e.g. to HgTe QWs. The bulk physics is
governed by an interplay between Dirac and Schrödinger fermions. This gives rise to a new
interband plasmon in the Random Phase Approximation (RPA) excitation spectrum in the
intrinsic limit. Its visibility in the doped regime is facilitated by the broken particle-hole (p-h)
symmetry. Importantly, the plasmon occurs in the right parameter regime for experiments and
should be observable by Raman spectroscopy or electron loss spectroscopy. We emphasize that
this new plasmon is expected in all BHZ like models with an interplay of linear and quadratic
band structures. The interacting plasmon spectrum shows clear differences depending on the
topology of the system. Even more suitable for experimental detection could be the optical
conductivity, which can diverge in the topologically non-trivial (TnT) phase, offering a way to
distinguish the topological phase of 2D TIs from a bulk measurement.
Our studies can be continued in several directions. One is the inclusion of the one-dimensional

(1D) edge states appearing in the TnT phase. As the RPA is exact in 1D systems as stressed
in Ref. [LDJ92], it offers the possibility to study the interplay between bulk and edge collective
charge excitations on the same footing. This should amplify the difference between the TnT
and TT phases that we already observed. In another research direction, one could work out
the possible benefits of our new plasmons to the field of plasmonics. A starting point could be
the analysis of plasmon-mediated Coulomb drag, as done in Ref. [SJ14] for graphene.
The limit of strongly interacting systems has been studied in Chap. III. Here we have in-

troduced QHTIs: topological systems with weak bare interactions, that can become strongly
interacting in a strong magnetic field, e.g. around the single-particle topological phase tran-
sition. The topological properties are preserved due to some extra symmetry, like III or a spin
rotation symmetry. We have used the well established framework of quantum Hall ferromag-
netism (QHFMism), where the dynamics of the system can be described in a nonlinear σ-model
for the collective order parameter (OP). We have identified a U(1) symmetry as the neces-
sary condition for a preserved TnT phase in the presence of interactions. If this symmetry is
present, the edge can be described by a helical Luttinger liquid. Here, the interaction strength
K and velocity v are tunable by the magnetic field B, all the way from weakly interacting at
low fields to divergent interaction strength at the phase transition.
As an outlook, future research should focus on measureable consequences in QHTI materials.

The interaction parameter K(B) and velocity v(B) of the Luttinger edge are quite difficult to
measure in dc transport, as discussed in Ref. [SS95]. They usually appear in power laws like
I ∝ V α(K) for an edge with impurities or setups where the current directly tunnels into the edge,
see Ref. [FB06]. A better way is time-resolved edge transport as discussed in Refs. [ZHKE93,
MTT+17]. Here, K(B) and v(B) as a function of the magnetic field are directly accessible. For
these measurements, one should look for QHTI systems that are easily accessed in experiments.
A more theory focused direction of future research would be the extension of the effective edge
theory beyond the point of the topological phase transition. The low-energy physics in this
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regime is expected to be governed by an entanglement of neutral bulk and edge excitations,
promising rich new physics to explore.

In the last Chap. IV, we have examined a hybrid system of a 3D TI coupled to an III-
symmetric, TTT -symmetry-broken WSM. A main result is the analytical surface Hamiltonian
of the combined system, describing the combination of a Fermi arc and a Dirac cone. For
preserved spin symmetry, additional Dirac points are created in the surface dispersion relation.
Breaking the spin symmetry leads to the opening of gaps and induces a spin polarization in
the surface state. As experimental realizations we have considered strained HgTe, which might
even be naturally in this hybrid phase. Another one are heterostructures of TIs and WSMs,
with a hybrid surface state at the joint boundary.
In our analysis, we have focused on the surface dispersion relation. An obvious proceeding

of our work would be the search for measurable signatures of the discussed hybrid physics in
transport or spectroscopy. The identification of experimentally realistic systems is a related
research direction. Here, an extension of the analysis to TTT -symmetric WSM systems is a
possibility, as they are more abundant in experiments so far.
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A. Excitation spectra: The Dirac and 2DEG
regimes

In this appendix, we examine the excitation spectra of the Dirac and the two dimensional
electron gas (2DEG) model. They serve as reference for the discussion of the BHZ model in
Sec. 6.3, which smoothly interpolates between them.

A.1. 2DEG
In the 2DEG limit, only intraband excitations are possible. The polarization function has
a well-known analytical form, cf. Ref. [GV05], and therefore we can easily plot the non-
interacting excitation spectrum in Fig. A.1 (a). ΠIm is peaked for q, ω → 0 closely to the

Figure A.1. Excitation spectra of a 2DEG. (a) Imaginary part of ΠR with N = gsm
2πh̄2 and gs the

degeneracy factor. (b) ΠIm
rpa for rs = 2, with vq = rskf

Nq the Coulomb interaction. We add an artificial
damping in the region of ΠIm = 0 to make the plasmons visible. Reprinted figures with permission
from Ref. [JMT14b]. Copyright (2014) by the APS.

upper boundary of the spectrum. It decays to zero instead for large momenta and frequencies
like ΠIm ∝ q−1, if one considers a fixed ratio ω ∝ q2 within the single-particle excitation (SPE)
region.

The interacting spectrum is shown in Fig. A.1 (b). An intraband plasmon appears with
the usual √q dispersion for q → 0. It absorbs all of the spectral weight in this limit, thus
ΠIm

rpa is suppressed in the SPE region. For intermediate momenta, the plasmon dispersion
enters and runs through the SPE region. As a result, the plasmon decays and the peak in
the spectrum broadens. For even larger momenta and frequencies, the interacting and non-
interacting spectra agree qualitatively.
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A. Excitation spectra: The Dirac and 2DEG regimes

A.2. Dirac
The Dirac excitation spectrum comprises at finite doping both inter- and intraband excitations.
The polarization function again has a well-known analytical expression, see Refs. [WSSG06,
HD07], of which we plot the non-interacting spectrum ΠIm in Fig. A.2 (a). The interband

Figure A.2. Excitation spectra of a Dirac system. (a) ΠIm with N = gskf
h̄vf

and gs the degeneracy
factor. In the gray area, the color scale is exceeded due to the divergency of ΠIm. (b) ΠIm

rpa for
rs = 2πgsα = 4π · 0.6, with vq = rskf

Nq the Coulomb interaction. We add an artificial damping in the
regions of ΠIm = 0 to make the plasmons visible. Reprinted figures with permission from Ref. [JMT14b].
Copyright (2014) by the APS.

excitations occur for higher energies ω > vfq, while for intraband excitations less energy
is needed, ω < vfq. Both excitation spectra touch at vfq = ω, where they diverge. This
divergency is due to the perfect nesting condition of the unbounded, purely linear Dirac model.
Only the Fermi-blockade suppresses the interband transitions in ΠIm for q < 2kf and cures the
divergency, see Fig. A.2 (a) for ω > vfq. In the limit of high energies, one finds a ω−1 decay.
The interacting spectrum ΠIm

rpa is plotted in Fig. A.2 (b) for an interaction strength α = 0.6.
Similar to the 2DEG, all of the intraband spectral weight is absorbed by a plasmon in the limit
q → 0 and the divergence at vfq = ω is cured. Interestingly, for sufficient large interaction
strength α, the plasmon decays in the interband spectrum. In this case, for larger momenta
and frequencies, the intraband polarization does not recover the non-interacting value, as it
does for the 2DEG, but remains significantly reduced. Therefore single-particle intraband
excitations are blocked altogether for all momenta and frequencies in this limit. The missing
spectral weight goes into a charge resonance at higher frequencies in the interband spectrum,
as analyzed in Ref. [SNC08]. Yet, this resonance is not a solution of the plasmon equation and
therefore not a plasmon, as stated in Ref. [SNPS15].
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B. Hardwall Boundary Condition 2x2

In this appendix, we recap a simple method for calculating exponentially localized boundary
states of a 2x2 Hamiltonian, following Ref. [LQZ+10] and references therein. We introduce
hardwall boundary conditions on a half space z ≤ 0 or z ≥ 0. Thus, the surface state is
localized at z = 0 and decays either in direction z → −∞ (upper surface) or z → +∞ (lower
surface). The state should fulfill the eigenvalue equation

HΨ (z) = EΨ (z) (B.1)

with H =
[
h4 (k2

‖ + k2
z) + h3

]
τ3 + h2kzτ2 + h1(k±)τ1 + h0τ0 and hj being real constants or

functions of k±. The Hamiltonian can represent a TI or WSM depending on the chosen hj .
The general ansatz for the eigenstate is

Ψg (z) =
∑

j∈{1,2}
ajeikz,jzψ (k±, kz,j) , (B.2)

which could be used to solve for the surface states of Eq. (B.1) in the usual manner. Yet, due
to the specific structure of our Hamiltonian, we can choose a simplified version of the ansatz,
given by

Ψ (z) =
(
eikz,1z − eikz,2z

)
ψ (k±) . (B.3)

Here, the relative sign ensures that the wave function vanishes at z = 0. This ansatz offers
the possibility to separate Eq. (B.1) into two parts

[h1(k±)τ1 + h0τ0] Ψ (z) = Eτ0Ψ (z) , (B.4)
[[h4 (k2

‖ + k2
z) + h3]τ3 + h2kzτ2]Ψ (z) = 0. (B.5)

Eq. (B.4) is independent of kz and can be solved for the surface dispersion relation E, while the
solution of Eq. (B.5) defines the two quantized values of kz needed for the surface eigenstate.
Following this procedure, ψ (k±) = f (k±)ψ± is taken to be proportional to the eigenstate of
the τ1 Pauli matrix, τ1ψ± = ±ψ±, with

ψ± = 1√
2

(
1
±1

)
(B.6)

and f (k±) = 1. Using τ2ψ± = ∓iψ∓ and τ3ψ± = ψ∓, Eq. (B.5) reduces to the quadratic
equation

h4
(
k2
‖ + k2

z

)
+ h3 − ηih2kz = 0 (B.7)

with η = ± the sign inherited from ψ±. Solving for kz, we find the two solutions

ik
z,12

= 1
2h4

[
−ηh2 ±

√
4h4

(
h3 + h4k2

‖

)
+ h2

2

]
. (B.8)
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B. Hardwall Boundary Condition 2x2

In order to obtain a wave function, exponentially decaying of the form of Eq. (B.3), both ik
z,12

need a real part of the same sign. For real hj , this gives us the existence condition

h4
(
h3 + h4k

2
‖

)
< 0. (B.9)

Depending on the sign of h2/h4 and the direction in which the wave function should decay,
z → +∞ or z → −∞, one chooses the corresponding eigenstate ψ±, fixing

η = −sgn
(
h2
h4

)
, top; η = sgn

(
h2
h4

)
, bottom. (B.10)

The surface dispersion relations and wave functions are then given by

Esur = h0 + ηh1(k±), Ψ (z) =
(
eikz,1z − eikz,2z

)
ψη. (B.11)

The localization length is lc = max
{∣∣∣∣1/<(ikz,12

)∣∣∣∣}.
The surface solution described in this section fulfills the eigenvalue Eq. (B.1) and is thus a

valid, non-perturbative eigenstate of the Hamiltonian. Calculating the surface state with the
general ansatz (B.2), this gives the same dispersion relation as for the simplified ansatz (B.3)
for the TI model in Sec. 9.1.1.
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C. Numerical Validation of the Approximate
Solution Method

In Sec. 9 we use an analytical method to calculate the localized boundary states, described in
App. B. It requires certain restrictions on the parameters of the coupled TI-WSM Hamiltonian,
such as the same localization length for both TI and WSM phase and half of the symmetry
allowed couplings to be zero, see Sec. 9.2.
These constraints might seem quite restrictive. In order to proof the general applicability

of our results, we have checked numerically that the neglected couplings have no qualitative
effect on the surface band structure if kept reasonably small. The same is true for variations
that alter the localization lengths of the subsystems. The numerical method is similar to the
analytical approach: We solve for exponentially localized surface wave functions on the half
space z ≤ 0 or z ≥ 0 with hardwall boundary conditions at z = 0. The difference to the
approximate solution is the use of the full ansatz for the wave function, i.e.

