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Abstract

The high infection rates and recent emergence of extremely drug resistant forms of

Mycobacterium tuberculosis pose a significant challenge for global health. The NADH-

dependent enoyl-ACP-reductase InhA of the type II mycobacterial fatty acid biosynthesis

pathway is a well-validated target for inhibiting mycobacterial growth. InhA has been

shown to be inhibited by a variety of compound series. Prominent classes of InhA

inhibitors from literature include diaryl ethers, pyrrolidine carboxamides and arylamides

which can be subjected to further development. Despite the progress in this area, very

few compounds are in clinical development phase. The present work involves a detailed

computational investigation of the binding modes and structure-based optimisation of

pyrrolidine carboxamides as InhA inhibitors.

With substituents of widely varying bulkiness, the pyrrolidine carboxamide dataset

presented a challenge for prediction of binding mode as well as affinity. Using advanced

docking protocols and in-house developed pose selection procedures, the binding modes

of 44 compounds were predicted. The poses from docking were used in short molecular

dynamics (MD) simulations to ascertain the dominant binding conformations for the

bulkier members of the series. Subsequently, an activity-based classification strategy

could be developed to circumvent the affinity prediction problems observed with this

dataset. The prominent motions of the bound ligand and the active site residues were

then ascertained using Essential Dynamics (ED). The information from ED and literature

was subsequently used to design a total of 20 compounds that were subjected to extensive

in-silico evaluations. Finally, the molecular determinants of rapid-reversible binding of

pyrrolidine carboxamides were investigated using long MD simulations.
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Kurzfassung

Hohe Infektionsraten und das Auftreten von multiresistenten Formen von Mycobacterium

tuberculosis stellen eine große Herausforderung für das globale Gesundsheitswesen dar. Die

NADH-abhängige Enoyl-ACP-Reduktase des mykobakteriellen Fettsäure-Biosynthesewegs

II, InhA, ist ein gut validiertes Target zur Hemmung des mykobakteriellen Wachstums.

Es wurde gezeigt, dass InhA durch eine Vielzahl von unterschiedlichen Verbindungs-

klassen gehemmt wird. Zu den bekanntesten Klassen von InhA-Inhibitoren aus der

Literatur gehören Diphenylether, Pyrrolidincarboxamide und Arylamide, die zur weiteren

Entwicklung verwendet werden können. Trotz der Fortschritte in diesem Bereich sind

sehr wenige Verbindungen in einer klinischen Entwicklungsphase. Die vorliegende Arbeit

beinhaltet eine detaillierte computergestützte Untersuchung der Bindungsmodi und die

strukturbasierte Optimierung von Pyrrolidincarboxamiden als InhA-Inhibitoren.

Aufgrund von Substituenten mit stark variierendem Raumanspruch stellt der Pyrrolidin-

carboxamid-Datensatz eine Herausforderung für die Vorhersage von Bindungsmodi und

Affinititäten dar. Mit aufwändigen Docking-Protokollen und speziell zu diesem Zweck

entwickelten Posen-Auswahlverfahren wurden die Bindungsmodi für 44 Verbindungen

vorhergesagt. Die Posen des Dockings wurden in kurzen Molekulardynamik (MD) Sim-

ulationen verwendet, um die bevorzugten Bindungskonformationen für die räumlich

anspruchsvollen Vertreter des Datensatzes zu ermitteln. Anschließend konnte eine akt-

ivitätsbasierte Klassifizierungsstrategie entwickelt werden, um die in diesem Datensatz

beobachteten Probleme in der Affinitätsvorhersage zu umgehen. Die wesentlichen Bewe-

gungen des gebundenen Liganden und der Aminosäuren der Bindetasche wurden daraufhin

mit Essential Dynamics (ED) ermittelt. Informationen aus der ED-Analyse und der

Literatur wurden anschließend verwendet, um insgesamt 20 Verbindungen zu entwerfen,

die umfangreichen in-silico-Bewertungen unterzogen wurden. Schließlich wurden die

molekularen Determinanten der schnell-reversiblen Bindung von Pyrrolidincarboxamiden

unter Verwendung von langen MD Simulationen untersucht.
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Chapter 1

Introduction

1.1 Antibiotics discovery and antibiotics resistance

The association of humans and microbes has lasted since time immemorial, that began

with the advent of fermentation in the old ages right up to the modern age, where

microbes are invaluable for numerous processes. These range from household applications

in food (fermentation) and medicine (antibiotics production) to waste management and

clean energy (biogas and ethanol production). However, not all of the microbes that

play a part in the above processes are beneficial to mankind, with 1% of the microbial

population primarily responsible for many diseases not only in humans and animals

(e.g., Mycobacterium sp., Staphylococcus sp., Streptococcus sp.) but plants as well (e.g.,

Agarobacterium sp.). The loss of life and economic losses caused by bacterial infections

runs into billions of dollars per year, with variable global distribution of the respective

infectious bacteria [1].

To this end, the treatment of the infections remains a primary point of providing therapy

to those affected. Treatment with chemical compounds stood out as a viable means of

treating infections. The process of targeting microbial infections with chemical com-

pounds is a more than century-old venture. It began with use of an organoarsenic

compound (Ehrlich 606), better known as Arsphenamine or Salvarsan for the treat-

ment of syphilis, in 1910 by Paul Ehrlich and Sahachiro Hata. Salvarsan, also chemically

known as 3,3’-Diamino-4,4’-dihydroxy-arsenobenzol, was originally synthesised by Alfred

Bertheim, and remained the choice of treatment for syphilis as well as trypanosomi-

asis [2] until the discovery and emergence of penicillin [3]. The discovery of penicillin

heralded the Golden Age of Antibiotics (1940s-1960s), when most of the commonly used

penicillin related antibiotics were discovered [4–6]. The same era also saw the discovery

of diverse antimicrobial agents (β-lactams, aminoglycosides, tetracyclines, macrolides,

chloramphenicol, glycopeptides, streptogramines, sulfonamides, and quinolones) [4, 6].

All of these aforesaid classes of antimicrobials encompass a multitude of mechanisms

of actions within the microbial cell that can broadly be classified as bacteriostatic or

bactericidal.

The golden era on antibiotics also encompassed a common misconception that all of

the infections could be treated with antibiotics and that a complete eradication of all

1
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diseases could be achieved. However, on the contrary, the irrational and widespread

non-therapeutical use in animals culminated in the evolution of antibiotic resistant

strains [5, 6]. The problem has been exacerbated by expanded access to all antibiotics

as well as incomplete dosage regimens that render bacteria resistant to most of the

commonly used antibiotics. In worst cases, the bacteria are deemed superbugs that are

resistant to antibiotics reserved for serious cases like systemic infections (bacteremia) [7].

An apt case of acquired resistance is Staphylococcus aureus, namely the methicillin

resistant strain (MRSA), first observed in 1960 [8], which acquired the vanA gene from

Enterococcus faecalis and became resistant to vancomycin. This strain, vancomycin

resistant S. aureus (VRSA), represents a significant threat to public health mainly

because of its ability to cause nosocomial infections in immunocompromised as well as

infect healthy individuals. The infections are also notoriously difficult to treat, since the

bacteria no longer respond to the diverse antibiotics of a clinician’s arsenal [9, 10]. The

widespread marketing and irrational use in lifestock as well as food preservation have

certainly made the job of treating bacterial infections even harder [4]. This highlights

the danger of spread of these infections globally, and thereby it can be safely said that

infectious diseases are no longer limited to developing countries, but becoming a global

health concern.

In addition to the acquired resistance, the case of intrinsic resistance also exists mainly

in bacteria like Mycobacterium tuberculosis and Pseudomonas aeruginosa. The former

is notorious for exhibiting resistance towards the majority of the antibiotics, owing to

the thick ”waxy” mycolic acid coating around the cell wall (cf. Figure 1.1) that acts

as a barrier towards most of the lipophilic as well as hydrophilic substances, including

putative drugs [11–13]. It also has the ability to exhibit resistance towards antibiotics by

means of mutations, the best example being mutations (I21V, I47T, S94A, and M161A)

in the catalase-peroxidase (KatG) [14–20], that render it resistant to isoniazide (INH).

The latter has a reputation of rapid acquisition of antibiotics resistance even during

the course of treatment, with the clinically relevant reasons being cephalosporinase,

the extra-membranous porin OprD, and the multi-drug efflux pumps [21, 22]. Other

examples of the diverse mechanisms for antibiotics resistance include increased thickness

of the cell wall (VRSA), and extension of protein expression profiles (proteome) (MRSA).

1.2 Mycobacterium tuberculosis

Mycobacterium tuberculosis and associatedMycobacterium species (M. africanum, M. bovis,

Bacillus Calmette Guerin (BCG), M. microti etc.) are obligatory aerobic and acid fast

staining microbes representing a significant global health challenge. Together they form

the Mycobacterium tuberculosis complex (MTBC), one of the most successful modern
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Figure 1.1 Mycobacterial cell wall along with its key components. Figure adapted
and redrawn from Kieser, Rubin, 2014 [23].

pathogens, with their rise coinciding with expansion of humans from Africa about 40,000

years ago [24]. It is second only to human immunodeficiency virus (HIV) for mortality

resulting from a single infectious agent. The fact that the death rate due to tuberculosis

(TB) has fallen over 47% over the past two decades reflects the importance of treating

TB [25]. The severity of TB also comes from the fact that 95% of the TB-related deaths

were from developing countries, where HIV is also prevalent on a large scale, and that 1

out of 3 HIV related deaths were due to TB. The prevalence of TB infections is another

cause of concern, with a total of 9.6 million new cases and 1.2 million deaths in 2014.

The co-prevalence of HIV and TB is one of the emerging problems, with HIV infected

patients having a 20-30% higher chance of developing TB (including latent TB) than

healthy individuals [25]. All of these facts stress the urgent need to identify and treat

latent as well as actively diagnosed cases of TB.

The primary anti-tubercular therapy consists of a standard 6 month regimen consisting

of four anti-tubercular drugs, namely isoniazide (INH), rifampicin (RFP), pyrazinamide

(PZA), and ethambutol (EMB) (cf. Figure 1.2) [26]. However, due to incomplete dosing

regimes as well as non-compliance and economic factors, several strains of TB resistant to

the frontline drugs have emerged [27]. The diseases due to the resistant strains are multi-

drug resistant tuberculosis (MDR-TB or Vank’s disease) and extensively drug resistant

tuberculosis (XDR-TB). Of these, the former disease is caused by mycobacteria that are

resistant to at least two of the frontline drugs, namely isoniazide and rifampicin [28].

An extension of the resistance is manifested in XRD-TB, wherein the mycobacteria are

resistant to frontline drugs as well as fluoroquinolones and any injectable anti-tubercular

drugs [29]. Furthermore, the most severe form of drug resistant mycobacteria have been



Chapter 1. Introduction-I 4

N

N
H

NH2

O
H
N

N
H

OH

HO

N

NH2

S

N

N NH2

O

O

CH3
O

H3CO

OH

OHOH

H3C

N
N

N
CH3

OH

OO

CH3

H3C

OH

CH3

NH

O

H3C

CH3

Isoniazide Ethambutol

Ethionamide Pyrazinamide

Rifampicin

Figure 1.2 Anti-tubercular drugs used primarily under directly observed treatment
shortcourse (DOTS).

reported in form of totally drug resistant TB (TDR-TB) [30–32]. The drug-resistant

forms of TB are associated with high mortality as well as higher medical costs for

treatment. Thus, there is a clear requirement of novel potent anti-tubercular agents that

notwithstanding the antibiotics resistance are able to curb the mycobacterial infections.

1.3 Targeting Mycobacterium tuberculosis

As mentioned earlier, not only are newer anti-tubercular agents needed for treating TB,

but also new molecular targets, mainly to circumnavigate the antibiotics resistance. The

central problem lies in the fact that the mycobacteria have an extremely slow growth

rate. This in turn reflects a low cellular flux, that makes identification and targeting of

essential targets quite challenging. In the current post-genomic area, the advances in

whole genomic sequencing and complementary studies have enabled target profiling en

masse. The collaborative efforts of the Tuberculosis Structural Genomics Consortium

(TBSGC) have resulted in a total of 118 unique crystal structures in addition to 139

contributed by the academic and scientific sources [33, 34]. These protein structures

were obtained from actively dividing as well as dormant bacteria thereby assisting in the
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task of inhibiting mycobacterial growth by structure-based and combinatorial chemistry

approaches. Some of the principal, known as well as new targets recently profiled are

summarised in Figure 1.3.

Figure 1.3 Existing and new molecular targets in Mycobacterium tuberculosis ; figure
adapted and redrawn from Lamichhane, 2011 [33].

1.4 Binding Paradigms

One of the central issues any structure-based optimisation protocol faces in its nascency

is the accurate representation of the binding modes of new ligands in well defined protein

structures. Many of the key parameters associated with protein-ligand association like

binding affinity and residence time depend upon the appropriate representation of the

binding mode during their computational evaluation. The fundamental assumption

behind all such calculations is that the reference structure used represents the bulk of

conformations that the system can adopt. Normally, the crystal structure is used in such

studies and it is assumed that it represents the dominant conformation for a given system

from amongst an ensemble of conformations which it can populate. The binding of ligands

to such a conformation usually involves two mechanisms, which are historically well

known, namely Fischer’s ”lock-key” model [35] and Koshland’s ”induced-fit” model [36],

with the kinetics being described in Equations (1.1) to (1.6) [37, 38].

Receptor (R) + Ligand (L)
k1
⇄

k2

Receptor-ligand complex (R-L) (1.1)

Kd =
[R][L]

[RL]
=

k2

k1
(1.2)
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residence time =
1

k2
(1.3)

R+ L
k1
⇄

k2

intermediate R-L’
k3
⇄

k4

final R-L* (1.4)

koff =
k2 · k4

(k2 + k3 + k4)
(1.5)

k2 >> k3 and k4 =⇒ koff ≈ k4 → residence time =
1

k4
(1.6)

More recently, based upon the energy landscape theory of protein structure and dynam-

ics [39–42], a new ”conformational selection” theory of binding has been put forward

(Figure 1.4). This theory also takes into consideration the role of metastable states

other than the ”native” (low energy state) in driving molecular recognition. The theory

proposes that weakly populated ”high energy” conformers are primarily responsible for

molecular recognition and binding that is accompanied with a subsequent population shift

towards these conformers [43]. Simply put forward, the ”conformational selection” and

”population shift” models suggest that a ligand may interact not only with the ”native”

low energy conformation, but also with a singular or multiple high energy conformational

substates that are populated in solution. Thus, binding interaction merely does not

involve a ”conformational” change as is the case with ”induced-fit” theory, but is rather

accompanied by a ”population shift” within the pre-existing conformational substates

in solution [44]. The ”lock and key” model thereby cannot represent the molecular

recognition process for the ligand binding governed by induced fit or conformational

selection processes. Hence, the ligand-receptor binding needs to be studied in much detail

(and not solely in a static state) in order to better understand the relationship between

the ligand efficacy and its binding kinetics.

Accordingly, the effective sampling of the transition from weakly bound to tightly

bound states (induced-fit) and the population shift among the conformational substates

(conformational selection) is necessary to depict the protein-ligand association. One of the

principal theoretical methods to access the conformational changes in the protein-ligand

pair is molecular dynamics (MD). The technical advances in computational hardware (e.g.

Anton, GPU acceleration by CUDA) as well as molecular simulation (enhanced sampling,

implicit solvent models) have made it possible to sample conformational changes that

were previously difficult to achieve [45, 46]. Thereby, classical all-atom explicit MD

simulations offer valuable insights into the transition states of biologically important

processes like protein folding or even ligand binding [47, 48]. Furthermore, the population
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Figure 1.4 A thermodynamic protein-ligand binding cycle describing molecular re-
cognition, with rate constants k1 and k2 determining whether ligand binding takes place
via conformational selection or induced-fit. Figure adapted and redrawn from Boehr,
Nussinov, et al., 2009 [44].

shift can be modelled in silico using an ensemble of structures derived from a single

structure, using MD, normal mode analysis or ensemble docking [44]. The process

of ligand binding can thereby be studied in detail by combining molecular docking,

MD simulations and enhanced sampling methods. Alternatively, the redistribution of

the protein conformational substates can be directly studied in solution using X-ray

crystallography or NMR [49].

1.5 Aims of this work - Binding mode and activity pre-

diction strategies together with Essential Dynamics to

drive structure-based optimisation of anti-tubercular

molecules

InhA or the mycobacterial FabI (Section 2.1.2) is one of the established targets for

inhibiting the growth and proliferation of the mycobacteria. Indeed, InhA is one of

the better validated and studied molecular targets with a variety of small molecule

inhibitors reported in the literature [50, 51]. Of these InhA inhibitors, pyrrolidine

carboxamides and diphenyl ethers are some of the established classes with a sizeable

number of compounds and well defined inhibition activities. Typically, the pyrrolidine

carboxamides have modest InhA inhibitory activity as compared to the potent and
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long lasting inhibition for diphenyl ethers. The diphenyl ethers have been thoroughly

studied. Abundant structural and binding kinetics information for these are available in

the literature.

On the contrary, limited structural information is available for pyrrolidine carboxamides.

Just 5 crystal structures for representative compounds have been published up to date [52].

The detailed aspects of their binding to InhA, for e.g., the mechanism of action, binding

kinetics etc. have also not been reported so far. Therefore, the aims of this work are:

1. Binding mode prediction for pyrrolidine carboxamides by molecular docking

(Chapter 3).

2. Binding affinity prediction and activity-based classification using poses derived

from molecular docking (Chapter 4).

3. Dihedral angle analysis and essential dynamics to steer structure-based optimisation

of pyrrolidine carboxamides (Chapters 7 to 9).

4. Comparing the dynamic aspects of binding for pyrrolidine carboxamides and di-

phenyl ethers to reveal conformational changes governing the molecular recognition

process (Chapter 10).

1.5.1 Approaches to decipher binding and optimisation of InhA inhib-

itors

The current work comprises two parts. Each part focusses on the various binding aspects

of pyrrolidine carboxamides as putative Mycobacterium tuberculosis InhA inhibitors.

Despite the fact that InhA is a noteworthy and well validated target for anti-tubercular

drug design, even after two decades of research, much of the molecular processes governing

the ligand binding and in turn the residence time are unclear. A clear understanding of

such processes would effectively support in rational optimisation of the binding affinity

as well as residence time. Thus, Part I focusses on the binding mode determination and

affinity prediction, activity-based classification with pyrrolidine carboxamides having

unknown binding modes. The activity-based classification is expected to provide for a

fast separation of binders (actives) from non-binders (inactive/least-actives) in a virtual

screening setting.

The diversity in binding and the underlying molecular interactions in case of the various

InhA inhibitors suggest different binding kinetics for the respective classes. However,

the molecular determinants governing the binding kinetics of pyrrolidine carboxam-

ides as InhA inhibitors have not been widely studied. Accordingly, extensive MD
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simulations were utilised to reveal the dynamics of the molecular determinants govern-

ing binding for pyrrolidine carboxamides. Furthermore, by comparing the dynamical

information from the pyrrolidine carboxamides with slow tight-binding inhibitors, the

differences amongst intermediate conformations involved in binding (EI and EI∗) for the

respective classes can be studied in detail (cf. Chapter 10).

Accordingly, Part II of this thesis focusses on revealing the molecular determinants

that govern the binding of pyrrolidine carboxamides to InhA. Additionally, a principal

component analysis was performed to obtain valuable insights into the direction and

extent of maximal variations in the system (cf. Chapter 8). The accumulated information

was then utilised together with structural information from slow tight binders to drive the

structure-based optimisation of the pyrrolidine carboxamide scaffold. The characteristics

of the resultant molecules were thoroughly assessed using molecular docking and MD

simulations, along with an evaluation of their mycobacterial cell wall permeability using

MycPermcheck 1.2 [53], all while considering results of Part I (cf. Chapter 9).





Part I

Binding Mode Determination and

Activity

prediction/Activity-based

Classification
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Chapter 2

Background

2.1 FAS II and Mtb FabI

2.1.1 Mycolic acids and fatty acid synthase system

Mycolic acids are a corresponding series of C50-C60 α-alkyl-β-hydroxy fatty acids mainly

produced in all bacteria from the family Mycobacteriaceae, with shorter chains being

produced by Corynebacterium and Nocardia genera. Though these exist in various

forms, the trehalose dimycolate (DTM) or the ”cord factor” is the most abundant and

toxic lipid found on the cell surface of virulent strains [54]. A significant proportion of

mycolic acid is composed of bigger meromycolate (up to C56) and a smaller α-mycolate

form (C24-C26), although other forms like methoxy- and keto-mycolates do exist [11]

(Figure 2.1). The mycolic acids confer several useful characteristics like protection from

harsh chemicals, dehydration resistance, lowered permeability to lipophilic as well as

hydrophilic substances that include antibiotics, virulence [55–57], biofilm formation [58],

and an ability to persist within host macrophages [55, 59]. The biosynthesis of mycolates

Figure 2.1 Various mycolate forms of α-mycolic acid in Mycobacterium tuberculosis,
adapted and redrawn from Glickman & Jacobs, 2001 [60].

comprises two pathways that in turn utilise two types of fatty acid synthesising systems,

the type I (FAS I) and type II fatty acid synthases (FAS II). The FAS I system resembles

the eukaryotic FAS I system, which is primarily involved in de-novo fatty acid synthesis

13
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from acetyl CoA. All mammals including humans, completely lack the FAS II system

which is quite prevalent in plants, apicomplexa parasites and bacteria forming an alternate

path for fatty acid synthesis [61–63]. This means that targeting the FAS II pathway in

mycobacteria would be beneficial owing to lack of target homologues in humans.

The FAS II system of mycobacteria is primarily made up of four dissociable enzymes

that act in repetitive succession, resulting in the elongation of the acyl chain by 2 carbon

atoms per round. The process initiates with a continual acyl primer activation via a

thioester link to the prosthetic group of Coenzyme A (CoA) for FAS-I and acyl carrier

protein (ACP) for FAS II. Initially, the malonyl-CoA is converted to malonyl-ACP by

the malonyl-CoA:ACP transacylase (FabD). The elongating acyl chain then condenses

with malonyl-ACP (from FAS I) forming β-ketoacyl-ACP, in a mtb-FabH (β-ketoacyl-

ACP synthase I) catalysed step. FabH mediates the entry of the fatty acids from

FASI to FASII. The β-ketoacyl-ACP then undergoes a NADPH dependent-β-ketoacyl-

ACP reductase (FabG) catalysed reduction to β-hydroxyacyl-ACP, which undergoes

dehydration carried out by β-hydroxyacyl-ACP dehydratase (FabZ). This is followed by

an ultimate step wherein the NADH/NADPH-dependent enoyl-ACP reductase (FabI)

catalyses the hydrogenation of the substrate to acyl-ACP. The acyl chain now undergoes

subsequent rounds of elongation catalysed by the β-ketoacyl-AcpM synthases KasA and

KasB, respectively (cf. Figure 2.2).

A key feature of the above cycle is that it is composed of several essential proteins that

completely lack homologues in humans, making them attractive targets for drug design.

Indeed, targeting the bio-molecular synthesis machinery of the mycolic acids affects the

structural integrity as well as permeability of the mycobacterial cell wall. The end effect

of this is cell lysis due to a variety of mechanisms [64].
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Figure 2.2 Fatty acid synthesis (FAS) II pathway of Mycobacterium tuberculosis,
adapted and redrawn from Pan, Tonge, 2012 [50].
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2.1.2 The Enoyl ACP reductase of Mycobacterium tuberculosis-InhA

Of the many targets that FAS II offers, the mycobacterial FabI, commonly referred to as

InhA (Figure 2.3), is an attractive and well studied target. Mtb-InhA belongs to the short

chain dehydrogenase family of reductases that are a constituent of the dissociated FAS II

pathway. It plays a key role in the fatty acid chain elongation process eventually resulting

in synthesis of the ”waxy” mycolic acids. Mtb-InhA derives its name from Isoniazide

(INH), which gets activated in intracellular environment by a catalase-peroxidase system

(KatG) to a highly potent and reactive radical that forms the isonicotinic-acyl NADH

adduct (Ki 0.75 nM) [16] . This adduct exhibits slow-tight binding with InhA with a

very small koff (0.017/min).

InhA is bioactive as a homotetramer, with each of the monomeric units displaying a

classical Rossmann fold that binds the cofactor in its reduced state [65]. The binding

pocket consists of a catalytic triad of Phe149, Tyr158 and Lys165 along with Phe97 that

acts as a gatekeeper apart from residues that lie along the α6 and α7 helices, all of which

play a key role in ligand binding. Both α6 and α7 helices constitute a flexible portion of

the protein, the substrate binding loop (SBL), which closes upon binding of the substrate

(Figure 2.3). The cofactor, which in most crystal structures has been resolved in its

oxidised state (NAD+) lies at the bottom of the binding site, with the nicotinamide

part facing the interiors of the pocket and adenine facing the exterior part. The binding

pocket has both of its ends exposed to solvent which are referred to as major and minor

portal, respectively (Figure 2.4).

Figure 2.3 C-α aligned structures of Mycobacterium tuberculosis InhA, with the
substrate binding loop (α6 helix); 2X23 (red), 2NSD (violet), 2H7M/4TZK (teal), and
1P44 (baggy green). Also shown are the cofactor (NAD+; grey sticks) and PT-70 (cyan)
ligand of 2X23 as well as the α7 helix.
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Figure 2.4 Major and minor exit portals of InhA: The picture on the left hand
side depicts the minor exit portal (black arrow). The one on right hand side depicts the
major exit portal (dashed arrow). The substrate binding loop (α6 and α7 helices) of
2X23 has been coloured red. Also shown are the cofactor (NAD+; grey sticks), Phe149
(marine sticks), Tyr158 (lime coloured sticks), and the ligand of PDB 2X23 (PT-70;
violet). The conserved hydrogen bonds appear as black dashed lines.

Furthermore, InhA has several unique characteristics [66] that set it apart from other

bacterial enoyl ACP reductases (ENRs) like:

1. It can handle a variety of enoyl ACP’s, with the range of alkyl chain being C18-C56

on average as compared to maximum C18-C20 for other homologous bacterial

proteins. This highlights the exceptional flexibility of the protein and thereby the

SBL in accommodating very long alkyl chains.

2. The inherent flexibility of InhA also leads it to have a deeper cleft than other ENRs,

that enables accommodation of long-chain substrates for mycolic acid biosynthesis.

2.1.3 Inhibiting Mycobacterium tuberculosis InhA

The central theme of InhA inhibitors lies in the disruption and blockade of reduction

of the unsaturated precursors of mycolic acid by enoyl ACP reductase. A key feature

displayed by majority of InhA inhibitors in the literature is that they sidestep the KatG

activation step, unlike isoniazide. Of the many published inhibitors, the focus clearly lies

on those which display similar binding characteristics like:

1. Form dual H-bonds with Tyr158 and the oxidised cofactor (NAD+).

2. Show strong van der Waals contacts with Phe149, Ala198, Met199, Ile202, and

Val203.

3. Exhibit some sort of π − π stacking with the nicotinamide ring of the cofactor as

an additional stabilising factor upon ligand binding.
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From amongst the several published inhibitors of InhA (Figure 2.5), diphenyl ethers

(DPE), 4-hydroxy-2-pyridones (PYR), and pyrrolidine carboxamides (PC) are among the

most prominent classes. The former classes have been derived from a widely used anti-

microbial agent, triclosan (TCL), and they represent some of the most potent inhibitors

of InhA till date [50, 67]. The last class has been found not only to be pharmacologically

active as moderately potent InhA inhibitor [52], but also exhibiting anti-diabetic/anti-

obesity [68], anti-viral [69], anti-cancer [70] and anti-inflammatory effects [71]. A key

difference in between the two classes is their ability to bring about the ordering of SBL

residues, that ultimately contributes to their binding affinity and residence times. This

is evident in states of the SBL in the crystal structures of the respective ligands; PT70

(PDB 2X23, SBL closed [72]), TCL (PDB 2B35, SBL unresolved [73]), pc-d11 (PDB

4TZK, SBL partially closed [52]). Thus, the SBL conformation in 2X23 can be said to be

the final state that most slow tight binders (PT70 and related structures) exhibit, while

the latter cases stand for partially ordered/disordered states reflecting a destabilised EI∗

state [74].

Figure 2.5 Principal chemical series of Mtb-InhA inhibitors considered in molecular
docking in the current work.

Although all of the aforesaid facts have been experimentally documented, little is known

what triggers the loop ordering or the kinetics behind the same. The structural features

of a ligand have a profound effect on the binding kinetics/residence time. This is clearly

evident from the case of PT70 and 6PP, the former is a slow tight binder with a low

Ki and a high residence time, while the latter lags behind the former in both aspects.

Given that both ligands differ by a single methyl group [72, 73], the effect of structural

features of ligands on their binding kinetics cannot be overlooked in rational modulation

of binding affinity.

The pursuit of novel scaffolds with improved binding affinities against InhA has been

subject of numerous computational and traditional studies [75–78]. These studies were
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performed with the apo-enzyme, cofactor-bound protein and a complete protein-cofactor-

ligand complex, respectively. These studies assessed the changes in protein conformations

and the binding free energies upon ligand binding. The binding kinetics which aid

in revealing the protein-ligand associations was however not analysed in these studies,

implying their limited utility in describing the process of protein-ligand binding.

The recent studies involving design and optimisation of novel scaffolds against InhA

included isoniazide [79], small peptides [80], arylamides [81] and diphenyl ethers [82]. A

fairly advanced computational study involving Nudged Elastic Band (NEB) to study the

binding energetics and kinetics of diphenyl ethers has recently been performed [74].

2.2 Binding affinity and kinetics and their role in drug

discovery

As a general goal of obtaining novel compounds with high binding affinities, drug

discovery projects often focus on securing a molecular scaffold with favourable binding

characteristics followed by optimisation of its binding affinity. The binding affinity, in

thermodynamic aspects, is the free energy change (∆G) between the bound and unbound

states of the ligand and the protein. The binding affinity in itself is a result of structural

and thermodynamical changes occurring in both ligand and protein as they associate. In

other words, the binding affinity is clearly dependent on the dynamics as well as kinetics

that constitute the overall binding phenomenon.

The consideration of structural dynamics and kinetics together in overall binding affinity

is clearly visible as a potential gap in the results of in-vitro and in-vivo assays. In real

applications, the central focus lies on accurate description of the kinetics and dynamics

of the transition state in addition to the reactants and products. For achieving this

purpose, the equilibrium constants like Ki and Kd are inadequate thereby stressing the

need for additional parameters like dissociation rate constant (koff ) to fairly depict the

process of ligand binding [49]. However, the developments in NMR and single molecule

spectroscopy have enabled the assessment of structural aspects of transition states (and

thereby the kinetics) that were formerly very difficult to capture [83–85].

The modulation of drug-target residence time is an important aspect in the pursuit

of highly efficacious drugs with favourable binding kinetics. A molecule with a very

low value of koff would interact for an extended duration with its target, i.e. it would

exhibit increased residence time. This is the case with the diphenyl ethers PT70 and

PT92, with very long residence times and identical kinetics as InhA inhibitors. Both

molecules exhibit “slow-onset inhibition” which entails an initial rapid reversible binding

(EI) followed by a slow tight binding (EI∗) indicated by low koff [37]. The latter stage
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of binding is expected to proceed as described by induced fit, where the koff is actually

composed of numerous microscopic rate constants (cf. Figure 2.6) [86].

The typical characteristics of slow tight binders offer a new avenue for improving their

efficacy involving destabilisation of the transition state (between EI and EI∗) as opposed

to stabilisation of the final bound state for the ligand (EI∗). This implies a steering of

koff (or kb; Figure 2.6) that results in increased duration of the ligand in the EI∗ state.

However, this attempt of rational residence time modulation faces multiple barriers owing

to the lack of detailed structural information pertaining to the transition state [38].

Moreover, rational modification of drug-target residence time has its own mitigating

factors and is quite case specific, with long residence times in some cases being desirable,

for e.g. bacterial and viral targets [49], but not in some others (for e.g., Roxifiban an

anti-thrombotic [87], D2 receptor antagonists as anti-psychotics [88], and Memantine for

treating Alzheimer’s disease [89]). Another apt example are engineered antibodies where

the association constant (kon) demonstrated a better correlation than koff with measured

activity [90]. These cases clearly show that microscopic rate constants of association as

well as dissociation are of critical importance in a drug discovery endeavour.

2.3 Computational methods for assessment of structure,

dynamics and binding affinity of protein-ligand com-

plexes

The recent strides made in the field of theoretical chemistry and computer-aided drug

design have aided in unravelling the key events taking place during protein-ligand binding.

Numerous approaches to characterise and quantify the interactions in between a ligand

and its target during the entire course of the binding process have been of immense

use to drug discovery scientists [91–93]. On parallel terms, the evaluation as well as

quantification of protein-ligand interactions mainly in terms of either binding affinity or

kinetics has been achieved with techniques like molecular docking and MD simulations.

Molecular docking on one end serves for rapid prediction of binding orientations for new

ligands, while advanced scoring functions enable prediction of binding affinities. With

more improved docking algorithms and scoring functions, the large scale virtual screening

of compound libraries has been made possible. However, significant barriers still exist

for the explicit use of docking and scoring functions for prediction of binding mode and

affinity [94].

Molecular dynamics (MD) aim to bridge the gap in between prediction of binding mode,

binding affinity, and binding kinetics/residence time. They provide a means to generate
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Figure 2.6 Drug-target binding mechanisms: The upper part describes the
kinetics of single step binding followed by kinetics for two step binding. The lower
figure describes the free energy profile (black) for one step binding of Drug (D) and
Receptor (R), with ∆Gd being the binding affinity that is equal to the difference between
bound (DR) and unbound (D + R) states. The modulation of free energy profiles that
accompany a decrease in koff are colored red. The solid red line depicts the lowering of
koff for a process with destabilised transition state (i.e increasing the barrier height).
On the contrary, the dashed line represents a process of increasing the affinity (i.e.
stabilising the DR state). The association (kon) and dissociation (koff ) rates depend on

the free energy differences (∆ G
′

on and ∆ G
′

off ) of the end states and transition state.
In the formulas, R is the universal gas constant and T is the temperature. The inset
shows a two step binding for a drug-receptor pair; Figure adapted and redrawn from
Pan, Borhani, et al., 2013 [37]

an ensemble of structures that represent the structural and energetics changes in the

system over time, i.e., a trajectory [95]. It is then possible to perform qualitative as

well as quantitative analysis of a trajectory regarding internal motions of a molecule

and thereby its function over time. MD simulations also provide for means to assess

binding affinity (binding free energy) using numerous methods, each with their own
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strength and drawbacks. These techniques can be broadly classified into two groups:

rigorous and non-rigorous, which can alternately be called as free energy pathway and

end point methods, respectively. This is because a multitude of binding free energy

(affinity) calculations generally pertain to the estimation of relative changes between

two equilibrium states, rather than the absolute values. The rigorous methods like Free

energy perturbation (FEP) or Thermodynamic integration (TI) are rigorous methods

that follow Zwanzig’s formula (Equation (2.1)) which yields the free energy difference in

between two equilibrium states A and B

Figure 2.7 Thermodynamic cycle describing the relative change in free energy for two
ligands A and B bound to the same target. The lower part of the figure describes the
calculation of the binding free energy upon protein mutation or ligand modification. The
values ∆Gbind(A) and ∆Gbind(B) are readily accessible via free energy perturbation
methods, thereby making calculation of the relative binding free energy (∆∆GA→B)
possible. Figure adapted and redrawn from Sharp, 2012 [96].

∆G = GB −GA = −β−1 · ln 〈exp(−β ·∆V )〉A (2.1)

where, β= 1/kT, k is the Boltzmann constant, T the absolute temperature, 〈 〉A represent

a MD or Monte Carlo (MC) ensemble average of ∆V = VB − VA, i.e., the change in

potential from ligand B to A [97]. The Equation (2.1) yields Gibbs free energy when

the configuration sampling is performed in an isothermal-isobaric ensemble (N, P, T

conditions), while sampling under N, V, T conditions yields the corresponding Helmholtz

free energy.

In actual practice, the transition in between two states (A and B) is split over multiple

independent perturbations (m = 1, 2,..., n), each run simultaneously with its own

potential (Vm) (Equation (2.2)). The linear combinations of the intermediate potentials

(V A→B
m ) gives the potential of either A or B [97, 98]. The free energy change for the
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process can then be obtained by summation over the change in potential (∆λ) going

from A to B (Equation (2.3)).

Vm = (1− λm)VA + λmVB (2.2)

where λm varies from 0 to 1, while m stands for the state and Vm for the potential of

that state.

∆G = GB −GA = −β−1
n−1
∑

m=1

ln 〈exp [−β(Vm+1 − Vm)]〉m (2.3)

A mathematical alteration of Equation (2.3), splits the path from A to B into very small

steps, each with its own λ value followed by integrating them to get the overall free

energy change from A to B (Equation (2.4)). This approach is called Thermodynamic

integration (TI) and is the preferred method in practice. In general use, the free energy

change upon ligand binding is investigated in relative sense, as seen from Figure 2.7.

However there are certain limitations in regards of the rigorous methods, namely:

1. Convergence of the sampling for the various configurations

2. Time consuming and thereby limited to small perturbations at a time [97].

Additionally, the rigorous methods are unable to offer insights into binding kinetics and

residence times since the thermodynamic cycle does not consider transition states of

binding/unbinding.

∆G =

∫ 1

0
〈∆V 〉λdλ (2.4)

On the other hand, the non-rigorous methods have evolved as popular alternatives to

their more rigorous counterparts. These methods (non-rigorous) typically consider the

physically relevant portions of the thermodynamic cycle (Figure 2.7), i.e., the bound and

unbound states of the ligand. These typically reside at the endpoints of the thermody-

namic cycle and hence the alternate name ”endpoint methods”. The process of binding

affinity calculation begins with generation of a thermodynamic ensemble followed by eval-

uation of the non-bonded interaction energies of each endpoint. Two of the most popular

endpoint methods are Linear Interaction energy (LIE) [99–101] and Molecular Mechanic-

s/Generalised Born/Poisson-Boltzmann/Surface Area (MM-/GBSA/PBSA) [102–104].

Both methods are derivatives of the Linear-response approximation (LRA) [105, 106],

which estimates changes in electrostatic free energy involved in protein (P)- ligand (L)

binding as shown in Equation (2.5).

∆G =
1

2

(〈

EL−S
ele

〉

PL
−
〈

EL−S
ele

〉

PL′
+
〈

EL−S
ele

〉

L
−
〈

EL−S
ele

〉

L′

)

(2.5)
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where, EL−S
ele is the electrostatic interaction energy between the ligand and its periphery

(protein or water), 〈 〉 indicate ensemble average, PL and L denote standard MD

simulations of bound and free ligand, respectively, while PL’ and L’ indicate simulations

with ligand having null charge.

The LIE method along with its theory and applications in binding affinity prediction for

InhA inhibitors will be discussed in Chapter 4. The MM-GBSA/PBSA method [102, 104]

utilises a continuum solvent approach for analysing the trajectories, with the ”mean”

free energy change being calculated by Equation (2.6).

∆G = 〈GComplex〉 − 〈GProtein〉 − 〈GLigand〉

G = Ebnd + Eel + EvdW +Gpol +Gnp − TS
(2.6)

where the first three terms of Equation (2.6) represent standard molecular mechanics

energy terms (bonded and non-bonded), Gpol and Gnp are the polar and non polar

contributions to solvation free energies. Gpol can be obtained by solving the GB/PB

equation, while Gnp is derived from a linear approximation of solvent accessible surface

(SASA). The final term T represents absolute temperature multiplied by the entropy (S),

and is calculated by a harmonic analysis of vibrational frequencies [104].

The ensemble averages from Equation (2.6) for the individual components can be calcu-

lated using two approaches. The first approach involves separate ensemble generation

for protein, ligand and complex, respectively (referred to as 3MM-PBSA). The second

approach (1MM-PBSA) makes use of a singular ensemble for the complex from which

the corresponding individual ensembles can be obtained by removing the protein or

ligand, respectively. In practice, the latter is preferred not only for its speed and ease

of implementation but also because it is less error prone [104, 107, 108]. A common

drawback of both approaches is the partial capture of entropy that contributes to the

total free energy of binding. This is simply because capturing entropies by normal mode

analysis or related harmonic analysis of vibrational frequencies is a difficult task [97].

The MM-PB/GBSA also offers no insights into binding kinetics or its determinants.

The extensive analysis of several related systems enables the extraction of structural

information pertaining to determinants of ligand binding and residence time. The dimen-

sionality reduction techniques like principal component analysis and related methods

additionally aid in revealing the extent of correlated/uncorrelated movements in a given

system. The information derived from these techniques can be combined with the

structural features of slow tight binders to drive the structure-based optimisation of

moderately potent compounds like pyrrolidine carboxamides. This approach will be

clearly outlined and discussed further in part II of this thesis.
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2.3.1 Basics of Molecular Docking

The past few decades have witnessed a spurt in high-speed synthesis as well as high

throughput screening which ultimately led to a revolution in lead discovery against a

multitude of molecular targets. This in part has also been due to a parallel increase in

number of crystal structures being resolved that cover 125,093 molecular targets and

22,104 ligands [109]. With the passage of time, the targeted HTS methods became

increasingly preferred over random library design and HTS screening [110]. Molecular

docking and scoring were developed as high throughput alternatives to the conventional

biological screening methods. Consequently in the past decade, molecular docking has

secured an important place in virtual screening protocols for in-silico lead optimisation.

The binding energy evaluation for poses from docking using first principle methods is

cumbersome and has given way to comparatively faster scoring functions [110]. The

scoring functions typically aim for rapid prediction of ligand binding energetics and

ranking the same based on the calculated affinities. All of this being performed with

a particular emphasis on adequate consideration of the molecular phase space that is

critical for correct identification of the protein bound ligand conformation [110, 111].

The process of molecular docking can then be defined as the prediction of structure of

receptor-ligand complexes, with the receptor being a protein, DNA or RNA, while the

ligand can be a small molecule, oligomer of peptide, DNA or RNA [112]. Pioneering work

in docking was performed by Kuntz et al. [113], while several programs with variable

approximations have been developed since the original method was implemented [94].

In any lead optimisation or virtual screening endeavour, a docking protocol being used

should be able to:

• Predict the binding orientation for a given compound/s while considering full flexib-

ility of protein and ligand together with adequate sampling of their conformational

space.

• Accurately predict the binding affinity and rank the compounds based on their

”scores” (predicted binding affinity)

There are two main types of molecular docking depending upon the consideration of

partial or full flexibility of either the ligand and the receptor, namely rigid docking and

flexible docking [114, 115]. Rigid docking treats both ligand and receptor as frozen while

considering geometric complementarity and ignoring binding phenomena like induced

fit. Flexible docking usually treats the ligand as fully flexible, while keeping the protein

geometry frozen. More recently, flexibility of the protein has also been considered to a

limited extent with the process often referred to as induced-fit docking [116, 117].
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2.3.1.1 Ligand Placement Algorithms and Conformational Sampling

Addressing the ligand flexibility remains an important endeavour both prior and during

the docking process. This is achieved by three main methods: generation of multicon-

former libraries, incremental construction in the binding pocket, and stochastic methods,

respectively. The multiconformer method uses pre-generated conformers for the rigid

docking as is the case with EUDOC [118] and FRED [119], and DOCK [113]. Now-a-days,

conformers can be generated on-the-fly using programs like CATALYST (Accelrys Soft-

ware Inc., San Diego, USA), and OMEGA (Open Eye scientific, Santa Fe, New Mexico,

USA). However, a conformer generation software has to ensure that its output retains

the bioactive conformer whilst simultaneously giving a reasonable number of conformers

that the docking algorithm can handle, mainly to avoid a combinatorial explosion [120].

An apt alternative for the multiconformer generation is the incremental construction

algorithm. According to this algorithm, the molecule to be docked is dissected into

”anchor” and ”fragments”, usually along the single bonds that are not from a cyclic

system. Subsequently, a suitable placement for the anchor fragment is ascertained which

is followed by incremental and a step-wise fragment addition that typically yields the

receptor bound conformation of the ligand. The placement of the fragments is usually

guided by a combination of matching algorithms (superposition of atomic triplets or

paired interaction centers) and rules describing their torsional inclinations [120]. This

approach is used by FlexX [121] and DOCK 4.0 that employs the anchor-and-grow

method [122].

The stochastic methods follow a different path and sample ligand conformations on-the-fly,

with two main approaches for the same: Genetic algorithms (GA) and Monte Carlo (MC).

The Monte Carlo methods begin with an arbitrary ligand conformation in the phase space

followed by random generations of new configurations. The configurations are typically

generated by varying the torsional angle and rotational/translational degrees of freedom

for the ligand. The selection of favourable configuration is governed by a Metropolis

criterion that ensures that low energy configurations are always sampled whilst those

of higher energies are only accepted probabilistically (comparison of random number

between 0 and 1 with the Boltzmann energy difference between the current configuration

and the previously accepted one) [120]. The Monte Carlo technique (coupled with

simulated annealing) has been used in ICM [123] and MCDOCK [124].

Another prominent class of stochastic methods are the genetic algorithms (GA’s) which

are inspired by Darwin’s theory of evolution [94]. In docking context, an initial population

of poses are generated randomly, with the pose characteristics (dihedral angle and vectors

describing global rotation, translation) being coded by chromosomes. The population of

chromosomes is then allowed to evolve by performing genetic operations (mutations and
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crossover of genes) that yield newer generations of the initial poses that exhibit higher

fitness (e.g., better docking score) in comparison to their parents. The process continues

until a termination criterion is reached (e.g., minimal RMSD cutoff, maximum number

of generations, constant optimal fitness value etc.) [120, 125]. The GA based docking

programs include AutoDock [126] and GOLD [127].

In addition to the aforementioned techniques, energy-search driven techniques like

molecular dynamics enable configurational sampling of the ligand and protein as well

with full flexibility. Their applicability has been mostly restricted to pre-processing

(ensemble generation for ensemble docking) and post-processing (post-docking energy

minimisation). The main barriers to use of MD in docking is its inefficiency in traversing

low energy barriers and sampling of multiple low energy minimas [120]. Nevertheless,

there are promising techniques like metadynamics [128] that enable the use of MD

simulations in docking.

2.3.1.2 Scoring Functions and Binding Affinity Prediction

The need of docking to rapidly and accurately score as well as rank a large number of

docking solutions gave rise to scoring functions. Scoring functions are ideally needed

to not only correctly predict the binding energy and rank the docking poses, but also

differentiate binders from non-binders in a virtual screening endeavour. They are grouped

into three main types:

1. Empirical scoring functions

Empirical scoring functions involve regression analysis between the structural

descriptors and the experimentally determined affinity to derive an equation for

prediction of binding affinity [125, 129]. The term ”empirical” comes from the

reliance of this group of functions on the experimental data of structures and

affinities [120]. The descriptors of the protein-ligand complexes are those that

contribute maximally to binding affinity, e.g., hydrogen bonds, buried hydrophobic

surface area, number of rotatable bonds. Starting with a large number of protein-

ligand complexes (training set), descriptors are calculated followed by correlating

them to the experimental affinity by conventional multilinear regression or machine

learning methods like random forest [130] and support vector machines [131]. Most

of the empirical scoring functions development began with introduction of Böhms

function [132], which forms the basis of LUDI score [133] as well as in an adapted

form for FlexX [125]. Other noteworthy examples of empirical scoring functions

include Glidescore [134], Chemscore [135], and SFCscore [136]. The main drawback

of empirical scoring functions is the need to derive the weights for coefficients for

each of the weighted terms making their applicability limited to certain cases [137].
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This also means that the dependence of empirical scoring functions on limited

experimental data creates an ambiguity about the meaning of each term and its

error assessment [125]. Furthermore, the applicability of an empirical scoring

function as well as its success in the same remains confined by the quality as well as

quantity of the data in the training set. Another drawback of empirical functions

is the obstacle in quantification of entropy and desolvation terms, both of which

contribute significantly to the final binding affinity [125].

2. Force field/molecular mechanics-based scoring functions

These scoring functions utilise classical terms from molecular mechanics to estimate

the binding free energy for a pose under consideration. These are loosely based on

parameters defined in the force fields, which are derived from experimental data

(excluding binding affinity) and ab-initio Quantum Mechanical (QM) calculations.

These scoring functions predict the binding free energy as a sum of van der Waals

and electrostatic interactions, with intermittent inclusion of intramolecular strain

energy [129]. Some improved force field scoring functions include effects of solvation-

desolvation in the final value by considering a continuum solvent approach (MM-

PBSA, MM-GBSA) [102, 103] or by considering the bound and unbound states of

the ligand (LIE) [101, 138] and related extensions of the same method (LIECE) [139].

Though both LIE and MM-GB/PBSA have been found to be extremely useful in

predicting binding affinity for a wide series of protein-ligand complexes, they also

come with a fair share of drawbacks. The MM-GB/PBSA technique is particularly

sensitive to alterations in protonation states of protein/ligand, change in substitution

size on the main scaffold or any such changes that lead to a deviation from the

reference scaffold. The LIE method also, by its very definition generates the need

for fitted parameters for a particular scaffold making any prediction limited to

related molecules or with minor deviations from the reference scaffold. A common

drawback of these scoring functions is the inadequate consideration of the entropic

contribution to the binding affinity.

3. Knowledge-based scoring functions

As the name suggests, this category of scoring functions perform statistical analysis

of structural information from protein-ligand complexes from large databases into

”pseudo free energies” for protein-ligand atom pairs [125]. This approach is also re-

ferred to as potential of mean force (PMF), where the interaction energy or distance

dependent pseudopotentials for a given atom pair can be shown by Equation (2.7),

with the term gij being calculated by estimating the density of occurrence of the

atom pair ij at distance r in a database, e.g., RCSB PDB.

A(r) = −kbT · ln · gij(r) (2.7)
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where i is the protein atom, j is ligand atom, A(r) the protein-ligand interaction

free energy, kb is the Boltzmann constant and T represents the temperature [125].

Finally, the score is a summation of all such interatomic interaction energies in

the protein-ligand complex. The most important aspect of this group of scoring

functions is their strength in predicting the pose quality that stems from the use

of very extensive structural data. This also sidesteps the need for fitting of the

experimentally determined binding affinities for the protein-ligand complexes of the

training set (like empirical scoring functions). An added advantage of these scoring

functions is the implicit treatment of solvation and entropic terms. Prominent

examples of these scoring functions include PMFscore [140] and DrugScore [141]

alongwith its numerous variants like DrugscoreX [142], DrugscoreCSD [143], and

DrugscorePPI [144].

2.3.1.3 Consensus Scoring and Tailored Scoring Functions

It is a well known fact that scoring functions represent an Achilles heel for any docking

endeavour, given the fact that each scoring function has its own strengths and weak-

nesses [145]. As a consequence, with the main aims of subverting the main shortcomings

of scoring functions, some of the many approaches described in literature will be touched

upon. These techniques are as follows:

1. Appropriate consideration of hydrophobicity and water exclusion

This approach has been implemented in the HYDE scoring function by Rarey et

al. [146], wherein the binding affinity was derived from two terms representing

dehydration of polar and nonpolar groups in the protein-ligand interface alongwith

modified treatment of hydrogen bonding. The terms were in turn obtained by

atomic level increments in logP that yielded the corresponding hydrogen bonding

and dehydration free energies. The inclusion of atomic accessibility ensures that the

polar atoms undergoing dehydration in narrow channels or pockets are penalised

less than solvent exposed polar atoms, which is consistent with experimental

observations [129, 146]. The resulting scoring function is target independent and

able to classify ligands at both ends of activity spectrum, with a generalised

cutoff for recognising binders. Thus, the inclusion of the above terms led to an

improvement in discriminating ability for recognising binders and non-binders in a

target independent fashion.

2. Utilisation of high quality training and test datasets: SFCscore deriva-

tion

This scoring function developed by Sotriffer et al. [130, 136] under the aegis of the

Scoring Function Consortium (SFC) represents another case implying the effect of
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a high quality training dataset on the performance of the final scoring function.

With a training dataset of over 850 high quality protein-ligand complexes and

60 descriptors representing numerous protein-ligand interaction characteristics, a

superior performance was observed for all 8 derived functions on poses generated

for 22 different target proteins [136]. However, noticeable improvement over other

empirical scoring functions was not observed. The underlying reasons were at-

tributed to lack of consideration for the solvent, flexibility of protein, and to the

empirical approach itself. Whilst majority of these issues could be addressed by

use of high quality protein-ligand complexes, given the heterogeneous nature of

the complexes in the training set, an average prediction error of ≤ 1 pKi unit is

difficult to achieve [145]. This fact merely underscores the prediction limits for

empirical scoring functions.

3. Consensus Scoring

The use of two different scoring functions should augment their overall performance,

which was indeed found to be true in some cases [147, 148]. This concept of

using multiple scoring functions in scoring and ranking poses is called “Consensus

Scoring” [149]. The use of two or more distinct and high performing scoring

functions derived from entirely different methods led to improvements in positive

hit rates alongwith a slight decrease of true positives [150]. This necessitates the

need for comparison of individual scoring functions versus the combination to

assess the performance of the functions across individual targets. Some examples

of consensus scoring included GFscore [151], which utilises neural networks and a

combination of 5 different scoring functions, and SeleX-CS [152]. In Chapter 4,

a step-wise consensus scoring based upon GlideScore, Drugscore and SFCscore is

used to obtain near native ligand conformations followed by prediction of their

binding affinity.

4. Tailored Scoring functions

Rather than developing generic scoring functions that perform variably across

different targets, functions targeted against a particular type of targets are an

attractive undertaking. Such functions are augmented and customised versions of

their parent functions using additional terms or filters [145]. One prominent example

is AfMOC derived by Gohlke and Klebe et al. [153], that is a group of functions

derived from DrugScore. TScore [154] uses a CoMFA [155, 156] (Comparison of

Molecular Field Analysis) like approach, with molecular fields derived from the

target and not just those from ligand delivering superior performance as compared

to knowledge based potentials alone, highlighting the success of this customised

approach.
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2.3.2 Protein Flexibility in Molecular Docking

Chapter 1 describes the fundamental theory behind protein-ligand binding, with induced

fit and conformational selection being the major mechanism in binding [36, 44]. Thus, to

understand the handling of protein flexibility during docking, it is imperative to consider

first the types and zones of flexibilities in a protein and their relation to ligand binding.

Generally, loops have maximal mobility with polar solvent exposed residues and residues

bordering the loops demonstrating higher movements [157]. It was seen that important

residues often undergo conformational changes and subsequent stabilisation upon ligand

binding, with a restricted number of side chains actually being significantly affected by

the changes [158]. Furthermore, structural measurements classify flexible proteins into 3

main groups: nearly rigid proteins, flexible proteins, and intrinsically unstable proteins

based upon the conformational changes upon ligand binding [159].

The handling of protein flexibility during docking is not a one step process but rather

a workflow of several processes [129]. Based upon the basic ligand binding mechanism,

two main types of processes exist, viz., conformational selection and induced-fit. The

computational representation of conformational selection involves ensemble generation

prior to docking as a means of introducing protein flexibility. The use of ensemble gener-

ating procedures ensures a proper conformer generation of proteins and ligand placement

via a complementary fit. The alternate path of induced fit is usually accompanied with

noticeable conformational changes in a single protein structure. The Figure 2.8 depicts

handling of protein flexibility during numerous docking stages. The process of docking

using conformational selection considers the protein as an ensemble of variably populated

conformational clusters at equilibrium, with ensemble generation being achieved by

experimental techniques like NMR or X-ray crystallography [160]. However given the

amount of effort and experimental obstacles for either NMR or X-ray crystallography, MD

simulations offer a pragmatic option for ensemble generation. The use of MD simulations

in ensemble generation is strongly dependent on the parameters used which are often

variable [157]. An example of this approach is relaxed complex schemes that yields MD

generated snapshots in the initial stage of docking [161, 162].

Alternatively, Monte Carlo simulation based conformational sampling can also be used to

describe the equilibrium state of the protein in the form of an ensemble of structures. The

ensemble generation can be sped up by using multi-step coarse-grained (CG) simulations

or by performing simulations in implicit solvent, at the cost of accuracy [163, 164]. Other

approaches for ensemble generation include restricted consideration of relevant protein

conformations[165, 166], sampling of rotamers and sidechain of key residues of binding

site [167–169], use of Normal mode analysis [170, 171], and targeted productions of

ensembles with a priori information of binders.
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As mentioned earlier, protein flexibility in docking can be considered by two groups of

methods: Ensemble docking and Docking with induced fit, of which induced fit shall be

covered briefly, while ensemble docking methods will be discussed in a minimalistic way.

A summary of various methods amongst both groups is shown in Figure 2.9.

Figure 2.8 Protein flexibility can be considered at numerous stages of docking, namely
before, during and in post ligand placement phase. The identification of flexible parts
in a protein take place in predocking stage followed by conformational sampling. The
docking then samples the ligands conformational space and protein as well. Scoring and
pose refinement take place after the docking. Figure adapted and redrawn from Henzler,
Rarey et al., 2011 [157].

2.3.2.1 Ensemble Docking

This technique, as the name suggests, considers an ensemble of structures with varying

conformations of side chains, loops and backbone arrangements for docking, with a proper

selection of the binding pocket prior to ligand fitting. The principal approach would be

to dock the ligand in every conformation followed by energetics assessment of a single

average structure or of the complex containing the top ranked pose. This approach of

sequential docking is clearly cumbersome and time consuming. However, in recent years,

several docking protocols that evaluate the structural ensemble in a single run have been

developed. These fall into three main categories: use of ensemble generated 3D grids, use

of a unified target structure obtained from the ensemble, and improved search strategies

considering a selected portion of the conformational ensemble rather than the whole of

it.

The 3D grid method utilises precalculated 3D grids of interaction energies for ligand

atoms at each grid point enabling fast evaluation of ligand poses [172]. The improved

search method relies on a heuristic analysis to find best fits of the ligand to the conform-

ational ensemble rather than dock the ligand across the entire ensemble, e.g. SIMPLEX

local optimisation based [157] or MC based docking [173], while the united protein

structure method retains the core interacting region, varying the immediate vicinity
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Figure 2.9 Methods utilised for fully flexible docking, Figure adapted and redrawn
from Rognan, 2011 [125].

of the surrounding regions, thereby avoiding redundant scoring coupled with ensemble

evaluation on the fly. This approach has been implemented in FlexE [174].

2.3.2.2 Induced Fit Docking

Contrary to the ensemble methods, induced fit based methods utilise a single input

structure for docking and energetics assessment. The conformational changes are brought

about after the ligand placement phase, with the ligand itself experiencing a simultaneous

conformational change [129]. This approach of consecutive conformational evaluations

avoids an expansion of the underlying phase space. In practice, a quasi-simultaneous

conformational analysis of ligand and protein is carried out in a restricted phase space

to avoid conformational explosion. It also prevents the need for subsequent energy

evaluations for the protein as well as the ligand. Induced fit docking consists of two

approaches, the first one dealing with consecutive conformational variations-evaluations

of protein and ligand, and the latter performing a simultaneous conformational variation

and evaluation.

1. Consecutive conformational change in ligand and protein

During an induced fit docking, numerous changes occur in the binding pocket that

initially accommodate the incoming ligand followed by subsequent optimisation

of the ligand surroundings. There may be initial steric hindrances to ligand

binding, that any induced fit docking protocol has to consider, possibly by ignoring

them followed by refinement of the complex structure. There are further two

approaches [129] to perform this, namely:

• Soft docking followed by external refinement of the complex struc-

ture

In order to ignore the initial steric hindrance to ligand association in the
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event of inadequate space for its accommodation in the binding pocket, soft

docking methods were proposed. Soft docking allows partial penetration of the

proteins surface by the ligand during the initial placement [175]. It makes use

of grids and representation of protein and ligand shapes as cubes followed by a

matching step in pose evaluation, wherein cube matching is rewarded and cube

overlap is penalised [129]. Other alternatives of modelling receptor surface

penetration and reduction of repulsion include substitution of Lennard-Jones

6-12 potentials with 9-6 potentials [176]. The main drawback of this method is

lack of accuracy and hence soft docking usually precedes complex refinement

in initial stages of an induced fit workflow.

• Consecutive ligand placement and complex optimisation

An alternate pathway followed by some commercial programs is to perform an

initial placement of the ligand in the binding pocket followed by optimisation

of binding site residue side chains (e.g., SLIDE [177]). Another approach

by Sherman et al. [116, 117] first identified flexible residues in the binding

site, followed by their replacement with alanine and subsequent soft docking

with the modified structure. Upon accomplishment of the soft docking, the

alanines are resubstituted with the original residues and prediction of their

low energy conformations. The pose evaluations then take place by redocking

the ligand in this state with the usual potential that rescores the complex.

This approach forms the basis for Docking with induced fit in Glide and

is discussed in detail in Chapter 3.

2. Simultaneous change in ligand and protein conformations

These methods aim to avoid postprocessing of docking solutions with a quasi-

simultaneous change in protein and ligand conformations. The prolonged time

required for achieving a simultaneous sampling of protein and ligand conformations

render this method impractical or confined to a restricted extent with numerous

approximations [178]. In the wake of such barriers, the use of heuristic searches

together with a reduction in the degrees of freedom are beneficial in enhancing

the fully flexible docking methods. Some of the approaches within this group

of methods include use of MC driven docking that consider side-chain flexibility

(ICM) [123], stochastic tunnelling (FlexScreen [179]), use of binding site residues

side chain rotamers [180, 181], and performing docking with selective degrees of

freedom [182, 183].

2.3.2.3 Flexible Docking in Virtual Screening

Generally speed is an important factor in a virtual screening endeavour and whilst fully

flexible docking can be used in VS, there are many practical considerations. These mainly
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pertain to the nature and extent of flexibility of the target followed by the time required

for complex optimisation. The latter can be minimised by restricted minimisation of

the local region around the ligand while keeping most of the target fixed. Even after

this, fully flexible docking remains limited to small datasets with approximations that

accompany a loss in accuracy [145]. Consequently, a mixture of aforesaid techniques, viz.,

ensemble and induced fit may provide a means to achieve best of both, provided there

are good input structures to begin with. Ensemble docking can provide a case specific

restricted or global ensemble while the small fluctuations that separate the members

of the ensemble can be considered by induced-fit docking [176]. Other approaches to

speed up the process include use of target specific libraries with some a priori binding

knowledge.

2.3.3 Basics of Molecular Dynamics

The previous sections clearly talk of bimolecular flexibility and computational approaches

to consider the same in the drug design process. And though the biomolecular structures

provided by X-ray crystallography and NMR are tremendously useful, the structures

being depicted as static are actually quite dynamic [184]. The dynamics of biomolecules

is quite critical for their function which can be studied by a variety of experimental

techniques, all of which have their own shortcomings. An attractive approach to study

the dynamics of the biomolecules is to study the evolution of positions and velocities of

every atom according to first principle physics (e.g., Newtons 2nd law of motion). The

time dependent evolution can be studied computationally via an all-atom simulation

pioneered by Alder and McCammon [185, 186]. From a biological and drug design

perspective, simulating the process of target-ligand binding provides a very useful avenue

to study intracellular signalling (receptors) and to understand the mechanism of action of

drugs. In drug design endeavours, it is quite critical to have adequate representation of

binding phenomena in order to design and optimise lead compounds, especially so when

considering binding kinetics. The conformational changes accompanying the protein-

ligand association exhibit a variable time scale that ranges from bond vibration over

femtoseconds to protein domain movements that takes place over several microseconds

(fast) to seconds (slow) (cf. Figure 2.10).

2.3.3.1 Modelling atomic motions - Molecular Mechanics Force Fields

A key requirement to model and capture atomic movements is the ability to capture

and adequately represent the same (quantification). According to the atomic force

field model, a biomolecule or any physically relevant system can be considered to be
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Figure 2.10 Time scale for important events pertaining to proteins with
respect to step size of a MD simulation. Figure adapted and redrawn from Ode,
Nakashima, et al., 2012 [187].

a mere collection of atoms held together by interatomic forces. This is an approxim-

ate description of a physically perceptible system, while the more accurate quantum

mechanical model views the system as a group of interacting electrons and nuclei. A

good adiabatic approximation (Born-Oppenheimer) of the mass difference in between

the nuclei and electrons enables a more accurate quantum description of the system by

separation of electronic and nuclear parts [95]. In a highly complex and dynamic system

like biomolecules, the application of a quantum mechanical model obviously becomes

impractical. A solution for the same comes in form of molecular mechanics force fields

(cf. Figure 2.11) which approximate the biological system as a collection of interconnected

”balls and springs”, with each atom being represented as a ball of fixed radius and

charge, while the atomic bond is represented as a spring. The interaction potential of N

interacting spheres (atoms) as a function of their positions (ai=xi, yi,zi) is given by U(ai,

..., aN ). The force acting on atom i can now be shown by Equations (2.8) and (2.9).

Fi = −∇aiU(ai...aN ) (2.8)

Fi = −

(

∂U

∂xi
,
∂U

∂yi
,
∂U

∂zi

)

(2.9)

A typical force field potential (Figure 2.11) usually consists of bonded terms and non-

bonded terms, with the bonded terms describing the energy of deformation for bond

lengths, bond angles and torsions. The non-bonded terms represent the van der Waals

repulsive and attractive forces in form of a Lennard-Jones 6-12 potential, while electro-

statics are covered by the Coulomb potential [188, 189]. It is evident that the atomic

interaction potential is a function of the coordinates of each atom, with the intra- and

intermolecular potentials together constituting the total potential energy of the system

(Etotal). A key consideration pertaining to force fields is that they are approximations

and empirical in nature. Since commonly used force fields describe an atom as a sphere of
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Figure 2.11 Components of a force field according to Durrant, McCammon,
2011 [189]: The potential consists of functions describing equilibrium bond lengths,
angles, torsions (bonded interactions), and those describing non-bonded interactions
(Lennard-Jones potential and Coulomb potential). The V (rN ) denotes energy, ka, kb
represent force constants, Vn represents the barrier to rotation around a bond, while
θ and ω represent bond and dihedral angles, respectively. r denotes the equilibrium
distance in between two atoms i and j, while γ symbolises dihedral phase, n the
multiplicity of the dihedrals, while r0ij encloses the Lennard-Jones potential at which
the potential is zero. The term q denotes the charge of i and j, while ǫ signifies the
dielectric constant.

unit mass and fixed point charge, it becomes imperative that the atomic parameters being

used should resemble experimentally determined values to get a more realistic modelling

of any event being mimicked [189]. Furthermore, the different levels of approximation are

needed for different scenarios to be modelled, for example atomic parameters describing

an amide bond of the protein backbone cannot be used to describe a C-N bond in

nucleosides or sugars. Another thing to be considered in case of molecular force fields, is

that choice of a particular force field is driven by factors like property of the system to

be simulated, desired accuracy levels, and duration of the simulation [190]. Accordingly,

the literature contains many references to force fields that are classified on the basis of

factors described earlier [190].

2.3.3.2 Parameterisation of Force Fields

As mentioned before, the force fields are purely empirical in nature with a certain level

of approximations involved. This very nature of force fields requires the description

of atomic parameters to a high level of accuracy. Quite often, the parameters in force

fields are derived either from ab initio calculations or by fitting to experimental data.

Of the many force fields used conventionally, a few are noteworthy since they are

used by academia and industry globally, e.g., CHARMM [191, 192] (Chemistry At

Harvard Molecular Mechanics), AMBER [193] (Assisted Model Building with Energy

Refinement), GROMOS [194] (GROningen MOlecular Simulation), and OPLS [195]

(Optimised Potentials for Liquid Simulations). It must be noted that the aforesaid

names stand for a complete family of force fields, with each force field designed for specific

purposes.

Of the aforesaid force fields, the AMBER force field and associated force fields present an

attractive way to perform all atom simulation with explicit treatment of solvent. In this
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force field, the electrostatic potentials obtained from quantum mechanical calculations at

the Hartree-Fock (HF) 6-31G* level are used to assign atomic charges using the restrained

electrostatic potential (RESP) method [193, 196]. The bond and angle parameters were

derived by fitting parameters for small molecular fragments of proteins and nucleic acids

with their structural and vibrational frequency data. The dihedral parameters were

derived by obtaining dihedrals for a representative small molecule dataset followed by

calibration for bigger molecules [193]. Finally, the van der Waals parameters for known

atoms were ascertained by performing Monte Carlo simulations for simple molecules

(e.g., methane, benzene) followed by fitting to their atomic densities and vaporisation

enthalpies.

The most widely used Amber force field for condensed phase all-atom simulations is the

Amber ff99SB which was developed to improve the descriptions of secondary structures

as well glycine residues as compared to previous force fields [197]. A key feature that is

lacking in this force field (and majority of force fields) is the consideration of polarisability

of molecular orbitals, making simulations in variably charged environments difficult to

assess [95]. Furthermore, the process of fitting charges to the potentials at HF-6-31G*

level led to overestimated values of bond-dipoles as compared to their gas state, i.e., in

other words, ”overpolarisation”. Overpolarisation although beneficial for simulations

in explicit solvent, suffers some drawbacks in the sense that accurate modelling of a

molecular response to variations in the dielectricity of the surrounding medium becomes

difficult, particularly in case of folding of proteins and binding affinity estimation [198].

The problem has been solved by use of polarisable force fields, although they are

computationally intensive to use apart from being difficult to parameterise [199].

In addition to developing force fields for macromolecules, the need for developing auto-

mated parameterisation of small molecule was also felt [197]. As a result, Wang et al.

developed the General Atom Force Field (GAFF) that describes the parameters for

common atoms like H, C, N, O, S, P, and halogens as well as ions [200]. Here, just like

AMBER ff99SB, the atomic charges are ascertained by RESP fitting [196] of electrostatic

potentials derived from quantum mechanical calculations at HF/6-31G* level of theory.

2.3.3.3 Integrating Equations of Motion

Molecular dynamics is strictly a statistical mechanics method that has its roots in

first principle physics [190]. In essence, it follows Newton’s second law of motion;

Fx = mx ·ax, where Fx the force acting on a particle x, is the product of its mass mx and

the acceleration ax [188]. In context of MD simulations, the time dependent evolution for

a set of interacting atoms can be derived by numerical integration of the basic equation

mentioned earlier. With respect to time t and a new position rx(t1) for the next time
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step t1 = t0 +∆t, the force Fx can be calculated as depicted in Equation (2.10), while

the time dependent evolution has been summarised in Figure 2.12.

Fx = mx
d2 rx(t)

dt2
(2.10)

The force evaluation can be performed using several algorithms which assume that the

atomic positions and dynamic properties can be appropriately represented as a Taylor

series of expansions. The most commonly used algorithm for force evaluation is the

Verlet algorithm [201], which calculates the new positions based upon the acceleration

and coordinates of previous positions. Other related algorithms include the Velocity-

Verlet [202, 203] and Leap-Frog algorithm [202], both of which are modified versions of

the Verlet algorithm. In case more accurate velocity consideration is needed during the

simulation, the Beeman algorithm [204] can be used.

A typical MD simulation starts with selection of a model system of “N” particles followed

by solving Newtons equation for all of the atoms until the system properties do not

exhibit any significant change, i.e., they get equilibrated. The majority of data collection

then takes place in the post-equilibration phase, depending upon the quantity to be

measured. Generally, the “N” particles are assigned random velocities determined by a

Maxwell-Boltzmann distribution that gives probabilities to ascertain the velocity (vi) of

an atom (ai)) with mass (mi) at a defined temperature T [95]. The initial configuration

fed to the Maxwell-Boltzmann distribution can be obtained from experiments, theoretical

models or a combination of both. Another important parameter related to the simulation

directly affecting the force evaluations as well as system evolution is the time step,

whose value has to be selected after careful consideration. A large timestep results in

difficulties in numerical integration of the forces, while a smaller step size increases data

output and simulation time at the cost of covering only a small portion of the phase

space [95]. A proper selection of the time step enables appropriate numerical integration

of forces and by introducing random alterations in the same results in a time dependent

evolution of a system in an unbiased manner. The recommended times for capturing key

atomic properties have been summarised in Table 2.1

Another thing to be considered in case of MD simulations is the ability to change the

timestep without affecting the physical result of the simulation. In general, if the system

was an ideal system (i.e., rigid body), changing the timestep would not change the

results. This is, however, not possible in practice especially with biomolecules, thereby

necessitating a constraint on bonds and angles to avoid any detrimental effect on accuracy

of the simulation following a change in timestep. This simply implies that in case of

biomolecules the low frequency (physically relevant) movements are coupled [95], while

the high frequency motions (e.g. bond vibrations) are usually independent. A well known

example of atomic constraints is SHAKE, which has been further improved by Tobias
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Table 2.1 Recommended timestep for simulating different types of atomic motions
according to Leach, 2001 [95]

System Motions exhibited Timestep

Atoms Translation 10 fs
Rigid Molecules Translation, Rotation 5 fs
Rigid bonds in flexible molecules Translation, Rotation, Torsion 2 fs
Flexible bonds in flexible molecules Translation, Rotation, Torsion, Vibration 1/0.5 fs

and Brooks [95, 205, 206]. SHAKE uses holonomic constraints on atoms which implies

that the coordinates of the constrained atoms are connected and thereby the equations

describing their motion [95]. Some of other popular constraints are RATTLE [207] and

SETTLE [208].

Figure 2.12 Schematic representation of structural evolution during an MD
simulation. For every time step denoted as ∆t, the position (r(ti)) and velocity (v(ti))
are evaluated for each atom i. The molecular mechanics force field function (A) is used
to derive the underlying force Fi. Figure adapted and redrawn from Sotriffer, 2006 [209].

2.3.3.4 Thermodynamic ensemble sampling - Ensembles in MD simulations

The process of MD simulation usually deals with N particles that are represented as a set

of isolated systems, each with a unique state of energy range (E, E + δE). In statistical

mechanics, such a collection is referred to as an ensemble, which are of three types namely,

micro-canonical, canonical and grand-canonical. In case of the micro-canonical

ensemble, also called the NVE ensemble, the number of particles (N), the total volume

V, and the potential E, remain constant. The constant energy signifies no heat exchange

with surroundings, thereby implying that the NVE ensemble corresponds to an adiabatic
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process, making it unsuitable for general energetic equilibration of dynamic systems like

biomolecules [95]. The equilibration of the isolated system can be achieved by weak

coupling to a heat bath [210] or by Langevin dynamics [211], thereby conserving N,V,

and T , i.e. the temperature instead of the energy. This system of constant NVT is

referred to as the canonical ensemble. Once the total energy (Etot) and the temperature

have been stabilised, constant pressure simulations (NPT) or isothermal-isobaric can be

initiated. Such simulations usually require pressure management, with some prominent

examples like Nosé-Hoover barostat [212] and Berendsen barostat [210].

Furthermore, the simulation of the system takes place in a unit cell which can have various

shapes like sphere, cubic, octahedral etc. The presence of artefacts at the boundary of

the cell is sidestepped by means of periodicity (periodic boundary conditions [PBC])

that creates infinite copies of the system by translation [213]. Hence, particles of the

system that exit the cell boundary get replaced by an identical copy on the opposite

side [213]. This approach cannot be utilised in case of simulations involving spherical

cells (spherical boundary conditions) [214]. However, the use of periodicity also leads to

increased computation time. Moreover, since non-bonded interactions exist in between

particles of the system, estimating them for all particles is impractical. Although the

estimation of van der Waals interactions is much easier because of their rapid decay

with distance, the estimation of long-range electrostatics is more difficult since they

decay slowly (with r−1). As a result, the long range electrostatics in systems with

periodic boundary conditions can be calculated with the particle-mesh Ewald (PME)

method that utilises fast fourier transformed Ewald summation of the entire system [215].

Other methods to calculate long-range electrostatics include local reaction field [216] and

group-based truncation [217].

2.3.3.5 Simulating long durations - Enhanced Sampling

One of the key considerations while performing molecular dynamics is its duration,

since the extent up to which the important parts of the configurational space get

sampled depends on the sampling algorithm. An ideal algorithm must exhibit ability

to overcome a multitude of energy barriers common to macromolecules. This is, in-

spite of the progresses in computational power as well as simulation algorithms [218].

Additionally, important biological events like protein folding and even comparatively

large conformational transitions (e.g. R to T haemoglobin) take tens of microseconds to

even minutes, for the former place an upper limit on length of simulations [188]. Hence,

as a means to overcome this prime limitation of sampling, several theoretical methods

referred to as enhanced sampling methods have been developed [128, 219]. This

group of methods mainly aim to avoid Boltzmann statistics while retaining the current

distribution of states in the conformational ensemble.



Chapter 2. Background information 41

In regards of current work and in general protein-ligand binding, the free energy or

potential of mean force (PMF) [220] upon ligand binding is the key parameter being

calculated. Free energy or PMF are related to collective variables (CV) that are probability

density functions describing a particular event. Collective variables are also functions

of cartesian variables of the system [219] (e.g. angles, bonds). Some of the notable

equilibrium methods used to perform enhanced sampling include Umbrella Sampling [221,

222] and Accelerated molecular dynamics [223, 224]. The notable examples of non

equilibrium methods for enhanced sampling include Replica Exchange Hamiltonian

Metadynamics (h-REMD) [225] and Steered Molecular Dynamics [226].

2.3.4 Analysis of Docking and MD simulations

There are numerous possibilities for analysing and interpreting the information emanating

from molecular docking and MD simulations. Some of the principal metrics to evaluate

the molecular docking include the docking and rescoring. Additionally, one can quantify

the quality of the pose placement by investigating the RMSD (including substructure) as

compared to a reference structure. The RMSD can be simply shown as Equation (2.11):

RMSD =

√

√

√

√

1

N

N
∑

j=1

d2j (2.11)

where dj represents the distance in between each of the N atomic pairs consisting of

equivalent atoms. The analysis of molecular dynamics on the other hand is quite varied

and ranges from the simple RMSD calculations to advanced collective variable (CV)

calculations and conformational analysis. The theory and application of the respective

methods for MD analysis will be discussed briefly in part II of this thesis.





Chapter 3

Binding Mode Prediction for Pyrrolidine

carboxamides: Molecular Docking and

Induced-fit

3.1 Introduction

Molecular docking forms one of the main stays for modern HTS procedures like virtual

screening (VS) as well as structure based design with affinity prediction often being

one of the main criterion’s driving the process [129]. It has been recently observed that

kinetics and residence time also play an important role in determining the efficacy of InhA

inhibitors [49, 72, 74, 227]. Given the fact that loop ordering ability of a molecule plays

a critical role in determining its affinity as well as residence time (tR), the importance

of structural features, ligand placement in the binding pocket and its subsequent effect

on the substrate binding loop (SBL) ordering remains one of several key criteria to be

studied during rational optimization of InhA inhibitors. The ligand placement and its

effect on the ordering of the SBL can be assessed in-silico with numerous techniques,

namely molecular docking and ensuing MD simulations based upon the ligand orientations

emanating from docking.

Molecular docking aids in predicting the initial ligand binding orientations that can

be evaluated thoroughly via the more intensive molecular dynamics simulations. Since

docking is a fast and “approximate” technique aimed at binding mode prediction, certain

aspects have to be carefully considered. These are related to the quality of the poses,

the ranking ability of the docking program and incorporation of receptor flexibility

during docking. The latter is more important in case of InhA, since the flexibility of the

substrate binding loop and its ordering upon ligand association play a central role in

determining the inhibitory potential of the ligand. This can be seen in case of potent and

long acting InhA inhibitors (diphenyl ethers) which bind via a two-step mechanism also

referred to as “slow-tight binding”. Prime examples of slow-tight binders are PT-70 (PDB

2X23) and PT-92 (PDB 4OHU). On the contrary, several other classes of moderately

potent InhA inhibitors lack the ability to bring about loop ordering and closure, for

example pyrrolidine carboxamides, arylamides, and triclosan (PDB 2H7M, 2NSD, 2B35,

respectively). These inhibitors (with sub-nanomolar affinity) are assumed to exhibit

43
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rapid reversible binding that is in line with their experimentally determined affinity

and “apparent” residence time (cf. Chapter 2).

MD simulations provide an attractive way to elucidate the dynamics and kinetics of

binding for InhA inhibitors exhibiting slow-tight as well as rapid-reversible binding. Prior

to the dynamics investigation, well defined binding modes are an essential prerequisite for

molecules with unknown binding orientation. In case of congeneric series of ligands, the

binding modes can be assumed to resemble related crystal structure ligand orientations.

Moreover, the conformation of a protein-ligand complex as seen in a crystal structure

can be viewed as a representative of all low energy conformations that can be visited by

the protein and ligand alike. Molecular docking provides for a means to ascertain the

aforesaid assumptions.

Accordingly, this study has the following aims:

1. Establishing a binding orientation prediction protocol (docking procedure) that

accommodates the substrate binding loop (SBL) flexibility during docking and

subsequent scoring, with a reasonable accuracy. The efficiency of the docking

protocol should be evident in form of high enrichment in a typical ROC (receiver

operating characteristic) analysis [228].

2. Provide for a means of clear separation in between active and inactive compounds,

i.e., activity-based classification.

The receptor flexibility can be accommodated during docking by various means described

earlier (cf. Chapter 2 and section 2.3.2). With a focus on SBL flexibility, across many

cases, a simple redocking in structures representing varying conformations of SBL was

performed [229–237]. In rare cases, the cross-docking and ensemble docking methods

were utilised to consider the flexibility of the SBL alongwith subsequent pose quality

computations [78, 238, 239]. Whilst most docking studies focussed on pose prediction of

known inhibitors with unknown binding mode, quite few dealt with prediction of binding

modes for novel molecules [240, 241]. Thus, the focus of the current study also aimed

at refinement of the binding protocol in order to predict the binding mode for novel

molecules in addition to the aims mentioned earlier.

While considering the previously mentioned facts and the aims, the outline of the study is

as follows: We first focus on validating the performance of the ligand placement algorithm

and subsequent scoring functions in binding mode prediction and pose enrichment. To

this aim, four different PDB structures in their monomeric form (1P44, 2H7M, 2NSD, and

2X23; chain A) were extensively used. These structures represent various conformations

of the substrate binding loop (SBL) as well as four principal series of InhA inhibitors,

namely: Genzyme series (arylamide derivative, 1P44); Arylamides (2NSD), Diphenyl
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ethers (2X23) and Pyrrolidine carboxamides (PDB 2H7M). Starting with the crystal

structure ligands covering all of the aforementioned series of InhA inhibitors, a cross

docking was performed across all four proteins using Glide single precision (SP) mode [134].

This docking mainly aided in preliminary evaluation of the binding mode reproduction by

the docking algorithm. The post-docking analyses consisted of RMSD calculation with

respect to the respective crystal structure ligand. A rescoring with DrugScoreX [142] was

also performed to assess the ”nativity” of the docked poses. These post-docking analyses

are quite useful in ascertaining the performance of the ligand placement algorithm and

the subsequently utilised scoring function.

Subsequently, an InhA inhibitor dataset covering the aforementioned chemical series

(N=113, Appendix A) was constituted from literature sources [50]. A key criterion

satisfied by all molecules of this dataset was well defined InhA inhibitory activities (as

IC50) measured with the same assay. This dataset was docked across all four proteins

with Glide SP followed by the post-docking analyses. This step primarily aided in

evaluating the performance of the docking algorithm in pose prediction for different series

of InhA inhibitors with variable molecular weight and sizes.

Upon conclusion of the pose prediction, the ranking and pose enrichment capability of

docking can be evaluated. In other words, the ability of the protocol in differentiat-

ing binders from non-binders and subsequent ranking of the poses according to their

experimentally determined activity. This can be achieved through the use of viable

and statistically derived decoy datasets (DUD, DUD-E) [242, 243] that assist in the

pose enrichment. Another approach for achieving pose enrichment is the use of scoring

functions tailored for pose enrichment. In current context, the Glide scoring functions

(Gscore and XPscore) were used for initial pose selection and enrichment. This approach

was further refined by using DrugScoreX to ascertain the quality of the poses, thus

mimicking a step-wise consensus based scoring.

Since the outreach of this work is structure-based optimization of pyrrolidine carboxam-

ides, the InhA inhibitor dataset was subsequently docked across the four representative

proteins using Glide extra precision (XP) mode [244] and induced fit [116]. This

was followed by rescoring with DrugScoreX [142] and SFCscore [130, 136]. However,

only the pyrrolidine carboxamides were analysed extensively in line with the aims of this

thesis. The pose selection was primarily aided by the Glidescore XP or XPscore, a

”semi-empirical scoring” function especially developed for pose enrichment [244]. GlideXP

docking is meant to be used only if GlideSP is successful in yielding a reasonable docked

pose. In the current work, the resultant poses were selected by a consensus based scoring

using three different scoring functions derived by different approaches that mainly serve

to validate the results of XPscore. The stepwise pose selection and rescoring approach is

discussed further in Section 3.1.3.
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In order to incorporate flexibility of the SBL during docking, a new procedure termed

docking with induced fit [116, 117] or Induced-fit docking (IFD) was tried upon for

the entire pyrrolidine carboxamide dataset, with a focus on pose prediction and correct

affinity-based ranking for the bulkier members of the dataset. The bulky pyrrolidine

carboxamides were expected to cause issues when docking in a narrow binding pocket

exhibited by PDB 2X23 or even 2NSD. The pose selection and rescoring strategy derived

from earlier steps was also continued in this approach. The ensuing sections describe the

theory of the ligand placement algorithm and scoring functions used in Glide as well as

Induced fit docking. Accompanying them is a description of the pose selection strategy

using a RMSD-consensus based scoring approach followed by results of the docking and

lessons learnt from the same.

3.1.1 Docking in Glide

The overall docking process including rescoring and pose selection for all of the InhA

inhibitor dataset is outlined in Figure 3.1. There are two main approaches for docking in

Glide, each suited for a different purpose, namely, single precision mode (SP) (for virtual

screening and initial binding mode prediction) and extra precision mode (XP) (for pose

enrichment in post-virtual screening/initial docking via GlideSP)

The basic methodology for ligand placement and scoring is depicted in Figure 3.2,

highlighting the thorough systematic approach of Glide in sampling the conformational,

positional and orientational space for small molecules [134]. The program utilises a

series of filters in a step-wise manner to probe the ligand orientations in the receptor’s

active site. The process initiates with preliminary coarse placement of the ligand in the

active site. The ligand placement is guided by numerous fields that describe the receptor

properties (shape, orientation of the amino acids etc.) and progressively enable proper

ligand placement within the binding site [134].

An exhaustive conformational sampling of the ligand follows the initial placement. This

process is further refined by a torsionally flexible energy minimization using a molecular

mechanics force field (MMFF; not to be confused with Merck Molecular Force Field with

same initials) like OPLS-AA [195, 245] together with a distance dependent dielectric field

to consider polarization effects. The ligand sampling typically considers a comprehensive

catalogue of conformations around the torsion-angle space of the ligand. The final

few poses (usually 3-6) emanating from the flexible energy minimization undergo a

Monte-Carlo simulation to evaluate the minima around the ligand torsions [134] yielding

the final poses that are scored by the GlideSP score (Gscore) and ranked by a hybrid

molecular mechanics-empirical scoring function (Emodel).
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Figure 3.1 Overall docking process and pose selection protocol: The protocol
described here includes three different docking approaches to consider receptor flexibility.
The first two utilise different crystal structure representatives of the different conforma-
tions of the substrate binding loop. The latter approach generates the conformations
on-the-fly using the procedure mentioned in Sherman, Day, et al., 2006 [116]. The
post docking process consists of using RMSD and visualization coupled with consensus
scoring to get desired binding orientations.

3.1.1.1 Scoring of Poses - Glide SP score and XP score

A key component as well as a desirable ability of the docking program/protocol is its

efficiency in binding affinity prediction and ranking the poses. A key consideration
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Figure 3.2 Overall docking process in Glide. Figure adapted and redrawn from
Friesner, Banks, et al., 2004 [134].

for scoring poses in Glide is the need for modification of molecular mechanics terms

(primarily non-bonded), since the input structure of the protein is not optimized for a

particular ligand [134]. Mimicking modest ”induced fit” and thereby better fitting of

protein and ligand is then achieved by scaling of the van der Waals component [246].

The scoring function implemented in Glide is empirical in nature and is based on another

function, i.e. Chemscore [135] (cf. Equation (3.1)).

∆Gbind = C0 + Clipo

∑

f(rlr) + Chbond

∑

g(∆r)h(∆α)

+ Cmetal

∑

f(rlm) + CrotbHrotb

(3.1)

where Clipo expands over entire ligand-atom/receptor-atom pairs deemed lipophilic,

Chbond extends over all ligand-receptor hydrogen-bonding interactions. The f, g, and h

are functions that give full score (1.00) for normal bonds and angles, while partial scores

(1.00-0.00) are awarded to those outside normal limits but within a larger threshold.

The GlideScore 2.5 (or GScore) ( Equation (3.2)) is a modified and expanded version of

Chemscore, mainly because of its inadequacy in scoring and ranking ligands with varying
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net charges.

∆Gbind = Clipo-lipo

∑

g(∆r) h(∆α)+

Chbond-neut-neut

∑

g(∆r) h(∆α)+

Chbond-neut-charged

∑

g(∆r) h(∆α)+

Chbond-charged-charged

∑

g(∆r) h(∆α)+

Cmax-metal-ion

∑

f(rlm) + CrotbHrotb+

Cpolar-phobVpolar-phob+

CcoulEcoul + CvdWEvdW + solvation terms

(3.2)

The salient features of the Glide scoring function (simply Gscore) as compared to

Chemscore include an improved hydrogen bonding term that is partitioned into individual

weighted terms dependent on the charged state of the donor-acceptor pair. The anion-

metal interactions are accounted by considering best metal-anion ligation in event of

multiple metal ligations and charge dependent addition or suppression of preference

for anionic ligands [134]. The presence of a polar non H-bonding species situated in

hydrophobic pocket is rewarded and is incorporated in Gscore by terms from SiteMap [247–

249]. Other notable additions to Gscore include improved description of ligand-receptor

non-bonded interactions and incorporation of solvation effects by a empirical solvation

model [134].

Furthermore, GlideSP docking and Gscore are a part of a procedure adept at recog-

nising ligands with a propensity to bind to a given receptor even in cases of imperfect

binding [134]. This makes GlideSP/Gscore suitable mainly for pilot virtual screening and

initial pose ensemble generation that serves as an input for the ensuing stringent GlideXP

docking. GlidescoreXP or XPscore (cf. Equation (3.3)) on the contrary to Gscore, is a

scoring function aimed at ”semi-quantitatively ranking the ability of candidate ligands to

bind to a specified conformation of the protein receptor” [244]. XPscore enforces several

strict penalties for non-conforming poses (for e.g. clashing poses, those with unfavourable

torsions or unusual geometry etc.) to obtain better scoring poses that eventually result

in a much higher pose quality (enrichment) as compared to Gscore.

XPscore = Ecoul + EvdW + Ebind + Epenalty

Ebind = Ehyd-enclosure + Ehb-mn-motif+

Ehb-cc-motif + EPI + Ehb-pair+

Ephobic-pair

Epenalty = Edesolv + Eligand-strain

(3.3)

The implementation of GlideXP docking and scoring is essentially the same as GlideSP

(cf. Section 3.1.1) with a few caveats. Firstly, GlideXP explicitly employs a broader
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sampling of ligand conformations to ensure maximum diversity amongst the structures

to be docked [244]. Secondly, the performance of GlideXP is tied with that of GlideSP in

correctly docking the core part of the ligand in the binding pocket. Subject to satisfying

this prime condition, GlideXP extensively uses the anchors to build up the entire molecule

systematically and derive better scoring poses from their initial states (ligand fragments).

This is achieved by clustering the anchors followed by selection of suitable cluster

representative, stepwise build-up of the molecule by addition of rotamer groups and

coarse scoring of the intermediate ligands to select nascent high resolution conformations

(up to 4 degrees per rotatable bond) [244]. This stepwise sampling addresses difficult

docking scenarios while avoiding penalties for the selected conformation.

The molecules emanating from the previous step are then selected on basis of their

scores and lack of steric clashes with amino acid side chains. The selected poses are then

extensively minimised by a Glide-specific total energy function employing a distance-

dependent dielectric to assess their electrostatic interactions. The minimised poses are

then ranked with the Emodel pose selection function of Glide [134]. Finally, a subset of

top ranking structures are assessed with a grid-based water addition method followed by

calculation of penalties and computation of the final XPscore.

3.1.2 Docking with induced fit

All of the aforesaid docking procedures employed pre-generated conformations (PDB

structures) to consider receptor flexibility during docking. This section describes a

procedure that employs consecutive ligand placement and complex optimisation to

account for the effect of receptor flexibility on the final poses (cf. Section 2.3.2.2). The

overall process of induced fit (IFD) employed in Glide consists of four main steps [116]:

1. Ensemble generation via docking into rigid receptor with softened vdW potentials

(”Soft-docking” phase).

2. Sampling low energy protein conformations for individual poses from previous step

(Mutation and protein minimisation phase using Prime).

3. Redocking of the poses in the low energy protein conformations (Docking with

normal non-bonded potentials).

4. Composite scoring of the final poses that takes into account the binding energy

(Gscore) together with solvation terms and receptor strain (Prime energy minim-

isation terms).

Each step is faced by its respective challenges beginning with prediction of reasonable

ligand poses in the first step followed by approximation of the protein structure for
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the predicted pose. This is followed by a problem in guessing the correct low energy

conformation for the ligand that fits to the protein structure from the previous step

followed by ranking of the predicted pose. The entire procedure is repeated in the event

that top ranked scores from the penultimate step have similar scores [116]. In such cases,

the top ranked poses are redocked into the optimised protein structure in absence of a

soft potential [117]. The entire process of docking with induced fit has been summarised

in Figure 3.3.

Figure 3.3 Basic workflow of docking with induced fit: The most time-
consuming steps of the workflow have been highlighted, with ∆E representing the
energy difference between the pose in consideration and the pose with lowest energy.
Figure adapted and redrawn from Sherman, Day, et al., 2006 [116].

It is amply clear that the most time consuming steps in the workflow pertain to the

conformational sampling of both ligand and protein (in ascending order). As a corrective

measure, in the initial ligand sampling, the van der Waals radii of both protein and
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ligand are scaled down to 50% of their initial values that results in reduction of steric

clashes. Subsequently, flexible residues of the binding pocket are mutated to alanine and

back upon the conclusion of ligand placement [116]. The most time-consuming step of

the workflow, i.e., receptor sampling, only considers the top 20 poses from the previous

step to save time, during which each of the 20 protein-ligand complexes undergoes a

full minimisation in Prime [250–253] using the OPLS-AA force field [195, 245] and a

surface Generalized Born implicit solvation model [254, 255]. The optimised ligand

structures from the first step are now redocked into the minimised protein structures with

default vdW scaling for all atoms followed by scoring of the 20 protein-ligand complexes

emanating from the procedure [116].

3.1.2.1 Scoring of induced fit poses-Induced fit score

The process of scoring the final poses for each of the 20 protein-ligand complexes

emanating from the IFD procedure is performed with the aid of a compound scoring

function (IFDScore) that takes into account the protein-ligand interaction energy and the

prime minimisation energy scaled by a factor of 0.05 [116]. This factor was considered

adequate to weed out any unusual protein structures from the second step of the workflow.

The large energy difference (30 kcal/mol) employed as a filter ensures that aberrant

protein-ligand conformations do not contribute to the overall noise in the final score [117].

The ”similarity” of two top ranked poses is judged by considering the overall energy

difference in between them. For values below 0.20 kcal/mol, the entire procedure

mentioned in Figure 3.3 is repeated [116].

3.1.3 Pose selection

The process of pose selection is an interesting and challenging procedure as far as

docking is concerned. Scoring functions when used solitarily or in combination have

some advantages as well as shortcomings [94, 129]. The post-docking analysis and

subsequent choice of top pose is largely user dependent. Often, the choice of a particular

pose is based on the reasonable assumption that the scoring function used for ranking

demonstrates a satisfactory accuracy. However, it is clear that in many cases, use of

a solitary scoring function in scoring and ranking poses is seldom enough [129, 145].

As a consequence, one of the primary aims of this study was the development of a

step-wise pose selection protocol that utilised a combination of scoring functions, the

root mean square of deviation (RMSD) and a pharmacophore model in pose selection

(cf. Figure 3.1).

The pose selection procedures of this study were aimed at reliable estimation of the binding

mode followed by reasonably accurate affinity prediction and affinity-based ranking. A
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key desirable feature of the protocol was minimal need of manual intervention which

should appear at the very end for visualization of the ranked poses. The current study

made use of two ”hierarchical consensus scoring” pose selection procedures, depending

upon the consideration of the docking score and stage of pharmacophore model

use in pose selection. The term ”hierarchical consensus scoring” stems from the fact

that a combination of semi-empirical (Glidescore), knowledge-based (DrugScoreX) and

empirical scoring functions (SFCscore) were utilised in stepwise manner alongwith RMSD

and pharmacophore filtering to achieve reasonable binding orientations ranked on basis

of their predicted binding affinity.

The first of the two procedures abbreviated as ”GDRPS” (GlidescoreDrugScoreRMSD

Pharmacophore SFCscore) considers the contribution of Glidescore and DrugScoreX in

determination of the pose quality. The subset of poses being assigned top ranks by both

scoring functions were then subjected to further evaluations that yielded the desired

pose. The GDRPS procedure (Figure 3.1) consists of the following steps:

1. Step 1:

In this step, the poses get scored and ranked (affinity-based) by the semi-empirical

scoring functions Gscore, XPscore, or IFDscore depending upon the docking protocol

utilised. The ranked poses are sorted based on their docking score, hydrogen

bond count and stereochemistry in decreasing order of hierarchy. The sorted

poses are collectively exported to a multimol2 file for further processing. In case

of pyrrolidine carboxamides, the crystal structure ligand exists exclusively in the

S configuration [52], while all other molecule series (diphenyl ethers, Genzyme

and arylamides) were nearly devoid of stereoisomers. In order to evaluate the

discriminating ability of the docking algorithm (binders vs. non-binders), the R

isomers were also docked across all four proteins. In the current case, the R isomers

of pyrrolidine carboxamides being inactive served as ”non-binders”. Hence, in

case of pyrrolidine carboxamides, all R isomers were simply not considered for the

post-docking analysis.

2. Step 2:

This step consisted of rescoring the combined poses from the preceding step with

DrugScoreX. At this stage, a small subset of top scoring poses (2-3) were manually

chosen as follows: Starting with top 5 ranking poses from docking (for each

compound), a rescoring with DrugscoreX was performed. From these 5 molecules,

irrespective of the docking score, a total of 2 to 3 top ranking poses with high

DrugscoreX values were combined into a multimol2 file and forwarded to the next

stage. The central assumption in performing the trimming of the rescoring output

was that top scoring poses from Glide should also show up within the top few poses

of DrugScoreX.
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3. Steps 3 and 4

The combination of steps 3 (substructure RMSD in fconv [256]) and 4 (pharmaco-

phore filtering in MOE [257]) constituted a phase aimed at obtaining the final poses

that were subjected to an additional affinity prediction with SFCscore [130, 136].

The prime motive of using pharmacophore and RMSD evaluation is as follows:

• The RMSD calculation usually refers to the substructure RMSD of molecules

other than in case of crystal structures. The substructure RMSD signifies the

deviations of the maximum common structure (i.e. scaffold) in the top ranked

pose with respect to the corresponding crystal structure of its series. A low

value (< 1.5 Å) of the substructure RMSD indicates appropriate placement of

the core scaffold in the binding pocket while a higher value indicates improper

placement of the scaffold (cf. Figure 3.4).

Figure 3.4 Utility of substructure RMSD: The picture on the left depicts a pose
with a low substructure RMSD indicating a better placement in the binding pocket. On
the contrary, the one on the right has a much higher RMSD and is clearly improperly
placed.

• The pharmacophore model derived from the PDB codes 1P44, 2H7M, 2NSD

and 2X23 ensures adherence to the spatial location and orientation of the

hydrogen bond donor-acceptor pair, i.e., the catalytic Tyr158-OH group and

cofactor (NAD+) ribose oxygen. The pharmacophore filtering serves as a strict

criterion by ensuring removal of poses not satisfying the conditions laid down

in the pharmacophore model. Thus, poses emanating from pharmacophore

filtering conform to the bonding pattern displayed by the crystal structure

ligands.

• The RMSD and pharmacophore filtering carried out in parallel was expected

to yield poses with better scores as well as reasonable binding modes.

4. Steps 5 and 6:

The final steps of the GDRPS protocol involved the affinity prediction of the final

top ranked poses with SFCscore followed by selection of the pose with the highest

affinity. SFCscore is a composite group of eight empirical scoring functions that

predict the binding affinity of a given pose as pKi units. Manual intervention was
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kept to minimal levels and was only needed at two stages, namely, combining all

poses (including removal of R isomers of pyrrolidine carboxamides) into a single file

and creating a subset of top ranked poses from Glidescore and DrugScoreX. All of

the aforesaid steps were achieved by sequential use of scripts originally written by

Steffen Wagner, University of Würzburg and modified for an additional rescoring

step with SFCscore.

The other pose selection procedure developed in-house by Steffen Wagner, University

of Würzburg (abbreviated In-House Pose Selection (IHPS)), exclusively made use of

DrugScoreX score for selecting binding poses, followed by RMSD-Pharmacophore and

rescoring with SFCscore for additional pose evaluation (cf. Figure 3.1). In compar-

ison with GDRPS, IHPS does not consider the contribution of Glide scoring function

(Gscore/XPscore/IFDscore) in the overall binding pose selection procedure. The steps

involved in IHPS are essentially the same as those mentioned previously except in step

2. Whereas, the GDRPS scheme considered a subset of top scoring poses from Glide and

DrugScoreX for further evaluation, the IHPS procedure submitted the entire output of

DrugScoreX and SFCscore to ensuing assessments, primarily because this pose selection

procedure was aimed at selecting binding modes for novel molecules with unknown

binding modes.

3.2 Methods

3.2.1 Protein Selection

Consideration of receptor flexibility during docking is quite important in case of InhA,

mainly because of the underlying induced fit mechanism that drives the protein-ligand

association. Other factors to be considered include the structure and resolution of the

input protein structures [94]. In the current case, a completely resolved SBL in the

crystal structure was a key requirement to understand the process of ligand binding to

InhA. As a consequence, four high quality crystal structures of InhA (PDB 1P44, 2H7M,

2NSD, and 2X23) that exhibited the substrate binding loop (SBL) in decreasing order of

“openness” (cf. Figure 2.3) were chosen for docking.

Of these structures, the low resolution of 1P44 (2.7 Å) indicates a higher uncertainty in

the resolved structural features. In spite of this, it was used as a reference for the ”open”

form of the SBL since it exhibits a better resolution than PDB 1BVR (resolution 2.8 Å)

which also exhibits the SBL in open form. In case of the pyrrolidine carboxamides, the

older crystal structures were refined and superseded by newer codes (Table 3.1). Upon

comparing the old and new PDB codes, negligible differences in the binding site residues
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were observed (cf. Table 3.2). Another noteworthy change in the new crystal structures

was that the bound ligand did not exhibit an aberrant conformation for the amide bond

linking the rings B and C (Figure 3.5). Throughout this study, all crystal structures from

the pyrrolidine carboxamides will be referred with their updated codes. Furthermore,

the structural aberrations of the bound ligands in the obsolete PDB codes were resolved

prior to the docking stages (Section 3.2.3.4).

Figure 3.5 The C-α aligned structures of old (2H7M) and new (4TZK) representative
crystal structures for pyrrolidine carboxamides. The ligand in yellow represents the
old structure while the one in grey is the refined one. The arrow denotes the corrected
amide bond, while the SBL has been colored in red.

Upon comparing the crystal structures of diphenyl ethers with PDB 4TZK, noticeable

differences were observed in case of the SBL residues namely, M199, I202, V203 and

L207 (Table 3.2). This merely signifies the different states of SBL in all these structures

as compared to 4TZK. Since the PDB 2X23 represented the most complete and well

resolved SBL, it was chosen as a reference structure for diphenyl ethers.

Table 3.1 Old and new PDB codes for the pyrrolidine carboxamides: The
overall C-α RMSD difference in between old and new crystal structures of pyrrolidine
carboxamides. The RMSD values were obtained by aligning the old and new structures
based on the least squares fit of the C-α atoms of the protein.

Old-PDB New-PDB RMSD difference (Å) Resolution (Å)

2H7I 4U0J 0.05 1.62
2H7L 4TRJ 0.06 1.73
2H7M 4TZK 0.05 1.62
2H7N 4U0K 0.06 1.90
2H7P 4TZT 0.08 1.86
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3.2.2 Docking of InhA inhibitors - The dataset

A total of 113 molecules spanning four different chemical classes of Mtb-InhA inhibitors

was obtained from literature [50] (cf. Figure 3.6 and Appendix A). The dataset comprises

15 molecules from Genzyme Inc., 25 diphenyl ethers, 24 arylamides and 49 pyrrolidine

carboxamides [50], with activity being reported in terms of IC50. For some diphenyl

ethers, the inhibition constant (Ki) was also reported [16, 72, 74, 258]. The actual number

of molecules in each dataset is much higher than the one used for docking, because

molecules whose activity was not determined or having no IC50 values were simply

excluded. The four chemical classes were chosen because of well described binding modes

corresponding to a total of 12 PDB entries (cf. Figure 3.7), with the SBL in different

states (open to nearly closed, Figure 3.7). The activities (pIC50) of the molecules ranged

from 9.69 to 4.13 (0.2 nM to 73.58 µM) that nearly traversed 6 orders of magnitude. Since

the primary aim of the study was to obtain reasonable binding orientations for molecules

with unknown binding modes, the entire dataset was considered for docking initially. In

the latter stages, a pIC50 based separation model as well as ROC analysis [228, 259, 260]

of the docking protocol was performed only for the pyrrolidine carboxamide subset.

Figure 3.6 Representative molecules of principal chemical series of InhA inhibitors
utilized in molecular docking.
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Figure 3.7 Globally aligned PDB structures of Mycobacterium tuberculosis InhA
(N=16) covering the four chemical classes of InhA inhibitors [cf. Figure 3.6], with the
SBL in various states, ranging from open (1P44, green) to nearly closed (2X23, pink).

3.2.2.1 Choice of pyrrolidine carboxamides for docking

The pyrrolidine carboxamides with a rather modest potency represent an activity range

that spans only somewhat more than two orders of magnitude (pIC50 range 4.13 to

6.85). The following reasons led to the choice of the pyrrolidine carboxamide series to be

considered for docking and further assessments:

1. The pyrrolidine carboxamides represent a large number of compounds with uni-

formly measured activity values (i.e. using the same assay conditions).

2. The crystal structures for pyrrolidine carboxamides represent only moderate to

weakly active compounds. The potent compounds of this compound series have

unknown binding modes, mainly due to lack of crystal structures. Hence, one of

the main aims of this study included the development of a protocol for binding

mode prediction of pyrrolidine carboxamides with unknown binding modes.

3. The narrow activity range of this series represents a challenging test case for

adjudging the performance of docking and binding affinity prediction.

4. The docking poses served as the basis for a binding affinity prediction model using

the Linear interaction energy (LIE) method. For any model derivation, an adequate

sample size of reasonable quality is essential. The pyrrolidine carboxamide series

satisfies both of these criteria with a total of 49 ligands whose activity was measured

in uniform way under similar conditions. From the total 49 molecules, 44 were

simulated and assessed (cf. Chapter 4).
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5. The determinants of slow-onset binding for diphenyl ethers and related compounds

have been recently elucidated [74, 261]. Comparatively, the molecular determinants

governing the apparent ”rapid reversible” binding of pyrrolidine carboxamides is

not clearly known. The only information available is the contribution of the

several residues to the overall binding energy by MM-PBSA [262]. Elucidation of

the conformational dynamics for these residues can aid in revealing the process

of binding of pyrrolidine carboxamides to InhA. A comparative evaluation of

the pyrrolidine carboxamides and diphenyl ethers with respect to the conformational

dynamics of the molecular determinants can aid in structure based optimisation of

putative Mtb-InhA inhibitors. This forms the basis of part II of this thesis.

3.2.2.2 The pyrrolidine carboxamide dataset

A mentioned earlier, the pyrrolidine carboxamides represent a suitable class for a structure-

based optimisation endeavour. The subset of 49 pyrrolidine carboxamides was initially

classified into ”light” (N=29) and ”bulky” (N=20), depending upon the nature of the

A ring and its substituents. The binding modes for the light pyrrolidine carboxamides has

been elucidated in the form of 5 crystals structures [52] (Table 3.1). Comparatively, none

of the ”bulky” pyrrolidine carboxamides got crystallised with the InhA-NAD+ adduct

and hence the lack of their binding modes. Another important aspect pertaining to

bulky pyrrolidine carboxamides is that noticeable number of ligands exhibit marked

potency against InhA that can be seen from their IC50 values (Table A.4). This dataset

of 49 compounds was subjected to some refinements prior to affinity prediction which

led to a total of 46 compounds. These molecules could be utilised for binding affinity

prediction model generation and other assessments mentioned in Chapter 4. Additionally,

from these 46, two molecules (pc-p27 and pc-p37) were further omitted that led to a

final pyrrolidine carboxamide dataset of 44 compounds (Tables A.2 to A.4). The details

of the excluded molecules and the reasons for their exclusion are as follows:
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Table 3.3 Molecules excluded from MD simulations and subsequent binding affinity
calculations due to various reasons.

Core pyrrolidine carboxamide scaffold

Compound R Reason for exclusion

pc-p24, pc-c6a1 Duplication

pc-p21, pc-c6a2 Duplication

pc-s9 Parameterisation of iodine

pc-p27 Structural issues leading to MD simulations failure

pc-p37 Structural issues leading to MD simulations failure

1. There were two instances wherein bulky pyrrolidine carboxamides with identical

structures (and activities) were assigned different identification codes (Table 3.3).

The removal of duplicate molecules brought down the number of molecules from 49

to 47.

2. One molecule from the light pyrrolidine carboxamide subset (pc-s9, Table 3.3) had

an iodine substituent on the A ring that prevented its proper QM parameterisation

using the conventional Hartree-Fock 6-31G* method. The lack of proper parameters

hampered its MD simulations in Amber [263] and subsequent affinity prediction

using the LIE method. The number of molecules in the dataset now stood at 46.

3. Finally, in case of two bulky pyrrolidine carboxamides, pc-p27 and pc-p37, reas-

onable binding modes could be obtained via docking. However, in the ensuing
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Figure 3.8 Intramolecular close contacts in pc-p27 and pc-p37: The close
contacts of the rings from the docked pose of pc-p27 (left hand side top picture) and
pc-p37 (left hand side bottom picture) that leads to the MD simulation program linking
the two rings together (right hand pictures; both top and bottom). The parameterisation
of the aberrant bond (red circles) was not carried out leading to stability issues during
MD simulations.

molecular dynamics simulations, both molecules failed because of close intramolecu-

lar contacts. In both cases, the hydrogens of the phenyl rings that together

constituted the A ring system were too close. As a result, the system linked both

of the rings together with a bond that was not covered in the parameterisation

(cf. Figure 3.8). To sidestep this issue, prior to parameterisation of the ligand, a

short minimisation was carried out in MOE. Inspite of this, the wrong bonding

issue persisted. Hence, both of these molecules were excluded from MD simulations.

Thus, the number of pyrrolidine carboxamides came down to 44 which was the

final number of molecules from this subset to be considered for analysis of docking

as well as MD simulations. Accordingly, the final number of molecules in the

Mtb-InhA inhibitor dataset decreased by 5 to 108.

3.2.3 System Preparation

3.2.3.1 Protein Preparation

All protein structures were initially loaded into Schrödinger Maestro 9.3 [264] and

prepared using the Protein preparation wizard (Prepwiz) using the default settings.

During the protein preparation, water molecules that were > 3 Å away from the ligand
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and which exhibited ≤ 2 H-bonds were removed, while the terminal amino acids were

capped and missing side chains were added using Prime. The protonation states for

polar amino acid residues like histidine, lysine etc. were automatically assigned using

PROPKA 3 [265, 266] at pH of 7.0.

Thereafter, a structural alignment was performed with PDB 2X23 (chain A) as a global

reference system, followed by saving the translated crystal structures as individual PDB

files. In case of the PDB 2NSD, the oxygen atoms of the central phosphate group in

the cofactor (NAD+) were found to exhibit an unusual conformation (cf. Figure 3.9).

The aberration was solved by initial protonation of the protein-ligand complex with

Protonate3D of MOE 2012.10 [257]. Thereafter, the protonated complex was loaded in

Schrödinger Maestro and the oxygen atoms were fixed using the build module of the

Prepwiz followed by a restrained minimization using Macromodel 9.9 [267] employing

the OPLS2005 force field [195, 245, 268], and the default settings.

During the minimization, the ”fixed” oxygen atoms were free to move, while the remainder

of the system remained frozen. It was seen that the restrained minimization of the

phosphate group solved the aberration, with a flip of the oxygens away from each other

consistent with electrostatic repulsions in between the two. Thereafter, the protein-ligand

complex was loaded in the workspace for the protein structure alignment step mentioned

earlier. In all cases, the prepared protein system was loaded separately in Schrödinger

Maestro and subsequently utilized for grid generation in the ensuing step.

Figure 3.9 Perspective of odd and corrected structures of NAD+, with the flip of
phosphate oxygens being denoted by arrows.

3.2.3.2 Grid Generation

The prepared protein-ligand complex was loaded in Schrödinger Maestro followed by

a grid generation using the Grid generation wizard of Schrödinger Maestro 9.3. The

docking region or ”grid” was defined as a cube of 30 Å region from the centroid of the
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bound crystal structure ligand. Furthermore, the hydrogen atoms from the hydroxyl

groups of the ribose ring of the cofactor and Y158 were kept flexible, while remaining

hydroxyl groups of the protein and cofactor remained frozen. The resultant grid files

(total 4; one for each of the four representative structures) were then utilized subsequently

for the molecular docking studies. The resultant grid files in a compressed (.zip) format

contain critical information pertaining to the shape and properties of the receptor. This

information is depicted on the grid by several fields that progressively enable efficient

scoring of the poses [134].

3.2.3.3 Conformer generation

Glide uses a systematic and exhaustive conformational search of the ligand to yield

the most probable binding modes within the binding site. This conformational search

is sped up with help of a probing screen that weeds out high energy (unfavourable)

conformations, e.g., cis amide conformation. The conformer generation protocol of Glide

divides the ligand into a core (conserved) region and a suitable number of rotatable

groups termed ”rotamers”. The rotamers are rigid groups attached to the core region by

a rotatable bond. During the conformer generation, a certain number of conformations

(up to 500) represent the core region to which the rotamers are attached. The individual

conformations of every rotamer group are annotated to enable scoring in latter stages.

The combination of core region and all conformations of the rotamers are then docked

in the receptor region followed by the steps described in Figure 3.2. In the current

case, the conformer generation takes place in two stages, the first one during the ligand

preparation with LigPrep and the latter during the actual docking as described earlier.

3.2.3.4 Ligand Preparation

Initially, the entire dataset excluding the crystal structure ligands was sketched in Sybyl-X

1.2 [269], with the MMFF94 partial atomic charges being assigned to all atoms. The

individual members of the dataset were then minimized for 1000 steps to a RMSG

convergence criterion of 0.05 kcal/mol·Å with the default settings. The molecules were

then saved to a multi-mol2 file. Subsequently, the dataset was loaded into Schrödinger

Maestro 9.3 [264] followed by ligand preparation being performed using LigPrep 2.5 [270].

Using the default settings, various possible states (tautomers and stereoisomers alike)

were generated at a pH range of 7 ± 2. From these various states, a total of 5 low energy

ring conformations per molecule were exported in the final output (maegz format)

and used for subsequent molecular docking. The use of 5 low energy ring conformations

is expected to account for small minima around the lowest energy conformer that can be

attained prior to the conformational selection via docking.
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During the ligand preparation phase, another aberration was observed in crystal structure

ligands of pyrrolidine carboxamides and arylamides, wherein all bound ligands exhibited

a non-planar configuration for the amide bond (bent) (cf. Figure 3.10). The amide

bonds were subsequently corrected according to a procedure similar to that used for

correcting the cofactor of 2NSD. A point to be noted is that the updated crystal structures

of pyrrolidine carboxamides do not exhibit any bent amide bond for the bound ligands

(Table 3.1).

Figure 3.10 2D structures of ligands from PDB 2H7M (now 4TZK) and 2NSD;
structures of the same ligands before and after minimization in Macromodel, with arrow
denoting corrected amide bonds.

3.2.4 Docking approaches

In order to determine the probable binding orientations of putative InhA inhibitors with

no crystal structures available, two main approaches were followed:

• Single precision docking:

The initial step in docking with Glide SP mode consisted of a simple redocking

and cross-docking of the crystal structure ligands across all four representative

structures. The basics of the docking with SP can be read in Section 3.1.1. The

redocking/cross-docking with Glide SP involved extraction of the ligands from the

crystal structures followed by their preparation in LigPrep and docking the LigPrep

output (.maegz) in respective structures using the default settings. During the

docking, the hydroxyl groups of the ribose of the cofactor (NAD+) and Y158 were

flagged as rotatable to enable non-covalent bonding with the ligand. The number



Chapter 3. Binding Mode Prediction for Pyrrolidine carboxamides 66

of poses per input conformation was set to 5 in order to enhance the likelihood

of observing the native binding mode (global minimum). The higher number of

poses per ligand was also expected to aid in ascertaining the native pose within a

particular binding orientation. This stage was followed by RMSD assessment of

the top scoring pose with respect to the crystal structure ligands. The protocol

was then subsequently utilised for the entire InhA inhibitor dataset, with the pose

selection protocol (GDRPS ) being utilised in post-docking stage that facilitated the

thorough assessment of the placement algorithm in regards of correct placement of

the key scaffold. Subsequently, the pyrrolidine carboxamide dataset was subjected

to docking across all four proteins using the Extra precision mode (XP) employed

in Glide.

• Extra precision docking:

The docking with GlideSP enabled the assessment of the ability of the placement

algorithm in correctly placing the key scaffold in the binding pocket. However, as

seen from Section 3.1.1, the main aim and purpose of GlideSP is to provide for an

initial placement of the ligand and not pose enrichment or ranking. Hence, with an

aim of achieving better pose enrichment (quality) the pyrrolidine carboxamide data-

set was docked across all four representative proteins. The protocol for docking

using GlideXP remained identical to that of GlideSP, i.e, using default settings and

number of poses per conformation of ligand set to 5. In the post-docking phase,

the pose selection was performed with both GDRPS and IHPS protocols.

• Induced fit docking

With an aim to incorporate receptor/protein flexibility during docking, the pyrrolid-

ine carboxamide dataset was also docked into each of the four proteins using the

”Induced fit workflow” [117] implemented in Schrödinger Maestro. The basics of the

methodology have been explained earlier in Section 3.1.2. The induced fit workflow

provides the user flexible options to define the docking region, with the grids

generated in earlier steps being used for defining the docking region. Alternatively,

the user can load the prepared and translated crystal structures from earlier steps

and simply define the docking region as a 20 Å region from the centroid of the

selected residue, which is usually the bound ligand. In the current case there

are two main approaches to incorporate receptor flexibility, namely plain Induced

fit abbreviated as IFD and Induced fit with trimmed side chains abbreviated as

IFD-trim.

1. Normal Induced fit docking (IFD):

For plain induced fit docking, the pre-prepared grids were simply loaded in

Schrödinger Maestro followed by launching the Induced fit workflow. The

LigPrep output for the pyrrolidine carboxamide dataset was selected as an
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input for docking. The ligands were set to be docked according to default

settings (rigid docking with no sampling of ring conformations for the “soft

docking” followed by redocking with GlideSP). The amide bond for receptor

as well as ligand was set to planar and the planarity of the conjugated systems

being considered on an enhanced scale to better monitor π − π stacking

interactions. The reason behind choosing rigid docking of the ligands in the

“soft docking” phase is that their conformations get sampled on-the-fly during

the redocking phase thereby sidestepping the need to generate conformations

prior to the soft docking. In the post-soft docking phases, a total of three key

residues namely Phe149, Tyr158 and the cofactor (NAD+) were not subjected

to extensive Prime refinement during the step of receptor conformational

sampling. The prime reason was that the pose selection procedures employing

pharmacophore filtering mandated maintenance of fixed distances in between

the two H-bond donor groups, that would be impossible to satisfy had the

Prime refinement for the same been turned on. Furthermore, the terms in

Glide redocking were also set to default values, since the main aim of the

IFD protocol was to assess the performance of the placement algorithm in

correctly sampling and reporting the poses with correct orientation within

the binding pocket. In the post-docking phase, the poses that were ranked

by the IFDscore were subjected to both GDRPS and IHPS protocol together

with rescoring the selected poses ”in-place” with the strict GlideXP scoring

function. The entire procedure was scripted with a bash script to ensure

correct step-wise pose selection and ranking. Manual intervention was only

needed after the conclusion of docking to submit the docking output to the

script as a multi-mol2 file.