Ψg (z) =
∑

j∈{1,...,6}
ajeikz,jzψ (k±, kz,j) . (C.1)

As an example, we take the case of the generation of the second Dirac point, discussed in
Sec. 9.3.2 and depicted in Fig. 9.3. Besides the finite a0 = 1

4 , we add an additional coupling
d0 = 1

8 or change the localization length of the Weyl Hamiltonian by setting vz = 3
4 6= B = 1

and t = 5
4 6= M1 = 1. The latter choice leads then to differing localization lengths of the

separate systems of

ikz,T I = 1
2

 B
M1
±

√
4
(
k2
‖ − 1

)
+
( B
M1

)2
 , (C.2)

ikz,WSM = 1
2

vz
t
±

√
4
(
k2
‖ − 1

)
+
(
vz
t

)2
 . (C.3)

The resultant dispersion relations are shown in Fig. C.1, depicted by blue dots. The analytical
solution for the a0 = 1

4 coupling alone is displayed as a continuous surface.
First we notice that the numerical and analytical solution agree very well and show no

qualitative difference. The added coupling d0 = 1
8 in Fig. C.1 (a) has almost no effect, the

same was found for a finite c1 = 1
8 . The changed localization length in Fig. C.1 (b) shifts a bit

the lower Dirac point, but does not open a gap. The major difference between the analytical
and numerical solutions is the restriction of the surface solution to energies and momenta where
no bulk state exists. This becomes especially clear for the upper and lower parts of the Dirac
cone in Fig. C.1, and is due to hybridization between the bulk and surface states. It prevents
the existence of purely exponentially localized surface wave functions in this parameter range.
We conclude that the physical results and conclusions of Sec. 9 are valid beyond the restric-

tions on allowed couplings and localization lengths which are necessary to keep the analytical
form of the equations simple.
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C. Numerical Validation of the Approximate Solution Method

Figure C.1. Dispersion of the upper surface of the combined TI and WSM models. The continuous
surface is the analytical solution from Fig. 9.3, the blue dots represent the full numerical solution. In (a)
the additional coupling d0 = 1

8 was considered in the numerical solution, in (b) the altered parameters
vz = 3

4 6= B = 1 and t = 5
4 6= M1 = 1. The large black dots denote the position of the Weyl notes of the

analytical solution. Reprinted figures with permission from Ref. [JT17]. Copyright (2017) by the APS.

176



Acknowledgments

The work presented in this thesis benefited considerably from the input of countless people
with whom I have worked and discussed over the last couple of years. Foremost, I would like to
thank Prof. Dr. Björn Trauzettel for his relaxed way of supervision and mentoring. His policy
of open doors gave me the chance to grow, personally and professionally, while having an open
ear to turn to whenever needed. I am especially grateful for the possibility of attending and
giving talks at international schools and conferences.
For dealing with me on a day to day basis and teaching me all the tricks of their trade, I

thank my two postdoc supervisors, Dr. Paolo Michetti and Dr. Maxim Kharitonov. I learned
a lot from you, the easy or sometimes the hard way. Thanks also for the cactus, it has survived
all my accidental attempts to murder it so far ...
Then there is all the rest of TP4, who made my stay in Würzburg such a joyful time. I

especially thank Jan Böttcher for all the short physics discussions, Florian Geissler for being
my co-admin and fellow PhD student, Moritz Fuchs for sharing his passion about martial arts,
Dietrich Rothe for sharing all his admin and Debian knowledge with us, and of course Rolf
Reinthaler for being Rolf, a guy with an incredible sense of humor, taking care of most of the
things related to our group. I also thank my two Bachelor students, Ferdinand Schulz and
Vanessa Werner, for their dedication, proving that very different characters can be successful
in theoretical physics. And of course I thank Nelly Meyer for taking care of most of the
administrative stuff in a delightful manner, always reminding us to get back the money as
soon as possible.
Outside of our little TP4 group, I thank Tobias Stauber for inviting me to Madrid, and

of course acknowledge financial support, coming from the DFG (SPP1666 and the DFG-JST
research unit Topotronics) as well as from the Helmholtz Foundation (VITI) and the ENB
Graduate School on “Topological Insulators”.

All the time spent on research would not have been as productive and enjoyable without
a good compensation outside of the university. I thus thank Franz Scheiner, Robert Sparks,
Harald Lutz and Bernd Altenhöfer for teaching me their individual martial art and thereby
changing my life in a profound manner.
Last but not least, I thank my family and Carina for the moral support and patience, asking

only sporadicly about the remaining time till handing in my dissertation.

177





Bibliography

[ABC+15] A. Amaricci, J. C. Budich, M. Capone, B. Trauzettel, and G. Sangio-
vanni. First-Order Character and Observable Signatures of Topological Quan-
tum Phase Transitions. Physical Review Letters, 114(18):185701, may 2015.
doi:10.1103/PhysRevLett.114.185701, 1411.7390. [p. 112]

[AKL99] D. P. Arovas, A. Karlhede, and D. Lilliehöök. SU(N) quantum Hall skyrmions.
Physical Review B, 59(20):13147, may 1999. doi:10.1103/PhysRevB.59.13147,
cond-mat/9811097. [p. 49]

[ALL06] D. A. Abanin, P. A. Lee, and L. S. Levitov. Spin-Filtered Edge States and
Quantum Hall Effect in Graphene. Physical Review Letters, 96(17):176803, may
2006. doi:10.1103/PhysRevLett.96.176803, cond-mat/0602645. [p. 113]

[And72] P. W. Anderson. More Is Different. Science, 177(4047):393, aug 1972.
doi:10.1126/science.177.4047.393. [p. 1]

[And06] T. Ando. Screening Effect and Impurity Scattering in Monolayer
Graphene. Journal of the Physical Society of Japan, 75(7):074716, jul 2006.
doi:10.1143/JPSJ.75.074716. [pp. 62, 91]

[And13] Y. Ando. Topological Insulator Materials. Journal of the Physical Society of
Japan, 82(10):102001, oct 2013. doi:10.7566/JPSJ.82.102001, 1304.5693. [pp. 23,
32]

[BDRT12] J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel. Phonon-Induced Backscat-
tering in Helical Edge States. Physical Review Letters, 108(8):086602, feb 2012.
doi:10.1103/PhysRevLett.108.086602, 1109.5188. [pp. 112, 146, 151]

[BEG+15] S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T. Kim, M. N. Ali,
B. Buechner, M. Hoesch, and R. J. Cava. Time-Reversal Symmetry Breaking
Type-II Weyl State in YbMnBi2. arXiv, 1507.04847, jul 2015. 1507.04847. [p. 154]

[BF07] L. Brey and H. Fertig. Elementary electronic excitations in graphene nanoribbons.
Physical Review B, 75(12):125434, mar 2007. doi:10.1103/PhysRevB.75.125434,
cond-mat/0701787. [p. 62]

[BH13] B. A. Bernevig and T. L. Hughes. Topological Insulators and Topological Su-
perconductors. Princeton University Press, 41 William Street, Princeton, New
Jersey 08540, 2013. [pp. 10, 13, 15, 18, 21, 23, 33]

[BHB11] A. A. Burkov, M. D. Hook, and L. Balents. Topological nodal semimetals. Physi-
cal Review B, 84(23):235126, 2011. doi:10.1103/PhysRevB.84.235126, 1110.1089.
[pp. 154, 166]

179

http://dx.doi.org/10.1103/PhysRevLett.114.185701
http://arxiv.org/abs/1411.7390
http://dx.doi.org/10.1103/PhysRevB.59.13147
http://arxiv.org/abs/cond-mat/9811097
http://dx.doi.org/10.1103/PhysRevLett.96.176803
http://arxiv.org/abs/cond-mat/0602645
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1143/JPSJ.75.074716
http://dx.doi.org/10.7566/JPSJ.82.102001
http://arxiv.org/abs/1304.5693
http://dx.doi.org/10.1103/PhysRevLett.108.086602
http://arxiv.org/abs/1109.5188
http://arxiv.org/abs/1507.04847
http://dx.doi.org/10.1103/PhysRevB.75.125434
http://arxiv.org/abs/cond-mat/0701787
http://dx.doi.org/10.1103/PhysRevB.84.235126
http://arxiv.org/abs/1110.1089


Bibliography

[BHTD14] E. Barnes, E. H. Hwang, R. E. Throckmorton, and S. Das Sarma. Effective field
theory, three-loop perturbative expansion, and their experimental implications
in graphene many-body effects. Physical Review B, 89(23):235431, jun 2014.
doi:10.1103/PhysRevB.89.235431, 1401.7011. [p. 63]

[BHZ06] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang. Quantum spin Hall effect and
topological phase transition in HgTe quantum wells. Science, 314(5806):1757, dec
2006. doi:10.1126/science.1133734, cond-mat/0611399. [pp. 24, 25, 27]

[BLQ14] D. Bulmash, C.-X. Liu, and X.-L. Qi. Prediction of a Weyl semimetal
in Hg1-x-y Cd x Mn y. Physical Review B, 89(8):081106, feb 2014.
doi:10.1103/PhysRevB.89.081106, 1309.6327. [pp. 154, 166]

[BLT+11] B. Büttner, C. X. Liu, G. Tkachov, E. G. E. G. Novik, C. Brüne, H. Buhmann,
E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp.
Single valley Dirac fermions in zero-gap HgTe quantum wells. Nature Physics,
7(5):418, may 2011. doi:10.1038/nphys1914, 1009.2248. [pp. 26, 68, 71]

[BMAVF10] S. M. Badalyan, A. Matos-Abiague, G. Vignale, and J. Fabian. Beating of Friedel
oscillations induced by spin-orbit interaction. Physical Review B, 81(20):205314,
may 2010. doi:10.1103/PhysRevB.81.205314, 0911.5632. [p. 94]

[BPBP+07] Y. Barlas, T. Pereg-Barnea, M. Polini, R. Asgari, and A. H. MacDonald. Chirality
and Correlations in Graphene. Physical Review Letters, 98(23):236601, jun 2007.
doi:10.1103/PhysRevLett.98.236601, cond-mat/0701257. [p. 62]

[BPF+15] Y. Baum, T. Posske, I. C. Fulga, B. B. Trauzettel, and A. Stern. Coexisting Edge
States and Gapless Bulk in Topological States of Matter. Physical Review Let-
ters, 114(13):136801, mar 2015. doi:10.1103/PhysRevLett.114.136801, 1412.0021.
[p. 158]

[BS17] Y. Baum and A. Stern. Nonlocal Coulomb drag in Weyl semimetals. Physical
Review B, 95(7):075141, feb 2017. doi:10.1103/PhysRevB.95.075141, 1612.00018.
[p. 59]

[BT13] J. C. Budich and B. Trauzettel. From the adiabatic theorem of quantum mechan-
ics to topological states of matter. physica status solidi (RRL) - Rapid Research
Letters, 7(1-2):109, feb 2013. doi:10.1002/pssr.201206416, 1210.6672. [p. 23]

[BTM14] J. C. Budich, B. Trauzettel, and P. Michetti. Time Reversal Symmetric Topolog-
ical Exciton Condensate in Bilayer HgTe Quantum Wells. Physical Review Let-
ters, 112(14):146405, apr 2014. doi:10.1103/PhysRevLett.112.146405, 1311.2043.
[pp. 59, 60]

[Bud11] J. Budich. You cannot comb the hedgehog smooth: Differential topology in
condensed matter physics. 2011. [pp. 8, 10, 21, 23]

[BYS+16] I. Belopolski, P. Yu, D. S. Sanchez, Y. Ishida, T.-R. Chang, S. S. Zhang, S.-Y.
Xu, D. Mou, H. Zheng, G. Chang, G. Bian, H.-T. Jeng, T. Kondo, A. Kaminski,
H. Lin, Z. Liu, S. Shin, and M. Z. Hasan. A minimal, "hydrogen atom" version of
an inversion-breaking Weyl semimetal. arXiv, 1610.02013, oct 2016. 1610.02013.
[pp. 154, 166]