2. Induced fit docking with Trimmed side chains (IFD-trim):

The IFD-trim procedure differs from the IFD in the sense that in addition to

mutating the key active site residues to alanine in the ”soft docking” phase,

the procedure allows ”trimming” or removal of side chains of those amino acids

that hinder proper placement of the ligand. The procedure for performing

IFD-trim is very much similar to IFD except that the user has to select the

”Trim side chains” from the “Prime refinement” tab depending upon their

B-factors or by manually specifying a list of residues. The residues to be

”trimmed” for the current case included those located at a distance of 5 Å

from ligand. In short, the docking with IFD-trim consists of the following

steps:

– Loading of the grid/s in Schrödinger maestro followed by selecting the

induced fit workflow
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– Selecting the prepared pyrrolidine carboxamide dataset as an input for

docking

– Setting default options for sampling of planar ring conformations, enforcing

planarity of amide bonds, activating enhanced sampling of conjugated

systems

– Excluding Phe149, Tyr158 and cofactor (NAD+) from Prime refinement

and providing a list of residues that lie within 5 Å from the crystal

structure ligand

– Keeping default options for redocking the ligand in minimised protein

after the Prime minimisation and conformational sampling step

– Once the docking is over, perform pose selection and “in-place” rescoring

of selected poses with GlideXP scoring function.

3.2.5 Post-docking analysis

Once the docking was concluded, in addition to the substructure RMSD and rescoring

performed during pose selection, the pose quality (enrichment) was additionally assessed

using receiver operating characteristic (ROC) analysis [228, 271, 272] and visualization

(cf. Figure 3.11 and equation (3.4)). The ROC analysis is a graph based technique

that aids in visualization, organization and overall performance of the classifiers. In

the current study, the scoring functions serve as a classification (prediction) means that

predict whether the given pose (instance) is active or inactive based on their score. In

conceptual terms, a classifier covers matching of instances to their predictions [271], that

yield four possible outcomes given for a instance and classifier, namely:

1. True Positive: When the prediction and instance are both positive.

2. True Negative: When the prediction and instance are both negative.

3. False Negative: When the prediction is negative and instance is positive.

4. False Positive: When the prediction is positive and instance is negative.
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Figure 3.11 ROC basics: A confusion matrix denoting common performance criteria
calculated from it, T refers to total number of molecules accurately identified; N refers
to the number of molecules incorrectly identified, t and f represent actual actives and
inactives; Y and N refers to activity predictions of the model as active or inactive.
Figure adapted and redrawn from Fawcett, 2006 [271]

False Positive Rate (FPR) =
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Total negatives
=
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N
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F −measure =
2

1
precision

+ 1
recall

(3.4)

A ROC curve is a simple plot of TPR versus the FPR (cf. Figure 3.12) depicting the

relative tradeoff’s between the true positives and false positives. The point (0,0) denotes

the origin which signifies no classification of data, since there are no true or false positives

being predicted. The point (1,1) reflects unconditional prediction of only true positives,

while the point (0,1) is an ideal classification. Ideally, the more the ROC curve extends

to the north-west corner of the plot, the better the classification, while the more it goes

towards the south-west of the plot, worse is the classification. A key identifier signifying

the quality of the ROC curve is the area that it covers, i.e. the Area under the curve

(AUC). The value of AUC ranges from 0 to 1 (modified from 0 to 100%) [228]. The more
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the value of AUC approaches 1.0, the better the classification, with a value of 0.5 (along

the diagonal) signifying a random model.

Figure 3.12 A simple ROC curve depicting the sensitivity (TPR) and specificity
(FPR/ 1-Specificity). The quality of the ROC (thick line) as measured by the Area
under the curve (AUC) increases as it moves more away from the diagonal towards the
Y axis (increase in length of the bidirectional arrow). On the contrary, a ROC curve
that is diagonal or below it (towards the X axis) implies poor predictive power of the
model being represented by the ROC curve.

In the current study, the ROC analysis was performed in R [273] using the ROCR [274],

pROC [259] and enrichvs [275] packages. The substructure RMSD calculations were

performed using fconv [256], while pose visualization in post-docking phase as well as

figures in results section have been obtained from Pymol 1.8 [276]. All plots were traced

using the ggplot2 package [277] of R.

3.3 Results

3.3.1 Preliminary redocking

In the initial stages of the docking, i.e. in the redocking phase, the selected pose was by

default the top scoring pose. Since GlideSP is adept at identifying the probable binding

modes, the docking was expected to reproduce the binding modes of all representative

ligands from the crystal structures. Indeed, the substructure RMSD for the top ranked

pose of the redocked ligand with respect to the crystal structure ligand was found to be
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within the permissible limits (Table 3.4). In Table 3.4, the comparatively higher RMSD

value for PT-70 is mainly due to the flexible alkyl chain on the A ring (Table A.8).

For analysing the preliminary redocking and cross-docking of crystal structure ligands,

the RMSD value as calculated from fconv took priority over the docking score (GScore)

in ascertaining the performance of the docking algorithm. The Tables 3.4 and 3.5 depict

the score and RMSD of the top poses emanating from the redocking and cross-docking

of the crystal structure ligands.

Table 3.4 Heavy atom RMSD and docking score (GlideSP) of top scoring poses for
redocked crystal structure ligands.

Sr. No. Protein
RMSD Å

Gscore (kcal/mol)
Gz-10850 pc-d11 aa-b3 PT-70

1 1P44 0.24 - - - -9.60
2 4TZK - 0.50 - - -9.51
3 2NSD - - 0.10 - -10.85
4 2X23 - - - 0.97 -7.55

From Tables 3.4 and 3.5 and figure 3.13, it is clear that the placement algorithm of

GlideSP works reasonably well in pose reproduction for most of the ligands except the

ligand of PDB 1P44 (Gz-10850). The size of the ligand hampered its proper placement

and scoring in the narrow active site of 2X23, resulting in no docking pose appearing

in the output. A similar case was also observed for Gz-10850 when docked in 4TZK.

The scaffolds (substructure) for the Genzyme and arylamide series being quite similar

resulted in Gz-10850 getting high scores in PDB 1P44 and 2NSD, respectively. Overall,

the RMSD of the docked/cross-docked ligand did not exceed 1.5 Å, barring a few cases.

This meant that the placement algorithm employed in Glide was able to reproduce the

binding modes of the crystal structures in both instances of redocking and cross-docking.

The InhA inhibitor dataset was subsequently docked across all four proteins (1P44, 4TZK,

2NSD, and 2X23).

Table 3.5 Heavy atom RMSD and docking score (GlideSP) of top scoring poses for
cross-docked crystal structure ligands; Gz-10850 (1P44 ligand) owing to its size did
not get docked in 4TZK and 2X23.

Protein
Gscore (kcal/mol) RMSD (Å)

Gz-10850 pc-d11 aa-b3 PT-70 Gz-10850 pc-d11 aa-b3 PT-70

1P44 -9.60 -8.25 -8.08 -6.47 0.24 1.50 1.23 1.14
4TZK - -9.51 -6.40 -6.65 - 0.50 2.11 1.15
2NSD -11.80 -9.10 -10.85 -8.96 0.20 1.34 0.10 1.30
2X23 - -8.62 -9.01 -7.55 - 1.90 2.05 0.97
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(a) Redocked pose of PT70 (blue; in
2X23) with respect to crystal structure
ligand (green).

(b) Cross-docked pose of PT70 (violet;
in 2NSD) with respect to crystal struc-
ture ligand (green).

Figure 3.13 Redocking and Cross-docking results of PDB 2X23 ligand PT70.

3.3.2 Docking with GlideSP

The docking of the InhA inhibitor dataset across the four representative proteins was

performed with the default settings that included no post-docking minimisation. These

settings (5 poses/input conformation) together with the use of ”soft” potentials, lack of

strict penalties for poses with unusual bonds/torsions, and no post-docking minimization

led to a large number of poses in the final output file. Ascertaining the most probable

binding mode for each individual compound from amongst a variety of poses in the

output thereby assumed critical importance. To this end, the pose selection procedures

(cf. Figure 3.1 and section 3.1.3) were extensively used that yielded the putative binding

modes for molecules in the InhA inhibitor dataset.

The GlideSP docking performed with different receptor conformations to incorporate

receptor flexibility also resulted in a particular pattern of compound series towards a

particular receptor. This can be seen in Table 3.6, which depicts the mean deviations of

the combined top poses of a particular ligand series with respect to their native crystal

structure ligand. From Table 3.6, it can be seen that bigger ligands prefer wide open

pockets (e.g., of 1P44) while small sized ligands selectively get docked in tight binding

pocket (e.g., of 2X23). Thus, structurally similar arylamides and Genzyme series prefer

1P44 and 2NSD and to a negligible extent 4TZK, while the Genzyme series seldom

gets docked in 2X23. Comparatively, the small sized pyrrolidine carboxamides and

diaryl ethers prefer the binding pockets of 4TZK and 2X23, respectively (cf. Figures 3.14

and 3.15).

The low substructure RMSD values for the poses selected by the GDRPS protocol

indicate that GlideSP is able to reasonably predict the binding modes for majority of the

compounds. This laid the ground for docking the InhA inhibitor dataset with the more

stringent GlideXP docking. This is primarily because of two reasons, first the success of

GlideSP in achieving reasonable scaffold placement automatically translates to a similar
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Table 3.6 Substructure RMSD for combined top poses of each series in Glide SP
protocol, * signifies RMSD was calculated for a single compound getting docked from
amongst entire compound series; ** signifies no compound from the series was getting
docked and selected.

Protein

GlideSP

RMSD (Å)

Genzyme Pyrrolidine Arylamides Diphenyl
(N=15) carboxamides (N=24) ethers

(N=44) (N=25)

1P44 0.57 ± 0.17 2.99 ± 1.67 1.43 ± 0.23 2.05 ± 0.39
4TZK 7.40* 0.98 ± 0.86 2.23 ± 0.88 2.79 ± 2.18
2NSD 2.44 ± 2.69 3.40 ± 2.38 1.05 ± 0.22 1.34 ± 0.21
2X23 ** 2.33 ± 0.20 1.85 ± 0.34 0.73 ± 0.10

case for GlideXP. Second, GlideSP docking is adept at ”pose identification” and not

”pose discrimination” as opposed to GlideXP which is tailored for the latter. The results

and analysis of the GlideXP docking is focussed on the pyrrolidine carboxamides.

(a) Redocked pose of Gz-10850 (blue;
in 1P44) with respect to crystal struc-
ture ligand (Gz-10850, black) and SBL
in red.

(b) Cross-docked pose of Gz-10850
(baggy green; in 2X23) with respect
to crystal structure ligand (Gz-10850,
black) and SBL in red.

Figure 3.14 GlideSP redocking and cross-docking results for Genzyme series.

(a) Docked pose of pc-d6 (wheat; in
4TZK) with respect to crystal structure
ligand (pc-d11, grey), with 4TZK-SBL
in red.

(b) Cross-docked pose of 5PP (orange;
in 2X23) with respect to crystal struc-
ture ligand (PT70, grey) with 2X23-
SBL in red.

Figure 3.15 GlideSP docking results for pyrrolidine carboxamides and diphenyl ethers.



Chapter 3. Binding Mode Prediction for Pyrrolidine carboxamides 74

3.3.3 Docking with GlideXP

The docking with GlideXP was also performed with default settings in a way similar to

GlideSP. The following are notable additions to the docking with GlideSP:

1. Extensive minimization of the poses in post-docking phase with Macromodel and

OPLS2005 force field, followed by rescoring with GlideXP scoring function

2. Dual use of GDRPS and IHPS pose selection procedures to guide pose selection.

In the current study, if GDRPS protocol did not yield any pose, the top ranking

pose for the respective compound was chosen from the pool selected by IHPS, with

the pose having lowest RMSD and highest DrugScoreX being selected.

The extensive post-docking minimisation and the stringent XP scoring function are the

principal factors that differentiate GlideSP and GlideXP docking, respectively. This

is evident in the small number of poses per ligand emerging from the XP docking and

pose selection procedure (Table A.10). The small number of poses also comes from the

strict filtering by the pharmacophore model that allows only a fraction of poses from the

XP docking to pass through. Together the XP scoring function and the pose selection

protocols were expected to deliver poses of high quality. The quality of poses can be

ascertained by ROC analysis and its associated AUC value (Section 3.3.6).

In order to ease the evaluation of the poses of pyrrolidine carboxamides emerging from

GlideXP docking, the pyrrolidine carboxamide dataset was split into two groups. Each

of the subgroups was analysed individually, while the performance of the SFC scoring

functions in an activity-based classification of the entire pyrrolidine carboxamide dataset

was assessed by correlation and ROC analysis [228, 271, 272].

• ”Light” pyrrolidine carboxamides: This group consists of those compounds

with a mono/di-substituted Ring A (N=28, cf. Figure 3.16 and tables A.2 and A.3).

Since the light pyrrolidine carboxamides vary slightly from the crystal structure

ligands, their binding orientations are expected to be identical to that of the

reference ligand (pc-d11, PDB 4TZK).

• ”Bulky” pyrrolidine carboxamides: This group consists of 18 ligands charac-

terised by replacements of either rings A and C by bicylic, heterocyclic or even

multi-ring aromatics systems (cf. Figure 3.16 and table A.4). The name ”bulky”

arises from the fact that all members of this series exhibit bulky A rings. As

discussed earlier (Section 3.2.2.2), this group has no reference binding conformation

due to lack of crystal structures. Additionally, many of these compounds are more

potent by one order of magnitude as compared to light pyrrolidine carboxamides.
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Figure 3.16 Pyrrolidine carboxamide scaffold along with representative structures
for ”light” and ”bulky” pyrrolidine carboxamides.

Hence, evaluating the performance of GlideXP in identification as well as correct

ranking of poses for this dataset is worth investigating.

3.3.3.1 Substructure RMSD

The primary criterion of evaluating the performance of ligand placement in GlideXP is

the substructure RMSD (cf. Table 3.7). When Table 3.6 and Table 3.7 are compared,

the superiority of GlideXP in appropriate placement of the core scaffold becomes evident.

The low values of substructure RMSD and accompanying standard deviation indicate

that GlideXP reasonably predicted the binding modes of InhA inhibitors. This was

accompanied with a much better scaffold placement as compared to GlideSP. Just like in

case of GlideSP docking (cf. Section 3.3.2), the preference of a particular ligand series

towards a protein with specific SBL conformation is clearly evident. Once the validity of

GlideXP in reasonable placement of the scaffold was ascertained, the substructure RMSD

analysis was performed in detail for the segregated pyrrolidine carboxamide subsets

described in Section 3.3.3.

1. ”Light” Pyrrolidine carboxamides: In case of the ”light” pyrrolidine carbox-

amides, the GlideXP was found to yield poses with reasonable substructure RMSD

values (PDB 4TZK ligand as a reference) as obtained from fconv [256] (cf. Table 3.8

and figure 3.17). However, a small number of light pyrrolidine carboxamides (11/28,

cf. Table 3.10) poses were deemed aberrant upon visual inspection. In almost all

cases, the substituents on the A ring were pointing in the wrong direction when

compared against the crystal structure ligand. Furthermore, in case of pc-d1, a
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Table 3.7 Average substructure RMSD for combined top poses of each series in Glide
XP protocol, The asterisk (*) signifies RMSD was calculated for a single compound
getting docked from amongst entire compound series, ** signifies no compound from
the entire ligand series was getting docked and selected.

Protein

GlideXP

RMSD (Å)

Genzyme Pyrrolidine Arylamides Diphenyl
(N=15) carboxamides (N=24) ethers

(N=44) (N=25)

1P44 0.57 ± 0.27 3.75 ± 1.66 1.10 ± 0.39 1.32 ± 0.51
4TZK ** 0.77 ± 0.52 1.57 ± 0.39 0.76 ± 0.08
2NSD 4.44 2.67* 1.11 ± 0.18 1.26 ± 0.29
2X23 ** 1.83 ± 0.43 1.59 ± 0.14 0.34 ± 0.19

flipped binding mode was observed that can be attributed to wrong placement of

the ligand. On the contrary, such a flipped binding mode was not observed for any

other light pyrrolidine carboxamide. In such a scenario, the aberrant conformations

can be assumed because of:

• Placement algorithm: It is possible that the core scaffold was reasonably

placed in the binding site. However, the conformational sampling of the ligand

would have yielded a low energy conformation with significant deviations as

compared to the orientation of the crystal structure ligand (pc-d11). This

would manifest in form of clashes with the side chains of the active site and

a huge penalty by the stringent XPscore. Such a pose would not show up

in the final result at all, given the stringent nature of the XPscore and the

pharmacophore model. Such aberrations were seldom observed in case of

GlideSP docking. This indicates that the placement algorithm is not the

source of the aberrant poses.

• Extensive post-docking minimization and pose filtering: The extens-

ive post-docking minimisation appears to be a likely reason behind the aberrant

conformations, primarily because the placement algorithm worked in GlideSP

and up to a certain extent in GlideXP docking. Assuming the correct place-

ment of the core scaffold, the incorrect orientation of the A ring substituents

can be attributed to the rotation of the phenyl ring around the C-N bond

(connecting the A ring to rest of the molecule) during the minimisation whilst

leaving the key scaffold in its place. This gives rise to a low energy conforma-

tion which is quite identical to the orientation of the reference ligand as seen

in the crystal structure with the exception of the A ring and its substituents.

The said conformation passes through the pharmacophore model filtering and

ends up getting the top score by both XPscore and DrugScoreX.
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Figure 3.17 GlideXP docking results for pyrrolidine carboxamides: The top
pose of pc-d10 (olive; in 4TZK) with respect to crystal structure ligand (pc-d11, grey);
SBL depicted as red helix.

The molecules with aberrant conformations mostly had para substituents on the A

ring, for example, in case of pc-d1 and pc-d9 (cf. Figure 3.18). The problem was

solved with an approach explained in Section 3.3.4.

Figure 3.18 Aberrant poses of pyrrolidine carboxamides subjected to in-
situ mutation: Left figure depicts docked pose of pyrrolidine carboxamide-d1 (olive;
in 4TZK) with respect to crystal structure ligand pyrrolidine carboxamide-d11 (grey);
Mutated pose of pyrrolidine carboxamide-d9 (olive; in 4TZK) with respect to crystal
structure ligand pyrrolidine carboxamide-d11 (grey); SBL in red.

2. ”Bulky” Pyrrolidine carboxamides: As seen from earlier examples, GlideXP

encountered difficulties with delivering poses that conform to the orientation of

the crystal structure. The post-docking minimisation performs its mandated job

but at the cost of aberrant poses that demonstrate the rotation of the A ring.

This suggested that the problem might be aggravated in case of the bigger sized

“bulky” pyrrolidine carboxamides that will clash with the side chains of binding

pocket residues in addition to the ring A flips described earlier. Indeed, when

the poses of this subset were evaluated in terms of their substructure RMSD

(cf. Table 3.9), it became amply evident that GlideXP docking worked reasonably

with small sized ligands, but not the bigger “bulky” pyrrolidine carboxamides.

As seen from Table 3.9, the preference of the big ligands towards the more open

binding pocket (1P44) becomes evident, with a fraction favouring 2X23 and 4TZK,
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Table 3.8 Substructure RMSD and XPscore for top ranked poses of light pyrrolidine
carboxamides (Tables A.2 and A.3) derived from GlideXP docking and GDRPS pose
selection protocol across the four representative proteins 1P44, 4TZK, 2NSD, and 2X23;
The aberrant poses appear in bold face.

Pyrrolidine Pose selected Docking Score Substructure
carboxamide from (kcal/mol) RMSD (Å)

s1 4TZK -9.30 0.69
s2 4TZK -9.29 0.77
s4 4TZK -9.25 0.76
s5 4TZK -8.77 0.91
s6 4TZK -10.49 0.71
s10 4TZK -10.15 0.74
s11 4TZK -10.32 0.54
s12 4TZK -9.22 0.74
s15 4TZK -10.36 1.26
s17 4TZK -9.43 0.87
d1 1P44 -9.37 7.26
d2 4TZK -9.87 0.49
d3 4TZK -9.91 0.42
d4 2X23 -7.45 1.29
d6 4TZK -9.79 0.39
d7 4TZK -9.89 0.58
d8 4TZT -9.81 0.52
d9 4TZK -8.04 1.39
d10 4TZK -10.10 0.51
d11 4TZK -10.09 0.37
d12 4TZK -10.73 0.38
d13 4TZK -9.90 0.65
d14 2X23 -8.59 1.24
d15 4TZK -9.38 0.82
d16 4TZK -9.96 0.81
3a 4TZK -9.31 0.55
3i 4TZK -9.27 0.71
3j 4TZK -8.87 0.89

respectively. The reason behind the bulky pyrrolidine carboxamides getting docked

only in 1P44 was that more space was available for the ligands during post-docking

minimisation. This manifests in diverse binding modes (cf. Figure 3.19) and higher

substructure RMSD primarily due to the availability of more space in the open

binding pocket of 1P44. In other words, the approach of incorporating protein

flexibility in docking by using different protein structures works reasonably for

small sized ligands but not for large sized ligands. The solution to this problem

was incorporating protein flexibility to an increased extent by sampling the protein

conformation simultaneously during the ligand placement to achieve reasonable

pose placement.
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Table 3.9 Substructure RMSD’s and protein from which top ranked poses for
bulky pyrrolidine carboxamides were selected using GlideXP docking and combina-
tion of GDRPS and IHPS pose selection protocols.

Compound Pose selected from XPscore (kcal/mol) Substructure RMSD (Å)

pc-r7 2X23 -8.17 2.00
pc-p9 1P44 -10.23 1.94
pc-p20 1P44 -12.01 1.89
pc-p21 2X23 -10.36 2.08
pc-p24 2X23 -10.49 2.20
pc-p28 1P44 -11.52 4.54
pc-p31 2X23 -9.87 2.19
pc-p33 2X23 -9.77 2.26
pc-p36 1P44 -11.48 4.47
pc-c1a1 1P44 -9.76 2.43
pc-c1a2 1P44 -12.56 2.29
pc-c6a3 1P44 -11.40 6.40
pc-c7a2 4TZK -10.49 3.13
pc-c7a3 1P44 -10.60 3.33
pc-c8a2 1P44 -11.83 2.65
pc-c8a3 1P44 -10.03 3.34

(a) Crystal structure ligand pc-d11 (PDB
4TZK ligand).

(b) Top pose of pyrrolidine carboxamide-p37
(in 1P44) with respect to crystal structure
ligand pc-d11.

(c) Top pose of pyrrolidine carboxamide-
c6a3 (in 4TZK) with respect to crystal struc-
ture ligand pc-d11.

Figure 3.19 Representative varying binding orientations of bulky pyrrolidine carbox-
amides obtained from Glide XP protocol.

3.3.4 In-situ mutation - Correction of aberrant poses from “light” pyrrolid-

ine carboxamides

As mentioned in Section 3.3.3.1, a small subset of “light” pyrrolidine carboxamides (N=11,

boldface ligands in Table 3.8) posed problems for the GlideXP binding pose prediction.
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In order to ascertain the probable binding orientation for such compounds, the use of

both GlideSP and XP was ruled out, since neither would yield appropriate poses. The

solution for the same was manifested in form of in-situ mutation of the reference crystal

structure ligand for the pyrrolidine carboxamides, i.e. pc-d11 (4TZK ligand). The central

assumption behind this solution was simple; these molecules do not differ significantly

from the reference ligand AND the majority of the related ligands demonstrates a

“crystal structure-like” binding orientation. Thus, it is safe to assume that these ligands

should also bind to Mtb-InhA in an orientation similar to the reference ligand (pc-d11,

PDB 4TZK).

The process consisted of mutating the crystal structure ligand (pc-d11; PDB 4TZK)

followed by a short minimization using Macromodel 9.9 and scoring in-place using the

GlideXP scoring function (XPscore). The resultant poses were then subjected to rescoring

with DrugScoreX and SFC scoring functions alike their ”normal” counterparts.

Table 3.10 Docking, DrugScoreX and substructure RMSD values of ”mutated” poses
before (suffix old) and after in-situ mutation (suffix new). The old RMSD refers to the
substructure RMSD of the pose obtained from docking with GlideXP. The New RMSD
refers to the substructure RMSD of the in-situ mutated pose after the short minimisation.
Both substructure RSMD values were calculated in fconv with respect to the reference
ligand (pc-d11). Units for substructure RMSD are in Å, XPscore in kcal/mol.

Compound pIC50 DSXscore old DSXscore new XPscore old XPscore new Old RMSD New RMSD

pc-s4 6.05 -115.35 -116.90 -9.25 -9.60 0.61 0.38
pc-s6 5.86 -110.48 -117.03 -10.49 -9.64 0.47 0.40
pc-s10 4.77 -124.06 -119.17 -10.14 -9.48 0.51 0.39
pc-s11 5.45 -132.41 -135.74 -10.32 -10.34 0.29 0.38
pc-s12 4.97 -117.23 -125.02 -9.22 -8.92 0.51 0.40
pc-s15 5.25 -134.47 -133.95 -10.36 -9.85 0.87 0.47
pc-d1 4.25 -115.65 -117.94 -9.37 -9.67 0.97 0.56
pc-d4 4.43 -148.29 -118.05 -7.45 -9.48 1.29 0.47
pc-d9 4.50 -103.24 -126.05 -8.04 -8.78 1.39 0.57
pc-d14 5.44 -128.86 -156.08 -7.45 -10.76 1.60 0.38
pc-d15 5.79 -128.15 -121.52 -9.38 -8.31 1.15 0.69

(a) Mutated pose of pyrrolidine
carboxamide-d1 (olive; in 4TZK)
with respect to crystal structure
ligand pyrrolidine carboxamide-d11
(grey); SBL in red.

(b) Mutated pose of pyrrolidine
carboxamide-d9 (olive; in 4TZK)
with respect to crystal structure
ligand pyrrolidine carboxamide-d11
(grey); SBL in red.

Figure 3.20 Mutated poses of pyrrolidine carboxamides with reference to the crystal
structure orientation.
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Table 3.11 SFC229p and SFC290p scores of pyrrolidine carboxamides whose poses
were generated by in-situ mutation of crystal structure ligand pc-d11.

Compound pIC50
SFC 229p SFC 290p

new old new old

pc-s4 6.05 8.05 7.45 7.99 7.86
pc-s6 5.86 8.02 7.30 7.91 7.63
pc-s10 4.77 8.17 7.27 7.83 7.40
pc-s11 5.45 8.44 7.11 8.40 7.53
pc-s12 4.97 8.39 7.29 8.34 7.64
pc-s15 5.25 8.46 7.33 8.21 7.73
pc-d1 4.25 7.80 6.07 7.88 6.26
pc-d4 4.43 8.01 7.68 7.96 7.66
pc-d9 4.50 8.13 7.31 8.07 7.22
pc-d14 5.44 8.91 7.76 8.98 8.05
pc-d15 5.79 8.24 7.53 8.31 7.83

From the Tables 3.10 and 3.11 and figure 3.20, it is amply evident that generating poses

for the problematic ligands was largely successful. In case of pc-s11, the substructure

RMSD increased marginally that was revealed upon comparison of the pose from docking

and the one obtained from the in-situ mutation of pc-d11. For this solitary compound,

mutation was necessary, since the pose from GlideSP had a much bigger substructure

RMSD while the pose from GlideXP depicted the wrong orientation of the A ring

substituents. The downside to the in-situ mutation was that some of the new poses

demonstrated slightly lower values of DrugScoreX than their “docked” counterparts (for

e.g., pc-d4). For such compounds, it implied that the mutated poses were less favourable

as compared to that from docking in GlideXP, since more negative values of DrugScoreX

means more favourable orientation.

3.3.5 Docking of Pyrrolidine carboxamides with induced fit

The Section 3.3.3.1 highlights the shortcomings of GlideXP in predicting reasonable

binding modes for the bulky pyrrolidine carboxamides (N=18). This was reflected in

the high substructure RMSD values for the entire group. This can be attributed to the

lack of receptor flexibility during docking with GlideXP that makes ligand placement

and subsequent scoring difficult in tight binding pockets. The receptor flexibility during

docking was considered by docking the bulky pyrrolidine carboxamides with the induced

fit (IFD) and associated induced fit with trimmed side chains (IFD-trim) protocols

followed by pose selection in usual manner (GDRPS/IHPS protocols). The procedure

and theory of docking with induced fit has been discussed earlier in Sections 2.3.2.2

and 3.1.2.
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The pose evaluation criterion for the bulky pyrrolidine carboxamides was quite similar

to that of the smaller pyrrolidine carboxamides, which consisted of evaluating the

substructure RMSD and assessment of pose quality via ROC analysis. Of this, the

substructure RMSD will be discussed here, while the latter part which relates to pose

enrichment will be discussed in Section 3.3.6.

3.3.5.1 Pose preference

From the Table 3.13, it becomes amply clear that most of the bulky pyrrolidine carbox-

amides favour the active site of 2NSD followed by 4TZK and 2X23. Going by the size

of the binding pocket available across each protein, the pose preference was somewhat

surprising. The bulky molecules clearly favoured 2NSD as opposed to 4TZK for the

light pyrrolidine carboxamides. Some molecules also got docked in 2X23, which has

a very tight binding pocket. However, these molecules did not get docked in 2X23 at

all using the GlideXP docking. This merely underscores the impact of incorporating

receptor flexibility on the overall docking result. Furthermore, most of the docked ligands

got selected from the IFD-trim protocol indicating that extra space in addition to the

incorporated flexibility was necessary for pose generation.

3.3.5.2 Pose evaluation - Substructure RMSD and binding mode evaluation

Table 3.13 depicts the comparison of various evaluation parameters for bulky pyrrolidine

carboxamides whose poses were obtained from induced fit and GlideXP docking protocols.

There was a marked improvement in the overall XPscore and the values of DrugScoreX

and SFCscore. However, the substructure RMSD values were still quite high. This

underscores the problems of accurate pose prediction while simultaneously incorporating

receptor flexibility.

One interesting observation from both GlideXP and induced fit docking was the predicted

binding mode of pc-c6a3 (IC50 140 nM). In both instances, the substructure RMSD

values for the poses were quite identical (≈ 6.40 Å), simply because of a ”flipped”

binding mode (cf. Figure 3.21). In case of some compounds (pc-p27, p28, p36, and

p37) with substructure RMSD > 3 Å, an atypical binding mode termed as ”flipped2”

was also seen (cf. Figure 3.21). In case of the ”flipped2” mode, the secondary carbonyl

group (near the A ring) forms the dual hydrogen bonds with Y158 and cofactor as

opposed to the primary (from the B ring) as seen in crystal structures and the majority

of the pyrrolidine carboxamides. The atypical binding mode can be attributed to the

placement algorithm since the ligand conformation is not expected to change drastically

during the protein conformational sampling. Nevertheless, a majority of the pyrrolidine
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carboxamide dataset exhibited a typical binding mode resembling the crystal structure

ligands.

(a) Top ranked pose of pyrrolidine
carboxamide-c7a3 (olive) with respect to
crystal structure ligand (pc-d11; grey); SBL
in red.

(b) Top ranked pose of pyrrolidine
carboxamide-c6a3 (olive, ”flipped”) with
respect to crystal structure ligand (pc-d11;
grey); SBL in red.

(c) Top ranked pose of pyrrolidine
carboxamide-p28 (olive, ”flipped2”) with
respect to crystal structure ligand (pc-d11;
grey); SBL in red.

Figure 3.21 Representative varying binding orientations of bulky pyrrolidine carbox-
amides obtained from induced fit protocol.

The diverse binding modes observed for a small number of compounds (N=5, pc-c6a3,

pc-p27, p28, p36, and p37) warranted further investigation. The scaffold placement for

the rest of the molecules was in line with the crystal structure ligand conformation albeit

with higher RMSD values. In case of these 5 compounds, extensive molecular dynamics

simulations were performed to assess the stability of such atypical binding modes. The

results of the same are discussed in part II of this thesis. Considering the results of

both GlideXP and induced fit, it can be seen that reasonable binding orientations for

bulky pyrrolidine carboxamides could be obtained. The binding stability of these poses

was further evaluated using molecular dynamics simulations.
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3.3.6 Pose Ranking

The previous sections briefly described the numerous approaches for binding mode

prediction of InhA inhibitors, especially pyrrolidine carboxamides. A critical aspect of

docking pending evaluation was its ranking capability. In other words, the ability of the

docking protocol to correctly rank the compounds based on their affinity. In pursuit of

this goal, the top ranking poses of pyrrolidine carboxamides from GlideXP and Induced

fit protocols (N=44, cf. Tables A.2 to A.4) were extensively evaluated. The starting

point was to observe the correlation in between the experimentally determined activity

(pIC50) and the scoring functions (XPscore, DrugScoreX, and SFCscore). Table 3.12

Table 3.12 Pearson’s and Spearman’s correlation values in between various scoring
functions and pIC50 for entire pyrrolidine carboxamide dataset as well as the Mtb-InhA
inhibitor dataset.

pIC50

Scoring Function
Pyrrolidine carboxamide dataset (N=44) InhA inhibitor dataset (N=108)

Pearson’s R Spearman’s R Pearson’s R Spearman’s R

XPscore -0.55 -0.61 -0.66 -0.50
DrugScoreX -0.35 -0.34 -0.13 -0.12
SFC229p 0.49 0.50 0.31 0.38
SFC290p 0.41 0.40 0.27 0.30
SFC290m 0.46 0.49 0.29 0.39
SFC RF 0.05 0.09 0.28 0.34
SFC ser 0.14 0.10 -0.04 -0.05
SFC met -0.10 -0.15 -0.49 -0.45
SFC frag 0.16 0.11 0.10 0.09
SFC 855 0.04 -0.10 -0.26 -0.25

depicts the correlations of various scoring functions with the experimental activity.

From Table 3.12, it can be inferred that XPscore performs best from amongst the

various scoring functions utilised for scoring and ranking of the selected poses from

the pyrrolidine carboxamide subset and the InhA inhibitor dataset as well. Furthermore,

DrugScoreX and SFC229/290 scoring functions also exhibited modest correlations with

the experimental activity in case of the pyrrolidine carboxamide dataset. A contrasting

case was observed for the InhA inhibitor dataset, where the aforementioned scoring

functions correlated poorly with the experimental activity.
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The moderate correlation of XPscore with the experimental activity can be understood

from the fact that it is tailored for pose enrichment. Moreover, the poses selection

protocols were intended to deliver poses of reasonable quality. Comparatively, DrugScoreX

showed moderate correlation with pIC50 which worsened for the entire InhA inhibitor

dataset. This merely indicated the utility of DrugScoreX in correctly recognising proper

binding orientations that is independent of affinity prediction. The data also suggests

that the SFC229p/SFC290p scoring functions show a moderate correlation with pIC50,

especially in case of pyrrolidine carboxamides (cf. Table 3.12). Hence, the four scoring

functions, XPscore, DrugScoreX, SFC229p and SFC290p were subsequently evaluated

for their ranking/activity-based distinguishing ability in an activity-based separation

endeavour.

The ranking/activity-based distinguishing ability of the scoring functions was subsequently

evaluated by setting activity-based cutoffs and then evaluating the affinity prediction

of each individual scoring function via ROC analysis. To this end, the activity of

the pyrrolidine carboxamide dataset (pIC50: 4.13-6.85) was evenly split into three parts

(cf. Figure 3.22). The first part (pIC50: 4.13-5.04) represents the least active pyrrolidine

carboxamides, followed by the ”moderately active” (pIC50: 5.04-5.94) and ”highly-

active” (pIC50: 5.94-6.85) pyrrolidine carboxamides, respectively. The predictions of the

individual scoring functions were then mapped onto the experimental activity via binomial

logistic regression [278]. These models have been summarised in Table 3.14. The logistic

regression models can be compared on the basis of their AIC and AICc values. The

Akaike information criterion and its finite sample size correction term (AICc) [279], are

indicators of the amount of information lost during the model generation. Thus, a lower

value of AIC/AICc indicate a better model, and thereby a better model. However, both

AIC and AICc are not the indicators of absolute quality of the model. The Section 4.3.3.1

briefly describes the theory of AIC. From Table 3.14 and figures A.1 and A.2, it can

clearly be seen that the XPscore based ”high” model has the lowest AIC and AICc value

and hence is expected to have a better predictive power than that of other models based

on scoring functions.

Table 3.14 Binomial logistic regression models generated using the pyrrolidine car-
boxamide dataset (N=44); p represents the SFC290p value, o is the SFC229p value, g
the XPscore value, and d the DrugScoreX value.

Binomial Logistic regression

Model Equation AIC AICc

XPscore mod z = f(g) = −1.62 · g − 15.20 46.32 44.61
DrugScoreX mod z = f(d) = −0.08 · d− 10.09 49.24 49.53
SFC229p mod z = f(o) = 2.80 · o− 20.36 49.82 50.11
SFC290p mod z = f(p) = 2.16 · p− 16.01 51.89 52.18
XPscore high z = f(g) = −1.52 · g − 16.23 44.57 44.86

DrugScoreX high z = f(d) = −0.03 · d− 5.44 55.49 55.78
SFC229p high z = f(o) = 2.34 · o− 18.71 50.94 51.23
SFC290p high z = f(p) = 2.12 · p− 17.43 51.18 51.47
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This was followed by assessment of the predictions of each of the scoring functions in

correctly ranking molecules from each part. The ROC analysis of the predictions can

be seen in Figures 3.23 and 3.24. It should be noted that the aforementioned ROC

analysis represents a modification of the original method that is commonly used in

virtual screening endeavours. In ROC analysis of a virtual screening, the true positive

corresponds to a ”binder” (active molecule) while the true negatives are represented by

”non-binders” (decoys). The ROC curves fall into two main categories as follows:

• MOD: This group of curves assess the performance of the four aforesaid individual

scoring functions in correctly recognising least active molecules. In other words,

these curves signify the performances of the scoring functions in separating the least

active pyrrolidine carboxamides from moderately and highly active compounds

(separating molecules with pIC50 < 5.04 from those with pIC50 > 5.04). These

curves hereafter will also be referred to as Mod curves for comparison purposes.

• HIGH: This group of ROC curves assess the performance of the four aforesaid

individual scoring functions in correctly recognising highly active pyrrolidine carbox-

amides. These curves assess the performance of the scoring functions in separating

the highly active pyrrolidine carboxamides from the remaining two parts, i.e., least

active and moderately active. These curves hereafter will also be referred to as

High curves.

Figure 3.22 pIC50 range of pyrrolidine carboxamide dataset used for ”activity class”
generation.

The comparison of ROC curves and thereby the performance of individual scoring

functions in activity-based separation can be judged by the Area under the curve or

simply AUC value, which denotes the probability of the scoring function in ranking a

randomly chosen highly active molecule (true positive) higher than randomly chosen

weakly active molecule (true negative). The AUC values for Mod curves in Figure 3.23

clearly demonstrate the ability of XPscore in correctly differentiating moderately and

highly active pyrrolidine carboxamides from the least active compounds. This is relevant

from the early enrichment or the initial steep slope of its ROC curve. This was not

surprising, since XPscore and docking with GlideXP (enhanced sampling) is tailored to

provide a better separation of ”inactive” compounds from ”active” ones [244].

Furthermore, the AUC value for the mod curve of DrugScoreX was slightly better than

that of either SFC229p or SFC290p. On the other hand, the performance of XPscore in



Chapter 3. Binding Mode Prediction for Pyrrolidine carboxamides 88

separating the least and moderately active pyrrolidine carboxamides from highly active

ones (High curves) was slightly changed as can be seen in Figure 3.24. This is supported

by the drop in the early enrichment that was accompanied with a negligible change in

the overall AUC of the curve. A similar trend was observed in the case of the SFC229p

function as well. Both of these can be attributed to the fact that there are no ”inactives”

as such in case of pyrrolidine carboxamides. Moreover, there is an equal number of weakly

active and moderately active compounds in the pyrrolidine carboxamide dataset (N=15

for each group) with the remaining 14 constituting the highly active compounds. The

performance and AUC values of SFC290p remained unchanged across both predictions

indicating its robustness in providing an activity-based separation. On the contrary, the

High curve for DrugscoreX showed an increase in the initial enrichment alongwith a

drastic decrease in AUC value (0.63 vs. 0.80 for Mod curve), indicating an independent

behaviour in correctly recognising either weakly or highly active pyrrolidine carboxamides.

A simple comparison of the AUC values of the mod and high curves indicate that it is

much easier to recognise weakly active pyrrolidine carboxamides by any of the scoring

functions as compared to the highly active ones. Going by the early enrichment trends

across both mod and high curves, a combination of XPscore and any of the SFC scoring

functions would be expected to yield a better result in providing an activity-based

separation as compared to the individual scoring functions. This approach has been

explored and analysed in detail in Chapter 4. The important factors to be considered for

this approach is the narrow activity prediction range, small sample size and correlation

in between the predicted and actual affinities for the pyrrolidine carboxamide subset.
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Figure 3.23 ROC curves denoting the performances of XPscore, DrugScoreX,
SFC229p and SFC290p scoring functions in separating least active molecules from
moderately-highly active molecules of pyrrolidine carboxamide dataset (N=44).
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Figure 3.24 ROC curves denoting the performances of XPscore, DrugScoreX,
SFC229p and SFC290p scoring functions in separating highly active molecules from
moderately and least active molecules of pyrrolidine carboxamide dataset (N=44).
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3.4 Conclusions - Implications for docking of moderate to

bulky sized ligands in InhA

Using molecular docking, it was possible to generate reasonable binding orientations

for pyrrolidine carboxamides that will serve as an input for binding free energy calculations

using the Linear interaction energy method (cf. Chapter 4). The utilisation of Glide

docking protocols that consider receptor flexibility demonstrated the pros and cons of

the Glide docking methodology in docking diverse ligand series into InhA. The docking

results clearly demonstrated the need for extended inclusion of protein flexibility while

docking large sized ligands in InhA, while small to medium sized ligands can be docked

with the extra precision mode with ease.

Moreover, the docking results especially from GlideXP and Induced fit emphasised upon

the preference of specific inhibitor series towards their native protein that was clearly

linked to the size of the binding pocket, size of the ligand, and chemical similarity across

the inhibitor series. Accordingly, the Genzyme series favoured the wide open pocket

of 1P44 followed by 2NSD, given that arylamides and Genzyme series share a large

common substructure. This trend was also observed in smaller members of pyrrolidine

carboxamides which preferred 4TZK to a major extent followed by 2NSD, 2X23 and

1P44. The diphenyl ethers preferred 2X23 and 2NSD over 4TZK and 1P44.

On the contrary, many of the bulky pyrrolidine carboxamides got docked selectively

in 2NSD, which was surprising since it represents a much tighter binding pocket as

compared to 4TZK. However, the fact that all of the poses were obtained via induced

fit/induced fit with trimmed side chains indicate that a substantial degree of receptor

flexibility is needed to dock large ligands in tight binding pockets. Accordingly, it can be

safely concluded that for small to moderate sized ligands, GlideXP should suffice provided

GlideSP is successful in yielding reasonable binding modes. In the event of problems in

binding mode prediction with GlideXP and for large sized ligands, the computationally

intensive Induced fit protocol is recommended.

The evaluation of the four scoring functions, XPscore, DrugScoreX, SFC229p and

SFC290p highlighted their abilities in providing activity-based separation. The narrow

activity range of pyrrolidine carboxamides in addition to the uniform distribution of

molecules across all three activity classes (weakly active, moderately active, and highly

active) presents a challenge for reasonable activity-based prediction. Finally, the pose

selection protocol that served as the basis for the pose enrichment analysis seemed to

perform reliably without much need for human intervention. The pose selection procedure

mentioned in this work can thereby be utilised for pose selection in structure based

optimisation protocols for other series of InhA inhibitors.





Chapter 4

Binding affinity prediction and activity-based

classification of pyrrolidine carboxamides

4.1 Introduction

The docking performed in Chapter 3 aided in predicting the putative binding conforma-

tions for pyrrolidine carboxamides, with a particular focus on the potent members of

the series. Given the approximate nature of docking, critical parameters like receptor

flexibility, solvent contributions in binding and change in entropy upon protein-ligand

association are truncated or neglected altogether. All of these terms actually warrant

in-depth investigation to accurately predict the binding affinity of the ligand under

consideration. The approximation of the protein-ligand binding becomes evident in the

final interaction energy value or ”score”. This score is subject to further refinements by

improved scoring functions or their combinations that progressively yield values that

approach the actual or experimental binding affinity. An alternate way to evaluate

the ligand-receptor interactions that incorporate receptor flexibility as well as solvation

effects is Molecular dynamics/Monte Carlo simulations [280]. Accurate estimation of

protein-ligand binding affinities is a quite challenging task with many methods available

to assess the same [97]. The theory and pitfalls of these methods have briefly been

covered in Chapter 2.

A central aim of this work was to develop methods that could aid in the structure-based

optimisation of pyrrolidine carboxamides. In this context, methods that could aid in the

classification or identification of promising molecules based on the structural or activity

information of known molecular series were desirable. A key metric to classify or identify

promising lead molecules is their activity that can be expressed as binding affinity or

experimentally measured value like IC50. This chapter mainly deals with the potential

methods that can aid in the structure-based optimisation of pyrrolidine carboxamides.

The current work describes the utility of the Linear Interaction Energy (LIE) [99]

method in generation of a binding affinity prediction model using poses of pyrrolidine

carboxamides derived by docking. This method will be covered in detail in Section 4.1.1.

The principal aim of this model was to focus on the structure-based lead optimisation of

molecules deemed promising based on their calculated affinity values (∆Gcalc). In other

93
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words, this approach consisted of identification of promising molecules from traditional

lead optimisation endeavour by using apparent binding affinity as a filter or classifier. In

this context, the binding affinity prediction model was generated using a ligand series

like pyrrolidine carboxamides with a reasonable number of molecules with well defined

activity values. The resultant model could subsequently be used as a classifier to identify

potential lead molecules as InhA inhibitors. A prime requirement for the binding affinity

prediction model is ensemble averaged non-bonded interaction energies that were obtained

via MD/MC simulations. The ensemble generation additionally aided in ascertaining the

binding stability and the dynamic interactions of pyrrolidine carboxamides whose poses

were obtained via docking.

An alternate approach for identification of promising leads would be to evaluate the

combination of scoring functions in providing an activity-based separation. This is

a modification of the approach in Section 3.3.6, wherein individual scoring functions

were evaluated for their ability to correctly identify and assign a docking pose to an

activity class based upon its score. In other words, a regression model built up from a

combination of scoring functions was used for an activity-based separation endeavour

of the entire pyrrolidine carboxamide dataset. In contrast, the current approach used a

combination of scoring functions on a much smaller dataset containing compounds with

stable binding as verified from the MD simulations. In context of the structure-based

optimisation of pyrrolidine carboxamides, the XPscore and rescoring values (DrugScoreX,

SFCscore) as well as the non-bonded interaction energy terms of selected pyrrolidine

carboxamides were used to derive activity-based classification models using logistic

regression. The underlying theory for this approach has been enshrined in Section 4.1.3.

4.1.1 Binding affinity prediction - The Linear Interaction Energy (LIE)

method

There are numerous methods currently available for computational estimation of ligand-

binding affinities. These range from simple scoring functions (empirical or knowledge-

based) to the rigorous and time consuming alchemical perturbations (TI/FEP). The

Linear Interaction Energy (LIE) method developed by Åqvist et al. [99, 138] offers

a reasonable compromise between speed and accuracy for binding free energy predic-

tion [101]. Moreover, the accuracy of this method [99, 138] has been reported to be

much better than that of scoring functions. The prime requirement of the method is the

ensemble representation of the bound and unbound states of the ligand from which the

binding free energy is calculated according to Equation (4.1). As described earlier, the

ensemble generation provides a means of assessing the process of protein-ligand binding

and conformational changes associated with it.
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The basis of the LIE method is the linear response approximation (LRA) [99, 281], which

considers the endpoints of the thermodynamic cycle, i.e. bound and unbound forms to

calculate the electrostatic free energy change upon binding. The method was adapted

and generalized by Åqvist et al., wherein the binding free energy of a ligand is denoted as

the change when a ligand gets transferred from aqueous (unbound state) to the protein

environment (bound state). A thermodynamic cycle (Figure 2.7) can then be constructed

to calculate the binding free energy given by Equation (4.1).

∆Gbind = ∆Gel
bind +∆GvdW

bind

≈ β · 〈V el
bound − V el

free〉+ α · 〈V vdW
bound − V vdW

free 〉+ γ
(4.1)

where V el
bind and V vdW

bind are the differences in the non-bonded interaction energies for the

ligand in bound and free states, respectively. α, β, and γ are empirical parameters, while

〈 〉 denote ensemble averaged force field energies.

It is important to note that in order to predict the binding affinity, only the physically

relevant states of the ligand (i.e. bound and unbound) are sampled using MD/MC

procedures. This means that the bound and unbound states of the ligand have to be

simulated separately in order to achieve appropriate ensemble sampling of the respective

states. This is markedly different from rigorous methods like TI/FEP which construct

several non-physical intermediate states in between the aforesaid forms to calculate the

binding free energy. On the contrary, statistical methods like scoring functions predict

the binding affinity using descriptors derived solely from the bound form.

A key aspect of Equation (4.1) are the empirical parameters which scale the contribution

of the non-bonded interaction energies to the overall binding affinity. The empirical

parameters (α, β) had an equal value of 0.50 stemming from the LRA with no scaling.

However, scaling of these parameters along with addition of a new parameter γ was

necessary in order to accommodate the various approximations being made while pre-

dicting absolute binding free energy [138]. For example, the value of α was refined to be

0.18 based on a set of 18 diverse protein ligand complexes in order to predict binding

affinities for a wide variety of ligands [100, 282]. The offset parameter (γ) is system

dependent and shows values that range from 0 kcal/mol for charged complexes to -7

kcal/mol for hydrophobic binding pockets (e.g. CYP450, retinol) [282]. Furthermore,

the LIE method has several other variants that have been successfully utilised in binding

affinity prediction [139, 283, 284] for diverse ligand series binding to numerous receptors.

The electrostatic scaling factor was the last one to be refined, with optimal values being

depicted in Table 4.1 according to Hansson et al. [285].
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Table 4.1 Optimal values for β according to the chemical nature of ligand. Table
adapted from Hansson, Marelius, et al., 1998 [285]

β Chemical nature of ligand

0.50 Charged
0.43 Neutral
0.37 Neutral compound with a single hydroxyl group
0.33 Neutral compound with two or more hydroxyl groups

4.1.2 Sampling of MD simulations

The binding affinity prediction using the LIE method requires sampling of the bound

and unbound forms of the ligand. Some key considerations while performing the MD

sampling and subsequent affinity predictions are as follows:

1. The original method makes use of spherical boundary conditions (SBC) implemented

in a surface constrained all-atom solvent (SCAAS ) model [286] to solvate the bound

and unbound states of the ligand, respectively. The SCAAS model represents a

solvent sphere and its main aim was consistent treatment of polarisation effects at

the surface in classical all-atom MD simulations. The spherical shape of the bulk

solvent in contrast to other shapes like cubic, dodecahedron etc. [287, 288] implies

a smaller number of solvent molecules thereby maximising speed and efficiency.

2. Normally, the same ligand conformation is used for the bound and free simulations

of the ligand under SBC conditions [101]. This is primarily done to track the

conformational changes as well as the associated energetics of an identical starting

conformation in bound and free states, respectively.

3. The size of the solvent sphere/cube should be adequate so as to ensure proper

solvation of the ligand. This in turn, avoids the lack of dielectric screening. Normally,

a buffer of 10-15 Å around the ligand is sufficient to maintain a balance in between

speed and accuracy.

4. Polar residues in the vicinity of the spherical edge (3-5 Å) and those outside the

sphere boundary must be explicitly modelled as neutral. This is primarily because

of the lack of dielectric screening in the simulations under SBC. On the contrary,

no such modifications are necessary under periodic boundary conditions (PBC)

because often it is used in conjunction with the particle mesh Ewald method that

ensures appropriate consideration of dielectric effects.

5. The simulations of both forms of the ligand need to be performed under sim-

ilar boundary conditions. This includes the center of the sphere and its size in

both simulations [101]. Again this requirement is restricted to simulations under

SBC [101].
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6. The original LIE method accounted for the long range electrostatics by local

reaction field approximation [216]. On the contrary, most modern MD simulation

engines utilise the Particle Mesh Ewald method [215] for evaluation of long range

electrostatics.

4.1.3 Activity-Based classification

The Section 3.3.6 describes in short the approach of using scoring functions for dis-

crimination of binders from non-binders via logistic regression and subsequent ROC

analysis. This section is a modification of that approach, wherein a combination of

scoring functions (as opposed to a singular scoring function in Chapter 3) were used

to achieve an activity-based separation of the pyrrolidine carboxamide dataset. The

model emanating from the logistic regression of scoring functions and the experimentally

determined InhA inhibitory activity assigns a probability value to each test molecule

of being least active or highly active. This value was dependent on the value of the

scores assigned to the molecule by the scoring functions used in the model generation.

Based on the probability value, the molecule could be classified as least active, moderately

active, or highly active. The logistic regression method was extensively used to generate

the models. This section describes the theory and logic behind the model generation.

4.1.3.1 Principal Component Analysis (PCA)

Prior to the model generation, it was essential to determine which of the scoring func-

tions would result in maximal separation of highly active from the least active ones.

Furthermore, a case where the aforementioned separation is achieved using a minimum

possible number of scoring functions would be desirable. A key point here would be to use

scoring functions that correlate nicely with the experimentally determined activity while

being of different type e.g., empirical, knowledge-based etc. Hence, it was necessary to

ascertain the least possible number of scoring functions enabling maximal activity-based

separation of pyrrolidine carboxamides.

In pursuit of this aim, a multivariate data reduction technique- Principal Component

Analysis (PCA) was utilised. PCA primarily aims at simplification of the multiple

dimensions of data to a few degrees and highlighting the common patterns that otherwise

would remain concealed [289]. PCA was first described by Karl Pearson in 1901 and

forms the basis for modern analysis of multivariate data [290].

PCA primarily achieves the simplification of data by orthogonal transformation of the

data that yields the principal components (PC), with the first component (PC1) describing

maximal variance of the system (cf. Figure 4.1). Each PC is a linear combination of the
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underlying variables that describe the data. Other principal components are derived

along the same lines except that they remain orthonormal to PC1 and to each other

as well. Mathematically the PC’s are also referred to as eigenvectors of the covariance

matrix used to perform the PCA [289]. A critical consideration while performing PCA is

the minimal number of PC’s used to extract meaningful information from the dataset.

Although there is no straightforward answer to this question [291], the main point is that

whilst performing multivariate dimensionality reduction, the first few PCs are the most

important.

Figure 4.1 Basics of principal component analysis (PCA); X1 and X2 are the
original variables describing the data in the shaded oval region. PCA orthogonalises
and rotates the data yielding new axes PC1 and PC2. The PC1 represents the principal
component describing maximal variance in the data.

4.1.3.2 Logistic Regression

Logistic regression is a statistical method used to estimate the probability of a binary

response (outcome) based on one or more predictor variables. It was first described

by David Cox in 1958 [278], wherein the logistic regression describes the relationship

between the dependent and independent variables in form of probabilities using a logistic

function (σ(t)) (cf. Equation (4.2)), where t is any real input and t ∈ R, where R is the

range of the input. For such an input, the output always lies between 0 and 1, thereby

interpretable as a probability.

σ(t) =
et

1 + et
=

1

1 + e−t
(4.2)

where t represents a linear combination of explanatory variables (y, y1 ..., yn). t can be

expressed as:

t = β0 + β1y1 + ... (4.3)
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Figure 4.2 Logistic regression analysis of sample data mtcars from R: The
dataset consists of 32 data points with 2 variables, type of engine (vs) and mileage
(mpg). The blue curve represents the logistic regression model with the equation 1/ 1 +
exp [- (0.43 - 8.83 . x)], p ≪ 0.05.

The logistic function can now be shown as:

F (y) =
1

1 + e−β0+β1y1
(4.4)

The gradual nature of F (y) avoids the hard cutoffs (negative/positive) inherent to a

binary classification scheme. A shift in the distribution of the explanatory variables

manifests as a change in the slope of the function which is proportional to the shift, i.e.,

a large shift in the distribution of the explanatory variables results in a steep logistic

regression function. The transition from either binary outcomes is usually denoted by a

smooth path (cf. Figure 4.2).

The Figure 4.2 was generated in R using the inbuilt mtcars dataset that comprises of

fuel consumption and 10 miscellaneous aspects of automobile design and performance for

32 automobiles [292]. The logistic regression function (blue line) was built with vs as the

outcome variable and mpg as the continuous predictor, which explains the relationship

in between the type of engine and its mileage. The term vs refers to the type of engine

(vertical (v) or straight (s)) and mpg is miles per gallon of fuel. The model (blue curve)

1/1 + exp [- (0.43 - 8.83 . x)] (x= mpg) models the shift in fuel efficiency when switching

from a vertical engine (v) with a value of 0 to a straight engine (s) with a value of 1

(cf. Figure 4.2).

The term “binomial” logistic regression refers to those cases with a single continuous

predictor variable and a dichotomous binary outcome (1 or 0) like in the aforementioned

example [293]. When both predictor variable and outcomes are dichotomous, it is

referred to as multinomial logistic regression. In such cases, only a single model yields the
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probabilities for the possible outcomes as a function of the independent variable, with

the sum total of all probabilities equal to 1. The logistic regression can also be expressed

in a generalised linear form [294], with the Equation (4.5) depicting the probability

calculations, with K = 3 for the three activity classes as seen in Figure 3.22.

P (Yi = K) =
1

1 +
∑K−1

k=1 eβk·Xi

P (Yi = 1) =
eβ1·Xi

1 +
∑K−1

k=1 eβk·Xi

P (Yi = K − 1) =
eβK−1·Xi

1 +
∑K−1

k=1 eβk·Xi

P (Yi = K) + P (Yi = 1) + P (Yi = K − 1) = 1

(4.5)

where Yi is the categorical outcome with K possible values (probability). The term k

represents the outcome of an observation i, while the vector of the explanatory variables

that describe i is denoted by Xi. Furthermore, since the logistic regression is nothing

but a logit distribution, it can be used on output of PCA, with the model being trained

on the coordinates of the PC subspace.

4.2 Methods

Figure 4.3 describes the methodology followed for the binding affinity prediction and

activity-based separation models.

4.2.1 Dataset Used

The input for both affinity prediction and activity-based classification models were the

top ranked poses obtained by molecular docking in Glide. A total of 44 compounds

(cf. Tables 3.8 to 3.10) were docked, rescored with DrugScoreX and SFCscore and

ranked. The entire dataset was subjected to molecular dynamics simulations both in

bound (complex form) and unbound form (solvated in water box). From the ”bound”

simulations, molecules exhibiting stable binding were then ascertained by setting a

“stability” criterion. The criterion set a cutoff of C-α RMSD ≤ 1.30 Å for the protein

and ≤ 1.00 Å for the heavy atom RMSD of the ligand in the bound state.

A total of 23 molecules (cf. Table 4.2 and section 4.3.1) passed the cutoff and were

subsequently used as a ”training” set for both binding affinity prediction and activity-

based separation models. It can be seen that about half of the starting compounds

did not pass the stability criterion.This fact coupled with the narrow activity range of

the pyrrolidine carboxamides, represents a challenge in generating an affinity prediction
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Figure 4.3 Workflow followed for derivation and validation of binding affinity and
activity-based classification models

model. Moreover, the remaining molecules (N=21) (cf. Table 4.3) served as the test

set for model validation (again both models). These molecules primarily served as an

internal validation before the extensive process of model validation could be performed.

4.2.2 System Preparation

The LIE method requires sampling of the bound and unbound states of the ligand. Prior

to setting up the system, all protein-ligand complexes with bound ligands and cofactor

(NAD+) were aligned to PDB 2X23 in MOE (v2012.10, Chemical Computing Group
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Inc., Montreal, QC, Canada, 2012). The translated protein-ligand complexes were saved

as PDB files for subsequent use. This was done because the poses for light pyrrolidine

carboxamides were obtained from proteins that were aligned to 2X23. On the contrary,

the poses of bulky pyrrolidine carboxamides came from original PDB structures. As

a result, for consistent treatment of all systems, the C-α alignment was performed.

Subsequently, the ligand and cofactors were extracted from the aligned PDB files and

saved as individual mol2 files. The apo-protein resulting from this step was further

stripped of hydrogen atoms and saved as a PDB file for subsequent system preparation.

This step yielded a total of 44 apo protein files and equivalent number of ligand and

cofactor files in mol2 format.

Subsequently, the tleap module of Amber10 [295] was utilised to assign the parameters

of the Amber ff99SB force field to the protein. The RESP [196] charges for the ligands

as well as cofactors were calculated based on the single point HF/6-31G* electrostatic

potentials obtained from Gaussian 03 [296]. The missing parameters for the ligands

and cofactors according to the General Amber force field were calculated using the

parmchk [297] module of Amber10, while atom and bond types for the entire system

including protein, ligand and cofactor were assigned using Antechamber [298]. The

entire protein-ligand complex was subsequently regenerated in tleap and used for MD

simulations.