180

http://dx.doi.org/10.1103/PhysRevB.89.235431
http://arxiv.org/abs/1401.7011
http://dx.doi.org/10.1126/science.1133734
http://arxiv.org/abs/cond-mat/0611399
http://dx.doi.org/10.1103/PhysRevB.89.081106
http://arxiv.org/abs/1309.6327
http://dx.doi.org/10.1038/nphys1914
http://arxiv.org/abs/1009.2248
http://dx.doi.org/10.1103/PhysRevB.81.205314
http://arxiv.org/abs/0911.5632
http://dx.doi.org/10.1103/PhysRevLett.98.236601
http://arxiv.org/abs/cond-mat/0701257
http://dx.doi.org/10.1103/PhysRevLett.114.136801
http://arxiv.org/abs/1412.0021
http://dx.doi.org/10.1103/PhysRevB.95.075141
http://arxiv.org/abs/1612.00018
http://dx.doi.org/10.1002/pssr.201206416
http://arxiv.org/abs/1210.6672
http://dx.doi.org/10.1103/PhysRevLett.112.146405
http://arxiv.org/abs/1311.2043
http://arxiv.org/abs/1610.02013


Bibliography

[BZY+17] Z. Bi, R. Zhang, Y.-Z. You, A. Young, L. Balents, C.-x. Liu, and
C. Xu. Bilayer Graphene as a Platform for Bosonic Symmetry-Protected
Topological States. Physical Review Letters, 118(12):126801, mar 2017.
doi:10.1103/PhysRevLett.118.126801, 1602.03190. [p. 123]

[CBD+12] F. Crépin, J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel. Renormalization
group approach for the scattering off a single Rashba impurity in a helical liquid.
Physical Review B, 86(12):121106, sep 2012. doi:10.1103/PhysRevB.86.121106,
1205.0374. [pp. 112, 146, 151]

[CGP+09] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim.
The electronic properties of graphene. Reviews of Modern Physics, 81(1):109, jan
2009. doi:10.1103/RevModPhys.81.109, 0709.1163. [p. 62]

[Cho11] G. Y. Cho. Possible topological phases of bulk magnetically doped Bi2Se3: turn-
ing a topological band insulator into the Weyl semimetal. arXiv, 1110.1939, oct
2011. 1110.1939. [pp. 154, 166]

[CTSR16] C.-k. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu. Classification of topological
quantum matter with symmetries. Reviews of Modern Physics, 88(3):035005, aug
2016. doi:10.1103/RevModPhys.88.035005, 1505.03535. [pp. 20, 32]

[CTV12] V. Cvetkovic, R. E. Throckmorton, and O. Vafek. Electronic multicrit-
icality in bilayer graphene. Physical Review B, 86(7):075467, aug 2012.
doi:10.1103/PhysRevB.86.075467, 1206.0288. [p. 112]

[CWS12] J.-c. Chen, J. Wang, and Q.-f. Sun. Effect of magnetic field on electron trans-
port in HgTe/CdTe quantum wells: Numerical analysis. Physical Review B,
85(12):125401, mar 2012. doi:10.1103/PhysRevB.85.125401. [p. 62]

[CXS+16] G. Chang, S.-Y. Xu, D. S. Sanchez, S.-M. Huang, C.-C. Lee, T.-R. Chang,
G. Bian, H. Zheng, I. Belopolski, N. Alidoust, H.-T. Jeng, A. Bansil, H. Lin,
and M. Z. Hasan. A strongly robust type II Weyl fermion semimetal state in
Ta3S2. Science Advances, 2(6):e1600295, jun 2016. doi:10.1126/sciadv.1600295,
1512.08781. [p. 154]

[DL13] S. Das Sarma and Q. Li. Intrinsic plasmons in two-dimensional Dirac materials.
Physical Review B, 87(23):235418, jun 2013. doi:10.1103/PhysRevB.87.235418,
1305.0825. [pp. 62, 84, 85, 87]

[DOL+13] P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni,
M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi. Observation
of Dirac plasmons in a topological insulator. Nature Nanotechnology, 8(8):556,
jul 2013. doi:10.1038/nnano.2013.134, 1307.5974. [pp. 58, 62, 71, 81]

[DR16] V. Dwivedi and S. T. Ramamurthy. Connecting the dots: Time-reversal symmet-
ric Weyl semimetals with tunable Fermi arcs. Physical Review B, 94(24):245143,
dec 2016. doi:10.1103/PhysRevB.94.245143, 1608.01313. [p. 37]

[DSGC10] M. Dzero, K. Sun, V. Galitski, and P. Coleman. Topological
Kondo Insulators. Physical Review Letters, 104(10):106408, mar 2010.
doi:10.1103/PhysRevLett.104.106408, 0912.3750. [p. 112]

181

http://dx.doi.org/10.1103/PhysRevLett.118.126801
http://arxiv.org/abs/1602.03190
http://dx.doi.org/10.1103/PhysRevB.86.121106
http://arxiv.org/abs/1205.0374
http://dx.doi.org/10.1103/RevModPhys.81.109
http://arxiv.org/abs/0709.1163
http://arxiv.org/abs/1110.1939
http://dx.doi.org/10.1103/RevModPhys.88.035005
http://arxiv.org/abs/1505.03535
http://dx.doi.org/10.1103/PhysRevB.86.075467
http://arxiv.org/abs/1206.0288
http://dx.doi.org/10.1103/PhysRevB.85.125401
http://dx.doi.org/10.1126/sciadv.1600295
http://arxiv.org/abs/1512.08781
http://dx.doi.org/10.1103/PhysRevB.87.235418
http://arxiv.org/abs/1305.0825
http://dx.doi.org/10.1038/nnano.2013.134
http://arxiv.org/abs/1307.5974
http://dx.doi.org/10.1103/PhysRevB.94.245143
http://arxiv.org/abs/1608.01313
http://dx.doi.org/10.1103/PhysRevLett.104.106408
http://arxiv.org/abs/0912.3750


Bibliography

[DWD+16] K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang,
H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu,
S. Fan, H. Zhang, X. Chen, and S. Zhou. Experimental observation of topological
Fermi arcs in type-II Weyl semimetal MoTe2. Nature Physics, 12(12):1105, sep
2016. doi:10.1038/nphys3871, 1603.08508. [p. 154]

[DXGC16] M. Dzero, J. Xia, V. Galitski, and P. Coleman. Topological Kondo Insu-
lators. Annual Review of Condensed Matter Physics, 7(1):249, mar 2016.
doi:10.1146/annurev-conmatphys-031214-014749, 1506.05635. [p. 112]

[Eis13] J. P. Eisenstein. Exciton Condensation in Bilayer Quantum Hall Systems. arXiv,
1306.0584, jun 2013. 1306.0584. [p. 59]

[EM04] J. P. Eisenstein and A. H. MacDonald. Bose-Einstein condensation of
excitons in bilayer electron systems. Nature, 432(7018):691, dec 2004.
doi:10.1038/nature03081. [p. 59]

[Eul35] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commen-
tarii academiae scientiarum Petropolitanae 8, 1741, pp. 128-140, see also:
http://eulerarchive.maa.org//pages/E053.html, Newman’s "World of Mathemat-
ics" and Biggs, Lloyd & Wilson’s "Graph Theory 1736-1936", 1735. [p. 7]

[FB97] M. Franco and L. Brey. Phase diagram of a quantum Hall ferromagnet edge,
spin-textured edges, and collective excitations. Physical Review B, 56(16):10383,
oct 1997. doi:10.1103/PhysRevB.56.10383. [p. 123]

[FB06] H. Fertig and L. Brey. Luttinger Liquid at the Edge of Undoped Graphene
in a Strong Magnetic Field. Physical Review Letters, 97(11):116805, sep 2006.
doi:10.1103/PhysRevLett.97.116805, cond-mat/0604260. [pp. 123, 132, 133, 167]

[FGB12] C. Fang, M. J. Gilbert, and B. A. Bernevig. Bulk topological invariants in non-
interacting point group symmetric insulators. Physical Review B, 86(11):115112,
sep 2012. doi:10.1103/PhysRevB.86.115112, 1207.5767. [p. 32]

[FHJK95] K. Flensberg, B. Y.-K. Hu, A.-P. Jauho, and J. M. Kinaret. Linear-response
theory of Coulomb drag in coupled electron systems. Physical Review B,
52(20):14761, nov 1995. doi:10.1103/PhysRevB.52.14761. [p. 59]

[FI99] V. Fal’ko and S. Iordanskii. Topological Defects and Goldstone Excitations in
Domain Walls between Ferromagnetic Quantum Hall Liquids. Physical Review
Letters, 82(2):402, 1999. doi:10.1103/PhysRevLett.82.402, cond-mat/9901053.
[pp. 123, 132, 133]

[FK07] L. Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys-
ical Review B, 76(4):045302, 2007. doi:10.1103/PhysRevB.76.045302, cond-
mat/0611341. [p. 17]

[FM13] M. Franz and L. Molenkamp, editors. Topological Insulators, volume 6 of Con-
temporary Concepts of Condensed Matter Science. Elsevier, 2013. [pp. 6, 10, 12,
13, 15, 18, 21, 23, 28, 29, 32, 33, 39]

182

http://dx.doi.org/10.1038/nphys3871
http://arxiv.org/abs/1603.08508
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014749
http://arxiv.org/abs/1506.05635
http://arxiv.org/abs/1306.0584
http://dx.doi.org/10.1038/nature03081
http://dx.doi.org/10.1103/PhysRevB.56.10383
http://dx.doi.org/10.1103/PhysRevLett.97.116805
http://arxiv.org/abs/cond-mat/0604260
http://dx.doi.org/10.1103/PhysRevB.86.115112
http://arxiv.org/abs/1207.5767
http://dx.doi.org/10.1103/PhysRevB.52.14761
http://dx.doi.org/10.1103/PhysRevLett.82.402
http://arxiv.org/abs/cond-mat/9901053
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://arxiv.org/abs/cond-mat/0611341
http://arxiv.org/abs/cond-mat/0611341


Bibliography

[FRA+12] Z. Fei, a. S. Rodin, G. O. Andreev, W. Bao, a. S. McLeod, M. Wagner,
L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C.
Neto, C. N. Lau, F. Keilmann, and D. N. Basov. Gate-tuning of graphene
plasmons revealed by infrared nano-imaging. Nature, 487(7405):82, jun 2012.
doi:10.1038/nature11253, 1202.4993. [p. 62]

[FW71] A. L. Fetter and J. D. Walecka. Quantum Theory of Many-particle Systems.
McGraw-Hill Book Company, 1971. [pp. 44, 70]

[GC11] P. Goswami and S. Chakravarty. Quantum Criticality between Topological and
Band Insulators in 3+1 Dimensions. Physical Review Letters, 107(19):196803,
2011. doi:10.1103/PhysRevLett.107.196803, 1101.2210. [p. 42]

[GCT14] F. Geissler, F. Crépin, and B. Trauzettel. Random Rashba spin-orbit coupling
at the quantum spin Hall edge. Physical Review B, 89(23):235136, jun 2014.
doi:10.1103/PhysRevB.89.235136, 1403.1082. [pp. 112, 146, 151]

[GFM08] S. Gangadharaiah, A. Farid, and E. Mishchenko. Charge Response Function and
a Novel Plasmon Mode in Graphene. Physical Review Letters, 100(16):166802,
apr 2008. doi:10.1103/PhysRevLett.100.166802, 0710.0622. [pp. 62, 82, 85]

[GGK+12] R. V. Gorbachev, a. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. Tudorovskiy,
I. V. Grigorieva, a. H. MacDonald, S. V. Morozov, K. Watanabe, T. Taniguchi,
and L. a. Ponomarenko. Strong Coulomb drag and broken symmetry in double-
layer graphene. Nature Physics, 8(12):896, oct 2012. doi:10.1038/nphys2441,
1206.6626. [p. 59]

[GGMS02] E. Gorbar, V. Gusynin, V. Miransky, and I. Shovkovy. Magnetic field
driven metal-insulator phase transition in planar systems. Physical Review B,
66(4):045108, jul 2002. doi:10.1103/PhysRevB.66.045108, cond-mat/0202422.
[p. 91]

[Gia03] T. Giamarchi. Quantum Physics in One Dimension. Oxford University Press,
2003. [pp. 43, 52, 54, 124, 147, 150]

[Gir99] S. M. Girvin. The Quantum Hall Effect: Novel Excitations And Broken Sym-
metries. In Aspects topologiques de la physique en basse dimension. Topological
aspects of low dimensional systems, number July 1998, pages 53–175. Springer
Berlin Heidelberg, Berlin, Heidelberg, jul 1999. cond-mat/9907002. [p. 49]

[GN07] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials, 6(3):183,
mar 2007. doi:10.1038/nmat1849, cond-mat/0702595. [p. 62]

[GPN12] A. N. Grigorenko, M. Polini, and K. S. Novoselov. Graphene plasmonics. Na-
ture Photonics, 6(11):749, nov 2012. doi:10.1038/nphoton.2012.262, 1301.4241.
[pp. 57, 58, 68]

[GV05] G. Giuliani and G. Vignale. Quantum Theory of the Electron Liquid. Cambridge
University Press, 2005. [pp. 44, 91, 95, 171]

183

http://dx.doi.org/10.1038/nature11253
http://arxiv.org/abs/1202.4993
http://dx.doi.org/10.1103/PhysRevLett.107.196803
http://arxiv.org/abs/1101.2210
http://dx.doi.org/10.1103/PhysRevB.89.235136
http://arxiv.org/abs/1403.1082
http://dx.doi.org/10.1103/PhysRevLett.100.166802
http://arxiv.org/abs/0710.0622
http://dx.doi.org/10.1038/nphys2441
http://arxiv.org/abs/1206.6626
http://dx.doi.org/10.1103/PhysRevB.66.045108
http://arxiv.org/abs/cond-mat/0202422
http://arxiv.org/abs/cond-mat/9907002
http://dx.doi.org/10.1038/nmat1849
http://arxiv.org/abs/cond-mat/0702595
http://dx.doi.org/10.1038/nphoton.2012.262
http://arxiv.org/abs/1301.4241


Bibliography

[GVB15] A. G. Grushin, J. W. F. Venderbos, and J. H. Bardarson. Coexistence of Fermi
arcs with two-dimensional gapless Dirac states. Physical Review B, 91(12):121109,
mar 2015. doi:10.1103/PhysRevB.91.121109, 1501.00905. [p. 154]

[HA13] M. Hohenadler and F. F. Assaad. Correlation effects in two-dimensional topolog-
ical insulators. Journal of Physics: Condensed Matter, 25(14):143201, apr 2013.
doi:10.1088/0953-8984/25/14/143201, 1211.1774. [p. 112]

[HBD14] J. Hofmann, E. Barnes, and S. Das Sarma. Why Does Graphene Behave as a
Weakly Interacting System? Physical Review Letters, 113(10):105502, sep 2014.
doi:10.1103/PhysRevLett.113.105502, 1405.7036. [p. 63]

[HD07] E. H. Hwang and S. Das Sarma. Dielectric function, screening, and plasmons
in two-dimensional graphene. Physical Review B, 75(20):205418, may 2007.
doi:10.1103/PhysRevB.75.205418, cond-mat/0610561. [pp. 62, 84, 172]

[Her07] I. F. Herbut. SO(3) symmetry between Néel and ferromagnetic order parameters
for graphene in a magnetic field. Physical Review B, 76(8):085432, aug 2007.
doi:10.1103/PhysRevB.76.085432, 0705.4039. [pp. 123, 126]

[HK10] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Reviews
of Modern Physics, 82(4):3045, nov 2010. doi:10.1103/RevModPhys.82.3045,
1002.3895. [p. 23]

[HKLN99] T. H. Hansson, A. Karlhede, J. M. Leinaas, and U. Nilsson. Field theory for
partially polarized quantum Hall states. Physical Review B, 60(7):4866, aug
1999. doi:10.1103/PhysRevB.60.4866, cond-mat/981028. [p. 123]

[HLL+12] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansi, and L. Fu. Topological crystalline
insulators in the SnTe material class. Nature Communications, 3:982, jul 2012.
doi:10.1038/ncomms1969, 1202.1003. [p. 32]

[HMO+16] L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M.-t. Suzuki, R. Arita, Y. Wu,
D. Mou, H. Cao, J. Yan, N. Trivedi, and A. Kaminski. Spectroscopic evidence
for a type II Weyl semimetallic state in MoTe2. Nature Materials, 15(11):1155,
jul 2016. doi:10.1038/nmat4685, 1603.06482. [p. 154]

[HPV12] P. Hosur, S. a. Parameswaran, and A. Vishwanath. Charge Transport
in Weyl Semimetals. Physical Review Letters, 108(4):046602, jan 2012.
doi:10.1103/PhysRevLett.108.046602, 1109.6330. [p. 42]

[HQ13] P. Hosur and X. Qi. Recent developments in transport phenomena in
Weyl semimetals. Comptes Rendus Physique, 14(9-10):857, nov 2013.
doi:10.1016/j.crhy.2013.10.010, 1309.4464. [p. 33]

[HQW+08] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan. A
topological Dirac insulator in a quantum spin Hall phase. Nature, 452(7190):970,
apr 2008. doi:10.1038/nature06843, 0910.2420. [p. 29]

[HXB+15] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Ali-
doust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z.

184

http://dx.doi.org/10.1103/PhysRevB.91.121109
http://arxiv.org/abs/1501.00905
http://dx.doi.org/10.1088/0953-8984/25/14/143201
http://arxiv.org/abs/1211.1774
http://dx.doi.org/10.1103/PhysRevLett.113.105502
http://arxiv.org/abs/1405.7036
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://arxiv.org/abs/cond-mat/0610561
http://dx.doi.org/10.1103/PhysRevB.76.085432
http://arxiv.org/abs/0705.4039
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://arxiv.org/abs/1002.3895
http://dx.doi.org/10.1103/PhysRevB.60.4866
http://arxiv.org/abs/cond-mat/981028
http://dx.doi.org/10.1038/ncomms1969
http://arxiv.org/abs/1202.1003
http://dx.doi.org/10.1038/nmat4685
http://arxiv.org/abs/1603.06482
http://dx.doi.org/10.1103/PhysRevLett.108.046602
http://arxiv.org/abs/1109.6330
http://dx.doi.org/10.1016/j.crhy.2013.10.010
http://arxiv.org/abs/1309.4464
http://dx.doi.org/10.1038/nature06843
http://arxiv.org/abs/0910.2420


Bibliography

Hasan. A Weyl Fermion semimetal with surface Fermi arcs in the transition
metal monopnictide TaAs class. Nature Communications, 6:7373, jun 2015.
doi:10.1038/ncomms8373, 1501.00755. [p. 154]

[IN12] H. Isobe and N. Nagaosa. Theory of a quantum critical phenomenon in a topo-
logical insulator: (3+1)-dimensional quantum electrodynamics in solids. Physical
Review B, 86(16):165127, oct 2012. doi:10.1103/PhysRevB.86.165127, 1205.2427.
[p. 42]

[IN13] H. Isobe and N. Nagaosa. Renormalization group study of electromagnetic in-
teraction in multi-Dirac-node systems. Physical Review B, 87(20):205138, may
2013. doi:10.1103/PhysRevB.87.205138, 1303.2822. [p. 42]

[JGH+11] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. a. Bechtel,
X. Liang, A. Zettl, Y. R. Shen, and F. Wang. Graphene plasmonics for tun-
able terahertz metamaterials. Nature Nanotechnology, 6(10):630, sep 2011.
doi:10.1038/nnano.2011.146. [p. 62]

[JJL+16] Q.-D. Jiang, H. Jiang, H. Liu, Q.-F. Sun, and X. C. Xie. Chiral wave-packet
scattering in Weyl semimetals. Physical Review B, 93(19):195165, may 2016.
doi:10.1103/PhysRevB.93.195165, 1601.07297. [p. 154]

[JMT14a] S. Juergens, P. Michetti, and B. Trauzettel. Plasmons due to the Interplay of
Dirac and Schrödinger Fermions. Physical Review Letters, 112(7):076804, feb
2014. doi:10.1103/PhysRevLett.112.076804, 1309.6083. [pp. 2, 63, 66, 83, 84, 88]

[JMT14b] S. Juergens, P. Michetti, and B. Trauzettel. Screening properties and plas-
mons of Hg(Cd)Te quantum wells. Physical Review B, 90(11):115425, sep 2014.
doi:10.1103/PhysRevB.90.115425, 1406.7754. [pp. 2, 48, 63, 74, 78, 79, 80, 86,
89, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 171, 172]

[JS93] A.-P. Jauho and H. Smith. Coulomb drag between parallel two-
dimensional electron systems. Physical Review B, 47(8):4420, feb 1993.
doi:10.1103/PhysRevB.47.4420, cond-mat/9205001. [p. 59]

[JT17] S. Juergens and B. Trauzettel. Exotic surface states in hybrid structures of
topological insulators and Weyl semimetals. Physical Review B, 95(8):085313,
feb 2017. doi:10.1103/PhysRevB.95.085313, 1612.02176. [pp. 2, 34, 155, 157,
161, 162, 163, 164, 165, 176]

[JXH16] S. Jia, S.-Y. Xu, and M. Z. Hasan. Weyl semimetals, Fermi arcs and chiral
anomalies. Nature Materials, 15(11):1140–1144, oct 2016. doi:10.1038/nmat4787,
1612.00416. [p. 33]

[Kat06] M. I. Katsnelson. Zitterbewegung, chirality, and minimal conductivity
in graphene. The European Physical Journal B, 51(2):157, may 2006.
doi:10.1140/epjb/e2006-00203-1, cond-mat/0512337. [p. 166]

[KBW+08] M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C.-X. Liu, X.-L.
Qi, and S.-C. Zhang. The Quantum Spin Hall Effect: Theory and Exper-
iment. Journal of the Physical Society of Japan, 77(3):031007, mar 2008.
doi:10.1143/JPSJ.77.031007, 0801.0901. [pp. 25, 26]

185

http://dx.doi.org/10.1038/ncomms8373
http://arxiv.org/abs/1501.00755
http://dx.doi.org/10.1103/PhysRevB.86.165127
http://arxiv.org/abs/1205.2427
http://dx.doi.org/10.1103/PhysRevB.87.205138
http://arxiv.org/abs/1303.2822
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1103/PhysRevB.93.195165
http://arxiv.org/abs/1601.07297
http://dx.doi.org/10.1103/PhysRevLett.112.076804
http://arxiv.org/abs/1309.6083
http://dx.doi.org/10.1103/PhysRevB.90.115425
http://arxiv.org/abs/1406.7754
http://dx.doi.org/10.1103/PhysRevB.47.4420
http://arxiv.org/abs/cond-mat/9205001
http://dx.doi.org/10.1103/PhysRevB.95.085313
http://arxiv.org/abs/1612.02176
http://dx.doi.org/10.1038/nmat4787
http://arxiv.org/abs/1612.00416
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://arxiv.org/abs/cond-mat/0512337
http://dx.doi.org/10.1143/JPSJ.77.031007
http://arxiv.org/abs/0801.0901


Bibliography

[KCG11] F. H. L. Koppens, D. E. Chang, and F. J. GarciÌĄa de Abajo. Graphene Plasmon-
ics: A Platform for Strong Light-Matter Interactions. Nano Letters, 11(8):3370,
aug 2011. doi:10.1021/nl201771h, 1104.2068. [pp. 57, 58]

[KDP80] K. V. Klitzing, G. Dorda, and M. Pepper. New Method for High-Accuracy De-
termination of the Fine-Structure Constant Based on Quantized Hall Resistance.
Physical Review Letters, 45(6):494, aug 1980. doi:10.1103/PhysRevLett.45.494,
1011.1669. [p. 21]

[KDS11] I. Knez, R.-R. Du, and G. Sullivan. Evidence for Helical Edge Modes in Inverted
InAs/GaSb Quantum Wells. Physical Review Letters, 107(13):136603, sep 2011.
doi:10.1103/PhysRevLett.107.136603, 1105.0137. [p. 26]

[KE08] M. Kharitonov and K. Efetov. Electron screening and excitonic condensation
in double-layer graphene systems. Physical Review B, 78(24):241401, dec 2008.
doi:10.1103/PhysRevB.78.241401, 0808.2164. [p. 60]

[KGCM14] N. Kainaris, I. V. Gornyi, S. T. Carr, and A. D. Mirlin. Conductiv-
ity of a generic helical liquid. Physical Review B, 90(7):075118, aug 2014.
doi:10.1103/PhysRevB.90.075118, 1404.3129. [pp. 112, 146, 151]

[Kha12a] M. Kharitonov. Canted Antiferromagnetic Phase of the ν=0 Quantum Hall
State in Bilayer Graphene. Physical Review Letters, 109(4):046803, jul 2012.
doi:10.1103/PhysRevLett.109.046803, 1105.5386. [pp. 123, 126, 136]