4.2.3 Molecular dynamics simulations

The protein ligand complex was first subjected to a short minimisation of 2000 steps

performed using a Born implicit solvent model [299–301] implemented in the sander MD

engine of Amber11 [295]. Subsequently, the entire protein-ligand complex was solvated in

a rectilinear water box with a buffer of 10 Å around the protein, with the solvent being

defined by the TIP3P model [287]. The rectilinear shape represents one of the commonly

used shapes by MD simulation programs, besides being ideal for implementation of

the periodic boundary conditions (PBC). The PBC mainly aids in prevention of finite

system effects, for example, the difficulties in reasonable estimation of the long range

electrostatics.

Initially, the implicit water molecules from the crystal structure that were deemed

important in ligand binding were retained followed by solvation of the protein-ligand

complex. An adequate number of sodium ions was added to maintain the neutrality of

the system. The resulting systems on average contained 42,000 atoms with dimensions

of 76Å · 77Å · 78Å. At this point, the bound ligand was also transferred to a TIP3P

rectilinear water box whilst retaining the bound conformation. An important point to

be noted here is that the buffer region for the ligand was also equal to 10 Å, though
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the box size was much smaller and thereby contained a significantly reduced number of

solvent molecules. Subsequently, both the solvated systems (protein-ligand complex and

free ligand) were equilibrated using the same approach.

During equilibration, in order to relax the systems (solvated protein-ligand complex and

solvated ligand) prior to the production runs, the system was heated up from 100K to 300K

(over 20 ps) and cooled back to 100K (over 5 ps) under constant volume and temperature

conditions, i.e. NVT ensemble using a Berendsen weak coupling algorithm [210] with

time constant equating 0.5 ps. During the NVT run, the water molecules and ions were

mobile whilst protein-ligand complex/ligand remained rigid by application of strong

constraint of 10 kcal

mol·Å
.

Subsequently, the temperature of the systems was gradually increased to 300K over a

period of 25 ps (under NVT conditions), with all atoms of the system being mobile.

Thereafter, the system was allowed to equilibrate further for a period of 50 ps under

constant pressure and temperature conditions (NPT ensemble). During the simulation,

the SHAKE algorithm was utilised to constrain the covalently bound hydrogen atoms

while a time step of 2 fs was deemed suitable to ensure appropriate force and thereby

energy evaluations of the system. The NPT simulations were run using Particle Mesh

Ewald-MD (PMEMD) [302, 303] under periodic boundary conditions, which is a faster

implementation of SANDER (Simulated Annealing of NMR Derived Energy Restraints).

The constant pressure conditions were maintained by a Nosé-Hoover Langevin piston [212]

while constant temperature was achieved by Langevin dynamics. For evaluating the

non-bonded interactions, a cutoff of 12 Å was used, while the long range electrostatics

were treated using the particle mesh Ewald method [215].

Subsequently, all of the systems were subjected to 5 ns production run with PMEMD

whilst trajectory snapshots being saved every picosecond. For trajectory analysis and

interaction energy calculation every frame of the 5 ns production run was considered,

whilst omitting the equilibration frames. Once the production runs concluded, the

Amber trajectories were imaged and saved in a binary format (.dcd) for further analysis.

Given the number of molecules in the pyrrolidine carboxamide dataset subjected to MD

simulations a total simulation time of 44 · 5 · 2 = 440 ns was achieved. The trajectories

were then subjected to routine methods of trajectory analysis.

4.2.4 Trajectory Analysis

4.2.4.1 RMSD analysis

The analysis of RMSD forms a basic and routine exercise when evaluating a trajectory.

The RMSD analysis of the trajectories for the protein-ligand complexes (bound ligand
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state) was achieved by fitting the systems to backbone atoms (C, C-α, N, O) of a

translated PDB 4TZK which was aligned to PDB 2X23 (chain A) in MOE (v2012.10).

In effect, the chain A of PDB 2X23 served as an indirect global reference system, whilst

the PDB 4TZK served as immediate reference for all simulated protein-ligand complexes.

The RMSD analysis for the complexes was carried out in terms of C-α atoms and heavy

atoms of the ligand in the bound state. In the free state, the ligand heavy atoms were

used, with the ensemble averages being calculated over 5 ns for each ligand.

4.2.4.2 Calculating ensemble averaged interaction energies

The ensemble averaged interaction energies for the ligand in bound and free state were

calculated with a cutoff of 12 Å. For calculating the pairwise non-bonded interaction

energies, the pairs were defined as follows:

1. In case of the solvated protein-ligand complex, the ligand formed one object while

the rest of the system, including water and ions, formed the other part of the pair.

2. For the solvated ligand, the above approach was applied analogously, with the

ligand forming one object whilst the water molecules formed the other pair.

The pairwise non-bonded interaction energies were calculated for all ligands of the pyrrolid-

ine carboxamide dataset, while the averaged interaction energies of ligands exhibiting

stable binding were utilised to derive the binding affinity prediction models. In each

case, the averaged interaction energies were obtained by averaging over the entire 5 ns

trajectory (5000 frames).

4.2.4.3 Analysis Tools

The trajectory analyses were carried out in VMD [304] and cpptraj [305]. The RMSD

analysis was performed using the RMSD Trajectory Tool of VMD, while the interaction

energy analysis was carried out using the NAMD energy plugin of VMD and cpptraj lie,

respectively. All subsequent statistical analyses were performed in R [273] and associated

packages, while structural visualizations were performed with PyMOL [276].

4.3 Results

4.3.1 Selection of dataset for training models

A key consideration while deriving both affinity prediction and activity-based classification

models was that the molecules being considered should exhibit stable binding. In the
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absence of stable binding, reasonable convergence (ensemble average standard deviation

± 2 kcal/mol) of the interaction energies would not be achieved making the process of

binding affinity prediction difficult. On a parallel consideration, docking poses (ligands)

which exhibited stable binding can be considered to be reasonable and validated via

the extensive conformational sampling via molecular dynamics. The ”stability” cutoff

(cf. Section 4.2.1) aided in identification of the stable binders (cf. Table 4.2) amongst

the pyrrolidine carboxamide dataset.

Upon application of the stability criterion, a ”training” set of 23 molecules (cf. Table 4.2)

was obtained. From Table 4.2, it can be seen that the training dataset primarily consists

of light pyrrolidine carboxamides, while only 4 bulky pyrrolidine carboxamides exhibited

stable binding. The training dataset contained within itself two subsets of pyrrolidine

carboxamides that were primarily used to ascertain the overall change in affinity prediction

with a change in number of molecules in the training set.

Table 4.2 Training dataset used for generation of a linear regression model using
the LIE method. The RMSD values are averaged over 5 ns production runs (bound
state). The values of the empirical parameters α, β, and γ from the best performing
LIE model (α=0.17, β=0.03, γ=-3.13) were used to arrive at ∆Gcalc. The experimental
binding free energy (∆Gexp) has been obtained from the IC50 by using the equation
∆G = −RT ln(IC50) = -2.303 · R · T · pIC50 = -1.354 · pIC50 (using the SI value of R
and T = 296 K). Units for RMSD are in Å and for binding free energy in kcal/mol.

Compound pIC50 C-α RMSD Ligand RMSD ∆Gcalc ∆Gexp

pc-s2 4.45 1.27 0.34 -7.11 -6.03
pc-s4 6.05 1.30 0.29 -7.41 -8.19
pc-s5 4.55 1.21 0.69 -6.53 -6.16
pc-s6 5.86 1.16 0.67 -6.84 -7.93
pc-s10 4.77 1.09 0.34 -6.87 -6.46
pc-s11 5.45 0.96 0.74 -6.83 -7.38
pc-s12 4.97 1.16 0.55 -7.43 -6.73
pc-s15 5.25 1.30 0.75 -7.01 -7.11
pc-d2 4.24 1.13 0.35 -7.07 -5.75
pc-d4 4.42 1.17 0.45 -7.03 -6.00
pc-d8 4.63 1.16 0.39 -6.87 -6.28
pc-d9 4.50 1.15 0.61 -6.80 -6.09
pc-d11 6.40 1.11 0.49 -7.05 -8.68
pc-d12 6.07 1.15 0.78 -7.09 -8.22
pc-d13 5.88 1.22 0.81 -7.66 -7.96
pc-d14 5.43 1.09 0.83 -7.57 -7.35
pc-d15 5.79 1.21 0.53 -7.36 -7.84
pc-d16 4.82 1.21 0.47 -6.98 -6.53
pc-3i 4.86 1.26 0.75 -6.51 -6.59
pc-r7 5.29 1.22 0.71 -7.04 -7.16
pc-p31 5.85 1.12 0.75 -7.42 -7.93
pc-c7a3 6.56 1.22 0.81 -8.17 -8.89
pc-c8a2 6.49 1.29 1.00 -9.38 -8.78

4.3.2 Binding affinity prediction-LIE

Binding affinity prediction models were trained using the molecules in training set

(Table 4.2) and the entire pyrrolidine carboxamide dataset, respectively. The model

generation and subsequent statistical analysis was performed in R [273]. Table 4.4
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Table 4.3 Test set used for validation of binding affinity prediction and activity-based
classification models. The ∆Gcalc values were calculated with the empirical parameters
α, β, and γ obtained for the training set (α=0.17, β=0.03, and γ=-3.13, cf. Table 4.4).
See Table 4.2 for more details.

Compound pIC50 C-α RMSD Ligand RMSD ∆Gcalc ∆Gexp

pc-s1 4.97 1.44 0.32 -6.36 -6.73
pc-s17 4.13 1.29 1.06 -7.25 -5.59
pc-d1 4.25 1.61 0.92 -6.77 -5.75
pc-d3 6.01 1.46 0.54 -6.54 -8.14
pc-d6 4.99 1.31 0.67 -6.83 -6.76
pc-d7 5.50 1.79 0.32 -7.19 -7.45
pc-d10 5.82 1.44 0.57 -6.89 -7.88
pc-3a 5.40 1.39 0.82 -7.00 -7.31
pc-3j 4.53 1.36 0.88 -7.02 -6.13
pc-p9 5.46 1.41 0.98 -7.89 -7.40
pc-p20 6.12 1.59 1.41 -7.53 -8.29
pc-p21 6.38 1.53 1.83 -7.97 -8.64
pc-p24 6.40 1.48 1.19 -7.63 -8.68
pc-p28 5.19 1.74 1.13 -8.67 -7.03
pc-p33 5.59 1.75 1.64 -8.44 -7.56
pc-p36 5.25 1.62 1.16 -8.07 -7.12
pc-c1a1 6.07 1.36 0.69 -7.32 -8.22
pc-c1a2 6.33 1.52 0.71 -8.90 -8.58
pc-c6a3 6.85 1.30 1.50 -6.86 -9.28
pc-c7a2 6.20 1.44 1.18 -7.88 -8.40
pc-c8a3 5.88 1.47 1.19 -9.56 -7.97

and Figure 4.4 depict the binding affinity prediction models and statistical parameters

associated with them. From Table 4.4, it can be seen that binding affinity prediction

Table 4.4 Binding affinity prediction models generated
with the LIE method

Parameters
Linear Regression

”Training” (N=23) ”Whole” (N=44)

Multiple R2 0.37 (0.61*) 0.22 (0.47)
Adjusted R2 0.31 0.18
F-statistics 5.98 6.01
Residual Standard error 0.81 0.89
P-value (F-statistics) 9.10*10−3 5.13*10−3

Degrees of Freedom 20 41
Alpha (p-value) 0.17 (2.94*10−3) 0.09 (8.32*10−3)
Beta(p-value) 0.03 (0.31) -0.009 (0.69)
Gamma(p-value) -3.13 (0.01) -4.90 (2.97*10−7)

Asterisk corresponds to Pearson’s R value
Training refers to the training set of 23 compounds (Table 4.2)
used to derive the best affinity prediction model.
Whole refers to the entire pyrrolidine carboxamide dataset used
for MD simulations.
The values of the empirical parameters from the best LIE model
(the one from training set) were used to calculate the predicted
relative binding free energy (∆Gcalc) in Tables 4.2 and 4.3, re-
spectively.

models represent a modest performance that is evident from the moderate Pearson

correlation coefficient (R) of 0.61 for the best model. The low correlation can at least

in part be attributed to the fact that the activity range is quite narrow (2.32 pIC50

for the training set that corresponds to 3.1 kcal/mol). The residual standard error of

the two models ranged from 0.85 to 0.92 kcal/mol, which may be confronted with the
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standard errors of other affinity prediction methods, that typically range between 0.5

and 2 kcal/mol [306]. Considering the aforesaid facts, the performance of the generated

models can be understood, since a small deviation in the prediction leads to a noticeable

change in the correlation.
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Figure 4.4 Experimental binding free energy (Gexp) vs. calculated binding free energy
(Gcalc) for the training and the entire pyrrolidine carboxamide dataset, respectively.
The units of energy are kcal/mol. The dotted lines denote a range of ± 1 kcal/mol for
the predicted binding affinity from the diagonal line that passes through the origin.

4.3.2.1 Testing of the LIE model

In order to assess the performance of the best LIE model in binding activity prediction,

it was used to predict the activities of the molecules of test set and plotting the predicted

affinity versus the actual activity (cf. Figure 4.5). From Figure 4.5, modest performance

of the best LIE model is evident, with a sizeable number (5/21 or 24%) of the molecules

being deemed as outliers visually. Furthermore, a total of 7 molecules (33%) were

very close to either of the upper and lower affinity limits (± 1 kcal/mol). These facts

merely suggest the affinity prediction challenge using the pyrrolidine carboxamide dataset.

As described earlier, the model was trained with limited number of molecules with a

narrow activity range. The test dataset had an even lesser number of molecules (N

= 21) and a slightly wider activity range (2.71 pIC50 units) than that of the training

set. However, it contained within it the most active (pc-c6a3; IC50: 140 nM) and least

active pyrrolidine carboxamide(pc-s17; IC50: 73,580 nM) alongwith a large number of

bulky pyrrolidine carboxamides, all of which were quite potent than the light pyrrolidine

carboxamides against InhA. Nevertheless, the abject performance of the affinity prediction

using pyrrolidine carboxamide dataset had a silver lining. Upon inspecting the predicted

binding affinities for the molecules of the test set, it was seen that the best LIE model

actually predicted the binding affinity for majority of the molecules within the 1 kcal/mol

error range. This can be seen in Figure 4.5, where 5 molecules were wrongly predicted

beyond the error range.
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Figure 4.5 Calculated binding affinity (Gcalc) versus the experimental affinity (Gexp)
for the test set (N=21) according to the best LIE model (using the training set,
cf. Table 4.4); The dashed lines represent the range (± 1 kcal/mol) for the predicted
binding affinity using the best LIE model. The bold diagonal line passes through the
origin.

The selection of the test dataset was quite a tricky affair, not just because of the aforesaid

facts, but also because, in general, the test set should contain diverse molecules with well

defined activity values measured against the same target under similar assay conditions.

From this point of view, the molecules that were used in training the affinity models

would represent and ideal choice. In other words, the pyrrolidine carboxamides and

other InhA inhibitors would fit the aforementioned criteria. Though all of the molecules

reported in Appendix A, have well defined activities under similar assay conditions, the

error range for the IC50 values for each molecule exhibited a variable range. Given the

experimental uncertainty in the IC50 measurements for each classes, only the pyrrolidine

carboxamides not considered in binding affinity prediction model generation were used

for model testing. Added to this, is the need for ensemble averaged interaction energy

values for individual molecules. Considering the sheer size of the InhA inhibitor dataset,

performing MD simulations for individual molecules in bound and free states would be

cumbersome, if not difficult. These facts merely led to the use of the present test set for

ascertaining the best affinity prediction model. The apparent performance of the binding

affinity prediction models stressed the need of alternate methods for activity prediction

or activity-based separation.
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4.3.3 Activity-based separation - The activity ”class” approach

The activity-based separation was primarily devised as a means of classifying a test

molecule as active or inactive without the need for the time consuming MD simulations.

In short, the main aim was to provide an efficient method that was both fast and robust

in separating the molecules of interest from the unimportant (inactive/least active) ones.

To this end, the models were trained with a combination of scoring functions using logistic

regression methodology (cf. Section 4.1.3.2). This was quite identical to the approach

in Chapter 3 (cf. Section 3.3.6), where the ability of individual scoring functions was

assessed in providing an activity-based separation of the poses obtained from docking.

Prior to training the logistic regression models (hereinafter referred to as logreg), the

scoring functions of importance that were to be used in the training needed to be identified.

These were identified by using a combination of correlation analysis and a subsequent

principal component analysis (PCA) of the ”training” dataset (cf. Figure 4.6). From the

correlation analyses (Figure 4.6), it can be seen that none of the scoring functions show a

strong linear relationship with the experimental activity. Accordingly, in order to obtain

the scoring functions that would aid in an activity-based separation, an PCA of the

scoring functions was performed. The plot on the right hand side depicts the PCA of the

molecules from the training set (Table 4.2) used in the affinity model generation. Each

of the molecules are colour coded according to the pIC50 as least (black), moderately

(red), and highly (green) active. In addition to this, the principal components (PC1 and

PC2) can be explained as a linear combinations of the parameters multiplied by their

respective eigenvalues.

A combination of correlation and PCA analyses revealed that XPscore and one of the

SFC scoring functions (SFC290p/229p) resulted in maximal activity-based separation of

the pyrrolidine carboxamides along the first principal component (PC1). The separation

of pyrrolidine carboxamides along the second principal component (PC2) was less as

compared to that along PC1. Nevertheless, DrugscoreX and the electrostatic interaction

energy term (ele) represented noticeable activity-based separation of the training set

compounds along PC2. The correlation analyses, on the other hand, depicted a strong

correlation amongst the SFC scoring functions, and a moderate correlation with pIC50

as well as XPscore and the rest of the scoring functions, except for SFC290m and

DrugScoreX. Both of these scoring functions, surprisingly showed a very high negative

correlation. Going by the absolute correlation values and the results from RA, the

following scoring function combinations were probed in an activity-based separation

endeavour:

1. Scoring function based models: As the name implies, this group of models was

purely trained with combinations of scoring functions. The various combinations of
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the scoring functions were: XPscore-SFC290p, DrugscoreX-SFC290p, and XPscore-

DrugscoreX. Additionally, the performance of the individual scoring functions in

activity-based separation of the training set was also assessed.

2. Force field based models: This group of models was based on the non-bonded

interaction energy terms derived from MD simulations. These terms were already

available first hand for the training set from the LIE method.

All of the aforementioned logreg models could either predict the probability of test

molecules being classified as active or inactive (binomial) or as least active, moder-

ately active, and highly active (multinomial), respectively. Accordingly, binomial and

multinomial models were generated, while the model quality was being assessed with

help of AIC/AICc, respectively. For the model generation, the R packages lattice [307],

nnet [308], pROC [259], nlme [309], and AICc [310] were utilized.
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Figure 4.6 Correlation matrix and principal component analysis of experimental
activity (pIC50) as well as scoring values for molecules from the ”final” set (N=23)

An activity-based range (cf. Figure 3.22) was used to partition the dataset into least

active, moderately active and highly active. Using this range as a starting point,

prediction models based on linear or logistic regression can be constructed to identify

molecules of interest. Both regression strategies are fundamentally different (ordinary

least squares versus maximum likelihood) with their own strengths and weaknesses.

Logistic regression was preferred over linear one, simply because the aim of the work was

to predict an outcome variable that was categorical (least, moderately active or highly

active) based upon predictor variables that are continuous (rescoring values). Having a

categorical outcome variable is not possible in case of linear regression since it violates the

assumption of linearity. Furthermore, linear regression requires the dependant variable

to be continuous (no categories/groups).
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This can be better understood as follows: In the current activity-based separation endeav-

our, a model based upon linear regression would take in continuous variables as input

(rescoring values) and would predict the affinity of the molecule (continuous). Logistic

regression, on the contrary, would take in the rescoring values of a test molecule (continu-

ous) and the outcome would be least, moderately active or highly active (categorical),

with the sum of probabilities for the molecule being assigned to the individual class equal

to 1.

In order to facilitate the activity-based classification using logistic regression, a class

based approach was utilised. It consisted of deriving logistic regression models that

belonged to two main classes namely,

• Moderately active prediction: This group of models (abbreviated as ”Mod”)

had a pIC50 cut-off at 5.04. This model aimed at separating the least active

molecules from moderately and highly active molecules.

• Highly active prediction: This group of models (abbreviated as ”High”) had a

higher pIC50 cut-off of 5.94 and thus it was tailored to identify only highly active

molecules, thereby separating the highly active molecules from moderately and

least active molecules.

4.3.3.1 Model Characterisation:

Because of the intricacies of the underlying methods, the logistic regression models cannot

be directly compared unlike in the case of linear regression where generally the square of

Pearson’s correlation (R2) or the standard error and related statistics suffice. Hence, the

Akaike information criterion [279] (AIC) was utilized for estimating the relative qualities

of generated models. The AIC can be represented as:

AIC = 2k − 2 ln(L) (4.6)

where, k = number of parameters estimated in the model and L = Maximum Likelihood

of the model.

The maximal likelihood is a function of the parameters used in training of the model.

In informal contexts, the maximum likelihood can be considered as ”probability”. In

statistics, probability is used to describe the possible future outcomes given a fixed value

of the parameter. Likelihood is used to describe a function of a parameter given a

fixed outcome. This can be better understood by the following example: let p be the

probability that a coin lands heads up (H) when tossed. So, a probability of getting two
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heads when the coin is tossed twice is p. If p=0.50, then the probability of seeing two

heads is 0.25. Thus, the likelihood that p=0.50 given the observation HH = 0.25, is:

L(pH = 0.50|HH) = P (HH|pH = 0.50) = 0.25 (4.7)

where, L is the likelihood. The AIC has its foundations in the information theory, and AIC

offers a relative estimate of the information lost during model generation, representing the

process that yields the data. Thus, a low AIC value indicates lesser loss of information

during model generation and hence better predictive power. A critical point to note is

that AIC offers no information about the absolute quality of the model, while it performs

only as a discriminating metric for model comparison. Furthermore, since the sample

size (number of pyrrolidine carboxamides) used for the model generation was finite, the

2nd order AIC referred to as AICc [310, 311] (AIC with correction) was used for model

comparison. The AICc can be put forward as follows:

AICc = AIC +
2k(k + 1)

n− k − 1
(4.8)

where, n = number of samples and k = number of parameters.

4.3.3.2 Binomial logistic regression models

A brief comparison of numerous binomial models (cf. Figures 4.7, B.1 and B.2) is

summarised in Table 4.5. From the Table 4.5 and Figures B.1 and B.2, it is evident

that the binomial XPscore-SFC290p based ”mod” model exhibits the lowest AIC/AICc

value and thereby least loss of information during its generation. As discussed earlier

(Section 4.1.3.2), the quality of a logreg model can be assessed visually by inspecting its

slope. The binomial XPscore-SFC290p based ”mod” model exhibits an almost vertical

slope indicating a flawless separation of least active pyrrolidine carboxamides from the

moderately active and highly active molecules. Thus, this model can be considered to be

performing best from amongst all the binomial logistic models generated so far.

In addition to the binomial models, the XPscore-SFC290p combination was also assessed

in providing a detailed activity-based separation via a multinomial model (cf. Figure B.3).

Similarly, multinomial logistic regression models were constructed for the individual

scoring functions and their combinations. The quality of these models was assessed in a

way similar to the binomial models.
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Table 4.5 Binomial logistic regression models generated using the training set of
23 pyrrolidine carboxamides exhibiting stable binding; p represents the SFC290p value,
g the Glide XPscore value, and d the DrugScoreX value

Binomial Logistic regression

Model Equation AIC AICc

SFC290p + XPscore mod z = f(p, g) = 21.51 · p− 8.54 · g − 255.47 14.67 15.94
SFC290p mod z = f(p) = 5.99 · p− 47.79 25.12 25.72
XPscore mod z = f(g) = −1.98 · g − 18.98 29.36 29.96
SFC290p high z = f(p) = 4.00 · p− 32.81 27.52 28.12
XPscore high z = f(g) = −1.03 · g − 10.60 31.87 32.48

SFC290p + XPscore high z = f(p, g) = −1.41 · g + 4.15 · p− 47.91 27.28 28.54
SFC290p + DrugScoreX mod z = f(p, d) = −0.11 · d+ 4.03 · p− 46.02 22.05 23.32

DrugScoreX mod z = f(d) = −0.17 · d− 21.00 21.91 22.51
DrugScoreX high z = f(d) = −0.04 · d− 5.29 31.58 32.18

SFC290p + DrugScoreX high z = f(d, p) = −3.70 · 10−3
· d+ 4.14 · p− 33.51 29.51 30.77

XPscore + DrugScoreX mod z = f(d, g) = −0.27 · d− 3.30 · g − 64.25 18.30 19.57
XPscore + DrugScoreX high z = f(d, g) = −0.03 · d− 0.90 · g − 13.26 32.24 33.50
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Figure 4.7 Binomial logistic regression model of XPscore and SFC290p to detect
moderately active compounds; derived using ”final” dataset (N=23)

4.3.3.3 Multinomial logistic regression models

The multinomial logistic regression models that are based upon XPscore-SFC290p

combination are depicted in Figures 4.8 and B.3. The comparison of the models is

summarised in Table 4.6. Considering the AICc values of the respective models, it
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becomes evident that the XPscore-SFC290p combination works best in activity-based

classification.

Table 4.6 Multinomial logistic regression models for XPscore-SFC290p combinations
with their respective AIC, AICc values

Multinomial Logistic regression

Model AIC AICc

SFC290p + XPscore 37.67 42.92
XPscore 49.35 51.57
SFC290p 44.23 46.45
DrugScoreX 41.87 44.09
SFC290p + DrugScoreX 42.08 47.28
XPscore + DrugScoreX 40.14 45.39
XPscore + DrugScoreX + SFC290p 42.02 48.03
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Figure 4.8 Multinomial logistic regression models of XPscore and SFC290p to classify
compounds as least active, moderately active and highly active.
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4.3.3.4 Comparison of force field terms with scoring functions

The previous sections described the utility of XPscore and SFC290p in providing for an

activity-based classification. An extension of the previous approach was to compare the

performance of the scoring function terms with that of the non bonded interaction energy

terms derived from the MD simulations of molecules from the training set (N=23). The

AIC and AICc values for ”force field” based binomial and multinomial logreg models are

summarised in Tables 4.7 and 4.8 and figure 4.9. The models themselves are depicted

in Figures B.4 and B.5. The AIC and AICc values of the models clearly indicate the

superiority of the XPscore-SFC290p combination over the force field terms combination

in providing an activity-based classification.
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Figure 4.9 Multinomial logistic regression models of force field terms to classify
compounds as least active, moderately active and highly active.
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Table 4.7 Binomial logistic regression models based on force field terms, where e is
electrostatic interaction energy and v is the van der Waals interaction energy

Binomial Logistic Regression

Model Equation AIC AICc

Elec + vdW ”mod” z = f(e, v) = −0.10 · ele− 0.53 · vdW − 11.44 30.28 31.54
Elec ”mod” z = f(e) = 0.06 · ele− 0.08 35.01 35.61
vdW ”mod” z = f(v) = −0.45 · v − 9.90 28.86 29.50

Elec + vdW ”high” z = f(e, v) = −0.14 · ele− 0.48 · vdW − 10.92 29.69 30.95
Elec ”high” z = f(e) = 0.03 · ele− 0.64 34.63 35.23
vdW ”high” z = f(v) = −0.33 · v − 8.36 29.02 29.60

Table 4.8 Multinomial logistic regression models based on force field terms and their
combinations with their respective AIC, AICc values

Multinomial Logistic regression

Model AIC AICc

Elec + vdW 50.61 55.86
Electrostatics 55.05 57.27
van der Waals 47.87 50.09

4.3.3.5 Validation of XPscore-SFC290p based binomial ”mod” model

The test set that was used for validation of the LIE model was also utilised for validation

of the XPscore-SFC290p ”mod” binomial model. The test set was subjected to activity

classification (cf. Table 4.9) followed by a confusion matrix analysis of the predictions

(cf. Figure 4.10).

The true power of the XPscore-SFC290p ”mod” binomial model can be clearly seen from

the analysis of the validation results (cf. Table 4.10). These values clearly indicate the

predictive power of the model in providing an activity-based classification. There are

some caveats to this, mainly:

1. The limited sample size of the test set used in model validation.

2. The remarkable structural similarity in between the molecules used to derive the

model and those used to validate it.

Inspite of the aforesaid facts, the AICc values and the absence of false positives in the

final predictions do indicate the overall utility of the model. The performance of the

binomial ”mod” model can also be seen in the case where a logistic regression model

(cf. Figure 4.12) was trained with a linear combination of XPscore and SFC290p scoring

functions (PC1) as opposed to individual scoring functions like in the case of Figures 4.7

and 4.11. The PC1 was obtained from an RA analysis of Xpscore and SFC290p scoring

functions. The steep slope of the ”mod” model (left figure of Figure 4.12) is identical

to the slope of XPscore-SFC290p based ”mod” binomial model, merely indicating the
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Table 4.9 The activity-based classifications of the pyrrolidine carboxamide test set
(Activity classification column) according to the XPscore-SFC290p based binomial
”mod” logreg model. The values in round brackets denote the pIC50 values of the
compounds. The last column depicts the actual activity class of the compound based
on Figure 3.22. In the table, the terms ”least active” refers to the compounds that
are actually least active (pIC50 < 5.04, cf. Figure 3.22) as well as classified least active
(model prediction < pIC50 5.04). The term ”highly active” refers to the compounds
that are highly active (pIC50 < 5.94) and are classified as highly active. Finally, the
term ”moderately active” refers to the compounds with actual pIC50 values in between
5.04 and 5.94. Given, the binomial logreg model had a binary output, the ”moderately
active” compounds were clubbed together with the ”highly active” molecules by the
model, i.e., the model treats moderately active molecules as highly active. The values in
square brackets indicate whether the prediction was true (T) or false (F) as compared
to the actual activity.

Pyrrolidine XPscore SFC290p Probability Activity Actual
carboxamide (kcal/mol) (ρ) classification activity

s1 (4.97) -9.30 7.05 0.0000 Least active [T] Least active
s17 (4.13) -9.43 8.00 0.0620 Least active [T] Least active
d1 (4.25) -9.37 6.26 0.0000 Least active [T] Least active
d3 (6.01) -9.91 8.01 0.8323 Highly active [T] Highly active
d6 (4.99) -9.79 7.61 0.0003 Least active [T] Least active
d7 (5.50) -9.89 7.43 0.0000 Least active [F] Moderately active
d10 (5.82) -10.10 7.41 0.0001 Least active [F] Moderately active
3a (5.40) -9.31 7.44 0.0000 Least active [F] Moderately active
3j (4.53) -8.87 6.92 0.0000 Least active [T] Least active
p9 (5.46) -10.79 9.49 1.0000 Highly active [T] Moderately active
p20 (6.12) -12.37 9.42 1.0000 Highly active [T] Highly active
p21 (6.39) -5.72 8.63 0.0000 Least active [F] Highly active
p24 (6.41) -8.67 9.17 1.0000 Highly active [T] Highly active
p28 (5.13) -7.70 9.72 1.0000 Highly active [T] Moderately active
p33 (5.59) -5.25 9.56 0.0075 Least active [F] Moderately active
p36 (5.25) -8.81 9.59 1.0000 Highly active [T] Moderately active
c1a1 (6.33) -11.11 9.13 1.0000 Highly active [T] Highly active
c1a2 (6.07) -6.26 10.21 1.0000 Highly active [T] Highly active
c6a3 (6.85) -5.17 7.63 0.0000 Least active [F] Highly active
c7a2 (6.49) -12.06 8.99 1.0000 Highly active [T] Highly active
c8a3 (5.88) -7.83 10.69 1.0000 Highly active [T] Moderately active

Table 4.10 Results from the confusion matrix analysis for the validation of the
XPscore-SFC290p binomial logreg model

Parameter Value

True Positives 10
True Negatives 5
False Positives 0
False Negatives 6

Sensitivity 63%
Specificity 1
Accuracy 71%
Precision 1
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Figure 4.10 Confusion matrix analysis of the validation of the XPscore-SFC290p
binomiallogreg model carried out using the test of 21 pyrrolidine carboxamides excluded
from model generation
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Figure 4.11 PCA of XPscore and SFC290 in an activity-based separation endeavour.

applicability of these two scoring functions in activity-based separation. Furthermore, in

an applied scenario, the model requires the output of docking in form of a simple text

file containing tab separated values of XPscore and SFC290p scores. Since the latter is

easy to achieve, the use of the XPscore-SFC290p based ”mod” binomial model in a large

scale virtual screening becomes appealing. However, an important caveat pertaining

to all the logreg models is that all of them were trained with a small number of active

compounds from the pyrrolidine carboxamide dataset. The narrow activity range of

the pyrrolidine carboxamides together with limited number of compounds in training set
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limit the applicability of these models.
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Figure 4.12 ”Mod” and ”high” logreg models trained with PC1 obtained from the
PCA of XPscore and SFC290 (cf. Figure 4.11), respectively.

4.4 Discussion

The results section, particularly the binding affinity prediction underscores the challenge

in predicting the affinity using the pyrrolidine carboxamide dataset for training the model.

The LIE method [99, 101, 138] was used to generate the binding affinity prediction model.

As a prime requirement of this method, the ensemble averaged interaction energies

for the ligands of the pyrrolidine carboxamide dataset were needed. These energies

were obtained by performing extensive MD simulations of the ligand in bound and free

states, respectively. The stability criterion (C-α RMSD: ≤ 1.30 Å for protein and ≤

1.00 Å for ligand) clearly pointed out that almost half of the dataset exhibited unstable

binding. A majority of the ligands were from the bulky pyrrolidine carboxamides, that

merely underscored the problems of pose prediction for bulky molecules. Thereafter,

affinity prediction models were generated with molecules exhibiting stable binding that

constituted the training set (Table 4.2). Additionally, specific subsets of the training

dataset as well as the entire pyrrolidine carboxamide dataset was used to derive affinity

prediction models.

A close inspection of the statistical summaries of the models revealed modest Pearson’s R

values, with the best LIE model having an Pearson’s R equal to 0.61. This figure dropped

to 0.47 when the entire pyrrolidine carboxamide dataset was used in model derivation.

The situation remained unchanged even after careful choosing of select subsets from

the training set of 23 pyrrolidine carboxamides(Table 4.2). The first subset contained

14 molecules and another one was made up of 11 molecules (hereinafter referred to as

”mutated”). The latter exclusively contained light pyrrolidine carboxamides whose
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poses were generated by in-situ mutation of the reference ligand (pc-d11). The former

subset (N=14, hereinafter referred to as ”original”) was diverse and contained only

those molecules that passed the stability criterion and did not include the poses from

in-situ mutation of pc-d11. As mentioned earlier, no improvement in the R was seen,

with the original dataset yielding a Pearson’s R of 0.47. However, the mutated dataset

yielded R of 0.61 that was equal to that of the best LIE model. Nevertheless, these facts

suggest that binding affinity models trained with molecules having stable and uniform

binding are expected to perform better than those models trained with molecules with

stable but diverse binding.

The testing of the best LIE model, as expected revealed its modest performance in

predicting affinity for a small test of 21 pyrrolidine carboxamides. These 21 compounds

did not pass the stability criterion described earlier. The reasons for choosing the test set

have already been explained in Section 4.3.2.1. Nevertheless, a small proportion of the

test set was predicted wrongly and showed up as outliers, while a majority of the dataset

was predicted within the narrow 1 kcal/mol margin (Figure 4.5). The performance of

the model can be attributed to a variety of factors. Of these, the obvious reasons are

the low numbers of molecules in the training as well as test set and the narrow activity

range of pyrrolidine carboxamide dataset itself.

The abject performance of the LIE method in case of InhA was surprising given that it

has been used to successfully predict the relative as well as absolute binding affinities

for a variety of targets [100, 283, 312, 313]. In addition to the aforementioned causative

issues, there are several differences in the implementation of the original LIE method

and the current case that may be the reason behind the poor performance of the best

LIE model. The following is a short discussion of the performance issues:

1. Almost all of the LIE studies cited earlier used weakly polar to non-polar ligands,

which is quite identical to the current case. However none of them contained a

cofactor except for MurD (ADP as cofactor) [312] and Cytochrome 1A2 (CYP1A2,

heme as a cofactor) [313, 314]. In both cases, treatment of charged groups and

cofactors poses issues in affinity prediction. This merely means that affinity

prediction was bound to be affected in the current case as well. Furthermore, since

the latter two cases are quite identical to the current study, all comparisons will be

done with respect to these two systems.

2. A fundamental issue that might contribute significantly to the performance of the

LIE model for InhA as opposed to other cases is the conditions and the software

employed. As seen from the methods section (Section 4.1.2), there are fundamental

differences among the implementation of the original LIE method and the current

case. Of these, the nature of solvent, its buffer region and most importantly, the
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approximation of electrostatics are expected to play a crucial role in the performance

of the LIE model.

The work of Capoferri et al. [313] comes closest to the current LIE implementation

(in this work) with respect to the conditions and protocol employed, although the

simulation duration (2.5 ns vs. 5 ns for bound and free states ) as well as programs

differed (GROMACS vs. AMBER). A major difference to all other works [100, 312]

is that they utilised a different solvent shape as well as calculation of long range

electrostatics in comparison to the current work. The accurate estimation of long

range electrostatics is one the fundamental issues that give rise to the standard

deviation in the pairwise electrostatic interaction energy. In both current case

and Capoferri et al. (see supporting information in [313] and Table B.1), there

was a wide variation in the both absolute value and the standard deviation of the

electrostatics as compared to the other non-bonded interaction energy, i.e. van der

Waals interaction energy. This is in stark contrast to Perdih et al. [312], where

the electrostatics in both bound and free states did not exhibit any noticeable

difference.

These facts mainly underscore the fact that type of solvation model and shape, sim-

ulation conditions, and most importantly the calculation of long range electrostatics

plays a critical role in the final affinity prediction using the LIE method.

3. The term γ denotes the hydrophobicity of the target. In order to properly account

for this term, a modification of LIE termed LIESASA was born [315]. This method

evaluated the change in the solvent accessible surface area (SASA) of the ligand

in the bound and unbound states during MD simulations and used the difference

to arrive at the value of γ. However, in the current case, a similar approach with

the training set demonstrated no improvement over (Pearson’s R = 0.31). This

again highlighted the challenge of affinity prediction while using the pyrrolidine

carboxamide dataset.

Nevertheless, the Root Mean Square Error (RMSE) of the prediction of the current

method (0.81 kcal/mol for best LIE model) is comparable to that of Capoferri et al. (4.1

kJ/mol ≈ 1 kcal/mol) [313] and Perdih et al. (0.90 kcal/mol) [312]. Considering these

facts, the modest performance of the best LIE model can be justified.

Given the modest performance of the binding affinity prediction models using the pyrrolid-

ine carboxamide training set, the possibility of achieving an activity-based separation

was probed. Logistic regression proved quite valuable in this purpose. The redundancy

(RA) and correlation analyses of the scoring functions used to rescore the docking poses

revealed that Glide XPscore and SFC290p scoring functions resulted in the best possible

results. The XPscore-SFC290p binomial model trained on the training set demonstrated
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the best performance amongst the various logreg models generated. The same was

ascertained by ROC and confusion matrix analyses. However, the applicability of the

model remains limited primarily due to the limited information that was used in the

model generation. Nevertheless, the model can be applied as a filter in a large scale

virtual screening endeavour, given the simple nature of its requisite input and output.

4.5 Conclusions

The binding affinity prediction and activity-based classification models built with poses

obtained from molecular docking showed certain trends within the pyrrolidine carbox-

amide dataset. The binding affinity models generated using molecules exhibiting stable

binding demonstrated a modest performance, given the limited sample size and narrow

prediction range of pyrrolidine carboxamides. Hence, an activity-based separation en-

deavour was embarked upon. The principal component and correlation analyses prior to

model generation showed that the XPscore-SFC290p combination was found to yield the

best separation of actives and least active compounds. The binomial XPscore-SFC290p

based ”mod” model that separated the least active pyrrolidine carboxamides from the

moderately and highly active compounds was deemed as the best performing by its AICc

value as well as by a confusion matrix analysis. Furthermore, the ease of application

and speed of prediction makes this model appealing for application in large scale virtual

screening protocols. The applicability of the model remains limited primarily because

of the low number and lack of chemical diversity amongst the molecules in the training

set. Nevertheless, in a pilot virtual screening, this model can be used initially to identify

potential hits.

Furthermore, the extensive conformational sampling of pyrrolidine carboxamides in

bound and free states aided in the identification of pyrrolidine carboxamides exhibiting

stable binding. Starting with the poses obtained from GlideXP and induced fit, it was

assumed that the ligands exhibiting an orientation similar to the crystal structure ligand

would be stable. However, MD simulations clearly proved that a sizeable proportion of

the pyrrolidine carboxamide dataset exhibited binding instability even after conforming

to the crystal structure conformation. The qualitative nature of the movements cannot

be ascertained by inspecting the drifts of RMSD values alone. The next part of the

thesis focuses on qualitative and quantitative aspects of ascertaining the dynamics that

lie behind the apparent binding instabilities.



Chapter 5

Summary - Part I

Of lately, the importance of binding kinetics and their relation to binding affinity has

warranted increased focus, given their intricately tied relation with overall efficacy of

the drug [49]. However, the constraining factor behind the elucidation of the affinity-

kinetics relation is the lack of structural information for the transition state. This is

moresoever important in case of mycobacterial enoyl ACP reductase inhibitors which

need to demonstrate a two step (slow-tight) binding in order to exhibit longer duration of

inhibition and thereby their efficacy. The recent advances in computational resources as

well as methods are expected to aid in ascertaining the mode and mechanism of binding of

long acting inhibitors of enoyl ACP reductase an important target for anti-mycobacterial

drug design [50].

The enoyl ACP reductase of Mycobacterium tuberculosis (InhA) is known to be inhibited

by a wide variety of chemical scaffolds, all of which share a well-defined mode of

interaction with InhA [50], but varying activity values as well as residence times. The

ability of the molecule to bring about the ordering and subsequent closure of the substrate

binding loop of InhA has already been shown to have a profound effect on the overall

residence time and thereby the binding affinity [72]. This ability to bring about loop

ordering and closure is quite intricately tied with the manner in which the molecule

binds to the protein. This in turn is governed by conformational changes that happen

over a period of time. MD simulations provide an attractive way of sampling the

conformational changes that take place on a microsecond scale. For initiating MD

simulations, reasonable starting structures were obtained by means of docking the InhA

inhibitors across proteins demonstrating several conformations of the substrate binding

loop. Furthermore, the receptor flexibility was also addressed by using a protocol [116]

(Induced fit) that performs a truncated conformational sampling of the protein-ligand

complex on the fly. Since the main aim of the study was structure based optimisation

of pyrrolidine carboxamides [52], the computational methodologies used had a clear

focus on the pyrrolidine carboxamides with a substantial attention being paid to the

binding orientations being predicted by the docking and their quality of the selected

poses thereof.

The pose selection process using in-house protocols yielded reasonable starting structures

whose validation was performed by extensive MD simulations. The non-bonded interaction

123
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energy terms covering the ligand and its surrounding media were used to train binding

affinity prediction models according to the Linear interaction energy approach [99, 101,

138]. The pose validation step followed prior to the model derivation, wherein pyrrolidine

carboxamides exhibiting stable binding were ascertained by using stability cutoffs and

subsequently used for model derivation while the excluded molecules formed the validation

set. It was during this step the real ”dynamic” picture came to the front clearly

highlighting the advances as well as shortcomings of the GlideXP and Induced fit

protocols. The MD simulations clearly demonstrated that while the poses obtained from

docking were of reasonable quality, there was still much more to the ”static” picture being

painted by molecular docking. Nevertheless, the molecules exhibiting stable binding did

buttress the notion that molecules exhibiting a crystal structure ligand like orientation

should exhibit stable binding.

Additionally, the binding affinity prediction models were found to exhibit a not so

satisfactory correlation in between the predicted affinity and the actual affinity (best

model Pearson R2= 0.37). However, a thorough investigation of the model revealed

causative reasons behind the poor performance of the model. The model though was

found to exhibit high sensitivity and a moderate specificity. This was expected since the

overall prediction range was quite narrow. The low number of molecules used to train

the model as well as lack of chemical diversity in the training set limited its applicability

to affinity prediction of only pyrrolidine carboxamides, which prompted use of other

methods to achieve the activity prediction/classification. The information emanating from

docking as well as MD simulations was subsequently used to train models that aided in

activity-based classification. For this purpose, logistic regression was extensively utilised

that partially did away the need of activity cutoffs for classification of a test molecule as

active or inactive. The scoring function based logreg models were found to outperform the

force field based binomial/multinomial models, with the XPscore-SFC290p based model

clearly being deemed best amongst the numerous molecules derived. The validation of

the same model via confusion matrix analysis as well as a principal component analysis

of the ”predictions” (activity classifications) of the model aided in verifying the utility of

the model. The model applicability was furthered by its incorporation in a script that

accepts the docking score (XPscore) and SFC290p values (rescoring) as an input and

yields easy-to-visualise colour coded probabilities of the molecule being active or inactive

(least active).

In summation, the molecular docking as well as MD techniques aided in ascertaining the

dominant binding conformations for pyrrolidine carboxamides with unknown binding

modes. Moreover, the molecules exhibiting stable binding aided in deriving models that

provide for rapid activity-based classification. The relative ease of application, accuracy
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as well as speed of prediction of the logreg models can certainly contribute to the virtual

screening endeavours targeting search of mycobacterial enoyl ACP reductase inhibitors.
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Chapter 6

Introduction to Conformational analysis,

Essential Dynamics, and determinants of rapid

reversible binding

6.1 Pyrrolidine carboxamides and their diverse binding

modes

Part I of this thesis depicted the utility of molecular docking in providing plausible

binding orientations for pyrrolidine carboxamides. It also provided rapid activity-based

classification models which have applicability in large scale virtual screening. The use of

MD simulations in validating the results of molecular docking also aided in identifying

the compounds exhibiting stable binding and those who do not. The RMSD values do not

offer detailed structural insights into the molecular recognition process of those pyrrolid-

ine carboxamides exhibiting unstable binding. Furthermore, it is unclear which key

interactions are poorly established or even lacking in the case of the bulky pyrrolidine

carboxamides.

Molecular docking performed in part I of this thesis clearly yielded 3 different binding

modes for the potent pyrrolidine carboxamides (cf. Figure 3.21), most of which have a

bulky A ring substituent. The first chapter of part II focuses on revealing the dynamics

of these three binding modes with an aim to reveal the dominant binding orientation.

For this purpose, an extensive dihedral analysis was performed for the bound ligands

in the 5 ns MD simulations of protein-ligand complexes. The information emanating

from this process was utilised to ascertain the nature of the movements exhibited by

each of the binding modes. This information was also used in conjunction with the

structural deviations (RMSD) to determine the dominant binding orientation of the

bulky pyrrolidine carboxamides.

Additionally, the correlation between structural drifts of the protein-ligand complex

and the distribution of the dihedrals for each class of the pyrrolidine carboxamides in

the bound state was analysed. This mainly aided in ascertaining whether the pose

fluctuated ”in-place” or was mobile within the binding pocket. The entire methodology

and application of the same is explained in Chapter 7.
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6.2 Essential Dynamics and Dynamic Cross Correlation

analysis

The dihedral analysis in conjunction with the RMSD values and information avail-

able from the literature [52] aided in determining the dominant conformation for the

bulky pyrrolidine carboxamides. However, both dihedral as well as the RMSD analysis

cannot pinpoint the direction along which the fluctuations take place. Additionally,

both analyses are unable to shed light on the protein-ligand fluctuations that are of-

ten correlated. Furthermore, these ”instantaneous” observable fluctuations cannot be

extrapolated on a extended timescale to better understand the binding of pyrrolidine

carboxamides to InhA.

Given the complex nature of MD simulations, it becomes quite difficult to locate and ana-

lyse the functionally important movements of the protein-ligand pair. This task is made

simpler by dimensionality reduction techniques like Principal Component Analysis (PCA).

Performing PCA on a trajectory yields ”modes” or principal components that depict

the variance in the movements. An interesting fact regarding PCA of MD simulations is

that a major portion of protein dynamics is efficiently represented by a few number of

collective ”modes” [316]. These modes appear to be essential for protein function and

hence the dynamics of the subspace being represented by the main modes is referred to

as ”Essential Dynamics” (ED) [316]. In the current scenario, essential dynamics was

performed on the heavy atoms of the bound ligand as well as the key residues of the

active site and the SBL (trajectory analyses) to reveal important movements of the

residues that play a critical role in ligand binding and thereby its potency.

The most common application of ED has been in quasi-harmonic analysis of mass

weighted coordinates of protein atoms to construct the covariance matrix of atomic

movements [317, 318]. This approach is subject to various limitations just like the

related Normal Mode Analysis (NMA), especially in case of proteins exhibiting large

conformational changes taking place over a long time span [319]. Hence, essential

dynamics was used in conjunction with dynamic cross correlation (DCC) [320, 321] to

reveal the functionally important movements in the protein as well as the ligand. The

theory and application of essential dynamics together with dynamic cross correlation has

been enshrined in Chapter 8.
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6.3 Design and analysis of optimised pyrrolidine carbox-

amides

The combination of essential dynamics and dynamic cross correlation aided in revealing

the functionally important movements taking place in InhA upon binding of pyrrolidine

carboxamides. This information was then coupled with the vast array of structural and

dynamical information of slow-tight binders (diphenyl ethers and 4-hydroxy-2-pyridones)

available in literature [37, 50, 67, 322] to design a series of optimised pyrrolidine carbox-

amides. These were subjected to extensive in-silico evaluations pertaining to their overall

activity and binding dynamics. For this purpose, the previously established docking

protocol was used to identify the probable binding modes. The poses emanating from mo-

lecular docking were subjected to short 5 ns simulations just like the published pyrrolidine

carboxamides, followed by assessment of their binding stability. The trajectories were

subjected to the entire post-MD analyses which were performed on their precursors.

Additionally, the designed molecules were assessed for their predicted in-silico activity

using the XPscore-SFC290p ”mod” logreg model followed by their mycobacterial per-

meability assessment using MycPermCheck 1.2 [53]. All of the aforementioned analyses

aided in ascertaining the top hits from the optimised pyrrolidine carboxamides. These

”hits” together with a small number of potent bulky pyrrolidine carboxamides and

the reference crystal structure ligands were subjected to extended molecular dynamics

simulations (150 ns per ligand) to ascertain their binding stabilities on extended time

scale. Finally, the novelty of the designed molecules was ascertained by performing a

”molecular” cross-check with the scaffold search tool implemented in SciFinder R© [323].

The entire approach is depicted in Chapter 9.

6.4 Molecular determinants of rapid reversible binding

The conformations that the ligand and thereby the binding site residues attain plays

a critical role in the overall nature of ligand binding, i.e. slow tight binding or rapid

reversible binding. The detailed structural and conformational information governing the

binding of slow-tight binders like diphenyl ethers is well known [261]. This information is

clearly lacking in case of moderately potent InhA inhibitors like pyrrolidine carboxamides,

mainly due to the lack of crystal structures for the more potent bulky pyrrolidine carbox-

amides. Elucidation of the structure and dynamics behind the binding of bulky pyrrolidine

carboxamides can thereby reveal molecular determinants of rapid reversible binding which

can drive the structure-based optimisation of this series of InhA inhibitors.
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In order to reveal the molecular determinants driving rapid reversible binding of pyrrolid-

ine carboxamides, the extensive MD simulations (150 ns) of selected pyrrolidine carbox-

amides that totalled 1.35 µs were subjected to clustering based on the 2D RMSD matrices

of residues of the active site and the SBL. This was followed by analysis and comparison

of the conformations of the cluster representatives with the information published in

literature [261]. The clustering algorithm and atomic selections were kept similar to

the ones used by Merget et al. [261] in order to compare the critical conformational

differences in between the dominant cluster representatives. The entire approach for the

above is enshrined in Chapter 10.



Chapter 7

Conformational analysis of pyrrolidine

carboxamides

7.1 Pyrrolidine carboxamides and their binding modes

The molecular docking of pyrrolidine carboxamides, especially the bulky members pre-

dicted diverse binding modes for the respective compounds. A sizeable number of bulky

(15/18) and light pyrrolidine carboxamides (6/26) exhibited binding instabilities, given

that they did not satisfy the stability criterion (C-α RMSD ≤ 1.3 Å; bound ligand

RMSD ≤ 1 Å, cf. Table 4.3). The binding instabilities for the bulky compounds can

be attributed to their overall size. However, this argument cannot be applied for the

light pyrrolidine carboxamides, which are considerably smaller and get docked in a way

identical to the reference ligand (pc-d11). Hence, the RMSD analysis of the 5 ns MD sim-

ulations warranted a more thorough assessment of the binding orientations with respect

to the reference ligand. In the case of bulky pyrrolidine carboxamides, in particular, the

dominant binding conformation needed to be ascertained along which the subsequent

analyses could be based and interpreted. This was not the case for light pyrrolidine

carboxamides, where the preferential orientation can be safely assumed to be identical to

the reference ligand (pc-d11). The X-ray crystallographic analysis provides a direct way

to ascertain the dominant binding conformations for bulky pyrrolidine carboxamides.

The lack of crystal structures for bulky pyrrolidine carboxamides [52] stressed the need

for methods that would provide reasonable binding modes for these compounds. A major

obstacle to solving this issue was lack of crystal structures for the respective compounds.

An intensive computational method to predict plausible binding modes within the active

site is the Replica Exchange Molecular dynamics (REMD) or parallel tempering (in case

of MC simulations) [128, 324]. However, due to the complex and time consuming nature

of REMD and its derivatives, simpler methods that aided in qualitative comparisons of the

different binding conformations of pyrrolidine carboxamides were preferred. The methods

and the approach to determine the dominant binding conformation for bulky pyrrolidine

carboxamides can be seen in the methods section of this chapter.

An important aspect is the qualitative nature of the movements observed for pyrrolidine

carboxamides exhibiting stable and unstable binding, respectively. The nature and extent
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of the movements exhibited by the ligand are determined by its structure and binding

orientation, i.e. the nature of the molecule itself and the way it binds to its target. Thus,

a pyrrolidine carboxamide demonstrating stable binding should exhibit particular traits

that should be conserved amongst other molecules showing the same orientation/binding

stability whilst differing from those exhibiting binding instabilities. Thus, by comparing

the movements of the light and bulky pyrrolidine carboxamides with that of the reference

ligand (pc-d11), a generalised compound/class specific conformation can be ascertained.

Ultimately, this information can aid in better understanding the dynamic behaviour of

the pyrrolidine carboxamides that will aid in structure-based optimisation of this series.

7.2 Methods and data analysis

7.2.1 Dihedral analysis

The motions of the ligand within the binding pocket can be ascertained in a qualitative

fashion by examining the time dependent distribution of specific ligand torsions coupled

with conventional RMSD analysis. Hence, a simultaneous analysis of the dihedral angles

and RMSD provides a means of studying the conformational (i.e., internal) as well as

translational and rotational motions of the bound ligand with respect to the protein.

The dihedral angles encompassing the bonds that connect the central B ring to the

other rings were chosen for analysis (cf. Figure 7.1). The time dependent variations and

distributions of the dihedral angle α (blue) and β (red) were then plotted simultaneously

with the RMSD values to assess the overall movements of the pyrrolidine carboxamides.

For a small subset of bulky pyrrolidine carboxamides (cf. Figure 7.2), the location of the

dihedral angle α was altered primarily because of a change in the atoms that constituted

the respective angle.

Figure 7.1 Dihedral angles α (blue) and β (red) for ”light” and ”bulky” pyrrolidine
carboxamides, respectively.

For ease of analysis, the light and bulky pyrrolidine carboxamides were analysed separately

throughout this entire chapter, with the distribution and time dependent variations in

ligand 4TZK (pc-d11) serving as a global reference for comparison. Furthermore, the

light pyrrolidine carboxamide subset was segregated into those having single substituents

on ring A and those which have a di-substituted phenyl ring.
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Figure 7.2 Dihedral angles α (blue) and β (red) for selected ”bulky” pyrrolidine
carboxamides with altered amide bond linking the rings A and B.

7.2.2 Distance and H-bond analysis

A key factor driving the binding stability of the pyrrolidine carboxamides are the

intermolecular non-bonded interactions between the protein and the ligand. These

interactions are mainly distance dependent. In the current context, one of the primary

factors determining the binding stability is the presence of dual H-bonds between the

ligand and the catalytic residue (Y158) as well as the cofactor (NAD+). For the purpose

of this analysis, the criteria [325, 326] for hydrogen bonds were set as follows:

1. The distance between the donor (D) and the acceptor atom (A) must be less than

3 Å.

2. The angle spanning D-H-A must be more than 90◦.

In case of pyrrolidine carboxamides, there are two carbonyl groups whose oxygen atoms

have almost identical chemical micro-environment and can, at least in principle, both

form the dual H-bonds mentioned earlier (Figure 7.3). However, as seen from the crystal

structures, only the primary carbonyl oxygen designated as 1◦ (from the B-ring) forms the

dual H-bonds, while the other carbonyl group (designated 2◦) forms weak and transient

H-bonds with residues located near the ligand. In PDB 4TZK, the 2◦ carbonyl oxygen

is quite far from either Y158 or NAD+ donor hydroxyl groups (distances 4.88 Å and

6.73 Å; Figure 7.3) and is thus unable to form H-bonds with either donors. However,

if the binding mode exhibits instabilities and thereby movements, the probability of

an alternate H-bonding conformation increases. Hence, monitoring the time-dependent

variations in distances of both 1◦ and 2◦ carbonyl oxygen atoms to the donor atoms
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represents an ideal supplementary method to analyse the conformational dynamics of

the pyrrolidine carboxamides, especially the bulky ones.

In practice, the hydrogen bond occupancy or the fraction of the total simulation for

which H-bonding was observed was obtained from VMD-1.9.1 with a binary output for

each frame. In other words, if an H-bond is observed between any of the donor and

acceptor atoms, then a value of 1 is assigned to that frame. In all other cases, a value of

zero is assigned followed by computation of the H-bond occupancy. In addition to the

H-bond occupancy, the overall nature of the H-bond can be better studied by monitoring

the time-dependent changes in the distances of the donor-acceptor atoms. For ease of

visualisation, the moving average (designated as MAV; over a sliding window of width

20 frames) of the donor-acceptor atom distances was plotted to effectively visualise the

time-dependent shifts in the distances. On parallel lines, the output of the H-bond

analysis was also averaged over a sliding window of 20 frames to better visualise the

trends in H-bond formation with respect to time.

Figure 7.3 Primary (1◦) (green circled) and secondary (2◦) carbonyl (blue circled)
groups for representative pyrrolidine carboxamide-d11, alongwith their distance in Å to
the donor atoms of Y158 and NAD+, respectively.

Moreover, the light and bulky pyrrolidine carboxamides were analysed separately, mainly

to come up with a compound class specific picture pertaining the overall nature of binding.

The primary focus lied upon the determination of the dominant binding conformation

for the bulky pyrrolidine carboxamides from amongst the ones obtained from molecular

docking as well elucidating the determinants driving the molecular motions. Furthermore,

correlation of the structure-activity relationship (SAR) of representative pyrrolidine

carboxamides with the fluctuations in dihedral angles as well the RMSD values was also

performed. For all of the aforesaid analyses, the 5 ns MD simulations of each protein-

ligand complex were extensively utilised. For the crystal structure complexes (N = 5),

the GPU accelerated simulations were also analysed simultaneously along their normal
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counterparts. The raw data for dihedral angles, H-bond occupancies, and donor-acceptor

distances were obtained from VMD-1.9.1 [304], while plotting was performed with R [273]

and associated ggplot2 and Cairo packages [277]. The molecular visualization and figures

were ray-traced with PyMol 1.8 [276].

7.3 Results

The SAR of light pyrrolidine carboxamides has already been amply discussed in literat-

ure [50, 52], whilst the dynamics of binding for the entire series has not been published

so far. The following are the salient observations of the SAR for light pyrrolidine

carboxamides (Figure 7.4), as pointed out by He et al. [52]:

Figure 7.4 Light pyrrolidine carboxamide with annotated B ring heavy atoms.

1. In case of pyrrolidine carboxamides with mono-substituted phenyl ring (A) (s-series,

pc-s1 to pc-s17), the order for favourable positional substitutions decreases in the

order meta > ortho > para. At both ortho and meta positions, halogens and

electron-withdrawing groups, e.g. -CF3, are well tolerated, while substitution at

para position leads to a loss of activity.