[Kha12b] M. Kharitonov. Edge excitations of the canted antiferromagnetic phase of the
ν=0 quantum Hall state in graphene: A simplified analysis. Physical Review B,
86(7):075450, aug 2012. doi:10.1103/PhysRevB.86.075450, 1206.0724. [pp. 123,
136]

[Kha12c] M. Kharitonov. Phase diagram for the ν=0 quantum Hall state
in monolayer graphene. Physical Review B, 85(15):155439, apr 2012.
doi:10.1103/PhysRevB.85.155439, 1103.6285. [pp. 123, 126]

[KJT16] M. Kharitonov, S. Juergens, and B. Trauzettel. Interplay of topology and inter-
actions in quantum Hall topological insulators: U(1) symmetry, tunable Lut-
tinger liquid, and interaction-induced phase transitions. Physical Review B,
94(3):035146, jul 2016. doi:10.1103/PhysRevB.94.035146, 1603.07048. [pp. 2,
112, 114, 115, 116, 125, 128, 129, 131, 134, 135, 139, 142, 145, 147, 148]

[KKE+16] K. Koepernik, D. Kasinathan, D. V. Efremov, S. Khim, S. Borisenko, B. Büchner,
and J. van den Brink. TaIrTe: A ternary type-II Weyl semimetal. Physical Re-
view B, 93(20):201101, may 2016. doi:10.1103/PhysRevB.93.201101, 1603.04323.
[pp. 154, 166]

[KKW+13] H.-J. Kim, K.-S. Kim, J.-F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Ki-
taura, M. Yang, and L. Li. Dirac versus Weyl Fermions in Topological Insula-
tors: Adler-Bell-Jackiw Anomaly in Transport Phenomena. Physical Review Let-
ters, 111(24):246603, dec 2013. doi:10.1103/PhysRevLett.111.246603, 1307.6990.
[p. 36]

186

http://dx.doi.org/10.1021/nl201771h
http://arxiv.org/abs/1104.2068
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://arxiv.org/abs/1011.1669
http://dx.doi.org/10.1103/PhysRevLett.107.136603
http://arxiv.org/abs/1105.0137
http://dx.doi.org/10.1103/PhysRevB.78.241401
http://arxiv.org/abs/0808.2164
http://dx.doi.org/10.1103/PhysRevB.90.075118
http://arxiv.org/abs/1404.3129
http://dx.doi.org/10.1103/PhysRevLett.109.046803
http://arxiv.org/abs/1105.5386
http://dx.doi.org/10.1103/PhysRevB.86.075450
http://arxiv.org/abs/1206.0724
http://dx.doi.org/10.1103/PhysRevB.85.155439
http://arxiv.org/abs/1103.6285
http://dx.doi.org/10.1103/PhysRevB.94.035146
http://arxiv.org/abs/1603.07048
http://dx.doi.org/10.1103/PhysRevB.93.201101
http://arxiv.org/abs/1603.04323
http://dx.doi.org/10.1103/PhysRevLett.111.246603
http://arxiv.org/abs/1307.6990


Bibliography

[KLS99] A. Karlhede, K. Lejnell, and S. L. Sondhi. Dynamics of the com-
pact, ferromagnetic ν=1 edge. Physical Review B, 60(23):15948, dec 1999.
doi:10.1103/PhysRevB.60.15948, cond-mat/9907175. [p. 123]

[KM05a] C. L. Kane and E. J. Mele. Quantum Spin Hall Effect in Graphene. Physical
Review Letters, 95(22):226801, nov 2005. doi:10.1103/PhysRevLett.95.226801,
cond-mat/0411737. [p. 23]

[KM05b] C. L. Kane and E. J. Mele. Z_{2} Topological Order and the Quan-
tum Spin Hall Effect. Physical Review Letters, 95(14):146802, sep 2005.
doi:10.1103/PhysRevLett.95.146802, cond-mat/0506581. [p. 23]

[Koh85] M. Kohmoto. Topological invariant and the quantization of the Hall conduc-
tance. Annals of Physics, 160(2):343, apr 1985. doi:10.1016/0003-4916(85)90148-
4. [p. 21]

[KPU08] V. Kotov, V. Pereira, and B. Uchoa. Polarization charge distribution in gapped
graphene: Perturbation theory and exact diagonalization analysis. Physical Re-
view B, 78(7):075433, aug 2008. doi:10.1103/PhysRevB.78.075433, 0806.1228.
[pp. 77, 79]

[KUP+12] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and a. H. Castro Neto. Electron-
Electron Interactions in Graphene: Current Status and Perspectives. Reviews
of Modern Physics, 84(3):1067, jul 2012. doi:10.1103/RevModPhys.84.1067,
1012.3484. [pp. 62, 63, 68]

[KWB+07] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp,
X.-L. Qi, and S.-C. Zhang. Quantum Spin Hall Insulator State in HgTe Quantum
Wells. Science, 318(5851):766, nov 2007. doi:10.1126/science.1148047, 0710.0582.
[pp. 2, 24, 26]

[LA14] T. Low and P. Avouris. Graphene Plasmonics for Terahertz to Mid-Infrared
Applications. ACS Nano, 8(2):1086, feb 2014. doi:10.1021/nn406627u, 1403.2799.
[p. 63]

[LAF12] Y. Lemonik, I. Aleiner, and V. I. Fal’ko. Competing nematic, antiferromagnetic,
and spin-flux orders in the ground state of bilayer graphene. Physical Review B,
85(24):245451, jun 2012. doi:10.1103/PhysRevB.85.245451, 1203.4608. [p. 112]

[LDJ92] Q. P. Li, S. Das Sarma, and R. Joynt. Elementary excitations in one-dimensional
quantum wires: Exact equivalence between the random-phase approximation
and the Tomonaga-Luttinger model. Physical Review B, 45(23):13713, jun 1992.
doi:10.1103/PhysRevB.45.13713. [p. 167]

[Lig58] M. J. Lighthill. Introduction to Fourier Analysis and Generalized Functions.
Cambridge University Press, 1958. [p. 93]

[LKS99] K. Lejnell, A. Karlhede, and S. L. Sondhi. Effective-action studies of
quantum Hall spin textures. Physical Review B, 59(15):10183, apr 1999.
doi:10.1103/PhysRevB.59.10183, cond-mat/9809267. [p. 123]

187

http://dx.doi.org/10.1103/PhysRevB.60.15948
http://arxiv.org/abs/cond-mat/9907175
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://arxiv.org/abs/cond-mat/0411737
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://arxiv.org/abs/cond-mat/0506581
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1103/PhysRevB.78.075433
http://arxiv.org/abs/0806.1228
http://dx.doi.org/10.1103/RevModPhys.84.1067
http://arxiv.org/abs/1012.3484
http://dx.doi.org/10.1126/science.1148047
http://arxiv.org/abs/0710.0582
http://dx.doi.org/10.1021/nn406627u
http://arxiv.org/abs/1403.2799
http://dx.doi.org/10.1103/PhysRevB.85.245451
http://arxiv.org/abs/1203.4608
http://dx.doi.org/10.1103/PhysRevB.45.13713
http://dx.doi.org/10.1103/PhysRevB.59.10183
http://arxiv.org/abs/cond-mat/9809267


Bibliography

[LL14] Y.-M. Lu and D.-H. Lee. Inversion symmetry protected topological insulators
and superconductors. arXiv, 1403.5558, mar 2014. 1403.5558. [p. 32]

[LLC16] H. Liu, W. E. Liu, and D. Culcer. Coulomb drag in topological insulator
films. Physica E: Low-dimensional Systems and Nanostructures, 79:72, may 2016.
doi:10.1016/j.physe.2015.11.027, 1601.02291. [p. 59]

[LMQ+15] B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard,
C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H.
Dil, J. Mesot, M. Shi, H. M. Weng, and H. Ding. Observation of Fermi-
Arc Spin Texture in TaAs. Physical Review Letters, 115(21):217601, nov 2015.
doi:10.1103/PhysRevLett.115.217601, 1510.07256. [p. 166]

[LOB12] N. Lezmy, Y. Oreg, and M. Berkooz. Single and multiparticle scattering in
helical liquid with an impurity. Physical Review B, 85(23):235304, jun 2012.
doi:10.1103/PhysRevB.85.235304, 1201.6197. [pp. 112, 146, 151]

[LQZ+10] C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C. Zhang. Model
Hamiltonian for topological insulators. Physical Review B, 82(4):045122, 2010.
doi:10.1103/PhysRevB.82.045122, 1005.1682. [pp. 29, 30, 31, 155, 173]

[LWF+15a] T. Li, P. Wang, H. Fu, L. Du, K. A. Schreiber, X. Mu, X. Liu, G. Sullivan,
G. A. Csáthy, X. Lin, and R.-r. Du. Observation of a Helical Luttinger Liquid in
InAs/GaSb Quantum Spin Hall Edges. Physical Review Letters, 115(13):136804,
sep 2015. doi:10.1103/PhysRevLett.115.136804, 1507.08362. [p. 26]

[LWF+15b] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C.
Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding. Experi-
mental Discovery of Weyl Semimetal TaAs. Physical Review X, 5(3):031013, jul
2015. doi:10.1103/PhysRevX.5.031013, 1502.04684. [p. 154]

[LWY+15] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Solja i.
Experimental observation of Weyl points. Science, 349(6248):622, aug 2015.
doi:10.1126/science.aaa9273, 1502.03438. [p. 154]

[LXW+15] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao,
G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai,
T. Qian, M. Shi, and H. Ding. Observation of Weyl nodes in TaAs. Nature
Physics, 11(9):724, aug 2015. doi:10.1038/nphys3426, 1503.09188. [p. 154]

[Mah00] G. D. Mahan. Many-particle Physics. Kluwer Academic / Plenum Publishers,
New York, 3rd edition, 2000. [p. 44]

[MBSM08] H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald. Room-temperature su-
perfluidity in graphene bilayers. Physical Review B, 78(12):121401, sep 2008.
doi:10.1103/PhysRevB.78.121401, 0802.3462. [p. 60]

[MCW+15] E. Y. Ma, M. R. Calvo, J. Wang, B. Lian, M. Mühlbauer, C. Brüne, Y.-T.
Cui, K. Lai, W. Kundhikanjana, Y. Yang, M. Baenninger, M. König, C. Ames,
H. Buhmann, P. Leubner, L. W. Molenkamp, S.-C. Zhang, D. Goldhaber-Gordon,
M. A. Kelly, and Z.-X. Shen. Unexpected edge conduction in mercury telluride

188

http://arxiv.org/abs/1403.5558
http://dx.doi.org/10.1016/j.physe.2015.11.027
http://arxiv.org/abs/1601.02291
http://dx.doi.org/10.1103/PhysRevLett.115.217601
http://arxiv.org/abs/1510.07256
http://dx.doi.org/10.1103/PhysRevB.85.235304
http://arxiv.org/abs/1201.6197
http://dx.doi.org/10.1103/PhysRevB.82.045122
http://arxiv.org/abs/1005.1682
http://dx.doi.org/10.1103/PhysRevLett.115.136804
http://arxiv.org/abs/1507.08362
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://arxiv.org/abs/1502.04684
http://dx.doi.org/10.1126/science.aaa9273
http://arxiv.org/abs/1502.03438
http://dx.doi.org/10.1038/nphys3426
http://arxiv.org/abs/1503.09188
http://dx.doi.org/10.1103/PhysRevB.78.121401
http://arxiv.org/abs/0802.3462


Bibliography

quantum wells under broken time-reversal symmetry. Nature Communications,
6(May):7252, may 2015. doi:10.1038/ncomms8252, 1212.6441. [p. 158]

[MDY+13] P. Maher, C. R. Dean, a. F. Young, T. Taniguchi, K. Watanabe, K. L. Shepard,
J. Hone, and P. Kim. Evidence for a spin phase transition at charge neutrality
in bilayer graphene. Nature Physics, 9(3):154, 2013. doi:10.1038/nphys2528,
1212.3846. [p. 136]

[MK08] S. Murakami and S.-i. Kuga. Universal phase diagrams for the quan-
tum spin Hall systems. Physical Review B, 78(16):165313, oct 2008.
doi:10.1103/PhysRevB.78.165313, 0806.3309. [p. 34]