2. In case of the di-substituted ring A pyrrolidine carboxamides (d-series, pc-d1 to

d16), the favourable positional substitutions decrease in the order meta, meta

(3,5 di-substituted) > ortho, meta (2,5 di-substituted only) > ortho, para (2,3

di-substituted) and meta, para (3,4 di-substituted). In all cases, only small electron

withdrawing substituents and halogens (F to Br) resulted in activity augmentation,

while in all other cases, especially with para substitutions, a significant drop in

potency was observed.

3. In regards of the central B ring, the substitution or unsaturation of the bond in

between C2-C3 or C3-C4 led to a complete loss of InhA inhibitory activity.

In line with the SAR of pyrrolidine carboxamides, the dihedral angle and the accompa-

nying RMSD analysis as well as the hydrogen bonding analysis mainly attempted to

correlate the observable fluctuations of the compounds with their structure and activity,

in addition to the original aim of qualitative analysis of their movements.
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7.3.1 Dihedral angle and RMSD analysis of light pyrrolidine carbox-

amides

Before initialising the process of correlating the positional and dihedral drifts of the

ligands with their structure and in-vitro activity, it is important to understand the

fluctuations exhibited by the reference ligand, i.e. PDB 4TZK ligand (pc-d11). Figure 7.6

depicts the positional and rotational fluctuations of pc-d11 as derived from CPU (pmemd)

simulations using AMBER 12. In Figure 7.6, the left graph depicts the narrow distribution

of the dihedral angles α and β. The relatively low number of values (small red dots) that

lie outside the grey density contours suggest sporadic movements of both A and C rings of

pc-d11. The dihedral density distribution plot does not reflect its time dependence. Hence,

a simple line plot (middle plot) was utilised to depict the time dependent fluctuations of

the individual dihedral angles, while the corresponding structural drifts of the ligand

and the protein are highlighted in the RMSD plot (right graph).

The line plots for the dihedral angles clearly highlight the lack of significant movements,

most likely owing to the dual H-bonds with Y158 and the cofactor that stabilise the

binding mode in addition to the van der Waals interactions with residues of the active

site. The stable binding of pc-d11 is additionally highlighted by lack of any noticeable

fluctuations in C-α and bound ligand RMSD values. Taking a cue from the reference

ligand, compounds exhibiting stable binding must show a narrow distribution of dihedral

angles as well as low drifts in RMSD values. The next sections discuss the specific

examples and outliers for light as well as bulky pyrrolidine carboxamides alongwith a

generalised correlation amongst their observed fluctuations and their measured activity

in-vitro.

Figure 7.5 Structure of pc-d11.

7.3.1.1 Mono-substituted light pyrrolidine carboxamides

In case of the mono substituted pyrrolidine carboxamides, the ligand from PDB 4UOJ

(pc-s1) (Table A.2) with its unsubstituted phenyl ring (ring A) was chosen as a reference to

highlight the effects of substitution on the overall activity and binding dynamics. Figure 7.7

depicts the dihedral angle distribution and RMSD drifts for the 5ns MD simulation of
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Figure 7.6 Dihedral angle distribution and RMSD fluctuations for pc-d11 over 5ns
NPT CPU (pmemd) simulation.

pc-s1 (pmemd simulation). By comparing Figure 7.6 with Figure 7.7, the stabilising

effect of two halogens at the meta position becomes evident, although this has clearly

been ruled out by He et al. [52]. A closer inspection of the crystal structure poses

revealed that the H-bonding strength could play an important role in stabilising the

binding mode.

Indeed, this was the case as can be seen later (cf. Section 7.3.3), wherein pc-d11 retained

its dual H-bonds for a longer period of time as compared to pc-s1 (Table 7.1). The net

effect is evident in the dihedral RMSD plots, wherein pc-s1 exhibits a noticeable change

in conformation at around 1ns (phenyl ring rotation) that leads to a cascading effect and

finally a large change in the overall C-α RMSD. Surprisingly though, the bound ligand

RMSD remains stable throughout the simulation indicating that there are several factors

in addition to hydrogen bonds that play a role in overall stabilisation of the binding mode.

For a group-wise assessment of light pyrrolidine carboxamides based on the position of

Figure 7.7 Dihedral angle distribution and RMSD fluctuations for pc-s1 over 5ns
NPT simulation.

their substituents and observable fluctuations in RMSD as well as dihedral angles, the

compounds were segregated into the following groups:
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1. 2’ (ortho) substituted pyrrolidine carboxamide:

This group of monosubstituted light pyrrolidine carboxamides is represented by

pc-s2 (2-COOCH3, IC50: 34.88 µM) and pc-s3 (2-Br, IC50: > 100 µM). It clearly

highlights the unfavourable effects of a large substituent on the ortho position of

ring A. The bulky ortho substituent clashes with the side chains of the pocket

residues leading to increase in the C-α RMSD (Table A.2). Nevertheless, the

boxplots for the dihedral angles and RMSD for the bound ligand suggest a stable

”in-place” movement of pc-s2 (Figures 7.8 and 7.14).

2. 3’ (meta) substituted pyrrolidine carboxamides:

The meta substituted light pyrrolidine carboxamides represent favourable effects in

regards of InhA inhibitory activity and binding stability. Of all electron withdrawing

substitutions, halogens (except iodine) and trifluoromethyl (-CF3) group are well

tolerated [52], while increasing the bulkiness of the meta substituent leads to a

decrease in activity up to two orders of magnitude (Table A.2). In regards of

the dynamic aspects, the crystal structure ligand pc-s4 (PDB 4TRJ) serves as a

reference for this subgroup and highlights the overall low movements of the ligand

within the binding pocket (Figure 7.9). Nevertheless, the C-α RMSD still rises to

2 Å.

Moreover, as the bulkiness and nature of substituent varies, changes are observed in

the distribution of the dihedral angles as well as the C-α and bound ligand RMSD

drifts (Figures 7.8, 7.13 and 7.14). Thus, pc-s4 with 3-bromo substituent on ring

A barely shows any movement of the ligand (Figure 7.9). This is also reflected

in the respective box plots for the dihedral angles (Figure 7.8) and RMSD values

(Figures 7.13 and 7.14) for pc-s4. However with an increase in the rotatable bonds

in the substituent, as was the case with pc-s11 (3-CF3) and pc-s15 (3-CH(CH3)2),

marked changes in both dihedral angles and bound ligand RMSD can be observed.

However, with an increase in the size of the substituent, as was the case with

pc-s11 (3-CF3) and pc-s15 (3-CH(CH3)2), marked changes in both dihedral angles

and bound ligand RMSD can be observed. Furthermore, the overall low values of

the bound ligand RMSD (≤ 1 Å) imply low movements of the ligands within the

binding pocket. Most of the observed motions for the bound ligands stem from the

rotation of the phenyl ring around the covalent bonds (C-N) linking the rings A

and B as well as B and C, respectively.

The compound pc-s6 that despite a favourable 3-chloro substituent shows marked

departure from the dihedral distribution of meta monosubstituted pyrrolidine

carboxamides. Here, the entire molecule exhibits destabilised binding though it

satisfies the stability criterion as described in Chapter 4. The destabilised in-place

motions of the bound ligand stem from the ring movements described earlier (i.e.,
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Figure 7.8 Boxplots depicting the (a) dihedral angle-α (top), and the (b) dihedral
angle-β (bottom) for light pyrrolidine carboxamides, with the reference ligand d11 at
the pole position. The median for the distribution of the dihedral angles is depicted as
a white circle. The compounds are sorted according to the position of the substituent
on A ring, with the monosubstituted pyrrolidine carboxamides (S suffix) preceding
the disubstituted ones (D suffix). Furthermore, the order for the monosubstituted
compounds is ortho (s2), meta (s4-s15), and finally para (s5,s17) substituted compounds.
On the other hand, the disubstituted compounds begin with meta disubstituted (d7-d14)
followed by ortho-meta (d2-d15), meta-para (d4, d16), and finally ortho-para (d1, d9)
compounds.
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Figure 7.9 Dihedral angle distribution and RMSD fluctuations for pc-s4 over 5ns
NPT simulation.

rotation of ring A). This also can be seen in Figure 7.10, where a steep rise in

the bound ligand RMSD can be observed at the end of the simulation. On the

other hand, for compounds pc-s11 (3-CF3) and pc-s12 (3-NO2), the destabilised

”in-place” motions stem from the movements of the ring C. This leads to marked

”in-place” motions that are supported by the deviations of the dihedral angle β

(Figure 7.8) as well as bound ligand RMSD distribution (Figure 7.14). Moreover,

another feature of this group is that with the exception of pc-s4 (3-Br), the binding

orientations of pc-s6 (3-Cl), pc-s10 (3-CH3), pc-s11, pc-s12 (3-NO2) and pc-s15

that were subjected to MD simulations were obtained by in-situ mutation of pc-d11

(Section 3.3.4).

Figure 7.10 Dihedral angle distribution and RMSD fluctuations for pc-s6 over 5ns
NPT simulation.

3. 4’ (para) substituted pyrrolidine carboxamides:

The para substitution of the A ring (phenyl) clearly highlights the detrimental

effects of the substitution, irrespective of the nature of the substituent, that is

manifested in a notable decrease in InhA inhibition (e.g.: pc-s17, 4-Ac, IC50: 73.58

µM). In regards of the docking pose, the para substituent comes in close contact

with the backbone of P156 (Figure 7.12) which is involved in stabilisation of the

ligand binding primarily via van der Waals interactions. Increased close contacts



Chapter 7. Dynamic binding analysis of pyrrolidine carboxamides 143

like the aforementioned case primarily result in unstable binding that is clearly

visible in the huge drifts of dihedral angles as well as RMSD values (Figures 7.8,

7.11, 7.13 and 7.14). A similar trend is seen in case of pc-5 (4-Br) and pc-s9 (4-I),

although pc-s9 was not considered for MD simulations.

Figure 7.11 Dihedral angle distribution and RMSD fluctuations for pc-s17 over 5ns
NPT simulation.

Figure 7.12 Close contact of the carbon atom from the acetyl substituent (-C=O
group) of pc-s17 (green sphere) with the backbone oxygen of P156 (red sphere).

7.3.1.2 Di-substituted light pyrrolidine carboxamides

The di-substituted light pyrrolidine carboxamides encompass some of the most potent

compounds from the entire series, including the reference compound pc-d11 (3, 5-Cl).

Just like in case of their mono-substituted counterparts, the disubstituted compounds

can be sorted in decreasing order of activity and a concurrent order of binding stability

as follows:

1. meta-meta disubstituted pyrrolidine carboxamides:

The substitution of the A ring at positions 3 and 5 has a strong favourable effect

on the measured InhA inhibitory activity that is evident in the low IC50 of all
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Figure 7.13 Violin plot depicting the kernel density distribution of C-α RMSD for
light pyrrolidine carboxamides, with the order of compounds being described in Figure 7.8.
The thick central bar depicts the interquartile range, white circle denotes the median
for the distribution. Furthermore, a dip in the smooth shape of the violin indicates a
steep change in the C-α RMSD values.

members of this subgroup (Table A.2). Upon close inspection of the dihedral angle

distribution for this group (d7 - d14, Figure 7.8), it can be seen that d10 and d14

are the outliers, whilst the dihedral angles for other compounds remain more or

less around the median value of pc-d11 (dihedral angle α = -40◦ and β = 80◦).

The compound pc-d10 (3, 5 fluoro) behaves quite similar to pc-s6 and likewise, the

free rotation of ring A rather than ring C contributes to the comparatively higher

RMSD values (Figures 7.13 and 7.14). On the contrary, for compounds with bulky

meta substituents, i.e., pc-d13 (3-OCH3, 5-CF3) and pc-d14 (3,5-CF3) the C ring

movement contributes to the overall ligand RMSD. If one observes the structure

of these two molecules, it becomes evident that there is a size limit on the group

that can be substituted at the 3’ position, while having a halogen like chlorine or

bromine and groups like trifluoromethyl at 5’ position is always beneficial.

2. ortho-meta disubstituted pyrrolidine carboxamides:

The ortho-meta substituted light pyrrolidine carboxamides (d2 - d15) point out

the favourable substitutions on the A ring, with almost all molecules exhibiting

low IC50 values (Table A.2). The exception to this are the compounds pc-d2

(IC50: 56.50 µM) and pc-d6 (IC50: 10.05 µM). In both cases, both dihedral angle

distribution and RMSD values do not provide any explanation for their low InhA

inhibitory activity. However, He et al. suggest that the ortho and para positions
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Figure 7.14 Violin plot depicting the kernel density distribution of bound ligand
RMSD (heavy atoms only) for light pyrrolidine carboxamides, with the order of com-
pounds being described in Figure 7.8. The thick central bar depicts the interquartile
range, white circle denotes the median for the distribution. Furthermore, a dip in the
smooth shape of the violin indicates a steep change in the ligand RMSD.

are generally unfavourable for substitution [52]. This can explain the low activity

for these compounds.

Moreover, the destabilising effect of a bulky ortho substituent can be clearly seen

in case of pc-d15 (2-OCH3, 5-Cl, IC50: 1.69 µM). It exhibits an almost two-fold

reduction in the InhA inhibitory activity as compared to pc-d3 (PDB 4UOK ligand;

2-CH3, 5-Cl; IC50: 0.97 µM). Both molecules differ by only a single oxygen atom

(of the -OCH3) at 2’ position. The destabilised binding of pc-d15 is clearly evident

in its distribution of the dihedral angle α (cf. Figure 7.8) and bound ligand RMSD

(cf. Figure 7.14). Going by the activity trends, a halogen substituent (preferably

chlorine) or a methyl/trifluoromethyl group at 5’ position are associated with

increased InhA inhibitory potential.

3. meta-para and ortho-para disubstituted pyrrolidine carboxamides:

Molecules that represent this subgroup of light pyrrolidine carboxamides (d4 - d9)

clearly highlight the detrimental effects of para substituent as well as placing bulky

groups near each other (ortho-meta) that results in diminished InhA inhibitory

activity (Table A.2). The ortho-para disubstituted compounds (d1 and d9), in

particular, not only exhibit significantly diminished InhA inhibitory potential, but

also destabilised binding, as seen from the distribution of their dihedral angles

(α and β) as well as bound ligand RMSD (cf. Figures 7.8 and 7.14). The compound

pc-d9 (2-CH3, 4-NO2) and its destabilised binding primarily arise from the motions
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of the phenyl ring rather than the C ring, which results in a distinct distribution of

dihedral α (cf. Figure 7.8). The distribution of the dihedral angle β for pc-d9 is

also distinct with respect to other pyrrolidine carboxamides, and is quite identical

to pc-s11 and pc-s12. In all these three cases, the pseudo symmetry of the ring

C results in a different value for the dihedral angle β, inspite of the same atoms

defining the angle.

The meta-para disubstituted pyrrolidine carboxamides (d4 and d16) represent

another case of unfavourable substitution that results in significant loss of InhA

inhibitory activity. The presence of a bulky methyl group at 3’ together with a big

halogen (bromine) atom at the 4’ position of the A ring (pc-d4) results in close

contacts. The presence of a bromine atom at the para position results in clashes

with Pro156 much like pc-s17 (Figure 7.12). The net result is destabilisation of the

ligand binding and a four-fold decrease in InhA inhibitory activity as compared to

pc-d11. Moreover, a common fact pertaining to all these molecules (except pc-d16)

is that their poses were predicted by in-situ mutation of pc-d11 (cf. Section 3.3.4).

From the aforesaid observations, the following things can be said regarding SAR as well

as the qualitative nature of the dynamics of light pyrrolidine carboxamides:

1. The meta positions of the A ring represent the most favourable for substitution

with small electron withdrawing groups and halogen atoms except iodine. The meta

position is followed by ortho while para substitution leads to diminished activity. A

5-chloro substituent was observed to exert favourable effects on the overall activity

as well as binding stability that is in line with the general observation made by He

et al. [52].

2. The overall dynamics being exhibited by the light pyrrolidine carboxamides closely

follows the nature and position of substituents on the A ring, with a clear size

limit on the substituent. This can be seen in the cases of light pyrrolidine carbox-

amides with noticeable destabilised binding. For example, pc-d10 (3,5-F) exhibits

more fluctuations than pc-d11 (3,5-Cl). Furthermore, pc-d13 (3-OMe, 5-CF3)

exhibits more fluctuations than pc-d11. In the former case, pc-d10 with its 2

fluorine substituents forms much weaker halogen bonds with the active site residues

as compared to the chlorine substituents of pc-d11. The halogen bonds represent a

barrier to rotation for the phenyl ring which being weak in case of pc-d10 lead to a

free rotation of the phenyl ring as compared to pc-d11. In the latter case (pc-d13),

both chlorine atoms at 3 and 5 positions of pc-d11 are replaced by methoxy and

trifluoromethyl groups. The methoxy group is quite bulky as compared to a chlorine

atom and lacks the ability to form halogen bonds. Furthermore, the trifluoromethyl

group at 5’ position can form a very weak halogen bond with the neighbouring
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active site residues. A combination of these two is manifested as decreased InhA

inhibitory potential and increased destabilisation in binding as compared to pc-d11.

3. Summing up, all of the aforesaid analyses shed light on the movements of light

pyrrolidine carboxamides in their bound state. In case of compounds with low

InhA inhibitory activity, a low barrier to rotation of the ring A was associated with

increased destabilisation. This gave rise to characteristic dihedral angle distribution

as well as high RMSD values for the ligand and protein alike. On the contrary, for

compounds with high InhA inhibitory activity, the ring A motions were mostly

subdued as evident from the dihedral angle distribution. This was associated with

low drifts in both C-α and bound ligand RMSD, respectively.

7.3.2 Dihedral angle and RMSD analysis of bulky pyrrolidine carbox-

amides

As seen from Chapter 3, a total of three binding modes were reported for bulky pyrrolidine

carboxamides, with most of the ligands exhibiting a crystal structure like conformation.

Of the 18 bulky pyrrolidine carboxamides, a total of 5 molecules (pc-c6a3, pc-p27, pc-p28,

pc-p36, and pc-p37) exhibited alternate binding modes (Figure 3.21), while an additional

4 molecules (pc-r7, pc-p31, pc-c7a3, and pc-c8a2) (Table 4.2) exhibited stable binding.

A common feature amongst the molecules exhibiting stable binding was that they got

docked in an orientation similar to the reference ligand viz. pc-d11, and consequently

exhibited very low fluctuations in either of the dihedral angles and the RMSD values

(Figures 7.15 to 7.17), although with some exception as seen in Section 7.3.2.2.

On the contrary, the rest of the bulky pyrrolidine carboxamides exhibited both ”in-place”

movements as well as within the binding pocket. The observed drifts in both bound

ligand RMSD as well C-α RMSD stayed well below 2 Å, indicating limited movements

within the binding pocket. The drifts in C-α RMSD and bound ligand RMSD variably

coincide that warrant a more thorough assessment of the underlying binding modes.

Accordingly, the three binding modes for bulky pyrrolidine carboxamides (Figure 3.21),

their associated dihedral angle distribution as well RMSD values were assessed to derive

”binding mode” specific movements that in turn correlated with the structure of the

molecule. This would aid in better understanding the binding dynamics for this series

of pyrrolidine carboxamides.

7.3.2.1 ”Reference ligand binding mode”

This binding mode of the reference ligand (pc-d11) is exhibited by the majority of the

bulky pyrrolidine carboxamides (all except pc-c6a3, pc-p27, pc-p28, pc-p36, and pc-p37)
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Figure 7.15 Box plots depicting the (a) dihedral angle-α (top), and (b) dihedral
angle-β (bottom) for bulky pyrrolidine carboxamides, with the reference ligand d11
at the pole position. The median for the distribution of the dihedral angles has been
depicted as a white circle.

and has been depicted in Figure 3.21. It signifies proper placement of the ligand and

thereby increased interactions with the active site residues that stabilise the binding

mode. The dihedral angle distribution and the RMSD fluctuations are summarised

in Figure 7.15.
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Figure 7.16 Violin plot depicting the kernel density distribution of C-α RMSD
for bulky pyrrolidine carboxamides, with the order of compounds being described
in Figure 7.15. The thick central bar depicts the interquartile range, white circle denotes
the median for the distribution. Furthermore, a dip in the smooth shape of the violin
indicates a steep change in the bound ligand RMSD value.

Figure 7.17 Violin plot depicting the kernel density distribution of bound ligand
RMSD (heavy atoms only) for bulky pyrrolidine carboxamides, with the order of
compounds being described in Figure 7.15. The thick central bar depicts the interquartile
range, white circle denotes the median for the distribution. Furthermore, a dip in the
smooth shape of the violin indicates a steep change in the bound ligand RMSD value.



Chapter 7. Dynamic binding analysis of pyrrolidine carboxamides 150

In regards of the dihedral angle α, a wide variety in the distribution was observed for the

entire bulky pyrrolidine carboxamide subset. The wide variety in distributions indicates

a differential barrier to rotation of the A ring system in the respective compounds. The

wide variation in α can be attributed to the numerous types of heterocyclic systems

replacing the phenyl ring of light pyrrolidine carboxamides. Some of the important factors

to be considered while analysing these variations are the structure and binding mode of

the ligand under inspection. In case of the other dihedral angle, i.e. β, the variation was

not as wide as in case of α. This suggests that the majority of the structural motions in

case of bulky pyrrolidine carboxamides happens in the A ring system, much like in case

of light pyrrolidine carboxamides.

For the representative bulky pyrrolidine carboxamide-c7a3 and other compounds pc-c1a1,

pc-c1a2 and pc-c6a3 to pc-c8a3, there is a huge barrier to rotation owing to the size

of the A ring. This is evident from the narrow distribution of α for these compounds

(Figure 7.15). The only exception to this is the compound pc-c6a3 which got docked in an

alternate conformation (Figure 3.21) and will be discussed separately in Section 7.3.2.3.

On the other hand, the dihedral angle β for the respective compounds did not exhibit

any noticeable variation. The change in median values of β for pc-c8a2 and pc-c8a3 can

be attributed to the pseudo-symmetry of the cyclooctyl ring. However, in case of pc-c7a2,

a ring flip leads to the change in the median value. These results and the information

from literature clearly suggest that a cyclohexyl or a phenyl ring is most favourable on

the side of the ligand facing the substrate binding loop.

For a total of three compounds, i.e., p3a, p3i, and p3j, the cyclohexyl (C ring) was replaced

with a mono/di-substituted phenyl ring. As such these compounds are light pyrrolidine

carboxamides, but are discussed here mainly because of the changed C ring that makes

comparisons with both bulky and light pyrrolidine carboxamides easier. As a result of

the C ring replacement, both ends of these molecules were expected to have free rotations.

This was indeed the case, though p3i exhibited an almost identical distribution of α

as compared to pc-d11. For the remaining bulky pyrrolidine carboxamides, i.e., pc-r7

to p36, there were noticeable changes in the dihedral angle distributions. Of these, 4

compounds (pc-p27, pc-p28, pc-p36, and pc-p37) exhibited another atypical binding

conformation (Figure 3.21) and will be discussed separately in Section 7.3.2.2.

Of the remaining compounds, i.e., r7, p9, p20, p21, p24, p31, and p33, the distribution

of dihedral angle α for r7 and p9 differed significantly. For r7 (Figure 7.2), the dihedral

angle had to be modified. However, the barrier to rotation of the indole ring around the

C-N bond was much higher than for a simple phenyl ring. Moreover, the binding mode

appeared to be stabilised by its interactions with the active site residues. This resulted

in a narrow distribution for the dihedral angle α with a median value higher than that of

pc-d11. The compound pc-p9, on the other hand, exhibited a 1-benzyloxy-benzene system
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replacing the normal phenyl ring of light pyrrolidine carboxamides. Inspite of the increase

in the overall size of the A ring, the increased range of the dihedral distribution indicates

lowering of the barriers to rotation of the A ring system. Furthermore, the pyrrolidine

carboxamide-p31, with a fluorene ring replacing the A ring, showed a high barrier to

rotation that was evident from its dihedral angle distributions.

On the other hand, the dihedral angle β did not vary noticeably for the aforesaid

compounds. All of the aforementioned compounds contain a cyclohexyl ring just like

the light pyrrolidine carboxamides. The visible outliers for the dihedral angle β are

the pyrrolidine carboxamides p3a, p24, p31, and p33. In all cases, the trajectories did

not reveal any ring flips and consequently, the varying distribution of the dihedral β can

be attributed to the pseudosymmetry of the C ring.

Apart from the hydrophobic interactions, hydrogen bonds also play an important role

in the stabilisation of the binding mode. This is more evident in case of compounds

with 4-amino-2,6-diphenylphenol replacing the A ring (compounds with a3 suffix, e.g.,

pc-c7a3; Table A.4), wherein the hydroxy group of the central phenol ring was found to

form an additional H-bond with Proline-156 (Figure 7.19). This additional H-bond (the

other two being with Y158 and the cofactor) can only be formed if the ligand binding

mode resembles that of the reference ligand (Figure 3.21). For ligands exhibiting alternate

binding modes, the lack of ability in forming additional H-bonds is clearly manifested in

the decreased InhA inhibitory activity apart from exhibiting noticeable drifts in dihedral

angles and RMSD. All of these facts support the notion that this binding mode might

be the preferred by bulky pyrrolidine carboxamides over the other two modes depicted

in Figure 3.21.

Figure 7.18 Dihedral angle distribution and RMSD fluctuations for pc-c7a3 over 5ns
NPT simulation.
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Figure 7.19 Pyrrolidine carboxamide-c8a3 binding in reference ligand like conforma-
tion; H-bonds are shown as black dashes while the substrate binding loop is shown in
red and cofactor as dark green sticks. Viewpoint from the protein interior (minor exit
portal) to the major exit portal (protein exterior).

7.3.2.2 ”Alternate binding mode-1”

This binding mode was observed for a small number (N=4) of structurally similar

molecules (pc-p27, p28, p36, and p37; Table A.4). All of these molecules exhibit a

piperazine ring that is connected to the B ring containing the 1◦ carbonyl group and

a substituted bulky 1,1 diphenyl ethane moiety. For these compounds the 2◦ carbonyl

group forms the dual H-bonds instead of the carbonyl from the B ring, with the B ring

being accommodated in the binding pocket (Figure 7.20). Furthermore, the tertiary

amine nitrogen connecting the piperazine ring to the 1,1 diphenyl ethane system is non-

protonated at physiological pH as reported by He et al. [52] as well as PROPKA [265, 266]

and MoKa 2.6.0 [327]. However, given the slightly acidic pH within the mycobacteria

containing phagolysosome (pH 4.0-6.0) [328], the possibility of these ligands being

converted to their protonated form is much higher (80% at pH 5.5, Figure 7.21). Hence,

their protonated form was also considered and docked in InhA. The protonated forms got

selected via the pose selection process elucidated in Chapter 3. Of the aforementioned

four molecules, pc-p27 and pc-p37 had to be excluded from the MD simulations owing

to structural issues (intramolecular close contacts) that lead to instabilities and failure

of the trajectory output.

Figure 7.20 Alternate hydrogen bonding conformation of pc-p28. The hydrogen
bonds formed by the 2◦ carbonyl group appear as black dashes while the substrate
binding loop is coloured red.
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Figure 7.21 Protonated and deprotonated states as predicted by MoKa for pc-p28 at
pH of 5.0 and 7.0, respectively. The nitrogen prone to protonation has been shown in
blue and red, respectively.

As described in the methods section, the position and the atoms involving dihedral angle

α were changed as compared to the rest of the bulky pyrrolidine carboxamides. The

alternate compounds exhibiting the aforementioned mode were associated with:

1. Increased RMSD:

Both RMSD values, i.e., bound ligand RMSD and C-α RMSD tend to be on

the higher side with much more noticeable jumps in both as compared to the

molecules exhibiting a crystal structure like binding orientation (cf. Figure 7.17).

The instability associated with this binding mode can be seen in Figure 7.22, where

there is a rise in C-α RMSD that coincides with a sharp drop in ligand RMSD for

pc-p28 as well as a sharp drop in the dihedral angle α. The rising C-α RMSD as

well as the unique dihedral distribution suggests significant motions taking place in

the binding site as well as the bulky portion of the ligand.

2. Low variation in dihedral α:

The alternate binding mode represents a non-optimal orientation of the ligand

and thereby many of the stabilising interactions with the active site residues are

expected to be disrupted. This is accompanied alongwith increased motions of

the bound ligand. However, as seen from Figure 7.15, both pc-p28 and pc-p36

exhibit a narrow distribution for the dihedral α. This indicates subdued rotations

of the phenyl rings from the substituted 1,1 diphenyl ethane moiety. The subdued

motions of the phenyl rings can be attributed to the multipolar interactions of

the fluorine substituents with the residues of the active site and the hinge region.

Moreover, there is a possibility of weak halogen bonding coming into play.

3. Wide variation in the dihedral β:

The non-optimal orientation of the ligand also leads the ring C to occupy a place

that is seldom occupied by it. As a result, the ring C of pc-p28 and p36 alike

exhibits wide variations in its motions that manifests a broad range of dihedral

angle β alongwith noticeable increase in the number of outliers (Figure 7.15).
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4. Summing up, this atypical binding mode is likely to be less stable as compared to

the crystal structure pose as evident from the dihedral angle distributions and the

RMSD values for the representative compounds exhibiting this mode.

Figure 7.22 Dihedral angle distribution and RMSD fluctuations for protonated form
of pc-p28 over 5ns NPT simulation.

7.3.2.3 ”Alternate binding mode-2”

This binding mode with a complete inversion of the crystal structure orientation (Fig-

ure 3.21) was solely observed for the most potent pyrrolidine carboxamide-c6a3 (IC50:

140 nM). In this mode the bulky A ring faces the exterior, while the C ring partially pen-

etrates into the binding pocket (Figure 7.23). The 1◦ carbonyl group forms the usual dual

hydrogen bonds with the cofactor and Y158, respectively. The binding mode representing

partial penetration of the ligand in the binding pocket, gives rise to the most distinct

and diverse dihedral/RMSD distribution as compared to any other bulky pyrrolidine

carboxamide (Figures 7.15, 7.17 and 7.24).

Figure 7.23 Inverted binding mode of pc-c6a3 (docked pose from GlideSP) alongwith
annotated A ring system. The hydrogen bonds with the catalytic Tyr158 and cofactor
(NAD+) appear as black dashes, while the substrate binding loop is coloured in red.

In Figure 7.24, the four widely spaced dihedral contours and the corresponding line plots

for the dihedral angles clearly delineate the free rotations of the ring C within the binding

pocket. A similar observation holds true for the A ring system that faces the exterior of
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Figure 7.24 Dihedral angle distribution and RMSD fluctuations for pc-c6a3 over 5ns
NPT simulation.

the protein. While the ring C motions arise from a lack of interactions with active site

residues, the A ring system encounters solvent that surrounds the protein. Furthermore,

the additional H-bond that pc-c7a3 and pc-c8a3 form with Pro156 (Figure 7.19) is not

possible in this orientation. The additional H-bond contributes to the overall barrier to

rotation for the A ring system. A direct effect of the ring C motions are the weak and

transient H-bonds of the ligand with the cofactor and Tyr158. In absence of stabilising

interactions, pc-c6a3 in its flipped state exhibits a classical case of destabilised binding

mode, which is also reflected in its bound ligand and C-α RMSD values. In summary,

the following can be said of this binding mode:

1. This binding mode with a weak H-bonding and lack of stabilising interactions

does little to justify its potency (IC50: 0.14 µM). Thus, it can be considered as an

artefact from docking because other closely related molecules, such as pc-c7a3 and

pc-c8a3 that differ in C ring by one and two carbon atoms, respectively, bind like

the reference ligand with comparatively low fluctuations in dihedral angles and

RMSD values.

2. A key feature of pc-c6a3 is that its binding mode was always predicted as flipped

irrespective of the docking protocol (GlideXP/induced fit), implying that the ligand

pose might get trapped in local minima and consequently features in top reported

poses that score rather poorly. As a result, this binding mode can be considered as

artefactual.

In summary, from Figures 7.15 to 7.17, the following can be said regarding the bulky

pyrrolidine carboxamides:

1. A major fraction of bulky pyrrolidine carboxamides exhibit wide variation in the

distribution as well as fluctuation irrespective of the binding mode when compared

to the reference ligand viz. pc-d11.
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2. In case of the bulky pyrrolidine carboxamides exhibiting stable binding, three got

docked and selected in PDB 2X23 (pc-r7, pc-p31 and pc-c8a2), while only one ligand

(pc-c7a3) was selected from 4TZK. The former three molecules exhibit marked

stability with markedly less fluctuations in RMSD values (Figures 7.16 and 7.17)

and dihedral angles (cf. Figure 7.15). On the contrary, pc-c7a3 (Figure 7.18)

exhibits noticeable shifts in dihedral angles as well as bound ligand RMSD although

the overall RMSD values stay well below 1 Å.

3. The alternate binding conformations as observed for a total of 5 compounds (pc-

p27, p28, p36, p37, and pc-c6a3) were found to exhibit higher fluctuations in

both dihedrals and RMSD values indicating that the conformation of the crystal

structure ligand was most plausible for bulky pyrrolidine carboxamides.

7.3.3 H-bond and Distance analysis

This section briefly discusses the nature and quality of the H-bond interactions in

between pyrrolidine carboxamides and InhA. The role of H-bonds in stabilising the

binding orientations was probed by individual assessment of each ligand and then coming

up with a generalised description of class-specific hydrogen bonding. The dependence of

hydrogen bond on the distance in between the 1◦ carbonyl group of the ligand (acceptor)

and the Tyr158 (-OH group), cofactor (-O13 of the ribose) warranted equal attention.

The distance assessment for the donor-acceptor atom pairs would enable one to follow

the motions of the ligand (and in turn hydrogen bonds it forms) with respect to time.

Accordingly, a donor-acceptor atom distance analysis was carried out with respect mainly

to the three binding modes observed for pyrrolidine carboxamides, with overall comparison

being performed for light and bulky pyrrolidine carboxamides, respectively.

7.3.3.1 H-bond analysis of light pyrrolidine carboxamides

For the reference ligand, pc-d11, the analysis of the hydrogen bonds and the distances in

between the 1◦ carbonyl group-Tyr158-OH as well as 1◦ carbonyl group-NAD-ribose-OH

groups were initially assessed in VMD-1.9.1. As discussed in Section 7.2.2, the moving

averages for the hydrogen bond occurrence and distances were considered for ease of

visual analysis. The moving average is especially important for the hydrogen bond

occurrence mainly because of the binary nature of output from VMD which makes visual

interpretation of the results difficult. The fluctuations in the hydrogen bond occurrences

and distances for the reference ligand are summarised in Figure 7.25. From Figure 7.25,

the stable binding of pc-d11 is revealed with very low fluctuations in the distances

between the key donor acceptor atom pairs viz, d11-O2 and Y158-OH/NAD-O13, and

thereby the H-bond.
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Table 7.1 Hydrogen bond occupancy values for ligand-Y158 (atom O1 of ligand and
OH of Y158) and ligand-cofactor (atom O1 of ligand-O13 of ribose ring of the cofactor)
donor-acceptor atom pairs of light pyrrolidine carboxamides, with ligands in bold face
signifying crystal structure ligands.

Pyrrolidine pIC50 C-α Ligand
H-bond occupancy (%)

carboxamide RMSD (Å) RMSD (Å) Ligand-Y158 Ligand-cofactor

s1 4.97 1.44 0.32 56.68 41.64
s2 4.45 1.27 0.34 44.98 68.08
s4 6.05 1.30 0.29 38.74 76.44
s5 4.55 1.21 0.69 69.36 22.00
s6 5.86 1.16 0.67 24.10 31.10
s10 4.77 1.09 0.34 66.18 73.60
s11 5.45 0.96 0.74 56.32 76.50
s12 4.97 1.16 0.55 58.78 76.54
s15 5.25 1.30 0.75 53.20 54.90
s17 4.13 1.29 1.06 43.02 73.58
d1 4.25 1.61 0.92 23.84 28.72
d2 4.24 1.13 0.35 37.26 70.86
d3 6.01 1.46 0.54 14.10 28.44
d4 4.43 1.17 0.45 53.06 45.16
d6 4.99 1.31 0.67 62.22 60.42
d7 5.50 1.79 0.32 50.04 79.12
d8 4.63 1.16 0.39 65.60 1.90
d9 4.50 1.15 0.61 57.72 71.32
d10 5.82 1.44 0.57 47.28 44.74
d11 6.40 1.11 0.49 54.86 74.54
d12 6.07 1.15 0.78 53.22 73.90
d13 5.88 1.22 0.81 14.22 21.00
d14 5.44 1.09 0.83 45.90 74.36
d15 5.79 1.21 0.53 53.18 65.86
d16 4.82 1.21 0.47 49.60 35.72

A key index which provides for the overall comparison of the H-bonds amongst the vari-

ous pyrrolidine carboxamide subgroups is the H-bond occupancy, which in percentage

indicates the overall duration for which the H-bond was observed. For example, if the

H-bond occupancy for ligand-Y158 bond is 53%, then it means that over 53% of the

5 ns duration, an H-bond in between the two moieties was observed using the H-bond

criterion described earlier. It also provides an indirect estimate about the stability of the

binding orientation since binding instability is closely associated with rupture of H-bonds

and ”in-place” motions as well as ligand drifts within the binding pocket.

Given the fact that light pyrrolidine carboxamides bind to InhA like the reference ligand,

they should exhibit moderate to high values of H-bond occupancy, which indeed is

observed (Table 7.1). From Table 7.1, it can be seen that the following ligands exhibit

low H-bond occupancies for both ligand-Tyr158 and ligand-cofactor pairs: s6, d1, d3, d8,

d13, and d14. Of these, d3 and d8 are crystal structure ligands (PDB 4U0K and 4TZT,
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(a) Moving average of distance between pc-d11
and Y158-NAD+ donor atoms.

(b) Moving average of occurrences of H-bonds
for pc-d11.

Figure 7.25 Moving average plots for 5ns simulation of pc-d11, green and magenta
lines indicate lower quartile while light pink and goldenrod lines indicate the upper
quartile of the moving average for respective distance/H-bond.

respectively). Both pc-d3 and pc-d8 exhibit significant differences in the ligand-Tyr158

distance as compared to pc-d11 (Figure 7.26), with pc-d3 exhibiting a wide variation in

the said distance and pc-d8 having a noticeable number of outliers. Similar arguments

hold true for the compounds pc-s6, d1, and d13, wherein there was a marked deviation

in the distributions of both ligand-Tyr158 as well as ligand-cofactor distances.

Furthermore, in case of pc-d8, in addition to the weak H-bonds and thereby increased

destabilisation, the possibility of alternate H-bonds being formed increases. This phe-

nomenon involves a twist in the entire molecular structure of the ligand, with the primary

carbonyl group (1◦) of the ligand retaining its H-bond with the cofactor while the second-

ary carbonyl group (2◦) moving towards Y158 and forming another H-bond (Figure 7.27).

The H-bonding formed in this conformation is weak and transient, apart from being

observed for a very short duration of the sampled 5 ns MD simulation. Thereby, this

conformation can be considered to be metastable.

From Table 7.1 and Figure 7.26, the following can be said about light pyrrolidine

carboxamides:

1. As a generalisation, potent light pyrrolidine carboxamides exhibit higher H-bond

occupancies than those with lower InhA inhibitory potential. There is an indirect

relationship in between the bound ligand RMSD and the nature of the H-bonds

formed in between the ligand-Tyr158 and ligand-cofactor, respectively.
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Figure 7.26 Boxplots depicting the distribution of donor-acceptor atom distances for
light pyrrolidine carboxamides-NAD+-Y158, with the ligands being sorted in the same
way like Figure 7.8. Furthermore, the outliers are bronze circles while the median is
depicted as a white circle.

2. The ligand-cofactor H-bond occupancies were found to be higher than those for

the ligand-Tyr158 bond, meaning that ligands remained bound to the cofactor for

a longer period as compared to the catalytic residue, i.e., Tyr158.

3. From the MD simulations of all light pyrrolidine carboxamides, it was observed that

the ligand-Tyr158 H-bond was the first to rupture, primarily due the destabilisation
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Figure 7.27 Metastable conformation of pyrrolidine carboxamide-d8 (green sticks),
with alternate H-bonding; SBL is shown as red helix, Tyr158 as orange sticks, cofactor
as salmon coloured sticks and H-bonds as dashed lines.

induced by the freely moving phenyl ring located adjacent to the B ring that

harbours the 1◦ carbonyl group.

4. In case of pyrrolidine carboxamides with weak H-bonding and observable destabilisa-

tion, the chances of a metastable H-bonding conformation being observed increases,

as can be seen in case of the PDB 4TZT ligand (pc-d8).

7.3.3.2 H-bond analysis of bulky pyrrolidine carboxamides

As seen from Section 7.3.2, the bigger and bulkier members of the pyrrolidine carboxam-

ide dataset exhibit divergent binding modes as well as increased destabilisation within

the binding pocket. The destabilised binding is closely associated with plausible alternate

binding orientations for few molecules (pc-p27, pc-p28, pc-p36, pc-p37, and pc-c6a3)

(Sections 7.3.2.2 and 7.3.2.3). However, even in case of ligands exhibiting a binding

mode like the reference ligand, destabilizing movements of the A ring together with weak

H-bonding contribute to a major extent for their observable motions. This means that

weak H-bonding precedes destabilised movements exhibited by bulky pyrrolidine carbox-

amides. Accordingly, the bulky pyrrolidine carboxamides should exhibit donor-acceptor

atom distances reaching the upper permissible limits for an H-bond. This was indeed

the case, as can be seen from Table 7.2 and Figures 7.28 and 7.29. Moreover, since the

bulky pyrrolidine carboxamides were observed to bind in three different conformations,

the bonding analysis for each of the binding modes can complement the dihedral angle
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analysis in revealing the dominant binding conformations for this subgroup of the dataset.

Table 7.2 Hydrogen bond occupancy values for ligand-Y158 and ligand-cofactor donor-acceptor atom
pairs of bulky pyrrolidine carboxamides, with the ligands in bold face exhibiting stable binding.

Pyrrolidine pIC50 C-α Ligand
H-bond occupancy (%)

carboxamide RMSD (Å) RMSD (Å) Ligand-Y158 Ligand-cofactor

3a*1 5.40 1.39 0.82 17.66 16.00

3i* 4.86 1.26 0.75 59.66 28.76

3j* 4.53 1.36 0.88 35.18 53.14

r7 5.29 1.22 0.71 42.64 6.28

p9 5.46 1.41 0.98 25.18 57.06

p20 6.12 1.59 1.41 51.58 0.00

p21 6.39 1.53 1.83 17.84 33.78

p24 6.41 1.48 1.19 43.66 49.88

p28 5.13 1.74 1.13 32.20 9.16

p31 5.86 1.12 0.75 57.44 54.18

p33 5.59 1.75 1.64 28.20 3.42

p36 5.25 1.62 1.16 59.22 18.24

c1a1 6.33 1.36 0.69 20.42 37.76

c1a2 6.07 1.52 0.71 28.44 46.90

c6a3 6.85 1.30 1.50 0.00 20.18

c7a2 6.49 1.44 1.18 5.08 9.06

c7a3 6.56 1.22 0.81 61.50 17.98

c8a2 6.20 1.29 1.00 64.90 64.72

c8a3 5.88 1.47 1.19 34.84 56.70

1 Although 3a-3j are light pyrrolidine carboxamides, they appear here simply because of C ring

replacement.

1. ”Reference ligand binding mode”:

The reference ligand like binding mode is demonstrated by the majority of the

bulky pyrrolidine carboxamides, including pc-c7a3, that should translate to better H-

bonding and bond occupancies. However, as seen from Table 7.2 and Figures 7.28

and 7.29, this is far from true. The compound pc-r7 presents an intriguing

case amongst all bulky pyrrolidine carboxamides. The dihedral β (representing

cyclohexyl ring motions) showed slightly wider distribution as compared to the

dihedral α. This means that the motions of the C ring contributed more to the

observed RMSD than those of the A ring. This should translate to a weaker ligand-

cofactor bond which indeed was the case. In this case, it differed from the other

bulky pyrrolidine carboxamides exhibiting stable binding (pc-p31, pc-c7a3, and
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pc-c8a2). Hence in the current case, the hydrophobic interactions are expected to

stabilise the binding of the ligand in absence of stabilising H-bonding. Additionally,

all of the bulky pyrrolidine carboxamides except pc-r7 (pc-p31, pc-c7a3, and pc-

c8a2) that exhibited stable binding showed low to moderate H-bond occupancies for

both H-bonds of the bound ligand, i.e., with Tyr158 and the cofactor. From these

observations, the following can be said of bulky pyrrolidine carboxamides binding

like pc-d11:

• The majority of the bulky pyrrolidine carboxamides (11/18) exhibit low to

moderate H-bonding occupancies (≤ 50%) mainly for the ligand-Y158 bond,

while the H-bond occupancy for the ligand-cofactor was mostly low. The

exception to this observation were the compounds that exhibited stable binding

(pc-p31, pc-c7a3, and pc-c8a2) and pc-p9, pc-c8a3. For these three compounds

(pc-p31, pc-c7a3, and pc-c8a2), a weak trend in between the H-bond occupancy

and the binding stability (as seen from the RMSD values) can be observed.

Although trivial, this was quite opposite to light pyrrolidine carboxamides,

which exhibited a higher ligand-cofactor H-bond occupancy.

• A major portion of bulky pyrrolidine carboxamides exhibiting stable binding

got docked in PDB 2X23 (pc-r7, pc-p31, and pc-c8a2) with the exception

of pc-3i and c7a3 (both 2H7M), respectively. In the former compounds,

the tight binding pocket of 2X23 leads to increased interactions with the

ligand that can explain the stable binding as well as moderate H-bonding

occupancies for these compounds. In case of the latter (pc-3i and pc-c7a3),

the hydrophobic interactions along with the chlorine mediated halogen bonds

(especially for pc-3i) stabilise the binding mode and give rise to the observed

H-bond occupancy.

• A common observation pertaining to all of the aforementioned compounds

is that all of them exhibited an almost converging donor-acceptor atomic

distance (≤ 3 Å) (for both ligand-cofactor and ligand-Tyr158). From this, it

can be inferred that the crystal structure orientation is optimal in the case of

bulky pyrrolidine carboxamides, given the co-existence of stable binding and

moderate to high H-bond occupancies.

2. ”Alternate binding mode-1”

This binding mode is exhibited by four bulky pyrrolidine carboxamides (pc-p27,

pc-p28, pc-p36, and pc-p37), all of which have a similar type of hydrogen bonding.

Furthermore, only pc-p28 and pc-p36 will be discussed since pc-p27 and pc-p37

were not subjected to MD simulations due to reasons described earlier. Both

pc-p28 and pc-p36 exhibit weak to moderate H-bonding with Tyr158 which differs

significantly from the ligand-cofactor H-bond occupancy. This transient H-bonding
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Figure 7.28 Boxplots depicting the distribution of donor-acceptor atom distances for
bulky pyrrolidine carboxamides-NAD+-Y158, with the ligands being sorted in a way
similar like Figure 7.15. Furthermore, the outliers are bronze circles while the median is
depicted as a white circle.

increases the chances of metastable conformations being sampled during the MD

simulations like pc-d8. Indeed, this conformation was observed prominently in both

compounds, with an increase in the ligand-1◦ carbonyl group-Y158-OH distance

that coincides with a decrease in the distance between ligand 2◦ carbonyl and

Y158-OH (Figures 7.30 and 7.31). This metastable conformation arises mostly from
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Figure 7.29 Moving average plots for (a) pc-c7a3 and Y158-NAD+ donor atom
distances and (b) H-bond occurrence for pc-c7a3.

”in-place” motions (twisting of the ligand). Furthermore, the metastable H-bonding

conformation is a direct result of weak hydrogen bonding which in turn arises from

the non-optimal orientations predicted for pc-p28 and pc-36, respectively. Going

by the results of the dihedral angle analysis as well the hydrogen bonding, it can

be safely concluded that this binding mode is far from stable as compared to the

standard binding conformation seen in the crystal structures.

Figure 7.30 Transient conformation of pyrrolidine carboxamide-p36 (green sticks),
with alternate H-bonding; SBL is shown as red helix, Y158 as white sticks, cofactor as
violet sticks and H-bonds as dashed lines.

3. ”Alternate binding mode-2”

This inverted binding mode of pc-c6a3 represents inadequate penetration of the

ligand in the binding pocket (Figure 3.21). As a direct consequence the H-bonding

is naturally expected to be weak and susceptible to rupture. Indeed this was the

case, wherein the H-bond between the ligand and Y158 was altogether missing

while the H-bond in the ligand and the cofactor is not strong either as seen from

the H-bond occupancy of the same (Table 7.2). This results in free movements of

the ligand in place and consequently within the binding pocket as seen from the
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Figure 7.31 Moving average plots for ligand-Tyr158 and ligand-cofactor distances
and H-bond occurrences of 1◦ carbonyl oxygen (top pictures) and 2◦ carbonyl oxygen
(bottom pictures) from pc-p36

characteristic dihedral distributions and the RMSD drifts of the ligand. In short,

the H-bonding analysis offers additional indirect support to the notion that the

inverted binding mode is an artefact from molecular docking.

Considering all of the observations emanating from the H-bond and distance analysis of

bulky pyrrolidine carboxamides, the following statements can be safely made in terms of

their dominant binding conformation as well as the overall binding stability:

1. All of the indirect ways attempted to reveal the most plausible binding mode for

the bulky pyrrolidine carboxamides clearly pointed out that these compounds bind

to InhA in a similar conformation like the crystal structure ligands.

2. A small number of ligands bind in an alternate conformation (Sections 7.3.2.2

and 7.3.2.3) that is much more susceptible to destabilisation and exhibit random

movements both in place and within the binding pocket.
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3. As a generalisation, stable binding is associated with low drifts in RMSD, donor

(Tyr158 and cofactor)-acceptor (ligand-1◦/2◦ carbonyl group) distance. Further-

more, stable binders exhibit moderate to high H-bond occupancies for the dual

H-bonds of the ligand.

4. The following statement can be generalized for pyrrolidine carboxamides ir-

respective of their class, viz., light or bulky substituents: The presence of

dual hydrogen bonds with cofactor (NAD+) and Ty158 is absolutely a must for

exhibiting stability within the binding pocket.

5. Finally, the inverted binding mode as exhibited by pc-c6a3 can be considered an

artefact from docking, given the instabilities and movements it exhibits in stark

contrast with the rest of the group. Furthermore, all of the observations from the

dihedral as well as H-bond and distance analysis clearly support this statement.

7.4 Discussion

The central aim of the current analyses was ascertaining the dominant binding modes for

bulky pyrrolidine carboxamides, mainly due to lack of crystal structure. The orientation

of the molecule supplied as an input to MD simulations as well as the substituents on the

main scaffold largely determine its binding stability as well as strength of the interactions.

Hence, correlating the dynamics and the structure activity relationship was an additional

task performed during the analyses.

The dihedral angle analysis aided greatly in shedding light on the SAR-dynamics relation-

ship, the conclusions of which fell in line with the SAR of light pyrrolidine carboxamides as

reported by He et al. [52]. The analysis also revealed that in case of the light pyrrolidine

carboxamides, a majority of ”in-place” movements arise from the free rotations of the A

(phenyl) ring. The determinants of movement within the binding pocket were, however,

hard to visualise since the fluctuations in the dihedral angles hardly coincide with that

of bound ligand RMSD/C-α RMSD. However, potent light pyrrolidine carboxamides did

follow the trend as put forward by He et al. [52], with meta and 3,5-disubstituted

(meta, meta) phenyl rings (e.g., halogens, small electron withdrawing groups) exhibiting

much better stability than monosubstituted (ortho/para) and 2,3- or 2,4-disubstituted

compounds. The non-preferred para substitution as mentioned by He et al. [52], was

confirmed in the dihedral angle-RMSD analysis.

One of the most important things revealed from the dihedral angle analysis was that

there is more space within the binding pocket that could be exploited for stabilising the

ligand binding via increased van der Waals interactions. The support for this comes

from the following: firstly, all of the ring A of pyrrolidine carboxamides not getting
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docked/selected from PDB 2X23 exhibited more fluctuations as compared to those who

got docked in PDB 2X23 (e.g., pc-r7, pc-p31, and pc-c8a2). The PDB 2X23 represents a

much tighter binding pocket and, thus, stabilises the binding of molecules that hardly fit

inside the pocket, primarily via H-bonds and increased van der Waals interactions. On

the other end, PDB 2NSD and 4TZK offer comparatively more space to accommodate

the bulky ligands, making it possible for the observed movements to take place. Thus, the

movements of the ligands within the binding pocket can be stabilised by targeting this

”extra” space by suitable substitutions with an aim to increase the stabilising non-bonded

interactions.

The bulky pyrrolidine carboxamides were designed with this exact aim, with bulky struc-

tures replacing the solitary phenyl ring of the light pyrrolidine carboxamides. However,

with their increased size came the problems of predicting the binding conformation

reasonably. The docking with induced fit yielded three different conformations, whilst

the majority of the compounds were found to retain the crystal structure ligand conform-

ation. However, a sizeable number of compounds (Sections 7.3.2.2 and 7.3.2.3) that also

included the most potent pyrrolidine carboxamide (pc-c6a3, IC50: 140 nM) exhibited a

different binding mode. The dihedral angle-RMSD analyses together with analysis of

the H-bond occupancies and distances in between the ligand-Tyr158 and ligand-cofactor

revealed that the crystal structure orientation is the most plausible binding mode for

bulky pyrrolidine carboxamides. For some compounds (e.g. pc-d8, pc-p36), alternate

binding conformations were also sampled during the MD simulations. The alternate

binding mode also shows a completely different H-bonding pattern, although the donor

and acceptor moeties remain the same. Moreover, the artefactual nature of the inverted

binding mode of pc-c6a3 was evident from the high fluctuations in dihedral angles and

the RMSD values. This also coincided with weak and transient H-bonds with the cofactor

as well as Tyr158.

The H-bond occupancy and distance analyses clearly supported the aforesaid observations.

Additionally, the ligand-Tyr158 H-bond occupancy was lower than that of the ligand-

cofactor bond for light pyrrolidine carboxamides. It was exactly opposite in case of

the bulkier members of pyrrolidine carboxamides. Additionally, with the exception

of pc-c7a3 which got docked in 4TZK, all bulky pyrrolidine carboxamides exhibiting

stable binding (N=3, pc-r7, pc-p31, and pc-c8a2, Table A.4) were found to get docked

in 2X23, irrespective of their size. The reason for this can be attributed to the almost

closed binding pocket of 2X23 that enables increased van der Waals interactions for the

protein-ligand pair that ultimately results in stabilised binding, inspite of the bulky size

of the ligands. The increased binding stability for these ligands is also manifested in the

high H-bond occupancies for the ligand-Y158 and ligand-cofactor H-bond, respectively,

alongwith low fluctuation in the respective donor-acceptor atom distances. All of these
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analyses also pointed out the stabilsing effect of the dual H-bonds that the ligands forms

with Tyr158 and the cofactor.

7.5 Conclusion

From the information available about the SAR of pyrrolidine carboxamides and the

findings from the dihedral angle analysis as well as the H-bond/distance analysis, the

following things can be said about the pyrrolidine carboxamides in general:

1. The trend in between the overall potency and observed binding holds true strongly

for smaller members whilst not so strongly in case of bigger members of the

bulky pyrrolidine carboxamides.

2. From the perspective of SAR, the presence of halogens or small electron withdrawing

groups at meta position on the A ring (for light pyrrolidine carboxamides) and

bulky aromatic ring systems (for bulky pyrrolidine carboxamides) works well.

3. In regards of binding stability, the majority of in place motions for both light and

bulky pyrrolidine carboxamides are driven by phenyl ring flips that suggested that

there was additional space within the binding pocket to accommodate the ring

flips. The support for this comes indirectly from PDB 2X23 with a narrow binding

pocket and the bulky pyrrolidine carboxamides that got docked in it. All of the

compounds exhibited remarkable binding stability in a way similar to the crystal

structure ligands (except pc-d8).

4. In regards of the dominant binding conformation for the pyrrolidine carboxamides,

especially the bulky pyrrolidine carboxamides, the crystal structure like conforma-

tion was indirectly deemed to be the dominant and most likely binding mode by

all analyses performed in this study. The alternate binding mode can exist, but

exhibits much higher instabilities whilst the inverted binding mode is a docking

artefact.

5. In regards of H-bonding and distance analysis, the pyrrolidine carboxamides were

generally found to exhibit moderate to weak H-bonding that was in line with the

potency of the compounds under investigation. Furthermore, the ligand-Y158

H-bond was deemed weaker than the ligand-cofactor H-bond mainly due to the A

ring movements that push the acceptor atom (primary carbonyl) away from Y158

towards the cofactor.

6. Weak and transient H-bonding of the ligand (as seen in both light and bulky pyrrolid-

ine carboxamides) was associated with atypical binding orientations. Such a con-

formation was also observed in case of PDB 4TZT ligand (pc-d8) upon longer
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simulation durations. A direct manifestation of the weak bonding was the transient

nature of the atypical binding orientations themselves, rendering them metastable.





Chapter 8

Essential dynamics analysis of MD simulations of

pyrrolidine carboxamides

8.1 Introduction

The dihedral angle and hydrogen bond analyses from Chapter 7 provided useful insights

into the binding of light and bulky pyrrolidine carboxamides to InhA. They also aided

in elucidating the nature of the movements and especially shed light onto the atoms

contributing maximally to these movements. All of these analyses were made against the

background of the binding modes obtained from molecular docking. The binding modes

of light pyrrolidine carboxamides were usually conserved (including the in-place mutation)

and did not cause any issues. On the contrary, the bulky pyrrolidine carboxamides posed

a problem for accurate pose prediction. Despite of their considerable bulkiness, 3 different

binding modes were predicted by docking. From amongst these three binding modes,

MD simulations aided in ascertaining one of them (crystal structure ligand-like) as the

dominant pose.

A critical factor pertaining to the MD corroboration was its simulation length and the

extension of observed movements at prolonged time scales. Additionally, the direction of

the global movement of the bound ligand and the correlation in between the movements of

ligand and protein atoms remained unrevealed. Whereas certain aspects of the dynamic

binding of pyrrolidine carboxamides arose from the analysis of the dihedral angles and

the distances (cf. Chapter 7, Sections 7.3 and 7.3.3), a more reliable description of the

motions upon binding of pyrrolidine carboxamides to InhA at extended time scales

can be obtained from essential dynamics [329, 330]. This technique especially provides

information about the correlation between critical patterns of atomic movements in the

molecular recognition process. The essential dynamics also aids in focussing upon the

movements that play a crucial role in ligand binding.

Dimensionality reduction techniques come handy in filtering out the motions of interest

from the vast multitude of movements typically observed in a MD simulation. Principal

Component Analysis (PCA) is such a technique that aids in ascertaining the motions

with maximal variance that are often closely related with the molecular recognition

process [329]. In the current context, PCA was performed on the bound ligand as well

171
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as the active site residues in order to study the functional motions of the ligand upon

binding. The background of this method is explained in Section 8.2.

A critical aspect in binding is whether the protein/ligand motions exhibit any sort of

correlation (intramolecular/intermolecular). These motions are important for studying

the biomolecular functions of proteins, which are difficult to assess experimentally [331].

Although MD simulations provide a useful approach to study these motions, assessment

of their relationship from PCA remains restricted to linearised correlations. Since MD

simulations sample events that often are not a result of linear correlations, the information

from non-linearly correlated motions that also contribute to protein function remains

invariably unaccounted in PCA [331]. Hence, a different approach that describes also

a generalised correlation term can be utilised in a complementary fashion to gain an

overall description of the correlated protein-ligand motions. Dynamic Cross Correlation

(DCC) [331] was chosen for this purpose in this thesis.

Both principal component analysis and dynamic cross correlation analyses were performed

on the trajectories of bound ligands to observe the dominant movements occurring in

both protein and ligand. The complementary information emanating from principal

component analysis and dynamic cross correlation analyses can then be utilised to

strengthen traditional structure-based drug design efforts in order to yield new pyrrolidine

carboxamides with improved binding stability.

8.2 Materials and Methods

The following section elaborates on the theory of the methods described earlier, with

a particular focus on the elucidation of both linearised and non-linearised correlated

motions of protein and ligand alike.