[MKT17] T. M. McCormick, I. Kimchi, and N. Trivedi. Minimal models for
topological Weyl semimetals. Physical Review B, 95(7):075133, feb 2017.
doi:10.1103/PhysRevB.95.075133, 1604.03096. [pp. 37, 155, 156]

[MMY+95] K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald, L. Zheng, D. Yosh-
ioka, and S.-C. Zhang. Spontaneous interlayer coherence in double-layer quan-
tum Hall systems: Charged vortices and Kosterlitz-Thouless phase transitions.
Physical Review B, 51(8):5138, feb 1995. doi:10.1103/PhysRevB.51.5138, cond-
mat/9407031. [pp. 49, 50]

[MNH+16] P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vish-
wanath, and J. G. Analytis. Transport evidence for Fermi-arc-mediated chi-
rality transfer in the Dirac semimetal Cd3As2. Nature, 535(7611):266, jul 2016.
doi:10.1038/nature18276, 1505.02817. [p. 37]

[MPER12] P. Michetti, P. H. Penteado, J. C. Egues, and P. Recher. Helical edge states
in multiple topological mass domains. Semiconductor Science and Technol-
ogy, 27(12):124007, dec 2012. doi:10.1088/0268-1242/27/12/124007, 1209.2313.
[pp. 66, 159]

[MSF14] G. Murthy, E. Shimshoni, and H. a. Fertig. Collective edge modes near the onset
of a graphene quantum spin Hall state. Physical Review B, 90(24):241410, dec
2014. doi:10.1103/PhysRevB.90.241410, 1408.7064. [pp. 123, 136, 138]

[MSF16] G. Murthy, E. Shimshoni, and H. A. Fertig. Collective bulk and edge modes
through the quantum phase transition in graphene at ν=0. Physical Review B,
93(4):045105, jan 2016. doi:10.1103/PhysRevB.93.045105, 1510.04255. [p. 123]

[MT17] P. Michetti and C. Timm. Electron-hole pairing of Fermi-arc surface states
in a Weyl semimetal bilayer. Physical Review B, 95(12):125435, mar 2017.
doi:10.1103/PhysRevB.95.125435, 1612.08612. [p. 60]

[MTT+17] T. Müller, R. Thomale, B. Trauzettel, E. Bocquillon, and O. Kashuba. Dynamical
transport measurement of the Luttinger parameter in helical edges states of 2D
topological insulators. Arxiv, 1701.03050, jan 2017. 1701.03050. [p. 167]

[Mur07] S. Murakami. Phase transition between the quantum spin Hall and insulator
phases in 3D: Emergence of a topological gapless phase. New Journal of Physics,
9:356, 2007. doi:10.1088/1367-2630/9/9/356, 0710.0930. [pp. 34, 35, 154]

189

http://dx.doi.org/10.1038/ncomms8252
http://arxiv.org/abs/1212.6441
http://dx.doi.org/10.1038/nphys2528
http://arxiv.org/abs/1212.3846
http://dx.doi.org/10.1103/PhysRevB.78.165313
http://arxiv.org/abs/0806.3309
http://dx.doi.org/10.1103/PhysRevB.95.075133
http://arxiv.org/abs/1604.03096
http://dx.doi.org/10.1103/PhysRevB.51.5138
http://arxiv.org/abs/cond-mat/9407031
http://arxiv.org/abs/cond-mat/9407031
http://dx.doi.org/10.1038/nature18276
http://arxiv.org/abs/1505.02817
http://dx.doi.org/10.1088/0268-1242/27/12/124007
http://arxiv.org/abs/1209.2313
http://dx.doi.org/10.1103/PhysRevB.90.241410
http://arxiv.org/abs/1408.7064
http://dx.doi.org/10.1103/PhysRevB.93.045105
http://arxiv.org/abs/1510.04255
http://dx.doi.org/10.1103/PhysRevB.95.125435
http://arxiv.org/abs/1612.08612
http://arxiv.org/abs/1701.03050
http://dx.doi.org/10.1088/1367-2630/9/9/356
http://arxiv.org/abs/0710.0930


Bibliography

[NL16] B. N. Narozhny and A. Levchenko. Coulomb drag. Reviews of Modern Physics,
88(2):025003, may 2016. doi:10.1103/RevModPhys.88.025003, 1505.07468. [p. 59]

[NN81] H. Nielsen and M. Ninomiya. A no-go theorem for regularizing chiral fermions.
Physics Letters B, 105(2-3):219, oct 1981. doi:10.1016/0370-2693(81)91026-1.
[pp. 33, 154]

[NN83] H. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl
fermions in a crystal. Physics Letters B, 130(6):389, 1983. doi:10.1016/0370-
2693(83)91529-0. [pp. 33, 154]

[NP66] P. Nozieres and D. Pines. The Theory Of Quantum Liquids. Perseus Books, 1966.
[p. 72]

[NT13] N. Nagaosa and Y. Tokura. Topological properties and dynamics
of magnetic skyrmions. Nature Nanotechnology, 8(12):899, dec 2013.
doi:10.1038/nnano.2013.243. [pp. 50, 51]

[OM14] R. Okugawa and S. Murakami. Dispersion of Fermi arcs in Weyl semimetals
and their evolutions to Dirac cones. Physical Review B, 89(23):235315, jun 2014.
doi:10.1103/PhysRevB.89.235315, 1402.7145. [pp. 34, 35, 37]

[Ozb06] E. Ozbay. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimen-
sions. Science, 311(5758):189, jan 2006. doi:10.1126/science.1114849. [p. 57]

[PB10] D. Pesin and L. Balents. Mott physics and band topology in materi-
als with strong spin-orbit interaction. Nature Physics, 6(5):376, may 2010.
doi:10.1038/nphys1606, 0907.2962. [p. 112]

[PKV14] A. C. Potter, I. Kimchi, and A. Vishwanath. Quantum oscillations from surface
Fermi arcs in Weyl and Dirac semimetals. Nature Communications, 5(May):5161,
oct 2014. doi:10.1038/ncomms6161, 1402.6342. [p. 37]

[PPA+10] R. E. V. Profumo, M. Polini, R. Asgari, R. Fazio, and a. H. MacDonald.
Electron-electron interactions in decoupled graphene layers. Physical Review B,
82(8):085443, aug 2010. doi:10.1103/PhysRevB.82.085443, 1004.4335. [p. 59]

[PRK+15] C. Pauly, B. Rasche, K. Koepernik, M. Liebmann, M. Pratzer, M. Richter,
J. Kellner, M. Eschbach, B. Kaufmann, L. Plucinski, C. M. Schneider, M. Ruck,
J. van den Brink, and M. Morgenstern. Subnanometre-wide electron channels pro-
tected by topology. Nature Physics, 11(4):338, mar 2015. doi:10.1038/nphys3264,
1501.05919. [p. 28]

[PSH16] D. I. Pikulin, P. G. Silvestrov, and T. Hyart. Confinement-deconfinement tran-
sition due to spontaneous symmetry breaking in quantum Hall bilayers. Nature
Communications, 7(814):10462, jan 2016. doi:10.1038/ncomms10462, 1504.05154.
[pp. 123, 126, 147]

[Pya09] P. K. Pyatkovskiy. Dynamical polarization, screening, and plasmons in gapped
graphene. Journal of Physics: Condensed Matter, 21(2):025506, jan 2009.
doi:10.1088/0953-8984/21/2/025506, 0808.0931. [p. 77]

190

http://dx.doi.org/10.1103/RevModPhys.88.025003
http://arxiv.org/abs/1505.07468
http://dx.doi.org/10.1016/0370-2693(81)91026-1
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1103/PhysRevB.89.235315
http://arxiv.org/abs/1402.7145
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1038/nphys1606
http://arxiv.org/abs/0907.2962
http://dx.doi.org/10.1038/ncomms6161
http://arxiv.org/abs/1402.6342
http://dx.doi.org/10.1103/PhysRevB.82.085443
http://arxiv.org/abs/1004.4335
http://dx.doi.org/10.1038/nphys3264
http://arxiv.org/abs/1501.05919
http://dx.doi.org/10.1038/ncomms10462
http://arxiv.org/abs/1504.05154
http://dx.doi.org/10.1088/0953-8984/21/2/025506
http://arxiv.org/abs/0808.0931


Bibliography

[QZ11] X.-L. Qi and S.-C. Zhang. Topological insulators and superconductors. Reviews
of Modern Physics, 83(4):1057, oct 2011. doi:10.1103/RevModPhys.83.1057,
1008.2026. [pp. 19, 23, 52]

[RAHM15] T. Rauch, S. Achilles, J. Henk, and I. Mertig. Spin Chirality Tuning and Topologi-
cal Semimetals in Strained HgTe x S 1-x. Physical Review Letters, 114(23):236805,
jun 2015. doi:10.1103/PhysRevLett.114.236805. [p. 154]

[RIR+13] B. Rasche, A. Isaeva, M. Ruck, S. Borisenko, V. Zabolotnyy, B. Büchner,
K. Koepernik, C. Ortix, M. Richter, and J. van den Brink. Stacked topological
insulator built from bismuth-based graphene sheet analogues. Nature Materials,
12(5):422, mar 2013. doi:10.1038/nmat3570, 1303.2193. [p. 28]

[RJY+16] J. Ruan, S.-k. Jian, H. Yao, H. Zhang, S.-c. Zhang, and D. Xing. Symmetry-
protected ideal Weyl semimetal in HgTe-class materials. Nature Communications,
7:11136, apr 2016. doi:10.1038/ncomms11136, 1511.08284. [pp. 154, 165]

[RJZ+16] J. Ruan, S.-K. Jian, D. Zhang, H. Yao, H. Zhang, S.-C. Zhang, and
D. Xing. Ideal Weyl Semimetals in the Chalcopyrites CuTlSe2, AgTlTe2,
AuTlTe2, and ZnPbAs2. Physical Review Letters, 116(22):226801, jun 2016.
doi:10.1103/PhysRevLett.116.226801, 1603.01279. [p. 154]

[SGT16] G. Sharma, P. Goswami, and S. Tewari. Chiral anomaly and longitudinal magne-
totransport in type-II Weyl semimetals. arXiv, 1608.06625, aug 2016. 1608.06625.
[pp. 37, 156]

[SGW+15] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and
B. A. Bernevig. Type-II Weyl semimetals. Nature, 527(7579):495, nov 2015.
doi:10.1038/nature15768, 1507.01603. [pp. 37, 156]

[She13] S.-Q. Shen. Topological Insulators. Springer, 2013. doi:10.1007/978-3-642-32858-
9. [pp. 10, 12, 13, 15, 18, 20, 21, 23, 28, 29]

[Shu86] K. W. K. Shung. Dielectric function and plasmon structure of stage-1 intercalated
graphite. Physical Review B, 34(2):979, jul 1986. doi:10.1103/PhysRevB.34.979.
[p. 62]

[SJ14] A. A. Shylau and A.-P. Jauho. Plasmon-mediated Coulomb drag be-
tween graphene waveguides. Physical Review B, 89(16):165421, apr 2014.
doi:10.1103/PhysRevB.89.165421, 1404.6136. [pp. 59, 167]

[SJJ10] A. Ström, H. Johannesson, and G. I. Japaridze. Edge Dynamics in a Quantum
Spin Hall State: Effects from Rashba Spin-Orbit Interaction. Physical Review Let-
ters, 104(25):256804, jun 2010. doi:10.1103/PhysRevLett.104.256804, 1004.2777.
[pp. 112, 146, 151]

[SKKR93] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi. Skyrmions and the
crossover from the integer to fractional quantum Hall effect at small Zeeman en-
ergies. Physical Review B, 47(24):16419, 1993. doi:10.1103/PhysRevB.47.16419.
[pp. 49, 135]

191

http://dx.doi.org/10.1103/RevModPhys.83.1057
http://arxiv.org/abs/1008.2026
http://dx.doi.org/10.1103/PhysRevLett.114.236805
http://dx.doi.org/10.1038/nmat3570
http://arxiv.org/abs/1303.2193
http://dx.doi.org/10.1038/ncomms11136
http://arxiv.org/abs/1511.08284
http://dx.doi.org/10.1103/PhysRevLett.116.226801
http://arxiv.org/abs/1603.01279
http://arxiv.org/abs/1608.06625
http://dx.doi.org/10.1038/nature15768
http://arxiv.org/abs/1507.01603
http://dx.doi.org/10.1007/978-3-642-32858-9
http://dx.doi.org/10.1007/978-3-642-32858-9
http://dx.doi.org/10.1103/PhysRevB.34.979
http://dx.doi.org/10.1103/PhysRevB.89.165421
http://arxiv.org/abs/1404.6136
http://dx.doi.org/10.1103/PhysRevLett.104.256804
http://arxiv.org/abs/1004.2777
http://dx.doi.org/10.1103/PhysRevB.47.16419


Bibliography

[SMAF12] B. Scharf, A. Matos-Abiague, and J. Fabian. Magnetic properties
of HgTe quantum wells. Physical Review B, 86(7):075418, aug 2012.
doi:10.1103/PhysRevB.86.075418, 1207.4578. [pp. 27, 28]

[SMAŽF15] B. Scharf, A. Matos-Abiague, I. Žutić, and J. Fabian. Probing topological
transitions in HgTe/CdTe quantum wells by magneto-optical measurements.
Physical Review B, 91(23):235433, jun 2015. doi:10.1103/PhysRevB.91.235433,
1502.05605. [p. 23]

[SMF09] B. Seradjeh, J. Moore, and M. Franz. Exciton Condensation and Charge Fraction-
alization in a Topological Insulator Film. Physical Review Letters, 103(6):066402,
aug 2009. doi:10.1103/PhysRevLett.103.066402, 0902.1147. [p. 60]

[SNC08] J. Sabio, J. Nilsson, and A. H. Castro Neto. f-sum rule and unconventional
spectral weight transfer in graphene. Physical Review B, 78(7):075410, aug 2008.
doi:10.1103/PhysRevB.78.075410, 0806.1684. [pp. 72, 74, 88, 172]

[SNKT09] M. Schmidt, E. Novik, M. Kindermann, and B. Trauzettel. Optical manipula-
tion of edge-state transport in HgTe quantum wells in the quantum Hall regime.
Physical Review B, 79(24):241306, jun 2009. doi:10.1103/PhysRevB.79.241306,
0901.0621. [pp. 68, 71]

[SNPS15] T. Stauber, D. Noriega-Pérez, and J. Schliemann. Universal absorption
of two-dimensional systems. Physical Review B, 91(11):115407, mar 2015.
doi:10.1103/PhysRevB.91.115407, 1412.5835. [p. 172]

[SPM12] I. Sodemann, D. a. Pesin, and a. H. MacDonald. Interaction-enhanced coherence
between two-dimensional Dirac layers. Physical Review B, 85(19):195136, may
2012. doi:10.1103/PhysRevB.85.195136, 1203.3594. [pp. 62, 85]

[SRF+09] A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, V. Lebedev, and
M. Feigel’man. Classification of Topological Insulators and Superconductors.
In AIP Conference Proceedings, volume 1134, page 10. AIP, 2009. [p. 20]

[SRFL08] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig. Classification of
topological insulators and superconductors in three spatial dimensions. Physical
Review B, 78(19):195125, nov 2008. doi:10.1103/PhysRevB.78.195125, 0803.2786.
[p. 20]

[SRvOG12] T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glazman. Inelastic Elec-
tron Backscattering in a Generic Helical Edge Channel. Physical Review Let-
ters, 108(15):156402, apr 2012. doi:10.1103/PhysRevLett.108.156402, 1201.0278.
[pp. 112, 146, 151]

[SS95] I. Safi and H. J. Schulz. Transport in an inhomogeneous interacting
one-dimensional system. Physical Review B, 52(24):R17040, dec 1995.
doi:10.1103/PhysRevB.52.R17040, cond-mat/9505079. [p. 167]

[SS14] K. Shiozaki and M. Sato. Topology of crystalline insulators and superconductors.
Physical Review B, 90(16):165114, oct 2014. doi:10.1103/PhysRevB.90.165114,
1403.3331. [p. 32]

192

http://dx.doi.org/10.1103/PhysRevB.86.075418
http://arxiv.org/abs/1207.4578
http://dx.doi.org/10.1103/PhysRevB.91.235433
http://arxiv.org/abs/1502.05605
http://dx.doi.org/10.1103/PhysRevLett.103.066402
http://arxiv.org/abs/0902.1147
http://dx.doi.org/10.1103/PhysRevB.78.075410
http://arxiv.org/abs/0806.1684
http://dx.doi.org/10.1103/PhysRevB.79.241306
http://arxiv.org/abs/0901.0621
http://dx.doi.org/10.1103/PhysRevB.91.115407
http://arxiv.org/abs/1412.5835
http://dx.doi.org/10.1103/PhysRevB.85.195136
http://arxiv.org/abs/1203.3594
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://arxiv.org/abs/0803.2786
http://dx.doi.org/10.1103/PhysRevLett.108.156402
http://arxiv.org/abs/1201.0278
http://dx.doi.org/10.1103/PhysRevB.52.R17040
http://arxiv.org/abs/cond-mat/9505079
http://dx.doi.org/10.1103/PhysRevB.90.165114
http://arxiv.org/abs/1403.3331


Bibliography

[SSG16] K. Shiozaki, M. Sato, and K. Gomi. Topology of nonsymmorphic crystalline
insulators and superconductors. Physical Review B, 93(19):195413, may 2016.
doi:10.1103/PhysRevB.93.195413, 1403.3331. [p. 32]

[SSS13] A. Scholz, T. Stauber, and J. Schliemann. Plasmons and screening
in a monolayer of MoS2. Physical Review B, 88(3):035135, jul 2013.
doi:10.1103/PhysRevB.88.035135, 1306.1666. [p. 63]

[Sta14] T. Stauber. Plasmonics in Dirac systems: from graphene to topological in-
sulators. Journal of Physics: Condensed Matter, 26(12):123201, mar 2014.
doi:10.1088/0953-8984/26/12/123201, 1310.4296. [pp. 58, 63, 69]

[Ste67] F. Stern. Polarizability of a Two-Dimensional Electron Gas. Physical Review
Letters, 18(14):546, apr 1967. doi:10.1103/PhysRevLett.18.546. [p. 87]

[SWY15] Y. Sun, S.-C. Wu, and B. Yan. Topological surface states and Fermi arcs of the
noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP. Physical Re-
view B, 92(11):115428, sep 2015. doi:10.1103/PhysRevB.92.115428, 1508.06649.
[p. 154]

[TKNdN82] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall
Conductance in a Two-Dimensional Periodic Potential. Physical Review Letters,
49(6):405, aug 1982. doi:10.1103/PhysRevLett.49.405. [p. 21]

[TRS+12] Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa,
and Y. Ando. Experimental realization of a topological crystalline insulator in
SnTe. Nature Physics, 8(11):800, sep 2012. doi:10.1038/nphys2442, 1304.0430.
[p. 32]

[TSFM16] P. Tikhonov, E. Shimshoni, H. A. Fertig, and G. Murthy. Emergence of helical
edge conduction in graphene at the ν=0 quantum Hall state. Physical Review B,
93(11):115137, mar 2016. doi:10.1103/PhysRevB.93.115137, 1512.07825. [pp. 123,
147]

[TTT+06] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker. Sub-
Poissonian Shot Noise in Graphene. Physical Review Letters, 96(24):246802, jun
2006. doi:10.1103/PhysRevLett.96.246802, cond-mat/0603315. [p. 166]

[TWC+16] A. Tamai, Q. S. Wu, I. Cucchi, F. Y. Bruno, S. Riccò, T. K. Kim,
M. Hoesch, C. Barreteau, E. Giannini, C. Besnard, A. A. Soluyanov, and
F. Baumberger. Fermi Arcs and Their Topological Character in the Candidate
Type-II Weyl Semimetal MoTe2. Physical Review X, 6(3):031021, aug 2016.
doi:10.1103/PhysRevX.6.031021, 1604.08228. [p. 154]

[Vaf06] O. Vafek. Thermoplasma Polariton within Scaling Theory of Single-
Layer Graphene. Physical Review Letters, 97(26):266406, dec 2006.
doi:10.1103/PhysRevLett.97.266406, cond-mat/0605642. [pp. 62, 85, 87]

[vMOS16] G. van Miert, C. Ortix, and C. M. Smith. Topological origin of edge states in
two-dimensional inversion-symmetric insulators and semimetals. 2D Materials,
4(1):015023, nov 2016. doi:10.1088/2053-1583/4/1/015023, 1606.03232. [pp. 20,
32]

193

http://dx.doi.org/10.1103/PhysRevB.93.195413
http://arxiv.org/abs/1403.3331
http://dx.doi.org/10.1103/PhysRevB.88.035135
http://arxiv.org/abs/1306.1666
http://dx.doi.org/10.1088/0953-8984/26/12/123201
http://arxiv.org/abs/1310.4296
http://dx.doi.org/10.1103/PhysRevLett.18.546
http://dx.doi.org/10.1103/PhysRevB.92.115428
http://arxiv.org/abs/1508.06649
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1038/nphys2442
http://arxiv.org/abs/1304.0430
http://dx.doi.org/10.1103/PhysRevB.93.115137
http://arxiv.org/abs/1512.07825
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://arxiv.org/abs/cond-mat/0603315
http://dx.doi.org/10.1103/PhysRevX.6.031021
http://arxiv.org/abs/1604.08228
http://dx.doi.org/10.1103/PhysRevLett.97.266406
http://arxiv.org/abs/cond-mat/0605642
http://dx.doi.org/10.1088/2053-1583/4/1/015023
http://arxiv.org/abs/1606.03232


Bibliography

[Vol03] G. E. Volovik. The Universe in a Helium Droplet. Oxford University Press, 2003.
[p. 1]

[WACB16] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig. Hourglass
fermions. Nature, 532(7598):189, apr 2016. doi:10.1038/nature17410, 1602.05585.
[p. 154]

[WBZ06] C. Wu, B. A. Bernevig, and S.-C. Zhang. Helical Liquid and the Edge of Quan-
tum Spin Hall Systems. Physical Review Letters, 96(10):106401, mar 2006.
doi:10.1103/PhysRevLett.96.106401, cond-mat/0508273. [pp. 19, 24, 112, 146,
151]

[WFF+15] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai. Weyl Semimetal Phase
in Noncentrosymmetric Transition-Metal Monophosphides. Physical Review X,
5(1):011029, mar 2015. doi:10.1103/PhysRevX.5.011029, 1501.00060. [p. 154]

[WHFZ12] Z. Wang, N. Hao, Z.-G. Fu, and P. Zhang. Excitonic condensation for the surface
states of topological insulator bilayers. New Journal of Physics, 14(6):063010,
jun 2012. doi:10.1088/1367-2630/14/6/063010, 1106.5838. [p. 60]

[WHPF92] W. T. V. William H. Press, Saul A. Teukolsky and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, 1992. [p. 138]

[wik17a] https://en.wikipedia.org/wiki/Topology. Accessed 21.03.2017. [pp. 6, 8]

[wik17b] https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg. Accessed
21.03.2017. [p. 7]

[WSSG06] B. Wunsch, T. Stauber, F. Sols, and F. Guinea. Dynamical polarization
of graphene at finite doping. New Journal of Physics, 8(12):318, dec 2006.
doi:10.1088/1367-2630/8/12/318, cond-mat/0610630. [pp. 62, 95, 172]

[WTVS11] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov. Topological semimetal
and Fermi-arc surface states in the electronic structure of pyrochlore iridates.
Physical Review B, 83(20):205101, 2011. doi:10.1103/PhysRevB.83.205101,
1007.0016. [p. 154]

[XAB+15] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng,
V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang,
C.-C. Lee, S.-M. Huang, B. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kamin-
ski, H. Lin, S. Jia, and M. Zahid Hasan. Discovery of a Weyl fermion state
with Fermi arcs in niobium arsenide. Nature Physics, 11(9):748, aug 2015.
doi:10.1038/nphys3437, 1504.01350. [p. 154]

[XAC+16] S.-y. Xu, N. Alidoust, G. Chang, H. Lu, B. Singh, I. Belopolski, D. Sanchez,
X. Zhang, G. Bian, H. Zheng, M.-a. Husanu, Y. Bian, S.-m. Huang, C.-h. Hsu,
T.-r. Chang, H.-t. Jeng, A. Bansil, V. N. Strocov, H. Lin, S. Jia, and M. Z.
Hasan. Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe
materials. arXiv, 1603.07318, mar 2016. 1603.07318. [p. 154]