8.2.1 Essential Dynamics

The process of Principal Component Analysis can be better explained using Figure 8.1,

with the original dimensions being X1 and X2, respectively. The shaded region represents

the subspace of the complete ensemble that is populated by points that represent all

motions including the functionally important ones. PCA diagonalizes and transforms

the original dimensions (X1, X2) to new uncorrelated axes PC1 and PC2 that are linear

combinations of the original points. The PC1 represents the first principal component

and as seen from the diagram, represents maximal variance of the system, followed by

a 2nd component (PC2) that is orthogonal to the first accounting for as much of the

remaining variance as possible.
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Generally, a system with N atoms has 3N-6 degrees of freedom that span its cartesian

coordinate space. The motions of the system (protein) within this space can be reduced to

a few functionally relevant ones using principal component analysis (PCA). For example,

in the case of lysozyme, where N ≅ 2000, the degrees of freedom representing important

motions can be reduced to 5% of the total degrees of freedom upon careful selection of

300 collective coordinates spanning the cartesian subspace [332]. It important to note

that at physiological temperature, atomic fluctuations within such a subspace have a

major contribution to the overall fluctuations of the system. Furthermore, the major

modes of collective fluctuations are essentially anharmonic in nature [316, 333]. A PCA

performed on a trajectory typically aids in ascertaining the major collective fluctuations

in the system.

In addition to PCA, several other techniques yielding similar results exist, e.g. Normal

Mode Analysis (NMA) [171, 334, 335] and its adapted method, the Elastic Network

Model (ENM) approach [336, 337]. PCA differs from these techniques in the sense that it

is purely anharmonic (all other methods assume harmonicity in the system). Furthermore,

the aforementioned techniques generate an ensemble of structures from a singular input

structure to ascertain the collective fluctuations within the system as opposed to PCA,

which is typically performed on an ensemble of structures derived from a MD simulation.

PCA usually assesses protein dynamics as a diffusion along short shallow minima on small

spatial scales and large scale anharmonic motions between multiple deep minima [171].

Figure 8.1 Principal Component Analysis basics for two functionally important
dimensions X1 and X2. The shaded region represents the essential subspace covering the
important movements, whilst PC1 and PC2 represent the principal components (axes).

In general practice, the PCA of a trajectory consists of the following steps:

1. Fitting the ensemble of structures onto a single reference structure:

This step consists of a least squares fit of the configurations (cartesian coordinates)
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from the trajectory onto a reference structure, mainly to remove the rotational and

translational fluctuations of the protein/ligand atoms.

2. Construction of a variance–covariance matrix (C) and its orthogonal

transformation:

A covariance matrix C generated with the ”fitted” trajectory represents the

correlation in between the atomic motions:

C = cov(xi) =
〈

∆xi ·∆xTi
〉

,

∆xi =xi − x
ref
i

xi − 〈xi〉 =T ~xi or ~xi = T T (xi − 〈xi〉)

(8.1)

where 〈 〉 denotes an average over time, xrefi is an arbitrary reference value of xi

which represents the coordinates from the trajectory and ∆xTi the transpose of

xi. In other words, xTi represents the orthogonal coordinate transformation (T ) of

∆xi. This transforms C into a diagonalised correlation matrix Λ of eigenvalues

(λi) where:

Λ =
〈

aaT
〉

C =TΛT T

Λ =T TCT

(8.2)

Λ is a symmetric matrix (like C ) whose i th column is an eigenvector with an

eigenvalue (λi). The eigenvalues represent the co-variances of the atomic displace-

ments relative to their respective averages for each pair of atoms in the cartesian

coordinate subspace [171, 338]. It also contains the variances of individual atomic

displacement (mean square fluctuations) along the diagonal of Λ. These eigenvectors

can be ordered with respect to their eigenvalues corresponding to the variances

being depicted by the eigenvectors [332]. The motions of atoms according to these

vectors are referred to as ”modes”.

In general, if a system has ”N” atoms, then C will be a 3N×3N matrix, with 3N-6

degrees of freedom for the cartesian coordinate subspace which can be shown as:

Covariance Matrix C = [mij ]

mij =

(

1

S

)

∑

t

(xi (t)− 〈xi〉) (xj (t)− 〈xj〉)
(8.3)

where S denotes the total number of configurations from the trajectory, t is the

time in picoseconds, i refers to the ith coordinate, where (i = 1,2,...,3N) and N is

the number of atoms. The term 〈xi〉 is the averaged value for xi over all of the

sampled configurations [316].
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3. Projection of the eigenvectors onto the original coordinates:

In the final step of the PCA, the trajectory is projected frame by frame onto the co-

ordinate space also referred to as the principal coordinate space. This subspace

is often adequately approximated by the first few large amplitude modes [316].

Since the large amplitude modes also describe anharmonic motions that contribute

to protein function, this space is also called ”essential” space, mainly because it

describes motions critical for a protein function. Thus, the process of projecting

the trajectory on a few collective modes spanning the ”essential” subspace is called

as ”Essential Dynamics” (EDA). A key term pertaining to the ”modes” is the

Relative positional fluctuation (RPF) (Equation (8.4)) [339] that denotes the

amount of the movements that are associated with the ”essential” subspace spanned

by the first n eigenvalues.

RPF (n) =

∑

i=1,n λi
∑

i=1,3N λi
(8.4)

where λi is the ith eigenvalue, n is the number of eigenvalues, and 3N equals the

coordinates of N atoms in the system under study.

8.2.2 Dynamic Cross Correlation

The dynamic cross correlation as a generalised correlation measure highlights especially

the non-linear correlated motions amongst non-covalently bonded atoms/protein residues

when used complementarily with essential dynamics. The general correlation of move-

ments in MD simulations can be obtained from calculation of a normalised covariance

matrix according to Equation (8.5). Each matrix element is calculated in the same

way as the Pearson correlation coefficient of the individual atomic displacements [331].

The correlated motions being described by essential dynamics only hold true subject to

the conditions that the xi and xj are two colinear vectors (i.e., along the same plane)

(Equation (8.5)). In other words, essential dynamics does not describe the correlations

amongst the non-colinear vectors [340] (i.e., not occur along the plane of the eigenvector

being studied). In case of linearly correlated movements, a clear separation of the posit-

ively and negatively correlated motions would be beneficial in describing the molecular

interactions during ligand binding.

Cij =
〈(ri − 〈ri〉)〉 − 〈(rj − 〈rj〉)〉

√

(

〈r2i 〉 − 〈ri〉2
)(

〈r2j 〉 − 〈rj〉2
)

(8.5)
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where Cij denotes the cross correlation amongst atoms i and j, ri and rj are the

coordinates of the atoms at a given time point and 〈ri〉 and 〈rj〉 are their averaged values

over the entire trajectory.

Dynamic cross correlation (DCC) is capable of achieving both (i.e. separation of positively

and negatively correlated movements) since it is based on the theory of Shannon mutual

information [341]. This theory enables direct comparison of the generalised correlation

with the output of Pearson correlation coefficient [331]. The discussion of Shannon

mutual information is out of context for this work. The reader is advised to refer to

literature [331] for more details.

8.2.3 Atom selections for analysis

The following section focusses on revealing the positively and negatively correlated

motions of the protein-ligand pair in order to understand the events taking place after

protein-ligand association. The essential dynamics and the dynamic cross correlation

analyses were carried out for the following atom selections:

• Heavy atoms of the bound ligand.

• Active site residues: C-α atoms of the residues lying within a 5 Å radius of the

ligand, viz., Phe97, Met98, Pro99, Met103, Asp148, Phe149, Met155, Tyr158,

Lys165, Leu197, A198, Met199, Ser200, Ile202, Val203, and Leu207.

• Substrate binding loop residues: C-α atoms of residues with indices 195 to 212.

To perform the essential dynamics, the solvated protein-ligand complex before equilibra-

tion (of PDB 4TZK) followed by the parameter file and the 5ns trajectory were loaded

in VMD 1.9.1 [304]. Using the RMSD trajectory tool implemented in VMD, a C-α atom

based least squares fitting of the trajectory to the reference structure was performed.

The Normal Mode Wizard (NMWiz) GUI of VMD was then invoked which allows the

user to depict, animate and perform comparative analysis of normal (in the current

case, principal) modes. The GUI is a front end for ProDy [342], that actually performs

the principal component analysis on the trajectory. NMWiz takes in the user input

as an atom selection described earlier followed by generation of the C matrix and its

diagonalisation in the background. Using the default settings, a total of 10 principal

modes were exported to a normal mode (.nmd) file for subsequent visualisation and

analyses.

Although the analyses were performed for the entire pyrrolidine carboxamide dataset,

the individual results are generalized for the light and bulky pyrrolidine carboxamides,
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respectively. Of the 10 principal modes exported by default, observations and conclusions

thereof were derived from the top 5 modes, since they are expected to contain the

maximal variance of the system across all cases [316]. Accordingly, all figures for the

results of essential dynamics analysis depict the information derived from the inspection

of top 5 principal modes for the individual atom selections.

8.3 Results

8.3.1 Essential Dynamics

The summary of the essential dynamics for the aforementioned atom selections can be

seen in Table 8.1, while the ensuing sections describe the same briefly.

8.3.1.1 Principal Modes for ligand heavy atoms

The information from the first 5 principal modes of the heavy atoms of the ligand can be

collated to depict the collective motions of the ring. In other words, the atomic fluctu-

ations from the principal modes were combined to allow for a generalised description of

the relative ring motions for light and bulky pyrrolidine carboxamides, respectively. The

reference ligands pc-d11 (light pyrrolidine carboxamides) and pc-c7a3 (bulky pyrrolidine

carboxamides) were chosen as suitable representatives. Their complexes were utilised

to depict the collective motions of the residues constituting the active site and the sub-

strate binding loop, respectively. Figure 8.2 depicts the mobile rings for ”light” and

”bulky” pyrrolidine carboxamides, respectively. Although the mobile atoms are being

discussed, it is the collective motions of the rings and their direction that is critical to

highlight the difference amongst light and bulky pyrrolidine carboxamides.

In case of both light and bulky pyrrolidine carboxamides, majority of the motions stem

from the rotation of the rings A, C and the secondary (2◦) carbonyl group around the

C-C and C-N covalent bonds linking the rings A, B, and C, respectively. The ring B

exhibits low mobility mainly due to the dual H-bonds of the 1◦ carbonyl group with

Tyr158 and NAD+. The mobility of the ring B is closely related with the binding stability

of the ligand. This can be seen from the decreased ring B mobility in cases where a

strong hydrogen bond in between the ligand-cofactor and ligand-Y158 was established.

This also affects the overall potency of the molecule.

The detailed movements of light pyrrolidine carboxamides as seen for the representative

ligand pc-d11 can be summarised as follows:
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Figure 8.2 Representative structures of light and bulky pyrrolidine carboxam-
ides alongwith mobile rings circled in yellow (pc-d11 and pc-c7a3). The rotations
of the annotated rings have been marked by arrows. The primary and secondary car-
bonyl groups have been depicted by 1◦ and 2◦, respectively. The vertical arrows indicate
the additional motion of ring C in both molecules. Furthermore, the barrier to rotation
of ring A1 (central phenolic ring) in case of bulky pyrrolidine carboxamides has been
depicted as a half arrow.

1. Ring A:

The rotation of ring A (phenyl ring) (cf. Figure 8.2) was found to decrease in

ligands with the substitution pattern in the following order: para > ortho > meta.

The motions of substituents on the phenyl ring were always directed towards the

key residues of the minor exit portal and the mid to end region of the SBL (Met155,

Met161, Met199, Ile202, and, Val203) (cf. Figure 8.3). The mobility of the 2◦

carbonyl group was an indicator of the shallow potential energy surface on which

the rings A and B move. In Figure 8.3, the arrows merely denote the direction of

the rings, while their length is purely symbolic and does not represent the actual

length (eigenvalues) of the principal modes.

2. Ring B:

The movement of ring B is rather dampened as a results of the dual H-bonds

(between the 1◦ carbonyl group and ligand, cofactor). This movement is charac-

terised by the ring B moving slightly away from Y158 and cofactor, rupturing

the ligand-Y158 H-bond in the process. This phenomenon characterises the weak

Y158-ligand bond, which is commonly observed in all pyrrolidine carboxamides.

Thereafter, the stabilisation of the B ring is exclusively through favourable van

der Waals interactions in between it and the nicotinamide ring of the cofactor. A

geometrically non-optimal CH-π interaction [343–345] can be seen as already being

established (Figure 8.4).

3. Ring C:

The cyclohexyl ring atoms facing towards the exterior of the protein has plenty of

space to move freely. As a direct consequence, the entire ring exhibits high mobility

during which it frequently comes in contact with Phe97, Met98 and the phosphate

group of the cofactor (cf. Figure 8.3).
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Figure 8.3 Collective motions of the maximally mobile atoms of reference ligand
pc-d11 (red sticks). The green arrows denote the direction of the collective motions of
the rings and are purely symbolic and do not represent the actual length (eigenvalues)
of the principal modes.

4. The aforementioned facts underscore the direction of the collective motions for the

rings that make up the ligand. Collectively, the major motions of the light pyrrolid-

ine carboxamides as deduced from their principal modes can be visualised as

rotations for ring A. They are initiated by the movement of secondary (2◦) carbonyl

group towards the substrate binding loop, whilst the C ring shows independ-

ent motions that result due to the availability of space and lack of stabilising

interactions.

The situation changes when the bulky pyrrolidine carboxamides are considered primarily

because of the replacement of rings A and C by larger and bulkier rings. Assuming that

all bulky pyrrolidine carboxamides bind like the reference ligand (pc-d11), the compound

pc-c7a3 served as a model system to highlight the generalised collective motions of

bulky pyrrolidine carboxamides. In order to efficiently depict the individual movements

of the A ring system, the respective rings were named as A1 (central ring), A2 (which

lies near the SBL), and A3 (which lies near the cofactor and Phe97) (cf Figure 8.5).

The motions for bulky pyrrolidine carboxamides being represented by pc-c7a3 (Figure 8.5)

can then be summarised as follows:

1. 2◦ carbonyl group:

This group exhibits the maximal mobility in the bound ligand (pc-c7a3) primarily

because of the rotation around the C-C bond that connects the 2◦ carbonyl group
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Figure 8.4 A CH-π interaction of the central B ring and the nicotinamide ring of the
cofactor (NAD+) shown in red dashed lines. The ring centroid distance has also been
indicated. The lower figure depicts the non-optimal pointing of the ligands hydrogen
atom to the nicotinamide ring of the cofactor.

Figure 8.5 The left figure depicts pc-c7a3 along with its annotated rings of the bulky
A ring system and the cofactor (violet sticks) and the substrate binding loop. The right
figure depicts the Collective motions for maximally mobile atoms (red, violet sticks) of
pc-c7a3 along with the direction of the ring motions (green arrows).

to the ring B. The strong movements of the 2◦ carbonyl group stretches from

Phe149 side chain (minor exit portal) to Ile202 situated in the substrate binding

loop.
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2. Ring A:

The A ring system faces towards the interior of the binding pocket and collectively

exhibits varying amplitudes of movements depending on the nature of interactions

(and thereby binding) being exhibited by the ligand. The per ring collective motions

of the A ring system are as follows:

• The central ring (A1) exhibits low mobility primarily due the steric hindrance

of the rings A2 and A3 that represent a barrier to rotation (cf. Figure 8.2

(small half arrow around ring A1). This hindrance is lacking in case of

light pyrrolidine carboxamides that exhibit free rotation of the ring A around

the C-N bond.

• The ring A3 exhibits free rotations around the C-C bond linking it to the

central A1 ring. During these motions, it comes in close contacts with the

backbone of Phe149 and Asp148.

• Likewise the ring A3, A2 exhibits ring rotations but much more dampened

since it interacts extensively with a key residue lining the hinge region, i.e.,

Leu207 which moves away from the A2 thereby imparting some movement to

its adjacent residues. This results in a motion of the hinge region (a short loop

connecting α6 and α7 helices) that ultimately accommodates the approaching

2◦ carbonyl group.

3. Ring B:

The B ring of bulky pyrrolidine carboxamides exhibits a noticeably increased

mobility that sets it apart from light pyrrolidine carboxamides. This indicates

a lack of the stabilising van der Waals interactions with the cofactor alongwith

an already weak bond with the catalytic residue, i.e., Tyr158. The atoms of this

ring indicate a preferential interaction with the sidechain of Met103 (not shown

in Figure 8.5).

4. Ring C:

The C ring of bulky pyrrolidine carboxamides exhibits motions that were demon-

strated in case of light pyrrolidine carboxamides as well. The ring C demonstrates

extensive motions that stretch from the ribose ring to Ile202 of the substrate binding

loop. Its the high mobility of this ring that concurrently leads to movement of the

key residues of the substrate binding loop as seen in Section 8.3.1.3.

5. In summary, the net movement of the ”bulky” pyrrolidine carboxamides can best

be described as a pincer’s open-close motion (Figure 8.5) that varies slightly for

each compound of this group.

From the above observations, it can be seen that the 2◦ carbonyl group and the entire

C ring are most mobile for both light and bulky pyrrolidine carboxamides, respectively.
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Figure 8.6 Collective motions of the representative ligands for light (pc-
d11) and bulky (pc-c7a3) pyrrolidine carboxamides: The ligand pc-d11 exhibits
ring flips (green circular arrow) whilst the 2◦ carbonyl moves towards the substrate
binding loop (blue arrow), and the C ring moves up and down (magenta arrows). For
pc-c7a3, the 2◦ carbonyl exhibits a conserved motion (blue arrow) while ring A2 and
ring C move simultaneously towards each other (teal arrow). The hindered rotation of
the central ring A1 is depicted as dashed green arrow

Additionally, the A ring(s) also exhibit ring rotations, which are more pronounced in

the smaller pyrrolidine carboxamides than the larger and bulkier ones, primarily due

to less steric hindrance in the former case. Moreover, the collective motions of the

representative molecules (Figure 8.6) clearly reveal the differences in the motions of each

class of pyrrolidine carboxamides, that are associated with different interactions with the

residues of the active site (cf. Section 8.3.1.2) and substrate binding loop respectively

(cf. Section 8.3.1.3).

8.3.1.2 Principal modes for active-site residues

The differential movements amongst the individual ligands in the case of light and

bulky pyrrolidine carboxamides were reflected in the pronouncedly different collective

motions of the key residues. These are as follows:

1. Light pyrrolidine carboxamides:

For the protein-ligand complexes of light pyrrolidine carboxamides, maximal col-

lective motions were observed in the side chains of key residues already known

to be critical in stabilising ligand binding i.e., Ala198, Met199, Ile202 and

Val203. Additionally, the rotation of the phenyl ring and subsequent motions of

the substituents on the phenyl ring led to noticeable movements in the sidechain

of Phe149 and the entire residue Met155. Amongst all of the aforesaid residues,

Met155 was found to move away from the ligand, while Met199 moved in the

direction of the 2◦ carbonyl group (Figure 8.7). The observations suggest that the

light pyrrolidine carboxamides induce noticeable collective motions for key residues
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located at both ends of the molecule, i.e., Met155 and Phe149 from the minor exit

portal and Met199 from the major exit portal, respectively.

Figure 8.7 Collective motions for maximally mobile active site residues (red sticks)
of PDB 4TZK along with their directions (green arrows). The maximally mobile atoms
of the ligands have been highlighted as red sticks.

2. Bulky pyrrolidine carboxamides:

In contrast to the light members of the pyrrolidine carboxamide dataset, the active

site residues exhibit different collective motions for bulky pyrrolidine carboxam-

ides (Figure 8.8). Figure 8.8 highlights the key residues involved in binding, i.e.,

Ile202 and Val203 move towards the ligand (2◦ carbonyl group) as opposed to

Met199, which is part of the major exit portal. A key observation in case of

bulky pyrrolidine carboxamides was that residues in close proximity of rings A2 and

A3 were quite stable that was reflected in their low mobilities in essential dynamics

analysis. This clearly differs from the light pyrrolidine carboxamides. These obser-

vations suggest that in case of bulky pyrrolidine carboxamides, maximal collective

motion was observed in the key residues situated in the substrate binding loop as

compared to residues of both minor and major exit portal for the light pyrrolidine

carboxamides. From the principal modes, it was also seen that there was a slight

movement of the substrate binding loop towards the ligand as indicated by the

direction of movement for Ile202 and Val203 (Figure 8.8), respectively.

The essential dynamics analysis for the active site residues of the light and bulky pyrrolid-

ine carboxamides stressed the differences in their collective motions (sampled over a
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Figure 8.8 Collective motions of maximally mobile active site residues (red sticks)
of 4TZK-c7a3 complex along with their directional motion (green arrow). The mobile
atoms of the ligand have been depicted as red and violet sticks, respectively.

period of 5 ns per protein-ligand complex). It was seen that key residues from the sub-

strate binding loop, that also constitute a part of the active site (Met199, Ile202, and

Val203), collectively move towards the ligand’s 2 ◦ carbonyl group. However, the collective

movement (and direction) of the substrate binding loop can only be understood upon

examining the collective motion of the entire stretch of residues that span its length.

This is been discussed in Section 8.3.1.3.

8.3.1.3 Principal modes of the residues of the substrate binding loop

The collective motions of the residues in the substrate binding loop can be summarised

as follows:

1. Light pyrrolidine carboxamides:

Figure 8.9 depicts the collective motions of the residues of the substrate binding

loop for PDB 4TZK. It can be seen that the residues exhibiting maximal movement

as deemed by the first 5 principal modes are Arg195, Leu197, Met199, Ile202,

Val203, Leu207, Glu209, and Glu210, respectively. The characteristics of the

motions of Met199, Ile202 and Val203 can be confirmed and agree with the discussion

in section 8.3.1.2. The side chain of a pair of leucine residues (Leu197 and Leu207)

that lie at the beginning and the end of the α-6 helix exhibit anti-parallel motions,

with the Leu197 side chain moving away from the binding pocket. Simultaneously,
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the side chain of Leu207 moves towards the binding pocket. Additionally, the side

chain of Glu209 moves into the same direction as that of Leu207, while Glu210

situated at the end of the hinge region (connecting the α6 − α7 helices) moves

upwards in the direction of the ligand. Collectively, these motions indicate that a

part of the substrate binding loop spanned by residues 195-198 moves away from

the ligand, whilst the residues 199-209 show a movement towards the ligand.

Figure 8.9 Collective motions for maximally mobile substrate binding loop residues
of (a) PDB 4TZK (left) and (b) 4TZK-c7a3 (right) along with their directions (green
arrows). The mobile atoms of the ligand have been depicted as red (for pc-d11) and as
red and violet sticks (for pc-c7a3), respectively.

2. Bulky pyrrolidine carboxamides:

The essential dynamics performed for the substrate binding loop resulted in the

following residues being maximally mobile: Leu197, Ile202, Val203, and L207-

Ala211. The collective motions and directions of these residues can be seen

in Figure 8.9. It is clear that the collective motion of these residues are conserved

when compared to the case of light pyrrolidine carboxamides. A noticeable difference

is the extent of movement of the hinge region that connects the substrate binding

loop α-6 and α-7 helices. In case of light pyrrolidine carboxamides, marginal

movement of the side chain of the hinge residues (Leu207-Ala211) is observed, as

opposed to a strong backbone movement in case of bulky pyrrolidine carboxamides.

This strong movement of the hinge region and a part of the substrate binding

loop is primarily in response to the characteristic motion of bulky pyrrolidine

carboxamides as described in Section 8.3.1.1.

From the above observations, the following conclusions can be drawn:

• The residues of the substrate binding loop show mainly conserved collective motions

(towards the ligand) in case of light and bulky pyrrolidine carboxamides, though the
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residues of the hinge region for the latter exhibit an increased movement towards

the ligand.

• A pair of leucines i.e., Leu197 and Leu207 exhibit anti-parallel collective motions

that coincide with the movement of the substrate binding loop towards the ligand.

• The role of Met199, Ile202 and Val203 in ligand binding and stabilisation can be

corroborated by the essential dynamics analysis.

So far, the previous sections (Sections 8.3.1.1 to 8.3.1.3) portrayed the ”essential” motions

for the 3 different atom selections (ligand, active site, and substrate binding loop) for the

light and bulky pyrrolidine carboxamides, respectively. These collective motions merely

depict the ”linearly” correlated movements of these atom selections upon protein-ligand

binding. A significant portion of non-linearly correlated movements that also contribute

to the overall motions observed during a MD simulation is missing. In order to account

for the non-linearly correlated movements in the protein-ligand complex, the dynamic

cross correlation was carried out for the entire pyrrolidine carboxamide dataset, with the

same 3 atom selections that were utilised for the essential dynamics analysis.
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8.3.2 Dynamic cross correlation

The light and bulky pyrrolidine carboxamides were analysed separately, with the non-

linearly correlated motions being explained for the ligands pc-d11 and pc-c7a3, respect-

ively.

8.3.2.1 Dynamic Cross Correlation for light pyrrolidine carboxamides

1. Ligand heavy atoms:

Figure 8.10 depicts the dynamic cross correlations for pc-d11. The strongly correl-

ated movements of rings B and C can be seen, while ring A can be said to exhibit

motions that are independent of ring C and vice versa. The motions of ring B and

ring A are weakly correlated. Atoms of the amide group connecting the respective

rings exhibiting a moderately correlated motion with ring A. The rest of the atoms

making up ring B including the 1◦ carbonyl group shows almost no correlation

with motions of ring A.

Figure 8.10 Dynamic Cross Correlation for the reference ligand pc-d11:
The range of atoms belonging to the respective rings has been marked as blue boxes,
with the scale on the right side indicating the dynamic cross correlation range.

2. Active site residues:

Figure 8.11 depicts the dynamic cross correlations for the C-α atoms of active site
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residues for PDB 4TZK (pc-d11). The dynamic cross correlation and essential

dynamics analysis of the active site residues allow the following observations and

conclusions to be drawn:

• The residues Phe97 to Pro99, which interact mainly with ring C, show pos-

itively correlated motions. With respect to other active site residues, the

correlations are weakly negative. The same residues were analysed to exhibit

low mobility in the essential dynamics, and hence do not show up in Figure 8.7.

• The residues Met155 and Met199 that have been categorised as maximally

mobile in the essential dynamics analysis, exhibit independent motions with

respect to Tyr158 as well as each other (Figure 8.7). Furthermore, Met199

shows strong positive correlation with Ser200, Ile202, and Val203 (and vice

versa), implying that they move collectively towards the ligand.

• Residues of the catalytic triad (Phe149, Tyr158, and Lys165) show a moder-

ately correlated motion with respect to each other. This merely bespeaks their

role in ligand binding. A similar correlation was observed for the residues

Met199 to Val203 from the major exit portal. They are mainly involved in

stabilising the ligand binding, as already known from literature [50, 52].

• Finally, the pair of leucine residues situated at the beginning and end of

the α-6 helix, i.e., Leu197 and Leu207 exhibit moderately anti-correlated

movements with respect to each other. This merely supports the observation

derived from Figure 8.9.

3. Substrate binding loop residues:

The dynamic cross correlation for the substrate binding loop residues of light pyrrolid-

ine carboxamides (Figure 8.12) provides a rather interesting picture, with strongly

positively correlated motions observed within two subgroups of residues that span

the entire length of the substrate binding loop: residues Arg195 to Met199 (sub-

group I) and Ser200-Gly212 (subgroup II), respectively. However, the two groups

just exhibit weakly correlated motions when compared with each other. Further-

more, the residues situated at either ends of the substrate binding loop (Arg195 and

G212) exhibit no correlation amongst each other. Collecting the information from

essential dynamics and dynamic cross correlation, it can be seen that the part of

the substrate binding loop (Arg195-Met199) near the C ring moves away. It makes

space for the highly mobile C ring atoms. On the contrary, the remaining part

of the substrate binding loop being spanned by Ser200 to Gly212 moves slightly

towards the ligand as seen from the projection vectors (arrows) of the essential

dynamics analysis.
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Figure 8.11 Dynamic Cross Correlation for the active site residues of 4TZK with the
scale on the right side indicating the dynamic cross correlation range.

Figure 8.12 Dynamic Cross Correlation of the SBL residues of 4TZK with the scale
on the right side. The subgroup of residues exhibiting different direction of movement
has been marked and annotated accordingly.
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Summing up the observations from the DCC and the ED for light pyrrolidine carboxam-

ides, the collective motions of ligand and active site residues become evident. The most

important aspect for light pyrrolidine carboxamides is the noticeable collective motion

of key residues like Ile202 and Val203 towards the ligand. This motion is evident from

the projection vectors (arrows) as well as the high positive correlation amongst these

residues. Furthermore, a slight movement of a part of the substrate binding loop away

from the ligand is also evident from the same analyses, apparently in order to avoid the

clashes with the highly mobile C ring atoms. Support for this comes from Figure 8.11,

where Leu197 exhibits moderately anti-correlated motion with respect to residues Met199

to Val203 as well as Leu207. The effect of ligand binding upon the substrate binding

loop can be rationalised as Arg195-Met199 moving away from the ligand while the rest

of the residues move slightly towards the ligand.

8.3.2.2 Dynamic Cross Correlation for bulky pyrrolidine carboxamides

1. Ligand heavy atoms:

The dynamic cross correlations of the heavy atoms for the representative bulky

pyrrolidine carboxamide, pc-c7a3 are depicted in Figure 8.13. The complex motions

of pc-c7a3 and bulky pyrrolidine carboxamides in general become evident, given

the varying degree of correlations that the heavy atoms of ring A and C exhibit

with respect to each other. The following observations can be made pertaining to

the ring movements:

• Ring B: The atoms of ring B (blue box) exhibit anti-correlated motions with

respect to the rest of the ligand, with the exception of ring A1 and A2, with

which they exhibit very weak or no correlation. Furthermore, ring B and the

amide group (atoms C5, N2, O2) that connects it to the A ring system exhibit

modestly correlated motions, which signifies that the collective displacements

of ring B affect that of the amide group containing the 2 ◦ carbonyl group.

• Ring A: The ring A system consisting of three aromatic rings exhibit the

most varying correlations with respect to other rings, and this is characteristic

for all bulky pyrrolidine carboxamides. This distinguishes all bulky pyrrolidine

carboxamides from their lighter counterparts. Rings A1 and A2 exhibit

moderately correlated motion with respect to each other, while both exhibit

moderately anti-correlated motions to rings A3 and C. Furthermore, the

motions of ring A1 are mostly limited due to the steric hindrance (from

the protein) while the rings A2 and A3 exhibit the characteristic rotations

around the C-C bond (as seen from the dihedral analysis). Surprisingly, the

movements of ring C and A3 were found to be moderately correlated although

the rings are separated by a sizeable number of atoms. The anti-correlated
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motions of ring A2 and C merely lend support to the ”pincer open-close”

motions of pc-c7a3 as described in in Section 8.3.1.1.

• Ring C: Ring C atoms just like in case of light pyrrolidine carboxamides ex-

hibit maximally anti-correlated motions with respect to the rest of the system

except the ring A3 (moderate positive correlation). The correlation in the

collective motions of the rings A3 and C can be attributed to the overall

direction of movements for both rings as seen from Figure 8.5. During the

characteristic pincer open and close cycle, both of them move in the same dir-

ection, although ring A3 simultaneously exhibits ring rotations, thus resulting

in modestly positive correlations.

Figure 8.13 Dynamic Cross Correlation for the bulky pyrrolidine
carboxamide-c7a3: The range of atoms belonging to the respective rings has been
marked as blue boxes while for the A ring system, atoms belonging to different rings
have been marked and annotated in different boxes. The scale on the right side indicates
the dynamic cross correlation range.

2. Active site residues:

The complex movements of the bound ligand (pc-c7a3) feature markedly different

correlations amongst the active site residues, which are depicted in Figure 8.14. It

can be seen that, with the exceptions of the subgroups of residues Phe97-Pro99 and

Met199-Val203, all other residues exhibit varying degrees of weakly anti-correlated

motions with respect each other. The motions of these residue subgroups can be

explained in better manner upon consideration of the information from the essential
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dynamics of active site residues. During the pincer ”closing” motion of the ligand,

ring C atoms come in close vicinity of Phe97-Pro99, which move away to avoid

clashes. However, these motions were not shown to be significant in the essential

dynamics analysis of the active site. During the pincer ”open” phase, ring C moves

back, while simultaneously Met199-Val203 move towards the ligand. The Phe97-

Pro99 subgroup then returns back to their original position. The anti-correlated

movements amongst the Phe97-Pro99 and Met199-Val203 subgroups arise purely

from the directions along which they move during the pincer ”open-close” cycle of

the ligand.

Figure 8.14 Dynamic Cross Correlation for the active site residues of 4TZK-c7a3
with the scale on right side indicating the dynamic cross correlation.

3. Substrate binding loop residues:

The dynamic cross correlations of the substrate binding loop residues for bulky

pyrrolidine carboxamides exhibit a completely different pattern of correlations

when compared against light pyrrolidine carboxamides (Figure 8.15). With a

notable exception of Met199 to Val206, all other residues of the substrate binding

loop mostly exhibit moderately anti-correlated (negatively correlated) motions that

signify that the residues move in opposite directions with respect to each other.

The dynamic cross correlations for the SBL merely lend support to the observation

that the residues Met199 to Val203 move slightly towards the ligand (pc-c7a3)

(Figure 8.9). Furthermore, the anti-correlated (negative correlation) motions for
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the remaining residues of the SBL can be attributed to the characteristic pincer

”open-close” motions of the bound ligand (pc-c7a3).

Figure 8.15 Dynamic Cross Correlation for the SBL residues of 4TZK-c7a3 with the
ramp on the right side indicating the dynamic cross correlation.

In summary, for bulky pyrrolidine carboxamides, it can be said that the observed mo-

tions for the representative ligand (pc-c7a3) appear to be more complex than for the

light pyrrolidine carboxamides. This manifests in higher RMSD as can be seen from the

RMSD analysis of their MD simulations. Moreover, essential dynamics and dynamic

cross correlation of pc-c7a3 and residues of the active site and the SBL revealed that only

the substrate binding loop was affected by the ligand movements. On the contrary, for

pc-d11, residues of the active site and the SBL simultaneously exhibited movements in

response to the ligand motions. Considering this, it can be safely said that bulky pyrrolid-

ine carboxamides mainly bring about the motions for the residues of the substrate binding

loop as opposed to both active site and SBL in case of light pyrrolidine carboxamides.

8.4 Discussion

The extensive molecular dynamics simulations carried out for the pyrrolidine carboxam-

ides contain a plethora of structural information about the important movements that are

critical in understanding their binding. Studying these movements can aid in optimising
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the binding of the ligands to InhA and drive structure-based design. However, a myriad

of motions spanning from a lower (“essential”) to a higher frequency (vibrational) occur

during a typical MD simulation. The former type of motions are often slow (occur with

a slow frequency), but contribute maximally to the overall protein motions as well as

protein function.

In case of light pyrrolidine carboxamides, the 2◦ carbonyl group as well as the C ring

were found to be the maximal contributors followed by the A ring. However, in the case

of bulky pyrrolidine carboxamides, given their sheer size and multiple rings, a different

pattern of movement was observed that resembled a pincer’s open and close cycle. The

maximal contributors to the ligand movement in the latter case were the rings A2 and

A3. The 2◦ carbonyl group and ring C atoms exhibited maximal mobility that was found

to be conserved in both light and bulky pyrrolidine carboxamides.

The differences in the characteristic motions of light and bulky pyrrolidine carboxam-

ides were manifested in a conserved pattern of correlated/anti-correlated movements

for the active site residues. A completely different pattern was observed in case of

the substrate binding loop residues. For active site residues of light pyrrolidine carbox-

amides, Met155 stood out as a solitary residue that exhibited anti-correlated movement

with respect to the rest of the system. Additionally, Met199 from the central region of

the substrate binding loop was found to approach the ligand. This implies adjustments

in the SBL upon its association with a ligand. The corresponding essential dynamics

analysis of the SBL for bulky pyrrolidine carboxamides revealed that Ile202 and Val203

moved towards the ligand instead of Met199. Upon comparison of the dynamic cross

correlation heatmaps for pc-d11 and pc-c7a3, it follows that light pyrrolidine carboxam-

ides induce modest to strongly correlated motions at both ends, i.e., in the minor exit

portal near the catalytic triad (Phe149, Tyr158, Lys165) as well the major exit portal (re-

gion around the C ring including the SBL). The bulky pyrrolidine carboxamides owing

to their characteristic motions affect only the residues of the major exit portal.

These conclusions are supported by the findings stemming from the dynamic cross

correlation for the substrate binding loop residues. A strong positively correlated motion

in the direction of the ligand was observed for light pyrrolidine carboxamides as opposed

to only a slight movement for bulky pyrrolidine carboxamides. From the same analyses,

it also emerged that the central part of the α-6 helix (residues Met199 to Ala206) always

moves towards the ligand for both light and bulky compounds from the pyrrolidine

carboxamide dataset. Finally, a pair of leucine residues (Leu197, Leu207) situated at the

beginning and end of the α-6 helix showed conserved motions with opposite directions.

Leu197 moved away from the ligand (ring C) while Leu207 moved in the opposite direction

(towards ring A2). The collective description of all these motions merely suggests a

modest movement of the SBL towards the ligand.
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8.4.1 Implications of essential dynamics for driving structure-based

drug design

The main question pertaining to the aforementioned analyses was whether the information

could be utilised to drive the structure-based optimisation of the pyrrolidine carboxam-

ide scaffold, particularly the bulky pyrrolidine carboxamides, given their higher potency.

In the above section, it was concluded that the rings A2, A3, and C are the maximally

mobile ones, with the former two also exhibiting ring rotation simultaneously as they

move. The stabilisation of these rings via increased interactions with the residues of

the binding pocket can be expected to bring about favourable changes that include the

increased substrate binding loop movement towards the ligand (i.e. loop closure). This

should directly affect the time for which the ligand interacts with the protein and thereby

its activity.

Accordingly, using the information from essential dynamics analysis, dynamic cross

correlation, as well as from literature [50, 346], several substitutions can be performed on

the bulky pyrrolidine carboxamide scaffold aimed at increased protein-ligand interactions.

For example, in order to stabilise the C ring motions, it can be replaced with a m-

chloro/bromo-substituted phenyl ring that is in conformity with results of Kumar et

al. [346]. Similarly, the motions of ring A2 and A3 can be attenuated by suitable

substitutions that increase the H-bonding interactions or steric hindrance to their ring

rotations. Finally, the logP and the synthesizability of the molecules have to be taken

care of whilst choosing the substitutions. The resultant molecules and the evaluations of

the same are described briefly in Chapter 9.





Chapter 9

Design and analysis of new pyrrolidine

carboxamides

9.1 Introduction

The Chapters 7 and 8 highlighted the comparatively “rigid” and “mobile” parts of the

ligand as well as the key residues along with the direction of their maximal variance,

respectively. In the Chapter 7, the relationship in between the structure of the ligand

and its observed dynamics for pyrrolidine carboxamides was thoroughly evaluated. The

essential dynamics of bulky and light pyrrolidine carboxamides alongwith the residues

of the active site and the substrate binding loop highlighted their principal motions in

MD simulations. An important aspect of the analyses performed in the aforementioned

chapters was their utility in the structure-based optimisation of pyrrolidine carboxamides,

especially the bulky ones. In line with the information gathered from Chapters 7 and 8 and

the SAR of pyrrolidine carboxamides from literature [50, 52], the design of new pyrrolidine

carboxamides was steered in line with the following direction:

1. Since most potent pyrrolidine carboxamides come from the bulky subgroup espe-

cially with the 3,5 diphenyl phenol system as the A ring, it was decided initially to

retain the entire ring and perform substitutions on ring A2 and A3, especially at

the meta positions.

2. The central B ring containing the 1◦ carbonyl group (Figure 7.3) as well as the

adjacent amide group were retained mainly because:

• Substitution of the B ring at 3’ and 4’ positions or introduction of a double

bond in between these carbon atoms led to nearly complete abolishment of

activity [52].

• The 1◦ carbonyl group or any group capable of forming dual H-bonds with the

cofactor and Y158 is critical as seen from numerous InhA inhibitors published

in literature [50].

• Upon comparison of pc-c7a3 and pc-p28, one can observe their structural

similarities, similar natures of the A and B rings. The cycloalkyl rings of

the two differ by a single carbon atom (Figure 9.1). However, inspite of

199
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this, docking predicted different binding modes for the same (Figure 3.21).

Moreover, pc-p28 is less potent than pc-c7a3 by an order of magnitude. This

highlights the importance of a simple amide group as a linker for the two rings.

As a result, the amide group linking A ring system to the B ring too was left

untouched.

Figure 9.1 Structures of pc-c7a3 and pc-p28, with the A and C rings labelled indi-
vidually, while the conserved pyrrolidin-2-one substructure represents the B ring.

label

3. In regards of the C ring, as mentioned in Section 8.4.1, the cyclohexyl ring or

phenyl ring suffices, though an increase or decrease in the number of carbon atoms

(and thereby ring size) led to decreased InhA inhibitory activity. The C6/C7/C8

cycloalkyl rings were found to be quite mobile, mainly because they faced the

exterior of the protein. In order to decrease the motions of ring C and increase its

interactions with the residues of the substrate binding loop, the ring C was replaced

with a unsubstituted or a meta-substituted phenyl ring (all halogens except iodine,

-CF3, and -CH3 group).

Figure 9.2 Core bulky pyrrolidine carboxamide scaffold with various substitution
possibilities being highlighted.
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4. Moreover, from slow tight binding inhibitors of InhA, e.g., PT-70 and PT92 [50], it

was seen that the C5-C8 n-alkyl chain stabilised the ligand binding orientation by

increased van der Waals interactions with the active site residues. Accordingly, the

A3 ring or C ring were replaced by n-alkyl chain with 6-8 carbon atoms, primarily

to stabilise the ligand binding. Additionally, to further stabilise the position of the

alkyl chain within the binding pocket, polar groups/rings were added to increase

H-bonding with binding pocket residues.

The end result of the above scheme were a total of 20 compounds whose structure and a

general synthesis scheme for a representative compound has been depicted in Figures 9.3

to 9.5, with the molecules b1-b11 being initially designed and analysed with various

in-silico methods (Section 9.3) in order to ascertain their activity as well as validate their

structure-based design. Thereafter, based on the initial results of the 11 compounds, the

structure-based optimisation was iterated to yield another 9 putative InhA inhibitors

(b12 - b20).

Figure 9.6 describes the overall workflow for the current analyses. Initially, the binding

orientations for b1 to b11 were obtained by mutating pc-c7a3 and pc-c6a3 to the respective

compounds followed by scoring them in-place with XPscore, with pc-b1 to pc-b7 obtained

from pc-c7a3, while the binding orientations for the remaining molecules (b8 - b11) being

obtained from pc-c6a3. These compounds (and later b12 to b20) were subsequently

subjected to docking in InhA using induced fit considering their molecular size, followed by

rescoring with DrugScoreX and SFCscore. The docking (and subsequent MD simulations)

was mainly performed to test the hypotheses that the alternate binding observed for

pc-c6a3 was artefactual in nature. If the binding orientations for any of the molecules

gets predicted as inverted much like pc-c6a3, then these ligands must exhibit the same

behaviour as that of pc-c6a3 in all analyses, i.e., low docking scores, high RMSD values

and weak to almost negligible H-bonding. On the contrary, if a majority of the new

ligands get docked like pc-d11 (reference ligand), then the inverted binding mode can

be considered as an artefact, underscoring the problems faced by the docking algorithm

in accurate scaffold placement. The detailed results of all analyses will be discussed in

the Section 9.3.
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Figure 9.3 New pyrrolidine carboxamides designed with help of information from
literature and essential dynamics analysis of MD simulations.
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Figure 9.4 New pyrrolidine carboxamides designed with help of information from
literature and essential dynamics analysis of MD simulations.
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Figure 9.5 New pyrrolidine carboxamides designed with help of information from
literature and essential dynamics analysis of MD simulations.

An advantageous prospect of the said molecules is that for a majority of the molecules,

the corresponding building blocks are available commercially, making their synthesis

and testing relatively easier. Finally, the novelty of the designed molecules was ascer-

tained by performing a thorough scaffold search in PubMed and Scifinder R©, with the

core pyrrolidine carboxamide scaffold as a search query (cf. Section 9.4).

9.2 Materials and Methods

As mentioned earlier, the designed compounds were subjected to a variety of in-silico

evaluations in order to ascertain an improvement in terms of various parameters, over

their parent compounds (pc-c7a3/c6a3) and the reference compound for all pyrrolidine

carboxamides, i.e. pc-d11. Accordingly, the compounds pc-b1 to b20 were subjected to

the following analyses:

1. Mutation and scoring in place using XPscore1

2. Activity prediction using LIE2

3. Docking and Rescoring

4. Activity classification using XPscore-SFC290p based logreg model

1only for compounds b1 to b11
2only for compounds b1 to b11
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Figure 9.6 Workflow for the analysis of the molecules derived via structure-based
optimisation of the pyrrolidine carboxamides-c6a3 and c7a3, respectively.

5. Mycobacterial permeability assessment

6. Dihedral angle and distance analysis

9.2.1 Mutation and scoring in place

This was a preliminary exercise to ascertain the effects of the various substitutions

on the core pyrrolidine carboxamide scaffold, evident from the comparison of their

scores with that of the reference ligand (pc-d11) as well as their parent compounds

i.e., pc-c7a3 and pc-c6a3, respectively. The rationale for the comparison was simple: a

favourable substitution should result in a noticeable increase in the rescoring values, whilst

unfavourable substitutions should get a lower score. Accordingly, the binding orientations

of compounds b1 to b11 were obtained via mutation of docked poses of pc-c6a3 and

pc-c7a3, respectively (Figure 9.6). The activity prediction using LIE method followed

this endeavour. In order to obtain reliable binding orientations for the compounds

b1 to b11 (and later b12 to b20), molecular docking with induced fit was performed.
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Accordingly, the mutated poses of b1 to b11 were not considered for any other analyses

other than docking and rescoring with DrugscoreX and SFCscore. The results and

discussion pertaining to this exercise has been covered in Section 9.3.

9.2.2 Affinity prediction using LIE method

For a small subset of designed compounds (N=11; b1 to b11), the affinity prediction was

carried out using the LIE method. The values of empirical parameters α, β, and, γ were

derived from the best LIE model described earlier in Chapter 4. The affinity prediction

using the LIE method served two purposes:

1. Assessment of the beneficial/unfavourable effects of the substituents on the overall

binding free energy.

2. Rigorous assessment of the orientation predicted by docking by evaluating bound

state in a 5 ns MD simulation.

9.2.3 Docking and rescoring

In order to obtain reliable binding orientations for the deigned pyrrolidine carboxamides,

the docking and pose selection protocol from Chapter 3 was extensively put to use. The

pose selection and parameters used for docking were exactly identical to those used for

bulky pyrrolidine carboxamides, as was the rescoring scheme. An additional purpose

behind the molecular docking was to further ascertain the hypotheses pertaining the

artefactual nature of the inverted binding mode as observed for pc-c6a3. Starting from

inverted input conformations, if the new molecules got docked in a crystal structure like

conformation, then it would signify that pc-c6a3 gets trapped in a local minimum during

its placement in the binding pocket. Since it is unable to escape the minima, the inverted

conformation gets selected as a top pose. This rationale holds true because the predicted

binding mode for any compound is independent of its input conformation. Moreover,

use of induced fit would aid in ascertaining the dominant binding mode for altogether

new compounds that share a common scaffold with molecules of known activity.

Furthermore, the induced fit docking and subsequent rescoring would enable one to:

1. Ascertain the authenticity of the poses generated by mutation in-situ.

2. Investigation of any new interactions with the active site residues of InhA.

The results of the molecular docking and rescoring are depicted in Tables 9.1 and 9.2,

respectively.
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9.2.4 Activity classification using XPscore-SFC290p based logreg model

The process of classifying the designed molecules as active/least active closely followed

molecular docking, since the activity-based classification model requires the docking

score and SFC290p values as input. Accordingly, the newly designed molecules were

subjected to an activity-based classification using the XPscore-SFC290p based model

depicted in Figure 4.7 and table 4.5. This approach was primarily used to validate

whether the designed molecules were highly active and thereby represented improvement

over their parent compounds and the reference ligand or not. The results of this analysis

are depicted in Table 9.3.

9.2.5 Mycobacterial permeability assessment

One of the main barriers for any compound that may exert anti-tubercular action

are the thick and waxy mycolic acids that form a part of the mycobacterial cell wall.

MycPermcheck [53], is a tool that provides for rapid and reliable estimation of the

mycobacterial cell wall permeability for a given test molecule. MycPermcheck takes in

various descriptors of the test molecule as calculated by QikProp or Padel [347, 348],

and gives the probability for the molecule permeating the mycobacterial cell wall.

In the current case, the requisite physiochemical descriptors of the designed molecules

were calculated using Qikprop and their mycobacterial permeability was assessed using

MycPermcheck 1.1. The results of the same are depicted in Table 9.3. Given the fact

that all of the new molecules were based of active bulky pyrrolidine carboxamides, the

chance that all of them were permeable across the mycobacterial cell wall was quite high.

Furthermore, from this analysis, one could observe in a qualitative fashion the effects of

various substituents on the overall mycobacterial permeability.

9.2.6 Dihedral angle and distance analysis

As seen from Chapter 7, the light and bulky pyrrolidine carboxamides exhibit a wide

variety in movements that was clearly dependent on their binding modes and the

substituents on the A ring, with both factors being closely tied with the overall potency

of the molecules. Accordingly, the potent molecules exhibited low fluctuations in both

dihedral angles as well as the RMSD values (C-α and bound ligand RMSD). There

was a close association of the binding mode and the overall nature and strength of

hydrogen bonding, which was depicted by the ligand-cofactor and ligand-Tyr158 distances,

respectively. These analyses provided a means of assessing the overall nature of binding

for the designed ligands. Accordingly, the newly designed molecules were subjected to
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the dihedral angle and donor-acceptor atom distance analysis. For this purpose, the 5

ns MD simulations of the ligands bound to InhA were utilised, with the raw data being

obtained with VMD-1.9.1 and results being plotted with the statistical framework R [273]

and associated packages. The results of this analysis are covered in Section 9.3.4.1.

9.3 Results

9.3.1 Docking and rescoring of new pyrrolidine carboxamides

The results of the molecular docking are depicted in Table 9.1. From the table, certain

trends were observed that can be enlisted as follows:

1. All of the molecules that were scored ”in-place” with XPscore showed a noticeable

increase in predicted binding energy as compared to their parent compounds

(pc-c6a3, pc-c7a3) and reference compound (pc-d11), respectively.

2. For a sizeable number of compounds (b4, b5, b7, b8, b10, and b11), the docking

scores were markedly less than the scores of their poses obtained via in-situ

mutation (Table 9.1). Of these, all molecules except b10 got docked in an inverted

conformation like pc-c6a3 (Figures 7.23 and 9.7). The occurrence of inverted

binding orientations for more than 50% of the initial compounds (b1-b11) suggests

a general problem of the docking algorithm in proper placement of the bulky ligands.

These molecules presented a perfect test for evaluating the hypothesis concerning

the inverted binding mode of pc-c6a3.

3. The molecules with inverted binding modes (b4, b5, b8, and b11) exhibit lower

DrugscoreX and SFC rescoring values as compared to molecules with a reference-

ligand-like binding mode. Simultaneously, these molecules demonstrate a noticeable

difference to the DrugscoreX and SFC scores of pc-c6a3. A general observation

pertaining to all molecules is that they exhibit improved docking and rescoring values

as compared to pc-d11 and pc-c6a3 and pc-c7a3 up to some extent. As compared

to pc-c7a3, the molecules with inverted binding modes fare poorly, while the ”in-

situ” mutated poses of the same compounds exhibited a contrasting behaviour,

i.e., improvement over pc-c7a3. After considering the trends from docking of

bulky pyrrolidine carboxamides, the ”in-situ” mutated poses for molecules getting

docked in an inverted mode may very well be the ”correct” binding mode. However,

the fact that almost 50% of the designed ligands were predicted to bind in an

inverted mode warranted further investigation.
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4. The LIE method demonstrated a slight improvement of the designed ligands over

their parent compounds (pc-c6a3 and pc-c7a3) irrespective of their binding mode.

The exceptions to this are the molecules b4 and b8 whose binding affinity was

predicted to be lower than that of pc-c7a3.

5. In regards of the molecular docking, the appropriate placement of the 1◦ carbonyl

group of the B ring was achieved for all of the designed pyrrolidine carboxamides,

irrespective of the binding mode. The proper placement of the B ring can be

attributed to the pharmacophore that filters out the poses which do exhibit the

1◦ carbonyl group (and thereby the B ring) in proper place ensuring the dual

H-bonds with Y158 and cofactor, respectively. The substructure RMSD values for

majority of the poses from molecular docking were always in the range of 0.80-1.20

Å (Tables 9.1 and 9.2). The compounds with inverted binding modes (b4, b5, b8,

and b11), on the contrary, exhibited high substructure RMSD values (around 6 Å).

Figure 9.7 The picture on the left depicts pc-b6 with correct placement in the binding
pocket. On the contrary, the one on the right has pc-b8 with an inverted binding mode
and thereby wrong placement of the ligand.

Going by the results depicted in Table 9.1, it was inferred that the proposed replacements

and substitutions of the rings A and C were proceeding in the right direction. Hence,

an additional 9 molecules (b12 - b20) were designed. These molecules represented

optimal ring replacements and substitutions, derived from the analysis of the earlier

compounds. Furthermore, while designing the compounds b12 - b20, attempts to optimise

the calculated logP (calculated log of octanol/water partition coefficient, abbreviated

a clogP) were also performed. The resulting molecules were thoroughly assessed in a

manner similar to their precursors except for the prediction of their binding affinity using

the LIE method. This was primarily done to thoroughly investigate the binding modes

for the new compounds before the time consuming MD simulations and their affinity

prediction using the LIE method. The results of the docking and rescoring for the newest

9 molecules are depicted in Table 9.2.
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Upon inspecting the Tables 9.1 and 9.2, the following observations hold true for the

compounds b12 to b20:

1. Modest improvements in XPscore as compared to pc-c7a3, which also translates to

better InhA inhibitory potential when compared against pc-d11 or pc-c6a3. The

compounds b14, b15, b16, b18, and b19 show noticeable decrease in the docking

scores. Of these, the compound b16 is a clear outlier since it not only exhibits a

big jump in the substructure RMSD (3 Å) but also when compared to the others

(substructure RMSD ≪ 3 Å). In the case of b18 and b19, the marked decrease in

docking scores can be attributed to a scaffold placement that differs significantly

as compared to pc-d11 (or pc-c7a3). The deviant poses for the aforementioned

compounds still form the required interactions with Y158 and cofactor because of

the pharmacophore which ensures the proper scaffold placement.

2. All of the compounds show a definite improvement in DrugscoreX and SFCscore

values when compared against pc-d11 and pc-c6a3. When compared against pc-

c7a3, a similar trend was observed except for b19, whose sfc290p value (8.65) is

slightly lower than that of pc-c7a3 (9.01). In general, the high values of DrugscoreX

alongwith the pharmacophore filtering ensure a correct placement of the new

ligands, while the rescoring with SFC predicted a rise of 1 pKi unit for most of the

compounds.

In general, for all compounds, various ring replacement and substitutions perform well

resulting in modest improvements in averaged apparent InhA inhibitory potential (pKi).

The averaged SFC290p difference for b1 to b11 was 0.36 pKi units as compared to

pc-c7a3 including the scores of compounds with inverted binding modes. Upon swapping

the inverted poses with ”in-situ” mutated poses, a marginal increase in the averaged

difference in SFC290p was seen (w.r.t. c7a3: 0.50 pKi units). The averaged difference

in SFC290p values rose to 1.30 (including inverted binding modes) and 1.20 (replacing

inverted binding modes with ”in-situ” mutated poses) pKi units when compared to

pc-d11. A similar trend was observed in case of the compounds b12 to b20, with an

averaged difference (increase) of 1.03 pKi units as compared to pc-c7a3 and an increase

by 1.95 pKi units when compared with pc-d11.

Furthermore, it can be seen that the various ring replacement and substitutions perform

well (Figure 9.8) as seen from docking as well as rescoring analysis performed with

DrugscoreX and SFCscore. In regards of scaffold placement, four molecules (b14, b16,

b19, and b20) exhibit substructure RMSD in range of 2 to 3 Å. This indicates the

problem of proper scaffold placement even when protein flexibility was taken into account.

Moreover, b19 and b20 have long alkyl chains replacing the ring A3 (cf. Figure 9.5)

and get docked in PDB 2X23. This was surprising, given the huge size of the ligands.
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Nevertheless, the high substructure RMSD can be attributed to the bulky size of the

ligands as well as the tight binding pocket of PDB 2X23. For the compound b14 and

b16, a similar argument holds true.

Figure 9.8 The picture on the left depicts the ”in-situ” mutated pose of pc-b9 obtained
from pc-c6a3 (inverted binding mode). On the contrary, the one on the right depicts
the docked pose of pc-b9 with a correct placement of the ligand.

9.3.2 Mycobacterial cell wall permeability of new pyrrolidine carbox-

amides

The designed pyrrolidine carboxamides were assessed for their ability to permeate the

mycobacterial cell wall, with the results being depicted in Table 9.3. The results clearly

indicate that all of the designed molecules exhibit satisfactory mycobacterial cell wall

permeability when compared against pc-d11 or their parent compounds (pc-c6a3 and

pc-c7a3). Consequently, all of the designed molecules must be able to permeate through

the mycobacterial cell wall in in-vitro activity assays.

9.3.3 Activity classification of new pyrrolidine carboxamides

As an additional ”in-silico” assessment of the new pyrrolidine carboxamides, the activity

classification of the new molecules was carried out using the XPscore-SFC290p based

logistic regression model depicted in Figure 4.7 and table 4.5. The results were in line with

the expectations that most of the compounds will be deemed as highly active (Table 9.3).

This is partly because almost all of the molecules exhibited noticeable improvements over

their starting compounds in terms of docking as well as rescoring. The underlying model

that enables the activity-based classification of pyrrolidine carboxamides owes majority

of its predictive power to the SFC290p scoring function. Since, all of the new pyrrolidine

carboxamides demonstrated moderate to high SFC290p values, the outcome of this

exercise was in line with the expectations.

However, as seen from Table 9.3, the compound pyrrolidine carboxamide-b19 has been

classified as least active. The primary reason behind this is the divergent binding of the
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ligand, which stems from its bulky size that causes problems for proper scaffold placement

during docking. This results in a strict penalty by the Glide XP scoring function that

assigns a low XPscore to the docked pose and thereby the molecule is predicted as less

active. Upon consideration of the ”in-place” rescoring values for b19, a contrasting result

is obtained. Moreover, a similar behaviour is also observed for pyrrolidine carboxamide-

b18, but it is not predicted as least active primarily because of its high SFC290p score. In

summary, the in-silico assessments performed so far demonstrated the beneficial effects

of the substitutions on the core pyrrolidine carboxamide scaffold.

Table 9.2 Docking and rescoring values for docked poses of the designed pyrrolidine
carboxamides-b12 to b20. The substructure RMSD was with respect to pc-d11, the
ligand in PDB 4TZK.

Parameter d11 c6a3 c7a3 b12 b13 b14 b15 b16 b17 b18 b19 b20

XPscore6 -10.09 -5.17 -12.87 -14.23 -13.37 -11.95 -11.73 -10.65 -15.26 -8.84 -6.15 -12.80

RMSD7 0.37 6.46 1.81 0.79 1.74 2.18 1.13 3.00 1.58 1.51 2.20 2.90

DrugscoreX -120.79 -120.99 -181.86 -224.20 -207.67 -204.57 -192.80 -218.98 -214.94 -213.20 -208.74 -211.67

sfc229p 7.82 8.25 9.38 10.37 10.36 10.85 9.64 9.77 10.97 9.87 9.09 9.76

sfc290p 8.09 8.04 9.01 9.98 10.28 10.82 9.67 9.94 10.73 9.89 8.65 10.37

sfc rf 7.50 7.73 7.82 9.42 8.97 8.88 8.78 8.47 8.84 8.80 8.72 8.49

9.3.4 Dihedral angle and H-bond analysis of new pyrrolidine carbox-

amides

The previous sections dealt with static in-silico assessment of the binding affinity, activity

and mycobacterial permeability of the new compounds. In order to shed more light on the

binding of these new compounds to InhA, the binding dynamics of the new compounds

has to be studied and understood in detail. Likewise in Chapter 7, the dihedral angle

and hydrogen bond analysis was performed on the 5 ns MD simulations of the ligands in

bound state. The entire dataset of 20 compounds were simulated under NPT conditions,

with conformational changes being stored in the trajectory at every pico second. Thus,

these analyses enable one to extensively follow the conformational changes and thereby

shed light on the binding dynamics of the new compounds. The ensuing sections highlight

the nature of binding for the designed compounds, while the last section will briefly

discuss the binding modes of some promising compounds from the designed molecules.