194

http://dx.doi.org/10.1038/nature17410
http://arxiv.org/abs/1602.05585
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://arxiv.org/abs/cond-mat/0508273
http://dx.doi.org/10.1103/PhysRevX.5.011029
http://arxiv.org/abs/1501.00060
http://dx.doi.org/10.1088/1367-2630/14/6/063010
http://arxiv.org/abs/1106.5838
https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Seven_Bridges_of_K�nigsberg
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://arxiv.org/abs/cond-mat/0610630
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://arxiv.org/abs/1007.0016
http://dx.doi.org/10.1038/nphys3437
http://arxiv.org/abs/1504.01350
http://arxiv.org/abs/1603.07318


Bibliography

[XDW+15] D.-F. Xu, Y.-P. Du, Z. Wang, Y.-P. Li, X.-H. Niu, Q. Yao, D. Pavel, Z.-A. Xu,
X.-G. Wan, and D.-L. Feng. Observation of Fermi Arcs in Non-Centrosymmetric
Weyl Semi-Metal Candidate NbP. Chinese Physics Letters, 32(10):107101, oct
2015. doi:10.1088/0256-307X/32/10/107101, 1509.03847. [p. 154]

[XM06] C. Xu and J. E. Moore. Stability of the quantum spin Hall effect: Effects of
interactions, disorder, and Z2 topology. Physical Review B, 73(4):045322, jan
2006. doi:10.1103/PhysRevB.73.045322, cond-mat/0508291. [pp. 24, 112, 146,
151]

[XQH+09] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S.
Hor, R. J. Cava, and M. Z. Hasan. Observation of a large-gap topological-insulator
class with a single Dirac cone on the surface. Nature Physics, 5(6):398, jun 2009.
doi:10.1038/nphys1274, 0908.3513. [p. 29]

[XWW+11] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang. Chern Semimetal and
the Quantized Anomalous Hall Effect in HgCr2Se4. Physical Review Let-
ters, 107(18):186806, oct 2011. doi:10.1103/PhysRevLett.107.186806, 1106.3125.
[pp. 154, 166]

[XWW+16] N. Xu, Z. J. Wang, A. P. Weber, A. Magrez, P. Bugnon, H. Berger, C. E. Matt,
J. Z. Ma, B. B. Fu, B. Q. Lv, N. C. Plumb, M. Radovic, E. Pomjakushina,
K. Conder, T. Qian, J. H. Dil, J. Mesot, H. Ding, and M. Shi. Discovery of Weyl
semimetal state violating Lorentz invariance in MoTe2. arXiv, 1604.02116, apr
2016. 1604.02116. [p. 166]

[XZZ15] Y. Xu, F. Zhang, and C. Zhang. Structured Weyl Points in Spin-Orbit Cou-
pled Fermionic Superfluids. Physical Review Letters, 115(26):265304, dec 2015.
doi:10.1103/PhysRevLett.115.265304, 1411.7316. [pp. 37, 156]

[YDM06] K. Yang, S. Das Sarma, and a. MacDonald. Collective modes and skyrmion
excitations in graphene SU(4) quantum Hall ferromagnets. Physical Review B,
74(7):075423, aug 2006. doi:10.1103/PhysRevB.74.075423. [p. 49]

[YF17] B. Yan and C. Felser. Topological Materials: Weyl Semimetals. Annual Review of
Condensed Matter Physics, 8(1):annurev–conmatphys–031016–025458, mar 2017.
doi:10.1146/annurev-conmatphys-031016-025458, 1611.04182. [p. 33]

[YLR11] K.-Y. Yang, Y.-M. Lu, and Y. Ran. Quantum Hall effects in a Weyl semimetal:
Possible application in pyrochlore iridates. Physical Review B, 84(7):075129, 2011.
doi:10.1103/PhysRevB.84.075129, 1105.2353. [pp. 37, 155]

[YLS+15] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang,
Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.-K. Mo, C. Felser, B. Yan,
and Y. L. Chen. Weyl semimetal phase in the non-centrosymmetric compound
TaAs. Nature Physics, 11(9):728, aug 2015. doi:10.1038/nphys3425, 1507.00521.
[p. 154]

[YMB+96] K. Yang, K. Moon, L. Belkhir, H. Mori, S. M. Girvin, A. H. MacDonald, L. Zheng,
and D. Yoshioka. Spontaneous interlayer coherence in double-layer quantum Hall

195

http://dx.doi.org/10.1088/0256-307X/32/10/107101
http://arxiv.org/abs/1509.03847
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://arxiv.org/abs/cond-mat/0508291
http://dx.doi.org/10.1038/nphys1274
http://arxiv.org/abs/0908.3513
http://dx.doi.org/10.1103/PhysRevLett.107.186806
http://arxiv.org/abs/1106.3125
http://arxiv.org/abs/1604.02116
http://dx.doi.org/10.1103/PhysRevLett.115.265304
http://arxiv.org/abs/1411.7316
http://dx.doi.org/10.1103/PhysRevB.74.075423
http://dx.doi.org/10.1146/annurev-conmatphys-031016-025458
http://arxiv.org/abs/1611.04182
http://dx.doi.org/10.1103/PhysRevB.84.075129
http://arxiv.org/abs/1105.2353
http://dx.doi.org/10.1038/nphys3425
http://arxiv.org/abs/1507.00521


Bibliography

systems: Symmetry-breaking interactions, in-plane fields, and phase solitons.
Physical Review B, 54(16):11644, oct 1996. doi:10.1103/PhysRevB.54.11644,
cond-mat/9605153. [p. 49]

[YMZ+94] K. Yang, K. Moon, L. Zheng, A. H. MacDonald, S. M. Girvin, D. Yoshioka,
and S.-C. Zhang. Quantum ferromagnetism and phase transitions in double-
layer quantum Hall systems. Physical Review Letters, 72(5):732, jan 1994.
doi:10.1103/PhysRevLett.72.732, cond-mat/9310071. [p. 49]

[YN14] B.-J. Yang and N. Nagaosa. Classification of stable three-dimensional Dirac
semimetals with nontrivial topology. Nature Communications, 5:4898, 2014.
doi:10.1038/ncomms5898, 1404.0754. [p. 42]

[YSYH+13] A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, S. H. Choi, K. Watanabe,
T. Taniguchi, R. C. Ashoori, and P. Jarillo-Herrero. Tunable symmetry break-
ing and helical edge transport in a graphene quantum spin Hall state. Nature,
505(7484):528, dec 2013. doi:10.1038/nature12800, 1307.5104. [pp. 113, 136]

[ZHKE93] N. B. Zhitenev, R. J. Haug, K. V. Klitzing, and K. Eberl. Time-resolved mea-
surements of transport in edge channels. Physical Review Letters, 71(14):2292,
oct 1993. doi:10.1103/PhysRevLett.71.2292. [p. 167]

[ZLQ+09] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang. Topological
insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.
Nature Physics, 5(6):438, 2009. doi:10.1038/nphys1270. [pp. 29, 155]

196

http://dx.doi.org/10.1103/PhysRevB.54.11644
http://arxiv.org/abs/cond-mat/9605153
http://dx.doi.org/10.1103/PhysRevLett.72.732
http://arxiv.org/abs/cond-mat/9310071
http://dx.doi.org/10.1038/ncomms5898
http://arxiv.org/abs/1404.0754
http://dx.doi.org/10.1038/nature12800
http://arxiv.org/abs/1307.5104
http://dx.doi.org/10.1103/PhysRevLett.71.2292
http://dx.doi.org/10.1038/nphys1270

	Zusammenfassung
	Summary
	Contents
	Symbols
	Acronyms
	Introduction
	Topological Matter
	Topology and Band Theory
	Topology - Theory of Continuity
	Examples from Everyday Life
	Mathematical Definitions
	Physics Overview

	Topological Band Theory
	Band Theory
	Berry Phase and the Chern Invariants
	Time-reversal Symmetry and the \Z_2 Invariant
	Bulk-boundary Correspondence
	Altland-Zirnbauer Classes

	Chern Insulator and Integer Quantum Hall Effect
	Topological Insulators
	Quantum Spin Hall Insulator in 2D
	3D Topological Insulator
	Topological Crystalline Insulators

	Weyl Semimetals

	Correlations and Topological Matter
	Topological Field Theory
	Methods for Incorporating Interactions
	Fermi Liquid Theory
	Excitations and Screening in the Random Phase Approximation
	Quantum Hall Ferromagnetism and the nonlinear \sigma-model
	Interaction in One Dimension: Luttinger Description

	Interactions and Topology - a Plethora of Possibilities
	Interactions as a Probing Tool for Topology
	Applications: Plasmonics and Topology
	Stability: Symmetry Breaking due to Interactions
	Multilayer Systems: Interactions as Mediator between Topological Phases



	Correlation Effects within Random Phase Approximation
	Model and Formalism
	The BHZ Model
	Energy and Momentum Scales

	Polarization Function and Overlap Factor
	Coulomb Interaction
	(Anti-)Screening and Intrinsic Plasmons
	Static limit and Screening

	Experimental Parameters
	The f-sum Rule
	Judging and Comparing the Spectral Weight of Excitations


	Undoped System
	Static Limit and Screening
	Long Wavelength Expansion of \Pi^R(X,\Om) and Plasmon Dispersion
	Excitation Spectrum
	Interband Plasmons
	Broken particle-hole Symmetry
	Experimental Realization

	Optical Conductivity
	F-sum Rule - a Numerics Check

	Doped System
	Static Limit and Screening
	Long Wavelength Expansion of \Pi^R(X,\Om) and Plasmon Dispersion
	Excitation Spectrum of the massless, p-h symmetric BHZ Model: Interpolation between Dirac and 2DEG Regime
	Weak doping of X_f=0.1
	Strong doping of X_f=3
	Intermediate Doping of X_f=1

	Hg(Cd)Te Quantum Wells: BHZ Model with finite \xi_D
	Excitation Spectrum
	Experimental Parameters
	Spectral Weight and the f-sum Rule
	A small Gap \xi_M \neq 0

	Topology: BHZ Model with large Masses
	Topologically non-trivial: Large, negative Mass
	Topologically trivial: Large, positive Mass


	Conclusion

	Quantum Hall Ferromagnetism in 2D Topological Insulators
	Setup and Mapping to nonlinear \sig-model
	Quantum Hall Topological Insulators
	Quantum Hall Ferromagnet at the Topological Phase Transition

	Projected Hamiltonian
	Restricted Hilbert Space of two intersecting Landau Levels
	U(1)-symmetric projected Hamiltonian
	U(1)-asymmetric Terms 

	Low-energy nonlinear \sig-model
	Quantum Hall Ferromagnet 
	U(1)-symmetric nonlinear \sig-model
	U(1)-asymmetric Terms


	Quantum Hall Ferromagnet and Helical Luttinger Liquid
	Bulk Phase Diagram
	System with an Edge: Ground States
	Domain-wall Energy

	System with an Edge: Charge Excitations
	Gapless Edge Excitations of the n^\iy=n_z Phase
	Gapped Edge Excitations of the n^\iy=-n_z and n^\iy=n^*(\vphi_0) Phases
	Intermediate Phase close to the Phase Transition h_z=u: Analytical Estimates
	Numerical Calculations

	Helical Luttinger Liquid
	Derivation
	Analysis
	Broken U(1) Symmetry

	Role of U(1) Symmetry for Topological Protection

	Conclusion

	Hybrid Systems of Weyl Semimetals and 3D Topological Insulators
	Exotic Surface States
	Separate Models
	Topological Insulator
	Inversion symmetric Weyl Semimetal

	Coupled System
	Surface Dispersion Relation
	Uncoupled Scenario
	Real, spin-symmetric Coupling: Creation of additional Dirac Points
	Spin-asymmetric Coupling: Creation of Gaps & Spin Polarization
	Phase-shifted Coupling: Moving Dirac Points, tilting Dispersion Relation

	Experimental Realization

	Conclusion

	Conclusion & Outlook
	Appendix
	Excitation spectra: The Dirac and 2DEG regimes
	2DEG
	Dirac

	Hardwall Boundary Condition 2x2
	Numerical Validation of the Approximate Solution Method

	Acknowledgments
	Bibliography