6units: kcal/mol
7Substructure RMSD, units Å
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Table 9.3 Mycobacterial cell wall permeability and activity classification
for the reference compound (pc-d11), parent compounds (pc-c6a3, pc-
c7a3), and the designed pyrrolidine carboxamides, respectively. The ligands
marked in boldface are the ones with inverted binding modes. For these
compounds, the ”in-place” XPscore and SFC290p have been used.

Compound clogP Permeability XPscore SFC290p Activity

d11 4.98 0.35 -10.09* 8.09 Highly active

c6a3 5.72 0.74 -9.80 8.04 Highly active

c7a3 6.28 0.74 -14.48 9.01 Highly active

b1 5.78 0.90 -14.14 9.09 Highly active

b2 5.93 0.90 -14.34 9.26 Highly active

b3 6.50 0.90 -14.28 9.50 Highly active

b4 4.02 0.78 -13.74 9.17 Highly active

b5 6.76 0.77 -12.78 8.64 Highly active

b6 5.39 0.85 -13.89 10.08 Highly active

b7 6.80 0.91 -13.66 10.25 Highly active

b8 6.67 0.91 -10.38 8.62 Highly active

b9 6.60 0.74 -9.43 8.20 Highly active

b10 6.65 0.91 -10.37 8.42 Highly active

b11 6.28 0.88 -10.33 8.36 Highly active

b12 4.84 0.73 -14.23 9.98 Highly active

b13 5.12 0.85 -13.37 10.28 Highly active

b14 5.85 0.81 -11.95 10.82 Highly active

b15 5.19 0.71 -11.73 9.67 Highly active

b16 7.45 0.48 -10.65 9.94 Highly active

b17 5.89 0.85 -15.26 10.73 Highly active

b18 4.50 0.69 -8.84 9.89 Highly active

b19 6.10 0.75 -6.15 8.65 Least active

b20 5.82 0.77 -12.80 10.37 Highly active

* units for docking in kcal/mol

The docking scores (XPscore and SFC290p) in boldface indicate they have been

taken from in-situ mutated poses

The clogP for all compounds was calculated using MoKa-2.6.0 [327].

The input conformations for the MD simulations were derived primarily from docking

with induced fit. The dihedral angle and H-bond analysis, much like Chapter 7 provide

a means for testing the hypotheses pertaining the artefactual nature of the inverted

binding mode.

9.3.4.1 Dihedral angle analysis

Figure 9.9 depicts the dihedral angle distribution for the new compounds, with the

reference compound, i.e. pc-d11, occupying the pole position followed by the parent

compounds (pc-c6a3, and pc-c7a3) in order to facilitate comparison of the distributions.

Similarly, Figure 9.12 depicts the RMSD fluctuations of the designed compounds, with

the order being identical to that in Figure 9.9.



Chapter 9. Design and in-silico analysis of optimised pyrrolidine carboxamides 215

Figure 9.9 Boxplots depicting the (a) dihedral angle-α (top), and the (b) dihedral
angle-β (bottom) for new pyrrolidine carboxamides, with the reference ligand d11 at the
pole position. The median for the distribution of the dihedral angles has been depicted
as a white circle

From Figure 9.9 , the following observations were made:

1. In terms of dihedral angle α and thereby the ring A system, the compounds pc-

c6a3, pc-b9, and b18 show a noticeable and simultaneously wide variation in the

distribution implying that there is low barrier for rotation of ring A1 around the

C-N bond linking the B ring to the A ring system. In case of pc-c6a3, the inverted
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binding mode with the bulky portion facing the exterior region of the protein makes

possible the free rotation and thereby the wide variation in dihedral α. In case

of pc-b9, the wide variation in the dihedral angle arises due to the rotation of

the 2◦ carbonyl group at around 1.7 ns (Figure 9.10) that leads to a huge change

in the dihedral α. However, after this the binding mode is fairly stable with no

further changes as observed from the 5ns MD simulation. However, pc-b18 does

not show a complete flip of the 2◦ carbonyl group. Nevertheless, the wide variation

in the dihedral α for b18 arises from in-place motions of the central A ring and 2◦

carbonyl group, respectively. The in-place motion of the A ring system is further

enhanced due to the rupture of the hydrogen bond of the central ring with Pro156.

A similar observation holds true for the compounds pc-b2 and pc-b7, with a m-CF3

substitution on ring A2.

Figure 9.10 Flip of 2◦ carbonyl group after 1.7 ns: The arrows denote the
flipped 2◦ carbonyl group. The substrate binding loop is coloured red, while the
hydrogen bonds are shown as lime coloured dashes.

2. There is a wide variation in the distributions of the dihedral angle α, though a

majority of the ligands get docked in a conformation like pc-d11. For example, the

compounds b4, b5, b8, and b11 exhibit a wide distribution as well as increased

number of outliers than rest of the designed compounds. The slightly wider

variation in the dihedral α for these compounds is in line with the observation

made for the parent compound pc-c6a3, whose A ring system faces the exterior

and moves freely. The comparatively narrow distribution of dihedral angle α for

the remaining molecules stems from their proper placement within the binding

site, where interactions with the active site residues stabilise the motions of the

A ring system. This merely underscores the conclusions from Chapter 7, that the

crystal structure ligand conformation is the dominant binding conformation for

bigger pyrrolidine carboxamides.

3. The dihedral angle β, which represents the ring C rotations also exhibited a wide

variations as far as the compounds b1 to b11 were concerned. Likewise in the case

of dihedral angle α, the compounds getting docked in an inverted binding mode

(b4, b5, b8, and b11) exhibited a wider variation in the distribution as well as

more number of outliers as compared to rest of the compounds. The compound
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b5 is clearly an exceptional example with its inverted binding mode that signifies

improper placement of the ligand in the binding pocket. The planar phenyl ring

(ring C) points into the space normally occupied by the bulky A ring system and

thereby moves freely. This gives rise to the wide variation in β for the respective

compound. Similar observations hold true for the other compounds (b4, b8, and

b11) that get docked in an inverted fashion.

4. The compounds b12 to b20 present an intriguing case as far as the motions of

the ring C are concerned. All of these compounds show a comparative narrow

distribution as compared to all other molecules, except the reference molecule

(i.e., pc-d11) and pc-b1. The (un)-/substituted phenyl ring for the aforementioned

compounds was found to interact with the cofactor and key residues (Met199,

Ile202, and Val203) that the line the substrate binding loop. Assuming that the

MD simulations sample almost real physical states of the protein, the geometrical

arrangements around the C ring are expected to give rise to C-H-π, lone pair-π

and sulphur-arene ring interactions [349] (Figure 9.11). While the force field does

not specifically describe any of these interactions, somehow these might be at least

implicitly accounted for by the van der Waals terms. Furthermore, the drastic

changes in the median values of dihedral β, for example, the median value for the

compounds pc-b1, b2, b3, b4, b13, b17, and b19 is around -120◦, while that of rest

of the system varies in between 60◦ to 120◦. These changes can be attributed to

the pseudo-symmetry of the C ring that results in the respective dihedral angle

distribution. Finally, in the case of compound pc-b18, with a n-heptyl ester group as

the C ring, the stabilisation of the flexible alkyl chain can be attributed exclusively

to the van der Waals interactions with the residues that line the substrate binding

loop.

5. Inspection of the bound ligand RMSD values for the designed compounds (Fig-

ure 9.12) revealed that the majority of them exhibited RMSD in the range 0.8

- 2.2 Å. The visible outliers are pc-b4, pc-b8, pc-b14 and pc-b16, respectively.

The high RMSD values for pc-b4 and pc-b8 can be attributed to their inverted

binding modes. The compound pc-b16 represents a notable exception, since it gets

docked in a crystal structure ligand like conformation. The compound b16 is quite

hydrophobic and consequently, van der Waals interactions play a greater role in

stabilising its binding mode as compared to hydrogen bonds. The compound itself

forms weak and transient bonds (cf. Table 9.4) that offer a very low barrier to the

motions of the ligand within the binding pocket. As a result, upon rupture of the

solitary hydrogen bond with Tyr158, this ligand moves within the binding pocket

resulting in a higher median RMSD value. Furthermore, the higher than normal

median RMSD values for the majority of the designed ligands can be attributed

to their bulky nature and the rearrangements within the binding pocket through
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Figure 9.11 Various non-bonded interactions for a representative de-
signed pyrrolidine carboxamide-b20: The hydrogen bonds appear as black dashes.
The lone pair-π interactions are depicted as orange dashes. The ligand has been depicted
as lime coloured sticks, cofactor as purple coloured sticks and the substrate binding
loop as a red coloured α helix.

the MD simulations. In the case of pc-b14, with an methylsulfanylbutyl group as

the A3 ring, the higher RMSD values can be attributed to two factors, namely the

difficulty faced by docking in placing the ligand correctly in the binding pocket;

and the aforementioned group that is quite flexible which gives rise to the binding

instability in the said compound.

6. Finally, the C-α RMSD distributions of the new ligands depicted an expected

observation, where the majority of the median RMSD values were above 1.5 Å.

The comparatively higher median C-α RMSD values for the designed compounds is

hardly surprising, given the bulky nature of the ligands and the flexible nature of

InhA. The compound b13 exhibits a quite narrow and unique RMSD distribution

alongwith b15. The small dips in the smooth shape of their RMSD distributions

signify noticeable fluctuations in the motions of the residues in the immediate

vicinity of the ligand. This can be observed in Figure 9.13, where the dihedral

angles indicate an ”in-place” motion of the ligand that is accompanied alongwith a

systematic rise in the C-α RMSD. A similar observation holds true for b15 as well,

that suggest initial adjustments within the binding pocket followed by stabilisation

of the binding mode.

From the above observations, it can be clearly seen that optimisation of the pyrrolidine

carboxamide scaffold worked in the right direction, with majority of the ligands exhibiting

stable binding, although most of them exhibited both higher than normal median RMSD

values. Nevertheless, the information from the dihedral angle analysis clearly depicts

remarkable stability for about half of the designed compounds. A sizeable number of the

remaining compounds exhibited inverted binding modes that have been associated with
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Figure 9.12 Violinplot depicting the kernel density distribution of C-α RMSD and
bound ligand RMSD (heavy atoms only) for new pyrrolidine carboxamides, with the
order of compounds being described in Figure 9.9. The thick central bar depicts the
interquartile range, white circle denotes the median for the distribution. Furthermore, a
dip in the smooth shape of the violin indicates a steep change in the RMSD distribution

increased binding instabilities and weak H-bonding. Considering the fact that stable

binding was associated principally with the crystal structure ligand conformation, the

artefactual nature of the inverted binding modes is lent further support.



Chapter 9. Design and in-silico analysis of optimised pyrrolidine carboxamides 220

Figure 9.13 Dihedral angle distribution and RMSD fluctuations for pc-b13 over 5ns
NPT simulation

9.3.4.2 H-bond analysis

The quality of the binding as visible in the H-bond occupancy can be seen in Table 9.4,

with the ligands marked in bold showing the alternate H-bonding conformation as seen

in Chapter 7 for pc-d8 (4TZT ligand; Figure 7.27). As opposed to pc-d8, the alternate

conformation of the designed compounds is not transient, but a stable one, as can be

seen in case of pc-b12 (Figure 9.15). The transition from the crystal structure ligand

like conformation to the alternate H-bonding conformation takes place early in the

simulation (around 200 ps) and stays as is till the end of the sampling period, i.e., 5

ns. The presence of an alternate H-bonding conformation is further lent support from

the donor-acceptor atom distance plots (Figure 9.14) that clearly suggest that in case

of some compounds, the alternate H-bonding conformation is indeed sampled during

the MD simulations. Table 9.4 also helps to reinforce the following observations already

made in Chapter 7:

1. The new compounds also exhibit weak to moderate hydrogen bonding with Tyr158

and NAD+.

2. The compounds exhibiting inverted binding modes (b4, b5, b8, and b11) show weak

and transient H-bonding as compared to the other designed compounds which bind

to InhA like the reference ligand (pc-d11). This can be seen from Table 9.4 in form

of very poor to poor H-bond occupancies with either Tyr158 and NAD+. This

merely lends support to the fact that the inverted binding mode results in non-

optimal h-bonding. It is the lack of proper H-bonding that manifests in noticeable

fluctuations in dihedral angles and RMSD values during the MD simulations.

3. In case of the ligand-Tyr158 distance, a wide variation in the distances can be seen.

The visual outliers are the compounds b4, b5, b8, b10, b11, b12, b16, and b18. Of

these, the ligands with inverted binding mode, i.e., b4, b5, b8, and b11 exhibit

a wide variation in the donor-acceptor atom distance and a copious number of
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Table 9.4 The H-bond occupancies highlighting the H-bonding quality for ligand-
Y158 and ligand-cofactor H-bond. The molecules marked in bold exhibit the alternate
H-bonding conformation.

Compound
H-bond occupancy (in % over 5 ns)

Ligand-Y158 Ligand-NAD

b1 36.26 55.64
b2 48.16 61.38
b3 42.96 45.52
b4 21.62 2.78
b5 0.14 43.32
b6 48.66 38.72
b7 32.60 34.72
b8 3.50 3.74
b9 59.26 8.52
b10 59.30 40.50
b11 21.80 1.50
b12 45.88 21.60
b13 47.10 52.52
b14 45.28 35.96
b15 56.70 53.70
b16 49.72 0.00
b17 46.92 54.88
b18 50.68 36.86
b19 43.82 52.48
b20 37.22 46.66

outliers. This also supports the destabilised binding of the respective compounds.

For the rest of the compounds, i.e., b12, b16, and b18, all exhibit the alternate

H-bonding conformation that explains the wide variation in distributions of their

donor-acceptor distances.

4. Furthermore, in case of the ligand-NAD+ distance, the compounds b4, b8, b9, b11,

and b16 can be classified as outliers by visual inspection. Of these, b4, b8, and

b11 exhibit the inverted binding mode, which again points to their artefactual

nature. In case of b16, the transition from the crystal structure like conformation

to the alternate H-bonding one can be attributed to a higher median value of the

ligand-NAD+ distance. The ligand b9 presents an interesting case, since it binds

like the reference ligand and moreover gets docked in PDB 2X23. A combination of

the aforementioned factors should lead it to exhibit stable binding, which it does.

However, the disruption in the ligand-NAD+ bond can be attributed to the free

motion of the n-alkyl chain that replaces the cyclohexyl ring from bulky pyrrolidine

carboxamides.
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Figure 9.14 Boxplots depicting the distribution of donor-acceptor atom distances for
new pyrrolidine carboxamides-NAD+-Y158, with the ligands being sorted a way similar
like Figure 9.9. Furthermore, the outliers are bronze circles while the median is depicted
as a white circle. The whiskers depict the interquartile range for the ligand specific
distance distribution

9.4 Discussion

The present chapter described in detail the approaches for thorough in-silico evaluation

of the new pyrrolidine carboxamides whose design was inspired by the findings from

the essential dynamics (Chapter 8), dihedral angle analysis (Chapter 7), and SAR
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Figure 9.15 Alternate H-binding conformation of pyrrolidine carboxamide-b12 (grey
sticks); SBL is shown as red helix, Y158 as marine sticks, cofactor as orange sticks and
H-bonds as dashed lines (black dashed line for secondary carbonyl-Y158 bond; magenta
dashed line for primary carbonyl NAD bond).

of InhA inhibitors derived from literature [50]. The main aim behind the design of

these compounds was optimisation of the binding by means of increased non-bonded

interactions with the protein, particularly increasing the number of H-bonds that the

ligand forms with the protein. This was in addition to the dual H-bonds that are

expected to stabilise the binding to a large extent. Accordingly, a series of 11 molecules

were initially designed followed by assessment of their binding modes and affinity by

molecular docking and the LIE method. This was closely followed by another round of

structure-based optimisation, wherein the beneficial substitutions from the first round

were applied on the core pyrrolidine carboxamide scaffold taking the total number of

designed molecules to 20.

The induced fit docking was able to satisfactorily predict the binding modes for a majority

of the compounds, whilst inverted binding modes were reported for 20% of the total

compounds. As a generalised observation, compounds with inverted binding mode scored

poorly as compared to rest of the dataset. The difference in between the docking score

for the better scoring ligands and their parent compounds (pc-c6a3 and pc-c7a3) as well

as the reference compound (pc-d11) ranged from 0.5 kcal/mol to as high as 6 kcal/mol.

On the contrary, the inverted binding modes clearly lagged behind the parent as well as

the reference compound. The rescoring exercise that followed the induced fit docking

clearly showed an improvement in the average predicted affinity by 0.5-1.3 pKi units when

compared against pc-c7a3 and 1.2-1.95 pKi units when compared against the reference

compound (pc-d11). Likewise, during docking, the compounds with inverted binding

mode got lower scores than their counterparts getting docked like the reference ligand

(pc-d11).

The dihedral as well as H-bond analysis suggested that the inverted binding modes were

possibly artefactual. For a sizeable number of ligands, the input conformation for docking
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was inverted whilst the docked pose resembled the reference ligand orientation (e.g.

pc-b9). The same analysis also highlighted the remarkable stability of the new pyrrolidine

carboxamides barring a few exceptions (pc-b7, pc-b16), which were purposefully designed

to serve as a sort of litmus test for favourable/unfavourable pattern of substitution. The

H-bond analysis also revealed that 20% of the designed molecules (Table 9.4) exhibited

alternate hydrogen bonding conformation which were stable and demonstrated their

own characteristic distribution of dihedral angles and donor-acceptor atom distances.

The complementary H-bond and distance analysis provided support to the aforesaid

observations, while suggesting the artefactual nature of inverted binding mode. The

designed compounds, much like their parent pyrrolidine carboxamides, exhibited moderate

H-bonding.

The additional in-silico tests that evaluated the mycobacterial permeability as well as

predicted the activity class for the new compounds yielded expected results. Across all

of these tests, almost all of the molecules exhibited noticeable improvement over the

reference ligand and their parent compounds. The beneficial effects of the substitutions

can be seen in case of the new pyrrolidine carboxamides with polar substituents (pc-b4,

b6, and b18), all of which exhibited high mycobacterial permeabilities (Table 9.3). A

similar trend was observed in case of activity prediction using the XPscore-SFC290p

based logistic regression model, wherein all except one molecule (pc-b19) were deemed

highly active. This prediction can be attributed to the low docking score assigned to the

compound during docking, given the reliance of the logistic regression model on both

XPscore and SFC290p. Nevertheless, the supplementary evaluations clearly pointed out

the favourable nature of the new compounds [52].

Moreover, the novelty of the designed molecules was confirmed, when a substructure

query on Scifinder R© using the core pyrrolidine carboxamide scaffold returned only a

solitary hit (Figure 9.16). The solitary molecule was synthesised and tested by He. et al.,

who are the original authors behind the published pyrrolidine carboxamides. Additionally,

the synthesis scheme for a representative compound has been enshrined in Appendix C.

Figure 9.16 Solitary compound returned from Scifinder R© using the core pyrrolidine
carboxamide scaffold as a query.
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A interesting finding from the MD simulations was the stabilisation of the ligand bind-

ing, which was previously difficult to achieve with the bulky pyrrolidine carboxamides,

although the bound ligand RMSD for all of the ligands was much higher than their

parent compound. The stable binding of the new pyrrolidine carboxamides alongwith

the role of the dual H-bonds in binding mode stabilisation is explained via extensive

MD simulations (150 ns in bound state) of representative compounds (b6, b9, and b12).

All three compounds get docked like pc-d11 and exhibit remarkable stability. This is

evident in negligible change in the binding modes for b6 and b9, respectively. In case of

b12, a change in binding mode much similar to pc-p36 and pc-d8 (Figures 7.27 and 7.30)

was seen. However, in contrast to the aforementioned compounds, the binding mode of

b12 changes from crystal structure ligand like to the one depicted in Figure 9.15 and

stays put through the 150 ns MD simulation. This implies the stability of the alternate

H-bonding conformation of b12 as compared to metastable in case of pc-p36 and pc-d8.

Moreover, it was quite important to choose the best performing ligands from amongst the

designed ones for further synthesis and testing. Since, all of the compounds represented

modest improvement over pc-d11, pc-c6a3, and pc-c7a3, appropriate compounds for

further synthesis and testing were selected on the basis of the following criteria:

1. The difference in between the SFC290p score of the ligand and pc-d11 as well as

pc-c7a3. For the former case, a difference of ≥ 1 pKi unit and in the latter case ≥

0.5 pKi was used as a filter.

2. Thereafter, the bound ligand RMSD values of the ligands were considered. For this

purpose a upper limit of 1.30 Å was set, following which the ligands with low logP

values were considered .

3. It is a known fact that compounds with higher logP values tend to cause significant

formulation and testing issues during in-vitro and in-vivo phases. However, this

rule has several exceptions [350]. Considering this, an upper limit of logP 5 ±

0.70 units was set as a filter. Furthermore, the actual logP values for the designed

molecules are not available and hence the respective logP values (abbreviated as

clogP) were calculated using MoKa-2.6.0 [327].

Applying the aforesaid filters on the designed compounds revealed the following com-

pounds worth investigating further: pc-b4, pc-b6, pc-b12, and pc-b18.

9.5 Conclusion

In conclusion, the following points can be safely considered as worth mentioning:
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1. The structure-based optimisation of pyrrolidine carboxamides performed using

information from essential dynamics and literature was deemed effective as relevant

from the various in-silico assessments as well as rigorous MD simulations.

2. The dihedral angle as well as H-bond analysis revealed the possibility of the inverted

binding modes being artefactual. The support for the same comes from very weak

hydrogen bonds with either Tyr158 or cofactor as well as high values for C-α and

bound ligand RMSD. Verification of the inverted binding modes remains to be

ascertained given the lack of crystal structures for bulky pyrrolidine carboxamides.

3. The 150 ns MD simulations for select compounds pc-b6, b9, and b12, shed light on

the the existence of alternate H-bonding conformations that are quite stable. The

said mode was observed for 20% of the designed ligands.

4. Inspite of higher median values for both C-α and bound ligand RMSD, a majority

of the ligands exhibited remarkable binding stability.

5. On an overall basis, all of the compounds, barring b7 and b16, appear promising.

After taking into consideration the in-silico evaluations and the extensive MD

simulations, the compounds pc-b4, pc-b6, and pc-b12 can be put forward as

promising candidates for further evaluation and testing.



Chapter 10

”Rapid reversible binding” of pyrrolidine

carboxamides: Revealing molecular

determinants by MD simulations

10.1 Introduction

The chapters 8 and 9 exemplify the utility of MD simulations and essential dynamics in

driving the structure-based optimisation of pyrrolidine carboxamides. The Chapter 9 also

reveals the dominant binding conformations of the new pyrrolidine carboxamides along

with promising candidates for further in-vitro evaluation. The important residues involved

in the binding of light pyrrolidine carboxamides have already been known. However,

this information is lacking in the case of bulky pyrrolidine carboxamides as well as the

new ligands due to a lack of crystal structures. Revealing the key residues involved in

their binding along with their conformations would aid in a better understanding of the

binding of pyrrolidine carboxamides to InhA. The corresponding information in case of

the slow tight binding inhibitors of InhA (diphenyl ethers) is well known [67, 261]. A

brief comparison of the conformational changes of key residues for these two classes of

InhA inhibitors can qualitatively reveal the causative factors behind the nature of their

binding to InhA.

The current work focusses on elucidating the detailed molecular determinants driving the

apparent ”rapid reversible” binding of pyrrolidine carboxamides to InhA. Loop ordering

and the associated conformational changes of the SBL and active site upon ligand binding

are decisive factors in the context of both slow-tight and ”rapid reversible” binding.

An effective ligand is able to bring about an ordering (and closure) of the SBL which

is closely associated with a two-step association (cf. slow-tight binders) [74]. As seen

from Li et al. [74], the open and closed states of the SBL correspond to the EI and

EI* states, respectively (cf. Figure 10.1). The EI state can be observed in the case

of PT155 (2-pyridone, rapid reversible inhibitor; PDB 4OXK/4OXN), the substrate

analogue (C16-NAC, PDB 1BVR) and pyrrolidine carboxamides (Figure 10.2).

The EI* state, characterised by an ordered (and closed) SBL, has been observed for

the slow-tight binding diphenyl ethers PT70 and PT92. These observations suggest

227
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that pyrrolidine carboxamides might exhibit rapid reversible binding and thereby lacking

the ability to bring about an closure of the SBL.

Figure 10.1 Representative free energy profile for a slow-tight binding InhA inhibitor
(PT70). The macrostates EI and EI* comprise several microstates (conformations).
Figure adapted from [261].

Considering the aforementioned research results pertaining InhA, this chapter is based on

the following assumptions: 1) The ternary structure of InhA-NAD+-PT70 represents the

EI* state with a closed SBL conformation. The discussions in the recent literature strongly

support this assumption [67, 74]. 2) The open conformation of the SBL as observed in the

PDB structures 4OXK/4OXN, 1BVR, and 1P44 (genzyme series) and 4TZK (pyrrolidine

carboxamides) corresponds to the EI state. 3) Because of the open conformation of the

SBL in case of 4TZK, all pyrrolidine carboxamides can be considered as rapid-reversible

inhibitors. However, the conformations of the SBL in the 4OXK/4OXN, 1BVR, 1P44,

and 4TZK vary slightly (Figure 10.2). The SBL states for PDB 4OXK/4OXN and 4TZK

can be considered as one of the several microstates that populate the EI macrostate.

The conformational changes between EI and EI* happen on a time scale that is hardly

accessible by classical unbiased MD simulations. However, the conformational changes

within the macrostate EI (represented by PDB 2NSD, 4TZK, and 1BVR etc.) and the

EI* state (represented by PDB 2X23) can easily be analysed via long MD simulations.

Valuable mechanistic insights into the conformational dynamics of the aforementioned

macrostates can be obtained from the analysis of these long MD simulations. In line

with these assumptions, conformational clustering techniques have been extensively used
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in the current chapter to unveil the similarities and differences amongst the closed and

open conformations of the SBL which are visible in PDB 2X23 and the PDB structures

2NSD and 4TZK, respectively.

Figure 10.2 Various conformations of the substrate binding loop starting with the
closed state (EI*, 2X23; green) as opposed to all the remaining structures that show a
progressive opening of the SBL signifying a destabilised state. The other conformations
of the SBL are in the following order: salmon (4OXK; PT155), magenta (4TZK, pc-d11),
yellow (1BVR, C16-NAC (C16-thioester)), and cyan (1P44, GEQ). The bound ligand of
PDB 2X23 has been depicted as violet sticks. All structures correspond to chain A of
the respective PDB files.

10.2 Materials and Methods

This section elaborates on the atom selections defining the active site and the SBL,

the theory behind the clustering methods used, and particularly focusses on revealing

the conformational differences of the active site residues in the case of pyrrolidine

carboxamides in contrast to PDB 2X23 that represents a closed SBL (EI*) state.

10.2.1 Atom selections

As seen in Chapter 8, the essential dynamics analysis was centered around the residues of

the active site and the SBL. However, the definitions of the active site and SBL as used

by Luckner et al. [72] and Merget et al. [261] differ from the ones used in the current

work. In the aforementioned works, the following residues constituted the active site:

Phe149, Tyr158, Ala198, Met199, Ile202 and Val203. In the current work, however, all

residues within a radius of 5 Å around the bound ligand were considered to form the

active site (cf. Chapter 8). Clearly, our new definition considers a greater number of

residues in the subsequent analyses.
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Additionally, according to Luckner et al. [72], the definition of the SBL includes residues

Ile202 to Ile218, while Li et al. defined the SBL from Leu197 to Glu210 [74]. However,

the current work defines the SBL as the stretch of residues from Arg195 to Gly212. In

order to account for the 6 residues 213 to 218, that have not been considered in the new

definition of the SBL described so far, these missing 6 residues were added to the earlier

definition of the active site to give rise to a new atom selection termed ”extended active

site”.

• Active site:

The definition of active site was set to the one used by Luckner et al. [72].

• Extended active site:

Coined mainly to account for the discrepancies between the current SBL definition

(residues 195 to 212) and that made by Luckner et al. [72]. Corresponds to residues

situated within a 5 Å radius of the bound ligand.

10.2.2 Systems analysed

In order to comprehensively portray the effect of pyrrolidine carboxamides (including

the designed ones) on InhA and to compare the conformational changes in its active

site residues with respect to the published results, a total of 9 protein-ligand complexes

has been analysed. Of these, two represent light pyrrolidine carboxamides as well as

the crystal structures (PDB 4TZK and 4TZT), two represent the most potent com-

pounds from the bulky class (4TZK-c6a3 and 4TZK-c7a3) while the remaining 5 are

the compounds whose design was driven by essential dynamics. These 5 compounds

represent the most favourable (2NSD-b3, 2NSD-b6, 2X23-b9, and 2NSD-b12) as well as

one unfavourable (2NSD-b7) substitution on the pyrrolidine carboxamide scaffold. In

order to capture the slow dynamic changes in the conformations of the active site residues

for the aforementioned ligands, long MD simulations (150 ns per protein-ligand complex)

were utilised. The total length of these simulations was expected to yield insights into

the intermediate conformations that populate the EI state. All of the 150 ns simulations

were extensions (under the same conditions) of the 5 ns MD runs performed for the

binding affinity prediction in Chapter 4.

10.2.3 Clustering

In order to elucidate the dominant conformational families of the binding site residues in

a ligand bound state, conformational clustering techniques were used. Cluster analysis is

an unsupervised technique adept in ascertaining similar patterns in complex data as for
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those obtained from MD simulation. For example, a cluster is a set of data points in

such a manner that an individual point of that bunch is closer (more similar) to every

other point of that bunch than any other set of points (dissimilar) [351–353]. There

are various types of clusters, with the reader being referred to Tan et al. [351] for more

details. The hierarchical agglomerative approach will be discussed in more detail since

it yields similarly sized clusters with readily interpretable results. An added value of

the hierarchical approach is the dendogram which can be partitioned at a specific level

yielding a partitional clustering. Another advantage of this technique is that there is no

need to assume any particular number of clusters [351].

10.2.3.1 Agglomerative hierarchical clustering:

This approach belongs to a group of techniques that begin with numerous singular clusters

and iteratively merges the singletons to their nearby neighbours until all objects form a

single cluster [351]. By using this approach on an MD trajectory, similar conformations

can be grouped together whilst separating the distinct ones, thereby yielding the distinct

conformations that have been sampled. There are different implementations of this

method (cf. Tan et al. [351], Wolf et al. [353], and Torda et al. [352]): single-linkage,

complete-linkage, average-linkage, wards method, and centroid.

In our work, agglomerative hierarchical clustering was used primarily because it is

deterministic, i.e., it allows reproducibility of the resulting clusters. This is one of the key

advantages over K-means or even the divisive approach. The dendogram obtained from

this method effectively portrays the relationships between clusters and their sub-clusters.

Furthermore, this method also highlights the order in which the dendogram was built. In

order to minimise the time and space requirements for clustering of the MD simulations, a

2D-RMSD matrix that aids in visual analysis of the conformational changes was subjected

to clustering.

10.2.3.2 Cluster validation metrics

Clustering being an unsupervised learning technique is quite difficult to assess, primarily

due to the lack of a native evaluation criterion. Nevertheless, there are several metrics

that offer a generalised indication of cluster quality, each with their strengths and

drawbacks [351, 352, 354]. Of these metrics, the most commonly used ones are the

following:

• Calculation of optimal cluster number:

A straightforward way to calculate the number of clusters that would portray the
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patterns in the input data is calculating the SSR/SST ratio: the sum of squares

regression (SSR) divided by the total sum of squares (SST) [353].

• Pseudo F-statistics:

An additional metric based on the theory of ANOVA (analysis of variance) was

introduced by Caliński and Harabasz [355] termed the pseudo F-statistic (Equa-

tion (10.1)). This metric is also referred to as Caliński-Harabasz index (CH index/

criterion). It usually indicates the degree of ”tightness” or ”proximity” for the

clusters, with high values indicating better nested clusters. In the current work,

the quality of clustering was evaluated with the aid of the CH index.

pFS =

(

SSR
K−1

)

(

SSE
N−K

) (10.1)

• Davies-Bouldin index:

An alternative internal evaluation metric is the Davies-Bouldin index (DB) [356]

that provides a dataset dependent value for evaluating the clustering results.

10.3 Results

A 2D RMSD matrix that represents the conformational changes over the course of a

trajectory is used as input for the clustering. Before initialising the clustering, it is im-

portant to ascertain the differences in the conformations of the residues that have already

been involved in binding of pyrrolidine carboxamides and diphenyl ethers. Table 10.1

shows the RMSD values for important residues that form either a part of the active site

or the SBL. From this table, it is apparent that maximal changes occur in the residues

that are located in the SBL, with especially large changes being observed for Ile202 and

Val203, respectively. Both of them have already been known to be important molecular

indicators of the inhibitor’s ability to bring about ordering of the SBL.

In regards of the molecular indicators involving diphenyl ethers, it is obvious that the

stretch of residues from Ala198 to Val203 determines their binding [261]. However, as seen

from He et al., there are several other residues that interact primarily with pyrrolidine

carboxamides [52]. Hence, the focus of the clustering was to reveal the conformational

changes in these additional residues together with Met199, Ile202, and Val203, respectively.

In order to reveal the conformational changes occurring in the ligand-bound state, a 2D

RMSD plot of all 9 complexes (Section 10.2.2) against each other and themselves has been

drawn for all atom selections as defined in Section 10.2.1. The 2D RMSD matrix was then

subjected to a K-means clustering to get an appropriate number of clusters as defined by

the Caliński-Harabasz index. Subsequently, the hierarchical agglomerative clustering was
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Table 10.1 Comparison of RMSD values for key residues of the binding pocket
and substrate binding loop (Met199, Ile202, and Val203) for chain ”A” of selected InhA
crystal structures with respect to chain A of PDB 2X23 upon C-α atom alignment in
MOE 2015.10. The residues that form part of the active site (top 4) are separated from
those of the SBL (bottom 4) by a horizontal line. The crystal structures are ordered by
an increasing degree of ”open” state for the SBL. The RMSD is given in Å.

Residue 4OXK 2NSD 4TZK 1BVR 1P44

Phe149 0.28 0.15 0.20 0.15 0.11
Met155 0.44 0.34 0.26 0.49 0.30
Tyr158 0.42 0.36 0.55 0.63 0.55
Lys165 0.29 0.28 0.13 0.42 0.17

Ala198 1.11 1.88 3.76 3.57 2.81
Met199 3.05 0.52 2.18 2.62 2.73
Ile202 4.18 3.54 4.70 7.73 8.09
Val203 4.84 4.50 7.54 8.70 9.53

performed with the optimal number of clusters as suggested by the Caliński-Harabasz

index.

10.3.1 Active site clustering

The 2D RMSD matrix of the active site defined by Luckner et al. (Figure 10.3) allows

a comparison of the conformational changes in each of the individual protein ligand

complexes over 150 ns. From Figure 10.3, several interesting trends can be summarised

as follows:

1. With the exception of the protein-ligand complexes of pc-c63, pc-c7a3 and pc-b3

(2NSD-b3), all other complexes exhibit marked deviations compared to PDB 4TZK

(pc-d11). This is not surprising considering the different conformations of the SBL

in PDB 4TZK and the rest of the complexes which are mostly PDB 2NSD like.

2. Compound pc-d8 corresponding to PDB 4TZT represents the most peculiar and

distinguishing trait of unstable binding even amongst the supposedly rapid reversible

binders. The destabilising effects of the A ring substitutions are manifested as the

ligand nearly exiting the binding pocket (Figure 10.4). This is accompanied by

a marked destabilisation of the SBL, particularly in the region spanning Met199-

Val203 that is relevant from their lower average secondary structure propensities

(Table 10.2) as calculated by cpptraj [305]. The induced instability in the binding

pocket manifests as high RMSD value of 4TZT with respect to the rest of the

protein-ligand complexes (> 5 Å).

3. The protein-ligand complexes of pc-b6 to pc-b12 all show conformational changes

in the active site residues compared to pc-d11, pc-c6a3, and pc-c7a3. Furthermore,
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Figure 10.3 A (9×9) 2D-RMSD matrix for the active site residues (heavy atoms of
Phe149, Tyr158, Ala198, Met199, Ile202, and Val203) of chain A from PDB 4TZK,
4TZT and pyrrolidine carboxamides-c6a3, c7a3, b3, b6, b7, b9, and b12. RMSD values
in between each frame are illustrated by the color scale on the left. Each small box
corresponds to a 150 ns simulation of a monomer and represents a comparison of the
conformational changes (snapshots) either within the system (boxes along the diagonal)
or with other systems (off-diagonal boxes).

all protein-ligand complexes of the new pyrrolidine carboxamides exhibit noticeable

conformational changes compared to PDB 4TZK.

The K-means clustering performed on the 2D RMSD matrix reveals that the conforma-

tional changes occurring throughout the combined simulations (1.35 µs in total) can be

represented as 6 clusters (Figure 10.5). Starting with the total number of clusters set to

6, the hierarchical agglomerative clustering was performed. The 6 clusters obtained by

using a cutoff of 6 Å can be subsumed into 3 ”monophyletic” conformational families.

The subsuming of the 6 clusters to the three families has been achieved via visual inspec-

tion while sidestepping the need for increasing/decreasing the RMSD cutoff. This was
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Table 10.2 Average secondary structure propensities (in percentages) for key residues
of the SBL in case of PDB 4TZT (pc-d8) over a 150 ns MD simulation. The terms para
and anti refer to parallel and anti-parallel beta sheet, while 310, Alpha and Pi correspond
to the various types of helical content in the protein-ligand complex, respectively. Values
in the lower half are for the reference protein-ligand complex, i.e., PDB 4TZK.

Residue Para Anti 310 Alpha Pi Turn

Ala198 0% 0% 23% 47% 0% 30%
Met199 0% 1% 23% 48% 0% 28%
Ile202 0% 0% 4% 4% 0% 4%
Val203 0% 0% 3% 3% 0% 5%

Ala198 0% 0% 1% 96% 0% 3%
Met199 0% 0% 1% 98% 0% 1%
Ile202 0% 0% 1% 34% 0% 65%
Val203 0% 0% 0% 27% 0% 30%

Figure 10.4 The exit pathway for pc-d8, the ligand of PDB 4TZT (grey sticks) as
observed at t = 0 ns (left most), t = 11 ns (center) and t = 150 ns (right). Note the
conformational changes in the SBL from an α helical structure to a turn and finally a
distorted mixture of a 310 helix and a coil.

mainly because the increase/decrease in the RMSD cutoff can lead to an overestimation

of minor backbone movements whilst simultaneously overlooking the important side

chain movements. These families will be referred to as families 1 to 3 (cf. Figure 10.7)

hereinafter:

1. Family 1 (based on clusters 1, 2, and 4): Represents a dominant conformational

substate observed throughout the total simulation duration of 1.35 µs. It represents

an intermediate conformation between those of the substrate binding loop of PDB

4TZK and 2NSD. This family is characterised by a slight but noticeable shift of

Ile202 towards the ligand while Val203 moves away from the ligand turning to the

outside. Quantitatively speaking, this conformational family accounts for 81% of all

observed conformations across all simulations (Table 10.3 and figure 10.7). When

compared to the work of Merget et al., family 1 has a remarkable resemblance to

the open conformation of the SBL (Family 3) [261].
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Figure 10.5 Hierarchical clustering analysis of binding site conformations
for various protein-ligand complexes from the pyrrolidine carboxamides d11,
d8, c6a3, c7a3, b3, b6, b7, b9, and b12 based on the 2D RMSD matrix
in Figure 10.3. (a) The elbow plot on the left depicts the optimal number of clusters
(red circle) as deemed by the K-means clustering and the Caliński-Harabasz index. (b)
The dendogram on the right shows the annotated clusters and their conformational
families upon subsumption.

2. Family 2 (based on clusters 5 and 6): Represents a smaller conformational family

which features a slight shift of Val203 away from the ligand alongwith Ile202 moving

towards the binding pocket. The conformations of Ile202 and Val203 from this

family are intermediate to those observed for the same residues in crystal structures

2NSD and 2X23. When compared against the clustering results of Merget et

al. [261], this family was found to be identical to the second most populated cluster

(family 2).

3. Family 3 (based on cluster 3): A small standalone family that is characteristic for

the loop destabilisation seen in the case of PDB 4TZT. This family is represented

by the ligands pc-b6 and pc-b7, respectively. Its characteristic feature is a near

complete transition from an helix to a loop that is accompanied with Ile202

occupying the position of Val203 while Val203 is completely pushed out by the

meta substituent (-CN for pc-b6 and -CF3 for pc-b7) on ring A2 (cf. Figure 10.7). In

both cases, Ile202 is pushed away from the ligand momentarily due to the motions

of the residues Leu207-Ala212 of the hinge region. The residues Leu207-Ala212

move in response to the motions of the A2 ring and its meta substituent. However,

in the case of pc-b6, Ile202 moves in and out of the active site as opposed to
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Figure 10.6 Conformational changes in the key residues of the SBL, i.e., Met199,
Ile202, and Val203 (blue sticks) throughout a 150 ns MD simulation of 2NSD-pb6 ( a)
to d) ) and 2NSD-b7 ( e) and f ) ), respectively.

pc-b7, where it is just situated outside since the start of the 150 ns simulation

(Figure 10.6).

10.3.2 Extended active site clustering

A clustering of the extended active site has been performed mainly to ascertain the role of

amino acids other than Met199, Ile202, and Val203 in a more stable ligand binding. The

clustering of the 2D RMSD values for the extended active site (cf. Figure 10.8) yielded

a total of 9 clusters (cf. Figure 10.9) at a cutoff of around 4.8 Å. Upon subsumption,

the 9 clusters yielded 2 major and one comparatively smaller conformational family

(cf. Figures 10.10 and 10.11) as follows:

1. Family E1: This superfamily comprises clusters 1, 2, 3, and 7 (Figure 10.9).

This family contains the dominant (cluster 1, N = 463 frames) as well as the

least visited conformations (cluster 2, N = 12 frames) from amongst all of the

simulated protein-ligand complexes. Likewise, in the case of active site clustering,
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Table 10.3 Occurrence frequencies (in %) of the various conformational families of
the InhA active site in the MD simulations of various pyrrolidine carboxamides. The
values denote the fractional occurrences of the conformational families in an individual
trajectory (150 · 1 ns). Additionally, the sum (in %) represents the average assignments
of all 9 simulated protein-ligand complexes to the conformational families.

Family 1 Family 2 Family 3

4TZK 100 0 0
4TZT 90 0 10
4TZK-c6a3 100 0 0
4TZK-c7a3 100 0 0
2NSD-b3 100 0 0
2NSD-b6 57 6 37
2NSD-b7 28 39 33
2X23-b9 51 49 0
2NSD-b12 100 0 0

Sum 81 11 8

the superfamily 1 accounts for the bulk of conformations sampled/adopted by the

protein-ligand complexes over a period of 150 ns. The medoid that represents this

conformational super family corresponds to the complex 4TZK-c6a3. A comparison

of the medoid snapshot (t = 35 ns) and the active site of PDB 2X23 reveals noticeable

changes in almost all residues of the SBL. Additionally, substantial changes are also

observed for Met155 that is situated near the minor exit portal (Figure 10.10). The

marked changes in the SBL as well as of Met155 can be attributed to the inverted

binding mode of pc-c6a3 that pushes Ile202 and Val203 further away from itself.

Simultaneously, Leu207 moves away from the pocket while Ile215 and Leu218 move

towards the pocket, primarily because the cyclohexyl ring (C ring) occupies the

position of the bulky A ring system. This conformation corresponds to a wide open

state of the α6 helix, and hence corresponds to conformational family 3 of Merget

et al. [261].

2. Family E2: This is a minor conformational family comprised of clusters 6 and 9

(Figure 10.9). This family is represented by 2NSD-b3, with the medoid snapshot

corresponding to t = 6 ns. It is characterised by large changes in the positions of

Tyr158, Met155, Met161, Leu207, Ile215, and Leu218 (Figure 10.11). Furthermore,

both Ile202 and Val203 are shifted slightly away from the ligand. Upon comparison

of the SBL of these two complexes, it can be inferred that the mid to lower portion

of 2NSD-b3 moves away from the ligand while the starting portion of the SBL

largely remains stable. It can also be seen that this conformation is intermediate

to that of families 3 and 5 from the clustering performed for long MD simulations

of diphenyl ethers.
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Figure 10.7 Dominant conformational families for pyrrolidine carboxam-
ides: The 6 clusters from hierarchical clustering analysis were subsumed to 3 conforma-
tional families. Subsequently, a Partitioning Around Medoids (PAM) was performed in
R around each conformational family that yielded medoids or cluster representatives.
The top left figure depicts the entire chain A of PDB 4TZK, while the substrate binding
loop is coloured red. The arrow denotes the viewpoint for subsequent images. The top
right figure depicts the conformation of family 3 as seen from Merget et al. [261]. a)
Family 1: Conformation of 4TZK-c7a3 after 122 ns of MD simulation. The important
residues involved in binding have been depicted as grey sticks and labelled. The SBL
has been coloured yellow and annotated. Furthermore, the same residues of PDB 2X23
have been depicted as transparent green sticks; cofactor heavy atoms as purple sticks.
The shift of Ile202 and Val203 (of PDB 2X23) away from the bound ligand is clearly
visible in figure a). b) Family 2: Corresponds to 2NSD-b3 after 38 ns of MD simulation.
The slight shift of Ile202 and Val203 along with a major shift of Y158 can clearly be
seen. c) Family 3: Corresponds to 2NSD-b6 after 56 ns of MD simulation and shows a
major shift of Ile202 and Val203 further away from the bound ligand. The α-helix to
coil conversion is also visible.
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Figure 10.8 A 9 × 9 2D-RMSD matrix for the extended active site residues (residues
within 5 Å of the bound ligand) for monomers (chain A) of PDB 4TZK, 4TZT
and pyrrolidine carboxamides-c6a3, c7a3, b3, b6, b7, b9, and b12, respectively. The
RMSD values in between each frame are illustrated by the color scale on the left. Each
small box corresponds to a 150 ns simulation of a monomer and represents a comparison
of the conformational changes (snapshots) either within the system (boxes along the
diagonal) or with other systems (off-diagonal boxes).

3. Family E3: The superfamily 3 represents another dominant conformation (cf. Fig-

ure 10.11) and is comprised of three clusters, namely 4, 5, and 8. The medoid

snapshot for this conformational family belongs to 2NSD-b6 after a period of 123 ns.

This superfamily corresponds to a conformation where Ile202 is pushed away from

the ligand and Val203 takes its place. This occurs primarily due to the transition

of an α6 helix to a coil and later to a loop that results in dramatic movements of

residues 203 to 218 (Figure 10.11). The movement of the SBL can be viewed as

follows: α6 portion away from the ligand along with a simultaneous motion of the

α7 helix towards the A1 ring of the ligand. This superfamily corresponds to family
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Figure 10.9 Hierarchical clustering analysis of binding site conformations
for various protein-ligand complexes from pyrrolidine carboxamides-d11,d8,
c6a3, c7a3, b3, b6, b7, b9, and b12 based on the 2D RMSD matrix from Fig-
ure 10.8. (a) A typical elbow plot depicting the optimal number of clusters (red circle)
as deemed by the K-means clustering and the Caliński-Harabasz index. (b) The dendo-
gram on the right depicts the annotated clusters and their conformational families upon
subsumption.

5 (a very wide open α6 helix) from the literature [261].

Qualitatively speaking, family E1 accounts for 66% of the conformations sampled during

the MD simulations followed by family E3 (24%) and family E2 (11%) (cf. Table 10.4).

A comparison of the clustering of the residues of the active site and the extended active

site revealed the following:

1. In both cases, the most dominant conformation corresponds to an open state of

the α6 helix and is observed in PDB 4TZK and 2NSD. This state has also been

observed in the long MD simulations (150 ns) of triclosan (TCL) bound to PDB

2X23. Moreover, a majority of the simulated protein-ligand complexes features no

substantial motions in the SBL.

2. The other dominant conformation observed in both cases corresponds to that of

2X23-b9 and 2NSD-b12 specifically. Both are accompanied with a slight shift of

Ile202 and Val203 away from the ligand but not completely away as in the case

of pc-b6 or pc-b7. This conformation is intermediate to 2X23 on one end and

4TZK-2NSD on the other. In short, both 2X23-b9 and 2NSD-b12 feature less SBL

movement than the other pyrrolidine carboxamides.
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Figure 10.10 Dominant conformational families for pyrrolidine carboxam-
ides: The 9 clusters from hierarchical clustering analysis were subsumed to 3 conforma-
tional families. Subsequently, a Partitioning Around Medoids (PAM) was performed in
R around each conformational family that yielded medoids or cluster representatives.
The top left figure depicts the entire chain A of PDB 2X23, while the substrate binding
loop is coloured blue. The arrow denotes the viewpoint for subsequent images. a) The
extended active site for PDB 2X23. b) The conformation of family 3 as seen from
Merget et al. [261]. c) Family E1: Conformation of 4TZK-c6a3 after 35 ns of MD
simulation. The important residues involved in binding have been depicted as grey
sticks and labelled. The SBL has been coloured blue and annotated. Furthermore, the
cofactor heavy atoms have been coloured as purple sticks. The shift of Ile202 and Val203
(of PDB 2X23) away from the bound ligand is clearly visible in figure c).

3. The least visited and populated conformations were observed in 2NSD-b6 and

2NSD-b7. The ligands pc-b6 and pc-b7 bring about a helix to loop transformation

of a large interacting portion of the SBL. This is evident from the observation

that both of the aforementioned compounds push Ile202 and Val203 away from the

binding pocket that characterises the helix to loop transformation. However, in case

of pc-b6, Ile202 oscillates in between positions that are near and far from the bound

ligand after a period of 21 ns (cf. Figure 10.6). This is not the case for pc-b7 which

consistently pushes Ile202 and Val203 away from the binding pocket since the start

of the simulation. In both cases, it can be clearly seen that loop destabilisation

occurs as opposed to the desired loop ordering, which is associated closely with

slow-tight binders. A similar observation holds true for the crystal structure 4TZT,

where the ligand was found to nearly exit the binding pocket at the end of the 150
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Figure 10.11 Dominant conformational families for pyrrolidine carboxam-
ides: a) The conformation of extended active site residues for family 5 as seen from
Merget et al. [261]. b) Family E2: Conformation of 2NSD-b6 after 6 ns of MD simulation.
The important residues involved in binding have been depicted as grey sticks and labelled.
The SBL has been coloured blue and annotated. Furthermore, the cofactor heavy atoms
have been coloured as purple sticks. The shift of Ile202 and Val203 (of PDB 2X23)
away from the bound ligand is clearly visible in figure b). c) Family E3: Conformation
of 2NSD-b3 after 123 ns of MD simulation. As compared to the family E2, family E3
exhibits a lesser shift of Ile202 and Val203 away from the bound ligand.

ns trajectory, resulting in destabilisation of the SBL (Figure 10.4).

10.3.3 Analysis of SBL dynamics and its secondary structure

The ordering and subsequent closure of the SBL is a decisive aspect of slow-

tight binding inhibition of InhA. Thus, the dynamics of the SBL and its closure upon

ligand binding warrants special attention. The changes in the SBL can be ascertained by

studying backbone deviations or C-α RMSD’s of the simulated complexes with respect

to a reference system. In the current case, the backbone RMSD values were calculated

using the chain A of PDB 2X23 as reference. Expectedly, all of the ligand bound systems

exhibited higher than normal average backbone RMSD values that ranged from 1.78

Å (lowest, PDB 4TZK-c7a3) to 2.20 Å (highest; 2NSD-b7). Nevertheless, the median

values of all systems remained below 2.5 Å, implying a reasonable degree of stability.

A comparison against the 150 ns monomer simulation of PT70 [261] clearly revealed

the differences in the backbone distributions of PDB 2X23 (EI*) and all of the other

complexes (EI macrostate).
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Table 10.4 Occurrence frequencies (in %) of the various conformational families of the
InhA active site (extended) in the MD simulations of various pyrrolidine carboxamides.
The values denote the fractional occurrences of the conformational families in an
individual trajectory (150 · 1 ns). Additionally, the sum (in %) represents the average
assignments of all 9 simulated protein-ligand complexes to the conformational families.

Family E1 Family E2 Family E3

4TZK 100 0 0
4TZT 90 0 10

4TZK-c6a3 100 0 0
4TZK-c7a3 100 0 0
2NSD-b3 99.33 0.66 0
2NSD-b6 0 100 0
2NSD-b7 100 0 0
2X23-b9 0 0.66 99.33
2NSD-b12 0 0.66 99.33

Sum 66 11 23

When the backbone RMSD of the SBL is considered, the loop movements become amply

clear. All of the simulated systems show an average backbone RMSD exceeding 3 Å. In

this case, 2X23-b9 exhibited the lowest average backbone RMSD (3.39 Å), while 2NSD-b6

showed maximal change in the average backbone RMSD value (4.33 Å). Surprisingly, the

average backbone RMSD value for 2NSD-b6 was much lower (1.92 Å). The higher values of

the backbone RMSD for 2NSD-b6 and-b7 merely signify the helix to loop transformation

(and thereby a more open conformation) induced by these two compounds. A similar

observation can be seen for the PDB 4TZT ligand (pc-d8). When compared to the work

of Merget et al. [261], again it was seen that highest flexibility of InhA resides in the SBL.

This can be deduced from the fact that the average backbone RMSD for the SBL of

PDB 2X23 (from 150 ns monomer simulation) was around 2.2 Å as opposed to > 3 Å for

all of simulated protein-ligand complexes. Figure 10.12 depicts the RMSD distributions

for the simulated protein ligand complexes.

Since there is a close relationship between ligand binding, the ordering and subsequent

closure of the SBL, a secondary structure analysis of the SBL for the each of the simulated

complexes was performed using cpptraj. Cpptraj calculates the secondary structural

propensities for the backbone atoms of the residues of the SBL (residues 195 to 217)

using the DSSP method as proposed by Kabsch and Sander [357]. According to the

DSSP method, seven secondary structural motifs can be assigned to the backbone atoms

namely: (1) none, (2) parallel β-sheet, (3) anti-parallel β-sheet, (4) 3-10 helix, (5) α-helix,

(6) π-(3-14) helix, and (7) turn. The SBL of PDB 2X23 consists entirely of α-helix and

3-10 helix as opposed to that of PDB 4TZK and 2NSD whose SBL’s are comprised of a

coil and an α helical structure exclusively. In the case of the simulated complexes, the

average percentage of the aforesaid secondary structure motifs were calculated over 150
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Figure 10.12 Distribution of backbone (atoms C, CA, N, and O) RMSD
for the (a) substrate binding loop (residues 195 to 218, top), and (b) entire
protein (bottom) of the simulated protein ligand complexes. Each monomer
was simulated for 150 ns and fitted individually onto PDB 2X23 chain A (reference
structure). The boxes represent the interquartile range for each monomer. The white
circles denote the median value of the RMSD’s, while outliers are shown as khaki
coloured circles.

frames, with each frame corresponding to 1 ns (150 ns = 150 frames).

From work of Merget et al. [261], the SBL of PDB 2X23 shows an average of 68% α-helix

and 3-10 helix motifs. This is followed by two rapid reversible inhibitors 6PP (63%)

and triclosan (TCL) (47%), while the lowest proportion of aforementioned motifs were

observed for the apo-proteins (32%). The progressive decrease in the average percentage

of helical motifs for 6PP and TCL is parallel to the decrease in their InhA inhibitory

activity. This buttressed the notion that adequate occupation of the binding pocket goes

hand in hand with retention of the helical motifs that represent the EI* state. Table 10.5
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depicts the average percentage for the secondary structural motifs in the simulated

systems. All of the systems clearly show a marked change in the average percentage

of either α-helix or 3-10 helix motifs as compared to that of PDB 2X23, except for

PDB 4TZK (60%), 4TZK-c7a3 (64%), and 2X23-b9 (60%). The low values of helical

motif content for PDB 4TZT (33%) and 2NSD-b6 (36%) justify the earlier observations

pertaining to the induced loop disordering upon ligand binding. Comparatively, 2NSD-b7

(averaged helical motif content: 55%) fares much better than pc-d8 (PDB 4TZT) and

pc-b6 (2NSD). This contradicts the assumption that the bulky meta-trifluoro substituent

on the A2 ring of pc-b7 should destabilise the loop more than the meta-cyano group of

pc-b6.

Table 10.5 Averaged secondary structure propensities (in %) for the SBL (residues 195
to 217) of the simulated InhA protein-ligand complexes. The data were generated from
150 frames per protein-ligand complex corresponding to an overall sampling duration of
150 ns.

Motif 4TZK 4TZT c6a3 c7a3 b3 b6 b7 b9 b12

parallel sheet 0 0 0 0 0 1 0 0 1
anti-parallel β sheet 0 3 1 0 0 2 1 1 1

3-10 helix 7 11 21 2 4 7 18 14 22
α-helix 53 22 34 62 50 30 37 46 25
π-helix 0 0 2 0 1 0 0 1 8
turn 24 28 21 20 15 18 15 17 26

Nevertheless, the low helical content in the case of pc-d8 and pc-b6 implies a binding

similar in its characteristics to that of triclosan (TCL), i.e., rapid-reversible binding.

The comparatively higher helical content of pc-d11 (PDB 4TZK), pc-c7a3, and pc-b9,

suggests a similar ability to bring about loop ordering as that of 6PP. Furthermore,

the high percentage of helical content for pc-c7a3 is in line with its activity in the high

nanomolar range, much like 6PP. It is expected to be closely followed by pc-b9 and pc-b3

whose averaged helical content is in a similar range, and thereby these molecules are

expected to exhibit a similar effect on the SBL.

10.3.4 Comparison of the conformational families with experimental

structures

In order to further ascertain the significance of the above clustering results, and keeping in

mind the two-step binding as well as the conformational changes between the EI and EI*

states, a structural comparison with experimentally available structures is critical. The

complexes most relevant as reference for this discussion involve the diphenyl ether series

(PDB 2X23). In addition to PDB 2X23, the structural comparison with various ternary

diaryl ether complexes with InhA-NAD adduct prove helpful in revealing conformational

changes in key residues that happen along the transition from EI* to EI. The most recent
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ternary diaryl ether crystal structures have been solved by Li et al. [74] and Pan et

al. [67], with a majority of them being slow-tight binders (PDB 4OXY - PT10, PDB

4OYR - PT91, PDB 4OHU - PT92, and 4OIM - PT119), along with a rapid reversible

4-hydroxy-2-pyridone deriative PT155 (PDB 4OXN and 4OXK).

All of the slow-tight binding diaryl ethers differ from PT70 (2X23 ligand) by substitution

at the 2’ position of the B ring as follows: 2’-nitro (PT10), 2’-chloro (P92), and 2’-cyano

(PT119) as opposed to 2’-methyl group of PT70. Upon comparison of the conformational

families from clustering of active site and extended active site with the aforementioned

crystal structures, the following findings can be put forward:

1. All of the crystal structures of slow-tight binders exhibit similar conformations of

key residues in the binding site in addition to a specific orientation of the SBL.

This merely supports the hypotheses that the said conformation of these crystal

structures corresponds to the EI* state.

2. PDB 4OIM (PT119) and PDB 4OXK/4OXN closely resemble the dominant binding

conformation predicted by the hierarchical agglomerative clustering of active site

and extended active site. PDB 4OIM displays a slight displacement of Ile202 away

from the ligand. Consequently, Ile202 adopts the position of Val203, while Val203

is further displaced to the back (cf. Figure 10.13). This arrangement of Ile202 and

Val203 is exactly identical to that of the Family 1 from both clusterings as well

as PDB 4TZK. However, the SBL of 4TZK and in all conformational families are

noticeably shifted with respect to the SBL of both 2X23 and 4OIM.

3. In the case of the rapid reversible inhibitor PT155 (PDB 4OXK), the SBL con-

formation corresponds to a wide open state that is identical to PDB 4TZK and the

dominant conformation from clustering of the active site and extended active site.

However, in both cases, the SBL was more open as compared to the one in 4OXK.

Additionally, the SBL of conformational family 3 from active site clustering comes

closest to the SBL conformation in 4OXK and 4OIM.

The aforesaid observations lend credibility to the hypothesis that the conformation of the

SBL as seen in 4TZK and the majority of the conformational families may correspond to

the EI state. This can be seen from Figures 10.14 and 10.15, which depict the distances

in between Phe97 (strand 4) and Ile202 (α6-helix) as well as Leu207 (hinge region) and

Ile215 (α7-helix). These figures strongly support the hypothesis stated earlier in this

chapter.
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Figure 10.13 Illustration of dominant conformational families 1 and 3
of pyrrolidine carboxamides: The 6 clusters from hierarchical clustering analysis
were subsumed to 3 conformational families. Subsequently, a Partitioning Around
Medoids (PAM) was performed in R around each conformational family that yielded
medoids or cluster representatives. The figures from the first row depict the crystal
structures 2X23, 4OIM, and 4OXK, with the first two complexes having diphenyl ethers
(slow-tight binders) PT70 and PT119 as bound ligands. The PDB 4OXK has PT155,
a rapid-reversible 2-pyridone as a bound ligand. The lower row depicts PDB 4TZK
and the medoids of conformational families 1 and 3. The family 1 is represented by
4TZK-c6a3 and corresponds to a conformation at t = 35 ns from a MD simulation of
the respective protein-ligand complex. The family 3 is represented by 2NSD-b3 and
corresponds to a conformation at t = 6 ns from a MD simulation of the respective
protein-ligand complex. Family 1 shows a slight drift of Ile202 and Val203 as compared
to PDB 4TZK, 4OXK, and family 3. On the contrary, this shift is huge in comparison
with the conformation of the said residues in PDB 2X23 and 4OIM. In all figures, the
SBL has been depicted as a marine coloured helix, the cofactor as purple sticks, the key
residues as marine coloured sticks, while the bound ligands have been depicted as sticks
coloured differently.

10.4 Determinants of rapid-reversible binding

From the clustering of the active and extended active site, the effects of the crystal

structure ligands as well as of the newly designed ligands on the SBL become evident. A

comparison of the backbone RMSD of the reference system (2X23 and 4TZK) to the

simulated complexes in terms of SBL and the entire protein clearly revealed that maximal

changes take place in the SBL upon ligand binding. Studying the reordering of the SBL

in terms of the EI and EI* states and associating the conformational families with either

of these two states provides a possibility of interpreting the long simulations. In the

literature, it has already been known that the energy required for a rearrangement of

Ile202 and Val203 contributes directly to the energy barrier that separates EI and EI* [74].

In contrast to the biased simulations of Li et al., the current simulations were entirely

classical, i.e., without a biasing potential. However, all the ligands from pyrrolidine

carboxamides are purportedly rapid-reversible inhibitors. Thus, the SBL conformations

in all systems must correspond to the EI state. Comparing the conformational clustering
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Figure 10.14 Distances in between Phe97 (atom CE1) and Ile202 (atom CD1) and
Phe97 (atom CE1) and Ala198 (atom CB) for a) PDB 2X23, b) PDB 4TZK, c) PDB
4OXK, and d) PDB 4OIM.

of pyrrolidine carboxamides with that of 2X23 from the work of Merget et al. [261]

thereby provides a way for ascertaining the conformational changes from EI* to EI.

The comparison of the clustering results for pyrrolidine carboxamides and diphenyl ethers

(2X23, 6PP, and Triclosan) provides support to the hypothesis already stated earlier

in this chapter. A major portion of the active site conformations from the simulated

complexes corresponds to an open state of the SBL and thereby their apparent rapid-

reversible binding. A major feature of all pyrrolidine carboxamides is their inability to

prevent Ile202 and Val203 moving away from the binding pocket. This can be clearly

seen from Figure 10.14. Firstly, the cyclohexyl ring of ligands pc-d11 (4TZK) and pc-d8

(4TZT) is unable to prevent Ile202 and Val203 turning away from the binding pocket.

The case worsens in pc-c6a3 (inverted binding mode) which actually pushes Ile202 and

Val203 away towards the α7-helix. In contrast, the pc-c7a3 with a cycloheptyl group

(as ring C) does not push Ile202 and Val203 towards the α7-helix. This can be seen

from Figure 10.12, where pc-c7a3 shows a very narrow distribution of SBL backbone

RMSD. A similar observation holds true for the ligands pc-b9 and b12. Moreover,

the pyrrolidine carboxamides with cyclo-hexyl/heptyl rings cannot fill the space between

the B ring and the cofactor in an optimal manner. Additionally, the extreme motions of

the C ring (cyclo-hexyl/heptyl) pushes the α6 helix towards the α7 helix.

Second, the loop ordering is quite variable in case of the simulated complexes. A

comparison between Table 10.5 and results from clustering of diphenyl ether simulations
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Figure 10.15 Distances in between (a) Phe97 (atom CE1) and Ile202 (atom CD1)
(top) and (b) Leu207 and Ile215 (atom CD1) (bottom). Each monomer (simulated for
150 ns) was fitted individually onto PDB 2X23 chain A (reference structure) before
exporting the raw distance data. The boxes represent the interquartile range for each
monomer. The white circles denote the median value of the RMSD’s, while outliers are
shown as khaki coloured circles. In both plots, the horizontal lines indicate the distances
between the said residues as observed from the crystal structures 4TZK (violet) and
2X23 (red).

reveals a low to moderate percentage of α-helical content in case of the simulated

complexes as compared to ∼70% for PDB 2X23 (PT70). Of the simulated complexes,

only pc-c7a3 and 4TZK come close, while the helical content of all other complexes

suggests features of rapid reversible inhibitors. Furthermore, the low helical content for

pc-c6a3 and 4TZT stresses their inability to bring about loop ordering. The causative

reasons for the same can be traced to the artefactual binding mode (pc-c6a3) and

inadequate filling of the hydrophobic binding pocket (pc-d8 of 4TZT), similar to triclosan

(TCL, cf. Merget et al. [261]). The most surprising observation is made for the ligand
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pc-b6. Its structure-based design was guided with an aim to increase H-bonding with the

backbone of the SBL residues near Val203 and prevent it from turning over towards the

residues 210-218 (α7-helix). However, as seen from Table 10.5 and Figure 10.6, the rigidity

of the planar cyano-group results in loop destabilisation as opposed to the intended

purpose, i.e., loop ordering. A similar observation holds true for pc-b7. Compound

pc-b12 also represents an interesting case with a quite low α helical content (∼ 25%). It

appears that pc-b12 slightly destabilises the SBL as opposed to pc-b6 and pc-b7, which

is evident in the 3-10 helical content for these ligands.

Finally, proper occupation (volume filling) of the binding pocket is another determinant

for binding of InhA inhibitors. The high values for the SBL as well as backbone RMSD’s

for the majority of the simulated complexes indicate a general inadequacy of the ligands in

occupying the binding pocket. For example, pc-d8 (PDB 4TZT) has a well defined binding

mode as seen from the crystal structure. However, the lack of stabilising interactions

highlight its unstable binding. As a result, the ligand migrates out of the binding

pocket after 150 ns. On the contrary, pc-c7a3 retains its binding mode even at the

end of the 150 ns simulation. It binds like pc-d11 and consequently is able to establish

stabilising interactions with the binding site residues. This can be partially attributed

to the reasonable occupation of the binding pocket by pc-c7a3. Thus, a general lack

of stabilising interactions also might play a dominant role in determining the type of

binding for a particular ligand. Summing up, the following factors can be put forward as

determinants characterising rapid-reversible binding:

1. Inability to prevent the shift of Ile202 and Val203 towards the α7-helix.

2. Non-optimal volume filling of the binding pocket and thereby lack of stabilising

interactions.

10.4.1 Expected role of weak intermolecular interactions in binding

stabilisation

The observations in the previous sections underscore the lack of substantial energetical

barriers to the movement of Ile202 and Val203 towards the α7 helix. Insufficient barrier

heights might be directly attributed to the absence of energy-lowering van der Waals

interactions between the bound ligand and these residues. However, in addition to these

two residues, there are several other residues that also play an important role in the

stabilisation of the ligand binding. Given the hydrophobic nature of the InhA binding

pocket, non-polar interactions are expected to play a crucial role in determining the type

of binding (”slow-tight” vs. ”rapid reversible”). This can clearly be seen by comparing

the ligands of PDB 2X23 (PT70) and PDB 4TZK (pc-d11). The former exhibits a
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particularly stable binding which results from optimal interactions with Tyr158, Met198,

Ile202, and Val203. This translates to a residence time (tR) of 24 minutes for PT70. On

the contrary, pc-d11 and its related congeneric series cannot engage Ile202 and Val203

optimally. Consequently, the entire pyrrolidine carboxamide series can be seen to exhibit

characteristics similar to rapid-reversible binders like 6PP and TCL.

In order to shed more light on the different types of interactions in between the bound

ligand and InhA, a second type of analysis for protein-ligand interactions has been

undertaken. The interaction analysis made use of 5 ns MD simulations of the same

complexes used for the conformational clustering. Additionally, the 5 ns MD simulations

of PT70, pc-p28 (alternate binding mode), pc-b12, and pc-b20 were also used. The sole

purpose behind this addition was to probe the effect of ligand size and its placement

within the InhA active site on the interactions. This analysis is based on distance

and angle criteria in the flavour of structural interaction fingerprints (SiFt) [358] and

pairwise atomic interactions according to CREDO [359, 360]. Over the course of 150 ns

simulations, visual inspection revealed that the side chains of the following methionine

residues interact weakly with pc-d11: Met103, Met155, and Met161. For the sake

of completeness, our closer analysis should also contain Met198, since it has already

been known to interact with the bound ligand. The interactions of the former three

methionine residues, which we consider as especially important in the InhA active site,

have been neglected in the literature so far and will be discussed here for the first time.

A closer look at the strength of the sulphur-π interactions can reveal their importance

in the ligand binding to InhA. Sherill et al. have shown by very reliable, highest-level

quantum mechanical (QM) calculations (CCSD(T), augmented quadruple zeta basis set),

that interaction energies of -2.5 kcal/mol are associated with sulphur-arene interactions

in the gas phase [361, 362]. Diederich and colleagues still expect a net stabilisation

energy of -0.5 to -1.0 kcal/mol in biological systems after accounting for the desolvation

penalties [349, 361, 362]. In addition to this, the work of Beno et al. investigated the

angle dependence of sulphur-π interactions: The S atom interacting with the face of an

aromatic ring and its π-cloud is more favourable than one with the edge of the aromatic

ring. [363].

The simulated InhA complexes have not only been assessed for sulphur-arene interactions

involving the various methionine residues but also for halogen bonds, CH-π, and OH or

lone pair-π interactions using distance and angle criteria in accordance with the currently

state of knowledge in the literature [358–360, 364]. Of course, traditional force fields do

not have special terms to describe the aforementioned interactions. Moreover, the force

fields capture the strength of such interactions only partly, if at all, and are subsumed in

the van der Waals or electrostatic contributions. However, the conformational sampling

in unbiased MD simulations yields conformations that might be close to the physical
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reality in the majority of times and therefore such interactions can be expected to be

present if certain angle and distance criteria are met.

Table 10.6 summarises the key interactions found in our analysis between the bound

ligand and residues of the active site along 5 ns simulations of several pyrrolidine

carboxamides and the diphenyl ether PT70 (PDB 2X23). On purpose, quite strict

geometrical criteria were chosen in order to obtain reliable and significant indications

for the possibility of the presence or absence of these interactions and to get a clear

impression of their abundance with respect to time. For example, in the case of the

sulphur-π interaction, the often chosen cutoff distance of 6 Å in between the sulphur

atom of the methionine and the centroid of the aromatic ring was reduced to 4.25 Å. This

ensured that the sulphur atom was always in the proximity of the aromatic ring alongwith

an angle that was not too far from perpendicular (90◦). The same distance onset criterion

was applied in analysing the CH and OH · · · π interactions. The analysis was performed

utilising Arpeggio [364] and customised python code written by Dr. Thomas B. Adler,

University of Würzburg.

From the inspection of Table 10.6, several observations come to the fore:

1. Sulphur-π interactions (S-π): Represents the interaction of methionine sulphur atom

with any aromatic ring of the bound ligand. It was seen that in addition to PT70

and pyrrolidine carboxamides taken from literature, the methionine S atoms were not

found very often within the cutoff distance, and hence, sulphur-π interactions might

contribute only weakly to the stabilisation of literature pyrrolidine carboxamides.

These interactions, however, might play a noticeable role in stabilising the binding

of the pyrrolidine carboxamides pc-p28, pc-b4, pc-b7, and pc-b20 to InhA. In

the case of the former two compounds, i.e., pc-p28 and pc-b4, it is the sizeable

occurrence probability of Met155 within the sulphur-π distance cutoff that lets

expect the possibility of a weak to moderate interaction. With pc-b7 and pc-b20, it

is the methionine 161 that generally shows interactions at a convincing, moderate

occurrence probability. Both methionine residues are situated in the immediate

proximity of Tyr158 and are expected to play a role in restricting its phenyl ring

rotation so that the conserved H-bonding with the ligand can reliably be established.

In other words, both Met155 and Met161 can be seen to play an important role in

facilitating the binding of these compounds to InhA. As compared to PT70 and

pc-d11, the increase in the occurrence probability of S-π geometries is significant

for pc-b7 and pc-b20. On the contrary, pc-d8 and pc-c6a3 do not often satisfy the

criteria for S-π geometries with any of the surrounding methionine residues. This

can partially explain the lack of stable binding for pc-d8. Furthermore, the lack to

meet the S-π criteria for pc-c6a3 merely stems from its predicted binding mode,

i.e., an inverted one, which lends further support to disprove of its viability.
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2. Possible Met-S-CH3-π interactions present another interesting scenario in the case

of Met155 and Met161. It has been found that PT70 comes within an interacting

distance mainly with Met161: over 86% of the 5 ns MD simulation. In marked

contrast, all published pyrrolidine carboxamides are not found to exhibit Met-S-

CH3-π interactions with Met161, while only pc-c7a3 is expected to weakly interact

with Met155. A similar behaviour can be seen for the pyrrolidine carboxamides pc-

p28, pc-b6, pc-b7, and pc-b12. A notable exception to this observation are the

compounds pc-b3, pc-b4, and pc-b20, of which pc-b4 is expected to be able to

interact strongly with both Met155 and Met161. The compounds pc-b3 and pc-b20

interacted rather moderately with aforementioned methionine residues.

3. Almost all of the analysed complexes exhibit distances which only allow weak

or no interactions at all with Met198. The exception to this are the compounds

pc-p28 and pc-b20 which can be found exhibiting distances that allow moderate

interactions.

4. For a sizeable number of ligands (N=4: i.e., pc-d11, pc-b3, pc-b6, and pc-b9), CH

moieties of the ligands might interact with any aromatic ring in their vicinity. Such

CH-π interactions might play a role not to be underestimated at all in stabilising the

binding [349]. A very high occurrence probability of favourable CH-π interaction

distances has been found (cf. Table 10.6). Moreover, pc-b12 (C ring) is the only

ligand which might be able to additionally establish a moderate OH and lone pair-π

interaction occurrence involving the ribose hydroxyl group. This kind of interaction

might also be observed for pc-b20 (Figure 9.11), though it is much more subdued

as compared to pc-b12 or even pc-b7.

The above findings reveal considerable differences in the geometrical arrangements

in pyrrolidine carboxamides versus diphenyl ethers which would allow for specific interac-

tions with the two methionine residues (Met155 and Met161) that flank the catalytic

Tyr158. While PT70 might establish exclusive interactions with Met161 via MetS-

CH3 · · · π interaction, the same clearly lacking in case of pyrrolidine carboxamides from

the literature. The preference of PT70 in interacting with Met161 alone over Met155

becomes clear by studying Figure 10.16: since a Met-S · · · π interaction must involve

a considerable change of the CB-CG-S-CH3 torsion in order to point the sulphur atom

towards the π-cloud of the aromatic ring of the ligand. In contrast, the MetS-CH3 · · · π

interactions can readily be established without larger conformational changes (e.g., rota-

tion of an entire group). Having three hydrogens (from S-CH3) at free disposal together

with their fast rotation allows for a high occurrence probability of the MetS-CH3 · · · π

interactions. Overall, this large number of admittedly minor energetic contributions with

respect to the individual CH-π interactions might finally render the MetS-CH3 · · · π

interactions an important player in ligand binding to InhA. This merely underscores the
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importance of engaging Met155 and Met161 as additional stabilising factors during the

binding process to InhA.

Figure 10.16 Distribution of heavy atom (all except hydrogens) RMSD for
(a) methionine 155, and (b) methionine 161 of the simulated protein ligand
complexes. Each monomer has been simulated for 150 ns and fitted individually onto
PDB 2X23 chain A (reference structure). The boxes signify the interquartile range for
each monomer. The white circles denote the median value of the RMSD’s, while outliers
are shown as khaki coloured circles.
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From the above, it might be deduced that almost solely Met-S-CH3 · · · π interactions are

decisive in the case of PT70 and by extension diphenyl ethers. In the case of pyrrolidine

carboxamides, however, especially CH · · · π interactions arising from the methylene

group adjacent to the pyrrolidine nitrogen of the B ring are proposed to play a role

that clearly distinguishes them from the diphenyl ethers and yields in sum considerable

contributions to ligand binding. With respect to the Met-sulphur-π interactions, pc-b4,

pc-b7, pc-p28 and pc-b20 might be markedly involved in this (geometrically/sterically

demanding) type of interaction. Especially, pc-b20 fares noticeably better than the other

compounds, implying its ability to engage all of the methionine residues around itself.

The noticeable energetic contribution of Met-S-π interactions is expected to aid in the

stabilisation of their binding modes.

Summing up, increased CH · · · π interactions in addition to engaging the methionine

residues flanking Tyr158, especially Met161 can be considered as an additional factor

that distinguishes the binding of diphenyl ethers from pyrrolidine carboxamides to InhA.

10.4.1.1 Implications for structure-based optimisation in relation to determ-

inants of rapid reversible binding

The conformational families of pyrrolidine carboxamides when compared to those of

diphenyl ethers revealed the changes necessary in going from EI to EI* (or vice versa).

Apparently, the pyrrolidine carboxamides are unable to prevent Ile202 and Val203

turning away from the ligand. In order to prevent this, the local interactions with these

residues warrant improvement. In order to better accomplish this, a comparison of the

best pyrrolidine carboxamide from the interaction analysis (pc-b20) with PDB 2X23

proves informative. A C-α atom alignment of PDB 2X23 and the protein-ligand complex

revealed the near-optimal placement of the scaffold as well as of the C ring (Figure 10.17).

It can be clearly seen that the meta standing halogen group of pc-b20 overlaps with

the ortho methyl group of PT70. Furthermore, Merget et al. have suggested placing

a methyl group para to the ortho methyl group as a barrier to restrict the motions of

Val203 [261].

In the context of this work, considering the limited pocket space available for further

exploitation, an additional substitution of the C ring at the other meta (5’) position is

expected to be able to act as a barricade for Val203. Suitable groups at this position

might be a methyl or a cyano group. The latter group just like the proposed methyl

group dissects the space between Ile202 and Val203, thereby acting as a steric barrier.

In addition to this, it further lowers the logP of the resultant compound (Figure 10.18).

Considering the hydrophobic space in the immediate vicinity of ring C, the methyl group

is expected to fare better than the cyano group [365].
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Figure 10.17 Aligned structures of: a) pc-b20 (orange sticks) and PT70 (trans-
parent grey sticks), and b) proposed methyl substitution on ring B of PT70 (yellow
sticks) by Merget et al. [261], and pc-b20 (green sticks). The H-bonds are depicted as
black dashes, while the SBL has been depicted as a blue cartoon.

Figure 10.18 Proposed methyl and cyano group substitutions of pc-b20 as inferred
from the clustering and subsequent comparison of conformations representing EI (4TZK)
and EI* (2X23). logP values have been calculated using Moka [327].

10.5 Conclusion

Long MD simulations combined with a cluster analysis enabled the unveiling of the

dominant conformational state of pyrrolidine carboxamides bound to InhA. Comparing

the conformational families of pyrrolidine carboxamides with diphenyl ethers (repres-

enting the EI* state) shows that the pyrrolidine carboxamide conformational families

correspond to the EI state. The associated changes in the EI* and EI macrostates can

be visualised by comparing the MD simulations of PT70 and pc-d11. They represent the

reference ligands from diphenyl ether and pyrrolidine carboxamide compound families.

Analysis of the conformations, secondary structure propensities, inter-helical distances

and backbone RMSD underscores the differences between EI* and EI macrostates, along-

with the determinants that characterise the binding of diphenyl ethers and pyrrolidine

carboxamides: firstly and most critical, proper occupation of the binding site. The

second determinant pertains to engaging Ile202 and Val203 in order to prevent them

from turning further away towards the α7 helix. This can be achieved by introducing

an ortho methyl or halogen substituent on the C ring in order to engage the cofactor.

Furthermore, meta-meta disubstituted C ring pyrrolidine carboxamides might also be

worthwhile to be tested, since the second meta substituent (e.g., methyl group) can

engage Ile202 and Val203, thereby averting them from moving away from the binding
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pocket. Notably, a second ortho/meta substituent has size limitations primarily due to

the presence of the cofactor on one end and Met103 on the other which has to be taken

into account. The final determinant involves the methionine residues flanking Tyr158.

While PT70 was found to engage Met161, pyrrolidine carboxamides apparently did not

and were mostly found to exhibit CH-π interactions with aromatic residues around them.

This determinant however is closely linked to the first one, i.e., proper placement and

occupation of the InhA binding site. A simultaneous satisfaction of the first determinant

would result in the ligand satisfying the distance criteria necessary to form stabilsing

interactions with the active site residues of InhA. Accruing together, all of these factors

reveal the differences crucial for ”slow-tight” versus ”rapid-reversible” inhibitors as well

as a strategy for further optimisation of pyrrolidine carboxamides.





Chapter 11

Summary - Part II

The molecular docking of pyrrolidine carboxamides yielded three distinct binding modes,

especially for bulkier members of the compound series. The dihedral angle analysis

together with RMSD and H-bond evaluation suggested that the crystal structure ori-

entation represents the dominant binding conformation for pyrrolidine carboxamides.

The dihedral angle analysis clearly showed that the in place motions of the bound ligand

were mostly phenyl ring flips that contributed maximally to the bound ligand RMSD. In

regards of the binding stability, the crystal structure conformation was comparatively

more stable than the alternate binding modes. The pyrrolidine carboxamides were

generally observed to exhibit H-bonding that was weak and transient in nature. This

weak H-bonding trend was found to coincide with the potency, i.e., potent compounds

binding in a crystal structure like conformation exhibited stronger H-bonding (and hence

stable binding) as compared to those with lower potency. Thus, the dihedral angle

analysis together with the H-bonding analysis shed light on the binding of pyrrolidine

carboxamides.

In order to further gain information about the binding and in place motions of pyrrolidine

carboxamides, essential dynamics and dynamic cross correlation analyses were carried

out for the atom selections representing the bound ligands active site and the substrate

binding loop. Essential dynamics was quite helpful in ascertaining the maximal variance

(movement) and its direction while dynamic cross correlation revealed whether there was

any sort of correlation amongst the movements of the atoms. The essential dynamics

for the bound ligands suggested that in addition to the phenyl ring flips, the ring

C and the 2◦ carbonyl group contributed maximally to the overall in-place motions

of the bound ligand. The bulky pyrrolidine carboxamides in particular were found

to exhibit a motion that resembled a pincer open and close cycle. In regards of the

active site and the substrate binding loop residues, the light and bulky pyrrolidine

carboxamides markedly differed in their ability to bring about motions of key residues

involved in ligand binding. While the light pyrrolidine carboxamides mainly affected

Met155 and Met199, the bulky pyrrolidine carboxamides engaged Ile202 and Val203.

This might explain the noticeable difference in the overall potencies for the two classes.

A comparison of the dynamic cross correlation maps for the representative ligands pc-d11

and pc-c7a3 as well as the residues of active site and substrate binding loop revealed

that light pyrrolidine carboxamides were able to induce modest to strongly correlated
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motions of residues situated in the minor (near Met155 and Tyr158) as well as major

exit portal (near Ile202). On the contrary, bulky pyrrolidine carboxamides only affected

the residues of the major exit portal. These analyses also underscored the motions of two

leucine residues (Leu197 and Leu207) which exhibited conserved motions with opposite

direction. The collective motions of these two residues depicted the direction of motion

of the substrate binding loop.

The structural information garnered from Chapter 8 was used to drive the structure-

based optimisation of the bulky pyrrolidine carboxamide scaffold, with a main aim of

maximising interactions and stabilising the binding mode. A total of 20 molecules were

designed using a iterative procedure that consisted of molecular docking, rescoring, MD

simulations, activity classification and mycobacterial cell wall permeability prediction.

On an overall basis, all compounds exhibited modest improvements over their parent

compounds as well as the reference ligand pc-d11. Nevertheless, the extensive in-silico

analyses deemed 6 compounds with optimal interactions and clogP values worthy of

further testing and evaluation.

The last chapter was clearly focussed on revealing the molecular determinants that drive

the binding of pyrrolidine carboxamides to InhA. For this purpose long MD simulations

(150 ns) of 9 selected protein-ligand complexes were extensively used. These complexes

ensured adequate coverage of the light, bulky, and the designed pyrrolidine carboxamides.

A hierarchical agglomerative clustering of the active site and extended active site residues

clearly suggested that the dominant binding conformation for pyrrolidine carboxam-

ides corresponded to a wide open state of the α6-helix and thereby the EI state. The

subsequent comparison of the clusterings of pyrrolidine carboxamides(representing EI)

and diphenyl ethers (representing EI*) underscored the importance of engaging Ile202

and Val203 in order to prolong the ligand-InhA interaction time. The following were

shown to be important determinants driving the ligand binding; a) proper placement and

occupation (volume filling) of the binding pocket; b) ability of the ligand to engage Ile202

and Val203 and prevent them from turning away from the bound ligand. In pursuit

of engaging Ile202 and Val203, an introduction of a small substituent at 5’ position

of the C ring was proposed that would act as a steric barrier to prevent Val203 from

turning over. As a result, two more ligands with methyl and cyano groups were designed.

Additionally, the role of weak interactions in stabilising the ligand binding was probed.

Using distance-based criteria laid down in literature, the MD simulations of 2X23-PT70

complex and selected pyrrolidine carboxamides were thoroughly analysed. The inter-

action analyses suggested the decisive role of a pair of methionine residues flanking

Tyr158 in ligand binding. While PT70 exclusively engaged Met161 (Met-S-CH3 · · · π),

a majority of pyrrolidine carboxamides were found to be lacking in the same. Moreover,

the CH · · · π interactions arising from the methylene group adjacent to the pyrrolidine
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nitrogen of the B ring are proposed to play a role in their binding. Thus, increased

CH · · · π interactions along with engaging Met161 can be put forward as an additional

factor that distinguishes the binding of diphenyl ethers from pyrrolidine carboxamides to

InhA.

In conclusion, MD simulations and associated techniques were used to achieve the aim of

in-silico structure-based optimisation of pyrrolidine carboxamides. Additionally, they

were also used to reveal the dominant binding conformation as well as determinants of the

supposedly rapid reversible binding of pyrrolidine carboxamides. The designed pyrrolidine

carboxamides arising from this work are expected to engage InhA in a more prominent

fashion as compared to their parent pyrrolidine carboxamides.





Summary

Prediction of the binding mode and affinity constitute important stages in a structure-

based drug design endeavour. The rational optimisation of compounds encompasses

these steps after due consideration of the target receptor structure. The mycobacterial

trans-enoyl-ACP-reductase FabI, or InhA, is an important and well validated target from

the mycobacterial fatty acid synthesis II pathway. InhA has been shown to be inhibited by

numerous compounds with varying structures. The slow-onset inhibition which involves

the process of induced fit is a key phenomenon that distinguishes potent, long duration

inhibitors from moderately potent and short acting ones. The ordering of a crucial and

flexible region of InhA, the substrate binding loop, has been shown to be directly tied

to the ability of the inhibitor to fall in either of the aforementioned class. Pyrrolidine

carboxamides represent a compound series with moderate InhA inhibitory potential.

And although the binding modes for the smaller members of this series to InhA are well

known, the effect of their binding on the substrate binding loop is currently unknown.

Moreover, the molecular determinants behind the apparent rapid reversible binding

of pyrrolidine carboxamides is yet to be revealed. In such a scenario, molecules with

well defined binding modes and an ability to bring about the ordering of the substrate

binding loop are desirable.

With an aim of structure-based optimisation of pyrrolidine carboxamides, the binding

modes for the entire pyrrolidine carboxamide series were predicted using molecular docking

employing induced fit. The ensuing poses formed an input for molecular dynamics (MD)

simulations. Using a small dataset of 23 compounds deemed stable through the MD

simulations, affinity prediction models were generated using the Linear Interaction

Energy method. Using docking and rescoring values for the same 23 compounds, an

activity-based classification model employing logistic regression was generated. While

the affinity prediction models were unable to achieve statistical significance, the activity-

based classification models performed satisfactorily in correctly distinguishing least active

compounds from the moderately and highly active pyrrolidine carboxamides. Additionally,

the activity-based classification model could be used with ease as an additional filter

in the preliminary stages of a virtual screening endeavour, primarily to ascertain the

molecules worth pursuing further.

The binding mode prediction yielded three distinct binding modes for the bulky members

of the pyrrolidine carboxamide series. The MD simulations of the entire series were

subsequently subjected to extensive analysis to reveal the dominant binding mode as well

as the molecular determinants for the rapid reversible binding. Summing up, molecular

docking together with MD simulations provided for reasonable starting conformations for
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the ligand-InhA complex that could be used in structure-based optimisation of pyrrolidine

carboxamides.

The MD simulations of the pyrrolidine carboxamide series were extensively analysed for

the perturbations in the bound ligand as well as the protein. An attempt to correlate the

quality and strength of the H-bonds with the measured InhA inhibitory potential was

also made. The dihedral angle analysis for the bound ligand clearly revealed the type of

in-place motions of the bound ligand. It also aided in shedding light on the most mobile

portions of the ligand that ultimately contribute to its RMSD. Together, the RMSD and

the H-bond analysis suggested that bulky pyrrolidine carboxamides could bind in an

orientation quite identical to that of the crystal structure ligands. These analyses also

revealed that the rings A and C of the bound ligands contributed maximally to their

in-place motions. Moreover, pyrrolidine carboxamides were found to exhibit weak and

transient H-bonding with Tyr158 and the cofactor that might underscore their moderate

InhA inhibitory potential.

A further analysis was entirely focussed on revealing the maximal variance and direction

of movements of the bound ligand as well as key residues involved in ligand binding.

Additionally, the correlated/anti-correlated motions of the key residues and bound ligand

were analysed. The essential dynamics of the bound ligand merely corroborated the

findings from the dihedral angle analysis. They also revealed the fundamental differences

in the changes that occur upon binding of light and bulky pyrrolidine carboxamides. While

the smaller pyrrolidine carboxamides were found to affect residues of both minor and

the major exit portal, the bulkier members only affected the key residues of the substrate

binding loop, i.e., Ile202 and Val203. Supporting the findings from the essential dynamics

were the dynamic cross correlation maps for the representative ligands pc-d11 and pc-c7a3.

Collectively, these analyses aided in revealing the modest movements of the substrate

binding loop towards the ligand.

The information garnered from the essential dynamics and dynamic cross correlation ana-

lyses was used to drive the structure-based optimisation of the bulky pyrrolidine car-

boxamide scaffold. A total of 20 compounds were designed and subjected to extensive

in-silico analysis that included molecular docking, rescoring, MD simulations and even

the mycobacterial cell wall permeability prediction. All of these analyses revealed modest

improvements over their parent molecules (pc-c6a3 and pc-c7a3) as well as the reference

molecule (pc-d11). For a promising subset of new molecules, extensive MD simulations

equalling 150 ns per protein-ligand complexes were performed to ascertain the changes

in their binding mode as well as the protein at extended simulation duration. Almost

all of the molecules, barring a few, were found to exhibit improved binding stability,

although the overall ligand RMSD was comparatively higher than that of the reference
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or the parent ligands. These simulations were also used to shed light on the molecular

determinants behind the rapid reversible binding of pyrrolidine carboxamides.

Finally, extensive use was made of clustering techniques to ascertain the dominant binding

conformation for pyrrolidine carboxamides and to determine the causative factors behind

the weak binding of pyrrolidine carboxamides. The clustering and subsequent comparison

of the dominant conformations with that from slow-tight binders revealed that pyrrolidine

carboxamides prominently feature a wide open state of substrate binding loop. A smaller

conformational family was associated with a less open form of the substrate binding

loop. The clustering also aided in underscoring the structural determinants of their

apparent rapid reversible binding. This information was subsequently used to suggest

two more pyrrolidine carboxamide inhibitors that exhibited favourable characteristics

of slow-tight binders. A comparison with the findings from literature suggests the

possibility of improved binding and InhA inhibitory potential for the proposed molecules

as compared to the reference ligand. In conclusion, the promising molecules from the

designed pyrrolidine carboxamides exhibit favourable characteristics and are worthy of

further experimental investigation.





Zusammenfassung

Die Vorhersage von Bindemodus und Affinität stellen wichtige Schritte im struktur-

basierten Wirkstoffdesign dar. Die rationale Optimierung von Verbindungen umfasst

diese Schritte unter Berücksichtigung der Struktur des Targets. Die mykobakterielle

Trans-Enoyl-ACP-Reduktase FabI oder InhA ist ein wichtiges und gut validiertes Ziel-

protein im mykobakteriellen Fettsäuresyntheseweg II. Es wurde gezeigt, dass InhA von

einer Vielzahl von Molekülen mit unterschiedlichster Struktur inhibiert werden kann.

Das langsame Einsetzen der Inhibition, verbunden mit einem Induced Fit Vorgang,

ist ein Schlüsselphänomen, welches starke und lang-wirksame Inhibitoren von mäßig

starken und kurz-wirksamen unterscheidet. Ebenso wurde gezeigt, dass die Anordnung

einer entscheidenden flexiblen Region von InhA, dem Substratbindeloop, direkt mit

Zugehörigkeit eines Inhibitors zu einer der erwähnten Klassen verbunden ist. Pyrrolidin-

carboxamide stellen eine Reihe von Molekülen mit mäßigem Inhibitionspotential dar.

Obwohl der Bindemodus der kleineren Mitglieder dieser Reihe weitgehend bekannt

ist, ist deren Einfluss auf den Substratbindeloop noch kaum untersucht. Außerdem

sind die molekularen Determinanten hinter der anscheinend schnellen und reversiblen

Bindung der Pyrrolidincarboxamide noch aufzuklären. In diesem Szenario sind Moleküle

mit genau bestimmten Bindemodi und der Fähigkeit, eine bestimmte Anordnung des

Substratbindeloops zu induzieren, wünschenswert.

Um das Ziel einer strukturbasierten Optimierung der Pyrrolidincarboxamide zu erreichen,

wurden die Bindemodi für die gesamte Reihe der Pyrrolidincarboxamide mit moleku-

larem Docking unter Verwendung von Induced-Fit-Verfahren vorhergesagt. Die sich

daraus ergebenden Posen bildeten die Grundlage für Molekulardynamik (MD) Simu-

lationen. Unter Verwendung der Linear Interaction Energy Methode wurden auf der

Grundlage eines kleinen Datensatzes von 23 Verbindungen, die während der gesamten

MD Simulation stabil waren, Modelle zur Affinitätsvorhersage erstellt. Die Docking- und

Rescoring-Ergebnisse für diese 23 Verbindungen wurde zur Entwicklung eines Klassi-

fizierungsmodells mit Hilfe von logistischer Regression genutzt. Während die Modelle

zur Affinitätsvorhersage keine statistische Signifikanz erzielten, erreichte das aktivitäts-

basierte Klassifizierungsmodell zufriedenstellende Ergebnisse hinsichtlich der korrekten

Unterscheidung von kaum aktiven Verbindungen von mäßig und stark aktiven Pyrrolidin-

carboxamiden. Darüber hinaus könnte das aktivitätsbasierte Klassifizierungsmodell

in einfacher Weise als zusätzlicher Filter in den Vorstufen eines virtuellen Screenings

verwendet werden, um die vielversprechensten Moleküle zu ermitteln.

Die Vorhersage des Bindemodus lieferte drei verschiedene Bindungsmodi für die räumlich

anspruchsvollen Vertreter der Pyrrolidincarboxamide. Die MD-Simulationen der gesamten
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Reihe wurden anschließend einer umfangreichen Analyse unterzogen, um den dominanten

Bindungsmodus sowie die molekularen Determinanten für die schnelle reversible Bindung

zu ermitteln. Zusammenfassend lieferte das molekulare Docking in Kombination mit

MD-Simulationen plausible Startkonformationen für die Ligand-InhA-Komplexe, die zur

strukturbasierten Optimierung von Pyrrolidincarboxamiden verwendet werden konnten.

Die MD-Simulationen der Pyrrolidincarboxamid-Serie wurden eingehend auf die Bewe-

gungen im gebundenen Liganden sowie dem Protein analysiert. Ein Versuch, die Qualität

und Stärke der Wasserstoffbrückenbindungen mit der gemessenen InhA-Inhibition zu

korrelieren, wurde ebenfalls unternommen. Die Diederwinkelanalyse für den gebundenen

Liganden zeigte deutlich die Art der direkten Bewegungen des gebundenen Liganden.

Sie half auch, die mobilsten Teile des Liganden zu identifizieren, die letztlich zum

RMSD beitragen. Die RMSD- und die Wasserstoffbrücken-Analyse legen beide nahe,

dass sperrige Pyrrolidincarboxamide in einer Orientierung binden können, die jener

der Kristallstrukturliganden entspricht. Diese Analysen zeigten auch, dass die Ringe

A und C der gebundenen Liganden am meisten zu den direkten Bewegungen beitra-

gen. Darüber hinaus wurde festgestellt, dass Pyrrolidincarboxamide eine schwache und

kurzlebige Wasserstoffbrückenbindung mit Tyr158 und dem Cofaktor ausbilden, was

mitverantwortlich für ihr ingesamt moderates InhA-Hemmpotential sein dürfte.

Eine weitere Analyse konzentrierte sich auf die Bestimmung der maximalen Varianz und

Richtung der Bewegungen des gebundenen Liganden sowie der wichtigsten Aminosäuren,

die an der Bindung des Liganden beteiligt sind. Zusätzlich wurden die korrelierten

und antikorrelierten Bewegungen dieser Aminosäuren und des gebundenen Liganden

untersucht. Die Essential Dynamics-Analyse des gebundenen Liganden bestätigte nicht

nur die Erkenntnisse aus der Diederwinkelanalyse, sie zeigte auch die grundlegenden

Unterschiede in den Veränderungen, die bei der Bindung von leichten und sperrigen

Pyrrolidincarboxamiden auftreten. Während die kleineren Verbindungen sowohl Einfluss

auf Aminosäuren des Minor als auch des Major Portal haben, haben die sperrigen Vertreter

nur Einfluss auf die entscheidenden Aminosäuren des Substratbindeloops, d.h. Ile202 und

Val203. Die Dynamic Cross Correlation Karten für die beiden representativen Liganden

pc-d11 und pc-c7a3 unterstützen die Essential Dynamics-Ergebnisse. Beide Analysen

zusammen halfen die geringen Bewegungen des Substratbindeloops zum Liganden hin

aufzudecken.

Die Informationen aus den Essential Dynamics und Dynamic Cross Corrrelation Analysen

wurden verwendet, um eine strukturbasierte Optimierung des sperrigen Pyrrolidincarbox-

amid-Gerüsts durchzuführen. Insgesamt wurden 20 Verbindungen entworfen und einer

umfangreichen in-silico Analyse unterzogen, die molekulares Docking, Rescoring, MD-

Simulationen und auch die mykobakterielle Zellwandpermeabilitätsvorhersage einschloss.

Alle diese Analysen zeigten moderate Verbesserungen gegenüber den Ausgangsmolekülen
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(pc-c6a3 und pc-c7a3) und dem Referenzmolekül (pc-d11). Für ein vielversprechendes

Subset neuer Moleküle wurden umfangreiche MD-Simulationen von jeweils 150 ns pro

Protein-Ligand-Komplex durchgeführt, um die Veränderungen im Bindungsmodus sowie

im Protein bei erweiterter Simulationsdauer zu ermitteln. Mit Ausnahme einiger weniger,

zeigten alle Moleküle eine verbesserte Bindungsstabilität, obwohl der Gesamtligand-

RMSD vergleichsweise höher war als jener des Referenz- oder der Ausgangsliganden.

Diese Simulationen wurden auch verwendet, um die molekularen Determinanten der

schnellen reversiblen Bindung von Pyrrolidincarboxamiden zu beleuchten.

Schließlich wurden unter umfangreicher Verwendung von Clustering-Techniken, die dom-

inanten Bindungskonformationen für Pyrrolidincarboxamide ermittelt und versucht, die

ursächlichen Faktoren hinter deren relativ schwacher Bindung zu bestimmen. Das Clus-

tering und der anschließende Vergleich der dominanten Konformationen mit jener von

slow-tight binders zeigte, daß Pyrrolidincarboxamide einen weit offenen Zustand des Sub-

stratbindeloops zeigen. Eine kleinere Konformationsfamilie war mit einer weniger offenen

Form des Substratbindeloops verbunden. Das Clustering zeigte auch die strukturellen

Determinanten der offensichtlichen schnellen und reversiblen Bindung auf. Diese Inform-

ation wurde später verwendet, um zwei weitere Inhibitoren vorzuschlagen, die günstige

Eigenschaften von slow-tight binders zeigen sollten. Ein Vergleich mit den Erkenntnissen

aus der Literatur deutet auf die Möglichkeit einer verbesserten Bindung für die vorge-

schlagenen Moleküle im Vergleich zum Referenzliganden hin. Zusammenfassend lässt sich

sagen, dass unter den entworfenen Pyrrolidincarboxamiden vielversprechende Moleküle

enthalten sind, die günstige Eigenschaften aufweisen und eine weitere experimentelle

Untersuchung rechtfertigen würden.
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[101] H. Gutiérrez-de-Terán and J. Åqvist. Linear interaction energy: Method and

applications in drug design. In Computational Drug Discovery and Design, pages

305–323. Springer, 2012.

[102] J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman, and D. A. Case.

Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-

DNA helices. J. Am. Chem. Soc., 120(37):9401–9409, 1998.

[103] P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee,

Y. Duan, W. Wang, et al. Calculating structures and free energies of complex

molecules: Combining molecular mechanics and continuum models. Acc. Chem.

Res., 33(12):889–897, 2000.

[104] S. Genheden and U. Ryde. The MM/PBSA and MM/GBSA methods to estimate

ligand-binding affinities. Expert Opin. Drug Discov., 10(5):449–461, 2015.

[105] F. S. Lee, Z. T. Chu, M. B. Bolger, and A. Warshel. Calculations of antibody-antigen

interactions: Microscopic and semi-microscopic evaluation of the free energies of

binding of phosphorylcholine analogs to McPC603. Protein Eng., 5(3):215–228,

1992.



Bibliography 282

[106] Y. Y. Sham, Z. T. Chu, H. Tao, and A. Warshel. Examining methods for calculations

of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations

of ligands binding to an HIV protease. Proteins: Struct., Funct., Bioinf., 39(4):393–

407, 2000.

[107] D. A. Pearlman. Evaluating the molecular mechanics poisson-boltzmann surface

area free energy method using a congeneric series of ligands to p38 MAP kinase. J.

Med. Chem., 48(24):7796–7807, 2005.

[108] P. Mikulskis, S. Genheden, and U. Ryde. Effect of explicit water molecules on

ligand-binding affinities calculated with the MM/GBSA approach. J. Mol. Model.,

20(6):1–11, 2014.

[109] P. W. Rose, C. Bi, W. F. Bluhm, C. H. Christie, D. Dimitropoulos, S. Dutta, R. K.
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Appendix A

Inhibitors of InhA derived from literature used

for docking and affinity prediction

Table A.1 Overview of the different scaffolds investigated by molecular docking in
the current work.

”light” pyrrolidine carboxamides

C-ring replaced pyrrolidine car-

boxamides

A-ring replaced/”bulky” pyrrolid-

ine carboxamides

genzyme series

arylamide series

O

OH

n

R

diphenyl ether series

O

OH

R1 R2

Cl

triclosan based diphenyl ether

series
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Table A.6 Arylamide series of InhA inhibitors

Arylamide scaffolds

Protein Ligand X n R1 R2 pIC50 Poses (N) XPscore RMSD

generated (with) (kcal/mol) (Å)

2NSD a1 N 0 H H 4.41 5 (XP) -9.70 1.23

2NSD a2 N 0 4-CH3 H 4.77 5 (XP) -9.27 1.29

2NSD a3 N 0 4-CH3 3-CF3 5.20 5 (XP) -11.84 1.48

2NSD a4 N 0 4-CH3 3-Cl 5.51 5 (XP) -9.01 1.18

2NSD a5 N 0 3-CH3 3-Cl 5.02 5 (XP) -10.42 1.24

2NSD a6 N 0 3-CH3 4-NO2 4.81 5 (XP) -7.88 1.19

2NSD a7 N 0 3,4-Me2 3-Cl 6.00 5 (XP) -9.83 1.20

2NSD a8 N 0 3,4-Me2 3-CF3 5.73 5 (XP) -11.53 1.29

2NSD a13 N 0 2-F 3-Cl 4.85 5 (XP) -10.88 1.24

2NSD a14 N 0 4-F 3-Cl 5.01 5 (XP) -10.55 1.26

2NSD a15 N 0 3-Cl 3-Cl 5.17 5 (XP) -10.41 1.35

2NSD a16 N 0 3,4-Cl 3-Cl 5.21 5 (XP) -10.5 1.23

2NSD a17 N 0 3,4-Cl H 4.75 5 (XP) -9.83 1.22

2NSD a18 N 1 H H 4.50 5 (XP) -10.73 0.88

2NSD b1 C 1 3-Cl H 5.11 5 (XP) -11.08 0.81

2NSD b2 C 1 2-F H 4.85 5 (XP) -11.28 0.89

2NSD b3 C 1 4-CH3 H 5.28 5 (XP) -9.26 0.68

2NSD b4 C 1 3-CH3 H 5.13 5 (XP) -11.17 0.81
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Table A.7 XPscore and substructure RMSD values for top ranked poses of arylamides
identified by means of micro-titer synthesis and in-situ screening

Protein Ligand pIC50 Poses (N) XPscore RMSD

generated (with) (kcal/mol) (Å)

2NSD p1 6.39 5 (XP) -12.66 1.04

2NSD p2 7.04 5 (XP) -12.74 1.09

2NSD p3 6.69 5 (XP) -13.35 1.15

2NSD p4 5.98 5 (XP) -14.21 0.94

2NSD p5 5.72 5 (XP) -12.70 0.93

2NSD p6 5.69 5 (XP) -13.78 0.96
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Table A.8 GlideXP Docking and substructure RMSD values for top ranked poses of
n-alkyl-diphenyl ether series as Mtb-InhA inhibitors

O

OH

n

R

Diphenyl ether series scaffold

Protein Ligand N R-group pIC50 Poses (N) XPscore RMSD

generated (with) (kcal/mol) (Å)

2X23 TCL NA NA 6.69 5 (XP) -7.39 0.19

2X23 2PP 2 H 5.69 5 (XP) -8.62 0.58

2X23 4PP 4 H 7.09 5 (XP) -9.99 0.75

2X23 5PP 5 H 7.76 5 (XP) -10.86 0.49

2X23 6PP 6 H 7.95 5 (XP) -10.58 0.52

2X23 8PP 8 H 8.30 5 (XP) -10.91 0.78

2X23 14PP 14 H 6.82 5 (XP) -13.39 0.74

2X23 PT-70 6 CH3 8.28 5 (XP) -10.99 0.82
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Table A.9 Triclosan based diphenyl ether series of InhA inhibitors.

O

OH

R1 R2

Cl

Triclosan based diphenyl ether series scaffold

Protein Ligand R1 R2 pIC50 Poses (N) XPscore RMSD

generated (with) (kcal/mol) (Å)

2X23 2 CH3 Cl 6.09 5 (XP) -8.10 1.02

2X23 7 CH2(C6H11) Cl 6.95 5 (XP) -12.26 0.70

2X23 7-mod CH2(C6H10) Cl 6.95 5 (XP) -12.32 0.70

2X23 8 CH2CH3 Cl 6.92 5 (XP) -9.46 0.71

2X23 9 (CH2)2CH3 Cl 7.04 5 (XP) -9.01 1.01

2X23 10 (CH2)3CH3 Cl 7.25 5 (XP) -10.44 0.78

2X23 11 CH2CH(CH3)2 Cl 7.01 5 (XP) -10.59 0.70

2X23 12 (CH2)3CH(CH3)2 Cl 7.20 5 (XP) -10.85 0.24

2X23 13 CH2CH(CH3)CH2CH3 Cl 6.88 5 (XP) -11.01 0.55

2X23 17 CH2(2-pyridyl) Cl 7.53 5 (XP) -11.62 0.70

2X23 18 CH2(3-pyridyl) Cl 7.37 5 (XP) -10.94 0.73

4TZK 19 CH2(4-pyridyl) CN 7.12 5 (XP) -11.52 0.80

2NSD 20 o-CH3-Ph Cl 5.88 5 (XP) -11.08 1.31

2NSD 22 m-CH3-Ph Cl 6.06 5 (XP) -11.66 1.49

2X23 24 CH2-Ph Cl 7.29 5 (XP) -10.51 0.71

2X23 25 (CH2)2-Ph Cl 7.67 5 (XP) -11.90 0.40

2X23 26 (CH2)3-Ph Cl 7.30 5 (XP) -12.66 0.77
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Table A.10 Mean number of poses per compound getting selected post pose selection
phase.

Compound
Protein

1P44 2H7M 2NSD 2X23

Genzyme 2.5 3 2.5 1.5
Carboxamides 3.1 3.4 2.9 3.1
Arylamides 1.5 1.5 1.4 1.5
Diphenyl ethers 2.3 2.8 2.5 2.8

Table A.11 Number of poses docked and not docked across all four proteins

Protein Molecules Docked (N) Molecules not docked (N) % Success

1P44 112 1 99.11
2H7M 109 4 96.46
2NSD 108 5 95.57
2X23 97 16 85.84
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A.0.1 Logistic Regression models for entire pyrrolidine carboxamide data-

set:

This section describes the logistic regression models generated using poses for the

entire pyrrolidine carboxamide dataset in an activity-based separation endeavour.

A.0.1.1 ”MOD” binomial logreg models
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Figure A.1 Binomial logistic regression models of a) XPscore (top left), b) Drugsc-
oreX (top right), c) SFC229p (bottom left), and d) SFC290p (bottom right) to detect
moderately active compounds [for entire pyrrolidine carboxamide dataset (N=44)].
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A.0.1.2 ”HIGH” binomial logreg models
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Figure A.2 Binomial logistic regression models of a) XPscore (top left), b) DrugscoreX
(top right), c) SFC229p (bottom left), and d) SFC290p (bottom right) to detect highly
active compounds [for entire pyrrolidine carboxamide dataset (N=44)].



Appendix B

Activity Based Separation models

B.1 Logistic regression models

The following are the miscellaneous logreg models derived from scoring functions as well

as force field terms.

B.1.1 ”Scoring functions” based logreg models

B.1.1.1 ”MOD” binomial logreg models
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Figure B.1 Binomial logistic regression models of a) XPscore (top) and b) SFC290p
(bottom) to detect moderately active compounds [for ”final” dataset (N=23)]
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B.1.1.2 ”HIGH” binomial logreg models
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Figure B.2 Binomial logistic regression model of a) XPscore-SFC290p combination
(top); b) XPscore (middle), and c) SFC290p (bottom) to detect highly active compounds
[for ”final” dataset (N=23)]
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B.1.1.3 Multinomial logreg models
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Figure B.3 Multinomial logistic regression models of XPscore and SFC290p to classify
compounds as least active, moderately active, and highly active.
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B.1.2 ”Force field” terms based logreg models

B.1.2.1 ”MOD” binomial logreg models
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Figure B.4 Binomial logistic regression models for moderately active molecules re-
cognition for: electrostatics and van der Waals combined; electrostatics alone; and van
der Waals alone; derived using ”final” dataset (N=23)
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B.1.2.2 ”HIGH” binomial logreg models
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Figure B.5 Binomial logistic regression models for highly active molecules recognition
for: electrostatics and van der Waals combined; electrostatics alone; and van der Waals
alone; derived using ”final” dataset (N=23)
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Table B.1 Pairwise interaction energies for the pyrrolidine carboxamide dataset in
the bound (B) and free (F) states, respectively. The molecules of training and test sets
used for the affinity prediction model are separated by a double horizontal line

Bound (B) Free (F) Difference (B-F)

(kcal/mol)

Electro- van der Electro- van der Electro- van der

Compound statics Waals statics Waals statics Waals

s2 -44.93 -51.74 -46.73 -29.01 1.80 -22.73

s4 -38.69 -52.63 -41.22 -28.08 2.53 -24.55

s5 -37.65 -47.92 -40.06 -28.33 2.41 -19.59

s6 -35.75 -49.20 -41.69 -27.09 5.94 -22.11

s10 -39.44 -48.91 -44.10 -26.95 4.66 -21.96

s11 -38.68 -49.40 -41.44 -28.03 2.76 -21.37

s12 -44.60 -53.89 -47.61 -29.13 3.01 -24.76

s15 -39.25 -52.42 -41.91 -30.05 2.66 -22.37

d2 -30.33 -52.47 -38.38 -28.67 8.05 -23.80

d4 -38.61 -52.13 -42.83 -29.35 4.22 -22.78

d8 -30.65 -51.58 -41.92 -28.18 11.27 -23.40

d9 -40.69 -52.57 -51.81 -29.63 11.12 -22.94

d11 -34.05 -51.82 -34.99 -29.61 0.94 -22.21

d12 -38.53 -53.66 -40.86 -30.93 2.33 -22.73

d13 -34.14 -58.77 -44.72 -31.11 10.58 -27.66

d14 -36.72 -56.37 -39.06 -30.96 2.34 -25.41

d15 -39.32 -53.61 -40.32 -29.65 1.00 -23.96

d16 -39.21 -49.88 -42.12 -27.65 2.91 -22.23

3i -36.64 -47.27 -42.92 -26.95 6.28 -20.32

r7 -17.10 -53.12 -34.43 -27.47 17.33 -25.65

p31 -32.82 -60.24 -50.36 -32.42 17.54 -27.82

c73 -36.24 -72.51 -53.83 -40.46 17.59 -32.05

c82 -32.40 -72.84 -38.97 -36.33 6.57 -36.51

s1 -31.59 -45.22 -36.08 -26.13 4.49 -19.09

s17 -41.51 -53.39 -48.63 -28.77 7.12 -24.62

d1 -33.38 -50.02 -38.45 -28.49 5.07 -21.53

d3 -34.20 -48.37 -35.60 -28.96 1.40 -19.41

d6 -39.91 -49.55 -44.33 -27.87 4.42 -21.68

continued on next page
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Bound (B) Free (F) Difference (B-F)

(kcal/mol)

Electro- van der Electro- van der Electro- van der

Compound statics Waals statics Waals statics Waals

d7 -40.91 -53.26 -42.46 -30.14 1.55 -23.12

d10 -35.30 -48.41 -38.75 -26.56 3.45 -21.85

3a -37.05 -49.07 -43.11 -26.08 6.06 -22.99

3j -34.42 -50.80 -41.80 -27.40 7.38 -23.40

p9 -26.60 -66.67 -51.01 -34.75 24.41 -31.92

p20 -22.13 -62.74 -36.32 -35.00 14.19 -27.74

p21 -39.13 -62.57 -49.82 -33.11 10.69 -29.46

p24 -31.93 -61.21 -50.64 -31.99 18.71 -29.22

p28 -100.00 -68.78 -95.01 -38.73 -4.99 -30.05

p33 -34.77 -65.63 -47.89 -33.01 13.12 -32.62

p36 -95.70 -67.19 -94.31 -39.77 -1.39 -27.42

c11 -30.71 -60.28 -49.33 -32.80 18.62 -27.48

c12 -29.43 -70.66 -38.20 -36.42 8.77 -34.24

c63 -43.25 -61.33 -53.61 -38.17 10.36 -23.16

c72 -30.01 -64.19 -40.81 -35.23 10.80 -28.96

c83 -44.20 -79.90 -58.52 -40.75 14.32 -39.15





Appendix C

Structure and synthesis of new pyrrolidine

carboxamides

C.1 Synthesis of representative compounds

The basic synthesis scheme for the pyrrolidine carboxamides has been discussed in

literature [52]. It basically consists of coupling an amine and a carboxylic acid giving

the corresponding pyrrolidine carboxamide. This section describes in detail the syn-

thesis routes for the representative compounds and the sole molecule identified from

Scifinder R© [323].

C.1.1 Synthesis of Scfinder hit

The routes for synthesis for the solitary hit from Scifinder R© can be seen in Figure C.1.

The synthesis of this compound consists of two steps as follows [52]:

1. Synthesis of pyrrolidine carboxylic acid:

In the first step, itaconic acid and the amine corresponding to the C ring i.e. 5,6,7,8

tetrahydronaphthlene-1-amine were heated from room temperature to 200◦C for

30 minutes. Thereafter, the molten mass was allowed to cool followed by addition

of water and chilling the mixture in an ice bath. The mixture was then dissolved

in aqueous sodium hydroxide and the solution filtered to remove any impurities.

Subsequent to the filtration, the mixture was acidified with diluted hydrochloric

acid followed by recrystallisation of the precipitiate with methanol and diethyl

ether.

2. Fusion with corresponding amine (microtiter synthesis):

In the second phase, a small portion of the pyrrolidine carboxylic acid was dissolved

in dimethyl formamide (DMF). To this solution, HBTU (2-(1H-benzotriazol-1-yl)-

1,1,3,3-tetramethyluronium hexafluorophosphate) and DIEA (N,N-diisopropylethyl-

amine) were added in 1:2 ratio under constant shaking at 45◦C for 2 hours, with

the reaction being assessed by thin layer chromatographic (TLC) analysis.
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Figure C.1 Synthesis scheme for solitary hit from scaffold search in Scifinder R©.

The above process can be tweaked in order to synthesize the new pyrrolidine carboxam-

ides as shown in Figure C.2. However, in case of the new pyrrolidine carboxamides con-

taining the alkyl chains, the process has to be expanded and modified in order to attach

the alkyl ring to the ring-A1 or while replacing the C ring. The entire procedure is

described in Appendix C.1.1.1.

Figure C.2 Synthesis scheme for new pyrrolidine carboxamides that do not contain
any alkyl chain.

C.1.1.1 Synthesis of new pyrrolidine carboxamides containing alkyl chain

In case of new pyrrolidine carboxamides with alkyl chains or with unreactive C-ring

amine precursors, alternative synthesis schemes were studied. Although, the overall
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synthesis consisted of fusing the amine and pyrrolidine carboxylic acid to give the final

product. The synthesis of pyrrolidine carboxamides with alkyl chains consists of two

stages. The first stage deals with the pyrrolidine carboxylic acid synthesis. If the

corresponding C-ring amine was unreactive with itaconic acid, the pyrrolidine carboxylic

acid was obtained by copper catalysed arylation of the pyrrolidinone ring in presence of

arenediazonium species. A saponification or catalytic reduction of the arenediazonium

species yielded the pyrrolidine carboxylic acid [366]. The amine corresponding to the

A ring system typically contains an alkyl chain and a reactive hydroxyl group. This

makes the alkylation or arylation of the A1 ring challenging. This problem can be solved

in two steps. Starting with 4-amino-2-bromophenol, a Friedel-Crafts alkylation could

be performed that attaches the alkyl chain (of desired chain length) at the 5’ position.

Arylation of the intermediate at the 2’ position can proceed via Suzuki coupling [367].

Finally, in the 2nd stage of the pyrrolidine carboxamide synthesis, fusion of the amine and

pyrrolidine carboxylic acid can proceed according to the reaction described in Figure C.1.

The whole steps are depicted in Figure C.3.

Figure C.3 Synthesis routes for designed pyrrolidine carboxamides containing alkyl
chains.





Publications

Narkhede, Y., Wagner S., and Sotriffer, C.A., (in preparation) ”Activity-based classifica-

tion circumvents affinity prediction problems for pyrrolidine carboxamide inhibitors of

InhA”

347





Poster presentations

Parts of this work were presented at the following conferences as posters :

• Closing Syposium for SFB630 (2015), Würzburg, Germany

• 8. Joint Ph.D. Student Meeting of the SFBs 766 - 630 - FOR 854 (2014), Retzbach,

Germany

• Annual meeting of the German Pharmaceutical Association (2014), Frankfurt,

Germany

• Novel Agents against Infectious Diseases - An Interdisciplinary Approach (2013),

Würzburg, Germany

• Chem-SyStM (2012), Würzburg, Germany

349





Affidavit

I hereby confirm that my thesis entitled, ”In-silico structure-based optimization

of Pyrrolidine carboxamides as Mycobacterium tuberculosis enoyl ACP re-

ductase (InhA) inhibitors” is the result of my own work . I did not receive any help

or support from commercial consultants. All sources and/or materials applied are listed

and specified in the thesis.

Furthermore, I confirm that this thesis has not yet been submitted as part of another

examination process neither in identical nor in similar form.

Signed:

Place, Date:

Würzburg, 22.05.2017

351





Eidesstattliche Erklärung
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